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the derivative, with respect to time, of the state of a hybrid system
the state of a hybrid system after a jump

denotes the transpose of x
denotes the transpose of 2T
equivalent notation for the vector [z " y']"

the inverse of the squared matrix M

the transpose of M !

denotes the set of real numbers

denotes the n-dimensional Euclidean space

denotes the set of real numbers greater than or equal to n € R

denotes the set of integer numbers

denotes the set of integer numbers greater than or equal to n € Z

real matrix with m rows and n columns, m,n € Z>q

the identity matrix of appropriate dimensions

denotes the boundary of set A

the closure of set A

denotes the interior of set A (see Definition 1.2)

denotes the fact that x € A implies x € B and vice versa

denotes the set of points in A that are not in B

denotes the fact that x € A implies x € B

denotes the generalized gradient in the Clarke sense of a function = — W(z) at x
denotes the hybrid time domain of £ (see Definition 1.5)

the unitary deadzone of s € R (see Definition 1.4)

denotes the empty set

M+MT

the class of functions from R>( to R>¢ that are continuous, zero at zero, strictly
increasing and unbounded (see Definition 1.1)

the maximum eigenvalue of matrix M
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Amin (M) the minimum eigenvalue of matrix M

| z | the Euclidean norm of a vector z € R”

| |4 the minimum distance of vector x € R™ to a compact set A (see Definition 1.3)
| wlti,t;] |2 denotes (ff; | w(s,i) |? ds)é

sgn(s) the sign function of s € R

f:R™ — R"™ denotes a function from R™ to R"

FORE First Order Reset Element

GAS Globally Asymptotically Stable

GES Globally Exponentially Stable

LMI Linear Matrix Inequality

LTI

Linear Time-Invariant



Introduction

Technological development and always more sophisticated applications continue to demand
numerical tools and control techniques to design and validate controllers able to guarantee the
desired specifications. In the attempt to satisfy these challenging exigences, research tries to
provide solutions to overcome the limits of the classical theory. The introduction of the hybrid
systems framework sheds light on new frontiers of control theory and offers promising results useful
for all sort of applications [39,40].

It is from the 1940’s that research is aware of intrinsic limitations of classical control. Already [9]
gave some hints on integral constraints on sensitivity functions applied to electrical networks.
However, not much interest has been showed in these questions, at first. Lately, such an interest
has been renewed (see [2,34,36,37,60]). In particular, [2] analyses control properties of minimum
and non-minimum phase systems and provides some guidelines to preliminary assess the feasibility
of a design problem by means of a continuous-time (linear and nonlinear) control. [60] emphasizes
fundamental constraints on achievable performance in linear control loops and characterizes the
overshoot in non-minimum phase systems. Note that control limitations might go beyond the best
possible trade-off of specifications. In [12,25,76], systems for which there is no smooth feedback are
deeply investigated. For a clear survey on the usefulness of investigating fundamental limitations
the reader is referred to [81].

In parallel with limitations in control, also limitations in modeling represent an important issue
to consider in many applications. For instance, satellite applications cannot validate a control
on-board before the launch, therefore a massive amount of simulations for design and (mostly)
validation and certification needs to be accomplished, requiring very precise models to reduce
the risks. Moreover, in certain domains of control, the usual dynamical representations do not
provide enough flexibility for analysis and synthesis purposes. For instance, in some applications
with impulsive problems, only dynamic model with differential inclusions provide good precision
accounting also for robustness (see [80]).

In the attempt to solve some of the issues listed above, research proposes several control
schemes (see for instance [47, 55,56, 85, 86] and references therein). In |23, Section 7.1, for
instance, an example is shown where the impulsive control reaches the global optimum whereas any
control as a function of time cannot attain it. Also switching systems try to solve both modeling
issues and trade-off limitations [51]. In [66, 82, the plant to control is modeled with a switching
system to account for failures or output quantizations. On the other hand, |48, 68| propose mul-
tiple controllers for the same plant which are suitably switched to meet all the design specifications.

The hybrid systems framework [39,40] unifies all these branches of control research and enlarges
the frontiers of modeling and control. Combining both continuous and discrete dynamics, hybrid
systems are able to model with better precision mechanical systems where impacts are involved
or electronic devices where switches repeatedly occur or with logical modes. Moreover the hybrid
controller architecture offers insights which only recently started to be investigated. For instance,
a hybrid control can guarantee robust stability in nonlinear systems not stabilizable by smooth
feedback [46,69], overcome some intrinsic limitations of linear control systems whenever a trade-off
between the specifications has to be found |7] and establish global results where only local ones



2 Introduction

can be achieved with a smooth control law.

In the recent years, particular attention has been devoted to the study of optimal hybrid
controllers for continuous-time plants with the intent of achieving better trade-offs of performance.
The desirable closed-loop behavior may be induced by resetting the controller state according
to an optimal reset law [68]. Only a few hybrid controller architectures have been proposed.
The main one is the FORE controller, on which several performance studies have been con-
ducted [63,65,87,88]. In [70], a new architecture has been proposed where the resets are triggered
by suitable Lyapunov-like conditions and in [71], an optimal convex synthesis to maximize the
decay-rate for such new architecture has been proposed. Furthermore in [72|, also an optimal
synthesis for the overshoot reduction is presented.

Although hybrid systems represent a breakthrough in the domain of control theory, the growth
of complexity in the dynamics requires new mathematical tools and methods for the analysis and
the design problem. Lyapunov theory comes in handy to describe the trajectories of hybrid systems
without analytically calculating the actual solutions [58]. This allows to establish useful results
on L, stability [65], equivalence between robust stability and existence of a smooth Lyapunov
function [15,16] and, for certain classes of hybrid controllers, leads to LMI formulations both for
analysis and synthesis.

In this context, our work aims at developing systematic techniques for the design of a hybrid
controller for a continuous-time plant. The hybrid controller architecture represents the first
issue because each architecture presents its own characteristics and degrees of freedom, therefore
optimal design techniques are specific for a particular type of hybrid controller. Moreover, to be
able to state performance in a classical sense and allow comparison with classical solutions, the
hybrid controller has to satisfy certain conditions, to avoid behavior which are unknown in the
continuous-time domain and to avoid inaccurate performance estimations. The final objective is
to investigate hybrid controller architectures whose analysis and synthesis, in eventual presence of
input saturation, can be held through LMI conditions solvable with SDP tools [10].

This dissertation is structured as follows. First, some fundamental definitions that will be used
in the sequel, are presented in Chapter 1. In Chapter 2, we present a class of hybrid systems
of interest for our purposes. In particular, we focus on a class of hybrid systems which embeds
several control schemes in the literature and we provide some general results for the analysis of
the stability and the performance. We make some examples to show that particular care has to be
taken whenever a classical performance index is selected to evaluate a hybrid system performance.
By using a hybrid system framework, a Lyapunov function is used to represent all the trajectories of
the hybrid model and to establish performance bounds. We first provide results based on a generic
Lyapunov function, then we focus on the case where the Lyapunov function is quadratic, yielding
convex LMI formulations, which can be handled via SDP.

In Chapter 3, two hybrid controller architectures for linear continuous-time plants are proposed.
Due to the complexity of the problem, only the hybrid state feedback case is considered, where the
plant state measurements are used to design flow set, jump set and hybrid map. Although this
strong simplifications, some insights on the potential of these schemes are given, especially in terms
of overshoot reduction and guaranteed exponential decay rate.

In Chapter 4, the hybrid state feedback schemes introduced in Chapter 3 are generalized to the
hybrid output feedback case. The idea is to introduce an observer to obtain the estimation of the
plant state. First, we introduce some issues related to the introduction of the observer. Then, two



main approaches are discussed, all of them allowing overshoot reduction.

In Chapter 5, a convex multi-objective synthesis of the control scheme in Chapter 3 is presented.
By combining a change of coordinates and the LMI-based results in Chapters 2 and 3, we provide
sufficient conditions to completely design an mutli-objective hybrid controller with respect to the
decay rate and the classical Lo gain. The hybrid output feedback case and its intrinsic difficulties
are also discussed. Promising results in the attainable performance trade-offs and comparisons with
the corresponding linear case are showed in the simulations.

Finally, some comments on the presented results and a glimpse on the perspectives for the
future works complete this document. All the results in this dissertation are based on the following
publications:

e . Fichera, C. Prieur, S. Tarbouriech, L. Zaccarian, “Improving the Performance of Linear
Systems by Adding a Hybrid Loop: the Output Feedback Case”. In Proceedings of the 2012
American Control Conference, pages 3192-3197, Montreal, Canada, 2012;

e F. Fichera, C. Prieur, S. Tarbouriech, L. Zaccarian, “On Hybrid State-feedback Loops Based
on a Dwell-time Logic”. In 4th IFAC Conference on Analysis and Design of Hybrid Systems,
pages 388-393, Eindhoven, The Netherlands, 2012;

e . Fichera, C. Prieur, S. Tarbouriech, L. Zaccarian, “A Convex Hybrid H,, Synthesis with
Guaranteed Convergence Rate”. In Proceedings of the 51st Conference on Decision and Con-
trol, pages 4217-4222, Maui (HI), USA, 2012;

e F. Fichera, C. Prieur, S. Tarbouriech, L. Zaccarian, “Using Luenberger Observers and Dwell-
time Logic for Feedback Hybrid Loops in Continuous-time Control Systems”. International
Journal of Nonlinear and Control, 23:1065-1086, 2013;

e | Fichera, C. Prieur, S. Tarbouriech, L. Zaccarian, “Static Anti-windup Scheme for a Class
of Homogeneous Dwell-time Hybrid Controllers”. Proceedings of the 2013 Furopean Control
Conference, Ziirich, Switzerland, 2013.
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Preliminary concepts of the hybrid
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Some fundamental notions useful to understand the content of this dissertation are introduced.
From Section 1.1 to Section 1.4 the definitions are standard and can be found more detailed in [40].

In Sections 1.5, 1.6 and 1.7, some notions particularized for our purposes are presented.

1.1 Some preliminary definitions

In this dissertation we will use the following useful definitions (further details may be found in
[53,74]).

Definition 1.1. (Class-K functions) A function a : R>g — R>q is a class-K function, also
written o € Ko, if a is zero at zero, continuous, strictly increasing and unbounded. %

An interesting property of Kno functions is that if a € Ko then also o' € K.
Definition 1.2. (Interior of a set) Given a set A C R", we say
int(A) ={z eR":3IN>0, =+ ABC A}, (1.1)
where \B = {x € R" : |z| < A}. O
We need also to define the distance of a vector € R™ to a compact set A C R".

Definition 1.3. (Distance to a closed set) Given a vector x € R" and a compact set A C R", the
distance of x to A is denoted |x| 4 and is defined by |z|4 = min{|z —y| : y € A}. O

Finally, we need to define the unitary deadzone.
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Definition 1.4. (Unitary deadzone) For any s € R, the function dz: R — R is defined by

sy =40 if ls| <1
dafs) {sgn<s><|s|—1> fls|>1 (12)

O
1.2 The modeling framework
A hybrid system can be represented as'
z = f(x,w) (zr,w)eC (1.3)
= g(z,w) (z,w)eD '

where x € R" is the state space of the hybrid system, w € R™* is an exogenous signal, C C R x R™»
is the flow set, D C R™ x R™ is the jump set, while f : C — R" and ¢ : D +— R" are single-valued
mappings, called the flow map and the jump map, respectively. Note that C and D make a regional
separation of the (x,w)-space on which the dynamics depends.

To shorten the terminology, the behavior of a dynamical system described by the flow map is
referred to as flow. The behavior of a dynamical system described by the jump map is referred to
as jump (or reset).

The model (1.3) can represent dynamical systems which have been modeled in different frame-
works. Trivial examples consist in the representation of purely continuous-time systems (represented
by (1.3) with C = R™ x R™ and D = {)) or purely discrete-time systems (represented by (1.3) with
C =0 and D = R" xR™). Further and more consistent examples of frameworks which can be mod-
eled as a hybrid systems include systems with logical modes, hybrid automata, impulsive control
and switching systems.

1.3 Hybrid time domain, solutions and their basic properties

For a hybrid system (1.3), it seems natural to parameterize the solutions by both the ordinary time
t which considers the amount of flow, and a discrete variable i related to the jumps. The next
definition clarifies this concept.

