
HAL Id: tel-00919861
https://theses.hal.science/tel-00919861v1
Submitted on 17 Dec 2013 (v1), last revised 26 Jun 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Column Generation for Bi-Objective Integer Linear
Programs : Application to Bi-Objective Vehicle Routing

Problems
Boadu Mensah Sarpong

To cite this version:
Boadu Mensah Sarpong. Column Generation for Bi-Objective Integer Linear Programs : Application
to Bi-Objective Vehicle Routing Problems. Other [cs.OH]. INSA de Toulouse, 2013. English. �NNT :
2013ISAT0047�. �tel-00919861v1�

https://theses.hal.science/tel-00919861v1
https://hal.archives-ouvertes.fr

THÈSETHÈSE

En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par :

l’Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse)

Présentée et soutenue le 3/12/2013 par :

Boadu Mensah ❙❛r♣♦♥❣

Column Generation for Bi-Objective Integer Linear Programs :
Application to Bi-Objective Vehicle Routing Problems

École doctorale et spécialité :

EDSYS : Informatique 4200018

Unité de Recherche :

Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS-CNRS)

Directeur(s) de Thèse :

Christian Artigues et Nicolas Jozefowiez

JURY :

Dominique Feillet Professeur, Ecole des Mines de
Saint-Etienne

Président du Jury

Daniel Vanderpooten Professeur, Université Paris Dauphine Examinateur

Marco Lübbecke Professeur, Univerisité RWTH Aachen Rapporteur

Clarisse Dhaenens Professeur, Université Lille 1 Rapporteur

Christian Artigues Directeur de Recherche, LAAS-CNRS,
Toulouse

Directeur de Thèse

Nicolas Jozefowiez Mâıtre de Conférences, INSA de
Toulouse

Co-Directeur de Thèse

Acknowledgements

I would like to thank my two PhD directors Christian and Nicolas for proposing this
thesis topic to me and teaching me how to do academic research the right way. They still
believed and stood by me during difficult times when I was making no progress in my
work. I’m also grateful to the referees and other members of my PhD defense jury for their
corrections, comments, and insightful questions. Special thanks to Professor Tolga Bektaş
of the University of Southamption who hosted me for a period of ten weeks during the
summer of 2012. The short time I spent with him taught me so much academically and
also in developing a better working habit. Thanks to all past and present members of the
ROC group at LAAS-CNRS who provided me with a friendly environment for my research.
I would finally want to thank my family, friends and loved ones who helped me in diverse
ways all of which I cannot state here. I really appreciate your support.

ii

Abstract

Multi-objective optimization deals with finding solutions to problems for which several
objectives (or criteria) are considered. Unlike in single objective optimization, the optimal
value of a multi-objective problem is a set of points called “the nondominated set”. Lower
and upper bounds of a multi-objective problem can also be described using sets. For
most practical problems, the variables considered in multi-objective optimization represent
non fractionable items and thus we talk of multi-objective integer programs. In order to
obtain good lower and upper bounds that can be used in the design of exact methods,
some problems are usually formulated with an exponential number of decision variables
and these problems are solved by column generation. The work of this thesis seeks to
contribute to the study of the use of column generation in multi-objective integer linear
programming. We do this by studying a bi-objective vehicle routing problem which may be
seen as a generalization of several other vehicle routing problems. We propose mathematical
formulations for this problem and also find ways to quickly compute lower bounds by
column generation. Since the subproblems solved when computing lower bounds have
similar structures, we propose intelligent ways of treating some of these subproblems
simultaneously rather than independently.

Keywords: Integer linear programming, column generation, multi-objective optimization,
combinatorial optimization, vehicle routing

Résumé

L’optimisation multi-objectif concerne la résolution de problèmes pour lesquels plusieurs
objectifs (ou critères) contradictoires sont pris en compte. Contrairement aux problèmes
d’optimisation ayant un seul objectif, un problème multi-objectif ne possède pas une valeur
optimale unique mais plutôt un ensemble de points appelés “ensemble non dominé”. Les
bornes inférieures et supérieures d’un problème multi-objectif peuvent être également
décrites par des ensembles. Dans la pratique, les variables utilisées en optimisation multi-
objectif représentent souvent des objets non fractionnables et on parle alors de problèmes
multi-objectif en nombres entiers. Afin d’obtenir de meilleures bornes qui peuvent être
utilisées dans la conception de méthodes exactes, certains problèmes sont formulés avec un
nombre exponentiel de variables de décision et ces problèmes sont résolus par la méthode
de génération de colonnes. Les travaux de cette thèse visent à contribuer à l’étude de
l’utilisation de la génération de colonnes en programmation linéaires en nombres entiers
multi-objectif. Pour cela nous étudions un problème de tournées de véhicules bi-objectif
qui peut être considéré comme une généralisation de plusieurs autres problèmes de tournées
de véhicules. Nous proposons des formulations mathématiques pour ce problème et des
techniques pour accélérer le calcul des bornes inférieures par génération de colonnes. Les
sous-problèmes qui doivent être résolus pour le calcul des bornes inférieures ont une
structure similaire. Nous exploitons cette caractéristique pour traiter simultanément
certains sous-problèmes plutôt qu’indépendamment.

Mot-clés: Programmation linéaire en nombres entiers, génération de colonnes, optimisation
multi-objectif, optimisation combinatoire, tournées de véhicules

iii

Contents

General Introduction 1

Context . 1
Organization and Contributions . 2
Notation . 3

1 Column Generation for Vehicle Routing Problems 5

1.1 Introduction . 5
1.2 Vehicle Routing Problems . 5

1.2.1 Formulations . 7
1.2.2 Solution Methods . 9

1.3 Column Generation . 10
1.3.1 Basic Definitions and Principles . 11
1.3.2 Implementation and Other Issues . 14

1.4 The Elementary Shortest Path Problem with Resource Constraints 15
1.4.1 Overview of Solution Methods . 16
1.4.2 The Decremental State Space Relaxation Algorithm 17

1.5 The Minimum-Maximum Distance-Constrained CVRP 19
1.5.1 Problem Description . 19
1.5.2 Master Problem and Subproblem . 20
1.5.3 Solving the Subproblem . 21
1.5.4 Computational Experiments . 24

1.6 Conclusion . 27

2 Multi-Objective Optimization 29

2.1 Introduction . 29
2.2 Basic Definitions and Principles . 30
2.3 Solution Approaches . 32

2.3.1 A priori approaches . 33
2.3.2 Progressive approaches . 34
2.3.3 A posteriori approaches . 34

2.4 Approaches for Managing Objectives . 34
2.4.1 Scalar Approaches . 34
2.4.2 Non-Scalar Approaches . 36
2.4.3 Pareto Approaches . 37
2.4.4 Indicator-Based Approaches . 37

v

2.5 Solution Methods . 38
2.5.1 Lower and Upper Bounds . 38
2.5.2 Exact Methods . 39
2.5.3 Approximation Methods . 44

2.6 Evaluating Approximation Methods and Solutions 45
2.6.1 The Hypervolume Indicators . 46
2.6.2 The Binary ε-Indicator . 46

2.7 Conclusion . 48

3 Column Generation for Bi-Objective Integer Programs 49

3.1 Introduction . 49
3.2 Constructing Bound Sets for BOIPs . 51

3.2.1 Using the Weighted Sum Method . 52
3.2.2 Using the ε-Constraint Method . 53

3.3 Constructing Lower Bound Sets for BOIPs by Column Generation 55
3.3.1 Column Search Strategies . 56
3.3.2 Column Generation for BOIPs with a Min-Max Objective 66
3.3.3 Column Search Strategies for a BOIPMMO 68

3.4 Evaluating the Quality of Bound Sets . 71
3.4.1 Bound Sets for the Bi-Objective Set Covering Problem 73

3.5 Conclusions . 74

4 The Bi-Objective Multi-Vehicle Covering Tour Problem 75

4.1 Introduction . 75
4.2 Description of the BOMCTP . 77

4.2.1 Cover Distance Induced by a Set of Routes 77
4.3 Formulation 1 . 78

4.3.1 Restricted LP Master Problem . 79
4.3.2 Dual of LPM(ε) . 79
4.3.3 Sub-problem corresponding to RLPM(ε) 80
4.3.4 Solving S(ε) . 80

4.4 Formulation 2 . 81
4.4.1 Restricted LP Master Problem . 82
4.4.2 Dual of LPM(ε) . 82
4.4.3 Subproblem corresponding to RLPM(ε) 82
4.4.4 Solving S(ε) . 83
4.4.5 Implementation of Column Search Strategies 84

4.5 Computational Results . 88
4.5.1 Description of Instances and Experiments 88
4.5.2 Summary of Results for Formulation 1 88
4.5.3 Summary of Results for Formulation 2 89
4.5.4 Comparison of Formulations 1 and 2 94

4.6 Conclusion . 97

vi

Conclusions and Perspectives 99
Conclusions . 99
Perspectives . 100

A Résumé étendu 103
A.1 Introduction . 103

A.1.1 Principe de Génération de Colonnes 103
A.1.2 Optimisation Multi-Objectif . 104
A.1.3 Contributions . 104

A.2 Génération de Colonnes pour les Problèmes Linéaires en Nombres Entiers
Bi-Objectif . 105
A.2.1 Construction de Bornes Inférieures 105
A.2.2 Construction de Bornes Inférieures par Génération de Colonnes . . . 106
A.2.3 Un Algorithme Généralisé de Génération de Colonnes Pour les

Problèmes Linéaires en Nombres Entiers Bi-Objectif 108
A.2.4 Génération de Colonnes pour les PLNE Bi-Objectif ayant une Fonc-

tion Objectif Min-Max . 110
A.3 Problème de Tournée Couvrante Bi-Objectif à Plusieurs Véhicules 111

A.3.1 Description du Problème . 111
A.3.2 Formulation 1 . 111
A.3.3 Formulation 2 . 112

A.4 Résultats des expériences . 114
A.4.1 Comparison de Deux Méthodes de Scalarisation 115
A.4.2 Résultats pour PTCBOP . 116

A.5 Conclusions et Perspectives . 119

Bibliography 120

vii

List of Algorithms

1.1 A Column Generation Algorithm . 12
1.2 DSSR - The Decremental State Space Relaxation Algorithm 18
2.1 Aneja and Nair (1979)’s Method. 41
2.2 An Exact ε-Constraint Method for BOCO problems 43
3.1 Using an ε-constraint method to compute a lower bound set 54
3.2 A generalized column generation method for BOIPs 57
3.3 k-Step Point-by-Point Search (k-PPS) . 59
3.4 Generate a set of Points (weighted sum method) 62
3.5 Generate a set of Points (ε-constraint method) 63
3.6 Sequential Search 1 . 63
3.7 Sequential Search 2 . 64
3.8 Improved Point-by-Point Search (IPPS) . 69
3.9 Solve-Once-Generate-for-All (SOGA) . 70

ix

List of Figures

1.1 The basic variants of vehicle routing problems and their interconnections . 6
1.2 Interactions between LPM, RLPM, DLPM and DRLPM. 13
1.3 Some convergence related issues of a column generation method. 15
1.4 Dominance rules for modeling exact resource consumption. 22

2.1 Pareto dominance between solutions. 31
2.2 Common shapes of the tradeoff surface for a bi-objective problem. 32
2.3 Two qualities of approximations. 33
2.4 Solutions found by a weighted sum method for λ1 = λ2 = 0.5. 35
2.5 Solutions found by the ε-constraint method. 36
2.6 Solutions found by the lexicographic method. 38
2.7 Bounds for a BOCO problem. 40
2.8 Different stages of the two phases method. 42
2.9 Illustration of Sylva and Crema’s Method with λ1 = λ2 = 0.5. 44
2.10 Illustration of the parallel partitioning method. 45
2.11 Difficulty in comparing approximation solution sets. 46
2.12 The hypervolume indicators. 47
2.13 The Binary ε-indicator. 47

3.1 Constructing a lower bound set through a weighted sum method. 53
3.2 Constructing a lower bound set through an ε-constraint method. 54
3.3 Order in which points of a lower bound set are identified by the PPS. . . . 58
3.4 Possible order in which points of a lower bound set are identified by the

k-PPS. 60
3.5 Possible order in which points of a lower bound set are identified by a

sequential search approach. 65
3.6 Calculation of quality measures in the case of a weighted sum method. . . . 72
3.7 Calculation of quality measures in the case of an ε-constraint method. . . . 72

4.1 An example of a solution to the CTP . 75
4.2 An example of a solution to the MCTP . 76
4.3 The cover distance induced by a set of routes. 78
4.4 Non-additive nature of subproblem. 83
4.5 Dominance relationship between labels. 85
4.6 IPPS heuristic for the BOMCTP. 86

xi

4.7 SOGA heuristic for the BOMCTP. 87
4.8 Ideas for defining more general lower bound sets. 101

A.1 Construction d’une borne inférieure par ε-contrainte. 106
A.2 Un algorithme généralisé de génération de colonnes. 108
A.3 Heuristique IPPS pour PTCBOP. 114
A.4 Heuristique SOGA pour PTCBOP. 115
A.5 Calculation des métriques d’évaluation . 116
A.6 Formulation 1 : Temps d’exécutions . 117
A.7 Formulation 2 : Temps d’exécutions . 118
A.8 Bornes pour une instance de type |T | = 1, |V | = 50, |W | = 150, p = 5, et

q =∞. 118

xii

List of Tables

1.1 Comparison between Gamache et al’s and New Dominance Relations 25
1.2 Performance of Relaxations . 26

3.1 Comparison of lower bound sets for the BOSCP 74

4.1 Quality of bound sets for Formulation 1 . 90
4.2 Computational times for Formulation 1 . 91
4.3 Quality of bound sets for Formulation 2 . 92
4.4 Computational times for Formulation 2 . 93
4.5 Comparison of Formulations 1 and 2 . 95
4.6 Comparison of Lower Bound Sets for Formulations 1 and 2 96

xiii

General Introduction

Context

Many optimization problems encountered in practical applications concern two or more
contradictory objectives (or criteria). These problems, called multi-objective optimization
problems, are different from classical optimization problems in the sense that the optimal
value of a multi-objective problem is a set of points (called ”the nondominated set”) rather
than a unique optimal value. No member of the nondominated set is better than another
member over all the objective funcions. Lower and upper bounds of a MOP can also
be described using sets. For most practical problems, the variables considered in MOPs
represent non fractionable items (eg. number of persons) and thus we talk of multi-objective
integer programs (MOIP). MOIP are solved mainly by heuristics and metaheuristics and
although these methods are effective, they provide no guarantee of finding the exact
nondominated set. Few exact methods have been proposed in the literature for MOIPs
having two objectives. Most exact methods for solving optimization problems work by
computing a lower bound and an upper bound so that the optimal value of the problem
lies between these two values. The quality of these bounds are improved until they are
equal (in which case we have the exact optimal value) or until the gap between them
becomes reasonably small (in this case, we have a good approximation for the optimal
solution together with a measure of quality for the approximation). Due to the role that
lower and upper bounds play in solving optimization problems, there is the need to develop
good mathematical models and efficient ways of computing such bounds for multi-objective
problems.

In the single objective case, a popular way of computing good lower and upper bounds
for some classes of integer programs (eg. vehicle routing problems) is by formulating them
with an exponential number of variables. It is impractical and sometimes impossible to
explicitly list all of the variables (or columns) involved in such formulations and so they
are solved by column generation methods. Column generation is an iterative method and
the main idea of the method is to decompose an original problem into two main parts
namely a restricted master problem and a subproblem. The restricted master problem is a
copy of the original problem in which only a few of the variables are kept. The role of the
subproblem is to propose new variables to be introduced into the master problem in order
to prove the convergence of the method or possibly improve the current optimal value. An
iteration of column generation involves solving the linear relaxation of the master problem
and then solving the subproblem to verify if it will propose some new variables (through a
pricing process) to be added to the master problem. This iterative process ends when the

1

subproblem proposes no new variables. Although designed for non-integer linear problems,
column generation has been a very successful method for solving integer linear programs
when it is integrated in a branch-and-bound framework yielding a branch-and-price scheme.

In spite of the importance of column generation, only a few published papers deal with
its application to multi-objective problems. The objective of this thesis is to contribute to
the study of column generation as applied to multi-objective integer linear programs. We
do this through the study of a bi-objective vehicle routing problem. We seek to propose
good mathematical formulations for this problem and also find ways of computing good
lower bounds by column generation. More precisely, subproblems having similar structures
need to be solved when computing lower bound so we seek to propose intelligent ways of
treating some of these subproblems simultaneously rather than idependently.

Organization and Contributions

The manuscript is organized into four main chapters. Chapter 1 gives an overview of column
generation as applied to single objective vehicle routing problems and our contribution
on an original variant. After introducing the different terminologies and formulations for
vehicle routing problems, the basic definitions and principles of column generation are
discussed. Next, we discuss the different stages of solving the very basic variant of the
vehicle routing problem by column generation. A section in this chapter discusses the
elementary shortest path problem with resource constraints. Indeed, this problem appears
as a subproblem when solving several variants of the vehicle routing problem by a column
generation method. In the last section of this chapter, we present an original variant of
the vehicle routing problem and a way to solve it by a column generation method. The
main interest of this problem stems from the subproblem we encounter. We propose a new
dominance relation when solving the subproblem by a dynamic programming algorithm.

In Chapter 2 we give a review of multi-objective optimization. We discuss the interest
of multi-objective optimization problems, the different approaches used in managing the
multiple objectives, as well as different solution approaches. In particular, we review some
popular exact methods for bi-objective integer programs. We also present some quality
measures used in evaluating approximation methods and the approximate solutions they
produce.

Chapter 3 discusses how good lower and upper bounds can be computed for bi-objective
integer linear programs. The principle is to use sets of points having certain properties in
the definition of lower and upper bounds. We therefore refer to lower and upper bound
sets. We propose a generic column generation algorithm for computing a lower bound
set for a problem when it is formulated with an exponential number of columns. The
main idea used is to first convert the bi-objective program into single objective through
a scalarization method. We then solve linear relaxations of the resulting single objective
problem several times by varying the necessary parameters. We show that regardless of the
scalarization method used, the subproblems that need to be solved when computing the
members of a lower bound set have similar structures. Due to this, we propose different
strategies to take advantage of the similar subproblem structures.

In order to test the different ideas presented in Chapter 3, an application problem is
presented in Chapter 4. The problem is a generalization of the covering tour problem

2

namely the bi-objective multi-vehicle covering tour problem. Two different formulations
are presented for this problem and different column generation approaches adapted to
each formulation are tested. Summary of the experiments performed and discussion of the
results obtained are presented at the end of the chapter. The results show the quality of
the proposed formulations and the interest of the intelligent column generation techniques
designed in Chapter 3 on this problem.

The manuscript ends with some general concluding remarks as well as future research
directions in the short term, middle term, and long term.

Notation

Throughout this manuscript, we will usually need to compare vectors of real numbers. In
general, there is no canonical way of doing this and so we need to clarify the notations used.
Given a positive integer n ≥ 2 and any two arbitrary vectors of real numbers x, y ∈ R

n, we
will use the following notation :

• x = y if xi = yi for i = 1, . . . , n ,

• x < y if xi < yi for i = 1, . . . , n ,

• x ≦ y if xi ≤ yi for i = 1, . . . , n ,

• x ≤ y if x ≦ y but x 6= y .

We will also write :

• R
n
> for {x ∈ R

n : x > 0} ,

• R
n
≥ for {x ∈ R

n : x ≥ 0} ,

• R
n
≧ for {x ∈ R

n : x ≧ 0} .

3

Chapter 1

Column Generation for Vehicle
Routing Problems

1.1 Introduction

In this chapter, we discuss the application of column generation to vehicle routing problems
(VRPs). In Section 1.2, we present terminologies for VRPs as well as the different
formulations proposed in the literature. We also give an overview of some general methods
used in solving VRPs. Section 1.3 follows with a discussion on column generation as applied
to VRPs by using the basic variant of the VRP (the capacitated VRP or CVRP) as an
example. The elementary shortest path problem with resources constraints (ESPPRC)
which usually appears as a subproblem in vehicle routing problems solved by column
generation is discussed in Section 1.4. We present a specific vehicle routing problem and
discuss its solution by column generation in Section 1.5. The interest of this problem
stems from the fact that the subproblem encountered presents a challenge to dynamic
programming algorithms used in its solution. We propose some ideas that can be used to
overcome this challenge. Section 1.6 ends the chapter with some concluding remarks.

Related Publications. The ideas presented in Section 1.5 is the core of an article which
is currently under prepartion for submission to an international journal. These ideas were
developed following a 10 week research visit to the University of Southampton in the United
Kingdom. The research was performed at the Centre for Operational Research, Management
Sciences and Information Systems (http://www.southampton.ac.uk/cormsis/). During
this stay, the author worked under the supervision of Professor Tolga Bektaş at the School
of Management Sciences (http://www.southampton.ac.uk/management/about/staff/

tb12v07.page#background).

1.2 Vehicle Routing Problems

Vehicle Routing Problems (VRP) are concerned with the optimal routing of a fleet of
vehicles from one or several depots in order to deliver services to a number of geographically
scattered customers. The first of such problems was presented by Dantzig and Ramser

5

http://www.southampton.ac.uk/cormsis/
http://www.southampton.ac.uk/management/about/staff/tb12v07.page#background
http://www.southampton.ac.uk/management/about/staff/tb12v07.page#background

(1959). Their problem was to design optimal routes to deliver gasoline from a bulk terminal
to a large number of service stations. Since that time, several variants of VRP have been
proposed to address problems encountered in real-world transportation systems. The
different variants stems from the different kind of services that may be offered as well as
the different operational constraints that need to be respected. In general, two main types
of services namely delivery and collection are provided. Numerous operational constraints
appear in real applications. Some of the most common ones are limits on the capacity of
a vehicle, maximum limits placed on the length of a route, specific periods during which
a customer may be visited, an order in which customers may be visited and the type of
service that may be provided for each customer (only delivery, only collection, both delivery
and collection).

In the very basic version of the VRP (the capacitated VRP or CVRP), the main
operational constraint is that the total amount of goods delivered by a single vehicle cannot
exceed a fixed capacity. If in addition to delivering goods, the vehicle may also collect
goods from the customers they visit, then we talk of the VRP with pick up and delivery
(VRPPD). Other basic variants of the CVRP are the distance-constrained capacitated
VRP (DCVRP) in which a maximum limit is placed on the length of each route, the
VRP with time windows (VRPTW) in which each customer should be visited within a
specific time period, and the VRP with backhauling (VRPB) in which for each customer a
visiting vehicle either deliver goods, or collect goods, but not both. A representation of
the interconnections between the basic variants of the VRP is given in Figure 1.1. Most
times, we refer to the CVRP as the classical VRP because of the central role it plays
in the classification of VRPs. Indeed, many algorithms developed for the CVRP can be
adapted to take into account other complicated operational constraints Laporte (2007).
The variants of VRP studied in recent times combine several of the constraints stated
above and several other ones.

CVRP

VRPTW

VRPBTW VRPPDTW

VRPB VRPPD

DCVRPVRP
Capacity Route Length

Backhaulin
g

Time
Windows

Mixed Service

Figure 1.1: The basic variants of vehicle routing problems and their interconnections (Toth
and Vigo, 2002).

6

The solution of a VRP is a set of routes (one for each vehicle) each of which starts
and ends at a depot such that the demands (or requests) of all customers are satisfied and
the global cost of transportation is minimised while respecting all operational constraints.
The global cost of transportation may be measured based on different criteria such as the
travel distance and/or time, and other costs linked to the use of a vehicle. The VRP is
an NP-hard problem since it lies at the junction of two NP-hard problems namely the
Bin Packing Problem (BPP) and the Traveling Salesman Problem (TSP). For each vehicle
(or route), we need to determine the customers it will visit (BPP) and also give an order
in which they are visited (TSP). Sometimes, measuring the cost of a route is a difficult
problem in itself.

Applications of VRPs exist in the domains of solid waste collection, street cleaning,
school bus routing, dial-a-ride systems, transportation of handicapped persons, routing of
salespeople, and maintenance of units (Toth and Vigo, 2002). Others are in the delivery of
newspapers to retailers, of food and beverages to grocery stores and in the collection of
milk products from dairy farmers (Golden et al., 2002). A general survey on VRPs can be
found in Toth and Vigo (2002).

1.2.1 Formulations

There are three main types of model for VRPs found in the literature Toth and Vigo (2002).
These are vehicle flow formulations, commodity flow formulations and set partitioning
formulations. We may also differentiate between two-index and three-index flow formu-
lations. We demonstrate the principles of vehicle flow formulations and set partitioning
formulations by using the CVRP as an example. Most solution methods are based on one
of these two. Only very few methods presented in the literature are based on commodity
flow formulations. For this reason, commodity flow formulations are not discussed in this
section.

Let G = (V, A) be a complete graph where V = {v0, . . . , vn} is a set of nodes and
A = {(vi, vj) : vi, vj ∈ V and i 6= j} is a set of arcs. Node v0 is the depot where all
routes must start and also end whereas nodes v1, . . . , vn represent n customer locations. A
non-negative cost matrix D = (dij) which satisfies the triangle inequality is defined on set
A. Each customer has a fixed demand of qi which must fully be satisfied by a route that
visits it. Let m be the total number of available vehicles. The CVRP consists in designing
a set of at most m routes with total minimum cost such that each customer is visited by
exactly one route and the sum of the demands of customers visited by a single route does
not exceed the vehicle capacity, Q.

Vehicle Flow Formulations

In this type of formulation, a binary variable xij is used to indicate whether the arc (vi, vj)
is used by a vehicle in the optimal solution (xij = 1), or not (xij = 0). Let ui be the load of

7

a vehicle after visiting customer vi. A vehicle flow formulation for the CVRP is given by :

Minimize
∑

(vi,vj)∈E

dijxij (1.1)

subject to:
∑

(v0,vj)∈A

x0j ≤ m , (1.2)

∑

(v0,vj)∈A

x0j −
∑

(vi,v0)∈A

xi0 = 0 , (1.3)

∑

vi∈V

xij = 1 (vj ∈ V \{v0}) , (1.4)

∑

vj∈V

xij = 1 (vi ∈ V \{v0}) , (1.5)

σi + qj − σj + Qxij ≤ Q (vi, vj ∈ V \{v0}, i 6= j) , (1.6)

qi ≤ σi ≤ Q (vi ∈ V \{v0}) , (1.7)

σi ≥ 0 (vi ∈ V \{v0}) , (1.8)

xij ∈ {0, 1} (vi, vj ∈ V) . (1.9)

The objective of minimizing the total cost of the routes is given in (1.1). Constraint (1.2)
limits the number of arcs that leaves the depot whereas (1.3) ensures that the number
of arcs that enter the depot is the same as the number of those that leave it. Together,
these two constraints ensure that not more than m routes are constructed. The indegree
and outdegree constraints given by (1.4) and (1.5) respectively ensure that exactly one arc
leaves and enter each customer node. Constraints (1.6) and (1.7) are subtour elimination
constraints which were originally proposed for the TSP by Miller et al. (1960). These
constraints eliminate routes that are not connected to the depot and also enforce the
maximum capacity limits of vehicles. The domain of definition for the variables in σ and x
are given by Constraints (1.8) and (1.9), respectively.

Vehicle flow formulations are perhaps the most used type of formulation for VRPs.
They are most suited for cases where the cost of a route can be expressed as the sum of
the costs of the edges it uses. They can, however, not be used for cases where the cost of a
route depends not just on the individual edges it uses but rather on the total sequence of
the edges.

Set Partitioning Formulations

A set partitioning formulation for a VRP uses an exponential number of variables each
of which is associated to a feasible route. A route is said to be feasible if it satisfies all
operational constraints. For the CVRP, a feasible route is simply a Hamiltonian cycle
that connects the depot to a subset of customer nodes in such a way that the sum of the
demands of customers on the cycle does not exceed the capacity of the vehicle. This type
of model for the VRP was first proposed by Balinski and Quandt (1964).

Let Ω be the set of all feasible routes. Each feasible route k ∈ Ω has an associated cost
ck which is given by the cost of the arcs it uses. For each customer node vi, we define a
binary variable aik which takes a value of 1 if route k visits node vi and aik = 0 if this is

8

not the case. A binary variable θk is defined for each route k ∈ Ω to determine if the route
is selected in the optimal solution (θk = 1) or not (θk = 0). A set-partitioning formulation
for the CVRP is given by :

Minimize
∑

k∈Ω

ckθk (1.10)

subject to :
∑

k∈Ω

θk ≤ m , (1.11)

∑

k∈Ω

aikθk = 1 (vi ∈ V \{v0}) , (1.12)

θk ∈ {0, 1} (k ∈ Ω) . (1.13)

The solution of this formulation is a subset of feasible routes in Ω that minimizes the
objective function (1.10) while ensuring that each customer node is visited by exactly one
selected route (1.12). The cardinality of the subset must not exceed m as specified by
Constraint (1.11). If m is reasonably large (eg. m ≥ n− 1), then this constraint may be
dropped. The above formulation is very general and can easily take into account several
other operational constraints on a single route. We only need to redefine what a feasible
route represents in such situations.

Since we assume that the cost matrix D satisfies the triangle inequality, we can transform
the above set partitioning formulation into a set covering formulation by replacing (1.12)
with

∑

k∈Ω

aikθk ≥ 1 (vi ∈ V \{v0}) . (1.14)

The optimal objective value of both the set partitioning and the set covering models are
the same. Indeed, if the optimal solution of a set covering model contains two or more
routes that visit the same customer then this customer may be kept in just one of these
routes and removed from all the rest. The resulting solution will still be feasible, and
thanks to the triangle inequality, the new objective value will be less than or equal to that
of the previous solution. One main advantage of using a set covering formulation instead
of a set partitioning formulation is that the dual space in a set covering formulation is
much smaller since the dual variables associated to Constraints 1.14 are restricted to only
nonnegative values. This means that methods that rely heavily on these dual variables
becomes much faster.

A general disadvantage of both set partitioning and set covering models is that, the
number of decision variables is huge. For example, in a simple instance of a CVRP with
n = 15 we have about 15!/2 = 653, 837, 184, 000 routes (decision variables). It is, thus,
impractical to list all of these variables and so methods that dynamically introduce the
variables like column generation (discussed in Section 1.3) are employed.

1.2.2 Solution Methods

The Vehicle Routing Problem is one of the most studied combinatorial optimization
problems. Different solution approaches ranging from exact methods, heuristics and
metaheuristics have been proposed to tackle the numerous variants of the problem. Due to
the difficulty of VRPs, most research effort concentrate on heuristics and metaheuristics

9

rather than on exact methods (Laporte, 2007). This is also probably because it is easier to
adapt these methods to different variants.

The main exact approaches for VRPs rely on relaxations and implicit enumeration
techniques like branch-and-bound. Some of the most popular exact algorithms are branch-
and-cut in which cutting planes are combined with branch-and-bound, branch-and-price in
which column generation is incorporated in a branch-and-bound framework, and Lagrangian
relaxation. Among these, branch-and-cut algorithms are the most popular. Reviews on
exact methods can be found in Laporte and Nobert (1987); Toth and Vigo (1998).

As already indicated, the literature on heuristics and metaheuristics for VRPs is
enormous. We only list just a few of them here. Dantzig and Ramser (1959) proposed
the first heuristic approach when they introduced the VRP. A greedy heuristic namely
the savings algorithm was later proposed by Clarke and Wright (1964) and this has gone
on to become a very popular heuristic. The popularity of the savings algorithms is not
due to its accuracy but rather its speed and the simplicity in implementing it (Laporte,
2007). Different types of metaheuristics have also been proposed to solve the CVRP and its
variants. Examples are, local search algorithms like record-to-record travel (Dueck, 1993),
tabu search (Glover, 1986), variable neighbourhood search (Mladenović and Hansen, 1997),
very large neighbourhood search (Ergun, 2001) and adaptive large neighbourhood search
(Pisinger and Ropke, 2007). Some population search metaheuristics are genetic algorithms
(Holland, 1975), memetic algorithms (Prins, 2004) and adaptive memory procedure (Rochat
and Taillard, 1995). Other metaheuristics are learning mechanisms like neural networks
and ant colony optimization (Schumann and Retzko, 1995; Ghaziri, 1991). Cordeau et al.
(2005) presents a survey on metaheuristics for VRPs.

1.3 Column Generation

The birth of column generation traces back to the early 1960’s (Dantzig and Wolfe, 1960;
Gilmore and Gomory, 1961, 1963) with its first applications to VRPs appearing some years
afterwards (Appelgren, 1969, 1971). Its role in integer programming is to compute dual
bounds (i.e. lower bounds for minimization problems and upper bounds for maximization
problems). In order to ensure the integrality of solutions, it may be necessary to embed
column generation in a branch-and-bound framework. We thus obtain the solution approach
called branch-and-price. In this section, we will concentrate mainly on computing lower
bounds of VRPs by column generation. A complete discussion of column generation and
branch-and-price can be found in Barnhart et al. (1998) or in a recent book on the subject
(Desaulniers et al., 2005). A very good paper that describes the application of column
generation to VRPs is Feillet (2010).

Lets consider the set covering model described by (1.10), (1.11), (1.13) and (1.14). Its

10

linear programming (LP) relaxation is given by :

Minimize
∑

k∈Ω

ckθk (1.15)

subject to :
∑

k∈Ω

θk ≤ m , (1.16)

∑

k∈Ω

aikθk ≥ 1 (vi ∈ V \{v0}) , (1.17)

θk ≥ Âă 0 (k ∈ Ω) . (1.18)

Note: In the above formulating, we consider the variables in θk as being integers instead
of binary in order avoid constraints of the form θk ≤ 1 in the dual formulation. It is clear,
however, that this does not change the optimal value since any solution with θk ≥ 2 for a
given k ∈ Ω will not be optimal.

Let π0 be the non-positive dual variable associated with Constraint (1.16) and πi for
vi ∈ V \{v0} be non-negative dual variables associated with Constraints (1.17). The dual
formulation of the relaxed set covering model is

Maximize mπ0 +
∑

vi∈V \{v0}

πi (1.19)

subject to : π0 +
∑

vi∈V \{v0}

aikπi ≤ ck (k ∈ Ω) , (1.20)

π0 ≤ 0 , (1.21)

πi ≥ 0 (vi ∈ V \{v0}) . (1.22)

Suppose that the set of feasible routes Ω is manageable in the sense that all of its
members can easily be listed and the resulting formulation can also be easily solved.
Solving formulation (1.15 – 1.18) by the simplex algorithm requires that in each iteration,
a non-basic variable with negative reduced cost is priced-out and enter the basis. The
reduced cost of variable θk is defined as

c̃k = ck − π∗
0 −

∑

vi∈V \{v0}

aikπ∗
i , (1.23)

where π∗
0 and π∗

i for vi ∈ V \{v0} are optimal dual values at the current iteration. In
selecting a non-basic variable to enter the basis, the simplex algorithm computes the
reduced cost of all the non basic variables and picks the one having the most negative
value. We call this technique explicit pricing and it is viable only when the set Ω is
manageable. For problems in which there is a huge number of variables, explicit pricing
becomes computationaly expensive and so we resort to a column generation method.

