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Abstract

We study the problem of fracture in thin film systems subject to tensile stresses
originated by mechanical loading or inelastic phenomena, due e.g. to thermal or moisture
couplings. In such systems, homogeneous loads lead to the nucleation of interacting
transverse and debonding cracks, producing auto-structuration of quasi-periodic crack
networks and propagation of complex patterns showing robust morphological features.
We tackle the problem of describing the irreversible evolution of fractures, covering the
phases of crack nucleation, path selection and irreversible evolution in space and time.

Available literature results rely upon phenomenological models lacking rigorous
derivation and are limited to simple geometrical settings. In addition, problems of
nucleation of new cracks, mechanisms of path selection and irreversible, non-smooth
evolution in space and time are not explored, due to the limitations of to classical theory
of fracture mechanics.

We propose the derivation of a limit, asymptotic, reduced-dimension, global, varia-
tional, theory for fracture of thin films starting from three-dimensional brittle elasticity
within the framework of variational fracture, using notions of variational convergence.
We then introduce a regularization of the limit fracture problem, by the means of a
damage gradient functional, suitable to the numerical solution by finite elements.

The proposed work allows to obtain a systematic understanding of the competition
between various mechanisms including fracture and debonding; to rigorously establish a
reduced, variational, asymptotic model, valid for thin films that is rich enough to capture
the important physics of failure; and to tackle a detailed numerical study of the complex
cracking and debonding patterns observed in thin film systems.

Keywords: fracture, variational mechanics, thin films, singular perturbation, asymp-
totic analysis, dimension reduction, I'-convergence, damage models, finite elements.



Résumé

Nous étudions le probleme de rupture des systémes de couches minces soumis a contraintes
de tension dues aux chargements mécaniques ou a d’autres phénomenes élastiques, associés
e.g. a couplages thérmiques ot humidité. Dans ces systemes, chargements homogenes
conduisent a la nucléation de fissures interagissantes transverses et de décollement,
produisant ’auto-structuration de réseaux de fissures quasi-périodiques et la propagation
de patterns complexes qui montrent caractéristiques morphologiques robustes. On
s'intéresse a décrire I’évolution de ces fissures, en prenant en compte les phases de
nucléation, sélection du trajet de fissure et évolution irreversible en espace et en temps.

Les résultats disponibles en littérature se basent sur des modeles phénoménologiques,
dépourvus d'une dérivation rigoureuse, et sont limités a des cas géométriquement simples.
Dans ces derniers, le probleme de nucléation, les mécanismes de sélection du chemin
de fissuration et I’évolution non réguliere en espace et en temps ne sont pas explorés, a
cause des limitations de la théorie classique de la mécanique de la rupture.

Nous proposons la dérivation d’une théorie variationnelle asymptotique, bidimen-
sionnelle et globale, a partir d’'un probleme tridimensionnel d’élasticité fragile dans le
cadre de I'approche variationnelle a la mécanique de la rupture, en faisant intervenir une
notion de convergence variationnelle. Ensuite, nous introduisons une régularisation du
probleme faible de rupture par le moyen d’un modele en gradient d’endommagement,
adapté a la solution numérique via la méthode des éléments finis. Le travail proposé
permet d’obtenir une compréhension des mécanismes couplés élastiques, de fissuration et
décollement; d’établir un modele asymptotique, réduit et variationnel, valable pour des
systemes de couches minces suffisamment riche pour capturer les mécanismes physiques
essentiels; et d’aborder une étude détaillé des expériences numériques qui révelent les
patterns complexes de fissures observés dans les systemes de couches minces.

Mots-clés: rupture, mécanique variationnelle, couches minces, perturbation sin-
gulieres, analyse asymptotique, réduction de dimension, I'-convergence, modeles d’en-
dommagement, élements finis.



Riassunto

Studiamo il fenomeni di frattura in sistemi di film sottili soggetti a tensione derivante
da carichi meccanici o altri processi inelastici, dovuti ad esempio ad accoppiamento
termico o ad umidita. In questi sistemi, carichi omogenei conducono alla nucleazione di fes-
sure interagenti, trasverse e di decoesione interfacciale, producendo un’auto-strutturazione
di fratture quasi-periodiche e la propagazione di pattern complessi dalle proprieta morfo-
logiche robuste. Affrontiamo il problema della descrizione dell’evoluzione irreversibile
delle fratture, abbracciando le fasi di nucleazione, selezione del percorso di fessura ed
evoluzione irreversibile in spazio e tempo.

Risultati precedenti in letteratura si basano su modelli fenomenologici, sprovvisti
di derivazione rigorosa, e sono limitati a casi geometricamente semplici. Inoltre, il
problema della nucleazione di nuove fessure, i meccanismi di selezione del percorso e la
sua evoluzione non-regolare in spazio e tempo non sono esplorati a causa delle limitazioni
della teoria classica della meccanica della frattura.

Proponiamo la derivazione di una teoria asintotica, a dimensione ridotta, globale e
variazionale, per studiare la frattura dei film sottili usando nozioni di convergenza vari-
azionale. Infine, introduciamo una regolarizzazione del problema di frattura, attraverso
modelli di danno a gradiente, adatto alla soluzione numerica discretizzata. Il lavoro
proposto permette di ottenere una comprensione della competizione tra elasticita, fessur-
azione trasversa e decoesione interfacciale; di stabilire un modello ridotto, variazionale ed
asintotico, valido per film sottili fragili, sufficientemente ricco da catturare gli elementi
essenziali della fisica della rottura; e di affrontare uno studio numerico dettagliato dei
complessi pattern di frattura e decoesione osservati nei sistemi di film sottili.

Parole chiave: rottura, meccanica variazionale, film sottili, perturbazioni singolari,
analisi asintotica, riduzione di dimensione, I'-convergenza, modelli di danno, elementi
finiti.



Resumen

Estudiamos los fenémenos de ruptura en sistemas de capas delgadas sometidos a
tension, originada por cargas mecéanicas u otros procesos inélasticos, debidos, por ejemplo,
a acoplamientos térmicos o humedad. En estos sistemas, cargas homogeneas conducen
a la nucleacion de grietas transversas y decohésion interfacial, produciendo un auto-
estructuracién de redes de grietas casi-periddicas y la propagacion de pattern complejos
caracterizados por propriedades morfologicas robustas. Describimos la evolucién irre-
versible de las grietas, abrazando las fases de nucleacion, de seleccién del trayecto y de
evolucion irreversible en espacio y tiempo.

Se han reportado resultados en la literatura basados en modelos fenomenoldgicos que
carecen de derivacion rigurosa y se limitan a casos geométricamente simples. Ademas,
debido a las limitaciones de la teoria clasica de la mecanica de la ruptura, no se exploran
la fase de nucleacion de nuevas grietas, los mecanismos de selecciéon del trayecto y la
evolucion irregular en espacio y tiempo.

Proponemos la derivaciéon de una teoria asintotica global, en dimension reducida y
variacional, para estudiar la ruptura de capas delgadas utilizando nociones de convergencia
variacional. Por ultimo, introducimos una regularizacién de el problema limite de ruptura,
por medio de modelos regularizados a gradiente de dano, adapta para la solucion numérica
discretizada. El trabajo propuesto permite de comprender la competicion entre elasticidad,
ruptura transversa y decoesion; de establecer un modelo reducido, variacional y asintotico,
valido para sistemas de capas delgadas y suficientemente rico para capturar los elementos
esenciales de la fisica de la ruptura. También permite realizar un estudio detallado de
los complejos patterns de grietas y decoesion experimentalmente observados.

Palabras clave: ruptura, problema variacional, capas delgadas, perturbaciones
singulares, problema asintotico, reduccién de dimension, I'-convergencia, modelos de
dano, elementos finitos.
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Preamble

Cracking of thin films systems is often experienced in everyday life. Ceramic painted
artifacts, coated materials, stickers, paintings and muds are some of the physical systems
that exhibit the appearance of complex networks of cracks, channeling through the
topmost layer in the stack. In addition, the phenomenology is enriched by the possible
interplay with mechanisms of spontaneous interfacial decohesion. Since the 1980’s, when
the technology of thin films started to have an extensive presence in industrial applications,
a systematic study of fracture mechanics of film-substrate systems has begun. Thin films
are grown on substrates for many technological applications. Examples include coatings
as thermal barriers on superalloys in engines, silicon nitride films as environmental
barriers on metals, polymers in microprocessors and thin films as optoelectronic materials
on substrates in light-emitting diodes. The mechanical performance of thin films under
severe environmental conditions often dictates design, and their integrity often ensures
efficiency of the whole structure. Under these conditions, residual stresses may arise
due to the deposition techniques or multi-physical couplings involving thermal effects,
humidity and mechanical loadings, causing cracks to grow in the film, in the substrate,
or both. An extensive review of common fracture patterns is given in [HS91]. Figure 1
illustrates the fracture of a thin film and its debonding from the substrate. A thin vinyl
sticker is bonded onto a metal panel and exposed to atmospheric conditions. Among
others effects, the incident radiation from the sun generates inelastic mismatch strains
leading to transverse cracking and debonding. A closer examination leads to observe
some properties. Cracks within the film are essentially transverse to the plane and
completely cut the film along its thickness. In addition, although the corners and the
associated stress concentration favor the growth of cracks, these are also present along
smooth boundaries away from singular points. Debonding, where present, appears at
the boundaries of the film and by the trace of glue left on the panel, one argues that the
deformations are induced by inelastic shrinkage stresses, i.e. stresses are tensile.

The mechanical description. A vast share of the scientific literature has, ever since
the first technological applications, focused on the description of the phenomenology
induced by the fracture in thin film-substrate systems.

Let us picture the system of Figure 1 in its initial state, i.e. before cracks appear.
If one is sufficiently away from the boundaries, the state of stress—and to some larger
extent—the state of the system is reasonably supposed to be homogeneous. This is
understood when inelastic strains are imposed as a consequence of a thermal load. Such
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inelastic strains are due to a temperature change in circumstances where there exists
a mismatch between the thermal expansion coefficients of the layers. Such stresses are
constant provided that the system is in thermal equilibrium.

After cracks appear, the picture is much more complex. Cracks nucleate and propagate,
intersect, coalesce and branch, further defining angles and directions, drawing shapes
and forming patterns. The latter may be almost 1D or essentially 2D, depending on the
loading conditions and the symmetries of the system.

A vast literature based on approaches typical of classical linear fracture mechanics,
ascribed to Griffith [Gri21], is devoted to give a theoretical insight and to interpret the
observations.

The origin of stresses. The development of stresses in thin film systems is associated
to different physical mechanisms; an overview is given in [Hut96]. Residual stresses in
working conditions are often generated by the technological process of production or
deposition of the layers. Sputtering, spraying, vapor or epitaxial deposition and spin
coating may produce non-homogeneous residual stresses that are difficult to characterize.
On the other hand, mechanical stresses during operating conditions of the final assembly
are transferred from the structure, which carries the working loads, to the superficial
layers. Since often the underlying structure is much more rigid than the coating films, it
can be assumed, at a first order approximation, that the overlying thin film system is
driven by an imposed displacement at the interface with the substrate. In this sense,
the presence of the film system can be neglected, at a first order, in the elastic response
of the structure under its loads. In addition, stresses also develop because of thermal
effects. A change of temperature from the deposition conditions (a natural stress-free
state) rises significant stresses when the film and the substrate have different thermal
expansion coefficients. When such mismatch is important, thermal stresses can lead
to extensive cracking and debonding, see [HS91], [FFS09]. Stresses of thermal origin
are easier to control and characterize. Indeed, in a system whose displacement at the
boundaries is left free (hence natural stress-free boundary conditions are satisfied at
equilibrium), the stress state is homogeneous away from the boundaries. The homogeneity,
as it will be discussed in the following, although allows for an easy characterization
of the stress state, it engenders important difficulties in the mechanical modeling of
fracture processes. Also localized stresses can be obtained through e.g. instrumented
indentation [F'S09] leading to, for instance, annular concentric and star-shaped crack
patterns [Rhe+01]. The compressive vs tensile nature of stresses determines different
failure patterns. When stresses are compressive, the dominant mechanisms are related
to bucking-driven delamination [CC00] and bulging, whereas when stresses are tensile,
channel and surface cracking [YSE92], spalling and interface debonding [DTESS], [C1K92],
[YHO3], [CE03] are common failure mechanisms, see [NE93], [Hut96] for a general
overview of crack patterns.

Nucleation and the role of initial flaws. The first systematic studies of the problem
of fracture in thin films lay within Griffith’s classical theory of fracture mechanics [Gri21].



This theory provides a means to investigate the conditions under which an existing
crack will propagate along a given path, essentially by the means of an energy balance.
The propagation criterion has a clear interpretation in two-dimensions. Consider a
body Q C R? under an applied displacement load parametrized by a scalar t along a
portion dpQ of its boundary, and with imposed force vanishing (to fix ideas) along the
complement to the entire boundary dyQ = 9Q \ dp€2. Let the crack path be given, i.e.
I' is a known curve I' C 2. The position of the crack tip along I' can be parametrized
by t, so that [(¢) identifies its position along the propagation. In correspondence to the
equilibrium configuration, the elastic energy of the body P(¢,(t)) is a function of the
load and crack length. The classical Griffith’s criterion states that the propagation of
a preexisting crack, of initial length ay > 0, takes place whenever the elastic energy
released for an infinitesimal crack advance, i.e. the quantity —9P(¢,((t))/0l(t), bounded
from above by a constant 7.e. the material toughness G., reaches its critical value. That
is, when the equality —0P(t,1(t))/0l(t) = G, is satisfied.

It is reasonable to assume that inhomogeneities exist in the film system at a sufficiently
small scale. Within Griffith’s theory, the existence of macroscopic cracks is assumed to
derive from the growth of small-scale defects. The energy release rates associated to
an initial flaw (of length ag) are computed in [TP100] for various crack configurations,
generally in infinite or semi-infinite two-dimensional bodies. Considering a cross section
of a film system, hence assuming underlying translational invariance with respect to
one direction along the middle plane of the film, in [Beu92] the same type of results
are obtained considering the elastic mismatch between the layer, accounted for by the
Dundurs’ parameters [Dun69]. Referring to Figure 2(a), the cited works focus on the
computation of the energy release rate of an initial flaw of length ag, along the prescribed
vertical segment, for ap < a < hy, where hy is the thickness of the layer.

The formation of the first channel crack is associated to the putative “worst defect”.
However, since the control of the fine geometric features of initial flaws is out of reach, any
criterion in which the knowledge of the fine details of the microscopic scale is necessary,
not only is unusable from the practical standpoint, also contradicts with the macroscopic
and global essence of Griffith’s theory.

The analysis of the extension of small-scale cracks is therefore abandoned in favor
of the study of the propagation of flaws fully developed along the thickness; that is, of
macroscopic cracks approaching a free boundary, see Figure 2(b). Usable arguments,
from an engineering standpoint, are constructed considering pre-existing macroscopic
initial cracks. The computation of the energy release rates for channeling cracks (i.e.
with ag = hy) that elongate laterally within the film, starting from a free boundary, is
performed in [[IS91]. Moreover, the concept of “steady-state cracking” is first formulated.
It is noted, in fact, that the energy release rate attains an asymptotic value as soon
as a crack, starting from a free boundary, spans a length larger than several film
thicknesses. The only length that explicitly appears in the propagation condition
—0P(t,1(t))/0l(t) = G. is then hy. This allows the establishment of usable criteria for
fail-safe design of multilayer composites with macroscopic initial cracks, identifying a
“critical thickness” h., below which no crack is expected to extend when the system is
subject to a given load. These criteria are usually stated with a relation of the following
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type (see [HS91], [HS93]):
Z = Gc/(hf€02Ef>, (1)

where eq is the intensity of the equi-biaxial inelastic (e.g. thermal) strain, E; the Young
modulus of the film and Z (or Q. as first labeled in [[ED88]) is a non-dimensional
“cracking number” of order unity depending upon the elastic and brittle properties of
the multilayer [LHE95]. Its value roughly classifies also the resulting fracture pattern
[HS91], [YSE92]. Such criterion provides a design specification on the film thickness h
against cracking with a given pattern Z, for loads up to ey. Subsequently, [Suo01] derives
the energy release rates computing singular crack tip fields for straight and kinking
interfacial and channeling cracks, by the means of the celebrated Irwin’s formula [[rw58]
which relates local quantities computed around the crack tip to the global energy release
rate. Such quantities are computed as functions of the Dundurs’ parameters [Dun69],
measuring the elastic mismatch between the layers.