Definition 1.5. (Hybrid time domain) A subset E of R>¢ x Z>¢ is a compact hybrid time domain
if

J—-1

E = |J ([t tisa],4) (1.4)

i=0
for some finite sequence of times 0 =ty < t1 <ty <...<ty. It is a hybrid time domain if for all
(T,J) e E, EN([0,T] x {0,1,...,J}) is a compact hybrid time domain. O

Note that given (¢,7), (£,7) € E, ift <tort=+¢and j < j, namely (¢,5) < (f,7), we can use
the equivalent condition ¢ + j < t + j. Moreover, it is important to stress that the hybrid time
domain dom(¢) is determined by the hybrid arc ¢ and it is not appropriate to select a hybrid time

!System (1.3) comes from [62], where also exogenous signals are considered. Note also that more general repre-
sentations of a hybrid system can be found in [40].
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domain F first, and then to find a solution ¢ such that £ = dom(¢).
On the concept of hybrid time domain, we can build the concept of hybrid arc, as stated in the
next definition.

Definition 1.6. (Hybrid arc) A function ¢ : E +— R"™ is a hybrid arc if E is a hybrid time domain
and if for each j € Z>o, the function t — ¢(t,j) is locally absolutely continuous on the interval
I ={t:(t,j) € E}. O

For the definition of absolutely continuous functions, the reader is referred to |75, pag. 119|.
Note that the requirement of absolute continuity is important only for the intervals I/ with
nonempty interiors.

Given a hybrid arc ¢, we denote its hybrid time domain as dom(¢).

It is useful to distinguish some types of hybrid arcs based on their domains.
Definition 1.7. (Types of hybrid arcs) A hybrid arc ¢ is called:

nontrivial if dom(¢) contains at least two points;

- complete if dom(¢) is unbounded;
- Zeno if it is complete and sup, dom(¢p) < oo;

- eventually discrete if ' = sup, dom(¢) < oo and dom(¢) N ({T'} x Z>p) contains at least
two points;

- discrete if nontrivial and dom(¢p) C {0} X Z>o;

- eventually continuous if J = sup;dom(¢) < oo and dom(¢) N (R>g x {J}) contains at
least two points;

- continuous if nontrivial and dom(¢) C R>g x {0};
- compact if dom(¢) is compact.
O

Note that a hybrid arc may satisfy more items of the previous list. For instance, continuous hy-
brid arcs or Zeno hybrid arcs may be complete. Every discrete hybrid arc is also eventually discrete.

The Zeno-type hybrid arcs are a very general class and we will refer to Zeno arcs which are not
eventually discrete nor both complete and discrete as “genuinely Zeno”, while Zeno arcs which are
complete and discrete are referred to as “instantaneously Zeno”.

We need to define the closeness of hybrid arcs.

Definition 1.8. ((7, J,¢)-close and c-close arcs) The hybrid arcs x : dom(x) — R", y : dom(y) —
R™ are (T, J,e)-close if:

(a) for all (t,j) € dom(z) with t <T, j < J there exists s such that (s,j) € dom(y), |t — s| < ¢,
and

‘x(t7j)_y(57j)‘ <ég; (15)
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(b) for all (t,7) € dom(y) with t < T, j < J there exists s such that (s,j) € dom(x), |t —s| <e,

and
Moreover if the conditions above hold for any T, J, the hybrid arcs x, y are said to be e-close.
O

Given a hybrid system (1.3), its solutions are hybrid arcs which satisfy certain conditions, as
clarified in the next definition.

Definition 1.9. (Solution to a hybrid system) A hybrid arc ¢ is a solution to the hybrid system
(1.3), if $(0,0) € CUD and?:

(S1) for all j € Z>o such that I’ = {t : (t,j) € dom(¢)} has nonempty interior

o(t,j) eC for all t € int(17),

b(t,§) = f(o(t, 7)) for almost all t € dom(); (1.7)
(S2) for all (t,j) € dom(¢) such that (t,j + 1) € dom(¢),
o(t,j) € D,
6(t, 5 +1) = g(6(t, ). (18)
O

1.4 Asymptotic and Exponential Stability

In general, a system (1.3) converges to a set rather than to an equilibrium point. For simplic-
ity, we will consider only compact sets (for more generalized definitions the reader is referred to [40]).

Let us mention that a hybrid system may exhibit also a type of solution which is said to be
maximal and not complete (see [39,40]). Nevertheless in this dissertation all the hybrid systems
present only complete solutions and therefore we can rely on the following stability and attractivity
definitions.

Definition 1.10. (Global asymptotic stability) Given the hybrid system (1.8) with w = 0, a compact
set A C R" is said to be

e stable for (1.3): if for each € > 0 there exists 6 > 0 such that each solution x to (1.3) with
|£(0,0)| 4 < 6 satisfies |x(t, j)| 4 < € for all (t,7) € dom(z);

e attractive for (1.3): if every solution x to (1.3) satisfies limy ;o0 |2(t, j)| 4 = 0, where (t, ) €
dom(z);

e globally asymptotically stable (GAS) for (1.3): if it is both stable and attractive for (1.3).

O

Additionally to Definition 1.10, we give the definition of global exponential stability. For further
details the reader is referred to [84].

*Note that since ¢ = (x,w), we are implicitly requiring that dom(x) = dom(w), according to [62].
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Definition 1.11. (Global exponential stability) Given the hybrid system (1.3) with w = 0, a compact
set A C R™ is said to be globally exponentially stable (GES) if there exist strictly positive real
numbers k and \ such that each solution x satisfies

(£, 5)|a < kexp(=A(t +))[x(0,0)].4, (1.9)

for all (t,j) € dom(x). O

1.5 Dwell-time logic

Roughly speaking, the dwell-time logic (also called temporal regularization) is a dynamic com-
ponent which allows a nonzero amount of flow of the solutions after each jump, and the hybrid
system (1.3) satisfies a dwell-time condition if all its solutions are such that ¢;1 —t; > p, for all
1€ Zzl, with p > 0.

In the following chapters, we use a dwell-time logic represented by the hybrid dynamics

7 :1-@G)Temm (110
™ =0 T € [p,2p],

where dz(-) is defined in (1.2) and p > 0. Note that the flow map of (1.10) satisfies the following
useful properties that will be used in the sequel

=1 7€][0,p

1.11
7<1 7€[p,2p]’ (L1)
where in particular, 7 = 0 for 7 = 2p. We also stress that the set [0,2p] is forward invariant.
Definition 1.12. (Dwell-time condition) The dwell-time logic (1.10) ensures
p+t—s=p(j—k), (1.12)
for any pair of hybrid times (t,j), (s,k) € dom(7), (¢,7) > (s, k). O

Condition (1.12) (also referred to as dwell-time property) comes from |17, Proposition 1.1].
Notice that if (1.3) satisfies (1.12) then each maximal solution (x,w) to (1.3) (see [40]| for the
definition) has a hybrid domain E = dom(z) which is unbounded in the ordinary time ¢ direction.
Therefore no Zeno solutions may occur when a dwell-time condition is satisfied.

We finally observe that whenever the dwell time is initialized outside its forward invariant set,
the solution of (1.10) stops.

Remark 1.1. In this dissertation we rely on the dwell-time logic architecture in (1.10). However,
all the results here presented hold whenever (1.10) is replaced by any other dwell-time dynamics
which satisfies (1.12), with the caveat that the forward invariant set in the 7-direction change
accordingly. *
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1.6 t-decay rate

To be able to perform comparisons with the classical (continuous-time) exponential decay rate, we
introduce the following definition, used also in [26,65, 78].

Definition 1.13. (t-decay rate) Given a compact set A C R™ and w = 0, the hybrid system (1.3)
has t-decay rate X > 0 if there exists a strictly positive real number k such that each solution x
satisfies

[2(t, )| < kexp(=At)|2(0,0)]4, (1.13)

for all (t,7) € dom(x). O
Note that whenever the solutions to system (1.3) satisfy (1.12), the t-decay rate property (1.13)
implies global exponential stability of the 2z component of (1.3) in the hybrid sense, namely (1.9).

To see this, consider (1.12) with (s,k) = (0,0) and multiply both sides by —A\, by adding and
subtracting %t and rearranging the terms, we get

2 A2
M < —Zapj— St+ 2N
S —3i =gt

1 2
< —3 min{2Ap, \}(t + j) + g)\p.
Therefore from (1.13), we get

k exp(=At)|x(0,0)| 4
kexp(—a(t + 5))|z(0,0)] 4,

‘x(tajﬂfl <
<

which corresponds to (1.9), where a := %min{Q)\p, A} and k := kexp(gx\p).

1.7 t-L5 norm and t-L, stability

Paralleling the previous section, we want to introduce a performance index which allows us to make
comparisons with the classical continuous-time framework. Consider the following definitions, used
also in [33,65, 88].

Definition 1.14. For a hybrid signal w, with domain dom(w) C R>g X Z>q, the t-L2 norm of w
s given by

|

tjt1 -
ol = | 3 / w(t, )Pt | (1.14)

jedom; (w) t

with tj 41 possibly being oo if (j + 1) & dom;(w), where dom;(w) = {j € Z>p : (t,j) € dom(w) for
some t > 0}. O

The definition in (1.14) essentially corresponds to the continuous-time Lo norm of the
continuous-time signal ¢ — wy(t) obtained by projecting on the ordinary time the hybrid signal
(t,7) — w(t,j). Note that when the hybrid signal w only flows, that is dom(w) = [0, +00) x {0},
then (1.14) corresponds to the standard continuous-time Lo norm. Note also that (1.14) is not
a norm because, for example, a solution w starting at a nonzero value and jumping to zero at
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(t,j +1) = (0,1) would satisfy ||w]||2; = O (this is not the case for the hybrid norms in [14,61])3.
Nevertheless we call it norm due to the intuition that it generalizes the continuous-time norm. In
the sequel, we will also use the following definition.

Definition 1.15. For a hybrid signal w, with domain dom(w) C R>g X Z>g, we say w € t-Lo
whenever ||wl|2; < 00. O

These definitions lead us to a performance index for dynamical systems related to the mapping
from a finite-energy input w and an output signal of interest. More precisely, we defined the ¢t-Lo
gain of system (1.3) as follows.

Definition 1.16. Consider a set A C R™ globally asymptotically stable for system (1.3) and z =
h(z,w) with h(-,-) continuous in both arguments. System (1.3) is finite t-Lo gain from w to z with
gain (upper bounded by) v > 0 if any solution to (1.3) starting from A satisfies

[2ll2t < yllwl|2 (1.15)
for all w € t-L. O

According to the definition above, we consider z as the performance output of system (1.3).

Note that all the definitions in this section consider only the projection of hybrid signals on the
ordinary time domain, neglecting their discrete component. Therefore due to the loss of information,
particular care must be taken in general cases where hybrid signals might exhibit consecutive jumps
or Zeno solutions, and in some cases this performance index cannot even be established. However,
in the sequel we will deal with hybrid systems where these definitions can be directly employed
without issues.

3Similarly, if a solution w is such that (t,7) and (¢,j + n) € dom(w) with n > 0 (namely, w jumps n times
consecutively at the ordinary instant time t), Definition 1.14 will consider only the values of w at (¢, ) and (¢,7 +n),
neglecting all the intermediate values (namely, w(t,j + 1), w(t,j + 2),...,w(t,j +n — 1)).
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In this chapter a class of hybrid systems of interest is presented. The motivation and the interests
in the results we are going to present, are detailed in Section 2.1. In Section 2.2 the general model
and its properties are introduced. Section 2.2.1 states the problem we want to solve and introduces
the idea behind the solution we propose. Finally, in Section 2.8 the main result based on a generic

Lyapunov function is presented and in Section 2.5.1 an LMI version of the solution is provided.

2.1 Introduction

Hybrid dynamical systems exhibit characteristics of both continuous-time and discrete-time
dynamical systems and their solutions can cover a wide range of behavior. In [40], powerful
tools based on Lyapunov conditions are provided to accomplish stability analysis and the fact
that Lyapunov functions do not guarantee existence or completeness of solutions is deeply
and clearly investigated and explained. Nevertheless, the problem of accounting for all the
solutions to a hybrid system becomes even more challenging whenever a performance bound
has to be established. In this context we mention a good work in [65], where Lyapunov-based
conditions for verifying Lo stability for a certain class of hybrid systems are presented. Also
in [88], a rigorous study on hybrid control schemes embedding a FORE controller is clearly provided.

