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Abstract

Complex organization is found in many biological systems. For example, biopoly-

mers could possess very hierarchic structure, which provides their functional pe-

culiarity. Understating such complex organization allows to describe biological

phenomena and predict molecule functions. Besides, we can try to characterize

the specific phenomenon by some probabilistic quantities (variances, means, etc),

assuming the primary biopolymer structure to be randomly formed according to

some statistical distribution. Such a formulation is oriented toward evolutionary

problems.

Artificially constructed biological network is another common object of statis-

tical physics with rich functional properties. A behavior of cells is a consequence

of complex interactions between its numerous components, such as DNA, RNA,

proteins and small molecules. Cells use signaling pathways and regulatory mech-

anisms to coordinate multiple processes, allowing them to respond and to adapt

to changing environment. Recent theoretical advances allow us to describe cellu-

lar network structure using graph concepts to reveal the principal organizational

features shared with numerous non-biological networks.

The aim of this thesis is to develop bunch of methods for studying statistical

and dynamic objects of complex architecture and, in particular, scale-free struc-

tures which have no characteristic spatial and/or time scale. For such systems

the use of standard mathematical methods relying on the average behavior of the

whole system, is often incorrect or useless, while a detailed many-body descrip-

tion is almost hopeless because of the combinatorial complexity of the problem.

Here we focus on two problems.

The first part address to the statistical analysis of random biopolymers. Apart

from the evolutionary context, our studies cover more general problems of planar

topology appeared in description of various systems, ranging from gauge theory

i



to biophysics. We investigate analytically and numerically a phase transition of

a generic planar matching problem, from the regime where almost all the vertices

are paired, to the situation where a finite fraction of them remains unmatched.

In the second part of this work focus on statistical properties of networks.

We demonstrate the possibility to define co-expression gene clusters within a net-

work context from their specific motif distribution signatures. We also show how

a method based on the shortest path function (SPF) can be applied to gene in-

teractions sub-networks of co-expression gene clusters, to efficiently predict novel

regulatory transcription factors (TFs). The biological significance of this method

by applying it on groups of genes with a shared regulatory locus found by ge-

nomics is presented. Finally, we discuss formation of stable patters of motifs in

networks under selective evolution in context of creation of islands of ”superfam-

ilies”.
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Résumé

De nombreux systèmes biologiques présentent une organisation complexe. Par

exemple, les biopolymères peuvent posséder une structure très hiérarchisée re-

sponsable de leur fonction particulière. Comprendre la complexité de cette organ-

isation permet de décrire des phénomènes biologiques et de prédire les fonctions

des molécules. En outre, en supposant que la structure primaire du polymère

est formée aléatoirement, nous pouvons essayer de caractériser ce phénomène

par des grandeurs probabilistes (variances, moyennes, etc). Cette formulation

est propre aux problèmes d’évolution. Les réseaux biologiques sont d’autres

objets communs de la physique statistique possédant de riches propriétés fonc-

tionnelles. Pour décrire un mécanisme biologique, on utilise différents types de

réseaux biomoléculaires. Le développement de nouvelles approches peut nous

aider structurer, représenter et interpréter des données expérimentales, com-

prendre les processus cellulaires et prédire la fonction d’une molécule.

L’objectif de cette thèse est de développer des méthodes pour l’étude d’objets

statiques ou dynamiques, ayant une architecture complexe. Ici, nous nous intéressons

deux problèmes.

La première partie est consacrée l’analyse statistique des biopolymères aléatoires.

Nous étudions une transition de phase présente dans les séquences aléatoires de

l’ARN. On met alors en évidence deux modes : le régime o presque toutes les

bases qui composent l’ARN sont couplées et la situation o une fraction finie de

ces bases restent non complémentaires.

La deuxième partie de cette thèse se concentre sur les propriétés statistiques

des réseaux. Nous développons des méthodes pour l’identification d’amas de

gènes co-expressifs sur les réseaux et la prédiction de gènes régulateurs novateurs.

Pour cela, nous utilisons la fonction du plus court chemin et l’analyse du profil

des motifs formés par ces amas. Ces méthodes ont pu prédire les facteurs de
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transcription impliqués dans le processus de longévité. Enfin, nous discutons de

la formation de motifs stables sur les réseaux due une évolution sélective.
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Introduction

”I propose to develop first what you might call a naive physicist’s

ideas about organisms,that is, the ideas which might arise in

the mind of a physicist who, after having learnt his physics and,

more especially, the statistical foundation of his science, begins

to think about organisms and about the way they behave and

function and who comes to ask himself conscientiously whether he,

from what he has learnt,from the point of view of his comparatively

simple and clear and humble science, can make any relevant

contributions to the question. It will turn out that he can.

The next step must be to compare his theoretical

anticipations with the biological facts.”

by Erwin Schrodinger,

”What is life?”, 1944.

One of main features of biophysical systems is the presence of selective interactions

between their elements which could have a very complex spatially distributed ar-

chitecture. Developing new mathematical methods for studying statistical and

dynamic properties for such complex systems and, in particular, for structures

which have no characteristic spatial and/or time scale is highly demanded. For

such systems use of standard mathematical methods based on describing of the

average behavior of the whole system, is often incorrect or useless, while a de-

tailed many-body description is almost hopeless because of the combinatorial

complexity of the problem. Situations like that are typical both for a number of

fundamental biophysical and bioinformatic problems, as well as for distributed

systems like networks (not obliged biological).

In this thesis we consider two important complementary problems.

The first part of the thesis deals with investigation of random biopolymers.
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Many molecular biological phenomena are associated with generic properties and

characteristics of polymers: chain structure, flexibility, volume interactions, topo-

logical constraints, etc. At the same time, in a number of biologic processes (which

are definitely the most fundamental in living world), an important role belongs to

certain specific features of the structure of biopolymer molecules themselves. One

can regard a protein or a DNA chain not only as a molecule with peculiar chem-

ical and conformational properties, but also as a weird machine, or automaton,

executing certain operations. From the physical viewpoint, biopolymer molecules

must possess very uncommon (often, hierarchical) structure to function properly.

The problem of describing any phenomenon in such a complex system can be

formulated in two ways.

1. One may search for a precise algorithm to characterize specific and com-

pletely known primary structure with all interactions. Such a formulation

is intended for comparative analysis of existing biopolymers.

2. One may try to characterize the phenomenon by some probability quanti-

ties (variances, means, and so on), assuming the primary structure to be

randomly formed according to some statistical distribution. Such a formu-

lation pursues predictive goals and mostly is oriented toward evolutionary

problems. The primary structures of real biopolymers are quite complex, for

which the correlations between nucleotides are often unknown. So, even in

studies of existing biopolymers with no evolutionary problems in mind, the

random primary structure is frequently regarded as a fairly adequate model

for real complex primary structures, or at least as a reasonable nontrivial

starting point.

This part is devoted to random DNA and RNA sequences. In contrast to lin-

ear DNAs, RNA sequences can form hierarchical cloverleaf-like secondary struc-

tures. We analyze the statistical properties of random RNA-type sequences, in

particular, mean and fluctuation of ground state free energy. The dependence of

structure topology on the alphabet used in random sequence is considered in de-

tail. This analysis oriented to the evolutionary questions (such as ”Why natural

alphabet consists of four different nucleotide types?”, or ”If there are grounds for

a RNA-world hypothesis?”).
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In addition, we consider a model, in which a random RNA-type sequences

has spatial disorder in gaps between distributed along a chain monomers (nu-

cleotides). Using the optimization procedure for a special class of concave-type

potentials, borrowed from optimal transport analysis, we derive the local dif-

ference equation for the ground state free energy of the chain with the planar

(RNA-like) architecture of paired links. We consider various distribution func-

tions of intervals between neighboring monomers and demonstrate the existence

of a topological crossover from sequential to essentially nested configurations of

sequentially paired links.

The second part of thesis deals with the statistical analysis of networks. The

investigation of complex networks constitutes a rapidly developing interdisci-

plinary area, which unites study of various types of experimentally observed

biological, social and engineering networks, as well as artificial random graphs

constructed by various probabilistic techniques. Many statistical properties, in-

cluding the vertex degree distribution, clustering coefficients, “small world” struc-

ture and spectra of adjacency matrices have been studied. Here we show how the

statistical properties of networks can be used in analysis of biological networks.

For the connectivity network in C.elegance we consider different statistical ap-

proaches which allow to predict regulators. Connectivity networks have become

increasingly useful for biology because of the expanding availability of data on the

physical and functional links between individual genes and proteins. This connec-

tivity data enables to expand our knowledge beyond the experimentally validated

results. New functional interactions can be predicted and tested by means of anal-

ysis and theoretical expectations. In this work we demonstrate an application of

several algorithms developed for ranking of potential gene-expression regulators

within the context of an associated network.

In this part we consider as well in detail motif distributions on example of

random Erdös–Rényi networks. It is known that the existence of different three–

vertex motifs (triads) in a directed network are tightly correlated with the network

function. Namely, all naturally observed directed networks can be split into four

broad superfamilies according to their motif distribution, and the networks within

the same superfamily tend to have similar function. However, to the best of

our knowledge, there is still no common opinion on why this clusterization into

superfamilies happens and why some particular motif distributions are preferred
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in natural networks. In this part we put forward a hypothesis which may give at

least a partial answer to this question.

The thesis is organized in eight chapters. In the first chapter, principal charac-

teristics of random biopolymers are described. We consider the main structural

properties of RNA and DNA molecules. The existing approaches for the sec-

ondary RNA structure prediction are discussed in detail. Finally, we present

thermodynamic properties of random RNAs and discuss the corresponding ma-

trix method in context of RNA folding problem.

Our own algorithm is introduced in Chapter 2. We reveal the similarities and

differences between computations of the free energy of associating heteropolymer

complexes and standard matching algorithms. A new statistical method of align-

ment of two heteropolymers which can form hierarchical cloverleaf-like secondary

structures is proposed. This offers a new constructive algorithm for quantita-

tive determination of binding free energy of two RNAs with arbitrary primary

sequences. The proposed algorithm is based on two observations: i) the standard

alignment problem is considered as a zero-temperature limit of a more general

statistical problem of binding of two associating heteropolymer chains; ii) this

last problem is generalized onto the sequences with hierarchical cloverleaf-like

structures (i.e. of RNA-type).

The Chapter 3 focuses on discussion of statistical properties of linear com-

plexes and RNA-type complexes of two pairing RNAs. First, we discuss mean

energy and energy fluctuations as functions of the sequence lengths in random

RNA-RNA complexes. Next, we describe the model used to estimate binding

probability for random sequence polymers in RNA-like complexes. Finally, we

report the results of the analysis of the loop length distribution in complexes and

propose models describing these distributions.

The Chapter 4 deals with statistics of a single random RNA chain. In particu-

lar, we consider the fraction of nucleotides involved in the formation of a cloverleaf

secondary structure as a function of the number of different nucleotide species.

We demonstrate the existence of the morphological phase transition in this sys-

tem. The different models for estimation critical alphabet size are considered. In

particular, we formulate the problem as the perfect matching problem in a ran-

dom Erdos-Renyi graph, which allows us to estimate analytically the transition

point. The analytical estimate is done from naive combinatorics viewpoint and
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by the use of matrix theory description of RNA folding. Finally, the relevance of

the transition from the evolutionary point of view is discussed.

In the Chapter 5 we describe a new toy model of a heteropolymer chain ca-

pable of forming planar secondary structures typical for RNA molecules. In this

model, called the ”random interval model” the sequential intervals between neigh-

boring monomers along a chain are considered as quenched random variables, and

energies of nonlocal bonds are assumed to be concave functions of those intervals.

We demonstrate the possibility to pass from the nonlocal recursion relation for

the ground state free energy to the local recursion relation.

The Chapter 6 summarizes the statistical methods for investigation of net-

works. We present the tools which are widely used in the analysis of the network

architecture. Three structural properties are introduced: the degree distribution,

the clustering coefficient, and the measure of path lengths in networks. Another

structural property, the motif distribution, is discussed separately, because it

plays a particular role in network analysis. We demonstrate how the different

properties of networks can be interpreted from biological point of view. And fi-

nally, we discuss network superfamilies, appeared in investigation of three-node

motif distributions in different networks.

In the Chapter 7 we analyze how different types of connectivity between genes

and proteins affect the topology of the integral functional network of the free-

living nematode C.elegans. We also show how a method based on the short-

est path function (SPF) can be applied to gene interactions sub-networks of

co-expression gene clusters, to efficiently predict novel regulatory transcription

factors (TFs). To demonstrate the usefulness of our methods we predict the reg-

ulators for a cluster of ribosomal/ mRNA metabolic genes and highlight their

potential relevance to regulation of longevity.

In the Chapter 8 we consider random non-directed Erdös–Rényi networks sub-

ject to a dynamics conserving vertex degrees and study analytically and numer-

ically equilibrium three-vertex motif distributions in the presence of an external

field coupled to one of the motifs.
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Chapter 1

Random biopolymers

Biopolymers — natural macromolecular compounds, which serve as the struc-

tural basis of all living organisms [1]. Biopolymers include proteins, nucleic acids

and polysaccharides, there are also mixed biopolymers — glycoproteins, lipopro-

teins, glycolipids, etc. The nucleic acids in a cell operate genetic functions. The

sequence of monomer units, nucleotides, in a DNA determines (in a form of the

genetic code) the sequence of monomer units (residues) and thus, the structure of

an organism and biochemical processes in it. Genetic information is transferred

from a DNA to a RNA synthesized on the DNA as a template, this process is

called transcription [2]. A so-called messenger RNA (mRNA) serves as a tem-

plate for protein synthesis. Biological variability required for evolution occurs on

a molecular level by changes in a DNA. Proteins perform a vast array of func-

tions within living organisms, including catalyzing metabolic reactions, replicat-

ing DNAs, responding to stimuli, and transporting molecules from one location

to another.

Many molecular biological phenomena are associated with quite ordinary

properties and characteristics of polymers — a chain structure, flexibility, vol-

ume interactions, topological constraints, and so on. At the same time, in a

number of biophysical processes (which are definitely the most fundamental in

living world), an important role belongs to certain specific features of the struc-

ture of biopolymer molecules themselves. One can regard a protein or a DNA

chain not only as a molecule of some substance, but also as a machine, executing

certain operations. From a physical viewpoint, biopolymers possess often a very

unusual hierarchical structure to function properly. First, it is well-known that
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each chain of the biopolymer must have a definite sequence of links of different

types; this sequence is formed during biological synthesis and is called the pri-

mary structure of the biopolymer. Second, there should exist an opportunity to

form a short-range order in the spatial arrangement of chain elements dictated by

the interaction of neighboring links in the chain. Usually, the short-range order

in biopolymers manifests itself in form of a helix, or small pins. These elements of

short-range order are called the secondary structure. Third, a biopolymer chain

as a whole must possess a more-or-less defined spatial or tertiary structure, and

this defines the long-range spatial order in the arrangement of links.

The problem of describing any phenomenon in such a system (helix formation,

globule-coil transition, and so on) can be formulated in two ways. First, one may

look for an algorithm to find the characteristics of an investigated phenomenon

for each specific and completely known primary structure. Such a formulation

is intended for research of biopolymers with perfectly known primary structure.

For example, we may study the melting curve of a specific part of a DNA with

known primary structure, or predict secondary and tertiary structures of globular

proteins having known its primary structure. The picture of the registered phe-

nomenon is often insensitive to particular details of the primary structure; and it

is then relevant to resort to ”linguistic” analysis to find the necessary rough char-

acteristics of the ”text” encoded in the primary sequence. Second, one may try to

characterize the phenomenon by some probability quantities (variances, means,

and so on), assuming the primary structure to be randomly formed according to

some statistical distribution. Such a formulation is oriented toward evolutionary

problems. It should be noted that the primary structures of real biopolymers

are quite complex with hidden correlations between the ”letters” constituting

the sequences. Thus even in studies of existing biopolymers with no evolution-

ary problems in mind, the random primary structure is frequently regarded as a

”playing ground” and fairly adequate model for real complex primary structures.

1.1 The ground state of a biopolymer: energy

and structure

The problem of the secondary structure prediction is a central in bioinformat-

ics. The most difficult this problem is for RNA molecules and proteins: their
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secondary structures can have different elements, distinguished by energy and

entropic contributions (Fig. 1.1) [3, 4, 5, 6]. For proteins, for example, the prob-

(a) (b)

Figure 1.1. The secondary structure of RNA. (a) The X-ray structure of the
tRNA from yeast (Image: Yikrazuul/wikipedia); (b) the structural elements of RNA
molecule [7].

lem is even more complicated because there are no strong fixed hydrogen links

(like base pairs in DNA and RNA), secondary structure is stabilized by the vari-

ety of interactions: covalent, ion, hydrogen and hydrophilic-hydrophobic bonds.

Further, we will be interested in RNA-type structures, so we focus here on topo-

logical features of RNA structures and existing approaches of their prediction.

1.1.1 The secondary structure properties of RNA molecules

Ribonucleic acid is a ubiquitous family of large biological molecules that perform

multiple vital roles in the coding, decoding, regulation, and expression of genes.

Together with DNA, RNA comprises the nucleic acids. Cellular organisms use

messenger RNA (mRNA) to convey genetic information (often notated using the

letters G, A, U, and C for the nucleotides guanine, adenine, uracil and cytosine)

that directs synthesis of specific proteins, while many viruses encode their genetic

information using an RNA genome. Some RNA molecules play an active role

within cells by catalyzing biological reactions, controlling gene expression, or

sensing and communicating responses to cellular signals.

RNAs are the specific examples of a wide class of so-called ”associating” het-

eropolymers. Generally speaking, we call a polymer ”associating” if, besides

the strong covalent interactions responsible for the frozen primary sequence of
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monomer units, it is capable of forming additional weaker reversible temperature-

dependent (”thermo-reversible”) bonds between different monomers. For associ-

ating polymers the variety of possible thermodynamic states (”secondary and

ternary structures”, in biological terminology) is determined by the interplay be-

tween the following three major factors: i) the energy gain due to the direct

”pairing”, i.e. formation of thermo-reversible contacts; ii) the combinatoric en-

tropy gain due to the choice of which particular monomers (among those able

to participate in bonds formation) do actually create bonds; iii) the loss of con-

formational entropy of the polymer chain due to pairing (and in particular, the

entropic penalty of loop creation between two paired monomers) [8]. The hydro-

gen bonding and stacking interactions of the hydrophobic nucleobases are major

contributors to the stable association of nucleotides within and between nucleic

acid molecules. Hydrogen bonds are principally characterized by highly specific

electrostatic interactions that stabilize the nucleic acid secondary structure [9].

Watson-Crick hydrogen bonds between the bases of the nucleosides — adenine (A)

and uracil (U) or thymine, and guanine (G) and cytosine (C), and a multitude

of non-canonical hydrogen bonds, play crucial roles in both the secondary and

tertiary structures of nucleic acids and in their functions [10]. Non-canonical

pairs are called wobble base pairs, the most common of them is U–G (Fig. 1.2).

Wobble base pairs can essentially affect on the secondary structure of RNA and

its function. In particular, it was shown, that these bonds play a role in a codon-

anticodon binding process [2]. Theoretical calculations showed that the energy of

U–G bond is comparable with the canonical base pair energies [11] (Tab. 1.1, how-

ever the geometry of wobble bond is quite different from Watson-Crick ones [12].

G–U and A–U base pairs differ from wobble G–U pairs in the type and location of

functional groups that are projected into major and minor grooves. These pairs

also differ in the orientation of the bases with respect to the phosphodiester back-

bone. Whereas the glycosidic angle is similar for all nucleotides in Watson-Crick

pairs, both angles for G and U differ in the wobble pair.

The structural feature of RNA is that the system of formed bonds can be

presented as a set of the nested arcs (see for the details Section 2.3). A pseu-

doknot containing two stem-loop structures in which half of one stem is inter-

calated between the two halves of another stem corresponds intersection in arc

representation. Pseudoknots appear in RNA folding quite rarely (less then 1%),
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Figure 1.2. Watson-Crick base pairs
and wobble pair.

Pair
∆G0

300◦K,
kcal/mol

d, Å

G–C -5.53 2.94
A–U -4.42 2.96
G–U -4.45 3.75

Table 1.1. Energies and hydrogen
bond distances for pairing of
nucleotides [11].

however they bring an important functional role. For example, the telomerase

RNA component contains a pseudoknot that is critical for activity [13], and sev-

eral viruses use a pseudoknot structure to form a tRNA-like motif to infiltrate

the host cell [14].

1.1.2 RNA structure prediction methods

Huge number of various algorithms have been developed for the prediction of

RNA secondary structure from its primary sequence. In theory, the number of

valid secondary structures for a given sequence is greater than 1.8N , where N is

the number of nucleotides [15]. Most folding programs fit into one or more of

four classes:

(i) ”Basic” algorithms predict hairpin and simple loop formation, but they ex-

clude the prediction of multi-branched loops and perform very basic energy

minimization. The first algorithms written were of this type, and most have

been updated or are no longer in use.

(ii) ”Combinatorial” methods generate lists of all possible secondary structure
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elements and piece them together in all possible ways to find those with the

lowest free energy.

(iii) ”Recursive” algorithms build the secondary structure one nucleotide at a

time while computing minimum energies along the way. Dynamic programs,

which employ recursive algorithms, compute folding in time based on low

energy paths of achieving secondary structure.

(iv) ”Comparative sequence analysis” algorithms find conserved structure for a

set of sequences using stochastic optimization on a population of tentative

solutions.

The most popular method based on free energy minimisation [3, 5, 16, 4, 17]

was proposed by M. Zuker and P. Stiegler [3]. The basic idea is that the true

secondary structure must be thermodynamically stable and, thus have a mini-

mum of free energy. To solve the free energy minimization problem the rules to

calculate a pairing energy between nucleotides and effective algorithm of energy

minimization are required. There were many attempts to build the rules for pair-

ing energy calculation based on experimental data [5], the respective algorithms

of energy minimization based on dynamical programming were developed [18].

The main equation for the partition function of RNA sequence is written as

gi,i+k = gi+1,i+k +
i+k∑

s=i+1

βi,sgi+1,s−1 gs+1,i+k (1.1)

where gi,j describe statistical weight of the loop between i-th monomer and j-

th, and βi,j is the Boltzmann weight of the contact between these nucleotides.

Ground state energy is defined respectively as fi,j = kBT ln gi,j. Because of the

base energy exceeds in ten times the room temperature kBT (Tab. 1.1), so-called

zero temperature limit is applied very often. In this approximation, the ground

state is defined by the number of base pairs, chain entropy is neglected. Expres-

sion (1.1) can be extended by different factors like the minimal loop length, the

staking energy, the different entropies of structural RNA elements (Fig. 1.1(b));

a particular case is prediction of pseudoknots [19, 20]. The minimization energy

methods nowadays are the most commonly used. But, unfortunately, these algo-

rithms are not exhaustive, and their accuracy decreases strongly with increasing

11



the sequence length. It should also be noted that an approach quantitatively

assessing the probability of erroneous modeling does not exist yet.

There is a set of other algorithms to find the optimal structure using stochastic

optimization techniques, in particular genetic algorithms. One of the modern

approaches based on the analysis of folding kinetics of RNA [21]. In contrast to

the energy minimization methods not the most stable structure, but the structure

of the kinetically accessible for folding is considered. The wide analysis was not

performed for this approach, but despite the physical clarity, this method contains

a lot of unaccounted factors.

Finally, there is a so-called ”biological” approach based on the idea that bio-

logically important secondary structures must be preserved in evolution [22]. In

this approach, the set of sequences of the same biological role must be analyzed.

However, for analyzing a plurality of polymers energy minimization algorithms

are often used. To conclude, the RNA secondary structure prediction problem is

still open question, and research in this area is ongoing [23, 24, 25, 26, 27].

A particular place among the prediction problems takes the problem of pairing

of RNA with other biopolymers (DNAs, RNAs, proteins).

1.1.3 Pairing of biopolymers

Fig. 1.3(a) presents the basic interaction types between two biopolymers. The

role of DNAs and RNAs in the mechanisms of cell regulation is well known. Their

interaction is one of the necessary stages of the cell cycle associated with the stor-

age and transmission of genetic information. Besides the well-known mechanisms

of translation and transcription of genetic information, which involve DNA–RNA

complexes (Fig. 1.3(b)), an exceptionally important role plays RNA–RNA inter-

actions. These interactions have a crucial value for regulation of gene expression

[28, 29, 30]. Schematically, the formation of an RNA–RNA complex occurs by

complementary base pairing of an RNA with a messenger RNA (mRNA) or its

segment, which precludes translation from the mRNA [28]. The RNA molecules

participating in processes of this type are called noncoding RNAs (ncRNAs) be-

cause they are not themselves translated into proteins [29] and are therefore left

out of translation process.
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(a)

(b)

Figure 1.3. The four principles of nucleic acid and protein interactions (a)
and their functions (b). (1) RNAprotein interactions, (2) DNA–RNA
hybridization-based interactions, (3) DNA–protein interactions and (4) RNA–RNA
hybridization based interactions [31]. (b) Each of these performs various functions in
a cell. For example, RNA–protein interactions and DNA–RNA binding lead to
localization of the protein in specific DNA and thus regulate transcription from this
DNA [32, 33]; Interaction of RNA–protein complex with a complex protein-DNA
leads to a set of proteins, which are specific to concrete DNA through the formation
of RNA–DNA bonds; ribosome is a multifaceted complex of RNA–protein
interactions, whose functionality provides by ”correct” RNA–RNA binding; regulation
of telomerase replication is an example of combining RNA–protein, RNA–DNA and
protein–DNA interactions [34].
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In view of the important role of RNA–RNA interactions in biological pro-

cesses, an efficient algorithm is required for theoretically calculating the RNA–

RNA binding energy given the primary sequences, as well as for predicting ncRNA

secondary structure (i.e., thermodynamically optimal intra-chain bonding archi-

tecture). It is shown below that this problem is closely related to the alignment

problem for two linear sequences (DNA-type). One important distinction of RNA

alignment from the analogous problem for DNA is the existence of nontrivial sec-

ondary structure of RNA molecules (Fig. 1.1).

There are many different approaches for prediction energy and structure of

RNA–RNA pairing complex [35, 36, 37, 38, 39]. However, they are applicable

in narrow class of RNA molecules and ”work” well just in specific samples. In

analogy to the RNA structure prediction problem, the efficiency here also depends

on a choice of conditions.

