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Abstra
t
Re
ent spa
e missions rely more and more on the 
ooperation between di�erent spa
e
raft in orderto a
hieve a desired obje
tive. Among the spa
e
raft proximity operations, the orbital rendezvousis a 
lassi
al example that has generated a large amount of studies sin
e the beginning of thespa
e exploration. However, the motivations and obje
tives for the proximity operations have
onsiderably 
hanged. The need for higher autonomy, better se
urity and lower 
osts promptsfor the development of new guidan
e and 
ontrol algorithms. The presen
e of di�erent types of
onstraints and physi
al limitations also 
ontributes to the in
reased 
omplexity of the problem.In this 
hallenging 
ontext, this dissertation represents a 
ontribution to the development of newspa
e
raft guidan
e and 
ontrol algorithms.The works presented in this dissertation are based on a stru
tural analysis of the spa
e
raftrelative dynami
s. Using a simpli�ed model, a new set of parametri
 expressions is developed forthe relative motion. This parametrization is very well suited for the analysis of the geometri
properties of periodi
 relative traje
tories and for handling di�erent types of state 
onstraints. Aformal 
onne
tion is eviden
ed between the set of parameters that de�ne 
onstrained traje
toriesand the 
one of positive semi-de�nite matri
es. This result is exploited in the design of spa
e
raftrelative traje
tories for proximity operations, in the impulsive 
ontrol framework. The resultingguidan
e algorithms enable the guaranteed 
ontinuous 
onstraints satisfa
tion, while still relyingon semi-de�nite programming tools. The problem of the robustness of the 
omputed maneuverswith respe
t to navigation un
ertainties is also addressed.





Résumé
La réalisation des missions spatiales repose de plus en plus souvent sur la 
oopération entre dif-férents engins spatiaux. Parmi les opérations de proximité, le rendez-vous orbital est une pratiqueaussi an
ienne que la 
onquête spatiale, qui 
ontinue de générer de nombreux travaux de re
her
he.Cependant, les motivations et les obje
tifs des ré
entes missions de rendez-vous orbital ont large-ment évolués. En e�et, les besoins d'une autonomie a

rue, d'une sé
urité améliorée, d'une plusgrande �exibilité et d'une rédu
tion des 
oûts, 
onstituent autant d'in
itations au développementde nouvelles méthodes de guidage et 
ontr�le. La satisfa
tion de 
ontraintes très variées, dues àdes 
onsidérations de sé
urité ou à des limitations te
hnologiques in
ontournables des a
tionneursou des 
apteurs, 
ontribuent à la ri
hesse du problème posé. Dans 
e 
ontexte, le développementde nouveaux algorithmes de 
ommande 
onstitue un vrai dé� s
ienti�que que 
ette thèse tente derelever.Les travaux de 
ette thèse sont basées sur l'analyse stru
turelle des expressions dé
rivant lemouvement relatif entre deux véhi
ules en orbite. Sur la base des modèles de transition disponiblesdans la littérature, une nouvelle paramétrisation du mouvement relatif est proposée. Celle-
i,parti
ulièrement adaptée à la 
ara
térisation des traje
toires périodiques, o�re la possibilité d'uneprise en 
ompte de 
ontraintes d'état très variées. Un lien formel est mis en éviden
e entre lesparamètres dé�nissant les traje
toires 
ontraintes et le 
�ne des matri
es semi dé�nies positives.Ces résultats sont exploités dans le développement des algorithmes de design de traje
toires pourdes opérations de proximité, sous hypothèse de poussée impulsionnelle. Ces algorithmes ont, entreautre, la propriété de permettre la satisfa
tion des 
ontraintes sur la traje
toire de manière 
ontinuedans le temps, tout en utilisant les outils numériques de la programmation 
onvexe. Le problèmespé
i�que de la robustesse des man÷uvres aux in
ertitudes de la 
haîne de mesure est aussi abordédans 
e manus
rit. Des appro
hes de type 
ommande prédi
tive sont mises en pla
e a�n de garantiraux opérations une pré
ision souhaitée en présen
e de perturbations.
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Introdu
tionRésumé: Le su

ès des missions spatiales repose de plus en plus souvent sur la 
oopération entreplusieurs véhi
ules en orbite. L'approvisionnement de la Station Spatiale Internationale par ex-emple est assuré par des opérations de rendez-vous orbital, tandis que des nombreuses missionss
ienti�ques utilisent des formations de satellites pour relever des mesures. Ce type d'opérationsont des besoins spé
i�ques en termes d'algorithmes de 
ontr�le, vue la distan
e réduite entre lesvéhi
ules, les 
ontraintes d'autonomie et de sé
urité des mission spatiales et les ressour
es limitées.Les travaux de 
ette thèse portent sur le développement des algorithmes de guidage pour des opéra-tions de proximité entre les satellites, où la distan
e réduite permet la navigation relative. L'obje
tifest de fournir des plans de man÷uvres optimisés du point de vue de la 
onsommation de 
om-bustible, qui prennent en 
ompte les 
ontraintes opérationnelles de la mission et qui soient robustesà des in
ertitudes. Le 
adre de travail 
hoisi est 
elui des méthodes dîtes dire
tes, qui permettent laformulation du problème de guidage 
omme un problème d'optimisation paramétrique.Ba
kground and motivationsSpa
e
raft rendezvous and do
king 
apabilities are required for a large array of spa
e appli
ationsthat involve more than one spa
e
raft. It is a key te
hnology for the in-orbit assembly of large units,su
h as the spa
e stations (Mir, Skylab, ISS). The spa
e stations further rely on rendezvous anddo
king missions in order to re
eive supplies or to ex
hange the 
rew. For instan
e, the unmannedAutomated Transfer Vehi
le (ATV) from the European Spa
e Agen
y periodi
ally supplies theInternational Spa
e Station (ISS) with propellant, water, air, payloads and experiments. Re
ently,the Dragon spa
e
raft be
ame the �rst 
ommer
ial spa
e
raft to su

essfully do
k with the ISS.Spa
e rendezvous has also been used for a variety of other purposes, in
luding the servi
emissions to the Hubble Spa
e Teles
ope and the EURECA spa
e
raft retrieval. Other on-orbitservi
ing missions are under study for existing spa
e
raft [7, 85℄. The in
reasing number of spa
edebris in the Low Earth Orbit originating from mutual 
ollisions, motivated the study of a
tivedebris removal missions [13℄.In the re
ent years, a lot of interest has been shown for spa
e s
ienti�
 missions that rely ondi�erent instruments distributed over a �eet of spa
e
raft. This 
on�guration 
an provide severaladvantages over the traditional monolithi
 satellite 
ontaining the payloads 
orresponding to severaldi�erent missions obje
tives. It 
an redu
e the laun
h 
osts by redu
ing the laun
h mass and it



2 Introdu
tion
an use multiple "mass produ
tion" vehi
les to assemble the �eet. The robustness of the missionis also in
reased by this 
on�guration sin
e the payloads are distributed among the spa
e
raft and
an eventually be repla
ed in 
ase of failure [98℄. Formation �ying o�ers more �exibility be
ausethe formation 
an be re
on�gured in order to follow new mission requirements. This approa
hhas been 
onsidered for s
ienti�
 missions with very diverse obje
tives, su
h as Earth observation(A-train), interferometry for Earth-like planets dete
tion (DARWIN), measurement of gravitationalwaves from supermassive bla
k hole binaries (LISA) or X-rays spa
e teles
ope (Simbol-X).The su

ess of spa
e
raft rendezvous and formation �ying missions depends on the pre
ise
ontrol of the spa
e
raft relative state, often-times in the 
ontext of relatively small spa
e
raftseparations. In order to ensure the se
urity of the mission, a high degree of autonomy and robustnessis desired for the relative motion 
ontrol pro
edure. For missions su
h as the Mars Sample Return[86℄, for whi
h the 
ommuni
ation delay between the ground station and the spa
e
raft is verylarge, an autonomous guidan
e algorithm whi
h guarantees that no 
ollision will o

ur between thespa
e
raft is of vital importan
e.The fuel-
ost of the spa
e
raft maneuvers is also a matter of 
on
ern. The propulsion system
an a

ount for up to 50% of the spa
e
raft mass at the laun
h time, redu
ing the available payloadmass and in�uen
ing the 
ost of the laun
h. The 
ontrol algorithms must ensure that the 
omputedmaneuvers are fuel-optimal, su
h that the desired lifetime for the mission 
an be a
hieved with thesmallest amount of propellant.The spa
e
raft rendezvousThe orbital rendezvous pro
ess 
onsists in exe
uting a series of orbital maneuvers with the purposeof bringing two spa
e
raft in 
lose vi
inity of ea
h other. Usually one of the spa
e
raft, 
alledthe target, is 
onsidered to be inert, while the se
ond spa
e
raft, 
alled the follower or the 
haser,exe
utes the maneuvers. When the obje
tive is to physi
ally join the two spa
e
raft involved in therendezvous, we speak about do
king or berthing.W. Fehse identi�ed in [29℄ several phases of a rendezvous mission, ea
h one with its own 
hal-lenges. For the laun
h stage, the purpose is to bring the two spa
e
raft in vi
inity by pla
ingthem in the same orbital plane. The phasing stage aims at redu
ing the phase angle betweenthe target and the follower (see the illustration in Figure 1). During the phasing maneuvers, thefollower spa
e
raft is 
ontrolled from the ground station and the navigation is based on absolutemeasurements with respe
t to the Earth.For the far range rendezvous phase or the homing phase, the follower spa
e
raft moves towards
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Figure 1: View of the target's orbital plane at the beginning of the phasing stagea stable position in proximity of the target, using relative navigation measurements. For the ATVrendezvous s
enario with the ISS for instan
e, this stage starts at a range of few tens of kilome-tres and ends at a range of few kilometres from the target spa
e
raft. The following 
lose rangerendezvous phase is usually divided in two stages: the 
losing maneuvers guiding the spa
e
rafttowards the �nal approa
h 
orridor and the �nal approa
h stage leading to mating 
onditions.The di�erent stages of an orbital rendezvous mission are summarized in Figure 2. The workspresented in this dissertation are related to the homing and the 
losing phases, during whi
h the twospa
e
raft rely on relative navigation measurements in order to a
hieve the desired �nal 
onditions.Some of the presented examples also refer to the �nal approa
h phase, leading to the spa
e
raftdo
king.Mission 
onstraints and te
hni
al 
hallengesThe spa
e
raft rendezvous guidan
e is a 
omplex pro
ess due to the di�erent types of 
onditionsand 
onstraints that must be respe
ted during ea
h phase of the mission. For the phases 
onsideredin this dissertation, the far range and 
lose range rendezvous stages, the approa
h traje
tory 
anbe required for instan
e to pass through spe
i�ed hold points where the follower vehi
le mustwait for the permission to pro
eed, either from the ground 
ontrol station or from the 
rew of thetarget spa
e
raft [29℄. Se
urity 
onsiderations might impose the 
hoi
e of approa
h traje
tories thatare inherently safe, meaning that they are guaranteed to avoid any 
ollision with target vehi
le,even in the 
ase where the thrust 
apabilities of the 
haser spa
e
raft are 
ompromised. Duringthe �nal approa
h maneuvers, the follower spa
e
raft might also be required to remain inside the
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Figure 2: The di�erent phases of a rendezvous missionvisibility 
one of the target spa
e
raft for 
ontinuous visual 
onta
t. These spe
i�
ations 
orrespondto 
onstraints that the rendezvous traje
tory must respe
t in order to 
ertify that the missionrequirements are met.Another fa
tor that must be taken into 
onsideration when designing the approa
h traje
toryis the fuel-
ost of the maneuvers. Thrust maneuvers 
an be approximated with impulses, i.e.instantaneous 
hanges of velo
ity at the time of maneuver. This simpli�es the 
omputation andthe analysis of a fuel-optimal maneuvers plan for the spa
e
raft rendezvous [29℄. The impulsiveapproximation is espe
ially well adapted for the liquid propellant engines whi
h are used for awide span of spa
e
raft maneuvers, ranging from orbital transfer maneuvers to station keeping andspa
e
raft attitude 
ontrol. Any 
omputed maneuvers plan needs to respe
t the 
onstraints on theavailable propellant budget for the rendezvous mission.



5Orbital disturban
es, navigation errors and 
ontrol exe
ution errors 
an alter the out
ome of the
omputed maneuvers. The presen
e and the e�e
ts of these disturban
es need to be integrated intothe rendezvous traje
tory design phase. Navigation errors are de�ned as the di�eren
e between thestate per
eived by the onboard system and the real state of the vehi
le. They 
an be 
aused by thesensors measurement performan
e limitations, by errors in the alignment between the sensors andspa
e
raft axes, by the onboard information pro
essing and �ltering, et
. The 
ontrol exe
utionerrors refer to deviations in magnitude, dire
tion or appli
ation time from the desired impulsivethrusts. They 
an be due to mounting errors, to misalignments with the me
hani
al axes, to theengine performan
es, et
. The de
ision autonomy of the spa
e
raft 
annot be in
reased withoutproviding a priori guarantees for its behaviour in perturbed 
onditions. This must be done whileusing 
ontrol algorithms of redu
ed 
omplexity sin
e the 
omputational resour
es available on boardthe spa
e
raft are limited with respe
t to those available on ground.Some of these 
hallenges are addressed in this dissertation. The main obje
tive is to providealgorithms for the 
omputation of robust fuel-optimal maneuvers plans leading to rendezvous tra-je
tories that respe
t the 
onstraints imposed by the mission's requirements, even in presen
e of a
ertain 
lass of un
ertainties. A study of the spa
e
raft 
onstrained naturally periodi
 traje
toriesis 
arried out in relation to the se
urity spe
i�
ations for the approa
h traje
tory.The spa
e
raft traje
tory design is a 
hallenging problem due to the presen
e of traje
tory and
ontrol 
onstraints, to the robustness 
onsiderations and to the large number of design parameters.In the most general 
ase, only the initial time of the mission is �xed and the traje
tory designpro
edure must provide a 
hoi
e for the �nal time, the number and the distribution of thrustinginstants, the amplitude and the dire
tion of the thrusts. If the design algorithm is intended foruse onboard the spa
e
raft, then restri
tions are added on its 
omputational 
omplexity. A briefpresentation of the main traje
tory design approa
hes is given in what follows, with a fo
us on theirability to handle the di�erent mission requirements.Spa
e
raft relative traje
tory design approa
hesThe traje
tory design for spa
e
raft rendezvous and proximity operations refers to the 
omputationof a series of maneuvers that steer the spa
e
raft from some known initial relative 
onditions to some�nal desired relative 
onditions. The design pro
edure generally 
onsists in solving an open-loopoptimal 
ontrol problem whose solution 
orresponds to the best approa
h traje
tory that respe
tsthe 
onstraints and minimizes a spe
i�ed 
riteria. The most 
ommon obje
tive is to minimize thetotal fuel 
ost of the rendezvous maneuvers. This 
an guarantee that the mission's fuel budget is



6 Introdu
tionrespe
ted and 
an in
rease the lifetime of the spa
e
raft. The te
hniques for solving this type of
onstrained open-loop optimal 
ontrol problems are usually divided into dire
t methods and indire
tmethods [24℄.Indire
t methods are based on analyti
al ne
essary optimality 
onditions derived using the
al
ulus of variations and the Pontryagin maximum prin
iple. The optimal solution 
an be foundby solving the two-point-boundary-value problem (TPBVP) resulting from these 
onditions [24℄.When using the indire
t methods, the optimal spa
e
raft traje
tory for the rendezvous problemis 
omputed indire
tly, based on the evolution of the adjoint state ve
tor or the so-
alled primerve
tor [58, 62℄. For impulsive traje
tories, the primer ve
tor indi
ates the times and the positionsof the thrust impulses that minimize the total fuel 
ost. However, the resolution of the problemis 
ompli
ated in the general 
ase, espe
ially when 
onstraints are added to the problem. It alsorequires a good guess for the initial value of the primer ve
tor. Re
ent works on the spa
e
raftrendezvous problem have fo
used on transforming the ne
essary 
onditions for optimality into
onstru
tive 
onditions for the optimal solution [3, 4℄.Dire
t methods rely on the transformation of the optimal 
ontrol problem into a parameteroptimization problem. This is usually a
hieved through 
ontrol parametrization and through dis-
retization [45℄. The obtained �nite-dimensional optimal 
ontrol problem 
an be e�
iently solvedusing the existing algorithms [11℄. There are di�erent types of dire
t methods depending on the
hoi
e for the de
ision variables and on the used integration method. Among them, the dire
t shoot-ing methods are used in the 
ases where the parametrisation 
on
erns only the 
ontrol variables.The system's dynami
s are usually linear and are integrated analyti
ally or numeri
ally [49℄.The indire
t resolution methods 
ertify the global optimality of a 
omputed solution by 
he
kinga set of ne
essary and su�
ient (if available) 
onditions. However they lead to problems that arehard to solve numeri
ally, espe
ially when 
onstraints are 
onsidered. Dire
t methods are able todeal with state and 
ontrol 
onstraints more e�e
tively and to integrate robustness elements withrespe
t to di�erent types of disturban
es. Even if the obtained solution 
an only be 
erti�ed asoptimal for the parti
ular parametrization and/or dis
retization that has been 
onsidered, theyprovide an attra
tive alternative for the rendezvous guidan
e problem.The algorithms developed in this dissertation for the design of spa
e
raft rendezvous traje
-tories fall into the 
ategory of dire
t shooting methods. Other than the advantage related to theredu
ed 
omplexity of the resulting optimization problem, this approa
h also o�ers the possibilityof in
luding robustness 
onsiderations dire
tly in the phase of 
ontrol synthesis. Several types ofun
ertainties 
an be easily handled thanks to robust programming te
hniques [9℄. Our main fo
us



7will be on redu
ing the e�e
ts of relative navigation un
ertainties on the �nal rendezvous pre
ision.Spa
e
raft traje
tory 
ontrol: 
losing the loopThe dire
t and indire
t approa
hes for spa
e
raft relative traje
tory design provide a series offuel-optimal maneuvers that need to be exe
uted at the spe
i�ed instants in order to rea
h thedesired �nal obje
tive. The maneuvers plan is obtained based on open-loop predi
tions of theevolution of the spa
e
raft relative traje
tory. As previously dis
ussed, the presen
e of orbitalperturbations, navigation un
ertainties or 
ontrol exe
ution errors might alter the out
ome of the
omputed maneuvers. In order to limit their undesired e�e
ts and to rea
h a spe
i�ed rendezvouspre
ision, the traje
tory 
ontrol needs to be implemented in a 
losed-loop manner.The resolution of a 
onstrained open-loop optimal 
ontrol problem 
an be integrated in a 
losed-loop setting by using the Model Predi
tive Control (MPC) methodology [84℄. Model Predi
tiveControl or Re
eding Horizon Control is a 
ontrol te
hnique for whi
h the 
ontrol a
tion is obtainedby solving at ea
h sampling instant a �nite-horizon open-loop optimal 
ontrol problem, using the
urrent state of the system as initial state. The optimization delivers every time a series of 
ontrola
tions out of whi
h only the �rst one is applied to the system. The rest of the plan is dis
ardedbe
ause a new solution, based on new measurement information, will be 
omputed at the nextsampling time [68℄.Model Predi
tive Control is a popular 
ontrol te
hnique for spa
e
raft rendezvous and proximityoperations [16,18,26,32,41,43,86℄. Its popularity is due to the ability to integrate 
onstraints andun
ertainties dire
tly into the traje
tory design problem. Di�erent other 
ontrol approa
hes havebeen proposed for spa
e
raft proximity operations and formation �ying, spanning over a largerange of te
hniques. A non exhaustive list in
ludes adaptive 
ontrol [2, 95℄, non-linear quadrati
regulator [6℄, feedba
k impulsive 
ontrol [89℄, Lyapunov-based nonlinear output feedba
k 
ontrol[104℄, time-delayed feedba
k 
ontrol [12℄ and several others [87,88℄. But very few of them 
onsiderthe presen
e of 
onstraints or the fuel 
ost of the maneuvers, and fo
us only on rea
hing the spe
i�ed�nal 
onditions.Instead of determining o�-line a feedba
k poli
y that provides the optimal 
ontrol for all systemstates, MPC solves an open-loop optimal 
ontrol problem on-line whi
h takes into 
onsiderationthe 
urrent state of the system. The periodi
 re
omputation of the solution 
reates an impli
it
losed-loop. The robustness properties of this impli
it 
losed-loop with respe
t to di�erent types ofun
ertainties are an important aspe
t, espe
ially if the obje
tive is to provide the 
ontrol systemon-board the spa
e
raft with in
reased de
ision autonomy.



8 Introdu
tionThe presen
e of un
ertainties raises questions related to the 
hanges indu
ed in the 
ontrolperforman
es. In the 
ase of spa
e
raft traje
tory 
ontrol, the performan
es are de�ned in relationto the fuel 
onsumption and to the pre
ision with respe
t to the desired �nal obje
tive of themaneuvers. The Model Predi
tive Control possesses some inherent robustness properties, de�nedas the robustness of the 
losed-loop for the 
ontrol that has been 
omputed without expli
itly
onsidering the un
ertainties [36, 67℄. But for problems that in
lude 
ontrol and state 
onstraints,the 
omputed 
ontrol a
tions must guarantee that no transgressions of the 
onstraints will o

urfor all the possible realizations of the un
ertainties. In this 
ase, the inherent robustness propertiesare no longer su�
ient and the presen
e of un
ertainties needs to be in
luded in the writing of theoptimization problem [27,59,69,79℄. Another key aspe
t is the property of re
ursive feasibility of the
ontrol problem in presen
e of un
ertainties. The optimal 
ontrol is re
omputed at ea
h samplinginstant and it is important to provide theoreti
al guarantees that, if the �rst optimization problemis feasible, then all the subsequent optimization problems will also be feasible. These importantproperties are investigated for the guidan
e algorithms proposed in this dissertation.Obje
tives and organization of the dissertationThe works presented in this dissertation are oriented following two main axes: the analysis of thespa
e
raft relative motion and the design and 
ontrol of the spa
e
raft relative traje
tory. The studyof the relative motion 
on
entrates on spa
e
raft naturally periodi
 relative traje
tories. Theseperiodi
 traje
tories, in the absen
e of perturbations, require no 
ontrol in order to be maintained.This property 
ould make them good 
andidates for parking orbits in between di�erent phases of arendezvous mission, for autonomous inspe
tion traje
tories for on-orbit servi
ing missions or for failtraje
tories in 
ase of system malfun
tion. Chapter 1 summarizes the most 
ommon-used modelsfor representing the spa
e
raft relative motion. It also provides an overview of the propertiesof the spa
e
raft relative traje
tories that are of interest for the rendezvous guidan
e problem,su
h as periodi
ity 
onditions, inter-satellite distan
e and geometri
 properties of periodi
 relativetraje
tories.The di�erent periodi
 motion initialisation te
hniques presented in the literature do not give anyinformation about the geometri
 properties of the resulting traje
tory. To address this problem,a new parametrization for the spa
e
raft relative traje
tories is developed in Chapter 2. Thisparametrization provides a good framework for analysing their properties and it is in used in Chapter3 in order to obtain a formal mathemati
al des
ription of the spa
e
raft relative traje
tories whi
hrespe
t 
ontinuously in time some dimensions 
onstraints.



9The spa
e
raft relative traje
tory 
ontrol 
on
entrates around the problem of designing fuel-optimal maneuvers plans leading the spa
e
raft from an arbitrary initial relative state towards adesired �nal relative state, following traje
tories whi
h respe
ts di�erent mission 
onstraints. Chap-ter 4 details the writing of the spa
e
raft rendezvous guidan
e problem as an impulsive optimal
ontrol problem using dire
t shooting methods. It illustrates the 
ontribution of the results pre-sented in Chapter 3 in obtaining approa
h traje
tories that respe
t visibility 
onstraints or thatare guaranteed to be safe for a large range of system errors. The robustness aspe
ts with respe
tto navigation un
ertainties are treated in Chapter 5. The guidan
e problem is modi�ed in order toprovide a solution whi
h guarantees a priori 
onstraints satisfa
tion for all admissible values for theun
ertainties, without modifying the 
omplexity of the 
ontrol algorithm. Moreover, the proposed
ontrol strategy also minimizes the e�e
ts of the sensing noise on the pre
ision with whi
h the �nalobje
tive is a
hieved.The presen
e of perturbations also a�e
ts the spa
e
raft naturally periodi
 motion. Chapter 6presents a low-
omplexity stabilizing 
ontrol strategy for the spa
e
raft periodi
 motion in presen
eof sensing noise. The developed method is based on the parametrization for the spa
e
raft relativetraje
tory presented in Chapter 2.The key 
on
epts spe
i�
 to ea
h 
hapter are summarized in Figure 3.
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Figure 3: Overview of the key 
on
epts spe
i�
 to ea
h 
hapter
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ity 
onditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241.5.2 Inter-satellite distan
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271.5.3 Geometry of the periodi
 spa
e
raft relative motion . . . . . . . . . . . . . . . 281.6 Con
lusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Résumé: L'étude du mouvement relatif des satellites 
onsiste à analyser la dynamique d'unsatellite appelé le 
hasseur par rapport à un autre satellite, appelé la 
ible. Di�érentes 
hoix existentpour la représentation de l'état relatif, 
ha
une ave
 ses avantages. Plusieurs représentations sontpassées en revue en 
e 
hapitre, notamment dans le 
adre des orbites képlériennes. L'a

ent est missur la des
ription basée sur les positions et les vitesses relatives, exprimées dans un repère 
artésienlo
al atta
hé au satellite 
ible. Les propriétés des traje
toires relatives sont également étudiées,
omme les distan
es minimale et maximale entre les satellites, l'existen
e des traje
toires relativepériodiques et leur propriétés géométriques.1.1 Introdu
tionThe spa
e
raft relative motion refers to the study of the dynami
s of a spa
e
raft, 
alled the follower,with respe
t to the dynami
s of another spa
e
raft, 
alled the leader or the target. The motionof an individual satellite orbiting the Earth 
an be expressed using di�erent representations forthe satellite's state, ea
h representation providing its own modelling advantages. A similar varietyof 
hoi
es is available for the parameters des
ribing the spa
e
raft relative state, and some of the



12 Chapter 1. Spa
e
raft relative motionmost 
ommon des
riptions will be presented in this 
hapter. The �nal 
hoi
e is usually drivenby the purpose of the study. Histori
ally, models based on orbital elements and orbital elementsdi�eren
es have been used for formation �ying appli
ations [16,34,60℄, while Cartesian models havebeen preferred for spa
e
raft rendezvous and 
ollision avoidan
e problems [17, 31, 41, 57℄.Regardless of the representation 
hosen for the spa
e
raft relative motion, a distin
tion 
anbe made between Keplerian models and non Keplerian models. Under Keplerian assumptions,the Earth is represented as an homogeneous sphere and the spa
e
raft motion is a�e
ted onlyby Newtonian a

elerations. The non Keplerian models take into a

ount the Earth's oblateness,usually through the spheri
al harmoni
 model for the Earth's potential, the atmospheri
 drag orthe solar radiation pressure, among other orbital disturban
es.The Keplerian framework leads to less a

urate but simpli�ed dynami
al models for the spa
e-
raft relative motion. These simpli�ed models are well suited for 
ontrol synthesis purposes, like inthe 
ase of maneuvers plans design for spa
e
raft rendezvous missions for instan
e. The relativelysmall distan
es between the spa
e
raft when 
ompared to the distan
e with respe
t to the 
enterof the Earth and the short time horizons asso
iated with rendezvous missions justify the usageof simpli�ed relative motion models. For this reason we will fo
us mainly on Keplerian modelsthroughout this dissertation, while referring the interested reader to publi
ations treating some ofthe other representations.In what follows, a parti
ular interest will be paid to the periodi
 solutions of the equations de-s
ribing the spa
e
raft relative motion. These solutions enable the satellites to maintain a desired
on�guration without external intervention and without any fuel expenditure. This property hasbeen extensively used in the formation �ight literature [1,5,46,55,92℄ and has re
ently gained atten-tion for orbital rendezvous and 
ollision avoidan
e appli
ations [25, 41, 43℄. Di�erent initializationmethods for periodi
 motion will be presented along with some of the geometri
al properties of theresulting traje
tories.1.2 Dynami
s of a spa
e
raft orbiting the EarthThe Keplerian dynami
s of a spa
e
raft with respe
t to the Earth 
an be derived from Newton'sequations of motion between two mass parti
les. In this 
ase, the motion of a spa
e
raft orbitingthe Earth is des
ribed by the following di�erential equation [8℄:
(

d2 ~R

dt2

)

B0

= − µ

‖~R‖3
~R (1.1)



1.2. Dynami
s of a spa
e
raft orbiting the Earth 13where ~R represents the ve
tor from the 
enter of the Earth to the spa
e
raft 
enter of mass and µ isthe Earth's gravitational 
onstant. The dynami
s are expressed with respe
t to an Earth 
enteredinertial frame R0 = (0, ~X, ~Y , ~Z) illustrated in Figure 1.1. The fundamental plane for R0 is theEarth's equatorial plane, the ~Z axis 
oin
ides with the rotation axis of the Earth and is orientedtowards the North Pole, the ~X axis points the vernal equinox and the ~Y axis is orthogonal to the
~X ~Z plane.

Figure 1.1: The Earth Centered Inertial frame and the satellite traje
toryEven though the di�erential equation (1.1) governing the relative motion of two bodies is non-linear, the equation admits a general analyti
al solution [8℄. The 
onstants of integration asso
iatedto the solution are 
alled the orbital elements of the satellite motion and they play an importantrole in the study of the properties of the spa
e
raft traje
tory.Let the orbital plane be the plane whi
h 
ontains the traje
tory of the orbiting spa
e
raft(see Figure 1.1). The equation of the spa
e
raft traje
tory expressed using polar 
oordinates withrespe
t to this plane is given by [8℄:
R = ‖~R‖ =

a(1− e2)

1 + e cos ν
(1.2)where a is 
alled the semi-major axis of the spa
e
raft orbit, e is 
alled the e

entri
ity and ν is
alled the true anomaly. The satellite's orbit is bounded if e < 1 and unbounded if e ≥ 1. For e = 0the spa
e
raft traje
tory is a 
ir
le of radius a and for 0 < e < 1 the traje
tory is an ellipse. Thetrue anomaly ν represents the angle between the spa
e
raft's 
urrent position and the dire
tion ofthe perigee (Figure 1.1).The parameters a and e de�ne the dimension and the shape of the satellite's orbit, while ν givesthe instantaneous lo
ation of the satellite on its orbit. Three other quantities de�ning the spatial
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e
raft relative motionorientation of the orbital plane are required in order to 
ompletely 
hara
terize the spa
e
rafttraje
tory. A 
ommon 
hoi
e is represented by the angles i, Ω and ω de�ned with respe
t to theEarth's equatorial plane, as indi
ated in Figure 1.2.

Figure 1.2: The de�nition of the 
lassi
al orbital elementsThe line of nodes denotes the line of interse
tion between the spa
e
raft orbital plane and theequatorial plane. The as
ending node refers to the point where the satellite is 
rossing the line ofnodes in a northbound dire
tion. The longitude of the as
ending node, Ω, is the angle between the
X axis of the R0 frame and the as
ending node, the argument of perigee, ω, is the angle betweenthe as
ending node and the perigee while the in
lination, i, is the angle between the orbital planeand the equatorial plane.The set of orbital elements is de�ned by:

oe =
[

a e i Ω ω ν
]T (1.3)and it 
ompletely des
ribes the state of a satellite orbiting the Earth. Under Keplerian assumptions,the �rst �ve parameters are 
onstant and only the true anomaly 
hanges with time [8℄:

ν̇ =

√

µ

a3(1− e2)3
(1 + e cos ν)2 (1.4)Sometimes, the e

entri
 anomaly, E, or the mean anomaly, M , are used instead of ν as thevarying state. The e

entri
 anomaly and the true anomaly are related through geometri
al trans-formations (Figure 1.3):

tan
ν

2
=

√

1 + e

1− e
tan

E

2
(1.5)
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s of a spa
e
raft orbiting the Earth 15while e

entri
 anomaly and the mean anomaly are related through Kepler's equation:
M = E − e sinE = M0 + n(t− t0) (1.6)As shown in (1.6), the mean anomaly 
an also be de�ned as a linear fun
tion of time, where

n =
√

µ/a3 is the mean motion of the satellite, t0 is the referen
e time and M0 is the meananomaly at t0.