The study of the propagation of fully developed cracks is soon enriched with new
elements such as plastic yielding [BK96] and buckling [HS91], [SF93], [CC00]. FEM
computations are performed in [BK96] to obtain results similar to [Beu92] accounting
for perfect and hardening plasticity with a shear-lag model [Cox52].

Another important failure mechanism of film/substrate composites is extensive
debonding due to residual stresses [Y03]. Since solving the problem of nucleation is out
of reach, debonding is considered the consequence of kinking of a fully developed crack
into a plane parallel to the layer interface. Analysis of debonding is tackled in [DTESS],
[JHE90], [CK92], [NMI6], [YHO3]. The results of these studies provide debonding crack
propagation criteria, local stress intensity factors, debonded areas and their shapes as
a function of the applied load and elastic mismatch. In [VMA99] debonding due to
compressive stresses (and buckling) is numerically simulated via a FEM approach upon
the assumption of an ad-hoc initial distribution of debonded zones at the interface.

All the cited studies, intended to provide a design criterion in order to avoid cracking
in multiple circumstances, rest on the postulated existence of macroscopic fully developed
cracks. However, in [LHE95] it is experimentally proved that, although the suggested
criterion can conservatively account for propagation of existing macroscopic cracks, it
cannot capture the critical loads of a macroscopically homogeneous body, still being
supposedly associated to flaws at sufficiently small scales. Hence, the apparent size effect
associated to the film thickness, the essence of (1), does not explain macroscopic cracking
in homogeneous bodies and the complete knowledge of initial flaws is claimed to be
essential for the understanding onset of cracks. However, in these situations a robust
novel feature emerges. The experimental campaign in [[LITE95], shows that in situations
where the state of the system is homogeneous at the macroscopic scale (i.e. no fully
developed cracks exist), cracks form at loads much higher than those predicted by (1) and
are robustly arranged in a periodic array, see Figure 3. A notion of macroscopic “pattern”
appears, weakening the direct causal relation between the local microscopic nature of
small scale defects and the emergent large-scale features. Owing to these observations,
the presence of cracks, fully developed along the film thickness, perpendicular to the
interface and already arranged into a macroscopic equi-distributed pattern, is taken



as starting assumption in [[1S91], [TOG92], [Tho+11] to study the evolution of the
crack spacing. Criteria of energy balance and maximum stress are used in [Hsu01]
and [SSF00] to compare one-dimensional theoretical results for crack arrays to one- ad
two-dimensional experiments, respectively. To this scenario [BM07] adds an elasto-plastic
phenomenological law for the interface whereas [AJB02] is concerned with periodic arrays
of cracks competing with an underlying periodic material structure.

The equi-distributed arrangement is only one of the most commonly observed crack
patterns. The universal non-dimensional number Z [Fvag9], [HS91] is used to roughly
classify regimes of cracking: debonding, spalling, substrate damage, channeling and
superficial cracks.

Intense efforts were hence spent to study the patterns themselves by the means of
numeric techniques. The implementation of phenomenological spring-network models,
whose pioneering work is [Mea87], has been exploited to attempt to simulate the evolution
of crack patterns in thin films. More recently and in the same spirit, in [HSB96], [CB9I7],
[LNOO] and [Kit11], an elementary spring network with nearest-neighbor interactions
represents the continuous system, the interaction with the substrate is accounted for
by a discrete linear elastic potential. A different wake in numerics follows the works of
[Hua+03] and [Lia03] which propose a numerical treatment of complex 2D crack patterns
within the framework of XFEM. In all the works cited above, to palliate the inability of
the classical theory of fracture to account for nucleation, one (or many) initial cracks
(with a given size, distribution and shape), or a probabilistic dispersion of the relevant
quantities (e.g. the toughness) via ad hoc PDF laws are needed to trigger cracking.
Consequently, the fine mechanisms of nucleation leading to the macro-scale structure of
the crack pattern are hidden within the properties of the probabilistic distribution of
micro-scale inhomogeneities.

From the theoretical standpoint, [XH00] proposes a reduced two-dimensional effective
model for thin film systems, further studying the propagation of some of the commonly
observed crack patterns. Under suitable additional hypotheses, the authors investigate the
steady-state propagation of single and array of cracks, illustrate the interaction between
parallel or perpendicular neighboring cracks and show the existence of a particular
solution which corresponds to an Archimedean-spiral-shaped crack, if sufficiently long
macroscopic spiral-shaped initial cracks exist.

The theoretical works within the classical framework of linear fracture mechanics
cited above, have dealt with the propagation (following the celebrated Griffith’s criterion
[Gri21]) of pre-existing cracks along known crack paths, the latter are either given
explicitly or implicitly, by the means of additional ad hoc path selection (i.e. branching)
criteria. However, the necessary assumptions of a priori knowledge of the crack path
proper to the classical framework of fracture mechanics, not only hide the subtle mech-
anisms leading to emergence of crack patterns, but also constrain the analysis to very
simple settings, forbidding the exploration and explanation of the observed complexity.

Indeed, the nucleation and the path selection phases are deeply related to the
geometric features of the observed crack patterns, determining the non-homogeneous
response, starting from a macroscopically homogeneous state. As the experimental
evidence shows, at nucleation in a macroscopically homogeneous body, macroscopic
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patterns emerge. The question whether such macroscopic patterns are dominated by
microscopic (local) imperfections still remains open. In other words, notwithstanding
the existence of microscopic defects, are those responsible of the macroscopic response or
other mechanisms play this decisive role?

A global approach. From a different perspective, problems of localization (possibly
with a notion of periodicity) and self-organization of patterns are much better understood
in linear and nonlinear solid mechanics (i.e. without fractures) as the observable states
selected by a stability criterion [Ngu00]. For instance, buckling in thin film systems
[ABO8a], [ABO8b], [AB0&c], localization of damage in softening materials [PMM11]
focused reactive flows in geophysical systems [SL.11], morphogenesis in nonlinearly elastic
biological tissues [BGO5], [BC13] are explained by this concept. In all such systems, size
effects related to the existence of one (or several) internal length scales play an essential
role in the stability properties of the admissible states. Consequently, localization,
self-organization and the emergence of patterns are intimately linked to macroscopic
size effects influencing the stability properties of the system. We may more reasonably
suspect that the complexity of crack geometries (and all the phenomenology that ensues)
springs rather from global structural properties than from local microscopic features.
Indeed, thin film systems appear to belong to a wider class of systems encountered in
nature. Consider the three examples in Figure 4.

The first image depicts the well known basaltic columns produced during the cooling
and subsequent solidification lava flows [GMNMNO09] by the propagation of a crack front
along the vertical direction. Despite shrinking (due to the change of phase) can be
accommodated vertically, on planes orthogonal to the thermal flow tensile stresses arise
and are high enough to engender the extensive fracture front. As a consequence, columns
appear as the fracture network propagates vertically, parallel to the direction of the
thermal flow.

The second image depicts a glazed vase showing a crackled surface. Here, the
aesthetic effect is produced by the differential inelastic deformations induced by the
thermal treatment, leading the body to release its stored elastic energy by creating new
free surfaces.

The last picture [Let+10], reports an example of fragmentation in a MEMS device.
The thin film laying over a support under uni-axial tension shows a network of parallel
cracks within the coating layer, perpendicular to the principal stress direction.

Although these three systems, and many others could be included in the list, evolve at
different length scales, are characterized by different constitutive laws and multi-physical
couplings, they all express a fundamental feature: the existence of an intrinsic length
scale. This length scale fixes the diameter of the hexagonal cross section of the columns
in Figure 4(a), the mean size of the cells at the surface of the vase in Figure 4(b) and
the spacing of the quasi-periodic array of parallel cracks in Figure 4(c).

In all such systems, the presence of an intrinsic length scale appears as an essential
and global feature manifested by the fracture processes, characterizing the regimes of



multiple cracking and leading to complex crack patterns that produce the periodic
tessellation of the initially sound domain.

The existence of internal length scales and their consequences on the stability of
admissible states are not only related, but, as it will be shown, are also necessary for the
understanding of mechanisms of fracture in thin films.

The crack path is unknown. Since it is the crack pattern itself, with its complex
phenomenology of nucleation and propagation, that essentially characterizes the multiple
cracking and debonding regimes in thin film systems, it has to be taken into account as
a genuine unknown of the problem. Instead of being postulated a priori or englobed
within the fine properties of the ad hoc probabilistic distributions, its essential properties
have to be obtained as an outcome of the study. This allows to identify the role of the
interacting mechanisms that contribute to their determination.

The variational approach to fracture, as set forth in [FM98] and further developed in
[BEMOg], allows to naturally incorporate the crack path as an additional unknown to
the elastic problem, and to handle the complexity of their evolution in time and space.
More in general, this novel vision palliates the gaps in the classical theory of fracture
mechanics related to the issues of nucleation, selection of crack paths and regularity
of crack evolutions (in space and time), proposing a sound, global, macroscopic theory
based on a rigorous mathematical variational formulation and springing from a basic
principle of energy stability. It echoes the spirit of the seminal work of [Gri21] in which
the crack propagation originates from an energy balance and is essentially opposite to
the vision of the works that have followed the pioneering cited reference, which bring
back the global energetic spirit to a local approach.

The key point in [FM98] and [BFMOS] is showing that an energy argument can be
used as a selection criterion among crack paths, with the quasi-static minimization of the
energy of the system among admissible competitors (displacements and cracks). Assume
that a body € is in equilibrium under the load ¢ applied its Dirichlet boundary dp€ and
is free at its complement Oy = 9Q\ dp€2. The body may contain a crack I' which defines
the sound part of the body as the open set Q \ I'. In this case the crack I' is regarded as
a genuine additional unknown to the displacement field v and both are sought as the
pair minimizing the total energy of the body F(u,I'), among kinematically admissible
displacements and cracks within 2. The total energy comprises the term accounting
for the elastic energy of the sound domain P(u,I"), and the energy associated to the
crack surface S(I'), i.e. E(u,I") = P(u,I") + S(I'). The stability principle turns even
more fruitful when it is confronted to the issue of nucleation and evolution. Suppose
that at time t(, the body is in the state just obtained as solution of the static problem,
in particular let us denote the corresponding crack set by I'g. Hence, along a subsequent
evolution, parametrized by t > to, the stability principle requires to the crack I'(t) to
be a minimizer of the total energy, among all curves I' D I'(¢), the last set inclusion
reflects the irreversible character of fracture processes. In the last statement, we can
confront to the problem of nucleation just by considering the admissible case I'y =
In this situation, with or without singularities, it is shown that a crack will necessarily
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nucleate for a sufficiently high load, viz. in a finite time [BFMO08]. Energy stability and
irreversibility are the two first essential ingredients of this variational formulation. The
third, a weak form of energy balance, provides a selection criterion among the linearly
independent infinity of solutions that may be constructed with the first two criteria. The
works [FMOg], [BEMOS] offer a deep, as much as wide, analysis of the general framework
of variational fracture.

A wider perspective. The theory of variational fracture, of which a few threads will
be sketched in the next Chapter, fits within the larger class of systems whose response
along a loading process is independent of the rate of loading. Systems that behave as
such are labeled rate independent and the general formulation, in a variational setting, of
their associated evolution problems is studied in abstract detail in [Mic05]. Other than
brittle fracture mechanics, it finds applications in the study of phase transformations
in shape-memory alloys [MTLO00], dry friction [FEMO06], micromagnetism [RI<04]; just to
cite a few notable examples. Within this abstract framework it is possible to study, with
the help of fine and rigorous mathematical tools, complex phenomena originating from

simple and fundamental principles within a global view.

Let us turn the attention back to the films system. The “thinness” of such structures
has a profound influence upon the mechanical modeling, mathematical analysis and
computational experimentation. In the mechanical modeling of problems associated
to thin film systems “small parameters” naturally appear. One of those is typically
the ratio between the thickness and the diameter of the structure. A direct numerical
approach to the solution of their associated problems proves to be extremely costly
due to the ill-conditioning caused by the separation of scales, i.e. these problems are
numerically stiff. On the other hand, the observation of these systems suggests that their
phenomenology is essentially two-dimensional. It is then reasonable to look for suitable
reduced two-dimensional models that be able to capture the fundamental properties of the
real three-dimensional system. Elastic problems in thin film systems are a typical instance
of singular perturbation problems, where setting to zero the small parameters would
provide meaningless equations. The techniques of the asymptotic study of boundary
value problems, stated under a variational form, as their natural “small parameters” tend
to zero are dealt extensively in [Lio73] and have allowed for the rigorous justification of
the linear and nonlinear reduced dimension theories for bars, rods and strings [MMO6];
plates and shells [Cia97], among other fruitful applications.

In fracture mechanics of brittle thin film systems, the asymptotic study of a variational
singular perturbation problem couples naturally with the study of its irreversible quasi-
static variational evolution laws. Such rich mathematical structure has indeed kindled
the attention of the applied mathematics community. Variational convergence studies for
fractures in single-layer thin films has been studied in [BF01], [BFLO02], [Bab06] whereas
interfacial debonding has been investigated in [BFF02], [KMRO5], [RSZ09].

This work. We propose to investigate the brittle elastic system and characterize the
phenomena related to both multiple fissuration and debonding as a irreversible, quasi-



static evolution of singular perturbation problem, following a variational principle of
energy minimization.

We shall, to this end, make extensive use of the techniques of the Calculus of Variations
and the notions of variational convergence. Their interest, in this setting, goes beyond the
original use of exotic mathematical tools and provides a key to investigate the essential
mechanisms by unveiling their asymptotic and necessary properties.

We present here, within a unitary framework, rigorous mathematical results on their
mechanical ground, for they both contribute shedding light on the behavior of brittle
thin film systems. The work is organized as follows.

In Chapter 1, after a brief sketch of some essential elements in the variational approach
to fracture mechanics, we introduce the mechanical system of our concerns: the three-
dimensional brittle elastic multilayer. We specify the thought experiment we will perform,
fix notations and give the definitions that will be used in the sequel of the work.

In Chapter 2 we illustrate the capabilities of the proposed formulation in a most
simplified setting of dimension one. Upon the assumption of a reduced model to describe
the system, only phenomenological so far, we proceed to a thorough investigation of
the solutions of both static and evolutionary brittle fracture problems, on the basis of a
global energy minimization principle.

In Chapter 3 we derive the reduced model used in the preceding chapter, as the result
of an asymptotic study. The limit model is constructed gradually. We start by studying
the possible families of limit models arising from a three-dimensional elastic multilayer,
once a general scaling law is assumed for thicknesses and stiffnesses. We extend the
asymptotic study of one of the limit regimes, namely that of membranes over elastic
foundation, performing the dimension reduction in the setting of three-dimensional vector
elasticity. Subsequently, we allow for cracking and study the asymptotic behavior of a
brittle elastic multilayer. The chapter terminates with the statement of the limit static
and evolution problems in the case of vector two-dimensional elasticity.

In Chapter 4 we present numerical experiments based on the approximation of the
brittle fracture problem by a regularized, nonlocal, gradient damage model. We introduce
its numerical implementation and we perform several numerical experiments which, other
than showing the strengths of our approach, allow us to recover and interpret various
regimes observed in reality.

Finally, we draw some conclusions in light of a critic re-reading of the results obtained
and issues raised, proposing a few threads of future investigation.

ALB
Paris, November 2013
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Figure 1: A cracked vinyl sticker at Ecole Polytechnique, Palaiseau, France. Crack pattern
are robust, fractures nucleate even away from singularities and debonding starts from the
boundaries.

(a) A cross section of a brittle multilayer. (b) For a fully developed, macroscopic crack approach-
To identify conditions for the extension of ing to a boundary, the energy release rate is computed
an “initial flaw” of length ag, the energy as a function of 0 <y < I. The idea of “steady state
release rate is computed for 0 < ap < a < cracking” is formulated in [HS91] as the condition for
hy along a given segment, see [Beu92]. which the energy release rate reaches an asymptotic

value, typically for [ larger than few film thicknesses.

