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Abstract

Recent space missions rely more and more on the cooperation between different spacecraft in order
to achieve a desired objective. Among the spacecraft proximity operations, the orbital rendezvous
is a classical example that has generated a large amount of studies since the beginning of the
space exploration. However, the motivations and objectives for the proximity operations have
considerably changed. The need for higher autonomy, better security and lower costs prompts
for the development of new guidance and control algorithms. The presence of different types of
constraints and physical limitations also contributes to the increased complexity of the problem.
In this challenging context, this dissertation represents a contribution to the development of new
spacecraft guidance and control algorithms.

The works presented in this dissertation are based on a structural analysis of the spacecraft
relative dynamics. Using a simplified model, a new set of parametric expressions is developed for
the relative motion. This parametrization is very well suited for the analysis of the geometric
properties of periodic relative trajectories and for handling different types of state constraints. A
formal connection is evidenced between the set of parameters that define constrained trajectories
and the cone of positive semi-definite matrices. This result is exploited in the design of spacecraft
relative trajectories for proximity operations, in the impulsive control framework. The resulting
guidance algorithms enable the guaranteed continuous constraints satisfaction, while still relying
on semi-definite programming tools. The problem of the robustness of the computed maneuvers

with respect to navigation uncertainties is also addressed.






Résumé

La réalisation des missions spatiales repose de plus en plus souvent sur la coopération entre dif-
férents engins spatiaux. Parmi les opérations de proximité, le rendez-vous orbital est une pratique
aussi ancienne que la conquéte spatiale, qui continue de générer de nombreux travaux de recherche.
Cependant, les motivations et les objectifs des récentes missions de rendez-vous orbital ont large-
ment évolués. En effet, les besoins d’une autonomie accrue, d’une sécurité ameéliorée, d’une plus
grande flexibilité et d'une réduction des cofits, constituent autant d’incitations au développement
de nouvelles méthodes de guidage et controle. La satisfaction de contraintes trés variées, dues &
des considérations de sécurité ou a des limitations technologiques incontournables des actionneurs
ou des capteurs, contribuent & la richesse du probléme posé. Dans ce contexte, le développement
de nouveaux algorithmes de commande constitue un vrai défi scientifique que cette thése tente de
relever.

Les travaux de cette thése sont basées sur 'analyse structurelle des expressions décrivant le
mouvement relatif entre deux véhicules en orbite. Sur la base des modéles de transition disponibles
dans la littérature, une nouvelle paramétrisation du mouvement relatif est proposée. Celle-ci,
particulierement adaptée & la caractérisation des trajectoires périodiques, offre la possibilité d’une
prise en compte de contraintes d’état trés variées. Un lien formel est mis en évidence entre les
paramétres définissant les trajectoires contraintes et le cone des matrices semi définies positives.
Ces résultats sont exploités dans le développement des algorithmes de design de trajectoires pour
des opérations de proximité, sous hypothése de poussée impulsionnelle. Ces algorithmes ont, entre
autre, la propriété de permettre la satisfaction des contraintes sur la trajectoire de maniére continue
dans le temps, tout en utilisant les outils numériques de la programmation convexe. Le probléme
spécifique de la robustesse des manceuvres aux incertitudes de la chaine de mesure est aussi abordé
dans ce manuscrit. Des approches de type commande prédictive sont mises en place afin de garantir

aux opérations une précision souhaitée en présence de perturbations.
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Nomenclature

0 Earth’s gravitational constant
v true anomaly

Q longitude of the ascending node

w argument of perigee

a semi-major axis

By Earth centered inertial base

By Spacecraft centered local Cartesian base
E eccentric anomaly

e eccentricity

i orbit inclination

M mean anomaly

n mean motion

LMI Linear Matrix Inequality

LP Linear Program

LTI Linear Time Invariant

LTV Linear Time Varying

LVLH Local Vertical Local Horizontal
MPC Model Predictive Control

SDP  Semi-Definite Program






Introduction

Résumé: Le succés des missions spatiales repose de plus en plus souvent sur la coopération entre
plusieurs véhicules en orbite. L’approvisionnement de la Station Spatiale Internationale par ez-
emple est assuré par des opérations de rendez-vous orbital, tandis que des nombreuses missions
scientifiques utilisent des formations de satellites pour relever des mesures. Ce type d’opérations
ont des besoins spécifiques en termes d’algorithmes de controle, vue la distance réduite entre les
véhicules, les contraintes d’autonomie et de sécurité des mission spatiales et les ressources limitées.
Les travauz de cette thése portent sur le développement des algorithmes de guidage pour des opéra-
tions de prozimité entre les satellites, ou la distance réduite permet la navigation relative. L’objectif
est de fournir des plans de manceuvres optimisés du point de vue de la consommation de com-
bustible, qui prennent en compte les contraintes opérationnelles de la mission et qui soient robustes
a des incertitudes. Le cadre de travail choist est celui des méthodes dites directes, qui permettent la

formulation du probléme de guidage comme un probléme d’optimisation paramétrique.

Background and motivations

Spacecraft rendezvous and docking capabilities are required for a large array of space applications
that involve more than one spacecraft. It is a key technology for the in-orbit assembly of large units,
such as the space stations (Mir, Skylab, ISS). The space stations further rely on rendezvous and
docking missions in order to receive supplies or to exchange the crew. For instance, the unmanned
Automated Transfer Vehicle (ATV) from the European Space Agency periodically supplies the
International Space Station (ISS) with propellant, water, air, payloads and experiments. Recently,
the Dragon spacecraft became the first commercial spacecraft to successfully dock with the ISS.

Space rendezvous has also been used for a variety of other purposes, including the service
missions to the Hubble Space Telescope and the EURECA spacecraft retrieval. Other on-orbit
servicing missions are under study for existing spacecraft [7,85]. The increasing number of space
debris in the Low Farth Orbit originating from mutual collisions, motivated the study of active
debris removal missions [13].

In the recent years, a lot of interest has been shown for space scientific missions that rely on
different instruments distributed over a fleet of spacecraft. This configuration can provide several
advantages over the traditional monolithic satellite containing the payloads corresponding to several

different missions objectives. It can reduce the launch costs by reducing the launch mass and it
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can use multiple "mass production" vehicles to assemble the fleet. The robustness of the mission
is also increased by this configuration since the payloads are distributed among the spacecraft and
can eventually be replaced in case of failure [98]. Formation flying offers more flexibility because
the formation can be reconfigured in order to follow new mission requirements. This approach
has been considered for scientific missions with very diverse objectives, such as Earth observation
(A-train), interferometry for Earth-like planets detection (DARWIN), measurement of gravitational
waves from supermassive black hole binaries (LISA) or X-rays space telescope (Simbol-X).

The success of spacecraft rendezvous and formation flying missions depends on the precise
control of the spacecraft relative state, often-times in the context of relatively small spacecraft
separations. In order to ensure the security of the mission, a high degree of autonomy and robustness
is desired for the relative motion control procedure. For missions such as the Mars Sample Return
[86], for which the communication delay between the ground station and the spacecraft is very
large, an autonomous guidance algorithm which guarantees that no collision will occur between the
spacecraft is of vital importance.

The fuel-cost of the spacecraft maneuvers is also a matter of concern. The propulsion system
can account for up to 50% of the spacecraft mass at the launch time, reducing the available payload
mass and influencing the cost of the launch. The control algorithms must ensure that the computed
maneuvers are fuel-optimal, such that the desired lifetime for the mission can be achieved with the

smallest amount of propellant.

The spacecraft rendezvous

The orbital rendezvous process consists in executing a series of orbital maneuvers with the purpose
of bringing two spacecraft in close vicinity of each other. Usually one of the spacecraft, called
the target, is considered to be inert, while the second spacecraft, called the follower or the chaser,
executes the maneuvers. When the objective is to physically join the two spacecraft involved in the
rendezvous, we speak about docking or berthing.

W. Fehse identified in [29] several phases of a rendezvous mission, each one with its own chal-
lenges. For the launch stage, the purpose is to bring the two spacecraft in vicinity by placing
them in the same orbital plane. The phasing stage aims at reducing the phase angle between
the target and the follower (see the illustration in Figure 1). During the phasing maneuvers, the
follower spacecraft is controlled from the ground station and the navigation is based on absolute
measurements with respect to the Earth.

For the far range rendezvous phase or the homing phase, the follower spacecraft moves towards



target
spacecraft

phase angle

N

Earth

follower orbit

target orbit

Figure 1: View of the target’s orbital plane at the beginning of the phasing stage

a stable position in proximity of the target, using relative navigation measurements. For the ATV
rendezvous scenario with the ISS for instance, this stage starts at a range of few tens of kilome-
tres and ends at a range of few kilometres from the target spacecraft. The following close range
rendezvous phase is usually divided in two stages: the closing maneuvers guiding the spacecraft
towards the final approach corridor and the final approach stage leading to mating conditions.
The different stages of an orbital rendezvous mission are summarized in Figure 2. The works
presented in this dissertation are related to the homing and the closing phases, during which the two
spacecraft rely on relative navigation measurements in order to achieve the desired final conditions.
Some of the presented examples also refer to the final approach phase, leading to the spacecraft

docking.

Mission constraints and technical challenges

The spacecraft rendezvous guidance is a complex process due to the different types of conditions
and constraints that must be respected during each phase of the mission. For the phases considered
in this dissertation, the far range and close range rendezvous stages, the approach trajectory can
be required for instance to pass through specified hold points where the follower vehicle must
wait for the permission to proceed, either from the ground control station or from the crew of the
target spacecraft [29]. Security considerations might impose the choice of approach trajectories that
are inherently safe, meaning that they are guaranteed to avoid any collision with target vehicle,
even in the case where the thrust capabilities of the chaser spacecraft are compromised. During

the final approach maneuvers, the follower spacecraft might also be required to remain inside the
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Launch phase
The follower is placed into the
same orbital plane as the target

'

Phasing maneuvers
The phase angle between the
spacecraft is reduced (absolute navigation)

'

Homing phase
Acquire a stable position in proximity
of the target (relative navigation)

'

Close range rendezvous

Closing Final approach
Reduction of the relative Acquisition of mating
distance from the target conditions

'

Mating (docking or berthing)
Establish a physical connection
between the spacecraft

Figure 2: The different phases of a rendezvous mission

visibility cone of the target spacecraft for continuous visual contact. These specifications correspond
to constraints that the rendezvous trajectory must respect in order to certify that the mission
requirements are met.

Another factor that must be taken into consideration when designing the approach trajectory
is the fuel-cost of the maneuvers. Thrust maneuvers can be approximated with impulses, i.e.
instantaneous changes of velocity at the time of maneuver. This simplifies the computation and
the analysis of a fuel-optimal maneuvers plan for the spacecraft rendezvous [29]. The impulsive
approximation is especially well adapted for the liquid propellant engines which are used for a
wide span of spacecraft maneuvers, ranging from orbital transfer maneuvers to station keeping and
spacecraft attitude control. Any computed maneuvers plan needs to respect the constraints on the

available propellant budget for the rendezvous mission.



Orbital disturbances, navigation errors and control execution errors can alter the outcome of the
computed maneuvers. The presence and the effects of these disturbances need to be integrated into
the rendezvous trajectory design phase. Navigation errors are defined as the difference between the
state perceived by the onboard system and the real state of the vehicle. They can be caused by the
sensors measurement performance limitations, by errors in the alignment between the sensors and
spacecraft axes, by the onboard information processing and filtering, etc. The control execution
errors refer to deviations in magnitude, direction or application time from the desired impulsive
thrusts. They can be due to mounting errors, to misalignments with the mechanical axes, to the
engine performances, etc. The decision autonomy of the spacecraft cannot be increased without
providing a priori guarantees for its behaviour in perturbed conditions. This must be done while
using control algorithms of reduced complexity since the computational resources available on board
the spacecraft are limited with respect to those available on ground.

Some of these challenges are addressed in this dissertation. The main objective is to provide
algorithms for the computation of robust fuel-optimal maneuvers plans leading to rendezvous tra-
jectories that respect the constraints imposed by the mission’s requirements, even in presence of a
certain class of uncertainties. A study of the spacecraft constrained naturally periodic trajectories
is carried out in relation to the security specifications for the approach trajectory.

The spacecraft trajectory design is a challenging problem due to the presence of trajectory and
control constraints, to the robustness considerations and to the large number of design parameters.
In the most general case, only the initial time of the mission is fixed and the trajectory design
procedure must provide a choice for the final time, the number and the distribution of thrusting
instants, the amplitude and the direction of the thrusts. If the design algorithm is intended for
use onboard the spacecraft, then restrictions are added on its computational complexity. A brief
presentation of the main trajectory design approaches is given in what follows, with a focus on their

ability to handle the different mission requirements.

Spacecraft relative trajectory design approaches

The trajectory design for spacecraft rendezvous and proximity operations refers to the computation
of a series of maneuvers that steer the spacecraft from some known initial relative conditions to some
final desired relative conditions. The design procedure generally consists in solving an open-loop
optimal control problem whose solution corresponds to the best approach trajectory that respects
the constraints and minimizes a specified criteria. The most common objective is to minimize the

total fuel cost of the rendezvous maneuvers. This can guarantee that the mission’s fuel budget is
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respected and can increase the lifetime of the spacecraft. The techniques for solving this type of
constrained open-loop optimal control problems are usually divided into direct methods and indirect

methods [24].

Indirect methods are based on analytical necessary optimality conditions derived using the
calculus of variations and the Pontryagin maximum principle. The optimal solution can be found
by solving the two-point-boundary-value problem (TPBVP) resulting from these conditions [24].
When using the indirect methods, the optimal spacecraft trajectory for the rendezvous problem
is computed indirectly, based on the evolution of the adjoint state vector or the so-called primer
vector [58,62]. For impulsive trajectories, the primer vector indicates the times and the positions
of the thrust impulses that minimize the total fuel cost. However, the resolution of the problem
is complicated in the general case, especially when constraints are added to the problem. It also
requires a good guess for the initial value of the primer vector. Recent works on the spacecraft
rendezvous problem have focused on transforming the necessary conditions for optimality into

constructive conditions for the optimal solution [3,4].

Direct methods rely on the transformation of the optimal control problem into a parameter
optimization problem. This is usually achieved through control parametrization and through dis-
cretization [45]. The obtained finite-dimensional optimal control problem can be efficiently solved
using the existing algorithms [11]. There are different types of direct methods depending on the
choice for the decision variables and on the used integration method. Among them, the direct shoot-
ing methods are used in the cases where the parametrisation concerns only the control variables.

The system’s dynamics are usually linear and are integrated analytically or numerically [49].

The indirect resolution methods certify the global optimality of a computed solution by checking
a set of necessary and sufficient (if available) conditions. However they lead to problems that are
hard to solve numerically, especially when constraints are considered. Direct methods are able to
deal with state and control constraints more effectively and to integrate robustness elements with
respect to different types of disturbances. Even if the obtained solution can only be certified as
optimal for the particular parametrization and/or discretization that has been considered, they

provide an attractive alternative for the rendezvous guidance problem.

The algorithms developed in this dissertation for the design of spacecraft rendezvous trajec-
tories fall into the category of direct shooting methods. Other than the advantage related to the
reduced complexity of the resulting optimization problem, this approach also offers the possibility
of including robustness considerations directly in the phase of control synthesis. Several types of

uncertainties can be easily handled thanks to robust programming techniques [9]. Our main focus



will be on reducing the effects of relative navigation uncertainties on the final rendezvous precision.

Spacecraft trajectory control: closing the loop

The direct and indirect approaches for spacecraft relative trajectory design provide a series of
fuel-optimal maneuvers that need to be executed at the specified instants in order to reach the
desired final objective. The maneuvers plan is obtained based on open-loop predictions of the
evolution of the spacecraft relative trajectory. As previously discussed, the presence of orbital
perturbations, navigation uncertainties or control execution errors might alter the outcome of the
computed maneuvers. In order to limit their undesired effects and to reach a specified rendezvous
precision, the trajectory control needs to be implemented in a closed-loop manner.

The resolution of a constrained open-loop optimal control problem can be integrated in a closed-
loop setting by using the Model Predictive Control (MPC) methodology [84]. Model Predictive
Control or Receding Horizon Control is a control technique for which the control action is obtained
by solving at each sampling instant a finite-horizon open-loop optimal control problem, using the
current, state of the system as initial state. The optimization delivers every time a series of control
actions out of which only the first one is applied to the system. The rest of the plan is discarded
because a new solution, based on new measurement information, will be computed at the next
sampling time [68].

Model Predictive Control is a popular control technique for spacecraft rendezvous and proximity
operations [16,18,26,32,41,43,86|. Its popularity is due to the ability to integrate constraints and
uncertainties directly into the trajectory design problem. Different other control approaches have
been proposed for spacecraft proximity operations and formation flying, spanning over a large
range of techniques. A non exhaustive list includes adaptive control [2,95], non-linear quadratic
regulator [6], feedback impulsive control [89], Lyapunov-based nonlinear output feedback control
[104], time-delayed feedback control [12| and several others [87,88]. But very few of them consider
the presence of constraints or the fuel cost of the maneuvers, and focus only on reaching the specified
final conditions.

Instead of determining off-line a feedback policy that provides the optimal control for all system
states, MPC solves an open-loop optimal control problem on-line which takes into consideration
the current state of the system. The periodic recomputation of the solution creates an implicit
closed-loop. The robustness properties of this implicit closed-loop with respect to different types of
uncertainties are an important aspect, especially if the objective is to provide the control system

on-board the spacecraft with increased decision autonomy.
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The presence of uncertainties raises questions related to the changes induced in the control
performances. In the case of spacecraft trajectory control, the performances are defined in relation
to the fuel consumption and to the precision with respect to the desired final objective of the
maneuvers. The Model Predictive Control possesses some inherent robustness properties, defined
as the robustness of the closed-loop for the control that has been computed without explicitly
considering the uncertainties [36,67]. But for problems that include control and state constraints,
the computed control actions must guarantee that no transgressions of the constraints will occur
for all the possible realizations of the uncertainties. In this case, the inherent robustness properties
are no longer sufficient and the presence of uncertainties needs to be included in the writing of the
optimization problem [27,59,69,79]. Another key aspect is the property of recursive feasibility of the
control problem in presence of uncertainties. The optimal control is recomputed at each sampling
instant and it is important to provide theoretical guarantees that, if the first optimization problem
is feasible, then all the subsequent optimization problems will also be feasible. These important

properties are investigated for the guidance algorithms proposed in this dissertation.

Objectives and organization of the dissertation

The works presented in this dissertation are oriented following two main axes: the analysis of the
spacecraft relative motion and the design and control of the spacecraft relative trajectory. The study
of the relative motion concentrates on spacecraft naturally periodic relative trajectories. These
periodic trajectories, in the absence of perturbations, require no control in order to be maintained.
This property could make them good candidates for parking orbits in between different phases of a
rendezvous mission, for autonomous inspection trajectories for on-orbit servicing missions or for fail
trajectories in case of system malfunction. Chapter 1 summarizes the most common-used models
for representing the spacecraft relative motion. It also provides an overview of the properties
of the spacecraft relative trajectories that are of interest for the rendezvous guidance problem,
such as periodicity conditions, inter-satellite distance and geometric properties of periodic relative
trajectories.

The different periodic motion initialisation techniques presented in the literature do not give any
information about the geometric properties of the resulting trajectory. To address this problem,
a new parametrization for the spacecraft relative trajectories is developed in Chapter 2. This
parametrization provides a good framework for analysing their properties and it is in used in Chapter
3 in order to obtain a formal mathematical description of the spacecraft relative trajectories which

respect continuously in time some dimensions constraints.



The spacecraft relative trajectory control concentrates around the problem of designing fuel-
optimal maneuvers plans leading the spacecraft from an arbitrary initial relative state towards a
desired final relative state, following trajectories which respects different mission constraints. Chap-
ter 4 details the writing of the spacecraft rendezvous guidance problem as an impulsive optimal
control problem using direct shooting methods. It illustrates the contribution of the results pre-
sented in Chapter 3 in obtaining approach trajectories that respect visibility constraints or that
are guaranteed to be safe for a large range of system errors. The robustness aspects with respect
to navigation uncertainties are treated in Chapter 5. The guidance problem is modified in order to
provide a solution which guarantees a priori constraints satisfaction for all admissible values for the
uncertainties, without modifying the complexity of the control algorithm. Moreover, the proposed
control strategy also minimizes the effects of the sensing noise on the precision with which the final
objective is achieved.

The presence of perturbations also affects the spacecraft naturally periodic motion. Chapter 6
presents a low-complexity stabilizing control strategy for the spacecraft periodic motion in presence
of sensing noise. The developed method is based on the parametrization for the spacecraft relative
trajectory presented in Chapter 2.

The key concepts specific to each chapter are summarized in Figure 3.
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Chapter 1
- Description of the models for the spacecraft
relative motion
- Periodicity conditions and geometric properties of
the spacecraft periodic relative trajectories

|

Chapter 2 ] Chapter 3

- Parametrization for th raft
arametrization for the spacecra - Finite description of all the spacecraft
relative trajectories . . . -
JI relative trajectories that respect continuously

- Analysis of the properties of the in time some dimension constraints
periodic relative trajectories

L

Chapter 4
- Solve the fuel-optimal fixed-time impulsive
rendezvous problem with continuous trajectory
constraints using convex optimization techniques

Chapter 5
- Extends the results in Chapter 4 to the case where the
relative states measures are affected by navigation errors

'

— =3 - Planning algorithms that guarantee robust constraints
Chapter 6 satisfaction and a good compromise between fuel
- Analytical bi-impulsive control for stabilizing the consumption and rendezvous precision

spacecraft periodic relative motion in presence of
navigation errors
- 2 stages MPC control for robust spacecraft guidance

towards a proximity periodic relative motion
o A

Figure 3: Overview of the key concepts specific to each chapter
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Spacecraft relative motion
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Résumé: L’étude du mouvement relatif des satellites consiste o analyser la dynamique d’un
satellite appelé le chasseur par rapport & un autre satellite, appelé la cible. Différentes choix existent
pour la représentation de [’état relatif, chacune avec ses avantages. Plusieurs représentations sont
passées en revue en ce chapitre, notamment dans le cadre des orbites képlériennes. L’accent est mis
sur la description basée sur les positions et les vitesses relatives, exprimées dans un repére cartésien
local attaché au satellite cible. Les propriétés des trajectoires relatives sont également étudiées,
comme les distances minimale et mazimale entre les satellites, l'existence des trajectoires relative

périodiques et leur propriétés géométriques.

1.1 Introduction

The spacecraft relative motion refers to the study of the dynamics of a spacecraft, called the follower,
with respect to the dynamics of another spacecraft, called the leader or the target. The motion
of an individual satellite orbiting the Earth can be expressed using different representations for
the satellite’s state, each representation providing its own modelling advantages. A similar variety

of choices is available for the parameters describing the spacecraft relative state, and some of the
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most common descriptions will be presented in this chapter. The final choice is usually driven
by the purpose of the study. Historically, models based on orbital elements and orbital elements
differences have been used for formation flying applications [16,34,60], while Cartesian models have
been preferred for spacecraft rendezvous and collision avoidance problems [17,31,41,57].

Regardless of the representation chosen for the spacecraft relative motion, a distinction can
be made between Keplerian models and non Keplerian models. Under Keplerian assumptions,
the Earth is represented as an homogeneous sphere and the spacecraft motion is affected only
by Newtonian accelerations. The non Keplerian models take into account the Earth’s oblateness,
usually through the spherical harmonic model for the Earth’s potential, the atmospheric drag or
the solar radiation pressure, among other orbital disturbances.

The Keplerian framework leads to less accurate but simplified dynamical models for the space-
craft relative motion. These simplified models are well suited for control synthesis purposes, like in
the case of maneuvers plans design for spacecraft rendezvous missions for instance. The relatively
small distances between the spacecraft when compared to the distance with respect to the center
of the Farth and the short time horizons associated with rendezvous missions justify the usage
of simplified relative motion models. For this reason we will focus mainly on Keplerian models
throughout this dissertation, while referring the interested reader to publications treating some of
the other representations.

In what follows, a particular interest will be paid to the periodic solutions of the equations de-
scribing the spacecraft relative motion. These solutions enable the satellites to maintain a desired
configuration without external intervention and without any fuel expenditure. This property has
been extensively used in the formation flight literature [1,5,46,55,92] and has recently gained atten-
tion for orbital rendezvous and collision avoidance applications [25,41,43|. Different initialization
methods for periodic motion will be presented along with some of the geometrical properties of the

resulting trajectories.

1.2 Dynamics of a spacecraft orbiting the Earth

The Keplerian dynamics of a spacecraft with respect to the Earth can be derived from Newton’s
equations of motion between two mass particles. In this case, the motion of a spacecraft orbiting

the Earth is described by the following differential equation [§]:

AR _
T
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where R represents the vector from the center of the Earth to the spacecraft center of mass and p is
the Earth’s gravitational constant. The dynamics are expressed with respect to an Earth centered
inertial frame Ry = (O,X,?, Z) illustrated in Figure 1.1. The fundamental plane for Ry is the
Earth’s equatorial plane, the Z axis coincides with the rotation axis of the Earth and is oriented
towards the North Pole, the X axis points the vernal equinox and the Y axis is orthogonal to the

XZ plane.

perigee

Earth's equatorial

g

The orbital plane

Figure 1.1: The Earth Centered Inertial frame and the satellite trajectory

Even though the differential equation (1.1) governing the relative motion of two bodies is non-
linear, the equation admits a general analytical solution [8]. The constants of integration associated
to the solution are called the orbital elements of the satellite motion and they play an important
role in the study of the properties of the spacecraft trajectory.

Let the orbital plane be the plane which contains the trajectory of the orbiting spacecraft
(see Figure 1.1). The equation of the spacecraft trajectory expressed using polar coordinates with
respect to this plane is given by [8]:

a(l —e?)

R =Rl =
H H 1+ ecosv

(1.2)

where a is called the semi-major axis of the spacecraft orbit, e is called the eccentricity and v is
called the true anomaly. The satellite’s orbit is bounded if e < 1 and unbounded if e > 1. For e =0
the spacecraft trajectory is a circle of radius a and for 0 < e < 1 the trajectory is an ellipse. The
true anomaly v represents the angle between the spacecraft’s current position and the direction of
the perigee (Figure 1.1).

The parameters a and e define the dimension and the shape of the satellite’s orbit, while v gives

the instantaneous location of the satellite on its orbit. Three other quantities defining the spatial



14 Chapter 1. Spacecraft relative motion

orientation of the orbital plane are required in order to completely characterize the spacecraft
trajectory. A common choice is represented by the angles i, () and w defined with respect to the

Earth’s equatorial plane, as indicated in Figure 1.2.

=2

» Perigee

Q
> v
X line ofnodes

Figure 1.2: The definition of the classical orbital elements

The line of nodes denotes the line of intersection between the spacecraft orbital plane and the
equatorial plane. The ascending node refers to the point where the satellite is crossing the line of
nodes in a northbound direction. The longitude of the ascending node, 2, is the angle between the
X axis of the Ry frame and the ascending node, the argument of perigee, w, is the angle between
the ascending node and the perigee while the inclination, i, is the angle between the orbital plane
and the equatorial plane.

The set of orbital elements is defined by:

T
06:[@ e i Q w v (1.3)

and it completely describes the state of a satellite orbiting the Farth. Under Keplerian assumptions,

the first five parameters are constant and only the true anomaly changes with time [8]:

. H )2
v= (1= ) (1+ecosv) (1.4)

Sometimes, the eccentric anomaly, E, or the mean anomaly, M, are used instead of v as the
varying state. The eccentric anomaly and the true anomaly are related through geometrical trans-

formations (Figure 1.3):

tan = = tan — (1.5)
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while eccentric anomaly and the mean anomaly are related through Kepler’s equation:

M =FE —esinE = My +n(t —to) (1.6)

As shown in (1.6), the mean anomaly can also be defined as a linear function of time, where
n = /u/a® is the mean motion of the satellite, ¢y is the reference time and M is the mean

anomaly at tg.