In this chapter, we address the same class of hybrid systems in [65]|, which is a particular case
of (1.3), and we relax the Lyapunov conditions in [65]. We emphasize that most of the hybrid
closed-loop scheme in the literature arising from the interconnection of a linear plant with a hybrid
controller are included in the class of hybrid systems addressed in [65] and in this chapter. Finally,
we anticipate that most of the hybrid control schemes in this dissertation fit such a class of interest.

2.2 A homogeneous class of hybrid systems

In Chapter 1, general notions and a general hybrid system representation were given. Now, we
want to focus on a particular class of hybrid systems with the goal to provide LMI-based tools
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to establish stability and performance analysis. To this aim, the class under consideration has
features which allow us to use LMI tools and moreover as motivation, we also show that such
a class is wide and embeds several promising hybrid control systems frequently occurring in the
literature (see, for instance, [6,28,64,70,78]).

The analysis results that we present in this chapter are referred to a certain class of hybrid
systems that can be represented as

& = Ax+ Bw
{% = 1-ds(%) (z,71)€C

T = Guo
{ 4 _ 0 (x,7) €D (2.1a)
z = Cyx+ D,,w

y = Cx+ Dyw

where z € R™ is the state, 7 € [0,2p] with p > 0 is a dwell-time logic, w € R™ is an exogenous
signal, z € R"# is the performance output, y € R™ is the measured output and C and D are

C={(x,7):ze€ForTel0p}t={r7):zeFtU{(z,7):7€][0,p]}, (2.1b)
D={(z,7):xeTJand 7 € [p,2p]} ={(z,7):x € T}N{(x,7) : T € [p, 2p]}, (2.1c)

with F and J symmetric cones defined by the matrix M = M T as

F = {xER”:xTMCCSO}, (2.1d)

J = {xER”:xTM:czO}. (2.1e)

Since C U D is forward invariant and no finite escape times are possible due to the linear flow
map, it follows that all maximal solutions are complete and we will refer to asymptotic stability
rather than pre-asymptotic stability (see [39,40] for details)!. In the sequel we denote the flow
intervals as [t;,t;41] with ¢ € Z>¢, where t; and ¢;41 are the instants in which a jump occurs (see
Chapter 1 for more details on the hybrid time domain).

Note that (2.1) is less general than (1.3). First, the flow and jump map of (2.1) are linear in
the z-dimension and the exogenous signal w is injected only into the flow map. Moreover, the flow
and jump sets are conic in the x subspace and a dwell-time logic is embedded. The next section
has the purpose of listing some interesting properties related to system (2.1).

The dwell-time logic 7 presents the same autonomous dynamics described in Chapter 1, and the
state space (x,7) is divided into flow and jump sets, respectively C and D (note that no exogenous
signal w is injected here). In particular, the 7-component of C and D ensures that the dwell-time
condition (1.12) is satisfied, whereas the xz-component of C and D is projected into the flow set
F and the jump set J. Figure 2.1 shows that sets F and J are conic subsets of R” and F N J
(represented with a dash dot dotted line) is non empty.

Remark 2.1. It is important to stress the following facts:

e if M =0, then we have F = J = R", namely both F and J correspond to the entire state
space on the z-direction;

!Notice also that (2.1a) and CUD = R" x [0, 2p] satisfy the Basic Assumptions of [39,40] so that solutions exist
for all initial conditions of z and for all initial values in [0, 2p] of the dwell time 7.
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e if M < 0 (namely, M negative definite since M = MT), we have F = R", namely F
corresponds to the entire state space on the z-direction, whereas 7 contains only the origin;

e if M > 0 (namely, M positive definite since M = M), we have J = R", namely J
corresponds to the entire state space on the x-direction, whereas F contains only the origin.

*

Despite the particular cases listed in Remark 2.1, matrix M in (2.1d) and (2.1e) is, in general,

indefinite (see [50, p. 397]), giving a more standard conic shape similar to the one illustrated in

Figure 2.1.

Sets F and J make a regional separation of the xz-state space and the general desired property is

that the xz-component of all the trajectories low when « € F and jump when x € J. Nevertheless
due to the dwell time, the solutions? ¢ = (z,7) to (2.1) might behave differently. The next remark
states some properties related to the trajectories £ of (2.1).

Remark 2.2. It is important to stress that system (2.1) satisfies the following properties:

i.

ii.

iii.

tiv1 —t; > p, for all ¢ € Z>y. In particular, if t;41 —t; > p, ¢ € Z>1, then z(¢,7) € F for all
t € [ti+p, tiy1;

only in the interval [tg, t1], we have t; —ty > p—7(tp,0) and so it might happen that t; —tg < p
(note that this might also imply that ¢; = to if 7(¢9,0) > p). Nevertheless, z(¢,0) € F for all
t € [max{to,to + p — 7(t0,0)}, t1];

flow may occur in J due to the dwell-time logic:

e x € J and T < p, thus the system must flow. Among all the cases that may occur, we
mention:

1. Initial Condition. For instance, we might have &(to,0) = (x(t9,0),7(t0,0)) € J x
[0, p), so that x(t,0) € J for some t € [tg, max{to,to + p — 7(t0,0)}];

Hp)

Figure 2.1: Flow and jump sets, F and J.

2Unlike Chapter 1, we denote the solutions to (2.1) with the compact notation £ = (z,7) instead of £ = (z, 7, w).

Note that the two notations are equivalent, due to the dwell time and to the fact that w enters only in the flow map.
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2. Jump into J. If &(t;,1) = (x(ti, 1), 7(ti,49)) = (Ga(t;,i — 1),0) with i € Z>;, then
according to item i, flow occurs for at least an interval p, independently of where
x(t,1) lies.

e x € F and 7 < p, thus the system must flow and eventually reaches J before 7 > p.

iv. whenever x € F N J and 7 = p, the solution may either jump or flow;

v. the linearity of the mappings in (2.1a) and the conic shape of the sets F and J allow us to
conclude the homogeneity of the substate x of the hybrid system (2.1).

In particular items i and ii of Remark 2.2 come from the dwell-time property (1.12).

2.2.1 Relaxed jump region and its ec-inflated set

In this chapter, we want to provide sufficient conditions to establish performance ¢-Lo bounds
for system (2.1) relying on a Lyapunov function defined only in the z-state space. By proceedings
similarly to [65], we want to establish if there exists a non-empty set of possible dwell-time parameter
p that guarantees the stability property of system (2.1), as formally stated in the following problem.

Problem 2.1. Consider system (2.1) with A, B, G, M, C,, D, C and D, given. Provide
sufficient conditions based on a Lyapunov function x — V(z) to establish if there exists a dwell-
time parameter p > 0 such that:

o the set A:= {0} x [0,2p] C R™ x [0,2p] is globally asymptotically stable for (2.1) with w = 0;
e an estimation of the t-Lo gain of (2.1) from w to z is assessed.

@)

Due to the fact that the dwell time affects the z-component of the trajectories only through
the sets C and D, we want to describe the z-component of the trajectories of system (2.1) via a
Lyapunov function = — V(z) (instead of (z,7) — W(x, 7)), taking into account the dwell-time
effects upon the trajectories. In particular, we want to certify the existence of a dwell-time
parameter p > 0 to system (2.1), which guarantees the performance t-Lo bound. The motivation
of this approach (carried out also in [65]) is in the fact that we want to provide convex conditions
to be checked with SDP tools. Whenever the conditions are expressed only through a function
x — V(x), convex conditions can be obtained by selecting V (x) quadratic. This is not possible if
the trajectories £ = (x,7) of (2.1) are studied via a Lyapunov function (z,7) — W (z,7), because
the dwell time is in general injected through an exponential function?.

To establish stability property for system (2.1) via a function x +— V' (z), we need to consider
the effects induced by the dwell time upon the trajectories of (2.1). The next remark highlights a
few aspects in this sense.

Remark 2.3. Although the dwell time allows us to use performance indexes in a continuous-time
sense, Remark 2.2 shows that the dwell time can also be considered as a perturbation upon the
trajectories. In particular, according to item iii of Remark 2.2, the x-component of a generic solution

3As a matter of fact, the stability results presented in Chapter 4 rely on Lyapunov functions which cannot be
easily handled with SDP tools (see also [32]).



2.2. A homogeneous class of hybrid systems 17

¢ = (x,7) to (2.1) can flow on the set J enforced by the dwell time, removing the desired regional
separation of the z-state space induced by set F (where only flow should occur) and set J (where
only jump should occur). The larger is p, the longer the trajectories might flow on the set 7. For
this reason, to assess the simple stability property, a Lyapunov function z — V' (z) has to maintain
a good decrease property to all these solutions. By selecting p too large, flow might be enforced on
set J where only jumps should occur, compromising the stability or the performance ¢-Lo bound
of the system. On the other hand, by selecting p too small, not enough flow would be allowed and
the function (¢, 5) — V(=(t, j)) might not compensate increase at jumps by decreasing at flows. *

To cope with the effects of the dwell time upon the trajectories described in Remark 2.3, we
introduce relaxed conditions based on different conic sets defined as

]:':{xERn::L‘TM;UﬁO}, (2.2)

Fe= {x ER: 2z Mz —ex'az < 0} ; (2.3)

with M = M" € R"*" and € > 0. Note that (2.3) is the e-inflated version of (2.2), therefore we
have always that F C F..

Although system (2.1) uses sets F and J, we use the definitions in (2.2) and (2.3) to give more
flexibility to our approach, solving Problem 2.1. Indeed in [65], stability conditions based on the
inflated set of F were given (namely, ¥ = F and so F, = F, = {x € R" : o' Mz —ex 2 < 0}).

Here instead, we introduce a new set F and its e-inflation, F,, and we allow only certain relations
between F, F and F..

In the results we are going to present, we require F C F, so that, given the structural F C F,
the only possible inclusions between F, F and F. are:

o F C FC F. (see Figure 2.2(a));
o F C FC F. (see Figure 2.2(b)).

Notice that since F N7 # () and F C ]}e, we have always .7’:"e NJ #0.
Notice that we are not excluding trivial cases like (see also Remark 2.1):

o M= 0, which corresponds to have F=F. = R™;
e ¢ = 00, which corresponds to have F.= R"™;
e M = M, which corresponds to have F = F;

e M — eI = M, which corresponds to have F = F..

The rationale behind the introduction of these sets stands in establishing ¢-Lo bounds for
system (2.1) only in the region where the trajectories of the solutions flow. Indeed in [65], the idea
is to use the fact that jumps lead into the flow set F and that the dwell time was sufficiently small,
to guarantee all the trajectories within an e-inflation of set F. Here by introducing sets (2.2) and
(2.3) ,we generalize the same approach and we allow jumps in the set F which can be larger than F.

To better explain this, we introduce the following claim, whose proof is in Appendix 5.4.2.
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Figure 2.2: The only possible relative positions of F, F and F.: F is the conic region delimited by
dashed lines; F¢ is the conic region delimited by bold lines.

Claim 2.1. Consider system (2.1) with w = 0 and sets (2.2) and (2.3). If

GreF, Vred, (2.4)

then for any p € (0,p) with p:= ¢! (M), where ¢(s) := sexp(2|Als), we have
x(t;, 1) € F = z(t,i) € Fo, (2.5)
for all t € [ti7t’i+1]7 1€ Zzl. o

Claim 2.1 states that (2.4) implies the existence of a dwell-time parameter p > 0 such that
(2.5) holds. In particular, (2.5) guarantees that all the trajectories do not exit set F,. (that is,
the e-inflation of F ) after the first jump. Note that Claim 2.1 does not draw any conclusion on
the stability property of (2.1), but states only that all the trajectories lie on set F. after the first
jump. Notice that Claim 2.1 considers only the case with w = 0, nevertheless the same mechanism
can be applied to the case where w € t-Ls.

The main advantage of (2.5) is that bound of performance indexes coming from the classic
theory can be evaluated only where the flow occurs (namely in F), with the caveat to consider
also the initial part of the trajectory in the interval [tg,t1] (see item 1 of Remark 2.2).