1.3.1 Basic Definitions and Principles

In column generation terminology, we refer to formulation (1.10), (1.11), (1.13) and (1.14)
as the integer programming master problem (IPM) and its linear programming relaxation

11

given in (1.15 – 1.18) is called the linear programming master problem (LPM). We denote
the dual formulation of LPM detailed in (1.19 – 1.22) as DLPM. The basic principle of
column generation mimics the simplex algorithm but with two main differences. Firstly,
since it is impractical to explicitly list all the members of Ω, we work with a reasonably
small subset Ω1 ⊆ Ω for which LPM is primal feasible. The restriction of LPM to a subset
Ω1 ⊆ Ω is called a restricted linear programming master problem (RLPM). Secondly, pricing
of non-basic variables is now done implicitly by solving an auxilliary problem called the
subproblem (SP). The subproblem is given by :

minimize ck − π∗
0 −

∑

vi∈V \{v0}

aikπ∗
i subject to k ∈ Ω\Ω1 . (1.24)

The Algorithm

The algorithm starts by formulating a RLPM. At each iteration, the RLPM is first solved
to obtained an optimal solution and a corresponding vector of dual values. Next, the
subproblem is solved to see if any non-basic variables can be priced out in order to improve
the current objective value. If the optimal value of the subproblem is non-negative then
the current objective value of RLPM can not be improved and so an optimal solution of
LPM has been found. If this is not the case then one or more columns having negative
reduced costs are introduced into the RLPM and the process continues. Algorithm 1.1
summarizes a column generation method.

Algorithm 1.1 A Column Generation Algorithm
1: Generate an initial set of columns Ω1 and formulate RLPM.
2: repeat
3: Solve RLPM(Ω1).
4: Solve subproblem and let Λ be the set of columns found.
5: Set Ω1 ← Ω1 ∪ Λ.
6: until Λ = ∅.

Primal and Dual Bounds

We remind ourselves that column generation works on a RLPM but not directly on LPM
since the size of Ω is very large. Given that a RLPM is obtained by depriving the LPM of
some of its variables, every feasible solution of RLPM is also a feasible for LPM and hence
an upper bound on LPM. The situation is however different in the dual space. Removing
some variables from LPM (to formulate RLPM) corresponds to removing some constraints
from DLPM. As a result, a feasible (even an optimal) solution for DRLPM may not be
feasible for DLPM. Thus if the algorithm starts with a feasible RLPM then LPM remains
primal feasible throughout the whole process but its dual feasibility is proved only at
convergence. Let z̄ denote the optimal objective value of RLPM. If we have an upper bound
κ on the optimal objective value z∗

LP M of LPM then a lower bound may also be computed
at each iteration of the algorithm. Let c̃∗ be the optimal solution of the subproblem, then

12

the following inequality holds

z̄ + κc̃∗ ≤ z∗
LP M ≤ z̄ . (1.25)

This means that the algorithm may be stopped earlier before it converges since it is possible
to verify the solution quality at any given time.

Validity and Convergence of the Algorithm

The validity and convergence of column generation relies on the following simple property
of the models involved (see Figure 1.2).

• The feasible space of RLPM is a subspace of the feasible space of LPM whereas the
feasible space of DLPM is a subspace of that of DRLPM.

This means that any feasible solution for RLPM is also a feasible for LPM and the
corresponding objective value is an upper bound on the optimal value of LPM. Also, the
feasible space of DLPM is a relaxation of the feasible space of DRLPM and so not all
feasible solutions of DRLPM are feasible for DLPM. The optimal value of DRLPM, however,
provides a lower bound on the optimal value of DLPM. In addition, if the optimal solution
of DRLPM is feasible for DLPM, then it is also the optimal value of DLPM. Introducing
new variables (or columns) in the RLPM corresponds to adding constraints to the DRLPM.
Given that there is a finite number of elements in Ω, the algorithm converges after a finite
number of iterations and so it is an exact method for the LPM. The hope is that the LPM
will become both primal and dual feasible after introducing a reasonable small number of
columns. In worse case, however, the method will only converge after all feasible columns
have been added.

RLPM

LPM DLPM

DRLPM

Figure 1.2: Interactions between LPM, RLPM, DLPM and DRLPM.
Notes: RLPM is a subspace of LPM and so the optimal value of RLPM is an upper bound
on the optimal value on LPM. On the other hand, DLPM is a subspace of DRLPM and so
the optimal value of DRLPM is a lower bound on the optimal value of DLPM.

13

1.3.2 Implementation and Other Issues

Column generation (branch-and-price when incorporated in a branch-and-bound framework)
has become an important approach for solving vehicle routing problems. Yet, accurately
implementing the method is often a difficult task due to the many computational tricks
that can affect its the performance (Feillet, 2010). After formulating a master problem,
an important aspect of column generation is to identify and model the subproblem in
order to solve it efficiently. Indeed, solving the RLPM is often a relatively easier task
than solving the corresponding subproblem and in most implementations, over 90% of the
total computational time is spent on solving the subproblem. The specific subproblem
encountered is problem dependent and sometimes it can be formulated differently for the
same master problem. For example, the subproblems encountered when solving bin packing
problems by column generation are usually variants of the knapsack problem whereas those
encountered in vehicle routing problems are usually variants of the traveling saleman and
the shortest path problems.

Convergence Issues

Column generation, just like several other iterative methods, suffers from slow convergence
issues. Vanderbeck (2005) discusses three main convergence related issues in column
generation namely the heading-in effect, the plateau effect, and the tailing-off effect (see
Figure 1.3). The heading-in effect concerns the early stages of the algorithm. At these
stages, the columns in the RLPM is usually not able to provide useful dual information for
the subproblem and so irrelevant columns are added and poor lower bounds are produced
during the first iterations. The plateau-effect is used to describe stages of the algorithm
where the objective value of the RLPM fails to improve after several iterations. This is
usually caused by degeneracy in the RLPM and hence multiple solutions for the DRLPM.
The tailing-off effect which is the most serious of all the three effects happens towards the
final stages of the algorithm. The objective value of RLPM improves only very slightly
at each iteration. Different ideas have been proposed to address these issues and some of
them are discussed in what follows.

Speedup Mechanisms

Without speedup mechanisms, it is almost impossible to obtain quality solutions by column
generation in reasonable times (Desrosiers and Lübbecke, 2005). Over the years, researchers
have proposed different strategies to tackle the main convergence issues discussed in the
previous paragraph. Intelligently choosing an initial set of columns for the RLPM can help
in reducing the heading-in effect. A good initial set of columns is one that is representative
enough of the whole set of columns of the problem. In general, the initialization is done
by using heuristics or artificial columns. For example, Lübbecke and Desrosiers (2005)
propose the use of specially designed heuristics to compute the initial set of columns. We
note however that even knowledge of the optimal solution of IPM does not provide very
useful information for solving the LPM by column generation (Lübbecke and Desrosiers,
2005). In most cases, it is rewarding to invest in finding a good set of initial initial columns.
Both the plateau and tailing-off effects result from the random oscillation of the dual

14

optimal value

iterations

objective value

heading-in

plateau

tailing-off

Figure 1.3: Some convergence related issues of a column generation method.

values of RLPM. For this reason, several strategies have been proposed to minimize the
oscillations and thus stabilize the column generation method. A very popular way of
achieving stabilization is to define boxes around previous dual values and also modify the
RLPM in such a way that the feasible dual space is limited to the area defined by the boxes.
This is the idea of the BOXSTEP method by Marsten et al. (1975). Another technique
used to obtain stability is to adapt the RLPM in order to penalize the distance that
separates a dual solution from the previous optimal dual solution (see Kim et al. (1995)).
The stabilization technique proposed by du Merle et al. (1999) is a combination of the two
previous techniques. Other speedup mechanisms concern the intelligent management of
the columns. A general technique used to decrease the number of iterations needed by
the algorithm to converge is to return several columns with negative reduced cost to the
RLPM. This is the most widely used speedup mechaninsm and it is easy to implement
when the subproblem is solved by dynamic programming (Desrosiers and Lübbecke, 2005).
Sometimes it is useful to drop (delete) some columns from the RLPM when the number it
contains becomes very huge. An extensive discussion of these speedup mechanisms and
many more can be found in Desaulniers et al. (2002); Vanderbeck (2005); Desrosiers and
Lübbecke (2005); Briant et al. (2008).

1.4 The Elementary Shortest Path Problem with Resource
Constraints

The most common type of subproblem encountered when solving vehicle routing problems
with column generation is a variant of the Shortest Path Problem (SPP) with some side
constraints. The most common of these is the Elementary Shortest Path Problem with

15

Resource Constraints (ESPPRC). The ESPPRC consists in finding a path with minimum
total cost within a graph in such a way that some limits on resource consumptions are
respected and each node of the graph is visited at most once by the path.

More formally, let us consider an extension of graph G given by G′ = (V ′, A′) where
V ′ = V ∪ {vn+1} is the new set of nodes obtained by adding a duplicate vn+1 of the
depot v0. The new set of arcs A′ is obtained from the orignal set A by redirecting all arcs
coming into the orginal depot v0 to the duplicate depot vn+1. Let R ≥ 1 be the number of
resources and W = (W1, . . . ,WR) be a vector that limits the maximum consumption of
each resource. For each arc (vi, vj) ∈ A′ we denote the arc cost by d̂ij ∈ R and the quantity
of resources consumed along the arc by w = (w1

ij , . . . , wR
ij). For each resource r, we assume

that the values of wr
ij satisfy the triangle inequality. A possible mathematical model for

the ESPPRC (presented by Feillet et al. (2004)) is the following :

Minimize
∑

(vi,vj)∈A

d̂ijxij (1.26)

subject to :
∑

(v0,vj)∈A′

x0j = 1 , (1.27)

∑

(vi,vn+1)∈A′

xi,n+1 = 1 , (1.28)

∑

(vi,vj)∈A′

xij −
∑

(vj ,vi)∈A′

xji = 0 (vi ∈ V \{v0, vn+1}) , (1.29)

tr
i + wr

ij − tr
j + Mxij ≤ M r ∈ {1, . . . , R}, (vi, vj) ∈ A′ , (1.30)

0 ≤ tr
i ≤ WR r ∈ {1, . . . , R}, vi ∈ V ′ , (1.31)

xij ∈ {0, 1} (vi, vj) ∈ A′ , (1.32)

where xij variables represent flow in the graph, tr
i is the total amount of the resource r

consumed by a partial path after visiting node vi ∈ V ′, and M is a big number. The
objective function (1.26) minimizes the total cost of the path. Constraint (1.27) ensures
that only one arc leaves the source node whereas (1.28) ensures that only one arc enters
the destination node. Flow conservation at the other nodes is achieved through (1.29).
Constraints (1.30) update the total amount of consumed resources if an arc is selected
in the path and also ensure sub-tour elimination, (1.31) are to ensure the consumtion of
resources do not exceed their limits, and (1.32) are domain definitions. The ESPPRC is an
NP-hard problem in the strong sense (Dror, 1994).

1.4.1 Overview of Solution Methods

In the literature, the ESPPRC has been solved by different approaches including branch-
and-cut, constraint programming, Lagrangian relaxation and dynamic programming. Nev-
ertheless, the preferred method when it is encountered as a subproblem in a column
generation approach is by dynamic programming mainly because several columns having
negative reduced costs can be returned at each iteration. Until recently, the shortest path
problem with resource constraints (SPPRC) which is a relaxed version of the ESPPRC has
been the main approach used in solution methods based on column generation. In some
cases, these approaches resulted in optimal solutions in reasonable times. For example,

16

Desrochers et al. (1992) successfully applied it in solving the subproblem encountered in
the VRPTW. In other cases, however, the elementary condition cannot be overlooked
since relaxing it results in poor lower bounds that cannot be practically embedded in a
branch-and-bound framework to produce optimal results. The main principle of dynamic
programming algorithms used to solve the ESPPRC is to associate with each possible
partial path, a label which indicates the consumption of resources and eliminate labels
that cannot lead to the optimal solution with the help of dominance rules. Due to the
exponential number of possible partial paths, the viability of these algorithms depends on
their ability to identify labels that cannot lead to the optimal solution as early as possible.
Two main classes of these algorithms are the label setting algorithms and label correcting
algorithms. Label setting algorithms are based on the classical Dijkstra’s algorthm whereas
label correcting algorihms are extensions of the Bellman-Ford algorithm.

Feillet et al. (2004) proposed an exact algorithm for the ESSPRC which is based on an
idea originally described by Beasley and Christofides (1989) on how to find elementary
paths in the context of the SPPRC. Beasley and Christofides (1989) idea was to associate
with each label an extra resource for each node of V ′. The initial value of the resource in a
label is 0, and it is set to a 1 when the label visits the node. In this way, it is possible to
eliminate multiple visits to the same node since there will not be enough resources for more
than one visit. Beasley and Christofides (1989) did not test this idea since they believed
that with the increase in the number of resources (one for each node), the algorithm will be
impractical for reasonable instances. Feillet et al. (2004) extended this idea by redefining
the significance of the extra resource added to a label for each node. They set a value to 1
to indicate that a node is unreachable (can no longer be visited) whether because it has
already been visited by the label or because other resource consumptions does not allow
the label to visit it. In this way, they were able to identify unwanted partial labels more
quickly and solved several VRPTW instances.

Instead of increasing the number of resources as it was done by Feillet et al. (2004),
Chabrier (2006) rather simply forbids that a label revisits a node it has already visited.
He then proposes a set of dominance rules that work at different levels in order to ensure
that any label that can lead to an optimal path is not eliminated.

Recent improvements to dynamic programming algorithms for solving the ESPPRC
have seen strategies like bi-directional search (Righini and Salani, 2006), and a dynamic
management of associating resources to nodes in order to avoid multiple visits to a node
(Boland et al., 2006; Righini and Salani, 2008). Although both of these have been proven
to improve the performance of the algorithms, the later produces the better results. Next,
we describe a dynamic programming algorithm which generalises the exact method by
Feillet et al. (2004) and other methods developed for the ESPPRC.

1.4.2 The Decremental State Space Relaxation Algorithm

Righini and Salani (2008) developed the Decremental State Space Relaxation Algorithm
(DSSR) around the same time that Boland et al. (2006) proposed the General State Space
Augmenting Algorithm (GSSAA). In spite of the choice of names, both algorithms express
the same idea. In this thesis, we will use the name chosen by Righini and Salani (2008)
when refering to the algorithm. Instead of associating a resource to each node of V as

17

done by Feillet et al. (2004), the principle of DSSR is to do this for only a subset of nodes
V ∗ ⊆ V ′ (denoted as the critical set) which are likely to be visited more than once by an
optimal path. That is, the nodes of V ∗ can be visited at most once on any given path
whereas those in V ′\V ∗ may be visited more than once. Thanks to the limited amounts
of the resources, infinite loops are avoided. Naturally, the algorithm starts with V ∗ = ∅
which corresponds to solving the relaxed version, the SPPRC. If the optimal solution of
this relaxed version is elementary (ie. visits no node more than once), then it is also
the optimal solution of the elementary version. If this is not the case, then one or more
nodes that are visited more than once by the optimal path are identified and added to V ∗.
The algorithm is repeated with the updated critical set and the process repeats until the
optimal solution is elementary. In the best case scenario, DSSR finds an elementary path
by solving the easier SPPRC (ie. when V ∗ = ∅). In the worst case scenario, an elementary
path is found only when V ∗ = V ′ and this corresponds to the exact dynamic programming
algorithm by Feillet et al. (2004). The DSSR algorithm is described in Algorithm 1.2 and
it uses the dynamic programming algorithm for the SPPRC by Desrochers et al. (1992) as
a subroutine in Step 5.

Algorithm 1.2 DSSR - The Decremental State Space Relaxation Algorithm (Boland
et al., 2006; Righini and Salani, 2008)

1: Initialization
2: Set V ∗ ← ∅.
3: repeat
4: Set Θ← ∅.
5: Solve SPPRC on graph with updated V ∗.
6: if Optimal path is non-elementary then
7: Let Θ be a set new node(s) to be added to V ∗.
8: Set V ∗ ← V ∗ ∪Θ.
9: end if

10: until Θ = ∅

Boland et al. (2006) proposed four different ways of updating the critical set after each
iteration in which the optimal solution corresponds to a non-elementary path. The first
strategy, highest multiplicity on the optimal path (HMO), is to update V ∗ by adding only
one of the nodes (there may be several of these) which was visited the most number of
times. In the second strategy (HMO-ALL), all nodes visited the maximum number of
times are added to V ∗. The third strategy, multiplicity greater than one on the optimal
path - all nodes (MO-all), updates V ∗ by adding all nodes which were visited more than
once on the optimal path. The fourth and final strategy, multiplicity greater than one on
some path - all nodes (M-all), is to add all nodes visited more than once by a an optimal
path. From their results, HMO seems to be the best strategy. As proposed by Righini and
Salani (2008), a possible way of improving the performance of DSSR is to warm-start V ∗

with an intelligent guess of critical nodes instead of starting with the empty set. This can
eliminate some unecessary iterations during which critical nodes are identified.

18

1.5 The Minimum-Maximum Distance-Constrained CVRP

Traditional VRPs are concerned mainly with minimizing a costs function with little or no
interest for the disparities that may exist between the routes making up a solution. This is
natural since the main interest of employers or decision makers is to maximize their profits
and they achieve this mainly by minimizing operational costs. Nevertheless, implementing
the optimal solutions of such problems in real life can sometimes cause miscontent among
employees and/or customers. In order to address this problem, some recent research have
been dedicated to finding solutions to VRPs in which the routes need to be “balanced”.
The notion of balancing routes have been defined and treated differently in the literature.
For example, both Lee and Ueng (1999) and Ribeiro and Ramalhinho Dias Lourenço (2001)
try to quantify the total work load on all routes and share them fairly among employees.
Other authors consider balanced routes by minimizing the difference between the maximal
route length and the minimal route length in a solution (Jozefowiez et al., 2002; Pasia
et al., 2007; Borgulya, 2008). Moreover, Kara and Bektaş (2005) ensures balanced routes
by requiring a minimum load for any used vehicle whereas Bektaş (2012) considers route
balancing by restricting the total number of customers visited by each route to lie within a
predetermined range. These kinds of problems are referred to as VRPs with load balancing
or route balancing and in this section we study the application of column generation to
one of them. The problem considered is an extension of the CVRP in which the length of
each route is required to lie within a predefined interval in addition to the usual objective
of minimizing the sum of the lengths of the routes. We call this problem the minimum and
maximum distance-constrained CVRP (MMDCVRP). A similar problem for the multiple
traveling saleman problem has been treated by Rienthong et al. (2011). The authors
adopted the integer program suggested by Kara and Bektaş (2005) and solved it with a
commercial software in order to find practical (non-optimal) solutions to a real life problem.
In addition to studying route balancing in vehicle routing, another interest of presenting
this problem here lies in the subproblem encountered when solving it by column generation.
We aim to discuss some issues concerning the application of column generation to problems
which exhibits similar characteristics to the MMDCVRP. In particular, we investigate how
the subproblem can be efficiently solved by dynamic programming.

1.5.1 Problem Description

The MMDCVRP is an extension of the CVRP in which it is required that the length of
each route lies between a predetermined interval [Lmin, Lmax]. This problem can also be
seen as an extension of the DCVRP which corresponds to the case for Lmin = 0. The
interest of requiring the length of a route to lie within this interval is to ensure that the
routes making up a solution are balanced. By description, the MMDCVRP looks similar to
the VRPTW for which column generation has been a very successful solution method yet
these two problems are very different. One main difference is that the length of a route is
restricted by intervals at the depot and as well as customer nodes in the VRPTW whereas
in the MMDCVRP the length of a route is restricted as a whole and not at individual
customer nodes. Nevertheless, an instance of the MMDCVRP can be transformed to an
instance of the VRPTW by defining intervals (time windows) [ai, bi] for node vi ∈ G as
follows:

19

• [a0, b0] = [0, 0] when leaving the depot (v0),

• [a0, b0] = [Lmin, Lmax] when returning to depot (v0),

• [ai, bi] = [d0i, Lmax − di0] for vi ∈ V \{v0}.

Another major difference between the MMDCVRP and the VRPTW even after this
transformation is that the arrival time at a node and the begining of service at the node
should be the same. In other words, earlier arrival at a node is not permitted. This means
that the consumption of exact resources should be modeled in the subproblem instead of
the usual minimal resource consumptions. Gamache et al. (1998) explains how the exact
consumption of a resource r may be modeled by the minimal consumption of two resources.
These small differences have great impacts when solving the MMDCVRP and other similar
problems by column generation. For example, when solving the ESPPRC subproblem by
dynamic programming, the dominance rules used are well adapted and efficient for cases
where only minimal resource consumptions are considered. If we are to consider exact
resource consumption, then finding efficient dominance rules which are able to identify
non-optimal partial paths as early as possible will not be an easy task.

1.5.2 Master Problem and Subproblem

We use the same notations as before. The main difference is that a feasible route k ∈ Ω is
now defined as a hamiltonian cycle on a subset of V whose length lies between the interval
[Lmin, Lmax] and of total capacity not exceeding Q. Morever, there is no constraint on the
number of vehicles available. The IMP for the MMDCVRP is, thus, defined by

Minimize
∑

k∈Ω

ckθk (1.33)

subject to :
∑

k∈Ω

aikθk ≥ 1 (vi ∈ V \{v0}) , (1.34)

θk ∈ {0, 1} (k ∈ Ω) . (1.35)

In the same way, the other models (LPM, RLPM, DLPM, DRLPM) can be easily defined
as it was done for the CVRP.

Subproblem

The subproblem is to find feasible routes with negative reduced costs. Given the definition
of a feasible route in this case, we obtain the following formulation:

Minimize
∑

(vi,vj)∈A′

d̂ijxij (1.36)

subject to :
∑

(v0,vj)∈A′

x0j = 1 , (1.37)

∑

(vi,vn+1)∈A′

xi,n+1 = 1 , (1.38)

∑

(vi,vj)∈A′

xij −
∑

(vj ,vi)∈A′

xji = 0 (vi ∈ V \{v0, vn+1}) , (1.39)

20

σi + qj − σj + Qxij ≤ Q (vi, vj) ∈ A′ , (1.40)

li − lj + (Lmax − dij)xij ≤ Lmax (vi, vj) ∈ A′ , (1.41)
∑

(vi,vj)∈A′

dijxij ≥ Lmin , (1.42)

0 ≤ σi ≤ Q vi ∈ V ′ , (1.43)

0 ≤ li ≤ Lmax vi ∈ V , (1.44)

xij ∈ {0, 1} (vi, vj) ∈ A′ . (1.45)

In this formulation, σi and li represent the load and the length of a route, respectively,
after visiting node vi. Without Constraint (1.42), the above problem is the usual ESPPRC
with two types of resources. The first ressource constraint concerns the maximum load of a
route which should not exceed Q. The second resource constraint states that the maximum
length of a route should not exceed Lmax.

1.5.3 Solving the Subproblem

An important comment to make here is that we are not restricted in any way to solve the
subproblem by any particular method. Any exact method (including dynamic programming,
branch-and-cut, etc.) may be used once it is well adapted. In this section, however, we
concentrate on solving the subproblem with dynamic programming since it looks somehow
like ESPPRC with time windows which is solved efficiently by dynamic programming (see
Feillet et al. (2004); Chabrier (2006); Boland et al. (2006); Righini and Salani (2008)). In
all of these applications, minimal resource consumption is considered whereas we consider
a combination of mininal resource as well as exact resource consumption. This means that
an important component of the dynamic programming algorithm, the dominance rule, has
to be modified.

The “usual” dominance rule

In what follows, we let the label Λi = (c̃i, σi, li) represent a partial path from the depot, v0,
to node vi. The reduced cost up to this point is denoted by c̃i whereas σi and li represent
the total load collected and the length, respectively. For simplicity, we have ommitted
the other resources like those associated to critical nodes in the DSSR algorithm which
ensures that an elementary route is found. The validity of what is discussed below is not
affected in any way. Given two labels Λ1

i = (c̃1
i , σ1

i , l1i) and Λ2
i = (c̃2

i , σ2
i , l2i) on node vi, the

dominance rule for minimal resource consumption states that Λ1
i dominates Λ2

i if and only
if Λ1

i ≤ Λ2
i . In this case, Λ2

i is rejected since for any feasible solution obtained from an
extension of Λ2

i , an equally better (if not strictly better) feasible solution can be obtained
by extending Λ1

i in the same way.
In the case of exact resource consumption as it is for the MMDCVRP, the dominance

rule just explained above does not work. This can be seen by considering the case in
Figure 1.4a. By using the “usual” rule, Λ2

i is dominated by Λ1
i and so it is dropped at node

vi and never extended to node vn+1. The extension of Λ1
i to node vn+1 is also rejected

since it is not feasible (does not satisfy the minimum required length of a route). In this
case, the algorithm finds no feasible routes although the extension of Λ2

i to node vn+1 is

21

feasible. In order to avoid such an error, we can follow the idea poposed by Gamache et al.
(1998) to consider the minimal (instead of exact) consumption of the resource l and also
add the minimal consumption of another resource l̄. The value of l̄ is always equal to the
negative of l (that is l̄ = −l). This rule ensures that no partial path that can lead to an
optimal solution is eliminated. Indeed, Λ1

i can only dominate Λ2
i if l1i ≤ l2i and l̄1i ≤ l̄2i .

Since both l1i and l2i belong to the set of real numbers, we can deduce that if l1i 6= l2i then
neither Λ1

i nor Λ2
i can dominate the other. In Figure 1.4a this rule will keep both labels on

node vi. The algorithm will try to extend both Λ1
i and Λ2

i to node vn+1 but will only keep
the extension of Λ2

i since the other one is not feasible.

v0[0, 0] vi vn+1 [10, 20]

Λ1
i = (−10, 40, 5)

Λ2
i = (−10, 40, 8)

3

(a) No feasible labels are found if the “usual” rule is used. By following
the rule of Gamache et al. (1998), a feasible label can be obtained by
extending Λ2

i to vn+1.

v0[0, 0] vi vn+1 [10, 20]

Λ1
i = (−10, 40, 5)

Λ2
i = (−10, 40, 8)

5

(b) If we use the rule of Gamache et al. (1998) then neither Λ1
i nor Λ2

i

dominates the other on node vi. If the newly proposed rule is used,
then Λ1

i dominates Λ2
i on node vi.

v0[0, 0] vi vn+1 [10, 20]

Λ1
i = (−12, 30, 5)

Λ2
i = (−10, 40, 5)

3

7

(c) The rule of Gamache et al. (1998) correctly identifies Λ2
i as

dominated by Λ1
i on node vi but the second condition of the newly

proposed rule fails to do this.

Figure 1.4: Dominance rules for modeling exact resource consumption.

22

A new dominance rule

Although the rule by Gamache et al. (1998) ensures that no label that can lead to an
optimal path is eliminated, it is clear that the rule is not very efficient for identifying
dominated subpaths as early as possible. In fact, very few labels can be eliminated by this
rule. This is not very good for the dynamic programming algorithm since its effectiveness
greatly depends on the quality of the dominance rules. We propose the following dominance
rule that is able to identify some dominated subpaths earlier than the rule proposed by
Gamache et al. (1998). The basic idea is to add another condition to the rule proposed by
Gamache et al. (1998) in order to strengthen it. We say that Λ1

i dominates Λ2
i if and only

if at least one of the following two conditions is satisfied:

1. Λ1
i ≤ Λ2

i and l1i = l2i ,

2. Λ1
i ≤ Λ2

i and l1i + δi,n+1 ≥ Lmin.

In both conditions, the first part corresponds to the rule used when modeling minimal
resource cosumptions. In addition, each condition has a second part to ensure that no
partial path that can lead to an optimal solution is eliminated. Condition 1 is exactly
the same as the one proposed by Gamache et al. (1998) whereas condition 2 is a new
proposition to strengthen the previous one. The value of δi,n+1 in this condition represents
the minimum possible length from the current node vi to the destination node (copy of
depot) vn+1. Since we assume that the consumption of all resources satisfy the triangle
inequality, we have δi,n+1 = di,n+1. Condition 2 implies that Λ1

i can dominates Λ2
i only if we

are sure that an extension of Λ1
i using the minimum possible quantity of an exact resource

will still satisfy the conditions on this exact resource. These two conditions complement
each other as either of them can identify some dominated paths in cases where the other
cannot (see Figure 1.4b and 1.4c). So using them together guarantees that we have a
stronger dominance rule. All dominated paths identified by the rule of Gamache et al.
(1998) will be identified by condition 1 of this new rule whereas some dominated paths
identified by condition 2 may not be identified with the rule of Gamache et al. (1998).

Even with this improvement in the form of the new dominace rule, the dynamic
programming algorithm for solving problems with exact resource consumptions may not be
as effective as we would expect as in the case of modeling minimal resource consumptions.
For this reason we consider solving relaxations of the subproblem in order to find valid
lower bounds for the MMDCVRP.

Relaxations for the MMDCVRP and its Subproblem

A first observation is that, the optimal value of the subproblem for any interval [L1, Lmax]
where 0 ≤ L1 ≤ Lmin provides a lower bound on the optimal value when we consider the
interval [Lmin, Lmax]. In particular, when L1 = 0 then we have a problem similar to the one
we would encounter if we were solving the DCVRP (only a maximum limit on the length
of a route). This means the optimal value of the DCVRP with an upper limit of Lmax on
the length of a route provides a lower bound on the optimal value of any MMDCVRP
solved over the interval [Lmin, Lmax] where 0 < Lmin < Lmax. An advantage of solving this
relaxation is that, we can use all known methods for the DCVRP in computing a lower

23

bound for the MMDCVRP. However, depending on how tight the interval [Lmin, Lmax] is,
the resulting bound may not be good enough to be used in a branch-and-price algorithm.
In spite of the strength of the dominance rule used in this case, it may be more difficult to
solve the subproblem since widening the interval increases the number of states a label
can be in. A good idea, therefore, is to relax the interval just slightly and then apply the
improved dominance rule described in the preceeding section.

1.5.4 Computational Experiments

We present some results from experiments performed to compare the quality of the lower
bounds provided by each of the approaches discussed above (ie. the two dominance rules,
and the relaxations). In order to give a good idea of how good each lower bound is,
upper bounds are computed after computing a lower bound by removing any infeasible
routes (in the case of relaxations) from the model and solving the corresponding integer
program. We used some DCVRP instances from the VRP literature and these can be
obtained from http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/

VRPLIB.html. For each instance, the maximum capacity of a vehicle, Q, and the maximum
length of a route, Lmax, are the original ones for the instance. In addition, we computed
several values of minimum required length length of a route as Lmin = α · Lmax where
α ∈ {0, 0.25, 0.50, 0.75}. All codes were written in C/C++ and the RLPM was solved
with ILOG CPLEX 12.4. Tests were run on an Intel(R) Core(TM)2 Duo CPU E7500 @
2.93GHz computer with a 2 GiB RAM.

The results of the experiments are summarized in Tables 1.1 and 1.2. Table 1.1 compares
results obtained by using the dominance rule proposed by Gamache et al. (1998) to those
obtained by using the new and improved dominance rule. The results obtained by relaxing
the interval in conjunction with the improved rule are presented in Table 1.2. The column
headings in both tables have the following meanings:

• Instance: name of the instance together with the original value of the maximum
allowed length of a route for the instance

• Lmin: minimum required length of a route

• L1: a relaxation of the minimum required length of a route

• lb: value of the lower bound obtained

• ub: value of the upper bound obtained

• cpu: total computational time in cpu seconds

• %gap: IP gap for obtained lower and upper bounds

A time limit of 5000 cpu seconds was set for each instace. After this limit, the column
generation algorithm is stopped and the best known lower and upper bounds are noted.
For such a case, a value of > 5000 is recorded in the table.

24

http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html
http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html

Table 1.1: Comparison between Gamache et al’s and New Dominance Relations

Gamache et al. Improved

Instance Lmin cpu lb ub %gap cpu lb ub %gap

0 > 5000 342 375 8.80 0.51 375 375 0.00
D022-04g 53 > 5000 343 375 8.53 0.45 375 375 0.00

Lmax = 210 105 > 5000 413 439 5.92 0.21 432 440 1.82
158 1124.80 640 662 3.44 0.15 640 665 3.76

0 590.81 628 652 3.83 0.60 628 660 5.00
D023-03g 60 775.64 628 653 3.83 0.69 628 660 5.00

Lmax = 240 120 643.07 635 678 6.34 1.40 635 673 5.65
180 1539.52 664 740 10.41 1.98 664 748 11.23

0 > 5000 419 612 31.54 339.28 485 503 3.58
D030-03g 60 > 5000 423 619 31.66 438.53 485 519 6.55

Lmax = 240 120 > 5000 457 651 29.80 458.87 485 560 13.39
180 > 5000 531 742 28.44 473.29 545 721 24.41

0 > 5000 975 1130 13.72 1136.22 1039 1106 6.06
D033-04g 60 > 5000 986 1167 15.51 863.75 1039 1104 5.89

Lmax = 240 120 > 5000 1005 1115 9.87 570.86 1041 1102 5.54
180 > 5000 1036 1115 7.09 590.68 1048 1118 6.70

Summary of Results. The results in Table 1.1 show that the newly proposed dominance
rule really improves on the rule by Gamache et al. (1998). For example, all the algorithm
converges for all instances when the new dominance rule is used whereas for most instances
the the algorithm could not converge within the given time frame when we used the rule
by Gamache et al. (1998). In cases where both approaches converge, the same lower bound
is obtained. The upper bound is, however, different since different columns are added to
the master problem for the different approaches. When both approaches converge, slightly
better bounds are obtained when Gamache et al.’s rule is used.

For a fixed value of Lmax, the difficulty of an instance of the MMDCVRP increases
with decreasing values of Lmax (see Table 1.2). This is analogous to the VRPTW where an
instance become more difficult to solve if the time windows are wider. For this reason, the
overall performance of the relaxations investigated here is quite disappointing but not so
surprising. Dropping the minimum required length of a feasible route in the subproblem
enables us to use a more effective dominance rule. Nevertheless, the effectiveness of the
whole algorithm however seems to worsen because a larger space of solutions needs to be
explored by the subproblem. In this case, we have poorer lower and upper bounds as well
as longer computational times. This type of relaxation does not help much and so it may
be necessary to investigate other types of relaxations like those concerned with the routes
being elementary.

25

Table 1.2: Performance of Relaxations

Relaxation

Instance Lmin L1 cpu lb ub %gap

53 0 0.83 375 375 0.00
53 53 0.45 375 375 0.00

105 0 0.65 375 471 20.59
D022-04g 105 53 1.04 375 488 23.16

Lmax = 210 105 105 0.21 432 440 1.82
158 0 0.49 375 666 43.69
158 53 0.38 375 666 43.69
158 105 0.29 429 666 35.74
158 158 0.15 640 665 3.76

60 0 0.83 628 660 5.00
60 60 0.69 628 660 5.00

120 0 0.91 628 673 6.84
D023-03g 120 60 1.19 628 673 6.84

Lmax = 240 120 120 1.40 635 673 5.65
180 0 0.64 628 789 20.53
180 60 0.94 628 777 19.31
180 120 0.99 635 768 17.32
180 180 1.98 664 748 11.23

60 0 603.94 485 517 6.19
60 60 438.53 485 519 6.55

120 0 453.58 485 562 13.70
D030-03g 120 60 447.56 485 562 13.70

Lmax = 240 120 120 460.77 485 560 13.39
180 0 354.24 485 726 33.20
180 60 368.48 485 723 32.92
180 120 476.59 486 636 23.74
180 180 473.29 545 721 24.41

60 0 1136.22 1039 1104 5.89
60 60 863.14 1039 1104 5.89

120 0 840.96 1039 1102 5.72
D033-04g 120 60 835.64 1039 1102 5.72

Lmax = 240 120 120 570.86 1041 1102 5.54
180 0 754.92 1039 1164 10.74
180 60 754.03 1039 1164 10.74
180 120 700.05 1041 1163 10.49
180 180 590.68 1048 1118 6.70

26

1.6 Conclusion

In this chapter, we have discussed the application of column generation to vehicle routing
problems. Vehicle routing problems have several practical applications in different domains.
A very popular solution method for VRPs is branch-and-price and this method combines
column generation with branch-and-bound. Column generation solves a linear relaxation
of the original problem in order to compute a lower (and an upper) bound whereas the
branch-and-bound framework ensures that integer solutions are obtained. The success of
column generation relies on the fact that the models involved usually have very good linear
relaxations. The number of variables (or columns) in these models are, however, huge and
so have to be introduced into the model in bits by solving a subproblem. The last section
of the chapter presents how column generation can be used in computing a lower and
upper bound for the minimum and maximum distance capacitated vehicle routing problem
(MMDCVRP). Due to the perculiar nature of the subproblem for the MMDCVRP, its
solution by a dynamic programming algorithm is quite challenging. We propose a new
and stronger dominance rule based on one already proposed in the literature. We also
consider a way to relax the subproblem and more precisely, relaxations for the subproblem
that can help us compute lower bounds for the MMDCVRP. Different relaxations of the
subproblems in a column generation method have been used with a great effect in the
literature. Nevertheless, the type of relaxation considered here does not help much but
rather worsens the performance of the algorithm. This means that although relaxations
are usually a good way of finding practical solutions to a problem, one should be careful of
the type of relaxation chosen since it can actually have negative effects.

