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Equations d'évolution non locales et problèmes de transition de phase

Résumé L'objet de cette thèse est d'étudier le comportement en temps long de solutions d'équations d'évolution non locales ainsi que la limite singulière d'équations et de systèmes d'équations aux dérivées partielles, où intervient un petit paramètre ε.

Au Chapitre 1, nous considérons une équation de réaction-diffusion non locale avec conservation au cours du temps de l'intégrale en espace de la solution ; cette équation a été initialement proposée par Rubinstein et Sternberg pour modéliser la séparation de phase dans un mélange binaire. Le problème de Neumann associé possède une fonctionnelle de Lyapunov, c'est-à-dire une fonctionnelle qui décroit selon les orbites. Après avoir prouvé que la solution est confinée dans une région invariante, nous étudions son comportement en temps long. Nous nous appuyons sur une inégalité de Lojasiewicz pour montrer qu'elle converge vers une solution stationnaire quand t tend vers l'infini. Nous évaluons également le taux de la convergence et calculons précisément la solution stationnaire limite en dimension un d'espace.

Le Chapitre 2 est consacré à l'étude de l'équation différentielle non locale que l'on obtient en négligeant le terme de diffusion dans l'équation d'Allen-Cahn non locale étudiée au Chapitre 1. Sans le terme de diffusion, la solution ne peut pas être plus régulière que la fonction initiale. C'est la raison pour laquelle on ne peut pas appliquer la méthode du Chapitre 1 pour l'étude du comportement en temps long de la solution. Nous présentons une nouvelle méthode basée sur la théorie des réarrangements et sur l'étude du profil de la solution. Nous montrons que la solution est stable pour les temps grands et présentons une caractérisation détaillée de sa limite asymptotique quand t tend vers l'infini. Plus précisément, la fonction limite est une fonction en escalier, qui prend au plus deux valeurs, qui coïncident avec les points stables d'une équation différentielle associée. Nous montrons aussi par un contre-exemple non trivial que, quand une hypothèse sur la fonction initiale n'est pas satisfaite, la fonction limite peut prendre trois valeurs, qui correspondent aux points instable et stables de l'équation différentielle associée.

Nous étudions au Chapitre 3 une équation différentielle ordinaire non locale qui a été proposée par M. Nagayama. Une difficulté essentielle est que le dénominateur dans le terme de réaction non local peut s'annuler. Nous appliquons un théorème de point fixe lié à une application contractante pour démontrer que le problème à valeur initiale correspondant possède une solution unique qui reste confinée dans un ensemble invariant. Ce problème possède une fonctionnelle de Lyapunov, qui est un ingrédient essentiel pour démontrer que la solution converge vers une solution stationnaire constante par morceaux quand t tend vers l'infini.

Au Chapitre 4, nous considérons un modèle d'interface diffuse pour la croissance de tumeurs, où intervient une équation d'ordre quatre de type Cahn-Hilliard. Après avoir introduit un modèle de champ de phase associé, on étudie formellement la limite singulière de la solution quand le coefficient du terme de réaction tend vers l'infini. Plus précisément, nous montrons que la solution converge vers la solution d'un problème à frontière libre.

Mot clés. Flot de gradient, équations non locales, inégalité de Lojasiewicz, stabilisation des solutions, équations d'Allen-Cahn avec conservation de l'intégrale, comportement en temps long, équations de réaction-diffusion, perturbations singulières, mouvement de l'interface, modèles de croissance de tumeurs, développements asymptotiques.
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Les problèmes d'évolution dont nous faisons l'étude possèdent le plus souvent des solutions stationnaires multiples, qui forment parfois un continuum ; si l'on souhaite étudier leur comportement asymptotique en temps long, une première étape consiste à démontrer une propriété de compacité des orbites, de façon à pouvoir conclure que des sous-suites convergent vers une limite quand t tend vers l'infini ; le problème qui se pose ensuite est de déterminer s'il s'agit seulement de la convergence de sous-suites ou si c'est toute l'orbite de solution qui converge vers une solution stationnaire bien définie. Dans le cas où le problème a la forme d'un système gradient, c'est-à-dire qu'il possède une fonctionnelle de Lyapunov, une possibilité est de s'appuyer sur l'inégalité de Lojasiewicz. C'est cette inégalité que Lojasiewicz [9], [10] a utilisé pour prouver la stabilisation des solutions bornées de systèmes gradients dans R n , qui sont en fait des systèmes d'équations différentielles ordinaires. Cette idée a été étendue plus tard aux systèmes gradients en dimension infinie par L. Simon [15], qui en a démontré une version appropriée pour établir la stabilisation de la solution de l'équation d'Allen-Cahn. De très nombreux travaux ont suivi, comme par exemple ceux de Haraux et Jendoubi [5] et Jendoubi [7] qui ont considéré plus particulièrement le cas de l'équation des ondes non linéaires tandis que Feireisl et Simondon [3] ont démontré la stabilisation d'équations paraboliques dégénérées. Par la suite Hofmann et Rybka [14] ont démontré une version de l'inégalité de Lojasiewicz pour l'équation de Cahn-Hilliard equation, ce qui leur a permis d'obtenir également des résultats de stabilisation. Dans cette thèse, nous étudions le comportement en temps long des solutions d'une équation de réaction-diffusion avec un terme non local ; dans ce but nous nous appuyons sur une inégalité de Lojasiewicz.

Nous abordons aussi l'équation différentielle non locale que l'on obtient en négligeant le terme de diffusion dans l'équation d'Allen-Cahn non locale étudiée au Chapitre 1 si bien qu'il ne semble pas possible d'appliquer l'inégalité de Lojasiewicz. On souhaite d'une part établir la stabilisation des orbites de solutions et d'autre part obtenir une caractérisation aussi précise que possible des fonctions de l'ensemble ω-limite pour une classe aussi large que possible de conditions initiales. C'est ce qui nous amène à appliquer la théorie des réarrangement [8] afin de transformer notre problème d'évolution en un problème unidimensionnel dont la solution est décroissance en espace. Pour ce problème, il est presque immédiat que les orbites sont relativement compactes dans tous les L p ; après avoir étudié le Introduction comportement asymptotique des solutions, il nous faut finalement transposer nos résultats au problème original. Nous étudions également une variante de l'équation différentielle non locale, dans laquelle le dénominateur peut s'annuler.

Nous nous intéressons finalement à la limite singulière de solutions d'équations ou de systèmes d'équations de réaction-diffusion ou de modèles de champ de phase. Quand on modélise l'évolution d'interfaces, on peut choisir ou bien de s'appuyer sur des modèles où les interfaces sont diffuses, ou bien sur des modèles où elles sont abruptes. En particulier, Lowengrub et son groupe ont développé à la fois des des modèles d'interfaces diffuses et des modèles d'interfaces abruptes pour décrire la croissance de tumeurs cancéreuses. Un but serait d'établir un lien entre ces modèles et en particulier de savoir dire quels modèles réguliers correspondent à quels problèmes à frontière libre limites. Ces problèmes s'appuient souvent sur des équations de type Cahn-Hilliard ; comme il nous semble plus aisé de rechercher la limite singulière de modèles de champ de phase, une idée essentielle est de plonger tout d'abord l'équation de Cahn-Hillard dans un modèle de champ de phase correspondant dont on déduit formellement la limite singulière. Nos résultats sont seulement formels ; des résultats rigoureux sont encore hors d'atteinte du fait de la complexité du système.

Chapitre 1 : Convergence vers des états stationnaires pour les solutions d'une équation de réaction-diffusion non locale

Ce chapitre fait l'objet d'un article écrit en collaboration avec S. Bousaïd (Université de Batna, Algérie) et D. Hilhorst (Université de Paris-Sud).

Nous nous intéressons à un modèle qui est initialement proposé par Rubinstein et Sternberg [13] pour modliser la séparation de phase dans un mélange binaire,

             u t = ∆u + f (u) - 1 |Ω| Ω f (u) dans Ω × IR + , ∂u ∂ν = 0 sur ∂Ω × IR + , u(x, 0) = u 0 (x) x ∈ Ω,
où Ω est un ouvert connexe borné de IR N , N ≥ 1, de frontière régulière, et où u 0 ∈ L ∞ (Ω). Nous supposons que f est un polynôme de la forme

f (s) = n i=0 a i s i où n ≥ 1, impaire et a n < 0.
Ce problème possède la fonctionnelle de Lyapunov

E(u) = 1 2 Ω |∇u| 2 - Ω F (u).
Les résultats essentiels de cette partie sont les suivants. On démontre tout d'abord l'existence et l'unicité de la solution, et on prouve qu'elle devient instantanément très régulière.

Bien que ce problème, qui est non local, n'admette pas de principe de comparaison, on peut démontrer l'existence d'ensembles invariants.

Notre résultat principal est le suivant : les solutions se stabilisent quand t tend vers l'infini et la convergence des solutions vers les solutions stationnaires est exponentielle ou polynômial. De plus on peut calculer précisément la fonction limite de le cas de la dimension d'un espace. Ce résultat est loin d'être trivial dans la mesure où ce problème possède un grand nombre de solutions stationnaires.

L'outil principal pour les démonstrations est l'inégalité de Lojasiewicz. La première version de cette inégalité a été initialement proposée par Lojasiewicz [9] dans le cas d'un espace de dimension finie (voir également [1,Theorem 1.1]).

Théorème 0.0.1 (Lojasiewicz). Soient U ⊂ IR N un ouvert, G : U → IR une fonction réelle analytique, et a ∈ U . Alors, il existe des constantes θ ∈ (0, 1 2 ], c, σ > 0 telles que pour tout

z ∈ U, z -u ≤ σ, |G(z) -G(a)| 1-θ ≤ c ∇G(z) IR N .
Lojasiewicz a appliqué cette inégalité pour démontrer la convergence vers un équilibre des solutions bornées du système gradient u + ∇G(u) = 0.

L'idée de Lojasiewicz a été ensuite généralisée à des espaces de dimension infinie et utilisée pour prouver la convergence vers des états stationnaires de solutions bornées d'un bon nombre d'équations d'évolution comme par exemple un équation de réaction-diffusion (Simon [15]), une équation des ondes (Haraux et Jendoubi [5] et Jendoubi [7]), une équation parabolique dégénérée (Feireisl et Simondon [3]) et l'équation de Cahn-Hilliard (Hoffmann et Rybka [14]).

Le problème non local nous amène à considérer l'inégalité de Lojasiewicz sur l'espace de Hilbert V , défini par

V = u ∈ H 1 (Ω) : Ω u(x)dx = 0 .
et nous vérifions que la version suivante de l'inégalité de Lojasiewicz est satisfaite Théorème 0.0.2. Soit ϕ ∈ V un point critique de E (c'est-à-dire E ′ (ϕ) = 0) tel que s 1 ≤ ϕ ≤ s 2 . Alors, il existe des constantes θ ∈ (0, 1 2 ] et C, σ > 0 telles que

|E(u) -E(ϕ)| 1-θ ≤ C E ′ (u) V * pour tout u -ϕ V ≤ σ.
La preuve de ce theorème est basée sur des résultats de Chill [1].

Chapitre 2 : Comportement en temps long des solutions d'une équation différentielle non locale.

Introduction

On considère le problème à valeurs intiales pour l'équation différentielle non locale (P )

       u t = f (u) - 1 |Ω| Ω f (u) dans Ω × (0, ∞), u(x, 0) = u 0 (x) x ∈ Ω,
où Ω est un ouvert borné de IR N , N ≥ 1, f ∈ C 1 (IR) et u 0 ∈ L ∞ (Ω). On suppose qu'il existe m < M tel que f ′ (m) = f ′ (M ) = 0 et que

f ′ < 0 sur (-∞, m) ∪ (M, +∞), f ′ > 0 sur (m, M ).
On suppose de plus qu'il existe s * < s * satisfaisant

s * < m < M < s * f (s * ) = f (M ), f (s * ) = f (m).
Ces hypothèses impliquent en particulier que la fonction f est de type bistable. Nous démontrons tout d'abord l'existence et l'unicité de la solution et nous prouvons que cette solution reste dans un ensemble invariant à tous les temps. Nous étudions ensuite son comportement asymptotique en temps long et démontrons que si u 0 satisfait l'une des deux hypothèses

(i) 1 |Ω| Ω u 0 (x) dx ∈ [s * , s * ] (ii) s * ≤ u 0 ≤ s * et |{x ∈ Ω : |{u 0 (x) = s}| = 0 pour tout s ∈ (m, M )
alors, quand t tend vers l'infini, la solution converge vers une fonction en escalier qui prend au plus deux valeurs, qui coïncident avec les points stables d'une équation différentielle ordinaire associée. De plus, nous montrons par un contre-exemple que quand l'hypothèse (ii) sur la fonction initiale n'est pas satisfaite, la fonction limite peut prendre trois valeurs. L'un d'eux est le point instable et les deux autres sont les points stables de l'équation différentielle ordinaire associée.

Des difficultés essentielles dans l'étude de ce problème sont liées à l'absence de terme de diffusion ; en particulier, il est plus difficile de démontrer la compacité relative des orbites de solution. De plus, il est plus difficile sinon impossible d'appliquer la méthode du premier chapitre basée sur l'application d'une inégalité de Lojasiewicz.

Pour résoudre ces difficultés, on s'appuie sur la théorie des réarrangements : on réarrange les valeurs de la solution u de façon à obtenir une solution u ♯ qui est définie sur (0, |Ω|) × [0, +∞) et est telle que pour tout t ≥ 0, u ♯ (•, t) est décroissante. Nous démontrons que la norme BV de u ♯ est bornée uniformément en temps si bien que l'ensemble ω-limite de u ♯ est non vide. L'unicité des éléments de l'ensemble ω-limite est prouvée en considérant l'ensemble des points instables, c'est-à-dire l'ensemble {x ∈ (0, |Ω|) : f ′ (u ♯ (x, t)) ≥ 0}, et en montrant qu'il est décroissant au sens des inclusions. Finalement, on prouve que la stabilisation de u ♯ en grands temps implique celle de u.

Chapitre 3 : Sur un problème d'évolution non local proposé par M. Nagayama

On étudie un problème à valeur initiale proposé par M. Nagayama pour modéliser le mouvement d'une bulle

           u t = u 2 (1 -u) -u(1 -u) Ω u 2 (1 -u) Ω u(1 -u) dans Ω × IR + , u(x, 0) = u 0 (x) x ∈ Ω,
où Ω est un ouvert borné de IR N , N ≥ 1. On suppose que la fonction initiale u 0 satisfait l'une des deux hypothèses

(H 1 ) u 0 ∈ L ∞ (Ω), 1 ≤ u 0 (x) pour presque partout x ∈ Ω; et u 0 ≡ 1. (H 2 ) u 0 ∈ L ∞ (Ω), u 0 (x) ≤ 0 pour presque partout x ∈ Ω; et u 0 ≡ 0.
Une difficulté essentielle provient du fait que le dénominateur peut s'annuler dans l'un des termes de réaction. Nous considérons le problème obtenu par réarrangement décroissant unidimensionnel correspondant et appliquons un théorème de point fixe lié à une application contractante pour démontrer que le problème à valeur initiale possède une solution unique qui reste confinée dans un ensemble invariant. Ce problème possède une fonctionnelle de Lyapunov, ce qui est un ingrédient essentiel pour démontrer que la solution converge une solution stationnaire constante par morceaux quand t tend vers l'infini.

Chapitre 4 : Limite asymptotique formelle d'un modèle d'interface diffuse pour la croissance de tumeurs Cette partie de la thèse correspond à des travaux en collaboration avec D. Hilhorst (Université de Paris-Sud), J. Kampmann (Technische Universität Dortmund) and K. Van der Zee (Technische Universiteit Eindhoven). L'étude de la croissance de tumeurs est un sujet d'intérêt essentiel en biologie médicale. Dans une phase initiale de son développement, la croissance d'une tumeur est due à la consommation de nutriments qui diffuse à travers le tissu environnant,et cette consommation est modélisée par des termes de réaction. Pour la modélisation, on peut choisir ou bien s'appuyer sur des modèles où les interfaces sont diffuses, ou bien sur des modèles où elles sont abruptes. Un grand nombre de travaux est consacré à ce phénomène, comme par example [2,16,12,11]. Le but de ce chapitre est de prendre comme point de départ un modèle d'interface diffuse et d'effectuer une dérivation formelle du problème à frontière libre limite.

Nous considérons ici un modèle d'interface diffuse pour la croissance de tumeurs qui améliore un modèle étudié par [6]. Il fait intervenir quatre constituants : une phase de cellules contaminées, u ≈ 1, une phase de cellules saines u ≈ -1, une phase d'eau extracellulaire riche en nutriments σ ≈ 1 et une phase d'eau extra-cellulaire pauvre en nutriments Introduction σ ≈ 0. Les équations sont données par

u t = ∆µ + ε -1 p(u)(σ -δµ) µ = -ε -1 f (u) -ε∆u σ t = ∆σ -ε -1 p(u)(σ -δµ)
où δ > 0 est un paramètre de régularisation ; la fonction de croissance p(u) est définie par

p(u) := 2p 0 W (u) u ∈ [-1, 1] 0 ailleurs, où W (u) := - u -1 f (s) ds.
On suppose que la fonction bistable f (u) possède deux racines stables ±1, une racine unstable 0 et que

1 -1 f (s)ds = 0.
Le but de ce chapitre est de déterminer la limite singulière de ces équations quand ε ↓ 0 ; ceci nous amène à considérer le problème plus général (P ε ), qui a la forme d'un modèle de champ de phase :

αµ ε t + u ε t = ∆µ ε + ε -1 p(u ε )(σ ε -δµ ε ) dans Ω × (0, +∞), αu ε t = ∆u ε + ε -2 f (u ε ) + ε -1 µ ε dans Ω × (0, +∞), σ ε t = ∆σ ε -ε -1 p(u ε )(σ ε -δµ ε ) dans Ω × (0, +∞),
avec des conditions aux limites de Neumann homogènes et des conditions initiales. On retrouve le modèle d'origine en posant α = 0 dans le Problème (P ε ).

La deuxième équation dans le modèle de champ de phase est une équation de type Allen-Cahn pour u ε . Quand ε ↓ 0, u ε converge vers une fonction limite u qui prend deux valeurs -1 et 1 et une interface, que l'on note Γ(t), sépare les régions Ω + (t) = {x ∈ Ω : u(x, t) = 1} et Ω -(t) = {x ∈ Ω : u(x, t) = -1}. On suppose ici que Γ(t) est une hypersurface sans bords régulière qui se déplace avec la vitesse V n .

Nous nous proposons de rechercher formellement le problème à frontière libre limite que nous notons (P 0 ) ; les fonctions inconnues sont u, µ, σ et Γ(t), et l'on suppose que u, µ, σ sont les limites de u ε , µ ε , σ ε quand ε ↓ 0 ; nous montrons que le problème (P 0 ) est donné par

u(x, t) = 1 dans Ω + (t), t ∈ [0, T ) -1 dans Ω -(t), t ∈ [0, T ) αµ t = ∆µ dans Ω \ Γ(t) × {t}, σ t = ∆σ sur Ω \ Γ(t) × {t}, αV n = -(N -1)κ + Cµ sur Γ(t), [[µ]] = [[σ]] = 0 sur Γ(t), [[ ∂µ ∂n ]] = -2V n + 2 √ 2p 0 (σ -δµ) sur Γ(t), [[ ∂σ ∂n ]] = -2 √ 2p 0 (σ -δµ) sur Γ(t), (1) 
avec des conditions aux limites de Neumann homogènes et des conditions initiales. Ici, κ est la courbure moyenne de l'interface et [[•]] désigne le saut au travers de l'interface.

Nos résultats principaux sont les suivants.

Théorème 0.0.3. Le Problème (P ε ) possède la fonctionnelle de Lyapunov E ε , définie par

E ε (u, µ, σ) := Ω ε 2 |∇u| 2 + 1 ε W (u) + αµ 2 2 + σ 2 2δ .
Théorème 0.0.4. Le Problème (P 0 ) possède la fonctionnelle de Lyapunov E, définie par

E(Γ, µ, σ) := 2 C Γ 1 dΓ + Ω αµ 2 2 + σ 2 2δ ,
Théorème 0.0.5. Soit (u ε , µ ε , σ ε ) une solution du Problème (P ε ). On suppose que le Problème (P 0 ) possède une solution classique unique

(Γ, µ, σ) sur l'intervalle [0, T ]. Si u ε -→ u, µ ε -→ µ, σ ε -→ σ dans un sens suffisamment fort, quand ε → 0, alors (Γ, µ, σ) coïncide avec la solution classique du Problème (P 0 ) sur l'in- tervalle [0, T ].
Une difficulté essentielle de la démonstration est liée au fait que nous devons trouver la limite du terme réaction Abstract. We consider a nonlocal reaction-diffusion equation with mass conservation, which was originally proposed by Rubinstein and Sternberg as a model for phase separation in a binary mixture. We study the large time behavior of the solution and show that it converges to a stationary solution as t tends to infinity. We also evaluate the rate of convergence and precisely compute the limit stationary solution in one space dimension.

ε -1 p(u ε )(σ ε -δµ ε ) quand ε → 0.
Chapter 1. Nonlocal reaction-diffusion equation

Introduction

We consider the non local initial value problem (P )

         u t = ∆u + f (u) -- Ω f (u) in Ω × IR + , ∂ ν u = 0 on ∂Ω × IR + , u(x, 0) = u 0 (x) x ∈ Ω,
where Ω ⊂ IR N (N ≥ 1) is a connected open set with smooth boundary ∂Ω; ∂ ν is the outer normal derivative to ∂Ω and

- Ω f (u) := 1 |Ω| Ω f (u(x)) dx.
This model is mass conserved, namely

Ω u(x, t) dx = Ω u 0 (x) dx for all t > 0,
and it possesses a free energy functional which coincides with the usual Allen-Cahn functional

E(u) = 1 2 Ω |∇u| 2 dx - Ω F (u) dx,
where F (u) := u 0 f (s)ds.

Problem (P ) was introduced by Rubinstein and Sternberg [25] as a model for phase separation in a binary mixture. We first prove in this paper the existence, uniqueness and regularity of the solutions. Although this problem is a non local problem, we can prove l'existence of invariant set. The principle result is the large time behavior. We show that the solution converges to a stationary solution as t tends to infinity. We also evaluate the rate of this convergence and precisely compute the limit stationary solution in one space dimension.

The main tool to study the large time behavior is a Lojasiewicz inequality that was first proposed by Lojasiewicz himself [19], [21]. He showed that all bounded solutions of gradient systems in IR N , (which are an ODE systems), converge to a stationary solution. This idea was subsequently developed in infinite-dimensional spaces for proving the convergence to steady state of bounded solution of several local equations such as reaction-diffusion equation (Simon [27]), wave equation (Haraux and Jendounbi [12]), degenerated parabolic equation (Feireisl et Simondon [11]) and Cahn-Hilliard equation (Hofmann and Rybka [26]); let us also mention the book by Huang [16]. In this paper, we present a version of Lojasiewicz inequality for a non local problem.

In [25], the authors consider the model in which f is bistable type, typical example f (s) = ss 3 . In this paper, we assume that the function f is of the following form

f (s) = n i=0
a i s i , where n ≥ 1 is an odd number, a n < 0.

(1.1)

Note that there exists a constant c 1 > 0 satisfying

f ′ (s) ≤ c 1 for all s ∈ IR. (1.2)
Constants s 1 , s 2 : Let s 1 < s 2 be two constants such that

f (s 2 ) < f (s) < f (s 1 ) for all s ∈ (s 1 , s 2 ), (1.3) 
Note that we can choose s 1 , s 2 such that s 1 is arbitrarily small and s 2 is arbitrarily large.

Assumption on initial data: We will make the following hypotheses on the initial data:

(H 0 ) : u 0 ∈ L 2 (Ω) and s 1 ≤ u 0 ≤ s 2 a.e on Ω.
Theorem 1.1.1. Assume that Hypotheses (H 0 ) holds. Then, Problem (P ) possesses a unique solution u ∈ C([0, ∞); L 2 (Ω)) which satisfies for every T > 0,

u ∈ L ∞ (Q T ) ∩ L 2 (0, T ; H 1 (Ω)) and u t ∈ L 2 (0, T ; (H 1 (Ω)) * ),
where

Q T := Ω × (0, T ). Moreover u ∈ C ∞ (Ω × (0, +∞)), s 1 ≤ u(x, t) ≤ s 2 for all x ∈ Ω, t > 0; and {u(t), t ≥ 1} is relatively compact in C m (Ω) for all m ∈ IN. Theorem 1.1.2.
Let (H 0 ) hold and let u be the unique solution of Problem (P ). Then there exists a smooth function ϕ such that

lim t→∞ u(t) -ϕ C m (Ω) = 0 as t → ∞, for all m ∈ IN.
Moreover,

Ω ϕ = Ω u 0 ,
and ϕ is a smooth solution of the stationary problem

(S)    ∆ϕ = -f (ϕ) + - Ω f (ϕ) in Ω, ∂ ν ϕ = 0 on ∂Ω.
The proofs of Theorem 1.1.1 and Theorem 1.1.2 are based on the auxiliary problem (P ), which will be introduced in Section 2. The advantage is that Problem (P ) has a bounded nonlinearity. We will first study the existence, the uniqueness and the large time behavior of solutions to Problem (P ), then show that the solution of Problem (P ) coincides with the unique solution of Problem (P ). Finally, we deduce the results of Problem (P ) from the results of Problem (P ).

The remainder of the paper is organized as follows: in Section 1.3, we introduce Problem (P ) and we prove the existence and uniqueness of the solution of Problem (P ); we also give a regularity result. Theorem 1.1.1 is proved in Section 1.2.3. Section 1.3 is devoted to prove a version of Lojasiewicz inequality for the energy functional E of Problem (P ) (cf. Theorem 1.3.8). In Section 1.4, we apply the Lojasiewicz inequality to prove Theorem 1.1.2. We also precisely compute the limit stationary solution in one space dimension in this section. The rate of this convergence is established in this Section 1.5.
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Existence and uniqueness of solution 1.2.1 Problem (P )

In order to prove the existence of the solution of Problem (P ), we consider an auxiliary problem which has a bounded nonlinearity. First, we introduce the function f ∈ C ∞ c (IR) as follows,

f (s) =      0 if s ≤ s 1 -2, f (s) if s ∈ [s 1 -1, s 2 + 1], 0 if s ≥ s 2 + 2.
(1.4)

We then define the auxiliary problem (P ) by

(P )          u t = ∆u + f (u) -- Ω f (u) in Ω × IR + , ∂ ν u = 0 on ∂Ω × IR + , u(x, 0) = u 0 (x) x ∈ Ω.
Note that there exists a constant c 2 > 0 such that

| F (s)|, | f (s)|, | f (s)s|, | f ′ (s)| < c 2 for all s ∈ IR, (1.5) 
where F (s) :=

s 0 f (τ )dτ. Lemma 1.2.1. Let u 0 ∈ L 2 (Ω).
Then, for any T > 0 arbitrary, Problem (P ) possesses a unique solution u which satisfies

u ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 (Ω)); u t ∈ L 2 (0, T ; (H 1 (Ω)) * ).
(1.6) 

Moreover, u ∈ C([0, ∞); L 2 (Ω)
= λ 1 < λ 2 ≤ • • • ≤ λ i ≤ • • •
the eigenvalues of the Laplacian, and w i , i = 1, . . . the corresponding unit eigenfunctions. Remark that the w i 's are smooth functions up to boundary and that they form an orthonormal basis of L 2 (Ω). Moreover

w 1 = 1 |Ω| 1/2 , Ω w i = 0 for i ≥ 2.
Proof of Lemma 1.2.1. We apply the Galerkin method and look for an approximate solution of the form

u m (t) = m i=1 g mi (t) w i (1.7)
satisfying

Ω u mt w j + Ω ∇u m ∇w j = Ω f (u m )w j -- Ω f (u m ) Ω w j (1.8)
for j = 1, . . . , m and

u m (0) = u m0 := m i=1 g 0 mi w i → u 0 in L 2 (Ω) as m → ∞.
(1.9)

Since Ω w j = 0 for 2 ≤ j ≤ m, we deduce that the equations (1.8) form a nonlinear differential system for the functions g m1 , . . . , g mm :

g ′ m1 (t) = 0, (1.10) 
g ′ mj + λ j g mj = Ω f m i=1 g mi (t) w i w j for 2 ≤ j ≤ m. (1.11)
The condition (1.9) forms the m scalar initial conditions

g m1 (0) = g 0 m1 , (1.12) 
g mj (0) = g 0 mj for 2 ≤ j ≤ m.