Claim 2.1 and the property of the trajectories in (2.5) draw inspiration from [65]. Nevertheless
here we introduced sets (2.2) and (2.3), which combined with (2.4) provide more flexibility in the
analysis of system (2.1). Indeed, |65] requires Gz € F, for all € J and therefore for the simple
analysis the system has to satisfy this requirement. Here instead for a given system (and therefore
given jump map G and flow and jump sets F and J), the analysis is tackled by selecting the extra
set F satisfying (2.4). The next example show that this approach enlarges the hybrid systems we
can address with these relaxed conditions.
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Example 2.1. Consider system (2.1) with

93] oo e=[ 4] weli 4]

C,=C=[10] and D, = D, = 0, which is globally asymptotically stable* for some p > 0. Since
GT MG is not negative definite, we have Gz ¢ F for all z € J so that the results in [65] cannot be
applied. Indeed, by selecting M = [_01 _01 ], (2.4) holds and the results in the next section can be
used to accomplish the analysis of system (2.1). [

O o=

A few more words are needed to stress that system (2.1) is very generic. Most of the hybrid
closed-loop systems considered in the sequel can be represented by (2.1). Note also that the hybrid
closed loop arising from the interconnection of a FORE architecture with a linear plant can be
represented by (2.1), by defining A, G, C and M in (2.1) as in [88, egs. (5a) and (5b)|. Moreover,
the jump map of system (2.1) might represent the case where all the state z can jump, over-
coming the case considered in the sequel in which a hybrid controller is used to control a linear plant.

In the next section we will provide some sufficient conditions to carry out the analysis of (2.1)
with respect to t-L4 stability and asymptotic stability. The results will be stated first considering
a generic Lyapunov function 2 — V() and afterwards considering a quadratic Lyapunov function
to provide LMI-based tools. The reason for this approach is that in [88], an example of a stable
hybrid systems for which does not exist a quadratic Lyapunov function, has been given.

2.3 L, stability

A common performance index for dynamical systems consists in the estimate of the mapping from
a finite-energy input w and an output signals of interest z. More precisely, we want to estimate the
finite t-Lo gain of system (2.1).

Notice that we are assuming w € t-Lo according to Definition 1.14. Moreover, due to the
dwell-time logic in (2.1), (1.15) corresponds to the continuous-time quadratic performance of the
continuous-time signals & (), wy(t) and z;(t) obtained by projecting on the ordinary time the
hybrid signals £(¢,7), w(t, j) and z(¢, j), respectively (see Definition 1.15).

We are now ready for the following result.

Theorem 2.1. Consider system (2.1) and the definitions in (2.2) and (2.3). If there exist a
continuously differentiable function V' : R" — R>(, a matrix M and a positive scalar € such that
set F. in (2.3) satisfies F C F. and positive real scalars aj, ag, as, a4, as, ¥ and a nonnegative
scalar p satisfying

a|z* < V() < aglz)?, VzeR", (2.6a)
1 -

(VV(x), Az + Bw) + a3V (x) + ngz —Fw'w <0, Ve F,VweR™, x+#0, (2.6b)

V(Gz) < exp(azp)V(x), VzxeJ (2.6¢)

GreF, VYreJ (2.6d)

(VV(x), Az + Bw) < a4V (x) + as|z||w|, Vo e R",Vw e R"™, (2.6e)

“The proof is carried out by using W (z,7) = x| Pzp(7), with (1) = exp(A(2p—7)), A > 0 and [39, Theorem 20].
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then for any v satisfying
) asp
vz 5em(=5). 7> V2Dl (2.7)

there exists p > 0 such that for any p € (p, p):

1) the set A = {0} x [0, 2p] is globally asymptotically stable for the hybrid closed-loop system (2.1)
with w = 0.
In particular, there exists pf 1= @1 <m> where M comes from F in (2.2) and @,(s) :=
sexp(2|Als), such that p can be selected as p := p} to guarantee the stability property of A;

2) the finite t-L5 gain from w to z is less than or equal to v, namely (1.15) holds for any solution
to (2.1) from an initial condition £(0,0) = (x(0,0),7(0,0)) € {0} x [0,2p] and with w € t-L,.
In particular, p can be selected as p := min{p3, p3}, where p5 and pj are defined as

_ [ €
pim et 0P 0ul) =t () (250)
2|C,|%s
01(s) := ki1(s) + ka(s) + T(l + K1(s) + Ka2(9)) (2.8b)
s
als) = Ly a—l(l 1 (s) + mas)) + LQ\/ (1+ m1(3) + a(s)) (2.80)
4a1a4 2
exp [ — — (s) (2.8d)
2 az
a4 12
Ko(s) :=exp | — (s) (2.8e)
K(s) == = 76@(&4‘_9) -1 (2.8£)
2 a1ay
Ly :=2|(M —el)A|,  Ly:=2|(M — €l)B] (2.8g)
G4 = a4 + ag, a5 := as exp(azp) (2.8h)
where M comes from F in (2.2).
Therefore by selecting 5 := min{pj, p5, p3}, both items are guaranteed. O

Proof of Theorem 2.1. First, notice that F C F,, that £(0,0) = (x(0,0),7(0,0)) € {0} x [0,2p]
implies 2(0,0) € F C F, and that V(z(0,0)) = 0. Moreover due to (2.6d), we have z(t;,) € F for
all 7 € Z21~

Define W(x, 1) := o(7)V (), with ¢(7) := exp(az min{7, p}). Note that for all 7 € [0,2p], we
can write®

1 < (1) < exp(asp), (2.9a)
P(1) = azp(1)7T < azp(7), (2.9D)

where in the last inequality we used the fact that 7 <1 (see (1.11)).
From (2.6a) and (2.9a), we have

al\x|2 <V(z) <W(z,7) < W(z,2p) < exp(agg)a2|x\2, (2.10)

®Note that due to the definition of ¢ we should use the generalized gradient as in [63]. Nevertheless to keep the
proof simple and without loss of generality we do not use such an expedient, but we consider only the upper bound
of ¢(7) as in (2.9b).
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for all (z,7) € R™ x [0, 2p].
Consider W along flow. From (2.6b) and (2.9b), we have

W(z,7) = ¢(r)V(z) + ¢(1)V ()

< asp(r)V (z) + o(r) (—asV (z) - %T + 70 w)

1
< —=z"z+7Fexp(azp)w ' w, (2.11)
5 P

for all (x,7) € F. x [0,2p],  # 0. Which implies W (z,7) < 0, for all (z,7) € F. x [0,2p], = # 0
and w = 0.
Consider now W across jumps. From (2.6¢) and (2.9a), we have

AW (z,7) = W(Gzx,0) — W(x, 1)
=V(Gz) = p(1)V (z)
< (exp(azp) — exp(asp))V (z) = 0, (2.12)

for all (z,7) € J x [p,2p], x # 0, where in the last line we used the fact that p > p and that jumps
occur only if 7 € [p, 2p], namely only when ¢(7) = p.

Let us now prove item 1 and note that Claim 2.1 holds (in particular (2.4) is equivalent to
(2.6d)). Therefore (2.5) holds and due to (2.11), we have that

W (a(t, i), 7(t,7)) <0, (2.13)

forallt € [t;,tiv1], 7 € Z>1 and z(t,i) # 0, whenever p € (0, p}) with p} defined in the statement and
coming directly from Claim 2.1. Moreover for all ¢ € [to,t1], we have two subcases: 1. t € [to, to + p]
and ii. t € (to + p,tl].

Consider Case i. Since |#| < |A||z| (see also proof of Claim 2.1 in Appendix 5.4.2) and using
(2.6a), we have

W (2(t,0), 7(t,0)) < Z—jexp<2\A|p>W<x<to,om@o,o>>, (2.14)

for all ¢ € [to, to + p].

Consider Case ii. By Remark 2.2 item ii, we have x(t,0) € F C F. for all t € (to + p,t1],
therefore also (2.13) holds for all ¢ € (to + p, t1].

Therefore by combining (2.12), (2.13) and (2.14), for any initial condition function
(t,i) — Wi(x(t,i),7(t,i)) might grows only in the interval t € [to,to + p], and it is strictly
decreasing along flow and not increasing at jumps. Recalling that after each jump the system flows
yields the result.

To prove item 2, we use the following lemma, which is a generalization of |65, Lemma 1] and
whose proof is reported next.

Lemma 2.1. Suppose that the conditions in Theorem 2.1 hold. Then for any v in (2.7), there
exists p > 0 such that for all p € (p, p), we have that if x(t;,i) € F and w € t-Lo then for all
t e [ti, ti+1], 1€ Zzo,

/tv |2(s,9)|?ds < W (x(t;, 1), T(t;, 1)) — W (x(t, i), 7(t,1)) + /t lw(s,q)|*ds, (2.15)
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with W(z, ) := ¢(7)V (x) and ¢(7) := exp(az min{7, p}). O

Consider any solution & to (2.1) starting from £(0,0) € {0} x [0,2p]. For each (t,j) € dom(§),
denote tp = 0 and tj;1 = t. Then using (2.12) and (2.15), we have

J i1 J
12113 = Z/ |2(s,0)[Pds <Y (W ((ti i), 7(ti, 1)) = W (@ (tipr,0), 7(tig1, 1) + ¥ [wlti, tiga] 13)
i=0 i i=0

J
< W (x(to,0), 7(to,0)) = W (& (tjt1, 5), 7(tjr1,5)) + 77 Z lwlti, tiva]ll3
=0

= —W(a(t,5), 7(t,5)) +7*llwlto, t]|I3
< fwll3,

for all (¢,7) € dom(&) with z(¢p,0) = 0. This completes the proof. [

Proof of Lemma 2.1. The proof heavily relies on the calculations in the proof of [65, Lemma 1.
Therefore we emphasize here only the different steps.
First, by definition of z in (2.1), we have

|2[* < (IC:||z] + | Daw||w])*
< 2|C 2?4 2| Do w]?. (2.16)

Notice also that from (2.6e), we can write

(VV(z), Az + Bw) < a4V (x) + as|z||w|
= (a4 + a3)V(z) + as|z||w| — asV (x)
= (ay — a3)V(x) + as|z||w|, VzeR" (2.17)

Therefore from (2.9a) and (2.17), we get

W (z,7) = ¢(T)V(z) + o(1)V (2)
< azp(T)V(z) + o(7) (@1 — a3)V (z) + as|z|[w])
< agW(z, 1) + exp(azp)as|z||w]

= ayW(z, 1) + as|x||w|. (2.18)

Now, following the same steps as in the proof of [65, Lemma 1|, we consider two cases: t €
[ti, t; + p] and t € (t; + p, ti1], with p € (p, p), p := min{p3, p3} and p5 and pj defined in (2.8a).

Case 1: suppose that t € [t;, t;+p]. From (2.10), (2.18) and using exactly the same calculations
as in |65, Lemma 1] we get,

W (z(t,i),7(t,1)) < (14 m1(t — )W ((ts,4), T(t:,4)) + rwa(t — t;)||wlti, 113, (2.19)
which is similar to the one in [65, eq. (29)]. By using (2.10) and (2.16), we have

2|C, |2

o (1 + w1 (t =))W (2(t5,4), T(ti, 1) + K2(t — to)||wti, ]]|3) + 2| Daw|*|w(t, 7).

(2.20)
Note that k1(s) and ka(s) are non-decreasing functions, hence we can integrate (2.20) in the fol-

|2(t,4)|* <
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lowing way
t 204 _ 4.
[ ts.ipas < 2EEEZ (e - W ot 705,0) + e~ 0wl 1)

t
+2Dof? [ fuls, s
t;

= PO (14— )W a0 ,75,0) + it — 1) ol )
421D Pl 11 (221

Since we are considering the case where ¢t —¢; < p and both expressions in (2.19) and (2.21) are
non-decreasing, we can write

W (w(t,), 7(t,1)) < (1+ k()W (2(ti, ), 7(t:,7)) + m2(p)|[wlts, #)]3, (2.222)
9 2
L2 i)W i) (00 + (A (o) + 21D ) ol 1,

t
12
z(s,1)|“ds <
et < 2 =
(2.22b)

which are similar to [65, egs. (31)].

Now, we distinguish two subcases: A. |[w[t;,t]||3 > W(x(t;,i),7(t;,i)) and B. ||w[t;,t]]|3 <
W (z(ti,4),7(ti,1)).