~.

tangent circle

perigee

Figure 1.3: The definition of the eccentric anomaly

When the orbit is circular or near circular (e ~ 0) or when the orbit is planar or near planar
(i = 0), some of the classical orbital elements oe are not defined. In those cases, the state of the
spacecraft can be represented using different functions of the classical orbital elements that avoid
this problem. Among the solutions proposed in the literature, we can mention the nonsingular
orbital elements, the equinoctial elements or the Delaunay canonical elements, used for studying

the satellite motion in a Hamiltonian framework [90].

The choice of using the inertial position and velocity or the various sets of orbital parameters in
order to describe the state of a spacecraft orbiting the Earth is made depending on the application.
Throughout this dissertation, the classical orbital elements oe are preferred for the representation
of the leader’s state. This choice is motivated by the fact that, in the Keplerian context considered
here, the resulting dynamics have a very simple form (only one state that changes over time).
To complete the description of the spacecraft relative motion, the state of the follower satellite
must be expressed with respect to the state of the leader and some of the most commonly used

representations are introduced next.
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1.3 Spacecraft relative motion

The spacecraft relative motion refers to the study of the dynamics of the leader spacecraft com-
bined with the study of the dynamics of the follower spacecraft. As previously stated, there are
different possible state definitions which can be used in the description of the motion of a single
spacecraft (Cartesian position and velocity, different sets of orbital parameters). In a similar way,
different representations can be considered for the spacecraft relative state, each one bearing its

own advantages.

1.3.1 Local Cartesian dynamics

The spacecraft relative motion represented using local Cartesian dynamics is defined with respect
to a local rotating Cartesian frame centered on the leader satellite. A commonly used frame is the
Local Vertical Local Horizontal (LVLH) frame R; = (S5}, %, ¥, Z) illustrated in Figure (1.4). The
Z axis is radially oriented from the leader satellite towards the center of the Earth, the ¢ axis is
orthogonal to the orbital plane, in the opposite direction with respect to the angular momentum

vector, and the 7 axis lays in the leader’s orbital plane in the direction of the satellite’s velocity.

GA

Figure 1.4: The spacecraft relative position and the leader’s LVLH frame

The relative position between the leader spacecraft S; and the follower spacecraft Sy is repre-
ey

sented by 7= 5,5 in Figure 1.4. Considering that the Keplerian dynamics of each satellite with

respect to the Earth can be described using (1.1), the relative inertial acceleration can be written

as:

dQF) I 5 K 33
— =——5——(R+7")+ == 1.7
<dt2 By IIR+FII3( 7 1] o
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S
where R = OS represents the inertial position of the leader spacecraft. The term on the left hand

side of (1.7) can be further developed using the derivation rule with respect to a rotating frame:

427 427 - a7 dQp,/5 L - }
<ﬁ> = <ﬁ) +2QB[/BO X <%) + <T£0 X T’—|—QBZ/BO X (QBZ/BO X 7“) (18)
By B, B By

The terms in the sum correspond to the spacecraft relative acceleration in the local frame, the
Euler acceleration, the Coriolis acceleration and the centrifugal acceleration respectively. The term

O B,/B, represents the rotation velocity of the local basis B; with respect to the inertial basis By.

Assuming that the dynamics of the leader spacecraft are expressed using the orbital elements

defined in (1.3) and that the spacecraft relative state is given by the local relative position and
T

velocity X = [g; Yy oz v vy Uz:| , the different terms in (1.8) can be computed individually.

In the case of Keplerian motion, we have:

0 0 T
0 R z
B; B B

After introducing the elements from (1.9), equation (1.8) becomes:

F—205F—Vz—1Px

a2
A . 1.10
()., y a0

E420@ +vx — 0%z
By
Developing the right hand side of (1.7) leads to the following nonlinear equations for the space-
craft relative dynamics:

. L o px
T—2vz—Vz— U0 = —
V(@2 +y? + (R=2)?)°

y=- = 1.11
VE T+ (R 2P —
E420i+ia— = plht ) + L

V@224 (R-2)7)3 R’

In the case where the distance between the two satellites is a lot smaller than the distance

from the leader satellite to the center of the Earth (||7] < ||R||), the linearized Tschauner-Hempel
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equations can be used to describe the spacecraft relative motion [101]:

fzi:2v,é+ﬁz+z'/2:v—%:c

. 1%

i= Ly (1.12)
é:—2z'/:ic—i)x+z'/2,z—|—2%z

It can be noticed that for the linearized equations, the dynamics on the y axis are decoupled from
the dynamics in the xz plane and define a harmonical oscillator.

In the case where the orbit of the leader spacecraft is circular, a simplified form can be obtained
for the above equations. If e = 0 then R = a = const, ¥ = n = const and ¥ = 0. After introducing
these values in (1.12), the well known Hill-Clohessy-Wiltshire equations for the spacecraft relative

motion with respect to a circular reference orbit can be deduced [23,42]:

T=2nz
j=-n% (1.13)
5 =—-2nt+3nz

It can be noticed that in this case the spacecraft relative dynamics correspond to a Linear Time

Invariant system.

The non Keplerian relative dynamics

Long term predictions of the spacecraft relative trajectory are necessary for formation flying mis-
sions. In this case, maintaining the assumption that there are no external perturbing forces or
nonlinear terms introduces unacceptable prediction errors. Therefore, different models of space-
craft relative motion accounting for some of the effects of orbital disturbances have been developed.

For circular reference orbits, Schweighart and Sedwick presented in [91] a set of constant-
coeflicient linear differential equations that include the perturbation due to the Earth’s oblateness,
represented through the Jy potential. Hamel and de Lafontaine developed in [39] a set of linearized
equations of relative motion about a Jy perturbed elliptical reference orbit. Kechichian gave in [50]
the expression of the rotation velocity QB, /B, for the case where disturbances due to air drag
and Earth oblateness are considered. The result is very general but it leads to complex nonlinear
expressions for the relative motion that are not easy to use in practice.

Even if the dynamics modelled by the Tschauner-Hempel equations (1.12) do not include the
effects of the orbital perturbations, they do have the advantage of being easy to use. They allow

the description of the spacecraft relative motion through a Linear Time Varying (LTV) state space
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model which is well suited for control synthesis and has been widely used for spacecraft relative

trajectory design [6,41,47,86,93,99].

1.3.2 Orbital elements differences dynamics

The differential orbital elements are defined as the difference between the orbital elements of the

leader spacecraft oe; and the orbital elements of follower spacecraft oe;:

T
Xoo = 01— 0e; = [5a e §i 6Q 6w ov (or M or 6E) (1.14)

Under Keplerian assumptions, five of the six orbital elements defining the state of a spacecraft
are constant. In this case, the relative dynamics expressed using the differential orbital elements
exhibit similar properties. The simplest form for the relative dynamics is obtained when the varying

term in the orbital elements is chosen to be the mean anomaly M:

[ 56 | 0
5é 0
5i 0
o . (1.15)
5 0

. 3 | u
_(SM_ _—5 a—55a_

Variational methods can be used to analyse the effect of perturbing accelerations on the orbital

elements describing the spacecraft motion, in the non Keplerian case [90]. The perturbing accelera-
tions can model for instance the effects of the Earth oblateness and/or the effects of the atmospheric
drag. The well known Gauss Variational Equations (GVE) represent a specific formulation of the

orbital elements variation problem, written for disturbances expressed in the leader’s LVLH frame.

The spacecraft relative dynamics represented using the orbital elements differences have been
successfully used in formation flight applications, especially for configurations that require a large
separation between the spacecraft [1,16]. In the case of the spacecraft rendezvous, the mission’s
objectives are usually specified using the relative Cartesian local coordinates, in terms of final rela-
tive position and velocity, given some position/velocity constraints. For this reason the description
of the relative motion using local Cartesian dynamics is usually preferred in the orbital rendezvous

literature [26,41,43].
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1.4 Linearized Cartesian relative motion

Starting from the Tschauner-Hempel equations (1.12) for the linearized Cartesian relative dynamics,
a state space representation of the spacecraft relative dynamics can be obtained. Based on this
formulation, closed form solutions for the relative trajectories can be computed. These solutions
enable the propagation of the spacecraft relative state without making use of numerical integration,

which makes them very valuable for space applications where computational power is limited.

1.4.1 State-space representation

Let the spacecraft relative state vector be defined by the relative position and velocity projected on
each axis of the leader’s LVLH frame: X = [m Yy oz v vy UZ}T. If in (1.12) the independent
variable time is replaced by the true anomaly of the leader spacecraft, a simplified form can bhe
obtained for the equations describing the relative dynamics between the leader and the follower

spacecraft. The derivatives with respect to time are replaced by:

i) _d@)dv _

P00, dO),
@ wa V" w mw tw” (1.16)

and the following variable change is used:

B (1+ecosv)ls 03
X(v) = ' (1+ ecosv) X(t) (1.17)
—esinvis — 13
1

where I3 € R3*3 is the identity matrix and 03 € R3*3 is the zero matrix. This operation leads to

a periodic state-space model for the spacecraft relative dynamics:
X'(v)=AW)X(v) + B (1.18)

where the dynamical matrix A(v) is given by:

[
o

(1.19)

o o o o o o
o o o O
wo o o o o
o o o O
o o o O
oS O N

— -2
| 1+ ecosv J
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the control matrix B is defined by B = [03 I3]” and @ = [, @, @,]” represents the acceleration
generated by the spacecraft thrusters.
Closed form solutions can be computed for the periodic system (1.18) and the general method

for obtaining them is summarized next.

1.4.2 The state transition matrix

The state transition matrix provides a convenient way to represent the solution of the autonomous
dynamics of a linear system. For the spacecraft relative motion, computing the state transition
matrix would enable the propagation of the relative state starting from any initial conditions,

without relying on numerical integration:

X(v) = @(v, )X (n) (1.20)

From the dynamics of the system (1.18), it can be deduced that the state transition matrix verifies

the following differential equation:
' (v, v0) = A(V)® (v, o), O(v,v) =1Vv (1.21)

For Linear Time Varying systems such as (1.18), there is no general analytical expression for the
state transition matrix. Numerical methods developed for computing ® are usually based on the
resolution of the differential equation (1.21). In the case of the spacecraft relative motion, the
special structure of the dynamical matrix A(v) enables the computation of an analytical solution.

For the linearized spacecraft relative motion, the dynamics on the y axis are not affected by the
motion in the zz plane and are described by the following homogeneous second order differential
equation (see (1.18)):

~//

=7 (1.22)

The solution of (1.22) can be directly expressed as a function of the initial conditions:
X, (v) = ®,(v,10) X, (10) (1.23)
where vg is the initial true anomaly for the uncontrolled motion and:

X,(v) = ?(V) Dy (v, 19) = CO.S(V ) sin(y =) (1.24)
Oy (v) —sin(v —1p) cos(v — 1p)
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From (1.18), the homogeneous differential equations for the xz plane are given by:

7" =27 (1.25)
7' = Lz — 27 (1.26)
1+ecosv '
Integrating (1.25) once leads to:
¥ =22+K (1.27)

where K is a constant of integration. After introducing (1.27) in (1.26), a second order differential
equation only in Z is obtained:

3
2+ (4 - 7> =K (1.28)
1+ ecosv

As recalled by Carter in [20], the method for solving this type of differential equation consists
in finding a family of particular solutions ¢1, @2 for the homogeneous differential equation such
that :

©19h — P = constant (1.29)

and then applying the technique of variation of parameters [80]. The choice of the particular

solutions 1, o determines the final form of the transition matrix.

A transition matrix for the periodic system (1.18) has been proposed by Carter in [20]. A
slightly different solution has been given by Yamanaka and Ankersen in [103], which presents the
advantage of having a simpler form. The Yamanaka-Ankersen transition matrix will be used for

some of the developments in this dissertation and it is reproduced here for completeness.

- T
Taking X,,(v)= [;f'(y) Zv) .(v) Tl > the propagation of the relative state is given by:

f(xz(u) =P,.(v, Vo)XxZ(Vo) (1.30)

where the transition matrix ®,.(v,1p) can be written as:

(I)a:z(ya VO) = ¢a:z(V)¢;zl(V0) (1'31)
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The matrix ¢,.(v) is defined by [103]:

1 —cosv(2+ ecosv) sinv(2 + ecosv) 3(1 +ecosv)?J

0 sinv(l+ecosv) cos (1 + ecosv) 2 —3esinv(l+ecosv)J
Paz(v) = 0 2sinv(l+ecosv) 2cosv(l+ecosv)—e 3 —6esinv(l+ecosv)J

_0 cos V + e cos 2v —sinv — esin 2v —3e <(cos v+ecos2v)J + %)

The term J is related to the choice of the particular solution @9 and in the case of the Yamanka-

Ankersen transition matrix is given by:

v dr n(t—t
Tw) = /,,0 (1+ecosT)? - (1 (— 62)222 (1.33)

From (1.33) it follows that for the initial true anomaly vy we have J(1p) = 0. This enables the

analytical computation of the inverse of the ¢,.(v) matrix at vy:

[ 3esi 2
e2—1 — esinvo(2 + e cos o) esinvy(2 4 ecosvp) 2—ecos vp(1+ecosvy)
14+ ecosyy )
3 si 1
1 1 0 sinvolecosvotlte’) sinvg(2 4+ ecosyy)  —(cos vg+ecos? vy —2e)
Gz (V0) = 21 1+ ecosyy

0 3(e + cosvy) —(2cos vg+ecos? vy+e) sin (1 4 e cos 1)

0 —(3ecos vy + €% +2) (1 + ecosp)? —esinyy(1 + ecos 1)
i (1.34)

The complete transition matrix ® corresponding to the state vector X (v) can be obtained by

combining the blocks from the ®, and ®,, matrices in the appropriate order.

Overview of closed form solutions

Several works have been dedicated to the computation of the transition matrix for the spacecraft
relative motion, in the case where the leader satellite evolves on an arbitrary elliptical orbit. Melton
provides in |70] a solution that uses directly the time as the independent variable, obtained using
series expansions of the eccentricity. However, this is an approximate solution and it loses accuracy
for higher values of the eccentricity. Recently, a transition matrix obtained starting from the
Tschauner-Hempel equations that also includes the effects of the Js perturbation has been proposed
by Yamada and Kimura in [102]|. The given solution is cumbersome and not easy to use for control
design purposes. Moreover, the obtained transition matrix is shown to be accurate only for short
prediction horizons.

Geometric methods for the computation of closed form solution for the Js perturbed relative

(1.32)
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motion have been presented in [33,39]. They are based on the connection between the local Carte-
sian relative state and the differential orbital elements and no longer require the resolution of the
differential equations of motion. Gim and Alfriend consider in [33] both the short-period and the
long-period effects of the Jy perturbation, leading to a very accurate but complex solution that still
requires the knowledge of the evolution of the orbital parameters for the leader satellite. Hamel and
de Lafontaine simplify the problem in [39] by neglecting the short-term effects of Jo. They obtain
a solution that guarantees a bounded prediction error even for long horizons but that requires the
knowledge of the relative secular drift of the mean orbital elements.

Closed form solutions of the spacecraft relative dynamics are sought for the computational
advantage obtained from removing the integration process from the trajectory design algorithms.
Moreover, they can also provide some insight into the geometrical properties of the resulting tra-
jectories. Some examples of trajectory parametrizations that have been derived from such closed

form solutions will be presented in the next section.

1.5 Properties of relative trajectories

The spacecraft ability to maintain a naturally periodic relative motion has been thoroughly in-
vestigated, especially in the context of formation flight applications. Some of the initialisation
techniques for obtaining periodic solutions to the equations of spacecraft relative motion will be
presented next, along with some of the geometrical properties of the resulting trajectories.

The connection between the initial conditions of the periodic motion and the dimensions of
the obtained trajectory bears a lot of importance in the mission design process. The estimation
of the minimal distance between the spacecraft is essential for collision avoidance purposes while
the evaluation of the maximal distance plays an important role in the choice of the sensors for the
relative navigation. However, sufficient understanding of this connection has not yet been reached.
The next sections summarize some interesting results found in the literature in relation to this

topic.

1.5.1 Periodicity conditions

The distance between two spacecraft on Keplerian orbits cannot grow unboundedly [37]. This
observation is based on the fact that in the Keplerian case the spacecraft evolve on trajectories that
are bounded and do not change over time. However, unless some particular conditions are met, the
resulting relative trajectory is not periodic.

The notion of commensurable motion was first introduced in [38] and it refers to the relative
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motion between spacecraft evolving on orbits that verify the following condition:
pTy=qTy, pg€N (1.35)
where T; and T are the orbital periods of the leader and the follower spacecraft respectively. Since:
T =21 —, (1.36)
L
the condition (1.35) can be easily transformed into a condition on the semi-major axis of the orbits

2
ay = f’/%al (1.37)

or in a condition between the energy of the orbits. The restriction in (1.37) induces a restriction

corresponding to the two spacecraft:

on the relative trajectory. Figure 1.5 illustrates the trajectory obtained by propagating the relative
motion over 10 orbital periods for different ratios between the orbital periods of two spacecraft.
The relative trajectory appears to lay on a closed surface whose shape and dimensions depend on

the ratio chosen between the orbital periods.

Figure 1.5: Relative trajectories obtained for different ratios between the orbital periods

In the case where p = ¢ = 1, constraint (1.37) becomes:

ar =aq (1.38)

In this case, the relative trajectory between the two spacecraft is periodic (see Figure 1.6).
The 1:1 ratio between the orbital periods along with the connection between the semi-major

axis and the energy level of the orbit are used by Gurfil in [37] in order to write the energy matching
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Figure 1.6: Periodic trajectory obtained for p=¢ =1

condition for periodic motion. Using the nonlinear relative dynamics (1.11), the energy of the orbit
of the follower spacecraft is written as a function of the leader’s orbital elements and of the relative
state. Imposing for the energies of the two orbits to be equal leads to a polynomial periodicity

condition:

((R v, — D)2+ (v + (R — 2)) + vg) - yQIL—Ll— — —% (1.39)

N =

When the spacecraft relative motion is modelled using the linearized dynamics (1.12), the
existence of periodic trajectories can be proved by investigating the existence of periodic solutions
to the unforced differential equations of motion. For this representation of the relative motion, the
dynamics on the y axis are independent from the dynamics in the orbital plane and are naturally
periodic. Using Carter’s closed form solution for the spacecraft relative motion, Inalhan et al
prove in [46] the existence of periodic solutions for the zz motion and also provide an initialisation
procedure for obtaining periodic trajectories. The proposed initialisation procedure is valid only at

perigee (g = 0) and is given by:
e+2

%(O):e—klz

(0) (1.40)

This condition for periodic motion can be extended to arbitrary initial true anomalies, leading

to the following generalized expression [92]:

2 + 3ecos vy + €2 e sin g

f)x(ljo) = (1 T e cos 1/0)2 é(Vo) + 0 (1/0) (1.41)

z
1+ ecosyy

The only assumption made on the relative motion in the development of conditions (1.38) and

(1.39) is that of Keplerian motion. Conditions (1.40) and (1.41) are instead obtained using the
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linearized model for the relative motion and their application is restricted to the cases where the

linearisation hypothesis is valid.

The usage of the presented initialisation techniques is straightforward. They enable the compu-
tation of spacecraft relative states starting from which the resulting relative trajectories are periodic.
However, the periodicity conditions alone do not provide any information about the geometry of the
obtained trajectories such as shape, spatial orientation or minimal and maximal distances between
the two spacecraft. To answer these questions a deeper analysis of the obtained trajectories must

be carried out.

1.5.2 Inter-satellite distance

The ability to estimate the extremal relative distances between two satellites is a key point in the
design of relative trajectories and formations configurations. For two spacecraft on arbitrary elliptic
Keplerian orbits, analytical closed-form expressions for metrics quantifying the relative motion have
been developed by Gurfil and Kholshevnikov in [38]. The metrics used for the analysis of the motion
are the minimum, the maximum and the mean relative distance between the spacecraft. A general

expression for the relative distance is given as:

W(E;, Ef) = 2C|:|af = Wy + Wicos Ej + Wasin By + W3 cos By + Wysin Ep+

+2(Ws cos Ej cos Ey + W cos By sin Ey + Wy sin Ej cos Ep+ (1.42)

+W8 sin El sin Ef) + Wg COS 2El + W10 COS 2Ef

where the independent variables £ and Ey represent the eccentric anomaly of the leader and of

the follower spacecraft respectively.

The distance function W is a trigonometric polynomial of second degree in E; and Ef. Its

coefficients W; depend on the orbital elements of the two spacecraft:

AWo =200 +af) +ouef +aypef —4P Py Wi=es PPl —opey Wo=eyPrSf
Wy =P ST oWy =—$5T AWy =are}  4Wio=aye}

where:

ap=ay/ay ap =ayf/aq (1.44)
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and:

cos w cos §) — cos % sin w sin €2 —sinw cos §) — cos 7 cos w sin €
P = |coswsinQ + cosisinwcosQ| S=+vV1—e?|—sinwsin + cosicosw cos (1.45)

sin ¢ sin w sin ¢ cos w

The eccentric anomalies corresponding to the minimal and maximal distances between the two

satellites can be obtained by solving the system of trigonometric equations:

oW (E,,E;) . OW(E,Ef)

Reference [52] presents a method based on Grobner basis for eliminating one of the independent
variables, either E¢ or Ej. This procedure transforms the system (1.46) into an 8th degree univariate
trigonometric polynomial. The roots of this polynomial enable the computation of the eccentric
anomalies F; and Ey for which the extremal distances are obtained. These eccentric anomalies can
then be introduced in (1.42) in order to evaluate the corresponding relative distances.

The presented method can be used to evaluate the extremal distances between two spacecraft
after that the designer fixed their orbital elements. However, our purpose is to determine a proce-
dure for the computation of the orbital elements of the follower spacecraft that lead to some desired
values for the extremal distances between the spacecraft. In this case, a part of the coefficients
in the equations (1.46) transform from constant terms into decision variables. This changes the
nature of the equations and the resolution method presented in [52| can no longer be used. The
method in its current form cannot be easily integrated into a relative trajectory design procedure.

Slightly simpler expressions for the relative distance can be obtained in the case of spacecraft
periodic motion. The following section presents analytical expressions for the extremal distances
computed for some particular periodic spacecraft formations configurations, along with some geo-

metrical properties of the periodic relative trajectories.

1.5.3 Geometry of the periodic spacecraft relative motion

The study of the geometry of the spacecraft periodic motion usually starts from the computation of
parametric expressions for the periodic trajectories. Different parametrizations have been developed
in [48,55,92], each one providing insight into different aspects of the periodic motion.

In [55], Lane and Axelrad expressed the relative periodic trajectory as a function of the dif-
ferential orbital elements doe = [da de di 6 dw OM]. It is assumed that the difference between

the orbital elements of the leader spacecraft and the orbital elements of the follower spacecraft doe
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is small and the periodicity of the relative motion is achieved by imposing da = 0. According to
(1.38), this is equivalent to imposing a 1:1 ratio between the orbital periods of the two spacecraft.

The following parametric expressions are obtained:

aesinv
T = —acosvoe+ ——0O0M
V1—e? )
y = <a+ %) sinv de + %\/1 —e20M + R(dw + cosid9Q) (1.47)
—e

z = Rsin66i — Rsinicos 6 652

This trajectory parametrization is used to show that when eccentric reference orbits are considered,
the periodic relative trajectory is not an ellipse in any plane, except in some degenerate cases.
Conditions for obtaining periodic in-track formations, follower formations and in-track/cross-track
linear trajectories are extracted from expressions (1.47), along with an analytical evaluation of the

minimal and maximal separation between the spacecraft for these particular configurations.

In-track formations can be obtained by imposing the x and z position to be always zero. This

is achieved if de = dM = di = 62 = 0 and in this case the extremal distances are given by:
dmin = a0w(l —€) dmax = adw(l +¢) (1.48)

The follower formations are defined by two spacecraft that share the same groundtrack. This
configuration is obtained by imposing 6Q = — (W, /n)dM and da = de = di = dw = 0, where W, is
the Earth’s rotation rate. The parameters 62 and dM can be chosen in order to achieve a desired

spacecraft separation at perigee.

The in-track/cross-track formations require that the position on the x axis be always zero. An
initialization technique leading to this configuration with a desired spacecraft separation at perigee

is also developed in [55].

Starting form Carter’s solution for the relative motion, Jiang et al. provide in [48] rational

expressions for the spacecraft periodic relative trajectories projected onto the leader’s LVLH frame:

2(ecow —cq)

r=—c|+
vy )2 )
C1 W+ ecy c1w —ecs
—(1—
y=(—ejeztet w2 +1 1—euw?+1+e (1.49)
2
r = —es & (cqgw + c5)

(I—e)w?+1+e

where w = tan(r/2) and ¢; are parameters that depend on the leader’s orbital elements and on

the differential orbital elements. It is demonstrated that quadratic curves are obtained when the
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periodic relative trajectories are projected onto the coordinate planes of the LVLH frame and
that none of these curves are ellipses in the general case. It is also concluded that the spacecraft
periodic trajectories are usually three-dimensional and lay on quadratic surfaces, most frequently
on one-sheet hyperboloids, and in rare cases on elliptic cones or elliptic cylinders. The number of
self-intersections of the projections of the relative trajectory is computed and this information is
used to identify a possible risk of collision and to design formations with special shapes such as
figure-eight shapes in the coordinate planes.

A further parametrization for the spacecraft periodic motion has been proposed by Sengupta

and Vadali in [92]:
P1

x = a0 sin(v + ag)(1 + ecosv)
P1 P2

y = mcos(u—l—ao)(2+ecos v)+ al-) (1.50)
ps .

z= ) sin(v + Bo)

where the parameters p1, p2, p3, ag and By depend on the leader’s orbital elements and on the
differential orbital elements. These equations are used to study the effects of the eccentricity of
the reference orbit on the relative periodic trajectories. The analysis is done using Fourier series
expansions with both the time and the true anomaly as independent variables. The identified effects
are the presence of higher harmonics, amplitude scaling (for the same choice of parameters, the
orbit tends to shrink in the along track direction and expand in the out-of-plane direction as the
eccentricity increases), phase shift and skewness of the relative orbit plane. Correction methods
are proposed for reducing some of these effects.

Various sets of parametric expressions are used for the study of periodic trajectories and the
previous list is not exhaustive. The cited references help illustrating some of the main characteristics
of the spacecraft periodic relative motion and some of the difficulties encountered in its study. It
is interesting to remark from the presented parametrizations that the spacecraft periodic relative
trajectories can be defined as functions of 5 constant parameters that depend on the value of the
initial relative state and on the orbital parameters of the leader. However, in the general case, a clear
link between the value of these parameters and the dimension or the shape of the resulting periodic

trajectories has not yet been established and the designer needs to treat each case individually.

1.6 Conclusions

This chapter summarizes some of the most common representations of the spacecraft relative mo-

tion. It is showed that in general the spacecraft relative state is defined by 12 parameters: 6
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parameters that define the state of the leader spacecraft and 6 parameters that describe the state
of the follower spacecraft with respect to the leader. The general relative dynamics are however sim-
plified in the Keplerian case, especially if the orbital elements are chosen to represent the dynamics
of the leader spacecraft. In this case, out of the six corresponding parameters, only one changes
over time. Moreover, in the case of periodic relative motion, the spacecraft relative trajectory can
be written as a function of only five constant parameters.

