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Abstract

In this thesis, we study uniform controllability properties of semi-discrete approxi-

mations for parabolic systems.

In a first part, we address the minimization of the Lq-norm (q > 2) of semidiscrete

controls for parabolic equation. As shown in [LT06], under the main approximation

assumptions that the discretized semigroup is uniformly analytic and that the degree of

unboundedness of control operator is lower than 1/2, uniform observability is achieved

in L2 for semidiscrete approximations for the parabolic systems. Our goal is to overcome

the limitation of [LT06] about the order 1/2 of unboundedness of the control operator.

Namely, we show that the uniform observability property also holds in Lq (q > 2) even

in the case of a degree of unboundedness greater than 1/2. Moreover, a minimization

procedure to compute the approximation controls is provided. An example of application

is implemented for the one-dimensional heat equation with Dirichlet boundary control.

The study of Lq optimality above is in a general context. However, the discrete ob-

servability inequalities that are obtained are not so precise than the ones derived then

with Carleman estimates. In a second part, in the discrete setting of one-dimensional

finite-differences we prove a Carleman estimate for a semi-discrete version of the parabolic

operator ∂t − ∂x(c∂x) which allows one to derive observability inequalities that are far

more precise. Here we consider in case that the diffusion coefficient has a jump which

yields a transmission problem formulation. Carleman estimate are L2 weighted energy

estimates. Here the weight is chosen so as to accommodate the jump of the diffusion

coefficient. Moreover, there is a strong connexion between the Carleman large parameter

and the (small) discretization parameter . Consequence of this Carleman estimate, we

deduce consistent null-controllability results for classes of linear and semi-linear parabolic

equations.
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Chapter 1

Introduction

1.1 Controllability and observability

A control system takes the following form for an evolution equation

ẏ(t) = Ay(t) +Bv(t), y(0) = y0.

The controllability problem is, roughly speaking, the following one. Given T > 0 and

two states y0 and yT , is it possible to steer the solution of the evolution systems from

the given initial state y(0) = y0 to the final state y(T ) = yT by means of a control v(t)?

Here, B is the control operator.

We give examples of such control systems in case of systems of ordinary differential

equations and partial differential equations.

Example 1.1.1. The controlled harmonic oscillator

x′′ + x = u,

which may be written as a system in the following way




x′ = y

y′ = u− x.



Then, A and B are matrices respectively

A =


 0 1

−1 0


 , B =


 0

1


 .

Example 1.1.2. The heat equation





∂ty −△y = 1ωv in Ω ⊂ Rn,

y = 0 in (0, T )× ∂Ω,

y|t=0 = y0,

where ω is an open subset of Ω, an open set in Rn.

Example 1.1.3. The wave equation





c−2∂2t y −△y = v in Ω ⊂ Rn,

y = 0 in (0, T )× ∂Ω,

y|t=0 = y0, ∂ty|t=0 = y1.

The main results of this thesis concern linear systems. In this section, we propose

to review some basic concepts and properties for controllability of linear control sys-

tems. First, we consider with finite-dimensional control systems. Then, we consider

with infinite-dimensional control systems modeled by partial differential equations.

1.1.1 Controllability of finite-dimensional linear control systems

We start the section by recalling some well known results in the finite-dimensional

context.

Let T > 0 be fixed. Consider the linear control system

ẏ(t) = Ay(t) +Bu(t), (1.1.1)

where y(t) ∈ Rn, A is a (n × n)- matrix, B is a (n ×m)- matrix, with real coefficients,

and u(.) ∈ L2(0, T ;Rm) .

Let x0 ∈ Rn. The systems (1.1.1) is said to be controllable from x0 in time T if

and only if, for every x1 ∈ Rn, there exists u(.) ∈ L2(0, T ;Rm) so that the solution x(.)

of (1.1.1), with x(0) = x0, associated with the control u(.), satisfies x(T ) = x1.

2



It is well known that the system (1.1.1) is controllable in time T if and only if the

n× n matrix ∫ T

0
e(T−t)ABB∗e(T−t)A

∗

dt,

called Gramian of the system, is nonsingular (here,M∗ denotes the transpose of a matrix

M). Since we are in finite dimension, this is equivalent to the existence of α > 0 so that

∫ T

0

∥∥∥B∗e(T−t)Aψ
∥∥∥
2
dt ≥ α ‖ψ‖2 , (1.1.2)

for every ψ ∈ Rn (observability inequality).

It is also well known that, if such a linear system is controllable from x0 in time

T > 0, then it is controllable in time T ′, for every T ′ > 0, and from every initial state

x′0 ∈ Rn. Indeed, another necessary and sufficient condition for the controllability to

hold is the Kalman condition

rank(B,AB, · · · , An−1B) = n,

which is independent on x0 and T .

1.1.2 Controllability of infinite-dimensional linear control systems

In this section we give some known facts on controllability of infinite dimensional

linear control systems in Banach spaces. We refer the reader to the excellent textbook

[TW07] (see also [CT06, S05, EZ12] and references therein).

The notation L(E,F ) stands for the set of linear continuous mappings from E to F ,

where E and F are reflexive Banach spaces.

Let X be a reflexive Banach space. In what follows, we denote by ‖.‖X the norm on

X. Let S(t) denote a strongly continuous semigroup on X, of generator (A,D(A)). Let

X−1 denote the completion of X for norm ‖x‖−1 =
∥∥(βI −A)−1x

∥∥, where β ∈ ρ(A) is

fixed. Note that X−1 does not depend on the specific value of β ∈ ρ(A). The space X−1

is isomorphic to (D(A∗))′, the dual space of D(A∗). The semigroup S(t) extends to a

semigroup on X−1, still denoted by S(t), whose generator is an extension of the operator

A, also denoted by A. With this notation, A is a linear operator from X to X−1.

Let U be a reflexive Banach space. Denote by ‖.‖U the norm on U . A linear con-

tinuous operator B : U → X−1 is called the control operator. Note that B is said to be

bounded if B ∈ L(U,X), and is called unbounded otherwise.

3



The control operator B is admissible for the semigroup S(t) if every solution of

y′ = Ay(t) +Bu(t), (1.1.3)

with y(0) = y0 ∈ X and u(.) ∈ L2(0,+∞;U), satisfies y(t) ∈ X, for every t ≥ 0. The

solution of equation (2.1.1) is understood in the mild sense, i.e,

y(t) = S(t)y(0) +

∫ T

0
S(t− s)Bu(s)ds, (1.1.4)

for every t ≥ 0.

For T > 0, define LT : L2(0, T ;U) → X−1 by

LTu =

∫ T

0
S(T − s)Bu(s)ds. (1.1.5)

A control operator B ∈ L(U,X−1) is admissible, if and only if ImLT ⊂ X, for some

(and hence for every) T > 0.

In contrast to the case of linear finite-dimensional control systems there exist many

types of controllability properties. We provide three different notions (they all coincide

in the finite dimensional case).

Let B ∈ L(U,X−1) denote an admissible control operator.

Definition 1.1.4. For y0 ∈ X, and T > 0, the system (2.1.1) is said to be exactly

controllable from y0 in time T if, for every y1 ∈ X, there exists u(.) ∈ L2(0, T ;U) so

that the solution of (2.1.1) , with y(0) = y0, associated with the control u(.), satisfies

y(T ) = y1.

Definition 1.1.5. The system (2.1.1) is said to be approximately controllable from y0

in time T if, for every y1 ∈ X and every ǫ > 0, there exists u(.) ∈ L2(0, T ;U) so

that the solution of (2.1.1) , with y(0) = y0, associated with the control u(.), satisfies

‖y(T )− y1‖X ≤ ǫ.

Definition 1.1.6. For T > 0, the system (2.1.1) is said to be null controllable in time T

if, for every y0 ∈ X, there exists u(.) ∈ L2(0, T ;U) so that the solution of (2.1.1), with

y(0) = y0, associated with the control u(.), satisfies y(T ) = 0.

Clearly, exact controllability implies null controllability and approximate controlla-

bility. However, the converse is false in general.

4



Let us now analyze the null controllability problem that we shall mostly study in this

thesis. We have the following theorem.

Theorem 1.1.7. System (2.1.1) is null-controllable in time T if and only if there exists

α > 0 so that ∫ T

0
‖B∗S(t)∗ψ‖2U dt ≥ ‖S(T )∗ψ‖2X (1.1.6)

for every ψ ∈ D(A∗). Inequality (1.1.6) is called an observation or observability inequal-

ity.

For linear equations, null-controllability is achieved in general by the proof of such an

observability inequality. Several methods can be used to derive such an the observability

inequality including Carleman estimates, the method of multipliers, microlocal analysis...

At present, a powerful approach to prove the observability inequality for general parabolic

system is through the derivation of a global Carleman estimate which will be considered

in a part of this thesis.

1.2 Case of parabolic equations

In this section, we mention some tools to achieve controllability results for parabolic

equations. Firstly, we present the HUM method through which one can construct a

control for a general system. The second one that we use in this thesis is Carleman

estimate which yields observability inequality of heat type equations.

1.2.1 The HUM control

In this section, we refer for the well-known Hilbert Uniqueness Method (in short

HUM), introduced in [L88], consisting of minimizing a cost function, namely, the L2-

norm of the control.

Assume that B is admissible and the control system (2.1.1) is null controllable in

time T . We define the space H as the completion of D(Ω) (with Ω is a domain where

System (2.1.1) acts on) with respect to the norm

‖ψ‖H =

(∫ T

0
‖B∗S(t)∗ψ‖2U dt

)1/2

.

5



Let y0 ∈ X. For every ψ ∈ H, set

J(ψ) =
1

2

∫ T

0
‖B∗S(t)∗ψ‖2U dt+ 〈S(T )∗ψ, y0〉X

The functional J is strictly convex, and, from the observability inequality (1.1.6), is

coercive in the space H. Then, it follows that J has a unique minimizer ϕ ∈ H. Define

the control u by

u(t) = B∗S(T − t)∗ϕ

for every t ∈ [0, T ], and let y(.) be the solution of (2.1.1), such that y(0) = y0, associated

with the control u. Then, one has y(T ) = 0, and moreover, u is the control of minimal

of L2-norm, among all controls whose associated trajectory satisfies y(T ) = 0.

This proves that observability implies controllability, and gives a way to construct

the control of minimal of L2-norm. This is more or less the contents of the Hilbert

Uniqueness Method. Hence, in what follows, we refer to the control (1.2.1) as to the

HUM control.

Remark 1.2.1. From a theoretical viewpoint, the existence of the null control is due to

the obsevability inequality (1.1.6) and therefore is independent of how large the space H is.

However, an efficient computing of the null control for a numerical approximation scheme

is intimately related to this large space H that can hardly be approximated by standard

techniques in numerical analysic. Recently, A. Munch and collaborators have developed

some feasible numericals for heat type equation such that the transmutation method,

variational approach, dual and primal algorithms allow to more efficiently compute the

null control (see in series [FCM09], [FCM10], [MZ10], [PM10]).

1.2.2 Carleman estimates and null controllability in continuous case

Here, we shall mainly survey controllability results for parabolic equations, for which

Carleman estimates have now become an essential technique.

Let Ω, ω be connected non-empty open subsets of Rn with ω ⋐ Ω. We consider the

following parabolic problem in (0, T )× Ω, with T > 0,

∂ty −△y = 1ωv in Q = (0, T )× Ω,

y = 0 on Σ = (0, T )× ∂Ω, (1.2.1)

y(0) = y0 in Ω.
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For the above systems, the null controllability was proved independently by G. Lebeau-

L. Robbiano [LR95] on the one hand and A. Fursikov- O. Yu. Imanuvilov [FI96] on

the other hand. More precisely, the controllability result is stated through the following

Theorem.

Theorem 1.2.2. ([LR95, FI96]) Let ω 6= ∅ and T > 0. For all y0 ∈ L2(Ω), there exists

a control v ∈ L2(Q) such that y(T ) = 0 and ‖v‖L2(Q) ≤ C ‖y0‖L2(Q) where C > 0 only

depends on Ω, ω and T .

The two proofs of this result are different: one uses a local Carleman approach

and another uses a global Carleman approach. The approach of [LR95] is by means of

Carleman estimates for the elliptic operator (−∂2t − △x) in a domain Z = (0, S0) × Ω

with S0 > 0, these estimates are local as they apply to compactly supported functions

in Ω. The second approach, introduced in [FI96], is based on Carleman estimates for

the parabolic operator ∂t − △. These estimates are said to be global for they apply

to functions that are defined in the whole domain (0, T ) × Ω with particular boundary

conditions, here homogeneous Dirichlet boundary conditions.

What is a Carleman estimate?

A local Carleman estimate is an L2-weighted estimate of the type

‖eτϕPv‖L2(Ω) ≥ C ‖eτϕv‖L2(Ω) , (1.2.2)

where P = P (x,Dx) is a differential operator, ϕ = ϕ(x) is a weight function, τ > 0 is

a large parameter and v ∈ C∞
c (Ω). The weight of exponential from eτϕ allows one to

provide ”strong” domination of the function v where ϕ is of smaller values. This can be

done by choosing the parameter τ large.

For applications, the parameter τ plays an essential role. The choice of the weight

function ϕ(x) is important in order to adjust to given geometric configurations.

Estimates of the form (1.2.2) were first established by T. Carleman in 1939 [Car39]

for proving the unique continuation property of some elliptic partial differential equations

(PDE) in dimension two. Since then there have been many investigations for the use

of Carleman estimate used to study of inverse problems and controllability issues for

PDEs. Below, we shall mention two kinds of Carleman estimates which yield the null

controllability for linear parabolic equations.
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Local Carleman estimates

We present a local Carleman estimate for an elliptic operator of order two, in the

simple case where P = −△ = D.D.

Let ϕ be a real-valued function. We define the following conjugated operator Pϕ =

eτϕPe−τϕ to be considered as a semi-classical differential operator with large parameter

τ . We have

P = −△−
∣∣τϕ′∣∣2 +

〈
τϕ′,▽

〉
+
〈
▽, τϕ′〉

= D.D −
∣∣τϕ′∣∣2 + 2i

〈
τϕ′, D

〉
+ τ △ ϕ.

Its full symbol is given by |ξ|2−τ2 |ϕ′|2+2iτ 〈ϕ′, ξ〉+τ△ϕ. Its principal symbol is given

by (the same strength is given to τ and |ξ| in the semi-classical setting)

pϕ = σ(Pϕ) = |ξ|2 − τ2
∣∣ϕ′∣∣2 + 2iτ

〈
ϕ′, ξ

〉
.

We define the following symmetric operators

Q2 = (Pϕ + P ∗
ϕ)/2 = D.D −

∣∣τϕ′∣∣2 ,
Q1 = (Pϕ − P ∗

ϕ)/2i =
〈
τϕ′, D

〉
+
〈
D, τϕ′〉

with respective principal symbols

q2 = |ξ|2 − τ2
∣∣ϕ′∣∣ , q1 = 2τ

〈
ξ, ϕ′〉 .

We have pϕ = q2 + iq1 and Pϕ = Q2 + iQ1.

We choose ϕ that satisfies the following assumption.

Assumption 1.2.3. (L.Hörmander) Let V be a bounded open set in Rn. We say that

the weight function ϕ ∈ C∞(Rn,R) satisfies the Hörmander sub-elliptic assumption in

V̄ if |ϕ′| > 0 in V̄ and

∀(x, ξ) ∈ V̄ × Rn, pϕ(x, ξ) = 0 ⇒ {q2, q1} (x, ξ) ≥ C > 0.

Theorem 1.2.4. (L.Hörmander) Let V be a bounded open set in Rn and let ϕ satisfy
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the sub-ellipticity Assumption 1.2.3 in V̄ , then there exist τ0 > 0 and C > 0 such that

τ3
∥∥∥eϕ/hu

∥∥∥
2

L2(Rn)
+ τ

∥∥∥eϕ/h ▽x u
∥∥∥
2

L2(Rn)
≤ C

∥∥∥eϕ/hPu
∥∥∥
2

L2(Rn)
,

for u ∈ C
∞
c (V̄ ) and τ ≥ τ0.

For the purpose of proving the null controllability of the heat equation, local Carleman

estimates given in Theorem 1.2.4 allow one to prove the following spectral inequality

‖u‖2L2(Ω) ≤ CeC
√
µ ‖u‖2L2(ω) ,

where ω is an open subset of Ω, C > 0 and u a linear combination of eigenfunctions of −△

associated to eigenvalues less than µ > 0. The spectral inequality allows one to obtain

an iterative construction of the control function v working in increasingly larger finite-

dimensional subspaces. This yields the controllability result as stated in Theorem 1.2.2.

For more details we refer to the original approach of Lebeau and Robbiano [LR95]. See

also [LL11a] and [M10].

Global Carleman estimates

The approach of [FI96] allows one to treat also the controllability of more general

parabolic equations by means of a global Carleman estimate. We refer to the surveys of

[FCG06] and [LL11a] for some background introduction to global Carleman estimates.

The null controllability of the linear parabolic system (1.2.1) is equivalent to the

observability of the associated adjoint states. More precisely, for each q0 ∈ L2(Ω), let us

consider the so-called adjoint system





−∂tq −△q = 0 in Q = (0, T )× Ω,

q = 0 on Σ = (0, T )× ∂Ω,

q(T ) = q0 in Ω.

(1.2.3)

Then (1.2.1) is null controllable with controls in L2((0, T ) × ω) if and only if there

exists C > 0 such that

‖q(0)‖2L2(Ω) ≤ C

∫

(0,T )×ω
|q|2 dxdt, (1.2.4)

for all q solution to (1.2.3), which is the observability inequality.

The global Carleman estimate that we present below can be very useful for proving
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such an observability inequality. Here, we state a global estimate as derived by A.

Fursikov-O.Yu. Imanuvilov.

We choose a global weight function satisfying the following requirements

ϕ(x) = eλψ(x) − eλK , with K > ‖ψ‖∞ ,
∣∣ψ′(x)

∣∣ 6= 0, x ∈ Ω\ω0,

ψ|∂Ω = 0, ∂nψ|∂Ω < 0, ψ(x) > 0, x ∈ Ω,

η(t) =
1

t(T − t)

and we choose the positive parameter λ sufficiently large. For the construction of such a

function ψ we refer to [FI96].

A global Carleman estimate is then of the following form.

Theorem 1.2.5. [FI96] There exists K > 0, τ0 > 0, depending on ω,Ω such that

τ3
∥∥∥η(t)3/2eτηϕq

∥∥∥
2

L2(Q)
+ τ

∥∥∥η(t)1/2eτηϕ▽q
∥∥∥
2

L2(Q)

≤ K
(
‖eτηϕ(qt +△q)‖2L2(Q) + τ3

∥∥∥η(t)3/2eτηϕq
∥∥∥
2

L2
(
(0,T )×ω

)
)
,

for τ ≥ (T + T 2)τ0.

Note that the global aspect of the estimate imposes an ”observation” term over

(0, T ) × ω, with ω ⋐ Ω in the r.h.s of the estimate (compare with the form of a local

estimate above).

From this global Carleman estimate, one deduces the observability inequality (1.2.4)

(we refer to [FCG06] for a proof). The null controllability of System (1.2.1) then follows.

1.3 Uniform observability and discrete controls

This section is devoted to analyzing controllability of parabolic sytems after dis-

cretization. If one considers controllability properties for parabolic differential equations,

a natural question is then that of uniform controllability after discretization. Above we

reviewed that controllability and observability are dual aspects of the same problem. We

shall therefore focus on uniform observability which is shown to hold when the observ-

ability constant of the discritized approximation system does not depend on step-size

h.

In the first part of this thesis, the main goal is to establish conditions to obtain an

uniform observability inequality in a general context. Furthermore, by making use of
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this observability inequality, we provide some constructive way to compute a suitable

semi-discrete control function.

Because of the generality of the discrete schemes studied in this first part one can

hope to obtain sharper observability inequalities if considering particular schemes. In

a second part, specializing the analysis to finite-difference schemes we obtain improved

observability inequalities. This is done by means of discrete Carleman estimates.

Before stating the different results obtained here we wish to explain the reason why

there is no hope to obtain observability inequalities of the same quality as what is ob-

tained in the continuous case.

1.3.1 A counter-example to null-controllability

As mentioned in Theorem 1.2.2, the heat equation in a bounded domain is null

controllable from any open, non-empty subset of the domain or its boundary [FI96,

LR95]. One can expect that with common numerical approximation schemes the heat

equation should be controllable, uniformly with respect to the discretization parameter

under similar weak geometric conditions for the location of the action of the control. A

positive uniform null controllability result is provided in [LZ98] concerning the case of a

boundary control in 1D in the case of a finite-difference scheme. Yet, a counter-example

due to O. Kavian shows that the null controllability property fails to hold in 2D again for

a finite-difference semi-discretization scheme for the heat equation in a square where the

control acts on a strict subset of the domain. Here, we shall present this counter-example

for a distributed control.

Set Ω = [0, 1] × [0, 1]. We consider the following heat equation in (0, T ) × Ω, with

T > 0

∂ty −△y = 1ωv in (0, T )× Ω, y|∂Ω = 0 and y|t=0 = y0, (1.3.1)

where v = v(x1, x2, t) is the control and 1ω is the characteristic function of the set ω

where the control is applied.

The Laplace operator is approximated by a five-point finite difference scheme. The

semi-discrete systems we consider is then

∂ty− △h y = 1ωv, y|∂Ω = 0, y|t=0 = y0, (1.3.2)

where y is discrete in the space variable. Its values are known on the uniform mesh

of [0, 1]2, h is the discrete step size in the both directions. In fact, there exists an

eigenvector e0 of the discrete Laplacian △h with corresponding eigenvalue λ0k = 4
h2
,
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taking alternating values ±1 along the diagonal and vanishing uniformly outside of this

diagonal. Assume that the control region ω does not meet the diagonal of the domain

Ω = [0, 1] × [0, 1] which yields 〈1ωv, e0〉 = 0. We pick an initial state y0 = e0. The

solution of (1.3.1) can be written as

y(t) = e−t△he0 +

∫ T

0
e−(T−s)△h1ωv. (1.3.3)

Starting with the eigenvector e0, we introduce a family of eigenvectors (ej)j=1,...,N−1 of

the discrete Laplacian to constitute an orthonormal basic of the space of discrete function

(for the discrete L2 norm). Thus, we can express the solution (1.3.3) in following form

y(t) = e−tλ0ke0 +
∫ T

0

∑

0≤j≤N−1

e−(t−s)λj 〈1ωv, ej〉 ejds

= e−tλ0he0 +
∫ T

0

∑

1≤j≤N−1

e−(t−s)λj 〈1ωv, ej〉 ejds.

If system (1.3.1) is exactly null-controllable in time T , i. e, y(T ) = 0 for some control

v, it is equivalent to having 〈y(T ), ej〉 = 0, ∀j. Yet, we have

〈y(T ), e0〉 =
〈
e−Tλ0ke0, e0

〉
+

∫ T

0

〈∑

j 6=0

e−(T−s)λj 〈1ωv, ej〉 ej , e0

〉
ds

= e−T
4
h2 ‖e0‖

2 6= 0. (1.3.4)

This constitute a contradiction for the expected null controllability.

Remark 1.3.1. • There is a positive counterpart of the example above provided in

[Zua06]. Namely, the null controllability result is shown to hold in case that the

control region ω meets the diagonal of the domain (distributed control) or the control

is required to be supported everywhere on the boundary of the domain (boundary

control). We emphasize here that, despite the fact that no geometric restrictions

are needed for the continuous heat equation, in the sense that null controllability

holds from an arbitrarily small open subset of the boundary, this is not the case for

the semi-discrete heat equation.

• The result which we obtained in (1.3.4) is consistent with the result obtained in

[BHL10a]-[BHL10b], [LT06] and [N12]. Namely, as shown in [BHL10a] in 1D as

12



well as [BHL10b] in arbitrary dimension, one can prove that one can find a control

function v such that

|yh(T )|L2(Ω) ≤ Ce−C/h
2
∣∣∣yh0
∣∣∣
L2(Ω)

. (1.3.5)

In comparison, in the result obtained in [LT06] and [N12], a weaker inequality of

the form (1.3.5) is proved with e−C/h
2
replaced by hβ, for some explicit β > 0. Yet,

it can be applied for general parabolic problems.

1.3.2 Optimal control in the Lp framework

Consider an infinite dimensional linear control system

ẏ(t) = Ay(t) +Bu(t), y(0) = y0, (1.3.6)

where the state y(t) belongs to a reflexive Banach space X, the control u(t) belongs to

a reflexive Banach space U , A : D(A) → X is an operator, with dense domain and B

is a control operator (in general, unbounded) on U . Discretizing this partial differential

equation by using, for instance, a finite-difference or a finite-element scheme, leads to a

family of finite dimensional linear control systems

.
yh(t) = Ahyh(t) +Bhuh(t), yh(0) = y0h, (1.3.7)

where yh(t) ∈ Xh and uh(t) ∈ Uh, for 0 < h < h0 .

Here, we investigate a method by which we can achieve the control of minimal Lq-

norm (q > 2). Namely, we will establish some conditions ensuring the existence and

convergence of the discrete control of the minimal Lq-norm

min
1

q

∫ T

0
‖uh(t)‖

qdt (q > 2). (1.3.8)

Moreover, in the framework of parabolic equation, our goal is to study the uniform

controllability property of the family of discretized control systems (1.3.7) in Lq (q > 2).

In L2-setting, by using finite-difference schemes for space semi-discretization, some

relevant references concerning this problem have been in vestigated by many authors

in series of articles [IZ99], [LZ98], [LZ02], [NZ03], [Zua99], [Zua02], [Zua04], [Zua05],

[Zua06], [BHL10a], [BHL10b] and [LT06]. Recently, finite-element schemes for space
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semi-discretization where also studied on [M12]. As opposed to the results for space

semi-discretization only we also mention several works devoted to observability property

for time semidiscrete and fully discrete linear systems such as [EZZ08], [EV09], and

[BHL11].

The continuous framework

Firstly, we consider the problem of controls of the minimal Lq-norm (q > 2) in the

continuous case. Namely, our aim is to minimize the following functional





Minimize J(u) = 1
q

∫ T
0 ‖u‖q dt (q ≥ 2)

Subject to u ∈ E
(1.3.9)

where E = {u ∈ U : u steering System (1.3.6) from y0 to y(T ) = 0}.

In case of q = 2, this corresponds the well-known Hilbert Uniqueness Method which

we presented in Section 1.2.1. However, this method is not appropriate for the case

q > 2. Fortunately, thanks to the Fenchel-Rockafellar duality theorem following the

approach of [CGL94], [GLH08], the problem can be reduced to the minimization of the

corresponding conjugate function. More precisely, we state here our result in the case of

q > 2 as follows.

Theorem 1.3.2. 1. We have the identity:

inf
u∈E

1

q

∫ T

0
‖u‖q dt = − inf

ψT∈X∗
(
1

p

∫ T

0
‖B∗ψ‖p dt+ < ψ(0), y0 >),

where ψ is the solution of

−ψ̇ = A∗ψ

ψ(T ) = ψT .

Equivalently, we have

min
u∈E

1

q

∫ T

0
‖u‖q dt = −min

ψ∈H
(
1

p

∫ T

0
‖B∗S(T − t)∗ψ‖p dt+ < S(T )∗ψ, y0 >).
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2. If uop is optimal of problem (1.3.9) then

uop(t) = ‖B∗S(T − t)∗ϕ‖p−2B∗S(T − t)∗ϕ,

where ϕ ∈ H is the unique minimizer of the functional

J∗(ψ) =
1

p

∫ T

0
‖B∗S(T − t)∗ψ‖p dt+ < S(T )∗ψ, y0 > .

The space H is defined as the completion of D(Ω) w.r.t the norm

‖ψ‖H =

(∫ T

0
‖B∗S(T − t)∗ψ‖pU dt

)1/p

.

Remark 1.3.3. According to the above arguments, if the control ū is defined by

ū(t) = ‖B∗S(T − t)∗ϕ‖p−2B∗S(T − t)∗ϕ, (1.3.10)

with ϕ minimizer of J∗, for every t ∈ [0, T ] and if y(.) is the solution of (1.3.6), such

that y(0) = y0, associated with the control ū, then we have y(T)=0. Therefore, ū is

the control of minimal Lq-norm (q > 2), among all controls whose associated trajectory

satisfies y(T ) = 0.

The discrete case

Here, we address the minimization of the Lq-norm (q > 2) of semidiscrete controls

for parabolic equations.

In this context, assume that the control operator B ∈ L(U,D((−Â∗)γ)′). The degree

γ is so-called the degree of unboundedness of the control operator B.

As shown in [LT06], under standard assumptions on the discretization process and

for a null-controllable parabolic system (1.3.6), if the degree of unboundedness of

the control operator B is lower than 1/2 then the semidiscrete approximation

models are uniformly controllable and moreover it is shown how approximated control

can be obtained using a minimization proceduce. The result of [LT06] is only satisfied

for Neumann control but not for Dirichlet control. The main goal of our work is to

overcome the limitation of [LT06] about the order 1/2 of unboundedness of the control

operator and further to extend the result for Dirichlet control . We study the existence
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of the minimum of the cost function of discretized control with power q > 2 instead of

power q = 2, in the case the operator A generates an analytic semigroup. Namely, we

show that the uniform controllability property also holds in Lq (q > 2) even in the case

of a degree of unboundedness greater than 1/2.

In recent works in the L2 setting, as in [LT06], uniform controllability is derived using

semigroup arguments and introducing a vanishing term of the form hβ ‖ψh(T )‖
2
L2(Ω) for

some β > 0 in the observability inequality. Additionally, by means of discrete Carleman

inequalities, the authors of [BHL10a], [BHL10b], [BL12] obtain a weak uniform observ-

ability inequality for parabolic equations in arbitrary dimension. Moreover, the work of

[M12] yields an uniform observability inequality in the abstract setting of unitary groups

by using a finite-element semi-discretization.

Now, we state the following result of this thesis (see detail in Chapter 2).

Theorem 1.3.4. Under the main assumptions stated in Section 2.3, if the control system

ẏ = Ay + Bu is null-controllable in time T > 0, with a control in Lq (q > 2) then there

exist β > 0, h1 > 0, and positive real numbers C, C’ satisfying

∥∥∥eTA∗

hψh

∥∥∥
p

Xh

≤

∫ T

0

∥∥∥B∗
he
tA∗

hψh

∥∥∥
p

U
dt+ hβ‖ψh‖

p
Xh

≤ C ′‖ψh‖
p
Xh
, (1.3.11)

for every h ∈ (0, h1) and every ψh ∈ Xh, (where p, q are conjugate, i.e, 1
p +

1
q = 1).

In these conditions, for every y0 ∈ X, and every h ∈ (0, h1), there exists ϕh ∈ Xh minimizing

the functional

Jh(ψh) =
1

p

∫ T

0

∥∥∥B∗
he
tA∗

hψh

∥∥∥
p

U
dt+

1

p
hβ‖ψh‖

p
Xh

+ < eTA
∗

hψh, Phy0 >Xh
, (1 ≤ p < 2)

and the sequence (Q̃huh)0<h<h1
, where the control uh is defined by

uh(t) =
∥∥∥B∗

he
(T−t)A∗

hϕh

∥∥∥
p−2

B∗
he

(T−t)A∗

hϕh, (1.3.12)

for every t ∈ [0, T ] converges weakly (up to a subsequence), in the space Lq(0, T ;U) to a control

u such that the solution of :
.
y = Ay +Bu, y(0) = y0, (1.3.13)

satisfies y(T ) = 0. For every h ∈ (0, h1), let yh(.) denote the solution of

.
yh = Ahyh +Bhuh, yh(0) = Phy0. (1.3.14)

Then,
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• the final state is given by

yh(T ) = −hβ ‖ϕh‖
p−2

ϕh (1.3.15)

• The sequence (P̃hyh)0<h<h1
converges strongly (up to subsequence) in the space Lq(0, T ;X),

to y(.).

Furthermore, there exists M > 0 such that

∫ T

0

‖u(t)‖pU ≤Mp/(p−1) ‖y0‖
p/(p−1)
X ,

and, for every h ∈ (0, h1),

∫ T

0

‖uh(t)‖
p
Uh

≤Mp/(p−1) ‖y0‖
p/(p−1)
X ,

hβ ‖ϕh‖
p
Xh

≤Mp/(p−1) ‖y0‖
p/(p−1)
X ,

‖yh(T )‖Xh
≤M1/(p−1)hβ/p ‖y0‖

1/(p−1)
X . (1.3.16)

(The approximation operators such as Ah, A
∗
h, Bh, B

∗
h and Ph will be precisely given

in Section 2.3 of Chapter 2).

Remark 1.3.5. • Note that the result of [LT06] is only satisfied for Neumann con-

trol, but not for Dirichlet control. Our improvement now covers the case of Dirichlet

control.

• The left hand side of (1.3.11) is considered as a ’weak’ uniform observability type in-

equality for (2.1.2). It is ’weak’ because of the additional viscosity term hβ‖ψh‖
p
Xh

.

• We observe from (1.3.15) that yh(T ) is not equal to zero. Yet, yh(T ) goes to zero

as the mesh size h → 0 and the error estimate is expressed by inequality (2.3.25).

This is consistent with the counter-example presented above.

Theorem 1.3.4 states that the controls uh defined by (2.3.22) tend to a control u

realizing null-controllability for System (1.3.13). A natural question arises: since there

exists a control u of minimal of Lq-norm (q > 2) such that y(T ) = 0 (see Section 2.2.2

for details), what assumptions are needed to have u = u? An answer is provided through

the following proposition. Apart from the condition on y0 known in [LT06], we here give

an extra condition on the control u defined by (2.2.22).

Proposition 1.3.6. With the notations of Theorem 1.3.4, if the sequence of real numbers

‖ϕh‖Xh
, 0 < h < h1, is moreover bounded, then the control u is the unique control of
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minimal Lq-norm, as defined by (2.2.22), such that y(T)=0. Moreover, the sequence

(Q̃huh)0<h<h1 converges strongly (up to a subsequence) in the space Lq(0, T ;U) to the

control u.

A sufficient condition on y0 ∈ X, ensuring the boundedness of the sequence (‖ϕh‖Xh
)0<h<h1,

is the following : there exists η > 0 such that the control system
.
y = Ay + Bu is null

controllable in time t, for every t ∈ [T − η, T + η], and the trajectory t 7→ S(t)y0 in X,

for t ∈ [T − η, T + η], is not contained in a hyperplane of X.

Another sufficient condition ensuring the boundedness of the sequence (‖ϕh‖Xh
)0<h<h1

concerns the control function and in the following: there exists η > 0 such that the con-

trol system
.
y = Ay + Bu is null controllable in time t, for every t ∈ [T − η, T + η],

and with the control u as defined in (2.2.22), the trajectory t 7→ S(t− ξ)Bu(ξ) in X, for

t ∈ [T − η, T + η], every ξ ∈ (0, t) is not contained in a hyperplane of X.

Perspectives

One interesting open question is the following: how the above results change if we

remove the assumption of uniform analyticity of the discretized semigroup. Another

open question is to investigate whether these results still hold for semi-linear systems or

for nonlinear systems.

1.3.3 Carleman estimates in the discrete case

In the first part, we dealt within a very general framework, and derived a general

uniform observability inequality with a viscosity hβ . The second part of the thesis fo-

cuses on heat type equations, for which Carleman estimates allow one to derive more

precise observability inequalities with a better viscosity in e−C/h in the case of general

discrete schemes for parabolic equations. In this second part we shall only consider

finite-difference discretizations.

Let Ω, ω be connected non-empty open subsets of Rn with ω ⋐ Ω. We consider the

following parabolic problem in (0, T )× Ω, with T > 0

∂ty − ▽x(c▽xy) = 1ω in (0, T )× Ω, y|∂Ω = 0 and y|t=0 = y0, (1.3.17)

where the diffusion coefficient c satisfies c = c(x) ≥ cmin > 0.

In the continuous case Carleman estimates have many applications in the study

of inverse problems, control theory of PDEs [LR95, FI96], unique continuation results
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[Rob91, FL96, Tat95], and stabilization results [LR97, Bel03] to cite a few. One of the

recent applications of continuous Carleman estimates is to obtain controllability results

for parabolic equations. One expects that uniform controllability results can also be

obtained from discrete versions of Carleman estimates.

Let us consider the elliptic operator on Ω given by

A = −▽x(c▽x.),

with homogeneous Dirichlet boundary conditions on ∂Ω. We shall introduce a finite-

difference approximation of the operator A. For a mesh M that we shall describe in

Chapter 3, associated with a discretization step h, a consistent finite-difference approx-

imation of A is given by AM = −D̄(cdD.). It acts on a finite dimensional space RM, of

dimension |M|, and is selfadjoint for a suitable inner product in RM. In this section, we

present Carleman estimates for the discrete operator AM or related operators in which

the diffusion coefficient c(x) is either smooth or discontinuous.

Smooth diffusion coefficients

An earlier attempt to derive discrete Carleman estimates for continuous diffusion

coefficients can be found in [KS91]. With the result presented in [KS91], there is no

connexion between the large Carleman parameter and the discretization step size. In

recent years, some authors derived discrete Carleman estimates firstly for elliptic opera-

tors in 1D [BHL10a] and secondly extended that result to arbitrary dimension [BHL10b].

Additionally, the authors of [BL12] prove discrete Carleman for parabolic operators. An

application of discrete Carleman estimate we mention below is to obtain a weak uniform

controllability for parabolic equations.

An important point in the proof of Carleman estimate is the construction of a suitable

weight function ψ whose gradient does not vanish in the complement of the observation

region. The weight function is chosen to be smooth in the case of a smooth diffusion

coefficient c(x). Namely, to treat Carleman estimate for semi-discrete elliptic operators

PM = −∂2t +AM with the continuous diffusion coefficient c(x), the authors of [BHL10a]

choose a function ψ that satisfies the following property.

Assumption 1.3.7. Let Ω̃ be a smooth open and connected neighborhood of Ω̄ in Rn
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and set Q̃ = (0, T )× Ω̃. The function ψ is in C2(Q̃,R) and satisfies, for some c > 0

ψ > 0 and |▽ψ| ≥ c in Q̃ ∂nxψ(t, x) < 0 in (0, T )× V∂Ω,

∂tψ ≥ c on {0} × (Ω\ω) ▽xψ = 0 and ∂tψ ≤ −c on {T} × Ω,

where V∂Ω is a sufficiently small neighborhood of ∂Ω in Ω̃, in which the outward unit

normal nx to Ω is extended from ∂Ω.

Such a function can be obtained by following the technique of [FI96], i.e., making

use of Morse functions. With such a function ψ, we define the weight function ϕ := eλψ.