Figure 1.3: The de�nition of the e

entri
 anomalyWhen the orbit is 
ir
ular or near 
ir
ular (e ≈ 0) or when the orbit is planar or near planar(i ≈ 0), some of the 
lassi
al orbital elements oe are not de�ned. In those 
ases, the state of thespa
e
raft 
an be represented using di�erent fun
tions of the 
lassi
al orbital elements that avoidthis problem. Among the solutions proposed in the literature, we 
an mention the nonsingularorbital elements, the equino
tial elements or the Delaunay 
anoni
al elements, used for studyingthe satellite motion in a Hamiltonian framework [90℄.The 
hoi
e of using the inertial position and velo
ity or the various sets of orbital parameters inorder to des
ribe the state of a spa
e
raft orbiting the Earth is made depending on the appli
ation.Throughout this dissertation, the 
lassi
al orbital elements oe are preferred for the representationof the leader's state. This 
hoi
e is motivated by the fa
t that, in the Keplerian 
ontext 
onsideredhere, the resulting dynami
s have a very simple form (only one state that 
hanges over time).To 
omplete the des
ription of the spa
e
raft relative motion, the state of the follower satellitemust be expressed with respe
t to the state of the leader and some of the most 
ommonly usedrepresentations are introdu
ed next.
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e
raft relative motion1.3 Spa
e
raft relative motionThe spa
e
raft relative motion refers to the study of the dynami
s of the leader spa
e
raft 
om-bined with the study of the dynami
s of the follower spa
e
raft. As previously stated, there aredi�erent possible state de�nitions whi
h 
an be used in the des
ription of the motion of a singlespa
e
raft (Cartesian position and velo
ity, di�erent sets of orbital parameters). In a similar way,di�erent representations 
an be 
onsidered for the spa
e
raft relative state, ea
h one bearing itsown advantages.1.3.1 Lo
al Cartesian dynami
sThe spa
e
raft relative motion represented using lo
al Cartesian dynami
s is de�ned with respe
tto a lo
al rotating Cartesian frame 
entered on the leader satellite. A 
ommonly used frame is theLo
al Verti
al Lo
al Horizontal (LVLH) frame Rl = (Sl, ~x, ~y, ~z) illustrated in Figure (1.4). The
~z axis is radially oriented from the leader satellite towards the 
enter of the Earth, the ~y axis isorthogonal to the orbital plane, in the opposite dire
tion with respe
t to the angular momentumve
tor, and the ~x axis lays in the leader's orbital plane in the dire
tion of the satellite's velo
ity.PSfrag repla
ements

~x

~z ν

a

O ~P

~Q

Sl

S2

~r

Figure 1.4: The spa
e
raft relative position and the leader's LVLH frameThe relative position between the leader spa
e
raft Sl and the follower spa
e
raft Sf is repre-sented by ~r =
−−→
SlSf in Figure 1.4. Considering that the Keplerian dynami
s of ea
h satellite withrespe
t to the Earth 
an be des
ribed using (1.1), the relative inertial a

eleration 
an be writtenas:

(

d2~r

dt2

)

B0

= − µ

‖~R+ ~r‖3
(~R+ ~r) +

µ

‖~R‖3
~R3 (1.7)
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e
raft relative motion 17where ~R =
−−→
OSf represents the inertial position of the leader spa
e
raft. The term on the left handside of (1.7) 
an be further developed using the derivation rule with respe
t to a rotating frame:

(

d2~r

dt2

)

B0

=

(

d2~r

dt2

)

Bl

+2 ~ΩBl/B0
×
(

d~r

dt

)

Bl

+

(

d ~ΩBl/B0

dt

)

Bl

× ~r+ ~ΩBl/B0
×
(

~ΩBl/B0
× ~r
) (1.8)

The terms in the sum 
orrespond to the spa
e
raft relative a

eleration in the lo
al frame, theEuler a

eleration, the Coriolis a

eleration and the 
entrifugal a

eleration respe
tively. The term
~ΩBl/B0

represents the rotation velo
ity of the lo
al basis Bl with respe
t to the inertial basis B0.Assuming that the dynami
s of the leader spa
e
raft are expressed using the orbital elementsde�ned in (1.3) and that the spa
e
raft relative state is given by the lo
al relative position andvelo
ity X =
[

x y z vx vy vz

]T , the di�erent terms in (1.8) 
an be 
omputed individually.In the 
ase of Keplerian motion, we have:
~ΩBl/B0

=











0

−ν̇

0











Bl

~R =











0

0

R











Bl

~r =











x

y

z











Bl

(1.9)
After introdu
ing the elements from (1.9), equation (1.8) be
omes:

(

d2~r

dt2

)

B0

=











ẍ− 2 ν̇ ż − ν̈ z − ν̇2x

ÿ

z̈ + 2 ν̇ ẋ+ ν̈ x− ν̇2z











Bl

(1.10)
Developing the right hand side of (1.7) leads to the following nonlinear equations for the spa
e-
raft relative dynami
s:

ẍ− 2 ν̇ ż − ν̈ z − ν̇2x = − µx
√

(x2 + y2 + (R− z)2)3

ÿ = − µ y
√

(x2 + y2 + (R − z)2)3

z̈ + 2 ν̇ ẋ+ ν̈ x− ν̇2z = − µ(R− z)
√

(x2 + y2 + (R− z)2)3
+

µ

R2

(1.11)
In the 
ase where the distan
e between the two satellites is a lot smaller than the distan
efrom the leader satellite to the 
enter of the Earth (‖~r‖ ≪ ‖~R‖), the linearized Ts
hauner-Hempel
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e
raft relative motionequations 
an be used to des
ribe the spa
e
raft relative motion [101℄:
ẍ = 2 ν̇ ż + ν̈ z + ν̇2x− µ

R3
x

ÿ = − µ

R3
y

z̈ = −2 ν̇ ẋ− ν̈ x+ ν̇2z + 2
µ

R3
z

(1.12)It 
an be noti
ed that for the linearized equations, the dynami
s on the y axis are de
oupled fromthe dynami
s in the xz plane and de�ne a harmoni
al os
illator.In the 
ase where the orbit of the leader spa
e
raft is 
ir
ular, a simpli�ed form 
an be obtainedfor the above equations. If e = 0 then R = a = 
onst, ν̇ = n = 
onst and ν̈ = 0. After introdu
ingthese values in (1.12), the well known Hill-Clohessy-Wiltshire equations for the spa
e
raft relativemotion with respe
t to a 
ir
ular referen
e orbit 
an be dedu
ed [23, 42℄:
ẍ = 2n ż

ÿ = −n2y

z̈ = −2n ẋ+ 3n2z

(1.13)It 
an be noti
ed that in this 
ase the spa
e
raft relative dynami
s 
orrespond to a Linear TimeInvariant system.The non Keplerian relative dynami
sLong term predi
tions of the spa
e
raft relative traje
tory are ne
essary for formation �ying mis-sions. In this 
ase, maintaining the assumption that there are no external perturbing for
es ornonlinear terms introdu
es una

eptable predi
tion errors. Therefore, di�erent models of spa
e-
raft relative motion a

ounting for some of the e�e
ts of orbital disturban
es have been developed.For 
ir
ular referen
e orbits, S
hweighart and Sedwi
k presented in [91℄ a set of 
onstant-
oe�
ient linear di�erential equations that in
lude the perturbation due to the Earth's oblateness,represented through the J2 potential. Hamel and de Lafontaine developed in [39℄ a set of linearizedequations of relative motion about a J2 perturbed ellipti
al referen
e orbit. Ke
hi
hian gave in [50℄the expression of the rotation velo
ity ~ΩBl/B0
for the 
ase where disturban
es due to air dragand Earth oblateness are 
onsidered. The result is very general but it leads to 
omplex nonlinearexpressions for the relative motion that are not easy to use in pra
ti
e.Even if the dynami
s modelled by the Ts
hauner-Hempel equations (1.12) do not in
lude thee�e
ts of the orbital perturbations, they do have the advantage of being easy to use. They allowthe des
ription of the spa
e
raft relative motion through a Linear Time Varying (LTV) state spa
e



1.3. Spa
e
raft relative motion 19model whi
h is well suited for 
ontrol synthesis and has been widely used for spa
e
raft relativetraje
tory design [6, 41, 47, 86, 93, 99℄.1.3.2 Orbital elements di�eren
es dynami
sThe di�erential orbital elements are de�ned as the di�eren
e between the orbital elements of theleader spa
e
raft oel and the orbital elements of follower spa
e
raft oef :
Xoe = oel − oef =

[

δa δe δi δΩ δω δν ( or δM or δE)
]T (1.14)Under Keplerian assumptions, �ve of the six orbital elements de�ning the state of a spa
e
raftare 
onstant. In this 
ase, the relative dynami
s expressed using the di�erential orbital elementsexhibit similar properties. The simplest form for the relative dynami
s is obtained when the varyingterm in the orbital elements is 
hosen to be the mean anomaly M :

Ẋoe =





























δȧ

δė

δi̇

δΩ̇

δω̇

δṀ





























=































0

0

0

0

0

−3

2

√

µ

a5
δa































(1.15)
Variational methods 
an be used to analyse the e�e
t of perturbing a

elerations on the orbitalelements des
ribing the spa
e
raft motion, in the non Keplerian 
ase [90℄. The perturbing a

elera-tions 
an model for instan
e the e�e
ts of the Earth oblateness and/or the e�e
ts of the atmospheri
drag. The well known Gauss Variational Equations (GVE) represent a spe
i�
 formulation of theorbital elements variation problem, written for disturban
es expressed in the leader's LVLH frame.The spa
e
raft relative dynami
s represented using the orbital elements di�eren
es have beensu

essfully used in formation �ight appli
ations, espe
ially for 
on�gurations that require a largeseparation between the spa
e
raft [1, 16℄. In the 
ase of the spa
e
raft rendezvous, the mission'sobje
tives are usually spe
i�ed using the relative Cartesian lo
al 
oordinates, in terms of �nal rela-tive position and velo
ity, given some position/velo
ity 
onstraints. For this reason the des
riptionof the relative motion using lo
al Cartesian dynami
s is usually preferred in the orbital rendezvousliterature [26, 41, 43℄.
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e
raft relative motion1.4 Linearized Cartesian relative motionStarting from the Ts
hauner-Hempel equations (1.12) for the linearized Cartesian relative dynami
s,a state spa
e representation of the spa
e
raft relative dynami
s 
an be obtained. Based on thisformulation, 
losed form solutions for the relative traje
tories 
an be 
omputed. These solutionsenable the propagation of the spa
e
raft relative state without making use of numeri
al integration,whi
h makes them very valuable for spa
e appli
ations where 
omputational power is limited.1.4.1 State-spa
e representationLet the spa
e
raft relative state ve
tor be de�ned by the relative position and velo
ity proje
ted onea
h axis of the leader's LVLH frame: X =
[

x y z vx vy vz

]T . If in (1.12) the independentvariable time is repla
ed by the true anomaly of the leader spa
e
raft, a simpli�ed form 
an beobtained for the equations des
ribing the relative dynami
s between the leader and the followerspa
e
raft. The derivatives with respe
t to time are repla
ed by:
d(·)
dt

=
d(·)
dν

dν

dt
= (·)′ν̇ d2()

dt2
=

d2()

dν2
ν̇2 +

d()

dν
ν̈ (1.16)and the following variable 
hange is used:

X̃(ν) =





(1 + e cos ν)I3 03

−e sin νI3
(1 + e cos ν)

ν̇
I3



X(t) (1.17)where I3 ∈ R
3×3 is the identity matrix and 03 ∈ R

3×3 is the zero matrix. This operation leads toa periodi
 state-spa
e model for the spa
e
raft relative dynami
s:
X̃ ′(ν) = Ã(ν)X̃(ν) + B̃ ũ (1.18)where the dynami
al matrix Ã(ν) is given by:

Ã(ν) =































0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 2

0 −1 0 0 0 0

0 0
3

1 + e cos ν
−2 0 0































(1.19)



1.4. Linearized Cartesian relative motion 21the 
ontrol matrix B̃ is de�ned by B̃ = [03 I3]
T and ũ = [ũx ũy ũz]

T represents the a

elerationgenerated by the spa
e
raft thrusters.Closed form solutions 
an be 
omputed for the periodi
 system (1.18) and the general methodfor obtaining them is summarized next.1.4.2 The state transition matrixThe state transition matrix provides a 
onvenient way to represent the solution of the autonomousdynami
s of a linear system. For the spa
e
raft relative motion, 
omputing the state transitionmatrix would enable the propagation of the relative state starting from any initial 
onditions,without relying on numeri
al integration:
X̃(ν) = Φ(ν, ν0)X̃(ν0) (1.20)From the dynami
s of the system (1.18), it 
an be dedu
ed that the state transition matrix veri�esthe following di�erential equation:

Φ′(ν, ν0) = A(ν)Φ(ν, ν0), Φ(ν, ν) = I ∀ν (1.21)For Linear Time Varying systems su
h as (1.18), there is no general analyti
al expression for thestate transition matrix. Numeri
al methods developed for 
omputing Φ are usually based on theresolution of the di�erential equation (1.21). In the 
ase of the spa
e
raft relative motion, thespe
ial stru
ture of the dynami
al matrix A(ν) enables the 
omputation of an analyti
al solution.For the linearized spa
e
raft relative motion, the dynami
s on the y axis are not a�e
ted by themotion in the xz plane and are des
ribed by the following homogeneous se
ond order di�erentialequation (see (1.18)):
ỹ′′ = −ỹ (1.22)The solution of (1.22) 
an be dire
tly expressed as a fun
tion of the initial 
onditions:

X̃y(ν) = Φy(ν, ν0)X̃y(ν0) (1.23)where ν0 is the initial true anomaly for the un
ontrolled motion and:
X̃y(ν) =





ỹ(ν)

ṽy(ν)



 Φy(ν, ν0) =





cos(ν − ν0) sin(ν − ν0)

− sin(ν − ν0) cos(ν − ν0)



 (1.24)



22 Chapter 1. Spa
e
raft relative motionFrom (1.18), the homogeneous di�erential equations for the xz plane are given by:
x̃′′ = 2z̃′ (1.25)

z̃′′ =
3

1 + e cos ν
z̃ − 2x̃′ (1.26)Integrating (1.25) on
e leads to:

x̃′ = 2z̃ +K (1.27)where K is a 
onstant of integration. After introdu
ing (1.27) in (1.26), a se
ond order di�erentialequation only in z̃ is obtained:
z̃′′ +

(

4− 3

1 + e cos ν

)

z̃ = K (1.28)
As re
alled by Carter in [20℄, the method for solving this type of di�erential equation 
onsistsin �nding a family of parti
ular solutions ϕ1, ϕ2 for the homogeneous di�erential equation su
hthat :

ϕ1ϕ
′
2 − ϕ2ϕ

′
1 = 
onstant (1.29)and then applying the te
hnique of variation of parameters [80℄. The 
hoi
e of the parti
ularsolutions ϕ1, ϕ2 determines the �nal form of the transition matrix.A transition matrix for the periodi
 system (1.18) has been proposed by Carter in [20℄. Aslightly di�erent solution has been given by Yamanaka and Ankersen in [103℄, whi
h presents theadvantage of having a simpler form. The Yamanaka-Ankersen transition matrix will be used forsome of the developments in this dissertation and it is reprodu
ed here for 
ompleteness.Taking X̃xz(ν)=

[

x̃(ν) z̃(ν) ṽx(ν) ṽy(ν)
]T , the propagation of the relative state is given by:

X̃xz(ν) = Φxz(ν, ν0)X̃xz(ν0) (1.30)where the transition matrix Φxz(ν, ν0) 
an be written as:
Φxz(ν, ν0) = φxz(ν)φ

−1
xz (ν0) (1.31)



1.4. Linearized Cartesian relative motion 23The matrix φxz(ν) is de�ned by [103℄:
φxz(ν) =



















1 − cos ν(2 + e cos ν) sin ν(2 + e cos ν) 3(1 + e cos ν)2J

0 sin ν(1 + e cos ν) cos ν(1 + e cos ν) 2− 3e sin ν(1 + e cos ν)J

0 2 sin ν(1 + e cos ν) 2 cos ν(1 + e cos ν)− e 3− 6e sin ν(1 + e cos ν)J

0 cos ν + e cos 2ν − sin ν − e sin 2ν −3e

(

(cos ν + e cos 2ν)J +
sin ν

1 + e cos ν

)

















(1.32)The term J is related to the 
hoi
e of the parti
ular solution ϕ2 and in the 
ase of the Yamanka-Ankersen transition matrix is given by:
J(ν) =

∫ ν

ν0

dτ

(1 + e cos τ)2
=

n(t− t0)

(1− e2)3/2
(1.33)From (1.33) it follows that for the initial true anomaly ν0 we have J(ν0) = 0. This enables theanalyti
al 
omputation of the inverse of the φxz(ν) matrix at ν0:

φ−1
xz (ν0)=

1

e2−1





















e2−1 −3e sin ν0(2 + e cos ν0)

1 + e cos ν0
e sin ν0(2 + e cos ν0) 2−e cos ν0(1+e cos ν0)

0
3 sin ν0(e cos ν0+1+e2)

1 + e cos ν0
− sin ν0(2 + e cos ν0) −(cos ν0+e cos2 ν0−2e)

0 3(e+ cos ν0) −(2 cos ν0+e cos2 ν0+e) sin ν0(1 + e cos ν0)

0 −(3e cos ν0 + e2 + 2) (1 + e cos ν0)
2 −e sin ν0(1 + e cos ν0)



















(1.34)The 
omplete transition matrix Φ 
orresponding to the state ve
tor X̃(ν) 
an be obtained by
ombining the blo
ks from the Φy and Φxz matri
es in the appropriate order.Overview of 
losed form solutionsSeveral works have been dedi
ated to the 
omputation of the transition matrix for the spa
e
raftrelative motion, in the 
ase where the leader satellite evolves on an arbitrary ellipti
al orbit. Meltonprovides in [70℄ a solution that uses dire
tly the time as the independent variable, obtained usingseries expansions of the e

entri
ity. However, this is an approximate solution and it loses a

ura
yfor higher values of the e

entri
ity. Re
ently, a transition matrix obtained starting from theTs
hauner-Hempel equations that also in
ludes the e�e
ts of the J2 perturbation has been proposedby Yamada and Kimura in [102℄. The given solution is 
umbersome and not easy to use for 
ontroldesign purposes. Moreover, the obtained transition matrix is shown to be a

urate only for shortpredi
tion horizons.Geometri
 methods for the 
omputation of 
losed form solution for the J2 perturbed relative
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e
raft relative motionmotion have been presented in [33,39℄. They are based on the 
onne
tion between the lo
al Carte-sian relative state and the di�erential orbital elements and no longer require the resolution of thedi�erential equations of motion. Gim and Alfriend 
onsider in [33℄ both the short-period and thelong-period e�e
ts of the J2 perturbation, leading to a very a

urate but 
omplex solution that stillrequires the knowledge of the evolution of the orbital parameters for the leader satellite. Hamel andde Lafontaine simplify the problem in [39℄ by negle
ting the short-term e�e
ts of J2. They obtaina solution that guarantees a bounded predi
tion error even for long horizons but that requires theknowledge of the relative se
ular drift of the mean orbital elements.Closed form solutions of the spa
e
raft relative dynami
s are sought for the 
omputationaladvantage obtained from removing the integration pro
ess from the traje
tory design algorithms.Moreover, they 
an also provide some insight into the geometri
al properties of the resulting tra-je
tories. Some examples of traje
tory parametrizations that have been derived from su
h 
losedform solutions will be presented in the next se
tion.1.5 Properties of relative traje
toriesThe spa
e
raft ability to maintain a naturally periodi
 relative motion has been thoroughly in-vestigated, espe
ially in the 
ontext of formation �ight appli
ations. Some of the initialisationte
hniques for obtaining periodi
 solutions to the equations of spa
e
raft relative motion will bepresented next, along with some of the geometri
al properties of the resulting traje
tories.The 
onne
tion between the initial 
onditions of the periodi
 motion and the dimensions ofthe obtained traje
tory bears a lot of importan
e in the mission design pro
ess. The estimationof the minimal distan
e between the spa
e
raft is essential for 
ollision avoidan
e purposes whilethe evaluation of the maximal distan
e plays an important role in the 
hoi
e of the sensors for therelative navigation. However, su�
ient understanding of this 
onne
tion has not yet been rea
hed.The next se
tions summarize some interesting results found in the literature in relation to thistopi
.1.5.1 Periodi
ity 
onditionsThe distan
e between two spa
e
raft on Keplerian orbits 
annot grow unboundedly [37℄. Thisobservation is based on the fa
t that in the Keplerian 
ase the spa
e
raft evolve on traje
tories thatare bounded and do not 
hange over time. However, unless some parti
ular 
onditions are met, theresulting relative traje
tory is not periodi
.The notion of 
ommensurable motion was �rst introdu
ed in [38℄ and it refers to the relative



1.5. Properties of relative traje
tories 25motion between spa
e
raft evolving on orbits that verify the following 
ondition:
p Tl = q Tf , p, q ∈ N (1.35)where Tl and Tf are the orbital periods of the leader and the follower spa
e
raft respe
tively. Sin
e:

T = 2π

√

a3

µ
, (1.36)the 
ondition (1.35) 
an be easily transformed into a 
ondition on the semi-major axis of the orbits
orresponding to the two spa
e
raft:

af = 3

√

p2

q2
al (1.37)or in a 
ondition between the energy of the orbits. The restri
tion in (1.37) indu
es a restri
tionon the relative traje
tory. Figure 1.5 illustrates the traje
tory obtained by propagating the relativemotion over 10 orbital periods for di�erent ratios between the orbital periods of two spa
e
raft.The relative traje
tory appears to lay on a 
losed surfa
e whose shape and dimensions depend onthe ratio 
hosen between the orbital periods.
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Figure 1.5: Relative traje
tories obtained for di�erent ratios between the orbital periodsIn the 
ase where p = q = 1, 
onstraint (1.37) be
omes:
af = al (1.38)In this 
ase, the relative traje
tory between the two spa
e
raft is periodi
 (see Figure 1.6).The 1:1 ratio between the orbital periods along with the 
onne
tion between the semi-majoraxis and the energy level of the orbit are used by Gur�l in [37℄ in order to write the energy mat
hing
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Figure 1.6: Periodi
 traje
tory obtained for p = q = 1
ondition for periodi
 motion. Using the nonlinear relative dynami
s (1.11), the energy of the orbitof the follower spa
e
raft is written as a fun
tion of the leader's orbital elements and of the relativestate. Imposing for the energies of the two orbits to be equal leads to a polynomial periodi
ity
ondition:
1

2

(

(Ṙ− vz − ν̇ x)2 + (vx + ν̇(R− z))2 + v2y

)

− µ
√

x2 + y2 + (R− z)2
= − µ

2a
(1.39)When the spa
e
raft relative motion is modelled using the linearized dynami
s (1.12), theexisten
e of periodi
 traje
tories 
an be proved by investigating the existen
e of periodi
 solutionsto the unfor
ed di�erential equations of motion. For this representation of the relative motion, thedynami
s on the y axis are independent from the dynami
s in the orbital plane and are naturallyperiodi
. Using Carter's 
losed form solution for the spa
e
raft relative motion, Inalhan et alprove in [46℄ the existen
e of periodi
 solutions for the xz motion and also provide an initialisationpro
edure for obtaining periodi
 traje
tories. The proposed initialisation pro
edure is valid only atperigee (ν0 = 0) and is given by:

ṽx(0) =
e+ 2

e+ 1
z̃(0) (1.40)This 
ondition for periodi
 motion 
an be extended to arbitrary initial true anomalies, leadingto the following generalized expression [92℄:

ṽx(ν0) =
2 + 3e cos ν0 + e2

(1 + e cos ν0)2
z̃(ν0) +

e sin ν0
1 + e cos ν0

ṽz(ν0) (1.41)The only assumption made on the relative motion in the development of 
onditions (1.38) and(1.39) is that of Keplerian motion. Conditions (1.40) and (1.41) are instead obtained using the



1.5. Properties of relative traje
tories 27linearized model for the relative motion and their appli
ation is restri
ted to the 
ases where thelinearisation hypothesis is valid.The usage of the presented initialisation te
hniques is straightforward. They enable the 
ompu-tation of spa
e
raft relative states starting from whi
h the resulting relative traje
tories are periodi
.However, the periodi
ity 
onditions alone do not provide any information about the geometry of theobtained traje
tories su
h as shape, spatial orientation or minimal and maximal distan
es betweenthe two spa
e
raft. To answer these questions a deeper analysis of the obtained traje
tories mustbe 
arried out.
1.5.2 Inter-satellite distan
eThe ability to estimate the extremal relative distan
es between two satellites is a key point in thedesign of relative traje
tories and formations 
on�gurations. For two spa
e
raft on arbitrary ellipti
Keplerian orbits, analyti
al 
losed-form expressions for metri
s quantifying the relative motion havebeen developed by Gur�l and Kholshevnikov in [38℄. The metri
s used for the analysis of the motionare the minimum, the maximum and the mean relative distan
e between the spa
e
raft. A generalexpression for the relative distan
e is given as:

W (El, Ef ) =
|~r|

2 al af
= W0 +W1 cosEl +W2 sinEl +W3 cosEf +W4 sinEf+

+2(W5 cosEl cosEf +W6 cosEl sinEf +W7 sinEl cosEf+

+W8 sinEl sinEf ) +W9 cos 2El +W10 cos 2Ef

(1.42)where the independent variables El and Ef represent the e

entri
 anomaly of the leader and ofthe follower spa
e
raft respe
tively.The distan
e fun
tion W is a trigonometri
 polynomial of se
ond degree in El and Ef . Its
oe�
ients Wi depend on the orbital elements of the two spa
e
raft:
4W0 = 2(αl + αf ) + αl e

2
l + αf e

2
f − 4Pl Pf W1 = ef Pl P

T
f − αl el W2 = ef Pf S

T
l

W3 = el Pl P
T
f W4 = el Pl S

T
f 2W5 = −Pl P

T
f 2W6 = −Pl S

T
f

2W7 = −Pf S
T
l 2W8 = −Sl S

T
f 4W9 = αl e

2
l 4W10 = αf e

2
f

(1.43)where:
αl = al/af αF = af/al (1.44)
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e
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P =











cosω cos Ω− cos i sinω sinΩ

cosω sinΩ + cos i sinω cosΩ

sin i sinω











S =
√
1− e2











− sinω cos Ω− cos i cosω sinΩ

− sinω sinΩ + cos i cosω cos Ω

sin i cosω











(1.45)The e

entri
 anomalies 
orresponding to the minimal and maximal distan
es between the twosatellites 
an be obtained by solving the system of trigonometri
 equations:
∂W (El, Ef )

∂El
= 0

∂W (El, Ef )

∂Ef
= 0 (1.46)Referen
e [52℄ presents a method based on Gröbner basis for eliminating one of the independentvariables, either Ef or El. This pro
edure transforms the system (1.46) into an 8th degree univariatetrigonometri
 polynomial. The roots of this polynomial enable the 
omputation of the e

entri
anomalies El and Ef for whi
h the extremal distan
es are obtained. These e

entri
 anomalies 
anthen be introdu
ed in (1.42) in order to evaluate the 
orresponding relative distan
es.The presented method 
an be used to evaluate the extremal distan
es between two spa
e
raftafter that the designer �xed their orbital elements. However, our purpose is to determine a pro
e-dure for the 
omputation of the orbital elements of the follower spa
e
raft that lead to some desiredvalues for the extremal distan
es between the spa
e
raft. In this 
ase, a part of the 
oe�
ientsin the equations (1.46) transform from 
onstant terms into de
ision variables. This 
hanges thenature of the equations and the resolution method presented in [52℄ 
an no longer be used. Themethod in its 
urrent form 
annot be easily integrated into a relative traje
tory design pro
edure.Slightly simpler expressions for the relative distan
e 
an be obtained in the 
ase of spa
e
raftperiodi
 motion. The following se
tion presents analyti
al expressions for the extremal distan
es
omputed for some parti
ular periodi
 spa
e
raft formations 
on�gurations, along with some geo-metri
al properties of the periodi
 relative traje
tories.1.5.3 Geometry of the periodi
 spa
e
raft relative motionThe study of the geometry of the spa
e
raft periodi
 motion usually starts from the 
omputation ofparametri
 expressions for the periodi
 traje
tories. Di�erent parametrizations have been developedin [48, 55, 92℄, ea
h one providing insight into di�erent aspe
ts of the periodi
 motion.In [55℄, Lane and Axelrad expressed the relative periodi
 traje
tory as a fun
tion of the dif-ferential orbital elements δoe = [δa δe δi δΩ δω δM ]. It is assumed that the di�eren
e betweenthe orbital elements of the leader spa
e
raft and the orbital elements of the follower spa
e
raft δoe
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tories 29is small and the periodi
ity of the relative motion is a
hieved by imposing δa = 0. A

ording to(1.38), this is equivalent to imposing a 1:1 ratio between the orbital periods of the two spa
e
raft.The following parametri
 expressions are obtained:
x = −a cos ν δe+

a e sin ν√
1− e2

δM

y =

(

a+
R

1− e2

)

sin ν δe+
a2

R

√
1− e2 δM +R(δω + cos i δΩ)

z = R sin θ δi −R sin i cos θ δΩ

(1.47)This traje
tory parametrization is used to show that when e

entri
 referen
e orbits are 
onsidered,the periodi
 relative traje
tory is not an ellipse in any plane, ex
ept in some degenerate 
ases.Conditions for obtaining periodi
 in-tra
k formations, follower formations and in-tra
k/
ross-tra
klinear traje
tories are extra
ted from expressions (1.47), along with an analyti
al evaluation of theminimal and maximal separation between the spa
e
raft for these parti
ular 
on�gurations.In-tra
k formations 
an be obtained by imposing the x and z position to be always zero. Thisis a
hieved if δe = δM = δi = δΩ = 0 and in this 
ase the extremal distan
es are given by:
dmin = a δω(1 − e) dmax = a δω(1 + e) (1.48)The follower formations are de�ned by two spa
e
raft that share the same groundtra
k. This
on�guration is obtained by imposing δΩ = −(We/n) δM and δa = δe = δi = δω = 0, where We isthe Earth's rotation rate. The parameters δΩ and δM 
an be 
hosen in order to a
hieve a desiredspa
e
raft separation at perigee.The in-tra
k/
ross-tra
k formations require that the position on the x axis be always zero. Aninitialization te
hnique leading to this 
on�guration with a desired spa
e
raft separation at perigeeis also developed in [55℄.Starting form Carter's solution for the relative motion, Jiang et al. provide in [48℄ rationalexpressions for the spa
e
raft periodi
 relative traje
tories proje
ted onto the leader's LVLH frame:

x = −c1 +
2 (e c2 w − c1)

w2 + 1

y = (1− e)c2 + c3 +
2 (c1 w + e c2)

w2 + 1
+

2 (c1 w − e c3)

(1− e)w2 + 1 + e

z = −c5 +
2 (c4 w + c5)

(1− e)w2 + 1 + e

(1.49)
where w = tan(ν/2) and ci are parameters that depend on the leader's orbital elements and onthe di�erential orbital elements. It is demonstrated that quadrati
 
urves are obtained when the
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e
raft relative motionperiodi
 relative traje
tories are proje
ted onto the 
oordinate planes of the LVLH frame andthat none of these 
urves are ellipses in the general 
ase. It is also 
on
luded that the spa
e
raftperiodi
 traje
tories are usually three-dimensional and lay on quadrati
 surfa
es, most frequentlyon one-sheet hyperboloids, and in rare 
ases on ellipti
 
ones or ellipti
 
ylinders. The number ofself-interse
tions of the proje
tions of the relative traje
tory is 
omputed and this information isused to identify a possible risk of 
ollision and to design formations with spe
ial shapes su
h as�gure-eight shapes in the 
oordinate planes.A further parametrization for the spa
e
raft periodi
 motion has been proposed by Senguptaand Vadali in [92℄:
x =

ρ1
a(1− e2)

sin(ν + α0)(1 + e cos ν)

y =
ρ1

a(1− e2)
cos(ν + α0)(2 + e cos ν) +

ρ2
a(1− e2)

z =
ρ3

a(1− e2)
sin(ν + β0)

(1.50)where the parameters ρ1, ρ2, ρ3, α0 and β0 depend on the leader's orbital elements and on thedi�erential orbital elements. These equations are used to study the e�e
ts of the e

entri
ity ofthe referen
e orbit on the relative periodi
 traje
tories. The analysis is done using Fourier seriesexpansions with both the time and the true anomaly as independent variables. The identi�ed e�e
tsare the presen
e of higher harmoni
s, amplitude s
aling (for the same 
hoi
e of parameters, theorbit tends to shrink in the along tra
k dire
tion and expand in the out-of-plane dire
tion as thee

entri
ity in
reases), phase shift and skewness of the relative orbit plane. Corre
tion methodsare proposed for redu
ing some of these e�e
ts.Various sets of parametri
 expressions are used for the study of periodi
 traje
tories and theprevious list is not exhaustive. The 
ited referen
es help illustrating some of the main 
hara
teristi
sof the spa
e
raft periodi
 relative motion and some of the di�
ulties en
ountered in its study. Itis interesting to remark from the presented parametrizations that the spa
e
raft periodi
 relativetraje
tories 
an be de�ned as fun
tions of 5 
onstant parameters that depend on the value of theinitial relative state and on the orbital parameters of the leader. However, in the general 
ase, a 
learlink between the value of these parameters and the dimension or the shape of the resulting periodi
traje
tories has not yet been established and the designer needs to treat ea
h 
ase individually.1.6 Con
lusionsThis 
hapter summarizes some of the most 
ommon representations of the spa
e
raft relative mo-tion. It is showed that in general the spa
e
raft relative state is de�ned by 12 parameters: 6
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lusions 31parameters that de�ne the state of the leader spa
e
raft and 6 parameters that des
ribe the stateof the follower spa
e
raft with respe
t to the leader. The general relative dynami
s are however sim-pli�ed in the Keplerian 
ase, espe
ially if the orbital elements are 
hosen to represent the dynami
sof the leader spa
e
raft. In this 
ase, out of the six 
orresponding parameters, only one 
hangesover time. Moreover, in the 
ase of periodi
 relative motion, the spa
e
raft relative traje
tory 
anbe written as a fun
tion of only �ve 
onstant parameters.When designing relative traje
tories, the dynami
s of the leader are 
onsidered known andthe de
ision variables are the remaining parameters that de�ne the spa
e
raft relative state. The
hallenge is to 
hoose their value su
h that the resulting traje
tory exhibits some desired propertieslike periodi
ity, minimal and maximal separation between the spa
e
raft, a 
ertain shape et
. Thefollowing 
hapters will present a new set of parameters for the spa
e
raft relative motion. This newdes
ription allows for the parameters 
orresponding to traje
tories that respe
t some dimensions
onstraints to be de�ned in a way suitable for integration into an optimization-based traje
torydesign pro
edure.





Chapter 2Parametri
 expressions for thespa
e
raft relative traje
tory
Contents2.1 De�nition of the parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342.2 Properties of spa
e
raft relative traje
tories . . . . . . . . . . . . . . . . . . 352.2.1 Dynami
s of the ve
tor of parameters . . . . . . . . . . . . . . . . . . . . . . . 362.2.2 Properties of periodi
 traje
tories . . . . . . . . . . . . . . . . . . . . . . . . . . 382.3 Numeri
al analysis of the periodi
 relative motion . . . . . . . . . . . . . . 402.3.1 The e�e
ts of the e

entri
ity of the leader orbit . . . . . . . . . . . . . . . . . 402.3.2 The e�e
ts of the values of the parameters . . . . . . . . . . . . . . . . . . . . . 402.4 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Résumé: Une bonne 
ompréhension des propriétés du mouvement relatif des satellites est né
es-saire pour pouvoir obtenir des traje
toires relatives qui respe
tent les di�érentes 
ontraintes imposéespar 
haque mission (forme, dimension, et
.). Cependant, les propriétés exposées dans le 
hapitrepré
édent n'apportent pas de solution satisfaisante à 
e dé�. Le présent 
hapitre introduit un nou-veau set d'expressions paramétriques pour le mouvement relatif, basé sur la matri
e de transition deYamanaka-Ankersen. Ces expressions paramétriques o�rent un 
adre de travail adapté à l'analysedes propriétés géométriques des traje
toires. Elles mettent en éviden
e le fait que pour les traje
toirepériodiques la dynamique des paramètres est 
onstante. Une étude qualitative illustre le lien entrela valeur des paramètres et les dimensions des traje
toires qui en résultent.

