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Abstrat
Reent spae missions rely more and more on the ooperation between di�erent spaeraft in orderto ahieve a desired objetive. Among the spaeraft proximity operations, the orbital rendezvousis a lassial example that has generated a large amount of studies sine the beginning of thespae exploration. However, the motivations and objetives for the proximity operations haveonsiderably hanged. The need for higher autonomy, better seurity and lower osts promptsfor the development of new guidane and ontrol algorithms. The presene of di�erent types ofonstraints and physial limitations also ontributes to the inreased omplexity of the problem.In this hallenging ontext, this dissertation represents a ontribution to the development of newspaeraft guidane and ontrol algorithms.The works presented in this dissertation are based on a strutural analysis of the spaeraftrelative dynamis. Using a simpli�ed model, a new set of parametri expressions is developed forthe relative motion. This parametrization is very well suited for the analysis of the geometriproperties of periodi relative trajetories and for handling di�erent types of state onstraints. Aformal onnetion is evidened between the set of parameters that de�ne onstrained trajetoriesand the one of positive semi-de�nite matries. This result is exploited in the design of spaeraftrelative trajetories for proximity operations, in the impulsive ontrol framework. The resultingguidane algorithms enable the guaranteed ontinuous onstraints satisfation, while still relyingon semi-de�nite programming tools. The problem of the robustness of the omputed maneuverswith respet to navigation unertainties is also addressed.





Résumé
La réalisation des missions spatiales repose de plus en plus souvent sur la oopération entre dif-férents engins spatiaux. Parmi les opérations de proximité, le rendez-vous orbital est une pratiqueaussi anienne que la onquête spatiale, qui ontinue de générer de nombreux travaux de reherhe.Cependant, les motivations et les objetifs des réentes missions de rendez-vous orbital ont large-ment évolués. En e�et, les besoins d'une autonomie arue, d'une séurité améliorée, d'une plusgrande �exibilité et d'une rédution des oûts, onstituent autant d'initations au développementde nouvelles méthodes de guidage et ontr�le. La satisfation de ontraintes très variées, dues àdes onsidérations de séurité ou à des limitations tehnologiques inontournables des ationneursou des apteurs, ontribuent à la rihesse du problème posé. Dans e ontexte, le développementde nouveaux algorithmes de ommande onstitue un vrai dé� sienti�que que ette thèse tente derelever.Les travaux de ette thèse sont basées sur l'analyse struturelle des expressions dérivant lemouvement relatif entre deux véhiules en orbite. Sur la base des modèles de transition disponiblesdans la littérature, une nouvelle paramétrisation du mouvement relatif est proposée. Celle-i,partiulièrement adaptée à la aratérisation des trajetoires périodiques, o�re la possibilité d'uneprise en ompte de ontraintes d'état très variées. Un lien formel est mis en évidene entre lesparamètres dé�nissant les trajetoires ontraintes et le �ne des matries semi dé�nies positives.Ces résultats sont exploités dans le développement des algorithmes de design de trajetoires pourdes opérations de proximité, sous hypothèse de poussée impulsionnelle. Ces algorithmes ont, entreautre, la propriété de permettre la satisfation des ontraintes sur la trajetoire de manière ontinuedans le temps, tout en utilisant les outils numériques de la programmation onvexe. Le problèmespéi�que de la robustesse des man÷uvres aux inertitudes de la haîne de mesure est aussi abordédans e manusrit. Des approhes de type ommande préditive sont mises en plae a�n de garantiraux opérations une préision souhaitée en présene de perturbations.
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IntrodutionRésumé: Le suès des missions spatiales repose de plus en plus souvent sur la oopération entreplusieurs véhiules en orbite. L'approvisionnement de la Station Spatiale Internationale par ex-emple est assuré par des opérations de rendez-vous orbital, tandis que des nombreuses missionssienti�ques utilisent des formations de satellites pour relever des mesures. Ce type d'opérationsont des besoins spéi�ques en termes d'algorithmes de ontr�le, vue la distane réduite entre lesvéhiules, les ontraintes d'autonomie et de séurité des mission spatiales et les ressoures limitées.Les travaux de ette thèse portent sur le développement des algorithmes de guidage pour des opéra-tions de proximité entre les satellites, où la distane réduite permet la navigation relative. L'objetifest de fournir des plans de man÷uvres optimisés du point de vue de la onsommation de om-bustible, qui prennent en ompte les ontraintes opérationnelles de la mission et qui soient robustesà des inertitudes. Le adre de travail hoisi est elui des méthodes dîtes diretes, qui permettent laformulation du problème de guidage omme un problème d'optimisation paramétrique.Bakground and motivationsSpaeraft rendezvous and doking apabilities are required for a large array of spae appliationsthat involve more than one spaeraft. It is a key tehnology for the in-orbit assembly of large units,suh as the spae stations (Mir, Skylab, ISS). The spae stations further rely on rendezvous anddoking missions in order to reeive supplies or to exhange the rew. For instane, the unmannedAutomated Transfer Vehile (ATV) from the European Spae Ageny periodially supplies theInternational Spae Station (ISS) with propellant, water, air, payloads and experiments. Reently,the Dragon spaeraft beame the �rst ommerial spaeraft to suessfully dok with the ISS.Spae rendezvous has also been used for a variety of other purposes, inluding the serviemissions to the Hubble Spae Telesope and the EURECA spaeraft retrieval. Other on-orbitserviing missions are under study for existing spaeraft [7, 85℄. The inreasing number of spaedebris in the Low Earth Orbit originating from mutual ollisions, motivated the study of ativedebris removal missions [13℄.In the reent years, a lot of interest has been shown for spae sienti� missions that rely ondi�erent instruments distributed over a �eet of spaeraft. This on�guration an provide severaladvantages over the traditional monolithi satellite ontaining the payloads orresponding to severaldi�erent missions objetives. It an redue the launh osts by reduing the launh mass and it



2 Introdutionan use multiple "mass prodution" vehiles to assemble the �eet. The robustness of the missionis also inreased by this on�guration sine the payloads are distributed among the spaeraft andan eventually be replaed in ase of failure [98℄. Formation �ying o�ers more �exibility beausethe formation an be reon�gured in order to follow new mission requirements. This approahhas been onsidered for sienti� missions with very diverse objetives, suh as Earth observation(A-train), interferometry for Earth-like planets detetion (DARWIN), measurement of gravitationalwaves from supermassive blak hole binaries (LISA) or X-rays spae telesope (Simbol-X).The suess of spaeraft rendezvous and formation �ying missions depends on the preiseontrol of the spaeraft relative state, often-times in the ontext of relatively small spaeraftseparations. In order to ensure the seurity of the mission, a high degree of autonomy and robustnessis desired for the relative motion ontrol proedure. For missions suh as the Mars Sample Return[86℄, for whih the ommuniation delay between the ground station and the spaeraft is verylarge, an autonomous guidane algorithm whih guarantees that no ollision will our between thespaeraft is of vital importane.The fuel-ost of the spaeraft maneuvers is also a matter of onern. The propulsion systeman aount for up to 50% of the spaeraft mass at the launh time, reduing the available payloadmass and in�uening the ost of the launh. The ontrol algorithms must ensure that the omputedmaneuvers are fuel-optimal, suh that the desired lifetime for the mission an be ahieved with thesmallest amount of propellant.The spaeraft rendezvousThe orbital rendezvous proess onsists in exeuting a series of orbital maneuvers with the purposeof bringing two spaeraft in lose viinity of eah other. Usually one of the spaeraft, alledthe target, is onsidered to be inert, while the seond spaeraft, alled the follower or the haser,exeutes the maneuvers. When the objetive is to physially join the two spaeraft involved in therendezvous, we speak about doking or berthing.W. Fehse identi�ed in [29℄ several phases of a rendezvous mission, eah one with its own hal-lenges. For the launh stage, the purpose is to bring the two spaeraft in viinity by plaingthem in the same orbital plane. The phasing stage aims at reduing the phase angle betweenthe target and the follower (see the illustration in Figure 1). During the phasing maneuvers, thefollower spaeraft is ontrolled from the ground station and the navigation is based on absolutemeasurements with respet to the Earth.For the far range rendezvous phase or the homing phase, the follower spaeraft moves towards



3

Figure 1: View of the target's orbital plane at the beginning of the phasing stagea stable position in proximity of the target, using relative navigation measurements. For the ATVrendezvous senario with the ISS for instane, this stage starts at a range of few tens of kilome-tres and ends at a range of few kilometres from the target spaeraft. The following lose rangerendezvous phase is usually divided in two stages: the losing maneuvers guiding the spaerafttowards the �nal approah orridor and the �nal approah stage leading to mating onditions.The di�erent stages of an orbital rendezvous mission are summarized in Figure 2. The workspresented in this dissertation are related to the homing and the losing phases, during whih the twospaeraft rely on relative navigation measurements in order to ahieve the desired �nal onditions.Some of the presented examples also refer to the �nal approah phase, leading to the spaeraftdoking.Mission onstraints and tehnial hallengesThe spaeraft rendezvous guidane is a omplex proess due to the di�erent types of onditionsand onstraints that must be respeted during eah phase of the mission. For the phases onsideredin this dissertation, the far range and lose range rendezvous stages, the approah trajetory anbe required for instane to pass through spei�ed hold points where the follower vehile mustwait for the permission to proeed, either from the ground ontrol station or from the rew of thetarget spaeraft [29℄. Seurity onsiderations might impose the hoie of approah trajetories thatare inherently safe, meaning that they are guaranteed to avoid any ollision with target vehile,even in the ase where the thrust apabilities of the haser spaeraft are ompromised. Duringthe �nal approah maneuvers, the follower spaeraft might also be required to remain inside the



4 Introdution

Figure 2: The di�erent phases of a rendezvous missionvisibility one of the target spaeraft for ontinuous visual ontat. These spei�ations orrespondto onstraints that the rendezvous trajetory must respet in order to ertify that the missionrequirements are met.Another fator that must be taken into onsideration when designing the approah trajetoryis the fuel-ost of the maneuvers. Thrust maneuvers an be approximated with impulses, i.e.instantaneous hanges of veloity at the time of maneuver. This simpli�es the omputation andthe analysis of a fuel-optimal maneuvers plan for the spaeraft rendezvous [29℄. The impulsiveapproximation is espeially well adapted for the liquid propellant engines whih are used for awide span of spaeraft maneuvers, ranging from orbital transfer maneuvers to station keeping andspaeraft attitude ontrol. Any omputed maneuvers plan needs to respet the onstraints on theavailable propellant budget for the rendezvous mission.



5Orbital disturbanes, navigation errors and ontrol exeution errors an alter the outome of theomputed maneuvers. The presene and the e�ets of these disturbanes need to be integrated intothe rendezvous trajetory design phase. Navigation errors are de�ned as the di�erene between thestate pereived by the onboard system and the real state of the vehile. They an be aused by thesensors measurement performane limitations, by errors in the alignment between the sensors andspaeraft axes, by the onboard information proessing and �ltering, et. The ontrol exeutionerrors refer to deviations in magnitude, diretion or appliation time from the desired impulsivethrusts. They an be due to mounting errors, to misalignments with the mehanial axes, to theengine performanes, et. The deision autonomy of the spaeraft annot be inreased withoutproviding a priori guarantees for its behaviour in perturbed onditions. This must be done whileusing ontrol algorithms of redued omplexity sine the omputational resoures available on boardthe spaeraft are limited with respet to those available on ground.Some of these hallenges are addressed in this dissertation. The main objetive is to providealgorithms for the omputation of robust fuel-optimal maneuvers plans leading to rendezvous tra-jetories that respet the onstraints imposed by the mission's requirements, even in presene of aertain lass of unertainties. A study of the spaeraft onstrained naturally periodi trajetoriesis arried out in relation to the seurity spei�ations for the approah trajetory.The spaeraft trajetory design is a hallenging problem due to the presene of trajetory andontrol onstraints, to the robustness onsiderations and to the large number of design parameters.In the most general ase, only the initial time of the mission is �xed and the trajetory designproedure must provide a hoie for the �nal time, the number and the distribution of thrustinginstants, the amplitude and the diretion of the thrusts. If the design algorithm is intended foruse onboard the spaeraft, then restritions are added on its omputational omplexity. A briefpresentation of the main trajetory design approahes is given in what follows, with a fous on theirability to handle the di�erent mission requirements.Spaeraft relative trajetory design approahesThe trajetory design for spaeraft rendezvous and proximity operations refers to the omputationof a series of maneuvers that steer the spaeraft from some known initial relative onditions to some�nal desired relative onditions. The design proedure generally onsists in solving an open-loopoptimal ontrol problem whose solution orresponds to the best approah trajetory that respetsthe onstraints and minimizes a spei�ed riteria. The most ommon objetive is to minimize thetotal fuel ost of the rendezvous maneuvers. This an guarantee that the mission's fuel budget is



6 Introdutionrespeted and an inrease the lifetime of the spaeraft. The tehniques for solving this type ofonstrained open-loop optimal ontrol problems are usually divided into diret methods and indiretmethods [24℄.Indiret methods are based on analytial neessary optimality onditions derived using thealulus of variations and the Pontryagin maximum priniple. The optimal solution an be foundby solving the two-point-boundary-value problem (TPBVP) resulting from these onditions [24℄.When using the indiret methods, the optimal spaeraft trajetory for the rendezvous problemis omputed indiretly, based on the evolution of the adjoint state vetor or the so-alled primervetor [58, 62℄. For impulsive trajetories, the primer vetor indiates the times and the positionsof the thrust impulses that minimize the total fuel ost. However, the resolution of the problemis ompliated in the general ase, espeially when onstraints are added to the problem. It alsorequires a good guess for the initial value of the primer vetor. Reent works on the spaeraftrendezvous problem have foused on transforming the neessary onditions for optimality intoonstrutive onditions for the optimal solution [3, 4℄.Diret methods rely on the transformation of the optimal ontrol problem into a parameteroptimization problem. This is usually ahieved through ontrol parametrization and through dis-retization [45℄. The obtained �nite-dimensional optimal ontrol problem an be e�iently solvedusing the existing algorithms [11℄. There are di�erent types of diret methods depending on thehoie for the deision variables and on the used integration method. Among them, the diret shoot-ing methods are used in the ases where the parametrisation onerns only the ontrol variables.The system's dynamis are usually linear and are integrated analytially or numerially [49℄.The indiret resolution methods ertify the global optimality of a omputed solution by hekinga set of neessary and su�ient (if available) onditions. However they lead to problems that arehard to solve numerially, espeially when onstraints are onsidered. Diret methods are able todeal with state and ontrol onstraints more e�etively and to integrate robustness elements withrespet to di�erent types of disturbanes. Even if the obtained solution an only be erti�ed asoptimal for the partiular parametrization and/or disretization that has been onsidered, theyprovide an attrative alternative for the rendezvous guidane problem.The algorithms developed in this dissertation for the design of spaeraft rendezvous traje-tories fall into the ategory of diret shooting methods. Other than the advantage related to theredued omplexity of the resulting optimization problem, this approah also o�ers the possibilityof inluding robustness onsiderations diretly in the phase of ontrol synthesis. Several types ofunertainties an be easily handled thanks to robust programming tehniques [9℄. Our main fous



7will be on reduing the e�ets of relative navigation unertainties on the �nal rendezvous preision.Spaeraft trajetory ontrol: losing the loopThe diret and indiret approahes for spaeraft relative trajetory design provide a series offuel-optimal maneuvers that need to be exeuted at the spei�ed instants in order to reah thedesired �nal objetive. The maneuvers plan is obtained based on open-loop preditions of theevolution of the spaeraft relative trajetory. As previously disussed, the presene of orbitalperturbations, navigation unertainties or ontrol exeution errors might alter the outome of theomputed maneuvers. In order to limit their undesired e�ets and to reah a spei�ed rendezvouspreision, the trajetory ontrol needs to be implemented in a losed-loop manner.The resolution of a onstrained open-loop optimal ontrol problem an be integrated in a losed-loop setting by using the Model Preditive Control (MPC) methodology [84℄. Model PreditiveControl or Reeding Horizon Control is a ontrol tehnique for whih the ontrol ation is obtainedby solving at eah sampling instant a �nite-horizon open-loop optimal ontrol problem, using theurrent state of the system as initial state. The optimization delivers every time a series of ontrolations out of whih only the �rst one is applied to the system. The rest of the plan is disardedbeause a new solution, based on new measurement information, will be omputed at the nextsampling time [68℄.Model Preditive Control is a popular ontrol tehnique for spaeraft rendezvous and proximityoperations [16,18,26,32,41,43,86℄. Its popularity is due to the ability to integrate onstraints andunertainties diretly into the trajetory design problem. Di�erent other ontrol approahes havebeen proposed for spaeraft proximity operations and formation �ying, spanning over a largerange of tehniques. A non exhaustive list inludes adaptive ontrol [2, 95℄, non-linear quadratiregulator [6℄, feedbak impulsive ontrol [89℄, Lyapunov-based nonlinear output feedbak ontrol[104℄, time-delayed feedbak ontrol [12℄ and several others [87,88℄. But very few of them onsiderthe presene of onstraints or the fuel ost of the maneuvers, and fous only on reahing the spei�ed�nal onditions.Instead of determining o�-line a feedbak poliy that provides the optimal ontrol for all systemstates, MPC solves an open-loop optimal ontrol problem on-line whih takes into onsiderationthe urrent state of the system. The periodi reomputation of the solution reates an impliitlosed-loop. The robustness properties of this impliit losed-loop with respet to di�erent types ofunertainties are an important aspet, espeially if the objetive is to provide the ontrol systemon-board the spaeraft with inreased deision autonomy.



8 IntrodutionThe presene of unertainties raises questions related to the hanges indued in the ontrolperformanes. In the ase of spaeraft trajetory ontrol, the performanes are de�ned in relationto the fuel onsumption and to the preision with respet to the desired �nal objetive of themaneuvers. The Model Preditive Control possesses some inherent robustness properties, de�nedas the robustness of the losed-loop for the ontrol that has been omputed without expliitlyonsidering the unertainties [36, 67℄. But for problems that inlude ontrol and state onstraints,the omputed ontrol ations must guarantee that no transgressions of the onstraints will ourfor all the possible realizations of the unertainties. In this ase, the inherent robustness propertiesare no longer su�ient and the presene of unertainties needs to be inluded in the writing of theoptimization problem [27,59,69,79℄. Another key aspet is the property of reursive feasibility of theontrol problem in presene of unertainties. The optimal ontrol is reomputed at eah samplinginstant and it is important to provide theoretial guarantees that, if the �rst optimization problemis feasible, then all the subsequent optimization problems will also be feasible. These importantproperties are investigated for the guidane algorithms proposed in this dissertation.Objetives and organization of the dissertationThe works presented in this dissertation are oriented following two main axes: the analysis of thespaeraft relative motion and the design and ontrol of the spaeraft relative trajetory. The studyof the relative motion onentrates on spaeraft naturally periodi relative trajetories. Theseperiodi trajetories, in the absene of perturbations, require no ontrol in order to be maintained.This property ould make them good andidates for parking orbits in between di�erent phases of arendezvous mission, for autonomous inspetion trajetories for on-orbit serviing missions or for failtrajetories in ase of system malfuntion. Chapter 1 summarizes the most ommon-used modelsfor representing the spaeraft relative motion. It also provides an overview of the propertiesof the spaeraft relative trajetories that are of interest for the rendezvous guidane problem,suh as periodiity onditions, inter-satellite distane and geometri properties of periodi relativetrajetories.The di�erent periodi motion initialisation tehniques presented in the literature do not give anyinformation about the geometri properties of the resulting trajetory. To address this problem,a new parametrization for the spaeraft relative trajetories is developed in Chapter 2. Thisparametrization provides a good framework for analysing their properties and it is in used in Chapter3 in order to obtain a formal mathematial desription of the spaeraft relative trajetories whihrespet ontinuously in time some dimensions onstraints.



9The spaeraft relative trajetory ontrol onentrates around the problem of designing fuel-optimal maneuvers plans leading the spaeraft from an arbitrary initial relative state towards adesired �nal relative state, following trajetories whih respets di�erent mission onstraints. Chap-ter 4 details the writing of the spaeraft rendezvous guidane problem as an impulsive optimalontrol problem using diret shooting methods. It illustrates the ontribution of the results pre-sented in Chapter 3 in obtaining approah trajetories that respet visibility onstraints or thatare guaranteed to be safe for a large range of system errors. The robustness aspets with respetto navigation unertainties are treated in Chapter 5. The guidane problem is modi�ed in order toprovide a solution whih guarantees a priori onstraints satisfation for all admissible values for theunertainties, without modifying the omplexity of the ontrol algorithm. Moreover, the proposedontrol strategy also minimizes the e�ets of the sensing noise on the preision with whih the �nalobjetive is ahieved.The presene of perturbations also a�ets the spaeraft naturally periodi motion. Chapter 6presents a low-omplexity stabilizing ontrol strategy for the spaeraft periodi motion in preseneof sensing noise. The developed method is based on the parametrization for the spaeraft relativetrajetory presented in Chapter 2.The key onepts spei� to eah hapter are summarized in Figure 3.



10 Introdution

Figure 3: Overview of the key onepts spei� to eah hapter



Chapter 1Spaeraft relative motion
Contents1.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.2 Dynamis of a spaeraft orbiting the Earth . . . . . . . . . . . . . . . . . . 121.3 Spaeraft relative motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161.3.1 Loal Cartesian dynamis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161.3.2 Orbital elements di�erenes dynamis . . . . . . . . . . . . . . . . . . . . . . . 191.4 Linearized Cartesian relative motion . . . . . . . . . . . . . . . . . . . . . . . 201.4.1 State-spae representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201.4.2 The state transition matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211.5 Properties of relative trajetories . . . . . . . . . . . . . . . . . . . . . . . . . 241.5.1 Periodiity onditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241.5.2 Inter-satellite distane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271.5.3 Geometry of the periodi spaeraft relative motion . . . . . . . . . . . . . . . 281.6 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Résumé: L'étude du mouvement relatif des satellites onsiste à analyser la dynamique d'unsatellite appelé le hasseur par rapport à un autre satellite, appelé la ible. Di�érentes hoix existentpour la représentation de l'état relatif, haune ave ses avantages. Plusieurs représentations sontpassées en revue en e hapitre, notamment dans le adre des orbites képlériennes. L'aent est missur la desription basée sur les positions et les vitesses relatives, exprimées dans un repère artésienloal attahé au satellite ible. Les propriétés des trajetoires relatives sont également étudiées,omme les distanes minimale et maximale entre les satellites, l'existene des trajetoires relativepériodiques et leur propriétés géométriques.1.1 IntrodutionThe spaeraft relative motion refers to the study of the dynamis of a spaeraft, alled the follower,with respet to the dynamis of another spaeraft, alled the leader or the target. The motionof an individual satellite orbiting the Earth an be expressed using di�erent representations forthe satellite's state, eah representation providing its own modelling advantages. A similar varietyof hoies is available for the parameters desribing the spaeraft relative state, and some of the



12 Chapter 1. Spaeraft relative motionmost ommon desriptions will be presented in this hapter. The �nal hoie is usually drivenby the purpose of the study. Historially, models based on orbital elements and orbital elementsdi�erenes have been used for formation �ying appliations [16,34,60℄, while Cartesian models havebeen preferred for spaeraft rendezvous and ollision avoidane problems [17, 31, 41, 57℄.Regardless of the representation hosen for the spaeraft relative motion, a distintion anbe made between Keplerian models and non Keplerian models. Under Keplerian assumptions,the Earth is represented as an homogeneous sphere and the spaeraft motion is a�eted onlyby Newtonian aelerations. The non Keplerian models take into aount the Earth's oblateness,usually through the spherial harmoni model for the Earth's potential, the atmospheri drag orthe solar radiation pressure, among other orbital disturbanes.The Keplerian framework leads to less aurate but simpli�ed dynamial models for the spae-raft relative motion. These simpli�ed models are well suited for ontrol synthesis purposes, like inthe ase of maneuvers plans design for spaeraft rendezvous missions for instane. The relativelysmall distanes between the spaeraft when ompared to the distane with respet to the enterof the Earth and the short time horizons assoiated with rendezvous missions justify the usageof simpli�ed relative motion models. For this reason we will fous mainly on Keplerian modelsthroughout this dissertation, while referring the interested reader to publiations treating some ofthe other representations.In what follows, a partiular interest will be paid to the periodi solutions of the equations de-sribing the spaeraft relative motion. These solutions enable the satellites to maintain a desiredon�guration without external intervention and without any fuel expenditure. This property hasbeen extensively used in the formation �ight literature [1,5,46,55,92℄ and has reently gained atten-tion for orbital rendezvous and ollision avoidane appliations [25, 41, 43℄. Di�erent initializationmethods for periodi motion will be presented along with some of the geometrial properties of theresulting trajetories.1.2 Dynamis of a spaeraft orbiting the EarthThe Keplerian dynamis of a spaeraft with respet to the Earth an be derived from Newton'sequations of motion between two mass partiles. In this ase, the motion of a spaeraft orbitingthe Earth is desribed by the following di�erential equation [8℄:
(

d2 ~R

dt2

)

B0

= − µ

‖~R‖3
~R (1.1)



1.2. Dynamis of a spaeraft orbiting the Earth 13where ~R represents the vetor from the enter of the Earth to the spaeraft enter of mass and µ isthe Earth's gravitational onstant. The dynamis are expressed with respet to an Earth enteredinertial frame R0 = (0, ~X, ~Y , ~Z) illustrated in Figure 1.1. The fundamental plane for R0 is theEarth's equatorial plane, the ~Z axis oinides with the rotation axis of the Earth and is orientedtowards the North Pole, the ~X axis points the vernal equinox and the ~Y axis is orthogonal to the
~X ~Z plane.

Figure 1.1: The Earth Centered Inertial frame and the satellite trajetoryEven though the di�erential equation (1.1) governing the relative motion of two bodies is non-linear, the equation admits a general analytial solution [8℄. The onstants of integration assoiatedto the solution are alled the orbital elements of the satellite motion and they play an importantrole in the study of the properties of the spaeraft trajetory.Let the orbital plane be the plane whih ontains the trajetory of the orbiting spaeraft(see Figure 1.1). The equation of the spaeraft trajetory expressed using polar oordinates withrespet to this plane is given by [8℄:
R = ‖~R‖ =

a(1− e2)

1 + e cos ν
(1.2)where a is alled the semi-major axis of the spaeraft orbit, e is alled the eentriity and ν isalled the true anomaly. The satellite's orbit is bounded if e < 1 and unbounded if e ≥ 1. For e = 0the spaeraft trajetory is a irle of radius a and for 0 < e < 1 the trajetory is an ellipse. Thetrue anomaly ν represents the angle between the spaeraft's urrent position and the diretion ofthe perigee (Figure 1.1).The parameters a and e de�ne the dimension and the shape of the satellite's orbit, while ν givesthe instantaneous loation of the satellite on its orbit. Three other quantities de�ning the spatial



14 Chapter 1. Spaeraft relative motionorientation of the orbital plane are required in order to ompletely haraterize the spaerafttrajetory. A ommon hoie is represented by the angles i, Ω and ω de�ned with respet to theEarth's equatorial plane, as indiated in Figure 1.2.

Figure 1.2: The de�nition of the lassial orbital elementsThe line of nodes denotes the line of intersetion between the spaeraft orbital plane and theequatorial plane. The asending node refers to the point where the satellite is rossing the line ofnodes in a northbound diretion. The longitude of the asending node, Ω, is the angle between the
X axis of the R0 frame and the asending node, the argument of perigee, ω, is the angle betweenthe asending node and the perigee while the inlination, i, is the angle between the orbital planeand the equatorial plane.The set of orbital elements is de�ned by:

oe =
[

a e i Ω ω ν
]T (1.3)and it ompletely desribes the state of a satellite orbiting the Earth. Under Keplerian assumptions,the �rst �ve parameters are onstant and only the true anomaly hanges with time [8℄:

ν̇ =

√

µ

a3(1− e2)3
(1 + e cos ν)2 (1.4)Sometimes, the eentri anomaly, E, or the mean anomaly, M , are used instead of ν as thevarying state. The eentri anomaly and the true anomaly are related through geometrial trans-formations (Figure 1.3):
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=
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1.2. Dynamis of a spaeraft orbiting the Earth 15while eentri anomaly and the mean anomaly are related through Kepler's equation:
M = E − e sinE = M0 + n(t− t0) (1.6)As shown in (1.6), the mean anomaly an also be de�ned as a linear funtion of time, where

n =
√

µ/a3 is the mean motion of the satellite, t0 is the referene time and M0 is the meananomaly at t0.

Figure 1.3: The de�nition of the eentri anomalyWhen the orbit is irular or near irular (e ≈ 0) or when the orbit is planar or near planar(i ≈ 0), some of the lassial orbital elements oe are not de�ned. In those ases, the state of thespaeraft an be represented using di�erent funtions of the lassial orbital elements that avoidthis problem. Among the solutions proposed in the literature, we an mention the nonsingularorbital elements, the equinotial elements or the Delaunay anonial elements, used for studyingthe satellite motion in a Hamiltonian framework [90℄.The hoie of using the inertial position and veloity or the various sets of orbital parameters inorder to desribe the state of a spaeraft orbiting the Earth is made depending on the appliation.Throughout this dissertation, the lassial orbital elements oe are preferred for the representationof the leader's state. This hoie is motivated by the fat that, in the Keplerian ontext onsideredhere, the resulting dynamis have a very simple form (only one state that hanges over time).To omplete the desription of the spaeraft relative motion, the state of the follower satellitemust be expressed with respet to the state of the leader and some of the most ommonly usedrepresentations are introdued next.