Now, we state the following discrete Carleman estimate for semi-discrete elliptic operators

PM = −∂2t +AM as

Theorem 1.3.8. [BHL10a] For λ ≥ 1 sufficient large, there exist C > 0 and s0 ≥ 1,

h0 > 0, ǫ0 > 0, depending on Ω, ω, T and c such that we have

s3 ‖esϕu‖2L2(Q) + s ‖esϕ∂tu‖
2
L2(Q) + s ‖esϕDu‖2L2(Q) + s

∣∣∣esϕ(0,.)∂tu(0, .)
∣∣∣
2

L2(Ω)

+se2sϕ(T,.) |∂tu(T, .)|
2
L2(Ω) + s3e2sϕ(T,.) |u(T, .)|2L2(Ω)

≤ C
(
‖esϕPu‖2L2(Q) + se2sϕ(T,.) |Du(T, .)|2L2(Ω) + s

∣∣∣esϕ(0,.)∂tu(0, .)
∣∣∣
2

L2(ω)

)
,(1.3.18)

for s ≥ s0, 0 < h ≤ h0 and sh ≤ ǫ0 and for all u ∈ C2([0, T ] × CM∪∂M), satisfying

u|{0}×Ω, u|(0,T )×∂Ω = 0.

Remark 1.3.9. In the course of the proof of this Carleman estimate, the Carleman large

parameter s has to be connected to the mesh size h: they obtained a condition of the form

sh ≤ ǫ0, with ǫ0 = ǫ(Ω, ω, γ). This condition cannot be avoided as it would imply null

controllability for the associated heat equation in contradiction with the counter-example

presented in Section (1.3.1).

With this Carleman estimate they proved a Lebeau-Robbiano type inequality from

which the following controllability result can be deduced.

Theorem 1.3.10. [BHL10a] There exit h0 > 0, CT > 0 and C1, C2 > 0, such that with

0 < h < h0, and all initial data y0 ∈ CM, there exists a semi-discrete control function v
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such that the solution to

∂ty − D̄(cdDy) = 1ωv, y∂M = 0, y|t=0 = y0, (1.3.19)

satisfying ‖v‖2L2(Q) ≤ CT |y0|
2
L2(Ω) and furthermore |y(T )|2L2(Ω) ≤ C1e

−C2/h2 |y0|
2
L2(Ω) .

The observability estimate they then obtain is of the form

|q(0)|2L2(Ω) ≤ CT

(∫ T

0

∫

ω
|q(t)|2 dt

) 1
2
+ Ce−C/h

2
|q(T )|2L2(Ω) ,

for any q solution to the adjoint system (1.3.19). As compared to result (1.2.4) in

continuous case the observability estimate we state above is weak because of an additional

term. Yet this term is exponentialy small in the limit h→ 0.

Next, we present a Carleman estimate for the semi-discrete parabolic operators PM
± =

−∂t ± AM. In comparison with the elliptic case, the choice of weight functions for

parabolic operators is a little different. Namely, the function ψ = ψ(x) fulfills the

following assumption

ψ > 0 in Ω̃ |▽ψ| ≥ c in Ω̃,

∂nxψ(x) ≤ −c < 0, ∂2xψ(x) ≥ 0 in V∂Ω,

where V∂Ω is a sufficiently small neighborhood of ∂Ω in Ω̃, in which the outward unit

normal nx to Ω is extended from ∂Ω. Let K > ‖ψ‖∞ and set

ϕ(x) = eλψ(x) − eλK < 0, φ(x) = eλψ(x),

r(t, x) = es(t)ϕ(x), ρ(t, x) = (r(t, x))−1, (1.3.20)

with

s(t) = τθ(t), τ > 0, θ(t) = ((t+ δT )(T + δT − t))−1,

for 0 < δ < 1
2 . From that, we state a Carleman estimate for the semi-discrete parabolic

operators as follows.

Theorem 1.3.11. [BL12] For the parameter λ ≥ 1 sufficiently large, there exist C, τ0 ≥
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1, h0 > 0, ǫ0 > 0, depending on ω, ω0, T, c we have

τ−1
∥∥∥θ− 1

2 eτθϕ∂tu
∥∥∥
2

L2(Q)
+ τ

∑

i∈[1,d]

(∥∥∥θ 1
2 eτθϕDiu

∥∥∥
2

L2(Q)
+
∥∥∥θ 1

2 eτθϕDiu
i
∥∥∥
2

L2(Q)

)

+τ3
∥∥∥θ 3

2 eτθϕu
∥∥∥
2

L2(Q)
≤ Cλ,K

(∥∥∥eτθϕPMu
∥∥∥
2

L2(Q)
+ τ3

∥∥∥θ 3
2 eτθϕu

∥∥∥
2

L2((0,T )×ω)

+h−2
∣∣∣eτθϕu|t=0

∣∣∣
2

L2(Ω)
+ h−2

∣∣∣eτθϕu|t=T
∣∣∣
2

L2(Ω)

)
,

for all τ ≥ τ0(T + T 2), 0 < h < h0, 0 < δ ≤ 1/2 and u ∈ C1([0, T ],RM∪∂M), satisfying

u|(0,T )×∂Ω = 0, if τh(δT 2)−1 ≤ ǫ0.

Remark 1.3.12. Here, the parameter δ is introduced to avoid the singularity of the

weight function at times t = 0 and t = T . This parameter connect to the other param-

eters through the condition τh(δT 2)−1 ≤ ǫ0 which implies that s(t)h ≤ ǫ0 similarly to

Theorem 1.3.8.

Some techniques, which the authors of [BHL10a] and [BL12] established for semi-

discrete elliptic and parabolic operators, shall be useful in obtaining a Carleman estimate

for a semi-discrete parabolic operator with discontinuous diffusion coefficients below.

Discontinuous diffusion coefficients

The question of controllability of partial differential systems with discontinuous co-

efficients and its dual counterpart, observability, are not fully solved yet. Here, we shall

consider a parabolic operator in which the higher-order terms have the form ∂t−▽(c(x)▽)

and the discontinuous coefficient refers here to the coefficient c in the elliptic operator in

space x.

To our knowledge, in continuous case, this question was first addressed in [DOP02]

for a parabolic operator P = ∂t − ▽(c(x)▽), with a monotonicity assumption: the ob-

servation takes place in the region where the diffusion coefficient c is the ”lowest”. In

the one-dimensional case, the mononicity assumption was relaxed for general piecewise

C1 coefficients [BDL07] and for coefficients with bounded variations [L07]. Recently, the

case of an arbitrary dimension without any monotonicity condition in the elliptic case

was solved in [LR10], in the parabolic case in [LR11].

Yet, the discrete analogues of these results are still to be developed.

In this thesis, we consider Carleman estimates for parabolic equations in case of

• the heat equation in one space dimension;
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• a piecewise C1 coefficient c with jumps at a finite number of points in Ω;

• a finite-difference discretization in space.

When considering a discontinuous coefficient c the parabolic problem (1.3.17) can be

understood as a transmission problem. For instance, assume that c exhibits a jump at

a ∈ Ω. Then we write




∂ty − ∂x(c∂xy) = 1ωv in (0, T )×
(
(0, a) ∪ (a, 1)

)
,

c∂xy|a+ = c∂xy|a− , y|a+ = y|a− ,

y|∂Ω = 0, and y|t=0 = y0.

The second line is thus a transmission condition implying the continuity of the solution

and of the flux at x = a.

When one gives a finite-difference version of this transmission problem, a similar

condition can be given for the continuity of the solution. Yet, for the flux, it is only

achieved up to a consistent term. In what follows, in the finite-difference approximation,

we shall in fact write




y(a−) = y(a+) = yn+1,

(cdDy)n+ 3
2
− (cdDy)n+ 1

2
= h

(
D̄(cdDy)

)
n+1

,

(the discrete notation will be given Section (3.1.1)). Note that the flux condition con-

verges to the continuous one if h → 0, h being the discretization parameter. This

difference between the continuous and the discrete case will be the source of several

technical points.

As mentioned above, the Carleman weight function is chosen to be smooth in the

case of a smooth diffusion coefficient c(x). However, in case of a non-smooth diffusion

coefficient, we shall introduce a particular type of weight functions, which are constructed

through the following lemma.

Set Ω1 = (0, a),Ω2 = (a, 1). We enlarge the open intervals Ω1,Ω2 to large open sets

Ω̃1, Ω̃2.

Lemma 1.3.13. Let Ω̃1, Ω̃2 be a smooth open and connected neighborhoods of intervals

Ω1, Ω2 of R and let ω ⊂ Ω2 be a non-empty open set. Then, there exists a function

ψ ∈ C(Ω̄) such that

ψ(x) =




ψ1 in Ω1,

ψ2 in Ω2,
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with ψi ∈ C∞(Ω̃i), i = 1, 2, ψ > 0 in Ω, ψ = 0 on Γ, ψ′
2 6= 0 in Ω2 \ ω, ψ

′
1 6= 0 in Ω1 and

the function ψ satisfies the following trace properties, for some α0 > 0,

(Au, u) ≥ α0 |u|
2 u ∈ R2,

with the matrix A defined by

A =


 a11 a12

a21 a22


 ,

with

a11 = [ψ′⋆]a,

a22 = [cψ′⋆]2a(ψ
′)(a+) + [c2(ψ′)3⋆]a,

a12 = a21 = [cψ′⋆]a(ψ
′)(a+),

(see the above notation introduced in Chapter 3).

Here, we choose a weight function that yields an observation in the region ω ⋐ Ω2 in

the Carleman estimate below. This choice is of course arbitrary. Such a weight function

for continuous version can found in [BDL07].

Choosing a function ψ, as in the lemma above, we set the weight functions ϕ(x), φ(x), r(t, x)

and ρ(t, x) as given in (1.3.20). Now, we can state the semi-discrete Carleman estimate

for the operator PM = −∂t + AM with a non-smooth diffusion coefficient c as follows

(see details in Chapter 3).

Theorem 1.3.14. Let ω0 ⋐ Ω02 be a non-empty open set and we set f := D̄(cdDu). For

the parameter λ > 1 sufficiently large, there exist C, τ0 ≥ 1, h0 > 0, ǫ0 > 0, depending

on ω0 so that the following estimate holds

τ−1
∥∥∥θ− 1

2 eτθϕ∂tu
∥∥∥
2

L2(Q0)
+ τ

∥∥∥θ 1
2 eτθϕDu

∥∥∥
2

L2(Q0)
+ τ3

∥∥∥θ 3
2 eτθϕu

∥∥∥
2

L2(Q0)

≤ Cλ,K

(∥∥∥eτθϕPMu
∥∥∥
2

L2(Q0)
+ τ3

∥∥∥θ 3
2 eτθϕu

∥∥∥
2

L2((0,T )×ω0)

+h−2
∣∣∣eτθϕu|t=0

∣∣∣
2

L2(Ω0)
+ h−2

∣∣∣eτθϕu|t=T
∣∣∣
2

L2(Ω0)

)
, (1.3.21)
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for all τ ≥ τ0(T + T 2), 0 < h ≤ h0 and τh(αT )−1 ≤ ǫ0 and for all u ∈ C∞(0, T ;CM)

satisfying u|∂Ω0 = 0.

The proof is a combination of the derivation of a discrete Carleman estimate as in

[BHL10a, BL12] and tecniques of [BDL07] for operators with discontinuous coefficients

in the one-dimensional case.

From the semi-discrete Carleman estimate we obtain above we deduce following weak

observability estimate

|q(0)|L2(Ω) ≤ Cobs ‖q‖
2
L2((0,T )×ω) + e−

C
h |q(T )|2L2(Ω) ,

for any q solution to the adjoint system

∂tq +AMq + aq = 0, q|∂Ω = 0.

Here a is L∞ potential function. A precise statement is given in Chapter 3.

Remark 1.3.15. Similarly to the result in continuous case [BDL07] the observability

estimate we state here is weak because of an additional term that describes the obstruction

to the null-controllability 1. This term is exponentially small in agreement with the results

obtained in [BHL10a, BHL10b] in the smooth coefficient case.

From the weak observability estimate given above we obtain a controllability result

for the linear operator PM. This result can be extended to classes of semi-linear equations

(
∂t +AM

)
y +G(y) = 1ωv, y ∈ (0, T ) y|∂Ω = 0, y(0) = y0,

with G(x) = xg(x), where g ∈ L∞(R) and

|g(x)| ≤ K lnr(e+ |x|), x ∈ R, with 0 ≤ r <
3

2
.

We shall state controllability results with a control that satisfies

‖v‖L2(Q) ≤ C |y0| .

Note that the size of the control function is uniform with respect to the discretization

parameter h.

1The counter-example we gave in Section (1.3.1) concerns dimensions greater than one. Yet Carleman
estimate are insensitive to dimension.
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Perspectives

In this second part, we prove a semi-discrete Carleman estimate for the operator

PM = −∂t + AM with a non-smooth diffusion coefficient c in one space dimension. A

similar question, in higher dimension, remains open.

Recently, the author [BDL11] proved Carleman estmiates for stratified media in Rn

characterized by discontinuities of the coefficients in one direction. We expect to obtain

such a Carleman estimate for stratified media with a finite-difference semi-discretization

from combination of techniques of [BDL11] and techniques in the present thesis.
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Chapter 2

Uniform controllability of semidiscrete

approximations for parabolic systems in

Banach spaces

2.1 Introduction

Consider an infinite dimensional linear control system

ẏ(t) = Ay(t) +Bu(t), y(0) = y0, (2.1.1)

where the state y(t) belongs to a reflexive Banach space X, the control u(t) belongs to a

reflexive Banach space U , A : D(A) → X is an operator, with dense domain and B is a

control operator (in general, unbounded) on U . Such a framework for studying control

problems in the infinite dimensional setting has been well formalized in the textbook

[TW07]. Discretizing this partial differential equation by using, for instance, a finite-

difference or a finite-element scheme, leads to a family of finite dimensional linear control

systems
.
yh(t) = Ahyh(t) +Bhuh(t), yh(0) = y0h, (2.1.2)

where yh(t) ∈ Xh and uh(t) ∈ Uh, for 0 < h < h0 .

The control system (2.1.1) is said to be null-controllable in time T if there exists a

solution y(.) of (2.1.1) associated with a control u such that y(T ) = 0. We refer for the

well-known Hilbert Uniqueness Method (in short, HUM), introduced in [L88], consisting

of minimizing the L2-norm of the control. In this work, however, we investigate a method

by which we can achieve the control of minimal Lq-norm (q > 2). In fact our problem



comes from an open problem of S. Labbé and E. Trélat in [LT06] where discretization

issues of the HUM method are investigated for parabolic systems in a general framework.

There is a limitation in the hypothesis in [LT06] following that the result of minimizing

the discrete control can be only obtained in L2-norm. Herein they refered to the condition

on the degree of unboundedness of control operator which is only satisfied for Newmann

control but not satisfied for Dirichlet control. This motivates us to find a solution to

overcome their limitation and to extend their results for Dirichlet control. Here, we

investigate a method to obtain the control of minimal Lq-norm (q > 2). Namely, we will

establish some conditions ensuring the existence and convergence of the discrete control

of the minimal Lq-norm

min
1

q

∫ T

0
‖uh(t)‖

qdt (q > 2). (2.1.3)

Necessary conditions for optimal control in a finite dimensional state spaces were

derived by Pontryagin et al. [PS62] (see also [T05]). The Maximum Principle as a

set of necessary conditions for optimal control in infinite dimensional space was studied

afterwards by many authors. Yet the Maximum Principle does not hold in general in

infinite dimensional spaces. Many contributions provide conditions to ensure that the

Maximum Principle remains true. Li and Yao [LY85] used the Eidelheit separation

theorem and the Uhl theorem to extend the Maximum Principle to a large class of

problems in infinite dimensional spaces when the target set is convex and the final time

T is fixed. Additionally, the authors of [F87], [FF91], [LY91], by making use of Ekeland’s

variational principle, gave conditions on the reachable set and on the target set so as to

obtain an extension of Maximum Principle. Considering system (2.1.1) in the case the

final state and final time are fixed, the finite-codimensional condition of [F87], [FF91] and

[LY91] is not satisfied in general. As a consequence, here, we cannot adapt the Maximum

Principle. Yet, using the Fenchel-Rockafellar duality Theorem, following the approach

of [CGL94], [GLH08], the constrained minimization of the function can be replaced by

the unconstrained minimization problem of the corresponding conjugate function. This

is the direction we shall follow here.

If one consider controllability properties for parabolic differential equations, a natural

question is then that of the uniform controllability after discretization. In the framework

of parabolic equation, the main goal of this article is to establish conditions ensuring a

uniform controllability property of the family of discretized control systems (2.1.2) in Lq

(q > 2) and to compute numerically the control function.

It is well known that controllabilty and observability are dual aspects of the same
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problem. We shall therefore focus on uniform observability which is shown to hold when

the observability constant of the finite-dimensional approximation systems does not de-

pend on h. Relevant references concerning observability of discretized equations are

[IZ99], [LZ98], [LZ02], [NZ03], [Zua99], [Zua02], [Zua04], [Zua05], [Zua06], [BHL10a],

[BHL10b] and [LT06]. For finite-difference schemes, a uniform observability property

holds for one-dimensional heat equation [LZ02], beam equation [LZ98], Schrodinger equa-

tions [Zua05], but does not hold for 1-D wave equations [IZ99]. This is due to the fact

that the discrete dynamics generates high frequency spurious solutions for which the

group velocity vanishes. To overcome these difficulties, Zuazua [Zua05] showed some

remedies such as Tychonoff’s regularization, multigrid method, mixed finite element and

filtering of high-frequency, etc.

To our knowledge, in the 1-D heat equation case, due to the fact that the dissipative

effect of the 1-D heat equation acts as a filtering mechanism by itself it is strong enough

to exclude high-frequency spurious oscillations [LZ98]. However, the situation is more

complex in multi-dimensional cases. A counter-example due to O. Kavian is shown in

[Zua06] for the simplest finite-difference semi-discretization scheme for the heat equation

in the square.

In recent works in the L2 setting, by means of discrete Carleman inequalities, the au-

thors of [BHL10a], [BHL10b] obtain a weak uniform observability inequality for parabolic

equations in arbitrary dimension, by a adding term of the form e−Ch
−2

‖ψh(T )‖
2
L2(Ω) in

the bound, a term that vanishes asymptotically as h → 0. Moreover, as in [LT06], the

uniform controllability is derived using semigroup arguments and introducing a vanishing

term of the form hβ ‖ψh(T )‖
2
L2(Ω) for some β > 0.

Apart from the results for space semi-discretization, we also mention several works

devoting to achieve observability property for time semidiscrete and fully discrete linear

systems such as [EZZ08], [EV09] and [BHL11].

The discretization framework in this paper is the same as in [LT06], [LT00]. According

to [LT06], under standard assumptions on the discretization process and for a null-

controllable parabolic system (2.1.1), if the degree of unboundedness of the control

operator is lower than 1/2 then the semidiscrete approximation models are uniformly

controllable and moreover it is shown how approximated control can be obtained using

a minimization proceduce. The main goal of our work is to overcome the limitation of

[LT06] about the order 1/2 of unboundedness of the control operator. We study the

existence of the minimum of the cost function of discretized control with power q > 2

instead of power q = 2, in the case the operator A generates an analytic semigroup. Our

main result, Theorem 2.3.5, states that for null-controllable parabolic systems (2.1.1)

and under standard approximation assumptions, if the discretized semigroup is uniformly
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analytic, and if the degree of unboundedness of the control operator B with

respect to A is greater than 1/2, then a uniform observability inequality in Lp

(1 < p < 2) is proved (p, q are conjugate). Moreover, a minimization procedure to

compute approximated controls is provided. A degree of unboundedness greater than

1/2 appears in standard situation for example if one considers boundary controls.

The outline of the paper is as follows. In Section 2, we briefly review some well-known

facts on controllability of linear partial differential equations in reflexive Banach spaces.

Furthermore, we consider the existence and uniqueness of solution of the minimization

problem in continuous case. By making use of the Fenchel-Rockafellar duality theorem,

we gives a constructive way to build the control of minimal Lq-norm. The main result

is stated in Section 3 and proved in Section 4. An example of application and numer-

ical simulations are provided in Section 5, for the one-dimensional heat equation with

Dirichlet boundary control. An appendix is devoted to the proof of a technical lemma.

2.2 Preliminary

We shall first present some basic knowledges about controllability of infinite dimen-

sional linear control systems in reflexive Banach spaces. Second, we shall introduce a

method allowing to achieve the control of minimal Lq-norm (q > 2) in the continuous

framework. This result in the continuous case will be the starting point for the study of

a similar approach in the discrete case in Section 3.

2.2.1 A short review on controllability of linear partial differential

equations in reflexive Banach spaces

For issues related to controllability in reflexive Banach spaces we refer the reader to

the excellent textbook [TW07](see also [CT06, S05] and references therein).

The notation L(E,F ) stands for the set of linear continuous mappings from E to F ,

where E and F are reflexive Banach spaces.

Let X be a reflexive Banach space. In what follows, we denote by ‖.‖X the norm on

X. Let S(t) denote a strongly continuous semigroup on X, of generator (A,D(A)). Let

X−1 denote the completion of X for norm ‖x‖−1 =
∥∥(βI −A)−1x

∥∥, where β ∈ ρ(A) is

fixed. Note that X−1 does not depend on the specific value of β ∈ ρ(A). The space X−1

is isomorphic to (D(A∗))′, the dual space of D(A∗). The semigroup S(t) extends to a

semigroup on X−1, still denoted by S(t), whose generator is an extension of the operator

A, still denoted by A. With this notation, A is a linear operator from X to X−1.

Let U be a reflexive Banach space. Denote by ‖.‖U the norm on U .
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A linear continuous operator B : U → X−1 is admissible for the semigroup S(t) if

every solution of

y′ = Ay(t) +Bu(t), (2.2.1)

with y(0) = y0 ∈ X and u(.) ∈ Lq(0,+∞;U) (q > 2), satisfies y(t) ∈ X, for every t ≥ 0.

The solution of equation (2.2.1) is understood in the mild sense, i.e,

y(t) = S(t)y(0) +

∫ T

0
S(t− s)Bu(s)ds, (2.2.2)

for every t ≥ 0.

For T > 0, define LT : Lq(0, T ;U) → X−1 by

LTu =

∫ T

0
S(T − s)Bu(s)ds. (2.2.3)

A control operator B ∈ L(U,X−1) is admissible, if and only if ImLT ⊂ X, for some

(and hence for every) T > 0.

The adjoint L∗
T of LT satisfies

L∗
T : X∗ → (Lq(0, T ;U))∗ = Lp(0, T ;U∗)

L∗
Tψ(t) = B∗S(T − t)∗ψ (2.2.4)

(p and q are conjugate) a.e on [0,T] for every ψ ∈ D(A∗). Moreover, we have

‖L∗
Tψ‖ = sup

‖u‖q≤1

∫ T

0
〈B∗S(T − s)∗ψ, u(s)〉ds, (2.2.5)

for every ψ ∈ X∗ .

Let B ∈ L(U,X−1) denote an admissible control operator.

We shall use the following lemma (for a proof we refer to [chapter 10, [TW07]])

Lemma 2.2.1. Let Z1, Z2, Z3 be reflexive Banach spaces and f ∈ L(Z1, Z3) , g ∈

L(Z2, Z3). Then the following statements are equivalent:

• Imf ⊂ Img.

• There exists a constant C > 0 such that : ‖f∗z‖Z1
≤ C ‖g∗z‖Z2

for every z ∈ Z3.
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• There exists an operator h ∈ L(Z1, Z2) such that f = gh.

We now state the concept of exact null controllablity as follows.

For T > 0, System (2.2.1) is said to be null controllable in time T if for every

y0 ∈ X, there exists u(.) ∈ Lq(0, T ;U) so that the corresponding solution of (2.2.1), with

y(0) = y0 satisfies y(T ) = 0 .

According to [TW07], System (2.2.1) is null controllable in time T if and only if

ImS(T ) ⊂ ImLT . It follows from the above Lemma that there exists C > 0 such that

C ‖S(T )∗ψ‖X ≤ ‖L∗
Tψ‖ = sup

‖u‖q≤1

∫ T

0
< B∗S(T − s)∗ψ, u(s) > ds

≤ sup
‖u‖q≤1

∫ T

0
‖B∗S(T − t)∗ψ‖‖u(t)‖dt

≤
(∫ T

0
‖B∗S(t)∗ψ‖pdt

) 1
p
.

Thus, system (2.2.1) is null controllable with a control in Lp for the time T if and

only if

∫ T

0
‖B∗S(t)∗ψ‖pdt ≥ C ‖S(T )∗ψ‖pX . (2.2.6)

2.2.2 Minimal Lq-norm (q > 2) for the continous case

The Maximum Principle is a well-known method to tackle optimal control problems.

Applying the Maximum Principle built in infinite dimensional spaces, such as [F87],

[FF91] and [LY91] is not possible here. Unfortunately, the finite-codimensional condition

of [F87], [FF91] and [LY91] is an obstacle in adapting the Maximum Principle to our

problem.

The goal of this section is to show that, using duality arguments and the Fenchel-

Rockafellar theorem, we can obtain controls of minimal Lq-norm (q > 2) for the contin-

uous framework.

Consider the system





.
y(t) = Ay(t) +Bu(t) on QT = (0, T )× Ω,

y(0) = y0,
(2.2.7)
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where B is admissible and A generates an analytic semigroup S(t) in the reflexive Banach

space X. Assume that system (2.2.7) is null controllable in time T > 0.

Our aim is to mimimize the following function





Minimize J(u) = 1
q

∫ T
0 ‖u‖q dt (q > 2),

Subject to u ∈ E,
(2.2.8)

where E = {u ∈ Lq(0, T ;U) : u steering the system from y0 to y(T ) = 0}. Clearly, E is

nonempty.

Theorem 2.2.2. Problem (2.2.8) has a unique solution u.

Proof. First of all, we show the existence of the solution of the optimal control problem.

Consider a minimizing sequence (un)n∈N of controls on [0, T ], i.e,

∫ T

0
‖un‖

q dt converges to inf J(u) as n→ +∞.

It follows that the sequence (un)n∈N is bounded in Lq(0, T ;U). Since U is reflexive

space and q < +∞, then Lq(0, T ;U) is reflexive as well. Thus, up to a sequence, (un)n∈N

converges weakly to some u in Lq. Note that the trajectory yn (resp. y) associated with

the control un (resp. u) on [0,T] through the system

ẏn = Ayn +Bun, yn(0) = y0,

and the solution of the above system is expressed in form

yn(t) = S(t)y0 +

∫ T

0
S(T − s)Bun(s)ds .

Passing to the limit, we find

ẏ = Ay +Bu, y(0) = y0,

and the solution y associated with control u in the form

y(t) = S(t)y0 +

∫ T

0
S(T − s)Bu(s)ds.
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As un converges weakly to u in Lq, we obtain the inequality

∫ T

0
‖u(t)‖q dt ≤ lim inf

n→+∞

∫ T

0
‖un(t)‖

q dt.

But (un)n∈N is a minimizing sequence, it follows

∫ T

0
‖u(t)‖q dt = inf

v∈E

∫ T

0
‖v(t)‖q dt,

i.e, the control u is the minimizer of (2.2.8). This ensures the existence of an optimal

control.

Moreover, the cost function is strictly convex which yields uniqueness of the solution.

By making use of convex duality, the problem is reduced to the minimization of the

corresponding conjugate function as stated in the following theorem.

Theorem 2.2.3. 1. We have the identity:

inf
u∈E

1

q

∫ T

0
‖u‖q dt = − inf

ψT∈X∗

(1
p

∫ T

0
‖B∗ψ‖p dt+ < ψ(0), y0 >

)
, (2.2.9)

where ψ is the solution of

−ψ̇ = A∗ψ (2.2.10)

ψ(T ) = ψT . (2.2.11)

Equivalently, we have

min
u∈E

1

q

∫ T

0
‖u‖q dt = −min

ψ∈H

(1
p

∫ T

0
‖B∗S(T − t)∗ψ‖p dt+ < S(T )∗ψ, y0 >

)
.

(2.2.12)

2. If uop is solution of the problem (2.2.8) then uop is of the following form

uop(t) = ‖B∗S(T − t)∗ϕ‖p−2B∗S(T − t)∗ϕ,
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where ϕ ∈ H is the unique minimizer of the functional

J∗(ψ) =
1

p

∫ T

0
‖B∗S(T − t)∗ψ‖p dt+ < S(T )∗ψ, y0 > .

The space H is defined as the completion of D(Ω) w.r.t the norm

‖ψ‖H =

(∫ T

0
‖B∗S(T − t)∗ψ‖pU dt

)1/p

.

Proof. 1. Let ȳ be solution of (2.2.7) with u = 0 and we introduce the operator

N ∈ L(Lq(QT ), X) with Nu = zu(., T ) for all u ∈ Lq(QT ), where zu is solution to

ż = Az +Bu (2.2.13)

z(x, 0) = 0. (2.2.14)

Accordingly, the solution y of (2.2.7) can be decomposed in the form

y = zu + ȳ. (2.2.15)

The adjoint N∗ is given as follows. For each ψT ∈ X∗, N∗ψT = B∗ψ where ψ is

solution of (2.2.10) – (2.2.11).

Let us introduce the following functions F and G

F (z) =




0 for z = −ȳ(T )

+∞ otherwise

,

G(u) =
1

q

∫ T

0
‖u‖q dt.

Then, problem (2.2.8), where the infimum is taken over all u satisfying E, is equiv-

alent to the following minimization problem

inf
u∈Lq(QT )

(
F (Nu) +G(u)

)
. (2.2.16)
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System (2.2.7) is null controllable then there exists a control u ∈ Lq such that zu =

−ȳ(T ). With a such control, it follows F (Nu) +G(u) < ∞ and 0 ∈ int(DomF −

NDomG).

Functions F ∗ and G∗ are the convex conjugate of F and G, respectively. Denote

ψT = ψ(T ) and observe that

F ∗(ψT ) = − < ψT , ȳT >,

for all ψT ∈ X∗. Additionally,

G∗(ω) =
1

p

∫ T

0
‖ω‖p dt.

Therefore,

G∗(N∗ψT ) + F ∗(−ψT ) =
1

p

∫ T

0
‖B∗ψ‖p dt+ < ψT (x), ȳT (x) > . (2.2.17)

We have B is admissible then

G∗(N∗ψT ) + F ∗(−ψT ) =
1

p

∫ T

0
‖B∗ψ‖p dt+ < ψT (x), ȳT (x) >

≤ C ‖ψ‖p + ‖ψT ‖ ‖ȳT ‖ ≤ ∞

Futher, we can choose ψT ∈ DomF ∗, −Bψ ∈ DomG∗ which ψ is solution of (2.2.10) –

(2.2.11) with ψ(T ) = ψT such that 0 ∈ int(N∗DomF ∗ +DomG∗).

Then we can apply the duality theorem of W.Fenchel and T.R.Rockafellar (see e.g

Theorem 4.2 p.60 in [ET99]). It yields

inf
u∈Lq(QT )

(F (Nu) +G(u)) = − inf
ψT∈X∗

(G∗(N∗ψT ) + F ∗(−ψT )), (2.2.18)

By means of multiplying the state equation (2.2.10) by ȳ and then integrating by

parts, we obtain

< ψT , ȳT >=< ψ(0), y0 > .
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Equation (2.2.17) can thus be written as follows

G∗(N∗ψT ) + F ∗(−ψT ) =
1

p

∫ T

0

‖B∗ψ‖p dt+ < ψ(0), y0 >

=
1

p

∫ T

0

‖B∗S(T − t)∗ψT ‖
p
dt+ < S(T )∗ψT , y0 >,

where ψ is the solution of (2.2.10) – (2.2.11). It follows from (2.2.16) – (2.2.18) and from

the above equation that

inf
u∈E

1

q

∫ T

0

‖u‖q dt = −inf
ψT

(1
p

∫ T

0

‖B∗ψ‖p dt+ < ψ(0), y0 >
)
,

where ψ is the solution of (2.2.10) – (2.2.11). It can be as well written as

min
u∈E

1

q

∫ T

0

‖u‖q dt = −min
ψ∈H

(1
p

∫ T

0

‖B∗S(T − t)∗ψ‖p dt+ < S(T )∗ψ, y0 >
)
.

2. If we denote by (uop), (ϕT ) the unique solutions to ”LHS of (2.2.12)” and ”RHS of (2.2.12)”

respectively, then one finds

0 =
1

q

∫ T

0

‖uop‖
q
dt+

1

p

∫ T

0

‖B∗ϕT ‖
p
dt+ < ϕT (0), y0 > . (2.2.19)

We apply the Young inequality to the first two terms in the RHS of (2.2.19):

1

q

∫

QT

‖uop‖
q
dt+

1

p

∫

QT

‖B∗ϕT ‖
p
dt ≥

∫

QT

< uop, B
∗ϕT > dt. (2.2.20)

Then, the ”RHS of (2.2.19)” ≥
∫
QT

< uop, B
∗ϕT > dt+ < ϕT (0), y0 >.

Furthermore, by multiplying the two sides of (2.2.10) by y and applying the Green formula,

we obtain

< B∗ϕT , u > + < ϕT (0), y0 >= 0. (2.2.21)

On the one hand, ”RHS of (2.2.19)” ≥ 0 (due to (2.2.21)). On the other hand, ”RHS

of (2.2.19)” = 0 (due to (2.2.19)).
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This implies an equality in (2.2.20), i.e

‖uop‖
q
= ‖B∗ϕT ‖

p
.

It follows that

uop(t) = ‖B∗S(T − t)∗ϕ‖p−2
B∗S(T − t)∗ϕ,

where ϕ ∈ H is the minimizer of the functional J∗.

Remark 2.2.4. The functional J∗ is convex, and from inequality (2.2.6), it is coercive

in space H. Then, it follows that J∗ has a unique minimizer ϕ ∈ H. According to the

above arguments, the control ū is defined by

ū(t) = ‖B∗S(T − t)∗ϕ‖p−2B∗S(T − t)∗ϕ, (2.2.22)

for every t ∈ [0, T ] and if y(.) is the solution of (2.2.8), such that y(0) = y0, associated

with the control ū, then we have y(T)=0. Therefore, ū is the control of minimal Lq-norm

(q > 2), among all controls whose associated trajectory satisfies y(T ) = 0.

Here, we emphasize that observability in Lp-norm (1 < p < 2) implies controllability

and gives a way to build the control of minimal Lq-norm (q > 2). A similar result was

known in L2-norm through HUM (see [L88]).

2.3 Main result

We are concerned in this work with the uniform controllability property for semidis-

cretizations of parabolic systems. As shown in [LT06], this property is known to hold

if the degree of unboundedness of control operator γ ∈ [0, 1/2). In this section, we also

establish some appropriate assumptions and conditions ensuring that the uniform con-

trollability still holds even in the case γ ∈
[
1/2, 1p

)
. It is the condition γ ∈

[
1/2, 1p

)

that motivates the study of minimal Lq-norm (q > 2) instead of L2-norm, with p and q

conjugate.

Let X and U be reflexive Banach spaces, and let A : D(A) → X be a linear op-

erator and self-adjoint, generating a strongly continuous semigroup S(t) on X. Let

B ∈ L(U,D(A∗)′) be a control operator. We now express all assumptions that will be
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used in what follows. We keep most of the usual approximation assumptions as well as

the assumptions about analytic semigroup stated in [LT06]. However, assumptions on γ

such as (21), (22) and (30) in [LT06], do not hold if γ > 1/2. To overcome this limitation,

here we give a remedy by means of replacing the above assumptions by other appropriate

conditions. This will be explained more clearly through Remark 3.1 below. We make the

following assumptions, of which (H1)-(H2) concern the continuous case and (H3)-(H4)

concern the discretization scheme.

(H1) The semigroup S(t) is analytic.

Therefore, (see [P83]) there exist positive real number C1 and ω such that

‖S(t)‖X 6 C1e
ωt ‖y‖X , ‖AS(t)y‖X 6 C1

eωt

t
‖y‖X , (2.3.1)

for all t > 0 and y ∈ D(A), and such that, if we set Â = A− ωI, for θ ∈ [0, 1] and there

holds ∥∥∥(−Âθ)S(t)y
∥∥∥
X

≤ C1
eωt

tθ
‖y‖X , (2.3.2)

for all t > 0 and y ∈ D(A).

Of course, inequalities (2.3.1) hold as well if one replaces A by A∗, S(t) by S(t)∗, for

y ∈ D(A∗).

Moreover, if ρ(A) denotes the resolvent set of A, then there exists δ ∈
(
0, π2

)
such

that ρ(A)⊃∆δ =
{
ω + ρeiθ|θ > 0, |θ| ≤ π

2 + δ
}
.

For λ ∈ ρ(A), denote by R(λ,A) = (λI − A)−1 the resolvent of A . It follows from

the previous estimates that there exists C2 > 0 such that

‖R(λ,A)‖L(X) ≤
C2

|λ− ω|
, ‖AR(λ,A)‖L(X)) ≤ C2, (2.3.3)

for every λ ∈ ∆δ, and

∥∥∥R(λ, Â))
∥∥∥
L(X)

≤
C2

|λ|
,
∥∥∥ÂR(λ, Â)

∥∥∥
L(X)

≤ C2, (2.3.4)

for every λ ∈ ∆δ + ω. Similarly, inequalities (2.3.3) and (2.3.4) hold as well with A∗ and

Â∗.

(H2) The degree of unboundedness of B is γ. Assume that γ ∈
[
1/2, 1p

)
(where p,q

are conjugate, i.e 1
p +

1
q = 1 and 1 ≤ p < 2). This means that

B ∈ L(U,D((−Â∗)γ)′). (2.3.5)

In these conditions, the domain of B∗ is D(B∗) = D((−Â∗)γ), and there exists C3 > 0
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such that

‖B∗ψ‖ ≤ C3

∥∥∥((−Â∗)γ)ψ
∥∥∥
X
, (2.3.6)

for every ψ ∈ D((−Â∗)γ).

(H3) We consider two families (Xh)0<h<h0 and (Uh)0<h<h0 of finite dimensional

spaces, where h is the discretization parameter.

For every h ∈ (0, h0), there exist linear mappings Ph : D((−Â∗)
1
2 )′ → Xh and

P̃h : Xh → D((−Â∗)
1
2 ) and ˆ(A∗)

−γ+ 1
2 : D(−(Â∗)

1
2 ) → D(−(Â∗)γ) (resp., there exist

linear mappings Qh : U → Uh and Q̃h : Uh → U), satisfying the following requirements:

(H3.1) For every h ∈ (0, h0). The following properties hold

PhP̃h = idXh
and QhQ̃h = idUh

. (2.3.7)

(H3.2) There exist s > 0 and C4 > 0 such that there holds, for every h ∈ (0, h0) ,

∥∥∥∥
(
I − ˆ(A∗)

−γ+ 1
2 P̃hPh

)
ψ

∥∥∥∥
X

≤ C4h
s ‖A∗ψ‖X , (2.3.8)

∥∥∥∥((−Â∗)γ)

(
I − ˆ(A∗)

−γ+ 1
2 P̃hPh

)
ψ

∥∥∥∥
X

≤ C4h
s(1−γ) ‖A∗ψ‖X , (2.3.9)

for every ψ ∈ D(A∗) and

∥∥∥(I − Q̃hQh)u
∥∥∥
U
→ 0, as h→ 0, (2.3.10)

for every u ∈ U , and

∥∥∥(I − Q̃hQh)B
∗ψ
∥∥∥
U
≤ C4h

s(1−γ)‖A∗ψ‖X , (2.3.11)

for every ψ ∈ D(A∗).