The study of the properties of spa
e
raft relative motion is motivated by the need to designspa
e
raft traje
tories that respe
t di�erent types of 
onstraints (dimension, shape et
.). Severalparametri
 expressions for the periodi
 relative motion have been presented in the previous 
hapter,ea
h representation providing di�erent insights into the geometri
al 
hara
teristi
s of the spa
e
raftrelative traje
tory. However, no pro
edure for 
hoosing the parameters in su
h a way that therelative traje
tory exhibits some desired properties has been provided in the general 
ase.A new set of parametri
 expressions for the spa
e
raft relative motion is derived in this 
hapter.The aim is to provide a framework for the analysis of the spa
e
raft relative dynami
s. The
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 expressions for the spa
e
raft relative traje
toryexpressions are obtained starting from the Cartesian model for the relative motion, whi
h is usuallypreferred for spa
e
raft rendezvous appli
ations. By working in the spa
e of parameters, someinteresting properties of the spa
e
raft relative motion 
an be eviden
ed. Our main fo
us is on thestudy of the in�uen
e that the values of these parameters have on the dimensions of the resultingspa
e
raft autonomous traje
tory.In the 
ase of periodi
 relative motion, it is showed that a 
onstant set of parameters 
an beused to de�ne the periodi
 traje
tory. The values of these 
onstant parameters are proved to bedire
tly 
onne
ted to the properties of the resulting traje
tory. An important role is also played bythe e

entri
ity of the referen
e orbit and illustrations are provided for some of its e�e
ts.
2.1 De�nition of the parametersConsider the relative motion between two spa
e
raft on arbitrary ellipti
al Keplerian orbits. Asseen in the previous 
hapter, the propagation of the autonomous spa
e
raft relative traje
tory,starting from an initial relative state X̃(ν0), 
an be expressed as:

X̃(ν) = Φ(ν, ν0)X̃(ν0), ν ≥ ν0 (2.1)where Φ(ν, ν0) denotes the Yamanaka-Ankersen transition matrix [103℄. The relative state X̃(ν) isde�ned by the spa
e
raft relative position and velo
ity expressed in the LVLH frame atta
hed tothe leader: X̃(ν) =
[

x̃(ν) ỹ(ν) z̃(ν) ṽx(ν) ṽy(ν) ṽz(ν)
]T .Parametri
 expressions for the relative position between the spa
e
raft 
an be obtained byexpanding the terms in (2.1) and then fa
toring out some of the terms related to the independentvariable ν:

x̃(ν) = (2 + e cos ν)(d1 sin ν − d2 cos ν) + d3 + 3 d0 J(ν)(1 + e cos ν)2

ỹ(ν) = d4 cos ν + d5 sin ν

z̃(ν) = (1 + e cos ν)(d2 sin ν + d1 cos ν)− 3 e d0 J(ν) sin ν(1 + e cos ν) + 2 d0

, ν ≥ ν0 (2.2)The parameters di in (2.2) are 
omputed dire
tly from (2.1) and 
an be written as a fun
tionof the initial 
onditions of the relative traje
tory propagation. Let D(ν0) ∈ R
6 be the ve
tor ofparameters for the spa
e
raft relative motion evaluated at ν0, de�ned as:

D(ν0) =
[

d0(ν0) d1(ν0) d2(ν0) d3(ν0) d4(ν0) d5(ν0)
]T (2.3)
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e
raft relative traje
tories 35The elements of the ve
tor D(ν0) depend linearly on the initial spa
e
raft relative state fromwhi
h the relative traje
tory is propagated:
D(ν0) = C(ν0)X̃(ν0) (2.4)The matrix C(ν) ∈ R

6×6 is de�ned as a fun
tion of the e

entri
ity of the orbit of the leadersatellite and the true anomaly for whi
h the ve
tor of parameters needs to be evaluated:
C(ν)=




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
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0 0
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0 0
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0 0
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(2.5)2.2 Properties of spa
e
raft relative traje
toriesThe advantage of expressing the spa
e
raft relative position in the form (2.2) is that it enables thedire
t identi�
ation of some of the e�e
ts that the values of the parameters have on the spa
e
raftrelative traje
tory. Parameters d1 and d2 in�uen
e the amplitude of the motion in the xz planewhile parameters d4 and d5 de�ne the amplitude of the periodi
 motion on the y axis. The valueof the parameter d3 
orresponds to an o�set term on the position on the x axis and the parameter
d0 de�nes an o�set on the z axis and in�uen
es the 
ontribution of the integral term J(ν).When propagating the linearized spa
e
raft autonomous relative motion in the general non-periodi
 
ase, it 
an be noti
ed that the amplitude of the relative traje
tory in the xz plane appearsto grow unboundedly (see Figure 2.1). This is not surprising sin
e the term J(ν) grows linearly intime (1.33), but its e�e
t is modulated by the value of the parameter d0.A

ording to (2.4), the values of the parameters D depend on the instant when they are evalu-ated. Changing the initial time for the propagation will also 
hange the value of the parameters. Thede�nition (2.4) 
an a
tually be seen as a state transformation that maps the spa
e
raft Cartesianrelative state X̃(ν) to the state spa
e 
orresponding to the ve
tor of parameters. This suggests thatsome insight on the properties of the spa
e
raft relative traje
tories 
ould be gained by analysingdire
tly the dynami
s of the ve
tor D.
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Figure 2.1: Spa
e
raft autonomous relative traje
tory in the xz plane2.2.1 Dynami
s of the ve
tor of parametersThe variable 
hange de�ned by:
D(ν) = C(ν)X̃(ν) (2.6)represents a valid state transformation sin
e the matrix C(ν) is always invertible on the domain onwhi
h the spa
e
raft 
losed traje
tories are de�ned:

det(C(ν)) =
1

1− e2
6= 0, ∀ 0 ≤ e < 1 (2.7)The passage from the spa
e of the D parameters ba
k to the Cartesian relative state is givenby the inverse matrix:

X̃(ν) = C−1(ν)D(ν) = F (ν)D(ν) (2.8)where F (ν) ∈ R
6×6 is de�ned as:

F (ν) =


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3 2e cos2 ν + 2cos ν − e 2 sin ν(1 + e cos ν) 0 0 0
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(2.9)
The dynami
s of the ve
tor of parameters D(ν) 
an be dedu
ed from the dynami
s de�ning the
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e
raft relative traje
tories 37spa
e
raft relative motion. When the relative state is represented using lo
al Cartesian 
oordinates,the relative dynami
s 
an be modelled by a linear periodi
 dynami
 equation:
X̃ ′(ν) = Ã(ν)X̃(ν) (2.10)where the matrix Ã(ν) is de�ned as in (1.19). After di�erentiating (2.6) with respe
t to theindependent variable ν, we obtain:

D′(ν) = C ′(ν)X̃(ν) + C(ν)X̃ ′(ν) (2.11)Introdu
ing (2.8) and (2.10) in the previous equations leads to:
D′(ν) = AD(ν)D(ν) (2.12)with the matrix AD(ν) de�ned by:

AD(ν) = C ′(ν)C−1(ν) + C(ν)Ã(ν)C−1(ν) (2.13)
The expression for the dynami
 matrix AD(ν) 
an be obtained through dire
t 
omputation:

AD(ν) =


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(2.14)
A state transition matrix 
an be easily 
omputed for the dynami
al system (2.12). Assumingthat the spa
e
raft relative motion is propagated using the Yamanaka-Ankersen transition matrixas in (2.1) and using the transformation (2.8), we obtain:

D(ν) = C(ν)Φ(ν, ν0)C
−1(ν0)D(ν0) = ΦD(ν, ν0)D(ν0) (2.15)
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 expressions for the spa
e
raft relative traje
torywhere the state transition matrix ΦD(ν, ν0) is given by:
ΦD(ν, ν0) =
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(2.16)
The term J(ν, ν0) is the same integral term de�ned in (1.33).The dynami
 matrix AD and the transition matrix ΦD highlight some interesting propertiesof the spa
e
raft relative motion. It 
an be seen that the parameters d4 and d5 that de�ne themotion on the y axis are always 
onstant in time, implying that the motion on the y axis is alwaysbounded. This is 
onsistent with the fa
t that the motion on the y axis is known to be periodi
.The parameters d0 and d1 are also 
onstant while the values of d2 and d3 
hange over time. Theevolution of d2 and d3 is 
onditioned by the value of d0. It 
an be seen that in the general 
ase theirmodulus grows linearly with respe
t to time. The parameters remain 
onstant only when d0 = 0and the importan
e of this parti
ular 
ase is dis
ussed in what follows.2.2.2 Properties of periodi
 traje
toriesExpressions (2.2) show that the integral term J(ν) is the only non periodi
 term in the propagationof the spa
e
raft relative position. In the parti
ular 
ase where:

d0(ν0) = 0 (2.17)the resulting relative traje
tory is periodi
 be
ause the drifting term J(ν) is 
an
elled. This leadsto the following simpli�ed parametri
 expressions for the propagation of spa
e
raft periodi
 relativetraje
tories:
x̃(ν) = (2 + e cos ν)(d1(ν0) sin ν − d2(ν0) cos ν) + d3(ν0)

ỹ(ν) = d4(ν0) cos ν + d5(ν0) sin ν

z̃(ν) = (1 + e cos ν)(d2(ν0) sin ν + d1(ν0) cos ν)

(2.18)Expressions (2.18) reveal the fa
t that the spa
e
raft relative periodi
 traje
tories are always
entered around zero on the y and z axes. An o�set 
an be set on the x axis through the d3parameter. The parameters 
orresponding to the amplitude of the motion on the y axis 
an be
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e
raft relative traje
tories 39�xed to zero in order to obtain a planar periodi
 traje
tory:
d4 = 0 d5 = 0 (2.19)and, as in the general 
ase, the dimensions of the traje
tory in the xz plane depend on the value of

d1 and d2. Moreover, a

ording to the dynami
s of the ve
tor D given in (2.12), all the parametersare 
onstant in time in the parti
ular 
ase of periodi
 motion. This means that:
C(νi)X̃(νi) = C(νj)X̃(νj) = D(ν0), ∀νi 6= νj for D(ν0) su
h that d0(ν0) = 0 (2.20)On
e the 
onstant ve
tor of parameters 
orresponding to a periodi
 traje
tory is known, equation(2.8) 
an be used to 
al
ulate at any time the 
orresponding lo
al Cartesian relative state. Thisrepresentation o�ers more �exibility than the typi
al methods for spe
ifying periodi
 traje
torieswhi
h rely on the usage of simple parametri
 
urves, su
h as 
ir
les or ellipses, in order to be ableto easily 
ompute the 
orresponding spa
e
raft relative state [40, 65, 105℄.Given the de�nition (2.6), it 
an be seen that for 
onstraint (2.17) to be veri�ed, the spa
e
raftrelative state must satisfy:

Mp(ν)X̃(ν) = 0 (2.21)where Mp(ν) ∈ R
1×6 denotes the �rst line in the C(ν) matrix (2.5). This periodi
ity 
onstrainton the relative state is a
tually equivalent to the initialisation 
ondition (1.41) presented in theChapter 1. Moreover, if the 
onstraint (2.21) is satis�ed at a moment νi, it will be satis�ed by allthe following states belonging to the autonomously propagated traje
tory:

Mp(νi)X̃(νi) = 0 =⇒ Mp(νj)X̃(νj) = 0, ∀νj ≥ νi (2.22)This property re�e
ts the fa
t that the parameter d0 always has a 
onstant dynami
 and it 
an bevery easily veri�ed on the traje
tory propagated using the transition matrix.The 
onstant dynami
s of the d0 parameter have yet another important 
onsequen
e: traje
to-ries that start arbitrarily 
lose to a periodi
 traje
tory will not naturally 
onverge towards it. If d0be
omes di�erent from zero as a result of disturban
es a
ting on the system, then a 
ontrol law willneed to be set in pla
e to drive it ba
k to zero and to ensure the periodi
ity of the relative motion.This unstable behaviour of the periodi
 relative traje
tories is also 
on�rmed by the propertiesof the monodromy matrix 
orresponding to the spa
e
raft relative motion (see the dis
ussion inAppendix A).
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 expressions for the spa
e
raft relative traje
tory2.3 Numeri
al analysis of the periodi
 relative motionThe form of expressions (2.2) suggests that the values of the parameters D are 
onne
ted to thedimensions of the spa
e
raft relative traje
tory. However, even in the 
ase of periodi
 relative motionwhere the relative traje
tory is de�ned by the simpli�ed expressions in (2.18), it is not possibleto pre
isely de�ne the nature of this dependen
y just by analysing the propagation equations.Numeri
al examples are used here in order to support some of the observations made in the previousse
tions.To simplify the analysis, we 
onsider only planar periodi
 relative traje
tories that have noo�set on the x axis. This type of traje
tory is de�ned by a ve
tor of parameters of the form:
D =

[

0 d1 d2 0 0 0
]T (2.23)2.3.1 The e�e
ts of the e

entri
ity of the leader orbitThe transformation matrix F (ν) between the Cartesian spa
e
raft relative state and the ve
torof parameters D depends on the e

entri
ity of the orbit of the leader satellite. This suggeststhat for referen
e orbits of di�erent e

entri
ities, the same 
onstant ve
tor of parameters mayprodu
e periodi
 traje
tories that display di�erent geometri
al 
hara
teristi
s. The in�uen
e of thee

entri
ity is analysed using a ve
tor of parameters of the form (2.23) for whi
h:

d1 = −1 d2 = −1For this parti
ular 
hoi
e for the ve
tor D, Figure 2.2 illustrates the 
hange in the shape of theobtained periodi
 traje
tory 
aused by the 
hange in the e

entri
ity of the referen
e orbit. Forsmall e

entri
ities the periodi
 traje
tory appears to be symmetri
al and resembles an ellipsoid.However, for higher e

entri
ities the obtained traje
tory be
omes in
reasingly "irregular". Thissupports the observation made in [48℄ that the proje
tions of a spa
e
raft periodi
 relative traje
toryonto the xz, xy or yz plans are not ellipses in the general 
ase.2.3.2 The e�e
ts of the values of the parametersIn order to study the e�e
t of the sign of the d1 and d2 parameters on the resulting periodi
traje
tory, we 
onsider a ve
tor of parameters in the form (2.23) for whi
h:
|d1| = |d2| = 1
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Figure 2.2: The e�e
t of the e

entri
ity on the obtained periodi
 traje
toryFigure 2.3 depi
ts the periodi
 relative traje
tories obtained for a referen
e traje
tory of e

entri
ity
e = 0.5. It 
an be noti
ed that a 
hange in the sign of d1 
auses a rotation of 180◦ around the xaxis of the original traje
tory. A 
hange in the sign of d2 
auses instead a rotation of 180◦ aroundthe z axis of the original traje
tory.
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Figure 2.3: The e�e
t of the sign of the parameters on the periodi
 traje
tory for e = 0.5
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 expressions for the spa
e
raft relative traje
toryFor referen
e traje
tories that have di�erent e

entri
ities, Figures 2.4 and 2.5 illustrate thee�e
ts of the values of the parameters d1 and d2 on the spa
e
raft periodi
 relative motion. Forsmaller e

entri
ities, the obtained periodi
 traje
tory is nearly symmetri
al so the e�e
t of in
reas-ing d1 is similar to that of in
reasing d2 (Figure 2.4). However, for higher e

entri
ities, the e�e
tsof the two parameters be
ome quite di�erent (Figure 2.5).
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Figure 2.4: The e�e
t of a 
hange in the parameters for a referen
e traje
tory of e = 0.1
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t of a 
hange in the parameters for a referen
e traje
tory of e = 0.5Other than the in�uen
e on the shape of the obtained traje
tory, it 
an be seen that thee

entri
ity of the orbit of the leader satellite also determines how mu
h a 
hange in the valuesof the parameters re�e
ts into a 
hange in the dimensions of the resulting periodi
 traje
tory.Given the 
omplex nature of this intera
tion, general 
on
lusions 
annot be drawn from just afew numeri
al examples. The aim of these examples was to emphasize the need for a pre
isemathemati
al 
hara
terisation of the 
onne
tion between the dimensions of a periodi
 traje
tory,the ve
tor of parameters that des
ribes it and the e

entri
ity of the referen
e orbit.
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lusion 432.4 Con
lusionNew parametri
 expressions for the spa
e
raft relative traje
tory are derived from the linearizedCartesian model of relative motion. The obtained parametrization provides a new state ve
torwhose dynami
s 
an be used to study the properties of the spa
e
raft relative motion. The analysisof the equations de�ning the dynami
s of the ve
tor of parameters shows that every spa
e
raft peri-odi
 relative traje
tory 
orresponds to an equilibrium point of this new state spa
e representation.The intuitive form of the parametri
 expressions allows us to dire
tly identify some of the e�e
tsthat the 
hoi
e of some parti
ular values for the parameters have on the resulting relative traje
tory,espe
ially in the 
ase of periodi
 spa
e
raft relative motion. However, the presented numeri
alexamples suggest that the shape and the dimensions of the spa
e
raft periodi
 traje
tories dependin fa
t on the 
omplex intera
tion between the e

entri
ity of the leader's orbit and the value ofthe parameters. These examples emphasise the need for a pre
ise mathemati
al 
hara
terisationof the ve
tor of parameters 
orresponding to relative traje
tories that respe
t some dimensions
onstraints.





Chapter 3Constrained spa
e
raft relativetraje
tories
Contents3.1 De�nition of admissible traje
tories . . . . . . . . . . . . . . . . . . . . . . . 463.2 Finite des
ription of admissible traje
tories . . . . . . . . . . . . . . . . . . 473.2.1 Finite des
ription using 
onstraints dis
retization . . . . . . . . . . . . . . . . . 483.2.2 Finite des
ription using non-negative polynomials . . . . . . . . . . . . . . . . 483.3 Des
ription of 
onstrained traje
tories using non negative polynomials . . 493.3.1 Rational expressions for the spa
e
raft relative motion . . . . . . . . . . . . . . 493.3.2 Constrained non periodi
 traje
tories . . . . . . . . . . . . . . . . . . . . . . . . 523.3.3 Constrained periodi
 traje
tories . . . . . . . . . . . . . . . . . . . . . . . . . . 543.4 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Résumé: Le présent 
hapitre fournit une des
ription formelle de l'ensemble des paramètres 
or-respondant à des traje
toires relatives ins
rites dans un sous ensemble parti
ulier de l'espa
e d'étatrelatif. Pour 
ara
tériser le lien entre les valeurs des paramètres et la dimension des traje
toiresobtenues, il faut tenir 
ompte d'une part de l'in�uen
e de l'ex
entri
ité et d'autre part de la présen
edu terme intégral J(ν) dans le 
as général. De plus, 
omme les 
ontraintes sur la dimension doiventgénéralement être respe
tées de manière 
ontinue sur un intervalle de temps �xé, il n'est pas fa
iled'obtenir une des
ription des paramètres admissibles qui soit fa
ilement exploitable dans un al-gorithme de guidage des satellites. En se basant sur les propriété des polyn�mes non-négatifs,
e 
hapitre donne une des
ription mathématique pré
ise de l'ensemble des paramètres admissibles.Cette des
ription est �nie et 
ompatible ave
 les algorithmes de programmation semi-dé�nie positive.

The previous 
hapter emphasized the need for a rigorous mathemati
al 
hara
terization of theset of ve
tors of parameters that 
orrespond to spa
e
raft relative traje
tories whi
h respe
t somedimensions 
onstraints. Even in the simpler 
ase of periodi
 relative motion, a pre
ise des
ription ofthe admissible traje
tories has not yet been rea
hed. The main di�
ulty lies in the 
hara
terisation,for a given set of parameters, of the in�uen
e of the e

entri
ity of the referen
e orbit on the resulting
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e
raft relative traje
toriesrelative traje
tory. In the general 
ase, the presen
e of the integral term J(ν) in the expression ofthe relative traje
tory renders the analysis even more 
omplex.Another 
hallenge 
omes from the fa
t that the dimensions 
onstraints on the traje
tory usuallyneed to be imposed 
ontinuously in time over a spe
i�ed interval. This translates into an in�nitenumber of 
onditions that need to be veri�ed in order to 
ertify that a given traje
tory respe
tsthe desired dimensions requirements.This 
hapter provides a solution to these problems in the form of a �nite 
onvex des
ription ofthe admissible spa
e
raft relative traje
tories for a given set of dimensions 
onstraints.
3.1 De�nition of admissible traje
toriesFrom a mathemati
al point of view, the 
onstraints on the dimensions of the spa
e
raft relativetraje
tories 
an be written as linear 
onstraints on the spa
e
raft relative positions:

xmin ≤ x(t) ≤ xmax

ymin ≤ y(t) ≤ ymax

zmin ≤ z(t) ≤ zmax

, ∀t ∈ [t0 tf ] ⇐⇒
x̃min(ν) ≤ x̃(ν) ≤ x̃max(ν)

ỹmin(ν) ≤ ỹ(ν) ≤ ỹmax(ν)

z̃min(ν) ≤ z̃(ν) ≤ z̃max(ν)

, ∀ν ∈ [ν0 νf ] (3.1)Equation (3.1) illustrates the e�e
ts of the variable 
hange (1.17) on the dimension 
onstraints: the
onstant minimum and maximum bounds for the time domain transform into bounds that dependon the true anomaly of the leader spa
e
raft ν. The 
onstraints must be respe
ted 
ontinuously onthe intervals [t0 tf ] and [ν0 νf ] respe
tively.The 
onstraints in (3.1) 
an be written in a more 
ompa
t way as:
H X̃(ν) ≤ Ṽ (ν), ∀ν ∈ [ν0 νf ] (3.2)where the matri
es H and V de�ne a generi
 polytopi
 set. Using the de�nition in (3.2), the setof spa
e
raft relative states starting from whi
h the autonomously propagated traje
tories remaininside the polytopi
 set (H,V ) during the spe
i�ed interval 
an be de�ned as:

S(H,V, ν0, νf ) =
{

X̃(ν0) ∈ R
6 | X̃(ν) = Φ(ν, ν0)X̃(ν0), H X̃(ν) ≤ Ṽ (ν), ∀ν ∈ [ν0 νf ]

} (3.3)An equivalent form 
an be given to the set of parameters de�ning relative traje
tories that respe
t
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tories 47the given traje
tory 
onstraints during the spe
i�ed interval:
SD(H,V, ν0, νf ) =

{

D(ν0) ∈ R
6 | D(ν) = ΦD(ν, ν0)D(ν0), H F (ν)D(ν) ≤ Ṽ (ν), ∀ν ∈ [ν0 νf ]

}(3.4)with the matrix F (ν) de�ned in (2.9).The admissible spa
e
raft relative traje
tories are des
ribed in (3.3) and (3.4) using only linear
onstraints. However, it should be noted that the traje
tory 
onstraints need to be veri�ed 
on-tinuously on the spe
i�ed interval. As a 
onsequen
e, an in�nite number of 
onditions need to be
he
ked in order to 
ertify that a state or a ve
tor of parameters 
orrespond to a traje
tory whi
hrespe
ts the spe
i�ed requirements.As seen in Chapter 2, the periodi
 spa
e
raft relative traje
tories 
an be des
ribed by a 
onstantset of parameters. However, the set of parameters de�ning admissible periodi
 spa
e
raft relativetraje
tories is still de�ned by in�nitely many 
onditions. This happens be
ause the 
onstraintsthemselves depend on the true anomaly of the leader spa
e
raft:
Sp
D(H,V ) =

{

D ∈ R
6 | d0 = 0, H F (ν)D ≤ Ṽ (ν), ∀ν ∈ [0 2π]

} (3.5)The interval on whi
h the 
onstraints need to be 
he
ked is limited to one orbital period in this 
asebe
ause the traje
tory is periodi
, but 
he
king that a ve
tor D de�nes an admissible traje
tory isstill a hard problem.Inside a given polytopi
 set there 
an be found many traje
tories that respe
t the dimensions
onstraints (see Figure 3.1). We are interested in obtaining a �nite des
ription of all these admissibletraje
tories.
3.2 Finite des
ription of admissible traje
toriesImposing 
ontinuous 
onstraints on the spa
e
raft relative traje
tories leads to a des
ription of theadmissible traje
tories using an in�nite number of 
onstraints. The provided des
ription is a

uratebut not very well suited for traje
tory design purposes. This is due to the di�
ulty in 
ertifyingthat a given traje
tory respe
ts all the required 
onditions. Two methods for rea
hing a �nitedes
ription of the admissible traje
tories are presented in what follows.
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Figure 3.1: Examples of periodi
 spa
e
raft relative traje
tories that evolve inside a polytopi
 set3.2.1 Finite des
ription using 
onstraints dis
retizationA straightforward method for rendering the number of 
onstraints �nite 
onsists in the so-
alled
onstraints dis
retization. The original 
ontinuous 
onstraints are repla
ed by 
onstraints that are
he
ked only at some spe
i�ed lo
ations [17,19,99℄. The de�nition in (3.4) for instan
e is repla
edby:
SD(H,V, ν0,m) =

{

D(ν0) ∈ R
6 | D(νk) = ΦD(νk, ν0)D(ν0), H F (νk)D(νk) ≤ Ṽ (νk), k = 1..m

}(3.6)where m refers to the number of points where the 
onstraints are expli
itly veri�ed.The problem with this type of approa
h is that the a

ura
y of the obtained solution dependson the spe
i�
 
hoi
e made for the di�erent parameters, like the number of dis
retization pointsand their parti
ular distribution over the original interval. Moreover, this type of methods do notprovide a rigorous 
hara
terisation of the obtained results. There are no theoreti
al guarantees thatno 
onstraints violations will o

ur in between the dis
retization points and a posteriori 
he
ks areneeded in order to validate the solution.3.2.2 Finite des
ription using non-negative polynomialsThe idea of using the properties of non-negative polynomials to obtain a �nite des
ription of theadmissible spa
e
raft relative traje
tory 
ame from the desire to exploit the stru
ture of the solution
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onstrained traje
tories using non negative polynomials 49for the relative motion provided by the transition matrix. The expressions (2.18) show that for theperiodi
 relative motion the traje
tory is de�ned by trigonometri
 polynomials. In this 
ase, thedimension 
onstraints (3.1) 
an be easily written as polynomial non-negativity 
onstraints.In the general 
ase, the presen
e of the integral term J(ν) in the expressions of the spa
e
raftrelative traje
tory renders the approa
h more 
omplex. In order to rea
h a polynomial des
riptionof the admissible traje
tories, the term J(ν) 
an be repla
ed with a suitable approximation. The
omplete pro
edure is presented in detail in the following se
tion.On
e the dimensions 
onstraints on the spa
e
raft relative traje
tory are transformed into poly-nomial non negativity 
onstraints of the type:
P (w) ≥ 0, ∀w ∈ W (3.7)the results presented by Nesterov in [73℄ 
an be used in order to obtain a �nite des
ription of theadmissible traje
tories without relying on dis
retization. It is showed that polynomial non negativ-ity 
onstraints 
an be transformed into 
onditions of existen
e of one or two 
onstrained positivesemi-de�nite matri
es (see Appendix B). The in�nite number of points where the polynomial non-negativity 
onstraint needed to be 
he
ked 
an be repla
ed with only one Linear Matrix Inequality(LMI) 
onstraint.3.3 Des
ription of 
onstrained traje
tories using non negative poly-nomials3.3.1 Rational expressions for the spa
e
raft relative motionThe following variable 
hange 
an be used in order to transform the trigonometri
al terms in theexpressions for the propagation of the spa
e
raft relative traje
tory into rational terms:

w = tan
(ν

2

)

, cos ν =
1− w2

1 + w2
, sin ν =

2w

1 + w2
, (3.8)Introdu
ing (3.8) into (2.2) leads to the following expressions for the spa
e
raft relative positions:

x̃(w) =
1

(1 +w2)2
[Px(w) + 3 d0 PJx(w)J(w)]

ỹ(w) =
1

1 + w2
Py(w)

z̃(w) =
1

(1 + w2)2
[Pz(w) + 2 d0 PJz(w)J(w)]

, w ≥ w0 (3.9)
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e
raft relative traje
torieswhere the polynomials PJx(w) and PJz(w) depend only on the e

entri
ity of the orbit of the leadersatellite and are given by:
PJx(w) = ((1 + e) + (1− e)w2)2 PJz(w) = −3e((1 − e)w + (1− e)w3) (3.10)and the term J(w) is obtained by introdu
ing the variable 
hange (3.8) into (1.33):

J(w) =

∫ w

w0

2 τ2 + 2

((1− e)τ2 + e+ 1)2
dτ (3.11)The polynomials Px(w), Py(w) and Pz(w) are de�ned by:

Px(w) =
4
∑

i=0

pxiw
i Py(w) =

2
∑

i=0

pyi w
i Pz(w) =

4
∑

i=0

pziw
i (3.12)and their ve
tors of 
oe�
ients, px =

[

px0 px1 px2 px3 px4

]T , py =
[

py0 py1 py2

]T and
pz =

[

pz0 pz1 pz2 pz3 pz4

]T respe
tively, depend linearly on the ve
tor of parameters D(ν0):
px = CxD(ν0) py = Cy D(ν0) pz = Cz D(ν0) (3.13)The matri
es Cx, Cy and Cz depend only on the e

entri
ity of the referen
e orbit and are givenby:

Cx=
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(3.14)The idea behind the usage of the transformation (3.8) is to obtain a des
ription of the spa
e
raftrelative traje
tories that 
ontains only terms of the same nature. The �nal purpose is to rea
hsome polynomial expressions for the 
onstrained spa
e
raft relative motion that 
an lead to a �nitedes
ription of the admissible traje
tories. The expressions (2.2) 
ontain a 
ombination of integraland trigonometri
 terms and even expressions (3.9) are not entirely rational be
ause of the presen
eof the term J(w). Without further manipulations, the spa
e
raft relative traje
tory is de�ned byrational expressions only in the 
ase of periodi
 motion. When d0 = 0, the relative traje
tory is



3.3. Des
ription of 
onstrained traje
tories using non negative polynomials 51given by:
x̃(w) =

1

(1 + w2)2
Px(w) ỹ(w) =

1

1 + w2
Py(w) z̃(w) =

1

(1 + w2)2
Pz(w) (3.15)The advantage of introdu
ing the variable 
hange (3.8) is that, if the integral term J(w) is repla
edby a polynomial approximation, then the obtained expressions for the spa
e
raft relative motion
ontain only rational terms. These expressions will allow us to 
hara
terize all the spa
e
raftrelative traje
tories that respe
t some dimensions 
onstraints.

