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Key Findings

• 1. The dynamical activity in recent winters suggests that the occurrences of major warmings
(MWs) in the Arctic is increasing at a rate of ⇠1.1 events/winter against the historical value of 0.7
events/winter, which has implications for the ozone trends estimated during 1998/1999–2009/2010
in the northern hemisphere, and thus local and global climate.

• 2. A thorough diagnosis of the chemical ozone loss in the past 17 Arctic winters (1993/1994–
2009/2010) suggests that the ozone loss is inversely proportional to the intensity and timing of
MWs in each winter, where early (December–January) MWs lead to minimal loss.

• 3. The Arctic winter 2002/2003 was unique, as there were three minor warmings and a MW,
but still experienced significant loss of ozone (⇠1.3±0.2 ppmv at 450–500 K).

• 4. Large vortex-wide denitrification and the largest observed ozone loss until the year 2005
(⇠1.5±0.2 ppmv at 450–550 K) were observed in the Arctic winter 2004/2005.

• 5. The Arctic winter 2010/2011 showed a record ozone loss (⇠2.5±0.2 ppmv at 450–
600 K or ⇠160 DU over 350–850 K) and sign of an Arctic ozone hole. The nature of ozone loss
with altitude (400–675 K) was comparable to that of relatively warmer Antarctic winters (e.g. 2004).

• 6. A method is introduced and applied to the Antarctic ground-based total column ozone
measurements to construct a long-term ozone loss time series for the 1989–2012 period. The ozone
loss analysis shows that the Antarctic ozone loss was around 35% (or 100 to 150 DU) during
1989–1991 and 48% (⇠150 DU) during 1992–2012.

• 7. The comparatively reduced ozone loss and smaller ozone holes during the Antarctic winters
2004–2010 were due to relatively higher temperatures resulted from minor warmings in the period.

• 8. The peak ozone loss altitude in the Antarctic is around 500 K. However, the very cold
winters (e.g. 2006) show a higher and the relatively warmer winters (e.g. 2010) show a lower shift
in the peak loss altitudes of about 25K, showing a clear distinction between various Antarctic
winters in terms of the altitude of maximum ozone loss.

• 9. The contribution of various chemical cycles to the ozone loss for several Arctic and
Antarctic winters is presented and compared. The study shows that about 85% of ozone loss in
the lower stratosphere is dominated by the ClO–ClO and ClO–BrO cycles together and about 75%
of the loss in the middle stratosphere is controlled by the NO–NO

2

cycle. The study also suggests
that the contribution of the NO

x

cycle to the total column ozone loss above 550 K in the Arctic is
about 19±7 DU, whereas it is about three times larger in the Antarctic (50±5 DU).

• 10. An ozone trend of about +1 DU yr�1 is estimated from ground-based and satellite
measurements in the Antarctic vortex for the 2000–2010 period. These trends are significant at
99% confidence intervals. This positive trend implies that the Antarctic ozone is recovering and
hence, indicates a successful implementation of the Montreal Protocol.

• 11. Apart from the polar chemistry and dynamics studies, a detailed climatology of the
equatorial waves (Kelvin, Rossby, and Rossby–Gravity) was also co-developed during the course of
this thesis and is the first detailed study of its kind using observations and climate model simulations.
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Abstract

Ozone is one of the key constituents in the atmosphere, although present only in trace amounts. The
stratospheric ozone plays a pivotal role in regulating the incidence of harmful ultra-violet radiation (400–
100 nm) and radiative balance of the earth, and thus influences the global climate. This thesis deals with
the spatial, temporal and vertical evolution of polar stratospheric ozone and its interactions with climate
change over 1979–2012, with an emphasis on the winters of 2000s.

Analysis of the dynamical situation in the Arctic winters reveals that there is an increase in the occur-
rence of major warmings (MWs) in recent years (1998/1999–2009/2010), as there were 13MWs in the 12
winters (⇠11MWs/decade), although the long-term average (1957/1958–2009/2010) of the frequency stays
around its historical value (⇠7MWs/decade). A study of the chemical ozone loss in the past 17 winters
(1993/1994–2009/2010) suggests that the loss is inversely proportional to the intensity and timing of MWs
in each winter, where early (December–January) MWs lead to limited loss. This high frequency of the MWs
has significant implications for stratospheric ozone trends and hence, the Arctic and global climate.

A detailed assessment of the Arctic winters 1996/1997 and 2002/2003–2010/2011 shows that the winter
2002/2003 had a MW and three minor warmings. However, the winter still had a cumulative ozone loss
of ⇠1.5 ppmv at 450–500K or 65DU over 400–550K by the end of March, apart from the record loss of
⇠0.7 ppmv in December–January, as no other winter had such a large loss during the early winter over
1988/1989–2010/2011. In contrast, the largest ozone loss ever observed was in 2010/2011, about 2.5 ppmv
at 400–550 K or 140DU over 350–550K. Our study shows that the loss in 2010/2011 was close to that
found in some Antarctic winters, for the first time in the observed history. The prolonged strong chlorine
activation and denitrification during the winter triggered this record loss. The loss in other winters was
between 0.7 and 1.6 ppmv at around 475K or 40 and 115DU over 350–550K, in which the smallest loss was
estimated in the warm winter 2005/2006.

In order to make a long-term ozone loss time series for Antarctica, a method is introduced and applied
to ground-based and space-borne total column ozone observations for the 1989–2012 period. The vortex-
averaged ozone loss in the Antarctic is shown to be about 33–50% during 1989–1992 in agreement with the
increase in halogens during that period, and then stayed at around 48% due to saturation of the loss. The
loss in warmer winters (e.g. 2002 and 2004) is slightly smaller (37–46%) and the loss in very cold winters
(e.g. 2003 and 2006) is relatively larger (52–55%). The maximum loss in the Antarctic is observed from
mid-September to mid-October, and the peak loss rate is found in the August–early September period, with
an average of about 0.5%/day. Furthermore, analysis with high resolution ozone profile measurements and
simulations for the Antarctic winters 2004–2010 also showed the largest ozone loss in the colder winters of
2005 and 2006 with about 3.5 ppmv at 450–550K or around 170DU over 350–850 K, and the smallest loss in
the warmer winters of 2004 and 2010 with about 2.5 ppmv at 450–550K or around 140DU over 350–850K.
The peak ozone loss altitude in Antarctica is around 500K. However, the very cold winters show a higher
and warmer winters show a lower shift in the peak loss altitudes (about 25K), exhibiting a clear distinction
between various winters in terms of the altitude of maximum loss. The study further indicates that the
comparatively smaller Antarctic ozone loss and ozone holes in the recent winters (2004–2010) were due to
the effect of a number of minor warmings during the period.

Our study for a range of Arctic and Antarctic winters shows that the Arctic ozone loss contributed by
the halogen cycles (ClO–ClO and ClO–BrO) account for about 85% of the total loss below 550 K. There
is an average contribution of about 19±7DU from the NO

x

cycle above 550K to the total column loss in
the Arctic, as analysed from the winters 2004/2005–2010/2011. Whereas in Antarctica, the ozone loss has
a broad spread over 350–650 K, for which the lower stratospheric loss below 550K is dominated by the
halogens, but the loss above that level is dominated by NO

x

with a contribution of about 75%, as in the
Arctic. On average, the column ozone loss above 550K is about 50±5DU as estimated from the Antarctic
winters 2004–2010 using the modelled and measured data. These findings imply that about one-third of
the total column loss (50 DU out of 150–180DU) in the Antarctic is contributed by the NO

x

cycle, which
is nearly three times larger than that in the Arctic.

To estimate the long-term trends, a regression model that explains the ozone variability by various
climatic indices (planetary wave drive, solar cycle, quasi-biennial oscillation, etc.) and stratospheric chlorine
is developed and applied to the ground-based and satellite ozone observations. Our study reveals that the
Antarctic ozone recovery is well on course, as the diagnosis shows a trend of about �45DU/decade in 1980–
1999 and about +10DU/decade in 2000–2010 in agreement with the levels of ozone depleting substances in
each period, and both trends are significant at the 99% confidence intervals. The significant positive trends
during the latter period indicates that the implementation of the Montreal Protocol is a great success.
Therefore, this thesis offers a number of significant references for future ozone evolution, and thus for the
regional and global climate change studies.
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Résumé

L’ozone est un constituant important dans la chimie de l’atmosphère, cela malgré sa faible concentration.
L’ozone stratoshérique joue un rôle essentiel à la fois dans la régulation des radiations ultraviolettes du soleil
connues pour être dangereuses aux différentes formes de vie sur Terre et également dans l’équilibre radiatif
influençant le climat global. Cette thèse est consacrée à l’étude de l’évolution temporelle et spatiale de
l’ozone stratosphérique polaire entre 1979 et 2012, ainsi qu’à son interaction avec le changement climatique,
avec une attention particulière pour les années après 2000.

L’analyse de la dynamique des hivers arctiques révèle une augmentation des évènements de forts réchauf-
fements (EFR) ces dernières années (comparaisons faites entre les hivers 1998/99 et 2009/10). Alors qu’on
compte 13 EFRs lors des 12 derniers hivers (soit 11EFR/décennie), le nombre moyen entre les hivers 1957/58
et 2009/10 s’élève à 7 EFR/décennie. Une étude chimique de la destruction de l’ozone lors des 17 derniers
hivers (1993/94–2009/10) montre que celle-ci est inversement proportionnelle à l’intensité des EFRs. De
même, il semble que, pour chaque hiver, plus l’EFR se produit tôt dans l’année (Décembre-Janvier), plus
la perte d’ozone enregistrée est faible. Ainsi la fréquence des EFRs lors des récents hivers arctiques joue
un rôle significatif sur la concentration moyenne d’ozone stratospherique dans l’hémisphère Nord et par
conséquent également sur le climat arctique et global.

Une analyse détaillée de la destruction d’ozone lors des hivers arctiques 1996/97 et 2002/03–2010/11
montre que l’hiver 2002/03 a subit un EFR et trois réchauffements mineurs. Pourtant, lors de cet hiver,
une grande quantité d’ozone a été détruites à la fin du mois de mars. Environ 1.5 ppmv détruit entre 450 et
500K, ou 65DU entre 400 et 550K qui s’ajoutent aux 0.7 ppmv détruit au mois de décembre (il s’agit de la
plus forte perte d’ozone enregistrée au mois de décembre entre les hivers 1988/89 et 2010/11). La plus forte
perte d’ozone enregistrée sur un hiver entier lors de cette décennie a été observée en 2010/11 (soit environ
2.5 ppmv entre 400–500K ou 140DU entre 350–550K). L’étude montre également que, pour la première
fois depuis que nous observons l’ozone, la quantité d’ozone détruite lors de cet hiver est comparable à celle
détruite lors de certains hivers en Antarctique. Nous montrons que cette destruction d’ozone record est
due à une activation des chlorines et une denitrification importante et prolongée lors de cet hiver. La perte
d’ozone lors des autres hivers est de l’ordre de 0.7 à 1.6 ppmv autour de 475K ou 40 à 115 DU entre 350 et
550K (la plus petite destruction d’ozone ayant été mesurée lors de l’hiver 2005/06, particulièrement chaud).

Pour l’Antarctique, une méthode est proposée pour estimer la tendance à long terme de la destruction
chimique de l’ozone. Cette méthode est utilisée sur la période 1989–2012 pour estimer, en colonne totale,
les tendances d’ozone à partir d’observations au sol et satellitaires. A l’interieur du vortex polaire, nous
montrons que la perte moyenne d’ozone se situe entre 33–50% pendant la période 1989–1992. Cette valeur
est en accord avec l’augmentation de la concentration d’halogène lors de cette même période. Après cette
periode, la perte moyenne d’ozone semble atteindre une valeur de saturation aux alentours de 48%. La
destruction d’ozone lors des hivers les plus chauds (e.g. 2002 et 2004) est légèrement inférieure (37–46%)
et celle des hivers les plus froids (e.g. 2003 et 2006), légèrement supérieure (52–55%). La perte maximum
d’ozone en Antarctique est observée entre le milieu du mois de septembre et le milieu du mois d’octobre, et
la plus forte valeur de perte d’ozone est observée entre fin aôut et début septembre, atteignant en moyenne
0.5%/jr. Des analyses basées à la fois sur des profils d’ozone simulés grâce à un modèle haute résolution et
sur des profils observés par instrument satellitaire lors des 7 hivers antarctiques entre 2004 et 2010, montrent
également que les plus fortes pertes d’ozone coincident avec les hivers les plus froids de 2005 et 2006. Lors
de ces deux hivers, la perte d’ozone a atteint 3.5 ppmv entre 450 et 550K, ou 180DU entre 350 et 850K. Les
deux hivers les plus chauds (2004 et 2010) ont connu les plus faibles pertes d’ozone (environ 2.5 ppmv entre
450 et 550K, ou 160 DU entre 350 et 850 K). En Antarctique, l’altitude du maximum de destruction d’ozone
est 500K, cependant, pendant les hivers les plus froids et les hivers les plus chauds, ce maximum est 25 K
plus haut (respectivement plus bas). Ce déplacement du maximum de perte permettant ainsi clairement
de distinguer les hivers froids des hivers chauds. Cette étude montre également que la relative faible perte
d’ozone ainsi que le trou d’ozone des récents hivers antarctiques (2004–2010) sont due à des phénomènes de
réchauffement moindre.

L’étude à la fois des hivers arctiques et antarctiques, montre que la perte d’ozone en Arctique en dessous
de 550K est due aux cycles halogènes (ClO–ClO et BrO–BrO) à hauteur de 85%. L’étude des hivers
2004/05–2010/11 montre que la contribution moyenne du cycle des NO

x

à la diminution de la colonne
totale Arctique s’élève à 19±7DU en dessous de 550K, alors qu’en Antarctique, la perte d’ozone s’étale
entre 350–650K. Dans les deux cas la perte d’ozone en basse stratopshère (en dessous de 550 K) est contrôlée
par les halogènes. En Antarctique cependant, la perte d’ozone au dessus de 550K est quant à elle dominée
par le cycle des NO

x

qui y contribuent pour 75%. En moyenne entre 2004 et 2010, les données modèles et
mesurées montrent que la perte d’ozone au dessus de 550 K est d’environ 50±5DU. En Antarctique, cela
implique qu’environ un tiers de la perte d’ozone en colonne totale (50 sur 150–180DU) est imputable aux
cycles des NO

x

, alors que c’est environ trois fois plus en Arctique.
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Un modèle de regression est développé pour expliquer cette variablité de l’ozone grâce à differents
indices climatiques (ondes planétaires, cycle solaire, oscillation quasi-biennale, etc) ainsi que grâce à la
chlorine stratosphérique. Ce modèle est appliqué sur les données sol ainsi que sur les données satellitaires
afin d’extraire des tendances d’ozone à long terme. Cette étude révèle une reconstitution significative et
progressive de la couverture d’ozone en Antarctique. En effet, la tendance montre une augmentation de
�45DU/décennie entre 1980 et 1999, et environ +10DU/décennie entre 2000 et 2010. Ces résultats étant
en accord avec les variations des espèces chimiques liées à la destruction d’ozone lors des mêmes periodes
et ces tendances étant testées avec des intervalles de confiance à 95%. Les tendances mesurées ces dernières
années démontrent le rôle positif du protocole de Montreal. Finalement, cette thèse énumère un nombre
important de références pour la poursuite de l’étude de l’évolution de l’ozone polaire ainsi que pour l’étude
du changement climatique et ses effets autant locaux que globaux.



“To the Philosopher, the Physician, the Meteorologist and the Chemist,
there is perhaps no subject more attractive than that of Ozone”.

Cornelius Benjamin Fox (British Chemist)
Ozone and Antozone (1873).
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Motivation

Ozone and climate: The climate of the earth is controlled by a number of chemical,
radiative and dynamical processes. The chemistry and climate interaction in the bottom 100 km is
key in this regard (e.g. SPARC, 2010). The tropospheric convection, pollution, air-sea exchange,
boundary layer process, stratospheric ozone, radiative changes, and mesospheric ion chemistry are
very important in linking the chemistry with climate (e.g. WMO, 2011). Stratospheric ozone is one
of the important constituents in determining the changes in radiative balance of the region and the
ozone abundance determines the amount of incident harmful ultra-violet (UV) radiations on the
surface (e.g. WMO, 2007). Therefore, monitoring stratospheric ozone layer has a great significance
in tracking the climate change.

There are still some uncertainties in quantifying the increase in green-house gases (GHGs) and
their modification of the climate (Plummer et al., 2010). For instance, the stratospheric water
vapour (H

2

O) and its impact on the climate is highly unpredictable. The climate models predict
an increase in the tropospheric H

2

O in the coming decades, which suggests enhanced stratospheric
H

2

O. This would trigger higher polar stratospheric clouds (PSCs) and hence, larger ozone loss
(SPARC, 2010). Another potential component of stratospheric H

2

O is the methane (CH
4

). If there
are increased levels of CH

4

from permafrost thawing, rice cultivation or live stock farming, these
would add substantial volume of H

2

O. Since CH
4

is a GHG, enhanced levels of CH
4

is a climate
change concern, which has also a direct influence on stratospheric ozone levels. Increase in CH

4

particularly affects ozone in the upper stratosphere and mesosphere, where HO
x

produced from
H

2

O is efficient in destroying ozone (WMO, 2011). A schematic view of this chemistry–climate
interaction is presented in Fig. 1.

Changes in the abundances of nitrogen dioxide (N
2

O) from natural and anthropogenic sources
affect the nitrous oxide (NO

2

) concentrations in the stratosphere. Since N
2

O is transported from the
troposphere, its concentration in the troposphere decides its abundance in the stratosphere, apart
from changes in the speed of the Brewer-Dobson (BD) circulation (Cagnazzo et al., 2006; Jonsson
et al., 2009). This implies that the tropospheric N

2

O regulates the stratospheric NO
2

, which has
a direct relationship with the ozone loss cycles in the middle and upper stratosphere (e.g. Eyring
et al., 2010; Kuttippurath et al., 2010a). So the increase in N

2

O is likely to cause additional ozone
loss in the middle and upper stratosphere (Eyring et al., 2010). Therefore, reductions in N

2

O may
result in a relatively rapid recovery of the stratospheric ozone layer.

An important process that can affect the stratospheric ozone levels is the stratosphere–
troposphere exchange or the interactions between upper troposphere and lower stratosphere (UTLS)
and these processes are graphically outlined in Fig. 2. Ozone transport from the troposphere to
stratosphere is significant in this context, which is about 550 megaton O

3

yr�1, about 140% of the
net ozone production in the troposphere. Therefore, reduced ozone transport and lower ozone con-
centrations in the stratosphere will leak higher UV radiation to the lower altitudes and thus, make

Figure 1: A schematic presentation of chemistry and climate interactions (WMO, 2011).
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Figure 2: A schematic presentation of stratospheric
temperature, ozone, surface processes, stratosphere–
troposphere exchange and climate interactions (WMO,
2011).

serious health issues (WMO, 2011).
It is evident that the chemistry and natural variability such as the solar radiation affect the ozone

layer (Gray et al., 2010). The BD circulation and its changes also significantly influence the ozone
transport and its distribution (Cagnazzo et al., 2006; Butchart et al., 2010). The photochemical
production and loss, homogeneous and heterogeneous reactions, and changes in the circulation are
important in this context. Our understanding on the tropospheric convection is very limited and
hence, its parameterisation in the models is far from complete. Therefore, how the convection evolves
with time is another concern and that currently relies on some incomplete statistical speculations
in the models. Any alterations in the convection will change the H

2

O levels in the UTLS region and
will increasingly influence the ozone generation, formation of cirrus clouds and radiation (SPARC,
2010). Also, changes in the convection can induce changes in the lightning and NO

x

formation
through lightning, and thus the ozone production and its chemistry there.

Another major threat to stratospheric ozone is the stratospheric cooling due to increased car-
bon dioxide (CO

2

) concentrations (Mahfouf et al., 1994; Jonsson et al., 2009; Gillett et al., 2011).
Lower temperatures form more PSCs and trigger more ozone loss through heterogeneous chemistry.
Therefore, even if the stratospheric halogens are decreasing (Montzka et al., 1999), the lower tem-
peratures might mask the effect of the reduction in halogens for few years and hence, the recovery
of the stratospheric ozone can be delayed. Alternatively, the lower temperatures reduce the amount
of atomic oxygen, which increases the amount of ozone. It has to be noted that the atomic oxygen
drives many ozone loss cycles in the middle and upper stratosphere (Kuttippurath et al., 2010a).
Therefore, in the upper stratosphere the increase in CO

2

levels has mitigated ozone loss through
temperature dependent chemistry there. Note also that the uncertainties of bromine budget in the
stratosphere is associated with the delivery of reactive brominated hydrocarbons to the stratosphere
(WMO, 2011). In summary, the stratospheric ozone has a greater role in the climate system through
its chemistry-climate feedback, and hence, this challenging science still motivates.

Ozone trends: The first observational evidence of Antarctic ozone loss was found in the
early 1980s (Farman et al., 1985; Solomon et al., 1986) and nearly half a decade later in its Arctic
counterpart (Hofmann et al., 1989). The ozone loss was also found to be spread to the adjacent mid-
latitudes in both hemispheres (e.g. Cariolle et al., 1990), mainly due to the heterogeneous chemistry
on volcanic aerosols (Bekki et al., 1993; Solomon, 1999) and transport of vortex air-masses during
the displacements or splitting of polar vortex (Roscoe et al., 2006) due to major stratospheric
warmings (e.g. Kuttippurath and Nikulin, 2012). The analysis with both observations and multi-
model simulations exhibits a clear negative trend in global ozone, with the largest negative trends
in the polar regions (Eyring et al., 2010). The loss in the southern polar region started in the early
1980s, intensified in the late 1980s, saturated in the 1990s (Jiang et al., 1996) and stayed at this
level thereafter (WMO, 2007). Studies reveal that the northern middle and high latitude ozone
trends are of the order of �2 to �3% decade�1 with respect to the 1980 ozone. The trends in the
southern mid-latitudes are about �6% decade�1, whereas it is about �1% decade�1 in the tropical
region. The decreasing trends in ozone during the period 1980–1996 are attributed to the increase
in ozone depleting substances (ODSs) during the period, and the ozone plateau thereafter coincides
with the decrease in ODS levels since 1997 in the middle and low latitudes and 2000 in the high
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Figure 3: Multi-model simulations and projections of stratospheric ozone and Cl
y

from the recent chemistry-climate
model validation exercise (SPARC, 2010). Each model result is represented by different line styles and colour codes,
the average of the model results is noted by MMT, and the observations are represented by OBS.

latitudes (SPARC, 2010; WMO, 2011; Nair et al., 2013).
Figure 3 shows the observed and predicted ozone trends from various chemistry climate models

and observations (Eyring et al., 2010). The model projections suggests the ozone recovery to the
1980 level by 2050–2060 in the Antarctic and by about a decade earlier in the Arctic. The model
results differ largely in the ozone recovery predictions, as most of them struggle to get an agreement
with the observed Cl

y

in the stratosphere. This points out that there is large uncertainty in the
ozone recovery date predictions by the models due to the differences in their input (SPARC, 2010).
In addition, the chemistry of stratospheric ozone in the models is inter-linked to other parameters,
such as temperature, chemistry of related specie, accuracy of meteorological data, tropospheric
boundary conditions and radiation schemes. Nevertheless, there is a consensus among the models
in simulating the general evolution of ozone in the stratosphere.

Since studies have already suggested that the Cl
y

levels are decreasing in the stratosphere, we
expect a corresponding change in ozone, i.e. an increasing trend of ozone. However, the decrease
in Cl

y

levels or ODS components during 2000–2010 is relatively slower than their increase during
1980–1999 (WMO, 2011). Therefore, the ozone recovery trends will be much smaller than the Cl

y

decreasing trends and thus it is necessary to analyse the evolution of stratospheric ozone in the
coming years to detect its clear recovery signal. This thesis discusses these aspects of stratospheric
ozone and assesses the link between ozone and climate change.

This thesis has three sections followed by the introduction in Chapter 1, where the basic physics
and chemistry related to this study are presented. Section I deals with chemistry and dynamics of
the Arctic stratosphere, Section II assesses the chemistry and physics related to Antarctic ozone and
Section III presents the trends in polar ozone. In Section I, Chapter 2 assesses the dynamics of the
Arctic winters, as the inter-annual variability of Arctic winters is dominated by stratospheric warm-
ings. A detailed analysis of the Arctic winter 2002/03 is presented in Chapter 3 and the chemistry
and dynamics of the Arctic winters 2004/05–2009/10 are discussed in Chapter 4. The chemistry and
dynamics of the winters 1996/97 and 2010/11 are presented in Chapter 5. In Section II, a method
is introduced to estimate Antarctic total column ozone loss in Chapter 6 and its application to the
winters 1989–2010 is given in Chapter 7. The vertical variability of Antarctic ozone loss during the
winters over 2004–2010 is given in Chapter 8. In Section III, Chapter 9, polar ozone trends are
presented from the perspective of ozone recovery and climate change.
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1.1 Background
The Earth’s atmosphere can be divided vertically into different layers based on temperature dis-
tribution with altitude, as shown in Fig. 1.1. The bottom layer with a height of about 8–16 km is
called the troposphere and its top most region is the tropopause. The height of the troposphere
depends on seasons and latitudes. Generally, the tropical tropopause has a maximum height of
about 16–18 km and the tropopause height decreases with increasing latitude with about 12–14 km
in the middle latitudes and 8–10 km in the high latitudes. The temperature decreases with altitude
in the troposphere, with an average rate of 6.5 K km�1 and the lowest temperatures of around 195K
are found at the tropical tropopause. There are different definitions for the tropopause based on
temperature, ozone, potential temperature, water vapor or combinations of all these. However, it
can generally be defined as the lowest level where the temperature gradient is 2 Kkm�1 or smaller
such that the region is characterised by high static stability. The rate at which tropospheric source
gases enter the stratosphere is decided here (Andrews et al., 1987). Almost all atmospheric water
vapor is found in the troposphere and all weather phenomena occur there. This dynamically unsta-
ble layer, owing to its negative temperature gradient, triggers rapid mixing with a speed of about
1–2 months.

A region above the tropopause to about 50 km is called stratosphere, the name derived from the
Greek word stratus that means “layered”. The discovery of this region of scientific interest dates
back to 1902. Léon Teisserenc de Bort, a French scientist at the observatory of Trappes (near Paris
in France) observed from meteorological balloon soundings that there is a 10 km wide isothermal
layer above 10 km and called the region as stratosphere (Müller, 2009; Brasseur, 2008). Unlike in
the troposphere, temperature increases in the stratosphere and thus the layer is dynamically stable.
Due to its stability, the very slow vertical transport time scales of the order of 3–5 years provide large
lifetime for the constituents those solely removed in the stratosphere, such as Chloro-Flouro Carbons
(CFCs). Other notable features related to the stratosphere are that it is very dry, density is very low
and the tropical stratosphere is always warmer than the poles. The top of this atmospheric layer is
called stratopause, which is characterised by a temperature maximum of about -3� C (Brasseur and
Solomon, 2005). The region above stratopause is seldom discussed in this thesis and hence, will not
be described.

The stratosphere or the atmosphere can be further divided into the tropics (30� N–30� S), mid-
latitude surf zone with turbulent mixing (30�–60� N/S) and high latitudes (60�–90� N/S). In the
lowermost stratosphere, a mixture of tropospheric and stratospheric air is observed, at around
385 K (Holton et al., 1995). The winds are easterly in the summer hemisphere, westerly in the
winter hemisphere and they shift their direction at the end of the winter to establish the summer
circulation (e.g. Waugh et al., 1999).

1.1.1 Dynamics

In the atmosphere, there are four different forces acting on an air parcel: gravitational, pressure
gradient, Coriolis, and frictional. The first two forces can be excreted on a static/moving air
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Figure 1.1: The vertical structure of the standard atmo-
sphere. The stratospheric region is also called the ozone
region (image courtesy: Oxford University Press).

molecule, but the latter two are excreted only when the parcel is moving. The gravitational force,
the force per volume acting on an air parcel, is the gravitational acceleration times the mass of the
air parcel. That is,

F
gravity

= ⇢g (1.1)

where ⇢ is the density of air and g is the gravitational acceleration (g=9.8 m s�2). To account for
the variations of gravity with altitude and latitude, a new scale of geopotential is introduced,

F
geopotential

= �⇢r� (1.2)

where � is gravitational potential.
Since atmospheric motions are generally related to the pressure gradient forces explained by the

hydrostatic equilibrium between pressure gradient force and gravity, the pressure gradient force can
be expressed as,

@p

@z
= �⇢g; (1.3)

where p is pressure and z is altitude.
Pressure is used as a vertical coordinate in the atmospheric science and in numerical models

where mass is conserved (see Kasahara, 1974 for a detailed review of various vertical coordinate
systems). Similarly, potential temperature (⇥) is considered as another vertical co-ordinate in the
scientific analyses and in the models. It is a conserved quantity in the stratosphere for a few days
and therefore it is often used in stratospheric transport studies. The ⇥ is defined as the temperature
that an air parcel (at pressure P) would acquire if it adiabatically brought to the surface pressure
P

0

(usually 1000 hPa). That is,

⇥ = T

✓
P

0

P

◆
k

(1.4)

where T is the temperature in Kelvin, k = R

Cp
= 2

7

, R is the universal gas constant and C
p

is the
specific heat capacity of air at constant pressure. Isentropes are the surfaces of constant potential
temperatures.

Any moving body, in a rotational frame, experiences an inertial force perpendicular to both its
direction of the movement and axis of rotation, which is called the Coriolis force. However, only the
horizontal component is relevant in the atmosphere. The Coriolis force can be defined as a fictitious
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Figure 1.2: The Hadley, Ferrel and
Polar cells, and tropospheric circula-
tion patterns (image courtesy: www.
cmmap.org)

force excreted on an air parcel when it is moving in a rotating frame. The Coriolis parameter is
defined as,

f = 2⌦sin� (1.5)

where ⌦ is the angular velocity of the Earth (7.292⇥10�5rad s�1) and � is latitude. Therefore, the
Coriolis force (i.e. fv, where v is velocity) is maximum at the poles and zero at the equator.

The frictional force is the force excreted on an air parcel when it travels opposite to other air
parcels with different velocities.

The motions in the atmosphere can also be viewed in two different angles. (i) The atmosphere is
a collection of air parcels in which all particles move with individual velocities with respect to time,
termed as the Lagrangian motion of the particles. (ii) On the other hand, the movement of air can
be pictured in a fixed coordinate and hence, the air parcels can be defined as a function of their
location and time. This is called the Eulerian motion of the air particles, where the viewer is fixed.
The Lagrangian motion is adopted in most chemical transport models (CTMs) and the Eulerian
approach is generally employed in the large scale atmospheric and ocean general circulation models
(GCMs).

1.1.1.1 Stratospheric transport

In 1735, George Hadley suggested that the differences in the intensity of sunlight between the
polar regions (down to 100 Wm�2) and middle latitudes (up to 300 Wm�2) drive the temperature
and energy contrasts and those create a thermal circulation consisting of a large convection cell
over each hemisphere. In the 1920s a three cell model, the Hadley, Ferrel and Polar cells, as
illustrated in Fig. 1.2, was introduced. However, the discovery of barocilinic instability in the 20th
century drastically improved our understanding on general circulation of the atmosphere and thus
the stratosphere.

Initially, it was thought that the temperature of the polar stratosphere was controlled by the
changes in the solar declination from the winter to summer solstice and by the distribution of
radiatively active trace gases CO

2

, H
2

O and O
3

. Nevertheless, the polar lower stratosphere in
winter was always warmer than that would be expected from a pure radiative transfer calculation.
Later, Alan Brewer discovered that there is a circulation consisting of large scale ascent in the tropics
(i.e. tropical upwelling) and a wave driven poleward and downward transport in the mid-latitudes
(Brewer, 1949). Therefore, the additional warming in the polar winters is due to the non-linear wave
breaking and polar descent. In sum, the westerly zonal flow driven by wave breaking results into
a poleward drift and this meridional drift leads to upwelling in the low latitudes and downwelling
in the high latitudes by the law of mass continuity (Randel et al., 1993). In addition, there is
an exchange between stratosphere and troposphere in the lowermost stratosphere of around 385 K,
with high descent in the polar region (Holton et al., 1995).

www.cmmap.org
www.cmmap.org
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Figure 1.3: The ozone climatology
from Fortuin and Kelder (1998). The
black arrows show the Brewer-Dobson
circulation and the red arrow shows
the planetary wave propagation to the
stratosphere. TTL is the tropical
tropopause layer (IPCC, 2007).

The findings of Brewer (1949) using water vapour measurements were subsequently corroborated
with ozone measurements by Dobson (1956). The summer circulation is very weak compared to
winter hemispheric circulation as the easterly mean flow in the stratosphere inhibits the propagation
of waves into the stratosphere in summer. These transport of air masses is called Brewer-Dobson
circulation, to honor the findings of the pioneering scientists Brewer and Dobson, who discovered
the mechanism. The theoretical explanation is that the primary driver of the BD circulation is the
momentum deposited by the wave breaking at the tropopause, for which the planetary scale waves
originate in the troposphere (Haynes et al., 1991; Randel et al., 1993; Plumb, 1996; Haynes, 2005).
Most stratospheric trace gases connected to ozone chemistry are originating from the troposphere
and enter the stratosphere through the tropical tropopause by the tropical upwelling (Holton et al.,
1995). A schematic diagram showing the stratospheric circulation (black contours) superimposed
on an ozone climatology (colour contours) is given in Fig. 1.3.

1.1.1.2 Polar vortex

In polar winters, the incidence of sunlight in the stratosphere diminishes considerably and the
emission of thermal radiation leads to radiative cooling of the upper stratosphere. Therefore, the
polar air mass descends down which results into a low pressure region in the upper stratosphere.
However, the stratospheric air is warmer and pressure is higher in the sunlit parts of the middle and
low latitudes. This makes a meridional pressure gradient between the high and middle latitudes
and hence, the air mass flows from the high to low pressure region. This air mass transport deflects
to the right in the NH and to the left in the SH due to the action of Coriolis force. This particular
movement of air masses produces a circumpolar motion of westerly (blowing from west to east)
winds and is termed as the polar (night) jet or polar vortex (e.g. Waugh et al., 1999). The location
of polar jet is normally found close to the latitude separating day and night during the polar
winter and thus acts as a boundary region of the spinning vortex. The strong westerlies effectively
separate mid-latitude air from those within the polar vortex, and thus act as the dynamical barrier
between these two latitude regions. A three-dimensional view of the polar vortex in the Arctic
winter 2003/04 is shown in Fig. 1.4. As depicted in the figure, the structure, breadth and strength
of the polar vortex are different at different altitude levels and in different winters, as they depend
on the meteorological situation of each winter (e.g. Thiéblemont et al., 2011; Kuttippurath et al.,
2010a; Harvey et al., 2002).

The temperature inside the vortex is much lower than that of the middle latitudes (or outside
the vortex) (e.g. Waugh et al., 1999; Claud et al., 1996). Therefore, chemistry and dynamics of
the vortex are different from its adjacent mid-latitude regions. The vortex area is usually divided
into the vortex core and vortex edge region, where the edge region is the outer ring of the vortex
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Figure 1.4: A three dimensional view of the Arc-
tic vortex in the 2003/04 winter (image courtesy:
JPL/NASA).

core with a breadth of about 15� as analysed from the measurements (Roscoe et al., 2012). Since
the land-ocean contrast is very large in the NH compared to that in the SH, the planetary wave
activity is higher in the Arctic and hence, the polar vortex is less stable there (Manney et al., 2005;
Kuttippurath and Nikulin, 2012). On the other hand, Antarctica is isolated from the continents and
hence, the wave activity is suppressed there. Therefore, the Antarctic vortex temperature is about
10 K lower than that in the Arctic. For the same reason, the polar vortex in the SH is more stable,
stronger and persists longer than (normally from May to November in the SH and from December
to March in the NH) that observed in the Arctic.

In this study we use the Nash et al. (1996) criterion to separate vortex air from the mid-latitude
air. By applying this method, we classify the vortex core and edge region or the mid-latitude air
using the Potential Vorticity (PV) values, which is calculated as:

P = (⇠
p

+ f)g
�✓

�p
(1.6)

where ⇠
p

is angular velocity. As long as the adiabatic processes are concerned, PV is a conserved
quantity and can be used as a tracer for air motions (1 pvu [PV unit] is 10�6 Km2 kg�1 s�1). There-
fore, it can be used to differentiate various kinds of air masses in the stratosphere, e.g. tropical and
polar vortex air masses from the mid-latitude air masses (e.g. Hoskins et al., 1985).

Another coordinate derived from the PV values is the equivalent latitude (EqL) and is a La-
grangian coordinate (Butchart and Remsberg, 1986; Müller et al., 2008; Kuttippurath et al., 2009).
Equivalent latitude is calculated as:

� = sin�1

✓
A

2⇡a2

� 1
◆

(1.7)

where A is the area enclosed to the South/North (A = 0 corresponds to the equivalent South/North
Pole) and a is the radius of the Earth. This method produces a mapping that is as continuous as
the data permit in contrast to the binning that makes a coarse-gridded mapping. Each isoline in
an EqL map behaves like an atmospheric tracer and encircles the same area as the latitude line of
equivalent value, hence the “equivalent latitude”. The PV and EqL values are positive in the NH
and negative in the SH, and their maximum values are found at the centre of the vortex.

1.1.1.3 Sudden stratospheric warmings

Sudden stratospheric warmings (SSWs) are winter stratospheric phenomena, where an abrupt in-
crease in stratospheric temperature (at least 25�) is observed in a short period of time (in a week or
less). The first observational evidence for this stratospheric event was reported by Scherhag (1952)
and its first theoretical explanation was given by Matsuno (1971). There are three different types
of warmings: major, minor and Canadian. By the definition of WMO (1978), a major mid-winter
SSW happens when the zonal mean westerlies at 60�N turn easterly and the temperature gradient
between 60�N and 90�N reverses at 10 hPa or below during the November–February period (McIn-
turff, 1978). If the warming does not follow the wind reversal then it is a minor warming. The
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Figure 1.5: The total ozone distribution on 26
September 2002 from the Global Ozone Monitoring
Experiment. The image also shows the only vortex
split event observed in the Antarctic (image courtesy:
KNMI/ESA).

Canadian warmings are the early winter minor warmings which take place during mid-November
through early December (Labitzke and Naujokat, 2000). Therefore, there is no Antarctic counter-
part for the Canadian warmings. Although minor warmings are normally observed (e.g. 2004, 2010
and 2012), the occurrence of major SSWs in the Antarctic stratosphere are extremely rare, as in
the case of the warming in 2002 (e.g. Roscoe et al., 2006; Grooß et al., 2005b).

As characterised by various dynamical features, the warmings are differentiated with respect to
vortex split or vortex displacement types (Charlton and Polvani, 2007; Kuttippurath and Nikulin,
2012). Most major SSWs are vortex displacement types during which the vortex shifts its location
off the pole. In contrast, if a warming splits the vortex into two separate vortices of considerable size
at 10 hPa on the central date – the date on which the westerlies change to easterlies at 10 hPa/60�
– then the event is termed as a vortex split major SSW. Note that the vortex split events occur
only in major SSW episodes. Figure 1.5 shows the only vortex split major SSW observed in the
Antarctic, as analysed from the Global Ozone Monitoring Experiment (GOME) total column ozone
data. Similarly the warmings are also classified as wave-1 or wave-2 events depending on which
zonal wavenumber was prominent for the poleward eddy heat transport leading to those warmings
(Kuttippurath and Nikulin, 2012; Bancalá et al., 2012; Cohen and Jones, 2011). For instance, the
strongest warming in the Arctic winter stratosphere was observed in January 2009 (winter 2008/09)
and this was a vortex split event, triggered by an intense wave-2 forcing (i.e. wave-2 warming). On
the other hand, the major SSW during January 2006 (winter 2005/06) was forced by a strong wave
1 amplification (i.e. wave-1 warming) and was a vortex displacement event (e.g. Harada et al., 2010;
Kuttippurath and Nikulin, 2012; Manney et al., 2008). Additional information on SSWs can be
found from Holton (1980) and Schoeberl (1978).

1.1.1.4 Quasi-biennial oscillation

The quasi-biennial oscillation (QBO) is a kind of oscillation found in the stratosphere that discovered
in 1950s (Reed et al., 1961). It is a quasi-periodic oscillation of the equatorial zonal winds between
easterlies and westerlies in the tropical stratosphere at 15�N–15�S with an average frequency of
20–36 months, as shown in Fig.1.6. This shifting wind regimes develop at the top of the lower
stratosphere and descend at a rate of about 1 km per month from 10 to 100 hPa until they are
dissipated at the tropical tropopause (Andrews et al., 1987). Downward motion of the easterlies is
generally more discontinuous than that of the westerlies. The amplitude of the easterlies is about
twice as strong as the westerlies. At the top of the vertical QBO domain, easterlies dominate, while
the westerlies appear normally at the bottom layers (Baldwin et al., 2001a). The theory of QBO
is not completely understood and hence, its representation in the models is not fully developed yet
(e.g. SPARC, 2010). A general concept about the QBO is that the equatorial Kelvin waves produce
the westerly and Rossby-waves induce the easterly momentum for the oscillation (e.g. Lott et al.,
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Figure 1.6: The time-height (year against pressure) section of equatorial zonal wind in the lower stratosphere.
The shaded regions represent easterlies and the other regions denote westerlies. The plot is produced using the
meteorological analyses of Freie Universität Berlin (image courtesy: http://www-mete.kugi.kyoto-u.ac.jp/mete/J/
benkyo/QBO/).

2009). Nevertheless, QBO has far reaching consequences in the stratosphere as it also affects the
hurricane frequencies (e.g. lower for easterly QBO), El Niño-Southern Oscillation (ENSO), monsoon
and major SSWs.

1.1.2 Chemistry

The atmosphere is filled with different gases with about 78% of nitrogen (N
2

) and 20% of oxygen
(O

2

). Most of these constituents are stable in concentrations. ⇣"◆⌫, this Greek word spells “ozone”
and that means “to smell”. Ozone is “very rare” and is present only about 0.0003% of the total
constituents in the atmosphere. It was first produced in the laboratory by Christian F. Schönbein
in 1839 and was discovered in the air by André Houzeau in 1858 (Müller, 2009; Brasseur, 2008).
The ozone concentrations vary rapidly in space and time (WMO, 2011).

The trace gases are quantified in their number density or volume mixing ratios (VMRs), de-
pending on the characteristics of the measuring instruments. The number density is the number
of molecules per volume and VMR is the ratio of the number of molecules to the total number of
molecules in the atmosphere. The number density can be calculated from the VMR, i.e.

µ =
⌘k

B

T

p
(1.8)

where µ is VMR (in parts per million by volume – ppmv or parts per billion by volume – ppbv), ⌘
is number density of the molecule, k

B

is Boltzmann’s constant (1.38⇥10�23JK�1). Since the VMR
is expressed in relative concentration, it is conserved in all atmospheric motions and is used in most

http://www-mete.kugi.kyoto-u.ac.jp/mete/J/benkyo/QBO/
http://www-mete.kugi.kyoto-u.ac.jp/mete/J/benkyo/QBO/
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Figure 1.7: A graphical representation of
the production and destruction of ozone
through the Chapman cycle (image courtesy:
http://biophysics.sbg.ac.at).

analyses and transport studies. The vertical integral of the number density is called the column of
the trace gas. The ozone column is expressed in Dobson unit (DU) (after Gourdon Miller Bourne
Dobson, who built the first instrument to measure total column ozone from the ground and is called
the Dobson spectrometer, 1DU = 2.69⇥1016 molecules cm�2). That is, 1DU corresponds to a layer
of ozone that would be 10µm thick under standard pressure and temperature conditions, and the
ozone column (i.e. DU) is particularly important to assess the UV radiation input on the earth
surface.

1.1.2.1 Production and photolysis of ozone

Production of ozone occurs through the photolysis of O
2

by UV radiation of wavelength <242 nm
that can penetrate to about 30 km altitude, followed by the recombination of an O atom with an
O

2

molecule.

O
2

+ h⌫ ! O + O (1.9)

O + O
2

M�! O
3

(1.10)

where M is nitrogen or oxygen molecule needed for the conservation of momentum, h⌫ is the
photon energy where h is the Planck’s constant 6.626⇥10�34 J s and ⌫ is the frequency. This is a
fast reaction of the order of a fraction of a second in the stratosphere and releases energy of about
24 kCal mol�1. Therefore, this reaction is responsible for the positive temperature gradient of the
stratosphere.

The production of ozone is most prominent in the tropical stratosphere as the solar radiation
is sufficiently intense to dissociate the molecular oxygen continuously there. However, the ozone
column is found to be lowest in the tropics and highest in the high latitudes. Also, the total
column at the middle and high latitudes does not correlate to the amount of sunlight available for
the production of ozone in the region. This is due to the stratospheric transport, by which the
trace gases are transported from the tropics to the high latitudes. Note that the BD circulation is
comparatively stronger in winter/spring months than in summer/autumn. Therefore, the maximum
ozone at the high latitudes is observed in spring and the minimum in autumn. These transport
processes are more important in the lower stratosphere (below 25 km) as the photochemical lifetime

http://biophysics.sbg.ac.at
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Figure 1.8: Daily mean of the Ox production
and loss rates computed with a gas-phase chemistry
model constrained with simultaneous measurements
of O

3

, H
2

O, CH
4

, NO
y

and Cl
y

from the space shut-
tle (McElroy and Salawitch, 1989).

of ozone is longer there. Above 40 km, the photochemistry determines the abundances of ozone
because of its shorter lifetime there. The ozone levels in the 30–40 km region are controlled by both
transport and photochemistry. Note that, ozone is destroyed at higher wavelengths through:

O
3

+ h⌫ ! O
2

+ O(3P ) � < 1100 nm (1.11)
O

3

+ h⌫ ! O
2

+ O(1D) � < 310 nm (1.12)

The oxygen atom in the excited state O(1D) can relax to its ground state O(3P ) by collision with
other atmospheric constituents (e.g. O

2

or N
2

).

1.1.2.2 The Chapman mechanism

In 1930, Chapman proposed a theory regarding the photochemical balance between the production
and destruction of ozone (Chapman, 1930) in which ozone is destroyed by:

O + O
3

! O
2

+ O
2

(1.13)

O + O
M�! O

2

(1.14)

The rate limiting step of this cycle is the reaction O+O
3

. A schematic presentation of this chemical
cycle is shown in Fig. 1.7. However, these slow reactions could not completely explain the real
balance between the photochemical production and photolytic destruction of ozone, as the actual
concentration of ozone in the atmosphere was lower than (underestimated by a factor of two) that
was predicted by the Chapman cycle. Therefore, other ozone loss cycles initiated by the catalysts
were put forward later and are described below. These ozone loss cycles are faster than the Chapman
cycle and require atomic oxygen and hence, they are more effective above 30 km, where O atoms
are sufficient. The catalytic cycles that do not require O are responsible for the ozone loss in the
lower stratosphere.

1.1.2.3 Hydrogen cycle

In 1950, it was found that ozone can be removed from the atmosphere through a catalytic cycle
involving OH produced by the oxidation of hydrogenated compounds like, H

2

O, methane (CH
4

) and
H

2

transported from the troposphere (Bates and Nicolet, 1950). These OH radicals react rapidly



10 Chapter 1. Introduction

Figure 1.9: A schematic of the ozone loss caused by anthropogenic compounds such as CFCs (image courtesy:
www.learner.org).

with O
3

producing hydroperoxyl radical (HO
2

). The HO
x

cycle is:

H
2

O + O(1D) ! 2OH (1.15)
O + OH ! O

2

+ H (1.16)

H + O
2

M�! HO
2

(1.17)
O + HO

2

! O
2

+ OH (1.18)

O + O
M�! O

2

(1.19)
OH + O

3

! HO
2

+ O
2

(1.20)
HO

2

+ O ! OH + O
2

(1.21)
O

3

+ O ! 2O
2

(1.22)

The rate limiting step of this reaction is HO
2

+ O and thus the efficiency of this cycle is controlled
by the availability of O atoms. Therefore, the removal of ozone through the HO

x

cycle is relevant
above 30 km while ozone is destroyed through its direct reaction with HO

2

without involving O
atom below 30 km and hence, the importance of the hydroxyl radical is two fold. In both cases,
HO

2

is produced, which in turn destroys ozone. For instance, below 30 km,

OH + O
3

! HO
2

+ O
2

(1.23)
HO

2

+ O
3

! OH + 2O
2

(1.24)
2O

3

! 3O
2

(1.25)

The reaction between HO
2

and O
3

is the rate limiting step of this cycle. In addition to these cycles,
hydrogen radicals also involve in other minor ozone destroying cycles. Therefore, the interaction of
HO

x

family with other atmospheric constituents has also to be considered for an accurate evaluation
of the impact of HO

x

on ozone (e.g. HO
2

+ NO ! OH + NO
2

in the lower stratosphere).

1.1.2.4 Nitrogen cycle

In 1970, Crutzen (1970, 1971) discovered that the destruction of ozone is also possible by the oxides
of nitrogen. The major source of NO

x

is the oxidation of N
2

O with O(1D). N
2

O is emitted at
the surface by the biological processes and also by the emission from the combustion of engines of

www.learner.org
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Figure 1.10: Model simulations of the photo-
chemical removal rates of ozone by various chemical
cycles (Müller, 2009; IPCC, 2007).

aircrafts. Since N
2

O has a lifetime of ⇠130 years, it is well-mixed in the troposphere, and enters
stratosphere and produces NO. That is:

NO + O
3

! NO
2

+ O
2

(1.26)
O + NO

2

! NO + O
2

(1.27)
O + O

3

! 2O
2

(1.28)

This is a fast reaction and the rate limiting step is the reaction O + NO
2

as the resulting NO
quickly converts to NO

2

by reacting with O
3

. The NO
x

cycle is predominant in the middle and
upper stratosphere as its potency is determined by the abundance of O atoms. The NO

x

cycle will
continue to remove ozone until the NO

x

is sequestrated in the long-lived reservoirs such as HNO
3

,
ClONO

2

or BrONO
2

. Similar to hydrogen radicals, nitrogen oxides interact with other chemical
compounds. For instance, the HNO

3

molecule is formed by a three body process involving OH, NO
2

and a molecule M. The formation of HNO
3

provides a sink for NO and OH catalysts. However,
HNO

3

is photolysed to release NO
x

and it in turn participates in the ozone loss catalytic cycle.
Since the photolysis of HNO

3

is very slow, it acts as a reservoir for NO
x

and thus the latter is
effectively removed from the catalytic cycle through the formation of HNO

3

. The daily mean of
the O

x

production and loss rates computed with a gas-phase chemistry model constrained with
measurements is given in Fig.1.8. It shows that ozone loss in the middle and upper stratosphere
(above 25 km) is controlled by the NO

x

cycle.

1.1.2.5 Chlorine and Bromine cycles

The other important ozone loss catalytic cycles are the ones involving halogen species of chlorine–
Cl (Molina and Rowland, 1974) and bromine–Br (McElroy et al., 1986). The natural source of
stratospheric Cl is the destruction of chlorinated organic compounds, i.e. the long-lived chlori-
nated compounds like methyl chloride (CH

3

Cl), emitted in the troposphere are transported to the
stratosphere, where they are photolysed to produce Cl atoms. Similarly, the industrial source of
stratospheric Cl is the photolysis of the industrial by-product, CFCs, in the stratosphere. The
CFCs have long lifetime (⇠50 years) and are inactive in the troposphere. The Cl atoms produced in
these pathways are treated as inorganic Cl. These Cl atoms react immediately with O

3

reforming
ClO. The efficiency of this cycle is determined by the reaction rate of ClO and O, and hence, the
availability of O atoms. Therefore, the rate limiting step is the reaction O+ClO. At about 40 km,
the ClO radical and atomic oxygen are abundant and hence, the Cl cycle is dominant there. A
schematic of the ozone loss process involving anthropogenic compounds such as CFCs is presented
in Fig.1.9.

