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Equations d’évolution non locales
et problemes de transition de phase

Résumé

L’objet de cette these est d’étudier le comportement en temps long de solutions d’équations
d’évolution non locales ainsi que la limite singuliere d’équations et de systemes d’équations aux
dérivées partielles, ou intervient un petit parametre e.

Au Chapitre 1, nous considérons une équation de réaction-diffusion non locale avec conser-
vation au cours du temps de l'intégrale en espace de la solution; cette équation a été initia-
lement proposée par Rubinstein et Sternberg pour modéliser la séparation de phase dans un
mélange binaire. Le probleme de Neumann associé possede une fonctionnelle de Lyapunov,
c’est-a-dire une fonctionnelle qui décroit selon les orbites. Apres avoir prouvé que la solution
est confinée dans une région invariante, nous étudions son comportement en temps long. Nous
nous appuyons sur une inégalité de Lojasiewicz pour montrer qu’elle converge vers une solution
stationnaire quand ¢ tend vers l'infini. Nous évaluons également le taux de la convergence et
calculons précisément la solution stationnaire limite en dimension un d’espace.

Le Chapitre 2 est consacré a I’étude de I’équation différentielle non locale que 'on obtient
en négligeant le terme de diffusion dans I’équation d’Allen-Cahn non locale étudiée au Chapitre
1. Sans le terme de diffusion, la solution ne peut pas étre plus réguliere que la fonction initiale.
C’est la raison pour laquelle on ne peut pas appliquer la méthode du Chapitre 1 pour I’étude
du comportement en temps long de la solution. Nous présentons une nouvelle méthode basée
sur la théorie des réarrangements et sur I’étude du profil de la solution. Nous montrons que la
solution est stable pour les temps grands et présentons une caractérisation détaillée de sa limite
asymptotique quand ¢ tend vers I'infini. Plus précisément, la fonction limite est une fonction en
escalier, qui prend au plus deux valeurs, qui coincident avec les points stables d’une équation
différentielle associée. Nous montrons aussi par un contre-exemple non trivial que, quand une
hypothese sur la fonction initiale n’est pas satisfaite, la fonction limite peut prendre trois
valeurs, qui correspondent aux points instable et stables de I’équation différentielle associée.

Nous étudions au Chapitre 3 une équation différentielle ordinaire non locale qui a été pro-
posée par M. Nagayama. Une difficulté essentielle est que le dénominateur dans le terme de
réaction non local peut s’annuler. Nous appliquons un théoréeme de point fixe lié a une applica-
tion contractante pour démontrer que le probleme a valeur initiale correspondant possede une
solution unique qui reste confinée dans un ensemble invariant. Ce probléme possede une fonc-
tionnelle de Lyapunov, qui est un ingrédient essentiel pour démontrer que la solution converge
vers une solution stationnaire constante par morceaux quand t tend vers 'infini.

Au Chapitre 4, nous considérons un modele d’interface diffuse pour la croissance de tumeurs,
ou intervient une équation d’ordre quatre de type Cahn-Hilliard. Apres avoir introduit un
modele de champ de phase associé, on étudie formellement la limite singuliere de la solution
quand le coefficient du terme de réaction tend vers 'infini. Plus précisément, nous montrons
que la solution converge vers la solution d’un probléme a frontiere libre.

Mot clés. Flot de gradient, équations non locales, inégalité de Lojasiewicz, stabilisation des so-
lutions, équations d’Allen-Cahn avec conservation de l'intégrale, comportement en temps long,
équations de réaction-diffusion, perturbations singulieres, mouvement de 'interface, modeles
de croissance de tumeurs, développements asymptotiques.

AMS subject classifications. 35K57, 35K50, 35K20, 35R35, 35R37, 35B40, 35B25.



Non local evolution equations and phase transition problems

Abstract

The aim of this thesis is to study the large time behavior of solutions of nonlocal evolution
equations and to also study the singular limit of equations and systems of parabolic partial
differential equations involving a small parameter €.

In Chapter 1, we consider a nonlocal reaction-diffusion equation with mass conservation,
which was originally proposed by Rubinstein and Sternberg as a model for phase separation
in a binary mixture. The corresponding Neumann problem possesses a Lyapunov functional,
namely a functional which decreases in time along solution orbits. After having proved that
the solution is confined in an invariant region, we study its large time behavior and apply
a Lojasiewicz inequality to show that it converges to a stationary solution as t tends to
infinity. We also evaluate the rate of convergence and precisely compute the limiting stationary
solution in one space dimension.

Chapter 2 is devoted to the study of a nonlocal evolution equation which one obtains
by neglecting the diffusion term in the nonlocal Allen-Cahn equation studied in Chapter
1. Without the diffusion term, the solution can not be expected to be more regular than
the initial function. Moreover, because of the absence of the diffusion term, the method of
Chapter 1 can not be applied to study the large time behavior of the solution. We present
a new method based up on rearrangement theory and the study of the solution profile. We
show that the solution stabilizes for large times and give a detailed characterization of its
asymptotic limit as t tends to infinity. More precisely, it turns out that the limiting function
is a step function, which takes at most two values, which are stable points of a corresponding
ordinary differential equation. We also show by means of a nontrivial counterexample that,
when a certain hypothesis on the initial function does not hold, the limiting function may
take three values. One of them is the unstable point and the two others are the stable points
of the ordinary differential equation.

We study in Chapter 3 a nonlocal ordinary differential equation which has been proposed
by M. Nagayama. The nonlocal term involves a denominator which may vanish. We apply
a contraction fixed point theorem to prove the existence of a unique solution which stays
confined in an invariant region. We also show that the corresponding initial value problem
possesses a Lyapunov functional and prove that the solution stabilizes for large times to a
step function, which takes at most two values.

In Chapter 4, we consider a diffuse-interface tumor-growth model which involves a fourth
order Cahn-Hilliard type equation. Introducing a related phase-field model, we formally study
the singular limit of the solution as the reaction coefficient tends to infinity. More precisely,
we show that the solution converges to the solution of a moving boundary problem.

Key words. Gradient flow, non local equations, Lojasiewicz inequality, stabilisation of so-
lutions, mass-conserved Allen-Cahn equation, large time behavior, reaction-diffusion system,
singular perturbation, interface motion, matched asymptotic expansions, tumor-growth mo-
del.

AMS subject classifications. 35K57, 35K50, 35K20, 35R35, 35R37, 35B40, 35B25.
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Introduction

Cette these porte sur I’étude d’équations et de systémes d’équations paraboliques non
linéaires, locales ou non locales, ainsi que sur celle d’équations différentielles ordinaires non
linéaires et non locales; il s’agit d’'une part d’analyser le comportement en temps long des
solutions, et d’autre part d’en décrire la limite singuliere quand un parametre lié au coeffi-
cient de termes de réaction tend vers ’infini.

Les problemes d’évolution dont nous faisons ’étude possédent le plus souvent des so-
lutions stationnaires multiples, qui forment parfois un continuum; si I’on souhaite étudier
leur comportement asymptotique en temps long, une premieére étape consiste a démontrer
une propriété de compacité des orbites, de facon a pouvoir conclure que des sous-suites
convergent vers une limite quand ¢ tend vers ’infini ; le probleme qui se pose ensuite est de
déterminer s’il s’agit seulement de la convergence de sous-suites ou si c’est toute 'orbite de
solution qui converge vers une solution stationnaire bien définie. Dans le cas ou le probleme
a la forme d’un systeme gradient, c’est-a-dire qu’il possede une fonctionnelle de Lyapu-
nov, une possibilité est de s’appuyer sur I'inégalité de Lojasiewicz. C’est cette inégalité que
Lojasiewicz [9], [10] a utilisé pour prouver la stabilisation des solutions bornées de systeémes
gradients dans R", qui sont en fait des systemes d’équations différentielles ordinaires. Cette
idée a été étendue plus tard aux systéemes gradients en dimension infinie par L. Simon
[15], qui en a démontré une version appropriée pour établir la stabilisation de la solution
de I’équation d’Allen-Cahn. De trés nombreux travaux ont suivi, comme par exemple ceux
de Haraux et Jendoubi [5] et Jendoubi [7] qui ont considéré plus particulierement le cas
de I'équation des ondes non linéaires tandis que Feireisl et Simondon [3] ont démontré la
stabilisation d’équations paraboliques dégénérées. Par la suite Hofmann et Rybka [14] ont
démontré une version de I'inégalité de Lojasiewicz pour I’équation de Cahn-Hilliard equation,
ce qui leur a permis d’obtenir également des résultats de stabilisation. Dans cette these, nous
étudions le comportement en temps long des solutions d’une équation de réaction-diffusion
avec un terme non local ; dans ce but nous nous appuyons sur une inégalité de Lojasiewicz.

Nous abordons aussi I’équation différentielle non locale que 1’on obtient en négligeant le
terme de diffusion dans I’équation d’Allen-Cahn non locale étudiée au Chapitre 1 si bien
qu’il ne semble pas possible d’appliquer 'inégalité de Lojasiewicz. On souhaite d’une part
établir la stabilisation des orbites de solutions et d’autre part obtenir une caractérisation
aussi précise que possible des fonctions de ’ensemble w-limite pour une classe aussi large
que possible de conditions initiales. C’est ce qui nous amene a appliquer la théorie des
réarrangement [8] afin de transformer notre probléeme d’évolution en un probléme unidi-
mensionnel dont la solution est décroissance en espace. Pour ce probleme, il est presque
immédiat que les orbites sont relativement compactes dans tous les L? ; apres avoir étudié le



6 Introduction

comportement asymptotique des solutions, il nous faut finalement transposer nos résultats
au probleme original. Nous étudions également une variante de I’équation différentielle non
locale, dans laquelle le dénominateur peut s’annuler.

Nous nous intéressons finalement a la limite singuliere de solutions d’équations ou de
systemes d’équations de réaction-diffusion ou de modeles de champ de phase. Quand on
modélise I’évolution d’interfaces, on peut choisir ou bien de s’appuyer sur des modeles ou
les interfaces sont diffuses, ou bien sur des modeles ou elles sont abruptes. En particulier,
Lowengrub et son groupe ont développé a la fois des des modeles d’interfaces diffuses et
des modeles d’interfaces abruptes pour décrire la croissance de tumeurs cancéreuses. Un
but serait d’établir un lien entre ces modeles et en particulier de savoir dire quels modeles
réguliers correspondent a quels problemes a frontiere libre limites. Ces problemes s’appuient
souvent sur des équations de type Cahn-Hilliard ; comme il nous semble plus aisé de recher-
cher la limite singuliere de modeles de champ de phase, une idée essentielle est de plonger
tout d’abord I’équation de Cahn-Hillard dans un modele de champ de phase correspondant
dont on déduit formellement la limite singuliere. Nos résultats sont seulement formels; des
résultats rigoureux sont encore hors d’atteinte du fait de la complexité du systeme.

Chapitre 1 : Convergence vers des états stationnaires pour les
solutions d’une équation de réaction-diffusion non locale

Ce chapitre fait ’'objet d’un article écrit en collaboration avec S. Bousaid (Université de
Batna, Algérie) et D. Hilhorst (Université de Paris-Sud).

Nous nous intéressons & un modele qui est initialement proposé par Rubinstein et Stern-
berg [13] pour modliser la séparation de phase dans un mélange binaire,

ut:Au—{—f(u)—Klu/Qf(u) dans Q x RT,

87u =0 sur 00 x R,
v
u(z,0) = up(x) x €,

ot  est un ouvert connexe borné de R, N > 1, de frontiere régulitre, et ot ug € L™ (Q).
Nous supposons que f est un polynome de la forme

n
f(s) = Zaisi o n > 1, impaire et a, <0.
=0

Ce probleme possede la fonctionnelle de Lyapunov

S(u):;/g|Vu|2—/QF(u).

Les résultats essentiels de cette partie sont les suivants. On démontre tout d’abord 'exis-
tence et 1'unicité de la solution, et on prouve qu’elle devient instantanément tres réguliere.



Bien que ce probleme, qui est non local, n’admette pas de principe de comparaison, on peut
démontrer I'existence d’ensembles invariants.

Notre résultat principal est le suivant : les solutions se stabilisent quand t tend vers
Iinfini et la convergence des solutions vers les solutions stationnaires est exponentielle ou
polynémial. De plus on peut calculer précisément la fonction limite de le cas de la dimension
d’un espace. Ce résultat est loin d’étre trivial dans la mesure ol ce probleme possede un
grand nombre de solutions stationnaires.

L’outil principal pour les démonstrations est I'inégalité de Lojasiewicz. La premiere ver-
sion de cette inégalité a été initialement proposée par Lojasiewicz [9] dans le cas d’un espace
de dimension finie (voir également [I, Theorem 1.1]).

Théoréme 0.0.1 (Lojasiewicz). Soient U C RY un ouvert, G : U — TR une fonction réelle
analytique, et a € U. Alors, il existe des constantes 6 € (0, %],c,o > 0 telles que pour tout
zeUlz—ul| <o,

|G(2) = G(a)|'"™" < ¢|VG(2) |-
Lojasiewicz a appliqué cette inégalité pour démontrer la convergence vers un équilibre des
solutions bornées du systeme gradient

U+ VG(u) = 0.

L’idée de Lojasiewicz a été ensuite généralisée a des espaces de dimension infinie et uti-
lisée pour prouver la convergence vers des états stationnaires de solutions bornées d’un bon
nombre d’équations d’évolution comme par exemple un équation de réaction-diffusion (Si-
mon [15]), une équation des ondes (Haraux et Jendoubi [5] et Jendoubi [7]), une équation
parabolique dégénérée (Feireisl et Simondon [3]) et ’équation de Cahn-Hilliard (Hoffmann
et Rybka [14]).

Le probleme non local nous amene a considérer 'inégalité de Lojasiewicz sur ’espace de
Hilbert V', défini par

V= {u € HY(Q): / u(z)dr = 0}.
Q
et nous vérifions que la version suivante de l'inégalité de Lojasiewicz est satisfaite

Théoréme 0.0.2. Soit ¢ € V un point critique de E (c’est-a-dire E'(¢) = 0) tel que
s1 < @ < sq. Alors, il existe des constantes 0 € (0, %] et C,o > 0 telles que

|E(u) — E(¢)|'™" < C|E'(u)]|v-
pour tout ||lu — ¢l|ly < o.

La preuve de ce theoreme est basée sur des résultats de Chill [1].

Chapitre 2 : Comportement en temps long des solutions d’une
équation différentielle non locale.

Ce chapitre fait I'objet d’un article écrit en collaboration avec D. Hilhorst (Université
de Paris-Sud), H. Matano (Université de Tokyo) and H. Weber (Université de Warwick).
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On considere le probleme a valeurs intiales pour ’équation différentielle non locale

1
ug = f(u) — — [ f(u) dans Q x (0,00),
o al,

u(z,0) = up(x) x € Q,

ot 2 est un ouvert borné de RY, N > 1, f € C'(IR) et up € L>®(£2). On suppose qu'il existe
m < M tel que f'(m) = f'(M) =0 et que

<0 sur (—oo,m)U(M,+0), f'>0 sur (m,M).
On suppose de plus qu’il existe s, < s* satisfaisant

{s* <m<M<s*
f(s) = F(M), f(s*) = f(m).

Ces hypotheses impliquent en particulier que la fonction f est de type bistable. Nous
démontrons tout d’abord l’existence et I'unicité de la solution et nous prouvons que cette
solution reste dans un ensemble invariant a tous les temps. Nous étudions ensuite son com-
portement asymptotique en temps long et démontrons que si ug satisfait 'une des deux
hypotheses

. 1 X
(1) |Q|/Qu0(x) dx & [s«, "]
(i) s«<up<s*et|{xreQ: [{u(x)=s} =0 pourtout se (m,M)

alors, quand t tend vers l'infini, la solution converge vers une fonction en escalier qui prend
au plus deux valeurs, qui coincident avec les points stables d’une équation différentielle
ordinaire associée. De plus, nous montrons par un contre-exemple que quand ’hypothese
(ii) sur la fonction initiale n’est pas satisfaite, la fonction limite peut prendre trois valeurs.
L’un d’eux est le point instable et les deux autres sont les points stables de 1’équation
différentielle ordinaire associée.

Des difficultés essentielles dans I’étude de ce probleme sont liées a ’absence de terme de
diffusion ; en particulier, il est plus difficile de démontrer la compacité relative des orbites
de solution. De plus, il est plus difficile sinon impossible d’appliquer la méthode du premier
chapitre basée sur 'application d’une inégalité de Lojasiewicz.

Pour résoudre ces difficultés, on s’appuie sur la théorie des réarrangements : on réarrange
les valeurs de la solution u de facon & obtenir une solution u* qui est définie sur (0,|Q|) x
[0,400) et est telle que pour tout ¢ > 0, uﬁ(-,t) est décroissante. Nous démontrons que
la norme BV de u! est bornée uniformément en temps si bien que l’ensemble w-limite de
u? est non vide. L’unicité des éléments de I'ensemble w-limite est prouvée en considérant
I’ensemble des points instables, c’est-a-dire I’ensemble

{w €(0,19) : f'(u(x,t)) > 0},

et en montrant qu’il est décroissant au sens des inclusions. Finalement, on prouve que la
stabilisation de uf en grands temps implique celle de wu.



Chapitre 3 : Sur un probleme d’évolution non local proposé
par M. Nagayama

On étudie un probléeme & valeur initiale proposé par M. Nagayama pour modéliser le
mouvement d’une bulle
/ u?(1 — u)
Q

/Qu(l — )

u(z,0) = up(x) x €,

up = (1 —u) — u(l — u) dans Q xR,

olt Q est un ouvert borné de RY, N > 1. On suppose que la fonction initiale ug satisfait
I'une des deux hypotheses

(H1) wp € L™®(Q), 1 <wug(xr) pour presque partout = € ; et wug # 1.
(Hz2) wup € L™®(Q), up(xz) <0 pour presque partout z € ; et ug # 0.

Une difficulté essentielle provient du fait que le dénominateur peut s’annuler dans 1'un
des termes de réaction. Nous considérons le probleme obtenu par réarrangement décroissant
unidimensionnel correspondant et appliquons un théoreme de point fixe lié & une application
contractante pour démontrer que le probleme a valeur initiale possede une solution unique
qui reste confinée dans un ensemble invariant. Ce probleme possede une fonctionnelle de
Lyapunov, ce qui est un ingrédient essentiel pour démontrer que la solution converge une
solution stationnaire constante par morceaux quand t tend vers I'infini.

Chapitre 4 : Limite asymptotique formelle d’'un modele d’in-
terface diffuse pour la croissance de tumeurs

Cette partie de la these correspond a des travaux en collaboration avec D. Hilhorst
(Université de Paris-Sud), J. Kampmann (Technische Universitdt Dortmund) and K. Van
der Zee (Technische Universiteit Eindhoven).

L’étude de la croissance de tumeurs est un sujet d’intérét essentiel en biologie médicale.
Dans une phase initiale de son développement, la croissance d’une tumeur est due a la
consommation de nutriments qui diffuse & travers le tissu environnant,et cette consommation
est modélisée par des termes de réaction. Pour la modélisation, on peut choisir ou bien
s’appuyer sur des modeles ou les interfaces sont diffuses, ou bien sur des modeles ou elles sont
abruptes. Un grand nombre de travaux est consacré a ce phénomene, comme par example
[2, 16l 12} [I1]. Le but de ce chapitre est de prendre comme point de départ un modele
d’interface diffuse et d’effectuer une dérivation formelle du probleme a frontiere libre limite.

Nous considérons ici un modele d’interface diffuse pour la croissance de tumeurs qui
améliore un modele étudié par [6]. Il fait intervenir quatre constituants : une phase de
cellules contaminées, u & 1, une phase de cellules saines u ~ —1, une phase d’eau extra-
cellulaire riche en nutriments o =~ 1 et une phase d’eau extra-cellulaire pauvre en nutriments
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o ~ 0. Les équations sont données par
up = Ap+ e p(u)(o — op)
p=—e1f(u) —eAu
or = Ag — e 'p(u)(o — op)

ot § > 0 est un parametre de régularisation ; la fonction de croissance p(u) est définie par

2por/ W (u) u € [—1,1]
p(u) = .
0 ailleurs,

ot W(u) := — [ f(s)ds. On suppose que la fonction bistable f(u) posséde deux racines
: 1
stables £1, une racine unstable 0 et que [, f(s)ds = 0.
Le but de ce chapitre est de déterminer la limite singuliere de ces équations quand ¢ | 0;

ceci nous amene a considérer le probleme plus général (P:), qui a la forme d’un modele de
champ de phase :

o +us = Apf 4+ e p(uf)(of —opf)  dans © x (0,+00),
o = Auf + e 2f(uf) + e 1t dans © x (0, +00),
0f = Ac® — e p(u)(0° — 0pf)  dans Q x (0, +o0),

avec des conditions aux limites de Neumann homogenes et des conditions initiales. On

retrouve le modele d’origine en posant a = 0 dans le Probleme (F;).

La deuxieme équation dans le modele de champ de phase est une équation de type Allen-
Cahn pour uf. Quand € | 0, u® converge vers une fonction limite u qui prend deux valeurs
—1 et 1 et une interface, que ’'on note I'(t), sépare les régions Q* (t) = {z € Q : u(z,t) = 1}
et Q7 (t) = {z € Q: u(x,t) = —1}. On suppose ici que I'(t) est une hypersurface sans bords
réguliere qui se déplace avec la vitesse V.

Nous nous proposons de rechercher formellement le probleme a frontiere libre limite que
nous notons (FPp); les fonctions inconnues sont wu, u, o et I'(t), et 'on suppose que u, u, o
sont les limites de u®, u°, 0 quand ¢ | 0; nous montrons que le probléme (FPp) est donné par

(1) = 1 dans Q*(¢),t €[0,T)
HEYTI00 dans Q (t),t €[0,7)
apr = Ap dans Q\T'(t) x {t},
oy = Ao sur Q\ () x {t},

aVp=—(N—-1)k+Cu sur I'(¢),

[1] = [o] = 0 sur T(t), 1)
[[g:; = 2V, 4+ 2V 2po(0 — o) sur T'(t),
197 = ~2vam(o — in) sur T(t),
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avec des conditions aux limites de Neumann homogenes et des conditions initiales. Ici, x est

la courbure moyenne de l'interface et [-] désigne le saut au travers de l'interface.
Nos résultats principaux sont les suivants.
Théoréme 0.0.3. Le Probleme (P:) posséde la fonctionnelle de Lyapunov E., définie par

£ 1 ap?  o?
E = — 202w =" 7).

Théoréme 0.0.4. Le Probléme (FPy) posséde la fonctionnelle de Lyapunov E, définie par

2 ap® o
E(, 1, o) ;_C/F1dr+/ﬂ(§+25),

Théoréme 0.0.5. Soit (u®,u®,0°) une solution du Probléme (P:). On suppose que le
Probléeme (Py) posséde une solution classique unique (I', u, o) sur Uintervalle [0,T]. Si

u® —u, p°—p, o° — o dans un sens suffisamment fort,

quand € — 0, alors (', u,0) coincide avec la solution classique du Probléeme (Py) sur l'in-
tervalle [0, T].

Une difficulté essentielle de la démonstration est liée au fait que nous devons trouver la
limite du terme réaction e 'p(uf) (0 — du°) quand £ — 0.
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Chapter 1

Convergence to steady state for the
solutions of a non local
reaction-diffusion equation

Résumé. Nous considérons une équation de réaction-diffusion avec conservation de I'intégrale,
qui a été proposée par Rubinstein et Sternberg pour modéliser la séparation de phase dans un
mélange binaire. Nous étudions le comportement en temps long de la solution et démontrons
qu’elle converge vers une solution stationnaire quand ¢ tend vers l'infini. Nous évaluons
également le taux de la convergence et calculons précisément la solution stationnaire limite
en dimension un d’espace.

Abstract. We consider a nonlocal reaction-diffusion equation with mass conservation,
which was originally proposed by Rubinstein and Sternberg as a model for phase separation
in a binary mixture. We study the large time behavior of the solution and show that
it converges to a stationary solution as t tends to infinity. We also evaluate the rate of
convergence and precisely compute the limit stationary solution in one space dimension.



16 Chapter 1. Nonlocal reaction-diffusion equation

1.1 Introduction

We consider the non local initial value problem

ut:Au—i—f(u)—][ fu) in QxR
(P) < Ou= ¢ on 0 x RT,
u(z,0) = up(x) z € ),

where Q € RN (N > 1) is a connected open set with smooth boundary 9Q; 9, is the outer
normal derivative to 02 and

][Qf(u) = |(12|/Qf(u(x))dx.

This model is mass conserved, namely

/u(x,t) da::/uo(:n) dx for all t >0,
Q Q

and it possesses a free energy functional which coincides with the usual Allen-Cahn func-

tional .
E(U):/ |Vu]2dx—/F(u)da:,
2 Ja Q

where F'(u) := /Ou f(s)ds.

Problem (P) was introduced by Rubinstein and Sternberg [25] as a model for phase sep-
aration in a binary mixture. We first prove in this paper the existence, uniqueness and
regularity of the solutions. Although this problem is a non local problem, we can prove
I’existence of invariant set. The principle result is the large time behavior. We show that
the solution converges to a stationary solution as ¢ tends to infinity. We also evaluate the
rate of this convergence and precisely compute the limit stationary solution in one space
dimension.

