
HAL Id: tel-00920457
https://theses.hal.science/tel-00920457v1

Submitted on 18 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large scale interoperability in the context of Future
Internet

Preston Rodrigues

To cite this version:
Preston Rodrigues. Large scale interoperability in the context of Future Internet. General Math-
ematics [math.GM]. Université Sciences et Technologies - Bordeaux I, 2013. English. �NNT :
2013BOR14786�. �tel-00920457�

https://theses.hal.science/tel-00920457v1
https://hal.archives-ouvertes.fr

No d’ordre: 4786

THÈSE

présentée devant

L’UNIVERSITÉ DE BORDEAUX

École Doctorale de Mathmatiques et Informatique

pour obtenir le grade de :

DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX

Mention INFORMATIQUE

par

Preston Francisco RODRIGUES

Équipe d’accueil : PROGRESS
École Doctorale : Mathématiques et Informatique

Composante universitaire : LABRI

Titre de la thèse :

Large scale interoperability in the context of Future Internet

Interoperabilit large chelle dans le contexte de l’Internet du futur

à soutenir le 27 May 2013 devant la commission d’examen

MM. : Mohamed MOSBAH Président
MM. : Didier DONSEZ Rapporteurs

Philippe ROOSE
MM. : Gilles MULLER Examinateurs

Gaël THOMAS
Laurent RÉVEILLÈRE
Daniel NÉGRU
Yérom-David BROMBERG

to my parents,

Acknowledgement

First of all, I would like to thank Dr. Laurent Réveillère, my supervisor, who provided tremen-
dous support and advice for the duration of my thesis work. His insight helped my work go in
the right direction, and he taught me the principles of research work. I am extremely grateful
for this. It gives me immense pleasure to acknowledge and convey my heart felt appreciation
for the assistance and feedback given by Dr. Yérom-David Bromberg. His constant motivation
and advise helped me improve my work. I am also grateful to Dr. Daniel Négru for his valuable
feedback and for providing the necessary funds to complete my PhD. He was instrumental in
exposing me to the working of an integrated European project.

My sincere thanks goes to Prof. Mohammed Mosbah, University of Bordeaux, who gracefully
accepted to chair my defense committee. I would also like to thank Prof. Didier Donsez, Uni-
versity of Grenoble and Dr. Phillipe Roose, IUT de Bayonne who accepted to review my thesis
document before the defense. Special thanks goes to Prof. Gilles Muller, Director of Research
INRIA and Dr. Goël Thomas, UPMC – LIP6 for being part of the defense committee.

I would also like to thank CNRS-LaBRI for hosting me for the duration of my PhD. No amount of
thanks would be enough for my collages Yiping, Julien, Cendrine, Soraya, Jigar and Tegawendé
for helping and advising me during my stay at Bordeaux. Finally, I would like to thank my par-
ents for their unconditional support and encouragement throughout the years, which made it all
possible.

And to all my friends in Bordeaux and at the university sport center - Merci Beaucoup!

Abstract

The growth of the Internet as a large scale media provisioning platform has been a great suc-
cess story of the 21st century. However, multimedia applications, with their specific traffic char-
acteristics and novel service requirements, pose an interesting challenge in terms of discovery,
mobility and management. Furthermore, the recent impetus to Internet of things has made it very
necessary, to revitalize research in order to integrate heterogeneous information sources across
networks. Towards this objective, the contributions in this thesis, try to find a balance between
heterogeneity and interoperability, to discovery and integrate heterogeneous information sources
in the context of Future Internet.

Discovering information sources across networks need a through understanding of how the
information is structured and what specific methods they follow to communicate. This process
has been regulated with the help of discovery protocols. However, protocols rely on different
techniques and are designed taking the underlying network infrastructure into account. Thus,
limiting the capability of some protocols to cross network boundary. To address this issue, the
first contribution in this thesis tries to find a balanced solution to enable discovery protocols to
interoperate with each other as well as provide the necessary means to cross network boundaries.
Towards this objective, we propose ZigZag, a middleware to reuse and extend current discovery
protocols, designed for local networks, to discover available services in the large. Our approach
is based on protocol translation to enable service discovery irrespectively of their underlying
discovery protocol. Although, our approach provides a step forward towards interoperability in
the large. We needed to make sure that discovery messages do not create a bottleneck for the
network.

In large scale consumer oriented network, service discovery messages could render the net-
work unusable. To counter this, ZigZag uses the concept of aggregation during the discovery
process. Using aggregation ZigZag is able to integrate several replies from different service
sources supporting different discovery protocols. However, to customize the aggregation process
to suit once needs, requires a through understanding of ZigZag fundamentals. To this end, we
propose our second contribution, a flexible policy language that can help define policies in a
clean and effective way. In addition, the policy language has some added advantages in terms of
dynamic management. It provides features like delegation, runtime time policy management and
logging. We tested our approach with the help of simulations, the results showed that ZigZag can
both reduce the number of messages that flow through the network, and provide value sensitive

information to the requesting entity.

Although, ZigZag is designed to discover media services in the large. It can very well be used
in other domains like home automation and smart spaces. While, the flexible pluggable modular
design of the policy language enables it to be used in other applications like for instance, e-mail.

Keywords:- Service Discovery, Protocol Interoperability, Future Internet, Policy Language, ZigZag
Middleware

Résumé de Thèse

La croissance de l’Internet en tant que plateforme d’approvisionnement à grande échelle
d’approvisionnement de contenus multimédia a été une grande success story du 21e siécle.
Toutefois, les applications multimédia, avec les charactéristiques spécifiques de leur trafic ainsi
que les les exigences des nouveaux services, posent un défi intéressant en termes de découverte,
de mobilité et de gestion. En outre, le récent élan de l’Internet des objets a rendu très nécessaire
la revitalisation de la recherche pour intégrer des sources hétérogènes d’information à travers des
réseaux divers. Dans cet objectif, les contributions de cette thèse essayent de trouver un équili-
bre entre l’hétérogénéité et l’interopérabilité, pour découvrir et intégrer les sources hétérogènes
d’information dans le contexte de l’Internet du Futur.

La découverte de sources d’information sur différents réseaux requiert une compréhension
approfondie de la façon dont l’information est structurée et quelles méthodes spécifiques sont
utilisés pour communiquer. Ce processus a été régulé à l’aide de protocoles de découverte.
Cependant, les protocoles s’appuient sur différentes techniques et sont conçues en prenant en
compte l’infrastructure réseau sous-jacente, limitant ainsi leur capacité à franchir la limite d’un
réseau donné. Pour résoudre ce problème, le première contribution dans cette thèse tente de
trouver une solution équilibrée permettant aux protocoles de découverte d’interagir les uns avec
les autres, tout en fournissant les moyens nécessaires pour franchir les frontières entre réseaux.
Dans cet objectif, nous proposons ZigZag, un middleware pour réutiliser et étendre les proto-
coles de découverte courants, conçus pour des réseaux locaux, afin de découvrir des services
disponibles dans le large. Notre approche est basée sur la conversion de protocole permettant la
découverte de service indépendamment de leur protocole de découverte sous-jacent. Toutefois,
dans les réaux de grande échelle orientée consommateur, la quantité des messages de découverte
pourrait rendre le réseau inutilisable. Pour parer à cette éventualité, ZigZag utilise le concept
d’agrégation au cours du processus de découverte. Grâce à l’agrégation, ZigZag est capable
d’intégrer plusieurs réponses de différentes sources supportant différents protocoles de décou-
verte. En outre, la personnalisation du processus d’agrégation afin de s’aligner sur ses besoins,
requiert une compréhension approfondie des fondamentaux de ZigZag. À cette fin, nous pro-
posons une seconde contribution: un langage flexible pour aider à définir les politiques d’une
manière propre et efficace.

1

Résumé de Thèse

Le Chapitre 2 présente le contexte de notre travail. Pour faciliter la discussion, nous l’avons
divisé en trois parties. La première partie donne un bref aperçu d’un service et décrit le proces-
sus de découverte de service. Nous avons décrit également les différents modes de recherche
utilisé par les protocoles actuels de découverte de service. Nous présentons également la mise
au point d’un certain nombre de protocoles de découverte de service populaires et les classifions
soit en protocoles pour réseaux locaux (SLP, UPnP, Bonjour, WSDD) ou pour réseaux grande
échelle (UDDI, SSDS, JXTA, INS/TWINE). En plus, nous passons en revue chacun d’eux met-
tant en évidence leurs caractéristiques standards, et identifiant leurs principales limitations. Du-
rant cette phase de passage en revue, nous avons constaté qu’aucun des protocoles étudiés n’était
interopérable.

La deuxième partie présente six modèles de contexte différents en fonction de leur struc-
ture de données, à savoir: Clé-valeur, à base de Balises, Graphique, Orienté-objet, basé sur la
logique and basé sur l’Ontology. La simplicité de la structure de donnée clé-valeur facilite la ges-
tion des informations de contexte. Malheureusement, son manque d’expressivité empêche toute
déduction du contexte d’information considéré et sa structure plate ne prend pas en compte la
définition de la relation entre les paramètres. En outre, l’absence de schéma de donnée et de méta-
informations sur le contexte considéré rend ce type de modèle très difficile à réutiliser. Les Mod-
èles à base de balise fournissent une validation partielle depuis qu’ils sont définis par des sché-
mas. Cependant, comme les modèles clé-valeur, ils souffrent d’ambiguïté d’information, dans
la mesure où ils ne supportent pas la définition de la relation entre les paramètres. Le principal
inconvénient des modèles orientés objet, c’est l’absence de formalisme, puisque l’information
est encapsulée. Par contre, ils offrent une distribution facile, permettant à chaque objet de se
valider lui-même, et peuvent être intégrés directement dans des systèmes orientés objets exis-
tants, quoiqu’ils puissent être lourds en ressources. Les points forts des modèles graphiques
sont leur efficacité dans la représentation de la structure des informations de contexte. En outre,
ils sont aussi intuitifs et faciles à intégrer dans le modèle UML (Unified Modeling Language).
Toutefois, ils présentent un faible niveau de formalisme, étant communément utilisés à des fins
de structuration humaine. Pour les modèles basés sur la logique, le niveau de formalité est ex-
trêmement élevé et les valeurs peuvent être distribuées, mais ils ne sont pas adaptés pour décrire
l’incomplétude, l’ambiguïté ou la qualité de l’information. Pour atteindre cet objectif, le mod-
eèle à base d’ontologie fournit une description de la conceptualisation explicite de la structure
des données et la sémantique. Nous concluons que les modèles basés sur l’ontologie fournissent
la meilleure solution pour la modélisation de contexte dans l’informatique ubiquitaire.

La troisiéme partie décrit ALICANTE, une architecture pour l’écosystème des médias du
futur. L’architecture ALICANTE regroupe des acteurs clés dans plusieurs domaines appelés en-
vironnements (utilisateur, réseau, service). De plus, pour faciliter l’interaction à travers les do-
maines, deux nouvelles couches virtuelles sont considérées (Virtual HomeBox et Virtual CAN).
Utilisant les caractéristiques combinées de l’environnement et des couches, il vise à fournir
une propriété de sensibilité au Contenu à l’environnement réseau, de la sensibilité Utilisateur
et Réseau à l’environnement service, et des contenu/prestations adaptées pour permettre une
meilleure qualité d’expérience et de meilleures fourniture de services afin de bénéficier à tous les

2

Résumé de Thèse

acteurs impliqués. L’environnement de l’utilisateur présente des avantages pour l’utilisation du
profil de l’utilisateur en permettant aux utilisateurs de basculer entre différents rôles. Cependant,
il ne leur permet pas de découvrir et de publier des services utilisant des protocoles autres que
ceux utilisés par le système Terminal. Néanmoins, les utilisateurs finaux devraient être en mesure
de découvrir et de publier des services via le système Terminal quel que soit le protocole qu’ils
utilisent. D’autre part, la capacité d’ALICANTE SE à séparer les données de la fonction de ges-
tion donne un avantage unique permettant aux deux fonctionnalités d’évoluer séparément. Par
ailleurs, avec l’aide des Service Registry (SR), ALICANTE fournit une infrastructure de services
à grande échelle. Toutefois, cela ne signifie pas qu’il peut interagir et demander des services à
partir de sources externes (ex: YouTube, Google, etc) ainsi que de plateformes existantes comme
IMS (IP Multimedia Subsystem) et IPTV (Internet Protocol Television). Par conséquent, il existe
un besoin pour un système de découverte interopérable sensible au contexte, qui peut intégrer
de multiples approches hétérogènes de découverte dans des réseaux hétérogènes à grande échelle.

Le chapitre 3 traite de l’état de l’art actuel. Nous l’avons divisé en deux parties. La première
partie décrit les différentes solutions qui répondent aux problématiques d’interopérabilité lors
de la découverte de service. Nous examinons quatre solution interopérable à savoir; ReMMoC,
INDISS, z2z et Starlink. ReMMoC est un intergiciel réflecteur reconfigurable et con-
figurable dynamiquement. Il met en avant le concept de composants et interfaces proposées
par OpenORB. Ces composants et interfaces permettent au middleware d’ajouter de nouvelles
fonctionnalités à ReMMoc. En outre, il fournit également une interface de programmation
d’applications générique (API) afin d’aider les développeurs à fournir des solutions interopérables.
Cependant, ReMMoC demande aux développeurs de revoir toutes les applications existantes afin
de les rendre conformes à l’API ReMMoC, ce qui est une tâche assez ardue. Cette contrainte parti-
culière est surmonté avec INDISS qui est un middleware transparent qui assure l’interopérabilité
avec les applications existantes sans les modifier. Les réponses INDISS sont des composants
basés sur les événements. Toutefois, l’extension INDISS pour soutenir de nouveaux protocoles
est une tâche difficile car il nécessite à la fois une connaissance approfondie des protocoles con-
cernés, et aussi une compréhension importante de la programmation réseau de bas niveau. Bien
que ReMMoC et INDISS pourraient être considérés comme un pas en avant dans le défi de la
découverte de services interopérables, z2z et Starlink présentént de nombreuses fonction-
alités pour permettre la traduction transparente d’un protocole à en un autre. z2z utilise une
approche générative pour permettre la traduction de protocoles, tandis que Starlink s’appuie sur
des automates k-couleur. En outre, ils offrent un système d’exécution optimisé et d’installations
pour décrire les comportements de protocoles réseaux, les structures de message et les logiques
de traduction. Ces fonctionalités viennent du fait qu’ils s’appuient sur un langage de définition
de haut niveau qui cache le réseau de bas niveau et les détails et ne met en évidence que les pro-
priétés clés nécessaires pour la traduction de protocole. Dans notre solution, nous nous appuyons
sur la notion de composants introduit par ReMMoC, le réseau de surveillance basé sur des événe-
ments présentée par INDISS et fonctionalités fournis par z2z comme composant de traduction
de protocole transparent pour offrir une solution de découverte interopérable pour l’internet du
futur.

3

Résumé de Thèse

La deuxième partie traite des solutions basées sur l’ontologie. Nous avons examiné certains
des modèles de contexte basé sur l’ontologie existants. Avec la maturité du Web sémantique,
les modèles de contexte basé sur l’ontologie ont acquis beaucoup d’importance. Un contexte
Ontology Language CoOL décrit des faits contextuels et des relations contextuelles en projetant
la base conceptuelle de l’information Aspect-Scale Contexte modèle (ASC) pour les éléments de
langage. Alors que COBRA-ONT est une collection des ontologies, OWL s’exprimé dans des
systèmes sensibles au contexte. COBRA-ONT définit des concepts associés à quatre thèmes dis-
tincts mais liés: les lieux, les agents de l’emplacement et les agents des agents L’activité. D’autre
part, SOUPA, développé par les mêmes auteurs que COBRA-ONT, traite de l’informatique om-
niprésente et se compose de deux parties: ❶ le noyau SOUPA qui détient les ontologies qui
fournissent un vocabulaire commun pour différents environnements informatiques omniprésents
et ❷ l’extension SOUPA qui contient des ontologies pour le vocabulaire spécifique à un domaine.
Toutefois, afin de surmonter le problème de l’interopérabilité, SOUPA mappe ses concepts à cer-
taines des ontologies externes bien connus tels que FOAF [BM07], DAMLTime [PH04], etc,
le contexte ontologie CONON capte les caractéristiques générales des entités contextuelles de
base comme (localisation, l’utilisateur , l’activité et entité de calcul) et utilise l’ontologie de
domaine spécifique pour décrire les concepts liés à un domaine spécifique. Les modèles présen-
tés ont montré que les ontologies peuvent être perçues comme des outils prometteurs vers une
description adéquate de la représentation des données de contexte. Ainsi, dans notre solution,
nous prévoyons d’utiliser et d’adapter le concept présenté par CONON qui sépare des informa-
tions de contexte à partir d’une générique spécifique à un domaine particulier. Cela nous permet
d’améliorer notre solution pour fournir un service personnalisé de découverte en identifiant de
façon unique les différentes entités et leurs propriétés.

Le chapitre 4 présente notre première contribution, le middleware ZigZag. Le middleware
ZigZag est conçu pour fournir la découverte de services interopérables sensibles au contexte dans
les réseaux de grande envergure. Pour atteindre cet objectif ZigZag est architecturé autour de 4
composantes principales (voir Figure 4.2), à savoir:

❶ SDP COMPOSANTE DU MONITEUR - Le moniteur SDP vérifie la disponibilité des dif-
férents points de desserte dans l’environnement local. Il s’appuie sur le fait que tous les SDPs
utilisent une adresse de groupe de multidiffusion et un User Datagram Protocol (UDP) /
Transmission Control Protocol (TCP) Port qui doit avoir été attribué par l’Internet Assigned
Numbers Authority (IANA). Les deux ports affectés et les adresses de groupe multicast sont
réservés et agissent donc comme une étiquette d’identification SDP permanente. En outre, les
publicités de services sont mises en cache localement et sont associées à un Universally Unique
IDentifier (UUID) qui doit être identifié de manière unique à travers différents nœuds de ZigZag.

❷ COMPOSANTE GESTION CONNECTEURS - Un connecteur traduit un Service Discovery
Protocol (SDP) à un autre SDP. Il est spécifique à une paire de SDP. Ainsi, il existe autant de con-
necteurs que de paires de points de desserte entre lesquels l’interopérabilité est nécessaire. Un
connecteur est un composant tiers. Actuellement, le composant de gestion Connecteurs s’appuie
sur l’instanciation d’un ou plusieurs passerelles z2z [BRLM09] qui agissent comme des con-

4

Résumé de Thèse

necteurs. Cependant, ZigZag n’est pas étroitement liée à z2z, et peut compter sur tout autre
traducteur. En outre, le composant de gestion Connecteurs recueille des statistiques sur les SDP
utilisés pour prendre en charge le cycle de vie à grains fins de connecteurs instanciés. Il peut
démarrer, arrêter, mettre en pause et reprendre des connecteurs selon les priorités de développe-
ment social le plus souvent détectés.

❸ LA RÉFÉRENCE COMPOSANT RÉSEAU - Le Link composant réseau offre une connec-
tivité entre les nœuds en ZigZag. Il met en œuvre un protocole simple pour construire un arbre
de distribution de données entre les nœuds ZigZag leur permettant d’échanger des messages
multicast sur SDP, et des services dans chaque réseau local isolé. La complexité de la mise en
œuvre des composants de liaison du réseau dépend des fonctions disponibles prises en charge par
des couches de réseau inférieures. Actuellement, ZigZag soutient une superposition de données
comme un exemple d’infrastructure de réseau pour l’internet du futur, qui fournit des primi-
tives adéquates (rejoindre, quitter, mettre à jour, envoyer) pour créer et / ou maintenir un réseau
logique entre les nœuds en ZigZag. En outre, ZigZag peut également être déployé sur différentes
infrastructures de réseau, tels que des superposition P2P via la mise en œuvre des composants
dédiés de liaison réseau.

❹ COMPOSANT AGRÉGATEUR - Le volet agrégateur rassemble une grande quantité de mes-
sages en provenance ou Ã destination de plusieurs connecteurs instanciés par la composante
de gestion des connecteurs. Plus précisément, la composante agrégateur accumule toutes les
réponses SDP provenant de différents nœuds en ZigZag à distance, et sélectionne celui qui cor-
respond le mieux aux critères de la demande associée pour la transmettre ensuite au demandeur
de service.

Ces composants sont connectés ensemble pour accomplir un processus de traduction réseau
croisé qui est capable de traduire un SDP à l’autre selon les fournisseurs de services et la partic-
ipation des consommateurs à travers des réseaux hétérogènes.

Le chapitre 5 présente notre deuxième contribution, le cadre des politiques. Comme la
technologie évolue rapidement, il est devenu clair que les systèmes de gestion réseau exis-
tant et ne sont pas très bien adaptés pour faire face aux exigences automatisées et à l’auto-
apprentissage dans un environnement axé sur les applications utilisateur. Il y a donc un besoin
d’application / utilisateur de provisionnement conscients et de contrôle des ressources du sys-
tème. Pour y remédier, nous avons conçu un cadre de politique pour permettre au middleware
ZigZag à déléguer une tâche si elle ne peut satisfaire aux exigences de la nouvelle requête en-
trante. Comme le montre la Figure 5.3, le cadre politique se compose de trois éléments clés, à
savoir, LE MOTEUR DE LA POLITIQUE, LE LANGAGE DE LA POLITIQUE ET LE GÉNÉRA-
TEUR DE POLITIQUE.

❶ LE MOTEUR DE LA POLITIQUE régles se compose de quatre modules à savoir:
① Analyseur Syntaxique Des Politiques - Afin d’éviter lécrasement du sys-

tème de vérification, la syntaxe d’exécution pourrait aller le long des voies avant que la politique

5

Résumé de Thèse

ne puisse être utilisé dans le système. À cette fin, l’analyseur de la politique adhère à la langue
sans contexte décrit dans l’annexe II est fait en sorte que l’instance politique est validée avant
qu’elle ne soit utilisé dans le système. En outre, l’analyseur de politique est aussi vérifié et valide
les actions politiques de leurs paramètres avant leur stockage.

② Politique Dévaluation - La politique évaluateur a deux responsabilités princi-
pales. Tout d’abord, il est chargé de valider le résultat d’une requête entrante avec les politiques
enregistrés. Et d’autre part, il est responsable du débit du système. Pour atteindre le premier
objectif, la politique évaluateur utilise le concept appelé correspondance booléenne. Ceci corre-
spondant à chaque condition de la politique qui est validée avec les mots-clés et les valeurs de la
requête entrante, le résultat est stocké comme vrai ou faux.

③ Policy Manager - Gestion des systèmes distribués implique surveiller l’activité d’un
système, la prise de décisions de gestion et de l’exécution des mesures de contrôle pour modifier
le comportement du système. Toutefois, la taille et la complexité des grands systèmes distribués
a abouti à une tendance à l’automatisation de nombreux aspects de gestion, dont les principales
sont la capacité à s’auto-gérer la distribution de la politique. Ainsi, il ya un besoin croissant
pour permettre aux gestionnaires de la politique de spécifier, de représenter et de manipuler
l’information sur les politiques afin de permettre l’auto-gestion dans un environnement distribué
dynamique. Dans ce sens, le directeur de la politique prend en charge les fonctions suivantes :
ajouter, supprimer, activer, désactiver déplacer. Ces fonctions permet-
tent au gestionnaire de la politique d’auto-gérer les entrées sur une télécommande ou un magasin
de la politique locale.

④ Action De La politique - Les politiques encapsulent une représentation de
l’information touchant au comportement des composants à l’aide de l’action politique. Ainsi,
il est hautement avantages de préciser la portée d’une action politique à un domaine particulier.
Cela permet au gestionnaire de politique d’identifier la politique qui s’applique à un domaine et
ensuite utiliser cette information pour modifier le comportement des composants pour atteindre
les objectifs du système. À cette fin, les actions politiques du magasins du module Domaines de
renseignements sur les composants comme des objets d’action. En outre, ces actions objets sont
ensuite utilisés pour consulter le gestionnaire de la politique avant l’exécution d’une action de la
politique.