16 Chapter 1. Spaeraft relative motion1.3 Spaeraft relative motionThe spaeraft relative motion refers to the study of the dynamis of the leader spaeraft om-bined with the study of the dynamis of the follower spaeraft. As previously stated, there aredi�erent possible state de�nitions whih an be used in the desription of the motion of a singlespaeraft (Cartesian position and veloity, di�erent sets of orbital parameters). In a similar way,di�erent representations an be onsidered for the spaeraft relative state, eah one bearing itsown advantages.1.3.1 Loal Cartesian dynamisThe spaeraft relative motion represented using loal Cartesian dynamis is de�ned with respetto a loal rotating Cartesian frame entered on the leader satellite. A ommonly used frame is theLoal Vertial Loal Horizontal (LVLH) frame Rl = (Sl, ~x, ~y, ~z) illustrated in Figure (1.4). The
~z axis is radially oriented from the leader satellite towards the enter of the Earth, the ~y axis isorthogonal to the orbital plane, in the opposite diretion with respet to the angular momentumvetor, and the ~x axis lays in the leader's orbital plane in the diretion of the satellite's veloity.PSfrag replaements

~x

~z ν

a

O ~P

~Q

Sl

S2

~r

Figure 1.4: The spaeraft relative position and the leader's LVLH frameThe relative position between the leader spaeraft Sl and the follower spaeraft Sf is repre-sented by ~r =
−−→
SlSf in Figure 1.4. Considering that the Keplerian dynamis of eah satellite withrespet to the Earth an be desribed using (1.1), the relative inertial aeleration an be writtenas:

(

d2~r

dt2

)

B0

= − µ

‖~R+ ~r‖3
(~R+ ~r) +

µ

‖~R‖3
~R3 (1.7)



1.3. Spaeraft relative motion 17where ~R =
−−→
OSf represents the inertial position of the leader spaeraft. The term on the left handside of (1.7) an be further developed using the derivation rule with respet to a rotating frame:

(

d2~r

dt2
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=

(
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(
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)
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+
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d ~ΩBl/B0
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)

Bl

× ~r+ ~ΩBl/B0
×
(

~ΩBl/B0
× ~r
) (1.8)

The terms in the sum orrespond to the spaeraft relative aeleration in the loal frame, theEuler aeleration, the Coriolis aeleration and the entrifugal aeleration respetively. The term
~ΩBl/B0

represents the rotation veloity of the loal basis Bl with respet to the inertial basis B0.Assuming that the dynamis of the leader spaeraft are expressed using the orbital elementsde�ned in (1.3) and that the spaeraft relative state is given by the loal relative position andveloity X =
[

x y z vx vy vz

]T , the di�erent terms in (1.8) an be omputed individually.In the ase of Keplerian motion, we have:
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(1.9)
After introduing the elements from (1.9), equation (1.8) beomes:
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(1.10)
Developing the right hand side of (1.7) leads to the following nonlinear equations for the spae-raft relative dynamis:

ẍ− 2 ν̇ ż − ν̈ z − ν̇2x = − µx
√

(x2 + y2 + (R− z)2)3

ÿ = − µ y
√

(x2 + y2 + (R − z)2)3

z̈ + 2 ν̇ ẋ+ ν̈ x− ν̇2z = − µ(R− z)
√

(x2 + y2 + (R− z)2)3
+

µ

R2

(1.11)
In the ase where the distane between the two satellites is a lot smaller than the distanefrom the leader satellite to the enter of the Earth (‖~r‖ ≪ ‖~R‖), the linearized Tshauner-Hempel



18 Chapter 1. Spaeraft relative motionequations an be used to desribe the spaeraft relative motion [101℄:
ẍ = 2 ν̇ ż + ν̈ z + ν̇2x− µ

R3
x

ÿ = − µ

R3
y

z̈ = −2 ν̇ ẋ− ν̈ x+ ν̇2z + 2
µ

R3
z

(1.12)It an be notied that for the linearized equations, the dynamis on the y axis are deoupled fromthe dynamis in the xz plane and de�ne a harmonial osillator.In the ase where the orbit of the leader spaeraft is irular, a simpli�ed form an be obtainedfor the above equations. If e = 0 then R = a = onst, ν̇ = n = onst and ν̈ = 0. After introduingthese values in (1.12), the well known Hill-Clohessy-Wiltshire equations for the spaeraft relativemotion with respet to a irular referene orbit an be dedued [23, 42℄:
ẍ = 2n ż

ÿ = −n2y

z̈ = −2n ẋ+ 3n2z

(1.13)It an be notied that in this ase the spaeraft relative dynamis orrespond to a Linear TimeInvariant system.The non Keplerian relative dynamisLong term preditions of the spaeraft relative trajetory are neessary for formation �ying mis-sions. In this ase, maintaining the assumption that there are no external perturbing fores ornonlinear terms introdues unaeptable predition errors. Therefore, di�erent models of spae-raft relative motion aounting for some of the e�ets of orbital disturbanes have been developed.For irular referene orbits, Shweighart and Sedwik presented in [91℄ a set of onstant-oe�ient linear di�erential equations that inlude the perturbation due to the Earth's oblateness,represented through the J2 potential. Hamel and de Lafontaine developed in [39℄ a set of linearizedequations of relative motion about a J2 perturbed elliptial referene orbit. Kehihian gave in [50℄the expression of the rotation veloity ~ΩBl/B0
for the ase where disturbanes due to air dragand Earth oblateness are onsidered. The result is very general but it leads to omplex nonlinearexpressions for the relative motion that are not easy to use in pratie.Even if the dynamis modelled by the Tshauner-Hempel equations (1.12) do not inlude thee�ets of the orbital perturbations, they do have the advantage of being easy to use. They allowthe desription of the spaeraft relative motion through a Linear Time Varying (LTV) state spae



1.3. Spaeraft relative motion 19model whih is well suited for ontrol synthesis and has been widely used for spaeraft relativetrajetory design [6, 41, 47, 86, 93, 99℄.1.3.2 Orbital elements di�erenes dynamisThe di�erential orbital elements are de�ned as the di�erene between the orbital elements of theleader spaeraft oel and the orbital elements of follower spaeraft oef :
Xoe = oel − oef =

[

δa δe δi δΩ δω δν ( or δM or δE)
]T (1.14)Under Keplerian assumptions, �ve of the six orbital elements de�ning the state of a spaeraftare onstant. In this ase, the relative dynamis expressed using the di�erential orbital elementsexhibit similar properties. The simplest form for the relative dynamis is obtained when the varyingterm in the orbital elements is hosen to be the mean anomaly M :
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(1.15)
Variational methods an be used to analyse the e�et of perturbing aelerations on the orbitalelements desribing the spaeraft motion, in the non Keplerian ase [90℄. The perturbing aelera-tions an model for instane the e�ets of the Earth oblateness and/or the e�ets of the atmospheridrag. The well known Gauss Variational Equations (GVE) represent a spei� formulation of theorbital elements variation problem, written for disturbanes expressed in the leader's LVLH frame.The spaeraft relative dynamis represented using the orbital elements di�erenes have beensuessfully used in formation �ight appliations, espeially for on�gurations that require a largeseparation between the spaeraft [1, 16℄. In the ase of the spaeraft rendezvous, the mission'sobjetives are usually spei�ed using the relative Cartesian loal oordinates, in terms of �nal rela-tive position and veloity, given some position/veloity onstraints. For this reason the desriptionof the relative motion using loal Cartesian dynamis is usually preferred in the orbital rendezvousliterature [26, 41, 43℄.



20 Chapter 1. Spaeraft relative motion1.4 Linearized Cartesian relative motionStarting from the Tshauner-Hempel equations (1.12) for the linearized Cartesian relative dynamis,a state spae representation of the spaeraft relative dynamis an be obtained. Based on thisformulation, losed form solutions for the relative trajetories an be omputed. These solutionsenable the propagation of the spaeraft relative state without making use of numerial integration,whih makes them very valuable for spae appliations where omputational power is limited.1.4.1 State-spae representationLet the spaeraft relative state vetor be de�ned by the relative position and veloity projeted oneah axis of the leader's LVLH frame: X =
[

x y z vx vy vz

]T . If in (1.12) the independentvariable time is replaed by the true anomaly of the leader spaeraft, a simpli�ed form an beobtained for the equations desribing the relative dynamis between the leader and the followerspaeraft. The derivatives with respet to time are replaed by:
d(·)
dt

=
d(·)
dν

dν

dt
= (·)′ν̇ d2()

dt2
=

d2()

dν2
ν̇2 +

d()

dν
ν̈ (1.16)and the following variable hange is used:

X̃(ν) =





(1 + e cos ν)I3 03

−e sin νI3
(1 + e cos ν)

ν̇
I3



X(t) (1.17)where I3 ∈ R
3×3 is the identity matrix and 03 ∈ R

3×3 is the zero matrix. This operation leads toa periodi state-spae model for the spaeraft relative dynamis:
X̃ ′(ν) = Ã(ν)X̃(ν) + B̃ ũ (1.18)where the dynamial matrix Ã(ν) is given by:

Ã(ν) =































0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 2

0 −1 0 0 0 0

0 0
3

1 + e cos ν
−2 0 0































(1.19)



1.4. Linearized Cartesian relative motion 21the ontrol matrix B̃ is de�ned by B̃ = [03 I3]
T and ũ = [ũx ũy ũz]

T represents the aelerationgenerated by the spaeraft thrusters.Closed form solutions an be omputed for the periodi system (1.18) and the general methodfor obtaining them is summarized next.1.4.2 The state transition matrixThe state transition matrix provides a onvenient way to represent the solution of the autonomousdynamis of a linear system. For the spaeraft relative motion, omputing the state transitionmatrix would enable the propagation of the relative state starting from any initial onditions,without relying on numerial integration:
X̃(ν) = Φ(ν, ν0)X̃(ν0) (1.20)From the dynamis of the system (1.18), it an be dedued that the state transition matrix veri�esthe following di�erential equation:

Φ′(ν, ν0) = A(ν)Φ(ν, ν0), Φ(ν, ν) = I ∀ν (1.21)For Linear Time Varying systems suh as (1.18), there is no general analytial expression for thestate transition matrix. Numerial methods developed for omputing Φ are usually based on theresolution of the di�erential equation (1.21). In the ase of the spaeraft relative motion, thespeial struture of the dynamial matrix A(ν) enables the omputation of an analytial solution.For the linearized spaeraft relative motion, the dynamis on the y axis are not a�eted by themotion in the xz plane and are desribed by the following homogeneous seond order di�erentialequation (see (1.18)):
ỹ′′ = −ỹ (1.22)The solution of (1.22) an be diretly expressed as a funtion of the initial onditions:

X̃y(ν) = Φy(ν, ν0)X̃y(ν0) (1.23)where ν0 is the initial true anomaly for the unontrolled motion and:
X̃y(ν) =





ỹ(ν)

ṽy(ν)



 Φy(ν, ν0) =





cos(ν − ν0) sin(ν − ν0)

− sin(ν − ν0) cos(ν − ν0)



 (1.24)



22 Chapter 1. Spaeraft relative motionFrom (1.18), the homogeneous di�erential equations for the xz plane are given by:
x̃′′ = 2z̃′ (1.25)

z̃′′ =
3

1 + e cos ν
z̃ − 2x̃′ (1.26)Integrating (1.25) one leads to:

x̃′ = 2z̃ +K (1.27)where K is a onstant of integration. After introduing (1.27) in (1.26), a seond order di�erentialequation only in z̃ is obtained:
z̃′′ +

(

4− 3

1 + e cos ν

)

z̃ = K (1.28)
As realled by Carter in [20℄, the method for solving this type of di�erential equation onsistsin �nding a family of partiular solutions ϕ1, ϕ2 for the homogeneous di�erential equation suhthat :

ϕ1ϕ
′
2 − ϕ2ϕ

′
1 = onstant (1.29)and then applying the tehnique of variation of parameters [80℄. The hoie of the partiularsolutions ϕ1, ϕ2 determines the �nal form of the transition matrix.A transition matrix for the periodi system (1.18) has been proposed by Carter in [20℄. Aslightly di�erent solution has been given by Yamanaka and Ankersen in [103℄, whih presents theadvantage of having a simpler form. The Yamanaka-Ankersen transition matrix will be used forsome of the developments in this dissertation and it is reprodued here for ompleteness.Taking X̃xz(ν)=

[

x̃(ν) z̃(ν) ṽx(ν) ṽy(ν)
]T , the propagation of the relative state is given by:

X̃xz(ν) = Φxz(ν, ν0)X̃xz(ν0) (1.30)where the transition matrix Φxz(ν, ν0) an be written as:
Φxz(ν, ν0) = φxz(ν)φ

−1
xz (ν0) (1.31)



1.4. Linearized Cartesian relative motion 23The matrix φxz(ν) is de�ned by [103℄:
φxz(ν) =



















1 − cos ν(2 + e cos ν) sin ν(2 + e cos ν) 3(1 + e cos ν)2J

0 sin ν(1 + e cos ν) cos ν(1 + e cos ν) 2− 3e sin ν(1 + e cos ν)J

0 2 sin ν(1 + e cos ν) 2 cos ν(1 + e cos ν)− e 3− 6e sin ν(1 + e cos ν)J

0 cos ν + e cos 2ν − sin ν − e sin 2ν −3e

(

(cos ν + e cos 2ν)J +
sin ν

1 + e cos ν

)

















(1.32)The term J is related to the hoie of the partiular solution ϕ2 and in the ase of the Yamanka-Ankersen transition matrix is given by:
J(ν) =

∫ ν

ν0

dτ

(1 + e cos τ)2
=

n(t− t0)

(1− e2)3/2
(1.33)From (1.33) it follows that for the initial true anomaly ν0 we have J(ν0) = 0. This enables theanalytial omputation of the inverse of the φxz(ν) matrix at ν0:

φ−1
xz (ν0)=

1

e2−1





















e2−1 −3e sin ν0(2 + e cos ν0)

1 + e cos ν0
e sin ν0(2 + e cos ν0) 2−e cos ν0(1+e cos ν0)

0
3 sin ν0(e cos ν0+1+e2)

1 + e cos ν0
− sin ν0(2 + e cos ν0) −(cos ν0+e cos2 ν0−2e)

0 3(e+ cos ν0) −(2 cos ν0+e cos2 ν0+e) sin ν0(1 + e cos ν0)

0 −(3e cos ν0 + e2 + 2) (1 + e cos ν0)
2 −e sin ν0(1 + e cos ν0)



















(1.34)The omplete transition matrix Φ orresponding to the state vetor X̃(ν) an be obtained byombining the bloks from the Φy and Φxz matries in the appropriate order.Overview of losed form solutionsSeveral works have been dediated to the omputation of the transition matrix for the spaeraftrelative motion, in the ase where the leader satellite evolves on an arbitrary elliptial orbit. Meltonprovides in [70℄ a solution that uses diretly the time as the independent variable, obtained usingseries expansions of the eentriity. However, this is an approximate solution and it loses aurayfor higher values of the eentriity. Reently, a transition matrix obtained starting from theTshauner-Hempel equations that also inludes the e�ets of the J2 perturbation has been proposedby Yamada and Kimura in [102℄. The given solution is umbersome and not easy to use for ontroldesign purposes. Moreover, the obtained transition matrix is shown to be aurate only for shortpredition horizons.Geometri methods for the omputation of losed form solution for the J2 perturbed relative



24 Chapter 1. Spaeraft relative motionmotion have been presented in [33,39℄. They are based on the onnetion between the loal Carte-sian relative state and the di�erential orbital elements and no longer require the resolution of thedi�erential equations of motion. Gim and Alfriend onsider in [33℄ both the short-period and thelong-period e�ets of the J2 perturbation, leading to a very aurate but omplex solution that stillrequires the knowledge of the evolution of the orbital parameters for the leader satellite. Hamel andde Lafontaine simplify the problem in [39℄ by negleting the short-term e�ets of J2. They obtaina solution that guarantees a bounded predition error even for long horizons but that requires theknowledge of the relative seular drift of the mean orbital elements.Closed form solutions of the spaeraft relative dynamis are sought for the omputationaladvantage obtained from removing the integration proess from the trajetory design algorithms.Moreover, they an also provide some insight into the geometrial properties of the resulting tra-jetories. Some examples of trajetory parametrizations that have been derived from suh losedform solutions will be presented in the next setion.1.5 Properties of relative trajetoriesThe spaeraft ability to maintain a naturally periodi relative motion has been thoroughly in-vestigated, espeially in the ontext of formation �ight appliations. Some of the initialisationtehniques for obtaining periodi solutions to the equations of spaeraft relative motion will bepresented next, along with some of the geometrial properties of the resulting trajetories.The onnetion between the initial onditions of the periodi motion and the dimensions ofthe obtained trajetory bears a lot of importane in the mission design proess. The estimationof the minimal distane between the spaeraft is essential for ollision avoidane purposes whilethe evaluation of the maximal distane plays an important role in the hoie of the sensors for therelative navigation. However, su�ient understanding of this onnetion has not yet been reahed.The next setions summarize some interesting results found in the literature in relation to thistopi.1.5.1 Periodiity onditionsThe distane between two spaeraft on Keplerian orbits annot grow unboundedly [37℄. Thisobservation is based on the fat that in the Keplerian ase the spaeraft evolve on trajetories thatare bounded and do not hange over time. However, unless some partiular onditions are met, theresulting relative trajetory is not periodi.The notion of ommensurable motion was �rst introdued in [38℄ and it refers to the relative



1.5. Properties of relative trajetories 25motion between spaeraft evolving on orbits that verify the following ondition:
p Tl = q Tf , p, q ∈ N (1.35)where Tl and Tf are the orbital periods of the leader and the follower spaeraft respetively. Sine:

T = 2π

√

a3

µ
, (1.36)the ondition (1.35) an be easily transformed into a ondition on the semi-major axis of the orbitsorresponding to the two spaeraft:

af = 3

√

p2

q2
al (1.37)or in a ondition between the energy of the orbits. The restrition in (1.37) indues a restritionon the relative trajetory. Figure 1.5 illustrates the trajetory obtained by propagating the relativemotion over 10 orbital periods for di�erent ratios between the orbital periods of two spaeraft.The relative trajetory appears to lay on a losed surfae whose shape and dimensions depend onthe ratio hosen between the orbital periods.
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Figure 1.5: Relative trajetories obtained for di�erent ratios between the orbital periodsIn the ase where p = q = 1, onstraint (1.37) beomes:
af = al (1.38)In this ase, the relative trajetory between the two spaeraft is periodi (see Figure 1.6).The 1:1 ratio between the orbital periods along with the onnetion between the semi-majoraxis and the energy level of the orbit are used by Gur�l in [37℄ in order to write the energy mathing
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Figure 1.6: Periodi trajetory obtained for p = q = 1ondition for periodi motion. Using the nonlinear relative dynamis (1.11), the energy of the orbitof the follower spaeraft is written as a funtion of the leader's orbital elements and of the relativestate. Imposing for the energies of the two orbits to be equal leads to a polynomial periodiityondition:
1

2

(

(Ṙ− vz − ν̇ x)2 + (vx + ν̇(R− z))2 + v2y

)

− µ
√

x2 + y2 + (R− z)2
= − µ

2a
(1.39)When the spaeraft relative motion is modelled using the linearized dynamis (1.12), theexistene of periodi trajetories an be proved by investigating the existene of periodi solutionsto the unfored di�erential equations of motion. For this representation of the relative motion, thedynamis on the y axis are independent from the dynamis in the orbital plane and are naturallyperiodi. Using Carter's losed form solution for the spaeraft relative motion, Inalhan et alprove in [46℄ the existene of periodi solutions for the xz motion and also provide an initialisationproedure for obtaining periodi trajetories. The proposed initialisation proedure is valid only atperigee (ν0 = 0) and is given by:

ṽx(0) =
e+ 2

e+ 1
z̃(0) (1.40)This ondition for periodi motion an be extended to arbitrary initial true anomalies, leadingto the following generalized expression [92℄:

ṽx(ν0) =
2 + 3e cos ν0 + e2

(1 + e cos ν0)2
z̃(ν0) +

e sin ν0
1 + e cos ν0

ṽz(ν0) (1.41)The only assumption made on the relative motion in the development of onditions (1.38) and(1.39) is that of Keplerian motion. Conditions (1.40) and (1.41) are instead obtained using the



1.5. Properties of relative trajetories 27linearized model for the relative motion and their appliation is restrited to the ases where thelinearisation hypothesis is valid.The usage of the presented initialisation tehniques is straightforward. They enable the ompu-tation of spaeraft relative states starting from whih the resulting relative trajetories are periodi.However, the periodiity onditions alone do not provide any information about the geometry of theobtained trajetories suh as shape, spatial orientation or minimal and maximal distanes betweenthe two spaeraft. To answer these questions a deeper analysis of the obtained trajetories mustbe arried out.
1.5.2 Inter-satellite distaneThe ability to estimate the extremal relative distanes between two satellites is a key point in thedesign of relative trajetories and formations on�gurations. For two spaeraft on arbitrary elliptiKeplerian orbits, analytial losed-form expressions for metris quantifying the relative motion havebeen developed by Gur�l and Kholshevnikov in [38℄. The metris used for the analysis of the motionare the minimum, the maximum and the mean relative distane between the spaeraft. A generalexpression for the relative distane is given as:

W (El, Ef ) =
|~r|

2 al af
= W0 +W1 cosEl +W2 sinEl +W3 cosEf +W4 sinEf+

+2(W5 cosEl cosEf +W6 cosEl sinEf +W7 sinEl cosEf+

+W8 sinEl sinEf ) +W9 cos 2El +W10 cos 2Ef

(1.42)where the independent variables El and Ef represent the eentri anomaly of the leader and ofthe follower spaeraft respetively.The distane funtion W is a trigonometri polynomial of seond degree in El and Ef . Itsoe�ients Wi depend on the orbital elements of the two spaeraft:
4W0 = 2(αl + αf ) + αl e

2
l + αf e

2
f − 4Pl Pf W1 = ef Pl P

T
f − αl el W2 = ef Pf S

T
l

W3 = el Pl P
T
f W4 = el Pl S

T
f 2W5 = −Pl P

T
f 2W6 = −Pl S

T
f

2W7 = −Pf S
T
l 2W8 = −Sl S

T
f 4W9 = αl e

2
l 4W10 = αf e

2
f

(1.43)where:
αl = al/af αF = af/al (1.44)



28 Chapter 1. Spaeraft relative motionand:
P =











cosω cos Ω− cos i sinω sinΩ

cosω sinΩ + cos i sinω cosΩ

sin i sinω











S =
√
1− e2











− sinω cos Ω− cos i cosω sinΩ

− sinω sinΩ + cos i cosω cos Ω

sin i cosω











(1.45)The eentri anomalies orresponding to the minimal and maximal distanes between the twosatellites an be obtained by solving the system of trigonometri equations:
∂W (El, Ef )

∂El
= 0

∂W (El, Ef )

∂Ef
= 0 (1.46)Referene [52℄ presents a method based on Gröbner basis for eliminating one of the independentvariables, either Ef or El. This proedure transforms the system (1.46) into an 8th degree univariatetrigonometri polynomial. The roots of this polynomial enable the omputation of the eentrianomalies El and Ef for whih the extremal distanes are obtained. These eentri anomalies anthen be introdued in (1.42) in order to evaluate the orresponding relative distanes.The presented method an be used to evaluate the extremal distanes between two spaeraftafter that the designer �xed their orbital elements. However, our purpose is to determine a proe-dure for the omputation of the orbital elements of the follower spaeraft that lead to some desiredvalues for the extremal distanes between the spaeraft. In this ase, a part of the oe�ientsin the equations (1.46) transform from onstant terms into deision variables. This hanges thenature of the equations and the resolution method presented in [52℄ an no longer be used. Themethod in its urrent form annot be easily integrated into a relative trajetory design proedure.Slightly simpler expressions for the relative distane an be obtained in the ase of spaeraftperiodi motion. The following setion presents analytial expressions for the extremal distanesomputed for some partiular periodi spaeraft formations on�gurations, along with some geo-metrial properties of the periodi relative trajetories.1.5.3 Geometry of the periodi spaeraft relative motionThe study of the geometry of the spaeraft periodi motion usually starts from the omputation ofparametri expressions for the periodi trajetories. Di�erent parametrizations have been developedin [48, 55, 92℄, eah one providing insight into di�erent aspets of the periodi motion.In [55℄, Lane and Axelrad expressed the relative periodi trajetory as a funtion of the dif-ferential orbital elements δoe = [δa δe δi δΩ δω δM ]. It is assumed that the di�erene betweenthe orbital elements of the leader spaeraft and the orbital elements of the follower spaeraft δoe



1.5. Properties of relative trajetories 29is small and the periodiity of the relative motion is ahieved by imposing δa = 0. Aording to(1.38), this is equivalent to imposing a 1:1 ratio between the orbital periods of the two spaeraft.The following parametri expressions are obtained:
x = −a cos ν δe+

a e sin ν√
1− e2

δM

y =

(

a+
R

1− e2

)

sin ν δe+
a2

R

√
1− e2 δM +R(δω + cos i δΩ)

z = R sin θ δi −R sin i cos θ δΩ

(1.47)This trajetory parametrization is used to show that when eentri referene orbits are onsidered,the periodi relative trajetory is not an ellipse in any plane, exept in some degenerate ases.Conditions for obtaining periodi in-trak formations, follower formations and in-trak/ross-traklinear trajetories are extrated from expressions (1.47), along with an analytial evaluation of theminimal and maximal separation between the spaeraft for these partiular on�gurations.In-trak formations an be obtained by imposing the x and z position to be always zero. Thisis ahieved if δe = δM = δi = δΩ = 0 and in this ase the extremal distanes are given by:
dmin = a δω(1 − e) dmax = a δω(1 + e) (1.48)The follower formations are de�ned by two spaeraft that share the same groundtrak. Thison�guration is obtained by imposing δΩ = −(We/n) δM and δa = δe = δi = δω = 0, where We isthe Earth's rotation rate. The parameters δΩ and δM an be hosen in order to ahieve a desiredspaeraft separation at perigee.The in-trak/ross-trak formations require that the position on the x axis be always zero. Aninitialization tehnique leading to this on�guration with a desired spaeraft separation at perigeeis also developed in [55℄.Starting form Carter's solution for the relative motion, Jiang et al. provide in [48℄ rationalexpressions for the spaeraft periodi relative trajetories projeted onto the leader's LVLH frame:

x = −c1 +
2 (e c2 w − c1)

w2 + 1

y = (1− e)c2 + c3 +
2 (c1 w + e c2)

w2 + 1
+

2 (c1 w − e c3)

(1− e)w2 + 1 + e

z = −c5 +
2 (c4 w + c5)

(1− e)w2 + 1 + e

(1.49)
where w = tan(ν/2) and ci are parameters that depend on the leader's orbital elements and onthe di�erential orbital elements. It is demonstrated that quadrati urves are obtained when the



30 Chapter 1. Spaeraft relative motionperiodi relative trajetories are projeted onto the oordinate planes of the LVLH frame andthat none of these urves are ellipses in the general ase. It is also onluded that the spaeraftperiodi trajetories are usually three-dimensional and lay on quadrati surfaes, most frequentlyon one-sheet hyperboloids, and in rare ases on ellipti ones or ellipti ylinders. The number ofself-intersetions of the projetions of the relative trajetory is omputed and this information isused to identify a possible risk of ollision and to design formations with speial shapes suh as�gure-eight shapes in the oordinate planes.A further parametrization for the spaeraft periodi motion has been proposed by Senguptaand Vadali in [92℄:
x =

ρ1
a(1− e2)

sin(ν + α0)(1 + e cos ν)

y =
ρ1

a(1− e2)
cos(ν + α0)(2 + e cos ν) +

ρ2
a(1− e2)

z =
ρ3

a(1− e2)
sin(ν + β0)

(1.50)where the parameters ρ1, ρ2, ρ3, α0 and β0 depend on the leader's orbital elements and on thedi�erential orbital elements. These equations are used to study the e�ets of the eentriity ofthe referene orbit on the relative periodi trajetories. The analysis is done using Fourier seriesexpansions with both the time and the true anomaly as independent variables. The identi�ed e�etsare the presene of higher harmonis, amplitude saling (for the same hoie of parameters, theorbit tends to shrink in the along trak diretion and expand in the out-of-plane diretion as theeentriity inreases), phase shift and skewness of the relative orbit plane. Corretion methodsare proposed for reduing some of these e�ets.Various sets of parametri expressions are used for the study of periodi trajetories and theprevious list is not exhaustive. The ited referenes help illustrating some of the main harateristisof the spaeraft periodi relative motion and some of the di�ulties enountered in its study. Itis interesting to remark from the presented parametrizations that the spaeraft periodi relativetrajetories an be de�ned as funtions of 5 onstant parameters that depend on the value of theinitial relative state and on the orbital parameters of the leader. However, in the general ase, a learlink between the value of these parameters and the dimension or the shape of the resulting perioditrajetories has not yet been established and the designer needs to treat eah ase individually.1.6 ConlusionsThis hapter summarizes some of the most ommon representations of the spaeraft relative mo-tion. It is showed that in general the spaeraft relative state is de�ned by 12 parameters: 6



1.6. Conlusions 31parameters that de�ne the state of the leader spaeraft and 6 parameters that desribe the stateof the follower spaeraft with respet to the leader. The general relative dynamis are however sim-pli�ed in the Keplerian ase, espeially if the orbital elements are hosen to represent the dynamisof the leader spaeraft. In this ase, out of the six orresponding parameters, only one hangesover time. Moreover, in the ase of periodi relative motion, the spaeraft relative trajetory anbe written as a funtion of only �ve onstant parameters.When designing relative trajetories, the dynamis of the leader are onsidered known andthe deision variables are the remaining parameters that de�ne the spaeraft relative state. Thehallenge is to hoose their value suh that the resulting trajetory exhibits some desired propertieslike periodiity, minimal and maximal separation between the spaeraft, a ertain shape et. Thefollowing hapters will present a new set of parameters for the spaeraft relative motion. This newdesription allows for the parameters orresponding to trajetories that respet some dimensionsonstraints to be de�ned in a way suitable for integration into an optimization-based trajetorydesign proedure.





Chapter 2Parametri expressions for thespaeraft relative trajetory
Contents2.1 De�nition of the parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342.2 Properties of spaeraft relative trajetories . . . . . . . . . . . . . . . . . . 352.2.1 Dynamis of the vetor of parameters . . . . . . . . . . . . . . . . . . . . . . . 362.2.2 Properties of periodi trajetories . . . . . . . . . . . . . . . . . . . . . . . . . . 382.3 Numerial analysis of the periodi relative motion . . . . . . . . . . . . . . 402.3.1 The e�ets of the eentriity of the leader orbit . . . . . . . . . . . . . . . . . 402.3.2 The e�ets of the values of the parameters . . . . . . . . . . . . . . . . . . . . . 402.4 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Résumé: Une bonne ompréhension des propriétés du mouvement relatif des satellites est nées-saire pour pouvoir obtenir des trajetoires relatives qui respetent les di�érentes ontraintes imposéespar haque mission (forme, dimension, et.). Cependant, les propriétés exposées dans le hapitrepréédent n'apportent pas de solution satisfaisante à e dé�. Le présent hapitre introduit un nou-veau set d'expressions paramétriques pour le mouvement relatif, basé sur la matrie de transition deYamanaka-Ankersen. Ces expressions paramétriques o�rent un adre de travail adapté à l'analysedes propriétés géométriques des trajetoires. Elles mettent en évidene le fait que pour les trajetoirepériodiques la dynamique des paramètres est onstante. Une étude qualitative illustre le lien entrela valeur des paramètres et les dimensions des trajetoires qui en résultent.

