
HAL Id: tel-00919786
https://theses.hal.science/tel-00919786

Submitted on 9 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query evaluation with constant delay
Wojciech Kazana

To cite this version:
Wojciech Kazana. Query evaluation with constant delay. Other [cs.OH]. École normale supérieure de
Cachan - ENS Cachan, 2013. English. �NNT : 2013DENS0030�. �tel-00919786�

https://theses.hal.science/tel-00919786
https://hal.archives-ouvertes.fr

ENSC-(n d’ordre)

THÈSE DE DOCTORAT

DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Présentée par

Monsieur Wojciech Kazana

Pour obtenir le grade de

DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Domaine :

Informatique

Sujet de la thèse :

Query Evaluation with Constant Delay

Thèse présentée et soutenue à Cachan le 16èeme Septembre 2013 devant le jury composé de :

Nicole Bidoit Professeur Président

Arnaud Durand Professeur Rapporteur

Patrice Ossona de Mendez Chargé de Recherche Rapporteur

Victor Vianu Professeur Examinateur

Luc Segoufin Directeur de Recherche Directeur de thèse

Laboratoire Spécification et Vérification

ENS de Cachan, UMR 8643 du CNRS

61, avenue du Président Wilson

94235 CACHAN Cedex, France

2

Acknowledgments

I am grateful to Luc Segoufin who kindly accepted me to be his PhD student. He introduced me

to the problem of query enumeration and encouraged me to look for the answers to all the questions

that emerged during our collaboration. He was a truly great advisor, always supportive and available for

discussions and advice.

I would like to thank Arnaud Durand and Patrice Ossona de Mendez for accepting to review this

thesis and for their constructive comments on the earlier versions of this manuscript. Many thanks to

Nicole Bidoit and Victor Vianu for accepting to be in my jury.

Special thanks go to my Parents, who directed me to follow the scientific path and where fully

supportive at all times.

Thanks to all the members of LSV – it was a pleasure working with You.

I would like to thank the awesome people whom I have been working with in the same office on the

4th floor. Without all the nice riddles and the magnificent French lessons my time there wouldn’t be as

chouette as it was.

Big thanks go to my son Boris, who was kind enough to sleep through the whole nights, allowing

his dad to actually write the thesis down.

Last but not least, the biggest thanks to my beloved wife Kinga. Without her continuous support the

whole Paris adventure wouldn’t be possible at all.

3

4

Contents

Page

Acknowledgments 3

Contents 5

1 Introduction 9

2 Preliminaries 13

2.1 Databases, relational structures and queries . 14

2.2 Model of computation . 14

2.3 Parametrized complexity . 16

2.4 Logics . 17

2.5 The core query problems . 17

2.5.1 Model checking problem . 17

2.5.2 Query evaluation problem . 17

2.5.3 Query enumeration problem . 18

2.5.4 Query testing problem . 18

2.5.5 The counting problem for a query . 18

2.5.6 The j-th solution problem for a query . 18

2.6 Examples . 19

2.7 Complexity classes . 21

2.7.1 The LINEAR-TIME class . 22

2.7.2 The evaluation class LINEAR-EVAL . 22

2.7.3 The enumeration class CONSTANT-DELAYlin . 22

2.7.4 The answering classes CONSTANT-TIMElin and LOGARITHMIC-TIMElin 23

2.8 Graphs . 23

2.8.1 Graphs of a structure . 24

2.8.2 Classes of graphs . 24

3 Basic results 29

3.1 The query problems . 29

3.1.1 The enumeration problem . 30

3.1.2 The j-th solution problem . 31

3.2 Bounded expansion . 32

3.3 Gaifman vs adjacency . 32

3.3.1 Bounded degree . 32

3.3.2 Bounded treewidth . 33

3.3.3 Bounded expansion . 34

5

4 State of the art 37

4.1 Query enumeration in database setting . 38

4.1.1 Arbitrary relational structures . 38

4.1.2 X-underbar structures . 41

4.1.3 Sparse structures . 41

4.1.4 Data trees . 47

4.2 Other enumeration problems . 48

4.2.1 Abstract enumeration problems . 49

4.2.2 Polynomial total time . 49

4.2.3 Incremental polynomial time . 50

4.2.4 Polynomial delay . 50

4.2.5 Strong Polynomial delay . 51

4.2.6 Probabilistic enumeration algorithms . 51

4.2.7 Impact of the order and separation of the enumeration classes 52

4.3 Conclusions . 52

5 FO over classes of structures with bounded degree 53

5.1 Introduction . 53

5.2 Preliminaries . 54

5.2.1 Gaifman locality . 54

5.2.2 Model checking . 55

5.2.3 Connectivity, partitions and splits . 55

5.3 The index structures . 57

5.3.1 The basic index structure . 57

5.3.2 Towards counting . 59

5.3.3 Increasing the radius . 60

5.3.4 The basic index structure with counting . 62

5.4 Solving the problems . 63

5.4.1 Enumeration of FO queries . 63

5.4.2 Testing FO queries . 64

5.4.3 Counting FO queries . 64

5.4.4 j-th solution problem for FO queries . 65

6 MSO over classes of structures with bounded treewidth 67

6.1 Introduction . 68

6.2 Preliminaries . 69

6.2.1 Trees . 69

6.2.2 Useful results . 69

6.3 Simplifying the problem . 70

6.3.1 It is enough to consider trees . 70

6.3.2 It is enough to consider binary trees . 70

6.3.3 It is enough to consider queries that also output all least common ancestors . . . 71

6.3.4 It is enough to consider queries with ancestor-typed outputs 71

6.3.5 It is enough to consider o-compatible queries 71

6.3.6 It is enough to consider o-compatible queries definable in Σ2(<) 72

6.4 The index structures . 73

6.4.1 The o-skeleton decomposition . 73

6.4.2 From Σ2(<) to polynomials . 74

6.4.3 The τ -order . 75

6

6.4.4 The basic index structure . 76

6.4.5 The full index structure . 78

6.4.6 The full index structure with counting . 79

6.5 Solving the problems . 81

6.5.1 Enumerating simple Σ2(<) queries . 81

6.5.2 Testing simple Σ2(<) queries . 82

6.5.3 Counting problem for simple Σ2(<) queries . 82

6.5.4 j-th solution problem for simple Σ2(<) queries 84

6.6 Discussions . 85

6.7 Conclusions . 88

7 FO over classes of structures with bounded expansion 89

7.1 Introduction . 89

7.2 Preliminaries . 91

7.2.1 Graphs with bounded expansion and augmentation 92

7.2.2 Graphs of bounded in-degree as functional structures 92

7.2.3 From structures to graphs . 94

7.2.4 Normal form for quantifier-free first-order queries 95

7.3 Model checking . 97

7.4 Testing . 101

7.5 Enumeration . 102

7.6 Counting . 106

7.7 Discussions . 110

7.8 Conclusions . 111

8 Discussions 113

8.1 Lower bounds . 114

8.1.1 LINEAR-EVAL 6= CONSTANT-DELAYlin . 114

8.1.2 WEAK-CONSTANT-DELAYlin class . 115

8.1.3 On separation of WEAK-CONSTANT-DELAYlin and CONSTANT-DELAYlin 115

8.2 Bounded degree, bounded expansion and beyond . 120

8.2.1 Stronger logic over bounded degree . 120

8.2.2 Bounded expansion . 122

8.2.3 Other properties of bounded expansion . 124

Bibliography 127

7

8

1

Introduction

“Knowledge is power.”

– Francis Bacon

Knowledge is power. Somewhere between the end of sixteenth and the beginning of seventeenth

century, when Francis Bacon said those memorable words, they certainly had different flavor than they

do nowadays. Guilds were still at their best, not threatened by any global criticism and successively

shielding the outer world from their secret knowledge. Books and even the most basic education were

highly limited and accessible only to a small fraction of the society. Without a doubt, Bacon’s words

had far more practical tone back then.

Unarguably, the knowledge still IS power. We are far from claiming that it is not. But with the

continuous spread of knowledge throughout the passed ages and its real worldwide explosion thanks to

the popularization of the Internet, there seems to be something more to it nowadays. “When did Bacon

actually lived? Has Napoléon Bonaparte ever seen Sphinx? In which part of Warsaw is Umińskiego

street?” you might wonder? Well, just turn on your web browser, type the question into one of the

search engines and voilà! It is all there. Just waiting for someone curious to ask.

But hold on right there! Whom is it that we actually ASK?

The above story, despite being rather naive, points out two important facts. First of all the ran-

domness of the three mentioned questions and the fact that they do have easily accessible answers1 is

supposed to show us that the amount of knowledge that everyone has access to these days, is truly over-

whelming. The second emphasize is almost too abruptly put on the ASK word. There of course is no

human being on the other side. These are computer programs that do all the dirty work.

Querying the database

From now on let us move to the world of computers, in particular to its databases segment.

An integral part of every database is the way the data is being stored. It should definitely be efficient

in order not to use too much memory. It should definitely be well protected so that an unauthorized third

party would not have access to it. But the main idea behind storing the data is and will always be the

same: at some point we want to have access to it. The reason can be arbitrary: we may want to check

the balance of our bank account or we may simply be hungry for some new gossip about our favorite

movie star. What we want is information that we know is out there.

We think that it is justified to say that query evaluation is the most important problem in databases.

Given a query q and a database D it is to compute the set q(D) of all tuples in the output of q on D.

1It works – we’ve checked.

9

However, the set q(D) may be larger than the database itself as it can have a size of the form nl

where n is the size of the database and l the arity of the query. It can therefore require too many of the

available resources to compute it entirely.

Example 1.0.1 Imagine a social network with 100 million of users. Assume that we want to output all

the pairs of people whose “handshake distance” is less than 10. Although not formally proved, there are

many reasons to predict that the output will contain every possible pair of users! 100 million squared

already is a scary number, while the query was only binary. The more of so called free variables, the

more quickly the output of the query would tend to get out of hand.

There are many solutions to overcome this problem. For instance one could imagine that a small

subset of q(D) can be quickly computed and that this subset will be enough for the user needs. Typically,

one could imagine computing the top-ℓ most relevant answers relative to some ranking function or to

provide a sampling of q(D) relative to some distribution. One could also imagine computing only the

number of solutions |q(D)| or providing an efficient test for whether a given tuple belongs to q(D) or

not.

Enumeration of queries

Our main focus is the following scenario: given a query q and a database D, we want to enumerate q(D)
with constant delay. Intuitively, this means that we are looking for a two-phases algorithm working as

follows: it starts with a preprocessing phase that works in time linear in the size of the database, followed

by an enumeration phase outputting one by one all the elements of q(D) with a constant delay between

any two consecutive outputs. In particular, the first answer is output after a time linear in the size of the

database and once the enumeration starts, a new answer is being output regularly at a speed independent

from the size of the database. Altogether, the set q(D) is entirely computed in time f(q)(||D||+ |q(D)|)
for some function f depending only on q and not on D.

The reason why we want to somehow separate the size of the query from the size of the database

and that we insist on the linearity of the database part, while we do not restrict the query size at all, is

illustrated by Example 1.0.1: while a database of 100 million people would be huge, it took us roughly

one line of text to describe the query. It is in general believed to be the case that queries tend to be small,

while the databases grow bigger and bigger in size.

Example 1.0.2 Consider the scenario from Example 1.0.1. The mentioned query has a natural enumer-

ation algorithm for the mentioned database:

The preprocessing phase simply puts all the people onto a linked list and stores two pointers, both

pointing at its first element.

The enumeration phase just moves second of the pointers along the list, outputting the pair currently

pointed by first and second pointer at each step. As soon as it traverses all the elements, it moves the

first pointer (just once) along the list, resets the second pointer to the current value of the first pointer

and starts all over with the enumeration procedure. It continues this loop until the first pointer reaches

the last element on the list.

There is also another way of viewing constant delay enumeration that we find truly appealing. One

could also view the enumeration algorithm as follows: The preprocessing phase computes in linear time

an index structure representing the set q(D) in a compact way (of size linear in the size of the database).

The enumeration algorithm is then a streaming decompression algorithm.

As an addition, one could also require that the enumeration phase outputs the answers in some given

order. To some extent we also address in this thesis the problem of the output order and the impact it has

on the complexity (or the existence) of the enumeration algorithm.

10

Around enumeration

There are many problems related to enumeration. The main one is the model checking problem. This is

the case when the query is boolean, i.e. outputs only 0 or 1. In this case a constant delay enumeration

algorithm is a Fixed Parameter Linear (FPL) algorithm for the model checking problem of q, i.e. it works

in time f(q)||D||. This is a rather strong constraint as even the model checking problem for conjunctive

queries is not FPL (modulo some hypothesis in parametrized complexity) [57]. Hence, in order to

obtain constant delay enumeration algorithms, we need to make restrictions on the queries and/or on the

databases.

Another problem related to enumeration is the already described counting problem, where we are

only interested in computing the number of solutions to the query.

The also mentioned before testing problem is of providing an efficient test for whether a given tuple

belongs to the output of the query or not.

Since the output of the query may be huge, even its compact representation and its efficient decom-

pression might not be satisfactory enough. We might be interested in directly computing the j-th solution

(with respect to some chosen order) of the output set. We then speak of the j-th solution problem.

Although our main focus remains with the enumeration problem, we always try to address the above

four problems too.

Structure of the thesis

This thesis is organized as follows.

• In Preliminaries Chapter 2 we introduce all the necessary terminology and show some examples.

• In the following Chapter 3 we present simple results that are being used later. It might as well

have been part of the Preliminaries Chapter 2, but we decided to extract it away for the sake of

readability.

• In State of the Art Chapter 4 we try to bring to light all the results concerning enumeration that

we are aware of. This is divided into two sections. In the first we consider the database scenario

as described above. In the other we mention a variety of enumeration algorithms understood in

a broader sense: instead of enumerating solutions to a query we might for example be interested

in enumerating all the spanning trees of a given graph or any other objects satisfying an arbitrary

property.

• The next three chapters contain the heart of this thesis and its main contribution. We in turn

consider:

• first-order queries over classes of structures with bounded degree (cf. Chapter 5). We follow the

lines of [46] in the presentation of the enumeration algorithm. We then show new proofs of the

existence of efficient solutions to the corresponding counting, testing and j-th solution problems

by extending the approach of [46];

• monadic second-order queries over classes of structures with bounded treewidth (cf. Chapter 6).

We follow the lines of [48] in the presentation of the enumeration algorithm. We also this time

show new proofs of the existence of efficient solutions to the corresponding counting, testing and

j-th solution problems by extending the approach of [48];

• first-order queries over classes of structures with bounded expansion (cf. Chapter 7). We follow

the lines of [47] in the presentation of the model-checking, enumeration, testing and counting

algorithms. We later on show why [47] gives us an efficient solution to the j-th solution problem

“for free”.

11

• In the Discussion Chapter 8 we first sum up the content of the previous chapters. We then discuss

some interesting open problems that naturally emerged from the considered problems and we try

to outline our intuition on possible ways of solving them.

For the details concerning particular definitions, the reader is referred to Chapter 2. We decided not

to present the outlines of the proofs from Chapters 5, 6 and 7 here, since the necessary terminology has

not yet been defined and we wanted to keep this Introduction chapter light and on a rather informal level.

A reader familiar with all the mentioned concepts might move directly to Chapter 4 to find the omitted

sketches. Otherwise we feel that it might be beneficial to get used to all the definitions and notations

that we use throughout this thesis by parsing through Chapters 2 and 3.

12

2

Preliminaries

Contents

2.1 Databases, relational structures and queries . 14

2.2 Model of computation . 14

2.3 Parametrized complexity . 16

2.4 Logics . 17

2.5 The core query problems . 17

2.5.1 Model checking problem . 17

2.5.2 Query evaluation problem . 17

2.5.3 Query enumeration problem . 18

2.5.4 Query testing problem . 18

2.5.5 The counting problem for a query . 18

2.5.6 The j-th solution problem for a query . 18

2.6 Examples . 19

2.7 Complexity classes . 21

2.7.1 The LINEAR-TIME class . 22

2.7.2 The evaluation class LINEAR-EVAL . 22

2.7.3 The enumeration class CONSTANT-DELAYlin 22

2.7.4 The answering classes CONSTANT-TIMElin and LOGARITHMIC-TIMElin . . 23

2.8 Graphs . 23

2.8.1 Graphs of a structure . 24

2.8.2 Classes of graphs . 24

Bounded degree . 24

Bounded treewidth . 25

Bounded Expansion . 25

As mentioned in Chapter 1, throughout this thesis we work with problems concerning queries over

databases. As we are dealing with linear time complexities, it is mandatory to make the model of com-

putation precise. In this chapter we present all the necessary definitions. The way we introduce all the

involved notations and definitions follows the lines of a recent survey on this topic by Luc Segoufin [62].

13

2.1 Databases, relational structures and queries

We define databases as relational structures.

Definition 2.1.1 A relational signature is a tuple σ = (R1, . . . , Rl), each Ri being a relation symbol of

arity ri. A relational structure over σ is a tuple D =
(

D,RD
1 , . . . , R

D

l

)

, where D is a finite set (called

the domain of D) and each RD

i is a subset of Dri . The number of elements in the domain of D is denoted

with |D|.

In the above definition, if for some i we have ri = 1, then we also call relationRi a color. Moreover,

we often use the term schema instead of the term relational signature.

A query is a computable function associating to a database D a relation over the domain of D. The

arity of the associated relation depends only on the query (that is, given a query q, there exists an integer

rq such that for an input database D query q returns a subset of Drq) and is called the arity of the query.

If this arity is 0, we say that q is a sentence, it is either true or false on D and it defines a property of D.

A query is unary if its arity is 1 and it then defines a color on D. Given a query q, database D and a tuple

ā ⊆ D we write D |= q(ā) to denote the fact that ā is in the image of q on D and D |= ¬q(ā) to denote

the opposite. In the particular case of sentences we write D |= q if q is true on D (or, in other words, D

has property q) and D |= ¬q otherwise. We set q(D) = {ā : D |= q(ā)} and we call this set the set of

solutions to q over D . If D is clear from the contexts, we just write the set of solutions to q. We say that

two queries q and q′ are mutually exclusive over D if their sets of solutions over D are disjoint, that is

q(D)∩ q′(D) = ∅. Again, if the above intersection happens to be empty and D is clear from context, we

just say that q and q′ are mutually exclusive. Note that if the arity rq of the query is greater than one,

then the size of q(D) may be exponential in rq.
A query language is a class of queries. Typically it is defined as a logical formalism such as FO (for

first-order queries) or MSO (for monadic second-order queries). In fact these are the two formalisms

that are considered in Chapters 5 , 6 and 7 and they are in the center of attention of this thesis.

Given a query language L, the model checking problem of L is the following computational problem:

given a sentence q ∈ L and a database D decide whether D |= q or not. If the database D is restricted to

a class C of structures (which will most of the time be the case throughout this thesis), we speak of the

model checking problem of L over C .

Given a query language L, the query evaluation problem of L is the following computational prob-

lem: given a query q ∈ L and a database D compute set q(D). Similarly as it was the case for model

checking problem, if the database D is restricted to a class C of structures, we speak of the query evalu-

ation problem of L over C .

The definitions of both the model checking and the query evaluation problems as given above corre-

spond to their combined complexity, meaning that the input for each of the problems is both query q and

database D. In the sequel we most of the time assume the query to be a parameter of the problem (the

only input then is the database). We then speak of the data complexity of the problems.

2.2 Model of computation

In Section 2.5 we define a series of problems that are central for this thesis. As their solutions are

all going to mention linear time, it is mandatory to make our model of computation precise. We use

Random Access Machines (RAM or RAM machines) with addition and uniform cost measure as a

model of computation. As it is not the focus of this thesis, we do not give detailed definition of this

model (for more information on the model itself see [2] and for its use in logic see [26]). We only list its

key features that are the most relevant for this thesis:

• On an input of size n, a RAM machine has a certain number or registers, each consisting of its

value and a unique address, both containing log n bits. We often write the memory of a RAM machine

14

to denote its set of registers and a memory cell to denote a single register. Given a register r, we also

write a value stored in r to refer to the value of r.

• The machine can modify the content of the registers just as a Turing Machine would do.

• Additionally, it can use any register r for accessing directly an other register r′ such that the address

of r′ is given by the value of r. In this scenario we say that r is a pointer to r′.
• Moreover, RAM machine can perform numerical operations (typically additions or multiplica-

tions) on values of registers.

• An access to memory using a register or an addition of two registers takes a unit time in RAM, i.e.

counts as a constant time.

A good approximation of RAM from the real life is a low level imperative programing in assembler.

The values stored in assembler’s registers can be used in two ways: either as direct addressing of the

memory or as numerical input for some basic arithmetical operations. This is exactly what is offered by

RAM, only the arithmetical part is limited to just addition and the times of performing a single addition

and of accessing a memory cell are considered to be equal and are treated as a unit time. Moreover,

while in assembler it is usually necessary to first load the content of a memory cell into a register before

manipulating its value, in RAM model we in a sense assume that the memory is already divided into

registers.

Continuing the “real life” analogy to imperative programming, when describing RAM algorithms

we would often like to talk about lists or arrays of elements. And, perhaps even as an initial step, we

would like to have records of constant size (for instance records that store pairs of elements). A good

way of thinking about those objects can be the following:

• A record containing k “units of information” can be see as k registers with consecutive addresses.

For instance to represent pair of values n, m one can use two registers r and r′ with values n and m and

addresses a and a + 1 respectively. Note that having access to just r or r′ we can then easily recover

the other value in constant time (as the addresses are consecutive and a register knows its address). Also

note that we can enrich such records with additional values by nesting records inside records.

• If we would like a register r to store both some value v and a pointer to some other register r′, we

can implement it with the value of r pointing to a record describing r. This record can then store in the

values of consecutive registers both the value v and the address of r′.
• A list can then be seen as a sequence of registers such that each of them, except from storing

its value, stores a pointer to the next element of the list (this can be achieved using records describing

registers as shown above).

• Finally, an array can be seen as a sequence of registers with consecutive addresses.

In our setting the input will always be a database. We do not give a precise definition of how

relational structures are encoded as inputs of RAM machines. This is identical as for Turing Machines

and is described in many textbooks, cf. [1]. It only matters for this thesis that we can enumerate the

domain or a relation of a database in linear time. For the simplicity of the presentation (in particular for

a clear description of examples from Section 2.6) we later on assume that the domain and each of the

relations is given either as a list or as an array containing the consecutive tuples of the matching list. In

particular, we do not allow the use of uninitialized memory. The advantage of array representation is

only the possibility to directly access its j-th element in constant time. We fix from now on a reasonable

encoding of structures by binary words. The size of D, denoted ||D||, is the length of the encoding of D.

Note that for a fixed schema σ and a database D over σ with a domain of size n and the total number

of tuples in all relations in D equal to m, the encoding of D has length O((n+m) log (n+m)) bits and

can be stored in O(n+m) registers.

An immediate observation is that with the RAM model it is possible to sort m elements of size

O(logm) in time O(m logm). In particular, we can sort the domain of D in time O(||D||), i.e. in linear

15

time in terms of the input of the RAM machine. An important observation is that we may also sort tuples

of nodes in linear time [40].

When we say that the model checking problem of L over C can be solved, we mean that there exists a

RAM machine that solves the problem. Of course this extends to other problems, like query evaluation,

etc.

In the sequel, when we say that the model checking problem of L over C can be solved in linear

time, we refer to the data complexity only, i.e. we mean that it can be solved in O(||D||), when the big O
may depend on q.

2.3 Parametrized complexity

Already at the end of both Section 2.1 and Section 2.2 we mentioned data complexity of problems. The

reason for this is that the database D and the query q play different roles as inputs of our algorithms:

||D|| is assumed to be large, while |q| is assumed to be small. Hence it would be useful to distinguish

these two inputs in a formal way. Parametrized complexity is a suitable framework for analyzing such

situations. Similarly to the RAM model, as parametrized complexity itself is not a topic of this thesis,

we only provide here its basics. An interested reader is referred to the book [33] for extensive cover of

the topics concerning parametrized complexity.

In parametrized complexity, a problem consists of the following triple:

• an input,

• a parameter that is a number computable from the input,

• and a question.

A typical example is the parametrized model checking problem where the input is a database D and

a sentence q, the parameter is |q| and the question asks whether D |= q.

A parametrized problem is Fixed Parameter Tractable if, on input of size n and parameter k, it can

be solved in time f(k)nc for some suitable computable function f and a constant c. We write that a

problem is in FPT if it is Fixed Parameter Tractable.

The idea behind this definition is that for many scenarios (in particular for query evaluation problem

in the database setting) it is preferable to have an algorithm working in time 2kn rather than nk.

A parametrized complexity turns out to be a very robust notion. There is a suitable notion of reduc-

tion, called FPT-reductions. It is the case that the class FPT is closed under FPT-reductions. There are

some hard classes of parametrized problems that are also closed under FPT-reductions, but they con-

tain problems that have no known FPT algorithms and that are believed to be different from the class

FPT. The notion of completeness inside parametrized complexity is always understood modulo FPT-

reductions. The class FPT in the parametrized complexity setting plays the role of P in the classical

complexity.

An important hard class is denoted W[1]. It plays in the parametrized complexity setting the role of

NP in the classical complexity. A typical problem which is complete for W[1] is the parametrized model

checking problem for Conjunctive Queries (CQ) (see [57] for details). It takes as input a database D

and a sentence q ∈ CQ, as a parameter |q| and asks whether D |= q.

Another important hard class is denoted AW[*]. It plays in parametrized complexity setting the

role of PSpace in the classical complexity. A typical problem which is complete for AW[*] is the

parametrized model checking problem for First-Order logic (FO) (see [57] for details). It takes as input

a database D and a sentence q ∈ FO, as a parameter |q| and asks whether D |= q.

16

While we know the obvious inclusions of classes FPT ⊆ W[1] ⊆ AW[∗], it is not know whether

these inclusion are strict or not. Just as it is the case for P, NP and PSpace in the classical complexity,

all these inclusion are strongly believed to be strict.

2.4 Logics

In Section 2.1 we already mentioned that typical query languages are logical formalisms. This is indeed

going to be the case for Chapters 5 , 6 and 7, where we consider first-order (FO) and monadic second-

order (MSO) logics. We assume that the reader is familiar with both these formalisms, so in the sequel

we only give their brief overviews.

First-order logic (FO) is built from atomic formulas of the form x = y or Ri(x1, . . . , xri) for some

relation Ri and is closed under the usual Boolean connectives (¬,∨,∧) and existential and universal

quantifications (∃, ∀).

Monadic second-order logic (MSO) is an extension of FO with set variables X and set quantifica-

tions. Since we define queries as functions associating to a database a relation over its domain, when we

talk about MSO queries, we disallow free set variables. To denote set variables we always use upper-

case letters (X , Y) to distinguish them from first-order variables (x, y) and similarly we distinguish

first-order quantification (∃x) from second-order quantification (∃X).

We use Greek letters like φ, ϕ, ψ, etc. to denote formulas.

When writing φ(x̄) we always mean that x̄ are exactly the free first-order variables of φ. Given

a database D and a tuple ā of elements of D, we write D |= φ(ā) if the formula φ is true in D after

replacing its free variables with ā. As usual |φ| denotes the size of formula φ, which is the sum of the

number of free variables, the number of quantifications, the number of Boolean connectives and the

number of atomic formulas that appear in φ.

2.5 The core query problems

In this section we introduce a series of problems that are of central interest for this thesis. Some of them

were already mentioned, but we repeat them here anyway to have all of them grouped in one place.

Fix a query language L and a class of databases C. Each of the problems mentioned below is of

the form: given a query q ∈ L (possibly with some additional constraints on q) and a database D ∈ C,

compute the solution to the problem (which may depend on q and D only).

For the following sections assume L and C to be a fixed query language and a class of databases

respectively.

2.5.1 Model checking problem

The model checking problem of L over C is the computational problem of, given a sentence q ∈ L and

a database D ∈ C, decide whether D |= q or not.

2.5.2 Query evaluation problem

The query evaluation problem of L over C is the computational problem of, given a query q ∈ L and a

database D ∈ C, compute the set q(D).

17

2.5.3 Query enumeration problem

The enumeration of L over C is the computational problem of, given a query q ∈ L and a database

D ∈ C, output the elements of q(D) one by one with no repetitions.

In the enumeration scenario we denote the maximal time between any two consecutive outputs of

elements from q(D) as the delay. The goal of this thesis is to show pairs L, C such that the enumeration

of L over C allows this delay to be constant.

2.5.4 Query testing problem

The testing of L over C is the computational problem of, given a query q ∈ L with k free variables and

a database D ∈ C, allow to answer the following question: given a tuple ā of k elements from D, decide

whether D |= q(ā) or not.

We call ā the dynamical input of the testing problem and an answer to the question whether D |= q(ā)
is true is called the dynamical answer.

2.5.5 The counting problem for a query

The counting problem for L over C is the computational problem of, given a query q ∈ L and a database

D ∈ C, compute the value |q(D)|.

2.5.6 The j-th solution problem for a query

The j-th solution problem for L over C is the computational problem of, given a query q ∈ L with k
free variables and a database D ∈ C, allow to answer the following problem: given j ∈ N, compute the

j-th element of the set q(D) (with respect to some order ≤ on tuples of k nodes from D) or say that such

an element does not exist.

Similarly as it was the case for the testing problem, we call j the dynamical input of the testing

problem and the returned j-th element (or the response that such an element does not exist) the dynamical

answer.

Before we move to the examples, we would like to point out two things.

Notice that testing and j-th solution problems have a similar “dynamical” flavor: depending on q and

database D they require the RAM algorithm to be able to answer certain questions in “real-time”. The

important common factor is that both the dynamical inputs have sizes independent from the size of the

input database (size of ā depends only on the arity of q and the value represented by j can be assumed

to fit into a single register) and the same is true for the respective dynamical outputs. For this we write a

dynamical query problem whenever we want to talk about one of these two problems but we do not want

to specify about which one. Of course this could be generalized into a more broad and abstract notion,

but as the only dynamical problems that we consider are testing and j-th solution, we stick to this very

limited definition of dynamical query problems.

Moreover, the order in which we introduced these problems is not random.

• Model checking and query evaluation are the most classical query problems. Model checking,

where the input query turns out to be a sentence, being the starting point (and a well established problem

that plays a huge role in other fields of computer science, like for instance in verification) and query

evaluation being its natural extension that is strongly database-oriented. In the following chapters we

most often introduce them as known black-boxes with the exception of Chapter 7, where we address the

model checking problem directly.

18

• We then introduce the enumeration problem as a refinement of the evaluation problem. As men-

tioned in Chapter 1, this is in fact the problem around which this thesis was concentrated from the very

beginning and is in the center of interest of the author.

• The next to follow is the testing problem, which in all cases considered in this thesis can be solved

using tools developed for the enumeration algorithms.

• We then move to the counting problem which is useful for two reasons: assuming that we have a

bound on the delay, it allows to predict the time necessary for the enumeration of all the solutions to a

query; and is usually a good start on the path to understanding and solving the j-th solution problem.

• Finally we have the j-th solution problem. While it has strong connections to the enumeration

problem (where in a sense we may ask for a particular solution from the “middle” rather than wait for

the enumeration process to reach it), it most of the time comes with a price: either the mentioned order

≤ turns out to be very unintuitive and the solution to the j-th solution problem can be used to generate

random solutions (but without duplicates) rather than particular ones; or there is a loss in the complexity,

where applying j-th solution consecutively to 1, 2, . . . , |q(D)| enumerates q(D) with delays between

consecutive solutions strictly worse than the ones obtained when going directly via the enumeration

procedure.

2.6 Examples

We devote this section to the analysis of a few simple examples that we find representative enough to

point out the major difficulties that one challenges when dealing with problems described in Section 2.5.

Let σ be a relational schema containing relational symbol P and let D be a database over σ. Although

formally we should write PD to denote the actual relation P inside D, for simplicity of the presentation

we skip the superscript D and simply write P .

Before introducing the examples we would like to note that algorithms solving enumeration, testing

and j-th solution problems are going to have two distinguished phases:

• the so called preprocessing that is performed before enumerating the first solution or reading the

first dynamical input;

• followed by and enumeration/dynamical phase.

The reason for that is that without enhancing the input database with some additional navigational

powers (the preprocessing phase is exactly for that), it would be very difficult to solve even the sim-

plest cases. We typically aim at the preprocessing phase that is linear in ||D|| and constant/logarithmic

delays/dynamical outputs.

Example 2.6.1 Consider a database schema containing a single unary relational symbol P and the

query q(x) := P (x). Let D be the input of each of the algorithms.

The enumeration of q is trivial: the algorithm goes through the list of nodes that belong to P ,

outputting current node at each step.

The counting problem is also immediate: the algorithm goes through the above list and counts its

length.

The algorithm for the j-th solution problem first performs the counting procedure. Then, whenever it

is given j, it first tests if there are in fact at least j solutions and only if this is the case, it performs some

other steps. We do not mention this part in the following examples, but the reader should keep in mind

that while being trivial, this step is always necessary. The “easiness” of the rest of the j-th solution

problem depends on the way D is given. If the elements describing P are already in an array, whenever

we are given j it is enough to output the j-th element of this array and that is all. If the description of P
is a list, we first turn it into an array in linear time and then proceed as in the previous case.

What might come as a surprise, the testing problem seems to have the most demanding solution

(although still simple). Given an element a of the domain it would be too time consuming to iterate

19

through the list describing P in the search of a. The solution is to enrich the record describing each node

a of the domain (see Section 2.2 for details on records describing nodes) with an additional information

saying whether D |= P (a) or not. This can easily be done with a linear pass over the list describing P
and then using the direct addressing available in RAM machines. Having this done upfront, the testing

problem is then trivial: given a we access record describing a in constant time and this record stores the

desired answer to the question whether D |= P (a).

Example 2.6.2 Consider a database schema containing a single binary relational symbol R and the

query q(x, y) := ¬R(x, y). Let D be the input of each of the algorithms.

The enumeration problem of q is this time not trivial as it happened to be the case for Example 2.6.1.

A correct enumeration algorithm could be: iterate through all pairs (a, b) ∈ D2 and for each pair test

if D |= R(a, b). If this is the case, skip (a, b) and output it otherwise.

There are two problems with this approach. First of all, we do not yet know how to test whether

D |= R(a, b) efficiently (and iteration through the list describing R is very costly). Moreover, the delay

can be even quadratic in the size of D as R might be “dense” for big parts of D2.

In order to enumerate this query efficiently, we need to do some additional preprocessing. We first

sort R lexicographically. This can be done on RAM machines in linear time as described in [40].

For each pair (a, b) on the sorted list of R we compute the smallest (with respect to the lexicograph-

ical order) value (c, d) = f(a, b) such that (c, d) /∈ R and (c, d) > (a, b). For each value f(a, b)
obtained this way we compute the smallest element on R that is greater than f(a, b) (we denote it with

g(f(a, b)). This can easily be done in linear time by a single pass from the last element of R to its first

one.

This concludes the preprocessing phase and note that it was performed in linear time. Having the

above structure, the enumeration phase admits then only constant delay:

The algorithm starts with the smallest pair (e, e) and as long it is not the first element on R, it

outputs the currently considered pair and moves to the next one in lexicographical order. The moment

we see (a, b) ∈ R, we have in constant time access to f(a, b) and g(f(a, b)). Note that: all the pairs

inside interval [(a, b), f(a, b)) are in R and as such should not be output; all the pairs in the interval

[f(a, b), g(f(a, b))) are not in R and should be output; and g(f(a, b)) ∈ R. It is then enough to jump

directly to f(a, b) and keep outputting the current pair until we reach g(f(a, b)). We end up with a pair

in R so we can then continue the same reasoning as we did for (a, b). It follows from the definitions of

f and g pointers that we do not skip any solutions and the constant delay property is clear.

The counting problem turns out to be trivial also in this case: we count the number of elements in R
(denoted |R|) in linear time and output |D|2 − |R|.

To solve the testing problem we perform the same preprocessing as we did for the enumeration

problem. For simplicity assume that the smallest element in the lexicographical order (a1, a1) is inR and

set f(a1, a1) = (a′1, b
′
1), g(f(a1, a1)) = (a2, b2), . . . , f(ai, bi) = (a′i, b

′
i), g(f(ai, bi)) = (ai+1, bi+1),

. . . .

The other way of looking at the output of the preprocessing phase of the enumeration algorithm is

that we are given a list L of pairs ((a′1, b
′
1), (a2, b2)), ((a

′
2, b

′
2), (a3, b3)), . . . , ((a

′
i, b

′
i), (ai+1, bi+1)), . . .

such that q(D) = [(a′1, b
′
1), (a2, b2)) ∪ . . . ∪ [(a′i, b

′
i), (ai+1, bi+1)) ∪ Moreover, observe that this

list is increasing (in the sense that (ai, bi) < (a′i, b
′
i) < (ai+1, bi+1) with respect to the lexicographical

order).

This concludes the preprocessing phase and we now move to the testing phase. Given pair (a, b)
we need to check whether (a, b) ∈ [(a′1, b

′
1), (a2, b2)) ∪ . . . ∪ [(a′i, b

′
i), (ai+1, bi+1)) ∪ Note that

a single test if (a, b) is inside [(a′i, b
′
i), (ai+1, bi+1)) or is to the left or to the right of it (in terms of

the lexicographical order) can be performed in constant time (by just comparing a to a′i and ai+1 and

similarly comparing b to b′i and bi+1). The testing phase is then easily doable in logarithmic time: we

20

apply a binary search on L that either finds an interval containing (a, b) or proves that such an interval

does not exist.

It should be mentioned that we do not know if a better testing time can be achieved and we strongly

believe that it cannot.

To solve the j-th solution problem we perform the same preprocessing as we did for the testing

problem. We also do the following:

With a single linear pass we can compute the sequence of values s1, . . . , si, . . . such that si is equal

to the number of elements in [(a′i, b
′
i), (ai+1, bi+1)).

We set S0 = 0 and with another linear pass we compute values Si =
∑

1≤j≤i si.
This concludes the preprocessing for the j-th solution algorithm and note that it was done in linear

time.

We now switch to the dynamical phase: given j we find (again using a binary search) smallest i such

that Si−1 < j ≤ Si. It is then enough to output (j − Si−1)-th element of interval [(a′i, b
′
i), (ai+1, bi+1)).

This being doable in constant time (by comparing a to a′i and ai+1 and similarly comparing b to b′i and

bi+1 and knowing |D|), we altogether compute the dynamical answer to the j-th solution problem in

logarithmic time.

Also this time it should be mentioned that we do not know if a better time for obtaining the dynamical

answer can be achieved and we again strongly believe that it cannot.

What we wanted to show with the above examples is that all the presented solutions, in order for them

to be effective, heavily relied on the precomputation phases that computed additional index structures

that were later used. Only having these structures in hand, we were able to give the desired answers

within satisfactory time constraints. Moreover, it is worth noticing that all the computed structure were

linear in the size of the input database and were computable in linear time. Moreover, the enumeration

phase and both dynamical phases (in both examples) did not modify these structures at all and were only

traversing them in a specific manner.

The other point of these examples was to show that even very simple queries as we saw here (no

quantification at all, each time just a single relation in the schema and its single appearance in the query)

already required some nontrivial reasoning.

2.7 Complexity classes

In this section we introduce certain complexity classes over RAM machines that are of central interest

for this thesis. Before defining them, we introduce notions that explain how we are going to relate these

classes to problems mentioned in Section 2.5. While this is done in a purely abstract way in here, the

reader is referred to the forthcoming sections for its application in practice.

Note that the use of symbols A and SA below is a rather ad-hoc choice. In the sequel A will always

be defined as a class of RAM algorithms that have some particular properties (for instance as a class

of algorithms that on input of size n run in time O(n)) and SA will always be defined as a class of

problems, for which we will use a more self-explanatory names (for instance LINEAR-TIME).

Establishing this, we finally move to defining the common scenario present in the following sections.

Fix a query q and a computational problem P that associates to a database D an answer P (q,D) (for

particular problems see Section 2.5). Let A be a class of RAM machines.

We say that the problem P for q is in the class SA if there exists a RAM algorithm aq ∈ A that

computes P (q,D).

Let C be a class of databases. We say that the problem P for q over C is in the class SA if there exists

a RAM algorithm aq ∈ A that, given database D ∈ C, computes P (q,D).

21

Let L be a query language. We say that the problem P of L is in the class SA if for every q ∈ L the

problem P for q is in SA.

Let L be a query language and C a class of databases. We say that the problem P of L over C is in

the class SA if for every q ∈ L the problem P for q over C is in SA

Notice that in the last two definitions we do not say anything about whether the appropriate algorithm

aq ∈ A can be computed from the query q ∈ L or not. It only requires the existence of such an algorithm.

If it happens to be the case that the algorithm aq can be automatically obtained from q, we then say that

the problem P on L is generic. This is the case for all the scenarios mentioned in this paper and all

the scenarios that the author is aware of. The generic case is exactly the reason for introducing the

notion of parametrized complexity (cf. Section 2.3): treating |q| as a parameter we show (under some

parametrized complexity assumptions) non membership of certain problems into some of the classes

defined in the forthcoming sections.

In the sequel we define five classes of RAM algorithms (cf. A in the scenario above) and classes

of query problems that they induce (cf. SA). We do it only for a fixed query q and assume that the

mentioned RAM algorithms always take a database D as input. These naturally extends (as explained in

the scenario above) to situations where q is limited to a query language L and/or input databases D are

limited to class C.

2.7.1 The LINEAR-TIME class

We say that a computational problem P is in LINEAR-TIME if there exists a RAM algorithm that on input

D computes P (q,D) in time O(||D||).

The example problems that are in LINEAR-TIME are:

• The counting problem for FO queries over the class of structures of bounded degree is in LINEAR-TIME.

(See Theorem 5.1.3)

• The counting problem for MSO queries over the class of structures of bounded treewidth is in

LINEAR-TIME. (See Theorem 6.1.4)

• The model checking problem for FO queries over the class of structures with bounded expansion

is in LINEAR-TIME. (See Theorem 7.1.1)

2.7.2 The evaluation class LINEAR-EVAL

We say that the evaluation problem of q is in the class LINEAR-EVAL if there exists a RAM algorithm

that, given D, computes q(D) in time O(||D||+ |q(D)|).
In the presence of Remark 2.7.1 we do not give any examples of problems from the LINEAR-EVAL

class, but we rather directly define the enumeration class and present our examples there.

2.7.3 The enumeration class CONSTANT-DELAYlin

Recall the definition of the enumeration problem from Section 2.5.

We say that the enumeration problem of q is in the class CONSTANT-DELAYlin if it can be solved by

a RAM algorithm which, on input D, can be decomposed into two steps:

• a precomputation phase that is performed in time O(||D||),

• followed by an enumeration phases that outputs q(D) with no repetitions and a constant delay

between two consecutive outputs. The enumeration phase has a full read-access to the output of

the precomputation phase, but it can use only a constant total amount of extra read-write memory.

22

The example problems that are in CONSTANT-DELAYlin are:

• The enumeration of FO queries over the class of structures of bounded degree is in

CONSTANT-DELAYlin. (See Theorem 5.1.1)

• The enumeration of MSO queries over the class of structures of bounded treewidth is in

CONSTANT-DELAYlin. (See Theorem 6.1.2)

• The enumeration of FO queries over the class of structures with bounded expansion is in

CONSTANT-DELAYlin. (See Theorem 7.1.2)

In the literature one can sometimes find a more liberal definition only requiring constant delay with

no constraints on the memory. For more detailed comparison of the two models see Section 8.1.2.

Remark 2.7.1 Notice that if the enumeration problem of q is in CONSTANT-DELAYlin, then the evalu-

ation problem of q can be solved in O(||D|| + |q(D)|). In particular, if q is a sentence, then the model

checking problem for q is in LINEAR-TIME.

This also implies that CONSTANT-DELAYlin ⊆ LINEAR-EVAL.

2.7.4 The answering classes CONSTANT-TIMElin and LOGARITHMIC-TIMElin

Recall the definition of a dynamical query problem from Section 2.5 (which is either a testing or a j-th
solution problem).

We say that a dynamical query problem of q is in the class CONSTANT-TIMElin (LOGARITHMIC-TIMElin

respectively) if it can be solved by a RAM algorithm which, on input D, can be decomposed into two

steps:

• a precomputation phase that is performed in time O(||D||),

• followed by an answering phases that for a dynamical input I computes the dynamical output

O(q,D, I) in constant time (in time O(log ||D||) respectively). The answering phase has a full

read-access to the output of the precomputation phase, but it can use only a constant total amount

of extra read-write memory.

The example problems that are in in these classes are:

• The j-th solution problem for FO queries over the class of structures of bounded degree is in

CONSTANT-TIMElin. (See Theorem 5.1.4)

• The testing problem for FO queries over the class of structures with bounded expansion is in

CONSTANT-TIMElin. (See Corollary 7.3.1)

• The j-th solution problem for MSO queries over the class of structures of bounded treewidth is in

LOGARITHMIC-TIMElin. (See Theorem 6.1.5)

To avoid continuous repetitions, throughout this thesis we use word precomputation and preprocess-

ing interchangeably.