Similarly, stratospheric Br is produced by the photolysis or oxidation of brominated compounds
such as methyl bromide (CH

3

Br) and halons. Due to the long lifetime of brominated compounds
emitted in the troposphere through natural or industrial processes and their inactivity, they are
transported to the stratosphere, where they undergo dissociation and produce Br atoms. The ozone
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Figure 1.11: An image of a PSC event over
Kiruna/Sweden, PSC measurement by an air-borne
lidar and analysis of possible PSC composition
(Dameris et al., 2007).

loss through these cycles are shown below:

Cl + O
3

! ClO + O
2

(1.29)
O + ClO ! Cl + O

2

(1.30)
O + O

3

! 2O
2

(1.31)

Br + O
3

! BrO + O
2

(1.32)
O + BrO ! Br + O

2

(1.33)
O + O

3

! 2O
2

(1.34)

Most of the inorganic Cl is kept in the long-lived reservoirs such as HCl or ClONO
2

. However,
compared to the amount of Cl in ClO, about half of the stratospheric Br is present in the form
of more reactive BrO radicals than in the long-lived reservoirs (HBr or BrONO

2

). Therefore,
the ozone depleting potential of Br is higher than that of Cl on a per atom basis, about 45–130
times, depending on season and latitude (WMO, 2011). Additionally, the catalytic cycles involving
reaction of reactive Br and BrO with ClO, NO

2

and HO
2

do not require O atom to destroy ozone.
So these reactions can take place in the lower stratosphere where only a few O atoms are available.
Nevertheless, note that the abundance of anthropogenic bromine is about 300 times lower than
that of chlorine and the abundance of stratospheric inorganic chlorine is nearly 170 times that of
bromine.

The ozone loss rates by these catalytic cycles are different at different altitude levels in the
stratosphere, as illustrated in Fig. 1.10. From the figure, it is evident that the NO

x

cycle is dominant
in the removal of ozone in the middle and upper stratosphere. However, ozone loss in the polar
spring remained a mystery for the above-mentioned chemical cycles and were later explained with
several heterogeneous reactions (Solomon et al., 1986; Solomon, 1999), and are described below.

1.1.2.6 PSC, Heterogeneous chemistry and Polar ozone loss

The nacreous clouds found in winter polar stratosphere were named as PSCs by McCormick et al.
(1982). These clouds were usually found at 15–26 km altitude region when the temperatures are
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Figure 1.12: Box model simulations of ozone loss
due to denitrification in the Arctic winter 1994/95.
The ozone loss derived from ozonesonde measure-
ments is also shown (Rex et al., 2004). Projections
of ozone loss due to various scenarios for the winter
2070 is also depicted (Waibel et al., 1999).

below 195 K during the periods from June to September in Antarctica and January–mid-March in
the Arctic (Pitts et al., 2009, 2007; Peter, 1997).

Although the normal ozone loss cycles are common to all latitudes, the situation during the
polar night provides a different scenario for additional ozone loss. During that period, when the
polar temperatures are below 195K in the 15–26 km altitude region the background aerosols take
up HNO

3

and H
2

O, leading to the formation of supercooled ternary HNO
3

/H
2

SO
4

/H
2

O droplets,
referred to as PSCs. A picture showing the glowing PSCs in the Arctic stratosphere is shown in
Fig. 1.11. These clouds are classified as Type I (1 µm) and Type II (5µm). Type I has been
further subdivided into Type Ia and Type Ib. Type Ia PSCs are made up of crystals of Nitric Acid
Trihydrate [NAT - (HNO

3

. 3H
2

O)] and Type Ib consists of supercooled ternary solutions (STS) of
HNO

3

/H
2

SO
4

/H
2

O. Type II PSCs are frozen water ice non-spherical crystalline particles as shown
by the analyses in the figure.

During the polar winters, the following heterogeneous reactions take place on PSC surfaces,
which facilitate the Cl and Br reservoirs (HCl, ClONO

2

and BrONO
2

) to convert into their active
forms and hence, produce rapid ozone loss (Solomon et al., 1986):

ClONO
2

+ HCl ! HNO
3

+ Cl
2

(1.35)
BrONO

2

+ HCl ! HNO
3

+ BrCl (1.36)
ClONO

2

+ H
2

O ! HNO
3

+ HOCl (1.37)
BrONO

2

+ H
2

O ! HNO
3

+ HOBr (1.38)
HOCl + HCl ! H

2

O + Cl
2

(1.39)
HOBr + HCl ! H

2

O + BrCl (1.40)

When sunlight returns in the polar lower stratosphere in spring, these active Cl
2

and HOCl are
photolysed to form Cl atoms, which swiftly convert to ClO. At high concentrations, ClO undergoes
a self reaction forming ClO dimers. Catalytic reactions involving these ClO dimers (the ClO–
ClO cycle or Molina–Molina cycle) are mainly responsible for the significant reduction of ozone in
the polar lower stratosphere (Molina and Molina, 1987). This cycle is effective only under cold
conditions. When temperatures increase, ClO dimer becomes thermally unstable and converts to
2ClO. That is;

ClO + ClO
M�! Cl

2

O
2

(1.41)
Cl

2

O
2

+ h⌫ ! Cl + ClO
2

(1.42)

ClO
2

M�! Cl + O
2

(1.43)
2[Cl + O

3

! ClO + O
2

] (1.44)
net : 2O

3

! 3O
2

(1.45)

Likewise, Br radicals participate in very similar kinds of catalytic reactions resulting in large
ozone loss (McElroy et al., 1986). Most of the inorganic Br is present in the form of chemically
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Figure 1.13: The ozone loss in the Arctic win-
ter 1999/00 compared to the typical Antarctic sce-
nario. The measurements are taken from balloon
sondes (SPARC, 2002).

active BrO throughout the stratosphere. The BrO undergoes two types of ozone destroying cycles
as given below:

BrO + ClO ! BrCl + O
2

(1.46)
BrCl + h⌫ ! Cl + Br (1.47)

BrO + ClO ! Br + ClO
2

(1.48)

ClO
2

M�! Cl + O
2

(1.49)

Cl + O
3

! ClO + O
2

(1.50)
Br + O

3

! BrO + O
2

(1.51)
net : 2O

3

! 3O
2

(1.52)

The catalytic cycles (both the Cl and Br cycles) occur in the lower stratosphere and hence, account
for most of the lower stratospheric polar ozone loss in spring. These cycles are more effective in the
Antarctic region than in the Arctic because of several reasons. For instance, the vortex is stronger
and cold conditions sufficient for the formation of PSCs are more prevalent in the Antarctic and
hence, Cl and Br atoms are more abundant there, whereas the Arctic stratosphere is relatively warm
and thus restricts the formation of PSCs and related heterogeneous ozone loss.

1.1.2.7 Denitrification

Most of the heterogeneous reactions those take place on the surfaces of PSCs produce a large fraction
of HNO

3

(e.g. Eqns.1.35). In addition, the hydrolysis of N
2

O
5

on the sulfate aerosols and PSC
surfaces acts as a major source of HNO

3

. That is:

N
2

O
5

+ H
2

O ! 2HNO
3

(1.53)
N

2

O
5

+ HCl ! ClNO
2

+ HNO
3

(1.54)

If the lower temperatures (<195 K) in the polar regions persist for several months, then HNO
3

condensed to NAT particles could grow to large sizes of > 10µ m. This process results into gravi-
tational settling of HNO

3

and hence, removes it from the regions of ozone layer. This irreversible
removal of HNO

3

is called denitrification. The photolysis of HNO
3

in polar spring releases NO
2

,
which deactivates Cl:

HNO
3

+ h⌫ ! OH + NO
2

(1.55)

ClO + NO
2

M�! ClNO
3

(1.56)
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Figure 1.14: The temporal evolu-
tion of Equivalent Effective Strato-
spheric Chlorine (EESC) in the polar
and mid-latitude regions (image cour-
tesy: NOAA Earth System Research
Laboratory).

Hence, the removal of HNO
3

slows down the deactivation of Cl. Therefore, a denitrified environment
prolongs the activation of Cl and Br and thereby enhances the destruction of ozone (Fahey et al.,
1990). The ozone loss due to denitrification is more common in the Antarctic stratosphere because of
the colder and more stable vortex conditions there (e.g. Santee et al., 1995). Several Arctic winters
such as 1999/00 (e.g. Kleinböhl et al., 2002; Santee et al., 2000) and 2004/05 (e.g. Kleinböhl et al.,
2005b) were also experienced severe denitrification and hence, large loss in ozone. For instance,
Fig. 1.12 illustrates the effect of ozone loss in the Arctic winter 1994/95 as analysed from a suite of
box model simulations (Waibel et al., 1999).

1.1.2.8 The ozone hole

Owing to the special physical and chemical scenarios mentioned earlier, the Antarctic ozone ex-
periences significant destruction during winter and spring seasons (Farman et al., 1985). Due to
the increased halogen loading in the stratosphere this ozone loss has increased dramatically during
1985–1990 and saturated thereafter (Jiang et al., 1996). Therefore, since early 1990s ozone sound-
ings in the Antarctic showed a complete or near-complete removal of ozone (i.e. saturation of ozone
loss) in the 15–21 km altitude region (Solomon et al., 2005) and this feature is observed since then
in all winters, as shown in Fig.1.13. The total column ozone observations from ground-based and
satellite instruments also showed equivalent characteristics of ozone loss saturation, where the mea-
sured ozone column values were often below 220 DU. This ozone value is conventionally taken as the
limit of the thickness of the ozone layer to be called an “ozone hole” (Stolarski, 1988), implying that
the thinning of the polar stratospheric ozone layer has eventually lead to a “hole” (i.e. a depression)
in that layer. Note that ozone column values of less than 220 DU were not observed in the historic
measurements in Antarctica prior to 1979. In addition, as observed from direct measurements, an
ozone column of less than 220DU is a result of the ozone destruction from the halogens (alone) in
Antarctica. Although ozone loss in the Arctic polar stratosphere is also a regular feature in winter
and spring for many decades, an Arctic ozone hole has not been observed yet. Nevertheless, the
ozone loss during the winter 2010/11 was record-breaking, which showed signs of an Arctic ozone
hole (Kuttippurath et al., 2012a; Manney et al., 2011; Sinnhuber et al., 2011).

1.1.2.9 Ozone depleting substances

Ozone depleting substances (ODSs) are those compounds which destroy ozone (Montzka et al.,
1999). They are commonly used in air-conditioners, refrigerators, electronic equipment, fire extin-
guishers, in dry cleaning, and as agricultural fumigants. The primary ODSs are Chlorofluorocarbons
(CFCs), Halon, Carbon tetrachloride (CCl

4

), Methyl chloroform (CH
3

CCl
3

), Hydrobromofluorocar-
bons (HBFCs), Methyl bromide (CH

3

Br) and Bromochloromethane (CH
2

BrCl), and are generally
designated by the term halocarbons. The ODSs are very effective in ozone destruction processes
mainly for two reasons: (i) they are not destroyed in the lower atmosphere and hence, they have
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long lifetime in the atmosphere/stratosphere (20–120 yr depending on the specie), and are not
washed-out back to the surface of the Earth as for most gases. (ii) Secondly, they release bromine
and/or chlorine by UV photolysis in the stratosphere and thus, participate actively in the ozone
loss processes.

Equivalent effective stratospheric chlorine (EESC) is an estimate of the total effective amount
of chlorine and bromine in the stratosphere (Newman et al., 2007). It is computed from emissions
of chlorofluorocarbon and related halogenated compounds into the troposphere, weighted by their
efficiency in ozone depletion (ozone depletion potential, ODP), and by making assumptions on
transport times into the stratosphere (Waugh and Hall, 2002). This parameter (i.e. EESC) is
applied to quantify man-made ozone depletion and its changes with time. It is computed as;

EESC = Cl
y

+ ↵Br
y

(1.57)

where Cl
y

and Br
y

are total inorganic Cl and Br, respectively, and ↵ is the time constant (i.e. age
of air).

This formulation provides quantitative estimates of EESC that can be directly connected to
inorganic chlorine and bromine throughout the stratosphere. Figure 1.14 shows the model simu-
lations of past and future projections together with the measurements of EESC in the Antarctic
and mid-latitude regions. It indicates that the EESC peaked by 1997 in the mid-latitudes and by
2000–2001 in the polar regions. There is a gradual decrease in the concentrations of EESC thereafter
due to the control and phasing out of ODSs, by the Montreal Protocol and its amendments and
adjustments (Velders et al., 2007). Therefore, ozone recovery is anticipated from these reductions
in the atmospheric burden of ODSs and will be discussed in detail in Chapter 9.

1.2 Summary
A concise description of the stratospheric chemistry and dynamics is presented here. A special
emphasis is given to the physical and chemical processes that govern changes in the distribution
of stratospheric ozone. Any additional information on these topics can be found from standard
text books (e.g. Andrews et al., 1987; Brasseur and Solomon, 2005; Mohankumar, 2008; Müller,
2011) or from the review articles by Solomon (1999); Plumb (2002); Haynes (2005); Holton et al.
(1995); Schneider (2006); McConnell and Jin (2008) and Shepherd (2008), as a detailed description
of all atmospheric processes in the stratosphere is beyond the scope of this thesis [e.g. changes in
ozone abundances due to the effects of the North Atlantic Oscillation (NAO) (Wanner et al., 2001),
ENSO (Enfield, 1989; Turner, 2004) and solar activity (Gray et al., 2010)]. Although chemistry
and climate modelling is a key subject of this thesis, detailed descriptions of the modelling is
not presented here. Fundamental of atmospheric modelling can be found in Jacobson (2005) and
additional information on climate and chemical transport modelling can be found in the references
given in the respective chapters, and in Donner and Large (2008) and SPARC (2010). A thorough
description of the mathematical modelling of atmospheric chemistry, by G. P. Brasseur and D. J.
Jacob, is also presented on http://acmg.seas.harvard.edu/education/brasseur_jacob/index.
html. Therefore, the primary concepts about force acting on air parcels, transport of air masses,
stratospheric circulation features, the formation and evolution of polar vortices, the Chapman cycles
and polar heterogeneous chemistry of ozone loss are presented.

http://acmg.seas.harvard.edu/education/brasseur_jacob/index.html
http://acmg.seas.harvard.edu/education/brasseur_jacob/index.html
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Dynamics of Arctic winters ⇤
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One of the interesting phenomena in climate science is the large inter-annual variability of Arctic
stratospheric winters, characterised by extremely warm and very cold winters. This year-to-year
variability is dominated by SSWs during which the polar temperature rises and the zonal flow
weakens or reverses (Scherhag, 1952). There are different definitions for a SSW to be called major
or minor. According to the World Meteorological Organisation (WMO) a SSW can be said to be
major if at 10 hPa or lower altitudes the latitudinal mean temperature increases abruptly poleward
from 60� latitude with an associated circulation reversal in a short period of time. If the reversal
of temperature gradient does not follow the zonal-mean wind reversal, then it is a minor SSW (e.g.
WMO, 1978, item 9.4, 35–36; Andrews et al., 1987; Labitzke and Naujokat, 2000). In some cases
the increase in temperature near the pole can be up to 40–60K in a week at 10 hPa (Limpasuvan
et al., 2004; Andrews et al., 1987). The followed zonal wind reversal displaces or splits the polar
vortex towards mid-latitudes (e.g. Kuttippurath et al., 2010a; Charlton and Polvani, 2007). Since
the WMO definition considers the major SSWs (hereafter major warmings–MWs) from November
to February, studies have slightly modified this criterion to account for the warmings from October
through May (e.g. Charlton and Polvani, 2007; Bancalá et al., 2012). Also, there is an ambiguity
regarding the temperature gradient criterion of the WMO definition (e.g. the difference between
Limpasuvan et al., 2004 and Krüger et al., 2005). Apart from these, classifications of MWs based
on the northern annular mode (Baldwin and Dunkerton, 2001b) and external atmospheric forcings
(Blume et al., 2012) are also being proposed.

Although studies use different definitions for MWs, there is a general agreement on the poleward
temperature increase from 60� N. Some studies are critical about the timing of wind reversal that
it must last for 5 days (e.g. Limpasuvan et al., 2004), but no strict time condition is followed by
some others (e.g. Labitzke, 1981; McInturff, 1978). Regarding the wind reversal, the latter two use
a circulation reversal poleward of 60� N, whereas Charlton and Polvani (2007) consider that the
winds must reverse at 60� N. Nevertheless, Limpasuvan et al. (2004) applied the same condition of
temperature increase and wind reversal with a slight difference in latitude, 65� N instead of 60� N.

The meridional transport in the winter stratosphere is largely controlled by large amplitude
planetary waves. The most important of them are quasi-stationary Rossby waves those propagate
upward from the troposphere and are quite strong and variable in winter (Andrews et al., 1987).

⇤This chapter is partly based on: Kuttippurath, J. and G. Nikulin: A comparative study of the major sudden
stratospheric warmings in the Arctic winters 2003/2004–2009/2010, Atmos. Chem. Phys., 12, doi:10.5194/acp-12-
8115-2012, 8115–8129, 2012.
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Other planetary waves are the traveling normal modes and they do not transport much momentum,
but can interact with other waves or with zonal mean flow. The interaction of planetary waves
and the zonal mean flow is known to be the major driver of winter stratospheric dynamics. The
key process in a MW is the growth and interaction of upward propagating transient planetary
waves (Matsuno, 1971). The breaking and dissipation of westward propagating planetary waves
relative to the zonal flow in the stratosphere decelerate or even reverse the prevailing eastward
flow of the polar stratosphere and induce heat by adiabatic processes, which often result in a MW.
Alternatively, there can be an upward circulation in the mesosphere that makes adiabatic cooling
in that region (e.g. Siskind et al., 2010).

The dynamical activity in recent winters reveals that the frequency of MWs in the Arctic is
increasing (e.g. Charlton-Perez et al., 2008). Studies showed that there were 5MWs in 6 winters over
1967/68–1972/73 (e.g. Bancalá et al., 2012; Cohen and Jones, 2011; Labitzke and Naujokat, 2000;
Andrews et al., 1987). Similarly, there were 5 MWs in 6 winters from 1983/84 to 1988/89 (e.g. Butler
and Polvani, 2011; Harada et al., 2010; Manney et al., 2008). On average, during 1957/58–1990/91,
MWs occurred only once every two Arctic winters (e.g Bancalá et al., 2012; Cohen and Jones,
2011; Andrews et al., 1987). Conversely, no MW occurred in 9 consecutive winters from 1989/90 to
1997/98, except a minor warming in early February 1990 (Manney et al., 2005). However, there were
7 MWs in 5 out of the 6 winters from 1998/99 to 2003/04 (e.g. Kuttippurath et al., 2011; Kleinböhl
et al., 2005a; Manney et al., 2005; Liu et al., 2009; Naujokat et al., 2002). The winter 1999/00 was
unusually cold but each other winter was prone to MWs. Furthermore, two MWs were observed in
1998/99 and 2001/02 (e.g. Charlton and Polvani, 2007). This warming sequence continued and there
were 5MWs in 5 winters again in 2005/06–2009/10 (Ayarzagüena et al., 2011; Harada et al., 2010;
Orsolini et al., 2010; Coy et al., 2009; Labitzke and Kunze, 2009; Manney et al., 2009, 2008; Hirooka
et al., 2007). Many of the MWs in recent years have been atypically early (December/early January)
compared to those found before 1990s, which were observed mostly in February (e.g. Bancalá et al.,
2012; Charlton and Polvani, 2007). Climate model simulations also predict similar MW events and
their evenly distributed occurrences throughout the winter (December–March) for the 2010–2100
period (Mitchell et al., 2012). However, note that the unusual frequency of MWs in recent years
has not translated into early final warmings in most cases (e.g. Manney et al., 2005). These results
are consistent with the findings of Waugh et al. (1999), who found no significant relation between
the vortex characteristics and its long-term persistence.

It is a very difficult task to understand the variability of Arctic winters and to predict the
influence of the stratosphere on the troposphere. The large inter-annual variability makes the
detection of trends in the Arctic extremely difficult (Manney et al., 2005). Studies on the evolution
of stratospheric warmings can provide further insights on these issues. While the winters before
2003/04 are relatively well studied (e.g. Manney et al., 2005), detailed comparisons are not available
on the winters thereafter. Therefore, in this study, (i) we characterise the MWs of the Arctic winters
2003/04–2009/10. In addition to this objective, we also (ii) examine the frequency of MWs in recent
Arctic winters and (iii) assess the impact of MWs on the polar ozone.

2.1 Data and methods

In order to discuss the dynamical evolution, we have derived heat, momentum, EP and wave EP
fluxes, and EP flux divergence in each winter using the European Centre for Medium-Range Weather
Forecasts (ECMWF) operational data. These data have 2.5� horizontal resolution on 14 pressure
levels between 1000 and 1 hPa. The impact of the MWs on the threshold of PSCs is analysed
with area of PSC (A

PSC

), which was calculated using 4.5 ppmv of H
2

O and a HNO
3

climatology
(Kleinböhl et al., 2002), as computed in Rex et al. (2004) and Kuttippurath et al. (2010a).

There are several definitions for MWs, therefore, to classify the warming events. Therefore, we
use McInturff (1978) by which a warming is said to be a MW, if at 10 hPa or below the latitudinal
mean temperature increases rapidly poleward from 60� N and is followed by the zonal wind reversal
in a short period of time. A warming is called minor for a significant temperature increase at any
stratospheric level in any area of the wintertime hemisphere, provided the criterion for a MW is not
met.
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Figure 2.1: Temporal evolution of the zonally averaged temperature and zonal wind in the ECMWF operational
analysis for the Arctic winters 2003/04–2009/10. The dashed horizontal line represents 0 ms�1 and the dotted vertical
lines separate each month.

We only briefly explain the physical and dynamical terms used here. For a detailed discussion
on these, the readers are requested to refer to Andrews et al. (1987). In order to estimate the
aforementioned fluxes, we have calculated the zonal-means and their fluctuations from the zonal-
means (eddies). Throughout this section we denote the zonal-mean with an over-bar and eddies
with a prime symbol. The intensity of the dynamical processes in a MW can be diagnosed by the
fluxes and we derive the heat and momentum fluxes as:

F
heat

= T 0v0 ; F
momentum

= v0u0

where v0, T 0 and u0 are the eddies of meridional wind, temperature and zonal wind, respectively. To
describe the motions, which can be of synoptic to planetary scale, the amplitude of planetary waves
is derived using Fourier analysis of geopotential data. Since the observed waves in the stratosphere
are usually of zonal wave numbers 1–3, we calculate the amplitudes of waves 1 and 2. The quasi-
geostrophic version of the EP flux (~F ) are:

F
z

= ⇢
0

fa cos�
R

HN2

T 0v0 ; F
�

= �⇢
0

a cos� v0u0

where ⇢
0

is air density, a is radius of the Earth, f is Coriolis parameter, H is scale height, R
is the gas constant and N is the buoyancy frequency. These EP flux equations show that the
meridional component (F

�

) is proportional to the momentum flux and the vertical component (F
z

)
is proportional to the heat flux.

2.2 Evolution of the winters: 2003/04–2009/10
We first examine the time evolution of zonally averaged temperature and zonal wind at 60� N and
10 hPa to identify the warmings. The 90� N/10 hPa temperatures are also checked to probe the
intensity of the warmings. The temporal evolution of the vertical distribution of temperature and
zonal winds, propagation and amplitude of the planetary waves, and impact of MWs on the structure
and stability of polar vortex during the winters are discussed in the succeeding sections.

2.2.1 Temperature and zonal winds

2.2.1.1 MWs during the winters

Figure 2.1 shows the time series of zonally averaged temperature at 60� and 90� N, and zonal wind
at 60� N for 10 hPa in the Arctic winters 2003/04–2009/10. The warming in 2009/10 was severe,
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Figure 2.2: Temporal evolution of the vertical distri-
bution of zonal-mean temperatures (color contours) in
the ECMWF operational analysis for the Arctic win-
ters 2003/04–2009/10. The overlaid white contours
illustrate the position and propagation of the zonal-
mean easterlies and the black overlaid contours are
the zonal-mean westerlies.
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where a rapid increase of temperature from 207K in early January to 235K in late January was
observed at 60� N. However, the largest increment of temperature at 60� N was experienced in
2008/09, during which temperatures of about ⇠ 207 K were found in November–December and they
rose to 239 K by late January. In winters 2003/04, 2005/06 and 2006/07 there was an increase of
about 25 K (from 205K to 230K) from late November to late December, mid-January, and late
December, respectively, and thus, a prolonged warming (from day of year �8 to 45) is evident in
2005/06 at 60� N. Note that a similar duration of warming is also found in 2003/04 as it spans
from early December to late January (day of year �26 to 24), as also observed by Manney et al.
(2008, 2005) and Orsolini et al. (2010). There were two short warming episodes in 2006/07; in late
December and early February at the same latitude region. In 2007/08, the temperature in early
December was ⇠ 202 K and it slowly increased to 232 K by late February at 60� N, with three short
warming events in late December, late January, and late February.

The temperature at 90� N exhibits a similar time evolution in all winters, but with significantly
higher values. The striking feature found at 90� N is the rise in temperature in late January 2007/08,
which is equal to that of the warmest winter 2008/09. Unlike in other winters, there were three
minor warmings in 2007/08; in late January, early February and mid-February, and these peaks
are more pronounced at 90� N; as the easterly jet was stronger towards the high latitudes and the
polar vortex was shifted off the pole during these periods in 2007/08. Further characteristics of the
temperature distributions in each winter will be discussed in Sect. 2.2.1.2.

In all winters the maximum temperature is followed by a reversal of the zonal wind with a couple
of days lag at 60� N. In 2009/10, the MW criterion was accomplished on 9 February and the winds
reversed at least twice before the final warming. The wind reversal in 2009/10 was comparatively
short and weak, with easterlies of the order of 1–5 ms�1, and was identical to that in 2003/04,
2006/07 and 2007/08. The MWs in the latter three winters were observed on 5 January, 24 February,
and 22 February, respectively. These winters show short (<10 days) and weak (5–15ms�1) easterlies
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at this latitude/altitude level. On the other hand, in 2005/06 and 2008/09 the MW criterion was
met by 21 January and 24 January, respectively, and the associated easterlies prevailed for about
30 days with a maximum speed of about 30–35 ms�1. In 2004/05, the temperature was relatively
lower (e.g. 2003/04, 2005/06 and 2006/07) in November–January at both latitudes and there was
no MW, but the final warming was in mid-March. Although the westerlies appeared again by the
end of March, their speed was less than 5 ms�1 and hence, we consider the warming by 14 March
2005 as the final warming (e.g. Bancalá et al., 2012).

2.2.1.2 Vertical development of the MWs

Figure 2.2 displays the seasonal march of the vertical distribution of zonal-mean temperature (color
contours) and zonal winds (westerlies in black and easterlies in white overlaid contours) for the Arctic
winters 2003/04–2009/10. The winter 2009/10 exhibits high temperatures in the upper stratosphere
in early January, which slowly extended down to 10 hPa by mid-January. The westerlies turned to
easterlies by late January and they moved down to 10 hPa for a period of about 10 days.

When compared to the warming in 2009/10, the rise in temperatures was observed in mid-
December in 2003/04, early January in 2005/06, and mid-January in 2008/09 in the upper strato-
sphere. Subsequently, the easterlies were also appeared by mid-December, early January, and
mid-January, respectively, in each winter. The easterlies were comparatively stronger and extended
down to 75 hPa in 2008/09 and to 30 hPa in 2005/06, and thus the MWs are stronger in these two
winters. In 2009/10, although the temperatures above 10 hPa were higher than those of other win-
ters, the wind reversal was weaker and restricted to the upper stratosphere. In contrast, a late MW
with weak easterlies that seldom propagated down to 20 hPa was observed in 2007/08. A similar
progression in the vertical and temporal distribution of temperature and zonal wind is also found
in 2006/07. Nevertheless, below 10 hPa, although the temperatures were slightly lower in 2007/08
than in 2006/07, the presence of easterlies was limited to four days only in 2006/07. On the other
hand, 2004/05 was the coldest among the studied winters, in which the temperature from early
December to early March was continuously lower than 220 K over 100–10 hPa. These results are
consistent with those of Orsolini et al. (2010), who present a similar analysis using satellite obser-
vations for these winters. In 2003/04, relatively lower temperatures in the upper stratosphere and
the temperatures similar to those found before the MW in the middle stratosphere were observed
in late January and early February, as also mentioned by Manney et al. (2005). Note that some
studies recommend the presence of at least 5 days of easterlies for a warming to be called major

(e.g. Limpasuvan et al., 2004). Therefore, we have excluded 2006/07 and the cold winter 2004/05
(without MW) in the following discussion (Sects. 2.2.2, 2.2.3 and 2.3) on MW winters.

2.2.2 Fluxes and waves

Since wave interaction is a key phenomenon in MWs, it is necessary to look at the nature of waves
present during the MW periods to elucidate the events. The wave activity analysis is also necessary
to interpret the temporal and vertical development of polar vortex. In general, the shape, strength,
and persistence of polar vortices will be different in each winter and they very much depend on the
dynamical activity in the winters. Therefore, we now discuss the evolution of planetary waves in
this section and the impact of wave activity on the polar vortices during the winters in the next
section. In Fig. 2.3 the temporal evolution of wave amplitudes, heat flux, momentum flux, and EP
flux divergence for the warm winters of 2003/04–2009/10 at 60� N/10 hPa is depicted.

In 2009/10, large heat flux of about 300 m Ks�1 and the largest momentum flux (500m2 s�2)
among the winters are estimated during the MW period. Enhanced wave 1 amplitude of about
110 m2 s�2 and wave 1 EP flux of 1.5⇥105 kg s�2 are also calculated for the period. Note that the
large EP flux convergence suggests the westward zonal force exerted by eddies on the atmosphere,
i.e. negative (positive) EP flux divergence implies suppressed westerlies or the reversal of the winds
(enhanced westerlies). Another interesting feature to note is the minor warming initiated by a strong
wave 2 event with significant heat flux (⇠ 200 mK s�1), and momentum flux (250–400 m2 s�2) in
early to mid-December.

In agreement with the higher temperatures and longer duration of easterlies, large heat flux (up
to 750 mK s�1), momentum flux (up to 425 m2 s�2) and the largest EP flux convergence (up to
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Figure 2.3: Temporal evolution of various zonally averaged derived quantities for selected Arctic winters at 10 hPa
and 60� N. The quantity zero is marked with dashed horizontal lines. Since the warming was not severe in 2007/08,
some entities are not shown for this winter for clarity reasons. The dotted vertical lines represent the month bound-
aries.

�65⇥10�5 kg s�2) are estimated during the MW in 2008/09. The amplitude of wave 2 and its EP
flux in this period are also the largest among the winters, with a maximum of about 110 m2 s�2

and 3⇥105 kg s�2, respectively. It is noteworthy that the difference between the maximum heat flux
at the time of MW in 2008/09 and 2009/10 is ⇠ 400 mK s�1. Furthermore, the wave 2 amplitude
is twice that of other winters, indicating the intensity of the MW in 2008/09. Note also that the
EP flux convergence during the minor warming in mid-December 2009/10 have matching values
to those found during the strongest MW in January 2008/09, suggesting profound wave activity
in both winters. The wave amplitudes derived for 2008/09 is in very good agreement with those
estimated by Labitzke and Kunze (2009) and Manney et al. (2009).

Another prominent feature to note is the minor warming due to a strong wave 1 amplification
during late January in 2007/08. Large heat flux (⇠600 mK s�1), and the largest wave 1 amplitude
(⇠145 m2 s�2) and its EP flux among the winters (⇠3⇥105 kg s�2) are calculated for this period.
The other winters also show significant heat flux, momentum flux, and wave 1 amplitude during
their MW periods, but in relatively smaller magnitudes.

It is interesting to note the large momentum flux and both types of waves in the form of large
pulses prior to the MWs in all winters. For instance: the winters 2008/09 and 2009/10 exhibit
enormous momentum fluxes of about 200–400 m2 s�2 associated with a number of bursts from
November through January. These intermittent pulses normally build momentum for the forth-
coming MWs (e.g. Coy et al., 2009; Polvani and Waugh, 2004; this will be discussed in detail
in Sect. 2.3). The magnitude of momentum flux estimated during the MW periods in 2009/10
and 2008/09 is about 200 m2 s�2 and 100 m2 s�2 larger than that of other winters, reiterating the
strength of MWs in these winters.
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Figure 2.4: Maps of potential vorticity at 850 K (⇠ 10 hPa/30 km) for selected Arctic winters on 15 December, 15
March and on the central date (as noted on the maps), the day on which the westerlies changed to easterlies at
60� N/10 hPa. The overlaid white contours show temperature in Kelvin.

2.2.3 PV diagnostics

We now discuss the development, movement, and dissipation of polar vortices during the warm
winters to further characterise the MWs. To perform this, we analyse the PV fields (e.g. Hauchecorne
et al., 2002) calculated from the ECMWF operational analysis at two representative altitudes in the
middle (850 K or ⇠ 10 hPa/30 km) and lower (475K or ⇠ 85 hPa/18 km) stratosphere. Figures 2.4
and 2.5 illustrate the status of polar vortices on selected days at 850 K and 475K, respectively. Two
common dates along with the central date, the date on which the westerlies change their direction
at 60� N/10 hPa (e.g. Charlton and Polvani, 2007), are selected for this discussion. The common
dates, 15 December and 15 March, fairly represent the day before and after the MW, respectively,
in each winter.

In 2009/10, the vortex was stable and strong from December through January in the middle
stratosphere, at 850 K. The temperature started to increase by mid-January and the wave distur-
bances pushed the vortex to the adjacent mid-latitudes. The vortex was still relatively large, strong,
and nearly concentric until early February. However, strong wave 1 activity pushed the vortex to
the Atlantic and then split into two parts with a large, strong, and near-concentric vortex over the
Atlantic and a small patch of vortex air above Russia, around 5 February, at 850 K. The separated
vortices merged in a few days and the redeveloped vortex transformed to an elongated structure
on the central date, and it started to dissipate thereafter, as shown by the map on 15 March. In
contrast, at 475 K, a minor warming due to a wave 2 event split the vortex into two independent
lobes, as displayed on 15 December. Vortices of considerable size with one over the North America
and another over Russia were found for a few days after the split. Yet, the vortex bulbs merged
again to form a large vortex and it stayed near the pole, but the center of the vortex was over Siberia
until early February. The vortex was unstable and was a crescent shaped patch of air on the central
date. Nevertheless, the vortex split again during the MW period due to strong wave 1 activity and
the separated vortices sustained intact until early March at 475K. Our vortex analyses with high
resolution PV maps are consistent with those discussed with various data sets by Dörnbrack et al.
(2012) and Khosrawi et al. (2011) for this winter.

In 2008/09 and 2005/06, large and strong vortices were present in December at 850K. The
temperatures began to increase by mid-January and the vortices shrunk and moved to mid-latitudes
as severe wave activity led to the MWs by late January in both winters. The vortices started to
collapse thereafter, as shown by the PV maps on 15 March. At 475K, the wave disturbances started
early and thus two nearly-split vortices were found on 15 December in both winters. Although
relatively stronger vortices were observed on the central dates, they dissipated thereafter. Note
that wave 1 disturbances led to the MW of 2005/06, but wave 2 activity was pivotal in triggering
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Figure 2.5: Same as Fig. 2.4, but for 475 K (⇠ 85 hPa/18 km).

the MW of 2008/09. Also, in 2008/09, the vortex split on the central date at 10 hPa and hence, the
MW was a vortex split event, as also analysed by Harada et al. (2010) and Manney et al. (2009).

The penetration of easterlies down to the lower stratosphere was not effective in 2007/08 as
illustrated in Fig. 2.2. At 850 K, due to strong wave disturbances, the vortex shifted off the pole
in the warming period. The vortex began to dissipate and there was no solid vortex in March.
At 475 K, however, there was significant wave activity in the early winter, which split the vortex
around mid-December. The vortices merged and the redeveloped vortex remained unscathed until
late March in agreement with the lower temperatures there.

In 2003/04 at 850 K, the vortex was very large and concentric until late December and then it
weakened and displaced to mid-latitudes due to wave 1 disturbances and subsequent MW in early
January. The temperature became very low again in March, and therefore, a strong and concentric
vortex was reestablished after nearly two months of intense and continuous disturbance. As a result,
a well shaped large vortex was formed around 15 March at 850K and sustained intact until late
April. At 475K, a similar situation is replicated, where even stronger but smaller vortex was found
throughout March. Note that the MWs of 2003/04, 2005/06, 2007/08 and 2009/10 were primarily
driven by wave 1 amplification and were vortex displacement events, as the associated vortex split
was not evident at 10 hPa on the central date of the respective MWs (e.g. also see Harada et al.,
2010; Manney et al., 2009, 2008). Further information about the MWs in these winters is given in
Table 2.1.

2.3 Tropospheric wave forcing

Stratospheric warmings usually initiate in the troposphere from where the planetary scale distur-
bances propagate into the stratosphere and break there (e.g. Bancalá et al., 2012; Butler and Polvani,
2011; Cohen and Jones, 2011; Kolstad and Charlton-Perez, 2011; Manney et al., 2009; Charney and
Drazin, 1961). The MW periods normally preceded by high wave activity at the tropopause, in
which more than one planetary wave (generally waves 1 and 2) will be present. The EP flux/heat
flux derived at 100 hPa is often regarded as a measure of wave activity entering the stratosphere
(e.g. Naujokat et al., 2002; Newman et al., 2001; Pawson and Naujokat, 1999; Coy et al., 1997) and
hence, it can well describe the wave forcing for theMWs. Therefore, Fig. 2.6 examines the time
evolution of zonal-mean EP flux, wave EP flux and wave amplitudes for the winters at 100 hPa
averaged over 45–75� N.

Elevated EP fluxes and wave 1 amplitudes are estimated just before the MW in 2009/10 and
are about 4⇥105 kg s�2, implying a profound wave forcing during the period. The EP flux values
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Table 2.1: Features of the MWs in recent Arctic winters. Central date (the day on which the westerlies changed
to easterlies at 60� N/10 hPa), whether the MW is vortex displacement/split event and prominent wave forcing are
listed (data: the ECMWF operational analysis).

Arctic winter Central date Warming event Prominent wave
2003/04 5 January vortex displacement wave number 1
2005/06 21 January vortex displacement wave number 1
2006/07 24 February vortex displacement wave number 1
2007/08 22 February vortex displacement wave number 1
2008/09 24 January vortex split wave number 2
2009/10 9 February vortex displacement wave number 1

are even comparable to those found during the severe MW in 2008/09, where they are around
4.1⇥105 kg s�2. Wave 2 with a peak amplitude of about 30 m2 s�2 in January was the key in driving
the MW of 2008/09. In 2005/06, a constant EP flux of around 1.5⇥105 kg s�2 and wave 1 EP flux of
around 1⇥105 kg s�2 are observed for about 45 continuous days in January–February. In 2007/08,
although the MW in late February was mainly forced by a wave 1 event, the minor warming in
mid-February was triggered by a strong wave 2 episode with an amplitude of about 32m2 s�2. The
other winters also show their peak EP flux (2–2.5⇥105 kg s�2) and wave 1 amplitude (12 m2 s�2)
just before the MW, but in smaller magnitudes than those found in 2009/10. More importantly, the
winters display short wave bursts prior to the MWs, indicating the preconditioning or tropospheric
forcing (e.g. Coy et al., 2009). These features are perhaps best described by the wave EP fluxes,
which show an advance shift of about 7 days with the peak wave amplitude episodes. Also, the
largest wave 1 EP flux of about 4⇥105 kg s�2 for 2009/10 and wave 2 EP flux of about 5⇥105 kg s�2

for 2008/09 are estimated shortly before the MW, consistent with the intensity of the MWs in these
winters. It should be noted that a similar feature of heat flux emergence prior to weak vortex events
was also shown by some earlier investigators (e.g. Polvani and Waugh, 2004; Newman et al., 2001).
In sum, the winters show significant wave activity and considerable EP flux and momentum flux
(not shown) at the tropopause shortly before and during the MWs, suggesting a strong connection
between tropospheric wave forcing and MWs.

Our wave activity analyses are also in concert with the findings of other studies using geopotential
heights in the troposphere. For instance: Hirooka et al. (2007) report a tropospheric ridge over
Alaska around early January, which was instrumental in driving the MW in 2003/04. Similarly,
Coy et al. (2009) show a sudden increase in the geopotential heights over the Northern Atlantic at
360 K in mid-January, in which the accompanied wave breaking in the upper troposphere triggered
the MW in 2005/06. Thurairajah et al. (2010) show a strong anticyclone around mid-February that
weakened and displaced the vortex off the pole, leading to the MW in 2007/08. Harada et al. (2010)
observe a remarkable upper tropospheric ridge over Alaska during 10–13 January, which played
prominent roles in the upward propagation of waves from Alaska/Siberia during the first/second
development stages of the MW in 2008/09. Ayarzagüena et al. (2011) find that the amplification of
the upward wave propagation for the MW in 2009/10 was initiated by anomalous Rossby wave trains
and their interaction with climatological waves in the troposphere in late January. Further details
about these tropospheric processes and preconditioning can be found in the respective references.

2.4 MWs and ozone loss

We have already seen that MWs have a great impact on the temperature structure, and thus on the
temporal and vertical evolution of polar vortex in the Arctic winters. As the occurrence of a MW
is associated with increase in polar temperatures, it restricts the formation of PSCs. In the polar
stratosphere, the ozone loss occurs through heterogeneous chlorine activation on PSC surfaces when
the sunlight returns over the region. Therefore, we now look at the connection between A

PSC

and
chemical ozone loss together with other dynamical entities in the Arctic winters. In order to make
a better statistical analysis, we use data for the seventeen winters during 1993/94–2009/10.

Figure 2.7 shows time series of the cumulative ozone loss estimated from the ground-based
ultraviolet-visible (UV-VIS) total column ozone measurements (Kuttippurath et al., 2010a; WMO,
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Figure 2.6: Temporal evolution of various zonally averaged quantities for selected Arctic winters at 45–
75� N/100 hPa. The quantity zero is marked with dashed horizontal lines and the dotted vertical lines separate
each month.

2007; Goutail et al., 2005) and December–March mean of A
PSC

at 475 K, and January average of the
zonal-mean temperatures, zonal winds, and geopotential heights at 50 hPa averaged over 60–90� N
in the Arctic for the 1993/94–2009/10 period. The ozone loss is the maximum loss determined at the
end of each winter. It is computed as the difference between the measured ozone and the passive
tracer [i.e. 100⇥(passive tracer–ozone)/passive tracer)] simulated by the REPROBUS (REactive
PRocesses ruling the Ozone BUdget in the Stratosphere) chemical transport model (Lefèvre et al.,
1998), for which the model was initialised on 1 December (1 November for 2002/03 to account
for early ozone loss in this winter) from the ECMWF ozone data for each winter (i.e. no ozone
loss until the initialization day). Additional information about these calculations can be found in
Goutail et al. (2005) and Kuttippurath et al. (2010a).

There were no MW over 1993/94–1997/98 and therefore, temperatures were lower, areas of
PSCs were larger, westerlies were stronger, and geopotential heights were comparatively lower and
hence, large loss of ozone is estimated in these winters. Although there was no MW in 1993/94,
the January average of temperature was higher and A

PSC

was smaller in this winter. However,
the loss in ozone was comparable to other cold winters. This mismatch is due to the unusual cold
spell and associated ozone loss during late February–early March 1994 (Manney et al., 1995). The
situation was entirely different during 1998/99–2002/03, which experienced 6MWs and therefore,
the winters except 1999/00 show warmer temperatures, smaller PSC areas, and weaker westerlies.
The warmings in 1998/99 and 2001/02 were very severe as there were two MWs in each winter, for
which the lowest A

PSC

(nearly zero) in the seventeen years is deduced in 1998/99. Consequently,
the ozone loss in these winters was the smallest among the winters, about 7–10 %. The winter
1999/00 was very cold, where the lowest geopotential height in the 17-year period is also registered
and thus, large loss in ozone is estimated. A similar situation is replicated in 2004/05, a cold winter
surrounded by 2 warm winters. The largest A

PSC

among the winters and significant ozone loss are
estimated for that winter. It suggests that the late MW in 1999/00 (20 March 2000) or the early
final warming in 2004/05 (14 March 2005) did not inhibit the ozone loss in these cold winters. The
winters from 2003/04 to 2009/10 had 6 MWs, where 2003/04 and 2005/06 show relatively higher
temperatures, smaller A

PSC

, and thus minimal ozone loss.
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Figure 2.7: (a) The cumulative total column ozone loss at the end of each winter (late March or early April and 20
February for 2009/10), (b) the average area of PSCs in December–March at 475 K, (c) the zonal-mean temperatures,
(d) zonal winds and (e) geopotential heights averaged over 60–90� N in January at 50 hPa for the Arctic winters
1993/94–2009/10. The UV-visible ozone loss estimate for each year is taken from Goutail et al. (2005), WMO (2007)
and Kuttippurath et al. (2010a). The winters with MW are marked with dotted vertical lines and the zero-wind line
is marked with a dash-dotted line. The central date for each MW is also noted on the top panel (a). The winters
1998/99 and 2001/02 had 2 MWs and the MW in 1999/00 was in late March.

2.4.1 Correlation between temperature/zonal wind and ozone loss

It is well-known that there is a good relation between the partial column ozone loss and volume of
PSCs in the Arctic stratosphere (Rex et al., 2004). We also find a strong correlation between the
relative ozone loss (%) and the December–March average of A

PSC

, zonal-mean January tempera-
ture and zonal winds at 60–90� N. Nevertheless, we have also performed a detailed analysis of the
correlation between the ozone loss (%) and the dynamical parameters (temperature, zonal wind and
geopotential height) for various months and altitudes, i.e. we keep the ozone loss unchanged, but
switch the dynamical entities averaged for various months and altitudes for these tests. The anal-
ysis shows that the correlation of these parameters (averages in January) with ozone loss (in %) is
0.71–0.78 at 50 hPa. Correlations of ozone loss with the parameters averaged at other altitudes (100
and 30 hPa) are weak (r = 0.45–0.65), but comparable for 70 hPa (around r = 0.8). Our diagnosis
for other months (or combination of months) reveals that the correlations are weak for December,
February and March, and for the December–January or December–February average. Although the
correlations are slightly better for the December–March average (r = 0.81–0.88), they do not relate
in the same way as for the January average, i.e. the near one-to-one correlation as illustrated in
Fig. 2.7. Furthermore, the higher correlations during December–March are weighted by the higher
temperatures or weaker westerlies in February/March due to the MWs in January/February of late
1990s and 2000s, as there was only one winter with a MW in March (1999/2000) during the period.
Since the timing of MWs is different in each winter, the data averaged in a particular month may
not always reflect the exact intensity of MWs. For instance, the MW was very strong in 2008/09
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but the zonal wind shows a speed of 120 ms�1 against �5 ms�1 in 2003/04. Therefore, care must
be taken to delineate various parameters and their correlation in a particular time period. In this
context it is also worth mentioning that there is a well established relation between spring time heat
flux and ozone in the northern high latitudes (e.g. Weber et al., 2011).

2.4.2 Timing of MWs and ozone loss

To investigate the impact of timing of MWs on the ozone loss, we use the central dates derived from
the ECMWF operational analyses (shown in Fig. 2.7a). Note that there can be slight differences
in the MW central dates when they are deduced from a different meteorological data set (e.g.
Harada et al., 2010; Charlton and Polvani, 2007; these will be discussed in detail in Sect. 2.5.1).
As emphasized earlier, there were no MWs in the 1993/94–1997/98 period and thus these winters
experienced large loss in ozone. However, the MWs in 1998/99 and 2001/02 were in December (e.g.
Butler and Polvani, 2011) and hence, the ozone loss in these winters was very small. Likewise, the
MWs of 2002/03, 2003/04, 2005/06 and 2008/09 were in January, (e.g. Cohen and Jones, 2011;
Kuttippurath et al., 2011; Kleinböhl et al., 2005a) and consequently the ozone loss during the
winters was also very small. The MWs of other winters were in February or March (e.g. Harada
et al., 2010; Orsolini et al., 2010) and therefore, the ozone loss was severe in those winters (e.g. the
MW in 1999/00 was on 20 March 2000). It suggests that there is a good relation between the timing
of MW and the amount of ozone loss in each winter, where early (December–January) MW leads
to nominal ozone loss. This is due to the fact that, in the Arctic, very low temperatures (<195 K)
in December–January is important for the formation of PSCs and subsequent chlorine activation
on them. Therefore, MWs in these months limit the formation of PSCs and hence, restrict the
ozone loss. In addition, note also that a prolonged appearance of a cold stable vortex is a necessary
requirement for the sustained ozone loss, but the warmings greatly disturb the stability of a vortex.

2.5 Discussions and conclusions

2.5.1 MWs of the Arctic winters

We have characterised various dynamical processes in the Arctic winters 2003/04–2009/10. In
2009/10, the warming began with strong wave 2 disturbances around mid-December and that split
the vortex in the lower stratosphere. The vortex redeveloped afterwards, but later wave 1 episodes
built momentum for the MW in early February. All winters, except 2008/09 show wave 1 amplifi-
cation that led to the MWs. In contrast, wave 2 activity was pivotal in driving the MW in 2008/09,
which rarely happens. Previous wave 2 MW event occurred in 1988/89 and such events occur only
in La Nina conditions, except for the winter 1978/79 (e.g. Butler and Polvani, 2011; Charlton and
Polvani, 2007). In 2008/09, the EP flux estimated for wave 2 during the MW period is reportedly
the largest since 1978/79 (Harada et al., 2010). In 2008/09, the wave forcing at the tropopause
was unusually large before and during the MW, which triggered the atypical MW, confirming the
findings of Harada et al. (2010). Among the winters, 2003/04 had the earliest MW as it was in
early January. However, the MWs in 2006/07 and 2007/08 were in late February, as for a typical
pre-1990 MW (e.g. Cohen and Jones, 2011; Andrews et al., 1987).

The MW in 2008/09 was a vortex split event, but the MWs in other winters (during 2003/04–
2009/10) were vortex displacement events. Note that if the vortex splits at 10 hPa on the central
date, then the MW is a vortex split event. Nevertheless, it also depends on the meteorological data
(e.g. ECMWF) and time (e.g. 12 h) considered for the diagnosis, as the central date can be different
for different data sets. For instance, the central date of 2003/04 is 5 January in our analysis with
the ECMWF operational data, whereas it is 7 January in Cohen and Jones (2011) and Butler and
Polvani (2011), who used the National Center for Environmental Prediction-National Center for
Atmospheric Research (NCEP-NCAR) reanalysis for their studies. Such differences in the central
dates calculated for several MWs using the ECMWF 40-yr reanalysis (ERA-40) and NCEP–NCAR
data over 1957–2002 can also be found in Charlton and Polvani (2007). In addition, possibly due to
the differences in central dates, Cohen and Jones (2011) classify the MWs of 2003/04, 2005/06 and
2009/10 as vortex split events, in contrast to our results and to those of Harada et al. (2010) and
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Manney et al. (2009, 2008, 2005). Therefore, attention must be paid when interpreting a MW as a
vortex split or displacement event. Our analysis also shows that the wave 1 MWs (e.g. Kuttippurath
et al., 2011; Kleinböhl et al., 2005a; Manney et al., 2005; Liu et al., 2009) usually end up with vortex
displacement events, while the wave 2 MWs (e.g. Harada et al., 2010; Manney et al., 2009) generally
lead to vortex split events, consistent with the findings of previous studies (e.g. Bancalá et al., 2012;
Cohen and Jones, 2011).

