
HAL Id: tel-00919771
https://theses.hal.science/tel-00919771v1

Submitted on 17 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the use of network coding and multicast for
enhancing performance in wired networks

Yuhui Wang

To cite this version:
Yuhui Wang. On the use of network coding and multicast for enhancing performance in wired networks.
Other [cs.OH]. Institut National des Télécommunications, 2013. English. �NNT : 2013TELE0010�.
�tel-00919771�

https://theses.hal.science/tel-00919771v1
https://hal.archives-ouvertes.fr


THESE DE DOCTORAT CONJOINT TELECOM SUDPARIS et

L’UNIVERSITE PIERRE ET MARIE CURIE

Spécialité :

INFORMATIQUE et TELECOMMUNICATIONS

Ecole doctorale : Informatique, Télécommunications et Electronique de Paris

Présentée par

Yuhui Wang

Pour obtenir le grade de

DOCTEUR DE TELECOM SUDPARIS

Sur l’utilisation du codage réseau et du multicast pour

améliorer la performance dans les réseaux filaires

Soutenue le 17 mai, 2013

devant le jury composé de :

Rapporteur : Fabio Martignon Professeur, Université Paris-Sud

Rapporteur : Dritan Nace Professeur, Université de Technologies de

Compiègne

Examinateur : Prosper Chemouil Directeur de Recherche, Orange Labs

Examinateur : Philippe Chretienne Professeur, Université Pierre et Marie Curie

Examinateur : Muriel Médard Professeur, Massachusetts Institute of

Technology

Encadrant de thèse : Eric Gourdin Ingénieur de Recherche, Orange Labs

Directeur de thèse : Eitan Altman Directeur de Recherche, INRIA Sophia

Antipolis

Directeur de thèse : Tijani Chahed Professeur, Télécom SudParis

Thèse n
◦
2013TELE0010





DOCTORATE JOINTLY DELIVERED BY TELECOM SUDPARIS and

PIERRE ET MARIE CURIE UNIVERSITY

Speciality :

INFORMATIQUE et TELECOMMUNICATIONS

Ecole doctorale : Informatique, Télécommunications et Electronique de Paris

Presented by

Yuhui Wang

For obtaining the

DOCTOR OF PHILOSOPHY DEGREE OF TELECOM SUDPARIS

On the Use of Network Coding and Multicast for Enhancing

Performance in Wired Networks

Defended on 17
th May, 2013

Defense Committee :

Reviewer : Fabio Martignon Professor, Université Paris-Sud

Reviewer : Dritan Nace Professor, Université de Technologies de

Compiègne

Examiner : Prosper Chemouil Research Director, Orange Labs

Examiner : Philippe Chretienne Professor, Université Pierre et Marie Curie

Examiner : Muriel Médard Professor, Massachusetts Institute of

Technology

Supervisor : Eric Gourdin Research Engineer, Orange Labs

Supervisor : Eitan Altman Research Director, INRIA Sophia Antipolis

Supervisor : Tijani Chahed Professor, Télécom SudParis

Thesis n
◦
2013TELE0010





Declaration

I declare that this thesis was composed by myself and that the work contained

therein is my own, except where explicitly stated otherwise in the text.

Yuhui Wang





Acknowledgements

To be honest, this research project would not have been possible without the sup-

port of many people.

First of all, I wish to express my most sincere gratitude and appreciation to my

supervisor, Eric Gourdin for his invaluable guidance, endless patience, and con-

stant encouragement through the entire journey in Orange Labs. I started working

with him from the mid of my first year while I was in the most difficult time. His

assistance helps me finding my self-confidence back, and restoring enthusiasm on

the project.

Deepest gratitude are also due to the other Co-supervisors Pr. Eitan Altman, Pr.

Tijani Chahed, and Nidhi Hedge. It was a great pleasure to have had a chance

to work with Eitan, I would like to thank him for his thoughtful advice and at-

tention. No words can express my appreciation to Tijani, without his knowledge

and assistance, this study would not have been successful. Although time for the

cooperation with Nidhi is short, but it is still memorable. Without her, I would

not have had a chance to come to Paris.

My grateful thanks are also extended to my project manager Prosper Chemouil

for his constant support and his good sense of humor.

Special thanks to Pr. Muriel Médard, without her invitation, I would not have

had a chance to visit MIT and her excellent research lab. The short visit was

an unforgettable and invaluable experience. Her insight and advice have kept me

away from the wrong direction.

I would like to thank Adam Ouorou for his unlimited kindness. I appreciate that

He has given me invaluable lessons of Operational Research in Telecommunica-

tion.



I am also indebted to all my France Telecom colleagues, especially my current

team manager Nabil Benameur, former team manager Sara Oueslati, and all

the team members, Pierre Bauguion, Amal Benhamiche, Alexandre Blogowski,

Yannick Carlinet, Jean-Baptiste Dumont, Christine Gabet, Florence G. Benezit,

Massimo Gallo, Hassan Hijazi, Raluca-Maria Indre, Bruno Kauffmann, Sharique

Ali Khan, Thibaut Lefebvre, Fabien Mathieu, Jean-Robin Medori, Luca Mus-

cariello, Philippe Olivier, Nancy Perrot, Alain Simonian, Jean-Mathieu Segura,

and Christian Tanguy, for their invaluable and insightful comments during the

field work and the write-up of the thesis.

I would like to express my very great appreciation to Pr. Fabio Martignon, Pr.

Dritan Nace, and Pr. Philippe Chretienne for reviewing my thesis and being on

the defense committee. Their willingnesses to give their time so generously have

been very much appreciated.

I would like to thank Shule Song for her love and encouragement. The stability

she helped to provide at home significantly eased the task of persevering through

my studies. Her seemingly bottomless well of energy and joy have always refreshed

and sustained me.

Last but not the least, I wishes to express my deepest love and heartfelt gratitude to

my mother Ningzhi Yi, and Father Yanzhong Wang, for their unwavering support

and unconditional love, through the duration of my studies.

Yuhui Wang

Orange Labs R&D, Issy-les-Moulineaux

February 2012



Résumé

Contexte

D’après le livre blanc de Cisco [3], le trafic IP mondial devrait tripler d’ici à 2016;

certains trafics en particuliers, tels que la Vidéo à la Demande (VoD), la télévision

sur IP, et les jeux en ligne, devrait connaitre une croissance spectaculaire dans les

cinq prochaines années. Par conséquent, les opérateurs de réseaux devront faire

d’importants investissements afin d’augmenter la capacité des réseaux et ainsi

satisfaire les futures demandes. Pour attńuer l’impact de ces futurs investisse-

ments, il devient donc de plus en plus impératif de mieux maitriser l’écoulement

du trafic dans les réseaux afin d’utiliser au mieux les ressources disponibles.

L’une des plus importantes caractéristiques des services tels que la télévision

IP ou les jeux en ligne, réside dans le fait que les données doivent toujours

être accessible simultanément par un grand nombre d’utilisateurs. Lorsque ces

applications utilisent un des protocoles les plus répandues dans les réseaux de

télécommunication actuels, tel que unicast ou broadcast, de très nombreuses copies

des données initiales sont générées et doivent être écoulées dans le réseau, ce qui

conduit à une très mauvaise gestion des ressources du réseau. Avec un protocole

de routage dits unicast, l’échange de données se fait au moyen d’une connection

établie entre une source et une destination à la fois. Malgré cette limitation in-

trinsèque, les protocoles unicast sont encore massivement utilisés dans le réseaux

actuels.

Si plusieurs terminaux requièrent simultannément les mêmes données, et ce à

partir d’une source unique, plusieurs sessions unicasts doivent être établies en

parallèle, et les mêmes données peuvent donc être amenées à transiter dans le

même lien. Au contraire, avec un protocole de type broadcast, un nœud de

transit peut dupliquer les données reçues par une interface et les propager vers

chacune de ses interfaces de sortie, ou dans une plage de communication dans

un réseau sans fil (on parle parfois de ”technique d’inondation”). Bien que ce



protocole garantisse bien que les données émises par la source seront finalement

reçues par chaque terminal demandeur, l’information transmise risque d’inonder

le réseau et d’épuiser les ressources réseaux. Afin de réduire les flux de données

pour des applications réseaux qui entre une source et plusieurs destinations, le

mode de transmission appelé multicast a été introduit à la fin des années 80.

Pour mieux gérer les ressources, les protocoles multicast cherchent à construire

un arbre reliant la source à chacune des destinations,et utilisent ensuite cet ar-

bre pour écouler le trafic. Par rapport à une utilisation de plusieurs connections

unicasts en parallèle, le multicast permet donc de réduire considérablement la

redondance dans la transmission des données. Ainsi, le multicast semble être la

solution la plus adaptée pour le transport simultanné de données entre plusieurs

noeuds du réseau. Plusieurs mises en uvres pratiques du multicast ont été pro-

posées pour les réseaux IP [1, 2]. Pourtant, les protocoles multicast sont encore

assez peu déployés dans les réseaux actuels, où les transmissions sur l’Internet

courant sont encore dominés par de l’unicast. La principale raison de cette faible

pénétration des protocoles multicast réside dans la grande complexité de gestion

et de mise en oeuvre des plans de routage. Mais, en raison de l’énorme croissance

des demandes pour certaines applications massivement multi-utilisateur, telles

que la visioconférence ou les jeux en ligne, de nombreux fournisseurs de services

Internet (FSI) recommencent à envisager des solutions basées sur le déploiement

de protocoles multicasts.

Contrairement aux applications évoquées ci-dessus et qui se caractérisent par des

contraintes proches du temps réel, des applications, tel que la Vidéo à la Demande

(VoD), qui sont également très populaires, ne nécéssitent généralement pas une

diffusion simultannée des contenus à plusieurs clients. Un protocole de type mul-

ticast n’est donc pas adapté à la diffusion de contenus pour de tels services qui

utilisent donc essentiellement de l’unicast. Rappelons que les services de type

VoD permettent aux abonnés de regarder/écouter des vidéos ou des contenus au-

dio à tout moment et avec en choisissant un niveau de qualité de service (QoS)

en fonction du mode d’accès et du terminal. Le trafic générés par les plus pop-

ulaires de ces contenus, représente aussi une part importante du trafic Internet

mondial [3]. Le concept de CDN (Content Delivery Network) a émergé depuis

peu de la communauté des principaux acteurs de l’Internet, afin d’améliorer la

mise en œuvre des systèmes de diffusion de contenus, tels que la VoD. Dans un

CDN, les contenus les plus populaires, parmis les objets Web (réseaux sociaux,

graphiques), les objets de téléchargement (mises à jour logicielles), les contenus

audios ou vidéos, sont stockés sur des serveurs qui sont installés à la périphérie des



réseaux, plus proches des clients. En plus de réduire les temps de transmission,

ces systèmes contribuent également beaucoup à réduire le trafic dans le réseau

coeur.

Les protocoles multicast et les systèmes de stockage distribué ont été largement

étudiées. L’apparition du codage réseau en 2000, offre de nouvelles possibilités

pour améliorer les performances réseaux, en le combinant avec du multicast et en

l’utilisant dans un système de stockage distribuè. A l’origine, le codage réseau est

une technique issue du domaine de la théorie de l’information, pour atteindre un

débit théorique maximal dans un réseau multicast [5]. Analysé au moyen d’outils

algébriques, le codage réseau apparait comme un schéma de codage générique qui

permet de combiner des informations au niveau des nœuds intermédiaires d’un

réseau. L’opération qui permet de combiner du trafic dans un seul flux est désigné

sous le terme codage ou encodage, alors que le mécanisme qui permet de retrou-

ver les informations originales au sein d’un flux codé s’appelle décodage. Ces

opérations changent fondamentalement le schéma de routage traditionnel et elles

offrent une autre façon de traiter les problèmes de congestion. Le premier bénéfice

mis en évidence est l’amélioration des performances dans les réseaux multicast.

Dans [5], les auteurs montrent que l’utilisation du codage réseau pour les com-

munications multicast permet d’atteindre la capacité maximale en terme de débit

dans le réseau. Dans cette thèse, nous utilisons le terme La Capacité Réseau pour

désigner le débit maximal qui peut être atteint simultanément dans un réseau,

entre une source et plusieurs terminaux. En outre, nous désignons par le terme

Le Seuil, le débit maximal théorique obtenu lorsqu’on utilise du codage réseau.

Il est montré dans [65] que le codage linéaire est déjà suffisant pour atteindre le

seuil. Cependant, à ce stade, le codage réseau est encore irréaliste, car il nécessite

de déterminer à l’avance les coefficients de codage sur tous les lien d’un réseau.

Les auteurs dans [43] présentent une approche distribuée pour le codage réseau et

montrent qu’il suffit de choisir les coefficients de manière aléatoire dans un corps

fini judicieusement choisi pour obtenir un schéma de codage pour lequel la prob-

abilité de parvenir à décoder toutes les informations est très élevée. Ces travaux

montrent, pour la première fois, que le codage réseau peut être utilisé en pratique.

La recherche sur le codage réseau a reçu beaucoup d’attention durant ces dernières

années. Des travaux ont notament porté sur les avantages du codage (en terme

de sécurité, de robustesse, de fiabilité, de débit, etc.) dans les réseaux maillés

et les réseaux sans fils. Pour une première introduction au codage réseau et une

initiations à ces principales applications, nous renvoyons le lecteur au Chapitre



2.

Dans cette thèse, nous définissons le bénéfice du codage par le gain de débit

obtenu en utilisant le codage réseau (par rapport au débit atteint dans un réseau

multicast traditionel). S’il est désormais bien connu que le codage réseau per-

met d’atteindre le débit maximal dans un réseau, la question d’évaluer le débit

atteignable dans un réseau multicast, et donc de comparer les deux, est plus com-

plexe. Depuis 2005, plusieurs travaux ont porté sur cette question particulière

d’évaluer, en théorie et en pratique, les débits que l’on peut obtenir dans un réseau

multicast avec ou sans codage réseau. Il est montré dans [46] que le bénéfice du

codage réseau en terme de débit est théoriquement non borné dans des réseaux

orientés. Ce résultat est fortement contre-balancé par les travaux de Li et al dans

[67] qui montre que ce bénéfice est borné par 2 dans des graphes non-orientés.

Plus tard, en 2012, Yin et al dans [87] ont montré que le bénéfice disparait tout

à fait dans le cas des réseaux bi-orientés. De premières expériences numériques

sont abordées dans [86] où des résultats obtenus sur six réseaux de FAI sont com-

parés. Aucun résultat ne montre un gain de débit lié à l’utilisation de codage

réseau. Des travaux similaires dans [66] sur des instances de réseaux aléatoires et

non-orientés donne le même résultat. On peut cependant relever certaines limi-

tations quand à ces résultats, lié à la méthodologie d’évaluation utilisée. En effet,

comme le calcul du débit optimal dans un réseau multicast se ramène à plusieurs

évaluations du problème de l’arbre de Steiner et que ce problème est connu pour

être NP-complet, les résultats présentés s’appuie, pour résoudre ce problème,

soit sur l’utilisation d’algorithmes d’approximation, voire d’heuristiques, soit sur

des approches énumératives exhaustives, donc forcément très limitées quant à la

taille des instances traitables. En dépit de l’existence de ces limites, les travaux

cités ci-dessus avaient le mérite de mettre en lumière certaines particularités du

problème, à savoir, la sensibilité à la structure topologique de réseau qui pour-

rait impliquer que les instances de ”réseau papillon” qui illustrent classiquement

l’écart de débit entre multicast et network coding sont particulièrement atypiques

et peu présentes dans les réseaux réels.

Bien que le gain en débit généré par l’utilisation du codage réseau dans les réseau

multicast reste difficile à évaluer, le codage réseau procure d’autres avantages: un

plan de routage optimisé dans un réseau utilisant du codage réseau est très simple

à obtenir, là où le problème équivalent dans le cas d’un réseau multicast classique

reste très complexe. De plus, pour atteindre des valeurs de débit proche du débit

optimal, il faut souvent utiliser un grand nombre d’arbres multicast [13]. A partir



de maintenant et dans le reste de la thèse, le terme codage réseau sera toujours

utilisé en référence à son utilisation dans un réseau multicast. Le terme multicast

fera référence, quant à lui, aux mécanismes de routages traditionnels utilisant des

arbres multicast. En l’absence d’indications contraires, nous nous intéresserons

toujours au cas de sessions multicast issues d’une source unique. Comme déjà

évoqué, le calcul du débit optimal pour un problème de routage particulier peut

se modéliser comme un problème d’optimisation. Ainsi, le calcul du débit maxi-

mal (et le schéma optimal de routage associé) dans le cas d’un réseau multicast

sans codage, se ramnène au problème de Fractional Steiner Tree Packing, un

problème d’optimisation NP-difficile bien connu [47]. Cependant, le problème

d’optimisation à considérer dans le cas d’utilisation du codage réseau peut être

résolu en temps polynomial; en effet, il suffit de résoudre une série problèmes de

flot maximum, entre l’unique serveur et chacun des terminaux. Le problème de

flot maximum est un problème classique en théorie graphe et il existe de nom-

breux algorithmes efficaces pour le résoudre [28]. Certains travaux s’intéresse

également à des problèmes dans lesquelles il y a un coût associé à l’utilisation

des liens du réseau. Ces coûts peuvent, par exemple, modéliser l’utilisation de la

bande passante ou les consommations d’énergie. Lun et al dans [70] proposent

une approche décentralisée pour trouver les sous-graphes de coût total minimaux

dans le cas du routage avec codage réseau. Notons que, pour atteindre le même

objectif dans le cas du multicast, il faut connaitre la topologie complète du réseau.

Il est généralement difficile de maintenir une telle connaissance de manière cen-

tralisé.

Pour les services multicast, le codage réseau comme une technique avancée permet

aux nœuds intermédiaires pour faire des calculs. Les fonctionnalités supplémentaires

nécessitent le soutien de mise à jour logicielle ou matérielle sur la source et les

terminaux ainsi que les nœuds de transition. Ces changements peuvent perturber

l’autre trafics de données qui passent sur le même réseau, mais ils ne demandent

pas le service de multicast. De plus, les opérations algébriques, comme l’encodage

et le décodage, introduirent des charges sur les travails supplémentaires dans

les nœuds d’un réseau. En conséquence, ils vont ralentir l’efficacité du traite-

ment des données. Ces effets négatifs apportés par le codage réseau sont les

préoccupations majeures pour les FAI d’appliquer cette nouvelle technique en

pratique. Quelques études donc ont porté de chercher des façons pour réduire les

interférences du codage réseau. Lucani et al dans [68] visaient à limiter le volume

de flux du codage réseau afin de réduire les charge de calcul sur les nœuds qui fai-

saient l’encodage et le décodage. Ils proposaient un protocole de routage hybride



ainsi que son cadre de l’optimisation, où le codage réseau n’est considéré comme

l’auxiliaire de multicast dans les transmissions des données. Dans ce problème,

le coût minimum problème d’arbre Steiner pour les flux non-codés est toujours

résolu par des algorithmes sous-optimal. Dans [53] et [55], un génétique Algo-

rithme basé sur le cadre algébrique était créé pour trouver le nombre minimum

des nœuds atteignant un débit donné et visant à minimiser la charge de mise à

jour sur un réseau. Le problème est NP-difficile. Dans cet article, les auteurs

constatent que, en général, un très petit ensemble des nœuds codages est déjà

suffisante pour fournir le débit maximum.

Le codage réseau apporte des bénéfices non seulement dans les réseaux multicast,

mais également dans les réseaux sans fils, les réseaux optiques, et les sysèmes de

stockage distribués. La seconde partie de cette thèse se concentre sur l’application

du codage réseau dans les systèmes de stockage distribués. En effet, dans cette

application, le codage réseau montre une possibilité d’améliorer les performances

réseaux au-delà de la considération de routage. Un document récent [4] a étudié

un système de stockage modifié qui stocke les informations codés d’un contenu

original. Un élèment ou un bloc d’information codé est constitué par des com-

binaisons linéaires aléatoires de tous les blocs d’un contenu original. Lorsque

un utilisateur d’Internet visitent un tel système pour y chercher certains con-

tenus, ils recevront des blocs d’informations codés, la taille totale de ce qu’ils

recoivent étant égale ou légèrment supérieure à la taille du contenu d’origine.

L’utilisateur peut ensuite récupérer le contenu original en décodant l’information

reçue. Dans [4], il est démontré que ce nouveau système est très efficace pour

la transmission des données: d’une part, les transmissions ont une très faible la-

tence, et, d’autre part, la probabilité de succès pour le décodage de l’informations

est grande. L’enquête menée dans [20] montre que l’utilisation du codage dans

les systèmes de stockage distribués améliore la fiabilité du système. Les auteurs

dans [27] soulignent que l’utilisation du codage réseau dans les systèmes de CDNs

permet de réduire l’utilisation des serveurs et donc également, la consommation

d’énergie. Ceci s’explique par le fait que l’application du codage linéaire aléatoire

réduit la probabilité de blocage lorsque la même information est accédée par des

terminaux différent simultanément. Une étude dans [38] se concentre sur les ap-

plications du codage réseau dans l’allocation de stockage pour transmettre des

contenus vidéos dans des réseaux sans fils. Cette étude montre que le système

de stockage utilisant le codage réseau facilite la modélisation mathématique. De

plus, le système de stockage correspondant fournit de meilleures performances

pour le téléchargement de fichiers. Les auteurs dans [62, 63, 64] posent les bases



d’une analyse de la probabilité de trouver l’allocation optimale offrant une grande

fiabilité pour les utilisateurs cherchant à décoder les informations codées. Il

serait intéressant d’étudier également le problème mixte de stockage et de routage

dans un cadre d’optimisation, car il peut être considéré comme une extension de

problème classique de transport.

Motivations et contributions

Confortés par l’ensemble de ces observations, nous croyons qu’il est encore trop

tôt pour affirmer que le multicast peut être systématiquement renforcés par du

codage réseau. Le postulat théorique initial de gain en débit reste encore diffi-

cile à appréhender, surtout parce que le problème de maximisation de débit dans

un réseau multicast est difficile à résoudre. De plus, nous ne pouvons pas ig-

norer les considérations pratiques liées au déploiement du codage réseau, tels que

les mises à jour nécessaires de certains équipements et les activités d’encodage

et de décodage. En particulier, si la quantité d’informations codées est impor-

tante, la complexité du décodage peut devenir problématique. La plupart des

terminaux utilisés par les clients, comme, par exemple, la Livebox, les tablettes

ou les téléphones portables, ne sont généralement pas capables de réaliser des

calculs trop complexes. Il est, par conséquent, essentiel d’évaluer soigneusement

les avantages et les inconvénients apportés par le codage réseau, y compris la

charge de calcul supplémentaire. De plus, différentes stratégies de stockage peu-

vent avoir un impact significatif sur le comportement de routage. Il est donc

utile d’étudier le problème de routage dans les systèmes de stockage distribués

utilisant le codage réseau.

Dans cette thèse, nous proposons d’abord, dans le Chapitre 3, une manière effi-

cace pour calculer le débit multicast maximal ainsi que différentes variantes du

problème. Nous résumons les problèmes de flot réseau, puis nous étudions les re-

lations entre les problèmes de goulot d’étranglement (bottleneck) dans les arbres

Steiner et les problèmes de débit maximal utilisant des arbres multicast. Cer-

tains résultats préliminaires concernant les problèmes de goulot d’étranglement

sont également rappelés. La contribution principale de ce chapitre est que nous

fournissons deux algorithmes en temps polynomial sur le problème de calcul du

goulot d’étranglement lorsque l’on cherche relier des terminaux au moyen d’un

arbre (arbre de Steiner) avec la contrainte additionnelle que chaque terminal est



une feuille de l’arbre (full bottleneck Steiner tree). Ces algorithmes peuvent être

facilement mis en œuvre, car ils font appel à des concepts très simples de la

théorie des graphes.

Dans le Chapitre 4, nous nous intéressons au problème de l’évaluation du bénéfice

apporté par le codage en terme de débit. Nous proposons des modèles mathématiques

et des algorithmes afin de maximiser le débit multicast et observons que nos ap-

proches sont suffisamment efficaces pour résoudre à l’optimalité des instances de

problème de tailles moyennes, voire grande. Nous traitons également le problème

de maximisation de débit multicast avec la contrainte additionnelle de n’utiliser

qu’un nombre limité d’arbres, et pour ce problème, nous sommes obligé de nous

limiter à de plus petites instances. Nous utilisons un outil commercial (XPress

Optimizer Version 21.1.00) pour résoudre les problème linéaire (LP) ainsi que les

problèmes en variables mixtes (MIP). Nous avons mené plusieurs séries de tests

numériques sur des réseaux orientés et bi-orientés. Ces instances sont générées

aléatoirement en utilisant notre propre générateur de graphes. Le premier résultat

surprenant est que, sur l’ensemble des instances générées, orientés et bi-orientés,

nous ne trouvons pas un seul réseau où le codage réseau (NC) ait un débit maximal

plus grand que multicast (MC). Cependant, lorsque nous considérons le multicast

avec un nombre limité d’arbres (MC-ℓ), dans lequel ℓ indique le nombre d’arbres

utilisés, le résultat est très différent. Figure 1 montre les valeurs de débit relatif

(100% signifie que le rapport de débit entre NC et MC est égal à 1) quand nous

restreignons le nombre d’arbres à 1, 2 ou 3 pour multicast. Nous constatons

que le rapport diminue lorsqu’on diminue le nombre d’arbres, ce qui signifie que

la valeur du débit multicast diminue lorsqu’on diminue le nombre d’arbres. Les

tendances générales sont très similaires pour les instances orientés et bi-orientés.

La réduction de débit est beaucoup plus grande lorsque les instances sont plus

denses (environ 6n liens pour l’ensemble des premières instances et 3n liens pour

les autres, où n représente le nombre des nœuds dans le réseau). Cela est dû au

fait qu’un nombre limité d’arbres ne permet pas d’exploiter pleinement la capacité

potentielle offerte par le réseau alors que le codage réseau y parvient beaucoup

mieux. Dans les réseaux de télécommunication traditionnels, le degré moyen est

généralement assez faible (par exemple entre 3 et 5). Les observations sur la série

des quatre derniers exemples montrent qu’il y a encore une réduction significative

de débit (de 13% à 25%) lorsqu’on utilise jusqu’à 3 arbres multicast, par rapport

à une solution du codage réseau. Il ressort de ces expérimentations que le codage

réseau peut être considéré par les administrateurs réseaux comme une alternative

très intéressante aux solutions standards de routage.



Figure 1: Comparaison des débits multicast sans (MC) et avec codage réseau
(NC): la légende, par exemple 20 240 10, signifie un graphe généré aléatoirement,
avec 20 nœuds, 240 arcs et 10 parmi les 20 nœuds sont des terminaux (Ce type
légende sera utilisé dans le reste de ce chapitre). Les hauteurs des colonnes
représentent les débits relatifs qui sont atteint par MC avec 1, 2 et 3 arbre(s)
sur les différents ensembles des instances. De plus, les valeurs correspondantes
sont les moyennes sur 100 instances générées aléatoirement pour chaque type. Le
maximum (100%) correspond au débit NC.

Figure 2 donne un aperçu sur le nombre d’arbres multicast nécessaires pour at-

teindre le même débit que le codage de réseau fait. Les chiffres obtenus dans

les bôıtes compte 50% des instances générés. Nous observons que la variance



de chaque type est assez élevé, ce qui indique que certain cas requiert seule-

ment un petit nombre d’arbres à atteindre le débit maximum mais certain cas

nécessitant un grand nombre. Les valeurs diminuent lors de l’augmentation du

nombre de terminaux. Cela peut être dû au fait que, grâce à la théorème de

Edmonds d’emballage arborescence [25], l’avantage de codage s’annule lorsque

tous les nœuds sont terminaux. Si cinq arbres serait considéré comme une limite

supérieure raisonnable pour les opérateurs à manipuler, et puis, dans la plupart

des cas, le débit NC n’aurait pas être réalisé par le multicast. D’autre part, dix

arbres peuvent souvent suffire pour les petits réseaux.

Figure 2: Nombre d’arbres nécessaire pour atteindre le débit optimal: pour
chaque groupe (indiquée sur l’axe des abscisses), 100 instances aléatoires sont
générées et le nombre minimal d’arbres multicast nécessaires pour obtenir le débit
optimal est calculé: 50% des cas se situent dans les bôıtes et 90% se situent dans
les intervalles.

La Figure 3 montre la moyenne, sur les séries indiquées, des temps pour calculer

les débits optimaux en utilisant nos modèles. Nous voyons clairement que les

calculs des débits multicast prennent généralement quelques minutes tandis que

les calculs des débits NC sont instantannés. Les calculs pour un seul arbre multi-

cast sont aussi très rapide, mais pour les nombres supérieures à 2, les problèmes

deviennent plus difficiles à résoudre en pratique.

En se concentrant de manière plus approfondie sur les instances de petites tailles,

on s’aperçoit que toutes les instances uniformes (toutes les capacités dans le réseau

sont égales à 1) générés de 7 à 10 nœuds ont le même débit multicast que NC (cf.



Figure 3: Temps de calcul moyens (en secondes) pour résoudre les problèmes de
maximisation de débit.

Tableau 1). En particulier, cela signifie que notre générateur ne parvient pas à

reproduire le réseau ’classique’ en forme de papillon.

Pour essayer de mieux cerner ce phénomène surprenant, nous avons réalisé une

recherche exhaustive dans tous les graphes avec 7 nœuds, 1 source et 2 terminaux,

et toutes les capacités égales à 1. Pour limiter la recherche, nous considérons

seulement les cas où au moins deux arcs sont issus de la source et au moins deux

arcs entrent dans chaque terminal. Parmi tous les 950 951 instances possibles

(en supprimant 18 016 instances non-connexes), seulement 96 instances mon-

trent des écarts non nuls entre NC et MC. En fait, ces 96 cas peuvent tous se

ramener seulement aux 3 instances decrites dans Figure 4, tous les autres cas

étant symétriquement équivalents à ces 3 cas. Le premier est le réseau papillon,

tandis que les deux autres sont juste des petites variantes autour de ce réseau.

Si nous considèrons une distribution uniforme pour générer toutes les instances,

alors la probabilité d’avoir un graphe avec un écart non nul est d’environ 0,01%.

Une étape ultime dans cette voie de recherche consiste, au lieu d’énumérer toutes

les instances possibles d’un certain type, à considér le problème qui consiste à

calculer (au moyen d’un modèle d’optimisation) une instance où l’écart est maxi-

mum. Comme ce problème s’est avéré très difficile à résoudre, nous nous sommes



Set n m ks kt λNC λMC # abres

Instances n rand rand
AVG 7 14,35 1 4,03 2,95 2,95 4,83
MIN 7 8 1 2 1 1 1
MAX 7 21 1 6 6 6 30
AVG 8 18,24 1 4,52 3,25 3,25 6,15
MIN 8 9 1 2 1 1 1
MAX 8 28 1 7 7 7 42
AVG 9 22,71 1 5 3,54 3,54 7,3
MIN 9 10 1 2 1 1 1
MAX 9 36 1 8 8 8 56
AVG 10 27,81 1 5,43 3,9 3,9 9,08
MIN 10 11 1 2 1 1 1
MAX 10 45 1 9 9 9 72

Table 1: Résultats sur des graphes aléatoires avec des capacités uniformes: les
résultats sont les moyennes sur 1000 instances générées aléatoirement. Chaque
instance contient une source et des liens avec des capacités uniformes Ca = 1, ∀a.

s

a b

c

d

t1 t2

s

a b

c

d

t1 t2

s

a b

c

d

t1 t2

Figure 4: Les seules 3 instances (uniformes) avec un écart non nul (de 0,5) entre
le débit NC et MC

limité à des cas de très petites tailles (voir le Tableau 2). Il est intéressant de

noter que, pour les instances uniformes avec 7 et 8 nœuds, les seuls cas avec

des écarts de débits non nuls entre NC et MC sont ceux ayant 7 nœuds et 2

terminaux, ou bien 8 nœuds et 2 ou 3 terminaux. Le premier cas correspond à

nouveau au réseau papillon. Deux graphes pour les instances de 8 nœuds et de 2

ou 3 terminaux sont représentées sur la Figure 5. Il est facile de vérifier, sur ces

deux graphes, que les écarts sont bien de 0,5.

Nous venons donc de montrer de façon expérimentale le résultat suivant:



n k ca ∆∗(NC,MC) λ∗
NC λ∗

MC m cpu (sec)

7 2 1 0,5 2 1,5 9 0,8
7 3 1 0 - - - 0,2
7 4 1 0 - - - 0,1
7 5 1 0 - - - 0,1
7 6 1 0 - - - 0,1
8 2 1 0,5 3 2,5 13 380
8 3 1 0,5 2 1,5 11 12
8 4 1 0 - - - 0,5
8 5 1 0 - - - 0,1
8 6 1 0 - - - 0,1
8 7 1 0 - - - 0,1

Table 2: Maximisation de lécarts en débit entre MC et NC sur des instances
uniformes.

s

v1

t1 t2

(a)

v2

v4

v3

v5

s

v1

t1 t3

(b)

t2

v2

v4

v3

Figure 5: les deux instances uniformes à 8 nœuds avec un écarts de 0,5 entre NC
et MC.

Lemma. On considère un réseau orienté à n nœuds (n = 7 or 8), une source

unique et k terminaux (différent de la source). On suppose que les capacités sont

toutes égales à un: Ca = 1, ∀a ∈ A. Si n = 7 et k ≥ 3 ou n = 8 et k ≥ 4, le

codage réseau n’améliore pas le débit par rapport au multicast standard.

En conséquence, nous confirmons que, sauf pour certains graphes très partic-

uliers, l’avantage apporté par le codage réseau dans la transmission multicast est

relativement faible, et ce, même dans le cas des graphes orientés, pour lesquels le

gain en débit est prétendument illimité. En effet, les topologies particulières ex-



hibants un écart de débits entre le codage réseau et le multicast (réseau papillon)

sont tellement spécifiques qu’elles ne se rencontrent presque jamais en pratique.