Figure 2: Scenarios for the computation of energy release rates. In Figure 2(a) for the
condition of propagation along a vertical segment of an initial crack, in Figure 2(b) for the
extension of a existent macroscopic crack.
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Figure 3: Multiple periodic cracks appearing in thin, macroscopically homogeneous, sound,
strips of Si films. A bending moment is applied, orthogonal to the plane. The uni-axial strain
applied to each strip increases linearly (from bottom to top) with the distance from the neutral
plane. Image adapted from [LHE95].
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(a) A pattern of hexagonal cracks appears during cooling
of lava flows, due to the propagation of a tensile front.

(b) A two dimansional quasi-periodic
crack pattern in a glazed vase.

(c) Periodic fragmentation in a thin film MEMS device

under uni-axial tension, [Let-+10].

Figure 4: Three examples of quasi-periodic multifissuration, for systems with different
constitutive laws and evolving at different scales. An characteristic length scale is associated to

the period in the network.
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Notation

A few words about the adopted notation. We use Einstein’s summation convention
throughout the paper, unless specified otherwise. Roman and greek subscripts denote
components of tensors of rank 1,2 or 3, respectively spanning the sets {1,2,3} and
{1,2}. We deal with “thin” domains in nD (n = 2,3), i.e. with domains for which one
characteristic dimension is much smaller than the remaining n — 1. We denote by €2 the
reference configuration of a three-dimensional brittle elastic (possibly non-homogeneous)
cylinder whose basis is w C R?. The associated energy density function is denoted by
W R™™ — R, where R™*" stands for the set of real m x n tensors. In the sequel we
deal with 3D elasticity (m = n = 3), 2D plane elasticity (m = n = 2) and scalar elasticity
(m = 3, n =1). Accordingly, the linearized gradient of the deformation is e(u) :=
$(Vu+VTu) = $(0;u; + d;u;) in 3D elasticity, e(u) := 3(V'u+V'Tu) := $(daug + dsua)
in 2D elasticity — the prime sign indicating derivatives with respect to the in-plane
coordinates — and reduces to the gradient e(u) = Vu in scalar elasticity. We denote by
a dot the scalar (inner) product. We shall use the usual notations for function spaces:
HY(Q;R™), L*(; R™), L= (Q; R™) and SBV(2; R") are respectively the space of square
integrable functions with squared integrable derivatives, the Lebesgue space of square
integrable functions, the space of functions with finite sup-norm and the space of special
functions of bounded variations, defined on the set {2 and with values in R™. Whenever
n = 1, for simplicity, we will use the abbreviated notations H'(€), L?(Q2), L>*(2) and
SBV (). Whenever we need to distinguish between dimensional and non-dimensional
(resp. unscaled and scaled) quantities, i.e. for the non-dimensionalization (resp. rescaling)
of the energy functionals, we mark with a superposed tilde dimensional (resp. unscaled)
functions, domains and operators. We shall distinguish between the strong and the
weak problem of brittle films. The strong problem will always be defined for admissible
displacements in a suitable subspace of the usual Sobolev space H'(-). For the weak
problem, we denote by a calligraphic capital letter, e.g. C(-), the subset of special
functions of bounded variations SBV(-) of admissible displacements. In favor of legibility,
we commit an abuse of notation allowing us to label different functions with the same
symbol, provided that they have a different number of arguments, so that e.g. no
ambiguity shall arise between the two different functions P(u,I") and P(u). Generic real
constants are denoted by C' and may differ from line to line. Also, we denote by

B(u) (v) = & Bu+ o)

the directional derivative (Gateaux derivative) of a functional E with respect to the
function u in the direction v.

We have tried to keep the number of symbols to a reasonable minimum. This means
that we will reuse symbols whenever the context is clear enough to avoid ambiguities.
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Chapter 1

Introduction to variational fracture
mechanics of thin film systems

We introduce the variational framework of variational mechanics. Starting from the
open issues of classical Griffith’s theory, the latter is revisited under the variational
light of an energy minimization principle. The energy to be minimized is composed
by the bulk elastic energy and a surface term associated to cracks. The three-pronged
associated variational principle allows us to embrace in the analysis all phases of fracture:
nucleation, propagation and selection of the crack path. In addition, it enables us to
consider non-reqular evolutions in space and time. We then decline this variational
framework for the study of fracture of thin film systems.

The introductory material presented in Section 1.1 is proffered in the paper [Led+15a],
submitted for review.

Contents
1.1 Elements of variational fracture mechanics . ... ... ... 15
1.2 Variational fracture mechanics of thin films . .. ... ... 21
1.2.1 The general setting: three-dimensional brittle system . . . . . 21
1.2.2 Thescalarcase . . . . . . . . . . . . ... 24
1.2.3 Static fracture problem . . . . ... ... ... ... ... .. 24
1.2.4  Quasi-static evolution problem . . . ... .. ... ... ... 25

1.1 Elements of variational fracture mechanics

We sketch here a few elements, in an intentionally simplified setting, of the variational
theory of fracture originally proposed in [FM98] and extensively developed in [BFMOS].
We start by pointing out some of the motivations that led to its formulation.
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A first consistent theory for the study of the propagation of cracks in brittle bodies
dates to the early 1920’s with the work of Griffith [Gri21]. Its fundamental contribution
is twofold: introduces the notion of an “energy” associated to cracks, and a global
energetic criterion for their propagation. The former, in analogy with the surface tension
in fluids, is associated to the “work [that] must be done against the cohesive forces of
the molecules on either sides of the crack”. This has allowed to interpret and define
usable, fail-safe design criteria against rupture in brittle materials, considered beforehand
of almost unpredictable nature. The “theoretical criterion of rupture” [Gri2l] hence
stipulates that an infinitesimal crack advance is possible only if the rate at which the
elastic potential energy is released by the advancing crack equals the rate of expense of
surface energy associated to that infinitesimal advance. In the simplest setting the latter
reduces to a material constant, the toughness G.. No crack extension is possible, on the
other hand, if the released energy is less than the rate of surface energy expense. Further
works of Rice [Ric68b], [Ric68a] and Irwin [[rw58] have allowed to solve problems of
brittle structures with valuable results from an engineering standpoint, in cases where
a reasonable a priori knowledge of the crack path can be exploited to obtain fail-safe
criteria for crack extension. However, from a more fundamental point of view, the
classical theory of Griffith leaves open three major issues. First, an initial macroscopic
crack has to be present in the brittle body. In other words, it is unable to deal with
initiation but only with propagation of cracks. This has been already briefly discussed for
the case of thin films, in which the problem of nucleation is apparently avoided pushing
it to the small scales, i.e. that of initial flaws. Second, it implicitly assumes a smooth
propagation in time and space. That is, both brutal propagation and geometrically
non-smooth crack paths (less regular than a C! curve) cannot be accounted for. Last,
the crack path along which the crack tip will propagate has to be known in advance. In
fact, already in Griffith’s natural setting of dimension two, the one scalar equation of the
proposed criterion is not sufficient to determine the path followed by the advancing crack
tip. The latter is determined by two functions of time (or load), e.g. the parametrized
position of the crack tip (z1(t), z2(t)). Griffith’s criterion, however, only provides one
scalar equation; it proves to be insufficient for the selection of the crack path. Additional
criteria have hence been proposed to provide an additional scalar equation. However,
although they have found useful application from a practical point of view, their ad hoc
nature and their misconsistencies [CF'MO09], [CEM10] do not allow them to ascend to a
general theory of fracture.

A departure from the classical theory is able to palliate these issues, as is first shown
in [FM98]. The availability of modern analytical tools of the direct method in the calculus
of variations [Dac92] and functional analysis [Bre83], has allowed to revisit classical
Griffith’s theory under the new light of variational mechanics. In this new framework, the
problem of brittle fracture can be stated as follows. Let us place ourselves in dimension
two and consider a brittle elastic body whose reference domain is w C R2. It is subject
to imposed displacement w on a part of its boundary dpw and free along its complement
to Ow. An admissible crack, denoted by I, is any set of finite 1-dimensional Hausdorff
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(a) An energy stationarity principle allows to (b) The minimality principle is exploited to
determine the propagation of the crack tip study nucleation, path selection and propaga-
[(I(t)) along a prescribed smooth curve I tion of irreversible evolving cracks I'(¢). Also
starting from a non-vanishing initial crack, i.e. non-smooth paths can be accounted for to in-
lp > 0. clude branching, intersection, kinking ...

Figure 1.1: Brittle elastic, two-dimensional problem based on energy stationarity and given
crack path I' (left); based on energy minimality with free crack path. Note that I'° can be the
empty set.

measure to which we associate the surface energy

S(T) ::/FGC@;V)d’Hl. (1.1)

In the case of an homogeneous and isotropic body, the toughness G.(x;v), in principle
depending upon the position x € w and the local normal v to the crack I', reduces to
a constant. Hence, the energy S(I') has the same interpretation as that proposed by
Griffith, 7.e. the surface energy associated to a crack I' is proportional to its length via a
material constant. The quantity defined by (1.1) is called Griffith surface energy.
Admissible displacements are sufficiently regular fields v defined on the sound do-
main w \ I', satisfying the kinematic conditions v = w on dpw , i.e. laying in the
set {0 € H'(w\T),0 = w(t) a.e. on dpw}, where w(t) is the time-dependent Dirichlet
boundary condition. To such admissible displacements we associate a bulk energy defined:

P(u,T) = / Wlew)z

where W (-) is the energy density function of the elastic body and e((v)) is the elastic
strain associated to the displacement v. We define the total energy of the brittle body
as the sum of bulk and surface energies. In the simplified setting adopted, it reads:
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E(,T) :=P(v,T) + S(T)

= W(e(v))dz + G.H'(T)
w\I'
Assuming that the crack path I’ be known, the state of the system is identified once the
equilibrium displacement and the position of the crack tip are known. The latter can be
parametrized by a scalar function [(t), the arclength coordinate along f‘, see Figure 1.1.
It is hence shown in [BFMOS] that the evolution of displacement v and crack tip I'(I(t))
can be sought as a solution of an evolution problem ruled by a law consisting in i) an
irreversibility constraint on crack growth, ii) a unilateral stationarity principle and iii) a
weak form of energy balance. The evolution law reads as follows:

Definition 1.1 (Strong variational evolution, energy stationarity, prescribed path). The
mapping pair t — (u(t),l(t)) is a quasi-static evolution for the displacement field and the
crack tip along a prescribed curve r if, given the initial state I° and the loading history
t — w(t), it satisfies the initial condition 1(0) = ° and verifies the following conditions
forte (0,T]:

(irr): I(t) >0

(ust): (u(t),l(t)) is a stationary point of:
E(v,1) := E(v,I(l)) := W (e(v))dz + G, 1
w\I'(1)

among all 1 > 1(t), Vv € H (w \ T(1)) such that v = w(t) on Opw \ T'(1).

(eb): The total energy:
Et) = / We(v(t)))dx + G L(t)
W\T'(U(t))

is absolutely continuous on [0,T] and satisfies the energy balance:

dE(t)

dt /Bpw\r(l(t)) VIVle(v(t)) - wt)de

This law is shown to be equivalent to Griffith’s classical formulation for sufficiently
smooth cracks when the function P : [ +— inf, {E(v,I'(l)} (the inf taken among admissible
v’s) is strictly convex [BEMOS]. Here, P(I) is the elastic energy of the body at equilibrium
with the crack of length [. The well-posedness of this infimum problem, pertains to
the coerciveness and strict convexity properties of the energy density W(-) and to the
regularity of the data (geometry and loads).

In the case of strict convexity of the potential energy P(l), the unilateral stationarity
becomes a unilateral minimality principle and opens the way for the adoption of a
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minimality principle to cope with crack path selection. In other words, the variational
minimality principle can be exploited to choose the crack path itself, so that the hypothesis
of a priori knowledge of the crack path can be removed. Consequently, an evolution law
based on global minimality is formulated as follows:

Definition 1.2 (Strong variational evolution, global energy minimality). The mapping
pair t — (u(t),L(t)) is a quasi-static evolution for the displacement field and crack set if,
given the initial crack state T° and the loading history t — w(t), it satisfies the initial
condition T'(0) = T° and verifies the following conditions for t € (0,T):

(irr): L) Nt

(ugm): (u(t),I'(t)) is a global minimizer of:

E(v,T) = W(e(v))dz + G.H'(T)

w\I'
among allT D T(t), ve€ HY(w\T) analyzed v = w(t) on Opw \ T.

(eb): The total energy:

E(t) = - W (e(v(t)))dz + G.H (T'(1))

is absolutely continuous on [0,T| and satisfies the energy balance:

dE(t) :
dt /aDw\r(t) VW (e(v(t))) - w(t)dx

Under restrictive hypotheses upon the topology of the cracks, an existence theory for
the problem above has been established by [DT02a] in the setting of scalar elasticity and
by [Cha03] in the case of two-dimensional linearized elasticity. The reason for demanding
the introduction of the topological restrictive hypothesis (namely cracks are connected
curves) is related to the lack of lower semicontinuity of the surface energy, i.e. of the
Hausdorff metric. A proper variational setting, in which is proved the existence of
solutions of the above problem, is introduced in [['L03] exploiting the analogies with the
Mumford-Shah problem [MS89] arising in image segmentation. The existence theory
for the latter problem has been developed in [GCL89]. The evolution problem finds in
[F1L.03] a well-posed weak variational formulation in the space BV (and its variants), of
functions of Bounded Variation [Amb8&9].

The evolution law written in Definition 1.2 rests on global minimization. The
need for such setting is essentially related to the issue of initiation with Griffith-type
surface energies, see [BFMO08, Chap. 4]. With global minimization, it is shown that
initiation always occurs in a finite time [BFNMO08], nonetheless this setting rules out the
possibility of considering body loads and implicitly assumes that the transition between
different (cracked) states is always possible, regardless of how “far” the states are in the
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>

Figure 1.2: Griffith (thin), Dugdale (dashed) and Barenblatt (thick) surface energy densities.
Griffith energy density is constant (G.) as soon as the crack opening [u] is positive. Dugdale
energy density is piecewise constant, linear up to G, below the critical opening threshold u..
Barenblatt is smooth and concave. For the two latter, the derivative at 0 is associated to the
critical stress o.

configuration space. This may be unphysical and demands a finer study in cases e.g. of
brutal fracture. On the other hand, renouncing to the global minimization setting while
sticking with Griffith surface energies, renders impossible the nucleation of cracks in a
body without strong singularities (e.g. an initial crack or a discontinuity in boundary
conditions). Indeed the sound, elastic, solution branch is always a locally stable minimum
of the total energy.

The reason for the impossibility of crack nucleation, with Griffith-type surface
energies, is due to allowing for unbounded stresses in the body (still of finite energy).
This can be palliated by introducing a concept of critical stress, via e.g. more refined
surface energies of cohesive type (like Barenblatt’s [Bar62] or Dugdale’s [Dug60]), or
nonlocal gradient damage models. In the former case, Barenblatt and Dugdale energies
(sketched in Figure 1.2) introduce an additional length scale associated to the slope of
the surface energy at the origin, providing the critical stress threshold. Nucleation is
then produced once stresses reach their critical finite value. Consequently, with energies
of such kind, the global minimality requirement can be relaxed to local minimality
statement, in a reasonable topology. The properties of cohesive models in the setting of
local minimization have been analyzed in [Cha-+00] and their link with Griffith’s model
is unveiled in [BDG99], [MT04]. It is shown, indeed, that Griffith’s model is reached by
a suitable asymptotic process as the internal length scale induced by the cohesive energy
goes to zero. Whenever one resorts to a local minimality statement, the choice (not
univocal) of the norm defining the neighborhoods of states, i.e. the adopted topology,
has important mechanical consequences.

From a different point of view, a more detailed account of the nucleation phase than
that of the revisited Griffith setting, is possible by introducing nonlocal gradient damage
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models with softening [PM10a], [PM10b]. These models rely on a continuous damage
variable and an additional material length scale associated to damage localization. This
translates into the existence of a critical stress, attained which, damage is produced.
Because of the softening behavior, the stress drops in the damaged region which localizes
into narrow bands, whose width controlled by the internal damage length. When damage
reaches its peak value, a newly created crack is obtained at the expense its dissipated
energy [Pha+10]. The process of nucleation described above is driven by the loss of
stability and subsequent bifurcation of equilibrium states.

Also for these models, the revisited Griffith setting can be recovered by an asymptotic
procedure as the damage internal length scale goes to zero. This asymptotic result
has been shown, from the global minimization standpoint. in [Gia05], [Cha0O4] by T-
convergence, and, relying on first order unilateral stability conditions, in [SM12] by
asymptotic expansions.