Exact reasons for the occurrence of stratospheric warmings are still not fully understood. A
study by Taguchi (2008) using a 49-yr reanalysis data did not show any significant correlation
between MWs and tropospheric blocking events. In contrast, a recent study by Martius et al. (2009)
shows a clear connection between them. The analyses of Taguchi (2008) are mostly at 500 hPa,
while the study of Martius et al. (2009) exhibits that the signals are more apparent at 200 hPa
or above. Similarly, the most recent studies using various meteorological fields (e.g. ERA-40 and
NCEP-NCAR) for about 52 Arctic winters also show evidence for the connection between MWs and
tropospheric blockings (Bancalá et al., 2012; Castanheira and Barriopedro, 2010; Woollings et al.,
2010). In agreement with the findings of Martius et al. (2009), the aforesaid studies also observe that
the (wave 1/2) MWs can be preceded by tropospheric blocking activity (in the Euro-Atlantic/Pacific
region) within a few weeks or days prior to the central date of MWs. In this study we diagnosed
the wave forcing at 100 hPa and demonstrated a clear connection between tropospheric forcing and
MWs. It is manifested more clearly with the wave 1 and wave 2 EP fluxes, which show an advance
shift in time (around 7 days) with the central dates, suggesting a strong preconditioning or wave
forcing. It has to be reminded that the occurrence of MWs is also strongly affected by several
external factors such as QBO, solar cycle and sea surface temperature anomalies, e.g. MWs tend
to happen more frequently during solar maximum in the westerly phase of QBO (e.g. Blume et al.,
2012). However, a detailed account on these issues are beyond the scope of this study. Nonetheless,
it has to be kept in mind that all MWs are not necessarily preceded by tropospheric blocking activity
(e.g. Bancalá et al., 2012; Taguchi, 2008).

2.5.2 Impact of MWs on ozone

Polar ozone loss during 1993/94–2009/10 shows a high correlation with the December–March average
of A

PSC

at 475K, and zonal-mean temperature and zonal wind at 50 hPa averaged over 60–90� N
in January. There are studies showing a good correlation between the ozone loss and volume of
PSCs in the Arctic (Rex et al., 2004). The interesting aspect of our results is that we use entirely
different data sets (ground-based chemical ozone loss in percent), time period (maximum ozone loss
vs. December–March A

PSC

and January zonal-mean temperature, zonal winds and geopotential
heights averaged over 60–90� N) for these comparisons, and hence, these analyses are different and
new. Therefore, this study further attests the robustness of the correlation between ozone loss and
PSC or temperature in the Arctic winter stratosphere and hence, the local climate.

Our analysis shows an increase in the frequency of MWs in recent years as there were 13 MWs
during 1998/99–2009/10, in which six of them were over 2003/04–2009/10. This is in agreement
with the number of MWs identified using other data sets for this period. For instance, studies using
the 6-hourly Japan Meteorological Agency Climate Data Assimilation System and the Japanese 25-
yr Reanalysis (Harada et al., 2010), the NCEP– NCAR data (Butler and Polvani, 2011; Cohen and
Jones, 2011), the ERA-40 reanalysis (Bancalá et al., 2012) and the ECMWF operational analyses
(Ayarzagüena et al., 2011) also report a similar number of MW events during the period. Therefore,
our analysis confirms the results of previous studies on the frequency of MWs in recent Arctic winters
(Mitchell et al., 2012; Ayarzagüena et al., 2011; Charlton-Perez et al., 2008; Manney et al., 2005).

It is clear that there is a significant increase in the occurrence of MWs in recent Arctic win-
ters and these MWs have a strong impact on the trace gas distribution in that region. However,
ozone variations in the polar stratosphere are tightly related to the changes in the levels of anthro-
pogenic halogenated ODSs (e.g. Shepherd, 2008), GHGs (e.g. Eyring et al., 2010; Plummer et al.,
2010), temperature (e.g. Gillett et al., 2011; Shepherd, 2008), and planetary wave drive (e.g. Austin
et al., 2003). So changes in the polar stratospheric ozone are interconnected with key chemical
and dynamical processes, such as the cooling of the upper stratosphere by increased CO

2

levels
in the past has mitigated the ozone loss through the temperature dependence of ozone chemistry
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there (e.g. Eyring et al., 2010; Jonsson et al., 2009) and hence, its continued increase in future is
likely to contribute to the upper stratospheric ozone recovery from the declining levels of ODS. The
GHG-driven changes in the residual circulation also affect the spatial and temporal distribution of
ozone and long-lived tracers (e.g. Waugh et al., 2009; Salby and Callaghan, 2002). Studies have
already shown that the long-term increases in the poleward transient Rossby wave episodes in the
subtropical lower stratosphere have significantly contributed to the trends in the mid-latitude ozone
(e.g. WMO, 2007; Hood and Soukharev, 2005). The expected changes of the concentration fields
in stratospheric N

2

O, CH
4

and H
2

O, due to increased BD circulation, are very important in this
context (e.g. Butchart et al., 2010), as they are connected to the NO

x

and HO
x

driven ozone loss
in the stratosphere (e.g. Eyring et al., 2010; Kuttippurath et al., 2010a). Therefore, attribution
of ozone trends to a particular chemical or dynamical process is very challenging. Note, however,
that earlier investigators have already pointed out reduction in the ODSs and subsequent positive
changes in the abundances of stratospheric ozone, irrespective of latitudes (e.g. WMO, 2011, 2007
and references therein). Yet, as the frequency of MWs over 1998/99–2009/10 (⇠1.1 MWs/winter)
is nearly twice that during 1957/58–1997/98 (⇠0.6 MWs/winter), the higher polar temperatures
resulted from increased dynamical activity could have masked the PSC-related ozone loss due to
anthropogenic halogen emissions. The study by de Laat and van Weele (2011) also suggests that the
minor warmings of the Antarctic winters 2004 and 2010 have contributed to the reduced Antarctic
ozone loss in those winters. Therefore, our study indicates that the positive ozone trends estimated
during 1998/99–2009/10 are likely to be affected by these events of higher ozone abundances due to
MWs and hence, care should be taken when estimating and interpreting the (ozone) trends in the
polar stratosphere.

Characterisation of a warming event is important for the diagnosis of possible change in the dy-
namical activity, and its representation in chemistry climate models needs to be improved (Mitchell
et al., 2012; SPARC, 2010). Models with temperature sensitive radiation schemes show a jump
in tracer values after MWs (e.g. Kuttippurath et al., 2010a). So the diagnosis of warming events
with respect to time is necessary to enhance the performance of the models. Furthermore, trend
studies on periods with MWs occurring in the beginning or at the end of the period make trend
detection difficult and often confusing, as also noted by Manney et al. (2005). This is particularly
important in the context that there is an increase in the occurrence of MWs in recent Arctic win-
ters, as there were 13 MWs in 11 out of the 12 winters over 1998/99–2009/10. The only winter
without having a MW in this period is 2004/05. Yet, the final warming of this winter was relatively
early for a cold winter, on 14 March 2005 (note that this warming was taken as a MW by Harada
et al., 2010, but not in our study; Butler and Polvani, 2011; and in Cohen and Jones, 2011). Note,
however, that the frequency of MWs over 1993/94–2009/10 (which includes 5 consecutive winters
without MWs) is ⇠0.76 and is comparable to the findings of other studies on the frequency of MWs
(0.6±0.1 MWs/winter) over the 1957/58–2009/10 period (Charlton and Polvani, 2007; Blume et al.,
2012). It implies that, although there is an increase in the occurrence of MWs in recent years, their
long-term average is likely to stay around the historical value (⇠0.7 MWs/winter). To this end, it
should be kept in mind that the climate model simulations also predict a similar number of MWs
(0.7–0.78 MWs/winter) for the 2010–2100 period (Mitchell et al., 2012). Therefore, studies on the
frequency and variability of warm winters, as presented here, have a great importance in diagnosing
trends in the winter stratospheric conditions and thus tracking climate change in the polar regions.
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Arctic ozone loss: 2002/2003 ⇤
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Stratospheric ozone loss in the Arctic was first observed in 1989 (Hofmann et al., 1989) and
significant reduction in ozone has been measured since then in each cold winter (e.g. WMO, 2007).
The difference in ozone loss from one winter to the other is found to be extremely large and is
controlled by temperature history of the winters. The meteorology of Arctic winters is characterised
by intermittent SSWs (Kuttippurath and Nikulin, 2012; Charlton and Polvani, 2007). Therefore,
the extent of ozone loss in an Arctic winter is determined by the dynamics of the region. This is
clearly manifested with the range of ozone depletion observed over the years, with 5–7% or <40 DU
in warm winters and 25–30% or >60 DU in cold winters (Müller et al., 1997; Andersen and Knudsen,
2002; Harris et al., 2002; Rex et al., 2002, 2004; Goutail et al., 2005; Tilmes et al., 2006; WMO,
2007; Müller et al., 2007; Blumenstock et al., 2009; Kuttippurath et al., 2010a). Another important
feature observed is the spread in the ozone loss derived by different measurement techniques in
each year. For instance, Newman et al. (2002) list a deviation from 0.7 to 2.1 ppmv for the Arctic
winter 1999/00 and Kuttippurath et al. (2010a) find a similar range in the ozone loss for the
Arctic winter 2004/05 by various methods. However, this high spread to a large extent is due to
the differences in the sampling and estimation method. Therefore, a reasonable agreement among
various ozone loss estimates can be reached by selecting a common criterion for the loss estimates,
such as similar vortex sampling, vortex edge criterion, time period, and the same method of loss
computation, as demonstrated by Harris et al. (2002). The large inter-annual variability and the
differences in estimated ozone losses still attest the necessity to assess ozone loss in each winter
by different methods. It is also essential to diagnose the evolution of ozone in each winter to
assist the interpretation and prediction of its future development in a perspective of ozone recovery.
Therefore, in this chapter we present the ozone loss determined using airborne measurements and
satellite observations for the Arctic winter 2002/03 and compare the inferred loss with other available
results for this winter and other Arctic winters.

The Arctic winter 2002/03 was exceptional as it was unusually cold in the first half and was sub-
jected to a MW in the second half. Two major field campaigns were conducted to probe the evolution
of ozone, PSCs, and ozone loss by various instruments in this winter. The campaigns were executed

⇤This chapter is partly based on: J. Kuttippurath, A. Kleinböhl, M. Sinnhuber, H. Bremer, H. Küllmann, J.
Notholt, S. Godin-Beekmann, O. P. Tripathi and G. Nikulin: Arctic ozone depletion in 2002–2003 measured by
ASUR and comparison with POAM observations, J. Geophys. Res., 116, doi:10.1029/2011JD016020, 2011.
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Table 3.1: The flight route of the Falcon-20 research aircraft during the EuPLEx 2003 and SCIA-VALUE 2003
campaigns in the Arctic winter 2002/03.

Flight date Flight track
EuPLEx
14-01-2003 Munich - Kiruna
15-01-2003 Kiruna local flight
19-01-2003 Kiruna local flight
23-01-2003 Kiruna local flight
26-01-2003 Kiruna local flight
07-02-2003 Kiruna local flight
08-02-2003 Kiruna local flight
09-02-2003 Kiruna local flight
12-02-2003 Kiruna - Munich
SCIA–VALUE
10-03-2003 Munich - Kiruna
12-03-2003 Kiruna - Nylesund - Kiruna
13-03-2003 Kiruna - Keflavik
14-03-2003 Keflavik - Kangerlussuaq
15-03-2003 Kangerlussuaq - Keflavik
17-03-2003 Keflavik - Munich
19-03-2003 Munich local flight

in the framework of the European Polar Lee-wave Experiment (EuPLEx) in January–February 2003
(Kleinböhl et al., 2005a) and the SCIAMACHY –SCanning Imaging Absorption spectroMeter for
Atmospheric CHartographY– validation and utilization experiment (SCIA–VALUE) in March 2003
(Fix et al., 2005; Kuttippurath et al., 2007). A suite of instruments participated in the campaign
and performed ground-based, airborne and in situ measurements (Christensen et al., 2005; Goutail
et al., 2005; Raffalski et al., 2005; Streibel et al., 2006; Kuttippurath et al., 2007). The airborne
sub-millimeter radiometer (ASUR) was onboard the German Falcon-20 aircraft to perform mea-
surements as a part of these campaigns. Both surveys provided a good set of ASUR trace gas
measurements, including ozone and ClO. We investigate the ozone loss features of the winter using
the ASUR observations and compare with the results from other studies (Tilmes et al., 2003; Urban
et al., 2004; Christensen et al., 2005; Feng et al., 2005b; Goutail et al., 2005; Grooß et al., 2005b;
Raffalski et al., 2005; Singleton et al., 2005; Streibel et al., 2006; Tripathi et al., 2006; Konopka
et al., 2007; Müller et al., 2007; El Amraoui et al., 2008a; Ryskin and Kulikov, 2008; Sonkaew et al.,
2013). Here we analyse the meteorological situation, evolution of ozone and chemical ozone loss with
the ASUR measurements, which have hitherto not been used for the study of Arctic ozone loss in
2002/03. To get the complete evolution of ozone and ozone loss during the winter, we complement
the ASUR measurements with Polar Ozone and Aerosol Measurement (POAM)-III observations.
The passive tracer method is applied to compute ozone loss from the measurements (e.g. Kuttippu-
rath et al., 2010a), for which the passive tracer needed is simulated by the MIMOSA-CHIM CTM
(e.g. Kuttippurath et al., 2009). Therefore, the ozone loss determined from the measurements is
also compared to the simulated loss.

3.1 Data and methods

3.1.1 Air-borne measurements

The ASUR measurements taken during the EuPLEx and SCIA–VALUE 2003 campaigns are used
here. The campaigns and observations are described in detail by Kuttippurath et al. (2010); Kut-
tippurath (2005) and Kleinböhl et al. (2005a). A total of 12 flights, between 13 January 2003
and 20 March 2003, was carried out with more than 70 flight hours of measurements for various
stratospheric trace gases. Both campaigns surveyed similar latitudes between 50� and 80�N with
a focus on the polar vortex. Therefore, a large number of measurements were taken inside the
vortex to allow a reasonable analysis of the polar processing and ozone loss. Further details of these
measurements are given in the above-said references and in Table 3.1 and Section 3.3.1.1.
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ASUR is a passive heterodyne receiver operating in a frequency range at 604.3–662.3 GHz. The
receiver has two spectrometers; an acousto optical spectrometer (AOS) and a chirp transform spec-
trometer. We use the stratospheric measurements performed with the AOS, which has a bandwidth
of 1.5 GHz and a resolution of 1.27 MHz. The observations are performed onboard a research air-
craft to avoid signal absorption by tropospheric water vapor. The sensor observes upward at a
constant zenith angle of 78� and measures thermal emissions from the rotational states of the ob-
served species. Vertical profiles of ozone and ClO are retrieved in an equidistant altitude grid of
2 km spacing using the method of Rodgers (1976). An in-house radiative transfer model is applied
to invert the measurement spectra for a non-scattering atmosphere, for which the a priori profile
was taken from Bremer et al. (2002). The altitude range of ASUR ozone and ClO is 15–50 km
and the vertical resolution of both measurements is about 6–25 km, where the resolution decreases
with altitude from the lower to the upper stratosphere. Horizontal resolution of the measurements
is 18 km and 40 km for ozone and ClO, respectively, and the accuracy of measurements is about
12–15% (Kuttippurath et al., 2007, 2010).

3.1.2 Space-based observations

POAM–III, a United States Naval Research Laboratory space experiment, was launched on the
French Système Probatoire d’Observation de la Terre–4 satellite in March 1998 into a polar, sun-
synchronous orbit. In this orbit 14 occultations are obtained per day around a circle of latitude in
each hemisphere, with consecutive observations separated by ⇠25� longitude. The latitude range
is 63�–88� in the SH, and 55�–71� in the NH. The NH measurements are carried out during the
spacecraft sunrise that corresponds to local sunset. The instrument operated in its nominal auto
mode and measured atmospheric slant path transmission in 9 channels at 354–1018 nm. Inversion
of the optical depth data yields vertical profiles of ozone in the altitude range of 13–60 km with a
vertical resolution of about 1 km and an accuracy of ±5% (Randall et al., 2003).

3.2 The MIMOSA-CHIM model simulations
The MIMOSA-CHIM (Modélisation Isentrope du transport Méso-échelle de lÓzone Stratosphérique
par Advection – Chimie) CTM has been successfully used for the diagnosis of polar ozone loss in
previous winters (Kuttippurath et al., 2010a, 2009; Tripathi et al., 2007, 2006) and is described in
detail by Tripathi et al. (2006). The model combines the MIMOSA advection code (Hauchecorne
et al., 2002) with the REPROBUS chemistry scheme (Lefèvre et al., 1994). The spatial domain
of the model is 30�–90�N with 1�⇥1� horizontal resolution. There are 16 isentropic vertical levels
between 350 and 950K with a resolution of 1.5–2 km. The model is forced by ECMWF analyses.
The chemical fields are initialised from the 3-D CTM REPROBUS output (Lefèvre et al., 1998) and
it uses the MIDRAD radiation scheme (Shine, 1987). Climatological H

2

O, CO
2

and interactive O
3

fields are used for the calculation of heating rates. The kinetic data are taken from Sander et al.
(2003), but the Cl

2

O
2

photolysis cross-sections from Burkholder et al. (1990), with a log-linear
extrapolation up to 450 nm (Stimpfle et al., 2004). These are in very good agreement with the
Cl

2

O
2

spectrum measurements by Papanastasiou et al. (2009). Note that these new measurements
form the basis of the JPL 2011 recommendation. A detailed sensitivity study using different Cl

2

O
2

scenarios in the model with respect to various Arctic winters, including 2002/03, has already been
presented in Tripathi et al. (2006, 2007). The studies show a difference of about 2% in the estimated
ozone loss among the tests. Therefore, to compare with other model results for this winter we have
used Burkholder et al. (1990) for this model run. The model includes the chemical scheme of
REPROBUS that contains 55 species and 160 reactions including gas phase, heterogeneous, and
photolytic reactions (Lefèvre et al., 1998). The Br

y

in the model is based on a correlation with
CFC-11 that considered supply of bromine from CH

3

Br, halons, as well as CH
2

Br
2

and CH
2

BrCl
(Wamsley et al., 1998).

The model has a detailed scheme of PSC formation and growth. The saturation vapor pressure
given by Hanson and Mauersberger (1998) is used to assume the existence of NAT particles and the
one given by Murray (1967) is considered for ice particles. Equilibrium composition and volume of
binary (H

2

SO
4

–H
2

O) and ternary (HNO
3

–H
2

SO
4

–H
2

O) droplets are computed using an analytic
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Figure 3.1: Meteorological situation
of the Arctic winter 2002/03. Mini-
mum temperature extracted from the
ECMWF operational data in 40�–90�N
at 475 K (top panel), temperature at
60�N and 90�N at 10 hPa, and zonal
wind together with other dynamical
entities at 60�N and 10 hPa, where
the major warming criterion is defined.
The dotted vertical lines represent day
1, 15 and 30 of January 2003, the
dashed lines mark 0, and the dash-
dotted line demarcates 195 K.

expression provided by Luo et al. (1995). Liquid supercooled sulphuric acid aerosols, NAT, and ice
particles are considered in equilibrium with the gas phase (Lefèvre et al., 1998). For NAT and ice
particles, the number density is set to 5⇥10�3cm�3 and the particle diameter is calculated within
the scheme, from available volume of HNO

3

and water. A denitrification scheme is incorporated to
account for the sedimentation of HNO

3

containing particles where the NAT particles are assumed
to be in equilibrium with gas phase HNO

3

. All the three types of particles – NAT, ice and liquid
aerosols – are considered in the sedimentation module and the sedimentation speed of the particles
is calculated according to Pruppacher and Klett (1997). Nevertheless, recent studies indicate that
PSCs do not frequently exist at NAT temperatures (WMO, 2011; Pitts et al., 2009, 2007) and liquid
aerosols often dominate heterogeneous halogen processing (Portmann et al., 1996). Therefore, care
must be taken when comparing these results with studies using a different PSC scheme.

3.3 Results and discussions

3.3.1 Synoptic evolution of the winter

Figure 3.1 presents the temperature, zonal wind and heat flux together with other dynamical en-
tities at 60�N/10 hPa to assess the meteorological situation of the winter. Note that a detailed
discussion of the evolution of polar vortex during this winter has been presented in Günther et al.
(2008). Therefore, a similar analysis will not be presented. The minimum temperature extracted
from ECMWF analyses at 40�–90�N for the winter shows very low values, below 195 K, from mid-
November to mid-January. Furthermore, the temperatures show exceptionally low values and hence,
the winter was unusually cold in December and early January. Though there was a warming in late
January, the temperatures were again set to cold scales of <195 K, in early and late February. A mi-
nor warming in mid-February and early March is also apparent. In short, the winter was remarkably
cold in the first half and very warm with three occasional warmings in the second half.
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In order to investigate whether the warming was major or not, we now look at the temperatures
at 90� and 60�N (second panel) together with zonal wind at 60�N and 10 hPa (third panel), where the
criterion of a MW is generally examined (McInturff, 1978; WMO, 1978). As shown by the minimum
temperature distributions (top panel), very cold temperatures are evident in November, December
and early February at both latitudes (second panel). However, an abrupt increase in temperature
was found in late December, from 198 to 252 K, within a few days time at 90�N, apart from two
minor warmings in mid-February and early March. The warming at 60�N was comparatively slow,
where it showed an increment of 18 K in a couple of weeks; from 208 K in early January to 226K
by late January. In conjunction with the high temperatures, the zonal wind reversed on 18 January
2003 and thus fulfilled the condition for a MW. However, the easterlies lasted for a single day only,
although relatively diminished amplitudes of westerlies were present thereafter.

To scale the intensity of the warmings, we now derive various fluxes and wave amplitudes (the
four bottom panels). As depicted in the figure, large heat and momentum fluxes are found in the
MW period. The heat flux follows the temperature distributions of the winter, as expected, and
shows large fluxes of about 380 K m s�1 in late December, mid- and late January in accordance
with the increase in temperature. The EP flux divergence shows strikingly higher values of around
�65⇥10�5kg s�2 during the warming periods, indicating the source of profound wave activity. The
waves extracted from geopotential heights also show the presence of wave 1 before and during the
MW, and both wave 1 and 2 after the MW with comparatively large amplitudes of around 90 m2s2.
The evolution of planetary waves and their estimated amplitudes are in very good agreement with
those of Günther et al. (2008), although the scale of the amplitudes is different in both studies.
The EP flux calculated for the waves exhibits very large values of 1.7⇥105kg s�2 for wave 1 in late
December and mid-January, just before the MW. The momentum flux and wave EP flux also show
an advanced shift in time with the warming periods, indicating considerable wave forcing prior to
the MW (e.g. Kuttippurath and Nikulin, 2012). This is also shown with the wave 1 amplitude,
where a peak amplitude of 150 m2s2 was estimated a few days prior to the MW. Though wave 1
amplitudes are small, wave 2 amplitudes are larger in late January and those triggered the minor
warming in late January. It is interesting to note that the wave 2 EP flux during this minor warming
is equal to or higher than that found for wave 1 during the MW. However, it is clear that the wave
1 amplification led to the MW in mid-January and the minor warmings in mid-February and early
March.

We now analyse how this particular meteorological situation affected the temporal evolution of
the polar vortex in the lower stratosphere as our aim is to calculate the ozone loss inside the vortex.
Fig. 3.2 shows the PV maps at 475 K constructed from the ECMWF data for selected days of the
winter. It shows that the vortex has already formed in November and strengthened by December,
consistent with the very low temperatures. A strong concentric vortex was formed in early January
and it slightly elongated by 10 January 2003 as the wave 1 got amplified. Subsequently, the vortex
split on 20 January 2003, just after the MW with the reversal of westerlies. Since the easterlies
were not strong and did not prevail more than a day, the warming did not dissipate the vortex.
Kleinböhl et al. (2005a) also report that although there was an event of rapid meridional transport
of tropical air into the Arctic during this period, the low latitude air did not mix with the vortex
air. So the vortex merged again by early February as the winds were westerlies and temperatures
were lower. Nevertheless, the lower stratospheric vortex split again in mid-February due to a wave
1 event. The separated vortices, however, joined again to form a pole centered strong vortex by
early March and sustained intact until the end of March, consistent with the discussion of polar
vortex evolution presented in Günther et al. (2008).

3.3.1.1 Meteorology during the measurement period

The ASUR observations of the polar vortex in 2002/03 are limited to 16 days with about 180 ozone
profile measurements. Though measurements are sampled between 50� and 79�N (65�–90�N EqL)
these are mostly around a few longitudes (60�E–60�W). Therefore, the general evolution of the
polar processes and vortex situations discussed in the previous section might not be applicable for
all days of the ASUR flights. So in this section we discuss the situation of the polar vortex during the
specific days of ASUR sampling. The ASUR measurements started on 14 January 2003, on which
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Figure 3.2: Temporal evolution of the polar vortex in the Arctic winter 2002/03 at 475 K. The dates are selected
by analysing the complete record of the winter from November through the end of March.

the vortex and the cold pool was on the same axis of the flight (similar to the one shown for 15
January 2003 in Fig. 3.2, but tilted to the left) and therefore, a large number of measurements were
performed in the vortex. However, the outside edge of the vortex was sampled on the following day,
15 January 2003, and thus no measurement was found inside the vortex. The vortex disturbances
started by 17 January 2003 and the vortex modified like a dumb-bell in the east–west direction
(similar to the one shown in Fig. 3.2 for 21 January 2003), and therefore, only a part of the vortex
was sampled on 19 January 2003. The warming intensified and the vortex moved up towards the
pole and merged afterwards and hence, the measurements during 23–26 January 2003 sampled the
vortex air near to the center of the pole only. The vortex became cold and near-concentric again
and began to stabilise, as depicted in Fig. 3.2 for 3 February 2003. Consequently, the measurements
taken during 7–9 February 2003 were mostly inside the vortex. The vortex shrunk by 12 February
2003 due to the severe warming and hence, no measurement was found inside the vortex during the
transit flights on 12 February and 10 March 2003.

Even if the vortex split on 17 February 2003, it had strengthened again by merging its parts
during the second leg of the flights (SCIA-VALUE 2003). So relatively large, strong and concentric
vortices were observed for the following days of the flights. Therefore, a majority of the measure-
ments were inside the vortex during the period 13–19 March 2003, except for the longitudinal flight
on 14 March, where no vortex sampling was found at 475 K, although some measurements were
found inside the vortex at higher altitudes. This indicates that the vortex was tilted up, and was
not symmetric with altitude. For instance at 450–550K, there were 13 days (out of 16) of vortex
sampling with more than 100 (out of ⇠180) ozone measurements.

The POAM measurements, however, have global coverage between 51� and 71�N (65�–90�N
EqL) and thus the general meteorological situation described (Sect. 3.3.1) is fairly applicable to
those observations. Despite limited to 71�N, as far as the nature of the winter and the Arctic vortex
are concerned, this sampling pattern is sufficient to make a reasonable analysis of ozone loss, as the
vortex was often displaced to mid-latitude regions due to the frequent warmings. Consequently, a
large number of ozone measurements were found inside the vortex, i.e. around 550 out of ⇠1500
measurements. The sampling pattern of these vortex observations can be found in Figure 3 of
Singleton et al. (2005). Furthermore, these are also the best vortex-sampled satellite measurements
available for this winter as compared to other satellite observations.

3.3.2 PSC and chlorine activation

We now look at the distribution of PSCs in the Arctic winter 2002/03. In this study, the A
PSC

is
defined as the area characterised by temperatures less than the NAT formation, T

NAT

. The T
NAT

calculation is performed by using the formula of Hanson and Mauersberger (1998), for which the
temperature and pressure data are taken from ECMWF operational analyses, with a constant value
of 4.5 ppmv of H

2

O and a HNO
3

climatology for the Arctic winter stratosphere (Kleinböhl et al.,
2002). The resulting calculation is displayed in Fig. 3.3.

In line with colder temperatures, large areas of PSCs are found in December and January.
The maximum areas of these PSCs are found in the second half of December with values of 1.4–
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Figure 3.3: Area of PSCs as defined by the
area below the T

NAT

, which were calculated
by using the method of Hanson and Mauers-
berger (1998) using ECMWF meteorological
analyses with 4.5 ppmv of H

2

O and climato-
logical profiles of HNO

3

for the Arctic winter
2002/03. Inset: The ASUR ClO measure-
ments taken inside the vortex (Nash et al.,
1996) with SZA <89� on 13 January 2003.
The ClO measurements were separated by a
few minutes as illustrated with different col-
ors. Though ASUR has ClO measurements
on other flight days, profiles with the highest
ClO VMRs (activated profiles) are displayed
here. Day of year
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1.7⇥107 km2. The area of PSCs cover a large vertical extent of 450–625 K. As the temperatures
began to increase by early January, the A

PSC

is reduced considerably and shrunk to a small area at
450–525 K with peak values of about 0.7⇥107 km2. After the MW, small areas of occasional PSCs
are found in mid-February and early March for a few days below 475 K.

The ASUR ClO mixing ratio profiles observed inside the vortex (with solar zenith angle [SZA]
<89�) on 13 January 2003 are presented in the inset of Fig. 3.3. The measured profiles with activated
ClO are shown here. In agreement with the PSC calculations, the ASUR ClO measurements show
activated chlorine/ClO of about 1.3 ppbv at around 22 km. These results are in good agreement
with the findings of Tilmes et al. (2003) and Urban et al. (2004), who report high chlorine activation
in early and mid-January in tune with the large areas of PSC in the early winter. Furthermore,
Tripathi et al. (2006) also find a similar amount of ClO, about 1.2 ppbv at around 450 K, in the
HALOX (HALogen OXide monitor) measurements (von Hobe et al., 2005; Günther et al., 2008)
and MIMOSA-CHIM simulations on 15 January 2003.

3.3.3 Ozone and ozone loss

To derive ozone loss from the ASUR measurements, the passive tracer technique is applied and a
detailed description of the method can be found in Chapter 6 and Kuttippurath et al. (2009). As
the ASUR measurements are discontinuous and start in early January, we use the POAM ozone
observations to get the complete evolution of the ozone and ozone loss from November through
the end of March. This gives an opportunity to compare ozone and ozone loss from ASUR with
those of POAM and the model. Our analysis with ASUR concentrates on the lower stratospheric
isentropes of 450, 475, 500 and 550 K, where most of the loss occurs in the majority of Arctic
winters (Rex et al., 2004; Kuttippurath et al., 2010a). The model ozone and tracer profiles are
interpolated to the ASUR and POAM measurement locations. The comparisons are performed
for each profile measurement and then averaged for each day if the measurements are inside the
vortex (Nash et al., 1996). In order to compare the ASUR and model ozone, and to compute ozone
loss from the ASUR measurements, the model ozone and tracer profiles are convolved with ASUR
ozone averaging kernels to account for the lower vertical resolution of the ASUR measurements
(Kuttippurath, 2005; Kuttippurath et al., 2007, 2010).

Figure 3.4 (left panel) illustrates the distribution of ozone from ASUR, POAM and the model,
and the ozone loss computed from the ASUR, POAM and MIMOSA-CHIM data at 450–550 K for the
Arctic winter 2002/03. The ASUR ozone and ozone loss at POAM overpass points, within 200 km,
are also shown for comparison. However, since both ASUR data sets (all ASUR measurements and
ASUR at POAM overpass measurements) show very similar values for ozone, the ASUR observations
irrespective of POAM overpass (shown in blue) are discussed throughout this chapter. Instead of
average values, all individual ASUR measurements close to the POAM locations inside the vortex
are shown here to demonstrate the spread of ASUR measurements around the POAM data locations.
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Figure 3.4: Vortex averaged ozone (left panel) and ozone loss (right panel) from ASUR compared to that of POAM
and MIMOSA-CHIM CTM for the Arctic winter 2002/03. The ozone loss is computed as ASUR ozone-tracer at
ASUR locations, POAM ozone-tracer at POAM locations, and modelled ozone-tracer at POAM overpass for each
measurement inside the vortex, and then averaged for each day. The ASUR ozone observations sampled near to
POAM measurements, within 200 km, and the corresponding ozone loss estimated using the model tracer are also
shown (red points: ASUR at POAM). The modelled ozone and tracer are the interpolated data at the POAM overpass
locations. The horizontal dotted lines (right panel) represent 1 ppmv of ozone loss. The data shown are smoothed
for 7 days, except for ASUR.

This also illustrates the inhomogeneity of the ozone distribution inside the vortex.
The ozone data from ASUR and POAM and the model agree quite well at all altitudes in

November through mid-February. However, the model underestimates the measured ozone by
about 0.5±0.2 ppmv in March at 475 and 500 K. The model also overestimates the POAM and
underestimates ASUR ozone by about 0.3±0.2 ppmv in March at 550 K.

Figure 3.4 (right panel) delineates the ASUR, POAM and MIMOSA-CHIM ozone loss at various
lower stratospheric altitudes for the Arctic winter 2002/03. The ASUR ozone loss shows 0.7±0.2,
1±0.2, 1.2±0.2 and 0.9±0.2 ppmv at 450, 475, 500 and 550 K, respectively, by late January. Tri-
pathi et al. (2006) and Streibel et al. (2006) aslo report correspondingly large ozone loss rates of
around 4 ppbv sh�1 (parts per billion in volume/sunlit hour) and 6 ppbv sh�1 at 475 K and 500K,
respectively, by the end of January. This much ozone loss in mid-winter is uncommon in the Arctic
(e.g. Newman et al., 2002; Goutail et al., 2005; Kuttippurath et al., 2010a). The loss rates are also
higher than that found in other Arctic winters during this period of the winter (e.g. Rex et al., 2004;
Kuttippurath et al., 2010a). The large areas of PSC occurrence and high chlorine activation at those
parts of the vortex displaced into sunlight triggered this unusual ozone loss. The loss continued to
occur at 450K and reached a maximum of 1.3±0.2 ppmv by late March, in conjunction with cold
temperatures found at this level, as shown in Fig. 3.3. However, further loss in ozone was mitigated
by relatively higher temperatures and the absence of PSCs at higher altitudes. Therefore, the max-
imum loss was limited to 1.4–1.5±0.2 ppmv at 475–550K. This excludes a single day measurement
that showed a loss of about 1.6±0.2 ppmv by late January at 550 K.

The POAM observations find almost the same value of ozone loss for the ASUR measurement
days at 450–500K. In agreement with the lower ozone, the ozone loss is slightly higher in POAM at
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Figure 3.5: Temporal evolution of the vertical distribution of ozone and ozone loss in POAM and MIMOSA-CHIM
CTM in the Arctic winter 2002/03. The loss is estimated inside the vortex using the Nash et al. (1996) criterion for
each altitude and is smoothed for 7 days. The dotted horizontal lines represent 475 and 675 K.

550 K in March. The ASUR ozone loss is in good agreement with modelled loss for the respective
days, except for March at 475 and 500K, where the model overestimates both the ASUR and POAM
ozone loss. POAM and MIMOSA-CHIM, however, exhibit slightly higher loss at some altitudes as
the analysis extends to the end of March. Therefore, the ozone loss reaches 1.5±0.2 ppmv at 550 K
in POAM and 1.6±0.2 ppmv at 475/550K in MIMOSA-CHIM by the end of March, which are still
in the error bounds of ASUR ozone, even though the model underestimates the measured ozone
at 475 K. In general, the ozone loss estimated from ASUR data is in good agreement with that of
POAM and MIMOSA-CHIM.

It has to be noted that the ozone loss in December is unusually large as it reaches about
0.5±0.2 ppmv at 450–550K in both POAM and MIMOSA-CHIM. Feng et al. (2005b) report high
chlorine activation down to 400 K in early December and as shown by the PV maps the vortex was
very cold and elongated, which allowed vortex air to be frequently exposed to sunlight. Grooß et al.
(2005b) too observe that the vortex spent more time at the sunlit parts of the mid-latitudes during
this period compared to that of other Arctic winters. Therefore, the unusually cold temperatures
initiated large areas of PSCs and subsequent chlorine activation, and the vortex excursions to sunlit
parts of the mid-latitudes led to this large loss in ozone.

3.3.4 Vertical distribution of ozone and ozone loss

Apart from the inter-annual variability of ozone loss and the difference in ozone loss estimated by
various techniques, there is also a spread in the altitude of maximum loss estimated by different
instruments/methods for the same winter, as discussed in Kuttippurath et al. (2010a). In this study
we have seen that ASUR, POAM and MIMOSA-CHIM show similar altitudes of maximum ozone
loss. In order to study the vertical distribution of ozone loss closely, we use POAM measurements
as ASUR observations are rather sporadic.

Figure 3.5 illustrates the resulting ozone (upper panel) and ozone loss (lower panel) evolution
during the winter with respect to potential temperature. The model results are interpolated to
each POAM overpass measurement and are sorted inside the vortex with respect to each altitude.
The measurements show relatively small values (<2 ppmv) in the lower stratosphere in November–
January. After the vortex split during the MW, the split vortices in the mid-latitudes constituted
little higher ozone in February–March for the same altitudes. Nevertheless, these polar processes
did not affect the vortex chemistry greatly as discussed earlier and hence, the change in ozone was
not significant. The simulations show comparable values below 600 K, where the deviations are
mostly within ±0.2 ppmv, but slightly larger above that altitude level.

Regarding the ozone loss, POAM and MIMOSA-CHIM follow similar timing and vertical ex-
tent in ozone loss distribution. The loss started by early December and intensified with the pres-
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ence of large areas of PSCs by January around 475 K. As stated previously, the high ozone loss
(0.7±0.2 ppmv) in the early winter is unusual compared to the previous (Goutail et al., 2005) and
following winters (Kuttippurath et al., 2010a), and this makes the winter very distinct. The ozone
loss in January–March is vertically spread at 425–650 K, and both POAM and MIMOSA-CHIM
show the peak loss in late March. This highly vertically spread ozone loss coincides with the timing
and location of the area of PSCs and chlorine activation. Studies with MIMOSA-CHIM (Tripathi
et al., 2006) have already shown that there was significant denitrification in the vortex in 450–650K
in this winter. Since denitrification enhances accumulated ozone loss by removing HNO

3

, which
otherwise deactivates ClO into its reservoirs (Waibel et al., 1999), the contribution of denitrification
to the additional ozone loss was estimated to be about 11–17% around 475 K in this winter (Tripathi
et al., 2006; Grooß et al., 2005b). It indicates that, in addition to the chlorine activation, substantial
denitrification was also found to be responsible for this large ozone loss.

Significant ozone loss is also observed at higher altitudes, especially above 600 K in January. This
is due to the NO

x

catalysed ozone destruction (Grooß et al., 2005b; Kuttippurath et al., 2010a), as
large NO

x

-rich air descended into the polar vortex from the mesosphere (Konopka et al., 2007; Huret
et al., 2006) and subtropical air was transported to the Arctic (Kleinböhl et al., 2005a) during the
period. Note that, in the PSC free stratosphere over 600–900K, most loss occurs through the NO

x

catalytic cycle with a rate limiting step between NO
2

and O (Kuttippurath et al., 2010a). The box
model calculations of Konopka et al. (2007) also confirm that ⇠76% of ozone loss at this altitude
range was contributed by the NO

x

cycle. This ozone loss estimated from POAM is reasonably
reproduced by the MIMOSA-CHIM simulations. Apparently all data sets show the maximum loss
of 1.3–1.5±0.2 ppmv in the 450–500 K altitude range. A recent study by Kuttippurath et al. (2010a)
notes that the altitude of maximum ozone loss of Arctic warm winters is slightly higher than that of
the cold winters. This feature is found in this warm winter too, which is also reported by Tripathi
et al. (2006), but was in comparison with the cold Arctic winter of 1999/2000.

3.3.5 Column ozone loss

In order to get a comprehensive overview of ozone loss in this winter, we now compute the partial
column ozone loss from the measurements and simulations inside the vortex. As most ozone loss
occurs in the lower stratosphere, and to compare with other loss estimates, we have derived ozone
loss in the column range of 400–550 K. The partial column ozone loss calculated from the available
ASUR measurements shows 61±4 DU over 400–550 K in late March. The maximum loss estimated
from the POAM measurements shows 63±4 DU, and the modelled ozone loss at the POAM overpass
points shows 65±4 DU at the aforesaid column range for the same period. All data show a similar
evolution of column ozone loss, such that they exhibit a loss of around 12±1 DU in December, 20–
30±2 DU in January, 30–50±3 DU in February and 50–65±4 DU in March over 400–550 K. These
exclude a single day POAM measurement that shows about 71±4 DU of ozone loss in mid-March in
the same altitude range. The large loss in December, as discussed in Sect. 3.3.3, is also shown by the
column values. Consistent with the good agreement in ozone and ozone loss comparison in VMRs,
the ASUR and POAM measurements show similar column ozone loss. The slight difference between
the ozone measurements is also reflected in their column ozone loss values, but are still within the
error bars. Even if there are some differences in sampling patterns of both instruments, the sampled
vortex air between 50� and 75�N shows similar loss. The modelled ozone loss at the observed points
is in excellent agreement with the column loss estimated from the respective measurements.

3.3.6 Uncertainty of the estimated ozone loss

The first and foremost factor that can significantly affect the computation is the initialisation of the
model runs for the tracer calculations. The model should be initialised with respect to the status
of vortex in the early winter, i.e. in order to catch the early ozone loss as in the present case, the
model run has to be initialised sufficiently early. Additionally, the passive method relies on the
assumption that the ozone loss until the initial day is zero. So if there is an offset between the
measured ozone and modelled tracer, the tracer/model ozone should be corrected with respect to
the measured ozone. Otherwise, the ozone loss offset will be propagated and the derived loss will
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Table 3.2: Vortex averaged (Nash et al., 1996) ozone loss estimated (by late March) from the ASUR, POAM
and MIMOSA-CHIM data compared to different studies for the Arctic winter 2002/03. The passive tracer method
is denoted by PS, tracer correlation method is marked by TC and the vortex averaged/profile descent method is
denoted by VAO. The analyses based on station measurements (e.g. Kiruna) are denoted by §, model simulations are
marked with ⇤, analyses based on N

2

O levels instead of altitude levels are marked with ‡ and estimates with total
column measurements are shown with †.

Study Method Loss/ppmv Peak altitude Period Data
Ozone Loss in VMR
This study PS 1.3–1.5±0.2 450–475K Jan–Mar ASUR
This study PS 1.3–1.5±0.2 500–550K Nov–Mar POAM
Streibel et al. (2006) Match 1.6±0.2 407 K Dec–15 Mar Match
Singleton et al. (2005) PS 1.2±0.3 435 K Dec–Mar POAM
Christensen et al. (2005) VAO 1.3±0.1 435 K 10 Dec–10 Mar ozonesondes
Tilmes et al. (2003) TC 1.5±0.0 440 K 16 Dec–Feb HALOE
Ryskin and Kulikov (2008) VAO 1.86±0.33 530 K Dec–5 Mar MWR§
El Amraoui et al. (2008a) VAO 1.1±0.2 25ppbv/N

2

O 15 Nov–15 Jan SMR‡
Raffalski et al. (2005) VAO 1.1±0.1 150ppbv/N

2

O mid/Dec–mid/Feb MWR‡§
Sonkaew et al. (2013) VAO 0.7±0.3 450–475K Dec–Mar SCIAMACHY
Singleton et al. (2005) PS 1.2±0.3 425–450K Dec–15 Mar SLIMCAT⇤
Grooß et al. (2005b) PS 1.3±0.1 460 K Dec–Mar CLaMS⇤
Tripathi et al. (2006) PS 1.3–1.5±0.2 450–475K Nov–Mar MIMOSA-CHIM⇤
This study PS 1.3–1.5±0.2 450–475K Nov–Mar MIMOSA-CHIM @ POAM ⇤
Ozone Loss in column Loss/DU
This study PS 61±4 400–550K Jan–Mar ASUR
This study PS 63±4 400–550K Nov-Mar POAM
Streibel et al. (2006) Match 56±4 407–501 K Dec–15 Mar Match
Christensen et al. (2005) VAO 68±7 380–525 K 10 Dec–10 Mar ozonesondes
Tilmes et al. (2003) TC 48±4 416–510 K 16 Dec–Feb HALOE
Müller et al. (2007) TC 43–47±6 380–550 K Dec–22 Feb HALOE/ILAS
Goutail et al. (2005) PS 90±5 Total Col. Dec–10 Mar SAOZ†
Grooß et al. (2005b) PS 46 380–550 K Dec–15 Mar CLaMS⇤
Feng et al. (2005b) PS 65 345–670 K Dec–Mar SLIMCAT⇤
Tripathi et al. (2006) PS 63±4 400–550 K Nov–Mar MIMOSA-CHIM⇤
This study PS 65±4 400–550 K Nov–Mar MIMOSA-CHIM @ POAM ⇤

be corrupted. Another important factor to be considered is the proper selection of a vortex edge,
as it is necessary to isolate the vortex from mid-latitude air. In this study we have tested three
different criteria (above 65�N EqL, the vortex edge and vortex core), which all yield very similar
results (not shown). The accuracy of the measurements (about 5–12%) is also to be accounted
for. Therefore, to compute the uncertainty of the estimated ozone loss, we consider all the above-
mentioned parameters, i.e. the accuracies of the ASUR and POAM, the mean difference between
model and ASUR/POAM ozone, the average difference among the ozone loss computed by different
vortex criteria, and the initial offset in ozone loss that used to correct the inferred ozone loss, and
take root square sum (RSS) of them. The RSS of these quantities show about 0.17 ppmv or 3.5–5.1%
at the studied altitudes, and can be considered as the accuracy of the loss estimated from ASUR
and POAM observations.

3.4 Comparison with other estimates

There are several published results available for comparison with the ozone loss estimated in this
study, which are listed in Table 3.2. The ASUR ozone loss of 1.3±0.2 ppmv at 400–500 K by late
March is in good agreement with that of Singleton et al. (2005); Christensen et al. (2005); Grooß
et al. (2005b) and Tilmes et al. (2003), as they show the maximum loss within 1.2–1.5 ppmv between
400 and 450K. Furthermore, as found with the ASUR observations, El Amraoui et al. (2008a) also
estimate the same ozone loss of 1.1±0.2 ppmv by mid-January at 475 K from the measurements
of the Sub-millimeter Radiometer (SMR) on the Odin satellite. The loss estimated, 1.6±0.2 ppmv
at 435K by mid-March, from ozonesonde measurements by the Match method (Streibel et al.,
2006) is close to the ozone loss estimated from ASUR observations. The ozone loss deduced from
SCIAMACHY measurements, i.e. 0.7 ppmv at 425–475K in late March, shows the lowest loss among
the various estimates for this winter. This can be due to the sampling limitation of the sensor, as
it cannot observe high latitudes in early winter (Sonkaew et al., 2013). As expected, the loss
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determined from local measurements – Kiruna and Kola peninsula – (Raffalski et al., 2005; Ryskin
and Kulikov, 2008) departs slightly from our loss estimates because of the uneven or undersampling
of the vortex over a single station, as they essentially delineates the developments of the polar
vortex over those stations only. Since the loss estimated from POAM and MIMOSA-CHIM data
are similar to that of ASUR, the above-mentioned comparisons hold good for POAM and MIMOSA-
CHIM too. Nevertheless, note that the model underestimates the measured ozone at 450–500K and
overestimates at 550 K. In agreement with the ASUR ozone loss, the maximum loss is estimated in
the lower stratosphere by other methods too, with slight differences in the peak ozone loss altitudes
(±25 K). Such discrepancies in the maximum loss altitudes were also reported by Grooß et al.
(2005b) for this winter and Kuttippurath et al. (2010a) for 2004/05. It is interesting to note that
the POAM measurements with the SLIMCAT passive tracer also infer a similar ozone loss of 1.2–
1.5±0.3 ppmv by late March over 425–450 K (Singleton et al., 2005), as found in this study. These
results corroborate the strength and consistency of the loss computation method and POAM data.

The column ozone loss computed from the ASUR observations is generally in good agreement
with that from other techniques. For instance, the column loss calculated using ozonesonde mea-
surements over 400–550 K around mid-March by Christensen et al. (2005) is in excellent agreement
with those estimated from ASUR, POAM and MIMOSA-CHIM as they show a loss of 68±7 DU for
the same period and altitude range. The ozone loss calculated by Feng et al. (2005b) and Tripathi
et al. (2006) too find a similar loss of 65–67±4 DU over 400–550K in late March. The loss estimate
of Müller et al. (2007), 43–47±6 DU over 400–500 K, from the Halogen Occultation Experiment
(HALOE) and the Improved Limb Atmospheric Spectrometer (ILAS)–II satellite measurements is
in excellent agreement with our estimate of 45±3 DU over 400–500 K, around 22 February 2003.
Their ozone loss estimate of 55±6 DU in 380–550 K by 22 March 2003 is close to our estimate for
the same period, i.e. 60±3 DU over 400–550 K. The ASUR/POAM ozone loss estimates of 55±3 DU
over 400–500 K by late March is in very good agreement with that inferred from the Match method,
about 56±4 DU over 407–501 K in mid-March (Streibel et al., 2006). Nevertheless, the loss estimated
by Tilmes et al. (2003), i.e. 48±4 DU over 416–510 K in mid-April, is lower than the above-mentioned
loss estimates. The difference between our estimates in mid-March (55±3 DU) and the estimates
of Grooß et al. (2005b) (about 46DU) is also beyond the error bars of the compared data sets, but
could be due to the differences in the loss estimation methods and data used for the analyses. In
short, except these two loss values (i.e. Tilmes et al., 2003; Grooß et al., 2005b) all partial column
estimates agree very well, and they show an average loss of 65±5 DU in 400–550 K in the Arctic
winter 2002/03.

When our partial column estimates are compared to the total column estimates of Goutail et al.
(2005), i.e. 90±5 DU, there is a difference of 25–30 DU. That total column loss equals to the loss
usually estimated for a cold or moderately cold winter (Kuttippurath et al., 2010a; Harris et al.,
2010; WMO, 2011). A recent study by Kuttippurath et al. (2010a) reports an average difference of
19±7 DU between the partial column loss calculated below and above 550K. Apparently, this also
demonstrates the difference between the ozone loss contributed by halogens in the lower stratosphere
and NO

x

in the middle stratosphere. In the Arctic winter 2002/03, the halogen dominated loss in
the lower stratosphere is about 60–65 DU at 400–550 K. The difference between this partial column
loss to the total column loss (i.e. 25–30 DU) is much larger than the expected average loss (19±7 DU)
above 550 K. This hints at the special dynamics of the winter, as there was large mesospheric descent
of NO

x

-rich air masses and rapid meridional transport of subtropical air masses (Kleinböhl et al.,
2005a), which offered a conducive atmosphere for ozone loss by the NO

x

chemical cycle at higher
altitudes. The study by Konopka et al. (2007) also confirms this ozone loss feature as they compute
⇠27–30 DU (or 76%) column loss by the NO

x

cycle, from satellite measurements above 550 K. Their
column ozone loss (27–30DU) matches exactly the difference computed between the partial column
loss from our study and total column loss from Goutail et al. (2005) (i.e. 25–30DU), and thus it
suggests that the large loss above 550 K was due to the NO

x

chemistry activated on a NO
x

-rich air
influx from the mesosphere and sub-tropics. To check this additional loss above 550 K, we computed
the loss at 350–950 K (to the topmost level of the model) from the POAM and MIMOSA-CHIM
data and it yielded 86±5 DU and 70±4 DU, respectively. These estimates are very close to the
total column estimate of 90±5 DU by Goutail et al. (2005). Since the model overestimates the
POAM ozone above 550K and there is no upper stratosphere and mesosphere in the model, the
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deficit in the simulated column loss is reasonably justified. This additional ozone loss above 550K
further manifests that the winter was very special in various aspects of stratospheric dynamics and
chemistry.