The main tool to study the large time behavior is a Lojasiewicz inequality that was first
proposed by Lojasiewicz himself [19], [21]. He showed that all bounded solutions of gradient
systems in IR, (which are an ODE systems), converge to a stationary solution. This
idea was subsequently developed in infinite-dimensional spaces for proving the convergence
to steady state of bounded solution of several local equations such as reaction-diffusion
equation (Simon [27]), wave equation (Haraux and Jendounbi [12]), degenerated parabolic
equation (Feireisl et Simondon [11]) and Cahn-Hilliard equation (Hofmann and Rybka [20]);
let us also mention the book by Huang [16]. In this paper, we present a version of Lojasiewicz
inequality for a non local problem.

In [25], the authors consider the model in which f is bistable type, typical example f(s) =
s — s2. In this paper, we assume that the function f is of the following form

n
f(s) = Zaisi, where n > 1 is an odd number, a,, < 0. (1.1)
=0
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Note that there exists a constant ¢; > 0 satisfying
f'(s) < forall selR. (1.2)
Constants s1,s2: Let s1 < s9 be two constants such that
f(s2) < f(s) < f(s1) forall se€ (sq,s2), (1.3)
Note that we can choose s1, s2 such that s; is arbitrarily small and ss is arbitrarily large.

Assumption on initial data: We will make the following hypotheses on the initial data:
(Hop) : up € L?(Q2) and s1 < ug < s9 a.e on Q.

Theorem 1.1.1. Assume that Hypotheses (Hg) holds. Then, Problem (P) possesses a
unique solution u € C([0,00); L2(Q)) which satisfies for every T > 0,

w€ L®(Qr) N L0, T; HY(Q)) and uy € L*(0,T; (H'(Q))"),
where Qr := Q x (0,T). Moreover u € C*(2 x (0, +00)),
s1 <wu(z,t) <so  forall x€Q,t>0;

and

{u(t),t > 1} s relatively compact in C™(§2) for all m € IN.

Theorem 1.1.2. Let (Hg) hold and let u be the unique solution of Problem (P). Then
there exists a smooth function ¢ such that

tliglo [u®) = llgmey =0 as t— o0, forall meNN.

[ [
Q Q

and ¢ is a smooth solution of the stationary problem

Oy =0 on ON.

Moreover,

The proofs of Theorem and Theorem are based on the auxiliary problem (P),
which will be introduced in Section 2. The advantage is that Problem (P) has a bounded
nonlinearity. We will first study the existence, the uniqueness and the large time behavior
of solutions to Problem (P), then show that the solution of Problem (P) coincides with the
unique solution of Problem (P). Finally, we deduce the results of Problem (P) from the

results of Problem (P).

The remainder of the paper is organized as follows: in Section we introduce Problem

(P) and we prove the existence and uniqueness of the solution of Problem (P); we also give
a regularity result. Theorem [I.1.1]is proved in Section Section [1.3]is devoted to prove

a version of Lojasiewicz inequality for the energy functional E of Problem (P) (cf. Theorem

1.3.8). In Section we apply the Lojasiewicz inequality to prove Theorem We also
precisely compute the limit stationary solution in one space dimension in this section. The

rate of this convergence is established in this Section [1.5
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1.2 Existence and uniqueness of solution

1.2.1 Problem (P)

In order to prove the existence of the solution of Problem (P), we consider an auxiliary
problem which has a bounded nonlinearity. First, we introduce the function f € C°(IR) as
follows,

0 if s <s1—2,
fls) =1 f(s) ifselsi—1,8+1], (1.4)
0 if s> 59+ 2.

We then define the auxiliary problem (P) by
U = Au + f(u) —][ f(@) in QxR
_ Q
(P){ 0,u=0 on 02 x RT,
u(x,0) = up(zx) x € €.

Note that there exists a constant cg > 0 such that
[F(s)], £ ()], [F(s)s],[f'(s)] < ca forall seTR, (1.5)
where F(s) := [; f(7)dr.

Lemma 1.2.1. Let ug € L?(Q2). Then, for any T > 0 arbitrary, Problem (P) possesses a
unique solution u which satisfies

€ L*(0,T; L*(Q) N L*(0,T; H'(Q)); u; € L*(0,T; (H'(Q))"). (1.6)

Moreover,

7 € C([0,00); L*(Q)).

Remark 1.2.2. Consider the operator —A with homogeneous Neumann boundary condi-
tions. Denote by
D= < X< <N <

the eigenvalues of the Laplacian, and w;,7 = 1,... the corresponding unit eigenfunctions.
Remark that the w;’s are smooth functions up to boundary and that they form an orthonor-
mal basis of L?(£2). Moreover

1

= —, ;=0 f > 2.
w1 |Q|1/2 /Qw or 1

Proof of Lemma [1.2.7l We apply the Galerkin method and look for an approximate so-
lution of the form

U (t) = gmilt) w; (1.7)
=1

/Qumtwj +/QVumej' = /Qf(um)wj - ][Qf(“m)/ﬂwj (18)

satisfying
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forj=1,...,m and

m
U (0) = U = Zggm«wi — ug in L*(Q) as m — oo. (1.9)
i=1

Since fQ wj = 0 for 2 < j < m, we deduce that the equations (1.8) form a nonlinear

differential system for the functions gm1, - - -, gmm:
Im1(t) =0, (1.10)
B m
Grmj T Njgmj = / FO gmiywi)w; — for 2<j<m. (1.11)
Q@ =

The condition ([1.9)) forms the m scalar initial conditions

gm1(0) = g, 1.12)
9m;(0) = g,onj for 2<j<m (1.13)

It follows from ([1.10]) and ([1.12)) that
gm1(t) = g8 for all t>0. (1.14)

Substituting in , we obtain a nonlinear differential system of m — 1 variables.
Then the nonlinear differential system ({1.11]) with the initial condition has a maximal
solution defined on some interval (0,7,,). In fact T,, = oo because of the following a priori
estimates.

A priori estimates for u,,: First, we note from (|1.7) that
1
[ n(®) = g )10
Q
and from (1.9)) that
g?nllmé :/umo(x)d:cﬁ/u()(x)d:z as m — 0o.
Q Q

These together with ((1.14) implies that

/Qum(t)da::/Qumo(:c)dx—>/ﬂuo(w)dx as m — o0 (1.15)

for all 0 <t < T,,. Consequently, there exists a positive constant cs independent of m such

that
‘ / U, (1) d
Q

Multiplying (1.8)) by ¢m; and summing on j = 1,...,m we obtain

5ot [l [ 1902 = [ )i~ f F@n) [ (1.17)

Note from (1.5)) that

< ez forall 0<t<T,. (1.16)

If(s)s|,|f(s)] <co forall scR.
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This together with (1.16)) and (1.17]) follows that

2dt/ |um|2 /|Vum|2 < 2| + cacs.

Therefore, we integrate this inequality from O to ¢ with ¢ arbitrary, and then take t =T to
deduce that

Tm || oo (0,7;22(9))s [Tl 220,111 (02)) < Ka(l[woll L2y + 1), (1.18)

where K is a constant independent of m.

A priori estimates for ,,;: Next, we give an estimate for @,,;. Fix any n € H'(Q), with
Ml ) < 1. We write

n=m+n2,

where 7 € span{w;}*, and / now; = 0 for all i = 1,...,m. Note that g € H'(Q) and
Q
that
/ VneVw; = —/ NoAw; = )\i/ now; =0 forall 1 <i<m.
Q

Thus, 72 is also orthogonal to span{w;}™; with respect to the scalar product in H!(2). In
particular, 72 is orthogonal to n; in H'(£2), hence

Il @) < Inlla@) < 1. (1.19)

We deduce from ([1.8)) that

/umm—/umtm /VumeJr/ S @m)m — ][ [ (@, /m
Q

Therefore, in view of ((1.5)); we have

[

< ||V |l L2Vl 22 + 2c2llmllzr )
< [Vl L2l Vil L2 ) + callmll 2 o)
< [Vl 2(q) + 4,
where the last inequality follows from (1.19); ¢4 is a constant independent of m. Since
n € H'(Q) is an arbitrary function such that 71l 1) < 1, it follows that
[t (1 @)y < 1VUml L2(0) + ca-

This together with (1.18)) implies that there exists a positive constant K5 independent of m
such that

[@mt || £2(0,7: (1 (2))) < Ko (1.20)

Passing to the limit: It follows from (1.18]) and (1.20) that there exists a subsequence of
U, still denoted by w,,, such that

T — T weakly in L*(0,T; H (Q)), weak-star in L>(0,T; L*()),

Um — T strongly in L?(0,T; L*(Q)),

Tmt — T weakly in L2(0,T; (H'(Q))*),
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as m — +oc0. On the other hand, in view of (L.5)), we have |f'(s)| < ca. Therefore

| 15— e < e [ [ -

f(@m) — f(@) strongly in L2(0,T;L*(Q)).
Passing to the limit as m — +oco in ([1.8]), we deduce that

so that

=Au+ f(u ][ f@@) in L*(0,T; (HY(Q)*).

Sincew € L%(0,T; H'(£2)) and since u; € L(0,T; (H'(2))*), it follows that w € C ([0, T]; L?(£2)).
Moreover, @(z,0) = ug(z) by classical arguments.

We have thus proven the existence part of Lemma [1.2.1] The uniqueness of the solution
of Problem (P) follows from Lemma below, which will complete the proof of Lemma
21 O

Lemma 1.2.3. Let uo1,up2 € L*(Q) and let uy, s be two solutions of Problem (P) corre-
sponding to ug1,uge respectively. Then there exists a constant ¢ > 0 such that

/|u1(t)—uQ(t)\2 gexp(ct)/ ot — ugl2 for all ¢ > 0. (1.21)
Q Q

Proof. Set
W I=Ul — Ug.

We take the duality product of the difference of the equations for w; and us by w to obtain

%% QwQ(tH/QIVw(t)IQ:/Q[f(Ul) (@ / ][ f(@)].

It follows from (|1.5)) that

%% sz(t)+/g\Vw(t)\2§62/w +,Q|</ Iw\>2
§05/9w2~

/ (1) — T (t)[2 < exp(2est) / | ot — ga?, (1.22)
Q Q

Using Gronwall’s lemma, we have

which completes the proof of Lemma [1.2.3]

Lemma 1.2.4 (Conservation of the integral). Let ug € L*(), then

/u(x,t)d:c:/uo(w)d:n for all t> 0. (1.23)
Q Q
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Proof. We take the duality product of the equation for w by 1 to obtain

jt/ﬂqu/QVuVl:/Qf(u)l—j[ﬂf(U)/Ql

Therefore,
p Qﬂ(:}:,t) dr =0,
which implies that the identity (1.23]) holds. O

1.2.2 More regularity properties of u

We now prove more regularity properties of the solution of Problem (P). For this
purpose, we first recall some technical lemmas which will be used in what follows. We set
Qb =Q x (a,b) for a € R and b € R U {+oc}.

Lemma 1.2.5. Let ug € L*(Q), f € LP(Qr) for some p € (1,00) and let u be the solution
of the time evolution problem

u — Au = f in QT7
Ou=0 on 02 x (0,T),
u(z,0) = up(z) =€

Then
(i) for each 0 < § < 1, there exists a positive constant C1(6,Q,T) such that

[ullwz1qry < Cillluollz2) + 1 fllzr@r));
(i1) if we suppose that ug € W2P(S)) then we obtain the estimate
Jullyz1gy) < Calluollwasey + I flzsan):

Remark 1.2.6. If 7' =1, then the constant C; depends only on § and §2.

Lemma 1.2.7. One has the following embedding

] N+2 N+2
W2L(Qr) € CMV2(Qr) with)\:2—;_ifp> T2 ndp£ N +2.

Lemma and Lemma follow from [I8| chapter 4, section 3 and chapter 2, section
3] which are stated in [4, p. 206]. Lemma [L.2.5[ii) is also stated in [6, Formula 5.4, page
899

Next, we prove an estimate of ||%(t)|| 12(q) which does not depend on T

Lemma 1.2.8. Let ug € L*(Q) and let u be the solution of Problem (P). Then there exists
a constant C > 0 such that

@)l 2 ) < Cllluoll 2@y + 1) for all = 0.
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Proof. Set

It follows from Poincaré-Wirtinger inequality that there exists a constant cg = ¢g(€2) such

that
/ @ — mol? < cﬁ/ Val2da,
Q Q

/\u|2 gmgm|+c6/ V2.
Q Q

Q
—/ \Va|2da < mo’ | / 2. (1.24)
Q

We take the duality of the partial differential equation for # in Problem (P) by % to obtain

2y 2 Y 7y

53 [+ [ 1vaf = [ ][ f@ [ @

s/( L 12+ L i >)+c2mo

<% [P+

2 VEQ /2
s L <=1 g

which together with ((1.24]) implies that

a2 < al2 + 02) 0‘Q|
Q| + comg + .

We choose € small enough to deduce that there exist c7, cg > 0 such that

d/ 12 12
— [ Jul* < —C7/ [a|” + cs.

Applying Gronwall inequality we obtain

_ C8
/ [a(t)? < exp(—crt) / o2 +
Q QO Cr

which completes the proof of Lemma [1.2.§]

or equivalently

Hence,

Therefore,

Lemma 1.2.9. Let ug € L?(Q), m € IN and let 0 < 6 < %, a € (0,1) be arbitrary. Then,

] < C(m, 6, Q) ([luoll L2(0) +1)-

C,2m-&-1-&-o¢,m-‘,—Lgg (ng)
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N 42 -
Proof. First, we prove Lemma |1.2.9| for m = 0. Set p := 17+ Since |f| < ¢a, we apply
-«

Lemma i) and the embedding in Lemma on domain Q} to obtain

LP(Q%))

o~ f g _ )

Similarly, we apply Lemma [1.2.5(i) and the embedding in Lemma on the domains

Qi“ and ini’ﬁ to obtain (cf. Lemma|1.2.8

leravaraigy < ol + | (@ - f @

1
< ol(uuoum o

1
< Ci((|uoll 2y + 2¢2|2|7).

1 _
||ﬂ||01+a,<1+a>/2(Q§i};) < Cr([[a(k) | p2(q) + 2¢2/Q») < C([luollz2(0) + 1)

o . k+3/2
and a similar one on the domain Qkil;T

chosen arbitrary that

Finally, we deduce from the fact that & can be

@l crsaararigey < Cllluollzz) +1)-

By standard bootstrap arguments [I8, Theorem 10.1, p. 351], we deduce the result of
Lemma for any m € IN.
O

The following corollary is an immediate consequence of Lemma [1.2.9

Corollary 1.2.10. Let ug € L*(Q), then {u(t) : t > 1} is relatively compact in H™(SY) and

in C™(Q) for all m > 0.

1.2.3 Derivation of Theorem from the results about Problem (P)

The key lemma is the following:

Lemma 1.2.11. Assume that ug satisfies Hypotheses (Hg), namely
s1 <wup(x) <sg  forae x€Q.

Then
s1 <u(x,t) <sy  forall x€Q,t>0.

The main idea of the proof of Lemma [1.2.11]is to approximate the initial function ug by a
sequence of smooth functions and to first obtain the result for approximate problems. Then,
we deduce the result for the original problem. To begin with, we need the following lemma.

Lemma 1.2.12. Let wuy satisfy Hypothesis (Ho). Then, there exists a sequence upg in

C>(Q) such that s1 < upg < s2 on §), and that
Uno = ug in L3(Q) as n — oo.

The proof of this lemma will be given later. Next, we use it to prove Lemma [1.2.11
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Proof of Lemma [I.2.11l We denote by %, the corresponding solutions of Problem (P)
with initial function u,g. We will prove this lemma through several steps.

Claim 1: We prove that
Tp € C2HQ x (0, T]) N C(Q x [0,T)). (1.25)

Indeed, since |f| < c2, we deduce from Lemma ii) that u, € Wg’l(QT) for all p > 1,

which by the Sobolev embedding in Lemma [1.2.7| implies that @, € C't®(0+)/2(Q,) for
all @ € (0,1). Applying a standard bootstrap argument (cf. [I8, Theorem 10.1, p, 351]), we

deduce that u, € C’3+O"1+1+Ta(§ x (0,T7]). Hence

U, € C¥L(Q x (0,7]) N O x [0,T]).

Claim 2: We prove that
81 < Up(z,t) < sy forall z€Q,t>0. (1.26)

For the purpose of contradiction, we suppose that there exists a first time ¢g > 0 such that
Uy, (o, to) = $1 Or Up(xo, tg) = s2 for some xy € Q. Without loss of generality, assume that
Uy, (o, to) = s2. By the continuity of u, and the definition of ¢y, we have

51 <Tp(z,t9) < s forall z € Q, and Uy, (z,t) < sp forall z € Qand 0 <t < tg. (1.27)

Since 0,1, = 0, we deduce from Hopf’s maximum principle that xo € 2. Therefore the
function @y, (-, tp) attains its maximum at xp € €2, which implies that A, (zo,t9) < 0. By

(2.10f), we have

[ to— At) —u ¢
ﬂnt(ﬂjo,to) = A1£I%)+ Un(l‘()a 0 _A)t Un(ﬂj‘o, 0) > 07

which we substitute in Problem (P) to obtain ][ (f(s2) — f(@n(z,t0))) dx > 0. Since
Q

81 < Up(x,t0) < g for all z € Q, it follows from (1.3)) that f(s2) < f(tn(m,tg)) for all x €
so that f(s2) = f(un(z,t0)). Using (1.3) again, we obtain u,(z,tp) = s2 for all z in .
Consequently, we have

/un(x,to) dr = s9 > / up(x) dz,
Q

Q
which contradicts the integral preserving property in Lemma We obtain ((1.26)).

Claim 3: Next, we prove that
s1 <u(x,t) < s9 for all z € Q,t > 0.

It follows from Lemma [[.2.3 that
[ 10 =0 < expte) [ a0 — ol
Q Q

for some constant ¢ > 0. Therefore,

U, — U in LQ(QT) as n — +oo.



26 Chapter 1. Nonlocal reaction-diffusion equation

Consequently, there exists a subsequence {7y };>0 of {in}n>0 such that
Upj — U almost everywhere on  Qr,
which together with implies that
s1 < u(z,t) < so almost everywhere on Q7.
Moreover, in view of Lemma w is smooth on Q7 and T > 0 is arbitrary so that

s1 <au(z,t) < s9 forall x € Q,t>0.

Proof of Lemma [1.2.12l First, we extend the function ug to wg defined on RN by

uo(x) if xeQ
wo(r) =
51 ; 52 elsewhere.

Obviously,

For all n large enough such that
1 1
s1+— <sg——,
n n
we define

. 1 1
Wpo := min < so — —, max{wp,$1 + —} ¢
n n

Then, we have

and moreover,

[wno — uoll2(@) = lwno — wollz2(0)
1
1 |2
< 1920 o — () < P

As in [I, Theorem 2.29, page 36|, we can choose a smooth function wu,o such that

]
n

[NIE

[uno — wnollp2(0) <
More precisely,
uno(z) := / N Je(x — y)wno(y)dy, for e small enough,
R

where

Je(w) =V (xfe),

(1.28)
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with J € C2°(IRY) is a nonnegative function satisfying
J(x)=0 if |z|>1, and / J(x)dx = 1.
RN
Note that J. is nonnegative and that
/ Je(x)dx = 1. (1.29)
RN
Therefore, in view of ((1.28) and (|1.29))

1 1
s1+ — <upg < s9— — forall z € RV.
n n

Moreover,
2002
[[uno = wollr2(0) < lluno — wnol|L2(0) + llwno — uollL2(q) < o
It follows that
Upo — Uy 1D LQ(Q) as n — +oo.
The proof of Lemma [1.2.12] is complete. O

Lemma 1.2.13. Let u be a solution of Problem (P) such that

u € L®(Qr)N LQ(O, T, HI(Q)) and u; € LQ(O,T; (HI(Q))*),

Then,
/u(m,t)dx = / uo(x)dx for all t > 0. (1.30)
Q Q
Proof. The proof is similar to the one of Lemma We omit it. O

Lemma 1.2.14. Let ugi, up2 € L>(Q2) such that

/Qum(ﬂc)dw_/gum(w)dﬂ?v

and let uy,ug be two corresponding solutions of Problem (P), which satisfy
ui,up € L(Qr) N LA0, T HY(Q))  wg,uar, € L2(0, T (H' (2))%).
Then there exists a constant ¢ > 0 such that

/ luy () — ua(t)|? < exp(ct)/ | w1 — ug|* for all t>0. (1.31)
Q Q

Proof. We denote by w := u; — ug, and use the mass conservation property (cf. Lemma

1.2.13)) to deduce that

/ w(z,t) de = /(um(aj) —up2(x))dx =0 for all ¢>0. (1.32)
Q Q
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We multiply the difference of the equations for u and ue by w, then integrate over {2 to
obtain

L ? 2= — flug)|lw— | w uy) — flu
st [t [1vu@r = [ ) - fale- [ [f) - f).

It follows from ([2.5)) and that (1.32]) that
1d
w0+ [ [P = [ [f) - fu]e<a [ o
Q Q

24t Jo i
Using Gronwall’s lemma, we have
/ Jua (£) — ua(t)* < eXP(QCNf)/ | uor — uo2|*.
Q Q
O]

Proof of Theorem [I.1.1l The uniqueness of solution of Problem (P) is a consequence of
Lemma [1.2.174] Since by Lemma [T.2.11]
s1 <u(x,t) < sg forall x €, t>0.
It follows from the definition of f in that for all ¢t > 0
f@(z,t)) = f(u(x,t)) forall zcQ,
so that w satisfies the equations
U = Au + f(u) —][ f@) = Au + f(u) —][ f@) in QxIRT,
o,u=20 . : on 00 x R™,
u(x,0) = up(x) x €.
Thus, @ coincides with the unique solution of Problem (P). Therefore, all the properties

which we have proved for @ hold for the unique solution u of Problem (P). In particular, in
view of Lemma and of Corollary [1.2.10} we have that v € C*°(Q x (0, +00)) and

{u(t),t > 1} is relatively compact in C"™(2) for all m € IN.

1.3 A version of Lojasiewicz inequality

The main result of this section is the Lojasiewicz inequality stated in Theorem [1.3.8
below. More precisely, we prove a version of Lojasiewicz for the functional

E(m) = ;/Q\Vu|2dx—/gﬁ(u)dx,

where we recall that F(s) := ﬂ; f(7)dr. We also note that E is a Lyapounov functional of
4.1

Problem (P) (cf. Lemma |1.4.1| below).

This section is organized as follows: In Section [1.3.1] as a preparation for the proof of
Theorem [1.3.8] we prove the differentiability of F and compute its derivative. The definition
and some equivalent conditions of a critical point are given. The Lojasiewicz inequality is
proved in Section [1.3.2
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1.3.1 Some preparations

We define the spaces

H={ue LQ(Q),/ u(z)dz = 0}, equipped with the norm |- ||z := || - ||z2(q),
Q

V= {u € HY(Q): / u(z)dr = 0}, equipped with the norm || - |[v := || - [| g1 (-
Q
Let V* be the dual space of V. We identify H with its dual to obtain:
Ve H<V",

where the embeddings V' — H, H < V* are continuous, dense and compact (see e.g. [17,
p. 677]). We use (-,-) to denote the duality product between V* and V. We note £(X,Y)
the space of bounded linear operators from a Banach space X to a second Banach space Y,
and we write £(X) := L(X, X).

We also define the spaces

£P(Q) = {u € LP(Q) : /Qu(a:) dz = 0}, (1.33)

equipped with the norm || - [[¢p() == || - | Lr() and
X, :={uec W*(Q):9,u =0, /Q u(x)dx = 0}, (1.34)
equipped with the norm || - || x, := || - [[w2.r(q). Throughout the sequel, we denote by C'> 0

a generic constant which may vary from line to line. We start with the following result.

Lemma 1.3.1. Let u,h € LY(Q), p € [1,00) and let g be a continuously differentiable
function from IR to IR such that

l9(s)|,|g'(s)] < C for all seR.
Then .
/ g(u+Th)dr — g(u) in LP(Q2) as ||kl ) — 0.
0

Proof. 1t is sufficient to prove that

1 P

B = / g(u+ Th)dr — g(u) — 0 as ||h/||L1(Q) — 0.

0 L)
Since g is bounded,
1 P 1

B | [ ot i) - giar| <] [Clgtr - gtwar

0 L) 0 L)
1
<c / Cribldr| < Ol
0 L1(Q)

This completes the proof of Lemma [1.3.1 O
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Lemma 1.3.2. The functional E is twice continuously Fréchet differentiable on V. We

denote by E', L the first and second derivative of E, respectively. Then

(i) The first derivative
E' .V — V* is given by

(E'(u), h)y»yv = /QVth— /Qf(u)h for all u,heV.

(ii) The second derivative
L:V — L(V,V*) is given by

(L(u)h, kyy=y = / VhVk — / F(whk  for allu,h,k € V.
Q Q

Consequently,
(L(u)h, k)y v = (h, L(u)k)v,y=.

Proof. We write E as the difference of F1 and Fs, where

El(u):;/ﬂ|Vu\2d:U and Eg(u):/ﬂF(u)dx.

(1.35)

(1.36)

(1.37)

(1.38)

Obviously, F is twice continuously Fréchet differentiable. Its derivatives are easily identified
in the formulas ((1.35) and (1.36)). We now compute the first and second derivative of F,.