Certainly, the disadvantages of a particular method may be important for

predicting the structure of a concrete RNA molecule and lead to incorrect con-

clusions about its function. However, for the study of statistical properties of

random RNA sequences, i.e. chains with random primary structures, is sufficient

to take into account the fundamental properties of the biopolymer. For RNA,

primarily, it is a complex hierarchical cloverleaf-type structure formed according

to the complementarity rules. And we can neglect that properties which affect

on the structure (and function) in a definite molecule — pseudoknots, stacking

interactions and others.
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1.2 Statistical properties of biopolymers

In this work, we are not concerned with the structure formed by a specific se-

quence. Instead, we will consider statistical properties of secondary structures of

long (more than 1000 monomers) random RNA sequences. This research plays

an important role, for example, in understanding how close or far in evolutionary

terms random RNAs from real molecules [40], or what properties are the most es-

sential for performing a definite function and finally, how functional RNAs could

appear from random ones [41]. Random RNAs are also quite traceable system

for the study of thermodynamical properties. Investigations of phase transi-

tion [42, 43, 44], chain response on external force [45, 46] are based on the model

of a random polymer. The essential advantage of random polymer is the oppor-

tunity to solve the problems as numerically as well analytically. In this section we

focus on two problems in statistical physics of random RNAs: thermodynamical

properties and description of RNA folding in terms of random matrix theory.

1.2.1 Thermodynamical properties of random RNAs

For random heteropolymer sequence the important stages were performed in the

study of thermodynamical properties of RNA molecules. These results are widely

used in the development of screening methods of experimental data for detection

of genetic markers of diseases [47], sequencing of single nucleotide polymorphisms,

selection of optimal condition in hybridization and cloning experiments [48, 49].

In addition, the development of DNA chips for rapid screening and sequencing

is based on the ability to predict thermodynamical stability of complexes formed

by oligonucleotide probes [50, 51].

From the pioneering works of R. Bundschuh and T. Hwa [42, 52, 43], the

study of thermodynamical properties of random RNAs were considered by many

researchers [44, 53, 54, 55]. To date, it is accepted to believe that random RNA

undergoes a phase transition from the high temperature molten phase to the

low temperature glass phase. Based on the replica analysis, M. Lassig and K.J.

Wiese [56] and F. David and K.J. Wiese [57] formulated the problem of the

transition in terms of field theory. We give below the arguments of R. Bundschuh

and T. Hwa, proving the existence of a phase transition and discuss the properties

of the different phases.
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In the high-temperature phase the system remains in the molten phase, char-

acterized by a flat free energy landscape and a homopolymer-like behavior. In

the molten phase the disorder is irrelevant, and all the binding energies can be

replaced by some effective value ε. Carrying out the two-replica calculation, au-

thors [43] were able to prove that the system exhibits a phase transition from

a high-temperature regime, in which the replicas are independent, to a lower

temperature phase, in which the disorder is relevant and replicas are strongly

coupled. The authors numerically characterized the transition to a glassy phase

by imposing a pinch between two bases and measuring the corresponding energy

cost (Fig. 1.4(a)).

(a)

(b) (c)

Figure 1.4. The pinch energy calculation procedure. (a) division of a
chain into halves restrict the number of possible configurations; (b) shows the
positions of two pieces with exactly complementary bases, one of which is between
positions 1 and L/2 and the other of which is between positions L/2 + 1 and L. Such
a piece of length l ∼ lnL can be found for almost all sequences; (c) shows how
restricting configurations to those in which the good match forms Watson-Crick base
pairs splits the molecule into two loops, which can still form base pairs within the
loops independently of each other [43]

Consider a pinch energy, which is ∆F (L) = kBT lnP1,L/2, where P1,L/2 is the

probability of binding between 1 and L/2 monomer of the chain of the length L.

The pinch energy can be presented as

∆F (L) = F1,L − (F1,L/2 + FL/2+1,L) (1.2)
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In the high temperature regime the probability P (L/2) of the contact depends

only on the distance between the monomers, one just needs to recognize that

P (L) corresponds in the random walk analogy to the first-return probability of a

random walk after L steps

P (L/2) =
(L/2)−

3
2 (L/2)−

3
2

L− 3
2

(1.3)

So the pinch energy is

∆F (L) ∼ 3

2
kBT lnL (1.4)

The linearity of ∆F (L) is broken at some point Tg, which is the phase transition

temperature. For determination of this temperature the following procedure is

usually used. The function ∆F (L) is fitted by a linear law

∆F (L) = a(T ) lnL+ b(T ) (1.5)

Secondly, the dependence of the slope a(T ) on the temperature is built. In the

high temperature phase with good accuracy a(T ) = 3
2
T (Fig. 1.5), as in low tem-

perature, the pinch energy is defined by disorder in a polymer (Fig. 1.4(b,c)).

The probability to have a contact between 1-st and L/2-th monomers is deter-

Figure 1.5. Prefactor a(T) of the logarithmic dependence (1.5) for random
RNA sequences generated by the sequence disorder model. At high
temperatures, the prefactor indicated by the circle is well described by the dashed line
(3/2)kBT expected of the molten phase [43]
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mined by energetic factors, such as a specific energy per a pair of nucleotides,

average number of gaps. The linear dependence of a(T ) is broken (Fig. 1.5). It

was proposed that the pinch energy in low temperature phase also have quadratic

correction in the logarithm [54].

The transition between the high temperature molten phase and the low tem-

perature glass phase belongs to the continuous phase transition of the second

order [56]. It was shown that the transition temperature depends on the average

number of gaps in the ground state structure [43]. But, analytical estimates of

the transition point differs from numerical result by a order [43].

The high temperature and the low temperature phases have different scaling

properties. One of the quantities that describes a secondary structures, is its

”size profile”. This value measures the maximal number of pairing one has to

cross to go from a pair involving base 1 to the base with the maximal extent

of nesting. This quantity can be very easily visualized as the ”height” of the

mountain representation of the secondary structure as shown in Fig. 1.6.

(a) (b)

Figure 1.6. Characteristic size of RNA secondary structure. The height
diagram (a) in arc representation is defined by the number of base pairs to be
unzipped in the largest loop (b) [42].

It was shown numerically [43] and then proved analytically [57], that the

low temperature phase is characterized by a power law dependence of h on the

sequence length:

< h >∼ Lζ (1.6)

with the exponent ζ ≈ 0.64, that is close to ζ0 = 2/3, and points to Kardar-

Parizi Zhang class universality [58]. This scaling behavior is typical for corre-

lated processes like surface growth or ballistic deposition [59]. High temperature

regime is characterized by ζ ≈ 0.54 [43], which is in agreement with the expected
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value ζ0 = 1/2, describing a size of a random polymer coil [60].

Several other works [53, 61] used an alternative, so-called ”coupling” method,

to investigate the nature and the scaling laws of the glassy phase, observing the

effect of typical excitations imposed by a bulk perturbation. The authors argued

that for the models with non-degenerate ground states, the low-temperature phase

is not marginal, but is governed by a scaling exponent, close to θ = 1/3. The

explicit numerical studies of the specific heat demonstrate that the molten-glass

transition is only a fourth order phase transition [44].

It is worth noting that an essential role in analytic study of the scaling prop-

erties deals with the matrix approach. The field theory analysis allows to suggest

that the primary freezing occurs above some critical temperature, with local is-

lands of stable folds forming within the molten phase [56]. The next subsection

is devoted to matrix description of secondary structure of random RNA.

1.2.2 RNA folding and matrix theory

We formulate the RNA folding problem as a N × N matrix field theory. This

matrix formalism allows us to give a systematic classification of the terms in

the partition function according to their topological character. The theory is

set up in such a way that the limit N → ∞ yields the clover-leaf secondary

structure (Hartree theory). Tertiary structure and pseudo-knots are obtained by

calculating the 1/N2 corrections to the partition function.

For our purposes we could think of the nucleotides as beads on a flexible chain,

with the beads to be ”glued” together in pairs. As discussed in detail in [62], the

partition function of a random chain can be represented as follows:

ZL = 1 +
∑

<ij>

Vi,j +
∑

<ijkl>

Vi,jVk,l +
∑

<ikjl>

Vi,jVk,l + ... (1.7)

where Vi,j = exp(−βǫi,j) is the Boltzmann weight of the contact (i, j) with re-

spective energy ǫi,j; < ij > denote all pairs with i < j, < ijkl > all quadruplets

with i < j < k < l and so on. Each term in (1.7) corresponds to its own arc

configuration. In this representation, the chain nucleotides are points, oriented

from the 5‘ to 3‘ end of the molecule and each base pair in the structure is the

arc between respective points. Diagram, consisting of non-intersecting arcs are

called planar.
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The planar diagrams play an important role in various branches of theoretical

physics, such as matrix and gauge theories [63], many-body condensed matter

physics[64], quantum spin chains [65] and random matrix theory [66].

The basic idea of matrix description is the following [62]. Consider the quan-

tity:

ZL(N) =
1

AL(N)

∫ L∏

k=1

dφke
−N

2

∑

i,j(V
−1)i,jtr(φiφj)

1

N
tr

L∏

l=1

(1 + φl) (1.8)

Here φi, i = 1, ...., L denote L independent N × N Hermitian matrices and
∏L

l=1(1 + φl) represents the ordered matrix product (1 + φ1)(1 + φ2)...(1 + φL).

The normalization factor A(L) is defined by

LL(N) =

∫ L∏

k=1

dφke
−N

2

∑

i,j(V
−1)i,jtr(φiφj) (1.9)

and V is symmetric L × L matrix with the elements Vi,j. The matrix integral

defines a matrix theory with L matrices. The integral (1.8) evaluates precisely

to the infinite series

ZL(N) = 1 +
∑

<ij>

Vi,j +
∑

<ijkl>

Vi,jVk,l +
1

N2

∑

<ikjl>

Vi,jVk,l + ... (1.10)

The relation with the expansion in (1.7) is obvious. The two series coincide for

N = 1, whereas for N > 1 the series in (1.7) contains topological information.

All the planar structures are given by the O(1) term of (1.7) and higher-order

terms in 1/N2 correspond to RNA secondary structures with pseudoknots. The

classification of pseudoknots induced by this expansion is reviewed in [67].

Generically for given RNA, described by the matrix Vi,j, the problem of de-

termination of all possible configuration is quite complicated. In order to get

exact results, one makes a set of additional simplifications. We can assume that

any possible pairing between nucleotides is allowed (independently of the type of

nucleotides and from their distance along the chain) and that all the pairings may

occur with the same probability. In other words, we assume that the matrix Vi,j

has all entries equal with υ > 0. In this case each term in (1.10) provides an in-

formation about topology and number of contacts in a structure (Tab. 1.2). The

multidimensional integral (1.8) can be converted by the Hubbard–Stratonovich
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transformation into the one-dimensional integral, including the spectral density of

Gaussian random matrices [68]. The expression for the spectral density is known

from random matrix theory [69] and, thus, the integral (1.8) can be calculated

exactly. Let us illustrate this point by a simple example for L = 4. In this case

the partition function Z4(N) = 1 + 6υ + 2υ2 + υ2/N2 and all possible contact

structures are listed in Fig. 1.7.

Figure 1.7. All possible arc diagrams with L = 4. Diagrams with i arcs are
associated with the power vi, and g is the genus.

In general case 1/N2 expansion of partition function ZL(N) can be written

ZL(N) =
∞∑

L=0

al,gυ
l

N2g
(1.11)

where the coefficients al,g give exactly the number of diagrams at fixed length L

and fixed genus g (g = 0 for planar diagrams, g = 1 for configurations with one

pseudoknot and so on.) with l base pairs (arcs) (Tab. 1.2).

Expansion of ZL(N) for the orders higher than 1/N2 counts structures with

complex pseudoknots (g > 2). The theory of these configurations is given in [71].
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L ZL(N)
1 1
2 1 + υ
3 1 + 3υ
4 1 + 6υ + 2υ2 + υ2/N2

5 1 + 10υ + 10υ2 + 5υ2/N2

6 1 + 15υ + 30υ2 + 5υ3 + (15υ2 + 10υ3)/N2

7 1 + 21υ + 70υ2 + 35υ3 + (35υ2 + 70υ3)/N2

8 1 + 28υ + 140υ2 + 140υ3 + 14υ4+
(70υ2 + 280υ3 + 70υ4)/N2 + 21υ4/N2

Table 1.2. 1/N2 expansion of partition function (1.8) for different sequence
length L [70].
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Chapter 2

Algorithm for RNA energy and

structure prediction

In this chapter we reveal the similarities and differences between computations of

the free energy of associating heteropolymer complexes and standard matching

algorithms. The matching (or ”alignment”) problem, even for linear structures is

one of the key tasks of computational evolutionary biology. In particular, one of

the most important applications of Longest Common Subsequence (LCS) search

in linear structures is a quantitative definition of a ”closeness” of two DNA se-

quences. Such a comparison provides information about how far, in evolutionary

terms, two genes of one parent have deviated from each other. Also, when a new

DNA molecule is sequenced in vitro, it is important to know whether it is really

new or it is similar to already existing molecules [72, 73]. This is achieved quan-

titatively by measuring the LCS of the new molecule with other ones available

from databases. The task of the present work consists of extending the statisti-

cal approach developed for alignment of linear sequences to the computation of

pairing free energy of two RNA–type structures. First, we reformulate a pairwise

sequence alignment problem as a problem of finding the ground state free energy

(i.e., in the limit of T → 0) in a statistical model of linear polymer associates

(complexes). Second, we take into account the capability of each polymer to fold

in a hierarchical RNA-like structures and derive an expression for the partition

function of such a complex at nonzero temperature. Third, going back to the

limit of T → 0 in the final expression, we obtain nonlocal recursion relations for

determining the ground state energy of a RNA-RNA complex. The developed
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algorithm also allows to reconstruct the optimal secondary RNA structure (and

the structure of RNA-RNA complex). We demonstrate the recovery procedure

in detail and discuss on example of two real RNAs.

2.1 Alignment of linear sequences

The problem of finding the LCS of a pair of linear sequences drawn from the

alphabet of c letters is formulated as follows. Consider two sequences α =

{α1, α2, . . . , αm} (of the length m) and β = {β1, β2, . . . , βn} (of the length n).

For example, let α and β be two random sequences of c = 4 base pairs A, C,

G, T of a DNA molecule, e.g., α = {A,C,G,C,T,A,C} with m = 6 and β =

{C,T,G,A,C} with n = 5. Any subsequence of α (or β) is an ordered sublist of α

(and of β) entries which need not to be consecutive, e.g, it could be {C,G,T,C},
but not {T,G,C}. A common subsequence of two sequences α and β is a sub-

sequence of both of them. For example, the subsequence {C,G,A,C} is a com-

mon subsequence of both α and β. There are many possible common subse-

quences of a pair of initial sequences. The aim of the LCS problem is to find

the longest of them. This problem and its variants have been widely studied

in biology [74, 75, 76, 77], computer science [78, 79, 80, 81], probability the-

ory [82, 83, 84, 85, 86, 87] and more recently in statistical physics [88, 89, 90, 42].

The basis of dynamic programming algorithms for comparing genetic se-

quences has been formulated for the first time in [91] (see also [92]). In general

setting this algorithm takes into account the number of perfect matches and the

difference between mismatches and gaps. Being formulated in statistical terms,

it consists in constructing the ”cost function”, F , having a meaning of an energy

(see, for example [93, 89] for details)

F = Nmatch + µNmis + δ Ngap (2.1)

Where Nmatch, Nmis and Ngap are respectively the numbers of matches, mis-

matches and gaps in a given pair of sequences, and µ and δ are respectively

the energies of mismatches and gaps. Without the loss of generality, the energy

of matches can be always set to 1. Besides (2.1) we have an obvious conservation
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law

n+m = 2Nmatch + 2Nmis +Ngap (2.2)

which allows one to exclude Ngap from (2.1) and rewrite it as follows:

F = Nmatch+µNmis+δ(n+m−2Nmatch−2Nmis) = = (1−2δ)Nmatch+(µ−2δ)Nmis+const

(2.3)

In (2.3) the irrelevant constant δ(n+m) can be dropped out.

Adopting (1− 2δ) as a unit of energy, we arrive at the following expression

F̃ = Nmatch + γNmis (2.4)

where

γ =
µ− 2δ

1− 2δ
(2.5)

and γ ≤ 1 by definition. The interesting region is 0 ≤ γ ≤ 1, otherwise there

are no mismatches at all in the ground state (i.e., there is no difference between

γ = 0, which corresponds to simplest version of the LCS problem, and γ < 0).

It is known [89, 52] that the maximal cost function

F̃max = max [Nmatch + γNmis] (2.6)

can be computed recursively using the ”dynamic programming”

F̃max
m,n = max

[

F̃max
m−1,n, F̃

max
m,n−1, F̃

max
m−1,n−1 + ζm,n

]

(2.7)

with

ζm,n =







1, match

γ, mismatch
(2.8)

The expressions (2.7)—(2.8) have the following meaning. Starting from the left

ends of sequences, in each step we chose a such alignment, which contributes

to the cost function F the maximum. The terms in (2.7) correspond to three

possible matching situations: a gap in first sequence, a gap in second, and a

matched pair (i,j) of nucleotides.
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2.2 Matching vs pairing of two random linear

heteropolymers

Consider the statistical model describing the formation of a complex of two het-

eropolymer linear chains with arbitrary primary sequences. Let these chains be

of the lengths L1 = mℓ and L2 = nℓ respectively. In what follows we shall mea-

sure the lengths of the chains in number of monomers, m and n, supposing that

the size of an elementary unit, ℓ, is equal to 1. Every monomer can be chosen

from a set of c different types A, B, C, D, ... . Monomers of the first chain

could form saturating reversible bonds with monomers of the second chain. The

term ”saturating” means that any monomer can form a bond with at most one

monomer of the other chain. The bonds between similar types (like A–A, B–B,

C–C, etc.) have the attraction energy u and are called below ”matches”, while

the bonds between different types (like A–B, A–D, B–D, etc.) have the attrac-

tion energy v and are called ”mismatches”. This general description covers both

cases (DNA and RNA) by a straightforward redefinition of letters. In real DNA

matches are the base pairs, forming according to the complementarity rules (see

paragraph 1.1.1). In general case the energies of the base pairs can be differ-

ent (Tab. 1.1). Suppose also that some parts of the chains can form loops. These

loops obviously produce ”gaps” since the monomers inside the loops of one chain

have no matching (or mismatching) counterparts in the other chain. Schemat-

ically a particular configuration of the system under consideration for c = 2 is

shown in Fig. 2.1.

Our aim is to compute the free energy of the described model at sufficiently

low temperatures under the assumption that the entropic contribution of the loop

formation is negligible compared to the energetic part of the direct interactions

between chain monomers. Let Gm,n be the partition function of such a complex;

Gm,n is the sum over all possible arrangements of bonds. In the low–temperature

limit we can write Gm,n recursively:







Gm,n = 1 +

m,n
∑

i,j=1

βi,j Gi−1,j−1

Gm,0 = 1; G0,n = 1; G0,0 = 1

(2.9)
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Figure 2.1. Linear pairing complex. Schematic picture of binding of two
heteropolymer chains with two types of letters (c = 2).

The meaning of the equation (2.9) is straightforward. Starting from, say, the left

ends of the chains shown in Fig. 2.1 we find the first actually existing contact

between the monomers i (of the first chain) and j (of the second chain) and sum

over all possible arrangements of this first contact. The first term ”1” in (2.9)

means that we have not found any contact at all. The entries βi,j (1 ≤ i ≤
m, 1 ≤ j ≤ n) are the statistical weights of the bonds which are encoded in a

contact map {β}(for simplisity we believe T = kBT ):

βm,n =







β+ ≡ e−u/T , match

β− ≡ e−v/T , mismatch
(2.10)

The straightforward computation shows that the partition function Gm,n (2.9)

obeys the following exact local recursion

Gm,n = Gm−1,n +Gm,n−1 + (βm,n − 1)Gm−1,n−1 (2.11)

Note that if βi,j = 2 for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, the recursion relation

(2.11) generates the so-called Delannoy numbers [94].

Let us point out that since we are working at finite temperatures, the account

for ”loop factors” is desirable. Under the ”loop factor” we understand the entropic

contribution to the free energy of the entire system coming from the fluctuations
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of parts of heteropolymer chains between successive contacts. Obviously, in the

zero–temperature limit these fluctuations vanish.

Write the partition function Gm,n as Gm,n = exp{Fm,n/T}, where −Fn,m and

T are the free energy and the temperature of the complex of two heterogeneous

chains of the lengths m and n. Considering the T → 0 limit of the equation

(2.11), we get

Fm,n = lim
T→0

T ln
(

eFm−1,n/T + eFm,n−1/T + (βm,n − 1) eFm−1,n−1/T
)

(2.12)

which can be regarded as an equation for the ground state energy of a chain. The

expression (2.12) reads

Fm,n = max [Fm−1,n, Fm,n−1, Fm−1,n−1 + ηm,n] (2.13)

where

ηm,n = T ln(βm,n − 1) =







η+ = T ln(eu/T − 1) match

η− = T ln(ev/T − 1) mismatch
(2.14)

Indeed, the ground state energy (2.13) may correspond either: (i) to the last two

monomers connected, then the ground state energy equals F̃max
m−1,n−1+ζM,N , or (ii)

to the unconnected end monomer of the fist (or second) chain, then the ground

state energy is F̃max
m,n−1 (or F̃max

m−1,n).

Taking η+ as the unit of the energy, we rewrite (2.13) in a form, which is

identical to the dynamic programming equation (2.7):

F̃m,n = max
[

F̃m−1,n, F̃m,n−1, F̃m−1,n−1 + η̃m,n

]

(2.15)

with

η̃m,n =







1, match

a =
η−

η+
, mismatch

(2.16)

(compare to (2.8)). In the low–temperature limit the parameter a has simple

expression in terms of the coupling constants u and v:

a =
η−

η+
=

ln(ev/T − 1)

ln(eu/T − 1)

∣
∣
∣
∣
T→0

=
v

u
(2.17)
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The initial conditions for F̃m,n are transformed into F̃0,n = F̃n,0 = F̃0,0 = 0.

Extrapolating the free energy of linear sequences to zero temperature we re-

cover (for linear sequences only) the well–known standard dynamic programming

algorithm described in (2.7)–(2.8).

2.3 Matching vs pairing of two random RNA-

type heteropolymers

Having the applications to RNA molecules in mind, we assume that the struc-

tures formed by thermo-reversible bonds of each chain are always of a clover-leaf

or a cactus–like type, as shown in Fig. 2.2(a). It means that we restrict ourselves

to the situation in which the chain conformations with ”pseudoknots” shown

in Fig. 2.2(b) are prohibited. The difference between allowed and not allowed

structures becomes more transparent, being redrawn in the following way. Rep-

resent a polymer under consideration as a straight line with active monomers

situated along it in the natural order, and depict the bonds by dashed arcs con-

necting the corresponding monomers. Now, the absence of pseudoknots means

the absence of intersection of the arcs – see Fig. 2.2(c,d).

(a) (b) (c) (d)

Figure 2.2. Arcs representation of RNA structure. (a,b) Schematic picture of
allowed (a) cactus–like and prohibited (b) pseudoknot configurations of the bonds;
(c,d): Arc diagrams corresponding respectively to configurations (a) and (b) (note the
intersection of arcs in (d)).

We assume for simplicity, that besides the pseudoknots, all other bond con-

figurations are allowed. This means, in particular, that at the moment we do

not require any minimal loop length, as well as we do not yet take into account

the cooperativity effect. The cooperativity means that if two links are connected
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with each other, then the two adjacent links have larger probability to be also

connected. These assumptions are known to be false for real RNA molecules (for

example, there are no loops shorter than 3 monomers in RNA chains [95]). How-

ever, one can speculate that (see, for example, [96]) if the links of the chain are

considered as renormalized quasi–monomers consisting of several ”bare” units,

these assumptions seem to be plausible. Nevertheless, in the last section of this

chapter we consider the effect of the minimal loop length on an example of RNA

sample.

Let us remind that one of the goals in this work consists in developing an

algorithm for the computation of the cost function, which characterizes the sim-

ilarity of two RNA–type random sequences. To succeed, we should incorporate

in the conventional cost function discussed above the contribution coming from

the entropy of different rearrangements of cactus–like conformations typical for

RNAs. It is not obvious how to do that directly in the frameworks of the dynamic

programming approach formalized in the recursion relation (2.7).

Following [97] we write the partition function Gm,n of a complex of two het-

eropolymers capable of forming a cactus–like structure (compare with (2.9)):







Gm,n = g
(1)
1,m g

(2)
1,n +

m,n
∑

i,j=1

βi,j Gi−1,j−1 g
(1)
i+1,m g

(2)
j+1,n

Gm,0 = g
(1)
1,m; G0,n = g

(2)
1,n; G0,0 = 1

(2.18)

where g
(1)
i,j and g

(2)
i,j are the partition functions of individual chains. They satisfy

the self–consistent equation [98, 99]:







g
(a)
k,n = 1 +

n−1∑

i=k

n∑

j=i+1+ℓ

β′
i,jg

(a)
i+1,j−1 g

(a)
j+1,n;

g
(a)
0 = 1, a = 1, 2.

(2.19)

This equation generates the topology of cactus–like RNA structures and it has

frequently appeared in the RNA context (see, for example, [42, 95, 53, 97]). Here

g
(a)
i,j is the statistical weight of the loop from the nucleotide i till the nucleotide j

in the 1-st (a = 1) or 2-nd (a = 2) sequence. The Boltzmann weights β′
i,j are the

constants of self–association, which are, similarly to βm,n, encoded by the contact

map. The summation over j runs from i+1+ℓ till n ensuring the absence of loops
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of lengths smaller than ℓ monomers, in what follows we mostly consider ℓ = 3.

Note also, that since in this paper we are interested in the low–temperature

behavior of the partition function, we neglect here the aforementioned ”loop

weights”, i.e. entropic factors due to the formation of intra–chain loops loops.

Figure 2.3. Diagrammatic form of the Dyson–type equation. This equation
is specific for the partition function of an individual chain gn with cactus–like
topology (2.19).

Equations (2.18)–(2.19) constitute the analytical basis of our numerical stud-

ies, for the problem of RNA–like matching (i.e. matching of sequences with RNA–

type architecture). These equations replace the dynamic programming algorithm

(2.15)–(2.16) valid for linear sequences.

Now, the ground state free energy Fm,n (i.e. the binding free energy at zero

temperature) for RNA–like structures can be explicitly computed by extending

the approach developed in Section 2.2. Indeed, taking the zero–temperature limit

in (2.18) (compare to (2.12)–(2.13)) we get:

Fm,n = max
i=1,...,m
j=1,...,n

[

f
(1)
1,m + f

(2)
1,n, Q

m,n
i,j

]

(2.20)

where f
(a)
i,j = limT→0 T ln g

(a)
i,j (a = 1, 2) are the free energies of individual sub-

sequences from the nucleotide i till the nucleotide j, and Qm,n
i,j is the zero–

temperature limit of the (i, j)-th term in (2.18):

Qm,n
i,j = Fi−1,j−1 + f

(1)
i+1,m + f

(2)
j+1,n + η̃i,j (2.21)

Clearly, Qm,n
i,j has a meaning of the ground state free energy of a complex which

is forced to have a bond in position (i, j). In turn, the ground state energy of a

single chain satisfies the following equation:

f
(a)
i,j = max

r=1,...,i
s=i+1+ℓ,...,j

[

f
(a)
r+1,s−1 + f

(a)
s+1,j + η̃′(a)r,s

]

(2.22)

Here the values η̃i,j are the inter–sequence matching constants (the same in (2.16)),
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while η̃
′(a)
i,j are the intra–sequence matching constants.