When designing relative trajectories, the dynamics of the leader are considered known and
the decision variables are the remaining parameters that define the spacecraft relative state. The
challenge is to choose their value such that the resulting trajectory exhibits some desired properties
like periodicity, minimal and maximal separation between the spacecraft, a certain shape etc. The
following chapters will present a new set of parameters for the spacecraft relative motion. This new
description allows for the parameters corresponding to trajectories that respect some dimensions
constraints to be defined in a way suitable for integration into an optimization-based trajectory

design procedure.
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Résumé: Une bonne compréhension des propriétés du mouvement relatif des satellites est néces-
saire pour pouvoir obtenir des trajectoires relatives qui respectent les différentes contraintes imposées
par chaque mission (forme, dimension, etc.). Cependant, les propriétés exposées dans le chapitre
précédent n’apportent pas de solution satisfaisante G ce défi. Le présent chapitre introduit un nou-
veau set d’expressions paramétriques pour le mouvement relatif, basé sur la mairice de transition de
Yamanaka-Ankersen. Ces expressions paramélriques offrent un cadre de travail adapté o 'analyse
des propriétés géométriques des trajectoires. Elles mettent en évidence le fait que pour les trajectoire
périodiques la dynamique des paramétres est constante. Une étude qualitative illustre le lien entre

la valeur des paramétres et les dimensions des trajectoires qui en résultent.

The study of the properties of spacecraft relative motion is motivated by the need to design
spacecraft trajectories that respect different types of constraints (dimension, shape etc.). Several
parametric expressions for the periodic relative motion have been presented in the previous chapter,
each representation providing different insights into the geometrical characteristics of the spacecraft
relative trajectory. However, no procedure for choosing the parameters in such a way that the
relative trajectory exhibits some desired properties has been provided in the general case.

A new set of parametric expressions for the spacecraft relative motion is derived in this chapter.

The aim is to provide a framework for the analysis of the spacecraft relative dynamics. The
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expressions are obtained starting from the Cartesian model for the relative motion, which is usually
preferred for spacecraft rendezvous applications. By working in the space of parameters, some
interesting properties of the spacecraft relative motion can be evidenced. Our main focus is on the
study of the influence that the values of these parameters have on the dimensions of the resulting

spacecraft autonomous trajectory.

In the case of periodic relative motion, it is showed that a constant set of parameters can be
used to define the periodic trajectory. The values of these constant parameters are proved to be
directly connected to the properties of the resulting trajectory. An important role is also played by

the eccentricity of the reference orbit and illustrations are provided for some of its effects.

2.1 Definition of the parameters

Consider the relative motion between two spacecraft on arbitrary elliptical Keplerian orbits. As
seen in the previous chapter, the propagation of the autonomous spacecraft relative trajectory,

starting from an initial relative state X (1), can be expressed as:
X(v) = ®(v,10)X (1), v > 1 (2.1)

where ®(v, 119) denotes the Yamanaka-Ankersen transition matrix [103]. The relative state X (v) is
defined by the spacecraft relative position and velocity expressed in the LVLH frame attached to
the leader: X (v) = z(v) gv) zZ(v) 0,(v) vy(v) @Z(y)}T.

Parametric expressions for the relative position between the spacecraft can be obtained by
expanding the terms in (2.1) and then factoring out some of the terms related to the independent

variable v:

Z(v) = (2+ecosv)(dy sinv — dy cosv) +ds + 3dg J(v)(1 + ecosv)?

(v) = dy cosv + ds sinv V> (2.2)

Z(v)

<

(14 ecosv)(de sinv +dy cosv) —3edy J(v)sinv(l + ecosv) + 2dy

The parameters d; in (2.2) are computed directly from (2.1) and can be written as a function
of the initial conditions of the relative trajectory propagation. Let D(19) € R® be the wector of

parameters for the spacecraft relative motion evaluated at vg, defined as:

D(w) = |do(vo) di(vo) dao(vo) ds(vo) da(vo) ds(vo) ! (2.3)



2.2. Properties of spacecraft relative trajectories

35

The elements of the vector D(vy) depend linearly on the initial spacecraft relative state from

which the relative trajectory is propagated:

D(VQ) = C(VQ)X(VO)

(2.4)

The matrix C(v) € R%*6 is defined as a function of the eccentricity of the orbit of the leader

satellite and the true anomaly for which the vector of parameters needs to be evaluated:

_0 0 —(3ecosv+e+2) (14 ecosv)? 0 —esinv(l4ecosv)
e2—1 ez —1 e —1
0 0 3(e + cosv) —(2cosv+ecos? v+te) 0 sinv(1 + ecosv)
ez —1 e2—1 ez —1
3sinv(1+ecosv+e?) —sinv(2+ecosv) —(cos v+e cos? v—2e)
0 0 3 3 0 3
Cv)= (e2—1)(1 +ecosv) e? —1 e2—1
1 0 —3esinv(2+ecosv) esinv(24ecosv) 0 e? cos? v4ecosv—2
(e2—=1)(1+ecosv) ez —1 e2—1
0 cosv 0 0 —sinv 0
0 sinv 0 0 cos v 0

2.2 Properties of spacecraft relative trajectories

The advantage of expressing the spacecraft relative position in the form (2.2) is that it enables the
direct identification of some of the effects that the values of the parameters have on the spacecraft
relative trajectory. Parameters d; and do influence the amplitude of the motion in the xz plane
while parameters d4 and ds define the amplitude of the periodic motion on the y axis. The value
of the parameter d3 corresponds to an offset term on the position on the z axis and the parameter
dp defines an offset on the z axis and influences the contribution of the integral term J(v).

When propagating the linearized spacecraft autonomous relative motion in the general non-
periodic case, it can be noticed that the amplitude of the relative trajectory in the xz plane appears
to grow unboundedly (see Figure 2.1). This is not surprising since the term J(v) grows linearly in
time (1.33), but its effect is modulated by the value of the parameter dy.

According to (2.4), the values of the parameters D depend on the instant when they are evalu-
ated. Changing the initial time for the propagation will also change the value of the parameters. The
definition (2.4) can actually be seen as a state transformation that maps the spacecraft Cartesian
relative state X (v) to the state space corresponding to the vector of parameters. This suggests that
some insight on the properties of the spacecraft relative trajectories could be gained by analysing

directly the dynamics of the vector D.
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Figure 2.1: Spacecraft autonomous relative trajectory in the xz plane

2.2.1 Dynamics of the vector of parameters

The variable change defined by:
D(v)=Cw)X(v) (2.6)

represents a valid state transformation since the matrix C'(v) is always invertible on the domain on

which the spacecraft closed trajectories are defined:

1
—e
The passage from the space of the D parameters back to the Cartesian relative state is given

by the inverse matrix:

X(v)=C'(v)D(v) = F(v)D(v) (2.8)

where F(v) € R%%6 is defined as:

0 sinv(2 + ecosv) —cosv(2+ecosv) 1 0 0
0 0 0 0 cosv sinv
2 cosv(l+ecosv) sinv(l+ecosv) 0 0 0
Fv) = (2.9)
3 2ecos?v +2cosv—e  2sinv(l+ecosv) 0 0 0
0 0 0 0 —sinv cosv
3esi
L A v(1+2ecosv) 2ecos’v —e+cosv 0 0 0
L 1+ ecosv J

The dynamics of the vector of parameters D(v) can be deduced from the dynamics defining the
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spacecraft relative motion. When the relative state is represented using local Cartesian coordinates,

the relative dynamics can be modelled by a linear periodic dynamic equation:
X'(v)=AWw)X(v) (2.10)

where the matrix A(v) is defined as in (1.19). After differentiating (2.6) with respect to the

independent variable v, we obtain:
D'(v)=C'W)X(v)+ C()X'(v) (2.11)
Introducing (2.8) and (2.10) in the previous equations leads to:
D'(v) = Ap(v)D(v) (2.12)
with the matrix Ap(v) defined by:

Ap(v) = C'(v)C7 (v) + C()A(v)C~H(v) (2.13)

The expression for the dynamic matrix Ap(v) can be obtained through direct computation:

0 000 0O
0 00000
3

1+ eceos v)? 00000

Ap(v) = 3 (2.14)

— 0 0 0 0 O

(1+ ecosv)?
0 0 00 0O
0 0 00 0O

A state transition matrix can be easily computed for the dynamical system (2.12). Assuming
that the spacecraft relative motion is propagated using the Yamanaka-Ankersen transition matrix

as in (2.1) and using the transformation (2.8), we obtain:

D(v) =C(v)®(v, V())C_l(l/())D(Vo) = ®p(v,v9)D(1p) (2.15)
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where the state transition matrix ®p(v, 1) is given by:

1 00000
0 10000
—3eJ(v,vy) 01 0 0 0O
Pp(v,1p) = (2.16)
3J(v,ip) 0 0 1 0 0
0 00010
0 0000 1]

The term J(v, 1) is the same integral term defined in (1.33).

The dynamic matrix Ap and the transition matrix ®p highlight some interesting properties
of the spacecraft relative motion. It can be seen that the parameters d4 and ds that define the
motion on the y axis are always constant in time, implying that the motion on the y axis is always
bounded. This is consistent with the fact that the motion on the y axis is known to be periodic.
The parameters dy and d; are also constant while the values of ds and ds change over time. The
evolution of dy and ds is conditioned by the value of dy. It can be seen that in the general case their
modulus grows linearly with respect to time. The parameters remain constant only when dy = 0

and the importance of this particular case is discussed in what follows.

2.2.2 Properties of periodic trajectories

Expressions (2.2) show that the integral term J(v) is the only non periodic term in the propagation

of the spacecraft relative position. In the particular case where:

do(vo) =0 (2.17)

the resulting relative trajectory is periodic because the drifting term J(v) is cancelled. This leads
to the following simplified parametric expressions for the propagation of spacecraft periodic relative
trajectories:

Z(v) = (2 + ecosv)(di(v) sinv — da(vp) cos v) + ds(vp)

g(v) = d4(vy) cosv + ds(vp) sinv (2.18)

Z(v) = (1 + ecosv)(da(vy) sinv + di (1) cos v)

Expressions (2.18) reveal the fact that the spacecraft relative periodic trajectories are always
centered around zero on the y and z axes. An offset can be set on the x axis through the dj

parameter. The parameters corresponding to the amplitude of the motion on the y axis can be
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fixed to zero in order to obtain a planar periodic trajectory:
dy=0 ds=0 (2.19)

and, as in the general case, the dimensions of the trajectory in the xz plane depend on the value of
dy and ds. Moreover, according to the dynamics of the vector D given in (2.12), all the parameters

are constant in time in the particular case of periodic motion. This means that:
C(v))X (vi) = C(v))X (v;) = D(w), Vi # vj for D(v) such that do(v) = 0 (2.20)

Once the constant vector of parameters corresponding to a periodic trajectory is known, equation
(2.8) can be used to calculate at any time the corresponding local Cartesian relative state. This
representation offers more flexibility than the typical methods for specifying periodic trajectories
which rely on the usage of simple parametric curves, such as circles or ellipses, in order to be able

to easily compute the corresponding spacecraft relative state [40,65,105].

Given the definition (2.6), it can be seen that for constraint (2.17) to be verified, the spacecraft
relative state must satisfy:

M,(v)X (v) =0 (2.21)

where M,(v) € R0 denotes the first line in the C'(v) matrix (2.5). This periodicity constraint
on the relative state is actually equivalent to the initialisation condition (1.41) presented in the
Chapter 1. Moreover, if the constraint (2.21) is satisfied at a moment v;, it will be satisfied by all

the following states belonging to the autonomously propagated trajectory:
Mp(l/i)X(l/i) =0 = Mp(Vj>X(Vj) = 0, VVj > v (222)

This property reflects the fact that the parameter dy always has a constant dynamic and it can be

very easily verified on the trajectory propagated using the transition matrix.

The constant dynamics of the dy parameter have yet another important consequence: trajecto-
ries that start arbitrarily close to a periodic trajectory will not naturally converge towards it. If dg
becomes different from zero as a result of disturbances acting on the system, then a control law will
need to be set in place to drive it back to zero and to ensure the periodicity of the relative motion.
This unstable behaviour of the periodic relative trajectories is also confirmed by the properties
of the monodromy matrix corresponding to the spacecraft relative motion (see the discussion in

Appendix A).
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2.3 Numerical analysis of the periodic relative motion

The form of expressions (2.2) suggests that the values of the parameters D are connected to the
dimensions of the spacecraft relative trajectory. However, even in the case of periodic relative motion
where the relative trajectory is defined by the simplified expressions in (2.18), it is not possible
to precisely define the nature of this dependency just by analysing the propagation equations.
Numerical examples are used here in order to support some of the observations made in the previous
sections.

To simplify the analysis, we consider only planar periodic relative trajectories that have no

offset on the x axis. This type of trajectory is defined by a vector of parameters of the form:
T
D=10 d dy 0 0 o} (2.23)

2.3.1 The effects of the eccentricity of the leader orbit

The transformation matrix F(v) between the Cartesian spacecraft relative state and the vector
of parameters D depends on the eccentricity of the orbit of the leader satellite. This suggests
that for reference orbits of different eccentricities, the same constant vector of parameters may
produce periodic trajectories that display different geometrical characteristics. The influence of the

eccentricity is analysed using a vector of parameters of the form (2.23) for which:
di=-1 do=-1

For this particular choice for the vector D, Figure 2.2 illustrates the change in the shape of the
obtained periodic trajectory caused by the change in the eccentricity of the reference orbit. For
small eccentricities the periodic trajectory appears to be symmetrical and resembles an ellipsoid.
However, for higher eccentricities the obtained trajectory becomes increasingly "irregular". This
supports the observation made in [48] that the projections of a spacecraft periodic relative trajectory

onto the xz, xy or yz plans are not ellipses in the general case.

2.3.2 The effects of the values of the parameters

In order to study the effect of the sign of the d; and do parameters on the resulting periodic

trajectory, we consider a vector of parameters in the form (2.23) for which:

|di| = |d2| =1
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Figure 2.2: The effect of the eccentricity on the obtained periodic trajectory

Figure 2.3 depicts the periodic relative trajectories obtained for a reference trajectory of eccentricity
e = 0.5. It can be noticed that a change in the sign of d; causes a rotation of 180° around the z
axis of the original trajectory. A change in the sign of dy causes instead a rotation of 180° around

the z axis of the original trajectory.
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Figure 2.3: The effect of the sign of the parameters on the periodic trajectory for e = 0.5
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For reference trajectories that have different eccentricities, Figures 2.4 and 2.5 illustrate the
effects of the values of the parameters d; and ds on the spacecraft periodic relative motion. For
smaller eccentricities, the obtained periodic trajectory is nearly symmetrical so the effect of increas-
ing d; is similar to that of increasing dy (Figure 2.4). However, for higher eccentricities, the effects

of the two parameters become quite different (Figure 2.5).
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Figure 2.5: The effect of a change in the parameters for a reference trajectory of e = 0.5

Other than the influence on the shape of the obtained trajectory, it can be seen that the
eccentricity of the orbit of the leader satellite also determines how much a change in the values
of the parameters reflects into a change in the dimensions of the resulting periodic trajectory.
Given the complex nature of this interaction, general conclusions cannot be drawn from just a
few numerical examples. The aim of these examples was to emphasize the need for a precise
mathematical characterisation of the connection between the dimensions of a periodic trajectory,

the vector of parameters that describes it and the eccentricity of the reference orbit.
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2.4 Conclusion

New parametric expressions for the spacecraft relative trajectory are derived from the linearized
Cartesian model of relative motion. The obtained parametrization provides a new state vector
whose dynamics can be used to study the properties of the spacecraft relative motion. The analysis
of the equations defining the dynamics of the vector of parameters shows that every spacecraft peri-
odic relative trajectory corresponds to an equilibrium point of this new state space representation.

The intuitive form of the parametric expressions allows us to directly identify some of the effects
that the choice of some particular values for the parameters have on the resulting relative trajectory,
especially in the case of periodic spacecraft relative motion. However, the presented numerical
examples suggest that the shape and the dimensions of the spacecraft periodic trajectories depend
in fact on the complex interaction between the eccentricity of the leader’s orbit and the value of
the parameters. These examples emphasise the need for a precise mathematical characterisation
of the vector of parameters corresponding to relative trajectories that respect some dimensions

constraints.
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Résumé: Le présent chapitre fournit une description formelle de l'ensemble des paramétres cor-
respondant & des trajectoires relatives inscrites dans un sous ensemble particulier de l’espace d’état
relatif. Pour caractériser le lien entre les valeurs des paramétres et la dimension des trajectoires
obtenues, il faut tenir compte d’une part de Uinfluence de excentricité et d’autre part de la présence
du terme intégral J(v) dans le cas général. De plus, comme les contraintes sur la dimension doivent
généralement étre respectées de maniére continue sur un intervalle de temps fizé, il n’est pas facile
d’obtenir une description des parameéetres admissibles qui soit facilement exploitable dans un al-
gorithme de guidage des satellites. FEn se basant sur les propriété des polynémes non-négatifs,
ce chapitre donne une description mathématique précise de [’ensemble des paramétres admissibles.

Cette description est finte et compatible avec les algorithmes de programmation semi-définie positive.

The previous chapter emphasized the need for a rigorous mathematical characterization of the
set of vectors of parameters that correspond to spacecraft relative trajectories which respect some
dimensions constraints. Even in the simpler case of periodic relative motion, a precise description of
the admissible trajectories has not yet been reached. The main difficulty lies in the characterisation,

for a given set of parameters, of the influence of the eccentricity of the reference orbit on the resulting
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relative trajectory. In the general case, the presence of the integral term J(v) in the expression of

the relative trajectory renders the analysis even more complex.

Another challenge comes from the fact that the dimensions constraints on the trajectory usually
need to be imposed continuously in time over a specified interval. This translates into an infinite
number of conditions that need to be verified in order to certify that a given trajectory respects

the desired dimensions requirements.

This chapter provides a solution to these problems in the form of a finite convex description of

the admissible spacecraft relative trajectories for a given set of dimensions constraints.

3.1 Definition of admissible trajectories

From a mathematical point of view, the constraints on the dimensions of the spacecraft relative

trajectories can be written as linear constraints on the spacecraft relative positions:

Tmin < .’L‘(t) < Tmax -i'min(y> < 57(1/) < jmax(y)
Ymin < y(t> < Ymax > vt e [to tf] A gmin(l/) < Z](l/) < gmax(”) , Vv € [VO Vf} (31)
Zmin < Z(t) < Zmax 2min(”) < 2(”) < émax(V)

Equation (3.1) illustrates the effects of the variable change (1.17) on the dimension constraints: the
constant minimum and maximum bounds for the time domain transform into bounds that depend
on the true anomaly of the leader spacecraft v. The constraints must be respected continuously on

the intervals [tg tf] and [1y v¢] respectively.

The constraints in (3.1) can be written in a more compact way as:
HX(v) <V(v), Y€ [ vy] (3.2)

where the matrices H and V define a generic polytopic set. Using the definition in (3.2), the set
of spacecraft relative states starting from which the autonomously propagated trajectories remain

inside the polytopic set (H, V) during the specified interval can be defined as:
S(H,V,vo,vp) = {X(yo) eRS | X(v) = (v, 10)X (), HXW) < V(v), Vv € [ yf]} (3.3)

An equivalent form can be given to the set of parameters defining relative trajectories that respect
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the given trajectory constraints during the specified interval:

Sp(H,V,vp,vy) = {D(uo) € RS | D(v) = ®p(v,10)D(wo), H F(v)D(v) < V(v), Vv € [ yf}}
(3.4)
with the matrix F'(v) defined in (2.9).

The admissible spacecraft relative trajectories are described in (3.3) and (3.4) using only linear
constraints. However, it should be noted that the trajectory constraints need to be verified con-
tinuously on the specified interval. As a consequence, an infinite number of conditions need to be
checked in order to certify that a state or a vector of parameters correspond to a trajectory which

respects the specified requirements.

As seen in Chapter 2, the periodic spacecraft relative trajectories can be described by a constant
set of parameters. However, the set of parameters defining admissible periodic spacecraft relative
trajectories is still defined by infinitely many conditions. This happens because the constraints

themselves depend on the true anomaly of the leader spacecraft:
SE(H,V) = {D €R® | dy=0, HF()D < V(v), Yve [0 271}} (3.5)

The interval on which the constraints need to be checked is limited to one orbital period in this case
because the trajectory is periodic, but checking that a vector D defines an admissible trajectory is

still a hard problem.

Inside a given polytopic set there can be found many trajectories that respect the dimensions
constraints (see Figure 3.1). We are interested in obtaining a finite description of all these admissible

trajectories.

3.2 Finite description of admissible trajectories

Imposing continuous constraints on the spacecraft relative trajectories leads to a description of the
admissible trajectories using an infinite number of constraints. The provided description is accurate
but not very well suited for trajectory design purposes. This is due to the difficulty in certifying
that a given trajectory respects all the required conditions. Two methods for reaching a finite

description of the admissible trajectories are presented in what follows.
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Figure 3.1: Examples of periodic spacecraft relative trajectories that evolve inside a polytopic set

3.2.1 Finite description using constraints discretization

A straightforward method for rendering the number of constraints finite consists in the so-called
constraints discretization. The original continuous constraints are replaced by constraints that are
checked only at some specified locations [17,19,99]. The definition in (3.4) for instance is replaced
by:

Sp(H,V,vg,m) = {D(Uo) e RS | D) = ®p(vk, v0)D (o), H F(vp)D(v) < V(vg), k = 1..m}
(3.6)
where m refers to the number of points where the constraints are explicitly verified.

The problem with this type of approach is that the accuracy of the obtained solution depends
on the specific choice made for the different parameters, like the number of discretization points
and their particular distribution over the original interval. Moreover, this type of methods do not
provide a rigorous characterisation of the obtained results. There are no theoretical guarantees that
no constraints violations will occur in between the discretization points and a posterior: checks are

needed in order to validate the solution.

3.2.2 Finite description using non-negative polynomials

The idea of using the properties of non-negative polynomials to obtain a finite description of the

admissible spacecraft relative trajectory came from the desire to exploit the structure of the solution
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for the relative motion provided by the transition matrix. The expressions (2.18) show that for the
periodic relative motion the trajectory is defined by trigonometric polynomials. In this case, the
dimension constraints (3.1) can be easily written as polynomial non-negativity constraints.

In the general case, the presence of the integral term J(v) in the expressions of the spacecraft
relative trajectory renders the approach more complex. In order to reach a polynomial description
of the admissible trajectories, the term J(v) can be replaced with a suitable approximation. The
complete procedure is presented in detail in the following section.

Once the dimensions constraints on the spacecraft relative trajectory are transformed into poly-

nomial non negativity constraints of the type:
P(w) >0, Yw e W (3.7)

the results presented by Nesterov in [73] can be used in order to obtain a finite description of the
admissible trajectories without relying on discretization. It is showed that polynomial non negativ-
ity constraints can be transformed into conditions of existence of one or two constrained positive
semi-definite matrices (see Appendix B). The infinite number of points where the polynomial non-
negativity constraint needed to be checked can be replaced with only one Linear Matrix Inequality

(LMI) constraint.

3.3 Description of constrained trajectories using non negative poly-

nomials

3.3.1 Rational expressions for the spacecraft relative motion

The following variable change can be used in order to transform the trigonometrical terms in the

expressions for the propagation of the spacecraft relative trajectory into rational terms:

1 — w? . 2w
sinv =

3.8
e o (3-8)

v
w = tan <§>, CoOSV =

Introducing (3.8) into (2.2) leads to the following expressions for the spacecraft relative positions:

z(w) = m [Pr(w) + 3do Pyz(w) J(w)]
i(w) = ﬁpy(w) 0> wg (3.9)
W) = ——— [P, (w) + 2do Py (w) J(w)]

(14 w?)?
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where the polynomials Py, (w) and Py, (w) depend only on the eccentricity of the orbit of the leader

satellite and are given by:
Pr(w) = (1 +e)+ (1 —e)w?)* Pr(w) = —3e((1—e)w+ (1 —e)w?) (3.10)

and the term J(w) is obtained by introducing the variable change (3.8) into (1.33):

27242

J(w) :/wo ((1_€>T2+€+1)2d7‘ (3.11)

The polynomials P,(w), Py(w) and P,(w) are defined by:

mew Py Zpylw P, (w me (3.12)

T T
and their vectors of coefficients, p, = [pr Prl Pa2  Pa3 p“} , Py = [pyo py1 py2| and

T
Dy = [sz Pl P22 P23 pz4} respectively, depend linearly on the vector of parameters D(vy):
Pz = Cy D(VO) Py = Cy D(”O) p.=C; D(VO) (3'13)

The matrices C, C, and C, depend only on the eccentricity of the reference orbit and are given

by:

0 0 —2-¢ 100 0 e+1 0 0 0 0

0 442¢ 0 0 0 0 0000 1 0 0 0 242 00 0
C,=lo0 0 2 200/ C=l0000 0 2[C=l0 22 0 000
042 0 00 0 0000 ~10 0 0 2-2 00 0
0 0 2-¢ 100 0 e=1 0 00 0
(3.14)

The idea behind the usage of the transformation (3.8) is to obtain a description of the spacecraft
relative trajectories that contains only terms of the same nature. The final purpose is to reach
some polynomial expressions for the constrained spacecraft relative motion that can lead to a finite
description of the admissible trajectories. The expressions (2.2) contain a combination of integral
and trigonometric terms and even expressions (3.9) are not entirely rational because of the presence
of the term J(w). Without further manipulations, the spacecraft relative trajectory is defined by

rational expressions only in the case of periodic motion. When dy = 0, the relative trajectory is
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given by:

1 1 1

z(w) = m P.(w) g(w)= 5w Py(w) Z(w)= m P, (w) (3.15)

The advantage of introducing the variable change (3.8) is that, if the integral term J(w) is replaced
by a polynomial approzimation, then the obtained expressions for the spacecraft relative motion
contain only rational terms. These expressions will allow us to characterize all the spacecraft

relative trajectories that respect some dimensions constraints.

Polynomial approximation of the integral term J(w)

Even if the integral term (3.11) has a closed form solution given by:

ve—1 v
Jw) — 9w ) 2arctanh <\/€+_1w> 516)
@ —Dle+ 1+ 1 —eu?) GERE -

wo

the nature of the terms involved in its definition does not bring us closer to our objective. Results
in [21] show that a fixed-degree polynomial approximation with a certified mazimum approximation
error can be computed for the integral expression (3.11). However, the interval on which J(w) can
be approximated by a polynomial must be a finite subset of R. This comes from the fact that the
term J(w) is discontinuous on the bounds of its definition set (i.e. from (3.16): wlgrzlm J(w) #

lim J(w)) and consequently no polynomial or rational function can approximate J(w) on R.
w—r00

Let ©4(w) be a polynomial of degree ¢ such that:
O4(w) —e < J(w) < BOy(w) +¢, Vwe W (3.17)

where W represents the interval on which the polynomial approximation is valid and ¢ represents the
maximum approximation error on that interval. Following from (3.17), upper and lower polynomial

bounds for the term J(w) can be defined on the interval W:

Ou(w) = Og(w) + ¢, O)(w) =0O4(w) —¢ (3.18)

These polynomial bounds can be combined with expressions (3.9) in order to obtain rational
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bounds for the xz spacecraft relative trajectory in the general case:

~ _ # w w w
f1u(w) = 5 ) [Pe(w) + 3do Pya(w) Opu(w)] e (3.19)

2l,u(w) = m [Pz(w) +2 do PJZ(’IU) @l,u(w)]

with:

) , YweW (3.20)

3.3.2 Constrained non periodic trajectories

Let us consider some dimension constraints on the relative trajectories specified through a polytopic
set given by some H and V matrices as in (3.2). We assume for simplicity that the constraints are
imposed only on the relative positions. By expanding each constraint and integrating the variable
change (3.8), we can write:

~ ) ) 1+e+(1—euw’
hig Z(w) + hi2 G(w) + hiz Z2(w) < o 2€)w
14+w

vi, Yw € [wo wy], i = 1.5 (3.21)

where h; ; and v; are elements in the matrices H and V that define the polytopic set and s is the
number of constraints in the definition.
Let us define expressions Z;(w) as:

L+e+(1-e)w?
14 w?