The study of the properties of spaeraft relative motion is motivated by the need to designspaeraft trajetories that respet di�erent types of onstraints (dimension, shape et.). Severalparametri expressions for the periodi relative motion have been presented in the previous hapter,eah representation providing di�erent insights into the geometrial harateristis of the spaeraftrelative trajetory. However, no proedure for hoosing the parameters in suh a way that therelative trajetory exhibits some desired properties has been provided in the general ase.A new set of parametri expressions for the spaeraft relative motion is derived in this hapter.The aim is to provide a framework for the analysis of the spaeraft relative dynamis. The



34 Chapter 2. Parametri expressions for the spaeraft relative trajetoryexpressions are obtained starting from the Cartesian model for the relative motion, whih is usuallypreferred for spaeraft rendezvous appliations. By working in the spae of parameters, someinteresting properties of the spaeraft relative motion an be evidened. Our main fous is on thestudy of the in�uene that the values of these parameters have on the dimensions of the resultingspaeraft autonomous trajetory.In the ase of periodi relative motion, it is showed that a onstant set of parameters an beused to de�ne the periodi trajetory. The values of these onstant parameters are proved to bediretly onneted to the properties of the resulting trajetory. An important role is also played bythe eentriity of the referene orbit and illustrations are provided for some of its e�ets.
2.1 De�nition of the parametersConsider the relative motion between two spaeraft on arbitrary elliptial Keplerian orbits. Asseen in the previous hapter, the propagation of the autonomous spaeraft relative trajetory,starting from an initial relative state X̃(ν0), an be expressed as:

X̃(ν) = Φ(ν, ν0)X̃(ν0), ν ≥ ν0 (2.1)where Φ(ν, ν0) denotes the Yamanaka-Ankersen transition matrix [103℄. The relative state X̃(ν) isde�ned by the spaeraft relative position and veloity expressed in the LVLH frame attahed tothe leader: X̃(ν) =
[

x̃(ν) ỹ(ν) z̃(ν) ṽx(ν) ṽy(ν) ṽz(ν)
]T .Parametri expressions for the relative position between the spaeraft an be obtained byexpanding the terms in (2.1) and then fatoring out some of the terms related to the independentvariable ν:

x̃(ν) = (2 + e cos ν)(d1 sin ν − d2 cos ν) + d3 + 3 d0 J(ν)(1 + e cos ν)2

ỹ(ν) = d4 cos ν + d5 sin ν

z̃(ν) = (1 + e cos ν)(d2 sin ν + d1 cos ν)− 3 e d0 J(ν) sin ν(1 + e cos ν) + 2 d0

, ν ≥ ν0 (2.2)The parameters di in (2.2) are omputed diretly from (2.1) and an be written as a funtionof the initial onditions of the relative trajetory propagation. Let D(ν0) ∈ R
6 be the vetor ofparameters for the spaeraft relative motion evaluated at ν0, de�ned as:

D(ν0) =
[

d0(ν0) d1(ν0) d2(ν0) d3(ν0) d4(ν0) d5(ν0)
]T (2.3)



2.2. Properties of spaeraft relative trajetories 35The elements of the vetor D(ν0) depend linearly on the initial spaeraft relative state fromwhih the relative trajetory is propagated:
D(ν0) = C(ν0)X̃(ν0) (2.4)The matrix C(ν) ∈ R

6×6 is de�ned as a funtion of the eentriity of the orbit of the leadersatellite and the true anomaly for whih the vetor of parameters needs to be evaluated:
C(ν)=
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(2.5)2.2 Properties of spaeraft relative trajetoriesThe advantage of expressing the spaeraft relative position in the form (2.2) is that it enables thediret identi�ation of some of the e�ets that the values of the parameters have on the spaeraftrelative trajetory. Parameters d1 and d2 in�uene the amplitude of the motion in the xz planewhile parameters d4 and d5 de�ne the amplitude of the periodi motion on the y axis. The valueof the parameter d3 orresponds to an o�set term on the position on the x axis and the parameter
d0 de�nes an o�set on the z axis and in�uenes the ontribution of the integral term J(ν).When propagating the linearized spaeraft autonomous relative motion in the general non-periodi ase, it an be notied that the amplitude of the relative trajetory in the xz plane appearsto grow unboundedly (see Figure 2.1). This is not surprising sine the term J(ν) grows linearly intime (1.33), but its e�et is modulated by the value of the parameter d0.Aording to (2.4), the values of the parameters D depend on the instant when they are evalu-ated. Changing the initial time for the propagation will also hange the value of the parameters. Thede�nition (2.4) an atually be seen as a state transformation that maps the spaeraft Cartesianrelative state X̃(ν) to the state spae orresponding to the vetor of parameters. This suggests thatsome insight on the properties of the spaeraft relative trajetories ould be gained by analysingdiretly the dynamis of the vetor D.
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Figure 2.1: Spaeraft autonomous relative trajetory in the xz plane2.2.1 Dynamis of the vetor of parametersThe variable hange de�ned by:
D(ν) = C(ν)X̃(ν) (2.6)represents a valid state transformation sine the matrix C(ν) is always invertible on the domain onwhih the spaeraft losed trajetories are de�ned:

det(C(ν)) =
1

1− e2
6= 0, ∀ 0 ≤ e < 1 (2.7)The passage from the spae of the D parameters bak to the Cartesian relative state is givenby the inverse matrix:

X̃(ν) = C−1(ν)D(ν) = F (ν)D(ν) (2.8)where F (ν) ∈ R
6×6 is de�ned as:

F (ν) =































0 sin ν(2 + e cos ν) − cos ν(2 + e cos ν) 1 0 0

0 0 0 0 cos ν sin ν

2 cos ν(1 + e cos ν) sin ν(1 + e cos ν) 0 0 0

3 2e cos2 ν + 2cos ν − e 2 sin ν(1 + e cos ν) 0 0 0

0 0 0 0 − sin ν cos ν

− 3e sin ν

1 + e cos ν
− sin ν(1 + 2e cos ν) 2e cos2 ν − e+ cos ν 0 0 0































(2.9)
The dynamis of the vetor of parameters D(ν) an be dedued from the dynamis de�ning the



2.2. Properties of spaeraft relative trajetories 37spaeraft relative motion. When the relative state is represented using loal Cartesian oordinates,the relative dynamis an be modelled by a linear periodi dynami equation:
X̃ ′(ν) = Ã(ν)X̃(ν) (2.10)where the matrix Ã(ν) is de�ned as in (1.19). After di�erentiating (2.6) with respet to theindependent variable ν, we obtain:

D′(ν) = C ′(ν)X̃(ν) + C(ν)X̃ ′(ν) (2.11)Introduing (2.8) and (2.10) in the previous equations leads to:
D′(ν) = AD(ν)D(ν) (2.12)with the matrix AD(ν) de�ned by:

AD(ν) = C ′(ν)C−1(ν) + C(ν)Ã(ν)C−1(ν) (2.13)
The expression for the dynami matrix AD(ν) an be obtained through diret omputation:

AD(ν) =
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0 0 0 0 0 0

































(2.14)
A state transition matrix an be easily omputed for the dynamial system (2.12). Assumingthat the spaeraft relative motion is propagated using the Yamanaka-Ankersen transition matrixas in (2.1) and using the transformation (2.8), we obtain:

D(ν) = C(ν)Φ(ν, ν0)C
−1(ν0)D(ν0) = ΦD(ν, ν0)D(ν0) (2.15)



38 Chapter 2. Parametri expressions for the spaeraft relative trajetorywhere the state transition matrix ΦD(ν, ν0) is given by:
ΦD(ν, ν0) =
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(2.16)
The term J(ν, ν0) is the same integral term de�ned in (1.33).The dynami matrix AD and the transition matrix ΦD highlight some interesting propertiesof the spaeraft relative motion. It an be seen that the parameters d4 and d5 that de�ne themotion on the y axis are always onstant in time, implying that the motion on the y axis is alwaysbounded. This is onsistent with the fat that the motion on the y axis is known to be periodi.The parameters d0 and d1 are also onstant while the values of d2 and d3 hange over time. Theevolution of d2 and d3 is onditioned by the value of d0. It an be seen that in the general ase theirmodulus grows linearly with respet to time. The parameters remain onstant only when d0 = 0and the importane of this partiular ase is disussed in what follows.2.2.2 Properties of periodi trajetoriesExpressions (2.2) show that the integral term J(ν) is the only non periodi term in the propagationof the spaeraft relative position. In the partiular ase where:

d0(ν0) = 0 (2.17)the resulting relative trajetory is periodi beause the drifting term J(ν) is anelled. This leadsto the following simpli�ed parametri expressions for the propagation of spaeraft periodi relativetrajetories:
x̃(ν) = (2 + e cos ν)(d1(ν0) sin ν − d2(ν0) cos ν) + d3(ν0)

ỹ(ν) = d4(ν0) cos ν + d5(ν0) sin ν

z̃(ν) = (1 + e cos ν)(d2(ν0) sin ν + d1(ν0) cos ν)

(2.18)Expressions (2.18) reveal the fat that the spaeraft relative periodi trajetories are alwaysentered around zero on the y and z axes. An o�set an be set on the x axis through the d3parameter. The parameters orresponding to the amplitude of the motion on the y axis an be



2.2. Properties of spaeraft relative trajetories 39�xed to zero in order to obtain a planar periodi trajetory:
d4 = 0 d5 = 0 (2.19)and, as in the general ase, the dimensions of the trajetory in the xz plane depend on the value of

d1 and d2. Moreover, aording to the dynamis of the vetor D given in (2.12), all the parametersare onstant in time in the partiular ase of periodi motion. This means that:
C(νi)X̃(νi) = C(νj)X̃(νj) = D(ν0), ∀νi 6= νj for D(ν0) suh that d0(ν0) = 0 (2.20)One the onstant vetor of parameters orresponding to a periodi trajetory is known, equation(2.8) an be used to alulate at any time the orresponding loal Cartesian relative state. Thisrepresentation o�ers more �exibility than the typial methods for speifying periodi trajetorieswhih rely on the usage of simple parametri urves, suh as irles or ellipses, in order to be ableto easily ompute the orresponding spaeraft relative state [40, 65, 105℄.Given the de�nition (2.6), it an be seen that for onstraint (2.17) to be veri�ed, the spaeraftrelative state must satisfy:

Mp(ν)X̃(ν) = 0 (2.21)where Mp(ν) ∈ R
1×6 denotes the �rst line in the C(ν) matrix (2.5). This periodiity onstrainton the relative state is atually equivalent to the initialisation ondition (1.41) presented in theChapter 1. Moreover, if the onstraint (2.21) is satis�ed at a moment νi, it will be satis�ed by allthe following states belonging to the autonomously propagated trajetory:

Mp(νi)X̃(νi) = 0 =⇒ Mp(νj)X̃(νj) = 0, ∀νj ≥ νi (2.22)This property re�ets the fat that the parameter d0 always has a onstant dynami and it an bevery easily veri�ed on the trajetory propagated using the transition matrix.The onstant dynamis of the d0 parameter have yet another important onsequene: trajeto-ries that start arbitrarily lose to a periodi trajetory will not naturally onverge towards it. If d0beomes di�erent from zero as a result of disturbanes ating on the system, then a ontrol law willneed to be set in plae to drive it bak to zero and to ensure the periodiity of the relative motion.This unstable behaviour of the periodi relative trajetories is also on�rmed by the propertiesof the monodromy matrix orresponding to the spaeraft relative motion (see the disussion inAppendix A).



40 Chapter 2. Parametri expressions for the spaeraft relative trajetory2.3 Numerial analysis of the periodi relative motionThe form of expressions (2.2) suggests that the values of the parameters D are onneted to thedimensions of the spaeraft relative trajetory. However, even in the ase of periodi relative motionwhere the relative trajetory is de�ned by the simpli�ed expressions in (2.18), it is not possibleto preisely de�ne the nature of this dependeny just by analysing the propagation equations.Numerial examples are used here in order to support some of the observations made in the previoussetions.To simplify the analysis, we onsider only planar periodi relative trajetories that have noo�set on the x axis. This type of trajetory is de�ned by a vetor of parameters of the form:
D =

[

0 d1 d2 0 0 0
]T (2.23)2.3.1 The e�ets of the eentriity of the leader orbitThe transformation matrix F (ν) between the Cartesian spaeraft relative state and the vetorof parameters D depends on the eentriity of the orbit of the leader satellite. This suggeststhat for referene orbits of di�erent eentriities, the same onstant vetor of parameters mayprodue periodi trajetories that display di�erent geometrial harateristis. The in�uene of theeentriity is analysed using a vetor of parameters of the form (2.23) for whih:

d1 = −1 d2 = −1For this partiular hoie for the vetor D, Figure 2.2 illustrates the hange in the shape of theobtained periodi trajetory aused by the hange in the eentriity of the referene orbit. Forsmall eentriities the periodi trajetory appears to be symmetrial and resembles an ellipsoid.However, for higher eentriities the obtained trajetory beomes inreasingly "irregular". Thissupports the observation made in [48℄ that the projetions of a spaeraft periodi relative trajetoryonto the xz, xy or yz plans are not ellipses in the general ase.2.3.2 The e�ets of the values of the parametersIn order to study the e�et of the sign of the d1 and d2 parameters on the resulting perioditrajetory, we onsider a vetor of parameters in the form (2.23) for whih:
|d1| = |d2| = 1



2.3. Numerial analysis of the periodi relative motion 41

−3 −2 −1 0 1 2 3 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x [m]

z 
[m

]

 

 

e=0.1

e=0.3

e=0.5

e=0.7

Figure 2.2: The e�et of the eentriity on the obtained periodi trajetoryFigure 2.3 depits the periodi relative trajetories obtained for a referene trajetory of eentriity
e = 0.5. It an be notied that a hange in the sign of d1 auses a rotation of 180◦ around the xaxis of the original trajetory. A hange in the sign of d2 auses instead a rotation of 180◦ aroundthe z axis of the original trajetory.
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Figure 2.3: The e�et of the sign of the parameters on the periodi trajetory for e = 0.5



42 Chapter 2. Parametri expressions for the spaeraft relative trajetoryFor referene trajetories that have di�erent eentriities, Figures 2.4 and 2.5 illustrate thee�ets of the values of the parameters d1 and d2 on the spaeraft periodi relative motion. Forsmaller eentriities, the obtained periodi trajetory is nearly symmetrial so the e�et of inreas-ing d1 is similar to that of inreasing d2 (Figure 2.4). However, for higher eentriities, the e�etsof the two parameters beome quite di�erent (Figure 2.5).

−8 −6 −4 −2 0 2 4 6

−3

−2

−1

0

1

2

3

4

5

x [m]

z 
[m

]

 

 d
1
 = 1, d

2
 = 1

d
1
 = 2, d

2
 = 1

d
1
 = 3, d

2
 = 1

−8 −6 −4 −2 0 2 4 6

−3

−2

−1

0

1

2

3

4

5

x [m]

z 
[m

]

 

 d
1
 = 1, d

2
 = 1

d
1
 = 1, d

2
 = 2

d
1
 = 1, d

2
 = 3

Figure 2.4: The e�et of a hange in the parameters for a referene trajetory of e = 0.1
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 = 3Figure 2.5: The e�et of a hange in the parameters for a referene trajetory of e = 0.5Other than the in�uene on the shape of the obtained trajetory, it an be seen that theeentriity of the orbit of the leader satellite also determines how muh a hange in the valuesof the parameters re�ets into a hange in the dimensions of the resulting periodi trajetory.Given the omplex nature of this interation, general onlusions annot be drawn from just afew numerial examples. The aim of these examples was to emphasize the need for a preisemathematial haraterisation of the onnetion between the dimensions of a periodi trajetory,the vetor of parameters that desribes it and the eentriity of the referene orbit.



2.4. Conlusion 432.4 ConlusionNew parametri expressions for the spaeraft relative trajetory are derived from the linearizedCartesian model of relative motion. The obtained parametrization provides a new state vetorwhose dynamis an be used to study the properties of the spaeraft relative motion. The analysisof the equations de�ning the dynamis of the vetor of parameters shows that every spaeraft peri-odi relative trajetory orresponds to an equilibrium point of this new state spae representation.The intuitive form of the parametri expressions allows us to diretly identify some of the e�etsthat the hoie of some partiular values for the parameters have on the resulting relative trajetory,espeially in the ase of periodi spaeraft relative motion. However, the presented numerialexamples suggest that the shape and the dimensions of the spaeraft periodi trajetories dependin fat on the omplex interation between the eentriity of the leader's orbit and the value ofthe parameters. These examples emphasise the need for a preise mathematial haraterisationof the vetor of parameters orresponding to relative trajetories that respet some dimensionsonstraints.





Chapter 3Constrained spaeraft relativetrajetories
Contents3.1 De�nition of admissible trajetories . . . . . . . . . . . . . . . . . . . . . . . 463.2 Finite desription of admissible trajetories . . . . . . . . . . . . . . . . . . 473.2.1 Finite desription using onstraints disretization . . . . . . . . . . . . . . . . . 483.2.2 Finite desription using non-negative polynomials . . . . . . . . . . . . . . . . 483.3 Desription of onstrained trajetories using non negative polynomials . . 493.3.1 Rational expressions for the spaeraft relative motion . . . . . . . . . . . . . . 493.3.2 Constrained non periodi trajetories . . . . . . . . . . . . . . . . . . . . . . . . 523.3.3 Constrained periodi trajetories . . . . . . . . . . . . . . . . . . . . . . . . . . 543.4 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Résumé: Le présent hapitre fournit une desription formelle de l'ensemble des paramètres or-respondant à des trajetoires relatives insrites dans un sous ensemble partiulier de l'espae d'étatrelatif. Pour aratériser le lien entre les valeurs des paramètres et la dimension des trajetoiresobtenues, il faut tenir ompte d'une part de l'in�uene de l'exentriité et d'autre part de la présenedu terme intégral J(ν) dans le as général. De plus, omme les ontraintes sur la dimension doiventgénéralement être respetées de manière ontinue sur un intervalle de temps �xé, il n'est pas failed'obtenir une desription des paramètres admissibles qui soit failement exploitable dans un al-gorithme de guidage des satellites. En se basant sur les propriété des polyn�mes non-négatifs,e hapitre donne une desription mathématique préise de l'ensemble des paramètres admissibles.Cette desription est �nie et ompatible ave les algorithmes de programmation semi-dé�nie positive.

The previous hapter emphasized the need for a rigorous mathematial haraterization of theset of vetors of parameters that orrespond to spaeraft relative trajetories whih respet somedimensions onstraints. Even in the simpler ase of periodi relative motion, a preise desription ofthe admissible trajetories has not yet been reahed. The main di�ulty lies in the haraterisation,for a given set of parameters, of the in�uene of the eentriity of the referene orbit on the resulting



46 Chapter 3. Constrained spaeraft relative trajetoriesrelative trajetory. In the general ase, the presene of the integral term J(ν) in the expression ofthe relative trajetory renders the analysis even more omplex.Another hallenge omes from the fat that the dimensions onstraints on the trajetory usuallyneed to be imposed ontinuously in time over a spei�ed interval. This translates into an in�nitenumber of onditions that need to be veri�ed in order to ertify that a given trajetory respetsthe desired dimensions requirements.This hapter provides a solution to these problems in the form of a �nite onvex desription ofthe admissible spaeraft relative trajetories for a given set of dimensions onstraints.
3.1 De�nition of admissible trajetoriesFrom a mathematial point of view, the onstraints on the dimensions of the spaeraft relativetrajetories an be written as linear onstraints on the spaeraft relative positions:

xmin ≤ x(t) ≤ xmax

ymin ≤ y(t) ≤ ymax

zmin ≤ z(t) ≤ zmax

, ∀t ∈ [t0 tf ] ⇐⇒
x̃min(ν) ≤ x̃(ν) ≤ x̃max(ν)

ỹmin(ν) ≤ ỹ(ν) ≤ ỹmax(ν)

z̃min(ν) ≤ z̃(ν) ≤ z̃max(ν)

, ∀ν ∈ [ν0 νf ] (3.1)Equation (3.1) illustrates the e�ets of the variable hange (1.17) on the dimension onstraints: theonstant minimum and maximum bounds for the time domain transform into bounds that dependon the true anomaly of the leader spaeraft ν. The onstraints must be respeted ontinuously onthe intervals [t0 tf ] and [ν0 νf ] respetively.The onstraints in (3.1) an be written in a more ompat way as:
H X̃(ν) ≤ Ṽ (ν), ∀ν ∈ [ν0 νf ] (3.2)where the matries H and V de�ne a generi polytopi set. Using the de�nition in (3.2), the setof spaeraft relative states starting from whih the autonomously propagated trajetories remaininside the polytopi set (H,V ) during the spei�ed interval an be de�ned as:

S(H,V, ν0, νf ) =
{

X̃(ν0) ∈ R
6 | X̃(ν) = Φ(ν, ν0)X̃(ν0), H X̃(ν) ≤ Ṽ (ν), ∀ν ∈ [ν0 νf ]

} (3.3)An equivalent form an be given to the set of parameters de�ning relative trajetories that respet



3.2. Finite desription of admissible trajetories 47the given trajetory onstraints during the spei�ed interval:
SD(H,V, ν0, νf ) =

{

D(ν0) ∈ R
6 | D(ν) = ΦD(ν, ν0)D(ν0), H F (ν)D(ν) ≤ Ṽ (ν), ∀ν ∈ [ν0 νf ]

}(3.4)with the matrix F (ν) de�ned in (2.9).The admissible spaeraft relative trajetories are desribed in (3.3) and (3.4) using only linearonstraints. However, it should be noted that the trajetory onstraints need to be veri�ed on-tinuously on the spei�ed interval. As a onsequene, an in�nite number of onditions need to beheked in order to ertify that a state or a vetor of parameters orrespond to a trajetory whihrespets the spei�ed requirements.As seen in Chapter 2, the periodi spaeraft relative trajetories an be desribed by a onstantset of parameters. However, the set of parameters de�ning admissible periodi spaeraft relativetrajetories is still de�ned by in�nitely many onditions. This happens beause the onstraintsthemselves depend on the true anomaly of the leader spaeraft:
Sp
D(H,V ) =

{

D ∈ R
6 | d0 = 0, H F (ν)D ≤ Ṽ (ν), ∀ν ∈ [0 2π]

} (3.5)The interval on whih the onstraints need to be heked is limited to one orbital period in this asebeause the trajetory is periodi, but heking that a vetor D de�nes an admissible trajetory isstill a hard problem.Inside a given polytopi set there an be found many trajetories that respet the dimensionsonstraints (see Figure 3.1). We are interested in obtaining a �nite desription of all these admissibletrajetories.
3.2 Finite desription of admissible trajetoriesImposing ontinuous onstraints on the spaeraft relative trajetories leads to a desription of theadmissible trajetories using an in�nite number of onstraints. The provided desription is auratebut not very well suited for trajetory design purposes. This is due to the di�ulty in ertifyingthat a given trajetory respets all the required onditions. Two methods for reahing a �nitedesription of the admissible trajetories are presented in what follows.
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Figure 3.1: Examples of periodi spaeraft relative trajetories that evolve inside a polytopi set3.2.1 Finite desription using onstraints disretizationA straightforward method for rendering the number of onstraints �nite onsists in the so-alledonstraints disretization. The original ontinuous onstraints are replaed by onstraints that areheked only at some spei�ed loations [17,19,99℄. The de�nition in (3.4) for instane is replaedby:
SD(H,V, ν0,m) =

{

D(ν0) ∈ R
6 | D(νk) = ΦD(νk, ν0)D(ν0), H F (νk)D(νk) ≤ Ṽ (νk), k = 1..m

}(3.6)where m refers to the number of points where the onstraints are expliitly veri�ed.The problem with this type of approah is that the auray of the obtained solution dependson the spei� hoie made for the di�erent parameters, like the number of disretization pointsand their partiular distribution over the original interval. Moreover, this type of methods do notprovide a rigorous haraterisation of the obtained results. There are no theoretial guarantees thatno onstraints violations will our in between the disretization points and a posteriori heks areneeded in order to validate the solution.3.2.2 Finite desription using non-negative polynomialsThe idea of using the properties of non-negative polynomials to obtain a �nite desription of theadmissible spaeraft relative trajetory ame from the desire to exploit the struture of the solution



3.3. Desription of onstrained trajetories using non negative polynomials 49for the relative motion provided by the transition matrix. The expressions (2.18) show that for theperiodi relative motion the trajetory is de�ned by trigonometri polynomials. In this ase, thedimension onstraints (3.1) an be easily written as polynomial non-negativity onstraints.In the general ase, the presene of the integral term J(ν) in the expressions of the spaeraftrelative trajetory renders the approah more omplex. In order to reah a polynomial desriptionof the admissible trajetories, the term J(ν) an be replaed with a suitable approximation. Theomplete proedure is presented in detail in the following setion.One the dimensions onstraints on the spaeraft relative trajetory are transformed into poly-nomial non negativity onstraints of the type:
P (w) ≥ 0, ∀w ∈ W (3.7)the results presented by Nesterov in [73℄ an be used in order to obtain a �nite desription of theadmissible trajetories without relying on disretization. It is showed that polynomial non negativ-ity onstraints an be transformed into onditions of existene of one or two onstrained positivesemi-de�nite matries (see Appendix B). The in�nite number of points where the polynomial non-negativity onstraint needed to be heked an be replaed with only one Linear Matrix Inequality(LMI) onstraint.3.3 Desription of onstrained trajetories using non negative poly-nomials3.3.1 Rational expressions for the spaeraft relative motionThe following variable hange an be used in order to transform the trigonometrial terms in theexpressions for the propagation of the spaeraft relative trajetory into rational terms:

w = tan
(ν

2

)

, cos ν =
1− w2

1 + w2
, sin ν =

2w

1 + w2
, (3.8)Introduing (3.8) into (2.2) leads to the following expressions for the spaeraft relative positions:

x̃(w) =
1

(1 +w2)2
[Px(w) + 3 d0 PJx(w)J(w)]

ỹ(w) =
1

1 + w2
Py(w)

z̃(w) =
1

(1 + w2)2
[Pz(w) + 2 d0 PJz(w)J(w)]

, w ≥ w0 (3.9)



50 Chapter 3. Constrained spaeraft relative trajetorieswhere the polynomials PJx(w) and PJz(w) depend only on the eentriity of the orbit of the leadersatellite and are given by:
PJx(w) = ((1 + e) + (1− e)w2)2 PJz(w) = −3e((1 − e)w + (1− e)w3) (3.10)and the term J(w) is obtained by introduing the variable hange (3.8) into (1.33):

J(w) =

∫ w

w0

2 τ2 + 2

((1− e)τ2 + e+ 1)2
dτ (3.11)The polynomials Px(w), Py(w) and Pz(w) are de�ned by:

Px(w) =
4
∑

i=0

pxiw
i Py(w) =

2
∑

i=0

pyi w
i Pz(w) =

4
∑

i=0

pziw
i (3.12)and their vetors of oe�ients, px =

[

px0 px1 px2 px3 px4

]T , py =
[

py0 py1 py2

]T and
pz =

[

pz0 pz1 pz2 pz3 pz4

]T respetively, depend linearly on the vetor of parameters D(ν0):
px = CxD(ν0) py = Cy D(ν0) pz = Cz D(ν0) (3.13)The matries Cx, Cy and Cz depend only on the eentriity of the referene orbit and are givenby:

Cx=























0 0 −2−e 1 0 0

0 4+2e 0 0 0 0

0 0 2e 2 0 0

0 4−2e 0 0 0 0

0 0 2−e 1 0 0























Cy=











0 0 0 0 1 0

0 0 0 0 0 2

0 0 0 0 −1 0











Cz=























0 e+1 0 0 0 0

0 0 2e+2 0 0 0

0 −2e 0 0 0 0

0 0 2−2e 0 0 0

0 e−1 0 0 0 0





















(3.14)The idea behind the usage of the transformation (3.8) is to obtain a desription of the spaeraftrelative trajetories that ontains only terms of the same nature. The �nal purpose is to reahsome polynomial expressions for the onstrained spaeraft relative motion that an lead to a �nitedesription of the admissible trajetories. The expressions (2.2) ontain a ombination of integraland trigonometri terms and even expressions (3.9) are not entirely rational beause of the preseneof the term J(w). Without further manipulations, the spaeraft relative trajetory is de�ned byrational expressions only in the ase of periodi motion. When d0 = 0, the relative trajetory is



3.3. Desription of onstrained trajetories using non negative polynomials 51given by:
x̃(w) =

1

(1 + w2)2
Px(w) ỹ(w) =

1

1 + w2
Py(w) z̃(w) =

1

(1 + w2)2
Pz(w) (3.15)The advantage of introduing the variable hange (3.8) is that, if the integral term J(w) is replaedby a polynomial approximation, then the obtained expressions for the spaeraft relative motionontain only rational terms. These expressions will allow us to haraterize all the spaeraftrelative trajetories that respet some dimensions onstraints.