Subcase A: by proceeding with the same calculations as in the proof of [65, Lemma 1|, we may
add and subtract 2‘0 ‘ SELL (1 + Ky (p))W (2(ti, ), T(ti,4)) to the right-hand side of (2.22a), rearrange
and combine with (2 22b) to get

t
; |2(s,4)|*ds < W (x(ts, 1), T(t;, 1)) — W (x(t, ), 7(t,4))

+ 2‘Cz|2p(1 + Zi(p) + HQ(/))) + 2‘Dzw|2> ||w[t7;,t]H§
(x(t,0),7(t9)) + (91(p) + 2| Dsw|*) [t £]]13

< (x(t,1), 7(t,1)) + (01(p3) + 2| Dz [*) ts, 1][13

= W (a(ti, ), 7(ti,0)) — W ((t, 1), 7(8,4)) +7*||wlts, t][13, (2.23)

where we used the fact that p < p5 and in the last line we applied the definition of p} in (2.8a).

Subcase B: it follows exactly the same calculations as in the proof of [65, egs. (35)-(39)]. In
particular, the fact that x(t;,7) € F\ {0} implies that x(t,4) € F, for all t € [t;, t; + p] with p < p%.
Therefore, by integrating (2.11), we get

/t. |2(s,i[?ds < W (2(t;,4), 7(t;,3)) — W(x(t,4),7(t, 1)) +5° exp(asp) /t lw(s,i)|*ds, (2.24)

for all t € [t;, t; + p]. This completes Case 1.

Case 2: suppose that ¢ € [t; + p, t;i+1]. Indeed, in the exact same way as in [65, eq. (40)], if
tiv1 —t; > p, then z(t,7) € F C F, for all t € [t; + p, t;11] by definition of the flow set. Therefore,
by integrating (2.11) as above, we get (2.24) for all t € [t; + p, ti+1]. This completes the proof. W

Theorem 2.1 generalizes the results in [65] by introducing the following novelties:
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e the gain D, is allowed, by means of condition (2.7). In particular, condition (2.7) guarantees
that p3 exists, whenever D, # 0. In [65,78| such a gain has to be selected equal to zero;

e increase at jumps of the Lyapunov function z — V(z) is allowed. By selecting a strictly
positive p in (2.6c), we allow growth at jumps balanced by a suitable decrease during flow
(see [40, Proposition 3.29|);

e [65, Assumption 1] is replaced by the introduction of set F and its e-inflation, F, in (2.2)
and (2.3) respectively, which allow more flexibility (see Example 2.1).

Remark 2.4. Theorem 2.1 does not guarantee that the set of suitable p (namely, (p,7)) is non
empty. In particular, whenever p is strictly positive (namely, a growth at jumps is admitted) there
is no guarantee a priori that p < p. Therefore, whenever p > p, the set (p,p) is empty. On the
other hand, since pj, p5 and ;g are strictly positive, then_ﬁ > 0 and whenever p = 0, the set of
suitable p is certainly non empty. Moreover, we emphasize that ¢e(-), ¢1(-) and ¢(-) are class Koo
functions and so also their inverses, which in particular, depend either on + or on e. Therefore,
since p is the minimum of these last class K functions, it might be possible to enlarge ¢ and/or
7 in order to guarantee p < p. Notice that only enforcing larger values of € the feasibility of

the conditions in Theorem 2.1 might be compromised, whereas v can be selected slightly larger a
posteriori (accordingly to (2.7) and (2.8a)). *

Conditions in (2.7) are needed in item 2 of Theorem 2.1 to guarantee that pj exists strictly
positive. Although it may look complicated at first sight, it is enough to compare a posteriori %
with the square root in the second hand term of the latter in (2.7). If 74 is larger, then we can
select v = 7, otherwise we select v larger but arbitrarily close to the value of the square root in
the second condition in (2.7) according also to the value of p to guarantee (if possible) that the set
(p,p) is non empty (see Remark 2.4).

Remark 2.5. Let us now list some important properties of Theorem 2.1:

1. if F = F, p=0and D., = 0, item 2 of Theorem 2.1 recovers the statement in [65, Theorem 1].
In this sense, [65, Theorem 1| can be considered as a corollary of item 2 of Theorem 2.1;

2. if D,y = 0 then from (2.7) we have trivially v = 7;

3. consider F, with € = co (namely, F, = R™), then (2.6b) holds globally and therefore even though
D, # 0, condition (2.7) is not needed and v = 4. In particular, the fact that (2.6b) holds
globally, makes conditions (2.6d) and (2.6e) useless for both items of Theorem 2.1. Moreover,
the set (p,p) can always be selected non empty and the proof of Lemma 2.1 changes so that the
analysis in Case 1 can be carried out as in Case 2;

4. item 1 of Theorem 2.1 establishes global asymptotic stability of set {0} x [0,2p]. Indeed to
achieve global exponential stability, we should require a further decrease term in (2.6b). In
particular, the term a3V (x) in (2.6b) is needed to compensate the eventual growth at jumps
due to p. Nevertheless whenever in (2.6b), due to the strict inequality, we can require a term
(a3+C)V (x) with ¢ > 0 (see [53, Lemma 4.3]), then global exponential stability of set {0} x [0, 2p]
can be established even when p # 0. On the other hand, whenever p = 0, item 1 of Theorem 2.1
establishes global exponential stability of set {0} x [0, 2p].
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2.3.1 LMI-based statement

By selecting a quadratic Lyapunov function, Theorem 2.1 can be reformulated in the following
LMI-based version.

Proposition 2.1. Consider system (2.1). If there exist matrices P = P' > 0, M = M, non-
negative scalars p, 7p, 7¢, Tr € R>0 and positive scalars €, 7, az such that

ATP+PA+a3P— (M —€eI) PB CF

B'P -~5I D/, | <0, (2.25a)
C. D.., —7I

G PG — exp(azp)P + TrM <0, (2.25b)

M — 1M < €, (2.25¢)

G"MG + ¢ M <0. (2.25d)

Then for any 7 satisfying (2.7), there exists 5 > 0 such that for any p € (p, p):
1) the set A = {0} x [0,2p] is globally exponentially stable for the hybrid system (2.1) with w = 0;
2) the t-L5 gain from w to z is less than or equal to ~, for all w € t-Ls.

0

Proof of Proposition 2.1. The proof is carried out by showing that all the conditions in The-
orem 2.1 are satisfied. First consider the Lyapunov function V(z) = 2 ' Pz, which is continuously
differentiable and note that (2.6a) holds with a1 = Apin(P), a2 = Apmaz(P) and (2.6e) follows from
VV(z) = 2Pz, selecting large enough a4 and as.

Now note that from the S-procedure, (2.25¢) implies = (M — el)z < 0 for all z such that
2" Mz <0, namely z € F = x € F. or equivalently F C F..

Consider now (2.25a). Due to the strict inequality, there always exists a small enough ¢ > 0
such that

CZ Dzw
[0 2] o

ATP 4+ PA+asP — (M —el)+eI PB [ G Da Ao
B'P 0 0 —AI

(2.26)

By pre- and post-multiplying (2.26) by [+TwT | and its transpose, respectively, and using the defi-
nition of z in (2.1), we have

Tl 1
€ z = 0 z ~ €
Az + B P+ —|zf? 7 —a (M —el — =1 2.2
(VV(x), Az + Bw) +as +2|x\+[w} [O —f‘yI][w] x ( € 2)ac<0,( 7)
which, by applying S-procedure, implies (2.6b).
Consider (2.25b). By applying the S-procedure it is trivial to see that is equivalent to (2.6¢).
Finally, (2.25d) guarantees (2.6d). In particular by applying S-procedure, (2.25d) is equivalent

to
' G MGy =2t M2zt <0, VzeJ,

which is equivalent to (2.6d). This completes the proof. |
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Proposition 2.1 particularizes Theorem 2.1 for the case where the Lyapunov function z — V' (z)
is quadratic. Notice that Remark 2.4 still holds, and so the non-emptiness of set (p,p) needs to
be verified whenever p # 0. Nevertheless, recall also that p is the minimum of class K, functions
which depend on € and v, so that larger values of p might be enforced.

For the analysis of a given system (2.1) (see Problem 2.1), conditions (2.25) are linear in all the
variables except for ag and p. In particular, the term asP in (2.25a) and the exponential term in
(2.25b) require a guess a pri_ori upon a3 and p. Nevertheless the pursuit of the minimum of 7 or
of the maximum of € can always be carried out. Moreover, a few more tips are given in the next
remark.

Remark 2.6. Paralleling the fact that [65, Theorem 1] is a corollary of item 2 of Theorem 2.1, [65,
Proposition 1] is a corollary of Proposition 2.1. In particular, by selecting M = 77M and p = 0

(namely, no growth at jumps occurs, which implies that set (p,p) = (0,7) is always non-empty (see
Remark 2.4)), then:

e due to the quadratic nature of V(z) and the strict inequality in (2.25a), there exists a strictly
positive scalar which implies (2.6b) (see, for instance, the terms in € in (2.27));

e in (2.25b), p = 0 implies exp(azp) = 1 for any as;

e (2.25¢) is satisfied for any € > 0;
e (2.25d) replaces [65, Assumption 1].

Therefore whenever M < 7pM and p =0, (2.25) can be linearly solved with a3 = ¢ = 0 (namely,
neglecting the terms agP and el), because those required terms are recovered from the strict
inequality in (2.25a) and the quadratic nature of V'(z), which allow the introduction of a strictly
positive term, as shown in (2.27) with € > 0. *

Remark 2.7. 1. If M = 0, then (2.25a) (and so (2.6b)) holds globally. Therefore according to
item 3 in Remark 2.5, condition (2.7) is not needed, as well as (2.25c) and (2.25d);

2. Notice also that Proposition 2.1 establishes global exponential stability for any choice of p > 0.
Unlike Theorem 2.1, the strict inequality in (2.25a) and the quadratic Lyapunov function V(x)
implies a further strictly positive term which allows us to conclude a good decay property,
establishing global exponential stability (see item 4 in Remark 2.5 and [53, Lemma 4.3|, for
further details).
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Hybrid controller architectures
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In this chapter two hybrid control schemes are presented. In Section 3.1 some perspectives with
respect to the scientific literature are given. In Section 3.2, the hybrid controller architecture is
presented. In Section 3.3, we state the problem we want to solve. In Sections 3.5.1 and 3.3.2, two
different solutions are presented, which have been proposed in [28]. Finally in Section 3.5, some

numerical examples are presented combined with an optimal synthesis from [72].

3.1 Introduction

In the last decade one of the main strands of control research was focused on the design of hybrid
controllers for linear continuous-time plants. In particular, we focus on hybrid controllers where
the state can be reset and in the sequel, we will not consider hybrid control schemes obtained by
means of switching systems techniques. In this context, [6,7] show that a controller whose state
can be reset might simultaneously guarantee several specifications which are not possible to satisfy
with a classical linear controller.

One of the main hybrid controller architectures in the literature is the FORE controller.
Nevertheless, no methodical design techniques have been proposed, even though we mention the
works in [63, 65, 88] which provided useful analysis tools and some synthesis strategies. Beside
the FORE controller, |43, 70| present different hybrid controller architectures. In particular, [43]
proposes a hybrid controller architecture with time-based reset rules to establish stability and
reduce the overshoot of the plant output. Nevertheless, the technique is not very simple and does
not provide a convex tuning of the parameters. On the other hand, [70] proposed two new hybrid
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controller architectures for which useful optimal design tools are available (see [71,72]), making
them suitable for control applications.

In this chapter, we extend the hybrid controller architectures in [70] in order to deal with hybrid
control systems, which fit the representation in (2.1). In this way we will be able to use the results
presented in Chapter 2 to lead stability analysis and to investigate new optimal synthesis strategies.

3.2 Overview

In this chapter, the control problem of a plant via a hybrid controller is tackled. In particular, we
focus on continuous-time linear plant P as

Ty = /ilpscp—F?pu

1
y = Cpzp+ Dyu (3.1)

where x, € R" is the state of the system, u € R"™ is the control input, y € R" is the output.
Note that P evolves only according to a differential equation and no resets occur on .

To ease out the introduction of the control schemes, we make the following assumption on plant
(3.1).

Assumption 3.1. The state x), and the output y of P are available through measurements at any

timel. o

Although Assumption 3.1 is restrictive, it allows to simplify the introduction of our hybrid
controller architecture and to better emphasize some properties without loss of generality. Note
that the same assumption has been made in 70,71, 78|.