27

Chapter 2

Multi-Objective Optimization

2.1 Introduction

Many problems arising in real life (e.g. in the domaine of logistics, transportation, etc.)
present complex characteristics which are modeled and solved with the help of mathematical
tools. Although these problems naturally present the “optimization” of several objectives
or preferences, they are usually modelled with a single function together with several
constraints which tries to take the most important objectives into account. This approach
(called single objective optimization) may be sufficient in some cases. In most other cases,
however, modeling a problem with just one function is impossible or may result in biased
models since we may not have enough information about the objectives. Cohon (2004)
actually states that:

“There are no ifs, ands, or buts about it: all public decision making problems
are multiobjective, and if we don’t think about and analyze them with that in
mind we may do serious damage to the quality of the decisions that we make.”

The goal of multi-objective optimization is to tackle challenging problems by using more
than one function in order to properly account for all (or most) objectives. In spite of the
clear advantages that can be gained by using this approach, the resulting models are more
difficult to solve due to the several objectives which contracdict each other. Two objectives
are said to contradict each other if improving one of them results in degrading the other.
Multi-objective optimization has its roots in the fields of economics and management
science (Samuels, 1981; Pareto, 1896).

The aim of this chapter is to recall some basic notions of multi-objective optimization
that will be necessary in order to better understand the rest of the manuscript. For a more
detailed presentation in this field, one may consult a book like Ehrgott (2005). We start
the chapter by giving the basic definitions and principles of multi-objective optimization.
Given that the terminology used in the field varies from one author to another, this will
serve as an opportunity to introduce the ones we use in this work. We also give an overview
of the different solution approaches and methods as well as the different measures used in
evaluating the quality of these methods and approximations.

29

2.2 Basic Definitions and Principles

A multi-objective optimization problem (MOP) can be defined as follows:

(MOP) : Minimize
x∈X

F (x) = (f1(x), f2(x), . . . , fr(x)) , (2.1)

where r ≥ 2 is the number of objective functions, x = (x1, x2, . . . , xn) is the decision
variable vector or solution, X is the feasible solution set, and F (x) is the objective vector.
The set Y = F (X) corresponds to the images of the feasible solutions in the objective
space, and y = (y1, y2, . . . , yr), where yi = fi(x), is a point of the objective space.

One main difference between a MOP and a classical optimization problem with only
one objective is that a MOP does not have (in general) a unique optimal solution which is
better than all other solutions. This means, we need a different way of comparing solutions
in order to to be able to define optimality. This is done by using a dominace relation.
Although there are several possible relations that may be used, the most commonly used
and accepted one is Pareto dominance. The Pareto dominance between two solutions is
defined as follows:

Definition 2.1 (Pareto Dominance). A solution x′ dominates (�) another solution x′′ in
the Pareto sense if and only if ∀ i ∈ {1, . . . , r}, fi(x′) ≤ fi(x′′) and ∃ i ∈ {1, . . . , r}, such
that fi(x′) < fi(x′′).

In Figure 2.1 we have two objective functions (f1 and f2) both of which are to be
minimized over the set of feasible solutions {A, B, C, D, E}. We can see that solution B
is dominated by solution C whereas solution D is dominated by both solutions C and
E. A feasible solution dominated by no other feasible solution is said to be efficient or
Pareto optimal and its image in the objective space is said to be nondominated. The
set of all efficient solutions is called the efficient set (denoted by XE) and the set of all
nondominated points is the nondominated set (denoted by YN). In Figure 2.1, the solutions
not dominated by any other solutions are A, B, and E and so the set of Pareto optimal
solutions is {A, C, E}. Computing the set of efficient solutions is usually a very difficult
task for most practical problems. Due to this, we usually search for a set of approximate
solutions to the exact efficient set. An approximation to the efficient set is a set of solutions
found by a heuristic that are not dominated by another solution found by the same heuristic.
A solution in an approximate set is said to be potentially efficient.

Other notions of dominance and optimality beside those by Pareto may be used in
defining preferences among solutions. One of these is lexicographic dominance which is
defined as follows:

Definition 2.2 (Lexicographic dominance). A solution x′ lexographically dominates (�lex)
another solution x′′ if there exists an index k∗ ≤ n such that x′

k = x′′
k for k = 1, . . . , (k∗−1)

and x′
k < x′′

k.

Consequently, a feasible solution is said to be lexicographically optimal if it is not
lexicographically dominated by any other feasible solution. If we order the two objective
functions in Figure 2.1 as F = (f1, f2), then the most preferred solution is A since it has
the smallest value with respect to f1. Changing the order of f1 and f2 results in E being

30

A

B

C

D

E

f1

f2

Figure 2.1: Pareto dominance between solutions.

the most preferred solution since it has the smallest value with respect to f2. So the set
of lexicographically optimal solutions is {A, E}. Other common dominance relations are
max-ordering dominance and cone dominance (see Collette and Siarry (2004)). It is clear
that the set of most preferred solutions that can be found by using a dominance relation
other than Pareto dominance will always be a subset of the efficient set (set of Pareto
optimal solutions). The main interest of the other dominance relations is that they allow
some degree of freedom for a decision maker to influence the search for solutions (Collette
and Siarry, 2004). For example, it is possible for a decision maker to order the components
of the objective function F (x) = (f1(x), f2(x), . . . , fr(x)) in such a way that i < j implies
the objective function fi(x) is more important than fj(x). By so doing, he is sure to find a
solution that best satisfies his most important objective. Throughout this work, we will
use the notion of Pareto dominance when comparing solutions unless otherwise explicitely
stated.

The set of nondominated points of a MOP describes what is known as a tradeoff
surface or Pareto frontier. The shape of this surface depends on the number of objectives
and whether each of them is to be minimized or maximized. Possible shapes of the
tradeoff surface for problems consisting of only two objectives (bi-objective problems) is
given in Figure 2.2. These just give an idea of the form of the shapes. In general, the
tradeoff surface is not a perfect smooth curve or convex as portrayed. A nondominated
point that lies on the convex part of the tradeoff surface is said to be supported. In the
same way, a supported efficient solution is an efficient solution that maps to a supported
nondominated point. Due to the difficult nature of MOPs, we often do not seek the exact
nondominated set but rather a good approximation of it. In these cases, we search for a
set of points corresponding to a set of solutions which do not dominate each other. One
desirable quality of such an approximation is its ability to quickly converge to the true
nondominated set (intensification). Another quality is its ability to better estimate the
whole range of the tradeoff surface (diversification). These two qualities are represented in
Figure (2.3). A good approximation is one that has a good balance of both intensification

31

f1

f2

(a) Minimize f1, minimize f2.

f1

f2

(b) Minimize f1, maximize f2.

f1

f2

(c) Maximize f1, minimize f2.

f1

f2

(d) Maximize f1, maximize f2.

Figure 2.2: Common shapes of the tradeoff surface for a bi-objective problem.

and diversification.
For most practical problems, the feasible set of solutions X represents a finite set. In

particular, the components of a solution vector may be required to take on discrete values.
When we have X ⊂ Z

n, we talk of multi-objective integer programs (MOIP). A particular
case of a MOIP is a multi-objective combinatorial optimization (MOCO) problem. A
MOCO problem can usually be modelled so that the components of its solution vector
takes on binary values. These binary values typically models whether an option is chosen
or not. The set of feasible solutions for a MOCO problem is thus X = {0, 1}n. In this
thesis we will deal mainly with MOCO problems.

2.3 Solution Approaches

Although the solution of a MOP is typically a set, only one of these solutions is usually
implemented in real life. For this reason, there is a decision maker whose work is to choose
the solution to be implemented. A classification of solution approaches for MOPs may be

32

In
te

ns
ifi

ca
tio

n

Diversifaction

(a) Two goals

Feasible point

Point of an approximate set

(b) Good intensification (c) Good diversification

Figure 2.3: Two qualities of approximations.

made based on the stage of the solution process at which a decision maker is included.

2.3.1 A priori approaches

In an a priori approach, the decision maker defines his preference for each objective before
the solution process starts and he doesn’t interfere with the process after this. Only one
solution reflecting the preference of the decision maker is returned after the solution process.
This approach is interesting since we solve more or less a single-objective problem after the
definition of preferences. A disadvantage of this approach is that it is not always easy to
model the preferences of the decision maker as a single-objective problem.

33

2.3.2 Progressive approaches

In this approach the decision maker first defines his preferences before the solution process
starts. Unlike in a priori approaches, he is allowed to modify his preferences during the
solution process in order to guide the search. Just as for a priori approaches, only one
solution is returned at the end of the process. Progressive approaches seem to have an
advantage over a priori approaches since the initial preferences may be modified after
having sufficient information on the problem. One disadvantage of progressive approaches,
however, is that the decision maker should be present during the whole solution process in
order to refine his preferences and guide the search. This is inconvenient in cases where
the time needed to solve the problem is significantly long.

2.3.3 A posteriori approaches

These approaches seek to propose a set of solutions to the decision maker who will then be
required to choose which one to implement. The problem is modeled and solved without
the need for the decision maker to make preferences. He is only involved at the end of
the process to have a final say on which solution he prefers. Unlike in the two previous
approaches, the decision maker now has the advantage of knowing the options he has before
making a decision. A clear disadvantage of this approach is the significant amount of time
that is usually needed to search for the set of solutions.

The approach used to solve a particular MOP may not necessarily belong to only one of
these three solution approaches. Indeed, the approach used in solving a MOP may consist
of treating the objectives in a specific order of importance. If this order of importance is
defined by a decision maker before an optimization method is applied, then the approach is
a priori. However, if the order in which the objectives are treated is determined randomly,
and the optimization method is applied several times by varying the order of treating the
objectives then we have an a posteriori approach.

2.4 Approaches for Managing Objectives

Different strategies may be used to manage the objective functions of a MOP. These
strategies may be classified into four groups namely scalar, non-scalar, Pareto and indicator-
based approaches.

2.4.1 Scalar Approaches

Scalar approaches transform a MOP into a single-objective problem and treat it as such.
These are the approaches employed by most traditional methods. The two most popular
scalar approaches are the weighted sum method (Fishburn, 1967), and the ε-constraint
method (Haimes et al., 1971). Other scalar approaches are Benson’s method (Benson,
1978), the elastic constraint method (Ehrgott and Ryan, 2003) and other hybrid methods
combining two or more of these techniques. Here, we only discuss the weighted sum method
and the ε-constraint constraint method since they are the ones we will referred to later
on. A detailed description of these two approaches as well as the others mentioned can be
found in Ehrgott (2005).

34

The Weighted Sum Method (Fishburn, 1967)

Solving the MOP (2.1) by the weighted sum method consists in assigning a vector of
weights λ = (λ1, λ2, . . . , λr) to the vector of objective functions and optimizing a linear
aggregation. This is given by:

Minimize
r

∑

i=1

λifi(x) (2.2)

subject to : x ∈ X , (2.3)
r

∑

i=1

λi = 1 , (2.4)

λi ∈ [0, 1] for i = 1, 2, . . . , r . (2.5)

The values of λi may be seen as a way of indicating preferences among the different
objectives. By varying these values, different efficient solutions to the original problem can
be obtained. This is the most popular scalar approach used for MOPs Ehrgott (2005).
One difficulty encountered in implementing this method is the definition of the weights
when we don’t have enough information about how the objectives functions interact with
each other. Moreover, Das and Dennis (1997) showed that only supported solutions can be
can be found by this method. No matter the choice of weights, nonsupported solutions can
never be found by a weighted sum method (see Figure 2.4).

efficient
solution

min F

f1

f2

f1

f2

Figure 2.4: Solutions found by a weighted sum method for λ1 = λ2 = 0.5.
Notes: In the figure on the left, all nondominated points can be found by choosing the
right values of λ1 and λ2. In the figure on the right, only the two extreme points can be
found for all possible values of λ1 and λ2.

35

The ε-Constraint Method (Haimes et al., 1971)

The principle of the ε-constraint method is to turn a MOP into a single-objective problem
by selecting only one of the objectives to optimize and converting all the other objectives
into constraints. So for problem (2.1), this method will select an objective function fk such
that 1 ≤ k ≤ r and then solve the resulting problem. We get

Minimize fk(x) (2.6)

subject to : fi(x) ≤ εi for i = 1, . . . , r and i 6= k , (2.7)

x ∈ X . (2.8)

Unlike the weighted sum method, the ε-constraint method is capable of finding all the
points that define the tradeoff surface (see Figure 2.5). A disadvantage of this method is
that adding constraints on the objectives normally changes the structure of the original
problem and the resulting problem may be more difficult to solve.

f1

f2

ε

Figure 2.5: Solutions found by the ε-constraint method.
Notes: By chosing the right values of ε, all nondominated points can be found.

2.4.2 Non-Scalar Approaches

Unlike scalar approaches, non-scalar approaches don’t transform a MOP into a single-
objective problem but rather use different strategies to search for solutions by treating the
objective functions separately. A popular example of such an approach is lexicographic
optimization (Fourman, 1985) which is presented below.

36

Lexicographic Optimization

This method consists in ordering the components of the objective function vector based
on their importance as proposed by a decision maker and then treating them one after
the other in the given order. Suppose that the components of the objective function
F (x) = (f1(x), f2(x), . . . , fr(x)) are ordered in such a way that i < j implies the objective
function fi(x) is more important than fj(x). In solving problem 2.1 by lexicographic
method, we start by solving

Minimize f1(x)

x ∈ X .

Let the optimal solution of this problem be x̄1 with an associated value of f∗
1 = f1(x̄1).

The next problem is solved by using the of f∗
1 as a constraint. We obtain

Minimize f2(x)

x ∈ X ,

f1(x) = f∗
1 .

Here too, we let x̄2 be the optimal solution and f∗
2 = f2(x̄2) the associated value. In

treating the next component of the objective function (f3(x)), we use both f∗
1 and f∗

2 as
constraints. This iterative process continues until all components of the objective function
are treated. Thus for the ith component of the objective function, we solve

Minimize fi(x)

x ∈ X ,

f1(x) = f∗
1 ,

f2(x) = f∗
2 ,

. . .

fi−1(x) = f∗
i−1 ,

where f∗
j = fj(x̄j) is the value corresponding to the optimal value x̄j obtained when

treating the component fj(x). Figure 2.6 illustrates how lexicographic method works in
optimizing a bi-objective problem. In this figure, we suppose that f1(x) is first minimized
before minizing f2(x).

2.4.3 Pareto Approaches

A Pareto approach uses the notion of Pareto dominance to select preferred solutions among
several candidates. Goldberg (1989) was one of the first reseachers to use this kind of
approach which are found mainly in population based evolutionary algorithms. An example
of such an approach is NSGA II which was proposed by Deb et al. (2002).

2.4.4 Indicator-Based Approaches

In contrast to Pateto approaches, indicator-based approaches use performance indicators
to assign a score to a solution or set of solutions in order to guide the search for optimal

37

f1

f2

x∗
1

x∗
2

Image of feasible a solution

Path explored when minimizing f1

Path explored when minimizing f2

Figure 2.6: Solutions found by the lexicographic method.

solutions. The main idea used is to define the multi-objective problem as a problem
which seeks to maximize the value of the performance indicator. A good performance
indicator has to take both objectives of intensification and diversification into account.
An example of an indicator-based method is the Indicator Based Evolutionary Algorithm
(IBEA) proposed by Zitzler and Künzli (2004).

2.5 Solution Methods

Regardless of the approach used in managing the multiple objectives of a MOP, the method
or algorithm used in solving the resulting problem can be classified as being either exact
or approximate (heurisics and metaheuristics). Exact methods search for the complete set
of nondominated points whereas approximate methods search for a set of points that tries
to estimate the complete set of nondominated points. Due to the difficulty of MOPs, most
of the literature concentrate on approximation methods rather than exact methods. In
this section, we describe some exact methods based on the two most common scalarization
approaches (weighted sum and ε-constraint method). We also give a general overview of
some heuristics and metaheuristics. A detailed discussion of solution methods for MOPs
can be found in Ehrgott and Gandibleux (2000) and Gandibleux (2002).

2.5.1 Lower and Upper Bounds

In single objective optimization, lower and upper bounds have been the backbone for
solving many difficult problems. Bounds are also used to guarantee that a solution found
by an approximate algorithm lies within no more than a given percentage from the optimal
solution. Due to the importance of bounds in single objective optimization, it is natural
to expect that they will be equally important in multi-objective optimization. The ideal
point yI and the nadir point yN are widely accepted as a lower and an upper bound,
respectively, of the nondominated set of a MOP. Given a vector of r objective functions
F = (f1, f2, . . . , fr), the ith component (for i = 1, 2, . . . , r) of the coordinates of the ideal

38

point is defined by
yI

i := min
x∈X

fi(x)

whereas that of the nadir point is defined by

yN
i := max

x∈XE

fi(x) .

As it can be seen from Figure 2.7, these points are usually very far from most of the
members of the nondominated set and so provide very little information. In addition, the
problems needed to be solved during their computation may be very difficult. This is
usually true for the ideal point and we may need to compute a relaxation for it rather than
the true point. The relaxation of the ideal point is an even worse lower bound as it can be
seen in Figure 2.7.

Motivated by the fact that the optimal solution of a MOP is a set of solutions rather
than a single solution, Villarreal and Karwan (1981) proposed the use of sets to represent
the lower and upper bounds of a MOIP. They define a lower bound of a MOIP as a set of
points L such that every nondominated point of the problem is dominated by one of the
members of L. They also define an upper bound of a MOIP as a set of points U such that
each of its members is either part of the nondominated set YN or is dominated by at least
one member of YN . We remark that the members of L may not correspond to images of
feasible solutions.

This notion of bound sets has recently received attention from other researchers. Ehrgott
and Gandibleux (2007) prove some general results on lower and upper bound sets for
BOCO problems and propose the use of a so called convex hull lower bound set. In order
to compute the convex hull lower bound set for a BOCO problem, they first search for
efficient supported solutions by applying a weighted sum scalarization. The convex hull
lower bound set is then defined as the curve joining these points. Sourd and Spanjaard
(2008) use ideas similar to those presented by Ehrgott and Gandibleux (2007) to develop a
multi-objective branch and bound framework. They define a lower bound as any function
which separates the objective space into two halves in such a way that the complete set
of feasible points are found on one halve. Delort and Spanjaard (2010) also present an
efficient branch and bound algorithm for the bi-objective binary knapsack problem based
on bound sets. A detailed discussion on bound sets for BOCO problems and how they can
be constructed will be given in the next chapter.

2.5.2 Exact Methods

Most exact methods are limited to bi-objective problems rather than general MOPs. Some
of these are the two phases method by Ulungu and Teghem (1995) and the exact ε-constraint
method for bi-objective combinatorial optimization problems by Bérubé et al. (2009). One
of the few exact methods that apply to problems with more than two objectives is the
method proposed by Sylva and Crema (2004) (also by Jahanshahloo et al. (2005)). Two
other popular exact methods for MOPs which apply to problems with more than two
objectives are dynamic programming and branch and bound. These two methods are
applied mainly to MOPs for which the methods are efficient for the corresponding single
objective versions. For example, dynamic programming has been applied to multi-objective

39

f1

f2

Ideal point

Relaxation of
ideal point

Nadir point

Member of
lower bound set

Figure 2.7: Bounds for a BOCO problem.

versions of the shortest path problem (Carraway et al., 1990), the traveling salesman
problem (Fischer and Richter, 1982) and the transportation problem (Gallagher and Saleh,
1994). In the same way, multi-objective versions of the knapsack problem have been
tackled both by dynamic programming (Cho and Kim, 1997; Bazgan et al., 2009; Delort
and Spanjaard, 2010), and branch and bound (Ulungu and Teghem, 1997). Sourd and
Spanjaard (2008) developed a multi-objective branch-and-bound framework and apply it to
the bi-objective spanning tree problem. Madakat et al. (2013) also use a branch and bound
approach to solve a bi-objective time dependent traveling salesman problem. Next, we
describe some few exact methods for MOPs whose principles will be used in the chapters
that follow.

A Method for Finding the Complete Set of Supported Nondominated Points

Aneja and Nair (1979) presented a method for finding the complete set of supported
nondominated points for a bi-objective problem. That is, the method does not find the
complete set of nondominated points but rather only the set of supported nondominated
points. In addition, the method can also find at least one supported efficient solution
corresponding to each of the supported nondominated points. It is often used in a framework
called two phases method (Ulungu and Teghem, 1995). The method proposed by Aneja
and Nair (1979) is different other exact methods (like Evans and Steuer (1973); Gal (1975);
Yu and Zeleny (1974)) which search for the set of all supported efficient solutions. The
method is based on a weighted sum scalarization and it is summarized in Algorithm 2.1.

40

After transforming a bi-objective problem into single objective, the method computes the
lexicographic optimal points. It then procedes by using a dichotomy search to find the
other extreme efficient points. This method terminates after a finite number of iterations
when no more extreme points are found.

Algorithm 2.1 Aneja and Nair (1979)’s Method.
Output: the complete set of supported nondominated points N .

1: Set k ← 1, L← ∅, and N ← ∅.
2: Compute y

(1)
1 = minx∈X {f1(x)} and y

(1)
2 = minx∈X {f2(x) : f1(x) = y

(1)
1 }.

3: Set N ← {(y(1)
1 , y

(1)
2)}.

4: Compute y
(2)
2 = minx∈X {f2(x)} and y

(2)
1 = minx∈X {f1(x) : f2(x) = y

(2)
2 }.

5: if (y(2)
1 , y

(2)
2) 6= (y(1)

1 , y
(1)
2) then

6: Set N ← N ∪ {(y(2)
1 , y

(2)
2)} and L← {(1, 2)}.

7: Set k ← k + 1.
8: while L 6= ∅ do
9: Choose an element (r, s) ∈ L.

10: Set λ1 ← |y
(s)
2 − y

(r)
2 | and λ2 ← |y

(s)
1 − y

(r)
1 |.

11: Solve minx∈X {λ1f1(x) + λ2f2(x)} and let x∗ be the optimal solution.
12: Let y∗

1 = f1(x∗) and y∗
2 = f2(x∗).

13: if (y∗
1, y∗

2) 6= (y(r)
1 , y

(r)
2) and (y∗

1, y∗
2) 6= (y(s)

2 , y
(s)
2) then

14: Set N ← N ∪ {(y∗
1, y∗

2)} and L← L ∪ {(r, k), (k, s)}.
15: Set k ← k + 1.
16: end if
17: Set L← L\{(r, s)}
18: end while
19: end if

The Two Phases Method (Ulungu and Teghem, 1995)

The two phases method (Ulungu and Teghem, 1995) is a general framework for determining
the efficient set of bi-objective combinatorial optimization problems. In the first phase of
the method, supported solutions are found by solving a series of single objective problems
obtained by a weighted sum scalarization. In the second phase, more specialized algorithms
are used to search for nonsupported points in regions defined by the solutions found in the
first phase. The series of diagrams in Figure 2.8 illustrate the different stages of this method.
At any given point of the method and for any two adjacent supported solutions found
for the algorithm, three different regions may be defined. There can be no nondominated
points in the region shaded in blue, whereas feasible solutions in the region shaded in pink
are dominated. It is only in the unshaded region between the two shaded regions where
additional nondominated points may lie.

41

(a) (b)

Feasible point

Nondominated point

Dominated region

Infeasible region

(d) (e) (f)

Figure 2.8: Different stages of the two phases method.
Notes: Phase I, (a) – (d), consist in finding supported solutions by using a method based
on weighted sum. Unsupported solutions are found in Phase II, (e) – (f), by using problem
specific algorithms.

An Exact ε-Constraint Method for BOCO problems (Bérubé et al., 2009)

As we have already noted, the ε-constraint is capable of finding the complete and exact
nondominated set. The main challenge with the method is to know for which values of ε the
single objective problem should be solved. Although it is very difficult in the general case
to choose the correct values of ε, it can efficiently be done for certain classes of problems.
The method presented here works for BOCO problems for which the objective coefficients
are integers. This method was formally presented by Bérubé et al. (2009) after it had
been used by several authors including Jozefowiez et al. (2007). The principle relies on the
fact that the cardinality of the nondominated set of a BOCO problem is finite. We can
therefore find the whole set by solving a series of ε-constraint problems provided we know
exactly how to choose the right values of ε. The method starts by first deciding on which
of the two objective functions should be converted into a constraint (by an ε-constraint
method). Next, ε is set to a worse possible value of the constraint objective and the
resulting problem is solved to optimality. The next value of ε is calculated by subtracting
a predetermined step length, ∆, from the value corresponding to the constrained objective
in the previously found point. Bérubé et al. (2009) proved that by choosing ∆ = 1, the
complete nondominated set of a BOCO problem with integral objective coefficients can be
found. The set found may contain some weakly dominated points and these can be simply
deleted at the end of the process. The method is described in Algorithm 2.2.

42

Algorithm 2.2 An exact ε-constraint method for BOCO problems (Bérubé et al., 2009).
1: Choose a fixed step length ∆.
2: Compute the ideal point yI = (yI

1 , yI
2), and nadir point yN = (yN

1 , yN
2).

3: Set ε← yN
2 and the nondominated set YN ← ∅.

4: repeat
5: Solve the ε-constraint problem: min {f1(x) subject to x ∈ X , f2(x) ≤ ε}.
6: Let x∗ be the optimal solution.
7: Compute f∗

1 = f1(x∗) and f∗
2 = f2(x∗).

8: Set YN ← YN ∪ {(f∗
1 , f∗

2)}.
9: Set ε← f∗

2 −∆.
10: until ε < yI

2 .
11: Remove weakly dominated points from YN .

Sylva and Crema’s Method

The method described in this section was presented by both Sylva and Crema (2004)
and Jahanshahloo et al. (2005). Its goal is to find the complete nondominated set of a
multi-objective integer linear program (MOILP) by repeatedly solving a single objective
problem obtained through a weighted sum with fixed weights. That is, the MOILP is
transformed into a single objective problem by using a vector of weights λ = (λ1, λ2, . . . , λr)
such that λi ∈]0, 1[for all i = 1, . . . , r and

∑

λi = 1. Once the weights are fixed, the
resulting problem is solved repeatedly for as long as a new nondominated point is found.
This is done by using the previously found points to define zones of the objective space
where further nondominated points may lie. That is, constraints on the objective functions
are added to the original formulation in order to limit the search space. This destroys the
original problem structure and so it may make the problem more and more difficult at
each iteration. A new nondominated point is found at each iteration of the method except
the one when there are no more nondominated points. Figure 2.9 illustrates the stages of
using this method.

The Parallel Partitioning Method

The Parallel Partitioning Method (PPM) was proposed by Lemesre et al. (2007) to solve
bi-objective optimization problems. PPM combines ideas from the two phases method and
the ε-constraint method. The main idea of PPM is to quickly determine some nondominated
points and use them to define search regions where additional nondominated poitns may
lie. The method consists of three stages and these are illustrated in Figure 2.10. In the
first stage, (2.10a), the two lexicographic optimal points are computed. In the second stage,
(2.10b – 2.10c), the objective space is partioned into equally spaced regions with respect
to one objective function in order to find fairly distributed nondominated points. The
method used here is actually the ε-constraint method and so both supported as well as
nonsupported solutions may be found at this stage. This is one main difference between the
PPM and the two phases method for which the complete set of nondominated points are
searched for in a first phase. The final stage, (2.10b – 2.10c), consists in using the previously
identified nondominated points in defining search regions where additional nondominated

43

(a) (b)

Feasible point

Nondominated point

Dominated region

(c) (d) (e)

Figure 2.9: Illustration of Sylva and Crema’s Method with λ1 = λ2 = 0.5.
Notes: A nondominated point is found at every iteration of the algorithm with the
exception of the last one when there are no more nondominated points

points may lie. Just as in the two phases method, dedicated methods are used to search
for nondominated points in these regions. A generalisation of PPM for problems with
k-objectives (k > 2) has been proposed by Dhaenens et al. (2010).

2.5.3 Approximation Methods

Due to the diffuclty of MOPs, they are mainly solved with approximation methods (ie.
heuristics and metaheuristics). Reeves (1993) defines a heuristic as a technique which seeks
good (i.e. near optimal) solutions at a reasonable computational cost without any guarantee
of feasibility or optimality. In general, a heuristic is specific to a particluar problem. That
is, it cannot be easily adapted for other problems other than the one for which it was
designed. A metaheuristic on the other hand is a more general technique that can be
easily adapted for a large class of problems. It refers to an iterative strategy that combines
different strategies for exploring and exploiting the search space. At each iteration, the
method may manipulate one or several solutions. Some popular metaheuristics are genetic
algorithms, simulated annealing and tabu search. We refer the reader to Ehrgott and
Gandibleux (2004) for a detailed discussion.

44

(a) (b)

Feasible point

Nondominated point

Search region

(c) (d) (e)

Figure 2.10: Illustration of the parallel partitioning method.
Notes: There are three stages. In stage I, (a), the two lexicographic optimal points are
found. State II, (b) – (c), consist in partitioning the range of one objective space into
equally spaced regions and solving ε-constraint problems. In stage III, (d) – (e), search
regions are defined by the identified nondominated points and the remaining nondominated
points are found.

2.6 Evaluating Approximation Methods and Solutions

One of the most challenging tasks in multi-objective optimization is the evaluation of
solutions methods and approximate solutions. In order to compare two sets of approximate
solutions, the concept of Pareto dominance may be used. Nevertheless, this is a difficult
task for several reasons including the fact that some points in either set may be dominated
by points in the other set while others may be incomparable. Figure 2.11 shows the possible
situations that may arise in comparing two approximate solutions, PA and PB, of a bi-
objective problem. In spite of this difficulty, several methods which make use of so called
quality indicators have been proposed to compare different algorithms and approximate
solutions. These methods may, however, not be valid in all cases and interpreting their
results may also be difficult (Zitzler et al., 2003). For a given approximation, a quality
indicator may assign an absolute score, a score relative to a reference set (or point), or a
score relative to another approximation. An indicator may also concentrate on aspects like
convergence, diversification, or both of the solutions. The different indicators proposed in
the literature can be classified according to the number of approximation sets they work on.
The most common ones are those that assign a score to a single approximation set (unary

45

quality indicators) and those that assign a score based on two approximation sets (binary
quality indicators). Below, we describe the hypervolume indicator or S-metric (Zitzler and
Thiele, 1998) and the binary ε indicator (Zitzler et al., 2003). An analysis and review
on performance assessment in multi-objective optimization can be found in Zitzler et al.
(2003).

(a) PA ≺ PB (b) PB ≺ PA (c) PA ‖ PB

Member of PA

Member of PB

Figure 2.11: Difficulty in comparing approximation solution sets.
Notes: One set of solutions may dominate the other as in (a) and (b) or the two sets may
be incomparable as in (c).

2.6.1 The Hypervolume Indicators

Given a potentially nondominated set PA, the unary hypervolume indicator (Zitzler and
Thiele, 1998) assigns a score IH1

(A) based on the volume enclosed by the set with respect
to a reference point (see Figure 2.12). The volume represents the region of the feasible
space that is dominated by the set PA. In order to compare two potentially nondominated
sets PA and PB , the binary hypervolume indicator (Zitzler, 1999) assings scores IH2

(A, B)
and IH2

(B, A) which represent the volume of the feasible region that is dominated by PA

(respectively PB) but not by PB (respectively PA). From these values, we can conclude
for example that PA is preferred to PB if IH2

(A, B) > 0 and IH2
(B, A) = 0. The use of

these indicators requires the definition of a reference point that represents an upper bound
on the feasible region. Given a vector of r objective functions, the time required by the
unary hypervolume indicator to assign a score to a set PA is given by O(|PA|

r+1). For this
reason, Knowles and Corne (2002) recommends these indicators for cases where we have
very few objective functions and the size of potentially nondominated sets are not so large.

2.6.2 The Binary ε-Indicator

Let y′ = (y′
0, . . . , y′

r) and y′′ = (y′′
0 , . . . , y′′

r) be two arbitrary points in the objective space
of a MOP. The point y′ is said to ε-dominate y′′, written as (y′ �ε y′′), if and only if
there exists a real number ε > 0 such that y′

i ≤ ε · y′′
i for all i ∈ {1, 2, . . . , r}. Given two

potentially nondominated sets PA and PB, the binary ε-indicator Iε is defined as

Iε(A, B) = inf
ε∈R

{∀y′′ ∈ B, ∃y′ ∈ A : y′ �ε y′′} ,

46

reference

Hypervolume

f2

f1

(a) IH1
(A)

reference

IH1
(B)

f2

f1

(b) IH2
(A, B)

Member of PA

Member of PB

Figure 2.12: The hypervolume indicators.
Notes: We deduce that PA is preferred to PB since IH2

(A, B) > 0 and IH2
(B, A) = 0.

where inf represents the infimum or greatest lower bound of a set. This indicator, thus,
gives the minimum factor ε such that each point in PB is ε-dominated by at least one
point in PA. In other words, it is a representation of how worse PB is with respect to PA

when all objectives are considered. The potentially nondominated set PA is preferred to
PB if Iε(A, B) ≤ 1 and Iε(B, A) > 1. An advantage of this indicator is that Iε(A, B) can
be calcluated in a time of O(n · |A| · |B|).

ε < 1

ε = 1

ε > 1

f2

f1

Member of PA

Member of PB

Figure 2.13: The Binary ε-indicator.
Notes: The shaded regions represent the areas that are ε-dominated by PA for the
indicated values of ε. The medium-shaded area includes the dark-shaded one while the
light-shaded area includes both the medium-shaded and the dark-shaded ones.

47

2.7 Conclusion

This chapter has given a general overview of multi-objective optimization. In particular,
we introduced the different terminologies and principles that will be useful for discussions
in the chapters that follow. A detailled discussion of the notions introduced in the chapter
can be found in a book like Ehrgott (2005).

48

Chapter 3

Column Generation for
Bi-Objective Integer Programs

3.1 Introduction

In Chapter 1 we saw the application of column generation to vehicle routing problems.
Chapter 2 introduced multi-objective optimization. In spite of their importance these two
subjects have mainly been studied separately rather than together. To the best of the
author’s knowledge, very few published papers treat the application of column generation
to multi-objective problems and even these are quite recent papers. A possible explanation
for this is that the notion of lower and upper bounds for MOPs is not so well studied and
understood as it is for single objective problems.