The boundary conditions for the ground state free energy follow from the

boundary conditions of the partition function (2.18):







F0,0 = 0;

Fi,0 = f
(1)
1,i ; 1 ≤ i ≤ m

F0,j = f
(2)
1,j ; 1 ≤ j ≤ n

(2.23)

Thus, to compute the ground state free energy of a complex of two RNA–like

sequences, we should first reconstruct the matrices f (1) and f (2) for individual

chains by applying (2.22) and then find the matrix F using (2.21). The bound-

ary conditions (2.23) together with (2.22) allow us to compute the elements of

the matrices Q1,j for m = 1 and any 1 ≤ j ≤ n. Knowing the corresponding

matrix Q1,j we define the elements F1,j (1 ≤ j ≤ n) of the free energy matrix

by using (2.21). Then we proceed recursively and determine the matrices Q2,j,

compute F2,j (1 ≤ j ≤ n), etc. Clearly, this algorithm can be completed in time

of order O(m2 × n2).

Note, that expression (2.22) can be used for the determination of a structure

of a single RNA chain. From statistical point of view (in contrast to biological

meaning), it does not matter what is under consideration — a single chain or a

RNA-RNA complex.

2.4 Structure recovery

In this Section we describe the implementation of the structure recovery algorithm

for linear and cactus–like structures by the corresponding matrices of free energies

F at zero temperature. Let us point out that due to degeneration, the restored

sequence is one among the ensemble of sequences with the same free energy.

2.4.1 Finding the Longest Common Subsequence for lin-

ear chains

As we have already discussed, sequence matching problem for linear structures

consists in finding the longest common subsequence (possible with gaps) of two
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given sequences of nucleotides. Let us demonstrate on simple example how the

algorithm works. Consider two sequences of m = n = 6 nucleotides:

C G U U C C −S1
G C G G A A −S2

Construct the incidence matrix η with ηi,j = 1 if monomers i of the 1st sequence

and j of the second one match each other, and ηi,j = 0 otherwise – see Fig. 2.4(a).

In Fig. 2.4(b) we have shown the matrix of ground state free energies, F , com-

puted via the recursion algorithm (2.15)–(2.16).

(a) (b)

(c) (d)

Figure 2.4. Linear pairing algorithm.(a) Incidence matrix η, (b) ground state
free energy matrix F ; (c)-(d) structure recovery algorithm for linear chains.

In order to see which nucleotides form links, let us proceed as follows. Take

the element Fi,j of the matrix F and compare its value to the values of three

neighboring matrix elements Fi−1,j−1, Fi−1,j, Fi,j−1. Now we take the following

33



decisions:

• If Fi−1,j−1 = max [Fi−1,j−1, Fi−1,j, Fi,j−1] then i of the 1-st sequence is linked

to j of the 2-nd one;

• If Fi−1,j = max [Fi−1,j−1, Fi−1,j, Fi,j−1] then we skip the element i in the 1-st

sequence;

• If Fi,j−1 = max [Fi−1,j−1, Fi−1,j, Fi,j−1] then we skip the element j in the

2-nd sequence.

This procedure begins with the element Fm,n.

This prescription for computing the matrix of ground state free energies shown

in Fig. 2.4(b) gives (due to degeneration) many sequences with the same value of

the free energy. Two possible realizations are depicted in Fig. 2.4(c,d).

2.4.2 Finding the secondary structure for interacting RNA–

like chains

The structure recovery for the chains with cactus–like structures is much more

involved problem, however it can also be described recursively. In this case the

algorithm consists of the following successive steps:

Figure 2.5. The structure recovery algorithm scheme for RNA-type
complex.

Beginning with the element Fm,n, we look at the respective matrixQ(Fm,n) (2.23).

The maximal element of this matrix Qmax = Qp,q either
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• Qmax = F , and it means the presence of the contact (p, q) in the folding. We

look for the next pair (s, r), substituting p− 1 and q − 1 in our procedure;

or

• Qmax < F , then (according to (2.23)) there are no any more pairs of linked

nucleotides in the considered branching structure.

Knowing pairs of linked nucleotides, for example, (p, q) and (s, r), we reconstruct

the structure of the loops between the paired nucleotides by the corresponding

loop energies f
(1)
p,s and f

(1)
q,r .

Below we demonstrate on simple example how this algorithm works. Take

two sequences S1 and S2:

A U C U C A C −S1
G C C A G G G −S2

The respective incidence matrices η′ (for intra–matching S1–S1), η′′ (for intra–

matching S2–S2), and η (for inter–matching S1–S2) are shown in Fig. 2.6(a,b,c)

respectively.

The matrices of effective statistical weights f (1) and f (2) of first and second

sequences, as well as the ground–state free energy matrix F , are shown in the

Fig. 2.6 (d),(e) and (f) respectively. The elements fm+1,j and fn+1,j, which for-

mally present in the computations, are set to zero: fm+1,j = fn+1,j = 0 for all

j.

According to our scheme, we consider the matrices Q for established contacts.

For example, the maximal element Q7,7 for F7,7 shows that 7-th monomer of S1

and 7-th nucleotide of S2 form the base pair in optimal configuration. In the

next step, the matrix Q for the element F6,6 is considered. If the Q has several

maximal elements, it indicates about the degeneracy of the ground state structure

and the procedure must be performed for all possible states. The loop structures

can be reconstructed by corresponding statistical weights – see Fig. 2.6(j). The

two possible configurations for given RNA segments S1 and S2 are presented

in Fig. 2.6(j).

The proposed algorithm is applied to a longer trial sequences shown in Fig. 2.7.

Namely, we have performed the structure recovery for three different cases: for

linear chains (a) (for them we use the algorithm described in 2.2), for cactus-like
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chains (b) and for cactus-like chains with the restriction on the size of the minimal

loop length (c) (there are no loops less than 4 nucleotides). These structures are

depicted in the figures Fig. 2.7(a), (b) and (c) respectively.

It should be noted that the polymer complex structure strongly depends on

details of the model. For instance, the difference between the structures depicted

in Fig. 2.7(b) and (c) is entirely due to the value of the minimal loop length ℓ.

Since the global topology of optimal structure is highly sensitive to microscopic

details, results consistent with experimental data can be obtained only when re-

liable information about loop factor, bond energies, and cooperativity parameter

is available. As noted above, these parameters can be taken into account when

necessary within the framework of the proposed model.
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(a) (b) (c)

(d) (e) (f)

(g)

(j)

Figure 2.6. The algorithm description for RNA-type complex. Incidence
matrices for pairs of chains with possible clover–leaf structures inside each sequence:
(a) intra–matching S1–S1, (b) intra–matching S2–S2, (c) inter–matching S1–S2; the
free energy matrices: (d) for the 1-st sequence, (e) for the 2-nd and for the complex f ;
the matrices Q (g), involved in the structure recovery procedure; (j) the predicted
RNA-RNA complex structures.
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(a)

(b)

(c)

Figure 2.7. Structures recovered from the pair of sequences [100].
(a) Linear structure, (b) branching structure, (c) branching structure with the
restriction on the size of the minimal loop (there are no loops less than 4 nucleotides).
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Chapter 3

Statistical properties of random

RNAs

This chapter is focused on discussion of statistical properties of complexes of

two linear and/or RNA-type molecules. First, we consider the mean energy and

energy fluctuations as functions of the sequence lengths in random RNA-RNA

complexes. Next, we describe the model in which we estimate the binding prob-

ability for random sequence polymers in RNA-like complexes. Finally, we report

the results concerning the analysis of the loop length distribution in complexes

and propose models describing these distributions.

3.1 Mean energy and energy fluctuations for paired

RNAs

The problem of finding the ground state energy of a polymer complex of two

linear chains has been addressed in a number of studies in the framework of

the Bernoulli matching model (e.g., see [101, 102]). In these works, the matrix

elements in ηm,n (2.14) are independent random variables taking on values 1 and

0 with probability p = 1/c and q = 1− p, respectively. It was shown in [102] that

the ground state energy distribution for n,m≫ 1 is

〈F 〉 = 2
√
pmn− p(m+ n)

q
+

(pmn)1/6

q

[

(1 + p)−
√

p

mn
(m+ n)

]2/3

χ (3.1)
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(a) (b)

Figure 3.1. Statistics for linear complex of two random RNAs. Free
energy (a) and energy fluctuation (b) in dependence on the sequence length.

where χ is a random variable having the Tracy-Wisdom distribution with (〈χ〉 =
−1.7711... and 〈χ2〉 − 〈χ〉2 = 0.8132...)(e.g., see review [103] for a more detailed

description of this distribution). When m = n, the energy of the complex can be

represented as

〈Fm,n〉 ≈
2

1 +
√
c
n+ f(c) 〈χ〉n1/3 (3.2)

where f(c) = c1/6(
√
c−1)1/3/(√c+1). According to [102], free energy fluctuations

behave as

σ ≡
√

〈F 2〉 − 〈F 〉2 ≈
√

〈χ2〉 − 〈χ〉2f(c)n1/3 (3.3)

The exponent 1/3 is typical for the stochastic growth in strongly correlated

systems which belong to the so-called Kardar-Parisi-Zhang (KPZ) universal-

ity class [58]. Fig. 3.1 shows numerical results obtained for paired linear poly-

mers. Here, the slope kl ≈ 0.65 (Fig. 3.1(a)) is in good agreement with kl =

lim
n→∞

〈F 〉 /n → 2/3, predicted by (3.2). Furthermore, the slope ζ = 0.34 for

the fluctuation energy dependence is close to 1/3. Thus, the expression (3.2),

obtained in Bernoulli approximation provide a satisfactory description of the be-

havior of the ground state energy of linear complex of two random RNAs.

A similar analysis has been performed for paired sequences forming a cloverleaf

(RNA-like) secondary structure with the minimal loop length ℓ = 0. The mean

energy and energy fluctuations are plotted in Fig. 3.2. As in the case of a linear
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(a) (b)

Figure 3.2. Statistics for RNA-type complex of two random RNAs. Free
energy (a) and energy fluctuation (b) in dependence on the sequence length.

Figure 3.3. Hierarchical model of RNA-like complex. Loops of firs
level (i = 1), second (i = 2) and third (i = 3) are depicted.

polymer complex, 〈F (n)〉 = kcn for n ≫ 1 (Fig. 3.2), but the slope is much

steeper (kc ≈ 0.92) because of intraloop interactions between nucleotides. The

behavior of the ground state energy fluctuations is the same, see Fig. 3.2(b).

We can estimate analytically the slope kc as a function of sequence length

borrowing the ideas from the renormalization group analysis. Namely, consider

the RNA-RNA complex as a hierarchal structure, having loops of different ”lev-

els” (Fig. 3.3). Each i-th level loop can be treated as a complex consisting of the

strands of the (i− 1)-th level that form the loop of the previous level.

From the expression (3.1) it follows, that a maximum contribution to the

total free energy is reached at m = n. Therefore, an upper bound for the free

energy of a loop can be evaluated as the binding energy between the two halves
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of such a hairpin. When an RNARNA complex can be represented as a nested

structure, a renormalization group treatment can be applied [104]. This idea

is formalized by assuming that each ith level of RNA-RNA complex consists of

strands with energy of interacting monomers are renormalized to the (i + 1)th

level loop energy. Since the loop energy (3.2) is roughly proportional to the loop

length, it can be represented as F
(i)
L ≈ k

(i)
r L. Substituting the loop statistical

weights gi,i+L = ekrL/T in (2.15), we can estimate the free energy of a random

RNA-RNA complex as

F (i+1)
m,n = max

[
Fm−1,n + k(i)

r , Fm,n−1 + k(i)
r , (Fm−1,n−1 + u)P(m,n)

]
(3.4)

This expression should be interpreted as follows. First, find the free energy of

a complex F
(2)
m,n, which includes only first level hairpins. Next, determine the

binding energy coefficient in the second-level loops as

k(2)
r =

F
(2)
m,n

m+ n
(3.5)

Substituting the result back to (3.4), calculate the energies for the third-level

loops k
(3)
r , and so on. The factor P(m,n) takes account of the ith-level minimum

loop length:

P(m,n) =

{

1, m n match

0, otherwise
(3.6)

We suppose that, monomers m and n match when: i) the segment [m− ℓ,m− 1]

in the sequence S1 has no bonds to the segment [n − ℓ, n − 1] of S2, where ℓ is

the minimum nessasary loop length at a certain level (if m < ℓ and/or n < ℓ,

than [1,m] and/or [1, n] are taken in the respective sequences);

ii) (m − 1)-th monomer of S1 and (n − 1)-th monomer of S2 form the base pair

and in the substitute (m− 1)→ m, (n− 1)→ n i) (or ii)) holds.

Tab. 3.1 presents the values for the binding coefficients and the minimum

loop lengths of the i-th level calculated for m = n = 104. The average binding

coefficient weakly depends on the sequence lengths. However, longer sequences

can be used to perform the estimation for a larger number of hierarchical levels.

Note that the binding coefficient calculated in this manner approaches to 1 loga-
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rithmically with increasing number of levels (n→∞) because the minimum loop

length exponentially increases with i (see Tab. 3.1).

Thus, the binding coefficient determined numerically (Fig. 3.2(a)) varies with

the loop length, and the value of kc ≈ 0.92 obtained here just indicates that

sequences of the length of 1000 monomers have only two or three hierarchical

levels.

Level, i 2 3 4 5 6 7
The minimum loop length 2 6 24 78 240 726
The binding coefficient 0.851 0.912 0.931 0.937 0.94 0.941

Table 3.1. The probability of pairing in the different level loops.

3.2 The loop length distribution in random RNA-

RNA complex

We have analyzed the loop length distributions in paired linear polymers and

RNA-like complexes. Fig. 3.4 shows the number of the loops W (n) in a paired

linear polymer complex of length n. It is clear that these results follow an expo-

nential distribution, which is typical for systems with independent bindings (i.e.

the probability that a monomer is bound to the opposite strand is independent

of the binding status of its nearest neighbors). Indeed, when n ≫ 1, the value

of kl = 〈F 〉 /n can be interpreted as the binding probability in a complex. If the

pairing status of a monomer is independent of those of its nearest neighbors, then

the number of the loops of the length s in a paired linear polymer complex of

length n can be estimated as

W (s) = nk2
l (1− kl)

s (3.7)

When n≫ 1, this loop length distribution obviously satisfies the relation
∑n

s=1 sW (s) =

(1 − kl)n. The semi-log plot of numerical results in Fig. 3.4 is well fitted by the

line y(s) = a− bs, where a ≈ ln(nk2
l ) and b ≈ ln(1−kl). Thus, the loop statistics

in linear complexes is well described by the model with independent binding of

monomers.
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However, it is worth noting that the model of independent binding gives good

results for the alphabetic sequences with quite large alphabets c ≥ 4. For two-

letter and three-letter alphabetic sequences the binding is correlated and the

expression (3.1) can not be used for description of linear complexes.

Figure 3.4. Loop length distribution in linear complex of two RNAs. The
calculations were performed for random polymers of the length n = 104, the graph is
averaged by the ensemble of 104 complexes.

Essentially different statistical behavior is observed for complexes with RNA-

like cloverleaf structure. Fig. 3.5(a) shows the number of loops of length s in the

ensemble of 103 random samples. Note the following properties of the distribution.

First, it obeys a power law with the exponent varying within the interval [1.38, 1.5]

in RNAs of various lengths. Second, the distributions obtained for RNAs of the

different lengths are similar, which makes it possible to restrict calculations to

short sequences. Third, when s is small (s ≤ 5), the number of loops with odd

lengths is small, while the number of those with even lengths is high. The reason

is that RNA-RNA complexes with ℓ = 0 are characterized by a high energy per

nucleotide pair (kc ≈ 0.92) due to intra-loop interactions, and the formation of a

small loop of an odd number of nucleotides implies that at least one bond is lost

within the loop. Thus, the formation of the odd-length loops energetically is less

efficient. Finally, the distribution reaches a plateau at large values of s because

of the finite size effect (e.g., see the theory developed in [105] for an analogous

phenomenon in a slightly different system). Let us now discuss the numerical
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(a) (b)

Figure 3.5. Loop length distribution in RNA-type complex. (a) The loop
length distribution in a cactus-like complex of two RNAs (The simulations were
performed for the ensembles of 103 random samples with the sequence
lengths n = m = 75, 100 200; for s ≥ 30 the distribution function was smoothed over
10 adjacent values); (b) The Motzkin path length distribution (the random walk
length is 200, the number od samples is 103, for s ≥ 30 the function was smoothed
over 10 adjacent values).

distributions above.

We can associate each secondary structure with a random walk on a (1 + 1)-

dimensional lattice as follows (Fig. 3.6). Each monomer in a RNA-like loop is

represented by a step in a random walk. If the monomer is the head or tail of a

loop (paired with another one behind or ahead of it along the loop sequence, re-

spectively), it corresponds to an upward or a downward steps. If the nucleotide is

not paired, it is a horizontal step in random walk path. This obviously implies the

correspondence between RNA-like secondary structures and Motzkin paths [106].

A return to the abscissa axis corresponds to the formation of a loop in a RNA-

RNA complex. It is well known [107] that the number of distinct Motzkin paths

of the length n with t horizontal steps is expressed by the Catalan numbers:

P (n, t) =

(

n

t

)

C(n−t)/2 =

(

n

t

)

1
n−t
2

+ 1

(

n− t
n−t
2

)

(3.8)

where

(

n

t

)

are binomial coefficients, C(n−t)/2 are the Catalan numbers. When

n ≫ 1 the function (3.8) has the asymptotic behavior P (n, t) ∼ n−3/2. We

plotted the length distribution for random Motzkin paths under assumptions that

the probability of an upward (as well as a downward) step is equal to pm ≈ kc/2 =
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0.46, where kc = 0.92, which corresponds to the binding probability established

numerically in a cactus-like complex of two RNAs. The probability of horizontal

step is taken respectively 1− 2pm. The result is represented in Fig. 3.5(b). This

model distribution, having all features of the RNA-type complex distribution,

describes very well numerically obtained dependence (Fig. 3.5(a)).

(a) (b)

Figure 3.6. Random walk representation of RNA structure. Secondary
structure of RNA with gaps and respective Motzkin path (a); perfect matching RNA
structure without gaps and respective Dyck path (b).

The representation of RNA structures in terms of Motzkin paths with well

known statistical properties leads us to an interesting observation. The RNA-

type structure is very sensible to the alphabet (the number of different monomer

species) used in construction of a random sequence. As it is shown in the next

Section, there is an alphabet-dependent phase transition between two essentially

different states, distinguished by the fraction of paired monomers.
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Chapter 4

Random RNA-type polymer with

the different alphabet

In contrast to the previous chapter we are focused here on the study of a single

random RNA-type chain (a loop in random RNA-RNA complex). We consider

the fraction f of nucleotides involved in the formation of a cactus-like secondary

structure as a function of the number c of different nucleotide species. We show,

that with changing c, the secondary structures of random RNAs undergo a mor-

phological transition: f(c) → 1 for c ≤ ccr as the chain length goes to infinity,

signaling the formation of a virtually perfect gapless secondary structure; while

f(c) < 1 for c > ccr, which means that a non-perfect structure with gaps is

formed. The strict upper and lower bounds 2 ≤ ccr ≤ 4 are proven, and the

numerical evidence for ccr is presented. We propose different model for determi-

nation of the transition point ccr. In particular, we formulate the problem as the

perfect matching problem in a random Erdos-Renyi graph and give the analyt-

ical estimate for the transition point. The relevance of the transition from the

evolutionary point of view is discussed.

4.1 Statistics of alphabetic RNA sequences

Consider a random polymer of the length L, forming a secondary structure typical

for RNA molecules (Fig. 2.2(a)). We are interested in the dependence of the

binding probability f∞(c) in such a secondary structure of random RNA on the

alphabet size, used in it in thermodynamical limit, i.e. for the infinite chains.
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First of all, we provide simple arguments proving an existence of a phase

transition and giving rough low and upper bound for the critical alphabet. There

is c = ccr such that the limit value of the fraction of paired nucleotides approaches

unity if c ≤ ccr and remains less than unity if c > ccr. This can be demonstrated

as follows.

Consider cmin
cr = 2. It turns out that matching with f(c = 2)→ 1 as n→∞ is

possible not only on average but for any given primary structure. Indeed, consider

a random heteropolymer RNA constituted of A and B monomers, forming satu-

rating bonds of type A–A and B–B and construct the optimal structure as follows.

Take the left end of the chain as a starting point, and move along a sequence until

meeting the first pair of two sequential letters AA or BB. Connect these two let-

ters with a bond and erase them from the sequence. Iterating this procedure, one

arrives finally to an alternating sequence of the type ABAB... (we have assumed

that the starting letter is A). Connect now the first letter A from this sequence

to the last one, the next B to the B before the last A, etc. It is clear that this

algorithm results in a nested secondary structure which leaves unmatched at most

two letters (one – in the middle of the ABAB...–sequence and, possibly, another

one in the very end). The fraction of mismatched letters decreases as n−1 with n,

proving the conjecture. A similar algorithm for alternating (A–B) bonding can

be easily constructed (though the fraction of mismatches decreases as n−1/2 in

this case). Note, that this lower bound is already nontrivial: in the celebrated

”longest common subsequence” used for the comparison of two linear DNA se-

quences (3.1), the fraction of matches equals flin(c = 2) = 2(
√
2 − 1) < 1, and

the ”critical” alphabet size, at which flin = 1, is clincr = 1.

To construct the upper bound for ccr, recall the bijection between cactus–

like RNA secondary structures and discretized Brownian excursions, known as

Motzkin paths [106]. By this bijection, shown in Fig. 3.6(b), the gapless (”per-

fect”) secondary structures correspond to excursions with no horizontal steps, the

Dyck paths. The total number D(n) of the Dyck paths of the even length n is

given by the Catalan number Cn/2:

D(n) = Cn/2 ≡
Γ[n+ 1]

Γ
[
n
2
+ 1
]
Γ
[
n
2
+ 2
] ∼ 2n

n3/2
(4.1)

where Γ[n] is the Γ-function, and the asymptotic expression is valid for n ≫ 1.
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Consider a set of random sequences of the length n. Each of these sequences

(there are cn of them) must correspond to a certain perfect match, i.e. a Dyck

path. Meanwhile, if one particular Dyck path corresponds to a perfect match

of some particular sequence, it simultaneously corresponds to perfect matches of

many others. Indeed, each “up–down” pair of steps in a Dyck path can be realized

in c different ways (A–A, B–B, etc...) independently of all others, leading to a

degeneracy of order cn/2. Thus, the number of different primary sequences which

can have perfect secondary structures is at most

W (c, n) = cn/2 D(n) ∼ (2
√
c)n

n3/2
(4.2)

One primary sequence can be represented by several Dyck paths, thus this is

an estimate from above. Comparing the value W (c, n) to the total number of

primary sequences, W0(c, n) = cn, we have for n≫ 1:







lim
n→∞

lnW (c, n)

n
> lim

n→∞

lnW0(n)

n
for c < cmax

cr = 4

lim
n→∞

lnW (c, n)

n
< lim

n→∞

lnW0(n)

n
for c > cmax

cr

(4.3)

One can follow this reasoning to develop the upper bound also for f(c) at

c > cmax
cr = 4. In this case the fraction of random primary sequences admitting

a perfect match among all W0(c, n) of them is exponentially small. Therefore,

the ground states of almost all of sequences should correspond to matchings with

gaps, i.e. to Motzkin paths. The Motzkin paths with finite fraction of gaps

(horizontal steps) produce much more possibilities for the RNA ground states

than Dyck paths of the same length. The number of n–step Motzkin paths with

m gaps is M(m,n) = n!
m!(n−m)!

D(n−m) and

lnM(f, n)

n
= −(1− f) ln(1− f)− f ln

f

4
+ o

(
lnn

n

)

(4.4)

where f = n−m
n

and (4.4) works for n≫ 1 and even m− n.

How many different primary structures can have a given Motzkin path as a

ground state? Each pair of ”up–down” steps is bound to belong to the same

species, as for the Dyck paths, while each horizontal step can be chosen indepen-
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dently. The total degeneracy Z is thus

Z(c, n, f) = c(fn)/2c(1−f)n = cn(2−f)/2. (4.5)

As f decreases, the total number of structures which can have ground states

with the fraction of matches more than f increases and is given by

W (c, n, f) =

(1−f)n
∑

j=0

Z(c, n, j/n)M(j, n), (4.6)

At some f̄ it becomes equal to the total number of possible primary structures

W0(c, n) = cn, giving the estimate for the typical value of f(c). For n ≫ 1 the

sum in (4.6) can be evaluated up to the leading order using the saddle–point

approximation. One can introduce value

∆w(f, c) = lim
n→∞

1

n
ln

W (c, n, f)

W0(c, n)
(4.7)

which is from (4.5)-(4.7)

∆w(f, c) =







−f ln

√
cf

2
− (1− f) ln(1− f); f > fm

ln

(

1 +

√
c

2

)

> 0; f < fm
(4.8)

where fm = 2
2+

√
c
. For f > fm the sum in (4.8) is dominated by contribution

from the upper boundary, while for f < fm it is given by the maximum at fm

and is, therefore, independent of the upper summation limit. The desired value

of f̄(c) is defined by the solution of the equation ∆w(f, c) = 0 and is plotted

in Fig. 4.1(b) with a black line 1.

We have analyzed numerically the statistical properties of the ground state free

energy f(c), applying (2.20) to the ensemble of random sequences with different

numbers of letters (nucleotide types) c = 3, 4, ..7. Fig. 4.1(a) illustrates that the

specific free energy indeed tends to some average value f∞, which is a function of

the alphabet. In Fig. 4.1(b) we plotted the dependence of this function f∞(c), the

1It may seem that f̄ is an estimate for the ”typical smallest”, not average value of f .
However, since f̄ > fm, it belongs to the regions where the sum in (4.8) is dominated by the
upper bound and thus the average and ”typical largest” values of f converge in thermodynamic
limit.
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numerical values of f∞(c) lay lower then the upper bound given by the theory.

More detailed analytic analysis of random alphabetic sequences shows that

the critical alphabet is set by stronger inequality: 2+ ǫ1 < cc < 3− ǫ2 [108], going

beyond the integer values. In the next section we consider a model of a random

polymer with the effective non-integer alphabet size.