EZ(’U)) = —hi71 j(w) — hi72 gj(w) — hi73 2(11)) + v, 1= 1..s (322)

Using expressions (3.22), the set of parameters corresponding to autonomous spacecraft relative
trajectories that respect the polytopic constraints over a specified interval [wg wy] can be defined
as:

Sp(H,V,wp,wg) = {D(wp) € R® | E;(w) >0, Yw € [wy wy], i =1..s} (3.23)

By bringing the terms to the lowest common denominator, a more compact form can be obtained
for Z;(w):

1
5 Li(w), i =1..s (3.24)

Ei(w) = A+ w2

where the polynomials I';(w) are defined by:

[i(w) = —hi1 [Pe(w) + 3do Py (w) J(w)] — hi2 Py(w) — hi 3 [P.(w) +2dy Py, (w) J(w)] + v; T(w)
(3.25)
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In the previous definition the polynomial P,(w) is obtained as P,(w) = (14+w?)P,(w) and the poly-
4
: T
nomial T'(w) is given by T'(w) = Z t; w* with the vector of coeflicientst = |{14+e¢ 0 2 0 1—¢
i=0
The coefficients of the other polynomials in (3.25) depend on the vector of parameters D, as defined

in (3.12).

The term (1+w?)? in (3.24) is non negative for all w € R. This means that the set Sp(H, V,wo, wy)

can also be defined as:

Sp(H,V,wo,wg) = {D(wy) € R® | [;(w) >0, Yw € [wy wy], i = 1.5} (3.26)

Let T!(w) and T'¥(w) be the polynomials obtained from expressions I';(w) after replacing the
integral term J(w) with its lower and upper polynomial bounds, ©;(w) and ©,(w) respectively. In
this case we have:

P(w) < Ti(w) < T (w) (3.27)
where:

I‘é(w) = —h@l [Px(w) + 3dg PJg;(’w> @l(w)] — hig Py(w) — hi73 [Pz(w) + 2dy sz(w) O, (w)] + v; T(w)

T%(w) = —h;1 [Pe(w) + 3do Pru(w) Oy (w)] — hia Py(w) — hi 3 [P:(w) + 2do Pr.(w) Oy (w)] + v; T(w)
(3.28)

The degree of the polynomials Tt (w) and I'*(w) depends on the degree of the polynomial approxi-
mation of J(w). Considering the definitions given in (3.13), it can be noted that the coefficients of
the polynomials in (3.28), denoted 4! and v respectively, are constant and depend linearly on the

value of the vector of parameters D at the beginning of the interval [wy wy].

The polynomials I':(w) and I'¥(w) allow for the set Sp(H,V,wo,wy) to be defined using only

polynomial non negativity constraints:
Sp(H, V,wo,wy) = {D(wo) e RS | Th(w) > 0, T¥(w) > 0, Yw € [wo wy], i = 1..5} (3.29)

The constraints on the expressions I';(w) have been replaced by constraints on its upper and lower
polynomial bounds. The resulting increased number of constraints is the price to pay for robustness

with respect to approximation errors for the term J(w).

Using the connection between the coefficients of non negative polynomials and the symmetric

positive semi-definite matrices given in [73], the set Sp(H,V,wo,ws) can be defined using a finite



54 Chapter 3. Constrained spacecraft relative trajectories

number of constraints:

Sp(H,V,wp,w) = { D(wy) € R I Vg 205t 7 = ATV, Y) , Vi=1.s (3.30)
TV YE = 056 A% = ATV V)

The linear operator A* is defined as in (B.4) or as in (B.5), depending on the case. The dimensions of
the positive semi-definite matrices involved depend on the degree of the polynomial approximations
for the J(w) term, ©;(w) and ©,(w). Please note that to every non negativity constraint in (3.29)
corresponds a pair of matrices Y7, Ys. Each polynomial non negativity constraint that needed to be
checked for infinitely many points has now been replaced by an equality constraint on the coefficients
of that polynomial. This means that Sp(H,V,wp,wy) is defined using only linear restrictions on

the vector of parameters D at the beginning of the chosen interval.

3.3.3 Constrained periodic trajectories

The description of the admissible trajectories is simplified in the case of periodic spacecraft relative
motion. The periodic trajectories that respect some polytopic constraints can be defined directly
in terms of non negativity conditions of some polynomials, without any need for approximations.

In the periodic case, the expressions in (3.25) become:
Ff(w) = —hi71 Pm(w) — hig Py(w) — hig Pz(w) + v; T(w) (3.31)

This leads to the definition of the set of constant parameters that correspond to admissible trajec-

tories using a finite number of polynomial non negativity constraints:
SP(H,V)={D€eR®|dy=0,T(w) >0, Vwe R, i=1.s} (3.32)

The non negativity of the polynomials I' (w) needs to be checked on an infinite interval since the
variable change (3.8) maps one orbital period to R.

Using the property of non negative polynomials on infinite intervals given in [73], the set of
parameters corresponding to spacecraft periodic relative trajectories that evolve inside a specified
polytopic set can be defined as:

dop=0

SP(H,V)={DecR" (3.33)
Y, = 0st ' = A*(Y;), Vi=1.s

where /" are the vectors of coefficients corresponding to the polynomials I'V(w). As for the non
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periodic case, 77 depend linearly on the value of the vector of parameters D. Since we are dealing
with periodic trajectories, the vector of parameters is constant over the infinite interval. The degree
of the polynomials I'’(w) is easy to compute in this case and is less or equal to 4 (see (3.31) and

(3.12)). This means that the variables Y; are at most 3 by 3 matrices.

3.4 Conclusion

When continuous constraints need to be imposed on the spacecraft relative trajectory, the set of
admissible trajectories is described using an infinite number of constraints that need to be checked
in order to validate an obtained solution.

A new method for rendering the description of admissible trajectories finite is presented in
this chapter. The method exploits the structure of the solution for the spacecraft relative motion
provided by the transition matrix and it is based on the properties of non negative polynomials. The
presence of the integral term J(w) determines the usage of rational expressions for the description
of the spacecraft relative motion. In this framework, the term J(w) can be approximated by a
polynomial, leading to a description of the admissible trajectories using only polynomial constraints.

Unlike the classical constraints discretization approach, the presented method provides a finite
characterisation of the admissible trajectories that guarantees continuous satisfaction of the con-
straints. Checking that a solution belongs to the set of admissible trajectories is translated into
checking the existence of some constrained semi-definite positive matrices. This description of the
admissible trajectories is used in the following chapter as part of a spacecraft relative trajectory

design procedure.
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Résumé: Le guidage en rendez-vous orbital consiste a déterminer une série des manceuvres im-
pulsionnelles qui aménent le satellite chasseur en prorimité de la cible. Le calcul des manceuvres
doit tenir compte simultanément des différentes contraintes de la mission donnée, comme des con-
traintes de sécurité, des contraintes de visibilité ou des contraintes de passage par une série des
positions prédéfinies. Les ressources en ergols étant limitées, le plan de manceuvres obtenu doit
ausst minimiser la consommation de combustible. Dans un premier temps, ce chapitre formule le
probléeme de guidage comme un probléme de commande optimale sous contraintes. Le cadre choisi
est celui des méthodes directes de tirs qui exploitent la transition du mouvement relatif pour con-
vertir le probléme de commande optimale en probleme d’optimisation paramétriqgue. La description
des trajectoires admissible développée dans le chapitre précédent est utilisée pour garantir que les

trajectoires obtenues respectent les contraintes données.

The orbital rendezvous guidance problem consists in computing a series of orbital maneuvers
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that successively bring the chaser vehicle in the vicinity of and eventually in contact with the target
spacecraft. These maneuvers must account for the different conditions and constraints that must
be fulfilled in order to guarantee the success of the mission. The operations in the vicinity of the
target spacecraft may impose safety constraints, approach-trajectory corridors and waiting points
along the trajectory for verifying the vehicle functions and other conditions. Since the propellant
is such an important resource in spacecraft applications, the approach maneuvers must be optimal
from a fuel consumption point of view. Moreover, the amplitude of the computed maneuvers must
also respect the physical limitations of the spacecraft thrusters.

The general mathematical formulation for the fixed-time spacecraft rendezvous guidance prob-
lem is presented at the beginning of this chapter. It is showed that, in the context of direct shooting
methods, the optimal control problem can be written as a linear program. In addition, the case
where different types of trajectory constraints need to be introduced in the guidance problem is
also considered. For each of the considered spacecraft trajectory constraints, the control problem
is constructed by integrating the mathematical description of the admissible relative trajectories
given in Chapter 3. The resulting solution is guaranteed to lead to a rendezvous trajectory which

satisfies continuously the specified constraints.

4.1 Fixed-time linearized impulsive spacecraft rendezvous

In the context of the fixed-time rendezvous guidance problem, the duration of the rendezvous
mission is considered to be fixed and known a priori. The spacecraft thrust maneuvers are approxi-
mated with impulsive maneuvers, meaning that their effect is modelled as an instantaneous change
in the spacecraft relative velocity. Moreover, the number of thrusts N and the thrusting instants
are also fixed a priori. The decision variables are represented by the amplitudes of the velocity

changes expressed in the LVLH frame attached to the leader spacecraft.

4.1.1 General formulation of the guidance problem

The trajectory design for spacecraft rendezvous relies on the computation of an impulsive maneu-
vers plan that brings the spacecraft from some known initial conditions X, to some desired final
conditions Xf. This needs to be done while minimising the total fuel cost of the maneuvres and
while respecting the actuators saturations constraints. Since the thrusting instants vy, ...,vyN are
considered known, the decision variables are the magnitudes of the thrusts AV;.

Assuming that the spacecraft relative dynamics are represented using the linearized model
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defined in (1.18), the corresponding optimal control problem can be written as:

. (4.1)
s.t.

where the Dirac function §(v) is used to model the impulsive nature of the control. This writing
of the problem supposes that the first impulsive control is applied at the initial true anomaly and
that the last impulsive control is applied at the final true anomaly. The variable X (vn) represents
the spacecraft relative state right after the last thrust is fired.

The control vectors Af/i € R3 are defined in the leader’s LVLH frame:

and AV denotes the stacked control vectors: AVT = [Af/lT Af/ﬁ } e R3V,

4.1.2 Consumption criteria

The minimization criterion J(AV) needs to be related to the total fuel cost of the mission in order
to accurately represent the guidance requirements. According to [83], a criterion that accurately
reflects the fuel consumption must take into consideration the number of thrusters of the spacecraft
and their configuration.

In the case where a single thruster steers the spacecraft by gimbaling (see case (a) in Figure

4.1), the optimal fuel consumption criterion is obtained from the rocket equation as:

N N
JAV) =3 AVl =3 \JAV2 + A2 + V2 (4.3)
=1 =1

The fuel cost in (4.3) is different from the classical quadratic cost since:

=1

N 2 N
J(AV)? = (Z VAVZ +AV2 + Af@f) # 3 (A7 +AT2 + AV?) (4.4)
=1
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Figure 4.1: Spacecraft thrusters configurations

Reference [83] also shows that in the case where the spacecraft is equipped with six identical
thrusters rigidly mounted on its axes (see case (b) in Figure 4.1), the criterion that best reflects

the fuel consumption is given by:

N N
JAV) =3 AV =7 (IAV] + AV, |+ ATL]) = AV, (4.5)
=1 =1

If there exists just one main engine that performs the guidance while vernier engines steer the
thrust vector (see case (c) in Figure 4.1), the fuel consumption is best represented by:
N

JAV) =3 AVl (4.6)

i=1

An incorrect choice for the optimisation criterion can result in solutions with poor guidance
performances. Reference [82] shows that fuel penalties as high as 50% can occur if the cost function
is not properly chosen. Throughout this dissertation it is assumed that the spacecraft are equipped

with two identical engines on each axis which imposes the usage of (4.5) as optimization criterion.

4.1.3 Saturation constraints

The thrusters saturation constraints have been represented in (4.1) by the generic expression:

AV; € Upax (), Vi=1..N (4.7)
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Given the assumption previously made on the configuration of the thrusters, the saturation con-

straints can be written as an upper limit on the modulus of the thrust on each axis AVjax:
|AV;| < AViax(v4), Vi=1..N (4.8)

The thrust upper bound in (4.8) depends on v since the variable transformation (1.17) must be
taken into account when writing the optimisation problem and when returning the solution:
~ a3(1 — e?)3 1

AV (v) = e AV (4.9)

Thus the term AViax(v;) in (4.8) is obtained as:

- ad(1—e?)? AV
AVipax (Vi) = X 15, i=1..N 4.10
max (Vi) 1 1+ ecosv 3 ° ( )

where 1; is a vector of dimension [ containing only ones.

4.1.4 Using direct shooting methods for the guidance problem

The direct shooting methods for spacecraft trajectory design consist in transforming the optimal
control problem (4.1) into a parameter optimization problem which can be efficiently solved by the
existing algorithms. This is usually achieved through discretization and control parametrization
[45]. The knowledge of the firing positions v; and the modelling of the thrusts as impulsive controls
enables the usage of direct shooting methods for solving the rendezvous guidance problem. The
differential equation in (4.1) can be directly replaced by the solution provided by the state transition

matrix:
X(v)=®(v,n) X1+ Y _ ®(v,13)BAV; (4.11)

where ®(v,1;) is the Yamanaka-Ankersen transition matrix presented in Chapter 1. Using the

following notations:

~ ~ ~ 1T
Ai:[q)(l/i,ljl)B (I)(Z/i,VQ)B (I)(VZ,VZ)B ) Bi:(I)(Viayl)Xla AV = A‘/l . A ii|
(4.12)



62 Chapter 4. Trajectory design for spacecraft rendezvous

and integrating the fuel consumption criterion given in (4.5), the optimal control problem (4.1) can

be written as:

min  [|AV]
A

%

X(vn) = ANAVY + By (413

_Af/max(l/i) < A‘Z < AVmaX(Vi)> Vi=1.N

It can be seen that (4.13) contains only linear constraints while the norm-1 optimization criterion
is piecewise linear. By replacing the criterion with a linear equivalent, the rendezvous guidance
problem could be transformed into a Linear Program (LP) [19,64,99]. The main advantage of
performing this transformation is the fact that the solution to a linear program can be efficiently
computed using existing numerical tools such as interior point methods or the simplex algorithm

[10].

When a distinction is made between the equality and inequality constraints, the general form

of a Linear Program is given by:

min  CTY
T
AT < by, (4.14)
s.t.
Aeg T = beg

where T denotes the vector of decision variables and C, A;p, b, Aeq and bey represent the data of

the problem.

The norm-1 criterion in (4.13) can be replaced with a linear equivalent by introducing some

slack variables Z; € R3 such that:

AV, < 7
—-AV; < Z;

,Vi=1.N (4.15)

In this case, minimizing the norm-1 of the thrust vector becomes equivalent to minimizing the

sum of the elements of the variables Z;:

min |AV]; <<= min) Z (4.16)
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Moreover, the saturation constraints can be written as constraints on the slack variables:
Z;i < AViax (i), Vi =1..N (4.17)
Let the new vector of decision variables T be defined as:
Y=z .. 7L AvVT Af/ﬂ = [ZT Af/T} (4.18)
The optimization criterion in (4.13) can be replaced by a linear criterion defined by the matrix C":
o = [131\7 03N} (4.19)

where 13 is a line vector of the indicated dimension containing only ones and O3y is a line vector
containing only zeros. The rest of the matrices defining the data of the problem can be obtained

through direct identification:

O3n
—Izn  Isn O3n
Ain=|-Iy —In| bin=|AVnax(v1)| Aeqg=An [031\7 I3N} beq = X; =By (4.20)
Isn O3n
| AVinax (V) |

4.2 Fixed-time rendezvous with trajectory constraints

Trajectory constraints for spacecraft rendezvous and proximity operations arise from requirements
that are specific to each mission. The mathematical description of spacecraft relative trajectories
that evolve inside a specified polytopic area over a specified time interval has been presented in the
previous chapter. It has been shown that even if the restrictions on the relative trajectory need to
be respected continuously in time, it is still possible to describe the set of admissible trajectories
using a finite number of constraints. This description of the admissible trajectories will be used

next in order to solve different types of fixed-time rendezvous missions with trajectory constraints.

4.2.1 Guidance towards a constrained periodic relative motion

Periodic relative trajectories represent natural solutions of the autonomous spacecraft relative dy-
namics. In the unperturbed case, no fuel consumption is required in order to maintain such tra-

jectories, making them a good choice for spacecraft on-orbit inspection missions or for formation
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64
flying applications [37,46].

Periodic relative trajectories could also be used as parking orbits between different phases of a
rendezvous mission. In the Automated Transfer Vehicle (ATV) mission to the International Space
Station (ISS) for instance, the approach trajectory is defined in terms of several way-points that
the vehicle must validate [41]. When a way-point is reached, the spacecraft must maintain that
position and wait until the ground mission control gives the authorisation to proceed to the next

point. The waiting point condition could be relaxed to a requirement of natural periodic motion
around the designated waiting position. This might have the benefit of reducing the fuel cost of
the mission, since waiting on a naturally periodic trajectory does not imply any fuel consumption.

Dimensions restrictions need to be imposed on the parking orbits, in the form of a tolerance box

for instance (see the illustration in Figure 4.2).

10 km
>

Target
e

Figure 4.2: Way-points illustration for the ATV mission

Mathematical formulation of the guidance problem

The main difference with respect to the classical rendezvous guidance problem (4.13) resides in the
final objective of the mission. Instead of reaching a designated final relative state X, the aim is
now to reach an unknown final state from which the autonomously propagated trajectory is periodic
and evolves inside a designated tolerance region.

The general expression for the set S7 (H,V) containing the parameters that correspond to

constrained periodic trajectories has been given in (3.33). Integrating this expression into the
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general guidance problem leads to:

min Ay
A

X(VN) = ANAV-F BN

t D = C(vy)X (vn) (4.21)

D e SY(H,V)

—AVimax (i) < AV; < AViax (i), Vi =1..N

where D is the constant vector of parameters corresponding to the final autonomous periodic
trajectory and C'(v) is the transformation matrix defined in (2.5). The vector D is constrained to
belong to the set of parameters that generate periodic trajectories which evolve inside the tolerance

box defined by the matrices H and V.

After replacing the optimization criterion with a linear equivalent as previously shown and
integrating the definition of the set S¥ (H,V) from (3.33), the optimal control problem can be

written as a Semi-Definite Program (SDP):

min 13y Z

AVi,Z,Y;
~Z; <AV, < Z;
i=1.N
Z; < Af/max(yi)
D =C(vy)(ANAV +By) (4.22)
s.t.

dy=0,Y =0, i=1.5

Yi = tvi — (hi,lcx + h@zc_'y + hi,gcz)D
,1=1...s

where v; are the vectors of coeflicients corresponding to the non negative polynomials defining the
set ST,(H, V) and the matrices H,,; are defined as in (B.3). dy denotes the parameter in the vector
D associated with the periodic motion condition and h; ; and v; denote elements from the H and

V matrices defining the tolerance region.

The semi-definite programs (SDP) are convex optimization problems that can still be efficiently
solved using interior point methods [15]. Thanks to the properties of non negative polynomials,
the solution to the rendezvous guidance problem with continuous trajectory constraints can be

obtained in an amount of time that is polynomial in the number of the decision variables.
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Always feasible formulation

The optimization problem (4.22) might not always have a feasible solution, depending on the data of
the chosen rendezvous mission. Infeasibility could arise from the fact that the saturation constraints
do not allow for the objective to be reached within the N steps of the plan or from the fact that no
periodic trajectory can be found in the given tolerance region. The availability of a feasible solution
might be critical for certain applications. In those cases, the infeasibility issues can be avoided by
transforming some of the data defining the tolerance region into decision variables.

It can be noticed from (4.22) that only the elements of the V matrix can be considered as
optimization variables, while still remaining in the context of convex problems. Considering the
elements of the H matrix as decision variables leads to the appearance of products between the
decision variables in the definition of the vectors ;. These vectors contain the coefficients of the
polynomials which define the set of admissible periodic trajectories. Their expressions need to be
linear in the decision variables in order to obtain a convex program.

To guarantee that the dimensions of the tolerance region are modified only when needed to

ensure the feasibility of the problem, the minimization criterion must include the new parameters:

s
min IanZ4p) v (4.23)
AV;,Z:,Y3,V P

where the parameter p is a positive number. The transformation of some of the parameters of
the tolerance region into decision variables allows for the dimensions constraints on the periodic

trajectory to be softened until a feasible solution is found.
Depending on the value of p, the solution might consist in a small tolerance region for which
the fuel cost of the rendezvous trajectory is high. To ensure that, regardless of the value chosen for
the parameter p, the dimensions of the tolerance region remain higher than an admissible value, a

lower bound for the parameters in the matrix V' can be specified:
V>Vn (4.24)

The addition of this constraint corresponds to the fact that the purpose is not to find the smallest
possible tolerance region but rather to increase the existing one in case the problem is infeasible.
4.2.2 Passively safe trajectories for spacecraft rendezvous

The ability to design a collision free spacecraft relative trajectory is of great importance, especially

in the context of spacecraft proximity operations. The purpose is to provide guarantees for the
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security of the mission even in the event of a system failure.

The methods for dealing with security constraints can be divided into active methods and passive
methods [29]. The active security methods refer to the usage of control systems that integrate
failure detection capabilities, enabling the spacecraft to compute and execute collision avoidance
maneuvers in the event of a problem. These methods require the existence of an effective failure

diagnosis module, capable of quickly delivering reliable information to the control system.

The passive security is based on trajectory design procedures that can guarantee a prior: that
no collision will occur for a large range of faults [17]. It does not require the computation of
any collision avoidance maneuver and it ensures the safety of the system even when the spacecraft
cannot use the thrusters, the on-board computer or the communication equipment. Passive security
strategies are preferred for spacecraft rendezvous missions in order to avoid problems arising from

the usage of the thrusters in proximity of the leader spacecraft [29].

Let us consider the failure moments as the moments when a system error prevents the computed
control from being executed. In the case of passive security strategies, a system failure causes the
thrusters to be stopped and the application of the rendezvous plan to be suspended. The system
then enters a phase of autonomous motion following a fail trajectory. In order to guarantee the
security of the mission, the nominal trajectory must be designed in such a way that the possible
resulting fail trajectories do not run the risk of collision. This can be done by requiring for the fail
trajectories to remain inside a designated safe area during a specified time interval [17,74]. Security
over an infinite interval can be achieved by using constrained periodic relative trajectories as fail
trajectories. In this case, the optimal control problem can be written as:

min AV
AV,

~AViax (Vi) < AV; < AViax (1), Vi = 1..N

8.t Xy — X < X(vn) < Xf + X

DZ:CVZX vy
b X( >,Vi:N—S...N—1

where X (v;) is the spacecraft relative state right after that the i-th control is applied. D; is the
vector of parameters corresponding to the fail trajectory that would result in case an incident
prevented the rendezvous plan from being executed starting from the step ¢ + 1. The definition

of D; in (4.25) corresponds to the fact that between two impulsive controls the trajectory follows
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an autonomous evolution. If the (i + 1)-th control cannot be executed then the spacecraft will
continue on the relative trajectory that started from X (v;) and is on this trajectory that the
security constraints must be imposed.

The fail trajectories are constrained to evolve inside a safe area, which in this case is defined
as the polytopic region specified by the H and V matrices (see the definition in (3.2)). The set
SPD(H , V) represents the set of parameters that correspond to admissible periodic trajectories,
defined as in (3.33). A small tolerance X, is allowed around the final objective X 7

Passive security constraints can be imposed on any of the N steps of the rendezvous plan.
However, care must be taken to the fact that adding too many constraints will increase the total
fuel cost of the mission without necessarily improving the overall probability of collision [17]. For
this reason we consider in (4.25) that the security constraints are required only for the last S steps
of the plan, with S < N. Solving (4.25) will provide a rendezvous approach trajectory which for
the last S steps is composed of segments that are parts of admissible periodic trajectories.

After linearizing the fuel consumption criterion and integrating the definition of the set of

admissible parameters S% (H,V') from (3.33), the optimal control problem can be written as an

SDP:

min 13y 72

AV;,Z: Y]
~Z; <AV, < Z;
i =1..N
Z; < AVmax(Vi)
X — Xt < ANAV + By < X + Xy
~ (4.26)

dip=0, Y] =0, i=N—-S..N, j=1..5

v =tv; — (hj1Cr + hj2Cy + hj3C.) D
, 7 ,i=N-S.N, j=1.5
PYZJ = |tr (Y;]Hgyl) .. tr (Y;H215>

where d;o is the parameter related to the condition for periodic motion and s is the number of

constraints that define the safe region.

4.2.3 Spacecraft rendezvous with visibility constraints

The examples of constraints presented so far were only referring to periodic spacecraft relative

trajectories. However, for the last part of a rendezvous mission, the approaching spacecraft is
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usually required to remain permanently in the field of vision of the target spacecraft during the
execution of the final maneuvers [17,74]. This means that the visibility constraints need to be
enforced continuously on the non periodic nominal approach trajectory. In this case, the general

optimal control problem can be formulated as:

min Ay
AV,

—~AViax (1) < AV; < AViax (1), Vi = 1..N
(4.27)

s.t. Dl = C v; X v;
o) X) ,i=1.N-1

D; € Sp(H,V,v;,Vit1)

Xf _Xtol < X(”N) < Xf‘i'Xtol

where Sp(H,V,v;,v;11) has been defined in (3.30) as the set of parameters corresponding to space-
craft autonomous relative trajectories that remain inside a polytopic set over the specified interval
[Vi viy1]. The polytopic set defined through the matrices H and V represents in this case the

visibility cone of the target spacecraft.

The set Sp(H,V,v;,v;+1) is defined by infinitely many constraints but it has been shown in
the previous chapter that a representation using a finite number of variables can be achieved if
some approximations are made. By using upper and lower polynomial bounds for the integral term
J(w), worst case rational bounds can be obtained for the spacecraft relative trajectory. This leads
to a description of the admissible paths through polynomial non negativity constraints that can
be replaced with conditions of existence of a finite number of constrained positive semi-definite

matrices. The original optimal control problem (4.27) can once again be written as an SDP:

min 1352

Avivziv}z?llv}z?glvyvjluvyygu

~Z; <AV, < Z;
, Vi=1..N
Z; < Af/max(yi)

Xf — Xiol < ANAV + By < X5+ Xyl
s.t.

D; =C)(A; AV +By), i=1..N—1

Yrjill =0, }/jigl =0, f}/;‘l = A*G/jllvy}'iﬂ) Vi=1.N—-1Yj=1.s

Yz'

Jjlu = 07 1/;Z2u = 0’ Pyjlu = A*(}/}lu’l/;ZQu)

(4.28)
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with the linear operator A* defined as in (B.4) and (B.5). ’y;.l and %Lu represent the vector of
coefficients corresponding to the non negative polynomials that define the set Sp(H,V,w;, w;y1)

and they depend linearly on the corresponding vector of parameters D;.

4.3 Numerical examples

The efficiency of the previously presented methods for computing fuel optimal impulsive maneuvers
plans under control and trajectory constraints will be illustrated here through some numerical
examples. The control plan is computed at the beginning of the mission and then applied by the
chaser spacecraft until the end without any modifications. Perfect state knowledge is assumed for
these examples and the tests are made using the linear model for the propagation of the spacecraft

relative motion.

4.3.1 Reaching a constrained periodic relative trajectory

Let us consider a spacecraft rendezvous mission where the final objective is to reach a periodic rela-
tive trajectory in proximity of the target. The periodic trajectory is not fixed a priori, it is just re-

T
quired to evolve inside a tolerance region, specified as a box of dimensions Xio; = 2101 Yiol  Ztol

T
around a desired final position X; = [m oYy Zf} . In this case, the matrices H and V defining

the polytopic set which bounds the admissible trajectories are given by:

(1 0 0] [ 2p+ 200 |
-1 0 0 —Zf + Tiol
e I BT R L (4.29)
0 -1 0 —Yf + Ytol
0 0 1 Zf + Ztol
0 0 -1 | —zf + 201

The mission data for the first scenario i.e. the semi-major axis of the target orbit a, the
eccentricity e, the maximum allowed thrust AV ., the initial state X, the initial time ¢, the
number of the impulsive thrusts N, the final time ¢ and the specifications of the tolerance region
are given in Table 4.1. No constraints are specified for the final velocity but its value will be
determined by the periodicity condition.