Polynomial approximation of the integral term J(w)Even if the integral term (3.11) has a 
losed form solution given by:
J(w) =











2 ew

(e2 − 1)(e+ 1 + (1− e)w2)
−

2ar
tanh(√
e− 1√
e+ 1

w

)

√

(e2 − 1)3











w

w0

(3.16)the nature of the terms involved in its de�nition does not bring us 
loser to our obje
tive. Resultsin [21℄ show that a �xed-degree polynomial approximation with a 
erti�ed maximum approximationerror 
an be 
omputed for the integral expression (3.11). However, the interval on whi
h J(w) 
anbe approximated by a polynomial must be a �nite subset of R. This 
omes from the fa
t that theterm J(w) is dis
ontinuous on the bounds of its de�nition set (i.e. from (3.16): lim
w→−∞

J(w) 6=
lim

w→∞
J(w)) and 
onsequently no polynomial or rational fun
tion 
an approximate J(w) on R.Let Θq(w) be a polynomial of degree q su
h that:

Θq(w)− ε ≤ J(w) ≤ Θq(w) + ε, ∀w ∈ W (3.17)whereW represents the interval on whi
h the polynomial approximation is valid and ε represents themaximum approximation error on that interval. Following from (3.17), upper and lower polynomialbounds for the term J(w) 
an be de�ned on the interval W :
Θu(w) = Θq(w) + ε, Θl(w) = Θq(w)− ε (3.18)These polynomial bounds 
an be 
ombined with expressions (3.9) in order to obtain rational
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e
raft relative traje
toriesbounds for the xz spa
e
raft relative traje
tory in the general 
ase:
x̃l,u(w) =

1

(1 +w2)2
[Px(w) + 3 d0 PJx(w)Θl,u(w)]

z̃l,u(w) =
1

(1 + w2)2
[Pz(w) + 2 d0 PJz(w)Θl,u(w)]

, ∀w ∈ W (3.19)with:
x̃l(w) ≤ x̃(w) ≤ x̃u(w)

z̃l(w) ≤ z̃(w) ≤ z̃u(w)
, ∀w ∈ W (3.20)3.3.2 Constrained non periodi
 traje
toriesLet us 
onsider some dimension 
onstraints on the relative traje
tories spe
i�ed through a polytopi
set given by some H and V matri
es as in (3.2). We assume for simpli
ity that the 
onstraints areimposed only on the relative positions. By expanding ea
h 
onstraint and integrating the variable
hange (3.8), we 
an write:

hi,1 x̃(w) + hi,2 ỹ(w) + hi,3 z̃(w) ≤
1 + e+ (1− e)w2

1 + w2
vi, ∀w ∈ [w0 wf ], i = 1..s (3.21)where hi,j and vi are elements in the matri
es H and V that de�ne the polytopi
 set and s is thenumber of 
onstraints in the de�nition.Let us de�ne expressions Ξi(w) as:

Ξi(w) = −hi,1 x̃(w) − hi,2 ỹ(w)− hi,3 z̃(w) +
1 + e+ (1− e)w2

1 + w2
vi, i = 1..s (3.22)Using expressions (3.22), the set of parameters 
orresponding to autonomous spa
e
raft relativetraje
tories that respe
t the polytopi
 
onstraints over a spe
i�ed interval [w0 wf ] 
an be de�nedas:

SD(H,V,w0, wf ) =
{

D(w0) ∈ R
6 | Ξi(w) ≥ 0, ∀w ∈ [w0 wf ], i = 1..s

} (3.23)By bringing the terms to the lowest 
ommon denominator, a more 
ompa
t form 
an be obtainedfor Ξi(w):
Ξi(w) =

1

(1 + w2)2
Γi(w), i = 1..s (3.24)where the polynomials Γi(w) are de�ned by:

Γi(w) = −hi,1 [Px(w) + 3 d0 PJx(w)J(w)] − hi,2 P̄y(w)− hi,3 [Pz(w) + 2 d0 PJz(w)J(w)] + vi T (w)(3.25)



3.3. Des
ription of 
onstrained traje
tories using non negative polynomials 53In the previous de�nition the polynomial P̄y(w) is obtained as P̄y(w) = (1+w2)Py(w) and the poly-nomial T (w) is given by T (w) =

4
∑

i=0

ti w
i with the ve
tor of 
oe�
ients t = [1 + e 0 2 0 1− e

]T .The 
oe�
ients of the other polynomials in (3.25) depend on the ve
tor of parameters D, as de�nedin (3.12).The term (1+w2)2 in (3.24) is non negative for all w ∈ R. This means that the set SD(H,V,w0, wf )
an also be de�ned as:
SD(H,V,w0, wf ) =

{

D(w0) ∈ R
6 | Γi(w) ≥ 0, ∀w ∈ [w0 wf ], i = 1..s

} (3.26)Let Γl
i(w) and Γu

i (w) be the polynomials obtained from expressions Γi(w) after repla
ing theintegral term J(w) with its lower and upper polynomial bounds, Θl(w) and Θu(w) respe
tively. Inthis 
ase we have:
Γl
i(w) ≤ Γi(w) ≤ Γu

i (w) (3.27)where:
Γl
i(w) = −hi,1 [Px(w) + 3 d0 PJx(w)Θl(w)]− hi,2 P̄y(w)− hi,3 [Pz(w) + 2 d0 PJz(w)Θl(w)] + vi T (w)

Γu
i (w) = −hi,1 [Px(w) + 3 d0 PJx(w)Θu(w)]− hi,2 P̄y(w)− hi,3 [Pz(w) + 2 d0 PJz(w)Θu(w)] + vi T (w)(3.28)The degree of the polynomials Γl

i(w) and Γu
i (w) depends on the degree of the polynomial approxi-mation of J(w). Considering the de�nitions given in (3.13), it 
an be noted that the 
oe�
ients ofthe polynomials in (3.28), denoted γli and γui respe
tively, are 
onstant and depend linearly on thevalue of the ve
tor of parameters D at the beginning of the interval [w0 wf ].The polynomials Γl

i(w) and Γu
i (w) allow for the set SD(H,V,w0, wf ) to be de�ned using onlypolynomial non negativity 
onstraints:

SD(H,V,w0, wf ) =
{

D(w0) ∈ R
6 | Γl

i(w) ≥ 0, Γu
i (w) ≥ 0, ∀w ∈ [w0 wf ], i = 1..s

} (3.29)The 
onstraints on the expressions Γi(w) have been repla
ed by 
onstraints on its upper and lowerpolynomial bounds. The resulting in
reased number of 
onstraints is the pri
e to pay for robustnesswith respe
t to approximation errors for the term J(w).Using the 
onne
tion between the 
oe�
ients of non negative polynomials and the symmetri
positive semi-de�nite matri
es given in [73℄, the set SD(H,V,w0, wf ) 
an be de�ned using a �nite



54 Chapter 3. Constrained spa
e
raft relative traje
toriesnumber of 
onstraints:
SD(H,V,w0, wf ) =







D(w0) ∈ R
6

∣

∣

∣

∣

∣

∣

∃Y l
i1, Y

l
i2 � 0 s.t. γli = Λ∗(Y l

i1, Y
l
i2)

∃Y u
i1, Y

u
i2 � 0 s.t. γui = Λ∗(Y u

i1, Y
u
i2)

, ∀i = 1..s







(3.30)The linear operator Λ∗ is de�ned as in (B.4) or as in (B.5), depending on the 
ase. The dimensions ofthe positive semi-de�nite matri
es involved depend on the degree of the polynomial approximationsfor the J(w) term, Θl(w) and Θu(w). Please note that to every non negativity 
onstraint in (3.29)
orresponds a pair of matri
es Y1, Y2. Ea
h polynomial non negativity 
onstraint that needed to be
he
ked for in�nitely many points has now been repla
ed by an equality 
onstraint on the 
oe�
ientsof that polynomial. This means that SD(H,V,w0, wf ) is de�ned using only linear restri
tions onthe ve
tor of parameters D at the beginning of the 
hosen interval.3.3.3 Constrained periodi
 traje
toriesThe des
ription of the admissible traje
tories is simpli�ed in the 
ase of periodi
 spa
e
raft relativemotion. The periodi
 traje
tories that respe
t some polytopi
 
onstraints 
an be de�ned dire
tlyin terms of non negativity 
onditions of some polynomials, without any need for approximations.In the periodi
 
ase, the expressions in (3.25) be
ome:
Γp
i (w) = −hi,1 Px(w)− hi,2 P̄y(w)− hi,2 Pz(w) + vi T (w) (3.31)This leads to the de�nition of the set of 
onstant parameters that 
orrespond to admissible traje
-tories using a �nite number of polynomial non negativity 
onstraints:

Sp
D(H,V ) =

{

D ∈ R
6 | d0 = 0, Γp

i (w) ≥ 0, ∀w ∈ R, i = 1..s
} (3.32)The non negativity of the polynomials Γp

i (w) needs to be 
he
ked on an in�nite interval sin
e thevariable 
hange (3.8) maps one orbital period to R.Using the property of non negative polynomials on in�nite intervals given in [73℄, the set ofparameters 
orresponding to spa
e
raft periodi
 relative traje
tories that evolve inside a spe
i�edpolytopi
 set 
an be de�ned as:
Sp
D(H,V ) =







D ∈ R
6

∣

∣

∣

∣

∣

∣

d0 = 0

∃Yi � 0 s.t γpi = Λ∗(Yi), ∀i = 1..s







(3.33)where γpi are the ve
tors of 
oe�
ients 
orresponding to the polynomials Γp
i (w). As for the non
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lusion 55periodi
 
ase, γpi depend linearly on the value of the ve
tor of parameters D. Sin
e we are dealingwith periodi
 traje
tories, the ve
tor of parameters is 
onstant over the in�nite interval. The degreeof the polynomials Γp
i (w) is easy to 
ompute in this 
ase and is less or equal to 4 (see (3.31) and(3.12)). This means that the variables Yi are at most 3 by 3 matri
es.3.4 Con
lusionWhen 
ontinuous 
onstraints need to be imposed on the spa
e
raft relative traje
tory, the set ofadmissible traje
tories is des
ribed using an in�nite number of 
onstraints that need to be 
he
kedin order to validate an obtained solution.A new method for rendering the des
ription of admissible traje
tories �nite is presented inthis 
hapter. The method exploits the stru
ture of the solution for the spa
e
raft relative motionprovided by the transition matrix and it is based on the properties of non negative polynomials. Thepresen
e of the integral term J(w) determines the usage of rational expressions for the des
riptionof the spa
e
raft relative motion. In this framework, the term J(w) 
an be approximated by apolynomial, leading to a des
ription of the admissible traje
tories using only polynomial 
onstraints.Unlike the 
lassi
al 
onstraints dis
retization approa
h, the presented method provides a �nite
hara
terisation of the admissible traje
tories that guarantees 
ontinuous satisfa
tion of the 
on-straints. Che
king that a solution belongs to the set of admissible traje
tories is translated into
he
king the existen
e of some 
onstrained semi-de�nite positive matri
es. This des
ription of theadmissible traje
tories is used in the following 
hapter as part of a spa
e
raft relative traje
torydesign pro
edure.





Chapter 4Traje
tory design for spa
e
raftrendezvous
Contents4.1 Fixed-time linearized impulsive spa
e
raft rendezvous . . . . . . . . . . . . 584.1.1 General formulation of the guidan
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t shooting methods for the guidan
e problem . . . . . . . . . . . . . 614.2 Fixed-time rendezvous with traje
tory 
onstraints . . . . . . . . . . . . . . 634.2.1 Guidan
e towards a 
onstrained periodi
 relative motion . . . . . . . . . . . . . 634.2.2 Passively safe traje
tories for spa
e
raft rendezvous . . . . . . . . . . . . . . . 664.2.3 Spa
e
raft rendezvous with visibility 
onstraints . . . . . . . . . . . . . . . . . 684.3 Numeri
al examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704.3.1 Rea
hing a 
onstrained periodi
 relative traje
tory . . . . . . . . . . . . . . . . 704.3.2 Passively safe rendezvous traje
tories . . . . . . . . . . . . . . . . . . . . . . . . 744.3.3 Constrained non periodi
 relative traje
tories . . . . . . . . . . . . . . . . . . . 784.4 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Résumé: Le guidage en rendez-vous orbital 
onsiste à déterminer une série des man÷uvres im-pulsionnelles qui amènent le satellite 
hasseur en proximité de la 
ible. Le 
al
ul des man÷uvresdoit tenir 
ompte simultanément des di�érentes 
ontraintes de la mission donnée, 
omme des 
on-traintes de sé
urité, des 
ontraintes de visibilité ou des 
ontraintes de passage par une série despositions prédé�nies. Les ressour
es en ergols étant limitées, le plan de man÷uvres obtenu doitaussi minimiser la 
onsommation de 
ombustible. Dans un premier temps, 
e 
hapitre formule leproblème de guidage 
omme un problème de 
ommande optimale sous 
ontraintes. Le 
adre 
hoisiest 
elui des méthodes dire
tes de tirs qui exploitent la transition du mouvement relatif pour 
on-vertir le problème de 
ommande optimale en problème d'optimisation paramétrique. La des
riptiondes traje
toires admissible développée dans le 
hapitre pré
édent est utilisée pour garantir que lestraje
toires obtenues respe
tent les 
ontraintes données.

The orbital rendezvous guidan
e problem 
onsists in 
omputing a series of orbital maneuvers



58 Chapter 4. Traje
tory design for spa
e
raft rendezvousthat su

essively bring the 
haser vehi
le in the vi
inity of and eventually in 
onta
t with the targetspa
e
raft. These maneuvers must a

ount for the di�erent 
onditions and 
onstraints that mustbe ful�lled in order to guarantee the su

ess of the mission. The operations in the vi
inity of thetarget spa
e
raft may impose safety 
onstraints, approa
h-traje
tory 
orridors and waiting pointsalong the traje
tory for verifying the vehi
le fun
tions and other 
onditions. Sin
e the propellantis su
h an important resour
e in spa
e
raft appli
ations, the approa
h maneuvers must be optimalfrom a fuel 
onsumption point of view. Moreover, the amplitude of the 
omputed maneuvers mustalso respe
t the physi
al limitations of the spa
e
raft thrusters.The general mathemati
al formulation for the �xed-time spa
e
raft rendezvous guidan
e prob-lem is presented at the beginning of this 
hapter. It is showed that, in the 
ontext of dire
t shootingmethods, the optimal 
ontrol problem 
an be written as a linear program. In addition, the 
asewhere di�erent types of traje
tory 
onstraints need to be introdu
ed in the guidan
e problem isalso 
onsidered. For ea
h of the 
onsidered spa
e
raft traje
tory 
onstraints, the 
ontrol problemis 
onstru
ted by integrating the mathemati
al des
ription of the admissible relative traje
toriesgiven in Chapter 3. The resulting solution is guaranteed to lead to a rendezvous traje
tory whi
hsatis�es 
ontinuously the spe
i�ed 
onstraints.4.1 Fixed-time linearized impulsive spa
e
raft rendezvousIn the 
ontext of the �xed-time rendezvous guidan
e problem, the duration of the rendezvousmission is 
onsidered to be �xed and known a priori. The spa
e
raft thrust maneuvers are approxi-mated with impulsive maneuvers, meaning that their e�e
t is modelled as an instantaneous 
hangein the spa
e
raft relative velo
ity. Moreover, the number of thrusts N and the thrusting instantsare also �xed a priori. The de
ision variables are represented by the amplitudes of the velo
ity
hanges expressed in the LVLH frame atta
hed to the leader spa
e
raft.4.1.1 General formulation of the guidan
e problemThe traje
tory design for spa
e
raft rendezvous relies on the 
omputation of an impulsive maneu-vers plan that brings the spa
e
raft from some known initial 
onditions X̃0 to some desired �nal
onditions X̃f . This needs to be done while minimising the total fuel 
ost of the maneuvres andwhile respe
ting the a
tuators saturations 
onstraints. Sin
e the thrusting instants ν1, ..., νN are
onsidered known, the de
ision variables are the magnitudes of the thrusts ∆Ṽi.Assuming that the spa
e
raft relative dynami
s are represented using the linearized model



4.1. Fixed-time linearized impulsive spa
e
raft rendezvous 59de�ned in (1.18), the 
orresponding optimal 
ontrol problem 
an be written as:
min
∆Ṽi

J(∆Ṽ)

s.t. 













































X̃ ′(ν) = Ã(ν)X̃(ν) +B
∑

i

∆Ṽiδ(ν − νi)

X̃(ν1) = X̃1

X̃(νN ) = X̃f

∆Ṽi ∈ Ũmax(νi), ∀i = 1...N

(4.1)
where the Dira
 fun
tion δ(ν) is used to model the impulsive nature of the 
ontrol. This writingof the problem supposes that the �rst impulsive 
ontrol is applied at the initial true anomaly andthat the last impulsive 
ontrol is applied at the �nal true anomaly. The variable X̃(νN ) representsthe spa
e
raft relative state right after the last thrust is �red.The 
ontrol ve
tors ∆Ṽi ∈ R

3 are de�ned in the leader's LVLH frame:
∆Ṽi =











∆Ṽix

∆Ṽiy

∆Ṽiz











, ∀i = 1...N (4.2)and ∆Ṽ denotes the sta
ked 
ontrol ve
tors: ∆Ṽ
T =

[

∆Ṽ T
1 ... ∆Ṽ T

N

]

∈ R
3N .4.1.2 Consumption 
riteriaThe minimization 
riterion J(∆Ṽ ) needs to be related to the total fuel 
ost of the mission in orderto a

urately represent the guidan
e requirements. A

ording to [83℄, a 
riterion that a

uratelyre�e
ts the fuel 
onsumption must take into 
onsideration the number of thrusters of the spa
e
raftand their 
on�guration.In the 
ase where a single thruster steers the spa
e
raft by gimbaling (see 
ase (a) in Figure4.1), the optimal fuel 
onsumption 
riterion is obtained from the ro
ket equation as:

J(∆Ṽ ) =

N
∑

i=1

‖∆Ṽi‖2 =

N
∑

i=1

√

∆Ṽ 2
ix
+∆Ṽ 2

iy
+∆Ṽ 2

iz
(4.3)The fuel 
ost in (4.3) is di�erent from the 
lassi
al quadrati
 
ost sin
e:

J(∆Ṽ )2 =

(

N
∑

i=1

√

∆Ṽ 2
ix
+∆Ṽ 2

iy
+∆Ṽ 2

iz

)2

6=
N
∑

i=1

(

∆Ṽ 2
ix +∆Ṽ 2

iy +∆Ṽ 2
iz

) (4.4)
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tory design for spa
e
raft rendezvous

Figure 4.1: Spa
e
raft thrusters 
on�gurationsReferen
e [83℄ also shows that in the 
ase where the spa
e
raft is equipped with six identi
althrusters rigidly mounted on its axes (see 
ase (b) in Figure 4.1), the 
riterion that best re�e
tsthe fuel 
onsumption is given by:
J(∆Ṽ ) =

N
∑

i=1

‖∆Ṽi‖1 =
N
∑

i=1

(

|∆Ṽix |+ |∆Ṽiy |+ |∆Ṽiz |
)

= ‖∆Ṽ‖1 (4.5)If there exists just one main engine that performs the guidan
e while vernier engines steer thethrust ve
tor (see 
ase (
) in Figure 4.1), the fuel 
onsumption is best represented by:
J(∆Ṽ ) =

N
∑

i=1

‖∆Ṽi‖∞ (4.6)An in
orre
t 
hoi
e for the optimisation 
riterion 
an result in solutions with poor guidan
eperforman
es. Referen
e [82℄ shows that fuel penalties as high as 50% 
an o

ur if the 
ost fun
tionis not properly 
hosen. Throughout this dissertation it is assumed that the spa
e
raft are equippedwith two identi
al engines on ea
h axis whi
h imposes the usage of (4.5) as optimization 
riterion.
4.1.3 Saturation 
onstraintsThe thrusters saturation 
onstraints have been represented in (4.1) by the generi
 expression:

∆Ṽi ∈ Ũmax(νi), ∀i = 1...N (4.7)
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e
raft rendezvous 61Given the assumption previously made on the 
on�guration of the thrusters, the saturation 
on-straints 
an be written as an upper limit on the modulus of the thrust on ea
h axis ∆Vmax:
|∆Ṽi| ≤ ∆Ṽmax(νi), ∀i = 1...N (4.8)The thrust upper bound in (4.8) depends on ν sin
e the variable transformation (1.17) must betaken into a

ount when writing the optimisation problem and when returning the solution:

∆Ṽ (ν) =

√

a3(1− e2)3

µ

1

1 + e cos ν
∆V (4.9)Thus the term ∆Ṽmax(νi) in (4.8) is obtained as:

∆Ṽmax(νi) =

√

a3(1− e2)3

µ

∆Vmax

1 + e cos ν
13, i = 1...N (4.10)where 1l is a ve
tor of dimension l 
ontaining only ones.

4.1.4 Using dire
t shooting methods for the guidan
e problemThe dire
t shooting methods for spa
e
raft traje
tory design 
onsist in transforming the optimal
ontrol problem (4.1) into a parameter optimization problem whi
h 
an be e�
iently solved by theexisting algorithms. This is usually a
hieved through dis
retization and 
ontrol parametrization[45℄. The knowledge of the �ring positions νi and the modelling of the thrusts as impulsive 
ontrolsenables the usage of dire
t shooting methods for solving the rendezvous guidan
e problem. Thedi�erential equation in (4.1) 
an be dire
tly repla
ed by the solution provided by the state transitionmatrix:
X̃(ν) = Φ(ν, ν1)X̃1 +

∑

i

Φ(ν, νi)B∆Ṽi (4.11)where Φ(ν, νi) is the Yamanaka-Ankersen transition matrix presented in Chapter 1. Using thefollowing notations:
Ai=

[

Φ(νi, ν1)B Φ(νi, ν2)B ...Φ(νi, νi)B
]

, Bi=Φ(νi, ν1)X̃1, ∆Ṽ
i
=
[

∆Ṽ1 ... ∆Ṽi

]T(4.12)



62 Chapter 4. Traje
tory design for spa
e
raft rendezvousand integrating the fuel 
onsumption 
riterion given in (4.5), the optimal 
ontrol problem (4.1) 
anbe written as:
min
∆Ṽi

‖∆Ṽ‖1s.t. 

























X̃(νN ) = AN∆Ṽ N +BN

X̃(νN ) = X̃f

−∆Ṽmax(νi) ≤ ∆Ṽi ≤ ∆Ṽmax(νi), ∀i = 1...N

(4.13)
It 
an be seen that (4.13) 
ontains only linear 
onstraints while the norm-1 optimization 
riterionis pie
ewise linear. By repla
ing the 
riterion with a linear equivalent, the rendezvous guidan
eproblem 
ould be transformed into a Linear Program (LP) [19, 64, 99℄. The main advantage ofperforming this transformation is the fa
t that the solution to a linear program 
an be e�
iently
omputed using existing numeri
al tools su
h as interior point methods or the simplex algorithm[10℄.When a distin
tion is made between the equality and inequality 
onstraints, the general formof a Linear Program is given by:

min
Υ

CTΥs.t. 









AinΥ < bin

AeqΥ = beq

(4.14)where Υ denotes the ve
tor of de
ision variables and C, Ain, bin, Aeq and beq represent the data ofthe problem.The norm-1 
riterion in (4.13) 
an be repla
ed with a linear equivalent by introdu
ing somesla
k variables Zi ∈ R
3 su
h that:

∆Ṽi ≤ Zi

−∆Ṽi ≤ Zi

, ∀i = 1..N (4.15)In this 
ase, minimizing the norm-1 of the thrust ve
tor be
omes equivalent to minimizing thesum of the elements of the variables Zi:
min ‖∆Ṽ‖1 ⇐⇒ min

∑

Zi (4.16)
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tory 
onstraints 63Moreover, the saturation 
onstraints 
an be written as 
onstraints on the sla
k variables:
Zi ≤ ∆Ṽmax(νi), ∀i = 1..N (4.17)Let the new ve
tor of de
ision variables Υ be de�ned as:

ΥT =
[

ZT
1 ... ZT

N ∆Ṽ T
1 ... ∆Ṽ T

N

]

=
[

ZT ∆Ṽ T
] (4.18)The optimization 
riterion in (4.13) 
an be repla
ed by a linear 
riterion de�ned by the matrix C:

CT =
[

13N 03N

] (4.19)where 13N is a line ve
tor of the indi
ated dimension 
ontaining only ones and 03N is a line ve
tor
ontaining only zeros. The rest of the matri
es de�ning the data of the problem 
an be obtainedthrough dire
t identi�
ation:
Ain =











−I3N I3N

−I3N −I3N

I3N 03N











bin =























03N

03N

∆Ṽmax(ν1)

...

∆Ṽmax(νN )























Aeq = AN

[

03N I3N

]

beq = X̃f −BN (4.20)
4.2 Fixed-time rendezvous with traje
tory 
onstraintsTraje
tory 
onstraints for spa
e
raft rendezvous and proximity operations arise from requirementsthat are spe
i�
 to ea
h mission. The mathemati
al des
ription of spa
e
raft relative traje
toriesthat evolve inside a spe
i�ed polytopi
 area over a spe
i�ed time interval has been presented in theprevious 
hapter. It has been shown that even if the restri
tions on the relative traje
tory need tobe respe
ted 
ontinuously in time, it is still possible to des
ribe the set of admissible traje
toriesusing a �nite number of 
onstraints. This des
ription of the admissible traje
tories will be usednext in order to solve di�erent types of �xed-time rendezvous missions with traje
tory 
onstraints.4.2.1 Guidan
e towards a 
onstrained periodi
 relative motionPeriodi
 relative traje
tories represent natural solutions of the autonomous spa
e
raft relative dy-nami
s. In the unperturbed 
ase, no fuel 
onsumption is required in order to maintain su
h tra-je
tories, making them a good 
hoi
e for spa
e
raft on-orbit inspe
tion missions or for formation
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tory design for spa
e
raft rendezvous�ying appli
ations [37, 46℄.Periodi
 relative traje
tories 
ould also be used as parking orbits between di�erent phases of arendezvous mission. In the Automated Transfer Vehi
le (ATV) mission to the International Spa
eStation (ISS) for instan
e, the approa
h traje
tory is de�ned in terms of several way-points thatthe vehi
le must validate [41℄. When a way-point is rea
hed, the spa
e
raft must maintain thatposition and wait until the ground mission 
ontrol gives the authorisation to pro
eed to the nextpoint. The waiting point 
ondition 
ould be relaxed to a requirement of natural periodi
 motionaround the designated waiting position. This might have the bene�t of redu
ing the fuel 
ost ofthe mission, sin
e waiting on a naturally periodi
 traje
tory does not imply any fuel 
onsumption.Dimensions restri
tions need to be imposed on the parking orbits, in the form of a toleran
e boxfor instan
e (see the illustration in Figure 4.2).

Figure 4.2: Way-points illustration for the ATV missionMathemati
al formulation of the guidan
e problemThe main di�eren
e with respe
t to the 
lassi
al rendezvous guidan
e problem (4.13) resides in the�nal obje
tive of the mission. Instead of rea
hing a designated �nal relative state Xf , the aim isnow to rea
h an unknown �nal state from whi
h the autonomously propagated traje
tory is periodi
and evolves inside a designated toleran
e region.The general expression for the set Sp
D(H,V ) 
ontaining the parameters that 
orrespond to
onstrained periodi
 traje
tories has been given in (3.33). Integrating this expression into the
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onstraints 65general guidan
e problem leads to:
min
∆Ṽi

‖∆Ṽ ‖1

s.t. 









































X̃(νN ) = AN∆Ṽ +BN

D = C(νN )X̃(νN )

D ∈ Sp
D(H,V )

−∆Ṽmax(νi) ≤ ∆Ṽi ≤ ∆Ṽmax(νi), ∀i = 1...N

(4.21)
where D is the 
onstant ve
tor of parameters 
orresponding to the �nal autonomous periodi
traje
tory and C(ν) is the transformation matrix de�ned in (2.5). The ve
tor D is 
onstrained tobelong to the set of parameters that generate periodi
 traje
tories whi
h evolve inside the toleran
ebox de�ned by the matri
es H and V .After repla
ing the optimization 
riterion with a linear equivalent as previously shown andintegrating the de�nition of the set Sp

D(H,V ) from (3.33), the optimal 
ontrol problem 
an bewritten as a Semi-De�nite Program (SDP):
min

∆Ṽi,Zi,Yi

13N Z

s.t.










































































−Zi ≤ ∆Ṽi ≤ Zi

Zi ≤ ∆Ṽmax(νi)

, i = 1...N

D = C(νN )(AN∆Ṽ +BN )

d0 = 0, Yi � 0, i = 1...s

γi = tvi − (hi,1Cx + hi,2C̄y + hi,3Cz)D

γTi =

[tr (YiH2,1) ... tr (YiH2,5)

] , i = 1...s

(4.22)
where γi are the ve
tors of 
oe�
ients 
orresponding to the non negative polynomials de�ning theset Sp

D(H,V ) and the matri
es Hm,i are de�ned as in (B.3). d0 denotes the parameter in the ve
tor
D asso
iated with the periodi
 motion 
ondition and hi,j and vi denote elements from the H and
V matri
es de�ning the toleran
e region.The semi-de�nite programs (SDP) are 
onvex optimization problems that 
an still be e�
ientlysolved using interior point methods [15℄. Thanks to the properties of non negative polynomials,the solution to the rendezvous guidan
e problem with 
ontinuous traje
tory 
onstraints 
an beobtained in an amount of time that is polynomial in the number of the de
ision variables.
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tory design for spa
e
raft rendezvousAlways feasible formulationThe optimization problem (4.22) might not always have a feasible solution, depending on the data ofthe 
hosen rendezvous mission. Infeasibility 
ould arise from the fa
t that the saturation 
onstraintsdo not allow for the obje
tive to be rea
hed within the N steps of the plan or from the fa
t that noperiodi
 traje
tory 
an be found in the given toleran
e region. The availability of a feasible solutionmight be 
riti
al for 
ertain appli
ations. In those 
ases, the infeasibility issues 
an be avoided bytransforming some of the data de�ning the toleran
e region into de
ision variables.It 
an be noti
ed from (4.22) that only the elements of the V matrix 
an be 
onsidered asoptimization variables, while still remaining in the 
ontext of 
onvex problems. Considering theelements of the H matrix as de
ision variables leads to the appearan
e of produ
ts between thede
ision variables in the de�nition of the ve
tors γi. These ve
tors 
ontain the 
oe�
ients of thepolynomials whi
h de�ne the set of admissible periodi
 traje
tories. Their expressions need to belinear in the de
ision variables in order to obtain a 
onvex program.To guarantee that the dimensions of the toleran
e region are modi�ed only when needed toensure the feasibility of the problem, the minimization 
riterion must in
lude the new parameters:
min

∆Ṽi,Zi,Yi,V
13N Z + ρ

s
∑

i=1

vi (4.23)where the parameter ρ is a positive number. The transformation of some of the parameters ofthe toleran
e region into de
ision variables allows for the dimensions 
onstraints on the periodi
traje
tory to be softened until a feasible solution is found.Depending on the value of ρ, the solution might 
onsist in a small toleran
e region for whi
hthe fuel 
ost of the rendezvous traje
tory is high. To ensure that, regardless of the value 
hosen forthe parameter ρ, the dimensions of the toleran
e region remain higher than an admissible value, alower bound for the parameters in the matrix V 
an be spe
i�ed:
V ≥ Vm (4.24)The addition of this 
onstraint 
orresponds to the fa
t that the purpose is not to �nd the smallestpossible toleran
e region but rather to in
rease the existing one in 
ase the problem is infeasible.4.2.2 Passively safe traje
tories for spa
e
raft rendezvousThe ability to design a 
ollision free spa
e
raft relative traje
tory is of great importan
e, espe
iallyin the 
ontext of spa
e
raft proximity operations. The purpose is to provide guarantees for the
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tory 
onstraints 67se
urity of the mission even in the event of a system failure.The methods for dealing with se
urity 
onstraints 
an be divided into a
tive methods and passivemethods [29℄. The a
tive se
urity methods refer to the usage of 
ontrol systems that integratefailure dete
tion 
apabilities, enabling the spa
e
raft to 
ompute and exe
ute 
ollision avoidan
emaneuvers in the event of a problem. These methods require the existen
e of an e�e
tive failurediagnosis module, 
apable of qui
kly delivering reliable information to the 
ontrol system.The passive se
urity is based on traje
tory design pro
edures that 
an guarantee a priori thatno 
ollision will o

ur for a large range of faults [17℄. It does not require the 
omputation ofany 
ollision avoidan
e maneuver and it ensures the safety of the system even when the spa
e
raft
annot use the thrusters, the on-board 
omputer or the 
ommuni
ation equipment. Passive se
uritystrategies are preferred for spa
e
raft rendezvous missions in order to avoid problems arising fromthe usage of the thrusters in proximity of the leader spa
e
raft [29℄.Let us 
onsider the failure moments as the moments when a system error prevents the 
omputed
ontrol from being exe
uted. In the 
ase of passive se
urity strategies, a system failure 
auses thethrusters to be stopped and the appli
ation of the rendezvous plan to be suspended. The systemthen enters a phase of autonomous motion following a fail traje
tory. In order to guarantee these
urity of the mission, the nominal traje
tory must be designed in su
h a way that the possibleresulting fail traje
tories do not run the risk of 
ollision. This 
an be done by requiring for the failtraje
tories to remain inside a designated safe area during a spe
i�ed time interval [17,74℄. Se
urityover an in�nite interval 
an be a
hieved by using 
onstrained periodi
 relative traje
tories as failtraje
tories. In this 
ase, the optimal 
ontrol problem 
an be written as:
min
∆Ṽi

‖∆Ṽ ‖1

s.t.






















































−∆Ṽmax(νi) ≤ ∆Ṽi ≤ ∆Ṽmax(νi), ∀i = 1...N

X̃(νi) = Ai∆Ṽ
i
+Bi, i = 1...N

X̃f − X̃tol ≤ X̃(νN ) ≤ X̃f + X̃tol

Di = C(νi)X̃(νi)

Di ∈ Sp
D(H,V )

,∀i = N−S...N−1

(4.25)
where X̃(νi) is the spa
e
raft relative state right after that the i-th 
ontrol is applied. Di is theve
tor of parameters 
orresponding to the fail traje
tory that would result in 
ase an in
identprevented the rendezvous plan from being exe
uted starting from the step i + 1. The de�nitionof Di in (4.25) 
orresponds to the fa
t that between two impulsive 
ontrols the traje
tory follows



68 Chapter 4. Traje
tory design for spa
e
raft rendezvousan autonomous evolution. If the (i + 1)-th 
ontrol 
annot be exe
uted then the spa
e
raft will
ontinue on the relative traje
tory that started from X̃(νi) and is on this traje
tory that these
urity 
onstraints must be imposed.The fail traje
tories are 
onstrained to evolve inside a safe area, whi
h in this 
ase is de�nedas the polytopi
 region spe
i�ed by the H and V matri
es (see the de�nition in (3.2)). The set
Sp
D(H,V ) represents the set of parameters that 
orrespond to admissible periodi
 traje
tories,de�ned as in (3.33). A small toleran
e X̃tol is allowed around the �nal obje
tive X̃f .Passive se
urity 
onstraints 
an be imposed on any of the N steps of the rendezvous plan.However, 
are must be taken to the fa
t that adding too many 
onstraints will in
rease the totalfuel 
ost of the mission without ne
essarily improving the overall probability of 
ollision [17℄. Forthis reason we 
onsider in (4.25) that the se
urity 
onstraints are required only for the last S stepsof the plan, with S < N . Solving (4.25) will provide a rendezvous approa
h traje
tory whi
h forthe last S steps is 
omposed of segments that are parts of admissible periodi
 traje
tories.After linearizing the fuel 
onsumption 
riterion and integrating the de�nition of the set ofadmissible parameters Sp

D(H,V ) from (3.33), the optimal 
ontrol problem 
an be written as anSDP:
min

∆Ṽi,Zi,Y
j
i

13N Z

s.t.






















































































−Zi ≤ ∆Ṽi ≤ Zi

Zi ≤ ∆Ṽmax(νi)

, i = 1...N

X̃f − X̃tol ≤ AN∆Ṽ +BN ≤ X̃f + X̃tol

Di = C(νi)(Ai∆Ṽ i +Bi)

di0 = 0, Y j
i � 0, i = N−S...N, j = 1...s

γji = tvj − (hj,1Cx + hj,2C̄y + hj,3Cz)Di

γji =

[tr (Y j
i H2,1) ... tr (Y j

i H2,5)

]T , i = N−S...N, j = 1...s

(4.26)
where di0 is the parameter related to the 
ondition for periodi
 motion and s is the number of
onstraints that de�ne the safe region.4.2.3 Spa
e
raft rendezvous with visibility 
onstraintsThe examples of 
onstraints presented so far were only referring to periodi
 spa
e
raft relativetraje
tories. However, for the last part of a rendezvous mission, the approa
hing spa
e
raft is
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tory 
onstraints 69usually required to remain permanently in the �eld of vision of the target spa
e
raft during theexe
ution of the �nal maneuvers [17, 74℄. This means that the visibility 
onstraints need to beenfor
ed 
ontinuously on the non periodi
 nominal approa
h traje
tory. In this 
ase, the generaloptimal 
ontrol problem 
an be formulated as:
min
∆Ṽi

‖∆Ṽ ‖1

s.t.






















































−∆Ṽmax(νi) ≤ ∆Ṽi ≤ ∆Ṽmax(νi), ∀i = 1...N

X̃(νi) = Ai∆Ṽ i +Bi, i = 1...N

Di = C(νi)X̃(νi)

Di ∈ SD(H,V, νi, νi+1)

, i = 1...N−1

X̃f − X̃tol ≤ X̃(νN ) ≤ X̃f + X̃tol

(4.27)
where SD(H,V, νi, νi+1) has been de�ned in (3.30) as the set of parameters 
orresponding to spa
e-
raft autonomous relative traje
tories that remain inside a polytopi
 set over the spe
i�ed interval
[νi νi+1]. The polytopi
 set de�ned through the matri
es H and V represents in this 
ase thevisibility 
one of the target spa
e
raft.The set SD(H,V, νi, νi+1) is de�ned by in�nitely many 
onstraints but it has been shown inthe previous 
hapter that a representation using a �nite number of variables 
an be a
hieved ifsome approximations are made. By using upper and lower polynomial bounds for the integral term
J(w), worst 
ase rational bounds 
an be obtained for the spa
e
raft relative traje
tory. This leadsto a des
ription of the admissible paths through polynomial non negativity 
onstraints that 
anbe repla
ed with 
onditions of existen
e of a �nite number of 
onstrained positive semi-de�nitematri
es. The original optimal 
ontrol problem (4.27) 
an on
e again be written as an SDP:

min
∆Ṽi,Zi,Y i

j1l
,Y i

j2l
,Yj1u,Y i

j2u

13NZ

s.t.