Polynomial approximation of the integral term J(w)Even if the integral term (3.11) has a losed form solution given by:
J(w) =











2 ew

(e2 − 1)(e+ 1 + (1− e)w2)
−

2artanh(√
e− 1√
e+ 1

w

)

√

(e2 − 1)3











w

w0

(3.16)the nature of the terms involved in its de�nition does not bring us loser to our objetive. Resultsin [21℄ show that a �xed-degree polynomial approximation with a erti�ed maximum approximationerror an be omputed for the integral expression (3.11). However, the interval on whih J(w) anbe approximated by a polynomial must be a �nite subset of R. This omes from the fat that theterm J(w) is disontinuous on the bounds of its de�nition set (i.e. from (3.16): lim
w→−∞

J(w) 6=
lim

w→∞
J(w)) and onsequently no polynomial or rational funtion an approximate J(w) on R.Let Θq(w) be a polynomial of degree q suh that:

Θq(w)− ε ≤ J(w) ≤ Θq(w) + ε, ∀w ∈ W (3.17)whereW represents the interval on whih the polynomial approximation is valid and ε represents themaximum approximation error on that interval. Following from (3.17), upper and lower polynomialbounds for the term J(w) an be de�ned on the interval W :
Θu(w) = Θq(w) + ε, Θl(w) = Θq(w)− ε (3.18)These polynomial bounds an be ombined with expressions (3.9) in order to obtain rational



52 Chapter 3. Constrained spaeraft relative trajetoriesbounds for the xz spaeraft relative trajetory in the general ase:
x̃l,u(w) =

1

(1 +w2)2
[Px(w) + 3 d0 PJx(w)Θl,u(w)]

z̃l,u(w) =
1

(1 + w2)2
[Pz(w) + 2 d0 PJz(w)Θl,u(w)]

, ∀w ∈ W (3.19)with:
x̃l(w) ≤ x̃(w) ≤ x̃u(w)

z̃l(w) ≤ z̃(w) ≤ z̃u(w)
, ∀w ∈ W (3.20)3.3.2 Constrained non periodi trajetoriesLet us onsider some dimension onstraints on the relative trajetories spei�ed through a polytopiset given by some H and V matries as in (3.2). We assume for simpliity that the onstraints areimposed only on the relative positions. By expanding eah onstraint and integrating the variablehange (3.8), we an write:

hi,1 x̃(w) + hi,2 ỹ(w) + hi,3 z̃(w) ≤
1 + e+ (1− e)w2

1 + w2
vi, ∀w ∈ [w0 wf ], i = 1..s (3.21)where hi,j and vi are elements in the matries H and V that de�ne the polytopi set and s is thenumber of onstraints in the de�nition.Let us de�ne expressions Ξi(w) as:

Ξi(w) = −hi,1 x̃(w) − hi,2 ỹ(w)− hi,3 z̃(w) +
1 + e+ (1− e)w2

1 + w2
vi, i = 1..s (3.22)Using expressions (3.22), the set of parameters orresponding to autonomous spaeraft relativetrajetories that respet the polytopi onstraints over a spei�ed interval [w0 wf ] an be de�nedas:

SD(H,V,w0, wf ) =
{

D(w0) ∈ R
6 | Ξi(w) ≥ 0, ∀w ∈ [w0 wf ], i = 1..s

} (3.23)By bringing the terms to the lowest ommon denominator, a more ompat form an be obtainedfor Ξi(w):
Ξi(w) =

1

(1 + w2)2
Γi(w), i = 1..s (3.24)where the polynomials Γi(w) are de�ned by:

Γi(w) = −hi,1 [Px(w) + 3 d0 PJx(w)J(w)] − hi,2 P̄y(w)− hi,3 [Pz(w) + 2 d0 PJz(w)J(w)] + vi T (w)(3.25)



3.3. Desription of onstrained trajetories using non negative polynomials 53In the previous de�nition the polynomial P̄y(w) is obtained as P̄y(w) = (1+w2)Py(w) and the poly-nomial T (w) is given by T (w) =

4
∑

i=0

ti w
i with the vetor of oe�ients t = [1 + e 0 2 0 1− e

]T .The oe�ients of the other polynomials in (3.25) depend on the vetor of parameters D, as de�nedin (3.12).The term (1+w2)2 in (3.24) is non negative for all w ∈ R. This means that the set SD(H,V,w0, wf )an also be de�ned as:
SD(H,V,w0, wf ) =

{

D(w0) ∈ R
6 | Γi(w) ≥ 0, ∀w ∈ [w0 wf ], i = 1..s

} (3.26)Let Γl
i(w) and Γu

i (w) be the polynomials obtained from expressions Γi(w) after replaing theintegral term J(w) with its lower and upper polynomial bounds, Θl(w) and Θu(w) respetively. Inthis ase we have:
Γl
i(w) ≤ Γi(w) ≤ Γu

i (w) (3.27)where:
Γl
i(w) = −hi,1 [Px(w) + 3 d0 PJx(w)Θl(w)]− hi,2 P̄y(w)− hi,3 [Pz(w) + 2 d0 PJz(w)Θl(w)] + vi T (w)

Γu
i (w) = −hi,1 [Px(w) + 3 d0 PJx(w)Θu(w)]− hi,2 P̄y(w)− hi,3 [Pz(w) + 2 d0 PJz(w)Θu(w)] + vi T (w)(3.28)The degree of the polynomials Γl

i(w) and Γu
i (w) depends on the degree of the polynomial approxi-mation of J(w). Considering the de�nitions given in (3.13), it an be noted that the oe�ients ofthe polynomials in (3.28), denoted γli and γui respetively, are onstant and depend linearly on thevalue of the vetor of parameters D at the beginning of the interval [w0 wf ].The polynomials Γl

i(w) and Γu
i (w) allow for the set SD(H,V,w0, wf ) to be de�ned using onlypolynomial non negativity onstraints:

SD(H,V,w0, wf ) =
{

D(w0) ∈ R
6 | Γl

i(w) ≥ 0, Γu
i (w) ≥ 0, ∀w ∈ [w0 wf ], i = 1..s

} (3.29)The onstraints on the expressions Γi(w) have been replaed by onstraints on its upper and lowerpolynomial bounds. The resulting inreased number of onstraints is the prie to pay for robustnesswith respet to approximation errors for the term J(w).Using the onnetion between the oe�ients of non negative polynomials and the symmetripositive semi-de�nite matries given in [73℄, the set SD(H,V,w0, wf ) an be de�ned using a �nite



54 Chapter 3. Constrained spaeraft relative trajetoriesnumber of onstraints:
SD(H,V,w0, wf ) =







D(w0) ∈ R
6

∣

∣

∣

∣

∣

∣

∃Y l
i1, Y

l
i2 � 0 s.t. γli = Λ∗(Y l

i1, Y
l
i2)

∃Y u
i1, Y

u
i2 � 0 s.t. γui = Λ∗(Y u

i1, Y
u
i2)

, ∀i = 1..s







(3.30)The linear operator Λ∗ is de�ned as in (B.4) or as in (B.5), depending on the ase. The dimensions ofthe positive semi-de�nite matries involved depend on the degree of the polynomial approximationsfor the J(w) term, Θl(w) and Θu(w). Please note that to every non negativity onstraint in (3.29)orresponds a pair of matries Y1, Y2. Eah polynomial non negativity onstraint that needed to beheked for in�nitely many points has now been replaed by an equality onstraint on the oe�ientsof that polynomial. This means that SD(H,V,w0, wf ) is de�ned using only linear restritions onthe vetor of parameters D at the beginning of the hosen interval.3.3.3 Constrained periodi trajetoriesThe desription of the admissible trajetories is simpli�ed in the ase of periodi spaeraft relativemotion. The periodi trajetories that respet some polytopi onstraints an be de�ned diretlyin terms of non negativity onditions of some polynomials, without any need for approximations.In the periodi ase, the expressions in (3.25) beome:
Γp
i (w) = −hi,1 Px(w)− hi,2 P̄y(w)− hi,2 Pz(w) + vi T (w) (3.31)This leads to the de�nition of the set of onstant parameters that orrespond to admissible traje-tories using a �nite number of polynomial non negativity onstraints:

Sp
D(H,V ) =

{

D ∈ R
6 | d0 = 0, Γp

i (w) ≥ 0, ∀w ∈ R, i = 1..s
} (3.32)The non negativity of the polynomials Γp

i (w) needs to be heked on an in�nite interval sine thevariable hange (3.8) maps one orbital period to R.Using the property of non negative polynomials on in�nite intervals given in [73℄, the set ofparameters orresponding to spaeraft periodi relative trajetories that evolve inside a spei�edpolytopi set an be de�ned as:
Sp
D(H,V ) =







D ∈ R
6

∣

∣

∣

∣

∣

∣

d0 = 0

∃Yi � 0 s.t γpi = Λ∗(Yi), ∀i = 1..s







(3.33)where γpi are the vetors of oe�ients orresponding to the polynomials Γp
i (w). As for the non



3.4. Conlusion 55periodi ase, γpi depend linearly on the value of the vetor of parameters D. Sine we are dealingwith periodi trajetories, the vetor of parameters is onstant over the in�nite interval. The degreeof the polynomials Γp
i (w) is easy to ompute in this ase and is less or equal to 4 (see (3.31) and(3.12)). This means that the variables Yi are at most 3 by 3 matries.3.4 ConlusionWhen ontinuous onstraints need to be imposed on the spaeraft relative trajetory, the set ofadmissible trajetories is desribed using an in�nite number of onstraints that need to be hekedin order to validate an obtained solution.A new method for rendering the desription of admissible trajetories �nite is presented inthis hapter. The method exploits the struture of the solution for the spaeraft relative motionprovided by the transition matrix and it is based on the properties of non negative polynomials. Thepresene of the integral term J(w) determines the usage of rational expressions for the desriptionof the spaeraft relative motion. In this framework, the term J(w) an be approximated by apolynomial, leading to a desription of the admissible trajetories using only polynomial onstraints.Unlike the lassial onstraints disretization approah, the presented method provides a �niteharaterisation of the admissible trajetories that guarantees ontinuous satisfation of the on-straints. Cheking that a solution belongs to the set of admissible trajetories is translated intoheking the existene of some onstrained semi-de�nite positive matries. This desription of theadmissible trajetories is used in the following hapter as part of a spaeraft relative trajetorydesign proedure.





Chapter 4Trajetory design for spaeraftrendezvous
Contents4.1 Fixed-time linearized impulsive spaeraft rendezvous . . . . . . . . . . . . 584.1.1 General formulation of the guidane problem . . . . . . . . . . . . . . . . . . . 584.1.2 Consumption riteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594.1.3 Saturation onstraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604.1.4 Using diret shooting methods for the guidane problem . . . . . . . . . . . . . 614.2 Fixed-time rendezvous with trajetory onstraints . . . . . . . . . . . . . . 634.2.1 Guidane towards a onstrained periodi relative motion . . . . . . . . . . . . . 634.2.2 Passively safe trajetories for spaeraft rendezvous . . . . . . . . . . . . . . . 664.2.3 Spaeraft rendezvous with visibility onstraints . . . . . . . . . . . . . . . . . 684.3 Numerial examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704.3.1 Reahing a onstrained periodi relative trajetory . . . . . . . . . . . . . . . . 704.3.2 Passively safe rendezvous trajetories . . . . . . . . . . . . . . . . . . . . . . . . 744.3.3 Constrained non periodi relative trajetories . . . . . . . . . . . . . . . . . . . 784.4 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Résumé: Le guidage en rendez-vous orbital onsiste à déterminer une série des man÷uvres im-pulsionnelles qui amènent le satellite hasseur en proximité de la ible. Le alul des man÷uvresdoit tenir ompte simultanément des di�érentes ontraintes de la mission donnée, omme des on-traintes de séurité, des ontraintes de visibilité ou des ontraintes de passage par une série despositions prédé�nies. Les ressoures en ergols étant limitées, le plan de man÷uvres obtenu doitaussi minimiser la onsommation de ombustible. Dans un premier temps, e hapitre formule leproblème de guidage omme un problème de ommande optimale sous ontraintes. Le adre hoisiest elui des méthodes diretes de tirs qui exploitent la transition du mouvement relatif pour on-vertir le problème de ommande optimale en problème d'optimisation paramétrique. La desriptiondes trajetoires admissible développée dans le hapitre préédent est utilisée pour garantir que lestrajetoires obtenues respetent les ontraintes données.

The orbital rendezvous guidane problem onsists in omputing a series of orbital maneuvers



58 Chapter 4. Trajetory design for spaeraft rendezvousthat suessively bring the haser vehile in the viinity of and eventually in ontat with the targetspaeraft. These maneuvers must aount for the di�erent onditions and onstraints that mustbe ful�lled in order to guarantee the suess of the mission. The operations in the viinity of thetarget spaeraft may impose safety onstraints, approah-trajetory orridors and waiting pointsalong the trajetory for verifying the vehile funtions and other onditions. Sine the propellantis suh an important resoure in spaeraft appliations, the approah maneuvers must be optimalfrom a fuel onsumption point of view. Moreover, the amplitude of the omputed maneuvers mustalso respet the physial limitations of the spaeraft thrusters.The general mathematial formulation for the �xed-time spaeraft rendezvous guidane prob-lem is presented at the beginning of this hapter. It is showed that, in the ontext of diret shootingmethods, the optimal ontrol problem an be written as a linear program. In addition, the asewhere di�erent types of trajetory onstraints need to be introdued in the guidane problem isalso onsidered. For eah of the onsidered spaeraft trajetory onstraints, the ontrol problemis onstruted by integrating the mathematial desription of the admissible relative trajetoriesgiven in Chapter 3. The resulting solution is guaranteed to lead to a rendezvous trajetory whihsatis�es ontinuously the spei�ed onstraints.4.1 Fixed-time linearized impulsive spaeraft rendezvousIn the ontext of the �xed-time rendezvous guidane problem, the duration of the rendezvousmission is onsidered to be �xed and known a priori. The spaeraft thrust maneuvers are approxi-mated with impulsive maneuvers, meaning that their e�et is modelled as an instantaneous hangein the spaeraft relative veloity. Moreover, the number of thrusts N and the thrusting instantsare also �xed a priori. The deision variables are represented by the amplitudes of the veloityhanges expressed in the LVLH frame attahed to the leader spaeraft.4.1.1 General formulation of the guidane problemThe trajetory design for spaeraft rendezvous relies on the omputation of an impulsive maneu-vers plan that brings the spaeraft from some known initial onditions X̃0 to some desired �nalonditions X̃f . This needs to be done while minimising the total fuel ost of the maneuvres andwhile respeting the atuators saturations onstraints. Sine the thrusting instants ν1, ..., νN areonsidered known, the deision variables are the magnitudes of the thrusts ∆Ṽi.Assuming that the spaeraft relative dynamis are represented using the linearized model



4.1. Fixed-time linearized impulsive spaeraft rendezvous 59de�ned in (1.18), the orresponding optimal ontrol problem an be written as:
min
∆Ṽi

J(∆Ṽ)

s.t. 













































X̃ ′(ν) = Ã(ν)X̃(ν) +B
∑

i

∆Ṽiδ(ν − νi)

X̃(ν1) = X̃1

X̃(νN ) = X̃f

∆Ṽi ∈ Ũmax(νi), ∀i = 1...N

(4.1)
where the Dira funtion δ(ν) is used to model the impulsive nature of the ontrol. This writingof the problem supposes that the �rst impulsive ontrol is applied at the initial true anomaly andthat the last impulsive ontrol is applied at the �nal true anomaly. The variable X̃(νN ) representsthe spaeraft relative state right after the last thrust is �red.The ontrol vetors ∆Ṽi ∈ R

3 are de�ned in the leader's LVLH frame:
∆Ṽi =
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∆Ṽiz











, ∀i = 1...N (4.2)and ∆Ṽ denotes the staked ontrol vetors: ∆Ṽ
T =

[

∆Ṽ T
1 ... ∆Ṽ T

N

]

∈ R
3N .4.1.2 Consumption riteriaThe minimization riterion J(∆Ṽ ) needs to be related to the total fuel ost of the mission in orderto aurately represent the guidane requirements. Aording to [83℄, a riterion that auratelyre�ets the fuel onsumption must take into onsideration the number of thrusters of the spaeraftand their on�guration.In the ase where a single thruster steers the spaeraft by gimbaling (see ase (a) in Figure4.1), the optimal fuel onsumption riterion is obtained from the roket equation as:

J(∆Ṽ ) =

N
∑

i=1

‖∆Ṽi‖2 =

N
∑

i=1

√

∆Ṽ 2
ix
+∆Ṽ 2

iy
+∆Ṽ 2

iz
(4.3)The fuel ost in (4.3) is di�erent from the lassial quadrati ost sine:

J(∆Ṽ )2 =

(

N
∑

i=1

√

∆Ṽ 2
ix
+∆Ṽ 2

iy
+∆Ṽ 2

iz

)2

6=
N
∑

i=1

(

∆Ṽ 2
ix +∆Ṽ 2

iy +∆Ṽ 2
iz

) (4.4)
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Figure 4.1: Spaeraft thrusters on�gurationsReferene [83℄ also shows that in the ase where the spaeraft is equipped with six identialthrusters rigidly mounted on its axes (see ase (b) in Figure 4.1), the riterion that best re�etsthe fuel onsumption is given by:
J(∆Ṽ ) =

N
∑

i=1

‖∆Ṽi‖1 =
N
∑

i=1

(

|∆Ṽix |+ |∆Ṽiy |+ |∆Ṽiz |
)

= ‖∆Ṽ‖1 (4.5)If there exists just one main engine that performs the guidane while vernier engines steer thethrust vetor (see ase () in Figure 4.1), the fuel onsumption is best represented by:
J(∆Ṽ ) =

N
∑

i=1

‖∆Ṽi‖∞ (4.6)An inorret hoie for the optimisation riterion an result in solutions with poor guidaneperformanes. Referene [82℄ shows that fuel penalties as high as 50% an our if the ost funtionis not properly hosen. Throughout this dissertation it is assumed that the spaeraft are equippedwith two idential engines on eah axis whih imposes the usage of (4.5) as optimization riterion.
4.1.3 Saturation onstraintsThe thrusters saturation onstraints have been represented in (4.1) by the generi expression:

∆Ṽi ∈ Ũmax(νi), ∀i = 1...N (4.7)



4.1. Fixed-time linearized impulsive spaeraft rendezvous 61Given the assumption previously made on the on�guration of the thrusters, the saturation on-straints an be written as an upper limit on the modulus of the thrust on eah axis ∆Vmax:
|∆Ṽi| ≤ ∆Ṽmax(νi), ∀i = 1...N (4.8)The thrust upper bound in (4.8) depends on ν sine the variable transformation (1.17) must betaken into aount when writing the optimisation problem and when returning the solution:

∆Ṽ (ν) =

√

a3(1− e2)3

µ

1

1 + e cos ν
∆V (4.9)Thus the term ∆Ṽmax(νi) in (4.8) is obtained as:

∆Ṽmax(νi) =

√

a3(1− e2)3

µ

∆Vmax

1 + e cos ν
13, i = 1...N (4.10)where 1l is a vetor of dimension l ontaining only ones.

4.1.4 Using diret shooting methods for the guidane problemThe diret shooting methods for spaeraft trajetory design onsist in transforming the optimalontrol problem (4.1) into a parameter optimization problem whih an be e�iently solved by theexisting algorithms. This is usually ahieved through disretization and ontrol parametrization[45℄. The knowledge of the �ring positions νi and the modelling of the thrusts as impulsive ontrolsenables the usage of diret shooting methods for solving the rendezvous guidane problem. Thedi�erential equation in (4.1) an be diretly replaed by the solution provided by the state transitionmatrix:
X̃(ν) = Φ(ν, ν1)X̃1 +

∑

i

Φ(ν, νi)B∆Ṽi (4.11)where Φ(ν, νi) is the Yamanaka-Ankersen transition matrix presented in Chapter 1. Using thefollowing notations:
Ai=

[

Φ(νi, ν1)B Φ(νi, ν2)B ...Φ(νi, νi)B
]

, Bi=Φ(νi, ν1)X̃1, ∆Ṽ
i
=
[

∆Ṽ1 ... ∆Ṽi

]T(4.12)



62 Chapter 4. Trajetory design for spaeraft rendezvousand integrating the fuel onsumption riterion given in (4.5), the optimal ontrol problem (4.1) anbe written as:
min
∆Ṽi

‖∆Ṽ‖1s.t. 

























X̃(νN ) = AN∆Ṽ N +BN

X̃(νN ) = X̃f

−∆Ṽmax(νi) ≤ ∆Ṽi ≤ ∆Ṽmax(νi), ∀i = 1...N

(4.13)
It an be seen that (4.13) ontains only linear onstraints while the norm-1 optimization riterionis pieewise linear. By replaing the riterion with a linear equivalent, the rendezvous guidaneproblem ould be transformed into a Linear Program (LP) [19, 64, 99℄. The main advantage ofperforming this transformation is the fat that the solution to a linear program an be e�ientlyomputed using existing numerial tools suh as interior point methods or the simplex algorithm[10℄.When a distintion is made between the equality and inequality onstraints, the general formof a Linear Program is given by:

min
Υ

CTΥs.t. 









AinΥ < bin

AeqΥ = beq

(4.14)where Υ denotes the vetor of deision variables and C, Ain, bin, Aeq and beq represent the data ofthe problem.The norm-1 riterion in (4.13) an be replaed with a linear equivalent by introduing someslak variables Zi ∈ R
3 suh that:

∆Ṽi ≤ Zi

−∆Ṽi ≤ Zi

, ∀i = 1..N (4.15)In this ase, minimizing the norm-1 of the thrust vetor beomes equivalent to minimizing thesum of the elements of the variables Zi:
min ‖∆Ṽ‖1 ⇐⇒ min

∑

Zi (4.16)



4.2. Fixed-time rendezvous with trajetory onstraints 63Moreover, the saturation onstraints an be written as onstraints on the slak variables:
Zi ≤ ∆Ṽmax(νi), ∀i = 1..N (4.17)Let the new vetor of deision variables Υ be de�ned as:

ΥT =
[

ZT
1 ... ZT

N ∆Ṽ T
1 ... ∆Ṽ T

N

]

=
[

ZT ∆Ṽ T
] (4.18)The optimization riterion in (4.13) an be replaed by a linear riterion de�ned by the matrix C:

CT =
[

13N 03N

] (4.19)where 13N is a line vetor of the indiated dimension ontaining only ones and 03N is a line vetorontaining only zeros. The rest of the matries de�ning the data of the problem an be obtainedthrough diret identi�ation:
Ain =











−I3N I3N

−I3N −I3N

I3N 03N











bin =























03N

03N

∆Ṽmax(ν1)

...

∆Ṽmax(νN )























Aeq = AN

[

03N I3N

]

beq = X̃f −BN (4.20)
4.2 Fixed-time rendezvous with trajetory onstraintsTrajetory onstraints for spaeraft rendezvous and proximity operations arise from requirementsthat are spei� to eah mission. The mathematial desription of spaeraft relative trajetoriesthat evolve inside a spei�ed polytopi area over a spei�ed time interval has been presented in theprevious hapter. It has been shown that even if the restritions on the relative trajetory need tobe respeted ontinuously in time, it is still possible to desribe the set of admissible trajetoriesusing a �nite number of onstraints. This desription of the admissible trajetories will be usednext in order to solve di�erent types of �xed-time rendezvous missions with trajetory onstraints.4.2.1 Guidane towards a onstrained periodi relative motionPeriodi relative trajetories represent natural solutions of the autonomous spaeraft relative dy-namis. In the unperturbed ase, no fuel onsumption is required in order to maintain suh tra-jetories, making them a good hoie for spaeraft on-orbit inspetion missions or for formation



64 Chapter 4. Trajetory design for spaeraft rendezvous�ying appliations [37, 46℄.Periodi relative trajetories ould also be used as parking orbits between di�erent phases of arendezvous mission. In the Automated Transfer Vehile (ATV) mission to the International SpaeStation (ISS) for instane, the approah trajetory is de�ned in terms of several way-points thatthe vehile must validate [41℄. When a way-point is reahed, the spaeraft must maintain thatposition and wait until the ground mission ontrol gives the authorisation to proeed to the nextpoint. The waiting point ondition ould be relaxed to a requirement of natural periodi motionaround the designated waiting position. This might have the bene�t of reduing the fuel ost ofthe mission, sine waiting on a naturally periodi trajetory does not imply any fuel onsumption.Dimensions restritions need to be imposed on the parking orbits, in the form of a tolerane boxfor instane (see the illustration in Figure 4.2).

Figure 4.2: Way-points illustration for the ATV missionMathematial formulation of the guidane problemThe main di�erene with respet to the lassial rendezvous guidane problem (4.13) resides in the�nal objetive of the mission. Instead of reahing a designated �nal relative state Xf , the aim isnow to reah an unknown �nal state from whih the autonomously propagated trajetory is periodiand evolves inside a designated tolerane region.The general expression for the set Sp
D(H,V ) ontaining the parameters that orrespond toonstrained periodi trajetories has been given in (3.33). Integrating this expression into the



4.2. Fixed-time rendezvous with trajetory onstraints 65general guidane problem leads to:
min
∆Ṽi

‖∆Ṽ ‖1

s.t. 









































X̃(νN ) = AN∆Ṽ +BN

D = C(νN )X̃(νN )

D ∈ Sp
D(H,V )

−∆Ṽmax(νi) ≤ ∆Ṽi ≤ ∆Ṽmax(νi), ∀i = 1...N

(4.21)
where D is the onstant vetor of parameters orresponding to the �nal autonomous perioditrajetory and C(ν) is the transformation matrix de�ned in (2.5). The vetor D is onstrained tobelong to the set of parameters that generate periodi trajetories whih evolve inside the toleranebox de�ned by the matries H and V .After replaing the optimization riterion with a linear equivalent as previously shown andintegrating the de�nition of the set Sp

D(H,V ) from (3.33), the optimal ontrol problem an bewritten as a Semi-De�nite Program (SDP):
min

∆Ṽi,Zi,Yi

13N Z

s.t.










































































−Zi ≤ ∆Ṽi ≤ Zi

Zi ≤ ∆Ṽmax(νi)

, i = 1...N

D = C(νN )(AN∆Ṽ +BN )

d0 = 0, Yi � 0, i = 1...s

γi = tvi − (hi,1Cx + hi,2C̄y + hi,3Cz)D

γTi =

[tr (YiH2,1) ... tr (YiH2,5)

] , i = 1...s

(4.22)
where γi are the vetors of oe�ients orresponding to the non negative polynomials de�ning theset Sp

D(H,V ) and the matries Hm,i are de�ned as in (B.3). d0 denotes the parameter in the vetor
D assoiated with the periodi motion ondition and hi,j and vi denote elements from the H and
V matries de�ning the tolerane region.The semi-de�nite programs (SDP) are onvex optimization problems that an still be e�ientlysolved using interior point methods [15℄. Thanks to the properties of non negative polynomials,the solution to the rendezvous guidane problem with ontinuous trajetory onstraints an beobtained in an amount of time that is polynomial in the number of the deision variables.



66 Chapter 4. Trajetory design for spaeraft rendezvousAlways feasible formulationThe optimization problem (4.22) might not always have a feasible solution, depending on the data ofthe hosen rendezvous mission. Infeasibility ould arise from the fat that the saturation onstraintsdo not allow for the objetive to be reahed within the N steps of the plan or from the fat that noperiodi trajetory an be found in the given tolerane region. The availability of a feasible solutionmight be ritial for ertain appliations. In those ases, the infeasibility issues an be avoided bytransforming some of the data de�ning the tolerane region into deision variables.It an be notied from (4.22) that only the elements of the V matrix an be onsidered asoptimization variables, while still remaining in the ontext of onvex problems. Considering theelements of the H matrix as deision variables leads to the appearane of produts between thedeision variables in the de�nition of the vetors γi. These vetors ontain the oe�ients of thepolynomials whih de�ne the set of admissible periodi trajetories. Their expressions need to belinear in the deision variables in order to obtain a onvex program.To guarantee that the dimensions of the tolerane region are modi�ed only when needed toensure the feasibility of the problem, the minimization riterion must inlude the new parameters:
min

∆Ṽi,Zi,Yi,V
13N Z + ρ

s
∑

i=1

vi (4.23)where the parameter ρ is a positive number. The transformation of some of the parameters ofthe tolerane region into deision variables allows for the dimensions onstraints on the perioditrajetory to be softened until a feasible solution is found.Depending on the value of ρ, the solution might onsist in a small tolerane region for whihthe fuel ost of the rendezvous trajetory is high. To ensure that, regardless of the value hosen forthe parameter ρ, the dimensions of the tolerane region remain higher than an admissible value, alower bound for the parameters in the matrix V an be spei�ed:
V ≥ Vm (4.24)The addition of this onstraint orresponds to the fat that the purpose is not to �nd the smallestpossible tolerane region but rather to inrease the existing one in ase the problem is infeasible.4.2.2 Passively safe trajetories for spaeraft rendezvousThe ability to design a ollision free spaeraft relative trajetory is of great importane, espeiallyin the ontext of spaeraft proximity operations. The purpose is to provide guarantees for the



4.2. Fixed-time rendezvous with trajetory onstraints 67seurity of the mission even in the event of a system failure.The methods for dealing with seurity onstraints an be divided into ative methods and passivemethods [29℄. The ative seurity methods refer to the usage of ontrol systems that integratefailure detetion apabilities, enabling the spaeraft to ompute and exeute ollision avoidanemaneuvers in the event of a problem. These methods require the existene of an e�etive failurediagnosis module, apable of quikly delivering reliable information to the ontrol system.The passive seurity is based on trajetory design proedures that an guarantee a priori thatno ollision will our for a large range of faults [17℄. It does not require the omputation ofany ollision avoidane maneuver and it ensures the safety of the system even when the spaeraftannot use the thrusters, the on-board omputer or the ommuniation equipment. Passive seuritystrategies are preferred for spaeraft rendezvous missions in order to avoid problems arising fromthe usage of the thrusters in proximity of the leader spaeraft [29℄.Let us onsider the failure moments as the moments when a system error prevents the omputedontrol from being exeuted. In the ase of passive seurity strategies, a system failure auses thethrusters to be stopped and the appliation of the rendezvous plan to be suspended. The systemthen enters a phase of autonomous motion following a fail trajetory. In order to guarantee theseurity of the mission, the nominal trajetory must be designed in suh a way that the possibleresulting fail trajetories do not run the risk of ollision. This an be done by requiring for the failtrajetories to remain inside a designated safe area during a spei�ed time interval [17,74℄. Seurityover an in�nite interval an be ahieved by using onstrained periodi relative trajetories as failtrajetories. In this ase, the optimal ontrol problem an be written as:
min
∆Ṽi

‖∆Ṽ ‖1

s.t.






















































−∆Ṽmax(νi) ≤ ∆Ṽi ≤ ∆Ṽmax(νi), ∀i = 1...N

X̃(νi) = Ai∆Ṽ
i
+Bi, i = 1...N

X̃f − X̃tol ≤ X̃(νN ) ≤ X̃f + X̃tol

Di = C(νi)X̃(νi)

Di ∈ Sp
D(H,V )

,∀i = N−S...N−1

(4.25)
where X̃(νi) is the spaeraft relative state right after that the i-th ontrol is applied. Di is thevetor of parameters orresponding to the fail trajetory that would result in ase an inidentprevented the rendezvous plan from being exeuted starting from the step i + 1. The de�nitionof Di in (4.25) orresponds to the fat that between two impulsive ontrols the trajetory follows



68 Chapter 4. Trajetory design for spaeraft rendezvousan autonomous evolution. If the (i + 1)-th ontrol annot be exeuted then the spaeraft willontinue on the relative trajetory that started from X̃(νi) and is on this trajetory that theseurity onstraints must be imposed.The fail trajetories are onstrained to evolve inside a safe area, whih in this ase is de�nedas the polytopi region spei�ed by the H and V matries (see the de�nition in (3.2)). The set
Sp
D(H,V ) represents the set of parameters that orrespond to admissible periodi trajetories,de�ned as in (3.33). A small tolerane X̃tol is allowed around the �nal objetive X̃f .Passive seurity onstraints an be imposed on any of the N steps of the rendezvous plan.However, are must be taken to the fat that adding too many onstraints will inrease the totalfuel ost of the mission without neessarily improving the overall probability of ollision [17℄. Forthis reason we onsider in (4.25) that the seurity onstraints are required only for the last S stepsof the plan, with S < N . Solving (4.25) will provide a rendezvous approah trajetory whih forthe last S steps is omposed of segments that are parts of admissible periodi trajetories.After linearizing the fuel onsumption riterion and integrating the de�nition of the set ofadmissible parameters Sp

D(H,V ) from (3.33), the optimal ontrol problem an be written as anSDP:
min

∆Ṽi,Zi,Y
j
i

13N Z

s.t.






















































































−Zi ≤ ∆Ṽi ≤ Zi

Zi ≤ ∆Ṽmax(νi)

, i = 1...N

X̃f − X̃tol ≤ AN∆Ṽ +BN ≤ X̃f + X̃tol

Di = C(νi)(Ai∆Ṽ i +Bi)

di0 = 0, Y j
i � 0, i = N−S...N, j = 1...s

γji = tvj − (hj,1Cx + hj,2C̄y + hj,3Cz)Di

γji =

[tr (Y j
i H2,1) ... tr (Y j

i H2,5)

]T , i = N−S...N, j = 1...s

(4.26)
where di0 is the parameter related to the ondition for periodi motion and s is the number ofonstraints that de�ne the safe region.4.2.3 Spaeraft rendezvous with visibility onstraintsThe examples of onstraints presented so far were only referring to periodi spaeraft relativetrajetories. However, for the last part of a rendezvous mission, the approahing spaeraft is



4.2. Fixed-time rendezvous with trajetory onstraints 69usually required to remain permanently in the �eld of vision of the target spaeraft during theexeution of the �nal maneuvers [17, 74℄. This means that the visibility onstraints need to beenfored ontinuously on the non periodi nominal approah trajetory. In this ase, the generaloptimal ontrol problem an be formulated as:
min
∆Ṽi

‖∆Ṽ ‖1

s.t.






















































−∆Ṽmax(νi) ≤ ∆Ṽi ≤ ∆Ṽmax(νi), ∀i = 1...N

X̃(νi) = Ai∆Ṽ i +Bi, i = 1...N

Di = C(νi)X̃(νi)

Di ∈ SD(H,V, νi, νi+1)

, i = 1...N−1

X̃f − X̃tol ≤ X̃(νN ) ≤ X̃f + X̃tol

(4.27)
where SD(H,V, νi, νi+1) has been de�ned in (3.30) as the set of parameters orresponding to spae-raft autonomous relative trajetories that remain inside a polytopi set over the spei�ed interval
[νi νi+1]. The polytopi set de�ned through the matries H and V represents in this ase thevisibility one of the target spaeraft.The set SD(H,V, νi, νi+1) is de�ned by in�nitely many onstraints but it has been shown inthe previous hapter that a representation using a �nite number of variables an be ahieved ifsome approximations are made. By using upper and lower polynomial bounds for the integral term
J(w), worst ase rational bounds an be obtained for the spaeraft relative trajetory. This leadsto a desription of the admissible paths through polynomial non negativity onstraints that anbe replaed with onditions of existene of a �nite number of onstrained positive semi-de�nitematries. The original optimal ontrol problem (4.27) an one again be written as an SDP:

min
∆Ṽi,Zi,Y i

j1l
,Y i

j2l
,Yj1u,Y i

j2u

13NZ

s.t.






































































−Zi ≤ ∆Ṽi ≤ Zi

Zi ≤ ∆Ṽmax(νi)

, ∀i = 1...N

X̃f − X̃tol ≤ AN∆Ṽ +BN ≤ X̃f + X̃tol

Di = C(νi)(Ai∆Ṽ i +Bi), i = 1...N−1

Y i
j1l � 0, Y i

j2l � 0, γijl = Λ∗(Yj1l, Y
i
j2l)

Y i
j1u � 0, Y i

j2u � 0, γiju = Λ∗(Yj1u, Y
i
j2u)

,∀i = 1...N−1,∀j = 1...s(4.28)



70 Chapter 4. Trajetory design for spaeraft rendezvouswith the linear operator Λ∗ de�ned as in (B.4) and (B.5). γijl and γiju represent the vetor ofoe�ients orresponding to the non negative polynomials that de�ne the set SD(H,V,wi, wi+1)and they depend linearly on the orresponding vetor of parameters Di.4.3 Numerial examplesThe e�ieny of the previously presented methods for omputing fuel optimal impulsive maneuversplans under ontrol and trajetory onstraints will be illustrated here through some numerialexamples. The ontrol plan is omputed at the beginning of the mission and then applied by thehaser spaeraft until the end without any modi�ations. Perfet state knowledge is assumed forthese examples and the tests are made using the linear model for the propagation of the spaeraftrelative motion.4.3.1 Reahing a onstrained periodi relative trajetoryLet us onsider a spaeraft rendezvous mission where the �nal objetive is to reah a periodi rela-tive trajetory in proximity of the target. The periodi trajetory is not �xed a priori, it is just re-quired to evolve inside a tolerane region, spei�ed as a box of dimensions Xtol =
[

xtol ytol ztol

]Taround a desired �nal position Xf =
[

xf yf zf

]T . In this ase, the matries H and V de�ningthe polytopi set whih bounds the admissible trajetories are given by:
H =





























1 0 0

−1 0 0

0 1 0

0 −1 0

0 0 1

0 0 −1
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xf + xtol

−xf + xtol

yf + ytol

−yf + ytol

zf + ztol

−zf + ztol





























(4.29)
The mission data for the �rst senario i.e. the semi-major axis of the target orbit a, theeentriity e, the maximum allowed thrust ∆Vmax, the initial state X1, the initial time t1, thenumber of the impulsive thrusts N , the �nal time tN and the spei�ations of the tolerane regionare given in Table 4.1. No onstraints are spei�ed for the �nal veloity but its value will bedetermined by the periodiity ondition.After integrating the data in Table 4.1, the semi-de�nite program (4.22) is solved in Matlabusing Yalmip [63℄ along with the solver SDPT3 [100℄. The guidane problem is also solved using a



4.3. Numerial examples 71
a [km℄ e ∆Vmax N X1 [m,m/s℄ t1 [s℄ Xf [m℄ Xtol [m℄ tN [s℄7 011 0.0237 0.26 10 [1000,50,50,0,0,0℄ 1 282 [100,0,0℄ [20,10,10℄ 18 808Table 4.1: Mission datamethod based on onstraints disretization [99℄, in order to ompare the performanes of the twodi�erent approahes. This onstraints disretization method amounts to a Linear Program whosesolution is obtained using the linprog funtion from Matlab.The rendezvous trajetory obtained for the disretization based method and 10 veri�ationpoints is presented in Figure 4.3. Taking more veri�ation points or using the SDP method doesnot essentially hange the omputed rendezvous trajetory and the objetive of ahieving a peri-odi motion is always met. However, the di�erenes appear when analysing the periodi relativetrajetories that start at the end of the rendezvous plan.