Pourtant, comme le multicast requiert presque toujours un nombre élevé d’arbres

pour obtenir un débit élevé, le codage réseau reste une alternative tout très at-

tractive pour la gestion des futurs réseaux.

Les opérations algébriques nécessaires à l’encodage et au décodage des trames

d’informations, génèrent une charge de calcul supplémentaire au niveau des équipements

de routage, ce qui peut avoir pour effet d’induire des délais supplémentaires dans

la diffusion des information. Les résultats exposés dans le Chapitre 4 ont montré

que l’utilisation du multicast induit aussi certaines limitations. C’est pourquoi

nous avons décidé d’étudier, et si possible d’optimiser, la façon de mettre en

oeuvre les protocoles de routage, et ce, afin de réduire les effets négatifs soit

du codage réseau, soit du multicast pris isolément l’un de l’autre. Dans le

Chapitre 5, nous considérons d’abord le problème de minimiser le nombre des

nœuds faisant l’encodage et d’évaluer le compromis entre la duplication multi-

cats et le codage aux niveaux des nœuds intermédiaires. Nous avons utilisé deux

approches différentes. Dans la première, chaque demande de trafic pour un ser-

vice multicast est réparti, selon un rapport fixe α ∈ [0, 1], entre un arbre de

diffusion multicast et plan de routage basé sur du codage réseau. Dans la sec-

onde approche, le nombre de nœuds où sont réalisées les fonctions de réplication

multicast ou d’encodage est limitée par un nombre fixé à l’avance (que l’on peut

interpréter comme issue d’une contrainte budgétaire). Dans chaque cas, nous

construisons un modèle d’optimisation permettant de calculer le débit maximum

atteignable.

Les instances sont générées aléatoirement (de la même façon que dans Chapitre

4) par construire un graphe fortement connexe (avec un chemin entre la source et

chaque terminal), puis augmenter progressivement la densité du graphe jusqu’à un

niveau requis. Les capacités d’arcs sont générées aléatoirement dans l’intervalle

[0, 10]. Dans les groupes de données (n,m, nT ), n,m, nT représentent le nombre

de nœuds, de l’arcs, des terminaux, respectivement. Des séries de 100 cas sont

générés aléatoirement et les résultats moyens sont rapportés.

Plusieurs expérimentations de la littérature ont montré qu’une stratégie de routage

utilisant plusieurs arbres multicast permet d’atteindre, ou d’approcher, le débit

du codage réseau, mais le nombre d’arbres multicast nécessaires peut être très

grand. Comme une telle approche n’est pas envisageable en pratique, nous con-



sidérons ici le cas où un seul arbre multicast est utilisé. Dans ce cas, comme

notre première série d’expériences l’a confirmé, il y a, la plupart du temps, un

écart énorme entre les débits multicast et codage réseau. La Figure 6 montre

les débits relatifs obtenu en utilisant des stratégies intermédiaires utilisant un ou

deux arbres multicast et du codage réseau:

❼ NC+BC: mélange de codage réseau et de broadcast (sur certains nœuds);

❼ NC(p=1)+BC: idem que NC+BC mais avec un seul nœud réalisant de

l’encodage;

❼ NC(p=2)+BC: idem que NC+BC, mais avec deux nœuds réalisant de l’encodage;

❼ MC(1t): multicast utilisant un seul arbre.

Figure 6: Débits relatifs obtenus avec les différentes stratégies de codage/routage

On peut faire les observations suivantes: le débit obtenus avec un seul arbre multi-

cast MC(1t) est toujours bien en dessous du débit maximum atteint par le codage

réseau. En mélangerant le broadcast (BC) (au lieu de la réplication partielle,

c’est-à-dire MC) avec du codage réseau (NC), le débit est très proche du débit

optimal. Dans le cas des instances les plus denses (par example 20 240 10), la

réduction du débit peut atteindre près de 10%, mais ces cas sont très éloignés des

topologies typiques des réseaux de télécommunication. Enfin, et c’est peut-être

l’observations la plus surprenante, dans presque tous les cas, un seul nœud faisant

l’encodage est suffisant pour atteindre le débit optimal. Cela milite beaucoup en



faveur du codage réseau parce que le coût de déploiement de la fonctionnalité

d’encodage sur un seul nœud est très faible.

Afin de réaliser une analyse plus fine, nous comparons l’impact du nombre de

nœuds faisant l’encodage avec un autre paramètre important, à savoir la capacité

totale sur tous les liens entrants dans chaque terminal, qui constituent souvent les

goulets d’étranglement dans les réseaux télécommunications. Dans notre modèle,

nous considérons plutôt le degré entrant sur chacun terminal, que nous limitons

à certains valeurs (1, 2 ou 3 dans nos expériences).

Figure 7: Moyenne des débits maximaux obtenus sur des instances 20 60 10
lorsque les nœuds faisant l’encodage et les degrés entrants aux terminaux sont
limitées.

On voit de manière évidente sur la Figure 7 que le nombre de nœuds faisant

l’encodage a (encore) un impact très limité, tandis que la limitation du flux en-

trant dans les terminaux a un impact plus important.

Les courbes de la Figure 8 donnent une indication sur les débit que l’on peut

obtenir en combinant du routage multicast pur avec un plan de routage utilisant

du codage réseau. Nous voyons que, hormis pour les plus denses (20 240 10),

il est déjà avantageux d’utiliser le codage réseau pour un petit pourcentage du

trafic. On observe, par exemple, une amélioration du débit relatif de 4% lorsque

10% du trafic utilise du codage réseau et cette augmentation est plus ou moins



Figure 8: Pourcentage du débit optimal obtenu en routant α% du trafic sur un
arbre multicast (et les (1 − α)% restant selon un plan de routage utilisant du
codage réseau).

linéaire jusqu’à atteindre le débit maximal (obtenu lorque ce trafic atteint une

fourchette entre 50% à 70% du trafic total). Par conséquent, si le rapport entre

le coût et le bénéfice du codage réseau est de moins de 1 sur 2, il semble être

intéressant de déployer du codage réseau.

(Eric): I am not sure I am following you here ???

Figure 9: Répartition des valeurs autour de la moyenne pour le pourcentage de
débit obtenu en routant α% du trafic sur un arbre multicast: les bôıtes représente
50% des cas, les valeurs extrêmes [min,max] sont représentées par les segments.



La Figure 9 permet d’analyser plus en détails le cas le plus dense (20 240 10), en

indiquant l’étalement des valeurs observées autour de la moyenne. Si la gamme

des valeurs extrêmes est assez grand, nous pouvons observer que 50% des in-

stances suivent la tendance annoncée par la valeur moyenne, à savoir que l’impact

de l’introduction du codage réseau augmente de manière considérable lorsque plus

d’un tiers du trafic est transporté avec du codage réseau.

Figure 10: Pourcentage du débit optimal obtenu en routant α% du trafic sur
deux arbres multicast (et les (1− α)% restant selon un plan de routage utilisant
du codage réseau).

La Figure 10 donne les résultats obtenus lorsque l’on s’intéresse au cas où deux

arbres multicast sont utilisés en parallèle avec du codage réseau. On suppose ici

que la proportion α% du trafic géré en multicast est également répartie sur les

deux arbres (α/2% sur chaque arbre). Nous voyons que la différence entre le débit

du codage réseau (α = 0) et le débit multicast (α = 1) est réduite par rapport au

cas dans Figure 8, mais les tendances des courbes restent les mêmes: par exem-

ple, l’introduction d’une petite quantité du codage réseau est déjà avantageuse,

mais l’avantage doit être comparé au coût engagé. Pour obtenir une performance

presque optimale, il faut que plus de 50% du trafic soit géré par du codage réseau.

On observe néanmoins que cette proportion tombe à 30% dans le cas des réseaux

les moins denses (20 60 10).

Pour résumer, nos résultats (essentiellement obtenus sur des instances générées

aléatoirement) montrent qu’un petit nombre de nœuds faisant de l’encodage

est suffisant pour atteindre la capacité du réseau; les gains en débit obtenu

par l’utilisation du codage réseau augmentent considérablement dans les réseaux



denses; l’information dupliquée sur les liens sortants joue un rôle important dans

le gain en débit. Nous avons observé que l’introduction d’une petite proportion

de codage réseau dans le volume des flux multicast produit déjà une augmenta-

tion significative du débit global. Cependant, pour obtenir un débit encore plus

élevé lorsqu’on utilise de manière conjointe un plan de routage géré par du codage

réseau et du routage multicast traditionnel, une partie relativement importante

(environ 30% pour les graphes le plus clairsemés jusqu’à 50% pour les graphes

denses) du trafic doit être transporté par du codage réseau pour atteindre un

débit presque optimal.

Dans une deuxième partie de la thèse, nous avons étudié un problème de trans-

port sur les systèmes de stockage distribué utilisant le codage réseau pour stocker

l’information. En fait, le schéma de codage supprime l’importance de la pièce

unique d’information dans un système, et par conséquent, il permet une plus

grande flexibilité pour le stockage et améliore les temps d’accès aux données par

les clients. En effet, il suffit de garantir que les clients recoivent la même quantité

d’informations codées que les informations d’origine pour que le décodage puisse

se faire. En conséquence, les nouvelles stratégies de placement de l’information

ont ausso un impact sur les schémas de routage nécessaires à la diffusion, en

particulier lorsque l’accès aux serveurs et/ou aux terminaux des clients devien-

nent les goulots d’étranglement du système. Nous avons étendu notre modèle

d’optimisation à un problème d’optimisation plus général, mais qui n’a pas été, à

notre connaissance, étudié dans la littérature, à savoir, le problème de transport

avec des contraintes degrés. Nous proposons une méthode de résolution pour ce

probème basé sur la décomposition lagrangienne.

En résumé, les contribution principales de cette thèse sont de fournir des modèles

mathématiques et des algorithmes efficaces pour calculer le débit optimal lorsqu’on

utilise différents plan de routage combinant le multicast traditionnel avec du

codage réseau. Cela nous a permis de clarifier, au travers de nombreux test

numériques, l’avantage du codage réseau. En particulier, nous avons démontrer

les avantage d’un routage hybride, qui apporte, non seulement un gain significatif

en débit, mais s’avère également très simple et peu invasif en terme de nouvelle

fonctionnalités à déployer. En outre, notre étude d’un système de stockage dis-

tribué utilisant le codage réseau nous a permis d’aborder un problème nouveau,

à savoir un problème de transport avec contraintes degrés.



Organisation

La thèse est organisée comme suit. Dans le Chapitre 2, nous donnons un bref

aperçu des principes du codage réseau, des réseaux multicast, et les systèmes

de stockage distribué. Nous y introduisons également les outils méthodologiques

utilisés durant la thèse, à savoir, des outils de la théories des graphes et des

modèles classiques d’optimisation dans les réseaux de télécommunication.

Le corps principal de la thèse est séparé en deux parties. La première partie,

qui est la plus importante, inclue les Chapitres 3, 4 et 5. Cette partie concerne

l’étude des modèles mathématiques et des algorithmes efficaces permettant de

résoudre différents problèmes de calcul de débit maximal dans les réseaux et à

évaluer l’avantage du codage et de nouvelles techniques de routage hybride. La

deuxième partie est developpée dans le Chapitre 6, et donne les premiers résultats

d’une étude sur le problème de transport dans des systèmes de stockage distribué

utilisant le codage réseau.

Dans le Chapitre 3, nous proposons des algorithmes efficaces pour résoudre les

problèmes de calcul de débit maximal lors de l’utilisation d’un ou de plusieurs ar-

bres multicast. Ces modèles servent de base aux études menées dans le Chapitre

4 et qui revisite les problématiques d’évaluation du gain de débit entre le codage

réseau et le multicast. Nous proposons un algorithme heuristique simple pour

évaluer le débit maximum obtenu par un routage qui utilise un nombre limité

d’arbres multicast. Dans le Chapitre 5, nous fournissons les résultats d’une étude

numérique intensive qui nous a permis d’évaluer le compromis entre l’utilisation

du codage et la duplication aux nœuds intermédiaires, ainsi que des nouveaux

schémas de routages hybrides. Dans le Chapitre 6, nous étudions un problème de

transport avec des constraints de degrés, qui permet de modéliser des problèmes

de routage statique dans les systèmes de stockage distribués qui utilisent le codage

réseau.

Enfin, nous résumons nos études et proposons des extensions possibles des travaux

dans le Chapitre 7.



Abstract

The popularity of the great variety of Internet usage brings about a significant

growth of the data traffic in telecommunication network. Data transmission ef-

ficiency will be challenged under the premise of current network capacity and

data flow control mechanisms. In addition to increasing financial investment to

expand the network capacity, improving the existing techniques are more rational

and economical. Various cutting-edge researches to cope with future network re-

quirement have emerged, and one of them is called network coding. As a natural

extension in coding theory, it allows mixing different network flows on the inter-

mediate nodes, which changes the way of avoiding collisions of data flows. It has

been applied to achieve better throughput and reliability, security, and robustness

in various network environments and applications. This dissertation focuses on

the use of network coding for multicast in fixed mesh networks and distributed

storage systems. We first model various multicast routing strategies within an

optimization framework, including tree-based multicast and network coding; we

solve the models with efficient algorithms, and compare the coding advantage, in

terms of throughput gain in medium size randomly generated graphs. Based on

the numerical analysis obtained from previous experiments, we propose a revised

multicast routing framework, called strategic network coding, which combines

standard multicast forwarding and network coding features in order to obtain

the most benefit from network coding at lowest cost where such costs depend

both on the number of nodes performing coding and the volume of traffic that is

coded. Finally, we investigate a revised transportation problem which is capable

of calculating a static routing scheme between servers and clients in distributed

storage systems where we apply coding to support the storage of contents. We

extend the application to a general optimization problem, named transportation

problem with degree constraints, which can be widely used in different industrial

fields, including telecommunication, but has not been studied very often. For this

problem, we derive some preliminary theoretical results and propose a reasonable

Lagrangian decomposition approach.





Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivations and Contributions . . . . . . . . . . . . . . . . . . . . 7

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Overview of Network Coding 11

2.1 What is Network Coding . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Coding and Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 A Note on Finite Fields . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Cost and Other Concerns . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Algorithms for Finding Unsplittable End-to-End Throughput in

Multicast Network 21

3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Bottleneck Network Flow Problems . . . . . . . . . . . . . . . . . 24

3.4 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 An O(|S|2|T |) Algorithm for the Bottleneck Full Steiner Tree Prob-

lem in an Undirected Graph . . . . . . . . . . . . . . . . . . . . . 38

3.6 An O(|E| log |E|) Algorithm for the full Bottleneck Steiner Tree

Problem in Undirected Graph . . . . . . . . . . . . . . . . . . . . 48

3.7 More efficient algorithms . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Investigation on Maximum Throughput 55

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Comparing Coding and Routing Schemes . . . . . . . . . . . . . . 60

i



4.4 Models and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Considerations on Some Small Instances . . . . . . . . . . . . . . 72

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Strategic Network Coding 79

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Classical Flow Models . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Controlling the Transit across the Nodes . . . . . . . . . . . . . . 84

5.5 Extended Throughput Maximization Models . . . . . . . . . . . . 87

5.6 Computational Experiments on Some Butterfly-like instances . . . 89

5.7 Computational Experiments on Randomly Generated Instances . 94

5.8 A Word about the Efficiency of Our Models . . . . . . . . . . . . 102

5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Constrained Transportation Problem for Distributed Storage Sys-

tem 105

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Relationship with b-matching and Feasibility Conditions . . . . . 110

6.5 Complexity Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.6 Impact of the Degree Constraints . . . . . . . . . . . . . . . . . . 115

6.7 Resolution Approaches . . . . . . . . . . . . . . . . . . . . . . . . 116

6.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 118

7 Conclusions and Perspectives 119

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

ii



List of Figures

1 Comparaison des débits multicast sans (MC) et avec codage réseau

(NC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Nombre d’arbres nécessaire pour atteindre le débit optimal . . . .

3 Temps de calcul moyens (en secondes) pour résoudre les problèmes

de maximisation de débit. . . . . . . . . . . . . . . . . . . . . . .

4 Les seules 3 instances avec un écart non nul (de 0,5) entre le débit

NC et MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 les deux instances uniformes à 8 nœuds avec un écarts de 0,5 entre

NC et MC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Débits relatifs obtenus avec les différentes stratégies de codage/routage

7 Moyenne des débits maximaux obtenus sur des instances 20 60 10

lorsque les nœuds faisant l’encodage et les degrés entrants aux

terminaux sont limitées . . . . . . . . . . . . . . . . . . . . . . . .

8 Pourcentage du débit optimal obtenu en routant α% du trafic sur

un arbre multicast (et le reste selon un plan de routage utilsant le

network coding) . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 Répartition des valeurs autour de la moyenne pour le pourcentage

de débit obtenu en routant α% du trafic sur un arbre multicast .

10 Pourcentage du débit optimal obtenu en routant α% du trafic sur

deux arbres multicast (et les (1 − α)% restant selon un plan de

routage utilisant du codage réseau) . . . . . . . . . . . . . . . . .

2.1 Butterfly Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Repair problem in Distributed Storage System . . . . . . . . . . . 18

2.3 A wireless example . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Infeasible instance for a Full Steiner Tree Problem . . . . . . . . . 39

3.2 An example of non-optimal solution . . . . . . . . . . . . . . . . . 43

3.3 An example of initializing some quadruples . . . . . . . . . . . . . 45

3.4 Euclidean min-max full bottleneck Steiner tree instance . . . . . . 51

iii



3.5 Instance with two edges with same weight . . . . . . . . . . . . . 52

4.1 Optimal solution with Network Coding (NC) in a butterfly network 57

4.2 Optimal solution with Multicast (MC) in a butterfly network . . . 58

4.3 Throughput comparison between multicast and network coding . . 71

4.4 Statistical result of the number of trees for achieving optimal through-

put . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Average computing times (in seconds) for solving the various max-

imum throughput problems. . . . . . . . . . . . . . . . . . . . . . 73

4.6 The only 3 graphs with a non-zero gap (of 0.5) between NC and

MC throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Two 8 nodes graphs whit a 0.5 gap between uniform NC and MC

throughput maximum flows. . . . . . . . . . . . . . . . . . . . . . 76

5.1 Results of NCbase model on a double butterfly instance . . . . . . 85

5.2 A translation of the aggregated flow results of Figure 5.1 . . . . . 86

5.3 Transformation of a general graph . . . . . . . . . . . . . . . . . . 86

5.4 Butterfly Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Cyclic triple butterfly instance. . . . . . . . . . . . . . . . . . . . 91

5.6 Throughput gain in butterfly network by mixing a single multicast

tree and network coding . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 Throughput gain in butterfly network by mixing two multicast

trees and network coding . . . . . . . . . . . . . . . . . . . . . . . 93

5.8 Various combinations of throughput values obtained on instance

butterflyx2 1 when progressively reducing the share of multicast

traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 Optimal network coding flow in a random graph . . . . . . . . . . 94

5.10 Optimal single multicast tree in a random graph . . . . . . . . . . 95

5.11 Optimal strategic network coding in a random graph when (α = 0.5 96

5.12 Percentage of the maximum throughput for different routing strate-

gies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.13 Average maximum throughput in a random graph when the coding

nodes are limited . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.14 Throughput gain in random graphs by mixing a single multicast

tree and network coding . . . . . . . . . . . . . . . . . . . . . . . 99

5.15 Statistical results on the percentage of throughput compared to

network coding in a random graph . . . . . . . . . . . . . . . . . 99

iv



5.16 Throughput gain in random graphs by mixing two multicast trees

and network coding . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.17 Cumulative number of instances (% over 300 instances) as a func-

tion of the network coding reduction to keep the same throughput

and while using ONE multicast tree. . . . . . . . . . . . . . . . . 101

5.18 Cumulative number of instances (% over 300 instances) as a func-

tion of the network coding reduction to keep the same throughput

and while using TWO multicast trees. . . . . . . . . . . . . . . . 101

6.1 Infeasible instance of d-TP(1) . . . . . . . . . . . . . . . . . . . . 110

6.2 Infeasible instance of d-TP(2) . . . . . . . . . . . . . . . . . . . . 112

6.3 Transcription of a transportation problem . . . . . . . . . . . . . 114

6.4 Two instances of transportation problem . . . . . . . . . . . . . . 116

v



vi



List of Tables

1 Résultats sur des graphes aléatoires avec des capacités uniformes .

2 Maximisation de lécarts en débit entre MC et NC . . . . . . . . .

2.1 Addition in F22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Multiplication in F22 . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Statistical results in random graphs with uniform capacities . . . 74

4.2 Results for computation of maximum throughput gap . . . . . . . 76

5.1 Optimal throughput values obtained with modelsNCext1 andNCext2

on the butterflyx2 1 instance. . . . . . . . . . . . . . . . . . . . . . 90

5.2 Optimal throughput values obtained with modelsNCext1 andNCext2

on the butterflyx3 1 instance. . . . . . . . . . . . . . . . . . . . . . 92

5.3 Comparison of MC and FSTP solutions on series of 1000 randomly

generated instances. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vii



viii



Chapter 1

Introduction

The most beautiful thing we can experience is the mysterious. It is the source of all true

art and all science. He to whom this emotion is a stranger, who can no longer pause

to wonder and stand rapt in awe, is as good as dead: his eyes are closed.

-Albert Einstein (1879-1955)

1.1 Background

A
ccording to a white paper from Cisco [3], the global IP traffic will increase

threefold by 2016; especially, the growth of some particular traffic such as

Video-on-Demand (VoD), live Internet TV or on-line gaming, is expected to be

spectacular over the next five years. As a result, network operators will have to

make significant financial investments in order to increase network capacities to

satisfy the future demands with existing technologies. However, improving data

transmission techniques, such as finding better solutions to reduce the volume of

concurrent network traffic, or changing the data collision avoidance mechanisms,

appears to be a more rational and economical solution.

The most important characteristic of services like live Internet TV or on-line

gaming is that their data are always accessed simultaneously by a large amount

of Internet users. When these applications employ unicast or broadcast, which

are widely used in today’s telecommunication networks, a considerable amount

of duplicate network traffic has to be sent over networks, wasting a lot of network

1



resources. Unicast is the simplest and the most frequently used routing paradigm.

The transmission is set up between single source and terminal to exchange in-

formation. If multiple terminals require the same service from a single source,

multiple unicast sessions will be established at the same time, therefore the data

will be duplicated and transferred through the network. Broadcast is a routing

mode in which a network node copies the incoming information and forwards it to

all his neighbor nodes connected by a link or in an effective communication range

in a wireless network. It is usually called flooding technique. Although it guar-

antees the data will finally be delivered to every terminal, there will be a great

deal of information sent on the relevant nodes and the network resource might

exhaust. In order to reduce the data flow when running the network applications

that involve many users at the same time, a transmission mode called multicast

was initially introduced in late 1980s for the case when a single server expects

to communicate simultaneously with a set of clients. This routing scheme uses a

tree-based forwarding strategy. Compared to multiple independent paths tactic

for unicast, it can considerably reduce the redundancy during data transmission.

As such, multicast seems to be a viable alternative to unicast and broadcast for

the network applications with massive participants. Several practical implemen-

tations of the multicast paradigm have been proposed for the IP networks [1, 2].

However, very few multicast services have been deployed. At present, the trans-

missions for Internet services are still dominated by unicast. The complexity for

implementing multicast is high, and it is one of the main reasons that slows down

the application of multicast services. Owing to the rapid growth of the demands

on some applications, such as videoconferencing and massive on-line multiple

players gaming, both of which might benefit from efficient multicast schemes,

many Internet Service Providers (ISPs) start again to consider solutions based

on efficient multicast schemes.

Besides the real-time multicast-based applications, there are some other types of

contents, especially for Video-on-Demand, that are popular. These contents are

commonly classified as popular contents. The traffic generated by this popular

content also accounts for a significant part of the increasing global Internet traf-

fic according to the report from Cisco [3]. As opposed to live Internet TV, this

content is fetched frequently by many Internet users, but seldom at the same

time. For example, VoD systems allow the subscribers to watch/listen to video

or audio at any time they want. In addition, they may offer several versions

of video or audio in terms of various QoS in order to support the users under

different network conditions. Apparently, the multicast transmission mode is no

2



longer suitable for disseminating these contents based on the on-demand feature.

That is why unicast is still playing the leading role in data transmission. In order

to improve on-net content deliveries, an increasing number of Internet operators

have started to build a so-called Content Delivery Networks (CDNs). They are

a natural extension of distributed storage systems, which normally stores con-

tents with the highest popularity, for instance, web objects (e.g. social network),

download objects (e.g. software updates) and video/audio on servers which are

installed at the edge of networks. By reducing the content delivery distance so as

to improve transmission latency, these systems indeed help to reduce data traffic

in the core network.

Both multicast and distributed storage technologies have been extensively stud-

ied. In 2000, the birth of network coding brought fresh ideas and opportunities for

improving network performance, also including multicast and distributed storage

system. Originally, network coding was a technique that was introduced in the

field of coding and information theory, and it was first stated in [5]. Involving

algebraic geometry concepts in information theory, network coding is a generic

coding scheme which allows information mixing on the intermediate nodes in

packet networks at the transport or application layer. The network flow mixing

operation is often referred as encoding, and on the other hand, the mechanisms

involved in the retrieval of the original information are considered as decoding.

These operations fundamentally change the traditional store-and-forward rout-

ing scheme, and provide an alternative way of addressing data collision avoidance

issue. This change immediately brings its first benefit on multicast performance.

Authors in [5] claim that network coding is able to achieve the maximum net-

work capacity for single multicast data communication. In this dissertation, we

use the term Network capacity for the maximum throughput that a network can

achieve for all the potential terminals simultaneously. In addition, we will call

threshold this theoretical upper-bound on throughput achieved by network cod-

ing. Soon after the work by Ahlswede et al, it was proved in [65] that linear

coding is already sufficient to achieve this threshold. However, network coding

might still seem unrealistic, since it requires predetermined centralized and fixed

linear coefficients for large networks. The authors in [43] present a distributed

random linear network coding approach for multicast network, and they prove

that, with a well-chosen size of the fields, randomized codes can provide high

success probability for decoding in arbitrary networks. This approach was the

first to show the possibility of implementing network coding in practice.

3



Research in network coding has gained momentum in recent years. Subsequent

studies have looked at coding advantage in both wire line and wireless network.

The term Coding Advantage indicates the benefits, in terms of security, robust-

ness, reliability, and throughput, etc., that we could gain by using network coding

mechanisms. For the basic knowledge and the works of the other network coding

applications, we refer the reader to Chapter 2 which includes an overview of net-

work coding.

In this dissertation, we define the coding advantage, while referring to through-

put gain, by the ratio of network coding throughput to multicast throughput. Al-

though we already know that network coding achieves maximum network through-

put, the question of the effective gain to expect from network coding naturally

raises. Since 2005, the topic of characterizing throughput gap between network

coding and multicast has been extensively studied. The study in [46] initially

claimed that the ratio was unbounded theoretically in directed networks. Li et

al in [67] proved that the coding advantage was no more than 2 in undirected

graphs. In 2012, Yin et al in [87] showed that there is no throughput gain at all

in completely link balanced (or bidirected) networks. The first numerical exper-

iments are addressed in [86]; in this paper, six ISP networks are compared, and

none of them presented throughput gain by using network coding. Similar work,

in [66], examined random undirected network obtained the same outcome. How-

ever, there are some limitations in the evaluation schemes in the former studies,

which makes the judgment less convincing. They fail to find efficient algorithms

to compute the optimal throughput for Steiner packing tree problem. Instead,

they either employ approximation algorithms, which is suboptimal, or they choose

a brute-force algorithm, to enumerate all the possible multicast trees. That is

why they claim that their approach can only evaluate small size networks. In

spite of the existence of these limitations, the former research has still given a

few hints for further investigations. First, it implies that the throughput gain is

very sensitive to the structure of network topologies. Second, since the theoret-

ical results show a drastic contrast to the numerical evaluations, it may imply

that butterfly-like instances that display a throughput gap are very rare in real

networks.

Although the throughput gain in multicast network remains elusive, the nature

of network coding, in addition, alleviates computational complexity of computing

maximum multicast flow compared to current multicast routing scheme. Obvi-

ously, the full capacity of a network can generally not be fully exploited using

4



a single multicast tree. This is why some studies, e.g., [13], have investigated

the throughput achieved using multiple multicast tree transport protocol. From

now on and in the rest of the dissertation, the term Network Coding will refer

to multicast traffic using of network coding mechanisms. The term Multicast

will refer to standard multicast mechanisms (mainly packet replication). We call

the single multicast tree and multiple multicast tree protocols simply as single

multicast and multiple multicast, respectively. Without additional instruction,

multiple multicast will always indicate single session. One common method to

compute the optimal throughput for a particular routing strategy is to model

the corresponding network flow problem in optimization framework. To obtain

the maximum throughput and optimal routing scheme for multiple multicast, we

need to solve a Fractional Steiner Tree Packing problem [47], a well-known NP-

hard optimization problem. However, the equivalent optimization problem in the

case of network coding can be solved in polynomial time. Indeed, to compute the

maximum throughput achieved while using network coding, it suffices to run a

series of maximum-flow algorithms, one between the server and each client. The

maximum-flow problem is a standard problem in graph theory and there exists

many efficient algorithms for its resolution [28]. Several papers consider the costs

be associated with the use of network coding. For instance, a linear link-cost

can model costs associated with bandwidth use or energy consumption. Lun et

al in [70] have proposed a decentralized approach to compute the minimum-cost

multicast subgraphs for network coding. Note that, to achieve the same objective

with multicast, one requires a centralized and full knowledge of network topology.

For multicast services, network coding as an advanced technique allows the in-

termediate nodes to perform calculations. The additional functionalities require

software or hardware update at sources and terminals, as well as at intermediate

nodes. These changes may disturb other data traffic passing through the network.

Moreover, the algebraic operations, such as encoding and decoding, introduce

additional workload for network nodes. As a result, they introduce further data

processing. These negative effects brought by network coding may be concerns

for ISPs to apply this new technique. In view of above-mentioned reasons, some

studies have looked at that how to reduce the network coding interference on

existing network architectures. Lucani et al in [68] aim to limit the volume of

network coding flow in order to reduce the computational burden on the interme-

diate nodes. They propose a hybrid routing protocol as well as its optimization

framework, where network coding is only considered as multicast’s auxiliary in

data transmission. In this problem, the corresponding minimum cost Steiner tree

5



problem for uncoded network flows is still solved by using some suboptimal algo-

rithms as a separate subproblem. In [53] and [55], a Genetic Algorithm based on

algebraic framework is created to find the minimum possible number of coding

nodes achieving a given throughput and which aims to minimize the workload

for network update. The problem was claimed to be NP-hard. In this paper,

the authors find out that in general, a very small set of coding nodes is already

sufficient to provide the maximum throughput benefit.

Network coding not only brings coding advantages in multicast networks, but also

in wireless networks, optical networks, and storage systems. The second inter-

est in this dissertation focuses on the network coding application in distributed

storage systems. Indeed, in this application, network coding shows a possibility

to improve network performance beyond routing considerations. A recent paper

[4] studies a revised storage system that stores random linear coded information

of the original contents. A coded information packet consists of random linear

combinations of all chunks in one generation of an original content. The term

chunk denotes a fragment of information, which is equivalent to packet in this

dissertation. A generation indicates a group of chunks in sequence. When Inter-

net users visit this system to fetch some contents, they will receive some coded

information, the amount of which is equivalent or may be a little more than the

size of the original content. The users can then retrieve the original content by

decoding the corresponding coded information. In [4], it is shown that the re-

vised system maintains very high efficiency in data transmission. The meanings

of efficiency are twofold. One denotes that the transmission latency is low, the

other indicates that the successful probability of decoding the coded information

is high. The survey [20] claims that the distributed storage systems enhance sys-

tem’s reliability and save bandwidth in the inner routing for repairing collapsed

storage nodes by using network coding technique in both storage and routing

schemes. The authors in [27] point out that the demand of deploying CDNs

servers is decreased due to the fact that applying random linear codes reduces

the data access blocking probability in CDNs when multiple users want to access

one specific information, and as a result, the energy consumption will be reduced.

A study in [38] focuses on network coding applications in the storage allocation

for wireless video content delivery. It shows that network coded storage system

facilitates corresponding mathematical modeling and the corresponding storage

scheme provides better performance for file download. The authors in [62, 63, 64]

initialize some probability analysis to find the optimal allocation that provides

high reliability for Internet users to decode the coded information. However,

6



it would be interesting to study the mixed storage and routing problems in an

optimization framework, since it can be viewed as an extension of conventional

transportation problems.

1.2 Motivations and Contributions

Motivated by all these observations, we believe that it is still too early to as-

sert that traditional multicast can be systematically replaced by network cod-

ing. The initial theoretical claim of throughput benefit remains relatively elusive,

mainly because the multicast throughput maximization problem is difficult to

solve. Moreover, local gateways, such as the livebox used by France Télécom,

are not often capable of handling highly computational activities, so it must be

careful to install encoding and decoding activities on such machines. Therefore,

it is essential to revisit the concerning problems, and to weigh carefully the pros

and cons brought by network coding. Besides, different storage strategies may

have significant impact on related routing behavior, it is interesting to investigate

the routing problem in network coding based distributed storage systems.