(1.13)

It follows from (1.10) and (1.12) that g m1 (t) = g 0 m1 for all t ≥ 0.

(

Substituting (1.14) in (1.11), we obtain a nonlinear differential system of m -1 variables.

Then the nonlinear differential system (1.11) with the initial condition (1.13) has a maximal solution defined on some interval (0, T m ). In fact T m = ∞ because of the following a priori estimates.

A priori estimates for u m : First, we note from (1.7) that

Ω u m (t) = g m1 (t)|Ω| 1 2 ; 
and from (1.9) that

g 0 m1 |Ω| 1 2 = Ω u m0 (x) dx → Ω u 0 (x) dx as m → ∞.
These together with (1.14) implies that

Ω u m (t) dx = Ω u m0 (x) dx → Ω u 0 (x) dx as m → ∞ (1.15)
for all 0 ≤ t < T m . Consequently, there exists a positive constant c 3 independent of m such that Ω u m (t) dx ≤ c 3 for all 0 ≤ t < T m .

(1.16)

Multiplying (1.8) by g mj and summing on j = 1, . . . , m we obtain 

1 2 d dt Ω |u m | 2 + Ω |∇u m | 2 = Ω f (u m )u m -- Ω f (u m ) Ω u m . ( 1 
d dt Ω |u m | 2 + Ω |∇u m | 2 ≤ c 2 |Ω| + c 2 c 3 .
Therefore, we integrate this inequality from 0 to t with t arbitrary, and then take t = T to deduce that

u m L ∞ (0,T ;L 2 (Ω)) , u m L 2 (0,T ;H 1 (Ω)) ≤ K 1 ( u 0 L 2 (Ω)) + T ), (1.18) 
where K 1 is a constant independent of m.

A priori estimates for u mt : Next, we give an estimate for u mt . Fix any η ∈ H 1 (Ω), with η H 1 (Ω) ≤ 1. We write

η = η 1 + η 2 ,
where η 1 ∈ span{w i } m i=1 and Ω η 2 w i = 0 for all i = 1, . . . , m. Note that η 2 ∈ H 1 (Ω) and that

Ω ∇η 2 ∇w i = - Ω η 2 ∆w i = λ i Ω η 2 w i = 0 for all 1 ≤ i ≤ m.
Thus, η 2 is also orthogonal to span{w i } m i=1 with respect to the scalar product in H 1 (Ω). In particular, η 2 is orthogonal to η 1 in H 1 (Ω), hence

η 1 H 1 (Ω) ≤ η H 1 (Ω) ≤ 1.
(

We deduce from (1.8) that

Ω u mt η = Ω u mt η 1 = - Ω ∇u m ∇η 1 + Ω f (u m )η 1 -- Ω f (u m ) Ω η 1 .
Therefore, in view of (1.5); we have

Ω u mt η ≤ ∇u m L 2 (Ω) ∇η 1 L 2 (Ω) + 2c 2 η 1 L 1 (Ω) ≤ ∇u m L 2 (Ω) ∇η 1 L 2 (Ω) + c 4 η 1 L 2 (Ω) ≤ ∇u m L 2 (Ω) + c 4 ,
where the last inequality follows from (1.19); c 4 is a constant independent of m. Since η ∈ H 1 (Ω) is an arbitrary function such that η H 1 (Ω) ≤ 1, it follows that

u mt (H 1 (Ω)) * ≤ ∇u m L 2 (Ω) + c 4 .
This together with (1.18) implies that there exists a positive constant K 2 independent of m such that

u mt L 2 (0,T ;(H 1 (Ω)) * ) ≤ K 2 .
(1.20)

Passing to the limit: It follows from (1.18) and (1.20) that there exists a subsequence of u m , still denoted by u m , such that

u m ⇀ u weakly in L 2 (0, T ; H 1 (Ω)), weak-star in L ∞ (0, T ; L 2 (Ω)), u m → u strongly in L 2 (0, T ; L 2 (Ω)), u mt ⇀ u t weakly in L 2 (0, T ; (H 1 (Ω)) * ),
1.2. Existence and uniqueness of solution 21 as m → +∞. On the other hand, in view of (1.5), we have

| f ′ (s)| ≤ c 2 . Therefore T 0 Ω | f (u m ) -f (u)| 2 ≤ (c 2 ) 2 T 0 Ω |u m -u| 2 ,
so that f (u m ) → f (u) strongly in L 2 (0, T ; L 2 (Ω)).

Passing to the limit as m → +∞ in (1.8), we deduce that

u t = ∆u + f (u) -- Ω f (u) in L 2 (0, T ; (H 1 (Ω)) * ).
Since u ∈ L 2 (0, T ; H 1 (Ω)) and since

u t ∈ L 2 (0, T ; (H 1 (Ω)) * ), it follows that u ∈ C([0, T ]; L 2 (Ω)).
Moreover, u(x, 0) = u 0 (x) by classical arguments.

We have thus proven the existence part of Lemma 

Proof. Set w := u 1 -u 2 .
We take the duality product of the difference of the equations for u 1 and u 2 by w to obtain 1 2

d dt Ω w 2 (t) + Ω |∇w(t)| 2 = Ω f (u 1 ) -f (u 2 ) w - Ω w - Ω f (u 1 ) -f (u 2 ) .
It follows from (1.5) that 1 2

d dt Ω w 2 (t) + Ω |∇w(t)| 2 ≤ c 2 Ω w 2 + c 2 |Ω| Ω |w| 2 ≤ c 5 Ω w 2 .
Using Gronwall's lemma, we have Proof. We take the duality product of the equation for u by 1 to obtain

Ω |u 1 (t) -u 2 (t)| 2 ≤ exp(2c 5 t) Ω | u 01 -u 02 | 2 , ( 1 
d dt Ω u + Ω ∇u ∇1 = Ω f (u)1 -- Ω f (u) Ω 1.
Therefore, d dt Ω u(x, t) dx = 0, which implies that the identity (1.23) holds.

More regularity properties of u

We now prove more regularity properties of the solution of Problem (P ). For this purpose, we first recall some technical lemmas which will be used in what follows. We set

Q b a = Ω × (a, b) for a ∈ IR and b ∈ IR ∪ {+∞}. Lemma 1.2.5. Let u 0 ∈ L 2 (Ω), f ∈ L p (Q T )
for some p ∈ (1, ∞) and let u be the solution of the time evolution problem

   u t -∆u = f in Q T , ∂ ν u = 0 on ∂Ω × (0, T ), u(x, 0) = u 0 (x) x ∈ Ω.
Then (i) for each 0 < δ < 1, there exists a positive constant C 1 (δ, Ω, T ) such that

u W 2,1 p (Q T δ ) ≤ C 1 ( u 0 L 2 (Ω) + f L p (Q T ) ),
(ii) if we suppose that u 0 ∈ W 2,p (Ω) then we obtain the estimate

u W 2,1 p (Q T ) ≤ C 2 ( u 0 W 2,p (Ω) + f L p (Q T ) ).
Remark 1.2.6. If T = 1, then the constant C 1 depends only on δ and Ω.

Lemma 1.2.7. One has the following embedding 

W 2,1 p (Q T ) ⊂ C λ,λ/2 ( QT ) with λ = 2 - N + 2 p if p > N +
m 0 := - Ω u 0 = - Ω u(t).
It follows from Poincaré-Wirtinger inequality that there exists a constant c 6 = c 6 (Ω) such that

Ω |u -m 0 | 2 ≤ c 6 Ω |∇u| 2 dx, or equivalently Ω |u| 2 ≤ m 2 0 |Ω| + c 6 Ω |∇u| 2 dx.
Hence,

- Ω |∇u| 2 dx ≤ m 2 0 |Ω| c 6 - 1 c 6 Ω |u| 2 . (1.24)
We take the duality of the partial differential equation for u in Problem (P ) by u to obtain 1 2

d dt Ω |u| 2 + Ω |∇u| 2 = Ω f (u)u -- Ω f (u) Ω u ≤ Ω ε 2 |u| 2 + 1 2ε f (u) 2 + c 2 m 0 ≤ ε 2 Ω |u| 2 + (c 2 ) 2 2ε |Ω| + c 2 m 0 Therefore, 1 2 
d dt Ω |u| 2 ≤ - Ω |∇u| 2 + ε 2 Ω |u| 2 + (c 2 ) 2 2ε |Ω| + c 2 m 0 ,
which together with (1.24) implies that 1 2

d dt Ω |u| 2 ≤ ( ε 2 - 1 c 6 ) Ω |u| 2 + (c 2 ) 2 2ε |Ω| + c 2 m 0 + m 2 0 |Ω| c 6 .
We choose ε small enough to deduce that there exist c 7 , c 8 > 0 such that

d dt Ω |u| 2 ≤ -c 7 Ω |u| 2 + c 8 .
Applying Gronwall inequality we obtain

Ω |u(t)| 2 ≤ exp(-c 7 t) Ω |u 0 | 2 + c 8 c 7 ,
which completes the proof of Lemma 1.2.8.

Lemma 1.2.9. Let u 0 ∈ L 2 (Ω), m ∈ IN and let 0 < δ < 1 2 , α ∈ (0, 1) be arbitrary. Then, 

u C 2m+1+α,m+ 1+α 2 (Q ∞ δ ) ≤ C(m, δ, Ω)( u 0 L 2 (Ω) + 1
u C 1+α,(1+α)/2 (Q 1 δ ) ≤ C 1 u 0 L 2 (Ω) + f (u) -- Ω f (u) L p (Q 1 0 ) ≤ C 1 u 0 L 2 (Ω) + |Ω| 1 p f (u) -- Ω f (u) L ∞ (Q 1 0 ) ≤ C 1 ( u 0 L 2 (Ω) + 2c 2 |Ω| 1 p ).
Similarly, we apply Lemma 1.2.5(i) and the embedding in Lemma 1.2.7 on the domains

Q k+1 k and Q k+3/2
k+1/2 to obtain (cf. Lemma 1.2.8)

u C 1+α,(1+α)/2 (Q k+1 k+δ ) ≤ C 1 ( u(k) L 2 (Ω) + 2c 2 |Ω| 1 p ) ≤ C( u 0 L 2 (Ω) + 1)
and a similar one on the domain Q k+3/2 k+1/2 . Finally, we deduce from the fact that k can be chosen arbitrary that

u C 1+α,(1+α)/2 (Q ∞ δ ) ≤ C( u 0 L 2 (Ω) + 1)
. By standard bootstrap arguments [18, Theorem 10.1, p. 351], we deduce the result of Lemma 1.2.9 for any m ∈ IN.

The following corollary is an immediate consequence of Lemma 1.2.9.

Corollary 1.2.10. Let u 0 ∈ L 2 (Ω), then {u(t) : t ≥ 1} is relatively compact in H m (Ω) and in C m (Ω) for all m ≥ 0.

Derivation of Theorem 1.1.1 from the results about Problem (P )

The key lemma is the following: Lemma 1.2.11. Assume that u 0 satisfies Hypotheses (H 0 ), namely

s 1 ≤ u 0 (x) ≤ s 2
for a.e. x ∈ Ω.

Then

s 1 ≤ u(x, t) ≤ s 2 for all x ∈ Ω, t > 0.
The main idea of the proof of Lemma 1.2.11 is to approximate the initial function u 0 by a sequence of smooth functions and to first obtain the result for approximate problems. Then, we deduce the result for the original problem. To begin with, we need the following lemma.

Lemma 1.2.12. Let u 0 satisfy Hypothesis (H 0 ). Then, there exists a sequence u n0 in C ∞ (Ω) such that s 1 < u n0 < s 2 on Ω, and that

u n0 → u 0 in L 2 (Ω) as n → ∞.
The proof of this lemma will be given later. Next, we use it to prove Lemma 1.2.11.

Proof of Lemma 1.2.11. We denote by u n the corresponding solutions of Problem (P ) with initial function u n0 . We will prove this lemma through several steps.

Claim 1: We prove that

u n ∈ C 2,1 (Ω × (0, T ]) ∩ C(Ω × [0, T ]). (1.25)
Indeed, since | f | ≤ c 2 , we deduce from Lemma 1.2.5(ii) that u n ∈ W 2,1 p (Q T ) for all p > 1, which by the Sobolev embedding in Lemma 1.2.7 implies that u n ∈ C 1+α,(1+α)/2 (Q T ) for all α ∈ (0, 1). Applying a standard bootstrap argument (cf. [18,Theorem 10.1,p,351]), we deduce that u n ∈ C 3+α,1+ 1+α 2 (Ω × (0, T ]). Hence

u n ∈ C 2,1 (Ω × (0, T ]) ∩ C(Ω × [0, T ]).
Claim 2: We prove that

s 1 < u n (x, t) < s 2 for all x ∈ Ω, t > 0. (1.26)
For the purpose of contradiction, we suppose that there exists a first time t 0 > 0 such that u n (x 0 , t 0 ) = s 1 or u n (x 0 , t 0 ) = s 2 for some x 0 ∈ Ω. Without loss of generality, assume that u n (x 0 , t 0 ) = s 2 . By the continuity of u n and the definition of t 0 , we have s 1 ≤ u n (x, t 0 ) ≤ s 2 for all x ∈ Ω, and u n (x, t) < s 2 for all x ∈ Ω and 0 ≤ t < t 0 . (1.27)

Since ∂ ν u n = 0, we deduce from Hopf's maximum principle that x 0 ∈ Ω. Therefore the function u n (•, t 0 ) attains its maximum at x 0 ∈ Ω, which implies that ∆u n (x 0 , t 0 ) ≤ 0. By (2.10), we have

u nt (x 0 , t 0 ) = lim ∆t→0 + u n (x 0 , t 0 -∆t) -u n (x 0 , t 0 ) -∆t ≥ 0,
which we substitute in Problem (P ) to obtain -

Ω ( f (s 2 ) -f (u n (x, t 0 ))) dx ≥ 0. Since s 1 ≤ u n (x, t 0 ) ≤ s 2 for all x ∈ Ω, it follows from (1.3) that f (s 2 ) ≤ f (u n (x, t 0 )) for all x ∈ Ω so that f (s 2 ) = f (u n (x, t 0 )). Using (1.
3) again, we obtain u n (x, t 0 ) = s 2 for all x in Ω. Consequently, we have

Ω u n (x, t 0 ) dx = s 2 > Ω u 0 (x) dx,
which contradicts the integral preserving property in Lemma 1.2.4. We obtain (1.26).

Claim 3: Next, we prove that

s 1 ≤ u(x, t) ≤ s 2 for all x ∈ Ω, t > 0. It follows from Lemma 1.2.3 that Ω |u(t) -u n (t)| 2 ≤ exp(ct) Ω |u 0 -u n0 | 2
for some constant c > 0. Therefore,

u n → u in L 2 (Q T ) as n → +∞.
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Consequently, there exists a subsequence {u nj } j≥0 of {u n } n≥0 such that u nj → u almost everywhere on Q T , which together with (1.26) implies that

s 1 ≤ u(x, t) ≤ s 2 almost everywhere on Q T .
Moreover, in view of Lemma 1.2.9, u is smooth on Q T and T > 0 is arbitrary so that

s 1 ≤ u(x, t) ≤ s 2 for all x ∈ Ω, t > 0.
Proof of Lemma 1.2.12. First, we extend the function u 0 to w 0 defined on IR N by

w 0 (x) =        u 0 (x) if x ∈ Ω s 1 + s 2 2 elsewhere.
Obviously,

s 1 ≤ w 0 (x) ≤ s 2 a.e. x ∈ IR N .
For all n large enough such that

s 1 + 1 n < s 2 - 1 n ,
we define

w n0 := min s 2 - 1 n , max{w 0 , s 1 + 1 n } .
Then, we have

s 1 + 1 n ≤ w n0 (x) ≤ s 2 - 1 n a.e. x ∈ IR N , (1.28) 
and moreover,

w n0 -u 0 L 2 (Ω) = w n0 -w 0 L 2 (Ω) ≤ |Ω| 1 2 w n0 -w 0 L ∞ (Ω) ≤ |Ω| 1 2 n .
As in [1, Theorem 2.29, page 36], we can choose a smooth function u n0 such that

u n0 -w n0 L 2 (Ω) ≤ |Ω| 1 2 n .
More precisely,

u n0 (x) := IR N J ε (x -y)w n0 (y)dy, for ε small enough, where J ε (x) = ε -N J(x/ε), with J ∈ C ∞ c (IR N ) is a nonnegative function satisfying J(x) = 0 if |x| ≥ 1,
and

IR N J(x)dx = 1.
Note that J ε is nonnegative and that

IR N J ε (x)dx = 1. (1.29)
Therefore, in view of (1.28) and (1.29)

s 1 + 1 n ≤ u n0 ≤ s 2 - 1 n for all x ∈ IR N .
Moreover,

u n0 -u 0 L 2 (Ω) ≤ u n0 -w n0 L 2 (Ω) + w n0 -u 0 L 2 (Ω) ≤ 2|Ω| 1 2
n .

It follows that

u n0 → u 0 in L 2 (Ω) as n → +∞.
The proof of Lemma 1.2.12 is complete.

Lemma 1.2.13. Let u be a solution of Problem (P ) such that

u ∈ L ∞ (Q T ) ∩ L 2 (0, T ; H 1 (Ω)) and u t ∈ L 2 (0, T ; (H 1 (Ω)) * ), Then, Ω u(x, t)dx = Ω u 0 (x) dx for all t > 0. (1.30)
Proof. The proof is similar to the one of Lemma 1.2.4. We omit it.

Lemma 1.2.14. Let u 01 , u 02 ∈ L ∞ (Ω) such that Ω u 01 (x) dx = Ω u 02 (x) dx,
and let u 1 , u 2 be two corresponding solutions of Problem (P ), which satisfy

u 1 , u 2 ∈ L ∞ (Q T ) ∩ L 2 (0, T ; H 1 (Ω)) u 1t , u 2t , ∈ L 2 (0, T ; (H 1 (Ω)) * ).
Then there exists a constant c > 0 such that

Ω |u 1 (t) -u 2 (t)| 2 ≤ exp(ct) Ω | u 01 -u 02 | 2 for all t ≥ 0. (1.31)
Proof. We denote by w := u 1u 2 , and use the mass conservation property (cf. Lemma 1.2.13) to deduce that

Ω w(x, t) dx = Ω (u 01 (x) -u 02 (x)) dx = 0 for all t > 0.
(1.32)
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We multiply the difference of the equations for u and u 2 by w, then integrate over Ω to obtain 1 2

d dt Ω w 2 (t) + Ω |∇w(t)| 2 = Ω f (u 1 ) -f (u 2 ) w - Ω w - Ω f (u 1 ) -f (u 2 ) .
It follows from (2.5) and that (1.32) that 1 2

d dt Ω w 2 (t) + Ω |∇w(t)| 2 = Ω f (u 1 ) -f (u 2 ) w ≤ c 1 Ω w 2 .
Using Gronwall's lemma, we have

Ω |u 1 (t) -u 2 (t)| 2 ≤ exp(2c 1 t) Ω | u 01 -u 02 | 2 .
Proof of Theorem 1.1.1. The uniqueness of solution of Problem (P ) is a consequence of Lemma 1.2.14. Since by Lemma 1.2.11,

s 1 ≤ u(x, t) ≤ s 2 for all x ∈ Ω, t > 0.
It follows from the definition of f in (2.4) that for all t > 0

f (u(x, t)) = f (u(x, t)) for all x ∈ Ω, so that u satisfies the equations          u t = ∆u + f (u) -- Ω f (u) = ∆u + f (u) -- Ω f (u) in Ω × IR + , ∂ ν u = 0 on ∂Ω × IR + , u(x, 0) = u 0 (x) x ∈ Ω.
Thus, u coincides with the unique solution of Problem (P ). Therefore, all the properties which we have proved for u hold for the unique solution u of Problem (P ). In particular, in view of Lemma 1.2.9 and of Corollary 1.2.10, we have that u ∈ C ∞ (Ω × (0, +∞)) and

{u(t), t ≥ 1} is relatively compact in C m (Ω) for all m ∈ IN.

A version of Lojasiewicz inequality

The main result of this section is the Lojasiewicz inequality stated in Theorem 1.3.8 below. More precisely, we prove a version of Lojasiewicz for the functional

E(u) := 1 2 Ω |∇u| 2 dx - Ω F (u)dx,
where we recall that F (s) := s 0 f (τ ) dτ . We also note that E is a Lyapounov functional of Problem (P ) (cf. Lemma 1.4.1 below). This section is organized as follows: In Section 1.3.1, as a preparation for the proof of Theorem 1.3.8, we prove the differentiability of E and compute its derivative. The definition and some equivalent conditions of a critical point are given. The Lojasiewicz inequality is proved in Section 1.3.2.
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Some preparations

We define the spaces

H = {u ∈ L 2 (Ω), Ω u(x)dx = 0}, equipped with the norm • H := • L 2 (Ω) , V = u ∈ H 1 (Ω) : Ω u(x)dx = 0 , equipped with the norm • V := • H 1 (Ω) .
Let V * be the dual space of V . We identify H with its dual to obtain:

V ֒→ H ֒→ V * ,
where the embeddings V ֒→ H, H ֒→ V * are continuous, dense and compact (see e.g. [17, p. 677]). We use •, • to denote the duality product between V * and V . We note L(X, Y ) the space of bounded linear operators from a Banach space X to a second Banach space Y , and we write L(X) := L(X, X).

We also define the spaces

L p (Ω) := {u ∈ L p (Ω) : Ω u(x) dx = 0}, (1.33) 
equipped with the norm

• L p (Ω) := • L p (Ω)
and

X p := {u ∈ W 2,p (Ω) : ∂ ν u = 0, Ω u(x)dx = 0}, (1.34) 
equipped with the norm

• Xp := • W 2,p (Ω)
. Throughout the sequel, we denote by C ≥ 0 a generic constant which may vary from line to line. We start with the following result.

Lemma 1.3.1. Let u, h ∈ L 1 (Ω), p ∈ [1, ∞
) and let g be a continuously differentiable function from IR to IR such that

|g(s)|, |g ′ (s)| ≤ C for all s ∈ IR. Then 1 0 g(u + τ h)dτ → g(u) in L p (Ω) as h L 1 (Ω) → 0.
Proof. It is sufficient to prove that

B := 1 0 g(u + τ h)dτ -g(u) p L p (Ω) → 0 as h L 1 (Ω) → 0.
Since g is bounded,

B ≤ 1 0 |g(u + τ h) -g(u)|dτ p L p (Ω) ≤ C 1 0 |g(u + τ h) -g(u)|dτ L 1 (Ω) ≤ C 1 0 Cτ |h|dτ L 1 (Ω) ≤ C h L 1 (Ω) .
This completes the proof of Lemma 1.3.1.
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The functional E is twice continuously Fréchet differentiable on V . We denote by E ′ , L the first and second derivative of E, respectively. Then (i) The first derivative

E ′ : V -→ V * is given by E ′ (u), h V * ,V = Ω ∇u∇h - Ω f (u)h for all u, h ∈ V. (1.35) (ii) The second derivative L : V -→ L(V, V * ) is given by L(u)h, k V * ,V = Ω ∇h∇k - Ω f ′ (u)hk for all u, h, k ∈ V. (1.36)
Consequently,

L(u)h, k V * ,V = h, L(u)k V,V * . (1.37)
Proof. We write E as the difference of E 1 and E 2 , where

E 1 (u) = 1 2 Ω |∇u| 2 dx and E 2 (u) = Ω F (u) dx. (1.38)
Obviously, E 1 is twice continuously Fréchet differentiable. Its derivatives are easily identified in the formulas (1.35) and (1.36). We now compute the first and second derivative of E 2 .

(i) By Taylor's formula,

F (u + h) -F (u) = h 1 0 f (u + τ h)dτ =: hζ for all u, h ∈ V, where ζ(x) := 1 0 f (u(x) + τ h(x))dτ
It follows that

E 2 (u + h) -E 2 (u) - Ω f (u)h dx ≤ Ω |ζ -f (u)| |h| dx ≤ C ζ -f (u) L 2 (Ω) h L 2 (Ω) ≤ C ζ -f (u) L 2 (Ω) h V .
We deduce from Lemma 1.3.1 that

ζ = 1 0 f (u + τ h)dτ → f (u) in L 2 (Ω) as h V → 0. Therefore E 2 (u + h) -E 2 (u) - Ω f (u)h dx = o( h V ) as h V → 0.
This implies that the first derivative E ′ 2 exists and

E ′ 2 (u), h V * ,V = Ω f (u)h dx.
(ii) The Fréchet differentiability of E ′ 2 is shown in a similar way. Choose p ∈ (2, +∞) such that V is continuously embedded in L p (Ω). Let T be the linear mapping from V to V * given by

T h, k V * ,V = Ω f ′ (u)h k dx.
We will use below a generalized Hölder inequality based on the identity

1 p + 1 p + p -2 p = 1.
For every u, h, k ∈ V and for

η(x) := 1 0 f ′ (u(x) + τ h(x))dτ
we have

E ′ 2 (u + h) -E ′ 2 (u) -T h, k V * ,V ≤ Ω |η -f ′ (u)| |h| |k| dx ≤ η -f ′ (u) L p/(p-2) (Ω) h L p (Ω) k L p (Ω) ≤ C η -f ′ (u) L p/(p-2) (Ω) h V k V . (1.39) 
Consequently, we have

E ′ 2 (u + h) -E ′ 2 (u) -T h V * ≤ C η -f ′ (u) L p/(p-2) (Ω) h V . (1.40) Since 1 < p/(p -2) < +∞, we deduce from Lemma 1.3.1 that η -f ′ (u) L p/(p-2) (Ω) → 0 as h V → 0,
which together with (1.40) follows that

E ′ 2 (u + h) -E ′ 2 (u) -T h V * = o( h V ).
Therefore,

E ′′ 2 (u)h, k V * ,V = Ω f ′ (u)h k for all u, h, k ∈ V.
We also note that

| (E ′′ 2 (u) -E ′′ 2 (v))h, k V * ,V | ≤ Ω | f ′ (u) -f ′ (v)| |h| |k| dx ≤ C f ′ (u) -f ′ (v) L p/(p-2) (Ω) h V k V . Hence E ′′ 2 (u) -E ′′ 2 (v) L(V,V * ) ≤ C f ′ (u) -f ′ (v) L p/p-2 (Ω) ,
which implies the continuity of E ′′ 2 . Finally, (1.37) is an immediate consequence of (1.36).
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We define a continuous bilinear form from

V × V → IR by a(u, v) = Ω ∇u∇v dx.
The following lemma is an immediate consequence of Lax-Milgram theorem [3, Corollary 5.8, page 140]. We omit its proof.

Lemma 1.3.3. There exists an isomorphism

A from V onto V * such that a(u, v) = Au, v V * ,V for all u, v ∈ V. (1.41) Corollary 1.3.4.
The first and second derivatives of E can be represented in V * as:

E ′ (u) = Au -f (u) + - Ω f (u), (1.42) 
L(u)h = Ah -f ′ (u)h + - Ω f ′ (u)h, (1.43) for all u, h ∈ V . Proof. Since f is bounded, f (u) -- Ω f (u) ∈ H ֒→ V * . Therefore, Au -f (u) + - Ω f (u) ∈ V * .
We also note that

Ω - Ω f (u) h = - Ω f (u) Ω h = 0 for all h ∈ V, thus, Au -f (u) + - Ω f (u), h V * ,V = Ω ∇u∇h - Ω f (u)h.
This together with (1.35) implies that

E ′ (u) = Au -f (u) + - Ω f (u).
Identity (1.43) may be proved in a similar way.

Lemma 1.3.5. Let L p (Ω), X p be the Banach spaces as in (1.33) and (1.34). Assume that p ≥ 2. Then, for any g ∈ L p (Ω), there exists a unique solution u ∈ X p of the equation

Au = g in V * .