Figure 4.3: Spaeraft guidane towards proximity periodi motionFigure 4.4 presents the resulting periodi trajetories for the onstraints disretization methodwhen onsidering 10, 20 and 30 veri�ation points respetively, uniformly distributed over oneorbital period (the veri�ation points are represented by the * symbol). The trajetory obtainedwith the SDP method is also shown for omparison. It an be seen that the solution provided by theonstraints disretization method sometimes violates the tolerane region onstraints in betweenthe hosen veri�ation points. The preision of the solution is in�uened by the number of points
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Figure 4.4: Comparison between the obtained periodi trajetorieswhere the onstraints are expliitly heked and better auray might be ahieved by inreasingtheir number. No onstraints violations our when using our method whih guarantees a priorithat the onstraints are respeted ontinuously in time.The omparison between the fuel ost, the solver time and the time spent outside the toleraneregion for eah of the onsidered methods is shown in Table 4.2. Inreasing the number of veri�ationpoints redues the amount of onstraints violations but it also inreases the solver time and thefuel ost. It an be notied that, as the number of disretization points inreases, the obtained fuelost approahes the solution given by the SDP method. The LP approah provides the optimalsolution only for the disretized problem, while the SDP approah provides the optimal solutionfor the original problem.Method LP10 LP20 LP30 SDPFuel ost [m/s℄ 0.48907 0.48922 0.48927 0.48927Solver time [s℄ 0.1972 0.6499 1.6241 0.9325Time out of bounds [s℄ 1 269 737 339 0Table 4.2: Comparison between the SDP and LP methodsThe data for the seond example are summarized in Table 4.3. This senario onsiders a highlyeentri referene orbit whih enables us to illustrate that not only the number of disretizationpoints is important but also their distribution along the onsidered time horizon.The resulting periodi trajetories are depited in Figure 4.5, where the solution provided bythe disretization based method is obtained for 15 veri�ation points uniformly distributed over oneorbital period. It an be seen that despite this uniform time distribution, the distane between the
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a [km℄ e ∆Vmax [m/s℄ N X1 [m,m/s℄ t1 [s℄ Xf [m℄ Xtol [m℄ tN [s℄7 011 0.8 0.26 10 [10000,100,0,0,0,0℄ 1 282 [100,0,0℄ [50,25,25℄ 65 902Table 4.3: Mission dataveri�ation points is uneven (the points are represented in the �gure by the * symbol). This omesfrom the fat that for eentri orbits the spaeraft instantaneous veloity is not onstant. As aonsequene, larger parts of the obtained trajetory evolve outside the desired tolerane box. Thesolution provided by our method is not a�eted by this issue and the obtained trajetory evolvesvery lose to the given bounds without ever rossing them.

Figure 4.5: Comparison between the obtained periodi trajetories when e = 0.8

Always feasible formulationLet us onsider the spaeraft rendezvous mission in Table 4.3 for whih the spei�ation for thetolerane box is modi�ed to Xtol = [10 5 5] m. In this ase, no feasible solution an be found usingour method. Even removing the saturation onstraints and hanging the duration of the rendezvousmission does not lead to a feasible solution. In this ase, it an be interesting to use the alwaysfeasible formulation of the ontrol problem in order to ompute the smallest feasible tolerane box.The periodi trajetory obtained when onsidering the omponents of Xtol as deision variablesis depited in Figure 4.6 where Xm refers to the initially spei�ed value for the tolerane box. Thesmallest feasible tolerane box is spei�ed by Xtol = [44.4474 5 22.2193] m. No expansion of thebox is neessary on the y axis while a muh bigger box is needed to ontain the trajetory in the
xz plane.
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Figure 4.6: Modi�ation of the tolerane box in order to ensure the feasibility of the problem4.3.2 Passively safe rendezvous trajetoriesConsider the rendezvous mission whose data are presented in Table 4.4. The objetive is to reahthe �nal state on a passively safe rendezvous trajetory. Some tolerane is permitted on the �nalveloity, spei�ed by vtol while the requirement for the �nal position is stritly maintained. In thisexample we onsider for simpliity that the safe area is represented by an open polytope behindthe haser de�ned by x̃(ν) ≤ x̃safe, where xsafe = −5 m.
a [km℄ e ∆Vmax [m/s℄ N X1 [m,m/s℄ t1 [s℄ Xf [m℄ vtol [m/s℄ tN [s℄7 011 0.0237 0.26 15 [-30,0,-3,0,0,0℄ 0 [-5,0,0,0,0,0℄ 0.01 5 843Table 4.4: Mission data for the passively safe rendezvousIn order to identify a suitable value for the seurity horizon S, the rendezvous problem (4.26)is �rst solved without enforing the seurity onstraints (S = 0). The obtained maneuvers plan isapplied and starting from every ontrolled state on the seond half of the rendezvous horizon theautonomous trajetories are propagated. This is done in order to identify the fail trajetories whihpresent a risk of ollision. The states starting from whih ollision between the two spaeraft mightour need to be inluded in the safety horizon S.The obtained trajetories are presented in Figure 4.7 where the * symbol orresponds to ontrolinstants from whih the fail trajetories are propagated. The result suggests that a seurity horizonof S = 4 should greatly redue the probability of ollision in the event of system failure. It isinteresting to note that in Figure 4.7 some of the fail trajetories overlap, in the ases where theoptimal ontrol equals zero.Figure 4.8 depits the fail trajetories that are obtained when solving (4.26) for a seurity
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Figure 4.7: Fail trajetories when the seurity onstraints are not enfored

Figure 4.8: Fail trajetories obtained when the seurity onstraints are enforedhorizon S = 4. The fail trajetories are now periodi and evolve inside the seurity area de�nedby xsafe, thus reduing the risk of ollision in ase of system error (some of the fail trajetories stilloverlap meaning that the new solution still ontains thrusting instants where the optimal ontrolis zero).The in�uene of the hoie of the seurity horizon on the fuel ost of the mission is illustratedin Table 4.5. It an be easily seen that the fuel ost inreases as the seurity horizon inreases sinemore and more onstraints are added to the problem and this limits the hoies for the possible



76 Chapter 4. Trajetory design for spaeraft rendezvousrendezvous trajetories.S 0 1 2 3 4 5 6 7Fuel ost [m/s℄ 0.0116 0.0121 0.0135 0.0146 0.0156 0.0163 0.0168 0.0174Table 4.5: Evolution of the mission fuel ost with the length of the seurity horizonA di�erent geometry an be spei�ed for the seurity area. In some appliations, the seurityregion may oinide with the visibility one of the target spaeraft [17℄. The visibility one isusually represented by an open polytope de�ned through the aperture angle α and the o�setdistane xsafe between the doking port and the enter of gravity of the target satellite (see Figure4.9). In this ase the polytopi onstraints on the fail trajetories are de�ned by the matries:

Figure 4.9: The visibility one of the target satellite
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where ρ = tan(π2 − α).The data in Table 4.6 de�ning a new rendezvous senario is used for solving the optimal ontrolproblem (4.26). The parameters for the visibility one are given by xsafe = 1.04 m and α = 47◦.Figure 4.10 presents the fail trajetories and the nominal rendezvous trajetory obtained withand without the seurity onstraints. The safety horizon has been hosen S = 3 after inspetingthe fail trajetories obtained in the ase where the seurity onstraints were not ative.



4.3. Numerial examples 77
a [km℄ e ∆Vmax [m/s℄ N X1 [m,m/s℄ t1 [s℄ Xf [m℄ vtol [m/s℄ tN [s℄7 360 0.0237 0.26 20 [100,0,0,0,0,0℄ 0 [1.04,0,0,0,0,0℄ 0.001 6 283Table 4.6: Mission data for the passively safe rendezvous

Figure 4.10: Fail trajetories obtained for S = 0 and S = 3 respetivelyWhen the same passively safe rendezvous problem is solved using a onstraints disretizationmethod as in [17℄, some di�erenes an be observed between the obtained fail trajetories. Figure4.11 shows that, as pointed out before, violations of the onstraints our in between the hosenveri�ation points when using the method based on onstraints disretization.

Figure 4.11: Comparison between the fail trajetories obtained when using our SDP-based methodand a onstraints disretization methodAn iterative method for hoosing the number of veri�ation points ould onsist in inspetingthe obtained trajetories and then inreasing the number if neessary. Using this approah ouldeventually lead to a better hoie for this important parameter. However, the SDP method deliversdiretly a trajetory that guarantees the ontinuous satisfation of the onstraints.



78 Chapter 4. Trajetory design for spaeraft rendezvous4.3.3 Constrained non periodi relative trajetoriesFor the last phase of the rendezvous maneuvers, operational requirements might impose visibilityonstraints on the approah trajetory. In this ase, the objetive is to design a spaeraft ren-dezvous trajetory whih remains inside the visibility one of the target spaeraft throughout theduration of the rendezvous maneuvers. The visibility onstraints an be ombined with passiveseurity onstraints for instane, but in this example we hose to fous on the ase where therestritions onern only the non periodi relative motion.The fuel optimal maneuvers plan that generates an approah trajetory whih respets thevisibility requirements an be obtained by solving the semi-de�nite program (4.28). In order to beable to formulate the optimization problem, polynomial approximations of the term J(w) on eahinterval between two onseutive thrusts need to be omputed. The software Sollya [22℄ is used herefor obtaining these approximations. The software requires for the values of the independent variable
w to be monotonously inreasing on eah approximation interval. This imposes some restritionson the rendezvous horizon sine the transformation (3.8) maps eah interval of one orbital periodfor the variable ν to R.The duration of the mission is hosen to be half of an orbital period, starting from ν1 = −π/2and until νN = π/2. This hoie guarantees stritly inreasing values for w on eah interval betweenthrusts and avoids working lose to the bounds of the domain on whih w is de�ned. Auratepolynomial approximations an be obtained for the hosen rendezvous horizon (see Figure 4.12).The fat that ν1 is negative orresponds to rendezvous maneuvers that start before the urrentpassage of the leader spaeraft through the perigee. The data de�ning the rendezvous mission issummarized in Table 4.7 and the visibility one is de�ned in this ase by xsafe = −5 m and α = 20◦.
a [km℄ e ∆Vmax [m/s℄ N X1 [m,m/s℄ ν1 [s℄ Xf [m℄ vtol [m/s℄ νN [s℄7 011 0.0237 0.26 5 [-50,-10,15,0,0,0℄ −π/2 [-6,0,0,0,0,0℄ 0.001 π/2Table 4.7: Mission data for the rendezvous with visibility onstraintsThe degree of the polynomial approximations is �xed to q = 2. For this value, the maximalerti�ed approximation error ε provided by Sollya is 0.25%. The upper and lower polynomialbounds for the term J(w) on eah interval between two onseutive ontrols are given in Figure4.12 (Θu and Θl respetively).A method based on onstraints disretization is used for omparison. The trajetories obtainedfor the two methods are given in Figure 4.13, where 10 olloation points are taken for onstraints
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Figure 4.12: The drifting term J(w) and its polynomial bounds on eah time segmentdisretization. As before, onstraints violations our in between the points where the onstraintsare expliitly heked of the LP method, while our method guarantees ontinuous onstraints sat-isfation even in the ase of non-periodi spaeraft relative trajetories.4.4 ConlusionThis hapter desribes the onstrution of the optimal ontrol problem that needs to be solved inorder to obtain a fuel optimal maneuvers plan for the �xed-time spaeraft rendezvous. In theframework of diret shooting methods, the problem an be formulated as a Linear Program whihan be easily solved using the existing numerial solvers. We show that even when onstraints onthe spaeraft relative trajetory are imposed ontinuously in time, the optimal ontrol probleman still be written as a onvex optimization problem. In this ase, the formulation relies on thedesription of the admissible trajetories using polynomial non-negativity onstraints whih hasbeen introdued in the previous hapter. It amounts to a Semi-De�nite Program whih an besolved in polynomial time by the existing interior point algorithms.Several examples of rendezvous missions are used to illustrate the types of trajetory onstraintsthat an be handled by the proposed method. The onstraints arise from mission-spei� require-ments, suh as passive seurity or visibility onstraints. The examples emphasize the advantage of
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Figure 4.13: Comparison between the rendezvous trajetories obtained with the two methodsour method over the lassial onstraints diretization tehnique for whih onstraints violations anour in between the veri�ation points. The solution provided by the onstrained disretizationmethod depends on the number of veri�ation points that are onsidered and on their partiulardistribution over the onsidered horizon. Moreover, the numerial examples show that it approahesthe solution given by our method as the number of veri�ation points inreases.
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82 Chapter 5. Spaeraft rendezvous robust to navigation unertaintiesThe trajetory design tehniques presented in the previous hapter rely heavily on the knowledgeof the spaeraft relative state. When the measurement of the spaeraft relative state is nota�eted by unertainties, the omputed impulsive maneuvers plan may be applied in open-loop tosteer the spaeraft towards the desired objetive. In presene of sensing noise, applying the planwithout taking into onsideration new measurement information will ause any initial navigationunertainties to propagate until the end of the predition horizon. This open-loop propagationmight have severe e�ets on the �nal performane of the spaeraft rendezvous.How and Tillerson showed in [44℄ that small errors in the estimation of the spaeraft relativeveloity an result in very large predition errors for the relative trajetory over just one orbital pe-riod. Navigation errors may be aused by alignment errors between the sensors and the spaeraftaxes, by measurement performane limitations of the used sensor and/or by the information pro-essing in the navigation �lter [29℄. Not aounting for the presene of these errors when designingthe rendezvous trajetory an result in poor guidane performanes and/or onstraints violations.Our purpose is to obtain a robust ontrol algorithm for the spaeraft rendezvous that anguarantee the robust onstraints satisfation for all the possible realizations of the unertainties.The performane riterion is de�ned as the best trade-o� between the fuel ost of the omputedmaneuvers and the �nal rendezvous preision. The rendezvous preision an be understood in thesense of obtaining the smallest possible set that bounds the error with respet to the �nal objetivefor all the admissible values of the navigation unertainties.The fuel-optimal trajetory planning proedure presented in Chapter 4 is based on the resolutionof an open-loop optimal ontrol problem. This proedure an be used for losed-loop ontrol withguaranteed performanes by integrating it in a Model Preditive Control setting. Several ModelPreditive Control approahes have been developed for dealing with unertainties and ahievingthe robust ontrol objetives in the ontext of spaeraft rendezvous guidane and some of themare summarized in the next setion.5.1 Model Preditive Control and spaeraft trajetory designThe lassial Model Preditive Control onsists in solving at eah ontrol step a onstrained �nite-horizon open-loop optimal ontrol problem based on the estimation of the urrent state of thesystem. The omputed optimal solution onsists in a series of ontrol ations {u1, u2, ..., uN}, outof whih only the �rst one is exeuted. The rest of the plan is disarded and a new solution basedon new measurement information is omputed at the next ontrol instant. Even if the ontrol planis obtained using open-loop preditions for the evolution of the system, the periodi reomputation



5.1. Model Preditive Control and spaeraft trajetory design 83of the optimal solution reates an impliit losed-loop [68℄.The previous hapter emphasized the need for spaeraft trajetory planning algorithms thatan handle di�erent state and ontrol onstraints spei� to eah mission. In presene of navigationerrors, the ontrol algorithm must guarantee a priori that no transgressions of the onstraints willour for all possible realizations of the unertainties. Simply relying on the periodi ontrolreomputation annot provide this type of guarantees. The optimal ontrol problem solved at eahstep needs to be modi�ed to expliitly aount for the e�ets of the unertainties.The approah known as open-loop min-max MPC [68℄ is based on the resolution at eah timestep of an open-loop optimal ontrol problem for whih the unertainties on the initial state arealso propagated over the predition horizon. The onstraints satisfation is expliitly heked forthe worst-ase disturbane sequene, providing the neessary guarantees for the obtained solution.The open-loop min-max MPC approah has been suessfully used for spaeraft relative trajetorydesign in presene of navigation errors [19, 31, 64, 71℄. The problem with this kind of approah isthat it annot inlude in the solved problem the performane objetive related to the obtentionof the best rendezvous preision. Due to the open-loop nature of the predition, the e�ets ofthe unertainties are taken into onsideration but are not expliitly minimized. In the writing ofthe optimization problem, the spread of all the possible trajetories is not atually limited by theontrol whih imposes the usage of short predition horizons in order to ensure the feasibility ofthe optimization problem.The onstraint tightening approahes are based on the idea of maintaining the ontrol shemein a feasible region under the ation of disturbanes by a priori tightening the onstraints on thepredited states [53℄. The ontrol problem solved at eah time step is still based on open-looppreditions for the system trajetory but the onstraints are modi�ed o�-line to ensure some roomfor future orretions. Constraints tightening proedures have been developed mainly for LinearTime Invariant (LTI) systems and are either based on the existene of a stabilizing state-feedbakontroller [18, 79, 96℄ or on the o�-line resolution of an optimization problem [53, 94℄. The mainadvantage is that the MPC with tightened onstraints an guarantee the reursive feasibility ofthe problem in presene of unertainties [78℄. However, the preision requirements and the ontrolsaturations are not expliitly onsidered. Moreover, for the onstraint tightening proedure beomesmore omplex in the ase of Linear Time Varying (LTV) systems [77℄.A hange in the ontrol philosophy is operated for the feedbak MPC. The deision variables arehanged from a series of ontrol ations to a sequene of feedbak poliies {u1(·), ..., uN (·)} and theontrol problem relies on the predition of the losed-loop trajetory of the system [56℄. Diretly



84 Chapter 5. Spaeraft rendezvous robust to navigation unertaintiesonsidering feedbak poliies in the optimization problem avoids the open-loop propagation of theunertainties and provides the means to atually limit the spread of all the possible trajetories.The drawbak is that, in the general ase, the omputation of suh feedbak laws an be extremelydi�ult, sine the deision variables are in�nite dimensional [66℄. However, restriting the admis-sible poliies to the lass of a�ne state feedbak ontrol laws an help redue the omplexity ofthe problem. This partiular ase is often-times alled tube-based MPC [56,61,66℄. It relies on theomputation of some feedbak gains that ontain the spread of all the possible trajetories and limittheir evolution to a tube around an optimized entral trajetory. It an ensure robust onstraintssatisfation and the dimension of the tube �xes the performanes in terms of preision.Method / Prop-erties Open-looppredition ofunertainties Periodireomputation Robustonstraintssatisfation Robust reursivefeasibilitylassial MPC x x - -open-loop min-max MPC x x x -MPC with tight-ened onstraints x x x xfeedbak MPC - - x xTable 5.1: Comparison between the di�erent MPC tehniquesA summary of the di�erent MPC tehniques is given in Table 5.1. Our purpose is to obtain amaneuvers plan for the �xed-time spaeraft rendezvous that is robust to navigation unertainties interms of onstraints satisfation. The obtained solution must also provide the best trade-o� betweenthe fuel ost of the trajetory and the �nal rendezvous preision. For this partiular problem, thefeedbak MPC seems to o�er the best ompromise between the guaranteed performanes and theomplexity of the ontrol algorithm. A design proedure for the rendezvous trajetory betweenspaeraft on eentri orbits will be presented in what follows.5.2 The robust trajetory planning problemThe robust spaeraft trajetory design refers to solving the �xed-time rendezvous guidane prob-lem de�ned in Setion 4.1 when navigation unertainties are a�eting all the measurements ofthe spaeraft relative state. Our purpose is to determine a series of a�ne feedbak ontrol laws
{u1(·), u2(·), ...} suh that, starting from an initial state X1 whih is a�eted by measurement noise,the �nal rendezvous objetive Xf is reahed at the spei�ed time and within the best preision.



5.2. The robust trajetory planning problem 85This must be done while minimizing the total fuel onsumption and while guaranteeing that theimposed onstraints are respeted for all the possible values of the unertainties. As before, thenumber of thrusts N and the thrusting instants ν1, ν2, ... are onsidered known and the ontrol isapplied in an impulsive manner.
5.2.1 The spaeraft relative dynamisFor the �xed-time impulsive rendezvous guidane problem, the spaeraft relative trajetory prop-agates autonomously on eah interval [νk, νk+1] between two onseutive impulsive ontrols. Usingthe Yamanaka-Ankersen transition matrix, this propagation is given by:

X̃(ν) = Φ(ν, νk) X̃
+(νk), ∀ν ∈ [νk, νk+1] (5.1)The state X̃+(νk) orresponds to the spaeraft relative state right after the k-th impulsive thrust:

X̃+(νk) = X̃(νk) +B uk, k ∈ {1, 2, ...} (5.2)where B = [03 I3]
T . Even if the impulsive ontrol uk instantaneously modi�es only the spaeraftrelative veloity, its e�ets on the whole spaeraft relative trajetory are visible on the interval ofautonomous propagation that follows eah thrust. For instane, the spaeraft relative state at theend of eah interval [νk, νk+1] is given by:
X̃(νk+1) = Φ(νk+1, νk) X̃(νk) + Φ(νk+1, νk)B uk, ∀k = 1...N−1 (5.3)Equation (5.3) learly shows the e�ets of the impulsive ontrol uk on the spaeraft relativeposition. The dynamis in (5.3) an be seen as the dynamis of an LTV system:

Xk+1 = AkXk +Bkuk (5.4)where Xk = X̃(νk), Ak = Φ(νk+1, νk) and Bk = Φ(νk+1, νk)B. These simpli�ed notations will beused throughout the hapter for onstruting the robust spaeraft rendezvous guidane problem.



86 Chapter 5. Spaeraft rendezvous robust to navigation unertainties5.2.2 The e�ets of navigation unertaintiesWhen sensing noise is present in the navigation system, Xk, the real relative state between the twospaeraft, is unknown. However, Xk is related to the measured state Xm
k through the equation:

Xk = Xm
k + δXk, δXk ∈ E(0, Qk) (5.5)where δXk is an unknown measurement noise whih is bounded by an ellipsoidal set E(0, Qk)(notation de�ned in (C.1)). The dynamis of the measured state an then be omputed as:

Xm
k+1 = Xk+1 − δXk+1 = AkXk +Bkuk − δXk+1, δXk+1 ∈ E(0, Qk+1) (5.6)Using (5.5) to replae the unknown state of the system Xk with the measured state Xm

k leads to:
Xm

k+1 = AkX
m
k +Bkuk +AkδXk − δXk+1 (5.7)Let us denote by wk the total e�et of the measurement noise over the interval between twoonseutive ontrols. From (5.7), wk an be de�ned as:

wk = AkδXk − δXk+1, δXk ∈ E(0, Qk), δXk+1 ∈ E(0, Qk+1) (5.8)This means that the domain for wk is given by:
wk ∈ E(0, A−T

k QkA
−1
k )⊕ E(0, Qk+1) ⊆ E(0, Qw

k ) (5.9)where the symbol ⊕ denotes the Minkowski sum between the two ellipsoidal sets, de�ned as in(C.8). The set E(0, A−T
k QkA

−1
k ) represents the ellipsoidal set obtained after the propagation ofthe set E(0, Qk) through the linear appliation Ak, de�ned as in (C.7). The Minkowski sum oftwo ellipsoids is not neessarily an ellipsoid and E(0, Qw

k ) is an outer ellipsoidal approximation ofthe real domain of wk. This approximation an be omputed analytially, using for instane theproedure desribed in (C.10).The dynamis of the measured state when the system is a�eted by navigation unertainties isgiven by:
Xm

k+1 = AkX
m
k +Bkuk + wk, wk ∈ E(0, Qw

k ) (5.10)It an be notied from (5.8) that the navigation unertainties will propagate in open-loop atleast over the interval between the two onseutive ontrol instants. The ontrol uk+1 will anel



5.2. The robust trajetory planning problem 87some of the e�ets of wk but in the same time it will introdue some new errors. This omes from thefat that the ontrol is omputed every time based on measurement information whih is orruptedby sensing noise. This means that if the spaeraft relative state is not preisely known, the �nalrendezvous objetive annot be exatly reahed. In this ase the ontrol objetive transforms intominimizing the size of a guaranteed arrival set around the nominal objetive.5.2.3 The nominal trajetoryLet ∆Vk be the nominal ontrol whih, in the absene of navigation error, steers the spaerafttowards the �nal rendezvous objetive. Let us de�ne the nominal trajetory as the trajetoryobtained when applying in perfet onditions a nominal ontrol ∆Vk:
X̄k+1 = AkX̄k +Bk∆Vk, k = 1...N−1 (5.11)where X̄k denotes the states that belong to the nominal trajetory. The nominal ontrols ∆Vk aresuh that, at the end of the predition horizon, the nominal trajetory reahes the desired missionobjetive:

X̄N = Xf (5.12)Applying the nominal ontrol ∆Vk on a system a�eted by navigation unertainties might lead totrajetories that are signi�antly di�erent with respet to the nominal path. Let the error betweenthe perturbed trajetory and the nominal one be de�ned as:
ek = Xm

k − X̄k (5.13)We are interested in the omputation of some feedbak ontrol poliies uk that minimize the errorswith respet to the nominal rendezvous path in presene of sensing errors.5.2.4 General formulation of the guidane problemThe objetive of minimizing the errors with respet to a nominal trajetory must be understoodin the sense that the losed-loop behaviour must be as lose as possible to the non-perturbedase. The nominal trajetory is not �xed a priori, the term is used here to refer to an idealbehaviour that also needs to be determined through optimization. Several tehniques for obtainingnominal trajetories while taking into onsideration di�erent types of trajetory onstraints havebeen presented in Chapter 4. These tehniques need to be modi�ed in the ase where the systemis a�eted by navigation errors. The �rst modi�ation onerns the struture of the ontrol law. A



88 Chapter 5. Spaeraft rendezvous robust to navigation unertaintiesfeedbak term is added to the nominal struture:
uk = fk(X

m
k , wk) + ∆Vk (5.14)in order to anel the errors with respet to the nominal behaviour aused by the presene of un-ertainties. The ontrol must now guarantee that the thrusters saturation onstraints are respetedfor all the possible realization of the unertainties.The optimal ontrol problem orresponding to the robust trajetory design for the spaeraftrendezvous an be written in the general form:

min
fk,∆Vk

J(uk, ek)

s.t.






































































Xm
k+1 = AkX

m
k +Bkuk +wk, wk ∈ E(0, Qw

k )

uk = fk(X
m
k , wk) + ∆Vk

X̄k+1 = AkX̄k +Bk∆Vk

ek = Xm
k − X̄k

X̄N = Xf

uk ∈ Umax(νi), ∀wk ∈ E(0, Qw
k )

(5.15)
where the deision variables are the nominal ontrols ∆Vk and the parameters of the funtions fk.The hoie of the optimization riterion J(uk, ek) must re�et the idea of ompromise between fuelonsumption and �nal rendezvous preision.In order to simplify the formulation, the �nal rendezvous objetive is onsidered to be a �xedstate Xf . However, the ontrol tehniques that will be presented next an still be used if the �nalobjetive is to reah an unknown state belonging to a set of admissible trajetories, as it was thease for the examples in Chapter 4.As already stated, solving (5.15) in the general ase an be extremely di�ult [66℄. In orderto redue the omplexity of the problem a speial struture an be imposed for the funtions fk.We will show next that (5.15) an be written as a onvex optimization problem if the ontrol isparametrized as a�ne state-feedbak or as a�ne disturbane-feedbak.