(i) By Taylor’s formula,
— — 1 —
Fu+h)—F(u) = h/ f(u+7h)dr =: h¢ for all u,h €V,
0

where

/ Flu(x) + rh(z))dr

/K O

< ClI¢ = FW)ll2@llhll 20
< ClI¢ = fW)llp2ollhllv.

It follows that

‘Eg(u+h /f )h da

We deduce from Lemma [I[.3.1] that
1
Cz/ f(u+7h)dr — f(u) in L*(Q) as |h|v — 0.
0

Therefore

Eg(u+h)—E2(u)—/Qf(u)hdx = o(||h||v) as ||h]ly — 0.

This implies that the first derivative E), exists and

@W&MWVZAﬂmMm
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(ii) The Fréchet differentiability of FY is shown in a similar way. Choose p € (2, +00) such
that V is continuously embedded in LP(2). Let T be the linear mapping from V to V* given

by
@mmwy_/fwmmm
Q
We will use below a generalized Holder inequality based on the identity

11 2
e !
p pp

For every u, h, k € V and for

n(z) = /0 f'(u(z) + Th(x))dr
we have

‘@mu+m—EﬂW—Tm@wy

/| 7 ()] 1] k] do

< lln = (@l oro-2 @1l Loy 15l oo
< Clln = F' (@)l oro—2 @) 12 llv[IE]lv-

Consequently, we have

1E5(u + h) = Ej(u) = T hllv+ < Clin = F ()l porw—2 (@ 1llv-

Since 1 < p/(p —2) < +o0, we deduce from Lemma that
In— F (@)l sy = 0 as [kl =0,
which together with follows that
15 (u+ h) = E5(u) = Thlly= = o([[A]lv).

Therefore,
(Ey(u)h, k)y- v /f Yok for all u,h,k e V.

We also note that

(B2 (u) = E5(0)h, k)vev| < /Q |f'(u) = £/ ()] [l k] dx

< OIF (u) = ' ()l o2 @ 10l [ KV

Hence

125 (u) = B3 (0) |l vy < CILF (w) = () oro-2(q)s

(1.39)

(1.40)

which implies the continuity of Ef. Finally, (1.37) is an immediate consequence of (1.30]).
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We define a continuous bilinear form from V' x V' — IR by
a(u,v) = / VuVudz.
Q

The following lemma is an immediate consequence of Lax-Milgram theorem [3, Corollary
5.8, page 140]. We omit its proof.

Lemma 1.3.3. There exists an isomorphism A from V onto V* such that
a(u,v) = (Au,v)y=y for all u,veV. (1.41)

Corollary 1.3.4. The first and second derivatives of E can be represented in V* as:

E'(u) = Au— f ][ flu (1.42)

L(u)h = Ah — f'(u)h + ][Qf'(u)h, (1.43)

for allu,h € V.

Proof. Since f is bounded, f(u ][ f(u) € H < V*. Therefore,

Au— Flu) + ][Qf(u) eV,

We also note that

/Q(][Qf(u)>h:][ﬂf(u)/ghzo for all h eV,
(Au = f(u ][f v*v—/Vth /f

This together with (1.35]) implies that

thus,

E(u) = Au — f(u) + fﬂf(u)

Identity (1.43) may be proved in a similar way. O

Lemma 1.3.5. Let LP(Q), X, be the Banach spaces as in (1.33]) and (1.34). Assume that
p > 2. Then, for any g € LP(QY), there exists a unique solution u € X, of the equation
Au=g in V™.

Moreover, we have
A=-A on X, (1.44)
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Proof. Tt follows from Lemma that the equation
Au=g in V* (1.45)

has a unique solution u € V' so that it is enough to prove that v € X,. For this purpose,
we consider the elliptic problem

—Al =g in Q,
o,u=0 on 9.

Since g € H, we apply the Fredholm alternative to deduce that this problem possesses a
unique solution % € V. Note that g € £LP(R), so that we deduce from [2] that @ € WP (1)
so that also u € X,,. On the other hand, for all v € V', we have

(A, v)y=y = a(t,v) = /QVfLVv dx = (—Au,v)y« v = (g,0)v=v.
Therefore, o coincides with the unique solution of equation . In other words,
u=1uec Xp.
We also conclude that A = —-A on X, since for all w € X,,,v € V,

(—Aw, v)y=y = / VwVudr = (Aw,v)y=y.
Q

Definition 1.3.6. We say that p € V is a critical point of E if
E'(p)=0 in V"

Lemma 1.3.7. For every ¢ € V, the following assertions are equivalent:
(i) ¢ is a critical point of F,
(ii) ¢ € Xo and ¢ satisfies the equations

“Ap = o) - ][Qf(sf)) in Q,
81/90 =0 on 89

Moreover, ¢ is C*(Q).

Proof. (ii) = (i). By Formula (1.42)), we have

which together with (1.44)) implies that

E(o) = —Ap— Flp) + ][ f(e) =0

Namely, ¢ is a critical point of E.
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(i) = (4i). Assume that ¢ € V is a critical point of E. We deduce from (1.42) that

©) = f(p) ][f in V™

Since f(¢p ][ f(p) € H, it follows from Lemma [1.3.5(that ¢ € X5 satisfies the equations

—Ap = f(p) —][Qf(w) in €,

Oy =0 on 0f2.
Finally, we deduce that ¢ € C*(Q) from the boundedness of f(¢ ][ f(v), Sobolev
embedding theorem and a standard bootstrap argument. O

1.3.2 Lojasiewicz inequality

We recall the definition of a direct topological sum. Let X be a Banach space and let
X1, X2 be two subspaces of X. We say that X is the direct topological sum of X; and Xs,
which we write

X = X1 @ Xo,

if X1, X9 are closed subspaces of X, such that

X1 N Xy ={0}
X = X1+ Xo.

An equivalent condition is that there exists a continuous projection P in X (i.e P € L(X)
and P? = P) such that
X1 =kerP and Xo=RgP.

We refer to [24, page 133] for more details. Next, we check that the following Lojasiewicz
inequality is satisfied.

Theorem 1.3.8 (Lojasiewicz inequality). Let ¢ € V' be a critical point of the functional E
such that s; < ¢ < sy. Then there exist constants 0 € (0, %] and C,o > 0 such that

|E(u) — E(¢)|'~" < C|E'(u)]|v-, (1.46)

for all |lu — ¢||v < o. In this case, we say that E satisfies the Lojasiewicz inequality in ¢.
The number 0 will be called the Lojasiewicz exponent.

Chill proved in [8, Theorem 3.10] a general version of the Lojasiewicz inequality. Moreover,
in [8, Corollary 3.11], he gave a set of hypotheses for which F satisfies the Lojasiewicz
inequality near a critical point. Our task is to verify these hypotheses and then to deduce
the result of Theorem We list here the hypotheses of Chill in [8, Corollary 3.11].

(H1) : (see [8, Hypothesis 3.2, page 580]). The kernel ker L(¢) is a complemented subspace
of V, i.e., there exists a projection P € L(V') such that Rg P = ker L(¢). We denote by
P* € L(V*) the adjoint projection of P.

(Hz2) : (see [8, Hypothesis 3.4, page 580]). There exists a Banach space W with the following
properties
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(i) W is continuously embedded in V* and invariant under P* (i.e. P*(W) C W),
(i) £ € CY(V, W),
(iii) RgL(p) =ker P*N V.
(Hg) : There exist Banach spaces X C V and Y C W such that
(i) the spaces X and Y are invariant under projection P and P*, respectively,
(ii) the restriction of the derivative E’ to X is analytic in a neighborhood of ¢ with values
inY,
(iii) ker L(¢p) is contained in X and finite-dimensional,
(iv) RgL(y)|, =ker P*NY.
It follows from [§, Corollary 3.11] that if (Hy), (H2), (Hs) hold, then E satisfies for some
0 (0.1]
E(w) - E@)[1=° < CIE'(w)w forall lu—gly <o (1.47)

We note here that the norm of the space W appears on the right-hand side of (1.47)).
Therefore, in order to prove Inequality (|1.46]) in Theorem we choose W = V*| so that
instead of considering (Hz), (Hg), we will consider (H5), (Hj) below:

(H5) : Rg L(p) = ker P*.
(Hj) : There exist Banach spaces X C V and Y C V* such that
(i) X and Y are invariant under projection P and P*, respectively,
(ii) the restriction of the derivative E’ to X is analytic in a neighborhood of ¢ with value
inY,
(iii) ker L(¢) is contained in X and finite dimensional,
(iv) RgL()|, =ker P*NY.
Our task now is to verify (Hy), (H5), (Hj). We start with the following lemma.

Lemma 1.3.9. Let ¢ be a critical point of E. Then,
(i) L(y) is a Fredholm operator from V to V* of index 0 i.e, Rg L(p) is closed in V* and

dim ker L(¢p) = codim(Rg L(y)) < 400,
where codim Rg L(yp) := dim(V*/Rg L(p)).
(ii) ker L(p) C {u € C®°(Q) : d,u=0 on 89;/ u = 0}.
(i1i) For all u € ker L(p) and v € Rg L(p), we haZe
(u,v)yy= =0.
Proof. (i) We first prove that the linear operator
T:V—V*

B —F(o)h + ][ F(o)h

Q
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is compact. Indeed, note that we have for all h € V

IThle < 17 ()hllec H][f

< ClhllL2 @) < Cllallv-

Therefore, T' is continuous from V to H, which together with the compactness of the em-
bedding H < V* implies that T is compact from V to V*.

Next, since A is an isomorphism from V onto V* it is also a Fredholm operator of index
ind A := dimker A — codimRg A = 0.

It follows that L(p) = A+ T, as a sum of a Fredholm operator and a compact operator, is
also a Fredholm operator with the same index (cf. [3, p. 168]). Therefore, the conclusion
of (i) is proved.

(ii) Let h € ker L(¢p), then L(¢)h =0 in V*, or equivalently

Ah = F(g)h - ][Qf’(so)h V.

We first claim that h € C°°(Q). Since f'(¢ ][ f'(p)h € H, we deduce from Lemma
[[.3:7 that h € X, satisfies
—Ah = f'(p ][ (e in Q,
d,h =0 on Of).

We also note from Lemma that ¢ € C*(Q) so that f'(¢) € C*(Q). We then apply
a Sobolev embedding theorem and a bootstrap argument to deduce that h € C*(£2). We
also note that [, h = 0 since h € V. Therefore, we obtain the conclusion of (ii).

(iii) Since v € Rg L(yp), there exists w € V such that v = L(¢)w. In view of (1.37)), we have

(w, V)vy= = (u, Lip)w)vy- = (L{g)u, w)y-y =0,
which implies (iii).
O

Lemma 1.3.10. V* is the topological direct sum of ker L(p) C V — V* and Rg L(yp).
Namely,
V* =ker L(¢) @ Rg L(yp).

Proof. Let u € ker L(¢) N Rg L(¢) be arbitrary; then in view of Lemma iii), we have
lullz = (u, u)y=v = 0.
Consequently,
ker L(¢) NRg L(p) = {0}.
It follows from Lemma [1.3.9(i) that dimker L(¢) = codim Rg L(), so that

{kerL(so) NRgL(p) = {0}
V* =ker L(¢) + Rg L(y).



1.3. A version of Lojasiewicz inequality 37

On the other hand, Rg L(¢) is closed in V* because of Lemmall.3.9)(i) and ker L(¢) is closed
in V* since it is finite-dimensional. Therefore, we deduce that V* is the topological direct
sum of ker L(y) and Rg L(y). O

Lemma 1.3.11 (Projection P). There exists a projection P € L(V) such that the adjoint
projection P* € L(V*) satisfies

RgP =RgP* =kerL(¢) and ker P*=RgL(p).
Consequently, (Hy) and (HS) hold.

Proof. By Lemma(1.3.10] we can define a projection @ € L(V*) onto ker L(y) along Rg L(p)
ie., Q®=Q;
ker @ = RgL(y) and RgQ = ker L(y).
Let P and Py be the restriction of Q to V and H, respectively.
Claim 0: We first prove that that P € £(V), Py € L(H). Indeed, since

Py(H) C Q(V*) = ker L()  {u € COO(Q),/Qu —0) C H,

Py is linear mapping from H to H and PZ = Py. Moreover,
Rg Py =RgQNH =%ker L(p), ker Py =kerQNH =RgL(p)N H. (1.48)

It follows from [24, Theorem 5.15, page 133] that

{kerL(so) N (RgL(p) N H) = {0} (1.49)

ker L(p) + (RgL(p)NH)=H

In order to prove Py is continuous from H to H, in view of [24, Theorem 5.16, page
133], it is enough to prove that ker L(y) and (RgL(p) N H) are closed in H. Clearly,
ker L(p) is closed in H since it is finite-dimensional. In order to prove (RgL(y) N H)
is closed in H, we denote by j the continuous, compact embedding from H to V*. Then
Rg L(p)NH = j~Y(Rg L(p)) is the inverse image of a closed set under a continuous mapping,
so that Rg L(p) N H is closed in H. We conclude that Py € £(H). Similarly, P € L(V)
and

RgP =ker L(¢), kerP=RgL(p)NV.

Claim 1: We now prove that Py is symmetric, i.e
<PHU1,u2>H’H = <U1,PHU2>H’H for all uy,us € H.

We note from Lemma [1.3.9[(iii) that ker L(¢) and Rg(¢) N H are orthogonal with respect to
scalar product in H, which together with implies that Rg Py is orthogonal to ker Py
with respect to scalar product in H. On the other hand, Pyu — u € ker Py for all u € H so
that

<PHU1, PHU2 - UQ> = 0.

Therefore,

(Prui,us) g = (Prui, (ug — Prug) + Prug) = (Pgu, Prus) . m

= ((Prui — u1) + w1, Ppuo) g.g = (u1, Pru2)g,H-
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Claim 2: Let P* € L(V*) be the adjoint projection of P. We now claim that P* = @, i.e,
P*(u) =Q(u) in V* forall weV*.
Let w € H — V*; and v € V; by the definition of the dual operator we have
(P*u,v)v=yv = (u, Pv)y«y.
Since u, Pv € H, it follows that

(P u,v)y+yv = (u, Pv)y+ v = (u, Puv) g g = (Pru,v)gn = (Qu,v)v=yv

It follows that P*(u) = Q(u) in V* for all w € H. On the other hand, since H is dense in
V* we deduce that P* = (). Consequently,

RgP* =RgQ =ker L(p) and ker P* =kerQ = RgL(yp).
O

Before proving Theorem [1.3.8] we recall the definition of an analytic map on a neighborhood
of a point (cf. [28, Definition 8.8, p. 362]). A map 7T from a Banach space X into a Banach
space Y is called analytic on a neighborhood of z € X if there exists € > 0 such that for all
heX, [hlx <e,

T(z+h)—T(z) =Y _Ti(2)[h,..., k] in Y,
i>1

where T;(z) is a symmetric i-linear form on X with values in Y and

S ITE) e Pl < oo
i>1

Here, £;(X,Y) is the space of bounded i-linear operators from X* to Y.

Proof of Theorem [1.3.8 It follows from Lemma [1.3.11| that (H;) and (H5) hold. We
now verify (Hj). For this purpose, let p > max(2, N) and set

X =X,, Y = LP(Q).

Since P(X,) C P(V) = ker L(¢) C X, by Lemmal[1.3.9(ii) and since P*(LP(Q)) C P*(V*) =
ker L(p) C LP(Q2), we deduce that X, and £P(Q2) are invariant by P and P* respectively.
In other words, (Hj)(i) holds. Moreover, (Hj)(iii) hold because of Lemma[l.3.9(i) and (ii).
Now, it remains to verify (Hj%)(ii) and (H%)(iv).

Verifying (Hj)(ii): First, note that

E(u) = —Au— f(u) + ][wa) e £P(9),

for all u € X,,. We now claim that E’ is analytic in a neighborhood of ¢. Indeed, let € be
small enough such that for all h € X, with ||h||x, <&, we have

1Plle@) < Clipllx, < 1.
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Since

f(s) :f(s):iaisi for all s € (s1—1,s2+1),
=0

we perform a Taylor’s expansion to deduce for all h € X}, such that ||h[|x, <

™

_ " @O (o(x))
Flota) +h(@) — Flo(@) = 3 A D i)
=1
It follows that

") S [ D)
E'(p+h)—E(p)=—-Dh+Y_ ! ,f“’) W=y ][Qf .,(90) h' dx
i=1 ' i=1 '

7 1

:zn:n[h,...,h],
=1

where

Tyh] == —Ah+ F(g)h - f F(o)h

Q
and

£(i) . £(i) .
Ti[h,...,h]::f,((p)hz][ Mhz forall 1<i7<n.
Z! 0 1!
We now prove that T; € £;(X,, LP(Q)). For all hy,...,h; € X}, and 1 < i < n, we have

T‘i[hla'whi} ﬂ[h1a>hz]

<

£P(9) £5°(9)

£(4)
+CH][ / ,'(@)hl...hi
L£2() Q v

< CTJ kil < CT] IRl x,,
=1 =1

7

7(3)
gCH / ,'(“O)hl...hi
' £=()

which implies that T; € £;(X,,LP(Q)) for all 1 < i < n. In the case i = 1, since —A is
linear, continuous from X, to LP(2), we easily deduce that T1 € L(X,,, LP(€2)). Therefore,
E’ is analytic on a neighborhood of ¢.

Verifying (H5)(iv): It is clear that

Rg (L(p)x,) € RgL(p) N LP(Q2).

Now, we claim that
Rg (L(¢)lx,) D Rg L(p) N LP(Q).

Let g € RgL(p) N LP(2), then there exists u € V such that L(p)u = ¢. It is enough to
prove that u € X,. Indeed, note that L(¢)u = g is equivalent to

Au = f'(p)u — ][Qf'(cp)u+g in V*.

Since f'(¢)u — ][ f'(p)u+ g € H, we deduce from Lemma [1.3.5/that u € X3 and
Q
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“Au= Pl ][ Ploutg i
9]
O,u=0 on Of).

We then apply a Sobolev embedding theorem and a bootstrap argument to deduce that
u € Xp, so that (H%)(iv) holds. The proof of Theorem is complete. O

1.4 Large time behavior

This section is devoted to the proof of Theorem We also compute the limit
stationary solution in the one-dimensional case in Theorem below.

Lemma 1.4.1. Let u be the solution of Problem (P) corresponding to the initial condition
ug € L2(Q). Then

(i) For all0 < s <t < o0,

E(a(s)) = E@(®)) + / /Q |2 da (1.50)

(i) Further, E(u(-)) is continuous, nonincreasing on (0, +00), and there exists e such that

lim E(u(t)) =e.

t—o00

Proof. (i) Because of Lemma u is a smooth function on Q x (0, 00) so that

GE@0) = [ (- au- fa)a

:/Q(—Au—f(u)-i-][gf(u))ut
— _/Qu,?(a;,t) dr < 0.

As a consequence, for all 0 < s <t < 0

B(u(s)) = E(a(t)) + / t /Q 2 da.

(ii) We recall that the function F is bounded on IR. Therefore the function t — FE(u(t)),
which is nonincreasing and bounded from below, converges to a limit as t — oo. ]

Definition 1.4.2. We define the w-limit set of ug by

w(ug) := {p € HY(Q) : 3t, — 00,T(ty) — ¢ in HY(Q) as n — oo}
Corollary 1.4.3. Let ug € L%(S2), then w(ug) is non-empty.
Proof. This corollary is an immediate consequence of Corollary O

Lemma 1.4.4. Let ug € L?(2). Then
(i) w(ug) is a compact set of H'(£2).
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(ii) For all ¢ € w(up)
E(p) =e,

where e is defined as in Lemma|1.4.1\(ii).
(iii) Let ¢ € w(ug) then ¢ is a stationary solution of Problem (P), which implies that

“Ap= o) - ][Qf(@ in Q,
81150 =0 on 69

[o= [n

If we assume further that s1 < ug(x) < so a.e., in ), then

Moreover, ¢ € C*°(Q) and

51 < p(x) < 89 for all x €.
(iv) d(u(t),w(up)) = 0 as t — oo, where

d(u(t),w(up)) == inf |[u(t) — ¢llg(q)-
pEw(uo)

Proof. (i) This is an immediate consequence of Corollary [1.2.10
(ii) Let ¢ € w(up) and let {@(t,)} be such that
U(ty) — @ in HY(Q) as n— +oo.
We deduce from the continuity of £ on H!(f2) that
E(¢) = lim E(u(t,) =e,
n—oo

where e is as in Lemma [[.4.1]

(iii) We need to prove that ¢ is a stationary solution. We denote here by u(¢; w) the solution
of Problem (P) corresponding to initial function w. Let ¢, be such that

U(tn;ug) = ¢ in HYQ) as n— oo.
This implies in particular that
T(tn;ug) — @ in L*(Q) as n — oo.
We use to deduce that for all £ > 0,
U(t;T(tn;ug)) — U(t; @) in L2(Q) as n — oo.

In other words,
Ut + tosug) — T(t; ) in L*(Q) as n — oo.

In view of Corollary [1.2.10}, {(7;ug) : 7 > 1} is relatively compact in H'(£2), so that

Uty 4+ t;ug) = U(t; ) in HY(Q) as n — oo.
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It follows that u(; ¢) € w(up). This together with (ii) implies that for all ¢ > s > 0.

E(u(t; ¢)) = E(u(s; ¢)) = e.

In view of Lemma [1.4.1], we have ¢ > s > 0.

0= Bttsp) ~ Blatsi) == [ [ (o) dea

Consequently, for all ¢ > 0, @ (t; ¢) = 0. In other words, w(t; ¢) the solution of Problem (P)
with the initial function ¢ is independent of time. Therefore, ¢ is a stationary solution of
Problem (P), which implies that

—Ap = f(p) —][Qf(so) in Q,
81/90 =0 on Of).

We deduce from the Sobolev embedding theorem and a bootstrap argument that ¢ € C*°(Q).

The identity
/QD = / uo,
Q Q

follows from the mass conservation property (cf. Lemma [1.2.4]).
Now, if s1 < ug < s9 almost everywhere on €2, then it follows from Lemma [1.2.11] that
s1 <W(z,t) <sg forall z€Q,t>0,

so that also,
51 < p(x) < 89 forall x € Q.

(iv) For the purpose of contradiction, we assume that there exists a sequence t,, — co and
g0 > 0 such that
d(u(ty),w(ug)) > ¢eo forall n>0. (1.51)

By Corollary [1.2.10} there exists a subsequence t,, — co and w € H'(Q) such that

U(tn,) — w € w(ug) in HY(N) as k — oo,
Therefore, d(u(ty,),w(up)) = 0 as k — oo, which is in contradiction with ((1.51]). O

Proof of Theorem [1.1.2l We will first prove Theorem in the case

/Quo(:r) 0.

By the mass conservation property, we have that

/Qu(x,t) =0.

Consequently, u(t) € V for all t > 0. Recall from Lemma [1.4.4(ii) that

E =e 1.52
(o) ~ € (1.52)
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It follows from Lemma [I.4.4|(iii) and Lemma that for all ¢ € w(up),
51 S < 82

and that ¢ is a critical point of . We apply Theorem to deduce that E satisfies the
Lojasiewicz inequality in the neighborhood of every ¢ € w(ug). In other words, we have
that for every ¢ € w(ug) there exist constants 6 € (0,3],C > 0 and § > 0 such that

|E(v) — E()|'7% < C||E'(v)||y+ whenever ||v — ||y <. (1.53)

Since FE is continuous on V' (cf. the proof of Lemmal|l.4.4(ii)), we may choose § small enough
so that

|E(v) — E(¢)| < 1 whenever |jv — ¢y < 6. (1.54)

It follows from the compactness of w(ug) in V' that there exists a neighborhood U of w(ug)
composed of finitely many balls B;,j = 1,...,J, with center ¢; and radius ¢;. In each of
the ball Bj, inequality and the Lojasiewicz inequality hold for some constants
; and C;. We define § = min {#;,j =1,...,J} and C = max {C},j =1, ..., J} to deduce
from (1.52)), (1.53)) and (1.54) that

|E() — e['~? < C||E'(v)||y~ for v e U.

It follows from Lemma [1.4.4{iv) that there exists ¢y > 0 such that w(t) € U for all t > .
Hence, for every ¢ > tg, there holds

d, ., 7 oA _ dE
B - o = s ) - o (- G
§ Il

Z SO e

where we have also used (1.50)). Note that for all t > to, u(t) € C*(Q), so that E'(u(t)) € H
and it can be written of the form

E(u(t) = ~au - f@)+ | fw) = .
Q
Applying continuous embedding H — V*, we have

1B @) v+ < CIE @) 2) = Clll| 20y for all ¢ > to, (1.56)

where C is a positive constant. Combining (]1.55[) and (]1.56b we obtain

d, . g _
— = [B(() = e’ > Colltinl| 2(c)-

Here, Cy = i Thus
cc

[a(ts) — a(t2) | 20y < / BT é()(\E(u(tl)) — e’ — |E(a(tz)) — e|’)
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for all tg < t; < t2. Therefore, [[u(t1) — U(t2)||12(q) tends to zero as 1 — oo so that {wu(t)}
is a Cauchy sequence in H. Consequently, there exists ¢ € H such that lim; o u(t) = ¢
exists in H, which together with Corollary [1.2.10] allows us to conclude that

Jim Ju(t) ~ @ll @) = 0.