After integrating the data in Table 4.1, the semi-definite program (4.22) is solved in Matlab
using Yalmip [63] along with the solver SDPT3 [100|. The guidance problem is also solved using a
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a [km)] e AVipax N X1 [m,m/s] t1 [s] Xy |m] Xy [m] tn s
7011 00237 026 10 [1000,50,50,0,0,0] 1282  [100,0,0] [20,10,10] 18 808

Table 4.1: Mission data

method based on constraints discretization [99], in order to compare the performances of the two
different approaches. This constraints discretization method amounts to a Linear Program whose

solution is obtained using the linprog function from Matlab.

The rendezvous trajectory obtained for the discretization based method and 10 verification
points is presented in Figure 4.3. Taking more verification points or using the SDP method does
not essentially change the computed rendezvous trajectory and the objective of achieving a peri-
odic motion is always met. However, the differences appear when analysing the periodic relative

trajectories that start at the end of the rendezvous plan.

i . initial state
40 B final state
rendezvaous trajectory
201 I tolerance box

-80 | 1 | 1 | 1
200 400 600 800 1000 1200

x [m]

Figure 4.3: Spacecraft guidance towards proximity periodic motion

Figure 4.4 presents the resulting periodic trajectories for the constraints discretization method
when considering 10, 20 and 30 verification points respectively, uniformly distributed over one

* symbol). The trajectory obtained

orbital period (the verification points are represented by the
with the SDP method is also shown for comparison. It can be seen that the solution provided by the
constraints discretization method sometimes violates the tolerance region constraints in between

the chosen verification points. The precision of the solution is influenced by the number of points
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— LP10
= = LP20
—=-=" LP30

z[m]
o

— —LP20 * 4
== P30 i

z[m]

I tolerance box

s s . ; ; ; ; ‘ ‘
80 85 90 95 100 105 110 115 120 116 117 118 119 120 121
x[m] x [m]

Figure 4.4: Comparison between the obtained periodic trajectories

where the constraints are explicitly checked and better accuracy might be achieved by increasing
their number. No constraints violations occur when using our method which guarantees a prior:
that the constraints are respected continuously in time.

The comparison between the fuel cost, the solver time and the time spent outside the tolerance
region for each of the considered methods is shown in Table 4.2. Increasing the number of verification
points reduces the amount of constraints violations but it also increases the solver time and the
fuel cost. It can be noticed that, as the number of discretization points increases, the obtained fuel
cost approaches the solution given by the SDP method. The LP approach provides the optimal
solution only for the discretized problem, while the SDP approach provides the optimal solution

for the original problem.

Method ‘ LP10 LP20 LP30 SDPp
Fuel cost [m/s] 0.48907 0.48922 0.48927 0.48927
Solver time |s] 0.1972 0.6499 1.6241 0.9325
Time out of bounds [s] 1269 737 339 0

Table 4.2: Comparison between the SDP and LP methods

The data for the second example are summarized in Table 4.3. This scenario considers a highly
eccentric reference orbit which enables us to illustrate that not only the number of discretization
points is important but also their distribution along the considered time horizon.

The resulting periodic trajectories are depicted in Figure 4.5, where the solution provided by
the discretization based method is obtained for 15 verification points uniformly distributed over one

orbital period. It can be seen that despite this uniform time distribution, the distance between the
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alkm| e  AVpax[m/s] N X1 [m,m/s] ti[s]  Xym] Xy [m]  tn[s]
7011 0.8 0.26 10 [10000,100,0,0,0,0] 1282 [100,0,0] [50,25,25] 65 902

Table 4.3: Mission data

verification points is uneven (the points are represented in the figure by the * symbol). This comes
from the fact that for eccentric orbits the spacecraft instantaneous velocity is not constant. As a
consequence, larger parts of the obtained trajectory evolve outside the desired tolerance box. The
solution provided by our method is not affected by this issue and the obtained trajectory evolves

very close to the given bounds without ever crossing them.

30 T 30
- —LP —p
= = SDP = —SDP
20f 3 T xtol || 201 y [ xtol ||
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\
\
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. ‘ ‘ ‘ ‘ ‘ ‘ %0 ‘ ‘ ‘ ‘ ‘ ‘
40 60 80 100 120 140 160 180 40 60 80 100 120 140 160 180
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Figure 4.5: Comparison between the obtained periodic trajectories when e = 0.8

Always feasible formulation

Let us consider the spacecraft rendezvous mission in Table 4.3 for which the specification for the
tolerance box is modified to X;,; = [10 5 5] m. In this case, no feasible solution can be found using
our method. Even removing the saturation constraints and changing the duration of the rendezvous
mission does not lead to a feasible solution. In this case, it can be interesting to use the always

feasible formulation of the control problem in order to compute the smallest feasible tolerance box.

The periodic trajectory obtained when considering the components of X;,; as decision variables
is depicted in Figure 4.6 where X,,, refers to the initially specified value for the tolerance box. The
smallest feasible tolerance box is specified by Xy, = [44.4474 5 22.2193] m. No expansion of the
box is necessary on the y axis while a much bigger box is needed to contain the trajectory in the

xz plane.
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Figure 4.6: Modification of the tolerance box in order to ensure the feasibility of the problem

4.3.2 Passively safe rendezvous trajectories

Consider the rendezvous mission whose data are presented in Table 4.4. The objective is to reach
the final state on a passively safe rendezvous trajectory. Some tolerance is permitted on the final
velocity, specified by vy, while the requirement for the final position is strictly maintained. In this
example we consider for simplicity that the safe area is represented by an open polytope behind

the chaser defined by Z(v) < Zgafe, Where xgare = —5 m.

a [km)] e AVimax [m/s] N X1 [mm/s| 1 [s] Xy |m] Vil [m/s]  tn [8]
7011 0.0237 0.26 15 [-30,0,-3,0,0,0] 0  [-5,0,0,0,0,0] 0.01 5 843

Table 4.4: Mission data for the passively safe rendezvous

In order to identify a suitable value for the security horizon S, the rendezvous problem (4.26)
is first solved without enforcing the security constraints (S = 0). The obtained maneuvers plan is
applied and starting from every controlled state on the second half of the rendezvous horizon the
autonomous trajectories are propagated. This is done in order to identify the fail trajectories which
present a risk of collision. The states starting from which collision between the two spacecraft might
occur need to be included in the safety horizon S.

The obtained trajectories are presented in Figure 4.7 where the * symbol corresponds to control
instants from which the fail trajectories are propagated. The result suggests that a security horizon
of S = 4 should greatly reduce the probability of collision in the event of system failure. It is
interesting to note that in Figure 4.7 some of the fail trajectories overlap, in the cases where the
optimal control equals zero.

Figure 4.8 depicts the fail trajectories that are obtained when solving (4.26) for a security
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Figure 4.8: Fail trajectories obtained when the security constraints are enforced

horizon S = 4. The fail trajectories are now periodic and evolve inside the security area defined
by Zsafe, thus reducing the risk of collision in case of system error (some of the fail trajectories still
overlap meaning that the new solution still contains thrusting instants where the optimal control
is zero).

The influence of the choice of the security horizon on the fuel cost of the mission is illustrated
in Table 4.5. Tt can be easily seen that the fuel cost increases as the security horizon increases since

more and more constraints are added to the problem and this limits the choices for the possible
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rendezvous trajectories.

S 0 1 2 3 4 9 6 7
Fuel cost [m/s] 0.0116  0.0121  0.0135  0.0146  0.0156  0.0163  0.0168  0.0174

Table 4.5: Evolution of the mission fuel cost with the length of the security horizon

A different geometry can be specified for the security area. In some applications, the security
region may coincide with the visibility cone of the target spacecraft [17]. The visibility cone is
usually represented by an open polytope defined through the aperture angle o and the offset
distance wgare between the docking port and the center of gravity of the target satellite (see Figure

4.9). In this case the polytopic constraints on the fail trajectories are defined by the matrices:

X] a

Xsafe

Fi

Figure 4.9: The visibility cone of the target satellite

1 0 p] [0 |
1 0 —p 0
H=11 p o0 V=10 (4.30)
1 —p O 0
_1 0 0 ] | Tsafe |

where p = tan(§ — «).
The data in Table 4.6 defining a new rendezvous scenario is used for solving the optimal control
problem (4.26). The parameters for the visibility cone are given by Zgate = 1.04 m and o = 47°.
Figure 4.10 presents the fail trajectories and the nominal rendezvous trajectory obtained with
and without the security constraints. The safety horizon has been chosen S = 3 after inspecting

the fail trajectories obtained in the case where the security constraints were not active.
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a [km)] e AViax [m/s] N X; [mm/s| ¢ [s] Xy |m] Vol [m/s]  tn [$]
7360 0.0237 0.26 20 [100,0,0,0,00] 0  [1.04,0,0,000]  0.001 6283

Table 4.6: Mission data for the passively safe rendezvous
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Figure 4.10: Fail trajectories obtained for S = 0 and S = 3 respectively

When the same passively safe rendezvous problem is solved using a constraints discretization
method as in [17], some differences can be observed between the obtained fail trajectories. Figure
4.11 shows that, as pointed out before, violations of the constraints occur in between the chosen

verification points when using the method based on constraints discretization.

251 -
— LP safe trajectory1 1+ — LP safe trajectory 1
20t = "= SDP safe trajectory1 == SDP safe trajectory 1
= LP safe trajectory 2 = LP safe trajectory 2
15 =*=* SDP safe trajectory 2 2r =*=* SDP safe trajectory 2
1o LP safe trajectory 3
SDP safe trajectory 3
5 3
E of E
N N 4r
50
-1or 5 constraints
sk violations
-201 o
25 . . . .
-10 -5 0 5 10 15 20 25 30 35 40 45 1 2 3 4 5 6
x[m] X[m]

Figure 4.11: Comparison between the fail trajectories obtained when using our SDP-based method
and a constraints discretization method

An iterative method for choosing the number of verification points could consist in inspecting
the obtained trajectories and then increasing the number if necessary. Using this approach could
eventually lead to a better choice for this important parameter. However, the SDP method delivers

directly a trajectory that guarantees the continuous satisfaction of the constraints.



78 Chapter 4. Trajectory design for spacecraft rendezvous

4.3.3 Constrained non periodic relative trajectories

For the last phase of the rendezvous maneuvers, operational requirements might impose visibility
constraints on the approach trajectory. In this case, the objective is to design a spacecraft ren-
dezvous trajectory which remains inside the visibility cone of the target spacecraft throughout the
duration of the rendezvous maneuvers. The visibility constraints can be combined with passive
security constraints for instance, but in this example we chose to focus on the case where the
restrictions concern only the non periodic relative motion.

The fuel optimal maneuvers plan that generates an approach trajectory which respects the
visibility requirements can be obtained by solving the semi-definite program (4.28). In order to be
able to formulate the optimization problem, polynomial approximations of the term J(w) on each
interval between two consecutive thrusts need to be computed. The software Sollya [22] is used here
for obtaining these approximations. The software requires for the values of the independent variable
w to be monotonously increasing on each approximation interval. This imposes some restrictions
on the rendezvous horizon since the transformation (3.8) maps each interval of one orbital period
for the variable v to R.

The duration of the mission is chosen to be half of an orbital period, starting from vy = —7/2
and until vy = 7/2. This choice guarantees strictly increasing values for w on each interval between
thrusts and avoids working close to the bounds of the domain on which w is defined. Accurate
polynomial approximations can be obtained for the chosen rendezvous horizon (see Figure 4.12).
The fact that 1 is negative corresponds to rendezvous maneuvers that start before the current
passage of the leader spacecraft through the perigee. The data defining the rendezvous mission is

summarized in Table 4.7 and the visibility cone is defined in this case by Zgafe = —5 m and a = 20°.

a [km)] e AViax [m/s] N X; [m,m/s] v s Xy |m] Vo [m/s] v s
7011 0.0237 0.26 5 [-50,-10,15,0,0,0] —=/2 [-6,0,0,0,0,0] 0.001 /2

Table 4.7: Mission data for the rendezvous with visibility constraints

The degree of the polynomial approximations is fixed to ¢ = 2. For this value, the maximal
certified approximation error e provided by Sollya is 0.25%. The upper and lower polynomial
bounds for the term J(w) on each interval between two consecutive controls are given in Figure
4.12 (0, and O, respectively).

A method based on constraints discretization is used for comparison. The trajectories obtained

for the two methods are given in Figure 4.13, where 10 collocation points are taken for constraints
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Figure 4.12: The drifting term J(w) and its polynomial bounds on each time segment

discretization. As before, constraints violations occur in between the points where the constraints
are explicitly checked of the LP method, while our method guarantees continuous constraints sat-

isfaction even in the case of non-periodic spacecraft relative trajectories.

4.4 Conclusion

This chapter describes the construction of the optimal control problem that needs to be solved in
order to obtain a fuel optimal maneuvers plan for the fixed-time spacecraft rendezvous. In the
framework of direct shooting methods, the problem can be formulated as a Linear Program which
can be easily solved using the existing numerical solvers. We show that even when constraints on
the spacecraft relative trajectory are imposed continuously in time, the optimal control problem
can still be written as a convex optimization problem. In this case, the formulation relies on the
description of the admissible trajectories using polynomial non-negativity constraints which has
been introduced in the previous chapter. It amounts to a Semi-Definite Program which can be
solved in polynomial time by the existing interior point algorithms.

Several examples of rendezvous missions are used to illustrate the types of trajectory constraints
that can be handled by the proposed method. The constraints arise from mission-specific require-

ments, such as passive security or visibility constraints. The examples emphasize the advantage of
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Figure 4.13: Comparison between the rendezvous trajectories obtained with the two methods

our method over the classical constraints dicretization technique for which constraints violations can
occur in between the verification points. The solution provided by the constrained discretization
method depends on the number of verification points that are considered and on their particular
distribution over the considered horizon. Moreover, the numerical examples show that it approaches

the solution given by our method as the number of verification points increases.
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Résumé: Les techniques de design de trajectoire pour les opérations de proximité des satel-
lites présentées dans le chapitre précédent reposent sur la parfaite connaissance de [’état relatif des
satellites. En présence des incertitudes de mesure, il peut y avoir des grandes différences entre la
trajectoire prédite et la trajectoire réelle des satellites. Cet écart détériore la précision finale des
manceuvres el peul conduire o la violations de certaines contraintes de la mission. Ce chapitre
propose deuz algorithmes de guidage améliorant la robustesse vis-a-vis des erreurs de navigation.
Ces algorithmes garantissent de fagon déterministe la satisfaction des contraintes pour toute valeur
admissible des incertitudes. Les deux techniques proposées sont basées sur le calcule d’un série des
lois de commande au lieu d’un plan de manceuvres, ce qui permet de compenser les effets des incer-
titudes et atteindre une meilleure précision finale. Le critére de performance est ici défing par un

compromis entre la précision finale des manceuvres et la consommation de combustible.



82 Chapter 5. Spacecraft rendezvous robust to navigation uncertainties

The trajectory design techniques presented in the previous chapter rely heavily on the knowledge
of the spacecraft relative state. When the measurement of the spacecraft relative state is not
affected by uncertainties, the computed impulsive maneuvers plan may be applied in open-loop to
steer the spacecraft towards the desired objective. In presence of sensing noise, applying the plan
without taking into consideration new measurement information will cause any initial navigation
uncertainties to propagate until the end of the prediction horizon. This open-loop propagation
might have severe effects on the final performance of the spacecraft rendezvous.

How and Tillerson showed in [44] that small errors in the estimation of the spacecraft relative
velocity can result in very large prediction errors for the relative trajectory over just one orbital pe-
riod. Navigation errors may be caused by alignment errors between the sensors and the spacecraft
axes, by measurement performance limitations of the used sensor and/or by the information pro-
cessing in the navigation filter [29]. Not accounting for the presence of these errors when designing
the rendezvous trajectory can result in poor guidance performances and/or constraints violations.

Our purpose is to obtain a robust control algorithm for the spacecraft rendezvous that can
guarantee the robust constraints satisfaction for all the possible realizations of the uncertainties.
The performance criterion is defined as the best trade-off between the fuel cost of the computed
maneuvers and the final rendezvous precision. The rendezvous precision can be understood in the
sense of obtaining the smallest possible set that bounds the error with respect to the final objective
for all the admissible values of the navigation uncertainties.

The fuel-optimal trajectory planning procedure presented in Chapter 4 is based on the resolution
of an open-loop optimal control problem. This procedure can be used for closed-loop control with
guaranteed performances by integrating it in a Model Predictive Control setting. Several Model
Predictive Control approaches have been developed for dealing with uncertainties and achieving
the robust control objectives in the context of spacecraft rendezvous guidance and some of them

are summarized in the next section.

5.1 Model Predictive Control and spacecraft trajectory design

The classical Model Predictive Control consists in solving at each control step a constrained finite-
horizon open-loop optimal control problem based on the estimation of the current state of the
system. The computed optimal solution consists in a series of control actions {u1,ua,...,un}, out
of which only the first one is executed. The rest of the plan is discarded and a new solution based
on new measurement information is computed at the next control instant. Even if the control plan

is obtained using open-loop predictions for the evolution of the system, the periodic recomputation
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of the optimal solution creates an implicit closed-loop 68].

The previous chapter emphasized the need for spacecraft trajectory planning algorithms that
can handle different state and control constraints specific to each mission. In presence of navigation
errors, the control algorithm must guarantee a priori that no transgressions of the constraints will
occur for all possible realizations of the uncertainties. Simply relying on the periodic control
recomputation cannot provide this type of guarantees. The optimal control problem solved at each

step needs to be modified to explicitly account for the effects of the uncertainties.

The approach known as open-loop min-maz MPC [68] is based on the resolution at each time
step of an open-loop optimal control problem for which the uncertainties on the initial state are
also propagated over the prediction horizon. The constraints satisfaction is explicitly checked for
the worst-case disturbance sequence, providing the necessary guarantees for the obtained solution.
The open-loop min-max MPC approach has been successfully used for spacecraft relative trajectory
design in presence of navigation errors [19,31,64,71]. The problem with this kind of approach is
that it cannot include in the solved problem the performance objective related to the obtention
of the best rendezvous precision. Due to the open-loop nature of the prediction, the effects of
the uncertainties are taken into consideration but are not explicitly minimized. In the writing of
the optimization problem, the spread of all the possible trajectories is not actually limited by the
control which imposes the usage of short prediction horizons in order to ensure the feasibility of

the optimization problem.

The constraint tightening approaches are based on the idea of maintaining the control scheme
in a feasible region under the action of disturbances by a priori tightening the constraints on the
predicted states [53]. The control problem solved at each time step is still based on open-loop
predictions for the system trajectory but the constraints are modified off-line to ensure some room
for future corrections. Constraints tightening procedures have been developed mainly for Linear
Time Invariant (LTI) systems and are either based on the existence of a stabilizing state-feedback
controller [18,79,96] or on the off-line resolution of an optimization problem [53,94]. The main
advantage is that the MPC with tightened constraints can guarantee the recursive feasibility of
the problem in presence of uncertainties [78]. However, the precision requirements and the control
saturations are not explicitly considered. Moreover, for the constraint tightening procedure becomes

more complex in the case of Linear Time Varying (LTV) systems [77].

A change in the control philosophy is operated for the feedback MPC. The decision variables are
changed from a series of control actions to a sequence of feedback policies {u1(-),...,un(-)} and the

control problem relies on the prediction of the closed-loop trajectory of the system [56]. Directly



84 Chapter 5. Spacecraft rendezvous robust to navigation uncertainties

considering feedback policies in the optimization problem avoids the open-loop propagation of the
uncertainties and provides the means to actually limit the spread of all the possible trajectories.
The drawback is that, in the general case, the computation of such feedback laws can be extremely
difficult, since the decision variables are infinite dimensional [66]. However, restricting the admis-
sible policies to the class of affine state feedback control laws can help reduce the complexity of
the problem. This particular case is often-times called tube-based MPC [56,61,66]. It relies on the
computation of some feedback gains that contain the spread of all the possible trajectories and limit
their evolution to a tube around an optimized central trajectory. It can ensure robust constraints

satisfaction and the dimension of the tube fixes the performances in terms of precision.

Method / Prop- Open-loop Periodic Robust Robust recursive
erties prediction of recomputation constraints feasibility
uncertainties satisfaction

‘ classical MPC ‘ b X - - ‘
open-loop min- X X X -
max MPC
MPC with tight- b b b X
ened constraints

‘ feedback MPC ‘ - - X X

Table 5.1: Comparison between the different MPC techniques

A summary of the different MPC techniques is given in Table 5.1. Qur purpose is to obtain a
maneuvers plan for the fixed-time spacecraft rendezvous that is robust to navigation uncertainties in
terms of constraints satisfaction. The obtained solution must also provide the best trade-off between
the fuel cost of the trajectory and the final rendezvous precision. For this particular problem, the
feedback MPC seems to offer the best compromise between the guaranteed performances and the
complexity of the control algorithm. A design procedure for the rendezvous trajectory between

spacecraft on eccentric orbits will be presented in what follows.

5.2 The robust trajectory planning problem

The robust spacecraft trajectory design refers to solving the fixed-time rendezvous guidance prob-
lem defined in Section 4.1 when navigation uncertainties are affecting all the measurements of
the spacecraft relative state. Our purpose is to determine a series of affine feedback control laws
{u1(+),u2(+), ...} such that, starting from an initial state X; which is affected by measurement noise,

the final rendezvous objective Xy is reached at the specified time and within the best precision.
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This must be done while minimizing the total fuel consumption and while guaranteeing that the
imposed constraints are respected for all the possible values of the uncertainties. As before, the
number of thrusts N and the thrusting instants vq, 1o, ... are considered known and the control is

applied in an impulsive manner.

5.2.1 The spacecraft relative dynamics

For the fixed-time impulsive rendezvous guidance problem, the spacecraft relative trajectory prop-
agates autonomously on each interval [vg, vgy1] between two consecutive impulsive controls. Using

the Yamanaka-Ankersen transition matrix, this propagation is given by:
X(w) = (v, ) X (), Vv € [vg, vipd] (5.1)
The state X *(vg) corresponds to the spacecraft relative state right after the k-th impulsive thrust:
Xt () = X(v) + Bug, ke {1,2,...} (5.2)

where B = [03 I3]7. Even if the impulsive control uy instantaneously modifies only the spacecraft
relative velocity, its effects on the whole spacecraft relative trajectory are visible on the interval of
autonomous propagation that follows each thrust. For instance, the spacecraft relative state at the

end of each interval [vg, vgi1] is given by:

X(hi1) = @(sr,vi) X () + ®(Whr1, k) Bug, Yk =1..N—1 (5.3)

Equation (5.3) clearly shows the effects of the impulsive control wu; on the spacecraft relative

position. The dynamics in (5.3) can be seen as the dynamics of an LTV system:
Xpt1 = Ap Xk + Bruyg (5.4)

where X}, = X(Vk), Ap = ®(vga1,vk) and By = ®(vg41, ) B. These simplified notations will be

used throughout the chapter for constructing the robust spacecraft rendezvous guidance problem.
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5.2.2 The effects of navigation uncertainties
When sensing noise is present in the navigation system, Xy, the real relative state between the two
spacecraft, is unknown. However, X}, is related to the measured state X" through the equation:

Xp = X" + 66X, 6X5, € E(0,Qp) (5.5)

where 0X} is an unknown measurement noise which is bounded by an ellipsoidal set F(0, Q)

(notation defined in (C.1)). The dynamics of the measured state can then be computed as:
Xity = Xip1 — 0 Xp1 = ApXp + Brug, — 0Xpq1, 6Xiq1 € E(0,Qpy1) (5.6)
Using (5.5) to replace the unknown state of the system X with the measured state X" leads to:
Xt = A Xy + Brug + Apd Xy, — 0Xp (5.7)

Let us denote by wy the total effect of the measurement noise over the interval between two

consecutive controls. From (5.7), wy can be defined as:
wy = Apd Xy, — 6Xpy1, 60X € E(0,Qg), 6Xps1 € E(0,Qry1) (5.8)
This means that the domain for wy is given by:
wy, € B(0,A; 7 QrA; ") @ E(0, Q1) € E(0,QY) (5.9)

where the symbol @ denotes the Minkowski sum between the two ellipsoidal sets, defined as in
(C.8). The set E (O,A,;TQ;CAIZI) represents the ellipsoidal set obtained after the propagation of
the set F(0, Q) through the linear application Ag, defined as in (C.7). The Minkowski sum of
two ellipsoids is not necessarily an ellipsoid and E(0,Q}’) is an outer ellipsoidal approximation of
the real domain of wg. This approximation can be computed analytically, using for instance the
procedure described in (C.10).
The dynamics of the measured state when the system is affected by navigation uncertainties is
given by:
Xpi1 = AR Xy + Brug + wy, wy € E(0,Qy) (5.10)

It can be noticed from (5.8) that the navigation uncertainties will propagate in open-loop at

least over the interval between the two consecutive control instants. The control ug,q will cancel
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some of the effects of w;, but in the same time it will introduce some new errors. This comes from the
fact that the control is computed every time based on measurement information which is corrupted
by sensing noise. This means that if the spacecraft relative state is not precisely known, the final
rendezvous objective cannot be exactly reached. In this case the control objective transforms into

minimizing the size of a guaranteed arrival set around the nominal objective.

5.2.3 The nominal trajectory

Let AV be the nominal control which, in the absence of navigation error, steers the spacecraft
towards the final rendezvous objective. Let us define the nominal trajectory as the trajectory

obtained when applying in perfect conditions a nominal control AVk:
Xpr1 = A Xp + BpAVy, k=1..N—1 (5.11)

where X}, denotes the states that belong to the nominal trajectory. The nominal controls AV}, are
such that, at the end of the prediction horizon, the nominal trajectory reaches the desired mission
objective:

Xy =Xy (5.12)

Applying the nominal control AV} on a system affected by navigation uncertainties might lead to
trajectories that are significantly different with respect to the nominal path. Let the error between

the perturbed trajectory and the nominal one be defined as:
er = X' — X, (5.13)

We are interested in the computation of some feedback control policies uy that minimize the errors

with respect to the nominal rendezvous path in presence of sensing errors.

5.2.4 General formulation of the guidance problem

The objective of minimizing the errors with respect to a nominal trajectory must be understood
in the sense that the closed-loop behaviour must be as close as possible to the non-perturbed
case. The nominal trajectory is not fixed a priori, the term is used here to refer to an ideal
behaviour that also needs to be determined through optimization. Several techniques for obtaining
nominal trajectories while taking into consideration different types of trajectory constraints have
been presented in Chapter 4. These techniques need to be modified in the case where the system

is affected by navigation errors. The first modification concerns the structure of the control law. A
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feedback term is added to the nominal structure:
U = fk(X]T, wk) + AVk (5.14)

in order to cancel the errors with respect to the nominal behaviour caused by the presence of un-
certainties. The control must now guarantee that the thrusters saturation constraints are respected

for all the possible realization of the uncertainties.

The optimal control problem corresponding to the robust trajectory design for the spacecraft

rendezvous can be written in the general form:

min  J(ug,e

Fo. AV, ( k k?)

Xﬁl = Alezn + Bkuk + wg, Wi € E(O, Q?)
Uy, = fk(X,T,wk) + AV

s.t.

ek:X]zn—Xk

Xy =Xs

Uk € Z/lmax(l/i), Vwk S E(O, Q}f)

where the decision variables are the nominal controls AV} and the parameters of the functions f.
The choice of the optimization criterion J(uy, e;) must reflect the idea of compromise between fuel

consumption and final rendezvous precision.