Figure 3.1 shows the hybrid closed-loop system we consider, arisen from the interconnection
of plant (3.1) and a hybrid controller H. (to be defined). In particular, we distinguish between
continuous feedback (in particular we will consider linear feedback), represented with a plain line

Figure 3.1: Hybrid state feedback.

and hybrid feedback (or equivalently hybrid loop), represented with a dashed line. According to the
definitions in Chapter 1, the flow map of the hybrid closed-loop system arises from the continuous
feedback, whereas the jump map comes from the hybrid feedback. Due to Assumption 3.1, from
now on we will denote by hybrid state feedback the interconnection in Figure 3.1, where the state
of the plant ), is used in the jump map. Note also that, in this case, the continuous feedback is a
classic output feedback.

!Note that we are not imposing that y = x, (namely, Cj, = I and D, = 0 in (3.1)). We are rather requiring that
both signals z, and y are available through measurements. The same approach has been considered in [70-72].
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Let us now introduce the architecture of the hybrid controller H.. Figure 3.2 shows a scheme
containing:

e a dynamic controller and a dwell-time logic, whose respective states 2. € R and 7 € [0, 2p]
can be reset;

e a supervisor, which decides whether to jump or flow and enforces jumps induced by the hybrid

loop.
i, = A.x.+ By
Y : - u
7T =1—dz <;) -
u = C.x.+ D.y
A
Tey T cxt Tt
Supervisor:
e flow or jump
e jump map
A
He

Lp
Figure 3.2: Scheme of the hybrid controller with resets from the plant state.

Note that in this case, the control u depends on a continuous feedback, which is linear and
depends on the output of the plant y. On the other hand, the supervisor receives continuously
the information of the states x),, z. and 7 (see plain lines in Figure 3.2) and enforces the
hybrid loop by resetting x. and 7 (see the dashed line in Figure 3.2). Therefore, for the schemes
in the sequel we will say that the hybrid loop is composed by: flow and jump sets and the jump map.

The use of the block supervisor is not new in the control domain. In the event-triggered
and switching systems domain, a block supervisor is a logic-based component that orchestrates
the switching between a family of controllers for a given plant [45]. Here we adopt the same
idea to denote a component which controls the resets of a state of a single continuous-time controller.

As a matter of fact there are several ways to design the supervisor. In our case, we choose to
deal with linear jump maps and conic flow and jump sets which yield the following hybrid controller

architecture B B
e = Acve + Bey
7‘:1—dz<1> (p, xc, T) €C
p

ot = K. 1 (3.2a)
{2y (@ 7, 7) €D

U = C_’cxc + Dcy
with x. € R" is the state, 7 € [0, 2p] is the dwell-time logic and C and D are

C={(zp,zc,7) : (xp,2) € For7e|0,p]}
= {(zp, xe,7) : (xp, ) € FYU{(zp, 2, 7) : 7 € [0,p]}, (3.2b)
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D = {(zp,2c,T) : (xp,2c) € T and 7 € [p,2p]}
={(@p, e, 7) : (X, 2c) € T} N {(wp, 3¢, 7) = 7 € [p, 2p]}, (3.2¢)

with F and J symmetric cones defined by the matrix M = M " as
2 1" x
f:{(xp,xc): [xp] M[xp} §0}, (3.2d)

j:{(xp,xc):[Z]TM[Z}ZO}. (3.2)

Notice that the dynamics of the state z. is linear, as well as the control law w. In
this sense, we can intend #. as a linear continuous-time controller (in linear feedback with the
plant) augmented with a dwell-time logic and a supervisor, similarly to the approach used in [70,71].

Let us now introduce the following assumption that will be used in the sequel.

Assumption 3.2. The interconnection (3.1), (3.2) is well-posed (in a classic sense), namely the
matrix (I — D,D,) is non singular. o

Under Assumption 3.2, the interconnection (3.1) and (3.2) yields the hybrid closed-loop system

[ip] = [Ap Bp}x::A:c
e Be A (z.7)€C
Fo= 1-dz (g)
I 0 (3.3)
at = x:=Gx
K, 0 (x,7) €D
T =0
Yy = [ Cp CC ]x == Cflf
with x := [x; x)]T € Rm=mwtne and
A, B, A+ ByDe(I — D,D)"'Cy  ByCe + B,De(I — DyDe) " D,Ce
Bc Ac = BC I— DPDC)*lCP AC + BC(I - DpDc)ileCc (3 4)
Cp Ce (I — DpDc)ilép (I — DpDc)ilpr’c

The hybrid system (3.3) represents the hybrid closed-loop system in Figure 3.1 and retrieves
the same structure as (2.1) in the previous chapter (with B =0, C, =0, D, = 0 and D,, = 0).

3.3 Resets from the plant state

The purpose of this section is to establish sufficient conditions under which controller H,. stabilizes
the plant P. We do not impose the stability of the linear feedback, but similarly to |70, 71|, we
want to achieve stability through jumps, without imposing any structure to the flow map of system
(3.3). In other words, for a given linear feedback not necessarily stabilizing in a classic sense
(namely, matrix A is non Hurwitz), we want to design a hybrid loop (namely, flow and jump sets
and a jump map) in order to stabilize the plant. The goal is to achieve global exponential stability
of the origin through suitable resets.
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Now we are ready to state the problem we want to solve in a formal way.

Problem 3.1. Given a plant (3.1) under Assumption 3.1 and matrices A., B, C. and D, of
controller (3.2) such that Assumption 3.2 is satisfied. Design matric M = MT € R™ ", gain
K, € R ™ p > 0 such that the set A := {0} x [0,2p] C R™ x [0,2p] is globally exponentially
stable for system (3.3)-(3.4). o

3.3.1 First controller architecture

Theorem 3.1. Consider a plant-controller pair (3.1), (3.2) under Assumptions 3.1 and 3.2 and
assume that P = P := [1];? };ﬁﬂ > 0 satisfies

= = He (By(4y + ByK,) + 5 5y) <0, (3.5)

with

P,:=P,— PP, 'P). >0, K,:=-P.'P), (3.6)

for some o > 0. Then there exists p > 0 such that for all p € (0,7), and & € (0, @], the hybrid
controller (3.2) with

M := He <PA + %P) : (3.7)

solves Problem 3.1, namely the set A := {0} x [0,2p] is globally exponentially stable for system
(3.3)-(3.4) with M in (3.7). O

Proof of Theorem 3.1 The proof is carried out by using item 1 of Proposition 2.1. In particular,
we show that for a particular choice of M, conditions (2.25) holds. Note that since we are considering
only the stability, then according to (2.1) w = 0 and z is neglected, therefore in (2.25a) only the
entry (1,1) needs to be considered.

Consider V(z) = 2" Px with P = P" > 0 satisfying conditions (3.5) and (3.6) and let us select
M = M + eI, namely F = F., which implies (2.25¢) with 7 = 1.

Consider function z + V(z) across jumps. By using (3.6), we have V(z7) = V(Gx) =
' GTPGx = x;Pp:cp. Thus we get

AV(z) =V(zT) - V(x) = :C;—prp — :C;—prp — Zx;ercxc —x] Pz,
= :C;—prp — :c;— (P, + PpcPc_lP;;)xp — Zx;ercxc — x;rchc

-
_ [ T, } [ —PpcPc—leTc —Pye } [ T, ]
Te —PZL —P. Te |

which, by applying a Schur complement, leads us to conclude
AV(z) <0, VzeR", (3.8)

which implies (2.25b), with p = 0.
Consider now function z +— V(z) during flow. Note that we have (VV (z), Az) =z
thus by using (3.7), we get F := {z : ' Mx < 0} = {2 : ' (He(PA) + aP)z < 0} = {z :

(VV(x), Ax) + &V (z) < 0}. Therefore we can conclude

(VV(z), Az) < —aV(z), Vze F=F, (3.9)
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which implies (2.25a) (note that only the entry (1,1) of (2.25a) matters for the exponential stability)
for any as € (0, &).

Recall that = = (z,, z.) and 27 = (z,, K,x,) and notice that |Gz|* = l‘;([ + K;Kp):cp <
|7 + KpTKpHa:pP. From (3.7) and using (3.5) and (3.6), we have

t'GTMGz =2 (GTMG +¢G'G)x

_ 2T -
| @ E+e(I+K)K,) 0 Zp
| ze | | 0 0 Te
_ i _
< | (Anaz(Z) + €|l + KpTKpDI 0 T
Tl me | | 0 0 Te
_ I _
T (Amaz(Z) + €1 + K;KPDI 0 Tp | _
< 0, (3.10)
L Tc | L 0 0 Te

Vo € J, x, # 0, where the strict inequality in the last line holds for all € € (0,€*) with € :=

—% Note that (3.10) implies (2.25d) with 7 = 0.

Therefore all conditions (2.25) are satisfied and this concludes the proof. [

Theorem 3.1 is an extension of the results in [70]. In particular, [70] presents a hybrid
controller without dwell-time logic for a continuous-time plant P and under the same conditions
of Theorem 3.1, establishes global asymptotic stability of the origin. Here instead, the hybrid
controller in [70] is augmented with a dwell-time logic arising controller (3.2) with sets F and J
defined by M in (3.7) and establishes, with no extra conditions, global exponential stability of the
origin rather than global asymptotic stability.

The introduction of a dwell time into the controller in [70] returns a hybrid closed loop which
can be represented as (2.1), so that the results in Chapter 2 can be used to establish global
exponential stability of the origin.

Both controllers in [70] and (3.2) with M defined in (3.7), share the same x. dynamics and flow
and jump sets F and J. In particular, the rationale behind the results in [70] and Theorem 3.1
(see also its proof) is to use a quadratic Lyapunov function V(zp,z.) which admits a sufficiently
smooth minimizer ¢(z,) = argmin,_V(z,, z.) satisfying for all x, € R"»

V(xp, ¢(xp)) < V(xp,xc), Va.e R"™. (3.11)

Moreover, (3.9) shows that (3.7) allows the flow whenever such a Lyapunov function satisfies
a desired decay rate imposed via &. Otherwise, a jump occurs in the interior of the flow set,
where a good decay condition is satisfied again and with no increase of function (zp, z.) — V(zp, z.).

From a geometric point of view, the tuning of & corresponds to enlarge or shrink the conic set
F where flow occurs. In particular, when & tends to «, set F shrinks toward the region where
jumps are mapped, because flow is enforced only where the fastest decay rate is possible, which
is only a narrow neighborhood of the points where the system jumps according to (3.5). On the
other hand, when & tends to zero, we are not imposing a decay rate anymore and the flow region
is the largest possible, therefore flow is allowed as long as the energy of the system decreases. Due
to this dependence of M on &, the smaller value for ¢ is selected and the smaller the maximum



3.3. Resets from the plant state 33

eigenvalue of M will be, which allows a larger value for p.

We stress that stability is achieved across jumps. Indeed no particular conditions are required
on the flow map A which, in general, can also be non Hurwitz. Indeed for a given flow map A, it
is enough to define a matrix P satisfying (3.5) and (3.6), so that the hybrid loop (composed by a
jump map and sets F and J) establishes global exponential stability of the origin.

Theorem 3.1 draws inspiration from the fact that, in some cases, the dwell time can be selected
small enough in order that only Zeno solutions are removed (see also Claim 2.1) with respect to
the controller architecture presented in [70], where no dwell time was used. This last property is
better established in the next proposition, whose proof is reported next.

Proposition 3.1. Consider the hybrid state feedback of [70, Proposition 1] and the one of Theo-
rem 3.1. There exists p* > 0 such that for all p € (0, p*] any solution of the hybrid state feedback
of |70, Proposition 1|, starting from (z,(0,0), z.(0,0)) = (zpo, Zc0), With z,9 # 0, is also a solution
of the hybrid state feedback (3.3), (3.4) of Theorem 3.1 starting from (x,(0,0),z.(0,0),7(0,0)) =
(wp(),ZCC(),T()) with T0 > pP- ]

Proof of Proposition 3.1 It is sufficient to show that there exists p* > 0 such that all the
solutions to the state-feedback hybrid closed loop without dwell-time logic (that is corresponding
to [70, Proposition 1]) automatically satisfy a dwell time of at least p* as long as z,(0,0) # 0, so
that the dwell-time condition does not prevent any jump of the original state-feedback scheme.
To prove this fact, we will use the fact that x,(0,0) # 0 implies x,(t,j) # 0 for all (¢,j) €
dom(z), indeed during flows x, asymptotically converges to zero and during jumps it remains
unchanged. Once we know that x), is different from zero, then it is easy to see that whenever a
jump occurs, so that (z,,z.) € J, we have that (x;“
(mainly due to the fact that & < « and by the strict inequality in (3.5)). Therefore from continuity
the system necessarily flows for some time ¢f(x,), which depends on the plant state x, before the

jump. Since the dynamics is homogeneous and the flow and jump sets are symmetric cones, then

,xd) = (zp, Kpz,) belongs to the interior of F

each response can be written as a scaled version of the response starting from the initial condition
with unit norm é—ﬁ‘, xp # 0. Due to this fact, we can compute
p

mints(z,) = min ty(r,) = tem,

zp7#0 Tpi|zp|=1
where we have t,, > 0 because the minimum is carried out over a compact set and ty(x,) > 0 for
all ,, # 0. Finally, it is sufficient to pick p* <y, to obtain the result. |

Some solutions in |70, Proposition 1] starting from the origin are removed from the dwell-time
based scheme presented in Theorem 3.1. Indeed, Proposition 3.1 establishes the equivalence of
solutions which do not originate at the origin, whenever a small enough dwell-time parameter
p > 0 is selected.