3.5 Comparison with other Arctic winters
The Arctic winter stratosphere intermittently experiences major and minor warmings, which make
large inter-annual variability in the ozone loss. Ozone loss estimates in the Arctic is available from
various measurement sources for each winter since 1988/89 (Hofmann et al., 1989; Goutail et al.,
2005; Tilmes et al., 2006; Harris et al., 2010; Kuttippurath et al., 2010a; WMO, 2011). Among these
winters, 1994/95, 1995/96, 1999/00 and 2004/05 were very cold (Müller et al., 1997; WMO, 2007)
and hence, the total column loss calculated from ground-based total ozone measurements showed
>80–90 DU (Goutail et al., 2005; Kuttippurath et al., 2010a). The winters 1991/92, 1993/94,
1996/97, 1997/98, 2006/07 and 2007/08 were moderately cold and thus the total column loss was
in an average scale of around 60 DU (Andersen and Knudsen, 2002; Goutail et al., 2005; Kuttippu-
rath et al., 2010a). On the other hand, the winters 2000/01, 2003/04, 2005/06 and 2008/09 were
subjected to minor and major warming events with subsequent break in the long persistence of
polar vortex. Therefore, ozone loss computed in these warm winters showed the lowest values of
around 25–30 DU (Goutail et al., 2005; Kuttippurath et al., 2010a). In addition to the total column,
similar amounts of ozone loss were also estimated in the partial column range of 380–550 K from
ozonesonde measurements for all winters (Rex et al., 2004; Harris et al., 2010) and hence, they also
express analogous features of ozone loss. Although the loss estimated from satellite measurements
(Tilmes et al., 2006) show slightly lower values than those estimated from the ground-based/Match
(Goutail et al., 2005; Rex et al., 2004) measurements for individual years, those analyses still show
a corresponding difference between the loss derived in the warm and cold winters (Andersen and
Knudsen, 2002), as discussed for the total column measurements.

When comparing the ozone loss of 65±5 DU in 400–550K in this winter, as analysed from
the ASUR, POAM and MIMOSA-CHIM results together with other published works, to the loss
estimated in the Arctic winters since 1989, the estimated loss in 2002/03 is close to the estimates
for the moderately cold winters. Furthermore, in line with the column ozone loss, the loss found in
mixing ratio also exposes a distinct difference between the range of ozone loss observed in the cold
and warm winters, with a loss of ⇠1.5–2.1 ppmv in cold (Rex et al., 2004; Kuttippurath et al., 2010a)
and about 0.5–0.7 ppmv in warm winters (Manney et al., 2003; Rex et al., 2004; Kuttippurath et al.,
2010a; Sonkaew et al., 2013). Therefore, the ozone loss computed in 2002/03, i.e. 1.5±0.3 ppmv,
stays between these cold and warm winter estimates. Apart from the significant ozone loss in
December (0.5±0.2 ppmv at 450–500 K or 12±1 DU in 400–550 K), such large loss in a winter with
three minor and a major warming is exceptional, and is occurred for the first time in the Arctic
over 1989–2010, and this makes the Arctic winter 2002/03 unique.

3.6 Conclusions
The Arctic winter 2002/03 was remarkable as it was characterised by an unusual cold spell in the
first half and a MW in the second half. Therefore, large areas of PSCs are found at 450–625 K
from December through mid-January. A wave 1 event led to the MW around 18 January 2003 and
thus the high temperatures inhibited the formation of PSCs afterwards. However, the easterlies did
not prevail, though only diminished amplitudes of westerlies were present in the later part of the
winter. In addition to the MW in mid-January, there were three minor warmings in mid-December,
mid-February and early March. Though the vortex split during the MW in mid-January and during
the minor warming in mid-February, it did not disappear until early April. Since the vortex split
was confined mostly to the lower stratosphere and was not observed at 10 hPa on the central date,
the MW can be classified as a vortex displacement event.

The ozone loss determined with the ASUR measurements taken during the EuPLEx and SCIA–
VALUE 2003 airborne campaigns shows large values in the mid-winter. The ASUR measurements
show the maximum ozone loss of 1.3±0.2 ppmv at 450–500K, from the available measurements
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until late March. The partial column loss calculated from ASUR observations over 400–550 K
shows about 61±4 DU in the same period. These ozone loss estimates, both in mixing ratios and
partial column, are in very good agreement with those derived from POAM, MIMOSA-CHIM CTM
and other available published results for this winter. The POAM/MIMOSA-CHIM loss amounts
to 0.5±0.2 ppmv at 450–550 K or 12±1 DU in 400–550 K in December, which is uncharacteristically
large during this period in the Arctic winter stratosphere. The uncommon ozone loss in the early
winter was due to very low temperatures, large areas of PSCs, significant vortex wide denitrification
and strong chlorine activation, as the vortex moved to sunlit parts of the adjacent mid-latitude
regions.

In this chapter we have presented both the dynamical processes in the minor and major warm-
ings, and the chemical ozone loss during the Arctic winter 2002/03. The ASUR measurements used
for the diagnosis of ozone loss have not hitherto been used for the study of this winter. The heat
flux, momentum flux, EP flux, EP flux divergence and PV maps were used for the description of
the dynamical situation, which were not presented together to characterise this winter before. On
average, in conjunction with all published results, this winter was experienced with a maximum
ozone loss of 1.5±0.3 ppmv at 450–550 K or 65±5 DU in 400–550 K by late March. Interestingly,
the values inferred from a number of estimates rightly coincide with those derived in our study
(1.3±0.2 ppmv or 63±4 DU at the same altitude ranges). When compared to other Arctic winters,
as analysed from this work, this winter has a unique feature of three minor warmings, a MW and
large ozone loss that usually observed in a moderately cold winter, in addition to its unusually large
ozone loss in December–January.
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Compelling improvements have been made in understanding the chemistry of ozone loss in
the polar lower stratosphere in the last decade (WMO, 2007). As described in Chapter 1, very
low temperatures (<195 K) initiate the formation of PSCs, and chlorine activation on these PSCs
triggers the ozone loss when the sun returns over the Arctic in spring. The halogen cycles ClO–
ClO and ClO–BrO contribute about 80–90% of ozone loss in this region through the above-said
processes (WMO, 2007). However, ozone loss at higher altitudes is driven by different chemical
cycles than those discussed in the lower stratosphere. A detailed study on the ozone loss process
at higher altitudes (above 550 K) is still lacking. The available studies deal with specific issues of
mid-winter warming and concomitant mid-latitude ozone loss (e.g. Grooß et al., 2005b; Vogel et al.,
2008). None of these studies perform a detailed analysis of the winter stratosphere in different
conditions to diagnose the contribution of relevant cycles to the ozone loss in a concluding manner.
Although the study by Konopka et al. (2007) deal with more than one winter, it is limited to a box
model rather than a full-chemistry 3-D model. Therefore, a comprehensive study is warranted to
characterise the contribution of various chemical cycles to the ozone loss in the polar stratosphere
in different meteorological conditions. The recent six winters were entirely different in this regard,
which provide a perfect scenario to perform such a study. So in this chapter, we examine the ozone
loss and its driving chemical cycles for the recent winters 2004/05–2009/10 and assess the variability
of ozone loss in a quantitative perspective using simulations and measurements.

4.1 Data and methods
An improved version of the MIMOSA-CHIM CTM is used for this study (Kuttippurath et al.,
2009). The model spatial domain is now extend from 10�S to 90�N in the NH and from 90�S to
10�N in the SH. Also, the vertical levels are increased from 16 to 25 isentropical levels and are finely
resolved with a spacing of 5K (between 425 and 500K) in the lower stratosphere. Although other
model specifications and input are unchanged as described in the previous chapter 3, absorption
cross-sections and kinetics data are based on Sander et al. (2006). The absorption cross-sections of
Cl

2

O
2

are taken from Burkholder et al. (1990) and are extrapolated to 450 nm. Monthly varying
H

2

SO
4

fields leading to the formation of liquid aerosols in the CTM are computed from the output
of a 2-D-model long-term simulation, which considers the impacts of volcanic eruptions. Cl

y

and
Br

y

are explicitly calculated from their long-lived sources at the surface and are therefore, time
⇤This chapter is partly based on: Kuttippurath, J., S. Godin-Beekmann, F. Lefèvre and F. Goutail: Spatial,

temporal, and vertical variability of polar stratospheric ozone loss in the Arctic winters 2004/2005–2009/2010, Atmos.
Chem. Phys., 10, doi:10.5194/acp-10-9915-2010, 9915–9930, 2010.
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Figure 4.1: The area (km2) covered by PSCs
(between 400 and 675 K) estimated from the
ECMWF temperature data for the Arctic win-
ters 2004/05–2009/10. PSCs are assumed to
form at the NAT frost point. The dotted line
represents 475 K and the topmost boundary
stands for 675 K.
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dependent. An additional 6 pptv of bromine in the form of CH
2

Br
2

is added to Br
y

to represent
the contribution of brominated short lived species reaching the stratosphere (WMO, 2007). For
each Arctic winter considered here, the model was run from 1 December to 31 March. Initialisation
of ozone on 1 December was provided by the ECMWF operational analyses. Other species in
MIMOSA-CHIM were initialised from a long-term simulation of the REPROBUS CTM driven from
ECMWF meteorological analyses.

Ozone and ClO observations (v 2.2) from the Microwave Limb Sounder (MLS) on Aura are used
to compare with the simulations. The retrieved ozone profiles have a vertical range of 215–0.02 hPa
and a vertical resolution of ⇠3 km, while the horizontal resolution of a profile is ⇠200 km. The
vertical range of ClO is 100–0.1 hPa and the vertical resolution is 3–3.5 km, whereas the horizontal
resolution ranges from 350 to 500 km. The estimated accuracy is 5–10% for ozone and 10–20% for
ClO depending on altitude (Froidevaux et al., 2006; Santee et al., 2008).

4.2 Temperature distribution during the winters

Figure 4.1 shows the A
PSC

calculated from the ECMWF temperature and pressure data for the
last six winters. PSCs are assumed here to form at the NAT frost point according to Hanson
and Mauersberger (1998) and are calculated using climatological values of HNO

3

and H
2

O, as
described in the previous chapters. Winter 2004/05 shows the largest PSC area with a maximum
of 1.7⇥107 km2 in late January. Considerable area of PSC is also found in December–January
2008, with a maximum of 1.4⇥107 km2 in mid-January. Due to a vortex split occurrence in mid-
December at 475 K and a major warming in February 2010, Apsc during the winter is reduced and
it shows a maximum of 1.2⇥107 km2 in mid-January. The warm winters 2005/06 and 2008/09 show
much smaller PSC area, limited to the late December–early January period with a peak area of
about 0.8⇥107 km2. In winter 2006/07, the largest area of PSCs, 1⇥107 km2, are observed in late
December.
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Figure 4.2: Temporal evolution of the vertical distribution (350–850 K) of vortex averaged (�65� EqL) ozone (ppmv)
for the Arctic winters 2004/05–2009/10. Left: MIMOSA-CHIM calculations, Middle: MLS measurements and Right:
The difference between modelled and measured ozone. The model fields are sampled at location of the MLS obser-
vations. Due to early vortex dissipation caused by major SSWs, the analysis does not extend beyond 10 February
in 2006 and 2009. Both model results and data are smoothed for seven days. The white dotted lines represent the
study altitudes 475 and 675 K.

4.3 Results
We look into the details of ozone loss process of the recent winters in this section. Since the
passive method used for the loss diagnosis depends on tracer simulations, the quality of the model
simulations has to be checked. Therefore, we compare the ozone calculations with MLS observations,
as the instrument provides measurements of a number of compounds linked to polar ozone loss.

4.3.1 Ozone: simulation and comparison with MLS

Figure 4.2 displays the vertical distribution of the MIMOSA-CHIM and MLS ozone together with
their difference, sampled at the same time and location of the satellite observations. The results
are averaged inside the polar vortex defined as the area enclosed inside 65� N of EqL (see Müller
et al., 2008 for further discussions on definition of polar vortex). Due to early final warming (since
there was no strong or well-defined polar vortex, we take the major warming in late January/early
February 2006 and 2009 as the final warming), the data beyond these events are not considered in
this study.

Both simulations and measurements show similar maximum and exhibit a rather good agree-
ment, with differences within ±0.5 ppmv depending on isentropic level and time. In general, the
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Figure 4.3: Maps of passive tracer, ozone and chemical ozone loss (passive tracer-ozone) calculated by MIMOSA-
CHIM at 475 K on 15 March 2004/05–2009/10.

comparison yields good agreement in the lower stratosphere, below 500 K in particular. The calcu-
lations are in good agreement with the observations in the winters 2006/07, 2007/08 and 2008/09.
The model captures well the ozone enhancement during the SSWs, specifically at higher altitudes,
in January–February 2006 and 2009. The simulated middle stratospheric ozone levels during these
periods are higher than those of other winters in accordance with the observations. In February
2010, the higher ozone values due to meridional transport of ozone rich air masses from low lati-
tudes, associated with a major SSW, can also be seen in both data sets. Inter-annual variability
in the evolution of ozone with altitude is apparent in the figure. For instance, the winter 2004/05
shows low ozone values in the lower stratosphere up to 600 K and the ozone maximum in the winter
2006/07 is comparatively smaller than that of other winters. Nevertheless, as displayed in Fig. 4.2,
the simulations systematically overestimate (up to 0.7 ppmv) the observations in early December
and March above 600 K in all winters, due to differences in subsidence. This difference is found to
be largest in March 2005, and in December and March 2010. In 2005/06, the model shows higher
values of around 0.25 ppmv from December to February at 500–800K. Conversely, the calculations
underestimate (up to 0.5 ppmv) the measurements in January–February below 450 K and above
675 K in most winters. Among the winters the smallest differences are found in 2007/08 and the
largest in 2009/10.

4.3.2 Ozone loss

4.3.2.1 Model simulations

Fig. 4.3 shows the passive tracer, ozone, and the difference (chemical ozone loss) calculated at 475 K
on 15 March for each winter. In the figure, polar vortices with high ozone mixing ratios of around
4.5 ppmv corresponding to warm winters and reduced mixing ratios of around 3 ppmv corresponding
to cold winters, are clearly shown.

Since the winter 2004/05 was one of the coldest, a vast vortex and large reduction in ozone
is simulated, suggesting sustained and large ozone loss in that winter. Although not as large as
observed in 2004/05, a significant area of low ozone levels off the pole is visible in 2007/08. Due to
a strong SSW in mid-January, there was no vortex afterwards and hence, high ozone is simulated in
2005/06 and 2008/09. In 2006/07, the vortex was seemingly smaller and therefore, the ozone loss is
reduced. In 2009/10, even though there was a major SSW in late January forced by a wave 1 event,
the vortex split during the period and then merged again afterwards. Therefore, a small dissipated
vortex, displaced to the mid-latitudes, with moderate ozone loss is simulated in that period. The
maps displayed in Fig. 4.3 clearly illustrate the strong inter-annual variability in the meteorology
and ozone loss in the Arctic, with large loss (2 ppmv) diagnosed inside the vortex in 2004/05 and
2007/08, more limited loss in 2006/07 and 2009/10 (0.8–1 ppmv), and the absence of vortex, as of
15 March, in 2005/06 and 2008/09. Thus as discussed previously, the most recent Arctic winters
show a wide variety of polar processing, quite in line with previous northern winters (WMO, 2007).
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Figure 4.4: Temporal evolution of the vertical distribution (350–850 K) of vortex averaged (�65� EqL) ozone loss
(ppmv) estimated for the Arctic winters 2004/05–2009/10. Left: the ozone loss derived from the difference between
the passive tracer and the chemically integrated ozone by MIMOSA-CHIM. Right: the ozone loss derived from the
difference between the MIMOSA-CHIM passive tracer and the ozone measured by MLS. The model fields are sampled
at location of the MLS observations. Due to early vortex dissipation caused by the major SSWs, the analysis does
not extend beyond 10 February in 2006 and 2009, and 28 February in 2010. Both model results and measurements
are smoothed for seven days. The white dotted lines represent 475 and 675 K.

4.3.2.2 Comparison with MLS

Figure 4.4 (left panel) displays the vertical structure of the accumulated chemical ozone loss com-
puted from the simulations for the winters 2004/05–2009/10. The vortex averaged ozone loss
computed from the model grids and at the MLS sampling points show rather small differences.
Therefore, we present the ozone loss computed at the MLS footprints inside the vortex for each
winter for comparison purpose.

Among the winters, 2004/05 exhibits the largest ozone loss with a maximum of 1.7 ppmv in
March around 475 K. The loss is spread vertically between 450 and 850K in January–February,
reaching 1.5 ppmv above 600K in late February. In March, most of the loss is confined between
400 and 600 K. Comparatively large losses are also found in the cold winters 2006/07 and 2007/08.
In 2006/07, the ozone loss shows a double peak feature with a maximum of 1.3 ppmv at 675 K. In
2007/08, the loss is delimited between 450 and 600 K with a peak loss of 1.4 ppmv around 475 K.
Little loss is computed above the 650K level in this winter. Due to major SSWs, the winters 2005/06
and 2008/09 show restricted ozone loss, about 0.8 ppmv. The winter 2008/09 presents the smallest
vertical extent in the derived ozone loss, which is mainly found below 650 K until the final warming.
In 2009/10, a wide spread loss of around 0.9 ppmv from mid-January to February at 450–800K with
a peak loss of about 1.1 ppmv at 600 K is estimated. Ozone loss analysis for this winter is restricted
until February due to problems in tracer descent after the warming, as identified from the modelled
N

2

O isopleths. Additionally, there was no activated chlorine to induce a sustained loss afterwards
in March.
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Figure 4.5: Temporal evolution of the vertical distribution (350–850 K) of vortex averaged (�65� EqL) ClO (ppbv)
for the Arctic winters 2004/05–2009/10. Left: MIMOSA-CHIM calculations and Right: MLS measurements. The
model and MLS ClO coincident profiles are selected for SZAs <89� and local time between 10 and 16 h. Both
simulations and measurements are smoothed for three days.

Figure 4.4 (right panel) illustrates the temporal evolution of the vertical distribution of vortex
averaged ozone loss derived from the observations. Ozone loss from the measurements is computed
in a similar way as for the simulation. In agreement with the calculations, comparatively large
losses are estimated from the measurements in 2004/05 and 2007/08, reaching 1.5 and 1.4 ppmv,
respectively. The simulations reproduce quite well the gross features of observed ozone loss in
each winter, e.g. its onset in the course of the winter, the altitude of its maximum and its vertical
distribution. The agreement between the model and MLS is particularly good in 2005/06, 2006/07,
2007/08 and 2008/09, where the differences are mostly within ±0.2 ppmv. As shown in Fig. 4.2, the
modelled ozone in March is comparatively larger and therefore, the maximum ozone loss is slightly
smaller in the model depending on altitude. In 2009/10, the computed loss from MLS observations
is about 0.5 ppmv larger than that of MIMOSA-CHIM. This difference is due to relatively larger
values (0.5–0.8 ppmv) in the simulated ozone throughout the winter at 500–700K and also because
of larger passive tracer values simulated after the SSWs, as compared to previous winters. However,
in 2004/05 the model does simulate the second ozone loss maximum observed around 600 K, albeit
with a lesser amplitude. In both cases, the results show a large loss in the middle stratosphere,
as compared to other winters followed by its strong decrease in March. In addition, both the
simulations and observations provide the largest loss above 500K in 2006/07. To further investigate
the causes of differences in the estimated ozone loss, we now analyse the measured chlorine activation
and its representation in the model.

4.3.2.3 Comparison: Chlorine activation

Figure 4.5 compares the temporal evolution of vertical distribution of vortex averaged ClO extracted
from MLS observations and MIMOSA-CHIM simulations for various winters. As expected from large
areas of PSCs, the observations show high chlorine activation in 2004/05, 2007/08 and 2009/10 with
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Table 4.1: The vortex averaged (�65� EqL) ozone loss estimated in VMR (ppmv) from MIMOSA-CHIM and MLS
data compared to different studies for the Arctic winter 2004/05. The initial offset in tracer and MIMOSA-CHIM
ozone is corrected with respect to MLS ozone to avoid any bias in the loss computations. The passive method
is denoted by PT and the vortex averaged/profile descent method is denoted by VAO. The estimates based on
assimilated data are indicated by ⇤.

Study Method Loss/ppmv Peak altitude Period Measurements
This study PT 1.5 475 K Dec/Mar MLS
Manney et al. (2006) VAO 1.5 450K Jan/10 Mar MLS
El Amraoui et al. (2008b) VAO 1.5 425 K 10 Jan/10 Mar MLS
Singleton et al. (2007) PT 1.8 450 K Jan/Mar MLS
Jin et al. (2006) Various 1.8–2.3 475–550 K 1–7 Jan/mid-Mar ACE/FTS
Rex et al. (2006) Match 1.3–2.1 450–475 K Jan/25 Mar Ozonesondes
Tsvetkova et al. (2007) VAO 1.7 450K Jan/25 Mar SAGE III
Rösevall et al. (2007) VAO 1.3 450 K Jan/14 Mar MLS⇤
Jackson and Orsolini (2008) VAO 1.2 450 K early Jan/early Mar MLS/SBUV2⇤
Rösevall et al. (2007) VAO 0.6–0.9 450 K Jan/14 Mar SMR/Odin⇤

Simulation
This study PT 1.7 475 K Dec/Mar MIMOSA-CHIM
Grooß and Müller (2007) PT 1.4±0.3 475 K Jan/Mar CLAMS
Singleton et al. (2007) PT 2.4/2.3 450/475 K Jan/Mar SLIMCAT

enhanced ClO values in the lower stratosphere up to about 600 K. In these winters, vortex averaged
ClO reach 1.2–1.5 ppbv around 550K in January. Chlorine activation usually starts in December
above 475 K (in late December during the first two winters and a little earlier in the later ones) and
then extends lower down in the course of the winter. Both simulated and measured ClO occupy a
larger vertical stretch and exhibit higher values in January 2010 when compared to other winters,
consistent with larger ozone loss estimated in that period. The simulations generally reproduce
the observed ClO and its variability throughout the winter quite well, although some differences
are evident. In 2004/05 and 2009/10, a stronger chlorine activation extending up to 650K is
simulated in late December compared to the observations. In 2004/05, later during the winter,
higher ClO values are observed in MLS extending up to mid-March. This discrepancy explains the
stronger ozone loss derived from the observations at 500–600K in March (see Fig. 4.4). In 2006/07,
MIMOSA-CHIM clearly underestimates the observed chlorine activation. The vortex averaged ClO
in MIMOSA-CHIM is lower by about 0.4 ppbv, which explains the reasons for the underestimation
of ozone loss in the simulations for that year. In other winters, the simulations show generally a
good agreement with the observations at most altitudes. A closer examination of the ozone loss in
the lower and middle stratosphere at two representative isentropic levels, 475 and 675K, is presented
in the following sections.

4.3.2.4 Comparison: lower stratosphere

As shown by Fig. 4.4, the simulated ozone loss until January is generally within 0.2 ppmv and
it varies in January–March for each year at 475K. The maximum ozone loss derived from the
simulations is 1.7, 0.7, 1.1, 1.3, 0.9 and 0.9 ppmv in 2004/05, 2005/06, 2006/07, 2007/08, 2008/09
and 2009/10, respectively. The corresponding observed losses are in turn 1.5, 0.7, 1.2, 1.4, 0.8 and
0.9 ppmv, and are in very good agreement with the simulated ones, where the differences are within
±0.2 ppmv.

The ozone loss estimated from our study is in general good agreement with those found with
other techniques for the winter 2004/05 (WMO, 2007), 2005/06 (Manney et al., 2007) and 2006/07
(Rösevall et al., 2008). Table 4.1 presents the comparison of ozone loss derived from various mea-
surements and model calculations for the winter 2004/05. The maximum loss simulated at 475 K
is about 1.7 ppmv (1.5 ppmv from MLS) in 2004/05, which compares well with that of Grooß and
Müller (2007). Our loss estimates are also in very good agreement with those of Jackson and Orsolini
(2008); Rösevall et al. (2007); Singleton et al. (2007) and Tsvetkova et al. (2007), as we compute
comparable values in respective periods. It must be noted that the ozone loss inferred from MLS
observations by Manney et al. (2006) and El Amraoui et al. (2008b) also show the same maximum
of 1.5 ppmv, which greatly support our ozone loss computation technique. However, the peak ozone
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Figure 4.6: Vortex averaged (�65� EqL) chemical ozone loss and production rates at 475 and 675 K, expressed in
ppbv sh�1, for the Arctic winters 2004/05–2009/10. The data are exempted from temporal smoothing to explicitly
show the effect of daily movement of vortex and its impact on ozone production and loss rates.

loss altitude shown by some studies are generally about 25 K lower than in our analysis. Such a
discrepancy among various techniques was also noted by Grooß et al. (2005b) and Kuttippurath
et al. (2011) for the winter 2002/03, as presented in Chapter 3. The only diagnosis that departs
considerably from all other evaluation is Rösevall et al. (2007). This could be due to the peculiarity
of their method, which is prone to more mixing and dilution in the vortex air. The vertical motion
was not represented explicitly but was calculated from N

2

O measurements in their analyses. Other
details regarding the method can be found from Jackson and Orsolini (2008), who provide a brief
comparison of most ozone loss estimation techniques. In agreement with the measured and simu-
lated ozone loss and Apsc, the chlorine activation is predominant in 2004/05 and 2007/08, moderate
in 2009/10, and weak in 2006/07 at 475K. The winters 2005/06 and 2008/09 started off with low
temperatures and therefore, subjected to early chlorine activation and ozone loss compared to other
winters. Note that a similar range of ozone loss values, from 0.7 to 2.3 ppmv, was also computed
for the cold Arctic winter 1999/00 by various methods (Newman et al., 2002).

4.3.2.5 Comparison: middle stratosphere

As evident in Fig. 4.4, the simulated ozone loss at 675 K is around 0.2 ppmv in early January in
most winters. The maximum loss reaches 1.1, 0.7, 1.2, 0.8, 0.3 and 0.9 ppmv in 2004/05, 2005/06,
2006/07, 2007/08, 2008/09 and 2009/10, respectively. The loss derived from observations show
successively 1.2, 0.6, 0.8, 0.7, 0.5 and 0.7 ppmv for the corresponding winters. The simulated ozone
loss shows good agreement with that of observations, within ±0.2 ppmv. The large loss calculated
around 675K in January–February 2005 is also confirmed by other estimates (Jin et al., 2006; Rex
et al., 2006; Grooß and Müller, 2007; Tsvetkova et al., 2007; Jackson and Orsolini, 2008). The
estimated loss at 675 K is in good agreement with that of Grooß and Müller (2007), who simulate a
similar loss at this altitude. The double peak structure is not pronounced in the analysis of Singleton
et al. (2007) and thus the measured and simulated ozone loss in their study are considerably smaller
(about 0.7 ppmv) than our estimates. There is only a little amount of active chlorine present at
675 K, as most of it is found below 600 K. Therefore, key factors driving ozone loss at 675 K will be
discussed in the succeeding sections.
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4.4 Discussions

4.4.1 Ozone loss and production rates

To gain further insights into the inter-annual variability of ozone in the Arctic vortex, we have
calculated the ozone loss and production rates for the winters 2004/05–2009/10. The following
equation was applied to compute the vortex averaged ozone loss and production rates from the
model simulations.

�O
3

(✓, j) (ppbv sh�1) =

�eq=90X

�eq=65
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(✓, j) is the ozone loss or production averaged within EqL (�
eq

) �65� for each model
isentrope (✓) and day (j). �O
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(✓, j,�
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) is the instantaneous ozone loss or production calculated by
the model for each grid point defined by latitude (�) and longitude ( ) for each ✓ and j. sh(✓, j,�

eq

)
is the sunlit hour calculated with respect to SZA <95� that varies between 0 and 1 for complete
darkness to full illumination. The �

eq

is computed for each model grid (✓,�, ) and for each day
using PV data. Fig. 4.6 shows the vortex averaged instantaneous ozone loss and production rates
in ppbv sh�1 at 475 (top panel) and 675 K (bottom panel).

4.4.1.1 Lower stratosphere

At 475K, the winter 2004/05 shows the largest loss rate of around 5 ppbv sh�1 in February. In
2009/10, loss rates of 3–5 ppbv sh�1 are calculated in mid-January/mid-February, while relatively
lower loss rates are found in 2007/08 and 2006/07 during these months. The warm winters 2008/09
and 2005/06 show loss rates up to 3–4 ppbv sh�1 in December and mid-January respectively, which
are larger than those of the cold winters during the same period. There is hardly any ozone
production at this isentropic level.

For the winters discussed here, there are no other studies with which to compare our simulated
ozone loss rates. Therefore, we compare the results of previous Arctic winters from Frieler et al.
(2006). They derive ozone loss rates (seven/ten day averages) of 5–10 ppbv sh�1 at 490K in 1995,
5–8 ppbv sh�1 at 475K in 1996, 6–7 ppbv sh�1 at 500K in 2000, 4.5–8.5 ppbv sh�1 at 475K in 2001
and 4–5 ppbv sh�1 at 475 K in 2003 in January. Since the calculations of Frieler et al. (2006) are
based on a box model, the values are not directly comparable. However, our results are generally in
good agreement with their analyses. For instance, (i) both observations and our simulations show
larger loss rates in late January/early February, (ii) the loss rates in warm winters rarely extend
beyond January, but are larger than those for most cold winters for the same period and (iii) cold
winters with sustained loss show larger simulated loss rates in January/mid-March, consistent with
the measured loss rates.

4.4.1.2 Middle stratosphere

At 675 K, ozone loss and production rates tend to increase with time until February. The largest loss
rates are found during February–March 2008, around 12 ppbv sh�1. In 2009/10, elevated loss rates
of 4–9 ppbv sh�1 are simulated from mid-February to mid-March. A similar evolution of production
rates is also found during these two winters, in which the latter shows a large production of 5–
19 ppbv sh�1. The large loss of 2–6 ppbv sh�1 is masked by enhanced production of 2–14 ppbv sh�1 in
mid-March 2005. The loss rates dominate over production rates in 2006/07 except in late February,
which is consistent with the largest ozone loss found at 675 K in March. The warm winter 2005/06
records the largest loss and production rates from December to January in line with the high chlorine
activation and ozone loss during the period.

Figure 4.7 shows the PV maps on 15 March of each year at 675K. Since ozone production
depends solely on sunlight, the movement of vortex to illuminated regions causes its variation. As



56 Chapter 4. Variability of Arctic ozone loss

Figure 4.7: Maps of potential vorticity calculated
from ECMWF data on 15 March 2004/05–2009/10
at 675 K. The maps also display the strength and
position of polar vortex on that date in each winter.
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can be seen from the figure, the displacement of the vortex to the mid-latitudes explains the reasons
for higher production rates in 2004/05, 2007/08 and 2009/10. This is also seen in the late January–
early February period in 2006 and 2009, and from late February to early March 2010, during which
the polar vortices were displaced off the pole by major SSW events (Manney et al., 2006; Flury
et al., 2009; Kuttippurath and Nikulin, 2012). Furthermore, it is evident from Fig. 4.6 that the
production rate in March increases with time, which is well anticipated with the final warming. On
the other hand, a pole centered vortex and hence, comparatively diminished production rates are
found in 2006/07.

4.4.2 Ozone loss and chemical cycles

To better understand the key chemical cycles driving the ozone loss inside the vortex in the lower
and middle stratosphere, we have evaluated contribution of various chemical cycles as a function of
time at 475 and 675 K for the winters discussed here. Contribution of each cycle is given in percent
of the total contribution from all cycles. This contribution is shown in Fig. 4.8.

4.4.2.1 Lower stratosphere

The importance of halogen cycles in ozone loss process in the polar lower stratosphere is relatively
well known (e.g. WMO, 2007) and this study too finds similar results. At 475 K, the ClO–ClO and
ClO–BrO cycles represent ⇠80–90% of the total loss (e.g. Frieler et al., 2006; Woyke et al., 1999).
The ClO–O cycle contributes 10% to the loss throughout the winter at this level, consistent with
a previous study at 465 K based on Upper Atmosphere Research Satellite (UARS) MLS measure-
ments in the Arctic and Antarctic winter of 1993 (MacKenzie et al., 1996). The ClO dimer cycle
is prominent during January–mid-March (since the ozone loss before January is very small, the
contribution before is not shown), with a maximum contribution of ⇠50% in the mid-January to
mid-February period. Due to its quadratic dependence on ClO, the efficiency of the ClO–ClO cycle
to destroy ozone falls very rapidly when active chlorine returns to reservoir forms at the end of the
winter. This is not the case for the contribution of ClO–BrO, which decreases not as rapidly in these
conditions, and therefore becomes larger than that of the ClO–ClO cycle in early March. When the
ClO dimer cycle becomes less important, the contribution from ClO–BrO enhances. A similar result
was observed by Butz et al. (2007) in the Arctic winter 1999 from balloon-borne measurements.
From early March onwards, as there are no PSCs and chlorine activation the contribution of the
HO

x

and NO
x

cycles grow quickly and become the active ozone depleting cycles in the second half
of the month.

Another interesting feature to note is the contribution of the cycles in 2009/10. During this
winter temperatures were relatively high and, as stated previously, the vortex was subjected to a
major SSW and subsequent split. Therefore, in early February the ClO–ClO contribution fell dra-
matically and contribution from other cycles (HO

x

and ClO–BrO cycles in particular) dominated
later during the winter. Contribution from HO

x

dominates during warming periods, and is demon-
strated by its relatively higher contribution in the vortex dissipation (mid/late March) or major
SSW periods (late January 2006 and 2009, and mid-February 2010). Since increase in mixing ratios
of H

2

O and HNO
3

during warmings are expected (e.g. Flury et al., 2009) and are the sources of
HO

x

, contribution from this cycle outweighs others in these periods.
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Figure 4.8: Vortex averaged
(�65� EqL) relative contribution of
selected ozone depleting chemical cycles
to the total chemical ozone loss at 475
(left panel) and 675 K (right panel) in
the Arctic winters 2004/05–2009/10.
The data are smoothed for ten-days.
The dotted lines represent 50% and the
top lines of each plot represent 100%
contribution.

The maximum contribution of the ClO–ClO cycle to the total loss varies from ⇠50% in cold
winters to ⇠40% in warm winters. In contrast, the contribution from ClO–BrO equals that of
ClO–ClO in warm winters and decreases to ⇠25–30% in cold winters. The larger difference in the
contribution of both cycles, during the period of sustained ozone loss, is found in the winter 2007/08
from January to late February.

Our results on the contribution of halogens to the total loss are consistent with those found
in Frieler et al. (2006). Using a photochemical box model, they also show a contribution of 50%
from the ClO dimer, ⇠27–48% from ClO–BrO and 5–10% from ClO–O to the total loss in the
Arctic winters 1994/95, 1995/96, 1999/00 and 2000/01, and in the Antarctic winter 2003 in the
lower stratosphere. They also find that the efficiency of the ClO–BrO cycle increases with faster
photolysis rate of ClO dimer. Studies using UARS MLS measurements for the Antarctic winters
1992–1994 also point out that these two cycles account nearly for 90% of the total loss in the lower
stratosphere (Wu and Dessler, 2001). Therefore, our study confirms the fact that the odd oxygen
loss in the polar winter lower stratosphere is dominated by the ClO dimer and ClO–BrO catalytic
cycles, which is quite in line with our current theoretical understanding and the findings of previous
studies (e.g. WMO, 2011).

4.4.2.2 Middle stratosphere

In contrast to what is found at 475 K, the halogen catalysed cycles play comparatively a small role
in the Arctic ozone loss at 675 K, as demonstrated in Fig. 4.8 (right panel). At this level, the loss is
essentially due to the NO–NO

2

cycle, which represents 50–75% of the total loss during February–
March, complemented by the ClO–O cycle that contributes about 10–20% to the total loss in that
period. The ClO–O contribution is found to be as large as 20–55% in January. However, ozone loss
at this altitude during the period is very small (0–0.3 ppmv). The contribution of HO

x

cycle, which
is about 10–20% in January, increases during the course of the winter to become equal to or larger
than that of ClO–O in late winter. The rate limiting step in all these cycles is the combination of
the oxygen atom with a specific molecule (e.g. HO

2

+O for HO
x

, and ClO+O for ClO
x

). In sum,
the availability of O-atoms mainly determines the efficiency and duration of these cycles and thus
the accumulated ozone loss.
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Table 4.2: The vortex averaged (�65� EqL) column ozone loss (DU) estimated at 350–850 and 350–550 K from the
MLS sampling inside the vortex and corresponding MIMOSA-CHIM simulations interpolated to the observed points
for each winter (121 Days from December to March). The SAOZ total column loss computations for the winters are
compared to MIMOSA-CHIM and MLS loss estimates in 350–850 K. The calculations for the warm winters 2005/06
and 2008/09 are performed for 72 days (from 1 December to 10 February), and 2009/10 for 90 days (from 1 December
to end of February). The maximum loss is found (shown below) around 23–25 March in the cold winters.

350–850 K 2004/2005 2005/2006 2006/2007 2007/2008 2008/2009 2009/2010
MIMOSA-CHIM 109 42 80 98 53 79
MLS 115 26 84 112 38 60
SAOZ 103 58 99 115 56 120
350–550 K
MIMOSA-CHIM 91 27 57 80 43 55
MLS 81 14 62 90 28 42

The inter-annual variability is relatively strong for ClO–O and NO–NO
2

cycles, markedly in
January. The variability of ClO–O contribution is linked to the formation of PSCs. The NO–NO

2

cycle contributes 10–20% in 2009/10, 2008/09, 2007/08 and 2005/06, but 30–45% in 2005 and 2007
in January. The maximum ozone loss simulated around 675 K in 2006/07 is in agreement with the
relatively large contribution of NO–NO

2

during the winter. However, similar contribution of this
cycle in other winters is compensated by large ozone production, as discussed in Sect. 4.4.1.

Unlike for lower stratosphere, only a few studies are performed on the aspects of contribution of
different chemical cycles to the total loss above 550 K. Moreover, the available studies on previous
winters address contribution of the cycles in some specific issues such as ozone loss due to additional
NO

x

loading during solar proton events or warming events (Grooß et al., 2005b; Vogel et al., 2008).
For instance, box model calculations by Konopka et al. (2007) noted the efficiency of NO

x

, HO
x

,
ClO–ClO and ClO–BrO cycles as 76, 12.5, 3.5 and 1% respectively at 600–900K during the warm
Arctic winter 2003. Interestingly, large loss of ozone at higher altitudes with a double peak structure
(as found in 2004/05) was simulated in that winter too (Grooß et al., 2005b). Simulated ozone loss
for the winter is comparable to that of 2004/05, with a maximum of around 1.4 ppmv at 475 and
675 K. They also linked the larger loss above 600 K to the exposure of vortex air to sunlight (Grooß
et al., 2005a). These results are in agreement with our analysis for the warm winters, during which
the contribution from NO

x

is larger than that of the cold winters, making larger ozone loss above
600 K. Therefore, in PSC-free polar stratosphere at 600–850 K, the NO–NO

2

cycle plays a major
role in ozone loss.

4.4.3 Column ozone loss

To complement our ozone loss analysis based on mixing ratios, we have computed the column ozone
loss for each winter from both the MIMOSA-CHIM simulations and MLS observations. For the
integration, the model ozone and tracer profiles were interpolated to the MLS sampling points inside
the vortex (�65�EqL). The MLS profiles were then interpolated to the vertical levels of the model in
order to have the same column computation procedure for both data sets. Most studies concentrate
the column ozone loss in the lower stratosphere, and therefore we have calculated the loss in the
350–550 K column range. In order to analyse the contribution from middle stratosphere by cycles
like NO

x

, as discussed in the previous section, we have computed the column loss for the whole
350–850 K range. Except for the warm winters 2005/06, 2008/09 and 2009/10, the accumulated
column ozone loss are estimated from December through the end of March. Calculations for the
warm winters are done until 10 February for 2005/06 and 2008/09, and 28 February for 2009/10,
consistent with our previous discussion. The daily average ozone and tracer data are used for these
column ozone loss calculations. The resulting column losses in 350–550 and 350–850 K for each
winter are given in Table 4.2.

For the 350–850K partial column, the largest loss is found in 2004/05 and the lowest loss in
2005/06, in agreement with our discussion on the vertical distribution of ozone loss. In 2004/05 and
2007/08, the column loss simulated by the model is respectively 109 and 98DU while that derived
from the MLS observations amounts to respectively 112 and 115DU. In the warm winters 2005/06
and 2008/09, a limited loss reaching 53 DU (in 2008/09) is simulated. The warm winter 2009/10
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Table 4.3: The vortex averaged (�65� EqL) partial column ozone loss (DU) computed from MIMOSA-CHIM and
MLS data over 350–550 and 350–675 K are compared to various results for the Arctic winter 2004/05. Individual
vortex definition is used in other published results. The error estimation provided by the respective studies are given
together with the ozone loss values. Here, the column title “Period” represents the time line of individual studies and
“Max. Loss” indicates the day on which the maximum ozone loss is estimated. The column range used for the loss
computations are relatively small for the estimates given in italics.

Study Data Column Period Max. Loss Loss (DU)
This study MLS 350–675 K December–March March end 109
– MLS 350–550 K December–March March end 81
Singleton et al. (2007) Satellites 400–550K January/March March end 90±15
Tsvetkova et al. (2007) SAGE III 350–625 K January/25 March 25 March 116±10
Jin et al. (2006) ACE-FTS 375–650 K 1–7 January/mid-March 15 March 116
Rex et al. (2006) Match 350–550 K January/25 March 25 March 127±21
von Hobe et al. (2006) in-situ 344–460K 7 March 7 March 62 +8

�17

Simulations
This study MIMOSA-CHIM 350–675 K December–March March end 107
– MIMOSA-CHIM 350–550 K December–March March end 91
Grooß and Müller (2007) CLAMS 380–580 K January–March 23 March 69±20
Feng et al. (2007a) SLIMCAT 380–550 K December–March March end ⇠140

is characterised by a moderate loss of 79DU by the end of February. The column loss calculated
by the model overestimates the measured loss in all three warm winters (2005/06, 2008/09 and
2009/10) by 16–19 DU. These ozone loss estimates from MIMOSA-CHIM and MLS data compare
reasonably well with those derived from the ground-based total column observations of UV-visible
SAOZ (Systeme d’Analyse par Observation Zenithale) network in the Arctic (Goutail et al., 2005,
2010). As shown by the simulations, large loss in cold and relatively small loss in warm winters are
computed from the SAOZ measurements. The SAOZ data based ozone loss estimations are generally
in good agreement with those of MIMOSA-CHIM/MLS, within 20DU. In 2009/10, the difference is
much larger, reaching 40 and 60 DU with the simulations and MLS observations, respectively. This
offset between SAOZ and MIMOSA-CHIM/MLS ozone loss can be due to differences in the vortex
limit criteria and vortex sampling. That is, the ground-based estimations depend on seven stations
in the vortex, while the MLS sampling covers relatively quite well the polar region. Additionally,
the ground-based analysis uses slightly different vortex criterion and the column measurements do
not sample vortex air at all altitudes, whereas only vortex air is considered in our analysis.

The ozone loss in the lower stratosphere, over 350–550K, shows similar characteristics as noted
in the 350–850 K column range. Namely, (i) cold and warm winters exhibit, respectively, larger and
smaller column ozone loss, (ii) the ozone loss estimated from MLS is larger than that from the model
alone (except in 2004/05 in 350–550K) and (iii) the modelled loss is larger by about 10–20 DU than
the measured loss in warm winters.

In a study using Match ozonesonde measurements in the Arctic, Harris et al. (2010) derive
an accumulated ozone column loss of 72 DU in 2006/07 and 65 DU in 2007/08 over 380–550 K.
Both MIMOSA-CHIM and MLS ozone loss estimates underestimate the Match results in 2006/07
by 10–15 DU and overestimate them in 2007/08 by 15–25 DU. In contrast, our analyses provide
comparatively larger loss in the cold winter 2007/08. The simulated loss in 2005/06 is in good
agreement with that of Feng et al. (2007a), who calculate a loss of about 32DU in early February at
380–550 K. The comparison of column ozone loss estimates for the Arctic winter 2004/05 is presented
in a separate section as there are several published results available for a detailed discussion.

The difference between the partial column loss estimated over 350–550 and 350–850 K (i.e.
� Loss=Loss

350�850 K

–Loss
350�550 K

) averaged over the studied winters is equal to 18±5.2 and
19.7±8.6 DU for the MLS observations and MIMOSA-CHIM simulations, respectively. Such a
difference, mainly due to the contribution of NO

x

chemistry in the middle stratosphere, has to
be taken into account when comparing polar ozone loss computed from total ozone observations
with that derived from ozone profile measurements/simulations.
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4.4.3.1 Column ozone loss in 2004/05

Since the winter 2004/05 was one of the coldest in the decade, a number of ozone loss estimations
based on measurements and simulations have been published. Table 4.3 compiles the vortex av-
eraged column ozone loss calculated from various data sets. For a better comparison with other
results we have also estimated the loss at 350–675 K from both MIMOSA-CHIM simulations and
MLS observations. As shown in the table the loss estimated by different studies generate different
results. The MIMOSA-CHIM analysis shows a good agreement with Singleton et al. (2007), who
also compute a similar loss from MLS observations. The MIMOSA-CHIM/MLS ozone loss over
350–675 K show a good agreement with those from Jin et al. (2006) and Tsvetkova et al. (2007).
The larger loss simulated in Feng et al. (2007a) is due to the higher vortex descent and accompanied
increase in chlorine loading in the lower stratosphere of their model. The ozone loss computation
from von Hobe et al. (2006) shows the lowest value among these analyses while that of Rex et al.
(2006) provides the largest estimate. The accumulated loss in von Hobe et al. (2006) was estimated
on 7 March, which is much earlier than in other studies (around 25 March) and there was a strong
vortex and sustained loss thereafter. Also, the loss was estimated only up to 460 K, which is much
lower than the column upper limit considered in other studies. Such a discrepancy in the altitude
range used for the analyses is one of the reasons for the spread in the results. Another possible
reason for the difference is that most works use their own vortex criterion for the column ozone loss
estimate.

Regarding the ozone loss derived from various model results, the simulations by Grooß and
Müller (2007) show the lowest estimate. This offset can be due to a different sampling of the vortex
by the model grid, as compared to the satellite observations. In order to check this, we averaged
the simulated loss over all the model grid points (not only at the footprint of MLS observations)
using the same vortex criterion of Grooß and Müller (2007) and obtained a loss of 73 DU for the
350–550 K range (our model vertical levels are different). This estimate is in very good agreement
with the calculation of Grooß and Müller (2007). Another important fact to note is the sampling
of the vortex by the MLS sensor, which is limited to 82�. In contrast, the model grid spans to the
full 90� including the pole. Therefore, the average calculated from the model results can cover the
area inside the vortex from this additional latitude region of 8� (i.e. 83� to 90� N) too, and hence,
this average can slightly differ from the mean loss estimated at the satellite footprints. In short,
the differences in vortex sampling, altitude range, time period and vortex definition of the analyses
have to be taken into account when comparing different ozone loss estimates.

4.5 Conclusions
The evaluation of vortex averaged ozone loss from the model and satellite observations shows large
variability in the Arctic winters 2004/05–2009/10, in accordance with analyses performed for previ-
ous northern winters. The cold winters 2004/05 and 2007/08 record the largest loss with peak ozone
loss around 475 K. In 2006/07, the maximum loss is estimated at a higher altitude, around 650 K.
The smallest loss among the winters is estimated in the warm winters 2005/06 and 2008/09. At
475 K, the cumulative ozone loss ranges from 0.7 ppmv in 2005/06 to 1.5–1.7 ppmv in 2004/05. At
675 K the loss ranges from 0.3–0.5 ppmv in 2008/09 to 1.3 ppmv in 2004/05. In general, the ozone
loss values derived from the MIMOSA-CHIM simulations and MLS observations, combined with
the model passive tracer, are in good agreement and the differences are mostly within the estimated
accuracy of the observations. It has to be noted that, since there is a large variability in peak ozone
loss altitude from one year to the next, analysis or comparison of ozone loss at specific altitudes
is neither complete nor well-represented as far as the variability of Arctic winters is concerned.
Therefore, care has to be taken while interpreting the ozone loss estimated at specific altitudes to
characterise or compare different winters.

Our analyses suggest that the halogen cycles; ClO–ClO contributes ⇠40–50% and ClO–BrO
contributes ⇠30–40% to the total loss during December–February at 475 K. These cycles depend
on temperatures in the lower stratosphere, PSCs, heterogeneous reactions on PSCs and thus the
Arctic meteorology. The NO–NO

2

cycle is the key mechanism that depletes about 60–75% of ozone
in the middle stratosphere, which is essentially predominant in the January–March period.
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The partial column ozone loss estimated over 350–850 K from MIMOSA-CHIM calculations at
the MLS footprints inside the vortex shows about 109, 42, 80, 98, 53 and 79 DU in 2004/05, 2005/06,
2006/07, 2007/08, 2008/09 and 2009/10, respectively, and are in good agreement with those of the
MLS and SAOZ observations. There is a significant difference (⇠19±7 DU) in the column ozone loss
estimated between the ranges 350–850 and 350–550K. The additional loss above 550 K is mainly
due to the NO

x

cycle and should be accounted for when deriving the column ozone loss from ozone
profile measurements/simulations. This is particularly important in cold winters with vertically
spread ozone loss (e.g. 2004/05) and warm winters with peak ozone loss above 550K (e.g. 2008/09).
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The longest vortex persistence in the Arctic was found in 1996/97, in which the wave activity
was considerably suppressed, and therefore, the vortex was sustained until early May (Lefèvre et al.,
1998; Coy et al., 1997). Nevertheless, the ozone loss in 1996/97 was lower than that of other cold
winters such as 1994/95, 1999/00 and 2004/05 due to relatively higher temperatures in December–
February 1996/97, when chlorine activation plays a key role in determining the magnitude of ozone
loss (Manney et al., 2003; Santee et al., 1997). In contrast, very low temperatures were observed in
March–April due to a high tropopause associated with a tropospheric blocking during the 1996/97
Arctic winter (Coy et al., 1997). A similar evolution in temperature and vortex persistence was also
observed in spring 2011 (Hurwitz et al., 2011; Manney et al., 2011), during which the stratospheric
halogen loading was very similar to that in 1996/97. Note that long persistence of a cold vortex
is a necessary requirement for the sustained ozone loss. Studies have already shown prolonged
appearance of very low temperatures and exceptional ozone loss in 2010/11 (Balis et al., 2011;
Manney et al., 2011; Sinnhuber et al., 2011). Persistence of very low temperatures and strong
vortices for a record period of time, and very late final warmings were the common features of
the Arctic winters 1996/97 and 2010/11. The vortex in 1996/97 was even stronger and the final
warming was later than in 2010/11. However, the chemical processing and ozone loss were different
in these winters. Therefore, the situations in both winters merit a close examination to diagnose
the similarities and differences between the polar processing of the winters and to find possible
reasons for them. In this chapter, the winters are analysed with high resolution CTM simulations
and satellite measurements to further elucidate the ozone loss processes.