2.8 Graphs

Graphs play an important role throughout this thesis. All the results from Chapters 5, 6 and 7 are of

the form “For a class of databases with property X there exists an algorithm. . . ”. But each time the

definition of the property X refers to a graph of the structure representing the database rather than the

database directly. We now describe the way in which we view graphs. In Section 2.8.1 we introduce two

notions of graphs of a relational structures. In Section 2.8.2 we define classes of graphs that are used in

Chapters 5, 6 and 7. Later on, in Section 3.3, we compare the two notions of graphs of a structure with

respect to the classes of graphs from Section 2.8.2.

23

Throughout this thesis, whenever we talk about graphs, we implicitly assume that their nodes may

have different color and so a graph is always a particular example of a colored graph.

Definition 2.8.1 A (colored, oriented) graph G is a relational structure {V,E, P1, . . . , Pn} whereE is a

binary relation and each Pi is a unary relation. We denote the elements of the structure as nodes, we call

E the edge relation and each Pi a color relation. If (u, v) ∈ E, then we say that there is an edge from u
to v. An in-degree of node u is |{v : (v, u) ∈ E}|. By ∆−(G) we mean the maximal in-degree of a node

of G. We say that u and v are adjacent if there is an edge between them (no matter the orientation).

If the relation E is symmetric (i.e. for each (u, v) ∈ E it is the case that also (v, u) ∈ E), we say

that the graph is unoriented. Instead of the in-degree, we then speak of the degree of a node which is the

number of nodes adjacent to it.

A path in a graph is a sequence of adjacent nodes that uses each edge at most once. A path is simple

if it contains each node no more than once. A graph is a tree if for every pair of distinct nodes of that

graph there exists a unique path connecting those nodes.

Until Chapter 7 all the considered graphs are going to be unoriented. We elaborate more on oriented

graphs in the Preliminaries Section 7.2 of Chapter 7.

2.8.1 Graphs of a structure

Definition 2.8.2 The Gaifman graph of a relational structure A, denoted by Gaifman(A), is defined as

follows: the set of vertices of Gaifman(A) is A and there is an edge (a, b) in Gaifman(A) iff there exists

a relation Ri and a tuple t ∈ Ri such that both a and b occur in t.

Definition 2.8.3 The adjacency graph of a relational structure D, denoted by Adjacency(D), is the fol-

lowing bipartite graph: the set of vertices of Adjacency(D) is D ∪ T where T is the set of all tuples

occurring in some relation of D. For a ∈ D and t ∈ T there is an edge between a and t if node a
belongs to tuple t in D. We call nodes from D real nodes and nodes from T tuple nodes.

The above definition of adjacency graph is a bit too weak. A node representing tuple (a, b) should

be connected with a with an edge of color 1 and with b with an edge of color 2 to reflect the order of a
and b inside this tuple. As we did not introduce colors on edges when defining graphs and we only care

about the structure of the graph (that is its nodes and the way their are connected) for now, we stick to

the above definition. We do not look into the details of adjacency graphs until Chapter 7, but there we

look at these graphs in a slightly different (functional) way (see Section 7.2 for details).

2.8.2 Classes of graphs

In the forthcoming sections we define three classes of graphs that are going to be used in Chapters 5, 6

and 7. Recall from Section 2.3 that already a parametrized model checking problem for CQ is W[1]

complete and so it is highly unlikely that it can be solved in FPT. As we already mentioned, the model

checking problem being in LINEAR-TIME is just a starting point for all our investigations. Since in this

thesis we do not want to limit the query languages below the power of first-order logic, it is a necessity

to restrict the class of databases in order to obtain efficient solutions to the problems mentioned in

Section 2.5. The following classes of graphs are going to be used to define these restrictions.

Bounded degree

Fix d ∈ N. A graph G is d-degree bounded (or in other words has d-bounded degree) if every node of G

has degree at most d. A class C of graphs is d-degree bounded (or equivalently has d-bounded degree)

if every graph G ∈ C is d-degree bounded.

24

Bounded treewidth

In order to define the next class of graphs, we need to recall the notion of a tree decomposition and

treewidth first [43, 60]. It extends the definition of trees and is a well established and well studied

notion in computer science. Interested reader is referred to the Chapter 11 of [33] for more detailed

information on tree decompositions, treewidth and their properties. For the purpose of this thesis we

just give a definition of tree decomposition and treewidth here. We use it only in Chapter 3 to compare

the class of structures such that the underlying class of Gaifman graphs has bounded treewidth with the

class of structures such that the underlying class of adjacency graphs has bounded treewidth. Although

all the results from Chapter 6 talk about bounded treewidth, we do not work with this notion directly as

Courcelle’s theorem 6.3.1 allows us to immediately switch to trees.

This being said, we now move to the definitions of the tree decomposition and treewidth.

Definition 2.8.4 Let G = {V,E} be a graph. A tree decomposition of G is a pair (X,T), where

X = {X1, . . . , Xs} is a family of nonempty subsets of V and T is a tree whose set of nodes is exactly

X and such that:

•
⋃

1≤i≤sXi = V ,

• for every edge (u, v) ∈ E of G there exists 1 ≤ i ≤ s such that u, v ∈ Xi,

• if v ∈ Xi ∩Xj for some 1 ≤ i, j ≤ s, then for every k such that Xk is on the unique path from

Xi to Xj in T , we have that v ∈ Xk.

We refer to sets Xi as bags.

Intuitively, the tree decomposition of a graph tests how “close” a given graph is to actually being a

tree. As we said before, for more details on the tree decompositions see Chapter 11 of [33].

A width of a tree decomposition (X,T), whereX = {X1, . . . , Xs}, is the value maxXi∈X |Xi| − 1.

A treewidth of a graph is the minimal width among all its tree decompositions.

Finally we are ready to define:

Fix d ∈ N. A graph G has d-bounded treewidth if the treewidth of G is bounded by d. A class C of

graphs has d-bounded treewidth if every graph G ∈ C has d-bounded treewidth.

Bounded Expansion

The notion of a class of graphs with bounded expansion was introduced by Nešetřil and Ossona de

Mendez in [53]. This is a rather broad class of graphs that generalizes not only both the class of graphs

of bounded degree and the class of graphs of bounded treewidth, but for example also the class of planar

graphs and any class of graphs excluding at least one minor. Despite being very general, it still admits

strong algorithmic properties. Moreover, the notion of bounded expansion is very robust as it can be

rephrased using quite a few equivalent characterizations. Interested reader is referred to [53] for a broad

overview of all the equivalent characterizations of a class of graphs with bounded expansion and to [54]

for a detailed description of the algorithmic properties that this classes of graphs admit.

This section is dedicated to defining the class of graphs with bounded expansion. We actually give

its two characterizations here: the original definition using r-minors and the one using augmentations

that will be heavily exploited in Chapter 7. For other properties of these classes that are going to be

useful for this thesis, see Section 3.2.

We now turn to the definition of a class of graphs with bounded expansion.

25

To avoid confusion with the notion of size of a structure, we use the following notion in the case

of graphs: we write |G|VERT to denote the number of nodes of G (i.e. the size of V from the Defini-

tion 2.8.1), while we write |G|EDGE to denote the number of edges of G (i.e. the size of E from the

Definition 2.8.1).

Let G = (V,E) be an uncolored (we remove the colors as they do not affect the forthcoming

definitions) and unoriented graph. For any node v ∈ V and any r ∈ N we denote by Br(v) the r-ball

around v, i.e. the set of nodes of G that are reachable from v by paths of lengths up to r. We say that

a graph H is a r-minor of G if: all the nodes v1, . . . , vk of H are also nodes of G; for 1 ≤ i ≤ k there

exists a subset Vi of nodes of G that contains vi, that is connected inside G and such that Vi ⊆ Br(vi);
the mentioned sets Vi (which we denote as ball nodes) are pairwise non-overlapping; and there is an

edge between vi and vj in H iff there is an edge in G from a node of Vi to a node of Vj . The set of all

r-minors of G is denoted by G∇r. For a graph G the greatest reduced average density (grad) of G with

rank r is:

∇r(G) = max
H∈G∇r

|H|EDGE

|H|VERT

.

Having all this terminology we are ready to define:

Definition 2.8.5 Let C be a class of graphs. We say that C has bounded expansion if there exists a

function f : N → R such that for all graphs G ∈ C and for all r ∈ N we have:

∇r(G) ≤ f(r).

In [53] several equivalent characterizations of bounded expansion were proven. We will almost

never use in this thesis the initial definition as presented above, but the characterization exploiting the

notion of “augmentations”.

Let G be an oriented graph. A 1-transitive fraternal augmentation of G is any graph H with the

same vertex set as G and the same colors of vertices, including all edges of G (with their orientation)

and such that for any three vertices x, y, z of G we have the following:

(transitivity) if (x, y) and (y, z) are edges in G, then (x, z) is an edge in H,

(fraternity) if (x, z) and (y, z) are edges in G, then at least one of the edges: (x, y), (y, x) is in H,

(strictness) moreover, if H contains an edge that was not present in G, then it must have been added by

one of the previous two rules.

Note that the notion of 1-transitive fraternal augmentation is not a deterministic operation. Although

transitivity induces precise edges, fraternity is underspecified and thus there can possibly be many

different 1-transitive fraternal augmentations. We care here about choosing the orientations of the edges

resulting from the fraternity rule in order to minimize the maximal in-degree.

For the sake of the presentation, later on in Chapter 7, we actually fix a deterministic algorithm com-

puting a “good” choice of orientations of the edges induced by the fraternity property. This algorithm is

described in details in [54], but its main property is contained in Lemma 7.2.1: for a class of graphs with

bounded expansion this algorithm works in time linear in the size of the graph that is to be augmented.

With this algorithm fixed, we can later on speak of the 1-transitive fraternal augmentation of G.

But for now the nondeterministic process is going to suffice.

Let G be an unoriented graph. A transitive fraternal augmentation of G is any sequence G = G0 ⊆
G1 ⊆ G2 ⊆ . . . such that for each i ≥ 1 the graph Gi+1 is a 1-transitive fraternal augmentation of Gi.

Theorem 2.8.1 ([53]) Let C be a class of graphs. The following conditions are equivalent:

1. C has bounded expansion,

26

2. there exists a function ΓC : N → R such that for each graph G ∈ C there exists a transitive

fraternal augmentation G = G0 ⊆ G1 ⊆ G2 ⊆ . . . of G such that for each i ≥ 0 we have

∆−(Gi) ≤ ΓC(i).

The above definition of the transitive fraternal augmentation is slightly imprecise. We start with an

unoriented graph G, while we need its oriented version to perform augmentations and so there is no real

equality between G and ~G0. What is in fact required by Theorem 2.8.1 is the existence of the orientation
~G0 of G such that ΓC(i) bounds the maximal in-degree of nodes from ~Gi. We allow this little confusion

since in the sequel we will only talk about very specific classes of graphs. The scenario is going to be

as follows: we first fix a relational schema. Then we consider classes of structures over this schema and

look at their underlying classes of adjacency graphs. Since the schema is fixed, the maximal arity of

tuple nodes is uniformly bounded and so we may assume that all the graphs are always oriented in such

a way that there are edges from real nodes to tuple nodes.

Example 2.8.1 Consider for instance a graph of degree d. Notice that a 1-transitive fraternal augmen-

tation introduces an edge between nodes that were at distance at most 2 in the initial graph. Hence, when

starting with a graph of degree d, we end up with a graph of degree at most d2. This observation shows

that the class of graphs of degree d has bounded expansion as witnessed by the function Γ(i) = d2
i
.

Exhibiting the function Γ for the other examples of classes with bounded expansion mentioned in

the introduction: bounded treewidth, planar graphs, graphs excluding at least one minor, requires more

work [53].

27

28

3

Basic results

Contents

3.1 The query problems . 29

3.1.1 The enumeration problem . 30

3.1.2 The j-th solution problem . 31

3.2 Bounded expansion . 32

3.3 Gaifman vs adjacency . 32

3.3.1 Bounded degree . 32

3.3.2 Bounded treewidth . 33

3.3.3 Bounded expansion . 34

Just as we explained in the introduction, this chapter is a continuation of the Preliminaries Chapter 2.

As Chapter 2 is already heavy with notation, we thought that it would be the best to leave it on a strict

“definition” level. That is why all the simple observations and basic results that consider notions intro-

duced in Chapter 2 are pushed to this chapter. Despite their simplicity, all these results find themselves

being extensively used throughout the rest of this thesis, in particular in Chapters 5, 6 and 7. So without

further ado, we move to these observations.

3.1 The query problems

Throughout this section the considered query problems are enumeration, testing, counting and j-th so-

lution, just as they were described in Section 2.5. To present the results in a compact way we shall talk

about a problem P meaning one of the above four problems. Similarly, when we talk about a solution

from some classC, we mean one of the classes CONSTANT-DELAYlin, LINEAR-TIME, CONSTANT-TIMElin,

LOGARITHMIC-TIMElin as they were introduced in Section 2.7. Although we do not precise it, the classC
is assumed to be chosen from the appropriate subset that makes sense with respect to the chosen problem,

that is if P is counting, thenC is always LINEAR-TIME, if it is j-th solution, thenC is CONSTANT-TIMElin

or LOGARITHMIC-TIMElin, etc.

We first present a series of simple facts that hold for any of the above problems. Since they are

immediate consequences of the appropriate definitions, we just state the results here and either omit the

proofs or present their brief sketches.

Fact 3.1.1 Let P be a query problem. Let D and D
′ be two databases such that ||D′|| = O(||D||) and let φ

and φ′ be two queries such that their sizes do not depend on ||D|| and ||D′|| respectively. If φ(D) = φ′(D′),
then a solution from class C to the problem P for φ′ and D

′ gives a solution from C to the problem P
for φ and D.

29

Fact 3.1.2 Let P be a query problem. Let D be a database and let φ(x̄) be a query. Let φ′(x̄ȳ) be a

query such that φ′ logically implies that ȳ = f(x̄) (ȳ functionally depends on x̄ for some computable

function f). If D |= φ(x̄) ↔ φ′(x̄f(x̄)), then a solution from class C to the problem P for φ′ and D

gives a solution from C to the problem P for φ and D.

A particular use for the Fact 3.1.2 can be when φ′ logically implies that two of its free variables are

equal, but of course there are more complicated situations too.

Fact 3.1.3 Let P be a query problem. Let D be a database and let φ =
∨

i∈I φi be a query such that all

the φi are pairwise mutually exclusive and |I| does not depend on ||D||. Then solutions from class C to

the problem P for each φi and D give a solution from C to the problem P for φ and D. In the particular

case when P is the j-th solution problem, we additionally assume that for each i ∈ I we have a solution

to the counting problem for φi and D that is in LINEAR-TIME.

PROOF While the other cases are immediate, let us have a closer look at the special case when P is the

j-th solution problem.

The preprocessing phase for φ is composed from the preprocessing phases of all φi together with

computing numbers si =
∑

j≤i |φi(D)|. This can altogether be achieved in linear time using the addi-

tional assumption about the counting problems. Additionally (just for the sake of readability) set s0 = 0.

Then the j-th solution phase works as follows: given j ∈ N, find in constant time i such that

si−1 < j ≤ si (if such an i does not exists, it responds that there are less than j solutions in total). The

j-th solution is then (j − si−1)-th solution to φi and D.

�

It is worth mentioning that the use of Fact 3.1.3 has an impact on the order in which the solutions

to φ are enumerated and with respect to which the j-th solution is returned (in the resulting order all the

solutions to φi precede solutions to φj if i < j and the order inside each φi(D) is inherited from the

appropriate algorithm for φi and D).

3.1.1 The enumeration problem

We now present a fact that is a refinement of Fact 3.1.3 in the special case when P is the enumeration

problem. It says that, in the setting of Fact 3.1.3, if the output to the sub-queries is enumerated with

respect to some fixed order, then to output to the main query can also be enumerated with respect to this

order (and there is no additional overhead). Moreover, the assumption that the sub-queries are mutually

exclusive can be omitted in this case. Although we state it for just two queries here, it can easily be

extended to an arbitrary number of fixed queries by a recursive application.

Fact 3.1.4 Let D be a database. Let φ(x̄) and φ′(x̄) be two queries with k free variables and let< be an

order on k-tuples of elements from D. Then CONSTANT-DELAYlin enumeration procedures for φ over D

and for φ′ over D that output their answers in increasing order relative to<, give a CONSTANT-DELAYlin

solution for φ ∨ φ′ over D that enumerates the answers set in increasing order relative to <.

PROOF The CONSTANT-DELAYlin enumeration procedure for φ ∨ φ′ over D resembles a procedure of

merging two sorted list. The preprocessing consists of the preprocessing phases for φ over D and for φ′

over D.

The enumeration phase keeps two values - the smallest element from φ(D) that was not yet output

and similarly the smallest element from φ′(D) that was not yet output. It then outputs the smaller of

the two values and replaces it in constant time with the next element from the appropriate set (using the

30

enumeration procedure for one of the two problems). In case the elements are equal, the value is output

once and both stored values are replaced with their appropriate successors.

�

3.1.2 The j-th solution problem

We now present a fact that finds its use for the j-th solution problem. This is somewhat a continuation

of Fact 3.1.3 in the spirit of Fact 3.1.4 for the enumeration problem. It says that, in the setting of

Fact 3.1.3, if the j-th solution for the sub-queries is returned with respect to some fixed order, then the

j-th solution for the main query can also be returned with respect to this order (but this comes with a

cost of logarithmic overhead during the dynamical phase). Note that the assumption that the sub-queries

are mutually exclusive is still necessary in this case. Although we state it for just two queries here, it can

be extended to an arbitrary number of fixed queries. This time a recursive application would result in a

poly-logarithmic overhead, but one can verify that in order to handle k queries it is enough to replace j
2

with j
k

in the proof of Fact 3.1.5 and the reasoning still holds.

Fact 3.1.5 Let D be a database. Let φ(x̄) and φ′(x̄) be two mutually exclusive queries with k free

variables and let < be an order on k-tuples of elements from D. Then j-th solution procedures from

class C for φ over D and for φ′ over D that both return their answers with respect to the order <, give

a solution from C ′ for φ ∨ φ′ over D that returns its answers with respect to the order < and C ′ is such

that its preprocessing phase has the same complexity as the preprocessing phase of C, but its dynamical

phase is worse by a logarithmic factor.

PROOF As expected, the precomputation phase for φ ∨ φ′ consists of the precomputation phases of the

j-th solution procedures for φ and for φ′.
The j-th solution phase is then a recursive procedure that at each step divides the input value j

by 2, resulting in the logarithmic overhead as explained in the statement of this fact. The case when

|φ ∨ φ′(D)| < j is not considered in the sequel, but it should be clear from the proof that this case does

not introduce any additional difficulties.

We first make a simple observation. There are two ways of looking at the j-th solution to φ: either

it is a solution such that there are exactly j − 1 smaller solutions or this is a solution such that there are

exactly |φ(D)| − j greater solutions. We will later on make use of the latter point of view.

We now introduce a bit of notation. A s-shift of φ is a procedure that given j outputs the (j + s)-th
solution to φ. Note that this procedure is trivially obtained from the j-th solution procedure for φ and

that it does not require any additional preprocessing except from the one performed by the j-th solution

procedure for φ. We denote the s-shift of φ with s-φ and we call the first s solutions to φ the shifted

solutions.

Assume j comes as an input for the dynamical phase of φ∨φ′. Let v̄ be the j
2 -th solution to φ and v̄′

be the j
2 -th solution to φ′. Assume that v̄ < v̄′ (the case when v̄ > v̄′ is fully symmetric and is handled

by analogous reasoning).

We now show that the j-th solution to φ∨φ′ is in that case the j
2 -th solution to (j2 -φ)∨φ′ (we denote

the latter solution with v̄′′).
First note that there are exactly |φ(D)|− j

2+|φ′(D)|− j
2 = |φ(D)|+|φ′(D)|−j solutions to (j2 -φ)∨φ′

that are greater than v̄′′. Indeed: (j2 -φ) has in total |φ(D)|− j
2 solutions, φ′ has in total |φ′(D)| solutions,

(j2 -φ) and φ′ are mutually exclusive and v̄′′ is the j
2 -th solution to (j2 -φ) ∨ φ′.

In view of the above it is enough to prove that v̄′′ is greater than all the j
2 shifted solutions to φ. If

this would in fact be the case, then all the solutions to φ∨φ′ that are greater than v̄′′ would exactly be the

31

solutions to (j2 -φ) ∨ φ′ that are greater than v̄′′ and we already know that there are |φ(D)|+ |φ′(D)| − j
of them. This would then prove that v̄′′ is the desired j-th solution to φ ∨ φ′.

The proof that v̄′′ is greater than all the j
2 shifted solutions to φ is now a simple case analysis:

• if D |= φ(v̄′′), then clearly v̄′′ is greater than all the shifted solutions as we always shift the smallest

ones;

• if v̄′ = v̄′′, then it is also the case since v̄ < v̄′ and v̄ was the greatest among all the shifted

solutions;

• if D |= φ′(v̄′′) but v̄′′ < v̄′, then there exists a solution to j
2 -φ that is smaller than v̄′′ and so v̄′′ is

also in this case greater than all the shifted solutions.

As we said earlier, the problem of finding j-th solution to φ ∨ φ′ was reduced to the problem of

finding j
2 -th solution to (j2 -φ)∨ φ′. Since the preprocessing phase for (j2 -φ) is the same as the one for φ

and its dynamical phase has the same complexity, with two calls to the j-solutions dynamical procedures

for φ and φ′ respectively, we managed to reduce the value of j by half. Recursive application of this

procedure indeed results in a j-th solution phase to φ ∨ φ′ that has a logarithmic overhead with respect

to the j-th solution phases of φ and φ′.

�

3.2 Bounded expansion

We state here a simple fact about classes of graphs with bounded expansion.

It is an immediate consequence of the characterization of this class from Point 2 of Theorem 2.8.1.

Fact 3.2.1 If class C of graphs has bounded expansion, then the class C’ of the 1-transitive fraternal

augmentations of graphs from C also has bounded expansion.

3.3 Gaifman vs adjacency

Fix class C of databases. In this section we compare the class C’ of Gaifman graphs of structures from C
with the class C” of adjacency graphs of structures from C. We do it with respect to the classes of graphs

that were defined in Section 2.8.2. It turns out that in all cases we actually need to fix a schema to have

an “equivalence” of C’ and C”.

For the purpose of this section we introduce one new notion:

Let D be a relational structure over signature σ, let R be a relation from σ of arity r and let t ∈ R be

a tuple of R in D. The effective arity of t is the number of different elements in t.

3.3.1 Bounded degree

This section is devoted to proving the following theorem:

Theorem 3.3.1 Let σ be a fixed schema. Let C be a class of structures over σ. The class C’ of Gaifman

graphs of structures from C has bounded degree iff the class C” of adjacency graphs of structures from

C has bounded degree.

The reason why we need to fix the schema is shown in Example 3.3.1. It is worth to note that the

right-to-left direction (the implication that the bounded degree of adjacency graphs implies the bounded

degree of Gaifman graphs) does not use the fixed schema assumption.

32

PROOF [of Theorem 3.3.1] We start with the left-to-right direction, that is the implication that the

bounded degree of graphs from C’ implies bounded degree of graphs from C”. Assume that graphs

from C’ have degree bounded by k.

Fix structure D from C. Let u be a node of Gaifman(D) and let v1, . . . , vs be all its neighbors

(recall that s < k). From the definition of the Gaifman graph, if u belongs to a tuple t of some relation

from D, then all the nodes from t are in the set {u, v1, . . . , vs}. Since the schema is fixed, there are

only constantly many tuples t that contain u and this constant gives us the bound on the degree of

Adjacency(D).

This concludes the first direction of the proof.

We now move to the right-to-left direction, that is the implication that the bounded degree of graphs

from C” implies bounded degree of graphs from C’. Assume that graphs from C” have degree bounded

by k.

Fix structure D from C. Note that each tuple node t has effective arity bounded by k. Moreover,

each real node appears in up to k tuples and so the degree of Gaifman(D) is bounded by k2 (each node

is in up to k tuples, each time with up to k − 1 different nodes).

This concludes the second direction and the proof of Theorem 3.3.1.

�

Example 3.3.1 Consider a class C of the following structures:

Di has universe {u, v} and i binary relations P1, . . . , Pi, each containing a single tuple (u, v). Now:

• graph Gaifman(Di) has degree 1 for each i;

• graph Adjacency(Di) has degree i (this is the degree of both nodes u and v) and so the class

{Adjacency(Di)}i∈N has unbounded degree.

3.3.2 Bounded treewidth

This section is devoted to proving the following theorem:

Theorem 3.3.2 Let σ be a fixed schema. Let C be a class of structures over σ. The class C’ of Gaifman

graphs of structures from C has bounded treewidth iff the class C” of adjacency graphs of structures

from C has bounded treewidth.

The reason why we need to fix the schema is shown in Example 3.3.2. It is worth to note that the left-

to-right direction (the implication that the bounded treewidth of Gaifman graphs implies the bounded

treewidth of adjacency graphs) does not use the fixed schema assumption, which is in opposite to what

we have seen in the bounded degree case.

PROOF [of Theorem 3.3.2] We start with the left-to-right direction, that is the implication that the

bounded treewidth of graphs from C’ implies bounded treewidth of graphs from C”. Assume that graphs

from C’ have treewidth bounded by k.

Fix structure D from C. Let T be a tree decomposition of Gaifman(D) of width k + 1. Let t be

a tuple from a relation from D. By the definition of the Gaifman graph, nodes that appear in t form a

clique in Gaifman(D). It is a well known fact that this implies that there is at least one bag Xt in T that

contains all the nodes from t.

This simple observation tells us how to construct a tree decomposition T ′ of Adjacency(D) that has

a small (to be precise: bounded by k + 2) width:

• T ′ contains T ;

33

• moreover, for each tuple twe fix a bagXt that contains all the nodes from t and addX ′
t := Xt∪{t}

as a child of Xt.

Clearly points 1 and 2 of the definition of tree decomposition are satisfied for Adjacency(D) and T ′.
But the last point is also true as each tuple node appears in exactly one bag and real nodes are covered

by the fact that T was a proper tree decomposition.

This concludes the first direction of the proof.

We now move to the right-to-left direction, that is the implication that the bounded treewidth of

graphs from C” implies bounded treewidth of graphs from C’. Assume that graphs from C” have

treewidth bounded by k.

Fix structure D from C. Let T be a tree decomposition of Adjacency(D) of treewidth k + 1. Let s
be the maximal arity of a relational symbol from σ.

We now construct a tree decomposition T ′ of Gaifman(D) that has a small (to be precise: bounded

by k + s+ 1) treewidth:

The construction replaces each occurrence of a tuple node t with the set of real nodes that appear in

t. Clearly points 1 and 2 of the definition of tree decomposition are satisfied for Gaifman(D) and T ′.
The fact that the last point also holds is that from point 2 for each node v in t there has to be a bag in T
that contains both t and v. As sub-graphs induced by v and by t separately were sub-trees of T and v
and t share a bag, sub-graph induced by v is in fact a sub-tree of T ′.

This concludes the second direction and the proof of Theorem 3.3.2.

�

Example 3.3.2 Consider a class C of the following structures:

Di has universe {1, . . . , i} and a single relation Pi with just one tuple (1, . . . , i). Now:

• graph Adjacency(Di) is a tree, so it has treewidth 1;

• graph Gaifman(Di) is an i-clique and so the class {Gaifman(Di)}i∈N has unbounded treewidth.

3.3.3 Bounded expansion

This section is devoted to proving the following theorem:

Theorem 3.3.3 [56] Let σ be a fixed schema. Let C be a class of structures over σ. The class C’ of

Gaifman graphs of structures from C has bounded expansion iff the class C” of adjacency graphs of

structures from C has bounded expansion.

The reason why we need to fix the schema is shown in Example 3.3.2 from the previous section

(the class of all cliques obviously does not have bounded expansion). It is worth to note that the left-to-

right direction (the implication that the bounded expansion of the class of Gaifman graphs implies the

bounded expansion of the class of adjacency graphs) does not use the fixed schema assumption, just as

it was the case for bounded treewidth.

In this section we interchangeably use the characterizations of bounded expansion from Defini-

tion 2.8.5 and from Point 2 of Theorem 2.8.1, but we always explicitly say which one are we using at a

given moment.

Recall the definition of Adjacency(D) from Section 2.8.1. In particular, nodes of Adjacency(D) are

divided into two sets: D – containing real nodes and T – containing tuple nodes. Note that Adjacency(D)
is a bipartite graph (neither any two nodes from D nor any two nodes from T are ever connected) and

the maximal in-degree of a node from T is bounded by the maximal arity of a relation in D.

34

Lemma 3.3.1 Let C be class of relational structures and let C’ be the underlying class of Gaifman

graphs of structures from C. If C’ has bounded expansion, then there exists a constant k such that for

any structure D ∈ C and for any tuple t ∈ D the effective arity of t is less than k.

PROOF Fix class C of structures and let C’ be the class of Gaifman graphs of structures from C. Let f
be the function from Definition 2.8.5 witnessing the fact that C’ has bounded expansion.

Set k = 2f(0). Let D ∈ C and t be an arbitrary tuple from D with effective arity s. Let

A = {a1, . . . , as} be the set of different elements in t. By the definition of Gaifman(D), vertices

from A are pairwise connected. Consider the 0-minor H of Gaifman(D) induced by A. We have that
|H|EDGE

|H|VERT
= |A|·(|A|−1)

2|A| = s−1
2 . By definition ∇0(Gaifman(D)) ≥ |H|EDGE

|H|VERT
≥ s−1

2 . On the other hand the

characterization of bounded expansion from Definition 2.8.5 gives f(0) ≥ ∇0(Gaifman(D)) and we

have k > s as desired.

�

Theorem 3.3.3 is a consequence of Proposition 3.3.1 and Proposition 3.3.2.

Proposition 3.3.1 Let C be a class of structures such that the class C’ of Gaifman graphs of structures

from C has bounded expansion. Then the class C” of adjacency graphs of structures from C has bounded

expansion.

PROOF

We use the characterization of class of graphs with bounded expansion from Definition 2.8.5. Then

Proposition 3.3.1 is the direct consequence of the following lemma:

Lemma 3.3.2 Let C be a class of structures such that the class C’ of Gaifman graphs of structures from

C has bounded expansion. There exists a constant k such that for any structure D ∈ C and for any

natural number r we have that ∇r(Adjacency(A)) ≤ ∇r(Gaifman(A)) + k.

PROOF Fix class C of structures such that the class C’ of Gaifman graphs of structures from C has

bounded expansion.

Let k be the constant given by Lemma 3.3.1.

Let D ∈ C and let r be a natural number and H be a r-minor of Adjacency(D). From H we construct

a graph H′ which is a r-minor of Gaifman(D) and such that:

|H|EDGE

|H|VERT
≤ |H′|EDGE

|H′|VERT
+ k.

This immediately yields the result.

Recall from Section 7.2.3 that Adjacency(D) is a bipartite graph that contains tuple nodes and real

nodes and such that neither any two tuple nodes nor any two real nodes are connected. By the definition

of constant k from Lemma 3.3.1, each tuple node has up to k neighbors in Adjacency(D).
Consider a node v of H. By construction, v is derived from a ball node Sv ⊆ Br(v) of Adjacency(D).
If Sv contains no real nodes, then it simply is a single tuple node. As each tuple node has up to k

neighbors in Adjacency(D), then if Sv contains no real nodes, v has at most k neighbors in H. Let X be

the set of all such nodes v in H.

Otherwise, let S′
v be the set of real nodes of Sv. By definition S′

v is not empty and it is easy to

verify that it forms a connected component contained in B r
2
(v) in Gaifman(D): for every u ∈ S′

v the

longest path from v to u in Sv is v = u1, t(1,2), u2, t(2,3), . . . , t(r
2
−1, r

2
), u r

2
= u, where each t(i,i+1) is a

tuple node. By the definition of Gaifman(D) we have that ui is connected to ui+1 (which is witnessed by

t(i,i+1)), which yields that v = u1, u2, . . . , u r
2
= u is a path in S′

v. Let H′ be the r-minor of Gaifman(D)

constructed from the elements S′
v, where v 6∈ X .

35

By construction we have : |H′|VERT + |X| = |H|VERT.

Consider now an edge (u, v) in H where both u and v are not in X . This means that there is an edge

(a, b) in Adjacency(A) with a ∈ Su and b ∈ Sv. As Adjacency(A) is bipartite, this means that a is a

real node and b a tuple node (or vice versa). Wlog assume that a is the real node. As v is not in X , Sv
contains a real node b′ adjacent to b. Hence b witnesses that (a, b′) is an edge in Gaifman(D) and so

(u, v) is an edge in H′. As we have seen that there are at most k|X| edges (u, v) in H where either u or

v belongs to X , we get: |H|EDGE ≤ |H′|EDGE + k|X|.
Summing up we get:

|H|EDGE

|H|VERT
≤ |H′|EDGE+k|X|

|H′|VERT+|X| ≤ |H′|EDGE

|H′|VERT+|X| +
k|X|

|H′|VERT+|X| ≤
|H′|EDGE

|H′|VERT
+ k.

as desired.

�

As we said before, Lemma 3.3.2 concludes the proof of Proposition 3.3.1.

�

Proposition 3.3.2 Let σ be a fixed schema. Let C be a class of structures over σ such that the class C’

of adjacency graphs of structures from C has bounded expansion. Then the class C” of Gaifman graphs

of structures from C has bounded expansion.

PROOF This time we use characterization of class of graphs with bounded expansion from Point 2 of

Theorem 2.8.1. Let C’ be witnessed by the function ΓC′ as described in this theorem. We show that

function ΓC′′ defined as:

ΓC′′(i) := ΓC′(i+ 1) for 0 ≤ i,

witnesses the fact that C” has bounded expansion.

Fix D ∈ C. C′ has bounded expansion witnessed by ΓC′ , so the transitive fraternal augmentation

Adjacency(D) = G = G0 ⊆ G1 ⊆ G2 ⊆ . . . is such that for each i ≥ 0 we have ∆−(Gi) ≤ ΓC′(i).
Following the discussion from the end of Section 2.8.2 we assume that G0 is oriented in such a way

that all the edges point from real nodes to tuple nodes.

Let a, b be any two nodes of Gaifman(D) such that there is an edge between a and b. By the defini-

tion of Gaifman graph there is a tuple t in D containing both a and b. This means that in Adjacency(D)
there is an edge from a to t and from b to t. This shows that a and b form a fraternal pair of nodes in

Adjacency(D) and that they are connected in the graph G1 that is the 1-transitive fraternal augmenta-

tion of Adjacency(D). As (a, b) was an arbitrary pair of nodes connected in Gaifman(D) we see that

G1 contains as a subgraph an oriented copy of Gaifman(D). We denote this subgraph with H0. As

∆−(G1) ≤ ΓC′(1), clearly ∆−(H0) ≤ ΓC′(1).
Observe now that G2 contains as a subgraph some 1-transitive fraternal augmentation of H0 (as

H0 ⊆ G1 and G2 is a 1-transitive fraternal augmentation of G1). We denote this 1-transitive fraternal

augmentation of H0 with H1 and note that ∆−(H1) ≤ ∆−(G2) ≤ ΓC′(2). Continuing this reasoning

we get a transitive fraternal augmentation H = H0 ⊆ H1 ⊆ H2 ⊆ . . . such that H0 is an orientation of

Gaifman(D) and for i ≥ 0 we have ∆−(Hi) ≤ ∆−(Gi+1) ≤ ΓC′(i + 1) = ΓC′′(i). This concludes the

proof.

�

36

4

State of the art

Contents

4.1 Query enumeration in database setting . 38

4.1.1 Arbitrary relational structures . 38

Conjunctive queries . 38

Acyclic conjunctive queries . 39

Free-connex acyclic conjunctive queries . 39

Beyond free-connex ACQ . 40

4.1.2 X-underbar structures . 41

4.1.3 Sparse structures . 41

Bounded degree . 42

Bounded treewidth . 43

Bounded expansion . 46

4.1.4 Data trees . 47

4.2 Other enumeration problems . 48

4.2.1 Abstract enumeration problems . 49

4.2.2 Polynomial total time . 49

4.2.3 Incremental polynomial time . 50

4.2.4 Polynomial delay . 50

4.2.5 Strong Polynomial delay . 51

4.2.6 Probabilistic enumeration algorithms . 51

4.2.7 Impact of the order and separation of the enumeration classes 52

4.3 Conclusions . 52

In this chapter we present a current state of the art concerning enumeration algorithms. This is

divided into two parts.

Section 4.1 is an overview of the enumeration algorithms with respect to the database querying

scenario which is in the center of interest of this thesis. The general goal is to say for which classes

of databases and which query languages efficient enumeration is possible. In some of the considered

scenarios we actually reach out from this framework:

• in case of MSO queries we also have a closer look at what happens when we allow free second-

order predicates in a query (in which case a single solution might contain a set of elements of the input

database of arbitrary size),

• in Section 4.1.4 we look at the class of data trees being queried using XPath formulas. We con-

sider this case not to be contained in the database scenario for the following reason: XPath queries can

37

compare data values. We could of course model all this comparators with binary relations, but each such

relation would have size quadratic in the size of the data tree. This would then trivialize all the results

as “linear in the size of the database” would in fact mean “quadratic in the size of the data tree”. Since

the best known algorithms are linear in the size of the input data tree, we allow XPath queries to use

constructions like x < y, where order < is not provided by the database, but is inferred from the “type”

of the data values (in our case it is the natural order over N).

Since both these cases seem to be very closely related to the database querying scenario, we decided

to group them together with the “regular” enumeration algorithms.

Section 4.2 is a brief overview of other kinds of enumeration algorithms, where the goal is usually

to enumerate all the structures of some sort (like all the perfect matchings of a bipartite graph) and in

many of the considered cases there is no real querying language involved: they all aim at solving a fixed

problem. Since this is rather far away from what we are focusing on in this thesis, we just present the

statements of the results here. We annotate each result from that section with an appropriate reference,

so that an interested reader could refer to a corresponding source for more details.

It should be mentioned that the content of Section 4.1 makes a great use of a recent survey on the

constant delay enumeration by Luc Segoufin [62].

4.1 Query enumeration in database setting

In this section we consider the core scenario with respect to this thesis: fix a class C of databases and a

query language L. We are interested in solving the following problem efficiently: given a query q ∈ L
and a database D ∈ C, enumerate the set of solutions q(D). By “efficiently” we mean here an FPT

algorithm that treats |q| as a parameter and by “enumerate” we mean a constant delay enumeration.

For details on all the necessary definitions, see Chapter 2.

We are going to proceed in the following way:

• we first give no restrictions on the class of databases, which will force us to dramatically bound

the query language.

• we then consider consecutive restrictions on the class of databases (namely X-strucutre, bounded

degree, bounded treewidth and bounded expansion) and for each of those classes we propose a

suitable query language.

Each time, along with the enumeration algorithm, we also address the other problems mentioned in

Section 2.5, namely: model checking, testing, counting and j-th solution.

4.1.1 Arbitrary relational structures

Conjunctive queries

A conjunctive query is a first-order query of the following form:

q(x̄) = ∃ȳ
∧

i

Ri(z̄i)

where each z̄i contains variables from x̄ and ȳ. As usual, we denote conjunctive queries with CQ.

We already mentioned in Section 2.3 that the parametrized model checking problem for CQ is

W[1] complete (see [57] for details). Since it is strongly believed that FPT 6= W[1], this is highly

unlikely that an FPT enumeration algorithm exists in this case, so there is no hope for a one belonging

to CONSTANT-DELAYlin.

38

However, for acyclic conjunctive queries (ACQ) the parametrized model checking problem is known

to be in FPT with a linear dependency in the size of the database [73]. Therefore we can hope for a

constant delay enumeration.

Before we turn to the main definitions we should also mention that, except from the references

provided in the sequel, an interested reader is also referred to thesis [9] for a detailed cover of the

enumeration of conjunctive queries.

Acyclic conjunctive queries

A join tree for a conjunctive query q is a tree T whose nodes are atomic formulas (atoms) of q and such

that:

• each atom of q is the label of exactly on node of T ,

• for each variable x of q, the set of nodes of T in which x occurs is connected.

A linear-time algorithm for computing a join tree was shown in [69].

A conjunctive query q is said to be acyclic if it has a join tree. In graph theoretical terms this is

equivalent to saying that the hypergraph associated to q is α-acyclic [13].

Given as an input a database D, the best known algorithm for evaluating a query q ∈ ACQ runs in

time |q|·||D||·|q(D)| [73]. This is not yet of the form f(|q|)·(||D||+|q(D)|) implied by any constant delay

enumeration algorithm. Actually, we will see that it is very unlikely that constant delay enumeration can

be achieved for all queries in ACQ. Constant delay enumeration is only obtained for a subset of ACQ

called free-connex that we are about to define. Before we do that, let us present the best know result

concerning full ACQ.

Theorem 4.1.1 ([11]) The enumeration of ACQ queries over the class of all structures can be done with

constant time preprocessing and delay linear in the size of the database.

Concerning the other problems related to enumeration, only the problem of counting the number of

solutions to an acyclic conjunctive query was addressed. The combined complexity turns out to be #P -

complete [58] and is known to be linear only in the quantifier free case [9]. For this reason in [27] a new

parameter named quantified-star size was introduced. Intuitively it measures “how far free variables are

spread in the formula”. It turns out that this parameter characterizes exactly the subclass of ACQ having

a tractable counting problem:

Theorem 4.1.2 ([27]) For each number s, the counting problem for ACQ with quantifier-star size bounded

by s over the class of all structures can be solved in time polynomial both in the size of the query and

the size of the structure.

If a class of ACQ does not have a bounded quantified-star size, then its associated counting problem

is #W[1]-hard. In particular, it is not in FPT unless #W[1] = FPT.

Free-connex acyclic conjunctive queries

An acyclic conjunctive query q(x̄) is said to be free-connex if the query q′(x̄) = q(x̄) ∧R(x̄), where R
is a new symbol of the appropriate arity, is acyclic. It should be mentioned, that this definition is due

to [19], but it is equivalent to the original definition of [11].

Remark 4.1.1 Notice that for boolean and unary ACQ, free-connex queries are exactly acyclic ones.

Indeed:

39

• If boolean conjunctive query q is acyclic, then there exists a join tree T for q. Then an example

join tree T ′ for q′ = q ∧R is T with constant R added as a new leaf of any of the nodes from T .

• If unary conjunctive query q(x) is acyclic, then there exists a join tree T for q(x). Then an

example join tree T ′ for q′ = q ∧ R(x) is T with R(x) added as a new leaf of any of the nodes from T
that contained x as one of the variables. If such a node in T does not exist, then R(x) can be added as

a new leaf of any of the nodes from T .

It is immediate to verify that the above constructions give proper join trees.

Remark 4.1.1 shows that the free-connexity does not introduce any restrictions for boolean or unary

ACQ queries. We shall see in Example 4.1.2 that this is no longer the case for binary queries and beyond.

But before going to Example 4.1.2 we first show a simple example of a binary acyclic conjunctive query

that happens to be free-connex.

Example 4.1.1 Consider the following query:

q(x, y) = ∃u, vA(x, u) ∧B(v, y).
It is free-connex, because q′(x, y) = ∃u, vA(x, u) ∧B(v, y) ∧R(x, y) is acyclic. The example join

tree for q′ has R(x, y) as root and A(x, u) as the left child of R(x, y) and B(v, y) as the right child of

R(x, y).

Example 4.1.2 This time consider the query:

Π(x, y) = ∃zA(x, z) ∧B(z, y).
Then Π′(x, y) = ∃zA(x, z)∧B(z, y)∧R(x, y) is clearly NOT acyclic, so Π(x, y) is not free-connex.

This example is important for one more reason: notice that if one would interpret relations A and B
as boolean matrices (where A(x, y) iff there is a 1 in cell [x, y] of matrix represented by A and B(x, y)
behaves in an analogous way), then Π(x, y) represents the product of matrices represented by A(x, y)
and B(x, y).

It turns out that free-connex assumption for acyclic conjunctive queries is enough to obtain constant

delay enumeration:

Theorem 4.1.3 ([11]) The enumeration of free-connex ACQ over the class of all structures is in

CONSTANT-DELAYlin.

The result of Theorem 4.1.3 also holds if the queries contain inequalities (we then speak of the

class ACQ 6=). In this case the atoms with inequalities are not involved when building the (generalized)

join trees. The best known evaluation algorithm for full ACQ6= (without the free-connex assumption)

requires f(|q|) · ||D|| · |q(D)| steps, where f is exponential function (see [11]).

Beyond free-connex ACQ

It turns out that the free-connexity characterizes exactly those acyclic queries that can be enumerated

with constant delay. This is under an assumption that boolean matrix multiplication cannot be done

in quadratic time. The encoding of boolean matrix multiplication problem into evaluating an acyclic

conjunctive query was already explained in Example 4.1.2. The best known algorithm so far for solving

the matrix multiplication problem requires more than n2.37 steps (the method is based on Coppersmith-

Winograd algorithm [21]).

Theorem 4.1.4 ([11]) If boolean matrix multiplication problem cannot be solved in quadratic time, then

the following are equivalent for any q ∈ ACQ:

1. q is free-connex,

40

2. q can be enumerated in CONSTANT-DELAYlin,

3. q can be evaluated in time O(||D||+ |q(D)|).