In the general case, when

/ UO(:E) dx 7é 07
Q

~

instead of considering Problem (P), we consider the Problem (P):

= A+ /(@) —][ F(@) in QxR
~ Q
(P){ 0,u=0 on 9Q x RT,

u(z,0) = up(z) — mo, x € €.
where mg := ][ ug, and f(s) := f(s + mg). We note that
Q

s1—mo < u(x,0) < s9 —my, / (x,0) = 0.
Q

Moreover,
u=u=1u-+mg

and f is analytic on (s1 —1—mg, s2+1—myp). Repeating the above arguments for Problem
(P), we deduce that there exists a smooth stationary solution ¢ of Problem (P) such that

tllglo [u(t) — w”cm(ﬁ) =0.
It follows that for ¢ := 1 4+ myg, we have
Jim [[u(t) — ¢l om = 0.
The proof of Theorem [1.1.2] is complete. O

Theorem 1.4.5. Let the same assumption as in Theorem[1.1.3 hold and let ¢ be the limit
stationary solution as in Theorem . We assume further that N =1 (i.e. we consider
Problem (P) in the one-dimensional case) and that

f'(s) <0 forall sé€|sy,ss)

90:][ Ug-
Q

Proof. We recall that ¢ is a smooth solution of stationary problem

Then

Oz = —f(p) + ][ flp) inQ,
Q
vy, =0 on 02.
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Set w := g,, then w satisfies the problem

Wer + f(P)w =0 in Q,

w =20 on 0f).

Since ¢(z) := f'(¢) < 0, we apply the maximum principle [I0, Theorem 2, page 346] to
w and to —w to deduce that w = 0. Consequently, ¢ is constant. This together mass
conservation property implies that
%) :][ uQ-.
Q

1.5 Rate of the convergence

In this section, we evaluate the rate of the convergence of the solution to the stationary
solution The proof is based once more on the Lojasiewicz inequality. We consider two cases,
first the case that the Lojasiewicz exponent 6 = % and then the case that 6 € (0, %), as it is
done by Haraux and Jendoubi [12]; Haraux, Jendoubi and Kavian [13].

1.5.1 The case that § = %

Lemma 1.5.1 (see [12], Lemma 2.2). Let to > 0 be arbitrary. Assume that there exist
positive constants v and a such that

+oo
/ ”UtH%Q(Q) ds < aexp(—t)  for all t>to.
t

Then for all T >t > tg, we have that

Ju(t) — w(r)ll 2@y < Vabexp(~ 1)

exp(3)

here b :== ———~=—.
where oxp(3) — 1

Theorem 1.5.2. Let (Hg) hold. Assume further that Theorem holds for 6 = 3; then
there exist positive constants K, such that

u(t) = ellr2@) < Kexp(—=6t) forall t>0.

Proof. As in the proof of Theorem it is sufficient to prove this result for the function
u with the assumption that
/ ug = 0.
Q

Since u(x,t) is smooth for all t > 0, we have

d

£ (B@) = B(p)) = (F'(@),m) = —(E'(w), E'(@)) = — | E'@)|%- (1.57)
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Note that
u(t) > ¢ in V as t— oo,

we deduce that for o as in Theorem there exists Ty > 0 such that for all ¢t > Tj
[a(t) —ellv <o
Therefore, by Theorem we have for all t > T
_ 1 _ 1 _
(E(u(t)) — E(v))? = |E(u(t)) — E(p)|2 < C||E'(u(t))]

V.

By using the continuous embedding H — V*, we obtain

(E(@(t) - E(p))? < C1|| E'@(t)|n,

which implies that
(E(u(t)) — E(p)) < G| E' @)l

or equivalently,

1

—IE' @7 < — 5 (B(@(t) - E(v)).

at
This together with (1.57)) implies that
d
%(E(ﬁ(t)) — E(p)) < =Cao(E(u(t)) — E(p)) for all t> Ty, (1.58)

where Cy := 1/C%. We also note that

y(t) := <E(U(To)) - E(@)) exp(—Ca(t — Tp))

is the unique solution of the differential equation

d

%y(t) = —Cyy for t> Ty,

y(To) = E(u(Tp)) — E(p).
Therefore, by [14, Theorem 6.1, p.31] and the differential inequality ([1.58]), we deduce that
for all t > Ty
EW@%J%MS<MM%D—EWO@WP@@—%»

In view of (1.50f), this implies that for all ¢ > Tj

/ e (s)|17 ds < (E(U(To) - E(@)) exp(—Ca(t — To)).
t
Setting a := <E(u(Tg) - E(go)) exp(CyTp) > 0, we obtain the inequality

| e = [ () ds < aexp(-Cat) for all ¢ T,

The conclusion of Theorem [[.5.2] then follows from Lemma [[.5.11 O
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1.5.2 The case that 6 € (0, 3)
We will apply the following lemma.

Lemma 1.5.3 (see [13], Lemma 3.3). Let tg > 0 be arbitrary. Assume that there exist two
positive constant o > and K such that

/ luell72) < Kt271 for all t > to.
¢
Then, we have

VK

Hu(t) — U(T)||L2(Q) S mtia fOT all T 2 t 2 t().

Theorem 1.5.4. Let (Hg) hold. Assume further that Theorem holds for 6 € (0, 3)

and set o := Y, > 0. Then there exists a positive constant K such that
K
[ut) — @llr2@) < 1 :/;_ata for all t> 0.

Proof. As in the proof of Theorem it is sufficient to prove this result for the function
w in the case that
/ ug = 0.
Q

Since u(x,t) is smooth for all t > 0, we have

d

- (E(@) = E(9)) = (E'(@),w) = —(B'(@), E'(@) = = E'@)] (1.59)

Note that
u(t) ¢ in V as t— oo,

we deduce that for o as in Theorem there exists Ty > 0 such that for all ¢t > Ty
[a(t) = ¢llv < 0.
Therefore, by Theorem we have for all t > Tj
|E(@(t)) — E(p)I'™? < CIIE'@(t))llv--
By applying the continuous embedding H < V*, we obtain
(B(@(t)) — E())' ™" = [B((t)) — ()"’ < C1|| E'@(®)) |1,

which implies that
(E(a(t) — E())*" % < G| E'(a(t) |,

or equivalently,

_ 1 _ _
—E' @] < — e (E@) - E(p))* .
1
This together with (1.59) implies that
d (E(m) — E(p)) < —Cy(E(u) — E(gp))2(1_9) for all ¢ > Ty, (1.60)

dt
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where Cy := 1/C%. We also note that

~1/(1-20)
y(t) == ((E(U(To) — E(9))*7" + Cy(1 - 20)(t — To))

is the unique solution of the differential equation

d

%y(t) = —Coy®0 for ¢ > Ty,

y(To) = E(u(To) — E(p)).

Therefore, by [I4, Theorem 6.1, p.31] and the differential inequality (1.60] -, we deduce that

B

| A

—1/(1-26)
E()? 1 + Cy(1 — 20)(t — TO)>

—1/(1—26)
( E(p)?~1 — Cy(1 - 20)Ty + Co(1 — 29)t>
—1/(1-26)
( E(p)* ™! = Cy (1—29)T0+Cz(1—29) + Cy(1—26)= )

. ~1/(1—20)
< (C’Q(l — 29)2> for all t > 2T.

It follows that for all ¢t > 2Ty

N . ~1/(1-26)
[ has)E < (@(1 . 2e>2> .
t

—1/(1-20)
C(1 — 20)
s — and o =
2 1-—260

We set K := ( > 0, then

/ |t (s)|* ds < Kt—2271,
t

which by Lemma [1.5.3|implies that

K
|la(t) — pllg < 1 \_/;ato‘ for all t > 2Tj.
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Chapter 2

On the large time behavior of the
solutions of a nonlocal ordinary
differential equation

Résumé. Nous analysons le comportement en temps long des solutions d’une équation
différentielle ordinaire non locale. Un résultat de convergence est prouvé pour une grande
classe de fonctions initiales. Nous caractérisons également la fonction limite, et montrons
qu’il s’agit d’une fonction en escalier.

Abstract. We analyse the large time behavior of solutions of a nonlocal ordinary differential
equation. A convergence result is proved for a large class of initial functions. We also
characterize the limit function and we prove that the limit function is given by a step
function.
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2.1 Introduction

We consider the initial value problem for the equation

up = f(u) = £ fu) inQx(0,00),

u(x,0) = ug(z) x € Q,

where Q is a bounded, open set of RY with N > 1 and

][Qf(u) = |(12|/Qf(u(x))dx.

We assume that f € C'(IR) is such that there exists m < M sastifying f'(m) = f'(M) =0
and
f'<0 on (—oco,m)U(M,+x), f' >0 on (m,M);

We suppose further that there exist s, < s* satisfying

{s* <m<M<s*
f(S*) = f(M), f(S*) :f(m)

f(s)
F/(m) = f/(M) = 0
sl\ om /IN\s

N/ ™ 5 &

Note that there exists a constant ¢y > 0 such that

f'(s) <cy forall s€lR. (2.2)

A typical example is f(s) = s — s°.

Constants s1,s2: Let s1, 59 be two constants such that s; < s, < s* < so. The following
property holds

f(s2) < f(s) < f(s1)  forall s € (sq,s2). (2.3)

Assumption on the initial function: For the existence and the uniqueness of the solu-
tion, we suppose that the following hypothesis is satisfied
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(H1) up € L>®(Q) and s1 <wup(z) < sp for ae. xe€ Q.
For the large time behavior, we assume furthermore one of the two hypotheses
(Hz)][ up & [54,8";
Q
(H3) s« <ug < s* and [{z € Q:up(x) = s} =0 for all s € (m, M).

Theorem 2.1.1. Assume that (Hy) holds. Then Problem (P) possesses a unique solution
u € C([0,+00); L>(Q)). Moreover, for all t > 0, we have

s1 <wu(x,t) < sy forae x€.

Theorem 2.1.2. Let (Hy) hold and let p € [1,400) be arbitrary.
(i) If we assume further that (Hg) holds, then

u(t) = in LP(Q) as t — oo,

where
)= ][ uo(z) dz.
Q
(i1) If we assume further that (Hg) holds then
u(t) > in LP(Q) as t — oo,

where ¥ is a step function. More precisely, ¢ takes at most two values a_, a4 such
that f(a—) = f(at+ ) and that

f/(a—> <0, f/(a-l-) <0.

The essential difficulty of this problem is due to the lack of diffusion term, so that
the solution is not very smooth. In particular, it is more difficult to prove the relative
compactness of the solution orbits. Applying the rearrangement theory, we introduce the
problem (P*%) in one space dimension which possesses a unique solution uf which is such
that {uf(t)} is relatively compact in L'((0,]Q|)). We study the large time behavior of the
solution of Problem (P*) and then deduce the result for the original problem.

The paper is organized as follows: in Section we prove Theorem In Section
[2.3] we prove some properties of the solution u. We also prove in this section that Problem
(P) possesses a Lyapunov functional. In Section applying the rearrangement theory,
we introduce Problem (Pﬁ) and present some properties of its solution. In section the
uniqueness of the elements of the w-limit set w(ug) for Problem (P*) is proved. Theorem
is proved in Section We also show by means of a nontrivial counterexample that,
when Hypothesis (Hg) on the initial function does not hold, the limiting function may take
three values. In Section we give some auxiliary propositions.

2.2 Existence and uniqueness of the solution of Problem (P)

In order to prove the existence of the solution of Problem (P), we first consider an auxiliary
problem which has a bounded nonlinearity. We introduce the function f € C(IR) as follows,
0 if s <s1—2,
fls) =14 f(s) ifsesi—1sp+1], (2.4)

0 if s > 594 2.
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We then define the auxiliary problem (P) by
B ][ f@) in Q x (0, 00),
(P)

u(x,0) = up(z) x € €.

Notation: In this section, we denote by X the Banach space C(Q) or LI(Q) for 1 < ¢ < +o0.
We write u(t; ug) for the solution of Problem (P) with initial function ug and @(t;ug) for
the solution of Problem (P) with initial function ug.

Lemma 2.2.1. Letug € X, then Problem (P) possesses a unique solution in C*([0, +00); X).

Remark 2.2.2. Before proving Lemma/2.2.1] we observe that there exists a constant ¢; > 0
such that B
If'(s)] <cp forall selR. (2.5)

Therefore, B B
|f(s) = f(8)] <ci1ls—3§| forall s,5€R. (2.6)

Proof of Lemma [2.2.7] Set
= Fw) ][ e

We will prove that G : X — X is a Lipschitz map. Indeed, let v1,v9 € X, we have

Gv1) — Gv2) = ((v1) — F(v)) — ( £ Gt - f<v2>>> |

Therefore,

(G o) — Cloa)llx < [ F(wn) — Flun)lx + H £ (- f‘<v2>>H

X

; 11l
< 17(wn) = Flen)lx + S [ 17wn) = Feo)

= 17(en) = Flolls + L1 7wn) = Fenlira

We deduce from (2.6) that

I60) - Glez)lx < exllor = vallx + el —vallaco

[l

< cyljvr — ol x + 0] cicallvr — w2l x
1] x >
=(c+ cicg | |lvr — v2llx-
( €2
We define L := (¢1 H]S!\ c1c2) > 0, then
”G(U1) — G(UQ)HX < LHvl — UQHX for all vy,v0 € X. (27)

In other words, G is a Lipschitz map from X to X. Now, the conclusion of Lemma [2.2.1
follows from [5, Theorem 7.3, page 184]. O
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Corollary 2.2.3. The solution is continuous with respect to the initial data. More pre-

cisely, let uip,ug0 € X and let Uy, Uy be solutions of Problem (P) corresponding to uig, u20,
respectively. Then

Hﬂl(t) - ﬂg(t)HX < Hu10 - UQQHX exp(Lt) for all t >0, (28)
where L is the Lipchitz constant given in the proof of Lemma|2.2.1].

Lemma 2.2.4 (Mass conservation). Let the same assumption as in Lemma hold.
Then,

/u(w,t)dmz/uo(x) dx  for all t> 0.
Q Q

Proof. Integrating the differential equation in Problem (P) from 0 to t, we get

) -u0) =[5 = [ [rw- f 5],
u(z,t)dx — | wo(x)dr = t f@)— { f()| =0.
Q Q 0 JQ Q

This completes the proof of Lemma [2.2.4 O

so that

Lemma 2.2.5. Suppose that ug satisfies Hypothesis (Hy), namely,
s1 <wug(x) < s9 forae xeQ.

Then for all t > 0,
s1 <u(z,t) < sy for ae. x €

The main idea of the proof of Lemma is to approximate the initial function ug by a
sequence of continuous functions and to first obtain the result for solution of approximate
problems. Then, we deduce the result for the original problem. To begin with, we state the
following result.

Lemma 2.2.6. Given ug € L>(Q) satisfying s1 < uo(z) < s2 for a.e. x € Q. Then there

exists a sequence {uno} in C(2) such that s; < upg < s2 on €, and that
Ung = up in LY(Q) as n — oo.

The proof of this lemma will be given later. Next, we will use Lemma to prove Lemma
2.2l

Proof of Lemma [2.2.5l Let %, be the solution of Problem (P) with the initial function
Uno- Since unzg € C(Q), U, € CH([0,+00); C(R)) and hence %, is continuous on 2 x [0, +00).
We will first prove that

81 < Up(z,t) < 89 for all x € Q,t > 0. (2.9)

For the purpose of contradiction, we suppose that there exists a first time tg > 0 such that

Up(xo,to) = 1 Or Up(xo,to) = S2
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for some g € 2. Without loss of generality, assume that %, (zo,ty) = s2. By the continuity
of @, and the definition of 3, we have

51 < Up(x,t0) < 89 for all x € Q, and Uy, (z,t) < sp forallz € Qand 0 <t <ty. (2.10)

By (2.10), we have

_ . Up(wo,to — At) — Up(xo, to
unt(x(];to) = A}tl_l;r(l}i» n( _A)t ’Vl( ) Z 0’

which we substitute in Problem (P) to obtain
][ (f(s2) = f(@n(z,t0))) da > 0. (2.11)
Q

Since s1 < Up(x,t9) < so for all z € €, it follows that
f(s2) < f(n(z,t9)) for all x € Q.
which together with (2.11)) implies that

F(s2) = F(n(z,10)) forall o€,

and hence -
Uy (z,tg) = s9 for all = € Q.

Therefore,
][ Upo(z) dz < s2 :][ Up(z,to) dx,
Q Q

which contradicts the mass conservation property stated in Lemma This completes

the proof of ([2.9).

We now show that for all ¢ > 0,
s1 <u(x,t) < sg almost everywhere on (.
In view of , we have
[(t) —n(t)||L1(q) < lluo — unoll1 (o) exp(Lt) for all t > 0.
Therefore for all ¢t > 0,
Tp(t) = a(t) in LY(Q) as n — oco.
Consequently, for each ¢ > 0, there exists a subsequence {y, ;(t)};>0 of {n(t)}n>0 such that
Upj(z,t) = U(x,t) forae. € as j— oo,
which together with follows that for each ¢ > 0,
s1 <u(x,t) < sp forae. zeQ.

We completed the proof of Lemma [2.2.5] O
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Proof of Lemma [2.2.6l First, we extend the function ug to wo defined on IRY by
uo(x) it zeQ
wo(z) = N
s1+s
ez elsewhere.
2
Obviously,
s1 <wp(z) < sy for ae. z e RV,
For all n large enough such that
1
81+ — <8 — —,
n n
we define
. 1 1
Wpo := min {52 — —, max{wy, $1 + }} .
n n
Then, we have
1 1
s14+ — <wpo(r) <sg—— ae. zx€ RV, (2.12)
n n
and moreover,
[[wno — UOHLl(Q) = [Jwno — wOHLl(Q)
Q
< 19wy — ooy < 0.
As in [2 Theorem 2.29, page 36|, we can choose a smooth function u,o such that
_ <
[[uno wnO”Ll(Q) = .
n
More precisely,
Uno(x) := / Je(x — y)wno(y)dy, for e small enough, (2.13)
]:RN
where -
Je(x) = E_NJ<*)7
€
with J € C2°(IRY) is a nonnegative function satisfying
J(x)=0 if |z|>1, and J(x)dx = 1.
RN
Note that J; is nonnegative and that
/ Je(x)de = 1. (2.14)
RN

It follows from (2.12)), (2.13]) and (2.14)) that

1 1
$14+ = <upg < s9—— forall xeRN.
n n
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Moreover,
2|
ltno = woll () < lluno = wnoll£1() + [lwno — uoll (o) = ==
It follows that
Upo — Ug I LI(Q) as n — +oo.
The proof of Lemma [2.2.6] is complete. O

Lemma 2.2.7 (Mass conservation). Let u € C*([0,400); L°(Q)) be a solution of Problem
(P), then

/u(x,t) dx = / uo(x)dz  for all t> 0.
Q Q
Proof. The proof is similar to the one of Lemma We omit it. O

Proof of Theorem [2.1.1l According to Lemma u € CH([0,+00); L®(£2)). More-
over, because of Lemma for all t > 0 we have

s1 <u(x,t) < so forae ze.
This together with the definition of f in implies that for all ¢ > 0
f@(z,t)) = f(u(x,t)) for ae. € Q.
It follows that w satisfies

W = ) - ][Qf(U) ~ f@) - ][Qf(u) in L(Q)

u(z,0) = up(x).
Therefore, % is a solution of Problem (P) in C*([0, +00); L>®(R)).

Next, we prove the uniqueness of the solution of Problem (P). For this purpose, let

up € L*(Q) such that
/ uo(x) dx = / uo(z) dz
Q Q

and let u € C1([0, +00); L%°(£2)) be a solutions of Problem (P) corresponding to the initial
function wy. We denote by w := u — u, and use mass conservation property (cf. Lemma

2.2.7)) to deduce that
/ w(z,t)dr = /(uo(x) —up(x))dx =0 for all ¢>0. (2.15)
Q Q

We multiply the difference of the equations for v and @ by w, then integrate over {2 to obtain

1d 2 N w) — F() w — w uw) — f(u
s Qw(t)—/g[f() F(@)] /Q][Q[fﬂ Ul

- [ [t - r@]e,
Q
where the last equality follows from ([2.15)). It follows from ([2.2) and that

- = <
th/gw(t)_co/gw,

which together with Gronwall’s lemma implies the uniqueness of the solution. ]
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Lemma 2.2.8. We define
Z ={we X such that sy <w(x) < sy fora.e xeQ}
and equip with Z the distance d given by d(wy,ws) := ||w1 — we||x. Then the mapping
w — u(t;w)

from Z to Z is continuous, where we recall that u(t;w) is the solution of Problem (P) with
the initial function w.

Proof. First we remark from the proof of Theorem that the solution of Problem (P)

with initial function w € Z coincides with the solution of Problem (P) with the same initial
function w. Namely, u(t;w) = u(t; w) for all w € Z. This together with (2.8)) follows that

[[u(t; wr) = u(t; wo)llx = [[u(t; wi) —u(t; wa)|x < exp(Lt)|lwr — wallx,

for all wy,we € Z. This completes the proof of Lemma [2.2.8] O

2.3 Some properties of the solution

In this section, as a preparation for next section, we consider an ordinary differential
equation which is related to Problem (P). This study puts forth some properties of the
solution of Problem (P), which are stated in Lemma below. To begin with, we define
the function

A(t) := ][Qf(u(t)), (2.16)

where u is the unique solution of Problem (P) given in Theorem Note that

Alt) = ][Qﬂu(t)), (2.17)

s1 < u(t) < sy almost everywhere on (.

We consider the problem

(ODE)
Y (0) =s.
Lemma 2.3.1. Let s € IR. Problem (ODE) possesses a global unique solution in C*([0, +00)),
which is denoted by Y (t;s). Moreover,
(1) if s < § then Y(t;s) < Y(t;3) for allt > 0;
(i) if s1 < s < s then s; <Y (t;s) < s for allt > 0. In this case, Y (t,s) satisfies

V= f(Y) = A®);

(iii) we define the function h! : IR — TR by h'(s) := Y (t;s). Then h' is bijective, increasing
from IR to R.
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Proof. First, we prove that A is continuous on [0, +00). Indeed, it follows from (2.17)) and

[26) that

< orllu®) —u(™)llLye) < allu(t) — w(T)l = ()-

Since u € C1([0,4+00); L>(£2)), it follows that A is continuous on [0, +occ). Therefore, the
function H defined by

H(Y,t):= f(Y) = A

is continuous on (—oo, +00) X [0,4+00). Moreover H satisfies a global Lipschitz condition:
|H(Y1,t) — H(Y2,t)| = |[f(Y1) = f(Y2)| < 1|1 = Y

for all ¥1,Y2 € IR, ¢t > 0. By the standard theory of ordinary differential equations (for
instance, see [3, Corollary 8.3, page 57]), Problem (ODE) possesses a unique solution in
CL([0, +0)).

(i) We define W (t) := Y (t;5) — Y (¢;s). Then W satisfies the equations

W' = f(Y(t;3) — F(Y(t;5))
W(0)=5—s>0.

Note that
1
FOvs9) = Fv(6s) = [ [Frv s + 0=y (es)]ar
1
= V(D) = V()] [ PV (=Y ()l = W),
where

1
= /0 f'(7Y(t3) + (1 — 7)Y (t;8))dT.

Thus, W satisfies the initial value problem

{W’—e<> (1)

so that .
W(t) = W(0) exp ( /0 9(7)d7> 0.

It follows that
Y(t,5) >Y(t,s) forall t>0.

(ii) First, we prove that

f(s2) < A(t) < f(s1) forall t>0, (2.18)

or equivalently,
f(s2) < A(t) < f(s1) forall t>0.
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This follows from ({2.3) and the fact that

s1 <u(z,t) < sg forae ze€Qt>0

We now define the differential operator £ by
LY):=Y' —HY,t) =Y — f(Y)+ \2).
We deduce from that
L(s1) <0=LY) < L(s2).
These differential inequalities and [9, Theorem 6.1, page 31] imply that
s1 <Y(t;s) < s forall t>0,

provided that s1 < s < s9.
(iii) Let t9 > 0 be arbitrary. It follows from (i) that if s < 3, then

Y (to; s) < Y(to; 5);

hence, we have
h'o(s) < h'0(3).

Consequently, A is injective, increasing on IR.

Now we claim that h'0 is surjective. Let S € IR be arbitrary. We consider the problem

Y' = F(Y) = A(t)
Y(to) = S.

This problem possesses a unique solution in C1([0, +00)) (cf. [3, Corollary 8.3, page 57]).
We denote by Y (¢; to; S) that solution. We also remark that the solution of Problem (ODE)
can be written as Y (¢;0;s). Moreover, by the uniqueness of the solution, we have that

Y (to; 0; Y (0 to; S)) = S.
Therefore, h' (Y (0;t0; S)) = S, so that h'® is surjective. O
Lemma 2.3.2. Let (Hy) hold. Then for allt > 0, we have
u(t) = h'(ug) almost everywhere on (.
Proof. We define
z(x,t) == h'(ug(x)) = Y (t;up(x)) on € x [0, +00).
We need to prove that for all ¢ > 0

z(t) = u(t) almost everywhere on (.
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First, by the definition of Y (¢;-), we see that for all z € Q; z(z,-) € C([0,4+00)) and

0z

5 (@) = f(2(2.1)) = A(t) in Qx[0,00),

(2.19)
2(z,0) = up(z) x € Q.

The right-hand-side of the differential equation in (2.19) is bounded in L*°(0,T; L*°(Q2))
which together with the continuity of A implies that z € C1([0, +00); L>(£2)).