5.1 Data and methods
We use the same high resolution Mimosa CTM that discussed in the previous chapter for this
study. The kinetic data are taken from Sander et al. (2006), but the Cl

2

O
2

cross-sections are from
Burkholder et al. (1990), with a log-linear extrapolation up to 450 nm as suggested by Stimpfle
et al. (2004). Although there are new measurements for Cl

2

O
2

(Papanastasiou et al., 2009), the
differences in the simulated ozone loss among various sensitivity runs are very small (2%). The
model has detailed PSC and sedimentation schemes. As we use the same model, further details of
the model runs can be found in the previous chapters and Kuttippurath et al. (2010a). For the
winters considered here, the model was run from 1 December to 30 April. We use the passive tracer
method (WMO, 2007 and references therein) to derive ozone depletion.

⇤This chapter is partly based on: Kuttippurath, J., S. Godin-Beekmann, F. Lefèvre, M. L. Santee and L. Froide-
vaux: Record-breaking ozone loss in the Arctic winter 2010/2011: comparison with 1996/1997, Atmos. Chem. Phys.,
12, doi:10.5194/acp-12-7073-2012, 7073–7085, 2012.
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Figure 5.1: Temporal evolution of minimum temperature at 475 K, temperature at 60� and 90� N at 10 hPa, zonal
wind at 60� N/10 hPa, heat flux, and planetary wave amplitudes for the Arctic winters 1996/97 and 2010/11. The
heat flux and wave amplitudes are averaged between 45� and 70� N at 100 hPa. The minimum temperatures during
the cold Arctic winters 1994/95, 1995/96, 1999/00 and 2004/05 are also shown. The dash-dotted line represents
195 K temperature, the dashed lines mark the zero-wind line, zero heat flux or zero wave amplitude in the respective
plots, and dotted vertical lines differentiate the approximate boundaries of each month.

To compare with the simulations, we use measurements of O
3

and ClO from the UARS MLS
version (v)5 for the winter 1996/97 and the Aura MLS v3.3 for the winter 2010/11. The UARS
MLS O

3

profiles have a vertical range of about 15–60 km and a vertical resolution of ⇠3–4 km. The
uncertainty of a typical O

3

measurement is 6–15% over 16–60 km. The Aura MLS O
3

measurements
have a vertical range of about 12–73 km with a vertical resolution of 2.5–3 km and an uncertainty of
5–10% between 68 and 0.2 hPa. The vertical range of UARS MLS ClO profiles is 100–1 hPa, with a
vertical resolution of 4–5 km and an uncertainty of 20% at 46 hPa, whereas the Aura MLS ClO has
a vertical resolution of 3–3.5 km and a vertical range of 100–0.1 hPa. The uncertainty of Aura MLS
ClO retrievals is about 10–20%, depending on altitude. In order to screen the UARS MLS data we
have used the guidelines provided by Livesey et al. (2003), with only profiles with positive precision
values, Quality values (= 4), and “ MMAF_STAT ” flags with “ G ”, “ t ” or “ T ” being considered.
We have also subtracted altitude dependent known biases identified in the UARS ClO profiles prior
to their interpolation to specific potential temperature levels. The selection of Aura MLS profiles
are based on their Convergence, Quality, Status and Precision values as recommend by Livesey
et al. (2011) for each molecule. In addition, latitude-dependent biases at 146, 100 and 68 hPa are
subtracted from the ClO profiles before their vertical interpolation. Further details about the data
and data screening procedures can be found in Livesey et al. (2003) for UARS MLS and, Froidevaux
et al. (2008), Santee et al. (2008), and Livesey et al. (2011) for Aura MLS.

We use the ECMWF operational meteorological analyses to calculate the minimum temperature,
PV, heat flux, planetary waves and vortex edge, as for the previous studies. The ECMWF data
archived at the Norwegian Institute for Air Research (NILU) data base are used in this study. These
analyses have a horizontal resolution of 2.5⇥2.5� and are available at 1000, 700, 500, 300, 200, 150,
100, 70, 50, 30 and 10 hPa pressure levels (e.g. Woods, 2006).
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Figure 5.2: Temporal evolution of the polar vortex during selected days of the Arctic winters 1996/97 and 2010/11
at 475 K. The overlaid white contours are temperature in Kelvin.

5.2 Results and discussions

5.2.1 Synoptic evolution of the winters

Figure 5.1 shows the minimum temperature extracted north of 40� N, zonal wind, heat flux and the
wave 1 and 2 calculated from geopotential fields for the Arctic winters 1996/97 and 2010/11. In
1996/97, the minimum temperatures show values above and below 195 K in December and January–
March, respectively. On the other hand, temperatures below 195K from December through early
April are observed in 2010/11 (Manney et al., 2011). So the minimum temperature in 2010/11
is consistently lower than in 1996/97 throughout the winter by about 2–10 K. As compared to
other cold winters in the Arctic, the temperature in 2010/11 is similar until mid-February, but
about 10–20 K lower than that of other winters in March–April, indicating the longest period of low
temperatures in the last two decades (Manney et al., 2011; Sinnhuber et al., 2011). The temperature
in 1996/97 is also lower than that in 1994/95, 1999/00 and 2004/05 from mid-March to April, but
is about 10–20 K higher in December–February than all other winters. It should be recalled that
these analyses hold for 475 K only. The winters 1999/00, 2004/05 and 2010/11 exhibit the lowest
minimum temperature of about 182 K around 20 January.

To diagnose SSWs, the temperature at 60 � N/10 hPa and 90 � N/10 hPa and zonal winds at
60 � N/10 hPa are analysed. In 1996/97, there were no warmings and the westerlies were strong
with a speed of ⇠40 m s�1 in January–April, with the final warming unusually late in early May.
In contrast, two minor warmings with a magnitude of about 10 and 40K at 90� N/10 hPa in early
January and early February, respectively, were observed in 2010/11. These warmings lasted for a
week, and were due to wave 1 and wave 2 amplifications, with zonal mean heat fluxes of about
34 Km s�1. Nevertheless, strong westerlies with a speed of ⇠40 m s�1 were present from December
to the end of March in 2010/11. The temperatures began to increase by the second week of April
and the winds turned to easterly, indicating the final warming, which was about two weeks earlier
than in 1996/97. The heat flux, EP divergence, and EP flux of the waves 1 and 2 (not shown) show
very small or near zero values in February–early April in both winters. This implies that there was
no significant wave activity to warm the stratosphere up, and hence, the temperature stayed cold
and winds remained westerly to sustain a stable vortex during the period. However, the heat flux
in February–April and wave amplitudes in March–April show comparatively smaller amplitude in
1996/97, indicating very weak wave driving during the winter. Therefore, prolonged persistence
of lower temperatures, larger zonal wind amplitudes, and thus an exceptionally late final warming
are observed in the Arctic winter 1996/97. Further details about the dynamical processes of both
winters can be found in Hurwitz et al. (2011).

Figure 5.2 shows PV maps at 475K on selected days of both winters. In 1996/97 (top panel),
the vortex was relatively large, stable and pole-centered for most days until late April. In December
the vortex was undisturbed, but a minor warming occurred in early January. The vortex was
unusually strong in February through mid-April, during which the vortex was mostly pole-centered
and large in size. In contrast, in 2010/11 (bottom panel), the vortex formed in early December with
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Figure 5.3: Temporal evolution of the ver-
tical distribution of potential PSC areas, and
MIMOSA-CHIM simulations of ClO, O

3

and
ozone loss inside the vortex for the Arctic
winter 1996/97. The ClO profiles are selected
at 12 UT and SZAs below 89�. The white
dotted lines represent 475 and 675 K.
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considerable size. Though the minor warming moved the vortex slightly off the pole in January, the
vortex was still strong with PV values of ⇠50 pvu. The vortex stayed pole-centered again until the
minor warming in early February, during which the vortex nearly split into two parts. Since the
warming was short and the westerlies were strong, the vortex merged and regained its strength to
form a large pole-centered one after a few days and stayed intact until late April 2011. Note that
the vortex was still significantly smaller than that of other cold Arctic winters in February–April,
including the winter 1996/97 as shown by the PV maps in Fig. 5.2 and mentioned by Manney et al.
(2011). In April, the temperatures began to increase and westerlies started to diminish, and the
vortex tilted off the pole and then stayed mostly in the mid-latitudes until the final warming in late
April. The vortex evolution was similar at most altitudes between 450 and 850 K, but the vortex
dissipation was observed a few days earlier at 850 K in both winters.

5.2.2 PSC, chlorine activation and ozone loss

5.2.2.1 Winter 1996/97

Figure 5.3 shows the potential PSC areas, and the vortex-averaged MIMOSA-CHIM simulations of
ClO, O

3

and ozone loss for the Arctic winter 1996/97. The ClO data are filtered with respect to
a criterion of 12 UT and SZA less than 89�. In this study A

PSC

is considered as the area where
temperatures are less than T

NAT

and the calculation is performed as described in the previous
chapters.

As the temperatures are above 195 K, no PSCs are found in December. In January, PSCs with
areas of ⇠0.7⇥107 km2 are estimated at 500–600 K. Large areas of PSCs with a maximum of about
1.3⇥107 km2 are found at 400–550 K until mid-March and there were no PSCs afterwards, consistent
with the temperatures during the period. So the chlorine activation was moderate, as indicated by
the ClO mixing ratios of ⇠0.7 ppbv in mid-January, about 1–1.7 ppbv in mid-February and about
0.5 ppbv in March around 475 K. Since the vortex was symmetric and pole-centered, there were no
changes in O

3

distributions at most altitudes until late February, but a reduction of 1–1.3 ppmv
was found thereafter in the lower stratosphere in the sunlit parts of the vortex. This change in O

3

is evident when following the 3 and 4 ppmv O
3

isopleths. The corresponding ozone loss is about
0.6 ppmv in late February and 1.2 ppmv in late March–April around 475 K. There is also a significant
loss of 0.4–0.7 ppmv, by NO

x

catalytic chemistry, at altitudes above 550 up to 700 K in April. Since
the denitrification in the winter 1996/97 was studied extensively (e.g. Kondo et al., 2000; Santee
et al., 1999) and was not severe as in other cold Arctic winters (e.g. Kleinböhl et al., 2005b; Grooß
and Müller, 2007), we have excluded discussions on denitrification in this winter.

Figure 5.4 compares the ClO, O
3

and ozone loss simulations with those from the UARS MLS
measurements. Here data are selected with respect to the MLS sampling points inside the vortex
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Figure 5.4: Temporal evolution of the vertical distribution of ClO, O
3

and ozone loss from MIMOSA-CHIM and
UARS MLS for the Arctic winter 1996/97. The model fields are sampled at the location of MLS observations for
each measurement inside the vortex and then averaged for the corresponding day. Both measurements and model
data are smoothed for seven days. The model and MLS ClO coincident profiles are selected for SZAs <89� and local
time between 10 and 16 h. The MLS ClO profiles are bias corrected. The white dotted lines represent 475 and 675 K.

and hence, these are slightly different from the vortex averages shown in Fig. 5.3. The model results
are in reasonable agreement with the observations. The simulated ClO is slightly lower (e.g. Santee
et al., 1997) and O

3

is a little higher, and thus, the simulated ozone loss is about 0.1–0.2 ppmv
lower than in the observations at 425–550 K. Still the measurements also show a peak loss of about
1.2 ppmv by late April. In addition, our results are in good agreement with those of Manney et al.
(2003, 1997) and Knudsen et al. (1998), who estimate a peak ozone loss of about 1.2 ppmv at 465 K
and 1.24 ppmv at 475K by late March from UARS MLS and ozonesonde measurements, respectively.
The SLIMCAT model also calculates a similar ozone loss maximum of about 1.1 ppmv at 475 K in
late March (Hanson and Chipperfield, 1999).

5.2.2.2 Winter 2010/11

Figure 5.5 presents the modeled and measured ClO, HNO
3

, O
3

and ozone loss at the Aura MLS
sampling locations inside the vortex, together with the area of PSCs, for the winter 2010/11. Large
areas of PSCs with maximum values of about 1.1⇥107 km2 are estimated from mid-December to
late March. Note that the A

PSC

in 2010/11 is systematically larger than that in 1996/97 both with
time and altitude. This suggests that the winter 2010/11 had an unusually long period of PSC
appearance in a wide vertical extent between 400 and 600K compared to any other Arctic winter
(Manney et al., 2011; Kuttippurath et al., 2010a).

Consistent with the A
PSC

, about 0.5–0.7 ppbv of ClO in December and 1–1.8 ppbv of ClO in
January–March at 450–600 K are simulated. The ClO simulations show the record maximum of
about 1.8 ppbv in mid-January around 475–700 K. Unlike in other Arctic winters (WMO, 2011;
Kuttippurath et al., 2010a), the model calculates large ClO values in March at 450–600 K, pointing
to an unusually high chlorine activation for an extended period of time. Furthermore, the HNO

3

profiles depict strong denitrification (about 40–50%) as they register about 15 ppbv in December,
but are denitrified to 5–8 ppbv in January–March in the lower stratosphere, in agreement with the
analyses presented in Manney et al. (2011) and Sinnhuber et al. (2011). In accordance with the
high chlorine activation, substantial reduction in O

3

is modelled from late January onwards. The
ozone loss started in the sunlit part of the vortex when it moved to the mid-latitudes during the
minor warming in early February, with values of about 0.5 ppmv around 550 K. The loss increased
to 1.2 ppmv at 475 K by late February and then rapidly reached the maximum loss of 2–2.4 ppmv
by the end of March in 450–550K. Since most Arctic winters show the peak loss in a narrow vertical
region, this case in 2010/11 stands in contrast with those. A significant loss of around 1 ppmv is
also simulated due to the NO

x

chemistry above 550K in February–March. Such large ozone loss at
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Figure 5.5: Temporal evolution of the vertical distribution of ClO, HNO
3

, O
3

and ozone loss from MIMOSA-CHIM
and Aura MLS for the Arctic winter 2010/11. The model fields are sampled at the location of MLS observations
for each measurement inside the vortex and then averaged for the corresponding day. Both model results and
measurements are smoothed for seven days. The model and MLS ClO coincident profiles are selected for SZAs <89�
and local time between 10 and 16 h. The MLS ClO profiles are bias corrected (see text). The A

PSC

computed from
the ECMWF operational analyses is also shown (top panel). The white dotted lines represent 475 and 675 K.

higher altitudes is atypical in the Arctic winters (e.g. Kuttippurath et al., 2010a; Rex et al., 2004;
Manney et al., 2003).

The model simulations also feature the same ozone loss patterns as the Aura MLS measurements,
such as the timing of the onset of loss, the altitude range of loss, and the altitude and timing of the
maximum loss and, therefore, exhibit excellent agreement with the observations. Nevertheless, the
simulated ozone loss slightly overestimates the Aura MLS observations, as the peak loss is about
0.1–0.2 ppmv lower than that of the observations. This bias is due to the comparatively higher
ClO and lower O

3

in the model. The maximum loss found in this study is in good agreement with
that estimated from the Aura MLS and Michelson Interferometer for Passive Atmospheric Sounding
(MIPAS) observations, about 2.3–2.5 ppmv, by Manney et al. (2011) and Sinnhuber et al. (2011),
respectively.

To check the sensitivity to PSCs, we have simulated ozone loss without considering NAT PSCs
in the model (e.g. Pitts et al., 2007; WMO, 2011). The test run results give (not shown) a maximum
ozone loss of about 1.8 ppmv in 450–550K when the model considers only the liquid and ice PSCs.
As compared to the control run with NAT (plus liquid and ice PSCs) PSCs, the model simulates
about 10% less ozone loss at 475 K, but nearly the same ozone loss (about 17–19%) for both runs
at 675 K. It confirms that the effect of NAT PSCs on the ozone loss simulations is quite large in the
lower stratosphere. This experiment suggests that the contribution of denitrification to the ozone
loss of 2.4 ppmv from the control run is about 25% and is the largest among the Arctic winters
(e.g. WMO, 2007). Note that this ozone loss (1.8 ppmv simulated with liquid/ice PSCs only) is still
larger than that observed in any other Arctic winter, as the previous maximum of 1.6 ppmv was in
2004/05 (Manney et al., 2011; WMO, 2011; Kuttippurath et al., 2010a).

5.2.3 Ozone loss and production rates

Figure 5.6a shows the ozone loss and production rates simulated at 475 and 675 K for selected Arctic
winters, including 1996/97 and 2010/11. In 1996/97, the ozone loss was moderate and, therefore,
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Figure 5.6: a (upper panels): Vortex-averaged (�65� EqL) instantaneous ozone loss rates (left panel) and produc-
tion rates (right panel) simulated by MIMOSA-CHIM at 475 and 675 K for the Arctic winter 1996/97 and 2010/11
compared to those of 2004/05, 2007/08 and 2008/09. The data are exempted from temporal smoothing to explic-
itly show the effect of daily movement of vortex and its impact on ozone production and loss rates. b (bottom

panels): Temporal evolution of the vortex-averaged contribution of the ClO–BrO, ClO–ClO, NO–NO
2

, ClO–O and
HO

x

chemical cycles to the ozone loss during the Arctic winter 1996/97 and 2010/11 at 475 and 675 K. The dotted
horizontal lines represent 50 % of contribution and the vertical dotted lines mark the approximate boundaries of each
month.

loss rates of about 2–3 ppbv sh�1 are simulated from mid-February to mid-March at 475K, as a
result of significant ClO enhancements in this time period. In 2010/11, the model simulates an
atypical loss rate of 2–4 ppbv sh�1 in March and early April. It should be noted that there are
high loss rates in December and January 2010/11 in the lower stratosphere at 475K as a result of
enhancement in ClO, as also shown by Manney et al. (2011), which is important for the cumulative
ozone loss of the winter. As expected, there is no O

3

production in the lower stratosphere. In the
middle stratosphere, at 675 K (Fig. 5.6a), a loss rate of 2–5 ppbv sh�1 is simulated in March–April
in 1996/97. On the other hand, in 2010/11, large loss rates of about 4–5 ppbv sh�1 in January and
13 ppbv sh�1 in mid-April are calculated by the model. No significant O

3

production was found
until mid-March in both winters, but episodically high production rates of about 5–7 ppbv sh�1 in
1996/97 and 10–12 ppbv sh�1 in 2010/11 are estimated thereafter.

In most Arctic winters, as depicted in the figure, the loss rates show a maximum of about 3–
5 ppbv sh�1 in mid-January, mid-February and late February/early March in warm (e.g. 2008/09),
moderately cold (e.g. 2007/08) and cold (e.g. 2004/05) winters, respectively, and then suddenly drop
to zero loss rate as there is no loss thereafter in the lower stratosphere, at 475K. Though the loss
rates are larger in late February–early March at higher altitudes (e.g. 675 K), O

3

production rates
outweigh these high loss rates even in cold winters. In contrast, there are higher ozone loss rates
at 475 K in March and early April, and relatively lower O

3

production rates at 675 K in February
through mid-March in 2010/11 than in other years. This indicates that the winter 2010/11 was
unique in terms of the record ozone loss rates in the lower stratosphere in the March–April period.

We have also evaluated the contribution of various chemical cycles to the ozone loss in the lower
and middle stratosphere, as done by Kuttippurath et al. (2010a); results are shown in Fig. 5.6b. The
general features and contributions from various chemical cycles in the lower and middle stratosphere
are consistent with those of previous studies (Kuttippurath et al., 2010a; Vogel et al., 2008; Butz
et al., 2007; Grooß et al., 2005b; Hanson and Chipperfield, 1999; Woyke et al., 1999). However,
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in February–March 2011, our analyses show exceptional contributions from the ClO–ClO (30–55%)
and ClO–BrO (30–35%) cycles in terms of absolute values in the lower stratosphere at 475 K (al-
though the relative contributions from the various cycles look similar in both winters). The larger
contributions of the halogen cycles in 2010/11 are consistent with the prolonged appearance and
large amounts of ClO during that period. In April 2011, a remarkable contribution from the HO

x

cycle (30–50%) is also calculated in the lower stratosphere. This is linked to relatively higher val-
ues of H

2

O and HNO
3

, the sources of HO
x

in spring. In March–April 2011, the model simulates
comparatively higher abundances of NO

x

at altitudes above 550 K, and hence this cycle dominates
(with a 30–70% contribution) the ozone loss there (Fig. 5.6b). The large contributions from these
cycles in February–April are consistent with the large loss and loss rates during the period. The
contributions of various chemical cycles during the winter 2010/11 thus stand in contrast to those
in other Arctic winters (e.g. Kuttippurath et al., 2010a; Hanson and Chipperfield, 1999), as that
winter exhibited stronger and more prolonged (February to April) chemical O

3

destruction in com-
parison to other Arctic winters. Although the relative chemical cycle contributions (see Fig. 5.6b)
in 1996/97 are comparable to those in 2010/11, these contributions from all cycles in absolute terms
are proportional to the ozone losses that occurred in the respective winters (Kuttippurath et al.,
2010a; Butz et al., 2007; Woyke et al., 1999). Further discussions on the contribution of various
cycles in the Arctic winter 1996/97 can be found in Hanson and Chipperfield (1999). It should be
borne in mind that the rate limiting step of these chemical cycles is the combination of O-atom with
the specific molecule. Therefore, the efficiency and duration of the contributions of these cycles and
associated ozone loss in the middle stratosphere primarily depend on the available oxygen atoms in
this altitude region.

Note that the loss of NO
x

happens through photodissociation and thus in the absence of solar
radiation during the polar night, it is chemically long-lived. Therefore, its abundance in a particular
winter is largely controlled by the prevailing meteorology. When the polar vortex is very strong,
large scale diabatic descent in the polar vortex can bring considerable amounts of NO

x

from higher
altitudes (Solomon et al., 1982). Strong descent of NO

x

was also observed during the reformation of
polar vortex after its split or displacement due to MWs. As discussed above, since the NO

x

catalysed
chemistry is very important for the ozone loss at higher altitudes, the winters with larger mesospheric
descent during MWs and solar proton events merit a special mention. For instance: studies report
large scale NO

x

-rich air mass descent during MW of the Arctic winter 2003/04 and 2005/06 (Randall
et al., 2009), although the enhancement of stratospheric NO

x

in 2003/04 was connected to solar
proton events and associated excess production in the mesosphere (Vogel et al., 2008). Nevertheless,
both of these winters were prone to additional ozone loss in the middle and upper stratosphere due
to higher NO

x

abundances as reported by Vogel et al. (2008) and Kuttippurath et al. (2010a). It has
to be kept in mind that there were no MWs and large NO

x

influx from the mesosphere in 1996/97
and 2010/11, and the contribution of NO

x

is discussed with respect to the amount of NO
x

present
in 2010/11 in comparison to that of 1996/97 only. Therefore, the inter-annual variability of NO

x

(and thus the NO
x

driven ozone loss) in the stratosphere depends on the dynamics of each winter.

5.2.4 Column ozone loss

To get a complete overview of the ozone loss, we have computed the partial column ozone loss in
two potential temperature ranges, 350–850 and 350–550 K, from the MLS measurements inside the

Table 5.1: Vortex-averaged (�65� EqL) partial column ozone loss (DU) estimated over 350–850 and 350–550 K
from the MLS sampling inside the vortex and corresponding MIMOSA-CHIM simulations. The calculations for the
moderately cold winter 2009/10 is done from 1 December to 28 February. The maximum loss is found (shown below)
around late/mid-March in 2004/05, 2006/07 and 2007/08, and around late/mid-April in 1996/97 and 2010/11.

350–850K 1996/97 2004/05 2006/07 2007/08 2009/10 2010/11
MIMOSA-CHIM 61 109 80 98 79 160
MLS 60 115 84 112 60 130
350–550K
MIMOSA-CHIM 42 91 57 80 55 140
MLS 41 81 62 90 42 115
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Figure 5.7: Vortex-averaged (�65� EqL) ozone
loss simulated by MIMOSA-CHIM for the Arc-
tic winters 1996/97, 1999/00, 2002/03, 2003/04,
2004/05, 2006/07, 2007/08, 2009/10 and 2010/11
at 475 K. The model initialisation was on first
November in 2002/03 to capture early ozone loss
in that winter. The dotted vertical lines mark ap-
proximate boundaries of each month and the dash-
dotted horizontal line is 0 ppmv.

vortex and the corresponding MIMOSA-CHIM simulations (shown in Figs. 5.4 and 5.5). In 1996/97,
the MIMOSA-CHIM simulated partial column ozone loss at the UARS MLS sampling points over
350–550 K reaches 7, 17 and 44DU in late January, late February and late April, respectively.
The accumulated ozone loss from the model over 350–850K by late April shows 62 DU. Identical
values are also estimated from the UARS MLS measurements, about 43 DU over 350–550 K and
61 DU over 350–850K by late April. These estimations are close to the findings of Tilmes et al.
(2006) and Harris et al. (2010), who report about 61± 20 DU from satellite and 50± 20 DU from
ozonesonde measurements, respectively, over 380–550 K. The total column ozone loss simulated
with REPROBUS, about 50–60 DU (Lefèvre et al., 1998), is also comparable to our estimations.
However, these estimations are significantly smaller than the total column ozone loss computed
from ozonesonde observations by Knudsen et al. (1998), and Terao et al. (2002), of about 79–96 DU.
This offset could be due to the differences in the model simulations, vortex edge criterion, ozone
loss estimation method and data used for the loss computations in the respective studies.

In 2010/11, the partial column ozone loss simulated by MIMOSA-CHIM at the Aura MLS
footprints reaches about 6, 20, 62 and 112DU by the end of each month from December through
March, and 148DU in mid-April over 350–550K. The maximum ozone loss estimated for the 350–
850 K altitude range is slightly higher, about 160 DU in mid-April, consistent with the loss simulated
above 550 K. The Aura MLS observations show an analogous progression of ozone depletion with
time for both column ranges, but the maximum loss is slightly lower than the simulated one,
about 115 DU at 350–550K and 131 DU at 350–850 K. These differences are consistent with the
bias found between the measured and modeled ClO and O

3

. Nonetheless, these column ozone
loss estimations are in good agreement with those estimated by Manney et al. (2011) from the
Ozone Monitoring Instrument (OMI) measurements on 26 March 2011 (⇠140 DU total column
loss) and by Sinnhuber et al. (2011) from the Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS) observations by late March (⇠120 DU at 380–550 K). The total column ozone
loss calculated from the Multi-sensor Reanalysis (MSR) by Balis et al. (2011) is about 95±8 DU
and is comparable to our estimations. The slight differences between various ozone loss estimates
can be due to the reasons discussed above (for the winter 1996/97). However, the difference with
Balis et al. (2011) could be due to the differences in vortex area calculations, as they use a vortex
edge criterion of 70�N EqL at 475 K, but we consider the vortex criterion at each altitude. This
is particularly important as they use total column ozone data. In addition, their passive tracer
simulation is slightly different from that shown in other studies. Note also that model differences
or inaccuracies in passive tracer calculations can significantly affect the loss values. For instance:
ozone loss calculations based on a pseudo-tracer, in which only chlorine-activating heterogeneous
reactions are turned off (Singleton et al., 2005), yield about 10–25% lower loss than that estimated
in this study (Balis et al., 2011).

5.2.5 Comparison with other Arctic winters

Table 5.1 shows the partial column ozone loss over two different altitude bounds for the recent
cold/moderately cold Arctic winters. Compared to the other Arctic winters, as discussed in 3.5, the
loss in 1996/97 is on the scale of a moderately cold winter, i.e. 60–61 DU over 350–850 K. However,
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Figure 5.8: Vortex-averaged (Nash
et al., 1996) ozone loss estimated from
the ground-based total column (SAOZ
and UV-visible in the Arctic [data
from F. Goutail, CNRS/LATMOS,
Paris] and SAOZ, UV-visible, DOAS,
Dobson and Brewer in the Antarc-
tic) ozone measurements for the Arc-
tic (1994–2011) and Antarctic (1989–
2012) winters.

the loss estimated for 2010/11, 130–160DU over 350–850 K, is undoubtedly the largest among the
Arctic winters, as the previous maximum of 109–115 DU was in 2004/05 (WMO, 2011; Kuttippurath
et al., 2010a). Figure 5.7 also shows that the loss in 1996/97 is moderate (1.2 ppmv) and the loss
in 2010/11 is the largest (2.4 ppmv) as compared to other winters. The ozone loss in 2004/05 is
somewhat larger than that of 2010/11 in February–March, but the additional loss of ⇠0.8 ppmv
thereafter, in mid-March to mid-April 2011, is exceptional.

5.3 Comparison with the Antarctic winters

Since the ozone loss in the Arctic winter 2010/11 is unprecedented as analysed in this and previous
studies (Manney et al., 2011; Sinnhuber et al., 2011), we compare the results with the Antarctic
ozone loss. Some additional model runs are performed for a few Antarctic winters and are compared
to the Aura MLS observations. Though the main ozone loss processes are alike, the meteorology
is entirely different in the two polar regions, giving rise to the difference between the ozone loss
observed in the respective polar regions (Solomon et al., 2007; WMO, 2007). On average, our
analyses for various winters in 2004–2010 show that peak ozone loss (>2 ppmv) in the Antarctic
stratosphere occurs over a broader altitude range of 350–650 K and usually shows its maximum
in the late September and early October period (Kuttippurath et al., 2013). The peak ozone loss
altitudes hardly change, but the maximum loss usually varies between 2.5 and 3.5 ppmv, depending
on the temperature history of each winter. The colder Antarctic winters such as 2006 show a peak
loss of about 3.5 ppmv, while the warmer winters, like 2004 and 2009, exhibit a peak loss of about
2.5 ppmv over 450–550 K. In addition, the total column ozone loss in the Antarctic winters, as shown
in Fig. 5.8, usually shows about 130–150DU (35–42%) in the warmer winters and about 160–180 DU
(50–55%) in the colder winters (Kuttippurath et al., 2010b). It appears that the maximum column
ozone loss estimated for the Arctic winter 2010/11 in this study is close to the loss computed for
the early years of Antarctic ozone depletion (1985–1991) (Kuttippurath et al., 2013; WMO, 2007)
and the relatively warmer Antarctic winters (e.g. 2002, 2004 and 2009) (Kuttippurath et al., 2013;
WMO, 2011, 2007; Kuttippurath et al., 2010b).

Figure 5.9 illustrates the vortex-averaged ClO and ozone loss estimated in the Arctic winter
2010/11 and the mean vortex-averaged ozone loss estimated for the seven Antarctic winters: 2004–
2010. We use the same model MIMOSA-CHIM and model set-up, Aura MLS measurements, and
the passive method for the ozone loss calculations in the Antarctic to make a fair comparison with
those in the Arctic. Note that the Antarctic measurements shown are the Aura MLS O

3

v2.2, but
the Arctic observations are v3.3. However, the difference between the vortex-averaged O

3

from v2.2
and v3.3 is negligibly small and thus we can robustly compare these values directly. The ozone loss
estimated in these Antarctic winters is about 2.5–3.2 ppmv in the model and 2.4–2.8 ppmv in Aura
MLS. The ozone loss estimated in March/April of the Arctic winter 2010/11 is comparable to that
of the September average in the Antarctic, as already shown by Manney et al. (2011). Nevertheless,
the Arctic ozone loss is marginally smaller than that of the October average that includes three
relatively warm (2004, 2009 and 2010) and two very cold (2006 and 2008) Antarctic winters. The
altitudes of maximum ozone loss of the 2010/11 Arctic winter, 425–575K, are also identical to
those of the Antarctic winters. Therefore, in addition to the column ozone (Fig. 5.7), the ozone
loss profiles in the Arctic winter 2010/11 also show ozone loss features matching those found in
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Figure 5.9: ClO (left panel) and ozone loss (right
panel) profiles inside the vortex (�65� EqL) from
MIMOSA-CHIM and MLS in the Arctic winter
2010/11, and the mean September and October
ozone loss profiles in the Antarctic vortex averaged
for seven winters (2004–2010). The dotted vertical
line is 1.8 ppbv of ClO or 2.5 ppmv of ozone loss.
The dashed vertical line is 0 ppmv. The dotted
horizontal lines are 475 and 550 K.

the Antarctic stratosphere. The model simulates relatively lower O
3

than MLS for most Antarctic
winters and thus, modeled ozone loss is larger than the loss estimated with the MLS measurements.

In most Arctic winters the peak ozone loss is confined to the lower stratosphere centered around
450 K (e.g. Kuttippurath et al., 2010a; Rex et al., 2004). The loss above 550K contributes about
19± 7 DU to the total column loss, which is mainly driven by NO

x

catalysed chemistry in the middle
stratosphere (Kuttippurath et al., 2010a). On the other hand, as shown by the ozone loss profiles,
ozone loss in the Antarctic stratosphere takes place over a broad altitude range centered around
550 K, and thus nearly half of the loss occurs above this isentropic level. Therefore, the Antarctic
partial column (380–550 K) ozone loss (around 130 DU) computed by Tilmes et al. (2006) is not
directly comparable to the partial column ozone loss estimated here for the Arctic winter 2010/11.
In addition, the sparse sampling of the HALOE in the southern polar vortex region, which does not
always cover the maximum ozone loss period of the Antarctic, makes the comparison more difficult.

5.4 Conclusions
A comprehensive analysis of the Arctic winters 1996/97 and 2010/11 is presented with respect to
the dynamical and chemical evolution of the winters. Both winters show a prolonged stable vortex
from December to late April. However, the winter 1996/97 was moderately cold during December–
February and thus, occasional chlorine activation led to a moderate ozone loss of about 1.2 ppmv
around 475–550K or 61DU over 350–850K by late March–late April. In contrast, the Arctic winter
2010/11 experienced the largest area and longest period ever of chlorine activation, with ClO values
up to 1.8 ppbv around 450–550K, which translated to the record ozone loss of around 2.4 ppmv
at the same altitudes in late March/mid-April. The partial column estimates over 350–850 K also
show a correspondingly massive loss of about 130–160DU in mid-April. The simulated ozone loss
rates show large values of 2–4 ppbv sh�1 in March–early April at 475K, which are uncommon in the
Arctic at this time of the winter. In tune with these ozone loss features, the ClO–ClO and ClO–BrO
cycles show increasingly larger values (⇠30–55 and 30–35%, respectively) in late February–March,
as does the HO

x

cycle in April (about 30–50%) in the lower stratosphere, at 475 K. Additionally,
significant ozone loss of about 0.7–1.2 ppmv is also computed at 550–700K in March–April 2011.
As expected, the NO

x

cycle dominates the ozone destruction processes in the middle stratosphere,
with a contribution of around 30–70% at 675 K.

The ozone loss in the Arctic winter 2010/11 is close to those estimated in the Antarctic winters,
as assessed in this study and already shown by Manney et al. (2011). However, it has to be kept in
mind that the ozone loss values in the Arctic winter 2010/11 are comparable to those of the relatively
warm Antarctic winters only, though September averages of the cold Antarctic winters also show
similar magnitude of ozone loss. This is also applicable to total column ozone loss analyses as they
show loss ranges (130–140DU) equivalent to those of the warm Antarctic winters (e.g. 2004 and
2010) and the early years of the Antarctic ozone depletion (1985–1991), as discussed in Sect. 5.3.
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The atypically prolonged chlorine activation and strong denitrification triggered this high ozone loss
of 2.4 ppmv or 130–160DU in 2010/11. Furthermore, large loss (1.5 ppmv) over a broader altitude
range (400–600K) similar to that of the Antarctic is observed for the first time in the 2010/11
Arctic winter. Nevertheless, since the halogens are decreasing slowly, the ozone loss in the polar
stratosphere is expected to decrease even in cold winters. Yet, as discussed in Sinnhuber et al.
(2011), with the predicted rate of stratospheric cooling in a climate changing world, the expected
reduction in halogens may not help to cut down the ozone loss rates in very cold winters in the next
decade. Therefore, cold winters of this kind with a similar range of ozone loss can be expected in
the future (Manney et al., 2011; Sinnhuber et al., 2011).
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Chapter 6

Estimation of Antarctic ozone loss ⇤
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Since the discovery of Antarctic ozone hole (Chubachi, 1984; Farman et al., 1985), a string of
ground-based and satellite sensors has been dedicated to observe the polar stratospheres in the
framework of the international WMO–Global Atmospheric Watch programme (WMO, 1993) and
the Network for Detection of Atmospheric Composition Change (NDACC) for the constant moni-
toring of ozone loss. Although satellites have the advantage of global coverage, they cannot observe
at SZA > 84� and thus not during the deep winter months. In addition, i) they have limited life-
time and cannot always be immediately replaced, ii) their measurements usually show progressive
degradation and iii) the discontinuity in the observations produce undesirable jumps in the trend
analyses when the concatenated data are used. In contrast, although of limited geographical cover-
age (which is the biggest advantage of space-based measurements as compared to the ground-based
observations), ground-based sensors offer the advantage of continuous record and easy repair or
replacement if necessary. Additionally, those measuring at visible wavelengths, such as SAOZ spec-
trometers used in this study, are capable of making reliable measurements until 91� SZA, which
is throughout the winter at latitudes around 65�S. Therefore, the maintenance of an independent
ground-based capacity is absolutely essential.

The passive tracer method has been successfully applied to the estimation of ozone loss from
ground-based total ozone measurements in the Arctic (Goutail et al., 1999). This approach separates
the contribution due to transport and photochemical loss in total ozone evolution during the winter.
The tracer calculations are performed by CTMs in which photochemistry is deactivated to represent
the dynamical evolution of the winter. The objective of the present study is to apply the passive
tracer technique to the Antarctic total ozone observations for the yearly evaluation of ozone loss.
In order to estimate the loss, we use ground-based measurements from three SAOZ stations in the
Antarctic. Fig. 6.1 shows the images of selected ground-based instruments installed in the Antarctic.
We use measurements from six Dobsons, two Brewers and a UV-VIS Differential Optical Absorption
Spectroscopy (DOAS) spectrometer. Table 6.1 and Fig. 6.2 show details of the stations. We use the
REPROBUS and SLIMCAT global three-dimensional (3-D) CTMs for the tracer simulations. The
ozone loss derived from the ground-based measurements are compared to that of the space-borne
observations of the OMI on Aura and SCIAMACHY on ENVISAT.

⇤This chapter is partly based on: Kuttippurath, J., F. Goutail, J.-P. Pommereau, F. Lefèvre, H. K. Roscoe, A.
Pazmiño, W. Feng, M. P. Chipperfield and S. Godin-Beekmann: Estimation of Antarctic ozone loss from Ground-
based total column measurements, Atmos. Chem. Phys., 10, doi:10.5194/acp-10-6569-2010, 6569–6581, 2010.
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Figure 6.1: Images of the the Dobson spectrometer at South Pole (image courtesy: http://www.esrl.noaa.gov/
gmd/ozwv/dobson/), the Brewer spectrometer at Zhongshan (image courtesy: http://www.theozonehole.com/), the
SAOZ instrument at Dumont d’Urville (image courtesy: F. Goutail, CNRS, Paris) and the DOAS instrument at
Neumayer (image courtesy: http://www.awi.de/typo3temp/pics/) in Antarctica.

6.1 Ozone column

6.1.1 Ground-based measurements

SAOZ: The zenith sky SAOZ UV-VIS spectrometers (Pommereau and Goutail, 1988) operate at
300–650 nm, looking at sunlight scattered from the zenith sky during twilight. Ozone is measured
in the Chappuis band (450–650 nm) at high SZA between 86� and 91� every morning and evening.
The main source of uncertainty in the measurements is the air mass factor (AMF) and for instance,
the difference in AMF between inside and outside the ozone hole can be up to 10%. The total
column measurements in the visible region have a random error of 4.7%, systematic error of 3.6%
(Hendrick et al., 2011) and different SAOZ slant column measurements are consistent within ±3%
(Roscoe et al., 1999; Van Roozendael et al., 1998).

DOAS: This is a similar instrument to SAOZ but with differences of detail, e.g. light is collected
by a small telescope and fed to the spectrograph using two depolarising quartz fiber bundles. The
spectrograph consists of a UV and a visible channel. Ozone measurements are performed in 490–
555 nm at 84–90� SZA, similar to SAOZ. Ozone slant column densities are converted using AMFs

Table 6.1: Measurement station, latitude, longitude, type of observation (instrument), starting year of observation
and period of wintertime measurements for which the ozone loss analyses are performed. The mid-latitude stations
denoted with † are not considered for ozone loss analyses for Antarctica, but are used for the diagnosis of inter-annual
variations of total ozone in the mid-latitudes.

Station Latitude Longitude Instrument Starting year Observation period

South Pole 89.9� S 24.8� W Dobson 1963 Aug–Nov
Belgrano 77.9� S 34.6� W Brewer 1982 Sep–Nov
Arrival Heights 77.8� S 166.7� W Dobson 1988 May–Nov
Halley 75.6� S 26.8� W Dobson 1958 Aug–Sep
Concordia 75.1� S 123.4� E SAOZ 2007 May–Nov
Neumayer 70.7� S 8.3� W DOAS 1992 Aug–Nov
Zhongshan 69.4� S 76.4� E Brewer 1993 Aug–Nov
Syowa 69.0� S 39.6� E Dobson 1961 Aug–Nov
Rothera 67.6� S 68.1� W SAOZ 1996 May–Nov
Dumont d’Urville 66.7� S 140.0� E SAOZ 1988 May–Nov
Faraday/Vernadsky 65.3� S 64.3� W Dobson 1957 Aug–Nov
Marambio 64.2� S 56.7� W Dobson 1987 Aug–Nov
Mid-Lat. stations

Ushuaia 54.8� S 68.2� W Dobson 1994 May–Nov
Macquarie Island 54.5� S 159.0� E Dobson 1957 May–Nov
Rio Gallegos 51.6� S 69.3� W SAOZ 2008 May–Nov
Kerguelen 49.4� S 70.3� E SAOZ 1995 May–Nov
Lauder 45.0� S 169.6� E Dobson 1970 May–Nov
Comodoro Rivadavida† 45.8� S 67.5� W Dobson 1995 May–Nov
Melbourne † 37.7� S 144.8� E Dobson 1983 May–Nov
Buenos Aires† 34.6� S 58.5� W Dobson 1965 May–Nov
Perth † 31.9� S 115.9� E Dobson 1969 May–Nov

http://www.esrl.noaa.gov/gmd/ozwv/dobson/
http://www.esrl.noaa.gov/gmd/ozwv/dobson/
http://www.theozonehole.com/
http://www.awi.de/typo3temp/pics/
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Figure 6.2: Geographical position of the the ground-
based stations in Antarctica and southern mid-latitudes
considered for the ozone loss analyses in this study. The
mid-latitude stations are shown in light pink colour. Po-
sitions of the Antarctic stations are marked by the first
letter of their names in respective colours (e.g. C is for
Concordia).

estimated from AMFTRAN Monte Carlo Radiative Transfer Model. The accuracy of ozone vertical
column density retrieved from the Neumayer DOAS is about 2%. The DOAS measurements are
described in detail by Frieß et al. (2005).

Dobson spectrophotometer: The instrument consists of a double prism monochromator to
measure the differential absorption of ozone in UV (Dobson, 1957). Measurements are performed
by looking at the direct sun by clear sky and are averaged to a daily mean. Nevertheless, those
measurements are limited to SZA < 80� i.e. after mid-August at the polar circle. As the instrument
requires calibration, comparison with the well-calibrated Dobson #83 (Boulder, USA) is carried out.
However, calibration with this instrument may not be accurate at the South Pole (because of high
latitude and high SZA) and hence, it may slightly affect the accuracy of measurements. The random
error of these observations is estimated as 0.5% or 1 DU (Basher, 1982; Scarnato et al., 2010), but is
subject to the accuracy of absorption cross-sections and a known significant temperature dependence
in the UV and stray light at high SZAs (Hendrick et al., 2011), which were not taken into account
for the retrievals used here.

Brewer spectrophotometer: Brewer measurements also make use of differential absorption
in the UV region (Brewer, 1973). The determination of total ozone is similar, but sensitivity of the
instrument is better than that of the Dobson. As in the case of the Dobson, an empirical relation
between simultaneous direct sun and zenith sky has to be established if zenith observations are
to be taken. Calibration of the instrument is essential and a well calibrated Brewer direct sun
measurement has an error comparable to that of the Dobson. Recent comparisons indicate that the
random errors of well-maintained Brewer observations are of the order of 0.15% (Scarnato et al.,
2010).

6.1.2 Space-based observations

OMI on Aura: The OMI sensor on the Aura satellite began to operate in 2004 as a successor
to the Total Ozone Mapping Spectrometer (TOMS) (Levelt et al., 2006). The nadir viewing UV-
VIS spectrometer measures solar light scattered by the atmosphere with a spatial resolution at
nadir of 13⇥24 km. The sun-synchronous orbit of Aura and the wide viewing angle of OMI enable
daily global coverage of the sunlit portion of the Earth. The overpass data, spatial averages within
100 km, are retrieved using the TOMS v8 algorithm. The retrieval makes use of two wavelengths:
331.2 and 360 nm for high ozone and at high SZA. However, retrievals from 317.5 and 331.2 nm are
used for most conditions. The uncertainty of the ozone column is 2–5% for SZA < 84� (Bhartia and
Wellemeyer, 2002).

SCIAMACHY on ENVISAT: SCIAMACHY (hereafter SCIA), an imaging spectrometer on
ENVISAT placed into orbit in 2002, utilises nadir, limb and sun/moon occultations for ozone column
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Figure 6.3: Temporal evolution of various parameters used for the computation of ozone loss at Dumont d’Urville
in 2007. Top: ECMWF potential vorticity at 475 K, and polar vortex edge. Bottom: SAOZ, OMI and SCIA daily
mean total ozone and SLIMCAT and REPROBUS passive ozone (tracer). The horizontal bars represent the 220 DU
ozone hole criterion, the 300 DU average pre-ozone hole value and the 500 DU average spring column in the absence
of loss.

retrievals (Bovensman et al., 1999). The data are recorded from the transmitted, back scattered
and reflected solar radiation from the atmosphere at 240–1700 nm. The instantaneous field of view
spans 2.6 km in the vertical and 110 km in the horizontal direction at the tangent point. We consider
the total column overpass data calculated from nadir measurements, averaged within 100 km radius
above each station, retrieved using the v2 algorithm based on TOSOMI (Total Ozone retrieval
scheme for SCIAMACHY based on the OMI DOAS algorithm). The estimated accuracy of the
ozone column is about 2–3.3% (Eskes et al., 2005).

6.2 Estimation of ozone loss

To find chemical ozone loss from the measurements by applying the passive technique, tracer calcu-
lation by a CTM is required. For this purpose, passive ozone (ozone calculated without interactive
chemistry) simulations from REPROBUS for 2006–2009 and SLIMCAT for 2005 are considered, as
the data from the former was not available in 2005. We use the diurnal averages of the ozone and
tracer column simulations sampled at the location of each station. The details of tracer simulations
in the models are given in the following sections and the method is described afterwards.

The REPROBUS 3-D CTM (Lefèvre et al., 1994, 1998) uses a hybrid �-pressure vertical co-
ordinate for which winds and temperatures are driven by the ECMWF operational data on 60
vertical levels to 0.1 hPa (⇠60 km) until February 2006, and then 91 levels to 0.01 hPa (⇠90 km)
afterwards. Vertical advection is computed directly from the analysed winds. The simulations pre-
sented here were integrated on a global grid with a horizontal resolution of 2�⇥2�. Chemical species
are transported by a semi-Lagrangian code (Williamson and Rasch, 1989). The model includes a
comprehensive description of stratospheric chemistry. Absorption cross-sections and kinetics data
are based on Sander et al. (2006). However, absorption cross sections of Cl

2

O
2

are taken from
Burkholder et al. (1990) and are extrapolated to 450 nm. Monthly varying H

2

SO
4

fields, leading
to the formation of liquid aerosols in the CTM, are computed from the outputs of a 2-D-model
long-term simulation that consider impacts of volcanic eruptions (e.g. Bekki et al., 1993; Bekki
and Pyle, 1994). The model includes reactions on binary and ternary liquid aerosols as well as on
water-ice particles. The composition of liquid aerosols is calculated analytically (Luo et al., 1995).
The ice particles are assumed to incorporate HNO

3

in the form of NAT (Davies et al., 2002). Cl
y

and Br
y

are explicitly calculated from their long-lived sources at the surface and are therefore time
dependent. An additional 6 pptv of bromine in the form of CH

2

Br
2

is added to Br
y

to represent the
contribution of brominated short lived species reaching the stratosphere (Feng et al., 2007b; WMO,
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Figure 6.4: Vortex averaged (Nash et al., 1996) individ-
ual ozone loss estimated (ten-day mean) at the ground-
based stations in the Antarctic using the passive method
(top: DU, bottom: percent). The black thick lines repre-
sent the mean and the error bars represent the standard
deviation from the mean. The observations from Kergue-
len, a mid-latitude station, are not included in the average,
shown with X marks. The vertical dotted lines represent
the different phases of ozone loss process in the Antarc-
tic as marked in the colour shades (see text), while the
horizontal dotted lines represent �50, �150 and �250 DU
(top), and �15, �30, �45 and �60% (bottom) of ozone
loss. Some stations start the wintertime observation in
August or September. The ozone loss onset varies with
respect to sunlit latitudes and therefore, the onset period
depends on co-ordinates of the stations. Thus the onset
and rapid loss phases are clustered together with dashed
lines in the red and green colour shades.

2007).
SLIMCAT is an off-line 3-D CTM Chipperfield (1999), which uses hybrid �-✓ vertical coordinate

and extends from the surface to a top level which depends on the domain of the forcing analyses
(Feng et al., 2007a). Here the horizontal winds and temperatures are specified using ECMWF op-
erational data of 60 vertical levels to 0.1 hPa. Vertical advection in the ✓-domain (above 350K) is
calculated from diabatic heating rates using the National Center for Atmospheric Research (NCAR)
Community Climate Model radiation scheme (Chipperfield, 2006). Chemical tracers are advected by
conservation of second-order moments (Prather, 1986). The model describes the main stratospheric
chemical species O

x

, HO
x

, NO
y

, Cl
y

, Br
y

, source gases and a treatment for CH
4

oxidation. It
contains a detailed gas-phase stratospheric chemistry scheme. As in REPROBUS, the photochem-
ical data are based on Sander et al. (2006) and the absorption cross sections of Cl

2

O
2

are taken
from Burkholder et al. (1990), which are extrapolated to 450 nm. The model treats heterogeneous
reactions on liquid aerosols, NAT and ice (Chipperfield, 1999), and denitrification schemes (Davies
et al., 2002). An extra 6 pptv of bromine reaching the stratosphere from short-lived species is also
included in the calculations (Feng et al., 2007b; WMO, 2007).

6.2.1 The passive tracer method

The ozone loss by the passive method is computed by subtracting passive ozone from measured
ozone. Large changes in total ozone inside polar vortex are related to convergence or divergence due
to changes in tropopause height, planetary wave induced adiabatic motions and diabatic descent
due to radiative cooling. To find the ozone loss inside the vortex, the Nash et al. (1996) criterion
is applied to find the vortex limit (maximum of the first derivative of PV). A sensitivity test
was conducted using the criterion of 35 and 45 pvu. While the low PV criterion adds noise, the
high PV criterion makes the data sparse. As expected, though there were differences in number of
observations inside the vortex when using different criteria, the final results were similar. Therefore,
the Nash et al. (1996) criterion is adopted after exempting some apparent noise in the vortex limit
data. The PV data used to differentiate the vortex measurements were generated from the MIMOSA
contour advection model (Hauchecorne et al., 2002) forced by the ECMWF operational analyses.
The vortex edge calculated at 475K, where the concentration of ozone has its maximum in spring, is
selected for its loss estimation. The ozone loss analysis starts in July and it extends until November.