Remark 4.1.2 We already mentioned that the results for free-connex ACQ extend to the case where

atoms could also be inequality statements. In the case of signed conjunctive queries (SCQ), where

atoms could be negated, under a suitable notion of acyclicity (somewhere between α-acyclicity and β-

acyclicity) the model checking problem was shown to be O(||D|| log ||D||), where the constant involving

the query are of polynomial size. SCQ can be enumerated with an algorithm having a O(||D|| log ||D||)
preprocessing phase and O(log ||D||) delay [19].

4.1.2 X-underbar structures

Let us stick to the conjunctive queries for a while. A class of structures, called X-structures, has been

exhibited such that CQ and ACQ can be enumerated more efficiently over those classes of structures.

Let D be a database with domain D. Assume D does not contain any relations of arities greater than

2. A binary relation R has the X property with respect to a total order < on D iff the following holds:

D |= ∀v0, v1, v2, v3 (R(v0, v1) ∧R(v2, v3)) → R(min (v0, v2),min (v1, v3)).

A set of binary relations over D has the X property if there is a total order < on D such that all the

relations from that set have the X property with respect to <. Similarly, a structure has X property if the

set of its binary relations has the X property. We call such structure an X structure.

Example 4.1.3 Over trees, subset of axes relations of XPath (we define XPath in details in Section 4.1.4)

given by {CHILD, NEXT-SIBLING} has the X property for the order induced by a breadth-first left to right

traversal of the tree. It turns out that there is no order < on the set of nodes of a tree such that all

XPath axes would have the X property with respect to that order. A complete list of subsets of XPath

axes having the X property can be found in [39].

Restricting the class of structures to the X structures yields the following results.

Theorem 4.1.5 ([10]) The enumeration of CQ over X structures can be done with constant time prepro-

cessing and delay linear in the size of the database.

Theorem 4.1.6 ([10]) The enumeration of ACQ over X structures can be done with linear time prepro-

cessing and delay linear in the size of the domain of the input database.

4.1.3 Sparse structures

In this section we restrict the class of structures in order to extend the class of queries. We are going to

consider the following three restrictions:

• bounded degree,

• bounded treewidth,

• bounded expansion.

41

Rather than on the class of structures itself, they are all defined with respect the underlying class of

graphs of these structures. There are two well established definitions of a graph of a structure, namely its

Gaifman graph and its adjacency graph (see Section 2.8.1 for details). As we have seen in Section 3.3,

namely in Examples 3.3.1 and 3.3.2, for some classes of structures these underlying classes of graphs do

not necessarily admit the same properties of having bounded degree/treewidth/expansion. We have a full

“equivalence” only if we fix a schema of the databases, which a priori is not a necessary requirement.

Fortunately in our case we in a sense get the fixed schema property “for free”. The reason for this is

that we are interested in FPT algorithms, where we always assume the input query to be fixed. Having a

fixed query, we may restrict all the databases to only those relations which actually appear in the query,

which in fact fixes the schema.

In the sequel, when we say that a class C of databases has bounded degree/treewidth/expansion, we

always refer to the underlying class C′ of Gaifman graphs of structures from C. In view of the above,

the reader should keep in mind that it is equivalent to defining C with respect to the underlying class of

adjacency graphs.

Bounded degree

The first restriction that we are going to consider is the bounded degree case. As we said in the beginning

of this chapter, we are limiting the allowed databases in order to increase the power of the query lan-

guage. In Section 4.1.1 we saw that without any restrictions we cannot get constant delay enumeration

for conjunctive queries or even for its acyclic part. Bounding the degree, we not only handle CQ, but

even the whole first-order logic (FO).

Recall the definitions of first order logic (see Section 2.4) and of the class of graphs with bounded

degree (see Section 2.8.2).

As we said earlier, the starting point for the potential enumeration algorithm is always the model

checking problem.

Theorem 4.1.7 ([61, 36]) Fix d ∈ N. The problem of whether a given d-degree-bounded structure D

satisfies a given first-order sentence φ is decidable in time 22
2O(|φ|)

||D||.

This can be lifted to an enumeration algorithm:

Theorem 4.1.8 ([26, 46]) The enumeration of FO queries over the class of structures of bounded degree

is in CONSTANT-DELAYlin. Moreover, the output is returned in a lexicographical order.

In particular, the mentioned CONSTANT-DELAYlin algorithm has precomputation phase taking time

22
2O(|φ|)

· ||D|| and a delay during the enumeration phase that is triply exponential in |φ|.

There are two fundamental properties of structures of degree d that can be used to prove the above

result.

One key property of structure of degree d is that for a given radius r there are only finitely many

(up to isomorphism) possible r-neighborhoods of a single node (i.e. substructures involving all nodes

at distance of up to r from the center node). Given query q ∈ FO the Gaifman Locality Theorem (see

Theorem 5.2.1 for details) tells us that only the r-neighborhood types are relevant, where r depends

only on q. One can then show that it is possible to recolor in linear time, hence during the preprocessing

phase, each node with its neighborhood type. Based on these colors and the Gaifman Locality Theorem,

it is then possible to derive an enumeration algorithm. This approach was taken in [46] and is the one

that we will explain in details in Chapter 5.

Another key property of structures of degree d is that they can be encoded using bijective unary

functions (where exactly d unary functions suffice to represent all the neighbors of each node). Using

42

this bijective encoding, it is then possible to obtain a quantifier elimination procedure for FO. This

procedure is designed in such a way that it returns the quantifier free formula in a very special form: as

a mutually exclusive disjunction of inductive descriptions. Working only with inductive description, it

is then possible to derive an enumeration algorithm. This approach was taken in [26], but the interested

reader is also referred to [12] and [9]. A similar idea can be also seen in a more general case of classes

of structures with bounded expansion (which we describe in details later on).

Concerning the involved constants (the factor in the preprocessing phase and the constant delay

from the enumeration phase), the triply exponential bound comes from the approach of [46]. A naive

implementation of the approach of [26] yields constants that are towers of exponential depending on |q|
and we do not know whether a more careful reasoning could lead to a better approximation in this case.

It should also be noted that the triply exponential bound cannot be significantly improved: it was

shown in [36] that already for degree 2 doubly exponential constants cannot be achieved unless AW[∗] =
FPT.

Concerning the other problems related to constant delay enumeration, it turns out that the first-order

logic over classes of structures with bounded degree admits the best possible properties. Namely, we

have:

Theorem 4.1.9 ([26, 52]) The solution testing for FO queries over the class of structures of bounded

degree is in CONSTANT-TIMElin.

Theorem 4.1.10 ([12]) The counting problem for FO queries over the class of structures of bounded

degree is in LINEAR-TIME.

Theorem 4.1.11 ([12]) The j-th solution problem for FO queries over the class of structures of bounded

degree is in CONSTANT-TIMElin.

The approach of [52] is similar to the one of [26]. It also relies on bijective representation and also

performs a quantifier elimination procedure.

Concerning the constants involved, all the proofs of [26, 12, 52] do not give any bound other than

the tower of exponential depending on |q|.

In this thesis, present new proofs of the above three results. Extending the approach of [46], we

derive triply exponential constants in all the cases. The reader is referred to Chapter 5 for details.

For a closer look into the problem of whether we might obtain constant delay enumeration over

structures of bounded degree, but for logics stronger than FO, the reader is referred to the Discussions

Chapter 8. For now we only state that we most likely cannot go as far as the MSO logic, as a particular

problem expressible in that logic, namely the tiling problem, is NP-complete already for grids. Thus,

unless P = NP, there is no hope for a constant delay enumeration of MSO queries over the class of

structures of bounded degree.

Bounded treewidth

We now turn to the class of structures having bounded treewidth (for the definition of bounded treewidth

see Section 2.8.2). Bounded treewidth is a well established notion that has a huge success in many

fields of computer science when looking for FPT solutions to some otherwise intractable problems. The

constant delay enumeration is not going to be an exception.

It turns out that this time we can even go beyond first-order logic and deal with monadic second-order

logic (MSO) (see Section 2.4) instead.

Just as before, the starting point for the potential enumeration algorithm is always the model check-

ing problem. Its linear time solution is a very well known result of Courcelle:

43

Theorem 4.1.12 ([22]) Fix d ∈ N. The problem of whether a given structure D of d-bounded treewidth

satisfies a given second-order sentence φ is decidable in time O(||D||).

We would like to lift it to an enumeration algorithm. Although with MSO we could potentially

encounter free set variables, recall that our definition of a query is restricted to only first-order free

variables (but set quantification inside the formula is of course allowed). We later on refer to the case

when set free variables are allowed.

Theorem 4.1.13 ([8, 48]) The enumeration of MSO queries over the class of structures of bounded

treewidth is in CONSTANT-DELAYlin.

Let us first note that there is also a third solution to the enumeration problem, as described in [23].

The main difference is that the index structure built there has size O(||D|| log ||D||) rather than O(||D||),
so it does not fully satisfy all the requirements of CONSTANT-DELAYlin class.

As for the proofs of [8] and [48], they do differ significantly. They both rely on a seminal result

of Courcelle which explains how a tree decomposition can be efficiently encoded in MSO. Together

with Bodlaender’s algorithm for computing in linear time a tree decompositions of a bounded width

(see [16]), Courcelle’s result states:

Theorem 4.1.14 ([22]) Fix k ∈ N. There exists an algorithm which given an MSO formula φ and a

structure D with treewidth bounded by k, computes in time O(||D||) an MSO formula φ′ and a tree T

such that φ(D) = φ′(T).

This shows that the difficulties with obtaining the enumeration procedure lie entirely in the tree

case. Application of the Courcelle’s theorem is the first step of the enumeration procedures of both [8]

and [48]. Starting from the tree case, the two algorithms strongly differ.

The proof of [8] exploits the well known fact that one can compute a finite tree automaton that is

equivalent to a given MSO sentence (which accepts the input tree iff this tree is a model for the given

MSO formula). Based on this automaton, an intricate index structure is described which allows constant

delay enumeration. It should be noted that the algorithm of [8] works in a slightly weaker version of

the constant delay enumeration, where we do not assume constant write memory limitations during the

enumeration phase (while new solutions are being output with constant delay between two consecutive

ones, the algorithm uses recursive procedures whose depth seems to be as big as the height of the input

tree).

We now briefly outline the ideas behind the proof of [48]. We later on present it in full details in

Chapter 6.

Let us first focus on a special case, which is also of independent interest on its own.

LetL be a regular word language over an alphabet A. A typical binary MSO query over trees relating

to L is qL(x, y), which returns pairs of nodes (u, v) of the input tree such that u is an ancestor of v and

the word formed by the labels of the nodes on the path from u to v belongs to L.

Given a tree T, there exists an index structure such that, given two nodes u and v of T, one can test

in constant time whether (u, v) ∈ qL(T). Moreover, this index structure can be computed in time linear

in ||T|| (and therefore has size linear in ||T||). This is a nontrivial result of Colcombet:

Theorem 4.1.15 ([20]) For any regular language L over an alphabet A and any A-labeled tree T, there

exists an index structure such that:

• it can be constructed in time O(||T||),

44

• for all nodes u, v ∈ T, one can decide whether (u, v) ∈ qL(T) in constant time (i.e. in time

depending only on L).

This is a deep result based on algebraic constructions. The constants involved during the construction

of the index structure and during the constant time tests depend on the presentation of L. They are non

elementary in L if the language is given as an MSO sentence, but are only exponential in L if it is given

as an automaton (being the case both for deterministic and non-deterministic automatons). However,

in some situations this constants may be only polynomial. This is for example the case for the basic

automata model introduced in [18] in order to capture the navigational power of XPath and used in the

proof of Theorem 4.1.26.

It turns out that the index structure built for proving Theorem 4.1.15 has many other important

consequences. One of them is a normal form for MSO queries over trees.

Theorem 4.1.16 (Implicit in [20]) Over binary trees, every binary MSO query q(x, y) is equivalent to

a disjunction of queries of the form ∃ȳ∀z̄ θ, where θ is a disjunction of conjunctions of atomic predicates

or MSO queries with one free variable or atoms using <, where < is the ancestor relation.

The index structure of [48] for enumerating MSO queries highly relies on the above theorem. The

so called “compositional method” or a natural Ehrenfeucht-Fraı̈ssé game argument shows that any MSO

query is equivalent to a boolean combination of binary queries and for binary queries the above theorem

finds its use. The unary MSO subformulas can be precomputed in linear time by Courcelle’s theorem (to

be precise, by its extension as given by Theorem 6.2.1) and can therefore be considered as new colors.

Hence it is enough to consider ∃ȳ∀z̄ first order queries. Those queries can be handled rather smoothly,

as we explain in details in Chapter 6.

It is worth mentioning that the constants involved in the enumeration algorithm deviate from Theo-

rem 4.1.15 only by a polynomial factor. Hence their size depends on the presentation of the MSO query

as explained above.

For the detailed proof of the sketched approach, the reader is referred to Chapter 6.

Concerning the other problems related to constant delay enumeration, it turns out that the second-

order logic over classes of structures with bounded treewidth admits rather good properties. There might

possibly be some room for improvement concerning the j-th solution problem, but it is highly unlikely

that such an improvement is actually achievable (cf. [9]). Going into details, we have:

Theorem 4.1.17 The solution testing for MSO queries over the class of structures of bounded treewidth

is in CONSTANT-TIMElin.

Theorem 4.1.18 ([5]) The counting problem for MSO queries over the class of structures of bounded

treewidth is in LINEAR-TIME.

Theorem 4.1.19 ([8]) The j-th solution problem for MSO queries over the class of structures of bounded

treewidth is in LOGARITHMIC-TIMElin.

Both the approach of [5] and of [8] highly rely on the finite automaton representing the MSO query.

For more details on the approach of [8], the interested reader is also referred to thesis [9].

In this thesis we present new proofs of the above three results. We follow the approach of [46] and

show how it can be extended to the above three theorems. The reader is referred to Chapter 6 for details.

Before we move to further results, let us mention an extension of the enumeration algorithm first.

Recall that our definition of a query allows only first-order free variables. If we skip this restriction we

45

can no longer hope for CONSTANT-DELAYlin enumeration since even writing a single solution could take

linear time. We might then follow two approaches that we now mention.

• One way is to consider the so called output-linear delay, which allows for the delay between two

consecutive solutions to be linear in the size of the latter solution. This is clearly a generalization of the

constant delay for query enumeration, since the size of a tuple is always constant. With set free-variables

allowed this starts to play a role but we still get:

Theorem 4.1.20 ([8, 23]) The enumeration of MSO formulas (allowing monadic second-order free

predicates) over the class of structures of bounded treewidth can be done with linear time preprocessing

and output-linear delay.

It should be noted that the preprocessing phase of [23] works in fact in time O(||D|| log (||D||)).

• The other approach consists in having an output tape on which the current output is stored and

during the enumeration phase the algorithm only modifies the content of this tape to transform the

previous solution into a new one. In some special cases the delta between two consecutive solutions

only affects a constant part of the output and can be performed in constant time resulting in a procedure

with delta-constant delay. For details on this approach see [28].

Bounded expansion

We now turn to the class of structures with bounded expansion (see Section 2.8.2 for necessary defini-

tions). In [53] a number of equivalent definitions of this class was shown giving evidence that this class

is very robust. It turns out that many known families of structures have bounded expansion. Among

others, this list contains for example:

• class of structures of bounded degree,

• class of structures of bounded treewidth,

• class of planar structures,

• class of structures excluding at least one minor.

The logic that we are going to consider in this case is again FO.

As usual, the starting point for the potential enumeration algorithm is the model checking problem.

Theorem 4.1.21 ([29, 42, 47]) The model checking of FO sentences over the class of structures with

bounded expansion is in LINEAR-TIME.

The key ingredient that is common for all the three proofs of this theorem is that they all perform

some kind of quantifier elimination procedure.

Proofs of both [29] and [47] use the functional representation of the input graph (which is up to a

certain level similar to the approach of [26]) to obtain the quantifier elimination procedure for FO over

the class of graphs with bounded expansion. Unfortunately, in the bounded expansion case this encoding

is no longer bijective (which happened to be the case for bounded degree), which strongly affects the

combinatorics.

In [42] there is no switch to the functional representation, but the quantifier elimination procedure

does not remove the quantifiers in this case, but rather replaces the universal quantifications with exis-

tential ones, so that the resulting query is in the existential fragment of FO. Existential fragment being a

lot simpler, the appropriate linear model checking solution can be shown.

46

The major difference between the proofs of [29, 42] and the one of [47] is that while the first two are

based on the low tree depth coloring characterization (which is yet another characterization of bounded

expansion, cf. [53]) the latter is based on transitive fraternal augmentations (see Theorem 2.8.1).

We argue that the use of transitive fraternal augmentations gives a simpler proof. The reason is

that it gives a useful normal form on quantifier-free formulas that is the core of not only the quantifier

elimination procedure algorithm, but also the algorithms for constant delay enumeration and for counting

the number of solutions as presented in [47].

In Chapter 7 we present the proof of [47] in details.

The model checking solution can be lifted to an enumeration algorithm:

Theorem 4.1.22 ([47]) The enumeration of FO queries over the class of structures with bounded ex-

pansion is in CONSTANT-DELAYlin. Moreover, the output is returned in a lexicographical order.

The above theorem generalizes the corresponding result for bounded degree case, but this comes

with a cost. While previously being triply exponential, the hidden constants are in this case a tower of

exponential in the quantifier alternation depth of the FO query. This nonelementary constant factor is

unavoidable already on the class of unranked trees, assuming FPT 6= AW[∗] (cf. [36]).

Concerning the other problems related to constant delay enumeration, it turns out that the first-order

logic over classes of structures with bounded expansion still admits rather good properties. There might

possibly be some room for improvement concerning the j-th solution problem (which was the case for

the simpler case of bounded degree), but we do not know whether this is actually the case or not. Going

into details, we have:

Theorem 4.1.23 ([47]) The solution testing for FO queries over the class of structures with bounded

expansion is in CONSTANT-TIMElin.

Theorem 4.1.24 ([56, 47]) The counting problem for FO queries over the class of structures with bounded

expansion is in LINEAR-TIME.

Theorem 4.1.25 The j-th solution problem for FO queries over the class of structures with bounded

expansion is in LOGARITHMIC-TIMElin.

For details on the above theorems, see Chapter 7. In the proofs presented there we follow the lines

of [47].

4.1.4 Data trees

In this section we no longer talk about relational databases, but rather about data trees. The query

language is going to be XPath.

A data tree is a tree whose every node carries a label from a finite alphabet A (this alphabet can be

viewed as the set of colors in the database context) and a datum from some infinite domain (for simplicity

we restrict ourselves to N). This structure has been considered in the realm of semistructured data, timed

automata, program verification and generally in systems manipulating data values. In particular, data

tress can model XML documents (see for instance [17]).

By XPath we refer to a fragment of XPath 1.0. It is a two-sorted language, with path expressions

(that we write α, β) and node expressions (φ, ψ). These expressions are defined in a mutually recursive

manner. Path expressions are binary relations resulting from composing the axis relations and node

expressions. The axis relations, denotes AXIS, are the usual CHILD, PARENT, DESCENDANT, ANCESTOR,

NEXT-SIBLING, RIGHT-SIBLING, PREVIOUS-SIBLING, LEFT-SIBLING relations. Node expressions are boolean

47

formulas that test a property of a node, like for example that it has a certain label, or that it has a child

labeled a with the same data value as an ancestor labeled b and so on. For comparing data values we

allow any predicate in the set RELOP = {=, 6=, <,>,≤,≥}.

The syntax of XPath is given below:

α, β :: AXIS | [φ] | αβ | α ∪ β
φ, ψ :: A | ¬φ | φ ∧ ψ | φ ∨ ψ | 〈α〉 | α RELOP β

We also consider an extension of XPath allowing the Kleene star on any path expression and we

denote it by regular XPath. Its semantic over data trees is classical and rather intuitive. It can be found

in details for instance in [18]. Typically a path expression [φ] selects all the pairs (u, u) such that the

node expression φ is true at u. A node expression 〈α〉 selects all nodes u such that there is a node v with

(u, v) selected by the path expression α. Finally, a node expression α RELOP β selects all nodes u such

that there exist nodes v, w such that (u, v) is selected by the path expression α, (u,w) is selected by the

path expression β and the data values of v and w are related accordingly to the predicate from RELOP.

We view formulas of regular XPath as queries over data trees. This query is unary if the formula is

a node expression and binary otherwise.

Theorem 4.1.26 ([18]) The enumeration problem of regular XPath over the class of data trees is in

CONSTANT-DELAYlin.

It turns out that the constants involved in the enumeration algorithm are reasonably low. They are

polynomial in the size of the query if the query is in XPath and are exponential if the query is in regular

XPath.

As we mentioned earlier in Section 4.1.3 when we considered the class of databases with bounded

treewidth, the index structure constructed for the enumeration algorithm highly relies on Theorem 4.1.15.

To our knowledge the other problems related to constant delay enumeration, namely testing, count-

ing and j-th solution, have not been yet addressed and we are not aware of any results with that respect.

4.2 Other enumeration problems

The enumeration outside of the database context turns out to be a rather fruitful field, though it also

seems to still be a bit fragmented. Fairly recently there has been a very interesting attempt to classifying

the complexity of different enumeration problems. The interested reader is referred to the thesis [65] for

learning more details on this classification. In here we give only its brief outline. We use the notation

from [65] to express the results on enumeration problems outside of the database context.

We do not look into the mentioned problems in full details, since the techniques developed for their

solutions seem to be of different sort than the ones used in database context. Although this might still

be the case, in general we do not see a way of transferring them for the needs of the database scenario.

The are two reasons for this:

• All the mentioned algorithms enumerate structures of some sort (in particular, sizes of the output

objects may be arbitrary), while in the database context we are focused on enumerating tuples

of fixed sizes (the only somewhat “common” problem could then be the enumeration of MSO

queries with second-order predicate variables).

• And what is probably more important, the enumeration problems mentioned in this section most

often refer to a fixed property (like perfect matching), while in the database context the query

language most of the time plays the central role.

48

In some cases (see for example Theorem 4.2.4) when there are more similarities to the database

scenario, we try to elaborate a bit more on the proof techniques.

In general we restrict ourselves to just stating the key results. The interested reader should follow

the corresponding references for both the definitions and the proofs.

4.2.1 Abstract enumeration problems

We now define the notion of an enumeration problem in an abstract way. For the sake of readabil-

ity, throughout this section we skip the word “abstract”, but the reader should keep in mind that the

enumeration problems mentioned here are not understood as in the database context.

An (abstract) enumeration problem is a binary relation. Given an enumeration problem R and an

input x, a solution for x is a y such that (x, y) ∈ R. An enumeration problemR induces a computational

problem as follows: Given an input x, output all its solutions. We denote the set of solutions to x with

R(x,).

Unlike in the database context, we do not assume enumeration problem to be a finite relation. Since

in most of the presented results it is going to be the case, we implicitly assume finiteness. In the rare

cases when we deal with infinite objects, we explicitly say so.

Remark 4.2.1 We can define CONSTANT-DELAYlin class in terms of abstract enumeration problems.

An enumeration problem is in the class CONSTANT-DELAYlin if its computational problem can be

solved by a RAM algorithm which, on input x, can be decomposed into two steps:

• a precomputation phase that is performed in time O(|x|),

• followed by an enumeration phase that outputs all the solutions for x with no repetition and a

constant delay between two consecutive outputs. The enumeration phase has full access to the

output of the precomputation phase but can use only a constant total amount of extra memory.

In particular, if R is in CONSTANT-DELAYlin, then the evaluation problem R can be solved in time

O(|x|+ |{y : R(x, y)}|).

This abstract definition was in fact the original one as introduced in [26].

For the purpose of this thesis, since our main focus remains in the problems of querying databases,

we stick to the definition of CONSTANT-DELAYlin as presented in Section 2.7.3.

Following [65] we now define a series of enumeration classes:

4.2.2 Polynomial total time

The notion of a polynomial total time was introduced in [45].

We say that an enumeration problem R(x, y) is solvable in polynomial total time (denoted with

TotalP) if there exists a polynomial Q(x) and an algorithm that, given x, outputs R(x,) in time Q(|x|).

In other words, the class TotalP contains problems that can be evaluated in polynomial time.

An example of a problem from TotalP is:

Theorem 4.2.1 ([34]) For any k the problem of enumerating all the transversals of any k-uniform hy-

pergraph is in TotalP.

49

4.2.3 Incremental polynomial time

The notion of incremental polynomial time was also introduced in [45].

We say that an enumeration problem R(x, y) is solvable in incremental polynomial time (denoted

with IncP) if there exists a polynomial Q(x, n) and an algorithm enumerating R(x,) in such a way that

the time between outputting the i-th and (i+ 1)-th element from R(x,) is bounded by Q(|x|, i).

Example 4.2.1 Consider for example a polynomial Q(x, n) = nx. If Q would be the polynomial

witnessing that some enumeration problem R is in IncP, then we would be able to get the first solution

in time |x|, the second in 2|x| and in general the i-th in i|x|.

In general it is easy to see that IncP ⊆ TotalP. The equality is rather unlikely, since:

Theorem 4.2.2 ([65]) If IncP = TotalP, then P = coNP ∩ NP.

An example of a problem from IncP is:

Theorem 4.2.3 ([49]) The problem of enumerating the circuits of a matroid is in IncP.

4.2.4 Polynomial delay

The notion of polynomial delay also this time originates from [45].

We say that an enumeration problem R(x, y) is solvable in polynomial delay (denoted with DelayP)

if there exists a polynomial Q(x) and an algorithm enumerating R(x,) in such a way that the time

between outputting the i-th and (i+ 1)-th element from R(x,) is bounded by Q(|x|).

Clearly DelayP is more restrictive than IncP, since the delay between outputting consecutive solu-

tions now needs to be uniform.

An interesting infinite problem from DelayP is:

Theorem 4.2.4 ([38]) Let θ be an almost-sure FO sentence and Gθ the almost-sure first-order family of

graphs induced by θ. Then the enumeration of the graphs from Gθ is in DelayP. Moreover, the algorithm

works in polynomial space.

The result of [38] on the first glance seems to be quite promising when searching for some techniques

that could be adapted for the database setting (since we encounter sort of a query language for the first

time). Unfortunately, this eventually does not seem to be the case. The reason is that the techniques used

to deal with the infinite family Gθ have a totally different flavor then the ones used in finite cases. The

methods used in [38] build on zero-one law (see [31]) and the method of pesimistic estimators (see [59])

to get the so called extended method of pessimistic estimators. This techniques being designed for

infinite objects, we most likely will not be able to reuse them in the database context. And there is in

general no clear view on how any limit-based reasoning can be transferred to a finite space.

Another enumeration algorithms from DelayP are:

Theorem 4.2.5 ([37]) The problem of, given n ∈ N (written in unary), enumerate one representative

from each isomorphism class of the set of n-vertex graphs, is in DelayP. Moreover, the algorithm works

in polynomial total space.

Theorem 4.2.6 ([64, 15, 68]) The problem of enumerating all minimal a-b separators of graph is in

DelayP. Similarly, the problem of enumerating all minimal vertex separators is in DelayP.

50

Theorem 4.2.7 ([45]) The problem of enumerating all the maximal (in terms of inclusion) independent

sets of a graph in lexicographical order is in DelayP.

The algorithm of [45] lists the independent sets in a lexicographical order, but the drawback is that

although the delay is polynomial, the space used by the algorithm is exponential. In [71] another solution

to the above problem was presented. It does not list the output in the lexicographical order and the delay

is not polynomial, but it on the other hand works in polynomial space.

4.2.5 Strong Polynomial delay

We now present a class of problems that was introduced in [65] to add some memory constraints which

disallow the space-blowup problem that we faced in Theorem 4.2.7.

We say that an enumeration problem R(x, y) is solvable in strong polynomial delay (denoted with

SDelayP) if for every x there is a total order <x such that the problem of finding first (with respect to

<x) element of R(x,) can be solved in polynomial time and given y ∈ R(x,) the problem of finding

next (with respect to <x) element of R(x,) after y is in polynomial time too.

An example problems from SDelayP are:

Theorem 4.2.8 ([6, 72]) The problems of enumerating all the minimal spanning trees and of enumerat-

ing all the maximal matchings of a weighted graph are in SDelayP.

Theorem 4.2.9 ([24]) The problem of enumerating all the solutions to SAT instances is in SDelayP,

when the class of the allowed SAT instances is limited to any of the following classes:

• Horn formulas,

• anti-Horn formulas,

• affine formulas,

• bijunctive formulas.

4.2.6 Probabilistic enumeration algorithms

In [66] a probabilistic approach to the enumeration algorithms was introduced. The result obtained there

is as follows:

Theorem 4.2.10 ([66]) Let P be a multilinear polynomial with n variables, t monomials and total de-

greeD. There exists an algorithm that computes the set of monomials of P with probability 1−ǫ for any

ǫ. The delay between outputting two consecutive monomials is bounded in time by O(D2n2 log (n)(n+
log (ǫ−1))) and by O(nD(n + log(ǫ−1))) oracle calls. The whole algorithm performs O(tnD(n +
log(ǫ−1))) oracle calls on points of size O(log (D)).

More details on the above theorem and on probabilistic enumeration classes can also be found

in [65].

51

4.2.7 Impact of the order and separation of the enumeration classes

In some of the mentioned algorithms we explicitly said that the output is listed for example in lexico-

graphical order. In general, one might consider classes dual to TotalP, DelayP, etc. where the problem

comes with a desired order on the output. For more details on this, the interested reader is referred

to [65].

We presented a single theorem separating two of the mentioned enumeration classes (cf. Theo-

rem 4.2.2), but this does not exhaust all the possible relations among those classes. There is a very

promising ongoing attempt to separate IncP and DelayP (see [67]), but we are not aware whether the re-

sult can already be claimed. For more details on the possible attempts to obtain other separation results,

the interested reader is again referred to [65].

4.3 Conclusions

This chapter was dedicated to the enumeration problem in its two aspects:

• in the database scenario we are interested in efficient enumeration of solutions to a query,

• in a more general setting we are interested in efficient enumeration of tuples of a binary relation,

where we fix one of the components (but the binary relation can be understood in a very general way, for

instance it may contain pairs of graphs, where the first component is an arbitrary graph and the second

is one of the minimal spanning tree of the graph from first component).

For more details on the enumeration in the general sense, the interested reader is referred to the

thesis [65].

For more details on selected fragments of the database scenario, the interested reader is referred to

Chapters 5, 6 and 7 of this thesis.

Thesis [9] also gives an interesting perspective on the database scenario (especially for the parts

concerning conjunctive queries, but also for the different approaches on the MSO queries over the classes

of graphs with bounded treewidth and FO queries over the classes of graphs with bounded degree).

Of course not all the question concerning enumeration problems have already been answered. For

an overview of the interesting open problems see Chapter 8.

52

5

FO over classes of structures with

bounded degree

Contents

5.1 Introduction . 53

5.2 Preliminaries . 54

5.2.1 Gaifman locality . 54

5.2.2 Model checking . 55

5.2.3 Connectivity, partitions and splits . 55

5.3 The index structures . 57

5.3.1 The basic index structure . 57

5.3.2 Towards counting . 59

5.3.3 Increasing the radius . 60

5.3.4 The basic index structure with counting . 62

5.4 Solving the problems . 63

5.4.1 Enumeration of FO queries . 63

5.4.2 Testing FO queries . 64

5.4.3 Counting FO queries . 64

5.4.4 j-th solution problem for FO queries . 65

5.1 Introduction

As we explained in Chapter 4, without restricting the class of allowed databases, one can hope for

efficient enumeration algorithms only for very weak query languages (see Section 4.1.1 for details). The

strongest known result is about free-connex acyclic conjunctive queries (see Theorem 4.1.3) and in view

of Theorem 4.1.4 it is unlikely that the result of Theorem 4.1.3 can be strengthen. In order to increase

the power of the query language to be the full first-order logic (FO), we restrict the allowed databases to

the ones with bounded degree.

As we said earlier, the starting point for the potential enumeration algorithm is always the model

checking problem. In the case of first-order logic over the class of structures of bounded degree, the

linear model checking solution was first shown by Seese [61], and then the result was revisited in [36]

to give precise bounds on the constants (see Theorem 5.2.2).

53

It turns out that not only this result can be lifted to an enumeration algorithm, but all the other

problems from Section 2.5 have very efficient solutions too.

The goal of this chapter is to prove the following series of theorems.

Theorem 5.1.1 ([26, 46]) The enumeration of FO queries over the class of structures of bounded degree

is in CONSTANT-DELAYlin. Moreover, the output is returned in a lexicographical order.

Theorem 5.1.2 ([26, 52]) The solution testing for FO queries over the class of structures of bounded

degree is in CONSTANT-TIMElin.

Theorem 5.1.3 ([12]) The counting problem for FO queries over the class of structures of bounded

degree is in LINEAR-TIME.

Theorem 5.1.4 ([12]) The j-th solution problem for FO queries over the class of structures of bounded

degree is in CONSTANT-TIMElin.

For Theorem 5.1.1, we follow the line of the proof of [46]. The other proof [26] relies on a quantifier-

elimination procedure (see also [52] for a similar argument). Our proof builds on the Gaifman Locality

Theorem 5.2.1. The total query evaluation induced by the enumeration procedure of Theorem 5.1.1 is in

time 22
2O(|φ|)

(||D||+ |φ(D)|) thus matching the model checking complexity of Theorem 5.2.2. Note that

it is not clear from the proof of [26] that their algorithm is triply exponential in the size of the formula.

We then show how the approach of [46] can further be exploited to also obtain new proofs of The-

orems 5.1.2, 5.1.3 and 5.1.4, with the involved constant also being triply exponential in the size of the

input formula. Also in this case it is not clear whether the respective algorithms given in [52] and [12]

have this properties.

5.2 Preliminaries

We say that a relational structures has d-bounded degree if the underlying Gaifman graph has d-bounded

degree. Note that with respect to the discussions from Section 3.3 it is equivalent (modulo increasing

the constant from d to d2) to defining this notion with respect to the underlying adjacency graph (since

the query is assumed to be fixed).

Similarly, we say that a class of databases has d-bounded degree if the underlying class of Gaifman

graphs has d-bounded degree.

5.2.1 Gaifman locality

Recall the definition of a Gaifman graph from Chapter 2. We now elaborate a bit more about the Gaifman

graph in order to define the Gaifman Locality Theorem for FO.

Let D be a relational structure and G(D) its Gaifman graph. Given a, b ∈ A, the distance between

a and b, denoted δ(a, b), is the length of a shortest path between a and b in G(D) or ∞ if a and b are

not connected. The distance between two tuples ā = (a1, . . . , ak) and b̄ = (b1, . . . , bl) of D, denoted

δ(ā, b̄), is the min{δ(ai, bj) : 1 ≤ i ≤ k, 1 ≤ j ≤ l}. For a given r ∈ N and a given tuple of elements ā
of some structure D, we denote by Nr(ā) the set of all elements in A such that their distance from ā is

less or equal to r. The width of Nr(ā) is the maximal distance between two elements from Nr(ā). The

r-neighborhood of ā, denoted as Nr(ā), is the substructure of D induced by Nr(ā) and expanded with

one constant for each element of ā. Given two tuples of elements ā and b̄ we say that they have the same

r-neighborhood type, written Nr(ā) ≃ Nr(b̄), if there is an isomorphism between Nr(ā) and Nr(b̄).
We consider first-order logic (FO) as defined in Chapter 2. Throughout this chapter, when writing

φ(x̄), we always mean that x̄ are exactly the free variables of φ. As usual |φ| denotes the size of φ.

We are now ready to state Gaifman locality for FO.

54

Theorem 5.2.1 (Gaifman Locality Theorem [51]) For any first-order formula φ(x̄), for every struc-

ture D and tuples ā, b̄, we have Nr(ā) ≃ Nr(b̄) implies D |= φ(ā) iff D |= φ(b̄), where r = 2|φ|.

To be precise, the bound on r proved in [51] is 3k+1−1
2 , where k is the quantifier rank of the query

φ. Since in the sequel we are going to use the big O notation (see for instance the statement of Theo-

rem 5.4.1), we allow for this little confusion and leave the statement of Theorem 5.2.1 as it is.

5.2.2 Model checking

We do not give a proof of the model checking problem for FO over classes of structures with bounded

degree. A possible way of proving it is via Theorem 5.2.1 (for details see [61] or [36]).

Theorem 5.2.2 ([61, 36]) Fix d ∈ N. The problem of whether a given d-degree-bounded structure D

satisfies a given first-order sentence φ is decidable in time 22
2O(|φ|)

||D||.

5.2.3 Connectivity, partitions and splits

In this section we assume d ∈ N to be fixed and all our structures to be d-degree bounded.

Fix r ∈ N and a FO formula φ(x̄) with k free variables x̄ = x1 . . . xk.

A tuple x̄ = x1 . . . xk of nodes is r-connected around x1 if there exists a permutation π of {2, . . . , k}
such that for each j ∈ {2, . . . , k} the r-neighborhood of xπ(j) intersects with the r-neighborhood of

(x1, xπ(2), . . . , xπ(j−1)). Equivalently, x̄ is r-connected around x1 if the r-neighborhood of x̄ is con-

nected. Note that if x̄ is r-connected around x1, then it is also connected around xi for any 1 ≤ i ≤ k.

Formula φ is said to be r-connected around x1 if it logically implies that x̄ is r-connected around

x1. In the sequel when we write that a formula is r-connected around x, we implicitly assume that x is

the most significant free variable of that formula.

Let Ts be the set of all isomorphism types of s-neighborhoods of single elements, i.e. the isomor-

phism types of structures of the form Ns(a) for some element a of some structure D. By s-neighborhood

type of an element a we mean the isomorphism type of its s-neighborhood. Because our structures are

d-degree-bounded each s-neighborhood has at most ds elements. For each τ ∈ Ts we denote by µτ (x)
the fact that the s-neighborhood type of x is τ . For each type in Ts we fix a representative for the cor-

responding s-neighborhood and fix a linear order among its elements. This way, we can speak of the

first, second,. . . , element of an s-neighborhood. For technical reasons, we actually fix a linear order

for each l-neighborhood for l ≤ s such that (i) it is compatible with the distance from the center of the

neighborhood: the center is first, then come all the elements at distance 1, then all elements at distance

2 and so on. . . and (ii) the order of a (l + 1)-type is consistent with the order on the induced l-type.

For some sequence F = {α2, . . . , αm} of (m− 1) elements from [1, . . . , ds], we write x̄ = F (x1)
for the fact that, for j ∈ {2, . . . ,m}, xj is the αj-th element of the s-neighborhood of x1. We call each

such F a s-binding of x̄. Given s-neighborhood type τ , we say that a s-binding F of x̄ is r-good for τ if

F (x1) is r-connected around x1 for every x1 of type τ . Let Fm
s be the set of all possible s-bindings F .

Let Fs =
⋃

1≤m≤k F
m
s .

For a given x̄ = x1 . . . xk a r-partition of x̄ is a set of triples {(C1, F1, τ1), . . . , (Cm, Fm, τm)} such

that ∅ 6= Ci ⊆ x̄,
⋃

1≤i≤mCi = {x1, . . . , xk}, Ci ∩Cj = ∅ for i 6= j; τi ∈ Tr(2k+1); and Fi ∈ F
|Ci|
r(2k+1)

is r-good for τi. For a given r-partition C of x̄ and (Ci, Fi, τi) ∈ C we write x̄i to represent variables

from Ci, x
i
1 to represent the most significant variable from Ci, x

i
2 to represent second most significant

variable and so on. We call each such triple (Ci, Fi, τi) a C-component. To avoid clutter, if Fi and τi
are not important and we only care about Ci, we also write that x̄i is a C-component. We denote with

Ckr (x̄) the set of all r-partitions of x̄.

For a given r-partition C = {(C1, F1, τ1), . . . , (Cm, Fm, τm)} of x̄ by DivCr (x̄) we mean a conjunc-

tion of formulas saying that Nr(x̄
i) ∩Nr(x̄

j) = ∅ for all 1 ≤ i 6= j ≤ m and formula

55

∧

(Ci,Fi,τi)∈C
(

x̄i = Fi(x
i
1) ∧ µτi(x

i
1)
)

. Note that the latter part implies that x̄i is r-connected around

xi1 (as Fi is r-good for τi). We call this formula a C-split of x̄.

We now present a series of observations using the notions introduced above. They are all straight-

forward consequences of the appropriate definitions.

Observation 5.2.1 Fix r ∈ N, a structure D and a tuple ā of k nodes from D. Then there is exactly one

r-partition C ∈ Ckr (x̄) such that D |= DivCr (ā).

As a consequence of Observation 5.2.1 we get:

Observation 5.2.2 Fix r ∈ N and a structure D. Then any FO formula φ(x̄) with k free variables is

equivalent to a formula of the form

∨

C∈Ck
r (x̄)

(

DivCr (x̄) ∧ φ(x̄)
)

.

Moreover, the above disjunction is mutually exclusive.

Observation 5.2.3 Fix r ∈ N, a structure D and two elements a and b from D. If Nr(a) ∩Nr(b) 6= ∅,

then b ∈ N2r(a).

As a consequence of Observation 5.2.3 we get:

Observation 5.2.4 Fix r ∈ N, a structure D and a tuple ā of k nodes from D. If ā is r-connected around

a1, then ā ⊆ N2rk(a1) and Nr(ā) ⊆ Nr(2k+1)(a1).

Observation 5.2.5 Fix r ∈ N, a structure D, a tuple ā of l nodes from D and a tuple b̄ of k nodes from

D. If b̄ is r-connected around b1 and Nr(ā) ∩Nr(b̄) 6= ∅, then b̄ ⊆ N2rk(ā) and Nr(b̄) ⊆ Nr(2k+1)(ā).

In the scope of the above observation, if we do not want to fix b̄ but rather fix the “witness for

its r-connectedness”, we have a bounded number possibilities for the choice of b1 (which has to be in

N2rk(ā)), which immediately leads to:

Observation 5.2.6 Fix r ∈ N, a structure D and a tuple ā of l nodes from D. Assume |x̄| = k and fix a

r-partition C = {(C1, F1, τ1)} of x̄. There are up to ld2rk tuples b̄ such that Nr(ā) ∩ Nr(b̄) 6= ∅ and

D |= DivCr (b̄).

PROOF Fix a tuple b̄ of k nodes. If D |= DivCr (b̄), then b̄ is uniquely determined by b1 and C (to

be precise, b̄ = F1(b1)). To conclude recall from Observation 5.2.5 that Nr(ā) ∩ Nr(b̄) 6= ∅ implies

b̄ ⊆ N2rk(ā), so in particular b1 ∈ N2rk(ā) and we have up to as many choices for b1 as is the maximal

size of N2rk(ā), which in fact is ld2rk.

�

Observation 5.2.7 Fix s ∈ N, a structure D and a tuple ā ofm nodes from D. If ā ⊆ Ns(a1), then there

is exactly one binding F ∈ Fm
s such that ā = F (a1).

The following is a very useful consequence of Theorem 5.2.1.

Lemma 5.2.1 Fix a structure D. Then any formula φ(x̄) with k free variables is equivalent over D to a

formula of the form
∨

C∈S
DivCr (x̄) (5.1)

where r = 2|φ| and S ⊆ Ckr (x̄) is finite. Moreover, the disjunction given by (5.1) is mutually exclusive.

56

PROOF Let φ(x̄) be a formula with k free variables and r = 2|φ|. For a given partition

C = {(C1, F1, τ1), . . . , (Cm, Fm, τm)} of x̄ let Ci =
{

xi1, . . . , x
i
|Ci|

}

.

From Observation 5.2.2 we see that φ(x̄) is equivalent to:

∨

C∈Ck
r (x̄)

(

DivCr (x̄) ∧ φ(x̄)
)

.

Let ā be a tuple of D such that D |= φ(ā). From Observation 5.2.1, for exactly one C ∈ Ckr (x̄) we

have that D |= DivCr (ā)∧φ(ā). Let C = {(C1, F1, τ1), . . . , (Cm, Fm, τm)} be that r-partition. As DivCr
induces that for each 1 ≤ i ≤ m component āi is r-connected, by Observation 5.2.4 the r-neighborhood

of each āi is completely included into the (r(2k + 1))-neighborhood of ai1.

We now take S as the set of all r-partitionsC such that for some tuple āwe have that D |= DivCr (ā)∧
φ(ā).

By construction we have φ(x̄) implies (5.1). The reverse inclusion is an immediate consequence

of Gaifman Locality Theorem: When DivCr (ā) holds, Nr(ā
i) is induced by Nr(2k+1)(a

i
1) = τi and Fi.

Moreover, Nr(ā) is the disjoint union of Nr(ā
i) and is therefore induced by C.

The mutual exclusion is a consequence of Observations 5.2.2 and 5.2.7.

�

Corollary 5.2.1 Fix a structure D and query φ(x̄) with k free variables. Set r = 2|φ| and let DivCr ∈
Ckr (x̄). If for some tuple ā of k nodes from D we have D |= DivCr (ā) ∧ φ(ā), then D |= ∀x̄DivCr (x̄) →
φ(x̄). Similarly, if for some tuple ā of k nodes from D we have D |= DivCr (ā) ∧ ¬φ(ā), then D |=
∀x̄¬(DivCr (x̄) ∧ φ(x̄)).

5.3 The index structures

The goal of this section is to design index structures capable of dealing with problems mentioned in

Theorems 5.1.1–5.1.4. This is split into two objects: the basic index structure finds its use in the proofs

of all the Theorems 5.1.1–5.1.4, while the basic index structure with counting is only necessary for

Theorems 5.1.3 and 5.1.4.