From a specular perspective, cohesive fracture models can be recovered when coupling
between plasticity (i.e. irrecoverable deformations) and damage (possibly leading to
localization) takes place, as it has been recently studied in [AMV]. The interplay between
these two physically different and independent phenomena may couple to produce cohesive
responses culminating in irreversible fracture. On the same spirit and with different
analytic techniques, the asymptotic properties of energies in which a coupling between
damage, plasticity and fracture appears, are investigated in [F113], [MI13].

After this brief and non-comprehensive sketch of some elements of the variational
framework of fracture, we tackle the problem of fracture and debonding of thin film
systems. In the following section, we specialize the definitions illustrated above for a
three-dimensional thin film system within the global minimization setting.

1.2 Variational fracture mechanics of thin films

We start the study by focusing on the three-dimensional system. We identify of a
suitable thought experiment under which we expect to be able to reveal the mechanisms
of multiple fissuration and debonding in thin film systems. We define the composite
multilayer system of our concern: the geometry, the applied loads, the material behavior
and its energy. This allows us to further formally state the static and evolution laws for
the brittle fracture problem.

1.2.1 The general setting: three-dimensional brittle system
The geometric configuration

Let us consider the three-dimensional reference system sketched in Figure 1.3. It is
composed by a thin film occupying the set Q; = @ x [0, hy] is bonded to a rigid substrate
Q, = W X [~hs, —hy) by the means of a bonding layer Q, = © x (—hy,0). Here w C R? is
the basis of the cylinder €2 = Q, U (2, U Q. In all that follows, the subscript b indicates
quantities relative to the bonding layer and f to the film. The interface between the



22 Introduction to variational fracture

g
/

Figure 1.3: The three-dimensional model of the brittle system: a thin film Q/ is bonded to a
rigid substrate (), via a bonding layer €);. Crack surfaces are noted I'.

latter and the substrate is denoted by w_ = w x {—h;} whereas the interface between
the two layers is denoted by wy = w x {—0}.

The loads

We consider two types of loading modes. The first is due to the structure subject to the
structural loads. Considering the substrate infinitely rigid with respect to the film and
bonding layer, the displacement at the interface w = (w); : w_ — R? can be identified as
the displacement that the structure would undergo under structural loads, neglecting the
presence of the surface coating layers. Hence, the interface w_ is a Dirichlet boundary
for the layer system and w is the datum. Since we do not model the structural response
of the substrate, it is considered as a given.

The second type of loads is an inelastic strain acting inside the film. Physically,
it may rise due to thermal loadings, humidity or drying processes, just to note some
of the possible multi-physical couplings that may take place. The inelastic strain
eo = (e0)ij : 2 — R3*3 is interpreted as the strain that the film and the bonding layer
would accommodate if they were free from compatibility constraints. We focus here on
shrinking loads and choose not to account for all the multi-physical phenomena that may
induce the loads and their coupling, hence we model both loads as independent assigned
parameters.

The behavior of the bulk

We assume the two layers are isotropic and linearly elastic, the elasticity tensor being
characterized by two material constants, e.g. the Lamé parameters (Ag, pp) and (A, 115)
respectively of the coating film and bonding layer. Hence the energy density W :
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R3x3 % ;U — R associated to the elastic strain is

sym

1
Wi(e,z) = 5 {A@)tr(e)® + 2u(z)e - e}
where A(x) and p(x) are the piecewise constant elasticity parameters of the non-
homogenous body, namely:

o JQny) iz ey
()\,M)( ) ‘ {()\baﬂb) if x € Qb '

The energies

Without an a priori geometric characterization, we allow cracks, denoted by I', to appear
anywhere inside the two layers. Cracks may be any set I' C 2 of finite 2-dimensional
Hausdorff measure. In correspondence of a crack I' the displacement field may exhibit
a jump and we model cracks as traction-free surfaces. In Figure 1.3 a general crack I’
is sketched. For clarity, the ones inside the film are noted I'y := I" N {2 whereas those
inside the bonding layer are I', := I' N {2,. Note that instead of resorting a formulation in
a space that admits arbitrary jumps of the displacement field (i.e. the space BD and its
variants) we shall stick to subspaces of Sobolev spaces accordingly defined on the sound
part of the body Q \ I'. For the formal definitions below, we hence provide the so called
strong formulation of the brittle fracture problem.

Cracks are created at the expense of a surface energy of the Griffith-type, 7.e.
proportional to the measure of the crack surface by a material constant, the toughness
G.. We define the surface energy as follows:

if v € Q
STy, Ty) ::/ Gu(x)dH2,  with  Gu(z) = {C0 HTEly
FfUFb Gb, 1f T € Qb

where dH? is the Hausdorff surface measure.

In the framework of three-dimensional linear elasticity, the space of admissible dis-
placements is that of the square integrable vector fields with square integrable derivatives,
defined on the sound part of the body 2\ I' and satisfying the boundary condition on
the extended domain €2, namely:

Hy(Q\T;R?) := {v e H'(Q\T;R?),v =w on Q,} .

In the framework of three-dimensional brittle elasticity we associate to any admissible
displacement field u the elastic energy defined as:

P(u,I'y, Ty) := / Wi(e(u(x)) — eo(x), z) dx

Q\(T'fUTy)

1 2
=3 /Q\(Ffurb){)\(x)tr(e(u)—eo) + 2u(x) (e(u)—eq) - (e(u)—eo)} dr.
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The total energy of the thin film system is the sum of the elastic potential energy
and the surface energy, namely:

S(U, Ff,Fb) = P(u,Ff,Fb) + S(Ff,Fb)

1.2.2 The scalar case

Let us introduce the setting of scalar elasticity, i.e. where the displacement is considered
to be a scalar function v : Q € R® — R. This setting proves to be fruitful for
establishing many of the rigorous results. Although the case of scalar elasticity has
an evident physical meaning only in the case of two-dimensional domains (anti-plane
elasticity), we consider the 3D case where 2 C R3. This allows us to obtain, without
any further mathematical difficulty, a clearer analogy to the full vectorial problem.
Referring to the sketch in Figure 1.3, admissible scalar displacements are in the space
Co(Q\T) = {v e H(Q\T) : v = win Q,}, the symmetrized gradient of displacement
reduces to the scalar gradient Vu and the elastic energy density W : R? x Q — R is
given by W(Vu,z) = u(z)|Vul®. Accordingly, the total energy is brittle scalar elasticity

reads:
1

E£(u,T;,T) ::-/ W (Vu(z) — eo(x)) da + S(T},Ty)
2 Jayrury)

_/ ()| Vu — eol* + / G.(r) dH?
Q\(FfUFb) FfUFb

where here ey = (eg;) : Q — R? and analogously to the vectorial case:

if v €
pla) =M T
wy if x e

1.2.3 Static fracture problem

We introduce the following definition of static fracture problem. The label static empha-
sizes that the solution is sought for a fixed load intensity, and crack irreversibility does
not play any role.

Problem 1.1 (Static, three-dimensional, brittle problem). The static three-dimensional
problem of brittle thin film systems consists in finding, for a given load intensity (e, w),
crack sets T and (possibly) discontinuous displacement fields u € HY (2 \ T;R?) solving
the following minimization problem

inf{€(u,T): T CQ uecHLQ\T;R*},

i.e. that satisfy the following global minimality condition:

(GM) - Ew,T) < &,T), VI CcQ, Ve H (Q\T;R%.
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1.2.4 Quasi-static evolution problem

Unlike in the static case, irreversibility plays a fundamental role in evolution problems.
Upon prescribing a load history, parametrized by a load parameter ¢, the three-dimensional
evolution problem for brittle thin film systems consists in finding the displacement field
and the crack set verifying a variational statement under the irreversibility constraint
which forbids self-healing of cracks during the loading process. In the framework of
variational fracture mechanics, the energetic formulation of evolution problem falls into
the class of rate-independent processes as studied in [Mie05]. The rate-independence
implies that solutions to the evolution problem are stable under a reparametrization
of the loading parameter, 7.e. solutions are the same regardless of the velocity of the
applied load. These systems are the limit regime for “slow” loads, where the system is
supposed to be in static equilibrium at each load level. In this context we allow ourselves
to interpret the arbitrarily increasing loading parameter ¢ as a “time” variable. We focus
here on the time-discrete formulation of the problem.

Problem 1.2 (Time-discrete, three-dimensional evolution problem). Let be 0 = t; <
t1 < ... <ty =T the discretization of the time interval [0,T] into N time steps. A
time-discrete quasi-static evolution for the displacement field and crack set of the three-
dimensional system is a mapping t; — (u',T") that, given the initial crack state T° and
the loading history (e, w?), verifies the following global unilateral minimality conditions
Viel,...,N:

ot (1.2a)

E(u',T7) < E(u,T)
VI with "' CT CQ, Yue HL(Q\T;R?), with eg =e). (1.2b)

These conditions are equivalent to require that (u®,T'%) be a solution of the minimization

problem
inf {(u,[): I"'CTCQ ueHy(Q\ITR)}.

In the problem above, the condition (1.2a) ensures the irreversibility of the fracture
process and prevents crack self-healing, whilst condition (1.2b) requires the constrained
energy minimality of the solution at a given time step among all the admissible competi-
tors. The weak regularity assumption on the crack set (finiteness of the two-dimensional
Hausdorff measure) will allow the crack to take complex spatial shapes and including
branching, intersections and coalescences.

The time incremental formulation presented above is exploited from a numerical
standpoint to construct piecewise linear interpolations in time of the evolutions by solving
the variational inequalities associated to the static minimization problems (1.2b) under
the irreversibility constraint.

When computations can be carried in closed form, we need a time-continuous version
of Problem 1.2.
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A formal substitution of the discrete variable t; with a continuous time ¢ leads to a
2-pronged formulation based on irreversibility and global stability. It is shown in [FM9g]
that such formulation is ill-posed. Crack paths are over-determined and an additional
criterion for their selection is proposed. A first formulation of selection criterion is given
in [FM98], based on necessary conditions for global energy minimality, assuming a brittle
linearly elastic body under monotonically increasing loads. Subsequently, considering
more applied loads, in [DT02b] existence is proved for the continuous evolution. The
result is based on the study of the asymptotic limit problem associated to the discrete-in-
time Problem 1.2, for a fixed time horizon T, as the timestep 1/N — 0. This additional
crack path selection criterion emerging in the time-continuous limit amounts to energy
balance. The result is generalized by dropping the restrictive hypotheses upon the
topology of the crack sets in [FLO3]. The irreversible, quasi-static, time-continuous
formulations of the brittle fracture problem finds a variational formulation fitting within
the broader class of rate-independent processes whose abstract framework is studied in
[Mie05].

In this spirit, we formally introduce the time-continuous, quasi-static, evolution
problem of the brittle, three-dimensional multilayer as follows:

Problem 1.3 (Time-continuous, three-dimensional evolution problem). Given a loading
path (eoy, wy) fort € [0,T], a function t — (u; € Hy, (Q\Ty), Ty C Q) is a quasi-static
evolution if it satisfies the following items:

(IR) Trreversibility of the crack evolution: The function Ty must be non-decreasing with
t:
DT, VY0<s<t

(GST) Unilateral global stability: At every time t the state (u, € H,, (Q\T),T) is the
global minimizer of the total energy among all admissible states:

E(u;,Ty) < EuwT), YueH, (), V[ DI,
(EB) Energy balance: The function &(t) := E(u;, ;) is absolutely continuous in t and

satisfies:
t
éa(t) — g(O) = —/ {/ Oy¢ * éotdl' + / Uy - wtdl'/} dt,
0 O\l w_

where we denote by a dot the time-derivative (f(t) := fl—};) and by oy 1= avg%

N

e(ut)—eoy
the Cauchy stress at equilibrium.

With the general framework just sketched, we outline an illustrative example in the
simple setting of the one-dimensional limit case for a thin film system. The general
definitions of the problems above are used in this simplified setting allowing to obtain
remarkably rich solutions to the fracture problem of a thin film system.



Chapter 2

The one-dimensional film

We study analytically the static and evolution problems of transverse fracture and debond-
ing of a narrow thin film under bi-azxial load. The system is approrimated by a one-
dimensional membrane over elastic foundation model. On the basis of the energy mini-
mazation principle, we recover the key qualitative properties highlighted by experimental
evidence: sequential cracking, periodicity of transverse cracks, peripheral debonding. The
evolution of the system is computed in closed form and phase diagrams, based on material
properties and sample’s geometry, synthesize possible evolutions.

The results presented in this chapter constitute the bulk of the material published in
[Led+13d].

Contents
2.1 A simplified one-dimensional model . ... ... ....... 30
2.1.1 Dimensional analysis . . . . . . . ... ... ... ... ... 32
2.2 The static problem: energy minimizers at fixed load . ... 33
2.2.1 The sound elastic film . . . . ... ... ... ... ...... 33
2.2.2  The debonding problem . . . . ... ... ... .. ...... 35
2.2.3 The transverse fracture problem . . . .. ... ... .. ... 40
2.2.4  Coupled transverse fracture and debonding . . . . . . .. .. 42
2.3 The quasi-static evolution problem . . . . ... ........ 48
2.3.1 Evolution of transverse cracks . . . . . . ... ... ... ... 48
2.3.2 Evolution of debonding . . . . . . ... L oL 49
2.3.3 Film subject to coupled transverse cracks and debonding . . 50
2.3.4 Comments and extensions . . . . . . .. .. ... ... .... 51
2.4 Conclusions of the chapter . . . . ... ... .......... 56
2.A Properties of the minimizers. . . .. ... ... ........ 57

The framework sketched in the preceding section is valid in general in three-dimensions.
Here, upon assuming a phenomenological one-dimensional model for the energy of the
system, we outline in the simplest setting the features of the variational approach, in
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circumstances where the classical techniques are unable to yield satisfactory results.
A robust feature of crack patterns in situations where the response of the system is
essentially one-dimensional, is the appearance of a periodic array of cracks, in a sequential,
cascade evolution. In Figures 2.1 two different experiments, by [NE93] and [Ber-+02]
show an equally-spaced array of transverse cracks. Different crack spacing is obtained
for different load levels (Figure 2.1(a)) and thicknesses (Figure 2.1(b)). An homogeneous
load is produced within the thin coating film by applying a bending moment along the
direction orthogonal to the plane of the narrow film.

Phenomenological one-dimensional models have been widely proposed to study seg-
mentation and debonding of thin films. In these studies, the geometry of both transverse
and debonding cracks is introduced as a necessary, a priori, assumption. In [BMOG],
upon prescribing the distribution of the cracks and the location of debonded zones,
a maximal stress criterion is used to determine the critical loads, the number of film
cracks is discussed for several constitutive laws assumed for the interface. In [BMO7]
an energetic argument is compared to the maximal stress criterion for the prediction
of the number of cracks and debonding critical loads, introducing frictional, cohesive
and plastic effects. A shear lag model for the interface is introduced in [YTN98] and
the number of cracks as a function of the imposed strain is computed assuming that
cracks are equally spaced and new cracks form in the middle of each segment. Debonding
is proscribed. In [Han02] similar results are discussed considering a general nonlinear
shear lag law for the interface. The scaling and statistical properties of crack spacing
are computed numerically assuming a probabilistic distribution of the maximal allowed
stress.

Instead of postulating the geometric properties of fractures, their distribution and
location, we shall derive them as consequence of the variational statement. On a different
mechanical ground, many inelastic phenomena have been studied in depth in the simple
one-dimensional setting with a variational approach. In [DTO01], [PT98] distributed
(diffused) and localized fracture are investigated as the locally stable states of a system
whose total energy is the sum of a bulk and a surface energy. By varying the convexity
properties of the latter, the authors show that convex-concave surface energies enlarge the
space of local minimizers, allowing for diffused fractures, associated to damage which does
not alter the stiffness of the structure, and localized fracture. Two regimes are further
discriminated depending upon the irreversibility assumptions: the completely “elastic
case”, for reversible cracks, and the “inelastic case”, for strictly irreversible cohesive
cracks. In [MT04] the issue of nucleation is investigated for the fiber pullout test, which
reduces to a scalar case due to symmetry and the assumed slenderness. The natural strain
localization provides a setting to compare the initiation criteria for Griffith, Dugdale and
Baremblatt energies in the setting of local minimization.