Moreover, we have

A = -∆ on X p . (1.44)
Proof. It follows from Lemma 1.3.3 that the equation

Au = g in V * (1.45)
has a unique solution u ∈ V so that it is enough to prove that u ∈ X p . For this purpose, we consider the elliptic problem

-∆ũ = g in Ω, ∂ ν ũ = 0 on ∂Ω.
Since g ∈ H, we apply the Fredholm alternative to deduce that this problem possesses a unique solution ũ ∈ V . Note that g ∈ L p (Ω), so that we deduce from [2] that ũ ∈ W 2,p (Ω) so that also ũ ∈ X p . On the other hand, for all v ∈ V , we have

Aũ, v V * ,V = a(ũ, v) = Ω ∇ũ∇v dx = -∆ũ, v V * ,V = g, v V * ,V .
Therefore, ũ coincides with the unique solution of equation (1.45). In other words,

u = ũ ∈ X p .
We also conclude that A

= -∆ on X p , since for all w ∈ X p , v ∈ V , -∆w, v V * ,V = Ω ∇w∇v dx = Aw, v V * ,V . Definition 1.3.6. We say that ϕ ∈ V is a critical point of E if E ′ (ϕ) = 0 in V * .
Lemma 1.3.7. For every ϕ ∈ V , the following assertions are equivalent:

(i) ϕ is a critical point of E, (ii) ϕ ∈ X 2 and ϕ satisfies the equations    -∆ϕ = f (ϕ) -- Ω f (ϕ) in Ω, ∂ ν ϕ = 0 on ∂Ω. Moreover, ϕ is C ∞ (Ω).
Proof. (ii) ⇒ (i). By Formula (1.42), we have

E ′ (ϕ) = Aϕ -f (ϕ) + - Ω f (ϕ),
which together with (1.44) implies that

E ′ (ϕ) = -∆ϕ -f (ϕ) + - Ω f (ϕ) = 0.
Namely, ϕ is a critical point of E.

(i) ⇒ (ii). Assume that ϕ ∈ V is a critical point of E. We deduce from (1.42) that

A(ϕ) = f (ϕ) -- Ω f (ϕ) in V * . Since f (ϕ) -- Ω f (ϕ) ∈ H, it follows from Lemma 1.3.5 that ϕ ∈ X 2 satisfies the equations    -∆ϕ = f (ϕ) -- Ω f (ϕ) in Ω, ∂ ν ϕ = 0 on ∂Ω. Finally, we deduce that ϕ ∈ C ∞ (Ω) from the boundedness of f (ϕ) -- Ω f (ϕ), Sobolev
embedding theorem and a standard bootstrap argument.

Lojasiewicz inequality

We recall the definition of a direct topological sum. Let X be a Banach space and let X 1 , X 2 be two subspaces of X. We say that X is the direct topological sum of X 1 and X 2 , which we write

X = X 1 ⊕ X 2 , if X 1 , X 2 are closed subspaces of X, such that X 1 ∩ X 2 = {0} X = X 1 + X 2 .
An equivalent condition is that there exists a continuous projection P in X (i.e P ∈ L(X) and P 2 = P ) such that X 1 = ker P and X 2 = Rg P.

We refer to [24, page 133] for more details. Next, we check that the following Lojasiewicz inequality is satisfied.

Theorem 1.3.8 (Lojasiewicz inequality). Let ϕ ∈ V be a critical point of the functional E such that s 1 ≤ ϕ ≤ s 2 .
Then there exist constants θ ∈ (0, 1 2 ] and C, σ > 0 such that

|E(u) -E(ϕ)| 1-θ ≤ C E ′ (u) V * , (1.46) 
for all uϕ V ≤ σ. In this case, we say that E satisfies the Lojasiewicz inequality in ϕ.

The number θ will be called the Lojasiewicz exponent. ). The kernel ker L(ϕ) is a complemented subspace of V , i.e., there exists a projection P ∈ L(V ) such that Rg P = ker L(ϕ). We denote by P * ∈ L(V * ) the adjoint projection of P .

(H 2 ) : (see [8, Hypothesis 3.4, page 580]). There exists a Banach space W with the following properties (i) W is continuously embedded in V * and invariant under P * (i.e. P * (W ) ⊂ W ),

(ii) E ′ ∈ C 1 (V, W ), (iii) Rg L(ϕ) = ker P * ∩ W .
(H 3 ) : There exist Banach spaces X ⊂ V and Y ⊂ W such that (i) the spaces X and Y are invariant under projection P and P * , respectively, (ii) the restriction of the derivative

E ′ to X is analytic in a neighborhood of ϕ with values in Y , (iii) ker L(ϕ) is contained in X and finite-dimensional, (iv) Rg L(ϕ) X = ker P * ∩ Y . It follows from [8, Corollary 3.11] that if (H 1 ), (H 2 ), (H 3 ) hold, then E satisfies for some θ ∈ (0, 1 2 ], |E(u) -E(ϕ)| 1-θ ≤ C E ′ (u) W for all u -ϕ V ≤ σ. (1.47)
We note here that the norm of the space W appears on the right-hand side of (1.47). Therefore, in order to prove Inequality (1.46) in Theorem 1.3.8, we choose W = V * , so that instead of considering (H 2 ), (H 3 ), we will consider (

H ′ 2 ), (H ′ 3 ) below: (H ′ 2 ) : Rg L(ϕ) = ker P * . (H ′
3 ) : There exist Banach spaces X ⊂ V and Y ⊂ V * such that (i) X and Y are invariant under projection P and P * , respectively, (ii) the restriction of the derivative E ′ to X is analytic in a neighborhood of ϕ with value in Y , (iii) ker L(ϕ) is contained in X and finite dimensional, (iv) Rg L(ϕ) X = ker P * ∩ Y .

Our task now is to verify (H 1 ), (H ′ 2 ), (H ′ 3 ). We start with the following lemma.

Lemma 1.3.9. Let ϕ be a critical point of E. Then,

(i) L(ϕ) is a Fredholm operator from V to V * of index 0 i.e, Rg L(ϕ) is closed in V * and dim ker L(ϕ) = codim(Rg L(ϕ)) < +∞, where codim Rg L(ϕ) := dim(V * / Rg L(ϕ)). (ii) ker L(ϕ) ⊂ {u ∈ C ∞ (Ω) : ∂ ν u = 0 on ∂Ω; Ω u = 0}.
(iii) For all u ∈ ker L(ϕ) and v ∈ Rg L(ϕ), we have

u, v V,V * = 0.
Proof. (i) We first prove that the linear operator

T : V -→ V * h -→ -f ′ (ϕ)h + - Ω f ′ (ϕ)h Chapter 1. Nonlocal reaction-diffusion equation is compact. Indeed, note that we have for all h ∈ V T h H ≤ f ′ (ϕ)h L 2 (Ω) + - Ω f ′ (ϕ)h L 2 (Ω) ≤ C h L 2 (Ω) ≤ C h V .
Therefore, T is continuous from V to H, which together with the compactness of the embedding

H ֒→ V * implies that T is compact from V to V * . Next, since A is an isomorphism from V onto V * , it is also a Fredholm operator of index ind A := dim ker A -codim Rg A = 0.
It follows that L(ϕ) = A + T , as a sum of a Fredholm operator and a compact operator, is also a Fredholm operator with the same index (cf. [3, p. 168]). Therefore, the conclusion of (i) is proved.

(ii) Let h ∈ ker L(ϕ), then L(ϕ)h = 0 in V * , or equivalently Ah = f ′ (ϕ)h -- Ω f ′ (ϕ)h in V * . We first claim that h ∈ C ∞ (Ω). Since f ′ (ϕ)h -- Ω f ′ (ϕ)h ∈ H, we deduce from Lemma 1.3.7 that h ∈ X 2 satisfies    -∆h = f ′ (ϕ)h -- Ω f ′ (ϕ)h in Ω, ∂ ν h = 0 on ∂Ω.
We also note from Lemma 1.3.7 that ϕ ∈ C ∞ (Ω) so that f ′ (ϕ) ∈ C ∞ (Ω). We then apply a Sobolev embedding theorem and a bootstrap argument to deduce that h ∈ C ∞ (Ω). We also note that Ω h = 0 since h ∈ V . Therefore, we obtain the conclusion of (ii).

(iii) Since v ∈ Rg L(ϕ), there exists w ∈ V such that v = L(ϕ)w. In view of (1.37), we have

u, v V,V * = u, L(ϕ)w V,V * = L(ϕ)u, w V * ,V = 0, which implies (iii). Lemma 1.3.10. V * is the topological direct sum of ker L(ϕ) ⊂ V ֒→ V * and Rg L(ϕ). Namely, V * = ker L(ϕ) ⊕ Rg L(ϕ).
Proof. Let u ∈ ker L(ϕ) ∩ Rg L(ϕ) be arbitrary; then in view of Lemma 1.3.9(iii), we have

u H = u, u V * ,V = 0. Consequently, ker L(ϕ) ∩ Rg L(ϕ) = {0}.
It follows from Lemma 1.3.9(i) that dim ker

L(ϕ) = codim Rg L(ϕ), so that ker L(ϕ) ∩ Rg L(ϕ) = {0} V * = ker L(ϕ) + Rg L(ϕ).
On the other hand, Rg L(ϕ) is closed in V * because of Lemma 1.3.9(i) and ker L(ϕ) is closed in V * since it is finite-dimensional. Therefore, we deduce that V * is the topological direct sum of ker L(ϕ) and Rg L(ϕ).

Lemma 1.3.11 (Projection P ). There exists a projection P ∈ L(V ) such that the adjoint projection P * ∈ L(V * ) satisfies

Rg P = Rg P * = ker L(ϕ) and ker P * = Rg L(ϕ).

Consequently, (H 1 ) and (H ′ 2 ) hold. Proof. By Lemma 1.3.10, we can define a projection

Q ∈ L(V * ) onto ker L(ϕ) along Rg L(ϕ) i.e., Q 2 = Q; ker Q = Rg L(ϕ) and Rg Q = ker L(ϕ).
Let P and P H be the restriction of Q to V and H, respectively.

Claim 0: We first prove that that P ∈ L(V ), P H ∈ L(H). Indeed, since

P H (H) ⊂ Q(V * ) = ker L(ϕ) ⊂ {u ∈ C ∞ (Ω), Ω u = 0} ⊂ H, P H is linear mapping from H to H and P 2 H = P H . Moreover, Rg P H = Rg Q ∩ H = ker L(ϕ), ker P H = ker Q ∩ H = Rg L(ϕ) ∩ H. (1.48) 
It follows from [24, Theorem 5.15, page 133] that

ker L(ϕ) ∩ (Rg L(ϕ) ∩ H) = {0} ker L(ϕ) + (Rg L(ϕ) ∩ H) = H (1.49)
In order to prove P H is continuous from H to H, in view of [24, Theorem 5.16, page 133], it is enough to prove that ker L(ϕ) and (Rg L(ϕ) ∩ H) are closed in H. Clearly, ker L(ϕ) is closed in H since it is finite-dimensional. In order to prove (Rg L(ϕ) ∩ H) is closed in H, we denote by j the continuous, compact embedding from H to V * . Then Rg L(ϕ)∩H = j -1 (Rg L(ϕ)) is the inverse image of a closed set under a continuous mapping, so that Rg L(ϕ) ∩ H is closed in H. We conclude that P H ∈ L(H). Similarly, P ∈ L(V ) and Rg P = ker L(ϕ), ker P = Rg L(ϕ) ∩ V.

Claim 1: We now prove that P H is symmetric, i.e

P H u 1 , u 2 H,H = u 1 , P H u 2 H,H for all u 1 , u 2 ∈ H.
We note from Lemma 1.3.9(iii) that ker L(ϕ) and Rg(ϕ) ∩ H are orthogonal with respect to scalar product in H, which together with (1.48) implies that Rg P H is orthogonal to ker P H with respect to scalar product in H. On the other hand, P H uu ∈ ker P H for all u ∈ H so that

P H u 1 , P H u 2 -u 2 = 0.
Therefore,

P H u 1 , u 2 H,H = P H u 1 , (u 2 -P H u 2 ) + P H u 2 = P H u 1 , P H u 2 H,H = (P H u 1 -u 1 ) + u 1 , P H u 2 H,H = u 1 , P H u 2 H,H .
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Claim 2: Let P * ∈ L(V * ) be the adjoint projection of P . We now claim that P * = Q, i.e,

P * (u) = Q(u) in V * for all u ∈ V * .
Let u ∈ H ֒→ V * ; and v ∈ V ; by the definition of the dual operator we have

P * u, v V * ,V = u, P v V * ,V .
Since u, P v ∈ H, it follows that 

P * u, v V * ,V = u, P v V * ,V = u, P H v H,H = P H u, v H,H = Qu, v V * ,V It follows that P * (u) = Q(u) in V *
h ∈ X, h X ≤ ε, T (z + h) -T (z) = i≥1 T i (z)[h, . . . , h] in Y,
where T i (z) is a symmetric i-linear form on X with values in Y and

i≥1 T i (z) L i (X,Y ) h i X < ∞.
Here, L i (X, Y ) is the space of bounded i-linear operators from X i to Y .

Proof of Theorem 1.3.8. It follows from Lemma 1.3.11 that (H 1 ) and (H ′ 2 ) hold. We now verify (H ′ 3 ). For this purpose, let p > max(2, N ) and set

X := X p , Y := L p (Ω).
Since P (X p ) ⊂ P (V ) = ker L(ϕ) ⊂ X p by Lemma 1.3.9(ii) and since P * (L p (Ω)) ⊂ P * (V * ) = ker L(ϕ) ⊂ L p (Ω), we deduce that X p and L p (Ω) are invariant by P and P * respectively. In other words, (H ′ 3 )(i) holds. Moreover, (H ′ 3 )(iii) hold because of Lemma 1.3.9(i) and (ii). Now, it remains to verify (H ′ 3 )(ii) and (H ′ 3 )(iv). Verifying (H ′ 3 )(ii): First, note that

E ′ (u) = -∆u -f (u) + - Ω f (u) ∈ L p (Ω),
for all u ∈ X p . We now claim that E ′ is analytic in a neighborhood of ϕ. Indeed, let ε be small enough such that for all h ∈ X p with h Xp ≤ ε, we have

h C(Ω) ≤ C h Xp < 1. 1.3. A version of Lojasiewicz inequality Since f (s) = f (s) = n i=0 a i s i for all s ∈ (s 1 -1, s 2 + 1),
we perform a Taylor's expansion to deduce for all h ∈ X p such that h Xp ≤ ε

f (ϕ(x) + h(x)) -f (ϕ(x)) = n i=1 f (i) (ϕ(x)) i! h i (x).
It follows that

E ′ (ϕ + h) -E ′ (ϕ) = -∆h + n i=1 f (i) (ϕ) i! h i - n i=1 - Ω f (i) (ϕ) i! h i dx = n i=1 T i [h, . . . , h],
where

T 1 [h] := -∆h + f ′ (ϕ)h -- Ω f ′ (ϕ)h
and

T i [h, . . . , h] := f (i) (ϕ) i! h i -- Ω f (i) (ϕ) i! h i for all 1 < i ≤ n.
We now prove that T i ∈ L i (X p , L p (Ω)). For all h 1 , . . . , h i ∈ X p , and 1 < i ≤ n, we have

T i [h 1 , .., h i ] L p (Ω) ≤ C T i [h 1 , .., h i ] L ∞ (Ω) ≤ C f (i) (ϕ) i! h 1 . . . h i L ∞ (Ω) + C - Ω f (i) (ϕ) i! h 1 . . . h i L ∞ (Ω) ≤ C i i=1 h i L ∞ (Ω) ≤ C i i=1 h i Xp ,
which implies that T i ∈ L i (X p , L p (Ω)) for all 1 < i ≤ n. In the case i = 1, since -∆ is linear, continuous from X p to L p (Ω), we easily deduce that T 1 ∈ L(X p , L p (Ω)). Therefore, E ′ is analytic on a neighborhood of ϕ. 

Verifying (H ′ 3 )(iv): It is clear that Rg (L(ϕ)| Xp ) ⊂ Rg L(ϕ) ∩ L p (Ω). Now, we claim that Rg (L(ϕ)| Xp ) ⊃ Rg L(ϕ) ∩ L p (Ω). Let g ∈ Rg L(ϕ) ∩ L p (Ω), then there exists u ∈ V such that L(ϕ)u = g. It is enough to prove that u ∈ X p . Indeed, note that L(ϕ)u = g is equivalent to Au = f ′ (ϕ)u -- Ω f ′ (ϕ)u + g in V * . Since f ′ (ϕ)u -- Ω f ′ (ϕ)u + g ∈ H,
   -∆u = f ′ (ϕ)u -- Ω f ′ (ϕ)u + g in Ω, ∂ ν u = 0 on ∂Ω.
We then apply a Sobolev embedding theorem and a bootstrap argument to deduce that u ∈ X p , so that (H ′ 3 )(iv) holds. The proof of Theorem 1.3.8 is complete.

Large time behavior

This section is devoted to the proof of Theorem 1.1.2. We also compute the limit stationary solution in the one-dimensional case in Theorem 1.4.5 below.

Lemma 1.4.1. Let u be the solution of Problem (P ) corresponding to the initial condition

u 0 ∈ L 2 (Ω). Then (i) For all 0 < s ≤ t < ∞, E(u(s)) = E(u(t)) + t s Ω |u t | 2 dx. (1.50) (ii) Further, E(u(•)
) is continuous, nonincreasing on (0, +∞), and there exists e such that

lim t→∞ E(u(t)) = e.
Proof. (i) Because of Lemma 1.2.9, u is a smooth function on Ω × (0, ∞) so that

d dt E(u(t)) = Ω -∆u -f (u) u t = Ω -∆u -f (u) + - Ω f (u) u t = - Ω u 2 t (x, t) dx ≤ 0.
As a consequence, for all 0

< s ≤ t < ∞ E(u(s)) = E(u(t)) + t s Ω |u t | 2 dx.
(ii) We recall that the function F is bounded on IR. Therefore the function t → E(u(t)), which is nonincreasing and bounded from below, converges to a limit as t → ∞.

Definition 1.4.2. We define the ω-limit set of u 0 by

ω(u 0 ) := {ϕ ∈ H 1 (Ω) : ∃t n → ∞, u(t n ) → ϕ in H 1 (Ω) as n → ∞}. Corollary 1.4.3. Let u 0 ∈ L 2 (Ω), then ω(u 0 ) is non-empty.
Proof. This corollary is an immediate consequence of Corollary 1.2.10.

Lemma 1.4.4. Let u 0 ∈ L 2 (Ω). Then (i) ω(u 0 ) is a compact set of H 1 (Ω). 1.4. Large time behavior (ii) For all ϕ ∈ ω(u 0 ) E(ϕ) = e,
where e is defined as in Lemma 1.4.1(ii).

(iii) Let ϕ ∈ ω(u 0 ) then ϕ is a stationary solution of Problem (P ), which implies that

   -∆ϕ = f (ϕ) -- Ω f (ϕ) in Ω, ∂ ν ϕ = 0 on ∂Ω. Moreover, ϕ ∈ C ∞ (Ω)
and

Ω ϕ = Ω u 0 .
If we assume further that s 1 ≤ u 0 (x) ≤ s 2 a.e., in Ω, then

s 1 ≤ ϕ(x) ≤ s 2 for all x ∈ Ω. (iv) d(u(t), ω(u 0 )) → 0 as t → ∞, where d(u(t), ω(u 0 )) := inf ϕ∈ω(u 0 ) u(t) -ϕ H 1 (Ω) .
Proof. (i) This is an immediate consequence of Corollary 1.2.10.

(ii) Let ϕ ∈ ω(u 0 ) and let {u(t n )} be such that

u(t n ) → ϕ in H 1 (Ω) as n → +∞.
We deduce from the continuity of E on H 1 (Ω) that

E(ϕ) = lim n→∞ E(u(t n ) = e,
where e is as in Lemma 1.4.1.

(iii) We need to prove that ϕ is a stationary solution. We denote here by u(t; w) the solution of Problem (P ) corresponding to initial function w. Let t n be such that

u(t n ; u 0 ) → ϕ in H 1 (Ω) as n → ∞.
This implies in particular that

u(t n ; u 0 ) → ϕ in L 2 (Ω) as n → ∞.
We use (1.31) to deduce that for all t ≥ 0,

u(t; u(t n ; u 0 )) → u(t; ϕ) in L 2 (Ω) as n → ∞.
In other words,

u(t + t n ; u 0 ) → u(t; ϕ) in L 2 (Ω) as n → ∞.
In view of Corollary 1.2.10, {u(τ ; u 0 ) : τ ≥ 1} is relatively compact in H 1 (Ω), so that

u(t n + t; u 0 ) → u(t; ϕ) in H 1 (Ω) as n → ∞.
It follows that u(t; ϕ) ∈ ω(u 0 ). This together with (ii) implies that for all t ≥ s ≥ 0.

E(u(t; ϕ)) = E(u(s; ϕ)) = e.
In view of Lemma 1.4.1 , we have t ≥ s > 0.

0 = E(u(t; ϕ)) -E(u(s; ϕ)) = - t s Ω |u t (ϕ)| 2 dxdt.
Consequently, for all t > 0, u t (t; ϕ) = 0. In other words, u(t; ϕ) the solution of Problem (P ) with the initial function ϕ is independent of time. Therefore, ϕ is a stationary solution of Problem (P ), which implies that

   -∆ϕ = f (ϕ) -- Ω f (ϕ) in Ω, ∂ ν ϕ = 0 on ∂Ω.
We deduce from the Sobolev embedding theorem and a bootstrap argument that ϕ ∈ C ∞ (Ω). The identity

Ω ϕ = Ω u 0 ,
follows from the mass conservation property (cf. Lemma 1.2.4). Now, if s 1 ≤ u 0 ≤ s 2 almost everywhere on Ω, then it follows from Lemma 1.2.11 that

s 1 ≤ u(x, t) ≤ s 2 for all x ∈ Ω, t > 0,
so that also, s 1 ≤ ϕ(x) ≤ s 2 for all x ∈ Ω.

(iv) For the purpose of contradiction, we assume that there exists a sequence t n → ∞ and ε 0 > 0 such that d(u(t n ), ω(u 0 )) ≥ ε 0 for all n > 0.

(1.51) By Corollary 1.2.10, there exists a subsequence t n k → ∞ and w ∈ H 1 (Ω) such that

u(t n k ) → w ∈ ω(u 0 ) in H 1 (Ω) as k → ∞, Therefore, d(u(t n k ), ω(u 0 )) = 0 as k → ∞, which is in contradiction with (1.51).
Proof of Theorem 1.1.2. We will first prove Theorem 1.1.2 in the case

Ω u 0 (x) = 0.
By the mass conservation property, we have that

Ω u(x, t) = 0.
Consequently, u(t) ∈ V for all t > 0. Recall from Lemma 1.4.4(ii) that

E ω(u 0 ) = e.
(1.52)

It follows from Lemma 1.4.4(iii) and Lemma 1.3.7 that for all ϕ ∈ ω(u 0 ),

s 1 ≤ ϕ ≤ s 2
and that ϕ is a critical point of E. We apply Theorem 1.3.8 to deduce that E satisfies the Lojasiewicz inequality in the neighborhood of every ϕ ∈ ω(u 0 ). In other words, we have that for every ϕ ∈ ω(u 0 ) there exist constants θ ∈ (0, 1 2 ], C ≥ 0 and δ > 0 such that

|E(v) -E(ϕ)| 1-θ ≤ C E ′ (v) V * whenever v -ϕ V ≤ δ. (1.53)
Since E is continuous on V (cf. the proof of Lemma 1.4.4(ii)), we may choose δ small enough so that

|E(v) -E(ϕ)| < 1 whenever v -ϕ V ≤ δ. (1.54)
It follows from the compactness of ω(u 0 ) in V that there exists a neighborhood U of ω(u 0 ) composed of finitely many balls B j , j = 1, ..., J, with center ϕ j and radius δ j . In each of the ball B j , inequality (1.54) and the Lojasiewicz inequality (1.53) hold for some constants θ j and C j . We define θ = min {θ j , j = 1, ..., J} and C = max {C j , j = 1, ..., J} to deduce from (1.52), (1.53) and (1.54) that

|E(v) -e| 1-θ ≤ C E ′ (v) V * for v ∈ U.
It follows from Lemma 1.4.4(iv) that there exists t 0 ≥ 0 such that u(t) ∈ U for all t ≥ t 0 . Hence, for every t ≥ t 0 , there holds

- d dt |E(u(t)) -e| θ = θ|E(u(t)) -e| θ-1 - dE dt (u(t)) ≥ θ C u t 2 L 2 (Ω) E ′ (u(t)) V * , (1.55) 
where we have also used (1.50). Note that for all t ≥ t 0 , u(t) ∈ C ∞ (Ω), so that E ′ (u(t)) ∈ H and it can be written of the form

E ′ (u(t)) = -∆u -f (u) + - Ω f (u) = -u t .
Applying continuous embedding H ֒→ V * , we have

E ′ (u(t)) V * ≤ C E ′ (u(t)) L 2 (Ω) = C u t L 2 (Ω) for all t ≥ t 0 , (1.56) 
where C is a positive constant. Combining (1.55) and (1.56) we obtain

- d dt |E(u(t)) -e| θ ≥ C 0 u t L 2 (Ω) .
Here,

C 0 = θ C C . Thus u(t 1 ) -u(t 2 ) L 2 (Ω) ≤ t 2 t 1 u t L 2 (Ω) ≤ 1 C 0 (|E(u(t 1 )) -e| θ -|E(u(t 2 )) -e| θ)
for all t 0 ≤ t 1 ≤ t 2 . Therefore, u(t 1 )u(t 2 ) L 2 (Ω) tends to zero as t 1 → ∞ so that {u(t)} is a Cauchy sequence in H. Consequently, there exists ϕ ∈ H such that lim t→∞ u(t) = ϕ exists in H, which together with Corollary 1.2.10 allows us to conclude that

lim t→∞ u(t) -ϕ C m (Ω) = 0.
In the general case, when Ω u 0 (x) dx = 0, instead of considering Problem (P ), we consider the Problem ( P ):

( P )          u t = ∆ u + f ( u) -- Ω f ( u) in Ω × IR + , ∂ ν u = 0 on ∂Ω × IR + , u(x, 0) = u 0 (x) -m 0 , x ∈ Ω.
where m 0 := -Ω u 0 , and f (s) := f (s + m 0 ). We note that

s 1 -m 0 ≤ û(x, 0) ≤ s 2 -m 0 , Ω û(x, 0) = 0. Moreover, u = u = u + m 0
and f is analytic on (s 1 -1m 0 , s 2 + 1m 0 ). Repeating the above arguments for Problem ( P ), we deduce that there exists a smooth stationary solution ψ of Problem ( P ) such that

lim t→∞ u(t) -ψ C m (Ω) = 0.
It follows that for ϕ := ψ + m 0 , we have

lim t→∞ u(t) -ϕ C m (Ω) = 0.
The proof of Theorem 1.1.2 is complete.

Theorem 1.4.5. Let the same assumption as in Theorem 1.1.2 hold and let ϕ be the limit stationary solution as in Theorem 1.1.2. We assume further that N = 1 (i.e. we consider Problem (P ) in the one-dimensional case) and that

f ′ (s) ≤ 0 for all s ∈ [s 1 , s 2 ]. Then ϕ = - Ω u 0 .
Proof. We recall that ϕ is a smooth solution of stationary problem

   ϕ xx = -f (ϕ) + - Ω f (ϕ) in Ω, ϕ x = 0 on ∂Ω.
Set w := ϕ x , then w satisfies the problem

     w xx + f ′ (ϕ)w = 0 in Ω, w = 0 on ∂Ω.
Since c(x) := f ′ (ϕ) ≤ 0, we apply the maximum principle [10, Theorem 2, page 346] to w and to -w to deduce that w ≡ 0. Consequently, ϕ is constant. This together mass conservation property implies that

ϕ = - Ω u 0 .

Rate of the convergence

In this section, we evaluate the rate of the convergence of the solution to the stationary solution The proof is based once more on the Lojasiewicz inequality. We consider two cases, first the case that the Lojasiewicz exponent θ = 1 2 and then the case that θ ∈ (0, 1 2 ), as it is done by Haraux and Jendoubi [12]; Haraux, Jendoubi and Kavian [13].

1.5.1 The case that θ = 1 2 Lemma 1.5.1 (see [12], Lemma 2.2). Let t 0 ≥ 0 be arbitrary. Assume that there exist positive constants γ and a such that

+∞ t u t 2 L 2 (Ω) ds ≤ a exp(-γt)
for all t ≥ t 0 .