5.3.1 The basic index structure

Intuitively, the basic index structure determines the disjunction given by (5.1) and precomputes the

(r(2k+1))-neighborhoods of each element of D. It also allows to effectively navigate through elements

sharing the same (r(2k + 1))-neighborhood type.

Fix a formula φ(x̄) with k free variables. Let D be the input structure. Let r = 2|φ|. By Lemma 5.2.1,

φ(x̄) is equivalent over D to a formula of the form given by (5.1). We assume that D comes with a linear

order over its elements. If not, we use the linear order induced by the encoding of D.

The basic index structure for φ and D is the following object:

• It stores the Gaifman graph of D.

• For each element a of D and each i ≤ r(2k + 1), it stores a list of nodes at distance i from a.

• For each element a of D and each i ≤ dr(2k+1), it stores a pointer from a to the i-th element of its

(r(2k + 1))-neighborhood.

• For each element a of D, it stores the (r(2k + 1))-neighborhood type of a.

• For each τ ∈ Tr(2k+1) it stores a sorted array of elements of D whose (r(2k + 1))-neighborhood

type is τ .

• It stores r-partitions relevant for D, that is r-partitions such that D |= ∃x̄DivCr (x̄) ∧ φ(x̄).
We now show the main property of the basic index structure for φ and D:

57

Lemma 5.3.1 Fix query φ(x̄) with k free variables and d ∈ N. There exists an algorithm that, given a

d-degree bounded structure D, computes the basic index structure for φ and D in time 22
2O(|φ|)

· ||D||.

PROOF

In a first step, for each i ≤ r(2k + 1) the algorithm precomputes the pairs of nodes at distance i. In

other words, for each a in D, it computes the set of elements b such that δ(a, b) = i. This can easily be

done in time linear in r(2k + 1) · ||D|| by induction on i: during the base case the algorithm computes

the Gaifman graph of D and then it performs the classical computation of the transitive closure of this

graph up to depth r(2k + 1).
In a second step, the algorithm computes for each element a of D its (r(2k+1))-neighborhood: for

each element a of D, it computes its (r(2k + 1))-neighborhood type and for all i ≤ dr(2k+1) a pointer

from a to the i-th element of its (r(2k + 1))-neighborhood. We use an induction on the radius of the

neighborhood to achieve this goal within the desired time constraints:

As 0-neighborhoods all share the same isomorphism type and have just one pointer to their centers,

the induction base is obvious. So let’s assume that in linear time in the size of D the algorithm has

computed all l-neighborhoods for all nodes. With one more linear pass it is now possible to compute the

(l + 1)-neighborhoods. Fix a ∈ D. From the first step, we have all the elements of D at distance l + 1
from a. As the algorithm has already computed the l-neighborhood, it remains to try all possible orders

among those elements and test isomorphism with the ordered types that were initially fixed.

There are at most dl+1 nodes at distance l + 1 and l < r(2k + 1). Hence the number of orders the

algorithm needs to test is bounded by (dr(2k+1))!. Once the order is fixed it tries all possible (r(2k +
1))-neighborhood types that we have initially fixed (there are |Tr(2k+1)| possibilities) and then tests

that the two orders induce an isomorphism (each test simply requires going through all tuples of the

neighborhood). Let s(r, k, d) be the maximal size of a (r(2k + 1))-neighborhood. Thus this step is

altogether achieved in time O((dr(2k+1))! · |Tr(2k+1)| · s(r, k, d)), which is triply exponential in |φ|

because r = 2|φ|, |Tr(2k+1)| = O(2s(r,k,d)) and s(r, k, d) = O(dr(2k+1)|σ|).
The third step of the precomputation phase orders, for each τ ∈ Tr(2k+1), the elements of D having

that particular (r(2k + 1))-neighborhood type and stores them in an array. To do that, we just need to

enumerate through all the elements in D, in the order provided by the linear order on its elements, and,

using information obtained in the second step, add each of them to a proper list.

During the last step the algorithm determines the r-partitions that are relevant for D. Fix a r-partition

C = {(C1, F1, τ1), . . . , (Cm, Fm, τm)} from Ckr (x̄). Recall that r-partition is relevant for D if D |=
∃x̄DivCr (x̄) ∧ φ(x̄). The algorithm first finds a tuple ā such that D |= DivCr (ā). If such a tuple does not

exist, then clearly C is not relevant for D. If such a tuple ā exists, then we can apply Theorem 5.2.2 in

order to test whether D |= φ(ā) or not. If it is the case, then C is relevant for D by Corollary 5.2.1 and if

it is not the case, then C is not relevant for D by the same corollary. Each application of Theorem 5.2.2

works in time 22
2O(|φ|)

and we apply it once for each r-partition. The number of r-partitions is bounded

by (|Tr(2k+1)|)
k = 22

2O(|φ|)

multiplied by the number of possible splits of k variables into disjoint and

nonempty subsets, multiplied again by (|Fr(2k+1)|)
k, which altogether is 22

2O(|φ|)

. This way all these

tests take time 22
2O(|φ|)

. It remains to show how to find a tuple ā such that D |= φ(ā) under the same

time constraints. A somewhat brute-force approach is sufficient for that: recall that during the third step

the algorithm computed for each (r(2k+1))-neighborhood type τ the list of elements sharing that type.

Assume now that one of the lists for τ1, . . . , τm has many elements (we shall precise the number shortly).

Wlog assume that this is the case for τm and set C ′ = {(C1, F1, τ1), . . . , (Cm−1, Fm−1, τm−1)}. Note

that if we have a tuple b̄ such that D |= DivC
′

r (b̄), then the number of nodes c of type τm such that

Nr(Fm(c)) ∩Nr(b̄) 6= ∅ is bounded by kd2rk (see Observation 5.2.6). If our many is a number greater

than this value, then we can just go through the list of elements with type τm and extend the tuple b̄ to

a desired solution to DivCr (x̄). This extension being doable in time doubly exponential in |φ|, we can

58

apply the inductive reasoning to C ′ to compute tuple b̄. It remains to show the base of the induction, that

is to solve the case when none of the lists has many elements. But this is then trivial: we simply test all

possible choices. Their number being bounded by (kdr(2k+1))
k
, we fit into the required time bound of

22
2O(|φ|)

.

Altogether we have shown an algorithm constructing the basic index structure for φ and D within

the desired time constraints: it works in time linear in ||D|| and triply exponential in |φ|.

�

5.3.2 Towards counting

We are now aiming at an extension of the basic index structure from Section 5.3.1, so that it could also

be used to handle the counting and j-th solution problems. Before we move into details, we briefly

sketch the ideas behind our upcoming approach.

Fix a database D. Let |x̄| = k, |ȳ| = l and fix r-partitions C = {(C1, F1, τ1), . . . , (Cm, Fm, τm)} ∈
Ckr (x̄) andC ′ = {(ȳ, Fm+1, τm+1)} ∈ C lr(ȳ). Let ā be a tuple of nodes from D such that D |= DivCr (ā).
The information that we are going to need is the value sā = |{b̄ : D |= DivC

′

r (b̄) and Nr(ā) ∩Nr(b̄) 6=
∅}|. For the purpose of this section we call a tuple b̄ such that D |= DivC

′

r (b̄) and Nr(ā) ∩Nr(b̄) 6= ∅ a

disallowed tuple for ā. If ā is clear from the context we just write that b̄ is a disallowed tuple.

Of course having ā it is easy to compute sā: if D |= DivC
′

r (b̄), then b̄ is r-connected around b1
and from Observation 5.2.5 it is enough to investigate N2rl(ā) when searching for possible disallowed

tuples. From Observation 5.2.6 we know that there are up to kd2rl choices for the possible positions of

b1 to consider and since b̄ = Fm+1(b1) we immediately get an algorithm computing sā together with a

bound sā ≤ kd2rl.

What we are aiming at is a way to refine the notion of the C-split DivCr so that it would group the

tuples ā having the same number of disallowed tuples. Fix 0 ≤ s ≤ kd2rl. We would like to be able

to compute a query s-DivCr with the following property: for any tuple ā we have D |= s-DivCr (ā) iff

D |= DivCr (ā) and sā = s.

Let us start with a simple case when m = 1. From Observation 5.2.4 we know that ā ⊆ N2rk(a1),
so N2rl(ā) ⊆ N2r(l+k)(a1). We again have a constant bound on the size of N2r(l+k)(a1), so with a

linear pass on the domain of D we could extract the possible candidates for a1 and group them together

by refining the notion of neighborhood types in such a way that the (2r(l+k))-neighborhood type of a1
would store the value sā. In fact no real refinement is actually going to be necessary: DivC

′

r only tests the

(2rl)-neighborhood type of b1 and the positioning of b̄ inside the N2rl(b1) (to make sure that it agrees

with Fm+1(b1)). As soon as this (2rl)-neighborhood of possible candidates for b1 is fully contained in

some p-neighborhood of a1 (we are going to see that p = 2r(l + k + 1) is going to suffice), all the

required information is already stored by p-neighborhood type of a1.

The biggest issue with extending the above reasoning to m > 1 is that ā no longer has to be r-

connected. The natural approach to overcome this is to separately count the number of disallowed tuples

that intersect with each C-component āi. This is exactly what we are going to do, but the reader should

keep in mind that this needs to be done with care as the same tuple b̄ may be a disallowed tuple for

different C-components āi and āj of ā and we need to make sure that we do not count b̄ twice in such a

case.

Fix for now a tuple ā such that D |= DivCr (ā) and a tuple b̄ such that D |= DivC
′

r (b̄) and Nr(ā
i) ∩

Nr(b̄) 6= ∅ and also Nr(ā
j) ∩ Nr(b̄) 6= ∅ for two different C-components āi and āj of ā. The key to

the solution is the following observation: the above assumptions imply that āi and āj , although their r-

neighborhoods do not intersect, are in fact “close” to each other as witnessed by b̄. By “close” we mean

that Nr(4l+2)(ā
i)∩Nr(4l+2)(ā

j) 6= ∅. This way, instead of looking at a r-partition C of ā, we are rather

59

going to look at its particular (r(4l + 2))-partition C ′′ (to be precise, we are actually going to consider

a set of (r(4l + 2))-partitions, see Lemma 5.3.2 for details). This (r(4l + 2))-partition C ′′ is going to

imply C, but it also has the following nice property: since all its C ′′-components are at distance of at

least r(8l+4) from each other (which is enforced by (r(4l+2))-partitions), their r-neighborhoods can

no longer intersect with the same disallowed tuple. This way we may count the number of disallowed

tuples for each C ′′-component separately and we already know how to do this.

In the sequel we formalize the above intuition. Later on we define the basic index structure with

counting and then we move to Section 5.4 where we show how to use the index structures to effectively

solve the enumeration, testing, counting and j-th solution problems.

5.3.3 Increasing the radius

We start with two simple observations that intuitively can be understood in the following way: when r in-

creases, the r-connectedness is preserved and the r-partitioning may only “merge” previously separated

components.

Observation 5.3.1 Fix r ≤ r′ ∈ N, a structure D and a tuple ā of k nodes from D. If ā is r-connected

around a1 then it is also r′-connected around a1.

As a consequence of Observations 5.3.1 and 5.2.3 we get:

Observation 5.3.2 Fix r ≤ r′ ∈ N, a structure D and a tuple ā of k nodes from D. Let C =
{(C1, F1, τ1), . . . , (Cm, Fm, τm)} be a r-partition of x̄ and C ′ =

{

(C ′
1, F

′
1, τ

′
1), . . . , (C

′
m′ , F ′

m′ , τ ′m)
}

be a r′-partition of x̄ such that D |= ∃x̄
(

DivCr (x̄) ∧ DivC
′

r′ (x̄)
)

. Then m′ ≤ m and for each 1 ≤ i ≤ m

there exists 1 ≤ f(i) ≤ m′ such that Ci ⊆ C ′
f(i).

Let us have a closer look at the situation described in Observation 5.3.2. Fix r ≤ r′ ∈ N and a

structure D. Let |x̄| = k and letC = {(C1, F1, τ1), . . . , (Cm, Fm, τm)} be a r-partition of x̄ and letC ′ =
{

(C ′
1, F

′
1, τ

′
1), . . . , (C

′
m′ , F ′

m′ , τ ′m′)
}

be a r′-partition of x̄ such that for each 1 ≤ i ≤ m there exists

1 ≤ f(i) ≤ m′ such that Ci ⊆ C ′
f(i). Note that there is no reason for the above assumptions to yield any

of the implications D |= ∀x̄
(

DivCr (x̄) → DivC
′

r′ (x̄)
)

or D |= ∀x̄
(

DivC
′

r′ (x̄) → DivCr (x̄)
)

. Fortunately,

with a bit of additional work, we can enforce a certain equivalence as shown in Lemma 5.3.2.

Lemma 5.3.2 Fix r ∈ N and a structure D. Let |x̄| = k and let C = {(C1, F1, τ1), . . . , (Cm, Fm, τm)}
be a r-partition of x̄. For any r′ ≥ r(2k + 1) there is a set S of r′-partitions of x̄ such that the

following holds: D |= ∀x̄
[(

∨

C′∈S DivC
′

r′ (x̄)
)

↔ DivCr (x̄)
]

. Moreover, set S has size O(22
r′k

) and can

be computed in time O(22
r′k

) (in particular, in time independent from the size of D).

Before we get to the proof let us note that there is nothing really deep in this lemma. It is yet another

step towards formalizing the approach explained in the beginning of Section 5.3.2. We explained there

that counting the number of disallowed tuples needs to be done with care since different components

may share disallowed tuples. The simplest solution to avoid such a scenario is to make sure that the

components are “far enough” from each other. r′ ≥ r(2k + 1) is the “far enough” threshold that guar-

antees that the sets of disallowed tuples of different components are disjoint. The proof of Lemma 5.3.2

describes a way of dealing with the emerging technicalities, but there is nothing particularly surprising

or revealing in it.

PROOF [of Lemma 5.3.2]

Let C = {(C1, F1, τ1), . . . , (Cm, Fm, τm)} be a r-partition of x̄ and fix r′ ≥ r(2k + 1).

60

Let C ′ =
{

(C ′
1, F

′
1, τ

′
1), . . . , (C

′
m′ , F ′

m′ , τ ′m′)
}

be a r′-partition of x̄.

If it is not the case that for each 1 ≤ i ≤ m there exists 1 ≤ f(i) ≤ m′ such that Ci ⊆ C ′
f(i), then

by Observation 5.3.2 we have D |= ∀x̄¬
(

DivC
′

r′ (x̄) ∧ DivCr (x̄)
)

. This way none of such r′-partitions

may belong to the desired set S.

Assume then that C ′ is such that for each 1 ≤ i ≤ m there exists 1 ≤ f(i) ≤ m′ such that

Ci ⊆ C ′
f(i).

Fix 1 ≤ i ≤ m.

We now argue that the (r(2k + 1))-neighborhood of xi1 is completely included in the (r′(2k + 1))-

neighborhood of x
f(i)
1 . Indeed, since x̄f(i) is r′-connected around x̄

f(i)
1 and x̄i ⊆ x̄f(i), the distance

between x
f(i)
1 and xi1 is bounded by 2r′k. Having r′ ≥ r(2k+1) concludes the fact thatNr(2k+1)(x

i
1) ⊆

Nr′(2k+1)(x
f(i)
1). Moreover, as (r′(2k+1))-neighborhood type of x

f(i)
1 is τ ′

f(i) and the position of xi1 is

uniquely determined by F ′
f(i), the (r(2k + 1))-neighborhood type of xi1 is uniquely determined by τ ′

f(i)

and F ′
f(i) and so knowing C ′ we know whether the (r(2k + 1))-neighborhood type of xi1 is implied to

be τi or not.

If not, then clearlyC ′ cannot be included in S (since each node has a fixed (r(2k+1))-neighborhood

type).

If this happens to be the case and the (r(2k+1))-neighborhood type of xi1 is now fixed to be τi, then

τ ′
f(i) and F ′

f(i) uniquely determine whether the positioning of x̄i inside the (r′(2k+1))-neighborhood of

x
f(i)
1 as given by F ′

f(i) is in fact in the (r(2k+1))-neighborhood of xi1 and if it agrees with its positioning

as given by Fi and τi.

If this is not the case, then again C ′ cannot be included in S (since the structure of the i-th C-

component would not be preserved).

After performing this sieve for each 1 ≤ i ≤ mwe are left with exactly thoseC ′, for which DivC
′

r′ (x̄)
implies that the r(2k + 1)-neighborhood types of xi1 are τi and that x̄i = Fi(x

i
1) for each 1 ≤ i ≤ m.

It remains to assure thatNr(x̄
i)∩Nr(x̄

j) = ∅ for i 6= j. If f(i) 6= f(j), then this is immediate since

even Nr′(x̄
i) ∩ Nr′(x̄

j) = ∅. If f(i) = f(j), then similarly as before we see that Nr(x̄
i), Nr(x̄

j) ⊆

Nr′(2k+1)(x
f(i)
1) and that τ ′

f(i) and F ′
f(i) uniquely determine the pairwise positioning of Nr(x̄

i) and

Nr(x̄
j).

If the r-neighborhoods of x̄i and x̄j are implied to have a nonempty intersection, then C ′ cannot be

included in S.

If they are implied to have empty intersection for each pair i 6= j, then each such r′-partition C ′

implies r-partition C and we may conclude with S being the set of exactly those remaining r′-partitions.

By construction we have the left to right implication, namely D |= ∀x̄
[(

∨

C′∈S DivC
′

r′ (x̄)
)

→ DivCr (x̄)
]

.

The other direction is a consequence of Observation 5.2.1 and the fact that we only discarded those

r′-partitions which violated the requirements of r-partition C: for each tuple ā such that D |= DivCr (ā)
we know that there exists a unique r′-partition C ′ of ā. Since DivCr (ā), C

′ cannot violate the require-

ments of C and so it was not discarded. This way we have D |= ∀x̄
[

DivCr (x̄) →
(

∨

C′∈S DivC
′

r′ (x̄)
)]

which concludes the proof that the constructed set S is in fact the desired one.

Note that the above procedure performs a series of operations for each r′-partition. Each such oper-

ation being doable in time bounded by the maximal size of a (r′(2k + 1))-neighborhood, the procedure

requires a total time 22
O(r′k)

.

This gives the desired set S within required time constraints.

�

61

Lemma 5.3.2 actually yields a bit more. As we are about to see, r′-partitions mentioned in its

statement enjoy one more property that will be very useful for the counting and j-th solution problems.

For technical reasons we are going to require a slightly bigger threshold this time (the factor will be

4k + 2 rather than 2k + 1), but just as it was the case for Lemma 5.3.2, there is nothing deep in the

following lemma. It just formalizes the fact that if different components are “far enough” from each

other and their “big enough” neighborhood types are known, then the number of disallowed tuples (as

they were defined in the beginning of Section 5.3.2) is implied by the partition.

Lemma 5.3.3 Fix r ∈ N and a structure D. Let |x̄| ≤ k, |ȳ| ≤ k and letC = {(C1, F1, τ1), . . . , (Cm, Fm, τm)}
be a r-partition of x̄ and C ′′ = {(Cm+1, Fm+1, τm+1)} be a r-partition of ȳ. Fix r′ ≥ r(4k + 2) and

let S be the set of r′-partitions from the application of Lemma 5.3.2 to C and r′. For any r′-partition

C ′ =
{

(C ′
1, F

′
1, τ

′
1), . . . , (C

′
m′ , F ′

m′ , τ ′m′)
}

∈ S of x̄ we have that:

there exists a number sC′ such that for any ā for which D |= DivC
′

r′ (ā) we have that |{b̄ : D |=
DivC

′′

r (b̄) and Nr(ā) ∩Nr(b̄) 6= ∅}| = sC′ .

Moreover, value sC′ can be computed in time O(22
r′k

) (in particular, in time independent from the

size of D).

PROOF

We use all the terminology as introduced in the statement of this lemma. Fix r′-partition C ′ =
{

(C ′
1, F

′
1, τ

′
1), . . . , (C

′
m′ , F ′

m′ , τ ′m′)
}

∈ S of x̄.

Let ā be such that D |= DivC
′

r′ (ā). By the fact that r′ ≥ r(4k+2), the (r(4k+2))-neighborhoods of

each pair āi and āj of different C ′-components do not intersect. This means that their r-neighborhoods

are at distance of at least 8rk and so for any b̄ such that D |= DivC
′′

r (b̄) the r-neighborhood of b̄ cannot

intersect with both r-neighborhoods of āi and āj (b̄ is r-connected around b1, so its width is bounded by

2rk).

Assume now that Nr(b̄) ∩ Nr(ā
i) 6= ∅ for some tuple b̄ such that D |= DivC

′′

r (b̄). This means that

the distance from ai1 to b1 is bounded by 2r′k + 2r + 2rk (since width of āi is bounded by 2r′k, width

of b̄ is bounded by 2rk and the 2r part comes from the fact that we are looking at the r-neighborhoods

of mentioned tuples) and so it is included in the (r′(2k + 1))-neighborhood of ai1 (as r′ ≥ r(4k + 2)).
In fact the lower bound on r′ gives that the Nr(2k+1)(b1) is included in the (r′(2k + 1))-neighborhood

of ai1.

But this basically finishes the proof. It guarantees that the r′(2k + 1)-neighborhood type of ai1
uniquely determines the number of tuples b̄ such that Nr(b̄) ∩Nr(ā

i) 6= ∅ and D |= DivC
′′

r (b̄): the pos-

sible candidates for b1 are only those nodes inside Nr′(2k+1)(a
i
1), whose (r(2k+1))-neighborhoods are

fully included in Nr′(2k+1)(a
i
1) and whose induced r-neighborhood type is τm+1. This allows to extract

b̄ = Fm+1(b1) and then it remains to check the non-emptiness of the intersection of r-neighborhoods of

āi and b̄.

Examining every node from Nr′(2k+1)(x
i
1) in time O(22

r′k
) we can compute the value si such that

for any tuple ā for which D |= DivC
′

r (ā), we have |{b̄ : D |= DivC
′′

r (b̄) and Nr(ā
i) ∩Nr(b̄) 6= ∅}| = si.

As we explained before, we are sure not to count the same tuple b̄ for different si.

The desired value sC′ is then given by sC′ =
∑

1≤i≤m′ si.

�

5.3.4 The basic index structure with counting

We finally move to the definition of the basic index structure with counting. We implicitly assume that

it is being build on top of the basic index structure.

62

Fix r ∈ N and a structure D. Let |x̄| ≤ k, |ȳ| ≤ k and let C = {(C1, F1, τ1), . . . , (Cm, Fm, τm)} be

a r-partition of x̄ and C ′′ = {(Cm+1, Fm+1, τm+1)} be a r-partition of ȳ. Fix r′ ≥ r(4k + 2).

The basic index structure with counting for C, C ′′ and r′ stores:

• set S of r′-partitions of x̄ as obtained from the application of Lemma 5.3.2 to C and r′,
• for each C ′ ∈ S it stores the value sC′ obtained from the application of Lemma 5.3.3 to C, C ′′, r′

and C ′.
Note that from Lemmas 5.3.2 and 5.3.3 the basic index structure with counting for C, C ′′ and r′ can

be computed in time 22
O(r′k)

.

5.4 Solving the problems

5.4.1 Enumeration of FO queries

We now turn to the proof of Theorem 5.1.1. It is a consequence of the following theorem, which also

gives the precise (in terms of the size of the formula) constants that are hidden in the statement of

Theorem 5.1.1.

Theorem 5.4.1 ([46]) There is an algorithm that for all d ∈ N, all φ ∈ FO and all d-degree-bounded

structures D enumerates φ(D) with a precomputation phase taking time 22
2O(|φ|)

·||D|| and a delay during

the enumeration phase that is triply exponential in |φ|. Moreover, if the domain of D is linearly ordered,

the algorithm enumerates φ(D) in increasing order relative to the induced lexicographical order on

tuples.

PROOF

Let C = {(C1, F1, τ1), . . . , (Cm, Fm, τm)} ∈ Ckr (x̄) be a r-partition relevant for φ. We show

how to enumerate (after a linear preprocessing) in lexicographical order, with no repetition, constant

memory and constant delay, all the tuples ā such that D |= DivCr (ā). The result will then follow from

Lemma 5.2.1 and Fact 3.1.4.

The first step of the precomputation phase is building the basic index structure for φ and D as

described in Section 5.3.1. Using the basic index structure we now have access to all the r-partitions

that are relevant for φ. Fix a relevant for φ r-partition C = {(C1, F1, τ1), . . . , (Cm, Fm, τm)} ∈ Ckr (x̄).
As we argued earlier, it is enough to show the enumeration procedure for each DivCr (x̄) separately.

The proof is an induction on the number k of free variables in DivCr (x̄). The base case k = 1 is

trivial: since k = 1 it must be the case that also m = 1 and the basic index structure contains the desired

list of all elements of type τ1.

Assume now that we have the desired result for k − 1 and we want to extend it to k.

Without loss of generality we assume that the most significant variable of x̄ is in the first variable of

x̄1, that the most significant variable of x̄ \ x̄1 is the first variable of x̄2 and so on.

Let x̄′ = C1∪ . . .∪Cm−1 and x̄′′ = Cm. Consider query ψ(x̄′) = ∃x̄′′DivCr (x̄). It has less variables

than DivCr (x̄) and so the inductive hypothesis holds for it.

The precomputation phase, besides building the basic index structure for φ and D as we mentioned

earlier, also performs the precomputation as given by the inductive hypothesis for ψ.

We now turn to the enumeration phase.

Let C ′ be C with (Cm, Fm, τm) removed. The algorithm works as follows: by inductive hypothesis

it enumerates solutions to ψ. Note that, from the definition of ψ, for each solution ā that the enumeration

procedure returns, we are sure to find at least one tuple b̄ such that D |= DivCr (āb̄). Moreover, it is always

the case that D |= DivC
′

r (ā). Fix ā returned by the inductive enumeration procedure. We now show how

to nest the enumeration of all matching tuples b̄:

63

Using the basic index structure it is possible to iterate one by one through all elements bm of D whose

(r(2k + 1))-neighborhood type is τm. For each such element let b̄m = Fm(bm). The algorithm now

tests whether Nr(b̄
m) intersects with Nr(ā) or not (recall that this information requires only constant

time by Observation 5.2.5 and the fact that the appropriate neighborhoods have been computed). If it

does not, then we have a solution āb̄m for DivCr (x̄). If it does, then we move to the next element with

(r(2k + 1))-neighborhood type τm. Notice that the size of Nr(ā) is bounded by kdr hence the length

of false hits is bounded by kd2rk (see Observation 5.2.6). As we said before, for each considered ā we

are sure to find at least one solution. Altogether, we get the desired constant delay for the enumeration

process.

By the assumption that each x̄i for i < m contains a variable more significant than any variable from

x̄m, the lexicographical order on the output follows.

There are no repetitions since the list of elements whose (r(2k + 1))-neighborhood type is τm
contains no repetitions.

During the enumeration phase we only check if certain neighborhoods of constant size intersect, so

the constant memory assumption is clearly satisfied.

We have shown how to enumerate (after a linear preprocessing) in lexicographical order, with no

repetition, constant memory and constant delay, all the tuples āb̄ such that D |= DivCr (āb̄).
The enumeration phase needs to process all relevant r-partitions C, i.e. a number of cases triply

exponential in |φ|. The depth of the induction is bounded by k so altogether we have a number of cases

that is triply exponential in |φ| raised to the power k, which is still triply exponential in |φ|. Since the

disjunction given by Lemma 5.2.1 is mutually exclusive, we could consider consecutive r-partitions C
sequentially. Though in order to enforce lexicographical order on the output, we use Fact 3.1.4 instead.

Altogether this yields a procedure linear in the size of the output and triply exponential in |φ|.

�

5.4.2 Testing FO queries

We now turn to the proof of Theorem 5.1.2.

PROOF [of Theorem 5.1.2] The precomputation phase builds the basic index structure for φ and D as

described in Section 5.3.1.

The testing phase is then trivial: given a tuple ā it is enough to test whether the r-partition C =
{(C1, F1, τ1), . . . , (Cm, Fm, τm)} ∈ Ckr (x̄) as given by Observation 5.2.1 for ā is relevant for φ (then

the result follows from Lemma 5.2.1). This is done in time triply exponential in the size of the formula

and independent from the size of the input structure.

�

5.4.3 Counting FO queries

We now turn to the proof of Theorem 5.1.3.

PROOF [of Theorem 5.1.3] We start with the construction of the basic index structure as described in

Section 5.3.1.

From Lemma 5.2.1 it is enough to show the counting algorithm for a single r-partition C =
{(C1, F1, τ1), . . . , (Cm, Fm, τm)} ∈ Ckr (x̄) relevant for φ. (as Lemma 5.2.1 guarantees mutual ex-

clusion of the mentioned queries).

We need to count the number of solutions to a C-split DivCr (x̄). This is done by induction on m.

Case m = 1 is trivial, as it is enough to count the number of elements with type τm and this can easily

be done with the basic index structure.

64

We now move to the inductive step: assume the result for values smaller than m and we want to

extend it to m.

Set C ′′ = {(C1, F1, τ1), . . . , (Cm−1, Fm−1, τm−1)}. Let x̄′ = C1 ∪ . . . ∪ Cm−1 and fix a tuple ā
such that D |= DivC

′′

r (ā).
Let N be the number of elements b in D with type τm. From Observation 5.2.6 we know that

constantly many (up to kd2rk) of them are such that Nr(Fm(b))∩Nr(ā) 6= ∅. For every 0 ≤ s ≤ kd2rk

we show how to count the number #s of tuples ā that are solutions to DivC
′′

r (x̄′) and such that their

r-neighborhoods intersect with exactly s r-neighborhoods of different Fm(b), where b is of type τm.

Then the solution to the counting problem is
∑

s#s · (N − s).
Fix s ≤ kd2rk and set r′ = r(4k + 2). We now construct the basic index structure with counting

for C, C ′′ and r′ as defined in Section 5.3.4. Let us consider the disjunction
∨

C′∈S DivC
′

r′ (x̄
′) obtained

from the application of Lemma 5.3.2 to DivC
′′

r (x̄′) and r′. This disjunction is equivalent to DivC
′′

r (x̄′)
and is mutually exclusive, so we can handle each C ′ ∈ S one by one.

From Lemma 5.3.3 we know that we need to consider exactly those C ′ for which sC′ = s. As the

r′-partition C ′ has strictly less components than m, we can compute #s using the inductive hypothesis.

Note that we need to consider 22
O(r′k)

choices for s and C ′. Moreover, each application of the

induction causes r′ to grow by a factor (4k + 2). Since the depth of the induction is bounded by k,

the maximal value of r′ is bounded by r(4k + 2)k. Altogether this yields a procedure working in time

22
O(r(4k+2)k)

which is triply exponential in |φ| since r = 2|φ| and k ≤ |φ|.
This concludes the proof of Theorem 5.1.3.

�

5.4.4 j-th solution problem for FO queries

Finally, we turn to the proof of Theorem 5.1.4. It follows the line of the proof of Theorem 5.1.3.

PROOF [of Theorem 5.1.4] We start with the construction of the basic index structure as described in

Section 5.3.1.

From Lemma 5.2.1 it is enough to show the j-th solution algorithm for a single r-partition C =
{(C1, F1, τ1), . . . , (Cm, Fm, τm)} ∈ Ckr (x̄) relevant for φ. (Lemma 5.2.1 guarantees mutual exclusion

of the mentioned queries, Theorem 5.1.3 can be used to solve the respective counting problems and we

may conclude with the application of Fact 3.1.3).

We now show the solution to the j-th solution problem for a single C-split DivC,τ̄r (x̄). This is done

by induction on m. Case m = 1 is trivial: the preprocessing phase puts all nodes from D with type τ1
into an array and then during the j-th solution phase the appropriate solution can be returned in constant

time with a direct access to the j-th element of that array.

We now move to the inductive step: assume the result for values smaller than m and we want to

extend it to m.

Set C ′′ = {(C1, F1, τ1), . . . , (Cm−1, Fm−1, τm−1)} and let x̄′ = C1 ∪ . . . ∪ Cm−1. Let N be the

number of elements b in D with type τm.

Similarly as it was done for the counting problem, we split the reasoning to the following mutually

exclusive sub-queries: for every 0 ≤ s ≤ kd2rk we show how to solve the j-th solution problem for

DivC
′′

r (x̄′) limited to those solutions such that their r-neighborhoods intersect with exactly s different

r-neighborhoods of tuples Fm(b), where b is of type τm. As we know how to count the number of

solutions to such queries (see Theorem 5.1.3), we can use Fact 3.1.3 in this case too.

Fix s ≤ kd2rk and set r′ = r(4k+2). We now construct the basic index structure with counting for

C, C ′′ and r′ as defined in Section 5.3.4. Let us consider the disjunction
∨

C′∈S DivC
′

r′ (x̄
′) obtained from

the application of Lemma 5.3.2 to DivC
′′

r (x̄′) and r′. This disjunction is equivalent to DivC
′′

r (x̄′) and is

65

mutually exclusive. But more interestingly, the subset of solutions to DivC
′′

r (x̄′) that we are interested

in is exactly the set of solutions to those DivC
′

r′ (x̄
′), for which sC′ = s. As we know how to count the

number of solutions to such queries (cf. Theorem 5.1.3), we can use Fact 3.1.3 in this case too and

restrict ourselves to a single r′-partition C ′ ∈ S for which sC′ = s.
We conclude the preprocessing phase with performing the preprocessing phase as given by the in-

ductive hypothesis for the r′-partition C ′ (recall that it has less than m components).

We now turn to the j-th solution phase.

The j-th solution to DivCr (x̄) is clearly (j div (N − s))-th solution ā to DivC
′′

r′ (x̄) extended with

(j mod (N − s))-th element b of type τm such that Nr(Fm(b)) ∩Nr(ā) = ∅. We compute ā using the

inductive hypothesis for DivC
′′

r′ (x̄′). To find the desired element b, first compute all elements b1 < b2 <
. . . < bs such thatNr(Fm(b

i))∩Nr(ā) 6= ∅ (this can be done in the required time constraints by looking

at N2r(ā)). Now let b be the (j mod (N − s))-th element on the sorted array of elements of type τm and

set i = 1. As long as b ≥ bi do i = i + 1 and replace b with its successor on the array of elements of

type τm (this way we find smallest i such that bi−1 < b < bi and b is the ((j mod (N − s)) + i− 1)-th
element on the list of elements with type τm). Clearly this procedure finishes in constant time and the

obtained node b has the desired properties, namely tuple (āFm(b)) is the required j-th solution.

The precise analysis of the involved constants is similar to the one from the proof of Theorem 5.1.3.

Note that we need to consider 22
O(r′k)

choices for s and C ′. Moreover, each application of the induction

causes r′ to grow by a factor (4k + 2). Since the depth of the induction is bounded by k, the maximal

value of r′ is bounded by r(4k + 2)k. Altogether this yields a procedure working in time 22
O(r(4k+2)k)

which is triply exponential in |φ| since r = 2|φ| and k ≤ |φ|.
This concludes the proof of Theorem 5.1.4.

�

66

6

MSO over classes of structures with

bounded treewidth

Contents

6.1 Introduction . 68

6.2 Preliminaries . 69

6.2.1 Trees . 69

6.2.2 Useful results . 69

6.3 Simplifying the problem . 70

6.3.1 It is enough to consider trees . 70

6.3.2 It is enough to consider binary trees . 70

6.3.3 It is enough to consider queries that also output all least common ancestors . 71

6.3.4 It is enough to consider queries with ancestor-typed outputs 71

6.3.5 It is enough to consider o-compatible queries 71

6.3.6 It is enough to consider o-compatible queries definable in Σ2(<) 72

6.4 The index structures . 73

6.4.1 The o-skeleton decomposition . 73

6.4.2 From Σ2(<) to polynomials . 74

6.4.3 The τ -order . 75

6.4.4 The basic index structure . 76

6.4.5 The full index structure . 78

6.4.6 The full index structure with counting . 79

6.5 Solving the problems . 81

6.5.1 Enumerating simple Σ2(<) queries . 81

6.5.2 Testing simple Σ2(<) queries . 82

6.5.3 Counting problem for simple Σ2(<) queries 82

6.5.4 j-th solution problem for simple Σ2(<) queries 84

6.6 Discussions . 85

6.7 Conclusions . 88

67

6.1 Introduction

In Chapter 5 we have shown that the query problems that are of the biggest interest from the point of

view of this thesis (that is enumeration, testing, counting and j-th solution, see Section 2.5 for details)

admit very good algorithmic properties when are considered with respect to the first-order logic over the

classes of databases of bounded degree. In order to extend Theorems 5.1.1–5.1.4, there are two natural

directions that we might follow:

• we can give more power to the logic,

• or we can extend the class of structures.

To see what happens when we extend the class of structures, the reader is referred to Chapter 7. In

this chapter we investigate the case when the considered logic is MSO instead of FO.

The moment we switch from FO to MSO, we start facing different problem that we had previously.

The parametrized model checking problem for MSO over the class of structures of bounded degree is

most likely not in FPT (the tiling problem, which can be expressed in MSO in a canonical way, is know

to be NP-complete already in the bounded degree case, so unless P = NP, there is no hope for the

mentioned FPT algorithm for MSO), so we are “forced” to change the class of structures if we want to

retain good algorithmic properties. The path that we are going to follow is not to limit the allowed class

of structures, but rather to go in parallel.

The considered class will be a class of structures with bounded treewidth. Just as it is always the case

when searching for CONSTANT-DELAYlin algorithms, the starting point is the model checking problem.

Over the class of structures with bounded treewidth, its linear time solution is a celebrated result of

Courcelle:

Theorem 6.1.1 ([22]) Fix d ∈ N. The problem of whether a given structure D of d-bounded treewidth

satisfies a given second-order sentence φ is decidable in time O(||D||).

The proof of Courcelle’s Theorem explains how a tree decomposition can be efficiently encoded into

MSO and then relies on the well known connection between MSO and finite tree automatons. Continuing

this path, we are also going to rely on an extension of Courcelle’s result to an evaluation algorithm from

LINEAR-EVAL (see Theorem 6.2.1).

We would like to lift these results to an enumeration algorithm. Although with MSO we could

potentially encounter free set variables, recall that our definition of a query is restricted to only first-

order free variables (but set quantification inside the formula is of course allowed). The results that we

are going to prove in details are as follows:

Theorem 6.1.2 ([8, 48]) The enumeration of MSO queries over the class of structures of bounded

treewidth is in CONSTANT-DELAYlin.

Theorem 6.1.3 The solution testing for MSO queries over the class of structures of bounded treewidth

is in CONSTANT-TIMElin.

Theorem 6.1.4 ([5]) The counting problem for MSO queries over the class of structures of bounded

treewidth is in LINEAR-TIME.

Theorem 6.1.5 ([8]) The j-th solution problem for MSO queries over the class of structures of bounded

treewidth is in LOGARITHMIC-TIMElin.

For Theorem 6.1.2, we follow the lines of the proof of [48]. Another proof of Bagan [8] computes

an intricate index structure based on the well known fact that one can compute a finite tree automaton

that is equivalent to a given MSO sentence (which accepts the input tree iff this tree is a model for the

68

given MSO formula). Our proof builds on the deterministic factorization forest decomposition theorem

of Colcombet [20]: we use it in Section 6.3 to show that it is enough to consider first-order queries with

one alternation of quantifiers, which makes the further reasoning a lot simpler.

We then show how the approach of [48] can further be exploited to also obtain new proofs of Theo-

rems 6.1.3, 6.1.4 and 6.1.5.

As for the Theorem 6.1.3, it is in a sense a “side effect” of any of the algorithms for the enumeration

problem. The counting solution of [5], just as the algorithm given in [8], also uses the tree automaton

describing the MSO formula.

It should be noted that there is also a third solution to the enumeration problem, as described in [23].

The main difference is that the index structure build there has size O(||D|| log ||D||) rather than O(||D||).
The techniques used in [23], just as it is the case for both [5] and [8], also rely on the connections of

MSO with tree automatons.

6.2 Preliminaries

We say that a relational structures has d-bounded treewidth if the underlying Gaifman graph has d-

bounded treewidth. Note that with respect to the discussions from Section 3.3 it is equivalent to defining

this notion with respect to the underlying adjacency graph (since the query is assumed to be fixed).

Similarly, we say that a class of databases has d-bounded treewidth if the underlying class of Gaif-

man graphs has d-bounded treewidth.

6.2.1 Trees

We work with finite trees whose nodes are labeled using a finite alphabet. More formally, let A be a

finite alphabet. Trees over A are generated by the following rules: for all a ∈ A, a is a tree, furthermore

if a ∈ A and, for some k ≥ 1, t1, · · · , tk are trees, then a(t1 + · · · + tk) is a tree. We use standard

terminology for trees defining nodes, root, leaves, ancestors and descendants. A binary tree is a tree

whose every node has either no child (is a leaf) or exactly two children, the left child and the right child.

Given two nodes u, v of a tree T we write u < v to denote the fact that u is a strict ancestor of v. Over

binary trees, we also use u <l v (resp. u <r v) to express the fact that v is a descendant of the left (resp.

right) child of u. Given a tree T, we denote by |T| the number of nodes of T. Whenever we define a

function f : T → N we implicitly assume that the domain of f is the set of nodes of T.

As usual, we view each tree as a relational structure whose domain is its set of nodes. The signature

contains a binary symbol E denoting the child relation and a unary symbol Pa per a ∈ A denoting

the label of each node. For binary trees, E is replaced with two binary symbols E1 and E2 denoting

respectively the left child and the right child relation. We consider monadic second-order logic (MSO)

over these signatures allowing quantification over nodes or sets of nodes of the tree. We will also often

use the binary predicates <, <l and <r denoting the ancestor relationships. Recall that <, <l and <r
are definable in MSO from E or E1 and E2.

Recall from Chapter 2 that by query we mean an MSO formula whose free variables are all first

order variables: we disallow free set variables.

6.2.2 Useful results

The following result has been proved by Flum, Frick and Grohe. It is a generalization of the well known

fact that any MSO sentence can be translated into a tree automaton and can therefore be evaluated in

time linear in the size of the input tree. Note that we only mention in this chapter data complexities,

i.e. all hidden constants may depend on the size of the formula, sometime in a dramatic way, like in the

result below where the constant factor is non-elementary in the size of the formula.

69

Theorem 6.2.1 ([32]) Let φ(x̄) be an MSO query. Given a tree T, φ(T) can be computed in time

O(|T|+ |φ(T)|).

We will use this result only in the simple case when |φ(T)| = O(|T|). When this happens, φ(T)
can be computed in time O(|T|). We fall in this case when φ is unary or φ is of the form φ(x, y), but y
happens to be a function of x. Notice that the fact that a binary query is the graph of a function is not

in general apparent when looking at the syntax of the formula, but will be in the specific cases we will

consider.

Corollary 6.2.1 Let φ be an MSO query either of the form φ(x) or of the form φ(x, y) with y a function

of x. Given a tree T, φ(T) can be computed in time O(|T|).

6.3 Simplifying the problem

All of the Theorems 6.1.2–6.1.5 talk about structures of bounded treewidth. In this section we show

that it suffices to prove them for simple first-order queries using only one quantifier alternation. This

reduction is obtained in several steps. All our reductions are effective, fairly simple and standard except

for one, making use of a deep result on MSO queries over trees. Each step of the reduction consists in

a transformation of the input structure that can be performed in linear time, together with an effective

transformation of the input formula whose complexity may be non elementary. As we focus only on the

complexity in the size of the input structure, the effectiveness of the transformation of the formula is

only implicit in all the following statements. Moreover, the linear time complexity guaranties that all the

reduction steps can be achieved during the preprocessing phases of the dynamic algorithms or as initial

steps of the linear time counting algorithm.

6.3.1 It is enough to consider trees

We start with two results that allow us to restrict all the reasoning to trees. They build on a seminal result

of Courcelle [22] that the tree decomposition of a graph can be encoded in MSO.

Theorem 6.3.1 ([22]) Fix k ∈ N. There exists an algorithm which given an MSO formula φ and a

structure D with treewidth bounded by k, computes in time O(||D||) an MSO formula φ′ and a tree T

such that φ(D) = φ′(T).

The above result heavily relies on the following theorem:

Theorem 6.3.2 ([16]) Fix k ∈ N. There exists an algorithm which given a structure D, computes in

time O(||D||) the tree-decomposition of D of width k if such a decomposition exists.

It should also be said here that the original statement of Theorem 6.3.1 from [22] was for MSO

sentences only rather than for MSO queries. This extension being rather straightforward, we attribute

Theorem 6.3.1 to [22]. For details on this extension, an interested reader is referred to [5].

Combining the above theorems with Fact 3.1.1 justifies that we can restrict input structures to trees.

6.3.2 It is enough to consider binary trees

We make use of the classical first child – next sibling encoding of unranked trees. It is folklore that

this transformation can be done in time linear in the input tree and that it induces a bijection f between

the nodes of the tree T and the nodes of its first child – next sibling encoding f(T). Moreover, this

transformation preserves MSO definability: for any MSO query φ(x̄) over unranked trees there is an

MSO query φ′(x̄) over binary trees such that for all trees T we have f(φ(T)) = φ′(f(T)). Hence,

Fact 3.1.1 again justifies that we can restrict input structures to binary trees.