5.3. A�ne state-feedbak MPC 895.3 A�ne state-feedbak MPCLet us onsider that the ontrol poliies uk are restrited to the lass of a�ne state feedbakontrollers. In this ase we have:
uk = Kk(X

m
k − X̄k) + ∆Vk = Kkek +∆Vk (5.16)Our purpose is to ompute the gain matries Kk ∈ R

3×6 and the nominal terms ∆Vk ∈ R
3 whihsteer the spaeraft towards the �nal rendezvous objetive within the best possible preision, allwhile minimizing the total fuel ost. A design proedure for eah of these terms will be presentedin what follows.5.3.1 Computation of the feedbak gainsFor the hosen ontrol struture, the dynamis of the errors between the perturbed trajetory andthe nominal trajetory are given by:

ek+1 = (Ak +BkKk)ek + wk, wk ∈ E(0, Qw
k ) (5.17)The propagation of the errors over the predition horizon is given by:

e1 = Xm
1 − X̄1

e2 = (A1 +B1K1)e1 + w1

e3 = (A2 +B2K2) ((A1 +B1K1)e1 + w1) + w2

e4 = (A3 +B3K3) ((A2 +B2K2) ((A1 +B1K1)e1 + w1) + w2) + w3... (5.18)
This objetive related to the rendezvous preision an be interpreted as the searh for thefeedbak gains Kk whih minimize the dimensions of an ellipsoidal set E(0, Qα) bounding the �nalerror eN :

min
Kk,Qα

tr Qαs.t eN ∈ E(0, Qα), ∀wk ∈ E(0, Qw
k ), k = 1..N−1

(5.19)The matrix Qα de�nes an ellipsoidal set whih bounds the �nal error for all admissible values ofthe unertainties. Minimizing the trae of Qα orresponds to minimizing the sum of squares of thesemi-axis of this ellipsoidal set.Using the propagation given in (5.18), the expression for the �nal error ontains nonlinear terms



90 Chapter 5. Spaeraft rendezvous robust to navigation unertaintiesinvolving the deision variables Kk. In order to reah a onvex formulation of the optimizationproblem (5.19), the following simplifying assumption is made: the objetive is hanged to theresearh of the Kk matries suh that the error at eah step ek is bounded by the same ellipsoidalset denoted E(0, Qα). The ontrol problem (5.19) is replaed by:
min
Kk,Qα

tr Qαs.t. ek+1 ∈ E(0, Qα), ∀ek ∈ E(0, Qα), ∀wk ∈ E(0, Qw
k ), k = 1...N−1

(5.20)Under this assumption, the hoie of eah gain Kk beomes independent from the hoie of theother gains. The ommon point is that for eah interval between two onseutive ontrol instants,they guarantee to maintain all the possible errors with respet to the nominal trajetory inside thesame ellipsoidal set whih is de�ned by the matrix Qα.While the previous assumption will help us onvexify the problem, it will also generate additionalonstraints on the rendezvous trajetory. The ellipsoidal set E(0, Qα), instead of bounding just the�nal error eN , now de�nes a tube around the nominal trajetory whih must ontain all the possibletrajetories for all admissible values of the disturbanes wk. The dimensions of the tube depend onthe hoie of the gains Kk and on the interval between the ontrol instants.The onstraints in (5.20) are onditions of non negativity of a quadrati funtion on a domainde�ned by two quadrati inequalities. Using (5.17) and the de�nition of ellipsoidal sets given in(C.1), the onstraints in (5.20) an be written as:
((Ak +BkKk) ek + wk)

T Qα ((Ak +BkKk) ek + wk) ≤ 1, ∀











eTkQαek ≤ 1

wT
k Q

w
i wk ≤ 1

(5.21)By representing the ellipsoidal sets using a homogeneous quadrati inequality as in (C.4) andthen applying the S-proedure (see (C.14)) and the Shur omplement, the following onstraintsequivalent to (5.21) are obtained:
∃τk1 , τk2 ≥ 0
















1− τk1 − τk2 0 0 0

0 τk1Qα 0 (Ak +BkKk)
T

0 0 τk2Q
w
k I

0 Ak +BkKk I Q−1
α

















≥ 0, k = 1...N−1
(5.22)

Conditions (5.22) are not yet LMIs beause of the produt between deision variables τk1Qα



5.3. A�ne state-feedbak MPC 91and of the inverted term Q−1
α . Aording to [97℄, a linear form an be obtained by imposing aspeial struture on the matrix Qα:

Qα =
1

α2
Q (5.23)where Q is a onstant matrix, hosen by the designer, whih �xes the geometry of the tube. αis an optimization parameter whih sales the tube towards the smallest possible size. Using thisstruture for the Qα matrix transforms (5.22) into:

∃τk1, τk2 ≥ 0
















1− α2 − τk1α
2 − τk2 0 0 0

0 τk1Q 0 (Ak +BkKk)
T

0 0 τk2Qw I

0 Ak +BkKk I Q−1

















≥ 0
(5.24)

This new form still ontains some nonlinear terms in α2. These terms an be removed by pre- andpost-multiplying the matrix in (5.24) with:
P =

















α−1/2I 0 0 0

0 α1/2I 0 0

0 0 α−1/2I 0

0 0 0 α1/2

















(5.25)
After this operation, the optimization problem (5.19) an be written using only linear on-straints:

min
K̂k,α,τ̂k1 ,τ̂k2

αs.t. 









∃τ̂k1, τ̂k2 ≥ 0

Rk ≥ 0

,∀k = 1..N−1

(5.26)where the matries Rk are de�ned as:
Rk =

















α− τ̂k1 − τ̂k2 0 0 0

0 τ̂k1Q 0 (αAk +BkK̂k)
T

0 0 τ̂k2Q
w
k I

0 αAk +BkK̂k I αQ−1

















(5.27)
and K̂k = αKk, τ̂k1 = α−1τk1 and τ̂k2 = ατk2 .



92 Chapter 5. Spaeraft rendezvous robust to navigation unertaintiesSolving (5.26) enables the omputation of the feedbak gains Kk suh that the error tube issaled to the smallest possible size for a given shape �xed by the matrix Q. Next, we will now fouson the omputation of the terms ∆Vk whih de�ne the nominal trajetory.5.3.2 Computation of the nominal ontrolThe objetive for the nominal trajetory is to reah the �nal rendezvous objetive Xf in a fuel-optimal manner. The main di�erene with respet to the �xed-time rendezvous problem de�nedin (4.13) is that the saturation onstraints need to be modi�ed in order to ensure the neessarymargin for the feedbak orretion terms required for the real trajetory. The proedure resemblesthe onstraints tightening approah desribed in Setion 5.1. but in our ase the feedbak termsresult from an optimization proedure whih minimizes the dimensions of the �nal arrival set.The nominal trajetory does not neessarily have to start from the initial measured spaeraftrelative state Xm
1 = X̃1. Aording to (5.19), it is su�ient that the di�erene between the twoinitial onditions be bounded by the ellipsoidal set de�ned by Qα in order to guarantee the �nalrendezvous preision. Hene, the initial state for the nominal trajetory an be onsidered as adeision variable.With Kk and onsequently Qα omputed using (5.26), the optimal ontrol problem for thenominal trajetory an be written as:

min
∆Vk,X̄1

N−1
∑

k=1

‖∆Vk‖1

s.t. 









































X̄k+1 = AkX̄k +Bk∆Vk

e1 ∈ E(Xm
1 , Qα), X̄N = Xf

uk = ∆Vk +Kkek, ek ∈ E(0, Qα)

|uk| ≤ ∆Ṽmax(νi), ∀ek ∈ E(0, Qα)

(5.28)
Problem (5.28) aims at optimizing the nominal fuel-ost rather than the worst ase performaneby hoosing a riterion in the nominal ontrol variables.The saturation onstraints in (5.28) have been written following the same assumptions aboutthe on�guration of the spaeraft thrusters as in (4.8). They onern the ontrol poliies uk for theperturbed spaeraft relative trajetory but an be written as onstraints on the nominal deisionvariables ∆Vk:

|∆Vk| ≤ ∆Ṽmax(νi)− max
ek∈E(0,Qα)

Kk ek, k = 1...N−1 (5.29)



5.4. A�ne disturbane feedbak MPC 93The usage of ellipsoidal sets enables for (5.29) to be replaed by:
|∆Vk| ≤ ∆Ṽmax(νi)− ‖KkPα‖2, Pα = Q−1/2

α (5.30)The saturation onstraint (5.30) is the main reason why the orretion gains Kk and the nominalontrols ∆Vk are omputed separately. If Kk is onsidered as a deision variable then so is Pα andin this ase the norm-2 onstraint in (5.30) is not onvex. The separate omputation of Kk and
∆Vk removes this issue but it also introdues the risk of the problem beoming infeasible if theresulting saturation onstraints are too restritive.Finally, oneKk and∆Vk are omputed using the desribed proedures, the obtained rendezvousontrol plan an be applied without any reomputation, and it will steer the spaeraft towards the�nal objetive with a guaranteed preision given by Qα.
5.4 A�ne disturbane feedbak MPCAording to [35℄, a onvex formulation for the ontrol problem (5.15) an be diretly found if theontrol poliies uk are parametrized as a�ne disturbane feedbak ontrol laws instead of a�nestate feedbak ontrol laws. In this ase, the struture of uk is given by:

uk = ∆Vk +
k−1
∑

i=1

Lk,iwi, wi ∈ E(0, Qw
i ), k = 1...N−1 (5.31)where the disturbane feedbak terms are onsidered only until k− 1 to ensure the ausality of theontrol.The value of the perturbation wk is unknown at the instant k. Its value an only be estimatedat the next time step based on the e�ets it produes on the spaeraft relative trajetory. If theonly soure of errors are the navigation unertainties then, by using (5.10), the perturbation term

wk an be evaluated from the urrent measure Xm
k+1 and the predition made in nominal onditionsstarting from the previous measure Xm

k . The di�erene between the two is due to the disturbane
wk:

wk = Xm
k+1 − (AkX

m
k +Bkuk) (5.32)For the ontrol struture de�ned in (5.31), the evolution of the errors between the real trajetory



94 Chapter 5. Spaeraft rendezvous robust to navigation unertaintiesand the nominal trajetory is given by:
e1 = Xm

1 − X̄1

e2 = A1e1 +w1

e3 = A2A1e1 + (A2 +B2L2,1)w1 + w2

e4 = A3A2A1e1 + (A3(A2 +B2L2,1) +B3L3,1)w1 + (A3 +B3L3,2)w2 + w3... (5.33)
It an be seen that hoosing the deision variables as in (5.31) leads to expressions for the propa-gation of the errors whih do not ontain any nonlinear produts between the gain matries. Thisprovides an advantage with respet to expressions (5.18) obtained for the a�ne state feedbak aseand greatly simpli�es the ontrol synthesis proedure by allowing the simultaneous omputation ofthe feedbak gains Lk,i and of the nominal ontrols ∆Vk.The ausality onsideration in (5.31) fores the �rst ontrol uk to be equal to the �rst thrustof the nominal trajetory ∆Vk. This auses any initial mismath between the perturbed trajetoryand the nominal trajetory to be propagated in open-loop over the predition horizon, as it an beseen from (5.33). This problem an be removed by no longer onsidering the initial state for thenominal trajetory as an optimization variable and instead imposing that:

X̄1 = Xm
1 (5.34)whih auses e1 to be always equal to zero.Let X =

[

Xm
1|2 Xm

1|3 ... Xm
1|N

]T be the predition of the evolution of the losed-loop per-turbed trajetory starting from the initial measured state Xm
1 . X an be written in a ompat formas:

X = AXm
1 +B∆V + (BL+C)w (5.35)where the matries A ∈ R

6(N−1)×6, B ∈ R
6(N−1)×3(N−1) and C ∈ R

6(N−1)×6(N−1) are de�ned as:
A =

















A1

A2A1...
AN−1...A1

















B =

















B1 0 0 0 ...

A2B1 B2 0 0 ...... ...
AN−1...A2B1 ... ... BN−1

















C =

















I 0 0 0 ...

A2 I 0 0 ...... ...
AN−1...A2 AN−1 I















(5.36)and∆V =
[

∆V1 ∆V2 ... ∆VN−1

]T , w =
[

w1 w2 ... wN−1

]T . The gain matrix L ∈ R
3(N−1)×6(N−1)
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L =























0 0 0 ... 0

L2,1 0 0 ... 0

L3,1 L3,2 0 ... 0...
LN−1,1 ... ... LN−1,N−2 0























(5.37)
Taking into onsideration the onstraint (5.34), the evolution of the nominal trajetory X̄ =

[

X̄1|2 X̄1|3 ... X̄1|N

]T is given by:
X̄ = AXm

1 +B∆V (5.38)The error between the perturbed trajetory and the nominal trajetory an be written in this aseas a linear funtion of the disturbane vetor w:
e = X− X̄ = (BL+C)w (5.39)It beomes lear that a good hoie for the matrix L ould limit the e�ets of the navigation errorson the spaeraft rendezvous trajetory. We are searhing for the nominal ontrol ∆V and theorretion gains matrix L that guarantee the smallest error at the end of the predition horizon

eN and the lowest fuel-ost for the nominal trajetory, all while robustly satisfying the saturationonstraints on the thrusters.The objetive for the �nal error an one again be interpreted in terms of minimizing thedimensions of an ellipsoidal set that bounds eN for all the possible values of the unertainties:
min
L

tr Qf s.t. eN ∈ E(0, Q−1
f ), ∀wi ∈ E(0, Qw

i ), i = 1...N−1 (5.40)By using the dynamis of the errors from (5.39), the onstraint in (5.40) an be written as:
w

T (BNL+CN)TQ−1
f (BNL+CN)w ≤ 1, ∀wi ∈ E(0, Qw

i ), i = 1..N − 1 (5.41)where BN and CN are obtained by seleting the appropriate lines in the B and C matries. Usingthe S-proedure and the Shur omplement, the quadrati onstraint (5.41) an be transformedinto a linear matrix inequality:
∃τ1, τ2, ... τN−1 ≥ 0, Qf � 0 s.t. R � 0 (5.42)



96 Chapter 5. Spaeraft rendezvous robust to navigation unertaintieswhere the matrix R is de�ned as:
R =











1−∑N−1
k=1 τk 0 0

0 Qw (BNL+CN)T

0 (BNL+CN) Qf











, Qw =











τ1Q
w
1 . . .

τN−1Q
w
N−1











(5.43)
The saturation onstraints on the ontrol uk are written based on the same assumptions as in(4.8) about the on�guration of the spaeraft thrusters. The onstraints must be respeted for alladmissible values of the unertainties:

|uk| ≤ ∆Ṽmax(νk), ∀wi ∈ E(0, Qw
i ), i = 1...k−1, k = 1...N−1 (5.44)The usage of ellipsoidal sets enables us to transform the onstraints (5.44) in tightened onstraintson the nominal ontrols:

|∆Vk| ≤ ∆Ṽmax(νk)−
k−1
∑

i=1

‖Lk,iP
w
i ‖2, k = 1...N−1 (5.45)where Pw

i = (Qw
i )

−1/2. The previous onstraint is a oni onstraint sine only ∆Vk and Lk,i aredeision variables while the domains for the disturbanes wi are onsidered known. The �nal onvexoptimization problem that needs to be solved in order to �nd the a�ne disturbane feedbak ontrollaws uk an be written as:
min

Qf ,∆Vk,Lk,i

tr (T (νN )−1QfT (νN )−T ) + ‖∆V‖1

s.t.






























































X̄k+1 = AkX̄k +Bk∆Vk

X̄1 = Xm
1 , X̄N = Xf

|∆Vk| ≤ ∆Ṽmax(νk)−
k−1
∑

i=1

‖Lk,iP
w
i ‖2, k = 1...N−1

∃τ1, τ2, ... τN−1 ≥ 0

Qf � 0, R � 0

(5.46)
The optimization riterion re�ets the ompromise between the fuel ost of the nominal trajetoryand the rendezvous preision, represented by the ellipsoidal set bounding the �nal error. The matrix
T in the riterion aounts for the variable hange (1.17) that has been performed on the spaeraftrelative state in order to reah the dynamial model used for ontrol omputation. Minimizing thedomain for the transformed variables might not neessarily translate into a minimal domain for



5.5. Numerial evaluation of the robust ontrol tehniques 97the original variables. The matrix T ensures that the optimized domain orresponds to the errorsexpressed using the time-domain variables and is de�ned by:
T (ν) =





(1 + e cos ν)I3 03

−e sin νI3
(1 + e cos ν)

ν̇
I3



 (5.47)where νN is the true anomaly whih orresponds to the �nal time of the rendezvous.The advantage of this approah over the a�ne state feedbak ontrol plan is that only oneoptimization problem needs to be solved in order to determine all the parameters of the ontrollaws.5.5 Numerial evaluation of the robust ontrol tehniquesThe performanes of the two previously presented robust ontrol tehniques are evaluated for di�er-ent rendezvous senarios. The omparison riteria are the fuel-ost of the rendezvous trajetoriesand the dimensions of the set bounding the �nal error. The obtained performanes are �rst il-lustrated in losed-loop simulations using the linear model for the propagation of the spaeraftrelative motion based on the Yamanaka-Ankersen state transition matrix. The guaranteed perfor-manes are then validated using a nonlinear propagation model. The nonlinear simulator is basedon Gauss Variational Equations and its detailed desription an be found in [49℄.5.5.1 Desription of the simulation proedureThe simulations start form perturbed initial onditions, obtained by adding a random noise δXto the initial spaeraft relative state used for ontrol synthesis. Random noise is also added toall the other relative states that are measured during the simulations. The noise is bounded byan ellipsoidal set with semi-axis of 0.02 m for the relative position and 0.002 m/s for the relativeveloity.The outer ellipsoidal approximations for the domains of the disturbanes w are omputed usingthe analytial proedure given in (C.10). The obtained ellipsoidal sets E(0, Qw
i ) depend on thedomain for the navigation unertainties δX and on the time interval between two onseutiveontrol instants. Before starting the simulations, the parameters of the robust ontrol laws alsoneed to be omputed by solving the orresponding optimal ontrol problems. The spei� proedurefor eah ase is detailed in what follows, but the ommon point is that no all to an optimizationproedure is made during the simulations. This means that if the presented ontrol tehniques were



98 Chapter 5. Spaeraft rendezvous robust to navigation unertaintiesused for a spaeraft rendezvous mission, all the omputational e�ort ould be arried out using theresoures available at the ground ontrol station, followed by an upload of the resulting parameterson-board the follower spaeraft.A�ne state feedbakThe gains Kk for the a�ne state feedbak laws are omputed by solving the SDP (5.26) whilethe nominal ontrol are obtained from (5.28). The two optimization problems are solved usingYalmip [63℄ and the solver SDPT3 [100℄. The obtained solution depends on the hoie of the Qmatrix de�ned in (5.23). This matrix spei�es the geometry of the tube whih bounds all thepossible rendezvous trajetories.One way of hoosing Q omes from onsidering the variable hange (1.17). The optimizationproblem (5.26) is written for the transformed variables but our purpose is to obtain good per-formanes for the atual spaeraft relative trajetory. The transformation (1.17) introdues anarti�ial sale fator between the values of the spaeraft relative position and veloity, fator thatdepends on the orbital parameters of the leader spaeraft. A good hoie for the matrix Q annormalize this di�erene and lead to better results in terms of rendezvous preision.The states X̄k belonging to the nominal trajetory also need to be evaluated at the prede�nedontrol instants, sine their values are used for ontrol omputation. They an easily be obtainedfrom (5.11), where the initial ondition is the one provided by the resolution of (5.28). The worstase fuel onsumption an be evaluated before the simulations by adding to eah nominal ontrolthe maximum possible orretion:
∆Vmax =

N−1
∑

k=1

(∆Vk + ‖KkPα‖2) (5.48)The veloity inrements are evaluated during the simulations at eah ontrol instant. Their valuesdepend on the obtained measurements and an be omputed using the de�nition in (5.16).A�ne disturbane feedbakThe parameters de�ning the series of disturbane feedbak ontrol laws are obtained after solvingthe SDP de�ned in (5.46) using Yalmip [63℄ and the solver SDPT3 [100℄. The worst ase fuel on-sumption an be evaluated before the simulation by adding to eah nominal ontrol the maximumpossible orretion:
∆Vmax =

N−1
∑

k=1

(

∆Vk +

k−1
∑

i=1

‖Lk,iP
w
i ‖2

) (5.49)



5.5. Numerial evaluation of the robust ontrol tehniques 99The veloity inrements are evaluated during the simulations, at eah ontrol instant, using thede�nition in (5.31). The perturbation terms w are also evaluated at eah ontrol instant duringthe simulations, based on the obtained relative state measurements. Their values are obtained byusing (5.32) and then stored in the memory until the end of eah senario. This is neessary sinethe history of past disturbanes ontribute to the omputation of the ontrol.The losed-loop performanes are evaluated for two di�erent rendezvous senarios: the quasi-irular PRISMA mission [75℄ and the highly eentri Simbol-X mission [30℄.5.5.2 The PRISMA missionThe robust ontrol tehniques are �rst tested on a PRISMA spaeraft rendezvous mission. Thedata de�ning the orbital parameters of the leader spaeraft are given in Table 5.2.Mission a [km℄ e i [◦℄ Ω [◦℄ ω [◦℄ ∆Vmax [m/s℄PRISMA 7 011 0.004 98 190 0 0.26Table 5.2: Referene orbit data for the PRISMA rendezvous missionIn this ase, we onsider the matrix Q for the a�ne state feedbak method as:
Q = diag (1, 1, 1, 0.01, 0.01, 0.01) (5.50)whih roughly orresponds to the di�erene in magnitude between the spaeraft relative positionand veloity after the transformation (1.17).The data orresponding to the hosen rendezvous senario are given in Table 5.3. We areinterested in analysing the in�uene of the duration of the mission on the size of the guaranteed�nal arrival set and on the fuel ost of the mission.Mission X1 [m,m/s℄ ν1 [◦℄ Xf [m,m/s℄ duration [s℄ NPRISMA [10000,0,0,0,0,0℄ 0 [330,0,30,0,0,-0.0158℄ 18 000 10Table 5.3: Simulation senario for the PRISMA rendezvous missionThe size of the guaranteed arrival set is illustrated in Table 5.4 for di�erent values of themission duration. The number of impulsive thrusts is maintained onstant. The presented valuesorrespond to the semi-axes in the xz plane of the ellipsoidal sets whih bound the �nal errorsfor all the possible values of the navigation unertainties. The omparison is made between theappliation of the nominal plan in open-loop, the usage of the state feedbak plan and the usageof the disturbane feedbak plan.



100 Chapter 5. Spaeraft rendezvous robust to navigation unertaintiesmission duration [s℄ 9 000 12 000 15 000 18 000open-loop MPC [m℄ 56.82 1.4 70.08 0.61 93.65 1.3 105.2 0.9state feedbak MPC [m℄ 4.056 4.056 6.49 6.49 9.89 9.89 14.1 14.1disturbane feedbak MPC [m℄ 3.92 2.32 6.4 2.86 9.63 3.23 13.92 3.48Table 5.4: Semi-axes of the arrival set in the xz plane for the PRISMA missionAs expeted, the two losed-loop approahes o�er great bene�ts over the open-loop ase. If thesum of the semi-axes is onsidered, the preision guaranteed by the disturbane feedbak approahis better for all the values onsidered for the mission duration. The size of the �nal guaranteedarrival sets inreases for both robust ontrol methods with the extension of the predition horizon.This is to be expeted sine inreasing the predition horizon without inreasing the number ofontrol instants auses the navigation unertainties to be propagated in open-loop for a longerperiod of time (as showed in Setion 5.2.2).The di�erene between the fuel ost of the nominal trajetory and the maximum possible fuelost for the perturbed losed loop trajetory is presented in Table 5.5. It an be notied that thelowest nominal ost is obtained every time for the state feedbak approah. This is a onsequeneof the fat that, for this approah, the initial state for the nominal trajetory is a deision variable.This allows an extra degree of freedom for the optimization algorithm leading to a smaller fuelost for the nominal path. However, the maximum possible fuel ost an be signi�antly higher,depending on the dimensions of the error tube guaranteed by the orretion gains.mission duration [s℄ 9 000 12 000 15 000 18 000open-loop MPC [m/s℄ 1.1951 0.9997 0.6548 0.6505state feedbak MPC [m/s℄ 0.7343 1.9175 0.5826 2.4873 0.4677 3.3503 0.5403 4.6760disturbane feedbak MPC [m/s℄ 1.1952 1.3809 1.0015 1.1878 0.6548 0.8444 0.6505 0.8593Table 5.5: Nominal fuel ost and maximum possible losed-loop ost for the PRISMA missionIn the disturbane feedbak ase, the variation between the nominal fuel ost and the maximumfuel ost is smaller. It an also be seen that in this ase the nominal ost tends towards the open-loop ost as the mission duration inreases. This omes from the fat that, for longer missiondurations, the thrusters saturations onstraints are no longer ative.Linear losed-loop simulationsThe losed-loop behaviour of the system is analysed �rst using the linear model for spaeraftrelative motion. The simulations follow the proedure that has been desribed in the �rst part of



5.5. Numerial evaluation of the robust ontrol tehniques 101this setion.mission duration [s℄ 9 000 12 000 15 000 18 000average ∆V state feedbak MPC [m/s℄ 1.3506 1.5304 0.75 1.0631average ∆V disturbane feedbak MPC [m/s℄ 1.2139 1.0206 0.6741 0.6722Table 5.6: The average linear losed-loop fuel-ost for the PRISMA missionThe average fuel onsumption obtained for the linear losed-loop simulations is presented inTable 5.6. The average is omputed for 100 runs of the rendezvous senario starting from di�erentperturbed initial onditions. It an be seen that for the state feedbak ase, even if the average fuelonsumption is lower than the upper bound given in Table 5.5, it is always higher than the oneobtained for the disturbane feedbak ase.The trajetories obtained using the two robust ontrol methods for a mission duration of 18000s are depited in Figure 5.1. The open-loop trajetories are also showed in order to emphasize thespread of the perturbed rendezvous trajetories that ours in the absene of losed-loop orretions.Even if the trajetories followed by the two robust methods are di�erent, they both reah the �nalobjetive within the guaranteed preision.
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Figure 5.1: The rendezvous trajetories for the PRSIMAmission using the linear propagation modelFigure 5.2 presents the �nal arrival sets guaranteed by the robust algorithms, E(0, Qα) for thestate feedbak ase and E(0, Qf ) for the disturbane feedbak ase, along with the obtained errorswith respet to the mission's �nal objetive. As expeted, the �nal errors belong to the guaranteedarrival sets.
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Figure 5.2: Final errors and the guaranteed arrival sets for the PRISMA mission using the linearpropagation modelNonlinear losed-loop simulationsThe ontrol performanes for the nonlinear losed-loop simulations are evaluated for trajetoriesobtained starting from 100 di�erent perturbed initial onditions. The average losed-loop fuelonsumption is given in Table 5.7 for the same values of the mission durations onsidered for thelinear ase. It an be notied that the average fuel onsumption is higher than the one obtainedfor the linear ase but lower than the theoretial upper bound given in Table 5.5. The di�erenebetween the linear and the nonlinear behaviour is more visible for the state feedbak ase wherethe average fuel onsumption is up to 40% higher (see Table 5.6).mission duration [s℄ 9 000 12 000 15 000 18 000average ∆V state feedbak MPC [m/s℄ 1.5012 1.6838 1.0731 1.5806average ∆V disturbane feedbak MPC [m/s℄ 1.3080 1.0840 0.7236 0.7083Table 5.7: The average nonlinear losed-loop fuel-ost for the PRISMA missionFigure 5.3 shows the omparison between the trajetories obtained for the open-loop ontroland for the two robust losed-loop ontrol tehniques. The mission duration is 18000 s, the samevalue as for the linear ase. The open-loop trajetories show that, for the nonlinear model, thedispersion of the perturbed trajetories is slightly higher and aompanied by an o�set with respetto the desired �nal position. The o�set on the x axis for instane is about 800 m. This is due to themismath between the linear and nonlinear dynamis for the spaeraft relative motion. Even ifthis soure of errors has not been onsidered during the ontrol synthesis, the guaranteed preisionwith respet to the �nal objetive is still respeted for the two losed-loop approahes (see Figure5.4).
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Figure 5.3: The rendezvous trajetories for the PRSIMA mission using the nonlinear propagationmodel
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Figure 5.4: Final errors and the guaranteed arrival sets for the PRISMA mission using the nonlinearpropagation model5.5.3 The Simbol-X missionThe robust guidane tehniques are also tested on a highly eentri rendezvous mission alledSimbol-X. The data for the referene orbit is summarized in Table 5.8. The simulations follow theproedure desribed in the �rst part of this setion.Mission a [km℄ e i [◦℄ Ω [◦℄ ω [◦℄ ∆Vmax [m/s℄Simbol-X 106 247 0.7988 5.2 180 90 0.8Table 5.8: Referene orbit data for the Simbol-X rendezvous missionFor this senario, the Q matrix whih shapes the tube for the state feedbak ontrol strategy is



104 Chapter 5. Spaeraft rendezvous robust to navigation unertaintiestaken as:
Q = diag (1, 1, 1, 0.0001, 0.0001, 0.0001) (5.51)in order to ompensate the di�erene in the values of the position and veloity aused by thevariable hange (1.17) for this highly eentri orbit.The data orresponding to the partiular rendezvous senario that is onsidered here are givenin Table 5.9. Di�erent mission durations are onsidered throughout the simulations in order toanalyse the in�uene of this parameter on the fuel-ost of the mission and on the dimensions of theguaranteed arrival set.Mission X1 [m,m/s℄ ν1 [◦℄ Xf [m,m/s℄ duration [s℄ NSimbol-X [-305,0,396,0,0,0℄ 135 [-60.2,0,79.85,0,0,0℄ 8 000 10Table 5.9: Simulation senario for the Simbol-X rendezvous missionThe semi-axes in the xz plane of the guaranteed ellipsoidal arrival sets are presented in Table5.10 for eah of the ontrol methods and for di�erent values of the mission duration. As in thease of the PRISMA mission, the bene�ts of adding the feedbak orretion terms an be easilyobserved. The arrival set guaranteed by the disturbane feedbak approah is always smaller thanin the ase of the state feedbak approah, if the sum of the semi-axes is onsidered. For eah one ofthe hosen rendezvous durations, the disturbane feedbak ontrol guarantees a better rendezvouspreision in presene of navigation unertainties.mission duration [s℄ 8 000 12 000 16 000 20 000open-loop MPC [m℄ 16.15 15.92 24.48 23.76 33.04 31.5 41.86 39.17state feedbak MPC [m℄ 6.19 6.19 6.48 6.48 7.4 7.4 9.01 9.01disturbane feedbak MPC [m℄ 2.55 2.55 3.74 3.74 4.94 4.94 6.19 6.19Table 5.10: Semi-axes of the arrival set in the xz plane for the Simbol-X missionTable 5.11 presents the in�uene of the mission duration on the fuel ost for the nominaltrajetory and on the maximum possible fuel ost for the perturbed losed loop trajetories. Thenominal fuel ost for the disturbane feedbak method is every time equal to the open-loop ost,meaning that the tightened saturation onstraints are not ative. Just like for the PRISMA mission,the nominal fuel ost for the state feedbak ase is always lower, aompanied by a maximum ostthat is higher than for the disturbane feedbak ase.