(a) (b)

Figure 4.1. Energy dependence for random RNA-type polymers.(a) The
dependence of specific free energy on the sequence length at different alphabet c. (b)
The dependence of the limiting energy f∞(c) on the alphabet for alphabetic
sequences (the red curve), for the Bernoulli polymer (the blue curve) and upper
analytical estimate (the black curve).

4.2 Bernoulli model of a random RNA polymer

As we have mentioned, the Bernoulli approximation, in which the contact map

ηm,n (2.14) is taken as a random matrix of zeros and ones, gives a good agreement

with numerical result for DNA alignment problem. For our purposes, we consider

the matrix V = η′ in (2.20) consisting of independent identically distributed

random variables, equal to one with probability p for any i 6= j, and equal to zero

otherwise. This defines the uniform distribution on the entries of the matrix V :

Prob(Vij) = pδ(Vij − 1) + (1− p)δ(Vij) (4.9)

where δ(x) = 1 for x = 0, and δ(x) = 0 otherwise. Obviously that the alphabet

in this model is

ceff =
1

p
(4.10)
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The matrix V can be regarded as an adjacency matrix of a random Erdös-Rényi

graph G(V ) without self-connections. In these terms, we can describe a phase

transition, as follows (typical for onstraint satisfaction problem). The number

of constraints per node imposed by the matrix V is varied and cross a certain

critical value, the instances pass from satisfiable with high probability to almost

surely unsatisfiable in the large L limit [109]. In other words, we show that there

is a critical value of the bond formation probability, pc, such that for any large

(L≫ 1) instance of the matrix V , for p > pc it is always possible to find at least

one ”gapless” planar diagram, which involves in its formation almost all vertices

and only ∼o(L) vertices are missing, while for p < pc a finite fraction of missing

vertices of order ∼O(L) exists.

Fig. 4.1(b) illustrates the dependence of f∞(c) for the Bernoulli polymers.

Firstly note, that the values f∞ in the Bernoulli model distinguish from the

respective values for discrete alphabetic sequences less than by 1%, that justifies

the applicability of the model. Two different phases are observed: for p > pc one

has a gapless perfect matching with all nucleotides involved in planar binding,

while for p < pc there is always a finite fraction of gaps in the best possible

matching.

To get numerically the critical transition point, we look for the fraction, ηL(p),

of sequences, which allow perfect matchings, in the whole ensemble of random

sequences, one has η∞(p) = 1 for p > pc, and η∞(p) = 0 for p < pc. The

corresponding dependencies are shown in Fig. 4.2(a) for the different polymer

lengths, L = 500, 1000, 2000. As L → ∞, the function ηL(p) tends to a step

function. The scaling analysis allows us to determine the phase transition point

as pc ≈ 0.379, which corresponds to effective alphabet:

cc ≈ 2.64

Fig. 4.2(b) shows that curves with different L collapse, demonstrating the scaling

behavior η ((p− pc)/L
ν), giving the transition width in form of power-law decay

L−ν , with ν = 0.5.

The convergence of the function fL to a limiting value f∞(p) in the perfect
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(a) (b)

Figure 4.2. Numerical results for Bernoulli random polymer model.(a) The
fraction of perfect matchings ηL(p) as a function of the density p of ones in the
contact matrix V for chain lengths L = 500, 1000, 2000, averaged over 104 realisations.
The dashed line corresponds to the thermodynamic limit L→∞, yielding the critical
value pc = 0.379. (b) The scaling analysis of curves, corresponding to the different
chain lengths L. The tting procedure gives the exponent of the transition width
ν = 0.5.

and imperfect phases has, respectively, an exponential and a power–law tails:







f∞(p)− fL(p) ∼ e−L/ℓ(p) for p > pc

f∞(p)− fL(p) ∼ L−α(p) for p < pc

(4.11)

where the screening length ℓ(p) diverges at the point p = pc (two examples for

p = 0.38 and p = 0.4 are shown on Fig. 4.3(a) in the semi-logarithmic scale), and

finite-size scaling analysis gives 0.8 ≤ α(p) ≤ 1 (see Fig. 4.3(b) for two examples,

p = 0.32 and p = 0.34 on the log-log plot). Note that the exponential scaling

in the perfect phase may not be universal (with respect to other models) and is

likely to be a feature of the Bernoulli model, while the power-law behavior in the

imperfect phase appears in other models, e.g. for integer-valued ”alphabet”.

Perfect and imperfect phases are different also by their fluctuational behav-

ior. Perfect regime is characterized by fast exponential fall of the fluctuation with

increasing L, as well as in imperfect phase the fluctuations increases as L1/2 (com-

pare with Fig. 3.2(b)).

Naturally to expect, that asymptotic and fluctuation behavior of f(L) depends

on the details of random polymer model, for example the complementarity rules.
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(a) (b)

Figure 4.3. Convergence of fraction of links, involved in planar binding, fL
to the limiting value f∞ in two regimes, p > pc and p < pc. (a) In the perfect
phase, the exponential convergence is demonstrated for p = 0.38 and p = 0.4 in the
semi-logarithmic scale. The screening length ℓ(p) diverges as p approaches the critical
value pc. (b) In the imperfect phase, the power-law behavior is shown for p = 0.32
and p = 0.34 in the log-log scale. The exponent α(p) as a function of p takes values
between 0.8 and 1. The data points are averaged over 1000 realisations.

However, the existence of the transition between two different phases is irrelevant

to these details.

We can draw an analogy of this transition with the transition taking place in

percolation theory [110]. A representative question is as follows. Put a liquid on

top of a porous material. Will the liquid be able to percolate through the sample,

reaching the bottom? This physical question is modelled mathematically as a

three-dimensional network of n× n× n vertices, usually called ”sites”, in which

the edge or ”bonds” between each two neighbors may be open (allowing the liquid

pass through) with probability p, or closed with probability 1 − p (they all are

assumed to be independent). Therefore, for a given p, what is the probability

that an open path exists from the top to the bottom? The behavior for large n

is of primary interest. There is a critical p below which the probability is 0 and

above which the probability is 1 [110].

4.3 Analytical estimates of the critical point

In this section we focus on analytical consideration of the phase transition in the

framework of the Bernoulli polymer model.
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4.3.1 The mean-field estimate

We formulate the problem in terms of planar diagrams (Fig. 1.7). Consider a

random graph with numbered nodes and adjacency matrix V . The problem is

reduced to the question, how to choose among the allowed by V contacts L/2

arcs, providing complete planar structure. That is all nodes are involved in the

structure exactly once and any pair of connections (i1, j1) and (i2, j2) is satisfied

by [97]:

(j1 − i1)(j2 − i1)(j1 − i2)(j2 − i2) > 0 (4.12)

A naive estimation of pc fully consistent with the consideration in the previous

section, can be easily obtained via the following mean-field-like argument. Since

each arc in the diagram is present with a probability p, the probability that the

whole configuration is allowed, is given by p1 = pL/2. One can introduce the

probability pk to have k allowed configurations from #. For example, for k = 2

p2 = pL/2pL/2p−n1∩2 = pLp−κ2L (4.13)

where n1∩2 ≡ κ2L is the number of shared arcs for two randomly chosen planar

diagrams, averaged by ensemble #. The probability p3 is defined as:

p3 = (pL/2)3p−n1∩2∩3 = p3L/2p−C2
3κ2Lpκ3L (4.14)

The values κk can be calculated with any accuracy, so κ2 lays strictly in the

interval [1/15, 1/14.8]. The probability P to have at least one matching diagram

for given density p of the matrix V is:

P = #p1 −
#(#− 1)

2
p2 + C3

#p3 + . . . (4.15)

Naively assuming that planar diagrams in the fully-connected ensemble are sta-

tistically independent, we get the probability to have at least one perfect planar

matching configuration:

P = 1− (1− pL/2)CL/2 = 1− exp
(
−pL/2CL/2

)
(4.16)

where the last equality is valid for L → ∞. In this limit, the probability P is

equal to one for p > pc, and to zero for p < pc. The perfect-imperfect naive
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mean-field threshold pc is then given by the condition

lim
L→∞

pc
[
CL/2

]2/L
= 1, (4.17)

yielding pc = 1/4. This consideration coincides with naive estimates in Sec-

tion 4.1, just reformulated in terms of planar diagrams. Therefore, it provides

only a lower bound to the true value of pc. A careful account for correlations

leads to a natural generalization of the critical condition (4.17):

lim
L→∞

ξ(pc)
[
CL/2

]2/L
= 1, ξ(pc) = 1/4, (4.18)

where ξ(p) is some weight of correlated diagrams to be determined.

4.3.2 Combinatorics of ”corner counting”

An estimation of ξ(p), and therefore of pc, can be obtained by exploiting the

combinatorial properties of Dyck paths. The consideration below provides an

intuitive understanding of the statistical reasons beyond the shift of the transition

probability from the mean-field value pc = 1/4.

Our estimation is relied on the following observation: the probabilities to find

different arcs in a perfect matching structure crucially depend on the lengths of

arcs. Consider a perfect structure consisting of L/2 arcs connecting L points. In

the limit L→∞ the local statistics of “up” and “down” steps in a corresponding

Dyck path becomes independent on the global constraint for the random walk

to be a Brownian excursion. Using the bijection between Dyck paths and arc

diagrams, we see that the arc is drawn between i-th and j-th steps if and only if

the i-th step is ր (“up”) and j-th step is the first step ց (”down”) at the same

height after i. Therefore, the probability to find an arc from i to j in a randomly

chosen diagram can be formally written as a ”correlation function”:

P (i, j) =
〈ր |Di+1,j−1| ց〉

2j−i+1
. (4.19)

In this expression, the denominator represents the total number of possible se-

quences from i-th to j-th step; Di+1,j−1 is a Dyck path between (i + 1)-th to

(j − 1)-th steps: this part of the walk should be a Dyck path itself to return to

the same spatial coordinate for the first time at j-th step. The number of such
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Dyck paths are given by the Catalan numbers C(j−i−1)/2. Thus, P (i, j) depends

only on k = j − i and equals to

P (i, j) =
C(k−1)/2

2k+1
, (4.20)

they are non-zero for odd k only: P (i, i+1) = 1/4, P (i, i+3) = 1/16, P (i, i+5) =

1/32, etc. The whole set of P (i, j) sums to
∑∞

k=1 P (i, i + k) = 1/2, which has a

meaning of a probability that the i is a starting (rather than ending) point of an

arc.

Thus, the fraction of short arcs, in particular the shortest arcs of length k = 1,

represented by ”up corners”
∧

in a Dyck path, is exceptionally high. Indeed, in a

typical fully connected diagram one half of the arcs (L/4 out of L/2) correspond

to such corners. Moreover, while a fraction of long arcs chosen in each particular

diagram is decaying at L → ∞ (indeed, the number of possible long arcs is of

order L2 , so the fraction of those chosen in each structure is of order L−1), the

fraction of chosen corners converges to 1/4 (there are L− 1 possible corners, L/4

of them are chosen in a typical structure). Therefore, the values of quenched

weights Vi,i+1 assigned to the short arcs in our model influence the existence of a

perfect arc structure in a crucial way. In what follows we quantitatively estimate

how this exceptional role of the sub-diagonal values Vi,i+1 influences pc.

Assume that the typical arc structure is constructed as follows: i) take 1/4

corners (from L− 1 possible places) such that none of them touch each other, ii)

select remaining L/2 − L/4 = L/4 arcs at random from ensemble of any longer

arcs. Since the total number of longer arcs is of order of L2 ≫ L/4, we assume

that the quenched disorder in the entries Vi,j away from the sub-diagonal can be

ignored, and the contribution from the longer arcs into ξ(p) remains as it is in the

mean-field case (each arc is allowed with a probability p independently of others),

thus

ξL/2(p) = pL/4
︸︷︷︸

long arcs

P∧(p)
︸ ︷︷ ︸

corners

, (4.21)

The contribution of corners, P∧(p), is to be determined. It has a meaning of

a probability to take L/4 corners at random (respecting the non-touching con-

straint) in a way that all of them belong to the set of pL allowed ones.

To estimate this probability, note that due to the non-touching constraint
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the problem of distributing corners can be mapped onto a problem of choosing

L/4 objects (corners) out of 3L/4 ones (L/4 corners plus (L − 2) × L/4 ≃ L/2

unmatched vertices, see Fig. 4.4). The number of corresponding partitions Z is

Z = C
L/4
3L/4 =

3L
4
!

L
4
!L
2
!

(4.22)

Figure 4.4. Computation of Z and Z(p). Selection of L/4 non-touching arcs on
the set of L points (L/2 black nodes remain unmatched) is reformulated as a
partitioning of vertical segments (arcs) between black dots (unmatched points). A
certain number of partitions are forbidden by the matrix of contacts V .

In the Bernoulli model, only the fraction p of all arc positions is allowed.

Because of the non-touching constraint, it is natural to assume that of 3L/4

positions in the ”point-and-stick” representation in Fig. 4.4(b) only p(L−L/4) =

3pL/4 are allowed on average (i.e., correspond to unity weights in the connectivity

matrix V ).

Thus, the number of allowed partitions can be estimated as

Z(p) = C
L/4
3pL/4 =

3pL
4
!

L
4
!(3pL

4
− L

4
)!
. (4.23)

Here Z(p) is the average number of possibilities to distribute shortest non-touching

arcs at a given fraction p of allowed arcs, and

P∧(p) =
Z(p)
Z (4.24)

is a probability, given p, to pick an allowed set of short arcs at random. Substi-

tuting (4.23) into (4.24) one gets in the limit L→∞ the following result for ξ(p)
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(see (4.18)):

ln ξ(p) =
1

2
ln p+

3p

2
ln

3p

2
− 3p− 1

2
ln

3p− 1

2
− 3

2
ln

3

2
. (4.25)

Being substituted into (4.17), (4.25) gives an estimate for the transition point

ln ξ(pc) = − ln 4;

pc ≈ 0.35 (cc = 2.87)
(4.26)

We see therefore that the transition point shifts significantly from its mean–field

value due to the special role of a quenched disorder in the sub-diagonal entries

Vi,i+1 of the connectivity matrix V .

4.3.3 Self-consistent field theory for planar arc counting

A different way to attack the planar matching problem consists in using the matrix

model approach (see Paragraph 1.2.2) proposed in [70] and 1/N -expansion, a

standard technique of the quantum field theory. For the set of L vertices in

our problem, associate to a vertex i an Hermitian matrix (φi)N×N . The L-point

generating functional ZL can be written as follows:

ZL(N ;V ) =

∫

dφ1...dφLe
−H0

1

N
tr (φ1...φL)

∫

dφ1...dφLe
−H0

≡ 〈φ1...φL〉H0
(4.27)

where

H0 =
N

2

∑

i,j

(V −1)ijtr(φiφj) (4.28)

Since tr(φiφj) =
∑

a,b φ
i
abφ

j
ba =

∑

a,b,c,d δadδbcφ
i
abφ

j
cd, every propagator enters with

a 1/N -factor, while every loop gives a N–factor. Due to the Wick theorem, one

has:

〈φ1 . . . φL〉S0
=

〈
∑

pairs

∏

k,k′

φkφk′

〉

H0

(4.29)

where each non-planar configuration comes with a factor 1/N2 to some power and

therefore vanishes in the N →∞ limit. Thus, the generating function ZL(N ;V )

counts in the limit N →∞ the number of planar diagrams with exactly L/2 arcs
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(on genus g = 0 surface) compatible with a specific realization of the disorder

defined by the matrix V . In the absence of any disorder, one can set Vij ≡ α for

any (i, j), where α is some constant (it corresponds to the p = 1 limiting case).

In this case the multi-dimensional integral (4.27) can be reduced by a series of

Hubbard-Stratonovich transformations to a one-dimensional integral involving

the spectral density of a Gaussian matrix, which is a well-known result of the

Random Matrix Theory (RMT). We will refer to this realization of A as to the

fully-connected case. If we set α = 1, we get [70]

lim
N→∞

ZL(N ;V ) = CL/2, (4.30)

where CL/2 is the Catalan number, as it should be. However, for a generic dis-

ordered matrix V , the calculations are intractable. Still, we show below that by

averaging over the matrix distribution (4.8) and by applying the self-consistency

arguments, we are able to treat the partially-connected system with 0 < p < 1

as an effective fully-connected system with α different from one, thus obtaining

a correction to the naive mean-field result.

According to the consideration above, the function ξ(p) defined by (4.18) can

be calculated within the matrix approach by averaging ZL(N ;V ) over the distri-

bution (4.9). To this end, we use the standard Hubbard-Stratonovich transform

and integrate over V with the weight (4.9):

∫

dV P (V )ZL(N ;V ) =

C

∫ L∏

k=1

dφk
1

N
tr (φ1 . . . φL)

∫ L∏

m=1

dhme
iN

∑

i tr(hiφi)eS
(4.31)

where C is a constant, S = S0 + U , and

S0 =−
pN

2

∑

ij

tr(hihj), (4.32)

U =
p(1− p)N2

8

∑

ij

[tr(hihj)]
2

− p(1− p)(1− 2p)N3

48

∑

ij

[tr(hihj)]
3 + . . . (4.33)

Up to this point, all the calculations are exact. The S0 term (4.32) corresponds
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to a fully-connected matrix with an additional factor p behind. If this term is the

only present, then, performing the inverse Hubbard-Stratonovich transformation

and returning to the functional of the type (4.18), we get ξ(p) = p, recovering

the value pc = 1/4 given by the critical condition (4.17).

The correction to pc due to the rest of the series U (4.32) can be estimated

as follows. The series defined by the action S can be thought of as a Gaussian

theory with the interaction U . Since U contains an infinite number of terms, it

is impossible to treat it perturbatively. Still, we can use a self-consistent non-

perturbartive approach reminiscent of the Feynman’s variational principle [111]

in the field theory: as all the fields {hi}i=1,...,L in (4.33) are equivalent, we assume

that the average 〈Ntr(hihj)〉S0 ≡ Ū is independent on (i, j). Within the adopted

mean-field approximation, the replacement eS = eS0e〈U〉 is supposed, where

〈U〉 = p(1− p)N

8
Ū
∑

ij

tr(hihj)

−p(1− p)(1− 2p)N

48
Ū2
∑

ij

tr(hihj) + . . .
(4.34)

Resumming the series (4.34), we obtain the following self-consistent equation for

the “propagator” Ū :

1

Ū
= − 2

Ū
log

[

1− p+ p exp

(

− Ū

2

)]

. (4.35)

The equation (4.35) yields Ū = −2 log [1− (1− 1/
√
e)/p]. Hence, finally, we can

write

S = −ξ(p)N

2

∑

ij

tr(hihj) (4.36)

where

ξ(p) =

(

−2 log
[

1− 1− 1/
√
e

p

])−1

. (4.37)

Substituting (4.37) into (4.18), we get an estimation for the critical value

p∗c = 0.455

Although the self-consistent approximation (4.35) seems to be rather crude

(the numerical estimation of pc for large matrices is pc ≈ 0.38), it leads to the
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correct direction of the shift of pc from the naive mean–field value pc = 0.25. It

would be interesting to understand how to treat the interaction term U (4.34)

more properly.

4.4 Matching vs freezing

In this section we discuss the relation of the perfect/imperfect transition with the

transition, described in Paragraph 1.2.1.

4.4.1 Glassy phase transition in Bernoulli random poly-

mer

Regardless of particular details of models mentioned in Paragraph 1.2.1, it is clear

that the existence of the glassy phase is possible only in a sufficiently disordered

and frustrated system. Besides the planarity constraint, the property shared by

all simple models of random RNA, the Bernoulli model is described by a unique

disorder parameter, p, that controls the density of allowed contacts. It is also

clear that in this model, the appearance of the glassy phase is impossible above

a certain threshold, p∗. Indeed, it is well-known that for p = 1/2 (corresponding

to an effective alphabet c = 1/p = 2), there is no transition to the glassy phase

at all, and the system remains always in the molten phase [44, 43]. Below, we

present arguments, supporting the hypothesis that p∗ is equal to the critical value

pc discussed above.

To identify the dependence of the molten-glass transition temperature on the

effective alphabet (defined as c = 1/p), we follow the procedure suggested in [43]

and described in Paragraph 1.2.1. In the high-temperature regime the disorder

is irrelevant and the entries of the adjacency matrix can be replaced by con-

stants, Vij = α (this corresponds to a homopolymer-like behavior in polymer

language). In this regime the free energy of the chain of the length L scales lin-

early with L, up to a logarithmic correction which is just the logarithm of the

power-law multiplier in the Catalan number (4.2) enumerating all possible struc-

tures: F (L, T ) = f(T )L−(3T/2) lnL, where f(T ) is some non-universal function

of the temperature. In particular, the energy cost of imposing a bond connect-

ing two monomers at distance L from each other equals in the high temperature
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regime

∆F (L, T ) = F (L, T )− 2F (L/2, T ) =
3

2
T ln

L

4
. (4.38)

The violation of this behavior indicates [43] the appearance of the glassy phase.

This fact can be used to detect the transition temperature in the Bernoulli model.

Namely, use the following fit for ∆F (L, T ) (see (1.6))

∆F (L, T ) = a(T ) lnL+ b(L), (4.39)

and plot the temperature dependence of the coefficient a(T ), see Fig. 4.5. As the

coefficient deviates from a(T ) = 3T/2, the glass transition occurs. Note, that the

logarithmic fit (4.39) for the free energy does not have to give a true asymptotic

at low temperatures for this procedure to be valid (indeed, the true asymptotics

is known to include power-law and logarithm-squared terms [54]).
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 p=0.2
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Figure 4.5. The dependence of the logarithmic proportionality coefficient
of the pinching energy cost on the temperature. The simulations were done for
p = 0.15, 0.2, 0.25, 0.35, 0.5. For p larger then some threshold p∗ (0.35 < p∗ < 0.5),
a(T ) seems to follow the a(T ) = 3T/2 law, corresponding to the molten phase, up to
very low temperatures. For p > p∗, the a(T )-dependence deviates from the
high-temperature behavior at some temperature, which we identify as a critical
temperature of transition to the glassy phase. The data points are averaged over 104

realisations.

As it follows from Fig. 4.5, the high-temperature behavior (4.39) is indeed

observed at high temperatures, and is violated at a certain temperature Tc. Fol-

lowing [43] we identify this regime change with the molten-glass transition. We
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see that with the increase of the parameter p, the critical temperature Tc shifts to

lower values, approaching the zero value for some 0.35 < p∗ < 0.5. At low tem-

peratures, the numerical computations become very time consuming and demand

the consideration of extremely long sequences, which leads to the loss of precision

in the vicinity of p∗. However, it seems that the hypothesis p∗ = pc still holds:

the sequences corresponding to p > pc remain in the molten phase, the pinching

free energy (4.40) has the same dependence even for very low temperatures.

4.4.2 The relation of perfect matching transition with glassy

phase transition

The results presented in this work suggest the following generic picture. Fig. 4.6

represents the phase diagram of the Bernoulli model for random RNA chains. We

have studied the perfect-imperfect transition at zero temperature, separating two

matching regions: with and without gaps. Analytically, we proved the existence of

the transition from the perfect matching region to the imperfect one, and provided

estimates for the values of the transition point, pc. Using the exact dynamical

programming algorithm (2.22), we found that this critical value to be pc ≈ 0.379,

highlighted by a thick dashed line (B-C) in Fig. 4.6. The previous studies have

been mostly concentrated on the description of the finite-temperature molten-

glass transition for a sufficiently frustrated model with a fixed alphabet (a fixed

p in the Bernoulli model). An example of such a phase transition point is marked

by a thin dashed line in Fig. 4.6, and corresponds to an intensively studied case

of the 4-letter alphabet (p = 0.25). The ensemble of critical points for different

values of p forms a critical curve (A-B) in the (T, p) plane.

As already discussed in the previous section, the computational cost increases

drastically for temperatures close to zero (and, hence, in the vicinity of pc). How-

ever, we can still try to carry out the analysis of the pinching free energy ∆F (L, T )

at zero temperature, using the exact dynamical programming algorithm (2.22).

Indeed, the glassy phase does not exist if ∆F (∞, 0) = 0. This happens for

p > p∗, where p∗ is defined as the density of constrains, for which the critical

temperature is zero: Tc(p
∗) = 0. The corresponding plot is shown in the inset

of Fig. 4.6. According to (4.11), the pinching free energy decreases with growth

of L in the imperfect matching phase, while increases (with growth of L) in the

64



0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

 

 

 
T

p

molten

glassy

imperfect perfect

A

B

C
0.34 0.36 0.38 0.40 0.42

0.0

0.5

1.0

1.5

 N=2000

Figure 4.6. The phase diagram of Bernoulli model on the (T,p) plane. The
data points correspond to the critical temperature Tc of the molten-glass transition
for different values p = 0.15, 0.2, 0.25, 0.3, 0.35, 0.5. An intensively studied case,
corresponding to a 4-letter alphabet (p = 0.25), is highlighted by a thin dashed line.
The critical curve (A-B) separates glassy and molten phases. We conjecture that at
zero temperature, the critical curve’s endpoint B position p∗ coincides with the critical
point pc for the perfect-imperfect transition. The thick dashed line (B-C) separates
the perfect and imperfect regions of the phase diagram, and the glassy phase lies
entirely inside the region, characterized by gaps. Inset – an evidence for the conjecture
p∗ = pc: study of the pinching free energy ∆F (L, T ) at zero temperature. In the limit
of large L, the glassy phase is absent for p > p∗, characterized by ∆F (∞, 0) = 0. The
point p∗ can be identified as a crossing point for different ∆F (L, 0) curves, presented
here for L = 1000 and L = 2000, and it’s value is found to be very close to pc = 0.379.

perfect matching regime. Hence, the value of p∗ in the large L limit can be identi-

fied as a crossing point of ∆F (L, 0) curves for different L. The crossing point for

L = 1000 and L = 2000 is indeed found to be very close to the value pc = 0.379,

strongly supporting the hypothesis p∗ = pc. The aforementioned results indi-

cate that the critical curve Tc(p) crosses zero at the critical value pc. Hence,

the perfect-imperfect transition point seems to lie at the critical line, separat-

ing molten and glassy regions, and coincides with its limiting T = 0 value. We

see that although the glassy phase exists only in the region where the gaps are

present, the molten phase lies in both, perfect and imperfect, matching regions.

Because of the one-parameter dependence, the Bernoulli model is probably the

simplest model for modeling the secondary structure of the RNA, that captures

the essential physical properties of the process. Being applied to the studies of

the thermodynamic properties of random RNAs, the problem introduced in this
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work provides some enlightenment on the nature of molten-glass transition at zero

temperature. Starting from the Bernoulli model, one could directly generalize

our approach to investigate more sophisticated and realistic models of the RNA

secondary structure, for example, by introducing the minimal allowed hairpin

length [44, 43, 53], taking into accounts the pseudoknots [70] and different binding

probabilities [70, 61].

4.5 Other approaches to non-integer alphabetic

sequences

The principal disadvantage of a Bernoulli model consists of the absence of explicit

correspondence of a Bernoulli contact matrix V and a primary polymer structure.