In this dissertation, we reconsider the problem of evaluating coding advantage

in throughput gain within an optimization framework in Chapter 4. The math-

ematical models and algorithms to maximize multicast throughput we use and

propose are sufficient to solve efficiently the problem to optimality in medium size

or even larger random network topologies, except those ones with limited number

of multicast trees (for those problems, we use simple heuristic algorithms). We

confirm that, except in some contrived graphs, the coding advantage in multi-

cast transmission is relatively weak, even in directed graphs which is claimed to

have unbounded throughput gain. We perform an exhaustive search in a small

network to confirm that the arbitrary networks with throughput gap between

network coding and multicast, such as butterfly-like network, are so specific that

they almost never occur using random graph generation techniques. Yet, owing

to the fact that multicast almost always requires considerable amount of trees to

achieve high throughput, network coding will be a rational alternative under the

consideration of scalability of network management.

The algebraic operations when doing encoding and decoding bring extra time

consuming on nodes, which may delay information delivery in networks. From

7



the analysis in Chapter 4, we see that using multicast also has some limitations,

so we hope to design novel routing protocols, which could reduce negative ef-

fects in either network coding or multicast. In Chapter 5, we first consider the

problem of minimizing the number of coding nodes and evaluate the trade-off

of duplication and coding at nodes. In addition, we propose a hybrid routing

protocol, named strategic network coding, to reduce network coding flows by ag-

gregating a limited number of multicast trees. We evaluate all the corresponding

problems by solving them using optimization models. Our results indicate that

in random networks, only a small set of coding nodes are required for achieving

network capacity; the throughput gains of coding increase markedly with graph

density; information duplicate onto the outgoing links plays an important role in

throughput gain. We reveal that the introduction of a small volume of network

coding flow is already beneficial in increasing multicast throughput. However,

to achieve high throughput by using strategic network coding, a significant part

(about 30%, for the sparsest graphs up to 50% for denser graphs) of the traffic

must be processed by network coding, since limited number of multicast trees

cannot fully explore the network capacity.

Furthermore, we investigate a transportation problem in network coding based

distributed storage systems. In fact, coding scheme frees the importance of single

packet, and therefore, allows higher flexibility when storing information in the

system and accessing data by clients. Clients only need to receive an amount of

coded information of the same size as the original content to be able to decode

it. As a consequence, the new content placement policies change routing strategy

for content delivery, especially when the accesses on server nodes and/or client

nodes become the bottleneck. We extend our optimization model to a general

optimization problem, so-called transportation problem with degree constraints,

which has not been studied extensively, but that can be widely used in different

industrial fields, of course, telecommunication. Finally, we propose a reasonable

Lagrangian decomposition approach.

In summary, the main contribution of this dissertation is in providing mathemat-

ical models and algorithms for various multicast routing schemes, and clarifying

some network coding advantages from numerous numerical experimentations. We

present numerical tests and reveal that strategic network coding, a hybrid routing

protocol we propose, not only brings significant throughput gain, but also reduces

both network coding and multicast weakness. In addition, throughout the stud-

ies of network coding application in distributed storage system, we obtain some

8



preliminary theoretical results for degree constrained transportation problem.

1.3 Outline

The dissertation is organized as follows. In Chapter 2, we provide a brief overview

of network coding, multicast network, and distributed storage system, which give

fundamental knowledge to understand the rest of the dissertation. We introduce

the methodology in accordance with our research, including some reviews of basic

graph theory and optimization models in telecommunication.

The main body of this dissertation can be separated into two parts. The first

and also the main part embraces Chapters 3, 4 and 5. They focus on providing

efficient mathematical models and algorithms for solving maximum throughput

problem in different network setting, evaluating coding advantage, and designing

new routing strategies, respectively. The other part, Chapter 6, provides an in-

dependent preliminary study of routing scheduling problem with network coding

based distributed storage systems in wire line networks.

In Chapter 3, we provide efficient algorithms for solving maximum throughput

problem when using single multicast tree, in preparation serving for Chapter 4

which evaluates the throughput gain between network coding and different mul-

ticast routing settings. In Chapter 4, we revisit the problem concerning coding

advantage in terms of throughput gain. The optimization model to solve multi-

ple multicast trees problem is efficient enough to assess medium size (up to 300

links) network. We propose a simple heuristic algorithm to evaluate the through-

put gain obtained by limited number of trees. Based on the previous numerical

analysis, in Chapter 5, we evaluate the trade-off between the use of coding and

duplication at intermediate nodes. We design a novel strategic network coding

and introduce mathematical models in optimization framework. In Chapter 6,

we study a degree constrained transportation problem, which is suitable for mod-

eling static servers-clients routing scheduling problems in network coding based

distributed storage systems.

Finally, in Chapter 7, we summarize our work and suggest some potential exten-

sions to the current work presented in this dissertation.

9



10



Chapter 2

Overview of Network Coding

Everything should be made as simple as possible, but not simpler.

-Albert Einstein (1879-1955)

N
etwork coding is a novel step in coding theory where coding can occur within

a network. Therefore, it can be viewed as a distributed version of source

coding. The technique consists in going beyond simple store-and-forward, and

including encoding and decoding functions at the intermediate nodes. It was first

introduced and proposed in the year of 2000 in [5]. Research in network coding

has gained momentum is recent years.

Subsequent studies have looked at optimal codes, characterization of throughput

gains, etc. This dissertation does not intend to design network codes for specific

network applications, therefore we provide a comprehensive overview of network

coding, especially for linear network coding, and random linear coding. The next

chapters will not restate network coding mechanism but only apply the flow fea-

ture formed by network coding to build our network flow optimization problem.

This chapter also includes a few related works embracing wired and wireless net-

work.

11



2.1 What is Network Coding

In fixed network, on the transmission path from a source to a destination, an

intermediate node receives packets (or more generally, blocks) on incoming links

and forwards them on the outgoing links. Such store-and-forward behavior is

the norm in most modern networks. With network coding, an intermediate node

may instead combine several packets and transmit the resulting encoded packets.

The receiver may then retrieve the original information by decoding a sufficient

number of encoded packets. It has been shown that, while routing schemes, like

unicast, multicast and broadcast, may not always achieve the max-flow capac-

ity of a network, network coding schemes can achieve this capacity [5]. Indeed,

network coding increases throughput, for certain scenarios, such as multiple uni-

cast sessions and multicast sessions with the so-called butterfly topology shown

in Figure 2.1. This figure is an example of a multicast session with a source S

and two receivers E and F . The specific structure results in a gain of at least one

transmission unit (for a source-destination transmission of two packets) on the

link
−−→
CD where two packets a and b are combined into a⊕b (⊕ indicates encoding

and, in this case, can be implemented by a simple XOR). Note that each receiver

is able to decode the packet a ⊕ b ane recover bother packets a and b, since it

receives, through another path, another packet sufficient for decoding.

S

E F

A B

C

D

a b

a b

a
a⊕ b

b

a⊕ b a⊕ b

Figure 2.1: Butterfly Network

12



2.2 Coding and Decoding

The last example shows that the XOR coding scheme is already sufficient to

achieve capacity in such a small instance. But in principle, a network code may

be any arbitrary mapping, from a set of inputs to some outputs [41], applied at

each intermediate node. The goal of network coding is to give a specific set of

mappings which allows for the maximum possible transfer of information. It has

been shown that simple linear coding is sufficient [65] in order to derive through-

put benefit. Koetter and Médard in [59] gave an algebraic formulation of network

coding, greatly simplifying both the coding and decoding process. In linear net-

work coding, outgoing packets at a node are linear combinations of incoming

packets. The addition and multiplication in these combinations are performed

over a finite field, such as F2s . More details on finite fields will be given in the

next section.

Example 2.2.1. Consider a sequence of incoming packets at a node: y1, y2, y3.

On the outgoing link, the node may perform linear combinations of the sort:

x1 = α1y1 + α2y2 + α3y3, x2 = β1y1 + β2y2 + β3y3, x3 = γ1y1 + γ2y2 + γ3y3, and

transmit the encoded packets x1, x2, x3.

For combinations of m original packets, the receiver needs at least m encoded

packets to decode. More than m packets may be necessary if some combina-

tions are linearly dependent. In selecting linear combinations then, the encoder

must make sure they are linearly independent. However, determining what lin-

ear combinations each node must perform to ensure linear independence is quite

complex. Ho et al. in [43] extended this algebraic framework and introduced ran-

dom linear network coding, where coefficients are chosen at random at each node.

The main advantages of random linear coding are its ease of implementation and

its reliability. Random codes allow for a straightforward, distributed routing pro-

cedure: At each node where collisions occur, i.e., where the rate of incoming flows

exceeds the outgoing capacity, instead of waiting or being dropped, flows could

be combined with randomly chosen coefficients. Somewhat surprisingly, this pro-

cedure leads, with high probability, to a solution to the problem of information

transfer. In [43, Theorem 1], it is shown that the probability of successful decod-

ing process increases exponentially with the coding length l that is the logarithm

of the field size q = 2l. Precisely, the probability may be expressed in the form

13



1 − d
2l
, where d is a constant. This feature implies that with a field size large

enough, the probability of receiving linearly dependent combinations at terminals

is very low.

2.3 A Note on Finite Fields

In general, a field is an algebraic structure over which it is possible to perform the

usual arithmetic operations: addition, subtraction, multiplication, and division.

In addition to familiar examples, such as the real numbers R or the complex num-

bers C, there are also fields which have a finite number of elements. The simplest

of these finite fields, also called Galois fields, are realized as integer arithmetic

modulo a prime. Indeed, for any prime number p, the ring Z/pZ is, in fact, the

field with p elements.

For any integer ℓ, it can be shown that there exists a field of size pℓ, usually

denoted Fpℓ . When p = 2, the finite fields of order 2m are called binary fields or

characteristic-two finite fields. It has been widely used in computer science, since

it is suitable to scale values in bits. Generally, we apply a so-called polynomial

basis representation to construct F2m , which is constructed as follows:

F2m = {am−1z
m−1 + am−2z

m−2 + ·+ a2z
2 + a1z + a0 : ai ∈ {0, 1}}

Then, the arithmetic operations between elements in F2m could be treated as

polynomial arithmetic, and the arithmetic in coefficients must follow finite field

arithmetic operations as well.

Example 2.3.1. The elements of F22 are the 4 binary polynomials of degree at

most 1:

0 1 z z + 1

Addition and multiplication in F22 are displayed in Tables 2.1 and 2.2:

At this point, we can return to Example 2.2.1 to see how exactly random lin-

ear coding works over finite fields. We could think of y1, y2, y3 as a sequence of

symbols that consist of binary vectors of length ℓ. These symbols can also be

viewed as chunks of ℓ bits as a portion of an original content which is currently

transmitted across a network. When three different streams carry, respectively,

y1, y2, y3 packets arriving to a certain intermediate node v, we randomly choose

14



+ 0 1 z z + 1
0 0 1 z z + 1
1 1 0 z + 1 z
z z z + 1 0 1
z + 1 z + 1 z 1 0

Table 2.1: Addition in F22

× 0 1 z z + 1
0 0 0 0 0
1 0 1 z z + 1
z 0 z z + 1 1
z + 1 0 z + 1 1 z

Table 2.2: Multiplication in F22

a coding coefficient for each stream. For example, to form the outgoing stream

x1, for every yi, i = 1, 2, 3, we choose α1, α2, α3 from a uniform distribution of the

elements of F2ℓ . The linear combination x1 formed with these random coefficients

is then forwarded to every node which receives inputs from node v. It should be

noticed that according to [43, Theorem 1], when ℓ = 8, the successful decoding

probability is already very high.

2.4 Cost and Other Concerns

While gains in wired network from network coding seem promising, there are

several concerns concerning the use of Network Coding. Theoretical studies on

network coding [46, 67] show throughput gains in some specific scenarios, partic-

ularly, in multicast sessions and some specific multiple unicast sessions. However,

an important element of any gains is the topology of the network. Most studies

show gains on the butterfly topology shown in Figure 2.1. More generally, gains

can be obtained when there are multiple receivers (either of the same multicast

sessions or independent multicast or unicast sessions), several (perhaps indepen-

dent) paths from source to destination, and sessions that cross paths (have some

common links). Generally, a mesh topology would allow such structures. There

may be telecommunication operators who can find such topologies in their own

networks. It remains to be seen whether all the operators, in general, would find

such structures in their networks. On a national level, especially for those coun-

tries in Europe, it might be that the network follows more a star or tree topology,

15



which leaves little opportunity for the structure necessary for network coding

gains. On an international level, mesh structures may exist. However agreements

on what functions intermediate nodes are allowed to perform on packets must be

made. At the receiver, packets need to stored until a sufficient number have been

received so as to allow decoding. This implies not only delay in retrieving the

original information, but also high buffer requirements. Such buffer requirements

are necessary at intermediate nodes as well. In order to avoid wasting transmis-

sions with encoded packets that add linear dependency, intermediate nodes will

need to check for linear dependence. This involves checking the rank of the coef-

ficient matrix for each incoming packet. It is important to evaluate whether such

extended functionalities in intermediate nodes are negligible against the gain from

network coding. There may also be security issues in combining various packets

together. In order for buffer sizes and delay to be reasonable, packet combining

should be done by generations, where a generation is a sequence of packets. An

optimal generation size needs to be determined, and indicated on each packet.

Such information, along with information on coefficients used in a given encoded

packet, adds to the overhead of the scheme. To the best of our knowledge, this

problem has been considered by Sundararajan et al who have proposed a rational

network coding protocol which is built based on TCP [82]. This special net-

work coding protocol is named TCP/NC. This protocol is later implemented in

the OPNET Modeler by Ashutosh et al in [61]. In [54] , the authors introduce

Network Coded TCP (CTCP) which reduces network coding in a proxy in the

network.

In order to confirm whether throughput gain closely relies on network structure,

researchers in [66, 86] compared the performance between network coding and

conventional routing schemes in networks of real operators as well as random

generated graphs. They found out that the throughput gain is rare on such ran-

dom topologies. But instead of throughput gain, they pointed out that network

coding does help in reducing computational complexity for bandwidth allocation

problem and also on reducing the burden on network flow control. However, as

we have already discussed in Chapter 1, some limits on the methods applied in

these references make the question on throughput gain still elusive, and leave us

space for some improvements.

Concerning to the additional computational complexities coming along with en-

coding and decoding, there have been significant efforts made to tailor and adjust

network coding. Authors in [53] and [55] provide an algebraic framework to min-

16



imize the usage of coding nodes and achieve the same throughput. Lucani et al

in [68] suggest using network coding only as an auxiliary tool in some particular

network circumstance where coding is not easy to be performed, for instance, in

optical networks. Applying network coding over application-layer overlay mul-

ticast would be another remedial solution to eliminate the engineering concerns

on coding and decoding. Reference [66] first proposed this idea and provided an

information flow formulation for it. In overlay networks, coding and decoding are

only implemented in terminals, the communication between terminals, as usual,

is in accordance with End-to-End principle, so that we also protect the initial net-

work control philosophy. However, we deem that this method introduces more

cost and delay because a conversion from physical layer into application layer and

then back to physical layer in each terminal is necessary.

2.5 Other Applications

Although there has been some concerns in applying network coding, with some

appropriate adjustments, gains from network coding seem still promising for data

routing in wired network. Besides, network coding evolves fast in many other net-

work implementations and applications, both in wireline and wireless networks.

There are several scenarios that we broadly categorize as application-layer schemes

where network coding might provide gains. One such example is content distribu-

tion. In peer-to-peer (p2p) content distribution, the last rare block usually causes

delay in file transfer completion. With network coding, where blocks are encoded

together into many combinations, such rare blocks no longer exist. Avalanche

[36] is a scheme for content distribution of large files. Each node in the network

generates and transmits encoded blocks of the original file. The randomization

introduced by network coding in this case, has many benefits. Each node does

not need to keep track of which block it must send to which neighbor. Since

each node encodes before transmitting, the resulting combining packet will, with

a high probability, aid in decoding other blocks. Furthermore, the inherent re-

dundancy of information due to this scheme helps when nodes accidentally leave

the system - that is, node crashes or departures do not imply that rarest blocks

are missing. Microsoft has made claims of its use in software downloads, called

Microsoft Secure Content Distribution (MSCD).

Distributed storage system is another example where network coding might im-

17



prove performance. System reliability is one of the main issues addressed by

researchers and engineers in this application. Introducing redundancy and stor-

ing them across different storage is a common way to enhance system reliability.

Generally, the redundancy consists of either copies of original content or coded

information which is generated by using erasure coding technique. As well as

reliability improvement, studies in [4, 20] discovered new benefits in improving

system utilization and maintenance when using coded information and intra net-

work coding based routing in the system. Simulation results in [4] showed that

a random linear coded distributed storage system not only preserves the same

level of reliability as erasure codes do, but unlike erasure codes, which require to

store the whole coded information in the system, random linear coded informa-

tion could also be generated on the fly. As a natural extension of linear network

coding, coded information could also be recombined whenever necessary. As is

demonstrated in [20], such freedom is helpful in reducing bandwidth consumption

when a system needs to recover some failed storage nodes.

Figure 2.2: The graph is from [20]. It demonstrates a storage system applying
network coding to recover a failed node. The example use a (2,4) Erasure Code
to store the original content and to generate the redundancy, but we can use
random linear codes instead, and the repairing process still functions.

Beyond wired network applications, network coding may minimize energy con-

sumption and also reduce transmission delay in a wireless scenario, through fewer

transmissions. The wireless scenario naturally provides opportunities for network

coding. The wireless link is not a point-to-point link (even though it is treated as

such in current implementations); the broadcast nature of wireless transmission

can be exploited. The broadcast nature in fact creates information redundancy in

the environment, where many nodes may listen to transmissions, even those not

destined for them. A transmitting node can then combine packets known to be in

18



the ”environment” and thus decodable by the receiver. Several protocols which

take advantage of network coding have been proposed in the literature [11, 49, 50].

Among these protocols, reference [51] showed an intuitive example on the possible

network coding gain in wireless networks. As it is shown in Figure 2.3, in this

simple network with three nodes, there are two flows, one from node C to node

B and another in the opposite direction. Without network coding, 4 time units

are need to transmit 4 packets. With network coding, once the center node A

has packets x1 and x2, it only needs to transmit (broadcast) one packet, x1⊕ x2.

Since node B has packet x2 (it transmitted that packet), it can easily decode x1

from x1 ⊕ x2. Similarly, node A is able to recover x2. The same information is

thus transmitted in 3 time units instead of 4.

C A B
x1 x2

x1 ⊕ x2 x1 ⊕ x2

Figure 2.3: A wireless example

There are, however, several practical issues in the wireless scenario as well. A

wireless link undergoes fading and thus the transmission rate is varying. A coded

packet may need to be transmitted at a lower rate if the link to one of its receivers

suffers from fading. In the example of Figure 2, if the link between nodes A and B

is fading and thus has a lower rate than the link between nodes A and C, then the

transmission of the coded packet will be done on a lower rate. This implies not

only smaller throughput gains, but perhaps increased error probabilities owing to

the weaker link. In reality, wireless networks are more complex than this example,

and there is interference from other transmissions in the area. Interference may

cause bad reception at some receivers, and so needs to be taken into account

during the scheduling and coding functions. Regarding practical application,

Kim et al [56] analyze the performance of TCP/NC in lossy wireless networks

where they show a significant throughput gain.

2.6 Summary

Network coding indeed has huge potential benefit in extensive variety of network

implementations and applications. But single network coding solution satisfying

all networking problems does not exist. Network coding must be tailored and

adjusted with regard to the type of network, the network application demand

and all the other related concerns for specific use. On the other hand, The use

19



of network coding must consider the trade-off of benefit and the interference of

existing network architecture. This dissertation aims to clarify the practical ben-

efits of network coding and to provide some guidance in applying and designing

network coding routing systems that improve multicast service performance in

wired network.

20



Chapter 3

Algorithms for Finding

Unsplittable End-to-End

Throughput in Multicast

Network

The most incomprehensible thing about the universe is its comprehensibility.

-Albert Einstein (1879-1955)

3.1 Summary

M
ulticast protocols are very efficient mechanisms for sending a same content

simultaneously to several users in a telecommunication network. A multi-

cast distribution tree is featured in spanning some given terminals (if we consider

the source as a special terminal). Finding such a distribution tree in a network

is similar to find a Steiner tree in a graph which finds a minimum cost tree span-

ning some terminals [37]. If one considers maximizing the throughput in such a

tree, the related Steiner tree problem is called a bottleneck problem and becomes

polynomial. The algorithms running in polynomial time for Bottleneck Steiner

Tree (BST) problem have also been widely studied. The algorithms mainly rely

on the modified version of the algorithms for solving the Maximum Spanning

tree problem. As a natural extension of BST, we consider the Full Bottleneck

21



Steiner Tree (FBST) problem in which only a subset of terminals are required to

be the leaves of the multicast tree, and we create two algorithms for solving this

special problem. The algorithms apply modified versions of Dijkstra’s algorithm

and Kruskal’s algorithm as their core sub-algorithms. The running time of the

first one is O(|S|2|T |), where |S| and |T | denote the number of Steiner nodes

and terminals, respectively. Then we provide an alternative which improves the

complexity to O(|E| + |E| log |E|) where |E| represents the number of edges in

graphs. This algorithm only makes use of Kruskal’s algorithm as a core algorithm

which can be easily implemented.

3.2 Introduction

When the cost of expanding network capacity is considerably high, the rout-

ing schemes for data transmission may need to be revised in order to adapt to

the increasing data traffic. The performance of a given routing strategy can be

evaluated from several aspects, including the measurement of transmission de-

lay, network throughput or network reliability, security and robustness. In this

dissertation, we mainly focus on measuring network throughput gain. Network

throughput considers the amount of data traffic which a communication link or

network access can carry in bits per second. The maximum throughput on a spe-

cific communication link can be seen as the capacity of the given link. Under the

end-to-end principle, the amount of data traffic which a communication path or a

multicast tree can carry is denoted by so-called end-to-end network throughput.

It is often restricted by the minimum link capacity on the transmission routes.

In this context, the routing strategies have significant impact on the throughput

achievement. Routing strategies are the set of mechanisms that allow to decide

how data is transfered in telecommunication networks. Most of the traffic is still

point-to-point, i.e., between two clients, terminals or routers. However, with the

development of Web TV, video-conferences, distant learning and other live ap-

plications, the share of point-to-multipoint or multicast traffic [85], is becoming

more and more significant. This is the reason why multicast routing problems

have received much attention and been extensively studied. By replicating data

over several output links, multicast routing protocols allow to transfer the same

content simultaneous to several destinations and, as a result, avoids unnecessary

flow replication and save considerable amounts of bandwidth [60].

22



Designing ”optimal” multicast systems often requires to consider Steiner tree

problems, a special case of the spanning tree problem. Given an undirected

graph G = (V,E), a spanning tree is an acyclic subgraph spanning (containing)

all nodes in V . If there are some weight value we associated to the edges e ∈ E,

a minimum spanning tree, is a spanning tree of minimum weight. This problem

is one of the easiest graph problems. If the graph is only required to span a

subset of nodes, usually called terminals (T ⊆ V ), then the problem becomes the

Steiner tree problem and the nodes that are not terminals (i.e., in V \ T ) are

called Steiner nodes. This problem has been largely studied (see for instance [?])

and is known to be NP-hard in most cases. Several approximation algorithms

have been proposed, and G. Robin shows that, so far, the best performance ratio

of Steiner tree problem in graphs is 1.55 in [78]. In these problems, the objective

consists in minimizing the sum of edge weights and can thus be described as

min-sum problems. While designing a multicast tree, one important objective is

to use as little resources as possible. Hence, minimizing the number of edges, or

the sum of edge costs, required to span all servers and clients is a relevant Steiner

tree problem.

A metric often related to Quality of Service (QoS) is the ratio of flow over capac-

ity, congestion occurring when this ratio is close to 1. As a consequence, it is also

relevant to consider problems in which the capacity available in a tree for a mul-

ticast communication is as large as possible (given a set of available resources).

In this case, it is not the sum of weights or costs that should be minimized, but

rather the minimum edge capacity (to maximize). These problems can be seen as

min-max (or max-min) variants of the Steiner tree problem, also often known as

bottleneck problems. Although regular Steiner tree problems are difficult (most

of the time NP-hard), the bottleneck counterparts are usually polynomial prob-

lems. An algorithm in O(|E|) is proposed in [24] to solve the Bottleneck Steiner

Tree (BST) problem in its min-max version. Similarly, a linear time algorithm

for computing optimal bottleneck multicast tree in directed graphs is proposed in

[35]. A special case of BST, known as Full Bottleneck Steiner Tree (FBST) prob-

lem, consists in adding the requirement that, in the resulting tree, each terminal

node should be of degree one (leaf-nodes). An algorithm also in O(|E| log |E|) is

proposed in [15] to solve this problem. This algorithm is based on the assump-

tion that the input graph is complete and that the edge weights in the subgraph

induced by the Steiner nodes should be totally ordered (no two edges of the same

weight).

23



In this chapter, we summarize the bottleneck network flow problems, then we

investigate the bottleneck Steiner tree problems in relation with the throughput

maximization problem in multicast trees. The main contribution in this chapter

is that we provide two polynomial time algorithms on the full bottleneck Steiner

tree problem. These algorithms can be easily implemented, since they all make

use of the fundamental algorithms that solve simple path or tree network flow

problems as their core sub-algorithm.

The rest of this chapter is organized as follows. In Section 3.3, we summarize some

network flow problems and their bottleneck variants. We clarify the relationship

between the problems and the possible applications in multicast network. We

provide some important proof of the lemmas missing in the literature. In Section

3.4, some preliminary results concerning bottleneck problems are recalled. In

Section 3.5, an O(|S|2|T |) algorithm for FBST problem is proposed and in Sec-

tion 3.6, a less complex algorithm for FBST is proposed. Finally, we give some

conclusions in Section 3.8.

3.3 Bottleneck Network Flow Problems

The problems of finding the end-to-end throughput in a given network are of-

ten referred to as bottleneck versions of network flow problems. These problems

are often classified as combinatorial optimizations. For example, the bottleneck

shortest path problem [48] applies a modified version of Dijkstra shortest path

algorithm and finds a single widest path in a capacitated graph. Problems of this

kind are suitable, for instance, in the unsplittable unicast routing management.

Unsplittable unicast allows using single path to carry network flow. The maxi-

mum flow problem [28] involves looking at the maximum flow between a source

and a terminal when multiple paths are allowed. The problem is first introduced

as a military application, but then engineers applied it in telecommunication net-

works to find the maximum flow rate that can be sent from a source to a particular

terminal. Besides the single path and multiple paths scenarios, there are also a

generalization of these problems called k-splittable flow problem [9] which help to

find the best unicast routings with bounded paths. For multicast protocol, there

are also corresponding tree-based network flow problems which provide methods

for allocating single multicast tree [35], multiple trees [47], as well as a limited

number of trees. Some of the above-mentioned problems are easy to be solved in

polynomial time, but the others are NP -hard problems. Normally, there are two

24



common way for solving these problems: applying mathematical programming

skills, especially linear programming or integer programming to solve the corre-

sponding mathematical models; or designing algorithms based on graph theory.

Selecting an approach to solve one problem depends on the problem itself. There

are abundant efficient state-of-the-art algorithms in graph theory that solve fun-

damental network flow problems, for instance, shortest path problem, and max-

imum/minimum spanning tree problem. For those NP − hard problems, it is

popular to apply algorithms that proved good approximations or suboptimal so-

lutions instead of the optimal solution to reduce computational complexity. It

should be noted that, for different types of graphs, such as directed, undirected,

or bidirected graphs (the definition of the graphs is given in Section 3.3.1), the

methods for solving a particular problem may vary.

In the following, we introduce the network flow problems and corresponding al-

gorithms which are related to our research in this chapter. In addition, we define

the bottleneck problems which can be applied to the corresponding telecommu-

nication problem that finds the maximum throughput when single multicast tree

is used.

3.3.1 Notations

The graphs are classified according to whether the edges have orientation. G =

(V,E,C) denotes an undirected graph, which comprise a set of nodes V and a set

of edges E = {{i, j}|i, j ∈ V } in which {i, j} is an unordered pair of nodes with

respect to a particular edge. D = (V,A,C) denotes an directed graph, where A

represents a set of arcs A = {(i, j)|i, j ∈ V } in which (i, j) consists of ordered

pairs of nodes. It should be noted that, in graph theory, an oriented edge is

usually called an arc. The bidirected graphs B = (V,A,C) are special cases of

directed graph, in which there are two arcs in opposite directions between a pair

of nodes. Sometimes, we index the edges and arcs, and denote them by e ∈ E,

a ∈ A in this dissertation. The attributeW indicates a mapping which associates

a value we ≥ 0 to each edge e ∈ E or wa ≥ 0 to each arc a ∈ A. According to

the context, these values will be either considered as weights or as capacities. In

the set V , some nodes are considered as terminals which form a subset T ⊆ V .

The rest of the nodes that act as the intermediate nodes in telecommunication

networks are named Steiner nodes S = V \ T .

In undirected graphs, given a set of edges F ⊆ E, we denote V (F ) the set of

25



nodes induced by F . We denote V (v) the set of neighboors of v, that is the set of

nodes linked to v by an edge of E. As a result, S(v) indicates the set of Steiner

nodes which link to node v. A similar definition also applies to T (v). We denote

by E(v) the set of edges with one ending node at v. Especially, we name the

set of edges that have only one end at nodes t ∈ T the terminal-Steiner edges

and denote them by E(T ). Assume that some edges are subtracted from some

edges from G, there are m disconnected components in a set of subgraph, they

are denoted by Gi, i = 1, 2, . . . ,m. It is obvious that these components satisfy

the simple conditions as follows:

Vi∩Vj = ∅, Ei∩Ej = ∅ if Gi = (Vi, Ei), Gj = (Vj, Ej) and i 6= j, i, j ∈ {1, 2, . . .m}.

Moreover, for any subset of nodes W ⊂ V , we denote δ−(W ) and δ+(W ) the set

of arcs leaving and entering W in the graph G, respectively. For a given subset

of edges F ⊂ E, we will sometimes use the compact notation w(F ) instead of
∑

e∈F we. We denote by dG(v), or simply d(v), the degree (number of adjacent

nodes) of node v in the graph G. Similarly, dF (v) will denote the degree of v in

a subgraph F of G.

We also use the standard graph notations for cuts in graphs: if S is a non-empty

subset of V , then δ(S) denotes the set of edges between S and S = V \ S. For

two subsets of vertices S1 and S2 (not necessarily disjoint), we will also denote

E(S1, S2) the set of edges between the two subsets:

E(S1, S2) = {uv ∈ E : u ∈ S1, v ∈ S2}.

Hence δ(S) = E(S, S). We denote E(S), instead of E(S, S), the set of edges

between nodes of S and by G(S) the subgraph of G induced by the set of nodes

S, i.e., G(S) = (S,E(S)).

3.3.2 Path Problems

Shortest Path Problem

In a directed graph D, a path is a walk traversing a set of nodes following the

directions of corresponding arcs and without any repetition of nodes. A s−t path

is a path between the node s (the source) and t (the terminal). We denote P(s, t)

the set of all possible paths between s and t. The shortest s− t path problem is

to find a s− t path in which the sum of the edges’ weights is minimized. This is

26



a classical combinatorial problem which has been widely studied [6]. The s − t

shortest path problem has the following formulation:

minimize
∑

(i,j)∈A

w(i,j)x(i,j) (3.1)

s.t.
∑

{j:(i,j)∈A}

x(i,j) −
∑

{j:(j,i)∈A}

x(j,i) = bi i ∈ V, (3.2)

bs = 1, bt = −1, (3.3)

bi = 0, i 6= s, t (3.4)

x(i,j) ∈ {0, 1}, ∀(i, j) ∈ A (3.5)

where the binary variables x(i,j), (i, j) ∈ A in constraints (3.5) indicate whether

the arcs are being used. When the constraints (3.5) are relaxed, the constraint sets

of the problem can be transformed into the canonical form of linear programming

Ax = b, where b is a column vector of integer values that correspond to the

right-hand side in constraint sets (3.2), and the matrix A is composed of 1,0,-1

corresponding to the coefficients of the variables in (3.2). It is stated in [14]

that in the minimum cost network flow problem (MCNF), the matrix A in this

problem is Totally Unimodular (TU), in which each subdeterminant of A is 0,

+1, or 1. The property of TU is given in Theorem 3.3.1. According to Theorem

3.3.2 and Corollary 3.3.1, we can find an integer optimal solution, when we solve

the LP relaxation formulation, hence the solution is also the optimal solution of

the original integer programming problem. Hence, the shortest path problem is

polynomial time solvable.

Theorem 3.3.1 ([81]). A matrix A is totally unimodular if and only if each

collection R of rows of A can be partitioned into classes R1 and R2 such that the

sum of the rows in R1, minus the sum of the rows in R2, is a vector with entries

0,±1 only.

Theorem 3.3.2 ([80]). Let A be a totally unimodular m × n matrix and let

b ∈ Z
m. Then the polyhedron

P := {x | Ax ≤ b} (3.6)

is integer.

Corollary 3.3.1 ([80]). Let A be a totally unimodular matrix and let b, c be

integral vectors. Then both problems in the LP-duality equality

max{cTx : Ax ≤ b} = min{yT b : y ≥ 0andyA = c} (3.7)

27



ave integral optimal solutions.

Many algorithms have been proposed to solve the shortest path problem. Di-

jkstra’s algorithm is the most famous one that solves the problems in graphs

associated with non-negative weights. It often arises as a sub-algorithm of the

algorithms for solving other network problems. In this chapter, we apply a mod-

ified version of Dijkstra’s algorithm to find the bottleneck multicast tree and use

it as a sub-algorithm in full bottleneck Steiner tree problems.