❷ LE LANGAGE DE LA POLITIQUE – Notre politique linguistique suit la recommandation
de l’IETF Condition-Action paradigme. Les politiques ont la forme de: ❝ S’il ya (un en-

semble de conditions), alors (un ensemble d’actions) peuvent être effectuées ❞. Par conséquent,
notre langage de politiques repose sur deux concepts fondamentaux à savoir:
policy_condition et policy_action. En utilisant ces constructions, notre langage est
capable d’influencer le comportement d’exécution d’un système. Le policy_condition est
utilisé pour valider les différents articles de l’exécution, tandis que le policy_action est
utilisé pour le débit du système.

❸ LE GÉNÉRATEUR DE POLITIQUE - Dans un environnement très répandu consistant en dif-
férent éléments, il est très difficile d’identifier de manière unique les différents éléments et leurs
propriétés. Dans ce sens, la communauté sémantique a montré des résultats prometteurs avec

6

Résumé de Thèse

l’aide d’ontologies. L’ontologie fournit une description formelle et sémantique des informations
de contexte en terme d’objets, concepts, propriétés et relations. L’utilisation d’ontologies a aidé
Ã résoudre la question de l’identification unique des éléments et de leurs capacités. Toutefois,
afin d’utiliser efficacement leur générateur de politique, on doit les présenter sous forme com-
préhensible par le système. Dans ce sens, et comme illustré à la Figure 5.5, le générateur utiliser
le service d’un modèle. Les modèles fournissent des blocs de construction de politique obliga-
toires en laissant suffisamment de lacunes à combler en utilisant les informations dynamiques
extraites de données modélisées basées sur l’ontologie.

Le chapitre 6, Dans cette thèse, nous avons proposé une nouvelle approche pour découvrir
les services . Notre approche est basée sur la conversion de protocole pour permettre la décou-
verte de services indépendamment de leurs protocoles de découverte de services sous-jacents.
Nous introduisons ZigZag, un middleware de réutiliser et d’étendre les protocoles actuels de ser-
vices de découverte, conçus pour les réseaux locaux, pour découvrir les services disponibles à
travers les frontières du réseau tel que requis dans l’Internet du futur. Le middleware ZigZag
peut être déployé en tant que solution autonome ou peut être intégré dans un contexte existant
grâce à sa conception modulaire. En outre, le middleware peut être configuré pour découvrir les
services basés sur diverses applications exigentes avec l’aide des politiques. Les politiques per-
mettent aux développeurs de définir les conditions du système. Nous avons testé notre approche
à l’aide de simulations et les résultats ont montré que ZigZag peut à la fois réduire le nombre
de messages qui circulent à travers le réseau, et fournir des informations sensibles de la valeur à
l’entité requérante.

Le Middleware ZigZag a été conçu à l’origine pour des services de multimédias de décou-
verte dans un environnement hétérogène multiprotocole. Cependant, les avantages de ZigZag
vont au-delà l’accès aux médias et peuvent être utilisés efficacement pour automatiser et perme-
ttre de créer des espaces intelligents. En outre, l’amélioration récente dans la technologie et la
popularité de l’Internet des choses ont créé les conditions propices à l’éveil des structures in-
telligentes et les espaces intelligents. Smart Home de services comme le contrôle centralisé de
l’éclairage, de HVAC (chauffage, ventilation et climatisation) des appareils; serrures de sécurité
des portes et des portes et autres systèmes. Cependant, la plupart des fournisseurs de ces services
reposent sur des protocoles différents. Dans ce sens, ZigZag peut aider les vendeurs à coordonner
l’interaction entre les différents services. En outre, ZigZag peut également permettre aux util-
isateurs de contrôler divers services avec leurs smartphones et tablettes, de fournir une meilleure
commodité et le confort de la paume de leurs mains. Bien que le langage de la politique a été
conçu pour aider les développeurs à écrire des politiques pour ZigZag middleware, sa conception
flexible lui permet d’être utilisé dans d’autres applications. Ainsi, dans une application e-mail,
les développeurs peuvent charger un plugin, analyser un e-mail qui permettrait aux politiques de
trier ou filtrer les messages e-mail dans une boîte de réception en fonction des préférences des
utilisateurs.

Mots clés:- découvrir les service, protocole d’interopérabilité, Internet du futur, Langage de
la politique, Middleware ZigZag

7

Contents

List of Figures iv

List of Tables v

Acronyms vii

1 Introduction 1
1.1 Motivation . 2
1.2 Contribution . 4
1.3 Thesis Structure . 5

2 Background 7
2.1 Brief history . 7
2.2 Popular Service Discovery Implementations . 9

2.2.1 Local Area Networks . 9
2.2.2 Large Scale Networks . 12
2.2.3 Critical Analysis . 16

2.3 Context Models . 16
2.3.1 Critical Analysis . 23

2.4 Architecture for Future Media Ecosystem . 23
2.4.1 The User Environment (UE) . 24
2.4.2 The Service Environment (SE) . 25
2.4.3 The Home-Box virtual Layer . 26
2.4.4 The Network Environment (NE) and the CAN Layer 26
2.4.5 Critical Analysis . 28

2.5 Summary . 29

3 Related Work 31
3.1 Existing Interoperability Solutions . 31

3.1.1 ReMMoC . 31
3.1.2 INDISS . 35
3.1.3 Z2Z . 37
3.1.4 Starlink . 38

i

Contents

3.1.5 Critical Analysis . 40
3.2 Existing Ontology-based Solutions . 41

3.2.1 CoOL . 41
3.2.2 COBRA-ONT . 43
3.2.3 SOUPA . 44
3.2.4 CONON . 45
3.2.5 Critical Analysis . 47

3.3 Summary . 48

4 ZigZag Middleware 49
4.1 Architecture . 51
4.2 Aggregation . 53
4.3 Evaluation . 54

4.3.1 Simulation Setup . 54
4.3.2 Simulation Results . 55

4.4 ZigZag integration in ALICANTE . 59
4.4.1 ZigZag at Service Registry . 59
4.4.2 ZigZag at HomeBox . 60

4.5 Summary . 61

5 Policy framework for context-aware personalization 63
5.1 Policy Framework . 65
5.2 Policy Engine . 67
5.3 Policy Language . 69

5.3.1 Policy Syntax . 70
5.3.2 Policy Condition . 70
5.3.3 Policy Action . 71

5.4 Policy Generator . 74
5.5 Towards better QoE . 76
5.6 Summary . 78

6 Conclusion 79
6.1 Ongoing and Future work . 80
6.2 Concluding remarks . 81

REFERENCES 91

APPENDIX I i

APPENDIX II v

ii

List of Figures

1.1 Motivation: Service Discovery in Heterogeneous Networks 3

2.1 Service Discovery Interaction . 8
2.2 Contextual Extension ORM . 19
2.3 Information and Data Model of UDC . 20
2.4 UDC CBIM Core View . 20
2.5 UDC CBIM - Identifiers . 21
2.6 ALICANTE Architecture . 24
2.7 ALICANTE User Environment . 25
2.8 ALICANTE Service Environment . 25
2.9 ALICANTE HomeBox . 26
2.10 ALICANTE Network Environment . 27

3.1 OpenCom Architecture . 32
3.2 ReMMoc Architecture . 33
3.3 ReMMoc API . 34
3.4 INDISS Architecture . 35
3.5 INDISS: Monitor Component . 36
3.6 INDISS: Parser Composer Component . 36
3.7 Z2Z Architecture . 38
3.8 Starlink Architecture . 39
3.9 CoOL Architecture . 42
3.10 CoOL: Aspect-Scale-Context Model . 42
3.11 CoOL: Aspect-Scale-Context Operation . 43
3.12 SOUPA Ontology . 44
3.13 CONON Architecture . 46
3.14 CONON Architecture: Smart Home . 47

4.1 Large Scale service Discovery issues . 50
4.2 ZigZag Middleware Architecture . 52
4.3 Use Case 1: Information craving . 56
4.4 Use Case 2: Time bound . 57
4.5 Use Case 3: Best of both worlds . 57

iii

List of Figures

4.6 Comparison: All 3 use cases . 58
4.7 ZigZag at Service Registry . 59
4.8 ZigZag component integration at Service Registry 60
4.9 ZigZag at HomeBox (simple mode) . 60
4.10 ZigZag at HomeBox (P2P mode) . 61

5.1 ZigZag middleware: need for delegation . 64
5.2 IETF Architecture . 66
5.3 Policy Framework Architecture . 68
5.4 Context model . 75
5.5 Policy Generator . 76
5.6 Policy Usage Example . 77

iv

List of Tables

2.1 SLP : Standard features . 10
2.2 UPnP : Standard features . 11
2.3 Bonjour : Standard features . 12
2.4 WSDD : Standard features . 12
2.5 UDDI : Standard features . 13
2.6 SSDS : Standard features . 14
2.7 JXTA : Standard features . 15
2.8 INS/Twine : Standard features . 16
2.9 Context models’ appropriateness indication . 23

4.1 Average translation time (in seconds) . 55
4.2 Simulation summary . 58

v

List of Tables

vi

Acronyms

API Application Programming Interface . 32

CF Component Framework . 32

CAN Content-Aware Network. .27

CIM Common Information Model . 66

CDN Content Delivery Networks . 26

CBIM Common Baseline Information Model . 18

DMTF Distributed Management Task Force . 66

DSL Domain Specific Language . 37

DHCP Dynamic Host Configuration Protocol . 11

DNS Domain Name System . 11

DAs Directory Agents . 10

DFA Deterministic Finite Automata . 37

EU End-User . 24

FI Future Internet . 1

HB Home-Box . 26

HD High Definition . 2

HTTP HyperText Transfer Protocol . 10

IETF Internet Engineering Task Force .65

FI Future Internet . 1

IMS IP Multimedia Subsystem . 28

IP Internet Protocol . 11

IPTV Internet Protocol Television. .28

IDL Interface Definition Language . 34

INS Intentional Naming System . 15

INR Intentional Name Resolver . 15

vii

Acronyms

IOC Information Object Class . 18

IANA Internet Assigned Numbers Authority .4

LAN Local Area Network . 9

MANE Media-Aware Network Element . 27

MPEG Moving Picture Experts Group . 17

MSL Message Specification Language . 37

MTL Message Translation Language . 37

MDL Message Description Language . 39

MPEG Moving Picture Experts Group . 17

NE Network Environment .26

NP Network Provider .27

NAT Network Address Translation . 14

OWL Web Ontology Language . 22

ORM Object Role Modelling . 18

PSL Protocol Specification Language . 37

QoE Quality of Experience . 2

QoS Quality of Service . 1

RDF Resource Description Framework . 17

RPC Remote Procedure Call . 33

RMI Remote Method Invocation . 34

SD Standard Definition . 2

SE Service Environment . 25

SM Service Manager . 26

SLA Service Level Agreement . 1

SLP Service Location Protocol . 10

SDP Service Discovery Protocol . 2

SDPs Service Discovery Protocols . 2

SR Service Registry . 28

SSDP Simple Service Discovery protocol . 11

SAs Service Agents . 10

SSDS Secure Service Discovery Service . 13

SOAP Simple Object Access Protocol . 10

viii

Acronyms

SMTP Simple Mail Transfer Protocol . 13

TCP Transmission Control Protocol . 4

UDP User Datagram Protocol . 4

UE User Environment . 24

UPnP Universal Plug and Play . 10

URL Uniform Resource Locator . 13

UDDI Universal Description Discovery and Integration . 13

URL Uniform Resource Locator . 13

UML Unified Modeling Language . 18

UDC User Data Convergence . 18

UUID Universally Unique IDentifier . 4

VCAN Virtual CAN . 27

VoD Video On Demand . 1

WSDL Web Service Description Language . 34

WSDD Web Service Dynamic Discovery . 11

XML eXtensible Markup Language . 10

ix

Chapter 1

Introduction

"Everything is a file"

–Linux Philosophy

Contents
1.1 Motivation . 2

1.2 Contribution . 4

1.3 Thesis Structure . 5

Since its design over 40 years ago, the Internet has been used as the medium and infrastructure
for information exchange by billions of users as well as by hundreds, even thousands of differ-
ent applications and services. Diverse applications like e-mails, e-commerce, secured remote
access, Video On Demand (VoD) and interactive video outline a very successful communication
approach in the large. However, the Internet has its fair share of limitations. Some of these
limitations include larger-scale service provisioning, management and deployment; facilities for
device and service mobility; support for better Quality of Service (QoS) and use of Service Level
Agreement (SLA) for improving service management and enhance security features. These lim-
itations are not new as the Internet was traditionally designed to interlink and access documents
over connected networks. Thus, there is a growing need to re-design at least partially the current
Internet’s architecture [AAB+11]. This, in turn, will enable future networks and services as well
as novel technologies to cope with new demands. Currently, several research frameworks all
over the world have started to work towards this objective, leading to a lot of ongoing research
to re-design the current Internet architecture [NSF10, FIP94, AKA06]. They are all working
towards a common goal, build the Future Internet (FI) architecture.

Future Internet is presently seen as a large scale infrastructure that can provide dependable
management, instantiation and interoperation among heterogeneous networks. These networks
support numerous users, devices and services and may depend on different communicating tech-
nologies. Thus, to empower interactions among different entities across networks the Future

1

Introduction

Internet should be information driven and rely on services. Furthermore, service consumers
should be able to use anytime, anywhere, remote services on any device regardless of their un-
derlying technology . Service Discovery as it turns out is a crucial initial step towards this
objective. However, the vast bulk of services primarily connected to the Internet have not been
designed to interact seamlessly with each other as they may rely on different Service Discov-
ery Protocols (SDPs). Therefore, to realize the future vision of anytime, anywhere, any device,
the discovery process should address the issue of protocol heterogeneity to enable future services.

Additionally, end users demand a better Quality of Experience (QoE) as well as personalized
services to cater to their unique needs [HK02]. This requires prior knowledge about users’
preferences, device capabilities and network characteristics. Even though contextualizing the
end users, i.e. creating and aggregating specific information characterizing their context, has
been very successful, current SDP’s have not been able to exploit such advantages. Therefore,
there is a need to combine the capabilities of service discovery with the advantages of context
information to enable highly sophisticated services customized to end-user needs. Towards this,
we believe that policies can be used to combine the capabilities of service discovery and context
information to enable customized services for the future. Furthermore, they can also be used to
provide dynamic and flexible management functionality that can deal with the increasing size
and complexity of proposed Future Internet architectures.

1.1 Motivation

To highlight our motivation, we present a computing scenario to emphasize on various complex-
ities that exist in large scale heterogeneous networks. The proposed example (see Figure 1.1)
has different heterogeneous networks connected to an overlay forming a large scale distributed
infrastructure. Each network uses the assistance of a gateway to connect to the overlay. As il-
lustrated, each network support different Service Discovery Protocol (SDP) on diverse devices.
Instances of services are advertised using contrasting SDPs making it difficult for clients to dis-
cover available services. This situation is aggravated, as these networks may host thousands
of users, services and devices simultaneously. Furthermore, a device is a heterogeneous entity,
having different display size, processing power, memory and network access capability. This
requires services to also adapt to different devices capabilities.

Moreover, user generated multimedia content and services using personal mobile devices
are gaining a lot of interest, indicating an increase in production and consumption of personal
multimedia content [BDS08] . In fact, End-Users may have different requirements and service
preferences. For instance, a user may want to view a High Definition (HD) video on a device
capable of playing only Standard Definition (SD) content; as End-User have the capability to
use diverse devices (mobile phone, tablet, laptop) to access available services. Indeed, devices
have different display capabilities and may support different audio/video codec other then the
ones needed to consume a particular service. This raises the need to adapt the content to meet
users’ current needs based on his/her current context or situation. Additionally, as multimedia

2

Motivation

Overlay

UPnP

Gateway

Gateway

Gateway

WS-D

Bonjour

UPnP

Service Provider

Service Provider

Service Provider

Service Provider

WS-D

Figure 1.1: Motivation: Service Discovery in Heterogeneous Networks

applications are resource consuming, device processing capability (CPU, memory) and network
conditions (bandwidth, bit rate, packet loss) may change at runtime due to varying application
requirements.

Given, the aforementioned complexities, it is difficult to anticipate and manage the runtime
behavior of multimedia services. Such runtime administration requires an integrated approach to
manage protocol interoperability, context gathering and utilization as well as content adaptation.
The work presented in this thesis takes this into account and proposes an alternate service discov-
ery approach that can discover services in large scale heterogeneous networks with the help of
ZigZag middleware [RBRN12]. The ZigZag middleware is designed in a modular way and can
be easily integrated with existing solutions. It aims to manage the heterogeneity of various SDPs
by integrating any existing interoperability system to translate, on the fly, one SDP to another in
the context of Future Internet. Furthermore, we also propose a policy language [RCB+12] that
enables us to manage different components of ZigZag at runtime. This, in turn, manages various
resources and enables discovery and consumption of highly scalable multimedia services. Fur-
ther, the policy language leverages on ontologies to enable context-aware service discovery in a
highly dynamic and distributed environment like the Future Internet.

3

Introduction

1.2 Contribution

This thesis proposes two contributions. Firstly, we propose a solution to seamless discovery
services in large scale networks with the help of a middleware. Furthermore, we show the appli-
cability and flexibility of our approach in large scale service infrastructure. Secondly, we propose
a policy language that enhances the middleware solution to provide service personalization and
runtime management.

Seamless service discovery
Today, a large number of services and content is available on the Web. A key challenge to
seamlessly access these services is to discover them regardless of the underlying technology
or devices. Service Discovery protocols enable devices to discover services without any prior
knowledge. However, devices rely on different SDPs making it difficult to discover all avail-
able services. Moreover, some protocols are designed for local networks, hence are not able to
cross network boundaries. Therefore, there is a need to address protocol heterogeneity to enable
seamless discovery of services. Furthermore, existing discovery approaches are designed with
a particular target infrastructure size in mind, regarding network size and number of consumers
and services. Our consideration of scale pertains to large size networks and global service in-
frastructures with thousands of users. Towards this, we rely on an infrastructure defined by a
large-scale European project ALICANTE [ALI13].

ALICANTE proposes key elements that provide support for large-scale service infrastructure.
These elements provide the criteria to examine the target infrastructure size and allow us to eval-
uate the ability of our discovery approach to cope with large scale networks. In such large-scale
service infrastructure the communication overhead of discovery can reduce the effective use of
network resources to an unacceptable level. Consequently, the discovery system should be able
to cope with a large amount of consumer requests in a consumer friendly service infrastructure.
Thus, we need to consider different strategies that optimize the communication overhead and
provide an interoperable solution for large-scale networks like the Future Internet. To this end,
we propose the ZigZag middleware. The ZigZag middleware solution, instantiate any existing in-
teroperability system to translate, on the fly, one SDP to another. Additionally, it also aggregates
service information with the help of polices, thereby reducing number of messages on the wire.
Chapter 4 highlights in details the different components and advantages of ZigZag middleware.

Context-aware personalization
Over the last few years, the improvements in technologies, has led to a massive increase in user
generated content and services. These services need to take full advantage of device character-
istics (display, CPU, memory) to provide users with best QoE. Furthermore, services should be
aware of users current situation and take into account his/her preferences. Towards this, ontolo-
gies provide a promising solution by supporting formal, explicit, machine-processable semantic
definition with support for further knowledge discovery. The Knowledge discovery enables ser-
vices to be personalized. Further, it brings benefits for users by matching his stated and learned

4

Thesis Structure

preferences. However, some of the existing SDPs do not support context-awareness. In order to
enable these protocols to utilize context information, we propose a policy language that can com-
bine the advantages of context information with service discovery to provide highly customized
services. Chapter 5 presents in details the different components of the policy framework, the
language syntax and its usage.

1.3 Thesis Structure

To efficiently introduce our work, the identified issues and our contribution to address them, this
document is structured as follows:

Chapter 2 introduces the background to our work. To facilitate the discussion we have sep-
arated it into three parts. The first part gives a brief overview of a service and describes the
process of service discovery. It also describes different discovery modes used by current service
discovery protocols. Further, it shows the classification of SDPs and highlight existing issues.
The second part presents six different context models based on their data structure. It con-
cludes by asserting how ontology based models provide the best solution for context modeling
in ubiquitous computing. The third part describes ALICANTE, an architecture for Future Me-
dia ecosystem. It presents key entities proposed by ALICANTE and highlights their advantages
and identifies some limitations. Finally, it concludes by describing the need for interoperable
context-aware service discovery in large scale heterogeneous networks.

Chapter 3 discusses the current state of the art. In order to simplify the understanding for
the reader, we have divided it into two parts. The first part describes different solutions that
address protocol interoperability during service discovery. Furthermore, it compares the features
of each of the solutions. And finally, concludes by describing how generative based solution
can be used to provide transparent interoperability during service discovery. The second part
discusses ontology based solutions and concludes by describing how the concept brought forward
by CONON can be utilized in our solution.

Chapter 4 presents our first contribution, the ZigZag middleware. To highlight the importance
of our work, it discusses the need for ZigZag middleware approach for service discovery in
large scale networks. It then describes the ZigZag middleware architecture and highlights the
relevance of aggregation for service discovery in large scale networks. Furthermore, it presents
the evaluation of ZigZag approach with the help of simulations. And finally, it describes the
integration of ZigZag middleware in ALICANTE.

Chapter 5 presents our second contribution, the Policy framework. To show the importance of
the policy framework, it describes the need for policy in ZigZag middleware. It then presents the
policy framework architecture. Furthermore, it introduces our policy language and highlights its
advantages. It also describes how we use the policy framework to generate context-aware policy

5

Introduction

conditions. And finally, it describes how we can use the policy language to share and utilize
resources in large scale networks.

Chapter 6 concludes this thesis and offers a perspective for future work.

6

Chapter 2

Background

"Mistakes are the portals of discovery"

–James Joyce

Contents
2.1 Brief history . 7

2.2 Popular Service Discovery Implementations 9

2.2.1 Local Area Networks . 9

2.2.2 Large Scale Networks . 12

2.2.3 Critical Analysis . 16

2.3 Context Models . 16

2.3.1 Critical Analysis . 23

2.4 Architecture for Future Media Ecosystem 23

2.4.1 The User Environment (UE) . 24

2.4.2 The Service Environment (SE) . 25

2.4.3 The Home-Box virtual Layer . 26

2.4.4 The Network Environment (NE) and the CAN Layer 26

2.4.5 Critical Analysis . 28

2.5 Summary . 29

2.1 Brief history

A service is defined as a hardware/software resource that can perform one of more functions for
an user/application or other devices over a network. Service Discovery is the process of finding
the location of an entity in the network that provides access to its available services. The process

7

Background

of Service Discovery is accomplished with the help of two basic entities namely; ❶ the Service

Consumer and ❷ the Service Provider. Service Consumer represents the entity that is interested
in finding and using the service (also called Client or User agent). While on the other hand,
Service Provider represents the entity that hosts and offers various services (also called Server

or Service agent). However, to cater to a larger audience, a Service Provider sometimes rely on
a third entity known as Service Registry (also called Directory or Directory agent). Figure 2.1
illustrates the interaction among the three entities. Furthermore, Service Discovery also aims

Service
Consumer

Service
Provider

Service
Registry

Service Request

Service Response

Re
gis

te
r S

er
vic

eAc
k

Search Request

Search Response

Figure 2.1: Service Discovery Interaction
[CHRT04]

to make the devices discovering the services intelligent so that they may find available services
without any previous knowledge of either their location or their characteristics. To this end,
Service Discovery supports two modes of operation, namely; active and passive.

Active
In Active service discovery mode, devices find services by sending a request on the network
and monitoring its response. If the address of the services is known in advance then unicast

communication is used else the request is sent by multicast [Dee88] or broadcast [Mog84].

Passive
In Passive service discovery mode, devices find services by listening for service advertisement
on a dedicated port on the network. The passive mode uses either multicast or broadcast.