In order to simplify the formulation, the final rendezvous objective is considered to be a fixed
state X ;. However, the control techniques that will be presented next can still be used if the final
objective is to reach an unknown state belonging to a set of admissible trajectories, as it was the

case for the examples in Chapter 4.

As already stated, solving (5.15) in the general case can be extremely difficult [66]. In order
to reduce the complexity of the problem a special structure can be imposed for the functions fy.
We will show next that (5.15) can be written as a convex optimization problem if the control is

parametrized as affine state-feedback or as affine disturbance-feedback.
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5.3 Affine state-feedback MPC

Let us consider that the control policies uy are restricted to the class of affine state feedback

controllers. In this case we have:

up = Kp(XJ" — Xp) + AVy = Kpep + AVy (5.16)

Our purpose is to compute the gain matrices K € R3* and the nominal terms AV;, € R? which
steer the spacecraft towards the final rendezvous objective within the best possible precision, all
while minimizing the total fuel cost. A design procedure for each of these terms will be presented

in what follows.

5.3.1 Computation of the feedback gains

For the chosen control structure, the dynamics of the errors between the perturbed trajectory and

the nominal trajectory are given by:

ekt1 = (Ap + BrKy)er + wy, wi € E(0,Q})) (5.17)

The propagation of the errors over the prediction horizon is given by:

e1 = X" — X3

es = (A1 + BiK1)er + w1

e3 = (A2 + B2K3) ((A1 + B1K1)er +wi) + w2 (5.18)
eq = (A3 + B3K3) (A2 + BaKs) (A1 + B1K1)er +wi) + wa) + w3

This objective related to the rendezvous precision can be interpreted as the search for the
feedback gains K} which minimize the dimensions of an ellipsoidal set E(0,Q,) bounding the final

error ey:

min  tr Q,

s.t ey € E(0,Q.), Yw, € E(0,Q)), k=1.N—-1

The matrix ), defines an ellipsoidal set which bounds the final error for all admissible values of
the uncertainties. Minimizing the trace of Q) corresponds to minimizing the sum of squares of the
semi-axis of this ellipsoidal set.

Using the propagation given in (5.18), the expression for the final error contains nonlinear terms
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involving the decision variables Kj. In order to reach a convex formulation of the optimization
problem (5.19), the following simplifying assumption is made: the objective is changed to the
research of the K} matrices such that the error at each step e is bounded by the same ellipsoidal
set denoted E(0,Qq). The control problem (5.19) is replaced by:

KI?,%IQ ir Qo

st. e € B(0,Qq), Ve, € E(0,Qq), Yw, € E(0,QF), k=1..N—-1

(5.20)

Under this assumption, the choice of each gain K} becomes independent from the choice of the
other gains. The common point is that for each interval between two consecutive control instants,
they guarantee to maintain all the possible errors with respect to the nominal trajectory inside the

same ellipsoidal set which is defined by the matrix Q.

While the previous assumption will help us convexify the problem, it will also generate additional
constraints on the rendezvous trajectory. The ellipsoidal set E(0, @), instead of bounding just the
final error ey, now defines a tube around the nominal trajectory which must contain all the possible
trajectories for all admissible values of the disturbances wy. The dimensions of the tube depend on

the choice of the gains K} and on the interval between the control instants.

The constraints in (5.20) are conditions of non negativity of a quadratic function on a domain
defined by two quadratic inequalities. Using (5.17) and the definition of ellipsoidal sets given in

(C.1), the constraints in (5.20) can be written as:

egQaek <1

((Ag + BipKy) e + wi)" Qu (A + BrKg) ex +wy) <1, V (5.21)

ng?’wk <1

By representing the ellipsoidal sets using a homogeneous quadratic inequality as in (C.4) and
then applying the S-procedure (see (C.14)) and the Schur complement, the following constraints

equivalent to (5.21) are obtained:

Ik Thy 2> 0
1— 75 — Tk 0 0 0
0 T, 0 Ay + BLK)T (5.22)
ko Qo (Ap + BrK}) SO k=1.N-1
0 0 Ty QY I
i 0 A + B K} I Q;l

Conditions (5.22) are not yet LMIs because of the product between decision variables i, Q4
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and of the inverted term Q!

special structure on the matrix Q,:

According to [97], a linear form can be obtained by imposing a

(5.23)

1
Qa:gQ

where @ is a constant matrix, chosen by the designer, which fixes the geometry of the tube. «

is an optimization parameter which scales the tube towards the smallest possible size. Using this

structure for the (), matrix transforms (5.22) into:

IThy s Ty 2 0

(1 a2 Thy 02 — Tk, 0 0 0 ]
0 Tk @ 0 (A + BpKy)" -0 (5.24)
0 0 They QW I

i 0 Ay + By Ky, I Q! |

This new form still contains some nonlinear terms in . These terms can be removed by pre- and

post-multiplying the matrix in (5.24) with:

[a—121 0 0 0
0 a2 0 0
p_ (5.25)
0 0 o Y21 0
0 0 0 a2

After this operation, the optimization problem (5.19) can be written using only linear con-

straints:
~ min o
Kkvaﬂﬁkl?%kQ
Iy, Thy 2 0 (5.26)
s.t. WNVE=1.N—-1
R, >0
where the matrices Ry are defined as:
o — Ty — Thy 0 0 0
0 7 0 aAg + BpKy)"
R — 5 Q (A + BipKy) (5.27)
0 0 Tro Q) 1
0 Ay + Bkkk I OéQil

and K = aKy, 7, = a 17, and 7, = a7,
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Solving (5.26) enables the computation of the feedback gains K} such that the error tube is
scaled to the smallest possible size for a given shape fixed by the matrix (). Next, we will now focus

on the computation of the terms AV which define the nominal trajectory.

5.3.2 Computation of the nominal control

The objective for the nominal trajectory is to reach the final rendezvous objective X in a fuel-
optimal manner. The main difference with respect to the fixed-time rendezvous problem defined
in (4.13) is that the saturation constraints need to be modified in order to ensure the necessary
margin for the feedback correction terms required for the real trajectory. The procedure resembles
the constraints tightening approach described in Section 5.1. but in our case the feedback terms
result from an optimization procedure which minimizes the dimensions of the final arrival set.

The nominal trajectory does not necessarily have to start from the initial measured spacecraft
relative state X{" = X1. According to (5.19), it is sufficient that the difference between the two
initial conditions be bounded by the ellipsoidal set defined by @, in order to guarantee the final
rendezvous precision. Hence, the initial state for the nominal trajectory can be considered as a
decision variable.

With K and consequently @, computed using (5.26), the optimal control problem for the

nominal trajectory can be written as:

N-1
iy kz::l [ENAR
Xpy1 = ApXp + BrAVy
y er € (X", Qu), Xn = X; (5:28)

ur = AVy + Kpey, e, € E(0,Qq)

|uk| < Af/max(”i% Vek S E(Oan)

Problem (5.28) aims at optimizing the nominal fuel-cost rather than the worst case performance
by choosing a criterion in the nominal control variables.

The saturation constraints in (5.28) have been written following the same assumptions about
the configuration of the spacecraft thrusters as in (4.8). They concern the control policies uy for the
perturbed spacecraft relative trajectory but can be written as constraints on the nominal decision
variables AV}:

AV, < AVax(vi) — max  Kpep, k=1..N—1 (5.29)
ekGE(O,Qa)
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The usage of ellipsoidal sets enables for (5.29) to be replaced by:
AVi| < AVipax (1) = [ Ky Palla, Po = Q"” (5.30)

The saturation constraint (5.30) is the main reason why the correction gains K} and the nominal
controls AVj are computed separately. If K}, is considered as a decision variable then so is P, and
in this case the norm-2 constraint in (5.30) is not convex. The separate computation of K} and
AV removes this issue but it also introduces the risk of the problem becoming infeasible if the

resulting saturation constraints are too restrictive.

Finally, once K} and AV}, are computed using the described procedures, the obtained rendezvous
control plan can be applied without any recomputation, and it will steer the spacecraft towards the

final objective with a guaranteed precision given by Q.

5.4 Affine disturbance feedback MPC

According to [35], a convex formulation for the control problem (5.15) can be directly found if the
control policies uy are parametrized as affine disturbance feedback control laws instead of affine
state feedback control laws. In this case, the structure of uy is given by:
k—1
up = AV + > Lyw;, wi € B(0,Q¥), k=1.N-1 (5.31)
i=1
where the disturbance feedback terms are considered only until £ — 1 to ensure the causality of the

control.

The value of the perturbation wy is unknown at the instant k. Its value can only be estimated
at the next time step based on the effects it produces on the spacecraft relative trajectory. If the
only source of errors are the navigation uncertainties then, by using (5.10), the perturbation term
wy can be evaluated from the current measure X} | and the prediction made in nominal conditions
starting from the previous measure X;". The difference between the two is due to the disturbance
W

Wy = X]Z_Lf_l — (AkX]T + Bkuk) (532)

For the control structure defined in (5.31), the evolution of the errors between the real trajectory
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and the nominal trajectory is given by:

er = X7 — X,

ex = Aje; +wy

es = AsyAje; + (Az + BaLo 1)wi + wo (5.33)
eq = AzAsAjer + (A3(As + BaLa 1) + B3Ls 1) wi + (As + BsLs 2)ws + w3

It can be seen that choosing the decision variables as in (5.31) leads to expressions for the propa-
gation of the errors which do not contain any nonlinear products between the gain matrices. This
provides an advantage with respect to expressions (5.18) obtained for the affine state feedback case
and greatly simplifies the control synthesis procedure by allowing the simultaneous computation of

the feedback gains Ly ; and of the nominal controls AVj.

The causality consideration in (5.31) forces the first control uy to be equal to the first thrust
of the nominal trajectory AVg. This causes any initial mismatch between the perturbed trajectory
and the nominal trajectory to be propagated in open-loop over the prediction horizon, as it can be
seen from (5.33). This problem can be removed by no longer considering the initial state for the

nominal trajectory as an optimization variable and instead imposing that:
X=X (5.34)

which causes e; to be always equal to zero.

T
Let X = | xX™ } be the prediction of the evolution of the closed-loop per-

m
1]2 X

m
13 X

1N
turbed trajectory starting from the initial measured state X{*. X can be written in a compact form
as:

X = AX™ + BAV + (BL + C)w (5.35)

where the matrices A € REN-1x6 B ¢ RENV-Dx3(N-1) 359 C e REVN-DX6(N-1) are defined as:

Ay By 0 0 O 1 00 0
AsA AsB By, 0 0 A I 0 0
A — 2411 B— 2D1 2 C— 2
_ANfl...Al_ _ANfl...AQBl BNfl_ _ANfl...AQ AN,1 I_

(5.36)
T T
and AV = [AVl AV, AVN_l} W= [wl wy ... wxna| - The gain matrix L € R3NV-DX6(N-)
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is defined by:

[0 0 0 0]
Loq 0 0 0

L= L3’1 L372 0 0 (537)
_LN—1,1 LN_LN_Q 0_

Taking into consideration the constraint (5.34), the evolution of the nominal trajectory X =

— -— el T . .
X1|2 X1\3 X1|N} is given by:
X = AX"+BAV (5.38)

The error between the perturbed trajectory and the nominal trajectory can be written in this case

as a linear function of the disturbance vector w:
e=X-X= (BL + C)w (5.39)

It becomes clear that a good choice for the matrix L could limit the effects of the navigation errors
on the spacecraft rendezvous trajectory. We are searching for the nominal control AV and the
correction gains matrix L that guarantee the smallest error at the end of the prediction horizon
en and the lowest fuel-cost for the nominal trajectory, all while robustly satisfying the saturation

constraints on the thrusters.

The objective for the final error can once again be interpreted in terms of minimizing the

dimensions of an ellipsoidal set that bounds ey for all the possible values of the uncertainties:
min tr Qy s.t. ey € E(0,Q7"), Yw; € B(0,QY), i=1..N—1 (5.40)
By using the dynamics of the errors from (5.39), the constraint in (5.40) can be written as:
w(BNL + Cn)"Q; ' (BNL + Cn)w < 1, Vu; € E(0,Qf), i =1.N — 1 (5.41)

where By and Cn are obtained by selecting the appropriate lines in the B and C matrices. Using
the S-procedure and the Schur complement, the quadratic constraint (5.41) can be transformed

into a linear matrix inequality:

371, T2, e TNo1 20, Q= 08t R0 (5.42)
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where the matrix R is defined as:

1= 3305 7 0 0 nQy
0 (BNL + Cn) Qs TN-1QN_1

The saturation constraints on the control u; are written based on the same assumptions as in
(4.8) about the configuration of the spacecraft thrusters. The constraints must be respected for all

admissible values of the uncertainties:
lur| < AViax (Vi) Yw; € E(0,QY), i =1..k—1, k=1..N—1 (5.44)

The usage of ellipsoidal sets enables us to transform the constraints (5.44) in tightened constraints

on the nominal controls:

k—1
|AVi| < AViax(vk) = Y 1 Li P2, k= 1..N—1 (5.45)

i=1
where P = (Q;”)_l/ 2. The previous constraint is a conic constraint since only AV} and Ly ; are
decision variables while the domains for the disturbances w; are considered known. The final convex
optimization problem that needs to be solved in order to find the affine disturbance feedback control

laws u; can be written as:

min tr (T(vn) QT (vn)™T) + |AV]|y

QAVi,Li i

Xk:—f—l = Aka + B AV}

X1 =X, Xy =Xy

) k—1 (5.46)
5.t |AVR] < AViax () = D | Lii P |l2, b =1..N—1
i=1
37’1, T2y «oo TN—1 Z 0
Qr=0, R=0

The optimization criterion reflects the compromise between the fuel cost of the nominal trajectory
and the rendezvous precision, represented by the ellipsoidal set bounding the final error. The matrix
T in the criterion accounts for the variable change (1.17) that has been performed on the spacecraft
relative state in order to reach the dynamical model used for control computation. Minimizing the

domain for the transformed variables might not necessarily translate into a minimal domain for
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the original variables. The matrix T ensures that the optimized domain corresponds to the errors

expressed using the time-domain variables and is defined by:

o) (14+ecosv)ls 03 (5.47)
v) = ‘ .
—esinvis 7(1 + e‘cos V) I3
v

where vy is the true anomaly which corresponds to the final time of the rendezvous.
The advantage of this approach over the affine state feedback control plan is that only one
optimization problem needs to be solved in order to determine all the parameters of the control

laws.

5.5 Numerical evaluation of the robust control techniques

The performances of the two previously presented robust control techniques are evaluated for differ-
ent rendezvous scenarios. The comparison criteria are the fuel-cost of the rendezvous trajectories
and the dimensions of the set bounding the final error. The obtained performances are first il-
lustrated in closed-loop simulations using the linear model for the propagation of the spacecraft
relative motion based on the Yamanaka-Ankersen state transition matrix. The guaranteed perfor-
mances are then validated using a nonlinear propagation model. The nonlinear simulator is based

on Gauss Variational Equations and its detailed description can be found in [49].

5.5.1 Description of the simulation procedure

The simulations start form perturbed initial conditions, obtained by adding a random noise §.X
to the initial spacecraft relative state used for control synthesis. Random noise is also added to
all the other relative states that are measured during the simulations. The noise is bounded by
an ellipsoidal set with semi-axis of 0.02 m for the relative position and 0.002 m/s for the relative
velocity.

The outer ellipsoidal approximations for the domains of the disturbances w are computed using
the analytical procedure given in (C.10). The obtained ellipsoidal sets E(0, Q%) depend on the
domain for the navigation uncertainties §X and on the time interval between two consecutive
control instants. Before starting the simulations, the parameters of the robust control laws also
need to be computed by solving the corresponding optimal control problems. The specific procedure
for each case is detailed in what follows, but the common point is that no call to an optimization

procedure is made during the simulations. This means that if the presented control techniques were
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used for a spacecraft rendezvous mission, all the computational effort could be carried out using the
resources available at the ground control station, followed by an upload of the resulting parameters

on-board the follower spacecraft.

Affine state feedback

The gains K}, for the affine state feedback laws are computed by solving the SDP (5.26) while
the nominal control are obtained from (5.28). The two optimization problems are solved using
Yalmip [63] and the solver SDPT3 [100]. The obtained solution depends on the choice of the @
matrix defined in (5.23). This matrix specifies the geometry of the tube which bounds all the
possible rendezvous trajectories.

One way of choosing @) comes from considering the variable change (1.17). The optimization
problem (5.26) is written for the transformed variables but our purpose is to obtain good per-
formances for the actual spacecraft relative trajectory. The transformation (1.17) introduces an
artificial scale factor between the values of the spacecraft relative position and velocity, factor that
depends on the orbital parameters of the leader spacecraft. A good choice for the matrix @) can
normalize this difference and lead to better results in terms of rendezvous precision.

The states X}, belonging to the nominal trajectory also need to be evaluated at the predefined
control instants, since their values are used for control computation. They can easily be obtained
from (5.11), where the initial condition is the one provided by the resolution of (5.28). The worst
case fuel consumption can be evaluated before the simulations by adding to each nominal control

the maximum possible correction:

N-1
Avaax = (AVk + HKk:PaHQ) (548)
k=1
The velocity increments are evaluated during the simulations at each control instant. Their values

depend on the obtained measurements and can be computed using the definition in (5.16).

Affine disturbance feedback

The parameters defining the series of disturbance feedback control laws are obtained after solving
the SDP defined in (5.46) using Yalmip [63] and the solver SDPT3 [100]. The worst case fuel con-
sumption can be evaluated before the simulation by adding to each nominal control the maximum

possible correction:

N-—1 k—1
A‘/max = Z <AVI€ + Z ||Lk:,z‘Pzw‘2> (549)

k=1 =1
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The velocity increments are evaluated during the simulations, at each control instant, using the
definition in (5.31). The perturbation terms w are also evaluated at each control instant during
the simulations, based on the obtained relative state measurements. Their values are obtained by
using (5.32) and then stored in the memory until the end of each scenario. This is necessary since
the history of past disturbances contribute to the computation of the control.

The closed-loop performances are evaluated for two different rendezvous scenarios: the quasi-

circular PRISMA mission [75] and the highly eccentric Simbol-X mission [30].

5.5.2 The PRISMA mission

The robust control techniques are first tested on a PRISMA spacecraft rendezvous mission. The

data defining the orbital parameters of the leader spacecraft are given in Table 5.2.

Mission a [km)] e i]°] Q[°] w [°] AViax [m/s
PRISMA 7011 0.004 98 190 0 0.26

Table 5.2: Reference orbit data for the PRISMA rendezvous mission

In this case, we consider the matrix ) for the affine state feedback method as:

Q = diag (1,1,1,0.01,0.01,0.01) (5.50)

which roughly corresponds to the difference in magnitude between the spacecraft relative position
and velocity after the transformation (1.17).

The data corresponding to the chosen rendezvous scenario are given in Table 5.3. We are
interested in analysing the influence of the duration of the mission on the size of the guaranteed

final arrival set and on the fuel cost of the mission.

Mission X1 [m,m/s] v1 [°] Xy [m,m/s| duration [s] N
PRISMA [10000,0,0,0,0,0] 0 330,0,30,0,0,-0.0158] 18 000 10

Table 5.3: Simulation scenario for the PRISMA rendezvous mission

The size of the guaranteed arrival set is illustrated in Table 5.4 for different values of the
mission duration. The number of impulsive thrusts is maintained constant. The presented values
correspond to the semi-axes in the xz plane of the ellipsoidal sets which bound the final errors
for all the possible values of the navigation uncertainties. The comparison is made between the
application of the nominal plan in open-loop, the usage of the state feedback plan and the usage

of the disturbance feedback plan.
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mission duration [s] | 9000 | 12000 | 15000 | 18000
open-loop MPC [m| 56.82 1.4 | 70.08 0.61 | 93.65 1.3 | 1052 0.9
state feedback MPC [m] 4.056 4.056 | 6.49 649 | 9.89 989 | 141 141

disturbance feedback MPC [m] | 3.92  2.32 6.4 2.86 | 9.63 3.23 | 13.92 3.48

Table 5.4: Semi-axes of the arrival set in the xz plane for the PRISMA mission

As expected, the two closed-loop approaches offer great benefits over the open-loop case. If the
sum of the semi-axes is considered, the precision guaranteed by the disturbance feedback approach
is better for all the values considered for the mission duration. The size of the final guaranteed
arrival sets increases for both robust control methods with the extension of the prediction horizon.
This is to be expected since increasing the prediction horizon without increasing the number of
control instants causes the navigation uncertainties to be propagated in open-loop for a longer
period of time (as showed in Section 5.2.2).

The difference between the fuel cost of the nominal trajectory and the maximum possible fuel
cost for the perturbed closed loop trajectory is presented in Table 5.5. It can be noticed that the
lowest nominal cost is obtained every time for the state feedback approach. This is a consequence
of the fact that, for this approach, the initial state for the nominal trajectory is a decision variable.
This allows an extra degree of freedom for the optimization algorithm leading to a smaller fuel
cost for the nominal path. However, the maximum possible fuel cost can be significantly higher,

depending on the dimensions of the error tube guaranteed by the correction gains.

mission duration [s] | 9000 | 12000 | 15000 | 18000
open-loop MPC [m/s] 1.1951 0.9997 0.6548 0.6505
state feedback MPC [m/s] 0.7343 1.9175| 0.5826 2.4873| 0.4677 3.3503| 0.5403 4.6760

disturbance feedback MPC [m/s] | 1.1952 1.3809| 1.0015 1.1878| 0.6548 0.8444| 0.6505 0.8593

Table 5.5: Nominal fuel cost and maximum possible closed-loop cost for the PRISMA mission

In the disturbance feedback case, the variation between the nominal fuel cost and the maximum
fuel cost is smaller. It can also be seen that in this case the nominal cost tends towards the open-
loop cost as the mission duration increases. This comes from the fact that, for longer mission

durations, the thrusters saturations constraints are no longer active.

Linear closed-loop simulations

The closed-loop behaviour of the system is analysed first using the linear model for spacecraft

relative motion. The simulations follow the procedure that has been described in the first part of
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this section.

mission duration [s] ‘ 9 000 12 000 15 000 18 000
average AV state feedback MPC [m/s| 1.3506 1.5304 0.75 1.0631
average AV disturbance feedback MPC |[m/s] 1.2139 1.0206 0.6741 0.6722

Table 5.6: The average linear closed-loop fuel-cost for the PRISMA mission

The average fuel consumption obtained for the linear closed-loop simulations is presented in
Table 5.6. The average is computed for 100 runs of the rendezvous scenario starting from different
perturbed initial conditions. It can be seen that for the state feedback case, even if the average fuel
consumption is lower than the upper bound given in Table 5.5, it is always higher than the one
obtained for the disturbance feedback case.

The trajectories obtained using the two robust control methods for a mission duration of 18000
s are depicted in Figure 5.1. The open-loop trajectories are also showed in order to emphasize the
spread of the perturbed rendezvous trajectories that occurs in the absence of closed-loop corrections.
Even if the trajectories followed by the two robust methods are different, they both reach the final

objective within the guaranteed precision.
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Figure 5.1: The rendezvous trajectories for the PRSIMA mission using the linear propagation model

Figure 5.2 presents the final arrival sets guaranteed by the robust algorithms, F(0,Q,) for the
state feedback case and E(0, Q) for the disturbance feedback case, along with the obtained errors
with respect to the mission’s final objective. As expected, the final errors belong to the guaranteed

arrival sets.
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Figure 5.2: Final errors and the guaranteed arrival sets for the PRISMA mission using the linear
propagation model

Nonlinear closed-loop simulations

The control performances for the nonlinear closed-loop simulations are evaluated for trajectories
obtained starting from 100 different perturbed initial conditions. The average closed-loop fuel
consumption is given in Table 5.7 for the same values of the mission durations considered for the
linear case. It can be noticed that the average fuel consumption is higher than the one obtained
for the linear case but lower than the theoretical upper bound given in Table 5.5. The difference
between the linear and the nonlinear behaviour is more visible for the state feedback case where

the average fuel consumption is up to 40% higher (see Table 5.6).

mission duration [s] ‘ 9 000 12 000 15 000 18 000

average AV state feedback MPC [m/s] 1.5012 1.6838 1.0731 1.5806
average AV disturbance feedback MPC |m/s] 1.3080 1.0840 0.7236 0.7083

Table 5.7: The average nonlinear closed-loop fuel-cost for the PRISMA mission

Figure 5.3 shows the comparison between the trajectories obtained for the open-loop control
and for the two robust closed-loop control techniques. The mission duration is 18000 s, the same
value as for the linear case. The open-loop trajectories show that, for the nonlinear model, the
dispersion of the perturbed trajectories is slightly higher and accompanied by an offset with respect
to the desired final position. The offset on the x axis for instance is about 800 m. This is due to the
mismatch between the linear and nonlinear dynamics for the spacecraft relative motion. FEven if
this source of errors has not been considered during the control synthesis, the guaranteed precision
with respect to the final objective is still respected for the two closed-loop approaches (see Figure

5.4).
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Figure 5.3: The rendezvous trajectories for the PRSIMA mission using the nonlinear propagation
model
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Figure 5.4: Final errors and the guaranteed arrival sets for the PRISMA mission using the nonlinear
propagation model

5.5.3 The Simbol-X mission

The robust guidance techniques are also tested on a highly eccentric rendezvous mission called
Simbol-X. The data for the reference orbit is summarized in Table 5.8. The simulations follow the

procedure described in the first part of this section.

Mission a [km)] e i]°] Q[°] w [°] AViax [m/s]
Simbol-X 106 247 0.7988 5.2 180 90 0.8

Table 5.8: Reference orbit data for the Simbol-X rendezvous mission

For this scenario, the @) matrix which shapes the tube for the state feedback control strategy is
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taken as:

Q = diag (1,1,1,0.0001,0.0001,0.0001) (5.51)

in order to compensate the difference in the values of the position and velocity caused by the

variable change (1.17) for this highly eccentric orbit.

The data corresponding to the particular rendezvous scenario that is considered here are given
in Table 5.9. Different mission durations are considered throughout the simulations in order to
analyse the influence of this parameter on the fuel-cost of the mission and on the dimensions of the

guaranteed arrival set.