Dijkstra’s algorithm is a greedy process, which, in fact, can find a sequence of

shortest paths between a single source and all the other nodes in the graph. How-

ever, it may take longer time to find all s−t paths where t ∈ T than only one s−t

path required by the original shortest path problem, since the algorithm has to

traverse all nodes in the graph. On the contrary, finding a specific s− t shortest

path will terminate the algorithm once the terminal t is reached. The construc-

tion of the shortest path between s and a particular node can be rebuilt from the

information given in the so-called distance labels that are being updated during

the implementation of the algorithm. A distance label is a 2 − tuple containing

two attributes and it is assigned to each node. The first element in the tuple,

denoted by φ(v), indicates the optimal length of the path between s and node

v. It should be noticed that the distance label of one specific node is not global

optimal until the algorithm stops. In order to construct the paths according to

the optimal labels, the second element in the tuple, denoted by ρ(v), records the

predecessor of node v, where the path comes from. Since the paths never form

cycles, Dijkstra’s algorithm indeed explores a shortest path spanning tree which

is rooted at s in a directed graph.

In undirected graph, we can apply Dijkstra’s algorithm on a complete bidirected

graph that is converted from the original undirected one. A complete bidirected

graph is a bidirected graph with the same weights on the arcs in opposite direc-

tions.

Assume that Q contains a set of nodes, and for a given node v, the distance label

(φ(v), ρ(s)). The version of Dijkstra’s Algorithm in [77] is shown in Algorithm

3.3.2.1.

The running time of the algorithm is O(|V |2). Fredman and Tarjan in [31] apply

a Fibonacci heap and improve the efficiency of the algorithm performance, which

28



Algorithm 3.3.2.1 : Dijkstra’s Algorithm

Input: Q := {s}; φ(s) = 0; ρ(s) = s; φ(i) =∞; ρ(i) := null; ∀i ∈ V, i 6= s;
Output: A shortest paths spanning tree;
1. while Q 6= ∅ do
2. i = argminj∈Q φ(j);Q = Q \ {i};
3. for each outgoing arc a(i,j) do
4. if φ(j) > φ(i) + w(i,j) then
5. φ(j) := φ(i) + w(i,j); ρ(j) := i;
6. add j to Q if it does not already belong to Q;
7. end if
8. end for
9. end while

reduces the running time to O(|A|+ |V | log |V |), where |A| represents the number

of edges, and |V | denotes the number of nodes.

Bottleneck Path Problem

The s − t bottleneck path problem aims to search a path between s and t

in which the minimum/maximum weight of the edges or arcs is being maxi-

mized/minimized. In undirected graphs, two bottleneck path problems can be

defined using either min-max or max-min criteria:

BP⇃↾(s, t) : min
p∈P(s,t)

max
e∈p

we (3.8)

BP↿⇂(s, t) : max
p∈P(s,t)

min
e∈p

we. (3.9)

It should be noticed that, without additional motification, the formulations for

defining problems in undirected and directed graphs can be converted easily by

replacing e/a to a/e. The shortest path problem and bottleneck path problem are

highly related, but the bottleneck path problems are easier to be solved. For the

undirected graph scenarios, the authors in [48] give a linear time O(|E|) algorithm

to solve bottleneck path problems (3.8). For the directed graph scenarios, a

modified version of Dijkstra’s algorithm is sufficient to find the bottleneck paths

between s and all the other nodes in a given graph. The modified algorithm is

given in [35], it only changes initializations of the distance labels, and the way

for updating the distance labels. Algorithm 3.3.2.2 still runs at O(|V |2). The

authors of [35] propose an improved implementation of the modified Dijkstra’s

algorithm using the presorted weights. They prove that the bottleneck path

problem is linear time solvable; the running time of the updated algorithm is

O(T (m)), where T (m) is the time complexity of the algorithm used to sort the

29



Algorithm 3.3.2.2 : Modified Dijkstra’s Algorithm

Input: Q := {s}; φ(s) =∞; ρ(s) = s; φ(i) = 0; ρ(i) := null; ∀i ∈ V, i 6= s;
Output: A shortest paths spanning tree;
1. while Q 6= ∅ do
2. i = argminj∈Q φ(j);Q = Q \ {i};
3. for each outgoing arc a(i,j) do
4. if φ(j) < max{φ(i), w(i,j)} then
5. φ(j) := max{φ(i), w(i,j); ρ(j) := i;
6. add j to Q if it does not already belong to Q;
7. end if
8. end for
9. end while

weighted arcs.

3.3.3 Spanning tree problems

Minimum/Maximum Spanning Tree Problem

A tree is an acyclic connected subgraph. Given a subset of nodes S ⊆ V , a tree

is said to span S if the tree contains all nodes of S (each node of S is adjacent

to at least one edge of the tree). We denote by T (S) the set of trees spanning S.

When S = V , a tree in T (V ), or T for short, is simply called a spanning tree. In

the minimum spanning tree problem, the total weight of the spanning tree must

be minimized:

MT↓ : min
t∈T

sum
e∈t

we. (3.10)

The minimum/maximum spanning tree problem in a directed graph has to be

redefined, and it will be defined in the section describing the bottleneck vari-

ants. There are two algorithms that are usually quoted and used for solving the

minimum and maximum spanning tree problem, Prim’s algorithm and Kruskal’s

algorithm, respectively. Since the algorithm which we create to solve the full bot-

tleneck Steiner tree problem, is inspired and built upon Kruskal’s algorithm, we

focus on the detail of Kruskal’s algorithm in this section. This algorithm starts

by sorting the weights of edges in a non-decreasing order. Then the edges are

picked up in the non-decreasing order until all the nodes are connected. In order

to avoid cycles in the final subgraph, an edge will not be chosen when it causes

cycles.

Assume that there are |E| = m edges, and after sorting the edges, the weights

of which are denoted by we1 ≤ we2 ≤ . . . wem . In the algorithm, we use the

30



set Ep to keep track of the edges being picked up during the implementation of

the algorithm, and it is initially set to ∅. Kruskal’s algorithm [18] is shown in

Algorithm 3.3.3.1.

Algorithm 3.3.3.1 : Kruskal’s Algorithm

Input: k := 1;Ep = ∅;
Output: A minimum spanning tree;
1. while G = (V,Ep) is not a connected graph do
2. let ek = e(i,j);
3. if i and j is not connected in G = (V,Ep) then
4. add e(i,j) to Ep;
5. end if
6. k := k + 1
7. end while

The running time of the algorithm is O(|E| log |V |) with simple data structure

[81]. It should be noticed that the algorithm is also suitable for negative weight

graphs, so it is easy to adapt the algorithms solving MT↓ to the maximum weight

spanning tree problem, which is defined as follows:

MT↑ : max
t∈T

sum
e∈t

we. (3.11)

We denote respectively by T ↑ and T ↓ the set of minimum and maximum spanning

trees in G.

Bottleneck Spanning Tree Problems

The min-max and max-min counterparts of these spanning tree problems define

two families of bottleneck problems in undirected graphs:

BT⇃↾ : min
t∈T

max
e∈t

we, (3.12)

BT↿⇂ : max
t∈T

min
e∈t

we. (3.13)

We denote respectively by T ⇃↾ and T ↿⇂ the corresponding sets of bottleneck span-

ning tree with min-max and max-min criteria.

Solving the bottleneck spanning tree problem in undirected graphs is not harder

than finding a minimum/maximum spanning tree according to Lemma 3.3.1.

Applying Prim’s algorithm or Kruskal’s algorithm not only helps to find the

31



minimum/maximum spanning tree, but also solves the problem of the bottleneck

version.

Lemma 3.3.1. T ↓ ⊆ T ⇃↾ and T ↑ ⊆ T ↿⇂.

Proof. Both results are equivalent. We prove the first one: suppose that t1 ∈

T ↓, t1 /∈ T ⇃↾. Denote w1 the maximum edge weight in t1 and w⇃↾ the maximum

edge weight in any bottleneck tree. By assumption, we have that w1 > w⇃↾.

Consider an edge e1 ∈ t1 of weight w1 and an edge e2 /∈ t1 of weight w⇃↾. Then

the tree t1 \ {e1} ∪ {e2} is a spanning tree with a total weight strictly lower than

w(t1). It contradicts the fact that t1 ∈ T
↓, hence T ↓ ⊆ T ⇃↾.

As an immediate consequence, any path p∗st in a maximum spanning tree is also

a bottleneck path in BP ↿⇂.

In directed graphs, spanning trees have to be redefined. The directed spanning

tree includes a single root, and some directed paths originated at the root and

ended at the other nodes in the graph. These two properties guarantee the bot-

tleneck tree we found can be used as a multicast tree when the directed graph is

considered as a model for a telecommunication network. As a result, the max-min

bottleneck spanning tree can be used to evaluate the best end-to-end throughput

when a source multicast information is sent to all nodes in the network (except

itself) and when the network flow is unsplittable. An unsplittable multicast al-

lows single multicast tree to carry network flow.

Solving the bottleneck spanning tree problem is as easy as minimum spanning

tree. We will now illustrate how to solve this problem in its max-min version. The

same argument can be easily adapted to the min-max version. In the bottleneck

spanning tree for a given directed graph, the paths which include the bottleneck

arc(s) are the bottleneck paths between the source and the nodes behind the

bottleneck on those paths. And the bottlenecks between the source and the

other nodes that lie on the paths exclusive of the bottleneck arc(s) are larger

than the weight of the bottleneck arc(s). It implies that finding a sequence of

bottleneck paths could also acquire a bottleneck spanning tree with the same

optimal bottleneck value, though the tree may not always be the same as the

one found by other algorithms. Hence, the bottleneck spanning tree problem in

directed graph can be solved by using existing Algorithm 3.3.2.2 that solves the

bottleneck path problem.

32



3.3.4 Steiner Tree Problems

Minimum Steiner Tree Problem

A Steiner tree is simply a minimum weight tree spanning a subset of nodes T ⊆ V

and T = {s, tk|k = 1, 2, . . . , k} (called terminals). The problem to find the

optimal Steiner tree is called Steiner tree problem. It has been widely studied.

Different versions of Steiner tree problem has emerged. In this dissertation, we

focus on the Steiner tree problem in graphs, since it is a problem that is highly

related to our multicast network applications. We denote the objective of this

problem as follows:

ST↓ : min
t∈T (T )

sum
e∈t

we. (3.14)

We assume that there is one special terminal, called source, such that on one tree,

there is always a path between the source s and each terminal. But the paths

between source s and the other terminals are not independent. They usually

share some common arcs. One set of path constraints in (3.2) is used to guarantee

the connectivity between a source and one terminal through a path. There are

k = |T | − 1 such path constraints promising the connectivities among terminals

throughout several (s, tk) paths. In the literature, they are often called degree

conservation constraints or flow conservation constraints. But, in our case, they

are dummy or virtual flows, since these constraints are only used to indicate the

connectivities among nodes. The dummy flow variable on each arc is denoted

by rka. The relationship between the dummy flows and the real usage of the arcs

to build the Steiner tree is given in the set of constraints (3.16). The binary

variables xa, a ∈ A are the arcs’ indicators. When xa = 1, it denotes that the

corresponding arc is being chosen. One possible mathematical formulations for

the Steiner tree problem is given [37] as follows:

minimize
∑

a∈A

waxa, (3.15)

s.t. xa ≥ rka, ∀a ∈ A, k = tk, (3.16)
∑

a∈δ−(v)

rka −
∑

a∈δ+(v)

rka = bkv(1), ∀v ∈ V, k = tk, (3.17)

rka ≥ 0, xa ∈ {0, 1} ∀a ∈ A, k = tk (3.18)

33



where the constants bkv are defined as:

bkv(x) =







−x if v = s

x if v = tk

0 otherwise

(3.19)

It should be noticed that this formulation is based on directed graphs, but it can

be easily adapted to undirected and bidirected instances.

The Steiner tree problem is known to be NP-hard in most cases. But if |T | = 2,

the problem reduces to shortest path problem, and if |T | = |V |, the problem

becomes the minimum spanning tree problem. These are the only two known

scenarios that can be solved in polynomial time. Different formulations have

emerged and a comprehensive survey on this problem can be found in [37]. More-

over, as we mention in Section 3.2, several approximation algorithms have been

proposed. The problem in which the total weight of the tree is maximized, which

has less meaning in real problem applications, has been much less studied:

ST↑ : max
t∈T (T )

sum
e∈t

we (3.20)

The set of minimum and maximum Steiner tree spanning T are denoted by T ↓(T )

and T ↑(T ), respectively.

Bottleneck Steiner Tree Problem

We consider the alternatives of the Steiner tree problem obtained by changing

the min-sum and max-sum objectives into min-max and max-min, then we obtain

the two variants of Steiner bottleneck problems:

BST⇃↾ : min
t∈T (T )

max
e∈t

we (3.21)

BST↿⇂ : max
t∈T (T )

min
e∈t

we (3.22)

We call T ⇃↾(T ) and T ↿⇂(T ) the set of min-max and max-min bottleneck Steiner

trees, respectively.

When we restrict our attention to the max-min problem 3.22, and in addition,

we assume that the weights in graphs are considered as the capacities in telecom-

munication network, solving this problem is equivalent to find the end-to-end

34



throughput in single multicast tree protocol. Compared to the bottleneck span-

ning tree problem, the bottleneck Steiner tree problem is more rational in model-

ing multicast service, since multicast is often characterized by sending flow from

source to a set of nodes but not all the nodes.

In undirected graphs, the authors in [24] propose an O(m) algorithm for the

Bottleneck Steiner Tree BST⇃↾ problem . The most time consuming subrou-

tine in this algorithm is the computation of a maximal forest. A forest in a

graph is a disjoint union of trees. As a consequence, this algorithm runs in

O(m + n log n). In [16], the author propose a very simple alternative to solve

BST⇃↾ in O(min{n2,m log logm} time. This algorithm runs in two successive

steps: first, a maximum spanning tree is computed (over the whole graph G).

Then, the Steiner nodes (the ones that are not terminals) are scanned in cyclic

fashion and removed each time their degree (in the remaining tree) is equal to one:

Algorithm 3.3.4.1 : BST

Input: A weighted undirected graph G = (V,E,w) and a set T ⊆ V of terminals;
Output: A bottleneck Steiner tree t ∈ T ⇃↾(T );
1. Compute a maximum spanning tree t ∈ T ↑ in G;
2. Remove iteratively from t the degree one nodes in V \ T (Steiner nodes);

The correctness of the approach is given in the following Lemma 3.3.2.

Lemma 3.3.2. Consider t∗ ∈ T ↑ (a maximum spanning tree) and denote t∗(T )

the subtree of t∗ spanning the set of terminals T ⊆ V . Then t∗(T ) ∈ T ↿⇂(T ) (in

other words, t∗(T ) is a -maxmin- bottleneck Steiner tree).

Proof. First note that t∗(T ) is a tree spanning T , i.e., t∗(T ) ∈ T (T ). It follows

that:

min
e∈t∗(T )

we ≤ max
t∈T (T )

min
e∈t

we. (3.23)

Consider an edge e∗ ∈ t∗(T ) where the minimum weight over t∗(T ) is reached:

we∗ = min
e∈t∗(T )

we. (3.24)

Denote V = V1⊕ V2 the partition of V into two subsets obtained when removing

the edge e∗ from the spanning tree t∗. If we denote E(V1, V2) the cut in the graph

between V1 and V2, we have:

w∗
e = max

e∈E(V1,V2)
we, (3.25)

35



because, otherwise, we could replace e∗ by the edge where the maximum is reached

and obtain a spanning tree of greater weight than t∗ (cut property).

Denote T1 = V1 ∩ T and T2 = V2 ∩ T . By construction (e∗ belongs to t∗(T )), we

have T1 6= ∅ and T2 6= ∅. Every tree spanning T must connect T1 with T2 and

hence use at least one edge of the cut E(V1, V2). It follows that, for each tree

t ∈ T (T ), we have:

min
e∈t

we ≤ max
e∈E(V1,V2)

we = w∗
e . (3.26)

This is hence also true for a bottleneck tree:

max
t∈T (T )

min
e∈t

we ≤ w∗
e . (3.27)

By (3.23) and (3.24) , we hence have:

max
t∈T (T )

min
e∈t

we = w∗
e , (3.28)

which proves the lemma.

Combining the second step from Algorithm 3.3.4 with Algorithm 3.3.2.2, we can

also solve the BST in directed graphs. The complexity of the corresponding

algorithm will remain the same as Algorithm 3.3.2.2.

3.3.5 Full Steiner tree problems

With an additional constraint on each terminal as we defined in the previous

section, a Steiner tree is said to be full Steiner, if all terminals (v ∈ T ) are leaves

of the tree (or equivalently, degree one nodes in the tree). If we denote by T◦(T )

the set of trees t spanning T and such that dT (v) = 1, for all v ∈ T , then all

Steiner tree problems can be transformed into full Steiner tree problems. For

instance, the full Steiner tree problem can be described as:

FST↓ : min
t∈T◦(T )

sum
e∈t

we. (3.29)

In this paper, we are interested in the full bottleneck Steiner tree problem:

FBST⇃↾ : min
t∈T◦(T )

max
e∈t

we, (3.30)

FBST↿⇂ : max
t∈T◦(T )

min
e∈t

we, (3.31)

36



We denote T ⇃↾
◦ (T ) and T ↿⇂

◦ (T ) the set of min-max and max-min full bottleneck

Steiner trees, respectively. As stated in the introduction in this chapter, the prob-

lem has not been widely studied, and there is only one state-of-the-art algorithm

for solving the full bottleneck Steiner tree problem in undirected graphs, but it

only works for some special instances. In the following sections, we provide dif-

ferent algorithms to handle this problem in either undirected or directed graphs.

Before introducing our algorithms, we will show some preliminary results that

may be helpful in describing the oncoming algorithms.

3.4 Preliminary results

In this Section, we recall some simple results (mostly without proofs) concerning

the various problems considered. These results will be used in the following Sec-

tions.

First of all, in the problem concerned with spanning trees (trees spanning the

whole graph), the weight vector can be translated without changing the optimal

solutions.

Lemma 3.4.1. Given any real value ∆, if t∗ is an optimal solution of MT ↓ or

MT ↑ in the graph G with weights (we)e∈E, then it is also a solution of the same

problem in the graph G with weights (we +∆)e∈E. The optimal value is grown by

the quantity ∆(|V | − 1).

An even stronger result holds for bottleneck problems, since it is only the order

on the edges induced by the weights that matters.

Lemma 3.4.2. Consider any mapping σ : E → E such that, for any (e, e′) ∈ E2,

if we < we′, then σ(we) < σ(we′). If t∗ is an optimal solution of a bottleneck

problem in the graph G with weights (we)e∈E, then it is also a solution of the

same problem in the graph G with weights (σ(we))e∈E. The optimal value w∗

becomes σ(w∗).

Similar results are obtained when weights or the order induced by weights is

reversed. In this case, the optimal solutions are changed into solutions of the

”reversed” problem (where max and min are exchanged). For instance:

Lemma 3.4.3. If t∗ is an optimal solution of MT ↓ in the graph G with weights

(we)e∈E, then it is also a solution of the problem MT ↑ in the graph G with weights

(−we)e∈E.

37



Another interesting (although straightforward) result states that a bottleneck

problem is unchanged if edges with sufficiently small or large weight are added

to the graph.

Lemma 3.4.4. Consider a weighted graph G = (V,E,w) where wmin and wmax

denote the smallest and largest weights.

1. If t∗ is an optimal solution of BT ⇃↾ in the graph G, then it is also a solution

in the extended (complete) graph H = K|V | where each additional edge has

the weight wmax + 1.

2. If t∗ is an optimal solution of BT ↿⇂ in the graph G, then it is also a solution

in the extended (complete) graph H = K|V | where each additional edge has

the weight wmin − 1.

3.5 An O(|S|2|T |) Algorithm for the Bottleneck

Full Steiner Tree Problem in an Undirected

Graph

In a multicast network, it is very often the case that the client of the service

(in the Steiner tree context, the terminals) are end-nodes of the network (access

nodes). As such, they only act as receivers and do not forward the traffic further

to other nodes. Using Steiner trees to model a multicast network, it would hence

be necessary to add the constraint that the terminals should be leaf-nodes of the

tree. The full bottleneck Steiner tree problem seems hence a good candidate to

model multicast networks. A O(|E| log |E|) algorithm was proposed in [15] for

the min-max version FBST↿⇂. The proof of correctness of this algorithm requires

some assumptions on the graph: the weights must be all strictly different and the

graph should be complete.

In this section, we present an algorithm which can be applied to general network

topologies, in other words, our algorithm does not require the two specific as-

sumptions anymore. In order to fit the algorithm with our need in the context of

multicast networks, we adapt the algorithm and all related results to the max-min

case: indeed, our concern in multicast network, is to maximize the end-to-end

throughput, and hence to maximize the bottleneck edge (the edge with minimum

capacity).

38



3.5.1 Feasibility of the instances

First, we should note that any instance of weighted graph is not necessarily

feasible for any kind of Full Steiner Tree (FST) problem. The instance depicted

in Figure 3.1 is a simple example of graph that does not contain any FST.

t1

t2

t4

t3

v1 v2

v3 v4

:Terminal nodes :Steiner nodes

Figure 3.1: Infeasible instance for a Full Steiner Tree Problem

The infeasibility can be assessed by a simple observation: consider the node cut

{t2, t3}. The graph obtained when removing these two terminals contains two

connected components, each one containing one other terminal. Since the Steiner

tree must connect all terminals, at least one of the nodes of the cut must be used

to connect both components, and as a consequence, at least one terminal must

be of degree more than one. This property can be generalized:

Theorem 3.5.1. A graph G does not admit full Steiner tree if there exists a vertex

cut set C ⊂ T , such that, at least two connected components of the resulting graph,

each one containing at least one terminal.

Proof. If there exists such a vertex cut, call V1 and V2 the two connected com-

ponents in G \ C and assume Vi contains tk, for k = 1, 2. Then, to obtain a

Steiner tree in the original graph, there must exist a path between t1 and t2. By

construction, this path must necessarily go through one node t ∈ C. As a result,

at least one terminal t ∈ C cannot be of degree one.

This condition is difficult to be applied in practice because it is based on a com-

binatorial number of cuts. When the size of the graph grows, the set of node

39



cuts increase exponentially, but there indeed exists the polynomial time bounded

algorithm for checking the feasibility on a given graph. We will present a reason-

able one after making some necessary analysis on the graph.

3.5.2 An Polynomial Time algorithm for Examining Fea-

sibility

Given an undirected graph G, we first tailor it to a so-called tight graph. A tight

graph is a graph that does not contain any degree-one Steiner nodes. A degree-

one Steiner node indicates there is only one link attached to the corresponding

Steiner node. The tailoring process can be done by pruning iteratively the degree-

one Steiner nodes v ∈ S from the original graph G. For the full Steiner tree

problem, the tailor operation does not influence the final solution, but it can help

avoid unnecessary operations during the analysis and the implementation of the

corresponding algorithms.

Lemma 3.5.1. The degree-one Steiner nodes in the original graph are redundant

nodes to build a full Steiner tree.

Proof. Assume that there exists a full Steiner tree T◦(T ) where dT (tk) = 1, the

Steiner nodes v ∈ S in this tree always belong to at least one terminal path. A

terminal path is a path that has two terminal nodes as the end nodes of the path.

It indicates that in a given graph G, the Steiner nodes which lie on such paths are

effective candidates for building a full Steiner tree. On the contrary, if a Steiner

node lies only on a path that has only one terminal node as the end node or has

no terminal nodes as the end nodes, they will eventually be delete when the full

Steiner tree is found. The degree-one Steiner nodes are indeed these kinds of

nodes and can be easily found in graph G.

After pruning the degree-one Steiner nodes from G, we subtract all the terminal-

Steiner edges from the tight graph G and examine the feature of the subgraphs of

G. A terminal-Steiner edge is an edge that directly links one terminal node and

one Steiner node. We still use G to represent the tight graph, since the original

graph and the tight graph produce the same solution. The residual graphs without

the terminal-Steiner edges are classified into two classes, since the performances

and the complexities of the algorithms that are proposed in the following for these

two sorts of subgraphs are slightly different.

❼ First Class: the residual graph is a single connected component. It can

be a path, a tree, a subgraph, or even a single point.

40



❼ Second Class: the residual graph is a set of disconnected components.

The single component in the set has the same definition as the first class.

If the residual graph belongs to the first class, we can easily build a feasible full

bottleneck Steiner tree by first implementing a maximum spanning tree algorithm

on the residual graph and then arbitrarily add terminal-Steiner edges to the span-

ning tree until all the terminals are attached to it.

However, the feasibility is not that obvious when we have a case belonging to the

second class residual graph, but we will provide a polynomial time tractable algo-

rithm for resolving it. It should be noticed that having a feasible solution in this

case suggests that all the terminals could be connected to at least one component

of the set of disconnected components. Otherwise, the problem apparently has

a terminal cut which follows the argument in Theorem 3.5.1. According to this

context, checking the feasibility on each component in the residual graph is an

appropriate alternative for judging the feasibility of the original problem rather

than finding the terminal cuts.

The algorithm for checking whether a given graph has full Steiner trees for certain

terminal nodes is displayed in Algorithm FBST-check. It must be noted that

the continue statement in the pseudo-code has the same meaning as in C + +.

EXIT SUCCESS and EXIT FAILURE are the instructions to exit the program

with feasible and infeasible indications, respectively. This resulting algorithm

runs in polynomial time, and the corresponding complexity proof is given in

Lemma 3.5.2.

Lemma 3.5.2. The complexity of FBST-check is bounded by O(|S||T | log |T |).

Proof. The first for loop and the while loop allow the algorithm to traverse all

the nodes v ∈ S in the residual graph (without terminal-Steiner edges), therefore

it runs in O(|S|) without consideration of any operations inside the loops. The

nested for loop between instructions 4 and 14 visits all the terminals attached to

a specific Steiner node. Regarding the worse scenarios, every Steiner node may

connect to all the terminal nodes, in other words, the loop may traverse all the

terminals, and therefore the running time of the loop is bounded by O(|T |).

Moreover, it ought to be noticed that Instruction 5 actually runs a hidden sub-

algorithm find which searches a given element in a set. The best search algorithm,

such as binary search algorithm, runs in O(log n), where n denotes the number

41



of elements in a set. In our case, the largest possible set of Tc is equal to T , as

a result, the search algorithm is then is bounded by O(log |T |). To sum up, the

combination of all the loops and the sub-algorithm find let the entire algorithm

FBST-check be bounded by O(|S||T | log |T |).

Algorithm 3.5.2.1 : FBST-check

Input: A residual graph G \ {T,E(T )} which has m components, Gi, i =
1, 2, . . . ,m. An empty set Tc and a counter j = 0. The number of termi-
nals |T |.

Output: Problem’s feasibility.
1. for all Gi, i = 1, 2, . . . ,m do
2. while Gi 6= ∅ do
3. Select v ∈ Gi;
4. for all t ∈ T (v) do
5. Check t whether in the Tc;
6. if t ∈ Tc then
7. continue;
8. else
9. Add t in TC , and increase j by 1;
10. end if
11. if j = |T | then
12. EXIT SUCCESS;
13. end if
14. end for
15. Remove v from Gi;
16. end while
17. if i = m then
18. EXIT FAILURE;
19. end if
20. Reset Tc and counter j;
21. end for

Once we confirm that a given graph G is capable to build a full bottleneck Steiner

tree for given terminals, the next question is how to find an optimal tree in T ⇃↾
◦ (T ).

3.5.3 The Core Sub-Algorithm in Finding T ⇃↾
◦ (T )

Before giving the algorithm that finds a T ↿⇂
◦ (T ), we begin by analyzing a sim-

ple algorithm which finds a proper feasible solution. The analysis is based on the

graphs having a first class residual graph, in other words, the analysis serves a sin-

gle connected subgraph. We denote the connected component by G′ = (S,E(S)).

For those graphs that have a second class residual graph, the analysis can be

easily adapted, since the second class residual graph consists of multiple single

42



connected component. The simple algorithm helps to develop the key idea for the

design of our ultimate algorithm. It is an algorithm which takes the maximum

spanning tree algorithm as a core sub-algorithm, so we simply call it MT-based

algorithm. It consists of two steps: in the first step, we run a maximum spanning

tree algorithm on G′; in the second step, we assign the maximum E(t), ∀t ∈ T to

the tree that spans the Steiner nodes. A simple example in Fig. 3.2 explains why

this algorithm does not always achieve an optimal solution. The figure shows the

last operation that attaches the last terminal t1 to the tree consisting of several

solid lines. We assume that the current bottleneck before terminal t1 joins in

is the edge e{B,C} with a weight w{B,C} = 11. According to the second step of

the MT-based algorithm, the maximum weight in E(t1) is e{t1,C}, and it will be

chosen. As a result, the bottleneck of the full Steiner tree will be wopt = 11.

However, if there is a chance to choose the edge e{t1,B} alternatively, the optimal

value increases to w′
opt = 12, which is better than the previous result. This al-

gorithm does not guarantee a good solution though it is easy to implement. For

example, suppose that the weight w{B,C} = 11 is replaced by a very small value

w{B,C} = 1, then the bottleneck will suddenly drop to wopt = 1.

A

B

C

t1

12

11

12

13

Figure 3.2: An example of non-optimal solution

The Steiner nodes’ spanning tree is a proper frame to begin finding the optimal

tree. All the terminals are always attached to a subtree which only consists of

Steiner nodes in a full Steiner tree. This tree is denoted by Ts where Ts ∈ G′.

Randomly choosing a tree in G′ could hardly guarantee the connectivities to all

the terminals. In addition to that, if the bottleneck is an edge e ∈ E(S), a

random tree also hardly promises to include the edge e. But there is always a

subtree Ts on maximum spanning tree T ↑
s that is a proper candidate/stem to

form an optimal full Steiner tree. This argument can be easily approved. First,

as a spanning tree, T ↑
s spans all the Steiner nodes, which implies that the tree T ↑

s

43



is capable to connect to all the terminals when the original problem is feasible.

Second, since a subtree on a maximum spanning tree is also a bottleneck Steiner

tree in graph G′ for spanning those nodes belonging to the subtree, it guarantees

that in G′, the bottleneck of the other subtrees formed by a certain set of Steiner

nodes will never be better than the one provided in T ↑
s .

Instead of searching a subtree Ts from T ↑
s , we try to attach proper terminal-

Steiner edges to T ↑
s in order to accomplish the final tree construction. The task

can be resolved properly by using the next algorithm we provide. We name the

algorithm FBST-CORE, since it tackles the core issue for building the full bot-

tleneck Steiner tree.

Assume that there is a Steiner-terminal edge e ∈ E(S, T ) that directly connects to

terminal t. The key idea of the algorithm FBST-CORE is to update the bottle-

neck information between t and all the Steiner nodes on the tree Ts through this

particular edge e. Assume that there are multiple Steiner-terminal edges linking

to t, the information needs to be updated multiple times. The same procedure for

the other terminals is performed independently, which means that the bottleneck

information for different terminals is stored separately. After the update process,

we compare the bottleneck information achieved by different terminals labeled

on each Steiner node. We first pick up the minimum value from the information

that corresponds to different terminals on each Steiner node, then from the set

of Steiner nodes ST that have direct connections to the terminals, we choose the

maximum value from the minimum values we just found. The maximum value

will be the optimal bottleneck that can be achieved for the full bottleneck Steiner

tree problem. It should be noted that the procedure mentioned above is under

the assumption that the residual graph of a given original graph belongs to the

first class. For the graphs that are classified into the second class, the algorithm

FBST-CORE has to be run in all the potential connected components that

have feasible solutions. By comparing the optimal bottleneck found indepen-

dently among the connected components, we choose the connected component

that has the maximum bottleneck to construct a T ⇃↾
◦ (T ).

The details of the algorithm will be given after the introduction of some essential

notation and parameters with their initializations. We denote the set of Steiner

nodes which have direct connections to at least one terminal by ST , and the rest

of Steiner nodes by ST . We create |T | triples (t, w, v) for ST ; |T (v)| quadruples

(t, w, v, u) and |T | − |T (v)| triples for v ∈ ST . As a result, there are |T | tuples on

44



each Steiner node, therefore there are |S|·|T | tuples in total. t, w, v, u successively

denote the terminal, the weight of bottleneck, the predecessor of the current one

in a bottleneck tree, and the statement of whether the tuple is used. For v ∈ ST ,

each triple is reserved for a specific terminal, therefore the terminal is assigned

to the first element of each triple accordingly. For v ∈ ST , the terminals T (v) are

assigned to t in the quadruples, and the other terminals are assigned to t in the

triples. For an edge (t, v) ∈ E(t), its weight is assigned to w in the quadruples

with the same t on the node v. All the other w and v in the tuples that we have

not yet mentioned are uniformly set to null, which is equivalent to 0, ’none’ or

’empty’. Moreover, u in each quadruple is always set to unused in the beginning

of the algorithm.

A

t1

t2

(t1, 12,null,unused)

(t2, 11,null,unused) 12

11

Figure 3.3: An example of initializing some quadruples

At the beginning of the algorithm, all v ∈ ST are marked, and the algorithm

arbitrarily starts from one of them. Each unused quadruple will turn to used,

when either it starts to update the other tuples in the tree T ↑
s that has the same

t on the other Steiner nodes, or it is updated by other tuples. For the worst

scenario, the updating process has to go through all the nodes on the spanning

tree T ↑
s . Each v ∈ ST is set to unmarked until all the quadruples on that node

are used. The algorithm FBST-CORE finishes when all v ∈ ST are unmarked.

The information update in the tuples follows the rules below: Assume two nodes

A,B ∈ S, and we try to update the tuple for terminal t on node B according to

the current information on node A and edge (A,B). Then

wt
B = max{wt

B,min{wt
A, w(A,B)}} (3.32)

if wt
B = min{wt

A, w(A,B)}, then vB = A. Moreover, if the tuple is a quadruple, and

we assign u to used if u is unused. If wt
B 6= min{wt

A, w(A,B)}, vB does not update.