These discovery modes are used by almost all service discovery protocols. However, some
protocols support discovery process in both modes, while others rely on only one of them. These
modes are configured to optimize application response time for different networks. As mentioned
before, SDPs rely on Service Registry to cater to a larger audience. Furthermore, it is also used to
organize and store service information. This enables other entities (service consumer or Service

Provider) to use it to search or to publish their service information. Depending on the required
network configuration, the Service Registry can be used in one of the follows modes:

8

Popular Service Discovery Implementations

Centralized
In the centralized approach, a single entity contains all service registry entries. This model
follows a traditional client/server approach where the registry acts as a server. The advantage
of having one global registry is that, the management of distributed resources is done centrally.
Furthermore, the control of authority and quality is easily managed, and service description is
consistence in style and presentation. Moreover, authorization and security issues are handled
quite easily as they are administered from a central point. The disadvantages however is that,
this approach does not scale very well as there is a limit for the number of resources which are
managed and registered in the global registry.

Decentralized
In the decentralized approach, there are only local registries, one for each administrative domain.
The advantage of this approach is that the management of a central registry is not required any-
more. That implies that centralized administration is not necessary as it is done locally by each
registry. Issues regarding security, complexity and authorization are managed for each domain
independently.

Hybrid
The hybrid approach has the benefit of shared management and administration of local and global
registries. The local registries are responsible for the management of their own resources but the
global registry is responsible for high-level management. Furthermore, when a service is absent
in the local registry within the administration domain, a request is sent to the global registry
inquiring where to find this particular service. It (local registry) then can directly contact the
responsible registry. Issues such as authorization, security and complexity are easily handled.
With respect to scalability, this approach scales well up to the limit of storage capacity of the
global registry.

The next section reviews some well known service discovery protocol implementations and
highlights their standard features.

2.2 Popular Service Discovery Implementations

Service Discovery Protocols are usually designed taking the underlying network topology into
account. To optimize service discovery for different networks they are broadly classified as SDPs
for either Local Area networks or Large Scale Networks.

2.2.1 Local Area Networks

A Local Area Network (LAN) is an interconnection of devices in a limited area such as a home,
school, computer laboratory [KPS02]. In a LAN, devices discover services without any prior
knowledge about their location or characteristics using the following SDPs:

9

Background

Service Location Protocol (SLP)
The Service Location Protocol (SLP, srvloc) [GPVD99] is a service discovery protocol that al-
lows computers and other devices to find services in a local area network without prior config-
uration. SLP has been designed to scale from small, unmanaged networks to large enterprise
networks. It has been defined as a Standards Track document [Gut02]. SLP is a binary packet-
oriented protocol. Most packets are transmitted using UDP [Pos80], but TCP [APS99] can also
be used for the transmission of longer and reliable packets. Because of the potential unreliability
of UDP, SLP repeats all multicasts several times in increasing intervals until an answer has been
received. All devices are required to listen on port 427 for UDP packets, Service Agents (SAs)
and Directory Agents (DAs) should also listen for TCP on the same port. SLP can be configured
for both Active and Passive Service Discovery modes. Some other standard features supported
by SLP are highlighted in Table 2.1.

Service Location Protocols (SLP)

Type of Network –Local Network
Architecture –Centralized

Storage of Service information
–On DA
–On SA

Search Methods –Both active and passive discovery
Event notification —
Service description –Uses Service templates registered with

IANA
Service selection and usage —
Fault tolerance and mobility –Service Registration Lifetime must be re-

freshed or they expire.

Network Scalability
–More DA
–scope mechanism for service grouping

Security –Optional authentication of DA and SA (us-
ing digital signatures)

Table 2.1: SLP : Standard features

Universal Plug and Play (UPnP)
Universal Plug and Play (UPnP) initially promoted by Microsoft, is currently maintained by the
UPnP Forum founded in 1999. The first version of the UPnP device architecture was released
in 2000 [PFK+08]. The architecture is made up of six functions namely; Addressing, Discov-

ery, Description, Control, Eventing and Presentation. Using these functions UPnP provides a
decentralized, open networking architecture that uses TCP/IP and Web technologies (HyperText
Transfer Protocol (HTTP) [FGM+99] ,Simple Object Access Protocol (SOAP) [BEK+00] /
eXtensible Markup Language (XML)) to enable seamless networking in managed and unman-
aged small networks. However, to discover and announce the presence of services the UPnP

10

Popular Service Discovery Implementations

Discovery function relies on Simple Service Discovery protocol (SSDP). Using TCP port 2869
or UDP port 1900, SSDP allows devices to advertise its services to Control Points. Control Points

part of the Control function, acts on the service consumer’s behalf, catch the interesting service
announcements and can also initiate queries based on service consumer’s needs. Table 2.2 high-
lights the standard features.

Universal Plug and Play (UPnP)

Type of Network –Enterprise Network
Architecture –Decentralized
Storage of Service information –On every control point
Search Methods –Both Active and Passive discovery for find-

ing services.
Event notification –Eventing Mechanism
Service description –XML description, based on UPnP template

language.
Service selection and usage –Usage message encapsulated in SOAP.
Fault tolerance and mobility –Expiry time for advertisement Device un-

available notification.
Network Scalability —
Security —

Table 2.2: UPnP : Standard features

Bonjour
Bonjour (formerly Rendezvous) is a device and service discovery protocol developed by Apple
computers. It relies on multicasting to provide service and device discovery among computers,
electronic appliances, and other networked devices (e.g., printers, fax machines, etc.). Bonjour
uses the Internet Protocol (IP) and also has the capability of automatically assigning IP addresses
to networked devices, even without the help of a Dynamic Host Configuration Protocol (DHCP)
server. Bonjour core is entirely based on the multicast Domain Name System (DNS) service dis-
covery – mDNS-SD [CK13]. Bonjour [Che11] in an ad hoc network can resolve service names,
in addition to host names, to IP addresses without relying on DNS servers [Dro97]. In mDNS-
SD, clients multicast their DNS-like queries specifying the service type they are looking for, the
domain where the service resides, and the preferred communication protocol. Service providers
respond to those queries through DNS service records [GVE00] [Moc87]. See Table 2.3 for
some other standard features.

Web Service Dynamic Discovery (WSDD)
WSDD [MK09] is a service discovery protocol co-developed by BEA Systems, Canon, Intel,

11

Background

Bonjour

Type of Network –Enterprise Network.
Architecture –Centralized.
Storage of Service information –Service Producer.
Search Methods –Both active and passive discovery.
Event notification —
Service description –name/value pairs.
Service selection and usage –mDNS query.
Fault tolerance and mobility –update mDNS records.
Network Scalability —
Security —

Table 2.3: Bonjour : Standard features

Microsoft, and webMethods, Inc. It defines a multicast request which is used to discover a set
of endpoints that match the request. A request is basically a XML message called probe which
contains the search criteria to find a service. WSDD uses the well known network multicast port
3702. However, it has an advantage over other protocols, such as SLP, i.e., it can dynamically
switch from active to passive mode and vise versa. Table 2.4 highlights the other standard
features supported by WSDD.

WS-Dynamic Discovery (WS-DD)

Type of Network –Enterprise Network
Architecture –Centralized
Storage of Service information –On Target Service or Discovery Proxy
Search Methods –Both Active and Passive discovery for find-

ing services.
Event notification – Using other WS-* standards
Service description –XML description.
Service selection and usage –Usage message encapsulated in SOAP.
Fault tolerance and mobility –Hello messages are used as update.
Network Scalability —
Security – Using other WS-* standards

Table 2.4: WSDD : Standard features

2.2.2 Large Scale Networks

A Large Scale Network is an interconnection of networks over a large geographical area, such
as the Internet. The remainder of the section describes some SDPs used to discover services in

12

Popular Service Discovery Implementations

such networks.

Universal Description Discovery and Integration (UDDI)
UDDI [CHRT04] is a cross-industry initiative that aims at creating a global, platform-independent,
open registry standard for distributed Web-based publication and discovery of Web services. A
UDDI registry allows a provider to register information about itself and the services it provides.
Business information might include a company name, contact information, and description. Be-
sides a classical keyword-based search, a UDDI registry can be browsed according to three dif-
ferent modalities, namely through white pages (Company contact information, such as name, de-
scription of the business etc.), yellow pages (businesses categorized by standard taxonomies) and
green pages (the document with technical information about exposed services as well as pointers
to various files and Uniform Resource Locator (URL) [BLMM+94] - based discovery mecha-
nisms). UDDI registries allow any protocol to be associated with a service. The most common
Web service protocols (i.e., HTTP, SOAP, and Simple Mail Transfer Protocol (SMTP) [Kle08])
are pre-registered in UDDI registries as tModels. A tModel describes a technical model rep-
resenting a reusable concept, such as an abstract service type, a protocol used for services to
communicate, a taxonomy system, etc. See Table 2.5 for some other standard features.

Universal Description Discovery and Integration (UDDI)

Type of Network –large scale network.
Architecture –Centralized.
Storage of Service information –Service Producer.
Search Methods –Both active and passive discovery.
Event notification —
Service description –XML description.
Service selection and usage –Usage message encapsulated in SOAP.
Fault tolerance and mobility –Lifetime for service registration.
Network Scalability –Multiple shared hierarchies.
Security –UDDI security API (SSL).

Table 2.5: UDDI : Standard features

Secure Service Discovery Service (SSDS)
SSDS [CZH+99] was designed and developed by the Computer Science Division, University of
California, Berkeley, in 1999. The architecture also includes SDS Service, Certificate authority

and Capability Manager apart from the Service Consumer and Service Provider. SDS Servers are
DAs, and form a tree hierarchical structure. Each SDS Server accumulates service descriptions
from services or other SDS servers (also called Child SDS servers) using Bloom filters [Blo70].
The Bloom Filters basically aggregates the service Description using bit-wise OR and propagates
the aggregated Bloom filters to its parent SDS servers. Certificate Authority is a trusted central
component in the architecture which is responsible for verifying the digital signatures used to

13

Background

establish the identities of different components in the SDS architecture. Capability Manager

uses access rights (capabilities) that control the visibility of services to the service Consumer.
Capabilities are signed messages, indicating that a particular class of service descriptions can be
discovered by the specific service consumer. Table 2.6 highlights some other standard features.

Secure Service Discovery Service (SSDS)

Type of Network –Wide Area
Architecture –Hierarchical structure of SDS servers.
Storage of Service information –SDS Servers

Search Methods
–Passive Discovery of SDS Servers
–Client queries are routed through the hierar-
chy

Event notification —
Service description –XML aggregation of service description us-

ing Bloom–filtered crossed terminals (BCT)
Service selection and usage —
Fault tolerance and mobility –Soft state of service announcements.

Network Scalability
–Multiple shared hierarchies.
–Shedding server load by spawning on a
nearby node.

Security –Authentication of endpoint via digital signa-
ture, privacy by encryption and access rights
via capabilities.

Table 2.6: SSDS : Standard features

JXTA
JXTA is a P2P platform based on a set of services and protocols to develop P2P applications.
JXTA was originally created by Sun Microsystems [TAA+03] in 2001 and since has been an
open-source project. Conceptually, JXTA provides a distributed model for peers to discover each
others and interact, and an infrastructure to establish and manage routes and communications
between peers across heterogeneous large-scale networks. Peers on top of the JXTA platform
operate on an overlay network which provides network transparency. JXTA has several standard
components: advertisements, peers, peer groups, pipes, six basic protocols and strong security
features. JXTA relies on XML [BPSM+97] for description of its resources, protocols and com-
ponents, called advertisements. Therefore, any system that can parse XML can potentially use
JXTA. Peers in JXTA are divided in two classes: edge peers, which are normal user peers, of-
ten characterized by unstable behavior or lack of resources, and super peers. Super peers are
further divided into relay peers that enable peers interaction over firewalls and Network Address
Translation (NAT) boxes as well as rendezvous peers. The latter acts as coordinator and stores
advertisements of the dependent edge peers. Rendezvous peers are almost classical super peers

14

Popular Service Discovery Implementations

and create a further overlay on the basic JXTA network. Additionally, the system provides vir-
tual communication channels, called pipes, to send messages and data. Pipes are asynchronous,
unreliable and unidirectional. The pipes offer two modes of communication: point-to-point and
propagation. The propagation pipe defines a connection that has one output and several inputs.
Table 2.7 highlights the other standard features.

JXTA

Type of Network –Wide–area (P2P)
Architecture –Virtual Network Overlay
Storage of Service information –Rendezvous peers
Search Methods –Loosely consistent DHT combined with a

limited range rendezvous walker
Event notification —
Service description –XML
Service selection and usage —

Fault tolerance and mobility
–index replication among resolvers.
–periodic updates and heartbeat among ren-
dezvous.

Network Scalability
–Scalable distributed hash indexing.
–No frequent updates as DHT is loosely con-
sistent.

Security
–Certificate Authority based trust model.
–Client-server authentication via digital sig-
natures.

Table 2.7: JXTA : Standard features

Intentional Naming System (INS)/Twine
INS/Twine [BBK02] was developed by the MIT Laboratory for Computer Science in 2002 as
an enhancement of INS [AWSBL99]. INS/Twine acts similarly to INS. However, it uses the
Chord [SMK+01] indexing scheme at the Intentional Name Resolver (INR) overlay for better
performance and scalability. INRs form a chorded ring that follows the Chord specification. The
INR network address is known to all clients and service providers. A service provider contacts
an INR to register its name-specifier and service information. This INR splits the name-specifier
into strands (path from root to leaves), generates a 128-bit numeric key for each strand using
the Message Digest (MD5) [Riv92] hash algorithm, and uses Chord to distribute these keys in
appropriate INRs along with the information to which the key refers. For a better tolerance for
INR failures, a number of replicas of this information are distributed among INRs. Table 2.8
highlights standards features supported by INS/Twine.

15

Background

Intentional Naming System (INS)/Twine

Type of Network –Large and dynamic environments.
Architecture –Overlay network of resolvers which form a

DHT.
Storage of Service information –Each resolver holds a range of keys and their

values.
Search Methods –Service discovery messages are routed in

O(log N) hops.
Event notification —
Service description –Hierarchies of attribute value pairs.
Service selection and usage —

Fault tolerance and mobility
–Each strand is stored on multiple nodes.
–Hybrid state management scheme.

Network Scalability –Hash-bashed partitioning of resource de-
scriptions among resolvers.

Security —

Table 2.8: INS/Twine : Standard features

2.2.3 Critical Analysis

In the above section, we reviewed some of the well known service discovery protocol implemen-
tations by both academia and industry. Some of these protocols have been very successful in
local area networks while others have shown great promise for discovery in the large. However,
during the review process a common pattern started to emerge. We noticed that, all the above
protocols lack support for interoperability. As mentioned previously, we think that FI is a large
scale heterogeneous network supporting different protocols simultaneously. Thus, making these
protocols interoperate with each other will be highly advantageous for future services. It is worth
mentioning that, even though some protocols use XML to describe their service information, they
rely on their different schema and proprietary techniques, making them difficult to interoperate
with each other as they are.

2.3 Context Models

Context is a generic term that, until now, has not been given a clear standard definition. Nev-
ertheless, in the field of ubiquitous computing, several definitions have been provided in the
literature [CK+00, Pas98, SAW94, Sch95, SBG99]. However, a very well adopted definition
proposed by Dey [DAS01] defines context as any information that can be used to characterize the
situation of an entity. An entity can be a person, place, or an object that is considered relevant to
the interaction between a user and an application, including users and applications themselves.
Once context information is identified, an important task is to define how information will be use-
ful for applications. To this end, a generic definition adopted by research community states that

16

Context Models

a system is context-aware if it uses context to produce information and / or services relevant to
the user. The relevance depends on the tasks requested by the user. However, to be processed by
computational entity, context information should be formally described in a contextual model.
The authors [SLP04], classified context models based on the data structure used to represent
and to exchange context between the system entities. They identified six context modeling ap-
proaches, namely; key-value models, Markup scheme models, graphical models, object-oriented
models, logic-based models and ontology-based models. These models are briefly explained and
illustrated through examples in the following section.

Key-value model
One of the simplest and well used context model is the key-value model. In the key-value model
(also known as flat model) context information is represented as key-value pairs (name of the
context information and its actual value). The simplicity of this model has led to its adoption in
several systems. Active Badge system [SAW94] used it to exchange context information format-
ted as environment variables, while Context Toolkit [DAS01] uses it to manage context widgets.
For instance, in Context Toolkit, each widget represents a state composed of a set of parameters
characterizing the context information. Furthermore, it is also used to represent the associated
behavior so that it can notify the applications of variation in its parameters. For example, in Con-
text Toolkit, the state of IdentityPresence widget models the presence information using
three key value pairs: the managed location, the identifier of the last detected user, and the time

when the detection occurred. To highlight the associated behavior feature, the widget notifies
the application about the arrival or departure of an user through the aforementioned key-value
pairs. The IETF Media Feature Set standard [Kly99] also uses the key-value model to describe
the terminal characteristics and user preferences. However, the context information is described
and represented as boolean expressions.

Markup scheme model
The models are characterized by a hierarchical data structure. The context information is orga-
nized into elements identified by their tags, which are associated with attributes and contents.
Recursively, an element can itself contain other elements. However, to include elementary con-
straints and relationships among elements W3C introduced Resource Description Framework
(RDF) [LS+99]. The markup scheme model is often used for defining profile information (User,
device). One of the well known markup scheme model is the GUP [ETS11b, ETS11c, ETS11d]
defined by the 3GPP which uses the W3C XML Schema [Tho04, BMC+04] for harmonizing
the usage of user-related information coming from different entities. The standard does not
impose any classification of the information to be included in the profile. The Moving Pic-
ture Experts Group (MPEG) defines two standards based on markup scheme model to ensure
multimedia interoperability namely; the MPEG-7 [MKP02] and the MPEG-21 [BDD05]. The
MPEG-7 standard provides tools for describing the multimedia resources. Its description in-
cludes various information on the multimedia content such as its classification, creation (title,
creators, etc..), usage (history of use, copyright, etc..), storage (format, encoding, etc..), as well
as structural aspects (spatial components, temporal or spatio-temporal content), conceptual as-

17

Background

pects (objects, events, etc..) or some low-level characteristics (colors, textures, etc.). Thanks to
these descriptions, MPEG-7 allows multimedia content to index resources strongly based on the
content. Furthermore, it improves the search and discovery functions. On the other hand, the
MPEG-21 standard allow users to access, consume, share and manipulate multimedia content
in an efficient, transparent and interoperable way. To be precise, the standard defines an open
architecture that covers the entire distribution and consumption chain of multimedia content.

Graphical model
Unified Modeling Language (UML) is one of the most used generic graphical modeling tool. It
can very well be used to model context information graphically. The context entities and their
processing are represented as UML diagrams (class diagram, use case diagram, sequence dia-
gram, etc.). A common example used to highlight the power of UML is the graphical modeling of
air traffic control [BKE03]. However, to showcase the importance of graphical models to model
context information the authors [HIR03] extended the Object Role Modelling (ORM) [HMM08]
to allow facts types to be categorized according to their persistence and source. In ORM, the ba-
sic modeling concept is the fact, and the modeling of a domain using ORM involves identifying
appropriate fact types and the roles played by different entities. Facts are classified as either static
or dynamic. The latter ones are in turn classified as profiled, sensed or derived. The strengths
of the graphical models is their efficiency in representing the structure of context information.
As illustrated in Figure 2.2, the facts, roles and constraints annotations of ORM are extended to
capture:

• Different classes of context (static facts or dynamic facts that are in turn classified as pro-
filed, sensed or derived).

• Histories: by representing the start and end time as roles that participate in all uniqueness
constraints of the fact type.

• Dependencies: by representing the relationship between facts by the binary, transitive de-

pendOn relation.

• And quality: by associating facts with quality indicators such as accuracy and certainty.

Object-oriented model
This modeling approach encapsulates the representation and processes details of context entities
(such as location, identity, etc.) as context objects and provides well-known interfaces to access
them. The advantage of using such an approach in context modeling is to benefit from the
full power of the object oriented approach (e.g. encapsulation, inheritance, reusability). User
Data Convergence (UDC) [ETS11e] is such example of an object-oriented model standardized
by 3GPP. This model denotes an abstract formal representation of entity type, including their
properties and relationships. Furthermore, it is also used to represent the operations that can be
performed on them as well as their related rules and constraints.

As illustrated in Figure 2.3 the UDC information model infrastructure is based on the Common
Baseline Information Model (CBIM) [ETS11a, ET11]. CBIM describes the basic Information

18

Context Models

Device
(id)

Device Type
(code)

is of type
s

n-ary ORM Fact Type
ORM Entity Type ORM Entity Type

Person
(name)

Device
(id)

permitted to use

0

Person
(name)

Location
(name)

located at

M

Person
(name)

Activity
(name)

engaged in

[]

Person
(name)

Location
(name)M

Production
Time

(timestamp)
Freshness Accuracy StandardError

(nr)+

located in

st
at

ic
fa

ct
 ty

pe
pr

ofi
le

d
fa

ct
 ty

pe
se

ns
ed

fa

ct
 ty

pe

Device
(id)

Location
(name)

located at

M

Person
(name)

located at

M

de
riv

ed

fa
ct

 ty
pe

te
m

po
ra

l
fa

ct
 ty

pe

Person
(name)

Activity
(name)

engaged in

[]

Location
(name)

located in

M

fa
ct

de
pe

nd
en

cy

Qu
al

ity
an

no
ta

tio
n

Figure 2.2: Contextual Extension ORM

Object Class (IOC) of UDC which constitutes the baseline for any given application. Moreover,

19

Background

Figure 2.3: Information and Data Model of UDC

CBIM also provides support for Subscription, Service Profile, End User, Identifier, End User
Group and End Device. The UML representation of the CBIM Core View and Identifiers are
shown in Figure 2.4 and Figure 2.5.

Figure 2.4: UDC CBIM Core View

20

Context Models

Another example that uses object-oriented models is the Hydrogen project [HSP+03], their
objective is to allow context sharing in a peer-to-peer manner between devices located in the
same space, via WLAN, Bluetooth, etc. The Hydrogen project distinguishes between the lo-
cal context (knowledge about own device) and the remote Context (knowledge about other
device). Both local and remote context are modeled as context objects related to the super-
class ContextObject. Extensibility is ensured by means of specialization. The superclass
ContextObject is then extended by different context types such as LocationContext
and DeviceContext. Each context type object has to implement the methods toXML() and
fromXML() from the ContextObject class in order to enable context sharing through XML
streams.

Figure 2.5: UDC CBIM - Identifiers

Logic-based model
Logic-based models define context information as facts, expressions and rules. This formal
way of representation allows the model to be used for high-level reasoning and inference. Fur-
thermore, the context information can be easily added to, modified and deleted from the logic-
based system depending on changing facts derived from the system rules. Formalizing Con-
text [McC93, MB98] was one the early works that modeled context information based on logic.
The authors introduced context as abstract mathematical entities with properties useful in artifi-
cial intelligence. In fact, the aim was to allow simple axioms for common sense phenomena, e.g.
axioms for static blocks world situations, to be lifted to context involving fewer assumptions,
e.g. to contexts in which situations change. Further, they also mention various ways of generat-
ing new context information from old one by specialization (time or place or subject matter or
context of a conversation etc.). Towards this, they use a simple assertion formula ist(c, p), that
asserts the proposition p is true in the context c.

21

Background

Ontology-based model
Ontologies were originally defined in philosophy as the study of the nature of being, their ex-
istence or reality. Furthermore, they were also used to describe the basic categories of being
and their relations. In computer science however, they are used to represent context information.
Ontologies provide a way to represent formal systems information by using concepts, attributes
and relations with the help of different languages namely; Ontolingua [G+93], LOOM [MB87]
and Web Ontology Language (OWL) [MVH+04]. With the help of these languages ontologies
has been heavily used in the following domains [GL02]

• knowledge sharing and exchange
Ontology provide a common vocabulary which can be used by different entities.

• Logic-based reasoning and deduction
Ontologies can be used to deduce implicit knowledge based on logic rules.

• knowledge re-use
general usage of ontologies, such as ontologies describing temporal or spatial concepts,
can be further re-used when defining an ontology for a specific domain.

The authors [SLP04], also evaluated the aforementioned context models based on a set of
requirements that they believe a model should ideally have:

1. distributed composition (dc),

2. partial validation (pv),

3. richness and quality of information(qua),

4. incompleteness and ambiguity (inc),

5. level of formality (for), and

6. applicability to existing environments (app).