Then for all τ ≥ t ≥ t 0 , we have that

u(t) -u(τ ) L 2 (Ω) ≤ √ ab exp(- γt 2 ) 
,

where b := exp( γ 2 ) exp( γ 2 ) -1 . Theorem 1.5.2.
Let (H 0 ) hold. Assume further that Theorem 1.3.8 holds for θ = 1 2 ; then there exist positive constants K, δ such that

u(t) -ϕ L 2 (Ω) ≤ K exp(-δt) for all t > 0.
Proof. As in the proof of Theorem 1.1.2, it is sufficient to prove this result for the function u with the assumption that Ω u 0 = 0. Since u(x, t) is smooth for all t > 0, we have

d dt (E(u) -E(ϕ)) = E ′ (u), u t = -E ′ (u), E ′ (u) = -E ′ (u) 2 H . (1.57) Chapter 1. Nonlocal reaction-diffusion equation Note that u(t) → ϕ in V as t → ∞,
we deduce that for σ as in Theorem 1.3.8 there exists T 0 > 0 such that for all t ≥ T 0

u(t) -ϕ V ≤ σ.
Therefore, by Theorem 1.3.8, we have for all t ≥ T 0 (E(u(t)) -E(ϕ))

1 2 = |E(u(t)) -E(ϕ)| 1 2 ≤ C E ′ (u(t)) V * .
By using the continuous embedding H ֒→ V * , we obtain

(E(u(t)) -E(ϕ)) 1 2 ≤ C 1 E ′ (u(t)) H , which implies that (E(u(t)) -E(ϕ)) ≤ C 2 1 E ′ (u(t)) 2 H , or equivalently, -E ′ (u(t)) 2 H ≤ - 1 C 2 1 (E(u(t)) -E(ϕ)).
This together with (1.57) implies that

d dt (E(u(t)) -E(ϕ)) ≤ -C 2 (E(u(t)) -E(ϕ)) for all t ≥ T 0 , (1.58) 
where

C 2 := 1/C 2 1 .
We also note that

y(t) := E(u(T 0 )) -E(ϕ) exp(-C 2 (t -T 0 ))
is the unique solution of the differential equation

       d dt y(t) = -C 2 y for t ≥ T 0 , y(T 0 ) = E(u(T 0 )) -E(ϕ).
Therefore, by [14, Theorem 6.1, p.31] and the differential inequality (1.58), we deduce that for all t ≥ T 0

E(u(t)) -E(ϕ) ≤ E(u(T 0 )) -E(ϕ) exp(-C 2 (t -T 0 )).
In view of (1.50), this implies that for all t ≥ T 0

∞ t u t (s) 2 H ds ≤ E(u(T 0 ) -E(ϕ) exp(-C 2 (t -T 0 )).
Setting a := E(u(T 0 ) -E(ϕ) exp(C 2 T 0 ) > 0, we obtain the inequality

∞ t u t (s) 2 L 2 (Ω) = ∞ t u t (s) 2 H ds ≤ a exp(-C 2 t) for all t ≥ T 0 .
The conclusion of Theorem 1.5.2 then follows from Lemma 1.5.1.

1.5.2

The case that θ ∈ (0, 1 2 )

We will apply the following lemma.

Lemma 1.5.3 (see [13], Lemma 3.3). Let t 0 > 0 be arbitrary. Assume that there exist two positive constant α > and K such that

∞ t u t 2 L 2 (Ω) ≤ Kt -2α-1
for all t ≥ t 0 .

Then, we have

u(t) -u(τ ) L 2 (Ω) ≤ √ K 1 -2 -α t -α for all τ ≥ t ≥ t 0 .
Theorem 1.5.4. Let (H 0 ) hold. Assume further that Theorem 1.3.8 holds for θ ∈ (0, 1 2 ) and set α := θ 1 -2θ > 0. Then there exists a positive constant K such that

u(t) -ϕ L 2 (Ω) ≤ √ K 1 -2 -α t -α for all t > 0.
Proof. As in the proof of Theorem 1.1.2, it is sufficient to prove this result for the function u in the case that

Ω u 0 = 0.
Since u(x, t) is smooth for all t > 0, we have

d dt (E(u) -E(ϕ)) = E ′ (u), u t = -E ′ (u), E ′ (u) = -E ′ (u) 2 H . (1.59) Note that u(t) → ϕ in V as t → ∞,
we deduce that for σ as in Theorem 1.3.8 there exists T 0 > 0 such that for all t ≥ T 0

u(t) -ϕ V ≤ σ.
Therefore, by Theorem 1.3.8, we have for all t ≥ T 0

|E(u(t)) -E(ϕ)| 1-θ ≤ C E ′ (u(t)) V * .
By applying the continuous embedding H ֒→ V * , we obtain

(E(u(t)) -E(ϕ)) 1-θ = |E(u(t)) -E(ϕ)| 1-θ ≤ C 1 E ′ (u(t)) H , which implies that (E(u(t)) -E(ϕ)) 2(1-θ) ≤ C 2 1 E ′ (u(t)) 2 H , or equivalently, -E ′ (u) 2 H ≤ - 1 C 2 1 (E(u) -E(ϕ)) 2(1-θ) .
This together with (1.59) implies that

d dt (E(u) -E(ϕ)) ≤ -C 2 (E(u) -E(ϕ)) 2(1-θ) for all t ≥ T 0 , (1.60) 
where

C 2 := 1/C 2 1 .
We also note that

y(t) := (E(u(T 0 ) -E(ϕ)) 2θ-1 + C 2 (1 -2θ)(t -T 0 ) -1/(1-2θ)
is the unique solution of the differential equation

       d dt y(t) = -C 2 y 2(1-θ) for t ≥ T 0 , y(T 0 ) = E(u(T 0 ) -E(ϕ)).
Therefore, by [14, Theorem 6.1, p.31] and the differential inequality (1.60), we deduce that

E(u(t)) -E(ϕ) ≤ (E(u(T 0 ) -E(ϕ)) 2θ-1 + C 2 (1 -2θ)(t -T 0 ) -1/(1-2θ) = (E(u(T 0 ) -E(ϕ)) 2θ-1 -C 2 (1 -2θ)T 0 + C 2 (1 -2θ)t -1/(1-2θ) = (E(u(T 0 ) -E(ϕ)) 2θ-1 -C 2 (1 -2θ)T 0 + C 2 (1 -2θ) t 2 + C 2 (1 -2θ) t 2 -1/(1-2θ) ≤ C 2 (1 -2θ) t 2 -1/(1-2θ)
for all t ≥ 2T 0 .

It follows that for all t ≥ 2T 0

∞ t u t (s) 2 ≤ C 2 (1 -2θ) t 2 -1/(1-2θ)
.

We set

K := C 2 (1 -2θ) 2 -1/(1-2θ) and α := θ 1 -2θ > 0, then ∞ t u t (s) 2 ds ≤ Kt -2α-1 ,
which by Lemma 1.5.3 implies that Abstract. We analyse the large time behavior of solutions of a nonlocal ordinary differential equation. A convergence result is proved for a large class of initial functions. We also characterize the limit function and we prove that the limit function is given by a step function.

u(t) -ϕ H ≤ √ K 1 -2 -α t -α for all t ≥ 2T 0 .

Introduction

We consider the initial value problem for the equation

(P )        u t = f (u) -- Ω f (u) in Ω × (0, ∞), u(x, 0) = u 0 (x) x ∈ Ω,
where Ω is a bounded, open set of IR N with N ≥ 1 and

- Ω f (u) := 1 |Ω| Ω f (u(x)) dx.
We assume that f

∈ C 1 (IR) is such that there exists m < M sastifying f ′ (m) = f ′ (M ) = 0 and f ′ < 0 on (-∞, m) ∪ (M, +∞), f ′ > 0 on (m, M );
We suppose further that there exist s * < s * satisfying

s * < m < M < s * f (s * ) = f (M ), f (s * ) = f (m). (2.1) 
f (s)

s s 1 s 2 s * s * m M f ′ (m) = f ′ (M ) = 0
Note that there exists a constant c 0 > 0 such that f ′ (s) ≤ c 0 for all s ∈ IR.

(2.2)

A typical example is f (s) = s -s 3 .
Constants s 1 , s 2 : Let s 1 , s 2 be two constants such that s 1 < s * < s * < s 2 . The following property holds f (s 2 ) < f (s) < f (s 1 ) for all s ∈ (s 1 , s 2 ).

(2.3)

Assumption on the initial function: For the existence and the uniqueness of the solution, we suppose that the following hypothesis is satisfied 2.2. Existence and uniqueness of the solution of Problem (P )

53

(H 1 ) u 0 ∈ L ∞ (Ω) and s 1 ≤ u 0 (x) ≤ s 2 for a.e. x ∈ Ω.

For the large time behavior, we assume furthermore one of the two hypotheses

(H 2 ) - Ω u 0 ∈ [s * , s * ];
(H 3 ) s * ≤ u 0 ≤ s * and |{x ∈ Ω : u 0 (x) = s}| = 0 for all s ∈ (m, M ).

Theorem 2.1.1. Assume that (H 1 ) holds. Then Problem (P ) possesses a unique solution u ∈ C 1 ([0, +∞); L ∞ (Ω)). Moreover, for all t ≥ 0, we have 

s 1 ≤ u(x,
u(t) → ψ in L p (Ω) as t → ∞, where ψ ≡ - Ω u 0 (x) dx.
(ii) If we assume further that (H 3 ) holds then

u(t) → ψ in L p (Ω) as t → ∞,
where ψ is a step function. More precisely, ψ takes at most two values a -, a + such that f (a -) = f (a + ) and that

f ′ (a -) ≤ 0, f ′ (a + ) ≤ 0.
The essential difficulty of this problem is due to the lack of diffusion term, so that the solution is not very smooth. In particular, it is more difficult to prove the relative compactness of the solution orbits. Applying the rearrangement theory, we introduce the problem (P ♯ ) in one space dimension which possesses a unique solution u ♯ which is such that {u ♯ (t)} is relatively compact in L 1 ((0, |Ω|)). We study the large time behavior of the solution of Problem (P ♯ ) and then deduce the result for the original problem.

The paper is organized as follows: in Section 2.2 we prove Theorem 2.1.1. In Section 2.3, we prove some properties of the solution u. We also prove in this section that Problem (P ) possesses a Lyapunov functional. In Section 2.4, applying the rearrangement theory, we introduce Problem (P ♯ ) and present some properties of its solution. In section 2.5, the uniqueness of the elements of the ω-limit set ω(u ♯ 0 ) for Problem (P ♯ ) is proved. Theorem 2.1.2 is proved in Section 2.6. We also show by means of a nontrivial counterexample that, when Hypothesis (H 3 ) on the initial function does not hold, the limiting function may take three values. In Section 2.7, we give some auxiliary propositions.

Existence and uniqueness of the solution of Problem (P )

In order to prove the existence of the solution of Problem (P ), we first consider an auxiliary problem which has a bounded nonlinearity. We introduce the function f ∈ C 1 (IR) as follows,

f (s) =      0 if s ≤ s 1 -2, f (s) if s ∈ [s 1 -1, s 2 + 1], 0 if s ≥ s 2 + 2.
(2.4)

We then define the auxiliary problem (P ) by

(P )        u t = f (u) -- Ω f (u) in Ω × (0, ∞), u(x, 0) = u 0 (x) x ∈ Ω.
Notation: In this section, we denote by X the Banach space C(Ω) or L q (Ω) for 1 ≤ q ≤ +∞. We write u(t; u 0 ) for the solution of Problem (P ) with initial function u 0 and u(t; u 0 ) for the solution of Problem (P ) with initial function u 0 .

Lemma 2.2.1. Let u 0 ∈ X, then Problem (P ) possesses a unique solution in C 1 ([0, +∞); X).

Remark 2.2.2. Before proving Lemma 2.2.1, we observe that there exists a constant

c 1 > 0 such that | f ′ (s)| ≤ c 1 for all s ∈ IR. (2.5) Therefore, | f (s) -f (s)| ≤ c 1 |s -s| for all s, s ∈ IR. (2.6) Proof of Lemma 2.2.1. Set G(v) := f (v) -- Ω f (v).
We will prove that G : X → X is a Lipschitz map. Indeed, let v 1 , v 2 ∈ X, we have

G(v 1 ) -G(v 2 ) = ( f (v 1 ) -f (v 2 )) -- Ω ( f (v 1 ) -f (v 2 )) .
Therefore,

(G(v 1 ) -G(v 2 ) X ≤ f (v 1 ) -f (v 2 ) X + - Ω ( f (v 1 ) -f (v 2 )) X ≤ f (v 1 ) -f (v 2 ) X + 1 X |Ω| Ω | f (v 1 ) -f (v 2 )| = f (v 1 ) -f (v 2 ) X + 1 X |Ω| f (v 1 ) -f (v 2 ) L 1 (Ω) .
We deduce from (2.6) that

G(v 1 ) -G(v 2 ) X ≤ c 1 v 1 -v 2 X + 1 X |Ω| c 1 v 1 -v 2 L 1 (Ω) ≤ c 1 v 1 -v 2 X + 1 X |Ω| c 1 c 2 v 1 -v 2 X = c 1 + 1 X |Ω| c 1 c 2 v 1 -v 2 X .
We define

L := (c 1 + 1 X |Ω| c 1 c 2 ) > 0, then G(v 1 ) -G(v 2 ) X ≤ L v 1 -v 2 X for all v 1 , v 2 ∈ X. (2.7) 
In other words, G is a Lipschitz map from X to X. Now, the conclusion of Lemma 

u(t) -u(0) = t 0 u t = t 0 f (u) -- Ω f (u) , so that Ω u(x, t) dx - Ω u 0 (x) dx = t 0 Ω f (u) -- Ω f (u) = 0.
This completes the proof of Lemma 2.2.4.

Lemma 2.2.5. Suppose that u 0 satisfies Hypothesis (H 1 ), namely,

s 1 ≤ u 0 (x) ≤ s 2 for a.e. x ∈ Ω.
Then for all t ≥ 0, s 1 ≤ u(x, t) ≤ s 2 for a.e. x ∈ Ω.

The main idea of the proof of Lemma 2.2.5 is to approximate the initial function u 0 by a sequence of continuous functions and to first obtain the result for solution of approximate problems. Then, we deduce the result for the original problem. To begin with, we state the following result.

Lemma 2.2.6. Given u 0 ∈ L ∞ (Ω) satisfying s 1 ≤ u 0 (x) ≤ s 2 for a.e. x ∈ Ω. Then there exists a sequence {u n0 } in C(Ω) such that s 1 < u n0 < s 2 on Ω, and that

u n0 → u 0 in L 1 (Ω) as n → ∞.
The proof of this lemma will be given later. Next, we will use Lemma 2.2.6 to prove Lemma 2.2.5.

Proof of Lemma 2.2.5. Let u n be the solution of Problem (P ) with the initial function u n0 . Since u n0 ∈ C(Ω), u n ∈ C 1 ([0, +∞); C(Ω)) and hence u n is continuous on Ω × [0, +∞). We will first prove that

s 1 < u n (x, t) < s 2 for all x ∈ Ω, t ≥ 0. (2.9)
For the purpose of contradiction, we suppose that there exists a first time t 0 > 0 such that

u n (x 0 , t 0 ) = s 1 or u n (x 0 , t 0 ) = s 2
for some x 0 ∈ Ω . Without loss of generality, assume that u n (x 0 , t 0 ) = s 2 . By the continuity of u n and the definition of t 0 , we have s 1 ≤ u n (x, t 0 ) ≤ s 2 for all x ∈ Ω, and u n (x, t) < s 2 for all x ∈ Ω and 0 ≤ t < t 0 . (2.10) By (2.10), we have

u nt (x 0 , t 0 ) = lim ∆t→0 + u n (x 0 , t 0 -∆t) -u n (x 0 , t 0 ) -∆t ≥ 0,
which we substitute in Problem (P ) to obtain

- Ω ( f (s 2 ) -f (u n (x, t 0 ))) dx ≥ 0. (2.11) Since s 1 ≤ u n (x, t 0 ) ≤ s 2 for all x ∈ Ω, it follows that f (s 2 ) ≤ f (u n (x, t 0 )) for all x ∈ Ω.
which together with (2.11) implies that f (s 2 ) = f (u n (x, t 0 )) for all x ∈ Ω, and hence u n (x, t 0 ) = s 2 for all x ∈ Ω.

Therefore,

- Ω u n0 (x) dx < s 2 = - Ω u n (x, t 0 ) dx,
which contradicts the mass conservation property stated in Lemma 2.2.4. This completes the proof of (2.9).

We now show that for all t ≥ 0, s 1 ≤ u(x, t) ≤ s 2 almost everywhere on Ω.

In view of (2.8), we have

u(t) -u n (t) L 1 (Ω) ≤ u 0 -u n0 L 1 (Ω) exp(Lt) for all t ≥ 0.
Therefore for all t ≥ 0,

u n (t) → u(t) in L 1 (Ω) as n → ∞.
Consequently, for each t ≥ 0, there exists a subsequence {u nj (t)} j≥0 of {u n (t)} n≥0 such that u nj (x, t) → u(x, t) for a.e. x ∈ Ω as j → ∞, which together with (2.9) follows that for each t ≥ 0,

s 1 ≤ u(x, t) ≤ s 2 for a.e. x ∈ Ω.
We completed the proof of Lemma 2.2.5.

Existence and uniqueness of the solution of Problem (P )

57

Proof of Lemma 2.2.6. First, we extend the function u 0 to w 0 defined on IR N by

w 0 (x) =        u 0 (x) if x ∈ Ω s 1 + s 2 2 elsewhere.
Obviously, s 1 ≤ w 0 (x) ≤ s 2 for a.e.

x ∈ IR N .

For all n large enough such that

s 1 + 1 n < s 2 - 1 n ,
we define

w n0 := min s 2 - 1 n , max{w 0 , s 1 + 1 n } .
Then, we have

s 1 + 1 n ≤ w n0 (x) ≤ s 2 - 1 n a.e. x ∈ IR N , (2.12) 
and moreover,

w n0 -u 0 L 1 (Ω) = w n0 -w 0 L 1 (Ω) ≤ |Ω| w n0 -w 0 L ∞ (Ω) ≤ |Ω| n .
As in [2, Theorem 2.29, page 36], we can choose a smooth function u n0 such that

u n0 -w n0 L 1 (Ω) ≤ |Ω| n .
More precisely,

u n0 (x) := IR N J ε (x -y)w n0 (y)dy, for ε small enough, (2.13) 
where

J ε (x) = ε -N J( x ε ), with J ∈ C ∞ c (IR N ) is a nonnegative function satisfying J(x) = 0 if |x| ≥ 1,
and

IR N J(x)dx = 1.
Note that J ε is nonnegative and that

IR N J ε (x) dx = 1. (2.14)
It follows from (2.12), (2.13) and (2.14) that

s 1 + 1 n ≤ u n0 ≤ s 2 - 1 n for all x ∈ IR N .
Moreover,

u n0 -u 0 L 1 (Ω) ≤ u n0 -w n0 L 1 (Ω) + w n0 -u 0 L 1 (Ω) ≤ 2|Ω| n .
It follows that

u n0 → u 0 in L 1 (Ω) as n → +∞.
The proof of Lemma 2.2.6 is complete.

Lemma 2.2.7 (Mass conservation). Let u ∈ C 1 ([0, +∞); L ∞ (Ω)) be a solution of Problem (P ), then

Ω u(x, t) dx = Ω u 0 (x) dx for all t ≥ 0.
Proof. The proof is similar to the one of Lemma 2.2.4. We omit it.

Proof of Theorem 2.1.1. According to Lemma 2.2.1, u ∈ C 1 ([0, +∞); L ∞ (Ω)). Moreover, because of Lemma 2.2.5, for all t ≥ 0 we have

s 1 ≤ u(x, t) ≤ s 2 for a.e. x ∈ Ω.
This together with the definition of f in (2.4) implies that for all t ≥ 0 f (u(x, t)) = f (u(x, t)) for a.e. x ∈ Ω.

It follows that u satisfies        u t = f (u) -- Ω f (u) = f (u) -- Ω f (u) in L ∞ (Ω) u(x, 0) = u 0 (x).
Therefore, u is a solution of Problem (P ) in C 1 ([0, +∞); L ∞ (Ω)).

Next, we prove the uniqueness of the solution of Problem (P ). For this purpose, let

u 0 ∈ L ∞ (Ω) such that Ω u 0 (x) dx = Ω u 0 (x) dx
and let u ∈ C 1 ([0, +∞); L ∞ (Ω)) be a solutions of Problem (P ) corresponding to the initial function u 0 . We denote by w := uu, and use mass conservation property (cf. Lemma 2.2.7) to deduce that Ω w(x, t) dx = Ω (u 0 (x)u 0 (x)) dx = 0 for all t > 0.

(2.15)

We multiply the difference of the equations for u and u by w, then integrate over Ω to obtain 1 2

d dt Ω w 2 (t) = Ω f (u) -f ( u) w - Ω w - Ω f (u) -f ( u) = Ω f (u) -f ( u) w,
where the last equality follows from (2.15). It follows from (2.2) and that 1 2

d dt Ω w 2 (t) ≤ c 0 Ω w 2 ,
which together with Gronwall's lemma implies the uniqueness of the solution. 

Some properties of the solution

In this section, as a preparation for next section, we consider an ordinary differential equation which is related to Problem (P ). This study puts forth some properties of the solution of Problem (P ), which are stated in Lemma 2.3.2 below. To begin with, we define the function

λ(t) := - Ω f (u(t)), (2.16) 
where u is the unique solution of Problem (P ) given in Theorem 2.1.1. Note that

λ(t) = - Ω f (u(t)), (2.17) 
since s 1 ≤ u(t) ≤ s 2 almost everywhere on Ω.

We consider the problem (ODE) 

     Y ′ = f (Y ) -λ(t) Y (0) = s. Lemma 2.
Y ′ = f (Y ) -λ(t);
(iii) we define the function h t : IR → IR by h t (s) := Y (t; s). Then h t is bijective, increasing from IR to IR.

Proof. First, we prove that λ is continuous on [0, +∞). Indeed, it follows from (2.17) and (2.6) that

|λ(t) -λ(τ )| ≤ - Ω | f (u(t)) -f (u(τ ))| ≤ c 1 |Ω| u(t) -u(τ ) L 1 (Ω) ≤ c 1 u(t) -u(τ ) L ∞ (Ω) .
Since u ∈ C 1 ([0, +∞); L ∞ (Ω)), it follows that λ is continuous on [0, +∞). Therefore, the function H defined by

H(Y, t) := f (Y ) -λ(t)
is continuous on (-∞, +∞) × [0, +∞). Moreover H satisfies a global Lipschitz condition: 

|H(Y 1 , t) -H(Y 2 , t)| = | f (Y 1 ) -f (Y 2 )| ≤ c 1 |Y 1 -Y 2 | for all Y 1 , Y 2 ∈ IR, t ≥ 0.
W ′ = f (Y (t; s)) -f (Y (t; s)) W (0) = s -s > 0. Note that f (Y (t; s)) -f (Y (t; s)) = 1 0 d dτ f (τ Y (t; s) + (1 -τ )Y (t; s)) dτ = [Y (t; s) -Y (t; s)] 1 0 f ′ (τ Y (t; s) + (1 -τ )Y (t; s))dτ = W (t)θ(t),
where

θ(t) := 1 0 f ′ (τ Y (t; s) + (1 -τ )Y (t; s))dτ.
Thus, W satisfies the initial value problem

W ′ = θ(t)W (t) W (0) = s -s > 0, so that 
W (t) = W (0) exp t 0 θ(τ )dτ > 0.
It follows that Y (t, s) > Y (t, s) for all t ≥ 0.

(ii) First, we prove that f (s 2 ) ≤ λ(t) ≤ f (s 1 ) for all t ≥ 0, (2.18) or equivalently, f (s 2 ) ≤ λ(t) ≤ f (s 1 ) for all t ≥ 0.

This follows from (2.3) and the fact that s 1 ≤ u(x, t) ≤ s 2 for a.e. x ∈ Ω, t ≥ 0

We now define the differential operator L by

L(Y ) := Y ′ -H(Y, t) = Y ′ -f (Y ) + λ(t).
We deduce from (2.18) that

L(s 1 ) ≤ 0 = L(Y ) ≤ L(s 2 ).
These differential inequalities and [9, Theorem 6.1, page 31] imply that

s 1 ≤ Y (t; s) ≤ s 2 for all t > 0, provided that s 1 ≤ s ≤ s 2 .
(iii) Let t 0 > 0 be arbitrary. It follows from (i) that if s < s, then

Y (t 0 ; s) < Y (t 0 ; s); hence, we have h t 0 (s) < h t 0 (s).
Consequently, h t 0 is injective, increasing on IR. Now we claim that h t 0 is surjective. Let S ∈ IR be arbitrary. We consider the problem

Y ′ = f (Y ) -λ(t) Y (t 0 ) = S.
This problem possesses a unique solution in C 1 ([0, +∞)) (cf. [3, Corollary 8.3, page 57]). We denote by Y (t; t 0 ; S) that solution. We also remark that the solution of Problem (ODE) can be written as Y (t; 0; s). Moreover, by the uniqueness of the solution, we have that

Y (t 0 ; 0; Y (0; t 0 ; S)) = S.
Therefore, h t 0 (Y (0; t 0 ; S)) = S, so that h t 0 is surjective.

Lemma 2.3.2. Let (H 1 ) hold. Then for all t ≥ 0, we have u(t) = h t (u 0 ) almost everywhere on Ω.

Proof. We define z(x, t) := h t (u 0 (x)) = Y (t; u 0 (x)) on Ω × [0, +∞).

We need to prove that for all t ≥ 0 z(t) = u(t) almost everywhere on Ω.

First, by the definition of Y (t; •), we see that for all x ∈ Ω; z(x,

•) ∈ C 1 ([0, +∞)) and      ∂z ∂t (x, t) = f (z(x, t)) -λ(t) in Ω × [0, ∞), z(x, 0) = u 0 (x) x ∈ Ω.
(2.19)

The right-hand-side of the differential equation in (2. 19) is bounded in L ∞ (0, T ; L ∞ (Ω)) which together with the continuity of λ implies that z ∈ C 1 ([0, +∞); L ∞ (Ω)).

We integrate from 0 to t the difference of the equations for u and for z to obtain

u(t) -z(t) = t 0 (f (u(τ )) -f (z(τ )) = t 0 ( f (u(τ )) -f (z(τ )).
It follows from (2.6) that

u(t) -z(t) L ∞ (Ω) ≤ t 0 f (u(τ )) -f (z(τ )) L ∞ (Ω) ≤ c 1 t 0 u(τ ) -z(τ ) L ∞ (Ω) ,
which together with Gronwall's inequality completes the proof of Lemma 2.3.2.

Problem (P ♯ ) obtained by the rearrangement theory

This section is devoted to introduce Problem (P ♯ ) by using the rearrangement theory. Problem (P ♯ ) is a version of Problem (P ) in one space dimension. We first recall some known results about rearrangement in Section 2.4.1. Then in Section 2.4.2, we introduce Problem (P ♯ ) and present some properties of its solution, which we state in Theorem 2.4.10.

Rearrangement theory

Let w be a function from Ω to IR. Then the distribution function of w is given by µ w (s) := |{x ∈ Ω : w(x) > s}|. 

= µ w , (ii) if G is a Borel measurable function such that either G ≥ 0 or G(w) ∈ L 1 (Ω) then |Ω| 0 G(w ♯ ) = Ω G(w). (iii) Let w 1 , w 2 ∈ L p (Ω) for 1 ≤ p ≤ +∞ then w ♯ 1 -w ♯ 2 L p ((0,|Ω|)) ≤ w 1 -w 2 L p (Ω) .
Proof. (i) see [11, Remark 2.4.5. Since w and w ♯ are equi-measurable, we have the following properties:

|{w ♯ ≥ s}| = |{w ≥ s}|; |{w ♯ = s}| = |{w = s}|.
Remark 2.4.6. If s 1 ≤ w ≤ s 2 almost everywhere on Ω, then

s 1 ≤ w ♯ (y) ≤ s 2 for all y ∈ [0, |Ω|].
Proof of Remark 2.4.6. Since w ♯ is nonincreasing, it is sufficient to prove that

s 1 ≤ w ♯ (|Ω|) and w ♯ (0) ≤ s 2 .
First, in view of the definition of w ♯ in (2.20), we have

w ♯ (0) = ess sup w ≤ s 2 w ♯ (|Ω|) = inf{s : µ w (s) < |Ω|}.
We only need to show that inf{s : µ w (s) < |Ω|} ≥ s 1 .