We integrate from 0 to t the difference of the equations for v and for z to obtain

ult) — =(t) = /0 (Flu(r)) — F(z(r)) = /0 (Flu(r) — F(z(r).

It follows from (2.6) that

lu(t) — 2(8) | (e < /0 1F(u(r) = F) e < /0 lu(r) = 2(7)| ()

which together with Gronwall’s inequality completes the proof of Lemma [2.3.2 O

2.4 Problem (P*) obtained by the rearrangement theory

This section is devoted to introduce Problem (P*) by using the rearrangement theory.
Problem (P*) is a version of Problem (P) in one space dimension. We first recall some
known results about rearrangement in Section [2.4.1] Then in Section we introduce
Problem (P*) and present some properties of its solution, which we state in Theorem [2.4.10)
2.4.1 Rearrangement theory

Let w be a function from €2 to IR. Then the distribution function of w is given by

tw(8) = [{z € Q:w(x) > s}.

Definition 2.4.1. The (one-dimensional) decreasing rearrangement of w, denoted by wh,

is defined on [0, |Q]] by

{ w?(0) := ess sup(w) (2.20)

wh(y) = inf{s : pu(s) <y}, y>0,

where
ess sup(w) :=inf{a : [{z € Q: w(z) > a}| = 0}.

Remark 2.4.2. w’ is nonincreasing. (cf. [IT, Proposition 1.1.1, page 3].)
Remark 2.4.3. w' is a function defined for all y € [0, |2]] and it is uniquely defined by the
distribution function p,,. Consequently, if wy,ws : 2 — IR are such that

wi(z) = wa(x) forae x€Q,

then

wh(y) =wh(y) forall yelo,|Q.
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We recall some properties of w# which are stated in [11, Chapter 1].

Proposition 2.4.4. (i) w',w are equi-measurable, i.e. [z = fi,
(ii) if G is a Borel measurable function such that either G > 0 or G(w) € L*(2) then

1€2|

Glwt) = / Glw).
0 Q
(iii) Let wy,we € LP(Q) for 1 < p < 400 then

lwh — whl| oo < llwr — wall Lo y-

Proof. (i) see [11l, Corollary 1.1.3, page 4].
(ii) see [I1, Theorem 1.1.1, page 5; Corollary 1.1.3 page 6].
(iii) see [11l Proposition 1.2.1, page 8 and Theorem 1.2.3, page 12].

Remark 2.4.5. Since w and w' are equi-measurable, we have the following properties:
{wh > s} = [{w > s};
{wt = s} = {w = s}.
Remark 2.4.6. If s; < w < s9 almost everywhere on €2, then
s1 <wh(y) < sy forall yelo,|Q.
Proof of Remark[2.4.6. Since w! is nonincreasing, it is sufficient to prove that
s1<wf(|)  and  w*(0) < so.
First, in view of the definition of w! in , we have
wh(0) = ess supw < s9
{wﬁom) — inf{s : pu(s) < 2}

We only need to show that
inf{s : py(s) < |Q} > s1.

Note that for all 7 € (—o0, s1], we have p,(7) = |Q|. Therefore 7 & {s : py,(s) < ||}
Consequently, we have
{s: p(s) <10} C (s1,+00)

so that
inf{s : pu(s) < |Q} > s1.

The following proposition will be used later.

Proposition 2.4.7. Let ® : R — R is increasing, bijective and let w : Q — IR. Then
(@(w)(y) = (w(y))  forall y€0,]Q).

The proof of Proposition will be given in Section
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2.4.2 Problem (P¥)

We consider the problem:
1€2]
ve=f(v) =4 f(v) in (0,|€) x (0,00),
(PF) 0
v(y,0) = uf(y) y € (0,1€]).

Problem (P*) is a one-dimensional space variant of Problem (P), so that all results stated
in Section for Problem (P) also apply to Problem (P*). We note that all hypotheses
(H1), (Hz2), (Hs) for the function ug are satisfied by ug. More precisely, we have the following
result.

Lemma 2.4.8. If uy satisfies (Hy) (respectively (Hg), (Hg)) then, u(ﬁ) satisfies the same
statement, respectively.

Proof. First, it follows from Remark that if 51 < ug < s1 then 51 < ug < s9. We also

note that
][ 1 / 1 /IQ 4 ][IQI 4
U= — | ug= — Uy = up.
Q 12| Jo Sy ° o 0

Therefore, the hypotheses (Hy), (Hz) are invariant by operation f.
Now, we consider (Hg). Assume that [{ug = s}| = 0 for all s € (m, M). According to
Remark [2.4.5] we deduce that

{u* = s} ={u=s}=0 forall se (m,M).
The proof of Lemma [2.4.8|is complete. 0

Remark 2.4.9. If ugy satisfies (Hs), then s, < ug(y) < s* for all y € (0,|9]) and ug is
strictly decreasing on {x : u%(m) € (m,M)}.

Theorem 2.4.10. Let (Hy) hold. We define
u(y.t) = (u(t))*(y) on (0,]9) x [0, +00);
then u® is the unique solution of Problem (P%) in C'([0,00); L=((0,|))). Moreover,
s1 <uf(y,t) <sy forall ye(0,]Q),t>0; (2.21)

and
(y,t) = Wi (uf(y))  for all y € (0,12).t > 0. (2.22)

Proof. First we prove (2.21) and (2.22)). Since

s1 <u(w,t) < sy forae z€Qt>0
we deduce from Remark [2.4.6] that

s1 < uf(y,t) < sy for all y € (0,|Q),t > 0.
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In order to prove (2.22)), we recall from Lemma that u(t) = h'(ug) almost everywhere
on Q. We then apply Proposition to obtain for all ¢ > 0,

ut(t) = (h'(uo))* = h(uf) om (0,|2). (2.23)

Now, it remains to prove that u® is the unique solution of Problem (P*%). As a consequence

of (2.23) and Lemma we have for all y € (0,(9),t >0

out -
O .t) = Fub(w.1) ~ M)

2]
ff ) - f S @20

where the last identity follows from Proposition [2.4.4{ii). Note that the right-hand-side of
is bounded in L>°(0,7"; L>°((0,|€2|))) which together with the continuity of f implies
that u* € C1([0,+00); L>=((0,]Q]))). Therefore, u* coincides with the unique solution of
Problem (P*) in C([0, 00); L>=((0,|92]))). The proof of Theorem is complete. O

Corollary 2.4.11. Let (Hy) hold. Then for all y € (0,|Q|) the function uf(y,-) is the
unique solution of Problem (ODE) in C'([0,+o0)) with initial condition ug(y) Moreover,
for all y1,y2 € (0,|92)),

(i) ifu%(yl) = ug(yg) then uf(y1,t) = uf(y2,t) for allt >0,
(i) if ug(yl) < u(ﬁ)(yg) then uf(y1,t) < uf(y2,t) for all t > 0.
Proof. This corollary is an immediate consequence of (2.22) and Lemma [2.3.1 O

Theorem 2.4.12 (Lyapunov functional). Let vg € L*((0, |€2])) be such that s1 < vo(y) < s2
for a.e. x € (0,]9]). Let v € CL(]0, +00); L=((0,|92]))) the unique solution of Problem (P*)
corresponding to the initial function vg. We define

€2

E(u(t)) = - ; F(u(y,t)) dy,

where F(s) = [J f(r)dr. Then,
(i) we h(we for all o > 1 > 0,

T 1
(u(m) ~ Eu(r) = - | A oo dyd;

(ii) E(v(-)) is continuous and nonincreasing on [0, +00), and there exists the limit of E(v(t))
as t — o0.

Proof. (i) We have

d d [ 12|
Fee®) =5 [ Fo == [ fopm

We also remark that fQ v = 0, so that

d o] fof |
5Et) = —/0 ((f(v)—][0 f@))) vt:_/o 2.
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Intergrating this identity form 7 to 7, we obtain
T2 |Q| )
E(u(ra)) — E(v(m)) = —/ / e 2 dydt.
1 0

(ii) As a consequence of (i), £(v(+)) is continuous and nonincreasing. Moreover, £ is bounded
from below since —F' is bounded from below. Therefore there exists a limit of £(v(t)) as
t — 0o, which completes the proof of (ii) O

2.5 w-limit set of Problem (P*)

This section is devoted to study the set w(uﬁ), which is defined as follows:

Definition 2.5.1. We define the w-limit set of ug by

w(ug) = {p e L'((0,]9))) : 3, — oo,uﬁ(tn) — ¢ in L'((0,]9Q])) as n — oo}.

In Section 5.1, we prove that w(uﬁo) is non-empty and study some properties of w(u%). We

then prove in section 5.2 that w(ug) is composed of a single element.

2.5.1 Properties of w-limit set

In the following, we first prove that w-limit set is nonempty. To begin with, we recall
the definition of the BV-norm of functions of one variable (cf. [7, Remark (ii), page 170;
Section 5.10.1 page 216]).

Definition 2.5.2. Let —o00 < a < b < oo and let w be a L'-measure from (a,b) to R. The
BV-norm of w s defined by

]l By (ap) = 1wl L1 ((ap)) + ess Viw,

where

j=m
ess Vow := sup Z lw(tjr1) —w(t;)]
j=1
Here the supremum is taken over all finite partitions a < t; < --- < tyq1 < b such that each
t; is a point of approximate continuity of w.
Lemma 2.5.3. The set
(W) : t>0}
is relatively compact in L*((0,]9])). Consequently, w(ug) is nonempty.
Proof. Tt follows from (2.21)) that
s1 < uf(y,t) <sy forall yel0,]Q],t>0.

Moreover, for all ¢+ > 0, uf(-,t) is nonincreasing on [0, |Q], so that we can deduce from
Definition that there exists a constant ¢ > 0 such that

[W* ()| By (oo < ¢ forall ¢>0.

By the compact embedding BV ((0,|92])) < L((0,]92])) (cf. [7, Theorem 4, p. 176]), we
deduce that the set {u®(t) : t > 0} is relatively compact in L'((0,|2])). This completes the
proof of Lemma [2.5.3 ]
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Lemma 2.5.4. Assume that (Hy) hold. Let ¢ € w(ug), then the following assertions hold:
(i) s1 < p(y) < s2 forae ye(0,Q); and f()m' 0= AQ\ ul.
(ii) E(-) is constant on w(uu).

(iit) @ is a stationary solution, which implies that there exists a constant k, such that
fle(y)) = ky for a.e. ye(0,[Q).

Proof. Before proving (i), (ii) (iii), we deduce from the definition of w(ug) that there exists
a sequence t, — 400 such that

u(t,) = ¢ in LY((0,]9]) as n — oco. (2.25)

(i) It follows from ([2.25]) that there exists a subsequence of {t¢,} (still denoted by {t,}) such
that as n — 400
Wy, tn) = @(y) for ae. ye (0,|Q).

Moreover, we have that
s1 < uf(y,t,) < so forall y e (0,|Q]),n >0,

so that

s1 < p(y) < sg for ae. ye (0,|Q).
The identity f0|m p= O‘Q| u(ﬁ) follows from the mass conservation property (cf. Lemma|2.2.7))
and the convergence of uf(t,) to ¢ in L'((0,]2])) as n — oo.

(ii) First, it follows from Theorem [2.4.12((ii) that

lim €(uf(t)) = Ene.

t—o00

for some constant £. We define c3 := sup,¢(, 4, |f(s)|. We have

12
(W (tn)) — E(p)] < /0 |F (W (tn)) — F(¢)] < esl|uf (ta) — @l (0, 11)-

Letting n — oo, we deduce from ([2.25)) that

E(p) = lim E(u(tn)) = Exc, (2.26)
In other words,
8|w(ug) = Eoo- (2.27)

(iii) We have to prove that ¢ is a stationary solution. We denote here by v(¢; w) the solution
of Problem (P*) corresponding to initial function w. By (2.25), we have

v(tniud) — o in LY(0,]9]) as n — oco.

It follows from Lemma which expresses the continuity of the semi-group with respect
to the initial data that for all ¢ > 0,

v(t;v(t; b)) = v(t; @) in L'((0,]9]) as n — occ.
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In other words,
v(t+toufh) = v(t;p) in LY(0,]9]) as n — oo.

It follows that v(t;¢) € w(ug). This together with (2.27)) implies that for all t > s > 0.

E(u(t; ) = E(u(s; ¥))-

In view of Theorem [2.4.12i), we have that

t o9l
0=2CE(v(t;p)) —E(u(s; ) = —/ / lvs(t; )| dydt ~ for all t>s>0,
s JO

which implies that
vi(p) =0 aein (0,]Q) x R*.

Thus the solution v;(t; @) of Problem (P*) with the initial function ¢ is independent of time.
Consequently, we have that

o]
fle(y) = . f(p) =1k, for ae. y e (0,[8).

O]

Corollary 2.5.5. Let ¢ € w(ug). Then up to a modification on a set of zero measure, @ s
a step function. More precisely, we have one of the following cases:

€2

(i) I by & [F(m), fQOM)), then o = ][0 uh(y) dy.
(”) If kcp € (f(m)7 f(M>)7 then
Y =a-XA_+aoXA, T G+XA,;

where

se <a— <m,ag € (m,M),M < ay <s* satisfy f(a—) = f(ao) = flas) =k,
(2.28)
and A_, Ao, Ay are pairwise disjoint subsets of (0,|Q]) such that A_ U Ag U Ay =
(0,192]).
(1it) If k, = f(m), then
e(y) = mxa_ +s"xa,,
where A_ and A+ are disjoint and A— U Ay = (0,|Q]); (note that here a— = ag :=m
and a4 := s*).
(w) If k, = f(M), then
©(y) = sexa_ + Mxa,,

where A_ and A4 are disjoint and A_ U Ay = (0,|Q|); (note that here a_ = s, and
ap = a4 :=M).
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Proof. (i) If k, & [f(m), f(M)], then the equation f(s) = k, has a unique solution a. This
together with Lemma [2.5.4{(iii) follows that

o(y) =a forae. ye (0,Q]).

Because of the mass conservation property, we have

fof @,
a:][ @:][ Ug.
0 0
ol
w(y)—][ UO_][ uo-
0 Q

(ii) If k, € (f(m), f(M)), then the equation f(s) = k, has exactly three solutions which
are denoted by a_,ag,a+ with a— < ap < a4. This together with Lemma [2.5.4{(iii) implies
that ¢ is a step function and the sets A_, Ag, A+ are defined by

Therefore,

Ai=¢Mao), Agi=¢ ao) and Ay = (ay).
(iii), (iv) The proof (iii) and (iv) are similar to the proof of (i) and (ii). We omit them. O

2.5.2  w(u)) is composed of a single element

The main result of this section is the following.

Theorem 2.5.6. Let (Hy) hold.

(i) If we assume that (Hgz) holds, then w(ug) only contains one element ¢ given by

ply) = ][Lglug = ][Quo-

(ii) If we assume that (Hg) holds, then w(ug) only contains one element v, where ¢ is a step
function. More precisely, ¢ takes at most two values a_, a4 such that f(a_) = f(at )
and that

fllas) <0, f'(ay) 0.
Proof of Theorem [2.5.6((i). Let ¢ € w(ug). We first prove that

ko & (f(m), f(M)).
Indeed, if k, € (f(m), f(M)), then it follows from Corollary [2.5.5(ii) that

Y =a-xA_+aoxa, + a+xa,,

-, le]
][ U :][ Y € la_,a4] C [s4,57],
0 0
2]

which contradicts ][ ug & [s«,s"]. Similarly, k, # f(m), k, # f(M). Therefore, k, ¢
0
[f(m), f(M)]. It follows from Corollary [2.5.5(i) that

12 4
cp:][ Ug-
0

so that
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1]
Therefore, w(ug) only contains the element ¢ = ][ ug. The proof of Theorem [2.5.6(1) is

0
complete. ]

The remaining part of this section is devoted to the proof of Theorem ii). We first
define for each t > 0,

Q-(t) = {y € (0,20), & (y, 1) < m},
Qo(t) = {y € (0,]2),m < ui(y, 1) < M},
Q(1) = {y € (0,20), ¥ (y, 1) > M}.
Lemma 2.5.7. Suppose that (Hy), (Hg) hold. For everyt' >t > 0 the following assertions
hold
(i) if ut(y,t) < m, then uf(y,t') < m,
(i3) if uf(y,t) > M, then uf(y,t') > M.
Proof. First, we prove that )
flm) < A(t) < f(M), (2.29)

or equivalently

f(m) < A(t) < f(M).

1 1
Indeed, we apply Theorem [2.4.10] with s1 := s, — — and s3 := s* + — to obtain that
n n

1 1
5. — — <u(y,t) < s+ = forall ye(0,]Q),t>0 and for all n>0,
n n

which in turn implies that
s, < uf(y,t) < s* forall ye (0,|Q]),t>0,

so that (2.29) holds.
(i) We recall that

By using (2.29)), we have
L(m) > 0.

Since by Corollary [2.4.11} uf(-,t) is the unique solution of Problem (ODE) with the initial

condition ug(y), we have that

L(u*(y,-)) =0 for all ¢ > 0.
The assertion (i) follows from [9, Theorem 6.1, Page 31] and the differential inequality
L(uP(y,"))=0< L(m) forall t>0.
(ii) The proof of (ii) is similar to that of (i). We omit it here. O

The following corollary is an immediate consequence of Lemma
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Corollary 2.5.8. Suppose that (H1), (Hs) hold. For every t' >t >0,
Q_(t)CcQ_(t), Q@) Qi) and Qo) D Q(t).

In other words, Q_(t), Q4 (t) are monotonically expanding in t and Qo(t) is monotonically
shrinking in t.

We define
Q,(OO) = UtZOQ,(t),QO(oo) = ﬂtEOQO(t) and Q+(OO) = Utz()QJr(t). (230)

Corollary 2.5.9. Suppose that (Hi) and (Hsz) hold. Then Q_(c0),0(00), 24 (c0) are
pairwise disjoint and
(0,19) = 9 (00) U2y (00) U (s0).

Moreover,

Q_(00) ={y € (0,|Q|) : there exists to >0 such that uf(y,t) <m for all t>ty}
Qo(o0) = {y € (0,]9]) : m < uf(y,t) < M for all t >0},
Qy(00) ={y € (0,|Q]) : there exists to >0 such that uf(y,t) > M for all t>to}.

Proof. For y € (0,[9]),
(i) either m < uf(y,t) < M for all t > 0 i.e 2 € Qp(c0);

(ii) or there exists to > 0 such that uf(y,tp) < m, i.e. € Q_(c0). In view of Lemma
2.5.7(i), this is equivalent to the fact that uf(y,t) < m for all t > to.

(iii) or there exists tg > 0 such that uf(y,tg) > M, ie. 2 € Q,(00). In view of Lemma
2.5.7(ii), this is equivalent to the fact that u®(y,t) > M for all t > t,.

These arguments complete the proof of Corollary
O

Lemma 2.5.10. Suppose that (Hy) and (Hgz) hold. Let ¢ € w(ug). Then the following
assertions hold

()
oy) <m  for a.e. x€Q_(c0);
(i)
m<oey) <M  forae x€Qy(co);
(iii)

oy) >M  for a.e. x € Qy(c0).

Proof. First, we deduce from the definition of w(ug) that there exists a sequence t, — +00
such that
Wy, 1) = @(y) foraey e (0,|Q)) as n — +oo.

This together with Corollary completes the proof of Lemma [2.5.10 O

Lemma 2.5.11. Suppose that (Hy) and (Hg) hold. Then

[€20(c0)| = 0.
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Proof. If Qp(c0) is not empty, we will prove that there exists o € (m, M) such that
u(ﬁ)(y) =« for all y € Qp(o00).

Indeed, for the purpose of contradiction, we assume that there exits y1,y2 € Qo(oc0) such
that

ub(y1) # ub ().
4

Without loss of generality, we suppose that y; < wo; then ug(yg) < ug(yl) since wy is
nonincreasing. Moreover, by the definition of Qy(0c0) and Corollary [2.4.11{(ii), we have

m < uf(yg,t) < ug(yl,t) <M forall t>0. (2.31)

Therefore,

ubly2) < uby) <ub(yr)  for all y € [yn,ya).

It follows from Corollary [2.4.11{ii) and (2.31) that

m<uﬁ(y,t)<M for all y € [y1,y2],t > 0.

Consequently,
[y1,y2] € Qo(0). (2.32)

Let ¢ € w(ug). It follows from Lemma [2.5.10(ii) and (2.32)) that

m<p(y) <M forae yE€Ey,ya

On the other hand, we deduce from Corollary that ¢ takes at most one value in [m, M].
Therefore, there exists a € [m, M] such that

o(y) =a  fora.e. y € [y, ya]

Let {t,} be such that
u(y, ty) = (y) for ae. y e (0,|Q]) as n — 4o0;

then
w(y,tn) — a for a.e. y € [y1,y2] as n — 4oo0.

Since uf(t,) is nonincreasing, it follows that as n — 4o,
W (y,t,) = a forall y € (y1,y2) C Qo(c0). (2.33)

We now prove that u(ﬁ) is constant on (y1,y2). Let y1 < §1 < ¥2 < y2. Then we have

U(ﬁ)(??l) > Ug(gz)-

Next, we define
r(t) = uf (g1, t) — uf (a2, t);

then in view of Corollary [2.4.11

r(t) >0 forall t>0,
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and
(1) = i (G, 1) — ul (G, t) = F@F(G1,1)) — f(uF (G2, 1)) > 0,

where the last inequality holds since g1, 72 € Qp(00) so that
M > u*(g1,t) > u¥ (G, t) >m  forall ¢t >0,
and since f is increasing on [m, M|. Moreover, in view of (2.33]), we have

lim r(t,) = 0.

n—oo

Thus, the function r which is nonnegative and nondecreasing is identically equal to zero. In

particular, ug (1) = ug(gg). Therefore, ug is constant on (yi,y2), which in view of Remark

contradicts Hypotheses (Hg). Thus, we conclude that there exists a € (m, M) such

that

ug(y) =a forall ye Qy(c0),

which again together with Hypothesis (Hg) implies that

|Q20(oc0)| = 0.

Lemma 2.5.12. Suppose that (Hy) and (Hgz) hold and let ¢ € w(ug). Then, k, €
[f(m), f(M)] and
P = G-XQ_(c0) + A+ X4 (c0)>

where a_ € [sy,m],ay € [M,s*] and f(a—) = f(ay) = ky,. More precisely,

(1) If f(m) < ky < f(M)
©=0-XQ_(c0) T A4+XQy (c0)s

where a_ € (s«,m),aq € (M,s*) and f(a_) = f(aq) = k.

(it) If k, = f(m) then
P = MX_ () T 5 X (00)-
(Note that here a— = m and ay = s*).
(iii) If k, = f(M) then
© = 8:X0_(00) T M X0 (c0)-
(Note that here a_ = s, and ay = M ).

Proof. 1t follows from the proof of Lemma that for all t > 0
s, <uf(y,t) < s* forae. ye (0,]Q

so that
s« < p(y) < s* forae. ye(0,Q).
Consequently, we deduce from the definition of sy, s* in (2.1]) that

12

ky = . f(p) € [f(m), F(M))].
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(i) If f(m) < k, < f(M), it follows from Corollary [2.5.5(ii) and Lemma [2.5.11| that ¢

is a step function which takes two values a_,ay where a_ € (s«,m),ar € (M,s*) and

fla—) = f(ay) = k,. Thus by Lemma [2.5.10]
o(y) =a—  forae. x € Q_(c0).

and
o(y) =ay for ae. € Qi(00).

This together with Lemma [2.5.11] implies that
©=0-XQ_(c0) T A4+XO (c0)-

The proofs of (ii) and (iii) are similar to that of (i). We omit them here.
O

Proof of Theorem [2.5.6/(ii). We prove that w(ug) is exactly composed of one element.
By contradiction, we assume that w(ug) contains more than one element. We deduce from
Lemma that for all k& € [f(m), f(M)], w(ug) contains at most one element ¢ such
that k, = k, so that we can choose two functions ¢, % € w(ug) such that

f(m) <k, < kg < f(M).

It follows from Lemma [2.5.12 that

© = 0-XQ_(c0) T A4+XQ (c0)s

and that
P =0a-X_(c0) T A+XQ, (c0)>
where
a—,a- € [ss,m|, ay,aq € [M,s"];
and

fla-) = flay) = ke, f(a-) = f(ay) =k

Since f is strictly decreasing on (—oo, m] and [M, 4+00), we deduce that a_ > a_, a4 > ay.
Then using mass conservation property, we obtain

o, - - ol
F =010 (00)] + 4194 (00)] > a0 (00) + 341900 = [ b
0 0

which gives a contradiction. Therefore, w(u(ﬁ)) only contains one element. The proof of

Theorem [2.5.6{(ii) is complete. O

Corollary 2.5.13. Let the same assumptions as in Theorem [2.5.6 hold. Then for all p €
[1,400),
uw(t) = ¢ in LP((0,]9]) as t — oo,

where ¢ is defined as in Theorem |2.5.0,
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Proof. Tt immediately follows from Theorem that
ut(t) = ¢ in LY((0,]Q]) as t — oc.
The convergence of uf(t) in LP((0, |2])) for all p € (1, +00) follows from the estimates

luf (t) — elr o) < 14 (£) = Il L1 o, 1w () = @P~ e 0,100

< Isa = s1/P Hut () — @l 110, ))-

O]

2.6 Proof of Theorem [2.1.2| and a nontrivial counterexample

We have proved the stabilization of the solution of Problem (P*). We now have to deduce
the stabilization of the solution of Problem (P). We need the following result.