45



The pseudo-code of the algorithm FBST-CORE is presented in Algorithm

3.5.3.1. In order to show that each update for the next tuple is according to

the same terminal, we set an extra superscript for each element w, v, and u in

every tuple, for instance, wt, vt, and ut.

Algorithm 3.5.3.1 : FBST-CORE

Input: A Steiner nodes’ maximum spanning tree residual graph T ↑
s , |S| · |T |

tuples with appropriate initialization. An empty candidate set X;
Output: Updated |S| · |T | tuples;
1. for all p ∈ ST do
2. Select p ∈ ST and put it in a candidate set X;
3. while X 6= ∅ do
4. Select p ∈ X;
5. for all t ∈ T (p) do
6. Set ut

p = used;
7. for q ∈ S(v) do
8. wt

q = max{wt
q,min{wt

p, w(p,q)}};
9. if wt

q = min{wt
p, w(p,q)} then

10. vtq = p and put q in the X;
11. if there is ut

q and ut
q == unused then

12. Set ut
q = used;

13. end if
14. end if
15. end for
16. end for
17. end while
18. end for

By obtaining the information from the updated tuples, we know the bottleneck

value wopt = maxv∈ST
{mint∈T{w

t
v}}. Assume there is a node v ∈ ST where

wv = wopt. From the definition of wopt we know that, for each terminal, either

there is a bottleneck path between a terminal and node v in which the value of the

bottleneck is greater than or equal to wopt, or a terminal t has a direct connection

to v by using E(t), the weight of which is no less than wopt.

After finding the optimal bottleneck value, there are four simple steps to finalize

the tree construction: first, we set the value wv = mint∈T{w
t
v} for each v ∈ T ↑

s ;

second, we collect the nodes with the weights wv ≥ wopt in a node set Ss; third,

we prune the tree T ↑
s by subtracting the degree-one Steiner node v ∈ S \ Ss and

obtain the tree Ts; fourth, we randomly choose edges e ∈ E(t) where e ≥ wopt for

every t from the nodes v ∈ Ss ∩ ST , wv = wopt.

46



In order to judge the complexity of the whole procedure that finds the full bot-

tleneck Steiner tree, we start by analyzing the algorithm FBST-CORE.

Lemma 3.5.3. The complexity of FBST-CORE is bounded by O(|S|2|T |), where

|S|, and |T | denote the number of Steiner nodes and terminals, respectively.

Proof. In the worst case, for certain terminal t in the for loop between 5 and

16, |S| Steiner nodes have to update their information, in other words, the al-

gorithm will traverse the whole spanning tree T ↑
s . Since each instruction in this

loop is fundamental operation which is bounded by O(1), then this loop can

be bounded by O(|S − 1|). Assume that each terminal may connect to |S(t)|

nodes, so the algorithm FBST-CORE will traverse the tree T ↑
s n times, where

n =
∑

t∈T |S(t)|, which is equal to the amount of quadruples. Considering the

worst case, such as full mesh networks, where n = |T | · |S|, the algorithm is

bounded by O(|S||S − 1||T |) = O(|S|2|T |).

Algorithm 3.5.3.2 : FBST

Input: An undirected graph G = (V,E);
Output: Optimal tree T ↿⇂

◦ (T ) or Infeasibility;
1. Check the connectivity of G \ {T,E(T )};
2. if G \ {T,E(T )} is in the first class then
3. Implement maximum spanning tree algorithm on G\{T,E(T )} and obtain

T ↑
s ;

4. Implement algorithm FBST-CORE;
5. Construct the final tree from updated information of the tuples from algo-

rithm FBST-CORE;
6. else
7. Find subgraphs in G \ {T,E(T )};
8. Implement algorithm FBST-check;
9. if The problem is feasible then

10. Implement algorithm FBST-CORE in all feasible components;
11. Find the best component and construct the final tree from it;
12. else
13. The problem is infeasible;
14. end if
15. end if

The entire procedure of finding full bottleneck Steiner tree could be summarized

in the Algorithm 3.5.3.2. In fact, after judging the connectivity for the residual

graph G \ {T,E(T )}, the algorithm is split into two subroutines for different

classifications of the residual graphs. For the graphs having a first class residual

graph, the subroutine is dominated by instruction 4 in Algorithm 3.5.3.2, and

the complexity of this branch is bounded by O(|S|2|T |). Similarly for the graphs

47



belonging to the second class, since the algorithm FBST-CORE must be run k

times, where k is equivalent to the number of feasible connected components in

the residual graph. For the worst scenarios, k may be equal to |S|, therefore this

subroutine is bounded by O(|S|3|T |). As a result, the complexity of the entire

procedure runs at O(|S|3|T |).

3.6 An O(|E| log |E|) Algorithm for the full Bot-

tleneck Steiner Tree Problem in Undirected

Graph

This algorithm is very similar to Kruskal’s algorithm for computing minimum (or

maximum) spanning trees. It requires two data structures:

❼ An integer label ℓv associated with each Steiner node v ∈ S;

❼ A list (or a set) Lv associated with each terminal node v ∈ T .

We first make the same assumption as in [15] that all edge weights are strictly

different. We will then see how this assumption can also be relaxed by modifying

our algorithm.

As in Kruskal’s algorithm, the labels are used to identify nodes within a same

connected component and hence avoid forming cycles. When adding an edge,

labels are updated and in order to minimize the number of updates, one can also

maintain, for each Steiner node v ∈ S, an integer value szv giving the current

size of the connected component containing node v. Finally, we assume that the

edges have been ranked in decreasing order and are stored in that order in a list

L↓
E.

Our algorithm to compute a max-min Bottleneck Full Steiner Tree (BFST) is

formalized in Algorithm 3.6.0.3.

As mentioned before, the labels ℓv are used to identify Steiner nodes within a same

connected component. The label lists Lv indicate to which connected component

(defined only among the Steiner nodes) each terminal is currently connected. The

algorithm stops as soon as there is a connected component to which all terminals

are connected. The stopping criteria L↓
E = ∅ is never reached in practice, except

48



Algorithm 3.6.0.3 : FBST2

Input: A weighted undirected graph G = (V,E,w) and a set T of terminals;
Output: A max-min tree τ spanning T such that all terminals in T have degree

one;
1. Initialize ℓv = v for all v ∈ S, Lv = ∅ for all v ∈ T and τ = ∅;
2. repeat
3. Remove the first edge from L↓

E → e = (a, b);
4. if e ∈ E(S) and ℓa 6= ℓb then
5. add e to τ ;
6. set to ℓb the label of all nodes v such that ℓv = ℓa (without loss of

generality, assuming da < db);
7. replace ℓa with ℓb in all lists Lv containing ℓa;
8. else if e = (a, b) ∈ E(S, T ) then
9. add e to τ ;

10. insert label ℓa in list Lb (assuming w.l.o.g. a ∈ S, b ∈ T );
11. end if
12. until ∩v∈TLv 6= ∅ or L

↓
E = ∅;

13. run algorithm TRIM-TREE to obtain the final tree τ ;

if the initial graph is already a tree.

After the stopping criterion (at step 12), the algorithm has already identified (i)

a bottleneck edge and (ii) the bottleneck weight (weight of any bottleneck edge).

The purpose of the additional step invoking algorithm TRIM-TREE is to trim

unnecessary edges in τ in order to obtain a minimal (in the sense of inclusion)

Steiner tree.

Algorithm 3.6.0.4 : TRIM-TREE

Input: A connected component τin of the graph G = (V,E) containing all ter-
minals t ∈ T ;

Output: A tree τout spanning T such that all terminals in T have degree one;
1. τ ← τin;
2. for all terminals t ∈ T do
3. find in E(t) ∩ τ (stored in Lt) the edge emax

t of maximum weight;
4. remove from τ all edges in E(t) ∩ τ except emax

t ;
5. end for
6. repeat
7. remove from τ all edges {u, v} ∈ E(S) such that u or v is of degree one;
8. until there are no more Steiner nodes of degree one;

In the algorithm TRIM-TREE, only the edge of maximum weight connecting

each terminal to the identified connected component is kept. As used in [16] to

obtain a Bottleneck Steiner tree, all degree one Steiner nodes are progressively

49



removed from the tree (more precisely, its adjacent edge is removed from the edge

list).

The proof of correctness is simple: after the stopping criterion is reached (at step

12), there is only one connected component in the subgraph GS = (S,E(S)) that

is also connected to every terminal in T . All edges in GS form a forest composed

of edges of maximum weight (the edges missing are the ones creating cycles). To

connect all terminals to another connected component, one would have to intro-

duce at least one other edge of weight strictly smaller than the current bottleneck.

Among all edges connecting the terminals to the same connected component, it

suffices to keep one (so we choose the one with maximum weight).

The time complexity of the algorithm is basically the same as the one of Kruskal’s

algorithm. The main differences are (i) the algorithm might stop before the sub-

graph in GS is a tree (it indeed suffices to have one connected component already

connected to all terminals) and (ii) in the stopping criterion, one has to find the

intersection of nT sets. If the sets are stored as sorted lists, this can be achieved

in O(|T |) time. The additional steps in TRIM-TREE run respectively in constant

and O(|S|) time. As for the standard Kruskal’s algorithm, the initial phase where

edges are sorted in decreasing order of their weight requires O(|E| log |E|) time

which is hence still the dominating time complexity.

Lemma 3.6.1. Algorithm FBST2 runs in O(|E| log |E|) time.

The algorithm FBST2 is easy to implement and very efficient. Figure 3.4 shows

a result obtained on 200 node graph. As expected, some Steiner nodes are not

used and the result is very far from a star.

3.6.1 Edges with the same weight

In algorithm FBST2, we have assumed that all edge weights are strictly different.

If, at a given step, there are several edges of E(S) having the same weight, then

the decomposition of the subgraph of Steiner nodes into connected components

is not unique. And according to the existing edges in E(S, T ) one decomposition

might allow to stop the algorithm and not another.

For instance, on the graph of Figure 3.5, we see that there are two edges carrying

the weight 8. If the edge (v2, v4) is added, the algorithm stops (all terminals are

connected to the same connected component). If the edge (v3, v5) is added, the

50



Figure 3.4: Euclidean min-max full bottleneck Steiner tree instance: a random
graph with 200 nodes, 500 edges and 20 terminals

algorithm does not stop immediately. However, at the next step, the edge (v2, v4)

is going to be added and the algorithm will stop with the same bottleneck value.

As a result, it is easy to see that Algorithm FBST2 remains valid, even if there

are several edges with the same weight.

3.7 More efficient algorithms

As observed in [12, 32], bottleneck or max-min problems are often easier to solve

than their max-sum counterparts. The algorithms proposed in these papers focus

on identifying the bottleneck value w∗ by exploring wisely the set of potential

values {we}e∈E. Note that, if one was able to ”guess” the optimal value w∗, the

optimality of this value could be checked in O(m) time. Indeed, it suffices to

build the subgraphs G≤
w∗ and G<

w∗ defined by:

G≤
w∗ = (V, {e ∈ E : we ≤ w∗}), (3.33)

G<
w∗ = (V, {e ∈ E : we < w∗}). (3.34)

A simple depth-first exploration checking that G≤
w∗ is connected and G<

w∗ is not

connected suffices to prove that w∗ is the bottleneck value. The same reasoning

51



t1 t3

t4

v6v1

v2

t2

v3

v4

v5

10

16

Terminal nodes Steiner nodes

8

8

5

11

13

12

2

1

6

3

14

4

7

159

Figure 3.5: Instance with two edges with same weight

can be used to identify a bottleneck edge in a full Steiner tree. Indeed, it suf-

fices to check that there is a component of G≤
w∗ connecting all terminals and that

there is no such component in G<
w∗ to assess that w∗ is a bottleneck edge (see, for

instance, algorithm EXPLORE).

Algorithm 3.7.0.1 : EXPLORE

Input: A graph or subgraph G = (V,E) and a subset of terminals T ⊂ V ;
Output: TRUE is G contains a component connecting all terminals t ∈ T ;
1. choose a starting terminal t0 ∈ T of minimal degree;
2. let T0 = γ(t0) and forall v ∈ T0 remove the edge {t0, v} from E;
3. for all v0 ∈ T0 do
4. let VM = {t0, v0};
5. repeat
6. for all v ∈ γ(VM) do
7. add v to VM ;
8. end for
9. until (i) T ⊆ VM or (ii) δ(VM) = ∅;
10. if (i) then return TRUE;
11. end for

The approach of [12] was extended in [32] for the case of a directed graph where

one source terminal s should be connected to all other terminals t ∈ T \ {s} with

a directed path. Again, the algorithm in [32] can easily be adapted to handle

the case of a bottleneck full Steiner tree: in the connectivity criterion, where an

52



exploration of the sub-graph is started from the source node s (note that here,

we do not restrict the degree of the source node), once a terminal is reached,

the exploration is stopped at this node and the same trimming algorithm can be

applied in order to remove unnecessary edges. As a result, the bottleneck full

Steiner tree problem can be solved in a directed graph in O(|E| log∗ |V |) time

(where log∗ is the iterated logarithm).

3.8 Conclusion

In this chapter, our concern is the maximum throughput that can be achieved,

within a given capacitated network, using a multicast tree to send data to end-

users. We review some network problems that could help to model multicast

networks in telecommunication field. We point out how to find a best single

multicast tree, in terms of end-to-end throughput by using bottleneck version of

network flow problems. We focus on the bottleneck Steiner tree problem and the

full bottleneck Steiner tree problem. These two special Steiner tree problems can

model different multicast networks when single tree is used, depending whether

the clients of the multicast service can or cannot forward the data to other clients.

The bottleneck Steiner tree problem can be efficiently solved by modified version

of Kruskal’s algorithm or bottleneck shortest path problem in undirected graphs

or directed graphs. We have proposed two algorithms to tackle the full bottleneck

Steiner tree problem in general random graphs. The most efficient algorithm we

find is a Kruskal-based O(|E| log |E|) algorithm. We also show how to adapt even

more efficient algorithms from the literature to handle the bottleneck and bottle-

neck full Steiner tree problems. The work in this chapter can be considered as a

foundation of the research in the next chapter, which focuses on comparing the

end-to-end throughput between multicast network and network coded networks.

53



54



Chapter 4

Investigation on Maximum

Throughput

As far as the laws of mathematics refer to reality, they are not certain; and as far as

they are certain, they do not refer to reality.

-Albert Einstein (1879-1955)

4.1 Summary

N
etwork coding has been shown to be the solution that allows to reach the

theoretical maximum throughput in a capacitated telecommunication net-

work [5]. It has also been shown to be a very appealing and practical alternative

to routing-based approaches to send traffic from sources (servers) to terminals

(clients) for many different applications. However, the initial theoretical claim

of throughput benefit remains relatively unclear, mainly because the multicast

throughput maximization problem is difficult to solve (it is closely related to the

fractional Steiner tree packing problem which is NP-hard). In this chapter, we

show that these optimization problems are still tractable even for instances with

a significant size (up to 50 nodes and 300 edges). We also propose and solve the

multicast maximum throughput problem with an additional constraint on the

number of multicast trees. We apply our algorithms on large sets of randomly

generated instances, mainly based on bidirected graphs, because they are the

most relevant to model fixed telecommunication infrastructures. The main re-

55



sult of our intensive experimental study is that, in practice, network coding does

not increase throughput compared to traditional multicast. Instances showing a

throughput gain can only be generated somewhat artificially by imposing some

structure or trying to maximize the throughput gap. However, when we limit the

number of multicast trees, then, most of the times, very significant throughput

gaps appeared. Since management constraints often impose on network admin-

istrators a very limited use of multicast trees, network coding appears clearly as

a very attractive alternative for delivering content to customers.

4.2 Introduction

Network coding has been first introduced as a nice solution allowing to reach a

theoretical upper-bound on the throughput in multicast networks [5]. Given a ca-

pacitated network with a source node and a set of terminal nodes, this theoretical

upper-bound refers to the global throughput that would be achieved if the stream

between the source and each terminal node could use all the available resources

(capacities), regardless of the other streams. The maximum throughput between

a source and a destination can hence be obtained as the optimal solution of the

well-known Maximum-Flow problem [28].

Since then, network coding [41] has been considerably studied, both from the

theoretical and the practical sides [59]. As a natural extension to the field of

coding theory, several efficient ways to generate coding schemes and decoding al-

gorithms have been proposed [42, 43, 44, 65]. Network coding applications have

been proposed, and sometimes tested in various networks, in various places within

the networks, ranging from the application layer to the physical layer, and for

various applications [56, 72, 84].

Because of the original statement that network coding permits to reach the max-

imum possible throughput, a special emphasis has been laid on theoretical and

empirical throughput evaluations, essentially focused on a comparison with stan-

dard multicast routing [79]. Recall that multicast protocols are designed for

services where several users require the same content at the same time (live TV

for instance). Multicast (one-to-many) is hence opposed to traditional unicast

(one-to-one). The key feature of multicast protocols is to allow some well-chosen

network nodes to replicate data towards several outgoing links in order to alle-

viate network load. Alternatively, network coding (associated with multicast or

56



not) allows network nodes to combine several data received potentially from dif-

ferent incoming links towards one or several outgoing links. The famous Butterfly

example is often cited to illustrate the benefit of network coding. We propose

another example where the network coding throughput of 3 (Figure 4.1) is larger

than the multicast throughput of 2.666 (Figure 4.2).

s

v1 t1

t3

t2v2

v4

v3

v5

v6

v7

a

a

a

a

a

a

b

b

c

c

a⊕b

b⊕c

a⊕c

a

b

c

uncoded streams

coded streams

Figure 4.1: Optimal solution with Network Coding (NC) in a butterfly network:
throughput = 3, 3 streams a, b and c can be transmitted to each terminal.

Many papers have been devoted to investigate this difference in throughput over

different instances types and sets. A main result states that the relative gap in

throughput is never larger than 2 is proposed in [67]. When tackling the issue

of comparing network coding with multicast throughput, one has to face opti-

mization problems from graph theory. The first one, the maximum-flow problem,

is very well-known and can be solved very efficiently (see, for instance, [81]).

Solving a series of maximum-flow problems, one can derive the maximum net-

work coding throughput. On the other-hand, computing the maximum multicast

throughput boils down to consider the fractional Steiner tree packing problem, an

NP-hard combinatorial problem [34, 47]. This problem can be related to another

well-known NP-hard problem, namely the Steiner tree problem where one has to

find a minimum cost subgraph interconnecting (or spanning) a given subset of

nodes (called terminals). It is a common belief that these problems are almost

impossible to solve in practice. However, using efficient Mixed-Integer Models

57



s

v1 t1

t3

t2v2

v4

v3

v5

v6

v7

Tree 1: 1/3

Tree 2: 2/3

Tree 3: 1/3

Tree 4: 2/3

Tree 5: 2/3

Figure 4.2: Optimal solution with Multicast (MC) in a butterfly network:
throughput = 8/3, but 5 different multicast trees are required.

[37], large instances of Steiner tree problems can be solved in a few seconds [58].

As a result, significant instances of the fractional Steiner tree packing problem

can also be solved and thus, maximum multicast throughput can be evaluated

on large sets of instances. To the best of our knowledge, all the previous em-

pirical approaches to compare network coding and multicast throughput have

either used approximation algorithms to solve the Steiner tree packing problem,

or have considered specific graphs instances where the resolution of the problem

appeared to be more tractable. In [66], the authors consider the undirected case

and claim that it is more general than the directed one. They also provide a

Linear-Programming model using what they call conceptual flows to compute the

network coding maximum throughput. Note that this model is nothing else than

a very classical flow model that can trivially be derived from directed network

coding models such as, for instance, the one in [69]. Moreover, the authors in

[66] use a standard simplex algorithm to solve a problem for which very much

more efficient combinatorial methods are available (max-flow algorithms). They

restrict their attention to uniform bi-partite graphs, whereas real-life network

topologies can have very different structures. Finally, they use a brute force algo-

rithm to solve the Steiner tree packing problem by enumerating all possible trees

and then claim that the problem cannot be solved even for medium size instances.

58



Since [66] seems to be the most comprehensive empirical study of network coding

versus other routing paradigm throughput, we believe this chapter will fill some

major gap in this important field. Our contributions are the following:

❼ We propose efficient resolution schemes for the multicast maximum through-

put problem (fractional Steiner tree packing problem) in the directed, bidi-

rected (for each link, there is one arc in each direction) and undirected

graphs case. The chosen approach is a standard column generation algo-

rithm where each column represents a Steiner tree. The pricing problems

are hence Steiner tree problems for which we use a flow type model as in

[37]. We also handle the maximum multicast throughput problem with

a bounded number of trees, which, to the best of our knowledge, has not

been addressed until now. For this problem, we propose an exact flow based

model and a heuristic approach using tree variables.

❼ We somehow clarify the differences and relationships between directed, bidi-

rected and undirected settings. We also claim that the bidirected case is

quite relevant for telecommunication models because most fixed networks

infrastructures often have two opposite links of same capacity.

❼ We provide numerical results based on extensive computational experiments

(each set contains one hundred instances and the small topologies were

checked with much larger number of instances). All instance are randomly

generated without any predefined underlying structure and all results pro-

vided are the exact solutions of the related throughput problems.

Our main findings are:

❼ We confirm (but over a much larger scope of instances) what was announced

in [66], namely that it is almost impossible to find instances exhibiting a

non-zero gap between network coding and multicast throughput. In other

words, the probability to pick a ”butterfly-type” instance is almost zero.

❼ Concentrating on very small graphs (7 to 10 nodes), we have generated a

very large number of instances and, in the smallest cases, even enumerated

all possible instances. In this last setting, we were hence able to evaluate

the probablity of picking up a topology with a non-zero gap, to be as low

as 0.01%.

❼ Using again mixed-integer models, we could confirm numerically that the

largest gap for uniform instances up to 7 nodes is 0.5.

59



❼ Finally, and this is not a surprise, we could evaluate the impact of the

number of trees in the multicast solutions, and confirm that, when the

number of trees is limited, there is often a huge gap between network coding

and multicast throughput.

To summarize these results, we can say that, from a numerical point of view, it is

wrong to claim that network coding allows to achieve a significant improvement

in throughput. However, from a practical point of view, since telecommunication

operators are reluctant, for obvious management complexity reasons, to handle

large (and even moderate) sets of multicast trees, there is a very significant ad-

vantage that can be achieved by using network coding: network coding is much

easier to deploy than multicast techniques, for a similar throughput when the

number of trees to manage is large, and for a much better throughput when the

number of trees is small. Of course, there are also many other interesting features

offered by network coding (dynamicity, robustness, ...) which have been already

largely promoted in the literature.

4.3 Comparing Coding and Routing Schemes

In this chapter, our aim is to compare the throughput achieved while using dif-

ferent coding/routing paradigms:

❼ Network Coding (NC): we use the result of [5] to compute the through-

put achieved using network coding and multicast forwarding. Solving in-

dependently the sequence of maximum flow problems allows to obtain the

value of the network coding throughput. The result obtained for a small

graph G1 is depicted in Figure 4.1: the instance has one source, three ter-

minals, all arcs have a capacity of 1, except the arc (s, v2) of capacity 2.

Three streams a, b and c (each one representing a volume of 1) are sent by

the source node s. The nodes v2, v4 and v5 perform coding on their input

streams (for instance a⊕ b means that streams a and b are coded together,

resulting in a stream of volume 1). As a result, the terminal nodes receive

each three different coded or uncoded streams, from which they can all de-

code the original streams a, b and c: the optimal network coding throughput

is hence 3.

❼ Multicast (MC): by Multicast, we mean here that several multicast trees

can be set up between one source and all of its terminals, and the traffic

is split appropriately among the chosen trees to reach the best possible

60



throughput. The optimal throughput in Figure 4.2 is 8/3 ≈ 2.666, using 5

trees (see Figure 4.2). The original data is hence sliced into 5 streams, each

one is sent on a different multicast tree.

❼ Multicast with ℓ Trees (MC-ℓ): since the previous case is not often

realistic (because network operators will not agree to handle many different

multicast trees rooted at the same source), we also consider the case where

the streams can only be routed over a limited number of multicast trees

(up to ℓ and, in the numerical experiments, we will only consider the cases

ℓ = 1, 2 or 3). The optimal throughput in Figure 4.2 is 1 with one tree and

2 with two trees.

4.4 Models and Algorithms

4.4.1 Notations

The network is modeled as a directed capacitated network G = (V,A,C) where

Ca > 0 is the capacity of arc a ∈ A, nV = |V |, nA = |A|. In the network,

one source node s that have some data content may interest some other nodes

tk ∈ T, T ⊂ V where nT = |K| and k = 1, 2, . . . , |K|. we call the nodes in the set

T terminals. The network will then set up a multicast session between s and T

by using either multicast protocol or network coding.

We denote by Pk or Pstk the set of simple paths (without cycles) between s and

tk, and by P =
⋃

k∈K

Pk the set of all paths. Similarly, we denote by T (r, U) the

set of trees rooted at r ∈ V and spanning U ⊂ V \ {r}. If the root node or the

set of spanned nodes is obvious from the context, they will be omitted in the

notation. For any subset of nodes W ⊂ V , we denote by δ+G(W ) and δ−G(W ) the

set of arcs leaving and entering W in the graph G. Again, the graph in subscript

will be omitted if it is clear from the context. When the set W is reduced to a

singleton {v}, we will use the notations δ−(v) and δ+(v) (instead of δ−({v}) and

δ+({v})).

To model the throughput maximization problems, we will mainly use the following

flow variables:

❼ fk
a is the total flow sent from s to tk on arc a ∈ A.

❼ fa is the total flow on arc a ∈ A, f(i,j) is the total flow on arc (i, j) ∈ A.

61



❼ ϕk
p is the total flow sent on path p ∈ Pk (and simply ϕp for the total flow

on path p ∈ P).

❼ ϕτ is the total flow on the tree τ .

We now provide standard (LP=Linear Programming or MIP=Mixed Integer Pro-

gramming) models for computing the maximum throughput according to the

various routing paradigms.

4.4.2 Network Coding

As already mentioned in Chapter 2, network coding allows mixing of flows in the

intermediate nodes when information is transmitted across a given network. The

authors in [5] show that theoretically the novel data forwarding mechanism has

significant benefit on data transmission, especially for multicast networks. They

prove that network coding achieves the maximum end-to-end multicast through-

put. The throughput is equivalent to the minimum value of the maximum flows

between the source and each terminal in T . In order to find the multicast through-

put when using network coding, we can compute the maximum flow between the

source and each terminal successively.

Maximum Flow Problem

The maximum flow problem between two nodes in a directed graph is a sophis-

ticated network flow problem that has already been extensively studied [26, 28].

The problem rose to fame during the second world war as a military application.

It calculates the maximum amount of supplies that one city can get from another

one through a rail network. After the development of telecommunication indus-

try, it becomes useful in this field as well.

Many algorithms have been invented for solving this problem. The first well-

known algorithm is proposed by Ford and Fulkerson in [28]. It starts by sending

an arbitrary integer flow from source s to terminal t, of course, the capacity

limitations on the path for sending this flow must be followed. In each iteration,

the algorithm randomly searches a path that can send a positive flow from s to t

in the so-called residual graph. It stops when there is no such path in the residual

graph. Given a directed graph G = (V,A) and a flow fp that is sent on a path p

in G, the residual graph Gf = (V f , Af ) is defined as follows:

❼ V f = V ;

62



❼ ∀(i, j) ∈ p, Cf

(i,j) = C(i,j) − fp;

❼ ∀(i, j) ∈ p, create arc (j, i) with capacity fp, if there is no such an arc, or

Cf

(j,i) = Cf

(j,i) + fp;

A path that is able to carry a positive flow from s to t in the residual graph is

called augmenting flow in the literature. The algorithm works merely if all the

capacities are integers, otherwise it will not converge to the maximum value. A

more robust algorithm called Edmonds-Karp algorithm [26] has been proposed by

J. Edmonds and R. Karp. It is a special version for implementing Ford-Fulkerson

algorithm in polynomial time O(V A2). It specifies the way for searching an aug-

menting path, which applies a breadth-first search to find a shortest path that

has available capacity.

This problem can also be formulated by using mathematical programming skills.

Given a directed graph G, we set an variable R which is denoted by an amount

of flow R to the terminal t and needs to be maximized. The mathematical model

for the maximum flow problem is given as follows:

maximize R, (4.1)

s.t. Ca ≥ fa, ∀a ∈ A, (4.2)
∑

a∈δ−(v)

fa −
∑

a∈δ+(v)

fa = bv(R), ∀v ∈ V, (4.3)

fa ≥ 0, ∀a ∈ A, (4.4)

where the constants bv are defined as:

bv(x) =







−R if v = s

R if v = t

0 otherwise

(4.5)

In the formulations from (4.1) to (4.4), The constraints (4.2) are capacity con-

straints, and the constraints (4.3) are flow conservation constraints. This is an

arc-based formulation. Normally, the arc-based formulation can be interchanged

with the path-based formulation which means that we use path flow variables ϕp

rather than flow variables fa. The path-based formulation is given in (4.6)-(4.8).

63



We denote the value of the maximum flow between s and t by ϕ∗(s, t):

maximize ϕ∗(s, t) =
∑

p∈Pst

ϕp, (4.6)

s.t.
∑

p∈Pst:
a∈p

ϕp ≤ ca, ∀a ∈ A, (4.7)

ϕp ≥ 0, ∀p ∈ Pst, (4.8)

The constraints (4.7) are capacity constraints, and the objective function is to

maximize the sum of the flows that are sent on all the paths between s and t in

a given network.

From the mathematical programming point of view, it is more practical to use

the path-based formulation with a so-called column generation method, which we

will introduce in the next section, than the arc-based one especially in large scale

networks. The reason is that, during the process of implementation, the storage

used by arc-based formulation is normally larger than the path-based one. For

example, assume that a graph has 1000 arcs and 1000 nodes, then from the arc-

based formulation, we see that there are 1000 variables and 2000 constraints.

On the contrary, there are only 1000 constraints in the path-based constraints.

Moreover, although the paths’ variables in the path-based formulation are much

more than the ones in the arc-based formulation, column generation method

merely uses a small portion of the paths’ variables, which normally requires less

time for solving the same problem.

Column Generation Method

Column generation is a method that allows solving efficiently the LP problems

with a large number of variables. To the best of our knowledge, the original

idea of column generation is proposed by Ford and Fulkerson for solving multi-

commodity flow problem in [30]. We assume that a LP, which is called a master

LP, is to be solved, then the column generation method starts from a restricted

master LP which solves a manageable problem with the same constraint sets but

only a small set of variables of the original problem. By analyzing the partial

solution, we see whether the solution can still be improved. If the solution is not

optimal, we then introduce a column variable in the previous restricted master

LP to enlarge the model, and the new model will be resolved again. Column

generation repeats the process until the problem achieves the optimal solution.

64



The analysis on whether an additional column of variables needs to be added and

which variable is to be introduced is based on a subproblem called pricing prob-

lem which evaluates the reduced cost that is associated with each variable. The

reduced cost measures how much the objective function must be improved before

a variable becomes positive in the solution set. In the maximization problem and

in each iteration of column generation, we find the best positive reduced cost

that can increase the most in the objective function. When there is no positive

reduced cost, the column generation finds the optimal solution.

Returning to the path formulation of the maximum flow problem, we can derive

easily the reduced cost for each path variable:

rp = 1−
∑

a∈p

wa (4.9)

where wa denotes the dual variable for each constraint in (4.7) and can be ob-

tained by solving the restricted master LP. From (4.9), we know that finding the

maximum rp is equivalent to finding the minimum
∑

a∈p wa that is indeed a short-

est path problem for a given graph with arbitrary weights given by corresponding

dual variables.

Algorithm 4.4.2.1 : Column Generation Method for Maximum Flow Problem

1. Choose one arbitrary path variable to create a restricted master of maximum
flow problem (r-MF);

2. repeat
3. Solve r-MF and let ra, a ∈ A be the dual variables of r-MF;
4. Find the shortest path between s and t inG = (V,A) with weights ra, a ∈ A;

5. if The weight of the shortest path is less than 1 then
6. Add ϕp to r-MF;
7. else
8. The optimal solution has been found; exit the algorithm;
9. end if
10. until No path has been added

Max-Flow Min-Cut Theorem

Similar to the cut definition we give in Chapter 3 Sec. 3.3.1, a s− t cut in graph

G = (V,A) is a node partition E(S, T ) where s is in S and t is in T and where

S ⊂ V , T ⊂ V , and S ∩ T = ∅. A minimum cut problem is a problem which

65



finds an s− t cut with minimum sum capacities among all the possible E(S, T ).

Surprisingly, the problem is the dual problem of the maximum flow problem. The

algorithm proposed by Ford and Fulkerson implicitly proves the strong duality

of the maximum flow problem and shows the max-flow min-cut property in [29],

which tells that the value of the maximum flow in a given graph is equivalent to

the minimum sum capacities of a set of edges that can separate s and t.

In 2000, Alshswede et al in [5] extend the max-flow min-cut concept to network

coding flow in telecommunications. In their paper, they characterize the maxi-

mum possible flow that can be multicast from source s to several terminals T ⊂ V .

The maximum flow is equivalent to the minimum value of all the maximum flows

between s and each terminal t ∈ T .