Distributed composition is a requirement that originates with the use of context information in
ubiquitous computing. Since computing is distributed, so is the gathering and use of context.
This feature is important due to lack of a central entity responsible for the creation, deployment
and maintenance of data and services. Partial validation originates in the previous requirement.
If the gathering and use of context is distributed, complete knowledge cannot be assumed for any
given device, hence it should be possible to validate part of a structure. Preferably, it should be
possible to support indication of richness and quality of information, since richness and quality
of information varies over time. Further, the model should also support incompleteness and

ambiguity of information. Level of formality covers the need for providing interpretations of
terms used in describing context. That is, it should allow for meta-level descriptions of the
terms used. Finally, applicability to existing environments means that it should be suitable for
whatever infrastructure already exists for ubiquitous computing. The results of their evaluation
is summarized in Table 2.9

22

Architecture for Future Media Ecosystem

Models / Requirements
distributed
composition

partial
validation

quality of
information

incompleteness
and ambiguity

level of
formality

applicability

Key-Value Model - - - - - -
Markup scheme Model + ++ - - + ++
Graphical Model - - + - + +
Object-oriented Model ++ + + + + +
Logic-based Model ++ - - - ++ -
Ontology-based Model ++ ++ + + ++ +

- absent + partially present ++ fully present

Table 2.9: Context models’ appropriateness indication

2.3.1 Critical Analysis

In the above section, we briefly reviewed six context modeling approaches based on their data
structure. The simplicity of the key value data structure facilitates the management of context
information. Unfortunately, its lack of expressiveness prohibits any deduction from the consid-
ered context information and its flat structure does not support the relationship definition among
parameters. Furthermore, the absence of data schema and meta-information on the considered
context makes this type of models very difficult to reuse. Markup based models provides partial
validation since they are defined by schemas. However, like the key-value models they suffer
from information ambiguity, as they do not support relationship definition among parameters.
The main drawback of object-oriented models is the lack of formality, since information is en-
capsulated. On the other hand, they provide easy distribution, allow each object to validate itself
and can be integrated directly into existing object-oriented systems, although they may be heavy
on resources. The strengths of the graphical models are their efficiency in representing the struc-
ture of context information. Further, they are also intuitive and easy to integrate in an UML
model for the rest of the system. However, they present a low level of formalism, as they are
commonly used for human structuring purpose. For logic-based models, the level of formality is
extremely high and values can be distributed, but they are not suited for describing incomplete-
ness, ambiguity, or quality of information. Towards this, the Ontology based model provides
an explicit conceptualization description of data structure and semantics. Thus, ontologies are
perceived as a promising tool towards adequate description and representation of context data.

2.4 Architecture for Future Media Ecosystem

The ALICANTE Project propose an open and modular architecture to support the easy creation
and deployment of a networked Media Ecosystem. Towards this objective, it groups key actors
into several domains called environments (User, Network, Service). Furthermore, to facilitate
cross domain interaction two novel virtual layers are considered. Utilizing the combined features
of environment and layers, it aims to provide Content-awareness to the Network Environment;
Network- and User Context -awareness to the Service Environment, and adapted services/content
to enable enhanced QoE and better service provisioning in order to benefit all involved actors.

23

Background

Figure 2.6: ALICANTE Architecture

The remainder of this section gives an overview of the proposed ALICANTE architecture.
As illustrated in Figure 2.6 ALICANTE aims to achieve a managed media ecosystem leveraging
the combined feature of environments and layers. Each of the environments and the two vir-
tual layers: the Home-Box virtual layer and the Content-Aware Network layer are explained as
follows:

2.4.1 The User Environment (UE)

The User Environment (UE) permits End-User (EU) to consume and/or generate content and
services. It also allows the EU to access different services provided by the Service Environment.
As illustrated in Figure 2.7 the EU devices connect to a virtual service called the Terminal system.
This virtual service is hosted on the users’ residential gateway (HomeBox) and helps the EU to
overcome some of its limitations. The Terminal system enables the EU to switch between several
roles, such as Content and Service Consumer, provider or Manager. However, to achieve this
object the EU has to have a defined profile called the User Profile. The User Profile is made
up of two parts consisting of static and dynamic parameters. The static part consists of users
information including his/her likes and dislikes and other service preferences, while the dynamic
part relies on QoE and QoS monitoring values.

24

Architecture for Future Media Ecosystem

Figure 2.7: ALICANTE User Environment

2.4.2 The Service Environment (SE)

Figure 2.8: ALICANTE Service Environment

The Service Environment (SE) offers an open service provisioning platform for both EUs and
Content providers [LZL+11]. Furthermore, it is also provides functionalities to manages the ser-
vice life-cycle (creation, provisioning, adaptation, delivery) during its lifetime. The sole reason
to promote an open service provisioning platform is to take advantage of the available context
information. To this end, the SE provides context-aware and network-aware services. To enable
the ∗-ware services the SE has distributed its functionality among two planes, namely; the man-

agement and control plane and the data plane. The management and control plane is responsible
to gather and process context information from the EU(User Profile) and network (Monitoring
tools). While, the data plane utilizes the context information to adapt the service/content accord-
ing to EUs and network preferences. In addition to the aforementioned functionalities the SE
also provides an End-to-End integrated Service management. As illustrated in figure 2.8 other
functionalities supported by the SE include service composition, security and privacy.

∗Content & Context

25

Background

2.4.3 The Home-Box virtual Layer

Figure 2.9: ALICANTE HomeBox

The Home-Box (HB) is a new media-centric Home Gateways having advance features like
service provisioning, content caching, context management, service adaptation, content redistri-
bution, user/service mobility and security [SCW+11]. However, to realize these advance features
the HB needs to interact with two environments; the User and Service environment. Towards
this, ALICANTE introduces a new virtual layer called the Home-Box layer. As illustrated in
Figure 2.9 the virtual HB layer forms an interconnected overlay of HBs capable of provisioning
both services and content. This virtual HB layer promotes user generated services among HBs
in a flexible and optimized way. Furthermore, the HB supports unicast/multicast service delivery
modes using peer-to-peer technology.

The main motivation to use P2P is to leverage the already deployed and participating HBs. These
HB support disk caching, content uploading capabilities and distribution of popular content just
like existing Content Delivery Networks (CDN)s. Furthermore, they also provide scalability,
reliability and improve the service responsiveness and content availability while saving network
bandwidth and ensuring low cost delivery [CNCS12]. The proposed architecture keeps the high
control of managed networks while taking advantage of the self-scaling property of P2P solu-
tions. The HBs are managed by the SE and the Service Manager (SM) acts as a P2P bootstrap
server and the Service Registry as a P2P tracker for the HBs peers. This enables the HBs to allow
the End-Users to compose and publish and distribute their contents and services.

2.4.4 The Network Environment (NE) and the CAN Layer

The Network Environment (NE) is the backbone of the architecture providing connectivity among

26

Architecture for Future Media Ecosystem

Figure 2.10: ALICANTE Network Environment

other environments. To promote customized facilities to all Network Provider (NP) the ALI-
CANTE consortium proposed a rich new virtualized network space. This virtualized network
space is made up of two layers namely; the Content-Aware Network (CAN) layer and the Net-
work layer. As depicted in Figure 2.10 together these layers help NP overcome some of its
limitations.

The CAN layer is in charge of providing customized QoS to actors on top of the IP infrastructure.
Furthermore, it is entitled to construct a mono-domain or multi-domain Virtual CAN (VCAN).
One or several VCANs can be constructed having different capabilities and installed in each do-
main. The VCANs are virtual networks that support enhanced packet/flow processing in core
network nodes [BNT10]. Their use have several advantages like, improving data delivery via
content-aware traffic classification and advance processing (filtering, routing, forwarding, QoS-
processing, adaptation-dynamic, aggregated or per flow, security, monitoring). The CAN layer
is managed by dedicated CAN Managers. Each network domain has one CAN Manager, this
ensures seamless deployment of ALICANTE system in real world.

The Network layer is responsible for initiating the CANs. Each CAN Manager takes the help
of its Intra domain Network Resource Managers (Intra-NRM) to initiates their respective CANs.
Furthermore, ALICANTE introduces a new network to support its ∗-ware feature called Media-
Aware Network Element (MANE) [NSV+11]. The MANEs are the real content-ware nodes in
the architecture. They process the flow according to the content properties and network current
status: content-aware intelligent routing and forwarding, flow adaptation, QoS and resource al-
location, filtering and specific security functions, and possibly data caching.

∗Content & Context

27

Background

2.4.5 Critical Analysis

In the above section, we presented a high level description of ALICANTE Project which pro-
poses, a networked media ecosystem for FI. For the research work presented in this thesis, the
focus is put on the User and Service Environments to enable ❶ service discovery in the highly
heterogeneous networks and ❷ to provide high quality services and personalization towards a
better experience for the End User. The User Environment presented some advantages for using
the User Profile by allowing users to switch between different roles. It, however, does not allow
them to discover and publish services using protocols other then the once used by the Terminal

system. Nevertheless, End-Users should be able to discover and publish services via the Termi-

nal system irrespective of the protocol they use. On the other hand, the ability of ALICANTE

SE to separate data and management functionality gives it a unique advantage to enable the two
functionalities to evolve separately. Furthermore, with the help of Service Registry (SR) it pro-
vides a large scale service infrastructure. However, this does not mean that it can interact and
request services from external sources(YouTube, google+ etc) as well as existing platforms like
IP Multimedia Subsystem (IMS) and Internet Protocol Television (IPTV).

Need for Interoperability
Due to exponential growth in networked applications and distributed resource sharing, there is a
strong incentive for an open large-scale service provisioning infrastructure operating over hetero-
geneous networks. However, service globalization may require interoperation of diverse discov-
ery systems based in independently administrated domains. Part of that interoperation is shar-
ing information about deployed services across domain boundaries. SDPs like SLP [GPVD99],
UPnP [PFK+08] and Bonjour [Dro97] do not cross domain boundaries, while those that rely on
P2P technologies [MM02, SMK+01, RFH+01] are not interoperable with each other. Neverthe-
less, to achieve service globalization, a service must be identified during its life cycle indepen-
dently of the network it belongs to at a given time. Therefore, there is a need for an interoperable
discovery system that can incorporate multiple heterogeneous discovery approaches. In Chap-
ter 3.1, we review some of the existing interoperability solutions and highlight their advantages
and drawbacks.

Need for context-awareness
Over the last few years, the focus has been progressively put on user satisfaction. This is due
to the fact that, for the user only the service value counts, not the network or the software on
the device. Towards this objective, context information plays a very important role by elevating
the QoS towards EU’s expectations. Context covers a wide range of heterogeneous information
that continues to grow with the advent of new services and technologies. It is therefore useful to
uniquely classify and organize this information so that relevant entities can utilize it to provide
better QoS to EU. Based on its characteristics, context information is classified as static and
dynamic. Dynamic context information is the one that changes at a rapid rate, while the static

context information is more stable over a longer period. This does not necessarily mean that
the latter ones never change but they do not change as fast as the dynamic ones. This classi-
fication is mainly used in time critical systems like media services where network and devices

28

Summary

characteristics may change any time. Thus, it becomes necessary to model context information
and to address it from management perspective. Section 2.3 showed the importance of ontology
to model context information. In Chapter 3.2, we review some of the existing ontology-based
context modeling solutions and highlight their contributions.

2.5 Summary

In this chapter, we have highlighted the background of our work by highlighting the importance
of service discovery. To facilitate the discussion further, we have separated the background
into three parts. In the first part, we have presented popular service discovery implementations
and classified them as SDPs for either local area network or large scale networks. Then, we
have reviewed each of them highlighting their standard features and identifying their key limita-
tions. In the second part, we have briefly reviewed popular context models. We have also shown
how ontology based models are a good solution for modeling context information in ubiquitous
computing. In the third part, we have described an architecture for future media ecosystem, AL-
ICANTE. And finally, we identified some limitations in the User and Service Environment that
need to be addressed in order to enable highly personalized services in large scale heterogeneous
networks. In Chapter 3, we present the current state of the art addressing protocol interoperability
and ontology based context modeling.

29

Background

30

Chapter 3

Related Work

"Dont waste your time with explanations: people only

hear what they want to hear"

–Paulo Coelho

Contents
3.1 Existing Interoperability Solutions . 31

3.1.1 ReMMoC . 31

3.1.2 INDISS . 35

3.1.3 Z2Z . 37

3.1.4 Starlink . 38

3.1.5 Critical Analysis . 40

3.2 Existing Ontology-based Solutions . 41

3.2.1 CoOL . 41

3.2.2 COBRA-ONT . 43

3.2.3 SOUPA . 44

3.2.4 CONON . 45

3.2.5 Critical Analysis . 47

3.3 Summary . 48

3.1 Existing Interoperability Solutions

3.1.1 ReMMoC

ReMMoC [GBS03]green is a configurable and dynamically reconfigurable reflective middleware
that supports mobile application development and overcomes the heterogeneous properties of

31

Related Work

the mobile environment. ReMMoC uses OpenCOM as its underlying component technology and
it is built as a set of component frameworks. Utilizing the different components from OpenORB

the frameworks increases the size of the middleware implementation. However using extra man-
agement functionality for managing reconfiguration could exhausts the constrained resources of
a mobile device. Therefore, as depicted in Figure 3.2 ReMMoC consists of only two compo-
nent frameworks: ❶ a binding framework for interoperation with mobile services implemented
upon different middleware types, and ❷ a service discovery framework for discovering services
advertised by a range of service discovery protocols. The binding framework is configured by
plugging in different binding type implementations and the service discovery framework is sim-
ilarly configured by plugging in different service discovery protocols. Adding more component
frameworks for other non-functional properties such as security and resource management can
extend the platform at a later stage. In addition to the aforementioned components ReMMoC also
provides a generic Application Programming Interface (API) to develop mobile applications.

Figure 3.1: OpenCom Architecture

OpenCOM Component Frameworks: A Component Framework (CF) is defined as a col-
lection of rules and contracts that govern the interaction of a set of components [SGM02]. The
motivation behind component frameworks is to constrain the design space and the scope for evo-
lution. A component framework in OpenCOM is itself an OpenCOM component that maintains
internal structure (a configuration of components) to implement its service functionality. The
design of these component frameworks is based upon the concepts of composite components
proposed by OpenORB [BCA+01]. Therefore, component frameworks can be composed, re-
placed and connected together in the same manner as components. To provide this capability, as
illustrated in 3.1 each OpenCOM CF implements the base interfaces of an OpenCOM component
(IMetaInterface,ILifeCycle, IConnections) in addition to its own interfaces and receptacles. The
interfaces and receptacles of internal components can be exposed to create these.

32

Existing Interoperability Solutions

Figure 3.2: ReMMoc Architecture

The Binding Component Framework: The primary function of the binding framework is
to interoperate with heterogeneous mobile services. Therefore, over time it may be configured
to make a number requests, or change to a subscribe configuration and wait to receive events
of interest. Different middleware paradigms, synchronous or asynchronous (e.g. tuple spaces,
media streams, Remote Procedure Call (RPC), publish-subscribe or messaging), can be plugged
into the binding framework if they have been implemented using OpenCOM components. Within
the binding framework changes are made at two distinct levels. Firstly, each binding type im-
plementation can be replaced by a publish-subscribe subscriber. This dynamic reconfiguration is
performed by receiving information from the service discovery framework describing the type of
binding. Secondly, fine-grained changes to each configuration can be made in light of environ-
mental context changes, such as those involving quality of service, or changes in the applications
requirements. For example, an application may require server side functionality, in addition to
the existing client side; therefore components implementing server side functionality are added.

The Service Discovery Framework: The Service Discovery framework allows services that
have been advertised by different service discovery protocols to be found. The framework is
configured to discover protocols currently in use in the environment. For example, if SLP is
in use, the framework configures itself to an SLP Lookup personality. However, if SLP and
UPnP are found then the frameworks configuration will include component implementations
to discover both. Like the Binding CF, fine-grained component changes can be made. For
example, in SLP you may wish to perform lookup using just the multicast protocol if no directory
agent is present, but at a later stage if a directory agent is discovered the configuration can be
changed to direct requests to it. The service discovery framework offers a set of generic service
discovery methods through the IServiceLookup interface. This includes a generic service lookup
operation that returns the information from different service discovery protocol searches in a

33

Related Work

generic format. For example, a lookup of a weather service across two discovery configurations,
e.g. UPnP and SLP, returns a list of matched services from both types. It is this information
(the description of the service returned by the lookup protocol) that is used to configure the
binding framework. Initially, the discovery protocol(s) that are currently in use at a location
must be determined. The DiscoverDiscoveryProtocol component, which is plugged into the
framework, tests if individual service discovery protocols are in use, either upon a synchronous
request or by continuously monitoring the environment and generating an event on detection.
Continuous monitoring will quickly use up resources (e.g. battery power); therefore in some
cases synchronous checking may be appropriate. The service discovery framework utilizes this
behavior to automatically reconfigure itself. Other methods for discovering discovery protocols,
not currently included in the implementation, may utilize the devices context information, e.g.
if the device is currently using a Bluetooth connection then an SDP personality is configured.
Furthermore, the middleware may use prior knowledge to select an appropriate protocol, i.e. the
platform stores context information per location that details which service discovery protocols
were used at that point previously.

interface ReMMoc_ICF : IUnknown {
HRESULT WSDLGet (WSDLService* ServiceDescription, char* XML);

HRESULT FindandInvokeOperation (WSDLService ServiceDescription, char*
 OperationName, int Iterations, ReMMoCOPHandler Handler);

HRESULT InvokeOperation (WSDLService ServiceDescription, ServiceReturnEvent
 ReturnedLookupEvent, char* OperationName, int Iterations, ReMMoCOPHandler Handler);

HRESULT CreateOperation (WSDLService ServiceDescription, ServiceReturnEvent
 ReturnedLookupEvent, char* OperationName, int Iterations, ReMMoCOPHandler Handler);

HRESULT AddMessageValue (WSDLService *ServiceDescription, char* OperationName,
 char* ElementName, ReMMoC_TYPE type, char* direction, VARIANT value);

HRESULT GetMessageValue (WSDLService *ServiceDescription, char* OperationName,
 char* ElementName, ReMMoC_TYPE type, char* direction, VARIANT value);

}

Figure 3.3: ReMMoc API

ReMMoc API: ReMMoC programming model is based upon the concept of Web Service De-
scription Language (WSDL) described abstract services. Application developers must utilize
these WSDL definitions in the style of Interface Definition Language (IDL) programming. To
maintain a consistent information flow to the application an event-based programming model,
that overrides the different computational models of each paradigm, is offered. Each abstract
service operation is carried out and its result is returned as an event. For example, if that op-
eration is executed by an Remote Method Invocation (RMI) or an event subscription the result
is always an event. Similarly, service lookup operations return results as events. Figure 3.3
documents the API of ReMMoC, which consists of operations to: lookup services, lookup then
invoke abstract WSDL operations, invoke operations on known services, or create and host ser-
vice provider operations. ReMMoC maps these API calls to the binding framework through the
use of a reconfigurable mapping component.

34

Existing Interoperability Solutions

3.1.2 INDISS

Interoperable Discovery System for Networked Services (INDISS) [BI05] is a transparent so-
lution to overcome SDPs heterogeneity. Its main objective is to minimizing resource usage
(i.e., memory, processing and bandwidth), and introduces lightweight mechanisms that may be
adapted easily to any platform. INDISS is composed of a set of event-based components and
their composition is performed dynamically at run-time according to both the context and the
device on which INDISS is deployed. INDISS operates close to the network, capturing and
translating network messages without the need for clients or services interactions. As a result,
service discovery interoperability is provided to applications without altering them. As depicted
in Figure 3.4 INDISS consists of three main components, namely ❶ the Monitor, ❷ the parser
and ❸ the composer.

Figure 3.4: INDISS Architecture

Monitor Component: The monitor component detects the SDPs that are used based on net-
work activity on the assigned multicast groups and ports. As depicted in Figure 3.5 this com-
ponent also captures/collects network messages sent by clients and services onto these multicast
groups, and forwards them to the appropriate parser components.

Parser Component: The parser component, associated to a specific SDP, transforms the raw
data flow (i.e., network messages) into series of events, extracting semantic SDP concepts from

35

Related Work

Figure 3.5: INDISS: Monitor Component

syntactic details of the SDP messages. The generated events are delivered to an event bus locally
deployed.

Figure 3.6: INDISS: Parser Composer Component

Composer Component: The composer component delivers a SDP message understood by
the target clients and/or services based on specific sets of events received from the event bus.
Figure 3.6 highlights the interaction that takes place among different parser composer compo-
nents.

Parsers and composers are dedicated to specific SDP protocols. In INDISS, the communication
between the parser and the composer does not depend on any syntactic detail of any protocol.
They communicate at a semantic level through the use of events. A fixed set of common events
has been identified for all SDPs, and each SDP has also a set of specific events. SDP interop-
erability comes from the composition of multiple parsers and composers dedicated to different
SDP, and the implicit creation of an event bus.

Event-based Coordination The overall coordination process in INDISS is implemented by
a event-based unit called SDP. The SDP unit is specified using a Finite State Machine (FSM).

36

Existing Interoperability Solutions

A SDP state machine is a graph of states connected by transitions. This state machine is a
Deterministic Finite Automata (DFA) and is defined as a 5-tuple (Q,

∑
, C, T, q0, F), where

Q is a finite set of states,
∑

is the alphabet defining the set of input events (or triggers) the
automaton operates on, C is a finite set of conditions, T : Q ×

∑
×C → Q is the transition

function, q0 ∈ Q is the starting state and F ⊂ Q is a set of accepting states. States keep track
of the progress of the SDP coordination process. Transitions are labeled with events, conditions
and actions. The occurrence of an event may cause a transition if the event matches both the
event and the condition of the transition. When a transition is engaged, several actions may be
executed, relating to translation of events to/from message data, coordination, and configuration
management. In INDISS the SDP DFA is dedicated to one protocol to account for the protocol’s
specifics and consequently realize some optimization. Events are basic elements and consist of
two parts: event type and data. Whatever their types, events are always considered as triggers
for the unit components to react and eventually activate some coordination rule. We define the
minimal/ mandatory set of events that is common to all SDPs and sets of specialized events that
are specific to SDPs. The set of mandatory events

∑
is defined as the union of a number of

subsets.

3.1.3 Z2Z

z2z [BRLM09] is a protocol translator. It uses a generative approach to construct network gate-
ways based on Domain Specific Language (DSL). z2z uses three DSL namely; ❶ Protocol Spec-
ification Language (PSL), ❷ Message Specification Language (MSL) and ❸ Message Transla-
tion Language (MTL). These DSLs relies on advanced compilation strategies to hide complex
issues from the gateway developer such as asynchronous message responses and the manage-
ment of dynamically-allocated memory, while remaining in a low-overhead C-based framework.
Additionally, it also provides a runtime system that addresses a range of protocol requirements,
such as unicast vs. multicast transmission, association of responses to previous requests, and
management of sessions. Figure 3.7 highlights the z2z architecture

Protocol Specification Language
The protocol specification language defines the properties of a protocol that a gateway should
use when sending or receiving requests or responses. The PSL enable developers to declare the
following as information block, namely; ❶ Attributes, ❷ Request, ❸ Sending and ❹ Flow and

session flow. The attributes block of the protocol specification language indicates what charac-
teristics (unicast, multicast, synchronous or asynchronous) are used by the protocol to interact
with the network. Based on this information, the z2z runtime system provides appropriate ser-
vices. The request block of the protocol specification language declares how to map messages to
handlers. While the sending block defines the mandatory basic information needed by all mes-
sages(request and response). Furthermore, it allows developers to declare local variables which
can used to store relevant information over the treatment of all messages. And finally, the Flow

and session flow block keeps tracks of the association of request and responses with their session.

37

Related Work

Code Generation

z2z Compiler

Compiler Generated files Runtime

GCC

PSL MSL MTL

Gateway

Figure 3.7: Z2Z Architecture

Message Specification Language
The message specification language is used to describe the messages that can be received and
created by a gateway. Based on this description, the z2z compiler generates code for accessing
message elements and inserting message elements into a created message. There is one message
specification per protocol relevant to the gateway, including both the source and target protocols,
as represented by the protocol specification language, and one per any higher level message type
that can be embedded in the requests and responses. The message specification language pro-
vides a message view describing the relevant elements of incoming messages and templates
for creating new messages. The set of elements is typically specific to the purpose of the gateway,
not generic to the protocol.