We saw in the preceding chapter that the ideal point and the nadir point are well
known lower and upper bounds, respectively, for the nondominated set of a multi-objective
problem. Nevertheless, these two points are most of the time not very indicative of where
the members of the nondominated set lie. Since the solution of a multi-objective problem
is a set of solutions rather than a single solution, a better way of defining lower and upper
bounds is to use sets of points. Villarreal and Karwan (1981) was the first to propose
bounds for a multi-objective problem based on sets of points. They define a lower bound
for a MOIP as a set of points L such that each feasible point of the MOIP is dominated
by at least one of the members of L. The members of L may or may not correspond to
feasible solutions. In a similar way, an upper bound may be defined as a set of feasible
points U whose members do not dominate one another. Recently, this idea of using sets to
define bounds for MOPs has been visited by authors like Ehrgott and Gandibleux (2007),
Sourd and Spanjaard (2008) and Delort and Spanjaard (2010). Ehrgott and Gandibleux
(2007) introduced the terminology bound set to describe a set used as a lower or upper
bound of a MOP. They prove some general results on bound sets and discuss how they can
be constructed for bi-objective problems by using a weighted sum approach. Sourd and
Spanjaard (2008) and Delort and Spanjaard (2010) use ideas similar to those introduced
by Ehrgott and Gandibleux (2007) to compute bound sets for the bi-objective spanning
tree problem and the biobjective binary knapsack problem, respectively. The computed
bounds are then used in a multi-objective branch-and-bound framework to develop exact
algorithms for the considered problems. At the time of writing this thesis, we are not

49

aware of any other published work on bound sets for multi-objective problems apart from
the ones cited here.

We could also not find much published work on the use of column generation in the
context of multi-objective optimization. A few of the ones we found are worth citing. The
first is the work of Ehrgott and Tind (2007) which treats the use of column generation
in integer programming with applications in multi-objective optimization. The proposed
approach consists in first converting a multi-objective problem into single objective through
an ε-constraint method before combining column generation and cutting planes in solving
the resulting problem. After finding an efficient solution together with the necessary
dual information, a form of sensitivity analysis is used to search for neighbouring efficient
solutions without changing the original master problem. Khanafer et al. (2012) also present
a bi-objective extension of the bin packing problem in which the goal is to minimize the
number of bins used as well as the total number of conflicts between items placed in the
same bin. A column generation based metaheuristic is proposed for the problem. The
master problem is a single objective set covering model and the subproblem is a variant of
the knapsack problem in which the objective function is non-linear. Due to the difficulty
of solving the subproblem exactly, heuristics are used.

An example of applying column generation to multi-objective problems that is similar to
some strategies we propose later in this chapter is the work of Salari and Unkelbach (2013).
The authors discuss an application of column generation for creating treatment plans in
the field of radiotherapy. A bi-objective problem that arises in this field is to treat defective
cells and also reduce the side effects resulting from the use of radio waves. A continuous
convex model in which each column represents a certain treatment dose is proposed for
the problem. A weekly plan (feasible point) consists of one or several doses (columns)
and a complete treatement program (potentially efficient set) consists of several weekly
treatment plans. The bi-objective problem is first converted into single objective through a
weighted sum approach before applying column generation to obtain an approximation
to the set of efficient solutions. In principle, each weekly plan can be obtained by fixing
the weight vector and solving the problem to optimality by column generation. Using this
approach, however, results in treatment programs in which completely different doses are
to be administered each week. Such a treatment program is clinically impractical. In order
to obtain a clinically practical treatement program, the authors use the following idea. At
each iteration, a treatment program is constructed based on the currently available columns
in the master problem. The subproblem to search for new columns is formulated in such a
way that a set of columns that best improves the current treatment program (instead of
just one weekly plan) is obtained. This approach helps in obtaining a treatment program
in which similar weekly doses are administered. A similar column generation approach
is proposed in Peng et al. (2012). Some other problems dealing with the application of
column generation in multi-objective optimization can be seen in Bard and Purnomo (2005),
Chauny et al. (2000), and Ogryczak (2000).

Contributions and Organization of Chapter. We discuss the application of column
generation to bi-objective integer programs (BOIPs). We will concentrate more specifically
on bi-objective problems with applications to vehicle routing problems. We treat how to
compute lower bound sets for these problems by using a column method. In Section 3.2

50

we discuss how lower and upper bound sets for BOIPs can be constructed by considering
different cases. We will start with the case where the number of variables in the given
formulation is non-exponential and so there is no need for column generation. Given that
a model which is well adapted for column generation usually has an exponential number
of variables, we discuss how a lower bound set for a problem based on such a model can
be computed. In computing lower bounds by column generation, we will show that we
often need to solve a series of subproblems that are similar in form. For this reason we will
seek possible ways to efficiently search for columns that are possibly useful for serveral
subproblems at the same time without necessarily solving all these subproblems. The last
section of the chapter is concerned with the evaluation of lower bound sets. We also give
an example of the the bi-objective set covering problem (BOSCP) and show that the lower
bound sets computed by the proposed methodology for this problem are good.

Related Publications. A large part of this chapter forms the core of an article that
has been accepted for publication in the international journal RAIRO - Operations Re-
search (Sarpong et al., 2013c). Some other parts are also used in a paper which is yet to
be submitted to another international journal.

3.2 Constructing Bound Sets for BOIPs

We discuss how to construct lower and upper bound sets for BOIPs by considering the
following problem, P , defined by :

Minimize (c1)T x (3.1)

Minimize (c2)T x (3.2)

subject to : Ax ≥ b , (3.3)

x ≥ 0 and integer. (3.4)

In this formulation, x is an n vector of decision variables and ci is an n vector of integer
coefficients in the ith objective function (i = 1, 2). The constraints are expressed by using
an m× n matrix of coefficients, A, and an n vector of right hand side constants, b.

The main idea used in computing bound sets for a BOIP is to convert the bi-objective
problem into single objective by using a scalarization method and then solve the resulting
problem (or a relaxation of it) several times by varying the necessary parameters. In
this thesis, we consider the weighted sum and the ε-constraint methods. We recall from
Chapter 2 that the weighted sum method transforms Formulation (3.1 – 3.4) into single
objective by using a vector of non-negative weights λ = (λ1, λ2). The resulting problem
P (λ) is given by :

Minimize λ1 · (c
1)T x + λ2 · (c

2)T x (3.5)

subject to : Ax ≥ b , (3.6)

x ≥ 0 and integer. (3.7)

On the other hand, the ε-constraint approach obtains a single objective problem by
restricting the worst possible value of one objective (say the second one) to a constant

51

ε ∈ R. Thus, we obtain the single objective problem P (ε) :

Minimize (c1)T x (3.8)

subject to : Ax ≥ b , (3.9)

−(c2)T x ≥ −ε , (3.10)

x ≥ 0 and integer. (3.11)

We may distinguish two main cases for the single objective problems obtained by each
scalarization method. The first case is when there is an efficient algorithm to solve P (λ) or
P (ε). The other case is when both P (λ) and P (ε) are NP-hard. Many practical problems,
like VRPs, are NP-hard even in their single objective form so their bi-objective extensions
as well as both P (λ) and P (ε) are NP-hard. Some other problems which are polynomial
in their single objective form become NP-hard in the bi-objective form. In this thesis,
we will concentrate on the case where both P (λ) and P (ε) are NP-hard. In this case, we
have to resort to relaxations of problem P (λ) or P (ε) in order to compute a lower bound
set for problem P . In general, an upper bound set for problem P is computed through
heuristics or metaheuristics which may or may not rely on any scalarization method. In
what follows, we describe the general algorithms that can be used in computing a lower
bound set when we use each scalarization method. In a first instance, we suppose that
P is manageable in the sense that we have a “small” number of variables in x (i.e. n is
small). In such a situation, there is no need for column generation in computing a lower
bound set for the problem.

3.2.1 Using the Weighted Sum Method

Using the weighted sum method to compute lower bound sets for BOIPs has been discussed
in detail by Ehrgott and Gandibleux (2007). In this section, we only point out some few
things that will be useful for our discussion later on. If there is an efficient algorithm to
solve P (λ), then we can compute the complete set of supported points of P (λ) by using
an algorithm proposed by Aneja and Nair (1979) (Algorithm 2.1). A lower bound set is
defined by the lines connecting each supported solution to the closest one. The lower bound
set obtained in this way is called the convex hull lower bound set of problem P and it is
the best lower bound set that can be found by the weighted sum method (see Figure 3.1).
If P (λ) is NP-hard, then we rather have to compute the convex hull lower bound set of a
relaxation of P . In this manuscript we will only consider the linear relaxation PL of P . In
general, the members of a lower bound set may correspond to points that are infeasible for
problem P . The definition of an upper bound set, however, requires that its members are
feasible points of P . For this reason, heuristics and metaheuristics are used in computing
upper bound sets. An example is the greedy heuristics used in computing upper bound sets
for instances of the bi-objective set covering problem (see Ehrgott and Gandibleux (2007)).
We stress that the heuristic or metaheuristic used in computing an upper bound set does
not necessarily need to depend on the weighted sum method. Any known heurisitic or
metaheuristic for problem P may be used.

52

Supported efficient point of PL

Convex hull lower bound set of PL

Efficient point of P

Convex hull lower bound set of P

f1

f2

Figure 3.1: Constructing a lower bound set through a weighted sum method.

3.2.2 Using the ε-Constraint Method

The main idea in using an ε-constraint method to compute a lower bound is similar to
the case where we use a weighted sum method. That is, depending on whether P (ε) is
NP-hard or not, we will need to deal with P (ε) directly or a relaxation of it. In general,
problem P (ε) is NP-hard due to the addition of the constraint on an objective. The
discussion in the section will therefore treat this case by considering the linear relaxation
PL(ε) of P (ε). The method consists in solving PL(ε) for different values of ε in such a
way that each feasible point of P (ε) is dominated by at least one of the computed points.
The procedure is summarized in Algorithm 3.1 and we suppose that all feasible values
for (c2)T x lie in the range [min ε, max ε]. The output of Algorithm 3.1 is the set L and a
sequence of values max ε = ε1 > ε2 > · · · > min ε corresponding to the elements of the set
L. Note that each step size δi is to be chosen in such a way that there can be no feasible
point (f∗

1 , f∗
2) of the original integer program satisfying the inequalities f i

2 < f∗
2 < εi+1

(see Figure 3.2). This is a very difficult thing to do for a general bi-objective problem. For
the considered problems in this document, however, we have integer objective coefficients
so we can use an idea similar to the one used by Bérubé et al. (2009). At iteration i, we
define the step size as δi = 1− (⌈f i

2⌉− f i
2). As we will later see, it is possible to define even

better step sizes for specific problems. We show in Proposition 3.1 that the set L returned
by the algorithm is indeed a lower bound set for the considered problem.

Proposition 3.1. Each feasible point (f∗
1 , f∗

2) of problem (3.1 – 3.4) is either dominated
by at least one point of the set L constructed by Algorithm 3.1 or is a point of L.

Proof. We know that the dominance relation (�) is transitive (i.e. if x1 � x2 and x2 � x3,
then x1 � x3). We also know that each feasible point of a given multi-objective problem
is either dominated by at least one element of the nondominated set YN or is itself a
nondominated point. For these reasons, we show that each member (f∗

1 , f∗
2) ∈ YN either

belongs to L or is dominated by at least one member of L. Let (f∗
1 , f∗

2) ∈ YN , then the

53

Algorithm 3.1 Using an ε-constraint method to compute a lower bound set
Output: A lower bound set L for the considered problem.

1: Set L← ∅.
2: Set i← 1, and εi ← max ε.
3: while εi ≥ min ε do
4: Solve linear relaxation of Formulation (3.8 – 3.11) for ε = εi.
5: Let x∗ be the optimal solution vector.
6: Compute the optimal values f i

1 = (c1)T x∗ and f i
2 = (c2)T x∗.

7: Set L← L ∪ (f i
1, f i

2).
8: Choose δi > 0 such that there can be no feasible point (f∗

1 , f∗
2) of the original integer

program satisfying f i
2 − δi < f∗

2 < f i
2.

9: Set i← i + 1 and εi ← f i−1
2 − δi−1.

10: end while

δ1

δi

...

...

ε1 = max ε

ε2

εi

εi+1

min ε

Feasible point

Member of lower
bound set

Infeasible region

f1

f2

Figure 3.2: Constructing a lower bound set through an ε-constraint method.

theory behind the ε-constraint method assures us that there is a value of ε = ε∗ for which
the solution of problem (3.8 – 3.11) maps onto the point (f∗

1 , f∗
2). The exact value of ε∗

is not unique so let us choose, without loss of generality, ε∗ = f∗
2 . By the way the set L

is constructed, we know that f i
2 ≤ f∗

2 = ε∗ ≤ εi at a certain iteration i of Algorithm 3.1.
Moreover, since we solve linear relaxations when computing the members of L, we have
f i

1 ≤ f∗
1 . Hence, (f i

1, f i
2) ≦ (f∗

1 , f∗
2).

We recall once again that an upper bound set can be computed through heuristics or
metaheuristics that do not necessary depend on any scalarization method.

54

3.3 Constructing Lower Bound Sets for BOIPs by Column
Generation

Many practical problems formulated in the form of (3.1 – 3.4) have an exponential number
of decision variables. It is impractical and sometimes impossible to consider all the variables
at once when treating such problems. As we saw in Chapter 1, the idea used by a column
geneation method in solving such a problem is to start with only a reasonable number of
variables (and the corresponding columns of matrix A) for which the problem is primal
feasible. The other variables together with their corresponding columns of A are introduced
when necessary by solving an auxillary problem. We recall that, the linear relaxation of
the original integer program with an exponential number of variables (or columns) is called
the linear programming master problem (LPM) and its restriction to a reasonable number
of columns is called the restricted LPM (RLPM). The auxillary problem solved to propose
new variables to be added to the RLPM or prove the convergence of the method is called
the subproblem (S). Each iteration of column generation starts by solving the RLPM to
obtain optimal primal and dual solutions. The subproblem uses the optimal dual values
to search for new columns that can possibly improve the current objective value of the
RLPM. One or several of such variables, if found, are added to the RLPM and the process
repeats. The method converges when no new variables are proposed by the subproblem.

Next, we discuss how to use column generation in computing a lower bounds set for a
BOIP when it is formulated with an exponential number of variables. We list the different
models involved in a column generation method in the case of a weighted sum method and
also those in the case of an ε-constraint method.

Using a Weighted Sum Method

Linear Programming Master Problem (LPM(λ)):

Minimize (λ1c1 + λ2c2)T x (3.12)

subject to : Ax ≥ b , (3.13)

x ≥ 0 . (3.14)

Dual of LPM (DLPM(λ)): Let π be the vector of dual variables associated with
Constraints (3.13). The dual formulation is

Maximize bT π (3.15)

subject to : AT π ≤ λ1c1 + λ2c2 , (3.16)

π ≥ 0 . (3.17)

Subproblem (S(λ)): It is defined as finding variables that correspond columns of matrix
A not already in the RLPM and which satisfy

λ1c1 + λ2c2 −AT π < 0 . (3.18)

55

Using an ε-Constraint Method

Linear Programming Master Problem (LPM(ε)):

Minimize c1x (3.19)

subject to : Ax ≥ b , (3.20)

−c2x ≥ −ε , (3.21)

x ≥ 0 . (3.22)

Dual of LPM (DLPM(ε)): Let π be the vector of dual variables associated with
Constraints (3.20) and ϕ the dual variable associated with Constraint (3.21). The dual
formulation is

Maximize bT π − εϕ (3.23)

subject to : AT π − ϕc2 ≤ c1 , (3.24)

π, ϕ ≥ 0 . (3.25)

Subproblem (S(ε)): It is defined as finding variables that correspond columns of matrix
A not already in the RLPM and which satisfy

c1 + ϕc2 −AT π < 0 . (3.26)

General Form of the Subproblem

By comparing the inequalities (3.18) and (3.26), we can see that the subproblems encoun-
tered in both cases have a similar form. In addition, the general form of subproblem
obtained by using a particular scalarization method does not change when we modify
the parameters. Only the values of the dual variables and coefficients change. A similar
result is obtained if we consider problems with more than two objectives. This means that
strategies we describe in solving the subproblems obtained by one of these scalarization
methods can easily be adapted to the other scalarization methods. Moreover, for any
given scalarization method, it is possible to treat more than one subproblem at the same
time when searching for columns. For example, it may be possible to easily modify a
column found by solving the subproblem for a specific value of the parameter λ (or ε) in
order to find another column for a different value of λ (or ε) without the need to solve
the subproblem for this new value. We present different strategies that can be used to
efficiently search for columns in next subsection.

3.3.1 Column Search Strategies

We discuss some approaches to search for relevant columns when computing a lower bound
set by column generation. A very general column generation method that can be used in
computing a lower bound set for a BOIP is summarized in Algorithm 3.2. The algorithm
starts by first converting the BOIP into single objective through a scalarization method.
We will limit ourselves to only the weighted sum method and the ε-constraint method. An
RLPM is then formulated for the chosen scalarization method as discussed in the preceding

56

subsection before starting the actual column generation method. An iteration consists of
first generating a set of points by solving the RLPM for one or more values of the necessary
parameters based on the chosen scalarization method. For the weighted sum method,
this means choosing one or more values of the vector λ and solving the RLPM for these
values in order to find the corresponding supported points (based on the currently available
columns in RLPM) together with the necessary dual values. In the case of the ε-constraint
method, we need to solve LRPM for different values of ε to find the associated points
and the corresponding dual values. After generating the points, we then need to solve the
subproblem corresponding to one or several points and search for relevant columns. If it is
proven that the RLPM has converged for any points, these points are saved. Any found
columns are added to the RLPM and the process continues. The method terminates when
the RLPM converges for all relevant values of the parameters for the chosen scalarization
method.

Algorithm 3.2 A generalized column generation method for BOIPs
Output: A lower bound set L for the considered problem.

1: Choose a scalarization method and convert the BOIP into single objective.
2: Formulate RLPM for the chosen scalarization method.
3: Set L← ∅.
4: repeat
5: Generate a set of points by solving RLPM for different values of the parameter(s)

for which RLPM has not converged.
6: Search for a set of columns that are relevant for one or several subproblems.
7: Add one or several found columns to RLPM.
8: Save any converged points in L.
9: until RLPM converges for all relevant values of the parameters used.

Next, we present two main approaches for implementing Algorithm 3.2 namely the
Point-by-Point Search (PPS) and the Sequential Search approaches. The main difference
between these two is the order in which we search for the points in a lower bound set.
Different variants of each of the two main approaches can also be defined based on the
order in which we search for columns and the strategies used to accelerate the column
generation method. In what follows, we describe the two main approaches for the cases
in which we use a weighted sum method and an ε-constraint method. We demonstrate
certain aspects only for the case where we use an ε-constraint method. These aspects can,
however, be easily adapted to the case where a weighted sum method is used.

Point-by-Point Search (PPS)

A standard and very intuitive way of implementing Algorithm 3.2 involves solving the
RLPM completely for any given value of λ (or ε) before continuing to a different value
of λ (or ε). That is, for any given value of λ (or ε), RLPM(λ) or RLPM(ε) is solved
by column generation until the subproblem proposes no new columns that can improve
the current objective value of the RLPM. In the case of the weighted sum method this
correponds to adapting the algorithm described by Aneja and Nair (1979) and which is

57

given in Algorithm 2.1. In the case of an ε-constraint method, the approach is similar
to the one described in Algorithm 3.1 except that in Step 4 we need to solve RLPM(ε)
to optimality by column generation. We call this approach the Point-by-Point Search
(PPS) since the search is concentrated on finding a particular point of a lower bound set
before moving on to another. The PPS identifies the points of a lower bound set following
a predictable order. For the case of an ε-constraint method this order is indicated in
Figure 3.3. The point corresponding to a smaller value of ε can only be found after all the
points corresponding to greater values of ε have been found. Although the PPS is simple
and quite easy to implement, it takes no advantage of the similarities of the subproblems
solved for the different values of the parameter λ (or ε). The column generation method
may also be slow to converge for a given value of the parameter but the PPS requires us to
wait for it to converge before moving on to a different value of the parameter. This can
result in a huge number of “irrelevant” columns being added to the RLPM and a long
computational time. A variant of the PPS that aims at addressing some of these problems
is the k-Step Point-by-Point Search (k-PPS) which is presented below.

ε1 = max ε

ε2

ε3

ε4

ε5

min ε

1

2

3

4

5

f1

f2

Figure 3.3: Order in which points of a lower bound set are identified by the PPS.

k-Step Point-by-Point Search (k-PPS)

In this approach, we have the freedom to leave a given value of ε before the RLPM has
converged for it and switch to another value of ε. If it is necessary, the approach will
return to a previously skipped value of ε later on. The k-PPS approach is summarized in
Algorithm 3.3. The first step of this approach is to define the condition O under which a
given value of ε for which the RLPM has not converged will be skipped. The condition
can be as simple as setting a fixed number k of column generation iterations. Instead of
using a fixed number of iterations, we may also decide to skip a given value of ε when
the objective value of the RLPM has not improved significantly after k iterations. This
can be a way of addressing some column generation problems like the plateau effect and
the tailing-off effect that were described in Chapter 1. It is also possible to use any other

58

condition we find appropriate for a given problem. In Step 6 of Algorithm 3.3, we say that
a value εi corresponds to a point (f∗

1 , f∗
2) of L if f∗

2 ≤ εi ≤ ε∗, where ε∗ ∈ E is the value of
ε for which (f∗

1 , f∗
2) was computed. In such a case, there is no need to solve RLPM for εi

since we are sure to end up with a solution that maps onto (f∗
1 , f∗

2).

Algorithm 3.3 k-Step Point-by-Point Search (k-PPS)

1: Define a condition O under which a given value of ε will be skipped before RLPM(ε)
converges for this value.

2: Set L← ∅ and E ← ∅.
3: repeat
4: Set i← 1, and εi ← max ε.
5: while εi ≥ min ε do
6: if εi does not correspond to a converged point of L then
7: Solve RLPM(ε) by column generation until the method converges or condition

O is satisfied.
8: Let x∗ be the current optimal solution vector.
9: Compute the current optimal values f i

1 = (c1)T x∗ and f i
2 = (c2)T x∗.

10: if the method converged in Step 7 then
11: Set L← L ∪ (f i

1, f i
2) and E ← E ∪ εi.

12: end if
13: Choose an appropriate step size δi > 0.
14: Set i← i + 1 and εi ← f i−1

2 − δi−1.
15: end if
16: end while
17: until RLPM(ε) converges for all values of ε in the inner loop.

Unlike in the case of the PPS, the points of a lower bound set are identified by the
k-PPS in no particular order. That is, the RLPM can converge for a smaller value of ε
before it converges for a greater value. Figure 3.4 illustrates a possible order in which the
points of a lower bound set are identified by the k-PPS. This illustration is based on a
fictitious example. We suppose that feasible values for the ε-constraint objective function
are integers between min ε = 2 and max ε = 20. Each complete iteration of the k-PPS
approach will thus start by solving RLPM(ε) for ε = 20 as in Figure 3.4a. A full description
of the series of diagrams is given below. Note that we can obtain non-integral points since
we are solving linear relaxations rather than integer programs. During the process, only
points that are proved to have converged are saved from one iteration to another.

Figure 3.4a. There are no converged points at the start of the algorithm. Condition O is
satisfied before RLPM(20) converges and the current unconverged point is (13.9, 8.0). Sim-
ilarly, condition O is satisfied before RLPM(7) converges. The corresponding unconverged
point is (21.5, 2.0).

Figure 3.4b. This iteration of k-PPS also starts with no converged points from the
previous iteration. By solving RLPM(20) by column generation, condition O is satisfied
before the method converges. The current unconverged point is (12.2, 10.0). Next, we solve

59

i ith converged point from the start of the algorithm

i ith unconverged point generated at current iteration

20

14

8

2

1

2

(a)

20

14

8

2

1

2

(b)

20

14

8

2

1

2

3

(c)

20

14

8

2

1

1

2

3

(d)

20

14

8

2

2

1

1

3

4

(e)

20

14

8

2

2

1

5

3

4

(f)

Figure 3.4: Possible order in which points of a lower bound set are identified by the k-PPS.

60

RLPM(9) by column generation and again condition O is satisfied before it converges. The
corresponding unconverged point is (20.0, 2.0).

Figure 3.4c. There are no converged points at the start of this iteration. Condition O
is satisfied before RLPM(20) converges and the current unconverged point is (4.9, 13.0).
In a similar way, we obtain two additional unconverged points (10.8, 7.0) and (18.2, 2.0)
corresponding to RLPM(12) and RLPM(6), respectively.

Figure 3.4d. There are still no converged points from the previous iterations. Solving
RLPM(20) produces an unconverged point (2.2, 18.0) since condition O is satisfied before
the method converges. The column generation method converges for RLPM(17) before
condition O is satisfied. The corresponding converged point is (3.7, 13.0). Two other
unconverged points (18.2, 6.0) and (17.5, 2.0) corresponding to RLPM(12) and RLPM(5),
respectively, are produced.

Figure 3.4e. The point which converged in the preceding iteration is known at the
start of this iteration. RLPM(20) converges at the point (2.0, 18.0) before condition O
is satisfied. There is no need to solve RLPM for values of ε between 13 and 17 since
they correspond to the previously converged point (3.7, 13.0). We thus solve RLPM(12)
but this fails to converge before condition O is satisfied. The corresponding unconverged
point is (8.0, 8.0). Solving RLPM(7) produces another converged point (10.0, 5.0) before
condition O is satisfied. Another converged point (14.9, 2.0) corresponding to RLPM(4) is
also obtained.

Figure 3.4f. All previously converged points from preceding iterations are known. There
is no need to solve RLPM for values of ε between 18 and 20 since they correspond to a
converged point. The same is true for values between the interval 13 and 17. We move
directly to RLPM(12) and we obtain a converged (6.9, 10.0) before condition O is satisfied.
There is no need to solve RLPM for values of ε between 2 and 9 since each of those values
correspond to a converged point. The method k-PPS approach stops at this point.

It is important to note that the set returned by the k-PPS represents a lower bound for
the considered BOIP. In other words, if a given value of ε is skipped, then the algorithm
will either return to the skipped value later on or prove that the skipped value corresponds
to an already converged point. Hence, no relevant points are missed. One main challenge
of the k-PPS is that it is not easy to decide on a good condition O when we don’t have
enough information on how the RLPM behaves at the start of the algorithm. For this
reason, it may be necessary to have an adaptive condition O that can be modified across
the iterations when we have enough information.

Sequential Search

The main idea behind the sequential search approach is to work on a whole frontier rather
than deal with individual points. This is achieved by seeking a set of columns that are
relevant for several values of the parameter ε (or λ) for which the RLPM has not converged.

61

At the start of a sequential search approach, we first need to solve the RLPM for several
values of the parameter (ε or λ) for which it has not converged without generating any
columns. In the case where we use a weighted sum method, this can be achieved by
Algorithm 3.4 which is adapted from the algorithm described by Aneja and Nair (1979).
Algorithm 3.5 also shows how the first step of a sequential search iteration can be achieved
in the case of an ε-constraint method. After generating a set of points, the second step
in a sequential search approach is to search for a set of columns that is relevant for the
whole set of the points generated in the first step. That is, for a large number of the points
generated in the first step, we want to find at least one column which is of negative reduced
cost. Different variants of the sequential search approach may be defined based on this
second step. Two of such variants are sequential search 1 and sequential search 2 that are
presented in Algorithms 3.6 and 3.7, respectively. These two algorithms are presented for
the case where an ε-constraint method is used. The case for a weighted sum method is
similar.

Algorithm 3.4 Generate a set of Points (weighted sum method)
Output: Set E of all extreme efficient points of RLPM.

1: Set k ← 1, P ← ∅, and E ← ∅.
2: Compute the first lexicographically optimal point y(1) = (y(1)

1 , y
(1)
2) of RLPM.

3: Set E ← {y(1)}.

4: Compute the second lexicographically optimal point y(2) = (y(2)
1 , y

(2)
2) of RLPM.

5: if y(2) 6= y(1) then
6: Set E ← E ∪ {y(2)} and P ← {(1, 2)}.
7: Set k ← k + 1.
8: while P 6= ∅ do
9: Choose an element (i, j) ∈ P .

10: Set λ1 ← |y
(j)
2 − y

(i)
2 |, λ2 ← |y

(j)
1 − y

(i)
1 | and λ← (λ1, λ2).

11: Solve RLPM(λ) and let x∗ be the optimal solution.
12: Let y∗ = ((c1)T x∗, (c2)T x∗).
13: if y∗ 6= y(i) and y∗ 6= y(j) then
14: Set E ← E ∪ {y∗} and P ← P ∪ {(i, k), (k, j)}.
15: Set k ← k + 1.
16: end if
17: Set P ← P\{(i, j)}
18: end while
19: end if

In sequential search 1, the subproblem corresponding to each of the points generated in
step I is solved in order to generate a set of columns that is representative of the set of
points. A problem with this variant of the sequential search approach is that most of the
columns that are found by solving the subproblem corresponding to a given point may have
already been found for a previous point. This is because the vector of dual values associated
to each of the points are computed in step I. Thus, the dual values corresponding to a
given point does not take the columns found for another point in step II into account. Due
to this, many subproblems may be solved without necessarily finding any new columns.

62

Algorithm 3.5 Generate a set of Points (ε-constraint method)
Input: A set L containing currently converged points of RLPM together with the set of

values of ε for which each point was computed.
Output: A set of points F together with a corresponding set Π of dual vectors and a set
E of the values of ε for which the points were computed.

1: Set εi ← max ε, F ← ∅, i← 1, Π← ∅ and E ← ∅.
2: while εi ≥ min ε do
3: if εi does not correspond to a point of L then
4: Solve the RLPM(εi) once without generating any columns.
5: Let x∗ and πi be the optimal solution and dual vectors, respectively.
6: Compute the objective values f i

1 = (c1)T x∗ and f i
2 = (c2)T x∗.

7: Set F ← F ∪ (f i
1, f i

2), Π← Π ∪ πi and E ← E ∪ εi.
8: Choose an appropriate step size δi > 0.
9: Set i← i + 1 and εi ← f i−1

2 − δi−1.
10: end if
11: end while

Algorithm 3.6 Sequential Search 1
Output: A lower bound set L.

1: Set L← ∅.
2: repeat
3: Set Θ← ∅.
4: Generate a set of points by Algorithm 3.5.
5: Let F , Π and E be the sets returned by the preceding step.
6: for each element πi of Π do
7: Solve the subproblem corresponding to πi.
8: Let Λi be the set of columns found and set Θ← Θ ∪ Λi.
9: if Λi = ∅ then

10: Set L← L ∪ (f i
1, f i

2) and E ← E ∪ εi.
11: end if
12: end for
13: Add all columns of Θ to the RLPM.
14: until Θ = ∅.

63

Algorithm 3.7 Sequential Search 2
Output: A lower bound set L.

1: Set L← ∅.
2: repeat
3: Set Θ← ∅.
4: Generate a set of points by Algorithm 3.5.
5: Let F , Π and E be the sets returned by the preceding step.
6: for each element πi of Π do
7: if no column of Θ is of negative reduced cost for πi then
8: Solve the subproblem corresponding to πi.
9: Let Λi be the set of columns found and set Θ← Θ ∪ Λi.

10: if Λi = ∅ then
11: Set L← L ∪ (f i

1, f i
2) and E ← E ∪ εi.

12: end if
13: end if
14: end for
15: Add all columns of Θ to the RLPM.
16: until Θ = ∅.

Sequential search 2 is designed to avoid the problem encountered in sequential search 1.
Before solving the subproblem corresponding to a given point, we first need to verify if
any of the columns already found for the other points is relevant (has a negative reduced
cost) for this new point. If this is the case the new point is skipped without solving the
subproblem corresponding to it since it is already represented by the set of generated
columns. Thus, the subproblem corresponding to a new point is only solved if there are no
previously found columns in the same iteration that are relevant for this point. By using
this strategy, a fewer number of subproblems are solved in comparison to sequential search
1. For this reason, the overall running time of the sequential search 2 is likely to be better
than that of the sequential search 1.

There is no particular order in which the points of a lower bound set are identified by
a sequential search method. Note, however, that a point generated in step I of an iteration
can be proven to have converged in step II only if the subproblem corresponding to it
is solved directly by an exact algorithm and no relevant columns are found. A fictitious
example to demonstrated a possible order in which the points of a lower bound set are
identified by a sequential search approach is given in the series of diagrams in Figure 3.5.
An explanation of each of the diagrams is given below.

Figure 3.5a. There are no converged points at the start of the approach. Step 1
produces two points (13.9, 8.0) and (21.5, 2.0) corresponding to RLPM(20) and RLPM(7),
respectively. None of these points is proven to have converged in step II.

Figure 3.5b. There are no converged points at the start of this iteration. In step I,
three points are generated. These are (10.8, 13.0) corresponding to RLPM(20), (13.9, 6.0)
corresponding to RLPM(12) and (20.0, 2.0) corresponding to RLPM(5). In step II, none of

64

i ith converged point from the start of the algorithm

i ith unconverged point generated at current iteration

20

14

8

2

1

2

(a)

20

14

8

2

1

2

3

(b)

20

14

8

2

1

1

2

3

(c)

20

14

8

2

1

1

2

2

(d)

20

14

8

2

1

3

2

1

2

(e)

20

14

8

2

1

3

2

4

5

(f)

Figure 3.5: Possible order in which points of a lower bound set are identified by a sequential
search approach.

65

these points is proven to have converged.

Figure 3.5c. There are still no converged points at the start of this iteration. Four
points are generated during step I. In step II, the first point (2.0, 18.0) corresponding to
ε = 20 is proven to have converged. The remaining three points (5.9, 13.0), (8.8, 8.0), and
(18.0, 2.0) corresponding to RLPM(17), RLPM(12), and RLPM(7), respectively, have not
yet converged.

Figure 3.5d. The point that converged in the preceding iteration is known at the
begining of this iteration. There is no need to solve RLPM for values of ε between 18
and 20 when generating points in step I. Three points are generated in step I. The point
(4.9, 12.0) corresponding to RLPM(17) is not proven to have converged in step II. The point
(6.9, 10.0) corresponding to RLPM(11) converges. The point (18.0, 2.0) corresponding to
RLPM(9) does not converge.

Figure 3.5e. Some convereged points from the precedings iterations are known at the
begining of this iteration. There is no need to solve RLPM for values of ε between 18
and 20 as well as for those betwwen 10 and 11. Three points are generated in step I. In
step II, the point (3.7, 13.0) corresponding to RLPM(17) converges. The other two points
(12.3, 4.0) and (16.8, 2.0) corresponding to RLPM(12) and RLPM(3), respectively, do not
converge.

Figure 3.5f. All previously converged points are known at the begining of this iteration.
There is no need to solve RLPM for values of ε between 18 and 20, between 13 and 17,
and 10 and 11. In step I, three points (6.9, 10.0), (10.0, 5.0), and (14.9, 2.0) corresponding
to RLPM(12), RLPM(9) and RLPM(4), respectively, are generated. The convergence of
all these three points are proven in step II. Note that the point (6.9, 10.0) corresponding to
RLPM(12) had previously been found to have converged for RLPM(11). Nevertheless, we
still needed to solve the subproblem corresponding to RLPM(12) since we could not justify
that a previously converged point corresponds to RLPM(12). The algorithm ends since
RLPM has converged for all integer values of ε between 2 and 20.