70

6.3.3 It is enough to consider queries that also output all least common ancestors

Given a tree T and two nodes u, u′ of T, the least common ancestor of u and u′, denoted lca(u, u′), is the

node v such that v is an ancestor of both u and u′ and no strict descendant of v has this property. Note that

there is an MSO formula defining the property z = lca(x, y). An MSO query φ(x̄) is lca-complete if for

all variables xi, xj ∈ x̄ there is a variable xk ∈ x̄ such that for all T and all ū ∈ φ(T), uk = lca(ui, uj).
Given an MSO query φ(x̄) we can compute an lca-complete MSO query ψ(x̄ȳ) such that for all trees

T and tuples ā ∈ φ(T) there is a unique b̄, containing all the desired least common ancestors, such that

āb̄ ∈ ψ(T). Typically ψ is constructed from φ by introducing a new free variable per pair of initial

free variables, while adding the formula axiomatizing the fact that the new variable is the least common

ancestor of the other two variables. For simplicity of the exposition we also assume that there is a free

variable in ψ always denoting the root of the tree. Note that for all trees T we have |ψ(T)| = |φ(T)|
and that all solutions in φ(T) can be reconstructed from a solution in ψ(T) by projecting out the newly

added component. Hence, Fact 3.1.2 justifies that we can restrict to queries that also output all least

common ancestors.

6.3.4 It is enough to consider queries with ancestor-typed outputs

We now make sure that two elements of a solution are always related in a same way in all solutions.

An ancestor-type o(x̄) of a set of variables x̄ is a maximal consistent conjunction of formulas of the

form xi = xj , xi <l xj , xi <r xj or ¬(xi < xj). For a fixed x̄ there are only finitely many ancestor-

types that we denote by O(x̄). For an MSO query φ(x̄) it is easy to see that φ(x̄) is equivalent to
∨

o∈O(x̄) o(x̄) ∧ φ(x̄) and that for two different o1, o2 ∈ O(x̄) and any tree T we have (o1 ∧ φ)(T) ∩
(o2 ∧ φ)(T) = ∅. Hence, Fact 3.1.3 justifies that it is enough to show all the results for o(x̄) ∧ φ(x̄) for

each o separately rather than for φ(x̄) (formally, for Theorem 6.1.5 we need Theorem 6.1.4 first to be

able to use Fact 3.1.3). In the sequel we can assume that there is a fixed ancestor-type o(x̄) on the free

variables of our MSO queries. Moreover, if the ancestor-type o requires variables xi and xj to be equal,

we can make use of Fact 3.1.2 and replace all occurrences of xj in the formula with xi. Thus we may

assume that the ancestor-type o ensures that all variables are distinct. Once o(x̄) is fixed we say that two

variables xi, xj ∈ x̄ are o-consecutive if o(x̄) implies that xi < xj and no variable z of x̄ is such that

xi < z < xj .

6.3.5 It is enough to consider o-compatible queries

Given an MSO query φ(x̄), an ancestor-type o(x̄), and two o-consecutive variables xi < xj of x̄, we

say that a formula α(xi, xj) has its quantifications relativized to [xi, xj] if it is defined from arbitrary

unary MSO queries and the descendant relation <, using first-order quantifications of the form ∃y xi ≤
y ≤ xj ∧ α or ∀y xi ≤ y ≤ xj → α and, similarly, monadic second-order quantifications restricted to

sets of elements within [xi, xj]. Note that such a formula may use arbitrary unary MSO subqueries. In

particular, they can test whether a node on the path from xi to xj is a left or right child. Moreover, they

can test for an arbitrary MSO property of the subtree rooted at a sibling of any node on the path from xi
to xj .

A formula φ(x̄) is said to be o-compatible if it is a conjunction of formulas α(xi, xj), where xi, xj
are o-consecutive variables and α has its quantifications relativized to [xi, xj]. Recall that two queries

φ1(x̄) and φ2(x̄) are mutually exclusive if for any binary tree T we have φ1(T) ∩ φ2(T) = ∅.

The following result is a classical consequence of the Compositional Method developed by She-

lah [63]. It essentially says that the MSO type of the tree can be derived from the MSO types of the

elements covering the tree. It can be proved using a simple Ehrenfeucht-Fraı̈ssé game argument, see

also Lemma 1 and Lemma 2 in [20].

71

Theorem 6.3.3 Over binary trees, for every ancestor-type o and every MSO query φ(x̄) ∧ o(x̄), there

is an equivalent query which is a union of mutually exclusive o-compatible queries.

PROOF Let k be the quantifier rank of φ. We start with some useful notation. Given a tree T, its MSO-

k-type is the set of MSO sentences of quantifier rank k that hold in T. It is well known that there are

only finitely many MSO-k-types and that each of them can be described by a sentence of MSO. Given

a tree T and two nodes x, y of T, such that x < y, we denote by Tx the subtree of T rooted at x and by

T[x, y] the nodes of T that are descendants of x but not descendants of y. Given a tuple ā of nodes of T

we denote by T(ā) a recoloring of T such that the nodes of ā have been distinguished.

A tuple such that o(x̄) holds, induces a covering of the tree whose components are: Txi — if xi has

no o-consecutive variable, and T[xi, xj] — if xi and xj are o-consecutive.

The Composition Method tells us that the MSO-k-types of each component taken separately induces

the MSO-k-type of the whole tree. In other words, if we know the MSO-k-types of each of the Txi and

T[xi, xj], then we know the MSO-k-type of T(x̄). This property is folklore and can be proved by a

simple Ehrenfeucht-Fraı̈ssé game argument. From the initial remarks, the MSO-k-type of Txi can be

described by a unary MSO formula ξ(xi) and the MSO-k-type of T[xi, xj] by an MSO formula ξ(xi, xj).
Hence the corresponding MSO-k-type of T(x̄) is a conjunction of MSO formulas that are either unary

or are binary and involve two o-consecutive variables.

Because the MSO-k-type of T(x̄) implies whether φ(x̄) holds or not, φ(x̄) is a union of conjunctions

as above. The union is finite because there are only finitely many MSO-k-types. The union is mutually

exclusive because each conjunct involves two different MSO-k-types for at least one component.

It remains to show that each formula ξ(xi, xj) can be chosen with its quantifications relativized to

[xi, xj]. This is exactly the Composition Theorem of Shelah [63]. The path from xi to xj is a linear

order and we replace each subtree hanging off this path by its MSO-k-type. By this we mean that we

recolor each node on the path from xi to xj by a color describing the MSO-k-type of the subtree hanging

off that node. The result of Shelah says that ξ(xi, xj) is equivalent to an MSO formula describing the

resulting path, which has its quantifications relativized to [xi, xj] by construction. The desired formula

is then obtained by replacing the colors with the unary MSO formulas describing the MSO-k-types of

each removed subtree.

�

As the o-compatible queries mentioned in Theorem 6.3.3 are mutually exclusive, Fact 3.1.3 justifies

that we can restrict ourselves to a single o-compatible MSO query (note that for the j-th solution problem

mentioned in Theorem 6.1.5 the use of Fact 3.1.3 has impact on the order as described after the proof of

that fact).

6.3.6 It is enough to consider o-compatible queries definable in Σ2(<)

This is the nontrivial step of our reductions. It exploits the following result of Colcombet based on a

deterministic factorization forest theorem which can be seen here as an index structure for trees.

Theorem 6.3.4 (Implicit in [20]) Over binary trees, for every ancestor-type o and every o-compatible

MSO query φ(x̄) there is an equivalent query which is still o-compatible but each of its conjuncts is of

the form ∃ȳ∀z̄ θ, where θ is a disjunction of conjunctions of atomic predicates or MSO queries with one

free variable or atoms using <.

The result of Colcombet essentially shows that each of the conjuncts in o-compatible queries ob-

tained from the decomposition lemma could be assumed to be definable with one alternation of first-

order quantifiers, but using the ancestor relationship and unary MSO queries.

72

We denote by Σ2(<) the formulas of the form ∃ȳ∀z̄ϕ, where ϕ is a quantifier free formula using

only atoms based on the relational predicates < and Pa for all a ranging over a finite alphabet.

From Corollary 6.2.1 we know that each MSO query with one free variable can be evaluated in

time linear in the size of the input tree. Therefore the unary MSO queries mentioned in Theorem 6.3.4

can be computed during the preprocessing phase of the dynamic algorithms or as a part of the counting

algorithm, obtaining a tree over a new alphabet, where the new labels denote both the old ones and

whether each unary query holds or not at that node. We can therefore assume that our query is o-

compatible and such that all its conjuncts are in Σ2(<). We denote by o-simple Σ2(<) queries these

queries.

Note that the queries in Σ2(<) only have access to the labels and <. In particular, they do not have

access to the successor relation and don’t distinguish between left and right children. This information

is now part of the relabeling of the tree.

Altogether we have shown that it is enough to prove Theorems 6.1.2–6.1.5 for o-simple Σ2(<)
queries over binary trees.

6.4 The index structures

The goal of this section is to design index structures capable of dealing with problems mentioned in

Theorems 6.1.2–6.1.5. From Section 6.3 we know that to solve these theorems it is enough to provide

solutions for o-simple Σ2(<) queries. Recall that ψ(x̄) is a o-simple Σ2(<) query if it is a conjunction

of queries φi,j(xi, xj), where xi < xj are o-consecutive and φi,j has its quantifications relativized to

[xi, xj].
In Section 6.4.1 we introduce some notation concerning o-simple Σ2(<) queries.

In Section 6.4.2 we show some useful normalization of the formulas φi,j mentioned above.

In Section 6.4.3 we define an order with respect to which the solutions to the j-th solution problem

are being output.

In Sections 6.4.4 through 6.4.6 we define the index structures mentioned above.

6.4.1 The o-skeleton decomposition

Let ψ(x̄) be a o-simple Σ2(<) query. In particular, this query is ancestor-typed and as such is a con-

junction of queries φi,j(xi, xj), where xi < xj are o-consecutive variables. Let xi be a variable from x̄.

We now introduce a bit of notation:

• With x̄o-succ(xi) we denote the subset of x̄ that contains exactly the o-successors of xi.
• With oo-succ(xi)(xi, x̄o-succ(xi)) we denote the restriction of o to its sub-part containing only vari-

ables from {xi, x̄o-succ(xi)}.

• With ψo-succ(xi)(xi, x̄o-succ(xi)) we denote the restriction of ψ to its sub-part containing only vari-

ables from {xi, x̄o-succ(xi)}.

Recall that ψ outputs all least common ancestors. Together with the fact that it is evaluated over

binary trees, we get the following:

Observation 6.4.1 Let ψ(x̄) be a o-simple Σ2(<) query. Then each variable can have exactly 0, 1 or 2
o-consecutive variables.

Extending the above observation we also get:

Observation 6.4.2 Let ψ(x̄) be a o-simple Σ2(<) query such that x1 has no o-predecessors. Then there

are only three cases possible:

Case 1: ψ(x1) is a unary query.

Case 2: x1 has exactly one o-consecutive variable.

73

Wlog assume that this o-consecutive variable is x2. Thenψ is of the formψ(x̄) = ψo-succ(x2)(x2, . . . , xn+1)∧
φ1,2(x1, x2), where φ1,2 is the Σ2(<) conjunct of ψ that describes the path from x1 to x2 and ψo-succ(x2)

is oo-succ(x2)-simple Σ2(<) query such that x2 has no oo-succ(x2)-predecessors.

Case 3: x1 has exactly two o-consecutive variables xl and xr.

Then ψ(x̄) = ψo-succ(xl)(xl, x̄o-succ(xl))∧ψ
′
l(x1, xl)∧ψo-succ(xr)(xr, x̄o-succ(xr))∧ψ

′
r(x1, xr), where

ψ′
l and ψ′

r are the Σ2(<) conjuncts of ψ that describe the path from x1 to xl and from x1 to xr respec-

tively and that ψo-succ(xl) is oo-succ(xl)-simple Σ2(<) query such that xl has no oo-succ(xl)-predecessors

and similarly ψo-succ(xr) is oo-succ(xr)-simple Σ2(<) query such that xr has no oo-succ(xr)-predecessors.

Recall that for o-consecutive variables xi < xj , ancestor type o actually says a bit more than the

fact that xj must be in the subtree of xi: it also restricts the search for xj to the left or the right subtree

of xi (and to exactly one of them). In the sequel we always assume that xl is the variable that has to be

in the left subtree of x1 and xr is the right subtree of x1.

The recursive decomposition of ψ, as described in Observation 6.4.2, is called the o-skeleton decom-

position of ψ. As o is always going to be clear from the context, we just write the skeleton decomposition

of ψ.

We now recursively define the components of the skeleton decomposition of ψ:

• ψ(x̄) with type o is a component of the skeleton decomposition of ψ,

• components of the skeleton decomposition of ψo-succ(x2) from Case 2 are components of the skele-

ton decomposition of ψ.

• components of the skeleton decompositions of both ψo-succ(xl) ∧ ψ
′
l and of ψo-succ(xr) ∧ ψ

′
r from

Case 3 are components of the skeleton decomposition of ψ.

6.4.2 From Σ2(<) to polynomials

Let T be a binary tree and φ(x, y) be a Σ2(<) formula that logically implies x < y and has its quantifi-

cations relativized to [x, y].

Over words, a monomial is a language of the form A∗
0a1A

∗
1 . . . amA

∗
m, where each ai is a fixed letter

and Ai is a (possibly empty) set of letters. A polynomial is a finite union of monomials. In [70] a

characterization of Σ2(<) over words was given that was later shown to be effective [4]:

Theorem 6.4.1 ([70, 4]) Over words, a language is definable in Σ2(<) if and only if it is a polynomial.

As we are dealing with formulas with free variables, we slightly extend the above definitions.

Over words, a formula ψ(x, y) is called a monomial formula if it holds for exactly those pairs (x, y),
such that the subword between positions x and y (including both ends) matches a regular expression

a0A
∗
0a1A

∗
1 . . . amA

∗
mam+1, where each ai is a fixed letter and Ai is a (possibly empty) set of letters. A

polynomial formula is a finite disjunction of monomial formulas.

From Theorem 6.4.1 we immediately get

Corollary 6.4.1 Over words, any Σ2(<) formula ψ(x, y) that logically implies x < y and has its

quantifications relativized to [x, y] is equivalent to a polynomial formula.

In our case φ(x, y) is indeed a Σ2(<) formula, but it talks about trees. Fortunately, it also implies

that x < y and has its quantifications relativized to [x, y], so for any two nodes u < v of the input tree,

φ(u, v) holds if and only if a word formed by the labels of the nodes on a path from u to v satisfies φ.

Hence Corollary 6.4.1 implies:

74

Corollary 6.4.2 Let φ(x, y) be a Σ2(<) formula that logically implies x < y and has its quantifications

relativized to [x, y]. Then there is a polynomial formula φ̂ such that for all trees T, φ(T) = φ̂(T).

Let φ̂ =
∨

1≤j≤k ψj be the polynomial formula corresponding to φ as described by Corollary 6.4.2,

where each ψj is a monomial formula. It is tempting at this point to handle separately each ψj(T).
Unfortunately, this will for example not fulfill the “no duplicate” constraint of the enumeration process

as a tuple may be present in ψj(T) for several values of j. We will cope with this problem by considering

all the monomial formulas at the same time using a product construction.

In order to jump quickly from one solution to another it will be enough to remember all the subparts

of each of the monomial formulas that are currently satisfied at the current node. This is done as follows.

Fix for the moment an arbitrary j ≤ k. As ψj is a monomial formula, it describes paths of the

form a0A
∗
0a1A

∗
1 . . . amA

∗
mam+1. Hence if (u, v) ∈ ψj(T), the sequence of labels of the nodes on

the path from u to v (denoted [u, v]) matches the regular expression a0A
∗
0a1A

∗
1 . . . amA

∗
mam+1. We

define the following suffixes of this regular expression: e0 = a0A
∗
0a1A

∗
1 . . . amA

∗
mam+1 and for each

1 ≤ i ≤ m + 1 let ei = A∗
i−1aiA

∗
i . . . amA

∗
mam+1. Let also S = {e0, e1, . . . , em+1}. For two nodes

u < v of T, the j-type of (u, v) is exactly the set of regular expressions of S matched by [u, v]. We say

that a j-type is good if it contains e0. Clearly, (u, v) ∈ ψj(T) if and only if the j-type of (u, v) is good.

We do this for all j ≤ k and define for two nodes u < v of T the type of (u, v) as the tuple formed

from all its j-types. Hence (u, v) ∈ φ(T) iff for some 1 ≤ j ≤ k its j-type is good. Notice that we have

finitely many types and we call good those for which at least one component is good.

The following simple claim illustrates the key motivation for using types.

Claim 6.4.1 Let T be a binary tree and u < v < w,w′ be nodes in T such that (u,w) has type τ1 and

both (v, w) and (v, w′) have type τ2. Then (u,w′) has type τ1.

PROOF As a type is a tuple containing all j-types, it is enough to show the claim for a fixed j-type. By

symmetry it is enough to show that the j-type of (u,w) is included in the j-type of (u,w′).
Assume that the j-type of (u,w) contains some suffix s. Hence there is a matching of s in the path

from u to w, i.e. witnesses for the existentially quantified nodes. Fix such a matching α. α induces a

matching of some suffix s′ of s in the path from v to w. Since the j-types of (v, w) and (v, w′) are the

same, s′ also matches the path from v to w′. Combining this later matching with α on the path from u
to v (excluding v) provides a proper matching of s on the path from u to w′.

�

In particular, in the scenario described in Claim 6.4.1, if (u,w) ∈ φ(T) (that is τ1 is good), then

(u,w′) ∈ φ(T).
We say that a node u of a tree T is valid for x if there exists a node v such that (u, v) ∈ φ(T).

Similarly a node v is valid for y if there exists a node u such that (u, v) ∈ φ(T). For a type τ and a node

u we say that the pair (u, τ) is interesting if there exists a node v such that the type of (u, v) is τ and

τ is good (in particular, u is valid for x). Note that all these properties are definable in MSO via unary

queries, hence computable in time O(|T|).

6.4.3 The τ -order

Before defining index structures used by the algorithms from the proofs of Theorems 6.1.2–6.1.5, we

first define the order in which the solutions to j-th solution problem from Theorem 6.1.5 are going to be

output.

Fix o-simple Σ2(<) query ψ(x̄). For every conjunct φi,j(xi, xj) from ψ that describes the path

between o-consecutive variables xi < xj let φ̂i,j be the polynomial formula from the application of

75

Corollary 6.4.2 to φi,j . For each such i, j fix an order on the types τ i,j1 <i,j τ
i,j
2 <i,j . . . induced by

polynomial φ̂i,j .

Let {ψc}c∈C be the set of all components of the skeleton decomposition of ψ. We now inductively

define a family of orders {≺c}c∈C over solutions to ψc:

Definition 6.4.1 Let ψc(x̄) (with induced ancestor type oc) be a component of the skeleton decomposi-

tion of ψ, and let v̄, ū be two tuples of nodes of T such that T |= ψc(v̄) ∧ ψc(ū). Wlog assume that x1
has no oc-predecessors.

Following Observation 6.4.2 there are three cases possible:

Case 1: ψc is unary.

We then set v ≺c u iff v preceds u in the depth-first traversal of T.

Case 2: x1 has exactly one oc-consecutive variable.

Denote with ψc′ the subcomponent of ψc after removing x1 and let φi,j be the conjunct of ψ describ-

ing the path from x1 to x2. Moreover, denote with τ1 the type of [v1, v2] and with τ2 the type of [u1, u2]
as they are induced by φ̂i,j .

We then set v̄ ≺c ū iff:

• v1 preceds u1 in the depth-first traversal of T,

• or v1 = u1 and τ1 <i,j τ2,

• or v1 = u1 and τ1 = τ2 and v̄′ ≺c′ ū
′, where v̄′ is v̄ with v1 removed and ū′ is ū with u1 removed.

Case 3: x1 has exactly two oc-consecutive variables xl and xr.

Denote with ψcl the subcomponent of ψc after removing xr and all its oc-successors and with ψcr
the subcomponent of ψc after removing xl and all its oc-successors. Moreover, let v̄l be v̄ with vr and

all its successors in v̄ removed, let v̄r be v̄ with vl and all its successors in v̄ removed and similarly let

ūl be ū with ur and all its successors in ū removed and let ūr be ū with ul and all its successors in ū
removed.

We then set v̄ ≺c ū iff:

• v1 preceds u1 in the depth-first traversal of T,

• or v1 = u1 and v̄l ≺cl ūl,

• or v1 = u1 and v̄l = ūl and v̄r ≺cr ūr.

Definition 6.4.2 We use all the notation as introduced in this section.

We call family {≺c}c∈C a τ -order for ψ.

Given τ -order {≺c}c∈C and two solutions v̄ and ū to a component ψc of the skeleton decomposition

of ψ it is always clear which (namely ≺c) order should be used to compare v̄ and ū. That is why in the

sequel we always skip the subscript c and simply use ≺ as an order on the solutions to any single one of

the components. The reader should though keep in mind that the τ -order ≺ is in fact a family of orders

{≺c}c∈C . We overload the notion of τ -order ≺ a bit more. Let τ1 and τ2 be two types induced by a

polynomial φ̂i,j from the application of Corollary 6.4.2 to φi,j , where φi,j is a conjunct of ψ describing

the path between o-consecutive variables xi < xj . We write τ1 ≺ τ2 iff τ1 <i,j τ2.

We now describe the index structures required by Section 6.5.

6.4.4 The basic index structure

Let T be a binary tree and φ(x, y) be a Σ2(<) formula that logically implies x < y and has its quantifi-

cations relativized to [x, y]. We apply to φ the normalization procedure described in Section 6.4.2 and

use the terminology introduced in that section.

We are ready to define:

76

Definition 6.4.3 The basic index structure of T for φ(x, y) is the following directed graph:

Its vertices are the nodes of T valid for y and the interesting pairs of T.

Its edges are defined as follows:

• We have an edge between v and (u, τ) when the type of (u, v) is τ , and u is the “bottom-most”

node of T with (u, v) ∈ φ(T) (i.e, ∀w, u < w < v implies (w, v) 6∈ φ(T)).
• We have an edge between (u, τ) and (u′, τ ′) when u′ < u and there is a node v > u with the type

of (u, v) being τ and the type of (u′, v) being τ ′ and u′ is the “bottom-most” node with this property:

for all nodes w with u′ < w < u there is no v > u with the type of (u, v) being τ and (w, v) ∈ φ(T).

The key properties of this structure are summarized in the following lemma:

Lemma 6.4.1 The basic index structure of T for φ(x, y) has the following properties:

1. It is computable in time O(|T|).

2. It is a forest with leaves being nodes valid for y and internal nodes being interesting pairs.

3. For any node u valid for x and two different interesting pairs (u, τ) and (u, τ ′), they occur in

different trees inside the basic index structure.

4. (Completeness) For all nodes u, v of the tree T, if (u, v) ∈ φ(T) and τ is the type of (u, v), then v
is a leaf in the subtree of (u, τ) inside the basic index structure.

5. (Soundness) For all nodes u, v of the tree T, if τ is the type of (u, v) and v is a leaf in the subtree

of (u, τ) inside the basic index structure, then (u, v) ∈ φ(T).

PROOF We start with Property (1).

From the the discussions from the end of Section 6.4.2, the nodes of the basic index structure are

definable in MSO and therefore they can be computed in time linear in |T| using Corollary 6.2.1. For the

first kind of edges notice that each v uniquely determines a u and that the relation between u and v can

also be described in MSO. Similarly, for the second kind of edges, each interesting pair (u, τ) uniquely

determines a u′ and their relationship can be described in MSO. Hence Corollary 6.2.1 can be invoked

again to compute the edges in time O(|T|).

We continue with Property (2).

Clearly the structure is acyclic as a node can only point to an ancestor in T. Moreover, each node

v valid for y has a u such that (u, v) ∈ φ(T) and hence nodes of this kind are leaves and have unique

parents, corresponding to the bottom-most u such that (u, v) ∈ φ(T).
Similarly, an interesting pair (u, τ) either has no parent or a parent of the form (u′, τ ′). Recall from

the previous point that u′ is uniquely determined by (u, τ). It remains to show that τ ′ is also uniquely

determined by (u, τ). Assume this is not the case and that (u, τ) is associated to both (u′, τ ′1) and

(u′, τ ′2). Then, by construction, there exist v1, v2 such that τ is the type of both (u, v1) and (u, v2), τ
′
1

is the type of (u′, v1) and τ ′2 is the type of (u′, v2). Claim 6.4.1 implies that τ ′1 = τ ′2 and therefore our

basic index structure is a forest.

Property (3) is immediate as we already know that the basic index structure is in fact a forest and

that a necessary condition for (u′, τ ′) to be a parent of (u, τ) is that u′ < u.

We now move to Property (4). Assume (u, v) ∈ φ(T), τ is the type of (u, v) and that u = u0 <
u1 < . . . < ut < v are all the nodes of T on the path from u to v such that for each 0 ≤ i ≤ t the pair

(ui, v) ∈ φ(T). Let τi denote the type of (ui, v). From the construction of the basic index structure we

know that v is a child of (ut, τt).
We show that for all 0 < i ≤ t, (ui, τi) is the child of (ui−1, τi−1) in the basic index structure. If

this was not the case, then there exist nodes w, v′, with ui−1 < w < ui < v′, the type of (ui, v
′) being

77

τi and (w, v′) ∈ φ(T). As τi is also the type of (ui, v), Claim 6.4.1 implies that the type of (w, v) is the

same as the type of (w, v′) and therefore (w, v) ∈ φ(T), a contradiction.

It remains to show Property (5). We show that if v is in the subtree of (u, τ) inside the basic index

structure, then the type of (u, v) is τ . As (u, τ) is interesting pair, τ is (by definition) good and thus

(u, v) ∈ φ(T). The proof is a simple induction on the distance between v and (u, τ) inside the basic

index structure. If (u, τ) is a parent of v, then the type of (u, v) is τ by the definition of the parent

relation of leaves. The inductive step is again a direct consequence of Claim 6.4.1.

�

6.4.5 The full index structure

The basic index structure as defined in Definition 6.4.3 is the core of index structures used in the proofs

of Theorems 6.1.2–6.1.5. It turns out that to be fully efficient, the basic index structure still lacks some

navigational and counting powers. We now show how to handle the navigational part.

In the sequel T and φ are just as defined in Section 6.4.4.

Definition 6.4.4 The full index structure of T for φ(x, y) is the basic index structure of T for φ(x, y)
with the following enhancements:

• Recall that by Property (2) of Lemma 6.4.1 the basic index structure is a forest. We start with

computing for each node of T a pointer (called root-pointer) to the root of the tree of the basic index

structure that it belongs to.

• It will be also important that we have access to the descendant relation inside this forest in constant

time. To do this we perform a depth-first traversal (where we always visit the left subtree of a node before

its right subtree) of the underlying forest and compute a dfs number to each node (corresponding to the

last time we have visited it).

• We enrich furthermore the basic index structure by associating to each leaf the next leaf in the dfs

traversal (we call these pointers next-leaf pointers). This will allow us to jump from one leaf to the next

one in constant time.

• Moreover, to each internal node (u, τ) we add an additional pointers to the first (called the first-

leaf pointer) and to the last (called the last-leaf pointer) leafs of its subtree.

• Finally, for each node u of the original input tree that is valid for x, we keep a pointer to each of

the interesting pairs (u, τ) inside the full index structure.

The key properties of this structure are summarized in the following lemma:

Lemma 6.4.2 The full index structure of T for φ(x, y) has the following properties:

1. It is computable in time O(|T|).

2. It has all the properties (2)–(5) of the basic index structure from Lemma 6.4.1.

3. There exists an algorithm that, given two nodes u, v of T and type τ tests in constant time whether

v is a leaf in the subtree of (u, τ) inside the full index structure.

4. There exists an algorithm that, given two nodes u, v of T, tests in constant time whether T |=
φ(u, v).

5. There exists an algorithm that, given a node u of T, enumerates with constant delay (without any

additional preprocessing) all the solutions to φ(T) whose first component is u.

78

PROOF

We start with Property (1).

Recall from Lemma 6.4.1, Property (1), that the basic index structure can be computed in time

O(|T|) and has therefore a size linear in |T|. We now need to show that all the additional pointers and

values are computable in time O(|T|). But this is trivial: depth-first traversal is clearly a linear time

procedure, so the dfs numbers are computed in linear time. During this traversal the next-leaf pointers

can easily be computed. The root-pointers are trivially computable in linear time and for for first-leaf

and last-leaf pointers we can use Corollary 6.2.1. Computing for each node u of the original input tree

that is valid for x the pointer to each of the interesting pairs (u, τ) inside the full index structure is

clearly linear as every such node u requires a number of pointers bounded by the number of different

types, which does not depend on T , and we can compute them with a single traversal of the basic index

structure.

Altogether the computation time of the full index structure is O(|T|), just as required.

We continue with Property (2).

This is immediate, as the full index structure only ads additional specific pointers and some integer

values to the nodes of the basic index structure and does not modify the underlying forest at all.

We now describe the testing algorithm mentioned in Property (3).

Using root-pointers we check whether v is a leaf in the same tree of the full index structure as the

internal node (u, τ). If this is the case, v is in the subtree of (u, τ) iff its dfs number is between the dfs

numbers of first and last leafs of the subtree of (u, τ) (because the depth-first traversal algorithm always

visits the left subtree of a node before its right subtree). The latter leafs being accessible in constant time

using first-leaf and last-leaf pointers of (u, τ), this concludes the proof.

We now describe the testing algorithm for Property (4).

Lemma 6.4.1, namely Properties (5) and (4), justifies that T |= φ(u, v) iff there exists a type τ such

that v is a leaf in the subtree of (u, τ) of the full index structure. As there are constantly many choices

for τ , it remains to show how to perform a single test in constant time. Such tests are exactly handled

by Property (3).

We finally move to Property (5).

Let u be a node in T which is valid for x (otherwise we are done as there are no solutions to φ(T)
having u as the first component). We wish to enumerate all v such that (u, v) ∈ φ(T). To do this we

consider in turn all the interesting pairs (u, τ) using the appropriate precomputed pointers of u. For

each such τ we jump, in constant time using the precomputed first-leaf pointer, to the first leaf v in the

subtree of (u, τ) in the full index structure and output (u, v). Now, as long as we remain in the subtree

of (u, τ) (this can easily be checked in constant time by Property (3)), we successively go through all

the leaves of our index structure in dfs order (again in constant time, using the precomputed next-leaf

pointers) outputting the corresponding pair (u, v).
Clearly, between outputting consecutive solutions there is only a constant delay and each pair we

output is unique by Property (3) of Lemma 6.4.1. From Property (5) of Lemma 6.4.1 we know that each

pair that we output is in φ(T). Property (4) of Lemma 6.4.1 ensures that we do not skip any solutions.

This completes the proof of Lemma 6.4.2.

�

6.4.6 The full index structure with counting

To deal with counting and j-th solution problems we need to further extend the full index structure,

giving it some counting power. This extension is defined below.

In the sequel T and φ are just as defined in Section 6.4.4.

79

Definition 6.4.5 Let # : T → N be a computable function.

The full index structure with counting of T for φ(x, y) and # is the full index structure of T for

φ(x, y) with the following enhancements:

• For every tree t of the full index structure, compute the array (called the leaf-array of t) containing

in consecutive cells pointers to the consecutive leafs of tree t (a cell pointing to leaf v is called the array

copy of v) in order they appeared in the depth-first traversal of t. For the root of t, store a pointer

(called the leaf-array pointer) to the leaf array of t. For every leaf v of t store a pointer (called array-

copy pointer) to its array copy (this way there is a two-way access between a leaf and its array copy).

• Let v be a leaf on leaf-array of t for some tree t of the full index structure and we write u <t v if

u is also a leaf on the leaf-array of t and it appears on that array before v. We define partial sum(v) =
∑

{u:u<tv}#(u). Now for each such leaf-array t, for each leaf v appearing in it, the full index structure

with counting stores both the value of #(v) and partial sum(v).

The key properties of this structure are summarized in the following lemma:

Lemma 6.4.3 Let # : T → N be a computable function. The full index structure with counting of T for

φ(x, y) and # has the following properties:

1. It is computable in time O(|T|).

2. It has all the properties (2)–(5) of the full index structure from Lemma 6.4.2.

3. There exists an algorithm that, given a node u of T, computes in constant time number
∑

{v:(u,v)∈φ(u,v)}#(v).

4. There exists an algorithm that, in time O(|T|), computes a function #′ : T → N such that for a

given node u of T we have: #′(u) =
∑

{v:(u,v)∈φ(u,v)}#(v).

5. There exists an algorithm that, given a node u of T, j ∈ N and a τ -order ≺, computes in logarith-

mic time the node v such that
∑

{v′:(u,v′)∈φ(u,v′),v′≺v}#(v′) < j ≤
∑

{v′:(u,v′)∈φ(u,v′),v′�v}#(v′)
or responds (also in logarithmic time) that such a node v does not exist.

PROOF

We start with Property (1).

Recall from Lemma 6.4.2, Property (1), that the full index structure can be computed in time O(|T|)
and has therefore a size linear in |T|. A simple traversal of each tree of the full index structure allows us

to create their leaf-arrays together with all the array-copy pointers in total time O(|T|). Fix leaf-array of

t and let u <t v be two consecutive nodes on it. As partial sum(v) = partial sum(u) + #(u), we can

compute all partial sums via a single left-to-right pass of each leaf-array.

Altogether the computation time of the full index structure with counting is O(|T|), just as required.

Property (2) is immediate, as the full index structure with counting only enriches the underlying full

index structure, adding to it some new specific pointers.

We now move to Property (3).

Fix node u of T. Lemma 6.4.1, namely Properties (5) and (4), justifies that for any node v of T,

we have T |= φ(u, v) iff there exists a type τ such that v is a leaf in the subtree of (u, τ) of the full

index structure with counting. As there are constantly many choices for τ and from Property (3) of

Lemma 6.4.1 we know that for each v such that T |= φ(u, v), v is a leaf in exactly one tree of the full

index structure with counting, it remains to show how to compute
∑

{v:v is a leaf in the subtree of (u,τ)}#(v)
in constant time.

But this is now immediate: we can access the first (vl) and the last (vr) leafs of the subtree of (u, τ)
using first-leaf and last-leaf pointers. The desired value is then #(vr)+partial sum(vr)−partial sum(vl)
and all these values are stored by the full index structure with counting.

80

Property (4) is a simple corollary of Property (3): it is enough to apply the algorithm from Prop-

erty (3) to each node u of tree T computing this way the desired function #′.

Finally we move to Property (5).

Fix u, τ -order ≺ and j ∈ N.

The test whether such v exists can be done via Property (3) (and so it even requires only constant

rather than logarithmic time) as such v does not exist iff
∑

{v:(u,v)∈φ(u,v)}#(v) < j.
Lemma 6.4.1, namely Properties (5) and (4), justifies that for any node v of T, we have T |= φ(u, v)

iff there exists a type τ such that v is a leaf in the subtree of (u, τ) of the full index structure with

counting. As there are constantly many choices for τ and from Property (3) of Lemma 6.4.1 we know

that for each v such that T |= φ(u, v), v is a leaf in exactly one tree of the full index structure with

counting, we can handle each τ one by one in ≺-increasing order.

Set S = 0. Using Property (3) compute Sτ =
∑

{v:v is a leaf in the subtree of (u,τ)}#(v). As long as

S + Sτ < j, add Sτ to S and move to the ≺-next type τ . This computations each being doable in

constant time (as described in Property (3)), in constant time we find the ≺-smallest type τ for which

j ≤ S + Sτ . The desired node v is now such that:
∑

{v′:v′ is a leaf in the subtree of (u,τ),v′≺v}#(v′) < j − S ≤
∑

{v′:v′ is a leaf in the subtree of (u,τ),v′�v}#(v′).
This node v can now easily be found in logarithmic time using a binary search approach on the

subarray of the leaf-array of root-pointer((u, τ)) with initial left and right bounds for the binary search

given by first-leaf and last-leaf pointers of (u, τ).
This completes the proof of Lemma 6.4.3.

�

6.5 Solving the problems

From the previous section it follows that Theorems 6.1.2–6.1.5 are (respectively) consequences of the

following propositions:

Proposition 6.5.1 The enumeration of o-simple Σ2(<) queries over binary trees is in CONSTANT-DELAYlin.

Proposition 6.5.2 The solution testing for o-simple Σ2(<) queries over binary trees is in CONSTANT-TIMElin.

Proposition 6.5.3 The counting problem for o-simple Σ2(<) queries over binary trees is in LINEAR-TIME.

Proposition 6.5.4 The j-th solution problem for o-simple Σ2(<) queries over binary trees is in

LOGARITHMIC-TIMElin.

In the sequel we one by one show proofs of the above propositions. They are all inductive, but

the inductive approaches differ. Propositions 6.5.1 and 6.5.2 use a similar top-down approach, while

Propositions 6.5.3 and 6.5.4 are proved in a bottom-up skeleton-based manner.

6.5.1 Enumerating simple Σ2(<) queries

PROOF [of Proposition 6.5.1]

Let ψ(x̄) be the fixed o-simple Σ2(<) query.

The proof follows by an induction on the number of free variables in ψ. The base case (unary query)

is done via our assumption that this variable denotes the root of the tree. So let us assume that we have

the result for n-ary queries and we want to extend it to ones with n+ 1 variables.

The key ingredient for the inductive step is the Property 5 of Lemma 6.4.2.

81

Let ψ(x1, . . . , xn+1) be an o-simple Σ2(<) query. Without loss of generality assume that xn and

xn+1 are o-consecutive variables with xn < xn+1 and, for all i < n, we do not have xn+1 < xi in

o. By our choice of xn+1 and o-simplicity, ψ(x1, . . . , xn+1) must be of the form ψ′(x1, . . . , xn) ∧
ψ′′(xn, xn+1) where ψ′′ is the Σ2(<) conjunct of ψ that describes the path from xn to xn+1. Let

φ(x1, . . . , xn) = ψ′(x1, . . . , xn) ∧ ∃zψ′′(xn, z). Note that ∃zψ′′(xn, z) is a unary query (it describes

a property of xn) and as such can be handled with Corollary 6.2.1. Formula φ is o′-simple where

o′ is the restriction of o to the first n variables. Therefore by induction the enumeration of φ is in

CONSTANT-DELAYlin. Let T be a binary tree. A CONSTANT-DELAYlin enumeration procedure for ψ is:

The precomputation phase performs both the precomputation phase of enumeration for φ as given

by the induction hypothesis, and the construction of the full index structure of T for φ. This is done in

O(|T|) as required (by inductive hypothesis and by Property 1 of Lemma 6.4.2).

The enumeration phase nests the enumeration procedure for ψ′′ given by Property 5 of Lemma 6.4.2

inside the enumeration procedure for φ(T) given by the induction hypothesis. Given a solution (a1, . . . , an) ∈
φ(T) we apply Property 5 of Lemma 6.4.2 to node an and find in constant delay all nodes an+1 such

that (an, an+1) ∈ ψ′′(T). Notice that, by definition of φ, we always have at least one such node an+1

and that all such nodes are exactly those where the tuple (a1, . . . , an, an+1) is in ψ(T). Therefore, for

each such node an+1 we output the tuple (a1, . . . , an, an+1). Once all the nodes an+1 have been found,

we continue the simulation of the enumeration procedure for φ(T) and obtain in constant delay the next

tuple (b1, . . . , bn) ∈ φ(T) and eventually compute all of ψ(T).

�

6.5.2 Testing simple Σ2(<) queries

Using exactly the same approach as for the Proposition 6.5.1, we now prove Proposition 6.5.2:

PROOF [of Proposition 6.5.2]

Let ψ(x̄) be the fixed o-simple Σ2(<) query.

The proof follows by an induction on the number of free variables in ψ. The base case (unary query)

is done via our assumption that this variable denotes the root of the tree. So let us assume that we have

the result for n-ary queries and we want to extend it to one with n+ 1 variables.

The key ingredient for the inductive step is the Property 4 of Lemma 6.4.2.

Let ψ(x1, . . . , xn+1) be an o-simple Σ2(<) query. Without loss of generality assume that xn and

xn+1 are o-consecutive variables with xn < xn+1 and, for all i < n, we do not have xn+1 < xi in

o. By our choice of xn+1 and o-simplicity, ψ(x1, . . . , xn+1) must be of the form ψ′(x1, . . . , xn) ∧
ψ′′(xn, xn+1) where ψ′′ is the Σ2(<) conjunct of ψ that describes the path from xn to xn+1. A

CONSTANT-TIMElin testing procedure for ψ is:

The precomputation phase performs both the precomputation phase of testing for ψ′ as given by the

induction hypothesis, and the construction of the full index structure of T for ψ′′. This is done in O(|T|)
as required (by inductive hypothesis and by Property 1 of Lemma 6.4.2).

We now turn to the testing phase.

Given tuple (v1, . . . , vn, vn+1) we test whether T |= ψ′(v1, . . . , vn) in constant time using the in-

ductive hypothesis. If it is the case, it remains to test whether T |= ψ′′(vn, vn+1), and this is directly

handled by Property 4 of Lemma 6.4.2.

�

6.5.3 Counting problem for simple Σ2(<) queries

Using Property (4) of Lemma 6.4.3 we prove the following lemma, that will find its use both in the

proofs of Proposition 6.5.3 and Proposition 6.5.4

82

Lemma 6.5.1 Given a binary tree T and a o-simple Σ2(<) query ψ(x̄) such that there are no o-

predecessors of x1 we can, in time O(|T|), compute a function # : T → N such that for a given

node u of T we have: #(u) = |{v̄ : T |= ψ(u, v̄)}|.

PROOF Note that in order to perform an inductive reasoning, throughout this proof we do NOT assume

that one of the free variables necessarily denotes root. We now show how to compute in time O(|T|) the

desired function #.

The proof follows by an induction on the number of free variables in ψ. The base case (unary query)

is done via a simple iteration through nodes of T and setting #(u) = 1 if T |= ψ(u) and #(u) = 0
otherwise. So let us assume that we have the result for queries of arities not greater than n and we want

to extend it to ones with n+ 1 variables.

Wlog assume that ψ has variables x1, . . . , xn+1 and recall that x1 has no o-predecessors. Using the

skeleton decomposition as defined in Observation 6.4.2, we have at this points two cases.

Case 1: x1 has exactly 1 o-consecutive variable.

Without loss of generality assume this variable is x2. This means that ψ(x̄) = ψ′(x2, . . . , xn+1) ∧
ψ′′(x1, x2), where ψ′′ is the Σ2(<) conjunct of ψ that describes the path from x1 to x2.

Using the inductive hypothesis for ψ′ we compute #′ : T → N such that #′(u) = |{v̄ : T |=
ψ′(u, v̄)}|.

Note that #(u) =
∑

{v:(u,v)∈ψ′′(u,v)}#
′(v) and that we may conclude this case by constructing

the full index structure with counting of T for ψ′′ and #′ and the function # is then computed by the

algorithm from Property (4) of Lemma 6.4.3. Properties (1) and (4) of Lemma 6.4.3 guarantee that this

is altogether done in time O(|T|) as required.

Case 2: x1 has exactly 2 different o-consecutive variables xl and xr.
Let x̄l denote the subset of x̄ that contains variables which are o-successors of xl and x̄r denote the

subset of x̄ that contains variables which are o-successors of xr. As all the variables denote different

nodes and ψ talks about all least common ancestors of the variables, we have x̄ = {x1}∪{xl}∪{xr}∪
x̄l∪x̄r and all mentioned sets are disjoint. This means that ψ(x̄) = ψ′

l(xl, x̄
l)∧ψ′′

l (x1, xl)∧ψ
′
r(xr, x̄

r)∧
ψ′′
r (x1, x̄

r) where ψ′′
l and ψ′′

r are the Σ2(<) conjuncts of ψ that describe the path from x1 to xl and from

x1 to xr respectively and that xl has no o-predecessors in ψ′
l(xl, x̄

l) and xr has no o-predecessors in

ψ′
r(xr, x̄

r).
Using the inductive hypothesis for ψ′

l we compute function #′
l : T → N such that #′

l(u) = |{v̄ :
T |= ψ′

l(u, v̄)}| and similarly for ψ′
r we compute function #′

r : T → N such that #′
r(u) = |{v̄ : T |=

ψ′
r(u, v̄)}|.

Note that #(u) =
(

∑

{v:(u,v)∈ψ′′
l
(u,v)}#

′
l(v)

)

·
(

∑

{v:(u,v)∈ψ′′
r (u,v)}#

′
r(v)

)

. We may then conclude

this case by constructing the full index structure with counting of T for ψ′′
l and #′

l and constructing it

also for ψ′′
r and #′

r and then using the algorithm from Property (4) of Lemma 6.4.3 to obtain functions

#l(u) =
∑

{v:(u,v)∈ψ′′
l
(u,v)}#

′
l(v) and #r(u) =

∑

{v:(u,v)∈ψ′′
r (u,v)}#

′
r(v). As said earlier, the desired

function is #(u) = #l(u) ·#r(u).
Properties (1) and (4) of Lemma 6.4.3 guarantee that this is again done in time O(|T|), just as

required.

�

Having Lemma 6.5.1 we are ready to prove Proposition 6.5.3:

PROOF [of Proposition 6.5.3]

This proposition is an immediate consequence of Lemma 6.5.1.