We cannot distinguish different types of monomers and, thus, the transitivity

is completely broken. In this section we describe other methods to generate a

random sequence with effectively non-integer alphabet, in which the transitivity

is preserved entirely or partially.

4.5.1 Correlated alphabet

One of the approaches is to distribute three types of monomers (A,B and C)

in a chain not randomly, but correlated. We can arrange a chain like Markov

process[107], i.e, the probability of future step (monomer type) depends on the

present nucleotide:

A B C

A 1− 2ǫ ǫ ǫ

B ǫ 1− 2ǫ ǫ

C ǫ ǫ 1− 2ǫ

The (i, j)-th matrix element determine the probability to have the monomer of

the j-type after the i-th monomer. Changing ǫ from 0 to 1
3
we mimic alphabets

with effective number of letters continuously varying from 1 to 3. We chose

the probability matrix in this form to make it symmetrical in respect all three

monomer types. The relation between the parameter ǫ and alphabet c can be
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Figure 4.7. The model of correlated alphabet. The dependence of binding
probability on the alphabet (the red points). Numerical results are obtained for
ensemble of 103 samples of the length L = 5000. For comparison the respective
dependence for the Bernoulli model (the black curve) is depicted.

easily received, using the Shannon information entropy [112]:

c =

(
1

ǫ
− 2

)2ǫ
1

1− 2ǫ
(4.40)

As a result, we have a polymer with a block structure, the typical block size

depends on ǫ. Fig. 4.7 illustrates the dependence of the specific free energy

on the alphabet size in this model. There is no transition as in the Bernoulli

model. Even for the alphabets c < 2, the perfect matching structures are not

formed. The explanation of this effect is quite simple. After the erasing proce-

dure (see Section 4.1), the tree-letter correlated polymer is reduced to three-letter

sequence with a random monomer distribution (we erase all the blocks of the same

monomers). But, a three-letter random sequence form the structure with O(L)

gaps. The length of the sequence rest after erasing is proportional to the sequence

length L. In this way, for any ǫ we have finally a three-letter random sequence,

which belongs to imperfect regime. However, note, that the dependence (Fig. 4.7)

has a sharp decline in the vicinity of the Bernoulli critical point.

4.5.2 Rational alphabet

Other model, in which the transitivity remains partially can be formulated as

follows. Consider a random polymer with P different monomer types, but allow

67



each of them to bind with Q others monomer types according to some specific

complementarity rules. For example, the alphabet c = 5/2 can be presented

as a random five-letter sequence (A,B,C,D,E are the monomer types) with the

complementary rules organizing by the pentagon (Fig. 4.8). These rules can be

constructed for any rational alphabet and the model is sensitive to the param-

eter Q. For example, the alphabets c = 14/5 and c = 28/10 give slightly little

different results (Fig. 4.9). It is obvious that in the limit P → L we are back to

the Bernoulli model. From the biological point of view, this model seems to be

rather natural. Indeed, recall that in addition to the Watson-Crick base pairs the

Wobble pairs can be formed (see paragraph 1.1.1).

Figure 4.8. The scheme of allowed
contacts for the alphabet c = 5/2

A B C D E
A 0 1 0 0 1
B 1 0 1 0 0
C 0 1 0 1 0
D 1 0 1 0 1
E 1 0 0 1 0

Table 4.1. The matrix of
allowed contacts for the
alphabet c = 5/2

Figure 4.9. The model of rational alphabet. The dependence of binding
probability on the alphabet (the red points). Numerical results are obtained for
ensemble of 103 samples of the length L = 1000. For comparison the respective
dependence for the Bernoulli model (the black curve) is depicted.

Summing up, we demonstrate here that alphabets with different number of
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letters, c, are nonequivalent if one considers the matching problem of long random

RNA. This nonequivalence is tightly coupled to the restrictions on the morphology

of allowed secondary structures. Indeed, the existence of two regimes (for c ≤ ccr

and c > ccr) is a peculiarity of RNAs and is due to the additional freedom in the

formation of the complex cactus–like secondary structures typical for messenger

RNAs. For linear matching problem used in DNA comparison, the fraction of

nucleotides in the optimal alignment is less than 1 for any alphabet with c > 1.

In our model the transition between two regimes occurs at 2 < ccr < 4. The exact

value of the critical alphabet size should be sensitive to the microscopic details

of the model, and one can enumerate factors which are neglected in our model

and which could shift the transition point to bigger or lower values away from

the observed critical value.

On one hand, the presence of stacking energies and minimal loop sizes in real

RNA leads to the bonds being effectively formed not by single nucleotides, but by

blocks of them, increasing the effective alphabet size for given c, thus, decreasing

ccr in terms of the size of a ”bare” alphabet. On the other hand, one would not

expect any real–life random RNA to have a completely random structure with

exactly equal concentrations of letters and no short–range correlations between

them. Any such correlations reduce the information entropy of the sequence, and,

therefore, lead to the decrease of the effective alphabet size, and thus, push ccr

to higher values. The exact value of ccr is non-universal. However our analysis

shows: (i) the existence of two different morphological regimes, depending on the

number of nucleotide types in the alphabet, and (ii) the fact that this transition

point can plausibly be rather close to a natural alphabet.

This particular number, obviously, sounds suggestive since it is exactly the

number of nucleotide types in the alphabet used in real–world RNAs. The crit-

icality on alphabet size, observed only for RNAs thus nicely rhymes with the

modern opinion that the life originates from the template–directed replication of

random RNA molecules (the so-called “RNA world” hypothesis) [113, 114]. Can

it be indeed advantageous to have the alphabet of critical or close-to-critical size?

For RNA to have a biological function it should: i) fold predictably, and ii) form

a robust structure not too sensitive to thermal noise. Short nucleotide alphabets

with c < ccr tend to produce structures which have many different ground states,

also compare with similar reasoning for proteins [115, 116]. On the other hand,

69



long alphabets correspond to loosely bound ground states with many unpaired

nucleotides, which is disadvantageous in terms of stability of the structure. The

critical alphabets, thus, seem to be optimal for biological purpose.
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Chapter 5

Optimal transportation problem

and RNA-like random interval

model

In the works on investigation of thermodynamic properties of random RNAs [56,

53, 43, 62] it has been supposed that the energies, ui,j, are quenched uncorrelated

random variables, which depend on i and j, with a Gaussian distribution. The

quenched randomness in the primary sequence affects on the height diagram

(Fig. 1.5). It was found numerically that in glassy state of random RNA the

roughness exponent γ takes the value close to γ = 2/3. Recent analytic estimates

by field-theoretic arguments and RG analysis [56] give γ ≃ 5/8. Despite the

essential progress in the field, the question about the value of roughness exponent

for random heteropolymer RNAs is still open.

In this chapter we describe a new toy model of a heteropolymer chain capa-

ble of forming planar secondary structures typical for RNA molecules. In this

model the sequential intervals between neighboring monomers along a chain are

considered as quenched random variables, and energies of nonlocal bonds are as-

sumed to be concave functions of those intervals. Several factors are neglected:

the contribution of loop factors to the partition function, the variation in ener-

gies of different types of complementary nucleotides, the stacking interactions,

and constraints on the minimal size of loops. However the model captures well

the formation of folded structures without pseudoknots in an arbitrary sequence

of nucleotides. Using the optimization procedure for a special class of concave–
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type potentials, borrowed from optimal transport analysis, we derive the local

difference equation for the ground state free energy of the chain with the pla-

nar (RNA–like) architecture of paired links. We consider various distribution

functions of intervals between neighboring monomers (truncated Gaussian and

scale–free) and demonstrate the existence of a topological crossover from sequen-

tial to essentially nested configurations of paired links.

5.1 Optimal transportation problem

In the classical transportation problem, let µ be a distribution of iron mines

throughout the countryside (latter supposed to be one-dimensional), and ν the

distribution of factories that require iron ore. We are interested in the following

question: which mines should supply ore to each factory in order to minimize

the total transportation costs. The cost per ton of ore transported from the

mine at x to the factory at y is given by a function c(x, y), so the problem can

be formulated as a linear programming. Indeed, the similar question has been

considered in the ”optimal transportation theory” developed by Kantorovich [117]

and Koopmans [118], though its origins date much further back to Monge (1781).

The transportation problem belongs to NP class complexity. There are many

different approaches to solve this problem, for example the simplex method, the

north-west corner method, the method of following stone [119]. For mathematical

simplicity other formulations of the optimal transportation problem are used [119,

120].

The optimal transportation problem can be formulated as a perfect matching

problem on graphs [121, 122]. Recall some notions from combinatorial optimiza-

tion on graphs. A matching in an undirected graph is any set of its mutually

disjoint edges: no two edges from such set can share a vertex. A matching is

called perfect if it involves all vertices of the graph (the number of vertices is

then necessarily even). Depending on the structure of the graph, there may exist

many perfect matchings. Sup pose that edges of a graph are endowed with real

weights; then it makes sense to look for a perfect matching composed from a set

of edges with a minimum sum of weights. We can treat a particular case of this

minimum-weight perfect matching problem where the graph is complete, all its

vertices are located on a line, and edge weights are related to distances between
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the vertices along the line.

Following [123], we call the function w a cost function of concave type if for

any x1, x2, y1, y2 ∈ R the inequality

w(x1, y1) + w(x2, y2) ≤ w(x1, y2) + w(x2, y1) (5.1)

implies that the intervals connecting x1 to y1 and x2 to y2 are either disjoint or

one of them is contained in the other. Examples are: w(x, y) = |x − y|α with

0 < α < 1, or w(x, y) = ln |x − y| extended to the diagonal x = y by −∞. In

fact, whenever a cost function w of concave type is spatially homogeneous and

symmetric, i.e., w(x, y) = g(|x − y|), the function g must be strictly increasing

and strictly concave [123].

Although somewhat idealized, the setting just described provides a reasonable

model for applications in which shipping occurs along a single route: a railway

line or highway, or along one coast of North America. Concavity of g reflects

a shipping tariff that increases with the distance, even while the cost per mile

shipped goes down. Despite its economic relevance, transportation with concave

costs has received much less attention than the same problem for convex costs.

The latter enjoys a sizable literature and, at least in one dimension, has been

completely understood (see [124] or [125] for reviews). For concave costs on

the other hand, it was only recently observed [126] that the solutions will not

be smooth, but display an intricate structure which was unexpected; it seems

equally fascinating from the mathematical and the economic point of view. To

describe one effect in economic terms: the concavity of the cost function favors a

long trip and a short trip over two trips of average length; as a result, it can be

efficient for two trucks carrying the same commodity to pass each other travelling

opposite directions on the highway: one truck must be a local supplier, the other

on a longer haul. In optimal solutions, such ”pathologies” may nest on many

scales, leading to a natural hierarchy among the regions of supply (where µ ≥ ν)

and of demand (where µ ≤ ν).

Let now x1 < x2 < · · · < x2n be an even number of points on the real

line R. Consider the complete graph K2n on these points, each of whose edges

(xi, xj) is equipped with a weight w(xi, xj). We look for a minimum-weight perfect

matching in the graph K2n, i.e., for a set of n edges such that the sum of their
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weights is minimal.

Taking weights w(xi, yi) = ln |xi−yi|, we can straightforwardly check that the

minimal value of the total cost function Ω(x1, y1; ...; xn, yn),

Ω(x1, y1; ...; xn, yn) =
∑

{arcs}
ln |xi − yi|,

is achieved at some planar configuration of pairings (see Fig. 5.1).
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Figure 5.1. Optimization procedure. The use of concave-type cost function leads
to the planar pairing.

5.2 Random Interval Model

Now we are in position to formulate our toy Random Interval Model (RIM) of a

quenched heteropolymer RNA, in which the paired monomers interact with the

energy εi,j, which is a concave function of the distance between monomers along

the chain. In particular, we choose εi,j of the form

εi,j = u ln |xi − xj|; (j 6= i) (5.2)

where u is some positive constant, and xi, xj are the coordinates of monomers i

and j along the chain. The distances di = |xi+1 − xi| along the chain between

sequential monomers capable to form pairs are quenched random variables taken

independently from some distribution P (di = d). Schematically, a typical re-

alization of a RIM is depicted in Fig. 5.2 by arcs (a) and by a height diagram

(b).

Let us emphasize that the key feature of the RIM consists in the fact that

the interaction energy between paired monomers, εi,j, is a concave function of

distance. In principle, one could take εi,j in the form εi,j = u|xj − xi|α1 , where

0 < α1 < 1, or εi,j = −u|xj −xi|−α2 , where α2 > 0 (j 6= i). The main conclusions

will hold, though the details are model-dependent.
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(a)

(b)

Figure 5.2. Typical configuration of a random interval RNA. Structure is
shown by arcs (a), and by a height diagram (b).

Supposing that every monomer in the ground state structure is involved in

binding, after some simplifications we get from (2.20):

Fi,i+k = min
s=i+1,i+3,...,i+k

[

εi,s + Fi+1,s−1 + Fs+1,i+k

]

(5.3)

with the ”boundary conditions” Fi+1,i = 0 for any i. Note that it is enough to

extend the min in s over values with odd increments with respect to i: no arc

can cover an odd number of points, because otherwise some of them would be

excluded from the structure due to planarity.

1. It is easy to see that the recursion (5.3) enumerates all planar arc structures

on points xi, xi+1, . . . , xi+k. In particular it implies that

Fi,i+k ≤ εi,i+k + Fi+1,k−1 (5.4)

for all i and all odd k ≥ 1 and that

Fi,i+k ≤ Fi,i+ℓ + Fi+ℓ+1,i+k (5.5)

for all i and 1 ≤ ℓ < k with k, ℓ odd. The latter property can be described

as sub-additivity of the functional F : for two non-overlapping configurations of

points x1 < x2 < · · · < xi+ℓ and xi+ℓ+1 < xi+ℓ+2 < · · · < xi+k, the value Fi,i+k

for the united configuration is not greater than the sum of the values Fi,i+ℓ and

Fi+ℓ+1,i+k on the two partial configurations.

2. For the cost function w(xi, xj) = εij of concave type, the free energy

functional is not only sub-additive, but has a stronger property: for all i, odd
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1 < ℓ < k and even j with j ≤ ℓ+ 1, F verifies the inequality

Fi,i+k + Fi+j,i+ℓ ≤ Fi,i+ℓ + Fi+j,i+k (5.6)

of which (5.5) is a particular case corresponding to j = ℓ + 1. This property

of F is called submodularity. It suffices to establish submodularity for j = 2

and ℓ = k − 2:

Fi,i+k ≤ Fi,i+k−2 + Fi+2,i+k − Fi+2,i+k−2 (5.7)

the general case (5.6) is recovered by induction. Indeed, it was established in [122]

that F satisfies a recursion

Fi,i+k = min
[
εi,i+k + Fi+1,k−1; Fi,i+k−2 + Fi+2,i+k − Fi+2,i+k−2

]
(5.8)

that combines (5.3) and (5.7). In other words, F is the maximal submodular

functional that satisfies also (5.3).

Thus, the function Fi,i+k for concave–type potentials satisfies not only the

standard nonlocal (2.20), but also a local (5.8). For completeness a derivation

of (5.8) (which coincides with minor modifications with [122]) is included in Ap-

pendix.

5.3 Topological properties of Random Interval

Model

The random interval model defined above has some interesting topological fea-

tures. Namely, the height diagram, h, which can be regarded as a quantitative

characteristics of the “nesting degree” of planar arcs, displays for the Gaus-

sian distribution of intervals a topological crossover from sequential pairing of

monomers to essentially embedded (i.e. nested) one. Another interesting behav-

ior of h is observed for a power–law (i.e. a scale–free) distribution of intervals,

where the dependence of the height on the the exponent in the distribution has

a well–defined maximum.

76



5.3.1 Numerical results

The truncated Gaussian distribution

Consider a random chain, in which the distances between nearest–neighboring

monomers, di = |xi+1 − xi|, are distributed with the truncated Gaussian distri-

bution:

f(d, σ) =







C√
2πσ

e−
(d−µ)2

2σ2 , dmin < d < dmax

0, else
(5.9)

where C = 2
[

erf
(

dmax−µ√
2σ

)

+ erf
(

µ−dmin√
2σ

)]−1

is the constant determined by the

normalization condition
∫ dmax

dmin
f(x, σ) dx = 1. To avoid any possible misunder-

standings, require all energies in (5.4) to be positive. Without loss of generality

we can choose the following values of the parameters of the distribution function

in (5.9): µ = 2; dmin = 1; dmax = 3. The distribution function (5.9) is depicted

in Fig. 5.3 for different dispersions σ.

Figure 5.3. Truncated Gaussian distribution. f(σ) of distances between
nearest-neighboring monomers for σ = 0.1; 0.5; 2.0.

Our numerical analysis shows the existence of a crossover for random interval

RNAs in topology of monomer pairings (planar diagrams) from sequential to es-

sentially nested one. The parameter which controls this behavior is the dispersion

σ of the distribution f(d, σ).

For σ < σcr, i.e. for essentially peaked distributions, the ground state of a

random RNA chain has a height equal to 1. This means that only sequential
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pairs of nearest neighboring monomers do form bonds. The value σcr, at which

the height diagram exceeds 1, we call the topological crossover point. The value

σcr is computed for finite chains and depends on its total length, N ; when N is

increasing, the point of transition shifts towards smaller values and, apparently,

reaches zero when N tends to infinity. Fig. 5.4 presents our numerical results for

random interval chain with N = 250, 500, 1000 monomers. Above the crossover

point, i.e. for σ > σcr the height diagram monotonically increases with σ and

reaches some averaged stationary value for the RIM with uniform distribution of

intervals (σ →∞). We prefer to use the term “crossover” instead of “transition”

since we expect that it is not a true phase transition, the width of which shrinks

to zero in the thermodynamic limit [127].

Figure 5.4. Dependence of the average height, 〈h〉 on the control
parameter σ for the Gaussian truncated distribution. The simulations were
done for ensemble of 104 polymers.

The power-law distribution

The truncated Gaussian distribution considered above is good for testing the key

features of the RIM of RNA–like chains, however itself this distribution is rather

artificial. It is much more natural to consider scale–free distributions of distances

between neighboring monomers. In this case the intervals di have the following

probability density function:

f(d, γ) =
C

1 + dγ
(5.10)
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with γ > 0 and dmin < d < dmax. The normalization constant C ≡ Cγ(dmax, dmin)

is
C(dmax, dmin) = [Aγ(dmax)− Aγ(dmin)]

−1 ;

Aγ(x) = 2F1 (1, γ
−1, 1 + γ−1,−xγ) x

(5.11)

where 2F1(...) is the hypergeometric function. In what follows we take the follow-

ing numerical values: dmin = 1; dmax = 20. In contrast to the truncated Gaussian

distribution, in the truncated scale-free distribution the probability of very long

distances between neighboring monomers is not exponentially small.

Figure 5.5. Power-law distribution function. f(d, γ) of distances between
nearest-neighboring monomers for γ = 0.1; 1.0; 2.0.

The presence of ”heavy tails” in the distribution affects the topology of the

ground state of the RNA RIM in a nontrivial way. Indeed, when γ in (5.10)

is increasing from zero, the ”nesting degree”, h, behaves non-monotonically: at

small γ > 0 it increases up to some maximal value (at γ = 1) and then decreases,

tending to 1 (for γ →∞), see Fig. 5.6.

It is worth to note that the presence of “heavy tails” in the distribution releases

the creation of nested configurations in an optimal pairing. For large values of

γ the height diagram decreases which, as in the case of Gaussian distribution,

corresponds to weakly random (practically equidistant) RNAs with sequential

optimal pairing.
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Figure 5.6. Dependence of the height, 〈h〉 on the control parameter γ for
the truncated power-law distribution. The simulations were performed for
ensemble of 104 random samples.

5.3.2 Analytical estimates

The nesting in an optimal configuration of RIM is affected by two complemen-

tary factors. On one hand, the nesting becomes favorable under some condition

(explicitly written below) on lengths of three sequential intervals di−1, di, di+1.

On the other hand, the creation of a covering arc between two distant monomers

i and j could be favorable if below this arc all pairs of neighboring monomers

have formed bonds. Creation of a covering arc involves a global reorganization of

linked pairs in a RIM. To the contrary, the nesting discussed above, is the local

property of the RIM due to the special arrangement of sequential triples.

Let us focus on the nesting in an optimal configuration dealing with local

properties of a RIM. The nested configuration of two arcs is favorable with respect

to the sequential pairing, if the following inequality for the weight values holds:

ωi−1,i+2 + ωi,i+1 < ωi−1,i + ωi+1,i+2 (5.12)

Taking into account that ωi,j = u ln |xi − xj|, we can easily transform (5.12) into
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the condition on three sequential intervals di−1, di, di+1:







di−1 > di

di+1 >
di(di−1 + di)

di−1 − di

(5.13)

or in a more symmetric form

di <
di−1 + di+1

2

(√

1 +
4di−1di+1

(di−1 + di+1)2
− 1

)

(5.14)

Having the distribution f(d) in [dmin, dmax], we can compute the probability

P that inequalities (5.14) hold. Since the intervals di−1, di, di+1 are distributed

independently, the desired probability P is determines by the integral

P =

∫ dmax

dmin

f(x) dx

∫ dmax

dmin

f(y) dy

∫ x+y
2

(
√

1+ 4xy

(x+y)2
−1

)

dmin

f(z) dz, (5.15)

where integration over x corresponds to di−1, over y, to di+1, and over z, to di.

The equation (5.15) describes appearance of 1st level nesting (h = 2). More-

over, it is present as a multiplier in the probability of the 2nd level nesting (h = 3).

So, we can expect that numerical curves for h(σ) or h(γ) have the same features

as the function.

Gaussian truncated distribution

Substituting the truncated Gaussian distribution f(d, σ) (5.9) with the param-

eters (µ = 2; dmin = 1; dmax = 3) we get the function P plotted in Fig. 5.7.

Note that P (σ) repeats the profile of 〈h(σ)〉 displayed in Fig. 5.4 for the average

height of the arc diagram. However our analytic approach does not take into

account the slight dependence of the transition point on the polymer length since

this effect has ”global” property and is beyond the precision of our method. It

should be also emphasized that the appearance of the 2nd level nesting (i.e. of

the diagrams with the heights h > 2) deals exclusively with global reorganization

of pairing in the RIM. Indeed, in order to have the 2nd level nesting, the condi-

tion (5.12) should be valid for the intervals di−2, d
(1), di+2, where we substitute

for the middle interval d(1) the combination of neighboring triples, di−1+di+di+1,
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Figure 5.7. Analytical estimate for the truncated Gaussian distribution.
Dependence of the probability P (5.15) on the control parameter σ.

which itself is nested. The minimal value for the middle interval d(1), as it follows

from (5.12), is d(1) = 2(
√
2 + 1)dmin + dmin. For the parameters of our distribu-

tion, we can conclude, that d(1) > dmax, what contradicts with the definition of

the model. It means that all the configurations with the h > 2 have at least one

long ”global” arc.

Power-law truncated distribution

The same analysis can be performed for the RIM with the power-law distribution

f(d, γ) (5.10). We see that the function P (γ) (Fig. 5.8) has the maximum at the

point γ = 1. At γ ≫ 1 the probability P tends to zero. Contrary to the truncated

Gaussian distribution, the 2nd level nesting is allowed since d(1) < dmax, however

the 3rd level nesting is forbidden, because d(2) = 2(
√
2+ 1)d(1) + d(1) > dmax. So,

in the configurations with h > 3 the nesting is again due to ”global” factors.

We have shown that for truncated Gaussian distribution f(d, σ) of intervals,

the height diagram exhibits a topological transition in pairing of monomers from

sequential to essentially nested one. The parameter which controls this behavior

is the dispersion, σ, of the distribution f(d, σ).

In contrast to the truncated Gaussian distribution, for the truncated scale-free

distribution f(d, γ) the probability of very long distances between neighboring

monomers is not exponentially small. The presence of such “heavy tails”, or,

in other words, of the “intermittent behavior” (i.e. very long tails mixed with
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Figure 5.8. Analytical estimate for the truncated power-law distribution.
Dependence of the probability P (5.15) on the control parameter γ.

very short ones) non-trivially affects the topology of the ground state of the RNA

Random Interval Model.

The important result deserving attention, concerns the possibility to pass

from the nonlocal recursion relation for the ground state free energy (2.22) to

the local recursion relation (7.4) if and only if the interaction energy between

paired monomers, εi,j, is a concave function of distance. So, for any potential

(even random) of concave form, the equation (4.20) can be essentially simplified

resulting in shortening the computational time if these equations are implemented

for numeric analysis of secondary structures of polymer chain with RNA-type

architecture.

The final remark concerns the possible interplay between optimization prob-

lems and some particular results of Random Matrix Theory (RMT) for RNA

folding, addressed in [62, 128]. Let us recall that our basic result relies on the

theorem which proves that optimal pairings on the line with the concave transport

function are non-intersecting (i.e. planar). Being formulated in RMT terms, this

means that optimization leads to the extraction of a special subclass of planar

diagrams in the large-N random matrix ensemble, namely, the so-called rainbow

diagrams (see, for example, [129]). To this end it would be interesting to for-

mulate our Random Interval Model as a matrix model for finite N in order to

check how the optimization algorithms allow extract planar diagrams of special

topology in matrix models.
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Chapter 6

Statistical analysis of networks:

review of methods

Genes and gene products interact on several levels. At the genomic level, tran-

scription factors can activate or inhibit the transcription of genes to give mRNAs.

Since these transcription factors are themselves products of genes, the ultimate

effect is that genes regulate each other’s expression as part of gene regulatory

networks. Similarly, proteins can participate in diverse post-translational interac-

tions that lead to modified protein functions or to formation of protein complexes

that have new roles; the totality of these processes is called a protein-protein in-

teraction network. The biochemical reactions in cellular metabolism can likewise

be integrated into a metabolic network whose fluxes are regulated by enzymes

catalyzing the reactions. In many cases these different levels of interaction are

integrated for example, when the presence of an external signal triggers a cas-

cade of interactions that involves both biochemical reactions and transactional

regulation.

A system of elements that interact or regulate each other can be represented

by a mathematical object called a graph. At the simplest level, the systems el-

ements are reduced to graph nodes (also called vertices) and their interactions

are reduced to edges connecting pairs of nodes (Fig. 6.1). Edges can be either

directed, specifying a source (starting point) and a target (endpoint), or non-

directed. Directed edges are suitable for representing the flow of material from a

substrate to a product in a reaction or the flow of information from a transcrip-

tion factor to the gene whose transcription it regulates. Non-directed edges are
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Figure 6.1. C.elegans protein interaction network. The nodes are colored
according to their phylogenic class: ancient, red; multicellular, yellow; and worm,
blue. The inset highlights a small part of the network [130]

used to represent mutual interactions, such as protein-protein binding. Graphs

can be augmented by assigning various attributes to the nodes and edges; multi-

partite graphs allow representation of different classes of node, and edges can

be characterized by signs (positive for activation, negative for inhibition), confi-

dence levels, strengths, or reaction speeds. In this chapter it is shown how graph

representation and analysis can be used to gain biological insights through an

understanding of the structure of cellular interaction networks.