An advantage of a sequential search approach is that it ensures some uniformity in the
convergence of the members of L. This can be a very useful technique in the design of
heuristics and metaheuristics that are based on column generation since we are sure to
find a set points that is representative of the whole range of the Pareto frontier. Another
advantage of a sequential search approach is that it encourages similar columns to appear
in the solutions of the points making up a lower bound set. This is necessary in some
applications (see for example Salari and Unkelbach (2013)).

3.3.2 Column Generation for BOIPs with a Min-Max Objective

We now consider how to use column generation to compute a lower bound set for a BOIP
having one min-max objective function. We will refer to such a problem as a bi-objective

66

integer program with a min-max objective (BOIPMMO). More formally, we consider
problems of the form :

Minimize
∑

k∈Ω

ckθk (3.27)

Minimize max
k∈Ω
{σkθk} (3.28)

subject to :
∑

k∈Ω

aikθk ≥ bi (i ∈ I) , (3.29)

θk ∈ {0, 1} (k ∈ Ω) , (3.30)

where Ω is the set of all feasible columns and I is an index set for the constraints. For
each column k ∈ Ω, ck and σk are two associated values. We need to select columns with
minimum sum of ck while the largest σk of a column in the selected set of columns is also
minimized. Bi-objective generalizations of several VRPs satisfying this condition can be
defined. In general, we want to minimize the “cost” of a set of routes such that the value
of a property associated with the selected routes (eg. the maximum length of a route, the
maximum capacity of a route, etc.) is minimized.

The first step in treating this problem is to linearize the min-max objective function
given in 3.28. To do this, we introduce another variable Γmax, replace the min-max objective
function with the minimization of this variable and then add the necessary constraints in
order to ensure that the original min-max obective is not violated. We obtain the following
linearized formulation :

Minimize
∑

k∈Ω

ckθk (3.31)

Minimize Γmax (3.32)

subject to :
∑

k∈Ω

aikθk ≥ bi (i ∈ I) , (3.33)

Γmax ≥ σkθk (k ∈ Ω) , (3.34)

θk ∈ {0, 1} (k ∈ Ω) . (3.35)

Due to the introduction of Constraints 3.34, applying a weighted sum method to the
above formulation may result in a problem that is more difficult to solve than expected.
This is because, adding constraints on an objective function normally destroys the problem
structure and so we lose desirable property of being able to use known methods of the
original single objective problem also for the scalarized bi-objective problem. A possible
solution is to relax Constraints 3.34 in a Lagrangean way while applying the weighted sum
method. Nevertheless, solving the resulting Lagrangean dual problem after this relaxation
may not be a straight forward task. In a situation like this, an ε-constraint method seems
a better approach since it is possible to find unsupported solutions. A disadvantage of
directly adding constraints of the form Γmax ≤ ε to a BOIPMMO is that solving linear
relaxations of the resulting problem can significantly weaken the lower bound set. In
order not to unecessarily weeken the lower bound set, we use a different variant of the
ε-constraint method.

A close examination of Formulation (3.31 – 3.35) reveals that a BOIPMMO decomposes
naturally into two problems. For any set of feasible columns, the associated value of Γmax

67

can be computed. We can therefore use a variant of the “standard” ε-constraint method
with one main difference. Instead of explicitly adding a constraint of the form Γmax ≤ ε to
the formulation, we rather drop Constraints 3.34 and use it to redefine the feasibility of a
column. Thus, we define a new set of feasible columns Ω where the feasibility of a column
k ∈ Ω now depends on its associated value σk. Depending whether or not a column k ∈ Ω
may be associated with more than one value of σk, we may have a larger set of feasible
columns after the redefinition. Note that, after droping this set of constraints, it is no
longer necessary to keep the objective function 3.32 in the reformulation so we drop it too.
The strength of the model is conserved at the expense of having a possibly more difficult
subproblem to solve. The IPM becomes the following single-objective program:

Minimize
∑

k∈Ω

ckθk (3.36)

subject to :
∑

k∈Ω

aikθk ≥ bi (i ∈ I) , (3.37)

θk ∈ {0, 1} (k ∈ Ω) . (3.38)

Before solving IPM for a given limit ε on the value of Γmax, we need to ensure that no
column having σk > ε is allowed in the solution.

We can still use all the ideas already discussed in using the ε-constraint when computing
a lower bound set for this new model. We should however ensure that only columns that
satisfy the limits of a current value of ε are allowed in the solution. As explained above,
this is easily achieved in the RLPM by setting the domain of values for all unallowed
columns to 0. In addition, we should ensure that no unallowed columns are generated by
the subproblem. When the subproblem is a variant of the shortest path problem with
resource constraints as it is often the case for VRPs, this can usually be achieved by
introducing another resource constraint and modifying the dominance rule between labels
accordingly.

3.3.3 Column Search Strategies for a BOIPMMO

As already stated, we can use all the ideas already presented to compute a lower bound set
for a BOIPMMO. We present two other column search strategies in order to take advantage
of the reformulation discussed for a BOIPPMO. The first strategy is a variant of the PPS
whereas the second strategy is a variant of the sequential search approach. We describe
these two strategies below.

Improved Point-by-Point Search (IPPS)

Using heuristics to generate columns can improve the performance of column genera-
tion (Desaulniers et al., 2002). These heuristics are used to cheaply generate other relevant
columns from those found by a subproblem algorithm. In the bi-objective case, we are
interested in heuristics that can take advantage of similarities in the different subproblems
solved when computing each point of a lower bound. That is, once the cost of finding a
first column has been paid we wish to quickly generate other relevant columns that are
relevant for the current subproblem and may also be relevant for other subproblems. A

68

column which has negative reduced cost for a current subproblem, does not necessary have
a negative reduced cost for another subproblem since the associated dual variables do not
necessarily have the same values. Nevertheless, it can be expected that two subproblems
that are close in terms of objectives, may also be close in terms of the solution of RLPM
and therefore close in terms of dual variable values. For this reason, a column generated
by a heuristic may also be of negative reduced cost for several other subproblems apart
from the current one. In addition, standard algorithms used to solve a subproblem are
most times only interested in finding a set of best columns that do not dominate one
another. This means that many columns having negative reduced costs are left out because
they are dominated by some other columns. This may be desirable in the single objective
case. In the bi-objective case, however, a column which is dominated with respect to one
subproblem may not be dominated with respect to another subproblem.

The main idea of the IPPS for a BOIPMMO is to use heuristics that can take advantage
of the redefinition of a column and efficiently search for more columns by modifying the ones
found by a subproblem algorithm. We acknowledge that such a heuristic can be used not
just for a BOIPMMO but for any general BOIP. We, however, study IPPS for BOIPMMOs
since it is usually easy to come up with a good heuristic that can take advantage of the
reformulation. IPPS can be useful as a column generation based heuristic since at each
iteration it tries to generate a set of columns that are relevant for several subproblems. For
completeness, we summarize the IPPS is in Algorithm 3.8. The heuristic used in Step 9
obviously depends on the problem at hand and we will demonstrate it for a practical
problem in the next chapter. The relevance of a column found by a heuristic is evaluated
with respect to the same vector of dual values for which the original column was found.
This is a distinctive feature of IPPS in contrast to the other strategy which we describe
next.

Algorithm 3.8 Improved Point-by-Point Search (IPPS)
Output: A lower bound set L.

1: Set ε←∞, and L← ∅.
2: while RLPM(ε) is feasible do
3: Solve RLPM(ε) once to obtain a vector of dual values.
4: Let c∗ be the optimum and θ∗ be the optimal vector.
5: Compute σ∗ = max

k∈Ω σkθ∗
k.

6: Solve the subproblem S(ε) and let Λ be the set of columns obtained.
7: if Λ 6= ∅ then
8: for each column in Λ do
9: Use heuristics to generate other relevant columns from it.

10: end for
11: else
12: L← L ∪ {(c∗, σ∗)}.
13: Set θk = 0 for all k such that σk ≥ σ∗, and set θk ≥ 0 for all other columns.
14: end if
15: end while

69

Solve-Once-Generate-for-All (SOGA)

The Solve-Once-Generate-for-All (SOGA) approach is a variant of the sequential search
that is adapted to take advantage of the reformulation of a BOIPMMO. A summary
of the approach is presented in Algorithm 3.9. Just as for all the other variants of the
sequential search, each iteration starts by generating a set of points based on the current
columns in the RLPM without generating any columns. After generating a set of points,
SOGA continues by solving the subproblem corresponding to a single point. If no relevant
columns are returned by the subproblem, this point is proven to have converged and so it
is saved in the lower bound set. Otherwise, from Step 8 to Step 13, each column found is
modified several times by using dual information from the other points in order to generate
more columns. Unlike in the case of IPPS, the relevance of a column found is evaluated
with respect to another vector of dual values rather than the one for which the original
unmodified column was found. This guarantees that at each iteration, a set of columns
that are relevant for a very large number of points are returned to the RLPM. For this
reason, SOGA as well as the other variants of the sequential search approach can be very
useful in designing column generation based heuristics and metaheuristics. An advantage
that SOGA has over the other variants is that, it solves only one subproblem but generates
a set of columns that is guaranteed to be relevant for several subproblems. The main
challenge of this approach is that it may not always be easy to combine information from
an original column and a vector of dual values in heuristics to search for new columns. A
SOGA heuristic will be presented for the application problem in the next chapter.

Algorithm 3.9 Solve-Once-Generate-for-All (SOGA)
Output: A lower bound set L.

1: Set L← ∅.
2: repeat
3: Generate a set of points by following an idea similar to Algorithm 3.5.
4: Let F = {(ci, σi)} be the set of generated points, Π = {πi} be the corresponding set

of dual vectors, and E = {εi} be the corresponding set of ε values.
5: Fix an index i and solve the subproblem S(εi) corresponding to πi.
6: Let Λi be the set of columns found.
7: if Λi 6= ∅ then
8: for each column in Λ do
9: for each vector of dual values πj ∈ Π such that i 6= j do

10: Use heuristics that combine information from the column in Λ and the vector
πj to generate some relevant columns corresponding to S(εj).

11: end for
12: Add all found columns to the RLPM.
13: end for
14: else
15: L← L ∪ {(ci, σi)}.
16: Set θk = 0 for all k such that σk ≥ σi, and set θk ≥ 0 for all other columns.
17: end if
18: until F = ∅.

70

3.4 Evaluating the Quality of Bound Sets

In Chapter 2 we saw indicators that are used to evaluate the quality of approximations to
the nondominated set YN . These measures are mainly used to compare different upper
bound sets. They may also be used in comparing different lower bound sets obtained
by different methods or approaches. When it comes to comparing the quality of a lower
bound set and a corresponding upper bound set, however, these measures are not very
appropriate. This is because, they will only indicate that the upper bound set lies “above”
the lower bound set which is a trivial thing. Ehrgott and Gandibleux (2007) discuss five
measures which may be used in evaluating the quality of a lower bound set together with
an upper bound set. In this thesis we will be using two of those measures in evaluating
the quality of the bounds we compute. The first measure (µ1) is distance based whereas
the second measure (µ2) is area based. Combining a distance based measure with an area
based measure gives a good indication of the quality of the bounds. Roughly speaking,
µ1 represents the worst distance (with respect to the range of objective values) between a
point of the upper bound set and a point of the lower bound set closest to it. Also, µ2

represents the fraction of the area that is dominated by the lower bound set but not by
the upper bound set. This is, the area where additional points of YN can be found.

Calculation and Interpretation of the measures

Given a lower bound set L and a corresponding upper bound set U , we let ymax
i for

i ∈ {1, 2} be the maximum value of the ith objective when we consider the union of L and
U . In the same way, we let ymin

i for i ∈ {1, 2} be the minimum value of the ith objective
when we consider the union of L and U . We define the points ymax := (ymax

1 , ymax
2) and

ymin := (ymin
1 , ymin

2). The distance between L and U is defined as the maximum of the
minimum distances by which we need to displace a point of U so that it is not strongly
dominated by any point of L. We denote this distance by d(L,U). The first measure is
given by

µ1 :=
d(L,U)

‖ymax − ymin‖2
.

Next, let AL and AU be the areas of the regions in the rectangle with ymin and ymax at
opposite corners that are dominated by L and U , respectively. The, second measure is
given by

µ2 :=
AL −AU

AL

.

The different components that are necessary for calculating µ1 and µ2 in the case where
we use a weighted sum method are indicated in Figure 3.6. Figure 3.7 also indicates these
components in the case where we use an ε-constraint method.

The two quality measures presented above complement each other and as explained by
Ehrgott and Gandibleux (2007), they can be seen to play a role similar to the optimality
gap in single objective optimization. If a lower bound set and a corresponding upper bound
set are good, then we expect that both µ1 and µ2 will be small in value. The smaller both
values are, the better the quality of the bounds.

71

d(L,U)

ymax

ymin

Supported efficient point
of relaxed problem

Lower bound set (L)

Member of upper bound set (U)

Area dominated by L

Area dominated by U

f1

f2

Figure 3.6: Calculation of quality measures in the case of a weighted sum method.

d(L,U)

ymax

ymin

Member of lower bound set (L)

Member of upper bound set (U)

Area dominated by L

Area dominated by U

f1

f2

Figure 3.7: Calculation of quality measures in the case of an ε-constraint method.

72

3.4.1 Bound Sets for the Bi-Objective Set Covering Problem

We compare the quality of lower bound sets computed by the weighted sum and ε-constraint
methods for the bi-objective set covering problem (BOSCP). Since the BOSCP serves as
a base formulation for most vehicle routing problems solved by column generation, the
aim of this section is to give a general idea of the quality of lower bounds computed by
the two scalarization methods for this kind of problem and its extensions. The BOSCP is
formulated as :

Minimize
n

∑

j=1

c1
jxj (3.39)

Minimize
n

∑

j=1

c2
jxj (3.40)

subject to :
n

∑

j=1

aijxj ≥ 1 i = 1, . . . , m , (3.41)

xj ∈ {0, 1} j = 1, . . . , m . (3.42)

The integral objective coefficients are c1
j and c2

j , and the matrix coefficients are aij ∈ {0, 1}.
We say that constraint i is covered by variable xj if aij = 1.

Experiments and Summary of Results

The BOSCP instances used for the tests can be found at http://xgandibleux.free.

fr/MOCOlib/MOSCP.html. They are the same instances that were used by Ehrgott and
Gandibleux (2007). Since the goal of the tests is to evaluate the quality of lower bound
sets, we used the exact nondominated sets computed by the algorithm proposed by Bérubé
et al. (2009) as upper bound sets. For this reason, the values of the two quality measures
obtained for the weighted sum method are different from those obtained by Ehrgott and
Gandibleux (2007) who used greedy heuristics to compute upper bound sets. All computer
codes were written in C/C++ and the LP/MIP optimizers of ILOG CPLEX 12.4 were used.
The tests were run on an Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz computer with
a 2 GiB RAM and a summary of the results are presented in Table 3.1. In this table, |U∗|
represents the number of points in the exact nondominated set, time is the computational
time in cpu seconds, |ext| is the number of extreme points (or supported efficient points)
computed when the weighted sum method is used, and |L| is the total number of points in
a lower bound set when an ε-constraint method is used. Values of the two quality measures
are expressed as percentages under the headings µ1% and µ2%.

Discussion

The results show that, the lower bound sets obtained by both methods for almost all the
intances are of good quality. The lower bounds obtained in the case of the ε-constraint
method are slightly better than those obtained for the weighted sum method. The situation
is quite different when we compare the computational times and the computational
complexities of the two methods. In the case of the weighted sum method, relatively

73

http://xgandibleux.free.fr/MOCOlib/MOSCP.html
http://xgandibleux.free.fr/MOCOlib/MOSCP.html

Table 3.1: Comparison of lower bound sets for the BOSCP

Weighted Sum ε-Constraint

Instance |U∗| time |ext| µ1% µ2% time |L| µ1% µ2%

2scp11A 39 0.00 13 2.9 2.5 0.02 192 2.7 2.1
2scp11C 10 0.00 21 13.7 34.1 0.01 117 13.9 32.7
2scp41A 105 0.01 23 1.5 1.3 0.14 1028 1.4 1.2
2scp41C 24 0.02 17 2.6 4.5 0.04 280 2.7 5.7
2scp42A 206 0.02 37 0.6 0.5 0.45 1663 0.5 0.4
2scp42C 87 0.04 51 3.0 3.4 0.44 2245 2.9 3.4
2scp43A 46 0.04 63 3.6 4.3 0.12 473 3.5 4.1
2scp43C 12 0.02 38 6.3 11.1 0.04 225 6.3 10.6
2scp61A 254 0.06 58 1.1 0.8 1.39 2829 1.1 0.8
2scp61C 28 0.02 17 1.0 3.7 1.02 732 0.9 4.4
2scp62A 98 0.28 236 3.5 3.6 1.01 1240 3.5 3.7
2scp62C 6 0.23 180 38.9 46.6 0.00 2 36.6 58.5
2scp81A 424 0.07 47 0.5 0.4 3.49 5580 0.4 0.3
2scp81C 14 0.12 77 0.3 0.5 0.60 147 0.4 0.7

few extreme points need to be calculated and this is done in negligible time for the
instances tested. The number of points that needs to be calculated when an ε-constraint
method is used can be very large (possibly exponential) and this may require a very long
computational time. For example, the ε-constraint method computed 5580 points in a time
of 3.49 cpu seconds for instance 2scp81A. This is very large when we compare it with the
47 points computed in 0.07 seconds when a weighted sum method was used. This stresses
the need to reduce the number of points calculated when using an ε-constraint method by
determining good step sizes.

3.5 Conclusions

The discussion in this chapter has been concerned with the use of column generation in
computation lower bound sets for BOIPs. The main idea used is to first convert the BOIP
into a single objective problem by using either a weighted sum method or an ε-constraint
method. The linear relaxation of the resulting single objective problem is solved by column
generation for different values of the necessary parameters. Regardless of which of the two
scalarization method is used, the subproblems required to be solved when computing a
lower bound set have a similar form. Due to this, we investigate different strategies to
effectively search for columns. These strategies will be evaluated and compared in the next
chapter where a practical problem is considered. Although slightly better lower bound
sets were obtained by the ε-constraint method on instances of the bi-objective binary set
covering problem, more computational effort is required than when a weighted sum method
is used. There is, hence, the need to improve the ε-constraint method when computing
lower bound sets in order to reduce its computational complexity.

74

Chapter 4

The Bi-Objective Multi-Vehicle
Covering Tour Problem

4.1 Introduction

In this chapter, we present an application problem to demonstrate the different ideas and
approaches presented in Chapter 3. The problem considered is an extension of the covering
tour problem (Gendreau et al., 1997) namely the bi-objective multi-vehicle covering tour
problem (BOMCTP). The covering tour problem (CTP) consists in designing a single
route over a subset of locations with the aim of minimizing the length of the route. In
addition, each location not visited by the route should lie within a fixed radius from a
visited location. The fixed radius is called the cover distance. An example of a solution to
the CTP is indicated in Figure 4.1.

V

May be visited

Must be visited: T

Must be covered: W

Vehicle route

Cover distance (predetermined)

Figure 4.1: An example of a solution to the CTP (Gendreau et al., 1997).

The CTP has a generic application in the design of bi-level transportation networks (Cur-
rent and Schilling, 1994). This kind of problems seeks to construct a primary route of
minimum length on a subset of locations in such a way that all other locations that are not
on the primary route can easily reach it. An example of the CTP arises in the problem of
choosing where to locate post boxes among a set of candiate sites (Labbé and Laporte,

75

1986). The aim of this problem is to minimize the cost of a collection route through all post
boxes and also ensure that every user is located within a reasonable distance from a post
box. Several other examples of the CTP arise in the domain of humanitarian logistics. For
example, in the planning of routes for visiting health care teams in developing countries
where medical services can only be delivered to a subset of villages, but all users must be
able to reach a visiting medical team (Current and Schilling, 1994; Hodgson et al., 1998).

A bi-objective generalization of the CTP has been proposed by Jozefowiez et al. (2007).
The cover distance in the bi-objective CTP (BOCTP) is not fixed in advance but rather
induced by the constructed route. It is computed by assigning each non-visited location to
the closest visited location and calculating the maximum of the assigned distances. The
objectives are to minimize the length of the route as well as the induced cover distance.
The authors proposed a two-phase cooperative strategy to solve the problem. This strategy
combines a multi-objective evolutionary algorithm with a branch-and-cut algorithm initially
designed by Gendreau et al. (1997) to solve the CTP. Hachicha et al. (2000) present a
multiple vehicle extension of the CTP namely the multi-vehicle covering tour problem
(MCTP). In the MCTP, the combined length of a set of routes, all of which must start from
a common location, is minimized for a fixed cover distance. In addition, the number of
locations visited by a single route and the length of the route cannot exceed predetermined
constants p and q, respectively. The authors proposed an integer linear formulation as well
as three heuristic methods for the problem. An example of a solution to the MCTP is given
in Figure 4.2. Quite recently, two exact methods have been proposed for the MCTP. The
first is a branch-and-price algorithm proposed by Jozefowiez (2012) whereas the second is
a branch-and-cut algorithm proposed by Hà et al. (2013). A metaheuristic for the MCTP
was also proposed by Hà et al. (2013).

v0

V

May be visited

Must be visited: T

Must be covered: W

Vehicle route

Cover distance (predetermined)

Figure 4.2: An example of a solution to the MCTP (Hachicha et al., 2000).

The BOMCTP discussed in this chapter can be seen as a combination of the BOCTP
and the MCTP and it will be formerly presented later on. The rest of the chapter is
organized as follows. In Section 4.2 we give a formal description of the BOMCTP and
also introduce different notations that will be used throughout the chapter. A first set
covering based formulation for the BOMCTP is given in Section 4.3 and a second one is
given in Section 4.4. Each of these two sections will discuss the different models involved
in a column generation methodology. Experiments and computational results based on
each of the two formulations are given in Section 4.5. The chapter ends with concluding

76

remarks in Section 4.6.

Related Publications. Some parts of this chapter have been published in international
conference proceedings and some other parts have been submitted to international journals.
The paper presented at the ODYSSEUS 2012 international conference (Sarpong et al.,
2012a) is based on the first formulation for the BOMCTP. Some results based on the
second formulation formed part of the paper which was presented at the ATMOS 2013
conference (Sarpong et al., 2013a). An extended version of the paper based on the first
formulation together with some elements of Chapter 3 (Sarpong et al., 2013c) has been
accepted for publication in the journal RAIRO - Operations Research whereas an extended
version of the one based on the second formulation is yet to be submitted to another
international journal. The two technical reports (Sarpong et al., 2012b, 2013b) present
some of the ideas in the submitted journal articles.

4.2 Description of the BOMCTP

The BOMCTP is defined on a graph G = (V ∪W, E) where V ∪W is a set of nodes and
E is a set of edges. The nodes of V represent locations which may be visited by a route
whereas the members of W are to be assigned to visited nodes of V . There is a subset
of nodes T ⊆ V , which must be visited by at least one route. In real applications, the
members of T represent important locations where we require at least one route to pass. In
particular, v0 ∈ T is the depot where all routes must start and also end. Set E is made up
of edges connecting all pairs of nodes in V ∪W and a distance matrix D = (dij) satisfying
the triangle inequality is defined on this set. The BOMCTP consists in designing a set
of routes over a subset of V which should include all nodes of T . In addition, each route
should visit not more than p nodes of V \{v0} and its length must not exceed q. Both p
and q are predetermined constants. The two objectives are to minimize the total length of
the set of routes and the cover distance induced by the set.

4.2.1 Cover Distance Induced by a Set of Routes

The cover distance induced by a set of routes or induced cover distance (denoted by Γmax)
is defined as the maximum distance from a node of W to the closest visited node of V \{v0}
(see Figure 4.3). By definition, the value of dij for every couple (vi, wj) ∈ V \{v0} ×W is a
candidate value for Γmax. Nevertheless, some of these candidate values do not correspond
to feasible Γmax values. For the BOMCTP, we can use an idea introduced by Jozefowiez
et al. (2007) to determine the feasible values of Γmax for any given instance. We state this
idea in the following proposition.

Proposition 4.1. Given vi ∈ V \{v0} and wj ∈W , dij is a feasible value for Γmax if and
only if the following two conditions are satisfied.

1. ∀vt ∈ T\{v0} such that vt 6= vi, dij ≤ dtj and

2. ∀wl ∈W such that wl 6= wj , ∃vh ∈ V \{v0} such that dhl ≤ dij ≤ dhj.

77

v0

V

May be visited

Must be visited: T

Must be covered: W

Vehicle route

Cover distance (induced)

Figure 4.3: The cover distance induced by a set of routes.
Notes: After constructing the routes, each node of W must be assigned to a visited node of
V \{v0}. The induced cover distance is defined as the maximum of the assigned distances.

Proof. The proof is given in two parts. Part I shows that if dij is a feasible value for Γmax

then conditions (1) and (2) are satisfied. Part II also shows that if conditions (1) and (2)
are satisfied then dij is a feasible value for Γmax.

Part I. The necessary conditions for dij to be the value of Γmax are that vi is visited by a
selected route and wj is assigned to vi. Yet, each node of W is assigned to a visited
node of V \{v0} that is closest to it. Since all nodes vt ∈ T\{v0} are visited in any
feasible solution, wj will be assigned to vi only if dij ≤ dtj . This proves condition
(1). Next, suppose that Γmax = dij but condition (2) is false. That is, for a given
wl ∈ W such that wl 6= wj , either dij > dhj or dij < dhl for all vh ∈ V \{v0}. Then,
either wj will be assigned to vh (since vh is closer to it than vi) or if wj is assigned
to vi then dhl is a better candidate for Γmax (since it is greater than dij and Γmax is
determined by the maximum of the assigned distances). In both cases, dij cannot be
the value for Γmax and so condition (2) must be true if Γmax = dij .

Part II. If conditions (1) and (2) are satisfied then wj will be assigned to vi (if it is visited)
rather than to a node vt ∈ T\{v0}. If vi is visited and wj is assigned to vi, then
condition (2) implies that dij can possibly be the maximum value among all assigned
distances and so a feasible value for Γmax.

Clearly, there is a finite number of values for Γmax and by using the two conditions in
Proposition 4.1, all the feasible values of Γmax can be computed for any given instance of
the BOMCTP.

4.3 Formulation 1

Let Ω represent the set of all feasible routes. A feasible route is defined as a Hamiltonian
cycle over a subset of V which includes the depot, visits not more than p nodes and of
length not exceeding q. The cost of a route k ∈ Ω is given by the sum of the cost of the

78

edges it uses and we denote it by ck. Let variable θk = 1 if route k is selected in the
solution and θk = 0, otherwise. Constant aik = 1 if route k visits node vi ∈ V \{v0} and 0
if this is not the case. Variable zij is used to indicate whether node wj ∈W is assigned to
node vi ∈ V \{v0} in the solution (zij = 1) or not (zij = 0). Let Γmax be the cover distance
induced by a given set of routes. Note that Γmax = max{dijzij : vi ∈ V \{v0} and wj ∈W}.
The BOMCTP can be described with the following set covering model.

Minimize
∑

k∈Ω

ckθk (4.1)

Minimize Γmax (4.2)

subject to : Γmax − dijzij ≥ 0 (vi ∈ V \{v0}, wj ∈W) , (4.3)
∑

vi∈V \{v0}

zij ≥ 1 (wj ∈W) , (4.4)

∑

k∈Ω

aikθk − zij ≥ 0 (vi ∈ V \{v0}, wj ∈W) , (4.5)

∑

k∈Ω

aikθk ≥ 1 (vi ∈ T\{v0}) , (4.6)

zij ∈ {0, 1} (vi ∈ V \{v0}, wj ∈W) ,
(4.7)

θk ∈ N (k ∈ Ω) . (4.8)

In this formulation, the objectives of minimizing the total length of the set of routes and
the induced cover distance are represented in (4.1) and (4.2), respectively. Constraints (4.3)
indicate that the induced cover distance should be large enough to respect the distances
of all assignments of a node wj ∈ W to a node vi ∈ V \{v0}. Constraints (4.4) and (4.5)
specify that each node of W should be assigned to at least one node of V \{v0} which is
visited by a route selected in the solution. The requirement that each node of T\{v0} is
visited by at least one selected route is represented in Constraints (4.6). Constraints 4.7
and 4.8 define the domains of the decision variables used. We define θk to be a non-negative
integer instead of binary in order to prevent constraints of the form θk ≤ 1 in the linear
relaxation. The optimal solution of the problem is not affected by this change.

4.3.1 Restricted LP Master Problem

We restrict the value of the cover distance induced by the set of routes to be at most ε ∈ R

to obtain the constraint
−Γmax ≥ −ε (4.9)

For any given value of ε, the linear programming master problem (LPM(ε)) is defined
by the linear relaxation of the formulation with objective function (4.1) and Constraints
(4.3–4.9). The corresponding restricted LP master problem (RLPM(ε)) is obtained by
replacing Ω in LPM(ε) with a subset Ω1 for which the problem is primal feasible.

4.3.2 Dual of LPM(ε)

Let γij (vi ∈ V \{v0}, wj ∈W), βj (wj ∈W), αij (vi ∈ V \{v0}, wj ∈W), πi (vi ∈ T\{v0})
and λ be the non-negative dual variables associated with Constraints (4.3), (4.4), (4.5),

79

(4.6) and (4.9), respectively. The dual formulation DLPM(ε) corresponding to LPM(ε) is
given by :

Maximize
∑

wj∈W

βj +
∑

vi∈T \{v0}

πi − ελ (4.10)

subject to :

∑

vi∈V \{v0}
wj∈W

aikαij +
∑

vi∈T \{v0}

aikπi ≤ ck (k ∈ Ω) , (4.11)

βj − dijγij − αij ≤ 0 (vi ∈ V \{v0}, wj ∈W) , (4.12)
∑

vi∈V \{v0}
wj∈W

γij − λ ≤ 0 . (4.13)

4.3.3 Sub-problem corresponding to RLPM(ε)

The sub-problem corresponding to RLPM(ε), denoted S(ε), is to search for feasible routes
k ∈ Ω\Ω1 such that

ck −
∑

vi∈V \{v0}
wj∈W

aikαij −
∑

vi∈T \{v0}

aikπi < 0 . (4.14)

We define π∗
i = πi if vi ∈ T\{v0} and α∗

ij = αij if vi ∈ V \{v0}, wj ∈W . In all other cases
these variables are set to 0. Condition (4.14) can be simplified to

∑

(vi,vj)∈E

(

dij − π∗
i −

∑

wh∈W

α∗
ih

)

xijk < 0 . (4.15)

where xijk = 1 if route k visits vj immediately after visiting vi and xijk = 0 if this is
not the case. Feasible routes satisfying condition (4.15) are searched for by solving an
elementary shortest path problem with resource constraints (ESPPRC) given by

Minimize
∑

(vi,vj)∈E

(

dij − π∗
i −

∑

wh∈W

α∗
ih

)

xijk subject to k ∈ Ω\Ω1 . (4.16)

That is, we seek feasible routes with negative reduced costs where the reduced cost of
(vi, vj) ∈ V × V is given by dij − π∗

i −
∑

wh∈W α∗
ih.

4.3.4 Solving S(ε)

As already seen in Chapter 1, the ESPPRC is very well studied since it appears as a
subproblem in many vehicle routing problems solved by column generation. For this first
formulation, there is nothing very special to do when solving S(ε) with known dynamic
programming algorithms. In particular, there is no need for any specialised dominance
rule between labels. The subproblem is solved by the decremental state space algorithm
(DSSR) (Righini and Salani, 2008; Boland et al., 2006). Two resources are considered in

80

implementing the DSSR algorithm for the subproblem. These are the number of nodes
a route may visit which is limited to a maximum of p and its length which is limited to
a maximum of q. We let Λi = (c̃i, q̃i, p̃i) represent a partial path coming from the depot
v0 to a node vi. The components of the label are given by the reduced cost up to the
current node c̃i, the length of the partial path q̃i, and the total number of nodes of V \{v0}
visited, p̃i. In order to simplify the notation, some components of a label are not shown.
For example, those that ensure that a constructed path is elementary. The validity of the
discussions that follows is not affected by this omission. For any two labels Λi and Λj on
the same node, we say that Λi dominates Λj if and only if Λ1

1 ≤ Λ2
1. That is if and only if

p̃i ≤ p̃j , q̃i ≤ q̃j , and c̃i ≤ c̃j , and at least one of the inequalities is strict.

4.4 Formulation 2

In this section, we give a new set covering formulation for the BOMCTP based on the
reformulation of a BOIPMMO discussed in Chapter 3. Although we use some of the
notations introduced for the first formulation, we restate them here for completeness.

Let Ω represent the set of all feasible columns. A feasible column k ∈ Ω is defined as
a route Rk which is a Hamiltonian cycle on a subset of V , includes the depot, visits not
more than p nodes and of length not exceeding q. The length of Rk is denoted ck. For
each route Rk, we have to choose a subset Ψk ⊆W of nodes it may cover and then define
σk as the maximum distance between a node of Ψk and the closest node of Rk\{v0}. Just
as in the first formulation, we define aik = 1 if column k ∈ Ω is selected in the solution and
aik = 0 if this is not the case. The constant bjk = 1 if wj ∈ Ψk and bjk = 0 otherwise. Let
Γmax represent the cover distance induced by a set of routes and θk be the binary variable
that indicates whether column k ∈ Ω is selected (θk = 1) or not (θk = 0). A possible
formulation for the BOMCTP is given by :

Minimize
∑

k∈Ω

ckθk (4.17)

Minimize Γmax (4.18)

subject to :
∑

k∈Ω

aikθk ≥ 1 (vi ∈ T\{v0}) , (4.19)

∑

k∈Ω

bjkθk ≥ 1 (wj ∈W) , (4.20)

Γmax − σkθk ≥ 0 (k ∈ Ω) , (4.21)

θk ∈ {0, 1} (k ∈ Ω) . (4.22)

The objectives of minimizing the length of the set of routes and the induced cover dis-
tance are given in (4.17) and (4.18), respectively. Constraints (4.19) ensure that each
node of T\{v0} is visited by at least one selected route. The fact that each node of W
should be assigned to a visited node of V \{v0} is indicated by Constraints 4.20. Finally,
Constraints (4.21) ensure that the value of the induced cover distance conforms to its
definition.

81

4.4.1 Restricted LP Master Problem

By following the idea of reformulating a BOIPMMO as presented in Chapter 3, we define
a new set of feasible columns Ω where the feasibility of a column k ∈ Ω depends not just
on Rk but also on σk. The resulting LP master problem (LPM) is given by :

Minimize
∑

k∈Ω

ckθk (4.23)

subject to :
∑

k∈Ω

aikθk ≥ 1 (vi ∈ T\{v0}) , (4.24)

∑

k∈Ω

bjkθk ≥ 1 (wj ∈W) , (4.25)

θk ≥ 0 (k ∈ Ω) . (4.26)

As it was explained in Chapter 3, the second objective to minimize Γmax and the Con-
straints (4.21) do not appear in the above formulation. For any value of ε ∈ R we define
Ω

ε
to be the subset of columns k ∈ Ω for which σk ≤ ε. Thus, in order to find a solution

to LPM that respects the constraint Γmax ≤ ε, we solve LPM over the set of columns Ω
ε
.

We denote this problem by LPM(ε). The restricted LP master problem, RLPM(ε), is given
by any restriction of LPM(ε) to a subset Ω

ε
1 ⊆ Ω

ε
for which the problem is primal feasible.