Message Translation Language
The message translation language expresses the message translation logic, which is the heart of
the gateway. It provides a set of handlers, one for each kind of relevant incoming request, as
indicated by the protocol specification module. Handlers are written using a C-like notation aug-
mented with domain-specific operators for manipulating and constructing messages, for sending
requests and returning responses, and for session management.

3.1.4 Starlink

Starlink framework [BGR11] utilizes high-level models of each individual protocol to gen-
erate interoperability bridges at runtime. Starlink provides a set of DSL to specify these
models, whose content forms the overall interoperability logic. The Starlink framework,
when deployed in the network, executes this logic transparently from the protocols and ensures
that two legacy systems can interoperate dynamically. As depicted in Figure 3.8 the Starlink

38

Existing Interoperability Solutions

framework is made of three main components namely; ❶ the network engine, ❷ the message

parsers and composers and the ❸ automate engine which uses the concept of k-Colored automata
to capture the protocol behavior.

Figure 3.8: Starlink Architecture

network engine
sends and receives physical messages (i.e. data packets) to and from the network. A transition
in the k-colored automata attaches network semantics to describe the requirements of the net-
work. The network engine then provides the services to meet these requirements, which could
include different types of transport or multicast behavior. The current implementation of the net-
work engine provides traditional TCP and UDP services for infrastructure networks. However,
the architecture is configurable so that if Starlink were to be deployed in more heterogeneous
environments, e.g. ad-hoc networks, this network engine could be replaced with configurable
services for ad-hoc routing [RGCH09].

message parsers
read the contents of a network packet and parse them into the AbstractMessage representation
such that the data can be manipulated during the mediation process. For example, if a HTTP
message is received a HTTP parser reads all the fields of the header and body. Correspondingly,
message composers construct the data packet for a particular protocol message, e.g. constructing
the content for a HTTP GET message. Importantly, the message composers and parsers are
generic reusable software elements that interpret high-level specifications of message content.
The Message Description Language (MDL) specification utilize these generic components at
runtime to create a specific protocol parser or composer.

automata engine
executes the behavior of the merged automata, i.e. it controls the sequence of sending, receiving,

39

Related Work

parsing, composing and translation of messages. In Starlink, there a three types of states: ❶

a receiving state waits to receive a message and will only follow a matching receive transition
when a matching message is received; ❷ a sending state sends a message described in the single
transition; ❸ a no-action state is a translation state that translates data from the fields on one or
more of the prior messages into the message to be constructed.

k-Colored Automata
The Starlink framework capture the behavior of protocols by using a k-colored automaton
Ak = (Q,M, q0, F, Act,→,⇒), where Q is a finite set of states, M are either incoming or
outgoing abstract messages, q0 ∈ Q is the starting state and F ⊂ Q is a set of accepting states.
Act is a set of actions such that Act = ?, ! where ? is the receive action and ! is the send action.
→⊆ Q×Act×M ×Q is the transition relation that can be either a receive-transition or a send-

transition. The former has the following form s1
?m
−→ s2 for (s1, ?,m, s2) ∈→ and changes the

state of the automaton from s1 to s2 once the message m is received. The latter is noted s1
!m
−→ s2

for (s1, !,m, s2) ∈→ and indicates the next state to which the automata passes as soon as the
message m is sent. Moreover, each state maintains a queue to store both incoming and outgoing
message instances. A sequence of stored messages is represented by a message vector noted

→

m.
By either si.m or si.

→

m , Starlink denote a particular stored message or a sequence of stored
messages from a specific state si. To further analyze at runtime the behavior of an automaton,
Starlink define a history operator as follows ⇒⊆ Q × Act ×

→

m × Q. Thus, let s1, s2∈ Q,

s1
!
→

m
⇒ s2 (resp. s1

?
→

m
⇒ s2) gives the sequence of the sent (resp. received) instances for each

abstract message from the state s1 to s2. In order to capture these low level network semantics,
Starlink use automaton coloring which consists of assigning labels called colors to states of
the automaton. An automaton can pass successfully from one state to another, following either a
receive-transition or a send-transition, without any network issues, only if the concerned states
share the same color. An automaton Ak is said to be k-colored if all its states are k-colored,
and if there exists a function f such as f(h(key1; val1); (key2; val2); ...; (keyn; valn)i) = k.
Function f is a perfect hash function that maps a list of tuples, where each tuple is a key-value
pair describing low level network details, to a unique hash value k (i.e. without collisions).

3.1.5 Critical Analysis

In the above section, we reviewed some of the existing protocol interoperability solutions. ReMMoC
is a configurable and dynamically reconfigurable reflective middleware. It brings forward the
concept of components and interfaces proposed by OpenORB. These components and interfaces
enable the middleware to add new functionalities to ReMMoc. Furthermore, it also provides a
generic API in order to help developers provide interoperable solutions. However, ReMMoC re-
quire developers to redesign all existing applications to make them compliant with the ReMMoC
API, which is quite a daunting task. This particular constraint is overcome with INDISS which
is a transparent middleware that provides interoperability to existing applications without altering
them. INDISS replies of event-based components. However, extending INDISS to support new
protocols is a challenging task as it requires both a deep knowledge of the protocols involved,

40

Existing Ontology-based Solutions

and also a substantial understanding of low-level network programming. Although ReMMoC and
INDISS could be considered as a step forward in the challenge of interoperable service discov-
ery. z2z and Starlink have brought forward many facilities to enable transparent translation
of one protocol to another. z2z uses a generative approach to enable protocol translation, while
starlink relies on k-colored automata. Furthermore, they provide an optimized runtime sys-
tem and facilities for describing network protocol behaviors, message structures, and translation
logics. Such facilities come from the fact that they rely on a high-level definition language that
hides low level network details and highlights only key properties needed for protocol translation.
In our solution, we rely on the concept of components introduces by ReMMoC, the event-based
network monitoring brought forward by INDISS and facilities provided by z2z as a transparent
protocol translation component to provide an interoperable discovery solution for Future Inter-
net.

3.2 Existing Ontology-based Solutions

3.2.1 CoOL

Context Ontology Language (CoOL) [SLPF03] is an Aspect-Scale-Context (ASC) model which
can be used to enable context-awareness and contextual interoperability during service discov-
ery. The main component is a reasoner (also called the inference engine) which infers con-
clusions about the context based on an ontology built with CoOL. Ontologies offers flexibility
and extensibility we need in distributed systems, as they can be stored at different places and
created by different authors. Figure 3.9 shows the integration of the CoOL architecture in the
context provider domain. OntoBroker system [DEFS98], is used as the reasoner as it supports
F-Logic [KLW95] a knowledge representation and knowledge query language. F-Logic

is a logic language combining object-oriented and predicate logic characteristics not based on
XML. It is more expressive than OWL and is much more appropriate for specifying relevance
conditions.

Aspect-Scale-Context (ASC) Model
Aspect-Scale-Context (ASC) model is named after the core concepts of the model, which are as-

pect, scale and context information, see Figure 3.10. Each aspect aggregates one or more scales,
and each scale aggregates one or more context information. These core concepts are interre-
lated via hasAspect, hasScale and constructedBy relations. A scale is an unordered set of objects
defining the range of valid context information. In other words, a valid context information with
respect to an aspect is one of the elements of the aspect’s scales.
On an abstract level, context information may be seen as content data complemented by some
meta data characterizing the content data. Each context information has an associated scale defin-
ing the range of valid instances of that type of context information. Context information char-
acterizing the content of another context information is a meta information and thus a context
information of higher order and expresses the quality of the lower order context information.All
scales within one aspect are constrained by the ASC model in a way, that there exist a mapping

41

Related Work

Figure 3.9: CoOL Architecture

Aspect
ObjectProp.

ObjectProp.

=1

≥0

hasDefaultScale:

hasDefaultScale:

Scale
Scale

Aspect
ObjectProp.

ObjectProp.

≥1

=1

hasAspect:

constructedBy:

Aspect
<ContextInformation>

ObjectProp.

ObjectProp.

≥1

≥1

ObjectProp.

ObjectProp.

≥0

≥0

hasUnit:

memberCheck:

Unit
Operation

hasIntraOperation:

hasIntraOperation:

IntraOperation
IntraOperation

ContextInformation
ObjectProp.

ObjectProp.

=1

≥1

characterizes:

hasScale:

Entity

ObjectProp.

ObjectProp.

≥0

≥0

ObjectProp.

ObjectProp.

=1

≥0

minError:

meanError:

timestamp:

hasQuality:

Scale
ContextInformation
ContextInformation
ContextInformation
ContextInformation

Concept
predicatetype cardinality

Figure 3.10: CoOL: Aspect-Scale-Context Model

function from one scale to at least one other of the already existing scales of the same aspect.
This function is called IntraOperation, see Figure 3.11 Scales which require access to scales of
one or more other aspects can be defined using InterOperations, Due to the fact that each scale
is an unordered set of context information instance objects, there may be no relative sort order
between the context information inherently given. Therefore they introduced the MetricOpera-
tion which may be used to compare two context information instance objects of the same scale
in an implementation-defined manner to see if they match or what their relative sort order is by
returning either the first or the second parameter. Thus the return value indicates the ordering of
the two objects. Information about the signature of any InterOperation, IntraOperation or Metri-
cOperation is available in the signature specification pointed to with the property identifiedBy.

42

Existing Ontology-based Solutions

Parameter
DatetypeProp.

ObjectProp.

=1

≥0

PartName:

contentFromScale:

xsd:NCName
Scale

ObjectProp. 0|1 contentFromAspect: Aspect

Operation

IntraOperation
ObjectProp.

ObjectProp.

=1

≥0

fromScale:

toScale:

Scale
Scale

InterOperation
ObjectProp. ≥0 hasParameter: Parameter

MetricOperation
ObjectProp. ≥0 onScale: Scale

DatetypeProp. =1 identifiedBy: xsd:anyURI

Figure 3.11: CoOL: Aspect-Scale-Context Operation

3.2.2 COBRA-ONT

COBRA-ONT [CFJ03]is a collection of ontologies, expressed in OWL, defined in the frame of
Context Brocker Architecture, an architecture/framework designed to support context-sensitive
pervasive systems. COBRA-ONT has been designed for the context representation of a smart
meeting-room and consists in four sub-ontologies: Place, Agent, Agents’s Location and Agent’s

Activity. Concepts defined in COBRA-ONT, as well as related properties and relations between
these concepts.
The top level class in COBRA-ONT is Place, which represents an abstraction of the physical
location of the modeled smart space. A location is described with a name, a longitude and
latitude. The Place concept is the union of 2 concepts: AtomicPlace and CompoundPlace. A
location may include other locations. For instance, the Campus and Building locations include
the Room, Hallway and Stairway locations. The notion of capacity is represented by the spa-

tiallySubsumes and isSpatiallySubsumedBy relations. The ontology presenting the agents and
able to act on the system is built around the Agent concept which inherits from two distinct con-
cepts: Person and SoftwareAgent. An agent can be described by different attributes such as its
name or email address. Roles, such as SpeakerAgent or AudienceAgent, are assigned to agents,
through the fillsRole property. In order to deduce actions that an End-User intends to, the relation
intendstoPerform of the Role concept is defined and takes as value an instance from the Inten-

tionalAction class. The ontology Agent’s Location contains the basis for dynamic knowledge
that allow describing the localization of an agent. To do so, the LocatedIn relation is added to
the Agent concept. This relation points on Place concepts. Considering that a location can be
specialized in AtomicPlace and CompoundPlace, the following axioms are defined:

• No agent can be present at two AtomicPlace locations within the same timespan ;

• And one agent can be present at two different CompoundPlace locations within the same
timespan only if one location includes the other. This type of reasoning process is impor-
tant for inconsistency detection when it comes to find/know the location of the agent.

43

Related Work

It is also possible to build an agent-focused classification based on their location: PersonIn-

Building and/or SoftwareAgentInBuilding. Furthermore, the other related classes are Person-

NotInBuilding and SoftwareAgentNotInBuilding. Relying on OWL, COBRA-ONT can therefore
propose reasoning options on OWL semantics. It is also possible to integrate in language rules
specific to the domain. This not only enable the detection and solving of inconsistencies, but also
the interpretation of sensors-transmitted context information.

3.2.3 SOUPA

SOUPA (Standard ontology for OWL-based Ubiquitous and Pervasive Applications)[CPFJ04],
was proposed by the authors of COBRA-ONT as an enhancement to address interoperability. To
realize this aim, they used external vocabularies like Friend-Of-A-Friend ontology

(FOAF) [BM07] [PJYF03], DAMLTime [PH04], MoGATU BDI ontology [Per04] and Rei

policy ontology [KFJ03]. Nevertheless, to provide a common ontology to different pervasive
applications, SOUPA follows a modular design structure. As depicted in Figure 3.12, it is com-
posed of 2 cores: ❶ SOUPA Core or the inner core contains generic ontologies common to all
applications and ❷ SOUPA Extension or the outer core contains additional ontologies specific to
applications. SOUPA inner Core is composed of base ontologies which can be used and extended
to address various application needs. The main core has the following ontologies.

Figure 3.12: SOUPA Ontology

44

Existing Ontology-based Solutions

• The Person ontology is built around the Person concept. In particular, it is used to model
the End-User. For instance, the End-User basic profile and enhence it with his preferences
and needs, his social and professional information etc.

• The Agent & BDI ontologies together are used to model agents interaction with the system.
For instance, it is used to model and identify if an agent is a human or a software-based
entities. Furthermore, they are also used to explicitly define agents interaction with the
system by defining their goals, plans, wants, intentions, convictions and duties.

• The Policy ontology provides the vocabulary needed to define security and confidentiality
rules. Since ontologies provides a descriptive way to defines rule logic, it makes it possible
to deduce reasoning based on theses rules. Rules can be defined by the system adminis-
trator in order to set the access rights or by the End-User to insure the confidentiality of
concerned context information;

• The Action ontology describes actions launched by system agents. Each Action has one or
several associated attributes describing the various actors involved in a particular action.
These attributes define what entities will be impacted by a particular action; where and
when the action will be executed; what necessary tools will be needed to execute the
action; etc. Furthermore, each Action can only be executed by an agent if it has the
required permission to execute action. These execution rights however, are defined by the
rules set up in the Policy ontology.

• Time and Entry sub-ontology that together makeup the Time ontology, enable SOUPA to
provides a set of ontologies to describe timing and timing-related properties. It relies
on DAML to enable relationship among timing events by providing tme:TimeInstant and
tme:TimeInterval.

• The Space and Geo-Measurement ontologies provides the basis for reasoning on spatial
relations between geographical areas. The former presents the symbolic representation
of a location and related spatial relations, while the latter defines the geo-spatial vocabu-
lary (i.e. longitude, latitude, distance, etc.). These ontologies are used to map geo-spatial
coordinates of a geographical location to its symbolic representation and vice-versa. Fur-
thermore, they are also used to represents geographical measurements of a location.

• The Event ontology presents events with spatial and temporal extensions. Events can be
an occurrence of an activity, a result of a forecast or a capture of a predefined trigger.

3.2.4 CONON

CONON(CONtext ONtology) [WZGP04] is an ontology designed to representation context in-
formation in pervasive environments. As we know, services in pervasive environments address
different intelligent spaces (i.e. home, vehicle, etc.), as a consequence, services can generally
be groupped as a collection for domains and sub-domains. To address this, CONON firstly, aims
to represent generic context information suitable to all main domains. And secondly, provide

45

Related Work

enough extensibility to represent context information specific to a particular sub-domain. To
realize this aim, CONON has been designed as a two-level structure: ❶ high-level ontology, is
used to model basic context information and related general properties, and ❷ the lower-level
ontology, provides collection of ontologies describing concepts in details, their link to specific
domains, and their related properties. Figure 3.13 introduces the high-level ontology, in which
the authors choose to model the context around four abstract entities: CompEnt (including all
software or hardware entities allowing access to the service), Person, Activity and Location.
This high-level ontology in CONON represents the Upper part of the ontology which then can be
mapped to any domain-specific lower part. Furthermore, to show the use of CONON ontology
in a concrete example, figure 3.14 highlights the partial representation of an ontology specific
to smart homes. In this representation, the number of abstract classes of the high-level ontology
increases with new classes specific to the modeled domain. For instance, the IndoorSpace class
is extended with four new sub-classes: Building, Room, Corridor and Entry. CONON can also

Figure 3.13: CONON Architecture

reason and infer new implicit information from explicit ones. Furthermore, it can detect context
inconsistencies due to captured errors. Since CONON is based on OWL the descriptive logic rules

46

Existing Ontology-based Solutions

Figure 3.14: CONON Architecture: Smart Home

integrated in OWL semantics makes the reasoning process possible. Moreover, CONON can also
be used as a flexible reasoning system to deduce context situations. For instance, with the help of
End-User defined rules based on first order logic, various activities of End-User can be deduced
from a certain number of facts included in the ontology.

3.2.5 Critical Analysis

In the above section, we reviewed some of the existing ontology-based context models. With
the maturity of Semantic Web Languages ontology-based context models have gained a lot of
importance. A Context Ontology Language CoOL describes contextual facts and contextual in-
terrelationships by projecting the conceptual base on Aspect-Scale-Context information (ASC)
model to language elements. While COBRA-ONT is a collection of ontologies expressed in
OWL for context-aware systems. COBRA-ONT defines concepts associated with four distinc-
tive but related themes: places, agents, agents’ location and agents’ activity. On the other hand,
SOUPA, developed by the same authors as COBRA-ONT, deals with pervasive computing and
is composed on two parts: ❶ the SOUPA core that holds ontologies which provide a common
vocabulary for different pervasive computing environments and ❷ the SOUPA extension which
contains ontologies for different domain specific vocabularies. However, to overcome the inter-
operability issue, SOUPA maps its concepts to some of the well known external ontologies such
as FOAF [BM07], DAMLTime [PH04], etc. CONtext ONtology CONON captures the general
features of basic contextual entities like (location, user, activity and computational entity) and

47

Related Work

uses the domain specific ontology to describe the concepts related to a specific domain. The
reported models have shown that ontologies can be perceived as promising tools towards ade-
quate description and representation of context data. Hence, in our solution we plan to utilize
and adapt the concept brought forward by CONON which separates generic context information
from the one specific to a particular domain. This enable us enhance our solution to provide
personalized service discovery by uniquely identifying different entities and their properties.

3.3 Summary

In this Chapter, we did an in-depth analysis of the current state of the art. In order to show a clear
distinction, we have separated our analysis into two parts. In the First part, we have reviewed the
existing protocol interoperability solutions. Protocol interoperation is current addressed using
either explicit or transparent approach. During our analysis we found that INDISS uses the
transparent approach but requires a high degree of knowledge about network programming. On
the other hand, ReMMoc use the explicit approach and provide its own API’s while z2z use
the generative transparent approach and provides a dedicated runtime environment to enable
interoperability among discovery protocols. In the second part, we have reviewed the state of the
art related to ontology-based context models. During our analysis we have found that ontology-
based models support shared understanding of a domain vocabulary, distributed composition
and partial validation which makes them a good candidate for modeling context in a dynamic
environment. However, we believe that the approach used by CONON is a good candidate for our
solution to enable service personalization, adaptation and seamless device mobility. In Chapter 4,
we present the first part of our solution; an interoperable service discovery solution for Future
Internet called the ZigZag middleware.

48

Chapter 4

ZigZag Middleware

"The more we share, the more we have "

–Leonard Nimoy

Contents
4.1 Architecture . 51

4.2 Aggregation . 53

4.3 Evaluation . 54

4.3.1 Simulation Setup . 54

4.3.2 Simulation Results . 55

4.4 ZigZag integration in ALICANTE . 59

4.4.1 ZigZag at Service Registry . 59

4.4.2 ZigZag at HomeBox . 60

4.5 Summary . 61

Discovering a service in a connected network requires in-depth knowledge about the network
characteristics, the protocols used and the nature of target devices (laptop, phone, etc.,) that will
consume the service. A highly heterogeneous network, as illustrated in Figure 4.1, should allow
diverse devices having different discovery protocols to exist and communicate with each other
simultaneously. Indeed, there is a strong need for efficient ways of making services accessible
to all connected devices in the network. Traditionally, services were provided by dedicated fixed
Service Providers. However, from recently, Prosumers [Tap96] (End-Users with Service Pro-
vision capabilities in addition to Service Consumption ones) have emerged and has completely
disturbed the dynamics of services, including the way they are being discovered. Unlike the
traditional Service Providers, the prosumer is more mobile and has the ability ❶ to publish its
services and ❷ to discover available services in its immediate network. Moreover, traditional

49

ZigZag Middleware

Service Providers either used a dedicated SR or follow a P2P approach to indicate service avail-
ability. Although a P2P approach is highly scalable, it does not support interoperability, either
between P2P protocols or with legacy SDPs. On the other hand, clients supporting only legacy
SDPs are not able discovery services advertised by Service Registries if, ❶ both don’t belong
to the same network and ❷ both don’t use the same protocol. A possible solution to cope with
these problems is to use a middleware. The middleware should be able to discover services in
highly heterogeneous multi-protocol environment. Furthermore, it should also enable devices
supporting legacy protocols to discover, consume and publish their services irrespective of the
underlying discovery protocol.

Overlay
Gateway

Gateway

Gateway

Service Request
Service Response
Service Advertisement

WS-D

Bonjour

UPnP

Service Provider

Service Provider

Service Provider

Service Prosumer

WS-D

Bonjour

Service Prosumer

Service consumer
SLP

Figure 4.1: Large Scale service Discovery issues

Middleware design requirements
To design a middleware that will address the aforementioned issues we have identified four key
design requirements.

1. Protocols detection.
Protocols differ significantly in how they interact with the network. Request may be multi-
cast or unicast, responses may be synchronous or asynchronous and network communica-
tion may be managed using a range of transport protocol, most commonly TCP or UDP. A

50

Architecture

protocol detection component should be provided to detect all active discovery protocols
in the network.

2. Message translation.
Different protocols provide messages that express information at different granularity. For
instance, a single request from one discovery protocol may produce multiple response
messages from a different discovery protocol. A message translation component should be
provided to address this mismatch among different discovery protocols.

3. Aggregation.
In a multi-protocol environment a client request may produce multiple responses from
multiple providers. An aggregation component should be provided so that a client may
receive a single aggregated response for its request.

4. Connectivity among networks.
To exchange information about available service across network a connectivity component
should be provided.

Taking these middleware design requirements into consideration, we have implemented the
ZigZag middleware. The next section explains in details the ZigZag middleware architecture.

4.1 Architecture

A key concept common to various Future Internet proposals is to promote an architecture split
into two main planes, decoupling services from transport infrastructure. More precisely, one
plane is dedicated to upper network layers to provide functions that control and manage service
resources for service providers and consumers. The other plane is dedicated to lower network
layers to provide functions that control and manage transport resources to carry out data ex-
changes among service providers and consumers across heterogeneous networks. The split of
the architecture enables functions dedicated to services and the ones dedicated to transport to
evolve separately and independently. As a consequence, Future Internet offers users unrestricted
access to service providers outside their own network boundaries. However, this opportunity
raises an issue related to service discovery. Indeed, legacy service providers rely on SDPs that
have been initially designed for local area networks. Therefore, making these protocols scale to
large scale networks require a substantial effort. In addition, various protocols have been devel-
oped to cope with network characteristics and service provider’s needs. Thus, enabling service
discovery in large scale networks requires managing the heterogeneity of various protocols, de-
ployed in isolated local networks. To this end, we propose the ZigZag middleware.