For every h ∈ (0, h0), the vector space Xh (resp. Uh) is endowed with the norm ‖.‖Xh

(resp. ‖.‖Uh
) defined by:

‖yh‖Xh
=
∥∥∥P̃hyh

∥∥∥
X

for yh ∈ Xh (resp.‖uh‖Uh
=
∥∥∥Q̃huh

∥∥∥
U
).

Therefore, we have the properties

∥∥∥P̃h
∥∥∥
L(Xh,X)

=
∥∥∥Q̃h

∥∥∥
L(Uh,U)

= 1 and

∥∥∥∥ ˆ(A∗)
−γ+ 1

2x

∥∥∥∥
X

≤ C ‖x‖X , (2.3.12)

‖Ph‖L(X,Xh)
≤ C5 and ‖Qh‖L(U,Uh)

≤ C5. (2.3.13)
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(H3.3) For every h ∈ (0, h0), there holds

Ph = P̃h
∗
and Qh = Q̃h

∗
, (2.3.14)

where the adjoint operators are considered with respect to the pivot spaces X, U , Xh,

Uh.

(H3.4) There exists C6 such that

∥∥∥∥B∗ ˆ(A∗)
−γ+ 1

2 P̃hψh

∥∥∥∥
U

≤ C6h
−γs ‖ψh‖Xh

, (2.3.15)

for all h ∈ (0, h0) and ψh ∈ Xh.

For every h ∈ (0, h0), we define the approximation operators A∗
h : Xh → Xh of A∗

and B∗
h : Xh → Uh of B∗, by

A∗
h = PhA

∗P̃h and B∗
h = QhB

∗ ˆ(A∗)
−γ+ 1

2 P̃h. (2.3.16)

(H4) The following properties hold:

(H4.1) Let Ah : Xh → Xh be a finite dimensional approximation of A that satisfies

the requirement: the family of operators etAh is uniformly analytic, in the sense that

there exists C7 > 0 such that

∥∥etAh
∥∥
L(Xh)

≤ C7e
ωt, (2.3.17)

∥∥AhetAh
∥∥
L(Xh)

≤ C7
eωt

t
, (2.3.18)

for all t > 0 and h ∈ (0, h0).

(H4.2) There exists C8 > 0 such that, for every f ∈ X and every h ∈ (0, h0), the

respective solutions of Â∗ψ = f and Â∗
hψh = Phf satisfy

‖Phψ − ψh‖Xh
≤ C8h

s ‖f‖X . (2.3.19)

In other words, there holds
∥∥∥PhÂ∗−1 − Âh

∗−1
Ph

∥∥∥
L(X,Xh)

≤ C8h
s .

Remark 2.3.1. Note that the result of [LT06] is satisfied for Newmann control but not

for Dirichlet control. Our improvement now covers the case of Dirichlet control.

Remark 2.3.2. In comparison with [LT06], the important point to note here is the
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appearance of (Â∗)−γ+
1
2 in (2.3.8), (2.3.9) and (2.3.15).

Note that inequality (22) of [LT06] makes sense for γ < 1
2 and thus imP̃h ⊂ D((−Â∗)1/2) ⊂

D((−Â∗)γ).

In our context, on account of γ ≥ 1
2 , inequality (2.3.9), which is similar to inequal-

ity (22) of [LT06], only makes sense if we add (Â∗)−γ+
1
2 so that im(Â∗−γ+

1
2 P̃h) ⊂

D((−Â∗)γ). The choice of (Â∗)−γ+
1
2 seems to be the best adapted to our theory. This

modification of the assumptions of [LT06] allows us to overcome the limitation γ < 1/2.

Remark 2.3.3. By means of the condition of the degree of unboundedness of operator

B and (2.3.6), B is admissible. Indeed, we have

‖L∗
Tψ‖ = sup

‖u‖q≤1

∫ T

0
< B∗S∗(T − s)x, u(s) > ds

≤
(∫ T

0
‖B∗S(t)∗ψ‖pdt

) 1
p

≤ C3

(∫ T

0

∥∥∥(−Â∗)γS(t)∗ψ
∥∥∥
p
dt
) 1

p

≤ C3

(∫ T

0

eωt

tpγ
‖ψ‖pdt

) 1
p
dt

≤ CT ‖ψ‖ (since pγ < 1).

Remark 2.3.4. . Assumptions (H3) (except for the inequalities (2.3.8), (2.3.9), (2.3.15))

and (H4.2) hold for most of the classical numerical approximation schemes, such as

Galerkin methods, centered finite-difference schemes,...Inequalities (2.3.8), (2.3.9) and (2.3.15)

have to be checked in each case. Moreover, as noted in [LT00], assumption (H4.1) of uni-

form analyticity is not standard, and has to be checked in each specific case as well.

The main result of the article is the following

Theorem 2.3.5. Under the previous assumptions, if the control system ẏ = Ay+Bu is

null-controllable in time T > 0, then there exist β > 0, h1 > 0, and positive real numbers

C, C’ satisfying

C
∥∥∥eTA∗

hψh

∥∥∥
p

Xh

≤

∫ T

0

∥∥∥B∗
he
tA∗

hψh

∥∥∥
p

U
dt+ hβ‖ψh‖

p
Xh

≤ C ′‖ψh‖
p
Xh
, (2.3.20)

for every h ∈ (0, h1) and every ψh ∈ Xh, (1 ≤ p < 2).
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In these conditions, for every y0 ∈ X, and every h ∈ (0, h1), there exists ϕh ∈ Xh minimizing

the functional

Jh(ψh) =
1

p

∫ T

0

∥∥∥B∗
he
tA∗

hψh

∥∥∥
p

U
dt+

1

p
hβ‖ψh‖

p
Xh

+ < eTA
∗

hψh, Phy0 >Xh
, (1 ≤ p < 2) (2.3.21)

and the sequence (Q̃huh)0<h<h1
, where the control uh is defined by

uh(t) =
∥∥∥B∗

he
(T−t)A∗

hϕh

∥∥∥
p−2

B∗
he

(T−t)A∗

hϕh, (2.3.22)

for every t ∈ [0, T ] converges weakly (up to a subsequence), in the space Lq(0, T ;U) to a control

u such that the solution of :
.
y = Ay +Bu, y(0) = y0, (2.3.23)

satisfies y(T ) = 0. For every h ∈ (0, h1), let yh(.) denote the solution of

.
yh = Ahyh +Bhuh, yh(0) = Phy0. (2.3.24)

Then,

• the final state is given by

yh(T ) = −hβ ‖ϕh‖
p−2

ϕh;

• the sequence (P̃hyh)0<h<h1
converges strongly (up to subsequence) in the space Lq(0, T ;X),

to y(.).

Furthermore, there exists M > 0 such that

∫ T

0

‖u(t)‖pU ≤Mp/(p−1) ‖y0‖
p/(p−1)
X ,

and, for every h ∈ (0, h1),

∫ T

0

‖uh(t)‖
p
Uh

≤Mp/(p−1) ‖y0‖
p/(p−1)
X ,

hβ ‖ϕh‖
p
Xh

≤Mp/(p−1) ‖y0‖
p/(p−1)
X ,

‖yh(T )‖Xh
≤M1/(p−1)hβ/p ‖y0‖

1/(p−1)
X . (2.3.25)

Remark 2.3.6. In the course of the proof we shall find that β can be chosen according

to 0 ≤ β ≤ s(1− γ)θ where θ satisfies 0 < θ + (1− θ)γ < 1
p . The numerical example of
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Section 5 seems to indicate that this range of values for β is far from optimal. Further

investigation are needed on this aspect. This is important as the choice of β has a large

impact on the convergence of the method when h→ 0 (see (2.3.25)).

Remark 2.3.7. The left hand side of (2.3.20) is an uniform observability type inequality

for control System (2.3.24) with the additional viscosity term hβ ‖ψh‖
p
Xh

. Here, this is a

viscosity in hβ which is quite bad for numerics but completely general. Futher, in more

particular cases (1D heat equation), we derive a better viscosity term, in e−C/h (see detail

in Chapter 3).

Remark 2.3.8. Our objective is to investigate the results in [LT06] in the case γ > 1/2.

Moreover, we mention here an upper bound for γ ≤ 1
p . This constraint is derived from

the proof of the theorem hereinafter.

Remark 2.3.9. A similar result holds if the control system (2.1.1) is exactly controllable

in time T . However, due to assumption (H1), the semigroup S(t) enjoys in general

regularity properties. Therefore, the solution y(.) of the control system may belong to a

subspace of X, whatever the control u is. For instance, in the case of the heat equation

with a Dirichlet or Neumann boundary control, the solution is a smooth function of the

state variable x, as soon as t > 0, for every control and initial condition y0 ∈ L2. Hence,

exact controllability does not hold in this case L2. That is why we only focus on exact

null-controllability.

Theorem 2.3.5 stated that the controls uh defined by (2.3.22) tend to a control u

realizing exact null-controllability for System (2.3.23). A question arises naturally that

under which assumptions the control u is the control, is defined by (2.2.22), such that

y(T ) = 0? A answer will be expressed through the following proposition. Apart from

the condition on y0 known in [LT06], we here give an extra condition on the control u

defined by (2.2.22).

Proposition 2.3.10. With the notations of Theorem 2.3.5, if the sequence of real num-

bers ‖ϕh‖Xh
, 0 < h < h1, is moreover bounded, then the control u is the unique control

of minimal Lq-norm, as defined by (2.2.22), such that y(T)=0. Moreover, the sequence

(Q̃huh)0<h<h1 converges strongly (up to a subsequence) in the space Lq(0, T ;U) to the

control u.
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A sufficient condition on y0 ∈ X, ensuring the boundedness of the sequence (‖ϕh‖Xh
)0<h<h1,

is the following : there exists η > 0 such that the control system
.
y = Ay + Bu is null

controllable in time t, for every t ∈ [T − η, T + η], and the trajectory t 7→ S(t)y0 in X,

for t ∈ [T − η, T + η], is not contained in a hyperplane of X.

Another sufficient condition also ensuring the boundedness of the sequence (‖ϕh‖Xh
)0<h<h1

concerns the control function and in the following : there exists η > 0 such that the con-

trol system
.
y = Ay + Bu is null controllable in time t, for every t ∈ [T − η, T + η],

and with the control u as defined in (2.2.22), the trajectory t 7→ S(t− ξ)Bu(ξ) in X, for

t ∈ [T − η, T + η], every ξ ∈ (0, t) is not contained in a hyperplane of X.

2.4 Proof of the main results

2.4.1 Proof of Theorem 2.3.5

Proof. For convenience, we first state the following useful approximation Lemma, whose

proof readily follows that of [LT06], [LT00]. The proof of this Lemma is provided in the

Appendix.

Lemma 2.4.1. There exists C9 > 0 such that, for all t ∈ (0, T ] and h ∈ (0, h0), there

holds

∥∥∥(etA∗
hPh − PhS(t)

∗)ψ
∥∥∥
Xh

≤ C9
hs

t
‖ψ‖X , (2.4.1)

∥∥∥Q̃hB∗
he
tA∗

hψh

∥∥∥
U
≤
C9

tγ
‖ψh‖Xh

, (2.4.2)

for every θ ∈ [0, 1]

∥∥∥Q̃hB∗
he
tA∗

hψh −B∗S(t)∗P̃hψh
∥∥∥
U
≤ C9

hs(1−γ)θ

tθ+(1−θ)γ ‖ψh‖Xh
(2.4.3)

every ψh ∈ Xh.

We carry out proving the theorem as follows
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As the degree of unboundedness γ of the control operator B is lower than 1
p then

there exists θ ∈ (0, 1) such that 0 < θ + (1− θ)γ < 1
p .

For all h ∈ (0, h0) and ψh ∈ Xh we have

∫ T

0

∥∥∥Q̃hB∗
he
tA∗

hψh

∥∥∥
p

U
dt =

∫ T

0

(∥∥∥Q̃hB∗
he
tA∗

hψh

∥∥∥
p

U
−
∥∥∥B∗S(t)∗P̃hψh

∥∥∥
p

U

)
dt

+

∫ T

0

∥∥∥B∗S(t)∗P̃hψh
∥∥∥
p

U
dt. (2.4.4)

We estimate the two terms of right hand side of (2.4.4).

The control system is null controllable in time T, then there exists a positive real

number C > 0 such that

∫ T

0

∥∥∥B∗S(t)∗P̃hψh
∥∥∥
p
dt ≥ C

∥∥∥S(T )∗P̃hψh
∥∥∥
p

X
. (2.4.5)

We introduce the following useful inequality which is employed along the proof

|yp − zp| < p(yp−1 + zp−1) |y − z| , (2.4.6)

where y, z ∈ R+, p > 1.

This inequality follows from applying the mean-value theorem for f(x) = xp(p >

1, x ∈ R+). Indeed, there exists ξ ∈ (y, z) such that

|yp − zp| =
∣∣f ′(ξ)

∣∣ |y − z|

= p
∣∣∣ξ(p−1)

∣∣∣ . |y − z|

< p(yp−1 + zp−1). |y − z| .

By making use of the above inequality as well as inequalities (2.3.13), (2.3.1), (2.3.17)
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and (2.4.1) yield

∣∣∣∣
∥∥∥PhS(T )∗P̃hψh

∥∥∥
p

Xh

−
∥∥∥eTA∗

hψh

∥∥∥
p

Xh

∣∣∣∣

≤ p(
∥∥∥PhS(T )∗P̃hψh

∥∥∥
p−1

Xh

+
∥∥∥eTA∗

hψh

∥∥∥
p−1

Xh

)

×

∣∣∣∣
∥∥∥PhS(T )∗P̃hψh

∥∥∥
Xh

−
∥∥∥eTA∗

hψh

∥∥∥
Xh

∣∣∣∣

≤ p(C5C1e
ωt ‖ψh‖

p−1
Xh

+ C7 ‖ψh‖
p−1
Xh

).
∥∥∥PhS(T )∗P̃hψh − eTA

∗
hψh

∥∥∥
Xh

≤ Cp ‖ψh‖
p−1
Xh

C9C5h
s ‖ψh‖Xh

≤ C14h
s ‖ψh‖

p
Xh
.

It follows from the above estimate and (2.3.13) that

∥∥∥eTA∗
hψh

∥∥∥
p

Xh

− C14h
s‖ψh‖

p
Xh

≤
∥∥∥PhS(T )∗P̃hψh

∥∥∥
p

Xh

≤ Cp5

∥∥∥S(T )∗P̃hψh
∥∥∥
p

X
. (2.4.7)

Combining (2.4.5) with (2.4.7), we obtain

∫ T

0

∥∥∥B∗S(t)∗P̃hψh
∥∥∥
p

U
dt ≥ C15

∥∥∥eTA∗
hψh

∥∥∥
p

Xh

− C14h
s‖ψh‖

p
Xh
. (2.4.8)

For the first term on the right hand side of (2.4.4), one has, using (2.3.6), (2.4.2), (2.4.3)

and applying inequality (2.4.6)

∣∣∣
∥∥∥Q̃hB∗

he
tA∗

hψh

∥∥∥
p

U
−
∥∥∥B∗S(t)∗P̃hψh

∥∥∥
p

U

∣∣∣

≤ p
(∥∥∥Q̃hB∗

he
tA∗

hψh

∥∥∥
p−1

U
+
∥∥∥B∗S(t)∗P̃hψh

∥∥∥
p−1

U

)

×
∣∣∣
∥∥∥Q̃hB∗

he
tA∗

hψh

∥∥∥
U
−
∥∥∥B∗S(t)∗P̃hψh

∥∥∥
U

∣∣∣

≤ p
( Cp−1

9

tγ(p−1)
‖ψh|

p−1
Xh

+ Cp−1
3

eωt(p−1)

tγ(p−1)
‖ψh‖

p−1
Xh

)

×
∣∣∣
∥∥∥Q̃hB∗

he
tA∗

hψh −B∗S(t)∗P̃hψh
∥∥∥
U

∣∣∣

≤
C16

tγ(p−1)
‖ψh‖

p−1
Xh

.C9
hs(1−γ)θ

tθ+(1−θ)γ ‖ψh‖Xh

≤ C17
hs(1−γ)θ

tθ+(1−θ)γ+γ(p−1)
‖ψh‖

p
Xh
.
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Since γ < 1
p (p ≥ 1) we have θ+(1−θ)γ+γ(p−1) < 1 and we can get, by integration,

∣∣∣
∫ T
0

(∥∥∥Q̃hB∗
he
tA∗

hP̃hψh

∥∥∥
p

U
− ‖B∗S(t)∗ψh‖

p
U

)
dt
∣∣∣ ≤ C18h

s(1−γ)θ‖ψh‖
p
Xh
.

It leads to

∫ T

0

∥∥∥Q̃hB∗
he
tA∗

hψh

∥∥∥
p

U
dt ≥

∫ T

0
‖B∗S(t)∗ψh‖

p
Udt− C18h

s(1−γ)θ‖ψh‖
p
Xh
. (2.4.9)

We choose a real number β such that 0 ≤ β ≤ s(1− γ)θ. It is seen clearly that

inequality (2.3.20) follows by combining results (2.4.8), (2.4.9) with (2.4.4).

For h ∈ (0, h1), the functional Jh is convex, and inequality (2.3.20), is coercive. It

therefore admits a minimum at ϕh ∈ Xh so that

0 = ▽Jh(ϕh) = Gh(T )ϕh + hβ‖ϕh‖
p−2ϕh + eTAhPhy0,

where Gh(T ) =
∫ T
0

∥∥B∗
he
tA∗

hϕh
∥∥p−2

etAhBhB
∗
he
tA∗

hdt is the Gramian of the semidiscrete

system.

The discrete control uh(t) =
∥∥B∗

he
(T−t)A∗

hϕh
∥∥p−2

B∗
he

(T−t)A∗
hϕh is chosen then, the

solution yh(.) satisfies

yh(T ) = eTAhyh(0) +

∫ T

0
e(T−t)AhBhuh(t)dt

= eTAhPhy0 +Gh(T )ϕh

= −hβ‖ϕh‖
p−2ϕh.

Note that, since Jh(0) = 0, there must hold, at the minimum, Jh(ϕh) ≤ 0. Hence,

using observability inequality (2.3.20) and the Cauchy-Schwarz inequality, one gets

c
∥∥∥eTA∗

hϕh

∥∥∥
p

Xh

≤

∫ T

0

∥∥∥B∗
he
tA∗

hϕh

∥∥∥
p

Uh

+ hβ ‖ϕh‖
p
Xh

≤ 2
∥∥∥eTA∗

hϕh

∥∥∥
Xh

‖Phy0‖Xh
,
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and thus, we obtain

∥∥∥eTA∗
hϕh

∥∥∥
Xh

≤
(2
c

)1/(p−1)
‖Phy0‖

1/(p−1)
Xh

. (2.4.10)

As a consequence, we have

∫ T

0

∥∥∥B∗
he
tA∗

hϕh

∥∥∥
p

Uh

≤ (
2p

c
)1/(p−1)(‖Phy0‖

p/(p−1)
Xh

), (2.4.11)

and hβ ‖ϕh‖
p
Xh

≤
(
2p

c

)1/(p−1)
‖Phy0‖

p/(p−1)
Xh

, and estimates (2.3.25) follow.

2.4.2 Proof of Proposition 2.3.10

Proof. If the sequence
(∥∥∥P̃hϕh

∥∥∥
X

)
0<h<h1

is bounded then up to a subsequence, it

converges weakly to an element ϕ ∈ X. It follows from estimate (2.4.3) that u(t) =

‖B∗S(T − t)∗ϕ‖p−2B∗S(T − t)∗ϕ for every t ∈ [0, T ]. Moreover, Q̃huh tends strongly to

u in Lq(0, T ;U). Indeed, for t ∈ [0, T ],

Q̃huh(t)− u(t)

= Q̃h

∥∥∥B∗
he

(T−t)A∗
hϕh

∥∥∥
p−2

B∗
he

(T−t)A∗
hϕh

−‖B∗S(T − t)∗ϕ‖p−2B∗S(T − t)∗ϕ

=
∥∥∥B∗

he
(T−t)A∗

hϕh

∥∥∥
p−2

(Q̃hB
∗
he

(T−t)A∗
h −B∗S(T − t)∗P̃h)ϕh

+
∥∥∥B∗

he
(T−t)A∗

hϕh

∥∥∥
p−2

B∗S(T − t)∗(P̃hϕh − ϕ)

+B∗S(T − t)∗ϕ(
∥∥∥B∗

he
(T−t)A∗

hϕh

∥∥∥
p−2

− ‖B∗S(T − t)∗ϕ‖p−2). (2.4.12)

Since the ϕh are bounded then the ‖uh‖ are bounded. It follows that
∥∥B∗

he
(T−t)A∗

hϕh
∥∥p−2

are bounded as well.

By making use of estimate (2.4.3), the first term of right hand side of (2.4.12) tends

to zero clearly. For the second term, for every t ∈ [0, T ] the operator B∗S(T − t)∗ is

compact, as a strong limit of finite rank operators and since P̃hϕh − ϕ tends to weakly

to zero, it follows that the second term of the right hand side of (2.4.12) tends to zero.
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Furthermore, through inequality (2.4.6) we get

∥∥∥B∗
he

(T−t)A∗
hϕh

∥∥∥
p−2

− ‖B∗S(T − t)∗ϕ‖p−2

< (2− p)(
∥∥∥B∗

he
(T−t)A∗

hϕh

∥∥∥
p−3

+ ‖B∗S(T − t)∗ϕ‖p−3)

×(
∥∥∥B∗

he
(T−t)A∗

hϕh −B∗S(T − t)∗ϕ
∥∥∥).

It is seen easily that the third term tends to zero because of the unboundedness of
∥∥B∗

he
(T−t)A∗

hϕh
∥∥p−3

and estimate (2.4.3).

The control u is such that y(T)=0, hence the vector ϕmust be solution of∇J∗(ψ) = 0,

where J is defined as in Theorem 2.2.3. Since J is convex, ϕ is the minimum of J∗, that

is, u is the control such that y(T ) = 0.

We next prove, by contradiction, that the sufficient conditions provided in the state-

ment of the proposition implies that the sequence (‖ϕh‖Xh
)0<h<h1 is bounded. Since the

proof of the first sufficient condition is found in [LT06], we give here the proof only for

the second sufficient condition. If the sequence (‖ϕh‖Xh
)0<h<h1 is not bounded, then,

up to subsequence, P̃h(ϕh/ ‖ϕh‖Xh
) converges weakly to Φ in X, as h tends to 0. For

every t ∈ [T − η, T + η], the control system is null controllable in time t; and thus, from

estimate (2.4.11), the sequence
∫ t
0 < B∗

he
(t−s)A∗

hϕh, Qhu(s) >Uh
ds is bounded, uniformly

for h ∈ (0, h1). Thus, passing to the limit, one gets

∫ t

0
< Φ, S(t− s)Bu(s) >X ds = 0.

This equality is equivalent to the fact that : there exists ξ ∈ (0, t) such that <

Φ, S(t−ξ)Bu(ξ) >X= 0. This contradicts the fact that the trajectory t 7→ S(t−ξ)Bu(ξ),

t ∈ [T − η, T + η] and every ξ ∈ (0, t), is not contained in a hyperplane of X.
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2.5 Numerical simulation for the heat equation with Dirich-

let boundary control

In this section, we give an example of a situation where the assumptions in Theo-

rem 2.3.5 are satisfied, and we provide comments numerical simulations to illustrate our

results.

Let Ω ⊂ Rn be an open bounded domain with sufficiently smooth boundary Γ. We

consider the Dirichlet mixed problem for the heat equation:

.
y = ∆y + c2y in (0, T )× Ω

y(0, .) = y0 in Ω

y = u in (0, T )× Γ = Σ,

with boundary control u ∈ L6(0, T ;L2(Γ)) and y0 ∈ L2(Ω).

Set X = L2(Ω) and U = L2(Γ). It can be written in form (2.1.1): the self-adjoint

operator

A : D(A) = H2 ∩H1
0 → L2(Ω).

is defined by Ay = ∆y + c2y and the adjoint B∗ ∈ L(D(A∗), U) of the control operator

B is given by

B∗ψ = −
∂ψ

∂ν
, ψ ∈ D(A∗).

Moreover, according to [LT00] (Section 3.1), the degree of unboundedness of B is

γ = 3
4 + ǫ > 1

2 (ǫ > 0).

The conditions u ∈ L6(0, T ;L2(Γ)) and γ > 1/2 exceed the hypothesis stated in

[LT06]. The results of [LT06] can not be applied to this example. The assumptions of

the results presented here are however satisfied as we shall see below. Constructing the

control as in Theorem 2.3.5 we shall observe the convergence to zero of yh(T ).

2.5.1 A one-dimensional finite-difference semi-discretized model

We introduce a semi-discretized model for the above heat equation through 1D finite-

difference.

For simplicity, we set Ω = (0, 1), Γ = {0, 1}, c=1 and T=1.

Given n ∈ N we define h = 1
n+1 > 0. We consider the following mesh

Ωh = {x0 = 0; xi = ih, i = 1, ..., n; xn+1 = 1} ,
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which divides [0,1] into n+2 subintervals ωj = (xj− 1
2
, xj+ 1

2
) j = 0, ..., n + 1 where

x− 1
2
= x0, xn+ 3

2
= xn+1 and xj+ 1

2
=
xj + xj+1

2
for j = 0, . . . , n. Let χωj

denote the

characteristic function of the interval ωj . Xh is finite-dimensional subspace of X.

Let X̃h denote the set of functions on I = (0, 1) whose restriction to each subinterval

Ii, i = 0, . . . , n+ 1, is polynominal with degree less than or equal to two.

For every positive integer m, every strictly ordered vector X̃ ∈ Rm and every Ỹ ∈

Zm, where Z is a reflexive Banach space, let ζX̃(Ỹ ) denote the Lagrange interpolation

polynom of Ỹ at points X̃, that is

ζX̃(Ỹ )(x) =

m∑

i=1

yi

(
Π
j=1
j 6=i

(x− xj)/ Π
j=1
j 6=i

(xi − xj)
)

for every x ∈ R. Note that

ζX̃(Ỹ )(xi) = yi, i = 1, . . . ,m

For every X ∈ Rn+2, we use notation X.χh =
∑n+1

i=0 xiχωi

Define ph : Rn+2 → X̃h by

ph(U) =

n+1∑

i=0

ζ(xj)j∈Vi

(
Uj
)
j∈Viχωi

,

for every U ∈ Rn+2.

Set Xh = ph(R
n+2).

Define P̃h (resp., Q̃h) as the canonical injection from Xh into D((−A)1/2) (resp.,

from Uh to U). For xh ∈ Xh and uh ∈ Uh, set, P̃h(xh) = xh and Q̃h(uh) = uh. For

y ∈ D((−A)1/2)′ = H1(Ω)′, set Phy = yh and, for u ∈ U , set, Qhu = uh.

We now consider the finite difference approximation of the above heat equation

ẏj =
1

h2
[yj+1 + yj−1 − 2yj ] + yj , 0 < t < T, j = 1, ..., n,

yj(0) = yj0 , j = 1, ..., n,

y0(t) = u1h(t), yn+1(t) = u2h(t) , 0 < t < T,

where y ∈ Rn+2 , y0 ∈ Rn+2; u1h, u
2
h ∈ R.

We can write the above discrete system in following form
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ẏh = Ahyh +Bhuh,

yh(0, .) = Phy0(.), (2.5.1)

where

Ah =
1

h2




d 1 0 . . . 0 0

1 d 1 . . . 0 0

0 1 d 1 . . . 0
...

...
...

. . .
...

...

0
... 1 d 1 0

0 . . . 0 1 d 1

0 0 . . . 0 1 d




n×n

,

with d=h2 − 2 and

Bh =
1

h2




1 0

0 0
...

0 0

0 1



n×2

,uh =

(
u1h
u2h

)
,

and y0h = (y0h(j))1≤j≤n = (y0(jh))1≤j≤n.

Next we check that assumptions (H3)-(H4) are fulfilled for the above system. As-

sumptions (H3.1) and (H3.3) are satisfied. To check assumptions (H3.2) and (H3.4), we

recall the following usual approximation properties (see [LT00], Section 5) that are sat-

isfied by the usual discretization scheme

(i) ‖Πhy − y‖Hl(Ω) ≤ chs−l ‖y‖Hs(Ω), s ≤ r + 1, s− l ≥ 0, 0 ≤ l ≤ 1,

and the inverse approximation properties

(ii) ‖yh‖Hα(Ω) ≤ ch−α ‖yh‖
2
L (Ω), 0 ≤ α ≤ 1.

(iii) h−1 ‖y −Πhy‖L2
(Γ)

+
∥∥∥(I −Πh)

∂y
∂ν

∥∥∥
L2(Γ)

≤ chs−
3
2 ‖y‖Hs(Ω),

3
2 < s < r + 1, y ∈

Hs(Ω).

(iv) ‖yh‖L2(Γ) + h
∥∥∥∂yh∂ν

∥∥∥
L2(Γ)

≤ Ch−
1
2 ‖yh‖L2(Ω), yh ∈ Vh.

where r is the order of approximation (degree of polynomials) and Πh is the orthogonal

projection of L2(Ω) onto Vh .
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By means of property (i), we easily get inequality (2.3.8)

∥∥∥∥(I − Â∗−γ+
1
2 P̃hPh)ψ

∥∥∥∥
L2(Ω)

≤ Ch2 ‖ψ‖H2(Ω)

≤ Ch2 ‖ψ‖D(A∗)

≤ Ch2 ‖A∗ψ‖X ,

in the case s=2.

We next verify inequality (2.3.9) as follows

∥∥∥∥((−Â∗)γ)

(
I − ˆ(A∗)

−γ+ 1
2 P̃hPh

)
ψ

∥∥∥∥
X

≤ C

∥∥∥∥(I − ˆ(A∗)
−γ+ 1

2 P̃hPh)ψ

∥∥∥∥
D((−Â∗)γ)

≤ Chs−l ‖ψ‖D(A∗)

≤ Chs(1−γ) ‖A∗ψ‖X ,

where we have employed property (i) with s=2 and where D(A∗) = Hs(Ω), D((−Â∗)γ) =

H l(Ω).

For inequality (2.3.11), we employ property (iii) with s=2 as

∥∥∥(I − Q̃hQh)B
∗ψ
∥∥∥
L2(Γ)

=

∥∥∥∥(I − Q̃hQh)
∂ψ

∂ν

∥∥∥∥
L2(Γ)

≤ Ch1/2 ‖ψ‖H2(Ω)

≤ Chs(1−γ) ‖ψ‖D(A∗)

≤ Chs(1−γ) ‖A∗ψ‖X .

For inequality (2.3.15), by making use of property (iv) and inequality (2.3.12) we

have

∥∥∥∥B∗ ˆ(A∗)
−γ+ 1

2 P̃hψh

∥∥∥∥
U

=

∥∥∥∥∥∥
∂( ˆ(A∗)

−γ+ 1
2 P̃hψh)

∂ν

∥∥∥∥∥∥
L2(Γ)

≤ Ch−
3
2

∥∥∥∥ ˆ(A∗)
−γ+ 1

2 P̃hψh

∥∥∥∥
L2(Ω)

≤ Ch−
3
2 ‖ψh‖Xh

.

Inequality (2.3.15) is thus satisfied for s=2, γ = 3
4 + ǫ. Moreover, assumption (H4.2)
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is satisfied with s=2 (see [LT00]).

The assumptions of Theorem 2.3.5 are thus adapted to this example, with β = 0.16,

for instance. Note that the choice of β comes from the proof of Theorem 2.3.5.

For greater convenience in numerical computations, we shall exploit spectral decom-

positions in what follows.

The solution of discrete system (2.5.1) at time T reads

yh(T ) = eTAhPhy0 +

∫ T

0
e(T−t)AhBhuh(t)dt. (2.5.2)

As shown in Theorem 2.3.5, a control uh is built as

uh(t) =
∥∥∥B∗

he
(T−t)A∗

hϕh

∥∥∥
p−2

B∗
he

(T−t)A∗
hϕh,

where ϕh is the minimizer of the functional

Jh(ψh) =
1

p

∫ T

0

∥∥∥B∗
he
tA∗

hψh

∥∥∥
p

U
dt+

1

p
hβ‖ψh‖

p
Xh

+ < eTA
∗
hψh, Phy0 >Xh

.

Replacing the above discrete control into (2.5.2) we obtain

yh(T ) = eTAhPhy0 +

∫ T

0

∥∥∥B∗
he
tA∗

hϕh

∥∥∥
p−2

etAhBhB
∗
he
tA∗

hϕhdt.

The eigenvectors and eigenvalues of the operator Ah are respectively given by

wk(j) = sin(jπhk), λk =
1

h2
(
2cos(πhk) + (h2 − 2)

)
6= 0

for 1 ≤ j, k ≤ n.

We normalize the eigenvectors (wk)1≤k≤n and then consider them as an orthonormal

55



basis of n-dimensional space Xh. Exploiting the spectral decomposition we write

yh(T ) =
n∑

j=0

eTλj < Phy0, wj > wj

+

∫ T

0

∥∥∥∥∥∥

n∑

j=0

B∗etλj < ϕh, wj > wj

∥∥∥∥∥∥

p−2
n∑

j=0

etAhBhB
∗
he
tλj < ϕh, wj > wjdt

=

n∑

j=0

eTλj < Phy0, wj > wj

+
1

h2p

∫ T

0

(
(

n∑

j=0

etλj < ϕh, wj > wj)
2 + (

n∑

j=0

etλj < ϕh, wj > wj(n))
2
) p−2

2

×
( n∑

j=0

n∑

k=0

et(λk+λj)(wj(1)wk(1) + wj(n)wk(n)) < ϕh, wj > wk

)
dt, (2.5.3)

where ϕh is minimizer of

Jh(ψh) =
1

ph2p

∫ T

0

(
(

n∑

j=0

etλj < ψh, wj > wj(1))
2 + (

n∑

j=0

etλj < ψh, wj > wj(n))
2
) p

2

dt

+
1

p
hβ‖ψh‖

p
Xh

+

n∑

j=0

etλj < ψh, wj >< Phy0, wj > . (2.5.4)

Equivalently we have

0 = ▽Jh(ψh)

=

∫ T

0

∥∥∥B∗
he
tA∗

hψh

∥∥∥
p−2

etAhBhB
∗
he
tA∗

hψhdt+ hβ‖ψh‖
p−2

ψh + eTAhPhy0,

=
1

h2p

∫ T

0

(
(

n∑

j=0

etλj < ϕh, wj > wj(1))
2 + (

n∑

j=0

etλj < ϕh, wj > wj(n))
2
) p−2

2

×
( n∑

j=0

n∑

k=0

et(λk+λj)(wj(1)wk(1) + wj(n)wk(n)) < ϕh, wj > wk

)
dt

+ hβ‖ψh‖
p−2

ψh +

n∑

j=0

eTλj < Phy0, wj > wj . (2.5.5)

Observe that thanks to the spectral decomposition the various expressions we just wrote are

quite straightforward to evaluate. Namely, expressions (2.5.3), (2.5.4) and (2.5.5) are useful for

the numerical computations below.

Note the using this spectral decomposition is classical (see eg. [MZ10] where it is also exploited

).
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2.5.2 Numerical simulation

The minimization procedure stated in Theorem 2.3.5 is implemented for d=1, using a simple

gradient method that has the advantage to not require complex computations. Moreover, this

method can be applied with any power p. We now describe the simple gradient method which

we employ as follows

1. Set iteration counter k = 0, and make an initial guess, x0 for the minimum.

2. Repeat:

3. Compute a ’descent direction’ dk.

4. Choose ’step length’ αk to ’loosely’ minimize h(α) = f(xk + αdk) over α ∈ R+.

5. Update xk+1 = xk + αkdk and k = k + 1.

6. Stop criterion: ‖▽f(xk)‖ < 10−2.

At step (4), in order to obtain an acceptable step length αk we choose a line search algorithm

where the Wolfe condition is satisfied, that is f(xk + αdk) ≤ f(xk) + cα ▽ fk
T dk (note that

c = 10−4 is chosen here). This condition ensures that the step length αk yields a sufficient

decrease for f . However it is not sufficient on its own to ensure that a reasonable value is

generated, since all α small enough will satisfy the Wolfe condition. To avoid the selection of

steps that are too small, the additional curvature condition is usually imposed. For simplicity,

we impose in practice α ≥ 10−4.

At step (3), there are many methods to compute a ’descent direction’ dk such as

1. The Fletcher-Reeves method where

dk+1 = −▽ f(xk+1) +
‖▽f(xk+1)‖

2

‖▽f(xk)‖
2 dk

2. The BroydenFletcherGoldfarbShanno method (in short: BFGS method) where a direction

dk+1 is obtained by solving Bk+1dk+1 = −▽ f(xk+1) where

Bk+1 = Bk +
yky

T
k

yTk sk
−
Bksks

T
kBk

sTkBksk
,

with

sk = xk+1 − xk,

yk = ▽f(xk+1)−▽f(xk).
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3. The Polak-Ribière method where

dk+1 = −▽ f(xk+1) +
▽f(xk+1)

(
▽ f(xk+1)−▽f(xk)

)

‖▽f(xk)‖
2 dk.

All above methods lead to reasonable results. However, the best choice for our example turns

out to be the Polak-Ribière method (in the sense that acceptable numerical results are obtained

in the shortest time).

Below we present the numerical results where the line search method at step (4) and Polak-

Ribiere method at step (3) have been used.

name n h y0

1D-10 10 0.1 y0(x) = e−x
2

1D-50 50 0.02 y0(x) = e−x
2

1D-100 100 0.01 y0(x) = e−x
2

1D-200 200 0.005 y0(x) = e−x
2

Table 1: Data for the one-dimensional heat equation.

name ‖ϕh‖X h
β
p (β = 0.16) ‖▽Jh‖ ‖yh(T )‖

1D-10 7.3100e-07 0.7359 0.0089 0.0410

1D-50 8.9224e-07 0.5936 0.0098 0.0324

1D-100 9.1999e-07 0.5412 0.0084 0.0297

1D-200 9.2306e-07 0.4936 0.0076 0.0266

Table 2: Numerical results for one dimensional equation for β = 0.16.

Numerical simulations are carried out with a space-discretization step equal to 0.005, with

the data of Table 1. The numerical results are provided in Table 2 for β = 0.16 and Table 3 for

β = 2. Note that the fifth column corresponds to the numerical results as computed by (2.5.3).

The convergence of the method can be slow. According to the result of Theorem 2.3.5, the

final state yh(T ) is equal to −hβ ‖ϕh‖
p−2

ϕh in which ϕh is the minimizer of Jh. We note that

the maximum value for β which the theorem asserts the convergence is very small. For such a

small value of β (here, β = 0.16), it follows from the estimate (2.3.25) that ‖yh(T )‖ converges to

0 with order ’β/p = 0.1333’ which is quite small. Namely, in order to divide ‖yh(T )‖ by 10 then

one has to divide h by 32.10+6. To achieve sufficient precision one need to take h small which

lead to time consuming computation, which is reasonable for 1D problem.