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








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




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


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




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



−Zi ≤ ∆Ṽi ≤ Zi

Zi ≤ ∆Ṽmax(νi)

, ∀i = 1...N

X̃f − X̃tol ≤ AN∆Ṽ +BN ≤ X̃f + X̃tol

Di = C(νi)(Ai∆Ṽ i +Bi), i = 1...N−1

Y i
j1l � 0, Y i

j2l � 0, γijl = Λ∗(Yj1l, Y
i
j2l)

Y i
j1u � 0, Y i

j2u � 0, γiju = Λ∗(Yj1u, Y
i
j2u)

,∀i = 1...N−1,∀j = 1...s(4.28)



70 Chapter 4. Traje
tory design for spa
e
raft rendezvouswith the linear operator Λ∗ de�ned as in (B.4) and (B.5). γijl and γiju represent the ve
tor of
oe�
ients 
orresponding to the non negative polynomials that de�ne the set SD(H,V,wi, wi+1)and they depend linearly on the 
orresponding ve
tor of parameters Di.4.3 Numeri
al examplesThe e�
ien
y of the previously presented methods for 
omputing fuel optimal impulsive maneuversplans under 
ontrol and traje
tory 
onstraints will be illustrated here through some numeri
alexamples. The 
ontrol plan is 
omputed at the beginning of the mission and then applied by the
haser spa
e
raft until the end without any modi�
ations. Perfe
t state knowledge is assumed forthese examples and the tests are made using the linear model for the propagation of the spa
e
raftrelative motion.4.3.1 Rea
hing a 
onstrained periodi
 relative traje
toryLet us 
onsider a spa
e
raft rendezvous mission where the �nal obje
tive is to rea
h a periodi
 rela-tive traje
tory in proximity of the target. The periodi
 traje
tory is not �xed a priori, it is just re-quired to evolve inside a toleran
e region, spe
i�ed as a box of dimensions Xtol =
[

xtol ytol ztol

]Taround a desired �nal position Xf =
[

xf yf zf

]T . In this 
ase, the matri
es H and V de�ningthe polytopi
 set whi
h bounds the admissible traje
tories are given by:
H =





























1 0 0

−1 0 0

0 1 0

0 −1 0

0 0 1

0 0 −1





























, V =





























xf + xtol

−xf + xtol

yf + ytol

−yf + ytol

zf + ztol

−zf + ztol





























(4.29)
The mission data for the �rst s
enario i.e. the semi-major axis of the target orbit a, thee

entri
ity e, the maximum allowed thrust ∆Vmax, the initial state X1, the initial time t1, thenumber of the impulsive thrusts N , the �nal time tN and the spe
i�
ations of the toleran
e regionare given in Table 4.1. No 
onstraints are spe
i�ed for the �nal velo
ity but its value will bedetermined by the periodi
ity 
ondition.After integrating the data in Table 4.1, the semi-de�nite program (4.22) is solved in Matlabusing Yalmip [63℄ along with the solver SDPT3 [100℄. The guidan
e problem is also solved using a
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a [km℄ e ∆Vmax N X1 [m,m/s℄ t1 [s℄ Xf [m℄ Xtol [m℄ tN [s℄7 011 0.0237 0.26 10 [1000,50,50,0,0,0℄ 1 282 [100,0,0℄ [20,10,10℄ 18 808Table 4.1: Mission datamethod based on 
onstraints dis
retization [99℄, in order to 
ompare the performan
es of the twodi�erent approa
hes. This 
onstraints dis
retization method amounts to a Linear Program whosesolution is obtained using the linprog fun
tion from Matlab.The rendezvous traje
tory obtained for the dis
retization based method and 10 veri�
ationpoints is presented in Figure 4.3. Taking more veri�
ation points or using the SDP method doesnot essentially 
hange the 
omputed rendezvous traje
tory and the obje
tive of a
hieving a peri-odi
 motion is always met. However, the di�eren
es appear when analysing the periodi
 relativetraje
tories that start at the end of the rendezvous plan.

Figure 4.3: Spa
e
raft guidan
e towards proximity periodi
 motionFigure 4.4 presents the resulting periodi
 traje
tories for the 
onstraints dis
retization methodwhen 
onsidering 10, 20 and 30 veri�
ation points respe
tively, uniformly distributed over oneorbital period (the veri�
ation points are represented by the * symbol). The traje
tory obtainedwith the SDP method is also shown for 
omparison. It 
an be seen that the solution provided by the
onstraints dis
retization method sometimes violates the toleran
e region 
onstraints in betweenthe 
hosen veri�
ation points. The pre
ision of the solution is in�uen
ed by the number of points
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Figure 4.4: Comparison between the obtained periodi
 traje
torieswhere the 
onstraints are expli
itly 
he
ked and better a

ura
y might be a
hieved by in
reasingtheir number. No 
onstraints violations o

ur when using our method whi
h guarantees a priorithat the 
onstraints are respe
ted 
ontinuously in time.The 
omparison between the fuel 
ost, the solver time and the time spent outside the toleran
eregion for ea
h of the 
onsidered methods is shown in Table 4.2. In
reasing the number of veri�
ationpoints redu
es the amount of 
onstraints violations but it also in
reases the solver time and thefuel 
ost. It 
an be noti
ed that, as the number of dis
retization points in
reases, the obtained fuel
ost approa
hes the solution given by the SDP method. The LP approa
h provides the optimalsolution only for the dis
retized problem, while the SDP approa
h provides the optimal solutionfor the original problem.Method LP10 LP20 LP30 SDPFuel 
ost [m/s℄ 0.48907 0.48922 0.48927 0.48927Solver time [s℄ 0.1972 0.6499 1.6241 0.9325Time out of bounds [s℄ 1 269 737 339 0Table 4.2: Comparison between the SDP and LP methodsThe data for the se
ond example are summarized in Table 4.3. This s
enario 
onsiders a highlye

entri
 referen
e orbit whi
h enables us to illustrate that not only the number of dis
retizationpoints is important but also their distribution along the 
onsidered time horizon.The resulting periodi
 traje
tories are depi
ted in Figure 4.5, where the solution provided bythe dis
retization based method is obtained for 15 veri�
ation points uniformly distributed over oneorbital period. It 
an be seen that despite this uniform time distribution, the distan
e between the
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a [km℄ e ∆Vmax [m/s℄ N X1 [m,m/s℄ t1 [s℄ Xf [m℄ Xtol [m℄ tN [s℄7 011 0.8 0.26 10 [10000,100,0,0,0,0℄ 1 282 [100,0,0℄ [50,25,25℄ 65 902Table 4.3: Mission dataveri�
ation points is uneven (the points are represented in the �gure by the * symbol). This 
omesfrom the fa
t that for e

entri
 orbits the spa
e
raft instantaneous velo
ity is not 
onstant. As a
onsequen
e, larger parts of the obtained traje
tory evolve outside the desired toleran
e box. Thesolution provided by our method is not a�e
ted by this issue and the obtained traje
tory evolvesvery 
lose to the given bounds without ever 
rossing them.

Figure 4.5: Comparison between the obtained periodi
 traje
tories when e = 0.8

Always feasible formulationLet us 
onsider the spa
e
raft rendezvous mission in Table 4.3 for whi
h the spe
i�
ation for thetoleran
e box is modi�ed to Xtol = [10 5 5] m. In this 
ase, no feasible solution 
an be found usingour method. Even removing the saturation 
onstraints and 
hanging the duration of the rendezvousmission does not lead to a feasible solution. In this 
ase, it 
an be interesting to use the alwaysfeasible formulation of the 
ontrol problem in order to 
ompute the smallest feasible toleran
e box.The periodi
 traje
tory obtained when 
onsidering the 
omponents of Xtol as de
ision variablesis depi
ted in Figure 4.6 where Xm refers to the initially spe
i�ed value for the toleran
e box. Thesmallest feasible toleran
e box is spe
i�ed by Xtol = [44.4474 5 22.2193] m. No expansion of thebox is ne
essary on the y axis while a mu
h bigger box is needed to 
ontain the traje
tory in the
xz plane.
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Figure 4.6: Modi�
ation of the toleran
e box in order to ensure the feasibility of the problem4.3.2 Passively safe rendezvous traje
toriesConsider the rendezvous mission whose data are presented in Table 4.4. The obje
tive is to rea
hthe �nal state on a passively safe rendezvous traje
tory. Some toleran
e is permitted on the �nalvelo
ity, spe
i�ed by vtol while the requirement for the �nal position is stri
tly maintained. In thisexample we 
onsider for simpli
ity that the safe area is represented by an open polytope behindthe 
haser de�ned by x̃(ν) ≤ x̃safe, where xsafe = −5 m.
a [km℄ e ∆Vmax [m/s℄ N X1 [m,m/s℄ t1 [s℄ Xf [m℄ vtol [m/s℄ tN [s℄7 011 0.0237 0.26 15 [-30,0,-3,0,0,0℄ 0 [-5,0,0,0,0,0℄ 0.01 5 843Table 4.4: Mission data for the passively safe rendezvousIn order to identify a suitable value for the se
urity horizon S, the rendezvous problem (4.26)is �rst solved without enfor
ing the se
urity 
onstraints (S = 0). The obtained maneuvers plan isapplied and starting from every 
ontrolled state on the se
ond half of the rendezvous horizon theautonomous traje
tories are propagated. This is done in order to identify the fail traje
tories whi
hpresent a risk of 
ollision. The states starting from whi
h 
ollision between the two spa
e
raft mighto

ur need to be in
luded in the safety horizon S.The obtained traje
tories are presented in Figure 4.7 where the * symbol 
orresponds to 
ontrolinstants from whi
h the fail traje
tories are propagated. The result suggests that a se
urity horizonof S = 4 should greatly redu
e the probability of 
ollision in the event of system failure. It isinteresting to note that in Figure 4.7 some of the fail traje
tories overlap, in the 
ases where theoptimal 
ontrol equals zero.Figure 4.8 depi
ts the fail traje
tories that are obtained when solving (4.26) for a se
urity
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Figure 4.7: Fail traje
tories when the se
urity 
onstraints are not enfor
ed

Figure 4.8: Fail traje
tories obtained when the se
urity 
onstraints are enfor
edhorizon S = 4. The fail traje
tories are now periodi
 and evolve inside the se
urity area de�nedby xsafe, thus redu
ing the risk of 
ollision in 
ase of system error (some of the fail traje
tories stilloverlap meaning that the new solution still 
ontains thrusting instants where the optimal 
ontrolis zero).The in�uen
e of the 
hoi
e of the se
urity horizon on the fuel 
ost of the mission is illustratedin Table 4.5. It 
an be easily seen that the fuel 
ost in
reases as the se
urity horizon in
reases sin
emore and more 
onstraints are added to the problem and this limits the 
hoi
es for the possible
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tory design for spa
e
raft rendezvousrendezvous traje
tories.S 0 1 2 3 4 5 6 7Fuel 
ost [m/s℄ 0.0116 0.0121 0.0135 0.0146 0.0156 0.0163 0.0168 0.0174Table 4.5: Evolution of the mission fuel 
ost with the length of the se
urity horizonA di�erent geometry 
an be spe
i�ed for the se
urity area. In some appli
ations, the se
urityregion may 
oin
ide with the visibility 
one of the target spa
e
raft [17℄. The visibility 
one isusually represented by an open polytope de�ned through the aperture angle α and the o�setdistan
e xsafe between the do
king port and the 
enter of gravity of the target satellite (see Figure4.9). In this 
ase the polytopi
 
onstraints on the fail traje
tories are de�ned by the matri
es:

Figure 4.9: The visibility 
one of the target satellite
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(4.30)
where ρ = tan(π2 − α).The data in Table 4.6 de�ning a new rendezvous s
enario is used for solving the optimal 
ontrolproblem (4.26). The parameters for the visibility 
one are given by xsafe = 1.04 m and α = 47◦.Figure 4.10 presents the fail traje
tories and the nominal rendezvous traje
tory obtained withand without the se
urity 
onstraints. The safety horizon has been 
hosen S = 3 after inspe
tingthe fail traje
tories obtained in the 
ase where the se
urity 
onstraints were not a
tive.
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a [km℄ e ∆Vmax [m/s℄ N X1 [m,m/s℄ t1 [s℄ Xf [m℄ vtol [m/s℄ tN [s℄7 360 0.0237 0.26 20 [100,0,0,0,0,0℄ 0 [1.04,0,0,0,0,0℄ 0.001 6 283Table 4.6: Mission data for the passively safe rendezvous

Figure 4.10: Fail traje
tories obtained for S = 0 and S = 3 respe
tivelyWhen the same passively safe rendezvous problem is solved using a 
onstraints dis
retizationmethod as in [17℄, some di�eren
es 
an be observed between the obtained fail traje
tories. Figure4.11 shows that, as pointed out before, violations of the 
onstraints o

ur in between the 
hosenveri�
ation points when using the method based on 
onstraints dis
retization.

Figure 4.11: Comparison between the fail traje
tories obtained when using our SDP-based methodand a 
onstraints dis
retization methodAn iterative method for 
hoosing the number of veri�
ation points 
ould 
onsist in inspe
tingthe obtained traje
tories and then in
reasing the number if ne
essary. Using this approa
h 
ouldeventually lead to a better 
hoi
e for this important parameter. However, the SDP method deliversdire
tly a traje
tory that guarantees the 
ontinuous satisfa
tion of the 
onstraints.
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tory design for spa
e
raft rendezvous4.3.3 Constrained non periodi
 relative traje
toriesFor the last phase of the rendezvous maneuvers, operational requirements might impose visibility
onstraints on the approa
h traje
tory. In this 
ase, the obje
tive is to design a spa
e
raft ren-dezvous traje
tory whi
h remains inside the visibility 
one of the target spa
e
raft throughout theduration of the rendezvous maneuvers. The visibility 
onstraints 
an be 
ombined with passivese
urity 
onstraints for instan
e, but in this example we 
hose to fo
us on the 
ase where therestri
tions 
on
ern only the non periodi
 relative motion.The fuel optimal maneuvers plan that generates an approa
h traje
tory whi
h respe
ts thevisibility requirements 
an be obtained by solving the semi-de�nite program (4.28). In order to beable to formulate the optimization problem, polynomial approximations of the term J(w) on ea
hinterval between two 
onse
utive thrusts need to be 
omputed. The software Sollya [22℄ is used herefor obtaining these approximations. The software requires for the values of the independent variable
w to be monotonously in
reasing on ea
h approximation interval. This imposes some restri
tionson the rendezvous horizon sin
e the transformation (3.8) maps ea
h interval of one orbital periodfor the variable ν to R.The duration of the mission is 
hosen to be half of an orbital period, starting from ν1 = −π/2and until νN = π/2. This 
hoi
e guarantees stri
tly in
reasing values for w on ea
h interval betweenthrusts and avoids working 
lose to the bounds of the domain on whi
h w is de�ned. A

uratepolynomial approximations 
an be obtained for the 
hosen rendezvous horizon (see Figure 4.12).The fa
t that ν1 is negative 
orresponds to rendezvous maneuvers that start before the 
urrentpassage of the leader spa
e
raft through the perigee. The data de�ning the rendezvous mission issummarized in Table 4.7 and the visibility 
one is de�ned in this 
ase by xsafe = −5 m and α = 20◦.
a [km℄ e ∆Vmax [m/s℄ N X1 [m,m/s℄ ν1 [s℄ Xf [m℄ vtol [m/s℄ νN [s℄7 011 0.0237 0.26 5 [-50,-10,15,0,0,0℄ −π/2 [-6,0,0,0,0,0℄ 0.001 π/2Table 4.7: Mission data for the rendezvous with visibility 
onstraintsThe degree of the polynomial approximations is �xed to q = 2. For this value, the maximal
erti�ed approximation error ε provided by Sollya is 0.25%. The upper and lower polynomialbounds for the term J(w) on ea
h interval between two 
onse
utive 
ontrols are given in Figure4.12 (Θu and Θl respe
tively).A method based on 
onstraints dis
retization is used for 
omparison. The traje
tories obtainedfor the two methods are given in Figure 4.13, where 10 
ollo
ation points are taken for 
onstraints
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Figure 4.12: The drifting term J(w) and its polynomial bounds on ea
h time segmentdis
retization. As before, 
onstraints violations o

ur in between the points where the 
onstraintsare expli
itly 
he
ked of the LP method, while our method guarantees 
ontinuous 
onstraints sat-isfa
tion even in the 
ase of non-periodi
 spa
e
raft relative traje
tories.4.4 Con
lusionThis 
hapter des
ribes the 
onstru
tion of the optimal 
ontrol problem that needs to be solved inorder to obtain a fuel optimal maneuvers plan for the �xed-time spa
e
raft rendezvous. In theframework of dire
t shooting methods, the problem 
an be formulated as a Linear Program whi
h
an be easily solved using the existing numeri
al solvers. We show that even when 
onstraints onthe spa
e
raft relative traje
tory are imposed 
ontinuously in time, the optimal 
ontrol problem
an still be written as a 
onvex optimization problem. In this 
ase, the formulation relies on thedes
ription of the admissible traje
tories using polynomial non-negativity 
onstraints whi
h hasbeen introdu
ed in the previous 
hapter. It amounts to a Semi-De�nite Program whi
h 
an besolved in polynomial time by the existing interior point algorithms.Several examples of rendezvous missions are used to illustrate the types of traje
tory 
onstraintsthat 
an be handled by the proposed method. The 
onstraints arise from mission-spe
i�
 require-ments, su
h as passive se
urity or visibility 
onstraints. The examples emphasize the advantage of
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Figure 4.13: Comparison between the rendezvous traje
tories obtained with the two methodsour method over the 
lassi
al 
onstraints di
retization te
hnique for whi
h 
onstraints violations 
ano

ur in between the veri�
ation points. The solution provided by the 
onstrained dis
retizationmethod depends on the number of veri�
ation points that are 
onsidered and on their parti
ulardistribution over the 
onsidered horizon. Moreover, the numeri
al examples show that it approa
hesthe solution given by our method as the number of veri�
ation points in
reases.
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hniques de design de traje
toire pour les opérations de proximité des satel-lites présentées dans le 
hapitre pré
édent reposent sur la parfaite 
onnaissan
e de l'état relatif dessatellites. En présen
e des in
ertitudes de mesure, il peut y avoir des grandes di�éren
es entre latraje
toire prédite et la traje
toire réelle des satellites. Cet é
art détériore la pré
ision �nale desman÷uvres et peut 
onduire à la violations de 
ertaines 
ontraintes de la mission. Ce 
hapitrepropose deux algorithmes de guidage améliorant la robustesse vis-à-vis des erreurs de navigation.Ces algorithmes garantissent de façon déterministe la satisfa
tion des 
ontraintes pour toute valeuradmissible des in
ertitudes. Les deux te
hniques proposées sont basées sur le 
al
ule d'un série deslois de 
ommande au lieu d'un plan de man÷uvres, 
e qui permet de 
ompenser les e�ets des in
er-titudes et atteindre une meilleure pré
ision �nale. Le 
ritère de performan
e est i
i dé�ni par un
ompromis entre la pré
ision �nale des man÷uvres et la 
onsommation de 
ombustible.
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e
raft rendezvous robust to navigation un
ertaintiesThe traje
tory design te
hniques presented in the previous 
hapter rely heavily on the knowledgeof the spa
e
raft relative state. When the measurement of the spa
e
raft relative state is nota�e
ted by un
ertainties, the 
omputed impulsive maneuvers plan may be applied in open-loop tosteer the spa
e
raft towards the desired obje
tive. In presen
e of sensing noise, applying the planwithout taking into 
onsideration new measurement information will 
ause any initial navigationun
ertainties to propagate until the end of the predi
tion horizon. This open-loop propagationmight have severe e�e
ts on the �nal performan
e of the spa
e
raft rendezvous.How and Tillerson showed in [44℄ that small errors in the estimation of the spa
e
raft relativevelo
ity 
an result in very large predi
tion errors for the relative traje
tory over just one orbital pe-riod. Navigation errors may be 
aused by alignment errors between the sensors and the spa
e
raftaxes, by measurement performan
e limitations of the used sensor and/or by the information pro-
essing in the navigation �lter [29℄. Not a

ounting for the presen
e of these errors when designingthe rendezvous traje
tory 
an result in poor guidan
e performan
es and/or 
onstraints violations.Our purpose is to obtain a robust 
ontrol algorithm for the spa
e
raft rendezvous that 
anguarantee the robust 
onstraints satisfa
tion for all the possible realizations of the un
ertainties.The performan
e 
riterion is de�ned as the best trade-o� between the fuel 
ost of the 
omputedmaneuvers and the �nal rendezvous pre
ision. The rendezvous pre
ision 
an be understood in thesense of obtaining the smallest possible set that bounds the error with respe
t to the �nal obje
tivefor all the admissible values of the navigation un
ertainties.The fuel-optimal traje
tory planning pro
edure presented in Chapter 4 is based on the resolutionof an open-loop optimal 
ontrol problem. This pro
edure 
an be used for 
losed-loop 
ontrol withguaranteed performan
es by integrating it in a Model Predi
tive Control setting. Several ModelPredi
tive Control approa
hes have been developed for dealing with un
ertainties and a
hievingthe robust 
ontrol obje
tives in the 
ontext of spa
e
raft rendezvous guidan
e and some of themare summarized in the next se
tion.5.1 Model Predi
tive Control and spa
e
raft traje
tory designThe 
lassi
al Model Predi
tive Control 
onsists in solving at ea
h 
ontrol step a 
onstrained �nite-horizon open-loop optimal 
ontrol problem based on the estimation of the 
urrent state of thesystem. The 
omputed optimal solution 
onsists in a series of 
ontrol a
tions {u1, u2, ..., uN}, outof whi
h only the �rst one is exe
uted. The rest of the plan is dis
arded and a new solution basedon new measurement information is 
omputed at the next 
ontrol instant. Even if the 
ontrol planis obtained using open-loop predi
tions for the evolution of the system, the periodi
 re
omputation



5.1. Model Predi
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e
raft traje
tory design 83of the optimal solution 
reates an impli
it 
losed-loop [68℄.The previous 
hapter emphasized the need for spa
e
raft traje
tory planning algorithms that
an handle di�erent state and 
ontrol 
onstraints spe
i�
 to ea
h mission. In presen
e of navigationerrors, the 
ontrol algorithm must guarantee a priori that no transgressions of the 
onstraints willo

ur for all possible realizations of the un
ertainties. Simply relying on the periodi
 
ontrolre
omputation 
annot provide this type of guarantees. The optimal 
ontrol problem solved at ea
hstep needs to be modi�ed to expli
itly a

ount for the e�e
ts of the un
ertainties.The approa
h known as open-loop min-max MPC [68℄ is based on the resolution at ea
h timestep of an open-loop optimal 
ontrol problem for whi
h the un
ertainties on the initial state arealso propagated over the predi
tion horizon. The 
onstraints satisfa
tion is expli
itly 
he
ked forthe worst-
ase disturban
e sequen
e, providing the ne
essary guarantees for the obtained solution.The open-loop min-max MPC approa
h has been su

essfully used for spa
e
raft relative traje
torydesign in presen
e of navigation errors [19, 31, 64, 71℄. The problem with this kind of approa
h isthat it 
annot in
lude in the solved problem the performan
e obje
tive related to the obtentionof the best rendezvous pre
ision. Due to the open-loop nature of the predi
tion, the e�e
ts ofthe un
ertainties are taken into 
onsideration but are not expli
itly minimized. In the writing ofthe optimization problem, the spread of all the possible traje
tories is not a
tually limited by the
ontrol whi
h imposes the usage of short predi
tion horizons in order to ensure the feasibility ofthe optimization problem.The 
onstraint tightening approa
hes are based on the idea of maintaining the 
ontrol s
hemein a feasible region under the a
tion of disturban
es by a priori tightening the 
onstraints on thepredi
ted states [53℄. The 
ontrol problem solved at ea
h time step is still based on open-looppredi
tions for the system traje
tory but the 
onstraints are modi�ed o�-line to ensure some roomfor future 
orre
tions. Constraints tightening pro
edures have been developed mainly for LinearTime Invariant (LTI) systems and are either based on the existen
e of a stabilizing state-feedba
k
ontroller [18, 79, 96℄ or on the o�-line resolution of an optimization problem [53, 94℄. The mainadvantage is that the MPC with tightened 
onstraints 
an guarantee the re
ursive feasibility ofthe problem in presen
e of un
ertainties [78℄. However, the pre
ision requirements and the 
ontrolsaturations are not expli
itly 
onsidered. Moreover, for the 
onstraint tightening pro
edure be
omesmore 
omplex in the 
ase of Linear Time Varying (LTV) systems [77℄.A 
hange in the 
ontrol philosophy is operated for the feedba
k MPC. The de
ision variables are
hanged from a series of 
ontrol a
tions to a sequen
e of feedba
k poli
ies {u1(·), ..., uN (·)} and the
ontrol problem relies on the predi
tion of the 
losed-loop traje
tory of the system [56℄. Dire
tly
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e
raft rendezvous robust to navigation un
ertainties
onsidering feedba
k poli
ies in the optimization problem avoids the open-loop propagation of theun
ertainties and provides the means to a
tually limit the spread of all the possible traje
tories.The drawba
k is that, in the general 
ase, the 
omputation of su
h feedba
k laws 
an be extremelydi�
ult, sin
e the de
ision variables are in�nite dimensional [66℄. However, restri
ting the admis-sible poli
ies to the 
lass of a�ne state feedba
k 
ontrol laws 
an help redu
e the 
omplexity ofthe problem. This parti
ular 
ase is often-times 
alled tube-based MPC [56,61,66℄. It relies on the
omputation of some feedba
k gains that 
ontain the spread of all the possible traje
tories and limittheir evolution to a tube around an optimized 
entral traje
tory. It 
an ensure robust 
onstraintssatisfa
tion and the dimension of the tube �xes the performan
es in terms of pre
ision.Method / Prop-erties Open-looppredi
tion ofun
ertainties Periodi
re
omputation Robust
onstraintssatisfa
tion Robust re
ursivefeasibility
lassi
al MPC x x - -open-loop min-max MPC x x x -MPC with tight-ened 
onstraints x x x xfeedba
k MPC - - x xTable 5.1: Comparison between the di�erent MPC te
hniquesA summary of the di�erent MPC te
hniques is given in Table 5.1. Our purpose is to obtain amaneuvers plan for the �xed-time spa
e
raft rendezvous that is robust to navigation un
ertainties interms of 
onstraints satisfa
tion. The obtained solution must also provide the best trade-o� betweenthe fuel 
ost of the traje
tory and the �nal rendezvous pre
ision. For this parti
ular problem, thefeedba
k MPC seems to o�er the best 
ompromise between the guaranteed performan
es and the
omplexity of the 
ontrol algorithm. A design pro
edure for the rendezvous traje
tory betweenspa
e
raft on e

entri
 orbits will be presented in what follows.5.2 The robust traje
tory planning problemThe robust spa
e
raft traje
tory design refers to solving the �xed-time rendezvous guidan
e prob-lem de�ned in Se
tion 4.1 when navigation un
ertainties are a�e
ting all the measurements ofthe spa
e
raft relative state. Our purpose is to determine a series of a�ne feedba
k 
ontrol laws
{u1(·), u2(·), ...} su
h that, starting from an initial state X1 whi
h is a�e
ted by measurement noise,the �nal rendezvous obje
tive Xf is rea
hed at the spe
i�ed time and within the best pre
ision.



5.2. The robust traje
tory planning problem 85This must be done while minimizing the total fuel 
onsumption and while guaranteeing that theimposed 
onstraints are respe
ted for all the possible values of the un
ertainties. As before, thenumber of thrusts N and the thrusting instants ν1, ν2, ... are 
onsidered known and the 
ontrol isapplied in an impulsive manner.
5.2.1 The spa
e
raft relative dynami
sFor the �xed-time impulsive rendezvous guidan
e problem, the spa
e
raft relative traje
tory prop-agates autonomously on ea
h interval [νk, νk+1] between two 
onse
utive impulsive 
ontrols. Usingthe Yamanaka-Ankersen transition matrix, this propagation is given by:

X̃(ν) = Φ(ν, νk) X̃
+(νk), ∀ν ∈ [νk, νk+1] (5.1)The state X̃+(νk) 
orresponds to the spa
e
raft relative state right after the k-th impulsive thrust:

X̃+(νk) = X̃(νk) +B uk, k ∈ {1, 2, ...} (5.2)where B = [03 I3]
T . Even if the impulsive 
ontrol uk instantaneously modi�es only the spa
e
raftrelative velo
ity, its e�e
ts on the whole spa
e
raft relative traje
tory are visible on the interval ofautonomous propagation that follows ea
h thrust. For instan
e, the spa
e
raft relative state at theend of ea
h interval [νk, νk+1] is given by:
X̃(νk+1) = Φ(νk+1, νk) X̃(νk) + Φ(νk+1, νk)B uk, ∀k = 1...N−1 (5.3)Equation (5.3) 
learly shows the e�e
ts of the impulsive 
ontrol uk on the spa
e
raft relativeposition. The dynami
s in (5.3) 
an be seen as the dynami
s of an LTV system:

Xk+1 = AkXk +Bkuk (5.4)where Xk = X̃(νk), Ak = Φ(νk+1, νk) and Bk = Φ(νk+1, νk)B. These simpli�ed notations will beused throughout the 
hapter for 
onstru
ting the robust spa
e
raft rendezvous guidan
e problem.
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e
raft rendezvous robust to navigation un
ertainties5.2.2 The e�e
ts of navigation un
ertaintiesWhen sensing noise is present in the navigation system, Xk, the real relative state between the twospa
e
raft, is unknown. However, Xk is related to the measured state Xm
k through the equation:

Xk = Xm
k + δXk, δXk ∈ E(0, Qk) (5.5)where δXk is an unknown measurement noise whi
h is bounded by an ellipsoidal set E(0, Qk)(notation de�ned in (C.1)). The dynami
s of the measured state 
an then be 
omputed as:

Xm
k+1 = Xk+1 − δXk+1 = AkXk +Bkuk − δXk+1, δXk+1 ∈ E(0, Qk+1) (5.6)Using (5.5) to repla
e the unknown state of the system Xk with the measured state Xm

k leads to:
Xm

k+1 = AkX
m
k +Bkuk +AkδXk − δXk+1 (5.7)Let us denote by wk the total e�e
t of the measurement noise over the interval between two
onse
utive 
ontrols. From (5.7), wk 
an be de�ned as:

wk = AkδXk − δXk+1, δXk ∈ E(0, Qk), δXk+1 ∈ E(0, Qk+1) (5.8)This means that the domain for wk is given by:
wk ∈ E(0, A−T

k QkA
−1
k )⊕ E(0, Qk+1) ⊆ E(0, Qw

k ) (5.9)where the symbol ⊕ denotes the Minkowski sum between the two ellipsoidal sets, de�ned as in(C.8). The set E(0, A−T
k QkA

−1
k ) represents the ellipsoidal set obtained after the propagation ofthe set E(0, Qk) through the linear appli
ation Ak, de�ned as in (C.7). The Minkowski sum oftwo ellipsoids is not ne
essarily an ellipsoid and E(0, Qw

k ) is an outer ellipsoidal approximation ofthe real domain of wk. This approximation 
an be 
omputed analyti
ally, using for instan
e thepro
edure des
ribed in (C.10).The dynami
s of the measured state when the system is a�e
ted by navigation un
ertainties isgiven by:
Xm

k+1 = AkX
m
k +Bkuk + wk, wk ∈ E(0, Qw

k ) (5.10)It 
an be noti
ed from (5.8) that the navigation un
ertainties will propagate in open-loop atleast over the interval between the two 
onse
utive 
ontrol instants. The 
ontrol uk+1 will 
an
el
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tory planning problem 87some of the e�e
ts of wk but in the same time it will introdu
e some new errors. This 
omes from thefa
t that the 
ontrol is 
omputed every time based on measurement information whi
h is 
orruptedby sensing noise. This means that if the spa
e
raft relative state is not pre
isely known, the �nalrendezvous obje
tive 
annot be exa
tly rea
hed. In this 
ase the 
ontrol obje
tive transforms intominimizing the size of a guaranteed arrival set around the nominal obje
tive.5.2.3 The nominal traje
toryLet ∆Vk be the nominal 
ontrol whi
h, in the absen
e of navigation error, steers the spa
e
rafttowards the �nal rendezvous obje
tive. Let us de�ne the nominal traje
tory as the traje
toryobtained when applying in perfe
t 
onditions a nominal 
ontrol ∆Vk:
X̄k+1 = AkX̄k +Bk∆Vk, k = 1...N−1 (5.11)where X̄k denotes the states that belong to the nominal traje
tory. The nominal 
ontrols ∆Vk aresu
h that, at the end of the predi
tion horizon, the nominal traje
tory rea
hes the desired missionobje
tive:

X̄N = Xf (5.12)Applying the nominal 
ontrol ∆Vk on a system a�e
ted by navigation un
ertainties might lead totraje
tories that are signi�
antly di�erent with respe
t to the nominal path. Let the error betweenthe perturbed traje
tory and the nominal one be de�ned as:
ek = Xm

k − X̄k (5.13)We are interested in the 
omputation of some feedba
k 
ontrol poli
ies uk that minimize the errorswith respe
t to the nominal rendezvous path in presen
e of sensing errors.5.2.4 General formulation of the guidan
e problemThe obje
tive of minimizing the errors with respe
t to a nominal traje
tory must be understoodin the sense that the 
losed-loop behaviour must be as 
lose as possible to the non-perturbed
ase. The nominal traje
tory is not �xed a priori, the term is used here to refer to an idealbehaviour that also needs to be determined through optimization. Several te
hniques for obtainingnominal traje
tories while taking into 
onsideration di�erent types of traje
tory 
onstraints havebeen presented in Chapter 4. These te
hniques need to be modi�ed in the 
ase where the systemis a�e
ted by navigation errors. The �rst modi�
ation 
on
erns the stru
ture of the 
ontrol law. A
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e
raft rendezvous robust to navigation un
ertaintiesfeedba
k term is added to the nominal stru
ture:
uk = fk(X

m
k , wk) + ∆Vk (5.14)in order to 
an
el the errors with respe
t to the nominal behaviour 
aused by the presen
e of un-
ertainties. The 
ontrol must now guarantee that the thrusters saturation 
onstraints are respe
tedfor all the possible realization of the un
ertainties.The optimal 
ontrol problem 
orresponding to the robust traje
tory design for the spa
e
raftrendezvous 
an be written in the general form:

min
fk,∆Vk

J(uk, ek)

s.t.






































