Note that for all τ ∈ (-∞, s 1 ], we have µ w (τ ) = |Ω|. Therefore τ ∈ {s : µ w (s) < |Ω|}. Consequently, we have {s :

µ w (s) < |Ω|} ⊂ (s 1 , +∞) so that inf{s : µ w (s) < |Ω|} ≥ s 1 .
The following proposition will be used later. The proof of Proposition 2.4.7 will be given in Section 2.7.

In order to prove (2.22), we recall from Lemma 2.3.2 that u(t) = h t (u 0 ) almost everywhere on Ω. We then apply Proposition 2.4.7 to obtain for all t ≥ 0,

u ♯ (t) = (h t (u 0 )) ♯ = h t (u ♯ 0 ) on (0, |Ω|). (2.23)
Now, it remains to prove that u ♯ is the unique solution of Problem (P ♯ ). As a consequence of (2.23) and Lemma 2.3.1, we have for all y ∈ (0, |Ω|), t ≥ 0

∂u ♯ ∂t (y, t) = f (u ♯ (y, t)) -λ(t) = f (u ♯ (y, t)) -- Ω f (u(t)) = f (u ♯ (y, t)) -- |Ω| 0 f (u ♯ (t)), (2.24)
where the last identity follows from Proposition 2.4.4(ii). Note that the right-hand-side of (2.24) is bounded in L ∞ (0, T ; L ∞ ((0, |Ω|))) which together with the continuity of f implies that u ♯ ∈ C 1 ([0, +∞); L ∞ ((0, |Ω|))). Therefore, u ♯ coincides with the unique solution of 

Problem (P ♯ ) in C 1 ([0, ∞); L ∞ ((0, |Ω|))).
(i) if u ♯ 0 (y 1 ) = u ♯ 0 (y 2 ) then u ♯ (y 1 , t) = u ♯ (y 2 , t) for all t ≥ 0, (ii) if u ♯ 0 (y 1 ) < u ♯ 0 (y 2 ) then u ♯ (y 1 , t) < u ♯ (y 2 , t
) for all t ≥ 0. Proof. This corollary is an immediate consequence of (2.22) and Lemma 2.3.1.

Theorem 2.4.12 (Lyapunov functional). Let v 0 ∈ L ∞ ((0, |Ω|)) be such that s 1 ≤ v 0 (y) ≤ s 2 for a.e. x ∈ (0, |Ω|). Let v ∈ C 1 ([0, +∞); L ∞ ((0, |Ω|))) the unique solution of Problem (P ♯ ) corresponding to the initial function v 0 . We define

E(v(t)) = - |Ω| 0 F (v(y, t)) dy, where F (s) = s 0 f (τ )dτ . Then, (i) we have for all τ 2 > τ 1 ≥ 0, E(v(τ 2 )) -E(v(τ 1 )) = - τ 2 τ 1 |Ω| 0 |v t | 2 dydt; (ii) E(v(•)
) is continuous and nonincreasing on [0, +∞), and there exists the limit of E(v(t))

as t → ∞.

Proof. (i) We have

d dt E(v(t)) = - d dt |Ω| 0 F (v) = - |Ω| 0 f (v)v t .
We also remark that Ω v t = 0, so that

d dt E(v(t)) = - |Ω| 0 (f (v) -- |Ω| 0 f (v)) v t = - |Ω| 0 |v t | 2 .
Intergrating this identity form τ 1 to τ 2 , we obtain

E(v(τ 2 )) -E(v(τ 1 )) = - τ 2 τ 1 |Ω| 0 |v t | 2 dydt.
(ii) As a consequence of (i), E(v(•)) is continuous and nonincreasing. Moreover, E is bounded from below since -F is bounded from below. Therefore there exists a limit of E(v(t)) as t → ∞, which completes the proof of (ii)

ω-limit set of Problem (P ♯ )

This section is devoted to study the set ω(u ♯ 0 ), which is defined as follows: Definition 2.5.1. We define the ω-limit set of u ♯ 0 by

ω(u ♯ 0 ) := {ϕ ∈ L 1 ((0, |Ω|)) : ∃t n → ∞, u ♯ (t n ) → ϕ in L 1 ((0, |Ω|))
as n → ∞}. In Section 5.1, we prove that ω(u ♯ 0 ) is non-empty and study some properties of ω(u ♯ 0 ). We then prove in section 5.2 that ω(u ♯ 0 ) is composed of a single element.

Properties of ω-limit set

In the following, we first prove that ω-limit set is nonempty. To begin with, we recall the definition of the BV-norm of functions of one variable (cf. [7,Remark (ii), page 170; Section 5.10.1 page 216]). Here the supremum is taken over all finite partitions a < t

1 < • • • < t m+1 < b such that each t i is a point of approximate continuity of w. Lemma 2.5.3. The set {u ♯ (t) : t ≥ 0} is relatively compact in L 1 ((0, |Ω|)). Consequently, ω(u ♯ 0 ) is nonempty. Proof. It follows from (2.21) that s 1 ≤ u ♯ (y, t) ≤ s 2 for all y ∈ [0, |Ω|], t ≥ 0.
Moreover, for all t ≥ 0, u ♯ (•, t) is nonincreasing on [0, |Ω|], so that we can deduce from Definition 2.5.2 that there exists a constant c > 0 such that u ♯ (t) BV ((0,|Ω|)) ≤ c for all t ≥ 0.

By the compact embedding BV ((0, |Ω|)) ֒→ L 1 ((0, |Ω|)) (cf. [7, Theorem 4, p. 176]), we deduce that the set {u ♯ (t) : t ≥ 0} is relatively compact in L 1 ((0, |Ω|)). This completes the proof of Lemma 2.5.3.

Lemma 2.5.4. Assume that (H 1 ) hold. Let ϕ ∈ ω(u ♯ 0 ), then the following assertions hold: (i) s 1 ≤ ϕ(y) ≤ s 2 for a.e. y ∈ (0, |Ω|); and

|Ω| 0 ϕ = |Ω| 0 u ♯ 0 . (ii) E(•) is constant on ω(u ♯ 0 ). (iii)
ϕ is a stationary solution, which implies that there exists a constant k ϕ such that f (ϕ(y)) = k ϕ for a.e. y ∈ (0, |Ω|).

Proof. Before proving (i), (ii) (iii), we deduce from the definition of ω(u ♯ 0 ) that there exists a sequence t n → +∞ such that

u ♯ (t n ) → ϕ in L 1 ((0, |Ω|)) as n → ∞.
(2.25) (i) It follows from (2.25) that there exists a subsequence of {t n } (still denoted by {t n }) such that as n → +∞ u ♯ (y, t n ) → ϕ(y) for a.e. y ∈ (0, |Ω|).

Moreover, we have that

s 1 ≤ u ♯ (y, t n ) ≤ s 2 for all y ∈ (0, |Ω|), n ≥ 0, so that s 1 ≤ ϕ(y) ≤ s 2 for a.e. y ∈ (0, |Ω|).
The identity

|Ω| 0 ϕ = |Ω| 0 u ♯ 0 follows from the mass conservation property (cf. Lemma 2.2.7) and the convergence of u ♯ (t n ) to ϕ in L 1 ((0, |Ω|)) as n → ∞.
(ii) First, it follows from Theorem 2.4.12(ii) that

lim t→∞ E(u ♯ (t)) = E ∞ .
for some constant E ∞ . We define c 3 := sup s∈[s 1 ,s 2 ] |f (s)|. We have

|E(u ♯ (t n )) -E(ϕ)| ≤ |Ω| 0 |F (u ♯ (t n )) -F (ϕ)| ≤ c 3 u ♯ (t n ) -ϕ L 1 ((0,|Ω|)) .
Letting n → ∞, we deduce from (2.25) that

E(ϕ) = lim n→∞ E(u ♯ (t n )) = E ∞ , (2.26) 
In other words,

E| ω(u ♯ 0 ) = E ∞ .
(2.27)

(iii) We have to prove that ϕ is a stationary solution. We denote here by v(t; w) the solution of Problem (P ♯ ) corresponding to initial function w. By (2.25), we have

v(t n ; u ♯ 0 ) → ϕ in L 1 ((0, |Ω|)) as n → ∞.
It follows from Lemma 2.2.8 which expresses the continuity of the semi-group with respect to the initial data that for all t ≥ 0,

v(t; v(t n ; u ♯ 0 )) → v(t; ϕ) in L 1 ((0, |Ω|)) as n → ∞.
In other words,

v(t + t n ; u ♯ 0 ) → v(t; ϕ) in L 1 ((0, |Ω|)) as n → ∞.
It follows that v(t; ϕ) ∈ ω(u ♯ 0 ). This together with (2.27) implies that for all t > s ≥ 0.

E(u(t; ϕ)) = E(u(s; ϕ)).
In view of Theorem 2.4.12(i), we have that

0 = E(v(t; ϕ)) -E(v(s; ϕ)) = - t s |Ω| 0 |v t (t; ϕ)| 2 dydt for all t > s ≥ 0, which implies that v t (ϕ) = 0 a.e in (0, |Ω|) × IR + .
Thus the solution v t (t; ϕ) of Problem (P ♯ ) with the initial function ϕ is independent of time.

Consequently, we have that

f (ϕ(y)) = - |Ω| 0 f (ϕ) =: k ϕ for a.e. y ∈ (0, |Ω|).
Corollary 2.5.5. Let ϕ ∈ ω(u ♯ 0 ). Then up to a modification on a set of zero measure, ϕ is a step function. More precisely, we have one of the following cases:

(i) If k ϕ ∈ [f (m), f (M )], then ϕ = - |Ω| 0 u ♯ 0 (y) dy. (ii) If k ϕ ∈ (f (m), f (M )), then ϕ = a -χ A -+ a 0 χ A 0 + a + χ A + ,
where

s * < a -< m, a 0 ∈ (m, M ), M < a + < s * satisfy f (a -) = f (a 0 ) = f (a + ) = k ϕ (2.28) and A -, A 0 , A + are pairwise disjoint subsets of (0, |Ω|) such that A -∪ A 0 ∪ A + = (0, |Ω|). (iii) If k ϕ = f (m), then ϕ(y) = mχ A -+ s * χ A + ,
where A -and A + are disjoint and A -∪ A + = (0, |Ω|); (note that here a -= a 0 := m and a + := s * ).

(iv

) If k ϕ = f (M ), then ϕ(y) = s * χ A -+ M χ A + ,
where A -and A + are disjoint and A -∪ A + = (0, |Ω|); (note that here a -:= s * and a 0 = a + := M ).

Proof.

(i) If k ϕ ∈ [f (m), f (M )],
then the equation f (s) = k ϕ has a unique solution a. This together with Lemma 2.5.4(iii) follows that ϕ(y) = a for a.e. y ∈ (0, |Ω|).

Because of the mass conservation property, we have

a = - |Ω| 0 ϕ = - |Ω| 0 u ♯ 0 .
Therefore,

ϕ(y) = - |Ω| 0 u ♯ 0 = - Ω u 0 . (ii) If k ϕ ∈ (f (m), f (M ))
, then the equation f (s) = k ϕ has exactly three solutions which are denoted by a -, a 0 , a + with a -< a 0 < a + . This together with Lemma 2.5.4(iii) implies that ϕ is a step function and the sets A -, A 0 , A + are defined by

A -:= ϕ -1 (a -), A 0 := ϕ -1 (a 0 ) and A + := ϕ -1 (a + ).
(iii), (iv) The proof (iii) and (iv) are similar to the proof of (i) and (ii). We omit them.

ω(u ♯ 0 ) is composed of a single element

The main result of this section is the following.

Theorem 2.5.6. Let (H 1 ) hold.

(i) If we assume that (H 2 ) holds, then ω(u ♯ 0 ) only contains one element ϕ given by ϕ(y) ≡ -

|Ω| 0 u ♯ 0 = - Ω u 0 .
(ii) If we assume that (H 3 ) holds, then ω(u ♯ 0 ) only contains one element ϕ, where ϕ is a step function. More precisely, ϕ takes at most two values a -, a + such that f (a -) = f (a + ) and that

f ′ (a -) ≤ 0, f ′ (a + ) ≤ 0.
Proof of Theorem 2.5.6(i). Let ϕ ∈ ω(u ♯ 0 ). We first prove that

k ϕ ∈ (f (m), f (M )). Indeed, if k ϕ ∈ (f (m), f (M )), then it follows from Corollary 2.5.5(ii) that ϕ = a -χ A -+ a 0 χ A 0 + a + χ A + , so that - |Ω| 0 u ♯ 0 = - |Ω| 0 ϕ ∈ [a -, a + ] ⊂ [s * , s * ], which contradicts - |Ω| 0 u ♯ 0 ∈ [s * , s * ]. Similarly, k ϕ = f (m), k ϕ = f (M ). Therefore, k ϕ ∈ [f (m), f (M )]. It follows from Corollary 2.5.5(i) that ϕ = - |Ω| 0 u ♯ 0 .
Therefore, ω(u ♯ 0 ) only contains the element ϕ = -|Ω| 0 u ♯ 0 . The proof of Theorem 2.5.6(i) is complete.

The remaining part of this section is devoted to the proof of Theorem 2.5.6(ii). We first define for each t ≥ 0,

Ω -(t) := {y ∈ (0, |Ω|), u ♯ (y, t) ≤ m}, Ω 0 (t) := {y ∈ (0, |Ω|), m < u ♯ (y, t) < M }, Ω + (t) := {y ∈ (0, |Ω|), u ♯ (y, t) ≥ M }.
Lemma 2.5.7. Suppose that (H 1 ), (H 3 ) hold. For every t ′ > t ≥ 0 the following assertions hold

(i) if u ♯ (y, t) ≤ m, then u ♯ (y, t ′ ) ≤ m, (ii) if u ♯ (y, t) ≥ M , then u ♯ (y, t ′ ) ≥ M . Proof. First, we prove that f (m) ≤ λ(t) ≤ f (M ), (2.29) or equivalently f (m) ≤ λ(t) ≤ f (M ).
Indeed, we apply Theorem 2.4. 

L(u ♯ (y, •)) = 0 for all t ≥ 0.
The assertion (i) follows from [9, Theorem 6.1, Page 31] and the differential inequality

L(u ♯ (y, •)) = 0 ≤ L(m)
for all t ≥ 0.

(ii) The proof of (ii) is similar to that of (i). We omit it here.

The following corollary is an immediate consequence of Lemma 2.5.7.

Corollary 2.5.8. Suppose that (H 1 ), (H 3 ) hold. For every t ′ > t ≥ 0,

Ω -(t) ⊂ Ω -(t ′ ), Ω + (t) ⊂ Ω + (t ′ ) and Ω 0 (t) ⊃ Ω 0 (t ′ ).
In other words, Ω -(t), Ω + (t) are monotonically expanding in t and Ω 0 (t) is monotonically shrinking in t.

We define

Ω -(∞) := ∪ t≥0 Ω -(t), Ω 0 (∞) := ∩ t≥0 Ω 0 (t) and Ω + (∞) := ∪ t≥0 Ω + (t).
(2.30)

Corollary 2.5.9. Suppose that (H 1 ) and

(H 3 ) hold. Then Ω -(∞), Ω 0 (∞), Ω + (∞) are pairwise disjoint and (0, |Ω|) = Ω -(∞) ∪ Ω 0 (∞) ∪ Ω + (∞).
Moreover,

Ω -(∞) = {y ∈ (0, |Ω|) : there exists t 0 ≥ 0 such that u ♯ (y, t) ≤ m for all t ≥ t 0 } Ω 0 (∞) = {y ∈ (0, |Ω|) : m < u ♯ (y, t) < M for all t ≥ 0}, Ω + (∞) = {y ∈ (0, |Ω|) : there exists t 0 ≥ 0 such that u ♯ (y, t) ≥ M for all t ≥ t 0 }. Proof. For y ∈ (0, |Ω|), (i) either m < u ♯ (y, t) < M for all t ≥ 0 i.e x ∈ Ω 0 (∞);
(ii) or there exists t 0 ≥ 0 such that u ♯ (y, t 0 ) ≤ m, i.e. x ∈ Ω -(∞). In view of Lemma 2.5.7(i), this is equivalent to the fact that u ♯ (y, t) ≤ m for all t ≥ t 0 .

(iii) or there exists t 0 ≥ 0 such that u ♯ (y, t 0 ) ≥ M , i.e. x ∈ Ω + (∞). In view of Lemma 2.5.7(ii), this is equivalent to the fact that u ♯ (y, t) ≥ M for all t ≥ t 0 .

These arguments complete the proof of Corollary 2.5.9.

Lemma 2.5.10. Suppose that (H 1 ) and (H 3 ) hold. Let ϕ ∈ ω(u ♯ 0 ). Then the following assertions hold

(i) ϕ(y) ≤ m for a.e. x ∈ Ω -(∞); (ii) m ≤ ϕ(y) ≤ M for a.e. x ∈ Ω 0 (∞); (iii) ϕ(y) ≥ M for a.e. x ∈ Ω + (∞).
Proof. First, we deduce from the definition of ω(u ♯ 0 ) that there exists a sequence t n → +∞ such that u ♯ (y, t n ) → ϕ(y) for a.e y ∈ (0, |Ω|) as n → +∞.

This together with Corollary 2.5.9 completes the proof of Lemma 2.5.10.

Lemma 2.5.11. Suppose that (H 1 ) and (H 3 ) hold. Then

|Ω 0 (∞)| = 0. and r ′ (t) = u ♯ t (ȳ 1 , t) -u ♯ t (ȳ 2 , t) = f (u ♯ (ȳ 1 , t)) -f (u ♯ (ȳ 2 , t
)) ≥ 0, where the last inequality holds since ȳ1 , ȳ2 ∈ Ω 0 (∞) so that

M > u ♯ (ȳ 1 , t) ≥ u ♯ (ȳ 2 , t) > m
for all t ≥ 0, and since f is increasing on [m, M ]. Moreover, in view of (2.33), we have

lim n→∞ r(t n ) = 0.
Thus, the function r which is nonnegative and nondecreasing is identically equal to zero. In particular, u ♯ 0 (ȳ 1 ) = u ♯ 0 (ȳ 2 ). Therefore, u ♯ 0 is constant on (y 1 , y 2 ), which in view of Remark 2.4.9 contradicts Hypotheses (H 3 ). Thus, we conclude that there exists α ∈ (m, M ) such that u ♯ 0 (y) = α for all y ∈ Ω 0 (∞), which again together with Hypothesis (H 3 ) implies that

|Ω 0 (∞)| = 0.
Lemma 2.5.12. Suppose that (H 1 ) and (H 3 ) hold and let

ϕ ∈ ω(u ♯ 0 ). Then, k ϕ ∈ [f (m), f (M )] and ϕ = a -χ Ω -(∞) + a + χ Ω + (∞) ,
where

a -∈ [s * , m], a + ∈ [M, s * ] and f (a -) = f (a + ) = k ϕ . More precisely, (i) If f (m) < k ϕ < f (M ) ϕ = a -χ Ω -(∞) + a + χ Ω + (∞) ,
where a -∈ (s * , m), a + ∈ (M, s * ) and f (a

-) = f (a + ) = k ϕ . (ii) If k ϕ = f (m) then ϕ = mχ Ω -(∞) + s * χ Ω + (∞) .
(Note that here a -= m and a + = s * ).

(iii

) If k ϕ = f (M ) then ϕ = s * χ Ω -(∞) + M χ Ω + (∞) .
(Note that here a -= s * and a + = M ).

Proof. It follows from the proof of Lemma 2.5.7 that for all t ≥ 0 s * ≤ u ♯ (y, t) ≤ s * for a.e. y ∈ (0, |Ω|) so that s * ≤ ϕ(y) ≤ s * for a.e. y ∈ (0, |Ω|).

Consequently, we deduce from the definition of s * , s * in (2.1) that

k ϕ = - |Ω| 0 f (ϕ) ∈ [f (m), f (M ))]. (i) If f (m) < k ϕ < f (M )
, it follows from Corollary 2.5.5(ii) and Lemma 2.5.11 that ϕ is a step function which takes two values a -, a + where a -∈ (s * , m), a + ∈ (M, s * ) and f (a -) = f (a + ) = k ϕ . Thus by Lemma 2.5.10,

ϕ(y) = a - for a.e. x ∈ Ω -(∞). and ϕ(y) = a + for a.e. x ∈ Ω + (∞).
This together with Lemma 2.5.11 implies that

ϕ = a -χ Ω -(∞) + a + χ Ω + (∞) .
The proofs of (ii) and (iii) are similar to that of (i). We omit them here.

Proof of Theorem 2.5.6(ii). We prove that ω(u ♯ 0 ) is exactly composed of one element. By contradiction, we assume that ω(u ♯ 0 ) contains more than one element. We deduce from Lemma 2.5.12 that for all k ∈ [f (m), f (M )], ω(u ♯ 0 ) contains at most one element ϕ such that k ϕ = k, so that we can choose two functions ϕ, ϕ ∈ ω(u ♯ 0 ) such that

f (m) ≤ k ϕ < k ϕ ≤ f (M ).
It follows from Lemma 2.5.12 that

ϕ = a -χ Ω -(∞) + a + χ Ω + (∞) ,
and that

ϕ = a -χ Ω -(∞) + a + χ Ω + (∞) , where a -, a -∈ [s * , m], a + , a + ∈ [M, s * ]; and f (a -) = f (a + ) = k ϕ , f (a -) = f (a + ) = k ϕ .
Since f is strictly decreasing on (-∞, m] and [M, +∞), we deduce that a -> a -, a + > a + . Then using mass conservation property, we obtain

- |Ω| 0 u ♯ 0 = a -|Ω -(∞)| + a + |Ω + (∞)| > a -|Ω -(∞)| + a + |Ω + (∞)| = - |Ω| 0 u ♯ 0
which gives a contradiction. Therefore, ω(u ♯ 0 ) only contains one element. The proof of Theorem 2.5.6(ii) is complete.

Corollary 2.5.13. Let the same assumptions as in Theorem 2.5.6 hold. Then for all p ∈ [1, +∞),

u ♯ (t) → ϕ in L p ((0, |Ω|)) as t → ∞,
where ϕ is defined as in Theorem 2.5.6.
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Proof. It immediately follows from Theorem 2.5.6 that

u ♯ (t) → ϕ in L 1 ((0, |Ω|)) as t → ∞.
The convergence of u ♯ (t) in L p ((0, |Ω|)) for all p ∈ (1, +∞) follows from the estimates

u ♯ (t) -ϕ p L p ((0,|Ω|)) ≤ u ♯ (t) -ϕ L 1 ((0,|Ω|)) |u ♯ (t) -ϕ| p-1 L ∞ ((0,|Ω|)) ≤ |s 2 -s 1 | p-1 u ♯ (t) -ϕ L 1 ((0,|Ω|)) .

Proof of Theorem 2.1.2 and a nontrivial counterexample

We have proved the stabilization of the solution of Problem (P ♯ ). We now have to deduce the stabilization of the solution of Problem (P ). We need the following result.

Lemma 2.6.1. Suppose that (H 1 ) and (H 3 ) hold. Then for all t, τ ≥ 0 we have

u ♯ (t) -u ♯ (τ ) L 2 ((0,|Ω|)) = u(t) -u(τ ) L 2 (Ω) .
Proof. Define G(s) := h t (s)h τ (s). We apply Proposition 2.4.4(ii) for G to deduce that

|Ω| 0 h t (u ♯ 0 )h τ (u ♯ 0 ) = Ω h t (u 0 )h τ (u 0 ).
or equivalently,

|Ω| 0 u ♯ (t)u ♯ (τ ) = Ω u(t)u(τ ). (2.34) 
We apply again Proposition 2.4.4(ii) to the function G(s) := s 2 and use equality (2.34) to deduce that

u ♯ (t) -u ♯ (τ ) 2 L 2 ((0,|Ω|)) = |Ω| 0 (u ♯ (t)) 2 + |Ω| 0 (u ♯ (τ )) 2 -2 |Ω| 0 u ♯ (t)u ♯ (τ ) = Ω (u(t)) 2 + Ω (u(τ )) 2 -2 Ω u(t)u(τ ) = u(t) -u(τ ) 2 L 2 (Ω) .
This completes the proof of Lemma 2.6.1.

Proof of Theorem 2.1.2. It follows from Corollary 2.5.13 that

u ♯ (t) → ϕ in L 2 ((0, |Ω|)) as t → ∞, (2.35) 
so that u ♯ (t) is a Cauchy sequence in L 2 ((0, |Ω|)). This together with Lemma 2.6.1 implies that u(t) is also a Cauchy sequence in L 2 (Ω). Consequently, there exists

ψ ∈ L 2 (Ω) such that u(t) → ψ in L 2 (Ω) as t → ∞.
Consequently, we have Φ -1 (b) ≤ s for all s ∈ A.

We deduce that Φ -1 (b) ≤ inf A,

and hence b ≤ Φ(inf A). Thus, inf{Φ(s) : s ∈ A} = b ≤ Φ(inf A). (2.39) 
The conclusion of Lemma 2.7.1 follows from (2.38) and (2.39).

Proof of Proposition 2.4.7. First, we prove that

(Φ(w)) ♯ (0) = Φ(w ♯ )(0). Note that (Φ(w)) ♯ (0) = ess sup Φ(w) = inf{a : |{Φ(w) > a}| = 0} = inf{a : |{w > Φ -1 (a)}| = 0} = inf{Φ(Φ -1 (a)) : |{w > Φ -1 (a)}| = 0} = inf{Φ( a) : |{w > a}| = 0}
which together with Lemma 2.7.1 implies that

(Φ(w)) ♯ (0) = Φ(inf{ a : |{w > a}| = 0}) = Φ(ess sup w) = Φ(w ♯ (0)).
Let 0 < y ≤ |Ω|, we now prove that (Φ(w)) ♯ (y) = Φ(w ♯ )(y).

We have

(Φ(w)) ♯ (y) = inf{s : |{Φ(w) > s}| < y} = inf{s : |{w > Φ -1 (s)}| < y} = inf{Φ(Φ -1 (s)) : |{w > Φ -1 (s)}| < y} = inf{Φ( s) : |{w > s}| < y} = Φ(inf{ s : |{w > s}| < y}) = Φ(w ♯ (y)).
This completes the proof of Proposition 2.4.7.

Introduction

We study the initial value problem

(P )                  u t = u 2 (1 -u) -u(1 -u) Ω u 2 (1 -u) Ω u(1 -u) in Ω × IR + , u(x, 0) = u 0 (x) x ∈ Ω,
where Ω ⊂ IR N (N ≥ 1) is a bounded open set. This problem has been proposed by M. Nagayama [10] After having proved that Problem (P ) possesses some invariant regions, we study the large time behavior of its solution. An essential difficulty is to analyze the denominator in the nonlocal term in Problem (P ) since it may vanish. Another difficulty of this problem is due to the lack of a diffusion term, so that the solution does not regularize in time. Applying the rearrangement theory, we prove the relative compactness of the solution orbits of the corresponding one-dimensional problem (P ♯ ). We study the large time behavior of the solution of Problem (P ♯ ) and then deduce the result for the original problem.

Constants s 1 , s 2 : Let s 1 , s 2 be two constants such that

s 1 < 0 < 1 < s 2 .
Assumptions on initial condition: We will consider one of the following assumptions on initial function.

(H 1 ) u 0 ∈ L ∞ (Ω), 1 ≤ u 0 (x) ≤ s 2 for a.e. x ∈ Ω; and u 0 ≡ 1.

(H 2 ) u 0 ∈ L ∞ (Ω), s 1 ≤ u 0 (x) ≤ 0 for a.e. x ∈ Ω; and u 0 ≡ 0.

We define

m 0 := - Ω u 0 := 1 |Ω| Ω u 0 .
Note that if u 0 satisfies (H 1 ) or (H 2 ) then

m 0 ∈ [0, 1].
Two functions f , g: We introduce two functions f, g given by

f (s) := s 2 (1 -s) and g(s) := s(1 -s).
Then, the differential equation can be written as

u t = f (u) -g(u) Ω f (u) Ω g (u) 
.