Moreover, we provide the numerical results for β = 2 in Table 3 for reference. Although the

case β = 2 is not covered by our theory, the method seems to converge as well for this value of

beta. Naturally the greater the value of β is, the quicker the convergence is. This observation

58



motivates further developments to improve the results we have presented here.

name ‖ϕh‖X hβ/p(β = 2) ‖▽Jh‖ ‖yh(T )‖

1D-10 1.6037e-06 0.0215 0.0081 5.7311e-04

1D-50 3.3748e-06 0.0015 0.0093 3.0939e-05

1D-100 3.9861e-06 4.6415e− 04 0.0064 6.2477e-06

1D-200 4.1893e-06 1.4620e− 04 0.0078 1.8722e-06

Table 3: Numerical results for one dimensional equation for β = 2.

2.6 Proof of Lemma 2.4.1

In comparison with Lemma 4.1 in [LT06], a different point in proof of this Lemma is the

appearance of ˆ(A∗)
−γ+ 1

2
.

Proof. • First of all, we will prove (2.4.2)

For every ψ ∈ D(A∗), one has

∥∥∥∥Q̃hB∗
he
tA∗

hPhψ −B∗ ˆ(A∗)
−γ+ 1

2
P̃hPhS(t)

∗ψ

∥∥∥∥
U

≤
∥∥∥Q̃hB∗

he
tA∗

hPhψ
∥∥∥
U

+

∥∥∥∥B∗ ˆ(A∗)
−γ+ 1

2
P̃hPhS(t)

∗ψ

∥∥∥∥
U

.(2.6.1)

We estimate each term of the right hand side of (2.6.1). Since B∗
h = QhB

∗ ˆ(A∗)
−γ+ 1

2
P̃h

and thus, using (2.3.13) (2.3.15) (2.3.17) one gets

∥∥∥Q̃hB∗
he
tA∗

hPhψ
∥∥∥
U

≤ C5

∥∥∥∥B∗ ˆ(A∗)
−γ+ 1

2
P̃he

tA∗

hPhψ

∥∥∥∥
U

≤ C5C6h
−γs
∥∥∥etA∗

hPhψ
∥∥∥
Xh

≤ C2
5C6C7h

−γseωt‖ψ‖X . (2.6.2)

On the other hand, it follows from (2.3.1), (2.3.13), (2.3.15) that

∥∥∥∥B∗ ˆ(A∗)
−γ+ 1

2
P̃hPhS(t)

∗ψ

∥∥∥∥
U

≤ C6h
−γs‖PhS(t)

∗ψ‖Xh

≤ C5C6h
−γs‖S(t)∗ψ‖X

≤ C1C5C6h
−γseωt‖ψ‖X . (2.6.3)
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Hence, combining (2.6.2), (2.6.3) with (2.6.1), there exists C10 > 0 such that

∥∥∥∥Q̃hB∗
he
tA∗

hPhψ −B∗ ˆ(A∗)
−γ+ 1

2
P̃hPhS(t)

∗ψ

∥∥∥∥
U

≤ C10h
−γs‖ψ‖X . (2.6.4)

for every ψ ∈ D(A∗), every t ∈ [0, T ], and every h ∈ (0, h0).

Moreover, we get another estimate of this term. By using (2.3.6), (2.3.11), (2.3.13),

(2.3.15), (2.4.1) one gets

∥∥∥∥Q̃hB∗
he
tA∗

hPhψ −B∗ ˆ(A∗)
−γ+ 1

2
P̃hPhS(t)

∗ψ

∥∥∥∥
U

=

∥∥∥∥Q̃hQhB∗ ˆ(A∗)
−γ+ 1

2
P̃he

tA∗

hPhψ −B∗ ˆ(A∗)
−γ+ 1

2
P̃hPhS(t)

∗ψ

∥∥∥∥
U

≤

∥∥∥∥Q̃hQhB∗ ˆ(A∗)
−γ+ 1

2
P̃h(e

tA∗

hPhψ − PhS(t)
∗ψ)

∥∥∥∥
U

+

∥∥∥∥Q̃hQhB∗( ˆ(A∗)
−γ+ 1

2
P̃hPh − I)S(t)∗ψ

∥∥∥∥
U

+
∥∥∥(Q̃hQh − I)B∗S(t)∗ψ

∥∥∥
U

+

∥∥∥∥B∗(I − ˆ(A∗)
−γ+ 1

2
P̃hPh)S(t)

∗ψ

∥∥∥∥
U

≤ C5C6h
γs
∥∥∥etA∗

hPhψ − PhS(t)
∗ψ
∥∥∥
Xh

+C5C3

∥∥∥∥(−Â)γ( ˆ(A∗)
−γ+ 1

2
P̃hPh − I)S(t)∗ψ

∥∥∥∥
X

+C4h
s(1−γ)‖A∗S(t)∗ψ‖X

+C3

∥∥∥∥(−Â)γ( ˆ(A∗)
−γ+ 1

2
P̃hPh − I)S(t)∗ψ

∥∥∥∥
X

≤ C5C6C9
hs(1−γ)

t
‖ψ‖X + (C3(C5 + 1) + 1)C4h

s(1−γ)‖A∗S(t)∗ψ‖X

≤ C11
hs(1−γ)

t
‖ψ‖X . (2.6.5)

Then, raising (2.6.4) to the power 1− γ, (2.6.5) to the power γ and then multiplying both

result estimates, we obtain

∥∥∥∥Q̃hB∗
he
tA∗

hPhψ −B∗ ˆ(A∗)
−γ+ 1

2
P̃hPhS(t)

∗ψ

∥∥∥∥
U

≤
C12

tγ
‖ψ‖X .

Hence,

∥∥∥Q̃hB∗
he
tA∗

hPhψ
∥∥∥
U
≤
C12

tγ
‖ψ‖X +

∥∥∥∥B∗ ˆ(A∗)
−γ+ 1

2
P̃hPhS(t)

∗ψ

∥∥∥∥
U

. (2.6.6)
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It follows from (2.3.2), (2.3.5), (2.3.9) that

∥∥∥∥B∗ ˆ(A∗)
−γ+ 1

2
P̃hPhS(t)

∗ψ

∥∥∥∥
U

≤

∥∥∥∥B∗(I − ˆ(A∗)
−γ+ 1

2
P̃hPh)S(t)

∗ψ

∥∥∥∥
U

+ ‖B∗S(t)∗ψ‖U

≤ C13
eωt

tγ
‖ψ‖X . (2.6.7)

Combining (2.6.6) with (2.6.7) and by setting ψ = P̃hψh we get (2.4.2).

• Finally, we prove (2.4.3). On the one hand, reasoning as above for obtaining (2.6.5), we

get ∥∥∥Q̃hB∗
he
tA∗

hPhψ −B∗S(t)∗ψ
∥∥∥
U
≤ C

hs(1−γ)

t
‖ψ‖X , (2.6.8)

for every ψ ∈ D(A∗), every t ∈ [0, T ] and every h ∈ (0, h0).

On the other hand, from (2.4.2) and setting ψ = P̃hψh one obtains

∥∥∥Q̃hB∗
he
tA∗

hPhψ −B∗S(t)∗ψ
∥∥∥
U

≤
∥∥∥Q̃hB∗

he
tA∗

hPhψ
∣∣∣
U
+ ‖B∗S(t)∗ψ‖U

≤
C9

tγ
‖ψh‖+ C3

∥∥∥(−Â∗)γS(t)∗ψ
∥∥∥
X

≤
C

tγ
‖ψh‖X . (2.6.9)

Raising (2.6.8) to the power θ, (2.6.9) to the power 1−θ and then multiplying both resulting

estimates, we obtain (2.4.3).

The proof of the inequality (2.4.1) is found in [LT06], [LT00].

2.7 Conclusion

We have shown that the appropriate duality techniques can be applied to solve (2.1.3), namely

the Fenchel-Rockafellar theorem.

Additionally, it is also stated that under appropriate standard assumptions on the discretiza-

tion process, for null controllable linear control system, if the semigroup of approximating system

is uniformly analytic, and if the degree of unboundedness of the control operator is greater than

1
2 then a unform observability type inequality is proved. Our result overcomes the limitation of

[LT06] on the 1/2 of degree unboundedness of the control operator. As a consequence, a mini-

mization procedure was provided to build the aproximation controls in Lq norm (q > 2). This is

implemented in the case of the one dimensional heat equation with Dirichlet boundary control.
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Note that, we only stress our problem on the case γ ≥ 1/2. Some relevant problems for

which γ < 1/2 that can be found in [LT06] and [EV09]. More precisely, while authors of [LT06]

achieved the uniform observability result on space semidiscretization, authors of [EV09] provided

the result for suitable time-discretization schemes which can then be combined with the existing

ones on the observability of space semi-discrete systems, yielding observability properties for full

discretization schemes.

In this work, we dealt within a very general framework, and derived a general uniform observ-

ability inequality with a viscosity in hβ . Next chapter, we investigate more particular equations

(1D heat equation), for which Carleman estimate allows one to untimately derive uniform ob-

servability inequality with a better viscosity in e−C/h.
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Chapter 3

Carleman estimates for semi-discrete

parabolic operators with a discontinuous

diffusion coefficient and application to

controllability

3.1 Introduction and settings

Let Ω, ω be connected non-empty open interval of R with ω ⋐ Ω. We consider the following

parabolic problem in (0, T )× Ω, with T > 0,

∂ty − ∂x(c∂xy) = 1ωv in (0, T )× Ω, y|∂Ω = 0, and y|t=0 = y0, (3.1.1)

where the diffusion coefficient c = c(x) > 0.

System (3.1.1) is said to be null controllable from y0 ∈ L2(Ω) in time T if there exists

v ∈ L2((0, T )× Ω), such that y(T ) = 0.

In the continuous framework, we refer to [FI96] and [LR95] who proved such a controllability

result by means of a global/local Carleman observability estimates in the case the diffusion

coefficient c is smooth. The authors of [BDL07] produced this controllability result in the case of

a discontinuous coefficient in the one-dimensional case later extended to arbitrary dimension by

[LR10]. Additionally, a result of controllability in the case of a coefficient with bounded variation

(BV) was shown in [FCZ02, L07].

The authors of [LZ98] show that uniform controllability holds in the one-dimensional case



with constant diffusion coefficient c and for a constant step size finite-difference scheme. Here,

”uniform” is meant with respect to the discretization parameter h. The situation becomes more

complex in higher dimension. In fact, a counter-example to null-controllability due to O. Kavian

is provided in [Zua06] for a finite-difference discretization scheme for the heat equation in a

square.

In recent works, by means of discrete Carleman estimate, the authors of [BHL10a], [BHL10b]

and [BL12] obtained weak observability inequalities in the case of a smooth diffusion coefficient

c(x). Such observability estimates are charaterized by an additional term that vanishes expo-

nentially fast. Morever, also with a constant diffusion coffiencient c, under the assumption that

the discretized semigroup is uniformly analytic and that the degree of unboundedness of control

operator is lower than 1/2, a uniform observability property of semi-discrete approximations for

System (3.1.1) is achieved in L2 [LT06]. Besides that, such a result continues to hold even with

the condition that the degree of unboundedness of control operator is greater than 1/2 [N12].

In the case of a non-smooth coefficient, our aim is to investigate the uniform controllability

of System (3.1.1) after discretization. It is well known that controllability and observability are

dual aspects of the same problem. We shall therefore focus on uniform observability which is

shown to hold when the observability constant of the finite dimensional approximation systems

does not depend on the step-size h.

In the present paper we prove a Carleman estimate for aystem (3.1.1) in the case of:

• the heat equation in one space dimension;

• a piecewise C1 coefficient c with jumps at a finite number of points in Ω;

• a finite-difference discretization in space.

The main idea of the proof is combination of the derivation of a discrete Carleman estimate as

in [BHL10a, BL12] and tecniques of [BDL07] for operators with discontinuous coefficients in the

one-dimensional case. A similar question in n-dimensional case, n ≥ 2, remains open, to our

knowledge.

When considering a discontinuous coefficient c the parabolic problem (3.1.1) can be under-

stood as a transmission problem. For instance, assume that c exhibits a jump at a ∈ Ω. Then

we write





∂ty − ∂x(c∂xy) = 1ωv in (0, T )×
(
(0, a) ∪ (a, 1)

)
,

c∂xy|a+ = c∂xy|a− , y|a+ = y|a− ,

y|∂Ω = 0, and y|t=0 = y0.
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The second line is thus a transmission condition implying the continuity of the solution and of

the flux at x = a.

When one gives a its finite-difference version of this transmission problem, a similar condition

can be given for the continuity of the solution. Yet, for the flux, it is only achieved up to a

consistent term. In what follows, in the finite-difference approximation, we shall in fact write




y(a−) = y(a+) = yn+1,

(cdDy)n+ 3
2
− (cdDy)n+ 1

2
= h

(
D̄(cdDy)

)
n+1

,

(the discrete notation will be given below). Note that the flux condition converges to the contin-

uous one if h→ 0, h being the discretization parameter. This difference between the continuous

and the discrete case will be the source of several technical points.

An important point in the proof of Carleman estimate is the construction of a suitable weight

function ψ whose gradient does not vanish in the complement of the observation region. The

weight function is chosen to be smooth in the case of a smooth diffusion coefficient c(x). In

general, the technique to construct such a function is based on Morse functions (see some details

in [FI96]). In one space dimension, this construction is in fact straightforward. In the case

of a discontinuous diffusion coefficient, authors of [BDL07] introduced an ad hoc transmission

condition on the weight function: its derivative exhibits jumps of its derivative at the singular

points of the coefficient. In this paper, we construct a weight function based on these techniques

in one-dimentional discrete case.

From the semi-discrete Carleman we obtain, we give an observability inequality for semi-

discrete parabolic problems with potential. As compared to the result in continuous case [BDL07]

the observability estimate we state here is weak because of an additional term that describes the

obstruction to the null-controllability. This term is exponentially small in agreement with the

results obtained in [BHL10a, BHL10b] in the smooth coefficient case. A precise statement is

given in Section 3.6.

Finally, the observability inequality allows one to obtain controllability results for semi-

discrete parabolic with semi-linear terms. In continuous case, this was achieved in [BDL07].

Taking advantage of one-dimensional situation, the results we state are uniform with respect to

the discretization parameter h (see Section 3.6).

3.1.1 Discrete settings

We restrict our analysis to one dimension in space. Let us consider the operator formally

defined by A = −∂x(c∂x) on the open interval Ω = (0, L) ⊂ R. We let a′ ∈ Ω and set Ω1 := (0, a′)
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and Ω2 := (a′, L). The diffussion coefficient c is assumed to be piecewise regular such that

0 < cmin ≤ c ≤ cmax (3.1.2)

c =




c0 in Ω1,

c1 in Ω2,

with ci ∈ C1(Ωi), i = 1, 2.

The domain of A is D(A) =
{
u ∈ H1

0 (Ω); c∂xu ∈ H1(Ω)
}
.

Let T > 0. We shall use the following notation Ω′ = Ω1∪Ω2, Q = (0, T )×Ω, Q′ = (0, T )×Ω′,

Qi = (0, T ) × Ωi, i = 1, 2, Γ = {0, L}, and Σ = (0, T ) × Γ. We also set S = {a′}. We consider

the following parabolic problem




∂ty +Ay = f in Q′,

y(0, x) = y0(x) in Ω .

(real valued coefficient and solution), for y0 ∈ L2(Ω) and f ∈ L2(Q), with the following trans-

mission conditions at a′

(TC)




y(a′−) = y(a′+),

c(a′−)∂xy(a
′−) = c(a′+)∂xy(a

′+).

Now, we introduce finite-difference approximations of the operator A. Let 0 = x′0 < x′1 <

. . . < x′n+1 = a′ < . . . < x′n+m+1 < x′n+m+2 = L. We refer to this discretization as to the primal

mesh M := (x′i)1≤i≤n+m+1. We set |M| := n +m + 1. We set h′
i+ 1

2

= x′i+1 − x′i and x′
i+ 1

2

=

(x′i+1+x
′
i)/2, i = 0, . . . , n+m+1, and h′ = max0≤i≤n+m+1 h

′
i+ 1

2

. We callM := (x′
i+ 1

2

)0≤i≤n+m+1

the dual mesh and set h′i = x′
i+ 1

2

− x′
i− 1

2

= (h′
i+ 1

2

+ h′
i− 1

2

)/2, i = 0, . . . , n+m+ 1.

In this paper, we shall address to some families of non uniform meshes, that will be precisely

defined in Section 3.1.2.

We introduce the following notation

[ρ1⋆]a = ρ1(a
+)− ρ1(a

−), (3.1.3)

[⋆ρ2]a = ρ2(n+
3

2
)− ρ2(n+

1

2
), (3.1.4)

[ρ1 ⋆ ρ2]a = ρ1(a
+)ρ2(n+

3

2
)− ρ1(a

−)ρ2(n+
1

2
). (3.1.5)

We follow some notation of [BHL10a] for discrete functions in the one-dimensional case. We

denote by CM and CM the sets of discrete functions defined on M and M respectively. If u ∈ CM
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(resp. CM), we denote by ui (resp. ui+ 1
2
) its value corresponding to x′i (resp. x

′
i+ 1

2

). For u ∈ CM

we define

uM =
n+m+1∑

i=1

1|[x′

i− 1
2

,x′

i+1
2

]ui ∈ L∞(Ω).

And for u ∈ CM we define
∫
Ω
u :=

∫
Ω
uM(x)dx =

∑n+m+1
i=1 h′iui.

For u ∈ CM we define

uM =

n+m+1∑

i=0

1|[x′

i
,x′

i+1
]ui+ 1

2
.

As above, for u ∈ CM , we define
∫
Ω
u :=

∫
Ω
uM(x)dx =

∑n+m+1
i=0 h′

i+ 1
2

ui+ 1
2
. In particular

we define the following L2 inner product on CM (resp. CM)

(u, v)L2 =

∫

Ω

uM(x)vM(x)dx, resp. (u, v)L2 =

∫

Ω

uM(x)vM(x)dx.

For some u ∈ CM, we shall need to associate boundary conditions u∂M = {u0, un+m+2}.

The set of such extended discrete functions is denoted by CM∪∂M. Homogeneous Dirichlet

boundary conditions then consist in the choice u0 = un+m+2 = 0, in short u∂M = 0. We can

define translation operators τ±, a difference operator D and an averaging operator as the map

CM∪∂M → CM given by

(τ+u)i+ 1
2
:= ui+1, (τ−u)i+ 1

2
:= ui, i = 0, . . . n+m+ 1,

(Du)i+ 1
2
:=

1

h′
i+ 1

2

(τ+u− τ−u)i+ 1
2
, ũ :=

1

2
(τ+ + τ−)u.

We also define, on the dual mesh, translation operators τ±, a difference operator D̄ and an

averaging operator as the map CM → CM given by

(τ+u)i := ui+ 1
2
, (τ−u)i := ui− 1

2
, i = 1, . . . n+m+ 1,

(D̄u)i :=
1

h′i
(τ+u− τ−u)i, ū :=

1

2
(τ+ + τ−)u.

3.1.2 Families of non-uniform meshes

In this paper, we address non-uniform meshes that are obtained as the smooth image of an

uniform grid.

More precisely, let Ω0 =]0, 1[ and let ϑ : R → R be an increasing map such that

ϑ(Ω0) = Ω, ϑ ∈ C∞, inf ϑ′ > 0 and ϑ(a) = a′ (3.1.6)

67



with a to be kept fixed in what follows and chosen such that a ∈ (0, 1) ∩ Q, i.e a = p
q with

p, q ∈ N∗. Clearly, we have q > p. We impose the function ϑ to be affine on [a− δ, a+ δ]

ϑ|[a−δ,a+δ] (for some δ > 0).

Given r ∈ N∗ and set m = (q − p)r and n = pr. The parameter r is used to refine the mesh

when increased. Set a = xn+1 = xpr+1. The interval Ω01 = [0, a] is then discretized with n = pr

interior grid points (excluding 0 and a). The interval Ω02 = [a, 1] is discretized with m = (q−p)r

exterior grid points (excluding a and 1). Let M0 = (ih)1≤i≤n+m+1 with h = 1
n+m+2 be uniform

mesh of Ω0 and M0 be the associated dual mesh. We define a non-uniform mesh M of Ω as image

of M0 by the map ϑ, settings

x′i = ϑ(ih), ∀i ∈ {0, ..., n} ∪ {n+ 2, ..., n+m+ 2}

x′n+1 := a′ = ϑ(a). (3.1.7)

The dual mesh M and the general notation are then those of the previous section.

3.1.3 Main results

With the notation we have introduced, a consistent finite-difference approximation of Au

with homogeneous boundary condition is

AMu = −D̄(cdDu)

for u ∈ CM∪∂M satisfying u|∂Ω = u∂M = 0. We have

(AMu)i = −
cd(xi+ 1

2
)ui+1−ui

h
i+1

2

− cd(xi− 1
2
)ui−ui−1

h
i− 1

2

hi
, i = 1, .., n+m+ 1.

For a suitable weight function ϕ (to be defined below), the announced semi-discrete Carleman

estimate for the operator PM = −∂t + AM with a discontinuous diffusion coefficient c, for the

non-uniform meshes we consider, is of the form

τ−1
∥∥∥θ− 1

2 eτθϕ∂tu
∥∥∥
2

L2(Q)
+ τ

∥∥∥θ 1
2 eτθϕDu

∥∥∥
2

L2(Q)
+ τ3

∥∥∥θ 3
2 eτθϕu

∥∥∥
2

L2(Q)

≤ Cλ,K

(∥∥eτθϕPMu
∥∥2
L2(Q)

+ τ3
∥∥∥θ 3

2 eτθϕu
∥∥∥
2

L2((0,T )×ω)

+h−2
∣∣eτθϕu|t=0

∣∣2
L2(Ω)

+ h−2
∣∣eτθϕu|t=T

∣∣2
L2(Ω)

)
,
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for properly chosen functions θ = θ(t) and ϕ = ϕ(x), for all τ ≥ τ0(T + T 2), 0 < h ≤ h0 and

τh(αT )−1 ≤ ǫ0, 0 < α < T and for all u ∈ C∞(0, T ;CM) where τ0, h0, ǫ0 only depend on the

data. We refer to Theorem 3.5.6 below for a precise result. The proof of this estimate will be

first carried out for piecewise uniform meshes (see Theorem 3.4.1), and then adapted to the case

of the non-uniform meshes we introduced in Section 3.1.2.

From the semi-discrete Carleman estimate we obtain allows we deduce following weak ob-

servability estimate

|q(0)|L2(Ω) ≤ Cobs ‖q‖
2
L2((0,T )×ω) + e−

C
h |q(T )|2L2(Ω) ,

for any q solution to the adjoint system

∂tq +AMq + aq = 0, q|∂Ω = 0.

A precise statement is given in Section 3.6.

Moreover, from the weak observability estimate given above we obtain a controllability result

for the linear operator PM. This result can be extended to classes of semi-linear equations

(
∂t +AM

)
y +G(y) = 1ωv, y ∈ (0, T ) y|∂Ω = 0, y(0) = y0,

with G(x) = xg(x), where g ∈ L∞(R) and

|g(x)| ≤ K lnr(e+ |x|), x ∈ R, with 0 ≤ r <
3

2
.

We shall state controllability results with a control that satisfies

‖v‖L2(Q) ≤ C |y0| .

Thanks to one space dimension the size of the control function is uniform with respect to the

discretization parameter h.

3.1.4 Sketch of proof of Theorem 3.4.1 (Carleman estimate for uniform

mesh)

The main idea of the proof lays in the combination of the derivation of a discrete Carleman

estimate as in [BHL10a, BL12] and techniques used in [BDL07] to achieve such estimates for

operators with discontinuous coefficients in the one-dimensional case.
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We set v = e−sϕu yielding esϕPe−sϕv = esϕf1 in Q′
0 if Pu = f1

We obtain g = Av +Bv in Q′
0, with A and iB ’essentially’ selfadjoint.

We write ‖g‖2L2 = ‖Av‖2L2+‖Bv‖2L2+2(Av,Bv)L2 and the main part of the proof is dedicated

to computing the inner product (Av,Bv)L2(Q′

0)
, involving (discrete) integration by parts.

We proceed with these computations separately in each domain Ω01, Ω02. As in [BL12]

we obtain terms involving boundary points x = 0 and x = 1 such as v(0),v(1),∂tv(0),∂tv(1),

(Dv)n+m+ 1
2
, (Dv)n+m+ 3

2
. In our case we obtain additional terms involving the jump point a

such as v(a), ∂tv(a), ṽn+ 1
2
, ṽn+ 3

2
, (Dv)n+ 1

2
, (Dv)n+ 3

2
. Main difficulties of our work come from

dealing with these new terms. To reduce the number of terms to control, we find relations among

connecting these various values at jump point allowing to focus our computations on terms only

involving v(a), ∂tv(a) and (Dv)n+ 1
2
. Those relations are stated in Lemma 3.3.17. In the limit

h→ 0 they give back the transmission conditions for the function v = e−sϕu used crucial way in

[BDL07]. The idea of this technique comes from a similar technique shown in continuos case by

[BDL07].

The discrete setting could allow computation on the whole Ω. Yet such computation would

yield constant that would depend on discrete derivatives of the diffusions coefficient, yielding

non-uniformity with respect to the discretization parameter h. This explains why we resort to

working on both Ω0 and Ω1 separately and deal with the interface terms that appear. As in

[BDL07] the weight function is chosen to obtain positive contributions for these terms.

Sketch of proof Theorem

1. We compute the inner product (Av,Bv) in a series of terms and collect them together in

an estimate (see Lemma 3.4.4–Lemma 3.4.12). In that estimate, we need to tackle two

parts: volume integrals, integrals involving boundary points and the jump point. Volume

integrals and boundary terms are dealt with similar to [BL12]. Terms at the jump point

require special case.

2. Treatment of terms the jump point

• Terms at jump point involving ∂tv : when treating the term Y13 we obtain a positive

integral of (∂tv(a))
2 in the LHS of the estimate as shown in Lemma 3.4.15. We

keep this term in the LHS of the estimate.

• Other terms: We collect together the terms at the jump point that already exist in

the continuous case. As in [BDL07] we obtain a quadratic form because of the choice

of the weight function (jump of its slope). This allows us to obtain positive two

integrals involving v2(a), (Dv)2
n+ 1

2

in the LHS of our estimate (see Lemma 3.4.14).
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• The remaining terms at the jump point are placed in the RHS of estimate. After

that, we apply Young’s inequality to them (as shown in Lemma 3.4.16) and they

then can be absorded by the positive integrals involving v2(a), (Dv)2
n+ 1

2

, (∂tv(a))
2 in

the LHS of estimate as described above.

3.1.5 Outline

In section 3.2, we construct the weight functions to be used in the Carleman estimate. In

section 3.3 we have gathered some preliminary discrete calculus results and we present how

transmission conditions can be expressed in the discretization scheme. Section 3.4 is devoted to

the proof the semi-discrete parabolic Carleman estimate in the case of a discontinuous diffusion

cofficient for piecewise uniform meshes in the one-dimensional case. To ease the reading, a large

number of proofs of intermediate estimates have been provided in Section 3.7. This result is then

extended to non-uniform meshes in Section 3.5. Finally, in Section 3.6, as consequences of the

Carleman estimate, we present the weak observability estimate and associated some controllability

results.

3.2 Weight functions

We shall first introduce a particular type of weight functions, which are constructed through

the following lemma.

We enlarge the open intervals Ω1,Ω2 to large open sets Ω̃1, Ω̃2.

Lemma 3.2.1. Let Ω̃1, Ω̃2 be a smooth open and connected neighborhoods of intervals Ω1, Ω2 of

R and let ω ⊂ Ω2 be a non-empty open set. Then, there exists a function ψ ∈ C(Ω̄) such that

ψ(x) =




ψ1 in Ω1,

ψ2 in Ω2,

with ψi ∈ C∞(Ω̃i), i = 1, 2, ψ > 0 in Ω, ψ = 0 on Γ, ψ′
2 6= 0 in Ω2 \ ω, ψ

′
1 6= 0 in Ω1 and the

function ψ satisfies the following trace properties, for some α0 > 0,

(Au, u) ≥ α0 |u|
2

u ∈ R2,

with the matrix A defined by

A =


 a11 a12

a21 a22


 ,
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with

a11 = [ψ′⋆]a′ ,

a22 = [cψ′⋆]2a′(ψ
′)(a′+) + [c2(ψ′)3⋆]a′ ,

a12 = a21 = [cψ′⋆]a′(ψ
′)(a′+),

(see the notation (3.1.3) - (3.1.5) introduced in Section 3.1.1).

Remark 3.2.2. Here we choose a weight function that yields an observation in the region ω ⋐ Ω2

in the Carleman estimate of Section 3.4. This choice is of course arbitrary.

Proof. We refer to Lemma 1.1 in [BDL07] for a similar proof.

Choosing a function ψ, as in the previous lemma, for λ > 0 and K > ‖ψ‖∞, we define the

following weight functions

ϕ(x) = eλψ(x) − eλK < 0, φ(x) = eλψ(x), (3.2.1)

r(t, x) = es(t)ϕ(x), ρ(t, x) = (r(t, x))−1,

with

s(t) = τθ(t), τ > 0, θ(t) = ((t+ α)(T + α− t))−1,

for 0 < α < T .

We have

max
[0,T ]

θ = θ(0) = θ(T ) = α−1(T + α)−1, (3.2.2)

and min
[0,T ]

θ ≥ T−2. We note that

∂tθ = (2t− T )θ2. (3.2.3)

For the Carleman estimate and the observation/control results we choose here to treat the

case of an distributed-observation in ω ⋐ Ω. The weight function is of the form r = esϕ with

ϕ = eλψ, with ψ fulfilling the following assumption. Construction of such a weight function is

classical (see e.g [FI96]).

Assumption 3.2.3. Let ω ⋐ Ω be an open set. Let Ω̃ be a smooth open and connected neigh-

borhood of Ω̄ in R. The function ψ = ψ(x) is in Cp
(
Ω̃,R

)
, p sufficiently large, and satisfies, for
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some c > 0,

ψ > 0 in Ω̃, |▽ψ| ≥ c in Ω̃\ω0,

∂nψ(x) ≤ −c < 0, ∂2xψ(x) ≤ 0 in V∂Ω.

where V∂Ω is a sufficiently small neighborhood of ∂Ω in Ω̃, in which the outward unit normal n

to Ω is extended from ∂Ω.

3.3 Some preliminary discrete calculus results for uniform

meshes

Here, to prepare for Section 3.4, we only consider constant-step discretizations, i.e., hi+ 1
2
= h,

i = 0, . . . , n+m+ 1.

We use here the following notation: Ω0 = (0, 1), Ω01 = (0, a), Ω02 = (a, 1), Ω′
0 = Ω01 ∪ Ω02,

Q0 = (0, T )× Ω0, Q
′
0 = (0, T )× Ω′

0, Q0i = (0, T )× Ω0i with i = 1, 2 and ∂Ω0 = {0, 1}.

This section aims to provide calculus rules for discrete operators such as Di, D̄i and also

to provide estimates for the successive applications of such operators on the weight functions.

To avoid cumbersome notation we introduce the following continuous difference and averaging

operators on continuous functions. For a function f defined on Ω0 we set

τ+f(x) := f(x+ h/2), τ−f(x) := f(x− h/2),

Df(x) := (τ+ − τ−)f(x)/h, f̂(x) = (τ+ + τ−)f(x)/2.

Remark 3.3.1. To iterate averaging symbols we shall sometimes write Af = f̂ , and thus A2f =

ˆ̂
f.

3.3.1 Discrete calculus formulae

We present calculus results for finite-difference operators that were defined in the introductory

section. Proofs can be found in Appendix of [BHL10a] in the one-dimension case.

Lemma 3.3.2. Let the functions f1 and f2 be continuously defined in a neighborhood of Ω̄. We

have:

D(f1f2) = D(f1)f̂2 + f̂1D(f2).

Note that the immediate translation of the proposition to discrete functions f1, f2 ∈ CM and
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g1, g2 ∈ CM is

D(f1f2) = D(f1)f̃2 + f̃1D(f2), D̄(g1g2) = D̄(g1)ḡ2 + ḡ1D̄(g2).

Lemma 3.3.3. Let the functions f1 and f2 be continuously defined in a neighborhood of Ω̄. We

have:

f̂1f2 = f̂1f̂2 +
h2

4
D(f1)D(f2).

Note that the immediate translation of the proposition to discrete functions f1, f2 ∈ CM and

g1, g2 ∈ CM is

f1f2= f̃1f̃2 +
h2

4
D(f1)D(f2), g1g2 = ḡ1ḡ2 +

h2

4
D̄(g1)D̄(g2).

Some of the following properties can be extended in such a manner to discrete functions. We

shall not always write it explicitly.

Averaging a function twice gives the following formula.

Lemma 3.3.4. Let the function f be continuously defined over R. We then have

A2f :=
ˆ̂
f = f +

h2

4
DDf.

The following proposition covers discrete integrations by parts and related formula.

Proposition 3.3.5. Let f ∈ CM∪∂M and g ∈ CM. We have the following formulae:

∫

Ω0

f(D̄g) = −

∫

Ω0

(Df)g + fn+m+2gn+m+ 3
2
− f0g 1

2
,

∫

Ω0

fḡ =

∫

Ω0

f̃ g −
h

2
fn+m+2gn+m+ 3

2
−
h

2
f0g 1

2
.

Lemma 3.3.6. Let f be a smooth function defined in a neighborhood of Ω̄. We have

τ±f = f ±
h

2

∫ T

0

∂xf(.± σh/2)dσ,

Ajf = f + Cjh
2

∫ 1

−1

(1− |σ|)∂2xf(.+ ljσh)dσ,

Djf = ∂jxf + C ′
jh

2

∫ 1

−1

(1− |σ|)j+1∂j+2
x f(.+ ljσh)dσ, j = 1, 2, l1 =

1

2
, l2 = 1.
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3.3.2 Calculus results related to the weight functions

We now present some technical lemmata related to discrete operators performed on the

Carleman weight functions that is of the form esϕ, ϕ = eλψ−eλK , where ψ satisfies the properties

listed in Section 3.2 in the domain Ω0. For concision, we set r(t, x) = es(t)ϕ(x) and ρ = r−1, with

s(t) = τθ(t). From Section 3.2, we have ψ|Ω01
= ψ1|Ω01

, ψ|Ω01
= ψ2|Ω01

where ψi ∈ C2(Ω̃0i). Then

ρ = e−sϕ can be replaced by

ρ1 = e−sϕ1 with ϕ1 = eλψ1 − eλK in domain Ω01

ρ1 = e−sϕ2 with ϕ2 = eλψ2 − eλK in domain Ω02

And r = ρ−1 is also replaced by

r1 = ρ−1
1 in domain Ω01

r2 = ρ−1
2 in domain Ω02

The positive parameters τ and h will be large and small respectively and we are particularly

interested in the dependence on τ, h and λ in the following basic estimates in each domain Ω01,

Ω02.

We assume τ ≥ 1 and λ ≥ 1.

Lemma 3.3.7. Let α, β ∈ N, i=1,2. We have

∂βx (ri∂
α
x ρi) = αβ(−sφi)

αλα+β(▽ψi)
α+β

+ αβ(sφi)
αλα+β−1

Oλ(1) + sα−1α(α− 1)Oλ(1) = Oλ(s
α).

Let σ ∈ [−1, 1], we have

∂βx
(
ri(t, .)(∂

α
x ρi)(t, .+ σh)

)
= Oλ(s

α(1 + (sh)β))eOλ(sh).

Provided 0 < τh(max[0,T ]θ) ≤ K we have ∂βx
(
ri(t, .)(∂

αρi)(t, .+σh)
)
= Oλ,K(s

|α|). The same

expressions hold with r and ρ interchanged and with s changed into -s.

A proof is given in [BHL10a, proof of Lemma 3.7] in the time independent case. Additionally,

we provide a result below to the time-dependent case whose proof is refered to [BL12, proof of

Lemma 2.8]. Note that the condition 0 < τh(max[0,T ]θ) ≤ K implies that s(t)h ≤ K for all

t ∈ [0, T ].
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Lemma 3.3.8. Let α ∈ N, i=1,2. We have

∂t(ri∂
α
x ρi) = sαTθOλ(1).

With Leibniz formula we have the following estimates

Corollary 3.3.9. Let α, β, δ ∈ N, i=1,2. We have

∂δx(r
2
i (∂

α
x ρi)∂

β
xρi) = (α+ β)δ(−sφi)

α+βλα+β+δ(▽ψi)
α+β+δ

+ δ(α+ β)(sφi)
α+βλα+β+δ−1O(1)

+ sα+β−1(α(α− 1) + β(β − 1))Oλ(1) = Oλ(s
α+β).

The proofs of the following properties can be found in Appendix A of [BHL10a].

Proposition 3.3.10. Let α ∈ N, i=1,2. Provided 0 < τh(max[0,T ]θ) ≤ K, we have

riτ
±∂αx ρi = ri∂

α
x ρi + sαOλ,K(sh) = sαOλ,K(1),

riA
k∂αx ρi = ri∂

α
x ρi + sαOλ,K(sh)

2 = sαOλ,K(1), k = 0, 1, 2,

riA
kDρi = ri∂xρi + sOλ,K(sh)

2 = sOλ,K(1), k = 0, 1,

riD
2ρi = ri∂

2
xρi + s2Oλ,K(sh)

2 = s2Oλ,K(1).

The same estimates hold with ρi and ri interchanged.

Lemma 3.3.11. Let α, β ∈ N and k = 1, 2; j = 1, 2; i = 1, 2. Provided 0 < τh(max[0,T ] θ) ≤ K,

we have

Dk(∂βx (ri∂
α
x ρi)) = ∂k+βx (ri∂

α
x ρi) + h2Oλ,K(s

α),

Aj∂βx (ri∂
α
x ρi) = ∂β(ri∂

α
x ρi) + h2Oλ,K(s

α).

Let σ ∈ [−1, 1], we have Dk∂β(ri(t, .)∂
αρi(t, .+ σh)) = Oλ,K(s

|α|). The same estimates hold

with ri and ρi interchanged.

Lemma 3.3.12. Let α, β, δ ∈ N and k = 1, 2; j = 1, 2; i = 1, 2. Provided 0 < τh(max[0,T ]θ) ≤ K,

we have

Aj∂δx(r
2
i (∂

α
x ρi)∂

β
xρi) = ∂δx(r

2
i (∂

α
x ρi)∂

β
xρi) + h2Oλ,K(s

α+β) = Oλ,K(s
α+β),
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Dk∂δx(r
2
i (∂

α
x ρi)∂

β
xρi) = ∂k+δx (r2i (∂

α+β
x ρi) + h2Oλ,K(s

α+β) = Oλ,K(s
α+β).

Let σ, σ′ ∈ [−1, 1]. We have

Aj∂δ(ri(t, .)
2(∂αρi(t, .+ σh))∂βρi(y, .+ σ′h)) = Oλ,K(s

α+β),

Dk∂δ(ri(t, .)
2(∂αρi(t, .+ σh))∂βρi(t, .+ σ′h)) = Oλ,K(s

α+β).

The same estimates hold with ri and ρi interchanged.