4.4.2 Dual of LPM(ε)

Let πi for vi ∈ T\{v0} and βj for wj ∈ W be the vector of non-negative dual values
associated with Constraints 4.24 and 4.25, respectively. The dual problem DLPM(ε)
corresponding to LPM(ε) is given by

Maximize
∑

vi∈T \{v0}

πi +
∑

wj∈W

βj (4.27)

subject to :
∑

vi∈T \{v0}

aikπi +
∑

wj∈W

bikβj ≤ ck (k ∈ Ω
ε
) , (4.28)

πi ≥ 0 (vi ∈ T\{v0}) , (4.29)

βj ≥ 0 (wj ∈W) . (4.30)

4.4.3 Subproblem corresponding to RLPM(ε)

The subproblem S(ε) corresponding to RLPM(ε) consists in finding columns k in Ω
ε
\Ω

ε
1

that satisfy the condition

ck −
∑

vi∈T \{v0}

πiaik −
∑

wi∈W

βjbik < 0 . (4.31)

In order to simplify this condition, we define π∗
i = πi if vi ∈ T\{v0} and π∗

i = 0,
otherwise. We also let xijk = 1 if route Rk visits vj immediately after visiting vi and

82

xijk = 0 if this is not the case. The subproblem S(ε) is given by :

Minimize
∑

(vi,vj)∈V ×V

(dij + π∗
i)xijk −

∑

wi∈W

βjbik subject to k ∈ Ω
ε
\Ω

ε
1 . (4.32)

Given that Rk ⊆ V whereas Ψk ⊆W , we need to construct a route on a subset of V
with the aim of minimizing its cost ck −

∑

vi∈V aikπ∗
i and also choose a subset of nodes

wj ∈W with the aim of maximizing the profits (βj) associated to its members. The profit
associated to a node of wj ∈ W can be collected at most once on any single route even
though different nodes of the route Rk may be able to cover it. Problem 4.32 is, thus,
an ESPPRC having a special feature called non-additivity. Non-additivity in shortest
path problems may be defined as the situation whereby the cost of a partial path is not
necessarily the same as the sum of the costs of its subpaths. Figure 4.4 demonstrates the
non-additive nature of Problem 4.32. In this figure, let us suppose that d12 = 2, d23 = 1,
and βj = 1 for j = 1, 2, . . . , 7. Then, the reduced cost of the partial path v1 → v2 → v3

is given by 3 − 7 = −4. Similarly, the reduced costs of the partial paths v1 → v2 and
v2 → v3 are 2− 6 = −4 and 1− 5 = −4, respectively. This means that the reduced cost of
v1 → v2 → v3 is not the same as the sum of the reduced costs of its constituent partial
paths. This is a result of the fact that the nodes w5 and w6 can be covered by both v2 and
v3. Thus, we need to modify the “usual” dominance rule in order to ensure that no labels
that can lead to an optimal solution is eliminated. Reinhardt and Pisinger (2011) discuss
non-additive shortest path problems and also present different dominance rules for specific
problems but none of those rules presented perfectly fits the subproblem encountered here.
Next, we briefly describe how we solve Problem 4.32 by dynamic programming.

v1 v2 v3

w1

w2
w3

w4

w5

w6
w7 Partial path

Range of covered nodes

Figure 4.4: Non-additive nature of subproblem.
Notes: The reduced cost of the partial path v1 → v2 → v3 is different from the sum of the
reduced costs of the partial paths v1 → v2 and v2 → v3.

4.4.4 Solving S(ε)

Three resources are considered when implementing the decremental state space relaxation
algorithm for Problem 4.32. The first two ressources are the number of nodes a route may
visit which is limited to a maximum of p and its length which is limited to a maximum of
q. The third resource constraint is that a route may only cover nodes of W that lie within
a radius of ε from a node of V \{v0} it visits. In what follows, let Λi = (c̃i, q̃i, p̃i) represent
a partial path coming from the depot v0 to node vi. The components of the label are
given by the reduced cost up to the current node c̃i, the length of the partial path q̃i, and
the total number of nodes of V \{v0} visited, p̃i. In order to simplify the notation, some

83

components of a label are not shown. For example, those that ensure that a constructed
path is elementary. The validity of the discussions that follows is not affected by this
omission.

Label Extention. When extending a label from a node vi ∈ V to another node vj ∈ V ,
nodes of W not yet covered by the label but which can be covered by vj are identified
and the resulting profit is subtracted from the current reduced cost of the label. Doing so
ensures that we obtain the minimum possible reduced cost for each label without counting
the profit associated to any node of W more than once. That is, even when the elementary
condition is relaxed in the DSSR algorithm, there is no interest in visiting a node of V \T
more than once since the reduced cost of the path resulting from the second visit will be
worse than the one from the first visit.

Dominance Rule. Consider the case portrayed in Figure 4.5. The label Λ1
1 represents a

partial path from v0 to v1 that has already visited v2 whereas Λ2
1 is another partial path

that has not yet visited v2. That is, Λ1
1 can no longer visit v2 but it is possible to extend Λ2

1

to v2. The total profit that can be collected (from covering some nodes of W) by visiting
node v2 is 4. For simplicity, we suppose that no node of W can be covered by more than
one node of V . The figure shows all the labels that are generated when no dominance
rule is applied. Three labels arrive at vd which is a copy of the depot. Out of these three
labels, only Λ1

d and Λ2
d are actually of interest. If the usual dominance rule is applied, then

we have Λ1
1 ≦ Λ2

1 and so Λ2
1 is deleted and never extended from v1. The result is that,

the nondominated node Λ3
d is never generated. In order not to eliminate any label that

can lead to a nondominated path, we define a new dominance rule. For any two labels Λi

and Λj on the same node, we say that Λi dominates Λj if and only if the following two
conditions are satisfied:

• Λ1
1 ≦ Λ2

1, and

• c̃i ≤ c̃j − Fij .

The factor Fij represents the sum of the profits associated to nodes of W that are covered
by Λi but not yet covered by Λj .

4.4.5 Implementation of Column Search Strategies

By following the discussions in the preceding sections, we know how to solve RLPM(ε)
and S(ε) for any given value of ε and so we can implement the Point-by-Point Search
(PPS). In this section, we describe the Improved Point-by-Point Search (IPPS) and the
Solve-Once-Generate-for-All (SOGA) approaches. In what follows, let k′ := (R′

k, Ψ′
k) be a

column returned by the DSSR algorithm after solving the subproblem S(ε′). Let π′ and β′

be the vectors of dual values used by the DSSR algorithm in obtaining column k′.

Recall. A feasible column is defined by a route Rk together with a subset Ψk ⊆ W
of the choice of nodes it may cover. The length of Rk is denoted ck. We denote σk

as the maximum distance between a node of Ψk and the closest node of Rk. That is,
σk = max{dij : vi ∈ Rk and wj ∈ Ψk}.

84

4

1

2v0

v1

v2

vd

0 0

2

4

Λ0 = (0, 0, 0)

Λ1
1 = (−8, 5, 3)

Λ2
1 = (−5, 6, 3)

Λ2 = (−7, 8, 4)

Λ1
d = (−4, 9, 3)

Λ2
d = (−1, 10, 3)

Λ3
d = (−6, 9, 4)

dij
vi vj

βi βj

Λj = (c̃j , q̃j , p̃j)

Figure 4.5: Dominance relationship between labels.
Notes: Node vd is a copy of the depot, v0. Λ1

1 represents the partial path v0 → v3 →
v2 → v1, Λ2

1 represents v0 → v3 → v4 → v1, Λ2 represents v0 → v3 → v4 → v1 → 2, Λ1
d

represents v0 → v3 → v2 → v1 → d, Λ2
d represents v0 → v3 → v4 → v1 → d, Λ3

d represents
v0 → v3 → v4 → v1 → 2→ d.

IPPS Heuristic for the BOMCTP

The DSSR algorithm for solving the S(ε) constructs column k′ := (R′
k, Ψ′

k) by taking Ψ′
k

to be all the nodes of W that lie within a radius of ε′ from a node of R′
k. This helps with

the goal of minimizing the reduced cost. We note, however, that Ψ′
k does not necessarily

need to include all the nodes of W that can be covered by Rk. Indeed, Ψ′
k can be chosen to

be any subset of W each of which lie within a radius of ε′ from a node of R′
k and such that

the sum of the profits associated with this subset exceeds the cost ck. A column defined in
this way is hardly returned by the DSSR algorithm for the current subproblem since it is
dominated by another column defined by the same route, but covers some more nodes of
W . The IPPS heuristic for the BOMCTP relies on this observation. Figure 4.6 depicts
how the heuristic works and the details are explained below.

A column k′ is modified by successively removing the node of Ψ′
k that induces the value

of σ′
k (i.e. which is farthest from the closest node of Rk) in order to create another column

k′′ := (R′′
k, Ψ′′

k) where σ′′
k < σ′

k. The reduced cost of k′′ is evaluated with respect to the
same vectors of dual values π′ and β′ which was used by the DSSR algorithm in solving
S(ε′). This means that if the reduced cost of k′′ is negative, then it is guaranteed to be
relevant for S(ε′). The relevance of k′′ for another value of ε that is different from ε′ is
neither confirmed nor refuted by this heuristic. Initially, c′′

k = c′
k as in Figure 4.6c but if

a node vi ∈ R′′
k does not uniquely cover at least one node of Ψ′′

k, then it is removed from
R′′

k in other to have c′′
k < c′

k and further minimize the reduced cost as in Figure 4.6d. The
successive modifications end when no more columns having negative reduced costs can be
obtained.

SOGA Heuristic for the BOMCTP

Suppose that π′′ and β′′ are the vectors of dual values corresponding to RLPM(ε′′) where
ε′′ 6= ε′. Note that in general π′′ 6= π′ and β′′ 6= β′. The principle of a SOGA heuristic for
the BOMCTP is to modify column k′ := (R′

k, Ψ′
k) to obtain another column k′′ := (R′′

k, Ψ′′
k)

85

v0

v1

v2

v3

σ

(a) Original column

v0

v1

v2

v3

σ

(b) Modified column 1

v0

v1

v2

v3

σ

(c) Modified column 2

v0

v1

v2

v3

σ

(d) Modified column 2 (improved)

Figure 4.6: IPPS heuristic for the BOMCTP.
Notes: A column is succussively modified by removing the node of W that induces the
value of σ in order to generate several other columns.

by completely reconstructing the set of nodes that may be covered (Ψ′′
k). The principle of

the heuristic is indicated in Figure 4.7. The set Ψ′′
k is constructed by taking all profitable

nodes within a radius of ε′′ from a node of R′′
k. The profit associated with covering

a node of W depends on π′′ and β′′ rather than π′ and and β′. In other words, the
reduced cost of the modified column k′′ is evaluated with respect to the dual vectors
π′′ and β′′. This means that if the reduced cost of k′′ is negative, then it is guaranteed
to be relevant for S(ε′′) but possibly not for S(ε′). After constructing Ψ′′

k, we compute
σ′′

k = max{dij : vi ∈ R′′
k and wj ∈ Ψ′′

k}. If a node vi ∈ R′′
k does not uniquely cover any

profitable node of Ψ′′
k, then it is removed from R′′

k in other to reduce the length of the
route and further minimize the reduced cost (see Figure 4.7d). Finally, all the other
non-profitable nodes of W that lie within a radius of σ′′

k from a node of R′′
k are added to

Ψ′′
k.

86

Circle of radius ε

Circle of radius σ

Node of W that is NOT profitable to cover

Node of W that is profitable to cover

v0

v1

v2

v3

σ

(a) Column for S(ε′).

v0

v1

v2

v3

σ

(b) Column for S(ε′′) where ε′′ > ε′.

v0

v1

v2

v3

σ

(c) Column for S(ε′′) where ε′′ < ε′.

v0

v1

v2

v3

σ

(d) Improved column from (c).

Figure 4.7: SOGA heuristic for the BOMCTP.
Notes: A new column is constructed from an original column by incorporating dual values
corresponding to another subproblem.

87

4.5 Computational Results

We now present results from experiments conducted to evaluate the quality of lower and
upper bound sets computed for the BOMCTP. We also compare the relative perfomance of
the different column search approaches. For each of the two formulations, lower bound sets
are computed by the column search approaches discussed in Chapter 3. After computing a
lower bound set, a corresponding upper bound set is computed by considering the set of
columns currently present in the master problem.

4.5.1 Description of Instances and Experiments

The Mersenne Twister random number generator was used to generate instances similar to
those described in the literature Gendreau et al. (1997); Hachicha et al. (2000); Jozefowiez
et al. (2007) but which are not publicly available. The generator can be obtained at
http://www.math.sci.hiroshima-u.ac.jp/˜m-mat/MT/emt.html. The node sets were
obtained by generating |V | + |W | points in the [0, 100] × [0, 100] square with the depot
restricted to lie in [25, 75] × [25, 75]. Set T (respectively, V) is taken to be the first |T |
(respectively, |V |) points and set W is taken as the remaining points. The distance between
two points is calculated as the Euclidean distance between them. Five instances for every
combination of |V | ∈ {30, 40, 50} and |W | ∈ {2|V |, 3|V |} were generated. Values of |T | in
{1, 0.25 ·⌈|V |⌉, 0.50 ·⌈|V |⌉}, p in {5, 8}, and q = +∞ were tested. The instances used for our
experiments can be found at http://homepages.laas.fr/artigues/ctp_instances.zip.
All computer codes were written in C/C++ and the linear programs were solved with ILOG
CPLEX 12.4. The tests were run on an Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz
computer with a 2 GiB RAM. Summary of the results based on the first formulation are
given in Section 4.5.2 and those based on the second formulation are given in Section 4.5.3.
All the values in the tables presented in both sections are averages over the same group
five generated instances as earlier described.

4.5.2 Summary of Results for Formulation 1

Lower bound sets for the BOMCTP based on the first formulation were computed by the
PPS, the k-PPS, and the Sequential Search 2 approaches. As described in Chapter 3,
the condition O used in implementing the k-PPS is to skip a current value of ε when the
objective function of RLPM(ε) has not improved (i.e. decreased) by more than 1 after
k = 3 iterations of column generation. A summary of the results are presents in Tables 4.1
and 4.2. Table 4.1 gives the quality of the computed bound sets whereas Table 4.2 gives
the computational times and other characteristics of the column generation method. Given
that column generation is an exact method for the LPM(ε) for any particular value of ε,
the same lower bound set is obtained for a given instance no matter the column search
approach used. For each instance, the number of elements in the lower bound set is given
under the column with heading |L∗|. The number of elements in an upper bound set is
given under the columns with headings |U |. For each instance, these values are different
for the different column search approaches since different columns are generated by each
approach when computing a lower bound set. The computational times (in cpu seconds)
are given under the columns with heading time. The columns with headings dssr and

88

http://www.math.sci.hiroshima-u.ac.jp/~ m-mat/MT/emt.html
http://homepages.laas.fr/artigues/ctp_instances.zip

cols give the number of times the sub-problem was solved with the DSSR algorithm and
the total number of columns generated, respectively, when computing a lower bound set.
Values of the two quality indicators discussed in Chapter 3 are expressed as percentages
under the headings µ1% and µ2%.

The values in Table 4.1 show that the quality of the bound sets obtained are fairly
good. This can be seen from the values under the columns with headings µ1% and µ2%
for each of the search approaches. There seems to be no clear preference for one column
search approach with respect to another in terms of the quality of the bound sets obtained.
Nevertheless, the quality of the bound sets obtained by the sequential search approach are
slightly better than those obtained by the PPS and k-PPS in most cases. For example,
in the row corresponding to p = 8, |T | = 1, |V | = 40, |W | = 120 of Table 4.1. The value
of the pair (µ1%, µ2%) for the PPS, the k-PPS, and the sequential search approaches are
(5.2, 25.7), (5.3, 25.4), and (5.1, 25.2), respectiveley.

In terms of computational times (see Table 4.2), the sequential search approach per-
forms the best. The k-PPS also performs better than the PPS. For example, in the row
corresponding to p = 8, |T | = 13, |V | = 50, |W | = 150 of Table 4.2, the computational
time for the PPS is 110.41, the one for the k-PPs is 103.65 and that of the sequential
search is 87.10. From the same row, we can also see that the sequential search approach
solves a fewer number of subproblems (219) with respect to the PPS (294) and the k-PPS
(272). This is a very good sign in favour of the sequential search approach since solving
the subproblem is usually the most costly operation in a column generation algorithm.

4.5.3 Summary of Results for Formulation 2

Lower and upper bound sets based on the second formulation for the BOMCTP were
computed by the PPS, the IPPS and the SOGA approaches. Tables 4.3 and 4.4 give
a summary of the results obtained. These tables are the equivalent of those given in
Tables 4.1 and 4.2 for the first formulation. Hence, the column headings have the same
meanings as those presented in the earlier tables.

It can be seen from Table 4.3 that there is not much difference between the values of
µ1% and µ2% for the different search approaches. No preference for a particular column
search approach can be established from the values of µ1% and µ2% in this table. For
example, in the row corresponding to p = 5, |T | = 25, |V | = 50, |W | = 150, the value of
the pair (µ1%, µ2%) for the PPS, the IPPS, and SOGA are (3.0, 57.7), (1.4, 41.1), and
(1.8, 35.9), respectively. Similarly, the values for PPS, IPPS, and SOGA corresponding to
p = 8, |T | = 10, |V | = 40, |W | = 80 Table 4.3 are (6.9, 19.6), (7.6, 26.8), and (7.3, 24.6),
respectively. Just as it can be seen in Tables 4.1 for the first formulation, there is a general
increase in the values of µ1% and µ2% when |V | increases and also when |T | increases. No
matter the column search approach used, this trend is expected since increasing the values
of |V | and |T | usually increases the difficulty of an instance.

In terms of computational times, there is a clear preference between the column search
approaches. SOGA is clearly the best, followed by IPPS and then PPS. Moreover this
preference becomes more evident for difficult instances. For example, the computational
times for PPS, IPPS and SOGA for the instance p = 8, |T | = 13, |V | = 50, |W | = 150 of
Table 4.4 are 2226.0, 1938.3, and 1033.4, respectively, whereas those for the instance p = 8,

89

Table 4.1: Quality of bound sets for Formulation 1

PPS k-PPS Sequential 2

p |T | |V | |W | |L∗| |U | µ1% µ2% |U | µ1% µ2% |U | µ1% µ2%

5 1 30 60 64 29 5.2 26.2 28 5.2 26.1 29 5.1 26.0
5 1 30 90 66 29 6.0 27.6 29 6.1 27.5 28 5.9 27.5
5 1 40 80 58 30 5.5 26.1 29 5.6 26.0 30 5.4 25.9
5 1 40 120 67 37 5.1 25.4 29 5.1 25.4 36 5.0 25.2
5 1 50 100 65 34 4.9 24.7 34 4.9 24.5 35 4.8 24.5
5 1 50 150 67 35 4.5 24.8 39 4.6 24.7 36 4.5 24.0

5 8 30 60 15 9 7.7 54.1 9 7.7 54.1 9 7.6 54.1
5 8 30 90 17 10 11.0 53.3 10 11.1 53.3 10 11.0 53.2
5 10 40 80 15 11 1.4 58.1 11 1.4 58.1 12 1.3 58.1
5 10 40 120 16 13 9.1 61.7 12 9.1 61.7 14 9.0 61.8
5 13 50 100 18 11 16.7 72.9 11 16.7 80.0 11 16.6 72.7
5 13 50 150 19 10 21.6 72.6 11 21.5 72.7 12 21.6 72.9

5 15 30 60 2 6 20.3 54.7 5 20.3 54.6 6 20.3 54.6
5 15 30 90 5 6 40.5 55.7 6 40.5 55.7 6 40.4 55.7
5 20 40 80 6 4 57.3 61.4 5 57.3 61.4 5 57.3 61.4
5 20 40 120 7 5 31.2 62.3 6 31.2 62.3 6 31.2 62.3
5 25 50 100 6 4 24.3 76.8 4 24.3 76.5 4 24.3 76.8
5 25 50 150 9 4 28.9 79.1 4 28.9 78.9 5 28.9 79.0

8 1 30 60 64 29 5.3 26.3 29 5.3 26.1 30 5.2 26.2
8 1 30 90 63 30 6.5 28.2 29 6.5 28.1 29 6.4 28.0
8 1 40 80 58 28 5.6 26.0 28 5.5 26.0 30 5.6 26.0
8 1 40 120 65 35 5.2 25.7 26 5.3 25.4 36 5.1 25.2
8 1 50 100 65 34 4.9 24.7 34 4.9 24.6 33 4.7 24.6
8 1 50 150 64 36 4.7 24.8 38 4.6 24.5 36 4.7 24.4

8 8 30 60 15 10 10.2 65.1 10 10.2 65.0 10 10.2 65.1
8 8 30 90 15 9 28.7 69.5 10 26.8 69.7 10 20.3 69.6
8 10 40 80 14 8 16.6 68.0 8 16.6 67.9 9 16.6 67.8
8 10 40 120 17 11 9.3 73.4 10 9.3 73.3 11 9.2 73.3
8 13 50 100 16 10 35.2 74.2 10 35.2 74.2 10 35.1 74.2
8 13 50 150 17 9 30.1 76.7 9 30.1 76.7 10 30.1 76.7

8 15 30 60 2 6 29.0 65.4 6 29.0 65.4 6 29.0 65.4
8 15 30 90 2 6 35.4 71.1 6 35.4 71.3 6 35.4 71.0
8 20 40 80 2 4 41.2 72.9 5 41.3 73.0 5 41.1 72.7
8 20 40 120 4 6 9.2 73.8 6 9.1 73.8 6 9.1 73.2
8 25 50 100 3 5 34.9 81.3 5 35.0 81.1 6 34.9 81.0
8 25 50 150 4 5 24.3 87.9 6 24.2 87.3 7 24.2 87.2

90

Table 4.2: Computational times for Formulation 1

PPS k-PPS Sequential 2

p |T | |V | |W | time dssr cols time dssr cols time dssr cols

5 1 30 60 7.8 160 358 6.7 126 388 7.0 98 372
5 1 30 90 12.8 93 332 10.8 95 364 9.1 73 351
5 1 40 80 15.0 72 416 11.4 70 479 7.8 59 461
5 1 40 120 16.0 129 435 12.5 112 521 7.8 90 478
5 1 50 100 26.0 152 570 13.3 147 574 8.8 135 583
5 1 50 150 24.7 137 591 15.3 116 573 11.5 106 619

5 8 30 60 6.3 165 808 8.7 147 823 7.9 123 747
5 8 30 90 15.3 143 837 13.1 139 891 14.1 104 865
5 10 40 80 18.6 157 969 19.4 142 1036 15.6 132 974
5 10 40 120 28.2 195 1048 28.2 176 986 23.9 155 1096
5 13 50 100 42.4 243 1160 39.5 198 1171 36.3 174 1235
5 13 50 150 51.7 286 1395 52.7 201 1343 42.1 194 1480

5 15 30 60 16.8 149 825 15.1 126 891 14.0 114 926
5 15 30 90 26.4 153 973 25.5 148 974 23.8 141 969
5 20 40 80 35.8 168 1232 36.8 160 1235 27.4 143 1198
5 20 40 120 53.5 192 1568 50.7 174 1549 42.8 158 1480
5 25 50 100 55.5 227 1913 49.0 195 1629 44.2 172 1670
5 25 50 150 68.2 285 2194 61.6 223 2160 53.3 206 2075

8 1 30 60 11.8 245 374 15.8 183 392 6.9 119 449
8 1 30 90 14.9 144 357 14.2 141 383 8.3 132 417
8 1 40 80 54.0 124 436 22.2 109 451 17.5 93 491
8 1 40 120 47.2 154 438 29.3 127 492 18.3 120 524
8 1 50 100 96.6 189 618 22.6 142 575 15.1 132 633
8 1 50 150 86.5 199 566 31.1 132 573 19.6 111 578

8 8 30 60 52.1 231 738 53.9 211 718 48.1 176 619
8 8 30 90 58.0 195 953 62.2 176 949 51.3 164 946
8 10 40 80 81.4 206 1087 76.1 184 1093 69.3 153 1074
8 10 40 120 69.5 237 988 61.9 201 1027 54.7 159 1080
8 13 50 100 123.7 273 1439 115.1 258 1335 79.9 213 1326
8 13 50 150 110.4 294 1712 103.7 272 1726 87.1 219 1766

8 15 30 60 42.1 259 952 42.9 209 968 38.2 182 825
8 15 30 90 60.3 198 1071 58.7 177 1108 46.5 169 1151
8 20 40 80 153.7 281 1209 129.9 275 1160 109.3 227 1080
8 20 40 120 118.7 296 1841 103.1 278 1833 98.4 254 1766
8 25 50 100 209.9 317 2058 196.5 297 2051 182.3 261 2049
8 25 50 150 264.9 334 2314 251.9 312 2217 201.5 259 2147

91

Table 4.3: Quality of bound sets for Formulation 2

PPS IPPS SOGA

p |T | |V | |W | |L∗| |U | µ1% µ2% |U | µ1% µ2% |U | µ1% µ2%

5 1 30 60 25 26 0.3 0.6 26 0.4 0.6 26 0.4 0.6
5 1 30 90 21 21 0.8 2.3 22 0.9 2.0 22 0.9 2.0
5 1 40 80 26 26 0.3 0.4 27 0.3 0.5 26 0.3 0.5
5 1 40 120 27 28 0.4 1.2 29 0.5 1.1 29 0.5 1.2
5 1 50 100 32 33 0.3 0.7 33 0.2 0.6 33 0.3 0.6
5 1 50 150 30 30 0.2 0.5 30 0.2 0.7 31 0.2 0.4

5 8 30 60 10 9 0.2 5.9 9 0.2 5.7 9 0.1 9.3
5 8 30 90 10 10 2.3 9.6 10 2.3 6.5 10 2.6 6.5
5 10 40 80 10 11 0.8 9.2 11 1.0 9.9 11 1.3 9.6
5 10 40 120 12 12 0.7 7.8 12 0.8 7.8 13 1.1 8.0
5 13 50 100 11 11 0.7 4.5 10 1.1 4.0 10 0.6 3.9
5 13 50 150 8 8 3.3 11.9 8 1.9 10.1 9 3.6 9.8

5 15 30 60 6 5 2.2 18.0 5 2.2 13.7 5 2.2 14.5
5 15 30 90 5 6 1.9 15.7 6 1.4 14.5 6 1.8 15.0
5 20 40 80 5 4 5.5 41.2 4 5.4 40.3 4 4.9 40.0
5 20 40 120 5 5 0.8 38.2 5 0.8 46.4 5 0.8 41.3
5 25 50 100 4 4 18.7 36.3 4 1.1 47.8 4 1.1 51.3
5 25 50 150 3 3 3.0 57.7 3 1.4 41.1 3 1.8 35.9

8 1 30 60 25 26 0.1 0.6 25 0.1 0.5 25 0.1 0.5
8 1 30 90 22 22 0.7 1.4 23 0.8 1.2 22 0.8 1.1
8 1 40 80 27 27 0.1 0.4 27 0.1 0.4 27 0.1 0.4
8 1 40 120 29 30 0.2 0.7 30 0.3 0.7 30 0.3 0.7
8 1 50 100 32 32 0.2 0.7 33 0.2 0.6 33 0.2 0.7
8 1 50 150 30 30 0.3 0.7 30 0.2 0.5 31 0.3 0.5

8 8 30 60 10 10 2.5 8.9 9 1.6 9.8 9 2.5 10.1
8 8 30 90 9 9 2.7 10.7 9 2.7 10.4 10 2.7 10.3
8 10 40 80 8 7 6.9 19.6 9 7.6 26.8 8 7.3 24.6
8 10 40 120 11 11 0.7 7.1 12 1.3 8.8 12 1.1 8.8
8 13 50 100 10 10 3.8 10.9 10 3.8 11.7 10 3.4 10.7
8 13 50 150 8 8 2.4 12.0 8 2.2 10.3 8 2.1 10.0

8 15 30 60 6 5 0.8 26.6 5 1.0 26.2 5 1.5 27.6
8 15 30 90 5 6 2.8 21.5 6 3.2 23.4 6 3.3 23.5
8 20 40 80 4 4 15.4 75.6 4 32.5 74.8 4 15.4 69.3
8 20 40 120 5 5 3.2 50.2 5 3.4 51.7 5 3.8 50.3
8 25 50 100 4 4 2.1 56.1 4 2.2 56.1 4 2.1 56.4
8 25 50 150 3 3 2.5 64.9 3 2.6 71.5 3 3.0 65.7

92

Table 4.4: Computational times for Formulation 2

PPS IPPS SOGA

p |T | |V | |W | time dssr cols time dssr cols time dssr cols

5 1 30 60 18.0 185 1198 13.9 124 1809 13.0 112 1229
5 1 30 90 15.4 163 1063 14.6 120 1569 12.3 106 1041
5 1 40 80 49.5 228 1597 40.5 155 2099 36.7 141 1610
5 1 40 120 126.8 330 2571 94.0 201 3388 86.4 174 2348
5 1 50 100 205.8 390 3035 153.9 226 3459 154.5 213 2871
5 1 50 150 392.5 486 4053 287.0 247 4054 268.1 224 3087

5 8 30 60 13.6 145 1155 10.9 90 1478 9.1 72 982
5 8 30 90 17.9 139 1118 14.3 100 1348 11.9 64 842
5 10 40 80 41.3 191 1600 36.0 138 2105 27.2 83 1229
5 10 40 120 104.2 182 2441 82.9 199 2441 58.2 101 1758
5 13 50 100 148.6 309 2728 123.6 231 3299 87.5 110 2207
5 13 50 150 186.8 264 2342 174.3 228 2755 102.8 87 1826

5 15 30 60 22.9 171 1463 17.6 113 2750 11.4 55 1444
5 15 30 90 29.5 141 1198 27.0 114 2067 17.7 51 1083
5 20 40 80 93.0 207 1832 75.0 156 3726 46.0 67 2143
5 20 40 120 143.3 236 2136 127.1 198 3369 67.7 67 2445
5 25 50 100 231.3 257 2363 216.0 219 4193 112.6 75 2886
5 25 50 150 264.4 185 1700 259.9 171 2902 146.9 65 2440

8 1 30 60 49.8 227 1627 29.7 152 2235 25.5 136 1657
8 1 30 90 31.3 215 1552 23.3 142 2010 18.7 122 1284
8 1 40 80 113.4 302 2283 103.6 218 2961 86.8 183 2253
8 1 40 120 511.2 481 3949 503.9 293 4663 326.6 243 3652
8 1 50 100 1343.7 522 4306 1012.5 335 5071 821.2 289 4393
8 1 50 150 1525.2 672 5799 1186.2 384 6005 1042.1 306 4782

8 8 30 60 53.6 231 2027 44.6 158 2466 31.9 123 1952
8 8 30 90 77.7 219 1873 65.2 154 2071 50.7 101 1558
8 10 40 80 213.4 298 2730 202.2 214 3560 149.6 119 2236
8 10 40 120 797.0 475 4427 623.5 320 4102 407.7 183 3837
8 13 50 100 1142.5 571 5379 973.4 413 6220 755.8 216 4749
8 13 50 150 2226.0 545 5119 1938.3 446 6060 1033.4 161 3939

8 15 30 60 182.9 333 3086 128.7 205 5493 87.5 103 3298
8 15 30 90 380.6 288 2691 283.4 209 4675 213.6 102 2451
8 20 40 80 1715.3 430 4129 1459.5 318 8396 978.6 120 5614
8 20 40 120 3202.5 564 5392 2973.4 455 8532 1568.9 149 6162
8 25 50 100 7861.5 627 6022 6963.5 538 11026 3917.6 165 8249
8 25 50 150 3143.1 374 3623 2941.0 342 6757 1731.5 130 5438

93

|T | = 25, |V | = 50, |W | = 150 in the same table are 3143.1, 2941.0, 1731.5, respectively. In
addition, SOGA usually needs to solve relatively fewer number of subproblems than both
PPS and IPPS when computing a lower bound sets. This can be seen from the columns
with headings dssr in Table 4.4.

4.5.4 Comparison of Formulations 1 and 2

In order to better compare the quality of the bound sets obtained from the two formulations,
we present Tables 4.5 and 4.6 which repeat part of the results presented in ealier tables.

Table 4.5 compares the quality of the bound sets obtained by PPS for each of the
formulations. Although the principle of the PPS approach remains the same for both
formulations, the actual implementation details depend on the specific formulation. That is,
different lower and upper bound sets are obtained by PPS for each of the two formulations
although the same test instances were used. A general trend that can be seen from Table 4.5
is that, the number of points in a bound set decreases when the size of T increases. This
can be seen under the columns with headings |L| and |U |. As we have already noted, the
quality of the bound sets obtained from the second formulation are significantly better than
those obtained from the first formulation. In most cases the values of µ1% for Formulation
1 are greater than 5 whereas those for for Formulation 2 are less than 5. By comparing
the values of µ2% for the two formulations, we can also see that those corresponding
to Formulation 1 are generally greater than 25 whereas the ones for Formulation 2 are
generally less than 25.

We can see from Table 4.5 that Formulation 2 clearly obtains better values of µ1% and
µ2%. We can, however, not base on these values to conclude that the linear relaxation
of Formulation 2 is stronger than the one for Formulation 1. This is because the values
in Table 4.5 were computed with respect to the lower and upper bound sets that were
computed independently by each of the formulations. Thus, the better values obtained by
Formulation 2 may be because it obtained better lower bound sets, or better upper bound
sets, or better lower and upper bound sets than Formulation 1. In order to verify whether
Formulation 2 has a stronger linear relaxation than Formulation 1, we fixed an upper
bound set for each instance and compared the lower bound sets obtained independently by
each formulation with respect to the fixed upper bound set. For each instance, the fixed
upper bound set was taken as the one obtained by Formulation 2. Table 4.6 presents the
results obtained for these tests. In this table, the column with heading |U∗| represents the
cardinality of the fixed upper bound set. All the other columns have the same meanings
as before. It is seen from this table (Table 4.6) that the values of µ1% and µ2% obtained
for Formulation 2 are significantly better (smaller) than those obtained by Formulation 1.
This is a confirmation that the lower bound sets obtained by Formulation 2 were better
than those obtained by Formulation 1. In other words, Formulation 2 has a stronger linear
relaxation than Formulation 1. We can also conclude that the upper bound sets obtained
by Formulation 2 were better than those obtained by Formulation 1. This is because by
using the upper bound sets obtained Formulation 2 as the reference upper bound set,
Formulation 1 obtained better values of µ1% and µ2% in Table 4.6 than in Table 4.5.