Mission X1 [m,m/s] v1 [°] Xy [m,m/s| duration [s] N
Simbol-X -305,0,396,0,0,0] 135 -60.2,0,79.85,0,0,0] 8 000 10

Table 5.9: Simulation scenario for the Simbol-X rendezvous mission

The semi-axes in the zz plane of the guaranteed ellipsoidal arrival sets are presented in Table
5.10 for each of the control methods and for different values of the mission duration. As in the
case of the PRISMA mission, the benefits of adding the feedback correction terms can be easily
observed. The arrival set guaranteed by the disturbance feedback approach is always smaller than
in the case of the state feedback approach, if the sum of the semi-axes is considered. For each one of
the chosen rendezvous durations, the disturbance feedback control guarantees a better rendezvous

precision in presence of navigation uncertainties.

mission duration [s] | 8000 12 000 16 000 20 000
open-loop MPC [m] 16.15  15.92 | 2448 23.76 | 33.04 31.5 | 41.86 39.17
state feedback MPC [m] 6.19 6.19 | 648 6.48 7.4 7.4 9.01 9.01

disturbance feedback MPC [m] | 2.55  2.55 3.74 374 | 494 494 | 619 6.19

Table 5.10: Semi-axes of the arrival set in the xz plane for the Simbol-X mission

Table 5.11 presents the influence of the mission duration on the fuel cost for the nominal
trajectory and on the maximum possible fuel cost for the perturbed closed loop trajectories. The
nominal fuel cost for the disturbance feedback method is every time equal to the open-loop cost,
meaning that the tightened saturation constraints are not active. Just like for the PRISMA mission,
the nominal fuel cost for the state feedback case is always lower, accompanied by a maximum cost

that is higher than for the disturbance feedback case.
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mission duration [s] | 8000 | 12000 | 16000 | 20000
open-loop MPC |m/s| 0.1578 0.1053 0.0792 0.0637
state feedback MPC [m/s] 0.1455 0.3777| 0.0934 0.3152| 0.0663 0.2974| 0.0487 0.3081

disturbance feedback MPC [m/s] | 0.1578 0.3161| 0.1053 0.2637| 0.0792 0.2379| 0.0637 0.2192

Table 5.11: Nominal fuel cost and maximum possible closed-loop cost for the Simbol-X mission

Linear closed-loop simulations

The average fuel consumption obtained for the closed-loop simulations is presented in Table 5.12.
The average is computed for 100 runs of the rendezvous scenario. The data show that for the state
feedback case, even if the average fuel consumption is lower than the theoretical upper bound, it
is always higher than the one obtained for the disturbance feedback case, regardless of the chosen

mission duration.

mission duration [s] ‘ 8 000 12 000 16 000 20 000
state feedback MPC |m/s| 0.1818 0.1314 0.1055 0.0908
disturbance feedback MPC [m/s] 0.1755 0.1228 0.0957 0.0795

Table 5.12: The average linear closed-loop fuel-cost for the Simbol-X mission
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Figure 5.5: The rendezvous trajectories for the Simbol-X mission using the linear propagation
model

Figure 5.5 shows the closed-loop trajectories obtained when applying the different control meth-
ods, for a mission horizon of 8000s. The open-loop trajectories corresponding to different perturbed

initial conditions are also illustrated in order to evidence the spread of all the possible trajectories
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under the effects of navigation uncertainties. In this case, the two methods lead to very similar
closed-loop trajectories that effectively control the dispersion caused by the navigation errors.
The guaranteed arrival sets for the two robust control methods, F(0,Q,) and E(0, Q) respec-
tively, are illustrated in Figure 5.6 along with the final errors with respect to the given rendezvous
objective. As expected, the final errors are contained inside the arrival sets for all the cases con-

sidered during the simulations.

8 8
E(0.Q,) E(0.Q)
6 E(0.Q) 6 E(0.Q)
O final errors disturbance feedback MPC O final errors disturbance feedback MPC
4 final errors state feedback MPC 4 final errors state feedback MPC
2 2
E 0 E o
N >
-2 -2
-4 -4
-6 -6
-8 | | | | | | | ) -8 . . . . . .
-8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4
X [m] X [m]

Figure 5.6: Final errors and the guaranteed arrival sets for the Simbol-X mission using the linear
propagation model

Nonlinear closed-loop simulations

The average fuel consumption for the nonlinear closed-loop simulations is presented in Table 5.13
for each of the considered mission durations. The data show that, for these particular rendezvous
scenarios, the average fuel consumption is very similar to the linear case. This can be explained by
the small separation between the spacecraft, which limits the propagation errors, along with the

short mission duration when compared to the orbital period.

mission duration [s] | 8000 12 000 16 000 20 000
state feedback MPC [m/s] 0.1821 0.1304 0.1072 0.0904
disturbance feedback MPC [m/s] 0.1755 0.1218 0.0963 0.0796

Table 5.13: The average nonlinear closed-loop fuel-cost for the Simbol-X mission

Figure 5.7 shows the nonlinear closed-loop trajectories obtained for each of the two robust con-
trol methods for the same mission horizon of 8000s. The open-loop trajectories are also illustrated

in order to evidence the spread of all the possible trajectories under the effects of navigation un-
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certainties. These trajectories are very similar to the linear case, suggesting that for the chosen

scenario the effect of the propagation errors is very reduced.
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Figure 5.7: The rendezvous trajectories for the Simbol-X mission using the nonlinear propagation

model

Figure 5.8 illustrates the guaranteed arrival sets, E(0,Q,) for the state feedback method and

E(0,Q¢) for the disturbance feedback method, along with the closed-loop final errors with respect

to the rendezvous objective. As expected, the final errors are contained inside the arrival sets for

all the cases considered during the simulations.
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Figure 5.8: Final errors and the guaranteed arrival sets for the Simbol-X mission using the nonlinear

propagation model
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5.6 Conclusion

Different methods for obtaining a guidance algorithm for the spacecraft rendezvous that is robust to
navigation uncertainties have been discussed in this chapter. Even if the final rendezvous objective
cannot be precisely reached in presence of navigation uncertainties, this chapter proposes two
control techniques which optimize the dimensions of a guaranteed final arrival set. The proposed
methods rely on the computation of a series of feedback control laws that guarantee the robust
constraints satisfaction and a good trade-off between the fuel cost of the resulting trajectory and
the final rendezvous precision. The resulting convex optimal control problem can be solved only
once before the beginning of the rendezvous maneuvers. The computed feedback laws can be then
used directly at the corresponding control instant. This property might be particularly attractive
in the case in which the on-board computational resources are limited. The problem can be solved
using the resources available on the ground before the beginning of the maneuvers, followed by the
upload of the parameters of the control laws to the spacecraft.

The difference between the developed robust control methods consists in the parametrization
chosen for the computed feedback laws. Both approaches amount to solving some convex optimiza-
tion problems and both method guarantee the constraints satisfaction for all the admissible values
of the uncertainties. For the disturbance feedback parametrization, only one convex Semi Definite
Program needs to be solved in order to obtain the solution while the state feedback parametrization
imposes the decomposition of the synthesis into two separate steps. The existence of two separate
steps might cause the control problem to be infeasible in cases where the disturbance feedback
approach is able to provide a feasible solution. Moreover, the parametrization of the control laws
as state feedback laws imposes some extra approximations in order to reach a convex formulation of
the problem. It also introduces an extra tuning parameter, the matrix () which fixes the geometry
of the tube around the nominal trajectory. The quality of the obtained solution will depend on the
chosen value and some guidelines for choosing this parameter have been provided.

The disturbance feedback approach enables us to specify a precision objective which concerns
only the final error. In the state feedback case, limitations for the errors with respect to the nominal
trajectory are enforced all along the rendezvous path. These constraints are added in order to be
able to convexify the optimization problem. The disturbance feedback approach does not impose
any particular constraints on the approach trajectory and this freedom is reflected by the fuel
consumption. For the rendezvous missions chosen for illustration, the rendezvous performances in
terms of final precision are very similar while the average fuel consumption is always higher in the

state feedback case.
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Résumé: Ce chapitre porte sur le maintien du mouvement relatif périodique des satellites en
présence des incertitudes de navigation. Le caractére instable des trajectoires périodique a été déja
mis en évidence dans le Chapitre 2. Ainsi, si l’état relatif est perturbé ou mal connu, une loi de
commande doit étre mise en place afin de stabiliser le mouvement périodique. Une technique de con-
trole analytique o deux impulsions est développée dans ce chapitre. Cetle techniques est basée sur
lobservation qu’un vecteur constant de paramétres décrit entierement une trajectoire périodique don-
née. De plus, les trajectoires périodiques représentent des ensembles invariants pour le mouvement
relatif des satellites. Cette loi de commande, qui est trés peu gourmande en ressource numérique, est
ulilisée en conjonction avec les techniques de guidage robuste développées dans le chapitre précédent
dans un stratégie de controle o deux étapes pour rejoindre et maintenir un mouvement périodique

de prozimité.

The spacecraft ability to maintain a proximity periodic relative motion is an important aspect
of on-orbit servicing missions [85]. A precise mathematical characterisation of constrained periodic

spacecraft relative trajectories has been given in Chapter 3. The resulting description of admissible
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trajectories has been used in Chapter 4 to obtain a guidance algorithm towards a proximity periodic
relative motion. The control technique is illustrated only in perfect conditions, with no navigation
uncertainties or modelling errors. The effects of imperfect relative state information are analysed in
Chapter 5. It is showed that, when measurement noise is considered, the desired final objective can
no longer be exactly reached. Robust control algorithms are developed that instead can guarantee

the guidance towards a minimal arrival set centered around the final desired state.

The unstable behaviour of the spacecraft periodic trajectories has been analysed in Chapter 2.
The consequence of this unstable behaviour is that, even if the spacecraft arrive arbitrarily close to
a desired periodic trajectory, the relative motion will not naturally converge towards it. In presence
of navigation uncertainties, the robust guidance towards an arrival set centered around a desired
periodic trajectory needs to be followed by a switch to a local controller which can robustly stabilize
the spacecraft periodic relative motion. This chapter addresses this problem and proposes a local
bi-impulsive controller. The chosen structure takes into consideration the limited computational

resources available on-board the spacecraft and the preference for impulsive maneuvers.

6.1 Stability around a periodic relative trajectory

Let D be a given constant vector of parameters corresponding to a periodic spacecraft relative
trajectory (see the definitions in Chapter 2). For the particular case of the periodic motion, the
vector D is such that dy = 0. The set of spacecraft relative states belonging to the particular

periodic trajectory defined by D is given by:
S,(D) = {X(y) €R® | C(W)X(v) = D Vv, VD such that do = o} (6.1)

where the matrix C'(v) is defined as in (2.5). The set S,(D) represents an invariant set for the
autonomous spacecraft relative motion. This follows from the property of the spacecraft relative

motion given in (2.20) which shows that:

X(v) € Sp(D) = X(vj) € Sp(D), Vvj > vy (6.2)

The objective of robustly stabilizing the spacecraft relative motion with respect to a chosen
periodic trajectory can be translated into an objective of robust stability of the invariant set S,(D).

In the general case, an invariant set S for an autonomous system x(tx11) = f(2(tx)) is said to be
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stable if, for each € > 0, there exists § > 0 such that [51]:
Va(to) s.t. dist (z(tp),S) < 0 = dist (x(tg),S) < e, Vtr > to (6.3)
where the distance from a state x to the set S is defined as:
dist (z,S) = inf ||z — y| (6.4)
yeSs
An invariant set S is said to asymptotically stable if it is stable and § can be chosen such that [51]:

V(to) s.t. dist (z(tg),S) < J = lim dist (z(tx),5) =0 (6.5)

k—o0

A control that stabilizes the spacecraft periodic motion in presence of navigation uncertainties
must maintain bounded the distance between the spacecraft relative state and the invariant set

Sp(D). Following from (6.4), this distance can be defined as:
dist (X(v), Sy(D)) = [|C(»)X (v) - D (6.6)
The purpose is to find a control law such that:

dist (X (v), Sp(D)) =0 (6.7)

6.2 Analytical bi-impulsive stabilizing control for the periodic mo-

tion

This section details the characteristics of an analytical bi-impulsive control law which can stabilize
the spacecraft periodic relative motion. For a bi-impulsive structure of the control the condition
(6.7) has an analytical solution, which can be obtained without too much computational effort.
The stability of the periodic motion can be guaranteed while still relying on impulsive thrusts as

in the previous chapters.
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6.2.1 Computation of the control

Starting from the current spacecraft relative state measurement X (vk), two impulsive maneuvers

AV}, and AVkH can be computed such that:
dist (X (ve11), Sp(D)) = 0 (6.8)

where Xt (vgy1) is the state right after the second impulsive control AVj, 1. According to (5.2),
Xt (vpy) is given by:

X+(Vk+1) = X(V/H_l) + B A‘?k—kl

Following from (5.3), Xt (v41) can be written as a function of the current measured state:
X (Wrr1) = ®(Wiy1,v) X () + @ (g1, ) BAV: + BAVy (6.9)
Introducing this expression into (6.8) leads to the following stability condition:

1C(Ves1) (@(V,m, ve) X (v) + ®(vgy1,ve) BAV, + B Affkﬂ) - D||=0 (6.10)

The two impulsive controls that bring the system to the invariant set S,(D) can be obtained

through direct computation:

AVk -1
- = |:<I’(l/k+1,l/k>B B} €k|k+1 (611)
AVt
where eyj41 is defined as:
Eurrr = Xp(Wat1) — @(iyr, v) X () (6.12)

The term Xp(]/k.}rl) defines the spacecraft relative state belonging to the desired periodic tra-

jectory specified through the vector of parameters D at the instant v441. Using (2.8), X, (vp41) is
defined as:

Xp(Vk+1) = F(Vk41) D (6.13)

The term ey, corresponds to an anticipated error between the spacecraft trajectory and the
desired periodic trajectory, computed based on the current state measure X (vk) and assuming

autonomous propagation over the interval [vg vgi1].
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It should be noted that for the matrix in (6.11) to be invertible, the interval between the two

impulsive controls must be chosen such that: vy 1 — vy # mm, m € N,

6.2.2 Domain of validity

The amplitude of the two impulsive controls computed using (6.11) depends on the anticipated
error between the current measure and the desired periodic trajectory and on the chosen interval
between the two thrusts. The obtained control is valid only in a domain where the saturation
constraints of the thrusters are satisfied. We assume that the saturation constraints are defined as
in (4.8) by some polytopic constraints:
AV}, .
Hp | < Va(Vk+1, ) (6.14)
AVi1

where the matrices Ha and Va (Vg, Vg41) are defined by:

Af/max(yk)
Ig ~ Avmax(l/k 1)
Hp = VaWi,Upg1) = | om T (6.15)
—1Is AVmax(Vk)
_Af/max(yk—&—l)_

These constraints impose some restrictions on the initial error é, between the measured state
and the corresponding state on the desired periodic trajectory in the moment where the analytic
control (6.11) is computed:

& = Xp (k) — X () (6.16)

Using (6.11) and the fact that the anticipated error €k|k+1 can also be expressed as:
Erir1 = LWyt i) €k = P(Vkr1, i) (F(Vk) D — X(”k)) (6.17)

the following polytopic constraints on the initial error € are obtained:

He(Vpr1, )k < Ve(Viy1, k) (6.18)

where:

B -1 5
He(Vgy1,v) = Ha [(I)(ukﬂ,uk)B B| @i+, vk), Ve(Wrsr,vk) = Va(rgr,v)  (6.19)
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The error in the time domain denoted by ey is related to € through:
ék = T(l/k) €L (6.20)

where the matrix T'(v) is defined as in (5.47). Hence, the matrices defining the time-domain

polytopic constraints on the initial error are given by:
He(trpr, tr) = He(ipr, i) T(ve),  Velthras th) = Ve(vig, vi) (6.21)

For some given saturation constraints defined in time domain by AVj,.x, the matrices in (6.21)
defining the polytopic constraints on the initial error depend on the choice for ¢} and tx4;. For
a fixed time interval between the two impulses At, a worst-case estimation for the domain of the

admissible initial error, regardless of the position of the first impulse, can be obtained as:

ID:

e € P(He,Ve) = [ | P(He(tr + At tr), Ve(tr + At 1)) (6.22)

k=1

where P(H,(tx + At, ty), Ve(tr + At, tx)) denotes the polytope defined by the indicated matrices.
Figure 6.1 gives the cut through the polytope P(H,, V.) bounding the initial error following

the plane corresponding to the position errors, for different values of the time interval between the

two impulses. The sets are computed for AV,,4, = 0.26 m/s and e = 0.3, and are obtained for the

intersection of 150 different sets in (6.22) using the mpt toolbox [54] and Matlab.
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Figure 6.1: Illustration of the polytopic set bounding the initial error for AV,,,4 = 0.26 and e = 0.3

Even if the intersection of the polytopes gives a conservative estimation, it can be seen that the
domain for admissible initial position errors with respect to the desired periodic trajectory becomes

bigger as the interval between the two controls becomes larger. The longer free drift interval can be

-200
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used to naturally compensate larger initial position errors, without applying a higher thrust. The
admissible initial velocity errors specifications remain unchanged, regardless of the choice for the
control interval. In this case the domain for the velocity errors is defined by a cube centered in 0

and large of 0.26 m/s.

6.2.3 Performances in presence of navigation uncertainties

In the presence of navigation uncertainties, the distance with respect to the invariant set Sp,(D)
after applying the two impulsive maneuvers computed using (6.11) will be different than zero. If

the measured spacecraft relative state is affected by unknown but bounded sensing noise such that:

X(vg) = X (vg) + 6Xg, 60Xk € E(0,Qx) (6.23)

then the obtained distance with respect to the periodic trajectory when applying the control com-

puted based on imperfect information is given by:
dist (X+(yk+1),Sp(D)) = ||C (V1) P(Vir1, vk)I XK ||, X1 € E(0, Q) (6.24)

The obtained value depends on the choice for the two control instants, v and vg, 1 respectively, on
the eccentricity of the orbit of the leader spacecraft and on the value of the navigation uncertainties.
Because the sensing noise is assumed to be bounded by an ellipsoidal set, a worst case distance can

be computed for the considered interval:

d v V) = max  dist (X (v S,(D)) = ||C(v (v Vi) P 6.25

max (V+1, Vk) s, A (X" (Wk41), Sp(D)) = |C (V1)@ (Wht1, vie) Pr|2 (6.25)

where P, = Q,;l/ % Worst case bounds for the performances of the analytical control law in presence
of navigation uncertainties can also be computed. The performances are defined in terms of the

tracking error for the spacecraft relative state after the second impulsive control:

Ert1 = Xp(Vir1) — X (V1) (6.26)

where X, (v441) is defined as in (6.13). The term &y, is different from the anticipated error k41
defined (6.12) since it is based on the dynamics of the controlled spacecraft relative trajectory

instead of the autonomous evolution. After integrating (6.23) and (6.11) into (6.9), the tracking
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error obtained for the analytical bi-impulsive control can be written as:
Ek+1 = P(WVpt1, )0 X, 06Xk € E(0, Q) (6.27)

The tracking performances are influenced by the same parameters as the distance with respect to
the invariant set S,(D). Following from the expression of the propagation of an ellipsoidal set
through a linear application given in (C.7), an ellipsoidal bound can be computed for the tracking

error depending on the chosen values for v, and vgq:
Eri1 € B0, @(vpy1, i) T Qu® (Wi, vi) ") (6.28)

For given navigation uncertainties specifications and a fixed time interval between the two
impulses, a worst case estimation of the domain for the final error regardless of the position of the

first impulse can be obtained as:

oo
E€E0,Q:) 2 | EO, (W1, ) Qu®(hr1, i) ) (6.29)
k=1
where E(0, Q) denotes the minimal volume outer ellipsoidal approximation of the union of ellip-
soids. The set E(0,Q.) can be computed by solving an SDP, using the procedure described in [14]
page 43.

Figure 6.2 illustrates for the final position errors, the evolution of the bounding ellipsoidal
set with the interval between the two impulsive controls. The illustrated values are obtained for
an eccentricity of e = 0.3 and for navigation uncertainties bounded by an ellipsoidal set whose
semi-axes are equal to 0.02 m for the spacecraft relative position and 0.002 m/s for the relative

velocity.

It can be noticed from Figure 6.2 that the dimension of the set bounding the tracking errors
increases as the interval between the two impulses increases. In presence of navigation uncertain-
ties, applying only the computed bi-impulsive control does not guarantee the stability around the
periodic since the distance to the invariant set S,(D) after control is different than zero and will
continue to increase if no other trajectory corrections are applied. The distance to the invariant set
can be maintained bounded by periodically recomputing the two impulsive controls and applying
them. The choice for the frequency of recomputation needs to take into account how this parameter

affects the domain of validity of the control and also its influence on the obtained tracking precision.

If the recomputation occurs after that both impulses have been applied, the initial error for
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Figure 6.2: The change in the final error with the change in the interval between the impulsive
controls

the new control will be bounded by the ellipsoid E(0, ®(vjy0, Vkt1) ! Qe®(Vpt2, ver1) ). This
comes from the fact that the final tracking error é;1, obtained after the application of AV, is
propagated over another interval before a new control is computed. In order to guarantee that the

saturation constraints are not violated, the recomputation frequency should be such that:
E(0, ®(Vit2, Vig1) " Qe®(Viya, V1)) C P(He, Ve) (6.30)

The condition (6.30) can be checked during the a priori analysis using the procedure described

in [14], page 70.

To improve the tracking error, the recomputation strategy could be modified following the Model
Predictive Control principles: only the first of the two computed impulses is applied each time and
the second one is discarded. At the next control instant a new pair of impulses is computed based
on new measurement information out of which only the first one is used. This strategy can limit
the propagation of the measurement errors to only one control interval instead of two leading to a

smaller error with respect to the desired periodic trajectory.

In the next section it will be showed how the presented analytical bi-impulsive control law
can be combined with the robust control methods developed in Chapter 5 in a two stage Model

Predictive Control setting.
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6.3 Robust guidance towards a spacecraft periodic relative motion

Let us consider a fixed-time rendezvous mission where the objective is to guide the spacecraft
towards a periodic proximity relative motion in presence of navigation uncertainties. Starting from
an initial state Xl, the purpose is to compute a robust rendezvous plan that, when applied at the
fixed instants vy, ...vny_1, drives the spacecraft towards a final periodic relative trajectory. The
periodic trajectory is not fixed a priori, but it must respect the following constraints: the final
periodic trajectory must evolve inside a tolerance box X, centered around a fixed position X.
In addition to this, the periodic motion needs to be maintained during a specified period after the

end of the rendezvous plan, in spite of the presence of navigation errors.

The mission’s objective can be achieved by dividing the control into two phases. During the
first phase the spacecraft are brought in proximity of an admissible trajectory, using the robust
control techniques presented in Chapter 5 for instance. During the second phase, the stability of

the spacecraft periodic relative motion is ensured by a local controller.

Stage 1 Stage 2
Robust fixed-tirme guidance + Robust stabilization of the
towards an admissible spacecraft periodic motion
periodic trajectory using a local contraller

This two stages approach possesses several computational advantages. The disturbance-feedback
control approach presented in Chapter 5 can be used for instance during the first stage in order
to steer the spacecraft towards an admissible final state. It can guarantee to reach the smallest
possible arrival set centered around a final state belonging to an admissible periodic trajectory. The

corresponding optimal control problem can be obtained by modifying (5.46) to reflect the change
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in the final objective:
i tr (T71Q;T-T)+|A
o in, i (TTIQTT) | Av)
Ty = AgTr + BrAuvg

— _ m_~
1 =2, ' = X1

D =C(vN)Zn, dg =0

T (6.31)
5.8 3Y; = 08t 9 = |tr (V; Hyy) ... tr (YiHas)| ,
, t=1.s
Yi = tv; — (hipCy + hi2Cy + hi3C.)D
~ k—1
|Avg] < AVinax (Vi) = Y | Le P12, k= 1..N—1
=1

E|7'17 T2, ... TN—1 ZOS.t. tho, REO

where the same notations as in the previous chapters are maintained. The terms h;; and v;
correspond to the elements of the H and V matrices which define the tolerance box bounding the
admissible periodic trajectories. For the considered case, the H and V matrices are defined in the
same way as in (4.29). The terms 7; in (6.31) correspond to the coefficients of the non-negative
polynomials which define the admissible arrival set. The vector of parameters D corresponding to

the final state of the nominal trajectory must belong to this arrival set.

The optimal control problem (6.31) can be solved at the ground station before the beginning of
the rendezvous maneuvers and then the solution can be uploaded on-board the spacecraft. Applying
the computed series of disturbance feedback laws brings the spacecraft in proximity of the periodic
trajectory defined by the vector of parameters D. In presence of navigation uncertainties, the
error with respect to the periodic trajectory at the end of the plan is guaranteed to belong to the

ellipsoidal set E(0, Q) which is computed before starting the maneuvers.

During the second stage, the analytical bi-impulsive control defined in (6.11) can be used in
order to robustly stabilize the spacecraft periodic relative motion. The periodic reference trajectory
at this stage is defined by the vector D obtained at the previous stage. The following condition
needs to be verified:

E(0,Qy) C P(H,,V.) (6.32)

in order to guarantee that, at the moment of the switch between the two control approaches,
the validity conditions for the bi-impulsive control law are verified. The frequency of control

recomputation for the second stage must be chosen according to the constraint imposed by (6.30).
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This verification can be made before the beginning of the mission, using the computational resources
available at the ground station. The bound for the error at the end of the first stage given by
(6.31) makes possible the a priori verification of the switch condition (6.32). The choice for the
recomputation frequency can be made according to the saturation restrictions and to the mission’s

requirement regarding the tracking precision.

6.4 Numerical examples

The fixed-time spacecraft rendezvous mission defined in Table 6.1 is used in order to illustrate the
two stages control approach. The purpose is to guide the spacecraft towards a periodic proximity
motion contained in the specified bounds and then to maintain the periodic motion during 10 orbital

periods starting at the end of the rendezvous maneuvers, in spite of the presence of navigation

uncertainties.
a [km)] e AVipax N X1 [m,m/s]| t1 [s] Xt |m] Xy [m] tn s
7011 0.004 0.26 10 [1000,50,50,0,0,0] 0 [100,0,0] [50,25,25] 3 000

Table 6.1: Spacecraft rendezvous mission data

The tests are performed using the nonlinear simulator for the spacecraft relative motion de-
scribed in [49]. Random navigation errors are added to each relative state measurement that is
used for control computation and the Jo perturbation is also considered during the simulations. The
disturbance feedback control is used during the first phase of the rendezvous mission, following the
same procedure that has been exposed for the examples in Chapter 5. The analytical bi-impulsive
control is then used in the second stage to maintain the periodic motion. In this second stage, the

control is applied at a constant frequency that is fixed a priori.

Our purpose is to evaluate the influence of several parameters on the performances of the
analytical bi-impulsive control law. The performances of the disturbance feedback strategy have
already been analysed in Chapter 5 and we focus here on the switch between the two control laws,
on the precision for the tracking of the periodic trajectory and on the fuel cost of the control in
the second stage. We are interested in analysing the effects of the eccentricity of the reference
orbit, of the interval between two consecutive control instants v and vi41 and of the amplitude of

navigation uncertainties.
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6.4.1 Influence of the eccentricity of the reference orbit

In order to analyse the influence of the eccentricity of the orbit of the target spacecraft on the
performances of the analytic control strategy, we consider that the control is applied at a constant
frequency of At = 100 s. Random noise is added to every spacecraft relative state measurement.
The navigation uncertainties are bounded by an ellipsoidal set whose semi-axes are equal to 0.02

m for the relative position and 0.002 m/s for the relative velocity.

50

2(mi
g

-100

—150 =

100
0
800 1000 1200

-100 g 200 400 600

y [m] -

Figure 6.3: Spacecraft relative trajectory towards proximity periodic motion

Figure 6.3 shows the spacecraft relative trajectory obtained for the scenario in Table 6.1. The
spacecraft arrive in proximity of an admissible periodic relative trajectory using the disturbance
feedback approach. The analytic bi-impulsive control then maintains the periodic motion for the

desired time in spite of the navigation uncertainties.
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Figure 6.4: Tlustration of the switch conditions for the relative velocity errors
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The switch conditions for the relative velocity errors are illustrated in Figure 6.4. The blue
cube indicates the restrictions imposed by the saturation constraints on the velocity errors and the
red ellipsoid corresponds to the velocity errors guaranteed by the guidance algorithm at the end

of phase 1. The restrictions on the relative position errors have also been verified and are largely

satisfied.

The influence of the eccentricity of the leader’s orbit on the tracking precision and on the average
fuel consumption is analysed for the analytic bi-impulsive control. The closed-loop trajectories
obtained in the second phase of the mission, for different values of the eccentricity, are presented
in Figure 6.5. The projections of the periodic trajectories onto the xy and zz planes are also given

in order to better show the geometry of the obtained trajectories.
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Figure 6.5: The obtained periodic trajectories for different values of the eccentricity

Table 6.2 summarizes for each of the considered eccentricities the closed-loop performances of
the analytic control. It gives the maximum absolute value for the position error with respect to the
periodic trajectory dpmax, the maximum absolute value for the velocity error dvyax and the average
fuel consumption per orbit AV /orbit for each case. It can be seen that for the considered interval
between controls, the performances of the bi-impulsive control method are not very much influenced
by the values of the eccentricity. A slight increase in the errors and in the fuel consumption can be

observed for the highest considered eccentricity e = 0.5.
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| e dPmax [M]  dvmax [m/s] AV Jorbit [m/s] |

0.004 0.1865 0.0039 0.2494
0.1 0.1948 0.0039 0.2360
0.3 0.1800 0.0038 0.2406
0.5 0.3461 0.0061 0.2627

Table 6.2: The influence of the eccentricity on the performances of the analytic control

6.4.2 Influence of the interval between controls

The influence of the time interval between consecutive controls At on the tracking performances
is analysed here. Like in the previous case, the navigation uncertainties belong to an ellipsoidal
set whose semi-axis are equal to 0.02 m for the spacecraft relative positions and 0.002 m/s for the

relative velocity.
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Figure 6.6: The influence of the control frequency on the tracking performances

The evolution of the tracking performances for different values of At is illustrated in Figure
6.6. It can be seen that for every value of the eccentricity of the reference orbit, applying the AV
corrections less frequently results in a lower total fuel consumption per orbit. For the case where
e = 0.5, the plot only goes until At = 500 s because for higher values the validity conditions are no
longer verified. For lower eccentricities the average fuel consumption is very similar, regardless of
the value chosen for the interval between controls. Only for the case e = 0.5 the average fuel cost
per orbit is slightly higher.