Figure 6.3 illustrates the basics of the tracer scheme with relevant data at Dumont d’Urville
for the winter 2007. The day-to-day variations due to vortex positions are well captured by the
measurements and simulations. From July onwards, the ozone values inside the vortex decrease
with time while they increase outside. The ozone columns, both measured and calculated, are anti-
correlated with the PV values, where the high PV corresponds to the low ozone in the vortex. The
SAOZ observations are continuous throughout the winter at Dumont d’Urville, while both OMI
and SCIA start in mid-August and thus miss the onset of ozone loss process. Nevertheless, the
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Figure 6.5: Vortex averaged (Nash et al., 1996) ozone loss
diagnosed (ten-day mean) using different measurements
and various tracer calculations by different model setups
at Dumont d’Urville (top: DU and bottom: percent). The
black solid lines represent the mean ozone loss from all sce-
narios and the black filled-circles represent the average de-
viation from the control (SAOZ/REPROBUS tracer). The
error bars represent the standard deviation from the mean.
The dotted vertical line represents 1 July. The dotted hor-
izontal lines represent �100 and �200 DU (top), and �20
and �40% (bottom) of ozone loss.

observations from both ground and space are very consistent afterwards.

The chemical ozone loss is then computed by finding the difference between the tracer simulated
by the CTM and ozone measured from the ground or space. That is, the observed ozone loss in
absolute unit (DU) is estimated as ozone

meas

� tracer and in relative unit (%) is computed as
100⇥ (ozone

meas

� tracer)/tracer. This procedure is repeated for each station and then sorted for
inside the vortex. The example of 2007 is given in Fig. 6.4. The ozone loss starts at the edge of
the vortex in early July, when it is displaced to the sunlit latitudes. So the stations at the edge,
such as Dumont d’Urville and Rothera, are subjected to ozone loss early in the winter (e.g. Lee
et al., 2000). As the day gets longer and light penetrates deeper inside the continent, the stations
Concordia and Arrival Heights followed by Neumayer, Halley, Syowa, Belgrano and South Pole
undergo ozone loss (e.g. Chubachi, 2009). Measurements at the latter stations were possible only
in late August or September as they require sunlight for making observations. The figure clearly
shows the late winter start of ozone loss in the vortex core, Concordia in particular (South Pole
measurements start even later, by mid-September, e.g. Solomon et al., 2005). This delayed onset
also produces a step like feature in the mean ozone loss curves in the July to mid-August period.

The intensity of ozone loss is also connected to the position of the stations and axis of the vortex.
For instance, the sites well inside the vortex experience more loss than those at the edge. Therefore,
South Pole or Belgrano observe more severe loss than Dumont d’Urville in each winter. The loss
at Concordia is less than that of South Pole and larger than that of Dumont d’Urville due to the
strength and longevity of the vortex over the respective locations.

The results delineate three distinct phases of the Antarctic ozone loss as marked with dotted
vertical lines and colour shades in Fig. 6.4. The first stage starts in July and ends in late September,
where rapid loss occurs with return of the sun over the continent. The loss rate is largest in this
period. Starting time of this phase varies from May to July depending on the temperature, the
time of vortex formation and its location. If the temperature is relatively low and the vortex
appears in early winter that shifted in latitude, there can be some loss in May–June and thus this
phase may start in May. The cumulative maximum of the ozone loss is generally observed in early
October, afterwards the loss stops when PSCs are no longer forming because of comparatively higher
temperatures. This is the second phase of the ozone loss process, where depth of the ozone hole
reduces more or less slowly depending on vortex erosion, exchange with mid-latitudes and location
of the station. Therefore, the edge stations, i.e. Dumont d’Urville, Marambio and Rothera, recover
more rapidly. The ozone hole is not homogeneous. Depending on the location of the station with
respect to the vortex, the loss can vary within ±10% (±20 DU). In the third phase, the ozone hole
disappears in general by the end of November or early December as in 2006, except in the case of
the unprecedented vortex split in 2002. It is during this period (October–November) that vortex
pieces or filaments more or less filled-in could be observed at lower latitudes as in Kerguelen at 49� S
in present case.
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Figure 6.6: Vortex averaged (Nash et al., 1996) ozone loss estimated (ten-day boxcar average) from the ground-
based measurements in red, the OMI observations in blue (OMI), the SCIAMACHY measurements in dark yellow
(SCIA) and the model simulations by REPROBUS in 2006–2009 and SLIMCAT in 2005 in green (MODEL) for the
Antarctic winters 2005–2009 (Left: percent, right: DU). The SCIA average excludes South Pole measurements due to
unavailability. The dotted vertical lines represent day 182, 225 and 275, the time window used for the computations
of daily ozone loss rates. The horizontal lines represent �15, �30, �45 and �60% (left panel), and �50, �150 and
�250 DU (right panel).

6.2.2 Error analysis

In order to investigate the uncertainty of the method, ozone loss under various conditions are
analysed. Fig. 6.5 shows the ozone loss estimated with SAOZ, OMI and SCIA using REPROBUS
and SLIMCAT (with both T42 and T21 resolution) tracer for Dumont d’Urville in 2007. The
stations at the edge region (Lee et al., 2000) show more spread than those inside the vortex (for
which Dumont d’Urville shows the largest). We use the SAOZ/ground-based ozone loss analysis
with REPROBUS tracer using MIMOSA PV and Nash vortex edge as the control, since simulated
results match well with the measurements. To compute the uncertainty, the difference between the
control and the ozone loss was estimated with other setups, as shown in the figure. The RSS of
all these differences as well as the uncertainties in the measurements yield a deviation up to 4.4%
(0–21 DU) depending on day.

The RSS computation includes all main processes that affect the accuracy of the method. Those
are: i) the systematic differences between the instruments, drop in measured ozone due to presence
of PSCs, and difference in AMF profile shapes (considered in the analysis by including the measure-
ment uncertainties of respective instruments), ii) differences in simulated profiles with measurements
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Figure 6.7: ECMWF daily minimum tempera-
tures extracted over 50–90� S at 475 K for 2005–
2009. The horizontal lines represent the T

NAT

and
T

ICE

. The dotted vertical line represents 1 July.

when ozone varies rapidly (considered in the analysis by using tracers from different models of vary-
ing horizontal and vertical resolution) and iii) shifts in location of estimated vortex edge (considered
in the analyses by testing with different vortex edge criteria, PV data sets and horizontal resolution
of the models). Since size of the vortex can be smaller above the ozone loss analysis level of 475 K,
air outside the vortex cannot be ruled out and was not possible to account for by these experiments.

6.2.3 Accuracy of the method

There are a few parameters that influence the strength of ozone loss evaluation method. The
most evident are the realism of the tracer field in the models and the vortex edge calculation from
potential vorticity. We tested how the derived ozone loss varies with the expected changes in these
parameters. These tests were repeated for the overpass measurements from satellite observations.
The RSS of the deviations including measurement accuracies is within 4%. Since accuracy of the
measurements is of the order of 3–5% and the total error derived from RSS is ⇠4%, the small
contribution from other input shows the consistency and potency of the method. In addition, the
use of different model setups for the calculations of tracer ensures that the estimation provides
consistent results and affirms that the method is sound. The main dispersion of loss computation
comes from the inhomogeneous distribution of ozone in the vortex, which ranges from ±2–10% at
the beginning when only the edge stations are exposed to sunlight, to ±0–5% at the end when loss
has stopped.

6.3 Application of the method

We now apply the passive method to estimate the Antarctic ozone loss and examine the variability
of the loss between 2005 and 2009. The loss analyses using SCIA observations exclude South Pole
measurements because of their unavailability. The daily ozone loss rates are calculated in a common
time window for all data sets, i.e. between day 225 and 275 in each winter. Fig. 6.6 shows the ten-day
boxcar average of the vortex mean ozone loss derived from the ground-based, OMI, SCIA and model
(REPROBUS for the winters 2006–2009 and SLIMCAT in 2005) data and we begin the discussion
with the most recent year. In order to preserve the temporal ozone loss features, instead of finding
the vortex averaged loss at each station in every ten days, the average of ozone and tracer data
inside the vortex from all stations are considered. Then the observed ozone loss in absolute unit
(DU) is estimated as ozone

avg

-tracer
avg

and in relative unit (%) is computed as 100⇥(ozone
avg

-
tracer

avg

)/tracer
avg

. Here, the ozone
avg

(tracer
avg

) represents the mean of the ozone (tracer) data
inside the vortex from all stations. The same approach is repeated for the model simulations.

In 2009, the ozone loss started by the first week of July and it peaked to 53% by late September.
The satellite observations, both OMI and SCIA, agree well with the ground-based analysis. The
ozone loss rate shows 0.62 for ground-based, 0.58 for OMI, 0.54 for SCIA and 0.55% day�1 for
the model. In 2008, the ground-based measurements find the ozone loss onset in early July and
its maximum in early October, about 59%. Similar results are found in the loss computed from
satellite and model data, where the differences are within ±2%. The loss rates analysed from the
measurements and simulations exhibit similar values of about 0.8% day�1, but slightly less from
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Figure 6.8: Evolution of October mean total
ozone in the Antarctic from ground-based observa-
tions. (a) Stations installed after 1985, (b) histor-
ical stations Syowa and Faraday, and (c) historical
stations South Pole and Halley, and the equivalent
chlorine in the Antarctic in the inset. The histori-
cal data are plotted separately for clarity reasons.
The dotted vertical lines represent year 1976 and
1994. A Gaussian fit is shown in the time series of
the historical stations.

the SCIA observations. In 2007, as found in other winters, the loss started in July and reached
its peak by mid-October. The loss derived from ground-based and OMI observations exhibit a
similar maximum of ⇠55%, whereas it is 3% less with SCIA and 3% more with the model. The
ozone loss rates show 0.62 for ground-based, 0.54 for OMI, 0.47 for SCIA and 0.66% day�1 for
the model. In 2006, the observed ozone loss shows its onset in early July. The maximum loss
derived from ground-based observations shows 56% by early October, consistent with that of OMI
measurements. The loss computed from the SCIA and model data show slightly lower values of
about 53%. The simulated loss in July–September is slightly smaller than that of the ground-based
observations, even if both return similar loss rates of about 0.71% day�1. In 2005, a large loss
was measured in early winter and its maximum in early October. The peak loss derived from the
ground-based measurements is 61%, whereas it is 1% more from the model calculations. The loss
evaluated from satellite observations find agreeable results within ±2–5%. The estimated loss rates
are 0.53, 0.5, 0.5 and 0.75% day�1 for ground-based, OMI, SCIA and SLIMCAT, respectively.

6.4 Inter-annual variability
The passive method used for the estimation of ozone loss depends largely on tracer simulations
in the models. Therefore, a survey with ozone column measurements is necessary to analyse the
consistency of the loss evaluation. Since measurements are available for decades, this diagnosis is
not restricted to 2005–2009, as in the case of previous discussions.

6.4.1 Antarctic ozone loss

The general behaviour of ozone loss with time and chemistry is alike in all winters. However, the
cumulative loss, period of maximum loss and longevity of the ozone hole alter in accordance with
the strength of the vortex. In general, as found in previous studies the Antarctic ozone loss starts
in early July and stops during the last week of September (Solomon et al., 2005; Tilmes et al., 2006;
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Figure 6.9: Ozone loss estimated during the vortex events
(Nash et al., 1996) at selected southern mid-latitude sta-
tions for the recent Antarctic winters (Top: DU and bot-
tom: percent). The dotted vertical line represents 1 July,
and the horizontal lines show �50 and �150 DU, and �15,
�30 and �45% of ozone loss.

Huck et al., 2007) except in 2006 when it extended until the first week of October. In all years
the ozone hole could be followed until the 3rd and 4th week of November (Bevilacqua et al., 1997;
Solomon et al., 2005).

Figure 6.7 illustrates the daily minimum temperature from ECMWF within 50–90� S at 475K for
2005–2009. In general, the NAT temperatures are found from mid-May until October. Temperatures
below the freezing point of water-ice (T

ICE

) occur from June to late September. Among the last four
winters, 2007 shows the lowest temperatures in May–June, 2008 shows the lowest in mid-July to
mid-August and 2006 shows the lowest in mid-September to November. The recent winter 2009 was
generally colder than 2008 and 2005, while the winter 2007 had the warmest September–November
at 475 K and earliest vortex dissipation. The winter 2006 was one of the coldest, in which the
complete breakdown of the vortex was observed in December.

As expected from similar temperatures, the cold winters 2006, 2008 and 2009 show little differ-
ence in ozone loss. The maximum ozone loss was found early in 2006 as compared to other winters
because of the lower temperatures and well formed early vortex at sunlit parts, whereas the warm
winter 2007 shows relatively smaller loss. The ozone loss estimated from the ground and space
based observations is very consistent, showing small differences, within ±2%. The model calcula-
tions also find similar scales of ozone loss in each winter, where the differences with observations are
about ±3–5%. Although the deviations are small, the geographical differences in sampling among
the ground-based, satellite and model data could also contribute to this offset. When compared
to other winters, the loss calculated with model underestimates the measured loss in 2006. There
were no changes in the model input other than the ECMWF meteorological data used in this year
as compared to other years. Therefore, the differences could be due to the possible inaccuracies in
the temperature data (e.g. Boccara et al., 2008; Pitts et al., 2007), which in turn can affect PSCs,
chlorine activation and hence, ozone calculations by the model.

There are no other ozone loss estimations available for the Antarctic winters 2005–2009 to
compare with our results. The available studies for the previous winters are not directly comparable
as they use either partial columns or a different evaluation method. However, as concluded in WMO
(2007) and references therein, it is clear that Antarctic ozone loss has stabilised in the 1995–2005
decade because of its saturation. Therefore, most of the inter-annual variability results more from
levels of dynamic forcing than a change in levels of EESC (e.g.Yang et al., 2008). The amplitudes
of total loss reported in 1995–2005 are very similar to that derived in 2005–2009. For instance,
the partial column loss estimated at 350–600 K from ILAS measurements by applying the tracer
correlation approach was 157±17 DU in early October 2003 (Tilmes et al., 2006), which is close to
our evaluation for the recent winters during the same period. Our conclusion on the inter-annual
variability of ozone loss is also in line with the previous studies (Hofmann et al., 1997; Wu and
Dessler, 2001; Bevilacqua et al., 1997; Solomon et al., 2005; Hoppel et al., 2005; Lemmen et al.,
2006; Huck et al., 2007). The studies based on ozonesonde observations (e.g. South Pole and Syowa)
in the Antarctic have some significance in this context as we have used measurements from these
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Figure 6.10: Evolution of October mean total
ozone at southern mid-latitude ground-based sta-
tions: (a) stations installed after 1985, (b) his-
torical stations at 30–40� S and (c) historical sta-
tions at 40–60� S with equivalent chlorine in the
mid-latitude in the inset. The dotted vertical lines
represent year 1976 and 1994.

stations for our evaluations (e.g. Hofmann et al., 1997; Solomon et al., 2005). Additionally, the ozone
loss rates in September derived from the South Pole ozone soundings in 1990s (Hofmann et al., 1997)
and those estimated from the SLIMCAT simulations in early 2000s (Feng et al., 2005a) are 2–3 and
2.6–3.2 DUday�1, respectively. The loss rates found in our study are also of the same order of
magnitude (2–3DU day�1 or 0.6–0.9%day�1), which reinforces the small inter-annual variability of
Antarctic ozone loss.

6.4.2 Southern high latitude ozone

Figure 6.8 displays the October mean of total ozone from various stations together with EESC in
the Antarctic. The four historic stations Halley, Syowa, South Pole and Faraday have measurements
since 1956 and they show large decrease in ozone until early 1990s and saturation of the ozone loss
afterwards (Jiang et al., 1996). The little inter-annual variation due to the saturation is clearly
evident after mid-nineties. These results are very consistent with previous works on total ozone
trends in the Antarctic (Bojkov and Fioletov, 1995; Bojkov et al., 1995; Bodeker et al., 2001;
Fioletov et al., 2002; Kane, 2008). The above-mentioned works are especially noteworthy here as we
also present similar results for South Pole, Syowa, Halley and Faraday, and thus a very consistent
evaluation of inter-annual variation of total ozone in the Antarctic. Even if the current negative
trends in EESC sustain in the coming years, studies indicate that it will take several decades to
reach ozone recovery (to the 1980 level of ozone) in the Antarctic (e.g. Vyushin et al., 2007; Yang
et al., 2008). A detailed trend estimation of the high latitude ozone measurements will be performed
in Chapter 9.

6.4.3 Southern mid-latitude ozone

The ozone loss analysis for the Antarctic would not be complete without assessing its impact on
mid-latitudes. Therefore, we now examine the ozone loss computed above three stations located at
three different regions in southern mid-latitudes. This diagnosis is particularly important since very
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low ozone of around 250DU was observed on some days at these stations during recent winters.
Fig. 6.9 shows the ozone loss estimated from Rio Gallegos, Kerguelen and Macquarie Island ozone
measurements in 2005–2009. Extension of the vortex to the mid-latitudes was absent in some years,
as in 2005 at Macquarie Island and 2008 at Kerguelen. Furthermore, there were no vortex events
found over Lauder during these winters.

The analyses expose the vortex overpasses for a few days in October 2008 and November 2009
and show a maximum ozone loss of 40–45% (150–200 DU) at Rio Gallegos. A similar scale (30–
50%) of reduction from a higher number of vortex occurrences at Ushuaia is also estimated with the
SLIMCAT tracer in September–November 2004–2008 (not shown). Except in 2008, about 30% (50–
100 DU) of ozone loss is observed at Kerguelen during the vortex appearance in October–November
of the recent winters. Conversely, passage of the vortex over Macquarie Island is found mostly
during early winter and the observed loss is about 10–20% (up to 100 DU) in 2006–2009. Note that,
this loss is equal to that of the Antarctic during the same period.

In order to analyse the inter-annual variations, the October mean of the total ozone from selected
mid-latitude stations are examined in Fig. 6.10. There is a weak signal of ozone reduction (⇠50 DU)
in 1975–1993 at Lauder and Macquarie Island, in agreement with the studies of Harris et al. (2003)
for the former and Chubachi (2009) for the latter stations. The measurements at Perth and Buenos
Aires also show some reduction in ozone during the period (Kane, 1991, 2008). These results are
consistent with the well established mean 5% loss in the southern mid-latitudes since the pre-ozone
hole period (WMO, 2007). Nevertheless, the time series of Melbourne is too short to deduce a
significant trend. As expected, the measurements at Ushuaia, Comodoro Rivadavia and Kerguelen
exhibit large inter-annual varaibility due to the episodic vortex exposures.

6.5 Conclusions
The passive method is shown to provide ozone loss estimations within an accuracy of about 4%
and is applied to evaluate ozone loss from the ground-based measurements in the Antarctic winters
2005–2009. The loss is shown to start at the edge of the vortex by July and each station shows
different timing for the onset of ozone loss depending on its exposure to sunlight. The magnitude of
loss is also different at each station in line with the temperature, PV, PSCs and prevailing heteroge-
neous chemistry, which are quite in agreement with our current understanding of polar wintertime
chemistry. In accordance with previous studies, the ground-based stations show substantial ozone
loss of around 55% since 2005. However, the year-to-year differences in ozone loss are not large in
the Antarctic, consistent with earlier studies. The ozone loss and loss rates computed from OMI
and SCIA observations compare well with that of the ground-based measurements (within ±2%).
The CTMs also imitate well the ozone loss features and reproduce the maximum loss within ±3%
difference.

The October average of the total column measurements at the historical ground-based stations
do show that the loss started in the late 1970s. The ozone reduction peaked in the early 1990s and
stabilised afterwards until present due to its saturation. Another important feature is the effect
of extension of ozone hole at southern mid-latitudes. The SAOZ measurements at Kerguelen and
Rio Gallegos, the first observations from the latter, reveal severe ozone loss (20–45% or 50–200 DU)
episodes, which reiterates the value of observations in southern mid-latitudes.

This study shows that, the maintenance of an efficient ground-based network independent of
satellites, particularly UV-visible that are capable of making observations in early winter, is in-
evitable for monitoring the long term evolution of the ozone hole and its anticipated recovery from
the reduced CFC emissions.
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Antarctic ozone loss: 1989–2010
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Stratospheric ozone loss in the Antarctic has been an issue of intense research since its discovery
in the early 1980s (Farman et al., 1985). Several estimates of ozone loss are available for Antarctica
since then. However, most of them deal with the ozone loss analysis for individual winters, modelled
or incomplete due to limitations of the analysed observations (e.g. Austin et al., 2010a; Lemmen
et al., 2006; Tilmes et al., 2006; Hoppel et al., 2005), and thus this makes the inter-annual comparison
very difficult. For instance, the CCM based studies are mostly exploited for the projection of
ozone recovery (e.g. Austin et al., 2010b). Although there are many studies using satellite data, a
continuous long-term ozone loss analysis is still not available using these data (Bevilacqua et al.,
1997; Hoppel et al., 2005; Tilmes et al., 2006). Therefore, we present a comprehensive ozone loss
analysis in the Antarctic using ground-based and satellite measurements for the 1989–2010 period,
similar to that in the Arctic (Goutail et al., 2005). Here we use the same model, measurements and
method to construct the whole time series, which makes a continuous, coherent and comparable
long-term ozone loss analysis. This analysis is also an extension of the study presented in the
previous chapter (i..e Chapter 6).

7.1 Data and methods

7.1.1 Ground-based measurements

We use measurements from 12 ground-based stations deployed in and around the continent, such
that they cover the entire region to provide a representative analysis for Antarctica, as described
in the previous chapter. As the Antarctic vortex is very stable and inter-annual variations in the
meteorology are very small compared to those of the Arctic, the estimated ozone loss is less depen-
dent on the selection of the stations, as demonstrated in Kuttippurath et al. (2010b). Nevertheless,
the analysis for each year contains data from at least eight stations and hence, assures a reasonable
estimate of the Antarctic ozone loss.
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7.1.2 Space-based observations

To compare with the ozone loss estimates based on the ground-based observations, v8.5 total column
ozone measurements from TOMS onboard Nimbus-7, Meteor-3, and Earth Probe are used (Bhartia
and Wellemeyer, 2002). The uncertainty of the TOMS ozone column data is 3.3% and the bias
among the TOMS ozone onboard different platforms is 1–2% (Kroon et al., 2008). Since 2005,
the OMI data are used as the continuation of the TOMS series. Therefore, a continuous series
comparable to that of ground-based is available from TOMS and OMI from 1979 to 2010, with the
exception of 1994 and 1995. In addition, we have used a bias corrected reanalysed ozone data set,
the Multi Sensor Reanalysis (MSR), compiled from various satellite observations during the period
1979–2008. Our comparisons show a good agreement between the ground-based and satellite/MSR
data at all ground-based stations. However, as shown by Hendrick et al. (2011) there is still some
bias of the order of 2% between TOMS/OMI and SAOZ observations at Dumount d’Urville, with
a strong seasonal dependence. As this bias was random, it was not possible to correct here.

In order to compare the ozone loss estimated with ground-based measurements in early winter,
we have calculated ozone columns from the Aura MLS ozone v3.3 profiles, which are averaged within
2⇥2� around each station. The South Pole data are produced by averaging the four nearest longitude
points (0, 90, 180, and 270� E) at 82� S, the southernmost latitude of the MLS observations. The
ozone columns from MLS ozone mixing ratio profiles are calculated between 10 and 60 km using the
MLS pressure and temperature data. The uncertainty of the MLS ozone profiles is about 5–10% in
the stratosphere (Livesey et al., 2011; Froidevaux et al., 2006). Our primary comparisons show a
good agreement between the ozone column calculated from the MLS profiles at various Antarctic
stations with that of the ground-based measurements. However, there were some systematic offsets
between the MLS ozone column and the ground-based data at some stations of the order of 5–10 DU
or 2–5% and this deficit has been taken into account for this analysis.

7.1.3 Tracer simulations from REPROBUS

We use the REPROBUS CTM (Lefèvre et al., 1994) discussed by Kuttippurath et al. (2010b) to
simulate the passive tracer from 1989 to 2010 for the chemical ozone loss computations. Our new
simulations, however, use the ECMWF Reanalysis (ERA) – interrim meteorological data to force
the model runs (Dee et al., 2011). The model version used in this work has a horizontal resolution
of 2⇥2� on 60 vertical levels from the surface to 0.1 hPa. We use the passive tracer simulated by the
model intialised in 1989, but we reinitialise the tracer fields on every June to match the Antarctic
winter period, i.e. the ozone loss on 1 June is set to zero. This implies that there is no ozone loss
until the initialisation day. The ECMWF ozone data were used for the initialisation of the model
runs. The passive tracer columns used here are the averages within 100 km of each station.

7.1.4 Ozone loss derivation

To find the ozone loss inside the vortex, we select the measurements using the vortex edge criterion
of Nash et al. (1996) and apply the passive method (e.g. Kuttippurath et al., 2010b; Goutail et al.,
1999) to the selected observations. Note that, although the satellite measurements are available
since 1979, the passive tracer simulations start in 1989 and hence, our ozone loss analyses start in
the latter year. For instance, Fig. 7.1 illustrates the ozone loss estimated inside the vortex from all
ground-based measurements for the Antarctic winter 2006. Generally, each station shows different
timings for the onset, progress and maximum in the ozone loss, depending on the history of the
exposure of the air parcels observed to contact with PSCs at sunlit parts of the vortex. It should
be noted that the transport of ozone depleted air masses over the station can also affect the onset
period (Hassler et al., 2011; Kuttippurath et al., 2010b).

There are some variations in ozone distribution inside the vortex with 2 separate air masses - the
edge region with a latitudinal extent of about 15� around the perimeter of the vortex as identified
by Roscoe et al. (2012) and the vortex core. The behaviour at any one station depends on which air
mass is above it, and many stations do not have the same air mass above them throughout the ozone
hole period. Faraday-Vernadsky and Rothera are most often in the edge region, with occasional
excursions between the edge and core of the vortex. Conversely, Dumont d’Urville is frequently in
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Figure 7.1: Ozone loss estimated from 11 ground-
based station observations inside the vortex (Nash
et al., 1996) for the Antarctic winter 2006. The
ozone loss is estimated as the measured ozone minus
the modelled passive tracer, which is initialised on
first of June. The average loss estimated from the
observations is shown in solid line. The dotted lines
represent �50, �150 and �250 DU, and �15, �30,
�45 and �60% of ozone loss. The vertical lines
represent day 210, 255 and 285.

the edge region, but occasionally inside the vortex core and the stations at 70–90� S are often inside
the vortex core. A detailed discussion of the station positions and related observational features
can be found in Kuttippurath et al. (2010b). On average (Fig. 7.1 solid line), the ozone loss in the
region starts by mid-June and rapidly increases to �160 DU or �52% by the end of September. The
maximum ozone loss of �185 DU or �56% was observed at the end of September/early October
2006. The loss stays around the peak loss, or reduces thereafter with respect to the meteorological
conditions and vortex persistence. The estimated ozone loss has an uncertainty of about 3–5%
(Kuttippurath et al., 2010b).

7.2 Results

7.2.1 Annual ozone minima

The time series of annual ozone minima at a given station usually indicates the amount of maximum
ozone loss in the region. In addition, any change in the minimum values and day when the minimum
is observed can also indicate the change in ozone trends. Fig. 7.2 presents the minimum ozone
observed by various instruments at each site during 1989–2010. Among the stations, South Pole
shows the lowest values of about 100DU, while Dumont d’Urville shows the highest of about 180DU.
These exclude the early years 1989–1992 and the warm winters (2002, 2004, 2007 and 2010), where
the vortex dissipated earlier than in other winters due to enhanced wave activity (WMO, 2011;
Tully et al., 2011). In 1989–1992, most stations observe a similar minimum of about 140–150DU,
except at Dumont d’Urville, where it is around 200 DU. Similarly, the warm winters of 2002 and
2004 show a comparatively higher minimum at all stations; ⇠140 DU at South Pole and ⇠175 DU
at other stations, excluding Dumont d’Urville. The other stations register the minimum ozone in
between these two extremes. For instance, Faraday-Vernadsky, Marambio, Syowa and Zhongshan
show values near to 140 DU, but Rothera and Concordia show slightly lower values of about 130 DU.
The minimum ozone observed at Belgrano, Halley and Neumayer is comparable with that at the
South Pole and is about 110 DU. This suggests that the centre of the vortex is not always at the
South Pole (e.g. Hassler et al., 2011; Waugh and Polvani, 2010; Harvey et al., 2002). Among the
winters the lowest minimum is observed in 2006 at most stations. However, the minimum observed
by the Brewer instrument at Zhongshan was about 85–90 DU in 2001 and is the lowest among the
stations/winters. The day when the minimum was measured is between day 260 and 270 at all
stations, which falls in the end of September and early October period, indicating the period of
maximum ozone loss in the Antarctic, as also mentioned in previous studies (Kuttippurath et al.,
2010b; Grooß et al., 2011; Hassler et al., 2011; Newman et al., 2007; Cariolle et al., 1986)

The satellite and MSR data are generally in very good agreement with the ground-based ob-
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Figure 7.2: Time series of annual ozone minima at the ground-based stations in Antarctica. The corresponding
satellite overpass data from TOMS/OMI, MSR and MLS are also shown. Station names on the map are demarcated
with the first three letters of the stations (e.g. ROT is for Rothera). The type of ground-based stations (e.g. Dobson
at South Pole and SAOZ at Concordia) are also marked on the plots. The SAOZ observation at Faraday/Vernadsky
starts in 1996. The pale grey line indicates the day when the minimum is observed by the ground-based sensor (axis
on the right). The horizontal dotted lines represent 150 DU of ozone.

servations and their best agreement is found at Halley, Arrival Heights and Dumont d’Urville.
Nevertheless, the ground-based instruments measure a comparatively higher minimum at Faraday-
Vernadsky and Syowa during 1989–2002. There is a known low bias (⇠10%) in the Rothera data
related to the uncertainties in the AMF used in the retrievals (Roscoe et al., 1999; Hendrick et al.,
2011), which is corrected for this study. The ground-based and satellite differences are mostly within
±5–10 DU, depending on station and winter. Note that these values are extracted from the available
measurements by each instrument, as some instruments lack continuous measurements during the
August–October period. Therefore, the observational characteristics and measurement gaps could
also contribute to the observed differences in the minimum ozone values.

7.2.2 Ozone loss above the stations

Figure 7.3 depicts the ozone (DU) and ozone loss (DU and %) inside the vortex at different Antarctic
stations as computed from various data sets averaged from mid-September to mid-October, the
minimum ozone period. The average ozone time series show equivalent features that are discussed
for each station/winter in Sect. 7.2.1 with corresponding changes in ozone values. Therefore, we
now discuss the ozone loss estimated from these ozone measurements for each station. At Arrival
Heights, the loss estimated from the ground-based observations is about �32% or �100 DU in 1989
and it rapidly increased to �160 DU or �50% by 1993. The loss gradually reduced to �130 DU or
�42% during the next three years and then increased again to �175 DU or �53% by 2001. During
the warm winter of 2002, the loss reduced considerably to �135 DU or �34%. Since 2002, there
have been two very cold and four relatively warm winters that show extreme values in ozone loss.
The largest loss of about �175 DU or �53 to �56% was in the colder winters of 2003 and 2006,
and the lowest loss of around �145 DU or �42% was in the warmer winters of 2004, 2005, 2007 and
2010.

The evolution of ozone loss at other ground-based stations is similar, but with slight differences
in the ozone loss values. On average, the loss at Syowa and Zhongshan is similar to that of Arrival
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Figure 7.3: The average ozone (left) and ozone loss in DU (middle) and % (right) estimated inside the vortex (Nash
et al., 1996) from long-term ground-based measurements at various Antarctic stations during the mid-September
to mid-October period of 1989–2010. The corresponding satellite data from TOMS/OMI, MSR and MLS are also
shown. The horizontal dotted lines represent 150 DU of ozone (left panel), �150 DU of ozone loss (middle panel) and
�50% of ozone loss (right panel).

Heights, about �45%, whilst the loss at Marambio and Faraday-Vernadsky is slightly smaller, about
�43%. Halley exhibits larger ozone loss of about �50% and the stations installed inside the vortex
core; Belgrano, Neumayer and South Pole, show the highest loss of about �55 to �60%. In contrast,
the lowest ozone loss of about �38% is estimated at the edge region station Dumont d’Urville. All
stations show the lowest ozone loss in 2002 (about �110 to �140 DU or �35 to �40%) and the
highest in 2006, except for Marambio, where it shows the lowest loss in 1997. This discrepancy
could be due to the lack of continuous measurements in the late September–early October period
in 2006 at Marambio. The edge stations (Marambio, Faraday-Vernadsky and Dumont d’Urville)
show comparatively lower ozone loss than the stations inside the vortex core (South Pole, Halley
and Belgrano) due to relatively warmer vortex conditions. The analyses based on satellite and
MSR data return identical ozone loss values to those of ground-based observations at all stations
and the agreement is exceptionally good at Halley, Neumayer, Syowa and Zhongshan, within ±1%.
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Figure 7.4: Temporal evolution of the ozone loss estimated from ground-based observations (red) inside the vortex
(Nash et al., 1996) are compared to that from TOMS/OMI, MSR and MLS in DU (left panels) and % (right panels)
in 1989–2010. The MSR and MLS have data for all stations from June onwards (e.g. Dumont d’Urville), while the
ground-based average consists of edge stations in the early winter period. The horizontal dotted lines represent �50
and �150 DU of ozone loss (left panels) and �25 and �50% of ozone loss (right panels), while the vertical lines
represent day 181, 225 and 275.

However, the differences are slightly larger at Dumont d’Urville in 1998–2004, about ±2–3% or
±5–15 DU.

7.2.3 Ozone loss averaged over all stations

Figure 7.4 shows the average ozone loss estimated for Antarctica from the ground-based,
TOMS/OMI and MSR data during 1989–2010. In order to find the average ozone loss for the
region, we have found the mean ozone loss inside the vortex of each station for each day from May
to November. No special scaling is performed to account for the differences in the position of the
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Table 7.1: The vortex-averaged (Nash et al., 1996) ozone loss averaged between 26 September and 5 October (during
the maximum ozone loss period). The ozone loss rates estimated between day 13 August and 2 October from ground-
based measurements in the Antarctic are also shown. The selection of this time-line depends on the measurement
capability of ground-based instruments, where most of them have measurements so that the analyses fairly represent
the average of Antarctica. The loss rates are given in DU/day and % day�1 in 50 Days. The uncertainty of the
estimated ozone loss is about 3–5%.

Year Loss Loss Loss Rate Loss Rate
DU % DUday�1 % day�1

1989 -111 -37 1.96 0.61
1990 -112 -37 1.57 0.51
1991 -132 -43 1.57 0.43
1992 -143 -48 2.35 0.80
1993 -158 -49 1.57 0.45
1994 -161 -51 1.67 0.55
1995 -160 -51 1.76 0.53
1996 -122 -41 1.47 0.45
1997 -156 -49 1.96 0.59
1998 -150 -50 1.96 0.67
1999 -152 -48 1.96 0.61
2000 -167 -51 1.86 0.51
2001 -182 -53 1.86 0.53
2002 -167 -40 1.47 0.26
2003 -168 -54 1.86 0.57
2004 -155 -45 1.67 0.47
2005 -154 -50 1.76 0.51
2006 -175 -55 2.05 0.63
2007 -159 -50 1.96 0.55
2008 -168 -53 2.15 0.55
2009 -147 -49 1.76 0.61
2010 -154 -46 1.96 0.57

stations in the vortex, as we are finding the average ozone loss inside the whole vortex. Furthermore,
our analysis shows insignificant differences between the loss estimates for various vortex averaged
data clustered by different vortex edge criteria (inside vortex, vortex core and over the EqLs 65–
90�S), as also mentioned in the previous chapter. In general, the loss starts in mid-June/early July,
in agreement with the appearance of PSCs and heterogeneous chlorine activation in the sunlit parts
of the vortex (Solomon, 1999; Solomon et al., 1986), except during 1989–1990, where it begins in
early August. On the same note, the ozone loss onset in the very cold winters such as in 2003 and
2006 is about a month earlier, in early June. Similarly, the warm winter of 2002 and 1989–1990 show
late onset of ozone loss. All years exhibit a higher loss rate during August–September and the peak
loss during the end of September and early October period. On average, the maximum loss until
mid-October is around �120 DU or �40% in 1989–1990 in agreement with the lower abundances of
stratospheric halogens during that period (WMO, 2011) and around �160 DU or �48% thereafter
due to saturation of ozone loss (e.g. Jiang et al., 1996; Solomon, 1999; Solomon et al., 2005; WMO,
2011), where the colder winters (2000, 2003 and 2006) show a slightly greater reduction of about
�170 DU or �55%. As anticipated, the warmer winters show the opposite pattern of lower ozone
loss, as shown by the �40% loss in 2002.

The TOMS/OMI and MSR analyses show a remarkably similar evolution of ozone loss in all
winters and the differences among various data sets are mostly within ±5% or ±10 DU. The evolution
and maximum ozone loss in the ozone column computed from MLS ozone profiles exhibit a very
good agreement with the ground-based estimates, where the differences are within ±2–3% or 5–
7 DU. The MLS and MSR data are available from the beginning of each winter for all stations and
hence, their average represents data from all stations, in which many of them have different scales of
ozone loss in the June–August period. However, the ground-based average contains measurements
only from the edge stations (e.g. Dumont d’Urville and Rothera), which gives rise to the difference
in the ozone loss estimates of ground-based and MLS observations in June–August. Note also that
there is a very good agreement between the ozone loss estimates based on MLS and MSR data
during the 2004–2008 period, reinforcing the aforesaid statement. This comparison corroborates
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Figure 7.5: The ground-based ozone (in DU) and ozone loss (in DU and %) inside the vortex (Nash et al., 1996)
averaged between mid-September and mid-October (left) and in October (right) during the Antarctic winters 1989–
2010 compared to those of TOMS/OMI, MSR and MLS. The corresponding vortex averaged temperature at 475 K
(in Kelvin – K) from the ECMWF operational analyses is also shown. The EEASC data for the corresponding years
are shown in the inverted scale in the bottom panels. The horizontal dotted lines represent �100 and �150 DU of
ozone loss (top), �40 and �50% ozone loss (second panel from top), 175 and 220 DU ozone (third panel from top)
and 195 K temperature (fourth panel from top) in the respective plots.

the potential and strength of the Aura MLS measurements to be used for total column ozone loss
analyses in the polar regions. This is particularly significant as the polar night measurements are
not possible by UV-visible instruments.

7.3 Discussion

7.3.1 Inter-annual variability of ozone loss

Figure 7.5 shows the inter-annual variations in vortex averaged ozone loss deduced from different
data sets in two different periods. In the Antarctic, the maximum reduction in ozone in each winter
is observed by the end of September to early October period and hence, a temporal average of
this period is compared to the conventional October average. In the former period, the ground-
based estimates show a steep increase of ozone loss from �90 to �155 DU or from �33 to �44%
in 1989–1994. There was then a sharp decrease to �125 DU or �42% by 1996, although the loss
again slipped gradually to the decadal maximum of �181 DU or �53% in 2001. The warming in
2002 reduced the loss to �151 DU or �40%, but it remained around �160 DU or �48% thereafter,
with the highest loss in the coldest winter of 2006, about �53%. These ozone loss estimates mostly
follow the amount of halogens in the stratosphere during the respective periods, as the stratospheric
chlorine slowly increased from 1989 to 1994, peaked during 1996–2000 and then started to decrease
slowly thereafter (e.g. Newman et al., 2007; Jones et al., 2011; WMO, 2011).

The October average also shows a similar ozone loss evolution, but the highest loss is still
observed during the mid-September–mid-October period. Therefore, we have derived a ten-day
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Figure 7.6: The correlation between
ozone loss estimated from ground-
based measurements (Table 7.1) and
the product of V

PSC

and EEASC.
The V

PSC

are calculated from the
ECMWF operational analyses for the
period 1989–2010.

ozone loss average during the peak loss period: 26 September to 5 October to find the maximum
loss during each winter in 1989–2010 for a reference and these are given in Table 7.1. The ozone
loss rates between day 225 (13 August) and 275 (2 October), during which most ground-based
instruments have measurements, are also deduced. The ozone loss in this time window is analogous
to that discussed for the other season, but as expected, the values are about 2–4% higher. The
loss rates also show a similar time evolution, with the largest loss rates (0.63–0.67%day�1) in the
coldest winters of 1998 and 2006 and the smallest (0.26% day�1) in the warmest winter of 2002,
except for the Pinatubo year 1992 where the loss rates are relatively larger.

In agreement with the ozone loss analyses, the ozone values averaged over the mid-September to
mid-October period (Fig. 7.5 left) show a reciprocal evolution in each winter. The ozone evolution
during the period is consistent with that discussed in Sect. 7.2.2, but with slight differences in
values. The October average shows identical behaviour in ozone time series, but in slightly larger
than the aforesaid ones. This confirms that the maximum ozone loss in the Antarctic is observed
during the mid-September and mid-October period, which is in agreement with results of previous
studies (e.g. Kuttippurath et al., 2010b; Hassler et al., 2011; Solomon, 1999).

The gross features of the October average ozone (Fig. 7.5 right) from ground-based and satellite
observations, and MSR data are in excellent agreement with the HALOE and Stratospheric Aerosol
and Gas Experiment (SAGE) October average ozone shown by Yang et al. (2008). The ozone and
ozone loss values are also well correlated with the time series of average temperature and heat flux
during each winter (e.g. Yang et al., 2008; Salby et al., 2011), where the highest temperatures were
observed in 2002 and the lowest in 2006. As noted for ozone, the difference in the vortex temperature
(at 475K) averaged from mid-September to mid-October 2002 to that of other winters is ⇠10 K,
indicating the intensity of the warming in this particular winter.

7.3.2 Ozone loss and VPSC⇥EEASC

A compact relationship between ozone loss (in DU) and V
PSC

has been found in the Arctic
stratosphere (Rex et al., 2006; Harris et al., 2010). In this study we analyse this relationship in
the Antarctic stratosphere. Contrary to the Arctic, where the ozone loss is largely controlled by
the inter-annual variability in the meteorology, the Antarctic ozone loss is dictated by the amount
of halogens present in the stratosphere. Therefore, we correlate the product of V

PSC

and EEASC
(Newman et al., 2007) against ozone loss in the Antarctic (e.g. Tilmes et al., 2008, 2006, 2004;
Huck et al., 2007). Fig. 7.6 delineates the correlation between the ground-based ozone loss and
V

PSC

⇥EEASC for the 1989–2010 period. Here the ozone loss is the loss averaged between 26
September and 5 October (as shown in Table 7.1), V

PSC

is averaged from May to November over
350–675 K and EEASC is the annual average for each year. The correlation between the ozone
loss and V

PSC

⇥EEASC shows about r = 0.61–69 for ozone loss in both relative (%) and absolute
(DU) units. However, the correlation between ozone loss (DU) and V

PSC

is about r = 0.41 in the
Antarctic and r⇠= 0.94 in the Arctic (Rex et al., 2006; Harris et al., 2010). as the year-to-year
variability of ozone loss and temperature in the Antarctic is very weak as shown in Fig. 7.5 and
also reported in other studies (e.g WMO, 2011 and references therein). Additionally, studies have
already shown that the occurrence of PSCs (Cacciani et al., 1997; Negro et al., 1997) and ozone
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loss (Jiang et al., 1996; Solomon et al., 2005; WMO, 2011) have reached the saturation levels in the
Antarctic vortex core since early 1990s. Alternatively, in addition to numerous minor warmings,
every second winter is subjected to a major warming in the Arctic (e.g. Charlton-Perez et al., 2008;
Kuttippurath and Nikulin, 2012) and hence, significant occurrence of PSCs is limited to relatively
cold winters there (Manney et al., 2005). Therefore, ozone loss has shown correspondingly large
inter-annual variability (WMO, 2011; Kuttippurath et al., 2010a; Harris et al., 2010; Goutail et al.,
2005). On the other hand, such warm winters are apparently absent in the Antarctic and thus,
there is no one-to-one correlation between ozone loss and V

PSC

or V
PSC

⇥EEASC.

7.3.3 Ozone loss: comparison with other estimates

The total column ozone loss deduced by Huck et al. (2007) shows a peak loss of around �120 DU in
most years, with the largest loss of about �130 DU in 2001 and the smallest loss of about �88 DU
in 2002. The partial column ozone loss estimated over 380–550K from the satellite ozone profiles
by Tilmes et al. (2006) is about �120 to �145 DU. The peak loss deduced from the available
measurements (maximum three ozone profiles) is about �155 DU in 2003 and the smallest of about
�115 DU during 1996–1997. Both analyses show lower ozone loss than in our estimates. The
differences with the results of Huck et al. (2007) are largely due to the differences in tracer used in
the respective calculations. When we use the same tracer to compute the ozone loss from ground-
based measurements, we find relatively lower ozone loss values (of up to 50 DU for the maximum
loss, depending on year, and 50–120 DU during mid-October through the end of November in all
winters) than our original ozone loss estimates with the model tracer. This difference reduces to a
large extent when the computations are performed in relative units (%), where the negative bias for
the peak ozone loss is about 2–10%. This suggests that the differences and inaccuracies in tracer
values induce some uncertainty in the derived ozone loss amounts and hence, it points out the
necessity of the ozone loss estimations in both units (in DU and %). The analyses of Tilmes et al.
(2006) consider a partial column over 380–550 K, which consists only two-thirds of the ozone loss
in the Antarctic stratosphere as the ozone loss occurs over a broad range of altitudes (350–675 K)
there (e.g. Kuttippurath et al., 2013; Lemmen et al., 2006; Hoppel et al., 2005, 2003; Bevilacqua
et al., 1997). Therefore, the missing ozone loss above 550 K in their study is one of the reasons
for the differences with the total column ozone loss analyses presented in this study. Also, the
available estimates from Tilmes et al. (2006) use 15 HALOE ozone profiles inside the vortex in
each winter (1991–2004), which are limited to the sampling pattern of the satellite. Additionally,
temporal coverage of these measurements is confined to spring. Conversely, the ILAS measurements
are available mostly in the winter months of each year since 1992, while the maximum loss in the
Antarctic is observed in spring. In summary, in addition to the uncertainties of the measurements
used in the ozone loss estimations, the differences in tracers and ozone column range also contribute
to the offsets in the ozone loss estimates.

7.4 Conclusions
A comprehensive analysis of ozone loss in the Antarctic vortex from 1989 to 2010 is presented using
ground-based Brewer, DOAS, Dobson and SAOZ, and space-borne TOMS/OMI and Aura MLS
observations. In addition, a bias corrected ozone data (MSR) constructed from various satellite
observations during 1989–2008 is also exploited for this purpose. The passive method is applied
to find the ozone loss at each station, and then averaged to find the mean loss in the Antarctic.
On average, the ozone loss at Arrival heights, Belgrano, Concordia, Dumont d’Urville, Faraday-
Vernadsky, Halley, Marambio, Neumayer, Rothera, South Pole, Syowa and Zhongshan shows about
�160 to �180 DU or �48%, except for the years 1989–1991 and the extreme winters of 2002 and
2006. The loss in 1989–1991 and 2002 is about �110 to �140 DU or �33 to �40%, and during 1992–
2010 (except 2002) is around �160 DU or �48%. The edge region stations (e.g. Dumont d’Urville)
show a lower loss than the stations inside the vortex core (e.g. South Pole). In general, the ozone
loss in the Antarctic starts by mid-June and intensifies in August–September, peaks by the end of
September/early October (coincides with the minimum ozone period), and ozone recovers thereafter.
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The estimated ozone loss time series is consistent with the EEASC and temperature distribution in
each winter. Probably because of saturation of the vortex core with PSCs and small inter-annual
variability of ozone loss, the V

PSC

⇥EEASC—ozone loss correlation yields about 0.61–0.69, which
stands in stark contrast with the Arctic scenario where the correlation between V

PSC

and ozone
loss (DU) is about 0.9, as the large inter-annual variability in the Arctic meteorology suppresses the
gross effect of stratospheric halogens on the ozone loss. The ozone loss estimated from TOMS/OMI,
Aura MLS and MSR data also exhibits a proportional progress of ozone and ozone loss as for the
ground-based measurements throughout the period (1989–2010). The differences among these data
are within ±5%, and are within the error limits of the respective observations.
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Large variability in the Antarctic ozone loss has been witnessed in the last few years (2004–2010)
relative to other winters since 1992 (e.g. WMO, 2011; de Laat and van Weele, 2011; Santee et al.,
2004). For instance, the winters 2004 and 2010 were warm with minor warmings and hence, showed
limited ozone loss (Sonkaew et al., 2013; Huck et al., 2007; Tilmes et al., 2006; Yang et al., 2006).
The first fortnight of August 2005 witnessed a high rate of ozone loss and an unprecedented ozone
hole (WMO, 2011). The winter 2006 was one of the coldest and hence, experienced the largest
ozone hole of Antarctica to date (Santee et al., 2011; WMO, 2011). The winters 2007 and 2009 were
characterised by average temperatures and hence, ozone holes of a moderate size (Kuttippurath
et al., 2013; Tully et al., 2008). However, the winter 2008 was again very cold and characterised
by a large ozone hole (WMO, 2011). Therefore, these seven winters merit a detailed discussion in
terms of polar processing and ozone loss during the period.

Figure 8.1 shows the position of the polar vortex on 1 October of each year at two representative
altitudes in the lower and middle stratosphere, at 500 and 675 K. The maps also demonstrate the
inter-annual variability of the winters, with the largest and strongest vortex in 2005 and 2006,
and the warmest and weakest in 2004 and 2010. Therefore, in this study, we discuss (i) the inter-
annual variability of ozone loss and chlorine activation during these winters, (ii) spatial, temporal
and vertical variability of Antarctic ozone loss and (iii) contribution of various chemical cycles to
the ozone loss in the stratosphere. Additionally, (iv) we also analyse the ozone loss driven by the
NO

x

cycle in the middle stratosphere and its contribution to the total column ozone loss in the
stratosphere. Apart from that, the past seven Antarctic winters offer a good opportunity to test the
chemical process in numerical models. Furthermore, the Aura MLS observations (e.g. Nair et al.,
2011; Santee et al., 2008; Froidevaux et al., 2006), the best vortex sampled satellite measurements
currently available, are compared to the model results. Therefore, for the first time the ozone loss
can be studied with such high resolution measurements with high spatial and temporal coverage
inside the Antarctic vortex. Previous satellite measurements were relatively limited to a small
temporal and spatial area as far as the high latitude observations are concerned (e.g. Kuttippurath
et al., 2013; Tilmes et al., 2006; Hoppel et al., 2005). While the UARS MLS had a similar latitudinal
coverage (e.g. Nair et al., 2012; Waters et al., 1993), the frequency of its polar measurements was
lower than that of Aura MLS (Kuttippurath et al., 2012a). Therefore, this study offers some new
insights on the polar processing and ozone loss features of the Antarctic stratosphere.

Here we use the same model that used for the Arctic ozone loss studies described in Sect. I and
Kuttippurath et al. (2010a). For each Antarctic winter considered the model was run from 1 May to
30 November. The chemical species were initialised from a long-term simulation of the REPROBUS
CTM. We use the Aura MLS measurements v2.2 for comparison with our simulations. Note that
there is a new v3.3, but the difference between the two versions in the daily vortex averaged data
is negligible.
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Figure 8.1: The potential vorticity maps from ECMWF operational analyses at 500 and 675 K on 1 October of the
Antarctic winters 2004–2010.