Proposition 3.3.13. Let α ∈ N and k = 0, 1, 2; j = 0, 1, 2; i = 1, 2. Provided 0 < sh ≤ K, we

have

DkAj∂αx (riD̂ρi) = ∂k+αx (ri∂xρi) + sOλ,K(sh)
2 = sOλ,K(1),

Dk(riD
2ρi) = ∂kx(ri∂

2ρi) + s2Oλ,K(sh)
2 = s2Oλ,K(1),

riA
2ρi = 1 +Oλ,K(sh)

2, Dk(riA
2ρi) = Oλ,K(sh)

2.

The same estimates hold with ri and ρi interchanged.

Proposition 3.3.14. Provided 0 < τh(max[0,T ]θ) ≤ K and σ is bounded, we have

∂t(ri(., x)(∂
αρi)(., x+ σh)) = Tsαθ(t)Oλ,K(1),

∂t(riA
2ρi) = T (sh)2θ(t)Oλ,K(1),

∂t(riD
2ρi) = Ts2θ(t)Oλ,K(1).

The same estimates hold with ri and ρi interchanged.

Proposition 3.3.15. Let α, β ∈ N and k = 0, 1, 2; j = 0, 1, 2; i = 1, 2, provided 0 < sh ≤ K, we

have

AjDk∂β(r2i (∂
α)D̂ρi) = ∂k+βx (r2i (∂

αρ)∂ρi) + sα+1Oλ,K(sh)
2 = sα+1Oλ,K(1),

AjDk∂β(r2i (∂
α)A2ρi) = ∂k+βx (ri(∂

αρi)) + sαOλ,K((sh)
2) = sαOλ,K(1),

AjDk∂β(r2i (∂
α)D2ρi) = ∂k+βx (r2i (∂

αρ)∂2ρi) + sα+2Oλ,K(sh)
2 = sα+2Oλ,K(1),
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and we have

AjDk∂α(r2i D̂ρiD
2ρ0i) = ∂k+αx (r2i (∂ρi)∂

2ρi) + s3Oλ,K(sh)
2 = s3Oλ,K(1),

AjDk∂α(r2i D̂ρiA
2ρi) = ∂k+αx (ri∂ρi) + sOλ,K(sh)

2 = sOλ,K(1).

3.3.3 Transmission conditions

We consider here discrete version of the transmission conditions (TC) at the point a. For

u ∈ CM we set f := D̄(cdDu) we then have




u(a−) = u(a+) = un+1,

(cdDu)n+ 3
2
− (cdDu)n+ 1

2
= hfn+1 .

Remark 3.3.16. These transmission conditions provide the continuity for u and the discrete

flux at the singular point of coefficient up to a consistent factor.

From these conditions, we obtain the following lemma whose proof is given in Section 3.7.

Lemma 3.3.17. For the parameter λ chosen sufficiently large and sh sufficiently small and with

u = ρv we have

[⋆cdDv]a = (cdDv)n+ 3
2
− (cdDv)n+ 1

2
= J1vn+1 + J2(cdDv)n+ 1

2
+ J3h(rf)n+1 (3.3.1)

where

J1 =
(
1 +Oλ,K(sh)

)
λs[⋆cφψ′]a + sOλ,K(sh),

J2 = Oλ,K(sh), J3 =
(
1 +Oλ,K(sh)

)
.

Furthermore, we have

∂tJ1 = sTθ(t)Oλ,K(sh),

∂tJ2 = Tθ(t)Oλ,K(sh), ∂tJ3 = Tθ(t)Oλ,K(sh).

For simplicity, (3.3.1) can be written in form

[⋆cdDv]a = λs[⋆cφψ′]avn+1 + r0, (3.3.2)

where r0 = λsOλ,K(sh)vn+1 +Oλ,K(sh)(cdDv)n+ 1
2
+ h
(
1 +Oλ,K(sh)

)
(rf)n+1.
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3.4 Carleman estimate for uniform meshes

In this section, we prove a Carleman estimate in case of picewise uniform meshes, i.e, constant-

step discretizations in each subinterval (0, a) and (a, 1). The case of non-uniform meshes is treated

in Section 3.5.

We let ω0 ⋐ Ω02 be a nonempty open subset. We set the operator PM to be PM = −∂t +

AM = −∂t − D̄(cdD), continuous in the variable t ∈ (0, T ) with T > 0, and discrete in the

variable x ∈ Ω0.

The Carleman weight function is of the form r = esϕ with ϕ = eλψ − eλK where ψ satisfies

the properties listed in Section 3.2 in the domain Ω0. Here, to treat the semi-discrete case, we

use the enlarged neighborhoods Ω̃01, Ω̃02 of Ω01, Ω02 as introduced in Lemma 3.2.1. This allows

one to apply multiple discrete operators such as D and A on the weight functions. In particular,

we take ψ such that ∂xψ ≥ 0 in V0 and ∂xψ ≤ 0 in V1 where V0 and V1 are neighborhoods of 0

and 1 respectively. This then yields on ∂Ω0

(rDρ)0 ≤ 0, (rDρ)n+m+2 ≥ 0 (3.4.1)

Theorem 3.4.1. Let ω0 ⋐ Ω02 be a non-empty open set and we set f := D̄(cdDu). For the

parameter λ > 1 sufficiently large, there exists C, τ0 ≥ 1, h0 > 0, ǫ0 > 0, depending on ω0 so

that the following estimate holds

τ−1
∥∥∥θ− 1

2 eτθϕ∂tu
∥∥∥
2

L2(Q0)
+ τ

∥∥∥θ 1
2 eτθϕDu

∥∥∥
2

L2(Q0)
+ τ3

∥∥∥θ 3
2 eτθϕu

∥∥∥
2

L2(Q0)

≤ Cλ,K

(∥∥eτθϕPMu
∥∥2
L2(Q0)

+ τ3
∥∥∥θ 3

2 eτθϕu
∥∥∥
2

L2((0,T )×ω0)

+h−2
∣∣eτθϕu|t=0

∣∣2
L2(Ω0)

+ h−2
∣∣eτθϕu|t=T

∣∣2
L2(Ω0)

)
, (3.4.2)

for all τ ≥ τ0(T + T 2), 0 < h ≤ h0 and τh(αT )−1 ≤ ǫ0 and for all u ∈ C∞(0, T ;CM) satisfying

u|∂Ω0
= 0.

Remark 3.4.2. Observation was chosen in Ω02 here. This is an arbitrary choice (see Re-

mark 3.2.2).

Proof. We set f1 := −PM = ∂tu+ D̄(cdDu) and f = D̄(cdDu). At first, we shall work with

the function v = ru, i.e., u = ρv, that satisfies

r
(
∂t(ρv) + D̄

(
cdD(ρv)

))
= rf1 in Q′

0. (3.4.3)
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We have

r∂t(ρv) = ∂tv + r(∂tρ)v = ∂tv − τ(∂tθ)ϕv.

We write: g = Av +Bv,

where Av = A1v +A2v +A3v, Bv = B1v +B2v +B3v with

A1v = rρ̃D̄(cdDv), A2v = cr(D̄Dρ)ṽ, A3v = −τ(∂tθ)ϕv,

B1v = 2crDρ Dv, B2v = −2scφ′′v, B3v = ∂tv,

g = rf1 −
h

4
rDρ(D̄cd)(τ

+Dv − τ−Dv)−
h2

4
(D̄cd)r(D̄Dρ)Dv

−hO(1)rDρ Dv −
(
r(D̄cd) Dρ+ hO(1)r(D̄Dρ)

)
ṽ − 2sc(φ′′)v,

as derived in [BL12].

Equation (3.4.3) now reads Av +Bv = g and we write

‖Av‖2L2(Q′

0)
+ ‖Bv‖2L2(Q′

0)
+ 2(Av,Bv)L2(Q′

0)
= ‖g‖2L2(Q′

0)
. (3.4.4)

First we need an estimation of ‖g‖2L2(Q′

0)
. The proof can be adapted from [BHL10a].

Lemma 3.4.3. For τh(max[0,T ] θ) ≤ K we have

‖g‖2L2(Q′

0)
≤ Cλ,K(‖rf1‖

2
L2(Q′

0)
) + ‖sv‖2L2(Q′

0)
+ h2 ‖sDv‖2L2(Q′

0)
. (3.4.5)

Most of the remaining of the proof will be dedicated to computing the inner product (Av,Bv)L2(Q′

0)
.

Developing the inner-product (Av,Bv)L2(Q′

0)
, we set Iij = (Aiv,Bjv)L2(Q′

0)
. The proofs of the

following lemmata are provided in Section 3.7.

Lemma 3.4.4 (Estimate of I11). For τh(max[0,T ]θ) ≤ K we have

I11 ≥ −

∫

Q′

sλ2(c2φ(ψ′)2)d(Dv)
2 −X11 + Y11,
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where X11 =
∫
Q′

0

ν11(Dv)
2 with ν11 of the form sλφO(1) + sOλ,K(sh) and

Y11 = Y
(1)
11 + Y

(2,1)
11 + Y

(2,2)
11 ,

Y
(1)
11 =

∫ T

0

(
1 +Oλ,K(sh)

)
(cc̄d)(1)(rDρ)(1)(Dv)

2
n+m+ 3

2

−

∫ T

0

(
1 +Oλ,K(sh)

)
(cc̄d)(0)(rDρ)(0)(Dv)

2
1
2

,

Y
(2,1)
11 =

∫ T

0

sλφ(a)c̄d(a)
(
(cψ′)(a+)(Dv)2n+ 3

2

− (cψ′)(a−)(Dv)2n+ 1
2

)
,

Y
(2,2)
11 =

∫ T

0

sOλ,K(sh)
2(Dv)2n+ 1

2

−

∫ T

0

sOλ,K(sh)
2(Dv)2n+ 3

2

.

Lemma 3.4.5 (Estimate of I12). For τh(max[0,T ]θ) ≤ K, the term I12 is of the following form

I12 = 2

∫

Q′

0

sλ2(c2φ(ψ′)2)d(Dv)
2 −X12 + Y12,

with

Y12 =

∫ T

0

sλ2φ(a)v(a)[c(ψ′)2 ⋆ cdDv]a

+

∫ T

0

δ12v(a)(cDv)n+ 3
2
+

∫ T

0

δ̄12v(a)(cDv)n+ 1
2
,

where δ12, δ̄12 are of the form s
(
λφ(a)O(1) +Oλ,K(sh)

2
)
and

X12 =

∫

Q′

0

ν12(Dv)
2 +

∫

Q′

0

sOλ,K(1)ṽDv,

where

ν12 = sλφO(1) + sOλ,K(h+ (sh)2).

Lemma 3.4.6 (Estimate of I13). There exists ǫ1(λ) > 0 such that, for 0 < τh(max[0,T ]θ) ≤ ǫ1(λ),

the term I13 can be estimated from below in following way:

I13 ≥ −

∫

Ω′

0

Cλ,K(1)(Dv(T ))
2 −X13 + Y13.

with

X13 =

∫

Q′

0

(
s(sh) + T (sh)2θ

)
Oλ,K(1)(Dv)

2 +

∫

Q0

s−1Oλ,K(sh)(∂tv)
2,
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Y13 = −

∫ T

0

r ¯̃ρ(a+)∂tv(a)(cdDv)n+ 3
2
+

∫ T

0

r ¯̃ρ(a−)∂tv(a)(cdDv)n+ 1
2
.

Lemma 3.4.7 (Estimate of I21). For τh(max[0,T ]θ) ≤ K, the term I21 can be estimated as

I21 ≥ 3

∫

Q′

0

λ4s3φ3c2(ψ′)4v2 −X21 + Y21,

with

X21 =

∫

Q′

0

µ21v
2 +

∫

Q′

0

ν21(Dv)
2,

where

µ21 = (sλφ)3O(1) + s2Oλ,K(1) + s3Oλ,K(sh)
2, ν21 = sOλ,K(sh)

2,

and

Y21 = Y
(1,1)
21 + Y

(1,21)
21 + Y

(1,22)
21 + Y

(2)
21 ,

Y
(1,1)
21 =

∫ T

0

Oλ,K(sh)
2(rDρ)(1)(Dv)2n+m+ 3

2

+

∫ T

0

Oλ,K(sh)
2(rDρ)(0)(Dv)21

2

,

Y
(1,21)
21 =

∫ T

0

s3λ3φ3(a)[c2(ψ′)3 ⋆ (ṽ)2]a,

Y
(1,22)
21 =

∫ T

0

(
s2Oλ(1) + s3Oλ,K(sh)

2
)(
(ṽ)2n+ 1

2

+ (ṽ)2n+ 3
2

)
,

Y
(2)
21 =

∫ T

0

s2Oλ,K(sh)v
2(a).

Lemma 3.4.8 (Estimate of I22). For sh ≤ K, we have

I22 = −2

∫

Q′

0

c2s3λ4φ3(ψ′)4v2 −X22 + Y22,

with

Y22 = Y
(1)
22 + Y

(2)
22 ,

Y
(1)
22 =

∫ T

0

s3Oλ,K(1)v(a)
h2

2
(Dv)n+ 1

2
+ s3Oλ,K(1)v(a)

h2

2
(Dv)n+ 3

2
,

Y
(2)
22 =

∫ T

0

sOλ,K(sh)
2v2(a),

and

X22 =

∫

Q′

0

µ22v
2 +

∫

Q′

0

ν22(Dv)
2,
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where

µ22 = (sλφ)3O(1) + s2Oλ,K(1) + s3Oλ,K(sh)
2, ν22 = sOλ,K(sh)

2.

Lemma 3.4.9 (Estimate of I23). For τh(max[0,T ]θ) ≤ K, the term I23 can be estimated from

below in the following way

I23 ≥

∫

Ω′

0

s2
(
Oλ,K(1)v

2
|t=0

+Oλ,K(1)v
2
|t=T

)
−X23 + Y23,

with

X23 =

∫

Q0

Ts2θOλ,K(1)v
2 +

∫

Q0

s−1Oλ,K(sh)
2(∂tv)

2

+

∫

Q′

0

(sh)2sOλ,K(1)(Dv)
2,

and

Y23 = Y
(1)
23 + Y

(2)
23 + Y

(3)
23 ,

Y
(1)
23 =

∫ T

0

s2Oλ,K(1)∂tv(a)
h

2
(ṽn+ 1

2
) + s2Oλ,K(1)∂tv(a)

h

2
(ṽn+ 3

2
),

Y
(2)
23 =

∫ T

0

sTθOλ,K(sh)v
2(a),

Y
(3)
23 = Oλ,K(sh)

2v2(a)|t=Tt=0 .

Lemma 3.4.10 (Estimate of I31). For τh(max[0,T ]θ) ≤ K, we have

I31 = −X31 + Y31,

with

X31 =

∫

Q′

0

Tθs2Oλ,K(1)v
2 +

∫

Q′

0

TθOλ,K(sh)
2(Dv)2,

and

Y31 = Y
(1)
31 + Y

(2)
31 ,

Y
(1)
31 =

∫ T

0

Tθs2Oλ,K(1)v(a)
h

2
(Dv)n+ 1

2
+

∫ T

0

Tθs2Oλ,K(1)v(a)
h

2
(Dv)n+ 3

2
,

Y
(2)
31 =

∫ T

0

Tθs2Oλ,K(1)v
2(a).

Lemma 3.4.11 (Estimate of I32). [BL12] For τh(max[0,T ]θ) ≤ K, the term I32 can be estimated
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from below in the following way

I32 = −X32 =

∫

Q′

0

Ts2θOλ,K(1)v
2.

Lemma 3.4.12 (Estimate of I33). [BL12, proof of Lemma 3.9] For τh(max[0,T ]θ) ≤ K, the term

I33 can be estimated from below in the following way

I33 ≥ −X33 =
1

2
τ

∫

Q′

0

c′ϕ(∂2t θ)v
2.

Continuation of the proof of Theorem 4.1. Collecting the terms we have obtained in the pre-

vious lemmata, from (3.4.4) and (3.4.5) for 0 < τh(max[0,T ]θ) ≤ ǫ1(λ) we find

‖Av‖2L2(Q′

0)
+ ‖Bv‖2L2(Q′

0)
+ 2

∫

Q′

0

sλ2(c2φ(ψ′)2)d(Dv)
2 + 2

∫

Q′

0

c2s3λ4φ3(ψ′)4v2

+2
(
Y

(1)
11 + Y

(1,1)
21

)
+ 2
(
Y

(2,1)
11 + Y

(1,21)
21

)
+ 2Y13

≤ Cλ,K

(
‖rf1‖

2
L2(Q′

0)
+

∫

Ω′

0

s2
(
v2|t=0

+ v2|t=T

)
+

∫

Ω′

0

(Dv(T ))2
)
+ 2X + 2Y ,

with

Y = −
(
Y

(2,2)
11 + Y12 + Y

(1,22)
21 + Y

(2)
21 + Y22 + Y23 + Y31

)
,

X = X11 +X12 +X13 +X21 +X22 +X23 +X31 +X32 +X33

+Cλ,K
(
‖sv‖2L2(Q′

0)
+ h2 ‖sDv‖2L2(Q′

0)

)
.

With the following lemma, we may in fact ignore the term Y
(1)
11 + Y

(1,1)
21 in the previous

inequality.

Lemma 3.4.13. For all λ there exists 0 < ǫ2(λ) < ǫ1(λ) such that for 0 < τh(max[0,T ]θ) ≤ ǫ2(λ)

we have Y
(1)
11 + Y

(1,1)
21 ≥ 0.

Recalling that ▽ψ ≥ C > 0 in Ω\ω0 we may thus write

‖Av‖2L2(Q′

0)
+ ‖Bv‖2L2(Q′

0)
+

∫

Q′

0

s(Dv)2 +

∫

Q′

0

s3v2

+2
(
Y

(2,1)
11 + Y

(1,21)
21

)
+ 2Y13

≤ Cλ,K

(
‖rf1‖

2
L2(Q′

0)
+ 2

∫ T

0

∫

ω0

s(Dv)2 + 2

∫ T

0

∫

ω0

s3v2

+

∫

Ω′

0

s2(v2|t=0
+ v2|t=T

) +

∫

Ω′

0

(Dv(T ))2

)
+ 2X + 2Y . (3.4.6)
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Lemma 3.4.14. With the function ψ satisfing the properties of Lemma 3.2.1 and for τh(max[0,T ]θ) ≤

K, we have

Y
(2,1)
11 + Y

(1,21)
21 ≥ Cα0

∫ T

0

sλφ(a)(cdDv)
2
n+ 1

2

+ Cα0

∫ T

0

s3λ3φ3(a)v2n+1 + µ1 + µr,

with α0 as given in Lemma 3.2.1 and where

µr =

∫ T

0

sOλ(1)r
2
0 +

∫ T

0

s2Oλ(1)r0vn+1 +

∫ T

0

sOλ(1)r0(cdDv)n+ 1
2

+

∫ T

0

s2Oλ,K(sh)v
2
n+1 +

∫ T

0

sOλ,K(sh)vn+1(cdDv)n+ 1
2
+

∫ T

0

sOλ,K(sh)r0vn+1,

with r0 as given in Lemma 3.3.17 and

µ1 = µ
(1)
1 + µ

(2)
1 ,

where

µ
(1)
1 =

∫ T

0

sOλ,K(sh)(cdDv)
2
n+ 3

2

+

∫ T

0

sOλ,K(sh)(cdDv)
2
n+ 1

2

,

µ
(2)
1 =

∫ T

0

s2Oλ,K(sh)(cdDv)n+ 3
2
vn+1 +

∫ T

0

s2Oλ,K(sh)(cdDv)n+ 1
2
vn+1.

For a proof see Section 3.7.

Lemma 3.4.15. With 0 < ǫ3(λ) < ǫ2(λ) sufficiently small we obtain

Y13 ≥

∫ T

0

Cλ,Kh(∂tv(a))
2 +

∫ T

0

(
sTθOλ,K(sh) + T 2θ2Oλ,K(sh)

)
v2(a)

+ sOλ,K(1)v
2(a)|t=Tt=0 +

∫ T

0

Oλ,K(sh)∂tv(a)(cdDv)n+ 1
2
+

∫ T

0

Oλ,K(1)∂tv(a)h(rf1)n+1.

where Cλ,K is positive constant whose value depends on λ and sh.

For a proof see Section 3.7.

If we choose λ2 ≥ λ1 sufficiently large, then for λ = λ2 (fixed for the rest of the proof) and

0 < τh(max[0,T ] θ) ≤ ǫ3, from (3.4.6) and Lemma 3.4.14 and Lemma 3.4.15, we can thus achieve
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the following inequality

‖Av‖2L2(Q′

0)
+ ‖Bv‖2L2(Q′

0)
+

∫

Q′

0

s |Dv|2 dt+

∫

Q′

0

s3v2dt

+ Cα0

∫ T

0

s(cdDv)
2
n+ 1

2

+ Cα0

∫ T

0

s3v2(a) +

∫ T

0

Cλ,Kh(∂tv(a))
2

≤ Cλ,K

(
‖rf1‖

2
L2(Q′

0)
+ 2

∫ T

0

∫

ω0

s(Dv)2 + 2

∫ T

0

∫

ω0

s3v2

+

∫

Ω′

0

s2(v2|t=0
+ v2|t=T

) +

∫

Ω′

0

(Dv(T ))2 + sv2(a)|t=Tt=0

)

+

∫ T

0

(
sTθOλ,K(sh) + T 2θ2Oλ,K(sh)

)
v2(a) +

∫ T

0

Oλ,K(sh)∂tv(a)(cdDv)n+ 1
2

+

∫ T

0

Oλ,K(1)∂tv(a)h(rf1)n+1 + 2X + 2Y + 2Z , (3.4.7)

where Z = µr + µ1 with µr and µ1 are given as in Lemma 3.4.14 and where

X =

∫

Q′

0

µ̄v2 +

∫

Q′

0

ν̄(Dv)2

+ X12 +X13 +X23 +X31 +X32 +X33,

with µ̄ = s2Oλ,K(1) + s3Oλ,K(sh) and ν̄ of the form sOλ,K(sh).

By using the Young’s inequality, we estimate in turn all the terms of Y , Z and the two terms

at the RHS of (3.4.7) through the following Lemma whose proof can be found in Section 3.7.

Lemma 3.4.16. For sh ≤ K, we have

∫ T

0

Oλ,K(1)∂tv(a)h(rf1)n+1 ≤ ǫ

∫ T

0

Oλ,K(1)h(∂tv(a))
2 + Cǫ

∫ T

0

Oλ,K(1)h(rf1)
2
n+1,

∫ T

0

Oλ,K(sh)∂tv(a)(cdDv)n+ 1
2
≤ ǫ

∫ T

0

Oλ,K(1)h(∂tv(a))
2 + Cǫ

∫ T

0

sOλ,K(sh)(cdDv)
2
n+ 1

2

.

∣∣∣Y (2,2)
11

∣∣∣ ≤
∫ T

0

α11v
2
n+1 +

∫ T

0

β11h(∂tv)
2
n+1 +

∫ T

0

γ11(cdDv)
2
n+ 1

2

+

∫ T

0

η11h(rf1)
2
n+1,
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α11 =
(
s3Oλ,K(sh)

2 + sT 2θ2Oλ,K(sh)
4
)

β11 = Oλ,K(sh)
3,

γ11 = sOλ,K(sh)
2 η11 = Oλ,K(sh)

3.

|Y12| ≤

∫ T

0

α12v
2
n+1 +

∫ T

0

β12h(∂tv)
2
n+1 +

∫ T

0

γ12(cdDv)
2
n+ 1

2

+

∫ T

0

η12h(rf1)
2
n+1,

α12 =
(
s2Oλ,K(1) + sT 2θ2Oλ,K(sh)

2
)

β12 = Oλ,K(sh),

γ12 = Oλ,K(1) η12 = Oλ,K(sh).

∣∣∣Y (1,22)
21

∣∣∣ ≤
∫ T

0

α21v
2
n+1 +

∫ T

0

β21h(∂tv)
2
n+1 +

∫ T

0

γ21(cdDv)
2
n+ 1

2

+

∫ T

0

η21h(rf1)
2
n+1,

α21 =
(
s3Oλ,K(1) + sT 2θ2Oλ,K(sh)

4
)

β21 = Oλ,K(sh)
3,

γ21 = sOλ,K(sh)
3 η21 = Oλ,K(sh)

3.

∣∣∣Y (1)
22

∣∣∣ ≤
∫ T

0

α22v
2
n+1 +

∫ T

0

β22h(∂tv)
2
n+1 +

∫ T

0

γ22(cdDv)
2
n+ 1

2

+

∫ T

0

η22h(rf1)
2
n+1,

α22 =
(
s2Oλ,K(sh)

2 + sT 2θ2Oλ,K(sh)
4
)

β22 = Oλ,K(sh)
3,

γ22 = Oλ,K(sh)
3 η22 = Oλ,K(sh)

3.

∣∣∣Y (1)
23

∣∣∣ ≤
∫ T

0

α23v
2
n+1 +

∫ T

0

β23h(∂tv(a))
2 +

∫ T

0

γ23(cdDv)
2
n+ 1

2

+

∫ T

0

η22h(rf1)
2
n+1,
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α23 =
(
s3Oλ,K(1) + sT 2θ2Oλ,K(sh)

3
)

β23 = Oλ,K(sh),

γ23 = sOλ,K(sh)
2 η22 = Oλ,K(sh)

2.

∣∣∣Y (1)
31

∣∣∣ ≤
∫ T

0

α31v
2
n+1 +

∫ T

0

β23h(∂tv)
2
n+1 +

∫ T

0

γ23(cdDv)
2
n+ 1

2

+

∫ T

0

η22h(rf1)
2
n+1,

α31 =
(
s2TθOλ,K(sh) + sT 2θ2Oλ,K(sh)

)
β23 = Oλ,K(sh),

γ23 = sOλ,K(sh) η22 = Oλ,K(sh).

µ1 ≤

∫ T

0

α1v
2
n+1 +

∫ T

0

β1h(∂tv)
2
n+1 +

∫ T

0

γ1(cdDv)
2
n+ 1

2

+

∫ T

0

η1h(rf1)
2
n+1,

α1 =
(
s3Oλ,K(sh) + sT 2θ2Oλ,K(sh)

3
)

β1 = Oλ,K(sh)
2,

γ1 = sOλ,K(sh) η1 = Oλ,K(sh)
2.

µr ≤

∫ T

0

αrv
2
n+1 +

∫ T

0

βrh(∂tv)
2
n+1 +

∫ T

0

γr(cdDv)
2
n+ 1

2

+

∫ T

0

ηrh(rf1)
2
n+1,

αr =
(
s3Oλ,K(sh) + sT 2θ2Oǫ,λ,K(sh)

2 + ǫs3Oλ,K(1)
)

βr = Oǫ,λ,K(sh),

γr =
(
sOλ,K(sh) + ǫsOλ,K(1)

)
ηr = Oǫ,λ,K(sh).

Futhermore, we can estimate the term in X12 as follows

∫

Q′

0

sOλ,K(1)ṽDv ≤

∫

Q′

0

sOλ,K(1)(ṽ)
2 +

∫

Q′

0

sOλ,K(1)(Dv)
2

≤

∫

Q′

0

sOλ,K(1) |v|
2
+

∫

Q′

0

sOλ,K(1)(Dv)
2

=

∫

Q0

sOλ,K(1)v
2 +

∫

Q′

0

sOλ,K(1)(Dv)
2,
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by Lemma 3.3.3 and as
∫
Ω′

0

Oλ,K(1) |v|
2
=
∫
Ω0

Oλ,K(1)v
2.

Observe that

1 ≤ T 2θ and
∣∣∂2t θ

∣∣ ≤ CT 2θ3.

We can now choose ǫ4 and h0 sufficiently small, with 0 < ǫ4 ≤ ǫ3(λ2), 0 < h0 ≤ h1(λ2), and

τ2 ≥ 1 sufficiently large, such that for τ ≥ τ2(T + T 2), 0 < h ≤ h0, and τh(max[0,T ]θ) ≤ ǫ4,

from (3.4.7) and Lemma 3.4.16 we get

‖Av‖2L2(Q′

0)
+ ‖Bv‖2L2(Q′

0)
+

∫

Q′

0

s |Dv|2 +

∫

Q′

0

s3v2

+ Cα0

∫ T

0

s(cdDv)
2
n+ 1

2

+ Cα0

∫ T

0

s3v2n+1 + Cλ,K

∫ T

0

h(∂tv(a))
2

≤ Cλ,K

(
‖rf1‖

2
L2(Q′

0)
+

∫ T

0

∫

ω0

s(Dv)2 +

∫ T

0

∫

ω0

s3v2

+h−2
( ∫

Ω′

0

v2|t=0
+

∫

Ω′

0

v2|t=T

)
+ sv2(a)|t=Tt=0

)
+

∫ T

0

Oλ,K(1)h(rf1)
2
n+1

+

∫

Q0

sOλ,K(1)v
2 +

∫

Q0

s−1Oλ,K(sh)(∂tv)
2 +

∫

Q0

s2TθOλ,K(1)v
2.

(3.4.8)

where we used that (Dv)2 ≤ Ch−2((τ+v)2 + (τ−v)2) and the last three terms whose integral

taken on domain Q0 come from the term in X12, X13 and X23 respectively.

As τ ≥ τ2(T + T 2) then s ≥ τ2 > 0 and furthermore we observe that

∥∥∥s− 1
2 ∂tv

∥∥∥
2

L2(Q′

0)
≤ Cλ,K

(∥∥∥s− 1
2Bv

∥∥∥
2

L2(Q′

0)
+
∥∥∥s 1

2 v
∥∥∥
2

L2(Q′

0)
+
∥∥∥s 1

2Dv
∥∥∥
2

L2(Q′

0)

)

≤ Cλ,τ,K
(
‖Bv‖2L2(Q′

0)
+
∥∥∥s 3

2 v
∥∥∥
2

L2(Q′

0)
+
∥∥∥s 1

2Dv
∥∥∥
2

L2(Q′

0)

)
.

We then add the following terms
∫ T
0
hs3v2n+1 and

∫ T
0
hs−1(∂tv(a))

2 on both the right hand

side and the left hand side of (3.4.8). This allows us to change the domain of integration from Q′
0

to Q0 for the discrete integrals on the primal mesh. No additional term is required for discrete

integrals on the dual mesh. For sh sufficiently small and s ≥ 1 sufficiently large, these terms at

the right hand side are then absorbed by the terms at the left hand side. More precisely, with

0 < ǫ0 ≤ ǫ4 sufficiently small and for τ ≥ τ2(T + T 2), 0 < h ≤ h0, and 0 < τh(max[0,T ]θ) ≤ ǫ0

we thus obtain
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∥∥∥s− 1
2 ∂tv

∥∥∥
2

L2(Q0)
+

∫

Q0

s(Dv)2 +

∫

Q0

s3v2

≤ Cλ,K

(
‖rf1‖

2
L2(Q0)

+

∫ T

0

∫

ω0

s(Dv)2 +

∫ T

0

∫

ω0

s3v2

+h−2
( ∫

Ω0

v2|t=0
+

∫

Ω0

v2|t=T

)
+ sOλ,K(1)v

2(a)|t=Tt=0

)
. (3.4.9)

Now we shall estimate the term sOλ,K(1)v
2(a)|t=T

. We have

∥∥v|t=T

∥∥2
L2(Ω0)

=
n+m+1∑

j=1

hv2j|t=T
≥ h

∥∥v|t=T

∥∥2
L∞(Ω0)

.

It follows that, as sh is bounded

∣∣sOλ,K(1)v
2(a)|t=T

∣∣ ≤ Cλ,K s
∥∥v|t=T

∥∥2
L∞(Ω0)

≤ Cλ,K sh−1
∥∥v|t=T

∥∥2
L2(Ω0)

≤ Cλ,K h−2
∥∥v|t=T

∥∥2
L2(Ω0)

.

Similarly, we treat the term sOλ,K(1)v
2(a)|t=0

as

∣∣sOλ,K(1)v
2(a)|t=0

∣∣ ≤ Cλ,K h−2
∥∥v|t=0

∥∥2
L2(Ω0)

.

Therefore, (3.4.9) can be written as

∥∥∥s− 1
2 ∂tv

∥∥∥
2

L2(Q0)
+

∥∥∥s 1
2Dv

∥∥∥
2

L2(Q0)
+

∥∥∥s 3
2 v
∥∥∥
2

L2(Q0)

≤ Cλ,K

(
‖rf1‖

2
L2(Q0)

+
∥∥∥s 1

2Dv
∥∥∥
2

L2

(
(0,T )×ω0

) +
∥∥∥s 3

2 v
∥∥∥
2

L2

(
(0,T )×ω0

)

+h−2
( ∫

Ω0

v2|t=0
+

∫

Ω0

v2|t=T

))
.

We next remove the volume norm
∥∥∥s 1

2Dv
∥∥∥
2

L2((0,T )×ω0)
by proceeding as in the proof of The-
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orem 4.1 in [BHL10a] we thus write

τ−1
∥∥∥θ− 1

2 eτθϕ∂tu
∥∥∥
2

L2(Q0)
+ τ

∥∥∥θ 1
2 eτθϕDu

∥∥∥
2

L2(Q0)
+ τ3

∥∥∥θ 3
2 eτθϕu

∥∥∥
2

L2(Q0)

≤ Cλ,K

(∥∥eτθϕPMu
∥∥2
L2(Q0)

+ τ3
∥∥∥θ 3

2 eτθϕu
∥∥∥
2

L2((0,T )×ω0)

+h−2
∣∣eτθϕu|t=0

∣∣2
L2(Ω0)

+ h−2
∣∣eτθϕu|t=T

∣∣2
L2(Ω0)

)
, (3.4.10)

As we have max
[0,T ]

θ ≤ 1
Tα , we see that a sufficient condition for τh

(
max
[0,T ]

θ
)
≤ ǫ0 then becomes

τh(Tα)−1 ≤ ǫ0. To finish the proof, we need to express all the terms in the estimate above in

terms of the original function u. We can proceed exactly as in the end of proof of Theorem 4.1

in [BHL10a].

3.5 Carleman estimates for regular non uniform meshes

In this section we focus on extending the above result to the class of non piecewise uni-

form meshes introduced in Section 3.1.2. We choose a function ϑ satisfying (3.1.6) and further

ϑ|[a−δ,a+δ] is chosen affine (for some δ > 0 to remain fixed in the sequel). The way we proceed

here is similar to what is done in [BHL10a]. In this framework, we shall prove a non-uniform

Carleman estimate for the parabolic operator PM = −∂t + AM on the mesh M by using the

result on uniform meshes of Section 3.4.

By using first-order Taylor formulae we obtain the following result.

Lemma 3.5.1. Let us define ζ ∈ RM and ζ ∈ RM as follows

ζi+ 1
2
=
h′
i+ 1

2

h
, i ∈ {0, . . . , n+m+ 1} ζi =

h′i
h
, i ∈ {1, . . . , n+m+ 1}

These two discrete functions are connected to the geometry of the primal and dual meshes M and

M and we have

0 < inf ϑ′
Ω0

≤ ζi+ 1
2
≤ supϑ′

Ω0

, ∀i ∈ 0, . . . , n+m+ 1

0 < inf ϑ′
Ω0

≤ ζi ≤ supϑ′

Ω0

, ∀i ∈ 1, . . . , n+m+ 1

∣∣D̄ζ
∣∣
L∞(Ω)

≤
‖ϑ′′‖L∞

inf
Ω0

ϑ′
,

∣∣Dζ̄
∣∣
L∞(Ω)

≤
‖ϑ′′‖L∞

inf
Ω0

ϑ′
.

We introduce some notation. To any u ∈ CM∪∂M, we associate the discrete function denoted

by QM0

M
u ∈ CM0∪∂M0 defined on the uniform mesh M0 which takes the same values as u at the
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corresponding nodes. More precisely, if u =
∑n+m+1
i=1 1[x′

i− 1
2

,x′

i+1
2

]ui, we let

QM0

M
u =

n+m+1∑

i=1

1[(i− 1
2
)h,(i+ 1

2
)h]ui

and (QM0

M
u)0 = u0, (Q

M0

M
u)n+m+2 = un+m+2. Similarly, for u ∈ CM, u =

∑n+m+1
i=1 1[x′

i
,x′

i+1
]ui+ 1

2
,

we set

QM0

M
u =

n+m+1∑

i=0

1[ih,(i+1)h]ui+ 1
2
.

The operators QM0

M
and QM0

M
are invertible and we denote by QM

M0
and QM

M0

their respective

inverses. We give commutation properties between these operators and discrete-difference oper-

ators through the following Lemmata whose proofs can be found in [BHL10a].

Lemma 3.5.2. [BHL10a, see the proof of Lemma 5.2]

1. For any u ∈ CM∪∂M and any v ∈ CM, we have

D(QM0

M
u) = QM0

M
(ζDu), D̄QM0

M
v = QM0

M
(ζ D̄v)

2. For any u ∈ CM∪∂M we have

D̄(cdDu) = (ζ)−1QM

M0

(
D̄
(
(QM0

M

cd
ζ
)D(QM0

M
u)
))
.

Lemma 3.5.3. [BHL10a, see proof of Lemma 5.3]

For any u ∈ CM and any v ∈ CM, we have

(supϑ′

Ω0

)−1 |u|2L2(Ω) ≤
∣∣∣QM0

M
u
∣∣∣
2

L2(Ω0)
≤ (inf ϑ′

Ω0

)−1 |u|2L2(Ω)

(supϑ′

Ω0

)−1 |v|2L2(Ω) ≤
∣∣∣QM0

M
u
∣∣∣
2

L2(Ω0)
≤ (inf ϑ′

Ω0

)−1 |v|2L2(Ω)

Futhermore, the same inequalities hold by replacing Ω by ω and Ω0 by ω0, respectively.

For any continuous function f defined on Ω (resp. on Ω0) we denote by ΠMf = (f(x′i))0≤i≤n+m+2 ∈

CM∪∂M the sampling of f on M (resp. ΠM0
f = (f(ih))0≤i≤n+m+2 ∈ CM0∪∂M0 the sampling of

f on M0).

Lemma 3.5.4. [BHL10a, see the proof of Lemma 5.4]
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Let f be a continuous function defined on Ω

QM0

M
ΠMf = ΠM0

(f ◦ ϑ).

In particular, for u ∈ CM∪∂M we have

QM0

M

(
(ΠMf)u

)
= ΠM0

(f ◦ ϑ)(QM0

M
u).

Moreover, by making use of Taylor formulae we get the following result

Lemma 3.5.5. With ζ defined as in Lemma 3.5.1 we have

∥∥D̄Dν
∥∥
∞
<∞,

∥∥D̄ν̃
∥∥
∞
<∞, 0 < ‖ν‖∞ , ‖ν̃‖∞ <∞

where ν := 1

Q
M0
M

ζ
.

Proof. From the definition of ζ, QM0

M
and D acting on CM0 , D̄ acting on CM0 we have

(
D̄D(

1

QM0

M
ζ
)
)
i

:= (D̄Dν)i

=
νi+1 − 2νi + νi−1

h2

=
1

h

(h′i − h′i+1)h
′
i−1 − (h′i−1 − h′i)h

′
i+1

h′i−1h
′
ih

′
i+1

. (3.5.1)

We find

h′i = x′i+ 1
2

− x′i− 1
2

=
x′i+1 − x′i−1

2
=
ϑ
(
(i+ 1)h

)
− ϑ

(
(i− 1)h

)

2
=
ϑi+1 − ϑi−1

2
,

h′i+1 =
ϑ
(
(i+ 2)h

)
− ϑ

(
ih
)

2
=
ϑi+2 − ϑi

2
,

h′i−1 =
ϑ(ih)− ϑ

(
(i− 2)h

)

2
=
ϑi − ϑi−2

2
.