We now investigate and provide a complete study in closed form of the implications
of the energy minimality in the static and quasi-static evolution of a slender thin film
system that allows for a one-dimensional representation. In dimension one computations
can be carried analytically. Along the study, we reveal and establish analytically in
1D some properties that characterize the interplay between the elasticity and the two
failure modes. Their validity will prove to be ampler than the one-dimensional setting.
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In addition, even in the simple setting of dimension one, most of the difficulties of
more complex problems arise. They regard the mathematical formulation, the analytic
techniques and the physical interpretation.

In order to keep the analysis simple and to focus on the main concerns, we start off
by assuming two crucial working hypotheses. In particular, we postulate i) the form of
the limit elastic energy representing the three-dimensional system and ii) the geometry
of cracks, both in the film and the bonding layer. This geometric characterization, in
turn, determines the form of the associated surface energies.

s BaE +4-NrecS

(a) Micrograph of the cracked surface of a thin (b) Micrograph of the cracked surface of a thin
NiO oxide film for different loads. The load NiO oxide film for different thicknesses of the
intensity ratio (bottom to top) is 3. Adapted film. The thickness ration (bottom to top) is
from [Nag+93]. 2.5. Adapted from [Ber+02].

Figure 2.1: Thin films under uni-axial homogeneous loading conditions show the appearance
of periodically distributed cracks, following a sequential cascade of successive bisections.
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A

(a) A narrow thin film system under an equi- (b) A wide thin film system under a uni-axial load.
bi-axial load.

Figure 2.2: Three dimensional systems that can be approximated by the one-dimensional
model. The load is denoted by eg, transverse cracks by I" and debonding cracks by A.
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Figure 2.3: The one-dimensional phenomenological model a bar subject to the inelastic
strain ey over a linear elastic foundation of stiffness k. Cracks cut the entire film at points x;,,
debonded regions are segments along which no stress is transferred between the film and the
rigid substrate

2.1 A simplified one-dimensional model

We adopt a phenomenological one-dimensional model for the brittle film system, extending
[XHO00] in order to account for arbitrary cracks in the film, possible debonding and
imposed displacement load at the interface with the substrate. Such one-dimensional
model approximates the response of either a narrow thin film under equi-biaxial loads
(Figure 2.2(a)) and a wide thin film under uni-axial load (Figure 2.2(b)). The domain of
the thin film system is the interval A = [-L/2, L/2], see Figure 2.3. We assume that
cracks may develop within the film and can the film layer can debond from the substrate.
The former cracks are denoted by I whereas the latter by A in Figures 2.2. Consequently,
cracks in the film are traction-free boundaries and no elastic interaction between the film
and the underlying substrate is present in debonded regions, see Figure 2.3. We hence
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assume the following expression for the elastic energy of the system:

1
phy(u' — eg)’dx + —/ k(u —w)*dz,
2 Jaa

Pwngfé/

A\

which is defined for admissible displacements in the space H!(A \ T'), that is for square
integrable displacements with square integrable derivatives, defined on the crack-free
domain A\ T.

The first term in elastic energy is the energy of a pre-stressed linear bar of one-
dimensional equivalent stiffness ph¢, the pre-stress is given by the inelastic strain ey. The
term u’ — eg is the local elastic strain, difference between the geometric and the inelastic
strains. The second term models the elastic contribution of the bonding layer as an
elastic foundation of stiffness k, paying for the mismatch between the film displacement u
and that imposed by the substrate w. This term is extended to the bonded domain A\ A,
considering that in debonded regions the film can freely accommodate the inelastic strain
without any elastic coupling with the substrate. It is noted that, in this one-dimensional
model, debonding cracks do not induce displacement discontinuities. At sound points,
the energy density associated to (2.1) is quadratic with respect to both the elastic strain
(v’ — eg) and the mismatch displacement (v — w). This model of bilateral, linear, elastic,
foundation is known to the engineering community as a foundation @ la Winkler [Win67].

The surface energy associated to the two families of cracks is, under the adopted
Griffith assumption, proportional to their topological measure. In this simple one-
dimensional model, cracks in the film, denoted by I', are sets of dimension 0, i.e. are the
discrete set of points at which the displacement can jump. Their measure reduces to
the counting measure #(I'). On the other hand, the crack set associated to debonding
cracks A is of dimension 1, their associated energy is proportional to the one-dimensional
Lebesgue measure (length) L(A).

Hence, the surface energy per unit depth is given by:

S(T,A) = Gshy #(0) + Gy L(A),

where Gy and G} are the three-dimensional toughnesses of the film and bonding layer,
their dimensions being that of an energy per unit length.
Finally, the total energy the brittle system, sum of the elastic and surface energies,
reads:
E(u,I'yA) :=P(u,I';A) + S(T', A)

1 1
= / phy(u' — ep)’dr + = / k(u —w)*dz (2.1)
2 Jar 2 Jaa

+ thf #(F) + Gy ,C(A)

Remark 2.1. The one-dimensional assumption is reasonable for slender three-dimensional
systems, i.e. for thin strips, under bi-axial loads or for very deep strips under uni-axial
loads, away from the boundaries, where the fields are invariant with respect to the direction
orthogonal to the load, see Figures 2.2.
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More delicate are the assumptions underlying the form of the limit energy (2.1),
regarding the elastic energy and the geometric characterization of the crack surfaces.
Both have profound influence on the analysis that follows. They imply that the bonding
layer essentially undergoes shear deformations, whereas the film is a linear shear-free
membrane; and on the other hand, that cracks in the film are vertical and cut the
entire film, whereas cracks in the bonding layer are planes parallel to the surface. The
justification of these two assumptions as asymptotic properties of a three-dimensional
system satisfying specific scaling laws is the main concern of Chapter 3.

2.1.1 Dimensional analysis

We recast the energy of Equation (2.1) into a non-dimensional form to isolate the
meaningful parameters, introducing the length scales z(, 1y and the non-dimensional
spatial variable  and displacement u defined by:

T:=x/ryg and w:=

Uo

Note the rescaling of the displacement field which allows us to incorporate the effect of
the imposed displacement w into the inelastic strain. Thus the latter is indeed the most
general form of load. In fact, although we can always absorb w into eg by a simple change
of variables, the converse is always true only in dimension one. In higher dimensions in
fact, this possibility holds only if e satisfies additional compatibility conditions (i.e. for
the solvability of a system of linear PDEs).

We choose length scales zy and 1y such that the equivalent stiffness of the elastic
foundation and the film’s toughness are unit, that is:

u—w
=/ uh+/k _—
Zo 2 f/ ; /—G,fx[)/lu

Consequently, denoting by A, T =T and A the rescaled axis and crack sets, the total
energy (2.1) is rewritten:

E(u,T,A) = %/A\f (@ (%) — &))" dE + % /A\A i(x)? di + #(T) +vL(A).

~ L (uhy)? by Gy Gy -
€0 = €p G?k , v = kG = Gfxo, E = E/(xoGy).

Finally, dropping the tilde for sake of conciseness, the total energy reduces to:

E(u,I',A) = /A\F % (u'(z) — eo)” da + /A\A %u(.%')QCM +#(T) +~L(A). (2.2)

where:

Three non-dimensional parameters determine uniquely the energy function (2.2): the
non-dimensional length of the film L (in zy-units), the relative bonding toughness v, and
the loading intensity eq.
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Remark 2.2. The choice of the scaling parameters xo and ug is free. The present
choice is dictated by convenience: it allows to obtain a simpler expression of the strong
equilibrium equations. However, no matter what the choice of the scaling parameters
is, the important feature of this system is that an intrinsic length scale exists, given by
the competition between the strain energy of the bar (non-dimensional) and the energy
of the elastic foundation (homogeneous to the square of a length). Another possible
choice is to set xy so to rescale the physical domain to a ﬁxea’2 unit domain. In this
kL

case, the equivalent stiffness of the elastic foundation is Kk = uhy and we can isolate a
~1/2

non-dimensional characteristic length scale £, = K

2.2 The static problem: energy minimizers at fixed
load

We address now the question of finding energy minimizers for a given load intensity,
without involving any notion of history or irreversibility. We characterize, for any given
load, the energy minimizers and establish their qualitative properties. With the modeling
assumptions illustrated above, the static problem of brittle fracture of Section 1.2.3,
reduces to the one-dimensional problem reformulated as follows.

Problem 2.1 (Strong formulation of the static problem in one-dimension). The static
one-dimensional problem of the reduced brittle thin film system consists in finding, for
a given load intensity ey, the crack set I', debonded set A and the displacement field
u € HY(A\T) that solve the following minimization problem

inf{E(u,[A): TCAACA ue H(A\T),
i.e. that satisfy the following global minimality condition:
(gm): Eu,T,A) < E(4,T,A), VI c A VACA, Vie H(A\T;R). (2.3)

By selecting appropriate test functions, the variational inequality (2.3) allows us
to retrieve necessary properties that characterize minimizers. In particular, choosing
I' = A = () we investigate the sound elastic response of the body and by choosing A = )
(resp. I' = () we characterize the fully bonded system subject to transverse cracks only
(resp. the sound film subject to debonding only). Finally, combining the necessary
properties of such states we study the fully coupled problem, highlighting the interplay
between the two failure modes and the elastic response. We consider homogeneous
inelastic strain loads which, in the one-dimensional setting, are represented by a scalar
constant. We henceforth denote the inelastic strain by ¢, the analogies with the notion
of “time” that this notation evokes, are discussed further in Section 2.3.

2.2.1 The sound elastic film

We look for the elastic solution for a sound film, i.e. the displacement field that verifies
Equation (2.3) for A = T' = (). The solution is unique because of the strict convexity
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and coercivity of the elastic energy density. The equilibrium displacement satisfies the
following first order local minimality condition:

D,E(u,0,0)(v) = /A {(u(z) — o) v(z) + u(z)v(z)} dv = 0,
Vo e H'(A), (24)

where D, FE(u,-,-)(v) denotes the Gateaux derivative of the functional E(u,-,-) with
respect to u along the direction v. After integration by parts and applying standard
arguments of the Calculus of Variations, one writes the Euler-Lagrange equations as-
sociated to the first order necessary conditions for energy minimality. From (2.4) we
obtain:

(equilibrium) —u'(z)+u(z)=0 ae z€(—L/2,L/2)
(boundary conditions) u'(—L/2) =u'(L/2) = eg
which are the strong formulation of the equilibrium equations and the associated natural

boundary conditions. They are integrated to get the expression of the equilibrium
displacement field under the load ¢ which reads:

sinh(z)

== . 2.
() = €0 cosh(L) (25)
The associated non-dimensional equilibrium stress is:
o(x) = uy(x) — eg = eg (cosh(x) sech(L/2) — 1). (2.6)

The elastic displacement field is plotted in Figure 2.4. The total energy corresponding to
this solution is:

Ei(L) = E(us, 0,0) = eo?F (L),  with  F(L) = <£ — tanh (g)) . (2.7)

7t tanh(x) 11

t
|cosh(L/2)

|—ttanh(x) ) )
-L2 L2 -L2 L2

x x

Figure 2.4: Elastic displacement (left) and strain (right) for a sound film of dimensionless
length L =6
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2.2.2 The debonding problem

The sound elastic solution is fully characterized and we now focus on the problem
of debonding alone of an initially sound film. Physically, this is the case when the
transverse fracture toughness is much higher than the debonding toughness, i.e. v < 1
and transverse cracking is not an energetically viable mechanism to reduce the stored
energy. However, note that the properties of the debonded solutions established below
hold independently of the fracture toughness ratio and spring from necessary properties
of energy minimizers.
Fixing I' = (), the global minimality (gm) requirement of Equation (2.3) reads:

E(u,0,A) < E(0,0,A), Voe H'(A), YACA.
Introducing the characteristic function ya of the debonded region A, defined as:

1, ifzeA

A [0, 1], x) =
xa 0.1] xa(@) {O, otherwise

the total energy (2.2) is rewritten as follows:

Bluboa) = [ {5000 - af + G2 - xa) v i

Characterization of the debonded domain

The energy density of the last equation, at a given point = € A is a linear functional
with respect to ya. The minimality principle with respect to ya in (2.3) reduces
to the box-constrained minimization of a linear functional. Moreover, the functional
Xa — E(-,+,xa) is local (derivative-free). By a localization argument, the order one
optimality condition with respect to xa yields a local debonding condition. At a point
x, debonding is energetically favorable if |u(z)| < /27 := ug and the debonded domain
is explicitly computed:
1, if Ju(z)| < uq

xalr) = {0, if |u(z)] > ug’ (2:9)

where uy = /27 is the critical displacement threshold for debonding. This yields the
first property of debonded states.

Property 2.1. The debonding condition is a local criterion based on the absolute value
of the displacement, to be compared to a critical debonding threshold ug = /27 function
of the material parameters of the system.

The elimination of ya according to (2.9) allows us to rewrite the energy in terms of
u and I' alone as follows:

E(uT) = ¢ /A (/(2) — co)Pde + /A f(lu(z)]) d.
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where we introduced the non-smooth, non-convex energy density

foy= |70 Ho<ua
v, if & > uy

accounting for both the elastic contribution of the bonding layer at bonded points, and
the surface energy related to debonding in debonded regions. The energy density in
(2.2.2) is non-convex with respect to u and not differentiable in u at the critical threshold
Uq.-

f(9)
A
o
>
—Uq 0 Uq

Figure 2.5: The non-convex, non-smooth energy density f(d) accounting for both the elastic
and debonding energy. Such energy density is quadratic in the elastic phase (for § < ug4) and
constantly equal to ~ after debonding.

According to the global minimality principle (gm), the problem of finding the solution
with debonding and without transverse fractures (i.e. I' = ) is formulated as follows:

min  &(u, ().
ueH1(A)

Here, unlike in the purely elastic case (Section 2.2.1), the solution for the displacement
cannot be derived using the classical Euler-Lagrange equations associated to the first
order local minimality conditions for £(u, (). This is due to the non-differentiability
of the energy density at u = uy. However, a characterization of local minimizers of
E(u, D) is provided by the following fundamental properties, the proofs being given in
Appendix 2.A. Note that the present problem and the results below are very similar to
those presented in [MT04].

Lemma 2.1. If a field u € H'(A) is a local minimizer of £(u,0), then u is a monotonic
function of x.
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Lemma 2.2. Let f : R — R be a continuous function. If a field u € H'(A) is a local
minimizer of E(u, D) then it satisfies the following first integral and boundary conditions:

AC eR: u'(z)? — eo? — f(ju(z)]) = C, Vz € [0, L],
u'(—L/2) =u/'(L/2) = eq.

The monotonicity of the solution (Lemma 2.1) implies that the maximal values of
|u| are attained at the free boundaries of the domain. Hence, in view of the debonding
condition (2.9), we have the following property characterizing the bonded domain.

Property 2.2. If debonding takes place, the bonded region of the film is an interval, and
the debonded domain is of the form:

A=[-L/2,—L/2+ D|U[L/2 — D, L/2],

2.11
with OSDl,DQER, and D := D1+D2§L ( )

The monotonicity of the displacement field rules out the possibility of a relaxation
phenomenon associated to the coexistence of fine mixtures of debonded and bonded
phases. The property of monotonicity is due to the convexity (although not strict) of
the energy &(u,-). The lack of strict convexity, in turn, results into a lack of uniqueness
of the displacement solution, as analyzed in the sequel.

Using Equations (2.10) one computes explicitly the solution with debonding which is
in the form (see Figure 2.6(a)):

eolx +L/2—Dy+u(—L/2+ D), —L/2<x<—-L/2+ D,
sinh(z — &)
~L/24+D, <z <L/2—-D 2.12
€o COSh((L—D)/2>7 / + 1>T > / 2 ( )
eo(x — L/2+ Dy +u(L/2—Dy)), —L/2—Dy<xz<L/2

u(r) =

where {, = (D; — Dy)/2 is the coordinate of the center of the bonded domain. In
particular, the debonded regions are stress free and the elastic energy vanishes therein.
Hence, denoting by D the total debonded length and B := L — D the length of the
bonded interval, the total energy of the system is a function of B alone and reads as

Ey(B) = E(B) + (L - B) = ¢2F(B) + /(L — B),

where Ey(+) is given by (2.7). The dependence of E; only upon the length of the bonded
interval B implies that to all equilibrium states satisfying (2.10) corresponds the same
value of energy, regardless of the distribution of the debonded domains, i.e. independently
of Dy, Dy provided that the size of the bonded domain B = L — Dy — D, is the same.