ZigZag aims to be deployed in isolated local area networks to provide interoperable services
discovery in multi-protocol environment. To reach this aim, the architecture of ZigZag has been
designed in a modular way to both integrate the state of the art results in service interoperabil-
ity and service aggregations. ZigZag is architectured around 4 core components, namely: ❶ a

51

ZigZag Middleware

SDP Monitor Component to detect the current SDPs being used, ❷ a Connectors Management

Component to instantiate the adequate SDP translator, ❸ a Network Link Component to main-
tain connections among ZigZag nodes, and ❹ an Aggregator Component to apply aggregation
strategies. As depicted in Figure 4.2, these components are plugged together to perform a cross
network translation process that is able to translate one SDP to another according to service
providers and consumers involvement across heterogeneous networks. The core functionalities
of each component are deeply explained below:

SLP to UPnP

SLP to WS-D

Bonjour to UPnP

UPnP to SLP

C
o

n
n

e
c

to
r

M
a

n
a

g
e

m
e

n
t

 C
o

m
p

o
n

e
n

t

SDP

Monitor

Component

Aggregator

Component

Network

Link

Component

Figure 4.2: ZigZag Middleware Architecture

SDP Monitor Component.
The SDP monitor checks the availability of different SDPs in one local environment, as previ-
ously introduced by INDISS [BI05]. The SDP monitor is designed to keep track of SDPs cur-
rently used. It leverages on the fact that all SDPs use a multicast group address and a UDP/TCP
port that must have been assigned by the IANA. Both assigned ports and multicast group ad-
dresses are reserved and thus act as a permanent SDP identification tag. The SDP monitor is then
able to discover a networked environment by passively listening to the well-known SDP multi-
cast group. More precisely, The SDP monitor learns the SDPs that are currently used from both
services’ multicast advertisements and clients’ multicast service requests. Furthermore, service
advertisements are cached locally and are mapped to a UUID to be identified uniquely across
different ZigZag nodes.

Connectors Management Component.
A Connector translates one SDP to another SDP. It is specific to a pair of SDPs. Thus, there ex-
ists as many connectors as different pair of SDPs between which interoperability is required. For
instance, in Figure 4.2, four different connectors may be instantiated SLP-to-UPnP, SLP-to-WS-
D, Bonjour-to-UPnP, UPnP-to-SLP according to the SDPs being used by either service providers
or consumers. A connector is a third party component. Currently, the Connectors Management

Component supports on the fly instantiation of one or more z2z gateways [BRLM09] that act as
connectors. However, ZigZag is not tightly bound to z2z, and may rely on any other translator.
Additionally, the Connectors Management Component collects statistics about SDPs being used

52

Aggregation

to take in charge a fine grained life cycle of instantiated connectors. It may start, stop, pause or
resume connectors according to the most often detected SDPs.

Network Link Component.
ZigZag nodes are directly connected to each other irrespectively of the underlying network in-
frastructure. Network Link Component implements a simple protocol for building a data distribu-
tion tree among ZigZag nodes enabling them to exchange multicast messages about discovered
SDPs, and services across each isolated local area network. The complexity of the Network Link
Component implementation depends on the available functions supported by lower network lay-
ers. Currently, ZigZag supports a data overlay as an example of network infrastructure for the
Future Internet, which provides adequate primitives (join, leave, update, send) to create and/or
maintain a logical network among ZigZag nodes. Furthermore, ZigZag can also be deployed on
different network infrastructures such as P2P overlay via implementation of a dedicated Network
Link Components.

Aggregator Component.
The Aggregator Component collects a bunch of messages coming back and forth from sev-
eral connectors instantiated by the Connectors Management Component. More specifically, the
Aggregator Component accumulates all SDP responses coming from different remote ZigZag
nodes, and selects the one that matches best the criteria of the associated request to then forward
it to the service requester. The aggregation logic of the Aggregator Component is described in
more details in next section.

4.2 Aggregation

Aggregation is defined as the process of accumulating data from multiple nodes to eliminate re-
dundant transmission and provide value sensitive information to the requesting entity. In broad-
cast/multicast scenario, the requesting entity has to wait for a fixed amount of time before receiv-
ing a response to its request. If the response does not arrive before this time slot the requesting
entity signals a timeout and resends the request. However, if the same request is sent to multiple
nodes in parallel, response data aggregation is considered as the preferred solution. Response
data aggregation ensures that several parallel responses of a particular request are combined into
a single response message, thereby reducing the number of messages on the wire and preserving
scarce bandwidth. Several papers [KNR02, RAH06, SB07] have shown the importance of aggre-
gation in different network environments. The authors [RV06], presented an extensive survey on
data aggregation techniques in the context of sensor networks. In a multi-protocol environment
response messages may arrive after the source protocol signals a timeout as different protocols
may have different timeouts due to their application design. To illustrate the need of aggregation
for service discovery in a multi-protocol environment, we have identified 3 use cases based on
different application requirements. In the following configurations, we consider a client C using
SDP PC , and service providers SP1, SP2, SP3 and SP4 using SDPs P1, P2, P3 and P4 respectively.

53

ZigZag Middleware

We assume that each service provider belongs to its own local area network and that a ZigZag
middleware is deployed on each gateway.

Information craving.
In this scenario, the application running on client C does not have a stringent timeout constraint.
Indeed, the application can wait until all possible responses from available service providers are
received. The timeout of the client is greater than each timeout of P1, P2, P3 and P4 . Request from
C is sent to all ZigZag nodes. Received responses are then aggregated and a unique response is
sent back to C .

Time bound.
In the second scenario, the client application requires replies within a very short period of time.
Indeed, the client would signal a timeout if no response is received before its timer expires. Once
the request from C is forwarded to all ZigZag nodes, a timer is started so that an aggregated
response can be sent on time, before the expiration of the timer of the client. Therefore, responses
that arrive too late are discarded.

Best of both worlds.
The third and last scenario is a mix of the previous ones. In this scenario, the client C tolerates
one timeout expiration and one request re-submission. The request from the client is forwarded
to all ZigZag nodes. Responses are cached once they are received and requests are submitted
again if one timer expires. Regardless of the responses received, all responses are aggregated
and one response is sent back to the client before the second expiration of its timer.

4.3 Evaluation

In order to test the feasibility of our approach we have developed a prototype implementation
of ZigZag Middleware. Our current implementation relies on z2z [BRLM09] to dynamically
instantiate gateways for protocol translation and an overlay network to connect ZigZag nodes to
each others. However, before performing real world experiments using ZigZag, we have setup a
simulation to assess how much ZigZag can both reduce the number of messages that flow through
the network, and provide value sensitive information to the requesting entity. In the remainder
of this section, we explain the simulation parameters and discuss the results we have obtained.

4.3.1 Simulation Setup

To simulate various clients, service providers, network topologies and protocols prior to large
scale deployment, we have performed a simulation based on SimPy [Mul12], a network simula-
tor written in Python. To provide the most realistic result, and to outline an accurate evaluation
of our prototype, we include in our simulation an adequate model of the Internet delay space,
which influence inherently the ZigZag performance. In particular, we leverage on a real sample

54

Evaluation

of the Internet delay space among 3,997 edge networks [ZNN+06] to build our overlay. Corre-
spondingly, we rely on a 3997x3997 delay space matrix that gives all pairs set of static round-trip
propagation delays among nodes of our overlay network. Service providers based on either SLP,
UPnP, WS-D, or Bonjour are then randomly distributed uniformly over the matrix. Each node
hosts only one type of service.

We run our experiments 50 times with three different client instances: C1 that uses UPnP, C2

that uses Bonjour, and C3 that uses SLP randomly located in one node of the overlay. At each
run, clients are located in a different node. A request from a client is generated according to the
Poisson process with a rate of 5 requests per seconds for a simulation period of 200 seconds. The
processing time Ptime of a service provider, to send responses upon the reception of a request, is
Ptime = k× (round_trip_delay/2) where k is a factor randomly chosen from 2 to 3.6 according
to SDPs specification [GPVD99, PFK+08]. An infinite response time means that the service
provider is overloaded and that the request has been dropped. The time required by a ZigZag
node to translate a message from one protocol to another depends of protocols used by both
the client and the targeted service provider. Table 4.1 shows the different possible translation
time. To define these time values, we computed the average time consumed by z2z connectors
[BRLM09] to perform the translation. In the remaining, we always assume that a ZigZag node
is deployed in the local area network of the requesting clients, thus the round-trip propagation
delay among requesting clients and its closest ZigZag node corresponds to the round-trip delay of
a 100 Mb/s LAN network. The forwarding of SDP requests from clients to one or more adequate
remote service providers across the overlay is provided by a service provider selection algorithm
that should redirects SDP requests from clients to an appropriate remote service provider, based
on factors such as the client location, network conditions, processing load, service search criteria
and other parameters dedicated to ALICANTE [ALI13] network substrate. However, such model
for ALICANTE is not yet available. Thus, we use a selection algorithm that picks up required
service providers randomly in the delay space matrix to get their round trip delay. A more
accurate algorithm is planed to be used and will give more efficient simulation results.

SLP UPnP WS-D Bonjour

SLP 0 0.78 0.84 0.59
UPnP 0.78 0 0.65 0.89
WS-D 0.84 0.65 0 0.90
Bonjour 0.59 0.89 0.90 0

Table 4.1: Average translation time (in seconds)

4.3.2 Simulation Results

The median results of our simulations are shown below. In the simulation results, the x coordinate
indicate the number of services that have been reached by clients during the simulation whereas
the y coordinate gives the number of generated messages.

55

ZigZag Middleware

0 20 40 60 80 100
Service Providers

0

20

40

60

80

100
%

 M
es

sa
ge

s

Aggregated Messages=82%
Non Aggregated Messages=16%
Lost Messages=2%

Figure 4.3: Use Case 1: Information craving

Information craving.
Figure 4.3 shows the results of our simulation for the Information craving scenario. In this
scenario, as the timeout of one client is greater than each timeout of SLP, UPnP and Bonjour,
only one client is required to generate requests, and the simulation result corresponds to the best
case as the client timeout is high. 82% of the received responses are aggregated, with at least
2 or more responses per message. About 16% of non aggregated messages are received. About
2% of the messages are lost due to errors in the network or replies that did not arrive on time.

Time bound.
Figure 4.4 shows the results of our simulation for the Time bound scenario. In this scenario, three
different client has been used, one for each SDP, i.e. SLP, UPnP and Bonjour. Each client uses
therefore a different timeout. In average, 62% of received responses are aggregated with at least
2 or more responses per message. Further, about 28% of non aggregated messages are received
and 10% of the messages are lost due to errors in the network or replies that did not arrive on
time. The increase of both non aggregated messages, and lost messages comes from the fact
that some replies arrived after the client has signaled a timeout, and are thus ignored. Compared
to the previous results, the simulation results obtained in this scenario corresponds to the worst
case.

Best of both worlds.
Figure 4.5 shows the results of our simulation for the Best of both worlds scenario. In this

56

Evaluation

0 20 40 60 80 100
Service Providers

0

20

40

60

80

100
%

 M
es

sa
ge

s

Aggregated Messages=62%
Non Aggregated Messages=28%
Lost Messages=10%

Client_1 (UPnP Timeout=3.6s)
Client_2 (Bonjour Timeout=3s)
Client_3 (SLP Timeout=2s)

Figure 4.4: Use Case 2: Time bound

0 20 40 60 80 100
Service Providers

0

20

40

60

80

100

%
 M

es
sa

ge
s

Aggregated Messages=70%
Non Aggregated Messages=23%
Lost Messages=7%

Client_1 (UPnP Timeout=3.6s)
Client_2 (Bonjour Timeout=3s)
Client_3 (SLP Timeout=2s)

Figure 4.5: Use Case 3: Best of both worlds

57

ZigZag Middleware

scenario, in average, clients get 70% of aggregated responses with at least 2 or more responses
per message and about 23% of non aggregated messages. About 7% of messages are lost due to
errors in the network or replies that did not arrive on time. The successful increase of aggregated
responses comes from the fact that clients tolerates one timeout expiration plus one request re-
submission. It means that ZigZag nodes are caching all responses in order to aggregate them to
reduce the number of requests sent back to the client.

Average number of messages received by a client
Aggregated Non-aggregated Lost/Dropped

Information craving 82 % 16 % 2 %
Time bound 62 % 28 % 10 %
Best of both worlds 70 % 23 % 7 %

Table 4.2: Simulation summary

0 20 40 60 80 100
Service Providers

0

20

40

60

80

100

%
 M

es
sa

ge
s

Use Case 1
Use Case 2
Use Case 3

Figure 4.6: Comparison: All 3 use cases

Table 4.2 gives a summary of our simulation results. Our experiments have demonstrated that
ZigZag enables 57% to 80% of received messages to be aggregated, having at least two service
provider replies. This high rate of aggregated messages implies a significant reduction in the
number of messages exchanged through the network and more valuable answers to the client.
Figure 4.6 shows a comparison of all the three use cases. In addition, various policies can be

58

ZigZag integration in ALICANTE

easily implemented and deployed using ZigZag to cope with user expectations and network con-
straints.

4.4 ZigZag integration in ALICANTE

The ZigZag middleware can be deployed as a standalone system to discovery services in large
scale heterogeneous network. However, the modular architecture enables it to be integrated into
any existing system. This empowers ZigZag to be customized, to suit once needs. Hence, AL-
ICANTE can utilize this feature of ZigZag in the Service Environment to improve its service
offering and provide context-aware service discovery. In the Service Environment ZigZag can be
integrated individually at two critical points, namely; at the HomeBox and the Service Registry.

4.4.1 ZigZag at Service Registry

ALICANTE Service
Registry Service

Registry

Service
Registry

ZigZag Middleware

HomeBox

Figure 4.7: ZigZag at Service Registry

The popularity of today’s existing social media platforms; (YouTube, Flickr, Facebook, Google+,
etc.) permits End-Users to publish their content and consume available services. However, the
users need to uses individual platform applications to access available services. Towards this,
and as depicted in Figure 4.7 the ALICANTE service registry can utilize the assistance of ZigZag
to interact with other external service registries. This permits the EU to use his/her favorite
application to access services from any platform. Furthermore, it enables the Service Provider to
provision value added services that adhere to users’ current context and situation. Moreover, it
allows the EU to act as independent content distributor (Media Prosumer) from his/her premises
thanks to the always-connected HomeBox device. Figure 4.8 shows the detail integration of
ZigZag middleware components in ALICANTE service registry, Furthermore, it also shows the
mapping of ALICANTE interfaces with the integrated ZigZag middleware components.

59

ZigZag Middleware

N
e
tw

o
rk

 L
in

k

Service Registry

Security
Manager

Aggregator

Connector
Management

Query
Manager

ZigZag Middleware

DB

Sa

Sb

Service Composition

Service Management

External
Service Registry

SHr
ALICANTE
HomeBox

Figure 4.8: ZigZag component integration at Service Registry

ZigZag Middleware

HomeBox

SLP

Bonjour

UPnP

Figure 4.9: ZigZag at HomeBox (simple mode)

4.4.2 ZigZag at HomeBox

At the HomeBox the Zigzag middleware can be configured into two modes, namely, simple and
P2P mode. Figure 4.9 illustrates the typical scenario at a home of a user utilizing the simple

mode. As shown, the user home is densely populated by different kind of devices such as smart
phones, laptops, IPTV and cameras with either wired or wireless interfaces. Each of these devices
support different discovery protocols making it difficult for them to interact with each other.
When ZigZag is configured in the simple mode, the network component of ZigZag middleware
uses the same protocol as the ALICANTE SR to search and publish End-User service.

One of the Key features of ALICANTE architecture is a clear segregation of environments and
layers. As mentioned earlier ALICANTE architecture provides two virtual layers namely; the
Home-box layer and the CAN layer. Leveraging on the virtual Home-Box layer ZigZag can
be configured in the P2P mode. In the P2P mode, the network component of ZigZag utilizes
the same protocol used by the virtual layer to organize and communicate among HomeBoxes.

60

Summary

HomeBox

SLP

Bonjour
UPnP

HomeBox

SLP

Bonjour

UPnP

HomeBox

Bonjour

UPnP

SLPp2p

ZigZag Middleware

Figure 4.10: ZigZag at HomeBox (P2P mode)

This enables ZigZag to delegate and share resources among connected HomeBoxes. Integrating
ZigZag middleware in ALICANTE HomeBox is very advantageous as it manages the heterogene-
ity of different protocol and enables seamless discovery and access to services in a multi-protocol
environment.

4.5 Summary

In this Chapter, we have presented our first contribution the ZigZag middleware. Firstly, we have
highlighted the issues for service discovery in large scale network. We have then showed how
ZigZag approach can address these issues. Secondly, we have presented the modular ZigZag
middleware architecture and the advantages of each of its components. Thirdly, we showed the
importance of aggregation in the process of service discovery and evaluated our approach with
the help of simulations. Furthermore, we have described the integration of ZigZag in ALICANTE.
And finally, we showed the need for a policy language that can help developers defines different
policies. In the next chapter we present our policy framework and its features.

61

ZigZag Middleware

62

Chapter 5

Policy framework for context-aware
personalization

"Things should be made as simple as possible - but no simpler"

–Albert Einstein

Contents
5.1 Policy Framework . 65

5.2 Policy Engine . 67

5.3 Policy Language . 69

5.3.1 Policy Syntax . 70

5.3.2 Policy Condition . 70

5.3.3 Policy Action . 71

5.4 Policy Generator . 74

5.5 Towards better QoE . 76

5.6 Summary . 78

The evolution of information technology: centralized, homogeneous systems have been replaced
by distributed processors and applications connected by large and widely disparate networks.
Furthermore, Web technology is continuously extending the reach of the network, as a results the
number of users within the network has increased tremendously. As new technologies are evolv-
ing rapidly it has become clear that the existing network and management systems are not very
well suited to cope with automated and self-learning requirements in user and application-driven
environments. There is therefore a need for application/user aware provisioning and controlling
system resources.

63

Policy framework for context-aware personalization

The fundamental use of distributed system is to allow connected devices to use shared re-
sources to complete a particular task. However, to use shared resource in a distributed environ-
ment at runtime, connected devices need to know if they are able to address the needs of the new
incoming requests. To this end, policies have been very successful. A policy enables system
administrators to define specific application conditions and associated actions. For instance at
runtime, if an application specific condition is matched for a particular incoming request then an
associated action or group of actions would be executed by the system. Additionally, to take full
advantage of the distributed architecture, connected devices should be able to delegated a job if
they cannot satisfy the requirements of new incoming request, hence runtime distribution and
managements of policies becomes very important.

Let us take an example to highlight the need for delegation and runtime management of poli-
cies in a distributed environment. As depicted (see Figure 5.1), each network is connected to an
overlay with the help of a gateway enhanced with ZigZag middleware. The system administrator
has configured a default policy on each ZigZag node. This policy forwards any request by a client
to the overlay. Furthermore, this policy expects the responses to arrive in the source protocol for-
mat and hence blocks enough resources to aggregate them when they arrive. Additionally, each

Overlay

Request
Response

ZigZag1

ZigZag3

ZigZag2

SLP

UPnP

Service Provider

Service Provider

Service Provider

SLP

UPnP

X

Figure 5.1: ZigZag middleware: need for delegation

ZigZag node only supports translation of messages from one protocol to another for the SDPs

64

Policy Framework

present in its local environment. In the above example when a client device (laptop) supporting
UPnP protocol makes a search request to ZigZag1, it forwards this request to the overlay on be-
half of the client. This forwarded request is received by all active ZigZag nodes connected to the
overlay. Further, when the request is received, each ZigZag node extracts the request parameters
and matches them against the policy conditions defined earlier by the system administrator. For
the above request, although ZigZag3 has a service match, it cannot send a response, as the nec-
essary translation mechanism is absent on ZigZag3. However, if ZigZag3 was able to delegate
this task (translation) to ZigZag2 then it would have been able to reply to ZigZag1. Furthermore,
if ZigZag3 were able to configure policies on ZigZag2, it would have significantly reduced the
number of messages in the network. We propose to address the issues faced by ZigZag3 in the
above example with the help of a policy framework.

Policy Framework design requirements
To design a policy framework that address the aforementioned issues we have identified four key
design requirements.

1. Delegation
The main idea behind the use of delegation is to get a job or task done by some other entity.
However, to complete the task the entity should have the capability and the resources to
complete the task at hand. To achieve this, a delegation mechanism should be provided to
enable entities to request resources from other connected entities.

2. Dynamic configuration and logging.
To be able to direct system flow at runtime, a dynamic policy management mechanism
should be provided. This mechanism should be able configuration policies at runtime.
Furthermore, a logging mechanism should also be provided to log system states.

3. Facilities for domain specific customization.
In a highly distributed environment messages are strongly domain dependent. To address
this, a customizable messaging paradigm should be supported that can handle both request-
response and request-only communication.

4. Context-aware policy condition.
In a highly pervasive environment consisting of different elements, it is very difficult to
uniquely identify different elements and their properties. To address this, a policy genera-
tion mechanism should be provided that can generate context-aware policy conditions.

Taking these design requirements into consideration, we have implemented a context-aware pol-
icy framework. The next section explains in details our policy framework architecture and its
advantages.

5.1 Policy Framework

To enable system administrator to configure policies on ZigZag nodes, we have implemented a
context-aware policy framework. Our policy framework relies on the Internet Engineering Task

65

Policy framework for context-aware personalization

Force (IETF) functional architecture. The IETF [YPG00] and Distributed Management Task
Force (DMTF) working groups, work together in the creation of different standards related to
policies. The IETF is in charge of the architecture definition and the DMTF defines a standard
information model. However, the IETF do not use a language for specifying policies, but rep-
resents policies with an object-oriented information model. This model is an extension of the
Common Information Model (CIM) that is developed by the DMTF. The IETF policy working
group defines policies as "an aggregation of rules, where every rule includes a set of conditions

and its correspondent set of actions". As depicted in Figure 5.2 the IETF policy framework
consists of the following components, namely; ❶ the policy management tool, ❷ the policy
repository, ❸ the policy consumer and ❹ the policy target. The functionality of each of these
components is explained below.

policy
Management

tool

Policy
Repository

Policy
Consumer

Policy
Target

 repository access
Protocol

repository access
Protocol

Pr
ot

oc
ol

 fo
r a

ffe
ct

in
g

 P
ol

ic
y

Ta
rg

et
s

Al
te

rn
at

e
Po

lic
y

Co
m

m
un

ic
at

io
n

Pa
th

Figure 5.2: IETF Architecture

Policy Management
The Policy Management Tool produces POLICY RULES, which are used by the POLICY CON-
SUMERS to appropriately influence the behavior of the POLICY TARGETS. The POLICY RULES

specify the logic used to deliver the prescribed service and service-levels. The POLICY CON-
SUMERS on the other hand interpret and may further validate the POLICY RULES and then map
these rules to the underlying policy mechanisms of the POLICY TARGETS. Furthermore, the

66

Policy Engine

POLICY CONSUMERS may also transform POLICY RULES into forms that POLICY TARGETS

can use directly.

Policy Repository
In a policy repository, POLICY RULES are represented as a set of object entries that include
object classes for POLICY RULES, policy conditions and policy actions. These POLICY RULES

co-reside with objects representing network devices and services as well as with other objects
representing entities like users, printers, and file servers.

Policy Consumer
The POLICY CONSUMER is responsible for POLICY RULE interpretation and initiating deploy-
ment. Its responsibilities include trigger detection and handling, rule location and applicability
analysis, network and resource-specific rule validation and device adaptation functions. In cer-
tain cases, it transforms and/or passes the POLICY RULE and data into a form and syntax that the
POLICY TARGET can accept, leaving the implementation of the POLICY RULE to the POLICY

TARGETS.

Policy Target
POLICY TARGETS are responsible for the evaluation of policy conditions. Furthermore, it also
handles the execution of actions. Moreover, it can also perform related device-specific functions,
such as POLICY RULE validation and policy conflict detection.

As mentioned before, our policy framework relies on the IETF functional architecture. How-
ever, we have enhanced the functionality with the addition of a policy language. Our policy
language enables system administrator to write and configure policies on ZigZag nodes in a
clean and effective way. As depicted in Figure 5.3 the Policy Framework is made up of 3
main components, namely; the Policy Engine, the Policy Language, and the Policy
Generator. The functionality of each component is explained below.

5.2 Policy Engine

The Policy Engine consists of four modules namely; ❶ Policy Parser, ❷ Policy Evalua-

tor, ❸ Policy Manager and ❹ Policy Action. The functionality supported by the modules are
briefly explained below.