6.1 Structural properties

Statistical structural properties, considered below, are traditionally used to de-

scribe topologies of the graphs corresponding to real networks and a large amount

of literature on these properties is available. Reviews of Albert and Barabasi [131],

Newman [132] and Dorogovtsev and Mendes [133] present these properties and

give their interpretations depending on the real systems studied. A completely

mathematical treatment of such topics can be found, for example, in the mono-

graph by Distel [134] or in Phd thesis by P. Kaluzo [135]. The definitions, which
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are used by us to characterize the networks that we study, are based on these

references.

Degree distribution

The degree d of a node in a network is the number of connections to other

nodes. If the connections of a network are directed, it is possible to define sep-

arately the in-degree din and the out-degree dout of each node, as the number of

input and output connections that come to or go from the node, respectively,

d = din + dout. Usually, nodes of a network have different degrees. By counting

the number of nodes with the same degree d in a graph, one obtains its degree dis-

tribution P (d). In the case of directed networks, there are the in-degree, Pin(d),

and the out-degree, Pout(d), distributions. Additionally, we can construct joint

distributions P (din; dout) which indicate the numbers of nodes with din input and

dout output connections in a network. For example, for random Erdos and Renyi

networks these distributions are binomial. In regular networks, degrees of all

nodes are equal and thus the distributions are singular.

The degree distributions of numerous networks, such as the Internet, human

collaboration networks and metabolic networks, follow a well-defined functional

form P (d) = Ad−γ called a power law. Here, A is a constant that ensures that

the P (d) values add up to 1, and the degree exponent γ is usually in the range

2 < γ < 3 [131]. This function indicates that there is a high diversity of node

degrees and no typical node in the network that could be used to characterize the

rest of the nodes. The absence of a typical degree (or typical scale) is why these

networks are described as ”scale-free” (Fig. 6.2).

Clustering coefficient

This local property of networks is a measure of the density of interactions

among a set of nodes. In an undirected network, a node i with k neighbors

has clustering coefficient Ci defined as the ratio between the actual number of

connections Ei among its k neighbors and their maximum possible number of

connections k(k − 1)/2,

Ci =
2Ei

k(k − 1)
(6.1)

For a network, the clustering coefficient C is the average of the clustering coef-

ficients Ci of its nodes. In other words, the clustering coefficient quantifies how

close the local neighborhood of a node is to being part of a clique, a region of the

graph (a subgraph) where every node is connected to every other node. Various
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Figure 6.2. Scale-free and random networks. Comparison between the degree
distribution of scale-free networks (circles) and random graphs (squares) having the
same number of nodes and edges: the same two distributions are plotted both on a
linear (left) and logarithmic (right) scale. The bell-shaped degree distribution of
random graphs peaks at the average degree, by contrast, the degree distribution of
the scale-free network follows the power law P (k) = Ak−3 without any characteristic
size [136].

networks, including protein interaction and metabolic networks [137, 138], display

a high average clustering coefficient, which indicates a high level of redundancy

and cohesiveness. Averaging the clustering coefficients of nodes that have the

same degree d gives the function C(d), which characterizes the diversity of cohe-

siveness of local neighborhoods. Several measurements indicate a decreasing C(d)

in metabolic networks [139] and protein interaction networks [138], following the

relationship C(d) = B/dβ (where B is a constant and β is between 1 and 2). This

suggests that low-degree nodes tend to belong to highly cohesive neighborhoods

whereas higher-degree nodes tend to have neighbors that are less connected to

each other.

Most of networks have directed connections and, therefore, one cannot use the

definition (6.1) to determine this property. In structural investigations of directed

networks, such as in the study of the WWW by Adamic and Huberman [140],

networks are often made bidirectional by discarding information about their di-

rections. Although we can use the definition (6.1), the networks loose one of

their main characteristics, their directionality. Moreover, many different directed
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networks will then be transformed to the same undirected one.

Path

A path in a network is the set of sequential connections that link two nodes.

Its length is the number of connections that are in the path. The distance between

two nodes is the length of the shortest path among all available ones. When two

nodes cannot be connected, the distance between them is taken as infinite. In

undirected graphs, the distance between two nodes is independent of the direc-

tions in which we move. If such a network is connected (without isolated nodes),

we can reach any node of the network starting from any other one. In directed

networks, the situation is similar. However, now we have to consider the direc-

tions of the connections. A path between two nodes must connect them following

the directions of its links. In consequence, two nodes can be connected only in

one direction, or the distances between them can be different, depending on the

node from which we start to move.

If edges are characterized by the speed or efficiency of information propagation

along them, the concept can be extended to signify, for example, the path with

shortest delay [141]. In most networks observed, there is a relatively short path

between any two nodes, and its length is in the order of the logarithm of the

network size [131, 132]. This small world property appears to characterize most

complex networks, including metabolic and protein interaction networks. If a

path connects each pair of nodes, the graph is said to be connected; if this is not

the case, one can find connected components, graph regions (subgraphs) that are

connected.

The connectivity structure of directed graphs presents special features, be-

cause the path between two nodes i and j can be different when going from i to j

or vice versa. Directed graphs can have one or several strongly connected compo-

nents, subgraphs whose nodes are connected in both directions; in-components,

which are connected to the nodes in the strongly connected component but not

vice versa; and out-components, which can be reached from the strongly con-

nected component but not vice versa. It is important to note that this topological

classification reflects functional separation in signal transduction and metabolic

networks. For example, the regulatory architecture of a mammalian cell [142]

has ligand-receptor binding as the in-component, a central signaling network as

the strongly connected component and the transcription of target genes and phe-
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notype changes as part of the out-component.

6.2 Motif distributions

The statistical properties, which we have described, give general characteristics

of networks. Analyzing real networks, it has been shown [143] that they can

have similar degree distributions, short path lengths between the nodes and high

clustering coefficients, and nonetheless be very different with respect to their

local structures. This suggests that such statistical properties are not enough to

characterize the network architecture. Milo et. al. [144, 145, 146] have proposed

to investigate local structures by considering the relative frequency of appearance

of small subgraphs, or motifs, as compared to the randomized versions of the same

networks.

In the case of directed subgraphs of size three, there are 13 different possible

patterns of connections or motifs, which are all shown in Fig. 6.3. Although some

of them have the same structural properties, such as the clustering coefficient,

they are very different from the point of view of dynamics. For example, motifs

7 and 8, representing the feed-forward and the feedback loops, have the same

clustering coefficient C = 0.5. However, only dynamical feedback loops can play

a role in the robust adaptation of signal transduction networks to the variation of

biochemical parameters [147]. Thus, analyzing the appearance of these motifs in a

network allows us to obtain a more detailed structural characterization. Because

we want to study the local structure of relatively small networks, we will consider

only the motifs with three nodes.

Each of these motifs has a relative appearance Zi in a network G, telling

whether it is expressed more (Zi > 0) or (Zi < 0) less frequently than in the

randomized versions of the same network G. After normalization, the relative

appearances Zi form a vector Z , the normalized Z score, which gives us the

motif distribution of a given network. The normalized Z score is determined as

following. The statistical significance of a motif i in a network G is given by its

zi score:

zi =
Ni − 〈Ni〉

σk

; i = [1...m] (6.2)

is calculated, where Ni is the amount of i-th subgraphs in the initial network; and

〈Ni〉 and σi correspondingly the mean and the standard deviation of subgraphs
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Figure 6.3. All possible three-node motifs. Nodes are the vertices where the
links start and to which they arrive.

of given type in the randomized networks; m is the total number of consid-

ered subgraphs. Such randomized networks have the same degree distributions

and the degree sequence (i. e. the number of nodes with a specific input and

output degrees) as the analyzed network G, but they represent new random

patterns of connections. The distribution of motifs in the network under consid-

eration is characterized by the significance profile which is a normalized vector

Z = {Z1, ...., Zm} of statistical significance of all subgraphs of given size. The

components of the vector Z are

Zi =
zi

√
m∑

i=1

z2i

; i = [1...m] (6.3)

6.3 Interpretation of network properties

The architectural features of molecular interaction networks are shared by other

complex systems ranging from technological to social networks. While this uni-

versality is intriguing and allows us to apply graph theory to biological networks,

we need to focus on the interpretation of graph properties in light of the functional

and evolutionary constraints of these networks.

Hubs

In a scale-free network, small-degree nodes are the most abundant, but the

frequency of high-degree nodes decreases relatively slowly. Thus, nodes that

have degrees much higher than average, so-called hubs, exist. Because of the
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heterogeneity of scale-free networks, random node disruptions do not lead to a

major loss of connectivity, but the loss of the hubs causes the breakdown of the

network into isolated clusters [131]. The validity of these general conclusions for

cellular networks can be verified by correlating the severity of a gene knockout

with the number of interactions the gene products participate in. Indeed, as

much as 73% of the S. cerevisiae genes are non-essential, i.e. their knockout has

no phenotypic effects [148]. This confirms the cellular networks robustness in the

face of random disruptions. The likelihood that a gene is essential (lethal) or

toxicity modulating (toxin sensitive) correlates with the number of interactions

its protein product has [149, 150]. This indicates the cell is vulnerable to the

loss of highly interactive hubs. Among the most well-known examples of a hub

protein is the tumor suppressor protein p53, which has an abundance of incoming

edges, interactions regulating its conformational state (and thus its activity) and

its rate of proteolytic degradation, and numerous outgoing edges in the genes it

activates.The protein p53 is inactivated by mutation in 50% of human tumors,

which is in agreement with the vulnerability of cellular networks to their most

connected hubs [151].

Modularity

Cellular networks have long been thought to be modular, composed of func-

tionally separable subnetworks corresponding to specific biological functions [152].

Since genome-wide interaction networks are highly connected, modules should

not be understood as disconnected components but rather as components that

have dense intra-component connectivity but sparse inter-component connectiv-

ity. Several methods have been proposed to identify functional modules on the

basis of the physical location or function of network components [153] or the

topology of the interaction network [154, 155, 156]. The challenge is that mod-

ularity does not always mean clear-cut subnetworks linked in well-defined ways,

but there is a high degree of overlap and crosstalk between modules [157]. As

Ravasz et al. [139] recently argued, a heterogeneous degree distribution, inverse

correlation between degree and clustering coefficient (as seen in metabolic and

protein interaction networks) and modularity taken together suggest hierarchical

modularity, in which modules are made up of smaller and more cohesive modules,

which themselves are made up of smaller and more cohesive modules, etc.

Motifs and cliques
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Growing evidence suggests that cellular networks contain conserved interac-

tion motifs, small subgraphs that have well-defined topology. Interaction motifs

such as auto-regulation and feed-forward loops have a higher abundance in tran-

scriptional regulatory networks than expected from randomly connected graphs

with the same degree distribution [158, 146]. Protein interaction motifs such as

short cycles and small completely connected subgraphs are both abundant [154]

and evolutionarily conserved [159], partly because of their enrichment in pro-

tein complexes. Triangles of scaffolding protein interactions are also abundant in

signal transduction networks, which also contain a significant number of feed-

back loops, both positive and negative [142]. Yeger-Lotem et al. [160] have

identified frequent composite transcription/protein interaction motifs, such as

interacting transcription factors co-regulating a gene or interacting proteins be-

ing co-regulated by the same transcription factor. As Zhang et al. [161] have

pointed out, the abundant motifs of integrated mRNA/protein networks are of-

ten signatures of higher-order network structures that correspond to biological

phenomena. Conant and Wagner [162] found that the abundant transcription

factor motifs of E. coli and S. cerevisiae do not show common ancestry but are

a result of repeated convergent evolution. These findings, as well as studies of

the dynamical repertoire of interaction motifs, suggest that these common motifs

represent elements of optimal circuit design [142, 163, 164].

Path

Any response to a perturbation requires that information about the pertur-

bation spreads within the network. Thus the short path lengths of metabolic,

protein interaction and signal transduction networks (their small world property)

is a very important feature that ensures fast and efficient reaction to perturba-

tions. Another very important global property related to paths is path redun-

dancy, or the availability of multiple paths between a pair of nodes [165]. Either

in the case of multiple flows from input to output, or contingencies in the case

of perturbations in the preferred pathway, path redundancy enables the robust

functioning of cellular networks by relying less on individual pathways and medi-

ators. The frequency of node participation in paths connecting other components

can be quantified by their betweenness centrality, first defined in the context of

social sciences [166]. Node betweenness, adapted to the special conditions of sig-

nal transduction networks, can serve as an alternative measure for identifying
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Figure 6.4. Three node motif profiles of networks from various disciplines.
Networks with similar characteristic distributions are grouped into superfamilies [144].

important network hubs.

6.4 Network superfamilies

Analyzing three-node motif distributions of many networks of different fields

and origins, Milo et. al. [144] have found that there are remarkable similarities

between such distributions and it is possible to identify four main superfami-

lies. Fig. 6.4 shows different motif distributions for each superfamily. In the first

superfamily, several sensory transcription networks that control gene expression

in bacteria and yeast in response to external stimuli are found. In Fig. 6.4 motif

distributions of three microorganisms, the bacteria Escherichia coli and Bacillus

subtilis and the yeast Saccharomyces cervisiae, are given. Such motif distribu-

tions show increases in the appearance of motif 7, the ”feed-forward loop”. This

loop is related to signal-processing tasks, such as persistence detection, pulse gen-

eration, and acceleration of transcription responses. The motif 3, the 3-chain, is

underrepresented, because of the shallow architecture of these networks which

have only few long cascades. These networks are ”sensory networks” which need

to respond within minutes to transient signals such as stresses and nutrients. The

minimal time required for a response (for the first proteins to be expressed) is in-
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deed on the order of minutes. If the information needs to pass additional steps (a

regulator protein needs to be expressed and cross its activation threshold to turn

on a gene), then the response time becomes much longer. Thus, these networks

can be understood as ”rate-limited networks”, where the desired response times

are often as short as the response times of the network components [144]. In the

rate-limited network superfamily, long cascades and feedback loops are rare.

The second superfamily includes three kinds of information-processing net-

works in biological macroorganisms: signal-transduction in mammalian cells, de-

velopment transcription networks that guide the development in fruits and sea-

urchin, and synaptic connections between neurons in Caenorhadbitis elegans. In

these networks, motifs 7, 9 and 10 are enhanced, whereas by motifs 1, 2, 4 and 5

are suppressed. In contrast to the networks of the previous superfamily, these net-

works include two-node feedbacks that regulate or are regulated by a third node

(motif 10 and 9) and are less biased against cascades (motif 3). The common fea-

ture to this superfamily of information-processing networks is that the response

time of each step in the network is usually much shorter than the response time

required for the biological function of the network. For example, protein signal-

transduction networks often need to respond within an hour or longer, but each

interaction can take minutes or less. Cascade steps in developmental networks can

have response times of tens of minutes, but the processes they control are much

slower, on the order of animal cell-division times that can take several hours. It

has been therefore suggested [144] that this superfamily characterizes biological

information-processing networks which are not rate-limited.

Several WWW networks of hyperlinks between Web pages and some social

networks show similar three node motif distributions and they are combined in

the third superfamily. In this superfamily, motifs 9, 10, 12 and 13, that represent

triangle transitive interactions are overrepresented, whereas motifs 4, 5 and 6

have low frequencies. Finally, the last superfamily is formed by networks of

word-adjacency. These networks are constructed by taking as nodes the words of

a text. A directed connection between two nodes exists if these two words appear

consecutively in the text. In Fig. 6.3 motif distributions of several languages

(English, Frensh, Spanish, and Japanese) taken from several texts are shown.

The main characteristic of these motif profiles is that motifs from 7 to 13 are

underrepresented. According to [144], the lower significances of the motifs with
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triangles can be explained by the structures of the languages, where words have

different categories and a word from a certain category tends to be followed by

one from a different category (for example, a preposition is usually followed by

nouns or articles). The bipartite networks (also shown in Fig. 6.3), where there

are two classes of nodes and the connections are allowed only between nodes of

different class, yield a similar motif distribution.
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Chapter 7

Analysis of functional networks

in C.elegances

Connectivity networks have become increasingly useful for biology because of the

expanding availability of data on the physical and functional links between in-

dividual genes and proteins [167]. This connectivity data enables expanding our

knowledge beyond the experimentally validated results. New functional interac-

tions can be predicted and tested by means of analysis and theoretical expecta-

tions.

7.1 Materials and Methods

7.1.1 Data preparation

Microarray data are adopted from [168] where two parental C.elegans strains

N2 (Bristol) and CB4856 (Hawaii) and recombinant inbred lines were used to

measure gene expression in a 16 0C and 24 0C environment, representing the

two genetic and ecological extremes of C. elegans [169]. Their genetic distance

amounts to about one polymorphism per 873 base pairs [170]. Both strains and

their offspring have contrasting gene expression levels [168, 171, 172, 173, 174],

phenotypes [175, 176, 177, 178] and differ strikingly in their response to a tem-

perature change [179, 180]. In [168, 179, 181, 182] the strains were exposed to

16 0C and 24 0C, temperatures which are known to strongly affect gene expres-

sion [168, 182] and phenotypic characteristics such as body size, lifespan and

reproduction [180, 179, 183]. Gene expression patterns were measured by hy-
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bridization to oligonucleotide micro-arrays. All micro-array data was retrieved

from NCBI’s Gene Expression Omnibus (GEO [184]) under GSE5395. By means

of the Mev4 application [185] we have performed clustering of the gene expres-

sion profiles represented by measurements of absolute mRNA values in a set of

conditions. K-means clustering algorithm based on estimation of Euclidian dis-

tances between different probe profiles has been applied to produce a predefined

number of 50 gene clusters. The resulting clusters were used as ”co-expression”

clusters in our analysis. For eQTL-hotspot gene selection we used the eQTL

data from [171], which we retrieved from WormQTL[186]. This experiment was

done at three age groups. In each age group genes with a shared regulatory lo-

cus were selected by taking all the genes having an eQTL with a log10(p)-value

above 3 at the same locus (see Tab. 7.1). String software [187, 188] has been used

to reconstruct graphical networks from the sets of C.elegans genes. WormBase

database 220 [189] has been used for retrieval of ID, gene name, associated func-

tional annotations and ontological categories. WormNet [190] has been used as

a source of information on pair-wise interactions between genes. We also used

WormNet to retrieve data on separated genetic interactions of C.elegans genes

and co-expression links in C.elegans.

EQTL-hotspot Chromosome Left marker Right marker Number of genes
Juvenile worms

1 I 4 6 261
2 V 98 100 183

Reproducing worms
3 IV 61 63 131
4 V 95 100 194

Old worms
5 II 37 40 144
6 IV 61 65 164
7 IV 68 68 92
8 V 95 100 215

Table 7.1. EQTL-hotspots for three different age groups.

7.1.2 Statistical analysis of network connectivity

To investigate the WormNet connectivity properties of the selected gene clusters

and to establish potential regulators for these gene clusters we used the following
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approach: denote by di,M the shortest path along the network from a given vertex

(regulatory gene) M to some other vertex (cluster gene) i. Consider the shortest

path function (SPF) determined as follows:

kSPF
M =

1

N

N∑

i=1

1

di,M
(7.1)

where the summation is performed over all cluster genes (N is the number of the

genes in the cluster, i.e. the cluster size). The connectivity of the gene cluster on

the whole network and/or on its subnetwork is described by the SPF defined for

all cluster genes

kSPF
cl =

2

N(N − 1)

N∑

i,j=1

1

di,j
(7.2)

here N is the number of the genes in the cluster, di,j is the shortest path between

the nodes i and j. Thus defined, the SPF has a very transparent meaning, since it

gives the averaged reciprocal paths between pair of cluster genes. If i and j are not

linked on the network, the contribution to the SPF from this pair (i, j) equals to

zero, while the maximal contribution is reached for directly linked pairs. So, the

SPF can be used to characterize quantitatively the connectivity of a gene cluster

in a given network. For comparison we also use another method for determining

the cluster connectivity. The so-called ”connectivity coefficient” is defined as a

ratio between the number of inner links (which connect only cluster genes) to

the number of all links which the cluster has in the network:

fcl =
Nin

Nall

(7.3)

We used WormNet and its parts as an unweighted undirected network. Note that

the SPF analysis can be easily extended for weighted and directed networks as

well by adding to (8.2)-(7.2) a coefficient for the strength of the interaction.

Another approach to characterize connectivity (and topology) of a cluster is

to investigate its motifs distribution. The procedure described by (6.2)-(6.3) (see

Section 6.2 for details) is used to characterize the statistical properties of the gene

clusters.
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7.1.3 Prediction of regulators for gene clusters

We apply the method of the SPF coefficients kSPF
M , determined in (8.2) to search

potential regulators of co-expressed gene clusters. Note, that potential regulators

can belong to the cluster or lie outside of it. For the search of the potential cluster

regulators it is important that the regulator is specific to it. Moreover, it should

have many connections to the genes in the cluster but at the same time only

a weak connection to other genes in the network. In other words, the potential

regulator must have enough links to control the cluster not being herewith the hub

of the network. We introduce the value which takes into account the connectivity

of the regulatory gene in the whole network (G):

KSPF
M =

N∑

i=1

1

di,M

G∑

i=1

1

di,M

(7.4)

By definition, theKSPF
M is the ratio of the sum of the shortest paths from regulator

to the cluster genes, and the sum of the shortest path from regulator to all genes

in the network. One sees, that KSPF
M measures how specific a regulator is to

the cluster. The function (8.2) can be considered as a first term in expansion

of the function (7.4). We use this value for the search of potential regulators to

the gene clusters in the network and its subparts. We compare this method with

some other methods described below.

Namely, for any potential regulator we define the fraction of the cluster genes,

which are connected to it:

fM =
NM

N
(7.5)

Analogously to (7.4) we introduce the value, which takes into account the ”inter-

action” of the potential regulator with outer part of the cluster genes:

FM =
NM

NM(G)
(7.6)

Here, NM(G) is the number of all links, which the potential regulator M has in

the whole network G.
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7.2 Results

7.2.1 Statistical properties of co-expression clusters

(a) (b) (c)

(d) (e) (f)

Figure 7.1. Statistical properties of co-expression clusters. The connectivity
coefficient ((a) and (d)), the SPF coefficients ((b) and (e)) and motif distribution ((c)
and (f)) in whole WormNet (up) and in its expression sub-part (below); the respective
values for random set of genes are shown by the blue line.

Our first goal was to define the properties of the extracted gene clusters from

the whole WormNet network. Fig. 7.1 presents the dependencies of the cluster’s

connectivity and the SPF on the size of a cluster (the number of genes included

in the cluster), as well as the motif’s distribution for some clusters. The con-

nectivity coefficient is proportional to a cluster size. Generally, an expression

cluster consists of genes that show a stronger connection in WormNet than any

group of randomly selected genes — see Fig. 7.1(a). The SPF coefficients for

all gene clusters lie much higher than the SPF coefficients for random clusters,

as shown in Fig. 7.1(b) (here and below: a random cluster consists of randomly

selected nodes in WormNet). The most connected clusters are mainly bound

by co-expression links in WormNet (Fig. 7.1(d)). We have selected the clusters

with very high connectivity coefficients. Such clusters are well-connected and are

depicted by red points in the graphs. These clusters are also characterized by a

motif’s distribution where linear 4-nodes chains prevail (Fig. 7.1(c)). The gene

clusters can be divided into two groups, according to their distribution of motifs.
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The first group includes the gene clusters, in which the fully connected subgraphs

dominate. All well-connected clusters belong to this group. The second group is

formed by the clusters with a small number of fully connected motifs. It is worth

noting that protein structure networks are also characterized by the same motif

distribution [144].

The number of co-expression and physical connections are much more abun-

dant than genetic interactions in WormNet. This illustrates the necessity for

additional experimental analysis, or in-situ prediction of potential regulatory

modules for C.elegans. Our analysis shows that the motif’s profiles found for

expression sub-network of gene clusters resemble the motif profiles in WormNet

itself (Fig. 7.1(c)). This means that in our clusters the co-expression links are

more abundant than other links and provides proof that genes of well-connected

clusters are mainly connected to each other by co-expression. However the SPF

scores are much lower when only co-expression considered, while the connectivity

coefficient remains approximately the same. Also, our analysis demonstrates that

co-expression links are responsible for the existence of the cycles in well-connected

clusters (Fig. 7.1(f)).

The analysis of trans-regulatory hotspots (or trans-bands) has also shown that

these trans-bands have more connections than a random set of genes (Fig. 7.2).

This is a strong indication that they have a shared biological function or indeed

shared regulation. Fig. 7.2 demonstrates the advantage of the SPF method.

In contrast to the connectivity coefficients, the SPF coefficients for trans-bands

are more different from random and so offer a better prediction of a shared gene.

The difference between WormNet and expression sub-network is also more clearly

demonstrated by the SPF analysis.

7.2.2 Prediction of expression cluster regulators

We have used the most connected cluster, cluster 1, to find an optimal algorithm

to predict potential regulators. Two different methods have been tested.

The first method is based on ranking the network nodes according to the

fraction of cluster genes (FCG) they are directly connected to. This method re-

quires a dense connectivity matrix to be efficient. The predicted regulators are

expected to have a strong and specific involvement in modulation of expression

of a particular gene cluster. However, the ranked regulator list needs manual
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(a) (b)

Figure 7.2. Statistical properties of eQTL-hotspots. The connectivity
coefficient per gene in an eQTL-hotspot group (a) and the SPF coefficients (b) in
whole WormNet (black) and in its expression sub-part (red). The black and red lines
are the respective functions for equally sized random set of genes.

filtering to eliminate function that unlikely affect gene expression directly. The

second method is based on ranking nodes according to the shortest path func-

tion (SPF) which uses the shortest average distance to all cluster genes. As in

the first method, the obtained gene regulator lists need filtering when applied to

integrated (whole) network.

The different connectivity subnetworks of the cluster have different topologies,

with the genetic interactions subnetwork as the least connected (Fig. 7.1). The

power of the SPF method is that it compensates for the absence of knowledge

about the regulation of many genes by generation of quantitatively validated

predictions of the potential sharing of known regulators of few cluster genes by

all the co-expressed gene clusters. Also, the SPF method does not require a

matrix to be dense and can be applied to a subnetwork of genetic interactions.