Xm
k+1 = AkX

m
k +Bkuk +wk, wk ∈ E(0, Qw

k )

uk = fk(X
m
k , wk) + ∆Vk

X̄k+1 = AkX̄k +Bk∆Vk

ek = Xm
k − X̄k

X̄N = Xf

uk ∈ Umax(νi), ∀wk ∈ E(0, Qw
k )

(5.15)
where the de
ision variables are the nominal 
ontrols ∆Vk and the parameters of the fun
tions fk.The 
hoi
e of the optimization 
riterion J(uk, ek) must re�e
t the idea of 
ompromise between fuel
onsumption and �nal rendezvous pre
ision.In order to simplify the formulation, the �nal rendezvous obje
tive is 
onsidered to be a �xedstate Xf . However, the 
ontrol te
hniques that will be presented next 
an still be used if the �nalobje
tive is to rea
h an unknown state belonging to a set of admissible traje
tories, as it was the
ase for the examples in Chapter 4.As already stated, solving (5.15) in the general 
ase 
an be extremely di�
ult [66℄. In orderto redu
e the 
omplexity of the problem a spe
ial stru
ture 
an be imposed for the fun
tions fk.We will show next that (5.15) 
an be written as a 
onvex optimization problem if the 
ontrol isparametrized as a�ne state-feedba
k or as a�ne disturban
e-feedba
k.
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k MPC 895.3 A�ne state-feedba
k MPCLet us 
onsider that the 
ontrol poli
ies uk are restri
ted to the 
lass of a�ne state feedba
k
ontrollers. In this 
ase we have:
uk = Kk(X

m
k − X̄k) + ∆Vk = Kkek +∆Vk (5.16)Our purpose is to 
ompute the gain matri
es Kk ∈ R

3×6 and the nominal terms ∆Vk ∈ R
3 whi
hsteer the spa
e
raft towards the �nal rendezvous obje
tive within the best possible pre
ision, allwhile minimizing the total fuel 
ost. A design pro
edure for ea
h of these terms will be presentedin what follows.5.3.1 Computation of the feedba
k gainsFor the 
hosen 
ontrol stru
ture, the dynami
s of the errors between the perturbed traje
tory andthe nominal traje
tory are given by:

ek+1 = (Ak +BkKk)ek + wk, wk ∈ E(0, Qw
k ) (5.17)The propagation of the errors over the predi
tion horizon is given by:

e1 = Xm
1 − X̄1

e2 = (A1 +B1K1)e1 + w1

e3 = (A2 +B2K2) ((A1 +B1K1)e1 + w1) + w2

e4 = (A3 +B3K3) ((A2 +B2K2) ((A1 +B1K1)e1 + w1) + w2) + w3... (5.18)
This obje
tive related to the rendezvous pre
ision 
an be interpreted as the sear
h for thefeedba
k gains Kk whi
h minimize the dimensions of an ellipsoidal set E(0, Qα) bounding the �nalerror eN :

min
Kk,Qα

tr Qαs.t eN ∈ E(0, Qα), ∀wk ∈ E(0, Qw
k ), k = 1..N−1

(5.19)The matrix Qα de�nes an ellipsoidal set whi
h bounds the �nal error for all admissible values ofthe un
ertainties. Minimizing the tra
e of Qα 
orresponds to minimizing the sum of squares of thesemi-axis of this ellipsoidal set.Using the propagation given in (5.18), the expression for the �nal error 
ontains nonlinear terms
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e
raft rendezvous robust to navigation un
ertaintiesinvolving the de
ision variables Kk. In order to rea
h a 
onvex formulation of the optimizationproblem (5.19), the following simplifying assumption is made: the obje
tive is 
hanged to theresear
h of the Kk matri
es su
h that the error at ea
h step ek is bounded by the same ellipsoidalset denoted E(0, Qα). The 
ontrol problem (5.19) is repla
ed by:
min
Kk,Qα

tr Qαs.t. ek+1 ∈ E(0, Qα), ∀ek ∈ E(0, Qα), ∀wk ∈ E(0, Qw
k ), k = 1...N−1

(5.20)Under this assumption, the 
hoi
e of ea
h gain Kk be
omes independent from the 
hoi
e of theother gains. The 
ommon point is that for ea
h interval between two 
onse
utive 
ontrol instants,they guarantee to maintain all the possible errors with respe
t to the nominal traje
tory inside thesame ellipsoidal set whi
h is de�ned by the matrix Qα.While the previous assumption will help us 
onvexify the problem, it will also generate additional
onstraints on the rendezvous traje
tory. The ellipsoidal set E(0, Qα), instead of bounding just the�nal error eN , now de�nes a tube around the nominal traje
tory whi
h must 
ontain all the possibletraje
tories for all admissible values of the disturban
es wk. The dimensions of the tube depend onthe 
hoi
e of the gains Kk and on the interval between the 
ontrol instants.The 
onstraints in (5.20) are 
onditions of non negativity of a quadrati
 fun
tion on a domainde�ned by two quadrati
 inequalities. Using (5.17) and the de�nition of ellipsoidal sets given in(C.1), the 
onstraints in (5.20) 
an be written as:
((Ak +BkKk) ek + wk)

T Qα ((Ak +BkKk) ek + wk) ≤ 1, ∀











eTkQαek ≤ 1

wT
k Q

w
i wk ≤ 1

(5.21)By representing the ellipsoidal sets using a homogeneous quadrati
 inequality as in (C.4) andthen applying the S-pro
edure (see (C.14)) and the S
hur 
omplement, the following 
onstraintsequivalent to (5.21) are obtained:
∃τk1 , τk2 ≥ 0
















1− τk1 − τk2 0 0 0

0 τk1Qα 0 (Ak +BkKk)
T

0 0 τk2Q
w
k I

0 Ak +BkKk I Q−1
α

















≥ 0, k = 1...N−1
(5.22)

Conditions (5.22) are not yet LMIs be
ause of the produ
t between de
ision variables τk1Qα
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k MPC 91and of the inverted term Q−1
α . A

ording to [97℄, a linear form 
an be obtained by imposing aspe
ial stru
ture on the matrix Qα:

Qα =
1

α2
Q (5.23)where Q is a 
onstant matrix, 
hosen by the designer, whi
h �xes the geometry of the tube. αis an optimization parameter whi
h s
ales the tube towards the smallest possible size. Using thisstru
ture for the Qα matrix transforms (5.22) into:

∃τk1, τk2 ≥ 0
















1− α2 − τk1α
2 − τk2 0 0 0

0 τk1Q 0 (Ak +BkKk)
T

0 0 τk2Qw I

0 Ak +BkKk I Q−1

















≥ 0
(5.24)

This new form still 
ontains some nonlinear terms in α2. These terms 
an be removed by pre- andpost-multiplying the matrix in (5.24) with:
P =

















α−1/2I 0 0 0

0 α1/2I 0 0

0 0 α−1/2I 0

0 0 0 α1/2

















(5.25)
After this operation, the optimization problem (5.19) 
an be written using only linear 
on-straints:

min
K̂k,α,τ̂k1 ,τ̂k2

αs.t. 









∃τ̂k1, τ̂k2 ≥ 0

Rk ≥ 0

,∀k = 1..N−1

(5.26)where the matri
es Rk are de�ned as:
Rk =

















α− τ̂k1 − τ̂k2 0 0 0

0 τ̂k1Q 0 (αAk +BkK̂k)
T

0 0 τ̂k2Q
w
k I

0 αAk +BkK̂k I αQ−1

















(5.27)
and K̂k = αKk, τ̂k1 = α−1τk1 and τ̂k2 = ατk2 .
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e
raft rendezvous robust to navigation un
ertaintiesSolving (5.26) enables the 
omputation of the feedba
k gains Kk su
h that the error tube iss
aled to the smallest possible size for a given shape �xed by the matrix Q. Next, we will now fo
uson the 
omputation of the terms ∆Vk whi
h de�ne the nominal traje
tory.5.3.2 Computation of the nominal 
ontrolThe obje
tive for the nominal traje
tory is to rea
h the �nal rendezvous obje
tive Xf in a fuel-optimal manner. The main di�eren
e with respe
t to the �xed-time rendezvous problem de�nedin (4.13) is that the saturation 
onstraints need to be modi�ed in order to ensure the ne
essarymargin for the feedba
k 
orre
tion terms required for the real traje
tory. The pro
edure resemblesthe 
onstraints tightening approa
h des
ribed in Se
tion 5.1. but in our 
ase the feedba
k termsresult from an optimization pro
edure whi
h minimizes the dimensions of the �nal arrival set.The nominal traje
tory does not ne
essarily have to start from the initial measured spa
e
raftrelative state Xm
1 = X̃1. A

ording to (5.19), it is su�
ient that the di�eren
e between the twoinitial 
onditions be bounded by the ellipsoidal set de�ned by Qα in order to guarantee the �nalrendezvous pre
ision. Hen
e, the initial state for the nominal traje
tory 
an be 
onsidered as ade
ision variable.With Kk and 
onsequently Qα 
omputed using (5.26), the optimal 
ontrol problem for thenominal traje
tory 
an be written as:

min
∆Vk,X̄1

N−1
∑

k=1

‖∆Vk‖1

s.t. 









































X̄k+1 = AkX̄k +Bk∆Vk

e1 ∈ E(Xm
1 , Qα), X̄N = Xf

uk = ∆Vk +Kkek, ek ∈ E(0, Qα)

|uk| ≤ ∆Ṽmax(νi), ∀ek ∈ E(0, Qα)

(5.28)
Problem (5.28) aims at optimizing the nominal fuel-
ost rather than the worst 
ase performan
eby 
hoosing a 
riterion in the nominal 
ontrol variables.The saturation 
onstraints in (5.28) have been written following the same assumptions aboutthe 
on�guration of the spa
e
raft thrusters as in (4.8). They 
on
ern the 
ontrol poli
ies uk for theperturbed spa
e
raft relative traje
tory but 
an be written as 
onstraints on the nominal de
isionvariables ∆Vk:

|∆Vk| ≤ ∆Ṽmax(νi)− max
ek∈E(0,Qα)

Kk ek, k = 1...N−1 (5.29)
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e feedba
k MPC 93The usage of ellipsoidal sets enables for (5.29) to be repla
ed by:
|∆Vk| ≤ ∆Ṽmax(νi)− ‖KkPα‖2, Pα = Q−1/2

α (5.30)The saturation 
onstraint (5.30) is the main reason why the 
orre
tion gains Kk and the nominal
ontrols ∆Vk are 
omputed separately. If Kk is 
onsidered as a de
ision variable then so is Pα andin this 
ase the norm-2 
onstraint in (5.30) is not 
onvex. The separate 
omputation of Kk and
∆Vk removes this issue but it also introdu
es the risk of the problem be
oming infeasible if theresulting saturation 
onstraints are too restri
tive.Finally, on
eKk and∆Vk are 
omputed using the des
ribed pro
edures, the obtained rendezvous
ontrol plan 
an be applied without any re
omputation, and it will steer the spa
e
raft towards the�nal obje
tive with a guaranteed pre
ision given by Qα.
5.4 A�ne disturban
e feedba
k MPCA

ording to [35℄, a 
onvex formulation for the 
ontrol problem (5.15) 
an be dire
tly found if the
ontrol poli
ies uk are parametrized as a�ne disturban
e feedba
k 
ontrol laws instead of a�nestate feedba
k 
ontrol laws. In this 
ase, the stru
ture of uk is given by:

uk = ∆Vk +
k−1
∑

i=1

Lk,iwi, wi ∈ E(0, Qw
i ), k = 1...N−1 (5.31)where the disturban
e feedba
k terms are 
onsidered only until k− 1 to ensure the 
ausality of the
ontrol.The value of the perturbation wk is unknown at the instant k. Its value 
an only be estimatedat the next time step based on the e�e
ts it produ
es on the spa
e
raft relative traje
tory. If theonly sour
e of errors are the navigation un
ertainties then, by using (5.10), the perturbation term

wk 
an be evaluated from the 
urrent measure Xm
k+1 and the predi
tion made in nominal 
onditionsstarting from the previous measure Xm

k . The di�eren
e between the two is due to the disturban
e
wk:

wk = Xm
k+1 − (AkX

m
k +Bkuk) (5.32)For the 
ontrol stru
ture de�ned in (5.31), the evolution of the errors between the real traje
tory
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e
raft rendezvous robust to navigation un
ertaintiesand the nominal traje
tory is given by:
e1 = Xm

1 − X̄1

e2 = A1e1 +w1

e3 = A2A1e1 + (A2 +B2L2,1)w1 + w2

e4 = A3A2A1e1 + (A3(A2 +B2L2,1) +B3L3,1)w1 + (A3 +B3L3,2)w2 + w3... (5.33)
It 
an be seen that 
hoosing the de
ision variables as in (5.31) leads to expressions for the propa-gation of the errors whi
h do not 
ontain any nonlinear produ
ts between the gain matri
es. Thisprovides an advantage with respe
t to expressions (5.18) obtained for the a�ne state feedba
k 
aseand greatly simpli�es the 
ontrol synthesis pro
edure by allowing the simultaneous 
omputation ofthe feedba
k gains Lk,i and of the nominal 
ontrols ∆Vk.The 
ausality 
onsideration in (5.31) for
es the �rst 
ontrol uk to be equal to the �rst thrustof the nominal traje
tory ∆Vk. This 
auses any initial mismat
h between the perturbed traje
toryand the nominal traje
tory to be propagated in open-loop over the predi
tion horizon, as it 
an beseen from (5.33). This problem 
an be removed by no longer 
onsidering the initial state for thenominal traje
tory as an optimization variable and instead imposing that:

X̄1 = Xm
1 (5.34)whi
h 
auses e1 to be always equal to zero.Let X =

[

Xm
1|2 Xm

1|3 ... Xm
1|N

]T be the predi
tion of the evolution of the 
losed-loop per-turbed traje
tory starting from the initial measured state Xm
1 . X 
an be written in a 
ompa
t formas:

X = AXm
1 +B∆V + (BL+C)w (5.35)where the matri
es A ∈ R

6(N−1)×6, B ∈ R
6(N−1)×3(N−1) and C ∈ R

6(N−1)×6(N−1) are de�ned as:
A =

















A1

A2A1...
AN−1...A1

















B =

















B1 0 0 0 ...

A2B1 B2 0 0 ...... ...
AN−1...A2B1 ... ... BN−1

















C =

















I 0 0 0 ...

A2 I 0 0 ...... ...
AN−1...A2 AN−1 I















(5.36)and∆V =
[

∆V1 ∆V2 ... ∆VN−1

]T , w =
[

w1 w2 ... wN−1

]T . The gain matrix L ∈ R
3(N−1)×6(N−1)
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k MPC 95is de�ned by:
L =























0 0 0 ... 0

L2,1 0 0 ... 0

L3,1 L3,2 0 ... 0...
LN−1,1 ... ... LN−1,N−2 0























(5.37)
Taking into 
onsideration the 
onstraint (5.34), the evolution of the nominal traje
tory X̄ =

[

X̄1|2 X̄1|3 ... X̄1|N

]T is given by:
X̄ = AXm

1 +B∆V (5.38)The error between the perturbed traje
tory and the nominal traje
tory 
an be written in this 
aseas a linear fun
tion of the disturban
e ve
tor w:
e = X− X̄ = (BL+C)w (5.39)It be
omes 
lear that a good 
hoi
e for the matrix L 
ould limit the e�e
ts of the navigation errorson the spa
e
raft rendezvous traje
tory. We are sear
hing for the nominal 
ontrol ∆V and the
orre
tion gains matrix L that guarantee the smallest error at the end of the predi
tion horizon

eN and the lowest fuel-
ost for the nominal traje
tory, all while robustly satisfying the saturation
onstraints on the thrusters.The obje
tive for the �nal error 
an on
e again be interpreted in terms of minimizing thedimensions of an ellipsoidal set that bounds eN for all the possible values of the un
ertainties:
min
L

tr Qf s.t. eN ∈ E(0, Q−1
f ), ∀wi ∈ E(0, Qw

i ), i = 1...N−1 (5.40)By using the dynami
s of the errors from (5.39), the 
onstraint in (5.40) 
an be written as:
w

T (BNL+CN)TQ−1
f (BNL+CN)w ≤ 1, ∀wi ∈ E(0, Qw

i ), i = 1..N − 1 (5.41)where BN and CN are obtained by sele
ting the appropriate lines in the B and C matri
es. Usingthe S-pro
edure and the S
hur 
omplement, the quadrati
 
onstraint (5.41) 
an be transformedinto a linear matrix inequality:
∃τ1, τ2, ... τN−1 ≥ 0, Qf � 0 s.t. R � 0 (5.42)
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e
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ertaintieswhere the matrix R is de�ned as:
R =











1−∑N−1
k=1 τk 0 0

0 Qw (BNL+CN)T

0 (BNL+CN) Qf











, Qw =











τ1Q
w
1 . . .

τN−1Q
w
N−1











(5.43)
The saturation 
onstraints on the 
ontrol uk are written based on the same assumptions as in(4.8) about the 
on�guration of the spa
e
raft thrusters. The 
onstraints must be respe
ted for alladmissible values of the un
ertainties:

|uk| ≤ ∆Ṽmax(νk), ∀wi ∈ E(0, Qw
i ), i = 1...k−1, k = 1...N−1 (5.44)The usage of ellipsoidal sets enables us to transform the 
onstraints (5.44) in tightened 
onstraintson the nominal 
ontrols:

|∆Vk| ≤ ∆Ṽmax(νk)−
k−1
∑

i=1

‖Lk,iP
w
i ‖2, k = 1...N−1 (5.45)where Pw

i = (Qw
i )

−1/2. The previous 
onstraint is a 
oni
 
onstraint sin
e only ∆Vk and Lk,i arede
ision variables while the domains for the disturban
es wi are 
onsidered known. The �nal 
onvexoptimization problem that needs to be solved in order to �nd the a�ne disturban
e feedba
k 
ontrollaws uk 
an be written as:
min

Qf ,∆Vk,Lk,i

tr (T (νN )−1QfT (νN )−T ) + ‖∆V‖1

s.t.






























































X̄k+1 = AkX̄k +Bk∆Vk

X̄1 = Xm
1 , X̄N = Xf

|∆Vk| ≤ ∆Ṽmax(νk)−
k−1
∑

i=1

‖Lk,iP
w
i ‖2, k = 1...N−1

∃τ1, τ2, ... τN−1 ≥ 0

Qf � 0, R � 0

(5.46)
The optimization 
riterion re�e
ts the 
ompromise between the fuel 
ost of the nominal traje
toryand the rendezvous pre
ision, represented by the ellipsoidal set bounding the �nal error. The matrix
T in the 
riterion a

ounts for the variable 
hange (1.17) that has been performed on the spa
e
raftrelative state in order to rea
h the dynami
al model used for 
ontrol 
omputation. Minimizing thedomain for the transformed variables might not ne
essarily translate into a minimal domain for
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hniques 97the original variables. The matrix T ensures that the optimized domain 
orresponds to the errorsexpressed using the time-domain variables and is de�ned by:
T (ν) =





(1 + e cos ν)I3 03

−e sin νI3
(1 + e cos ν)

ν̇
I3



 (5.47)where νN is the true anomaly whi
h 
orresponds to the �nal time of the rendezvous.The advantage of this approa
h over the a�ne state feedba
k 
ontrol plan is that only oneoptimization problem needs to be solved in order to determine all the parameters of the 
ontrollaws.5.5 Numeri
al evaluation of the robust 
ontrol te
hniquesThe performan
es of the two previously presented robust 
ontrol te
hniques are evaluated for di�er-ent rendezvous s
enarios. The 
omparison 
riteria are the fuel-
ost of the rendezvous traje
toriesand the dimensions of the set bounding the �nal error. The obtained performan
es are �rst il-lustrated in 
losed-loop simulations using the linear model for the propagation of the spa
e
raftrelative motion based on the Yamanaka-Ankersen state transition matrix. The guaranteed perfor-man
es are then validated using a nonlinear propagation model. The nonlinear simulator is basedon Gauss Variational Equations and its detailed des
ription 
an be found in [49℄.5.5.1 Des
ription of the simulation pro
edureThe simulations start form perturbed initial 
onditions, obtained by adding a random noise δXto the initial spa
e
raft relative state used for 
ontrol synthesis. Random noise is also added toall the other relative states that are measured during the simulations. The noise is bounded byan ellipsoidal set with semi-axis of 0.02 m for the relative position and 0.002 m/s for the relativevelo
ity.The outer ellipsoidal approximations for the domains of the disturban
es w are 
omputed usingthe analyti
al pro
edure given in (C.10). The obtained ellipsoidal sets E(0, Qw
i ) depend on thedomain for the navigation un
ertainties δX and on the time interval between two 
onse
utive
ontrol instants. Before starting the simulations, the parameters of the robust 
ontrol laws alsoneed to be 
omputed by solving the 
orresponding optimal 
ontrol problems. The spe
i�
 pro
edurefor ea
h 
ase is detailed in what follows, but the 
ommon point is that no 
all to an optimizationpro
edure is made during the simulations. This means that if the presented 
ontrol te
hniques were
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e
raft rendezvous robust to navigation un
ertaintiesused for a spa
e
raft rendezvous mission, all the 
omputational e�ort 
ould be 
arried out using theresour
es available at the ground 
ontrol station, followed by an upload of the resulting parameterson-board the follower spa
e
raft.A�ne state feedba
kThe gains Kk for the a�ne state feedba
k laws are 
omputed by solving the SDP (5.26) whilethe nominal 
ontrol are obtained from (5.28). The two optimization problems are solved usingYalmip [63℄ and the solver SDPT3 [100℄. The obtained solution depends on the 
hoi
e of the Qmatrix de�ned in (5.23). This matrix spe
i�es the geometry of the tube whi
h bounds all thepossible rendezvous traje
tories.One way of 
hoosing Q 
omes from 
onsidering the variable 
hange (1.17). The optimizationproblem (5.26) is written for the transformed variables but our purpose is to obtain good per-forman
es for the a
tual spa
e
raft relative traje
tory. The transformation (1.17) introdu
es anarti�
ial s
ale fa
tor between the values of the spa
e
raft relative position and velo
ity, fa
tor thatdepends on the orbital parameters of the leader spa
e
raft. A good 
hoi
e for the matrix Q 
annormalize this di�eren
e and lead to better results in terms of rendezvous pre
ision.The states X̄k belonging to the nominal traje
tory also need to be evaluated at the prede�ned
ontrol instants, sin
e their values are used for 
ontrol 
omputation. They 
an easily be obtainedfrom (5.11), where the initial 
ondition is the one provided by the resolution of (5.28). The worst
ase fuel 
onsumption 
an be evaluated before the simulations by adding to ea
h nominal 
ontrolthe maximum possible 
orre
tion:
∆Vmax =

N−1
∑

k=1

(∆Vk + ‖KkPα‖2) (5.48)The velo
ity in
rements are evaluated during the simulations at ea
h 
ontrol instant. Their valuesdepend on the obtained measurements and 
an be 
omputed using the de�nition in (5.16).A�ne disturban
e feedba
kThe parameters de�ning the series of disturban
e feedba
k 
ontrol laws are obtained after solvingthe SDP de�ned in (5.46) using Yalmip [63℄ and the solver SDPT3 [100℄. The worst 
ase fuel 
on-sumption 
an be evaluated before the simulation by adding to ea
h nominal 
ontrol the maximumpossible 
orre
tion:
∆Vmax =

N−1
∑

k=1

(

∆Vk +

k−1
∑

i=1

‖Lk,iP
w
i ‖2

) (5.49)
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al evaluation of the robust 
ontrol te
hniques 99The velo
ity in
rements are evaluated during the simulations, at ea
h 
ontrol instant, using thede�nition in (5.31). The perturbation terms w are also evaluated at ea
h 
ontrol instant duringthe simulations, based on the obtained relative state measurements. Their values are obtained byusing (5.32) and then stored in the memory until the end of ea
h s
enario. This is ne
essary sin
ethe history of past disturban
es 
ontribute to the 
omputation of the 
ontrol.The 
losed-loop performan
es are evaluated for two di�erent rendezvous s
enarios: the quasi-
ir
ular PRISMA mission [75℄ and the highly e

entri
 Simbol-X mission [30℄.5.5.2 The PRISMA missionThe robust 
ontrol te
hniques are �rst tested on a PRISMA spa
e
raft rendezvous mission. Thedata de�ning the orbital parameters of the leader spa
e
raft are given in Table 5.2.Mission a [km℄ e i [◦℄ Ω [◦℄ ω [◦℄ ∆Vmax [m/s℄PRISMA 7 011 0.004 98 190 0 0.26Table 5.2: Referen
e orbit data for the PRISMA rendezvous missionIn this 
ase, we 
onsider the matrix Q for the a�ne state feedba
k method as:
Q = diag (1, 1, 1, 0.01, 0.01, 0.01) (5.50)whi
h roughly 
orresponds to the di�eren
e in magnitude between the spa
e
raft relative positionand velo
ity after the transformation (1.17).The data 
orresponding to the 
hosen rendezvous s
enario are given in Table 5.3. We areinterested in analysing the in�uen
e of the duration of the mission on the size of the guaranteed�nal arrival set and on the fuel 
ost of the mission.Mission X1 [m,m/s℄ ν1 [◦℄ Xf [m,m/s℄ duration [s℄ NPRISMA [10000,0,0,0,0,0℄ 0 [330,0,30,0,0,-0.0158℄ 18 000 10Table 5.3: Simulation s
enario for the PRISMA rendezvous missionThe size of the guaranteed arrival set is illustrated in Table 5.4 for di�erent values of themission duration. The number of impulsive thrusts is maintained 
onstant. The presented values
orrespond to the semi-axes in the xz plane of the ellipsoidal sets whi
h bound the �nal errorsfor all the possible values of the navigation un
ertainties. The 
omparison is made between theappli
ation of the nominal plan in open-loop, the usage of the state feedba
k plan and the usageof the disturban
e feedba
k plan.
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e
raft rendezvous robust to navigation un
ertaintiesmission duration [s℄ 9 000 12 000 15 000 18 000open-loop MPC [m℄ 56.82 1.4 70.08 0.61 93.65 1.3 105.2 0.9state feedba
k MPC [m℄ 4.056 4.056 6.49 6.49 9.89 9.89 14.1 14.1disturban
e feedba
k MPC [m℄ 3.92 2.32 6.4 2.86 9.63 3.23 13.92 3.48Table 5.4: Semi-axes of the arrival set in the xz plane for the PRISMA missionAs expe
ted, the two 
losed-loop approa
hes o�er great bene�ts over the open-loop 
ase. If thesum of the semi-axes is 
onsidered, the pre
ision guaranteed by the disturban
e feedba
k approa
his better for all the values 
onsidered for the mission duration. The size of the �nal guaranteedarrival sets in
reases for both robust 
ontrol methods with the extension of the predi
tion horizon.This is to be expe
ted sin
e in
reasing the predi
tion horizon without in
reasing the number of
ontrol instants 
auses the navigation un
ertainties to be propagated in open-loop for a longerperiod of time (as showed in Se
tion 5.2.2).The di�eren
e between the fuel 
ost of the nominal traje
tory and the maximum possible fuel
ost for the perturbed 
losed loop traje
tory is presented in Table 5.5. It 
an be noti
ed that thelowest nominal 
ost is obtained every time for the state feedba
k approa
h. This is a 
onsequen
eof the fa
t that, for this approa
h, the initial state for the nominal traje
tory is a de
ision variable.This allows an extra degree of freedom for the optimization algorithm leading to a smaller fuel
ost for the nominal path. However, the maximum possible fuel 
ost 
an be signi�
antly higher,depending on the dimensions of the error tube guaranteed by the 
orre
tion gains.mission duration [s℄ 9 000 12 000 15 000 18 000open-loop MPC [m/s℄ 1.1951 0.9997 0.6548 0.6505state feedba
k MPC [m/s℄ 0.7343 1.9175 0.5826 2.4873 0.4677 3.3503 0.5403 4.6760disturban
e feedba
k MPC [m/s℄ 1.1952 1.3809 1.0015 1.1878 0.6548 0.8444 0.6505 0.8593Table 5.5: Nominal fuel 
ost and maximum possible 
losed-loop 
ost for the PRISMA missionIn the disturban
e feedba
k 
ase, the variation between the nominal fuel 
ost and the maximumfuel 
ost is smaller. It 
an also be seen that in this 
ase the nominal 
ost tends towards the open-loop 
ost as the mission duration in
reases. This 
omes from the fa
t that, for longer missiondurations, the thrusters saturations 
onstraints are no longer a
tive.Linear 
losed-loop simulationsThe 
losed-loop behaviour of the system is analysed �rst using the linear model for spa
e
raftrelative motion. The simulations follow the pro
edure that has been des
ribed in the �rst part of
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ontrol te
hniques 101this se
tion.mission duration [s℄ 9 000 12 000 15 000 18 000average ∆V state feedba
k MPC [m/s℄ 1.3506 1.5304 0.75 1.0631average ∆V disturban
e feedba
k MPC [m/s℄ 1.2139 1.0206 0.6741 0.6722Table 5.6: The average linear 
losed-loop fuel-
ost for the PRISMA missionThe average fuel 
onsumption obtained for the linear 
losed-loop simulations is presented inTable 5.6. The average is 
omputed for 100 runs of the rendezvous s
enario starting from di�erentperturbed initial 
onditions. It 
an be seen that for the state feedba
k 
ase, even if the average fuel
onsumption is lower than the upper bound given in Table 5.5, it is always higher than the oneobtained for the disturban
e feedba
k 
ase.The traje
tories obtained using the two robust 
ontrol methods for a mission duration of 18000s are depi
ted in Figure 5.1. The open-loop traje
tories are also showed in order to emphasize thespread of the perturbed rendezvous traje
tories that o

urs in the absen
e of 
losed-loop 
orre
tions.Even if the traje
tories followed by the two robust methods are di�erent, they both rea
h the �nalobje
tive within the guaranteed pre
ision.
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Figure 5.1: The rendezvous traje
tories for the PRSIMAmission using the linear propagation modelFigure 5.2 presents the �nal arrival sets guaranteed by the robust algorithms, E(0, Qα) for thestate feedba
k 
ase and E(0, Qf ) for the disturban
e feedba
k 
ase, along with the obtained errorswith respe
t to the mission's �nal obje
tive. As expe
ted, the �nal errors belong to the guaranteedarrival sets.
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Figure 5.2: Final errors and the guaranteed arrival sets for the PRISMA mission using the linearpropagation modelNonlinear 
losed-loop simulationsThe 
ontrol performan
es for the nonlinear 
losed-loop simulations are evaluated for traje
toriesobtained starting from 100 di�erent perturbed initial 
onditions. The average 
losed-loop fuel
onsumption is given in Table 5.7 for the same values of the mission durations 
onsidered for thelinear 
ase. It 
an be noti
ed that the average fuel 
onsumption is higher than the one obtainedfor the linear 
ase but lower than the theoreti
al upper bound given in Table 5.5. The di�eren
ebetween the linear and the nonlinear behaviour is more visible for the state feedba
k 
ase wherethe average fuel 
onsumption is up to 40% higher (see Table 5.6).mission duration [s℄ 9 000 12 000 15 000 18 000average ∆V state feedba
k MPC [m/s℄ 1.5012 1.6838 1.0731 1.5806average ∆V disturban
e feedba
k MPC [m/s℄ 1.3080 1.0840 0.7236 0.7083Table 5.7: The average nonlinear 
losed-loop fuel-
ost for the PRISMA missionFigure 5.3 shows the 
omparison between the traje
tories obtained for the open-loop 
ontroland for the two robust 
losed-loop 
ontrol te
hniques. The mission duration is 18000 s, the samevalue as for the linear 
ase. The open-loop traje
tories show that, for the nonlinear model, thedispersion of the perturbed traje
tories is slightly higher and a

ompanied by an o�set with respe
tto the desired �nal position. The o�set on the x axis for instan
e is about 800 m. This is due to themismat
h between the linear and nonlinear dynami
s for the spa
e
raft relative motion. Even ifthis sour
e of errors has not been 
onsidered during the 
ontrol synthesis, the guaranteed pre
isionwith respe
t to the �nal obje
tive is still respe
ted for the two 
losed-loop approa
hes (see Figure5.4).
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Figure 5.3: The rendezvous traje
tories for the PRSIMA mission using the nonlinear propagationmodel
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Figure 5.4: Final errors and the guaranteed arrival sets for the PRISMA mission using the nonlinearpropagation model5.5.3 The Simbol-X missionThe robust guidan
e te
hniques are also tested on a highly e

entri
 rendezvous mission 
alledSimbol-X. The data for the referen
e orbit is summarized in Table 5.8. The simulations follow thepro
edure des
ribed in the �rst part of this se
tion.Mission a [km℄ e i [◦℄ Ω [◦℄ ω [◦℄ ∆Vmax [m/s℄Simbol-X 106 247 0.7988 5.2 180 90 0.8Table 5.8: Referen
e orbit data for the Simbol-X rendezvous missionFor this s
enario, the Q matrix whi
h shapes the tube for the state feedba
k 
ontrol strategy is
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e
raft rendezvous robust to navigation un
ertaintiestaken as:
Q = diag (1, 1, 1, 0.0001, 0.0001, 0.0001) (5.51)in order to 
ompensate the di�eren
e in the values of the position and velo
ity 
aused by thevariable 
hange (1.17) for this highly e

entri
 orbit.The data 
orresponding to the parti
ular rendezvous s
enario that is 
onsidered here are givenin Table 5.9. Di�erent mission durations are 
onsidered throughout the simulations in order toanalyse the in�uen
e of this parameter on the fuel-
ost of the mission and on the dimensions of theguaranteed arrival set.Mission X1 [m,m/s℄ ν1 [◦℄ Xf [m,m/s℄ duration [s℄ NSimbol-X [-305,0,396,0,0,0℄ 135 [-60.2,0,79.85,0,0,0℄ 8 000 10Table 5.9: Simulation s
enario for the Simbol-X rendezvous missionThe semi-axes in the xz plane of the guaranteed ellipsoidal arrival sets are presented in Table5.10 for ea
h of the 
ontrol methods and for di�erent values of the mission duration. As in the
ase of the PRISMA mission, the bene�ts of adding the feedba
k 
orre
tion terms 
an be easilyobserved. The arrival set guaranteed by the disturban
e feedba
k approa
h is always smaller thanin the 
ase of the state feedba
k approa
h, if the sum of the semi-axes is 
onsidered. For ea
h one ofthe 
hosen rendezvous durations, the disturban
e feedba
k 
ontrol guarantees a better rendezvouspre
ision in presen
e of navigation un
ertainties.mission duration [s℄ 8 000 12 000 16 000 20 000open-loop MPC [m℄ 16.15 15.92 24.48 23.76 33.04 31.5 41.86 39.17state feedba
k MPC [m℄ 6.19 6.19 6.48 6.48 7.4 7.4 9.01 9.01disturban
e feedba
k MPC [m℄ 2.55 2.55 3.74 3.74 4.94 4.94 6.19 6.19Table 5.10: Semi-axes of the arrival set in the xz plane for the Simbol-X missionTable 5.11 presents the in�uen
e of the mission duration on the fuel 
ost for the nominaltraje
tory and on the maximum possible fuel 
ost for the perturbed 
losed loop traje
tories. Thenominal fuel 
ost for the disturban
e feedba
k method is every time equal to the open-loop 
ost,meaning that the tightened saturation 
onstraints are not a
tive. Just like for the PRISMA mission,the nominal fuel 
ost for the state feedba
k 
ase is always lower, a

ompanied by a maximum 
ostthat is higher than for the disturban
e feedba
k 
ase.
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ontrol te
hniques 105mission duration [s℄ 8 000 12 000 16 000 20 000open-loop MPC [m/s℄ 0.1578 0.1053 0.0792 0.0637state feedba
k MPC [m/s℄ 0.1455 0.3777 0.0934 0.3152 0.0663 0.2974 0.0487 0.3081disturban
e feedba
k MPC [m/s℄ 0.1578 0.3161 0.1053 0.2637 0.0792 0.2379 0.0637 0.2192Table 5.11: Nominal fuel 
ost and maximum possible 
losed-loop 
ost for the Simbol-X missionLinear 
losed-loop simulationsThe average fuel 
onsumption obtained for the 
losed-loop simulations is presented in Table 5.12.The average is 
omputed for 100 runs of the rendezvous s
enario. The data show that for the statefeedba
k 
ase, even if the average fuel 
onsumption is lower than the theoreti
al upper bound, itis always higher than the one obtained for the disturban
e feedba
k 
ase, regardless of the 
hosenmission duration.mission duration [s℄ 8 000 12 000 16 000 20 000state feedba
k MPC [m/s℄ 0.1818 0.1314 0.1055 0.0908disturban
e feedba
k MPC [m/s℄ 0.1755 0.1228 0.0957 0.0795Table 5.12: The average linear 
losed-loop fuel-
ost for the Simbol-X mission
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Figure 5.5: The rendezvous traje
tories for the Simbol-X mission using the linear propagationmodelFigure 5.5 shows the 
losed-loop traje
tories obtained when applying the di�erent 
ontrol meth-ods, for a mission horizon of 8000s. The open-loop traje
tories 
orresponding to di�erent perturbedinitial 
onditions are also illustrated in order to eviden
e the spread of all the possible traje
tories