Let ψ(x̄) be the fixed o-simple Σ2(<) query and without loss of generality assume that x1 denotes

the root of T (in particular, x1 has no o-predecessors). Apply Lemma 6.5.1 to T and ψ and in timeO(|T|)
compute a function # : T → N such that for a given node u of T we have #(u) = |{v̄ : T |= ψ(u, v̄)}|.

83

The value storing the number of solutions to ψ over T is simply #(root(T)).

�

6.5.4 j-th solution problem for simple Σ2(<) queries

Finally we move to the proof of Proposition 6.5.4:

PROOF [of Proposition 6.5.4]

This proof heavily relies on Lemma 6.5.1 and Property (5) of Lemma 6.4.3 and is based on a similar

induction to the one seen in the proof of Lemma 6.5.1.

For the inductive argument to work, we do NOT assume that one of the free variables denotes root

of the input tree.

Let ψ(x̄) be the fixed o-simple Σ2(<) query and without loss of generality assume that x1 has no

o-predecessors and let ≺ be a τ -order. We show how to solve the j-th solution problem with respect to

the fixed τ -order.

The proof follows by an induction on the number of free variables in ψ. The base case (unary query)

is done in the following way: in the preprocessing phase iterate through all nodes of tree T and put

into an array the ones such that T |= ψ(u). The j-th solution phase is then trivial (and works even in

constant rather than logarithmic time): given j output the j-th element of the above array or respond NO

SOLUTION if the size of the array is smaller than j.

So let us assume that we have the result for queries of arities not greater than n and we want to

extend it to the ones with n+ 1 variables.

Following the lines of the proof of Lemma 6.5.1 (that is using the skeleton decomposition as defined

in Observation 6.4.2), we have at this points two cases.

Case 1: x1 has exactly 1 o-consecutive variable.

Without loss of generality assume this variable is x2.

This means that ψ(x̄) = ψ′(x2, . . . , xn+1) ∧ ψ
′′(x1, x2) where ψ′′ is the Σ2(<) conjunct of ψ that

describes the path from x1 to x2. A LOGARITHMIC-TIMElin j-th solution procedure for ψ is:

The preprocessing phase consists in this case of the preprocessing phase as given by the inductive

hypothesis for ψ′, of computing function # : T → N such that #(u) = |{v̄ : T |= ψ′(u, v̄)}| which is

doable in linear time via Lemma 6.5.1 and of constructing the full index structure with counting of T for

ψ′′ and #. It also computes function #′ : T → N such that #′(u) = |{v̄ : T |= ψ(u, v̄)}| which is again

doable in linear time via Lemma 6.5.1. The algorithm then iterates through nodes of T and puts into an

array A (in ≺-ascending order) those nodes u, for which #′(u) > 0. Going through array A from left

to right it also computes partial sum for each node u that sums-up the values of #′ for nodes ≺-smaller

than u, that is partial sum(u) =
∑

v≺u#
′(u). In total the preprocessing phase takes time O(|T|) as

required.

The j-th solution phase is now as follows. Fix j ∈ N. In logarithmic time (using binary search on

array A) find node u such that partial sum(u) < j ≤ partial sum(u) + #′(u). If such node u does not

exist, output NO SOLUTION. If it does, then clearly u has to play the role of x1 in the j-th solution to

ψ. Then set j = j − partial sum(u). Using Property 5 of Lemma 6.4.3 find in logarithmic time node v
such that ψ′′(u, v) and S =

∑

{v′:(u,v′)∈ψ′′(u,v′),v′≺v}#(v′) < j ≤ S +#(v). The desired j-th solution

is then (u, v, w̄) where w̄ is the (j − S)-th solution to ψ′ over the subtree of T rooted at v. By inductive

hypothesis, w̄ is computed in logarithmic time and we are done with Case 1.

Case 2: x1 has exactly 2 different o-consecutive variables xl and xr.

Let x̄l denote the subset of x̄ that contains variables which are o-successors of xl and x̄r denote the

subset of x̄ that contains variables which are o-successors of xr. As all the variables denote different

nodes and ψ talks about all least common ancestors of the free variables, we have x̄ = {x1} ∪ {xl} ∪

84

{xr} ∪ x̄
l ∪ x̄r and all mentioned sets are disjoint. This means that ψ(x̄) = ψ′

l(xl, x̄
l) ∧ ψ′′

l (x1, xl) ∧
ψ′
r(xr, x̄

r) ∧ ψ′′
r (x1, x̄

r) where ψ′′
l and ψ′′

r are the Σ2(<) conjuncts of ψ that describe the path from

x1 to xl and from x1 to xr respectively and that xl has no o-predecessors in ψ′
l(xl, x̄

l) and xr has no

o-predecessors in ψ′
r(xr, x̄

r). A LOGARITHMIC-TIMElin j-th solution procedure for ψ is:

The preprocessing phase consists in this case of the preprocessing phases as given by the inductive

hypothesis for ψ′
l ∧ ψ

′′
l and for ψ′

r ∧ ψ
′′
r (note that both these queries match Case 1, so for example the

preprocessing phase for ψ′
r ∧ ψ

′′
r computes the function #r(u) = |{v̄ : T |= (ψ′

r ∧ ψ
′′
r)(u, v̄)}|). It also

computes function # : T → N such that #(u) = |{v̄ : T |= ψ(u, v̄)}| which is again doable in linear

time via Lemma 6.5.1. It iterates through nodes of T and puts into an array A (in ≺-ascending order)

those nodes u, for which #(u) > 0. Going through array A from left to right it computes partial sum

for each node u that sums the values of # for nodes ≺-smaller than u, that is partial sum(u) =
∑

v≺u#(u). In total the preprocessing phase takes time O(|T|) as required.

The j-th solution phase is now as follows. Fix j ∈ N. In logarithmic time (using binary search on

array A) find node u such that partial sum(u) < j ≤ partial sum(u) + #(u). If such node u does not

exist, output NO SOLUTION. If it does, clearly u has to play the role of x1 in the j-th solution. Then

set j = j − partial sum(u).

It remains to observe that if we have any solution (u, vl, v̄
l) to ψ′

l(vl, v̄
l)∧ψ′′

l (u, vl) and any solution

(u, vr, v̄
r) to ψ′

r(vr, v̄
r) ∧ ψ′′

r (u, vr), then it is always the case that T |= ψ(u, vl, v̄
l, vr, v̄

r). This simple

observation leads to a fact that j-th solution to ψ is in fact composition of (j div #r(u))-th solution to

ψ′
l(vl, v̄

l)∧ψ′′
l (u, vl) and of (j mod #r(u))-th solution to ψ′

r(vr, v̄
r)∧ψ′′

r (u, vr). Both this cases match

exactly the procedure described in the j-th solution phase of Case 1 and as the appropriate preprocessing

phases had in fact been performed, the desired solutions to ψ′
l ∧ ψ

′′
l and to ψ′

r ∧ ψ
′′
r can be computed in

logarithmic time.

Altogether we have shown a solution to j-th solution problem that requires preprocessing in time

O(|T|) and j-th solution phase that works in time O(log (|T|)), just as required. As the inductive argu-

ments match exactly the skeleton decomposition of ψ, presented solution to the j-th solution problem is

in fact with respect to the fixed τ -order ≺.

This finishes the proof of Proposition 6.5.4.

�

6.6 Discussions

Throughout this section we focus only on the enumeration problem.

The reader might find it quite surprising that something as simple as polynomial formulas require

a non trivial basic index structure to be handled effectively. When inspecting its core, the enumeration

algorithm as presented in Section 6.5.1 follows a rather natural approach and it essentially boils down

to the algorithm from Property 5 of Lemma 6.4.2. It seems almost obvious that having a node u, one

should rather easily be able to enumerate all the pairs (u, v) such that u < v and that the path between

u and v matches a given polynomial expression.

Example 6.6.1 below somehow justifies that this is not as simple (and this example even mentions

a single monomial rather than a polynomial). The “suffix” oriented basic index structure defined in this

chapter is a construction able to handle Example 6.6.1 (and actually able to handle any MSO query on

trees), but of course there still might be some room for improvements.

It is worth mentioning that the difficulties with simplifying the basic index structure are related to

the possible strengthening of Claim 6.4.1. For example the following lemma is true over words (but not

over trees, as explained in Example 6.6.1) and it greatly simplifies the combinatorics over words.

85

Lemma 6.6.1 Let φ(x, y) be a monomial formula, W a word and u < v1 ≤ v′ ≤ v2 positions in W

such that W |= φ(u, v1) ∧ φ(u, v2) ∧ (∃xφ(x, v′)). Then W |= φ(u, v′).

Before moving to the proof, we show how the above lemma can be used to provide the power of

Property 5 of Lemma 6.4.2 in an easy way. Fix a monomial formula φ(x, y). Using Corollary 6.2.1

we may find all nodes v valid for y (that is nodes such that W |= ∃xφ(x, v)) and put them on a list.

We similarly extract nodes valid for x and for each such node u valid for x we compute v1 and v2 that

are the first and the last node on the list of nodes valid for y such that W |= φ(u, v1) ∧ φ(u, v2) (again

using Corollary 6.2.1). This altogether takes time linear in the size of W and then the algorithm from

Property 5 of Lemma 6.4.2 can be replaced with a simple traversal of the list of nodes valid for y with

the bounds given by v1 and v2. Lemma 6.6.1 justifies that all the enumerated pairs are in fact solutions

and the definitions of v1 and v2 guarantee that we do not skip any solutions.

As it might not be completely obvious, we now move to the proof of Lemma 6.6.1.

PROOF [of Lemma 6.6.1]

Assume φ looks for a pattern of the form: a0A
∗
0a1A

∗
1 . . . amA

∗
mam+1. Let W be the input word and

as in the statement of this lemma, fix positions u < v1 ≤ v′ ≤ v2 such that W |= φ(u, v1) ∧ φ(u, v2) ∧
(∃xφ(x, v′)).

We know that there exists a position u′ such that W |= φ(u′, v′). There are two cases now: u′ < u
or u < u′ (u = u′ immediately yields the result). The reasoning in both cases is similar, so we present

in details only one of them.

Case 1: u′ < u

We show that if W |= φ(u′, v′) ∧ φ(u, v1) for positions u′ < u < v1 < v′, then W |= φ(u, v′).
The proof goes by an induction on m.

The base case m = 0 is trivial: if all the letters at positions between u′ and v′ are in A0, then clearly

W |= φ(u, v′).
Assume now we have the result for all i ≤ m and we want to extend it to m+ 1.

As W |= φ(u′, v′) ∧ φ(u, v1), there exist two witnessing sequences of positions u = u0 ≤ u1 ≤
. . . ≤ um ≤ um+1 = v1 and u′ = u′0 ≤ u′1 ≤ . . . ≤ u′m ≤ u′m+1 = v′ such that for each i letters at

position ui and at position u′i are ai and the set of letters at positions between ui and ui+1 is included in

Ai and the same holds for the set of letters at positions between u′i and u′i+1. We now have two cases:

• there exists 1 ≤ j ≤ m such that uj < u′j . In that case we may apply the inductive hypothesis to

the polynomial φ′ that searches for the pattern a0A
∗
0a1A

∗
1 . . . aj−1A

∗
j−1aj which is a proper prefix of the

pattern mentioned by φ (as we have W |= φ′(u, uj) ∧ φ′(u′, u′j) for u′ < u < uj < u′j). The inductive

hypothesis proves that W |= φ′(u, u′j) and the fact that W |= φ(u, v′) immediately follows, as [u′j , v
′]

matches pattern ajA
∗
j . . . amA

∗
mam+1.

• for each 1 ≤ j ≤ m we have that u′j < uj . In particular this is the case for j = m and so the

letters at positions between u′m and v′ are in Am (as W |= φ(u′, v′)). Since u′m < um, the above holds

for the set of letters at positions between um and v′ and so W |= φ(u, v′) also in this case.

Case 2: u < u′

It is enough to show that if W |= φ(u′, v′) ∧ φ(u, v2) for positions u < u′ < v′ < v2, then

W |= φ(u, v′).
This case follows from an inductive argument that is symmetric to the one from Case 1.

As we said earlier, this finishes the proof of Lemma 6.6.1.

86

�

We now move to the promised “difficult” example.

Example 6.6.1 Consider monomial x(A \ {a′})∗a(A \ {b′})∗b(A \ {c′})∗y and the input tree as repre-

sented by the figure below.

b'

a'
x_1

a
b

s_1

b'

a'
x_2

a
b

s_2

b'

a'
x_n

a
b

s_n

y_all
c' a b y_n

c' a b y_2

c' a b y_1

The subscripts of some labels (like yall, x2, etc.) are added purely for the sake of readability: this

way a single symbol contains the label (like y, x, etc.) and also distinguishes a particular node with that

label.

A quick analysis allows us to extract the solutions to the input monomial over this tree. They are

exactly: (xi, yall) and (xi, yi) (where i ranges from 1 to n). The reason for that is the following:

• the monomial seeks for a witnessing sequence with consecutive labels x, a, b, y but such that

between x and a there is no a′, between a and b there is no b′ and between b and y there is no c′.
• consider now fixed xi. Immediately below in the tree we see label a and we may include it in the

witnessing sequence or not:

◦ if we do, we then have to include to the witnessing sequence the following b (as just after that

comes b′ which cannot separate a and b). Now any “deviation” to the right is no longer an option as

each such brunch starts with a disallowed label c′. The only y that we can reach is then yall and we have

a solution (xi, yall).

87

◦ if we do not, then we cannot include anything all the way down to si (as there are no more a-s on

that path). The left sub-tree of si starts with a′, so we cannot go there and thus we are forced to move

right and eventually reach yi. This way we have a solution (xi, yi).
The power of Lemma 6.6.1 was that we were able to easily provide the algorithm as described in

Property 5 of Lemma 6.4.2. Assume now that we would aim at such an algorithm that, given xi, returns

each matching y with respect to the DFS order. The above example shows that this algorithm for each

i would have to start from pair (xi, yall) and then find yi in constant time. While in Lemma 6.6.1 we

were always following a unique pointer to go to the next solution, this approach will not work here as

we do not have a bound on the number of pointers that would have to originate from yall. It is thus not

clear how a structure of size O(|T|) could handle this kind of “pathological” example while directly

mimicking the approach from Lemma 6.6.1. It is exactly the kind of issues for which we introduced the

basic index structure which, using the suffix approach, handles the above example rather smoothly.

6.7 Conclusions

It should be noted that our enumeration algorithm, as well as the one of Bagan [8], are non elementary in

the size of the formula. Already for FO queries over unranked trees this non elementary blow-up cannot

be avoided unless P=NP [36]. In our case the non elementary constants are hidden in Theorem 6.2.1,

the Ehrenfeucht-Fraı̈ssé argument of Theorem 6.3.3 and in the result of Colcombet, Theorem 6.3.4.

Our notion of linear time and constant delay requires furthermore that the total extra memory used

during the enumeration phase is constant. It is not clear that the enumeration algorithm of Bagan has

this extra property as it uses nested subprocess pushing (in constant time) pointers to the parent process

on a stack. The nesting depth of this subprocess seems to be arbitrary.

However the result of Bagan also deals with MSO formulas containing free monadic second-order

variables. In this case the delay is linear in the size of the solution being output. This cannot be avoided

as the algorithm needs at least the time to output the solution. It is not clear how our technique can be

lifted in order to take care of monadic second-order variables.

88

7

FO over classes of structures with

bounded expansion

Contents

7.1 Introduction . 89

7.2 Preliminaries . 91

7.2.1 Graphs with bounded expansion and augmentation 92

7.2.2 Graphs of bounded in-degree as functional structures 92

7.2.3 From structures to graphs . 94

7.2.4 Normal form for quantifier-free first-order queries 95

7.3 Model checking . 97

7.4 Testing . 101

7.5 Enumeration . 102

7.6 Counting . 106

7.7 Discussions . 110

7.8 Conclusions . 111

7.1 Introduction

In Chapter 5 we have shown that the query problems that are of the biggest interest from the point of

view of this thesis (that is enumeration, testing, counting and j-th solution, see Section 2.5 for details)

admit very good algorithmic properties when are considered with respect to the first-order logic over the

classes of databases of bounded degree. In order to extend Theorems 5.1.1–5.1.4, there are two natural

directions that we might follow:

• we can give more power to the logic,

• or we can extend the class of structures.

To see what happens when we extend the logical part, the reader is referred to Chapter 6. In this

chapter we investigate the case when the considered logic is still FO, but the class of allowed structures

is enlarged.

The considered class will be a class of structures with bounded expansion. The results we are going

to prove in details are as follows:

Theorem 7.1.1 ([29, 42, 47]) The model checking of FO sentences over the class of structures with

bounded expansion is in LINEAR-TIME.

89

Theorem 7.1.2 ([47]) The enumeration of FO queries over the class of structures with bounded expan-

sion is in CONSTANT-DELAYlin. Moreover, the output is returned in a lexicographical order.

Theorem 7.1.3 ([47]) The solution testing for FO queries over the class of structures with bounded

expansion is in CONSTANT-TIMElin.

Theorem 7.1.4 ([56, 47]) The counting problem for FO queries over the class of structures with bounded

expansion is in LINEAR-TIME.

All the proofs that we are going to present here follow the lines of [47].

In the Discussions Section 7.7 we also prove the following theorem:

Theorem 7.1.5 The j-th solution problem for FO queries over the class of structures with bounded

expansion is in LOGARITHMIC-TIMElin.

The reason for putting this result a bit aside is that we do not handle this problem “directly”. Us-

ing low treewidth colorings definition of bounded expansion, we reduce the j-th solution problem to

Theorem 6.1.5. For more details, see Section 7.7.

Let us focus on the Theoreom 7.1.1 for a while. The key ingredient that is common for all the three

proofs of this theorem is that they all perform some kind of quantifier elimination procedure.

In [29] and in [47] this is realized in the following way:

• First a procedure is shown which, given a FO query q(x̄) := ∃yψ(x̄, y) where ψ is quantifier free

and given a structure D, computes in time O(||D||) a structure D′ and a quantifier free query q′(x̄) such

that q(D) = q′(D′).
• The model checking solution works then as follows: given a structure D and a sentence q the above

procedure is applied recursively starting from the inner most quantification inside q and moving outside,

which in the end produces a quantifier free sentence q′ and a structure D′ such that D |= q iff D′ |= q′.
q′ turns out to have a constant size and also ||D′|| = O(||D||), which basically finishes the proof that the

model checking is in fact in LINEAR-TIME.

In [42] the approach is slightly different:

• First a procedure is shown which, given a FO query q(x̄) := ∀ȳ∃z̄ψ(x̄, ȳ, z̄) where ψ is quantifier

free and given a structure D, computes in time O(||D||) a structure D′ and a query q′(x̄) := ∃ȳ′ψ′(x̄, ȳ′)
such that ψ′ is quantifier free and q(D) = q′(D′).

• The model checking solution works then as follows: given structure D and a sentence q the above

procedure is applied recursively starting from the inner most quantification inside q and moving outside,

which in the end produced sentence q′ := ∃x̄ψ′(x̄) where ψ′ is quantifier free and a structure D′ such

that D |= q iff D′ |= q′. It is then shown how existential sentences like q′ can be verified in linear time

over a class of graphs with bounded expansion. Also this time q′ turns out to have a constant size and

together with the fact that ||D′|| = O(||D||), the proof that the model checking is in fact in LINEAR-TIME

follows.

Despite these similarities, there is a major difference between the proofs of [29, 42] and the one

of [47]. While the first ones are based on the low tree depth coloring characterization (which is yet

another definition of bounded expansion, cf. [53]) the latter is based on transitive fraternal augmenta-

tions. We argue that the use of transitive fraternal augmentations gives a simpler proof. The reason

is that it gives a useful normal form on quantifier-free formulas that will be the core of not only the

quantifier elimination procedure algorithm, but also the algorithms for constant delay enumeration and

for counting the number of solutions.

90

What should also be noted is that the proofs of Theorems 7.1.1– 7.1.4 that we present here work

on the functional representation of the input structures rather than their purely relational equivalents.

Without this functional representations we would not be able to eliminate first-order quantifiers. Indeed,

with this functional representation we can speak of a node at distance 2 from x using the quantifier-free

term f(f(x)), avoiding the existential quantification of the middle point. This idea was already taken

in [26] for eliminating first-order quantifiers over structures of bounded degree. Our approach differs

from theirs in the fact that in the bounded degree case the functions can be assumed to be permutations

(in particular they are invertible) while this is no longer true in our setting, complicating significantly

the combinatorics.

Before moving to the technical details of the proofs of Theorems 7.1.1– 7.1.4, we should point out

that the structure of this chapter is slightly different than the very much alike structures of Chapters 5

and 6. In a very coarse description, the approach there was as follows:

• we always start with some necessary terminology,

• which is followed by descriptions of index structures that are the key tools for obtaining the main

results,

• and then come the proofs which, while not that demanding themselves, heavily rely on the men-

tioned above index structures.

The main difference in this chapter is that the index structures no longer play the key role. From our

perspective, the biggest impact should be annotated to the normal form for quantifier-free queries (see

Proposition 7.2.1) and to the quantifier elimination procedure (see Proposition 7.3.1).

We are now ready to move to the more technical parts of this chapter.

7.2 Preliminaries

We first introduce our running examples. We focus there only on the model checking and the enumera-

tion parts as they seem to be the most instructive in this case.

Example A-1 The first query has arity 2 and returns pairs of nodes at distance at most two in a graph.

We use the classical notion of distance that ignores the possible orientation of the edges. The query is of

the form ∃zE(x, z) ∧ E(z, y), where E is the symmetric closure of the input relation.

Testing the existence of a solution to this query can be easily done in time linear in the size of the

database. For instance one can go trough all nodes of the database and check whether the current node

has degree at least two. The degrees of all nodes can be computed in linear time by going through all

edges of the database and incrementing the degree counters associated with its endpoints.

Example B-1 The second query has arity 3 and returns triples (x, y, z) such that y is connected to both

x and z via an edge and x is connected to z (in other words, x, y and z form a triangle). The query is of

the form E(x, y) ∧ E(y, z) ∧ E(x, z), where E is the symmetric closure of the input relation.

It is not clear at all how to test the existence of a solution to this query in time linear in the size of the

database. The best known algorithm for finding a triangle in a graph has complexity even slightly worse

than matrix multiplication [3]. If the degree of the input structure is bounded by a constant d, we can

test the existence of a solution in linear time by the following algorithm. We first go through all edges

(x, y) of the database and add y to a list associated with x and x to a list associated with y. It remains

now to go through all nodes y of the database, consider all pairs (x, z) of nodes in the associated list

(the number of such pairs is bounded by d2) and then test whether there is an edge between x and z (by

testing whether x is in the list associated with z).

We aim at generalizing this kind of reasoning to structures with bounded expansion.

91

Example A-2 Over the class of all graphs, we cannot enumerate pairs of nodes at distance 2 with

constant delay unless the Boolean Matrix Multiplication problem can be solved in quadratic time [11].

However, over the class of graphs of degree d, there is a simple constant delay enumeration algorithm.

During the preprocessing phase, we associate with each node the list of all its neighbors at distance 2.

This can be done in time linear in the database as in Example B-1. We then color in blue all nodes having

a non empty list and make sure each blue node points to the next blue node (according to the linear order

on the domain). This also can be done in time linear in the database and concludes the preprocessing

phase. The enumeration phase now goes through all blue nodes x using the pointer structure and, for

each of them, outputs all pairs (x, y) where y is in the list associated with x.

Example B-2 Over the class of all graphs, the query of this example most likely cannot be enumerated

in constant delay because, as mentioned in Example B-1, testing whether there is one solution is already

not known to be linear. Over the class of graphs of bounded degree, there is a simple constant delay

enumeration algorithm, similar to the one from Example A-2.

7.2.1 Graphs with bounded expansion and augmentation

Recall the definitions of a class of graphs with bounded expansion from Section 2.8.2. As already

pointed out before, rather than going through the “initial” characterization of this class (cf. Defini-

tion 2.8.5), we will use the one exploiting the notion of augmentations (see Point 2 of Theorem 2.8.1).

Recall that the notion of 1-transitive fraternal augmentation is not a deterministic operation. Al-

though transitivity induces precise edges, fraternity implies nondeterminism and thus there can possibly

be many different 1-transitive fraternal augmentations.

Following [54] we fix a deterministic algorithm computing a “good” choice of orientations of the

edges induced by the fraternity property. The precise definition of the algorithm is not important for us,

it only matters here that it runs in time linear in the size of the input graph (see Lemma 7.2.1 below).

With this algorithm fixed, we can now speak of the 1-transitive fraternal augmentation of G.

Let G be a graph. The transitive fraternal augmentation of G is the sequence G = G0 ⊆ G1 ⊆
G2 ⊆ . . . such that for each i ≥ 1 the graph Gi+1 is the 1-transitive fraternal augmentation of Gi. We

will say that Gi is the i-th augmentation of G.

The following lemma shows that within a class C of bounded expansion the i-th augmentation of

G ∈ C can be computed in linear time.

Lemma 7.2.1 [54] Let C be a class of bounded expansion. For each G ∈ C and each i, Gi is computable

from Gi−1 in time O(||Gi−1||).

In particular Lemma 7.2.1 implies that for each i, given G ∈ C, Gi is computable from G in time

O(||G||).

7.2.2 Graphs of bounded in-degree as functional structures

For the rest of this section we fix a class C of graphs with bounded expansion and let ΓC be the function

given by Point 2 of Theorem 2.8.1. For any graph G ∈ C its transitive fraternal augmentation G =
G0 ⊆ G1 ⊆ G2 ⊆ . . . is such that for all i, Gi has in-degree bounded by ΓC(i). From the definition

of bounded expansion it follows that the maximal in-degree of the graphs we will manipulate is always

bounded by a number independent of the graph. We will use this property by constantly referring to the

1st, 2nd . . . predecessor of a node. It will therefore be convenient for us to represent the graphs Gi as

functional structures where this predecessors are images of the current node via some suitable functions.

This functional representation is also useful for eliminating some quantifiers.

A functional signature is a tuple σ = (f1, . . . , fl, P1, . . . , Pm), each fi being a functional symbol

of arity 1 and each Pi being an unary predicate. A functional structure over σ is then defined as for

92

relational structures. FO is defined as usual over the functional signature. In particular, it can use atoms

of the form f(f(f(x))), which is crucial for the quantifier elimination step of Section 7.3 as the usual

relational representation would require existential quantification for denoting the same element. A graph

G of in-degree l and colored with m colors can be represented as a functional structure ~G, where the

unary predicates encode the various colors and v = fi(u) if v is the ith element (according to some

arbitrary order that will not be relevant in the sequel) such that (v, u) is an edge of G. We call such

node v the ith predecessor of u (where “ith predecessor” should really be viewed as an abbreviation for

“the node v such that fi(u) = v” and not as a reference to the chosen order). If we do not care about

i and we only want to say that v is the image of u under some function, we call it a predecessor of u.

It is possible that some nodes may have less than l predecessors. To handle this case we allow fi to be

partial functions. As usual, if fi(u) is not defined for some node u, any atomic expression containing

it is evaluated to false. Given G ∈ C we define ~G to be the functional representation of G as described

above. Note that ~G is computable in time linear in ||G|| and that for each first order query φ(x̄) one can

easily compute a first order query ψ(x̄) such that φ(G) = ψ(~G).

Example A-3 With the functional point of view, the query computing nodes at distance at most two is of

the form:
∨

f,g∈σ

f(g(x)) = y ∨ g(f(y)) = x ∨ f(x) = g(y) ∨

∃z f(z) = x ∧ g(z) = y

where there is one disjunct per possible orientation of the edges on a path from x to y. We have removed

the inner node z whenever this was possible.

Example B-3 Similarly, the query of Example B-1 is equivalent to:

∨

f,g,h∈σ

(f(x) = y ∧ g(y) = z ∧ h(x) = z)

∨(f(x) = y ∧ g(y) = z ∧ x = h(z))

∨(f(x) = y ∧ y = g(z) ∧ h(x) = z)

∨(f(x) = y ∧ y = g(z) ∧ x = h(z))

∨(x = f(y) ∧ g(y) = z ∧ h(x) = z)

∨(x = f(y) ∧ g(y) = z ∧ x = h(z))

∨(x = f(y) ∧ y = g(z) ∧ h(x) = z)

∨(x = f(y) ∧ y = g(z) ∧ x = h(z))

Recall that the augmentation steps only introduce new edges and do not affect the vertex set. It will

be convenient for us to be able to recover Gi from Gi+1. For this we use extra function symbols denoting

the edges resulting from an augmentation step. The definition of bounded expansion guarantees that the

number of required new symbols is bounded by ΓC(i+ 1) and does not depend on the graph.

From this it follows that we have functional signatures σC(0) ⊆ σC(1) ⊆ σC(2) ⊆ . . ., where σC(0)
is the initial signature and σC(i + 1) is σC(i) plus the ΓC(i + 1) extra symbols needed for the extra

augmentation step, such that for any graph G ∈ C and for all i:

1. ~Gi is a functional structure over σC(i),
2. ~Gi ⊆ ~Gi+1 and ~Gi+1 is computable in linear time from ~Gi,

3. for every FO query φ(x̄) over σC(i) and every j ≥ i we have that φ(~Gi) = φ(~Gj).

We denote by αC(i) the number of function symbols of σC(i). It follows from the discussion above

that αC(i) = Σj≤iΓC(j). It would be tempting to reduce this number by reusing function symbols, but

that would then be problematic to enforce property 3 (see Example 7.2.1 from the end of this section).

93

We say that a functional signature σ′ is a recoloring of σ if it extends σ with some extra unary

predicates (colors), while the functional part remains unchanged. Similarly, a functional structure ~G
′

over σ′ is a recoloring of ~G over σ if σ′ is a recoloring of σ and ~G
′

is a σ′-expansion of ~G (i.e. it does

not differ from ~G on the predicates in σ). We write φ is over a recoloring of σ if φ is over σ′ and σ′ is a

recoloring of σ.

For each p ≥ 0 we define Cp to be the class of all recolorings ~G
′
p of ~Gp for some G ∈ C. In other

words Cp is the class of functional representations of all recolorings of all p-th augmentations of graphs

from C. Note that all graphs from Cp are recolorings of a structure in σC(p), hence they use at most

αC(p) function symbols.

From now on we assume that all graphs are from C and all queries are in their functional representa-

tion. It follows from the discussion above that this is without loss of generality.

Example 7.2.1 It would be tempting to set σC(i) to be the functional structure with ΓC(i) functional

symbols that would then be used to encode up to ΓC(i) predecessors of each node. We could then easily

have properties 1 and 2, but it would not be the case for property 3. To see this consider the following

simple example:

C is such that ΓC(i) = 2 for all i and G ∈ C is defined as G = (V = {u, v, w}, E = {(u,w), (v, w)}).
Wlog assume that the functional structure describing G is ~G1 = (V = {u, v, w}, {f1(w) = u}, {f2(w) =
v}) and so we need to show a transitive fraternal augmentation ~G = ~G0 ⊆ ~G1 ⊆ ~G2 ⊆ . . . with the

desired properties 1, 2 and 3.

Note that (u, v) is a fraternal pair of nodes in ~G1 and so ~G2 must describe an edge between u and

v (in at least one of the directions). To match property 2, ~G2 must contain ~G1 and wlog we may assume

that ~G2 contains (V = {u, v, w}, {f1(w) = u, f1(u) = v}, {f2(w) = v}).
Consider now the following query φ over σC(0):
φ(x, y) ≡ f1(x) = y ∨ f2(x) = z.

Clearly (u, v) ∈ φ(~G2), but (u, v) /∈ φ(~G1) and although ∆−(~G2) ≤ 2, two functional symbols in

σC(1) are not enough to retain property 3.

The general idea behind the above example is that in order to have property 3, we cannot “re-use”

functions used in ~Gi to encode edges that appeared in ~Gi+1.

7.2.3 From structures to graphs

Recall the definition of the adjacency graph from Section 2.8.1. As we already pointed out in that

section, the definition given there was slightly imprecise, as it did not distinguish colors of edges. While

this was enough before (as so far we only cared about the “structure” of the adjacency graph, that is

the way nodes are connected), we would like to make it fully precise now. As this will be a lot more

convenient, we directly do it in a functional manner.

The adjacency graph of a relational structure D, denoted by Adjacency(D), is a functional graph

defined as follows. The set of vertices of Adjacency(D) is D ∪ T where T is the set of tuples occurring

in some relation of D. For each relation Ri in the schema of D, there is a unary symbol PRi
coloring the

elements of T belonging to Ri. For each tuple t = (a1, · · · , ari) such that D |= Ri(t) for some relation

Ri of arity ri, we have an edge fj(t) = aj for all j ≤ ri.

Observation 7.2.1 It is immediate to see that for every relational structure D we can compute Adjacency(D)
in time O(||D||).

Let C be a class of relational structures. We say that C has bounded expansion if the class C’ of

adjacency graphs of structures from C has bounded expansion.

94

Remark 7.2.1 In the literature, for instance [29, 42], a class C of relational structures is said to have

bounded expansion if the class of their Gaifman graphs has bounded expansion. Our definition is equiv-

alent to the usual one as shown in Theorem 3.3.3. As it gives directly an oriented graph, it is more

convenient for us.

Let ΓC′ be the function given by Point 2 of Theorem 2.8.1 for C’. The following lemma is immediate.

Lemma 7.2.2 Let C be a class of relational structures with bounded expansion and let C’ be the under-

lying class of adjacency graphs. Let φ(x̄) ∈ FO. In time linear in the size of φ we can find a query ψ(x̄)
over σC′(0) such that for all D ∈ C we have φ(D) = ψ(Adjacency(D)).

As a consequence of Lemma 7.2.2 it follows that the model checking, enumeration and counting of first-

order queries over relational structures reduce to the graph case. Therefore in the rest of this chapter we

will only concentrate on the graph case (viewed as a functional structure), but the reader should keep in

mind that all the results stated over graphs extend to relational structures via this lemma.

7.2.4 Normal form for quantifier-free first-order queries

We conclude this section by proving a normal form on quantifier-free FO formulas. This normal form

will be the ground for all our algorithms later on. It basically says that, modulo performing some extra

augmentation steps, a quantifier-free formula has a very simple form.

Fix class C of graphs with bounded expansion. Recall that we are now implicitly assuming that

graphs are represented as functional structures.

A formula is simple if it does not contain atoms of the form f(g(x)), i.e. it does not contain any

compositions of functions. Observe that, modulo augmentations, any formula can be transformed into a

simple one.

Lemma 7.2.3 Let ψ(x̄) be a formula over a recoloring of σC(p). Then, for q = p+ |ψ|, there is a simple

formula ψ′(x̄) over a recoloring of σC(q) such that:

for all ~G ∈ Cp there is a ~G
′
∈ Cq computable in time linear in ||~G|| such that ψ(~G) = ψ′(~G

′
).

PROOF This is a simple consequence of transitivity. Any composition of two functions in ~G represents

a transitive pair of edges and becomes a single edge in the 1-augmentation ~H of ~G. Then f(g(x)) over ~G
is equivalent to h(x) ∧ Pf,g,h(x) over ~H, where the newly introduced color Pf,g,h holds for those nodes

v, for which the f(g(v)) = h(v). As the nesting of compositions of functions is at most |ψ|, the result

follows. The linear time computability is immediate from Lemma 7.2.1.

�

We make one more observation before proving the normal form:

Lemma 7.2.4 Let ~G ∈ Cp. Let u be a node of ~G. Let S be all the predecessors of u in ~G and set

q = p+ΓC(p). Let ~G
′
∈ Cq be the (q − p)-th augmentation of ~G. There exists a linear order < induced

on S by ~G
′
, such that for all v, v′ ∈ S, v < v′ implies v′ = f(v) is an edge of ~G

′
for some function f

from σC(q).

PROOF This is because all nodes of S are fraternal and the size of S is at most ΓC(p). Hence, after

one step of augmentation, all nodes of S are pairwise connected and, after at most ΓC(p) − 1 further

augmentation steps, if there is a directed path from one node u of S to another node v of S, then there is

also a directed edge from u to v. By induction on |S| we show that there exists a node u ∈ S such that

95

for all v ∈ S there is an edge from v to u. If |S| = 1 there is nothing to prove. Otherwise fix v ∈ S and

let S′ = S \ {v}. By induction we get a u in S′ satisfying the properties. If there is an edge from v to

u, u also works for S and we are done. Otherwise there must be an edge from u to v. But then there is a

path of length 2 from any node of S′ to v. By transitivity this means that there is an edge from any node

of S′ to v and v is a node having all the desired properties.

We then set u as the minimal element of our order on S and we repeat this argument with S \ {u}.

�

Note that there might possibly be many linear orders < as described in the statement of the above

lemma (the main reason for this is that two different nodes might be predecessors of each other), but the

main focus of this lemma is that there always is at least one such linear order.

Lemma 7.2.4 justifies the following definition.

Definition 7.2.1 A p-type τp(x) is a quantifier-free conjunctive formula expressing all the relations

between predecessors of a node x in some graph ~G ∈ Cp in the (q−p)-th augmentation ~G
′
of ~G, where q

is given by Lemma 7.2.4. More precisely, for every functions fi, fj ∈ σC(p), τp(x) contains at least one

of the conjuncts hi,j(fi(x)) = fj(x) or hj,i(fj(x)) = fi(x), where hi,j and hj,i are function symbols

from σC(q).

In particular, a p-type τ induces a linear order on the predecessors of x as described by Lemma 7.2.4

(fi(x) < fj(x) whenever hi,j(fi(x)) = fj(x) is a conjunct of τ) and moreover specifies all the relations

between these predecessors in ~G
′
. Note that for a given p there are only finitely many possible p-types

and that each of them can be specified with a conjunctive formula over σC(q).
We now state the normal form result.

Proposition 7.2.1 Let φ(x̄y) be a simple quantifier-free query over a recoloring of σC(p). There exists

q that depends only on p and φ and a quantifier-free query ψ over a recoloring of σC(q) that is a

disjunction of conjunctive formulas:

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆ 6=(x̄y), (7.1)

where τ(y) contains a p-type of y; ∆=(x̄y) is either empty or contains one clause of the form y = f(xi)
or one clause of the form f(y) = g(xi) for some suitable i, f and g; and ∆ 6=(x̄y) contains arbitrarily

many clauses of the form y 6= f(xi) or f(y) 6= g(xj). Moreover, ψ is such that:

for all ~G ∈ Cp there is a ~G
′
∈ Cq computable in time linear in ||~G|| with φ(~G) = ψ(~G

′
).

PROOF

Set q as given by Lemma 7.2.4. We first put φ into a disjunctive normal form (DNF) and in front

of each such disjunct we add a big disjunction over all possible p-types of y (recall that a p-type can be

specified as a conjunctive formula). Let φ′ be the resulting formula.

We deal with each disjunct of φ′ separately. The rest of the proof heavily relies on the fact that part of

each such disjunct specifies the p-type of y. Recall that a fixed p-type determines all the relations among

the predecessors of a node and in fact enforces a certain linear order among them (see Definition 7.2.1

and Lemma 7.2.4).

Note that each disjunct is a query over σC(q) of the form:

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆ 6=(x̄y),

where all sub-formulas except for ∆= are as desired. Moreover, ψ1(x̄), ∆
=(x̄y) and ∆ 6=(x̄y) are in

fact queries over σC(p). At this point ∆= contains arbitrarily many clauses of the form y = f(xi)

96

or f(y) = g(xi). If it contains at least one clause of the form y = f(xi), we can replace each other

occurrence of y by f(xi) and we are done.

Assume now that ∆= contains several conjuncts of the form fi(y) = g(xk). Assume wlog that the

p-type contained in τ is such that f1(y) < f2(y) < · · · , where f1(y), f2(y), . . . are all the predecessors

of y from σC(p) and < is the linear order as described in Lemma 7.2.4. Let i0 be the smallest index

i such that a clause of the form fi(y) = g(xk) belongs to ∆=. We have fi0(y) = g(xk) in ∆= and

observe that τ specifies for i < j a function hi,j in σC(q) such that hi,j(fi(y)) = fj(y). Then, as y is of

type τ , a clause of the form fj(y) = h(xk′) with i0 < j is equivalent to hi0,j(g(xk)) = h(xk′).
Let ψ be the result of performing this operation on each disjunct of φ′.
Now, given ~G ∈ Cp, let ~G

′
∈ Cq be the (q − p)-th augementation of ~G. It is computable in time

linear in ~G by Lemma 7.2.1. By Lemma 7.2.4 we have φ(~G) = φ′(~G
′
). By construction we have

ψ(~G
′
) = φ′(~G

′
) and the result follows.

�

Example A-4 Let us see what Lemma 7.2.3 and the normalization algorithm do for p = 0 and some of

the disjuncts of the query of Example A-3:

In the case of f(g(x)) = y note that by transitivity, in the augmented graph, this clause is equivalent

to one of the form y = h(x) ∧ Pf,g,h(x) (this case is handled by Lemma 7.2.3).

Consider now ∃z f(z) = x ∧ g(z) = y. It will be convenient to view this query when z plays

the role of y in Proposition 7.2.1. Notice that in this case it is not in normal form as ∆= contains two

elements. However, the two edges f(z) = x and g(z) = y are fraternal. Hence, after one augmentation

step, a new edge is added between x and y and we either have y = h(x) or x = h(y) for some h in the

new signature.

Let τh,f,g(z) be a 0-type stating that h(f(z)) = g(z) and τh,g,f (z) be a 0-type stating that h(g(z)) =
f(z). It is now easy to see that the query ∃z f(z) = x ∧ g(z) = y is equivalent, in the augmented

graph, to

∃z
∨

h

y = h(x) ∧ τh,f,g(z) ∧ f(z) = x ∨

x = h(y) ∧ τh,g,f (z) ∧ f(z) = x

7.3 Model checking

In this section we show that the model checking problem of FO over a class of structures with bounded

expansion can be done in time linear in the size of the structure. Recall that by Lemma 7.2.2 it is

enough to consider oriented graphs viewed as functional structures and so Theorem 7.1.1 follows from

Theorem 7.3.1 below:

Theorem 7.3.1 ([29, 42, 47]) Let C be a class of graphs with bounded expansion and let ψ be a sentence

of FO. Then, for all ~G ∈ C, testing whether ~G |= ψ can be done in time O(||~G||).

The proof of Theorem 7.3.1 is done using a quantifier elimination procedure: given a query ψ(x̄y)
with |x̄| ≥ 1 we can compute a quantifier-free query φ(x̄) that is “equivalent” to ∃yψ(x̄y). Again,

the equivalence should be understood modulo some augmentation steps for a number of augmentation

steps depending only on C and |ψ|. When starting with a sentence ψ we end-up with φ being a boolean

combination of formulas with one variable. Those can be easily tested in linear time in the size of

the augmented structure, which in turns can be computed in time linear from the initial structure by

Lemma 7.2.1. The result follows. We now state precisely the quantifier elimination step:

97

Proposition 7.3.1 Let C be a class of graphs with bounded expansion witnessed by the function ΓC . Let

ψ(x̄y) be a quantifier-free formula over a recoloring of σC(p) with |x̄| ≥ 1. Then one can compute a q
and a quantifier-free formula φ(x̄) over a recoloring of σC(q) such that:

for all ~G ∈ Cp there is a ~G
′
∈ Cq such that:

φ(~G
′
) = (∃yψ)(~G)

Moreover, ~G
′

is computable in time O(||~G||).

Before going into details, we start with an outline of the proof. The reasoning is going to be as

follows:

• Using Lemma 7.2.3 and Proposition 7.2.1 we argue that it suffices to show the quantifier elimina-

tion procedure only for ψ(x̄y) being of the special form given by (7.1), that is:

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆ 6=(x̄y).

• In order to eliminate the existentially quantified variable y we somehow need to encode its exis-

tence in terms of the properties of x̄.

• In the easy case when ψ contains conjunct of the form f(xi) = y, we can replace each occurrence

of y with f(xi) and we are done.

• The most interesting case is when ψ contains conjunct of the form f(y) = g(xi). Then the

algorithm proceeds as follows:

◦ it iterates through all nodes v of the graph (think of v as of a candidate for substituting the existen-

tially quantified variable y) and in a sense “registers” its existence to node f(v),
◦ given tuple ū to be substituted for for x̄ it is enough to only check nodes from the “list of regis-

trants” of g(ui) for the possible candidates for y,

◦ unfortunately the above procedure could produce “lists of registrants” of arbitrary lengths, so we

have to be more careful,

◦ therefore we limit the “registration” process and allow new nodes to register only if they are

“different enough” (in terms of the sets of their predecessors) from the nodes that already registered,

◦ this way we define so called WITNESS sets that are of constant (i.e. independent from the size of ~G)

sizes and such that if there exists a valid node for y, there also exists such a node inside WITNESS(g(ui)),
◦ the rest of the argument is a way of encoding WITNESS sets by only recoloring the structure and

not altering its functional part.

We now formalize the above approach:

PROOF [of Proposition 7.3.1] Wlog (modulo augmentations, see Lemma 7.2.3 for details) we assume

that ψ is simple.

We apply Proposition 7.2.1 to ψ and p and obtain a q and an equivalent formula in DNF, where each

disjunct has the special form given by (7.1). As disjunction and existential quantification commute, it is

enough to treat each part of the disjunction separately.