By using Taylor formulae we write

ϑi+2 = ϑi + (2h)ϑ′i +
(2h)2

2
ϑ′′i +

(2h)3

6
ϑ′′′i +

(2h)4

24
ϑ
(4)
i +O(h5),

ϑi−2 = ϑi − (2h)ϑ′i +
(2h)2

2
ϑ′′i −

(2h)3

6
ϑ′′′i +

(2h)4

24
ϑ
(4)
i +O(h5),

ϑi+1 = ϑi + hϑ′i +
h2

2
ϑ′′i +

h3

6
ϑ′′′i +

(h)4

24
ϑ
(4)
i +O(h5),

ϑi−1 = ϑi − hϑ′i +
h2

2
ϑ′′i −

h3

6
ϑ′′′i +

(h)4

24
ϑ
(4)
i +O(h5).
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Thus we have

h′i = 2hϑ′i +
2h3

6
ϑ′′′i +O(h5),

h′i+1 = 2hϑ′i +
(2h)2

2
ϑ′′i +

(2h)3

6
ϑ′′′ +

(2h)4

24
ϑ(4) +O(h5),

h′i−1 = 2hϑ′i −
(2h)2

2
ϑ′′i +

(2h)3

6
ϑ′′′ −

(2h)4

24
ϑ(4) +O(h5).

From (3.5.1) we obtain

D̄D(
1

QM0

M
ζ
)i =

N

D
,

where

N = (h′i − h′i+1)h
′
i−1 − (h′i−1 − h′i)h

′
i+1

=
(
−
(2h)2

2
ϑ′′i − h3ϑ′′′i −

(2h)4

24
ϑ
(4)
i +O(h5)

)(
(2h)ϑ′i −

(2h)2

2
ϑ′′i +O(h3)

)

−
(
−
(2h)2

2
ϑ′′i − h3ϑ′′′i −

(2h)4

24
ϑ
(4)
i +O(h5)

)(
(2h)ϑ′i +

(2h)2

2
ϑ′′i +O(h3)

)

=
(2h)4

2
(ϑ′′i )

2 +O(h5),

and

D = h× h′i−1 × h′i × h′i+1 = (2h)4(ϑ′i)
3 +O(h5).

Thus, we have ∣∣∣∣∣D̄D(
1

QM0

M
ζ
)i

∣∣∣∣∣ . (inf ϑ′)−3 <∞,

which proves the first result. Next, we proceed with the second result in the same manner as

above. We have

(D̄ν̃)i =
ν̃i+ 1

2
− ν̃i+ 1

2

h
=
νi+1 − νi−1

2h
=

1

2h

( h

h′i+1

−
h

h′i−1

)
=
h′i−1 − h′i+1

h′i+1h
′
i−1

.

By using the computations of h′i−1, h
′
i+1 above we find

∣∣(D̄ν̃)i
∣∣ =

∣∣∣∣
−(2h)2ϑ′′ +O(h4)

(2h)2ϑ′2 +O(h3)

∣∣∣∣ .
‖ϑ′′‖∞
(inf ϑ′)2

<∞,

which yields the second result.

Moreover, with the properties of ζ shown as in Lemma 3.5.1 we can assert

0 < ‖ν‖∞ , ‖ν̃‖∞ <∞.
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From Lemmata 3.5.2 – 3.5.4 we thus obtain the following discrete Carleman estimate for the

operator PM = −∂t −D(cdD.) on the mesh M.

Theorem 3.5.6. Let ω ⋐ Ω2 be a non-empty open set and we set f := D̄(cdDu). For the

parameter λ > 1 sufficiently large, there exists C, τ0 ≥ 1, h0 > 0, ǫ0 > 0, depending on ω such

that for any mesh M obtained from ϑ by (3.1.6) – (3.1.7), we have

τ−1
∥∥∥θ− 1

2 eτθϕ∂tu
∥∥∥
2

L2(Q)
+ τ

∥∥∥θ 1
2 eτθϕDu

∥∥∥
2

L2(Q)
+ τ3

∥∥∥θ 3
2 eτθϕu

∥∥∥
2

L2(Q)

≤ Cλ,K

(∥∥eτθϕPMu
∥∥2
L2(Q)

+ τ3
∥∥∥θ 3

2 eτθϕu
∥∥∥
2

L2((0,T )×ω)

+h−2
∣∣eτθϕu|t=0

∣∣2
L2(Ω)

+ h−2
∣∣eτθϕu|t=T

∣∣2
L2(Ω)

)
, (3.5.2)

for all τ ≥ τ0(T + T 2), 0 < h ≤ h0 and τh(αT )−1 ≤ ǫ0 and for all u ∈ C∞(0, T ;CM) satisfying

u|∂Ω = 0.

Proof. We set w = QM0

M
u defined on the uniform mesh M0. By using Lemma 3.5.2 we have

QM0

M
(ζ̄PMu) = −(QM0

M
ζ̄)∂tw − D̄

((
QM0

M

cd
ζ

)
Dw

)
. (3.5.3)

We observe that the right-hand side of (3.5.3) is a semi-discrete parabolic operator of the form

PM0 = ξ′(−∂t −
1
ξ′D(ξdD.)) applied to w, where

ξ′ = QM0

M
ζ̄ , ξd = QM0

M

cd
ζ
. (3.5.4)

We set ν := 1
ξ′ =

1

Q
M0
M

ζ̄
and we find

¯̃ν = ν + h2D̄Dν = ν + h2O(1),

by using Lemma 3.3.3 and Lemma 3.5.5.

Thus, the operator PM0 can be written in form as

PM0w = ξ′
(
− ∂tw − ¯̃νD̄(ξdDw) + h2O(1)D̄(ξdDw)

)
.

Moreover, using Lemma 3.3.2 we have

¯̃νD̄(ξdDw) = D̄(ν̃ξdDw)− D̄(ν̃)ξdDw.
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We set PM0

0 w := −∂tw− D̄(ν̃ξdDw) = −∂tw− D̄(bdDw) with bd = ν̃ξd. From the properties

of ν̃ and ξd it follows that

0 < bmin ≤ b ≤ bmax and
∥∥D̄(bd)

∥∥
∞
<∞.

First, we shall obtain a Carleman estimate for PM0

0 . Then we shall deduce a Carleman

estimate for the operator

PM0w = ξ′
(
PM0

0 w + D̄(ν̃)ξdDw + h2O(1)D̄(ξdDw)
)

(3.5.5)

Now, we consider the function ψ ◦ ϑ : (t, x) 7→ ψ
(
t, ϑ(x)

)
. By using the properties listed in

Lemma 3.2.1 and (3.1.6), we shall see that ψ ◦ ϑ is a suitable weight function associated to the

control domain ω0 = ϑ−1(w) in Ω0, i.e., that ψ ◦ϑ satisfies Lemma 3.2.1 for the domaims Ω0 and

ω0.

The important property to checking is the trace property. The remaining properties are left

to the reader. We set

B =


 b11 b12

b21 b22


 ,

with

b11 = [(ψ ◦ ϑ)′⋆]a

b22 = [b(ψ ◦ ϑ)′⋆]2a(ψ ◦ ϑ)′(a+) + [b2(ψ ◦ ϑ)′3⋆]a

b12 = b21 = [b(ψ ◦ ϑ)′⋆]a(ψ ◦ ϑ)′(a+)

where b = 1

Q
M0
M

ζ̄
QM0

M

c
ζ̄
= c◦ϑ

ζ̄2
. Morever, we have ϑ′+(a) = ϑ′−(a) and ζ̄n+1 = ϑ′n+1 (recall that

ϑ|[a−δ,a+δ] is an affine function). It follows that

b11 = [ψ′(ϑ)⋆]aϑ
′(a) = [ψ′⋆]a′ϑ

′(a),

b22 = [
c ◦ ϑ

ζ̄2
ψ′(ϑ)ϑ′⋆]2aψ

′(ϑ)(a+)ϑ′(a+) + [(
c ◦ ϑ

ζ̄2
)2
(
ψ′(ϑ)ϑ′

)3
⋆]a

= [cψ′⋆]a′ψ
′(a+)

1

ϑ′(a)
+ [c2(ψ′)3⋆]a′

1

ϑ′(a)
,

b12 = b21 = [
c ◦ ϑ

ζ̄2
ψ′(ϑ)ϑ′⋆]aψ

′(ϑ(a+))ϑ′(a+)

= [cψ′⋆]a′ψ
′(a′+).

We can see that (Bw,w) = (Aw,w) ≥ α0 ‖w‖
2
. This means that ψ ◦ ϑ satisfies the trace
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property.

Through Theorem 3.4.1, we obtained a discrete uniform Carleman estimate for PM0

0 and the

Carleman weight function is of the form r0 = esϕ0 , with ϕ0 = ϕ◦ϑ = eλψ0 −eλK where ψ0 = ψ◦ϑ

on the uniform mesh M0 . We can deduce the same result on the non-uniform mesh M. Namely,

through (3.4.2) we see that the following estimate holds

τ−1
∥∥∥θ− 1

2 eτθϕ0∂tw
∥∥∥
2

L2(Q0)
+ τ

∥∥∥θ 1
2 eτθϕ0Dw

∥∥∥
2

L2(Q0)
+ τ3

∥∥∥θ 3
2 eτθϕ0w

∥∥∥
2

L2(Q0)

≤ C

(∥∥∥eτθϕ0PM0

0 w
∥∥∥
2

L2(Q0)
+ τ3

∥∥∥θ 3
2 eτθϕ0w

∥∥∥
2

L2((0,T )×ω0)

+h−2
∣∣eτθϕ0w|t=0

∣∣2
L2(Ω0)

+ h−2
∣∣eτθϕ0w|t=T

∣∣2
L2(Ω0)

)
, (3.5.6)

and the constant C is uniform in h for τ sufficiently large and with τh(αT )−1 ≤ ǫ0, for ǫ0

sufficiently smaill. Note that, setting ǫ̃0 = (infΩ0
ϑ′)ǫ0, we see that the condition τh

′(αT )−1 ≤ ǫ̃0

on the size of the non-uniform mesh M implies the condition τh(αT )−1 ≤ ǫ0 for the uniform

mesh M0.

From (3.5.5) – (3.5.6) we deduce the following Carleman estimate for PM0

τ−1
∥∥∥θ− 1

2 eτθϕ0∂tw
∥∥∥
2

L2(Q0)
+ τ

∥∥∥θ 1
2 eτθϕ0Dw

∥∥∥
2

L2(Q0)
+ τ3

∥∥∥θ 3
2 eτθϕ0w

∥∥∥
2

L2(Q0)

≤ C
(∥∥eτθϕ0PM0w

∥∥2
L2(Q0)

+
∥∥eτθϕ0D̄(ν̃)ξdDw

∥∥2
L2(Q0)

+ h4
∥∥eτθϕ0D̄(ξdDw)

∥∥2
L2(Q0)

+τ3
∥∥∥θ 3

2 eτθϕ0w
∥∥∥
2

L2((0,T )×ω0)
+ h−2

∣∣eτθϕ0w|t=0

∣∣2
L2(Ω0)

+ h−2
∣∣eτθϕ0w|t=T

∣∣2
L2(Ω0)

)
.

(3.5.7)

Now, by using Lemma 3.5.5 we estimate
∥∥eτθϕ0D̄(ν̃)ξdDw

∥∥2
L2(Q0)

in the RHS of (3.5.7) as

∥∥eτθϕ0D̄(ν̃)ξdDw
∥∥2
L2(Q0)

≤ C
∥∥esϕ0ξdDw

∥∥2
L2(Q0)

.

We see that

ξdDw =
1

2

(
τ̄+(ξdDw) + τ̄−(ξdDw)

)
.
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Hence we find

∥∥esϕ0ξdDw
∥∥2
L2(Q0)

≤ C
(
‖esϕ0 τ̄+(ξdDw)‖

2
L2(Q0)

+ ‖esϕ0 τ̄−(ξdDw)‖
2
L2(Q0)

)

≤ C
(∥∥∥esϕ0 τ̄+

(
ξdD(QM0

M
u)
)∥∥∥

2

L2(Q0)
+
∥∥∥esϕ0 τ̄−

(
ξdD(QM0

M
u)
)∥∥∥

2

L2(Q0)

)

≤ C
(∥∥∥esϕ0 τ̄+

(
ξdQ

M0

M
(ζDu)

)∥∥∥
2

L2(Q0)
+
∥∥∥esϕ0 τ̄−

(
ξdQ

M0

M
(ζDu)

)∥∥∥
2

L2(Q0)

)

≤ C
(∥∥∥esϕ0 τ̄+Q

M0

M

(
cdDu

)∥∥∥
2

L2(Q0)
+
∥∥∥esϕ0 τ̄−Q

M0

M

(
cdDu

)∥∥∥
2

L2(Q0)

)

≤ C
(∥∥∥QM0

M

(
esϕτ̄+(cdDu)

)∥∥∥
2

L2(Q0)
+
∥∥∥QM0

M

(
esϕτ̄−(cdDu)

)∥∥∥
2

L2(Q0)

)

≤ C(inf ϑ′)−1
(
‖esϕτ̄+(cdDu)‖

2
L2(Q) + ‖esϕτ̄−(cdDu)‖

2
L2(Q)

)
,

by using (3.5.4) and Lemmata 3.5.2 – 3.5.4.

We treat ‖esϕτ̄+(cdDu)‖L2(Q) (the term ‖esϕτ̄−(cdDu)‖L2(Q) can be treated similarly). We

find

‖esϕτ̄+(cdDu)‖L2(Q) = ‖rτ̄+(cdDu)‖L2(Q) ≤ ‖(τ−r)(cdDu)‖L2(Q) ≤ C ‖(τ−r)Du‖L2(Q) . (3.5.8)

We have τ−r = r(ρτ−r) = r
(
1 +Oλ,K(sh)

)
(due to Proposition 3.3.10). From that we can

write
∥∥eτθϕ0D̄(ν̃)ξdDw

∥∥2
L2(Q0)

≤ C(inf ϑ′)−1 ‖esϕDu‖L2(Q) ,

which allows one to absorb by the term at the LHS of the Carleman estimate by choosing τ

sufficiently large.
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Next, we estimate h4
∥∥eτθϕ0D̄(ξdDw)

∥∥2
L2(Q0)

in the RHS of (3.5.7) as

h4
∥∥eτθϕ0D̄(ξdDw)

∥∥2
L2(Q0)

= h2 ‖esϕ0 τ̄+(ξdDw)− esϕ0 τ̄−(ξdDw)‖
2
L2(Q0)

≤ Ch2
(
‖esϕ0 τ̄+(ξdDw)‖

2
L2(Q0)

+ ‖esϕ0 τ̄−(ξdDw)‖
2
L2(Q0)

)

≤ Ch2
(∥∥∥esϕ0 τ̄+

(
ξdD(QM0

M
u)
)∥∥∥

2

L2(Q0)
+
∥∥∥esϕ0 τ̄−

(
ξdD(QM0

M
u)
)∥∥∥

2

L2(Q0)

)

≤ Ch2
(∥∥∥esϕ0 τ̄+

(
ξdQ

M0

M
(ζDu)

)∥∥∥
2

L2(Q0)
+
∥∥∥esϕ0 τ̄−

(
ξdQ

M0

M
(ζDu)

)∥∥∥
2

L2(Q0)

)

≤ Ch2
(∥∥∥esϕ0 τ̄+Q

M0

M

(
cdDu

)∥∥∥
2

L2(Q0)
+
∥∥∥esϕ0 τ̄−Q

M0

M

(
cdDu

)∥∥∥
2

L2(Q0)

)

≤ Ch2
(∥∥∥QM0

M

(
esϕτ̄+(cdDu)

)∥∥∥
2

L2(Q0)
+
∥∥∥QM0

M

(
esϕτ̄−(cdDu)

)∥∥∥
2

L2(Q0)

)

≤ Ch2(inf ϑ′)−1
(
‖esϕτ̄+(cdDu)‖

2
L2(Q) + ‖esϕτ̄−(cdDu)‖

2
L2(Q)

)
,

by using (3.5.4) and Lemmata 3.5.2 – 3.5.4. We proceed with an estimate as in (3.5.8). We thus

obtain

h4
∥∥eτθϕ0D̄(ξdDw)

∥∥2
L2(Q0)

≤ Ch2(inf ϑ′)−1 ‖esϕDu‖L2(Q) ,

which allows one to absorb by the term in the LHS of Carleman estimate by choosing τ sufficiently

large.

Futhermore, by using the previous Lemmata 3.5.1 – 3.5.4 and considering each term in (3.5.7)

separately, we see that we have the following estimates

• For the first term in LHS of (3.5.7)

∥∥∥θ− 1
2 eτθϕ0∂tw

∥∥∥
2

L2(Q0)
=
∥∥∥QM0

M
(θ−

1
2 eτθϕ∂tu)

∥∥∥
2

L2(Q0)

≥ (supϑ′

Ω0

)−1
∥∥∥θ− 1

2 eτθϕ∂tu
∥∥∥
2

L2(Q)
,

and a similar inequality holds for
∥∥∥θ 3

2 eτθϕ0w
∥∥∥
2

L2(Q0)
.

• For the second term of LHS of (3.5.7) we use Lemma 3.5.2 and Lemma 3.5.3 as follows

∥∥∥θ 1
2 eτθϕ0Dw

∥∥∥
2

L2(Q0)
=

∥∥∥θ 1
2 eτθϕ0D(QM0

M
u)
∥∥∥
2

L2(Q0)
=

∥∥∥∥θ
1
2Q

M0

M (eτθϕ)QM0

M
(ζDu)

∥∥∥∥
2

L2(Q0)

=

∥∥∥∥θ
1
2Q

M0

M (ζeτθϕDu)

∥∥∥∥
2

L2(Q0)

&
∥∥∥θ 1

2 eτθϕDu
∥∥∥
2

L2(Q)
.
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• By using (3.5.3) and Lemma 3.5.3 we have

∥∥eτθϕ0PM0w
∥∥2
L2(Q0)

=
∥∥∥eτθϕ0QM0

M
(ζ̄PMu)

∥∥∥
2

L2(Q0)
=
∥∥∥QM0

M
(eτθϕζ̄PMu)

∥∥∥
2

L2(Q0)

.
∥∥eτθϕζ̄PMu

∥∥2
L2(Q)

.
∥∥eτθϕPMu

∥∥2
L2(Q)

.

• For the third term of RHS of (3.5.7)

∣∣eτθϕ0w|t=0

∣∣2
L2(Ω0)

=
∣∣∣QM0

M
(eτθϕw|t=0)

∣∣∣
2

L2(Ω0)

.
∣∣eτθϕw|t=0

∣∣2
L2(Ω)

and a similar inequality holds for
∣∣eτθϕ0w|t=T

∣∣2
L2(Ω0)

,
∥∥∥θ 3

2 eτθϕ0w
∥∥∥
2

L2((0,T )×ω0)
.

• Finally, since ϑ(ω0) = ω we have

∥∥∥θ 3
2 eτθϕ0Du

∥∥∥
2

L2((0,T )×ω0)
=

∥∥∥QM0

M
(θ

3
2 eτθϕDu)

∥∥∥
2

L2((0,T )×ω0)

.
∥∥∥θ 3

2 eτθϕDu
∥∥∥
2

L2((0,T )×ω

The proof is complete.

3.6 Controllability results

The Carleman estimate proved in the previous Section allows to give observability estimate

that yields results of controllability to the trajectories for classes of semi-linear heat equations.

3.6.1 The linear case

We consider the following semi-discrete parabolic problem with potential

∂ty +AMy + ay = 1ωv, t ∈ (0, T ) y|∂Ω = 0 (3.6.1)

The adjoint system associated with the controlled system with potential (3.6.1) is given by

− ∂tq +AMy + ay = 0, t ∈ (0, T ) q|∂Ω = 0 (3.6.2)

We assume that a piecewise C1 diffusion coefficient c satisfies (3.1.2) and Ω = (0, 1). From

Carleman estimate (3.4.2) we obtain a following observability estimate.
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Proposition 3.6.1. There exists positive constants C0, C1 and C2 such that for all T > 0 and

all potential fucntion a, under the condition h ≤ min(h0, h1) with

h1 = C0

(
1 +

1

T
+ ‖a‖

2
3

∞

)−1

any solution of (3.6.2) satisfies

|q(0)|L2(Ω) ≤ Cobs ‖q‖
2
L2((0,T )×ω) + e−

C1
h

+T‖a‖
∞ |q(T )|2L2(Ω) , (3.6.3)

with Cobs = eC2

(
1+ 1

T
+T‖a‖

∞
+‖a‖

2
3
∞

)
.

Remark 3.6.2. In comparision the observability inequality in continuous case which performed

in [BDL07], we find that the observability inequality obtained here is weak since there is an

additional term depending upon h at right-hand-side of inequality (3.6.3).

From the result of Proposition 6.1 we deduce the following controllability result for sys-

tem (3.6.1).

Proposition 3.6.3. There exists positive constants C1, C2, C3 and for T > 0 a map LT,a :

RM → L2(0, T ;RM) such that if h ≤ min(h0, h2) with

h1 = C0

(
1 +

1

T
+ T ‖a‖∞ + ‖a‖

2
3

∞

)−1

for all initial data y0 ∈ RM, there exists a semi-discrete control function v given by v = La(y0)

such that the solution to (3.6.1) satisfies

|y(T )|L2(Ω) ≤ C0e
−C2/h |y0|L2(Ω)

and

‖v‖L2(Q) ≤ C0 |y0|L2(Ω)

, with C0 = eC3

(
1+ 1

T
+T‖a‖

∞
+‖a‖

2
3
∞

)
.

Note that the final state is of size e−C/h |y0|L2(Ω). The proof of these proposition are given

in [BL12].
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3.6.2 The semilinear case

We consider the following semilinear semi-discrete control problem

(
∂t +AM

)
y +G(y) = 1ωv, y ∈ (0, T ) y|∂Ω = 0, y(0) = y0 (3.6.4)

where ω ⊂ Ω. The function G : R → R is assumed of the form

G(x) = xg(x), x ∈ R, (3.6.5)

with g Lipschitz continuous. Here, we consider the function g in two cases: g ∈ L∞(R) and the

more general case as

|g(x)| ≤ K lnr(e+ |x|), x ∈ R, with 0 ≤ r <
3

2
(3.6.6)

The results of semi-discrete parabolic with potential above allows one to obtain controllability

results for parabolic equation with semi-linear terms whose proofs are given in [BL12]

Theorem 3.6.4. (sublinear case) We assume that G satisfies (3.6.5) with g ∈ L∞(R) and c

satisfies (3.1.2). There exists positive constants C0, C1 such that for all T > 0 and h chosen

sufficiently small, for all initial data y0 ∈ RM, there exists a semi-discrete control function v with

‖v‖L2(Q) ≤ C |y0|L2(Ω)

such that the solution to the semi-linear parabolic equation (3.6.4) satisfies

|y(T )|L2(Ω) ≤ Ce−C0/h |y0|L2(Ω)

with C0 = eC1

(
1+ 1

T
+T‖g‖

∞
+‖g‖

2
3
∞

)
.

Theorem 3.6.5. (superlinear case) Let Ω = (0, 1), c satisfy (3.1.2) and G satisfy (3.6.5) -

(3.6.6). There exists C0 such that, for T > 0 and M > 0, there exists positive constants C, h0

such that for 0 < h ≤ h0 and for all initial data y0 ∈ RM satisfying |y0|H1(Ω) ≤M there exists a

semi-discrete control function v such that the solution to the semi-linear parabolic equation

(
∂t − D̄cD

)
y +G(y) = 1ωv, y ∈ (0, T ) y|∂Ω = 0, y(0) = y0 (3.6.7)
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satisfies

|y(T )|L2(Ω) ≤ Ce−C0/h |y0|L2(Ω)

where C = C(T,M).

Observe that the constants are uniform with respect to discretization parameter h.

3.7 Proofs of Lemma 3.3.17 and intermediate results in

Section 3.4

3.7.1 Proof of Lemma 3.3.17

We have

(cdDu)n+ 3
2
− (cdDu)n+ 1

2
= hfn+1.

As Du = ρ̃Dv +Dρṽ we obtain

rn+1

(
ρ̃n+ 3

2
(cDv)n+ 3

2
− ρ̃n+ 1

2
(cDv)n+ 1

2
+ (Dρ)n+ 3

2
(cṽ)n+ 3

2
− (Dρ)n+ 1

2
(cṽ)n+ 1

2

)

= h(rf)n+1. (3.7.1)

We write

rn+1ρ̃n+ 3
2
=
rn+1ρn+1 + rn+1ρn+2

2
=

1 + (((τ+)2ρ)r)n+1

2
:= K11,

rn+1(cdDρ)n+ 3
2

= (rτ+ρ)n+1(cdrDρ)n+ 3
2

= (rτ+ρ)n+1

(
(cdr∂ρ)n+ 3

2
+ (cdrDρ)n+ 3

2
− (cdr∂ρ)n+ 3

2

)

= K21

(
(cdr∂ρ)n+ 3

2
+K22

)
,

where K21 = (rτ+ρ)n+1 and K22 = (cdrDρ)n+ 3
2
− (cdr∂ρ)n+ 3

2
.

Similarly,

rn+1ρ̃n+ 1
2
=
rn+1ρn+1 + rn+1ρn

2
=

1 + (((τ−)2ρ)r)n+1

2
:= K31,
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rn+1(cdDρ)n+ 1
2

= (rτ−ρ)n+1(cdrDρ)n+ 1
2

= (rτ−ρ)n+1

(
(cdr∂ρ)n+ 1

2
+ (cdrDρ)n+ 1

2
− (cdr∂ρ)n+ 1

2

)

:= K41

(
(cdr∂ρ)n+ 1

2
+K42

)
,

where K41 = (rτ−ρ)n+1 and (cdrDρ)n+ 1
2
− (cdr∂ρ)n+ 1

2
.

Additionally,

(ṽ)n+ 1
2
= vn+1 +

vn − vn+1

2
= vn+1 +O(h)(Dv)n+ 1

2
,

(ṽ)n+ 3
2
= vn+1 +

vn+2 − vn+1

2
= vn+1 +O(h)(Dv)n+ 3

2
.

From (3.7.1) we thus write

K11(cdDv)n+ 3
2
−K31(cdDv)n+ 1

2

+ K21

(
(cr∂ρ)n+ 3

2
+K22

)(
vn+1 +O(h)(Dv)n+ 3

2

)

− K41

(
(cr∂ρ)n+ 1

2
+K42

)(
vn+1 +O(h)(Dv)n+ 1

2

)

= h(rf)n+1.

Then

K11

(
(cdDv)n+ 3

2
− (cdDv)n+ 1

2

)
+ (K11 −K31)(cdDv)n+ 1

2

+ K21[⋆cr∂ρ]avn+1 + (K21 −K41)(cr∂ρ)n+ 1
2
vn+1 + (K21K22 −K41K42)vn+1

+ K21

(
(cr∂ρ)n+ 3

2
+K22

)
O(h)(Dv)n+ 3

2
+K41

(
(cr∂ρ)n+ 1

2
+K42

)
O(h)(Dv)n+ 1

2

= h(rf)n+1.

Moreover, as r∂ρ = −λsφ∂ψ = sOλ(1) we have

K11

(
(cdDv)n+ 3

2
− (cdDv)n+ 1

2

)
+ (K11 −K31)(cdDv)n+ 1

2

= K21λs[⋆cφ∂ψ]avn+1 −Kvn+1 +
(
K21Oλ(sh) +K21K22O(h)

)(
(cdDv)n+ 3

2
− (cdDv)n+ 1

2

)

+
(
K21Oλ(sh) +K21K22O(h) +K41Oλ(sh) +K41K42O(h)

)
(cdDv)n+ 1

2

+ h(rf)n+1,
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where

K = (K21 −K41)(cr∂ρ)n+ 1
2
+K21K22 −K41K42

= (K21 −K41)sOλ(1) +K21K22 −K41K42.

From that, we can write

L
(
(cdDv)n+ 3

2
− (cdDv)n+ 1

2

)

= K21λs[⋆cφ∂ψ]avn+1 −Kvn+1 +H(cdDv)n+ 1
2
+ h(rf)n+1,

where

L = K11 −K21Oλ(sh)−K21K22O(h),

K = (K21 −K41)sOλ(1) +K21K22 −K41K42,

H = K21Oλ(sh) +K21K22O(h) +K41Oλ(sh) +K41K42O(h)−K11 +K31.

As L = 1 +Oλ,K(sh) 6= 0 (see below) then we read

(cdDv)n+ 3
2
− (cdDv)n+ 1

2

=
(
L−1K21λs[⋆cφ∂ψ]a − L−1K

)
vn+1 + L−1H(cdDv)n+ 1

2
+ L−1h(rf)n+1.

We set

J1 = L−1K21λs[⋆cφ∂ψ]a − L−1K,

J2 = L−1H, J3 = L−1.

We thus have

(cdDv)n+ 3
2
− (cdDv)n+ 1

2
= J1vn+1 + J2(cdDv)n+ 1

2
+ J3h(rf)n+1 (3.7.2)
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By using Proposition 3.3.10 we find

K11 =
1 + (((τ+)2ρ)r)n+1

2
= 1 +Oλ,K(sh),

K31 =
1 + (((τ−)2ρ)r)n+1

2
= 1 +Oλ,K(sh),

K21 = (rτ+ρ)n+1 = 1 +Oλ,K(sh),

K41 = (rτ−ρ)n+1 = 1 +Oλ,K(sh),

K22 = (cdrDρ)n+ 3
2
− (cdr∂ρ)n+ 3

2
= sOλ,K(sh)

2,

K42 = (cdrDρ)n+ 1
2
− (cdr∂ρ)n+ 1

2
= sOλ,K(sh)

2.

From that we estimate

K = (K21 −K41)sOλ(1) +K21K22 −K41K42 = sOλ,K(sh),

H = K21Oλ(sh) +K21K22O(h) +K41Oλ(sh) +K41K42O(h)−K11 +K31

= Oλ,K(sh),

L = K11 −K21Oλ(sh) +K21K22O(h) = 1 +Oλ,K(sh).

For sh sufficiently small we have L−1 = 1 +Oλ,K(sh) and then we obtain

J1 = L−1K21λs[⋆cφ∂ψ]a − L−1K

=
(
1 +Oλ,K(sh)

)
λs[⋆cφ∂ψ]a + sOλ,K(sh),

J2 = L−1H = Oλ,K(sh),

J3 = L−1 = 1 +Oλ,K(sh).

By using Proposition 3.3.14, Lemma 3.3.8 and Lemma 3.3.6 yield

∂tK11 = ∂t

(
(((τ+)2ρ)r)n+1

)
= Tθ(t)Oλ,K(sh),

∂tK31 = ∂t

(
(((τ−)2ρ)r)n+1

)
= Tθ(t)Oλ,K(sh),

∂tK21 = ∂t(rτ
+ρ)n+1 = Tθ(t)Oλ,K(sh),

∂tK41 = ∂t(rτ
−ρ)n+1 = Tθ(t)Oλ,K(sh),

∂tK22 = ∂t

(
(cdrDρ)n+ 3

2
− (cdr∂ρ)n+ 3

2

)
= sTθ(t)Oλ,K(sh)

2,

∂tK42 = ∂t

(
(cdrDρ)n+ 1

2
− (cdr∂ρ)n+ 1

2

)
= sTθ(t)Oλ,K(sh)

2,
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which give

∂tL
−1 = −

∂tL

L2
=

(
1 +Oλ,K(sh)

)
(∂tK11 + ∂tK21Oλ(sh) +K21(∂ts)Oλ(h)

+∂tK21K22O(h) + ∂tK22K21O(h))

= Tθ(t)Oλ,K(sh),

where sh sufficiently small and

∂tH = ∂tK21Oλ(sh) +K21(∂ts)Oλ(h) + ∂tK21K22O(h) +K21∂tK22O(h)

+ ∂tK41Oλ(sh) +K41(∂ts)Oλ(h) + ∂tK41K42O(h) +K41∂tK42O(h)− ∂tK11 + ∂tK31

= Tθ(t)Oλ,K(sh).

It follows that we have

∂tJ1 = sTθ(t)Oλ,K(sh),

∂tJ2 = Tθ(t)Oλ,K(sh), ∂tJ3 = Tθ(t)Oλ,K(sh).

Furthermore, we can write (3.7.2) in the simple form

(cdDv)n+ 3
2
− (cdDv)n+ 1

2

= λs[⋆cφ∂ψ]avn+1 + λsOλ,K(sh)vn+1

+ Oλ,K(sh)(cdDv)n+ 1
2
+
(
1 +Oλ,K(sh)

)
h(rf)n+1,

which yields the conclusion.
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3.7.2 Proof of Lemma 3.4.4

By using Lemma 3.3.2 in each domain Ω01, Ω02 , we have

I11 = 2

∫

Q′

0

cr2 ¯̃ρ DρD̄(cdDv)Dv

= 2

∫

Q01

cr2 ¯̃ρ DρD̄(cdDv)Dv + 2

∫

Q02

cr2 ¯̃ρ DρD̄(cdDv)Dv

= 2

∫

Q01

cr2 ¯̃ρ Dρc̄dD̄(Dv)Dv + 2

∫

Q01

cr2 ¯̃ρ Dρ(D̄cd)(Dv)
2

+ 2

∫

Q02

cr2 ¯̃ρ Dρc̄dD̄(Dv)Dv + 2

∫

Q02

cr2 ¯̃ρ Dρ(D̄cd)(Dv)
2

=
2∑

i=1

∫

Q0i

cr2 ¯̃ρ Dρc̄dD̄(Dv)2 + 2
2∑

i=1

∫

Q0i

cr2 ¯̃ρ Dρ(D̄cd)(Dv)
2.

We then apply a discrete integration by parts (Proposition 3.3.5) in each domain Ω01, Ω02

with ∂Ω01 = {0, a} and ∂Ω02 = {a, 1} for the first two terms and we obtain

I11 = −
2∑

i=1

∫

Q0i

D(cc̄dr
2 ¯̃ρ Dρ)(Dv)2 + 2

2∑

i=1

∫

Q0i

cr2 ¯̃ρ Dρ(D̄cd)(Dv)
2

+

∫ T

0

(cc̄dr
2 ¯̃ρ Dρ)(1)(Dv)2n+m+ 3

2

−

∫ T

0

(cc̄dr
2 ¯̃ρ Dρ)(a+)(Dv)2n+ 3

2

+

∫ T

0

(cc̄dr
2 ¯̃ρ Dρ)(a−)(Dv)2n+ 1

2

−

∫ T

0

(cc̄dr
2 ¯̃ρ Dρ)(0)(Dv)21

2

= −
2∑

i=1

∫

Q0i

D(cc̄dr
2 ¯̃ρ Dρ)(Dv)2 + 2

2∑

i=1

∫

Q0i

cr2 ¯̃ρ Dρ(D̄cd)(Dv)
2 + Y11.

where

Y11 = Y
(1)
11 + Y

(2)
11

Y
(1)
11 =

∫ T

0

(cc̄dr
2 ¯̃ρ Dρ)(1)(Dv)2n+m+ 3

2

−

∫ T

0

(cc̄dr
2 ¯̃ρ Dρ)(a+)(Dv)2n+ 3

2

Y
(2)
11 =

∫ T

0

(cc̄dr
2 ¯̃ρ Dρ)(a−)(Dv)2n+ 1

2

−

∫ T

0

(cc̄dr
2 ¯̃ρ Dρ)(0)(Dv)21

2

Lemma 3.7.1. (see Lemma B.3 in [BHL10a]) Provided sh ≤ K we have

D(cic̄dir
2
i
¯̃ρi Dρi) = −sλ2(c2iφi(ψ

′
i)

2)d + sλφdiO(1) + sOλ,K(sh),

cir
2
i
¯̃ρiDρi(D̄cdi) = sλφiO(1) + sOλ,K((sh)

2),

r2i ¯̃ρiDρi = ri∂ρi + sOλ,K((sh)
2) = −sλφiψ

′
i + sOλ,K((sh)

2),

r2i ¯̃ρiDρi = ri ¯̃ρiriDρi = (1 +Oλ,K(sh))riDρi.
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Moreover, by Lemma 3.3.3 and Proposition 3.3.5 in each domain Ω01, Ω02 we obtain

∫

Ω′

0

sλφ(Dv)2 ≤

∫

Ω′

0

sλφ(Dv)2 =

∫

Ω′

0

sλφ̃(Dv)2 −
h

2

2∑

i=1

BTi ≤

∫

Ω′

0

sλφ̃(Dv)2

since

BT1 = sλφ(a)(Dv)2n+ 1
2

+ sλφ(a)(Dv)21
2

≥ 0

BT2 = sλφ(1)(Dv)2n+m+ 3
2

+ sλφ(a)(Dv)2n+ 3
2

≥ 0

and φ̃ = φ+ h2Oλ(1) then we can write

∫

Ω0i

sλφ(Dv)2 ≤

∫

Ω0i

sλφ(Dv)2 +

∫

Ω0i

sλh2Oλ(1)(Dv)
2

Similarly, we have

∣∣∣∣
∫

Ω0i

sOλ,K(sh)
2(Dv)2

∣∣∣∣ ≤
∫

Ω′

s
∣∣Oλ,K(sh)

2
∣∣ (Dv)2 ≤

∫

Ω′

s
∣∣Oλ,K(sh)

2
∣∣ (Dv)2.

Thus

I11 ≥ −

∫

Q′

sλ2(c2φ(ψ′)2)d(Dv)
2 −X11 + Y11,

where X11 =
∫
Q′

0

ν11(Dv)
2 with ν11 of the form sλφO(1) + sOλ,K(sh) and

Y11 = Y
(1)
11 + Y

(2,1)
11 + Y

(2,2)
11 ,

Y
(1)
11 =

∫ T

0

(
1 +Oλ,K(sh)

)
(cc̄d)(1)(rDρ)(1)(Dv)

2
n+m+ 3

2

−

∫ T

0

(
1 +Oλ,K(sh)

)
(cc̄d)(0)(rDρ)(0)(Dv)

2
1
2

,

Y
(2,1)
11 =

∫ T

0

sλφ(a)c̄d(a)
(
− (cψ′)(a−)(Dv)2n+ 1

2

+ (cψ′)(a+)(Dv)2n+ 3
2

)
,

Y
(2,2)
11 =

∫ T

0

sOλ,K(sh)
2(Dv)2n+ 1

2

−

∫ T

0

sOλ,K(sh)
2(Dv)2n+ 3

2

.