For two real numbes a < b, we define

K(a, b) := max(sup [a,b] |f (s)|, sup [a,b] |g(s)|), sup [a,b] |f ′ (s)|, sup [a,b] |g ′ (s)|) (3.1) 
Our main results can be summarized as follows: Moreover, for each t ≥ 0, 1 ≤ u(t) ≤ s 2 almost everywhere in Ω.

If u 0 ∈ C(Ω), then u ∈ C 1 ([0, +∞); C(Ω)).
Theorem 3.1.2. Let (H 1 ) hold. Then there exists ψ ∈ L ∞ (Ω), such that for all 1 ≤ p < +∞.

u(t) → ψ in L p (Ω) as t → +∞.
Moreover, ψ is a step function, which takes two values 1 and γ > 1.

In the case that Assumption (H 2 ) holds, we have the similar results.

Theorem 3.1.3. Let (H 2 ) hold. Then Problem (P ) possesses a unique solution in C 1 ([0, +∞); L ∞ (Ω)).
Moreover, for each t ≥ 0,

s 1 ≤ u(t) ≤ 0 almost everywhere in Ω. If u 0 ∈ C(Ω), then u ∈ C 1 ([0, +∞); C(Ω)). Theorem 3.1.4. Let (H 2 ) hold. Then there exists ψ ∈ L ∞ (Ω), such that for all 1 ≤ p < +∞. u(t) → ψ in L p (Ω) as t → +∞.
Moreover, ψ is a step function, which takes two values δ < 0 and zero.

In this paper we only give the proofs of Theorem 3. The paper is organized as follows: in Section 3.2 we prove Theorem 3.1.1. In Section 3.3, we prove some properties of the solution u and show that Problem (P ) possesses a Lyapunov functional. In Section 3.4, applying the rearrangement theory, we introduce the corresponding problem (P ♯ ) and present some properties of its solution. Then we prove that the ω-limit set ω(u ♯ 0 ) is composed of a single element. In Section 3.5, we proved Theorem 3.1.2.

Existence and uniqueness of solution of Problem (P )

This section is devoted to the proof of Theorem 3.1.1. We first present some a priori estimates and show that Problem (P ) possesses a local in time solution. We then extend this local solution to a global solution. We start with the following result.

Lemma 3.2.1. Let φ ∈ L ∞ (Ω) be such that - Ω φ = m 0 ∈ [0, 1]. Then Ω g(φ) ≤ m 0 |Ω|(1 -m 0 ) < 0.
Proof. Since g is concave, we apply Jensen's inequality to deduce that g( -

Ω u) ≥ - Ω g(u). It follows that Ω g(u) ≤ |Ω|g(m 0 ) = |Ω|m 0 (1 -m 0 ),
which completes the proof of Lemma 3.2.1.

Notation: We set G(φ) := f (φ) -g(φ) Ω f (φ) Ω g(φ) ; (3.2)
and use the notation X for either of the spaces L 1 (Ω), L ∞ (Ω) or C(Ω).

Lemma 3.2.2. Let a < b be two real numbers and let v 1 , v 2 ∈ X be such that

a ≤ v 1 (x), v 2 (x) ≤ b for a.e x ∈ Ω.
We assume further that

α = α(v 1 , v 2 ) := min | Ω g(v 1 )|, | Ω g(v 2 )| > 0. (3.3) 
Then G(v 1 ) -G(v 2 ) X ≤ L 1 v 1 -v 2 X ,
where

L 1 := K(a, b) + (K(a, b)) 3 |Ω|(3|Ω| + 2) α 2 .
We recall that K(a, b) is defined by (3.1).

Remark 3.2.3. Before proving Lemma 3.2.2, we remark that for all s, s ∈ [a, b],

|f (s) -f (s)| ≤ K(a, b) |s -s| (3.4) and |g(s) -g(s)| ≤ K(a, b) |s -s|. (3.5) 
Proof of Lemma 3.2.2. We have

G(v 1 ) -G(v 2 ) = [f (v 1 ) -f (v 2 )] -     g(v 1 ) Ω f (v 1 ) Ω g(v 1 ) -g(v 2 ) Ω f (v 2 ) Ω g(v 2 )     = [f (v 1 ) -f (v 2 )] - g(v 1 ) Ω f (v 1 ) Ω g(v 2 ) -g(v 2 ) Ω f (v 2 ) Ω g(v 1 ) Ω g(v 1 ) Ω g(v 2 ) =: A 1 - A 2 A 3 ,
where

A 1 := f (v 1 ) -f (v 2 ); A 2 := g(v 1 ) Ω f (v 1 ) Ω g(v 2 ) -g(v 2 ) Ω f (v 2 ) Ω g(v 1 ); and A 3 := Ω g(v 1 ) Ω g(v 2 ).
In the following, we will give estimates for A 1 , A 2 and A 3 . For simplicity, we will write K instead of K(a, b) in the remaining of the proof of this lemma. For the term A 1 , we use (3.4) to obtain

A 1 X = f (v 1 ) -f (v 2 ) X ≤ K v 1 -v 2 X . (3.6) 
Next, we write A 2 as

A 2 := g(v 1 ) Ω f (v 1 ) Ω g(v 2 ) -g(v 2 ) Ω f (v 1 ) Ω g(v 2 ) + g(v 2 ) Ω f (v 1 ) Ω g(v 2 ) -g(v 2 ) Ω f (v 2 ) Ω g(v 2 ) + g(v 2 ) Ω f (v 2 ) Ω g(v 2 ) -g(v 2 ) Ω f (v 2 ) Ω g(v 1 ),
or equivalently,

A 2 := [g(v 1 ) -g(v 2 )] Ω f (v 1 ) Ω g(v 2 ) + g(v 2 ) Ω [f (v 1 ) -f (v 2 )] Ω g(v 2 ) + g(v 2 ) Ω f (v 2 ) Ω [g(v 2 ) -g(v 1 )].
This together with (3.1) implies that

A 2 X ≤ (K) 3 |Ω| 2 v 1 -v 2 X + 2(K) 3 |Ω| v 1 -v 2 L 1 (Ω) .
We also note that

v 1 -v 2 L 1 (Ω) ≤ (1 + |Ω|) v 1 -v 2 X so that A 2 X ≤ (K) 3 |Ω|(3|Ω| + 2) v 1 -v 2 L ∞ (Ω) . (3.7) 
For the term A 3 , by hypotheses (3.3), we have

|A 3 | ≥ α 2 > 0. ( 3.8) 
We combine (3.6), (3.7) and (3.8) to obtain

G(v 1 ) -G(v 2 ) X ≤ K + (K) 3 |Ω|(3|Ω| + 2) α 2 v 1 -v 2 X ,
which completes the proof of Lemma 3.2.2.

or equivalently,

u(x 0 , t 0 ))(1 -u(x 0 , t 0 ))     u(x 0 , t 0 ) -Ω u 2 (t 0 )(1 -u(t 0 )) Ω u(t 0 )(1 -u(t 0 ))     ≥ 0. Note that u(x 0 , t 0 )(1 -u(x 0 , t 0 )) = (s 2 + ε)(1 -(s 2 + ε)) < 0, so that u(x 0 , t 0 ) -Ω u 2 (t 0 )(1 -u(t 0 )) Ω u(t 0 )(1 -u(t 0 )) ≤ 0.
Hence,

u(x 0 , t 0 ) Ω u(t 0 )(1 -u(t 0 )) ≥ Ω u 2 (t 0 )(1 -u(t 0 )),
or equivalently,

Ω [u(x 0 , t 0 ) -u(x, t 0 )]u(x, t 0 )[1 -u(x, t 0 )] ≥ 0. (3.12)
On the other hand, it follows from (3.10) and (3.11) that [u(x 0 , t 0 )u(x, t 0 )]u(x, t 0 )[1u(x, t 0 )] ≤ 0, which together with (3.12) and the continuity of u(•, t 0 ) on Ω implies that u(x, t 0 ) = u(x 0 , t 0 ) = s 2 + ε for all x ∈ Ω.

Consequently, we have that (ii) Let (H 1 ) hold. Then there exists T 0 = T 0 (s 2 , m 0 ) such that Problem (P ) possesses a solution in C 1 ([0, T 0 ]; L ∞ (Ω)). Moreover, in (i) and (ii), we can choose

T 0 := min K + (K) 2 |Ω| α 0 -1 , 1 2 K + (K) 3 |Ω|(3|Ω| + 2) α 2 0 -1
where K := K(-s 2 -1; s 2 + 1) and α 0 := -m 0 |Ω|(1m 0 ).

Proof. (i) We will use the contraction mapping theorem to prove the local existence of solution. For this purpose, we set

V(u 0 ) := {v ∈ C(Ω) : - Ω v = m 0 and v -u 0 C(Ω) ≤ 1}.
and

A := {w ∈ C([0, T 0 ]; C(Ω)) : w(t) ∈ V(u 0 ) for all t ∈ [0, T 0 ]},
where T 0 > 0 will be choosen later. We define the operator T by

T w(t) := u 0 + t 0 G(w) for all w ∈ A,
where G is given by (3.2). In the following, we will prove that T is well-defined and has a fixed point. We begin with some properties of G.

Claim 1: We prove that G is Lipschitz continuous on V(u 0 ). For all v ∈ V(u 0 ), we have

v C(Ω) ≤ u 0 C(Ω) + 1 ≤ s 2 + 1. (3.13)
Therefore, we apply Corollary 3.2.4 to deduce that for all v 1 , v 2 ∈ V(u 0 ),

G(v 1 ) -G(v 2 ) C(Ω) ≤ L 3 v 1 -v 2 C(Ω) ,
where

L 3 = L 3 (s 2 , m 0 ) := K + (K) 3 |Ω|(3|Ω| + 2) α 2 0 > 0,
with K := K(-s 2 -1, s 2 + 1) and α 0 := -m 0 |Ω|(1m 0 ).

Claim 2: We prove that G is bounded on V(u 0 ). It follows from (3.13) and from the definition of K(-s 2 -1, s 2 + 1) that for all v ∈ V(u 0 ),

f (v) C(Ω) ≤ K(-s 2 -1, s 2 + 1), g(v) C(Ω) ≤ K(-s 2 -1, s 2 + 1).
We also deduce from Lemma 3.2.1 that

Ω g(v) < -α 0 < 0 for all v ∈ V(u 0 ).
Therefore, we have

G(v) C(Ω) ≤ K + (K) 2 |Ω| α 0 =: M for all v ∈ V(u 0 ), so that G is bounded on V(u 0 ).
We define

T 0 = T (s 2 ; m 0 ) := min( 1 M , 1 2L 3 ) 
We claim that T is a contraction mapping on A.

Claim 3: We prove that T is well-defined. Indeed, let w ∈ A, then by the definition of A, we have for all 0 ≤ t ≤ T 0 , w(t) ∈ V(u 0 ). It follows from Lemma 3.2.1 that Ω g(w(t)) ≤ α 0 < 0 for all w ∈ A, 0 ≤ t ≤ T 0 .

Therefore,

G(w(t)) = f (w(t)) -g(w(t)) Ω f (w(t)) Ω g(w(t)))
is well-defined. Consequently, T is well-defined.

Claim 4: We claim that T (A) ⊂ A.

Let w ∈ A, for all 0 ≤ t ≤ t ≤ T 0 , we have

T w(t) -T w( t) C(Ω) ≤ t t G(w(s)) C(Ω) ≤ M |t -t|, so that T w ∈ C([0, T ]; C(Ω)). It remains now to prove that T w(t) ∈ V(u 0 ). Since Ω G(w(s)) = 0 for all s ∈ [0, T 0 ],
it follows that

- Ω T w(t) = Ω u 0 + t 0 - Ω G(w(s))ds = - Ω u 0 = m 0 . Moreover, T w(t) -u 0 C(Ω) ≤ t 0 G(w(s)) C(Ω) ds ≤ M T 0 ≤ 1.
Therefore, T w(t) ∈ V(u 0 ). Thus, we conclude that

T (A) ⊂ A.
Claim 5: Now, we prove that T is a contraction mapping on A. Indeed, let w 1 , w 2 ∈ A, t ∈ [0, T 0 ], we have

T (w 1 )(t) -T (w 2 )(t) C(Ω) ≤ t 0 G(w 1 (s)) -G(w 2 (s)) C(Ω) ds ≤ L 3 t 0 w 1 (s) -w 2 (s) C(Ω) ds ≤ T 0 L 3 w 1 -w 2 C([0,T 0 ];C(Ω)) ≤ 1 2 w 1 -w 2 C([0,T 0 ];C(Ω)) .
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91

Hence, we have

T w 1 -T w 2 C([0,T 0 ];C(Ω)) ≤ 1 2 w 1 -w 2 C([0,T 0 ];C(Ω)) ,
which implies that T is contraction on A.

It is easy to see that A is closed in C([0, T 0 ]; C(Ω)). Then, we apply the contraction mapping theorem [12,Theorem 2.2,page 44] to conclude that T has a unique fixed point. In other words, there exists u ∈ C([0, T 0 ]; C(Ω)) such that

u(t) := u 0 + t 0 G(u).
Therefore, Problem (P ) possesses a unique solution in C 1 ([0, T 0 ]; C(Ω)).

(ii) The proof of (ii) is similar to that of (i). We omit it here.

We are ready to prove Theorem 3.1.1.

Proof of Theorem 3.1.1. The local existence of solution is given in Lemma 3.2.7. Let [0, T max ) be the maximal interval of existence of solution. We now prove that

T max = +∞.
The case that u 0 ∈ C(Ω): By contradiction, assume that T max < +∞. Let t 0 ∈ [T max -T 0 2 , T max ). It follows from Lemma 3.2.5 and Lemma 3.2.6(ii) that

- Ω u(t 0 ) = m 0 and 1 ≤ u(t 0 ) ≤ s 2 .
Then we apply Lemma 3.2.7(i) to deduce that we can extend solution to interval [0, T max + T 0 2 ], which give a contradiction.

The case that u 0 ∈ L ∞ (Ω): We first prove that 1 ≤ u(x, t) ≤ s 2 for a.e x ∈ Ω, 0 ≤ t < T max (3.14) The main idea of the proof is to approximate the initial function u 0 by a sequence of continuous functions u n0 and to first obtain the result for approximate problems. Then, we deduce the result for the original problem. To begin with, we need the following lemma.

Lemma 3.2.8. Suppose that u 0 satisfies Hypothesis (H 1 ). Then there exists a sequence

{u n0 } in C(Ω) such that 1 ≤ u n0 ≤ s 2 on Ω,
and that

u n0 → u 0 in L 1 (Ω) as n → ∞.
The proof of this lemma will be given later. Now, we will use this lemma to prove (3.14). It follows from (i) that Problem (P ) with initial condition u n0 possesses a unique solution u n in C([0, +∞); C(Ω)). Moreover,

1 ≤ u n (x, t) ≤ s 2 for all x ∈ Ω, t ≥ 0. (3.15)
Moreover,

u n0 -u 0 L 1 (Ω) ≤ u n0 -w n0 L 1 (Ω) + w n0 -u 0 L 1 (Ω) ≤ 2|Ω| n .
It follows that

u n0 → u 0 in L 1 (Ω) as n → +∞.
The proof of Lemma 3.15 is complete.

The following lemma expresses the continuity of the semi-group with respect to the initial data.

Some preparations

In this section, as a preparation for the next section, we consider an ordinary differential equation which is related to Problem (P ). This study puts forth some properties of the solution of Problem (P ), which are stated in Lemma 3.3.2 below. To begin with, we define the function

λ(t) := Ω f (u(x, t))dx Ω g(u(x, t))dx , (3.23) 
where u is the unique solution of Problem (P ) given in Theorem 3.1.1. Note that λ is well-defined thanks to Lemma 3.2.1. Since u ∈ C 1 ([0, +∞); L ∞ (Ω)) and since 1 ≤ u(x, t) ≤ s 2 for a.e x ∈ Ω, t ≥ 0, it follows that λ(t) is continuous on [0, +∞) and that 1 ≤ λ(t) ≤ s 2 for all t ≥ 0.

We define the function H on IR × [0, +∞) by

H(Y, t) := f (Y ) -ḡ(Y )λ(t), where f , ḡ ∈ C ∞ c (IR) are such that for s ∈ [0, s 2 + 1] f (s) = f (s); ḡ(s) = g(s).
Note that there exists a constant c 2 such that

|H|, | ∂H ∂Y | ≤ c 2 on IR × [0, +∞). (3.24)
We consider the problem Thus, W satisfies the initial value problem

(ODE)      Y ′ = H(Y, t) Y (0) = s.
W ′ = θ(t)W (t) W (0) = s -s > 0, so that 
W (t) = W (0) exp t 0 θ(τ )dτ > 0.
It follows that Y (t, s) > Y (t, s) for all t ≥ 0.

(ii) Let t 0 > 0 be arbitrary. It follows from (i) that if s < s, then Y (t 0 ; s) < Y (t 0 ; s); hence, we have h t 0 (s) < h t 0 (s).

Consequently, h t 0 is injective, increasing on IR. Now we claim that h t 0 is surjective. Let S ∈ IR be arbitrary. We consider the problem

Y ′ = H(Y, t) Y (t 0 ) = S.
This problem possesses a unique solution in C 1 ([0, +∞)) (cf. [3,Corollary 8.3,page 57]). We denote by Y (t; t 0 ; S) this solution. We also remark that the solution of Problem (ODE) can be written as Y (t; 0; s). Moreover, by the uniqueness of the solution, we have

Y (t 0 ; 0; Y (0; t 0 ; S)) = S.
Therefore, h t 0 (Y (0; t 0 ; S)) = S, so that h t 0 is surjective.

Lemma 3.3.2. Let (H 1 ) hold. Then for all t ≥ 0, we have

u(t) = h t (u 0 ) a.e. in Ω.
Proof. We define z(x, t) := h t (u 0 (x)) = Y (t; u 0 (x)) on Ω × [0, +∞).

We need to prove that for all t ≥ 0 z(t) = u(t) almost everywhere on Ω.

It follows from the definition of Y (t; •) that for all x ∈ Ω; z(x, •) ∈ C 1 ([0, +∞)) and

     ∂z ∂t (x, t) = f (z(x, t)) -ḡ(z(x, t))λ(t) in Ω × [0, ∞), z(x, 0) = u 0 (x)
x ∈ Ω.

(3.25)

The right hand side of the differential equation in (3.25) is bounded in L ∞ (0, T ; L ∞ (Ω)) which together with the continuity of λ implies that z ∈ C 1 ([0, +∞); L ∞ (Ω)).

Since 1 ≤ u(t) ≤ s 2 , f (u(t)) = f (u(t)) and g(u(t)) = ḡ(u(t)).

Therefore,

u t = H(u, t).
We integrate from 0 to t the difference of the equations for u and for z to obtain

u(t) -z(t) = t 0 (H(u(τ ), τ ) -H(z(τ ), τ ),
In view of (3.24), we have

u(t) -z(t) L ∞ (Ω) ≤ t 0 H(u(τ ), τ ) -H(z(τ ), τ ) L ∞ (Ω) ≤ c 2 t 0 u(τ ) -z(τ ) L ∞ (Ω) ,
which together with Gronwall's inequality completes the proof of Lemma 3.3.2.

where the last identity follows from Proposition 2.4.4(ii) in chapter 2. Since the righthand-side of the above equation is bounded in L ∞ (0, +∞; L ∞ ((0, |Ω|))) and since by the continuity of f, g, λ, we have u ♯ ∈ C 1 ([0, ∞); L ∞ ((0, |Ω|))). Therefore, u ♯ coincide with the unique solution of Problem (P ♯ ) in C 1 ([0, +∞); L ∞ ((0, |Ω|))).

Corollary 3.4.2. Let (H 1 ) hold. Then for all y ∈ (0, |Ω|) the function u ♯ (y, •) is the unique solution of Problem (ODE) in C 1 ([0, +∞)) with the initial condition u ♯ 0 (y). Moreover, for all y 1 , y 2 ∈ (0, |Ω|),

(i) if u ♯ 0 (y 1 ) = u ♯ 0 (y 2 ) then u ♯ (y 1 , t) = u ♯ (y 2 , t) for all t ≥ 0; (ii) if u ♯ 0 (y 1 ) < u ♯ 0 (y 2 ) then u ♯ (y 1 , t) < u ♯ (y 2 , t
) for all t ≥ 0. Proof. This corollary is an immediate consequence of Theorem 3.4.1 and Lemma 3.3.1.

Theorem 3.4.3 (Lyapunov functional). Let v 0 ∈ L ∞ ((0, |Ω|)) be such that 1 ≤ v 0 ≤ s 2 .
Let v be the unique solution of Problem (P ♯ ) corresponding to the initial function v 0 . We define

E(v(t)) = |Ω| 0 v 2 . (i) We have for all τ 2 > τ 1 ≥ 0, E(v(τ 2 )) -E(v(τ 1 )) = - τ 2 τ 1 |Ω| 0 v(1 -v) v - |Ω| 0 f (v) |Ω| 0 g(v) 2 .
(ii) E(v(•)) is continuous and non increasing on [0, +∞), and there exists the limit of E(v(t)) as t → ∞.

Proof. (i) We have

d dt E(v(t)) = - d dt |Ω| 0 v 2 = |Ω| 0 vv t .
We also remark that |Ω| 0 v t = 0, so that

d dt E(v(t)) = |Ω| 0 v - |Ω| 0 f (v) |Ω| 0 g(v) v t = |Ω| 0 v(1 -v) v - |Ω| 0 f (v) |Ω| 0 g(v) 2 ≤ 0,
where the last inequality holds since 1 ≤ v(y, t) ≤ s 2 for a.e. y ∈ (0, |Ω|), t ≥ 0.

Integrating this identity form τ 1 to τ 2 , we obtain

E(v(τ 2 )) -E(v(τ 1 )) = τ 2 τ 1 |Ω| 0 v(1 -v) v - |Ω| 0 f (v) |Ω| 0 g(u) 2 .
(ii) As a consequence of (i), E(v(•)) is continuous and nonincreasing. Moreover, E is bounded from below by 0. Therefore there exists the limit of E(v(t)) as t → ∞, which completes the proof of (ii).

The remaining part of this section is devoted to study the set ω(u ♯ 0 ), which is defined as follows: Definition 3.4.4. We define the ω-limit set of u ♯ 0 by

ω(u ♯ 0 ) := {ϕ ∈ L 1 ((0, |Ω|)) : ∃t n → ∞, u ♯ (t n ) → ϕ in L 1 ((0, |Ω|)) as n → ∞}. Lemma 3.4.5. The set {u ♯ (t) : t ≥ 0} is relatively compact in L 1 ((0, |Ω|)). Consequently, ω(u ♯ 0 ) is nonempty.
Proof. The proof of this lemma which is based on the fact that u ♯ (t) is nonincreasing in space for all t is similar to that of Lemma 2.5.3 in Chapter 2. We omit it here.

Lemma 3.4.6. Assume that (H 1 ) hold. Then, ω(u ♯ 0 ) is a connected set of L 1 (Ω). Moreover, for a function ϕ ∈ ω(u ♯ 0 ), the following assertions hold: (i) 1 ≤ ϕ(y) ≤ s 2 for almost y ∈ (0, |Ω|) and

|Ω| 0 ϕ = |Ω| 0 u ♯ 0 . (ii) There exists a constant E ∞ such that E |ω(u ♯ 0 ) = E ∞ .
(iii) ϕ is a stationary solution of Problem (P ♯ ), which implies that

ϕ = γχ (0,A) + χ (A,|Ω|) , (3.29) 
where A, γ are positive constants such that γ > 1.

Proof. Before proving (i), (ii) (iii), we deduce from the definition of ω(u ♯ 0 ) that there exists a sequence t n → +∞ such that

u ♯ (t n ) → ϕ in L 1 ((0, |Ω|)) as n → ∞. (3.30) 
(i) It follows from (3.30) that there exists a subsequence of {t n } (still denoted by {t n }) such that as n → +∞ u ♯ (y, t n ) → ϕ(y) for a.e. y ∈ (0, |Ω|).

Moreover, we have that 1 ≤ u ♯ (y, t n ) ≤ s 2 for all y ∈ (0, |Ω|), so that also 1 ≤ ϕ(y) ≤ s 2 for a.e. y ∈ (0, |Ω|). 

The identity

|E(u ♯ (t n )) -E(ϕ)| ≤ |Ω| 0 |u ♯ (t n ) + ϕ| |u ♯ (t n ) -ϕ| ≤ c u ♯ (t n ) -ϕ L 1 ((0,|Ω|)) .
Therefore, letting n → ∞, we deduce that

E(ϕ) = lim n→∞ E(u ♯ (t n )) = E ∞ , (3.31) 
In other words,

E| ω(u * o ) = E ∞ , (3.32) 
(iii) We have to prove that ϕ is a stationary solution. We denote here by v(t; w) the unique solution of Problem (P ♯ ) together with the initial condition w. By (3.30), we have

v(t n ; u ♯ 0 ) → ϕ in L 1 ((0, |Ω|)) as n → ∞.
It follows from Lemma 3.2.9 which expresses the continuity of the semi-group with respect to the initial data that for all t ≥ 0,

v(t; v(t n ; u ♯ 0 )) → v(t; ϕ) in L 1 ((0, |Ω|)) as n → ∞.
In other words,

v(t + t n ; u ♯ 0 ) → v(t; ϕ) in L 1 ((0, |Ω|)) as n → ∞. It follows that v(t; ϕ) ∈ ω(u ♯ 0 )
. This together with (3.32) implies that for all t > s ≥ 0.

E(v(t; ϕ)) = E(v(s; ϕ)).
Therefore, in view of Theorem 3.4.3(i), we have

0 = E(v(t; ϕ)) -E(v(s; ϕ)) = - t s |Ω| 0 v(t; ϕ)(1 -v(t; ϕ)) v(t; ϕ) - |Ω| 0 f (v(t; ϕ)) |Ω| 0 f (v(t; ϕ)) 2 for al t > s ≥ 0, which implies that v(t; ϕ)(1 -v(t; ϕ)) v(t; ϕ) - |Ω| 0 f (v(t; ϕ)) |Ω| 0 f (v(t; ϕ)) 2 = 0 a.e in (0, |Ω|) × IR + . Therefore, v(t; ϕ)(1 -v(t; ϕ)) v(t; ϕ) - |Ω| 0 f (v(t; ϕ)) |Ω| 0 f (v(t; ϕ)) = 0 a.e in (0, |Ω|) × IR + ,
and hence v t (ϕ) = 0 a.e in (0, |Ω|) × IR + .

Thus the solution v(t; ϕ) of Problem (P ♯ ) with the initial function ϕ is independent of time. Consequently, we have that

ϕ(1 -ϕ) ϕ - |Ω| 0 f (ϕ) |Ω| 0 h(ϕ)
= 0 for a.e. y ∈ (0, |Ω|).

We also note that 1 ≤ ϕ(y) ≤ s 2 for a.e. y ∈ (0, |Ω|), so that

(1 -ϕ)      ϕ - |Ω| 0 f (ϕ) |Ω| 0 h(ϕ)      = 0 for a.e. y ∈ (0, |Ω|).
It follows that ϕ is a step function which takes the two values 1 and γ = γ(ϕ). Moreover, since u ♯ (t n ) is nonincreasing, we deduce that the function ϕ which is the limit almost everywhere of u ♯ (t n ) is also nonincreasing. Therefore, ϕ can be represented in the form

ϕ = γχ (0,A) + χ (A,|Ω|) , (3.33) 
where A is a constant. Since ϕ ≥ 1 and since -

Ω ϕ = - Ω u 0 > 1, we deduce that A > 0 and γ > 1. Lemma 3.4.7. Let (H 1 ) hold and let ϕ ∈ ω(u ♯ 0 ). Then γ = E ∞ -m 0 |Ω| (m 0 -1)|Ω| > 1, (3.34) 
and

A = |m 0 -1| 2 |Ω| 2 E ∞ -2m 0 |Ω| + |Ω| > 0, (3.35) 
where E ∞ is as in Lemma 3.4.6(ii). Consequently, ω(u ♯ 0 ) only contains one element.