3.3.2 Second controller architecture

Let us focus on the second hybrid controller. Although such a hybrid controller guarantees global
exponential stability in all the z-direction, its peculiarity is to return an exponential bound for the
xp-direction, which makes it interesting for the results that we are going to present.
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Consider the following statement whose proof is reported next.

Theorem 3.2. Consider a plant-controller pair (3.1), (3.2) under Assumptions 3.1 and 3.2 and
assume that P, = PPT > 0, K, € R"*™ satisfy (3.5) for some a > 0. Then for each & € (0, ],
there exists p > 0 such that

=

_ a
x := He <Pp(Ap + B,Kp) + §Pp + K;—Kp> <0, (3.12)

and for each p satisfying (3.12), there exists p > 0 such that for all p € (0,5) the hybrid controller

(3.2) with _ -
M::He<[PPAP+5PP PPBPD, (3.13)

0 Ly

solves Problem 3.1, namely the set A := {0} x [0,2p] is globally exponentially stable for system
(3.3)-(3.4) with M in (3.13). Moreover, any solution & = (x, z., ) to (3.3), (3.4) with M in (3.13),
starting from £(0,0) = (x,(0,0),2.(0,0),7(0,0)) € R™ x {0} x [0,2p], satisfies

. a .
ap(t. ) < Kexp (~5t) l5p(0.0), ¥(t.4) € dom(e), (3.14)
Amaz 15 ~ — — Amasz
where K := v((}{)) exp((@+2|A])5) and p:= ! (—W), where p(s) := sexp(2|A]s).
O

Proof of Theorem 3.2. Consider the function V,(z,) := x;—prp and note that by using (3.13),
the sets in (3.2d) and (3.2e) can be written as

F={z: (VV,(xp), Apzp + Bpae)
J =A{x: (VVy(xp), Apxp + Bpxc)

< —aVp(xp) — plze*}, (3.15a)
> —aVy(a,) — o). (3.15b)
Moreover, since Pp = PPT > 0, V}, is positive definite.

The proof is split in two parts: first we show the global exponential stability of the origin by
means of Proposition 2.1, then we show the bound (3.14). Note that since we are considering only
the stability, then according to (2.1) w = 0 and z is neglected, therefore in (2.25a) only the entry
(1,1) needs to be considered.

First we show that (3.5) implies (3.12). In particular, the strict inequality in (3.5) implies that
there exists > 0 such that

He (By(A, + B,K))) < —ab, — pK, K, (3.16)
< —aP, — uK, K, (3.17)
< 0. (3.18)

Consider now V(z) := 2" Pz := V,(z,) + M. — Kpzp) " (¥ — Kpxp), where A > 0 will be
selected later and let us select M = M + eI, namely F = F. which implies (2.25¢) with 77 = 1.

Consider function z — V() across jumps. Since (x;r ,xl) = (zp, Kpzp), it is easy to check that

V(zt) = V(z) = Ao — Kpzp) ' (ze — Kpzp) <0, Vo R, (3.19)

which implies (2.25b), with p = 0 (note that (3.19) holds for any A > 0).
Consider now function z — V(z) during flow. Then from (3.15), for all z € F = F,, = # 0 we
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have

(VV(2), Az) = (VVp(zp), Zp) + 2A(zc — prp)—r(j?c — Kpip)

Yy (ay) — plel? + 22 [?HI_‘% }[K,, _1][;}12 iﬁ] [‘;p] (3.20)

IN

<0

where the last inequality holds for a small enough selection of A > 0 because the good negative terms
dominate over the bad terms by completion of squares. Therefore, due to the strict inequality in
(3.20) and the quadratic nature of V(x), for any A > 0 satisfying (3.20) there exists a small enough
ag > 0 such that a term —asV (x) can be injected in the right-hand side of (3.20), implying (2.25a)
(note that only the entry (1,1) of (2.25a) matters for the exponential stability).

Recall that = = (z,, z.) and 27 = (z,, K,7,) and notice that |Gz|* = :L‘;(I + K;Kp):vp <
I + K Kp||zp|?. From (3.13), we have

t"GTMGx =2 (GTMG + eGTG)x
- 4T

[z ] [x+ed+KJKy) 07 x
| e | | 0 0 Te
_ ST -
< Tp ()\max(X) + E‘I + K};FKP|)I 0 Lp
=z | | 0 0 Te
- oT . . T
[ (Amaa () + €T+ Ky KT 0 [ | (3.21)
L xC a L 0 O 'TC

Vo € J, x, # 0, where the strict inequality in the last line holds for all € € (0,€*) with €* :=

—% Note that (3.21) implies (2.25d) with r¢ = 0.

Therefore conditions (2.25) are satisfied and the first part of the proof is completed.

Consider now the bound (3.14). By applying Claim 2.1 (note that (2.4) is equivalent to (2.25d),
which is implied by (3.21)), there exists a 7 > 0 such that for all p € (0,p), x(t,i) € F. for all
t € [ti,tit1], @ € Z>y. Therefore from the definition in (3.15a), we have V,(z,) < —aVy(z,) —
f|ze|* < —aV,(z,), which yields

Vi(ap(t,1)) < exp(—alt — 1)) Vylay (i, ), (3.22)

for all ¢ € [t;,ti+1], i € Z>1. Regarding the interval [to, 1], we proceed similarly to Theorem 2.1
and we consider two subcases: t € [tg,to + p| and t € (tg + p, t1].

Case i: t € [tg,to + p|. From |@| < |A||x|, one has |z(t,4)[* < exp(2|A|(t — t;))|z(t;,4)|? for all
t € [ti,tit1], © € Z>( and so also in the interval of interest. Therefore recalling that z.(to,0) = 0,
we get

Vp(a(£,0)) < Z—jexp@w(t — t0))Vp(@p(t0, 0)),

where ,(to,0) is the plant initial condition, a1 := Apin(P,) and ag := ez (Fp).
Case ii: ¢ € (tg + p,t1]. By Remark 2.2 item ii, we have x(¢t,0) € F = F for all t € (to + p, t1],
therefore also (3.22) holds.

By combining the two subcases, one has

Volap(t,0)) < exp(—alt —to — p))Vp(ap(to + p,0))
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< %2 exp(2|4]o) exp(~G(t ~ to — ) Vy(ap(t0: )
= 2 exp((214] + 8)p) exp(~a(t ) Vy(ay (10, 0))

a ~
= G—:KQ exp(—a(t —t))V;(p(to,0)), (3.23)
for all t € [to,tl].
Finally, by combining (3.19), (3.22) and (3.23), we have

. a ~
Viap(t, 1)) < K exp(=a(t = t0))Vp(wp(to, 0)) (3.24)
for all (¢,7) € dom(€). Therefore from (3.24) and using the fact that aj|z,|? < Vy(zp) < aslzpl?,
we get (3.14). This concludes the proof. [

Remark 3.1. Theorem 3.2 establishes global exponential stability of set A. Nevertheless bound
(3.14) holds for all the solutions § = (xp, 2., 7) to (3.3)-(3.4) with M in (3.13), starting from
£(0,0) = (2,(0,0),2.(0,0),7(0,0)), with z.(0,0) = 0. Although this is not very restrictive, for
solutions starting from points where x.(0,0) # 0, global exponential stability of set A is still
maintained but (3.14) is not guaranteed. The reason is that bound (3.14) is established by exploiting
the definition in (3.13) (see also (3.15)), which considers the dynamic of a Lyapunov-like function
only in the zp-direction. Moreover, the proof relies on Claim 2.1, to ensure that despite the dwell
time, after the first interval the trajectories do not leave set F where bound (3.14) is established
(this was presented as property of the trajectories in Section 2.2.1, see also (2.5)). Note that bound
(3.14) implies that the control scheme has t-decay rate &/2 in the z, direction. *

Remark 3.2. The gain K in bound (3.14) takes into account the increase of the Lyapunov function
that may occur in the first interval due to the dwell time (see Remark 2.2 for further details). Indeed
bound (3.14) can be tightened by expressing the dependence of K on 7(0,0). Although we preferred
to keep the proof of Theorem 3.2 simple, we can modify the proof technique to replace K in bound
(3.14) by K(7(0,0)) defined as

i

K (7(0,0)) := i:%((_p) exp ((a 1 o) ap) x40, ”2_ 70 0)}) : (3.25)

S

with 7(0,0) € [0,2p]. Notice that this new K (7(0,0)) takes into account that whenever 7(0,0) €
[p,2p], system (2.1) is ready to jump if z ¢ F and in that case the exponential term in (3.25)
disappears, making the accuracy of bound (3.14) depend on the condition number of matrix P,
(see [13]). Finally, we have K (7(0,0)) < K. *

Remark 3.3. We stress that the exponential decay rate in (3.14) depends on & > 0, which is
selected in the flow and jump sets, F and J, through M in (3.13). Recall also that & € (0, ], with
a > 0 selected in (3.5). *

Theorem 3.2 generalizes the state feedback solution proposed in |71, Theorem 1| (see
also |70, Proposition 2|). However, an extra z.-dependent term is added to allow the insertion of
the dwell-time logic in the scheme without compromising the stability property. While the flow and
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jump sets F and J, coming from (3.7) in Theorem 3.1, coincide with those of [70, Proposition 1],
it is not true that the flow and jump sets coming from the matrix M in (3.13) in Theorem 3.2
coincide with those of [70, Proposition 2| and [71]. The difference stands in the term —pu|z.|?
introduced here to provide a sufficient level of robustness. Such a robustness is required to tolerate
the inevitable perturbations introduced by the dwell-time logic, which forces the system to flow
even though z belongs to J when the timer 7 is too small®.

Although we do not have a formal proof of fragility of the scheme in [70, Proposition 2|, we
should emphasize that the proofs of stability in [70, Proposition 2] were based on the invariance
principle because Lyapunov arguments only allowed to establish negative semidefiniteness of our
candidate Lyapunov functions. It turns out that the term —p|z.|> provides the missing decrease and
significantly simplifies the proof of exponential stability for both Theorem 3.2 and [28, Theorem 2].
Moreover the strict decrease arising from this term allows us to introduce the dwell-time logic
without compromising the exponential stability of the closed loop. It should also be emphasized
that the dwell-time parameter p shrinks to zero as p becomes smaller. To illustrate the effect of
the new term —u|z.|? in (3.13), consider the following example.

Example 3.1. Consider the system (3.3) defined by the following data

_ Ap Bp _ -1 0 D _
v I A

which, regardless of K, satisfies (3.5) for any o < 1 (because B, = 0). This example does not
satisfy the detectability condition in [71, Theorem 1] and indeed one can see that setting = 0 in
(3.13) (thus recovering the definitions in [71]) the system starting from (z,, z.) = (0, a) for any
a # 0 can flow indefinitely so that z.(¢,j) = a # 0 for all times, implying no convergence (even
with dwell time). Consider now the flow and jump sets coming from the definition of matrix M in
(3.13) with p # 0 and notice that (x,, z.) = (0, a) € F because —u|x.|* = —pla* < 0. Then z, is
instantaneously forced to jump to z7 = Kz, = 0, regardless of K, and this shows convergence.
In other words, the extra term —u|x.|? appearing in (3.13) (combined with the dwell-time logic)
ensures that, upon convergence to zero of z,, if z. # 0, the controller can eventually be forced to
jump (as x, gets small enough) and the x. substate is stabilized through jumps regardless of the
detectability of (B,, A.) required in [71, Theorem 1]. [ ]

Remark 3.4. It is not possible to prove an equivalent statement to Proposition 3.1 with reference
to the hybrid controller in Theorem 3.2 and the hybrid controller in |70, Proposition 2| and [71].
Indeed, as emphasized earlier, the jump and flow sets F and J considered in [70, 71| correspond
to the ones defined in (3.2d) and (3.2e) coming from the definition of M in (3.13) with u = 0.
Due to this fact, since we require g > 0 here, we cannot say that the solutions to (3.3), (3.4)
satisfying Theorem 3.2, graphically converge to those of the corresponding hybrid state-feedback
loops of |70, 71]. Nevertheless, since the system with a small x> 0 corresponds to a perturbation
of the system with p = 0, we can state by relying on the results of [41] that the arising trajectories
can be made arbitrarily close to those of |70, Proposition 2] and [71] by choosing p arbitrarily small.