3.7.3 Proof of Lemma 3.4.5

We set q = r ¯̃ρcφ
′′

. By using a discrete integrations by parts (Proposition 3.3.5) and

Lemma 3.3.2 in each domain Ω01, Ω02 we have
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I12 = −2

2∑

i=1

∫

Q0i

sqvD̄(cdDv)

= 2

2∑

i=1

∫

Q0i

sq̃cd(Dv)
2 + 2

2∑

i=1

∫

Q0i

sDqcdṽDv

−

∫ T

0

sq(a−)v(a)(cdDv)n+ 1
2
+

∫ T

0

sq(a+)v(a)(cdDv)n+ 3
2

= 2

2∑

i=1

∫

Q0i

sq̃cd(Dv)
2 + 2

2∑

i=1

∫

Q0i

sDqcdṽDvdt+ Y12,

since v|∂Ω0
= 0 and with ∂Ω01 = {0, a}, ∂Ω02 = {a, 1}.

Lemma 3.7.2. (see the proof as given in Lemma 4.4 of [BHL10a]) Let i = 1, 2. Provided sh ≤ K

we have

φ′′i = λ2φi(ψ
′
i)

2 + λφiO(1),

qi = ri ¯̃ρicφ
′′

i = λ2cφi(ψ
′
i)

2 + λφiO(1) +Oλ,K(sh)
2,

q̃i = λ2(cφi(ψ
′
i)

2)d + λφiO(1) +Oλ,K((sh)
2 + h),

Dqi = D(ri ¯̃ρi) cφ
′′

i + (riρ̃i) D(cφ
′′

i ) = Oλ,K(1).

Note that the proof and the use of Lemma 3.7.2 are carried out in each domain Ω01, Ω02

independently.

It follows that

I12 = 2

2∑

i=1

∫

Q0i

sλ2(c2φ(ψ′)2)d(Dv)
2 +

2∑

i=1

∫

Q0i

ν12(Dv)
2 +

2∑

i=1

∫

Q0i

sOλ,K(1)ṽDv + Y12,

Then

I12 = 2

∫

Q′

0

sλ2(c2φ(ψ′)2)d(Dv)
2 −X12 + Y12,

with

Y12 =

∫ T

0

sλ2φ(a)v(a)[c(ψ′)2 ⋆ cdDv]a

+

∫ T

0

δ12v(a)(cDv)n+ 3
2
+ δ̄12v(a)(cDv)n+ 1

2
,
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where δ12, δ̄12 are of form s
(
λφ(a)O(1) +Oλ,K(sh)

2
)
and

X12 =

∫

Q′

0

ν12(Dv)
2 +

∫

Q′

0

sOλ,K(1)ṽDv,

where

ν12 = sλφO(1) + sOλ,K(h+ (sh)2).

3.7.4 Proof of Lemma 3.4.6

We carry out a discrete integration by parts (Proposition 3.3.5) in each domain Ω01, Ω02 with

∂Ω01 = {0, a} and ∂Ω02 = {a, 1} as follows

I13 =

∫

Q01

r ¯̃ρD̄(cdDv)∂tv +

∫

Q02

r ¯̃ρD̄(cdDv)∂tv

= −

∫

Q01

D(r ¯̃ρ∂tv)cdDv −

∫

Q02

D(r ¯̃ρ∂tv)cdDv

+

∫ T

0

(r ¯̃ρ)(a−)∂tv(a)(cdDv)n+ 1
2
−

∫ T

0

(r ¯̃ρ)(0)∂tv(0)(cdDv) 1
2

+

∫ T

0

(r ¯̃ρ)(1)∂tv(1)(cdDv)n+m+ 3
2
−

∫ T

0

(r ¯̃ρ)(a+)∂tv(a)(cdDv)n+ 3
2

= −

∫

Q01

D(r ¯̃ρ∂tv)cdDv −

∫

Q02

D(r ¯̃ρ∂tv)cdDv

+

∫ T

0

(r ¯̃ρ)(a−)∂tv(a)(cdDv)n+ 1
2
−

∫ T

0

(r ¯̃ρ)(a+)∂tv(a)(cdDv)n+ 3
2

= −
2∑

i=1

∫

Q0i

D(r ¯̃ρ)∂tṽcdDv

︸ ︷︷ ︸
Q̄1

−
2∑

i=1

∫

Q0i

r ¯̃ρ (∂tDv)cdDv

︸ ︷︷ ︸
Q̄2

+Y13,

by Lemma 3.3.2 and with

Y13 =

∫ T

0

(r ¯̃ρ)(a−)∂tv(a)(cdDv)n+ 1
2
−

∫ T

0

(r ¯̃ρ)(a+)∂tv(a)(cdDv)n+ 3
2
,

as v|∂Ω0
= 0.

By applying Proposition 3.3.13 in each domain Ω01, Ω02 we find

D(ri ¯̃ρi) = Oλ,K(sh),

ri ¯̃ρi = 1 +Oλ,K(sh)
2 = Oλ,K(1).
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On the one hand, we have

∣∣Q̄1

∣∣ ≤
2∑

i=1

∫

Q0i

s−1Oλ,K(sh)(∂tṽ)
2 +

2∑

i=1

∫

Q0i

sOλ,K(sh)(Dv)
2

≤
2∑

i=1

∫

Q0i

s−1Oλ,K(sh) (∂tv)
2 +

2∑

i=1

∫

Q0i

sOλ,K(sh)(Dv)
2

=

∫

Q0

s−1Oλ,K(sh)(∂tv)
2 +

∫

Q′

0

sOλ,K(sh)(Dv)
2,

by (∂tṽ)
2 ≤(∂tṽ)

2 in each domain Ω01, Ω02 and
∑2
i=1

∫
Ω0i

Oλ,K(1) (∂tṽ)
2 =

∫
Ω0

Oλ,K(1)(∂tṽ)
2.

On the other hand, by an integrations by parts w.r.t t we write as

Q̄2 = −
1

2

2∑

i=1

∫

Q0i

r ¯̃ρ cd.∂t(Dv)
2

=
1

2

2∑

i=1

∫

Q0i

∂t(r ¯̃ρ)cd(Dv)
2 −

1

2

2∑

i=1

∫

Ω0i

r ¯̃ρ cd.(Dv)
2|t=Tt=0 .

We observe that for sh ≤ ǫ1(λ) with ǫ1(λ) sufficiently small we have r ¯̃ρ > 0 by Propo-

sition 3.3.13. The sign of the term at t = T and t = 0 are thus prescribed. Furthermore,

Proposition 3.3.14 leads to ∂t(ri ¯̃ρi) = T (sh)2θOλ,K(1), so that, for sh ≤ K we obtain

Q̄2 ≥
2∑

i=1

∫

Q0i

T (sh)2θOλ,K(1)(Dv)
2 − Cλ,K(1)

2∑

i=1

∫

Ω0i

(Dv(T ))2.

Thus,

I13 ≥ −

∫

Ω′

0

Cλ,K(1)(Dv(T ))
2 −X13 + Y13.

with

X13 =

∫

Q′

0

(
s(sh) + T (sh)2θ

)
Oλ,K(1)(Dv)

2 +

∫

Q0

s−1Oλ,K(sh)(∂tv)
2.

Y13 =

∫ T

0

(r ¯̃ρ)(a−)∂tv(a)(cdDv)n+ 1
2
−

∫ T

0

(r ¯̃ρ)(a+)∂tv(a)(cdDv)n+ 3
2
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3.7.5 Proof of Lemma 3.4.7

We set q = c2r2(D̄Dρ)Dρ. Observing that Dv = D̄ṽ we get

I21 = 2

∫

Q01

c2r2(D̄Dρ)Dρ︸ ︷︷ ︸
q

¯̃v Dv + 2

∫

Q02

c2r2(D̄Dρ)Dρ︸ ︷︷ ︸
q

¯̃v Dv

=

∫

Q01

qD̄(ṽ)2 +

∫

Q02

qD̄(ṽ)2

= −

∫

Q01

Dq(ṽ)2 −

∫

Q02

Dq(ṽ)2

+

∫ T

0

q(a−)(ṽ)2n+ 1
2

−

∫ T

0

q(0)(ṽ)21
2

+

∫ T

0

q(1)(ṽ)2n+m+ 3
2

−

∫ T

0

q(a+)(ṽ)2n+ 3
2

= −
2∑

i=1

∫

Q0i

Dq v2 +

2∑

i=1

h2

4

∫

Q0i

(Dq)(Dv)2 + Y
(1)
21

= −
2∑

i=1

∫

Q0i

Dq(v)2 +

2∑

i=1

h2

4

∫

Q0i

(Dq)(Dv)2 + Y
(1)
21 + Y

(2)
21 ,

by means of Proposition 3.3.5, Lemma 3.3.2, Lemma 3.3.3 in each domain Ω01, Ω02 independently

and where

Y21 = Y
(1)
21 + Y

(2)
21 = Y

(1,1)
21 + Y

(1,2)
21 + Y

(2)
21 ,

Y
(1,1)
21 =

∫ T

0

q(1)(ṽ)2n+m+ 3
2

−

∫ T

0

q(0)(ṽ)21
2

,

Y
(1,2)
21 =

∫ T

0

q(a−)(ṽ)2n+ 1
2

−

∫ T

0

q(a+)(ṽ)2n+ 3
2

,

Y
(2)
21 = −

h

2

∫ T

0

v2(a)(Dq)n+ 1
2
−
h

2

∫ T

0

v2(0)(Dq) 1
2

−
h

2

∫ T

0

v2(1)(Dq)n+m+ 3
2
−
h

2

∫ T

0

v2(a)(Dq)n+ 3
2

= −
h

2

∫ T

0

v2(a)(Dq)n+ 1
2
−
h

2

∫ T

0

v2(a)(Dq)n+ 3
2
,

as v|∂Ω0
= 0.

We note that ṽ 1
2
= h

2 (Dv) 1
2
, ṽn+m+ 3

2
= −h

2 (Dv)n+m+ 3
2
. On the one hand, by Proposi-

tion 3.3.10 we have q = s2Oλ,K(1)rDρ in each domain Ω01, Ω02. It follows that
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Y
(1,1)
21 =

∫ T

0

s2Oλ,K(1)(rDρ)(1)(ṽ)
2
n+m+ 3

2

+

∫ T

0

s2Oλ,K(1)(rDρ)(0)(ṽ)
2
1
2

=

∫ T

0

Oλ,K(sh)
2(rDρ)(1)(Dv)2n+m+ 3

2

+

∫ T

0

Oλ,K(sh)
2(rDρ)(0)(Dv)21

2

.

On the other hand, by Proposition 3.3.15, Corollary 3.3.9 we have q = −c2(sφλ)3(ψ′)3 +

s2Oλ(1) + s3Oλ,K(sh)
2 in each domain Ω01, Ω02. We thus obtain

Y
(1,2)
21 =

∫ T

0

(
sλφ(a)

)3(
− (c2ψ

′3)(a−)(ṽ)2n+ 1
2

+ (c2ψ
′3)(a+)(ṽ)2n+ 3

2

)

+

∫ T

0

(
s2Oλ(1) + s3Oλ,K(sh)

2
)(

(ṽ)2n+ 1
2

− (ṽ)2n+ 3
2

)

= Y
(1,21)
21 + Y

(1,22)
21 ,

where

Y
(1,21)
21 =

∫ T

0

s3λ3φ3(a)[c2(ψ′)3 ⋆ ṽ2]a.

Lemma 3.7.3. (see Lemma B.8 in [BHL10a]) Provided sh ≤ K we have

Dqi = s3Oλ,K(1),

Dqi = −3s3λ4φ3i c
2(ψ′

i)
4 + (sλφi)

3O(1) + s2Oλ,K(1) + s3Oλ,K(sh)
2.

Note that the proof and the use of Lemma 3.7.3 are done in each domain Ω01, Ω02 separately.

We then obtain

Y
(2)
21 = −

h

2

∫ T

0

v2(a)(Dq)n+ 1
2
−
h

2

∫ T

0

v2(a)(Dq)n+ 3
2

=

∫ T

0

s2Oλ,K(sh)v
2(a).

We thus write I21

I21 ≥ 3

∫

Q′

0

λ4s3φ3c2(ψ′)4(v)2 −

∫

Q′

0

µ21(v)
2 −

∫

Q′

0

ν21(Dv)
2 + Y21,

where

µ21 = (sλφ)3O(1) + s2Oλ,K(1) + s3Oλ,K(sh)
2, ν21 = sOλ,K(sh)

2,

Y21 = Y
(1,1)
21 + Y

(1,21)
21 + Y

(1,22)
21 + Y

(2)
21 .
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3.7.6 Proof of Lemma 3.4.8

We set q = c2r(D̄Dρ)φ′′ and by Lemma 3.3.4 we have ṽ = v+h2D̄Dv/4 in each domain Ω01,

Ω02. It follows that

I22 = −2

∫

Q01

sq¯̃vv − 2

∫

Q02

sq¯̃vv

= −2

∫

Q01

sqv2 −

∫

Q01

sh2

2
q(D̄Dv)v

−2

∫

Q02

sqv2 −

∫

Q02

sh2

2
q(D̄Dv)v.

Applying a discrete integration by parts (Proposition 3.3.5) and Lemma 3.3.2 in each domain

Ω01, Ω02 yield

I22 = −2
2∑

i=1

∫

Q0i

sqv2 +
2∑

i=1

∫

Q0i

sh2

2
D(qv)Dv + Y

(1)
22

= −2

2∑

i=1

∫

Q0i

sqv2 +

2∑

i=1

∫

Q0i

sh2

2
q̃(Dv)2 +

2∑

i=1

∫

Q0i

sh2

2
D(q)ṽDv + Y

(1)
22

= −2

2∑

i=1

∫

Q0i

sqv2 +

2∑

i=1

∫

Q0i

sh2

2
q̃(Dv)2 +

2∑

i=1

∫

Q0i

sh2

4
D(q)D(v2) + Y

(1)
22

= −2

2∑

i=1

∫

Q0i

sqv2 +

2∑

i=1

∫

Q0i

sh2

2
q̃(Dv)2 −

2∑

i=1

∫

Q0i

sh2

4
D̄Dqv2 + Y

(1)
22 + Y

(2)
22 ,

where

Y
(1)
22 = −

∫ T

0

sh2

2
q(a−)v(a)(Dv)n+ 1

2
+

∫ T

0

sh2

2
q(a+)v(a)(Dv)n+ 3

2
,

Y
(2)
22 =

∫ T

0

sh2

4
v2(a)(Dq)n+ 1

2
−

∫ T

0

sh2

4
v2(a)(Dq)n+ 3

2
,

as v|∂Ω0
= 0.

In each domain Ω01, Ω02, we have φ
′′

= Oλ(1) and from Proposition 3.3.13 we have q =

s2Oλ,K(1) and Dq = s2Oλ,K(1). We thus obtain

Y
(1)
22 =

∫ T

0

s3Oλ,K(1)v(a)
h2

2
(Dv)n+ 1

2
+ s3Oλ,K(1)v(a)

h2

2
(Dv)n+ 3

2
,

Y
(2)
22 =

∫ T

0

sOλ,K(sh)
2v2(a).
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Lemma 3.7.4. (see Lemma B.9 and Lemma B.10 in [BHL10a]) Provided sh ≤ K we have

c2riD̄Dρi = c2(ri∂
2ρi + s2Oλ,K(sh)

2) = c2(sλφi)
2(ψ′

i)
2 + sOλ(1) + s2Oλ,K(sh)

2,

h2D̄Dqi = s(sh)Oλ,K(1).

Note that the proof and use of above Lemma 3.7.4 are done in each domain Ω01, Ω02 sepa-

rately.

Futhermore, we have φ′′ = λ2(ψ′)2φ+ λφO(1) in each domain Ω01, Ω02. It follows that

sqi = s
(
c2(sλφi)

2(ψ′
i)

2 + sOλ(1) + s2Oλ,K(sh)
2
)(
λ2(ψ′

i)
2φi + λφiO(1)

)

= c2s3λ4(ψ′
i)

4φ3i + s3λ3φ3iO(1) + s2Oλ(1) + s3Oλ,K(sh)
2,

in each domain Ω01, Ω02.

We thus write I22 as

I22 = −2

∫

Q′

0

c2s3λ4φ3(ψ′)4v2 +

∫

Q′

0

µ22v
2 +

∫

Q′

0

ν22(Dv)
2 + Y22,

where

µ22 = (sλφ)3O(1) + s2Oλ,K(1) + s3Oλ,K(sh)
2, ν22 = sOλ,K(sh)

2,

Y22 = Y
(1)
22 + Y

(2)
22 .

3.7.7 Proof of Lemma 3.4.9

By means of a discrete integration by parts (Proposition 3.3.5) in each domain Ω01, Ω02, we

obtain

I23 =

2∑

i=1

∫

Q0i

cr(D̄Dρ)¯̃v∂tv

=

2∑

i=1

∫

Q0i

cr(D̄Dρ)∂tv ṽ

−
h

2

∫ T

0

(cr(D̄Dρ))(0)∂tv(0)ṽ 1
2
−
h

2

∫ T

0

(cr(D̄Dρ))(a−)∂tv(a)ṽn+ 1
2

−
h

2

∫ T

0

(cr(D̄Dρ))(a+)∂tv(a)ṽn+ 3
2
−
h

2

∫ T

0

(cr(D̄Dρ))(1)∂tv(1)ṽn+m+ 3
2

= Q̄1 + Q̄2 + Y
(1)
23 ,
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by Lemma 3.3.3 and where

Q̄1 =

2∑

i=1

∫

Q0i

(cr(D̄Dρ)) ∂tṽṽ,

Q̄2 =

2∑

i=1

h2

4

∫

Q0i

D(crD̄Dρ)(D∂tv)ṽ,

Y
(1)
23 = −

h

2

∫ T

0

(cr(D̄Dρ))(a−)∂tv(a)ṽn+ 1
2
−
h

2

∫ T

0

(cr(D̄Dρ))(a+)∂tv(a)ṽn+ 3
2

as ∂tv|∂Ω0
= 0.

With an integrations by parts w.r.t t we have

Q̄1 =
−1

2

2∑

i=1

∫

Q0i

∂t(crD̄Dρ)(ṽ)
2 +

1

2

2∑

i=1

∫

Ω0i

(cr(D̄Dρ)) (ṽ)2|t=Tt=0 .

By means of Proposition 3.3.13 and Lemma 3.3.7 in each domain Ω01, Ω02 we get

cri(D̄Dρi)= s2Oλ,K(1),

riD̄Dρi = s2Oλ,K(1),

and we further have

Lemma 3.7.5. (see Lemma A.1 in [BL12])

∂t(criD̄Dρi) = Ts2θOλ,K(1).

Note that the proof and use of Lemma 3.7.5 are done in each domain Ω01, Ω02 separately.

It follows that

Q̄1 =

2∑

i=1

∫

Q0i

Ts2θOλ,K(1) v
2 +

2∑

i=1

∫

Ω0i

s2
(
Oλ,K(1) v

2
|t=0

+Oλ,K(1) v
2
|t=T

)

as |ṽ|2 ≤|v|2 in each domain Ω01, Ω02.

Moreover, we observe that
∑2
i=1

∫
Ω0i

Oλ,K(1) v
2 =

∫
Ω0

Oλ,K(1)v
2. Then,

Q̄1 =

∫

Q0

Ts2θOλ,K(1)v
2 +

∫

Ω0

s2
(
Oλ,K(1) v

2
|t=0

+Oλ,K(1) v
2
|t=T

)
. (3.7.3)

We have
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Y
(1)
23 =

∫ T

0

s2Oλ,K(1)∂tv(a)
h

2
(ṽn+ 1

2
) + s2Oλ,K(1)∂tv(a)

h

2
(ṽn+ 3

2
).

By an integration by parts w.r.t t and Lemma 3.3.2 in each domain Ω01, Ω02 we find

Q̄2 = −
2∑

i=1

h2

4

∫

Q0i

∂t(D(crD̄Dρ)ṽ)Dv

︸ ︷︷ ︸
Q̄1

2

+

2∑

i=1

h2

8

∫

Ω0i

D(crD̄Dρ)D(v)2|t=Tt=0

︸ ︷︷ ︸
Q̄2

2

.

By means of Lemma 3.3.2 and a discrete intergration by parts in space (Proposition 3.3.5)

in each domain Ω01, Ω02 we see that

Q̄1
2 =

2∑

i=1

h2

8

∫

Q0i

∂t(D̄D(crD̄Dρ))v2 −
2∑

i=1

h2

4

∫

Q0i

D(crD̄Dρ)(∂tṽ)Dv

−
h2

8

∫ T

0

v2(a)∂t(D(crD̄Dρ))n+ 1
2
+
h2

8

∫ T

0

v2(a)∂t(D(crD̄Dρ))n+ 3
2

=

2∑

i=1

h2

8

∫

Q0i

∂t(D̄D(crD̄Dρ))v2 −
2∑

i=1

h2

4

∫

Q0i

D(crD̄Dρ)(∂tṽ)Dv + Y
(2)
23

as v|∂Ω0
= 0.

Lemma 3.7.6. (Lemma A.2 in [BL12]) Provided sh ≤ K we have

h2D̄D(ciri(D̄Dρi)) = s(sh)Oλ,K(1),

h2∂t(D̄D(ciriD̄Dρi)) = Ts2θOλ,K(1),

h∂t(D(ciriD̄Dρi)) = Ts2θOλ,K(1),

D(ciriD̄Dρi) = s2Oλ,K(1).

Note that all above terms are done in each domain Ω01, Ω02 separately.

We thus obtain

Y
(2)
23 =

∫ T

0

sTθOλ,K(sh)v
2(a).

Applying the Young’s inequality and using that |∂tṽ|
2 ≤|∂tv|

2
in each domain Ω01, Ω02, we

118



have

Q̄1
2 ≥

∫

Q′

0

Ts2θOλ,K(1)v
2 +

∫

Q′

0

s−1Oλ,K(sh)
2 |∂tv|

2
+

∫

Q′

0

sOλ,K(sh)
2(Dv)2 + Y

(2)
23

≥

∫

Q′

0

Ts2θOλ,K(1)v
2 +

∫

Q0

s−1Oλ,K(sh)
2|∂tv|

2
+

∫

Q′

0

sOλ,K(sh)
2(Dv)2 + Y

(2)
23

(3.7.4)

as
∑2
i=1

∫
Ω0i

Oλ,K(1) |∂tv|
2
=
∫
Ω
Oλ,K(1) |∂tv|

2
.

By using Proposition 3.3.5, Lemma 3.7.6 in each domain Ω01, Ω02 separately yield

Q̄2
2 = −

2∑

i=1

h2

8

∫

Ω0i

D̄D(crD̄Dρ)(v)2|t=Tt=0

+
h2

8
v2(a)

(
D(crD̄Dρ)

)
n+ 1

2

|t=Tt=0 −
h2

8
v2(a)

(
D(crD̄Dρ)

)
n+ 3

2

|t=Tt=0

=

∫

Ω′

0

sOλ,K(sh)(v)
2|t=T +

∫

Ω′

0

sOλ,K(sh)(v)
2|t=0 +Oλ,K(sh)

2v2(a)|t=Tt=0

=

∫

Ω′

0

sOλ,K(sh)(v)
2|t=T +

∫

Ω′

0

sOλ,K(sh)(v)
2|t=0 + Y

(3)
23 , (3.7.5)

as v|∂Ω0
= 0 where

Y
(3)
23 = Oλ,K(sh)

2v2(a)|t=Tt=0 .

Collecting (3.7.3), (3.7.4) and (3.7.5) we obtain

I23 ≥

∫

Ω0

s2
(
Oλ,K(1)v

2
|t=0

+Oλ,K(1)v
2
|t=T

)
−X23 + Y23,

where X23 and Y23 are as given in the statement of Lemma 3.4.9.

3.7.8 Proof of Lemma 3.4.10

By means of a discrete integration by parts (Proposition 3.3.5) in each domain Ω01, Ω02

separately, we get

I31 = −2τ

∫

Q01

(∂tθ)ϕcrDρvDv − 2τ

∫

Q02

(∂tθ)ϕcrDρvDv

= −2τ

∫

Q01

(∂tθ) ϕcrDρv Dv − 2τ

∫

Q02

(∂tθ) ϕcrDρv Dv + Y
(1)
31 ,
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with

Y
(1)
31 = τ

h

2

∫ T

0

(∂tθ)(crDρϕv)(a
−)(Dv)n+ 1

2
+ τ

h

2

∫ T

0

(∂tθ)(crDρϕv)(a
+)(Dv)n+ 3

2

as v|∂Ω0
= 0.

We have ϕcrDρv=ϕcrDρ ṽ + h2

4 D(ϕcrDρ)Dv in each domain Ω01, Ω02. It follows that

I31 = −τ
2∑

i=1

∫

Q0i

(∂tθ) (crDρϕ) D(v)2 −
2∑

i=1

τ
h2

2

∫

Q0i

(∂tθ)D(crDρϕ)(Dv)2 + Y
(1)
31

= τ

2∑

i=1

∫

Q0i

(∂tθ)(D(crDρϕ))v2 −
2∑

i=1

τ
h2

2

∫

Q0i

(∂tθ)D(crDρϕ)(Dv)2 + Y
(1)
31

− τ

∫ T

0

(∂tθ)v
2(a) (crDρϕ)n+ 1

2
+ τ

∫ T

0

(∂tθ)v
2(a) (crDρϕ)n+ 3

2

= τ

2∑

i=1

∫

Q0i

(∂tθ)(D(crDρϕ))v2 −
2∑

i=1

τ
h2

2

∫

Q0i

(∂tθ)D(crDρϕ)(Dv)2 + Y
(1)
31 + Y

(2)
31

by using a discrete integration by parts in each domain Ω01, Ω02 separately and

Y
(2)
31 = −τ

∫ T

0

(∂tθ)v
2(a) (crDρϕ)n+ 1

2
+ τ

∫ T

0

(∂tθ)v
2(a) (crDρϕ)n+ 3

2

as v|∂Ω = 0.

By using the Lipschitz continuity and Proposition 3.3.13 we get

D(criDρiϕi) = sOλ,K(1),

D(criDρiϕi) = sOλ,K(1),

criDρiϕi= sOλ,K(1),

criDρi = c(ri∂ρi + s2Oλ,K(sh)
2) = c(−sλφiψ

′
i + sOλ,K(sh)

2) = sOλ,K(1).

The proof is done in each domain Ω01, Ω02 separately. Note that max
t
∂tθ = Tθ2.

It thus follows that

I31 =

∫

Q′

0

Tθs2Oλ,K(1)v
2 +

∫

Q′

0

TθOλ,K(sh)
2(Dv)2 + Y31,
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where

Y31 = Y
(1)
31 + Y

(2)
31 ,

Y
(1)
31 =

∫ T

0

Tθs2Oλ,K(1)v(a)
h

2
(Dv)n+ 1

2
+

∫ T

0

Tθs2Oλ,K(1)v(a)
h

2
(Dv)n+ 3

2
,

Y
(2)
31 =

∫ T

0

Tθs2Oλ,K(1)v
2(a).

3.7.9 Proof of Lemma 3.4.13

We see that

Y
(1)
11 + Y

(1,1)
21

=

∫ T

0

(
1 +Oλ,K(sh)

)
(cc̄d)(1)(rDρ)1(Dv)

2
n+m+ 3

2

−

∫ T

0

(
1 +Oλ,K(sh)

)
(cc̄d)(0)(rDρ)0(Dv)

2
1
2

+

∫ T

0

Oλ,K(sh)
2(rDρ)0(Dv)

2
1
2

+

∫ T

0

Oλ,K(sh)
2(rDρ)1(Dv)

2
n+m+ 3

2

.

Moreover, by (3.4.1) we have Y
(1)
11 + Y

(1,1)
21 ≥ 0 for sh sufficiently small.

We next focus our attention on the trace term at ′a′ on Y
(2,1)
11 + Y

(1,21)
21 as follows

3.7.10 Proof of Lemma 3.4.14

(ṽ)2n+ 3
2

=
(vn+1 + vn+2

2

)2
=
(
vn+1 +

h

2
(Dv)n+ 3

2

)2

= v2n+1 +
h2

4
(Dv)2n+ 3

2

+ hvn+1(Dv)n+ 3
2

= v2n+1 +
h2

4(cd)2n+ 3
2

(cdDv)
2
n+ 3

2

+ vn+1
h

(cd)n+ 3
2

(cdDv)n+ 3
2
. (3.7.6)

Similarly, we have

(ṽ)2n+ 1
2

= v2n+1 +
h2

4(cd)2n+ 1
2

(cdDv)
2
n+ 1

2

− vn+1
h

(cd)n+ 1
2

(cdDv)n+ 1
2
. (3.7.7)
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We thus write Y
(1,21)
21 as follows:

Y
(1,21)
21

=

∫ T

0

(sλφ(a))3[c2(ψ′)3 ⋆ |ṽ|2]a

=

∫ T

0

(sλφ(a))3(c2ψ
′3)(a+)

(
v2n+1 +

h2

4(cd)2n+ 3
2

(cdDv)
2
n+ 3

2

+ vn+1
h

2(cd)n+ 3
2

(cdDv)n+ 3
2

)

−

∫ T

0

(sλφ(a))3(c2ψ
′3)(a−)

(
v2n+1 +

h2

4(cd)2n+ 1
2

(cDv)2N+ 1
2

− vn+1
h

2(cd)n+ 1
2

(cdDv)n+ 1
2

)

=

∫ T

0

(sλφ(a))3[c2ψ
′3⋆]av

2
n+1

+

∫ T

0

(sλφ(a))3
(
(c2ψ′3)(a+)

h2

4(cd)2n+ 3
2

(cdDv)
2
n+ 3

2

− (c2ψ′3)(a−)
h2

4(cd)2n+ 1
2

(cdDv)
2
n+ 1

2

)

+

∫ T

0

(sλφ(a))3
(
(c2ψ′3)(a+)

h

2(cd)n+ 3
2

(cdDv)n+ 3
2
− (c2ψ′3)(a−)

h

2(cd)n+ 1
2

(cdDv)n+ 1
2

)
v(a).

(3.7.8)

Moreover, the term Y
(2,1)
11 is given by

Y
(2,1)
11 =

∫ T

0

sλφ(a)
(
− ψ′(a−)c(a−)c̄d(a)(Dv)

2
n+ 1

2

+ ψ′(a+)c(a+)c̄d(a)(Dv)
2
n+ 3

2

)

=

∫ T

0

sλφ(a)
(
− ψ′(a−)

c(a−)c̄d(a)

(cd)2n+ 1
2

(cdDv)
2
n+ 1

2

+ ψ′(a+)
c(a+)c̄d(a)

(cd)2n+ 3
2

(cdDv)
2
n+ 3

2

)
.

We estimate as

c(a−)c̄d(a)

(cd)2n+ 1
2

=

(
(cd)n+ 1

2
+O(h)

)(
(cd)n+ 1

2
+ (cd)n+ 3

2

)

2(cd)2n+ 1
2

=

(
(cd)n+ 1

2
+O(h)

)(
2(cd)n+ 1

2
+O(h)

)

2(cd)2n+ 1
2

= 1 + hO(1).

Similarly,
c(a+)c̄d(a)

(cd)2n+ 3
2

= 1 + hO(1).
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We thus obtain Y
(2,1)
11

Y
(2,1)
11 =

∫ T

0

sλφ(a)
(
− ψ′(a−)

(
1 + hO(1)

)
(cdDv)

2
n+ 1

2

+ ψ′(a+)
(
1 + hO(1)

)
(cdDv)

2
n+ 3

2

)

=

∫ T

0

sλφ(a)[ψ′ ⋆ (cdDv)
2]a

+

∫ T

0

sλφ(a)ψ′(a+)O(h)(cdDv)
2
n+ 3

2

+

∫ T

0

sλφ(a)ψ′(a−)O(h)(cdDv)
2
n+ 1

2

. (3.7.9)

Combining (3.7.8) with (3.7.9) we obtain

Y
(2,1)
11 + Y

(1,21)
21

=

∫ T

0

sλφ(a)[ψ′ ⋆ (cdDv)
2]a +

∫ T

0

s3λ3φ3(a)[(ψ′)3c2⋆]av
2
n+1

+

∫ T

0

sλφ(a)ψ′(a+)O(h)(cdDv)
2
n+ 3

2

+

∫ T

0

sλφ(a)ψ′(a−)O(h)(cdDv)
2
n+ 1

2

+

∫ T

0

(sλφ(a))3
(
(c2ψ′3)(a+)

h2

4(cd)2n+ 3
2

(cdDv)
2
n+ 3

2

− (c2ψ′3)(a−)
h2

4(cd)2n+ 1
2

(cdDv)
2
n+ 1

2

)

+

∫ T

0

(sλφ(a))3
(
(c2ψ′3)(a+)

h

2(cd)n+ 3
2

(cdDv)n+ 3
2
− (c2ψ′3)(a−)

h

2(cd)n+ 1
2

(cdDv)n+ 1
2

)
v(a)

= µ+ µ1,

where

µ =

∫ T

0

sλφ(a)[ψ′ ⋆ (cdDv)
2]a +

∫ T

0

s3λ3φ3(a)[c2(ψ′)3⋆]av
2
n+1.

and µ1 can be written as

µ1 =

∫ T

0

sOλ,K(sh)(cdDv)
2
n+ 3

2

+

∫ T

0

sOλ,K(sh)(cdDv)
2
n+ 1

2

+

∫ T

0

s2Oλ,K(sh)(cdDv)n+ 3
2
vn+1 +

∫ T

0

s2Oλ,K(sh)(cdDv)n+ 1
2
vn+1.

We can write

[(ψ′) ⋆ (cdDv)
2]a

= [(ψ′)⋆]a(cdDv)
2
n+ 1

2

+ [⋆(cdDv)]
2
aψ

′(a+) + 2[⋆(cdDv)]aψ
′(a+)(cdDv)n+ 1

2
.

Indeed, we have

[(ψ′) ⋆ (cdDv)
2]a = (cdDv)

2
n+ 3

2

ψ′(a+)− (cdDv)
2
n+ 1

2

ψ′(a−),
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and

[(ψ′)⋆]a(cdDv)
2
n+ 1

2

+ [⋆(cdDv)]
2
aψ

′(a+) + 2[⋆(cdDv)]aψ
′(a+)(cdDv)n+ 1

2

= (cdDv)
2
n+ 1

2

ψ′(a+)− (cdDv)
2
n+ 1

2

ψ′(a−)

+ (cdDv)
2
n+ 3

2

ψ′(a+) + (cdDv)
2
n+ 1

2

ψ′(a+)− 2(cdDv)n+ 3
2
(cdDv)n+ 1

2
ψ′(a+)

+ 2(cdDv)n+ 3
2
(cdDv)n+ 1

2
ψ′(a+)− 2(cdDv)

2
n+ 1

2

ψ′(a+)

= (cdDv)
2
n+ 3

2

ψ′(a+)− (cdDv)
2
n+ 1

2

ψ′(a−).

Moreover, by using Lemma 3.3.17, we obtain

[(ψ′) ⋆ (cdDv)
2]a

= [(ψ′)⋆]a(cdDv)
2
n+ 1

2

+ [⋆(cdDv)]
2
aψ

′(a+) + 2[⋆(cdDv)]aψ
′(a+)(cdDv)n+ 1

2

= [(ψ′)⋆]a(cdDv)
2
n+ 1

2

+
(
λ2s2[⋆(cφψ′)]2av

2
n+1 + r20 + 2λsr0[⋆cφψ

′]avn+1

)
ψ′(a+)

+2
(
sλ[⋆cφψ′]avn+1 + r0

)
ψ′(a+)(cdDv)n+ 1

2
,

which gives

µ =

∫ T

0

sλφ(a)[ψ′⋆]a(cdDv)
2
n+ 1

2

+

∫ T

0

2s2λ2φ(a)[⋆cφψ′]aψ
′(a+)vN+1(cdDv)n+ 1

2

+

∫ T

0

s3λ3φ(a)
(
[⋆cφψ′]2aψ

′(a+) + [c2(ψ′)3⋆]aφ
2(a)

)
v2n+1

+

∫ T

0

sλφ(a)ψ′(a+)r20 + 2

∫ T

0

s2λ2φ(a)[⋆cφψ′]aψ
′(a+)r0vn+1

+ 2

∫ T

0

sλφ(a)ψ′(a+)r0(cdDv)n+ 1
2

.

Moreover, we have:

[⋆cφψ′]a = cφψ′|n+ 3
2
− cφψ′|n+ 1

2
= cφψ′|a+ − cφψ′|a− + hOλ(1) = φ(a)[cψ′⋆]a + hOλ(1),

[⋆cφψ′]2a = [cφψ′⋆]2a + 2[cφψ′⋆]ahOλ(1) + h2Oλ(1) = φ2(a)[cψ′⋆]2a + hOλ(1).
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We thus write µ as

µ =

∫ T

0

sλφ(a)[ψ′⋆]a(cdDv)
2
n+ 1

2

+

∫ T

0

2s2λ2φ2(a)[cψ′⋆]aψ
′(a+)vn+1(cdDv)n+ 1

2

+

∫ T

0

s3λ3φ3(a)
(
[cψ′⋆]2aψ

′(a+) + [c2(ψ′)3⋆]a

)
v2n+1

+

∫ T

0

sλφ(a)ψ′(a+)r20 + 2

∫ T

0

s2λ2φ2(a)[cψ′⋆]aψ
′(a+)r0vn+1

+ 2

∫ T

0

sλφ(a)ψ′(a+)r0(cdDv)n+ 1
2
+

∫ T

0

s2Oλ,K(sh)v
2
n+1

+

∫ T

0

sOλ,K(sh)vn+1(cdDv)n+ 1
2
+

∫ T

0

sOλ,K(sh)r0vn+1

=

∫ T

0

sλφ(a)[ψ′⋆]a(cdDv)
2
n+ 1

2

+

∫ T

0

2s2λ2φ2(a)[cψ′⋆]aψ
′(a+)vn+1(cdDv)n+ 1

2

+

∫ T

0

s3λ3φ3(a)
(
[cψ′⋆]2aψ

′(a+) + [c2(ψ′)3⋆]a

)
v2n+1 + µr

where µr can be written as

µr =

∫ T

0

sOλ(1)r
2
0 +

∫ T

0

s2Oλ(1)r0vn+1 +

∫ T

0

sOλ(1)r0(cdDv)n+ 1
2

+

∫ T

0

s2Oλ,K(sh)v
2
n+1 +

∫ T

0

sOλ,K(sh)vn+1(cdDv)n+ 1
2
+

∫ T

0

sOλ,K(sh)r0vn+1.

We have thus achieved

µ =

∫ T

0

sλφ(a)
(
Au(t, a), u(t, a)

)
+ µr,

with u(t, a) =
(
(cdDv)n+ 1

2
, sλφ(a)vn+1

)t
and the symmetric matrix A defined in Lemma 3.2.1.

From the choice made for the weight function β in Lemma 3.2.1 we find that:

µ ≥ Cα0

∫ T

0

sλφ(a)(cdDv)
2
n+ 1

2

+ Cα0

∫ T

0

s3λ3φ3(a)v2n+1 + µr,

with α0 > 0.
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3.7.11 Proof of Lemma 3.4.15

By using Lemma 3.3.17 we have

Y13 = −

∫ T

0

r ¯̃ρ(a+)∂tv(a)(cdDv)n+ 3
2
+

∫ T

0

r ¯̃ρ(a−)∂tv(a)(cdDv)n+ 1
2

= −

∫ T

0

r ¯̃ρ(a+)∂tv(a)
(
(cdDv)n+ 1

2
+ J1vn+1 + J2(cdDv)n+ 1

2
+ J3h(rf)n+1

)

+

∫ T

0

r ¯̃ρ(a−)∂tv(a)(cdDv)n+ 1
2
,

where J1, J2 and J3 are given as in Lemma 3.3.17.