94

Table 4.5: Comparison of Formulations 1 and 2

Formulation 1 Formulation 2

p |T | |V | |W | |L| |U | µ1% µ2% |L| |U | µ1% µ2%

5 1 30 60 64 29 5.2 26.2 25 26 0.3 0.6
5 1 30 90 66 29 6.0 27.6 21 21 0.8 2.3
5 1 40 80 58 30 5.5 26.1 26 26 0.3 0.4
5 1 40 120 67 37 5.1 25.4 27 28 0.4 1.2
5 1 50 100 65 34 4.9 24.7 32 33 0.3 0.7
5 1 50 150 67 35 4.5 24.8 30 30 0.2 0.5

5 8 30 60 15 9 7.7 54.1 10 9 0.2 5.9
5 8 30 90 17 10 11.0 53.3 10 10 2.3 9.6
5 10 40 80 15 11 1.4 58.1 10 11 0.8 9.2
5 10 40 120 16 13 9.1 61.7 12 12 0.7 7.8
5 13 50 100 18 11 16.7 72.9 11 11 0.7 4.5
5 13 50 150 19 10 21.6 72.6 8 8 3.3 11.9

5 15 30 60 2 6 20.3 54.7 6 5 2.2 18.0
5 15 30 90 5 6 40.5 55.7 5 6 1.9 15.7
5 20 40 80 6 4 57.3 61.4 5 4 5.5 41.2
5 20 40 120 7 5 31.2 62.3 5 5 0.8 38.2
5 25 50 100 6 4 24.3 76.8 4 4 18.7 36.3
5 25 50 150 9 4 28.9 79.1 3 3 3.0 57.7

8 1 30 60 64 29 5.3 26.3 25 26 0.1 0.6
8 1 30 90 63 30 6.5 28.2 22 22 0.7 1.4
8 1 40 80 58 28 5.6 26.0 27 27 0.1 0.4
8 1 40 120 65 35 5.2 25.7 29 30 0.2 0.7
8 1 50 100 65 34 4.9 24.7 32 32 0.2 0.7
8 1 50 150 64 36 4.7 24.8 30 30 0.3 0.7

8 8 30 60 15 10 10.2 65.1 10 10 2.5 8.9
8 8 30 90 15 9 28.7 69.5 9 9 2.7 10.7
8 10 40 80 14 8 16.6 68.0 8 7 6.9 19.6
8 10 40 120 17 11 9.3 73.4 11 11 0.7 7.1
8 13 50 100 16 10 35.2 74.2 10 10 3.8 10.9
8 13 50 150 17 9 30.1 76.7 8 8 2.4 12.0

8 15 30 60 2 6 29.0 65.4 6 5 0.8 26.6
8 15 30 90 2 6 35.4 71.1 5 6 2.8 21.5
8 20 40 80 2 4 41.2 72.9 4 4 15.4 75.6
8 20 40 120 4 6 9.2 73.8 5 5 3.2 50.2
8 25 50 100 3 5 34.9 81.3 4 4 2.1 56.1
8 25 50 150 4 5 24.3 87.9 3 3 2.5 64.9

95

Table 4.6: Comparison of Lower Bound Sets for Formulations 1 and 2

Formulation 1 Formulation 2

p |T | |V | |W | |U∗| |L| µ1% µ2% |L| µ1% µ2%

5 1 30 60 26 64 4.8 20.2 25 0.3 0.6
5 1 30 90 21 66 5.4 23.0 21 0.8 2.3
5 1 40 80 26 58 4.3 21.7 26 0.3 0.4
5 1 40 120 28 67 4.2 19.7 27 0.4 1.2
5 1 50 100 33 65 4.3 21.6 32 0.3 0.7
5 1 50 150 30 67 3.6 21.8 30 0.2 0.5

5 8 30 60 9 15 5.9 51.5 10 0.2 5.9
5 8 30 90 10 17 9.8 40.2 10 2.3 9.6
5 10 40 80 11 15 1.1 31.8 10 0.8 9.2
5 10 40 120 12 16 7.0 46.2 12 0.7 7.8
5 13 50 100 11 18 8.9 37.1 11 0.7 4.5
5 13 50 150 8 19 10.9 36.8 8 3.3 11.9

5 15 30 60 5 2 14.9 43.1 6 2.2 18.0
5 15 30 90 6 5 9.3 47.5 5 1.9 15.7
5 20 40 80 4 6 15.0 55.6 5 5.5 41.2
5 20 40 120 5 7 8.5 57.3 5 0.8 38.2
5 25 50 100 4 6 21.0 57.7 4 18.7 36.3
5 25 50 150 3 9 6.9 62.6 3 3.0 57.7

8 1 30 60 26 64 4.7 22.3 25 0.1 0.6
8 1 30 90 22 63 5.3 21.2 22 0.7 1.4
8 1 40 80 27 58 5.1 22.5 27 0.1 0.4
8 1 40 120 30 65 5.1 21.1 29 0.2 0.7
8 1 50 100 32 65 4.2 18.6 32 0.2 0.7
8 1 50 150 30 64 4.5 19.7 30 0.3 0.7

8 8 30 60 10 15 9.4 49.4 10 2.5 8.9
8 8 30 90 9 15 11.6 41.7 9 2.7 10.7
8 10 40 80 7 14 14.5 46.1 8 6.9 19.6
8 10 40 120 11 17 4.6 28.6 11 0.7 7.1
8 13 50 100 10 16 11.6 39.9 10 3.8 10.9
8 13 50 150 8 17 11.5 38.8 8 2.4 12.0

8 15 30 60 5 2 9.9 57.1 6 0.8 26.6
8 15 30 90 6 2 13.3 56.7 5 2.8 21.5
8 20 40 80 4 2 20.9 69.0 4 15.4 75.6
8 20 40 120 5 4 8.8 73.1 5 3.2 50.2
8 25 50 100 4 3 8.3 72.1 4 2.1 56.1
8 25 50 150 3 4 6.1 79.9 3 2.5 64.9

96

4.6 Conclusion

In this chapter, we have presented the bi-objective multi-vehicle covering tour problem
(BOMCTP) which is an extension of the covering tour problem (CTP) (Gendreau et al.,
1997). The BOMCTP, just as the other variants of the CTP, has several applications in
the design of bi-level transportation networks. We presented two different formulations for
the problems and used column generation to compute lower and upper bound sets based
on each of them. The first formulation is based on the “standard” ε-constraint method
whereas the second is based on a different variant of the ε-constraint method. Due to the
bi-objective nature of the BOMCTP, different strategies to effectively search for columns
were tested on some randomly generated istances similar to those used for the CTP. The
results obtained show that significantly better quality bound sets are obtained from the
second formulation (a variant of the ε-constraint method) than from the first formulation
(a standard ε-constraint method). Morever, the different column search approaches tested
show that significant improvement in computational times can be achieved when computing
lower bound sets by column generation if the search for columns is intelligently managed.

97

Conclusions and Perspectives

Conclusions

The main interest of this thesis has been to study the application of column generation
in computing lower bound sets for bi-objective integer linear programs. Just as in single
objective integer programming, the main role of column generation in multi-objective
integer programming is to compute dual bounds (that is, lower bounds for minimization
problems and upper bounds for maximization problems) for the considered problems.

We started by reviewing the use of column generation in computing lower bounds for
single objective vehicle routing problems (VRPs) in Chapter 1. In this chapter, we talked
about the different types of formulations for VRPs and those that are used when we need to
compute lower bounds by column generation. The main steps involved in applying column
generation are demonstrated on the basic variant of the VRP. In the last section of this
chapter, we present an original variant of the VRP namely the minimum and maximum
distance-constrained capacitated VRP (MMDCVRP) and study how to compute lower
bounds for this variant by column generation. Although the MMDCVRP is seemingly not
so different from the DCVRP, we saw that the subproblem encountered was significantly
more difficult to solve by well known dynamic programming algorithms. Indeed, we could
only find one published article that deals with a similar subproblem but the dominance
rule proposed in this article was not effective enough. Due to this, we propose another
condition to strengthen the existing dominance rule. The effectiveness of the dominance
rule we proposed is evident from the results obtained from experiments.

Chapter 2 was dedicated to reviewing different aspects of multi-objective optimization
which were necessary for understanding the chapters that followed. In particular, we
introduced the definitions and notations used throughout the manuscript. We also reviewed
some popular exact methods for bi-objective optimization problems whose principles are
used in Chapters 3 and 4.

Chapter 3 discusses how to use column generation to compute lower bound sets for
bi-objective integer programs. Some recent published papers deal with the computation and
use of bound sets for bi-objective problems but only one of them uses column generation.
Moreover, all of these published papers used a weighted sum method in converting the
bi-objective problems into single objective. To the best of our knowledge, we are the
first to propose the use of a different scalarization method (an ε-constraint method) in
computing bound sets. We propose a generic column generation algorithm to compute
lower bound sets for bi-objective integer programs and discuss different approaches for
implementing this algorithm. It is possible to use either a weighted sum method or an ε-

99

constraint method when implementing this generic algorithm. The main difference between
the implementation approaches comes from the order in which the different subproblems
encountered are treated. We propose two main implementation approaches namely the
Point-by-Point Search (PPS) and the Sequential Search. In addition, we also propose two
variants for each of these main approaches.

In Chapter 4, the relative performances of the column generation approaches proposed
in Chapter 3 are evaluated on a generalization of the covering tour problem (CTP) namely
the bi-objective multi-vehicle covering tour problem (BOMCTP). The BOMCTP has not
been studied by any other authors and so no known formulation for the problem existed.
We, thus, proposed two different set-covering based formulations the BOMCTP and used
column generation to compute lower and upper bound sets based on each of these two
formumlations. The first formulation uses the idea of a standard ε-constraint method. For
this first formulation, the constraints involving ε are managed only in the master problem
during a column generation algorithm. The second formulation is based on a variant of the
ε-constraint method. In applying a column generation method to this second formulation,
the constraints involving ε are managed both in the master problem and the subproblem.
We performed experiments on randomly generated instances similar to the ones used in
testing other variants of the CTP. The results obtained from our experiments show that the
lower and upper bound sets obtained from the second formulation are significantly better
than those obtained from the first formulation. Moreover, the efficiency of the proposed
column search approaches is assessed from the computational times obtained.

Perspectives

Column generation and multi-objective optimization are two important domains in opera-
tions research. In spite of their importance, these two subjects are rarely studied together.
The number of published articles that deal with the application of column generation
to multi-objective problems are very few and even these were published not so long ago.
Column generation is a complicated method and as such they are numerous possibilities of
improving it for specific types of problems. In this thesis, we study its application and
improvement for bi-objective integer linear programs. The work of this thesis is just a first
step in a long journey of developing the column generation method for multi-objective
optimization problems. There are several ways in which the work of this thesis can be
extended and improved. We hope to achieve some of these extensions and improvements
in the short term whereas some others are hoped to be achieved in the middle term and
long term.

Our discussions on computing lower and upper bound sets in Chapter 3 rely on the fact
that it is possible (and realistic) to compute the complete set of supported nondominated
points of a relaxed problem (in the case of a weighted sum method) or chose the correct
values of ε so that the computed bound sets satisfy the given definitions. It is difficult
and sometimes impossible to compute bound sets for many practical problems if we rely
on only these facts. For example, the number of supported nondominated points of a
multi-objective problem can be exponential and so it can be impractical to compute all
of them. It is also impossible to use the approaches based on the ε-constraint method
if the objective coefficients are not integers. For these reasons, it is necessary to define

100

general methods that can be used to compute lower bound sets for bi-objective problems
with non-integral objective coefficients or having an exponential number of supported
nondominated points. This can be done in the short term and some investigations have
already started. The main idea used in computing a lower bound set remains the same
as before. That is, we first need to convert the original bi-objective integer program into
single objective by using an appropriate scalarization method. Next, we solve the linear
relaxation of the resulting single objective problems several times by varying the necessary
parameters. The main difference now is that, we are no longer obliged to solve the single
objective problem for specific values of the parameters (λ or ε) as it was before. Based on
our needs and the time available, we only need to choose some few values of the parameters.
A lower bound set can be defined by the series of lines linking the computed points as
shown in Figure 4.8a. In this way, it is possible to combine more than one scalarization
method or more than one type of formulation in computing a lower bound set for the same
problem. Moreover, if we can prove that two consecutive points in a lower bound set satisfy
the properties of the members of a lower bound set as defined in Chapter 3, then we can
link these two points in the same way as it was done in that chapter. See Figure 4.8b for
an indication of these idea. The interest of combining these pieces of ideas is to be able to
define good lower bound sets in reasonably shorter computational times. It is important to
note that all the strategies to search for relevant columns that were described in Chapter 3
remain valid. Some other goals we wish to achieve in the short term are to continue testing
the developed column generation approaches on other problems and also develop some new
approaches.

Feasible point of original problem

Nondominated point of relaxion

Lower bound set, L

Area dominated by L

(a) (b)

Figure 4.8: Ideas for defining more general lower bound sets.
Notes: We can compute just a few nondominated points of a relaxation and link them to
define a lower bound set as in (a). We can also combine lower bound sets from different
formulations as well as different scalarization methods in order to define a better and more
general lower bound set as portrayed in (b).

101

Our main middle-term goal is to be able to incorporate the lower and upper bound sets
computed by the proposed approaches in a multi-objective branch-and-bound framework
in order to develop a bi-objective branch-and-price algorithm. A multi-objective branch-
and-bound framework has already been developed by some researchers and so we can use
it in our algorithm. Nevertheless, the design of branching rules in the context of a branch-
and-price algorithm may not be very easy for a bi-objective problem. Several questions
need to be answered. Can the same branching rules used for single objective problems be
also used for bi-objective problems? Will they be as efficient in the bi-objective case as
they are in the single objective case? How do we incorporate the constraints resulting from
branching in the master problems at the nodes of the multi-objective branch-and-bound
tree? We hope to be able to answer these questions and many others that will arise in the
course of our work.

In the long term, we hope to extend the various ideas presented in this thesis to problems
having more that two objectives. We also hope to develop and extend the mathematical
theory governing the column generation method in single objective optimization to the
multi-objective case. For example, it will be interesting to be able to prove when two
subproblems are similar enough to have the same optimal solutions. We can also try to
introduce a notion of “dominance” between subproblems by saying for example that a
subproblem S1 “dominates” another subproblem S2 if every column that is of negative
reduced cost for S2 is also of negative reduced cost for S1. This would be a very important
result since we can then decide, for example, that there is no interest in solving S2 directly
when implementing a sequential search approach because we are sure that all relevant
columns that can be found by solving S2 can also be found by solving S1. The work on
column generation for multi-objective integer linear programs is still in its early stages and
we intend to go as far as possible with our research.

102

Appendix A

Résumé étendu

A.1 Introduction

Les travaux de cette thèse visent à contribuer à la conception et l’étude d’algorithmes
de génération de colonnes en programmation linéaire en nombres entiers multi-objectif.
Pour cela nous étudions un problème de tournées de véhicules bi-objectif qui peut être
considéré comme une généralisation de plusieurs autres problèmes de tournées de véhicules.
Nous proposons des formulations mathématiques pour ce problème et des techniques pour
accélérer le calcul des bornes inférieures par génération de colonnes. Les sous-problèmes
qui doivent être résolus pour le calcul des bornes inférieures ont une structure similaire.
Nous exploitons cette caractéristique pour traiter simultanément les sous-problèmes plutôt
qu’indépendamment.

A.1.1 Principe de Génération de Colonnes

Afin d’obtenir de meilleures bornes qui peuvent être utilisées dans la conception de
méthodes exactes, certains problèmes sont formulés avec un nombre exponentiel de variables
de décision et ces problèmes sont résolus par la méthode de génération de colonnes.
L’idée de la génération de colonnes pour résoudre un tel problème est de commencer par
seulement un nombre raisonable des variables (et les colonnes de la matrice de contraintes
correspondantes). Les autres variables sont ajouté quand c’est necéssaire.

Nous appelons un problème en nombres entiers le problème mâıtre en nombres entiers
(PME) et sa relaxation linéaire le problème mâıtre linéaire (PML). Une restriction de PME
(respectivement PML) à un sous-ensemble de colonnes est notée le PME restrient (PMER),
respectivement, PMLR. Un problème auxiliaire résolu pour vérifier la convergence de la
méthode est appelé un sous-problème. Une itération de la méthode commence par la
résolution du PMLR afin d’obtenir un vecteur de variables duales. Le sous-problème utilise
ce vecteur pour vérifier si la méthode a convergé ou non. Si la méthode n’a pas encore
convergé, une ou plusieures colonnes sont proposé par le sous-problème et sont ajoutées au
PMLR. Les itérations continuent jusqu’à la convergence de la méthode.

103

A.1.2 Optimisation Multi-Objectif

Un problème d’optimisation multi-objectif (PMO) concerne la minimisation d’un vecteur
de r ≥ 2 fonctions objectifs F (x) = (f1(x), . . . , fr(x)) sur un domaine X de solutions
réalisables. Le vecteur x = (x1, . . . , xn) est la variable de decision, Y = F (X) correspond
aux images des solutions réalisables dans l’espace des objectifs, et y = (y1, . . . , yr), où
yi = fi(x), est un point dans l’espace objectif. Une solution x′ domine une autre solution
x′′, (notée x′ � x′′), si pour tous les indices i ∈ {1, . . . , n}, fi(x′) ≤ fi(x′′) et il y a au
moins un indice i ∈ {1, . . . , n} tel que fi(x′) < fi(x′′). Une solution réalisable qui n’est
dominée par aucune autre solution réalisable est appelée une solution efficace or Pareto
optimale et son image dans l’espace objectif est appelé un point nondominé. L’ensemble de
toutes les solutions efficaces est appelé ensemble efficace (noté XE) and l’ensemble de tous
les points nondominés est appelé ensemble nondominé (noté YN). En général, plus qu’une
solution efficace peut correspondre au même point nondominé. Résoudre un PMO dans la
practique correspond à trouver au moins une solution efficace correspondant à chaque point
nondominé. L’ensemble nondominé décrit ce que l’on appel un front Pareto. Une solution
efficace correspondant à un point nondominé qui se trouve sur la partie convexe du front
Pareto et appelé une solution supportée et son image est aussi appelé un point supporté.
Dans la pratique, les variables utilisées en optimisation multi-objectif représentent souvent
des objets non fractionnables et on parle alors de problèmes multi-objectif en nombres
entiers (PMOI).

Bornes d’un Problème d’Optimisation Multi-Objectif. Les bornes inférieures et
supérieures d’un problème multi-objectif peuvent être décrites par des ensembles. Cette
notion d’utilisation des ensembles pour définir des bornes a été introduite par Villarreal and
Karwan (1981). D’autres auteurs (Delort and Spanjaard, 2010; Ehrgott and Gandibleux,
2007; Sourd and Spanjaard, 2008) ont aussi utilisés des notions de bornes basées sur des
ensembles mais différentes de ce qui a été définit par Villarreal and Karwan (1981). Dans
ce travail, nous utilisons une définition des bornes legèrement differente de ce qui a été
proposé dans la littérature. Nous définissons une borne inférieure comme un ensemble de
points (fini ou infini) L tel que l’image de tout point réalisable est soit un élément de L soit
dominé par au moins un élément de L. c’est-à-dire, un élément de L peut correspondre
a un point réalisable. Une borne supérieure est aussi définie comme un ensemble fini de
points réalisables U dont les éléments ne se dominent pas deux à deux. c’est-à-dire, un
élément de U appartient nécessairement à Y. L’idée générale utiliser dans la construction
d’une borne inférieure est de convertir le problème PMO en un problème mono-objectif (par
une méthode de scalarisation) et puis résoudre ce problème plusieurs fois en faisant varier
les paramètres nécessaires. Pour tous les articles que nous avons trouvé dans la littérature,
une scalarisation par la méthode de sommes ponderées a été utilisée. Pour construire un
borne supérieure, nous utilisons en générale une heuristique ou une métaheuristique.

A.1.3 Contributions

Les contributions principaules de cette thèse sont listées ci-dessous :

• L’utilisation de la méthode ε-contraint pour construire des bornes.

104

• Proposition d’un algorithme général de génération de colonnes pour les problèmes
linéaires en nombres entiers bi-objectif. Cet algorithme est basée soit sur une méthode
de sommes pondérées soit sur une méthode ε-contraint.

• Proposition de differentes stratégies pour implementer l’algorithme de génération de
colonnes général.

• Application des approches dévélopées à un problème de tournées de véhicules bi-
objectif.

A.2 Génération de Colonnes pour les Problèmes Linéaires
en Nombres Entiers Bi-Objectif

Considerons le problème bi-objectif P suivant :

Minimiser (c1)T x (A.1)

Minimiser (c2)T x (A.2)

sous contraintes : Ax ≥ b , (A.3)

x ≥ 0 et entier. (A.4)

Dans cette formulation, x est un vecteur de n variables de décision et ci est un vecteur de
n coefficients entiers dans la ième fonction objective (i = 1, 2). Les contraintes du problème
sont exprimées en utilisant une matrice A de taille m× n et un vecteur de constantes b
ayant m composants.

A.2.1 Construction de Bornes Inférieures

L’idée générale utilisée pour construire une borne inférieure est de convertir le problème
bi-objectif en un problème mono-objectif en utilisant une méthode de scalarisation et puis
résoudre ce problème (or une relaxation) plusieurs fois en faisant varier les paramètres
nécessaires. Dans ce thèse nous considérons la méthode de sommes pondérées et la méthode
ε-contrainte.

Le principe de la méthode de sommes pondérées est de définir un vecteur de poids non
négatif λ = (λ1, λ2) et de transformer le problème P en un problème mono-objectif P (λ)
donné par :

Minimiser λ1 · (c
1)T x + λ2 · (c

2)T x (A.5)

sous contraintes : Ax ≥ b , (A.6)

x ≥ 0 et entier. (A.7)

L’idée de la méthode ε-contrainte est de convertir une des deux fonctions objectifs en
une contrainte en utilisant une constante ε ∈ R. Le problème mono-objectif P (ε) obtenu

105

après la transformation du problème P est donné par :

Minimiser (c1)T x (A.8)

sous contraintes : Ax ≥ b , (A.9)

−(c2)T x ≥ −ε , (A.10)

x ≥ 0 et entier. (A.11)

Si l’on suppose que le nombre de colonnes dans le problème A est assez petit (c’est-à-dire
n est petit), alors nous n’avons pas besoin de génération de colonnes pour construire une
borne inférieure pour ce problème. Ce cas a été traité par Ehrgott and Gandibleux (2007)
qui ont utilisé la méthode de sommes pondérées pour la scalarisation de P . Étant donné
que le problème P (λ) est NP-difficile dans le cas général, ils ont cherché l’ensemble de
points nondominé de la relaxation linéaire de P (λ) en utilisant une méthode proposée
par Aneja and Nair (1979). Une borne inférieure est définie comme la ligne joignant les
points nondominés. Pour utiliser la méthode ε-contrainte, nous devons aussi résoudre
la relaxation linéaire de P (ε) pour plusieurs valeurs de ε. En faisant cela, nous devons
assurer que chaque point réalisable du problème P est soit généré ou dominé par au moins
un des points généré (voir la figure A.1). C’est difficile à satisfaire cette condition pour
un problème bi-objectif générale. Cependant si les coefficients des fonctions objectifs du
problème sont entiers, nous pouvons utiliser une idée similaire à ce qui a été utilisé par
Bérubé et al. (2009).

δ1

δi

...

...

ε1 = max ε

ε2

εi

εi+1

min ε

Point réalisable

Élement de borne
inférieure

Région non-réalisable

f1

f2

Figure A.1: Construction d’une borne inférieure par ε-contrainte.

A.2.2 Construction de Bornes Inférieures par Génération de Colonnes

Si le nombre de colonnes du problème P est trop important, nous devons utiliser une
méthode de génération de colonnes pour la construction d’une borne inférieure. Nous
listons maintenant les différents modèles impliqués dans l’utilisation de chacune des deux
méthodes de scalarisation.

106

Cas de Sommes Pondérées

Problème mâıtre Linéaire (PML(λ)):

Minimiser (λ1c1 + λ2c2)T x (A.12)

sous contraintes : Ax ≥ b , (A.13)

x ≥ 0 . (A.14)

Problème dual du PML (DPML(λ)): Soit π le vecteur de variables duales associés aux
contraintes (A.13). Le problème dual est donné par :

Maximiser bT π (A.15)

sous contraintes : AT π ≤ λ1c1 + λ2c2 , (A.16)

π ≥ 0 . (A.17)

Sous-Problème (S(λ)): Il consiste à chercher au moins une variable (colonne de la
matrice A) qui satisfait

λ1c1 + λ2c2 −AT π < 0 . (A.18)

Cas de ε-contrainte

Problème mâıtre Linéaire (PML(ε)):

Minimiser c1x (A.19)

sous contraintes : Ax ≥ b , (A.20)

−c2x ≥ −ε , (A.21)

x ≥ 0 . (A.22)

Problème dual du PML (DPML(ε)): Soit π le vecteur de variables duales associés aux
contraintes (A.20) et ϕ la variable duale associée à la contrainte (A.21). Le problème dual
est donné par :

Maximiser bT π − εϕ (A.23)

sous contraintes : AT π − ϕc2 ≤ c1 , (A.24)

π, ϕ ≥ 0 . (A.25)

Sous-Problème (S(ε)): Il consiste à chercher au moins une variable (colonne de la
matrice A) qui satisfait

c1 + ϕc2 −AT π < 0 . (A.26)

Forme Générale du Sous-Problème

Une inspection des inéqualités (A.18) and (A.26) révèle que les sous-problèmes dans les
deux cas ont une forme similaire. Ceci implique que des stratégies de résolution basée
sur une des méthodes de scalarisation peuvent être adaptées pour l’autre méthode de
scalarisation. Par ailleurs, c’est possible de traiter plus d’un sous-problème à la fois pendant
la recherche de colonnes.

107

A.2.3 Un Algorithme Généralisé de Génération de Colonnes Pour les
Problèmes Linéaires en Nombres Entiers Bi-Objectif

Grace aux similarités des sous-problèmes résolus pendant la construction d’une borne
inférieure, nous proposons un algorithme général de génération de colonnes pour les
problèmes linéaires en nombres entiers bi-objectif. Cet algorithme est illustré dans
l’organigramme de la figure A.2 et pour implémenter, différentes possibilités se présentent.
Nous présentons maintenant quelques une de ces possibilités que nous appelons les ap-
proches or stratégies de recherche de colonnes. Dans les descriptions de ces approches,
nous supposons que la méthode ε-contrainte est utilisée pour la scalarisation du problème
bi-objectif.

Début
Choisir une méthode

de scalarisation et
transformé le problème

Formuler PMLR pour
la méthode de

scalarisation choisi

Résoudre PMLR pour
differentes valeurs

du parametre

Résoudre sous-problème
correspondant à un
ou plusieurs points

Ajouter colonne(s)
à PMLR

Une
nouvelle
colonne?

Fin

oui

non

Figure A.2: Un algorithme généralisé de génération de colonnes.

Approche Point par Point (PPS)

Une implémentation très simple et intuitive de l’Algorithme A.2 consiste à résoudre le
PMLR complètement pour un ε donné avant de changer la valeur de ε. c’est-à-dire, nous
fixons une valeur de ε et puis résoudre PMLR(ε) par génération de colonnes jusqu’à
convergence avant de changer la valeur de ε. Nous appelons cette approche Point par Point
(PPS) puisque nous nous concentrons sur la recherche d’un point de la borne inférieure
avant de chercher un autre point. Même si cette approche est simple et facile à implémenter,
elle ne prend pas en compte les similarités des sous-problèmes associés au différentes valeurs
de ε. En outre, la convergence de la méthode pour une valeur de ε peut être très lente
mais cette approche ne nous donne pas la possibilité de changer le ε avant la convergence.

108

Approche k-Step PPS (k-PPS)

Cette approche que nous appelons k-Step PPS (k-PPS) est une variante de PPS qui
donne la possibilité de changer la valeur de ε avant la convergence de PMLR(ε) pour cette
valeur. Si nécessaire, l’approche va retourner aux valeurs de ε qui n’ont pas convergé avant.
L’approche nécessite la définition d’une condition sous laquelle nous pouvons changer la
valeur de ε avant la convergence de PMLR pour cette valeur. La condition peut être de
changer la valeur de ε si PMLR ne converge pas après k itérations de la méthode. La
condition que nous avons utilisé dans cette thèse est de changer la valeur de ε si la valeur
de la fonction objective de RLPM ne s’améliore pas significativement après k itérations.
La difficulté principale de cette approche est la définition d’une bonne condition en début
de l’approche quand nous n’avons pas assez d’information sur le problème considéré.

Approche Improved PPS (IPPS)

Cette approche est basée sur l’idée que nous pouvons utiliser des heuristiques pour générer
plus de colonnes après avoir trouvé quelques colonnes par un algorithme. Nous nous
intéréssons plus particulièrement des heuristiques qui peuvent exploiter les similarités des
sous-problèmes. C’est-à-dire, après avoir trouvé quelques colonnes par un algorithme conçu
pour résoudre le sous-problème nous cherchons à modifier ces colonnes pour trouver d’autres.
Une colonne trouvée par une telle heuristique est pertinente pour le sous-problème actuel
et peut être aussi pertinente (mais sans aucune garantie) pour un autre sous-problème.
Comme l’heuristique dépend du problème considéré, nous montrons l’idée de cette approche
sur un problème spécifique dans la Section A.3.

Approche Séquentielle (Sequential)

L’idée d’une approche séquentielle est de travailler sur un ensemble de points plutôt que
se concentrer sur un seul point à la fois. Pour cela, l’approche commence par résoudre
PMLR(ε) pour différentes valeurs de ε sans générer aucune colonne. Ensuite, nous cherchons
un ensemble de colonnes tel que chaqu’un des points générés précédemment a au moins une
colonne pertinente dans l’ensemble. Nous résolvons les sous-problème correspondant au
points un après l’autre. Avant de résoudre le sous-problème correspondant à un point, nous
vérifions d’abord si nous avons déjà trouvé une colonne pertinente pour ce point. Si c’est
le cas, nous sautons le point sans résoudre le sous-problème correspondant. Nous trouvons
donc à chaque itération, un ensemble de colonnes qui est pertinent pour tous les points
générés dans cette intération sans nécessairement résoudre pour tous les sous-problèmes
correspondants.

Approche Solve-Once-Generate-for-All (SOGA)

Cette approche est une variante de l’approche séquentielle. Juste comme l’approche IPPS,
SOGA reste sur l’idée que l’on peut utilisé des heuristiques dans la recherche des colonnes.
La première étape consiste à résoudre PMLR(ε) pour différentes valeurs de ε sans générer
des colonnes. Dans la deuxième étape, le sous-problème correspondant à un (seul) point
est résolu pour chercher un ensemble de colonnes initial. Ensuite, des heuristiques sont
utilisées pour modifier les colonnes trouvé afin de chercher d’autres colonnes pour les autres

109

points. La différence de cette approche par rapport à IPPS est que les valeurs duals des
autres points sont utilisées dans les heuristiques. Cela nous donne la guarantie qu’une
colonne trouvé par une heuristique est bien pertinente pour le point dont nous avons utilisé
les valeurs duals. Nous montrons l’idée de cette approche sur un problème spécifique dans
la Section A.3

A.2.4 Génération de Colonnes pour les PLNE Bi-Objectif ayant une
Fonction Objectif Min-Max

Nous présentons un cas particulier d’un problème linéaire en nombres entiers (PLNE) pour
lequel une des fonctions objectifs est une fonction min-max. Nous notons un tel problème
PLNEBOMM. Nous considérons les problèmes de la forme :

Minimiser
∑

k∈Ω

ckθk (A.27)

Minimiser Γmax (A.28)

sous contraintes :
∑

k∈Ω

aikθk ≥ bi (i ∈ I) , (A.29)

Γmax ≥ σkθk (k ∈ Ω) , (A.30)

θk ∈ {0, 1} (k ∈ Ω) . (A.31)

Dans cette formulation, l’ensemble de toutes les colonnes réalisables est notée Ω et I est
l’ensemble des indices pour les contraintes. Deux valeurs ck et σk sont associées à une
colonne k ∈ Ω. Le problème consiste à sélectionner un sous-ensemble des colonnes dans le
but de minimiser la somme des ck et aussi minimiser la valeur maximum de σk associée à
une colonne sélectionnée.

reformulation de PLNEBOMM

Au lieu d’ajouter une contrainte de type Γmax ≤ ε à la formulation, nous proposons une
reformulation du problème. Nous définissons une extension Ω de Ω où la validité d’une
colonne k ∈ Ω dépend de la valeur de σk. Nous obtenons la formulation :

Minimiser
∑

k∈Ω

ckθk (A.32)

sous contraintes :
∑

k∈Ω

aikθk ≥ bi (i ∈ I) , (A.33)

θk ∈ {0, 1} (k ∈ Ω) . (A.34)

Avant de résoudre le problème pour une valeur de ε, nous fixons θk = 0 pour toutes
colonnes k ∈ Ω ayant σk > ε. Nous pouvons utiliser toutes les approches de recherches de
colonnes déjà présentées pendant la construction d’une borne inférieure par génération
de colonnes. Nous devons aussi assurer que les colonnes générés pendant la résolution de
sous-problèmes respectent la contrainte liée à ε.

110

A.3 Problème de Tournée Couvrante Bi-Objectif à Plusieurs
Véhicules

Dans cette section, nous appliquons les idées présentées dans les sections précedentes pour
construire des bornes inférieures pour une extension bi-objectif du problème de tournées
couvrantes (PTC) (Gendreau et al., 1997). Nous appelons cette extension le problème de
tournée couvrante bi-objectif à plusieurs véhicules (PTCBOP).

A.3.1 Description du Problème

Le PTC consiste à construire une tournée unique sur un sous-ensemble des points dans
le but de minimiser la longueur de la tournée. De plus, chaque point non visité par la
tournée doit être dans un rayon prédéterminé (appelé la distance de couverture) d’un
point visité. Des nombreuses applications du PTC sont citées dans la littérature (Current
and Schilling, 1994; Labbé and Laporte, 1986; Current and Schilling, 1994; Hodgson
et al., 1998). Une généralisation bi-objectif (Jozefowiez et al., 2007) et une extension à
plusieurs véhicule (Hachicha et al., 2000) du PTC ont été proposées dans la littérature.
Dans la version bi-objectif, la distance de couverture n’est pas prédéterminée mais plutôt
engendrée par la tournée. Il est calculé par affecter chaque point non visité au point visité
le plus proche et prendre le maximum des distance d’affectation. Les objectifs sont les
minimisations de la longeur de la tournée et la distance de couverture engendrée par la
tournée. Dans la version avec plusieurs véhicules, nous cherchons à minimiser la longeur
totale d’un ensemble de tournées en vue d’une distance de couverture prédéterminée.
Toutes les tournées commence et se terminent au même point. De plus, le nombre de points
visité et la longueur d’une tournée sont limités à p et q, respectivement.

Le PTCBOP présenté ici combine les caractéristiques de la version bi-objectif et de la
version à plusieurs véhicules. Le problème est définie sur un graphe G = (V ∪W, E) où
V ∪W est l’ensemble des nœuds et E est l’ensemble des arcs. Les nœuds de V représentent
des points qui peuvent être visités par une tournée et ceux de W doivent être affectés aux
points de V visités par les tournées. Les nœuds T ⊆ V doivent être visités par une tournée.
En particulier, v0 ∈ T est le dépôt d’où une tournée doit commencer et se terminer. Une
matrice de distance D = (dij) qui respecte l’inégalité triangulaire est définie sur l’ensemble
E. Le PTCBOP consiste à construire un ensemble de tournées sur un sous-ensemble de
V qui doit inclure tous les nœuds de T . Les deux objectifs sont la minimisation de la
longeur total des tournées et la minimisation de la distance de couverture engendrée par
ces tournées.