Network Coding Flow

According to the previous section, the maximum NC throughput is then given

by:

NC : ϕ∗(s) = min
t∈T

ϕ∗(s, t). (4.10)

Although the computation of ϕ∗(s) can be done by applying iteratively the cor-

responding max flow algorithm between s and each tk, the problem can also be

captured within a linear programming flow model:

NCbase







maxλnc, (4.11)
∑

p∈Pk

ϕp = λnc, ∀k ∈ K, (4.12)

fa ≥
∑

p∈Pk:

a∈p

ϕp, ∀a ∈ A, k ∈ K, (4.13)

fa ≤ Ca, ∀a ∈ A, (4.14)

ϕp, fa ≥ 0, ∀a ∈ A, p ∈ Pk. (4.15)

In this model, λnc is the unknown throughput value that is to be maximized, con-

straints (4.12) certify that λnc units of flow are indeed sent towards each terminal

(potentially split over several paths), constraints (4.13) are used to compute the

resulting flow on each arc and constraints (4.14) are the so-called capacity con-

straints. Note that the flow variables fa are not really needed in this model (they

could be eliminated by aggregating constraints (4.13) and (4.14)). However, it is

interesting to keep these variables because they give an indication on the amount

of bandwidth that will be used on each arc. Note that constraints (4.13) and

66



(4.14) imply:

max
k∈K

fk
a ≤ fa ≤ Ca, ∀a ∈ A, (4.16)

where fk
a is used, as previously, to denote the right-hand-side of constraints (4.13).

Note that, in an optimal solution of our linear programming model, each flow vari-

able fa can take any value within the bounds specified by (4.16). Since we are

interested in recovering actual flow values, we will assume that fa = maxk∈K fk
a ,

for all a ∈ A (this can easily be achieved by post-optimization or even by consid-

ering an auxiliary problem).

4.4.3 Multicast Routing on Multiple Trees

We already study how to find the maximum throughput when using a single mul-

ticast tree in Chapter 3. But in fact, in a dense graph, the multicast throughput

can still be improved by using several different multicast trees. In this section, we

study how to model multicast routing with multiple trees. There are several ways

to model this problem. We provide here a simple model based on the assumption

that we are able to generate efficiently trees spanning T (the so-called Steiner

trees):

MC1







max
∑

τ∈T

ϕτ , (4.17)

∑

τ∈T

a∈τ

ϕτ ≤ ca, ∀a ∈ A, (4.18)

ϕτ ≥ 0, ∀τ ∈ T . (4.19)

Again, in a given graph, there is a large number of trees which indicates that there

are a large amount of corresponding tree variables. Having the knowledge from

Column generation method, we first derive the reduced cost for a tree variable. If

we denote by wa the dual variable associated with the capacity constraints (4.18),

then the reduced cost of tree τ is:

rτ = 1−
∑

a∈τ

wa. (4.20)

The pricing problem then consists in finding a minimum weight tree (in the

graph weighted by the dual variables wa) rooted at s and spanning the subset of

terminals T ⊂ V . When {s}∪T 6= V , this problem turns out to be a Steiner tree

67



problem which can be sumarized as follows:

ST (w) : min
τ∈T (T )

∑

a∈τ

wa. (4.21)

The formulations of this subproblem is the same as the ones shown in (3.15)−(3.18).

Although the subproblem is NP -hard, but almost all the instance we generated

can still be solved very efficiently, in terms of time consuming, by using com-

mercial solver, for example, Xpress Optimizer. The problem (MC1) is nothing

else than a Fractional Steiner Tree Packing problem [47] which is also NP -hard.

When we use column generation in a medium or large size network, the algorithm

is very efficient, we will confirm this argument in our numerical test section.

Since the number of trees used in a multicast solution is a main concern (because

it impacts greatly whether solutions can be implemented in practice), we also

considered a second phase algorithm where, the optimal throughput value being

fixed, we minimize the number of trees used (which might be smaller than the

number of trees used in the optimal solution).

4.4.4 Multicast Routing on a Limited Number of Trees

Limiting the number of trees in the multicast model adds a significant difficulty

to the model. Indeed, it is necessary to count the trees used to carry some traffic,

so additional binary variables must be introduced into the models:

MCℓ
1







max
∑

τ∈T

ϕτ , (4.22)

∑

τ∈T

a∈t

ϕτ ≤ Ca, ∀a ∈ A, (4.23)

ϕτ ≤ Cxτ , ∀τ ∈ T , (4.24)
∑

τ∈T

xτ ≤ ℓ, (4.25)

ϕτ ≥ 0, xτ ∈ {0, 1} ∀τ ∈ T . (4.26)

Here, the constraint (4.25) limits the number of trees used in a solution to a

maximum of ℓ. The constant C can be set to the maximum of all capacities.

Constraints (4.24) are used to set to 0 the flows on trees when the associated

binary variable is equal to 0.

Since it is intractable in practice to consider explicitly all possible trees of T , to

68



solve (MCℓ
1), one must again consider column generation phases where a pricing

sub-problem is solved to find candidate trees to add into the master problem (as

in Section 4.4.3). However, since the master problem is a MIP, its resolution in-

volves branching phases and the pricing subproblem must be solved in each node

of the branch-and-bound tree (branch-and-price). Moreover, the pricing problem

has to be adapted to fit each local version of the master problem.

One way to avoid this tedious resolution process consists in relying on simple

heuristics where a limited set of candidate trees T̂ ⊂ T is generated in a first

phase (for instance by considering various perturbed versions of the initial master

problem) and then the MIP is solved once with this unique set T̂ :

Algorithm 4.4.4.1 : Simple heuristic for MCℓ
1

Input: directed capacitated graph G = (V,A,C), set of single-source streams
{s, tk, dk}k∈K ;

Output: a lower-bound on the multicast maximum throughput using fewer than
ℓ trees;

1. Solve Problem MC1;
2. If |T MC | ≤ ℓ, then the continuous solution of MC is also optimal for MCℓ

1:
stop the algorithm;

3. Otherwise, let T̂ ← T MC ;
4. Solve problem MCℓ

1 defined over the restricted set of trees T̂ ;

Note that, when ℓ, the number of trees, is small, we have also considered an

alternate exact formulations for (MCℓ
1).

4.5 Numerical Experiments

The previous section provides guidelines to solve the considered maximum through-

put problems. In this section, we use a commercial tool (XPress Optimizer Ver-

sion 21.01.00) to solve LP (Linear Programming) and MIP (mixed Integer Pro-

gramming) problems.

We have conducted several computational experiments on directed and on bi-

directed euclidean instances. These instances were randomly generated using

Algorithm 4.5.0.2.

Series of 100, 1000 or even 10,000 random instances have been generated for

several sets (n,m, ks, kt). Note that for bidirected instances, m represents the

number of links, so that the number of arcs is 2m. For directed instances, for

69



Algorithm 4.5.0.2 : Generate Directed/Bidirected Instance

Input: number of nodes n, number of arcs m, number of sources ks, number
of terminals kt, a geographical box Ω = [a1, b1] × [a2, b2], a capacity interval
[Cmin, Cmax];

Output: a connected capacitated undirected graph G = (V,E,C) within Ω;
1. Generate uniformly n nodes in Ω→ V ;
2. Compute a minimum distance spanning arborescence/tree in the complete

graph Kn;
3. Randomly add m−n+1 arcs/edges with a probability inversely proportional

to the distance between the end-nodes;
4. Randomly generate arc/edge capacities in [Cmin, Cmax];

each edge {i, j} to generate, we decide randomly to introduce arc (i, j), arc (j, i)

or both at a time. We have applied our maximum throughput algorithms on all

these instances and average results are reported.

The first surprising result is that, over all the generated instances, directed and

bidirected, we could not find a single one where network coding (NC) had a

larger maximum throughput than multicast (MC). However, when we considered

multicast with a limited number of trees (MC-ℓ), the situation was quite differ-

ent. Figure 4.3 shows the relative throughput values (100% means NC and MC

throughput) achieved when restricting multicast to use only 1, 2 or 3 trees. We

see that the throughput value decreases as the number of trees decreases. The

general trends are very similar for the directed and bidirected instances. The

reduction of throughput is much more important when the instances are denser

(about 6n edges for the first instance set and 3n edges for the other). This is due

to the fact that a limited number of trees cannot exploit the full potential offered

by the network whereas Network Coding does. In traditional telecommunication

networks, the average degree is usually rather low (say between 3 and 5). The

observations made on the four last series of instances show that there is still a

significant throughput reduction (from 13 to 25 %) when using up to 3 multicast

trees, when compared to a network coding solution. Network coding should hence

be considered by network administrators as a very attractive alternative solution

to standard routing solutions.

Figure 4.4 gives some insight on the number of trees required in a multicast set-

ting to reach the same throughput as if NC was used. The resulting numbers fall

within the boxes for 50 % of the generated instances (and within the intervals for

90 % of the instances). We can observe that the variance in the optimal num-

70



Figure 4.3: Throughput comparison between multicast and network coding:
(Note that the legend, for example 20 240 10, denotes a random generated graph
that has 20 nodes, 240 arcs, and 10 out of 20 nodes are terminals. This type
of legend will be used through the rest of this chapter.) Relative throughput
achieved for MC with 1, 2 and 3 trees over different sets of instances (given by n,
m and kt, all with a single source: ks = 1). The values provided are the average
over 100 random instances of each type. The maximum (100 %) corresponds to
the NC and unrestricted MC throughputs.

ber of trees is quite high, some instances requiring relatively few trees whereas

others require a large number of trees. The ranges and values decrease when

the number of terminal increases. This can be related to the fact that, thanks

to Edmonds arborescence packing theorem [25], the theoretical gain of Network

71



Figure 4.4: Statistical result of the number of trees for achieving optimal through-
put: for each set (indicated on the x-axis), 100 random instances are gener-
ated and the minimal number of multicast trees required to obtain the optimal
throughput is computed. The resulting values for 50% of the instances fall within
the boxes (and for 90 % within the intervals).

Coding throughput vanishes when ALL nodes are terminal. If five trees would

be considered as a reasonable upper-limit for operators to handle, then, in most

cases, the NC throughput would not been achieved with multicast. On the other

hand, ten trees would often suffice for small networks.

In Figure 4.5, we provide the average, over all generated instances of a given series,

of the computing times for obtaining the optimal throughput values using our

models. We clearly see that multicast throughput computations generally take a

few minutes whereas network coding throughput computation is instantaneous.

Computations for a single multicast tree are also very fast, but for values larger

than 2, the problem becomes increasingly long to solve. We have performed many

other computational experiments, including some with multiple source instances,

and the main observations remain generally the same.

4.6 Considerations on Some Small Instances

The main outcome of our first numerical experiments is that Network Coding

(NC) never seems to outperform the throughput allowed by Multicast solutions

(MC). Focusing more on small size instances, the results in Table 4.1 show that all

72



Figure 4.5: Average computing times (in seconds) for solving the various maxi-
mum throughput problems.

uniform instances (all capacities are equal to 1) generated with 7 to 10 nodes have

the same maximum throughput with NC and MC. In particular, this means that

our generator was not able to reproduce the ”classical” butterfly network. To get

some insight on this surprising phenomenon, we decided to perform an exhaustive

search for the restricted case of graph with 7 nodes, 1 source, 2 terminals and

all capacities equal to 1. To limit somewhat the search, we have only considered

instances with at least two outgoing arcs from the source and with at least two

incoming arcs into the terminals. Among the 950,951 possible graphs (removing

18,016 disconnected cases), only 96 showed a non-zero gap between NC and MC.

In fact, these 96 cases can be essentially reduced to the 3 graphs displayed in

Figure 4.6, all other cases being symmetrically equivalent to those 3. Observe

that the first one is the classical butterfly graph, whereas the two other are

small variants. If we consider a uniform distribution among all graphs, then the

probability to pick a graph with a non-zero gap is about 0.01%.

One step further in this line of research consists, instead of enumerating all possi-

ble instances of a certain type, in considering the problem of finding the maximum

gap as an optimization problem. For this purpose, we define binary design vari-

ables xa ∈ {0, 1} which will be set to 1 for the arcs that are kept in the final

topology (assuming we start from a potentially fully meshed topology, i.e., a

73



Set n m ks kt λNC λMC # trees

Instances n rand rand
AVG 7 14.35 1 4.03 2.95 2.95 4.83
MIN 7 8 1 2 1 1 1
MAX 7 21 1 6 6 6 30
AVG 8 18.24 1 4.52 3.25 3.25 6.15
MIN 8 9 1 2 1 1 1
MAX 8 28 1 7 7 7 42
AVG 9 22.71 1 5 3.54 3.54 7.3
MIN 9 10 1 2 1 1 1
MAX 9 36 1 8 8 8 56
AVG 10 27.81 1 5.43 3.9 3.9 9.08
MIN 10 11 1 2 1 1 1
MAX 10 45 1 9 9 9 72

Table 4.1: Statistical results in random graphs with uniform capacities:(average
over 1000 instances) results for the single-source case with uniform capacity Ca =
1, ∀a.

s

a b

c

d

t1 t2

s

a b

c

d

t1 t2

s

a b

c

d

t1 t2

Figure 4.6: The only 3 graphs with a non-zero gap (of 0.5) between NC and MC
throughput (in the case of uniform capacity Ca = 1, ∀a).

complete graph). We will also assume that the number of nodes n, the number of

streams m are given, as well as candidate capacities Ca, one for each arc. Here,

we will mainly consider uniform capacity models (Ca = 1, ∀a ∈ A) and single

source models. Hence, in the instances, kt will specify the number of terminals.

So, for instance, the setting (n = 10, kt = 5) concerns all instances with 10 nodes,

one source node and 5 terminals. The optimization problem then consists in find-

ing the subgraph of Kn with kt terminals, where the gap between NC and MC

74



throughput is maximal. So basically, the problem could be summarized as:

∆∗(NC,MC) = max
xa∈{0,1}

(λ∗
NC − λ∗

MC) , (4.27)

where λ∗
NC and λ∗

MC are the maximum throughput achieved by NC and MC,

respectively, and are thus, the results from their own maximization problems.

For the NC throughput maximization problem, we are going to rely on arc-flow

variables (instead of flow-path variables as used up to now): λ∗
NC(x) =

λ∗
NC(x) =







maxλ, (4.28)
∑

a∈δ−(v)

rka −
∑

a∈δ+(v)

rka = bkv(λ), ∀v, k, (4.29)

rka ≤ caxa ∀a, k, (4.30)

rka ≥ 0, ∀a, k. (4.31)

Since we need to substract MC maximum throughput in our global problem, we

choose to express λ∗
MC in a LP-dual form:

λ∗
MC(x) =







min
∑

a∈A

caxava, (4.32)

∑

k∈K

(πk
s − πk

tk) = 1, (4.33)

uk
ij ≥ πk

i − πk
j , ∀i, j, k, (4.34)

va ≥
∑

k∈K

uk
a, ∀a, k, (4.35)

πk
i , u

k
a, va ≥ 0, ∀a, i, k. (4.36)

This is the standard dual formulation of an equivalent arc-flow formulation of

MC1 (eq. (4.17)-(4.19)). Note that, when we consider both problems jointly in

(4.27), the objective of the MC throughput optimization subproblem becomes

non-linear (product of variables xa and va). Using standard linearization tech-

niques, we can obtain a single MIP formulation for the joint problem (4.27). As

it is often the case in such linearized problems, the continuous relaxation bound

is very weak. To further tighten the model, we have also used series of symmetry

breaking constraints, in order to avoid to consider multiple similar solutions.

Plugging this model in the Xpress solver, we were able to solve a few small size

instances (see Table 4.2). It is interesting to note that, for uniform instances with

7 and 8 nodes, the only cases with a non-zero gap between NC and MC maximum

throughput are the ones having 7 nodes with 2 destinations, 8 nodes with 2 or

75



n k ca ∆∗(NC,MC) λ∗
NC λ∗

MC m cpu (sec)

7 2 1 0.5 2 1.5 9 0.8
7 3 1 0 - - - 0.2
7 4 1 0 - - - 0.1
7 5 1 0 - - - 0.1
7 6 1 0 - - - 0.1
8 2 1 0.5 3 2.5 13 380
8 3 1 0.5 2 1.5 11 12
8 4 1 0 - - - 0,5
8 5 1 0 - - - 0,1
8 6 1 0 - - - 0,1
8 7 1 0 - - - 0,1

Table 4.2: Results for computation of maximum throughput gap between NC
and MC (uniform instances).

s

v1

t1 t2

(a)

v2

v4

v3

v5

s

v1

t1 t3

(b)

t2

v2

v4

v3

Figure 4.7: Two 8 nodes graphs whit a 0.5 gap between uniform NC and MC
throughput maximum flows.

3 destinations. The first case corresponds to the classical ”butterfly network”.

Two graphs for the 8 nodes, 2 or 3 terminals case are displayed in Figure 4.7. It

is easy to check that, in these two graphs, the gap is indeed 0.5.

Note that we have used here an experimental way of establishing the following

result:

Lemma 4.6.1. Consider directed networks with n nodes (n = 7 or 8), unit

capacities ca = 1, ∀a ∈ A), a single source and k terminals (different from the

76



source node). If n = 7 and k ≥ 3 or n = 8 and k ≥ 4, then network coding does

not improve the throughput with respect to standard multicast.

4.7 Conclusion

In this chapter, we have used algorithms mainly based on LP and MIP models,

to solve large sets of throughput maximization problems, using either Multicast

routing (MC) alone, or combined with Network Coding (NC) techniques. Our

main finding is that situations where network coding improves the throughput

almost never occur, and is only obtained in very specific instances, and this ob-

servation holds for directed and bi-directed settings. However, when we consider

routing scenarios where the number of multicast trees is limited, network coding

clearly allows a very significant improvement in throughput, apart from all other

advantages of network coding that have already been largely advertised in the

literature.

77



78



Chapter 5

Strategic Network Coding

Pure mathematics is, in its way, the poetry of logical ideas.

-Albert Einstein (1879-1955)

5.1 Summary

W
e consider the problem of introducing network coding in a network in a

manner that balances the benefits obtained from coding with the costs of

providing coding, where such costs depend both on the number of nodes perform-

ing coding and the volume of traffic that is coded. Previous work [53, 55] and [68]

has envisaged either the minimization of the number of nodes performing coding,

which is a NP-hard problem, or the trade-off between the volume of the coded

traffic and the throughput gains obtained from coding. We provide an optimiza-

tion framework that considers both parameters jointly and also considers the use

of duplication versus coding at nodes. Traffic is multicast in a hybrid way that

combines a tree with a coded multicast graph. Our results indicate that the gains

of coding, which increase markedly with graph density, can be obtained with very

few nodes’ performing coding, but that most, though by no means all, traffic in

a multicast session should be coded for the bulk of the throughput gains to be

achieved for that session.

79



5.2 Introduction

According to the observation from the last chapter, we know that network coding

outperforms, in terms of throughput gain, multiple multicast routing strategy,

in terms of throughput gain, when the number of multicast trees is limited. In

this chapter, we are interested in evaluating the benefit of introducing limited

network coding within a multicast meshed network. By ”limited”, we intend to

capture the practical issue of a network operator that would like to deploy some

network coding without disrupting too much the existing architecture and routing

schemes, and remain with a limited budget. To deploy network coding, one needs

to install coding and decoding software within the routing equipments (or nodes).

A first way to control the network coding budget consists in limiting the number

of nodes where coding is actually deployed. Moreover, one could also consider

limiting the number of nodes where decoding is activated. But in a multicast

setting where several (potentially many) users require the same content, offer-

ing the benefit of coding/decoding only to a subset of users could seem unfair.

Alternatively, it could be an incentive for users to take in charge a part of the

decoding cost. If we assume that the network operator wishes to offer the same

service to all its clients, then the decoding features should be installed on every

access node. In this case, another way to limit the cost incurred by decoding is

to apply the decoding only to a small fraction of the overall traffic. This way, the

decoding software would have to treat smaller volumes of data and would hence

require less CPU. Going further, we could hence also argue that this would limit

the energy consumption on the decoding equipments.

The problem of evaluating the cost of a network coding solution is not new. Sev-

eral papers deal with cost evaluation and cost minimization of network coding

schemes within multicast networks [69, 70, 71]. In these papers, the cost crite-

rion is the cost of sending traffic over links (link cost). In [68], the author already

considered a combination of multicast and network coding, but the multicast set-

ting is based on a tree-packing model and does not consider solutions with small

number of multicast trees. In [53, 55], a Genetic Algorithm is used to find the

minimum number of coding nodes required to achieve a given throughput value.

It is shown that the related problem is NP-hard and that, most of the times, very

few coding nodes are sufficient to provide the maximum throughput benefit. In

[17], a greedy algorithm is proposed to locate a set of network coding nodes in

order to minimize an estimated decoding delay.

80



In this chapter, we propose to evaluate various scenarios where limited network

coding is introduced in an existing (or together with a) multicast meshed network.

It is well-known that a general multicast network can achieve almost the same

throughput as a network coding solution [66, 67, 86]. However, these optimal

multicast solutions often involve a very large number of trees, which makes them

impractical. Conversely, when only a small number of multicast trees is used,

the throughput can be very small as compared to network coding throughput

[39]. This is why, in this chapter, we focus on routing schemes based only on

one or two multicast trees, which seems reasonable to manage for a same service.

Within this setting, we will consider additional, but limited, network coding fea-

tures aiming at improving the overall throughput.

We compute the various throughput values using generic flow models (a flow in

a graph modeling a stream) formulated as linear or mixed-integer programming

problems. Some of these models are already well-known, but the novelty lies in

the way we combine them in order to capture the various considered scenarios.

Most of the problems we consider are NP-hard (for instance, the Steiner tree

problem to design a single multicast tree, or the fractional Steiner tree packing

problem to evaluate the throughput using several multicast trees), but using effi-

cient models together with modern solving tools, we were able to obtain optimal

solutions for all considered instances.

The contribution of this chapter is twofold: the various mixed-integer program-

ming models we propose to compute the maximum throughput in several mixed

scenarios combining network coding and multicast routing are, to the best of our

knowledge, new, or have not been used in such a context. The second contribution

is the findings we obtain when using these models: we found out that network

coding can be introduced progressively in an existing multicast network (based

on a limited number of multicast trees) while immediately producing a benefit in

terms of throughput. To gain the full network coding benefit, a significant share

of the traffic must be treated with network coding. We also observe that a few

coding nodes suffice to produce the full throughput gain.

This chapter is organized as follows: in Section 5.3, classical flow models for com-

puting maximum throughput, either using network coding or a single multicast

tree, are reminded. Section 5.4 provides our assumption regarding the way cod-

ing or multicast replication functionalities can be modeled by observing the flow

traversing a given node. In Section 5.5, we describe our extended models allowing

81



to control the number of coding/multicast nodes and to combine network coded

traffic with the traffic sent on a single multicast tree. In Section 5.6, we describe

in detail the results obtained on three butterfly-like instances. More numerical

results based on randomly generated instances are proposed and analyzed in Sec-

tion 5.7. Finally, in Section 5.8, we give some arguments to justify our models

and show that they are quite efficient in practice.

5.3 Classical Flow Models

5.3.1 Notations

In this chapter we will use some notations that have already been defined in

Chapter 4 Section 4.4.1, and we reproduce them here for convenience.

The network is modeled as a directed capacitated network G = (V,A,C) where

Ca > 0 is the capacity of arc a ∈ A, nV = |V |, nA = |A|. In the network,

one source node s that have some data content may interest some other nodes

tk ∈ T, T ⊂ V where nT = |K| and k = 1, 2, . . . , |K|. We call the nodes in the set

T terminals. The network sets up a multicast session between s and T by using

either multicast protocol or network coding.

We denote by Pk or Pstk the set of simple paths (without cycles) between s and

tk, and by P =
⋃

k∈K

Pk the set of all paths. Similarly, we denote by T (r, U) the

set of trees rooted at r ∈ V and spanning U ⊂ V \ {r}. If the root node or the

set of spanned nodes is obvious from the context, they will be omitted in the

notation. For any subset of nodes W ⊂ V , we denote by δ+G(W ) and δ−G(W ) the

set of arcs leaving and entering W in the graph G, respectively. Again, the graph

in subscript will be omitted if it is clear from the context. When the set W is

reduced to a singleton {v}, we will use the notations δ−(v) and δ+(v) (instead of

δ−({v}) and δ+({v})).

Moreover, we denote by S the set of nodes that are neither sources nor terminals

(sometimes called Steiner nodes). Considering any subset of arcs Q ∈ A, and a

vector (xa)a∈A, we will often use the notation x(Q) instead of
∑

a∈Q xa.

To model the throughput maximization problems, we will mainly use the following

flow variables:

82



❼ fk
a is the total flow sent from s to tk on arc a ∈ A.

❼ fa is the total flow on arc a ∈ A, f(i,j) is the total flow on arc (i, j) ∈ A.

❼ ϕk
p is the total flow sent on path p ∈ Pk (and simply ϕp for the total flow

on path p ∈ P).

❼ ϕτ is the total flow on the tree τ .

5.3.2 Network Coding Model

The network coding model has been given in Chapter 4, Section 4.4.2, with

very explicit explanation, in order to keep the independence for each chapter, we

reprint the model here again.

NCbase







maxλnc, (5.1)
∑

p∈Pk

ϕp = λnc, ∀k ∈ K, (5.2)

fa ≥
∑

p∈Pk:

a∈p

ϕp, ∀a ∈ A, k ∈ K, (5.3)

fa ≤ Ca, ∀a ∈ A, (5.4)

ϕp, fa ≥ 0, ∀a ∈ A, p ∈ Pk. (5.5)

We denote by Ωbase the set of feasible (throughput, flow) vectors defined by the

constraints of NCbase (5.2)−(5.5) and by Ω◦
base, the same set where the capacity

constraints (5.4) are removed (relaxed). We will use these notations later to define

our extended models.

5.3.3 A Single Multicast Tree Model

Spanning trees and Steiner trees have been studied for a very long time, but

most of the times with the objective to minimize the cost of the tree. The usual

model for multicast network throughput evaluation is the Fractional Steiner Tree

Packing (FSTP) problem which is known to be NP-hard [47]. Note that, in this

chapter, we use the term tree, although we should use the term arborescence since

we use a directed graph. The classical models for FSTP are based on tree vari-

ables and can be solved using column-generation techniques but this model is not

easy to modify to limit the number of trees.

83



Here, we provide a model for maximizing the throughput within a single multicast

tree. Strictly speaking, it is hence not really a ”classical” model, but it is largely

inspired by existing models. Indeed, we use a directed Steiner tree model and

adapt it to our objective of maximizing the flow from the common source towards

all terminal nodes. This model is very similar toNCbase except that a set of binary

variables are introduced to model the tree:

MC1tree







maxλtree, (5.6)

(λtree, f) ∈ Ωbase,

y(δ+(s)) ≥ 1, (5.7)

y(δ−(v)) ≤ 1, ∀v ∈ S, (5.8)

y(δ−(v)) = 1, ∀v ∈ K, (5.9)

fa ≤ Ca × ya, ∀a ∈ A, (5.10)

fa ≥ 0, ya ∈ {0, 1}, ∀a ∈ A. (5.11)

Constraints (5.7), (5.8) and (5.9) define the arcs used in the tree (at least one

out-going arc from the source, at most one in-coming arc in each non-terminal

node and exactly one in-coming arc in each destination node). Constraints (5.10)

link the binary tree variables with the flow variables within a capacity constraint.

We denote by Ωtree the set of feasible (throughput, flow) vectors defined by this

problem and by Ω◦
tree, the same set where the capacity constraints are removed.

Note that, with this model, we might endup with some extra arcs identified by ya

variables, but without any impact on the optimal solution (these arcs can easily

be trimmed within a post-optimization phase).

5.4 Controlling the Transit across the Nodes

Since we are interested in tracking the functionalities of a node (does it code ?

or replicate ?), we need to define a way to map these functionalities with the fea-

tures of the nodes in our flow model. Figure 5.1 illustrates what we can directly

derive from the NCbase model on a small example: optimizing the model, one

obtains a maximum throughput value of 3 and the resulting aggregated flows fa

(as depicted in the Figure). We could hence assume that there is a solution with

a throughput value of 3 and where 2 nodes are coding (nodes v4 and v5) and 5

nodes are performing multicast (nodes v1, v2, v3, v6 and v7).

In this small example, it is easy to derive such a detailed solution (it is depicted

84



s

v1 k1

k3

k2v2

v4

v3

v5

v6

v7

(1)

(1)

(1)

(1)
(1)

(1)

(2)

(1)
(1)

(1)

(1)
(1)

(1)

(1)

(1)

(1)

(1)

(1)

coding node

multicast node

Figure 5.1: Results of NCbase model on a double butterfly instance: the values
indicated in brackets are the fa aggregated flow values (they all correspond to
the arc capacities, in other words, all arcs are saturated).

in Figure 5.2). It is interesting to observe that node v2 is replicating stream b on

two outgoing links and forwarding stream c on a third link. Of course, node v2

could also have coded the two streams and multicast the resulting combination on

the three outgoing links. There are many different ways to achieve the maximum

throughput value of 3.

Based on these observations, we characterize the nodes according to the flow

balance between the incoming and outgoing links:

∆(f, v) = f(δ−(v))− f(δ+(v)). (5.12)

Given a flow f (resulting from a throughput λ), a node v will be called a ”cod-

ing node” if ∆(f, v) > 0, a ”multicast node” if ∆(f, v) < 0, and a ”unicast” or

”neutral node” if the flow is balanced.

In order to track or to force specific behavior on some nodes, we need to introduce

additional binary variables: the variables xnc
v ∈ {0, 1} are used to identify the

85



s

v1 t1

t3

t2v2

v4

v3

v5

v6

v7

a

a

a

a

a

a

b

b

c

c

a⊕b

b

a⊕c

a

b

c

uncoded streams

coded streams

Figure 5.2: A translation of the aggregated flow results of Figure 5.1 using three
unit streams a, b and c.

coding nodes and the variables xmc
v ∈ {0, 1} are used to identify the multicast

nodes. Without loss of generality, we will assume here that the same node cannot

perform both functions. This is also in line with our aim to minimize extra

network management tasks. The general case can be mapped into our simplified

case by a simple graph transformation, where each node is split into one input

node and one output node (see Figure 5.3).

v

δ−(v) δ+(v)

graph

transformation
vin vout

δ−(v) δ+(v)

Figure 5.3: Transformation of a general graph so that each node can be tagged
exclusively as ”coding”, ”multicast” or ”neutral”.

86



5.5 Extended Throughput Maximization Mod-

els

5.5.1 Controlling the Number of Coding/Multicast Nodes

Based on the observation of the previous section, we are now ready to define our

first extended model:

NCext1







maxλ, (5.13)

(λ, f) ∈ Ωbase,

f(δ−(v))− f(δ+(v)) ≤Mxnc
v , ∀v ∈ S, (5.14)

f(δ+(v))− f(δ−(v)) ≤Mxmc
v , ∀v ∈ S, (5.15)

xnc
v (S) ≤ Nnc, (5.16)

xmc
v (S) ≤ Nmc, (5.17)

fa ≥ 0, ∀a ∈ A, (5.18)

xnc
v , xmc

v ∈ {0, 1}, ∀v ∈ S. (5.19)

Constraints (5.14) and (5.15) allow to track or to switch on or off the ”coding”

and ”multicast” property of the nodes. Constant M stands for a ”big-M” (a value

large enough to deactivate the constraint when the binary variable is set to 1).

Since the capacities on the links are limited, we can easily derive upper-bounds for

these excess or shortage values: we can indeed use the values M = C(δ−(v)) for

(5.14) and M = C(δ+(v)) for (5.15). Note that the constraints xnc
v +xmc

v ≤ 1, for

each node v ∈ V , are implicitly satisfied by our model (because the left-hand-side

of (5.14) and (5.15) cannot be strictly positive and strictly negative at the same

time). In this model, our aim is to limit the number of coding and multicast

nodes below given threshold values Nnc and Nmc. This limitation is obtained

through the constraints (5.16) and (5.17).

Note that we could also consider a more general ”budget” constraint, where

given an available budget B, unit costs cnc and cmc for deploying network coding

or multicast in a node, the total cost of deploying coding/multicasting should

remain within the budget:

∑

v∈S

cncxnc
v +

∑

v∈S

cmcxmc
v ≤ B. (5.20)

In this model, we mainly consider the cost brought to network operators, that is

why the decoding cost is not in the model. The next model in Section 5.5.2 will

87



consider the decoding cost on the end users’ side.

It should be noted that this problem involves binary variables and is hence proba-

bly not as ”easy” as NCbase model which is pure (continuous) linear programming

problem. In fact, it has been proved in [55] that the related problem of mini-

mizing the number of coding nodes given a throughput value is NP-hard. As a

result, this reverse problem is also NP-hard (since the decision problems are the

same).

In this first extended model, we assume that the multicast nodes can perform a

partial replication of the incoming flows towards some (but not necessarily all)

outgoing arcs. If we are more interested in modeling a broadcast-type behaviour,

then all incoming traffic should be replicated over all outgoing links. To model

broadcast nodes, we need to modify slightly our extended model. We use binary

variable xbc
v (instead of xmc

v ) together with constraints similar to (5.15), to allow

and enforce broadcasting on certain nodes. With our flow model, we must ensure

that, if broadcasting is activated on a node v ∈ S (xbc
v = 1), then all incoming

flows are replicated towards ALL outgoing arcs. This can be achieved with the

following constraint:

fa ≥ f(δ−(v))− C(δ−(v))(1− xbc
v ), ∀v ∈ S, a ∈ δ+(v). (5.21)

When xbc
v = 1, the constraint is active (by removing the last term), otherwise,

it is inactive (because the right-hand-side becomes less than 0). Model NCext2

is defined by replacing the variable xmc
v by xbc

v in NCext1 model and by adding

constraints (5.21).

5.5.2 Combining Pure Network coding With One or Two

Multicast Trees

We now define new models to evaluate the throughput achieved by sending un-

coded traffic on one or two multicast trees and simultaneously sending coded

traffic throughout the network. We hence need to combine problem NCbase with

problem MC1tree and sum the two types of traffic in order to satisfy a global

capacity constraint. The problem we define involves a parameter α ∈ [0, 1] in-

dicating how the traffic should be split in the network coding subgraph and the

88



multicast tree:

NC1T (α)







maxλ, (5.22)

λ = (1− α)λnc + αλtree, (5.23)

(λnc, fnc) ∈ Ω◦
base, (5.24)

(λtree, f tree) ∈ Ω◦
tree, (5.25)

fnc
a + f tree

a ≤ Ca, ∀a ∈ A, (5.26)

fnc
a , f tree

a ≥ 0, ∀a ∈ A. (5.27)

In this problem, we hence maximize a global throughput value λ that is shared

among network coding and one multicast tree according to the parameter α. Note

that, when α = 0, the problem reduces to NCbase model and when α = 1 the

problem reduces to MCtree problem.