Proof. First, we prove the identities (3.34) and (3.35). Note that

|Ω| 0 ϕ = m 0 |Ω| and E(ϕ) = E ∞ .
Thus, we deduce from (3.33) that

|Ω| -A + γA = m 0 |Ω| |Ω| -A + γ 2 A = E ∞ , or equivalently, (γ -1)A = (m 0 -1)|Ω| (γ + 1)(γ -1)A = E ∞ -|Ω|. It follows that γ = E ∞ -|Ω| (m 0 -1)|Ω| -1 = E ∞ -m 0 |Ω| (m 0 -1)|Ω| and that A = (m 0 -1)|Ω| (γ -1) = (m 0 -1) 2 |Ω| 2 E ∞ -2m 0 |Ω| + |Ω| .
The knowledge of the constants γ and A completely determines the stationary solution ϕ given by (3.29) Consequently, ω(u ♯ 0 ) only contains the element ϕ. Proof. It immediately follows from Theorem 3.4.7 that

u ♯ (t) → ϕ in L 1 ((0, |Ω|)).
Since {u ♯ (t)} and ϕ are bounded in L ∞ ((0, |Ω|)), the convergence in every L p ((0, |Ω|)) for p ∈ [1, ∞) follows.

3.5 Proof of Theorem 3.1.2

We have proved the stabilization of the solution of the Problem (P ♯ ). We now have to deduce the stabilization of the solution of Problem (P ). We need the following result. Lemma 3.5.1. Suppose (H 1 ) hold. Then for all t, τ ≥ 0 we have 

u ♯ (t) -u ♯ (τ ) L 2 ((0,|Ω|)) = u(t) -u(τ ) L 2 (Ω) . Proof. Define G(s) := h t (s)h τ (s). We apply Proposition 2.4.3(ii) in Chapter 2 for G to deduce that |Ω| 0 h t (u ♯ 0 )h τ (u ♯ 0 ) = Ω h t (u 0 )h τ (u 0 ). or equivalently, |Ω| 0 u ♯ (t)u ♯ (τ ) = Ω u(t)u(τ ). ( 3 
♯ (t) -u ♯ (τ ) 2 L 2 ((0,|Ω|)) = |Ω| 0 (u ♯ (t)) 2 + |Ω| 0 (u ♯ (τ )) 2 -2 |Ω| 0 u ♯ (t)u ♯ (τ ) = Ω (u(t)) 2 + Ω (u(τ )) 2 -2 Ω u(t)u(τ ) = u(t) -u(τ ) 2 L 2 (Ω) .
The proof of Lemma 3.5.1 is complete.

Proof of Theorem 3.1.2. It follows from Corollary 3.4.8 that

u ♯ (t) → ϕ in L 2 ((0, |Ω|)) as t → ∞, (3.37) 
so that u ♯ (t) is a Cauchy sequence in L 2 ((0, |Ω|)). This together with Lemma 3.5.1 implies that u(t) is also a Cauchy sequence in L 2 (Ω). Consequently, there exists ψ ∈ L 2 (Ω) such that u(t) → ψ in L 2 (Ω) as t → ∞.

Introduction

Diffuse-interface tumor-growth models

Diffuse-interface tumor-growth models have been modeled and studied in several articles [START_REF] Frieboes | Computer simulation of glioma growth and morphology[END_REF][START_REF] Wise | Threedimensional multispecies nonlinear tumor growth-I Model and numerical method[END_REF]20,8,[START_REF] Hawkins-Daarud | Numerical simulation of a thermodynamically consistent four-species tumor growth model[END_REF][START_REF] Hawkins-Daarud | Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth[END_REF]. We also refer to the overviews in [19,[START_REF] Lowengrub | Nonlinear modeling of cancer: Bridging the gap between cells and tumors[END_REF]21,[START_REF] Oden | General diffuse-interface theories and an approach to predictive tumor growth modeling[END_REF]. The basic model is composed of a fourth order parabolic equation for the tumor cell concentration u : Ω → IR coupled to an elliptic equation for the nutrient concentration σ : Ω → IR:

u t = ∆(-ε -1 f (u) -ε∆u) + ε -1 p 0 σu (4.1a) -∆σ + ε -1 p 0 σu = 0, (4.1b) 
where ε 2 is the diffusivity corresponding to the surface energy, the positive constant p 0 is a proliferation growth parameter, and f is a bistable function.

Introducing the chemical potential µ : Ω → IR, given by

µ := -ε -1 f (u) -ε∆u, (4.1a)-(4.1b) becomes u t = ∆µ + ε -1 p 0 σu, (4.2a) µ = -ε -1 f (u) -ε∆u, (4.2b 
) 0 = ∆σ -ε -1 p 0 σu. (4.2c) 
The above system models the evolution of the first stage of a growing tumor [START_REF] Roose | Mathematical models of avascular tumor growth[END_REF]. In this stage a tumor grows because of the consumption of nutrients that diffuse through the surrounding tissue. This stage is referred to as avascular growth, as the tumor has not yet acquired its own blood supply to nurture itself. Consumption of nutrients is modeled in (4.2a) and (4.2c) via the reactive terms. To describe the evolution of the tumor boundary a diffuseinterface description is employed. This is classically modeled in (4.2a) with a diffusion via the chemical potential µ which depends in a nonlinear manner on u and contains the higher-order regularization ε∆u, see (4.2b). Diffuse-interface tumor-growth models fall within the broader class of multiconstituent tumor-growth models based on continuum mixture theory, such as presented in [5,4,12,[START_REF] Graziano | Mechanics in tumor growth[END_REF]7]. The derivation of diffuse-interface models within continuum mixture theory has been reviewed in [START_REF] Oden | General diffuse-interface theories and an approach to predictive tumor growth modeling[END_REF], and requires the set up of balance laws for each constituent as well as the specification of constraints on the constitutive choices imposed by the second law of thermodynamics. Typically, only the cellular and fluidic constituents of a tumor are modeled as parts of a mixture, while nutrients are considered separately. Recently however, a diffuse-interface tumor growth model has been proposed that incorporates all constituents within the mixture and is proven to be thermodynamically consistent, see [START_REF] Hawkins-Daarud | Numerical simulation of a thermodynamically consistent four-species tumor growth model[END_REF]. In fact, the model is of gradient-flow type.

The model from [START_REF] Hawkins-Daarud | Numerical simulation of a thermodynamically consistent four-species tumor growth model[END_REF] is a modification of (4.2) and has a natural four-constituent interpretation: a tumorous phase u ≈ 1, a healthy cell phase u ≈ -1, a nutrient-rich extracellular water phase σ ≈ 1 and a nutrient-poor extracellular water phase σ ≈ 0. It is given by

u t = ∆µ + ε -1 p(u)(σ -δµ) (4.3a) µ = -ε -1 f (u) -ε∆u (4.3b) σ t = ∆σ -ε -1 p(u)(σ -δµ) (4.3c)
where δ > 0 is a small regularization parameter, and the growth function p(u) is defined by

p(u) := 2p 0 W (u) u ∈ [-1, 1] 0 elsewhere.
Here W (u) := -u -1 f (s) ds is the classical Cahn-Hilliard double well free-energy density. We assume that the bistable function f (u) has two stable roots ±1, an unstable root 0 and mean zero:

1 -1 f (s)ds = 0. f s -1 0 1
Note that, compared to (4.2a)-(4.2c), the reactive terms have been modified to be thermodynamically consistent. They include a regularization part δµ and they have been localized to the interface (since p(u) is nonzero if u ∈ (-1, 1)); see [START_REF] Hawkins-Daarud | Numerical simulation of a thermodynamically consistent four-species tumor growth model[END_REF] for more details.

In this work, we shall be interested in the singular limit ε ↓ 0 of (4.3a)-(4.3c) together with homogeneous Neumann boundary conditions. For articles involving singular limits we refer to [3,13,17,14,[START_REF] Rubinstein | Fast reaction, slow diffusion, and curve shortening[END_REF][START_REF] Pego | Front migration in the nonlinear Cahn-Hilliard equation[END_REF]9,[START_REF] Lowengrub | Quasi-incompressible Cahn-Hilliard fluids and topological transitions[END_REF]26,2,23,[START_REF] Stoth | Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spherical symmetry[END_REF]15,1]; we should also mention the overviews [18,[START_REF] Fife | Dynamics of Internal Layers and Diffusive Interfaces[END_REF][START_REF] Nishiura | Translations of Mathematical Monographs[END_REF][START_REF] Mimura | Reaction-diffusion systems arising in biological and chemical systems: Application of singular limit procedures[END_REF], and the numerical studies [28,27,[START_REF]Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem[END_REF][START_REF] Feng | A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow[END_REF][START_REF]A posteriori error estimates for finite element approximations of the Cahn-Hilliard equation and the Hele-Shaw flow[END_REF]16].

The unknown pair (u, σ) is a dissipative gradient flow for the energy functional

E(u, σ) := Ω ε 2 |∇u| 2 + εW (u) + σ 2 2δ .
We refer to Theorem 4.1.1 for the proof of this property in a slightly more general context.

The main results

In order to study the singular limit of Problem (4.3a)-(4.3c) as ε ↓ 0, we introduce the following phase-field model

αµ ε t + u ε t = ∆µ ε + ε -1 p(u ε )(σ ε -δµ ε ) in Ω × (0, +∞), ε -1 µ ε -αu ε t = -ε -2 f (u ε ) -∆u ε in Ω × (0, +∞), σ ε t = ∆σ ε -ε -1 p(u ε )(σ ε -δµ ε ) in Ω × (0, +∞), (4.4a) (4.4b) (4.4c)
together with the boundary and initial conditions

∂µ ε ∂ν = ∂u ε ∂ν = ∂σ ε ∂ν = 0 on ∂Ω × (0, +∞), αµ ε (•, 0) = αµ ε 0 , u ε (•, 0) = u ε 0 , σ ε (•, 0) = σ ε 0 , on Ω. (4.4d) (4.4e)
Here, Ω is a smooth bounded domain of IR N (N ≥ 2), ν is the outer unit normal vector to ∂Ω and α is a positive constant. We denote by (P ε ) the problem (4.4a)-(4.4e). Setting α = 0 in the singular limit of Problem (P ε ), we will obtain the singular limit of Problem (4.3a)-(4.3c). Problem (P ε ) possesses the Lyaponov functional

E ε (u, µ, σ) := Ω ε 2 |∇u| 2 + 1 ε W (u) + αµ 2 2 + σ 2 2δ .
We will prove in section 4.2 that Problem (P ε ) is a gradient flow associated to the functional E ε (u, µ, σ).

Theorem 4.1.1. Let (u ε , µ ε , σ ε ) be a smooth solution of Problem (P ε ). Then E ε (u ε , µ ε , σ ε ) is decreasing along solution orbits.

We will show in the following that, if in some sense

µ ε -→ µ, u ε -→ u, σ ε -→ σ,
then the triple (µ, u, σ) is characterized by a limit free boundary problem, where the interface motion equation appears as the limit of the equation (4.4b). A rigorous proof of the convergence of the solution of the equation (4.4b) may for instance be found in [1].

According to [1], the function u only takes the two values -1 or 1 and the interface which separates the regions where {u = -1} and {u = 1} partially moves according to its mean curvature.

Assumption on initial conditions: We assume that as ε ↓ 0, µ ε 0 -→ µ 0 , u ε 0 -→ u 0 , σ ε 0 -→ σ 0 , in some sense and that there exists a closed smooth hypersurface without boundary Γ 0 ⊂⊂ Ω which divides Ω into two subdomains Ω + (0) and Ω -(0) such that

u 0 =      -1 in Ω -(0), 1 in Ω + (0). (4.5) 
We also assume that Ω + (0) is the region enclosed by Γ 0 and that Ω -(0) is the region enclosed between ∂Ω and Γ 0 . Now, we are ready to introduce a free boundary problem namely the singular limit of Problem (P ε ) as ε ↓ 0: (ii) for all test functions

u(x, t) = 1 in Ω + (t), t ∈ (0, T ] -1 in Ω -(t), t ∈ (0, T ] αV n = -(N -1)κ + Cµ on Γ(t), t ∈ (0, T ] αµ t + u t = ∆µ + 2 √ 2p 0 (σ -δµ)δ 0 (x -Γ(t)) in Ω × (0, T ], σ t = ∆σ -2 √ 2p 0 (σ -δµ)δ 0 (x -Γ(t)) in Ω × (0, T ], (4.6a) 
αµ(•, 0) = αµ 0 , σ(•, 0) = σ 0 , on Ω, Γ(0) = Γ 0 , (4.6e) 
ψ ∈ F T := {ψ ∈ C 2,1 (Ω × [0, T ]) such that ∂ψ ∂ν = 0 on ∂Ω × [0, T ] and ψ(T ) = 0}, we have T 0 Ω (-αµ -u)ψ t - Ω (αµ 0 + u 0 )ψ(0) = T 0 Ω µ∆ψ + 2 √ 2p 0 T 0 Γ(t) (σ -δµ)ψ, and 
T 0 Ω -σψ t - Ω σ 0 ψ(0) = T 0 Ω σ∆ψ -2 √ 2p 0 T 0 Γ(t) (σ -δµ)ψ.
Now, in order to state the next result, we need some notations. Let n + (t), n -(t) be the outer unit normal vectors to ∂Ω + (t) and ∂Ω -(t), respectively. Note that n + = -n -on Γ T , so we may define n :

= n + = -n -on Γ T . We define [[•]] the jump across Γ(t), by [[φ]] := φ + -φ -,
where φ ± should be understood as the following limit

φ ± (•) := lim ρ→0 - φ(• + ρn ± (t)) on Γ(t).
We also define Ω -(t) × {t}.

Q + T :=
Theorem 4.1.3. Assume that Problem (P 0 ) possesses a solution (Γ T , µ, σ) such that Γ T is smooth on the time interval (0, T ) and that µ and σ are smooth up to Γ T on both sides of Γ T . Then the triple (Γ T , µ, σ) satisfies: Finally, we will formally prove the following result. We note that the singular limit corresponds to a moving boundary problem which is similar to other sharp-interface tumor-growth models [START_REF] Greenspan | On the growth and stability of cell cultures and solid tumors[END_REF]22,10,11].

αµ t = ∆µ in Q + T ∪ Q - T , σ t = ∆σ on Q + T ∪ Q - T ,
The remainder of the paper is organized as follows: in section 2 we prove Theorem 4.1.1 and Theorem 4.1.3; in section 3, we formally justify Theorem 4.1.5. For simplicity, we write u, µ, σ instead of u ε , µ ε , σ ε . Now, the inequality (4.8) follows from the following computations:

d dt E ε (u, µ, σ) = Ω ε∇u∇u t + ε -1 W ′ (u)u t + αµµ t + σσ t δ = Ω [-ε -1 f (u) -ε∆u]u t + αµµ t + σσ t δ = Ω (µ -αεu t )u t + αµµ t + Ω σ δ ∆σ -ε -1 p(u)(σ -δµ) = - Ω αεu 2 t + Ω µ(u t + αµ t ) + Ω σ δ ∆σ -ε -1 p(u)(σ -δµ) = - Ω αεu 2 t + Ω µ ∆µ + ε -1 p(u)(σ -δµ) + Ω σ δ ∆σ -ε -1 p(u)(σ -δµ) = - Ω αεu 2 t - Ω |∇µ| 2 - Ω |∇σ| 2 δ + ε -1 Ω p(u) µ(σ -δµ) - σ δ (σ -δµ) = - Ω αεu 2 t - Ω |∇µ| 2 - Ω |∇σ| 2 δ -ε -1 Ω p(u) √ δµ - σ √ δ 2 ≤ 0.

Proof of Theorem 4.1.3

First, we recall that n + (t), n -(t) are the outer unit normal vectors to ∂Ω + (t) and ∂Ω -(t), respectively and n := n + = -n -on Γ T . We define V n = V.n + , where V is the velocity of displacement of the interface Γ T .

Equations for µ

We recall that u, µ satisfy µ∆ψ .

Analysis of the terms A

Integration by parts yields Therefore, µ satisfies the equations: where the projection operator J is a smooth map from V into IR N +1 . We define ψ on V by ψ(•) := ψ(J (•)).

αµ t = ∆µ in Q + T ∪ Q - T , 2V n = -
Then ψ is smooth on V and (4.18) holds. Moreover, we can extend ψ to a smooth function on Q T .

Equations for σ

Since the computations in this section are similar to the previous ones, we will only give a sketch of the necessary steps. For ψ ∈ C ∞ 0 (Q T ), we have The inequality (4.20) follows from the following computations and [24, Theorem 4.3 p.355 and formula 4.12 p.356]):

d dt E(Γ, µ, σ) = 2 C Γ (N -1)κ V n + Ω + ∪Ω - αµµ t + δ -1 σσ t = 2 C Γ [Cµ -αV n ] V n + Ω + ∪Ω - αµµ t + δ -1 σσ t = Γ 2µV n - Γ 2α C V 2 n + Ω + ∪Ω - µ∆µ + δ -1 σ∆σ = Γ µ -[[ ∂µ ∂n ]] + 2 √ 2p 0 (σ -δµ) - Γ 2α C V 2 n + Ω + ∪Ω - µ∆µ + δ -1 σ∆σ = Γ 2 √ 2p 0 µ(σ -δµ) - Γ 2α C V 2 n - Ω + ∪Ω - |∇µ| 2 + Ω + ∪Ω - δ -1 σ∆σ = Γ 2 √ 2p 0 µ(σ -δµ) - Γ 2α C V 2 n - Ω + ∪Ω - |∇µ| 2 - Ω + ∪Ω - |∇σ| 2 δ + Γ δ -1 σ[[ ∂σ ∂n ]]
which in turn implies that

d dt E(Γ, µ, σ) = Γ 2 √ 2p 0 µ(σ -δµ) -δ -1 σ(σ -δµ) - Γ 2α C V 2 n - Ω + ∪Ω - |∇µ| 2 - Ω + ∪Ω - |∇σ| 2 δ = - Γ 2α C V 2 n - Ω + ∪Ω - |∇µ| 2 - Ω + ∪Ω - |∇σ| 2 δ - Γ 2 √ 2p 0 √ δµ - σ √ δ 2 ≤ 0.

Formal derivation of Theorem 4.1.5

This section is devoted to prove formally theorem 4.1.5. We shall derive in turn equations for u, Γ(t), µ, σ.

Proof. For simplicity, we prove this lemma in the three-dimensional case and assume that the hypersurface γ has a parametrization α. More precisely, we assume that there exists an open set W of IR 2 such that the mapping α from W onto γ is smooth and that α -1 is continuous from γ onto W . We write the function α as α(z 1 , z 2 ) = (α 1 (z 1 , z 2 ), α 2 (z 1 , z 2 ), α 3 (z 1 , z 2 )) for all (z 1 , z 2 ) ∈ W .

For δ > 0 small enough, we consider η from W × [-δ, δ] to IR 3 , which satisfies η τ (z 1 , z 2 , τ ) = ∇d(η(z 1 , z 2 , τ )), η(z 1 , z 2 , 0) = α(z 1 , z 2 ). By applying the change of coordinates τ = ε τ , we have

U g d(x) ε φ ε (x) dx =ε δ ε -δ ε d τ W g ( τ ) φ ε (η(z 1 , z 2 , ε τ ))|J(z 1 , z 2 , ε τ )| dz 1 dz 2 .
Therefore,

A ε := 1 ε U g d(x) ε φ ε (x) dx = ∞ -∞ W 1 (-δ ε , δ ε ) ( τ ) g ( τ ) φ ε (η(z 1 , z 2 , ε τ ))|J(z 1 , z 2 , ε τ )|d τ dz 1 dz 2 .
In the following, we will apply the dominated convergence theorem to deduce the limit of A ε as ε ↓ 0. Set Next, since φ ε converges uniformly to φ on U and since J is continuous, we have for all τ ∈ IR, (z 1 , z 2 ) ∈ W , 

1 (-δ ε , δ ε ) ( τ ) φ ε (η(z 1 , z 2 , ε τ )) → φ(η(z 1 , z 2 , 0)) = φ(α(
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 401 we deduce from Lemma 1.3.5 that u ∈ X 2 and Nonlocal reaction-diffusion equation

Chapter 2 On

 2 the large time behavior of the solutions of a nonlocal ordinary differential equation Résumé. Nous analysons le comportement en temps long des solutions d'une équation différentielle ordinaire non locale. Un résultat de convergence est prouvé pour une grande classe de fonctions initiales. Nous caractérisons également la fonction limite, et montrons qu'il s'agit d'une fonction en escalier.

Definition 2 . 4 . 1 .

 241 The (one-dimensional) decreasing rearrangement of w, denoted by w ♯ , is defined on [0, |Ω|] by w ♯ (0) := ess sup(w) w ♯ (y) = inf{s : µ w (s) < y}, y > 0, (2.20) where ess sup(w) := inf{a : |{x ∈ Ω : w(x) > a}| = 0}. Remark 2.4.2. w ♯ is nonincreasing. (cf. [11, Proposition 1.1.

Proposition 2 . 4 . 7 .

 247 Let Φ : IR → IR is increasing, bijective and let w : Ω → IR. Then (Φ(w)) ♯ (y) = Φ(w ♯ (y)) for all y ∈ [0, |Ω|].

Definition 2 . 5 . 2 .

 252 Let -∞ ≤ a < b ≤ ∞ and let w be a L 1 -measure from (a, b) to IR. The BV-norm of w is defined by w BV (a,b) := w L 1 ((a,b)) + ess V b a w, where ess V b a w := sup j+1 )w(t j )|    .

3. 2 .Theorem 3 . 1 . 1 .

 2311 Existence and uniqueness of solution of Problem (P ) 83 Let (H 1 ) hold. Then Problem (P ) possesses a unique solution in C 1 ([0, +∞); L ∞ (Ω)).

1 . 1 and

 11 Theorem 3.1.2. The proofs of Theorem 3.1.3 and Theorem 3.1.4 are similar.

ΩLemma 3 . 2 . 7 (

 327 u(x, t 0 )dx = (s 2 + ε)|Ω| > s 2 |Ω| ≥ Ω u 0 (x)dx,which contradicts the mass conservation property. Therefore, u(x, t) ≤ s 2 for all x ∈ Ω, t ≥ 0. Local existence of solution). (i) Let (H 1 ) hold. We assume further that u 0 ∈ C(Ω). Then there exists T 0 = T 0 (s 2 , m 0 ) such that Problem (P ) possesses a solution in C 1 ([0, T 0 ]; C(Ω)).

  the mass conservation property. (ii) It follows from Theorem 3.4.3(ii) that there exists the limit of E(u ♯ (t)) as t → ∞. SetE ∞ := lim t→∞ E(u ♯ (t)).

3. 4 .

 4 Problem (P ♯ ) and the ω-limit set for Problem (P ♯ ) 101 Note that

3. 5 . 2 103Corollary 3 . 4 . 8 .

 52348 Proof of Theorem 3.1.Let the same assumptions as in Theorem 3.4.7 hold. Then for all p ∈ [1, +∞), u ♯ (t) → ϕ in L p ((0, |Ω|)) as t → ∞, where ϕ is determined by (3.29), (3.34) and (3.35).

  ∂Ω × (0, T ],

  t∈(0,T ] Ω + (t) × {t},andQ - T := t∈(0,T ]

  σδµ) on Γ T , αV n = -(N -1)κ + Cµ on Γ T , ∂Ω × (0, T ], µ(•, 0) = µ 0 , σ(•, 0) = σ 0 , on Ω, Γ(0)= Γ 0 .

  In this case, we say that (Γ T , µ, σ) is a classical solution of Problem (P 0 ) on the time interval [0, T ].Problem (P 0 ) possesses the Lyapunov functional E(Γ, µ, σ) to the Lyapunov functional satisfied by Problem (P ε ). Theorem 4.1.4. Let (Γ T , µ, σ) be a classical solution of Problem (P 0 ). Then E(Γ, µ, σ) is decreasing along solution orbits.

Theorem 4 . 1 . 5 .

 415 Let (µ ε , u ε , σ ε ) be solution of Problem (P ε ). We suppose that Problem (P 0 ) possesses a unique classical solution on the interval[0, T ]. If ε → 0, µ ε -→ µ, u ε -→ u, σ ε -→ σ in a strong enough sense,then (Γ T , µ, σ) coincide with the classical solution of Problem (P 0 ) and u is given by (4.6a).

4. 2 . 4 . 2

 242 Proof of the main results 113 Proof of the main results 4.2.1 Proof of Theorem 4.1.1 It is sufficient to prove that d dt E ε (u ε , µ ε , σ ε ) ≤ 0. (4.8)

1

 1 δµ)ψ, (4.9) for all ψ ∈ F T . We define the terms A 1 , A 2 and the diffusion term B by A

12 )

 12 αV n [[µ]]ψ + Ω + (0)∪Ω -(0) αµ(0)ψ(0). (4.11)Similarly, we apply the formula (4.10) for φ := u to obtain Analysis of the term B: We write B as the sum

2 √

 2 (t) α(µ(0)µ 0 )ψ(0) + Ω + (t)∪Ω -(t) (u(0)u 0 )ψ(2p 0 (σδµ)ψ.

(4. 14 ) 17 )

 1417 By using test functions with suitable supports, namelyψ ∈ C ∞ 0 (Q + T ) and ψ ∈ C ∞ 0 (Q - T ), we deduce that αµ t = ∆µ in Q + T ∪ Q - T .(5b)Similarly, by taking ψ ∈ C ∞ 0 (Q T ) such that ∂ψ ∂n = 0 on Γ T (we refer to Remark 4.2.1 below for the construction of such functions), we obtainV n (2 + α[[µ]]) = -[[ ∂µ ∂n ]] + 2 √ 2p 0 (σδµ) on Γ T .(4.15)Now, we take ψ ∈ C ∞ 0 (Q T ) to deduce that It follows from (4.15) and (4.17) that2V n = -[[ ∂µ ∂n ]] + 2 √ 2p 0 (σδµ) on Γ T .Now, for the initial conditions, we use the test function ψ ∈ F T such that ψ = 0 on ∂Ω × (0, T ) to obtain u(0) + αµ(0) = u 0 + αµ 0 , which in view of (4.5) implies thatµ(0) = µ 0 , u(0) = u 0Finally, the remaining term in (4.14) allows us to conclude that ∂µ ∂ν = 0.

  (t)∪Ω -(t) σ t ψ + T 0 Γ(t) V n [[σ]]ψ = T 0 Ω + (t)∪Ω -(t)(σδµ)ψ.

4. 3 .

 3 Formal derivation of Theorem 4.

  We writeη(z 1 , z 2 , τ ) = (η 1 (z 1 , z 2 , τ ), η 2 (z 1 , z 2 , τ ), η 3 (z 1 , z 2 , τ )) with η i : W × [-δ, δ] → IR. We define U := η({W × [-δ, δ]}) and choose δ small enough so that U ⊂ V . Note that d dτ d(η(z 1 , z 2 , τ )) = ∇d(η(z 1 , z 2 , τ ))η τ (z 1 , z 2 , τ ) = |∇d(η(z 1 , z 2 , τ ))| 2 = 1,and that d(η(z 1 , z 2 , 0)) = d(α(z 1 , z 2 )) = 0. Thus we conclude that d(η(z 1 , z 2 , τ )) = τ . We define J(z 1 , z 2 , τ ) as the determinant of the Jacobian matrix of η at (z 1 , z 2 , τ ) and perform the change of coordinates η(z1 , z 2 , τ ) = x to obtain z 1 , z 2 , τ )) ε φ ε (η(z 1 , z 2 , τ ))|J(z 1 , z2 , τ )|dz 1 dz 2 η(z 1 , z 2 , τ ))|J(z 1 , z 2 , τ )|dz 1 dz 2 .

H ε (z 1

 1 , z 2 , τ ) := 1 (-δ ε , δ ε ) ( τ ) g ( τ ) φ ε (η(z 1 , z 2 , ε τ ))|J(z 1 , z 2 , ε τ )|.