5.5. Numerial evaluation of the robust ontrol tehniques 105mission duration [s℄ 8 000 12 000 16 000 20 000open-loop MPC [m/s℄ 0.1578 0.1053 0.0792 0.0637state feedbak MPC [m/s℄ 0.1455 0.3777 0.0934 0.3152 0.0663 0.2974 0.0487 0.3081disturbane feedbak MPC [m/s℄ 0.1578 0.3161 0.1053 0.2637 0.0792 0.2379 0.0637 0.2192Table 5.11: Nominal fuel ost and maximum possible losed-loop ost for the Simbol-X missionLinear losed-loop simulationsThe average fuel onsumption obtained for the losed-loop simulations is presented in Table 5.12.The average is omputed for 100 runs of the rendezvous senario. The data show that for the statefeedbak ase, even if the average fuel onsumption is lower than the theoretial upper bound, itis always higher than the one obtained for the disturbane feedbak ase, regardless of the hosenmission duration.mission duration [s℄ 8 000 12 000 16 000 20 000state feedbak MPC [m/s℄ 0.1818 0.1314 0.1055 0.0908disturbane feedbak MPC [m/s℄ 0.1755 0.1228 0.0957 0.0795Table 5.12: The average linear losed-loop fuel-ost for the Simbol-X mission
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Figure 5.5: The rendezvous trajetories for the Simbol-X mission using the linear propagationmodelFigure 5.5 shows the losed-loop trajetories obtained when applying the di�erent ontrol meth-ods, for a mission horizon of 8000s. The open-loop trajetories orresponding to di�erent perturbedinitial onditions are also illustrated in order to evidene the spread of all the possible trajetories



106 Chapter 5. Spaeraft rendezvous robust to navigation unertaintiesunder the e�ets of navigation unertainties. In this ase, the two methods lead to very similarlosed-loop trajetories that e�etively ontrol the dispersion aused by the navigation errors.The guaranteed arrival sets for the two robust ontrol methods, E(0, Qα) and E(0, Qf ) respe-tively, are illustrated in Figure 5.6 along with the �nal errors with respet to the given rendezvousobjetive. As expeted, the �nal errors are ontained inside the arrival sets for all the ases on-sidered during the simulations.
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Figure 5.6: Final errors and the guaranteed arrival sets for the Simbol-X mission using the linearpropagation modelNonlinear losed-loop simulationsThe average fuel onsumption for the nonlinear losed-loop simulations is presented in Table 5.13for eah of the onsidered mission durations. The data show that, for these partiular rendezvoussenarios, the average fuel onsumption is very similar to the linear ase. This an be explained bythe small separation between the spaeraft, whih limits the propagation errors, along with theshort mission duration when ompared to the orbital period.mission duration [s℄ 8 000 12 000 16 000 20 000state feedbak MPC [m/s℄ 0.1821 0.1304 0.1072 0.0904disturbane feedbak MPC [m/s℄ 0.1755 0.1218 0.0963 0.0796Table 5.13: The average nonlinear losed-loop fuel-ost for the Simbol-X missionFigure 5.7 shows the nonlinear losed-loop trajetories obtained for eah of the two robust on-trol methods for the same mission horizon of 8000s. The open-loop trajetories are also illustratedin order to evidene the spread of all the possible trajetories under the e�ets of navigation un-



5.5. Numerial evaluation of the robust ontrol tehniques 107ertainties. These trajetories are very similar to the linear ase, suggesting that for the hosensenario the e�et of the propagation errors is very redued.
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Figure 5.7: The rendezvous trajetories for the Simbol-X mission using the nonlinear propagationmodelFigure 5.8 illustrates the guaranteed arrival sets, E(0, Qα) for the state feedbak method and
E(0, Qf ) for the disturbane feedbak method, along with the losed-loop �nal errors with respetto the rendezvous objetive. As expeted, the �nal errors are ontained inside the arrival sets forall the ases onsidered during the simulations.
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Figure 5.8: Final errors and the guaranteed arrival sets for the Simbol-X mission using the nonlinearpropagation model



108 Chapter 5. Spaeraft rendezvous robust to navigation unertainties5.6 ConlusionDi�erent methods for obtaining a guidane algorithm for the spaeraft rendezvous that is robust tonavigation unertainties have been disussed in this hapter. Even if the �nal rendezvous objetiveannot be preisely reahed in presene of navigation unertainties, this hapter proposes twoontrol tehniques whih optimize the dimensions of a guaranteed �nal arrival set. The proposedmethods rely on the omputation of a series of feedbak ontrol laws that guarantee the robustonstraints satisfation and a good trade-o� between the fuel ost of the resulting trajetory andthe �nal rendezvous preision. The resulting onvex optimal ontrol problem an be solved onlyone before the beginning of the rendezvous maneuvers. The omputed feedbak laws an be thenused diretly at the orresponding ontrol instant. This property might be partiularly attrativein the ase in whih the on-board omputational resoures are limited. The problem an be solvedusing the resoures available on the ground before the beginning of the maneuvers, followed by theupload of the parameters of the ontrol laws to the spaeraft.The di�erene between the developed robust ontrol methods onsists in the parametrizationhosen for the omputed feedbak laws. Both approahes amount to solving some onvex optimiza-tion problems and both method guarantee the onstraints satisfation for all the admissible valuesof the unertainties. For the disturbane feedbak parametrization, only one onvex Semi De�niteProgram needs to be solved in order to obtain the solution while the state feedbak parametrizationimposes the deomposition of the synthesis into two separate steps. The existene of two separatesteps might ause the ontrol problem to be infeasible in ases where the disturbane feedbakapproah is able to provide a feasible solution. Moreover, the parametrization of the ontrol lawsas state feedbak laws imposes some extra approximations in order to reah a onvex formulation ofthe problem. It also introdues an extra tuning parameter, the matrix Q whih �xes the geometryof the tube around the nominal trajetory. The quality of the obtained solution will depend on thehosen value and some guidelines for hoosing this parameter have been provided.The disturbane feedbak approah enables us to speify a preision objetive whih onernsonly the �nal error. In the state feedbak ase, limitations for the errors with respet to the nominaltrajetory are enfored all along the rendezvous path. These onstraints are added in order to beable to onvexify the optimization problem. The disturbane feedbak approah does not imposeany partiular onstraints on the approah trajetory and this freedom is re�eted by the fuelonsumption. For the rendezvous missions hosen for illustration, the rendezvous performanes interms of �nal preision are very similar while the average fuel onsumption is always higher in thestate feedbak ase.



Chapter 6Analytial bi-impulsive ontrol around adesired periodi trajetory
Contents6.1 Stability around a periodi relative trajetory . . . . . . . . . . . . . . . . . 1106.2 Analytial bi-impulsive stabilizing ontrol for the periodi motion . . . . . 1116.2.1 Computation of the ontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1126.2.2 Domain of validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136.2.3 Performanes in presene of navigation unertainties . . . . . . . . . . . . . . . 1156.3 Robust guidane towards a spaeraft periodi relative motion . . . . . . . 1176.4 Numerial examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196.4.1 In�uene of the eentriity of the referene orbit . . . . . . . . . . . . . . . . . 1206.4.2 In�uene of the interval between ontrols . . . . . . . . . . . . . . . . . . . . . 1226.4.3 In�uene of the navigation unertainties . . . . . . . . . . . . . . . . . . . . . . 1236.5 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124Résumé: Ce hapitre porte sur le maintien du mouvement relatif périodique des satellites enprésene des inertitudes de navigation. Le aratère instable des trajetoires périodique a été déjàmis en évidene dans le Chapitre 2. Ainsi, si l'état relatif est perturbé ou mal onnu, une loi deommande doit être mise en plae a�n de stabiliser le mouvement périodique. Une tehnique de on-tr�le analytique à deux impulsions est développée dans e hapitre. Cette tehniques est basée surl'observation qu'un veteur onstant de paramètres dérit entièrement une trajetoire périodique don-née. De plus, les trajetoires périodiques représentent des ensembles invariants pour le mouvementrelatif des satellites. Cette loi de ommande, qui est très peu gourmande en ressoure numérique, estutilisée en onjontion ave les tehniques de guidage robuste développées dans le hapitre préédentdans un stratégie de ontr�le à deux étapes pour rejoindre et maintenir un mouvement périodiquede proximité.

The spaeraft ability to maintain a proximity periodi relative motion is an important aspetof on-orbit serviing missions [85℄. A preise mathematial haraterisation of onstrained periodispaeraft relative trajetories has been given in Chapter 3. The resulting desription of admissible



110 Chapter 6. Analytial bi-impulsive ontrol around a desired periodi trajetorytrajetories has been used in Chapter 4 to obtain a guidane algorithm towards a proximity periodirelative motion. The ontrol tehnique is illustrated only in perfet onditions, with no navigationunertainties or modelling errors. The e�ets of imperfet relative state information are analysed inChapter 5. It is showed that, when measurement noise is onsidered, the desired �nal objetive anno longer be exatly reahed. Robust ontrol algorithms are developed that instead an guaranteethe guidane towards a minimal arrival set entered around the �nal desired state.The unstable behaviour of the spaeraft periodi trajetories has been analysed in Chapter 2.The onsequene of this unstable behaviour is that, even if the spaeraft arrive arbitrarily lose toa desired periodi trajetory, the relative motion will not naturally onverge towards it. In preseneof navigation unertainties, the robust guidane towards an arrival set entered around a desiredperiodi trajetory needs to be followed by a swith to a loal ontroller whih an robustly stabilizethe spaeraft periodi relative motion. This hapter addresses this problem and proposes a loalbi-impulsive ontroller. The hosen struture takes into onsideration the limited omputationalresoures available on-board the spaeraft and the preferene for impulsive maneuvers.
6.1 Stability around a periodi relative trajetoryLet D be a given onstant vetor of parameters orresponding to a periodi spaeraft relativetrajetory (see the de�nitions in Chapter 2). For the partiular ase of the periodi motion, thevetor D is suh that d0 = 0. The set of spaeraft relative states belonging to the partiularperiodi trajetory de�ned by D is given by:

Sp(D) =
{

X̃(ν) ∈ R
6 | C(ν)X̃(ν) = D ∀ ν, ∀D suh that d0 = 0

} (6.1)where the matrix C(ν) is de�ned as in (2.5). The set Sp(D) represents an invariant set for theautonomous spaeraft relative motion. This follows from the property of the spaeraft relativemotion given in (2.20) whih shows that:
X̃(νk) ∈ Sp(D) =⇒ X̃(νj) ∈ Sp(D), ∀νj ≥ νk (6.2)The objetive of robustly stabilizing the spaeraft relative motion with respet to a hosenperiodi trajetory an be translated into an objetive of robust stability of the invariant set Sp(D).In the general ase, an invariant set S for an autonomous system x(tk+1) = f(x(tk)) is said to be



6.2. Analytial bi-impulsive stabilizing ontrol for the periodi motion 111stable if, for eah ε ≥ 0, there exists δ ≥ 0 suh that [51℄:
∀x(t0) s.t. dist (x(t0), S) ≤ δ =⇒ dist (x(tk), S) ≤ ε, ∀tk ≥ t0 (6.3)where the distane from a state x to the set S is de�ned as:dist (x, S) = inf

y∈S
‖x− y‖ (6.4)An invariant set S is said to asymptotially stable if it is stable and δ an be hosen suh that [51℄:

∀x(t0) s.t. dist (x(t0), S) ≤ δ =⇒ lim
k→∞

dist (x(tk), S) = 0 (6.5)
A ontrol that stabilizes the spaeraft periodi motion in presene of navigation unertaintiesmust maintain bounded the distane between the spaeraft relative state and the invariant set

Sp(D). Following from (6.4), this distane an be de�ned as:dist (X̃(ν), Sp(D)) = ‖C(ν)X̃(ν)−D‖ (6.6)The purpose is to �nd a ontrol law suh that:dist (X̃(ν), Sp(D)) = 0 (6.7)
6.2 Analytial bi-impulsive stabilizing ontrol for the periodi mo-tion
This setion details the harateristis of an analytial bi-impulsive ontrol law whih an stabilizethe spaeraft periodi relative motion. For a bi-impulsive struture of the ontrol the ondition(6.7) has an analytial solution, whih an be obtained without too muh omputational e�ort.The stability of the periodi motion an be guaranteed while still relying on impulsive thrusts asin the previous hapters.



112 Chapter 6. Analytial bi-impulsive ontrol around a desired periodi trajetory6.2.1 Computation of the ontrolStarting from the urrent spaeraft relative state measurement X̃(νk), two impulsive maneuvers
∆Ṽk and ∆Ṽk+1 an be omputed suh that:dist (X̃+(νk+1), Sp(D)) = 0 (6.8)where X̃+(νk+1) is the state right after the seond impulsive ontrol ∆Ṽk+1. Aording to (5.2),
X̃+(νk+1) is given by:

X̃+(νk+1) = X̃(νk+1) +B∆Ṽk+1Following from (5.3), X̃+(νk+1) an be written as a funtion of the urrent measured state:
X̃+(νk+1) = Φ(νk+1, νk) X̃(νk) + Φ(νk+1, νk)B∆Ṽk +B∆Ṽk+1 (6.9)Introduing this expression into (6.8) leads to the following stability ondition:

‖C(νk+1)
(

Φ(νk+1, νk) X̃(νk) + Φ(νk+1, νk)B∆Ṽk +B∆Ṽk+1

)

−D‖ = 0 (6.10)The two impulsive ontrols that bring the system to the invariant set Sp(D) an be obtainedthrough diret omputation:




∆Ṽk

∆Ṽk+1



 =
[

Φ(νk+1, νk)B B
]−1

ẽk|k+1 (6.11)where ek|k+1 is de�ned as:
ẽk|k+1 = X̃p(νk+1)− Φ(νk+1, νk) X̃(νk) (6.12)The term X̃p(νk+1) de�nes the spaeraft relative state belonging to the desired periodi tra-jetory spei�ed through the vetor of parameters D at the instant νk+1. Using (2.8), X̃p(νk+1) isde�ned as:

X̃p(νk+1) = F (νk+1)D (6.13)The term ek|k+1 orresponds to an antiipated error between the spaeraft trajetory and thedesired periodi trajetory, omputed based on the urrent state measure X̃(νk) and assumingautonomous propagation over the interval [νk νk+1].



6.2. Analytial bi-impulsive stabilizing ontrol for the periodi motion 113It should be noted that for the matrix in (6.11) to be invertible, the interval between the twoimpulsive ontrols must be hosen suh that: νk+1 − νk 6= mπ, m ∈ N.6.2.2 Domain of validityThe amplitude of the two impulsive ontrols omputed using (6.11) depends on the antiipatederror between the urrent measure and the desired periodi trajetory and on the hosen intervalbetween the two thrusts. The obtained ontrol is valid only in a domain where the saturationonstraints of the thrusters are satis�ed. We assume that the saturation onstraints are de�ned asin (4.8) by some polytopi onstraints:
H∆





∆Ṽk

∆Ṽk+1



 ≤ Ṽ∆(νk+1, νk) (6.14)where the matries H∆ and Ṽ∆(νk, νk+1) are de�ned by:
H∆ =





I6

−I6



 Ṽ∆(νk, νk+1) =

















∆Ṽmax(νk)

∆Ṽmax(νk+1)

∆Ṽmax(νk)

∆Ṽmax(νk+1)

















(6.15)
These onstraints impose some restritions on the initial error ẽk, between the measured stateand the orresponding state on the desired periodi trajetory in the moment where the analytiontrol (6.11) is omputed:

ẽk = X̃p(νk)− X̃(νk) (6.16)Using (6.11) and the fat that the antiipated error ẽk|k+1 an also be expressed as:
ẽk|k+1 = Φ(νk+1, νk) ẽk = Φ(νk+1, νk)

(

F (νk)D − X̃(νk)
) (6.17)the following polytopi onstraints on the initial error ẽk are obtained:

H̃e(νk+1, νk)ẽk ≤ Ṽe(νk+1, νk) (6.18)where:̃
He(νk+1, νk) = H∆

[

Φ(νk+1, νk)B B
]−1

Φ(νk+1, νk), Ṽe(νk+1, νk) = Ṽ∆(νk+1, νk) (6.19)



114 Chapter 6. Analytial bi-impulsive ontrol around a desired periodi trajetoryThe error in the time domain denoted by ek is related to ẽk through:
ẽk = T (νk) ek (6.20)where the matrix T (ν) is de�ned as in (5.47). Hene, the matries de�ning the time-domainpolytopi onstraints on the initial error are given by:

He(tk+1, tk) = H̃e(νk+1, νk)T (νk), Ve(tk+1, tk) = Ṽe(νk+1, νk) (6.21)For some given saturation onstraints de�ned in time domain by ∆Vmax, the matries in (6.21)de�ning the polytopi onstraints on the initial error depend on the hoie for tk and tk+1. Fora �xed time interval between the two impulses ∆t, a worst-ase estimation for the domain of theadmissible initial error, regardless of the position of the �rst impulse, an be obtained as:
e ∈ P(He, Ve) =

∞
⋂

k=1

P(He(tk +∆t, tk), Ve(tk +∆t, tk)) (6.22)where P(He(tk +∆t, tk), Ve(tk +∆t, tk)) denotes the polytope de�ned by the indiated matries.Figure 6.1 gives the ut through the polytope P(He, Ve) bounding the initial error followingthe plane orresponding to the position errors, for di�erent values of the time interval between thetwo impulses. The sets are omputed for ∆Vmax = 0.26 m/s and e = 0.3, and are obtained for theintersetion of 150 di�erent sets in (6.22) using the mpt toolbox [54℄ and Matlab.

Figure 6.1: Illustration of the polytopi set bounding the initial error for ∆Vmax = 0.26 and e = 0.3Even if the intersetion of the polytopes gives a onservative estimation, it an be seen that thedomain for admissible initial position errors with respet to the desired periodi trajetory beomesbigger as the interval between the two ontrols beomes larger. The longer free drift interval an be



6.2. Analytial bi-impulsive stabilizing ontrol for the periodi motion 115used to naturally ompensate larger initial position errors, without applying a higher thrust. Theadmissible initial veloity errors spei�ations remain unhanged, regardless of the hoie for theontrol interval. In this ase the domain for the veloity errors is de�ned by a ube entered in 0and large of 0.26 m/s.
6.2.3 Performanes in presene of navigation unertaintiesIn the presene of navigation unertainties, the distane with respet to the invariant set Sp(D)after applying the two impulsive maneuvers omputed using (6.11) will be di�erent than zero. Ifthe measured spaeraft relative state is a�eted by unknown but bounded sensing noise suh that:

X̃(νk) = X̃m(νk) + δXk, δXk ∈ E(0, Qk) (6.23)then the obtained distane with respet to the periodi trajetory when applying the ontrol om-puted based on imperfet information is given by:dist (X̃+(νk+1), Sp(D)) = ‖C(νk+1)Φ(νk+1, νk)δXk‖, δXk ∈ E(0, Qk) (6.24)The obtained value depends on the hoie for the two ontrol instants, νk and νk+1 respetively, onthe eentriity of the orbit of the leader spaeraft and on the value of the navigation unertainties.Beause the sensing noise is assumed to be bounded by an ellipsoidal set, a worst ase distane anbe omputed for the onsidered interval:
dmax(νk+1, νk) = max

δXk∈E(0,Qk)
dist (X̃+(νk+1), Sp(D)) = ‖C(νk+1)Φ(νk+1, νk)Pk‖2 (6.25)where Pk = Q

−1/2
k . Worst ase bounds for the performanes of the analytial ontrol law in preseneof navigation unertainties an also be omputed. The performanes are de�ned in terms of thetraking error for the spaeraft relative state after the seond impulsive ontrol:

ε̃k+1 = X̃p(νk+1)− X̃+(νk+1) (6.26)where X̃p(νk+1) is de�ned as in (6.13). The term ε̃k+1 is di�erent from the antiipated error ẽk|k+1de�ned (6.12) sine it is based on the dynamis of the ontrolled spaeraft relative trajetoryinstead of the autonomous evolution. After integrating (6.23) and (6.11) into (6.9), the traking



116 Chapter 6. Analytial bi-impulsive ontrol around a desired periodi trajetoryerror obtained for the analytial bi-impulsive ontrol an be written as:
ε̃k+1 = Φ(νk+1, νk)δXk, δXk ∈ E(0, Qk) (6.27)The traking performanes are in�uened by the same parameters as the distane with respet tothe invariant set Sp(D). Following from the expression of the propagation of an ellipsoidal setthrough a linear appliation given in (C.7), an ellipsoidal bound an be omputed for the trakingerror depending on the hosen values for νk and νk+1:

ε̃k+1 ∈ E(0,Φ(νk+1, νk)
−TQkΦ(νk+1, νk)

−1) (6.28)For given navigation unertainties spei�ations and a �xed time interval between the twoimpulses, a worst ase estimation of the domain for the �nal error regardless of the position of the�rst impulse an be obtained as:
ε̃ ∈ E(0, Qε) ⊇

∞
⋃

k=1

E(0,Φ(νk+1, νk)
−TQkΦ(νk+1, νk)

−1) (6.29)where E(0, Qε) denotes the minimal volume outer ellipsoidal approximation of the union of ellip-soids. The set E(0, Qε) an be omputed by solving an SDP, using the proedure desribed in [14℄page 43.Figure 6.2 illustrates for the �nal position errors, the evolution of the bounding ellipsoidalset with the interval between the two impulsive ontrols. The illustrated values are obtained foran eentriity of e = 0.3 and for navigation unertainties bounded by an ellipsoidal set whosesemi-axes are equal to 0.02 m for the spaeraft relative position and 0.002 m/s for the relativeveloity.It an be notied from Figure 6.2 that the dimension of the set bounding the traking errorsinreases as the interval between the two impulses inreases. In presene of navigation unertain-ties, applying only the omputed bi-impulsive ontrol does not guarantee the stability around theperiodi sine the distane to the invariant set Sp(D) after ontrol is di�erent than zero and willontinue to inrease if no other trajetory orretions are applied. The distane to the invariant setan be maintained bounded by periodially reomputing the two impulsive ontrols and applyingthem. The hoie for the frequeny of reomputation needs to take into aount how this parametera�ets the domain of validity of the ontrol and also its in�uene on the obtained traking preision.If the reomputation ours after that both impulses have been applied, the initial error for
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Figure 6.2: The hange in the �nal error with the hange in the interval between the impulsiveontrols
the new ontrol will be bounded by the ellipsoid E(0,Φ(νk+2, νk+1)

−TQεΦ(νk+2, νk+1)
−1). Thisomes from the fat that the �nal traking error ε̃k+1, obtained after the appliation of ∆Vk+1, ispropagated over another interval before a new ontrol is omputed. In order to guarantee that thesaturation onstraints are not violated, the reomputation frequeny should be suh that:

E(0,Φ(νk+2, νk+1)
−TQεΦ(νk+2, νk+1)

−1) ⊂ P (He, Ve) (6.30)The ondition (6.30) an be heked during the a priori analysis using the proedure desribedin [14℄, page 70.To improve the traking error, the reomputation strategy ould be modi�ed following the ModelPreditive Control priniples: only the �rst of the two omputed impulses is applied eah time andthe seond one is disarded. At the next ontrol instant a new pair of impulses is omputed basedon new measurement information out of whih only the �rst one is used. This strategy an limitthe propagation of the measurement errors to only one ontrol interval instead of two leading to asmaller error with respet to the desired periodi trajetory.In the next setion it will be showed how the presented analytial bi-impulsive ontrol lawan be ombined with the robust ontrol methods developed in Chapter 5 in a two stage ModelPreditive Control setting.



118 Chapter 6. Analytial bi-impulsive ontrol around a desired periodi trajetory6.3 Robust guidane towards a spaeraft periodi relative motion
Let us onsider a �xed-time rendezvous mission where the objetive is to guide the spaerafttowards a periodi proximity relative motion in presene of navigation unertainties. Starting froman initial state X̃1, the purpose is to ompute a robust rendezvous plan that, when applied at the�xed instants ν1, ...νN−1, drives the spaeraft towards a �nal periodi relative trajetory. Theperiodi trajetory is not �xed a priori, but it must respet the following onstraints: the �nalperiodi trajetory must evolve inside a tolerane box Xtol, entered around a �xed position Xf .In addition to this, the periodi motion needs to be maintained during a spei�ed period after theend of the rendezvous plan, in spite of the presene of navigation errors.The mission's objetive an be ahieved by dividing the ontrol into two phases. During the�rst phase the spaeraft are brought in proximity of an admissible trajetory, using the robustontrol tehniques presented in Chapter 5 for instane. During the seond phase, the stability ofthe spaeraft periodi relative motion is ensured by a loal ontroller.

This two stages approah possesses several omputational advantages. The disturbane-feedbakontrol approah presented in Chapter 5 an be used for instane during the �rst stage in orderto steer the spaeraft towards an admissible �nal state. It an guarantee to reah the smallestpossible arrival set entered around a �nal state belonging to an admissible periodi trajetory. Theorresponding optimal ontrol problem an be obtained by modifying (5.46) to re�et the hange



6.3. Robust guidane towards a spaeraft periodi relative motion 119in the �nal objetive:
min

Qf ,∆vk,Lk,i

tr (T−1QfT
−T ) + ‖∆v‖1

s.t.






























































































x̄k+1 = Akx̄k +Bk∆vk

x̄1 = xm1 , xm1 = X̃1

D = C(νN)x̄N , d0 = 0

∃Yi � 0 s.t. γTi =

[tr (Yi H2,1) ... tr (Yi H2,5)

]

γi = t vi − (hi,1Cx + hi,2C̄y + hi,3Cz)D

, i = 1...s

|∆vk| ≤ ∆Ṽmax(νk)−
k−1
∑

i=1

‖Lk,iP
w
i ‖2, k = 1...N−1

∃ τ1, τ2, ... τN−1 ≥ 0 s.t. Qf � 0, R � 0

(6.31)
where the same notations as in the previous hapters are maintained. The terms hi,j and viorrespond to the elements of the H and V matries whih de�ne the tolerane box bounding theadmissible periodi trajetories. For the onsidered ase, the H and V matries are de�ned in thesame way as in (4.29). The terms γi in (6.31) orrespond to the oe�ients of the non-negativepolynomials whih de�ne the admissible arrival set. The vetor of parameters D orresponding tothe �nal state of the nominal trajetory must belong to this arrival set.The optimal ontrol problem (6.31) an be solved at the ground station before the beginning ofthe rendezvous maneuvers and then the solution an be uploaded on-board the spaeraft. Applyingthe omputed series of disturbane feedbak laws brings the spaeraft in proximity of the perioditrajetory de�ned by the vetor of parameters D. In presene of navigation unertainties, theerror with respet to the periodi trajetory at the end of the plan is guaranteed to belong to theellipsoidal set E(0, Qf ) whih is omputed before starting the maneuvers.During the seond stage, the analytial bi-impulsive ontrol de�ned in (6.11) an be used inorder to robustly stabilize the spaeraft periodi relative motion. The periodi referene trajetoryat this stage is de�ned by the vetor D obtained at the previous stage. The following onditionneeds to be veri�ed:

E(0, Qf ) ⊂ P(He, Ve) (6.32)in order to guarantee that, at the moment of the swith between the two ontrol approahes,the validity onditions for the bi-impulsive ontrol law are veri�ed. The frequeny of ontrolreomputation for the seond stage must be hosen aording to the onstraint imposed by (6.30).



120 Chapter 6. Analytial bi-impulsive ontrol around a desired periodi trajetoryThis veri�ation an be made before the beginning of the mission, using the omputational resouresavailable at the ground station. The bound for the error at the end of the �rst stage given by(6.31) makes possible the a priori veri�ation of the swith ondition (6.32). The hoie for thereomputation frequeny an be made aording to the saturation restritions and to the mission'srequirement regarding the traking preision.
6.4 Numerial examplesThe �xed-time spaeraft rendezvous mission de�ned in Table 6.1 is used in order to illustrate thetwo stages ontrol approah. The purpose is to guide the spaeraft towards a periodi proximitymotion ontained in the spei�ed bounds and then to maintain the periodi motion during 10 orbitalperiods starting at the end of the rendezvous maneuvers, in spite of the presene of navigationunertainties.
a [km℄ e ∆Vmax N X1 [m,m/s℄ t1 [s℄ Xf [m℄ Xtol [m℄ tN [s℄7 011 0.004 0.26 10 [1000,50,50,0,0,0℄ 0 [100,0,0℄ [50,25,25℄ 3 000Table 6.1: Spaeraft rendezvous mission dataThe tests are performed using the nonlinear simulator for the spaeraft relative motion de-sribed in [49℄. Random navigation errors are added to eah relative state measurement that isused for ontrol omputation and the J2 perturbation is also onsidered during the simulations. Thedisturbane feedbak ontrol is used during the �rst phase of the rendezvous mission, following thesame proedure that has been exposed for the examples in Chapter 5. The analytial bi-impulsiveontrol is then used in the seond stage to maintain the periodi motion. In this seond stage, theontrol is applied at a onstant frequeny that is �xed a priori.Our purpose is to evaluate the in�uene of several parameters on the performanes of theanalytial bi-impulsive ontrol law. The performanes of the disturbane feedbak strategy havealready been analysed in Chapter 5 and we fous here on the swith between the two ontrol laws,on the preision for the traking of the periodi trajetory and on the fuel ost of the ontrol inthe seond stage. We are interested in analysing the e�ets of the eentriity of the refereneorbit, of the interval between two onseutive ontrol instants νk and νk+1 and of the amplitude ofnavigation unertainties.



6.4. Numerial examples 1216.4.1 In�uene of the eentriity of the referene orbitIn order to analyse the in�uene of the eentriity of the orbit of the target spaeraft on theperformanes of the analyti ontrol strategy, we onsider that the ontrol is applied at a onstantfrequeny of ∆t = 100 s. Random noise is added to every spaeraft relative state measurement.The navigation unertainties are bounded by an ellipsoidal set whose semi-axes are equal to 0.02m for the relative position and 0.002 m/s for the relative veloity.
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Figure 6.3: Spaeraft relative trajetory towards proximity periodi motionFigure 6.3 shows the spaeraft relative trajetory obtained for the senario in Table 6.1. Thespaeraft arrive in proximity of an admissible periodi relative trajetory using the disturbanefeedbak approah. The analyti bi-impulsive ontrol then maintains the periodi motion for thedesired time in spite of the navigation unertainties.