A.3.2 Formulation 1

Cette formulation est basée sur l’idée de ε-contrainte standard. Soit Ω l’ensemble de
toutes colonnes réalisables. Une colonne réalisable est une tournée définie par un cycle
Halmitonien sur un sous ensemble de V qui contient le dépôt v0. De plus, le nombre de
nœuds de V \{v0} visités par la tournée et la longueur de la tournée ne doivent pas dépasser
p et q, respectivement. Le coût d’une colonne k ∈ Ω (noté ck) est la longueur de la tournée
qu’elle représente. Nous utilisons une variable binaire θk pour determiner si une colonne est
sélectionnée dans la solution (θk = 1) ou non (θk = 0). Nous notons aik = 1 si la tournée

111

de la colonne k visite le nœud vi ∈ V \{v0} et aik = 0 sinon. Une variable zij est utilisée
pour indiquer si un nœud wj ∈W est affecté à vi ∈ V \{v0} dans la solution (zij = 1) ou
non (zij = 0). La distance de couverture engendrée par un ensemble de tournées est notée
Γmax. Avec ces notation, le problème est défini par :

Minimiser
∑

k∈Ω

ckθk (A.35)

Minimiser Γmax (A.36)

sous contraintes : Γmax − dijzij ≥ 0 (vi ∈ V \{v0}, wj ∈W) , (A.37)
∑

vi∈V \{v0}

zij ≥ 1 (wj ∈W) , (A.38)

∑

k∈Ω

aikθk − zij ≥ 0 (vi ∈ V \{v0}, wj ∈W) , (A.39)

∑

k∈Ω

aikθk ≥ 1 (vi ∈ T\{v0}) , (A.40)

Γmax ≥ 0 , (A.41)

zij ∈ {0, 1} (vi ∈ V \{v0}, wj ∈W) , (A.42)

θk ∈ N (k ∈ Ω) . (A.43)

Les objectifs pour minimiser la somme des longeurs des tournées et la distance de couverture
engendrée par les tournées sont donnés dans (A.35) et (A.36), respectivement. Les
contraintes (A.37) indiquent que la valeur de la distance de couverture engendrée par les
tournées doit réspecter les distances des affectations. Les contraintes (A.38) et (A.39)
indiquent que chaque nœud de W doit être affecté à au moins un nœud de V \{v0} qui est
visité par une tournée sélectionnée. Le fait que chaque nœud de T\{v0} doit être visité par
une tournée dans la solution est exprimé par les contraintes (A.40). Les contraintes (A.41 –
A.43) expriment les domaines des variables de décision.

En suivant les discussions dans les sections précédentes, nous pouvons définir les
différents modèles necéssaires pour appliquer la génération de colonnes basée sur cette
formulation. Le sous-problème correspondant est donné par :

Minimiser ck −
∑

vi∈V \{v0}
wj∈W

aikαij −
∑

vi∈T \{v0}

aikπi < 0 pour k ∈ Ω

où αij et πi sont des variables duales. Ceci est un problème de plus court chemin élémentaire
sous contraintes de ressources. Nous résolvons ce problème par un algorithme (DSSR)
proposé dans la littérature (Righini and Salani, 2008; Boland et al., 2006).

A.3.3 Formulation 2

Cette formulation est basée sur l’idée de reformulation d’un problème PLNEBOMM. Nous
définissons l’ensemble de colonnes réalisable Ω comme toute combinaison d’une tournée
réalisable Rk et d’un sous-ensemble Ψk ⊆W . Pour une colonne k ∈ Ω, chaque nœud de
Ψk doit être affecté au nœud de Rk\{v0} le plus proche. La longueur d’une tournée Rk est
notée ck et le maximum des affectations est noté σk. Soit aik = 1 si la tournée Rk visite

112

le nœud vi ∈ V . Nous notons bjk = 1 si wj ∈ Ψk et bjk = 0 sinon. Les variables Γmax et
θk ont les même significations que dans la première formulation. Le PTCBOP peut être
décrit par la formulation suivante.

Minimiser
∑

k∈Ω

ckθk (A.44)

sous contraintes :
∑

k∈Ω

aikθk ≥ 1 (vi ∈ T\{v0}) , (A.45)

∑

k∈Ω

bjkθk ≥ 1 (wj ∈W) , (A.46)

θk ∈ {0, 1} (k ∈ Ω) . (A.47)

L’objectif pour minimiser la somme des longueurs des tournées est donné dans (A.44).
Les contraintes (A.45) assurent que chaque nœud de T\{v0} est visité par au moins une
tournée dans la solution. Le fait qu’un nœud de W doit appartenir à un Ψk pour une
colonne k dans la solution est exprimé par les contraintes (A.46). Le second objectif pour
minimiser la distance de couverture engendrée par les colonnes sélectionnées n’apparâıt
pas dans cette formulation grace à la redéfinition d’une colonne.

En utilisant des variables duales πi et βj nous définissons le sous-problème correspondant
à cette formulation par S(ε) :

Minimiser ck −
∑

vi∈T \{v0}

aikπi −
∑

wi∈W

bikβj < 0 pour k ∈ Ω et σk ≤ ε .

Ce problème est un plus court chemin élémentaire (non additif) sous contraintes de
ressources. Nous résolvons ce problème par un algorithme modifié de DSSR (Righini and
Salani, 2008; Boland et al., 2006). La modification concerne la redéfinition de la règle de
dominance entre labels pour prendre en compte la caractéristique de non additivité.

Implementation de IPPS

Une colonne k′ est modifiée successivement par l’enlèvement du nœud de Ψ′
k sur laquel

la valeur de σ′
k est basée afin de creer une autre colonne k′′ := (R′′

k, Ψ′′
k) tel que σ′′

k < σ′
k.

C’est idée est illustrée dans la figure A.3. La pertinence de k′′ est determinée par rapport
aux mêmes vecteurs de valeurs duals que ceux utilisés pour trouver k′. Par conséquence,
si la nouvelle colonne k′′ est pertinente, alors elle l’est pour le sous-problème actuel S(ε′)
mais pas nécessairement pour un autre sous-problème. En général, c′′

k = c′
k comme dans la

figure A.3c mais dans certains cas un nœud de Ψ′′
k peut être réaffecté à un autre nœud

de vi ∈ R′′
k afin de réduire la longueur de R′′

k sans changer la valeur de σ′′
k associé (voir la

figure A.3d).

Implementation de SOGA

Supposons que π′′ et β′′ sont les vecteurs de valeurs duales associés à PMLR(ε′′) où
ε′′ 6= ε′. En général, π′′ 6= π′ et β′′ 6= β′. Cette heuristique modifie une colonne au départ
k′ := (R′

k, Ψ′
k) pour obtenir une autre colonne k′′ := (R′′

k, Ψ′′
k) par une reconstruction de

l’ensemble Ψ′′
k. Le principe de cette heurisque est illustrée dans la figure A.4. L’ensemble

113

v0

v1

v2

v3

σ

(a) Colonne au départ

v0

v1

v2

v3

σ

(b) Colonne modifiée 1

v0

v1

v2

v3

σ

(c) Colonne modifiée 2

v0

v1

v2

v3

σ

(d) Colonne modifiée 2 (améliorée)

Figure A.3: Heuristique IPPS pour PTCBOP.

Ψ′′
k est reconstruit en prenant tous les nœuds de wj ∈ W dans un rayon ε d’un noeud

vi ∈ R′′
k\{v0} et pour lequel βj > 0. De cette façon, si la nouvelle colonne k′′ est pertinente

alors elle l’est pour le sous-problème S(ε′′). Juste comme dans le cas de IPPS nous pouvons
réaffecter un nœud de Ψ′′

k à un autre nœud de vi ∈ R′′
k dans le but de réduire la longueur

de R′′
k sans changer la valeur de σ′′

k associée (voir la figure A.4d).

A.4 Résultats des expériences

Afin d’évaleur l’efficacité des approches proposées, nous avons éffectué plusieures expériences
et nous présentons les résultats dans cette section.

Nous avons utilisés deux métriques (µ1 et µ2) pour évaleur les qualités des bornes
inférieures obtenues. Ces métriques ont été proposé dans Ehrgott and Gandibleux (2007).
La figure A.5 montre comment ces deux valeurs sont calculées dans le cas d’une méthode
de somme pondérée et d’une méthode ε-contrainte. Les formules utilisées sont :

µ1 :=
d(L,U)

‖ymax − ymin‖2
et µ2 :=

AL −AU

AL

,

où d(L,U) est la maximum des distances entre un élément de U et le point de L le plus
proche. Les valuers de L et U representent les régions dominées par les ensembles L et U ,

114

Cercle de rayon ε

Cercle of rayon σ

Nœud wj ∈W avec βj = 0

Nœud wj ∈W avec βj > 0

v0

v1

v2

v3

σ

(a) Colonne pour S(ε′).

v0

v1

v2

v3

σ

(b) Colonne pour S(ε′′) où ε′′ > ε′.

v0

v1

v2

v3

σ

(c) Colonne pour S(ε′′) où ε′′ < ε′.

v0

v1

v2

v3

σ

(d) Amélioration de la colonne dans (c).

Figure A.4: Heuristique SOGA pour PTCBOP.

respectivement. Si les valeurs de ces deux métriques sont très petites, alors les bornes dont
on parle sont de bonne qualité.

A.4.1 Comparison de Deux Méthodes de Scalarisation

Nous avons efféctué des expériences dans le but de comparer les qualités des bornes
inférieures obtenues par chacune des deux méthodes de scalarisation. Le problème utilisé
pour ces expériences est le problème d’ensemble couvrant bi-objectif (BOSCP) qui est
défini par :

115

d(L,U)

ymax

ymin

f1

f2

d(L,U)

ymax

ymin

L

U

AL

AU

f1

f2

Figure A.5: Calculation des métriques d’évaluation

Minimiser
n

∑

j=1

c1
jxj (A.48)

Minimiser
n

∑

j=1

c2
jxj (A.49)

sous contraintes :
n

∑

j=1

aijxj ≥ 1 i = 1, 2, . . . , m , (A.50)

xj ∈ {0, 1} j = 1, 2, . . . , n . (A.51)

Les instances utilisées sont les mêmes que celles utilisées dans Ehrgott and Gandibleux
(2007). Pour chaque instance, une borne inférieure est construite par chacune des deux
méhtodes de scalarisation et une borne supérieure est obtenue par un algorithme exact
proposé par Bérubé et al. (2009). Puisque ces instances sont de tailles raisonables, nous
n’avions pas besoin de génération de colonnes pour la construction des bornes.

Les résultats obtenus montrent que les bornes inférieures obtenues par les deux méthodes
de scalarisations ont de qualités similaires et ces qualités étaient bonnes pour la plupart
des instances. Le temps d’exécution dans le cas de ε-contrainte est plus long que celui
dans le cas de sommes pondérée. Ceci est expliqué par le fait que le nombre de points
necéssaires pour la définition d’une borne inférieure dans le cas de ε-contrainte est plus
nombreux que dans le cas de sommes pondérées.

A.4.2 Résultats pour PTCBOP

Les instances utilisées pour ces expériences ont été générées aléatoirement en suivant les
conseils dans la littérature. Les ensembles des nœuds sont obtenus en générant |V |+ |W |
points dans [0, 100] × [0, 100]. L’ensemble T (respectivement, V) est défini par les |T |
(respectivement, |V |) premiers points. Cinq instances pour différentes combinaisons de
|V | ∈ {30, 40, 50} and |W | ∈ {2|V |, 3|V |} ont été générées. des valeurs de |T | dans
{1, ⌈0.25|V |⌉, ⌈0.50|V |⌉} et p dans {5, 8} ont été testées.

116

Résultats pour Formulation 1

Les approches PPS, k-PPS et Séquentielle ont été testées sur cette formulation. Les résultats
obtenus ne montrent pas de différence en termes de qualité des bornes générées par les
différentes approches. En termes de temps d’exécution (voir la figure A.6), l’approche
séquentielle était la plus performante suivie par k-PPS et puis PPS. L’axe vertical de
figure A.6 indique le pair de valeurs |V | |T |, et le temps d’exécution est indiqué sur l’axe
horizontal.

p 5

p 8

cpu seconds

0 30 60 90 120 150 180 210 240 270

30 1

40 1

50 1

30 15

40 20

50 25

30 1

40 1

50 1

30 15

40 20

50 25

PPS

k-PPS

Sequential

Figure A.6: Formulation 1 : Temps d’exécutions

Résultats pour Formulation 2

Les approches PPS, IPPS et SOGA ont été testées sur la deuxième formulation. Juste
comme avant, les qualités des bornes obtenues par les différentes approches ne sont pas
très différentes. La figure A.7 illustre le temps d’exécution pour les trois approches. Nous
voyons clairement que l’approche SOGA était la plus performante suivie par IPPS et puis
PPS.

Comparison des Deux Formulations

Afin de comparer les qualités de la relaxation linéaire des deux formulations nous avons
évalué les bornes inférieures obtenues par PPS pour chacune des formulations vis-à-vis
des mêmes bornes supérieures. La figure A.8 illustre les bornes obtenues par les deux
formulations pour une instance. Nous avons eu des résultats similaires pour toutes
les instances testées. Ces résultats montrent que la relaxation linéaire de la deuxième
formulation est largement meilleure que celle de la première formulation. La formulation

117

0 250 500 750 1000 1250 1500 1750 2580 2900 3220

30 1

40 1

50 1

30 15

40 20

50 25

30 1

40 1

50 1

30 15

40 20

50 25

p 5

p 8

cpu seconds

PPS

IPPS

SOGA

Figure A.7: Formulation 2 : Temps d’exécutions

2 a aussi obtenue des bornes supérieures qui sont meilleures que celles obtenue par la
formulation 1.

D
is

ta
nc

e
de

 c
ou

ve
rt

ur
e

Longueur

Formulation 1 : L
Formulation 2 : L
Formulation 1 : U
Formulation 2 : U

Figure A.8: Bornes pour une instance de type |T | = 1, |V | = 50, |W | = 150, p = 5, et
q =∞.

118

A.5 Conclusions et Perspectives

La génération de colonnes et l’optimisation multi-objectif sont deux domaines utiles. En
dépit de ce fait, ces deux domaines sont rarement étudiés ensemble. Dans cette thèse
nous avons étudié la conception d’algorithmes efficaces de génération de colonnes pour les
problèmes linéaires en nombres entiers bi-objectif. Les résultats obtenus des expériences
montrent l’éfficacité des méthodes et approches proposées. Une perspective à court terme
consiste en la généralisation de l’approche de calcul de bornes pour des problèmes de
structures moins contraintes. A moyen terme, nous visons d’incorporer les approches de
calcul des bornes dans une méthode de Branch-and-Price. Une perspective à long terme
consiste en l’extension de ces approches pour des problèmes à plus de deux objectifs.

119

Bibliography

Y. P. Aneja and K. Nair. Bicriteria transportation problem. Management Science, 25(1):
73–78, 1979.

L. H. Appelgren. A column generation algorithm for a ship scheduling problem. Trans-
portation Science, 3(1):53–68, 1969.

L. H. Appelgren. Integer programming methods for a vessel scheduling problem. Trans-
portation Science, 5(1):64–78, 1971.

M. L. Balinski and R. E. Quandt. On an integer program for a delivery problem. Operations
Research, 12(2):300–304, 1964.

J. F. Bard and H. W. Purnomo. Preference scheduling for nurses using column generation.
European Journal of Operational Research, 164(2):510–534, 2005.

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelbergh, and P. H. Vance.
Branch-and-Price: Column Generation for Solving Huge Integer Programs. Operations
Research, 46(3), 1998.

C. Bazgan, H. Hugot, and D. Vanderpooten. Solving efficiently the 0–1 multi-objective
knapsack problem. Computers & Operations Research, 36(1):260–279, 2009.

J. Beasley and N. Christofides. An algorithm for the resource constrained shortest path
problem. Networks, 19(4):379–394, 1989.

T. Bektaş. Formulations and Benders decomposition algorithms for multidepot salesmen
problems with load balancing. European Journal of Operational Research, 216(1):83–93,
2012.

H. Benson. Existence of efficient solutions for vector maximization problems. Journal of
Optimization Theory and Applications, 26(4):569–580, 1978.

J.-F. Bérubé, M. Gendreau, and J.-Y. Potvin. An exact ǫ-constraint method for bi-objective
combinatorial optimization problems: Application to the Traveling Salesman Problem
with Profits. European Journal of Operational Research, 194(1):39–50, 2009.

N. Boland, J. Dethridge, and I. Dumitrescu. Accelerated label setting algorithms for the
elementary resource constrained shortest path problem. Operations Research Letters, 34
(1):58–68, 2006.

121

I. Borgulya. An algorithm for the capacitated vehicle routing problem with route balancing.
Central European Journal of Operations Research, 16(4):331–343, 2008.

O. Briant, C. Lemarechal, P. Meurdesoif, S. Michel, N. Perrot, and F. Vanderbeck.
Comparison of bundle and classical column generation. Mathematical Programming, 113
(2):299–344, 2008.

R. L. Carraway, T. L. Morin, and H. Moskowitz. Generalized dynamic programming for
multicriteria optimization. European Journal of Operational Research, 44(1):95–104,
1990.

A. Chabrier. Vehicle Routing Problem with Elementary Shortest Path Based Column
Generatioin. Computers & Operations Research, 33:2972–2990, 2006.

F. Chauny, L. Ratsirahonana, and G. Savard. A model and column generation algorithm
for the aircraft loading problem. Cahiers du GERAD, 2000.

K. I. Cho and S. H. Kim. An improved interactive hybrid method for the linear multi-
objective knapsack problem. Computers & Operations Research, 24(11):991–1003, 1997.

G. Clarke and J. Wright. Scheduling of vehicles from a central depot to a number of
delivery points. Operations research, 12(4):568–581, 1964.

J. L. Cohon. Multiobjective programming and planning, volume 140. Courier Dover
Publications, 2004.

Y. Collette and P. Siarry. Multiobjective optimization: principles and case studies. Springer,
2004.

J.-F. Cordeau, M. Gendreau, A. Hertz, G. Laporte, and J.-S. Sormany. New heuristics for
the vehicle routing problem. Springer, 2005.

J. R. Current and D. A. Schilling. The median tour and maximal covering tour problems:
Formulations and heuristics. European Journal of Operational Research, 73(1):114–126,
1994.

G. B. Dantzig and J. H. Ramser. The Truck Dispatching Problem. Management Science,
6(1):80–91, 1959.

G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations
research, 8(1):101–111, 1960.

I. Das and J. Dennis. A closer look at drawbacks of minimizing weighted sums of objectives
for Pareto set generation in multicriteria optimization problems. Structural optimization,
14(1):63–69, 1997.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 6(2):182–197,
2002.

122

C. Delort and O. Spanjaard. Using bound sets in multiobjective optimization: Application
to the biobjective binary knapsack problem. In Experimental Algorithms, pages 253–265.
Springer, 2010.

G. Desaulniers, J. Desrosiers, and M. M. Solomon. Accelerating Strategies in Column
Generation Methods for Vehicle Routing and Crew Scheduling Problems. In Essays
and Surveys in Metaheuristics, volume 15 of Operations Research/Computer Science
Interfaces Series, pages 309–324. Springer US, 2002.

G. Desaulniers, J. Desrosiers, and M. M. Solomon. Column generation, volume 5. Springer-
Verlag New York Incorporated, 2005.

M. Desrochers, J. Desrosiers, and M. Solomon. A New Optimization Algorithm for the
Vehicle Routing Problem with Time Windows. Operations Research, 40(2):342–354,
1992.

J. Desrosiers and M. E. Lübbecke. A primer in column generation. In Column Generation,
pages 1–32. Springer, 2005.

C. Dhaenens, J. Lemesre, and E.-G. Talbi. K-PPM: A new exact method to solve
multi-objective combinatorial optimization problems. European Journal of Operational
Research, 200(1):45–53, 2010.

M. Dror. Note on the complexity of shortest path models for column generation in VRPTW.
Operations Research, 42(5):977–978, 1994.

O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized Column Generation.
Discrete Mathematics, 194:229–237, 1999.

G. Dueck. New optimization heuristics. Journal of Computational physics, 104(1):86–92,
1993.

M. Ehrgott. Multicriteria optimization. Springer, 2 edition, 2005.

M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjective
combinatorial optimization. OR-Spektrum, 22(4):425–460, 2000.

M. Ehrgott and X. Gandibleux. Approximative solution methods for multiobjective
combinatorial optimization. Top, 12(1):1–63, 2004.

M. Ehrgott and X. Gandibleux. Bound sets for biobjective combinatorial optimization
problems. Computers & Operations Research, 34(9):2674–2694, 2007.

M. Ehrgott and D. M. Ryan. The method of elastic constraints for multiobjective com-
binatorial optimization and its application in airline crew scheduling. Multi-Objective
Programming and Goal Programming–Theory and Applications, pages 117–122, 2003.

M. Ehrgott and J. Tind. Column generation in integer programming with applications
in multicriteria optimization. Technical report, Faculty of Engineering, University of
Auckland, New Zealand., 2007.

123

Ö. Ergun. New neighborhood search algorithms based on exponentially large neighborhoods.
PhD thesis, Massachusetts Institute of Technology, 2001.

J. P. Evans and R. Steuer. A revised simplex method for linear multiple objective programs.
Mathematical Programming, 5(1):54–72, 1973.

D. Feillet. A tutorial on column generation and branch-and-price for vehicle routing
problems. 4OR: A Quarterly Journal of Operations Research, 8(4):407–424, 2010.

D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the Elementary
Shortest Path Problem with Resource Constraints: Application to some vehicle routing
problems. Networks, 44(3):216–229, 2004.

R. Fischer and K. Richter. Solving a multiobjective traveling salesman problem by dynamic
programming. Mathematische Operationsforschung und Statistik. Series Optimization,
13(2):247–252, 1982.

P. C. Fishburn. Additive Utilities with Incomplete Product Sets: Application to Priorities
and Assignments. Operations Research, 15(3):537–542, 1967.

M. P. Fourman. Compaction of symbolic layout using genetic algorithms. In Proceedings
of the 1st International Conference on Genetic Algorithms, pages 141–153. L. Erlbaum
Associates Inc., 1985.

T. Gal. Rim multiparametric linear programming. Management Science, 21(5):567–575,
1975.

R. J. Gallagher and O. A. Saleh. Constructing the set of efficient objective values in linear
multiple objective transportation problems. European Journal of Operational Research,
73(1):150–163, 1994.

M. Gamache, F. Soumis, D. Villeneuve, J. Desrosiers, and E. Gelinas. The preferential
bidding system at Air Canada. Transportation Science, 32(3):246–255, 1998.

X. Gandibleux. Multiple criteria optimization: state of the art annotated bibliographic
surveys, volume 52. Kluwer Academic Pub, 2002.

M. Gendreau, G. Laporte, and F. Semet. The Covering Tour Problem. Operations Research,
45(4):568–576, 1997.

E. H. Ghaziri. Solving routing problems by a self-organizing map. 1991.

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock
problem. Operations research, 9(6):849–859, 1961.

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting stock
problem - Part II. Operations research, 11(6):863–888, 1963.

F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers & Operations Research, 13(5):533–549, 1986.

124

D. E. Goldberg. Genetic algorithms in search, optimization, and machine learning. 1989.

B. L. Golden, A. A. Assad, and E. A. Wasil. Routing vehicles in the real world: applications
in the solid waste, beverage, food, dairy, and newspaper industries. The vehicle routing
problem, pages 245–286, 2002.

M. H. Hà, N. Bostel, A. Langevin, and L.-M. Rousseau. An exact algorithm and a
metaheuristic for the multi-vehicle covering tour problem with a constraint on the
number of vertices. European Journal of Operational Research, 226:211–220, 2013.

M. Hachicha, M. J. Hodgson, G. Laporte, and F. Semet. Heuristics for the multi-vehicle
covering tour problem. Computers & Operations Research, 27(1):29–42, 2000.

Y. Y. Haimes, L. S. Lasdon, and D. A. Wismer. On a bicriterion formulation of the problems
of integrated system identification and system optimization. IEEE Transactions on
Systems, Man, and Cybernetics, 1(3):296–297, 1971.

M. J. Hodgson, G. Laporte, and F. Semet. A Covering Tour Model for Planning Mobile
Health Care Facilities in SuhumDistrict, Ghama. Journal of Regional Science, 38(4):
621–638, 1998.

J. H. Holland. Adaptation in natural and artificial systems: An introductory analysis with
applications to biology, control, and artificial intelligence. 1975.

G. Jahanshahloo, F. Hosseinzadeh, N. Shoja, and G. Tohidi. A method for generating all ef-
ficient solutions of 0-1 multi-objective linear programming problem. Applied mathematics
and computation, 169(2):874–886, 2005.

N. Jozefowiez. A Branch-and-Price Algorithm for the Multi-Vehicle Covering Tour Problem.
Rapport LAAS 12686, LAAS-CNRS, France, 2012.

N. Jozefowiez, F. Semet, and E.-G. Talbi. Parallel and hybrid models for multi-objective
optimization: Application to the vehicle routing problem. In Parallel Problem Solving
from Nature—PPSN VII, pages 271–280. Springer, 2002.

N. Jozefowiez, F. Semet, and E.-G. Talbi. The bi-objective covering tour problem. Com-
puters & Operations Research, 34(7):1929–1942, 2007.

I. Kara and T. Bektaş. Minimal load constrained vehicle routing problems. In Computational
Science–ICCS 2005, pages 188–195. Springer, 2005.

A. Khanafer, F. Clautiaux, S. Hanafi, and E.-G. Talbi. The min-conflict packing problem.
Computers & Operations Research, 39(9):2122–2132, 2012.

S. Kim, K.-N. Chang, and J.-Y. Lee. A descent method with linear programming subprob-
lems for nondifferentiable convex optimization. Mathematical programming, 71(1):17–28,
1995.

J. Knowles and D. Corne. On metrics for comparing nondominated sets. In Evolutionary
Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, volume 1, pages
711–716. IEEE, 2002.

125

M. Labbé and G. Laporte. Maximizing User Convenience and Postal Service Efficiency in
Post Box Location. Cahiers du GÉRAD. CIRRELT, 1986.

G. Laporte. What you should know about the vehicle routing problem. Naval Research
Logistics (NRL), 54(8):811–819, 2007.

G. Laporte and Y. Nobert. Exact algorithms for the vehicle routing problem. Surveys in
Combinatorial Optimization, 31:147–184, 1987.

T.-R. Lee and J.-H. Ueng. A study of vehicle routing problems with load-balancing.
International Journal of Physical Distribution & Logistics Management, 29(10):646–657,
1999.

J. Lemesre, C. Dhaenens, and E.-G. Talbi. Parallel partitioning method (PPM): A new
exact method to solve bi-objective problems. Computers & Operations Research, 34(8):
2450–2462, 2007.

M. E. Lübbecke and J. Desrosiers. Selected Topics in Column Generation. Operations
Research, 53(6):1007–1023, 2005.

D. Madakat, J. Morio, and D. Vanderpooten. Biobjective planning of an active debris
removal mission. Acta Astronautica, 84:182–188, 2013.

R. E. Marsten, W. W. Hogan, and J. W. Blankenship. The Boxstep Method for Large-Scale
Optimization. Operations Research, 23(3):389–405, 1975.

C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation of traveling
salesman problems. Journal of the ACM (JACM), 7(4):326–329, 1960.

N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Operations
Research, 24(11):1097–1100, 1997.

W. Ogryczak. Multiple criteria linear programming model for portfolio selection. Annals
of Operations Research, 97(1-4):143–162, 2000.

V. Pareto. Cours d’économie politique. 1896.

J. M. Pasia, K. F. Doerner, R. F. Hartl, and M. Reimann. Solving a bi-objective vehicle
routing problem by pareto-ant colony optimization. In Engineering Stochastic Local
Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics, pages
187–191. Springer, 2007.

F. Peng, X. Jia, X. Gu, M. A. Epelman, H. E. Romeijn, and S. B. Jiang. A new column-
generation-based algorithm for VMAT treatment plan optimization. Physics in Medicine
and Biology, 57(14):4569–4588, 2012.

D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers &
Operations Research, 34(8):2403–2435, 2007.

C. Prins. A simple and effective evolutionary algorithm for the vehicle routing problem.
Computers & Operations Research, 31(12):1985–2002, 2004.

126

C. R. Reeves. Modern heuristic techniques for combinatorial problems. John Wiley & Sons,
Inc., 1993.

L. B. Reinhardt and D. Pisinger. Multi-objective and multi-constrained non-additive
shortest path problems. Computers & Operations Research, 38(3):605–616, 2011.

R. Ribeiro and H. Ramalhinho Dias Lourenço. A multi-objective model for a multi-period
distribution management problem. 2001.

T. Rienthong, A. Walker, and T. Bektaş. Look, here comes the library van! Optimising
the timetable of the mobile library service on the Isle of Wight. OR Insight, 24(1):49–62,
2011.

G. Righini and M. Salani. Symmetry helps: Bounded bi-directional dynamic programming
for the elementary shortest path problem with resource constraints. Discrete Optimization,
3(3):255–273, 2006.

G. Righini and M. Salani. New dynamic programming algorithms for the resource con-
strained elementary shortest path problem. Networks, 51(3):155–170, 2008.

Y. Rochat and É. D. Taillard. Probabilistic diversification and intensification in local
search for vehicle routing. Journal of heuristics, 1(1):147–167, 1995.

E. Salari and J. Unkelbach. A column-generation-based method for multi-criteria direct
aperture optimization. Physics in medicine and biology, 58(3):621–639, 2013.

W. J. Samuels. Edgeworth’s Mathematical Psychics: A Centennial Notice. Eastern
Economic Journal, 7(3/4):193–198, 1981.

B. M. Sarpong, C. Artigues, and N. Jozefowiez. The Bi-Objective Multi-Vehicle Covering
Tour Problem: Formulation and Lower Bound. In 5th International Workshop on Freight
Transportation and Logistics, ODYSSEUS 2012, pages 451–454, 2012a.

B. M. Sarpong, C. Artigues, and N. Jozefowiez. The bi-objective multi-vehicle covering
tour problem: formulation and lower bound by column generation. Rapport LAAS
12562, LAAS-CNRS, France, 2012b.

B. M. Sarpong, C. Artigues, and N. Jozefowiez. Column Generation for Bi-Objective
Vehicle Routing Problems with a Min-Max Objective. In 13th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems, volume 33 of
OASICS, pages 137–149. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013a.

B. M. Sarpong, C. Artigues, and N. Jozefowiez. Column Generation for Bi-Objective
Integer Programs: Application to Bi-Objective Vehicle Routing Problems. Rapport
LAAS 13234, LAAS-CNRS, France, 2013b.

B. M. Sarpong, C. Artigues, and N. Jozefowiez. Using Column Generation to Compute
Lower Bound Sets for Bi-Objective Combinatorial Optimization Problems. Rapport
LAAS 13437, LAAS-CNRS, France, 2013c.

127

M. Schumann and R. Retzko. Self Organizing Maps for Vehicle Routing Problems-
minimizing an explicit cost function. In F. Fogelman-Soulie, editor, Proceedings of the
International Conference on Artificial Neural Networks, pages 401–406. EC2, 1995.

F. Sourd and O. Spanjaard. A multiobjective branch-and-bound framework: Application
to the biobjective spanning tree problem. INFORMS Journal on Computing, 20(3):
472–484, 2008.

J. Sylva and A. Crema. A method for finding the set of non-dominated vectors for multiple
objective integer linear programs. European Journal of Operational Research, 158(1):
46–55, 2004.

P. Toth and D. Vigo. Exact solution of the vehicle routing problem. In Fleet management
and logistics, pages 1–31. Springer, 1998.

P. Toth and D. Vigo. The vehicle routing problem. Society for Industrial and Applied
Mathematics, 2002.

E. Ulungu and J. Teghem. The two phases method: An efficient procedure to solve bi-
objective combinatorial optimization problems. Foundations of Computing and Decision
Sciences, 20(2):149–165, 1995.

E. Ulungu and J. Teghem. Solving multi-objective knapsack problem by a branch-and-bound
procedure. In Multicriteria analysis, pages 269–278. Springer, 1997.

F. Vanderbeck. Implementing mixed integer column generation. In G. Desaulniers,
J. Desrosiers, and M. M. Solomon, editors, Column Generation, pages 331–358. Springer,
2005.

B. Villarreal and M. H. Karwan. Multicriteria integer programming: A (hybrid) dynamic
programming recursive approach. Mathematical Programming, 21(1):204–223, 1981.

P. L. Yu and M. Zeleny. The techniques of linear multiobjective programming. RAIRO -
Operations Research - Recherche Opérationnelle, 8(3):51–71, 1974.

E. Zitzler. Evolutionary algorithms for multiobjective optimization: Methods and applica-
tions. PhD thesis, Swiss Federal Institute of Technology, Zurich, 1999.

E. Zitzler and S. Künzli. Indicator-based selection in multiobjective search. In Parallel
Problem Solving from Nature-PPSN VIII, pages 832–842. Springer, 2004.

E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary algorithms —
A comparative case study. In A. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel,
editors, Parallel Problem Solving from Nature — PPSN V, volume 1498 of Lecture Notes
in Computer Science, pages 292–301. Springer Berlin Heidelberg, 1998.

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca. Performance
assessment of multiobjective optimizers: An analysis and review. Evolutionary Compu-
tation, IEEE Transactions on, 7(2):117–132, 2003.

128

	General Introduction
	Context
	Organization and Contributions
	Notation

	Column Generation for Vehicle Routing Problems
	Introduction
	Vehicle Routing Problems
	Formulations
	Solution Methods

	Column Generation
	Basic Definitions and Principles
	Implementation and Other Issues

	The Elementary Shortest Path Problem with Resource Constraints
	Overview of Solution Methods
	The Decremental State Space Relaxation Algorithm

	The Minimum-Maximum Distance-Constrained CVRP
	Problem Description
	Master Problem and Subproblem
	Solving the Subproblem
	Computational Experiments

	Conclusion

	Multi-Objective Optimization
	Introduction
	Basic Definitions and Principles
	Solution Approaches
	A priori approaches
	Progressive approaches
	A posteriori approaches

	Approaches for Managing Objectives
	Scalar Approaches
	Non-Scalar Approaches
	Pareto Approaches
	Indicator-Based Approaches

	Solution Methods
	Lower and Upper Bounds
	Exact Methods
	Approximation Methods

	Evaluating Approximation Methods and Solutions
	The Hypervolume Indicators
	The Binary -Indicator

	Conclusion

	Column Generation for Bi-Objective Integer Programs
	Introduction
	Constructing Bound Sets for BOIPs
	Using the Weighted Sum Method
	Using the -Constraint Method

	Constructing Lower Bound Sets for BOIPs by Column Generation
	Column Search Strategies
	Column Generation for BOIPs with a Min-Max Objective
	Column Search Strategies for a BOIPMMO

	Evaluating the Quality of Bound Sets
	Bound Sets for the Bi-Objective Set Covering Problem

	Conclusions

	The Bi-Objective Multi-Vehicle Covering Tour Problem
	Introduction
	Description of the BOMCTP
	Cover Distance Induced by a Set of Routes

	Formulation 1
	Restricted LP Master Problem
	Dual of LPM()
	Sub-problem corresponding to RLPM()
	Solving S()

	Formulation 2
	Restricted LP Master Problem
	Dual of LPM()
	Subproblem corresponding to RLPM()
	Solving S()
	Implementation of Column Search Strategies

	Computational Results
	Description of Instances and Experiments
	Summary of Results for Formulation 1
	Summary of Results for Formulation 2
	Comparison of Formulations 1 and 2

	Conclusion

	Conclusions and Perspectives
	Conclusions
	Perspectives

	Résumé étendu
	Introduction
	Principe de Génération de Colonnes
	Optimisation Multi-Objectif
	Contributions

	Génération de Colonnes pour les Problèmes Linéaires en Nombres Entiers Bi-Objectif
	Construction de Bornes Inférieures
	Construction de Bornes Inférieures par Génération de Colonnes
	Un Algorithme Généralisé de Génération de Colonnes Pour les Problèmes Linéaires en Nombres Entiers Bi-Objectif
	Génération de Colonnes pour les PLNE Bi-Objectif ayant une Fonction Objectif Min-Max

	Problème de Tournée Couvrante Bi-Objectif à Plusieurs Véhicules
	Description du Problème
	Formulation 1
	Formulation 2

	Résultats des expériences
	Comparison de Deux Méthodes de Scalarisation
	Résultats pour PTCBOP

	Conclusions et Perspectives

	Bibliography