To analyze the case where two distinct multicast trees are used together with

network coded flow, we define the problem NC2T (α) in a similar fashion, except

that two different sets of tree variables and constraints must be added within the

same problem. The throughput constraints (5.23) are replaced by:

λ = αλnc + (1− α)/2λtree1 + (1− α)/2λtree2, (5.28)

and the capacity constraints (5.23) are replaced by

fnc
a + f tree1

a + f tree2
a ≤ Ca, ∀a ∈ A, (5.29)

where the three types of flows are summed up on each arc.

5.6 Computational Experiments on Some Butterfly-

like instances

The various models presented in the previous sections have been coded with the

modeling language embedded in the commercial solver Xpress MP. The Xpress

Optimizer (Version 21.01.00) has then been used to solve to optimality various

instances of the considered problems.

We have first tested our models on three small toy instances built around the

famous butterfly topology. The first instance, called butterfly 1 is the standard

butterfly network (see Figure 5.4).

89



S

E F

A B

C

D

a b

a b

a
a⊕ b

b

a⊕ b a⊕ b

Figure 5.4: Butterfly Network

Nmc

Nnc 0 1 2 3 4 5 ∞
0 1.333 2 2.667 2.667 2.667 2.667 2.667
1 1.333 2 2.667 2.667 3 3 3

N bc

Nnc 0 1 2 3 4 5 ∞
0 1.333 2 2.667 2.667 2.667 2.667 2.667
1 1.333 2 2.667 2.667 2.667 2.667 2.667
2 1.333 2 2.667 2.667 2.667 3 3

Table 5.1: Optimal throughput values obtained with models NCext1 and NCext2

on the butterflyx2 1 instance.

The second, called butterflyx2 1 is the double butterfly network depicted in Figure

5.1 (note that the capacity on arc (s, v2) is 2 whereas it is 1 everywhere else). The

third instance, called butterflyx3 1 is a cyclic triple butterfly instance depicted in

Figure 5.5 (all arc capacities are equal to 1).

Using our extended models NCext1 and NCext2, we could evaluate the different

throughput values obtained in butterflyx2 1. These values are reported in Table

5.1. We can see that the same value of maximum throughput (equal to 3) can

be obtained using only one coding node and four multicast nodes. With less

coding/multicasting nodes, the throughput decreases to 2.667 (8/3). Using only

unicast, the throughput is equal to 1.333 (4/3).

If we observe again Figure 5.2, we see that the solution requires to deploy a rather

complex multicast scheme (for instance on node v2). It would be simpler, from

90



s

v1 t1

t3

t2v2

v5

v3

v6

v8

v9

a

a

a

b

b

c

a⊕b

b

⊕a

⊕c

v4 v7

c

c

c

a
c

b

Figure 5.5: Cyclic triple butterfly instance.

an operational point of view, to use broadcast (limited to certain nodes) instead

of multicast. Using model NCext2, we obtain slightly different results. We see

for instance, that at least two network coding nodes are required to reach the

optimal throughput.

Similar results for butterflyx3 1 are reported in Table 5.2. We can observe that

there is much more variety in the achieved throughput values. When using mul-

ticast replication together with network coding, the number of multicast nodes

seems to have a much larger impact on the throughput than the number of net-

work coding nodes. When using broadcast instead of multicast, we see that both

functionalities need to be used together and the impact of the number of coding

nodes becomes significant.

To evaluate the impact of a combined use of network coding together with a few

multicast trees, we have used our models NC1T (α) and NC2T (α). The resulting

throughput curves appear in Figures 5.6 (for one multicast tree) and 5.7 (for two

multicast trees).

The network coding throughput values on the left of the x-axis (α = 0) are the

91



Nmc

Nnc 0 1 2 3 4 5 ∞
0 1 1.5 1.8 2 2 2 2
1 1 1.5 1.8 2.2 2.333 2.333 2.333
2 1 1.5 1.8 2.2 2.333 2.5 2.5
3 1 1.5 1.8 2.2 2.333 2.5 3

N bc

Nnc 0 1 2 3 4 5 ∞
0 1 1.333 1.5 2 2 2 2
1 1 1.5 1.667 2 2 2 2
2 1 1.5 1.8 2 2 2 2
3 1 1.5 1.8 2.2 2.333 2.5 3

Table 5.2: Optimal throughput values obtained with models NCext1 and NCext2

on the butterflyx3 1 instance.

Figure 5.6: Throughput gain in butterfly network by mixing a single tree and
network coding:Throughput (1−α)λNC +αλ1T obtained when splitting the flow
over a network coding sub-graph and a single multicast tree.

same in both Figures but we see that, with two multicast trees, the multicast

throughput on the right of the x-axis (α = 1) increases from 1 to 2 for the

butterflyx2 1 instance. We also see, on the same instance, that with 30% multicast

traffic (or less), network coding is able to manage the remaining traffic in order

to reach the maximum throughput (of 3). The general trend of the curves is, as

expected, decreasing (more traffic is sent on multicast trees, less throughput is

achieved), but it also appears that the amount of network coding needed in order

to have a significant impact on throughput is rather large (around 50%).

92



Figure 5.7: Throughput gain in butterfly network by mixing two multicast trees
and network coding: Throughput (1−α)λNC +αλ1T obtained when splitting the
flow over a network coding sub-graph and two multicast trees.

Figure 5.8: Various combinations of throughput values obtained on instance but-
terflyx2 1 when progressively reducing the share of multicast traffic.

The final Figure 5.8 gives an interesting view of the benefit that can be expected

from a limited introduction of network coding within a multicast network. Start-

ing with two multicast trees, the throughput obtained is 2. By reducing the

93



throughput on these two multicast trees to a value of 1.8, the global throughput

then goes to 2.2 by the introduction of network coding. The more the share

of multicast throughput is reduced, the more the global throughput increases,

thanks to network coding.

5.7 Computational Experiments on Randomly

Generated Instances

Before giving numerical results, we first show an example of different optimal

routings in a random generated graph in Figures 5.9, 5.10 and 5.11. These tree

graphs are the screenshots of a random graph with 21 nodes, 120 links and 10

terminals but with different routing strategies. Figures 5.9, 5.10 and 5.11 apply

respectively, pure network coding, single multicast tree, and strategic network

coding in which single multicast tree and network coding are used.

Figure 5.9: Optimal network coding flow in a random graph: example of graph
with 21 nodes, 120 links and 10 terminals: a solution with network coding only
(α = 0, throughput = 15).

94



Figure 5.10: Optimal single multicast tree in a random graph: example of graph
with 21 nodes, 120 links and 10 terminals: a solution with a single multicast tree
only (α = 1, throughput = 6).

From the graphs shown in Figures 5.9, 5.10 and 5.11, we make some observations:

network coding still performs the best, in terms of throughput gain; the single

multicast tree involves the least number of arcs in sending information, but the

throughput declines dramatically compared to network coding; strategic network

coding achieves a throughput very close to the one obtained by network coding,

but the amount of network coding flow has a significant decrease. That is, in-

deed, the benefit that we expect from the mixed routing strategy, could maintain

a relatively high throughput but also reduces complexity by using network coding.

For the numerical experiments, the instances have been randomly generated (in

a similar fashion as the graph generator in Chapter 4) first by building a strongly

connected graph (with one path between the source node and each one of the

terminals) and then progressively increasing the density of the graph up to a

required level. Arc capacities are randomly generated in the interval [0, 10]. For

given sets (n,m,Nt), series of 100 instances have been randomly generated and

average results are now reported.

95



Figure 5.11: Optimal strategic network coding in a random graph: example
of graph with 21 nodes, 120 links and 10 terminals: an intermediate solution
(α = 0.5), throughput = 12).

5.7.1 Bridging the Gap Between Network Coding and

Multicast

Several experiments in Chapter 4 have shown that a multicast strategy can offer

almost as much throughput as network coding, but the number of multicast trees

needed can be large. Since this is not affordable in most practical settings, we

consider here the case where only one multicast tree is used. In this case, there

is a huge gap between the multicast and the network coding throughput. This

is confirmed by our first series of computational experiments. Figure 5.12 shows

the (average) relative throughput values obtained using also some intermediate

strategies (100% represents the pure network coding throughput - not depicted

in the figure):

❼ NC+BC: network coding with broadcast (on some nodes);

❼ NC(p=1)+BC: the same as NC+BC but with only one coding node;

❼ NC(p=2)+BC: the same as NC+BC but with only two coding node;

96



❼ MC(1t): multicast but with only one tree.

Figure 5.12: Percentage of the maximum throughput for different routing strate-
gies: percentage of the maximum throughput observed when considering various
coding/replication strategies (100% for NC), for various sets of instances.

We can make the following observations: throughput obtained with a single mul-

ticast tree MC(1t) is always much below the maximum (network coding) through-

put. Imposing broadcast (BC) instead of partial replication (multicast) within

a network coding scheme (NC) has a very small impact on the throughput. In

the densest instances (20 240 10), the reduction in throughput can reach almost

10%, but such instances are not very realistic, since telecommunication networks

are usually much sparser. Finally, and this is perhaps the most surprising ob-

servation, in almost all cases, a single coding node is sufficient to reach the best

possible throughput value. This militates very much in favor of network coding

because the cost of deploying coding over a single node might be low.

One step further along this line, we have compared the impact of the number of

coding nodes with another important parameter for deploying network coding,

namely the total capacity of the incoming links connected to each terminal node,

which are often bottleneck links in telecommunication networks. In our model,

we have chosen to consider instead the in-degree of each terminal nodes, which

we have intentionally bounded to small values (1, 2 or 3 in our experiments).

97



Figure 5.13: Average maximum throughput in a random graph when the coding
nodes are limited: average maximum throughput observed on 20 60 10 instances
when limiting the number of coding nodes and the in-degree of each terminal
node.

It is obvious from Figure 5.13 that the number of coding nodes has (again) a very

limited impact, whereas limiting the flows reaching the terminals has a more

significant impact, especially when going from 1 to 2, because in our models, we

assume no intra-flow coding (several streams coded within a same path), so the

coding can only occur when at least two flows on two distinct interfaces can reach

the terminal nodes. A finer analysis could be performed by taking into account

intra-flow coding within our models.

5.7.2 Combining Network Coding with a Few Multicast

Trees

In this set of computational experiments, we solve problem NC1T (α), for selected

values of α, on several sets of instances.

The curves displayed in Figure 5.14 show the (average) percentage of the maxi-

mum throughput obtained (100% for NC). We see that, in most instances except

the densest ones (20 240 10), it is already beneficial to introduce a small per-

centage of network coding traffic. For instance, there is a relative throughput

improvement of 4% when switching 10% multicast traffic to network coding and

this increase is more or less linear until reaching the maximum throughput (ob-

98



Figure 5.14: Throughput gain in random graphs by mixing a single multicast
tree and network coding: percentage of the optimal (network coding) throughput
obtained when splitting the flow over a network coding sub-graph and a single
multicast tree.

tained for 50% or even 70% of network coding traffic). As a consequence, if the

ratio of the cost of introducing network coding over the benefit obtained from

increasing throughput is less than 1 over 2, it seems interesting to deploy some

network coding within the network.

Figure 5.15: Statistical results on the percentage of throughput compared to
network coding in a random graph: detailed solutions for instance 20 240 10
(boxes contain 50% of the instances, the extreme values [min,max] are represented
by the segments).

99



Figure 5.15 gives some details, for the densest instance, about the spreading of

different values around the average. If the range of extreme values is rather

large, we can observe that 50% of the instances follow quite closely the trend

announced by the average value, namely, that the impact of introducing network

coding grows dramatically after one third of the traffic is already switched to

network coding.

Figure 5.16: Throughput gain in random graphs by mixing two multicast trees
and network coding: percentage of the optimal (network coding) throughput
obtained when splitting the flow over a network coding sub-graph and two single
multicast trees.

If we consider the case where two multicast trees can be used in parallel together

with network coding, we need to solve problem NC2T (α). Note that, in our

model, the share αλ of multicast traffic is equally split on the two trees (αλ/2 on

each tree). The results are depicted in Figure 5.16. We see that the difference

between pure network coding throughput (α = 0) and pure multicast throughput

(α = 1) is somewhat reduced, but the overall tendencies and observations remain

the same, i.e., introducing a small amount of network coding is already beneficial,

but the benefit should be compared to the cost incurred. To obtain most of the

network coding benefit, more than 50% of the traffic should be handled with

network coding. Observe that in the sparsest instances (20 60 10), the optimal

throughput is already achieved with as little as about 30% of coded traffic.

5.7.3 Improving Throughput on Multicast Trees

To get more insight on these results, we have also performed some tests to evaluate

the minimal level of network coding required to reach the maximum throughput.

100



These experiments are performed on random instances with unit capacities.

Figure 5.17: Cumulative number of instances (% over 300 instances) as a function
of the network coding reduction to keep the same throughput and while using
ONE multicast tree.

Figure 5.18: Cumulative number of instances (% over 300 instances) as a function
of the network coding reduction to keep the same throughput and while using
TWO multicast trees.

Figure 5.17 shows the repartition of instances where different reductions can be

applied on the network coding share when introducing a single multicast tree so as

to keep the same maximum throughput. We see that, for the smallest instances,

in more than 60% of the cases, the share of network coding can be reduced by

101



50%, while in some cases, the reduction is smaller (sometimes, the use of a mul-

ticast tree does not even leave any space for coded traffic). When the number of

nodes increases, the tendency is somehow shifted to the right, meaning that, on

the average, less gain can be expected from the network coding contribution. For

instances with 48 nodes, the network coding contribution can always be reduced

by more than 17% and about 20% on the average. This is more or less in line

with the previous observations on graphs with one unit capacities.

The same type of analysis was performed when two multicast trees are used (only

on the 12 node and 23 node instances). The results are depicted in Figure 5.18.

We see that in this case, the network coding contribution can be reduced by

a much larger extent, with an average of about 67% for the largest considered

instances.

5.8 A Word about the Efficiency of Our Models

Model NCext1 is rather general and includes several well-known special cases:

when Nnc = Nmc = 0 (where Nnc and Nmc denotes the number of coding nodes

and multicast node, respectively), NCext1 reduces to a standard multicommodity-

flow model known as Maximum Concurrent Flow problem. When Nnc = 0 and

Nmc = n (each node is a multicast node) then NCext1 should model the maxi-

mum throughput problem in a pure multicast network. This problem reduces to

the Fractional Steiner Tree (in our case, arborescence) Packing (FSTP) problem

which is known to be NP-hard [47]. Using our model to evaluate the multicast

throughput, we end up with a pure linear formulation (with a polynomial number

of variables and constraints):

MC







maxλ, (5.30)
∑

p∈Pk

ϕp ≥ λ, ∀k ∈ K, (5.31)

∑

p∈Pk:

p∋a

ϕp = fa ≤ Ca, ∀a ∈ A, k ∈ K, (5.32)

f(δ−(v)) ≤ f(δ+(v)), ∀v ∈ S, (5.33)

ϕp, fa ≥ 0, ∀a ∈ A, p ∈ Pk. (5.34)

This problem can hence be solved in polynomial time, and thus, unless P=NP,

it is not a valid model for FSTP. However, any solution of FSTP yields a valid

solution for MC. It follows that MC is a relaxation of FSTP and hence provides

102



an approximate solution to FSTP (upper-bound).

Instances MC FSTP
n m |S| |K| λ NMC λ Ntree NMC Ndiff

20 50 1 10 3.43 1.35 3.43 1.27 1.10 0
50 150 1 10 2.74 3.04 2.74 1.09 6.95 0
50 150 1 20 2.59 3.38 2.59 1.10 5.64 0
10 40 3 3 4.94 1.65 4.94 5.94 1.79 0
20 60 3 5 1.72 2.24 1.72 3.84 3.98 0

Table 5.3: Comparison of MC and FSTP solutions on series of 1000 randomly
generated instances.

We have tried to evaluate empirically the quality of this approximation by sev-

eral numerical experiments over series of randomly generated instances. We have

used a tree generation algorithm to solve exactly FSTP which has already been

introduced in Chapter 4, Section 4.4.3 (the pricing sub-problem is a Steiner tree

problem that we solve using a standard Mixed Integer Programming formulation).

The results are provided in Table 5.3. Each line describes average results over

1000 randomly generated instances of the types described by the first four columns

(number of nodes, number of arcs, number of sources, number of terminals). For

each one of the two models, we report λ the average maximum throughput and

NMC the average observed number of multicast nodes. For FSTP we also report

Ntree, the average number of trees used in the solutions. Finally, Ndiff represents

the number of instances (over 1000) where the two solutions differ.

The first striking observation is that the solutions are always the same for the

two models. MC seems hence a very good way to compute, in a heuristic fashion,

the optimal value of FSTP. The quality of MC model should be investigated

from a theoretical point of view, but since the purposes in this chapter is to

evaluate throughput with limited number of coding and multicast nodes, we will

here rely on this approximate model and its generalization NCext1. Note that the

model NCext2 is however a valid (and exact) model for the case when broadcast

is considered instead of multicast.

5.9 Conclusion

In this chapter, we have carefully measured the impact of using jointly the net-

work coding paradigm together with multicast routing, but keeping the setting

103



realistic from a network operation point of view, with a limited number of mul-

ticast trees and a limited number of coding nodes. We have proposed several

mixed-integer programming models allowing to analyze various aspects of a care-

ful and restricted introduction of network coding functionalities within an existing

multicast network.

Our main findings are that a small introduction of network coding is already

beneficial from a throughput point of view. However, to obtain the full benefit

of network coding, a significant part (about 30% for the sparsest graphs and up

to 50% for denser graphs) of the multicast traffic must be processed by network

coding. The main cost incurred while deploying network coding lies on the de-

coding part near or at the terminal nodes. The cost of coding is negligible since

we show (but this had already been perceived by other authors [53, 55]) that a

very small number of coding nodes are needed (in our experimental setting, most

of the time, a single coding node is enough to obtain the full coding benefit).

A future line of research would be to investigate more closely the economical

aspects of a practical network coding deployment by taking into account real

costs of equipments.

104



Chapter 6

Constrained Transportation

Problem for Distributed Storage

System

There are two ways to live your life, one is as though nothing is a miracle, the other is

as though everything is a miracle.

-Albert Einstein (1879-1955)

6.1 Summary

A
fter the introduction of network coding, the network coded distributed stor-

age system receives a lot of attentions. In this chapter, we study a routing

problem in such system which stores precoded content. Without other assump-

tions, the problem can be modeled as a transportation problem. It is a well-known

problem where available supplies must be shipped to demand point through a bi-

partite graph. The problem of minimizing the sum of transportation cost is the

most classical one, but some variants with different objectives have also been con-

sidered. In this chapter, we consider the problems with these objectives as well

as the additional degree constraints introduced to the nodes as there is limited

access to single servers in the system. Such constraints (or related ones) have al-

ready been considered in more general flow problems [22, 74], but combined with

a transportation problem, the resulting problem becomes a combination of two

105



combinatorial problems, which are transportation problem and matching prob-

lem. To the best of our knowledge, this combined problem seems to have been

very little investigated in the literature. We start here a new analysis of these

problems, then we deliver some preliminary results and propose a Lagrangian

decomposition approach.

6.2 Introduction

The Transportation Problem with cost minimization objective is a classical prob-

lem: in a bipartite graph, supply nodes must be connected to client nodes so that

the flow or transshipment cost is minimized. But other objectives have also been

considered: in the Minimax version, the maximum over all arcs of the transship-

ment cost is minimized; in the bottleneck version, it is the maximum cost over all

used arcs that is minimized. Such objective are often used to model transship-

ment delays for instance, before all raw material is received by a factory which

has to process it. Note that, the term Minimax is different from the one Minmax

which is introduced in previous chapters. Minimax is used to represent a cost

problem, where the cost can be considered as transmission latency, but according

to Chapter 3, Minmax is used to represent a throughput problem. Moreover,

Minimax is also a state-of-the-art definition given in [7].

The application that motivates our interest for these problems stems from the

telecommunication field. Indeed, such problems can be used to model content dis-

tribution system in which various contents are transmitted from a set of servers

to a set of clients. In this setting, the delay to receive information is of vital

importance because it is one of the main component of the Quality of Service.

Another important feature in these problems, is the fact that each server (and to

a less extent, each client) cannot maintain a large number of simultaneous con-

nections, or, in other words, cannot transmit data to many clients at the same

time. It follows that we have to introduce degree constraints in the transportation

model. It appears that, to the best of our knowledge, such degree constrained

transportation models have been very little studied up to now.

106



6.3 Problem Statement

We denote by I = {1, . . . , nI} the set of servers and by J = {1, . . . , nJ} the set of

clients. Each server i ∈ I has an available supply of ai in data content and each

client j ∈ J has a demand requirement of bj. We assume each server i can serve

each client j with a unit cost cij > 0 (which can represent a distance, a delay

or an energy consumption). We assume that the original data has been coded

and the resulting coded data chunks are arbitrarily stored in the various servers

up to their ai levels. As a result, even if the clients’ requirements correspond to

some of the original data (with a total volume summing up to bj), these data

can be recovered from any amount of bj received data: indeed, standard Network

Coding results ensure that the original data can be recovered, with a very high

probability, by decoding the coded data. Readers who are interested in the details

of the network coding applications and mechanisms applied in distributed storage

system can be referred to Chapter 2, Section 2.5 and some references mentioned

therein. In practice, we should assume a small overhead ∆ is needed to ensure

the desired result, but it does not change the optimization problems at all since

this overhead is present in both the supplies and the demand. As a result, the

setting we have just described corresponds to a standard transportation problem:

if xij denotes the non-negative quantity sent by server i to client j, we then have

the usual constraints:

∑

j∈J

xij = ai, ∀i ∈ I, (6.1)

∑

i∈I

xij = bj, ∀j ∈ J, (6.2)

xij ≥ 0, ∀i ∈ I, j ∈ J. (6.3)

Using standard graph conventions, the transportation problem can be modeled

with a bipartite directed graph G = (V,A) where the set of nodes is V = I ∪ J

and A is the set of all arcs between I and J (or a subset of it if we want to forbid

some connections). We denote by n = nI + nJ the total number of nodes and

m the number of arcs (most of the time, we will assume that G is a complete

bipartite graph, i.e., m = nI × nJ). In a directed graph G, δ+G(v) (resp. δ−G(v))

denotes the set of arcs having node s as tail (resp. head). Subscript G will be

omitted if the graph considered is clear from the context. We have to assume that

the total amount of supplies is equal to the total amount of demands (otherwise,

107



we can add a dummy node to absorb excess of supply or demand):

∑

i∈I

ai =
∑

j∈J

bj. (6.4)

We denote by T this common quantity. If one wishes to minimizes the total

transportation cost:

(obj1) : min
∑

i∈I

∑

j∈J

cijxij, (6.5)

then this finishes to define the standard Transportation Problem (TP) for which

there exists plenty of efficient algorithms (see for instance [80]).

Since, in this chapter, we are aiming at designing a content distribution system

in a telecommunication setting, there are other objective functions to consider

which are much more relevant in this context. For instance, if cij represents the

delay for a connection between server i and client j, then objective obj1 amounts

to minimize the average delay. However, from the client point of view, it seems

more relevant to measure and minimize the total delay needed before a client j has

received all his required data. Indeed, since we assume the original information

is coded within the data stored in the servers, it is very likely that a client will

need all data (or most of it) before he can start to decode. Hence the relevant

delay metric for a client j is the delay needed to receive his last data chunk.

If the storage system manager wants to make all clients happy, he will consider

minimizing the maximum of all delays:

(obj2) : min max
i∈I,j∈J

cijxij. (6.6)

The transportation problem with objective obj2 is known as the Minimax Trans-

portation Problem (MTP). Using the specific structure of the transportation prob-

lem, several polynomial time algorithms have been proposed for MTP (see, for

instance, [7]). In some networks (for instance, optical networks), the transmission

delay can be essentially considered independent of the quantity of data transmit-

ted. In this case, the delay perceived by a client j is the maximum of all delays

among links i, j used to carry some data. The objective function then becomes:

(obj3) : min max
i∈I,j∈J

{cij : xij > 0}. (6.7)

Transportation problems with objective obj3 are known as Bottleneck Transporta-

tion Problems (BTP) [19, 33, 40].

108



Note that interesting variants of these minmax delay problem consists in mini-

mizing the average delay perceived by the clients:

(obj2′) : min
∑

j∈J

max
i∈I

cijxij, (6.8)

(obj3′) : min
∑

j∈J

max
i∈I
{cij : xij > 0}. (6.9)

Finally, in order to stick to our practical setting, we need to introduce additional

constraints into the transportation model. Indeed, data servers cannot maintain

simultaneously alive a large number of connections. As a result, we wish to

introduce constraints limiting the number of arcs used by each server. For this

purpose, we first need to introduce binary variables yij ∈ {0, 1} together with a

set of constraints linking these new variables with the continuous x variables:

xij ≤

Mij

︷ ︸︸ ︷

max{ai, bj} yij, ∀i ∈ I, j ∈ J, (6.10)

stating that arc (i, j) is used (yij = 1) as soon as it carries some traffic (xij > 0).

Then, we can use these binary variables to introduce in the model the so-called

degree constraints to limit the number of clients each server can be connected to:

∑

j∈J

yij ≤ d+(i), ∀i ∈ I. (6.11)

Using standard graph notation, we will sometimes write y(δ+(i)) for the left-

hand-side of the above constraints.

Similarly, we might consider degree constraints for the client nodes:

∑

i∈I

yij ≤ d−(j), ∀j ∈ J. (6.12)

We denote by d+max and d−max the maximum of each set of degree bound:

d+max = max
i∈I

d+(i), d−max = max
j∈J

d−(j). (6.13)

We can now define the set of solutions for our degree-constrained transportation

problems:

S(a, b, d) =
{
(x, y) ∈ IRm

+ × {0, 1}
m : (6.1)− (6.3), (6.10)− (6.12)

}
. (6.14)

109



Considering the solution set S(a, b, d) together with the various objective func-

tions, we can define three new transportation problems, namely d-TP with obj1,

d-MTP with obj2 and d-BTP with obj3.

6.4 Relationship with b-matching and Feasibil-

ity Conditions

It is well-known that the standard transportation problem TP with supply a

and demand b is nothing else than a fractional perfect (a, b)-matching problem.

(”fractional” means that the variables are continuous and ”perfect” means that

the supply and demand constraints are satisfied with equality).

In our problems, the additional degree constraints restrict the set of arcs (used to

carry some traffic) to be a feasible solution of simple d-matching problem (”sim-

ple” means that the arc variables should be in {0, 1}). As a consequence, we

consider problems with two embedded matching problems, both being individu-

ally easy to solve, but the combination being generally much harder (this will be

detailed in the next section).

I J

{15},(2)

{15},(2)

{10},(2) {10},(2)

{5},(2)

{5},(2)

{20},(2)

{40},(2)
u1

u2

u3

u4 v4

v3

v2

v1

(2)u1

u2

u3

u4

v4v3v2v1

{10}

{15}

{15}

{20}

(2)

(2)

(2)

(2) (2) (2) (2)

{40} {5} {10} {5} {60}bj

d+i

d−j

ai

Figure 6.1: Infeasible instance of d-TP(1): the supply {ai} and demands {bj} are
indicated within brackets and the degree bounds, (d+i ) or (d

−
j ) in parenthesis.

To give a first hint of the hardness of these problems, we can already observe

that the combination of transportation and degree constraints can easily make

the problem infeasible. Figure 6.1 shows an example of an infeasible problem.

In this figure, there are two set of nodes: I and J where ui ∈ I, i = 1, . . . , 4

110



and vj ∈ J, j = 1, . . . , 4 denote supply nodes and demand nodes, respectively.

The supply {ai} and demands {bj} are indicated within brackets and the degree

bounds, (d+i ) or (d−j ) in parenthesis. The grid is an alternative way to repre-

sent the degree constrained transportation problem more explicitly. In each row,

we assign some values in the cells but the sum of the values must be less than

corresponding ai in the given row. In addition, we can only fill values in two

cells in one row, and leave other cells blank according to the degree constraint

in this example. If one cell is filled with the total supply in that row, we use ×

instead of a specific number to represent the value we assign. Note that due to

the degree constraint, at most two out four in each column can exist values or

crosses. Although we fill the two largest supplies in the first column, the demand

d1 = 40 still cannot be satisfied.

This suggests to impose the condition that the supply of a subset of servers is

not strictly larger than the maximum of possible demand spanned by the subset

(and vice-versa):

Lemma 6.4.1. Consider a feasible transportation problem d-TP. Then the two

following (symmetrical) conditions hold:

1. For all S1 ⊆ I, a(S1) ≤ max {b(S2) : S2 ⊆ J, |S2| ≤ d+(S1)},

2. For all S2 ⊆ J , b(S2) ≤ max {a(S1) : S1 ⊆ I, |S1| ≤ d−(S2)},

where we use a common notation a(S1) =
∑

i∈S1
ai and b(S2) =

∑

j∈S2
bj.

Another immediate condition is that there exists a solution of the simple d-

matching problem that cover all vertices. In the case of a complete bipartite

graph (the case we consider here), this simply amounts to verify the condition:

d+(I) ≥ |J | and d−(J) ≥ |I|. (6.15)

However, this condition is not sufficient to guarantee the existence of a feasible

solution in S(a, b, d). Consider, for instance, the example of Figure 6.2: it is easy

to check that the condition of lemma 6.4.1 is satisfied. This example consists of

three supply nodes and five demand nodes, and only two supply nodes u1 and u2

have degree bounds both of which are 2. We can observe that the supply node

u1 must deliver its supply to the clients node v1 and v2, because the demand

of any two other combination of clients is less than a1 = 50. But, in this case,

the remaining demand of node v2 is 10, and the supply node v2 cannot find two

111



clients with a remaining demand of a2 = 40.

{50},(2)

{40},(2) {15},(∞)

{15},(∞)

{30},(∞)

{10},(∞)

{30},(∞)

u1

u2

u3 v4

v3

v2

v1

v5
{10},(∞)

?

Figure 6.2: Infeasible instance of d-TP(2): the supply {ai} and demands {bj} are
indicated within brackets and the degree bounds, (d+i ) or (d

−
j ) in parentheses.

It is hence reasonable to consider another optimization problem which aim is to

check whether S(a, b, d) contains a feasible solution or not. For instance, we can

consider the objective function consisting in maximizing the flow between I and

J :

(obj4) : max
∑

i∈I,j∈J

xij, (6.16)

We denote by d-FTP this maximum Flow Transportation Problem defined over

the set S(a, b, d) but with constraints (6.1) and (6.2) relaxed as inequality (≥)

constraints. If the optimal value of this problem is T , then all demands can be

satisfied by all supplies on at least one solution, and our three previously defined

problems are relevant.

Note that d-FTP can be related to a maximum multicommodity-flow, a problem

defined as one possible generalization of the maximum-flow problem. One other

popular generalization of the maximum-flow problem is the maximum concurrent

flow problem, in which a common share of all commodities is maximized and

shipped into the network. This approach can be applied to our degree-constrained

problems. Consider for instance, the problem defined over S(a, b, d) with the

objective function

(obj5) : maxλ, (6.17)

112



where λ ≥ 0 is an additional variable, and where constraints (6.1) and (6.2) are

changed into:

∑

j∈J

xij ≥ λai, ∀i ∈ I, (6.18)

∑

i∈I

xij ≤ bj, ∀j ∈ J. (6.19)

Another problem can be defined by inverting the role of the two constraint sets.

We denote by d-CTPa and d-CTPb these two maximum concurrent transportation

problems.

6.5 Complexity Issues

The classical Transportation Problem (TP) is one of the oldest OR problem and

has hence been studied extensively (see, for instance, [73, 80]). Several methods

in less than O(n3 log n)) have been proposed [75] and a linear-time algorithm is

given in [45] for the case where the number of sources is fixed.

The Minimax Transportation Problem (MTP) has been proposed in [7] together

with two algorithms, a parametric algorithm exploiting the specific structure of

the transportation problem and a primal-dual maximum flot algorithm running

in O(n4).

The Bottleneck Transportation Problem (BTP) was first considered in [40]. Sev-

eral approaches have been proposed for BTP: a Hungarian method in [33], and

an augmenting path method in [19].

When bounds on the degree come into play, the problems change from Linear

Programming (LP) problems to mixed Integer Programming problems, which

are normally much harder than LP. There are very few references on network

flow problems where the number of arcs leaving a node and carrying some flow

are restricted. In [23], the authors consider d-furcated network flow problems.

A d-furcated flow is a flow that is forwarded on at most d outgoing arcs from

every node. Hence, the case d = 1 corresponds to unsplittable flows, the case

d = 2 corresponds bifurcated flows and when d is very large (larger than the max-

imum out-degree), the problem reduces to a standard fractional (unconstrained)

flow. The problem considered in [23] is a single-sink multicommodity flow where

the goal is to minimize the maximum flow (called congestion or load) over every

113



node, which is basically equivalent to a maximum concurrent flow problem with

capacities on the nodes. However, all results can easily be applied to flow prob-

lems with capacities on the arcs (by a straightforward graph transformation).

The main results in [23] are that the problem of finding a minimum congestion

d-furcated flows is maxSNP-hard for fixed d and that congestion of a d-furcated

flow is at most 1 + 1
d−1

times the congestion of a fractional flow. The definition

of maxSNP-hard can be found in [76].