106 Chapter 5. Spa
e
raft rendezvous robust to navigation un
ertaintiesunder the e�e
ts of navigation un
ertainties. In this 
ase, the two methods lead to very similar
losed-loop traje
tories that e�e
tively 
ontrol the dispersion 
aused by the navigation errors.The guaranteed arrival sets for the two robust 
ontrol methods, E(0, Qα) and E(0, Qf ) respe
-tively, are illustrated in Figure 5.6 along with the �nal errors with respe
t to the given rendezvousobje
tive. As expe
ted, the �nal errors are 
ontained inside the arrival sets for all the 
ases 
on-sidered during the simulations.
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Figure 5.6: Final errors and the guaranteed arrival sets for the Simbol-X mission using the linearpropagation modelNonlinear 
losed-loop simulationsThe average fuel 
onsumption for the nonlinear 
losed-loop simulations is presented in Table 5.13for ea
h of the 
onsidered mission durations. The data show that, for these parti
ular rendezvouss
enarios, the average fuel 
onsumption is very similar to the linear 
ase. This 
an be explained bythe small separation between the spa
e
raft, whi
h limits the propagation errors, along with theshort mission duration when 
ompared to the orbital period.mission duration [s℄ 8 000 12 000 16 000 20 000state feedba
k MPC [m/s℄ 0.1821 0.1304 0.1072 0.0904disturban
e feedba
k MPC [m/s℄ 0.1755 0.1218 0.0963 0.0796Table 5.13: The average nonlinear 
losed-loop fuel-
ost for the Simbol-X missionFigure 5.7 shows the nonlinear 
losed-loop traje
tories obtained for ea
h of the two robust 
on-trol methods for the same mission horizon of 8000s. The open-loop traje
tories are also illustratedin order to eviden
e the spread of all the possible traje
tories under the e�e
ts of navigation un-
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ertainties. These traje
tories are very similar to the linear 
ase, suggesting that for the 
hosens
enario the e�e
t of the propagation errors is very redu
ed.
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Figure 5.7: The rendezvous traje
tories for the Simbol-X mission using the nonlinear propagationmodelFigure 5.8 illustrates the guaranteed arrival sets, E(0, Qα) for the state feedba
k method and
E(0, Qf ) for the disturban
e feedba
k method, along with the 
losed-loop �nal errors with respe
tto the rendezvous obje
tive. As expe
ted, the �nal errors are 
ontained inside the arrival sets forall the 
ases 
onsidered during the simulations.
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Figure 5.8: Final errors and the guaranteed arrival sets for the Simbol-X mission using the nonlinearpropagation model



108 Chapter 5. Spa
e
raft rendezvous robust to navigation un
ertainties5.6 Con
lusionDi�erent methods for obtaining a guidan
e algorithm for the spa
e
raft rendezvous that is robust tonavigation un
ertainties have been dis
ussed in this 
hapter. Even if the �nal rendezvous obje
tive
annot be pre
isely rea
hed in presen
e of navigation un
ertainties, this 
hapter proposes two
ontrol te
hniques whi
h optimize the dimensions of a guaranteed �nal arrival set. The proposedmethods rely on the 
omputation of a series of feedba
k 
ontrol laws that guarantee the robust
onstraints satisfa
tion and a good trade-o� between the fuel 
ost of the resulting traje
tory andthe �nal rendezvous pre
ision. The resulting 
onvex optimal 
ontrol problem 
an be solved onlyon
e before the beginning of the rendezvous maneuvers. The 
omputed feedba
k laws 
an be thenused dire
tly at the 
orresponding 
ontrol instant. This property might be parti
ularly attra
tivein the 
ase in whi
h the on-board 
omputational resour
es are limited. The problem 
an be solvedusing the resour
es available on the ground before the beginning of the maneuvers, followed by theupload of the parameters of the 
ontrol laws to the spa
e
raft.The di�eren
e between the developed robust 
ontrol methods 
onsists in the parametrization
hosen for the 
omputed feedba
k laws. Both approa
hes amount to solving some 
onvex optimiza-tion problems and both method guarantee the 
onstraints satisfa
tion for all the admissible valuesof the un
ertainties. For the disturban
e feedba
k parametrization, only one 
onvex Semi De�niteProgram needs to be solved in order to obtain the solution while the state feedba
k parametrizationimposes the de
omposition of the synthesis into two separate steps. The existen
e of two separatesteps might 
ause the 
ontrol problem to be infeasible in 
ases where the disturban
e feedba
kapproa
h is able to provide a feasible solution. Moreover, the parametrization of the 
ontrol lawsas state feedba
k laws imposes some extra approximations in order to rea
h a 
onvex formulation ofthe problem. It also introdu
es an extra tuning parameter, the matrix Q whi
h �xes the geometryof the tube around the nominal traje
tory. The quality of the obtained solution will depend on the
hosen value and some guidelines for 
hoosing this parameter have been provided.The disturban
e feedba
k approa
h enables us to spe
ify a pre
ision obje
tive whi
h 
on
ernsonly the �nal error. In the state feedba
k 
ase, limitations for the errors with respe
t to the nominaltraje
tory are enfor
ed all along the rendezvous path. These 
onstraints are added in order to beable to 
onvexify the optimization problem. The disturban
e feedba
k approa
h does not imposeany parti
ular 
onstraints on the approa
h traje
tory and this freedom is re�e
ted by the fuel
onsumption. For the rendezvous missions 
hosen for illustration, the rendezvous performan
es interms of �nal pre
ision are very similar while the average fuel 
onsumption is always higher in thestate feedba
k 
ase.
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entri
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e of the interval between 
ontrols . . . . . . . . . . . . . . . . . . . . . 1226.4.3 In�uen
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ertainties . . . . . . . . . . . . . . . . . . . . . . 1236.5 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124Résumé: Ce 
hapitre porte sur le maintien du mouvement relatif périodique des satellites enprésen
e des in
ertitudes de navigation. Le 
ara
tère instable des traje
toires périodique a été déjàmis en éviden
e dans le Chapitre 2. Ainsi, si l'état relatif est perturbé ou mal 
onnu, une loi de
ommande doit être mise en pla
e a�n de stabiliser le mouvement périodique. Une te
hnique de 
on-tr�le analytique à deux impulsions est développée dans 
e 
hapitre. Cette te
hniques est basée surl'observation qu'un ve
teur 
onstant de paramètres dé
rit entièrement une traje
toire périodique don-née. De plus, les traje
toires périodiques représentent des ensembles invariants pour le mouvementrelatif des satellites. Cette loi de 
ommande, qui est très peu gourmande en ressour
e numérique, estutilisée en 
onjon
tion ave
 les te
hniques de guidage robuste développées dans le 
hapitre pré
édentdans un stratégie de 
ontr�le à deux étapes pour rejoindre et maintenir un mouvement périodiquede proximité.

The spa
e
raft ability to maintain a proximity periodi
 relative motion is an important aspe
tof on-orbit servi
ing missions [85℄. A pre
ise mathemati
al 
hara
terisation of 
onstrained periodi
spa
e
raft relative traje
tories has been given in Chapter 3. The resulting des
ription of admissible



110 Chapter 6. Analyti
al bi-impulsive 
ontrol around a desired periodi
 traje
torytraje
tories has been used in Chapter 4 to obtain a guidan
e algorithm towards a proximity periodi
relative motion. The 
ontrol te
hnique is illustrated only in perfe
t 
onditions, with no navigationun
ertainties or modelling errors. The e�e
ts of imperfe
t relative state information are analysed inChapter 5. It is showed that, when measurement noise is 
onsidered, the desired �nal obje
tive 
anno longer be exa
tly rea
hed. Robust 
ontrol algorithms are developed that instead 
an guaranteethe guidan
e towards a minimal arrival set 
entered around the �nal desired state.The unstable behaviour of the spa
e
raft periodi
 traje
tories has been analysed in Chapter 2.The 
onsequen
e of this unstable behaviour is that, even if the spa
e
raft arrive arbitrarily 
lose toa desired periodi
 traje
tory, the relative motion will not naturally 
onverge towards it. In presen
eof navigation un
ertainties, the robust guidan
e towards an arrival set 
entered around a desiredperiodi
 traje
tory needs to be followed by a swit
h to a lo
al 
ontroller whi
h 
an robustly stabilizethe spa
e
raft periodi
 relative motion. This 
hapter addresses this problem and proposes a lo
albi-impulsive 
ontroller. The 
hosen stru
ture takes into 
onsideration the limited 
omputationalresour
es available on-board the spa
e
raft and the preferen
e for impulsive maneuvers.
6.1 Stability around a periodi
 relative traje
toryLet D be a given 
onstant ve
tor of parameters 
orresponding to a periodi
 spa
e
raft relativetraje
tory (see the de�nitions in Chapter 2). For the parti
ular 
ase of the periodi
 motion, theve
tor D is su
h that d0 = 0. The set of spa
e
raft relative states belonging to the parti
ularperiodi
 traje
tory de�ned by D is given by:

Sp(D) =
{

X̃(ν) ∈ R
6 | C(ν)X̃(ν) = D ∀ ν, ∀D su
h that d0 = 0

} (6.1)where the matrix C(ν) is de�ned as in (2.5). The set Sp(D) represents an invariant set for theautonomous spa
e
raft relative motion. This follows from the property of the spa
e
raft relativemotion given in (2.20) whi
h shows that:
X̃(νk) ∈ Sp(D) =⇒ X̃(νj) ∈ Sp(D), ∀νj ≥ νk (6.2)The obje
tive of robustly stabilizing the spa
e
raft relative motion with respe
t to a 
hosenperiodi
 traje
tory 
an be translated into an obje
tive of robust stability of the invariant set Sp(D).In the general 
ase, an invariant set S for an autonomous system x(tk+1) = f(x(tk)) is said to be
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ontrol for the periodi
 motion 111stable if, for ea
h ε ≥ 0, there exists δ ≥ 0 su
h that [51℄:
∀x(t0) s.t. dist (x(t0), S) ≤ δ =⇒ dist (x(tk), S) ≤ ε, ∀tk ≥ t0 (6.3)where the distan
e from a state x to the set S is de�ned as:dist (x, S) = inf

y∈S
‖x− y‖ (6.4)An invariant set S is said to asymptoti
ally stable if it is stable and δ 
an be 
hosen su
h that [51℄:

∀x(t0) s.t. dist (x(t0), S) ≤ δ =⇒ lim
k→∞

dist (x(tk), S) = 0 (6.5)
A 
ontrol that stabilizes the spa
e
raft periodi
 motion in presen
e of navigation un
ertaintiesmust maintain bounded the distan
e between the spa
e
raft relative state and the invariant set

Sp(D). Following from (6.4), this distan
e 
an be de�ned as:dist (X̃(ν), Sp(D)) = ‖C(ν)X̃(ν)−D‖ (6.6)The purpose is to �nd a 
ontrol law su
h that:dist (X̃(ν), Sp(D)) = 0 (6.7)
6.2 Analyti
al bi-impulsive stabilizing 
ontrol for the periodi
 mo-tion
This se
tion details the 
hara
teristi
s of an analyti
al bi-impulsive 
ontrol law whi
h 
an stabilizethe spa
e
raft periodi
 relative motion. For a bi-impulsive stru
ture of the 
ontrol the 
ondition(6.7) has an analyti
al solution, whi
h 
an be obtained without too mu
h 
omputational e�ort.The stability of the periodi
 motion 
an be guaranteed while still relying on impulsive thrusts asin the previous 
hapters.



112 Chapter 6. Analyti
al bi-impulsive 
ontrol around a desired periodi
 traje
tory6.2.1 Computation of the 
ontrolStarting from the 
urrent spa
e
raft relative state measurement X̃(νk), two impulsive maneuvers
∆Ṽk and ∆Ṽk+1 
an be 
omputed su
h that:dist (X̃+(νk+1), Sp(D)) = 0 (6.8)where X̃+(νk+1) is the state right after the se
ond impulsive 
ontrol ∆Ṽk+1. A

ording to (5.2),
X̃+(νk+1) is given by:

X̃+(νk+1) = X̃(νk+1) +B∆Ṽk+1Following from (5.3), X̃+(νk+1) 
an be written as a fun
tion of the 
urrent measured state:
X̃+(νk+1) = Φ(νk+1, νk) X̃(νk) + Φ(νk+1, νk)B∆Ṽk +B∆Ṽk+1 (6.9)Introdu
ing this expression into (6.8) leads to the following stability 
ondition:

‖C(νk+1)
(

Φ(νk+1, νk) X̃(νk) + Φ(νk+1, νk)B∆Ṽk +B∆Ṽk+1

)

−D‖ = 0 (6.10)The two impulsive 
ontrols that bring the system to the invariant set Sp(D) 
an be obtainedthrough dire
t 
omputation:




∆Ṽk

∆Ṽk+1



 =
[

Φ(νk+1, νk)B B
]−1

ẽk|k+1 (6.11)where ek|k+1 is de�ned as:
ẽk|k+1 = X̃p(νk+1)− Φ(νk+1, νk) X̃(νk) (6.12)The term X̃p(νk+1) de�nes the spa
e
raft relative state belonging to the desired periodi
 tra-je
tory spe
i�ed through the ve
tor of parameters D at the instant νk+1. Using (2.8), X̃p(νk+1) isde�ned as:

X̃p(νk+1) = F (νk+1)D (6.13)The term ek|k+1 
orresponds to an anti
ipated error between the spa
e
raft traje
tory and thedesired periodi
 traje
tory, 
omputed based on the 
urrent state measure X̃(νk) and assumingautonomous propagation over the interval [νk νk+1].
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al bi-impulsive stabilizing 
ontrol for the periodi
 motion 113It should be noted that for the matrix in (6.11) to be invertible, the interval between the twoimpulsive 
ontrols must be 
hosen su
h that: νk+1 − νk 6= mπ, m ∈ N.6.2.2 Domain of validityThe amplitude of the two impulsive 
ontrols 
omputed using (6.11) depends on the anti
ipatederror between the 
urrent measure and the desired periodi
 traje
tory and on the 
hosen intervalbetween the two thrusts. The obtained 
ontrol is valid only in a domain where the saturation
onstraints of the thrusters are satis�ed. We assume that the saturation 
onstraints are de�ned asin (4.8) by some polytopi
 
onstraints:
H∆





∆Ṽk

∆Ṽk+1



 ≤ Ṽ∆(νk+1, νk) (6.14)where the matri
es H∆ and Ṽ∆(νk, νk+1) are de�ned by:
H∆ =





I6

−I6



 Ṽ∆(νk, νk+1) =

















∆Ṽmax(νk)

∆Ṽmax(νk+1)

∆Ṽmax(νk)

∆Ṽmax(νk+1)

















(6.15)
These 
onstraints impose some restri
tions on the initial error ẽk, between the measured stateand the 
orresponding state on the desired periodi
 traje
tory in the moment where the analyti

ontrol (6.11) is 
omputed:

ẽk = X̃p(νk)− X̃(νk) (6.16)Using (6.11) and the fa
t that the anti
ipated error ẽk|k+1 
an also be expressed as:
ẽk|k+1 = Φ(νk+1, νk) ẽk = Φ(νk+1, νk)

(

F (νk)D − X̃(νk)
) (6.17)the following polytopi
 
onstraints on the initial error ẽk are obtained:

H̃e(νk+1, νk)ẽk ≤ Ṽe(νk+1, νk) (6.18)where:̃
He(νk+1, νk) = H∆

[

Φ(νk+1, νk)B B
]−1

Φ(νk+1, νk), Ṽe(νk+1, νk) = Ṽ∆(νk+1, νk) (6.19)



114 Chapter 6. Analyti
al bi-impulsive 
ontrol around a desired periodi
 traje
toryThe error in the time domain denoted by ek is related to ẽk through:
ẽk = T (νk) ek (6.20)where the matrix T (ν) is de�ned as in (5.47). Hen
e, the matri
es de�ning the time-domainpolytopi
 
onstraints on the initial error are given by:

He(tk+1, tk) = H̃e(νk+1, νk)T (νk), Ve(tk+1, tk) = Ṽe(νk+1, νk) (6.21)For some given saturation 
onstraints de�ned in time domain by ∆Vmax, the matri
es in (6.21)de�ning the polytopi
 
onstraints on the initial error depend on the 
hoi
e for tk and tk+1. Fora �xed time interval between the two impulses ∆t, a worst-
ase estimation for the domain of theadmissible initial error, regardless of the position of the �rst impulse, 
an be obtained as:
e ∈ P(He, Ve) =

∞
⋂

k=1

P(He(tk +∆t, tk), Ve(tk +∆t, tk)) (6.22)where P(He(tk +∆t, tk), Ve(tk +∆t, tk)) denotes the polytope de�ned by the indi
ated matri
es.Figure 6.1 gives the 
ut through the polytope P(He, Ve) bounding the initial error followingthe plane 
orresponding to the position errors, for di�erent values of the time interval between thetwo impulses. The sets are 
omputed for ∆Vmax = 0.26 m/s and e = 0.3, and are obtained for theinterse
tion of 150 di�erent sets in (6.22) using the mpt toolbox [54℄ and Matlab.

Figure 6.1: Illustration of the polytopi
 set bounding the initial error for ∆Vmax = 0.26 and e = 0.3Even if the interse
tion of the polytopes gives a 
onservative estimation, it 
an be seen that thedomain for admissible initial position errors with respe
t to the desired periodi
 traje
tory be
omesbigger as the interval between the two 
ontrols be
omes larger. The longer free drift interval 
an be
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al bi-impulsive stabilizing 
ontrol for the periodi
 motion 115used to naturally 
ompensate larger initial position errors, without applying a higher thrust. Theadmissible initial velo
ity errors spe
i�
ations remain un
hanged, regardless of the 
hoi
e for the
ontrol interval. In this 
ase the domain for the velo
ity errors is de�ned by a 
ube 
entered in 0and large of 0.26 m/s.
6.2.3 Performan
es in presen
e of navigation un
ertaintiesIn the presen
e of navigation un
ertainties, the distan
e with respe
t to the invariant set Sp(D)after applying the two impulsive maneuvers 
omputed using (6.11) will be di�erent than zero. Ifthe measured spa
e
raft relative state is a�e
ted by unknown but bounded sensing noise su
h that:

X̃(νk) = X̃m(νk) + δXk, δXk ∈ E(0, Qk) (6.23)then the obtained distan
e with respe
t to the periodi
 traje
tory when applying the 
ontrol 
om-puted based on imperfe
t information is given by:dist (X̃+(νk+1), Sp(D)) = ‖C(νk+1)Φ(νk+1, νk)δXk‖, δXk ∈ E(0, Qk) (6.24)The obtained value depends on the 
hoi
e for the two 
ontrol instants, νk and νk+1 respe
tively, onthe e

entri
ity of the orbit of the leader spa
e
raft and on the value of the navigation un
ertainties.Be
ause the sensing noise is assumed to be bounded by an ellipsoidal set, a worst 
ase distan
e 
anbe 
omputed for the 
onsidered interval:
dmax(νk+1, νk) = max

δXk∈E(0,Qk)
dist (X̃+(νk+1), Sp(D)) = ‖C(νk+1)Φ(νk+1, νk)Pk‖2 (6.25)where Pk = Q

−1/2
k . Worst 
ase bounds for the performan
es of the analyti
al 
ontrol law in presen
eof navigation un
ertainties 
an also be 
omputed. The performan
es are de�ned in terms of thetra
king error for the spa
e
raft relative state after the se
ond impulsive 
ontrol:

ε̃k+1 = X̃p(νk+1)− X̃+(νk+1) (6.26)where X̃p(νk+1) is de�ned as in (6.13). The term ε̃k+1 is di�erent from the anti
ipated error ẽk|k+1de�ned (6.12) sin
e it is based on the dynami
s of the 
ontrolled spa
e
raft relative traje
toryinstead of the autonomous evolution. After integrating (6.23) and (6.11) into (6.9), the tra
king
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al bi-impulsive 
ontrol around a desired periodi
 traje
toryerror obtained for the analyti
al bi-impulsive 
ontrol 
an be written as:
ε̃k+1 = Φ(νk+1, νk)δXk, δXk ∈ E(0, Qk) (6.27)The tra
king performan
es are in�uen
ed by the same parameters as the distan
e with respe
t tothe invariant set Sp(D). Following from the expression of the propagation of an ellipsoidal setthrough a linear appli
ation given in (C.7), an ellipsoidal bound 
an be 
omputed for the tra
kingerror depending on the 
hosen values for νk and νk+1:

ε̃k+1 ∈ E(0,Φ(νk+1, νk)
−TQkΦ(νk+1, νk)

−1) (6.28)For given navigation un
ertainties spe
i�
ations and a �xed time interval between the twoimpulses, a worst 
ase estimation of the domain for the �nal error regardless of the position of the�rst impulse 
an be obtained as:
ε̃ ∈ E(0, Qε) ⊇

∞
⋃

k=1

E(0,Φ(νk+1, νk)
−TQkΦ(νk+1, νk)

−1) (6.29)where E(0, Qε) denotes the minimal volume outer ellipsoidal approximation of the union of ellip-soids. The set E(0, Qε) 
an be 
omputed by solving an SDP, using the pro
edure des
ribed in [14℄page 43.Figure 6.2 illustrates for the �nal position errors, the evolution of the bounding ellipsoidalset with the interval between the two impulsive 
ontrols. The illustrated values are obtained foran e

entri
ity of e = 0.3 and for navigation un
ertainties bounded by an ellipsoidal set whosesemi-axes are equal to 0.02 m for the spa
e
raft relative position and 0.002 m/s for the relativevelo
ity.It 
an be noti
ed from Figure 6.2 that the dimension of the set bounding the tra
king errorsin
reases as the interval between the two impulses in
reases. In presen
e of navigation un
ertain-ties, applying only the 
omputed bi-impulsive 
ontrol does not guarantee the stability around theperiodi
 sin
e the distan
e to the invariant set Sp(D) after 
ontrol is di�erent than zero and will
ontinue to in
rease if no other traje
tory 
orre
tions are applied. The distan
e to the invariant set
an be maintained bounded by periodi
ally re
omputing the two impulsive 
ontrols and applyingthem. The 
hoi
e for the frequen
y of re
omputation needs to take into a

ount how this parametera�e
ts the domain of validity of the 
ontrol and also its in�uen
e on the obtained tra
king pre
ision.If the re
omputation o

urs after that both impulses have been applied, the initial error for
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Figure 6.2: The 
hange in the �nal error with the 
hange in the interval between the impulsive
ontrols
the new 
ontrol will be bounded by the ellipsoid E(0,Φ(νk+2, νk+1)

−TQεΦ(νk+2, νk+1)
−1). This
omes from the fa
t that the �nal tra
king error ε̃k+1, obtained after the appli
ation of ∆Vk+1, ispropagated over another interval before a new 
ontrol is 
omputed. In order to guarantee that thesaturation 
onstraints are not violated, the re
omputation frequen
y should be su
h that:

E(0,Φ(νk+2, νk+1)
−TQεΦ(νk+2, νk+1)

−1) ⊂ P (He, Ve) (6.30)The 
ondition (6.30) 
an be 
he
ked during the a priori analysis using the pro
edure des
ribedin [14℄, page 70.To improve the tra
king error, the re
omputation strategy 
ould be modi�ed following the ModelPredi
tive Control prin
iples: only the �rst of the two 
omputed impulses is applied ea
h time andthe se
ond one is dis
arded. At the next 
ontrol instant a new pair of impulses is 
omputed basedon new measurement information out of whi
h only the �rst one is used. This strategy 
an limitthe propagation of the measurement errors to only one 
ontrol interval instead of two leading to asmaller error with respe
t to the desired periodi
 traje
tory.In the next se
tion it will be showed how the presented analyti
al bi-impulsive 
ontrol law
an be 
ombined with the robust 
ontrol methods developed in Chapter 5 in a two stage ModelPredi
tive Control setting.
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al bi-impulsive 
ontrol around a desired periodi
 traje
tory6.3 Robust guidan
e towards a spa
e
raft periodi
 relative motion
Let us 
onsider a �xed-time rendezvous mission where the obje
tive is to guide the spa
e
rafttowards a periodi
 proximity relative motion in presen
e of navigation un
ertainties. Starting froman initial state X̃1, the purpose is to 
ompute a robust rendezvous plan that, when applied at the�xed instants ν1, ...νN−1, drives the spa
e
raft towards a �nal periodi
 relative traje
tory. Theperiodi
 traje
tory is not �xed a priori, but it must respe
t the following 
onstraints: the �nalperiodi
 traje
tory must evolve inside a toleran
e box Xtol, 
entered around a �xed position Xf .In addition to this, the periodi
 motion needs to be maintained during a spe
i�ed period after theend of the rendezvous plan, in spite of the presen
e of navigation errors.The mission's obje
tive 
an be a
hieved by dividing the 
ontrol into two phases. During the�rst phase the spa
e
raft are brought in proximity of an admissible traje
tory, using the robust
ontrol te
hniques presented in Chapter 5 for instan
e. During the se
ond phase, the stability ofthe spa
e
raft periodi
 relative motion is ensured by a lo
al 
ontroller.

This two stages approa
h possesses several 
omputational advantages. The disturban
e-feedba
k
ontrol approa
h presented in Chapter 5 
an be used for instan
e during the �rst stage in orderto steer the spa
e
raft towards an admissible �nal state. It 
an guarantee to rea
h the smallestpossible arrival set 
entered around a �nal state belonging to an admissible periodi
 traje
tory. The
orresponding optimal 
ontrol problem 
an be obtained by modifying (5.46) to re�e
t the 
hange
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e
raft periodi
 relative motion 119in the �nal obje
tive:
min

Qf ,∆vk,Lk,i

tr (T−1QfT
−T ) + ‖∆v‖1

s.t.
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x̄k+1 = Akx̄k +Bk∆vk

x̄1 = xm1 , xm1 = X̃1

D = C(νN)x̄N , d0 = 0

∃Yi � 0 s.t. γTi =

[tr (Yi H2,1) ... tr (Yi H2,5)

]

γi = t vi − (hi,1Cx + hi,2C̄y + hi,3Cz)D

, i = 1...s

|∆vk| ≤ ∆Ṽmax(νk)−
k−1
∑

i=1

‖Lk,iP
w
i ‖2, k = 1...N−1

∃ τ1, τ2, ... τN−1 ≥ 0 s.t. Qf � 0, R � 0

(6.31)
where the same notations as in the previous 
hapters are maintained. The terms hi,j and vi
orrespond to the elements of the H and V matri
es whi
h de�ne the toleran
e box bounding theadmissible periodi
 traje
tories. For the 
onsidered 
ase, the H and V matri
es are de�ned in thesame way as in (4.29). The terms γi in (6.31) 
orrespond to the 
oe�
ients of the non-negativepolynomials whi
h de�ne the admissible arrival set. The ve
tor of parameters D 
orresponding tothe �nal state of the nominal traje
tory must belong to this arrival set.The optimal 
ontrol problem (6.31) 
an be solved at the ground station before the beginning ofthe rendezvous maneuvers and then the solution 
an be uploaded on-board the spa
e
raft. Applyingthe 
omputed series of disturban
e feedba
k laws brings the spa
e
raft in proximity of the periodi
traje
tory de�ned by the ve
tor of parameters D. In presen
e of navigation un
ertainties, theerror with respe
t to the periodi
 traje
tory at the end of the plan is guaranteed to belong to theellipsoidal set E(0, Qf ) whi
h is 
omputed before starting the maneuvers.During the se
ond stage, the analyti
al bi-impulsive 
ontrol de�ned in (6.11) 
an be used inorder to robustly stabilize the spa
e
raft periodi
 relative motion. The periodi
 referen
e traje
toryat this stage is de�ned by the ve
tor D obtained at the previous stage. The following 
onditionneeds to be veri�ed:

E(0, Qf ) ⊂ P(He, Ve) (6.32)in order to guarantee that, at the moment of the swit
h between the two 
ontrol approa
hes,the validity 
onditions for the bi-impulsive 
ontrol law are veri�ed. The frequen
y of 
ontrolre
omputation for the se
ond stage must be 
hosen a

ording to the 
onstraint imposed by (6.30).
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al bi-impulsive 
ontrol around a desired periodi
 traje
toryThis veri�
ation 
an be made before the beginning of the mission, using the 
omputational resour
esavailable at the ground station. The bound for the error at the end of the �rst stage given by(6.31) makes possible the a priori veri�
ation of the swit
h 
ondition (6.32). The 
hoi
e for there
omputation frequen
y 
an be made a

ording to the saturation restri
tions and to the mission'srequirement regarding the tra
king pre
ision.
6.4 Numeri
al examplesThe �xed-time spa
e
raft rendezvous mission de�ned in Table 6.1 is used in order to illustrate thetwo stages 
ontrol approa
h. The purpose is to guide the spa
e
raft towards a periodi
 proximitymotion 
ontained in the spe
i�ed bounds and then to maintain the periodi
 motion during 10 orbitalperiods starting at the end of the rendezvous maneuvers, in spite of the presen
e of navigationun
ertainties.
a [km℄ e ∆Vmax N X1 [m,m/s℄ t1 [s℄ Xf [m℄ Xtol [m℄ tN [s℄7 011 0.004 0.26 10 [1000,50,50,0,0,0℄ 0 [100,0,0℄ [50,25,25℄ 3 000Table 6.1: Spa
e
raft rendezvous mission dataThe tests are performed using the nonlinear simulator for the spa
e
raft relative motion de-s
ribed in [49℄. Random navigation errors are added to ea
h relative state measurement that isused for 
ontrol 
omputation and the J2 perturbation is also 
onsidered during the simulations. Thedisturban
e feedba
k 
ontrol is used during the �rst phase of the rendezvous mission, following thesame pro
edure that has been exposed for the examples in Chapter 5. The analyti
al bi-impulsive
ontrol is then used in the se
ond stage to maintain the periodi
 motion. In this se
ond stage, the
ontrol is applied at a 
onstant frequen
y that is �xed a priori.Our purpose is to evaluate the in�uen
e of several parameters on the performan
es of theanalyti
al bi-impulsive 
ontrol law. The performan
es of the disturban
e feedba
k strategy havealready been analysed in Chapter 5 and we fo
us here on the swit
h between the two 
ontrol laws,on the pre
ision for the tra
king of the periodi
 traje
tory and on the fuel 
ost of the 
ontrol inthe se
ond stage. We are interested in analysing the e�e
ts of the e

entri
ity of the referen
eorbit, of the interval between two 
onse
utive 
ontrol instants νk and νk+1 and of the amplitude ofnavigation un
ertainties.



6.4. Numeri
al examples 1216.4.1 In�uen
e of the e

entri
ity of the referen
e orbitIn order to analyse the in�uen
e of the e

entri
ity of the orbit of the target spa
e
raft on theperforman
es of the analyti
 
ontrol strategy, we 
onsider that the 
ontrol is applied at a 
onstantfrequen
y of ∆t = 100 s. Random noise is added to every spa
e
raft relative state measurement.The navigation un
ertainties are bounded by an ellipsoidal set whose semi-axes are equal to 0.02m for the relative position and 0.002 m/s for the relative velo
ity.
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Figure 6.3: Spa
e
raft relative traje
tory towards proximity periodi
 motionFigure 6.3 shows the spa
e
raft relative traje
tory obtained for the s
enario in Table 6.1. Thespa
e
raft arrive in proximity of an admissible periodi
 relative traje
tory using the disturban
efeedba
k approa
h. The analyti
 bi-impulsive 
ontrol then maintains the periodi
 motion for thedesired time in spite of the navigation un
ertainties.