Since J2 = Oλ,K(sh) and r ¯̃ρ = 1 +Oλ,K(sh) we can write

Y13 =

∫ T

0

Oλ,K(sh)∂tv(a)(cdDv)n+ 1
2
−

∫ T

0

r ¯̃ρ(a+)J1v(a)∂tv(a)

−

∫ T

0

r ¯̃ρ(a+)J3∂tv(a)h(rf)n+1.

Futhermore, as f = f1 − ∂t(ρv) we thus find

Y13 =

∫ T

0

Oλ,K(sh)∂tv(a)(cdDv)n+ 1
2
−

∫ T

0

r ¯̃ρ(a+)J1v(a)∂tv(a)

−

∫ T

0

r ¯̃ρ(a+)J3∂tv(a)h
(
rf1 − r∂t(ρv)

)
n+1

.

With an integration by parts w.r.t t for the second term above we obtain

Y13 =

∫ T

0

Oλ,K(sh)∂tv(a)(cdDv)n+ 1
2
+

1

2

∫ T

0

∂t
(
r ¯̃ρ(a+)J1

)
v2(a)

−
1

2
r ¯̃ρ(a+)J1v

2(a)|t=Tt=0 −

∫ T

0

r ¯̃ρ(a+)J3∂tv(a)h(rf1)n+1

+

∫ T

0

r ¯̃ρ(a+)J3∂tv(a)hrn+1

(
ρ∂tv + ∂tρv

)
n+1

=

∫ T

0

Oλ,K(sh)∂tv(a)(cdDv)n+ 1
2
+

1

2

∫ T

0

∂t
(
r ¯̃ρ(a+)J1

)
v2(a)

+ sOλ,K(1)v
2(a)|t=Tt=0 +

∫ T

0

Oλ,K(1)∂tv(a)h(rf1)n+1

+

∫ T

0

(
1 +Oλ,K(sh)

)
h
(
∂tv(a)

)2
+

1

2

∫ T

0

r ¯̃ρ(a+)J3h(r∂tρ)n+1∂t
(
v2(a)

)
,

where r ¯̃ρ, J3 are of the form 1 +Oλ,K(sh) and J1 of the form sOλ,K(1).
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We apply an integration by parts in time for the last term

Y13 =

∫ T

0

Oλ,K(sh)∂tv(a)(cdDv)n+ 1
2
+

1

2

∫ T

0

∂t
(
r ¯̃ρ(a+)J1

)
v2(a)

+ sOλ,K(1)v
2(a)|t=Tt=0 +

∫ T

0

Oλ,K(1)∂tv(a)h(rf1)n+1

+

∫ T

0

(
1 +Oλ,K(sh)

)
h
(
∂tv(a)

)2
−

1

2

∫ T

0

∂t
(
r ¯̃ρ(a+)J3(r∂tρ)n+1

)
hv2(a)

+
1

2
r ¯̃ρ(a+)J3(r∂tρ)n+1hv

2(a, .)|t=Tt=0 .

Moreover, we have

∂ts = s(2t− T )θ = sTθO(1),

∂tρ = −ϕ(x)(∂ts)ρ = −ϕ(x)s(2t− T )θρ,

r∂tρ = −ϕ(x)s(2t− T )θ (3.7.10)

∂t(r∂tρ) = sT 2θ2O(1),

by using (3.2.2)- (3.2.3).

Now we estimate the terms ∂t
(
r ¯̃ρ(a+)J1

)
and ∂t

(
r ¯̃ρ(a+)J3(r∂tρ)n+1

)
. By recalling ∂tJ1 =

sTθOλ,K(sh), ∂tJ3 = TθOλ,K(sh) as well as using Proposition 3.3.14 and (3.7.10) we obtain

∂t
(
r ¯̃ρ(a+)J1

)
= ∂t

(
r ¯̃ρ(a+)

)
J1 + r ¯̃ρ(a+)∂tJ1

= sTθOλ,K(sh),

and

∂t
(
r ¯̃ρ(a+)J3(r∂tρ)n+1

)

= ∂t
(
r ¯̃ρ(a+)

)
J3(r∂tρ)n+1 + r ¯̃ρ(a+)∂tJ3(r∂tρ)n+1 + r ¯̃ρ(a+)J3∂t

(
(r∂tρ)n+1

)

= sT 2θ2Oλ,K(1).

Thus Y13 can be written
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Y13 =

∫ T

0

Oλ,K(sh)∂tv(a)(cdDv)n+ 1
2
+

∫ T

0

sTθOλ,K(sh)v
2(a)

+ sOλ,K(1)v
2(a)|t=Tt=0 +

∫ T

0

Oλ,K(1)∂tv(a)h(rf1)n+1

+

∫ T

0

(
1 +Oλ,K(sh)

)
h
(
∂tv(a)

)2
+

∫ T

0

T 2θ2Oλ,K(sh)v
2(a)

+
1

2
(1 +Oλ,K(s(t)h))h

(
− ϕ(a)s(t)(2t− T )θ(t)v2(a, .)

)
|t=Tt=0 .

We observe that for 0 < sh < ǫ3(λ) with ǫ3(λ) sufficiently small we have

r ¯̃ρ = 1 +Oλ,K(sh) > 0.

Additionally, ϕ(x) < 0 then the last term of Y13 are non-negative. From that, we estimate

Y13 as follows

Y13 ≥

∫ T

0

Cλ,Kh(∂tv(a))
2 +

∫ T

0

(
sTθOλ,K(sh) + T 2θ2Oλ,K(sh)

)
v2(a)

+ sOλ,K(1)v
2(a)|t=Tt=0 +

∫ T

0

Oλ,K(sh)∂tv(a)(cdDv)n+ 1
2
+

∫ T

0

Oλ,K(1)∂tv(a)h(rf1)n+1.

3.7.12 Proof of Lemma 3.4.16

On the one hands, as f = f1 − ∂t(ρv) we write

(rf)n+1 = (rf1)n+1 − (r∂t(ρv))n+1

= (rf1)n+1 −
(
(rρ)∂tv + (r∂tρ)v

)
n+1

= (rf1)n+1 − (∂tv)n+1 − sTθOλ(1)vn+1.

We thus obtain

|(rf)n+1|
2 ≤ C

(
(rf1)

2
n+1 + (∂tv)

2
n+1 + s2T 2θ2Oλ(1)v

2
n+1

)
. (3.7.11)
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On the other hands,

[ρ1 ⋆ ρ2] = [ρ1⋆]a(ρ2)n+ 1
2
+ ρ1(a

+)[⋆ρ2]a, (3.7.12)

and we recall

(cdDv)n+ 3
2
− (cdDv)n+ 1

2
= [⋆cdDv]a = λs[⋆cφψ′]avn+1 + r0,

where r0 is given in Lemma 3.3.17 as

r0 = sOλ,K(sh)vn+1 +Oλ,K(sh)(cdDv)n+ 1
2
+ hOλ,K(1)(rf)n+1,

We then have

(cdDv)
2
n+ 3

2

= (cdDv)
2
n+ 1

2

+ [⋆cdDv]
2
a + 2[⋆cdDv]a(cdDv)n+ 1

2

= (cdDv)
2
n+ 1

2

+ λ2s2[⋆cφψ′]2av
2
n+1 + r20 + 2λs[⋆cφψ′]ar0vn+1

+2λs[⋆cφψ′]avn+1(cdDv)n+ 1
2
+ 2r0(cdDv)n+ 1

2
. (3.7.13)

and we compute

r20 = s2Oλ,K(sh)
2v2n+1 +Oλ,K(sh)

2(cdDv)
2
n+ 1

2

+ h2Oλ,K(1)(rf)
2
n+1

+sOλ,K(sh)
2(cdDv)n+ 1

2
vn+1 + sOλ,K(sh)h(rf)n+1vn+1

+Oλ,K(sh)(cdDv)n+ 1
2
h(rf)n+1.

By applying Cauchy-Schwartz inequality we have

(cdDv)
2
n+ 3

2

≤ O(1)(cdDv)
2
n+ 1

2

+ s2Oλ(1)v
2
n+1 +O(1)r20 (3.7.14)

r20 ≤ s2Oλ,K(sh)
2v2n+1 +Oλ,K(sh)

2(cdDv)
2
n+ 1

2

+ h2Oλ,K(1)(rf)
2
n+1, (3.7.15)

sr0vn+1 ≤
(
s2Oλ,K(sh) + sOλ,K(1)

)
v2n+1 +Oλ,K(sh)(cdDv)

2
n+ 1

2

+ hOλ,K(sh)(rf)
2
n+1, (3.7.16)
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s2r0vn+1 ≤
(
s3Oλ,K(sh) + ǫs3Oλ,K(1)

)
v2n+1 + sOλ,K(sh)(cdDv)

2
n+ 1

2

+ CǫhOλ,K(sh)(rf)
2
n+1,

(3.7.17)

sTθr0vn+1 ≤
(
s2TθOλ,K(sh) + sT 2θ2Oλ,K(sh)

)
v2n+1

+ sOλ,K(sh)(cdDv)
2
n+ 1

2

+ hOλ,K(sh)(rf)
2
n+1, (3.7.18)

sr0(cDv)n+ 1
2
≤ s3Oλ,K(sh)v

2
n+1 +

(
sOλ,K(sh) + ǫsOλ,K(1)

)
(cdDv)

2
n+ 1

2

+ CǫOλ,K(sh)h(rf)
2
n+1,

(3.7.19)

(∂tv(a))r0 ≤ Oλ,K(1)h(∂tv(a))
2 + sOλ,K(sh)(cdDv)

2
n+ 1

2

+ s3Oλ,K(sh)v
2
n+1 +Oλ,K(1)h(rf)

2
n+1.

(3.7.20)

We estimate following terms

The first term, by using (3.7.14) we have

∣∣∣Y (2,2)
11

∣∣∣ =

∫ T

0

sOλ,K(sh)
2(cdDv)

2
n+ 1

2

+ sOλ,K(sh)
2(cdDv)

2
n+ 3

2

≤

∫ T

0

sOλ,K(sh)
2(cdDv)

2
n+ 1

2

+

∫ T

0

s3Oλ,K(sh)
2v2n+1 +

∫ T

0

sOλ,K(sh)
2r20.

Moreover, by using (3.7.15) we obtain

∫ T

0

sOλ,K(sh)
2r20

≤

∫ T

0

s3Oλ,K(sh)
4v2n+1 +

∫ T

0

sOλ,K(sh)
4(cdDv)

2
n+ 1

2

+

∫ T

0

hOλ,K(sh)
3(rf)2n+1.
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Then, by using (3.7.11) we estimate Y
(2,2)
11

∣∣∣Y (2,2)
11

∣∣∣ ≤

∫ T

0

s3Oλ,K(sh)
2v2n+1 +

∫ T

0

sOλ,K(sh)
2(cdDv)

2
n+ 1

2

+

∫ T

0

hOλ,K(sh)
3(rf)2n+1

≤

∫ T

0

(
s3Oλ,K(sh)

2 + sT 2θ2Oλ,K(sh)
4
)
v2n+1 +

∫ T

0

Oλ,K(sh)
3h(∂tv)

2
n+1

+

∫ T

0

sOλ,K(sh)
2(cdDv)

2
n+ 1

2

+

∫ T

0

hOλ,K(sh)
3(rf1)

2
n+1.

For the next term, using (3.7.12) and Lemma 3.3.17 we obtain

Y12 =

∫ T

0

sOλ(1)v(a)[cψ
′2 ⋆ (cdDv)]a

+

∫ T

0

sOλ,K(1)v(a)(cDv)n+ 1
2
+ sOλ,K(1)v(a)(cDv)n+ 3

2

=

∫ T

0

sOλ,K(1)v(a)(cdDv)n+ 1
2
+ sOλ,K(1)v(a)

(
(cdDv)n+ 1

2
+ sOλ(1)v(a) + r0

)

=

∫ T

0

sOλ,K(1)v(a)(cdDv)n+ 1
2
+ s2Oλ,K(1)v

2(a) + sOλ,K(1)v(a)r0.

Using (3.7.16) yields

∫ T

0

sOλ,K(1)v(a)r0

≤

∫ T

0

(
s2Oλ,K(sh) + sOλ,K(1)

)
v2n+1 +

∫ T

0

Oλ,K(sh)(cdDv)
2
n+ 1

2

+

∫ T

0

hOλ,K(sh)(rf)
2
n+1.

By using (3.7.11) we obtain

|Y12| ≤

∫ T

0

(
s2Oλ,K(1) + sT 2θ2Oλ,K(sh)

2
)
v2n+1 +

∫ T

0

Oλ,K(sh)h(∂tv)
2
n+1

+

∫ T

0

Oλ,K(1)(cdDv)
2
n+ 1

2

+

∫ T

0

Oλ,K(sh)h(rf1)
2
n+1.

Moreover, we have

ṽn+ 1
2
= vn+1 −

h

2(cd)n+ 1
2

(cdDv)n+ 1
2
= vn+1 +O(h)(cdDv)n+ 1

2
,

ṽn+ 3
2
= vn+1 +O(h)(cdDv)n+ 3

2
. (3.7.21)
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By using (3.7.21), (3.7.14) we obtain

(ṽ)2n+ 1
2

+ (ṽ)2n+ 3
2

≤ O(1)v2n+1 +O(h2)(cDv)2n+ 3
2

+O(h2)(cDv)2n+ 1
2

≤
(
O(1) +O(sh)2

)
v2n+1 +O(h2)(cDv)2n+ 1

2

+O(h2)r20

Thus, we have the following estimate

∣∣∣Y (1,22)
21

∣∣∣ =

∫ T

0

(
s2O(1) + s3Oλ,K(sh)

2
)(

(ṽ)2n+ 1
2

+ (ṽ)2n+ 3
2

)

=

∫ T

0

s3Oλ,K(1)
(
(ṽ)2n+ 1

2

+ (ṽ)2n+ 3
2

)

≤

∫ T

0

s3Oλ,K(1)v
2
n+1 +

∫ T

0

sOλ,K(sh)
2(cdDv)

2
n+ 1

2

+

∫ T

0

sOλ,K(sh)
2r20.

Futhermore, using (3.7.15) we have

∫ T

0

sOλ,K(sh)
2r20

≤

∫ T

0

s3Oλ,K(sh)
4v2n+1 +

∫ T

0

sOλ,K(sh)
4(cdDv)

2
n+ 1

2

+

∫ T

0

hOλ,K(sh)
3(rf)2n+1.

By using (3.7.11) we get

∣∣∣Y (1,22)
21

∣∣∣ ≤

∫ T

0

(
s3Oλ,K(1) + sT 2θ2Oλ,K(sh)

4
)
v2n+1 +

∫ T

0

Oλ,K(sh)
3h(∂tv)

2
n+1

+

∫ T

0

sOλ,K(sh)
3(cdDv)

2
n+ 1

2

+

∫ T

0

hOλ,K(sh)
3(rf1)

2
n+1.

For the term Y
(1)
22 we have

Y
(1)
22 =

∫ T

0

s3Oλ,K(1)v(a)
h2

2
(Dv)n+ 1

2
+ s3Oλ,K(1)v(a)

h2

2
(Dv)n+ 3

2

=

∫ T

0

(
sOλ,K(sh)

2(cdDv)n+ 1
2
+ sOλ,K(sh)

2(cdDv)n+ 3
2

)
v(a)

=

∫ T

0

(
sOλ,K(sh)

2(cdDv)n+ 1
2
+ s2Oλ,K(sh)

2v(a) + sOλ,K(sh)
2r0

)
v(a)

=

∫ T

0

sOλ,K(sh)
2v(a)(cdDv)n+ 1

2
+

∫ T

0

s2Oλ,K(sh)
2v2(a) +

∫ T

0

sOλ,K(sh)
2v(a)r0.
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Using (3.7.16) we achieve

∫ T

0

sOλ,K(sh)
2v(a)r0

≤

∫ T

0

s2Oλ,K(sh)
2v2n+1 +

∫ T

0

Oλ,K(sh)
3(cdDv)

2
n+ 1

2

+

∫ T

0

hOλ,K(sh)
3(rf)2n+1.

Using (3.7.11), we estimate Y
(1)
22 as:

∣∣∣Y (1)
22

∣∣∣ ≤

∫ T

0

(
s2Oλ,K(sh)

2 + sT 2θ2Oλ,K(sh)
4
)
v2n+1 +

∫ T

0

Oλ,K(sh)
3h(∂tv)

2
n+1

+

∫ T

0

Oλ,K(sh)
3(cdDv)

2
n+ 1

2

+

∫ T

0

hOλ,K(sh)
3(rf1)

2
n+1.

And, using (3.7.21) and Lemma 3.3.17 we obtain

Y
(1)
23 =

∫ T

0

s2Oλ,K(1)(∂tv(a))
h

2
ṽn+ 1

2
+

∫ T

0

s2Oλ,K(1)(∂tv(a))
h

2
ṽn+ 3

2

=

∫ T

0

s2Oλ,K(1)(∂tv(a))
h

2

(
vn+1 +O(h)(cdDv)n+ 1

2

)

+

∫ T

0

s2Oλ,K(1)(∂tv(a))
h

2

(
vn+1 +O(h)(cdDv)n+ 3

2

)

=

∫ T

0

sOλ,K(sh)(∂tv(a))v(a) +

∫ T

0

Oλ,K(sh)
2(∂tv(a))(cdDv)n+ 1

2

+

∫ T

0

Oλ,K(sh)
2(∂tv(a))(cdDv)n+ 3

2

=

∫ T

0

sOλ,K(sh)(∂tv(a))v(a) +

∫ T

0

Oλ,K(sh)
2(∂tv(a))(cdDv)n+ 1

2

+

∫ T

0

Oλ,K(sh)
2(∂tv(a))

(
(cdDv)n+ 1

2
+ λs[⋆cφψ′]avn+1 + r0

)
.

In addition, with s, λ enough large, sh enough small and with applying Young’s inequality

and (3.7.20) yield

∫ T

0

sOλ,K(sh)(∂tv(a))v(a) ≤

∫ T

0

Oλ,K(sh)h(∂tv(a))
2 +

∫ T

0

s3Oλ,K(1)v
2(a).

∫ T

0

Oλ,K(sh)
2(∂tv(a))(cdDv)n+ 1

2
≤

∫ T

0

Oλ,K(sh)h(∂tv(a))
2 +

∫ T

0

sOλ,K(sh)
2(cdDv)

2
n+ 1

2

.
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∫ T

0

Oλ,K(sh)
2(∂tv(a))r0 ≤

∫ T

0

Oλ,K(sh)
2h(∂tv(a))

2 +

∫ T

0

sOλ,K(sh)
3(cdDv)

2
n+ 1

2

+

∫ T

0

s3Oλ,K(sh)
3(v)2n+1 +

∫ T

0

Oλ,K(sh)
2h(rf)2n+1.

Using (3.7.11), we estimate Y
(1)
23

Y
(1)
23 ≤

∫ T

0

(
s3Oλ,K(1) + sT 2θ2Oλ,K(sh)

3
)
v2n+1 +

∫ T

0

Oλ,K(sh)h(∂tv(a))
2

+

∫ T

0

sOλ,K(sh)
2(cdDv)

2
n+ 1

2

+

∫ T

0

Oλ,K(sh)
2h(rf1)

2
n+1.

Applying Lemma 3.3.17 we have

Y
(1)
31 =

∫ T

0

Tθs2Oλ,K(1)v(a)
h

2
(Dv)n+ 1

2
+

∫ T

0

Tθs2Oλ,K(1)v(a)
h

2
(Dv)n+ 3

2

=

∫ T

0

sTθOλ,K(sh)v(a)(cdDv)n+ 1
2

+

∫ T

0

sTθOλ,K(sh)v(a)
(
sOλ,K(1)v(a) + r0

)

By using (3.7.18) we obtain

∫ T

0

sTθOλ,K(sh)vn+1r0 ≤

∫ T

0

(
s2TθOλ,K(sh)

2 + sT 2θ2Oλ,K(sh)
2
)
v2n+1

+

∫ T

0

sOλ,K(sh)
2(cdDv)

2
n+ 1

2

+

∫ T

0

Oλ,K(sh)
2h(rf)2n+1.

We have

∫ T

0

sTθOλ,K(sh)(cdDv)n+ 1
2
vn+1 ≤

∫ T

0

sT 2θ2Oλ,K(sh)v
2
n+1 +

∫ T

0

sOλ,K(sh)(cdDv)
2
n+ 1

2

.

With (3.7.11) we thus estimate Y
(1)
31 as
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∣∣∣Y (1)
31

∣∣∣ ≤

∫ T

0

(
s2TθOλ,K(sh) + sT 2θ2Oλ,K(sh)

)
v2n+1 +

∫ T

0

Oλ,K(sh)h(∂tv)
2
n+1

+

∫ T

0

sOλ,K(sh)(cdDv)
2
n+ 1

2

+

∫ T

0

Oλ,K(sh)h(rf1)
2
n+1.

Next, by using (3.7.14) we estimate µ
(1)
1 as

µ(1) =

∫ T

0

sOλ,K(sh)(cdDv)
2
n+ 3

2

+

∫ T

0

sOλ,K(sh)(cdDv)
2
n+ 1

2

≤

∫ T

0

sOλ,K(sh)(cdDv)
2
n+ 1

2

+

∫ T

0

s3Oλ,K(sh)v
2
n+1 +

∫ T

0

sOλ,K(sh)r
2
0

By making use of (3.7.15) we have

∫ T

0

sOλ,K(sh)r
2
0

≤

∫ T

0

s3Oλ,K(sh)
3v2n+1 +

∫ T

0

sOλ,K(sh)
3(cdDv)

2
n+ 1

2

+

∫ T

0

Oλ,K(sh)
2h(rf)2n+1.

Using (3.7.11) we obtain

µ
(1)
1 ≤

∫ T

0

(
s3Oλ,K(sh) + sT 2θ2Oλ,K(sh)

3
)
v2n+1 +

∫ T

0

Oλ,K(sh)
2h(∂tv)

2
n+1

+

∫ T

0

sOλ,K(sh)(cdDv)
2
n+ 1

2

+

∫ T

0

Oλ,K(sh)
2h(rf1)

2
n+1.

By making use Lemma 3.3.17 we have

µ
(2)
1 =

∫ T

0

s2Oλ,K(sh)vn+1(cdDv)n+ 3
2
+

∫ T

0

s2Oλ,K(sh)vn+1(cdDv)n+ 1
2

=

∫ T

0

s2Oλ,K(sh)vn+1(cdDv)n+ 1
2
+

∫ T

0

s3Oλ,K(sh)v
2
n+1 +

∫ T

0

s2Oλ,K(sh)r0vn+1.

Applying Young’s inequality and using (3.7.17) yield

∫ T

0

s2Oλ,K(sh)vn+1(cdDv)n+ 1
2
≤

∫ T

0

s3Oλ,K(sh)v
2
n+1 +

∫ T

0

sOλ,K(sh)(cdDv)
2
n+ 1

2

.
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∫ T

0

s2Oλ,K(sh)r0vn+1

≤

∫ T

0

s3Oλ,K(sh)
2v2n+1 +

∫ T

0

sOλ,K(sh)
2(cdDv)

2
n+ 1

2

+

∫ T

0

Oλ,K(sh)
2h(rf)2n+1.

Using (3.7.11) we have

µ
(2)
1 ≤

∫ T

0

(
s3Oλ,K(sh) + sT 2θ2Oλ,K(sh)

3
)
v2n+1 +

∫ T

0

Oλ,K(sh)
2h(∂tv)

2
n+1

+

∫ T

0

sOλ,K(sh)(cdDv)
2
n+ 1

2

+

∫ T

0

Oλ,K(sh)
2h(rf1)

2
n+1.

We thus obtain

µ1 ≤

∫ T

0

(
s3Oλ,K(sh) + sT 2θ2Oλ,K(sh)

3
)
v2n+1 +

∫ T

0

Oλ,K(sh)
2h(∂tv)

2
n+1

+

∫ T

0

sOλ,K(sh)(cdDv)
2
n+ 1

2

+

∫ T

0

Oλ,K(sh)
2h(rf1)

2
n+1.

Now, we estimate some terms of µr. By using (3.7.15)- (3.7.19) we have

∫ T

0

sOλ(1)r
2
0

≤

∫ T

0

s3Oλ,K(sh)
2v2n+1 +

∫ T

0

sOλ,K(sh)
2(cdDv)

2
n+ 1

2

+

∫ T

0

Oλ,K(sh)h(rf)
2
n+1.

∫ T

0

s2Oλ(1)r0vn+1 ≤

∫ T

0

(
s3Oλ,K(sh) + ǫs3Oλ,K(1)

)
v2n+1

+

∫ T

0

sOλ,K(sh)(cdDv)
2
n+ 1

2

+ Cǫ

∫ T

0

Oλ,K(sh)h(rf)
2
n+1.

∫ T

0

sOλ(1)r0(cdDv)n+ 1
2

≤

∫ T

0

s3Oλ,K(sh)v
2
n+1 + Cǫ

∫ T

0

Oλ,K(sh)h(rf)
2
n+1

+

∫ T

0

(
sOλ,K(sh) + ǫsOλ,K(1)

)
(cdDv)

2
n+ 1

2

.
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∫ T

0

sOλ,K(sh)vn+1(cdDv)n+ 1
2
≤

∫ T

0

sOλ,K(sh)(cdDv)
2
n+ 1

2

+

∫ T

0

sOλ,K(sh)v
2
n+1.

Using (3.7.11) we have:

µr ≤

∫ T

0

(
s3Oλ,K(sh) + sT 2θ2Oǫ,λ,K(sh)

2 + ǫs3Oλ,K(1)
)
v2n+1

+

∫ T

0

Oǫ,λ,K(sh)h(∂tv)
2
n+1 +

∫ T

0

Oǫ,λ,K(sh)h(rf1)
2
n+1

+

∫ T

0

(
sOλ,K(sh) + ǫsOλ,K(1)

)
(cdDv)

2
n+ 1

2

.
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❚❤✐✲◆❤✉✲❚❤✉② ◆●❯❨❊◆
❈♦♥trô❧❛❜✐❧✐té ✉♥✐❢♦r♠❡ ❞❡s éq✉❛t✐♦♥s ❛✉① ❞ér✐✈é❡s

♣❛rt✐❡❧❧❡s ❞✐sé❝rét✐sé❡s

❘és✉♠é ✿

❉❛♥s ❝❡tt❡ t❤ès❡✱ ♥♦✉s ét✉❞✐♦♥s ❧❡s ♣r♦♣r✐étés ❞❡ ❝♦♥trô❧❛❜✐❧✐té ✉♥✐❢♦r♠❡ ❞❡s s❡♠✐✲
❞✐s❝r❡ts ❛♣♣r♦①✐♠❛t✐♦♥s ❞❡ s②stè♠❡s ♣❛r❛❜♦❧✐q✉❡s✳ ❉❛♥s ✉♥❡ ♣r❡♠✐èr❡ ♣❛rt✐❡✱ ♥♦✉s ♥♦✉s
✐♥tér❡ss♦♥s à ❧❛ ♠✐♥✐♠✐s❛t✐♦♥ ❞❡ Lq✲♥♦r♠❡ (q > 2) ❞❡s ❝♦♥trô❧❡s s❡♠✐❞✐s❝r❡t❡ ♣♦✉r ❧✬éq✉❛t✐♦♥
♣❛r❛❜♦❧✐q✉❡✳ ◆♦tr❡ ♦❜❥❡❝t✐❢ ❡st ❞❡ ❞é♣❛ss❡r ❧❛ ❧✐♠✐t❛t✐♦♥ ❞❡ ❬▲❚✵✻❪ à ♣r♦♣♦s ❞❡ ❧✬♦r❞r❡ ✶✴✷
❞❡ ❧✬❛❜s❡♥❝❡ ❞❡ ❧✐♠✐t❡s ❞✬♦♣ér❛t❡✉r ❞❡ ❝♦♥trô❧❡✳ P❧✉s ♣ré❝✐sé♠❡♥t✱ ♥♦✉s ♠♦♥tr♦♥s q✉❡ ❧❛
♣r♦♣r✐été ❞✬♦❜s❡r✈❛❜✐❧✐té ✉♥✐❢♦r♠❡ ❡st é❣❛❧❡♠❡♥t t✐t✉❧❛✐r❡ ❞❛♥s Lq (q > 2)✱ ♠ê♠❡ ❞❛♥s ❧❡ ❝❛s
❞✬✉♥ ❞❡❣ré ❞✬❛❜s❡♥❝❡ ❞❡ ❧✐♠✐t❡s s✉♣ér✐❡✉r❡ à ✶✴✷✳ ❊♥ ♦✉tr❡✱ ✉♥❡ ♣r♦❝é❞✉r❡ ❞❡ ♠✐♥✐♠✐s❛t✐♦♥
♣♦✉r ❝❛❧❝✉❧❡r ❧❡s ❝♦♠♠❛♥❞❡s ❞✬❛♣♣r♦①✐♠❛t✐♦♥ ❡st ❢♦✉r♥✐❡✳ ▲✬ét✉❞❡ ❞❡ ❧✬♦♣t✐♠❛❧✐té Lq ❞❛♥s ❧❛
♣r❡♠✐èr❡ ♣❛rt✐❡ ❡st ❞❛♥s ✉♥ ❝♦♥t❡①t❡ ❣é♥ér❛❧✳ ❈❡♣❡♥❞❛♥t✱ ❧❡s ✐♥é❣❛❧✐tés ❞✬♦❜s❡r✈❛❜✐❧✐té ❞✐s❝r❡ts
q✉✐ s♦♥t ♦❜t❡♥✉s ♥❡ s♦♥t ♣❛s ❛✉ss✐ ♣ré❝✐s❡s q✉❡ ❝❡❧❧❡s ❞ér✐✈é❡s ♣✉✐s ❛✈❡❝ ❞❡s ❡st✐♠❛t✐♦♥s ❞❡
❈❛r❧❡♠❛♥✳ ❉❛♥s ✉♥❡ s❡❝♦♥❞❡ ♣❛rt✐❡✱ ❞❛♥s ❧❡ ❝♦♥t❡①t❡ ♣❛rt✐❝✉❧✐❡r ❞❡ ✉♥✐❞✐♠❡♥s✐♦♥♥❡❧s✲✜♥✐s
❞✐✛ér❡♥❝❡s ♥♦✉s ❞é♠♦♥tr♦♥s ✉♥❡ ✐♥é❣❛❧✐té ❞❡ ❈❛r❧❡♠❛♥ ♣♦✉r ✉♥❡ ✈❡rs✐♦♥ s❡♠✐✲❞✐s❝r❡t ❞❡
❧✬♦♣ér❛t❡✉r ♣❛r❛❜♦❧❡ ∂t − ∂x(c∂x) q✉✐ ♣❡r♠❡t ♣♦✉r ❞ér✐✈❡r ❧❡s ✐♥é❣❛❧✐tés ❞✬♦❜s❡r✈❛❜✐❧✐té q✉✐
s♦♥t ❜❡❛✉❝♦✉♣ ♣❧✉s ♣ré❝✐s✳ ❖♥ ❝♦♥s✐❞èr❡ ✐❝✐ q✉❡ ❞❛♥s ❧❡ ❝❛s ♦ù ❧❡ ❝♦❡✣❝✐❡♥t ❞❡ ❞✐✛✉s✐♦♥ ❛ ✉♥
s❛✉t q✉✐ ❞♦♥♥❡ ✉♥❡ ❢♦r♠✉❧❛t✐♦♥ ❞✉ ♣r♦❜❧è♠❡ ❞❡ tr❛♥s♠✐ss✐♦♥✳ ❈♦♥séq✉❡♥❝❡ ❞❡ ❝❡tt❡ ✐♥é❣❛❧✐té
❞❡ ❈❛r❧❡♠❛♥✱ ♦♥ ❡♥ ❞é❞✉✐t ❝♦❤ér❡♥t❡s ♥✉❧ ❝♦♥trô❧❛❜✐❧✐té ❞❡s rés✉❧t❛ts ♣♦✉r ❧❡s ❝❧❛ss❡s ❞❡
❧✐♥é❛✐r❡s ❡t s❡♠✐✲❧✐♥é❛✐r❡ ❞❡s éq✉❛t✐♦♥s ♣❛r❛❜♦❧✐q✉❡s✳

▼♦ts ❝❧és ✿ ❈♦♥trô❧❛❜✐❧✐té✱ ✐♥é❣❛❧✐té ❞✬♦❜s❡r✈❛❜✐❧✐té ❞✐s❝rét✐s❛t✐♦♥✱ ✐♥é❣❛❧✐té ❞❡ ❈❛r❧❡♠❛♥✳

❈♦♥trô❧❛❜✐❧✐té ✉♥✐❢♦r♠❡ ❞❡s éq✉❛t✐♦♥s ❛✉① ❞ér✐✈é❡s ♣❛rt✐❡❧❧❡s ❞✐sé❝rét✐sé❡s

❆❜str❛❝t ✿

■♥ t❤✐s t❤❡s✐s✱ ✇❡ st✉❞② ✉♥✐❢♦r♠ ❝♦♥tr♦❧❧❛❜✐❧✐t② ♣r♦♣❡rt✐❡s ♦❢ s❡♠✐✲❞✐s❝r❡t❡ ❛♣♣r♦①✐♠❛t✐♦♥s
❢♦r ♣❛r❛❜♦❧✐❝ s②st❡♠s✳ ■♥ ❛ ✜rst ♣❛rt✱ ✇❡ ❛❞❞r❡ss t❤❡ ♠✐♥✐♠✐③❛t✐♦♥ ♦❢ t❤❡ Lq✲♥♦r♠ (q > 2)
♦❢ s❡♠✐❞✐s❝r❡t❡ ❝♦♥tr♦❧s ❢♦r ♣❛r❛❜♦❧✐❝ ❡q✉❛t✐♦♥✳ ❖✉r ❣♦❛❧ ✐s t♦ ♦✈❡r❝♦♠❡ t❤❡ ❧✐♠✐t❛t✐♦♥ ♦❢
❬▲❚✵✻❪ ❛❜♦✉t t❤❡ ♦r❞❡r ✶✴✷ ♦❢ ✉♥❜♦✉♥❞❡❞♥❡ss ♦❢ t❤❡ ❝♦♥tr♦❧ ♦♣❡r❛t♦r✳ ◆❛♠❡❧②✱ ✇❡ s❤♦✇ t❤❛t
t❤❡ ✉♥✐❢♦r♠ ♦❜s❡r✈❛❜✐❧✐t② ♣r♦♣❡rt② ❛❧s♦ ❤♦❧❞s ✐♥ Lq (q > 2) ❡✈❡♥ ✐♥ t❤❡ ❝❛s❡ ♦❢ ❛ ❞❡❣r❡❡
♦❢ ✉♥❜♦✉♥❞❡❞♥❡ss ❣r❡❛t❡r t❤❛♥ ✶✴✷✳ ▼♦r❡♦✈❡r✱ ❛ ♠✐♥✐♠✐③❛t✐♦♥ ♣r♦❝❡❞✉r❡ t♦ ❝♦♠♣✉t❡ t❤❡
❛♣♣r♦①✐♠❛t✐♦♥ ❝♦♥tr♦❧s ✐s ♣r♦✈✐❞❡❞✳ ❚❤❡ st✉❞② ♦❢ Lq ♦♣t✐♠❛❧✐t② ✐♥ t❤❡ ✜rst ♣❛rt ✐s ✐♥ ❛ ❣❡♥❡r❛❧
❝♦♥t❡①t✳ ❍♦✇❡✈❡r✱ t❤❡ ❞✐s❝r❡t❡ ♦❜s❡r✈❛❜✐❧✐t② ✐♥❡q✉❛❧✐t✐❡s t❤❛t ❛r❡ ♦❜t❛✐♥❡❞ ❛r❡ ♥♦t s♦ ♣r❡❝✐s❡
t❤❛♥ t❤❡ ♦♥❡s ❞❡r✐✈❡❞ t❤❡♥ ✇✐t❤ ❈❛r❧❡♠❛♥ ❡st✐♠❛t❡s✳ ■♥ ❛ s❡❝♦♥❞ ♣❛rt✱ ✐♥ t❤❡ ❞✐s❝r❡t❡ s❡tt✐♥❣
♦❢ ♦♥❡✲❞✐♠❡♥s✐♦♥❛❧ ✜♥✐t❡✲❞✐✛❡r❡♥❝❡s ✇❡ ♣r♦✈❡ ❛ ❈❛r❧❡♠❛♥ ❡st✐♠❛t❡ ❢♦r ❛ s❡♠✐✲❞✐s❝r❡t❡ ✈❡rs✐♦♥
♦❢ t❤❡ ♣❛r❛❜♦❧✐❝ ♦♣❡r❛t♦r ∂t − ∂x(c∂x) ✇❤✐❝❤ ❛❧❧♦✇s ♦♥❡ t♦ ❞❡r✐✈❡ ♦❜s❡r✈❛❜✐❧✐t② ✐♥❡q✉❛❧✐t✐❡s
t❤❛t ❛r❡ ❢❛r ♠♦r❡ ♣r❡❝✐s❡✳ ❍❡r❡ ✇❡ ❝♦♥s✐❞❡r ✐♥ ❝❛s❡ t❤❛t t❤❡ ❞✐✛✉s✐♦♥ ❝♦❡✣❝✐❡♥t ❤❛s ❛ ❥✉♠♣
✇❤✐❝❤ ②✐❡❧❞s ❛ tr❛♥s♠✐ss✐♦♥ ♣r♦❜❧❡♠ ❢♦r♠✉❧❛t✐♦♥✳ ❈♦♥s❡q✉❡♥❝❡ ♦❢ t❤✐s ❈❛r❧❡♠❛♥ ❡st✐♠❛t❡✱
✇❡ ❞❡❞✉❝❡ ❝♦♥s✐st❡♥t ♥✉❧❧✲❝♦♥tr♦❧❧❛❜✐❧✐t② r❡s✉❧ts ❢♦r ❝❧❛ss❡s ♦❢ ❧✐♥❡❛r ❛♥❞ s❡♠✐✲❧✐♥❡❛r ♣❛r❛❜♦❧✐❝
❡q✉❛t✐♦♥s✳

❑❡②✇♦r❞s ✿ ❈♦♥tr♦❧❧❛❜✐❧✐t②✱ ❞✐s❝r❡t✐③❛t✐♦♥✱ ♦❜s❡r✈❛❜✐❧✐t② ✐♥❡q✉❛❧✐t②✱ ❈❛r❧❡♠❛♥ ❡st✐♠❛t❡✳

▲❛❜♦r❛t♦✐r❡ ❞❡ ▼❛t❤é♠❛t✐q✉❡s✲❆♥❛❧②s❡✱
Pr♦❜❛❜✐❧✐tés✱ ▼♦❞é❧✐s❛t✐♦♥✲❖r❧é❛♥s
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