Lemma 2.6.1. Suppose that (H1) and (Hs) hold. Then for all t,7 > 0 we have
[u* () — u*(7) || 200y = lu(t) — w(T)] L2

Proof. Define G(s) := h'(s)h™(s). We apply Proposition [2.4.4(ii) for G to deduce that

2]
[;h%®WW®=AMWWﬂw)

or equivalently,

1]
uﬁ Uﬁ T) = u u\T). .
A ()t () A (H)u(r) (2.34)

We apply again Proposition [2.4.4(ii) to the function G(s) := s and use equality (2.34) to
deduce that

[e]] 1] 2
||uﬁ(t)—uﬁ(7)||%2((0’|g|)) :/0 (uﬁ(t))2+/0 (uﬂ(T))2_2/0 uf (t)uf (1)

— [+ [ w2 -2 [ uun

= Jlu(t) = w(1)||72(0-
This completes the proof of Lemma [2.6.1 O
Proof of Theorem [2.1.2] It follows from Corollary 2.5.13 that
u'(t) = ¢ in L2((0,]Q]) as t— oo, (2.35)

so that uf(t) is a Cauchy sequence in L?((0,|2])). This together with Lemma implies
that u(t) is also a Cauchy sequence in L?(Q2). Consequently, there exists ¢ € L?(£2) such
that

u(t) = ¢ in L*(Q) as t — oc.
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Applying Proposition M(iii), we have

ub(t) = ¢F i L2((0,19)),
which together with implies that

Y= ae in (0,]Q)).

Therefore,
{¢ = s} = [{¢* = s} = [{p =s}| forall s,
which in view of Theorem [2.5.6] allows us to conclude that

(i) if (Hz) holds, then
v(e) = | widy

(ii) if (Hg) holds, then 1) is a step function, which takes at most two values a_, a satisfying
fla-) = flay);  f(a-) <0, f'ay) <0
As in the proof of Corollary we deduce that for all p € [1,+00)
u(t) > ¢ in LP(Q) as t — oo.
This completes the proof of Theorem [2.1.2 O

Counterexample: We present below a counterexample which shows that if the hypothesis
(Hg) does not hold, the limiting function may take three values.

Let  := (—1,1) and consider f(s) = s — s3. Let ug be an odd function such that
H{z :up(z) <0} >0, [{x:up(x)=0} >0, [{z:up(x)>0} >0.
We denote by y(t; yo) the unique solution of the autonomous differential equation

y =y—y> and y(0) = yp.

Since
—y'(t,y0) = —y(t,50) + (Wt %))* = —y(t, 0) — (—y(t, y0))*,

it follows from the uniqueness of the solution of differential equations that
y(t; —yo) = —y(t; yo)-
We also recall that
(i) if yo < 0 then lim y(t;y0) = —1,
t—o0
(ii) if yo > 0 then lim y(t;y0) = 1,
t—o0

(iii) if yo = 0 then y(¢;y0) = 0. Hence, tlim y(t;y0) = 0.
—00
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Define u(z,t) = y(t; up(x)), then f(u(-,t)) is an odd function, so that
/ f(u(z,t))dx =0 forall ¢t>0.
Q
We deduce that
w = = £~ | s
and therefore that u is the unique solution of Problem (P). Thus, for all z € Q,
(i) if up(z) < 0 then tlim u(z,t) = —1,
—00
(ii) if uo(x) > 0 then lim wu(z,t) =1,
t—00
(iii) if up(z) = 0 then tlim u(z,t) = 0.
—00
Define
-1 if up(x) <0
P(x)=4¢ 0 if up(z) =0 (2.36)
1 if up(z) > 0.
Then

u(t) > in LP(Q) forall pe[l,+o0) as t — 0.

2.7 Appendix

For the sake of completeness, we present a complete proof of Proposition The

equality
(®(w))f = d(wh)  ae in (0,]Q).

(2.37)

was proved by Kesavan (see [I1], Proposition 1.1.4, page 7]). We prove here that (2.37)) holds

for all y € [0, |€2|]. We need the following lemma.

Lemma 2.7.1. Let A be a bounded set of IR and let ® be a increasing, bijective function

from IR to IR. Then
O(inf A) = inf{P(s): s A}.

Proof. First, we prove that
O(inf A) < inf{P(s): s¢€ A}

Indeed, let a = inf A, then a < s for all s € A. We also remark that ® is increasing on IR,

so that
®(a) < P(s) forall se A

Consequently, we have

O(inf A) = P(a) < inf{P(s): se A}

Next, we prove that
O (inf A) > inf{P(s): s € A}

For this purpose, set b := inf{®(s) : s € A}. Therefore,

b<®(s) forall se A

(2.38)
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Consequently, we have
d71(b) <s forall se A

We deduce that
<I>_1(b) <inf A,

and hence b < ®(inf A). Thus,

inf{®(s): se A} =b< O(inf A). (2.39)
The conclusion of Lemma follows from (2.38)) and ([2.39). O

Proof of Proposition First, we prove that

Note that

(®(w))*(0) = ess sup ®(w) = inf{a : |{®(w) > a}| = 0}
=inf{a: [{w > ® (a)}| = 0}
— inf{B(3(a)) : [{w > B (@)} = 0}
= inf{®(a) : [{w > a}| =0}
which together with Lemma implies that
(®(w))*(0) = ®(inf{@ : [{w > a}| = 0}) = ®(ess supw) = ®(w*(0)).

Let 0 < y < |Q], we now prove that

We have

(@(w))¥(y) = inf{s : [{®(w) > s}| < y}
=inf{s: [{w > & (s)}| <y}
= inf{®(®7(s)) : {w > @7 '(s)} <y}
= inf{®(5) : {w > s} <y}
= ®(inf{5 : [{w >3} <y}) = P(wf(y)).

This completes the proof of Proposition 2.4.7] O
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Chapter 3

Large time behavior for a nonlocal
differential equation proposed by
M. Nagayama

Résumé. Nous étudions une équation différentielle ordinaire nonlocale, ot I'intégrale de la
solution est conservée en temps et démontrons la stabilisation des orbites de solutions.

Abstract. We study a nonlocal ordinary differential equation with mass conservation and
prove that the solution stabilizes as ¢ tends to 4oo.
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3.1 Introduction

We study the initial value problem

up = u>(1 — u) —ul—u/Q in QxR
e

u(z,0) = up(x) x € Q,
where Q ¢ RV (N > 1) is a bounded open set. This problem has been proposed by M.
Nagayama [10]

After having proved that Problem (P) possesses some invariant regions, we study the
large time behavior of its solution. An essential difficulty is to analyze the denominator in
the nonlocal term in Problem (P) since it may vanish. Another difficulty of this problem is
due to the lack of a diffusion term, so that the solution does not regularize in time. Applying
the rearrangement theory, we prove the relative compactness of the solution orbits of the
corresponding one-dimensional problem (P*). We study the large time behavior of the
solution of Problem (P*) and then deduce the result for the original problem.

Constants s1,s2: Let s1, 59 be two constants such that
51 <0<1 < ss9.

Assumptions on initial condition: We will consider one of the following assumptions
on initial function.

(H1) wp € L*®(Q), 1 <wug(z) < sy forae ze€; and ug Z 1.
(H2) wup € L™®(Q), s1 <wug(x) <0 forae z€; and ug Z0.

We define .
mo = uy ‘= ugp.
foo=m

Note that if ug satisfies (Hy) or (Hz) then
mo Q [07 1]

Two functions f,g: We introduce two functions f, g given by

f(s):=s?(1—s) and g(s):=s(1—s).

Then, the differential equation can be written as

For two real numbes a < b, we define

K(a,b) := maX(?ug £ (s)l; sup l9(s)1), sup ' (s)], sup l9'()]) (3.1)

Our main results can be summarized as follows:
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Theorem 3.1.1. Let (Hy) hold. Then Problem (P) possesses a unique solution in C*([0, +00); L>(R)).
Moreover, for each t > 0,

1 <u(t) <sy  almost everywhere in §.
If ug € C(2), then u € C*([0,+00); C(Q)).

Theorem 3.1.2. Let (Hy) hold. Then there exists 1 € L*>(Q2), such that for all1 < p <
+00.
u(t) =¥  in LP(Q) as t — +oc.

Moreover, ¥ is a step function, which takes two values 1 and v > 1.
In the case that Assumption (Hgz) holds, we have the similar results.

Theorem 3.1.3. Let (Hz) hold. Then Problem (P) possesses a unique solution in C*([0, +00); L>(R)).
Moreover, for each t > 0,

s1 <u(t) <0  almost everywhere in §.
If up € C(R2), then u € C*([0,+00); C(Q)).

Theorem 3.1.4. Let (Hz) hold. Then there exists 1p € L*(2), such that for all 1 < p <
+00.
u(t) =Y in LP(Q) as t — +oc.

Moreover, 1 is a step function, which takes two values § < 0 and zero.

In this paper we only give the proofs of Theorem [3.1.1| and Theorem [3.1.2] The proofs of
Theorem [3.1.3] and Theorem [3.1.4] are similar.

The paper is organized as follows: in Section we prove Theorem In Section
we prove some properties of the solution w and show that Problem (P) possesses a
Lyapunov functional. In Section applying the rearrangement theory, we introduce the
corresponding problem (Pﬂ) and present some properties of its solution. Then we prove that
the w-limit set w(u(ﬁ)) is composed of a single element. In Section we proved Theorem

3.2 Existence and uniqueness of solution of Problem (P)

This section is devoted to the proof of Theorem We first present some a priori
estimates and show that Problem (P) possesses a local in time solution. We then extend
this local solution to a global solution. We start with the following result.

Lemma 3.2.1. Let ¢ € L>(2) be such that

][Q¢ =mg ¢ [0,1].

Then
/Qg(¢) < mp|Q(1 —mp) <O0.
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Proof. Since g is concave, we apply Jensen’s inequality to deduce that

g(][QU) > ][QQ(U)-

/Q 9(u) < 9g(mo) = |2mo(1 — mo),

which completes the proof of Lemma [3.2.1

It follows that

Notation: We set

and use the notation X for either of the spaces L(Q2), L%°() or C ().

Lemma 3.2.2. Let a < b be two real numbers and let vi,vy € X be such that
a<wvi(z),va(z) <b  fora.e x €.

We assume further that

a= (o) =min (| [ gl ] [ ateal) >o.

|G (v1) — G(v2)||x < Lil|vr — vel|x,

Then

where

(K (a,0)*|Q(3]Q +2)

Li = K(a,b) + o2

We recall that K (a,b) is defined by (3.1)).

Remark 3.2.3. Before proving Lemma we remark that for all s,5 € [a, b],

[f(s) = f(5)| < K(a,b) s — 5]

and
l9(s) — 9(5)| < K(a,b) s — 5.

Proof of Lemma We have

/ f(o1) / f(2)
G(v1) — G(v2) = [f(v1) — f(v2)] — |g(v1) =F—— — g(vo) =F——
/Q o(v) /Q 4(v2)

g(vn) /Q f(o1) /Q g(v2) — g(v2) /Q F(0) /Q g(v1)

— (o) — f(o2)] —
/Q g(v1) /Q o(vs)
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where

Ay = f(ur) — f(v2);
1%:wwnéfm{LmmewﬂlﬁwﬂAgmx

Avi= [ gton) [ gtoo)

In the following, we will give estimates for Ay, As and As. For simplicity, we will write K
instead of K(a,b) in the remaining of the proof of this lemma. For the term A;, we use

(3.4) to obtain

and

[A1llx = [ f(v1) = f(v2)l|x < Kl[v1 — valx. (3.6)

Next, we write As as

Ayi=g(o) [ f(00) [ a(e2) = aw) [ 000) [ glo)
+9(ua) [ 1) [ ao) = gtw) [ o) [ aton)
+ng4qu4mwwvwazﬁwgégmx

or equivalently,

Aw=memwm¢jwnAmm>
+mwyéuwn—ﬂwﬂ/gwg

Q
+g@ﬂ/f@ﬂ/w@ﬁ—ﬂmﬂ
Q 9]
This together with (3.1]) implies that
lAallx < (K191 — vallx + 20K)%12 on — vl 110,

We also note that
[v1 —v2lpr) < (1 + Q) Jvr — vallx

so that
[A2]lx < (K)?19QI(3IQf + 2)llv1 — vall < (). (3.7)

For the term As, by hypotheses (3.3)), we have
|Az| > o® > 0. (3.8)

We combine (3.6)), (3.7) and (3.8) to obtain

(K)’1QlEle +2))

|G(v1) = Gloa)lx < (K + Jon = vallx,

which completes the proof of Lemma [3.2.2 O
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Corollary 3.2.4. Let the same assumptions as in Lemma[3.2.3 hold. We assume further-

more that

][ U1:][ ’ngmog[o,l]

Q Q

and define

o = —m0|Q\(1 — mo) > 0.
Then

|G (v1) — G(v2)[|x < Laflvr — va|x,

where

(K(a,b))?’IQQI(?)IQI +2)
@p

Ly := K(a,b) +
Proof. 1t follows from Lemma that

/ g(v1) < —ap <0 and / g(v2) < —ap < 0.
Q Q

Therefore,
o0y, v) = min(| / g(o)l,| / g(v2)]) > ap > 0,
Q Q

so that L; < Lo. This together with Lemma completes the proof of Corollary O

Next, we show the mass conservation property of the solution.

Lemma 3.2.5 (Mass conservation). Assume that u € C1([0,T); X) is a solution of Problem
(P). Then the mass conservation property holds, namely

/Q (e, ) dz = /Q o) da. (3.9)

Proof. Integrating the differential equation in Problem (P) from 0 to ¢, we get

u(t)—uoz/otut:/OtG(u).
/Qu(x,t)dx/Quo(:v)d:c:/ot/QG(u):O,

where the last identity holds since
/ G(u) =0.
Q

This completes the proof of Lemma

It follows that

O]

Lemma 3.2.6 (Boundedness of the solution). Let (Hy) hold. We assume further that
ug € C(Q) and that Problem (P) possesses a solution u € C1([0,T]; C(Q)) for some T > 0.
Then,
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(i) the function

is continuous on [0,T7;
(ii) we have that

1 <u(z,t) < sy for all x € Q,t>0.
Proof. (i) Since u € C1([0,T]; C(Q)), it follows that / f(u) and / g(u) are continuous on
Q Q

[0,T]. Therefore, A is continuous on [0, 7).

(ii) We first prove that
u(x,t) >1  forall z€Q.

We define the differential operator
Ly) =y = fy) +9(y)A®),
then for every = € Q, we have
L(u(xz,"))=0=L(1) and wg(z)>1.

We deduce from [8, Theorem 6.1, page 31] that u(z,t) > 1 for all ¢ > 0 and z € Q arbitrary.
In other words, we have

u(z,t)>1  forall o€, t>0. (3.10)

Next, we claim that B
u(z,t) <s9 forall ze€Qt>0.

Let € > 0 be arbitrary. It is sufficient to show that
u(z,t) < sg+e  forall ze€Q,t>0.
We suppose for the purpose of contradiction that there exists a first time ¢y > 0 such that
u(zo,to) = s2 +¢
for some g € 2. By the definition of g, and the continuity of u on Q x [0, 7], we have
u(x,tg) < sy+e  forall z €. (3.11)

and
u(z,t) <sg+e forall z€0,0<t<t.

Since

Ut(fL'(), tO) Z 07

it follows that
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or equivalently,

u?(to) (1 — u(to))
u(zo, t0)) (1 — u(zo, to)) |u(zo,to) — 2 > 0.

/ ulto) (1 — u(to))
Q

Note that
U(Sﬂo,to)(l — U(.To, to)) = (52 + 8)(1 — (82 + 5)) < 0,

so that

[ )1~ ut))

u(xo,to) — & <0.
[ ulto) 1~ ufto)
Q

Hence,

ulo, to) /Q u(to)(1 = u(to)) 2 [ ¥ (to)(1 ~ ulto)),

Q
or equivalently,

Q[u(wo,tg) —u(x, to)]u(z, to)[l — u(x,tg)] > 0.

On the other hand, it follows from and that
[u(zo,to) — ulx, to)]u(x, to)[l — u(x,to)] <0,
which together with and the continuity of u(-,#p) on Q implies that
u(x,tg) = u(xg,tp) = se +¢  forall x € Q.

Consequently, we have that

/ u(z,to)dx = (s2 +¢)|Q] > 52| > / uo(x)dx,
Q Q
which contradicts the mass conservation property. Therefore,

u(w,t) < s forall x€Q,t>0.

(3.12)

O]

Lemma 3.2.7 (Local existence of solution). (i) Let (Hy) hold. We assume further that

ug € C(Q). Then there exists Ty = Ty(s2,mg) such that Problem (P) possesses a

solution in C1([0, Ty]; C(2)).

(i) Let (Hy) hold. Then there exists Ty = Ty(s2,mqg) such that Problem (P) possesses a

solution in C1([0, Tp); L*(R)).

Moreover, in (i) and (ii), we can choose

Ty = min{<K+ u{)m>1 1<K+ (K)3|9/(3]Q| +2))—1}

oo "2 al

where K := K(—s3 — 1589 + 1) and ag := —mo|Q|(1 — myp).
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Proof. (i) We will use the contraction mapping theorem to prove the local existence of
solution. For this purpose, we set

V(ug) == {v e C(Q) : ][Qv =mo and [jv—uol/gm) < 1}

and

A :={w € C([0,Tp]; C(Q)) : w(t) € V(ug) for all t € [0,To]},

where Ty > 0 will be choosen later. We define the operator 7 by
t
Tw(t) :== ug +/ G(w)  forall we A,
0

where G is given by (3.2)). In the following, we will prove that 7 is well-defined and has a
fixed point. We begin with some properties of G.

Claim 1: We prove that G is Lipschitz continuous on V(ug). For all v € V(ug), we have
[olle@) < luollo@y +1 < s2+1. (3.13)
Therefore, we apply Corollary to deduce that for all vy, ve € V(ug),
1G(v1) = G(v2)ll oy < Lsllvr — vallogmys

where

K)319|(31Q] + 2
L3:L3(52,m0) = <K+( ) | |(2| | ))>0,
Qg
with K := K(—s2 — 1,52 + 1) and g := —mg|Q|(1 — myp).

Claim 2: We prove that G is bounded on V(ug). It follows from (3.13) and from the
definition of K(—s2 — 1,59 4+ 1) that for all v € V(uy),

1) o < K (=82 — 1, s+ 1), lg(0)llo < K(—s2 — Lsz + 1),

We also deduce from Lemma [3.2.1] that

/ g(v) < —ap <0 forall ve V(ug).
Q

Therefore, we have

(K)%19]

1GO)lo@m < K+ =: M for all ve V(ug),

so that G is bounded on V(uyp).

We define -
To = T(s2;mg) = min(ﬁ, 2—L3)

We claim that 7T is a contraction mapping on A.
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Claim 3: We prove that T is well-defined. Indeed, let w € A, then by the definition of A,
we have for all 0 <t < Tp, w(t) € V(up). It follows from Lemma that

/g(w(t))§a0<0 forall we A,0<t<Ty.
Q

Therefore,

| st

G(w(t)) = f(w w(t))=——
[ stw®)
Q
is well-defined. Consequently, 7 is well-defined.
Claim 4: We claim that
T(A) C A
Let w € A, for all 0 <t <t < Ty, we have
ITw®) — Tw@dlloa, l/nG Mo < Mt~ 1.

so that Tw € C([0,T]; C(£2)). It remains now to prove that Tw(t) € V(ug). Since
/ Glw(s) =0 forall sc[0,Ty),
Q

it follows that

F 1w /uo—l—/][G Vs = o= mo.

[T w(®) - uollogm, / G (s)) g ds < MTo < 1.

Moreover,

Therefore, Tw(t) € V(up). Thus, we conclude that

T(A) C A.

Claim 5: Now, we prove that T is a contraction mapping on A. Indeed, let wi,ws € A,
t € [0, Tp], we have

[T (w1)(#) = T(w2) ()l oy < ; |G (wi(s)) — G(wa(s)) o) ds
< Ls ; [wi(s) — wa(s)l o) ds

< ToLsllwr — wall oo, mpc@)

< 5”“’1 - w2||0([0,To];C(§))'
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Hence, we have

1
HTwl — TwZHC([O,TO];C(ﬁ)) 5”11)1 - w2||(] ([0, To];C(Q))?

which implies that 7 is contraction on A.

It is easy to see that A is closed in C([0,Tp]; C(Q)). Then, we apply the contraction
mapping theorem [12, Theorem 2.2, page 44] to conclude that 7 has a unique fixed point.
In other words, there exists u € C([0, Tp]; C(2)) such that

t) :—u0+/0ta(u)

Therefore, Problem (P) possesses a unique solution in C'([0, Tp]; C(Q2)).
(ii) The proof of (ii) is similar to that of (i). We omit it here.

We are ready to prove Theorem [3.1.1

Proof of Theorem [3.1.1l The local existence of solution is given in Lemma Let
[0, Thnae) be the maximal interval of existence of solution. We now prove that

Tmax = +o00.

The case that ug € C(Q2): By contradiction, assume that Tiax < +00. Let tg € [Thae —
TO y Tinaz)- It follows from Lemma and Lemma (ii) that

][ u(tp) =mo  and 1 <wu(ty) < so.
Q

Then we apply Lemma i) to deduce that we can extend solution to interval [0, T)a0 +
TO] which give a contradlctlon

The case that uy € L>(2): We first prove that

1 <wu(z,t) <sp forae z€Q,0<t<Thu (3.14)

The main idea of the proof is to approximate the initial function ug by a sequence of
continuous functions uy,g and to first obtain the result for approximate problems. Then, we
deduce the result for the original problem. To begin with, we need the following lemma.

Lemma 3.2.8. Suppose that ug satisfies Hypothests (H1). Then there exists a sequence
{uno} in C(Q) such that

1 <upo < sy on €,

and that
Upo —> Uy N Ll(Q) as n — o0o.

The proof of this lemma will be given later. Now, we will use this lemma to prove (|3.14)).
It follows from (i) that Problem (P) with initial condition wu,o possesses a unique solution
up, in C([0,+00); C(Q)). Moreover,

1 <up(z,t) <sy forall 2€Qt>0. (3.15)
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We define
b:= max(||ulcqorire@),s2)  and a:=—b.
Since
Upo — Ug 1N LI(Q) as n — +0oo,
then

][ un0—>][ ug = mg as n — +oo.
Q Q

Therefore, for € is small enough such that [mg—e, mo+¢]N[0,1] = (), we can assume without
loss of generality that for all n > 0,

][ Uno € [mo — e, mp + €.
Q
We define
B = inf ]—]Q|s(1—s),

s€[mo—e,mo+e

then § > 0. By Lemma [3.2.1] we have

|/ g(un(t))|>p forall n>0
Q

and
| [ sl > 5.
Q
We apply Lemma to deduce that
G un®)) — Gt (@) < Lallun(t) — u(®)llzsy forall 0<¢ < Tpge,  (3.16)

where

310139 + 2
’,82|(| | ))>0

We integrate the difference of the equations for u and wu, from 0 to ¢, to obtain

L= (K(a,b)+ (K(a,8))

Un () = u(t) = [uno — o] + /0 (Glun(s)) — Glu(s))] ds.
Applying , we deduce that

[un(t) — u(t)l[L1() < lluno — uollLr (@) + La /Ot [[tn(s) — u(s)l[L1(q) ds.
By Gronwall’s inequality, we deduce that
[[un(t) — u(t)|[ 1) < lluno — uoll L1 () exp(Lat).
Thus for all 0 <t < Tz,
un,(t) = u(t) in LYQ) as n — oco.
Consequently, for each ¢ > 0, there exists a subsequence {un;(t)};>0 of {un(t)}n>0 such that

Un;(z,t) = u(x,t) forae z€Q as j— oo,



3.2. Existence and uniqueness of solution of Problem (P)

93

which together with (3.15]) implies that for each ¢t > 0,

1 <u(x,t) < sy forae. xe€l

Therefore, we obtain (3.14)). Now we are ready to prove Ty,4; = +00. By contradiction,

assume that Tax < +oo. Let tg € [Thae — %,Tmax), then

][ u(tp) =mo, and 1< u(ty) < so.
Q

We apply Lemma (ii) to deduce that we can extend solution to interval [0, T}, + %],

which give a contradiction.

We have proven the existence part of Theorem [3.1.1} The uniqueness of the solution follows

from Lemma below, which will complete the proof of Theorem |3.1.1

Lemma 3.2.9. Let ugi,ug2 € X such that

/ uor(x) de = / uo2(x) de = mg € [0, 1],
Q Q
and that

1 < uo1, up2 < 2.