A closely related problem is the k-splittable flow problem [10], where the flow, for

each commodity, is restricted to use at most k (not necessarily disjoint) paths.

This problem came as a natural extension of the unsplittable flow problem [21, 57].

The unsplittable flow problem and the k-splittable flow problem are both NP-

hard. It is well-known that a transportation problem can be equivalently recast

into a flow problem (see Figure 6.3).

[a1]

u1

u2

unI

s t

vnJ

v2

v1

[a2]

[anI
]

[b1]

[b2]

[bnJ
]

[∞]

(a)

[a1]

u1

u2

unI

s

tnJ

t2

t1

[a2]

[anI
]

{b2}

[∞]

{b1}

{bnJ
}

(b)

Figure 6.3: Transcription of a transportation problem (a) as a single commodity
maximum (or minimum cost) s− t flow, or (b) as a single source,multicommodity
maximum concurrent flow. A symmetrical case of (b) would be a single destina-
tion multicommodity flow problem.

In fact, it turns out that d-FTP is a special case of d-furcated flow problem (us-

ing the flow model (a)) and d-CTPb is a special case of k-splittable flow problem

(using the flow model (b)). It is interesting to note that, in this very particular

type of graph (bipartite graph), bounding the number of path for a commodity

is equivalent to bound the in-degree of the demand nodes (again, a symmetrical

configuration is obtained where only the out-degree of supply nodes is bounded).

The complexity results for d-furcated and k-splittable flows cannot hence be used

as such to derive the complexity of the degree-bounded transportation problems.

To the best of our knowledge, the first paper addressing a bounded degree

114



transportation problem is [83] in which the problem, denoted (1, 3)-FTP, where

d+max = 1 and d−max = 3 is shown to be strongly NP-hard (using a reduction from

3-Partition). As observed in [8], the problem (1, 1)-FTP is the classical assign-

ment problem and problem (nJ , nI)-FTP can be reduced to TP, both problems

being known to be solvable in polynomial time. However, the case (1, 2)-FTP

is shown to be strongly NP-hard in [8] which also proposes a 1/2-approximation

algorithm for all cases of (d+max, d
−
max).

In the problems we consider, the objective functions (obj1), (obj2) or (obj3) come

into play to discriminate among the feasible solutions of S(a, b, d). Since the prob-

lem of determining whether S(a, b, d) is empty or not is NP-hard, the complexity

of our three problems follows.

Lemma 6.5.1. Problems d-TP, d-MTP and d-BTP are NP-hard for d = (1, 2)

and d = (1, 3).

For other values of d (except (1, 1) and (nI , nJ)), to the best of our knowledge,

the complexity of these problems is still an open question.

6.6 Impact of the Degree Constraints

First note that the additional degree-constraints might not always be active. In-

deed, in TP, the number of arcs in a simplex basis solution is n−1 and hence the

average degree in such solutions is 2(n − 1)/n < 2. Since the objective function

in the Minimax and Bottleneck Transportation problems is a threshold value, it

has been shown that these problems can be solved in a parametric way, by fixing

iteratively the values of the threshold. As a result, solutions of MTP and BTP

can still be expressed using the transportation model structure, with an addi-

tional upper-bound on the flow variables. So, we recommend to solve all types of

the degree constrained transportation problems by first solving the corresponding

problems without the degree constraints to optimality, and checking afterwards

if the additional degree constraints are already satisfied or not. Since, in random

instances, the problems will often reach the optimality as well as the degree con-

straints, in other words, the degree constraints sometimes are redundant.

More generally, the impact of the degree constraints can be very different. The

example of Figure 6.4(a) shows a transportation problem that has the same num-

ber of supply and demand nodes. The supplies and demands for all corresponding

nodes are uniformly equal to 1, moreover, the cost on each link (i, j) is set to 1.

115



The optimal value of TP in this case is v∗(TP) = n. This solution is also valid

for any level of constraints on the degrees (since the solution is obtained as a

perfect matching): v∗((d-TP) = n. The same conclusion holds for the bottleneck

problem (and all its degree constrained variants), since all costs are equal. On

the contrary, for the Maxmin problem, each level of (uniform) degree constraints

leads to different solution values: v∗(d-BTP) = 1/d and v∗(BTP) = 1/n.

{1}

u1

u2

uN vN

v2

v1cij = 1

(a)

{1}

{1}

{1}

{1}

{1}

{a1}

u1

u2

uN vN

v2

v1

cii = M,

cij = 1, ∀i 6= j

(b)

{a2 < a1}

{aN < aN−1}

{b1}

{b2 < b1}

{bN < bN−1}

Figure 6.4: Two instances of transportation problem: (a) completely uniform
case, nI = nJ = N , all supplies and demands are equal to 1, all arc costs are
equal to 1.

In another example in Figure 6.4(b), we still assume that the number of supply

nodes is the same as the demand nodes, but the supplies and demands have

the following relationship: ai = bi, ∀i ∈ N . The cost on each link follows the

following rules: ∀(i, j), cij = M, if i = j; ci,j = 1, if li 6= j. For each problem

in this example, in terms of different objectives, when all degrees are bounded

by 1 (d = 1), the only feasible solution to fit a supply with a demand is to

take the horizontal arcs (with cost M ≫ 1). Hence, the solutions for TP are:

v∗(TP) = n and v∗(1-TP) = nM . BTP and MTP have the same solutions

when the degree bound is one: v∗(1-BTP) = v∗(1-BTP)M . Without this tight

degree constraint, the most costly arcs can be easily avoided: v∗(BTP) = 1 and

v∗(MTP) = 1/(n − 1). This shows that, when a cost criterion is involved, the

gap between 1-degree constrained and unconstrained problems optimal values is

potentially unbounded (M can be chosen as large as one wishes).

6.7 Resolution Approaches

Since our problems contain, on the one hand, a ”classical” transportation prob-

lem, and, on the other hand, an also ”classical” b-matching problem, a reasonable

116



approach consists in trying to separate these two components, for instance, using

a Lagrangian decomposition method. For this purpose, we will relax (in a La-

grangian fashion) the binding constraints (6.10). Consider for instance the degree

constrained Transportation Problem d-TP:

d-TP







min
∑

i∈I

∑

j∈J

cijxij, (6.20)

∑

j∈J

xij = ai,
∑

i∈I

xij = bj, ∀i ∈ I, j ∈ J , (6.21)

0 ≤ xij ≤Mijyij, ∀i ∈ I, j ∈ J , (6.22)
∑

j∈J

yij ≤ d+(i),
∑

i∈I

yij ≤ d−(j), ∀i ∈ I, j ∈ J , (6.23)

yij ∈ {0, 1}, ∀i ∈ I, j ∈ J . (6.24)

Denote by uij the Lagrangian variables associated with the binding constraints

(6.22). Relaxing these binding constraints in a Lagrangian way, yields two pa-

rameterized subproblems:

SP1(u) : z1(u) = min

{

∑

i∈I

∑

j∈J

(cij + uij)xij : (6.21), xij ≥ 0

}

, (6.25)

SP2(u) : z2(u) = max

{

∑

i∈I

∑

j∈J

uijMijyij : (6.23), yij ∈ {0, 1}

}

. (6.26)

The first one (SP1(u)) is a standard transportation problem with costs cij +

uij on the arcs and the second one (SP2(u)) is a standard maximum weight

(bipartite) d-matching with weights uijMij on the edges. Both problems can

hence be solved very efficiently. If we denote z(u) = z1(u)+z2(u), it is well known

that z(u) ≤ z∗(d-TP), ∀u ≥ 0 (in other words, the Lagrangian decomposition

yields a relaxation of the problem). To achieve the best possible lower bound, we

are hence interested in the problem:

max{z(u) : u ≥ 0}. (6.27)

There are several ”standard” ways to handle this dual problem. Note that, from

a polyhedral point of view, the convex hull of all feasible solutions of d-TP, is

the intersection of the TP polytope with the convex hull of the maximum weight

matching polytope (which is known to be integral because the associated matrix

is Totally Unimodular (TU) which has been defined in Theorem 3.3.1). However,

most extreme points in this intersection have non-integer coordinates for the y

vector.

117



Many other possibles approaches can be considered, for instance starting with

greedy approaches or with the standard algorithms for transportation problems

or maximum flows.

6.8 Conclusions and Future Work

In this chapter, we have proposed some new variants of degree constrained trans-

portation problem and have showed that they are mainly related to two families

of well-studied problems, namely, classical transportation problems and match-

ing problems in bipartite graphs (which are also already related). The problems

we consider include minmax or bottleneck components, which make the prob-

lems often harder to solve in practice. From a complexity point of view, although

each individual component of our problems is polynomialy solvable, the combined

problems are NP-hard. One promising line of research probably lies in the very

particular structure of the problem polytope.

118



Chapter 7

Conclusions and Perspectives

Do not fear mistakes. You will know failure. Continue to reach out.

-Benjamin Franklin (1706-1790)

7.1 Conclusions

A
fter the initial introduction of network coding [5], during the last decade this

technique has been proposed as a powerful tools to improve telecommunica-

tion network from different aspects. Network coding provides a special perspec-

tive in electronic services delivery and digital distribution. It allows combining

information in intermediate nodes and lets the coded information be decoded in

those intermediate nodes or at terminals. This property is completely different

from the traditional transportation of any kind but by recognizing the algebraic

nature of digital commodities the new transportation method can be easily per-

formed in the theory of information and potential applications in electronic de-

vices and telecommunication networks. This method opens a new dimension to

control data collision, in such a way that corresponding network performance

may also change and needs to be revisited. Many studies have focused on the

coding advantage from several aspects, such as throughput gain, reliability, and

robustness, in different network settings, for example, multicast networks, wire-

less networks, and also distributed storage systems. The studies, for instance,

in [20] and [52], have shown very convincing potential coding advantage in wire-

less networks and distributed storage systems. However, the initial advantage

119



claimed for network coding, namely throughput gain in multicast networks, is

still relatively unclear in the literature. This is why in this thesis, we reconsider

the evaluation of the throughput gain, focusing especially on multicast service; we

evaluate the performance in both network coding strategy and traditional mul-

ticast routing. Based on the evaluation results, we propose a so-called strategic

network coding which aims to reduce side-effects when applying network coding.

In Chapter 2, we give a review of network coding, which aims at helping the read-

ers, who are not familiar with network coding, to understand the rest of thesis.

The difficulty for evaluating the throughput performance between network coding

and multicast comes from finding the optimal throughput with multicast tree(s).

The problem of finding network coding throughput is simpler, and it is polyno-

mial time solvable. We first introduce some state-of-the-art algorithms as well

as new polynomial time algorithms we created and which find the optimal end-

to-end throughput when using single multicast trees. The extensive variety of

algorithms can be accordingly applied in different types of graphs (undirected,

directed and bidirected graphs). The algorithms proposed in Chapter 3, Section

3.5 and 3.6, are designed to solve the problem in the scenario where terminals are

required to be on the leaves of the final tree.

In Chapter 4, we study a state-of-the-art mathematical model of the fractional

Steiner tree packing problem. We confirm that the same formulations can be used

to handle the problem in solving optimal end-to-end throughput when multiple

multicast trees are used. Although the problem is NP -hard, we can solve it very

efficiently when using column generation method, in some medium size random

generated graphs. We verify on numerous sets of significantly large randomly gen-

erated instances that network coding does not outperform multicast when there

is no limit on how many multicast trees are used. However, multicast usually

requires many trees to approach the network coding throughput, and managing a

great amount of multicast sessions in a network is unrealistic. Therefore, from a

network management standpoint, network coding is a better solution when high

throughput is sought. Moreover, we provide a heuristic algorithm which is based

on column generation to calculate multicast throughput within limited number of

trees. We find that with small number of trees, the multicast throughput is poor,

but it is manageable this time. However, the throughput gain becomes obvious

when comparing network coding strategy with multicast using limited number of

trees. We provide another mathematical model in order to find a graph that has

120



maximum throughput gap between network coding and multicast. Solving this

model is not trivial, so we merely test it on small size graphs. Surprisingly, we

find that all the network topologies with maximum throughput gap are butterfly-

like networks.

Although we confirm in Chapter 4 that network coding shows benefits in multicast

services, the side effects it brings, such as additional overhead on coded packets,

encoding and decoding cost during transmission, should not be overlooked. Based

on the observations from Chapter 4, we examine two strategic network coding

strategies in Chapter 5: one that limits the number of coding nodes and one that

mixes multicast routing with limited number of trees and network coding. From

the numerical results we obtain, we find that, in randomly generated networks,

very few nodes are needed to perform encoding operations. In many cases, it

is already sufficient to achieve network coding throughput when only the source

acts as an encoding node. We then focus on the strategy that mixes multicast

routing and network coding. This strategy aims to introduce a small amount

of network coding flow in order to help increase the throughput when we apply

limited number of multicast trees. The benefits of this strategy are twofold: it

reduces the side effects as compared to the scenarios where pure network coding

flows are used; it increases the network throughput as compared to the cases

where we apply multicast routing with limited trees. However, in order to ap-

proach the network coding throughput by using our mixed strategy, a significant

part of multicast traffic must be processed by network coding, which indicates

that network coding is still prominent in achieving a better multicast throughput.

In Chapter 6, we investigate a degree constrained transportation problem which

has been rarely studied in the literature from the perspective on a routing prob-

lem in a coded distributed storage system. To the best of our knowledge, there

is no algorithm that solves the general cases of this problem, only approximation

algorithms have been proposed. We explain the relationship between this special

transportation problem and the two classical combinatorial problems, transporta-

tion problem and matching problem. We derive some feasibility conditions for

this particular problem and clarify the complexity issues for some general cases.

In addition, we propose a resolution approach based on Lagrangian decomposi-

tion. We will further investigate this approach in future research, since so far the

convergence of this algorithm is slow.

121



7.2 Perspectives

There are two major perspectives that we wish to pursue after the works con-

tained in this dissertation.

The evaluation of the coding advantage in Chapter 4 focuses on scenarios which

have single multicast connection. A multicast connection is used to delivery one

media stream or one generation of a content. But, in real networks, there may be

multiple connections at the same time, especially for content delivery. There may

be several generations sent simultaneously from multiple sources to terminals. It

is worth to evaluate the coding advantage for these scenarios of multiple multi-

cast connections as well. We can also extend the research on coding advantage,

in terms of network survivability, reliability, robustness and network security, in

multicast services.

In order to have some insight on the coding advantage from an economical point

of view, we can also consider some cost with network use, then compare through-

put gain among different multicast strategies which are shown in this dissertation

under certain cost threshold. This line of research can be classified into a so-called

techno-economical analysis which can greatly assist in averting misspent efforts

and help future investment. To the best of our knowledge, this kind of research

in network coding field is not common but extremely valuable for most actors in

the telecommunication industry.

122



Publications

❼ Eric Gourdin and Yuhui Wang, Some further investigation on

maximum throughput: Does network coding really help?, In Pro-

ceedings of the 24th International Teletraffic Congress (ITC), 2012.

❼ Eric Gourdin and Yuhui Wang, Bottleneck and Maxmin Trans-

portation Problems with Degree Constraints, In Local Proceedings of

the 2nd International Symposium on Combinatorial Optimization (ISCO),

2012.

❼ Eric Gourdin, Yuhui Wang and Muriel Médard, Strategic Net-

work Coding - How much and Where to Code to Obtain Most

of the Benefits, accepted by IEEE International Symposium on Network

Coding, 2013.

❼ Eric Gourdin and Yuhui Wang, Efficient Algorithms for Bottle-

neck Steiner Tree Problems, submitted.

❼ Eric Gourdin and Yuhui Wang,Optimization Models for a Techno-

economical Analysis of Network Coding Advantage, in preparation.

123



124



Bibliography

[1] ARD Digital IPTV. http://www.ard-digital.de/index.php?id=

14026&languageid=1. [Online; accessed 08-January-2013].

[2] BBC Multicast Home. http://www.bbc.co.uk/multicast/radio/. [On-

line; accessed 08-January-2013].

[3] Cisco Visual Networking Index: Forecast and Methodology, 2011-2016.

http://www.cisco.com/en/US/netsol/ns827/networking_solutions_

white_papers_list.html, May 2012. [Online; accessed 15-November-2012].

[4] S. Acedański, S. Deb, M. Médard, and R. Koetter. How Good is Random

Linear Coding based Distributed Networked Storage. In NetCod, 2005.

[5] R. Ahlswede, N. Cai, S.-Y.R. Li, and R.W. Yeung. Network Information

Flow. IEEE Transactions on Information Theory, 46(4):1204 –1216, July

2000.

[6] R. K. Ahuja and and J. B. Orlin T. L. Magnanti. Network Flows: Theory,

Algorithms and Applications. Prentice-Hall Englewood Cliffs, 1993.

[7] R.K. Ahuja. Algorithms for the Minimax Transportation Problem. Naval

Research Logistics Quaterly, 33:725–739, 1986.

[8] E. Akçali and A. Üngör. Approximation Algorithms for Degree-Constrained

Bipartite Network flow. In ISCIS, pages 163–170. Springer.

[9] G. Baier, E. Köhler, and M. Skutella. On the k-Splittable Flow Problem. In

Proceedings of the 10th Annual European Symposium on Algorithms, pages

101–113, 2002.

[10] G. Baier, E. Köhler, and M. Skutella. The k-Splittable Flow Problem. Al-

gorithmica, 42:231–248, 2005.

125

http://www.ard-digital.de/index.php?id=14026&languageid=1
http://www.ard-digital.de/index.php?id=14026&languageid=1
http://www.bbc.co.uk/multicast/radio/
http://www.cisco.com/en/US/netsol/ns827/networking_solutions_white_papers_list.html
http://www.cisco.com/en/US/netsol/ns827/networking_solutions_white_papers_list.html


[11] J. Barros, R.A. Costa, D. Munaretto, and J. Widmer. Effective Delay Control

for Online Network Coding. In Proceedings of IEEE Conference on Computer

Communications (INFOCOM), pages 208 – 216, April 2009.

[12] P.M. Camerini. The Min-Max Spanning Tree Problem and Some Extensions.

Inform. Processing Letters, 7(1):10–14, January, 1978.

[13] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and

A. Singh. Splitstream: High-Bandwidth Multicast in Cooperative Environ-

ments. In Proceedings of of the 19th ACM Symposium on Operating Systems

Principles (SOSP), October 2003.

[14] D-S. Chen, R. G. Baston, and Y. Dang. Applied Integer Programming:

Modelling and Solution. John Wiley & Sons, Inc., 2010.

[15] Y. H. Chen, C. L. Lu, and C. Y. Tang. On the Full and Bottleneck Full

Steiner Tree Problems. In Proceedings of the 9th Annual International Con-

ference (COCOON), pages 25–28, 2003.

[16] C. Chiang, M. Sarrafzadeh, and C.K. Wong. Global Routing Based on

Steiner Min-Max Trees. IEEE Transaction on Computer-Aided Design,

9(12):1318–1325, December 1990.

[17] N. Cleju, N. Thomos, and P. Frossard. Selection of Network Coding Nodes

for Minimal Playback Delay in Streaming Overlays. IEEE Transactions on

Multimedia, 13(5):1204 –1216, November, 2011.

[18] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to

Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[19] U. Derigs and U. Zimmermann. An Augmenting Path Method for Solving

the Linear Bottleneck Transportation Problems. Computing, 22:1–15, 1979.

[20] A.G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A Survey on Network

Codes for Distributed Storage. In Proceedings of the IEEE, pages 476 –489,

March, 2011.

[21] Y. Dinitz, N. Garg, and M.X. Goemans. On the Single-Source Unsplittable

Flow Problem. In Proceedings of 39th Annual Symposium on Foundations

of Computer Science, pages 290 –299, November, 1998.

[22] P. Donovan, B. Shepherd, A. Vetta, and G. Wilfong. Degree-Constrained

Network Flows. In Proceedings of the 39th annual ACM symposium on The-

ory of Computing, pages 681–688, 2007.

126



[23] P. Donovan, B. Shepherd, A. Vetta, and G. Wilfong. Degree-Constrained

Network Flows. In Proceedings of the 39th annual ACM symposium on The-

ory of Computing, pages 681–688, 2007.

[24] C.W. Duin and A. Volgenant. The Partial Sum Criterion for Steiner Trees

in Graphs and Shortest Paths. European Journal of Operations Research,

97:172–182, 1997.

[25] J. Edmonds. Edge-Disjoint Branchings. Combinatorial Algorithms, Algo-

rithmics Press, New York, pages 91–96, 1972.

[26] J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic

Efficiency for Network Flow Problems. J. ACM, 19(2):248–264, April 1972.

[27] U. J. Ferner, M. Médard, and E. Soljanin. Toward Sustainable Networking:

Storage Area Networks with Network Coding. CoRR, May 2012.

[28] Jr. L. R. Ford and D. R. Fulkerson. Maximum Flow through a Network.

Canadian Journal of Mathematics, 8:399 – 404, 1956.

[29] Jr. L. R. Ford and D. R. Fulkerson. A Simple Algorithm for Finding Maximal

Network Flows and an Application to the Hitchcock Problem. Canadian

Journal of Mathematics, 9:210 –218, 1957.

[30] Jr. L. R. Ford and D. R. Fulkerson. A Suggested Computation for Maximal

Multi-commodity Network Flows. Manage. Sci, 5:97 –101, July 1958.

[31] M. L. Fredman and R. E. Tarjan. Fibonacci Heaps and Their Uses in Im-

proved Network Optimization Algorithms. J. ACM, 34(3):596–615, 1987.

[32] H. N. Gabow and R. E. Tarjan. Algorithms for Two Bottleneck Optimization

Problems. Journal of Algorithms, 9:411–417, 1988.

[33] R. S. Garfinkel and M. R. Rao. The Bottleneck Transportation Problem.

Naval Research Logistics Quaterly, 18:465–472, 1971.

[34] N. Garg, R. Khandekar, K. Kunal, and V. Pandit. Bandwidth Maximization

in Multicasting. In Proceedings of European Symposium on Algorithms, pages

242–253, 2003.

[35] L. Georgiadis. Bottleneck Multicast Trees in Linear Time. IEEE Commun.

Lett., September 2003.

127



[36] C. Gkantsidis and P. R. Rodriguez. Network Coding for Large Scale Content

Distribution. In Proceedings of IEEE Conference on Computer Communica-

tions (INFOCOM), volume 4, pages 2235 – 2245, March 2005.

[37] M. X. Goemans and Y. S. Myung. A Catalog of Steiner Tree Formulation.

Neworks, 23:19–28, 1993.

[38] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and

G. Caire. Femtocaching: Wireless Video Content Delivery through Dis-

tributed Caching Helpers. In Proceedings of IEEE Conference on Computer

Communications (INFOCOM), pages 1107 –1115, March 2012.

[39] E. Gourdin and Y. Wang. Some Further Investigation on Maximum

Throughput: Does Network Coding Really Help? In Proceedings of the

24th International Teletraffic Congress (ITC), 2012.

[40] P. L. Hammer. Time Minimizing Transportation Problems. Naval Research

Logistics Quaterly, 16:345–367, 1969.

[41] T. Ho and D. S. Lun. Network Coding an introduction. Cambridge University

Press, New York, USA, 2008.

[42] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong.

Toward a Random Operation of Networks. IEEE Transactions on Informa-

tion Theory, pages 1–8, 2004.

[43] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong.

A Random Linear Network Coding Approach to Multicast. IEEE Transac-

tions on Information Theory, 52(10):4413 –4430, October 2006.

[44] T. Ho, M. Médard, J. Shi, M. Effros, and D. R. Karger. On Randomized

Network Coding. In Proceedings of 41st Annual Allerton Conference on

Communication, Control, and Computing, 2003.

[45] D. S. Hochbaum and G. J. Woeginger. A Linear-Time Algorithm for the Bot-

tleneck Transportation Problem with a Fixed Number of Sources. Operations

Research Letters, 24:25–28, 1999.

[46] S. Jaggi, P. Sanders, P. Chou, M. Effros, S. Egner, K. Jain, and L. Tol-

huizen. Polynomial Time Algorithms for Multicast Network Code Construc-

tion. IEEE Transactions on Information Theory, 51(6):1973 – 1982, June

2005.

128



[47] K. Jain, M. Mahdian, and M. R. Salavatipour. Packing Steiner Trees. In Pro-

ceedings of the 14th annual ACM-SIAM symposium on Discrete algorithms,

pages 266–274, 2003.

[48] V. Kaibel and M. A.F. Peinhardt. On the Bottleneck Shortest Path Problem.

Technical report, 2001.

[49] S. Katti, S. Gollakota, H. Balakrishnan, and M. Médard. Symbol-Level

Network Coding for Wireless Mesh Networks. In Proceedings of ACM SIG-

COMM, pages 401 – 412, August 2008.

[50] S. Katti, S. Gollakota, and D. Katabi. Embracing Wireless Interference:

Analog Network Coding. In Proceedings of ACM SIGCOMM, pages 397 –

408, August 2007.

[51] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Growcroft. Xors

in the Air: Practical Wireless Network Coding. In Proceedings of ACM

SIGCOMM, September 2006.

[52] M. Kim. Network Coding for Robust Wireless Networks. PhD thesis, Mas-

sachusetts Institute of Technology, 2012.

[53] M. Kim, C. W. Ahn, M. Médard, and M. Effros. On Minimizing Network

Coding Resources: An Evolutionary Approach. In NetCod, 2006.

[54] M. Kim, J. Cloud, A. ParandehGheibi, L. Urbina, K. Fouli, D. J. Leith, and

M. Médard. Network Coded TCP (CTCP). CoRR, 2012.

[55] M. Kim, M. Médard, V. Aggarwal, U. M. O’Reilly, W. Kim, C. W. Ahn,

and M. Effros. Evolutionary Approaches to Minimizing Network Coding Re-

sources. In Proceedings of IEEE Conference on Computer Communications

(INFOCOM), pages 1991 – 1999, May 2007.

[56] M. Kim, M. Médard, and J. Barros. Modeling Network Coded TCP Through-

put: A Simple Model and its Validation. In Proceedings of International

ICST/ACM Conference on Performance Evaluation Methodologies and Tools

(Valuetools), May 2011.

[57] J. M. Kleinberg. Single-Source Unsplittable Flow. In Proceedings of the 37th

Annual Symposium on Foundations of Computer Science, pages 68–77, 1996.

[58] T. Koch and A. Martin. Solving Steiner Tree Problems in Graphs to Opti-

mality. Networks, 32:207–232, 1998.

129



[59] R. Koetter and M. Médard. An Algebraic Approach to Network Coding.

IEEE/ACM Transactions on Networking, 11(5):782 – 795, October 2003.

[60] V. P. Kompella, G. C. Polyzos, and J. C. Pasquale. Multicast Routing

for Multimedia Communication. IEEE/ACM Transactions on Networking,

1(3):286–292, 1993.

[61] A. Kulkarni, M. Heindlmaier, D. Traskov, M. J Montpetit, and M. Médard.

An Implementation of Network Coding with Association Policies in Heteroge-

neous Networks. In Proceedings of the IFIP TC 6th international conference

on Networking, pages 110–118, 2011.

[62] D. Leong, A. G. Dimakis, and T. Ho. Distributed Storage Allocation Prob-

lems. In NetCod ’09 Workshop on Network Coding, Theory, and Applica-

tions, pages 86 – 91, June 2009.

[63] D. Leong, A. G. Dimakis, and T. Ho. Distributed Storage Allocation for High

reliability. In IEEE International Conference on Communications (ICC),

pages 1 – 6, May 2010.

[64] D. Leong, A. G. Dimakis, and T. Ho. Distributed Storage Allocations. IEEE

Transactions on Information Theory, 58(7):4733 –4752, July 2012.

[65] S. Y R. Li, R.W. Yeung, and C. Ning. Linear Network Coding. IEEE

Transactions on Information Theory, 49(2):371 –381, February 2003.

[66] Z. Li, B. Li, D. Jiang, and L. C. Lau. On Achieving Optimal Throughput

with Network Coding. In Proceedings of IEEE 24th Annual Joint Confer-

ence of the IEEE Computer and Communications Societies (INFOCOM),

volume 3, pages 2184 – 2194, March 2005.

[67] Z. Li, B. Li, and L. C. Lau. A Constant Bound on Throughput Improvement

of Multicast Network Noding in Undirected Networks. IEEE Transactions

on Information Theory, 55(3):1016 – 1026, March 2009.

[68] D. E. Lucani and M. Médard. Bridging Tree-Packing and Network Cod-

ing: An Information Flow Approach. In Proceedings of 45th Conference of

Information Sciences and Systems (CISS), pages 1 – 6, 2011.

[69] D. S. Lun, Muriel Médard, T. Ho, and R. Koetter. Network Coding with a

Cost Criterion. In Proceedings of 2004 International Symposium on Infor-

mation Theory and its Applications (ISITA), pages 1232–1237, 2004.

130



[70] D. S. Lun, N. Ratnakar, R. Koetter, M. Médard, E. Ahmed, and H. Lee.

Achieving Minimum-Cost Multicast: A Decentralized Approach Based on

Network Coding. In Proceedings of IEEE Conference on Computer Commu-

nications (INFOCOM), pages 1607–1617, 2005.

[71] D. S. Lun, N. Ratnakar, M. Médard, R. Koetter, D. R. Karger, T. Ho,

E. Ahmed, and F. Zhao. Minimum-Cost Multicast over Coded Packet Net-

works. IEEE/ACM Transactions on Networking, 14:2608–2623, 2006.

[72] M. Montpetit and M. Médard. Video-Centric Network Coding Strategies for

4G Wireless Networks: An Overview. In Proceedings of 7th IEEE Consumer

Communications and Networking Conference (CCNC), pages 1 –5, January

2010.

[73] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.

John Wiley & Sons, Inc., New York, USA, 1988.

[74] Z. Nutov. Approximating Directed Weighted-Degree Constrained Networks.

In Proceedings of the 11th International Workshop APPROX and 12th Inter-

national Workshop RANDOM on Approximation, Randomization and Com-

binatorial Optimization: Algorithms and Techniques, pages 219–232, 2008.

[75] J. B. Orlin. A Faster Strongly Polynomial Minimum Cost Flow Algorithm.

In Proceedings of the 20th Annual ACM Symposium on Computing Theory,

pages 355–362, 1988.

[76] C. Papadimitriou and M. Yannakakis. Optimization, Approximation, and

Complexity Classes. In Proceedings of the 20th annual ACM symposium on

Theory of Computing, pages 229–234, 1988.

[77] M. G. C. Resende and P. M. Pardalos. Handbook of Opertimization in

Telecommunications. Spinger Science and Business Media, New York, USA,

February 2006.

[78] G. Robins and A. Zelikovsky. Improved Steiner Tree Approximation in

Graphs. Proceedings of the 11th Annual ACM-SIAM Symposium on Dis-

crete Algorithms (SODA), pages 770–779, 2000.

[79] L. H. Sahasrabuddhe and B. Mukherjee. Multicast Routing Algorithms and

Protocols: A Tutorial. IEEE Networks, 14:90–102, 2000.

[80] A. Schrijver. Theory of Linear and Integer Programming. John Wiley &

Sons, New York, USA, 1986.

131



[81] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency.

Springer-Verlag, Berlin Heidelberg, 2003.

[82] J. K. Sundararajan, D. Shah, M. Médard, M. Mitzenmacher, and J. Barros.

Network Coding Meets TCP: Theory and Implementation. pages 280 – 288,

April 2009.

[83] L. B. Toktay and R. Uzsoy. A Capacity Allocation Problem with Integer

Side Constraints. European Journal of Operational Research, 109(1):170–

182, 1998.

[84] H. Wang, J. Liang, and C. C. J. Kuo. Overview of Robust Video Stream-

ing with Network Coding. Journal of Visual Communication and Image

Representation, 2010.

[85] B. M. Waxman. Routing of Multipoint Connections. IEEE Journal on

Selected Areas in Communications, 6(9):1617–1622, December 1988.

[86] Y. Wu, P. A. Chou, and K. Jain. A Comparison of Network Coding and

Tree Packing. In Proceedings of International Symposium on Information

Theory (ISIT), page 143, 2004.

[87] X. Yin, X. Wang, J. Zhao, X. Xue, and Z. Li. On Benefits of Network

Coding in Bidirected Networks and Hyper-Networks. In Proceedings of IEEE

Conference on Computer Communications (INFOCOM), pages 325 – 333,

March 2012.

132


	Introduction
	Background
	Motivations and Contributions
	Outline

	Overview of Network Coding
	What is Network Coding
	Coding and Decoding
	A Note on Finite Fields
	Cost and Other Concerns
	Other Applications
	Summary

	Algorithms for Finding Unsplittable End-to-End Throughput in Multicast Network
	Summary
	Introduction
	Bottleneck Network Flow Problems
	Preliminary results
	An O(|S|2|T|) Algorithm for the Bottleneck Full Steiner Tree Problem in an Undirected Graph
	An O(|E|log|E|) Algorithm for the full Bottleneck Steiner Tree Problem in Undirected Graph
	More efficient algorithms
	Conclusion

	Investigation on Maximum Throughput
	Summary
	Introduction
	Comparing Coding and Routing Schemes
	Models and Algorithms
	Numerical Experiments
	Considerations on Some Small Instances
	Conclusion

	Strategic Network Coding
	Summary
	Introduction
	Classical Flow Models
	Controlling the Transit across the Nodes
	Extended Throughput Maximization Models
	Computational Experiments on Some Butterfly-like instances
	Computational Experiments on Randomly Generated Instances
	A Word about the Efficiency of Our Models
	Conclusion

	Constrained Transportation Problem for Distributed Storage System
	Summary
	Introduction
	Problem Statement
	Relationship with b-matching and Feasibility Conditions
	Complexity Issues
	Impact of the Degree Constraints
	Resolution Approaches
	Conclusions and Future Work

	Conclusions and Perspectives
	Conclusions
	Perspectives