We thus assume that ψ(x̄y) is a quantifier-free conjunctive formula over a recoloring of σC(q) of the

form (7.1):

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆ 6=(x̄y).

We assume wlog that τ contains a p-type enforcing f1(y) < f2(y) < · · · , where f1(y), f2(y), · · ·
are all the images of y by a function from σC(p). Moreover, for each i < j, τ contains an atom of the

form hi,j(fi(y)) = fj(y) for some function hi,j ∈ σC(q).
If ∆= is y = g(xk) for some function g and some k, then we replace y with g(xk) everywhere in

ψ(x̄y) resulting in a formula φ(x̄) having obviously the desired properties.

Assume now that ∆= is f(y) = g(xi). Wlog assume that f is fi0 in the order specified by the p-type

τ and that i = 1. Hence we have fi0(y) = g(x1) in ∆=.

98

We will introduce extra colors in order to simulate all interactions between y and x̄.

Let ~G
′′

be the (q − p)-th augmentation of ~G. We construct in time linear in ||~G
′′
|| a set WITNESS(v)

for each v of ~G
′′

such that for all tuples v̄ of ~G
′′
, if ~G

′′
|= ψ(v̄u) for some node u, then there is a node

u′ ∈ WITNESS(g(v1)) such that ~G
′′
|= ψ(v̄u′). Moreover, for all v, |WITNESS(v)| ≤ N , where N is a

number depending only on p. We then encode these witness sets using suitable extra colors.

Computation of the Witness function

We start by initializing WITNESS(v) = ∅ for all v.

We then successively investigate all nodes u of ~G
′′

and do the following. If ~G
′′
|= ¬τ(u) then we

move on to the next u. If ~G
′′
|= τ(u) then let u1, · · · , ul be the current value of WITNESS(fi0(u)).

Let βp be αC(p)(αC(p) + 1)|x̄|+ 1.

Let i be minimal such that there exists j with fi(uj) = fi(u) and set i = αC(p) + 1 if such an i
does not exists. Let Si = {fi−1(uj) | fi(uj) = fi(u)}, where f0(uj) is uj in the case where i = 1. If

|Si| ≤ βp then we add u to WITNESS(fi0(u)).

The algorithm is linear time and the size of WITNESS(v) ≤ (βp + 1)βp+1. It remains to show that it

has the desired properties.

Analysis of the Witness function

Assume ~G
′′
|= ψ(v̄u). If u ∈ WITNESS(g(v1)), then we are done. Otherwise note that fi0(u) =

g(v1) and that ~G
′′
|= τ(u). Let i and Si be as described in the algorithm when investigating u. As

u was not added to WITNESS(fi0(u)), we must have |Si| > βp. Let Si = {ui1 , · · · , uβp , · · · } be the

corresponding elements of WITNESS(g(v1)). Among these data values, for each j at most αC(p) of

them may be a predecessor of vj . Similarly, for each i′ ≤ i and each j, at most αC(p) of them may be

such that their image by fi′ is a predecessor of vj . For each i′ > i their image is exactly fi′(u) and it

does not falsify any inequality conjuncts of ψ. Hence, at most αC(p)(αC(p) + 1)|v̄| of them may falsify

at least one of the inequality conjuncts of ψ. We can therefore find in WITNESS(g(v1)) at least one

element satisfying the formula, as |Si| > αC(p)(αC(p) + 1)|v̄|.

Recoloring of ~G
′′

Based on WITNESS we recolor ~G
′′

as follows. Let γp = (βp + 1)βp+1. For each v ∈ ~G
′′

we order

WITNESS(v). We can now speak of the ith witness of v.

For each i ≤ γp we introduce a new unary predicate Pi and for each u ∈ ~G
′′

we set Pi(u) if

WITNESS(u) contains at least i elements.

For each i ≤ γp and each h, h′ ∈ αC(q) we introduce a new unary predicate Pi,h,h′ and for each

v ∈ ~G
′′

we set Pi,h,h′(v) if the ith witness of h(v) is an element u with h′(u) = v.

For each i ≤ γp and each h ∈ αC(q) we introduce a new unary predicate Qi,h and for each v ∈ ~G
′′

we set Qi,h(v) if the ith witness of h(v) is v.

We denote by ~G
′

the resulting graph and notice that it can be computed in linear time from ~G
′′
.

Finally, note that if y is the ith witness of g(x1), the equality fj(y) = h(xk) with j < i0 is equivalent

over ~G
′

to hj,i0(h(xk)) = g(x1) ∧ Pi,hj,i0 ,fj (h(xk)) and the equality y = h(xk) is equivalent over ~G
′

to fi0(h(xk)) = g(x1) ∧Qi,fi0 (h(xk)). From the definition of p-type, the equality fj(y) = h(xk) with

j > i0 is equivalent to hi0,j(g(x1)) = h(xk).

99

Computation of φ

In view of the analysis above, ψ(x̄y) is equivalent to a formula:

∨

i≤γp
ψ1(x̄) ∧ ψ

i(x̄)

where ψi(x̄) checks that the ith witness of g(x1) makes the initial formula true. In view of the above,
this formula ψi(x̄) is defined by

Pi(g(x1)) ∧
∧

fj(y) 6=h(xk)∈∆ 6=

j<i0

¬
(

hj,i0(h(xk)) = g(x1) ∧ Pi,hj,i0
,fj (h(xk))

)

∧
∧

fj(y) 6=h(xk)∈∆ 6=

j≥i0

hi0,j(g(x1)) 6= h(xk)

∧
∧

y 6=h(xk)∈∆ 6=

¬
(

fi0(h(xk)) = g(x1) ∧Qi,fi0 (h(xk))
)

The special case when ∆= is empty is a simpler version of the previous case, only this time it is

enough to construct a set WITNESS which does not depend on v. This is done as follows:

It is constructed as in the previous case and verifies: for all tuples v̄ of ~G
′′
, if ~G

′′
|= ψ(v̄u) for some

node u, then there is a node u′ ∈ WITNESS such that ~G
′′
|= ψ(v̄u′). Moreover, |WITNESS| ≤ γp.

Recoloring of ~G
′′

Based on WITNESS we recolor ~G
′′

as follows. Let γp = (βp + 1)βp+1. We order WITNESS and we

can now speak of the ith witness.

For each i ≤ γp we introduce a new unary predicate Pi and for each v ∈ ~G
′′

we set Pi(v) if

WITNESS contains at least i elements.

For each i ≤ γp and each h ∈ σC(q) we introduce a new unary predicate Pi,h and for each v ∈ ~G
′′

we set Pi,h(v) if the ith witness is a element u with h(u) = v.

For each i ≤ γp and each h ∈ σC(q) we introduce a new unary predicate Qi and for each v ∈ ~G
′′

we set Qi(v) if the ith witness is v.

We denote by ~G
′

the resulting graph and notice that it can be computed in linear time from ~G.

Finally, note that if y is the ith witness, the equality fj(y) = h(xk) is equivalent over ~G
′

to

Pi,fj (h(xk)) and the equality y = h(xk) is equivalent over ~G
′

to Qi(h(xk)).

The desired formula φ is computed as for the previous case when ∆= was not empty.

This finishes the proof of the last case among all the possible compositions of ∆= and thereby

concludes the proof of Proposition 7.3.1.

�

Example A-5 Consider one of the quantified formulas as derived by Example A-4:

∃z y = h(x) ∧ τh,f,g(z) ∧ f(z) = x

100

The resulting quantifier-free query has the form:

P (x) ∧ h(x) = y

where P (x) is a newly introduced color saying “∃z τh,f,g(z) ∧ f(z) = x”. The key point is that this

new predicate can be computed in linear time by iterating through all nodes z, testing whether τh,f,g(z)
is true and, if this is the case, coloring f(z) with color P .

Applying the quantifier elimination process from inside out using Proposition 7.3.1 for each step

and then applying Lemma 7.2.3 to the result yields:

Theorem 7.3.2 Let C be a class of graphs with bounded expansion. Let ψ(x̄) be a query of FO over a

recoloring of σC(0) with at least one free variable. Then one can compute a p and a simple quantifier-

free formula φ(x̄) over a recoloring of σC(p) such that:

for all ~G ∈ C, we can construct in time O(||~G||) a graph ~G
′
∈ Cp such that

φ(~G
′
) = ψ(~G)

We will make use of the following useful consequence of Theorem 7.3.2:

Corollary 7.3.1 Let C be a class of graphs with bounded expansion and let ψ(x̄) be a formula of FO

with at least one free variable. Then, for all ~G ∈ C, after a preprocessing in time O(||~G||), we can test,

given ū as input, whether ~G |= ψ(ū) in constant time.

PROOF By Theorem 7.3.2 it is enough to consider quantifier-free simple queries. Hence it is enough to

consider a query consisting in a single atom of either P (x) or P (f(x)) or x = f(y) or f(x) = g(y) or

x = y or of a negation of any of the above.

During the preprocessing phase we associate with each node v of the input graph a list L(v) contain-

ing all the predicates satisfied by v and all the images of v by a function symbol from the signature. This

can be computed in linear time by enumerating all relations of the database and updating the appropriate

lists with the corresponding predicate or the corresponding image.

Now, because we use the RAM model, given u we can in constant time recover the list L(u). Using

those lists it is immediate to check all atoms of the formula in constant time.

�

Theorem 7.3.1 is a direct consequence of Theorem 7.3.2 and Corollary 7.3.1: Starting with a sen-

tence, and applying Theorem 7.3.2 for eliminating quantifiers from inside out we end up with a Boolean

combination of formulas with one variable. Each such formula can be tested in O(||~G||) by iterating

through all nodes v of ~G and in constant time (using Corollary 7.3.1) checking if v can be substituted

for the sole existentially quantified variable.

On top of Theorem 7.3.1 the following corollary is immediate from Theorem 7.3.2 and Corol-

lary 7.3.1:

Corollary 7.3.2 Let C be a class of graphs with bounded expansion and let ψ(x) be a formula of FO

with one free variable. Then, for all ~G ∈ C, computing the set ψ(~G) can be done in time O(||~G||).

7.4 Testing

In this section we prove Theorem 7.1.3. In fact there is almost nothing left to do: we already have the

solution to the testing problem for classes of graphs with bounded expansion (cf. Corollary 7.3.1) and

Lemma 7.2.2 justifies that it is all that we need.

101

7.5 Enumeration

In this section we consider first-order formulas with free variables and show that we can enumerate with

constant delay answers to those queries over any class of databases with bounded expansion. Moreover,

assuming a linear order on the domain of the input structure, we will see that the answers can be output

in the lexicographical order. As before we only state the result for graphs, but it immediately extends to

arbitrary structures by Lemma 7.2.2 and so proves Theorem 7.1.2. Recall that we assumed (without loss

of generality) the presence of a linear order on the domain.

Theorem 7.5.1 Let C be a class of graphs with bounded expansion and let φ(x̄) be a first-order query

over σC(0). Then the enumeration problem of φ over C is in CONSTANT-DELAYlin. Moreover, the answers

to φ can be output in lexicographical order.

Before going into details, we start with an outline of the proof. The reasoning is going to be as

follows:

• The proof is by induction on the number of free variables.

• The case k = 1 is done by Corollary 7.3.2.

• For k > 1, using the normalization and quantification procedures of the previous sections, it is

enough to consider quantifier-free queries ψ(x̄y) of the form:

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆ 6=(x̄y).

We further set ψ′′(x̄) to be the formula ∃yψ(x̄y).
• In the easy case when ψ contains conjunct of the form f(xi) = y, we enumerate ψ′′(x̄) by

induction and append f(xi) to each resulting tuple.

• The most interesting case is when ψ contains conjunct of the form f(y) = g(xi). Then the

algorithm proceeds as follows:

◦ It enumerates all the solutions to ψ′′(x̄) by induction and appends to it all the relevant y.

◦ For this it computes, during the preprocessing phase, several successor functions among nodes,

such that for each x̄, at least one of them will enumerate the associated y.

◦ The key point is that only finitely many successor functions need to be precomputed and that the

suitable one can be found by looking only at x̄.

We now formalize the above approach:

PROOF [of Theorem 7.5.1]

Fix a class C of graphs with bounded expansion and a query φ(x̄) with k free variables. Let ~G be

the input graph and V be its set of vertices.

The proof is by induction on the number of free variables. The case k = 1 is done by Corollary 7.3.2.

Assume now that k > 1 and that x̄ and y are the free variables of φ, where |x̄| = k − 1.

We apply Theorem 7.3.2 to get a simple quantifier-free query ϕ(x̄y) and a structure ~G
′
∈ Cp, for

some p that does not depend on ~G, such that ϕ(~G
′
) = φ(~G) and ~G

′
can be computed in linear time from

~G.

We normalize the resulting simple quantifier-free query using Proposition 7.2.1, and obtain an equiv-

alent quantifier-free formula ψ and a structure ~G
′′
∈ Cq, where q depends only on p and ϕ, ~G

′′
can be

computed in linear time from ~G
′
, ϕ(~G

′
) = ψ(~G

′′
) and ψ is a disjunction of formulas of the form (7.1):

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆ 6=(x̄y),

where ∆=(x̄y) is either empty or contains one clause of the form y = f(xi) or one clause of the form

f(y) = g(xi) for some suitable i, f and g; and ∆ 6=(x̄y) contains arbitrarily many clauses of the form

y 6= f(xi) or f(y) 6= g(xj).

102

By Fact 3.1.4 it is enough to show that we can enumerate each disjunct separately. In the sequel we

then assume that ψ has the form described in (7.1). We let ψ′(y) be the formula ∃x̄ψ(x̄y) and ψ′′(x̄) be

the formula ∃yψ(x̄y).

If ∆= contains an equality of the form y = f(xi) then we replace y by f(xi) in ψ(x̄y), enumerate

by induction the formula ψ′′ and replace each of its output ā with (āf(ai)) in order to obtain the desired

constant delay enumeration algorithm. We therefore now assume that ∆= does not contain such equality.

We now define two functions L : V → 2V and W : V k−1 → V depending on whether ∆= is empty

or consists of a single clause of the form f(y) = g(xi). If ∆= is empty we pick an arbitrary nodew in ~G
′′

and set L(w) = ψ′(~G
′′
), L(v) = ∅ for v 6= w, and W (v̄) = w for all tuples v̄. If ∆= = {f(y) = g(xi)}

we set W (v̄) = g(vi) for all tuples v̄ and define L using the following procedure. We initialize L(v) to

∅ for each v ∈ V . Then, for each v ∈ ψ′(~G
′′
), we add v to the set L(f(v)).

Notice that L can be computed in time linear in ||~G
′′
|| (using Corollary 7.3.2), that each list L(v)

is sorted with respect to the linear order on the domain and that, given v̄, W (v̄) can be computed in

constant time. Moreover, for each v̄u, ~G
′′
|= ψ(v̄u) implies u ∈ L(W (v̄)) and if u ∈ L(W (v̄)) then

∆=(v̄u) is true.

By induction we can enumerate ψ′′(x̄) with constant delay.

On top of the linear time preprocessing necessary for enumerating ψ′′ we do the following extra

preprocessing. We first compute L(v) for all v ∈ V . Then, for each v ∈ V , we perform the follow-

ing procedure on L(v). Each procedure will work in time linear in the size of L(v), hence the total

preprocessing will take time O(|V |).

Fix v and set L = L(v). We denote by < the order on L. (Recall that this order is consistent with

the initial order on the domain.)

For S1, . . . , SαC(q) ⊆ V we define NEXTf1,S1,...,fαC(q),SαC(q)
(u) to be the first element w ≥ u

of L such that f1(w) /∈ S1, . . . , and fαC(q)(w) /∈ SαC(q). If such w does not exist, the value of

NEXTf1,S1,...,fαC(q),SαC(q)
(u) is NULL. When all Si are empty, we write next∅(u) and by the above

definitions we always have next∅(u) = u. We denote such functions as shortcut pointers of u. We

write NEXTf1,S′
1,...,fαC(q),S

′
αC(q)

(u) � NEXTf1,S1,...,fαC(q),SαC(q)
(u) if for each 1 ≤ i ≤ αC(q) we have

S′
i ⊆ Si. Note that for a given u the � relation is a partial order on the set of shortcut pointers of

u. A trivial observation is that if NEXTf1,S′
1,...,fαC(q),S

′
αC(q)

(u) � NEXTf1,S1,...,fαC(q),SαC(q)
(u), then

NEXTf1,S′
1,...,fαC(q),S

′
αC(q)

(u) ≤ NEXTf1,S1,...,fαC(q),SαC(q)
(u). The size of a shortcut pointer

NEXTf1,S1,...,fαC(q),SαC(q)
(u) is the sum of sizes of the sets Si.

In order to avoid writing too long expressions containing shortcut pointers, we introduce the follow-

ing abbreviations:

• NEXTf1,S1,...,fαC(q),SαC(q)
(u) is denoted with NEXT~S

(u),

• NEXTf1,S1,...,fi,Si∪{ui},...,fαC(q),SαC(q)
(u) is denoted with NEXT~S[Si+={ui}](u).

Set βq = (k − 1) · αC(q)2.

Computing all shortcut pointers of size βq would take more than linear time. We therefore compute

a subset of those, denoted SCL, that will be sufficient for our needs. SCL is defined in an inductive

manner. For all u, next∅(u) ∈ SCL. Moreover, if the shortcut pointer NULL 6= NEXT~S
(u) ∈ SCL and

has a size smaller than βq, then, for each i, NEXT~S[Si+={ui}](u) ∈ SCL, where ui = fi(NEXT~S
(u)). We

then say that NEXT~S
(u) is the origin of NEXT~S[Si+={ui}](u). Note that SCL contains all the shortcut

pointers of the form NEXTfi,{fi(u)}(u) for u ∈ L and these are exactly the shortcut pointers of u of size

1. By SCL(u) ⊆ SCL we denote the shortcut pointers of u that are in SCL.

The set SCL has the following properties:

103

Claim 7.5.1 Let NEXT~S
(u) be a shortcut pointer of size not greater than βq. Then there exists NEXT ~S′(u) ∈

SCL such that NEXT~S
(u) = NEXT ~S′(u). Moreover, such NEXT ~S′(u) can be found in constant time.

PROOF If NEXT~S
(u) ∈ SCL, then we have nothing to prove. Assume then that NEXT~S

(u) /∈ SCL. Let

NEXT ~S′(u) ∈ SCL be any maximal, in terms of its size, shortcut pointer of u such that NEXT ~S′(u) �
NEXT~S

(u) (recall that this means that for 1 ≤ i ≤ αC(q) we have S′
i ⊆ Si). Such a shortcut pointer

always exists as next∅(u) � NEXT~S
(u) and next∅(u) ∈ SCL. Note that the size of NEXT ~S′(u) is strictly

smaller than the size of NEXT~S
(u), so it is strictly smaller than βq. Clearly, NEXT ~S′(u) can be found in

constant time. We claim that NEXT~S
(u) = NEXT ~S′(u).

Let v = NEXT ~S′(u). We know that v ≤ NEXT~S
(u). Assume now that there would exist 1 ≤ i ≤

αC(q) such that ui = fi(v) ∈ Si. Then ui /∈ S′
i and as the size of NEXT ~S′(u) is smaller than βq, we have

that NEXT~S[Si+={ui}](u) ∈ SCL. But NEXT~S[Si+={ui}](u) has size strictly greater than NEXT ~S′(u) and

NEXT~S[Si+={ui}](u) � NEXT~S
(u), which contradicts the maximality of NEXT ~S′(u). This means that

such an i does not exist and concludes the fact that NEXT~S
(u) = NEXT ~S′(u).

�

Claim 7.5.2 There exists a constant ζ(q, k) such that for every node u we have |SCL(u)| ≤ ζ(q, k).

PROOF Fix u. Note that there is exactly 1 shortcut pointer of u of size 0 (next∅(u)) and αC(q) shortcut

pointers of u of size 1. By the definition of SCL, any shortcut pointer NEXT~S
(u) can be an origin of

up to αC(q) shortcut pointers of the form NEXT~S[Si+={ui}](u), where ui = fi(NEXT~S
(u)) and the size

of NEXT~S[Si+={ui}](u) is either the same as the size of NEXT~S
(u) (if ui ∈ Si) or greater by 1. This

way we see that SCL(u) contains up to αC(q)2 shortcut pointers of size 2 and, in general, up to αC(q)s

shortcut pointers of size s. As the maximal size of a computed shortcut pointer is bounded by βq, we

have |SCL(u)| ≤
∑

0≤i≤βq αC(q)i. Both αC(q) and βq depend only on q and k, which concludes the

proof.

�

The following claim guarantees that SCL can be computed in linear time and has therefore a linear

size.

Claim 7.5.3 SCL can be computed in time linear in |L|.

PROOF In linear time we set next∅(u) = u for u ∈ L.

We first show how to compute shortcut pointers of size 1 of each node u ∈ L. We do it in an

inductive manner, starting from the last node of L and moving backwards. Recall that these shortcut

pointers are of the form NEXTfi,{fi(u)}(u). If u is the last node on L, then all these values are NULL.

We now assume that u is not last on L and that for all v > u all the shortcut pointers of v of size 1 were

computed. We show how to compute shortcut pointers of u of size 1.

For each 1 ≤ i ≤ αC(q) we compute NEXTfi,{fi(u)}(u). Let v be the node successor of u in

L. If fi(u) 6= fi(v), then NEXTfi,{fi(u)}(u) = v. If fi(u) = fi(v), then NEXTfi,{fi(u)}(u) =
NEXTfi,{fi(next(v))}(next(v)) and the later shortcut pointer has already been computed.

Clearly all the shortcut pointers of size 1 are computed in time linear in the size of L.

We now turn to the computation of arbitrary NEXT~S
(u) ∈ SCL for u ∈ L. We again do it in an

inductive manner starting from the last node on L and move backwards. If u is the last node on L then

we are already done as all the shortcut pointers of u of size 1 are NULL and by definition there are no

shortcut pointers of u of greater sizes in SCL. We now assume that u is not last on L and that for all

v > u set SCL(v) is computed. We show how to compute SCL(u).

104

Consider now NEXT~S
(u). If for all i we have fi(u) 6∈ Si, then we are done as NEXT~S

(u) = u.

Otherwise there exists i such that fi(u) ∈ Si. Let v = NEXTfi,{fi(u)}(u). Clearly v ≤ NEXT~S
(u)

and NEXT~S
(u) = NEXT~S

(v). We can conclude this case with observation that NEXT~S
(v) = NEXT ~S′(v),

where NEXT ~S′(v) ∈ SCL(v) is the shortcut pointer of v from the application of Claim 7.5.1 to NEXT~S
(v).

Claim 7.5.1 assures that we can find NEXT ~S′(v) in constant time and since this shortcut pointer is equal

to NEXT~S
(u), thus NEXT~S

(u) is computed in constant time as well. As Claim 7.5.2 shows that we only

need to consider constantly many shortcut pointers for each u, the whole process takes time O(|L|).

�

The computation of SCL concludes the preprocessing phase and it follows from Claim 7.5.3 that it

can be done in linear time. We now turn to the enumeration phase.

We enumerate one by one the solutions to ψ′′(x̄) by simulating the enumeration algorithm obtained

from the induction.

Having a solution v̄ to ψ′′ by construction we know that all nodes u such that ~G
′′
|= ψ(v̄u) are in

L = L(W (v̄)). Recall also that all elements u ∈ L make τ(u) ∧∆=(v̄u) true. For 1 ≤ i ≤ αC(q) we

set Si = {g(vj) : g(xj) 6= fi(y) is a conjunct of ∆ 6=}. Starting with u the first node of the sorted list L,

we apply the following procedure:

1. If u = NULL, finish the nested enumeration procedure for v̄. If not, let NEXT ~S′(u) be the shortcut

pointer from the application of Claim 7.5.1 to NEXT~S
(u). Set u′ = NEXT ~S′(u). If u′ = NULL,

finish the nested enumeration procedure for v̄.

2. If ~G
′′
|= ψ(v̄u′), output (v̄u′).

3. Reinitialize u to the successor of u′ in L and continue with Step 1.

We now show that the algorithm is correct, i.e. that it outputs all ψ(~G
′′
) with no repetition.

The algorithm clearly outputs a subset of ψ(~G
′′
) as it tests whether ~G

′′
|= ψ(v̄u′) before outputting

tuple (v̄u′).
By the definition, list L contains no duplicates and as the algorithm moves only forward on that list,

there are no repetitions during the output process.

By the definition of sets Si and NEXT~S
(u), for each u ≤ w < u′ there is a suitable i and j such

that g(vj) = fi(w) and g(xj) 6= fi(y) is a conjunct of ∆ 6=. This way the algorithm does not skip any

solutions at Step 1 and so it outputs exactly ψ(~G
′′
).

It remains to show that there is a constant time between any two outputs.

By construction, for each v̄, L = L(W (v̄)) contains an element u such that (v̄u) is a solution. We

therefore need to show that there is a constant time between any two outputs involving an element in

L. Step 1 takes constant time due to Claim 7.5.1. From there the algorithm either immediately outputs

a solution at Step 2 or jumps to Step 3. This means that ~G
′′
6|= ψ(v̄u′), but from the definitions of

list L, sets Si and shortcut pointers NEXT~S
(u) it is only the ∆ 6= that is falsified and it is because of an

inequality of the form y 6= g(xj) for some suitable g and j (where g may possibly be identity). This

implies that u′ = g(vj). As all the elements on L are distinct, the algorithm can skip over Step 2 up to

(k − 1) · (αC(q) + 1) times for each tuple v̄ (there are up to that many different images of nodes from

v̄ under αC(q) different functions and the initial values of v̄). This way the delay is bounded by up to

k · (αC(q) + 1) consecutive applications of Claim 7.5.1 and is in fact constant.

As the list Lwas sorted with respect to the linear order on the domain, it is clear that the enumeration

procedure outputs the set of solutions in lexicographical order.

This concludes the proof of the theorem.

�

105

7.6 Counting

In this section we investigate the problem of counting the number of solutions to a query, i.e. computing

|q(D)|. As usual we only state and prove our results over graphs but they generalize to arbitrary relational

structures via Lemma 7.2.2. This way Theorem 7.6.1 yields Theorem 7.1.4. The proof goes by induction

on the number of free variables and follows the same outline as for enumeration. It only replaces the step

of the enumeration that was precomputing several successor functions with a combinatorial argument

counting their number.

Theorem 7.6.1 Let C be class of graphs with bounded expansion and let φ(x̄) be a first-order formula.

Then, for all ~G ∈ C, we can compute |φ(~G)| in time O(||~G||).

PROOF The key idea is to prove a weighted version of the desired result. Assume φ(x̄) has exactly k
free variables and for 1 ≤ i ≤ k we have functions #i : V → N. We will compute in time linear in ||~G||
the following number:

|φ(~G)|# :=
∑

ū∈φ(~G)

∏

1≤i≤k
#i(ui).

By setting all #i to be constant functions with value 1 we get the regular counting problem. Hence

Theorem 7.6.1 is an immediate consequence of the next lemma.

Lemma 7.6.1 Let C be class of graphs with bounded expansion and let φ(x̄) be a first-order formula

with exactly k free variables. For 1 ≤ i ≤ k let #i : V → N be functions such that for each v the

value of #i(v) can be computed in constant time. Then, for all ~G ∈ C, we can compute |φ(~G)|# in time

O(||~G||).

PROOF The proof is by induction on the number of free variables.

The case k = 1 is trivial: in time linear in ||~G|| we compute φ(~G) using Corollary 7.3.2. By

hypothesis, for each v ∈ φ(~G), we can compute the value of #1(v) in constant time. Therefore the

value

|φ(~G)|# =
∑

v∈φ(~G)

#1(v)

can be computed in linear time as desired.

Assume now that k > 1 and that x̄ and y are the free variables of φ, where |x̄| = k − 1.

We apply Theorem 7.3.2 to get a simple quantifier-free query ϕ(x̄y) and a structure ~G
′
∈ Cp, for

some p that does not depend on ~G, such that ϕ(~G
′
) = φ(~G) and ~G

′
can be computed in linear time from

~G. Note that |φ(~G)|# = |ϕ(~G
′
)|#, so it is enough to compute the latter value.

We normalize the resulting simple quantifier-free query using Proposition 7.2.1, and obtain an equiv-

alent quantifier-free formula ψ and a structure ~G
′′
∈ Cq, where q depends only on p and ϕ, ~G

′′
can be

computed in linear time from ~G
′
, ϕ(~G

′
) = ψ(~G

′′
) and ψ is a disjunction of formulas of the form (7.1):

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆ 6=(x̄y),

where ∆=(x̄y) is either empty or contains one clause of the form y = f(xi) or one clause of the form

f(y) = g(xi) for some suitable i, f and g; and ∆ 6=(x̄y) contains arbitrarily many clauses of the form

y 6= f(xi) or f(y) 6= g(xj). Note that |ϕ(~G
′
)|# = |ψ(~G

′′
)|#, so it is enough to compute the latter

value.

106

Observe that it is enough to solve the weighted counting problem for each disjunct separately, as we

can then combine the results using a simple inclusion-exclusion reasoning. In the sequel we then assume

that ψ has the form described in (7.1).

The proof now goes by induction on the number of inequalities in ∆ 6=. While the inductive step

turns out to be fairly easy, the difficult part is the base step of the induction.

We start with proving the inductive step. Let g(y) 6= f(xi) be an arbitrary inequality from ∆ 6=

(where g might possibly be the identity). Let ψ− be ψ with this inequality removed and ψ+ = ψ− ∧
g(y) = f(xi). Of course ψ and ψ+ have disjoint sets of solutions and we have:

|ψ(~G
′′
)|# = |ψ−(~G

′′
)|# − |ψ+(~G

′′
)|#.

Note that ψ− and ψ+ have one less conjunct in ∆ 6=. The problem is that ψ+ is not of the form (7.1)

as it may now contain two elements in ∆=. However it can be seen that the removal of the extra equality

in ∆= as described in the proof of Proposition 7.2.1 does not introduce any new elements in ∆ 6=. While

the precise statement of this fact is slightly heavy, there is no deep reasoning in the proof. We now

precise it in the following claim:

Claim 7.6.1 There exists a query ψ+
NF such that: its size depends only on the size of ψ+, ψ+

NF is in the

normal form given by (7.1), it contains an inequality conjunct h(y) 6= g1(xi) (where h might possibly be

identity) iff ψ+ also contains such conjunct and ψ+
NF(

~G
′′
) = ψ+(~G

′′
). Moreover, ψ+

NF can be constructed

in time linear in the size of ψ+.

PROOF The proof is a simple case analysis of the content of ∆= of ψ.

If its empty, then ψ+
NF is already in the desired form.

If it contains an atom of the form y = h2(xj), then equality g(y) = f(xi) is equivalent to

g(h2(xj)) = f(xi) and we are done.

If it contains an atom of the form h3(y) = h2(xj) and g is identity, then h3(y) = h2(xj) is equivalent

to h3(f(xi)) = h2(xj). If g is not identity, then τ(y) ensures us that either g(y) determines h3(y) or

vice versa. If we have h4(g(y)) = h3(y), then h3(y) = h2(xj) is equivalent to h4(f(xi)) = h2(xj).
The other case is symmetric.

The fact that ψ+
NF does not contain any additional inequalities, that it can be computed in time linear

in the size of ψ+ and that ψ+
NF(

~G
′′
) = ψ+(~G

′′
) follows from the above construction.

�

We can therefore remove the extra element in ∆+ and assume that ψ+ has the desired form. We

can now use the inductive hypothesis on the size of ∆ 6= to both ψ− and ψ+ in order to compute both

|ψ−(~G
′′
)|# and |ψ+(~G

′′
)|# and derive |ψ(~G

′′
)|#.

It remains to show the base of the inner induction. In the following we assume that ∆ 6= is empty.

The rest of the proof is a case analysis on the content of ∆=. We do each case one by one.

Assume then that ∆= consists of an atom of the form y = f(x1).
Note that the solutions to ψ are of the form (āf(a1)). We have:

|ψ(~G
′′
)|#=

∑

(ūv)∈ψ(~G
′′
)



#k(v)
∏

1≤i≤k−1

#i(ui)





=
∑

(ūf(u1))∈ψ(~G
′′
)



#k(f(u1))
∏

1≤i≤k−1

#i(ui)





=
∑

(ūf(u1))∈ψ(~G
′′
)



#1(u1)#k(f(u1))
∏

2≤i≤k−1

#i(ui)





107

In linear time we now iterate through all nodes u in ~G
′′

and set

#′
1(u) := #1(u) ·#k(f(u))

#′
i(u) := #i(u) for 2 ≤ i ≤ k − 1.

Let ϑ(x̄) be ψ with all occurrences of y replaced with f(x1). We then have:

|ψ(~G
′′
)|# =

∑

(ūf(u1))∈ψ(~G
′′
)



#′
1(u1)

∏

2≤i≤k−1

#′
i(ui)





=
∑

ū∈ϑ(~G
′′
)

∏

1≤i≤k−1

#′
i(ui)

= |ϑ(~G
′′
)|#′

By induction on the number of free variables, as #′
i(u) can be computed in constant time for each i

and u, we can compute |ϑ(~G
′′
)|#′ in time linear in ||~G

′′
|| and we are done.

Assume now that ∆= consists of an atom g(y) = f(x1). Let ψ′(y) be the formula ∃x̄ψ(x̄y) and let

ψ′′(x̄) be the formula ∃yψ(x̄y). We first compute set ψ′(~G
′′
) in linear time using Corollary 7.3.2. We

now define a function #′
k : V → N as:

#′
k(u) :=

∑

{v∈ψ′(~G
′′
)

g(v)=u}

#k(v).

Note that this function can be easily computed in linear time by going through all nodes v and adding

#k(v) to #′
k(g(v)).

Finally we set:

#′
1(u) := #1(u)#

′
k(f(u))

#′
i(u) := #i(u) for 2 ≤ i ≤ k − 1.

Let u1, u2 ∈ ψ′(~G
′′
) be such that g(u1) = g(u2). Because ∆ 6= is empty, observe that ~G

′′
|=

∀x̄(ψ(x̄u1) ↔ ψ(x̄u2)). Based on this observation we now group the solutions to ψ according to their

last k − 1 values and get:

108

|ψ(~G
′′
)|# =

∑

(ūv)∈ψ(~G
′′
)



#k(v)
∏

1≤i≤k−1

#i(ui)





=
∑

ū∈ψ′′(~G
′′
)

∑

{v∈ψ′(~G
′′
)

g(v)=f(u1)}



#k(v)
∏

1≤i≤k−1

#i(ui)





=
∑

ū∈ψ′′(~G
′′
)











∑

{v∈ψ′(~G
′′
)

g(v)=f(u1)}

#k(v)











∏

1≤i≤k−1

#i(ui)

=
∑

ū∈ψ′′(~G
′′
)



#′
k(f(u1))

∏

1≤i≤k−1

#i(ui)





=
∑

ū∈ψ′′(~G
′′
)



#1(u1)#
′
k(f(u1))

∏

2≤i≤k−1

#′
i(ui)





=
∑

ū∈ψ′′(~G
′′
)

∏

1≤i≤k−1

#′
i(ui)

= |ψ′′(~G
′′
)|#′

By induction on the number of free variables, as #′
i(u) can be computed in constant time for each i

and u, we can compute |ψ′′(~G
′′
)|#′ and we are done with this case.

The remaining case when ∆= is empty is handled similarly to the previous one. We then have

ψ(x̄y) = ψ1(x̄) ∧ τ(y).

After setting

#′
1(u) := #1(u) ·

∑

v∈τ(~G′′
)

#k(v)

#′
i(u) := #i(u) for 2 ≤ i ≤ k − 1

we see that

|ψ(~G
′′
)|# = |ψ1(~G

′′
)|#′

and we conclude again by induction on the number of free variables.

This finishes the case analysis of the content of ∆= and, as we explained before, concludes the proof

of Lemma 7.6.1.

�

As we said earlier, Theorem 7.6.1 is an immediate consequence of Lemma 7.6.1.

�

109

7.7 Discussions

As we have promised in the Introduction Section 7.1, before getting into conclusions, we first give the

reduction of Theorem 7.1.5 to Theorem 6.1.5. As usual, we only state and prove the result over graphs

but they generalize to arbitrary relational structures via Lemma 7.2.2.

PROOF [of Theorem 7.1.5]

In [53] yet another definition of the class of graphs with bounded expansion was given:

Theorem 7.7.1 ([53]) Let C be a class of graphs. The following conditions are equivalent:

1. C has bounded expansion,

2. there exists a function N : N → N such that for every s ∈ N and every graph G ∈ C the

graph G may be vertex-colored using N(s) colors so that each of the connected components of

the subgraph induced by i ≤ s colors has treewidth at most i− 1.

It was also shown in [53] that given p the coloring N(p) can actually be computed in time linear in

the size of the input graph.

Fix a first-order query ψ(x̄) and a class C of graphs with bounded expansion.

Let ~G be the input graph.

We use Theorem 7.3.2 to get a simple quantifier-free formula φ(x̄) over a recoloring of σC(p) and a

graph ~G
′
∈ Cp such that φ(~G

′
) = ψ(~G).

Assume now that |x̄| = k and we set s = k + k · αC(p).

By Fact 3.2.1 class Cp also has bounded expansion. We know that in time O(||~G
′
||) we can compute

a coloring of ~G
′

with N(s) colors such that each subgraph of this recoloring induced by any s colors

has treewidth bounded by s − 1. (See Point 2 of Theorem 7.7.1 and the discussions below). We do

exactly that and for each color C of this coloring we introduce a new unary predicate PC to the structure

describing graph ~G
′

(let COL be the set of all these colors) obtaining its recoloring ~G
′′
. It remains to

observe that φ(~G
′
) = φ(~G

′′
) (because φ does not talk about colors from COL) and that if v̄ ∈ φ(~G

′′
),

then each vi and every of its predecessors has exactly one of the colors from the newly introduced palette

COL. Thus:

φ(~G
′′
) = φ′(~G

′′
),

where φ′(x̄) =
∨

C1,...,Ck,C
1
1 ,...,C

1
αC(p)

,...,Ck
1 ,...,C

k
αC(p)

∈COL
φ(x̄)∧

∧

1≤i≤k
(

PCi
(xi) ∧

∧

1≤j≤αC(p)
PCi

j
(fj(xi))

)

.

Moreover, the big disjunction is clearly mutually exclusive from the fact that every node in the graph

has exactly one color from COL.

This way (as Theorem 7.1.4 allows us to use Fact 3.1.3), it is enough to handle each disjunct sepa-

rately. We choose a disjunct, denote it with φ′′(x̄) and set ζ to be exactly the set of colors from COL that

φ′′ mentions.

This basically finishes the proof. φ′′ is simple so it only talks about xi or their predecessors of

the form f(xi) and can test their unary properties or equalities/inequalities between them. This way,

instead of over ~G
′′
, we may evaluate it over ~G

′′
ζ which is the subgraph of ~G

′′
induced by colors from ζ.

From Point 2 of Theorem 7.7.1 we know that ~G
′′
ζ has treewidth bounded by s and as FO queries are in

particular MSO queries, we may conclude with Theorem 6.1.5.

�

110

The above reasoning can of course be mimicked to obtain proofs of Theorems 7.1.2– 7.1.4 without

having to go through the more direct reasoning as we presented in Sections 7.4– 7.6. There are a couple

of reasons why we did not follow this path.

• The main reason is the lexicographical order on the enumerated tuples. The MSO approach simply

does not ensure this property.

• Moreover, we believe that the direct approach to the proofs gives us a better insight into under-

standing both the implications of the normal form (7.1) and the “augmentational” point of view on the

concept of bounded expansion.

• Lastly come the “implementation” difficulties. While the direct approach, as we presented it,

seems to be feasible for a “real life” use, the results for MSO rely on some theoretically deep machin-

ery (see for example the Ehrenfeucht-Fraı̈ssé argument of Theorem 6.3.3 and the result of Colcombet,

Theorem 6.3.4) which might be quite challenging to handle.

On the other hand, the reduction to the MSO case obviously has its advantages too.

• It also gives us some insight into the notion of bounded expansion. In a sense, it emphasizes

the fact that if we consider first-order logic, then the main difficulties are contained in the quantifier

elimination procedure. The moment we are left with just quantifier-free queries, we can use the low

treewidth representation. While the notion of bounded expansion is rather new, the notion of treewidth

and the use of bounded treewidth in the context of obtaining FPT algorithms has been known for quite

some time now and has been extensively studied over the past years. As an effect, there is a big variety

of tools and results of different sort that one might use in that context. Theorems 6.1.2– 6.1.5 are just a

few examples of what class of graphs with bounded treewidth has to offer.

• What we should also admit is that it is not clear on how to use the normal form (7.1) to get the j-th
solution in logarithmic time.

It should also be noted that the proof of Theorem 7.1.4 from [56] follows exactly the above approach

of reduction to the MSO case of Theorem 6.1.4.

7.8 Conclusions

Queries written in first-order logic can be efficiently processed over the class of structures having

bounded expansion. We have seen that over these classes the problems investigated in this thesis can

be computed in time linear in the size of the input structure. The constant factor however is not very

good. The approach taken here, as well as the ones of [29, 42], yields a constant factor that is a tower

of exponentials whose height depends on the size of the query. This nonelementary constant factor is

unavoidable already on the class of unranked trees, assuming FPT6=AW[∗] [36]. In comparison, this

factor can be triply exponential in the size of the query in the bounded degree case, as we have explained

in Chapter 5.

It is possible that the results presented here can be generalized to a larger class of structures. In [55]

the class of nowhere dense graphs was introduced and it generalizes the notion of bounded expansion. It

seems that nowhere dense graphs do enjoy good algorithmic properties. However, we do not know yet

whether the model checking problem of first-order logic can be done in linear time over nowhere dense

structures. Actually, we do not even know whether the model checking problem is Fixed Parameter

Tractable (FPT) over nowhere dense graphs.

The class of nowhere dense structures seems to be the limit for having good algorithmic properties

for first-order logic. Indeed, it is known that the model checking problem of first-order logic over a class

of structures that is not nowhere dense cannot be FPT [50] (modulo some complexity assumptions and

closure of the class under substructures).

For structures of bounded expansion, an interesting open question is whether a sampling of the

solutions can be performed in linear time. For instance: can we compute the j-th solution in constant

111

time after a linear preprocessing? This can be done in the bounded degree case (see Theorem 5.1.4) but

we do not know if it is also possible in this setting. We leave the bounded expansion case for future

research.

112

8

Discussions

Contents

8.1 Lower bounds . 114

8.1.1 LINEAR-EVAL 6= CONSTANT-DELAYlin . 114

8.1.2 WEAK-CONSTANT-DELAYlin class . 115

8.1.3 On separation of WEAK-CONSTANT-DELAYlin and CONSTANT-DELAYlin . 115

Black-white trees . 115

The # function . 116

The φBW query . 117

Simple facts . 117

Computation of the # function . 118

The #-level-split structure . 119

Evaluation of φBW . 119

Weak enumeration of φBW . 119

Conclusions . 120

8.2 Bounded degree, bounded expansion and beyond 120

8.2.1 Stronger logic over bounded degree . 120

8.2.2 Bounded expansion . 122

Nowhere dense . 122

8.2.3 Other properties of bounded expansion . 124

The results presented in this thesis definitely do not cover all the different aspects of constant delay

enumeration. In this chapter we outline a few possible paths that one might follow in order to extend the

current knowledge on this topic.

This discussions are divided into two parts:

• Section 8.1 is dedicated to the problem of lower bounds in the context of constant delay enumer-

ation. We already mentioned some results on this in the State of the Art Chapter 4, but this time

we look at the problem from a slightly different angle.

• In Section 8.2 we look at the possibilities of extending results from Chapters 5 and 7. We look at

both natural directions, that is extending the logic beyond FO and the class of databases beyond

bounded expansion.

113

8.1 Lower bounds

All the lower bounds results that we have presented so far are modulo some complexity assumption. Re-

call for instance Theorem 4.1.4: for it to work we assume that the matrix multiplication problem cannot

be solved in quadratic time. For most of the remaining results saying that certain problem cannot be

enumerated with constant delay we made some assumptions on the complexity classes, like for instance

that W[1] 6= FPT.

But what all these results have in common is that they actually yield something more. They in fact

state that certain problem cannot even be evaluated in LINEAR-EVAL. Then Remark 2.7.1 implies that

enumeration is also not possible.

But this rises a very natural question: how does classes CONSTANT-DELAYlin and LINEAR-EVAL relate

to each other? We have the obvious inclusion CONSTANT-DELAYlin ⊆ LINEAR-EVAL by Remark 2.7.1,

but what about the other direction? Is it the case that CONSTANT-DELAYlin = LINEAR-EVAL?

It turns out that we can answer the last question in a negative way, meaning that we can show a

problem that is in LINEAR-EVAL, but not in CONSTANT-DELAYlin. Moreover, we can do this without any

complexity assumptions. A drawback is that this construction is fully artificial and we do not really learn

too much from the example separating the mentioned two classes. No new proof techniques or structural

facts about the enumeration as such are revealed. The reason for this is that the example greatly relies

on the time hierarchy theorem (we just need the knowledge that there are problems solvable in quadratic

time, but not in linear time) and the reasoning then follows a rather natural approach.

We now proceed as follows:

• In Section 8.1.1 we describe the example problem that separates classes LINEAR-EVAL and

CONSTANT-DELAYlin.