Both the FCG and SPF method were applied to the total WormNet and to the

co-expression connectivity subnetwork with similar outcomes. The top of the

predicted regulators is presented in Tab. 7.2.
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Seq. IDs Gene Function
F57B9.6 inf-1 Transl.initiation/ RNA transport
T05G5.10 iff-1 Transl.initiation/ NMD
Y71G12B.8 Y71G12B.8 RNA helicase/ RNA transport

T10C6.14, T10C6.12, T10C6.11, F45F2.3,

38 His genes Histones

F45F2.4, F45F2.12, ZK131.4, ZK131.6,
ZK131.8, ZK131.10, K06C4.10, K06C4.11,
K06C4.4, K06C4.3, K06C4.12, ZK131.1,
K06C4.2, F35H10.1, F17E9.12, F17E9.13,
C50F4.7, K03A1.6, C50F4.5, F08G2.2,
B0035.9, B0035.7, F07B7.9, F07B7.10,
F07B7.4, F07B7.3, F07B7.11, F54E12.3,
F54E12.5, F55G1.11, F55G1.10, F22B3.1,

H02I12.7, T23D8.5, T23D8.6
C41D11.2 eif-3.H Transl.initiation
F32E10.1 nol-10 Nucleolar protein, polyglut.binding
F54H12.6 eef-1B.1 Elongation factor
C01F6.5 aly-1 RNA export
M163.3 his-24 Histones
B0564.1 tin-9.2 Decay/ NMD

Y18D10A.17 car-1 Decay/decapping
F56D12.5 vig-1 RISC component/miRNA binding
F26D10.3 hsp-1 Splicing
R04A9.4 ife-2 Transl.initiation

Table 7.2. Top of the predictable regulators for test cluster 1 by the FCG
and the SPF method.
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Seq. IDs Gene Function
Y55D5A.5,B0334.8,Y116F11B.1 daf-2, age1, daf-28 Insulin/aging

F35H8.5 exc-7 mRNA processing
W10D5.1 mef-2 TF
C17D12.2 unc-75 Splicing
C47G2.2 unc-130 TF
F30F8.8 taf-5 Transl.initiation
R74.3 xbp-1 TF, histone modulation

F33A8.1 cwc22 Splicing
C41C4.4 xre-1 (RNA processing) decay/ processing
C37H5.8 hsp-6 Decay
C26D10.2 hel-1 (helicase) DNA helicase
C07H6.5 cgh-1 (decapping) Decay/ decapping
F02E9.4 sin-3 (HDAC) Histone modulation
M163.3 his-1 Histone

212312 C25A1.10 dao-5 rRNA transcription/aging
ZC247.3 lin-11 TF
R107.8 lin-12 TF
C05D9.5 ife-4 Transl.initiation
R11E3.6 eor-1 TF
F43G9.11 ces-1 TF
ZK909.4 ces-2 TF

Table 7.3. Top of the predictable regulators for the test cluster 1 by the
SPF method on genetic subnetwork.
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The SPF method has also been applied to the gene regulatory network. As

a result of this, several predicted regulators are well integrated both in the

top cluster networks and in the network reconstructed from the genes with a

longevity phenotype retrieved from WormBase. Among the most promising pre-

dicted regulators that could connect the top clusters with a longevity regulation

are: daf-2, iff-1, cgh-1, tin9.2, car-1. They all are related to mRNA process-

ing/translation/decay and are in a cross-talking relationship (Tab. 7.2). Accord-

ing to their position in the network, they may play a role of linkers between the

top connected co-expression clusters related to ribosomal biogenesis, proteosome

and central metabolic functions (Fig. 7.3). Note that the SPF method allows

us to predict some regulators which we could not detect by the FCG method,

and the power of this method had been enforced by its application to a gene

regulatory connectivity subnetwork, as it is clearly demonstrated in Tab. 7.3. We

could identify a number of TFs that may be considered for a role of transcription

regulators of genes in the top co-expression cluster 1, such as: taf-5 — transcrip-

tion initiation factor TFIID subunit 5, xbp-1 — heat-shock transcription factor,

sin-3 — histone deacetylase subunit and pre-mRNA-splicing factor cwc-22. This

method also greatly increased the ranking position of daf-2 and genes upstream

daf-2 (C25A1.10) or being directly affected by daf-2 mutation (C05C8.3) which

are immediate potential connections to a group of genes with longevity phenotype

that have a strong overlap with our cluster 1 (Fig. 7.3). Our statistical analysis

demonstrates that the most connected components of WormNet are included in

test cluster 1, so the exclusion of the hub-regulators by the procedures (7.4)

for the SPF method and (7.6) for the FCG method give about the same list of

potential regulators.

Fig. 7.4 illustrates a typical position of the predicted potential regulators for

the cluster 1. Nodes predicted by the FCG method (purple frame) are proximal

to the cluster or even inside the cluster. The nodes predicted by the SPF method

can be significantly distant from the many nodes in the cluster (ces-1, eor-1,

orange frames on Fig. 7.4). Though the connections between the SPF-predicted

node and the cluster may include several intermediate steps, the majority of these

steps do contain the nodes that can translate signals at the level of mRNA pool

regulation, potentially representing complexes of proteins with a joint regulatory

performance. As one sees, the type of connectors utilized by different algorithms
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Figure 7.3. Network reconstructed from the C.elegans genes with an adult
life span phenotype from WormBase 220. Three main distinguished clusters can
be seen: in the center — ribosomal, top left —metabolic, top right — proteosome and
exosome functions. Blue circles indicate the test cluster 1 genes. Orange— predicted
regulators, dashed borders — functionally associated regulators discussed in the
manuscript. (Not all aging-related functions related to the cluster 1 are shown on this
figure).

differs essentially: experimental, regulatory connections are fundamental for the

SPF and more dense, co-expression connections, for the FCG.
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Figure 7.4. Connectivity between the predicted regulators and the cluster
1 in STRING Network browser. Evidence view for high confidence (0.700)
connections. Pink connectors - Experimentally derived interactions (pink),
co-expression (black), and co-localization on the genomes (green), and co-occurrences
in the genomes (blue). Colored circles represent input genes, white circles — the most
associated additional nodes (set number of 200) automatically added by a STRING
software on a request to increase a connectivity between uploaded functions.
Predicted potential regulators are shown in frames: orange — the SPF method,
purple — the FCG method, green node excluded in hub-exclusion SPF method.
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EQTL-hotspot Chromosome Gene Function
Juvenile worms

1 I K09H9.2
1 I R12E2.2 Endocytosis/regulation of growth rate
1 I clec-53

1 I W01B11.1
1 I sep-1 Cell division
1 I mis-12 Cell division
1 I Y54E10BR.3 TF/Zn ion binding
1 I Y71F9B.6
2 V fbxa-192 Protein interaction
2 V str-92

2 V T10C6.7 Protein interaction
2 V Y59A8A.3

Reproducing worms
3 IV Y55F3BL.2 Metal ion transport
3 IV Y69A2AR.16 Metabolism/oxidoredutase
3 IV Y69A2AR.21 Embrionic development
4 V Y32B12A.5
4 V Y43F8B.13
4 V Y43F8B.14
4 V Y51A2B.4 Lipid metabolism
4 V Y70C5B.1
4 V srh-296 Integral membrane component

Old worms
5 II moe-3 RNA binding/iRNA modification
5 II Y17G7B.18 Positive regulation of growth rate/development
5 II cpt-1 Acetyl-transferase/histone modification
5 II csp-1 Caspase/apoptosis
5 II pqn-87 Prion/protein modification
6 IV F15E6.4
6 IV F28F9.3
6 IV T08B6.4
6 IV Y9C9A.1 Structural element of vitelline membrane
7 IV C17H12.12 Protein binding
7 IV C17H12.5 Tyrosine phosphatase
7 IV C31H1.1
7 IV F36H12.5
7 IV F38A5.6
7 IV ZK354.3
8 V Y38H6C.15
8 V Y38H6C.18
8 V tgt-2 Queuine tRNA-ribosyltransferase activity modification
8 V T26E4.10 Lipid storage
8 V T26F2.2
8 V sri-7 Integral membrane component
8 V nhr-218 TF,steroid hormon receptor
8 V str-151 Integral membrane component
8 V nhr-269 TF,steroid hormon receptor

Table 7.4. Top of the predictable regulators for eQTL-hotspot gene
groups by the SPF method in WormNet.
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The developed method has been applied to eQTL data on age-associated gene

expression. The eight groups of genes sharing an age dependent regulatory lo-

cus (Tab. 7.1) were used to test the performance of our algorithm in the prediction

of regulators underlying eQTL hotspots (Tab. 7.4). All the eight groups of genes

had more connections than a random set of genes (Fig. 7.2). This shows that

the genes within those groups have a shared biological function. Application of

the SPF method to a genetic network led to promising regulatory predictions

for several eQTL-hotspots. For the eQTL-hotspot on the far right arm of chro-

mosome V, found in all three age groups, no regulator could be identified even

though the genes in this eQTL-hotspot are highly linked in Wormnet. This could

mean a relatively less well studied gene might be the regulator. For the eQTL-

hotspot on the left arm of chromosome I in the juvenile (L4) group four regulators

could be predicted when selection includes the position of the eQTL-hotspot lo-

cus. Interestingly, 3 from top 4 suggested regulators (Pop-1, xnp-1, lin-17 and

lin-44 ) are related to WNT pathway (Tab. 7.5). Pop-1 also associates with the

L4 chromosome V eQTL-hotspot but can not be the first-order causal regulator

of this QTL-hotspot as it is not located on the chromosome V locus. Both daf-2

and daf-16 associate with the two juvenile eQTL-hotspots possibly linking these

regulatory loci together. For the eQTL-hotspot on chromosome II, specifically

found in old worms, age-1 was suggested by the analysis of the genetic newtork

(Tab. 7.4).

EQTL-hotspot Chromosome Gene Function
Juvenile worms

1 I pop-1 TCF/LEF TF, WNT pathway
1 I xnp-1 DNA helicase, stress response
1 I lin-17 Wnt signaling
1 I lin-44 Wnt signaling

Old worms
5 II age-1 PI3K, daf-2 Insulin pathway

Table 7.5. Top of the predictable regulators for eQTL-hotspot gene groups
by the SPF method in genetic subpart of WormNet.

Application of the SPF method to the whole network gave more diverse results

presented in a Tab. 7.4. Besides a long list of candidate genes with unknown

function there are obviously promising predictions of steroid-hormone receptors

nhr-218 and nhr269 for old worms Chromosome V eQTL-hotspot and RNA
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binding protein modulator moe-3 for old worms chromosome II eQTL-hotspot.

7.3 Biological significance of statistical analysis

of functional networks

Characterizing the degree of connectivity for a given gene to a specific set of genes

in the network as a normalized sum of inverse distances in a network takes us to

the applications of ”harmonic means” for graph analysis. The main conjecture

behind the application of harmonic mean to networks is as follows; if a vertex

has multiple links to other vertices, the information is sent ”in parallel”, i.e.

concurrently along the network. Thus, one can define the ”efficiency”, ei,j in

communication between vertices i and j as the inverse of the shortest distance,

i.e. ei,j = 1/di,j, see [191]. The average efficiency is straightforwardly related

to the definition of the SPF. It should be noted that the interpretation of the

SPF function as the efficiency of communication could be very useful in further

dynamic analysis of the networks. Actually, let v be the velocity, with which the

information travels along the network, then the amount of information sent from

the node i to the node j per unit of time is just v/di,j . The performance P is the

total amount of information propagating over the network per unit of time [191].

In our forthcoming works we plan to analyze the clusters taking into account their

limited speed of information propagation. The concept of performance seems very

appropriate for that.

Well-connected clusters of co-expressed genes described in this paper largely

represent protein functional complexes, and they can be distinguished by the pres-

ence of a specific well-connected-6 link (unoriented) motif. This highly-connected

motif can be used for detection of protein functional complexes (islands) in inte-

gral networks. These islands, in turn, serve in prediction of new regulatory nodes.

In this study we used gene clusters derived from gene absolute expression values

data that probably increase detection of true protein complexes expressed from

indeed highly co-regulated genes [192]. Among the most interconnected clusters

are the ones for ribosomal proteins and the regulation of translation, proteasome,

respiratory complex 1 and several central metabolic functions. Using the most in-

terconnected cluster 1 we tried to detect potential regulators from the associated

network context. Due to a non-directional nature of the edges in WormNet and an
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absence of directions in the co-expression network we were unable to distinguish

between a cause, consequence or undirected physical interaction in a connected

pair of proteins/functions and may only suggest the presence of the functional

linkage between the expressed genes and the regulators. However, additional data

from literature mining will likely help to vectorize the predicted interactions.

The cluster, which we used for the method validation, contains a large number

of genes involved in the translational machinery as well as several genes with a

central metabolic role, among which we found a large number of genes associ-

ated with a longevity phenotype in WormBase database (Tab. 7.2). The protein

translation processes indeed have been recently considered for a central role in

the regulation of aging processes [193, 194] and we assumed that the regulators

predicted in this study may also be linked to the processes underlying aging and

the control of longevity.

The role of regulation of translational machinery by the insulin pathway in

aging has been widely discussed in literature [195, 196], however, the regulatory

modules affecting the expression of the related genes downstream of daf-2 have

not been clearly defined. The candidates suggested by the FCG algorithm, iff-

1 and bir-2 were shown to depend on daf-16 -insulin response [197] and iff-1

has also been detected in gene expression screen for the longevity phenotype in

C.elegans [194]. iff-1 is a eIF-5A homolog [198], and eIF-5A links processes of

mRNA translation to the nonsense-mediated mRNA decay (NMD) [199]. Ac-

tivation of eIF-5A requires posttranslational modication of one of the protein‘s

lysines into hypusine, where spermidine is used as a substrate for the modify-

ing NAD-dependent enzyme deoxyhypusine synthase. Spermidine is known to

be involved in life span regulation and reproduction in a range of different or-

ganisms [200, 201, 202], though the mechanism of this action is not clear. We

suggest that its stimulatory role in NMD via regulation of eIF-5A may be of

importance in regulating translation and as a consequence the life span of an

organism. Interestingly, the ribosome maturation as well as the mRNA binding

SBDS protein [203, 204] that is linked in a network to iff-1 and tin9.2, are both re-

quired for the longevity phenotype of daf-2 [205]. We schematically simplified the

suggested functional relationship between the predicted regulators and longevity

Fig. 7.5. Our analysis points to a potential role of mRNA decay processes down-

stream of the insulin-dependent pathway in regulating translation and longevity.
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Figure 7.5. Potential involvement of the suggested regulators of protein
translation in longevity determination.

We suggest that elements of translational machinery, that are regulated via in-

sulin/caloric restriction, may be indeed non-responsive to temperature changes

as we see on the example of the cluster 1 genes. Such persistence of expression

may require specific mechanisms of adjustment to altered kinetics of biochemical

reactions and may indeed involve a regulated mRNA decay process. Homeosta-

sis of pathways regulated by nutrient-supply regardless of the temperature may

lead to a very species-specific dynamics of cell survival and growth and an or-

ganism‘s life span adapted to the specific ecological dynamics of nutrients flow.

The transcription factors predicted in our study by the SPF method may also

occur to be involved in aging and regulation of longevity . The genes cgh-1 [206],

dao-5 [207], hel-1 [208] were already linked to aging processes downstream daf-2,

daf-16, and in case of dao-5 – to a daf-16 independent pathway associated with

determination of the adult life span GO-term in WormBase database. Analysis

of genotype-phenotype relationships [209] when more data for the listed genes are

available would allow deeper understanding of the direction of the defined links

and more narrow prediction of their function.

This may especially be useful in finding the causal genes fo gene expression

QTLs in genomics studies. As genes sharing an eQTL are very likely to have a

common regulator as well as a biological function, the candidate regulators are

still numerous when only based on genomic position a method for refinement

is needed. Our methods predict the most likely regulator based on hundreds

of previously published experiments, e.g. those used to generate the original
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network [190](Fig. 7.6). Finding age-1 as a possible regulator for a eQTL-hotspot

expressed in old age worms is especially interesting as this gene has been suggested

to be also responsible for the affect of heat-shock on lifespan [180]. Pop-1, a

predicted regulator of the chromosome I juvenile eQTL-hotspot, is a TF that

functions as a component of WNT signaling pathways [193]. Both longevity-

related DAF-2 and DAF-16 interact with POP-1 binding partner, beta-catenine

(armadillo, zemphBar-1) (String database of protein-protein interactions), and

may crosstalk with WNT signaling. It was shown, for instance, that DAF-2,

DAF-16 and BAR-1 synergistically affect the immune response to infections in

C.elegans [210]. Even in cases when a regulator cannot be predicted by the

Figure 7.6. Overview of the in- and outputs of the SPF method. Dashed
lines — regulatory interactions; solid lines — co-expression; orange lines — the
SPF-top ranked connections; orange circles — group of co-expressed genes; yellow
circles — genes in Wormnet; blue borders — predicted regulators.

SPF or FCG value ranking, the descriptive topological values (the number of

connections, etc) may indicate if genes in an eQTL-hotspot are linked by biology

or by a possible technical issue. Our method can be used as a validation for

the biological linkage of groups of genes found in an eQTL-hotspot or by any

other experiment. As the number of genomic experiments with this method

increases and more species like yeast [211, 212], Arabidopsis [213, 186, 214, 215],

worm [168, 171, 173, 216, 217], mice [218], chicken [219], and human [220] are

investigated in such a way, an efficient way of candidate gene selection becomes

urgent. This work provides new insights to the structure of biological functional

networks and highlights the aspects that need to be considered in prediction of

113



regulatory nodes, protein complexes and regulatory modules from a multilevel

network context. In our opinion, it could be useful for improvement of analytic

methods and software in network-based applications in biology and other scientifc

areas.
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Chapter 8

Motif distributions of random

networks

Here we consider random graphs, which construction was proposed by Erdös–

Rényi [221]. To obtain a random network, each pair of nodes is connected with

the same probability p.

8.1 Evolution in motif space

8.1.1 The law of mass action

The microscopic state of a non-directed N–vertex network can be defined by

N(N − 1)/2 Boolean variables denoting presence/absence of edges. Description

of the network in terms of motif concentrations corresponds to a mapping of this

high-dimensional space onto a low-dimensional motif space, resembling construc-

tion of a macroscopic description from a microscopic one in statistical mechanics.

A notion of an entropy, as a number of microscopic realizations corresponding to

a given macroscopic state, naturally emerges from this mapping. We argue that

the entropic landscape of a network influences the observed motif distribution in

a crucial way. Entropically favorable motif distributions, i.e. those correspond-

ing to local maximum of possibilities to construct a network from a given set of

subgraphs, should be more stable than others, and can be considered as effective

traps for a network dynamics and evolution. Such entropically favorable states

correspond to islands of stability in a sea of motif distributions, as conjectured

in [222].
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The motif distribution is characterized by a vector of normalized triad concen-

trations ci (4 of them in non-directed graphs, and 16 in directed ones, although

not all of these concentrations are independent). Note, that in [144] the authors

use renormalized densities of the motifs. In our notation, the components of their

motif vector Z (6.3) are equal to

Zi = (ci − c0i )/χi = ∆ci/χi (8.1)

where c0i = ci(h = 0), and χi is the susceptibility of ith concentration to an

external field hi coupled to it, taken at hi = 0. This linear shift does not change

the results presented in our work. In this research we concentrate on non-directed

networks, whose four possible triads are shown in Fig. 8.1. Studying the entropy

of a network as a function of motif distribution from first principles seems to

be an overwhelmingly difficult task. Instead, we introduce an auxiliary external

field, h, which couples to concentration of some motif, and then run simulations

to study the equilibrium behavior of the network in this external field. Such

a technique, reminiscent of the biased molecular dynamics used, for example, in

[223, 224], allows us, by varying h, to skew the motif distribution and thus sample

the states of the network which are otherwise unaccessible. As a result, we obtain

a full free energy landscape of the network as a function of motif distribution. For

thermal equilibration of a network in a given external field we use the standard

randomization procedure [144], in which multiple permutations of network links

(see Fig. 8.1) are allowed, but the node degree distribution is conserved.

For h = 0 the system is stabilized in the entropically largest basin of attraction

corresponding to some equilibrium distribution of motifs. As h is increased, the

motif distribution gets gradually more and more skewed away from equilibrium.

In the limit h→∞ the entropic effects become irrelevant, and the motif’s vector

coupled to the field approaches the largest possible value. In this scenario two

qualitatively different behaviors are possible: (i) if the entropy is a convex function

of a motif, the absolute value of the motif vector grows smoothly with h, while

(ii) if the entropy, as a function of a motif, has a concave region, there exists a

value hcr at which the motif distribution undergoes an abrupt shift into a new

localized state (a stability island). The latter behavior constitutes a first-order

phase transition, and it is exactly what we observe in our simulations.
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Figure 8.1. Possible triads in a non-directed network and an example of a
single permutation step. The links (12) and (34) are removed, and the links (13)
and (24) are added instead, thus conserving degrees of all the nodes involved. The
network has 5 nodes, so only one elementary reaction occurs: one triad of type 0
({135}) and three triads of type 2 ({125, 245, 345}) are deleted, and one triad of type
3 ({245}) and three triads of type 1 ({125, 135, 345}) are created.

The randomization procedure consists of repeated application of permutations

(see Fig. 8.1) to randomly chosen pairs of links. Each permutation changes the

number of triads of different types: there are N − 4 “elementary reactions” (one

for every node that does not form the permuted edges), each of them removes

4 triads and creates 4 new ones. An example of such an elementary reaction is

shown in Fig. 8.1. One can check explicitly that for a non-directed network there

is only one possible non-trivial elementary reaction:

[0] + 3[2] ⇄ [3] + 3[1] (8.2)

Other reactions either do not change the concentrations of triads (e.g., 2[0] +

2[1] → 2[1] + 2[0]) or are forbidden by the rules of the randomization process.

Equation (8.2) establishes a connection between the time derivatives of the triads

concentrations:

3ċ0(t) = −ċ1(t) = ċ2(t) = −3ċ3(t), (8.3)

so only one of them is actually independent. Therefore, three independent con-

servation laws (integrals of motion) control the triad dynamic. Two of them are
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trivial:
3∑

i=0

ci = 1;
3∑

i=0

ici = 3p, (8.4)

where p is the fraction of the links in the network (the average degree of the

node is n = p(N − 1)). The third, “hidden”conservation law can be chosen, for

example, in the form

I3 =
1

2
(c0 + c3) = const (8.5)

The existence of hidden conservation laws is due to the particular form of ran-

domization rules. Similarly, in directed networks, there are 16 possible triads, 3

trivial conservation laws (conservation of vertices, directed and bilateral links),

and 6 hidden conservation laws, so that the dynamics of a directed network in

the motif space is effectively 7-dimensional, see supplementary online materials

of [144] for a more detailed discussion. We take c(t) = 1
2
(c3(t)− c0(t)) as a single

independent variable describing the evolution of motifs.

Let us now introduce an external field h coupled to c. This coupling means

that each randomization step gives rise to a change in energy of the system:

∆E = −1

2
h(∆M3 −∆M0) = −Mh∆c, (8.6)

where ∆M0 and ∆M3 are the changes in the number of triads of types 0 and 3

due to a particular randomization step, and M = N !
3!(N−3)!

is the total number of

triads in the network. Equilibrating the system in the external field h is equivalent

to making the ratio of the probabilities of forward and backward randomization

steps equal p+
p−

= e−∆E. Without loss of generality we set the temperature of

the system equal to unity, kBT = 1. In the Metropolis algorithm we use this

is achieved by accepting permutation step with the probability 1 if it decreases

energy, and with probability e−∆E otherwise.

The energy change due to one elementary reaction of type (8.2) equals to

∆Ereact = ±h. However, a randomization step implies many simultaneous reac-

tions, which makes ∆E step–dependent and means that elementary reactions do

not, generally speaking, happen independently. Nevertheless, as a first approxi-

mation we can still assume them to be independent, and apply the machinery of

chemical kinetics to (8.2). The equilibrium reaction constant, K, should be set

to K = eh (K = 1 in the absence of the external field, h) and the law of mass

118



action [225, 226] provides us with the following implicit c(h)–dependence

K ≡ eh =
c3c

3
1

c0c32
=

(I3 + c)(2− 3p− I3 + 3c)3

(I3 − c)(3p− 1− I3 − 3c)3
, (8.7)

where in the right hand side of (8.7) we have used (8.4)–(8.5). This expression

describes the change of c with changing h in the presence of conservation laws

(8.4)–(8.5).

We have applied this consideration to Erdös–Rényi (ER) networks with link

formation probability, p. Equilibrating ER network at h = 0, we get the average

densities of triads

c̄0 = (1− p)3; c̄1 = 3(1− p)2p; c̄2 = 3(1− p)p2; c̄3 = p3. (8.8)

These concentrations, as expected, satisfy (8.7) with K = 1, which provides a

self–consistency check of our approach.

8.1.2 Statistics of subgraphs far from equilibrium

Next, we have performed a Metropolis randomization procedure for h = lnK > 0.

The results are demonstrated in Fig. 8.2. The dashed line shows the ∆c(h) =

c(h)− c(h = 0)–dependence as given by (8.7) with c(h = 0) = 1
2
(c̄3− c̄0) =

1
2
(p3−

(1 − p)3). The saturation of this dependence at ∆c ≈ 0.08 for high h (as shown

in the inset) is due to depletion of triads of type 2 with growing c. We compare

this behavior with the numeric results for the same p and different network sizes,

N (the main plot in the figure). In the vicinity of h = 0 the numerical results are

in good agreement with the law of mass action, but increasing of h leads to an

abrupt change in ∆c to a value of ∆c ≈ 0.05, which is not predicted by the law

of mass action.

This disagreement suggests that correlations between elementary reactions

become important far away from equilibrium point (∆c = 0), which causes the

violation of the law of mass actions. To check this, we have studied distributions of

elementary reactions (8.2) corresponding to one randomization step for different

fixed values of ∆c. The resulting distributions are plotted in Fig. 8.3 for varying

∆c and fixed N = 40 and p = 0.35. Technically, the calculation was done as

follows. To obtain a network with given c = c∗ we equilibrated ER network in
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Figure 8.2. The motif distribution ∆c(h) = c− c(h = 0) in ER networks with
p = 0.35 re-equilibrated at different h. Solid lines – numerical results for
networks of sizes N = 40, 80, 120, 180, dashed line – prediction of the law of mass
action (8.7). Inset: law of mass action extended to a region of large h.

a potential Hc = exp(a|c − c∗|2) with sufficiently large a, so that the network

becomes strongly localized around c = c∗. Then, for each attempted step of

randomization (regardless of whether it is accepted or rejected), the difference,

N = Nf −Nb between “forward”, Nf and “backward”, Nb, elementary reactions

corresponding to this step was calculated.