Policy Parser
As it turns out typos and errors are bound to creep into a policy during its generation. In order
to avoid system crush at runtime, syntax checking could go along ways before the policy can be
used in the system. To this end, our Policy parser adheres to the context-free language described
in APPENDIX II and makes sure that the policy instance is validated before it is utilized in the
system. Furthermore, the policy parser also checks and validates the policy actions and their

67

Policy framework for context-aware personalization

Policy Framework

Policy Generator

Policy Parser

Policy
Evaluator

Policy
Action

Policy M
anager

Policy
Store

Policy Instance

Policy Engine

Policy Language

Figure 5.3: Policy Framework Architecture

parameters before they are stored into the policy store. Hence, any policy instance that does not
pass the policy validation check is directly rejected. While on the other hand any policy instance
that pass the policy validation check uses the functionality of the policy manager so that, it can
be stored in the policy store.

Policy evaluator
The policy evaluator has two main responsibilities. Firstly, it is responsible to validate the result
of an incoming request with the stored policies. And secondly, it is responsible to direct system
flow. To achieve the first objective, the policy evaluator uses the concept called boolean matching.
Using boolean matching each condition in the policy is validated with the keywords and values
from the incoming request; the result is stored as either true or false. This process is repeated for
all the policies in the policy store until a policy match is found (i.e. the final boolean result of
all conditions evaluates to true). In case of non valid policy match, the user request is dropped.
However, the system administrator can configure a default action for all non valid matches or log
the user request. While on the other hand on a valid policy match the Policy Evaluator passes
the control to the Policy Action module.

Policy Manager
Distributed systems management involves monitoring the activity of a system, making manage-
ment decisions and performing control actions to modify the behavior of the system. However,

68

Policy Language

the sheer size and complexity of large distributed systems has resulted in a trend towards au-
tomating many aspects of management, chief among them being the ability to self-manage policy
distribution. Thus there is a growing need to enable policy managers to specify, represent and
manipulate policy information to enable self-management in a dynamic distributed environment.
Towards this, our policy manager supports the following policyOperation functions:

• add – Used to add a policy to the policy store.

• remove – Used to remove a policy from the policy store.

• enable – Used to enable an existing policy from the policy store.

• disable – Used to disable an existing policy from the policy store.

• move – Used to change location of a policy in the policy store.

These functions enable the policy manager to self-manage policy entries on a remote or a local
policy store with the help of management functions. These functions are described in details in
the next section.

Policy Action
Policies encapsulate a representation of information affecting component behavior with the help
of policy action. Thus it is highly advantages to specify the scope of a policy action to a particular
domain. This enable the policy manager to identify what policy apply to a domain and then use
this information to modify the component behavior to achieve system goals. To this end, the
policy actions module stores domains component information as action objects. Furthermore,
these actions objects are then used to consult with the policy manager before the execution of a
policy action. Section 5.3.3 clearly shows the advantages of the system defined policy actions.
Further, these policy actions are designed to be domain independent and can be easily configured
to cater to different domain needs.

5.3 Policy Language

Our policy language follows the IETF recommendation of Condition-Action paradigm.
The policies have the shape of: "If there is (a set of conditions), then (a set of actions) can be

done". The Following section explains the syntax, constructs and usage of our policy language.

69

Policy framework for context-aware personalization

5.3.1 Policy Syntax

The BNF-like syntax of our policy language is shown below. typewriter font is used for
keywords. italic font is used for nonterminals. Parentheses are used for grouping. A superscript
∗ denotes 0 or more occurrences of the preceding item. A superscript + denotes 1 or more oc-
currences of the preceding item. A superscript ? indicates that the preceding item is optional.
Comments, begin with # and only after the actions.

policy_spec ::= policy policy_condition then do action

::= policy_action (comment)?

policy_condition ::= conditions

policy_action ::= functions

comment ::= # comment or short policy desc

Our policy language relies on two basic constructs namely; policy_condition and policy_action.
Using these constructs our policy language is able to influence the runtime behavior of a system.
The policy_condition is used to validate different runtime requisites, while the policy_action

is used to direct system flow. The following section describes how we can represent a pol-

icy_condition.

5.3.2 Policy Condition

A policy_condition provides the means to validate the occurrence of a case at runtime. However,
to identify and validate different cases with subtle variations, policy_condition must support
rich set of operators. Furthermore, these operators should be able to accurately distinguish one
case from the other. Moreover, a policy should be able to combine multiple expressions and
evaluate it as a single policy_condition. Towards this, our policy language supports two types of
policy_condition namely; Simple and Complex.

policy_condition ::= conditions

conditions ::= Simple | Complex

Simple
A Simple condition has the following form:

Simple ::= iden oper val

iden ::= letter | (letter)∗

oper ::= < | != | = | > | <= | >=

val ::= digits | letter

70

Policy Language

As described above, our language supports the following operator: =, !=, <, <=, >=, > . These
operators can be used to indicate subtle differences and uniqueness of each policy. This in turn
helps to minimize policy conflicts at runtime. Furthermore, the iden in the expression is dynam-
ically resolved at runtime; depending on the oper the value of the right operand val is stored in
the left operand iden. This enables us to use the value of the iden for a different expression in the
same policy_condition.

eg1. userID = John
eg2. Location = office

The above examples show how we can use the operator (oper) to define Simple condition. In
the example, iden userID is assigned the value John. However, if we want to combine the two
Simple conditions we would need a different set of operators. To achieve this, we propose the
complex condition.

Complex
A Complex condition enables us to combine multiple Simple or complex conditions to build a
more comprehensive set of policy_condition. To this end, our language supports the following
operators: AND, OR, NOT. In addition, we also support the IN operator which is used in
conjunction with collection keyword. Therefore, a condition specified with a IN operator,
is said to be true only when the condition is part of a collection of conditions.

Complex ::= Simple op Simple | NOT Complex |
::= iden IN Collection {Complex}

op ::= AND | OR

e.g., userID = John AND userID IN collection{list_of_users}

The above condition checks if a user with userID John is among the users specified in list_of_users.
The list_of_users parameter can be a static comma separated list or a dynamic list generated us-
ing a call to an external program. This ability of our policy language to generate a dynamic list
at runtime enables the specified collection to be up to date at access time.

5.3.3 Policy Action

A policy_action is a set of instructions that specifies parameters used to provide a different qual-
ity in one or more services. If the set of policy_condition is true, then the policy_action or a set
of correspondent policy_action is executed. policy_action dynamically control the system flow
at runtime by executing the defined set of actions. In order to provide a self-managing frame-
work, our Policy Language supports the following actions types, namely; Delegate, Configure,

Logging. These actions are domain independent and the system administrator has the flexibility
to customize them to adhere to a specific domain. However, if a system administrator wants to

71

Policy framework for context-aware personalization

add different functionality or wants to automate a commonly used functionality he can still do
so with the help of standard communication methods called MEP. MEP’s are communication
methods that can be customized to accommodate domain specific needs.

policy_action ::= functions

functions ::= function | (functions)?

function ::= Delegate | Configure | logging | MEP

Delegate
The centralized, labor-intensive management paradigm has been stretched to its limits by emerg-
ing large scale, complex, multi-domain networks. There is a growing need for new technologies
that can automate and distribute management functions to accomplish scalable and robust op-
erations. Delegation is once such useful management function that support a new paradigm for
automated distributed management of networked systems. A Delegate Action enables nodes in
highly distributed network to depute work to other connected nodes. The delegate action is rep-
resented as follows:

Delegate ::= delegate (delegateJob, delegateMessage, address)

where, delegateJob is the identity/name of the job a node needs to assign to another node. The
delegateMessage is message that accompanies the job name stating precisely the nature of work
that needs to be done. To support domain independence the delegateMessage uses XML message
format. Lastly, the address is responsible for sending the request to a destined location or to a
network overlay. On execution of Delegate action, an unique returnID is returned that is used
by the policy manager to update the policy store on a specific node.

Configure
We have just seen the importance of delegate action as a management function. However, in
order to use the resource identified after the execution of the delegate action we need to update
the policies in the policy store so that other actions can use it to accomplish their task. Towards
this, we have the Configure action. The Configure action is used to update policy store entries on
one particular node or all the nodes in the network as required by the system administrator. This
functionality ensures that the policies in the network are dynamically managed without restarting
the system. The Configure action is represented as follows:

Configure ::= config (policyOperation, policyInstance, address, returnID)

72

Policy Language

where, policyOperation defines the operations a system administrator can execute on a policy
store. These operations are controlled and the execution is authorized by the policy manager.
All the support policyOperation functions will be explained later in the section. Further, the
policyInstance is an instance of a particular policy that needs to be updated or added to the
store. The returnID is an UUID returned after the execution of the Delegate action. This UUID
indicates the that the node has the required authorization to execute the Configure action on
the remote node. However, if the policy needs to set on all the remote nodes then the system
administrator uses a specific key as returnID and the policy is said to a global policy. On the
other hand a returnID with value None is used to execute operations on the local node itself.

Logging
One of the most important tools used to monitor system states in computing is by a process
called logging. This has become the de facto standard in system auditing. Furthermore, as all
the process in the system use messages it is also used for intrusion detections. The logging fea-
ture provides information like "who, what, when, where, and how" thereby enabling the system
administrator to make informed business decisions. To this end, we provide the Logging action.
The Logging action is represented as follow:

logging ::= log (logMessage)

where, logMessage is the message that provides additional textual information about the ac-
tions or the current process.

Message Exchange Patterns (MEP)
In a highly distributed environment messages are strongly domain dependent. Each domain has
its own message interaction mechanism, some support request-response paradigm while other
support request-only paradigm. To cater to these domain specific messaging paradigm we sup-
port two standard MEP. The two MEP are represented as follows:

MEP ::= request-response | request-only

request-response ::= transmit_rr (parameters)
request-only ::= transmit_ro (parameters)
parameters ::= actionType, messageBody, address, messageID

where, transmit_rr is used for request/response message interactions. While transmit_ro
is used for request-only message interaction. actionType is used to uniquely recognize a domain
specific action. messageBody provides additional information about the action. To ensure com-
patibility with different domains the messageBody support XML message format. While the
messageID is an UUID used to uniquely identify a messages in the system.

73

Policy framework for context-aware personalization

5.4 Policy Generator

Policies can help us to dynamically control system flow and reduce the cost and time generally
associated with coding of static systems. However, it is extremely important that the generated
policy fully reflects the advantages of the model from which it is produced. In a highly pervasive
environment consisting of different elements, it is very difficult to uniquely identify different
elements and their properties. Towards this, the semantic community showed some promising
results with the help of ontologies. Ontology provides a formal description and semantic for
context information in term of objects, concepts, properties and relations. Therefore ontologies
have become the most widely used tool for modeling context information in pervasive comput-
ing domain. Hence, to take advantage of the feature proposed by ontologies we choose OWL
[MVH+04] to model our domain.

OWL has been successfully used by developer for applications needing a classification hierarchy,
simple constrain feature and maximum expressiveness without losing any computational com-
pleteness. As depicted in Figure 5.4, in our model we identified 4 interrelated entities that are
generic to any domain: namely; ❶ the user, ❷ device, ❸ network, and ❹ service. These enti-
ties are modeled as owl:Class elements and the relations as owl:ObjectProperty. Each
owl:Class is characterized by different owl:DataProperty that are considered relevant
to the domain.
The User entity is described in different profiles:

• The GeneralProfile contains general information about the user such as name, age,
etc..

• The SubscriptionProfile contains information on the different services for which
the user have subscribed and the services that he may access.

• The ContactProfile contains the contact information of the user such as his address,
phone number, SIP URI, etc.

• The Affiliationprofile contains information about the different organization to
which the user is affiliated.

• The AuthenticationProfile contains information that allows the user to be authen-
ticated.

• The PreferenceProfile contains the user-defined preferences or the deduced pref-
erences from usage. The user preferences could be generic and applied to any service or
situation or they could target a specific service or context entity and thus be applied only
when the latter is involved.

The Device entity is described as two sub-entities namely: ❶ HardwarePlatform and ❷

Softwareplatform. The HardwarePlatform entity is modeled in a hierarchical way
since the components can be either atomic or composite. On the other hand the

74

P
o
licy

G
en

erato
r

Figure 5.4: Context model

75

Policy framework for context-aware personalization

Policy Generator

Policy Instance

Context
Model

Policy
Template

Figure 5.5: Policy Generator

Softwareplatform entity represents User and System software’s that runs on the device.
For instance, audio/video codec or players. The description of the Network entity comprises
of information such as the name of the network and the theoretical parameters that characterize
it. For instance, user location or a loss or error rate experienced in a multimedia session within a
related network. These parameters are either reported by monitoring modules or evaluated using
subjective techniques. The Service entity represents the different services that the user can
access. Any entity that provides a service is represented within this entity. The service entity is
modeled using OWL-S [MBH+04] Service Profile that relies on Inputs, Outputs, Preconditions
and Effects (IOPEs) as modeling parameters.

The use of ontologies helped solve the issue of uniquely identifying the elements and their ca-
pabilities. However, in order to effectively use them the policy generator has to present them in
the form understood by the system. Towards this, and as illustrated in Figure 5.5 the generator
use the service of a template. Templates provides the mandatory policy building blocks leav-
ing enough gaps to be filled by using the dynamic information extracted from Ontology based
modeled data.

5.5 Towards better QoE

To provide better quality of service for users, multimedia service and network providers endeavor
to improve, the presentation quality of multimedia content and at the same time optimize the
network infrastructure. The following example (see Figure 5.6) highlights the use of a policy
language towards this objective. The network and service providers can use the policy language
to describing policies for a particular user or a group of users based on his/her preference. For
instance, the above example shows how the policy language is used to selects the category and
video resolution according to the user preferences, location and device.

76

Towards better QoE

Office

Home

Service
Provider

Content
Provider

Transit

John

Figure 5.6: Policy Usage Example

policy

(Bandwidth > 256kbps) and

(UserID=John) and

(ServiceType=VOD) and

(Location=fixed) and

(DeviceType=laptop) and

(ConnectionInterface=wired)

then do action

transmit_rr(forward, HD resolution, laptop address,

msg-id=123)

log("Request sent for adaptation, msg-id=123")

The policy states that when user JOHN is at his office premises, he prefers to get the match high-
lights of recently played football matches during his lunch time, when he requests for a VoD
service. As JOHN’S office has a very good network bandwidth the policy selects the High Defi-
nition (HD) resolution video for JOHN. The simple policy that is generated using JOHN’S current
context information for HD content streaming is shown below. However, user JOHN now wants
to continue viewing the same VoD service that he was watching at lunch time from his mobile
device on his way home. He now logs in from his mobile phone and accesses the same VoD ser-
vice. At this point, the network entity detects that JOHN’S bandwidth is not enough to consume
HD content and hence selects the policy to stream SD resolution optimized for mobile viewing.
Furthermore, the video starts to stream from the same position that JOHN paused on the office
computer. The updated policy is shown below.

77

Policy framework for context-aware personalization

policy

(Bandwidth < 256kbps) and

(UserID=John) and

(ServiceType=VOD) and

(Location=mobile) and

(DeviceType=phone)

then do action

transmit_rr(adaptation, SD resolution, adaptation.py,

msg-id=123)

log("Request sent for adaptation, msg-id=123")

transmit_rr(forward, adapted data, VideoStart=03:12,

phone address, msg-id=123)

5.6 Summary

In this Chapter, we have presented our second contribution, the Policy Language. Firstly, we have
described the need for policies in ZigZag middleware. We have then used the recommendation
proposed by IETF and DMTF working group to design the policy framework. Furthermore,
we have enhanced the IETF recommendation with the help of a policy language. Moreover,
we have proposed a policy generator that relies on ontologies to generator context-aware policy
conditions. And finally, we have described how policies can be used to enable better QoE for the
End User.

78

Chapter 6

Conclusion

"Success is a journey, not a destination, doing is often

important then the outcome"

–Arthue Ashe

Contents
6.1 Ongoing and Future work . 80

6.2 Concluding remarks . 81

Due to rapid innovations in modern information and communication technologies, there has been
a substantial increase in users, devices and services connected to the Internet. However, in spite
of the current Internet’s overwhelming success, there are growing concerns about its future and
its robustness, manageability, and scalability. Future Internet is presently seen as a large scale
infrastructure that can provide dependable management, scalability and robustness among het-
erogeneous networks. Furthermore, users in Future Internet should be able to use anytime, any-

where, remote services on any device regardless of their underlying technology. Currently, a vast
bulk of services primarily connected to the Internet has not been designed to interact seamlessly
with each other. These services rely on contrasting Service Discovery Protocols making them
difficult to discover and consume. Therefore, to realize the future vision of anytime, anywhere,

any device, there is an immediate need to address the issue of protocol heterogeneity to enable
future services.

Recently, a lot of emphases have been given to address user satisfaction. This has led to end
users demanding personalized services with better Quality of Experience. However, service per-
sonalization requires prior knowledge about users’ preferences, device capabilities and network
characteristics. Towards this, the use of context information has been very successful. Unfor-
tunately, current Service Discovery Protocols have not been able to fully exploit its advantages.

79

Conclusion

Therefore, there is a need to combine the capabilities of service discovery with the advantages of
context information to enable highly sophisticated services customized to end-user needs.

In this thesis, we proposed a new approach to discover services in the large. Our approach
is based on protocol translation to enable service discovery irrespectively of their underlying
Service Discovery Protocols. We introduce ZigZag, a middleware to reuse and extend current
Service Discovery Protocols, designed for local networks, to discover available services across
network boundaries as required in Future Internet. The ZigZag middleware can be deployed as
a standalone solution or can be integrated into existing one thanks to its modular design. Fur-
thermore, the middleware can be configured to discover services based on diverse application
requirements with the help of policies. Policies enable developers to define system conditions so
that ZigZag can aggregate service information as required by different applications. We tested
our approach with the help of simulations and the results showed that ZigZag can both reduce
the number of messages that flow through the network, and provide value sensitive information
to the requesting entity.

Nevertheless, defining policies is a daunting task that would require developers to have an in
depth understanding of ZigZag. To address this issue, we proposed a policy language to define
policies in a clean and effective way. Moreover, the policy language has some added advantages
in terms of dynamic management. Firstly, it can be used to delegate resources to other ZigZag
nodes. Secondly, it can be used to dynamically configure policies on ZigZag nodes at runtime.
Thirdly, it can be used to log system information. Additionally, the policy language can be
used to define domain-specific actions, enabling developers to customize the policy language to
address different domains.

6.1 Ongoing and Future work

Real scenario Testing
Since the proposed ZigZag solution has only been evaluated by simulations, the next step in-
volves integrating the middleware in the Home-Box equipment in order to evaluate its perfor-
mance in large-scale testbed platform envisioned in ALICANTE project. The latter is composed
of four autonomous distributed heterogeneous network environments called pilot islands. These
pilot islands are located at the premises of ALICANTE consortium members and support differ-
ent media services. The first pilot island is located at the PT Inovação headquarters in Aveiro –
Portugal; the second at the FTB headquarters in Beijing – China; the third at the UPB Campus
in Bucharest – Romania; and the final at CNRS-LaBRI Campus in Bordeaux – France.

Privacy
The language support has provided a step forward to ZigZag by identifying different runtime
conditions during the process of service discovery and personalization. However, there are limi-
tations to the approach that we want to investigate further. We are currently investigating privacy,

80

Concluding remarks

a key concern in personalized service discovery. Furthermore, we plan to integrate and configure
privacy-specific behavior using policies within the ZigZag middleware architecture.

Support of service invocation & delivery protocol
The current implementation of the ZigZag middleware only supports service discovery and ser-
vice personalization in a heterogeneous environment. However, we are currently investigating
how to extend our proposed architecture to support both service invocation and service delivery,
so as to provide a full featured mechanism for service access in the context of Future Internet.

6.2 Concluding remarks

The ZigZag Middleware was originally designed to discovery media services in a multi-protocol
heterogeneous environment. However, the advantages of ZigZag go beyond media access and
can be effectively used to automate home and enable smart spaces. Furthermore, The recent
improvement in technology and the popularity of Internet of things have created the right con-
ditions for the reawakening of smart homes and smart spaces. Smart home include services like
centralized control of lighting; HVAC (heating, ventilation and air conditioning) appliances; se-
curity locks of gates and doors and other systems. However, most vendors for these services
relies on different protocols. Towards this, ZigZag can help vendors to coordinated the interac-
tion between different services. Furthermore, ZigZag can also enable users’ to control various
services with their smartphones and tablets; to provide improved convenience and comfort from
the palms of their hands. While the policy language was designed to help developers write poli-
cies for ZigZag middleware, its flexible design enables it to be used in other applications. For
instance, in an e-mail application, the developers can load an e-mail plugin parser that would
enable the policies to sort or filter e-mail messages in an inbox based on users’ preferences.

81

Conclusion

82

Bibliography

[AAB+11] M. Alduan, F. Alvarez, J. Bouwen, G. Camarillo, P. Cesar,
P. Daras, O. Festor, E. Izquierdo, N. Laoutaris, A.D. Mezaour,
et al., Future media internet architecture reference model (v1. 0),
http://www.gatv.ssr.upm.es/nextmedia/images/fmiattreferencemodel.pdf, March
2011, NextMedia Project.

[AKA06] AKARI Architecture Design Project, http://www.nict.go.jp/en/photonic_nw
/archi/akari/concept-design_e.html, May 2006, National Institute of Information
and Communications Technology (NICT) of Japan.

[ALI13] ALICANTE: mediA ecosystem depLoyment through ubIquitous Content-Aware

NeTwork Environments, http://www.ict-alicante.eu/, Feb 2010-2013, European
FP7 Project.

[APS99] Mark Allman, Vern Paxson, and William Stevens, RFC 2581: TCP congestion

control, http://tools.ietf.org/html/rfc2581, April 1999, IETF.

[AWSBL99] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, The design and im-

plementation of an intentional naming system, ACM SIGOPS Operating Systems
Review, vol. 33, ACM, 1999, pp. 186–201.

[BBK02] M. Balazinska, H. Balakrishnan, and D. Karger, INS/Twine: A scalable peer-to-

peer architecture for intentional resource discovery, Pervasive Computing (2002),
149–153.

[BCA+01] G.S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa, H. Duran-
Limon, T. Fitzpatrick, L. Johnston, R. Moreira, et al., The design and implemen-

tation of open orb 2, IEEE Distributed Systems Online 2 (2001), no. 6, 1–40.

[BDD05] Ian S Burnett, Stephen J Davis, and Gerrard M Drury, Mpeg-21 digital item dec-

laration and identification-principles and compression, Multimedia, IEEE Trans-
actions on 7 (2005), no. 3, 400–407.

[BDS08] D. Benslimane, S. Dustdar, and A. Sheth, Services mashups: The new generation

of web applications, Internet Computing, IEEE 12 (2008), no. 5, 13–15.

83

Bibliography

[BEK+00] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H.F.
Nielsen, S. Thatte, and D. Winer, Simple object access protocol (soap) 1.1,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/, May 2000, World Wide
Web Consortium and others.

[BGR11] Yerom-David Bromberg, Paul Grace, and Laurent Réveillère, Starlink: Runtime

interoperability between heterogeneous middleware protocols, Proceedings of the
2011 31st International Conference on Distributed Computing Systems (Washing-
ton, DC, USA), ICDCS ’11, IEEE Computer Society, 2011, pp. 446–455.

[BI05] Y.-D. Bromberg and V. Issarny, Indiss: Interoperable discovery system for net-

worked services, IFIP/ACM/Usenix International Middleware Conference, 2005,
pp. 164–183.

[BKE03] Joseph Bauer, R Kutsche, and Rudiger Ehrmanntraut, Identification and modeling

of contexts for different information scenarios in air traffic, Technische Universität
Berlin, Diplomarbeit (2003).

[BLMM+94] T. Berners-Lee, L. Masinter, M. McCahill, et al., RFC 1738: Uniform resource

locators (URL), http://www.ietf.org/rfc/rfc1738.txt, Dec 1994, IETF.