Size of the debonded domain for a given load

To close the static problem of debonding, it remains to determine the optimal size of the
debonded region for a given load ¢ which by (gm) solves the following problem:

oénBHglLEt(B)'
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This is the minimization of a strictly convex function of B with inequality constraints
and admits a unique solution for the optimal bonded length 0 < B* < L. This solution
has to satisfy the following first order local minimality condition:

E/(B*)(B—-B*)>0, YO0<B<L, with E/(B)=t*tanh®(B/2)/2 —~.

By the properties of convex functions, the unique minimum is attained in B* = 0 if
E'(0) >0,in B* = L if E'(L) <0, and in 0 < B* < L such that E/(B*) = 0 otherwise.

The first case B* = 0, 7.e. a completely debonded film, is impossible because
El(0) = —y < 0.

The second case B* = L corresponds to a solution without debonding. It is obtained
only if t < /27 or L < 2arctanh,/2v/t2.

Finally, for ¢t > /27 and L > 2arctanhy/27/t2, the solution is such that E/(B*) =0,
that is B* = 2arctanhy/2v/t2. This latter case corresponds to solutions with debonding.

We resume the results of the debonding of a film of length L without transverse
fracture in the following Proposition:

Proposition 2.1. For a fized load t, the solution of Problem (2.1) with debonding and
without transverse fractures (i.e. I' =0) is in the form (2.12). The displacement field
u s a monotonic function of x, the bonded domain is an interval and debonding, if
present, takes place at the free ends of the domain. The debonded domain A has the
form (2.11). The total debonded length D is uniquely determined, but the lengths Dy and
Dy are arbitrary. The optimal length of the bonded interval is

! La(t,) for L > Ly(t,y)’ '

where
Lalt. ) = 00 for t<ty=+2v
A= 2 arctanh+/2v/t2, for t>t4

In particular, fort <ty = /27 there is no debonding, independently of the film length.
For t > tgq the film debonds if and only if it is suffciently long (L > Ly(t,7)) or,
equivalently, the load is sufficient high, i.e. t > t,(L,~), with

L
ty(L,v) := /27 coth 5 (2.15)
The energy of the optimal solution is:
Et(L) = Ey(By(L))
t? (L/2 — tanh (L/2)) forL < L(t,~) (2.16)
AL+ 2t ((1 — 27/t%) arctanh/27/t2 — \/27/752) forL > Ly(t,~)

The main results are graphically illustrated in Figure 2.6 which shows a phase diagram
for the bonded length B as a function of (L, t), and a snapshot of the displacement field
for a partially bonded film.

, (2.14)
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—L/2 —L/2+D L/2—-D, LJ2
X

(a) Phase diagram of the optimal size of the bonded domain, as function
of the film length and load intensity, where L4(t,) is given in Equa-
tion (2.14).

5%

4 |

3 B=Ly(t,7)
~ |

21 B=L |

| i “t,)

1f 5 B=L

(b) Displacement field for the partially bonded film, see Equation (2.12).

Figure 2.6: Solution of (GM) for a film with debonding and without transverse fracture.
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2.2.3 The transverse fracture problem

We now focus the attention on the problem of transverse fracture alone. Physically,
transverse cracks are the only energetically efficient way of reducing the stored energy in
the limit regime where the film toughness is small compared to the debonding toughness,
i.e. when v < 1. However, as in the preceding case, the properties established below are
general properties of energy minimizers and hold regardless of the value of the toughness
ratio.

The topology of the cracks in the one-dimensional setting is simple. As introduced
above, in the reduced model they amount to a set of points. A general state with n — 1
cracks is sketched in Figure 2.7. The domain A is split into n segments, the crack set is
the set of n — 1 points I™ = {z; : —L/2 < x; < L/2}7].

L] L2 Lz' Ln-l Ln
> X C———m> > < >
A i I <=1 1
—L/2 T; T L/2

E(I'™ )

Figure 2.8: Total energy for transverse fracture without debonding for different number of
cracks. The cracks are equally spaced. The optimal crack number for a given loading is that of
the curve attaining the lowest energy level, this last indicated by the continuous stroke.

Each segment can be seen as a sound domain of non-dimensional length L; = x; —x;_1,
where zg = —L/2 and z, = L/2. Hence, using the results of Section 2.2.1 and the
expression of the equilibrium energy (see Equation (2.7)), the total energy of the system
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is written as the following function of the number of segments n and their lengths L;:
Et(na L17 s 7Ln) = tz ZF(LZ) + (n - 1)7
where F'(L) is defined in Equation (2.7).

Characterization of transverse cracks

For a fixed number of cracks n, the problem of finding the optimal segment lengths

Ly,..., L, according to (gm) consists in solving the following minimization problem:
,min Eyn;Ly,...,L,), with Y L;=L, L;>0, (2.17)

i=1
which is an optimization problem for a function of n scalar variables with linear constraints.
ObSGI‘Vil’lg that (92Et/8L13L) = 5ijt2F”(Li), where 5ij =1 for i :j and 52']‘ =0 for 7 # j,
and being

F"(L;) = 4sinh(L;/2)*/ cosh(L;)? > 0, VL; >0,

we conclude that the energy is a strictly convex function of L;. Consequently the
minimization problem (2.17) admits one and only one solution given by

Li:_7 VZ:1,77’L

Hence, for any given number of cracks n — 1, energy minimizers enjoy the following
property.

Property 2.3 (Distribution of cracks). A crack set minimizing the energy 2.2.3 consists
in equally spaced array of transverse cracks.

The optimal crack arrangement is that of an equally distributed array of cracks
throughout the film, recovering experimental evidence of periodicity of the cracks high-
lighted in [Nag+93], [Fuk+99], [Ber+02], [Let+04], [Let+10].

The total energy of a system with n — 1 equally spaced transverse fractures is:

E™ = ¢ Zn: F(L/n)+ (n—1). (2.18)

The energy in the last expression is a family of parabolee. In Figure 2.8, we plot Et(") as

a function of ¢ for different values of n.

Number of cracks for a given load

By (gm), the optimal number of cracks for a given load is associated to the energy curve
attaining the lowest value. The corresponding critical loads ™ in Figure 2.8 are found
analytically by looking for the intersections between Et(n) and Et(nﬂ). We conclude with
the following result.
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Proposition 2.2. The solution of the Problem (2.1) without debonding is that of an
equally spaced array of cracks partitioning the film into n reqular segments of length
L; = L/n. The displacement in each regular segment is of the form (2.5) with L = L;
and the total energy of the system is given by Equation (2.18). Let 1 < n € N, then the
solution with n — 1 cracks is optimal for:

4 _ 1

L
tD <t < t™ with \/(1 + n) tanh ) ntanh - (2.19)

t© .= .

2.2.4 Coupled transverse fracture and debonding

We now consider the case in which transverse fracture and debonding may take place
at the same time in a film of length L. Suppose that the film is subdivided by n — 1
transverse fractures in n segments of lengths {Ly,..., L,}. Given the segment length
L;, the solution for the displacement in the i-th segment is that of a film with possible
debonding and without transverse fracture, as described in Proposition 2.1. Hence, the
total energy of the system may be written as follows:

Ey(n; Ly, ..., Ly,) := iEt(Li) + (n—1),

where Ey(L;), defined in equation (2.16), is the sum of the elastic and the debonding
energy of the i-th segment. As in Section 2.2.3, for a fixed number of transverse cracks,
the problem of finding the optimal segment lengths L;’s may be formulated as the
following constrained optimization problem:

le---an

min  Ey(n;Li,...,Ly), with Y Lij=L, L;>0. (2.20)
i=1

For t < t. the energy is strictly convex with respect to the L;’s. As in Section
2.2.3, the solution is in the form of periodic transverse cracks without delamination,
with L; = L/n and the displacement field in each segment is as in equation (2.5) and
Figure 2.4 (with L = L;).

For ¢t > t. the energy is not convex anymore with respect to the L;’s. Introducing
the Lagrange multiplier A associated to the equality constraint > . L; = L, the first
order optimality conditions for (2.20) read:

E((L)=X for i=1..n and » L;=0L. (2.21)
=1

The derivative of the energy of a single segment, EAé (L;), is strictly monotonic, it increases
from 0 to v, for 0 < L; < Ly(t,) and is constantly equal to v for L; > L,(t,~). Hence,
we classify the solution of (2.21) in two types, depending upon the optimal value of A:
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(i) A < (solutions without debonding). In this case E/(L;) = A admits a unique solu-
tion for each L;. All the segments’ lengths L; are the equal and, from >  L; = L,
we obtain L; = L/n. This is the case of periodic cracking without debonding, as
in Section 2.2.3. This solution is admissible only if L; = L/n < Ly(t,~), i.e. for
t < ty(L/n,7), where t,(L, ) is the critical load for debonding a film of length L
given by Equation (2.15).

(ii) A =~ (Solutions with debonding). In this case the problem (2.21) admits infinitely
many solutions with L; > L(t). Even if the L;’s are not uniquely determined, being
L; > Ly(t) debonding is necessarily present in each segment. The length of the
bonded interval in each domain is B = L;(t,~) and the displacement field in each
segment is in the form (2.12) (see Proposition 2.1). Being L = """ | L; > n Ly(t, ),
this solution is possible only for ¢ > t,(L/n,~). Note that only the length of the
bonded interval of each segment is uniquely determined. The lengths L; are
not uniquely determined because, for each segment, all the solutions obtained
transferring debonded regions from one end of the segment to the other, without
changing the bonded length, are energetically equivalent.

Hence we may conclude with the following proposition which gives the static solution
with n — 1 transverse fractures and with free debonding as a function of ¢.

Proposition 2.3. The solution of the problem (gm) for a film of initial length L and
relative fracture toughness v with possible debonding and with n — 1 transverse cracks is
as follows:

(i) Fort < t((jn) :=t,(L/n, ) there is no debonding and the cracks are equally spaced
with L; = L/n.

(ii) Fort > tén), there is debonding. The solution for the displacement field in each
segment of the film is in the form (2.12) with L = L;, D1 = Dy ; and Dy = Ds;.
The length of the bonded interval is Ly(t,) in each segment. The total debonded
length is D == 3"  Dy; + Dy; = L —nLy(t,y). However, the lengths of the
debonded intervals in each segment are not uniquely determined, because all the
solutions obtained by varying D; 1, D;o and keeping constant the total debonded
length D have the same energy.

The total energy of the solution is

(YL —1)+n(1—Eo(yI/t)  for t>tW" (2.22)

where p(x) = z + (2? — 1)arctanh(z).

A0 {t2 (L/2n — tanh (L/2n)) + (n = 1) for ¢ <1}
t T

In order to close the problem, we must minimize EAt(n) for a given load t. We are
not able to provide a complete analytical solution of the latter, however we illustrate
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a typical scenario for specific values of the numerical parameters with the help of the
energy plot. In Figure 2.9 we show the total energy vs ¢ for different values of n, for
the coupled transverse fracture-debonding problem for v = 2.2 and L = 6. The right
figure is a zoom on the gray shaded region. The value of n corresponding to each of the
curves is identified noticing that, for a vanishing load, the energy reduces to the number
of cracks n — 1. The dashed lines in the figure distinguish the states in which debonding
has been triggered. We reconstruct the optimal state of the system by comparing the
energy levels in Figure 2.9. For ¢ < tff) the optimal solution is with transverse fracture
without debonding. The critical loads ¢, defining the range of optimality for a solution
with n — 1 cracks, are those defined by Equation (2.19). Moreover, there exists a critical
load t* beyond which the optimal solution is always a single debonded segment of length
Ly(t,7y) see Equation (2.14) for the expression of the debonded length. Indeed, for ¢ > ¢*
the lowest energy is always attained with n = 1. Such critical load is the (unique)
solution of the equation: 1 — t?p(1/27/t) = 0, where () is defined in Proposition 2.3.
The range of the loading parameter for which there is a true coupling between debonding
and transverse fracture is t(¥ <t < ¢*. To better illustrate the solution, we report in
Figure 2.10 the optimal displacement field for the following three representative loadings:

e t = 3.00, Figure 2.10(a): the minimum energy is attained on the energy curve
relative to n = 4, at point A in Figure 2.9. The load is below the debonding
threshold tgl) = 3.22 associated to n = 4. The film is in the periodic multifissuration
regime, with three transverse fractures.

e ¢ = 3.30, Figure 2.10(b): the minimum energy is attained at point B of Figure 2.9
on the energy branch for which debonding is active. The energy curve is associated
to n =4, and the value of the bonded domain size, for each of the four segments
into which the film is split, is B; = 1.16.

e ¢ =4.51, Figure 2.10(c): the global energy minimizer is the state without transverse
fractures denoted by point C' in Figure 2.9. The film is bonded on a domain of size
B; = 1.08.

This result may be extended to generic values of L and ~ as follows.

Proposition 2.4. For a film of length L and relative debonding toughness v, let n be the
smallest (positive integer) value of n for which t((in) < t™+D) and let t* be the (unique) root

of 1 —t2p(\/27/t) = 0. Then the solution of the static Problem (2.1) with free transverse
fracture and debonding s in the following form:

o Fort < téﬁ), it is with transverse fractures only, with n — 1 equally spaced cracks in

each loading interval t™=1 < t <t with n < @, as in Proposition 2.2.

e Fort > t* it is with debonding only, as in Proposition 2.1.

The number n is the minimum number of segments in which a film is split by transverse
fractures when there is debonding. The dependence of n and t* on the two dimensionless
parameters L and v is illustrated numerically in Figure 2.11. The critical load t* is
independent of L.
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For loadings in the interval t&ﬁ) < t < t*, there is a nontrivial coupling between
transverse fracture and debonding and we are not able to derive a general and simple
result for generic values of v and L.

t

(b)
Figure 2.9: Energy curves EAISn) with possible debonding and transverse fracture for v =
2.2, L = 6. Each curve is for a specific number n — 1 of transverse fractures, corresponding to
the value at the intersection with the axis ¢ = 0. The solid continuous lines indicate the energy

is obtained for a state without debonding, the dashed line for a state with debonding. The
critical time t* is indicated with a solid vertical line.
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Figure 2.10: The optimal displacement fields for the states A, B, C of Figure 2.9. Debonded

e

u(x)
=

v

»
A

-3

-2

-1

0

X

(a) Displacement field for the film split into four segments with-
out debonding. This state corresponds to point A in Figure 2.9
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(b) Four debonded segments, point B in Figure 2.9. The size of

the bonded segment is unique, the distribution of the debonded
regions at the free boundaries is not.
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(¢) The optimal solution above the critical load threshold t* is a
single debonded segment. See Figure 2.9, point C'

regions are indicated with a dashed line.
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00 05 1.0 15 20

4 Y
(a) Plot of 7 as a function of L and v, 7 being the (b) Plot of t* as a function of the relative debond-
minimum number of pieces into which the film ing toughness v, t* being the critical load be-
is split by transverse fractures when debonding yond which the optimal solution is that of a
appear debonded film without transverse fractures (¢*

is independent of the non-dimensional length L
of the film), see also Figure 2.9.

Figure 2.11: Key properties of the solution of the static problem of a film of non-dimensional
length L and relative debonding toughness v (see Proposition 2.4). (b)
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2.3 The quasi-static evolution problem

The analysis presented above characterizes static minimizers. We now turn the attention
to the irreversible evolution of the system under an increasing load starting from an
initially sound and unloaded state, i.e. (u=0,T' =0, A =0) at t = 0.

In the simplified case under study, Problem 1.3 reads as follows:

Problem 2.2 (Time-continuous, one-dimensional, evolution problem). Given a loading
path (eo(t), w(t)) for t € [0,T], the mapping t — (uy € HY(A\Ty), Ty € A, Ay CA) is a
quasi-static evolution if it satisfies the following items:

(ir) Irreversibility:
FtQFS,AtQAS VOSSSt

(gst) Global stability:

E(u;, Ty, Ay) < BE(u,T,A), Yuée H'(A\T), VI DT, VA D A,. (2.23)

(eb) Energy balance:

E(t) — E(0) = — /Ot {/A\F o, e'o(t)dx} dt,

where here o, 1= avg_e(e) = p(e(uy) — eo(t)).

e(ut)—ep(t)
The evolutions satisfying items (ir), (gst) and (eb) are constructed on the basis of the
results of the static analysis of the previous section.