Figure 6.4: Illustration of the swit
h 
onditions for the relative velo
ity errors
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al bi-impulsive 
ontrol around a desired periodi
 traje
toryThe swit
h 
onditions for the relative velo
ity errors are illustrated in Figure 6.4. The blue
ube indi
ates the restri
tions imposed by the saturation 
onstraints on the velo
ity errors and thered ellipsoid 
orresponds to the velo
ity errors guaranteed by the guidan
e algorithm at the endof phase 1. The restri
tions on the relative position errors have also been veri�ed and are largelysatis�ed.The in�uen
e of the e

entri
ity of the leader's orbit on the tra
king pre
ision and on the averagefuel 
onsumption is analysed for the analyti
 bi-impulsive 
ontrol. The 
losed-loop traje
toriesobtained in the se
ond phase of the mission, for di�erent values of the e

entri
ity, are presentedin Figure 6.5. The proje
tions of the periodi
 traje
tories onto the xy and xz planes are also givenin order to better show the geometry of the obtained traje
tories.
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Figure 6.5: The obtained periodi
 traje
tories for di�erent values of the e

entri
ityTable 6.2 summarizes for ea
h of the 
onsidered e

entri
ities the 
losed-loop performan
es ofthe analyti
 
ontrol. It gives the maximum absolute value for the position error with respe
t to theperiodi
 traje
tory dpmax, the maximum absolute value for the velo
ity error dvmax and the averagefuel 
onsumption per orbit ∆V /orbit for ea
h 
ase. It 
an be seen that for the 
onsidered intervalbetween 
ontrols, the performan
es of the bi-impulsive 
ontrol method are not very mu
h in�uen
edby the values of the e

entri
ity. A slight in
rease in the errors and in the fuel 
onsumption 
an beobserved for the highest 
onsidered e

entri
ity e = 0.5.
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e dpmax [m℄ dvmax [m/s℄ ∆V /orbit [m/s℄0.004 0.1865 0.0039 0.24940.1 0.1948 0.0039 0.23600.3 0.1800 0.0038 0.24060.5 0.3461 0.0061 0.2627Table 6.2: The in�uen
e of the e

entri
ity on the performan
es of the analyti
 
ontrol6.4.2 In�uen
e of the interval between 
ontrolsThe in�uen
e of the time interval between 
onse
utive 
ontrols ∆t on the tra
king performan
esis analysed here. Like in the previous 
ase, the navigation un
ertainties belong to an ellipsoidalset whose semi-axis are equal to 0.02 m for the spa
e
raft relative positions and 0.002 m/s for therelative velo
ity.
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Figure 6.6: The in�uen
e of the 
ontrol frequen
y on the tra
king performan
esThe evolution of the tra
king performan
es for di�erent values of ∆t is illustrated in Figure6.6. It 
an be seen that for every value of the e

entri
ity of the referen
e orbit, applying the ∆V
orre
tions less frequently results in a lower total fuel 
onsumption per orbit. For the 
ase where
e = 0.5, the plot only goes until ∆t = 500 s be
ause for higher values the validity 
onditions are nolonger veri�ed. For lower e

entri
ities the average fuel 
onsumption is very similar, regardless ofthe value 
hosen for the interval between 
ontrols. Only for the 
ase e = 0.5 the average fuel 
ostper orbit is slightly higher.Figure 6.6 also shows that while 
hoosing a larger value for ∆t redu
es the fuel 
onsumption,it also in
reases the tra
king errors. For all the 
onsidered e

entri
ities the position tra
king errorin
reases as the interval between 
ontrols in
reases. It 
an also be noti
ed that the tra
king errorsare more sensitive to the value of the e

entri
ity then the average fuel 
ost. This 
an be explainedby the fa
t that, for e

entri
 orbits, the spa
e
raft velo
ity is not 
onstant throughout the orbit.
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al bi-impulsive 
ontrol around a desired periodi
 traje
toryDi�erent distan
es 
an be travelled by the spa
e
raft in the same time interval, depending on itsposition on the orbit.The 
hoi
e for the frequen
y of 
ontrol appli
ation should re�e
t the best admissible 
ompromisebetween the fuel 
ost per orbit and the desired tra
king pre
ision. Small intervals between 
ontrolsguarantee the best tra
king pre
ision but in the same time are the most fuel 
onsuming. Choosinga large interval 
an lead to poor tra
king performan
es or it 
an violate the domain of appli
abilityof the 
ontrol.6.4.3 In�uen
e of the navigation un
ertaintiesThe in�uen
e of the level of the navigation un
ertainties on the 
ontrol performan
es is analysednext. For an e

entri
ity of e = 0.3, the e�e
ts of the navigation un
ertainties are presenteddepending on the value 
hosen for the 
ontrol interval ∆t.
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Figure 6.7: The in�uen
e of the level of measurement noise on the tra
king performan
esFigure 6.7 shows that even when there is no measurement noise the average fuel 
onsumption isdi�erent than zero be
ause the nonlinear model is used and the J2 perturbation is a
tive. However,it 
an be seen that when the spa
e
raft relative state is perfe
tly known, a smaller interval between
ontrols a
tually gives a smaller fuel 
ost per orbit sin
e the eventual errors do not propagate fora long time. In presen
e of navigation un
ertainties, a larger 
ontrol interval always leads to asmaller fuel 
onsumption. This 
an be explained by the fa
t the imperfe
t state information might
ause some unne
essary thrusting attempting to 
orre
t errors that a
tually 
ome from the sensingnoise. For all the values 
onsidered for the 
ontrol interval, the fuel 
ost per orbit in
reases as theun
ertainties levels in
rease.
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lusion 125Table 6.3 summarizes the tra
king performan
es of the analyti
al 
ontrol for ∆t = 400 s andfor every of the 
onsidered levels for the e

entri
ity.
δp[m℄;δv[m/s℄ dpmax [m℄ dvmax [m/s℄ ∆V /orbit [m/s℄0;0 0.7790 0.0040 0.01880.01;0.001 0.8968 0.0042 0.03880.02;0.002 1.0147 0.0050 0.06580.03;0.003 1.3995 0.0054 0.09310.04;0.004 1.7207 0.0078 0.1273Table 6.3: The in�uen
e of the level of navigation un
ertainties on the performan
es of the analyti

ontrol for e = 0.3 and ∆t = 400 s

6.5 Con
lusionThis 
hapter presents an analyti
al bi-impulsive 
ontrol method for stabilizing the spa
e
raft pe-riodi
 relative motion. The method is based on the fa
t that periodi
 traje
tories are equilibriumtraje
tories for the spa
e
raft relative motion. The states belonging to periodi
 relative traje
toriesform an invariant set for the spa
e
raft relative motion, whose robust stability must be ensured.The 
omputation of the stabilizing 
ontrol uses the results in Chapter 2, whi
h show that anyperiodi
 spa
e
raft relative traje
tory 
an be des
ribed by a 
onstant ve
tor of parameters. Thebi-impulsive stru
ture of the 
ontrol is 
hosen be
ause it 
an provide an analyti
al solution to thestability 
ondition.Spa
e
raft periodi
 relative traje
tories are unstable, meaning that any autonomous traje
torystarting in proximity of a periodi
 solution will not naturally 
onverge towards the periodi
 motion.This means that in presen
e of navigation un
ertainties the desired periodi
 traje
tory 
annot bepre
isely rea
hed. Corre
tions need to be 
omputed and applied periodi
ally in order to preventthe spa
e
raft from drifting away from the desired traje
tory. Bounds for the admissible errorwith respe
t to the periodi
 traje
tory are given in order to guarantee that the 
omputed 
ontrolsrespe
t the thrusters saturation 
onstraints. Limitations on the 
hoi
e for the 
ontrol re
omputationfrequen
y are imposed by the fa
t that, for bounded navigation un
ertainties, the tra
king errormust remain within the admissible error domain.The analyti
 bi-impulsive 
ontrol is integrated in a 2 stages Model Predi
tive Control s
heme,whose purpose is to guide the spa
e
raft towards an admissible periodi
 traje
tory and then torobustly maintain the periodi
 motion for a spe
i�ed time. This 
ontrol setting demonstrates thatgood robust guidan
e performan
es 
an be a
hieved using a 
ontrol s
heme whi
h does not rely on
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al bi-impulsive 
ontrol around a desired periodi
 traje
toryonboard optimization. Numeri
al simulations based on the nonlinear propagation model for thespa
e
raft relative motion are used to analyse the in�uen
e of di�erent parameters on the 
ontrolperforman
es. The most important tuning parameter is the frequen
y of 
ontrol re
omputationand its 
hoi
e 
an be driven by a 
ompromise between the desired tra
king pre
ision and the fuel
onsumption.



Con
lusionsThe �xed-time spa
e
raft rendezvous guidan
e problem is investigated in this thesis. The mainobje
tives are 
on
entrated around obtaining guidan
e algorithms 
apable of handling di�erenttypes of traje
tory and 
ontrol 
onstraints that arise from spa
e
raft mission requirements. Anotherimportant aspe
t is related to the robustness properties of the 
ontrol algorithms, motivated by theneed for in
reased 
ontrol authority for future spa
e
raft missions.The �rst part of the thesis fo
uses on the modelling of the spa
e
raft relative motion and morepre
isely on the study of the geometri
 properties of the relative traje
tories. A parti
ular attentionis paid to naturally periodi
 traje
tories, motivated by their importan
e for ensuring the passivese
urity of the spa
e
raft relative traje
tory and by their potential usage as fuel-fee parking orinspe
tion orbits. A new parametrization for the spa
e
raft relative traje
tories is proposed, basedon the Cartesian model for the spa
e
raft relative motion and on the expression of the transitionmatrix. It is showed that, in the general 
ase, two of these parameters 
hange over time, while inthe 
ase of periodi
 motion, all the parameters des
ribing the relative traje
tory are 
onstant. Thisproperty leads to a 
ompa
t, generi
 representation for the spa
e
raft periodi
 relative traje
tories,regardless of their shape or dimensions. It provides more �exibility than the 
lassi
al approa
hbased on the usage of parametrized 
urves su
h as 
ir
les and ellipsoids for spe
ifying a desiredperiodi
 relative traje
tory.A mathemati
al 
hara
terisation for the set of parameters 
orresponding to relative traje
torieswhi
h respe
t some dimensions 
onstraints, over a desired time interval, is ne
essary in order tosimplify the spa
e
raft relative traje
tory design pro
ess. For instan
e, in the 
ase where themission requires the usage of parking orbits, these parking orbits need to be designed su
h thatthey are periodi
 and 
ontained inside a spe
i�ed area around a waiting point along the rendezvoustraje
tory. For passively safe approa
h traje
tories, the fail traje
tories must be su
h that, in 
aseof system failure, the follower spa
e
raft remains inside a designated safe area in proximity of thetarget, for the desired period of time. The important question that needed to be answered was:whi
h is the relation between the values of the parameters and the geometri
 properties of theresulting spa
e
raft relative traje
tory?From a mathemati
al point of view, verifying that a traje
tory respe
ts the dimension 
on-straints over a spe
i�ed time interval, translates into numeri
ally 
he
king an in�nite number of
onditions. The 
lassi
al approa
h for rendering �nite the number of 
onditions is based on 
on-straints dis
retization. While this solution is simple and straightforward, it does not provide a



128 Con
lusionrigorous mathemati
al des
ription of the admissible traje
tories. Moreover, this approa
h 
annotguarantee that no 
onstraints violations will o

ur in between the dis
retization points. The pro-posed alternative is based on the properties of non-negative polynomials. Our method exploits thestru
ture of the solution for the spa
e
raft relative motion provided by the transition matrix andleads to a �nite 
hara
terisation of the admissible traje
tories that guarantees 
ontinuous satisfa
-tion of the 
onstraints. This result 
an provide the mission designer with a powerful tool for thespa
e
raft relative traje
tory design.The proposed 
hara
terisation of the admissible traje
tories is integrated in the fuel-optimalspa
e
raft rendezvous guidan
e problem for missions that impose 
ontinuous 
onstraints on theapproa
h traje
tory. It is showed that the 
onstrained guidan
e problem 
an still be written asa 
onvex optimization problem. The methods is illustrated for several examples, in
luding thespa
e
raft guidan
e towards a parking orbit de�ned as a 
onstrained periodi
 relative traje
tory, thespa
e
raft rendezvous with passive se
urity 
onstraints on the approa
h traje
tory or the spa
e
raftdo
king traje
tory with 
ontinuous visibility 
onstraints. The examples emphasize the advantageof our method over the 
lassi
al 
onstraints di
retization te
hnique, for whi
h 
onstraints violationso

ur in between the veri�
ation points.When the spa
e
raft relative state measure is a�e
ted by navigation un
ertainties, the �nalrendezvous obje
tive 
an no longer be pre
isely rea
hed. In this 
ase, the obje
tive be
omes toobtain a robust guidan
e algorithm that provides a good 
ompromise between the fuel 
ost ofthe approa
h traje
tory and the �nal rendezvous pre
ision, while guaranteeing robust 
onstraintssatisfa
tion for all the admissible values of the un
ertainties. Two 
ontrol te
hniques are proposedwhi
h optimize the fuel 
onsumption and the dimensions of a guaranteed �nal arrival set. Themethods rely on the 
omputation of a series of a�ne feedba
k 
ontrol laws that 
an ensure robust
onstraints satisfa
tion and a good performan
e trade-o�. It is emphasized that the resulting 
onvexoptimal 
ontrol problem 
an be solved only on
e, before the beginning of the rendezvous maneuvers,and then the 
omputed feedba
k laws 
an be dire
tly used at the 
orresponding 
ontrol instant,without any need for re
omputation. This property might be parti
ularly attra
tive when the on-board 
omputational resour
es are limited. The problem 
an be solved using the resour
es availableon the ground before the beginning of the maneuvers, followed by the upload of the parameters ofthe 
ontrol laws to the spa
e
raft. The 
hoi
e of the a�ne feedba
k stru
ture for the 
ontrol mightimpose some limitations on the a
hievable 
ontrol performan
es. A further interesting developmentwould be the estimation of lower and upper bounds on the performan
es, bounds that derive fromthis parti
ular 
hoi
e for the 
ontrol parametrization.



129The presen
e of navigation errors also a�e
ts the spa
e
raft periodi
 relative motion. Thespa
e
raft periodi
 relative traje
tories are showed to be unstable equilibrium traje
tories, meaningthat from a state arbitrarily 
lose to a periodi
 traje
tory, the spa
e
raft relative motion will notnaturally 
onverge towards the periodi
 solution. For this parti
ular 
ase, an analyti
al bi-impulsive
ontrol whi
h stabilizes the spa
e
raft periodi
 relative motion is proposed. The 
omputation ofthe 
ontrol is based on the fa
t that periodi
 traje
tories 
an be des
ribed using a 
onstant setof parameters. The bi-impulsive stru
ture is 
hosen be
ause it provides an analyti
al solution tothe stabilization problem, requiring very few 
omputational e�ort to obtain the 
ontrol. However,be
ause the 
orre
tions are 
omputed based on imperfe
t state information, the 
ontrol needs tobe applied periodi
ally in order to guarantee the stability of the motion. For a parti
ular 
hoi
efor the 
ontrol frequen
y, the validity domain of the analyti
al 
ontrol 
an be estimated a priori.The analyti
 bi-impulsive 
ontrol is integrated in a 2 stage Model Predi
tive Control s
hemewhi
h demonstrates that good robust guidan
e performan
es 
an be a
hieved using a 
ontrol s
hemewhi
h does not rely on onboard optimization.





Con
lusionsCette thèse est 
onsa
rée au problème de guidage en rendez-vous à temps �xé des satellites en orbiteterrestre. L'obje
tif prin
ipal est de 
on
evoir des algorithmes de guidage 
apables de prendre en
ompte les di�érents types de 
ontraintes sur le 
ontr�le ou sur la traje
toire relative imposées parles spé
i�
ations de 
haque mission. Le 
ara
tère robuste des man÷uvres obtenues, favorable àl'a

roissement de l'autonomie, est également investigués.La première partie du manus
rit est dédiée à la modélisation du mouvement relatif des satel-lites et plus pré
isément à l'étude des propriétés géométriques des traje
toires relatives. Les traje
-toires relatives périodiques sont étudiées plus un détail, du fait de leur possible utilisation pour lasé
urisation passive des traje
toires d'appro
he et de leur usage potentiel 
omme orbites de park-ing ou d'inspe
tion qui ne né
essitent pas de dépense de 
ombustible. Des nouvelles expressionsparamétriques sont proposées pour les traje
toires relatives, basées sur le modèle 
artésien lo
al dumouvement relatif et sur l'utilisation de l'expression de la matri
e de transition d'état. Pour 
ettenouvelle paramétrisation, deux paramètres seulement varient ave
 le temps et, dans le 
as du mou-vement périodique, les paramètres sont tous 
onstants. Cette propriété permet l'obtention d'unedes
ription 
ompa
te des traje
toires relatives périodiques, quelle que soit leur forme ou leur di-mension. La nouvelle formulation s'avère plus �exible et plus générique que l'appro
he 
lassique,basée sur l'utilisation des 
ourbes paramétrées, telles que les 
er
le ou les ellipses, pour spé
i�er unetraje
toire périodique désirée.Pour simpli�er le pro
essus de design des traje
toires relatives des satellites, il est né
essaire detraduire mathématiquement les 
ontraintes dimensionnelles à respe
ter sur un intervalle de tempsdonné. Par exemple, si une mission donnée né
essite l'utilisation des orbites relatives de parkingentre deux étapes di�érentes, 
es orbites peuvent être 
hoisies périodiques et de dimensions nedépassant pas une zone spé
i�ée autour d'un point de passage �xé sur la traje
toire. Pour desappro
hes qui né
essitent des garanties de sé
urisation passive de la traje
toire, on peut 
her
her àimposer aux traje
toires de panne d'évoluer à l'intérieur d'une zone de sé
urité spé
i�ée en proximitéde la 
ible pour un intervalle de temps �xé. La question importante qui se pose devient alorsd'identi�er le lien entre les valeurs des paramètres dé
rivant une traje
toire relative et ses propriétésgéométriques.D'un point de vue formel, 
erti�er qu'une traje
toire relative respe
te des 
ontraintes de dimen-sion sur un intervalle de temps �xé revient à véri�er un nombre in�ni de 
onditions. L'appro
he
lassique pour obtenir un nombre �ni des 
onditions à véri�er 
onsiste à dis
rétiser l'intervalle



132 Con
lusiondonné. Même si 
ette solution est simple et fa
ile à implémenter, elle ne fournit au
une des
rip-tion formelle des traje
toires admissibles. De plus, 
ette appro
he ne peut pas garantir que les
ontraintes sont également satisfaites sur l'intervalle entre deux points de dis
rétisation. Une solu-tion alternative est proposée, solution qui est basée sur les propriétés des polyn�mes non-négatifs.Cette nouvelle méthode exploite la stru
ture de la solution des équations dynamiques dé
rivant lemouvement relatif des satellites, solution donnée par la matri
e de transition. Elle amène à une
ara
térisation �nie des traje
toires admissibles et garantit la satisfa
tion 
ontinue des 
ontraintes.Ce résultat peut s'avérer très utile pour le design des traje
toires relatives de satellites pour desopérations de proximité.La des
ription développée pour les traje
toires relatives admissibles est intégrée dans un algo-rithme de guidage des satellites, adapté aux missions qui requièrent des 
ontraintes 
ontinues surla traje
toire d'appro
he. Il est montré que le problème de 
ommande optimale sous 
ontraintes
orrespondant peut être é
rit 
omme un problème d'optimisation 
onvexe. La méthode est illustréepar plusieurs exemples, tels que le guidage des satellites vers une orbite de parking dé�nie 
ommeétant une traje
toire périodique 
ontrainte, le rendez-vous orbital ave
 des 
ontraintes de sé
uritépassive sur la traje
toire d'appro
he ou le rendez-vous ave
 des 
ontraintes de visibilité. Ces exem-ples mettent en éviden
e les avantages de 
ette nouvelle méthode par rapport à l'appro
he basée surla dis
rétisation des 
ontraintes, pour laquelle les 
ontraintes ne sont pas né
essairement respe
téesentre les points de véri�
ation.Lorsque la 
onnaissan
e de l'état relatif des satellites est a�e
tée par des in
ertitudes de mesures,l'obje
tif �nal de la mission ne peut plus être pré
isément atteint. L'obje
tif devient alors d'obtenirdes algorithmes de guidage robustes, qui fournissent des solutions permettant d'atteindre un bon
ompromis entre la 
onsommation de 
ombustible et la pré
ision �nale, tout en garantissant la sat-isfa
tion des 
ontraintes pour toute valeur admissible des in
ertitudes. Deux te
hniques de 
ontr�lesont proposées à 
et e�et. Elles optimisent à la fois la 
onsommation de 
ombustible et la dimensionde l'ensemble d'arrivée qui 
ontient tous les états �naux possibles. Ces méthodes sont basées surle 
al
ul d'une série des lois de 
ommande au lieu d'un plan de man÷uvres et peuvent assurer lasatisfa
tion robuste des 
ontraintes et un bon 
ompromis au niveau des performan
es. Les prob-lèmes d'optimisation 
onvexe qui en dé
oulent doivent être résolues une seule fois, avant le débutde la mission, et puis les lois de 
ommande obtenues peuvent être utilisées sans besoin de re
al
ul.Cette 
ara
téristique peut s'avérer parti
ulièrement intéressante pour des missions où la puissan
ede 
al
ul embarqué est fortement limitée. La solution du problème d'optimisation peut don
 être
al
ulée au sol, avant le début des man÷uvres, suivie par une simple transmission des paramètres



133obtenus vers les satellites.Il est à noter que le 
hoix de travailler ave
 des stru
tures a�nes de 
ommande pourrait engen-drer des limitations au niveau des performan
es du 
ontr�le. Une dire
tion de re
her
he intéressanteserait d'estimer des bornes de performan
e supérieures et inférieures, bornes �xées par le 
hoix dela stru
ture a�ne.La présen
e des in
ertitudes de navigation a également des e�ets sur le mouvement relatif péri-odique des satellites. Les traje
toires périodiques sont des traje
toires d'équilibre instable. Par
onséquent, pour des états initiaux situés arbitrairement pro
he d'une traje
toire périodique, la tra-je
toire obtenue ne va pas 
onverger de manière autonome vers la solution périodique. Pour remédierà 
e problème, une stratégie de 
ontr�le basée sur le 
al
ul analytique des deux impulsions est pro-posée, a�n de stabiliser le mouvement relatif autour d'une traje
toire périodique donnée. Cetteméthode utilise le fait qu'une traje
toire périodique peut être dé
rite par un ve
teur 
onstant deparamètres. L'avantage de 
ette méthode est le fait que le 
al
ul analytique des 
orre
tions né
essitetrès peu de ressour
es. En même temps, 
omme les 
orre
tions sont obtenues à partir des mesuresa�e
tées par des in
ertitudes, le 
ontr�le doit être 
al
ulé et appliqué de manière périodique pourgarantir la stabilité du mouvement périodique. Pour une période de re
al
ule �xée, le domaine devalidité du 
ontr�le à deux impulsions peut être obtenu a priori.La méthode analytique à deux impulsions est intégrée dans une stratégie de 
ontr�le à deux étapes,en 
onjon
tion ave
 les méthodes de 
ommande robuste développées, a�n de réaliser le guidagerobuste en mouvement périodique de proximité. Cette stratégie fait preuve de bonnes performan
esde guidage, lesquelles sont obtenues en évitant la résolution embarquée de problèmes d'optimisation.





Appendix AStability of spa
e
raft periodi
traje
tories
The stability analysis of a system in the sense of Lyapunov studies the 
onvergen
e of the system'sstate towards some equilibrium points. An equilibrium point is de�ned as a state that the system
an maintain inde�nitely without any 
hange in the input. In the 
ase of the spa
e
raft relativemotion, the notion of equilibrium point is extended to the notion of equilibrium traje
tory [51℄. Ithas been shown in Chapter 2 that on
e on a periodi
 relative traje
tory, the spa
e
raft will pursuethe periodi
 motion as long as the input is maintained to zero. In this 
ase, the stability analysis inthe sense of Lyapunov 
onsists in 
hara
terising the behaviour of the system for initial states thatare arbitrarily 
lose to a periodi
 traje
tory.The linearized spa
e
raft relative motion 
an be modelled by the periodi
 system:

X̃ ′(ν) = Ã(ν)X̃(ν), Ã(ν) = Ã(ν + 2π) (A.1)where the dynami
al matrix Ã(ν) is de�ned as in (1.19). The stability properties of the system(A.1) 
annot be dedu
ed from the stability properties of the dynami
al matrix, as it is the 
asefor LTI systems. For periodi
 systems, and more generally for time-varying systems, even if thedynami
al matrix is stable for every value of the independent variable, this does not ne
essarilyimply that the system is stable [28℄.The solution to this system 
an be expressed using the state transition matrix Φ, as des
ribedin Se
tion 1.4.1:
X̃(ν) = Φ(ν, ν0)X̃(ν0) (A.2)where X̃(ν0) denotes the initial 
onditions. The monodromy matrix is de�ned as the state transitionmatrix over one period of the 
oe�
ients of the periodi
 system (A.1):

C = Φ(νk + 2π, νk), ∀νk (A.3)Considering the Yamanaka-Ankersen state transition matrix [103℄ and taking νk = 0, the mon-



136 Appendix A. Stability of spa
e
raft periodi
 traje
toriesodromy matrix for the spa
e
raft relative motion is given by:
C =
















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
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




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(A.4)
where the term J is de�ned as in (1.33) over the interval [0 2π].The eigenvalues of the matrix C are 
alled the 
hara
teristi
 multipliers denoted here by λi. Thevalues of the 
hara
teristi
 multipliers are independent of the parti
ular 
hoi
e of νk in (A.3) [28℄.The stability properties of the periodi
ally time-varying system (A.1) 
an be studied by looking atthe properties of the 
hara
teristi
 multipliers.A

ording to the theorems in Chapter 4 of [80℄, the periodi
 system (A.1) is stable if and onlyif:

|λi| < 1, ∀i (A.5)In the 
ase where there is only one 
hara
teristi
 multiplier with unity magnitude then there existssome initial 
onditions for whi
h the solution of the system is periodi
 [46℄. If the multipli
ity ofthe unity eigenvalue is greater than one then the system is unstable, in the sense that the naturalresponse of the system does not always remain bounded as time goes to in�nity [80℄.The eigenvalues of the monodromy matrix C 
orresponding to the linearized spa
e
raft relativedynami
s are all equal to 1. A

ording to the previous observation, there exists some parti
ularinitial 
onditions for whi
h the response of the system is periodi
, whi
h 
on�rms the results inChapter 2. However, the periodi
 spa
e
raft relative traje
tories are unstable sin
e the multipli
ityof the unity 
hara
teristi
 multiplier is greater than 1. As a 
onsequen
e, if the spa
e
raft relativemotion starts arbitrarily 
lose to a periodi
 solution, it will not naturally 
onverge towards theperiodi
 motion.



Appendix BProperties of non negative polynomials
The results presented in Chapter 3 are based on the properties of non-negative polynomials givenby Nesterov in [73℄. Nesterov proves that the 
one of 
oe�
ients of univariate polynomials whi
hare non-negative on some segment of the real axis 
an be represented as the linear image of the 
oneof positive semi-de�nite matri
es. This result enables the usage of the semi-de�nite programmingfor optimization problems with polynomial non-negativity 
onstraints.The de�nitions presented here are extra
ted from [73℄ and they 
on
ern only the 
on
epts neededin order to understand the developments in Chapter 3.
B.1 Che
king polynomials non negativity on a �nite intervalLet Ka,b be the 
onvex, 
losed and pointed 
one of the 
oe�
ients of polynomials that are nonnegative on a �nite interval [a b] ∈ R:

Ka,b =

{

p ∈ R
n+1, P (w) =

n
∑

i=0

piw
i, ∀w ∈ [a b]

} (B.1)Referen
e [73℄ shows that a polynomial P (w), represented through its ve
tor of 
oe�
ients p =
[

p0 ... pn

]T , belongs to Ka,b if and only if there exist two symmetri
 positive semi-de�nite ma-tri
es Y1 and Y2 su
h that:
p ∈ Ka,b ⇐⇒ ∃Y1, Y2 � 0 s.t. p = Λ∗(Y1, Y2) (B.2)The de�nition of the linear operator Λ∗ and the dimensions of the matri
es Y1 and Y2 depend onwhether the polynomial P (w) has an odd or even degree.For n odd take Y1, Y2 ∈ R

(m+1)×(m+1) � 0, where m = (n − 1)/2. Let Hk,i ∈ R
(k+1)×(k+1) be



138 Appendix B. Properties of non negative polynomialssome Hankel matri
es that 
ontain ones on the i-th anti-diagonal and zeros everywhere else:
Hk,1 =
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(B.3)
In this 
ase, the operator Λ∗ is de�ned as:

Λ∗(Y1, Y2) =


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(B.4)
For n even take Y1 ∈ R

(m+1)×(m+1) � 0 and Y2 ∈ R
m×m � 0, where m = n/2. In this 
ase, theoperator Λ∗ is de�ned by:

Λ∗(Y1, Y2) =


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(B.5)
B.2 Che
king polynomials non negativity on an in�nite intervalThe ne
essary and su�
ient 
onditions for non negativity of univariate polynomials on in�niteintervals have also been given in [73℄. A polynomial P (w) is non negative on R if and only ifthere exists a symmetri
 positive semi-de�nite matrix Y ∈ R

(m+1)×(m+1) su
h that p, the ve
tor of
oe�
ients of P (w), veri�es:
p ∈ K∞ ⇐⇒ ∃Y � 0 s.t. p = Λ∗(Y ) (B.6)



B.2. Che
king polynomials non negativity on an in�nite interval 139where the linear operator Λ∗ is de�ned by:
Λ∗(Y )(j) = tr (Y Hm,j), j = 1..2m+ 1 (B.7)





Appendix CEllipsoidal sets
C.1 Representations of ellipsoidal setsThere are several ways of representing an ellipsoidal set, ea
h one with its own advantages. Anellipsoidal set E of dimension n 
an be des
ribed using a ve
tor c ∈ R

n for its 
enter and a positivesemi-de�nite matrix Q for its shape:
E(c,Q) = {x ∈ R

n | (x− c)TQ(x− c) ≤ 1} (C.1)Using this representation, the semi-axes of the ellipsoid ai are given by:
ai =

√

1

λi(Q)
(C.2)where λi(Q) denotes the i-th eigenvalue of the Q matrix.By expanding the terms in (C.1), the ellipsoid E is de�ned by an non homogeneous quadrati
inequality:

E(c,Q) = {x ∈ R
n | xTQx− 2cTQTx+ cTQc− 1 ≤ 0} (C.3)This 
an be written as a homogeneous quadrati
 inequality by augmenting the variable:

E(c,Q) =







x ∈ R
n |

[

xT t
]





−Q Qc

cTQ 1− cTQc









x

t



 ≥ 0







(C.4)where t = 1.The positive de�nite matrix Q 
an also be written as:
Q = UΛUT = UΣ2UTwhere Λ and Σ are diagonal matri
es. Using this de
omposition, alternative des
riptions for theellipsoidal set E(c,Q) 
an be obtained:

E(c,Q) = {x ∈ R
n | ‖ΣUT (x− c)‖ ≤ 1} = {x ∈ R

n | ‖Q 1

2 (x− c)‖ ≤ 1} (C.5)



142 Appendix C. Ellipsoidal setsBy de�ning v = ΣUT (x− c) we have:
E(c,Q) = {x ∈ R

n | x = c+ UΣ−1v, ‖v‖ ≤ 1} (C.6)C.2 Operations with ellipsoidsAn ellipsoidal set E(c,Q), propagated through a linear fun
tion Ax + b is still an ellipsoidal setde�ned by:
y = Ax+ b, ∀x ∈ E(c,Q) ⇐⇒ y ∈ E(Ac+ b,A−TQA−1) (C.7)The Minkowski sum ⊕ of two ellipsoidal sets E1(c1, Q1) and E2(c2, Q2) is de�ned as:
E1 ⊕ E2 = {x ∈ R

n | x = x1 + x2, x1 ∈ E1, x2 ∈ E2} (C.8)The Minkowski sum of two ellipsoids is not usually an ellipsoid. However an analyti
al ellipsoidalouter approximation of the Minkowski sum of two ellipsoids 
an be obtained by using the pro
eduredes
ribed in [81℄:
E1(c1, Q1)⊕ E2(c2, Q2) ⊆ EM (c1 + c2, QM ) (C.9)where the matrix QM de�ning the ellipsoidal set EM is de�ned by:

QM = (A#)T (Q0 −Q0N(NTQ0N)#NTQ0)A
# (C.10)and

Q0 =





Q1/2 0n

0n Q2/2



 A =
[

In In

] (C.11)The matrix N de�nes the orthogonal 
omplement of the matrix A (i.e. NA = 0) and the symbol
# denotes the pseudo-inverse of the matrix.
C.3 The S-pro
edureThe S-pro
edure studies the non negativity of a quadrati
 form on a domain de�ned by quadrati
inequalities, su
h as ellipsoidal sets (C.3). Given the quadrati
 fun
tions:

fi(x) = xTMix+ 2mT
i x+ µi, i = 0..l



C.3. The S-pro
edure 143the purpose is to verify if:
f0(x) ≥ 0, ∀x su
h that fi(x) ≥ 0, i = 1..l (C.12)For l = 2, the previous inequality is veri�ed if and only if the quadrati
 fun
tion f0 is a linear
onsequen
e of the quadrati
 fun
tions f1 and f2. Using the representations based on homogeneousquadrati
 forms as in (C.4), the 
ondition (C.12) be
omes:

[

xT tT
]





M0 m0

mT
0 µ0









x

t



 ≥ 0,∀x su
h that [xT tT
]





Mi mi

mT
i µi









x

t



 ≥ 0, i = 1..2 (C.13)As reminded in [72℄, the 
ondition (C.13) is equivalent to the following Linear Matrix Inequality:
∃τ1, τ2 ≥ 0 su
h that M̄0 ≥ τ1M̄1 + τ2M̄2 (C.14)where the matri
es M̄i 
orrespond to the homogeneous quadrati
 fun
tions in (C.13).For l > 2 the existen
e of a positive semi-de�nite linear 
ombination between the matri
es
orresponding to the quadrati
 inequalities does not ne
essarily mean that (C.12) holds. A sup-plementary 
ondition on the matrix Mi needs to be added, the 
ondition of the matri
es beingsimultaneously diagonalizable [76℄.In the 
ase where l = 1, 
ondition (C.12) translates into the problem of 
he
king whether anellipsoidal set is 
ontained inside another ellipsoidal set.
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