Figure 6.4: Illustration of the swith onditions for the relative veloity errors



122 Chapter 6. Analytial bi-impulsive ontrol around a desired periodi trajetoryThe swith onditions for the relative veloity errors are illustrated in Figure 6.4. The blueube indiates the restritions imposed by the saturation onstraints on the veloity errors and thered ellipsoid orresponds to the veloity errors guaranteed by the guidane algorithm at the endof phase 1. The restritions on the relative position errors have also been veri�ed and are largelysatis�ed.The in�uene of the eentriity of the leader's orbit on the traking preision and on the averagefuel onsumption is analysed for the analyti bi-impulsive ontrol. The losed-loop trajetoriesobtained in the seond phase of the mission, for di�erent values of the eentriity, are presentedin Figure 6.5. The projetions of the periodi trajetories onto the xy and xz planes are also givenin order to better show the geometry of the obtained trajetories.
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Figure 6.5: The obtained periodi trajetories for di�erent values of the eentriityTable 6.2 summarizes for eah of the onsidered eentriities the losed-loop performanes ofthe analyti ontrol. It gives the maximum absolute value for the position error with respet to theperiodi trajetory dpmax, the maximum absolute value for the veloity error dvmax and the averagefuel onsumption per orbit ∆V /orbit for eah ase. It an be seen that for the onsidered intervalbetween ontrols, the performanes of the bi-impulsive ontrol method are not very muh in�uenedby the values of the eentriity. A slight inrease in the errors and in the fuel onsumption an beobserved for the highest onsidered eentriity e = 0.5.
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e dpmax [m℄ dvmax [m/s℄ ∆V /orbit [m/s℄0.004 0.1865 0.0039 0.24940.1 0.1948 0.0039 0.23600.3 0.1800 0.0038 0.24060.5 0.3461 0.0061 0.2627Table 6.2: The in�uene of the eentriity on the performanes of the analyti ontrol6.4.2 In�uene of the interval between ontrolsThe in�uene of the time interval between onseutive ontrols ∆t on the traking performanesis analysed here. Like in the previous ase, the navigation unertainties belong to an ellipsoidalset whose semi-axis are equal to 0.02 m for the spaeraft relative positions and 0.002 m/s for therelative veloity.
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Figure 6.6: The in�uene of the ontrol frequeny on the traking performanesThe evolution of the traking performanes for di�erent values of ∆t is illustrated in Figure6.6. It an be seen that for every value of the eentriity of the referene orbit, applying the ∆Vorretions less frequently results in a lower total fuel onsumption per orbit. For the ase where
e = 0.5, the plot only goes until ∆t = 500 s beause for higher values the validity onditions are nolonger veri�ed. For lower eentriities the average fuel onsumption is very similar, regardless ofthe value hosen for the interval between ontrols. Only for the ase e = 0.5 the average fuel ostper orbit is slightly higher.Figure 6.6 also shows that while hoosing a larger value for ∆t redues the fuel onsumption,it also inreases the traking errors. For all the onsidered eentriities the position traking errorinreases as the interval between ontrols inreases. It an also be notied that the traking errorsare more sensitive to the value of the eentriity then the average fuel ost. This an be explainedby the fat that, for eentri orbits, the spaeraft veloity is not onstant throughout the orbit.



124 Chapter 6. Analytial bi-impulsive ontrol around a desired periodi trajetoryDi�erent distanes an be travelled by the spaeraft in the same time interval, depending on itsposition on the orbit.The hoie for the frequeny of ontrol appliation should re�et the best admissible ompromisebetween the fuel ost per orbit and the desired traking preision. Small intervals between ontrolsguarantee the best traking preision but in the same time are the most fuel onsuming. Choosinga large interval an lead to poor traking performanes or it an violate the domain of appliabilityof the ontrol.6.4.3 In�uene of the navigation unertaintiesThe in�uene of the level of the navigation unertainties on the ontrol performanes is analysednext. For an eentriity of e = 0.3, the e�ets of the navigation unertainties are presenteddepending on the value hosen for the ontrol interval ∆t.

0;0 0.01;0.001 0.02;0.002 0.03;0.003 0.04;0.004
0

0.05

0.1

0.15

0.2

0.25

Navigation uncertainties bounds [m;m/s]

D
V

 p
er

 o
rb

it 
[m

/s
]

 

 
∆ t = 200 s

∆ t = 300 s

∆ t = 400 s

∆ t = 500 s

Figure 6.7: The in�uene of the level of measurement noise on the traking performanesFigure 6.7 shows that even when there is no measurement noise the average fuel onsumption isdi�erent than zero beause the nonlinear model is used and the J2 perturbation is ative. However,it an be seen that when the spaeraft relative state is perfetly known, a smaller interval betweenontrols atually gives a smaller fuel ost per orbit sine the eventual errors do not propagate fora long time. In presene of navigation unertainties, a larger ontrol interval always leads to asmaller fuel onsumption. This an be explained by the fat the imperfet state information mightause some unneessary thrusting attempting to orret errors that atually ome from the sensingnoise. For all the values onsidered for the ontrol interval, the fuel ost per orbit inreases as theunertainties levels inrease.



6.5. Conlusion 125Table 6.3 summarizes the traking performanes of the analytial ontrol for ∆t = 400 s andfor every of the onsidered levels for the eentriity.
δp[m℄;δv[m/s℄ dpmax [m℄ dvmax [m/s℄ ∆V /orbit [m/s℄0;0 0.7790 0.0040 0.01880.01;0.001 0.8968 0.0042 0.03880.02;0.002 1.0147 0.0050 0.06580.03;0.003 1.3995 0.0054 0.09310.04;0.004 1.7207 0.0078 0.1273Table 6.3: The in�uene of the level of navigation unertainties on the performanes of the analytiontrol for e = 0.3 and ∆t = 400 s

6.5 ConlusionThis hapter presents an analytial bi-impulsive ontrol method for stabilizing the spaeraft pe-riodi relative motion. The method is based on the fat that periodi trajetories are equilibriumtrajetories for the spaeraft relative motion. The states belonging to periodi relative trajetoriesform an invariant set for the spaeraft relative motion, whose robust stability must be ensured.The omputation of the stabilizing ontrol uses the results in Chapter 2, whih show that anyperiodi spaeraft relative trajetory an be desribed by a onstant vetor of parameters. Thebi-impulsive struture of the ontrol is hosen beause it an provide an analytial solution to thestability ondition.Spaeraft periodi relative trajetories are unstable, meaning that any autonomous trajetorystarting in proximity of a periodi solution will not naturally onverge towards the periodi motion.This means that in presene of navigation unertainties the desired periodi trajetory annot bepreisely reahed. Corretions need to be omputed and applied periodially in order to preventthe spaeraft from drifting away from the desired trajetory. Bounds for the admissible errorwith respet to the periodi trajetory are given in order to guarantee that the omputed ontrolsrespet the thrusters saturation onstraints. Limitations on the hoie for the ontrol reomputationfrequeny are imposed by the fat that, for bounded navigation unertainties, the traking errormust remain within the admissible error domain.The analyti bi-impulsive ontrol is integrated in a 2 stages Model Preditive Control sheme,whose purpose is to guide the spaeraft towards an admissible periodi trajetory and then torobustly maintain the periodi motion for a spei�ed time. This ontrol setting demonstrates thatgood robust guidane performanes an be ahieved using a ontrol sheme whih does not rely on



126 Chapter 6. Analytial bi-impulsive ontrol around a desired periodi trajetoryonboard optimization. Numerial simulations based on the nonlinear propagation model for thespaeraft relative motion are used to analyse the in�uene of di�erent parameters on the ontrolperformanes. The most important tuning parameter is the frequeny of ontrol reomputationand its hoie an be driven by a ompromise between the desired traking preision and the fuelonsumption.



ConlusionsThe �xed-time spaeraft rendezvous guidane problem is investigated in this thesis. The mainobjetives are onentrated around obtaining guidane algorithms apable of handling di�erenttypes of trajetory and ontrol onstraints that arise from spaeraft mission requirements. Anotherimportant aspet is related to the robustness properties of the ontrol algorithms, motivated by theneed for inreased ontrol authority for future spaeraft missions.The �rst part of the thesis fouses on the modelling of the spaeraft relative motion and morepreisely on the study of the geometri properties of the relative trajetories. A partiular attentionis paid to naturally periodi trajetories, motivated by their importane for ensuring the passiveseurity of the spaeraft relative trajetory and by their potential usage as fuel-fee parking orinspetion orbits. A new parametrization for the spaeraft relative trajetories is proposed, basedon the Cartesian model for the spaeraft relative motion and on the expression of the transitionmatrix. It is showed that, in the general ase, two of these parameters hange over time, while inthe ase of periodi motion, all the parameters desribing the relative trajetory are onstant. Thisproperty leads to a ompat, generi representation for the spaeraft periodi relative trajetories,regardless of their shape or dimensions. It provides more �exibility than the lassial approahbased on the usage of parametrized urves suh as irles and ellipsoids for speifying a desiredperiodi relative trajetory.A mathematial haraterisation for the set of parameters orresponding to relative trajetorieswhih respet some dimensions onstraints, over a desired time interval, is neessary in order tosimplify the spaeraft relative trajetory design proess. For instane, in the ase where themission requires the usage of parking orbits, these parking orbits need to be designed suh thatthey are periodi and ontained inside a spei�ed area around a waiting point along the rendezvoustrajetory. For passively safe approah trajetories, the fail trajetories must be suh that, in aseof system failure, the follower spaeraft remains inside a designated safe area in proximity of thetarget, for the desired period of time. The important question that needed to be answered was:whih is the relation between the values of the parameters and the geometri properties of theresulting spaeraft relative trajetory?From a mathematial point of view, verifying that a trajetory respets the dimension on-straints over a spei�ed time interval, translates into numerially heking an in�nite number ofonditions. The lassial approah for rendering �nite the number of onditions is based on on-straints disretization. While this solution is simple and straightforward, it does not provide a



128 Conlusionrigorous mathematial desription of the admissible trajetories. Moreover, this approah annotguarantee that no onstraints violations will our in between the disretization points. The pro-posed alternative is based on the properties of non-negative polynomials. Our method exploits thestruture of the solution for the spaeraft relative motion provided by the transition matrix andleads to a �nite haraterisation of the admissible trajetories that guarantees ontinuous satisfa-tion of the onstraints. This result an provide the mission designer with a powerful tool for thespaeraft relative trajetory design.The proposed haraterisation of the admissible trajetories is integrated in the fuel-optimalspaeraft rendezvous guidane problem for missions that impose ontinuous onstraints on theapproah trajetory. It is showed that the onstrained guidane problem an still be written asa onvex optimization problem. The methods is illustrated for several examples, inluding thespaeraft guidane towards a parking orbit de�ned as a onstrained periodi relative trajetory, thespaeraft rendezvous with passive seurity onstraints on the approah trajetory or the spaeraftdoking trajetory with ontinuous visibility onstraints. The examples emphasize the advantageof our method over the lassial onstraints diretization tehnique, for whih onstraints violationsour in between the veri�ation points.When the spaeraft relative state measure is a�eted by navigation unertainties, the �nalrendezvous objetive an no longer be preisely reahed. In this ase, the objetive beomes toobtain a robust guidane algorithm that provides a good ompromise between the fuel ost ofthe approah trajetory and the �nal rendezvous preision, while guaranteeing robust onstraintssatisfation for all the admissible values of the unertainties. Two ontrol tehniques are proposedwhih optimize the fuel onsumption and the dimensions of a guaranteed �nal arrival set. Themethods rely on the omputation of a series of a�ne feedbak ontrol laws that an ensure robustonstraints satisfation and a good performane trade-o�. It is emphasized that the resulting onvexoptimal ontrol problem an be solved only one, before the beginning of the rendezvous maneuvers,and then the omputed feedbak laws an be diretly used at the orresponding ontrol instant,without any need for reomputation. This property might be partiularly attrative when the on-board omputational resoures are limited. The problem an be solved using the resoures availableon the ground before the beginning of the maneuvers, followed by the upload of the parameters ofthe ontrol laws to the spaeraft. The hoie of the a�ne feedbak struture for the ontrol mightimpose some limitations on the ahievable ontrol performanes. A further interesting developmentwould be the estimation of lower and upper bounds on the performanes, bounds that derive fromthis partiular hoie for the ontrol parametrization.



129The presene of navigation errors also a�ets the spaeraft periodi relative motion. Thespaeraft periodi relative trajetories are showed to be unstable equilibrium trajetories, meaningthat from a state arbitrarily lose to a periodi trajetory, the spaeraft relative motion will notnaturally onverge towards the periodi solution. For this partiular ase, an analytial bi-impulsiveontrol whih stabilizes the spaeraft periodi relative motion is proposed. The omputation ofthe ontrol is based on the fat that periodi trajetories an be desribed using a onstant setof parameters. The bi-impulsive struture is hosen beause it provides an analytial solution tothe stabilization problem, requiring very few omputational e�ort to obtain the ontrol. However,beause the orretions are omputed based on imperfet state information, the ontrol needs tobe applied periodially in order to guarantee the stability of the motion. For a partiular hoiefor the ontrol frequeny, the validity domain of the analytial ontrol an be estimated a priori.The analyti bi-impulsive ontrol is integrated in a 2 stage Model Preditive Control shemewhih demonstrates that good robust guidane performanes an be ahieved using a ontrol shemewhih does not rely on onboard optimization.





ConlusionsCette thèse est onsarée au problème de guidage en rendez-vous à temps �xé des satellites en orbiteterrestre. L'objetif prinipal est de onevoir des algorithmes de guidage apables de prendre enompte les di�érents types de ontraintes sur le ontr�le ou sur la trajetoire relative imposées parles spéi�ations de haque mission. Le aratère robuste des man÷uvres obtenues, favorable àl'aroissement de l'autonomie, est également investigués.La première partie du manusrit est dédiée à la modélisation du mouvement relatif des satel-lites et plus préisément à l'étude des propriétés géométriques des trajetoires relatives. Les traje-toires relatives périodiques sont étudiées plus un détail, du fait de leur possible utilisation pour laséurisation passive des trajetoires d'approhe et de leur usage potentiel omme orbites de park-ing ou d'inspetion qui ne néessitent pas de dépense de ombustible. Des nouvelles expressionsparamétriques sont proposées pour les trajetoires relatives, basées sur le modèle artésien loal dumouvement relatif et sur l'utilisation de l'expression de la matrie de transition d'état. Pour ettenouvelle paramétrisation, deux paramètres seulement varient ave le temps et, dans le as du mou-vement périodique, les paramètres sont tous onstants. Cette propriété permet l'obtention d'unedesription ompate des trajetoires relatives périodiques, quelle que soit leur forme ou leur di-mension. La nouvelle formulation s'avère plus �exible et plus générique que l'approhe lassique,basée sur l'utilisation des ourbes paramétrées, telles que les erle ou les ellipses, pour spéi�er unetrajetoire périodique désirée.Pour simpli�er le proessus de design des trajetoires relatives des satellites, il est néessaire detraduire mathématiquement les ontraintes dimensionnelles à respeter sur un intervalle de tempsdonné. Par exemple, si une mission donnée néessite l'utilisation des orbites relatives de parkingentre deux étapes di�érentes, es orbites peuvent être hoisies périodiques et de dimensions nedépassant pas une zone spéi�ée autour d'un point de passage �xé sur la trajetoire. Pour desapprohes qui néessitent des garanties de séurisation passive de la trajetoire, on peut herher àimposer aux trajetoires de panne d'évoluer à l'intérieur d'une zone de séurité spéi�ée en proximitéde la ible pour un intervalle de temps �xé. La question importante qui se pose devient alorsd'identi�er le lien entre les valeurs des paramètres dérivant une trajetoire relative et ses propriétésgéométriques.D'un point de vue formel, erti�er qu'une trajetoire relative respete des ontraintes de dimen-sion sur un intervalle de temps �xé revient à véri�er un nombre in�ni de onditions. L'approhelassique pour obtenir un nombre �ni des onditions à véri�er onsiste à disrétiser l'intervalle



132 Conlusiondonné. Même si ette solution est simple et faile à implémenter, elle ne fournit auune desrip-tion formelle des trajetoires admissibles. De plus, ette approhe ne peut pas garantir que lesontraintes sont également satisfaites sur l'intervalle entre deux points de disrétisation. Une solu-tion alternative est proposée, solution qui est basée sur les propriétés des polyn�mes non-négatifs.Cette nouvelle méthode exploite la struture de la solution des équations dynamiques dérivant lemouvement relatif des satellites, solution donnée par la matrie de transition. Elle amène à unearatérisation �nie des trajetoires admissibles et garantit la satisfation ontinue des ontraintes.Ce résultat peut s'avérer très utile pour le design des trajetoires relatives de satellites pour desopérations de proximité.La desription développée pour les trajetoires relatives admissibles est intégrée dans un algo-rithme de guidage des satellites, adapté aux missions qui requièrent des ontraintes ontinues surla trajetoire d'approhe. Il est montré que le problème de ommande optimale sous ontraintesorrespondant peut être érit omme un problème d'optimisation onvexe. La méthode est illustréepar plusieurs exemples, tels que le guidage des satellites vers une orbite de parking dé�nie ommeétant une trajetoire périodique ontrainte, le rendez-vous orbital ave des ontraintes de séuritépassive sur la trajetoire d'approhe ou le rendez-vous ave des ontraintes de visibilité. Ces exem-ples mettent en évidene les avantages de ette nouvelle méthode par rapport à l'approhe basée surla disrétisation des ontraintes, pour laquelle les ontraintes ne sont pas néessairement respetéesentre les points de véri�ation.Lorsque la onnaissane de l'état relatif des satellites est a�etée par des inertitudes de mesures,l'objetif �nal de la mission ne peut plus être préisément atteint. L'objetif devient alors d'obtenirdes algorithmes de guidage robustes, qui fournissent des solutions permettant d'atteindre un bonompromis entre la onsommation de ombustible et la préision �nale, tout en garantissant la sat-isfation des ontraintes pour toute valeur admissible des inertitudes. Deux tehniques de ontr�lesont proposées à et e�et. Elles optimisent à la fois la onsommation de ombustible et la dimensionde l'ensemble d'arrivée qui ontient tous les états �naux possibles. Ces méthodes sont basées surle alul d'une série des lois de ommande au lieu d'un plan de man÷uvres et peuvent assurer lasatisfation robuste des ontraintes et un bon ompromis au niveau des performanes. Les prob-lèmes d'optimisation onvexe qui en déoulent doivent être résolues une seule fois, avant le débutde la mission, et puis les lois de ommande obtenues peuvent être utilisées sans besoin de realul.Cette aratéristique peut s'avérer partiulièrement intéressante pour des missions où la puissanede alul embarqué est fortement limitée. La solution du problème d'optimisation peut don êtrealulée au sol, avant le début des man÷uvres, suivie par une simple transmission des paramètres



133obtenus vers les satellites.Il est à noter que le hoix de travailler ave des strutures a�nes de ommande pourrait engen-drer des limitations au niveau des performanes du ontr�le. Une diretion de reherhe intéressanteserait d'estimer des bornes de performane supérieures et inférieures, bornes �xées par le hoix dela struture a�ne.La présene des inertitudes de navigation a également des e�ets sur le mouvement relatif péri-odique des satellites. Les trajetoires périodiques sont des trajetoires d'équilibre instable. Paronséquent, pour des états initiaux situés arbitrairement prohe d'une trajetoire périodique, la tra-jetoire obtenue ne va pas onverger de manière autonome vers la solution périodique. Pour remédierà e problème, une stratégie de ontr�le basée sur le alul analytique des deux impulsions est pro-posée, a�n de stabiliser le mouvement relatif autour d'une trajetoire périodique donnée. Cetteméthode utilise le fait qu'une trajetoire périodique peut être dérite par un veteur onstant deparamètres. L'avantage de ette méthode est le fait que le alul analytique des orretions néessitetrès peu de ressoures. En même temps, omme les orretions sont obtenues à partir des mesuresa�etées par des inertitudes, le ontr�le doit être alulé et appliqué de manière périodique pourgarantir la stabilité du mouvement périodique. Pour une période de realule �xée, le domaine devalidité du ontr�le à deux impulsions peut être obtenu a priori.La méthode analytique à deux impulsions est intégrée dans une stratégie de ontr�le à deux étapes,en onjontion ave les méthodes de ommande robuste développées, a�n de réaliser le guidagerobuste en mouvement périodique de proximité. Cette stratégie fait preuve de bonnes performanesde guidage, lesquelles sont obtenues en évitant la résolution embarquée de problèmes d'optimisation.





Appendix AStability of spaeraft perioditrajetories
The stability analysis of a system in the sense of Lyapunov studies the onvergene of the system'sstate towards some equilibrium points. An equilibrium point is de�ned as a state that the systeman maintain inde�nitely without any hange in the input. In the ase of the spaeraft relativemotion, the notion of equilibrium point is extended to the notion of equilibrium trajetory [51℄. Ithas been shown in Chapter 2 that one on a periodi relative trajetory, the spaeraft will pursuethe periodi motion as long as the input is maintained to zero. In this ase, the stability analysis inthe sense of Lyapunov onsists in haraterising the behaviour of the system for initial states thatare arbitrarily lose to a periodi trajetory.The linearized spaeraft relative motion an be modelled by the periodi system:

X̃ ′(ν) = Ã(ν)X̃(ν), Ã(ν) = Ã(ν + 2π) (A.1)where the dynamial matrix Ã(ν) is de�ned as in (1.19). The stability properties of the system(A.1) annot be dedued from the stability properties of the dynamial matrix, as it is the asefor LTI systems. For periodi systems, and more generally for time-varying systems, even if thedynamial matrix is stable for every value of the independent variable, this does not neessarilyimply that the system is stable [28℄.The solution to this system an be expressed using the state transition matrix Φ, as desribedin Setion 1.4.1:
X̃(ν) = Φ(ν, ν0)X̃(ν0) (A.2)where X̃(ν0) denotes the initial onditions. The monodromy matrix is de�ned as the state transitionmatrix over one period of the oe�ients of the periodi system (A.1):

C = Φ(νk + 2π, νk), ∀νk (A.3)Considering the Yamanaka-Ankersen state transition matrix [103℄ and taking νk = 0, the mon-



136 Appendix A. Stability of spaeraft periodi trajetoriesodromy matrix for the spaeraft relative motion is given by:
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(A.4)
where the term J is de�ned as in (1.33) over the interval [0 2π].The eigenvalues of the matrix C are alled the harateristi multipliers denoted here by λi. Thevalues of the harateristi multipliers are independent of the partiular hoie of νk in (A.3) [28℄.The stability properties of the periodially time-varying system (A.1) an be studied by looking atthe properties of the harateristi multipliers.Aording to the theorems in Chapter 4 of [80℄, the periodi system (A.1) is stable if and onlyif:

|λi| < 1, ∀i (A.5)In the ase where there is only one harateristi multiplier with unity magnitude then there existssome initial onditions for whih the solution of the system is periodi [46℄. If the multipliity ofthe unity eigenvalue is greater than one then the system is unstable, in the sense that the naturalresponse of the system does not always remain bounded as time goes to in�nity [80℄.The eigenvalues of the monodromy matrix C orresponding to the linearized spaeraft relativedynamis are all equal to 1. Aording to the previous observation, there exists some partiularinitial onditions for whih the response of the system is periodi, whih on�rms the results inChapter 2. However, the periodi spaeraft relative trajetories are unstable sine the multipliityof the unity harateristi multiplier is greater than 1. As a onsequene, if the spaeraft relativemotion starts arbitrarily lose to a periodi solution, it will not naturally onverge towards theperiodi motion.



Appendix BProperties of non negative polynomials
The results presented in Chapter 3 are based on the properties of non-negative polynomials givenby Nesterov in [73℄. Nesterov proves that the one of oe�ients of univariate polynomials whihare non-negative on some segment of the real axis an be represented as the linear image of the oneof positive semi-de�nite matries. This result enables the usage of the semi-de�nite programmingfor optimization problems with polynomial non-negativity onstraints.The de�nitions presented here are extrated from [73℄ and they onern only the onepts neededin order to understand the developments in Chapter 3.
B.1 Cheking polynomials non negativity on a �nite intervalLet Ka,b be the onvex, losed and pointed one of the oe�ients of polynomials that are nonnegative on a �nite interval [a b] ∈ R:

Ka,b =

{

p ∈ R
n+1, P (w) =

n
∑

i=0

piw
i, ∀w ∈ [a b]

} (B.1)Referene [73℄ shows that a polynomial P (w), represented through its vetor of oe�ients p =
[

p0 ... pn

]T , belongs to Ka,b if and only if there exist two symmetri positive semi-de�nite ma-tries Y1 and Y2 suh that:
p ∈ Ka,b ⇐⇒ ∃Y1, Y2 � 0 s.t. p = Λ∗(Y1, Y2) (B.2)The de�nition of the linear operator Λ∗ and the dimensions of the matries Y1 and Y2 depend onwhether the polynomial P (w) has an odd or even degree.For n odd take Y1, Y2 ∈ R

(m+1)×(m+1) � 0, where m = (n − 1)/2. Let Hk,i ∈ R
(k+1)×(k+1) be



138 Appendix B. Properties of non negative polynomialssome Hankel matries that ontain ones on the i-th anti-diagonal and zeros everywhere else:
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(B.3)
In this ase, the operator Λ∗ is de�ned as:

Λ∗(Y1, Y2) =































tr (Y1(−aHm,1)) + tr (Y2(bHm,1))tr (Y1(Hm,1 − aHm,2)) + tr (Y2(bHm,2 −Hm,1))...tr (Y1(Hm,i−1 − aHm,i)) + tr (Y2(bHm,i −Hm,i−1))...tr (Y1Hm,2m+1) + tr (Y2(−Hm,2m+1))































(B.4)
For n even take Y1 ∈ R

(m+1)×(m+1) � 0 and Y2 ∈ R
m×m � 0, where m = n/2. In this ase, theoperator Λ∗ is de�ned by:

Λ∗(Y1, Y2) =











































tr (Y1 Hm,1) + tr (Y2(−a bHm−1,1))tr (Y1 Hm,2) + tr (Y2((b+ a)Hm−1,1 − a bHm−1,2))tr (Y1 Hm,3) + tr (Y2((b+ a)Hm−1,2, −Hm−1,1 − a bHm−1,3))...tr (Y1Hm,i) + tr (Y2((b+ a)Hm−1,i−1 −Hm−1,i−2 − a bHm−1,i))...tr (Y1Hm,2m) + tr (Y2((b+ a)Hm−1,2m−1 −Hm−1,2m−2))tr (Y1 Hm,2m+1) + tr (Y2(−Hm−1,2m−1))











































(B.5)
B.2 Cheking polynomials non negativity on an in�nite intervalThe neessary and su�ient onditions for non negativity of univariate polynomials on in�niteintervals have also been given in [73℄. A polynomial P (w) is non negative on R if and only ifthere exists a symmetri positive semi-de�nite matrix Y ∈ R

(m+1)×(m+1) suh that p, the vetor ofoe�ients of P (w), veri�es:
p ∈ K∞ ⇐⇒ ∃Y � 0 s.t. p = Λ∗(Y ) (B.6)



B.2. Cheking polynomials non negativity on an in�nite interval 139where the linear operator Λ∗ is de�ned by:
Λ∗(Y )(j) = tr (Y Hm,j), j = 1..2m+ 1 (B.7)





Appendix CEllipsoidal sets
C.1 Representations of ellipsoidal setsThere are several ways of representing an ellipsoidal set, eah one with its own advantages. Anellipsoidal set E of dimension n an be desribed using a vetor c ∈ R

n for its enter and a positivesemi-de�nite matrix Q for its shape:
E(c,Q) = {x ∈ R

n | (x− c)TQ(x− c) ≤ 1} (C.1)Using this representation, the semi-axes of the ellipsoid ai are given by:
ai =

√

1

λi(Q)
(C.2)where λi(Q) denotes the i-th eigenvalue of the Q matrix.By expanding the terms in (C.1), the ellipsoid E is de�ned by an non homogeneous quadratiinequality:

E(c,Q) = {x ∈ R
n | xTQx− 2cTQTx+ cTQc− 1 ≤ 0} (C.3)This an be written as a homogeneous quadrati inequality by augmenting the variable:

E(c,Q) =







x ∈ R
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(C.4)where t = 1.The positive de�nite matrix Q an also be written as:
Q = UΛUT = UΣ2UTwhere Λ and Σ are diagonal matries. Using this deomposition, alternative desriptions for theellipsoidal set E(c,Q) an be obtained:

E(c,Q) = {x ∈ R
n | ‖ΣUT (x− c)‖ ≤ 1} = {x ∈ R

n | ‖Q 1

2 (x− c)‖ ≤ 1} (C.5)



142 Appendix C. Ellipsoidal setsBy de�ning v = ΣUT (x− c) we have:
E(c,Q) = {x ∈ R

n | x = c+ UΣ−1v, ‖v‖ ≤ 1} (C.6)C.2 Operations with ellipsoidsAn ellipsoidal set E(c,Q), propagated through a linear funtion Ax + b is still an ellipsoidal setde�ned by:
y = Ax+ b, ∀x ∈ E(c,Q) ⇐⇒ y ∈ E(Ac+ b,A−TQA−1) (C.7)The Minkowski sum ⊕ of two ellipsoidal sets E1(c1, Q1) and E2(c2, Q2) is de�ned as:
E1 ⊕ E2 = {x ∈ R

n | x = x1 + x2, x1 ∈ E1, x2 ∈ E2} (C.8)The Minkowski sum of two ellipsoids is not usually an ellipsoid. However an analytial ellipsoidalouter approximation of the Minkowski sum of two ellipsoids an be obtained by using the proeduredesribed in [81℄:
E1(c1, Q1)⊕ E2(c2, Q2) ⊆ EM (c1 + c2, QM ) (C.9)where the matrix QM de�ning the ellipsoidal set EM is de�ned by:

QM = (A#)T (Q0 −Q0N(NTQ0N)#NTQ0)A
# (C.10)and

Q0 =





Q1/2 0n

0n Q2/2



 A =
[

In In

] (C.11)The matrix N de�nes the orthogonal omplement of the matrix A (i.e. NA = 0) and the symbol
# denotes the pseudo-inverse of the matrix.
C.3 The S-proedureThe S-proedure studies the non negativity of a quadrati form on a domain de�ned by quadratiinequalities, suh as ellipsoidal sets (C.3). Given the quadrati funtions:

fi(x) = xTMix+ 2mT
i x+ µi, i = 0..l



C.3. The S-proedure 143the purpose is to verify if:
f0(x) ≥ 0, ∀x suh that fi(x) ≥ 0, i = 1..l (C.12)For l = 2, the previous inequality is veri�ed if and only if the quadrati funtion f0 is a linearonsequene of the quadrati funtions f1 and f2. Using the representations based on homogeneousquadrati forms as in (C.4), the ondition (C.12) beomes:
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 ≥ 0, i = 1..2 (C.13)As reminded in [72℄, the ondition (C.13) is equivalent to the following Linear Matrix Inequality:
∃τ1, τ2 ≥ 0 suh that M̄0 ≥ τ1M̄1 + τ2M̄2 (C.14)where the matries M̄i orrespond to the homogeneous quadrati funtions in (C.13).For l > 2 the existene of a positive semi-de�nite linear ombination between the matriesorresponding to the quadrati inequalities does not neessarily mean that (C.12) holds. A sup-plementary ondition on the matrix Mi needs to be added, the ondition of the matries beingsimultaneously diagonalizable [76℄.In the ase where l = 1, ondition (C.12) translates into the problem of heking whether anellipsoidal set is ontained inside another ellipsoidal set.
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