Remark 2.3. The condition (gm) given in Problem (2.1) is stronger that the condition
(gst) given in Equation (2.23). In (gst), the admissible transverse cracks and debonded
sets must satisfy the additional irreversibility conditions ' D T', A D A.

Indeed, all the static solutions a fortiori verify the (gst) condition. The (eb) condition
is met by imposing the continuity of the total energy with respect to the load t, a
requirement which is verified also by the static solutions reported in Figures 2.8, 2.16,
and 2.9. A major novelty is the introduction of the irreversibility condition (ir) of
Equation 2.2.

2.3.1 Evolution of transverse cracks

In the case without debonding (A = (), the static analysis of Section 2.2.3 (Proposi-
tion 2.2) concludes that the state with n — 1 cracks partioning the domain in n regions
of length L/n is optimal in the sense of global stability (gst) for loads ¢ in the interval
(t=1 ™) given by Equation (2.19). The critical loads of Equation (2.19) are a strictly
increasing sequence with respect to n, thus for an initially sound film, the first critical
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load is t® corresponding to the first crack in the middle of the film. After the first crack,
the irreversibility condition (ir) imposes a restriction on the admissible crack sets.

In summary, the admissible crack are the sets of n; — 1 equally spaced cracks splitting
the film in n; segments of length L/n;, with n; := 2/, and j € N, i.e. the number
segments of is a power of two. Hence, the quasi-static evolution of the crack set of an
initially sound film is determined specializing to this case the results of Proposition 2.2.
In particular, the solution of the evolution problem is with n; — 1 equally spaced cracks
for loadings in the interval =Y < ¢ < ¢™) with ¢(") = ¢; (L/n;), t¥) = 0, where

! (2.24)

tr(L) =

L L’
\/Qtanhz — tanhE

is the critical load at which a sound film of length L splits in two segments of equal
length with a transverse crack in the middle. The total energy of the solution obtained
in this way and the number or segment n versus the load ¢ are plotted in Figures 2.12(a)
and 2.12(b), respectively.

E(l—(n) 0
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1 (L/8) L12) (L) L)
t t

(a) (b)

L2 1 (L)

Figure 2.12: Quasi-static evolution without debonding: (a) Energy curves E(I'™)t) vs t for
different n, the thick solid line denotes the global minimum corresponding to the solution of
the evolution problem; (b) Number of parts n; of length L/n; vs t formed by the n; — 1 equally
spaced cracks, with n; = 2,

2.3.2 Evolution of debonding

After the static solution of the debonding problem without cracks is known, its quasi-
static counterpart is trivial. Essentially, we have to enforce irreversibility (ir) and restrict
the energy competition to the admissible A’s in (gm), i.e. to those that at time ¢
verify the inclusion Ay O A, V0 < s < t. The irreversibility condition is a two-fold
requirement: the size of the debonded domain must be non decreasing and a pointwise
irreversibility must be ensured.

The first requirement is satisfied by the static solution given in Proposition 2.1.
Indeed the bonded length B; given in Equation (2.13) is strictly decreasing with t. The
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second condition is fulfilled provided that the lengths of the debonded intervals D, and
Dy, in Equation (2.11), are non-decreasing functions of ¢. Hence, the result synthesized
in Proposition 2.1 holds for the quasistatic evolution of irreversible debonding when
instead of constants D; and Dy we consider non—increasing functions Dy (t) and Ds(t).
In the case of an irreversible quasistatic debonding evolution, a film of non—dimensional
length L and relative toughness v does not debond for t < t,(L,v). At t = t,(L,~) it
starts debonding, and the length of the bonded interval is Ly(¢, ).

2.3.3 Film subject to coupled transverse cracks and debonding

The analysis of the static problem in the coupled case concludes with the Propositions 2.2
and 2.3 which are the starting point for constructing solutions of the corresponding
quasi-static problem.

Irreversibility imposes that the number of transverse cracks be of the form n; = 27 —1,
with j € N and non-decreasing with ¢, and that the debonded domain be non-decreasing
with ¢. For a given number n — 1 of transverse cracks, the static solution given in
Proposition 2.1 may be directly extended to the quasi-static setting. At the critical load
ty(L/n,v) given by Equation (2.15), debonding starts simultaneously in each segment
from —one or both— free boundaries. The energy of the solution is given by EAt(") of
Equation (2.22). The length of the bonded part in each segment is L/n for t < t,(L/n, )
and Ly(t,y)/n for t > t,(L/n,~), with Ly(t,7) given by Equation (2.14). This solution
respects irreversibility because of the monotonicity of L,(¢,v) with respect to t. Of
course, the lengths of the debonded domains in each segment, D;; and D,;, must be
non-decreasing functions of .

The determination of the evolution of the optimal number of transverse cracks is not
an easy problem in the general case. We illustrate here a typical quasi-static evolution
for specific values of the parameters L and ~, starting with a sound film at ¢ = 0. We
trace for each admissible value of n in the form n; = 27 the corresponding total energy
as a function of the loading ¢, according to Equation (2.22) (gray lines in Figure 2.13(a)).
The evolution of the film satisfying the (gst) and (ir) conditions is the one corresponding
to the lowest value of the energy and marked with a thick black stroke in Figure 2.13(a).
This evolution satisfies also the energy balance (eb) because of the continuity of the
energy and is therefore a well-defined solution of the quasi-static evolution problem. The
corresponding displacement fields is illustrated in Figure 2.14. Figure 2.13(b) reports the
evolution of bonded length in each segment. At ¢t = 0, it is equal to the total length of the
sound bar. At point A, corresponding to the intersection of the energy branch with the
curve t¢(B), given by Equation (2.24), the film breaks in n = 2 parts without debonding.
Then, the bonded length in each segment is B = L/2, until the next intersection with
the curve t¢(B) at point C' where each part further splits in two totally bonded segments
of length B = L/4. At point D the load reaches the critical debonding load ¢,(B, ) of
Equation (2.15). Here, the film splits into n = 4 segments and then debonding starts.
No further transverse cracks appear for higher loading.

More in general, the quasi-static evolution reduces to a cascade of j transverse cracks
followed by debonding. An interesting property of the solution is the number n;, which
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is the maximum number of segments (of equal length) in which the film splits before
debonding. As done in the static problem, this number is obtained by looking for the
smallest integer value of j for which ¢,(L/n;,v) < t;(L/n;). Figure 2.15 reports a phase
diagram giving the n; obtained as a function of the relevant parameters L and .
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Figure 2.13: Quasi-static evolution of an initially sound thin film of length L = 6, with
v = 2.2. (a) In gray, total energies calculated according to Equation (2.22) as a function of the
load t for different number segments, the bonded states are marked by a dashed stroke. In
black, the energy of the quasi-static evolution respecting (GST), (IR) and (EB). (b) In black, the
length B of the bonded interval in each of the film’s segments as a function of the load t. The
continuous and dashed gray lines are the critical loads for transverse cracking and debonding
of a sound film of length B given by t;(B) and (B, ), respectively.

2.3.4 Comments and extensions

A limit model for long films. When the film is very long it may be consistent
to describe the system in terms of a “fracture density” rather than by the absolute
number of fractures. In such setting, fracture density may be thought of as a macroscopic
characterization of a damaging process. A limit model for long films is deduced from
the total energy of Equation (2.18) replacing the discrete variable n with the continuous
density of fractures defined by « := n/L. Minimizing the energy (2.18), seen as a function
of a for @ > 0, we recover the concave envelope of the family of energies Et(n), for n € N.
The total energy for the limit model is displayed in Figure 2.16(a), enveloping the family
of energies Et(n). In Figure 2.16(b) we compare the discrete number n; of cracks with the
crack density «y, in the long film regime. Both figures relate to a film of non-dimensional
length L = 20. Note that long films with transverse cracks can be regarded as an example
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Figure 2.14: Snapshots of the displacement field for states O, A, C, D of Figure 2.13(a). The
debonded region is indicated with a thicker dashed line.



The quasi-static evolution problem 53

Figure 2.15: Phase diagram for the coupled transverse cracking and debonding problem. For
a quasi-static evolution, to each couple of parameters (L, ) the phase diagram associates the
(maximum) number of parts n into which the film is split before debonding takes place. We
point out with a white dot the couple of parameters of the evolution illustrated in Section 2.3.3,
with a red dot the couples of parameters referring to the numeric experiments detailed in
Section 4.3.1.
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of continua with structured deformations and modeled within the framework developed
in [DO04].

The reduced model and the one dimensional assumption. The two crucial
assumptions that allow the analysis of the remarkable richness of the reduced one-
dimensional model are i) the form of the elastic energy density and ii) the geometry
of cracks. Although such model has been extensively used in the literature in the
field of fracture mechanics of thin film systems, no attempt has been made, at least
to the knowledge of the author, to establish a rigorous derivation starting from the
three-dimensional equations. The reduced model has been studied as a model per se,
without assessing its origin or its validity. In the sequel of the work, we shall relax such
assumptions instead obtain them as asymptotic properties of a class of three-dimensional
systems.

The size effect. The fundamental ingredient in the reduced model of Equation 2.1.1
is the existence of an internal length scale. The size effect associated to such length
scale is evident in the expression of the elastic equilibrium displacement (Equation (2.5))
and is outlined in Figure 2.4. The presence of the intrinsic length-scale, provided by
the non-trivial coupling of the membrane energy of the bar and the equivalent elastic
foundation, is then revealed by the fracture phenomena. In fact, due once again to the
non-homogeneity of the surface terms, the internal length scale reappears in the relative
determination of the two surface energy components, one related to transverse cracks,
the other to debonded regions. All the properties established for the energy minimizers
(equilibrium states) can be reinterpreted under the light of the size effect, the global
feature that determines the emergence of the complex (even in 1D) interplay of the two
failure modes. Among all the possible arrangements of transverse cracks and debonded
regions, the size effect sharply discriminates between a regime of multiple cracking and
that of extensive debonding. This is the essential content of Propositions 2.3, 2.4. In this
sense, as a consequence of the energy minimality statement, in the simple one-dimensional
case the coupling between transverse fracture and debonding is only weak, in the sense
that the two failure modes do not intervene simultaneously.

However, in dimension two, the size effect allows a novel phenomenology to emerge,
resulting in a stronger coupling between the two failure modes. It determines a new
regime in which, the simultaneous propagation of transverse cracks and debonding is the
only way to release the stored elastic energy and the internal characteristic length plays
a key role.
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Figure 2.16: Energy and fracture density curves in the “long film” regime. Thick lines show
the results of the limit model, they are compared with the discrete family of energies (2.18). The
limit model can macroscopically characterize high fracture density regimes with a damage-like

parameter.
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2.4 Conclusions of the chapter

In this chapter, we have applied the variational approach to fracture mechanics of a thin
film system represented by a phenomenological one-dimensional model, where the film
appears as a linear membrane and the role of the bonding layer is played by an equivalent
elastic foundation. In the reduced model, transverse and debonding cracks appears with
a different geometric nature. Whereas the former are of geometrical co-dimension 1 (a set
of points), the latter are of co-dimension 0 (segments in 1D). Considering the two failure
modes associated to film cracking and debonding, we have analyzed the properties of the
solutions to the fracture problem. This difference entails a distinct analytic treatment
and solutions with disparate qualitative properties. This point has been emphasized by
presenting separately the solutions of the transverse fracture and debonding problems,
before tackling the more complex coupled case. First, we have studied the static problem,
i.e. the equilibrium configurations under a given load. This allows for establishing the
qualitative properties of the energy minimizers. For debonding without transverse cracks,
the main result is that the bonded part of the domain is a single connected segment,
which is uniquely determined as a function of the loading. Equivalently, debonding may
appear only at the free boundaries of the domain. Moreover, this property is true for all
local minima of the energy. The modeling of transverse cracks requires us to formulate
problem in terms of global minimization, as customary in the variational approach to
fracture mechanics with a Griffith-type surface energy. We showed that transverse cracks
are equally spaced and lead to periodic solutions. This behavior was only postulated
in previous studies and is a robust experimentally observed feature. We have then
studied the quasi-static irreversible evolution under increasing load. The coupling of
transverse fracture and debonding produces an interesting and rich behavior even in the
1D setting. Through analytical results and phase diagrams, we unveiled the dependence
of the key qualitative properties of the solutions on the two non-dimensional parameters
of the model. The main result is that the evolution of the system necessarily consists
in a sequential cascade of n bisections of the segments (hence 2"~! cracks) and then
simultaneous debonding of all the segments, starting from the free boundaries. The
critical load for debonding which depends upon the internal length scale of the system,
discriminates two distinct phases of evolution: that of periodic sequential fissuration
of the film and that of extensive debonding. The analysis will now be turned to the
derivation of the limit model whose solutions have been presented, as the outcome of an
asymptotic process. This is the aim of the next chapter.
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2.A Properties of the minimizers

Proof 2.1 (of Lemma 2.1): We consider a sound bar I' = () and let u be a local minimizer
of & (u, ).

Let us first prove that there exists © € [—L/2, L /2] such that |u(x)| < u., by contra-
diction. Let us consider the following family of admissible displacement fields v;, = u+ hv
with h > 0 and v € H'(A). Since v, converges to u as h — 0, we must have for h
sufficiently small

0> gt<u7®) - gt(vh; 0)

L/2
:/ (2R — E0' + B2 + f(lu(@)]) — F(lon(@)]) do. (2.25)

~L)2

Since f(ju(x)]) =~ > f([on(z)]), one gets:
L/2
0> / (2h(u' — t)v' + h*0"?) da.
—L/2
Dividing by A and passing to the limit as h — 0, one obtains f_LﬁQ(u’ — t)v'dx = 0,
equality which must hold for every v € H'(A). It is possible only if u' = t. Inserting
this relation into (2.25) leads to a contradiction. Therefore there exists « € [—L/2, L/2]
such that |u(x)| < u,.
Then, let us prove that u has (at least) a zero in [—L/2, L /2], still by contradiction.

Suppose that u has the same sign on [—L/2, L/2], say t = +1. For h € (0, min |u|), let
us consider the following family of admissible displacement fields wvy,:

vp(z) = u(x) — th.

Since v, converges to u as h — 0, we must have for h sufficiently small

02 &E(u,0) = &(vn,0) = o f(u(z)]) = f(lon(2)])
But since |vp(z)| < |u(z)| and since f is strictly increasing in the interval [0, u.], the
above inequality can be satisfied only if |u(z)| > w, for all z which we have proved before
that is impossible. Therefore u has at least a zero.

We are now in a position to prove that u is monotonic, by contradiction. If u(x) is
not monotonic, then it has a positive local maximum or a negative local minimum in
(=L/2,L/2) and we can find U € R such that there exist constants a,b € R such that
—L/2 < a < b< L/2 verifying:

u(a) =u(b) =U and lu(z)| > |U|, Vz € (a,b)

For h € (0,1), let us consider the following family of admissible displacement fields vy:

_Ju(z), if x ¢ (a,b)
v {(1 —h)u(z) + hU if x € [a,]] (2.26)
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Figure 2.17: The construction of the test field of Equation (2.26) used to show the monotonicity
of minimizers in the Proof 2.1. The energy of a non-monotonic function u can always be
reduced.