Let uy,us be two corresponding solutions of Problem (P) in C*(]0,+o0); X). Then

lui(t) —u2(t)||x < exp(Lst)|luor — uoz| x,

where
(K (1,52))°|(3]2] +2)

5 )
Ay

Ly = K(l, 82) +
Proof. By the mass conservation property, we have

][ w () = ][ us(t) = mg for all ¢ > 0.
Q Q
Moreover, we have
1 S ul(t),uQ(t) S S9.
We apply Corollary to deduce that
1G(u1(t)) — G(uz(t))llx < Lsllur(t) —ua(t)|[x forall 0<t<T,

where " 3101310
1 3 2
Ls ::K(1,52)+( (1, 52)) LQ‘( 21+ )>O.
0

We integrate the difference of the equations for u; and us from 0 to ¢, to obtain
t
up(t) — ua(t) = w1 — up2 +/ [G(u1(s)) — G(ua(s))] ds.
0
It follows from (3.19) that

t
lur(t) — w2 (t)||x < [luor — uozllx + L5/ |u1(s) — ua(s)||x ds.
0

This together with Gronwall’s inequality completes the proof of Lemma [3.2.9

O]

(3.17)

(3.18)

(3.19)
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Proof of Lemma [3.2.8. First, we extend the function ug to wg defined on IR™ by

uo(x) it xeQ
wo(z) =
1 252 elsewhere.

Obviously,
1 <wy(z) <sy forae z€ RYN.

For all n large enough such that
1 1
1 + — < S2 — )
n n
we define

. 1 1
Wpo := min < so — —, max{wg, 1 + —} ¢ .
n n

Then, we have

1+ % < wpo(z) < 59— % ae. zeRY, (3.20)
and moreover,
[wno — woll L1 (@) = lwno — woll L1 (o)
< 10wno ~ wollzqey <

As in [2, Theorem 2.29, page 36|, we can choose a smooth function wu,g such that

1€
[[uno — wnOHLl(Q) < —.
n
More precisely,
Uno(x) = / Je(x — y)wno(y)dy, for e small enough, (3.21)
IRN

where

Je(w) =N I(2),

with J € C°(IRY) is a nonnegative function satisfying

J(x) =0 if |x|>1, and J(x)dz = 1.
IRN

Note that J; is nonnegative and that

/ Je(z)dr = 1. (3.22)
IRN

It follows from (3.20)), (3.21) and (3.22) that

1 1
$14+ — <upg < s9—— forall z e RN.
n n
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Moreover,
2
[uno — woll 1 (@) < lluno — wnollL1 (@) + lwno — uoll 1) <
It follows that
Ung — ug  in LY(Q) as n — +oo.
The proof of Lemma [3.15|is complete. O

The following lemma expresses the continuity of the semi-group with respect to the initial
data.

3.3 Some preparations

In this section, as a preparation for the next section, we consider an ordinary differential
equation which is related to Problem (P). This study puts forth some properties of the
solution of Problem (P), which are stated in Lemma below. To begin with, we define

the function
/ flu(zx,t))

/Q (u(e,8))dz

where u is the unique solution of Problem (P) given in Theorem Note that A is
well-defined thanks to Lemma Since u € C1([0, +00); L=(2)) and since

(3.23)

1 <wu(z,t)<sy forae zeQ,t>0,
it follows that A(¢) is continuous on [0, +00) and that
1< A(t) < 59 for all ¢t > 0.
We define the function H on IR x [0, 4+00) by
H(Y,t) = f(Y) = g(Y)A(®),

where f,g € C°(IR) are such that for s € [0, 5o + 1]

Note that there exists a constant ¢y such that

|H|, | | <ecz  on R x[0,+00). (3.24)

We consider the problem
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Lemma 3.3.1. Let s € IR. Problem (ODE) possesses a global unique solution Y (t;s) €
C1([0, +00)). Moreover,

(1) if s < § then Y(t;s) < Y(t;3) for allt > 0;
(ii) we define the function h' : R — R by h'(s) := Y (t;s). Then h is bijective, increasing
from IR to R.

Proof. In view of (3.24]), we have that
H(Y1,1) — H(Ya,t)| < e2]Yi — Vi

for all Y1,Y5 € IR,t > 0. It follows from standard theory of ordinary differential equations
(for instance, see [3, Corollary 8.3, page 57]) that Problem (ODE) possesses a unique
solution in C*([0, +00)).

(i) We define W(t) := Y (t;3) — Y (¢;s). Then W satisfies the equations

W' = H(Y (£;3),) — H(Y (t; 5), 1)
W(0)=35—15>0,

Note that
1
H(Y(t;8),t) — H(Y (t;5),t) = [Y(t;8) — Y(¢; s)]/o ZI;(TY(t; 5)+ (1 —71)Y(t;s),t)dr
=W (t)0(t),
where
1 aHl 3
0(t) := oy (TY (t;8) + (1 — 7)Y (t;8),t)dT.

Thus, W satisfies the initial value problem

so that .
W(t) = W(0) exp < /O 9(7‘)d7‘> > 0.

It follows that
Y (t,5) >Y(t,s) forall t>0.

(ii) Let t9 > 0 be arbitrary. It follows from (i) that if s < §, then
Y(to;s) < Y(to;5);
hence, we have
h'o(s) < h'(5).
Consequently, h'° is injective, increasing on IR.
Now we claim that A’ is surjective. Let S € IR be arbitrary. We consider the problem

Y= H(Y,1)
Y (to) = S.
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This problem possesses a unique solution in C*([0, +00)) (cf. [3, Corollary 8.3, page 57]).
We denote by Y (t;to; S) this solution. We also remark that the solution of Problem (ODE)
can be written as Y (¢;0;s). Moreover, by the uniqueness of the solution, we have

Y (to; 0; Y (05205 S)) = S.
Therefore, h' (Y (0;t9; S)) = S, so that h'° is surjective. O
Lemma 3.3.2. Let (Hy) hold. Then for all t > 0, we have

u(t) = hf(ug) a.e. in Q.
Proof. We define

z(x,t) == h'(ug(x)) = Y (t;up(x)) on Q x [0, +00).

We need to prove that for all ¢ > 0

2(t) = u(t) almost everywhere on €.

It follows from the definition of Y (¢;-) that for all x € ; z(x,-) € C1([0, +00)) and

22 (1) = Flala, 1)) — 5 DA im0 x [0,0),
(3.25)
2(z,0) = up(z) x € Q.

The right hand side of the differential equation in (3.25) is bounded in L*>°(0,T"; L*°(2))
which together with the continuity of A implies that z € C1([0, +00); L°(£2)).

Since 1 < u(t) < sa,

Therefore,
ug = H(u,t).

We integrate from 0 to ¢ the difference of the equations for v and for z to obtain

uw—aw=4&m¢mﬂ—HMﬂm%

In view of (3.24)), we have

[u(t) = 2(D)] L= / 1H (u H(z(r), 7)) < 62/0 [u(T) = 2(7) ]| L= ()

which together with Gronwall’s inequality completes the proof of Lemma [3.3.2 O
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3.4 Problem (P*) and the w-limit set for Problem (P*)

As it was done in Chapter 2, we consider the problem

( /Q f()

U = f(“) - Q(U)
(P /Q 9(v)

| o(z,0) = ub () y € (0,19),

in (0,[9) x (0, 00),

where w? denotes the one-dimensional decreasing rearrangement of the function w : Q — IR.
We refer to Section in chapter 2 for more details.

Problem (P*) is a one-dimensional variant of Problem (P), so that all results stated in
Section [3.2 for Problem (P) also apply to Problem (P*). We note that Hypothesis (Hy) for
the function ug is also satisfied by ug.

Theorem 3.4.1. Let (H1) hold. We define
uF(y,t) = (u(®) (y) on (0,]Q]) x [0, +00),

then u® is the unique solution of Problem (P*) in C'([0,00); L=((0,|]))). Moreover,
1<uf(y,t) <sy forall ye(0,]Q]),t>0, (3.26)

and
w(y,t) = h'(uf(y))  for all y € (0,]9),t > 0. (3.27)

Proof of Theorem [3.4.1 First we prove and ([3.27)). Since
1 <u(x,t)<sy forae ze€Qt>0
we deduce from Remark in Chapter 2 that
1 <uf(y,t) < sy for all y e (0,[Q]),t>0.
In order to prove , we recall from Lemma that
u(t) = h'(ug)  for a.e. in Q.

We then apply Proposition in Chapter 2 to obtain for all t > 0,

() = (h'(uo))* = h'(uf) on (0,]02)). (3.28)
Now, it remains to prove that u? is the unique solution of Problem (P*%). As a consequence
of and Lemma we have for all y € (0,(9]),t >0

ouf

W(y,t} = f(uﬁ(y,t)) - §(Uﬁ(y,t)))\(t)
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where the last identity follows from Proposition M(u) in chapter 2. Since the right-
hand-side of the above equation is bounded in L (0, 4+o00; L*°((0, |€2]))) and since by the
continuity of f, g, \, we have u* € C([0,00); L((0,]Q]))). Therefore, u* coincide with the
unique solution of Problem (P*) in C'*([0, 4+00); L*((0, |2]))). O

Corollary 3.4.2. Let (Hy) hold. Then for ally € (0,|Q)|) the function u*(y,-) is the unique
solution of Problem (ODE) in C*([0,+400)) with the initial condition ug(y) Moreover, for
all y1,y2 € (0,]9]),

(i) if ug(yl) = u(ﬁ)(yg) then uﬁ(yl,t) = uﬁ(yg,t) for allt > 0;
(i1) if u%(yl) < ug(yg) then uf (y1,t) < ub(ya,t) for all t > 0.
Proof. This corollary is an immediate consequence of Theorem [3.4.1] and Lemma [3.3.1] O

Theorem 3.4.3 (Lyapunov functional). Let vg € L*°((0,|?])) be such that 1 < vy < sa.
Let v be the unique solution of Problem (Pﬁ) corresponding to the initial function vg. We

define a
E(v(t)) = /0 V2.

(i) We have for all 7o > 1 > 0,

—re )\
E(v(me)) — E(v(m)) = _/ /0 v{1 =) (U - f0|§2|g(v)>

(11) E(v(-)) is continuous and non increasing on [0,+00), and there exists the limit of
E(v(t)) ast — oo.

Proof. (i) We have

where the last inequality holds since
1<o(y,t) <sg forae. ye(0,[Q),t>0.

Integrating this identity form 71 to 7, we obtain
2| 20 2001 2
E(u(ra)) - E(u(n) ot~ (v )
19|
Jo " g(w)
(ii) As a consequence of (i), £(v(-)) is continuous and nonincreasing. Moreover, £ is bounded

from below by 0. Therefore there exists the limit of £(v(t)) as ¢ — oo, which completes the
proof of (ii). O
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The remaining part of this section is devoted to study the set w(ug), which is defined as
follows:

Definition 3.4.4. We define the w-limit set of ug by
wud) = {p € LN(0,]9)) : 3tn — 00, ub(tn) — ¢ in LY((0,]2])) as n — oo},
Lemma 3.4.5. The set
{u(t): t>0}
is relatively compact in L*((0,]9])). Consequently, w(u%) is nonempty.

Proof. The proof of this lemma which is based on the fact that uf(t) is nonincreasing in
space for all ¢ is similar to that of Lemma [2.5.3in Chapter 2. We omit it here. O

Lemma 3.4.6. Assume that (Hy) hold. Then, w(ug) is a connected set of L*(). Moreover,
for a function ¢ € w(ug), the following assertions hold:
(1) 1 < p(y) < sy for almost y € (0,|Q) and fom‘ v = O‘Q| ug.

(i) There exists a constant Eo such that

E‘W(Ug) =&x.

(iii) @ is a stationary solution of Problem (P*%), which implies that

© = YX(0,4) T X(A,j])5 (3.29)

where A, are positive constants such that v > 1.

Proof. Before proving (i), (ii) (iii), we deduce from the definition of w(ug) that there exists
a sequence t,, — +o0o such that

u(t,) — ¢ in LY(0,]9]) as n — oco. (3.30)

(i) It follows from ([3.30]) that there exists a subsequence of {t,} (still denoted by {t,}) such
that as n = +00

u(y, t,) — @(y) for ae. ye (0,]Q).

Moreover, we have that
1 < ub(y,t,) < s forall y e (0,]Q),

so that also
1<p(y) <sg forae. ye(0,]9).

The identity fO|Q| p= AQ‘ u(ﬁJ follows from the mass conservation property.

(ii) Tt follows from Theorem [3.4.3{(ii) that there exists the limit of £(u?(t)) as t — co. Set
m E(uf(t)).

=1l
t—o00

Exo
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Note that

12|
|5(uﬁ(tn))—5(90)!§/0 [ (tn) + o [uF (tn) — ]

< it (tn) = @l ((0,00))-

Therefore, letting n — oo, we deduce that

E(p) = lim EWr(tn)) = En, (3.31)
In other words,
g’w(u;) = Ecos (3.32)

(iii) We have to prove that ¢ is a stationary solution. We denote here by v(¢;w) the unique
solution of Problem (P*) together with the initial condition w. By (3.30), we have

v(tniuf) — @ in LY((0,]9Q])) as n — oo

It follows from Lemma which expresses the continuity of the semi-group with respect
to the initial data that for all ¢ > 0,

v(t;v(tn;ug)) —(t;e) in L'((0,]9]) as n — oo.

In other words,
o(t+ to;ud) = v(t; @) in L'((0,]9)) as n — oc.

It follows that v(t; ) € w(ug). This together with (3.32) implies that for all £ > s > 0.

E(u(t; ) = E(v(s;0))-
Therefore, in view of Theorem [3.4.3(i), we have

2

1 f(o(t; )

t rlQ
0= EGultio) ~ St = = [ [ ot~ o) [v@;s&)—m
s 0 uib;

for al t > s > 0, which implies that

1 £ ot on 1
ot @) (1 = v(t:9) [vu;@(m] 0 aein (0./2) xR,
0 )
Therefore,
1€2] .
fo(t;9)) .
v(t; ) (1 — v(t; v(tip)— 0~ T2 =0 aein (0,|Q R",
() (1 —o( @))[( ©) 7 (ot ) (0,192) x
and hence

v(p) =0 aein (0,|Q) x R*.

Thus the solution v(t; ¢) of Problem (P*) with the initial function ¢ is independent of time.
Consequently, we have that

€|
o(1 — ) [gp—ﬁngz;] =0 forae. ye(0,[Q).
0
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We also note that
1<p(y) <sy forae. ye(0,]Q),

so that

1—¢) -2 | =0 forae ye(0,[Q).

It follows that ¢ is a step function which takes the two values 1 and v = y(¢). Moreover,
since uf(t,) is nonincreasing, we deduce that the function ¢ which is the limit almost
everywhere of uf(t,) is also nonincreasing. Therefore, ¢ can be represented in the form

© =7X(0,4) T X(4,)9))> (3.33)

where A is a constant. Since ¢ > 1 and since ][ p= ][ ug > 1, we deduce that A > 0 and
Q Q
v > 1. O

Lemma 3.4.7. Let (Hy) hold and let ¢ € w(ug). Then

500 —m0]Q|
= = 1 >1, 3.34
o= D)%Y (3.54)

and

[mo — 1°|Q?
>0, 3.35
Eso — 2myp|Q] + |9 ( )

where £ 15 as in Lemma (M’). Consequently, w(ug) only contains one element.

A=

Proof. First, we prove the identities (3.34) and (3.35)). Note that

2]
/ e=mp|Q?] and E(p) =Ex.
0
Thus, we deduce from (3.33)) that
9] — A+ 74 = mol2)
Q] — A+ 424 =&,

or equivalently,
(v = 1A = (mo — 1)|€]
(Y+ Dy DA =Ex — 9.

It follows that

o goo—|Q’ . - EOO—TTLO|Q|

(mo — 1)|9 (mo — 1)|9

and that g
g mo=DIQ[ _ (mo—1)7|O

(y—1) & —2melQ + Q[
The knowledge of the constants v and A completely determines the stationary solution ¢
given by (13.29) Consequently, w(ug) only contains the element ¢. O
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Corollary 3.4.8. Let the same assumptions as in Theorem hold. Then for all p €
[1,+00),
uH(t) = ¢ in LP((0,]9])) as t — oo,

where ¢ is determined by (3.29)), (3.34) and (3.35)).

Proof. Tt immediately follows from Theorem [3.4.7] that
u(t) =+ ¢ in LY((0,12)).

Since {u*(t)} and ¢ are bounded in L>°((0,|€2|)), the convergence in every LP((0,|Q|)) for
p € [1,00) follows. O

3.5 Proof of Theorem [3.1.2

We have proved the stabilization of the solution of the Problem (P*). We now have to
deduce the stabilization of the solution of Problem (P). We need the following result.

Lemma 3.5.1. Suppose (Hy) hold. Then for all t,7 > 0 we have
[u? () — u* ()| 20 0p)) = lu(t) — w(T)] L2

Proof. Define G(s) := h'(s)h7(s). We apply Proposition [2.4.3[ii) in Chapter 2 for G to
deduce that

|2
A m%ww@-AMWWﬂw»

or equivalently,

19]
UTi Uﬁ T) = u Uu\7T). .
A @)()Lé(w<> (3.36)

We apply again Proposition M(u) in Chapter 2 for G(s) := s and use equality (3.36) to
deduce that

[e]] 1] €2
m%wm%wéwM»=A M@V+A Mvﬁ—zL ()b (r)

_ /Q (u(t))? + /Q (u(7))? =2 /Q u(t)u(r)

= [lu(t) — w(T)Z2()-

The proof of Lemma [3.5.1] is complete.

Proof of Theorem [3.1.2 It follows from Corollary that

uf(t) = ¢ in L2((0,]Q])) as t — oo, (3.37)

(
so that uf(t) is a Cauchy sequence in L2((0, |2])). This together with Lemma implies
that u(t) is also a Cauchy sequence in L?(Q2). Consequently, there exists ¢ € L?() such
that
u(t) = ¢ in L*(Q) as t — oc.
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Applying Proposition m(iii) in Chapter 2, we have

ub(t) = ¢F i L2((0,19))),
This together with implies that

Y= ae in (0,]Q)).

Therefore,
{v = s}| = |{1/1ﬁ =s} =|{p=s} forall seR,

which in view of Theorem [3.4.7] allows us to conclude that v is step function which takes
the two values 1 and «. Moreover, it follows that for all p € [1,400)

u(t) = ¢ in LP(Q) as t — oo.
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Chapter 4

Formal asymptotic limit of a
diffuse-interface tumor-growth
model

Résumé. Nous considérons un modele d’interface diffuse pour la croissance de tumeurs,
qui a la forme d’un systeme de champ de phase. Nous caractérisons la limite singuliere de
ce modele. Plus précisément, nous prouvons formellement que quand le coefficient du terme
de réaction tend vers 'infini , la solution converge vers la solution d’un probléeme a frontiere
libre limite.

Abstract. We consider a diffuse-interface tumor-growth model, which has the form of a
phase-field system. We characterize the singular limit of this problem. More precisely, we
formally prove that as the coefficient of the reaction term tends to infinity, the solution
converges to the solution of a free boundary problem.
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4.1 Introduction

4.1.1 Diffuse-interface tumor-growth models

Diffuse-interface tumor-growth models have been modeled and studied in several articles
[33, [49], 20, 8, 37, [36]. We also refer to the overviews in [19] [38] 211 [42]. The basic model is
composed of a fourth order parabolic equation for the tumor cell concentration u : 2 — IR
coupled to an elliptic equation for the nutrient concentration o : 2 — IR:

ug = A(—e 7 f(u) — eAu) + e ' poou (4.1a)
— Ao + e pgou =0, (4.1b)
where £? is the diffusivity corresponding to the surface energy, the positive constant pq is a

proliferation growth parameter, and f is a bistable function.
Introducing the chemical potential i : 2 — IR, given by

po= —e 1 f(u) — eAu,
([LTa)-(LTH) becomes

ug = Ap + e tpgou, (4.2a)
p=—c f(u) —eAu, (4.2b)
0= Ao —¢c 'pyou. (4.2¢)

The above system models the evolution of the first stage of a growing tumor [44]. In this stage
a tumor grows because of the consumption of nutrients that diffuse through the surrounding
tissue. This stage is referred to as avascular growth, as the tumor has not yet acquired its
own blood supply to nurture itself. Consumption of nutrients is modeled in and
via the reactive terms. To describe the evolution of the tumor boundary a diffuse-
interface description is employed. This is classically modeled in with a diffusion
via the chemical potential p which depends in a nonlinear manner on u and contains the
higher-order regularization e Au, see .

Diffuse-interface tumor-growth models fall within the broader class of multiconstituent
tumor-growth models based on continuum mixture theory, such as presented in [5], 4, 12}
34, [7]. The derivation of diffuse-interface models within continuum mixture theory has
been reviewed in [42], and requires the set up of balance laws for each constituent as well
as the specification of constraints on the constitutive choices imposed by the second law
of thermodynamics. Typically, only the cellular and fluidic constituents of a tumor are
modeled as parts of a mixture, while nutrients are considered separately. Recently however,
a diffuse-interface tumor growth model has been proposed that incorporates all constituents
within the mixture and is proven to be thermodynamically consistent, see [37]. In fact, the
model is of gradient-flow type.

The model from [37] is a modification of and has a natural four-constituent inter-
pretation: a tumorous phase u = 1, a healthy cell phase u =~ —1, a nutrient-rich extracellular
water phase ¢ =~ 1 and a nutrient-poor extracellular water phase ¢ =~ 0. It is given by

up = Ap 4 e 1p(u)(o — op) (4.3a)
p=—c'f(u) —eAu (4.3b)
oy = Ao — e p(u)(o — du) (4.3c)
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where § > 0 is a small regularization parameter, and the growth function p(u) is defined by

2poy/W(u)  wel-1,1]
p(u) :=
0 elsewhere.
Here W (u) := — [*, f(s)ds is the classical Cahn-Hilliard double well free-energy density.
We assume that the bistable function f(u) has two stable roots +1, an unstable root 0 and
mean zero: fil f(s)ds = 0.

Note that, compared to —, the reactive terms have been modified to be thermo-
dynamically consistent. They include a regularization part u and they have been localized
to the interface (since p(u) is nonzero if u € (—1,1)); see [37] for more details.

In this work, we shall be interested in the singular limit ¢ | 0 of — together
with homogeneous Neumann boundary conditions. For articles involving singular limits we
refer to [3| 13 17, (14} 46} [43], 9, B39} 26, 2, 23], 148, [15] [I]; we should also mention the overviews
[18] 32, [41), 40], and the numerical studies [28], 27, 29] 30l 311 [16].

The unknown pair (u, o) is a dissipative gradient flow for the energy functional

E(u,a) = [ (51Vul? +eW )+ )

U, 0) = —|Vu eW(u) + —).

9= ) \2 2

We refer to Theorem for the proof of this property in a slightly more general context.

4.1.2 The main results

In order to study the singular limit of Problem (4.3al)-(4.3c]) as ¢ | 0, we introduce the
following phase-field model

oif 4+ uf = Apf 4 e p(uf)(0f — 6pF)  in Q x (0, +00), (4.4a)
e —auf = —e 2 f(uf) — Au® in Qx (0,400), (4.4b)
0f = Ac® — e p(u)(0° — 0pf)  in Q x (0,400), (4.4¢)
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together with the boundary and initial conditions

ous  ou®  0do®
i =0 on 9 x (0,400), (4.4d)
ap(-,0) =apy, v (,0)=uy, o°(,0)=05 on €. (4.4e)

Here, Q is a smooth bounded domain of RN (N > 2), v is the outer unit normal vector
to 0 and « is a positive constant. We denote by (P:) the problem (4.4a)-(4.4¢)). Setting
a = 0 in the singular limit of Problem (P.), we will obtain the singular limit of Problem

(4.3a)-(4.3c)). Problem (P:) possesses the Lyaponov functional

[ (Erour et au? o
B.(u, 1, 0) ./Q<2|Vu] W+ e+ 2,

We will prove in section [4.2 that Problem (F.) is a gradient flow associated to the functional
E.(u, p,0).

Theorem 4.1.1. Let (u®, u,0°) be a smooth solution of Problem (P.). Then E.(uf, u,o°)
1s decreasing along solution orbits.
We will show in the following that, if in some sense
ut—pu, vt —u, o°— o,

then the triple (u,u,o) is characterized by a limit free boundary problem, where the in-
terface motion equation appears as the limit of the equation . A rigorous proof of
the convergence of the solution of the equation may for instance be found in [IJ.
According to [I], the function u only takes the two values —1 or 1 and the interface which
separates the regions where {u = —1} and {u = 1} partially moves according to its mean
curvature.

Assumption on initial conditions: We assume that as ¢ | 0,
o — fo, UG —> Ug, Oq — 00,

in some sense and that there exists a closed smooth hypersurface without boundary I'g CC 2
which divides  into two subdomains Q1 (0) and Q7 (0) such that

-1 in Q7(0),
ug = (4.5)
1 in QF(0).

We also assume that Q1(0) is the region enclosed by I'g and that ©7(0) is the region enclosed
between 02 and T'y.

Now, we are ready to introduce a free boundary problem namely the singular limit of
Problem (F;) as € | 0:

w(z,t) = {1 1 i gf(t)’t €(0.7] (4.62)
- in (t),t € (0,7

aVy,=—=(N—-1r+Cpu on I'(t),t € (0, 7] (4.6b)

o + up = Ap 4 2v2po (o — p)do(x — T(t))  in Q x (0,77, (4.6¢)

o1 = Ao — 2v/2pg(0 — p)6o(z — T(t)) in Q x (0,77, (4.6d)
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together with the boundary and initial conditions

o do

% = % =0 on 0N x (0,1—17 (466)
au(-,0) =apy, o(-,0) =09, on £, (4.6f)
I'(0) = Iy, (4.6g)

Here, I'(t) CC Q is a closed hypersurface; Q7 (t) is the region enclosed by T'(t); Q™ (t) =
Q\ (QF(t)UT(t)); do is the Dirac distribution; V;, : I'(t) — IR¥ is the normal velocity of the
evolving interface I'(t), x is the mean curvature at each point of I'(t) and

cz[/_ll\/mdsyl.