• In Section 8.1.2 we introduce a weakened version of CONSTANT-DELAYlin class called

WEAK-CONSTANT-DELAYlin (which still does not catch LINEAR-EVAL due to the same example), which

we conjecture is strictly between CONSTANT-DELAYlin and LINEAR-EVAL).

• In Section 8.1.3 we introduce an example that possibly might be used to separate CONSTANT-DELAYlin

and WEAK-CONSTANT-DELAYlin.

8.1.1 LINEAR-EVAL 6= CONSTANT-DELAYlin

We now present an example that separates LINEAR-EVAL from CONSTANT-DELAYlin. As we said earlier,

the drawback is that this example is rather artificial and does not give us any new insight into constant

delay enumeration.

Example 8.1.1 From the time hierarchy theorem (cf. [44]) we know that there are decision problems

that are computable in quadratic time, but not in linear time.

Let f be a decision problem such that on input I of size n the value f(I) cannot be computed in time

O(n) but can be computed in O(n2).
Consider now the following problem ψ: for the input I of size n we want to compute all the triples

(i, j, f(I)) such that 1 ≤ i, j ≤ n.

Clearly, ψ(I) contains n2 triples and we can compute it in O(n2): we first compute in O(n2) the

value of f(I) and then simply list the desired triples.

So the evaluation problem of ψ is in LINEAR-EVAL.

On the other hand it is immediate to see that the enumeration problem ofψ is not in CONSTANT-DELAYlin.

In the constant delay enumeration scenario we always output the first solution in linear time. Since each

tuple in the solution contains f(I), we cannot compute any single tuple from ψ(I) in O(n).

As a corollary of the above example and Remark 2.7.1 we get:

114

Theorem 8.1.1 CONSTANT-DELAYlin (LINEAR-EVAL.

8.1.2 WEAK-CONSTANT-DELAYlin class

Recall the definition of CONSTANT-DELAYlin class from Section 2.7.3. We now consider an extension of

CONSTANT-DELAYlin, which we get by dropping the assumption that a constant delay algorithm may use

only a constant amount of write memory during the enumeration phase. To be precise, we define:

We say that the enumeration problem of q is in the class WEAK-CONSTANT-DELAYlin if it can be

solved by a RAM algorithm which, on input D, can be decomposed into two steps:

• a precomputation phase that is performed in time O(||D||),

• followed by an enumeration phases that outputs q(D) with no repetitions and a constant delay

between two consecutive outputs.

A natural question that arises from the above definition is: how does the weakened class relate to the

initial one? Of course we have CONSTANT-DELAYlin ⊆ WEAK-CONSTANT-DELAYlin, but is this inclusion

strict?

One could also consider intermediate classes WEAK-n-CONSTANT-DELAYlin, which for input D limit

the write memory used by the enumeration phase to O(||D||n) or perhaps limit it to O(log (||D||)n), etc.

Of course more memory always results in at least as general class as the one with stronger restrictions,

but would these classes form a strict hierarchy?

Unfortunately, we do not know the answers to the above questions. In fact, we do not even know

whether WEAK-CONSTANT-DELAYlin = CONSTANT-DELAYlin or not. We conjecture that the two classes

are different, but for now the question remains open:

Open Problem 8.1.1 Decide whether WEAK-CONSTANT-DELAYlin = CONSTANT-DELAYlin.

8.1.3 On separation of WEAK-CONSTANT-DELAYlin and CONSTANT-DELAYlin

In this section we present an example that we believe could be used to separate CONSTANT-DELAYlin

from WEAK-CONSTANT-DELAYlin. We use it to illustrate a technique of “hiding a computation” that is

available in the WEAK-CONSTANT-DELAYlin scenario, but is a lot more limited inside CONSTANT-DELAYlin.

We find this technique quite promising with respect to possibly answering the question from Open Prob-

lem 8.1.1 negatively. We now turn to the example.

Black-white trees

Throughout this section the input database is going to be a full binary tree T with nodes having either

white or black colors. We call such trees the black-white trees. Given a node v ∈ T we write W (v) if

v has white color and B(v) otherwise. We write col(v) to denote the color of v. A level of a tree is the

set of nodes that are at the same distance from the root. As usual, root is at level 0, its children are at

level 1, children of children of the root are at level 2 and so on. Given a node v ∈ T we write lvl(v) to

denote its level. It is easy to see that a full binary tree with n levels (level 0, level 1, . . . , level n− 1) has

exactly 2n − 1 nodes and that there are 2i nodes at level i. Given a node v ∈ T we write T↓v to denote

the subtree of T rooted at v.

115

The # function

We are going to assign a natural value to each node of the input tree T. Assume T has n levels. We

inductively define a function # : T → N starting from leaves and moving up. Let v ∈ T. Then:

• if lvl(v) = n− 1, then #(v) = 0;

• else #(v) = |{(u,w) ∈ T↓v : col(u) = col(w) and #(u) = #(w) and lvl(u) = lvl(w)
and u is to the left of w}|.

Given node v, we call set {(u,w) ∈ T↓v : col(u) = col(w) and #(u) = #(w) and lvl(u) =
lvl(w) and u is to the left of w} the accounting set for v. When we say a value of node v, we mean the

value of #(v).

Let us consider the following example to have a better intuition about the # function.

Example 8.1.2 Consider the following input tree T:

v_15v_14v_13v_12v_11v_10v_9v_8

v_4 v_5 v_6 v_7

v_3v_2

v_1

From the definition of # function we have #(vi) = 0 for i = 8, 9, . . . , 15.

For nodes on level 2, we have #(v4) = #(v6) = 1, since leaves in their subtrees share a color (and

all leaves have value 0). It is not the case for v5 and v7, so #(v5) = #(v7) = 0.

Let us now do the analysis for v2.

There is just one white leaf in the subtree of v2 and three black ones. Those black form in total three

pairs of nodes that are on the same level and that have the same values of #. v4 and v5 have different

colors, so the pair (v4, v5) does not belong to the accounting set for v2. In total we get #(v2) = 3.

For v3 we have three pairs from a similar analysis of leaves (only the colors are inverted in this

case). This time v6 and v7 have the same color, but their # values differ, so the pair (v6, v7) does not

belong to the accounting set for v3. Altogether we get #(v3) = 3.

Finally we compute #(v1). It has in its subtree:

• 4 black leaves that result in 6 pairs in the accounting set for v1. Similarly it has 4 white leaves

implying 6 more pairs.

• from level 2 only a single pair of nodes (v5, v7) that share both their color (black in this case) and

their value (which is 0 for both) is in the accounting set for v1.

• pair (v2, v3) from level 1 of white nodes with value 3 also is in the accounting set for v1.

In total we get #(v1) = 14.

116

The φBW query

We are interested in enumerating solutions to the following query:

Definition 8.1.1 Query φBW(x, y) takes as input a full binary black-white tree T and returns the ac-

counting set for the root of T.

Simple facts

We now present a series of basic, but useful facts that are going to be used for designing an algorithm

that, given a black-white tree T, enumerates φBW(T).

Fact 8.1.1 Let T be a full binary tree. There are in total O(|T|2) different pairs of nodes such that both

nodes from each pair share the same level.

PROOF Assume T has n levels, that is T has 2n − 1 nodes. More precisely, there is 1 node at level 0, 2
nodes at level 1, 4 nodes at level 2, . . . , 2n−1 nodes at level n− 1.

There are altogether (2n−1)2 pairs of nodes at level n − 1, (2n−2)2 = 1
4(2

n−1)2 pairs of nodes at

level n − 2, . . . , (2n−i)2 = 1
4i−

(2n−1)2 pairs of nodes at level n − i, which summed up is bounded by

(2n)2 = |T|2.

�

As a corollary of Fact 8.1.1 we get:

Corollary 8.1.1 For any black-white tree T we have |φBW(x, y)| ≤ |T|2.

PROOF Recall from the definition of # function that an accounting set for any node (in particular for

the root) contains only pairs of nodes at the same level.

�

Fact 8.1.2 Let T by a black-white tree and let u 6= w ∈ T be two of its nodes such that col(u) = col(w),
#(u) = #(w) and lvl(u) = lvl(w) and u is to the left of w. Then the pair (u,w) is exactly in the

accounting sets of the following nodes:

• node v which is the least common ancestor (lca) of u and w,

• any node v′ that is an ancestor of the lca of u and w.

PROOF This is a direct consequence of the definition of the accounting set. Assumptions col(u) =
col(w), #(u) = #(w) and lvl(u) = lvl(w) and u is to the left of w are exactly as present in the

definition of # function. The only missing part is that for v to have (u,w) in its accounting set it

is necessary that u,w ∈ T↓v and all the nodes having that property are exactly the lca(u,w) and its

ancestors.

�

Fact 8.1.3 Let T by a full binary tree. We can store T on RAM machine in such a way that, given

u, v ∈ T with lvl(u) = lvl(v) we can compute lca(u, v) in constant time.

117

PROOF This fact is a special case of the general result working for arbitrary binary trees (not necessarily

full ones) proved in [14] (see also [18] for the use of the result from [14]).

But in this case we may also follow a more direct approach.

We can use the well know technique of storing a full binary tree in an array. The root is in the first

cell, followed by its left and right child and, in general, followed by lists of nodes (starting from the

left-most one and going right) from consecutive levels. An example of this numbering can be seen on

the tree from Example 8.1.2.

This way, given node v at position i, we have for example:

• children of v are at positions 2i (left child) and 2i+ 1 (right child),

• parent of v is at position i div 2.

One can verify that given nodes u and v at positions respectively i and (i+k) and such that lvl(u) =
lvl(v), there exists an equation that returns a position of lca(u, v) and depends only on i and k.

�

Fact 8.1.4 Let T by a black-white tree. Then |φBW(T)| ≥
|T |2
32 .

PROOF Note that if two leaves of T share a color, then they are included in the accounting set for the

root of T. Since there are
|T|
2 leaves, at least half of them share a color and the result follows.

�

Computation of the # function

Relying on Facts 8.1.1, 8.1.2 and 8.1.3 we get the following algorithm for computing # function:

Lemma 8.1.1 There is an algorithm that, given a black-white tree T as input, computes its # function

in time O(|T|2).

PROOF Fix input black-white tree T with n levels. The algorithm works as follows:

Set #(v) := 0 for all nodes (note that this implies that for all the leaves the value of # is already

correct). Set l = n−1 (l represents the currently processed level). Until l is 0 perform the following loop

(the invariant of this procedure is that at each point of time the # function has already been computed

for all nodes at levels ≥ l):

1. For every pair of nodes (u, v) from level l, if col(u) = col(v) and #(u) = #(v) and u is to the

left of v, set #(lca(u, v)) := #(lca(u, v)) + 1.

2. For every node u at level l set #(parent(u)) := #(parent(u)) + #(u).

3. Set l := l − 1.

It is now easy to see that at the first step of the loop each pair (u, v) with col(u) = col(v) and

#(u) = #(v) in a sense “informs” its least common ancestor about the fact that it actually exists. At

step two this information is propagated upwards, one level at a time (so that it would be accounted by

exactly those nodes as given by Fact 8.1.2).

It follows from Fact 8.1.1 that the running time of the above algorithm is O(|T|2).

�

118

The #-level-split structure

Definition 8.1.2 Let T be a black-white tree. A #-level-split structure for T is a structure that for each

level l contains lists W1, . . . ,Wwl
and B1, . . . , Bbl such that each node from T at level l appears on

exactly one of those lists and:

• each list Wi contains only white nodes and similarly each list Bi contains only black nodes,

• for every list Wi and every two elements u, v on that list it is the case that #(u) = #(v) and lists

Bi have a similar property.

We call each list Wi and Bi the #-grouping list.

As a corollary of Lemma 8.1.1 we get:

Lemma 8.1.2 There is an algorithm that, given a black-white tree T as input, computes #-level-split

structure for T in time O(|T|2).

PROOF The first step is the computation of # function using Lemma 8.1.1. Then it remains to sort lists

of nodes at each level and split them among desired lists in a natural way (splitting by both the colors of

nodes and their values).

�

Evaluation of φBW

Theorem 8.1.2 There is an algorithm that takes as input a black-white tree T and computes in time

O(|T| + |φBW(T)|) set φBW(T). In other words, the evaluation problem of φBW over the class of black-

white trees is in LINEAR-EVAL.

PROOF By Fact 8.1.4 we have |φBW(T)| = O(|T|2).
The algorithm first computes #-level-split structure for T in timeO(|T|2) using Lemma 8.1.2. Then,

for each level l and each #-grouping list from that level it outputs pairs of nodes from the currently

considered #-grouping list in such a way, that the first component of each output pair is to the left from

the second component of that pair.

It is immediate to see that the above algorithm is correct and that it works in the desired time con-

straints.

�

Weak enumeration of φBW

As a corollary of Theorem 8.1.2 and Fact 8.1.4 we get:

Theorem 8.1.3 The problem of enumerating solutions to query φBW(x, y) over the class of black-white

trees is in WEAK-CONSTANT-DELAYlin.

PROOF The reason for which this theorem is a corollary of Theorem 8.1.2 is the fact that we have “easy

access” to “many” solutions.

From Fact 8.1.4 and Corollary 8.1.1 we know that O(|φBW(T)|) = O(|T|2). From the proof of

Fact 8.1.4 we know that there are at least
|T|2
32 solutions to φBW on the leaves level. Let us now assume

119

that K is a constant such that Lemma 8.1.2 computes the #-level-split structure for T in time K|T|2.

We now construct an algorithm from WEAK-CONSTANT-DELAYlin enumerating φBW.

The preprocessing phase creates two lists: list of white leaves of T and list of black leaves of T. This

is clearly done in O(|T|).
We now turn to the enumeration phase.

It starts with enumerating all the pairs of leaves that share a color. This is easily doable with constant

delay and we know from Fact 8.1.4 that there are at least
|T|2
32 such pairs. Before outputting each single

pair, the algorithm also performs 32K (i.e. a constant number) consecutive steps of the algorithm from

Lemma 8.1.2 that computes the #-level-split structure for T. For simplicity, we slightly modify that

algorithm, so that it stores only those #-grouping lists that have at least 2 elements.

Then, for each level starting from the one just above leaves and moving up, for each #-grouping list

from that level, the algorithm outputs all pairs of distinct nodes from the currently processed #-grouping

list.

The constant delay assumption is clearly satisfied and it follows from previous discussions that this

way we get the whole set φBW(T) as desired.

�

Conclusions

In the proof of Theorem 8.1.3 we have shown a technique of “hiding a computation” inside the enumer-

ation phase of an algorithm from WEAK-CONSTANT-DELAYlin.

The idea was as follows: if we can easily access set of n solutions to the problem, then while

outputting them we can perform any additional computations with O(n) steps in total. In our case these

additional computations allowed us to construct the #-level-split structure for the input black-white tree

T.

We could of course do a similar reasoning for an algorithm from CONSTANT-DELAYlin class, but

those algorithms can only use a constant amount of additional write memory during the enumeration

process, which seems to be dramatically limiting the powers of the “hidden computation”.

We leave the problem of whether φBW can be enumerated with an algorithm from CONSTANT-DELAYlin

open. We conjecture that it cannot.

Open Problem 8.1.2 Decide whether the enumeration problem of φBW over the class of black-white

trees is in CONSTANT-DELAYlin.

What should be mentioned is that the idea behind the “hiding of computation” technique was to split

the set of solutions into the “easy” and “difficult” ones. Having a lot of easy solutions would allow to

perform some additional computation.

In view of the above, the example separating CONSTANT-DELAYlin (and also WEAK-CONSTANT-DELAYlin)

from LINEAR-EVAL relied on the fact that all the solutions are “difficult” and that we are unable to get

even the first one within the required time constraints.

8.2 Bounded degree, bounded expansion and beyond

8.2.1 Stronger logic over bounded degree

In this section we argue that any query language, that admits constant delay enumeration over the class

of databases of bounded degree, cannot be much more expressive than the first-order logic.

To see this, consider the following reduction:

120

Example 8.2.1 Let G be an arbitrary graph. We now show how to construct a graph H of degree 4 that

encodes G. For simplicity of the presentation we assume that all the nodes of G share the same color.

This is done without loss of generality. Our construction is as follows.

H is going to have three-colored nodes: blue (B) edge nodes, red (R) cycle nodes and black (C)

real nodes. H is constructed from G in the following way:

• in the middle of each edge of G a new blue edge node is added;

• each node v of G of degree n is replaced with a cycle of n red cycle nodes in such a way that each

former neighbor of v (recall that they are all blue edge nodes at this point) is now connected with

exactly one red cycle node from the added cycle (in an arbitrary way). Moreover, a black real

node v is added to H and connected with exactly one (arbitrarily chosen) node from the n-cycle

that initially replaced v.

In other words, what this construction does is:

• We start with a node v of degree n.

• We color it black and then surround it with a cycle of n red nodes and give a unique access from v
to that cycle. If we had an edge (u, v) in G, it is replaced with an edge (riv, r

j
u), where riv and rju are some

arbitrarily chosen nodes from red cycles surrounding v and u respectively. The “arbitrarily chosen” is

limited to only those choices, for which each red node surrounding v has exactly one neighbor among

red cycles around nodes different from v.

• To distinguish between old edges from graph G and the new ones that emerged from this construc-

tion, we put blue nodes in the middle of each initial edge. This way the red cycles are connected with

other red cycles via paths leading through single blue nodes.

The way we traverse graph H is: starting from a black real node v we have a unique access to the

surrounding ring of red nodes. We may then freely cycle around it until we finally decide to go, via a

blue node, to another red cycle and then we can reach its inner black real node u or jump to another red

cycle via a blue node and so on.

It is easy to verify that there is an edge between u and v in G iff u and v are black in H and there is

a path between u and v such that the labels on that path match expression R∗BR∗.

Moreover, notice that the size of H is polynomial in the size of G (and that it can be constructed in

polynomial time).

The above example justifies:

Remark 8.2.1 If a query language L has the power of FO and can express a property that two nodes

are linked by a path with the word formed from their colors matching expression R∗BR∗, then the

model checking problem of L over the class of graphs with bounded degree is not in FPT (assuming

AW[∗] 6= FPT).

In particular, both the evaluation and enumeration problem of L over the class of graphs of bounded

degree are not in LINEAR-EVAL and CONSTANT-DELAYlin respectively.

As an immediate corollary we get the following result for first-order logic with transitive closure (

FO + TC):

Theorem 8.2.1 The enumeration problem of FO + TC over the class of graphs of bounded degree is

not in CONSTANT-DELAYlin (assuming AW[∗] 6= FPT).

121

We are not aware whether some intermediate logic between FO and FO + TC can be enumerated

over the class of graphs with bounded degree. A possible candidate could be FO∗ = FO(E,E∗), where

E∗ is the transitive closure of the edge relation E. Although in FO∗, just as it is the case for FO + TC,

one can test whether two nodes are connected, but as an opposite to FO + TC, logic FO∗ does not

provide any tools to restrict the colors of nodes on paths of arbitrary lengths. Hence Remark 8.2.1 does

not apply to FO∗. We believe that even this weak version of transitive closure is already too powerful to

admit CONSTANT-DELAYlin enumeration, but we leave this question open for now.

Open Problem 8.2.1 Decide whether the enumeration of FO∗ queries over the class of graphs of bounded

degree is in CONSTANT-DELAYlin.

8.2.2 Bounded expansion

A conclusion from the previous section is that even if there is an extension of first-order logic such that it

would admit constant delay enumeration over the class of graphs of bounded degree, then this extension

cannot be too powerful (for instance FO + TC is out of the equation as seen by Theorem 8.2.1).

On the other hand, what we already know is that going beyond bounded degree, while sticking to

first-order logic, results in some viable constant delay enumeration algorithms. In fact we can go even as

far as to the classes of structures with bounded expansion, as seen in Theorem 7.1.2. A natural question

arises: can we go even beyond bounded expansion?

Nowhere dense

In [55] a following generalization of the class of graphs with bounded expansion was introduced.

Recall from Section 2.8.2 that G∇r is the set of all r-minors of the graph G. Given a class C of

graphs, denote with C∇r the set of all r-minors of all graphs from C. In the context of a class of graphs

with bounded expansion we were interested in having a global bound on the greatest reduced average

density (grad) of each graph from the class. Recall that the mentioned grad of G with rank r is defined

as:

∇r(G) = max
H∈G∇r

|H|EDGE

|H|VERT

.

This time we are going to considere a “flattened” version of the right side, where instead of looking

at the number of edges and vertices, we are going to look at their log values. We associate to C the

following number:

lim
r→∞

lim sup
H∈C∇r

log(|H|EDGE)

log(|H|VERT)
(8.1)

For any graph H we have |H|EDGE ≤ |H|2VERT, so the number defined in (8.1) is bounded by 2. It

turns out that for any class C this number can take exactly three possible values: {0, 1, 2} [55]. Since

finite classes of graphs are in our case trivial, in the sequel we implicitly assume that C is infinite.

We follow [55] and define as nowhere dense those classes of graphs, for which the associated number

is 0 or 1. It is rather easy to see that this definition extends the notion of bounded expansion:

Fact 8.2.1 Let C be a class of graph with bounded expansion. Then C is nowhere dense.

PROOF Let C be a class of graphs with bounded expansion and let f(r) be the function bounding ∇r(G)
for all G ∈ C. This yields that for every graph H ∈ C∇r we have |H|EDGE ≤ f(r)|H|VERT and hence:

log(|H|EDGE)

log(|H|VERT)
≤ 1 +

log (f(r))

log(|H|VERT)

122

Since f(r) is a constant and |H|VERT can be arbitrarily large, we can infer that:

lim sup
H∈C∇r

log(|H|EDGE)

log(|H|VERT)
≤ 1

which in turn concludes the result.

�

It turns out that nowhere dense is a proper extension of bounded expansion, meaning that there is

a class C that is nowhere dense, but it does not have bounded expansion. As for such classes, we can

list for example classes of graphs that locally exclude a minor or ones that have local bounded treewidth

(see [25] and [35] for the appropriate definitions). For all the possible details, as well as the current state

of the art concerning the notion of nowhere dense, the reader is referred to [56].

We know that classes of graph with bounded expansion are nowhere dense. It is thus natural to ask

whether the results of Theorems 7.1.1– 7.1.5 can be extended to the nowhere dense case. It turns out that

already a linear time model checking solution for FO is not known (which is a mandatory intermediate

step for possible extension of Theorems 7.1.2– 7.1.5). In fact, there is even no known FPT solution to

the model checking problem.

Open Problem 8.2.2 Decide whether the model checking problem of FO over classes of nowhere dense

graphs is in FPT.

A direct application of the techniques developed for the bounded expansion case gives a solution to

the model checking problem that works in time O(n1+ǫ) (where n is the size of the input graph and ǫ is

an arbitrary positive value), but only for the existential fragment of first-order logic (where all formulas

are of the form φ(x̄) = ∃ȳψ(x̄ȳ) for some quantifier-free ψ) [56].

On the other hand, if a class of graphs is not nowhere dense (we then say it is somewhere dense),

then there is no FPT algorithm solving FO model checking problem for that class (under an assumption

that W[1] 6= FPT).

Theorem 8.2.2 ([30]) Let C be an infinite class of somewhere dense graphs that is closed under sub-

graphs. Then the model checking of existential fragment of FO is W[1]-hard.

If we assume the effectiveness of class C (see [50] for details on this definition), we can even get a

stronger result:

Theorem 8.2.3 ([50]) Let C be an infinite class of effectively somewhere dense graphs that is closed

under subgraphs. Then the model checking of FO is AW[*]-complete.

In view of the above and the fact that it is strongly believed that FPT (W[1] (AW[∗] (see

Section 2.3 for details), it is most likely that nowhere dense is the maximal class of graphs where we

can hope for FPT model checking solution and CONSTANT-DELAYlin enumeration. As we said earlier,

we leave it as an open problem.

123

8.2.3 Other properties of bounded expansion

We hope that the reader is convinced that the notion of classes of graphs with bounded expansion is

a very robust one. Those classes admit very good algorithmic properties for FO query evaluation (cf.

Theorems 7.1.1– 7.1.5), but also the notion itself can be characterized in many different ways (see [53]

for details), making it very flexible and easy to use. Depending on the context, one can switch between

these characterizations, as we for example saw in the proof of Theorem 3.3.3.

But we think that it is good to be aware of one more argument that emphasizes the importance of

the notion of bounded expansion: the graph isomorphism problem. The graph isomorphism test takes as

input two graphs and decides whether they are isomorphic or not. This is one of the very few problems

that is in NP but is neither not known to be in P nor known to be NP-complete. Current state of the

art gives a polynomial time algorithm solving the graph isomorphism problem for classes of graphs

excluding at least one minor (which is a very deep result of Martin Grohe, see [41] for details). Without

any restrictions, the best known algorithm can test isomorphism of two arbitrary graphs with n vertices

in time 2O(
√
n logn) (cf. [7]).

We now argue that if there exists a polynomial time procedure that solves the graph isomorphism

problem for classes of graphs with bounded expansion, then this procedure in fact solves the graph

isomorphism problem in full generality.

Let C be a class of all graphs and let G ∈ C be a graph with n nodes. Consider the following

transformation of G:

Graph GBE is obtained from G by adding n new nodes along each of the edges of G (more formally,

each edge (u, v) from G is replaced in GBE with a path (u,wu,v1 , . . . , wu,vn , v), where wu,vi are newly

introduced nodes). When talking about GBE , we call nodes u, v the real nodes and nodes wu,vi the edge

nodes.

The following fact is an immediate consequence of the above construction:

Fact 8.2.2 For any two graphs G,G′ ∈ C, they are isomorphic if and only if GBE and G
′
BE are isomor-

phic.

PROOF [Sketch] Assume G and G′ both have n vertices.

It is immediate to extend an isomorphism i(G) = G′ into an isomorphism i′(GBE) = G′
BE : set

i′ to agree with i on real nodes and for each edge (u, v) ∈ G and each 1 ≤ j ≤ n it is enough to set

i′(wu,vj) = w
i(u),i(v)
j .

The other direction requires slightly more reasoning. Let i′(GBE) = G′
BE be an isomorphism of

graphs.

If it happens to be the case that i′ maps all real nodes of GBE into reals nodes of G′
BE , then it is

enough to set i to be i′ projected to the set of real nodes. If the above does not hold (that is some real

node v is mapped by i′ into an edge node), then one can verify that v belongs to a component of GBE

that is a simple cycle and similarly i′(v) belongs to simple cycle of the same length inside G′
BE . But

these two cycles originate from simple cycles of equal lengths inside G and G′ respectively and they can

safely be mapped to each other in an obvious way.

�

Let CBE be the class of all graphs GBE such that G ∈ C. We now present the key property of the

class CBE .

Lemma 8.2.1 Class CBE has bounded expansion.

124

PROOF We claim that CBE has bounded expansion as witnessed by function f(r) = (4r + 1)3 + 2.

Indeed:

Fix GBE ∈ CBE . We show that ∇r(GBE) ≤ f(r). This goes by the case analysis on the graph G

from which GBE originated. There are two cases now:

• if G has at least 4r + 1 nodes, then each edge from G was replaced with a path of length 4r + 1
when switching to GBE . This yields that for any r-minor H of GBE there are no adjacent ball nodes

that both contain real nodes from G (real nodes of GBE are at distance of at least 4r+1 from each other

and by contracting balls of diameters bounded by 2r into single ball nodes, one needs at least three ball

nodes on each path of length 4r+1). This on the other hand implies that at least one of the endpoints of

each edge in H is a ball node containing only edge nodes of G and so this endpoint has degree bounded

by 2 in H. Having this, we see that
|H|EDGE

|H|VERT
≤ 2 and since H was an arbitrary r-minor of GBE , we also

have ∇r(GBE) ≤ 2 ≤ f(r).
• if G has up to 4r nodes, then it has up to (4r)2 edges. When moving to GBE , each of this edges is

replaced with 4r+1 new edges and 4r new nodes. Altogether GBE has up to (4r+1)3 edges, which is

also the case for any r-minor H of GBE . A very coarse approximation shows that
|H|EDGE

|H|VERT
≤ (4r + 1)3

and since H was an arbitrary r-minor of GBE , we also have ∇r(GBE) ≤ (4r + 1)3 ≤ f(r).
The above case analysis shows that it is in fact the case that ∇r(GBE) ≤ f(r) for any graph

GBE ∈ CBE , which is exactly the requirement for CBE to have bounded expansion.

�

As a consequence of Lemma 8.2.1 and Fact 8.2.2 we get:

Lemma 8.2.2 If there is a polynomial time solution to the graph isomorphism problem over classes of

graphs with bounded expansion, then there is a polynomial time solution to the general graph isomor-

phism problem.

PROOF Fix graphs G,G′ ∈ C.

Since the transformation from G to GBE (and similarly from G′ to G′
BE) is of polynomial size and

a composition of polynomials is still a polynomial, then by Fact 8.2.2 a polynomial time isomorphism

test for GBE and G′
BE yields a polynomial time isomorphism test for G and G′.

Both GBE and G′
BE are from a class CBE which by Lemma 8.2.1 has a bounded expansion. Thus

a polynomial time isomorphism test for classes of graphs with bounded expansion would in particu-

lar imply such a test for CBE and, as we explained above, it would also imply existence of a general

isomorphism test working in polynomial time.

�

125

126

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley, 1995.

See pages: 15

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1974.

See pages: 14

[3] Noga Alon, Raphael Yuster, and Uri Zwick. Color-Coding. J. ACM, 42(4):844–856, 1995.

See pages: 91

[4] Mustapha Arfi. Polynomial Operations on Rational Languages. In Symp. on Theoretical Aspects

of Computer Science (STACS), pages 198–206, 1987.

See pages: 74

[5] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy Problems for Tree-Decomposable Graphs.

J. of Algorithms, 12(2):308–340, 1991.

See pages: 45, 68, 69, 70

[6] David Avis and Komei Fukuda. Reverse Search for Enumeration. Discrete Applied Mathematics,

65(1-3):21–46, 1996.

See pages: 51

[7] László Babai and Eugene M. Luks. Canonical labeling of graphs. In David S. Johnson, Ronald Fa-

gin, Michael L. Fredman, David Harel, Richard M. Karp, Nancy A. Lynch, Christos H. Papadim-

itriou, Ronald L. Rivest, Walter L. Ruzzo, and Joel I. Seiferas, editors, STOC, pages 171–183.

ACM, 1983.

See pages: 124

[8] Guillaume Bagan. MSO Queries on Tree Decomposable Structures Are Computable with Linear

Delay. In Conf. on Computer Science Logic (CSL), pages 167–181, 2006.

See pages: 44, 45, 46, 68, 69, 88

[9] Guillaume Bagan. Algorithmes et complexité des problèmes d’énumération pour l’évaluation de

requêtes logiques. PhD thesis, Université de Caen, 2009.

See pages: 39, 43, 45, 52

[10] Guillaume Bagan, Arnaud Durand, Emmanuel Filiot, and Olivier Gauwin. Efficient Enumeration

for Conjunctive Queries over X-underbar Structures. In Conf. on Computer Science Logic (CSL),

pages 80–94, 2010.

See pages: 41

[11] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On Acyclic Conjunctive Queries and

Constant Delay Enumeration. In Conf. on Computer Science Logic (CSL), pages 208–222, 2007.

See pages: 39, 40, 92

127

[12] Guillaume Bagan, Arnaud Durand, Etienne Grandjean, and Frédéric Olive. Computing the jth

solution of a first-order query. RAIRO Theoretical Informatics and Applications, 42(1):147–164,

2008.

See pages: 43, 54

[13] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the desirability of acyclic

database schemes. J. ACM, 30(3):479–513, 1983.

See pages: 39

[14] Michael A. Bender and Martin Farach-Colton. The lca problem revisited. In Gaston H. Gonnet,

Daniel Panario, and Alfredo Viola, editors, LATIN, volume 1776 of Lecture Notes in Computer

Science, pages 88–94. Springer, 2000.

See pages: 118

[15] Anne Berry, Jean Paul Bordat, and Olivier Cogis. Generating all the minimal separators of a graph.

In Peter Widmayer, Gabriele Neyer, and Stephan Eidenbenz, editors, WG, volume 1665 of Lecture

Notes in Computer Science, pages 167–172. Springer, 1999.

See pages: 50

[16] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.

SIAM J. Comput., 25(6):1305–1317, 1996.

See pages: 44, 70

[17] Mikołaj Bojańczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable logic

on data trees and XML reasoning. J. of the ACM, 56(3), 2009.

See pages: 47

[18] Mikołaj Bojańczyk and Paweł Parys. XPath evaluation in linear time. J. of the ACM, 58(4), 2011.

See pages: 45, 48, 118

[19] Johann Brault-Baron. De la pertinence de l’énumération : complexité en logiques propositionnelle

et du premier ordre. PhD thesis, Université de Caen, 2013.

See pages: 39, 41

[20] Thomas Colcombet. A Combinatorial Theorem for Trees. In Intl. Coll. on Automata, Languages

and Programming (ICALP), pages 901–912, 2007.

See pages: 44, 45, 69, 71, 72

[21] Don Coppersmith and Shmuel Winograd. Matrix Multiplication via Arithmetic Progressions. J.

on Symbolic Computation, 9(3):251–280, 1990.

See pages: 40

[22] Bruno Courcelle. Graph Rewriting: An Algebraic and Logic Approach. In Handbook of Theoreti-

cal Computer Science, Volume B: Formal Models and Sematics (B), pages 193–242. 1990.

See pages: 44, 68, 70

[23] Bruno Courcelle. Linear delay enumeration and monadic second-order logic. Discrete Applied

Mathematics, 157(12):2675–2700, 2009.

See pages: 44, 46, 69

[24] Nadia Creignou and Jean-Jacques Hébrard. On Generating All Solutions of Generalized Satisfia-

bility Problems. ITA, 31(6):499–511, 1997.

See pages: 51

128

[25] Anuj Dawar, Martin Grohe, and Stephan Kreutzer. Locally Excluding a Minor. In Symp. on Logic

in Computer Science (LICS), pages 270–279, 2007.

See pages: 123

[26] Arnaud Durand and Etienne Grandjean. First-order queries on structures of bounded degree are

computable with constant delay. ACM Trans. on Computational Logic (ToCL), 8(4), 2007.

See pages: 14, 42, 43, 46, 49, 54, 91

[27] Arnaud Durand and Stefan Mengel. On Polynomials Defined by Acyclic Conjunctive Queries and

Weighted Counting Problems. CoRR, abs/1110.4201, 2011.

See pages: 39

[28] Arnaud Durand and Yann Strozecki. Enumeration Complexity of Logical Query Problems with

Second-order Variables. In Conf. on Computer Science Logic (CSL), pages 189–202, 2011.

See pages: 46

[29] Zdeněk Dvořák, Daniel Král, and Robin Thomas. Deciding First-Order Properties for Sparse

Graphs. In Symp. on Foundations of Computer Science (FOCS), pages 133–142, 2010.

See pages: 46, 47, 89, 90, 95, 97, 111

[30] Zdenek Dvorak, Daniel Král, and Robin Thomas. Testing first-order properties for subclasses of

sparse graphs. CoRR, abs/1109.5036, 2011.

See pages: 123

[31] Ronald Fagin. Probabilities on Finite Models. J. Symb. Log., 41(1):50–58, 1976.

See pages: 50

[32] Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions. J. of the

ACM, 49(6):716–752, 2002.

See pages: 70

[33] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.

See pages: 16, 25

[34] Michael L. Fredman and Leonid Khachiyan. On the Complexity of Dualization of Monotone

Disjunctive Normal Forms. J. Algorithms, 21(3):618–628, 1996.

See pages: 49

[35] Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-decomposable

structures. J. of the ACM, 48(6):1184–1206, 2001.

See pages: 123

[36] Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order logic

revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.

See pages: 42, 43, 47, 53, 55, 88, 111

[37] Leslie Ann Goldberg. Efficient Algorithms for Listing Unlabeled Graphs. J. Algorithms,

13(1):128–143, 1992.

See pages: 50

[38] Leslie Ann Goldberg. Listing Graphs That Satisfy First-Order Sentences. J. Comput. Syst. Sci.,

49(2):408–424, 1994.

See pages: 50

129

[39] Georg Gottlob, Christoph Koch, and Klaus U. Schulz. Conjunctive queries over trees. J. ACM,

53(2):238–272, 2006.

See pages: 41

[40] Etienne Grandjean. Sorting, Linear Time and the Satisfiability Problem. Annals of Mathematics

and Artificial Intelligence, 16:183–236, 1996.

See pages: 16, 20

[41] Martin Grohe. Fixed-Point Definability and Polynomial Time on Graphs with Excluded Minors.

In LICS, pages 179–188. IEEE Computer Society, 2010.

See pages: 124

[42] Martin Grohe and Stephan Kreutzer. Model Theoretic Methods in Finite Combinatorics, chapter

Methods for Algorithmic Meta Theorems. American Mathematical Society, 2011.

See pages: 46, 47, 89, 90, 95, 97, 111

[43] Rudolf Halin. S-functions for graphs. Journal of Geometry, 8:171–186, 1976.

See pages: 25

[44] Juris Hartmanis and Richard E. Stearns. On the computational complexity of algorithms. Trans.

Amer. Math. Soc., 117:285–306, 1965.

See pages: 114

[45] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On Generating All Maxi-

mal Independent Sets. Inf. Process. Lett., 27(3):119–123, 1988.

See pages: 49, 50, 51

[46] Wojciech Kazana and Luc Segoufin. First-order query evaluation on structures of bounded degree.

Logical Methods in Computer Science (LMCS), 7(2), 2011.

See pages: 11, 42, 43, 45, 54, 63

[47] Wojciech Kazana and Luc Segoufin. Enumeration of first-order queries on classes of structures

with bounded expansion. Symp. on Principles of Database Systems (PODS), 2013.

See pages: 11, 46, 47, 89, 90, 97

[48] Wojciech Kazana and Luc Segoufin. Enumeration of monadic second-order queries on trees. ACM

Trans. on Computational Logic (ToCL), to appear.

See pages: 11, 44, 45, 68, 69

[49] Leonid G. Khachiyan, Endre Boros, Khaled M. Elbassioni, Vladimir Gurvich, and Kazuhisa

Makino. On the Complexity of Some Enumeration Problems for Matroids. SIAM J. Discrete

Math., 19(4):966–984, 2005.

See pages: 50

[50] Stephan Kreutzer and Anuj Dawar. Parameterized complexity of first-order logic. Electronic

Colloquium on Computational Complexity (ECCC), 16:131, 2009.

See pages: 111, 123

[51] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.

See pages: 55

[52] Steven Lindell. A Normal Form for First-Order Logic over Doubly-Linked Data Structures. Int. J.

Found. Comput. Sci., 19(1):205–217, 2008.

See pages: 43, 54

130

[53] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion I.

Decompositions. Eur. J. Comb., 29(3):760–776, 2008.

See pages: 25, 26, 27, 46, 47, 90, 110, 124

[54] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion II.

Algorithmic aspects. Eur. J. Comb., 29(3):777–791, 2008.

See pages: 25, 26, 92

[55] Jaroslav Nešetřil and Patrice Ossona de Mendez. On nowhere dense graphs. European J. of

Combinatorics, 32(4):600–617, 2011.

See pages: 111, 122

[56] Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity. Springer, 2012.

See pages: 34, 47, 90, 111, 123

[57] Christos H. Papadimitriou and Mihalis Yannakakis. On the Complexity of Database Queries. J. on

Computer and System Sciences (JCSS), 58(3):407–427, 1999.

See pages: 11, 16, 38

[58] Reinhard Pichler and Sebastian Skritek. Tractable counting of the answers to conjunctive queries.

J. Comput. Syst. Sci., 79(6):984–1001, 2013.

See pages: 39

[59] Prabhakar Raghavan. Probabilistic Construction of Deterministic Algorithms: Approximating

Packing Integer Programs. J. Comput. Syst. Sci., 37(2):130–143, 1988.

See pages: 50

[60] Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. J. Comb. Theory, Ser.

B, 36(1):49–64, 1984.

See pages: 25

[61] Detlef Seese. Linear Time Computable Problems and First-Order Descriptions. Mathematical

Structures in Computer Science, 6(6):505–526, 1996.

See pages: 42, 53, 55

[62] Luc Segoufin. Enumerating with constant delay the answers to a query. In Wang-Chiew Tan,

Giovanna Guerrini, Barbara Catania, and Anastasios Gounaris, editors, ICDT, pages 10–20. ACM,

2013.

See pages: 13, 38

[63] Saharon Shelah. The monadic theory of order. Annals of Mathematics, 102(3):379–419, 1975.

See pages: 71, 72

[64] Hong Shen and Weifa Liang. Efficient Enumeration of all Minimal Separators in a Graph. Theor.

Comput. Sci., 180(1-2):169–180, 1997.

See pages: 50

[65] Yann Strozecki. Enumeration complexity and matroid decomposition. PhD thesis, Université de

Paris 7, 2010.

See pages: 48, 49, 50, 51, 52

[66] Yann Strozecki. Enumeration of the Monomials of a Polynomial and Related Complexity Classes.

In Intl. Symp. on Mathematical Foundations of Computer Science (MFCS), pages 629–640, 2010.

See pages: 51

131

[67] Yann Strozecki. A note on polynomial delay vs. incremental delay. manuscript, 2012.

See pages: 52

[68] Ken Takata. Space-optimal, backtracking algorithms to list the minimal vertex separators of a

graph. Discrete Applied Mathematics, 158(15):1660–1667, 2010.

See pages: 50

[69] Robert Endre Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to test chordality

of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J.

Comput., 13(3):566–579, 1984.

See pages: 39

[70] Wolfgang Thomas. Classifying Regular Events in Symbolic Logic. J. on Computer and System

Sciences (JCSS), 25(3):360–376, 1982.

See pages: 74

[71] Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A New Algorithm for Gener-

ating All the Maximal Independent Sets. SIAM J. Comput., 6(3):505–517, 1977.

See pages: 51

[72] Takeaki Uno. Algorithms for Enumerating All Perfect, Maximum and Maximal Matchings in

Bipartite Graphs. In Intl. Symp. on Algorithms and Computation, pages 92–101, 1997.

See pages: 51

[73] Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. In Intl. Conf. on Very Large

Databases (VLDB), pages 82–94, 1981.

See pages: 39

132

	Acknowledgments
	Contents
	Introduction
	Preliminaries
	Databases, relational structures and queries
	Model of computation
	Parametrized complexity
	Logics
	The core query problems
	Model checking problem
	Query evaluation problem
	Query enumeration problem
	Query testing problem
	The counting problem for a query
	The j-th solution problem for a query

	Examples
	Complexity classes
	The L INEAR- T IME class
	The evaluation class L INEAR- E VAL
	The enumeration class C ONSTANT- D ELAYlin
	The answering classes C ONSTANT- T IMElin and L OGARITHMIC- T IMElin

	Graphs
	Graphs of a structure
	Classes of graphs

	Basic results
	The query problems
	The enumeration problem
	The j-th solution problem

	Bounded expansion
	Gaifman vs adjacency
	Bounded degree
	Bounded treewidth
	Bounded expansion

	State of the art
	Query enumeration in database setting
	Arbitrary relational structures
	X-underbar structures
	Sparse structures
	Data trees

	Other enumeration problems
	Abstract enumeration problems
	Polynomial total time
	Incremental polynomial time
	Polynomial delay
	Strong Polynomial delay
	Probabilistic enumeration algorithms
	Impact of the order and separation of the enumeration classes

	Conclusions

	FO over classes of structures with bounded degree
	Introduction
	Preliminaries
	Gaifman locality
	Model checking
	Connectivity, partitions and splits

	The index structures
	The basic index structure
	Towards counting
	Increasing the radius
	The basic index structure with counting

	Solving the problems
	Enumeration of FO queries
	Testing FO queries
	Counting FO queries
	j-th solution problem for FO queries

	MSO over classes of structures with bounded treewidth
	Introduction
	Preliminaries
	Trees
	Useful results

	Simplifying the problem
	It is enough to consider trees
	It is enough to consider binary trees
	It is enough to consider queries that also output all least common ancestors
	It is enough to consider queries with ancestor-typed outputs
	It is enough to consider o-compatible queries
	It is enough to consider o-compatible queries definable in 2(<)

	The index structures
	The o-skeleton decomposition
	From 2(<) to polynomials
	The -order
	The basic index structure
	The full index structure
	The full index structure with counting

	Solving the problems
	Enumerating simple 2(<) queries
	Testing simple 2(<) queries
	Counting problem for simple 2(<) queries
	j-th solution problem for simple 2(<) queries

	Discussions
	Conclusions

	FO over classes of structures with bounded expansion
	Introduction
	Preliminaries
	Graphs with bounded expansion and augmentation
	Graphs of bounded in-degree as functional structures
	From structures to graphs
	Normal form for quantifier-free first-order queries

	Model checking
	Testing
	Enumeration
	Counting
	Discussions
	Conclusions

	Discussions
	Lower bounds
	L INEAR- E VAL =C ONSTANT- D ELAYlin
	W EAK- C ONSTANT- D ELAYlin class
	On separation of W EAK- C ONSTANT- D ELAYlin and C ONSTANT- D ELAYlin

	Bounded degree, bounded expansion and beyond
	Stronger logic over bounded degree
	Bounded expansion
	Other properties of bounded expansion

	Bibliography