*

2For Theorem 3.2, this might still happen in the interval [to, ¢1].
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3.4 Comments and remarks

Remark 3.5. Theorems 3.1 and 3.2 are a generalization of the results in [70,71]. Among the
similarities between Theorems 3.1 and 3.2 and the results in [70, 71|, we have:

a. the flow and jump sets F and J are defined according to Lyapunov-like functions. Indeed,
Theorem 3.1 shares the same sets as [70, Proposition 1|, whereas Theorem 3.2 slightly modifies
the sets from |71, Theorem 1] (see also |70, Proposition 2|).

b. the jump map is built in order to:

i. guarantee non-increase at jumps of the Lyapunov-like functions used in F and J;

ii. ensure a good decrease condition of the Lyapunov-like functions used in F and J, after
each jump.

c. all the results rely on condition (3.5);
d. the stability of the origin of the schemes is achieved through resets.
Among the differences between Theorems 3.1 and 3.2 and the results in [70,71], we have:

e. Theorems 3.1 and 3.2 establish global exponential stability of set .A and moreover Theorem 3.2
guarantees the t-decay rate in the z,-direction. On the other hand, [70,71] establish global
asymptotic stability of set A;

f. Theorems 3.1 and 3.2 refer to the hybrid controller architecture (3.2), which presents a dwell-
time logic, whereas results in [70,71] do not rely on dwell-time logic;

g. both Theorems 3.1 and 3.2 are proved by using smooth Lyapunov functions which allow us
to conclude robustness according to [16].

*

As already mentioned, the key element for both techniques in Theorems 3.1 and 3.2 is
condition (3.5), which, roughly speaking, resembles to the condition of the classic static state
feedback, [3,10,19,38|. Indeed, (3.5) can be considered either as the classic formulation for the
static state feedback control for the pair (A,, B,) for a given «, or as the generalized eigenvalue
problem in case also « is considered as a variable (see [11] and Section 3.5 for further details).

Note that whenever « is selected small enough, (3.5) admits a solution only if the pair (A, B)
is controllable in a classic sense (see 8,44, 67]). Nevertheless for the hybrid case addressed here,
matrices A, and B, do depend on the plant but also on the flow map of the hybrid controller
(3.2a) (see also (3.4)). Therefore in order to solve (3.5), the flow map of the cascade of the plant
and the hybrid controller has to be at least controllable.

Finally, not much on the comparison between Theorem 3.1 and Theorem 3.2 can be said yet.
Both techniques shares similarities in their mappings but not in their sets. In particular, Theo-
rem 3.1 seems to have more parameters to tune with respect to Theorem 3.2 and we cannot exclude
that this may be an advantage for certain applications. On the other hand, Theorem 3.2 has a
simpler implementation and returns an exponential bound for the plant direction which is useful.
Nevertheless, further investigations are needed to clarify what schemes is the best and under which
circumstances and no further space will be dedicated to this issue in this document.
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3.5 Simulations

We are now ready to introduce how to design the hybrid loops presented in this chapter. Following
Problem 3.1, we assume that the matrix A of (3.3) is given and not necessarily stable and we want
to augment the existing linear feedback with a hybrid loop from the state of the plant. Moreover
for illustrative purposes, we assume also that a > 0 is given as a performance parameter. Therefore
the following procedure can be used to solve both Theorems 3.1 and 3.2.

Procedure.
Step 1: Given « > 0, solve in Y and @ the following linear condition

He (4,Y + B,Q + %Y) <0, Y=YT>0. (3.26)

Step 2: Calculate Pp =Y !and K, = QPp.
Step 3: Select any P. = P > 0.
Step 4: Calculate Ppe = —K,P, and P, = B, + Py PP, |

Note that Theorem 3.1 requires that all the steps of the procedure above be solved, whereas
for Theorem 3.2 the procedure stops after completing step 2 and solving (3.12) which is linear in
the only variable p. In particular, (3.26) is equivalent to (3.5) by pre- and post-multiplying it by
Y = Pp_l (which always exists) and defining the new variable @ := K,Y. On the other hand for
the case of Theorem 3.1, the identities (3.6) have to be satisfied to define matrix P (which is used
in the flow and jump sets defined by M in (3.7)). Therefore the last two steps of the procedure
ensure the satisfaction of these further constraints. Notice that the procedure above does not try
to minimize any performance index, therefore in step 3 a guess is required and no optimal choice
is available at the moment.

The similarities emphasized in items a and ¢ of Remark 3.5 (see also Proposition 3.1 for Theo-
rem 3.1 and Remark 3.4 for Theorem 3.2) allow us to use the optimal synthesis introduced in [71]
to design an optimal hybrid controller with respect to the maximum decay rate and the one in [72]
to reduce the overshoot of the plant output. In what follows, we will use the approach in [72] whose
basic idea, roughly speaking, is to approximate the Lyapunov-like function, used to define the flow
and jump sets F and J, to the norm of the plant output. In Appendix 5.4.2, we briefly report the
conditions of such a technique.

3.5.1 A double integrator

As a first example, we propose a double integrator represented by

_ 0 110

[ L gp } =10 0]1

pp 1 00
According to Problem 3.1, the flow map of the controller is given by

A | B.] [-1]-1
Co|D.] | 1|0 |
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Figure 3.3: Double integrator controlled through the techniques in Theorems 3.1 and 3.2.

Note that the flow map A of the arising hybrid closed loop (3.3) is not Hurwitz, so that stability
has to be enforced through the hybrid loop. Moreover, as control specification is required that
a=11in (3.5).

We want to solve Problem 3.1 by using both techniques presented in Theorems 3.1 and 3.2.
Consider first Theorem 3.1. By applying the procedure in Section 3.5, after step 2 we obtain?:

K, =] —11.8598221 —13.6571764 |,

= | 0.0555172 0.0195509
P 0.0195509  0.0245409 |

By choosing P. = 1, we can complete the procedure obtaining

140.7108971 161.9912328 11.8598221
P =] 161.9912328 186.5430073 13.6571764 | ,
11.8598221  13.6571764 1

and by selecting & = «, we design the flow and jump sets, F and J with

116.9912529 289.0449536 160.9912328
M = | 289.0449536 510.5254729 198.4028294
160.9912328 198.4028294 26.31435274

Therefore the design of hybrid controller (3.2) satisfying conditions in Theorem 3.1 is complete. In
the rest of the paragraph, we will refer to this hybrid controller as Hpm, , -

Consider now Theorem 3.2. By applying the procedure in Section 3.5, after step 2 we obtain
the same gain K, and P, as above. Therefore to be able of selecting the correct matrix M in (3.13),
we need to select g > 0 in order to satisfy (3.12), which is linear in the only variable u. By solving
(3.12) as a convex optimization problem maximizing p, we obtain g = 0.0028689, and therefore by

3Condition (3.26) has been solved with two further conditions. In particular, to avoid fast exponential trends
involving numerical problems in the simulations, we added the constraint He(A,Y + B,Q + 50Y/2) > 0 (see also
[10,22]). Moreover, to have a good condition number of matrix Y, we added the constraint AI <Y < ki Al where
A\ > ko, with k1 = 10® and k2 = 10”% and minimizing \.
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selecting again & = a = 1, we design the flow and jump sets, F and J with

0.0555172 0.0750681 0.0195509
M = | 0.0750681 0.0636428 0.0245409 | ,
0.0195509 0.0245409 0.0028689

completing the design of hybrid controller (3.2) satisfying conditions in Theorem 3.1. We will refer
to this hybrid controller as Hypm,,. Notice that the t-decay rate &/2 is guaranteed by selecting
the dwell-time parameter small enough.

Figure 3.3 shows a simulation starting from £(0,0) = (z(0,0),7(0,0)) = (1,1,0) with p = 0.01.
The linear controller without hybrid loop is unstable since A is not Hurwitz, whereas the two hybrid
loops return comparable trend for the output y, although H¢p, , tends to generate a control u
that jumps more often than the one of Hpym,,. On the other hand controller Hypyy,, , generates a
control u with more peaks than the scheme with Hpm, ;-

3.5.2 A servo motor

To show the effectiveness of the technique in Theorem 3.1, we consider an experimental example
used in [20,49], in which all the controller specifications cannot be guaranteed by a linear controller
(see [49]). The system consists in a series of three flywheels connected via a flexible shaft. A servo
motor drives the first flywheel and the speed of the third one is measured via a tachometer. The
system obtained by the union of the servo motor, the three flywheels and the filtered tachometer
output was identified from frequency-response data as:

46083950

P(s) = .
() = 152005 7 3.15 + 2820)(s2 £ 3.62 1 9516)

In the sequel, its state (for the state space form) will be denoted by z,1 € R®. For this system, five
specifications are required:

i) bandwidth constraint;

ii) disturbance rejection;

)
iii) sensor-noise suppression;
)

iv) asymptotic performance;

v) overshoot reduction.

[49] proved that it is not possible to meet all the specifications above with a linear time-invariant
controller. In particular, in [49] two LTI controllers are designed: one that achieves all the
specifications without obtaining the required noise rejection and another one guaranteeing all the
specifications above, except for the overshoot reduction.

As in [49], we decide to keep this second controller

—1075460(s + 7)(s% + 3.662s + 2798)(s? + 5.419s + 9876)

O(s) =
(5) s(s + 209.6)(s + 35.8)(s% + 132.8s + 12050)(s2 + 375.9s + 66930)

whose state is denoted by z,2 € R”. Moreover according to [49], we also add a further first order
reset controller, as illustrated in Figure 3.4. The goal is to exploit the controller C(s) for the
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Figure 3.4: Scheme of the closed-loop system proposed by [49].

guaranteed specifications and to add a reset controller to reduce the overshoot, thus achieving all
the desired specifications with a reset closed-loop system. In particular, [49] proposes to add a
FORE controller with a pole in -14 and a further zero to cancel the pole of the reset controller
without affecting the steady-state properties, see Figure 3.4.

We now compare the FORE controller proposed by [49] with the hybrid controller #H; illustrated
in Figure 3.2 and presented in Theorem 3.1. Note that the aim of the hybrid controller H; (and
of the FORE in [49]) is to reduce the overshoot, which is the only property not guaranteed by the
LTT controller C'(s). To this aim we use the optimal technique for overshoot reduction presented
in [71] to tune the hybrid controller H;.

We point out that to reset the hybrid controller H1 we need to assume that the state of the plant
is available. In this case such a state consists in the series of the controller C'(s) (slightly modified
by an extra zero) and P(s) (that is x, = [x;x;]T € R'?). The assumption of the knowledge
of the plant state through measurements is restrictive because the plant state is, in general, not
completely measurable and because often the state (or a subpart of it) does not have a physical
meaning (due for instance, to the adopted identification methods as in this case for z,1). Note that
for this problem setting we might also consider the hybrid output feedback scheme of [27,29]. When
using our state feedback scheme, a possible strategy to avoid the use of the measurement of x,, is to
approximate the twelve order state x;, by a second order state ¥, and use what we will refer to as
the reduced hybrid controller Hi. In particular, we will consider a first order approximation for the
plant P(s) and a first order approximation for (s + 14)C(s) (using the Gramian-based balancing
of state-space realizations and a reduction of the system preserving the static gain). In this way
T ]T'

by measuring the input and output of each system, it is possible to recover the state z, := [;ﬁ;la_czﬁ
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Figure 3.5: Comparison between a FORE by [49], the LTI control and the hybrid controller H; in
full order and reduced form.



3.5. Simulations 43

Table 3.1: Hybrid controller settings.

Pp K;—;r KM Py p

* * 23 10.827 | 6-107*

0.0072497 0.0071644} [—0.0074407] 