We denote by (Fp) the problem (4.6a))-(4.6g) and define
Tr:= |J T() x {t}.

te(0,T
Definition 4.1.2. We say that the triple (I'p, u,0) is a solution of Problem (Fy) if

(i) the set U I'(t) x {t} is smooth, namely I'(t) is a smooth hypersurface which lies
0<t<T
entirely within Q2 for all t € [0,T] and I'(t) varies smoothly in time;

(ii) for all test functions

Ve Fr={yeC?(Qx[0,T]) such that (‘;15 =0 on IAx[0,T] and ¥(T) =0},

we have

/OT/Q(—ozu—u)l/ft —/Q(ozﬂo+uo)¢(0) = /OT/Q/LAl/J-F2\/§I70 /OT /F(t)(a—éu)¢,
and

/OT/Q—awt—/anw(o) :/OT/QUAw_2\6p0/0T/F(t)(0_5“)¢'

Now, in order to state the next result, we need some notations. Let n™(¢), n™ () be the outer
unit normal vectors to dQT (t) and 9~ (t), respectively. Note that n* = —n~ on I'r, so we
may define n := n™ = —n~ on I'r. We define [-] the jump across ['(t), by [¢] := ¢T — ¢,
where ¢* should be understood as the following limit

65() = Tim o(-+ pn*(t)) on T(1).
p—0

We also define

Qf = |J 9t x{t}, and Qr = |J Q@) x{t}.

t€(0,T t€(0,7]
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Theorem 4.1.3. Assume that Problem (Py) possesses a solution (I'r, u, o) such that I'p is
smooth on the time interval (0,T) and that p and o are smooth up to T'p on both sides of
I'p. Then the triple (I'r, pu, o) satisfies:

apr = Ap in QF UQr, (4.7a)
ot = Ao on Q}' UQr, (4.7b)
[e] =[e] =0 on I'r, (4.7¢c)
gg]] = 2V, 4+ 2V2po(0 — dp)  on T'p, (4.7d)
[[g;]] = —2v2po(0 — o) on T, (4.7e)
aVp=—(N—-1)k+Cu on I'r, (4.71)

together with the boundary and initial conditions

op  do
w(+,0) = po, o(-,0) = oo, on €, (4.7h)
') =TY. (4.71)

In this case, we say that (U'r, p, o) is a classical solution of Problem (Py) on the time interval
[0,T7].

Problem (Fp) possesses the Lyapunov functional

2 au? o2
E(T, i, 0) ::c/FldF+/gz<5+2<5>’

which is analogous to the Lyapunov functional satisfied by Problem (Px).

Theorem 4.1.4. Let (I'r, p,0) be a classical solution of Problem (Py). Then E(T,pu,0) is
decreasing along solution orbits.

Finally, we will formally prove the following result.

Theorem 4.1.5. Let (u%,u®,0%) be solution of Problem (P.). We suppose that Problem
(Py) possesses a unique classical solution on the interval [0,T]. If e — 0,

uw—p, ut—wu, o —> 0o in a strong enough sense,
then ('r, p, o) coincide with the classical solution of Problem (Py) and u is given by (4.6a)).

We note that the singular limit corresponds to a moving boundary problem which is
similar to other sharp-interface tumor-growth models [35] 221 [10] T1].

The remainder of the paper is organized as follows: in section 2 we prove Theorem
and Theorem in section 3, we formally justify Theorem
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4.2 Proof of the main results

4.2.1 Proof of Theorem m
It is sufficient to prove that

d

ZE(uf i, 0%) < 0. (4.8)

For simplicity, we write u, i, o instead of u®, u%, 0. Now, the inequality (4.8) follows from
the following computations:

qa
dt

E&(ua o, o ) — / <EVUV’U¢ + 871W/(u)’u,t —+ QUL + g)
_1f — eAujug + appy + T)

0
WAG
:/Q(,u QEUL ut+au,ut> ~|—/Q(;(Aa—s_1p(u)(a—5,u))
/Qaeu +/ ut+aut)+/ﬂ‘g(Aa—slp(u)(a—éﬂ))

= /Qae / Ap+e'plu )(U—é,u)) —&—/Qg(Aa—a_lp(u)(U—(Su))
acu — [ 19uP = [ VL s oot [y (uto - ) - S - o0)
et =[50 -
/aeut /\V | / —€ /Qp(u)(\/g,u \/5> <0.

4.2.2 Proof of Theorem m

First, we recall that nt (¢), n~(¢) are the outer unit normal vectors to Q7" (t) and 9Q~ (¢),
respectively and n := n™ = —n~ on I'y. We define V,, = V.n,, where V is the velocity of
displacement of the interface I'r.

Equations for p

We recall that u, p satisfy

/OT/Q(—aM —u)thy — /Q(Oé,uo +up)Y(0) = /OT/Q,uAdJ + 2\/§p0 /OT /F(t)(a — o), (4.9)

for all v € Fr. We define the terms A;, A> and the diffusion term B by

4y = /OT/Q_awt, Ay = /OT/Q_W, and B = /OT/Qqu-

Analysis of the terms A; and Ajs: Our analysis of the terms A; and As relies on the
Reynolds transport theorem, by which we have

@ [0 /| NCETOE / Vot
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for all smooth function ¢ and for function ¢. These equations for the integrals over Q% (t)

yield
d

= Vi, .
) N S (60 4w ) + /F , Valol

Hence we have

_ _ Vol _ =
/Q+(t)u9—(t) ot /Q+()UQ ¢tw+/ oW di /Q+(t)UQ—(t) oy

In our case, we choose ¢ := au in (4.10)) and integrate from 0 to 7. This yields

4y = // autw// ondo - / i
Q+ (1)U dt QF+ (1)U
_ / / s + / [ avilide+ [ ap(0)(0).
o Jatrwmua-() o Jre Q+(0)UQ—(0)
Similarly, we apply the formula for ¢ := u to obtain
T T
w0 wor [ vilade+ | u(0)(0)
o Jarmua-@) o Jr Q+(0)UQ— (0)
T
_y / / Vit + / u(0)(0).
o Jre Q+(0)UQ—(0)

Analysis of the term B: We write B as the sum

B_/0T</Q+(t)MA¢+/Q_(t)qu>.

Integration by parts yields

0 _
| wsw== [ waver Ay
Q- (1) Q- (t) r(t) on

ou~
= [ o [ g [ G [ G
/Q(t) (1) On~ o0 5’/

ou~ 0 oy
— [ aws [ S [y f;’u
Q= (t) re on an ov () on

op* ol
A = / App— | ——p+ / A
/Qﬂt) Q+ (1) @ on r@ on

which implies that

and

0
/ A = App / S+ / H— s
QF (U () Q+ (U (t) an ov

Integrating this identity from 0 to 7', we obtain

e S R

(4.10)

(4.11)

(4.12)

(4.13)
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Conclusion: Combining (4.9), (4.11) (4.12) and (4.13), we then have for all ¢ € Fr,

/OT /Qﬂt)ug(t)auﬂﬁ-i- /OT /F(t) Vo(alu] + 2)y

+ / o )a(u(O) po)w(0) + / (U(O) — u0)(0)

Q+(

//W(MM// w+// = [ Lo

+ /0 /F , 2V2mlo — o -

By using test functions with suitable supports, namely ¢ € CSO(QJTr ) and ¢ € C§°(Qr), we
deduce that

apr = Ap in QF U Q7. (5b)

Similarly, by taking ¢ € C§°(Qr) such that ? =0 on I'yr (we refer to Remark {4.2.1
n

below for the construction of such functions), we obtain

0
Va2 4+ afpu]) = —[[8—5]] +2v2po(o — 6p) on Tp. (4.15)
Now, we take ¢ € C§°(Qr) to deduce that
T aw -
3 —[u] =0 forall ¥ e C5°(Qr). (4.16)
0o Jr@) on
Therefore,
[4] =0 on Tp. (4.17)

It follows from and (| - ) that
15)
2V, = —[[ﬁ]] +2v2po(0 — 6p)  on Ty

Now, for the initial conditions, we use the test function ¢ € Fp such that ¥» = 0 on
002 x (0,T) to obtain
u(0) + ap(0) = uo + apo,

which in view of (4.5 implies that
1(0) = po,  u(0) = ug
Finally, the remaining term in (4.14)) allows us to conclude that

o
— =0.
%
Therefore, p satisfies the equations:
oy = Au in Qf U Q7.
2V, = —[[%]] + 2V2po (0 — 6p) on I'r,

[u] =0 on I'p,
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together with the boundary condition and the initial condition:
op
ov
Remark 4.2.1. Let 1; € C§°(Qr). In the following, we construct a function v € C3°(Qr)
such that

=0, p(0) = po.

oY ~
%h—‘T =0 and v=v¢% on Trp. (4.18)
Let d(z,t) be the signed distance function to T'(t) (see ([@.23) below). Since U I(t) x {t}

0<t<T
is smooth, there exists § small enough such that glv(x,t) s smooth in

Vi={(x,t) € Qx [0, T],|d(x,1)| < 5};

moreover for all (x,t) € V there exists a unique (y,t) in I'(t) x {t} such that d(z,t)| = |z —y|
and (Vd(x,t),t) = n(y,t). More precisely,

(y.t) = J(,1) := (x — Vd(, t)d(x, 1), 1),
where the projection operator J is a smooth map from V into RN*L. We define v on'V by
Y() =PI ().

Then 1) is smooth on V and (4.18) holds. Moreover, we can extend ¥ to a smooth function
on Qr.

Equations for o

Since the computations in this section are similar to the previous ones, we will only give
a sketch of the necessary steps. For ¢ € C§°(Qr), we have

/OT/Q_U% _ /OT/QgAw — 2v/2py /OT /F(t)(a — S (4.19)

We define two terms
T T
C’::/ /—U”L/Jt and D::/ /aAw.
0 Q 0 Q

One can easily deduce that

T T
C:/ / Utﬂ)—i-/ / Valo]y,
0 Jat(uQ—(t) 0 JI()
T
P Lo L L5 [ L e
Qt(t)uQ— I'(t) an o Jre on

It follows that

[ ¢/Amu
// 1/1 // [[0]]—2\7190/ /F(t)a—f?wb-

and
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and hence we have

= Ao in QfUQ;,
0
(521 = —2v/2po(0 = 31) on T,
[e] =0 on I'r,

This concludes the proof of Theorem

4.2.3 Proof of Theorem m
We prove below that

d
B p.0) <0, (4.20)

The inequality (4.20) follows from the following computations and [24, Theorem 4.3 p.355
and formula 4.12 p.356]):

d

d
== /(N = AL +/ <auut +5_100t)
CJr Q+tuQ-
2 -1
== [[Cu—aV,]|V,+ (au,ut +0 aat>
CJr QtuQ-
—/QMVR—/QQV,?—F/ (uAu—i—cS*laAa)
r r C Q+uQ-
o 2 4 -1
= —[=]+2v2 -4 — A 0 oA
/Fu< [5,.1+2V2po(o u)) CV /muﬂ_ (u p+dto a)
2
—/2\/§pou(a—5u) - —/ !W!2+/ i loAg
r QtuQ- QtuQ-

/C
200 Vc72 _ 80
— [ vt —ow - [Zvi- [ e [ BEEL [atory
r QtuQ-— Q+tun-— n

which in turn implies that

N

d
ZET
7 (I, p, 0)

B Vol?
= / 2v2po (,u(a —op) — 0 to(o — 5#)) V2 / Vul* - / [Vel
r C Qtua- otuo- O
VU| o \?2
= v2 / vQ—/ | —/2\/5 Véu——) <o.
r C Q'*‘UQ—‘ v atuo- O r po( : \/5> B

4.3 Formal derivation of Theorem 4.1.5

This section is devoted to prove formally theorem We shall derive in turn equations
for u,I'(t), u, o
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4.3.1 Equation for u

First, we formally show that w only takes two values +1. To that purpose, we rewrite
Equation (4.4b) in the form

oau = Au + e 2f(u) + e 1.
By setting 7 := t/c2, we obtain
aus = 2 Auf + f(uf) + epf.

When ¢ is small, we neglect the effect of diffusion term e2Auf and of the term eu® with
respect to the term f(u®), which yields the ordinary differential equation

duf
dr

Note that 7 — oo as € — 0. Remembering that +1 are two stable zeros of this equation.
We formally deduce that as € | 0

«

= f(uf). (4.21)

u®(z,t) approaches —1 if u®(z,0) <0
(4.22)
u®(z,t) approaches 1 if w®(xz,0) > 0.

This implies that the function u which is the limit of u® only takes two values +1.

4.3.2 Formal derivation of the interface equation
We define
Q () ={z e Q: u(zx,t)=-1}, Ot ={reQ: u(z,t) =1},
and
T(t) :== Q\(Q (#) uQT(2)).

Since roughly speaking, the regions {u = —1} and {u = 1} are the ”limit” of the regions
{u® = —1} and {u® = 1} as € — 0, I'(t) can be considered as the limit as ¢ — 0 of I'°(¢)
which is the interface between the two regions

{xeQ: u(r,t)=-1} and {xe€Q: u(x,t)=1}.
We recall that 0 is an unstable equilibria of Equation , and define
Ie(t) ={z e Q: u(x,t) =0} foreach t>0.
In what follows, we will use an formal asymptotic expansion to derive the equation describing

I'(t). We need some preparations.

1. Signed distance function: We assume that the interface I'(t) is a smooth, closed hyper-
surface without boundary of IRY. Further, we suppose that Q7 (¢) is the region enclosed by
['(t) and that Q(t) is the region enclosed between dQ and I'(t). Let d(x,t) be the signed
distance function to I'(¢) defined by

dist(z, I'(¢)) for =z € Q(¢),
d(z,t) = (4.23)
—dist(x,T'(¢)) elsewhere.
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Note that d = 0 on I'r and |Vd| = 1 in a neighborhood of I'r.

2. OQuter expansion: It is reasonable to assume that outside a neighbourhood of 'y, u® has
the expansion

uf(2,t) = £1 + euf (x,t) + 25 (x,t) + ... (4.24)
3. Inner expansion: Near I'p, we assume that u® has form
u®(z,t) = Up(,1,€) + eUr(x,t,&) + 2 Us(, 1,€) + . . (4.25)

Here Uj(z,t,2),j > 0 are defined for € Q, ¢ > 0,2z € R and £ := d(x,t)/e.

4. Normalization conditions: The stretched space variable £ gives exactly the right spatial
scaling to describe the rapid transition between the regions {u® ~ —1} and {u® ~ 1}. We
normalize Uy in such a way that

Uo(.%', t, 0) =0.

5. Matching conditions: For & — ‘oo, we require two expansions and (| - to be
consistent, i.e.

Uo(z,t,—o0) =1, Up(x,t, +o00) = —1;
and
Us(e,t—o00) = uf (.8),  Up(at, +00) = g (x.1)
for all kK > 1.

Formal interface motion equation We will substitute the inner expansion (4.25)) into
(4.4b). We will then compare the terms of the same order to determine equations of Uy and
U;. To that purpose, we start by some computations.

d ~
up = U0t+U0z;t+5U1t+Ulzdt+...,

vd ~
Vu® = VU + UOZ7 +eVU, +U,Vd + ...

Ad |Vd|

d
Au® = =AUy + 22 VU, + UOzi + Uoz.——— +eAU;

d
+QVd VUlz+Uled+Ulzz|v€ | L]

f(w®) = f(Uo) +ef (Uo)Ur + O(e?),
e =p+O0(e).

Substituting u$, Auf, f(u), u¢ in (4.4b)), collecting all terms of order e~2 then yields

UOzz + f(UO) =0
(4.26)
U()(—OO) =1, U[)(O) =0, U0(+OO) = —1.
This problem has a unique solution Uj. Furthermore, Uy is independent of (x,t), i.e

Uo(x,t,z) = Up(z) and thus, we write Uj, Uy instead of Uy, Up,.. We have the follow-
ing lemma.
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Lemma 4.3.1. The solution Uy of equation (4.26|) also fulfills the differential equation
Uy = —+/2W (Uy).
As a consequence, [ (Uj(2))* dz can be written in the form:
1
/ (U(2))? dz = \/5/ VW (s)ds.

R -1

Proof. Multiplying the above mentioned differential equation (4.26]) for Uy by U}, we get
UiUL+ f(U)UG = 0. (4.27)

Keeping in mind that W’(u) = —f(u), (4.27) can be read as

U/ 2\ '/
<(§)> — (W(Up)) = 0. (4.28)
Integrating this equation from —oo to z, we obtain
Ul(2))?
(0(2)) = W (Up(2)). (4.29)

Moreover, Uy is non increasing, therefore, we deduce that

Up(2) = =/ 2W (U (2)).

Consequently, we have

1
/ (U(2))? dz = / Uy(2)\/2W (Uy(2)) dz = \@/ VW (s)ds.
R R -1

This completes the proof of Lemma [4.3.1 O

We now collect the terms of order e~ in the substituted equation (£.4b)). Because we
have |Vd| =1 in a neighbourhood of I'(¢), we obtain

Ur.. + f'(Uo)Uy = Ul(ady — Ad) — pu. (4.30)
A solvability condition for this equation is given by the following lemma.
Lemma 4.3.2 (see [Il, Lemma 2.2]). Let A(z) be a bounded function for z € R. Then the

existence of a solution ¢ for the problem

{¢zz + /' (Uo(2))¢ = A(2) , z € R (4.31)

¢(0) = 0,¢ € L*(IR)

s equivalent to

/ A()UL(2) d= = 0. (4.32)
R
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Therefore, the existence of a solution U; of (4.30) is equivalent to

| W92 0d: = A1) = a0y (2)] dz =0 (4.33)

for all (x,t) in a neighbourhood of the interface I'y. Thus,

Jr Uh(2))* dz Jr (U§(2))? dz
It follows from Lemma [4.3.7] that
= = V2p(z,t)
(ady — Ad)(x,t) = ——————2—. (4.35)
f_ll VW (s)ds
Note that, on I'(£) we have n = n't|p = Vd, xk = (;1\17V(n1) = NAdl, and d; = —Vj,. Therefore,

we deduce that I'(¢) satisfies indeed the interface motion equation (4.6b)):

v
f_ll VW (s)ds

aVy = —(N — Dk + ~(N-1)k+Cu  onTr,

where C := [f_ll \/st} o .

4.3.3 Equations for u,o

We will suppose that the following convergence holds in a strong enough sense:
us — pu, ot —o0o

as € | 0 and derive the limit of the reaction term in (4.4al) and (4.4c|). To that purpose, we
first prove a stronger version of Lemma 2.1 by Du et al. [25] (see also [6l [39]).

Lemma 4.3.3. Let v CC € be a smooth hypersurface without boundary, d be the signed
distance to vy, and let g € L'(IR). Furthermore, let ¢ € L>(Q2) and V C Q be a neighborhood
v such that

19l Lo () < C,
¢° 1is continuous on V,

) uniformly in V.

We then have

o0

1 c _
it [ st [~ orar [ o

for a small enough neighborhood U C V of ~.
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Proof. For simplicity, we prove this lemma in the three-dimensional case and assume that
the hypersurface v has a parametrization a. More precisely, we assume that there exists
an open set W of IR? such that the mapping « from W onto v is smooth and that o' is
continuous from v onto W. We write the function « as

a(z1,22) = (Oél(Zl,ZQ),QQ(Zl,ZQ),O[g(Zl,ZQ)) for all (21,22) € W

For § > 0 small enough, we consider 1 from W x [—6, 6] to IR3, which satisfies

mr (21, 22,7) = V(5 (21, 22, 7)),
n(z1,22,0) = a(z1, 22).

We write
77('2172277-) = (771(2172277-)7772('2172277-)7773('2172277-))

with 7; : W x [=6,8] — IR. We define U := n({W x [-6,8]}) and choose § small enough so
that U C V. Note that

d
%d(n(zl72277—)) = Vd(n(ZbZ%T))UT(ZL2277) = |Vd(77(2172277_))|2 = 17

and that d(n(z1, 22,0)) = d(a(z1,22)) = 0. Thus we conclude that d(n(z1,22,7)) = 7. We
define J(z1, 22, 7) as the determinant of the Jacobian matrix of n at (z1, 22, 7) and perform
the change of coordinates 7n(z1, 22, 7) = x to obtain

Lo (@) ¢(2) do

:/_i ar /Wg (d(n(zlw> ¢ (n(21, 22, 7)) (21, 22, 7)|dz1dz2

£
1)
:/_ng/14/9<2> ¢ (n(z1, 22, 7))|J (21, 22, T)|dz1d22.

By applying the change of coordinates 7 = 7, we have

/Ug <d(j)>¢>€(w) dx
. /_g d?/Wg(?) 6 (121, 22, £7)| T (21, 29, £7)| dz1ds.

Therefore,

A= (d(f))&(w) da

:/ /1(_575)(?)9(?)qﬁa(n(zl,zQ,s?))J(zl,zg,a?)\d?dzldza.
—oc0 JW e’e

In the following, we will apply the dominated convergence theorem to deduce the limit of
Az as e ] 0. Set

H.(z1,20,7) := 1(_§ g)(?)g(?) ¢ (n(z1, 22,€7))|J (21, 22,€T)|.

ele
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For —g <7< g, we have —0 < e7 < §, so that for alle > 0

1 _s 5)(7) |J (21, 22,€7) |‘ sup |J (21, 22, 7)| =: Cy.
€ E 21,220€EW, —6<1<8

Moreover, ||¢°|| () < C for all € > 0, therefore,
|Ho(21,22,7)| < Clg(T)]  on W x IR. (4.36)

Next, since ¢° converges uniformly to ¢ on U and since J is continuous, we have for all
TE IR, (Zl, 22) ew,

15 5)(T) 9" (n(z1, 22,€7)) = d(n(21, 22,0)) = pa(z1, 22)),
J (21, 22,€T) = J(21, 22,0),
as € | 0. It follows that as € | 0,

H.(z1,22,7) = g(T)p(n(z1, 22,0))|J (21, 22,0)| for all 7 e IR, (21,22) € W. (4.37)
Combining (4.36]) and ( -, we have
lim A, — / o(7)dF / (21, 22))|J (21, 22, 0)| dz1dzs. (4.38)
w

€l0 —50
Next, we computes |J(z1, 2z2,0)|. For this purpose, we write

O _ 9m Om Ons,
(92’1 82178217821’
02y 0z 0z 0z

or

on _ Om On 8773)

B or or)

0
Note that 8—77(21, 22, 0) is the outer normal vector to 7 at the point 7(z1, 22,0) = (21, 22) and
T
0 0
that {a—n(zl, 29,0), 8—”(2'1, z2,0)} is a basis of the tangent space of v at point 7(z1, 22,0) =
u v

a(z1, z2). Therefore,

- 877 (977 5’77 877 877 @

on on
=|=—A—"/||Vd YA

7 A@zg IVd(n(z1, 22,0))| = 821 Ay (21,22,0)
B O A Do oo ( )
= 821 925 21, 22

where A is the vector product. This together with (4.38]) implies that
0 8
limAg—/ dr/ d(a(z1,22)) @ @
el0

dzi1d
82’1 82’2 Az




124 Chapter 4. Diffuse-interface tumor-growth model

On the other hand, in view of the definition of the integral of surface (see [47, Formula
(131), p. 283]), we have

Jda  Oa
dy = — A ~——|dzd
[ot= [ olater 2| 55 52 s
Therefore,
lelﬁ)lAE :/mg(T)dTL¢
which completes the proof of the lemma. O

Application to reaction term: Now we apply Lemma to formally compute the limit
as e | 0 of

// V(0 — 6pf)p, for i € Fr.

Because of the outer and inner expression of v in (4.24]) and (4.25), we deduce that for e
small enough

+1 if (z,t) is far from I'p
u®(x,t) ~ 5
Uo(d(i’ t>) if (z,t) is closed to T'r.
Therefore
0 if (x,t) is far from I'p
p(u(z,t)) = i
p(Uo( (i’ ))) if (z,t) is closed to T'p.

Thus we can apply Lemma by setting

9(&) :==pUo(§)) and ¢ := (0% —opu")1),
where Y € Fp. This yields

0 1; 1 € e € 1 1 5 e __ €
Pr(y(t)) = lim - Qp(u )0 — 0p%)p = lim = U(t)p(u )0 —op)p

_ / 7 p(Un(6) de /F CCRREOTO!

where U (t) is a small enough neighborhood of T'(t). Recalling that in view of the definition
of p and of Lemma

p(Us) = 2po/W (Uo) = —V2po Ug,

we get
PO((t)) = —v2po / UL (€) de / ) — Su(t)b (1)
— 2v/2pg /F 0 =3O,
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Hence, we formally conclude that, for all 1) € Fp

o1
lim —
el0 €

T T
| [ oo =suyo=2vem [ at [ (o) dupee). @)
0o Ja 0 I'(t)
Conclusion: Now, we recall the definition of a weak solution of the equation for u®:

[ [can =y [ i = [ [ (wav+ oo - o)

for ¢ in Fp and take the limit ¢ — 0 on both sides, to obtain in view of (4.39)

/0 ' /Q (—agi— s — /Q (g 1 u0)(0) = /O ' /Q B + 2330 /0 " / o omwu0)

This together a similar argument for the equation for ¢ completes the proof of Theorem

4. 1.9
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