4. 3 . 5 123

 35 Formal derivation of Theorem 4.1.For -δ ε ≤ τ ≤ δ ε , we have -δ ≤ ε τ ≤ δ, so that for all ε > 0 1 (-δ ε , δ ε ) ( τ ) |J(z 1 , z 2 , ε τ )| ≤ sup z 1 ,z 2 ∈W , -δ≤τ ≤δ |J(z 1 , z 2 , τ )| =: C 1 . Moreover, φ ε L ∞ (Ω) ≤ C for all ε > 0, therefore, |H ε (z 1 , z 2 , τ )| ≤ C|g( τ )| on W × IR. (4.36) 
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  Let u 01 , u 02 ∈ L 2 (Ω) and let u 1 , u 2 be two solutions of Problem (P ) corresponding to u 01 , u 02 respectively. Then there exists a constant c > 0 such that

				1.2.1. The uniqueness of the solution
	of Problem (P ) follows from Lemma 1.2.3 below, which will complete the proof of Lemma
	1.2.1.				
	Lemma 1.2.3. Ω	|u 1 (t) -u 2 (t)| 2 ≤ exp(ct)	Ω	|u 01 -u 02 | 2 for all t ≥ 0.	(1.21)

  ).

	Chapter 1. Nonlocal reaction-diffusion equation
	Proof. First, we prove Lemma 1.2.9 for m = 0. Set p := Lemma 1.2.5(i) and the embedding in Lemma 1.2.7 on domain Q 1 N + 2 1 -α . Since | f | ≤ c 2 , we apply 0 to obtain

  for all u ∈ H. On the other hand, since H is dense in V

* 

we deduce that P * = Q. Consequently, Rg P * = Rg Q = ker L(ϕ) and ker P * = ker Q = Rg L(ϕ).

Before proving Theorem 1.3.8, we recall the definition of an analytic map on a neighborhood of a point (cf.

[28, Definition 8.8, p. 362]

). A map T from a Banach space X into a Banach space Y is called analytic on a neighborhood of z ∈ X if there exists ε > 0 such that for all

  t) ≤ s 2 for a.e. x ∈ Ω. Theorem 2.1.2. Let (H 1 ) hold and let p ∈ [1, +∞) be arbitrary. (i) If we assume further that (H 2 ) holds, then

  The solution is continuous with respect to the initial data. More precisely, let u 10 , u 20 ∈ X and let u 1 , u 2 be solutions of Problem (P ) corresponding to u 10 , u 20 , respectively. Thenu 1 (t)u 2 (t) X ≤ u 10u 20 X exp(Lt) for all t ≥ 0, (2.8)where L is the Lipchitz constant given in the proof of Lemma 2.2.1.

	2.2. Existence and uniqueness of the solution of Problem (P )	55
	Corollary 2.2.3. Lemma 2.2.4 (Mass conservation). Let the same assumption as in Lemma 2.2.1 hold.
	Then,			
	Ω	u(x, t) dx =	Ω	u 0 (x) dx for all t ≥ 0.
	Proof. Integrating the differential equation in Problem (P ) from 0 to t, we get

2.2.1 follows from [5, Theorem 7.3, page 184].

  1, page 3].) Remark 2.4.3. w ♯ is a function defined for all y ∈ [0, |Ω|] and it is uniquely defined by the distribution function µ w . Consequently, if w 1 , w 2 : Ω → IR are such that We recall some properties of w ♯ which are stated in [11, Chapter 1]. Proposition 2.4.4. (i) w ♯ , w are equi-measurable, i.e. µ w ♯

	2.4. Problem (P ♯ ) obtained by the rearrangement theory	63
		w 1 (x) = w 2 (x)	for a.e.	x ∈ Ω,
	then	w ♯ 1 (y) = w ♯ 2 (y) for all	y ∈ [0, |Ω|].

  The proof of Theorem 2.4.10 is complete.

Corollary 2.4.11. Let (H 1 ) hold. Then for all y ∈ (0, |Ω|) the function u ♯ (y, •) is the unique solution of Problem (ODE) in C 1 ([0, +∞)) with initial condition u ♯ 0 (y). Moreover, for all y 1 , y 2 ∈ (0, |Ω|),

  Lemma 3.3.1. Let s ∈ IR. Problem (ODE) possesses a global unique solution Y (t; s) ∈ C 1 ([0, +∞)). Moreover, (i) if s < s then Y (t; s) < Y (t; s) for all t ≥ 0;(ii) we define the function h t : IR → IR by h t (s) := Y (t; s). Then h t is bijective, increasing from IR to IR.

	Proof. In view of (3.24), we have that
		|H(Y 1 , t) -H(Y 2 , t)| ≤ c 2 |Y 1 -Y 2 |
	for all Y 1 , Y 2 ∈ IR, t ≥ 0. It follows from standard theory of ordinary differential equations (for instance, see [3, Corollary 8.3, page 57]) that Problem (ODE) possesses a unique
	solution in C 1 ([0, +∞)).					
	(i) We define W (t) := Y (t; s) -Y (t; s). Then W satisfies the equations
		W ′ = H(Y (t; s), t) -H(Y (t; s), t) W (0) = s -s > 0,
	Note that						
	H(Y (t; s), t) -H(Y (t; s), t) = [Y (t; s) -Y (t; s)]	0	1	∂H ∂Y	(τ Y (t; s) + (1 -τ )Y (t; s), t)dτ
			:= W (t)θ(t),
	where	θ(t) :=	0	1	∂H ∂Y	′	(τ Y (t; s) + (1 -τ )Y (t; s), t)dτ.

  + (t) ∪ Γ(t)); δ 0 is the Dirac distribution; V n : Γ(t) → IR N is the normal velocity of the evolving interface Γ(t), κ is the mean curvature at each point of Γ(t) and

	(4.6f)
	(4.6g)
	Here, Γ(t) ⊂⊂ Ω is a closed hypersurface; Ω + (t) is the region enclosed by Γ(t); Ω -(t) = 1 -1 -1 Ω \ (Ω C = W (s)/2 ds .
	We denote by (P 0 ) the problem (4.6a)-(4.6g) and define
	Γ T :=
	t∈(0,T ]

Γ(t) × {t}. Definition 4.1.2. We say that the triple (Γ T , µ, σ) is a solution of Problem (P 0 ) if (i) the set 0≤t≤T Γ(t) × {t} is smooth, namely Γ(t)

is a smooth hypersurface which lies entirely within Ω for all t ∈ [0, T ] and Γ(t) varies smoothly in time;

  1 and A 2 : Our analysis of the terms A 1 and A 2 relies on the Reynolds transport theorem, by which we haved dt Ω ± (t) φψ =for all smooth function ψ and for function φ. These equations for the integrals over Ω ± (t) yieldd dt Ω + (t)∪Ω -(t) φψ = Ω + (t)∪Ω -(t) φ t ψ + φψ t +In our case, we choose φ := αµ in (4.10) and integrate from 0 to T . This yields

														V n [[φ]]ψ.
														Γ(t)
	Hence we have										
	Ω + (t)∪Ω -(t)	-φψ t =	Ω + (t)∪Ω -(t)	φ t ψ +	Γ(t)	V n [[φ]]ψ -	d dt Ω + (t)∪Ω -(t)	φψ.	(4.10)
	A 1 =	0	T	Ω + (t)∪Ω -(t)	αµ t ψ +	0	T	Γ(t)	V n [[αµ]]ψ -	0	T	d dt Ω + (t)∪Ω -(t)	αµψ
			T					T					
	=	0		Ω + (t)∪Ω -(t)	αµ t ψ +	0		Γ(t)				

Ω ± (t) φ t ψ + φψ t ± Γ(t) V n φ ± ψ,

  Combining (4.9), (4.11) (4.12) and (4.13), we then have for all ψ ∈ F T ,

	4.2. Proof of the main results							115
	Conclusion: T						T											
	0		Ω + (t)∪Ω -(t)	αµ t ψ +	0	Γ(t)	V n (α[[µ]] + 2)ψ
						+															
								Ω + (t)∪Ω -										
										Ω -(t)	∇µ∇ψ +		Γ(t)	∂ψ ∂n -µ -
							=	Ω -(t)	∆µψ -		Γ(t)	∂µ -∂n -ψ -	∂Ω	∂µ ∂ν	ψ +	Γ(t)	∂ψ ∂n -µ -
							=	Ω -(t)	∆µψ +		Γ(t)	∂µ -∂n	ψ -	∂Ω	∂µ ∂ν	ψ -	Γ(t)	∂ψ ∂n	µ -
	and				Ω + (t)	µ∆ψ =		Ω + (t)	∆µψ -	Γ(t)	∂µ + ∂n	ψ +	Γ(t)	∂ψ ∂n	µ +
	which implies that																	
		Ω + (t)∪Ω -(t)	µ∆ψ =	Ω + (t)∪Ω -(t)	∆µψ -	Γ(t)	[[	∂µ ∂n	]]ψ +	Γ(t)	∂ψ ∂n	[[µ]] -	∂Ω	∂µ ∂ν	ψ.
	Integrating this identity from 0 to T , we obtain	
	B =	0	T	Ω + (t)∪Ω -(t)	∆µψ -	0	T	Γ(t)	[[	∂µ ∂n	]]ψ +	0	T	Γ(t)	∂ψ ∂n	[[µ]] -	0	T	∂Ω	∂µ ∂ν	ψ. (4.13)

Ω -(t) µ∆ψ = -

  Remark 4.2.1. Let ψ ∈ C ∞ 0 (Q T ). In the following, we construct a function ψ ∈ C ∞ 0 (Q T ) Let d(x, t) be the signed distance function to Γ(t) (see (4.23) below). Since 0≤t≤T Γ(t) × {t} is smooth, there exists δ small enough such that d(x, t) is smooth inV := {(x, t) ∈ Ω × [0, T ], | d(x,t)| < δ}; moreover for all (x, t) ∈ V there exists a unique (y, t) in Γ(t)×{t} such that | d(x, t)| = |x-y| and (∇ d(x, t), t) = n(y, t). More precisely,

	together with the boundary condition and the initial condition:
					∂µ ∂ν	= 0, µ(0) = µ 0 .
	such that	∂ψ ∂n	| Γ T = 0		and ψ = ψ	on	Γ T .	(4.18)
		[[	∂µ ∂n	]] + 2 √	2p 0 (σ -δµ)	on Γ T ,
		[[µ]] = 0						on Γ T ,

(y, t) = J(x, t) := (x -∇ d(x, t) d(x, t), t),

  z 1 , z 2 )),J(z 1 , z 2 , ε τ ) → J(z 1 , z 2 , 0), as ε ↓ 0. It follows that as ε ↓ 0, H ε (z 1 , z 2 , τ ) → g( τ )φ(η(z 1 , z 2 , 0))|J(z 1 , z 2 , 0)| for all τ ∈ IR, (z 1 , z 2 ) ∈ W. , z 2 ,0) is the outer normal vector to γ at the point η(z 1 , z 2 , 0) = α(z 1 , z 2 ) and , z 2 , 0)} is a basis of the tangent space of γ at point η(z 1 , z 2 , 0) = α(z 1 , z 2 ). Therefore,

												(4.37)
	Combining (4.36) and (4.37), we have		
					∞						
	lim ε↓0	A ε =		-∞		g( τ )d τ	
									∂η ∂z 1	= (	∂η 1 ∂z 1	,	∂η 2 ∂z 1	,	∂η 3 ∂z 1	),
									∂η ∂z 2	= (	∂η 1 ∂z 2	,	∂η 2 ∂z 2	,	∂η 3 ∂z 2	),
									∂η ∂τ	= (	∂η 1 ∂τ	,	∂η 2 ∂τ	,	∂η 3 ∂τ	).
	Note that (z 1 that { ∂η ∂τ ∂η ∂u (z 1 , z 2 , 0), (z 1 |J(z 1 , z 2 , 0)| = ( ∂η ∂v	∂η ∂z 1	∧	∂η ∂z 2	).	∂η ∂τ	=	∂η ∂z 1	∧	∂η ∂z 2	∂η ∂τ
			=	∂η ∂z 1	∧	∂η ∂z 2		|∇d(η(z 1 , z 2 , 0))| =	∂η ∂z 1	∧	∂η ∂z 2	(z 1 , z 2 , 0)
			=	∂α ∂z 1	∧	∂α ∂z 2		(z 1 , z 2 )
	where ∧ is the vector product. This together with (4.38) implies that
	lim ε↓0	A ε =								

W φ(α(z 1 , z 2 ))|J(z 1 , z 2 , 0)| dz 1 dz 2 .

(4.38)

Next, we computes |J(z 1 , z 2 , 0)|. For this purpose, we write

∞ -∞ g( τ )d τ W φ(α(z 1 , z 2 )) ∂α ∂z 1 ∧ ∂α ∂z 2 dz 1 dz 2 .

Ce chapitre fait l'objet d'un article écrit en collaboration avec D. Hilhorst (Université de Paris-Sud), H. Matano (Université de Tokyo) and H. Weber (Université de Warwick).

Remerciements

Problem (P ♯ )

We consider the problem:

Problem (P ♯ ) is a one-dimensional space variant of Problem (P ), so that all results stated in Section 2.2 for Problem (P ) also apply to Problem (P ♯ ). We note that all hypotheses (H 1 ), (H 2 ), (H 3 ) for the function u 0 are satisfied by u ♯ 0 . More precisely, we have the following result.

Lemma 2.4.8. If u 0 satisfies (H 1 ) (respectively (H 2 ), (H 3 )) then, u ♯ 0 satisfies the same statement, respectively.

Proof. First, it follows from Remark 2.4.6 that if s 1 ≤ u 0 ≤ s 1 then s 1 ≤ u ♯ 0 ≤ s 2 . We also note that

Therefore, the hypotheses (H 1 ), (H 2 ) are invariant by operation ♯. Now, we consider (H 3 ). Assume that |{u 0 = s}| = 0 for all s ∈ (m, M ). According to Remark 2.4.5, we deduce that |{u ♯ = s}| = |{u = s}| = 0 for all s ∈ (m, M ).

The proof of Lemma 2.4.8 is complete.

Remark 2.4.9. If u 0 satisfies (H 3 ), then s * ≤ u ♯ 0 (y) ≤ s * for all y ∈ (0, |Ω|) and u ♯ 0 is strictly decreasing on {x : u ♯ 0 (x) ∈ (m, M )}.

Theorem 2.4.10. Let (H 1 ) hold. We define u ♯ (y, t) := (u(t)) ♯ (y) on (0, |Ω|) × [0, +∞); then u ♯ is the unique solution of Problem (P ♯ ) in C 1 ([0, ∞); L ∞ ((0, |Ω|))). Moreover, s 1 ≤ u ♯ (y, t) ≤ s 2 for all y ∈ (0, |Ω|), t ≥ 0;

(2.21) and u ♯ (y, t) = h t (u ♯ 0 (y)) for all y ∈ (0, |Ω|), t ≥ 0.

(2.22)

Proof. First we prove (2.21) and (2.22). Since s 1 ≤ u(x, t) ≤ s 2 for a.e x ∈ Ω, t ≥ 0 we deduce from Remark 2.4.6 that s 1 ≤ u ♯ (y, t) ≤ s 2 for all y ∈ (0, |Ω|), t ≥ 0.

Chapter 2. Nonlocal ordinary differential equation

Proof.

If Ω 0 (∞) is not empty, we will prove that there exists α ∈ (m, M ) such that u ♯ 0 (y) = α for all y ∈ Ω 0 (∞).

Indeed, for the purpose of contradiction, we assume that there exits y 1 , y 2 ∈ Ω 0 (∞) such that u ♯ 0 (y 1 ) = u ♯ 0 (y 2 ). Without loss of generality, we suppose that y 1 < y 2 ; then u ♯ 0 (y 2 ) < u ♯ 0 (y 1 ) since u ♯ 0 is nonincreasing. Moreover, by the definition of Ω 0 (∞) and Corollary 2.4.11(ii), we have

for all y ∈ [y 

.33)

We now prove that u ♯ 0 is constant on (y 1 , y 2 ). Let y 1 < ȳ1 < ȳ2 < y 2 . Then we have

Next, we define r(t 

As in the proof of Corollary 2.5.13, we deduce that for all p ∈ [1, +∞)

This completes the proof of Theorem 2.1.2.

Counterexample: We present below a counterexample which shows that if the hypothesis (H 3 ) does not hold, the limiting function may take three values.

Let Ω := (-1, 1) and consider f (s) = ss 3 . Let u 0 be an odd function such that

We denote by y(t; y 0 ) the unique solution of the autonomous differential equation y ′ = yy 3 and y(0) = y 0 .

Since -y ′ (t, y 0 ) = -y(t, y 0 ) + (y(t, y 0 )) 3 = -y(t, y 0 ) -(-y(t, y 0 )) 3 , it follows from the uniqueness of the solution of differential equations that y(t; -y 0 ) = -y(t; y 0 ).

We also recall that (i) if y 0 < 0 then lim t→∞ y(t; y 0 ) = -1, (ii) if y 0 > 0 then lim t→∞ y(t; y 0 ) = 1, (iii) if y 0 = 0 then y(t; y 0 ) ≡ 0. Hence, lim t→∞ y(t; y 0 ) = 0.
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Define u(x, t) = y(t; u 0 (x)), then f (u(•, t)) is an odd function, so that Ω f (u(x, t)) dx = 0 for all t ≥ 0.

We deduce that

and therefore that u is the unique solution of Problem (P ). Thus, for all x ∈ Ω,

(2.36)

Appendix

For the sake of completeness, we present a complete proof of Proposition 2.4.7. The equality (Φ(w)) ♯ = Φ(w ♯ ) a.e. in (0, |Ω|).

(2.37) was proved by Kesavan (see [11,Proposition 1.1.4,page 7]). We prove here that (2.37) holds for all y ∈ [0, |Ω|]. We need the following lemma.

Lemma 2.7.1. Let A be a bounded set of IR and let Φ be a increasing, bijective function from IR to IR. Then Φ(inf A) = inf{Φ(s) : s ∈ A}.

Proof. First, we prove that

Indeed, let a = inf A, then a ≤ s for all s ∈ A. We also remark that Φ is increasing on IR, so that Φ(a) ≤ Φ(s) for all s ∈ A.

Consequently, we have

Next, we prove that Φ(inf A) ≥ inf{Φ(s) : s ∈ A}.

For this purpose, set b := inf{Φ(s) : s ∈ A}. Therefore, b ≤ Φ(s) for all s ∈ A.

Chapter 3

Large time behavior for a nonlocal differential equation proposed by M. Nagayama

Résumé. Nous étudions une équation différentielle ordinaire nonlocale, où l'intégrale de la solution est conservée en temps et démontrons la stabilisation des orbites de solutions.

Abstract. We study a nonlocal ordinary differential equation with mass conservation and prove that the solution stabilizes as t tends to +∞.

Chapter 3. A nonlocal differential equations proposed by M. Nagayama Corollary 3.2.4. Let the same assumptions as in Lemma 3.2.2 hold. We assume furthermore that

and define

where

This together with Lemma 3.2.2 completes the proof of Corollary 3.2.4.

Next, we show the mass conservation property of the solution.

Lemma 3.2.5 (Mass conservation). Assume that u ∈ C 1 ([0, T ]; X) is a solution of Problem (P ). Then the mass conservation property holds, namely

Proof. Integrating the differential equation in Problem (P ) from 0 to t, we get

where the last identity holds since

This completes the proof of Lemma 3.2.5.

Lemma 3.2.6 (Boundedness of the solution). Let (H 1 ) hold. We assume further that u 0 ∈ C(Ω) and that Problem (P ) possesses a solution u ∈ C 1 ([0, T ]; C(Ω)) for some T > 0. Then, 3.2. Existence and uniqueness of solution of Problem (P )

is continuous on [0, T ];

(ii) we have that

(ii) We first prove that u(x, t) ≥ 1 for all x ∈ Ω.

We define the differential operator

then for every x ∈ Ω, we have

We deduce from [8, Theorem 6.1, page 31] that u(x, t) ≥ 1 for all t ≥ 0 and x ∈ Ω arbitrary.

In other words, we have u(x, t) ≥ 1 for all x ∈ Ω, t ≥ 0.

(3.10)

Next, we claim that u(x, t) ≤ s 2 for all x ∈ Ω, t ≥ 0.

Let ε > 0 be arbitrary. It is sufficient to show that u(x, t) < s 2 + ε for all x ∈ Ω, t ≥ 0.

We suppose for the purpose of contradiction that there exists a first time t 0 > 0 such that u(x 0 , t 0 ) = s 2 + ε for some x 0 ∈ Ω. By the definition of t 0 , and the continuity of u on Ω × [0, T ], we have Since

Therefore, for ε is small enough such that [m 0 -ε, m 0 +ε]∩[0, 1] = ∅, we can assume without loss of generality that for all n ≥ 0,

We define

then β > 0. By Lemma 3.2.1, we have

We apply Lemma 3.2.2 to deduce that

where

We integrate the difference of the equations for u and u n from 0 to t, to obtain

Applying (3.16), we deduce that

By Gronwall's inequality, we deduce that

Thus for all 0 ≤ t < T max ,

Consequently, for each t ≥ 0, there exists a subsequence {u nj (t)} j≥0 of {u n (t)} n≥0 such that Therefore, we obtain (3.14). Now we are ready to prove T max = +∞. By contradiction, assume that T max < +∞. Let

We apply Lemma 3.2.6(ii) to deduce that we can extend solution to interval [0, T max + T 0 2 ], which give a contradiction.

We have proven the existence part of Theorem 3.1.1. The uniqueness of the solution follows from Lemma 3.2.9 below, which will complete the proof of Theorem 3.1.1.

and that

Let u 1 , u 2 be two corresponding solutions of Problem (P ) in C 1 ([0, +∞); X). Then

where

Proof. By the mass conservation property, we have

We apply Corollary 3.2.4 to deduce that

where

We integrate the difference of the equations for u 1 and u 2 from 0 to t, to obtain

This together with Gronwall's inequality completes the proof of Lemma 3.2.9.
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Proof of Lemma 3.2.8. First, we extend the function u 0 to w 0 defined on IR N by

Obviously, 1 ≤ w 0 (x) ≤ s 2 for a.e.

x ∈ IR N .

For all n large enough such that

we define

Then, we have

and moreover,

As in [2, Theorem 2.29, page 36], we can choose a smooth function u n0 such that

More precisely,

where

and

Note that J ε is nonnegative and that 

3.4 Problem (P ♯ ) and the ω-limit set for Problem (P ♯ )

As it was done in Chapter 2, we consider the problem

where w ♯ denotes the one-dimensional decreasing rearrangement of the function w : Ω → IR. We refer to Section 2.4.1 in chapter 2 for more details.

Problem (P ♯ ) is a one-dimensional variant of Problem (P ), so that all results stated in Section 3.2 for Problem (P ) also apply to Problem (P ♯ ). We note that Hypothesis (H 1 ) for the function u 0 is also satisfied by u ♯ 0 . Theorem 3.4.1. Let (H 1 ) hold. We define In order to prove (3.27), we recall from Lemma 3.3.2 that u(t) = h t (u 0 ) for a.e. in Ω.

We then apply Proposition 2.4.7 in Chapter 2 to obtain for all t ≥ 0,

Now, it remains to prove that u ♯ is the unique solution of Problem (P ♯ ). As a consequence of (3.28) and Lemma 3.3.1, we have for all y ∈ (0, |Ω|), t ≥ 0

Applying Proposition 2.4.3(iii) in Chapter 2, we have

This together with (3.37) implies that ψ ♯ = ϕ a.e. in (0, |Ω|).

Therefore,

which in view of Theorem 3.4.7 allows us to conclude that ψ is step function which takes the two values 1 and γ. Moreover, it follows that for all p ∈ [1, +∞)

Chapter 4

Formal asymptotic limit of a diffuse-interface tumor-growth model

Résumé. Nous considérons un modèle d'interface diffuse pour la croissance de tumeurs, qui a la forme d'un système de champ de phase. Nous caractérisons la limite singulière de ce modèle. Plus précisément, nous prouvons formellement que quand le coefficient du terme de réaction tend vers l'infini , la solution converge vers la solution d'un problème à frontière libre limite.

Abstract. We consider a diffuse-interface tumor-growth model, which has the form of a phase-field system. We characterize the singular limit of this problem. More precisely, we formally prove that as the coefficient of the reaction term tends to infinity, the solution converges to the solution of a free boundary problem.

Equation for u

First, we formally show that u only takes two values ±1. To that purpose, we rewrite Equation (4.4b) in the form

When ε is small, we neglect the effect of diffusion term ε 2 ∆u ε and of the term εµ ε with respect to the term f (u ε ), which yields the ordinary differential equation

Note that τ → ∞ as ε → 0. Remembering that ±1 are two stable zeros of this equation. We formally deduce that as

This implies that the function u which is the limit of u ε only takes two values ±1.

Formal derivation of the interface equation

We define

Since roughly speaking, the regions {u = -1} and {u = 1} are the "limit" of the regions {u ε ≈ -1} and {u ε ≈ 1} as ε → 0, Γ(t) can be considered as the limit as ε → 0 of Γ ε (t) which is the interface between the two regions {x ∈ Ω : u ε (x, t) ≈ -1} and {x ∈ Ω :

We recall that 0 is an unstable equilibria of Equation (4.21), and define

In what follows, we will use an formal asymptotic expansion to derive the equation describing Γ(t). We need some preparations.

Signed distance function:

We assume that the interface Γ(t) is a smooth, closed hypersurface without boundary of IR N . Further, we suppose that Ω + (t) is the region enclosed by Γ(t) and that Ω -(t) is the region enclosed between ∂Ω and Γ(t). Let d(x, t) be the signed distance function to Γ(t) defined by Note that d = 0 on Γ T and |∇ d| = 1 in a neighborhood of Γ T .

Outer expansion:

It is reasonable to assume that outside a neighbourhood of Γ T , u ε has the expansion

3. Inner expansion: Near Γ T , we assume that u ε has form

Here U j (x, t, z), j ≥ 0 are defined for x ∈ Ω, t ≥ 0, z ∈ IR and ξ := d(x, t)/ε.

Normalization conditions:

The stretched space variable ξ gives exactly the right spatial scaling to describe the rapid transition between the regions {u ε ≈ -1} and {u ε ≈ 1}. We normalize U 0 in such a way that U 0 (x, t, 0) = 0.

Matching conditions:

For ξ → ±∞, we require two expansions (4.24) and (4.25) to be consistent, i.e.

Formal interface motion equation We will substitute the inner expansion (4.25) into (4.4b). We will then compare the terms of the same order to determine equations of U 0 and U 1 . To that purpose, we start by some computations.

This problem has a unique solution U 0 . Furthermore, U 0 is independent of (x, t), i.e. U 0 (x, t, z) = U 0 (z) and thus, we write U ′ 0 , U ′′ 0 instead of U 0z , U 0zz . We have the following lemma. 

As a consequence, IR (U ′ 0 (z)) 2 dz can be written in the form:

W (s) ds.

Proof. Multiplying the above mentioned differential equation (4.26) for U 0 by U ′ 0 , we get

Keeping in mind that W ′ (u) = -f (u), (4.27) can be read as

Integrating this equation from -∞ to z, we obtain

Moreover, U 0 is non increasing, therefore, we deduce that

Consequently, we have

This completes the proof of Lemma 4.3.1.

We now collect the terms of order ε -1 in the substituted equation (4.4b). Because we have |∇ d| = 1 in a neighbourhood of Γ(t), we obtain

A solvability condition for this equation is given by the following lemma. Therefore, the existence of a solution U 1 of (4.30) is equivalent to

for all (x, t) in a neighbourhood of the interface Γ T . Thus, 

, and dt = -V n . Therefore, we deduce that Γ(t) satisfies indeed the interface motion equation (4.6b):

.

Equations for µ, σ

We will suppose that the following convergence holds in a strong enough sense:

as ε ↓ 0 and derive the limit of the reaction term in (4.4a) and (4.4c). To that purpose, we first prove a stronger version of Lemma 2.1 by Du et al. [25] (see also [6,[START_REF] Lowengrub | Quasi-incompressible Cahn-Hilliard fluids and topological transitions[END_REF]).

Lemma 4.3.3. Let γ ⊂⊂ Ω be a smooth hypersurface without boundary, d be the signed distance to γ, and let g ∈ L 1 (IR). Furthermore, let φ ε ∈ L ∞ (Ω) and V ⊂ Ω be a neighborhood γ such that

We then have

for a small enough neighborhood U ⊂ V of γ. Because of the outer and inner expression of u ε in (4.24) and (4.25), we deduce that for ε small enough (σδµ)(t)ψ(t).

This together a similar argument for the equation for σ completes the proof of Theorem 4.1.5.