Figure 6.6 also shows that while choosing a larger value for At reduces the fuel consumption,
it also increases the tracking errors. For all the considered eccentricities the position tracking error
increases as the interval between controls increases. It can also be noticed that the tracking errors
are more sensitive to the value of the eccentricity then the average fuel cost. This can be explained

by the fact that, for eccentric orbits, the spacecraft velocity is not constant throughout the orbit.
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Different distances can be travelled by the spacecraft in the same time interval, depending on its
position on the orbit.

The choice for the frequency of control application should reflect the best admissible compromise
between the fuel cost per orbit and the desired tracking precision. Small intervals between controls
guarantee the best tracking precision but in the same time are the most fuel consuming. Choosing
a large interval can lead to poor tracking performances or it can violate the domain of applicability

of the control.

6.4.3 Influence of the navigation uncertainties

The influence of the level of the navigation uncertainties on the control performances is analysed
next. For an eccentricity of e = 0.3, the effects of the navigation uncertainties are presented

depending on the value chosen for the control interval At.
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Figure 6.7: The influence of the level of measurement noise on the tracking performances

Figure 6.7 shows that even when there is no measurement noise the average fuel consumption is
different than zero because the nonlinear model is used and the Jo perturbation is active. However,
it can be seen that when the spacecraft relative state is perfectly known, a smaller interval between
controls actually gives a smaller fuel cost per orbit since the eventual errors do not propagate for
a long time. In presence of navigation uncertainties, a larger control interval always leads to a
smaller fuel consumption. This can be explained by the fact the imperfect state information might
cause some unnecessary thrusting attempting to correct errors that actually come from the sensing
noise. For all the values considered for the control interval, the fuel cost per orbit increases as the

uncertainties levels increase.
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Table 6.3 summarizes the tracking performances of the analytical control for At = 400 s and

for every of the considered levels for the eccentricity.

‘ dp|m];évlm/s|  dpmax [m| dvmax [m/s| AV /orbit [m/s] ‘

0;0 0.7790 0.0040 0.0188
0.01;0.001 0.8968 0.0042 0.0388
0.02;0.002 1.0147 0.0050 0.0658
0.03;0.003 1.3995 0.0054 0.0931
0.04;0.004 1.7207 0.0078 0.1273

Table 6.3: The influence of the level of navigation uncertainties on the performances of the analytic
control for e = 0.3 and At =400 s

6.5 Conclusion

This chapter presents an analytical bi-impulsive control method for stabilizing the spacecraft pe-
riodic relative motion. The method is based on the fact that periodic trajectories are equilibrium
trajectories for the spacecraft relative motion. The states belonging to periodic relative trajectories
form an invariant set for the spacecraft relative motion, whose robust stability must be ensured.
The computation of the stabilizing control uses the results in Chapter 2, which show that any
periodic spacecraft relative trajectory can be described by a constant vector of parameters. The
bi-impulsive structure of the control is chosen because it can provide an analytical solution to the
stability condition.

Spacecraft periodic relative trajectories are unstable, meaning that any autonomous trajectory
starting in proximity of a periodic solution will not naturally converge towards the periodic motion.
This means that in presence of navigation uncertainties the desired periodic trajectory cannot be
precisely reached. Corrections need to be computed and applied periodically in order to prevent
the spacecraft from drifting away from the desired trajectory. Bounds for the admissible error
with respect to the periodic trajectory are given in order to guarantee that the computed controls
respect the thrusters saturation constraints. Limitations on the choice for the control recomputation
frequency are imposed by the fact that, for bounded navigation uncertainties, the tracking error
must remain within the admissible error domain.

The analytic bi-impulsive control is integrated in a 2 stages Model Predictive Control scheme,
whose purpose is to guide the spacecraft towards an admissible periodic trajectory and then to
robustly maintain the periodic motion for a specified time. This control setting demonstrates that

good robust guidance performances can be achieved using a control scheme which does not rely on
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onboard optimization. Numerical simulations based on the nonlinear propagation model for the
spacecraft relative motion are used to analyse the influence of different parameters on the control
performances. The most important tuning parameter is the frequency of control recomputation
and its choice can be driven by a compromise between the desired tracking precision and the fuel

consumption.



Conclusions

The fixed-time spacecraft rendezvous guidance problem is investigated in this thesis. The main
objectives are concentrated around obtaining guidance algorithms capable of handling different
types of trajectory and control constraints that arise from spacecraft mission requirements. Another
important aspect is related to the robustness properties of the control algorithms, motivated by the
need for increased control authority for future spacecraft missions.

The first part of the thesis focuses on the modelling of the spacecraft relative motion and more
precisely on the study of the geometric properties of the relative trajectories. A particular attention
is paid to naturally periodic trajectories, motivated by their importance for ensuring the passive
security of the spacecraft relative trajectory and by their potential usage as fuel-fee parking or
inspection orbits. A new parametrization for the spacecraft relative trajectories is proposed, based
on the Cartesian model for the spacecraft relative motion and on the expression of the transition
matrix. It is showed that, in the general case, two of these parameters change over time, while in
the case of periodic motion, all the parameters describing the relative trajectory are constant. This
property leads to a compact, generic representation for the spacecraft periodic relative trajectories,
regardless of their shape or dimensions. It provides more flexibility than the classical approach
based on the usage of parametrized curves such as circles and ellipsoids for specifying a desired
periodic relative trajectory.

A mathematical characterisation for the set of parameters corresponding to relative trajectories
which respect some dimensions constraints, over a desired time interval, is necessary in order to
simplify the spacecraft relative trajectory design process. For instance, in the case where the
mission requires the usage of parking orbits, these parking orbits need to be designed such that
they are periodic and contained inside a specified area around a waiting point along the rendezvous
trajectory. For passively safe approach trajectories, the fail trajectories must be such that, in case
of system failure, the follower spacecraft remains inside a designated safe area in proximity of the
target, for the desired period of time. The important question that needed to be answered was:
which is the relation between the values of the parameters and the geometric properties of the
resulting spacecraft relative trajectory?

From a mathematical point of view, verifying that a trajectory respects the dimension con-
straints over a specified time interval, translates into numerically checking an infinite number of
conditions. The classical approach for rendering finite the number of conditions is based on con-

straints discretization. While this solution is simple and straightforward, it does not provide a



128 Conclusion

rigorous mathematical description of the admissible trajectories. Moreover, this approach cannot
guarantee that no constraints violations will occur in between the discretization points. The pro-
posed alternative is based on the properties of non-negative polynomials. Our method exploits the
structure of the solution for the spacecraft relative motion provided by the transition matrix and
leads to a finite characterisation of the admissible trajectories that guarantees continuous satisfac-
tion of the constraints. This result can provide the mission designer with a powerful tool for the

spacecraft relative trajectory design.

The proposed characterisation of the admissible trajectories is integrated in the fuel-optimal
spacecraft rendezvous guidance problem for missions that impose continuous constraints on the
approach trajectory. It is showed that the constrained guidance problem can still be written as
a convex optimization problem. The methods is illustrated for several examples, including the
spacecraft guidance towards a parking orbit defined as a constrained periodic relative trajectory, the
spacecraft rendezvous with passive security constraints on the approach trajectory or the spacecraft
docking trajectory with continuous visibility constraints. The examples emphasize the advantage
of our method over the classical constraints dicretization technique, for which constraints violations

occur in between the verification points.

When the spacecraft relative state measure is affected by navigation uncertainties, the final
rendezvous objective can no longer be precisely reached. In this case, the objective becomes to
obtain a robust guidance algorithm that provides a good compromise between the fuel cost of
the approach trajectory and the final rendezvous precision, while guaranteeing robust constraints
satisfaction for all the admissible values of the uncertainties. Two control techniques are proposed
which optimize the fuel consumption and the dimensions of a guaranteed final arrival set. The
methods rely on the computation of a series of affine feedback control laws that can ensure robust
constraints satisfaction and a good performance trade-off. It is emphasized that the resulting convex
optimal control problem can be solved only once, before the beginning of the rendezvous maneuvers,
and then the computed feedback laws can be directly used at the corresponding control instant,
without any need for recomputation. This property might be particularly attractive when the on-
board computational resources are limited. The problem can be solved using the resources available
on the ground before the beginning of the maneuvers, followed by the upload of the parameters of
the control laws to the spacecraft. The choice of the affine feedback structure for the control might
impose some limitations on the achievable control performances. A further interesting development
would be the estimation of lower and upper bounds on the performances, bounds that derive from

this particular choice for the control parametrization.
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The presence of navigation errors also affects the spacecraft periodic relative motion. The
spacecraft periodic relative trajectories are showed to be unstable equilibrium trajectories, meaning
that from a state arbitrarily close to a periodic trajectory, the spacecraft relative motion will not
naturally converge towards the periodic solution. For this particular case, an analytical bi-impulsive
control which stabilizes the spacecraft periodic relative motion is proposed. The computation of
the control is based on the fact that periodic trajectories can be described using a constant set
of parameters. The bi-impulsive structure is chosen because it provides an analytical solution to
the stabilization problem, requiring very few computational effort to obtain the control. However,
because the corrections are computed based on imperfect state information, the control needs to
be applied periodically in order to guarantee the stability of the motion. For a particular choice
for the control frequency, the validity domain of the analytical control can be estimated a priori.

The analytic bi-impulsive control is integrated in a 2 stage Model Predictive Control scheme
which demonstrates that good robust guidance performances can be achieved using a control scheme

which does not rely on onboard optimization.






Conclusions

Cette thése est consacrée au probléme de guidage en rendez-vous a temps firé des satellites en orbite
terrestre. L’objectif principal est de concevoir des algorithmes de guidage capables de prendre en
compte les différents types de contraintes sur le contréle ou sur la trajectoire relative imposées par
les spécifications de chaque mission. Le caractére robuste des manceuvres obtenues, favorable a
Uaccroissement de l’autonomie, est également investigués.

La premiére partie du manuscrit est dédiée & la modélisation du mouvement relatif des satel-
lites et plus précisément a [’étude des propriétés géométriques des trajectoires relatives. Les trajec-
toires relatives périodiques sont étudiées plus un détail, du fait de leur possible utilisation pour la
sécurisation passive des trajectoires d’approche et de leur usage potentiel comme orbites de park-
ing ou d’inspection qui ne nécessitent pas de dépense de combustible. Des nouvelles expressions
paramétriques sont proposées pour les trajectoires relatives, basées sur le modéle cartésien local du
mouvement relatif et sur lutilisation de ’expression de la matrice de transition d’état. Pour cette
nouvelle paramétrisation, deux parametres seulement varient avec le temps et, dans le cas du mou-
vement périodique, les paramétres sont tous constants. Celle propriété permet Uoblention d’'une
description compacte des trajectoires relatives périodiques, quelle que soit leur forme ou leur di-
mension. La nouvelle formulation s’avere plus flexible et plus générique que 'approche classique,
basée sur ['utilisation des courbes paramétrées, telles que les cercle ou les ellipses, pour spécifier une
trajectoire périodique désirée.

Pour simplifier le processus de design des trajectoires relatives des satellites, il est nécessaire de
traduire mathématiquement les contraintes dimensionnelles 4 respecter sur un intervalle de temps
donné. Par exemple, si une mission donnée nécessite 'utilisation des orbites relatives de parking
entre deux étapes différentes, ces orbites peuvent étre choisies périodiques et de dimensions ne
dépassant pas une zone spécifiée autour d’un point de passage fixé sur la trajectoire. Pour des
approches qui nécessitent des garanties de sécurisation passive de la trajectoire, on peut chercher a
mmposer auz trajectoires de panne d’évoluer o Uintérieur d’une zone de sécurité spécifiée en proximité
de la cible pour un intervalle de temps fizé. La question importante qui se pose devient alors
d’identifier le lien entre les valeurs des parameétres décrivant une trajectoire relative et ses propriétés
géométriques.

D’un point de vue formel, certifier qu’une trajectoire relative respecte des contraintes de dimen-
ston sur un intervalle de temps fizé revient & vérifier un nombre infini de conditions. L’approche

classique pour obtenir un nombre fini des conditions & vérifier consiste & discrétiser lintervalle
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donné. Meéme si cette solution est simple et facile a implémenter, elle ne fournit aucune descrip-
tion formelle des trajectoires admissibles. De plus, cette approche ne peut pas garantir que les
contraintes sont également satisfaites sur lintervalle entre deux points de discrétisation. Une solu-
tion alternative est proposée, solution qui est basée sur les propriétés des polynémes non-négatifs.
Cette nouvelle méthode exploite la structure de la solution des équations dynamiques décrivant le
mouvement relatif des satellites, solution donnée par la matrice de transition. Flle améne & une
caractérisation finie des trajectoires admissibles et garantit la satisfaction continue des contraintes.
Ce résultat peut s’avérer trés utile pour le design des trajectoires relatives de satellites pour des

opérations de proximité.

La description développée pour les trajectoires relatives admissibles est intégrée dans un algo-
rithme de guidage des satellites, adapté aur missions qui requierent des contraintes continues sur
la trajectoire d’approche. I est monitré que le probléme de commande optimale sous contraintes
correspondant peut étre écrit comme un probléme d’optimisation convexre. La méthode est illustrée
par plusieurs exemples, tels que le guidage des satellites vers une orbite de parking définie comme
étant une trajectoire périodique contrainte, le rendez-vous orbital avec des contraintes de sécurité
passive sur la trajectoire d’approche ou le rendez-vous avec des contraintes de visibilité. Ces exem-
ples mettent en évidence les avantages de cette nouvelle méthode par rapport a l'approche basée sur
la discrétisation des contraintes, pour laquelle les contraintes ne sont pas nécessairement respectées

entre les points de vérification.

Lorsque la connaissance de l'état relatif des satellites est affectée par des incertitudes de mesures,
Uobjectif final de la mission ne peut plus étre précisément atteint. L’objectif devient alors d’obtenir
des algorithmes de guidage robustes, qui fournissent des solutions permettant d’atteindre un bon
compromis entre la consommation de combustible et la précision finale, tout en garantissant la sat-
isfaction des contraintes pour toute valeur admissible des incertitudes. Deux techniques de contréle
sont proposées a cet effet. Elles optimisent a la fois la consommation de combustible et la dimension
de l'ensemble d’arrivée qui contient tous les états finauz possibles. Ces méthodes sont basées sur
le calcul d’une série des lois de commande au lieu d’un plan de mancuvres et peuvent assurer la
satisfaction robuste des contraintes et un bon compromis au niveau des performances. Les prob-
lemes d’optimisation conveze qui en découlent doivent étre résolues une seule fois, avant le début
de la mission, et puis les lois de commande obtenues peuvent étre utilisées sans besoin de recalcul.
Cette caractéristique peut s’avérer particuliérement intéressante pour des missions ot la puissance
de calcul embarqué est fortement limitée. La solution du probléme d’optimisation peut donc étre

calculée au sol, avant le début des manceuvres, suivie par une simple transmission des parameétres
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obtenus vers les satellites.

1l est o noter que le choix de travailler avec des structures affines de commande pourrait engen-
drer des limitations au niveau des performances du controle. Une direction de recherche intéressante
serait d’estimer des bornes de performance supérieures et inférieures, bornes fixées par le choiz de
la structure affine.

La présence des incertitudes de navigation a également des effets sur le mouvement relatif péri-
odique des satellites. Les trajectoires périodiques sont des trajectoires d’équilibre instable. Par
conséquent, pour des états initiauz situés arbitrairement proche d’une trajectoire périodique, la tra-
jectoire obtenue ne va pas converger de maniére autonome vers la solution périodique. Pour remédier
a ce probléme, une stratégie de contrdle basée sur le calcul analytique des deuz impulsions est pro-
posée, afin de stabiliser le mouvement relatif autour d’une trajectoire périodique donnée. Cette
méthode utilise le fait qu’une trojectoire périodique peut étre décrite par un vecteur constant de
parameétres. L’avantage de cette méthode est le fait que le calcul analytique des corrections nécessite
tres peu de ressources. En méme temps, comme les corrections sont obtenues a partir des mesures
affectées par des incertitudes, le controle doit étre calculé et appliqgué de maniére périodique pour
garantir la stabilité du mouvement périodique. Pour une période de recalcule fizée, le domaine de
validité du contréole o deux impulsions peut étre obtenu a priori.

La méthode analytique & deuz impulsions est intégrée dans une stratégie de contréle a deux étapes,
en conjonction avec les méthodes de commande robuste développées, afin de réaliser le guidage
robuste en mouvement périodique de proximité. Cette stratégie fait preuve de bonnes performances

de guidage, lesquelles sont obtenues en évitant la résolution embarquée de problémes d’optimisation.






APPENDIX A

Stability of spacecraft periodic
trajectories

The stability analysis of a system in the sense of Lyapunov studies the convergence of the system’s
state towards some equilibrium points. An equilibrium point is defined as a state that the system
can maintain indefinitely without any change in the input. In the case of the spacecraft relative
motion, the notion of equilibrium point is extended to the notion of equilibrium trajectory [51]. It
has been shown in Chapter 2 that once on a periodic relative trajectory, the spacecraft will pursue
the periodic motion as long as the input is maintained to zero. In this case, the stability analysis in
the sense of Lyapunov consists in characterising the behaviour of the system for initial states that

are arbitrarily close to a periodic trajectory.

The linearized spacecraft relative motion can be modelled by the periodic system:
X'(v) = AW)X(v), A(v) = A(v + 27) (A.1)

where the dynamical matrix A(v) is defined as in (1.19). The stability properties of the system
(A.1) cannot be deduced from the stability properties of the dynamical matrix, as it is the case
for LTI systems. For periodic systems, and more generally for time-varying systems, even if the
dynamical matrix is stable for every value of the independent variable, this does not necessarily

imply that the system is stable [28].

The solution to this system can be expressed using the state transition matrix ®, as described

in Section 1.4.1:

X(v) = o(v, VQ)X(V()) (A.2)

where X (1) denotes the initial conditions. The monodromy matriz is defined as the state transition

matrix over one period of the coefficients of the periodic system (A.1):
C = o(v + 2m, 1), Vg (A.3)

Considering the Yamanaka-Ankersen state transition matrix [103] and taking v = 0, the mon-
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odromy matrix for the spacecraft relative motion is given by:

i 1)2 2 1)3 ]
1 0 _3JM 3(]& 0 0
e—1 e—1
0 1 0 0 00
0 0 1 0 0 0
C = (A.4)
00 0 1 00
00 0 0 10
2
0 0 sgelete+2) oo (e+1)”
L e—1 e—1 J

where the term J is defined as in (1.33) over the interval [0 27].

The eigenvalues of the matrix C' are called the characteristic multipliers denoted here by A;. The
values of the characteristic multipliers are independent of the particular choice of v in (A.3) [28].
The stability properties of the periodically time-varying system (A.1) can be studied by looking at
the properties of the characteristic multipliers.

According to the theorems in Chapter 4 of [80], the periodic system (A.1) is stable if and only
if:

Nl <1, Vi (A.5)

In the case where there is only one characteristic multiplier with unity magnitude then there exists
some initial conditions for which the solution of the system is periodic [46]. If the multiplicity of
the unity eigenvalue is greater than one then the system is unsiable, in the sense that the natural
response of the system does not always remain bounded as time goes to infinity [80].

The eigenvalues of the monodromy matrix C' corresponding to the linearized spacecraft relative
dynamics are all equal to 1. According to the previous observation, there exists some particular
initial conditions for which the response of the system is periodic, which confirms the results in
Chapter 2. However, the periodic spacecraft relative trajectories are unstable since the multiplicity
of the unity characteristic multiplier is greater than 1. As a consequence, if the spacecraft relative
motion starts arbitrarily close to a periodic solution, it will not naturally converge towards the

periodic motion.



APPENDIX B

Properties of non negative polynomials

The results presented in Chapter 3 are based on the properties of non-negative polynomials given
by Nesterov in [73]. Nesterov proves that the cone of coefficients of univariate polynomials which
are non-negative on some segment of the real axis can be represented as the linear image of the cone
of positive semi-definite matrices. This result enables the usage of the semi-definite programming

for optimization problems with polynomial non-negativity constraints.

The definitions presented here are extracted from 73] and they concern only the concepts needed

in order to understand the developments in Chapter 3.

B.1 Checking polynomials non negativity on a finite interval

Let Ky be the convex, closed and pointed cone of the coefficients of polynomials that are non

negative on a finite interval [a 0] € R:
Kap = {p e R, Pw) = Zpi w', Yw € [a b]} (B.1)
=0

Reference [73]| shows that a polynomial P(w), represented through its vector of coefficients p =
T
[po pn} , belongs to Ky if and only if there exist two symmetric positive semi-definite ma-

trices Y7 and Y5 such that:
peEKapy <= 3V, Y2 =0st p=A"(Y1,Y3) (B.2)

The definition of the linear operator A* and the dimensions of the matrices Y7 and Y5 depend on

whether the polynomial P(w) has an odd or even degree.

For n odd take Yy,Yy € ROPFDX0mHD) = 0 where m = (n — 1)/2. Let Hy; € REFDXEFD 1e
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some Hankel matrices that contain ones on the ¢-th anti-diagonal and zeros everywhere else:

100 ... 010 .. 00 1
000 .. 100 010

Hpq1= Hy o= Hy 3 = (B.3)
000 .. 00 0 100

In this case, the operator A* is defined as:

tr (Yi(—aHp,1))+tr (Ya(bHp1))
tr (Yl (Hm,l — ang)) + tr (Yg(b Hmjg — Hm,l))

A*(Y1,Y3) = ' (B.4)
tr (Yl (Hm,ifl — aHm,i)) + tr (Yg(b Hmﬂ' — Hm,ifl))

tr (}/1 Hm,2m+1) + tr (YQ(_Hm,2m+l))

For n even take ¥; € R(MTDX(m+1) - (0 and Yy € R™*™ = 0, where m = n/2. In this case, the

operator A* is defined by:

tr (Yi Hm’1> +tr (Yg(—ame_Ll))
tr (3/1 Hm72) + tr (YQ((b + a)Hmfl,l - ame,Lg))
tr (Yl Hm,g) + tr (}/Q(U) + (I)Hm,LQ, - Hmfl,l - ame,Lg))

A (Y1,Y,) = ' (B.5)
tr (YiHp) +tr (Yo((b+a)Hp—1i-1 — Hmn—1,i—2—abHp_1,))

tr (Y1 Hmom) +tr (Ya((b+ a)Hpm—12m—1 — Hn—12m—-2))
tr (}/1 Hm,2m+1) + tr (Y2(_Hmfl,2mfl))

B.2 Checking polynomials non negativity on an infinite interval

The necessary and sufficient conditions for non negativity of univariate polynomials on infinite
intervals have also been given in [73]. A polynomial P(w) is non negative on R if and only if
there exists a symmetric positive semi-definite matrix ¥ e RO"tD)x(m+1) guch that p, the vector of

coefficients of P(w), verifies:

PpEKw <= 3IY =0st p=A"(Y) (B.6)
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where the linear operator A* is defined by:

A(YV)(j) = tr (Y Hpj), j=1.2m+1 (B.7)






APPENDIX C

Ellipsoidal sets

C.1 Representations of ellipsoidal sets

There are several ways of representing an ellipsoidal set, each one with its own advantages. An
ellipsoidal set E of dimension n can be described using a vector ¢ € R™ for its center and a positive

semi-definite matrix @ for its shape:
E(c,Q) ={zeR" | (z—c)TQ(zx—c) <1} (C.1)

Using this representation, the semi-axes of the ellipsoid a; are given by:

where \;(Q) denotes the i-th eigenvalue of the Q matrix.
By expanding the terms in (C.1), the ellipsoid F is defined by an non homogeneous quadratic
inequality:

E(,Q)={zcR"|27Qx — 27 Qs + 'Qc —1 < 0} (C.3)

This can be written as a homogeneous quadratic inequality by augmenting the variable:

E(c,Q)={zeR"| [xT t} —TZ 1 Q;Q ": >0 (C.4)
C — C C

where t = 1.

The positive definite matrix () can also be written as:
Q=UAUT =Ux?U"T

where A and X are diagonal matrices. Using this decomposition, alternative descriptions for the

ellipsoidal set E(c, Q) can be obtained:

B(c,Q) ={z eR" | [SUT(z — o)l| <1} = {w € R" | Q% (z — ¢)|| < 1} (C.5)
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By defining v = XUT (z — ¢) we have:

E(,Q)={zcR" |z =c+Ux v, |jv]| <1} (C.6)

C.2 Operations with ellipsoids

An ellipsoidal set E(c, @), propagated through a linear function Az + b is still an ellipsoidal set
defined by:
y=Azx+b, Yz € E(c,Q) <y € E(Ac+b,A7TQA™) (C.7)

The Minkowski sum @ of two ellipsoidal sets Fq(c1, Q1) and Es(ce, Q2) is defined as:
E1@E2:{1‘€Rn|x=$1+ib‘2, x1 € Fq, ZCQEEQ} (C.S)

The Minkowski sum of two ellipsoids is not usually an ellipsoid. However an analytical ellipsoidal
outer approximation of the Minkowski sum of two ellipsoids can be obtained by using the procedure
described in [81]:

Ey(c1,Q1) © Ea(c2,Q2) € Ep(er + 2, Qumr) (C.9)

where the matrix Qs defining the ellipsoidal set Ejs is defined by:

Qu = (AH)T(Qo — QuN(NTQuN)* NT Qo) A* (C.10)
and
2 0y,
Qo = &/ A= [In In} (C.11)
On Q2/2

The matrix N defines the orthogonal complement of the matrix A (i.e. NA = 0) and the symbol

# denotes the pseudo-inverse of the matrix.

C.3 The S-procedure

The S-procedure studies the non negativity of a quadratic form on a domain defined by quadratic

inequalities, such as ellipsoidal sets (C.3). Given the quadratic functions:

fi(z) = aT Mz + 2miTx + pi, i =0..1
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the purpose is to verify if:
fo(x) >0, Vx such that f;(z) >0, i = 1..1 (C.12)

For | = 2, the previous inequality is verified if and only if the quadratic function fy is a linear
consequence of the quadratic functions f; and fy. Using the representations based on homogeneous

quadratic forms as in (C.4), the condition (C.12) becomes:

My mo| |z M, m;| |z
> 0,Vz such that [g;T tT} >0,i=1.2 (C.13)
mg o | |t my | |t

(2

- ]
As reminded in [72], the condition (C.13) is equivalent to the following Linear Matrix Inequality:

37,79 > 0 such that Mo > TlMl + TQMQ (014)

where the matrices M; correspond to the homogeneous quadratic functions in (C.13).

For I > 2 the existence of a positive semi-definite linear combination between the matrices
corresponding to the quadratic inequalities does not necessarily mean that (C.12) holds. A sup-
plementary condition on the matrix M; needs to be added, the condition of the matrices being
simultaneously diagonalizable [76].

In the case where | = 1, condition (C.12) translates into the problem of checking whether an

ellipsoidal set is contained inside another ellipsoidal set.
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