8.1 Results and discussions

8.1.1 Ozone loss: the 2004–2010 average

To elucidate various chemical ozone loss features, we analyse the vertical distribution of the average
ozone loss in 2004–2010 for different EqL bins estimated from the model and MLS data from May
to November, and is shown in Fig. 8.2. The EqL based analyses extend from 63� to 83� S in
2� increments and the final EqL coincides with the highest EqL calculated for the measurement
points. Our analysis shows that the chemical loss starts at lower EqLs of 63�–67� S at the edge of
the Antarctic vortex in June, above 600 K, as also shown by Lee et al. (2000) and Roscoe et al.
(2012). It propagates down to the lower altitudes by July and the loss is largest at the 63�–69� S
EqL. The loss increased again in August, with the EqLs of 63� and 83� S showing the largest and
smallest loss, respectively, and is in accordance with the increase in incidence of sunlight over the
region. A clear difference in the amount of ozone loss estimated at different EqLs is well simulated.
At the edge of the vortex, maximum ozone loss of 2.2 ppmv is found around 500 K, while in the
70�–80� S EqL range the peak loss is estimated above 600K.

The ozone loss is continued through to September, where all EqLs show very large loss. The
largest loss is still found in the lower EqLs of 63�–69� S, reaching about 3 ppmv at 500 K. The higher
EqLs (83�–75� S) show the smallest ozone loss and it peaks in the middle stratosphere (around
600 K) and other EqLs show their peak loss in the lower stratosphere, below 575 K. Above 600 K, all
EqLs show similar ozone loss of about 1.5 ppmv. The maximum loss is about 3.4 ppmv in 65�–70� S
at 500 K, 2.7 ppmv in 70�–75� S at 550K, 1.9 ppmv in 75�–80� S at 575K and 1.5 ppmv over 80�–

Figure 8.2: The seven year average (2004–2010) monthly mean ozone loss estimated at different EqL bins from
63� to 83�S EqL (in 2�S) from the MIMOSA-CHIM simulations and MLS measurements. The black dotted lines
represent 0 ppmv.
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Figure 8.3: Vortex averaged (�65� EqL) relative
contribution of selected ozone depleting chemical
cycles (as noted in the plots) to the total chemical
ozone loss averaged for the seven Antarctic win-
ters in 2004–2010. The blue dashed-lines represent
550 K.

83� S at 600K, and thus the altitude of maximum loss increases with EqL until September. The
maximum loss is recorded in October, as expected, but the difference between the loss in October
and November is very small as there is no (significant) sustained ozone loss in November in the lower
stratosphere. The maximum loss still remains around 3 ppmv in October, and all EqLs show more
or less the same loss at the peak loss altitude of around 500 K. In addition, all EqLs show similar
or the same ozone loss below this altitude. Above 500 K, the ozone loss shows slight differences,
with the largest loss occurring at the highest EqLs. As the ozone recovers in November through
dynamical process, the maximum ozone loss reduced to 2.7 ppmv, although the pattern of ozone
loss with EqL is the same as that of October.

The analyses with model results are in good agreement with those of the MLS observations.
Nevertheless, the loss estimated from the observations is comparatively more compact with altitude
in October–November, and the model–measurement differences are a little larger in September. The
comparison of ozone loss above 550 K shows that the model slightly overestimates the ozone loss
there. These differences will be discussed in Sect. 8.1.3.1.

8.1.2 Chemical cycles: the 2004–2010 average

Since there has been no comprehensive evaluation of the contributions of various chemical cycles
to the ozone loss in the stratosphere throughout various Antarctic winters, we calculate the mean
contributions of various cycles to the ozone loss in 2004–2010, and the results are presented in
Fig. 8.3. Contribution of each cycle is given in percent of the total contribution, as discussed in
Chapter 4. In the lower stratosphere, about 90% of ozone loss is controlled by the ClO–ClO and
BrO–ClO cycles from June to October, with the former dominating in the July–September period
and the latter in June and October. Therefore, contributions of these cycles are complementary with
time, and their contributions are maximum and nearly equal during the peak loss period of mid-
September/mid-October, about 35–45%. A constant contribution of about 5–10% from the ClO–O
cycle is also evident from May to November in the lower stratosphere (below 500 K). Conversely, the
ozone loss in late October and November is controlled by the HO

x

cycle with about 40%, as there
are no PSCs and activated ClO in this period. However, it should be noted that, contribution of
this cycle has little significance in the ozone hole period (June–October). Above 550 K, contribution
from NO

x

dominates in spring while ClO–O dominates in winter, depending on day of the year and
altitude. Contributions of these cycles principally depend on the available O-atoms, as the rate
limiting step of these cycles is the combination of a specific molecule with an O-atom (as NO

2

+O
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Figure 8.4: The area of PSCs estimated from the
ECMWF operational meteorological data using the
Hanson and Mauersberger (1998) criterion. The daily
simulations of H

2

O and HNO
3

from the MIMOSA-
CHIM model are used for these calculations. The
white dotted lines represent 500 and 675 K.
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for NO
x

for the middle stratosphere). The analysis shows that the Antarctic ozone hole is primarily
controlled by the halogen cycles in tune with previous findings (e.g. WMO, 2011 and references
therein), but the ozone loss above 550 K depends on the dynamics, availability of NO

x

and presence
of O-atmos in each winter.

8.1.3 Inter-annual variability

We have already seen the general features of ozone loss evolution and related chemical cycles in
the stratosphere. We now discuss the inter-annual variations in the area of PSCs (A

PSC

), chlorine
activation, ozone loss, and ozone production and loss rates during 2004–2010.

8.1.3.1 PSC and chlorine activation

Figure 8.4 shows A
PSC

calculated by applying the T
NAT

threshold given by Hanson and Mauers-
berger (1998) using the ECMWF pressure and temperature data, as discussed in previous chapters.
The A

PSC

data are averaged meridionally over 50�–90�S. In general, the areas of PSCs show similar
timing of onset, around mid-May, and they mostly disappear by early October. However, the areas
of PSCs and their vertical extension are comparatively smaller in May, September and October,
consistent with the results of previous studies of various Antarctic winters (e.g. Solomon et al., 1986;
Shibata et al., 2003; Pitts et al., 2009). The maximum areas of PSCs are generally found in the
July–August period and are estimated to be about 2.5⇥107 km2. While the frequency of these high
values is of the order of a few days in 2004, 2009 and 2010, those high values were never reached in
2007. The areas of PSCs in 2006 and 2008 show the largest values of >2⇥107 km2 for a longer period
from mid-June to mid-September over a broader vertical range. In 2005, the A

PSC

(>2⇥107 km2)
spreads to a vertical extent over 400–750 K, wider than any other winter in June–July, indicating
the coldest June–July amongst the winters. Yet, the maximum areas of PSCs (2.5⇥107 km2) are
still confined to comparatively a small vertical region of 425–500 K in July–August. These analyses
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Figure 8.5: Vertical distribu-
tion of the vortex averaged (�65�
EqL) ClO estimated from the
MIMOSA-CHIM model and MLS
observations for the Antarctic
winters 2004–2010. The model
fields are sampled at the loca-
tion of the MLS observations for
each measurement inside the vor-
tex and then averaged for the cor-
responding day. The measure-
ments are selected between 10 and
16 h (local solar time) and solar
zenith angles below 89� as they
available. Both model results and
data are smoothed for seven days.
The white dotted lines represent
500 and 675 K.

suggest that winters 2005, 2006 and 2008 were the coldest and 2004 and 2010 were the warmest
amongst the winters.

Compared to the PSC observations by the CALIPSO (Cloud Aerosol Lidar and Infrared
Pathfinder Satellite Observations), the simulated PSC areas are in reasonable agreement as far
as the spatio-temporal extension of the observed PSCs are concerned (Pitts et al., 2009). The
altitude and time of the maximum area of PSCs are also in accordance with those of the satel-
lite observations. However, the calculated PSC areas consistently and systematically overestimate
(around 0.5⇥107 km2) the observed ones at 425–550 K in July and August in all winters. This is due
to the fact that, the calculations assume to form the PSCs whenever the temperatures are below
the T

NAT

threshold, which is not necessarily the case for the PSC formation in the real atmospheric
conditions.

Figure 8.5 compares the simulated and measured ClO at the MLS sampling points inside the
vortex, with solar zenith angle (SZA) less than 89� and local solar time between 10 and 16 h as they
were available, for the Antarctic winters 2004–2010. In MIMOSA-CHIM, strong chlorine activation
is found in 2005, where a maximum of 1.6 ppbv is simulated in July, consistent with the areas of
PSCs in that winter. The other winters show a similar distribution of ClO and thus the chlorine
activation. The simulated ClO stands in contrast to the PSC areas estimated in each winter, which
showed the largest A

PSC

in the coldest winters of 2005, 2006 and 2008. However, when we examine
the MLS measurements, they mostly follow the temperature history of each winter and hence, PSC
area calculations, as the ClO observations show the strongest chlorine activation in 2005 and the
weakest in 2010. The high ClO values of >1.5 ppbv are found from July to the end of September
over 450–600 K in the colder winters, but around 550K episodically in July–August in the warmer
winters in the observations. Therefore, contrary to the model results, the vortex averaged MLS
observations display a clear inter-annual variation in the chlorine activation. These comparisons
show that the model underestimates the observed ClO over 450–600 K.

In order to find out the reasons for the differences between simulated and measured ClO, we
compared the simulated HCl, N

2

O and HNO
3

with the MLS observations and are presented in
Fig. 8.6. On average, the N

2

O comparisons show that the simulations are higher than the measure-
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Figure 8.6: The vortex averaged (�65� EqL) verti-
cal and temporal evolution of ClO, HCl, HNO

3

, N
2

O,
O

3

and ozone loss from the MIMOSA-CHIM model
and MLS measurements. The data are the average of
seven Antarctic winters 2004–2010 and are smoothed
for 7 days.
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ments, as illustrated by the 50 ppbv and 100 ppbv isopleths. This bias in simulations implies that
the vertical descent in the model is slower during the polar winters. Consequently, the Cl

y

(and thus
ClO) and ozone in the model are relatively lower. Both HCl and ozone comparisons corroborate this
feature of simulations, as the HCl values are higher (about 0.5 ppbv), and ozone and ClO are lower
(about 0.5 ppmv of O

3

and 0.3–0.5 ppbv of ClO) in the calculations. The HNO
3

comparisons also
point out that the denitrification in the model is slightly overestimated. Therefore, we applied the
Cl

2

O
2

recombination rate constant of Nickolaisen et al. (2006) instead of the JPL recommendation,
as suggested by von Hobe et al. (2007). However, the ClO results did not improve significantly and
hence, the original simulations are presented.

Note that the lower model top (850 K) could also influence the slower descent in the model.
Furthermore, the interpolated data can sometimes be at the edge of the vortex in contrast to real
atmospheric situations, which could make lower simulated values, such as the gaps or near-zero
values shown in the ClO plots. Also, the simulations use different meteorological data for each year
and there can be small interannual differences in the diabatic descent, depending on the accuracy
of the wind fields. These have to be kept in mind while interpreting the simulations. However, in
a similar study, Santee et al. (2008) compared the MLS measurements to SLIMCAT model results
and found that their simulations slightly overestimate the measurements for the Antarctic winters
2004 and 2005. They attributed these differences to the equilibrium PSC scheme of the model. In
contrast, our model ClO results underestimate the observations, although using a very similar PSC
scheme in the model. It suggests that even if the models use similar PSC schemes, the difference in
model dynamics can induce changes in the simulated results. Nevertheless, it has to be noted that
the model has performed better in the northern hemispheric simulations, where the ClO simulations
slightly overestimate the MLS measurements in the 2011 winter (Kuttippurath et al., 2012a), but
slightly underestimate them in 2005–2010 (Kuttippurath et al., 2010a), indicating the problems in
modelling the vertical transport in CTMs.
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Figure 8.7: Vertical distribu-
tion of the vortex averaged (�65�
EqL) ozone loss estimated for the
Antarctic winters 2004–2010. The
model fields are sampled at loca-
tion of the MLS observations for
each measurement inside the vor-
tex and then averaged for the cor-
responding day. Left: the ozone
loss derived from the difference
between the passive tracer and
the chemically integrated ozone
by MIMOSA-CHIM. Right: the
ozone loss derived from the dif-
ference between the MIMOSA-
CHIM passive tracer and the
ozone measured by MLS. Both
model results and observations are
smoothed for seven days. The
white dotted lines represent 500
and 675 K.

8.1.3.2 Ozone loss: vertical and temporal features

Figure 8.7 shows the vortex averaged ozone loss estimated from the model and MLS at the MLS
sampling locations inside the vortex in 2004–2010. As discussed in Sect. 8.1.1, the ozone loss onset in
the model occurs in mid-June at altitudes above 550 K and gradually propagates down to the lower
stratosphere by mid-August. The loss intensifies by mid-August, peaks by late September/early
October and slows down thereafter. As expected, the colder winters of 2005 and 2006 show early
onset, in mid-June at the sunlit latitudes.

The estimated ozone loss is less than 0.5 ppmv above 675 K until mid-August, increases to 1–
1.5 ppmv by mid-September in the lower stratosphere and peaks to 2.5–3.7 ppmv over 450–600K by
early October, consistent with the temporal and vertical extent of the area of PSCs in these winters.
The maximum ozone loss of about 3.5–3.7 ppmv is derived around 550K in 2005–2006 and about
3 ppmv around 500 K in 2007–2008. Relatively smaller ozone loss is found in the warmer winters
of 2004 and 2010, where the peak loss is about 2.6 ppmv around 475K. A similar range of ozone
loss of around 2 ppmv, but in a slightly broader vertical extent of 450–600 K, is simulated in 2009.
Therefore, the center of the peak ozone loss altitude (loss >2 ppmv) shows interesting variations
with the meteorology of the winters, as it is located around 550K in the very cold winters (e.g.
2005 and 2006), around 500 K in the moderately warm winters (e.g. 2007) and around 475 K in the
warm winters (e.g. 2004 and 2010).

The timing and vertical range of ozone loss in the simulations are similar to those of the obser-
vations in the lower stratosphere. The ozone loss onset is in mid-June, except for the colder winters
as discussed previously. The lower stratospheric ozone loss starts by early August, strengthens by
mid-September and maximises in late September to early October period, consistent with those of
the observations. The large ozone loss observed above 550 K in September–October in the colder
winters and in November of all winters are also reproduced by the model. However, the model
consistently overestimates the measured ozone loss in the middle stratosphere in all years by about
0.2–0.5 ppmv in spring, as the model underestimates the measured ozone by the same amount at
these altitudes, primarily due to the slower descent in the model. Note that both the simulations
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Figure 8.8: The maximum ozone loss estimated
in the Arctic (depending on final warming and
major warmings in each winter) and Antarctic
(averaged between 26 September and 5 October)
winters 2004–2010 inside the vortex. The ozone
loss is derived from the difference between the pas-
sive tracer and the chemically integrated ozone by
MIMOSA-CHIM. The vertical dashed lines repre-
sent 2.5 ppmv (left) and 1 ppmv (right) ozone loss,
and the horizontal dotted lines represent 475 and
550 K.

and measurements provide consistent results for the peak ozone loss altitudes in each winter.

The ozone loss derived from the SCanning Imaging Absorption spectroMeter for Atmospheric
CHartographY (SCIAMACHY) ozone profiles using the vortex descent method shows comparable
values for the Antarctic winters 2004–2008 (Sonkaew et al., 2013). There is also a good agreement in
deriving peak ozone loss values (around 3–3.5 ppmv) and the differences in the altitudes of maximum
loss for various winters, as discussed previously for the modeled/MLS ozone loss. In addition,
the large loss above 500 K found in the model/MLS data is also inferred from the SCIAMACHY
measurements, confirming the findings of this study.

8.1.3.3 Column ozone loss

We have calculated the partial column ozone loss from the simulations and observations at the
MLS footprints inside the vortex for each winter. Since significant ozone loss is found over 400–
600 K, we have calculated the loss in this altitude range together with the complete altitude bound
of the model. The partial ozone column loss computed over various altitude ranges is given in
Table 8.1. The lowest loss among the winters is in 2004 and the highest in 2005, consistent with the
meteorological situation of the winters. All other winters show ozone loss of around 170±10 DU.
The average partial column ozone loss above the 550 K level computed from the modelled and
measured data for the seven winters is about 50±5 DU. Since the ozone loss above 550 K is largely
controlled by the NO

x

cycle, as discussed in Sect. 8.1.2, it indicates that this cycle contributes about
one-third of the average total column ozone loss (i.e. 50–60DU on 160–180 DU) in the Antarctic.
The situation is slightly different from the Arctic, where significant ozone loss occurs mostly in
the lower stratosphere over 350–550 K in colder winters and therefore, the contribution from NO

x

cycles above 550 K is limited to about 19±7 DU (Kuttippurath et al., 2010a) and this is roughly
three times lower than that of the Antarctic. The higher contribution is consistent with the larger
ozone loss (both spatially and temporally) in the Antarctic stratosphere compared to that of the
Arctic, as shown by the model results in both polar regions in Fig. 8.8. This is also evident from
the maximum ozone loss altitudes shown in the figure, as most Antarctic winters have their peak
loss altitudes around 550 K against 475 K in the Arctic (e.g. Kuttippurath et al., 2012a; Tripathi
et al., 2007; Grooß et al., 2005b; Rex et al., 2004).

The partial column loss estimated from the Halogen Occultation Experiment ozone measure-
ments (⇠172 DU) over 350–600 K (Tilmes et al., 2006) is larger than our results for 2004. Our loss
estimates over 350–850 K for 2004–2010 are in agreement with those derived from the ground-based
and satellite total ozone observations in the Antarctic (Kuttippurath et al., 2013). The ozone loss
computed from a bias-corrected satellite data set using a parameterised tracer by Huck et al. (2007)
for the Antarctic winter 2004 also shows a similar estimate. The slight differences amongst various
ozone loss estimates can be due to the differences in the column ranges, vortex definition, vortex
sampling and the method used to quantify the loss by the respective studies.
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Figure 8.9: Vortex averaged (�65� EqL) ozone loss and production rates at 500 and 675 K in ppbv per sunlit hour
(ppbv sh�1) for the Antarctic winters 2004–2010. The data are exempted from temporal smoothing to show the
effect of daily movement of vortex and its impact on ozone production and loss rates

8.1.3.4 Ozone loss and production rates

The inter-annual variability of ozone loss is further analysed with the ozone loss and production
rates. Fig. 8.9 shows the instantaneous loss and production rates at two representative altitudes in
the lower and middle stratosphere, at 500 and 675 K. In general, at 500 K, the loss rates are about
1 ppbv sh�1 in mid-June during the onset of ozone loss, about 4–5 ppbv sh�1 by late August as the
loss advances to the vortex core and about 5–6 ppbv sh�1 by late September during the peak loss
period. The loss rates decrease from late September onwards and reach zero by mid-October, and
stay at near-zero values thereafter.

The colder winter of 2006 shows an extended period of loss rates of about 4 ppbv sh�1 until
early October, while the winter 2009 shows the shortest span of the large loss rates, only until
mid-August. The colder winter 2008 also exhibits large loss rates in most months, May–August in
particular. The model studies of Tripathi et al. (2007) and Frieler et al. (2006) also show comparable
loss rates in the Antarctic winter 2003 at 475K. Our analyses are consistent with the loss rates found
in the very cold Arctic winters (e.g. 1994/95, 1999/00, 2004/05 and 2010/11) during the peak loss
rate period in January–February, for which loss rates of about 5–8 ppbv sh�1 around 450–500 K are
estimated (Kuttippurath et al., 2012a, 2010a; Frieler et al., 2006).

At 675 K, generally, the loss rates are about 1–3 ppbv sh�1 until early September and then
increase rapidly to 6–8 ppbv sh�1 from mid-September onwards. The loss rates increase again from
late October through to mid-November, from 2 to 7 ppbv sh�1, depending on day of year. The inter-
annual variability of loss rates from mid-September to late November is small and most winters show
loss rates of about 2–7 ppbv sh�1 episodically. However, significant year-to-year variations are noted

Table 8.1: The vortex averaged (�65� EqL) accumulated ozone partial column loss for the maximum ozone loss
period in the Antarctic (26 September to 5 October) in DU estimated over 350–850 and 400–600 K from the MLS
sampling inside the vortex and corresponding MIMOSA-CHIM simulations interpolated to the observed points for
each winter. The estimated error of the ozone loss is about 10%.

350/850 K
Year 2004 2005 2006 2007 2008 2009 2010

Model 121 183 163 174 167 159 163
MLS 145 171 170 155 160 141 150
400/600 K

Model 95 127 109 119 120 105 100
MLS 95 120 125 122 112 103 93
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from mid-June to mid-August. For instance, in 2005, the largest ozone loss rates of 3–5 ppbv sh�1

are simulated in early winter, whereas about 3 ppbv sh�1 is calculated in 2008 for the same period.
The smallest loss rates among the seven winters are found in 2010, about 1–2 ppbv sh�1, which are
quite in line with our previous discussions on meteorology of the winters. Note that a similar range
of loss rates of 2–7 ppbv sh�1 were also calculated for the colder Arctic winters in late March and
mid- to late April in 2010/11, February–March in 2008/09 and March in 2004/05, depending on
day of year (Kuttippurath et al., 2010a, 2012a).

The production rates at 675 K show significant variations from one year to the other, from zero
in mid-August to 15 ppbv sh�1 in late November, with intermittent high values of ⇠8 ppbv sh�1 in
late October and mid-November. These substantial production rates, however, mask the large loss
rates during the same period. The high production rates at the end of winter are expected due to
the exposure of vortex to the sunlight. Also, the small disturbances at the end of the winter shift
the polar vortices to the sunlit parts of the mid-latitudes or tilt their axis off the pole, as illustrated
in the PV maps at 675 K as shown in Fig. 8.1. This implies that the ozone loss in the middle
stratosphere also depends on the position of the polar vortex in the sunlight and the dynamics of
the winter.

8.2 Conclusions

A detailed analysis of the polar ozone loss processes during seven recent Antarctic winters (2004–
2010) is presented with high resolution model simulations and high frequency polar vortex observa-
tions from the Aura MLS instrument. The inter-annual variability in the Antarctic meteorology was
relatively large during the studied winters, as it consisted of one of the coldest winters (2006), two
warmer winters (2004 and 2010), two very cold winters (2007 and 2008). On average, as analysed
from the average of the seven Antarctic winters, ozone loss in the Antarctic starts at the edge of the
vortex at low EqLs (63–67� EqL) by mid-June, consistent with the findings of Lee et al. (2000). It
progresses with time and advances to higher EqLs (69–83� EqL) with the largest loss at lower EqLs
(63–69� EqL) in June–August in agreement with the incidence of sunlight over the region. The
maximum ozone loss is attained by mid-September to mid-October period. The peak (>2 ppmv)
ozone loss in the Antarctic winters is found over a broad altitude range of 475–550 K. The average
cumulative maximum ozone loss is about 3.5 ppmv around 550 K or 180 DU over 350–675 K in 2005
and 2006, the coldest winters with the largest loss. In contrast, the maximum loss in the warmer
winters of 2004 and 2010 was restricted to 2.6 ppmv around 475–500 K or 141–160 DU over 350–
675 K. Analyses with various trace gas data suggest that the polar descent during spring is slower
in the model.

In the lower stratosphere at 500K, the ozone loss rates have a comparable distribution in all
winters, about 2–3 ppbv sh�1 in July and 4–5 ppbv sh�1 from August to late September. However,
as expected, the colder winters are characterised by slightly larger and extended periods of high
loss rates. Therefore, the inter-annual variations are slightly larger in August–October period. In
the middle stratosphere at 675K, a loss rate of about 3–5 ppbv sh�1 in July, August and October–
November, and a production rate of about 5–10 ppbv sh�1 in October–November, are simulated.
Therefore, these higher production rates largely outweigh the loss rates in October–November.

Our study using vortex averages over the seven Antarctic winters shows that the halogen cycles
contribute about 85–90% of ozone loss in the lower stratosphere (below 550 K) and the NO

x

and
ClO–O cycles contribute about 75–80% of ozone loss in the middle stratosphere with little inter-
annual variability. Since much of the Antarctic ozone hole resides in the lower stratosphere, the
ozone hole is still controlled by the abundances of halogen cycles. However, as there is an average
ozone column loss of about 50±5 DU above 550 K, this further points out that about one-third of
the ozone column loss in the Antarctic is contributed by the NO

x

cycle.
The number of studied winters is very small to quantify any meaningful trends in the Antarc-

tic ozone. In addition, although the decrease in stratospheric halogens has already been spotted
(Montzka et al., 1999; Jones et al., 2011), the rate of this decrease is very slow and is about
10% decade�1 (WMO, 2011). Furthermore, as also discussed in Chapter 6, our study points out
that these lower ozone loss episodes in the recent winters (e.g. 2004, 2009 and 2010) are due to
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relatively warm stratosphere, as analysed from temperature and PSCs during the winters (WMO,
2011). Therefore, these results are consistent with those of de Laat and van Weele (2011), who also
report that the recent reduction in ozone loss is due to the minor warmings in the Antarctic winters
of 2004 and 2010. Nevertheless, a detailed ozone trend analysis using a multi-variate regression
model with various proxies to diagnose the impact of halogen decrease on the Antarctic ozone hole
is presented in Chapter 9.
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Trends in polar ozone
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Many studies have already discussed the trends of ozone in the Antarctic stratosphere. For
instance, a study by Yang et al. (2008) discussed the trends in Antarctic ozone using ground-based
and satellite measurements and showed a trend of around �4.5 DUyr�1 during 1978–1996 and an
insignificant positive trend thereafter. Similar trends were also estimated by Wohltmann et al.
(2007), who applied a multi-variate regression model to the total ozone measurements. A study by
Hassler et al. (2011) showed the stabilisation of ozone loss rates at South Pole over 1991–2009. A
recent work by Salby et al. (2011) reported a significant positive trend in the September–November
TOMS/OMI ozone during 1997–2009. Therefore, we also check weather the significant positive
signal can be found in vortex averaged ozone. However, we use different data sets and estimation
method to find the trends in ozone during the period 1979–2010. These data and approach have
hitherto not been used for trend studies for this region, which is the importance of this diagnosis.

9.1 Multi-variate regression of vortex averaged ozone

9.1.1 Data and methods

A process oriented multi-variate regression model is constructed and applied to determine the ozone
trends. We use the September–November ground-based and TOMS/OMI vortex averaged ozone
(as discussed in Chapters 6 and 7) for this study. The 1994–1995 data gap in TOMS/OMI is
filled with corresponding overpass analyses using the MSR data, which primarily consists of the
Solar Backscatter Ultraviolet (SBUV) ozone observations during the period. Previous studies have
successfully used this data in various scientific and trend studies (e.g. de Laat and van Weele, 2011).
Therefore, the MSR data from 1979 to 2008 is also considered for this trend analysis, as they are
compiled from bias corrected multi satellite observations. The 2009–2010 data for the MSR based
regression analyses are taken from the combined average of the bias corrected OMI, GOME-2 (Van
Roozendael et al., 2012), SCIAMACHY (Bovensman et al., 1999) and Aura MLS (Livesey et al.,
2011; Nair et al., 2013) observations.

We consider the September–November ozone average over 1979–2010 for the trend analyses.
More importantly, we use the vortex averaged ground-based, TOMS/OMI and MSR data sets to
further elucidate the significance of the trends and we have used the deseasonalised ozone data in
the regression model. The model is similar to that of Wohltmann et al. (2007) and Steinbrecht et al.
(2004), where ozone (Y ) variability is expressed as:

Y (t) = K + C
1

t1 + C
2

t2 + C
3

(SF ⇥QBO)(t) + C
4

Aer(t) + C
5

HF (t) + C
6

AAO(t) + "

where t is time period from 1979 to 2010, t1 is the number of years from 1979 to 2010, t2 is the
number of years from 2000 to 2010, K is a constant, C

1

is the linear trend, C
2

is the change in
trend, C

3

to C
6

are the regression coefficients of solar flux (SF)⇥QBO, aerosols (Aer), heat flux
(HF) and Antarctic oscillation (AAO), respectively, and " is the residual.

To describe the total ozone variability, we use the planetary wave drive proxy, i.e. heat flux cal-
culated from the ERA interrim analysis at 70 hPa/40–90� S, averaged over August and September as
described by Kuttippurath and Nikulin (2012), the Antarctic Oscillation (AAO) (ftp://ftp.cpc.

ftp://ftp.cpc.ncep.noaa.gov/cwlinks/
ftp://ftp.cpc.ncep.noaa.gov/cwlinks/
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Figure 9.1: The vortex averaged (Nash et al., 1996) September–November O
3

trends estimated using a multi-variate
regression model based on the EEASC (equivalent effective Antarctic stratospheric chlorine) for the ground-based,
TOMS/OMI and MSR data in 1979–2010. Top to bottom: deseasonalised O

3

(MEAS) and the regression model
(MODEL) (top panel), the contribution of heat flux – HF (second panel), Antarctic Oscillation – AAO (third panel),
solar flux (SF) multiplied by quasi-biennial oscillation (QBO) at 40 hPa (fourth panel), aerosol (fifth panel) and
EEASC (bottom panel).

ncep.noaa.gov/cwlinks/), solar flux (SF) (ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_
RADIO/FLUX/Penticton_Adjusted/monthly/) at 10.7 cm wavelength, the quasi-biennial oscilla-
tion (QBO) at 40 hPa (http://www.geo.fu-berlin.de/met/ag/strat/produkte/qbo/), and the
aerosol optical thickness (http://data.giss.nasa.gov/modelforce/strataer/) to account for
the El Chichon (1982) and Mount Pinatubo (1991) volcanic aerosol injections. In order to better
explain the variability of ozone, we use SF⇥QBO instead of individual solar flux and QBO terms,
as explained by Roscoe and Haigh (2007). All proxies, except heat flux, are averaged over the
September–November period to match the mean ozone taken during the same period. The south-
ern hemispheric aerosol average data, which are shifted by +6 months to account for the transport
of aerosols to the Antarctic, are considered. The selection of a 6 month shift of the aerosol data
was based on a sensitivity test using various options (0, 3, 6 and 9 months of shift), for which a 6
month shift gave the best correlation between the regression model and ozone.

We have repeated the regression analysis after replacing the Piece-wise Linear Trend (PWLT)
term (C

1

t1+C
2

t2) by C
1

EEASC(t), EEASC being the equivalent effective Antarctic stratospheric
chlorine (e.g. Brunner et al., 2006; Vyushin et al., 2010). Our EEASC uses the WMO A1-2010 sce-
nario with a mean age of air of 5.5 yr for the polar stratosphere, age of air spectrum width of 2.75 yr
(i.e. the half width of the age of air) and the bromine scaling factor of 60 to account for the greater
ozone depletion potential of bromine compared to that of chlorine on a per atom basis. Further
details about the EEASC formulation can be found in Newman et al. (2007). It should be noted
that the trend in EEASC is in pptv yr�1 and the regression coefficient of EEASC from the model
is in DUpptv�1 and hence the trend in ozone is expressed in DUyr�1 (i.e. DUpptv�1⇥pptv yr�1)
(e.g. Stolarski et al., 2006). Since the trends derived from the PWLT model is in DU yr�1 itself, the
estimated trends from both models can be compared directly. Apart from using various data sets
(ground-based, TOMS/OMI and MSR) for the trend analysis, we have also tested various vortex
definitions to group each data set, i.e. the data averaged inside the vortex, vortex core and over
65–90� S EqL to diagnose the robustness of the derived trend values and their significance.

9.1.2 Results: drivers of ozone change

Figure 9.1 shows the contribution of explanatory variables and resulting diagnosis using the EEASC
regression for ground-based, TOMS/OMI and MSR data. We have taken the turning point (TP) or

ftp://ftp.cpc.ncep.noaa.gov/cwlinks/
ftp://ftp.cpc.ncep.noaa.gov/cwlinks/
ftp://ftp.cpc.ncep.noaa.gov/cwlinks/
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/Penticton_Adjusted/monthly/
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/Penticton_Adjusted/monthly/
http://www.geo.fu-berlin.de/met/ag/strat/produkte/qbo/
http://data.giss.nasa.gov/modelforce/strataer/
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break point for the PWLT regression as 2000, to coincide with the peak in EEASC. The regression
analyses on all three data sets show similar evolution of ozone, regressed data and the explanatory
parameters. The PWLT and EEASC regression models explain about 88–90% of the ozone vari-
ability as deduced from the R2 estimate (e.g. Roscoe and Haigh, 2007). The SF⇥QBO contributes
about +20 DU in 1979, 1989 and 2001, and �10 DU in 1984, 1996 and 2007. The variability in
ozone column resulting from the changes in solar activity is about 2–3%, (Soukharev and Hood,
2006) and our results are within the expected range. The aerosol loading due to the eruption of El
Chichon and Pinatubo significantly contribute to the ozone reduction of about �10 DU in 1983 and
�26 DU in 1992, respectively, which reiterates the key role of aerosols on the heterogeneous ozone
loss processes (e.g. Hofmann et al., 1992). The heat flux and AAO contributions mostly follow the
dynamics of each winter, as both explain wave forcing and meteorology of the winters (Sexton, 2001;
Randel et al., 2002). The contribution of AAO is between �18 DU (e.g. 1985, 2001, 2008 and 2010)
and +20 DU (e.g. 1980, 2000 and 2002). The enhanced wave activity (heat flux) contributes about
+18 DU in 1984, 1993 and 2005, with the largest contribution of about +38 DU in 2002. Similarly,
suppressed planetary wave activity makes strong vortices, and hence, higher ozone reduction in
the very cold winters of 1987 (�18 DU), 1998 (�12 DU) and 2006 (�10 DU). The analyses with
PWLT regression also yield a very similar contribution of the proxies, which are exempted from this
discussion to avoid repetitions. The regression analysis shows that the halogen loading (EEASC)
dominates the ozone reduction. The resulting ozone trends computed from the deseasonalised ozone
anomalies after removing the contribution of the explanatory variables are given in Table 9.1.

9.1.3 Results: ozone trends

The regression functions applied to the ground-based measurements show a trend of about �4.1 to
�5.2 DUyr�1 from both regressions over 1979–1999 and are significant at 95% confidence intervals.
As presented in Table 9.1 (top panel), these results did not change significantly when the data were
analysed with respect to different vortex criteria (i.e. inside vortex, vortex core and over the EqLs
65–90� S). The trends derived from ground-based observations are in very good agreement with
those found from TOMS/OMI and MSR data. The similar trends deduced from both EEASC and
PWLT regressions imply that the ozone decrease over 1979–1999 is dominated by the increase in
halogens during the period, consistent with the results of previous studies (e.g. WMO, 2011, and
references therein). These trends are in good agreement with those found by Yang et al. (2008),
who estimated a corresponding value (�4.5 to �5 DUyr�1 in 1978–1996) from the ground-based
and satellite data using the cumulative sum method. A very similar trend of around �4 DUyr�1

was also deduced from an assimilated ozone data set by Brunner et al. (2006). The slight differences
in the trend values of these studies are within error bars.

The results for the 2000–2010 period show a trend of about +1 DUyr�1 from the EEASC and
+2.3 to +2.9 DUyr�1 from PWLT functions and are significant at 95% confidence intervals for the
ground-based data averaged with respect to various vortex criteria. These trends are also in very
good agreement with those estimated from TOMS/OMI and MSR data. The EEASC-based results
are consistent with those derived from the CCM/CTM simulations for the 1997–2009 period, which
exhibit an EEASC-based ozone trend of around +1 DUyr�1 (Austin et al., 2010a,b; Kiesewetter
et al., 2010). The results derived from EEASC regression are smaller than those obtained from
PWLT. This implies that the ozone increase during 2000–2010 cannot be explained by the reduction
in ozone depleting substances alone, but there are strong influences from the dynamics and other
parameters. Note also that similar differences between the PWLT and EEASC-based trend values
are also reported in previous studies for mid-latitude (up to 60� N/S) ozone (Nair et al., 2013;
WMO, 2011; Vyushin et al., 2010). The significant positive trend during the period reinforces the
notion that the Antarctic ozone is recovering, as reported by Salby (2011).

It is well known that the temperature controls the PSC formation, chlorine and bromine activa-
tion, and hence, the springtime ozone depletion. Therefore, to test the strength of the positive trends
and to understand the impact of inter-annual variability of Antarctic meteorology on the derived
results during 2000–2010, we computed the trends without heat flux in the regression models, which
are shown in Table 9.1 (lower panel). The resulting estimates show similar values for EEASC-based
regression, around +1 DUyr�1 using all data sets, and are significant at 95% (and 99%)confidence
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Table 9.1: Antarctic ozone trends in DUyr�1 estimated from the deseasonalised September–November vortex
averaged ground-based, TOMS/OMI and MSR data using the PWLT (piecewise linear trend) and EEASC (equivalent
effective Antarctic stratospheric chlorine) regressions. The regression results without considering heat flux are also
shown in the bottom panel. The error values represent 95% confidence intervals. The results are shown for various
vortex averaged calculations: inside vortex (Nash et al., 1996), over the equivalent latitudes (EqLs) 65–90� S and
inside vortex core.

with heat flux
Data Period Inside vortex EqL: 65–90� S Vortex core

PWLT EEASC PWLT EEASC PWLT EEASC
Ground-based 1979–1999 �4.68 ± 0.88 �4.18 ± 0.65 �4.62 ± 0.87 �4.14 ± 0.66 �5.02 ± 0.89 �4.51 ± 0.65

2000–2010 +2.58 ± 2.16 +1.03 ± 0.16 +2.33 ± 2.13 +1.02 ± 0.16 +2.59 ± 2.19 +1.11 ± 0.16
TOMS/OMI 1979–1999 �5.03 ± 1.12 �4.50 ± 0.63 �4.89 ± 1.00 �4.38 ± 0.62 �5.24 ± 1.12 �4.70 ± 0.66

2000–2010 +2.87 ± 2.74 +1.11 ± 0.16 +2.67 ± 2.47 +1.08 ± 0.15 +2.84 ± 2.74 +1.16 ± 0.16
MSR 1979–1999 �4.81 ± 1.11 �4.31 ± 0.62 �4.68 ± 0.99 �4.19 ± 0.62 �5.02 ± 1.11 �4.50 ± 0.65

2000–2010 +2.91 ± 2.73 +1.06 ± 0.15 +2.68 ± 2.43 +1.03 ± 0.15 +2.91 ± 2.73 +1.11 ± 0.16
without heat flux

Ground-based 1979–1999 �4.53 ± 1.08 �4.07 ± 0.80 �4.45 ± 1.13 �4.01 ± 0.85 �4.87 ± 1.10 �4.40 ± 0.80
2000–2010 +2.77 ± 2.66 +1.00 ± 0.20 +2.55 ± 2.78 +0.99 ± 0.21 +2.79 ± 2.70 +1.08 ± 0.20

TOMS/OMI 1979–1999 �4.87 ± 1.15 �4.38 ± 0.80 �4.72 ± 1.14 �4.25 ± 0.84 �5.09 ± 1.12 �4.58 ± 0.81
2000–2010 +3.08 ± 2.82 +1.08 ± 0.20 +2.90 ± 2.81 +1.05 ± 0.21 +3.04 ± 2.75 +1.13 ± 0.20

MSR 1979–1999 �4.66 ± 1.22 �4.18 ± 0.80 �4.51 ± 1.15 �4.06 ± 0.84 �4.87 ± 1.21 �4.38 ± 0.81
2000–2010 +3.12 ± 3.00 +1.03 ± 0.20 +2.91 ± 2.83 +1.00 ± 0.21 +3.11 ± 2.98 +1.08 ± 0.20

intervals. The PWLT regressions show slightly higher values, +2.5 to +3.1 DUyr�1, and are also
significant at 95% confidence intervals, except for the ground-based measurements averaged over
65–90� S EqLs. These results, however, show a clear ozone recovery signal even without subtracting
the added variability induced by dynamics.

9.2 Conclusions
The trends in Antarctic ozone is estimated using the ground-based, TOMS/OMI and MSR data from
1979 to 2010 by analysing them using three different vortex edge criterion (inside vortex, vortex core
and over EqLs 65–90� S). The piecewise and EEASC-based trends estimated from the September–
November vortex averaged ground-based ozone column show a trend of about �4.1 to �5.2 DUyr�1

for the period 1979–1999 and around +1 DUyr�1 with EEASC and +2.3 to +2.9 DUyr�1 with
PWLT functions during 2000–2010. These trend analyses are significant at the 95% confidence
levels (the EESC based results are significant at the 99% confidence levels as well ) in both periods
for all vortex averaged data clusters. The ground-based analyses are well supported by those of the
TOMS/OMI and MSR data. In 1979–1999, both piecewise and EEASC-based ozone trends show
very similar values, corroborating the dominance of stratospheric halogens on the ozone decrease
in that period. However, the larger values derived from the PWLT regression for the 2000–2010
period suggest the greater influence of dynamics plus other regression indices not considered here
on the increase of ozone during the period. These results thus show the first sign of ozone recovery.
However, the Antarctic ozone loss/hole will prevail in much of this century with the given rate of
the estimated positive trend and due to the still high levels of stratospheric chlorine. It will take
another fifty years to regain the 1980 level of ozone.
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Chapter 10

Conclusions and Perspectives

10.1 Conclusions

10.1.1 Arctic stratosphere

Analysis of the major warmings (MWs) in the Arctic winters 2003/04–2009/10 shows that there
were 6 MWs in 6 out of the 7 winters, in which the MWs of 2003/04, 2005/06 and 2008/09 were
in January and those of 2006/07, 2007/08 and 2009/10 were in February. Although the winter
2009/10 was relatively cold from mid-December to mid-January, strong wave 1 activity led to a
MW in early February, for which the largest momentum flux among the winters was estimated
at 60� N/10 hPa, about 450m2 s�2. The strongest MW, however, was observed in 2008/09 and
the weakest in 2006/07. The MW in 2008/09 was triggered by intense wave 2 activity and was a
vortex split event. In contrast, strong wave 1 activity led to the MWs of other winters and were
vortex displacement events. Large amounts of EP (Eliassen-Palm) and wave 1/2 EP fluxes (about
2–4⇥105 kg s�2) are estimated shortly before the MWs at 100 hPa averaged over 45–75� N in all
winters, suggesting profound tropospheric forcing for the MWs. We observe an increase in the
occurrence of MWs (⇠ 1.1 events/winter) in recent years (1998/99–2009/10), as there were 13 MWs
in the 12 Arctic winters, although the long-term average (1957/58–2009/10) of the frequency stays
around its historical value (⇠ 0.7 events/winter), consistent with the findings of previous studies.
An analysis of the chemical ozone loss in the past 17 Arctic winters (1993/94–2009/10) suggests
that the loss is inversely proportional to the intensity and timing of MWs in each winter, where
early (December–January) MWs lead to minimal ozone loss. Therefore, this high frequency of MWs
in recent Arctic winters has significant implications for stratospheric ozone trends in the northern
hemisphere, and hence, the regional and global climate.

The Arctic winter 2002/03 was characterised by unusually cold temperatures in early winter
and a MW around 15–18 January 2003. The potential vorticity maps show a vortex split in the
lower stratosphere during the MW in late January and during the minor warming in mid-February
due to wave 1 amplification. However, the warming can be termed as a vortex displacement event
as there was no vortex split during the MW period at 10 hPa. Very low temperatures, large areas
of PSCs (polar stratospheric clouds), and high chlorine activation triggered significant ozone loss
in the early winter, as the vortex moved to the mid-latitude regions. The ozone loss derived
from ASUR (Airborne Sub-millimeter Radiometer) measurements sampled inside the vortex, in
conjunction with the MIMOSA-CHIM model tracer, shows a maximum of 1.3±0.2 ppmv at 450–
500 K by late March. The partial column ozone loss derived from ASUR ozone profiles reaches up
to 61±4 DU (Dobson Unit) over 400–550K in the same period. The evolution of ozone and ozone
loss assessed from ASUR measurements is in very good agreement with POAM (Polar Ozone and
Aerosol Measurement) observations. The loss estimated from POAM measurements shows a similar
maximum of 1.3±0.2 ppmv at 400–500K or 63±4 DU over 400–550K in late March. Our study
reveals that the Arctic winter 2002/03 was unique as it had three minor warmings and a MW,
yet showed large loss in ozone. No such feature was observed in any other Arctic winter in the
1989–2010 period. In addition, an unusually large ozone loss in December, around 0.5±0.2 ppmv
at 450–500K or 12±1 DU over 400–550 K, was estimated for the first time in the Arctic (winters
1989–2011). A detailed diagnosis with all available published results for this winter exhibits an
average ozone loss of 1.5±0.2 ppmv at 450–500 K or 65±5 DU over 400–550 K by the end of March,
which exactly matches the ozone depletion derived from the ASUR, POAM and model data. The
early ozone loss together with considerable loss afterwards classify the warm Arctic winter 2002/03
amongst the “moderately cold winters” in terms of the significance of the ozone loss.

The stratospheric ozone loss in the Arctic winters 2004/05–2009/10 is investigated by using
MIMOSA-CHIM model and observations from Aura MLS (Microwave Limb Sounder), by applying
the passive tracer technique. The ozone loss diagnosed from both simulations and measurements
inside the polar vortex at 475 K ranges from 0.7 ppmv in the warm winter 2005/06 to 1.5–1.7 ppmv
in the cold winter 2004/05. Halogenated (chlorine and bromine) catalytic cycles contribute to 75–
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90% of the ozone loss at this level. At 675 K the lowest loss of 0.3–0.5 ppmv is computed in 2008/09,
and the highest loss of 1.3 ppmv is estimated in 2006/07 by the model and in 2004/05 by MLS. Most
of the ozone loss (60–75%) at this level results from nitrogen catalytic cycles rather than halogen
cycles. At both 475 and 675K levels the simulated ozone evolution inside the vortex is in reasonably
good agreement with the observations. The partial column ozone loss over 350–850 K deduced from
the model calculations at the MLS sampling locations inside the vortex ranges between 43DU in
2005/06 and 109DU in 2004/05, while that derived from observations ranges between 26 DU and
115 DU for the same winters. The partial column ozone loss derived in that vertical range is larger
than that estimated over 350–550 K by 19±7 DU on average, mainly due to NO

x

chemistry. The
column ozone loss estimates from both MIMOSA-CHIM and MLS at 350–850K are in general good
agreement with those derived from ground-based UV-VIS spectrometer total ozone observations for
the respective winters, except in 2010.

In the Arctic winter 2010/11, the lower stratospheric minimum temperatures were below 195K
for a record period, from December to mid-April, and a strong and stable vortex was present
during that period. Analyses with the MIMOSA-CHIM CTM simulations show that the chemical
ozone loss started by early January and progressed slowly to 1 ppmv by late February. The loss
intensified by early March and reached a record maximum of ⇠2.4 ppmv in the late March–early
April period over a broad altitude range of 450–550 K. This coincides with elevated ozone loss rates
of 2–4 ppbv sh�1 and a contribution of about 40% from the ClO–ClO cycle and about 35–40% from
the ClO–BrO cycle in late February and March, and about 30–50% from the HO

x

cycle in April.
We also estimate a loss of around 0.7–1.2 ppmv contributed (75%) by the NO

x

cycle at 550–700 K.
The ozone loss estimated in the partial column range of 350–550 K also exhibits a record value of
⇠148 DU. This is the largest ozone loss ever estimated in the Arctic and is consistent with the
remarkable chlorine activation and strong denitrification during the winter, as the modeled ClO
shows ⇠1.8 ppbv in early January and ⇠1 ppbv in March at 450–550K. These model results are in
excellent agreement with those found from the Aura MLS observations. Our analyses show that
the ozone loss in 2010/11 is close to that found in some Antarctic winters, for the first time in the
observed history. Though the winter 1996/97 was also very cold in March–April, the temperatures
were higher in December–February, and, therefore, chlorine activation was moderate and ozone loss
was average with about 1.2 ppmv at 475–550 K or 42DU at 350–550K, as diagnosed from the model
simulations and measurements.

10.1.2 Antarctic stratosphere

A method is introduced to estimate ozone loss from ground-based measurements in the Antarctic. A
sensitivity study shows that the ozone depletion can be estimated within an accuracy of ⇠4%. The
method is then applied to the ground-based observations from Arrival Heights, Belgrano, Concordia,
Dumont d’Urville, Faraday, Halley, Marambio, Neumayer, Rothera, South Pole, Syowa and Zhong-
shan for the diagnosis of ozone loss in the Antarctic. The ozone loss computed from ground-based
measurements is also in very good agreement with those derived from satellite measurements (Ozone
Monitoring Instrument and SCIAMACHY) and model simulations (REPROBUS and SLIMCAT),
where the differences are within ±3–5%.

Our analyses show that all ground-based observations exhibit their ozone annual minima in the
late September–early October period. Among the stations, the lowest ozone annual minima are
observed at South Pole and the highest at Dumont d’Urville. The ozone loss starts by mid-June
at the vortex edge and then progresses towards the vortex core with time. The loss intensifies in
August–September, peaks by the end of September–early October, and ozone recovers thereafter.
The edge region stations (e.g. Dumont d’Urville and Marambio) show lower ozone loss (�38 to
�45%) as compared to that in vortex core stations (e.g. �55 to �60% at South Pole and Belgrano).
The average ozone loss in the Antarctic is about �33 to �50% in 1989–1992 in agreement with
the increase in halogens during this period, and then stayed at around �48%. The ozone loss
in the warmer winters (e.g. 2002 and 2004) is lower (�37 to �46%) and in the colder winters
(e.g. 2003 and 2006) is higher (�52 to �55%). Due to the small inter-annual variability of both
ozone loss and V

PSC

during 1995–2010, the correlation (r) between ozone loss and the product of
EEASC (Equivalent Effective Antarctic Stratospheric Chlorine) and V

PSC

yields 0.61–0.69. The
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ozone loss estimated from ground-based measurements is in good agreement with that of the space-
based observations from TOMS/OMI, and Aura MLS as well as MSR data, where the difference
between the ground-based and satellite observations is within ±5% and is within the error bars of
the measurements.

The historical ground-based total ozone observations in October show that the depletion started
in the late 1970s, reached a maximum in the early 1990s and stabilised afterwards due to saturation.
At southern mid-latitudes, a reduction of 20–50% is observed for a few days in October–November
at the newly installed Rio Gallegos station in 2005–2009. Similar depletion of ozone is also observed
episodically during the vortex overpasses at Kerguelen in October–November and at Macquarie
Island in July–August of the recent winters. This illustrates the significance of measurements at
the edges of Antarctica.

In order to closely assess the vertical features of Antarctic ozone loss, a study was performed
with high resolution satellite measurements and MIMOSA-CHIM simulations for the seven winters
2004–2010. The Antarctic winters 2004–2010 were characterised by comparatively large inter-annual
variability and various ozone loss features. Generally, chemical ozone loss starts at the edge of
the vortex at low EqLs (Equivalent Latitudes) of 63�–69� in mid-June/July. The loss progresses
with time at higher EqLs and intensifies in August–September over 400–600 K. The loss peaks
in late September/early October, where all EqLs (63�–83�) show similar loss and the maximum
is found over a broad altitude range of 475–550K. In the lower stratosphere, most winters show
similar loss and production rates, in which the loss rates show about 2–3 ppbv sh�1 in July and
4–5 ppbv sh�1 in August/mid-September, while they rapidly drop to zero by late September. In
the middle stratosphere, the loss rates show about 3–5 ppbv sh�1 in July, August and October–
November. The loss in the lower stratosphere (<550 K) is dominated by the ClO–ClO and ClO–BrO
cycles, whereas the loss in the middle stratosphere (>550 K) is controlled by the NO

x

and ClO–O
cycles, with 80–90% in each region. Our study finds that about one-third of the Antarctic column
ozone loss (50±5 DU) is contributed by the NO

x

cycle in the middle stratosphere, above 550K.
On average, the colder winters 2005 and 2006 show a maximum loss of about 3.5 ppmv around
550 K and the warmer winters 2004 and 2010 show a loss of about 2.6 ppmv around 475–500 K.
The winters 2007 and 2009 were moderately cold and thus both ozone loss and peak loss altitudes
are between these two extremes. The partial column loss at 350–850K shows the largest value of
⇠207 DU in 2005 and the smallest of ⇠145 DU in 2004, consistent with meteorology of the winters.
The simulated ozone loss values are in reasonably good agreement with those estimated from the
Aura MLS measurements, but the model underestimates the observed ClO over 450–550K primarily
due to the slower vertical descent in the model in spring. This implies that vertical transport is still
a critical issue in chemical transport models.