[Blo70] B.H. Bloom, Space/time trade-offs in hash coding with allowable errors, Commu-
nications of the ACM 13 (1970), no. 7, 422–426.

[BM07] D. Brickley and L. Miller, Foaf vocabulary specification 0.91,
http://xmlns.com/foaf/spec/20071002, Oct 2007, Tech. rep. ILRT Bristol.

[BMC+04] Paul Biron, Ashok Malhotra, World Wide Web Consortium, et al., Xml schema

part 2: Datatypes, World Wide Web Consortium Recommendation REC-
xmlschema-2-20041028 (2004).

[BNT10] Eugen Borcoci, Daniel Negru, and Christian Timmerer, A novel architecture

for multimedia distribution based on content-aware networking, Communication
Theory, Reliability, and Quality of Service (CTRQ), 2010 Third International
Conference on, IEEE, 2010, pp. 162–168.

[BPSM+97] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau, Extensible

markup language (xml), World Wide Web Journal 2 (1997), no. 4, 27–66.

[BRLM09] Y.D. Bromberg, L. Réveillère, J. Lawall, and G. Muller, Automatic generation of

network protocol gateways, Middleware 2009 (2009), 21–41.

[CFJ03] H. Chen, T. Finin, and A. Joshi, An ontology for context-aware pervasive comput-

ing environments, The Knowledge Engineering Review 18 (2003), no. 03, 197–
207.

84

Bibliography

[Che11] Cheshire, S. and Krochmal, M., Multicast DNS, http://tools.ietf.org/html/draft-
cheshire-dnsext-multicastdns-14, Feb 2011, IETF Internet-Draft.

[CHRT04] Luc Clement, Andrew Hately, Claus Riegen, and Rogers. Tony, Universal De-

scription Discovery and Integration Platform (UDDI) v3.0.2, http://www.oasis-
open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm, Oct
2004.

[CK+00] Guanling Chen, David Kotz, et al., A survey of context-aware mobile computing

research, Tech. report, Technical Report TR2000-381, Dept. of Computer Science,
Dartmouth College, 2000.

[CK13] S. Cheshire and M. Krochmal, RFC 6763: DNS-Based Service Discovery,
https://tools.ietf.org/html/rfc6763, Feb 2013, IETF.

[CNCS12] Soraya Ait Chellouche, Daniel Negru, Yiping Chen, and Mamadou Sidibe, Home-

box-assisted content delivery network for internet video-on-demand services, 44–
50.

[CPFJ04] H. Chen, F. Perich, T. Finin, and A. Joshi, Soupa: Standard ontology for ubiq-

uitous and pervasive applications, Mobile and Ubiquitous Systems: Networking
and Services, 2004. MOBIQUITOUS 2004. The First Annual IEEE Conference
on (2004), 258–267.

[CZH+99] S.E. Czerwinski, B.Y. Zhao, T.D. Hodes, A.D. Joseph, and R.H. Katz, An ar-

chitecture for a secure service discovery service, Proceedings of the 5th annual
ACM/IEEE international conference on Mobile computing and networking, ACM,
1999, pp. 24–35.

[DAS01] Anind K Dey, Gregory D Abowd, and Daniel Salber, A conceptual framework

and a toolkit for supporting the rapid prototyping of context-aware applications,
Human–Computer Interaction 16 (2001), no. 2-4, 97–166.

[Dee88] S.E. Deering, RFC 1054: Host extensions for IP multicasting,
http://tools.ietf.org/html/rfc1054, May 1988, IETF.

[DEFS98] Stefan Decker, Michael Erdmann, Dieter Fensel, and Rudi Studer, Ontobroker:

Ontology based access to distributed and semi-structured information, Proceed-
ings of the IFIP TC2/WG2.6 Eighth Working Conference on Database Semantics-
Semantic Issues in Multimedia Systems (Deventer, The Netherlands, The Nether-
lands), DS-8, Kluwer, B.V., 1998, pp. 351–369.

[Dro97] R. Droms, RFC 2131: Dynamic Host Configuration Protocol (DHCP),
http://www.ietf.org/rfc/rfc2131.txt, March 1997, IETF.

85

Bibliography

[ET11] ETSI-TS(MHM), 3gpp user data convergence (udc), framework for model

handling and management, http://www.3gpp.org/ftp/Specs/html-info/32181.htm,
March 2011, ETSI TR 32 181 V10.0.0.

[ETS11a] ETSI-TS(CBIM), 3gpp user data convergence (udc), common baseline infor-

mation model(cbim), http://www.3gpp.org/ftp/Specs/html-info/32182.htm, March
2011, ETSI TR 32 182 V10.0.0.

[ETS11b] ETSI-TS(St1), 3gpp generic user profile (gup), service requirements (stage 1),
http://www.3gpp.org/ftp/Specs/html-info/22240.htm, May 2011, ETSI TS 122
240 V10.0.0.

[ETS11c] ETSI-TS(St2), 3gpp generic user profile (gup), requirements architecture

(stage2), http://www.3gpp.org/ftp/Specs/html-info/23240.htm, May 2011, ETSI
TS 123 240 V10.0.0.

[ETS11d] ETSI-TS(St3), 3gpp generic user profile (gup), network (stage 3),
http://www.3gpp.org/ftp/Specs/html-info/29240.htm, May 2011, ETSI TS
122 240 V10.0.0.

[ETS11e] ETSI-TS(UDC), 3gpp user data convergence (udc),
http://www.3gpp.org/ftp/Specs/html-info/22985.htm, March 2011, ETSI TR
22 985 V10.0.0.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, RFC 2616: Hypertext transfer protocol–HTTP/1.1,
http://www.ietf.org/rfc/rfc2616.txt, June 1999, IETF.

[FIP94] European : Future Networks Projects, http://cordis.europa.eu/home_en.html,
1994, Community Research and Development Information Service.

[G+93] Thomas R Gruber et al., A translation approach to portable ontology specifica-

tions, Knowledge acquisition 5 (1993), no. 2, 199–220.

[GBS03] P. Grace, G. Blair, and S. Samuel, ReMMoC: A reflective middleware to support

mobile client interoperability, On The Move to Meaningful Internet Systems 2003:
CoopIS, DOA, and ODBASE (2003), 1170–1187.

[GL02] Michael Gruninger and Jintae Lee, ONTOLOGY Applications and Design, Com-
munications of the ACM 45 (2002), no. 2, 39–41.

[GPVD99] E. Guttman, C. Perkins, J. Veizades, and M. Day, RFC 2608: Service Location

Protocol v2.0, http://www.ietf.org/rfc/rfc2608.txt, June 1999, IETF.

[Gut02] E. Guttman, RFC 3224: Vendor extensions for Service Location Protocol,
https://tools.ietf.org/html/rfc3224, Jan 2002, IETF.

86

Bibliography

[GVE00] A. Gulbrandsen, P. Vixie, and L. Esibov, RFC 2782: A DNS RR for specifying

the location of services (DNS SRV), https://tools.ietf.org/html/rfc2782, feb 2000,
IETF.

[HIR03] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy, Generating con-

text management infrastructure from high-level context models, In 4th Interna-
tional Conference on Mobile Data Management (MDM)-Industrial Track, Cite-
seer, 2003.

[HK02] S.Y. Ho and S.H. Kwok, The attraction of personalized service for users in mobile

commerce: an empirical study, ACM SIGecom Exchanges 3 (2002), no. 4, 10–18.

[HMM08] Terry A Halpin, Antony J Morgan, and Tony Morgan, Information modeling and

relational databases, Morgan Kaufmann, 2008.

[HSP+03] Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonhartsberger,
Josef Altmann, and Werner Retschitzegger, Context-awareness on mobile devices-

the hydrogen approach, System Sciences, 2003. Proceedings of the 36th Annual
Hawaii International Conference on, IEEE, 2003, pp. 10–pp.

[KFJ03] Lalana Kagal, Tim Finin, and Anupam Joshi, A policy based approach to security

for the semantic web, The Semantic Web-ISWC 2003, Springer, 2003, pp. 402–
418.

[Kle08] J. Klensin, RFC 5321: Simple mail transfer protocol,
https://tools.ietf.org/html/rfc5321, Oct 2008, IETF.

[KLW95] Michael Kifer, Georg Lausen, and James Wu, Logical foundations of object-

oriented and frame-based languages, J. ACM 42 (1995), no. 4, 741–843.

[Kly99] Graham Klyne, RFC 2533: A syntax for describing media feature sets,
http://xml2rfc.tools.ietf.org/html/rfc2533, March 1999, IETF.

[KNR02] Sanjeev Khanna, Joseph Seffi Naor, and Dan Raz, Control message aggrega-

tion in group communication protocols, Automata, Languages and Programming,
Springer, 2002, pp. 135–146.

[KPS02] Charlie Kaufman, Radia Perlman, and Mike Speciner, Network security: private

communication in a public world, Prentice Hall Press, 2002.

[LS+99] Ora Lassila, Ralph R Swick, et al., Resource description framework (rdf) model

and syntax specification, http://www.w3.org/TR/1999/PR-rdf-syntax-19990105,
Jan 1999, World Wide Web Consortium and others.

[LZL+11] Jianzhong LI, Yanping ZHANG, Zfanya Leib, Preston Rodrigues, Yiping Chen,
Julien Arnaud, Daniel Négru, Eugen Borcoci, Pierre Bretillon, and Daniele Renzi,
D5.1.1 - SP/CP Service Environment - Service Management, Service Delivery

87

Bibliography

- I, http://www.ict-alicante.eu/public/deliverables/alicante_d5.1.1_final.pdf, sept
2011, ALICANTE Consortium.

[MB87] Robert MacGregor and Raymond Bates, The loom knowledge representation lan-

guage., Tech. report, DTIC Document, 1987.

[MB98] John McCarthy and Sasa Buvac, Formalizing context (expanded notes),
http://www-formal.stanford.edu/jmc/mccarthy-buvac-98/context/context.html,
1998.

[MBH+04] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, et al., Owl-s: Semantic markup

for web services, W3C Member submission 22 (2004), 2007–04.

[McC93] John McCarthy, Notes on formalizing context, http://www-
formal.stanford.edu/jmc/context3/, 1993.

[MK09] Vipul Modi and Devon Kemp, Web Service Dynamic Discovery (WSDD),
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-
os.pdf, Aug 2009.

[MKP02] José M Martínez, Rob Koenen, and Fernando Pereira, Mpeg-7: the generic mul-

timedia content description standard, part 1, Multimedia, IEEE 9 (2002), no. 2,
78–87.

[MM02] P. Maymounkov and D. Mazieres, Kademlia: A peer-to-peer information system

based on the xor metric, Peer-to-Peer Systems (2002), 53–65.

[Moc87] P.V. Mockapetris, RFC 1034: Domain names - concepts and facilities,
http://www.ietf.org/rfc/rfc1034.txt, nov 1987, IETF.

[Mog84] JC Mogul, RFC 922: Broadcasting internet datagrams in the presence of subnets,
http://xml2rfc.tools.ietf.org/html/rfc922, Oct 1984, IETF.

[Mul12] Klaus Muller, SimPy Simulator, http://simpy.sourceforge.net/, April 2012, SimPy
v2.3.

[MVH+04] D.L. McGuinness, F. Van Harmelen, et al., Owl web ontology language overview,
W3C recommendation 10 (2004), 2004–03.

[NSF10] NSF Future internet architecture project, http://www.nets-fia.net/, Nov 2010, Na-
tional Science Foundation USA.

[NSV+11] Dragos Niculescu, Mihai Stanciu, Marius Vochin, Eugen Borcoci, and Nikolaos
Zotos, Implementation of a media aware network element for content aware net-

works, CTRQ 2011, The Fourth International Conference on Communication The-
ory, Reliability, and Quality of Service, 2011, pp. 78–83.

88

Bibliography

[Pas98] Jason Pascoe, Adding generic contextual capabilities to wearable computers,
Wearable Computers, 1998. Digest of Papers. Second International Symposium
on, IEEE, 1998, pp. 92–99.

[Per04] F Perich, Mogatu bdi ontology, University of Maryland, Baltimore County (2004).

[PFK+08] Alan Presser, Lee Farrell, Devon Kemp, William Lupton, et al., Universal plug

and play (upnp) device architecture v1.1, http://upnp.org/specs/arch/UPnP-arch-
DeviceArchitecture-v1.1.pdf, Oct 2008.

[PH04] F. Pan and J.R. Hobbs, Time in owl-s, Proceedings of AAAI-04 Spring Symposium
on Semantic Web Services, 2004.

[PJYF03] Filip Perich, Anupam Joshi, Yelena Yesha, and Timothy Finin, Neighborhood-

consistent transaction management for pervasive computing environments,
Database and Expert Systems Applications, Springer, 2003, pp. 276–286.

[Pos80] J. Postel, RFC 768: User datagram protocol,
http://xml2rfc.tools.ietf.org/html/rfc768, August 1980, IETF.

[RAH06] M. Raya, A. Aziz, and J.P. Hubaux, Efficient secure aggregation in vanets, Pro-
ceedings of the 3rd international workshop on Vehicular ad hoc networks, ACM,
2006, pp. 67–75.

[RBRN12] Preston Rodrigues, Yérom-David Bromberg, Laurent Réveillère, and Daniel Né-
gru, Zigzag: a middleware for service discovery in future internet, Distributed
Applications and Interoperable Systems, Springer, 2012, pp. 208–221.

[RCB+12] Preston Rodrigues, Soraya Ait Chellouche, Yérom-David Bromberg, Laurent
Reveillere, and Daniel Négru, Xtalk: A middleware for personalized service dis-

covery in future internet, Telecommunications and Multimedia (TEMU), 2012 In-
ternational Conference on, IEEE, 2012, pp. 83–88.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A scalable

content-addressable network, Proceedings of the 2001 conference on Applica-
tions, technologies, architectures, and protocols for computer communications,
ACM, 2001, pp. 161–172.

[RGCH09] Rajiv Ramdhany, Paul Grace, Geoff Coulson, and David Hutchison, Manetkit:

supporting the dynamic deployment and reconfiguration of ad-hoc routing pro-

tocols, Proceedings of the 10th ACM/IFIP/USENIX International Conference on
Middleware (New York, NY, USA), Middleware ’09, Springer-Verlag New York,
Inc., 2009, pp. 1:1–1:20.

[Riv92] R. Rivest, RFC 1321: The MD5 message-digest algorithm,
http://www.ietf.org/rfc/rfc1321.txt, April 1992, IETF.

89

Bibliography

[RV06] R. Rajagopalan and P.K. Varshney, Data-aggregation techniques in sensor net-

works: a survey, Communications Surveys & Tutorials, IEEE 8 (2006), no. 4,
48–63.

[SAW94] Bill Schilit, Norman Adams, and Roy Want, Context-aware computing applica-

tions, Mobile Computing Systems and Applications, 1994. WMCSA 1994. First
Workshop on, IEEE, 1994, pp. 85–90.

[SB07] H. Saleet and O. Basir, Location-based message aggregation in vehicular ad hoc

networks, Globecom Workshops, 2007 IEEE, IEEE, 2007, pp. 1–7.

[SBG99] Albrecht Schmidt, Michael Beigl, and Hans-W Gellersen, There is more to context

than location, Computers & Graphics 23 (1999), no. 6, 893–901.

[Sch95] William Noah Schilit, A system architecture for context-aware mobile computing,
Ph.D. thesis, Columbia University, 1995.

[SCW+11] Mamadou Sidibe, Wael Cherif, Markus Waltl, Daniel Négru, and
Roger Salgado, The ALICANTE Home-Box Layer - I, http://www.ict-
alicante.eu/public/deliverables/alicante_d4.1.1_final.pdf, Sept 2011, ALICANTE
Consortium.

[SGM02] C. Szyperski, D. Gruntz, and S. Murer, Component software: beyond object-

oriented programming, Addison-Wesley ISBN: 0-201-74572-0, 2002.

[SLP04] Thomas Strang and Claudia Linnhoff-Popien, A context modeling survey, In:
Workshop on Advanced Context Modelling, Reasoning and Management, Ubi-
Comp 2004 - The Sixth International Conference on Ubiquitous Computing, Not-
tingham/England, 2004.

[SLPF03] T. Strang, C. Linnhoff-Popien, and K. Frank, Cool: A context ontology language

to enable contextual interoperability, Distributed applications and interoperable
systems, Springer, 2003, pp. 236–247.

[SMK+01] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan, Chord: A

scalable peer-to-peer lookup service for internet applications, Proceedings of the
2001 conference on Applications, technologies, architectures, and protocols for
computer communications, ACM, 2001, pp. 149–160.

[TAA+03] B. Traversat, A. Arora, M. Abdelaziz, M. Duigou, C. Haywood, J.C. Hugly,
E. Pouyoul, and B. Yeager, Project jxta 2.0 super-peer virtual network, Sun Mi-
crosystem White Paper. Available at www. jxta. org/project/www/docs (2003).

[Tap96] Don Tapscott, The digital economy: Promise and peril in the age of networked

intelligence, vol. 1, McGraw-Hill New York, 1996.

90

Bibliography

[Tho04] Henry S Thompson, Xml schema part 1: Structures second edition,
http://www.w3.org/TR/xmlschema-1/, Oct 2004, W3C Recommendation.

[WZGP04] X.H. Wang, D.Q. Zhang, T. Gu, and H.K. Pung, Ontology based context modeling

and reasoning using owl, Pervasive Computing and Communications Workshops,
2004. Proceedings of the Second IEEE Annual Conference on, Ieee, 2004, pp. 18–
22.

[YPG00] R. Yavatkar, D. Pendarakis, and R. Guerin, RFC 2753: A Framework for Policy-

based Admission Control, http://www.ietf.org/rfc/rfc2753.txt, Jan 2000, IETF.

[ZNN+06] Bo Zhang, T. S. Eugene Ng, Animesh Nandi, Rudolf Riedi, Peter Druschel, and
Guohui Wang, Measurement based analysis, modeling, and synthesis of the inter-

net delay space, Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement, IMC ’06, ACM, 2006, pp. 85–98.

91

APPENDIX I: Publications

International Conferences

• Preston Rodrigues, Yérom-David Bromberg, Laurent Réveillère, and Daniel Négru. Zigzag:
a middleware for service discovery in future internet. In Proceedings of the 12th IFIP

WG 6.1 international conference on Distributed Applications and Interoperable Systems,
DAIS’12, pages 208–221, Berlin, Heidelberg, 2012. Springer-Verlag.

• P. Rodrigues, S.A. Chellouche, Y.-D. Bromberg, L. Reveillere, and D. Negru. Xtalk: A
middleware for personalized service discovery in future internet. In Telecommunications

and Multimedia (TEMU), 2012 International Conference on, pages 83 –88, 30 2012-aug.
1 2012.

• Preston Rodrigues, Laurent Réveillère, Yérom-David Bromberg, and Daniel Négru. Scal-
able and interoperable service discovery for future internet. In Proceedings of the Third

International Workshop on Middleware for Pervasive Mobile and Embedded Computing,
M-MPAC ’11, pages 3:1–3:7, New York, NY, USA, 2011. ACM.

Reports

• D5.1.1: SP/CP Service Environment - Intermediate. Jianzhong LI (RSN), Yanping ZHANG
(FTB), Zfanya Leib (BANDWD), Preston Rodrigues, Yiping Chen, Julien Arnaud, Daniel
Négru (CNRS-LaBRI), EugenBorcoci (UPB), Pierre Bretillon (TDF), Daniele Renzi (BSOFT).

• D5.2.1: The ALICANTE Service Registry - Intermediate. Zfanya Leib (BandWD), Jianzhong
Li (RSN), Frederic Bouilhaguet (RSN), Preston Rodrigues (CNRS-LaBRI), Yiping CHEN
(CNRS-LaBRI), Daniel Négru (CNRS-LaBRI), Jakub Gutkowski (PSNC), Lukasz Lopa-
towski (PSNC), Jordi Mongay Batalla (NIT), Mamadou Sidibé (VIOTECH), Evangelos
Markakis (TEIC), Evangelos Pallis (TEIC)

i

APPENDIX I

ii

APPENDIX II: Context-free Policy
Language Grammar

A BNF-like description of the policy language The BNF-like syntax of the policy language is
shown below. typewriter font is used for keywords. italic font is used for nonterminals.
Parentheses are used for grouping. A superscript ∗ denotes 0 or more occurrences of the preced-
ing item. A superscript + denotes 1 or more occurrences of the preceding item. A superscript
? indicates that the preceding item is optional. Comments, begin with # and only after the actions.

policy_spec ::= policy policy_condition then do action

::= policy_action (comment)?

policy_condition ::= conditions

policy_action ::= functions

comment ::= # comment or short policy desc

conditions ::= Simple | Complex

Simple ::= iden oper val

iden ::= letter | (letter)∗

oper ::= < | != | = | > | <= | >=

val ::= digits | letter

Complex ::= Simple op Simple | NOT Complex |
::= iden IN Collection {Complex}

op ::= AND | OR

iii

APPENDIX II

functions ::= function | (functions)?

function ::= Delegate | Configure | Logging | MEP

Delegate ::= delegate(delegateJob, delegateMessage,address)
Configure ::= config(policyOperation, policyInstance,address, (returnID)?)
Logging ::= log(logMessage)

MEP ::= request-response | request-only

request-response ::= transmit_rr(parameters)
request-only ::= transmit_ro(parameters)

parameters ::= actionType, messageBody, address, messageID

delegateJob ::= aggregate | translation | adaptation

actionType ::= forward | context

forward ::= fwd

aggregate ::= aggr

translate ::= tran

context ::= context-user | context-device | context-network | context-session

context_user ::= con_u

context_device ::= con_d

context_network ::= con_n

context_session ::= con_s

adaptation ::= codec

codec ::= audio-codec | video-codec

audio-codec ::= acod

video-codec ::= vcod

iv

APPENDIX II

delegateMessage ::= XML format

messageBody ::= XML format

logMessage ::= xalpha

messageID ::= alpha | digit

returnID ::= alpha | digit

address ::= httpaddress | fileaddress

httpaddress ::= http://hostport(/path)?(?query)?

hostport ::= host (:port)?

path ::= void | segment(/path)?

query ::= xalpha

fileaddress ::= file://host/path

host ::= hostname | hostnumber

hostname ::= alpha(.hostname)?

hostnumber ::= ipv4 | ipv6

ipv4 ::= digits.digits.digits.digits

ipv6 ::= hex::ipv4

port ::= digits

alpha ::= lalpha | halpha | (alpha)?

digits ::= digit | (digits)?

xalpha ::= alpha | digit

xpalpha ::= xalpha | +

hex ::= digit | af-alpha | AF-alpha

lalpha ::= a..z

halpha ::= A..Z

digit ::= 0..9

AF-alpha ::= A..F

af-alpha ::= a..f

void ::=

segment ::= xpalpha

reserved-keywords ::= sdp-request-header | sdp-discovery-header |
::= search-key message-id | source-sdp |
::= target-sdp result | service-location

v

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Contribution
	Thesis Structure

	Background
	Brief history
	Popular Service Discovery Implementations
	Local Area Networks
	Large Scale Networks
	Critical Analysis

	Context Models
	Critical Analysis

	Architecture for Future Media Ecosystem
	The User Environment (UE)
	The Service Environment (SE)
	The Home-Box virtual Layer
	The Network Environment (NE) and the CAN Layer
	Critical Analysis

	Summary

	Related Work
	Existing Interoperability Solutions
	ReMMoC
	INDISS
	Z2Z
	Starlink
	Critical Analysis

	Existing Ontology-based Solutions
	CoOL
	COBRA-ONT
	SOUPA
	CONON
	Critical Analysis

	Summary

	ZigZag Middleware
	Architecture
	Aggregation
	Evaluation
	Simulation Setup
	Simulation Results

	ZigZag integration in Alicante
	ZigZag at Service Registry
	ZigZag at HomeBox

	Summary

	Policy framework for context-aware personalization
	Policy Framework
	Policy Engine
	Policy Language
	Policy Syntax
	Policy Condition
	Policy Action

	Policy Generator
	Towards better QoE
	Summary

	Conclusion
	Ongoing and Future work
	Concluding remarks

	REFERENCES
	APPENDIX I
	APPENDIX II