One sees that at ∆c ≈ 0 the distribution P (N ) is slightly shifted to the left,

but still is nearly Gaussian. This signals that different backward and forward

reactions occur independently from each other and the law of mass actions is valid

in this limit. However, as ∆c gets progressively larger, the P (N )–distribution

becomes substantially non-Gaussian, developing a bimodal shape in the transition

region 0.01 < ∆c < 0.05. This indicates that the elementary reactions are no

longer independent, and all the permutations can be roughly divided into two

classes: (i) those which do not change the motif distribution much (the right

peak in the distribution), and (ii) those which lead to an essential reduction in the

number of triads of type 3, i.e. pushing the system towards the equilibrium motif

distribution. As motif concentration approaches the saturation value, the forward

reactions [0] + 3[2]→ [3] + 3[1] get suppressed, as there are almost no subgraphs
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Figure 8.3. Distribution P(N) for different values of the order parameter
∆c = 0.001, 0.011, 0.028, 0.034. Y-axis scale is arbitrary.

of type 2 left in the system, and the backward reactions [0] + 3[2] ← [3] + 3[1]

become dominant.

8.2 Description of phase transition in the space

of subgraphs

The abrupt change of ∆c with changing h, depicted in the Fig. 8.2, is reminiscent

of a first order phase transition from the low–field phase with the motif distri-

bution close to that of the equilibrium Erdös–Rényi network, to the high–field

phase with strongly skewed motif distribution. It seems natural to describe this

transition in the frameworks of the phenomenological mean–field Landau–type

theory [226]. Assume the excess of the motif concentration ∆c = η to play the

role of an order parameter. Clearly, there is no η ↔ −η symmetry in the problem,

so the Landau expansion of the free energy H(η) should include both odd and

even powers of η, and up to the 4th order term it reads

H = M(H0 − h η);

H0 =
χ
2
η2 + b(N)

3
η3 + g(N)

4
η4 + o(η4)

(8.9)
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Here H0 is a specific free energy in the absence of an external field, with an equi-

librium point η = 0. This H0 is a purely combinatorial object, it is temperature–

and field–independent. Since both the mean-field theory, and the numerical re-

sults at low h, do not depend on the size of the system N , the same is true for

the susceptibility χ, while we expect the higher orders in the expansion of H0 to

be N–dependent. If the third-order term in (8.9) is large enough, a first order

phase transition may occur: as h increases, the H(η)–dependence gets tilted, for

b2 > 3gχ it eventually exhibits two competing minima at different values of η.

When the values of H match in these minima, a transition occurs. Hence, the

equilibrium motif, η̄(h), is defined by a minimization of (8.9) ∂H(η)
∂η

= 0, giving

χ η̄ + b η̄2 + g η̄3 = h (8.10)

Equation (8.10) has either one or three solutions for a given h. The zero–field sus-

ceptibility, χ, can be calculated in the standard way: χ ≡ ∂2H(η)
∂η2

∣
∣
∣
h=0

= ∂h(c)
∂c

∣
∣
∣
h=0

.

Expanding (8.7) up to the linear term in h, we get

χ =
1

c̄0
+

9

c̄1
+

9

c̄2
+

1

c̄3
=

1

p3(1− p)3
(8.11)

For an ER network with p = 0.35 (8.11) gives χ ≈ 85. Choosing the param-

eters χ, b(N), g(N) in (8.9) as χ = 85, b = 4.55 × 103 and g = 6.5 × 104, we

demonstrate in the Fig. 8.4 that the phenomenological Landau theory matches

the experimental ∆c(h)–dependence with a reasonable accuracy. Moreover, the

Landau theory predicts a hysteretic behavior of ∆c(h), which is actually seen in

the simulations for few samples (A,B,C), as shown in the Fig. 8.4. The hysteresis

has been recorded in the ∆c(h)–curve when the strength of the field h is increased

adiabatically from zero up to the maximal value h = 2 (in dimensionless units)

and then adiabatically decreased back to h = 0.

To summarize, a mapping from microscopic (in terms of configuration of net-

work connections) to macroscopic (in terms of triads concentration) description

gives rise to a notion of motif distribution entropy. In the presence of an external

field, h, the equilibrium value of the motif concentration, ∆c (which is effectively

one-dimensional for the non-directed case considered here) is determined by the

balance of the energy imposed by h, and this entropy induced by a mapping from

microscopic to macroscopic description. If the entropic landscape is concave, a
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Figure 8.4. Comparison of the numerically observed dependence ∆c(h) to
the solution of the mean–field equation (8.10). The following values of theory
parameters are taken χ = 85; b = 4.55× 103 g = 6.5× 104.

first–order phase transition into a state with highly–skewed motif distribution

occurs at some critical h. This transition, observed numerically for Erdös–Rényi

networks, violates the law of mass action due to correlations between elementary

reactions (8.2) in large fields (see Fig. 8.3). This transition is well described by a

phenomenological Landau theory with ∆c as an order parameter.

To verify that described behavior is a generic phenomenon and not a peculiar-

ity of a particular type of randomization dynamics, we modified the permutation

rules allowing an edge connecting two arbitrary vertices (i, j) to be switched at a

single step to some other pair (i, k) (k 6= i, j). Under this dynamics the node de-

grees are not conserved, and the condition (8.5) fails. Accordingly, the dynamics

in the motif space becomes effectively two-dimensional with elementary reactions

2[2] ⇄ [1] + [3]; 2[1] ⇄ [0] + [2]

However, application of an external field h (which is, in this case, a 2D vector)

still leads to a transition into a localized state (the full details of the correspond-

ing simulation will be provided elsewhere). Therefore, one assumes that this phe-

nomenon — localization of the motif distribution under external field into distinct
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entropic traps — is apparently universal. We conjecture that stable motif profiles

constituting superfamilies [144] may correspond to such stability islands inherent

to the complicated underlying entropic landscape of the multidimensional motif

space of the underlying network. Study of the concrete details of these landscapes

and the basins of attraction of different stability islands in terms of a multidi-

mensional external field h would be an interesting and challenging task. The

concept of entropy–induced localization discussed above may be instrumental in

various other fields. Compare it, for example, with the celebrated Eigen model

of biological evolution in the space of heteropolymer sequences [227]. There, the

localization–delocalization phase transition, known as the “error catastrophe”,

separates two states: where the genotype is localized in the vicinity of a preferred

pattern, and where it is completely random [228, 229, 230]. The transition occurs

due to an interplay between the attraction to a point–like potential well and the

entropic repulsion from this well due to the exponential growth of the number

of states with increasing Hamming distance from the well. In our case, a differ-

ent, but complimentary behavior takes place: the nontrivial entropic landscape

of the system acts as a source of effective traps, while the uniform external field

regulates the transition from one trap to another. It seems that trapping of a

complex system into stability islands due to a competition between selection and

randomness, provides a generic mechanism of localization in complex biological

and social systems.
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Conclusions

In this work, we have shown how different mathematical methods can be applied

for studying statistical and dynamic objects of complex architecture and, in par-

ticular, structures which have no characteristic spatial and/or time scale. Systems

with complex architecture are very common in biophysics and their description

usually deals with the combinatorial complexity of the problem. In this thesis

we have developed some new statistical approaches and models, which allow to

analyze the complex biophysical systems. The principal results of our investiga-

tions have been published in five research articles; three other manuscripts are

submitted.

In Chapter 2 we have developed and implemented a new statistical algorithm

for quantitative determination of the binding free energy of two heteropolymer se-

quences under the assumption that each sequence can form a hierarchical cactus-

like secondary structure, typical for RNA molecules. We have proposed in Sec-

tion 2.3 a constructive way to build a ”cost function” characterizing the matching

of two RNAs with arbitrary primary sequences. Since base-pairing of two ncRNAs

or between ncRNA and DNA plays very important biological role, it is worth es-

timating theoretically the binding free energy of the ncRNA-target RNA complex

by knowing the primary sequences of chains under consideration. Note, that this

problem differs from the complete alignment of two RNA sequences: in ncRNA

case we align only the sequences of nucleotides which constitute pairs between

two RNAs, while the secondary structure of each RNA comes into play only by

the combinatorial factors affecting the entropic contribution of chains to the total

cost function.

The proposed algorithm is based on two facts: i) the standard alignment prob-

lem can be reformulated as a zero–temperature limit of more general statistical

problem of binding of two associating heteropolymer chains; ii) the last problem
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can be straightforwardly generalized onto the sequences with hierarchical cactus–

like structures (i.e. of RNA–type). Taking zero–temperature limit at the very

end we arrive at the desired ground state free energy with account for entropy of

side cactus–like loops.

Chapter 3 and Chapter 4 are devoted to the study of statistical properties

of random biopolymers. We have analyzed important statistical properties of

random RNA–RNA complexes, including fluctuations of the binding energy be-

tween a pair of macromolecules and loop length distribution in a complex. The

results obtained for linear polymer and RNA-like structures show that their en-

ergy statistical properties are those of systems in the KPZ universality class. The

loop length distribution in linear polymer complexes is precisely similar to that

characteristic of independent binding. The loop length distribution in cloverleaf

structures is quite well described by a random walk model. Furthermore, us-

ing this model, we put forward a hypothesis about critical behavior of random

RNA-type heteropolymers.

In Chapter 4 we have demonstrated that alphabets with different number of

letters, c, are nonequivalent. This nonequivalence is tightly coupled to the restric-

tions on the morphology of allowed secondary structures. Indeed, the existence

of two regimes (for c ≤ ccr and c > ccr) is a peculiarity of RNAs and is due

to the additional freedom in the formation of the complex cactus-like secondary

structures typical for RNAs. For linear matching problem used in DNA compar-

ison, the fraction of nucleotides in the optimal alignment is less than 1 for any

alphabet with c > 1. In our model the transition between two regimes occurs at

2 < ccr < 4. The exact value of the critical alphabet size should be sensitive to

the microscopic details of the model, and one can list factors which are neglected

in our model and which could shift the transition point to the right or to the left

from the observed critical value.

We have considered this problem as the planar matching problem, defined by a

symmetric random matrix with independent identically distributed entries, taking

values 0 and 1. We show that the existence of a perfect planar matching structure

is possible only above a certain critical density, pc, of allowed contacts (i.e. of

’1’s). Using a formulation of the problem in terms of Dyck paths and a matrix

model of planar contact structures, we provide an analytical estimation for the

value of the transition point, pc, in the thermodynamic limit. This estimation is
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close to the critical value, pc ≈ 0.379, obtained in numerical simulations based on

an exact dynamical programming algorithm. We characterize the corresponding

critical behavior of the model and discuss the relation of the perfect-imperfect

matching transition to the known molten-glass transition in the context of random

RNA secondary structure’s formation. In particular, we provide strong evidence

supporting the conjecture that the molten-glass transition at T = 0 occurs at pc.

In Chapter 5 we have proposed a new model of a heteropolymer chain with

RNA-type topology of secondary structure and quenched random distribution of

intervals between neighboring monomers. For quantitative analysis of the Ran-

dom Interval Model (RIM), we have investigated the statistical behavior of height

diagrams as a function of the control parameter in the distribution function of in-

tervals. The important result deserving attention, concerns the possibility to pass

from the nonlocal recursion relation for the ground state free energy to the local

recursion relation if and only if the interaction energy between paired monomers

is a concave function of distance. So, for any potential (even random) of concave

form, the ground state equation can be essentially simplified resulting in short-

ening the computational time if these equations are implemented for numerical

analysis of secondary structures of polymer chain with RNA-type architecture.

Chapter 6, 7 and 8 are devoted to statistics in networks. We have shown

how the statistical analysis of network connectivity can be used to predict new

gene expression regulators. We have proposed that co-expression clusters can be

easily identified as highly-connected islands within the integrated network, and

that these islands can be used to suggest new regulatory genes for subsequent

verification. For this, we have developed a new application of a modified statis-

tical algorithm, based on so-called ”shortest path function” (SPF) to rank the

nodes that have most effect on gene expression. We have presented an algorithm

which uses eQTL data in combination with the majority of published functional

interactions in C. elegans. We have show that applied to longevity-specific eQTL

data for C. elegans published in [171] leads to reasonable regulatory gene pre-

dictions. Interpretation of the organism-specific integral biological networks and

prediction of protein complexes and genetic regulators from a network context

may benefit greatly from our study and the new algorithms. It can be applied to

other known organism-specific networks.

In the last chapter, random non-directed Erdös–Rényi networks subject to
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a dynamics conserving vertex degrees have been considered. We have studied

analytically and numerically equilibrium three-vertex motif distributions in the

presence of an external field coupled to one of the motifs. For small magnitude

of the external field the numerics is well described by chemical kinetics equations

based on the law of mass action for the concentrations of motifs. For larger ex-

ternal fields a transition into a state with some trapped motif distribution occurs.

We have explained the existence of the transition by employing the notion of the

entropy of the motif distribution and describe it in terms of a phenomenological

Landau–type theory with a non-zero cubic term. We argue that the localization

transition should always occur if the entropy function is non-convex. We conjec-

ture that this phenomenon may be the reason for motifs’ pattern formation in

real networks.
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Appendix A

Derivation of Equation (5.8)

Suppose X = {xi}1≤i≤2n with x1 < x2 < · · · < x2n and X ′ = {x′
i′}1≤i′≤2n′ with

x′
1 < x′

2 < · · · < x′
2n′ are two sets such that x2n < x′

1, i.e., X
′ lies to the right

of X.

We will refer to minimum-weight perfect matchings on X and X ′, i.e., planar

(nonintersecting) sets of n (resp. n′) arcs connecting the points such that the

sum of their weights, which are given by a cost function w(·, ·) of concave type,

is minimal, as partial matchings and to the minimum–weight perfect matching

on X ∪X ′ as joint matching.

Call an arc (xi, xj) in a nested matching exposed if there is no arc (xi′ , xj′) with

xi, xj contained between xi′ and xj′ . We call all other arcs in a nested matching

non-exposed or hidden. Intuitively, exposed arcs are those visible “from above”

and hidden arcs are those covered with exposed ones.

We first show, following [122], that whenever an arc (xi, xj) is hidden in the

partial matching on X, it belongs to the joint optimal matching and is hidden

there too. By contradiction, assume that some of hidden arcs in the partial

matching on X do not belong to the joint matching. Then there will be at least

one exposed arc (xℓ, xr) in the partial matching on X such that some points xi

with xℓ < xi < xr are connected in the joint matching to points outside (xℓ, xr).

Denote all the points in the segment [xℓ, xr] that are connected in the joint

matching to points on the left of xℓ by z1 < z2 < · · · < zk; denote the opposite

endpoints of the corresponding arcs by y1 > y2 > · · · > yk, where the inequalities

follow from the fact that the joint matching is nested. Likewise denote those

points from [xℓ, xr] that are connected in the joint matching to points on the
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right of xr by z′1 > z′2 > · · · > z′k′ and their counterparts in the joint matching

by y′1 < y′2 < · · · < y′k′ . Observe that although k or k′ may be zero, the number

k + k′ must be positive and even.

Consider now a matching on the segment [xℓ, xr] that consists of the following

arcs: those arcs of the joint matching whose both ends belong to [xℓ, xr]; the arcs

(z1, z2), . . . , (z2κ−1, z2κ), where
1 κ = ⌊k/2⌋; the arcs (z′2, z

′
1), . . . , (z

′
2κ′ , z′2κ′−1),

where κ′ = ⌊k′/2⌋; and (zk, z
′
k′) if both k and k′ are odd. Denote by W ′ the weight

of this matching. It cannot be smaller than the weight W ′
0 of the restriction of

the optimal partial matching on X to [xℓ, xr]. For the total weight W of the joint

matching on X ∪X ′ we thus have

W ≥ W −W ′ +W ′
0. (A.1)

We now show that by a suitable sequence of uncrossings the right–hand side here

can be further reduced to a matching whose weight is strictly less than W .

The arcs (z1, y1) and (xℓ, xr) are crossing, so that w(y1, z1) + w(xℓ, xr) >

w(y1, xℓ) + w(z1, xr). Uncrossing these arcs strictly reduces the right-hand side

of (A.1):

W > W −W ′ +W ′
0

− w(y1, z1)− w(xℓ, xr) + w(y1, xℓ) + w(z1, xr).

Now the arcs (y2, z2) and (z1, xr) are crossing, so w(y2, z2)+w(z1, xr)−w(z1, z2) >
w(y2, xr) and therefore

W > W−W ′+W ′
0−w(y1, z1)−w(y2, z2)−w(xℓ, xr)+w(y1, xℓ)+w(z1, z2)+w(y2, xr).

Repeating this step κ = ⌊k/2⌋ times gives the inequality

W > W −W ′ +W ′
0 − w(xℓ, xr)−

∑

1≤i≤2κ

w(yi, zi)

+
∑

1≤i≤κ

w(z2i−1, z2i) +
∑

1≤i≤κ

w(y2i−1, y2i−2) + w(y2κ, xr),

where in the rightmost sum y0 is defined to be xℓ. Note that at this stage all arcs

1⌊ξ⌋ is the largest integer n such that n ≤ ξ.
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coming to points z1, z2, . . . from outside [xℓ, xr] are eliminated from the matching,

except possibly (yk, zk) if k is odd.

It is now clear by symmetry that a similar reduction step can be performed

on arcs going from z′1, z
′
2, . . . to the right.

Finally if k and k′ are odd, we uncross the pair of arcs (yk, xk) and (yk−1, y
′
k′−1

and finally the pair (zk, y
′
k′−1) and (z′k′ , y

′
k′).

The final estimate for W has the form

W > W −W ′ +W ′
0 − w(xℓ, xr)−

∑

1≤i≤k

w(yi, zi)−
∑

1≤i′≤k′

w(z′i′ , y
′
i′)

+
∑

1≤i≤κ

w(z2i−1, z2i) +
∑

1≤i′≤κ′

w(z′2i′ , z
′
2i′−1) + w(zk, z

′
k′) · [k, k′ are odd]

+
∑

1≤i≤κ

w(y2i−1, y2i−2) +
∑

1≤i′≤κ′

w(y′2i′−2, y
′
2i′−1) + w(yk, y

′
k′) · [k, k′ are even],

(A.2)

where notation such as [k, k′ are odd] means 1 if k, k′ are odd and 0 otherwise.

The right-hand side of (A.2) contains four groups of terms: first,

W −
∑

1≤i≤k

w(yi, zi)−
∑

1≤i′≤k′

w(z′i′ , y
′
i′),

corresponding to the joint matching without the arcs connecting points inside

[xℓ, xr] to points outside this segment; second,

W ′ −
∑

1≤i≤κ

w(z2i−1, z2i)−
∑

1≤i′≤κ′

w(z′2i′ , z
′
2i′−1)

− w(zk, z
′
k′) · [k, k′ are odd],

which comes with a negative sign and corresponds to the arcs of the joint matching

with both ends inside [xℓ, xr], and cancels them from the total; third, W ′
0 −

w(xℓ, xr), with positive sign, which corresponds to the hidden arcs of the partial

matching on X inside the exposed arc (xℓ, xr), not including the latter; and finally

the terms in the last line of (A.2), corresponding to the arcs matching xℓ, xr, and

points y1, . . . , yk, y
′
1, . . . , y

′
k′ , i.e., those points outside [xℓ, xr] that were connected

in the joint matching to points inside this segment.
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Gathering together contributions of these four groups of terms, we observe

that all negative terms cancel out and what is left corresponds to a perfect match-

ing with a weight strictly smaller than W , in which all arcs hidden by (xℓ, xr) in

the partial matching on X are restored. There may still be some crossings caused

by terms of the fourth group and not involving the hidden arcs in [xℓ, xr]; un-

crossing them if necessary gives a nested perfect matching whose weight is strictly

less than that of the joint matching. This contradicts the assumption that the

latter is the minimum-weight matching on X ∪ X ′. Therefore all hidden arcs

in the partial matching on X (and, by symmetry, those in the partial matching

on X ′) belong to the joint matching.

Now let i, j be indices of opposite parity and such that i < j, and define

Wi,j to be the weight of the minimum-weight perfect matching on the j − i + 1

points xi < xi+1 < · · · < xj. We can now show, following [122], that for all indices

i, j of opposite parity with 1 ≤ i < j ≤ 2n, weights Wi,j satisfy the recursion

Wi,j = min
[
w(xi, xj) +Wi+1,j−1;

Wi,j−2 +Wi+2,j −Wi+2,j−2

]
(A.3)

with “initial conditions”

Wi,i−1 = 0, Wi+2,i−1 = −w(xi, xi+1). (A.4)

For simplicity we will refer to the minimum-weight perfect matching on points

xr < xr+1 < · · · < xs as the “matching Wr,s.” Consider first the matching that

consists of the arc (xi, xj) and all arcs of the matching Wi+1,j−1, and observe

that by optimality the latter its weight w(xi, xj)+Wi+1,j−1 is minimal among all

matchings that contain (xi, xj).

We now examine the meaning of the expression Wi,j−2 + Wi+2,j −Wi+2,j−2.

Denote the point connected in the matching Wi,j−2 to xi by xk and the point

connected to xi+1 by xℓ. It is easy to see that the pairs of indices i, k and i+ 1, ℓ

both have opposite parity. Assume first that

xi+1 < xℓ < xk ≤ xj−2. (A.5)

Observing that hidden arcs in partial matchings on the sets X = {xi, xi+1}
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and X ′ = {xi+2, . . . , xj−2} are preserved, and taking into account parity of k

and ℓ, we see that xk and xℓ (as well as their neighbors xk+1 and xℓ−1 if they are

contained in [xi+2, xj−2]) belong to exposed arcs of the matching Wi+2,j−2. Thus

the matching Wi,j−2 has the following structure:

,
xi xkxi+1 xℓ

︸ ︷︷ ︸

Wi+2,ℓ−1

· · · · · ·
︸ ︷︷ ︸

Wℓ+1,k−1

· · ·
︸ ︷︷ ︸

Wk+1,j−2

where dashed (resp., dotted) arcs correspond to those exposed arcs of the match-

ing Wi+2,j−2 that belong (resp., do not belong) to Wi,j−2.

Since points xℓ−1 and xk+1 belong to exposed arcs in the matching Wi+2,j−2,

the (possibly empty) parts of this matching that correspond to points xi+2 <

· · · < xℓ−1 and xk+1 < · · · < xj−2 coincide with the (possibly empty) match-

ings Wi+2,ℓ−1 and Wk+1,j−2. For the same reason the (possibly empty) part of

the matching Wi,j−2 supported on xℓ+1 < · · · < xk−1 coincides with Wℓ+1,k−1.

Therefore

Wi,j−2 = w(xi, xk) + w(xi+1, xℓ)

+Wi+2,ℓ−1 +Wℓ+1,k−1 +Wk+1,j−2. (A.6)

Taking into account (A.4), observe that in the case k = i + 1 and ℓ = i, which

was left out in (A.5), this expression still gives the correct formula Wi,j−2 =

w(xi, xi+1) +Wi+2,j−2.

Now assume that in the matching Wi+1,j the point xj is connected to xℓ′ and

the point xj−1 to xk′ . A similar argument gives

Wi+2,j = Wi+2,ℓ′−1 +Wℓ′+1,k′−1 +Wk′+1,j−2

+ w(xℓ′ , xj) + w(xk′ , xj−1); (A.7)

in particular, if ℓ′ = j − 1 and k′ = j, then Wi+2,j = Wi+2,j−2 + w(xj−1, xj).

Suppose that xk < xℓ′ . Taking into account that xk, xk+1, xℓ′−1, and xℓ′ all
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belong to exposed arcs in Wi+2,j−2, we can write

Wk+1,j−2 = Wk+1,ℓ′−1 +Wℓ′,j−2,

Wi+2,ℓ′−1 = Wi+2,k +Wk+1,ℓ′−1

(A.8)

and

Wi+2,j−2 = Wi+2,k +Wk+1,ℓ′−1 +Wℓ′,j−2. (A.9)

Substituting (A.8) into (A.6) and (A.7) and taking into account (A.9), we obtain

Wi,j−2 +Wi+2,j −Wi+2,j−2 = w(xi, xk) + w(xi+1, xℓ)

+Wi+2,ℓ−1 +Wℓ+1,k−1 +Wk+1,ℓ′−1

+ w(xℓ′ , xj) +Wℓ′+1,k′−1 + w(xk′ , xj−1) +Wk′+1,j−2.

The right-hand side of this expression corresponds to a matching that coincides

with Wi,j−2 on [xi, xk], with Wi+2,j−2 on [xk+1, xℓ′−1], and with Wi+1,j on [xℓ′ , xj].

By optimality, this matching cannot be improved on any of these three segments

and is therefore optimal among all matchings in which xi and xj belong to different

exposed arcs.

It follows that under the assumption that xk < xℓ′ the expression in the right-

hand side of (A.3) gives the minimum weight of all matchings on xi < xi+1 <

· · · < xj. Moreover, the only possible candidates for the optimal matching are

those constructed above: one that corresponds to w(xi, xj) + Wi+1,j−1 and one

given by the right-hand side of the latter formula.

It remains to consider the case xk ≥ xℓ′ . Since xk 6= xℓ′ for parity reasons, it

follows that xk > xℓ′ ; now a construction similar to the above yields a matching

which corresponds to Wi,j−2 + Wi+2,j −Wi+2,j−2 and in which the arcs (xi, xk)

and (xℓ′ , xj) are crossed. Uncrossing them leads to a matching with strictly

smaller weight, which contains the arc (xi, xj) and therefore cannot be better

than w(xi, xj) + Wi+1,j−1. This means that (A.3) holds in this case too with

Wi,j = w(xi, xj) +Wi+1,j−1.
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[221] P. Erdős and A. Rényi, “On random graphs,” Publicationes Mathematicae

Debrecen, vol. 6, pp. 290–297, 1959.

[222] V. A. Avetisov, S. K. Nechaev, and A. B. Shkarin, “On the motif distri-

bution in random block-hierarchical networks,” Physica A: Statistical Me-

chanics and its Applications, vol. 389, no. 24, pp. 5895–02, 2010.

[223] M. Muller and K. C. Daoulas, “Calculating the free energy of self-

assembled structures by thermodynamic integration,” The Journal of chem-

ical physics, vol. 128, 2008.

[224] Y. Deng and B. Roux, “Computation of binding free energy with molecular

dynamics and grand canonical monte carlo simulations,” The Journal Of

Chemical Physics, vol. 128, 2008.

[225] K. A. Connors, Chemical kinetics: the study of reaction rates in solution.

Wiley. com, 1990.

[226] L. Landau and E. Lifshitz, Statistical Physics. Pergamon: Oxford, 1981.

[227] M. Eigen, “Selforganization of matter and the evolution of biological macro-

molecules,” Naturwissenschaften, vol. 58, no. 10, pp. 465–523, 1971.

[228] L. Peliti, “Quasispecies evolution in general mean-field landscapes,” Euro-

physics Letters, vol. 57, no. 5, p. 745, 2002.

[229] S. Galluccio, R. Graber, and Y.-C. Zhang, “Diffusion on a hypercubic lattice

with pinning potential: exact results for the error-catastrophe problem in

biological evolution,” arXiv preprint cond-mat/9601088, 1996.

[230] F. Slanina, “Selective advantage of topological disorder in biological evolu-

tion,” tech. rep., 2002.

159