10.1.3 Ozone trends

The ozone trends based on the EEASC and piecewise linear trend (PWLT) functions for the
vortex averaged ground-based, Total Ozone Mapping Spectrometer/Ozone Monitoring Instrument
(TOMS/OMI), and MSR data averaged over September–November exhibit about �4.6 DUyr�1 over
1979–1999, corroborating the role of halogens in the ozone decrease during the period. The ozone
trends computed for the 2000–2010 period are about +1 DUyr�1 for EEASC and +2.6 DUyr�1 for
the PWLT functions. The larger positive PWLT trends for the 2000–2010 period indicate the influ-
ence of dynamics and other basis functions on the increase of ozone. The trends in both periods are
significant at 95% confidence intervals for all analyses. Therefore, our study suggests that Antarctic
ozone shows a significant positive trend toward its recovery, and hence, leaves a clear signature of
the successful implementation of the Montreal Protocol.
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Figure 10.1: The spring-time evolution of ozone (both past and future) in the polar regions (63–90� N/S) in the
chemistry climate model LMDz-reprobus. The reference run simulations are represented by REF, the temperature
corrected run is represented by TC and the bias-corrected run with a new microphysics scheme for the polar strato-
spheric clouds is represented by NMP. The model simulations are compared to the satellite measurements TOMS,
OMI and SBUV (black: merged data), as shown in WMO (2011).

10.2 Perspectives
There are a number of interesting and challenging topics that can be explored as a continuation
of these studies. Since our study has already revealed positive trends in ozone in the Antarctic
from total column ozone observations from a variety of measurements, it is also necessary to look at
the ozone trends at different vertical layers in the stratosphere to test the strength of the recovery
signal. Therefore, this is one of the future studies. In addition, we have seen that the ozone trends
are positive and are significant at 95% confidence intervals inside the vortex core too. This points
out the necessity of ozone trend analysis in the ozone saturation altitudes. In order to analyse these
saturation layers closely, the ozonesonde observations in Antarctic will be utilised. There are 11
ozonesonde stations, in which many have soundings from the early 1980s and hence, this data set
is ideal for these kinds of trend analyses. Furthermore, this data set will be complemented with
available satellite observations since 1978. A similar trend analysis in the Arctic stratosphere using
ground-based and space-based total column ozone observations and, ozonesonde and satellite profile
measurements will also be performed. Apart from these, the polar ozone trends and its projections
will be analysed from chemistry climate model output, LMDz-reprobus in particular. Fig. 10.1
shows an example of the ozone trends (i.e. deviation from the average ozone during the pre-ozone
hole period) and its future projection as simulated by the LMDz-reprobus climate model.

As mentioned in Motivation, the stratospheric climate is influenced by many factors and the
climate of the Earth is controlled by a number of physical, chemical and radiative processes. How-
ever, how the stratosphere evolve with climate change is still uncertain (Baldwin et al., 2007).
Studies have mentioned that the stratosphere has changed considerably in the past 30 years. For
instance, increase in the abundances of anthropogenic green-house gases and ozone depleting sub-
stances, and subsequent changes in the stratospheric ozone and temperature (e.g. stratosphere has
cooled since 1979). Therefore, a study will be conducted to analyse the changes in composition of
the stratosphere over the years and its influence on the surface climate. To perform this study, a
suite of long-term chemistry climate model simulations that were carried out for the Intergovern-
mental Panel on Climate Change (IPCC) Report and chemistry climate model validation (CCM
VAL) activities will be exploited.
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Figure 10.2: A schematic representation of solar activity and climate interactions (Gray et al., 2010).

Our understanding on the physical nature and scale of solar variability and its effect on the
climate is limited (Gray et al., 2010). Climate change can occur on different time scales due to the
results of natural variability, including solar variability (in the form of sunspots and related magnetic
activity). Fig. 10.2 schematically illustrates the solar variability impact on various altitude layers
of the atmosphere. Therefore, a study regarding the solar variability and its effect on the climate
(including changes in temperature, winds and ozone) will be conducted with the assistance of long-
term chemistry climate model simulations. To perform this study, the chemistry climate model
LMDz-reprobus will be utilised. Therefore, as emphasised earlier, this challenging science always
motivates!
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Abstract. A long-term ozone loss time series is necessary to
understand the evolution of ozone in Antarctica. Therefore,
we construct the time series using ground-based, satellite and
bias-corrected multi-sensor reanalysis (MSR) data sets for
the period 1989–2010. The trends in ozone over 1979–2010
are also estimated to further elucidate its evolution in the
wake of decreasing halogen levels in the stratosphere. Our
analysis with ground-based observations shows that the aver-
age ozone loss in the Antarctic is about �33 to �50% (�90
to �155DU (Dobson Unit)) in 1989–1992, and then stayed
at around �48% (�160DU). The ozone loss in the warmer
winters (e.g. 2002 and 2004) is lower (�37 to �46%), and
in the very cold winters (e.g. 2003 and 2006) it is higher
(�52 to �55%). These loss estimates are in good agree-
ment with those estimated from satellite observations, where
the differences are less than ±3%. The ozone trends based
on the equivalent effective Antarctic stratospheric chlorine
(EEASC) and piecewise linear trend (PWLT) functions for
the vortex averaged ground-based, Total Ozone Mapping
Spectrometer/Ozone Monitoring Instrument (TOMS/OMI),
and MSR data averaged over September–November exhibit
about �4.6DUyr�1 over 1979–1999, corroborating the role
of halogens in the ozone decrease during the period. The
ozone trends computed for the 2000–2010 period are about
+1DUyr�1 for EEASC and +2.6DUyr�1 for the PWLT
functions. The larger positive PWLT trends for the 2000–
2010 period indicate the influence of dynamics and other ba-
sis functions on the increase of ozone. The trends in both
periods are significant at 95% confidence intervals for all
analyses. Therefore, our study suggests that Antarctic ozone
shows a significant positive trend toward its recovery, and
hence, leaves a clear signature of the successful implementa-
tion of the Montreal Protocol.

1 Introduction

Ozone loss in the Antarctic stratosphere has been an issue
of intense research since its discovery in the 1980s (Far-
man et al., 1985). Several estimates of ozone loss are avail-
able for Antarctica since then. However, most of them deal
with the ozone loss analysis for individual winters, mod-
elled or incomplete due to limitations of the analysed ob-
servations (e.g. Austin et al., 2010; Lemmen et al., 2006;
Tilmes et al., 2006; Hoppel et al., 2005), and thus this makes
the inter-annual comparison very difficult. For instance, the
chemistry–climate model (CCM)-based studies are mostly
exploited for the projection of ozone recovery (e.g. Austin
et al., 2010). Although there are many studies using satel-
lite data, a continuous long-term ozone loss analysis is still
not available using these data (Bevilacqua et al., 1997; Hop-
pel et al., 2005; Tilmes et al., 2006). Therefore, we present
a comprehensive ozone loss analysis in the Antarctic using
ground-based and satellite measurements for the 1989–2010
period, similar to that in the Arctic (Goutail et al., 2005). In
this we use the same model, measurements, and method to
construct the whole time series, which makes a continuous,
coherent and comparable long-term analysis. This analysis
can also be regarded as an extension of the study of Huck et
al. (2007), who presented an ozone loss analysis using the to-
tal column for the 1992–2004 period. The passive technique
is used to derive the ozone loss from observations, in which
the contribution from transport is separated from the photo-
chemical ozone loss. A detailed description of this approach
(e.g. Goutail et al., 1999) and its application to the Antarc-
tic winters 2005–2009 can be found in Kuttippurath et al.
(2010).
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Abstract. We present a detailed discussion of the chemical
and dynamical processes in the Arctic winters 1996/1997 and
2010/2011 with high resolution chemical transport model
(CTM) simulations and space-based observations. In the
Arctic winter 2010/2011, the lower stratospheric minimum
temperatures were below 195K for a record period of time,
from December to mid-April, and a strong and stable vor-
tex was present during that period. Simulations with the
Mimosa-Chim CTM show that the chemical ozone loss
started in early January and progressed slowly to 1 ppmv
(parts per million by volume) by late February. The loss
intensified by early March and reached a record maximum
of ⇠2.4 ppmv in the late March–early April period over a
broad altitude range of 450–550K. This coincides with el-
evated ozone loss rates of 2–4 ppbv sh�1 (parts per billion
by volume/sunlit hour) and a contribution of about 30–55%
and 30–35% from the ClO-ClO and ClO-BrO cycles, re-
spectively, in late February and March. In addition, a con-
tribution of 30–50% from the HOx cycle is also estimated
in April. We also estimate a loss of about 0.7–1.2 ppmv con-
tributed (75%) by the NOx cycle at 550–700K. The ozone
loss estimated in the partial column range of 350–550K ex-
hibits a record value of ⇠148DU (Dobson Unit). This is the
largest ozone loss ever estimated in the Arctic and is consis-
tent with the remarkable chlorine activation and strong den-
itrification (40–50%) during the winter, as the modeled ClO
shows ⇠1.8 ppbv in early January and ⇠1 ppbv in March at
450–550K. These model results are in excellent agreement
with those found from the Aura Microwave Limb Sounder
observations. Our analyses also show that the ozone loss in
2010/2011 is close to that found in some Antarctic winters,

for the first time in the observed history. Though the win-
ter 1996/1997 was also very cold in March–April, the tem-
peratures were higher in December–February, and, therefore,
chlorine activation was moderate and ozone loss was average
with about 1.2 ppmv at 475–550K or 42DU at 350–550K,
as diagnosed from the model simulations and measurements.

1 Introduction

Chemical ozone loss in the Arctic stratosphere has been ob-
served since 1989. Since then, cold winters are prone to
large chemical ozone loss due to the still high amounts of
ozone depleting substances in the atmosphere (Rex et al.,
2004). However, because of large planetary wave activity,
the polar vortex breaks up or dissipates early in most Arc-
tic winters (WMO, 2011; Harris et al., 2010; Kuttippurath et
al., 2010b; Manney et al., 2003). Therefore, the vortex per-
sistence has been comparatively shorter and the associated
ozone loss smaller in the Arctic as compared to the Antarctic
(WMO, 2011; Solomon et al., 2007). The longest vortex per-
sistence in the Arctic was found in 1996/1997, in which the
wave activity was considerably suppressed, and therefore the
vortex was sustained until early May (Lefèvre et al., 1998;
Coy et al., 1997). Nevertheless, the ozone loss in 1996/1997
was lower than that of other cold winters such as 1994/1995,
1999/2000, and 2004/2005 due to relatively higher tempera-
tures in December–February 1996/1997, when chlorine acti-
vation plays a key role in determining the magnitude of ozone
loss (Manney et al., 2003; Santee et al., 1997). In contrast,
very low temperatures were observed in March–April due
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Abstract.We present an analysis of the major sudden strato-
spheric warmings (SSWs) in the Arctic winters 2003/04–
2009/10. There were 6 major SSWs (major warmings
[MWs]) in 6 out of the 7 winters, in which the MWs of
2003/04, 2005/06, and 2008/09 were in January and those of
2006/07, 2007/08, and 2009/10 were in February. Although
the winter 2009/10 was relatively cold from mid-December
to mid-January, strong wave 1 activity led to a MW in early
February, for which the largest momentum flux among the
winters was estimated at 60� N/10 hPa, about 450m2 s�2.
The strongest MW, however, was observed in 2008/09 and
the weakest in 2006/07. The MW in 2008/09 was triggered
by intense wave 2 activity and was a vortex split event. In
contrast, strong wave 1 activity led to the MWs of other win-
ters and were vortex displacement events. Large amounts
of Eliassen-Palm (EP) and wave 1/2 EP fluxes (about 2–
4⇥105 kg s�2) are estimated shortly before the MWs at
100 hPa averaged over 45–75� N in all winters, suggesting
profound tropospheric forcing for the MWs. We observe
an increase in the occurrence of MWs (⇠ 1.1MWs/winter)
in recent years (1998/99–2009/10), as there were 13MWs
in the 12 Arctic winters, although the long-term average
(1957/58–2009/10) of the frequency stays around its his-
torical value (⇠ 0.7MWs/winter), consistent with the find-
ings of previous studies. An analysis of the chemical ozone
loss in the past 17 Arctic winters (1993/94–2009/10) sug-
gests that the loss is inversely proportional to the intensity
and timing of MWs in each winter, where early (December–
January) MWs lead to minimal ozone loss. Therefore, this
high frequency of MWs in recent Arctic winters has signifi-
cant implications for stratospheric ozone trends in the north-
ern hemisphere.

1 Introduction

One of the intriguing phenomena in climate science is the
large interannual variability of Arctic stratospheric winters,
characterized by extremely warm and very cold winters. This
year-to-year variability is dominated by sudden stratospheric
warmings (SSWs) during which the polar temperature rises
and the zonal flow weakens or reverses (Scherhag, 1952).
There are different definitions for a SSW to be called ma-
jor or minor. According to the World Meteorological Organ-
isation (WMO) a SSW can be said to be major if at 10 hPa
or lower altitudes the latitudinal mean temperature increases
abruptly poleward from 60� latitude with an associated cir-
culation reversal in a short period of time. If the reversal of
temperature gradient does not follow the zonal-mean wind
reversal, then it is a minor SSW (e.g. WMO, 1978, item 9.4,
35–36; Andrews et al., 1987; Labitzke and Naujokat, 2000).
In some cases the increase in temperature near the pole can
be up to 40–60K in a week at 10 hPa (Limpasuvan et al.,
2004; Andrews et al., 1987). The followed zonal wind re-
versal displaces or splits the polar vortex toward midlati-
tudes (e.g. Kuttippurath et al., 2010; Charlton and Polvani,
2007). Since the WMO definition considers the major SSWs
(hereafter major warmings–MWs) from November to Febru-
ary, studies have slightly modified this criterion to account
for the warmings from October through May (e.g. Charl-
ton and Polvani, 2007; Bancalá et al., 2012). Also, there
is an ambiguity regarding the temperature gradient crite-
rion of the WMO definition (e.g. the difference between
Limpasuvan et al., 2004 and Krüger et al., 2005). Apart
from these, classifications of MWs based on the northern
annular mode (Baldwin and Dunkerton, 2001) and external
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[1] We present ozone loss estimated from airborne measurements taken during January–
February and March in the Arctic winter 2002/2003. The first half of the winter was
characterized by unusually cold temperatures and the second half by a major
stratospheric sudden warming around 15–18 January 2003. The potential vorticity maps
show a vortex split in the lower stratosphere during the major warming (MW) in late
January and during the minor warming in mid‐February due to wave 1 amplification.
However, the warming can be termed as a vortex displacement event as there was no vortex
split during the MW period at 10 hPa. Very low temperatures, large areas of polar
stratospheric clouds (PSCs), and high chlorine activation triggered significant ozone loss in
the early winter, as the vortex moved to the midlatitude regions. The ozone depletion
derived from the ASUR measurements sampled inside the vortex, in conjunction with the
Mimosa‐Chim model tracer, shows a maximum of 1.3 ± 0.2 ppmv at 450–500 K by late
March. The partial column loss derived from the ASUR ozone profiles reaches up to
61 ± 4 DU in 400–550 K in the same period. The evolution of ozone and ozone loss
assessed from the ASUR measurements is in very good agreement with POAM
observations. The reduction in ozone estimated from the POAM measurements shows a
similar maximum of 1.3 ± 0.2 ppmv at 400–500 K or 63 ± 4 DU in 400–550 K in late
March. Our study reveals that the Arctic winter 2002/2003 was unique as it had three
minor warmings and a MW, yet showed large loss in ozone. No such feature was
observed in any other Arctic winter in the 1989–2010 period. In addition, an unusually
large ozone loss in December, around 0.5 ± 0.2 ppmv at 450–500 K or 12 ± 1 DU in
400–550 K, was estimated for the first time in the Arctic. A careful and detailed
diagnosis with all available published results for this winter exhibits an average ozone
loss of 1.5 ± 0.3 ppmv at 450–500 K or 65 ± 5 DU in 400–550 K by the end of March,
which exactly matches the ozone depletion derived from the ASUR, POAM and model
data. The early ozone loss together with considerable loss afterwards put the warm Arctic
winter 2002/2003 amongst the moderately cold winters in terms of the significance of the
ozone loss.

Citation: Kuttippurath, J., A. Kleinböhl, M. Sinnhuber, H. Bremer, H. Küllmann, J. Notholt, S. Godin‐Beekmann, O. Tripathi,
and G. Nikulin (2011), Arctic ozone depletion in 2002–2003 measured by ASUR and comparison with POAM observations,
J. Geophys. Res., 116, D22305, doi:10.1029/2011JD016020.

1. Introduction

[2] Polar stratospheric ozone depletion in the Arctic was
first identified in 1989 [Hofmann et al., 1989] and significant
reduction in ozone has been measured since then in each cold
winter [World Meteorological Organization (WMO), 2007].
The difference in ozone loss from one winter to the other is
found to be extremely large and is highly controlled by
temperature history of the winters. The meteorology of
Arctic winters is characterized by intermittent stratospheric
sudden warmings. Therefore, the extent of ozone loss in an
Arctic winter is determined by the dynamics of the region.
This is clearly manifested with the range of ozone depletion
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Abstract. The polar stratospheric ozone loss during the
Arctic winters 2004/2005–2009/2010 is investigated by us-
ing high resolution simulations from the chemical trans-
port model Mimosa-Chim and observations from Aura Mi-
crowave Limb Sounder (MLS), by applying the passive
tracer technique. The winter 2004/2005 shows the coldest
temperatures, highest area of polar stratospheric clouds and
strongest chlorine activation in 2004/2005–2009/2010. The
ozone loss diagnosed from both simulations and measure-
ments inside the polar vortex at 475K ranges from 0.7 ppmv
in the warm winter 2005/2006 to 1.5–1.7 ppmv in the cold
winter 2004/2005. Halogenated (chlorine and bromine) cat-
alytic cycles contribute to 75–90% of the ozone loss at this
level. At 675K the lowest loss of 0.3–0.5 ppmv is computed
in 2008/2009, and the highest loss of 1.3 ppmv is estimated
in 2006/2007 by the model and in 2004/2005 by MLS. Most
of the ozone loss (60–75%) at this level results from nitro-
gen catalytic cycles rather than halogen cycles. At both 475
and 675K levels the simulated ozone and ozone loss evolu-
tion inside the vortex is in reasonably good agreement with
the MLS observations. The ozone partial column loss in
350–850K deduced from the model calculations at the MLS
sampling locations inside the polar vortex ranges between
43DU in 2005/2006 and 109DU in 2004/2005, while those
derived from the MLS observations range between 26DU
and 115DU for the same winters. The partial column ozone
depletion derived in that vertical range is larger than that esti-
mated in 350–550K by 19±7DU on average, mainly due to
NOx chemistry. The column ozone loss estimates from both
Mimosa-Chim and MLS in 350–850K are generally in good
agreement with those derived from ground-based ultraviolet-
visible spectrometer total ozone observations for the respec-
tive winters, except in 2010.

Correspondence to: J. Kuttippurath
(jayan@aero.jussieu.fr)

1 Introduction

Unlike in the Antarctic winter stratosphere, the chemical
ozone loss in the Arctic is highly variable. This variability
is primarily caused by the variations in Arctic meteorology.
That is, the Arctic stratosphere is often disturbed by plane-
tary wave forcing triggered by mountain orography that dis-
rupts the unstable polar vortex in most winters. Therefore,
the Arctic experiences high extreme cold as well as sudden
stratospheric warmings (SSWs) at times. As a result the de-
gree of ozone loss is mostly controlled by the strength of
the vortex and magnitude of air temperature within. For in-
stance, the winters 1995, 1996, 2000, and 2005 were very
cold and the cumulative total ozone loss was as high as⇠25–
35% (Rex et al., 2006; WMO, 2007; Goutail et al., 2005). On
the other-hand, the winters 1997, 1998, 1999, 2001, 2002,
2006, and 2009 were relatively warm and the loss was mini-
mal, about 10–15%, while the winters 2003, 2007, and 2008
were moderately cold and hence, the loss was in an average
scale of about 15–20% (WMO, 2007; Goutail et al., 2010).
Significant improvements have been made in understand-

ing the chemistry of ozone loss in the polar lower strato-
sphere in the last decade. Studies suggest that very low
temperatures (<195K) initiate the formation of Polar Strato-
spheric Clouds (PSCs), and chlorine activation on these PSCs
triggers the ozone depletion when the sun returns over the
Arctic in spring. The halogen cycles ClO–ClO and BrO–
ClO contribute about 80–90% of ozone loss in this region
through the above-said processes (WMO, 2007). However,
ozone loss at higher altitudes is driven by different chemical
cycles than those discussed in the lower stratosphere. A de-
tailed study on the ozone loss process at higher altitudes is
still lacking. The available studies deal with specific issues
of mid-winter warming and concomitant mid-latitude ozone
loss (for e.g. Grooß et al., 2005a; Vogel et al., 2008). None of
these studies perform a detailed analysis of the winter strato-
sphere in different conditions to diagnose the contribution
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Abstract. The passive tracer method is used to estimate
ozone loss from ground-based measurements in the Antarc-
tic. A sensitivity study shows that the ozone depletion can
be estimated within an accuracy of ⇠4%. The method
is then applied to the ground-based observations from Ar-
rival Heights, Belgrano, Concordia, Dumont d’Urville, Fara-
day, Halley, Marambio, Neumayer, Rothera, South Pole,
Syowa, and Zhongshan for the diagnosis of ozone loss in the
Antarctic. On average, the ten-day boxcar average of the
vortex mean ozone column loss deduced from the ground-
based stations was about 55±5% in 2005–2009. The ozone
loss computed from the ground-based measurements is in
very good agreement with those derived from satellite mea-
surements (OMI and SCIAMACHY) and model simulations
(REPROBUS and SLIMCAT), where the differences are
within ±3–5%.
The historical ground-based total ozone observations in

October show that the depletion started in the late 1970s,
reached a maximum in the early 1990s and stabilised after-
wards due to saturation. There is no indication of ozone re-
covery yet. At southern mid-latitudes, a reduction of 20–
50% is observed for a few days in October–November at the
newly installed Rio Gallegos station. Similar depletion of
ozone is also observed episodically during the vortex over-
passes at Kerguelen in October–November and at Macquarie
Island in July–August of the recent winters. This illustrates
the significance of measurements at the edges of Antarctica.

Correspondence to: J. Kuttippurath
(jayan@aero.jussieu.fr)

1 Introduction

Stratospheric ozone has been a trace gas of great inter-
est ever since the discovery of its dramatic decline in
the Antarctic spring in early 1980s (Farman et al., 1985).
Since then a string of ground-based (GB) and satellite sen-
sors has been dedicated to observe the polar stratospheres
in the framework of the international World Meteorologi-
cal Organisation–Global Atmospheric Watch (WMO-GAW)
programme (WMO, 1993) and the Network for Detection of
Atmospheric Composition Change (NDACC) for the con-
stant monitoring of ozone loss. Although satellites have
the advantage of global coverage, they cannot observe at
Solar Zenith Angle (SZA) >84� and thus not during the
deep winter months. In addition, i) they have limited life-
time and cannot always be immediately replaced, ii) their
measurements usually show progressive degradation, and
iii) the discontinuity in the observations produce undesir-
able jumps in the trend analyses when the concatenated data
are used. In contrast, though of limited geographical cov-
erage, ground-based sensors offer the advantage of continu-
ous record and easy repair or replacement if necessary. Fur-
ther, those measuring at visible wavelengths, such as SAOZ
(Système d’Analyse par Observation Zénithale) spectrome-
ters used in this study, are capable of making reliable mea-
surements until 91� SZA, which is throughout the winter at
latitudes around 65� S. Therefore, the maintenance of an in-
dependent ground-based capacity is absolutely essential.
The passive tracer method has been successfully applied

to the estimation of ozone depletion from ground-based to-
tal ozone measurements in the Arctic (Goutail et al., 1999).
This approach separates the contribution due to transport
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Ozone depletion in the Arctic winter 2007–2008
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Service d’Aéronomie du CNRS/IPSL, Université de Pierre et Marie Curie,
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The Arctic winter 2007–08 was characterized by cold temperatures and a strong
vortex. Potentials for large areas of ice and Polar Stratospheric Clouds (PSCs)
are observed during the winter. A vortex wide denitrification (removal of 60–80%
of NOy) and intense chlorine activation (0.6 to 1.05 ppb of ClO) are found inside
the vortex at 475 K. This chemical morphology triggered a high rate of ozone loss
during the winter. The simulated results from MIMOSA-CHIM show a large
loss of ozone at 425–550 K from January to March, about 1.5–2.3 ppm. The
vortex averaged loss at 475 K is about 2.5 ppm in mid-March, which is in very
good agreement with the estimated loss (2.3 ppm) from the Microwave Limb
Sounder (MLS) measurements. Similar analyses from MIMOSA-CHIM for
recent winters show a cumulative loss of 2.1 ppm in 2006–07 and 2.0 ppm in
2004–05 in tune with the measurements. The measured and simulated results
show the highest loss in 2007–08 in comparison with the analyses for the last four
winters at 475 K.

1. Introduction

Curiosity over the developments of the ozone layer in the Arctic stratosphere was
raised when the first stamp of human activities on our environment appeared in
the form of an ozone hole in the Antarctic (Farman et al. 1985). Even though not
severe as it is seen in the south, a large loss of ozone is generally observed in
unusually cold Arctic winters, like 1995–96, 1999–00, and 2004–05 (WMO 2007).
The moderately warm winter of 1991–92 also witnessed a catastrophic loss of
ozone due to the heterogeneous chemistry on sulphate aerosols, which were
emitted from the Mt. Pinatubo volcanic explosion (WMO 2007, von der Gathen
et al. 1995). Unprecedented variability in Arctic ozone loss has been observed in
the last decade and studies reveal its impact on mid-latitudes too. (Reid et al.
1998, Goutail et al. 1999, Schulz et al. 2000, 2001, Rex et al. 2006, Singleton et al.
2008). The high inter-annual variability in ozone depletion hints at the necessity of
constant monitoring of the stratosphere to predict future climate scenarios. This is
also important to assess the impact of international treaties like the Montreal
Protocol that aimed to phase-out ozone depleting substances (ODS) (WMO (2007)
and references therein). In addition, continued and consistent monitoring of the
ozone layer is inevitable for implementing further amendments to the treaties with
a vision for a better environment and a more comfortable climate.
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Intercomparison of polar ozone profiles by IASI/MetOp sounder
with 2010 Concordiasi ozonesonde observations
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Abstract.Validation of ozone profiles measured from a nadir
looking satellite instrument over Antarctica is a challeng-
ing task due to differences in their vertical sensitivity with
ozonesonde measurements. In this paper, ozone observations
provided by the Infrared Atmospheric Sounding Interferom-
eter (IASI) instrument onboard the polar-orbiting satellite
MetOp are compared with ozone profiles collected between
August and October 2010 at McMurdo Station, Antarctica,
during the Concordiasi measurement campaign. The main
objective of the campaign was the satellite data validation.
With this aim 20 zero-pressure sounding balloons carry-
ing ozonesondes were launched during this period when the
MetOp satellite was passing above McMurdo. This makes
the dataset relevant for comparison, especially because the
balloons covered the entire altitude range of IASI profiles.
The validation methodology and the collocation criteria vary
according to the availability of global positioning system
auxiliary data with each electro-chemical cell ozonesonde
observation. The relative mean difference is shown to de-
pend on the vertical range investigated. The analysis shows a
good agreement in the troposphere (below 10 km) and mid-
dle stratosphere (25–40 km), where the differences are lower
than 10%. However a significant positive bias of about 10–
26% is estimated in the lower stratosphere at 10–25 km, de-
pending on altitude. The positive bias in the 10–25 km range
is consistent with previously reported studies comparing in
situ data with thermal infrared satellite measurements. This

study allows for a better characterization of IASI-retrieved
ozone over the polar region during ozone depletion/recovery
processes.

1 Introduction

Surveying ozone distribution over Antarctica is an important
task for quantifying ozone depletion over the poles (New-
man et al., 2009), and to assess the efficiency of the inter-
national protocols controlling the emission of chlorine con-
taining compounds. Stratospheric ozone is essential for ul-
traviolet radiation protection, which allows life to remain
on earth and is closely linked to climate change and strato-
spheric circulation over the poles. For decades, satellites have
provided valuable measurements of the composition of the
atmosphere, in particular to follow the ozone chemistry in
the polar stratosphere in spring (WMO, 2011).
In 2010 the Concordiasi campaign was organized at

McMurdo Station (Long: 166.67�, Lat: �77.85�), Antarc-
tica (Fig. 1), by teams from France and United States, to
improve knowledge and understanding of the interactions
between ozone depletion, stratospheric clouds and atmo-
spheric dynamics (Rabier et al., 2012). This campaign also
aimed to provide additional information to better exploit
the temperature, water vapour and ozone observations pro-
vided by the Infrared Atmospheric Sounding Interferometer
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Abstract. The trends and variability of ozone are assessed
over a northern mid-latitude station, Haute-Provence Ob-
servatory (OHP: 43.93� N, 5.71� E), using total column
ozone observations from the Dobson and Système d’Analyse
par Observation Zénithale spectrometers, and stratospheric
ozone profile measurements from light detection and ranging
(lidar), ozonesondes, Stratospheric Aerosol and Gas Experi-
ment (SAGE) II, Halogen Occultation Experiment (HALOE)
and Aura Microwave Limb Sounder (MLS). A multivariate
regression model with quasi-biennial oscillation (QBO), so-
lar flux, aerosol optical thickness, heat flux, North Atlantic
Oscillation (NAO) and a piecewise linear trend (PWLT) or
equivalent effective stratospheric chlorine (EESC) functions
is applied to the ozone anomalies. The maximum variabil-
ity of ozone in winter/spring is explained by QBO and heat
flux in the ranges 15–45 km and 15–24 km, respectively.
The NAO shows maximum influence in the lower strato-
sphere during winter, while the solar flux influence is largest
in the lower and middle stratosphere in summer. The total
column ozone trends estimated from the PWLT and EESC
functions are of�1.47±0.27 and�1.40±0.25DUyr�1, re-
spectively, over the period 1984–1996 and about 0.55±0.30
and 0.42±0.08DUyr�1, respectively, over the period 1997–
2010. The ozone profiles yield similar and significant EESC-
based and PWLT trends for 1984–1996, and are about �0.5
and�0.8%yr�1 in the lower and upper stratosphere, respec-
tively. For 1997–2010, the EESC-based and PWLT estimates

are of the order of 0.3 and 0.1%yr�1, respectively, in the
18–28 km range, and at 40–45 km, EESC provides significant
ozone trends larger than the insignificant PWLT results. Fur-
thermore, very similar vertical trends for the respective time
periods are also deduced from another long-term satellite-
based data set (GOZCARDS–Global OZone Chemistry And
Related trace gas Data records for the Stratosphere) sam-
pled at northern mid-latitudes. Therefore, this analysis un-
veils ozone recovery signals from total column ozone and
profile measurements at OHP, and hence in the northern mid-
latitudes.

1 Introduction

After two decades of regulated emissions, the level of strato-
spheric ozone depleting substances (ODSs) has been re-
duced, and some of its components have been phased out
(WMO, 2007). The analyses show that total column ozone
measurements in the mid-latitudes are stabilised from the
mid-1990s onwards (Newchurch et al., 2003; Reinsel et al.,
2005; Vyushin et al., 2007). Similarly, a significant change
in trend is found in the upper stratosphere at mid-latitudes
(Steinbrecht et al., 2006; Jones et al., 2009). Thus, strato-
spheric ozone showed a slowing of decline attributable to
ODS decrease at mid-latitudes (WMO, 2011).

Published by Copernicus Publications on behalf of the European Geosciences Union.





Ann. Geophys., 30, 1435–1449, 2012
www.ann-geophys.net/30/1435/2012/
doi:10.5194/angeo-30-1435-2012
© Author(s) 2012. CC Attribution 3.0 License.

Annales

Geophysicae

The unusual persistence of an ozone hole over a southern
mid-latitude station during the Antarctic spring 2009: a
multi-instrument study
E. A. Wolfram1, J. Salvador1, F. Orte1, R. D’Elia1, S. Godin-Beekmann2, J. Kuttippurath2, A. Pazmiño2, F. Goutail2,
C. Casiccia3, F. Zamorano3, N. Paes Leme4, and E. J. Quel1
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Abstract. Record-low ozone column densities (with a min-
imum of 212DU) persisted over three weeks at the Rı́o
Gallegos NDACC (Network for the Detection of Atmo-
spheric Composition Change) station (51.5� S, 69.3�W) in
November 2009. Total ozone remained two standard devi-
ations below the climatological mean for five consecutive
days during this period. The statistical analysis of 30 years
of satellite data from the Multi Sensor Reanalysis (MSR)
database for Rı́o Gallegos revealed that such a long-lasting
low-ozone episode is a rare occurrence. The event is ex-
amined using height-resolved ozone lidar measurements at
Rı́o Gallegos, and observations from satellite and ground-
based instruments. The computed relative difference between
the measured total ozone and the climatological monthly
mean shows reductions varying between 10 and 30% with
an average decrease of 25%. The mean absolute differ-
ence of total ozone column with respect to climatological
monthly mean ozone column is around 75DU. Extreme val-
ues of the UV index (UVI) were measured at the ground
for this period, with the daily maximum UVI of around 13
on 15 and 28 November. The high-resolution MIMOSA-
CHIM (Modélisation Isentrope du transport Méso-échelle de
l’Ozone Stratosphérique par Advection) model was used to
interpret the ozone depletion event. An ozone decrease of
about 2 ppmv was observed in mid-November at the 550K
isentropic level (⇠22 km). The position of Rı́o Gallegos rel-

ative to the polar vortex was classified using equivalent lat-
itude maps. During the second week of November, the vor-
tex was over the station at all isentropic levels, but after 20
November and until the end of the month, only the 10 lower
levels in the stratosphere were affected by vortex overpasses
with ozone poor air masses. A rapid recovery of the ozone
column density was observed later, due to an ozone rich fila-
ment moving over Rı́o Gallegos between 18 and 24 km in the
first two weeks of December 2009.
Keywords. Atmospheric composition and structure (Middle
atmosphere – composition and chemistry)

1 Introduction

The Antarctic ozone hole is one of the most important per-
turbations that human activities have provoked in our atmo-
sphere (WMO Report, 2007). The ozone hole started to de-
velop each spring in the southern polar region in the early
1980s. Most recent studies point out that the detection of a
statistically significant decrease in its area will not occur be-
fore about 2020 (Newman et al., 2006).
In the course of the past twenty years, this phenomenon

has varied in size and minimum total ozone value. During
spring, stratospheric dynamical processes cause changes in
the size and shape of the polar vortex and sometimes it
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Denitrification in the Arctic mid-winter 2004/2005 observed by

airborne submillimeter radiometry
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[1] We present measurements of unusually low mixing
ratios of HNO3 in the exceptionally cold Arctic vortex of
late-January and early-February 2005. The measurements
were obtained by the airborne submillimeter radiometer
ASUR during the polar aura validation experiment (PAVE).
The distribution of HNO3 inside the vortex reaches minima
below 4 ppbv around 22 km altitude and maxima above
13 ppbv around 16 km altitude, with a considerable spatial
variability. We estimate a vortex averaged denitrification of
3.1 ± 0.8 ppbv around 20 km altitude, and slight
renitrification below !15.5 km altitude. The observed
HNO3 deficit is largest (!6 ppbv) near the center of
the vortex, where the air masses had experienced
temperatures below the NAT formation threshold for
80–100% of the previous 20 days according to back
trajectories. This suggests that the main denitrification
mechanism is based on sedimenting nitric acid trihydrate
particles. Citation: Kleinböhl, A., H. Bremer, H. Küllmann,
J. Kuttippurath, E. V. Browell, T. Canty, R. J. Salawitch, G. C.
Toon, and J. Notholt (2005), Denitrification in the Arctic mid-
winter 2004/2005 observed by airborne submillimeter
radiometry, Geophys. Res. Lett., 32, L19811, doi:10.1029/
2005GL023408.

1. Introduction

[2] Denitrification is the irreversible removal of reactive
nitrogen from an air mass by the sedimentation of HNO3-
containing particles. The resulting lack of reactive nitrogen
causes a delay in chlorine deactivation and hence a more
prolonged period of ozone loss [Rex et al., 1997; Waibel et
al., 1999; Tabazadeh et al., 2000]. Denitrification occurs
frequently in the Antarctic winter [Fahey et al., 1990;
Santee et al., 1999], and has also been observed several
times in the Arctic [Sugita et al., 1998; Rex et al., 1999;
Kondo et al., 2000]. The most severe and extensive Arctic
denitrification was observed in the unusually cold winter of
1999/2000 [Popp et al., 2001; Kleinböhl et al., 2002]. The
Arctic winter of 2004/2005 was exceptionally cold and
showed a larger area of potential PSC formation on
the 475 K surface than any other winter in recent years
(Figure 1). Also, the area for potential ice formation was

larger than in the previous winters. Here we present mea-
surements of HNO3 and N2O that were taken by the
airborne submillimeter radiometer on board the NASA
DC-8 research aircraft during the polar aura validation
experiment (PAVE) between 24 Jan. and 9 Feb. 2005. We
quantify the denitrification in the Arctic vortex and study
how it correlates with equivalent latitude and airparcel
temperature history, which provides information on the
plausibility of denitrification mechanisms.

2. Measurements

[3] Remote measurements of gas-phase HNO3 and N2O
were performed by the Airborne SUbmillimeter Radiometer
ASUR [von König et al. [2000], and references therein].
The instrument operates in a frequency range between 604.3
and 662.3 GHz and uses a liquid helium cooled detector
and an acousto-optical spectrometer for the acquisition of
spectra. By analyzing the spectrally resolved pressure
broadened emission lines using the optimal estimation
method [Rodgers, 1976], vertical profiles of the volume
mixing ratio (VMR) of HNO3, N2O, and other trace gases
are retrieved in an altitude range of about 15–40 km with a
typical vertical resolution of 6–10 km in the lower strato-
sphere. For a more detailed description of the measurement
and retrieval the reader is referred to Kleinböhl et al. [2002].
[4] ASUR was operated on board the NASA

DC-8 research aircraft during PAVE. Deployed from Ports-
mouth, NH, ASUR performed trace gas measurements
inside the Arctic vortex on five research flights, which will

Figure 1. Potential PSC area (area below TNAT, solid) and
potential ice area (dotted) on a potential temperature level of
475 K for the Arctic winters since 1999/2000, based on
meteorological analyses by ECMWF and assuming an
HNO3 VMR of 10 ppb and an H2O VMR of 5 ppm. The
dashed lines indicate the time period during which the DC-8
was deployed in 2005.
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Abstract Airborne measurements of stratospheric ozone and N2O from the
SCIAMACHY (Scanning Imaging Absorption Spectrometer) Validation and Uti-
lization Experiment (SCIA-VALUE) are presented. The campaign was conducted in
September 2002 and February–March 2003. The Airborne Submillimeter Radiome-
ter (ASUR) observed stratospheric constituents like O3 and N2O, among others,
spanning a latitude from 5◦S to 80◦N during the survey. The tropical ozone source
regions show high ozone volume mixing ratios (VMRs) of around 11 ppmv at 33 km
altitude, and the altitude of the maximum VMR increases from the tropics to the
Arctic. The N2O VMRs show the largest value of 325 ppbv in the lower stratosphere,
indicating their tropospheric origin, and they decrease with increasing altitude and
latitude due to photolysis. The sub-tropical and polar mixing barriers are well
represented in the N2O measurements. The most striking seasonal difference found
in the measurements is the large polar descent in February–March. The observed
features are interpreted with the help of SLIMCAT and Bremen Chemical Transport
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A Climatology of the Gravest Waves in the Equatorial Lower and Middle Stratosphere:
Method and Results for the ERA-40 Re-Analysis and the LMDz GCM
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ABSTRACT

A climatology of the three-dimensional life cycle of the gravest waves in the tropical lower and middle
stratosphere is presented. It shows that at periods around 10 days the gravest waves correspond to Kelvin and
Rossby–gravity wave packets that substantially affect specific regions in the lower stratosphere. It also shows
that the planetary-scale Kelvin waves with zonal wavenumber s 5 1 and periods between 10 and 20 days
produce a substantial signal. Still at the planetary scales, the climatology also shows that the global planetary
Rossby waves with s 5 1 and periods around 5 and 16 days have a substantial equatorial signature. This
climatology is for all the dynamical fields (horizontal wind, temperature, and geopotential height) and relates
the equatorial waves to the equatorial zonal mean flow evolution associated with the quasi-biennial oscillation.

The method used to extract the climatology is a composite analysis of the dynamical fields keyed on simple
indexes measuring when the waves enter in the stratosphere. For the Kelvin waves, the Rossby–gravity
waves, and the 5- and 16-day Rossby planetary waves, these indexes are related to the latitudinal means over
the equatorial band of the temperature, the meridional wind, the geopotential height, and the zonal wind
respectively. The method is applied first to ERA-40 and then to a simulation done with the LMDz GCM.
When compared to the results from ERA-40, this reveals that the LMDz GCM underestimates the Rossby–
gravity wave packets and a fraction of the Kelvin wave packets. This deficit is attributed to the fact that the
model has a too coarse vertical resolution and an insufficient tropospheric forcing for the horizontal wave-
numbers s . 3.

1. Introduction

The equatorial waves play an important role in the
equatorial stratosphere. Equatorial Kelvin waves and
Rossby–gravity waves partly produce the quasi-biennial
oscillation (QBO) through wave–mean flow interaction
(Holton and Lindzen 1972; Baldwin et al. 2001), and the
Kelvin waves are considered to be responsible for the
westerly phase of the semi-annual oscillation. They can
also contribute to the dehydration of the air at the trop-
ical tropopause (Jensen et al. 2001; Fujiwara et al. 2001).

The theory of equatorial waves was developed by
Matsuno (1966). The 15-day Kelvin waves and the 4–5-
day Rossby–gravity waves were first observed in strato-
spheric soundings by Wallace and Kousky (1968) and
Yanai and Maruyama (1966), respectively. Since then,

many studies have documented the presence of equato-
rial waves in vertical soundings and ground-based ob-
servations using radar, lidar, rockets (Tsuda et al. 1994;
Sasi et al. 2003; Fujiwara et al. 2003) or ultralong-duration
balloons (Vial et al. 2001; Hertzog and Vial 2001). In
addition to these equatorially trapped waves, there is a
growing amount of evidence that the dynamics in the
lower equatorial stratosphere is also modulated by the
planetary Rossby waves that were described at higher
altitudes and latitudes by Hirota and Hirooka (1984; see
also Madden 1978, 2007).

Although the stratospheric equatorial waves are in
good part forced by convection (Holton 1972; Manzini
and Hamilton 1993), Hendon and Wheeler (2008) have
given evidences that they are quite different from the
convectively coupled equatorial waves described by
Wheeler et al. (2000) that travel coherently with con-
vective centers in the troposphere (Hendon and Wheeler
2008). This is because the coupled modes are rather slow:
their periods correspond to small vertical wavelengths in
the stratosphere, where they dissipate rapidly.
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J. J. Jin29, A. Jones30, N. B. Jones27, K. Jucks31, A. Kagawa7,32, Y. Kasai7, T. E. Kerzenmacher2, A. Kleinböhl13,24,
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Abstract. The ENVISAT validation programme for the at-
mospheric instruments MIPAS, SCIAMACHY and GOMOS
is based on a number of balloon-borne, aircraft, satellite
and ground-based correlative measurements. In particular
the activities of validation scientists were coordinated by
ESA within the ENVISAT Stratospheric Aircraft and Bal-
loon Campaign or ESABC. As part of a series of similar pa-
pers on other species [this issue] and in parallel to the con-
tribution of the individual validation teams, the present pa-
per provides a synthesis of comparisons performed between
MIPAS CH4 and N2O profiles produced by the current ESA
operational software (Instrument Processing Facility version

Correspondence to: S. Payan
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4.61 or IPF v4.61, full resolution MIPAS data covering the
period 9 July 2002 to 26 March 2004) and correlative mea-
surements obtained from balloon and aircraft experiments as
well as from satellite sensors or from ground-based instru-
ments. In the middle stratosphere, no significant bias is ob-
served between MIPAS and correlative measurements, and
MIPAS is providing a very consistent and global picture of
the distribution of CH4 and N2O in this region. In aver-
age, the MIPAS CH4 values show a small positive bias in
the lower stratosphere of about 5%. A similar situation is
observed for N2O with a positive bias of 4%. In the lower
stratosphere/upper troposphere (UT/LS) the individual used
MIPAS data version 4.61 still exhibits some unphysical os-
cillations in individual CH4 and N2O profiles caused by the
processing algorithm (with almost no regularization). Taking
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[1] We assess the quality of the version 2.2 (v2.2) ClO measurements from the
Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS
v2.2 ClO data are scientifically useful over the range 100 to 1 hPa, with a single-profile
precision of !0.1 ppbv throughout most of the vertical domain. Vertical resolution is !3–
4 km. Comparisons with climatology and correlative measurements from a variety of
different platforms indicate that both the amplitude and the altitude of the peak in the ClO
profile in the upper stratosphere are well determined by MLS. The latitudinal and seasonal
variations in the ClO distribution in the lower stratosphere are also well determined, but a
substantial negative bias is present in both daytime and nighttime mixing ratios at retrieval
levels below (i.e., pressures larger than) 22 hPa. Outside of the winter polar vortices, this
negative bias can be eliminated by subtracting gridded or zonal mean nighttime values
from the individual daytime measurements. In studies for which knowledge of lower
stratospheric ClO mixing ratios inside the winter polar vortices to better than a few tenths
of a ppbv is needed, however, day " night differences are not recommended and the
negative bias must be corrected for by subtracting the estimated value of the bias from the
individual measurements at each affected retrieval level.

Citation: Santee, M. L., et al. (2008), Validation of the Aura Microwave Limb Sounder ClO measurements, J. Geophys. Res., 113,
D15S22, doi:10.1029/2007JD008762.

1. Introduction

[2] The partitioning between active and reservoir forms of
chlorine modulates ozone destruction throughout the strato-
sphere [e.g., Solomon, 1999; World Meteorological Organi-
zation, 2007]. Chlorine monoxide, ClO, is the primary form
of reactive chlorine in the stratosphere and thus a key catalyst
for ozone loss. The Microwave Limb Sounder (MLS) on
NASA’s Earth Observing System (EOS) Aura satellite meas-
ures vertical profiles of ClO globally on a daily basis. Initial
validation of the first publicly available Aura MLS ClO data

set, version 1.5 (v1.5), was presented by Barret et al. [2006].
Here we report on the quality of the recently released version
2.2 (v2.2) Aura MLS ClO measurements. The measurement
system is described in section 2. In addition to providing a
review of instrumental and orbital characteristics, this section
includes guidelines for quality control that should be applied
to the v2.2 ClOmeasurements, documents their precision and
spatial resolution, and quantifies sources of systematic un-
certainty. Because the v1.5 Aura MLS ClO data have been
featured in some previous studies [e.g., Schoeberl et al.,
2006a; Santee et al., 2005], section 2 provides an overview of
the differences between v2.2 and v1.5 ClO data. A systematic
negative bias, present in v1.5 but, unfortunately, worse in
v2.2, is also quantified in this section. In section 3, ‘‘zeroth-
order’’ validation of the Aura MLS ClO data is accomplished
by comparing against climatological averages in narrow
equivalent latitude bands compiled from the multiyear Upper
Atmosphere Research Satellite (UARS) MLS ClO data set.
Accuracy is assessed through comparisons with correlative
data sets from a variety of platforms in section 4. Finally, in
section 5 we summarize the Aura MLS ClO validation results.

2. Aura MLS ClO Measurement Description
2.1. Overview of the MLS Measurement System

[3] Aura, the last in NASA’s EOS series of satellites, was
launched on 15 July 2004 into a near-polar, sun-synchronous,
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Abstract
An indoor air quality survey was conducted at selected

indoor environments in the Department of Physics and

Electrical Engineering of the University of Bremen,

Germany, during August 2005. The mean indoor/

outdoor (I/O) ratios of pollutants appeared to be higher

than 1.0 for most volatile organic compounds (VOCs).

Apart from direct emissions from indoor materials and

infiltration of outdoor air, environmental tobacco

smoke (ETS) was a dominant factor in indoor pollution.

Pollutants which were commonly associated with

cleaning products and materials, including monoter-

penes, aldehydes and acetone exhibited general trends

of higher concentrations indoors compared to outdoor

levels. Indoor concentrations of many VOCs were found

to be 2–10 times higher during weekdays as compared

to the weekend, exhibiting a strong correlation with

human activities. A comparison with previous studies

on the health risks due to selected VOCs indicates that

long-term exposure to the peak values reported in this

study has potential to develop adverse health effects

to the occupants whereby reducing the efficiency in the

workplace.

Introduction

In recent years, increased attention has been paid by the

scientific community to understand and improve indoor

workplace atmospheres. Indoor air quality is considered to

be governed by high levels of outdoor pollutant concen-

trations, pollutant sources and sinks and movement of air

between the building interior and outdoors. There has

been substantial scientific enquiry in determining personal

exposures to pollutants as people in developed countries

spend more than 90% and people in developing countries

more than 70% of their time indoors [1]. Although indoor

pollution is not per se more dangerous than outdoor

pollution, concentrations of indoor contaminants are

often higher than those encountered outside, most of
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6Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
7Institut d’Astrophysique et de Géophysique, University of Liège (ULg), Liège, Belgium
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Abstract. Nitric acid (HNO3) is one of the key products that
are operationally retrieved by the European Space Agency
(ESA) from the emission spectra measured by the Michel-
son Interferometer for Passive Atmospheric Sounding (MI-
PAS) onboard ENVISAT. The product version 4.61/4.62 for
the observation period between July 2002 and March 2004 is
validated by comparisons with a number of independent ob-
servations from ground-based stations, aircraft/balloon cam-
paigns, and satellites. Individual HNO3 profiles of the ESA
MIPAS level-2 product show good agreement with those of
MIPAS-B and MIPAS-STR (the balloon and aircraft ver-
sion of MIPAS, respectively), and the balloon-borne infrared
spectrometers MkIV and SPIRALE, mostly matching the
reference data within the combined instrument error bars. In
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most cases differences between the correlative measurement
pairs are less than 1 ppbv (5–10%) throughout the entire alti-
tude range up to about 38 km (⇠6 hPa), and below 0.5 ppbv
(15–20% or more) above 30 km (⇠17 hPa). However, dif-
ferences up to 4 ppbv compared to MkIV have been found
at high latitudes in December 2002 in the presence of po-
lar stratospheric clouds. The degree of consistency is further
largely affected by the temporal and spatial coincidence, and
differences of 2 ppbv may be observed between 22 and 26 km
(⇠50 and 30 hPa) at high latitudes near the vortex bound-
ary, due to large horizontal inhomogeneity of HNO3. Simi-
lar features are also observed in the mean differences of the
MIPAS ESA HNO3 VMRs with respect to the ground-based
FTIR measurements at five stations, aircraft-based SAFIRE-
A and ASUR, and the balloon campaign IBEX. The mean
relative differences between the MIPAS and FTIR HNO3
partial columns are within ±2%, comparable to the MIPAS
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A balloon launch during the CONCORDIASI campaign in Antarctica in 2010
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