Since vy, converges to u as h — 0, we must have for h sufficiently small

0 > 575 U @) St(vh,@)

/ {( )2+ f(lu(@)])} da

[,,{ J(1=h) =) = f(lon(@)])} de
= u?(2)(1 — (1 = h)*dx — 2h ' (x)dx
/W] (@)1 — (1 - h)?) Lb]u)
+ - {f(lu(z)|) = f(|lon(z)])} d
:/ u(x)(1 — (1 = h)*)dz + f(ju(@)]) = f(lvn(z)|)dz.
[a,b] [a,b]

Since both the integrands are non negative, for the inequation to be satisfied both
the integrands must vanish. This leads to u/(z) = 0 in (a,b) and since u(z) = U for
x = a,b and w must be continuous, one should have u(x) = U in (a, b) which contradicts
lu(z)| > |U| in (a,b). Then u(z) is monotonic. O
Proof 2.2 (of Lemma 2.2): Let v € C3°([-L/2,L/2]) and h € R. When |h] is suffi-
ciently small, then ¢, (z) := x + hv(z) is a C*-diffeomorphism on [—L/2,L/2]. Let
u € HY[—L/2,L/2]), and define uy, := uo;'. One has lim,_oup(z) = u(z) pointwise.
If w is a local minimizer then I(u) < I(uy) for some sufficiently small h. We compute

(N o)
) - [ ((% o t) A <y>|>) ohy) dy
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The last quantity is differentiable with respect to h, attaining its minimum value for
h = 0, u being a minimizer. We therefore require that the first derivative with respect to
h vanishes for h = 0

0= dh

h=0

= /0 (—(u”(z) = ) + f(Ju(z)])) v'(z)dz, Yo e C([—L/2,L/2)])

We easily infer the prime integral: u/(z)? —t? — f(|u(z)|) = C, Vo € [-L/2, L/2]. Let
us compute the boundary conditions. Define x, = L/2(1 — h) for h € (0,1) and VJ € R
construct a test field v;, as follows:

on(z) = u(z), if v € [—L/2,24]
wz) + 9z —x) ifx €|z, L/2]

Such a test field is admissible and v;, — u pointwise for h — 0. Let u be a minimizer,
then we can write the following inequality:

0 < & (va(x),0) — Ei(u, D)
[ @ = tp+ su@hde - [ (@) +0 =07 = f(lu(o)ds

[Cﬁh,L] [xth]

_ /[ , 9% + 200/ (z) — 20t + (f(|vn(2)]) — f(|u(z)])) de

dividing the last equation by h and passing to the limit for h — 0, the term in parentheses
vanishes grace to the pointwise convergence v, — u. The inequality

0 <9 +20(u' (L) —t)

has to be verified V) € R. This leads to the desired boundary condition: v’ (L/2) = t.
Symmetrically we can construct test fields to retrieve the boundary condition on z = 0
as follows

w(x) + 9z —xy) ifxe[—L/2,xp)
vp(x) == .
u(z), if x € [z, L/2]
where now x, = h. We have the same pointwise convergence as above and we derive the
boundary condition u'(—L/2) = t. O
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Chapter 3

Derivation of the limit models

We explore the asymptotic behavior of a three-dimensional bilayer system bonded on
a rigid substrate. In scalar elasticity, by rigorous asymptotic analysis of the weak
formulation of the elastic problem, a general scaling law for thicknesses and elastic
moduli of the layers allows us to hierarchically determine limit regimes depending on
their relative ratio. Among them, we identify: linear bars under shear, linear membranes
over three-dimensional elastic substrates, higher order linear beams, membranes over
elastic foundation. This latter regime entails the asymptotic emergence of an internal
length scale; it is further discussed in vectorial elasticity to establish a reduced dimension,
plate-like, theory of elastic multilayers. We then allow for fracture and deduce, via
['-convergence, a two-dimensional limit model consisting of a brittle membrane on a
brittle elastic foundation. By the energy minimality principle, fracture sets are naturally
discriminated between transverse cracks in the film (curves in 2D ) and debonded surfaces
(two-dimensional planar regions). We finally formulate the reduced-dimension, rate-
independent, irreversible, evolution law for transverse fracture and debonding of thin film
systems.

The material presented in Sections 3.1 and 3.2 s still unpublished. The results shown in
Sections 3.3, 3.4 constitute the bulk of the paper [Led+15a], submitted for review.
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In the previous section, we have analyzed the phenomenology of multiple cracking
and debonding in a simplified setting relying on two strong assumptions: the expression
of the elastic energy (Equation 2.1.1) modeling the system as a linear membrane over a
linear elastic foundation and the geometry of cracks (transverse in the film and planar
in the bonding layer). In this section we remove these two assumptions and instead
derive them as the outcome of an asymptotic analysis. In the simple one-dimensional
example, the properties characterizing the equilibrium configurations and the quasi-static
evolution of crack patterns are essentially linked to the decoupling of fracture modes and
the existence of a scale effect due to the presence of an intrinsic characteristic length
scale. As already remarked, the internal length scale arises from the coupling of the
membrane and the elastic foundation terms in the elastic energy density. Hence, it
is clearly of elastic origin only. The presence of that length scale also determines the
fundamental properties outlined in the previous section: the equi-distribution of cracks,
the debonding criterion and its peripheral onset; the separation between a sequential
multifissuration regime and the extensive debonding phase.

Now we dedicate a more detailed study to the problem of derivation of the reduced
dimension theory underlying the modeling assumptions of the previous section. To this
end, we shall exploit the techniques of asymptotic analysis [Li073], [S592]. Asymptotic
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techniques have been fruitfully employed to tackle problems in solid and fluid mechanics
where small parameters, historically denoted by ¢, determine a problem in which the
coefficients have different orders of magnitude (with respect to €), or in which its
differential type is different for € > 0 and for € = 0. This is, for instance the case when
periodic, small scale, micro-structure exists and influences the macroscopic response; or
when the behavior of the system can be conveniently approximated by an asymptotic
reduced dimension theory. The domains of applications of asymptotic techniques is rather
wide, it includes problems of fluid flow around fixed obstacles [San82], [All91a], [ALI91D],
flows in reactive porous media [AR07], effective static behavior of periodic interfaces
[AMOO], [DMP12], thin elastic junctions [C'B89], structures comprising substructures of
different dimensions [Cia90], reduced dimension theories for nonlinear bars, rods and
strings [MMOG]; linear and nonlinear plates and shells [CLM96], [Cia97], [FJMO6], and
dynamic problems in periodic media [San80)].

We focus here on the static (and quasi-static) problems in linear elasticity and
linear brittle elasticity, where the separation of scales derives from one dimension (the
thickness) being much smaller than the other two. Linear theories are, themselves, the
limit of genuinely nonlinear systems and are determined by the order of magnitude of
loads, discriminating the hierarchy of limit models among which linear theories emerge,
see[MHCO01], [MMO06], [FJMO06].

The asymptotic justification of the linear theory of clamped (or partially clamped)
Kirchhoff-Love plates is obtained in [Cia97] under scaling assumptions of the elastic
coefficients [Mia94]; that of membrane and flexural equations for shells are carried in
[CLM96] and [CL96].

Static fractures in single-layer thin films have been investigated by means of a I'-
convergence analysis that allows the identification of an effective reduced 2D model [BF01],
[BFLO2]. The quasi-static evolution of cracks in thin films is studied in [Bab06] proving
the convergence of the full three-dimensional evolution to the reduced two-dimensional
one. These analyses are obtained considering a single-layer system and the resulting
cracks that are asymptotically invariant in the thin direction. The dimension reduction
of a bilayer thin film allowing for debonding at the interface has been investigated by
[BEF02]. The debonding is penalized by a phenomenological interfacial energy paying for
the jump of the deformation at the interface. The limiting models are discussed according
to the weight of interfacial energy. Rigorous derivations of decohesion-type energies
have been given in [ABZ07], [Ans04] by means of a homogenization procedure. In these
works the interfacial energy appears as the limit of a Neumann sieve, debonding being
regarded as the effect of the interaction of two thin films through a suitably periodically
distributed contact zone.

We want to extend the investigation to thin film systems susceptible to cracking both
in the film and in the bonding layer.

In the first part of the Chapter (Section 3.1), we study the purely elastic systems
consisting in a stack of two superposed layers bonded to a rigid substrate, whose elastic
and geometric dimensions may vary significantly.
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In the setting of scalar elasticity, in Section 3.1 we provide parametric study of the
limit models approximating three-dimensional film systems. Providing a general scaling
law for the geometric and elastic quantities as a function of a natural small parameter
destined to tend to zero, we study parametrically the hierarchy of limit models reached
in the limit ¢ — 0, depending on the thickness and stiffness ratios of the two layers. We
hence identify a number of qualitatively different limit regimes. Among these, a class of
systems appears that expresses, as an asymptotic property, an intrinsic characteristic
length scale.

In the second part of the Chapter (Section 3.2) we tackle the more physically relevant
case of three-dimensional vectorial elasticity. This richer setting, still reflecting the
properties outlined in the scalar case, shows a novel phenomenology: the possibility of
undergoing rotations, .e. bending deformations are admissible deformation modes. We
derive an asymptotic, linear, reduced dimension, model for a stiff film over a compliant
bonding layer. The outcome of the analysis is the justification of the kinematics, the
identification of the limit energy and the associated variational problem of equilibrium.
The asymptotic analysis turns to be necessary to establish the correspondence between
the three-dimensional physical parameters and their associated two-dimensional reduced
quantities.

In the third part of the Chapter (Section 3.3) we study the brittle case allowing for
cracks to appear anywhere within the system. This changes drastically the analytical
treatment, requiring to state the problem in a larger space of functions that allow for
arbitrary jumps of the displacement. We identify a regime in which a non-trivial coupling
of the energies provides a competition between the elastic terms and the surface energies
associated to cracks in both layers. Once a suitable reduced model is established, as the
outcome of the asymptotic study, we propose a quasi-static formulation of the evolution
problem under increasing loads, analogous to Problem 1.2 introduced in Section 1.2.4.
Finally, these results are applied to the more realistic case of two-dimensional vectorial
elasticity, which serves as a basis for the numerical experiments performed in the next
chapter.
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3.1 A parametric asymptotic study in scalar elastic-
ity

Let us study a three-dimensional elastic system, with the goal of identifying the asymptotic

limit regimes arising when the small parameters appearing in the system approach their

natural limit.

We perform the study in the setting of three-dimensional scalar elasticity as introduced
in Section 1.2.2, i.e. when displacement field can be identified with a scalar function. The
model system, sketched in Figure 3.1, consists in two superposed linear, homogeneous,
isotropic, elastic, layers bonded to a rigid substrate. Let w be a bounded domain in
R? of characteristic diameter L = diam(w) and let H be the characteristic thickness of
the system. We consider that the film system is “thin”: one characteristic dimension,
the thickness, is much smaller than the other two. Consequently, the ratio thickness
to diameter naturally appears as a small parameter. The domain of the film is the set
Qf =w x [0, hy], that of the middle layer is Q, = @& x [—hy, 0). We assume that the set
Q = Q; UQ, is the reference configuration of the elastic system in absence of applied
loads, i.e. €2 is a natural state.

We consider here a rather wide class of conservative volume loads within the film
layer, their density is f : €y — R. The rigid substrate imposes a boundary condition of
place in correspondence to the interface w_ := w x {—h;} between the middle layer and
the substrate. The rest of the boundary, i.e. the lateral boundary dw x (—hy, hy) and
the upper surface w x {hs}, is left free.

Assumptions on the data

We intend to investigate the asymptotic regimes of the system when the thickness of the
layers and the elastic constants of the layers may exhibit significant variations. To this
end, we prescribe a general scaling law for the ratios of the shear moduli and thicknesses
as powers of the natural small parameter, denoted henceforth by . More precisely, we
state this choice as follows.

Hypothesis 1 (Scaling law of thicknesses and elastic moduli). For

hf
:_— — 1
€ 7 < 1

and given two constants o, § € R, we assume that the ratio between the (non-dimensional)
thickness of the film hy and that of the bonding layer hy scales as €, and that the ratio
between the shear modulus of the bonding layer and that of the film scales as €°, viz. :

_ = Qh‘ga) & — QMEB (31)
Ky

where o, and o, are non—dimensional coefficients independent of €.

The non-dimensional e-dependent domain occupied by the film is Q5 = w x (0,eL/H),
the domain occupied by the middle layer is Q2 = w x (—g,e*™ L, 0]. In terms of orders
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Figure 3.1: The three-dimensional system in scalar elasticity: a thin film € is bonded to a
rigid substrate (), via an intermediate layer €2;,.

of magnitude, depending upon the values of o we identify three-dimensional systems for
which the middle layer is thicker (for v < 0), thinner (for o > 0) or as thick as the film
(for & = 0). Analogously, depending upon 3, the middle layer is more compliant (for
B > 0), stiffer (for 8 < 0) or as stiff as the film (for 5 = 0).

The functional setting and the elastic energy. The space of kinematically ad-
missible displacements is that of the square integrable scalar functions with squared
integrable derivatives, defined on the e-dependent domain 2° := Q% U ()} and satisfying
the boundary condition of place on w x {—hs}, namely:

Co () == {ve H(X), v=w(2) ae. onw x {—hy} } .
The vector space associated to Cg (§2°) is
Co() :={ve H'(), v=0ae. onw x {—hy}}.

For ease of computation, we perform a change of variable in order to recover a homo-
geneous boundary condition for the unknown displacement field. Extending constantly
the imposed displacement w € L?(w), defined on the lower boundary w x {—hy}, to the
entire domain €2°, the new unknown is

0 =v—0, (3.2)

where v € C5(2°), v € C,(92°) and w is the constant extension of w to €. In the case of
scalar elasticity, the elastic energy density reduces to u|Vv|?, where u is the (piecewise
constant) shear modulus of the elastic body. To admissible displacements v € C5(£2°) is
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associated the a family of energy functionals indexed by ¢ reading as follows:

1

1
E.(v) =3 /QE | Vol de + 3 /Q | VolPdz — L5(v). (3.3)
f b

Here, £°(v) is the e-dependent linear form associated to the potential of loads applied in
the film, of density f¢:
L5 (v) = fe(x)vdz.

23
In the general case of genuinely nonlinear elasticity, the order of magnitude of the applied
loads with respect to the volume of the body, i.e. with respect to €, plays a crucial role
in establishing the limit asymptotic models. This role is although hidden in the present
limit case of linearized elasticity. This point is further developed in the sequel. We keep
track of the order of magnitude of the density of applied loads by the superscripted e.

Remark 3.1. Instead of applied body loads we may consider inelastic strain loads within
the film layer. In such case the linear form associated to the external work reads:

L5(Vv) = / eg(x) - Vodz.
27
where ej(x) € L*(Q3) is an imposed inelastic strain.

The problem of finding the equilibrium displacement in the three-dimensional elastic
body reads:

Problem 3.1 (Unscaled three-dimensional elastic problem).

P(QF):  Find u® € Coy(Q2°) minimizing E.(v) among v € C,, ()

We want to perform an asymptotic study of the problem P(£)¢) as ¢ — 0. More
precisely we study the limit (if the limit exists) of the sequences of displacements (u®).~0,
solving Problem (3.1), i.e. the admissible minimizers of the energy (3.3) for ¢ — 0. We
denote them by u® for conciseness. We obtain, depending upon the values of o and 3, a
hierarchy of asymptotic limit regimes.

We use the techniques of rigorous asymptotic analysis of variational problems de-
pending upon a small parameter as extensively studied in [[.io73]. These techniques
have been applied for the derivation and justification of lower dimensional theories in
linear and genuinely nonlinear elasticity for bars, rods and strings in [MMO6] and plates,
membranes and shells in [Cia97]. As is customary, we start by performing an anisotropic
rescaling of the domains in order to state the problem on fixed domains independent of e.
Then we look for and establish uniform bounds for sequences of (scaled) displacements
and strains, allowing us to state their convergence properties. Finally we identify the
weak variational equations verified the limit displacements, i.e. the limit equilibrium
equations associated to the various asymptotic regimes.
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3.1.1 Rescaling of the problem

Denoting by 2’ = (z1,25) € w and by &' = (#1,Z2) (here the tilde denotes rescaled,
non-dimensional quantities), the following anisotropic scalings:

m° i x = (2, x3) € Q5 = (T, ed3) € Qf (3.4)

7 ix = (2 23) € G — (T, 0" i3) €

map the domains Q5 and € into the fixed unit domains 0y = w x [0,1) and €, =
w X (—1,0). They also define the scaled differential operators as follows:

~ o |10 ~, 115
€ 5: —_— | = / — i QE
Ve V (&%/ 88&3) (v 583) in O
and 0 1 0 1
e e _ ) = (v ] in Q.
Ve V ( 55 | et (%3) (v thaﬂag) in O

Performing the change of variables in the energy of Equation (3.3), the rescaled non-
dimensional energy reads:

EE(U) EE(U> L 1/ {'@/U|2—{—l2|8~311’2}d$
Qs €

1 ~ 1 ~ ~ '
- a f v/ 2 o 2 de — L°
+ 5 0une"e /Qb {| v+ ngerQ! 30 } x (v),
~ L°
where £(v) = L(U) . We drop the overset tilde for the sake of conciseness and henceforth
ELy

consider the non-dimensional expression of the energy functional. Using the change of
variables, the rescaled, fixed, space of kinematically admissible displacements reads:

Co(Q) :={v e H'(Q), v=w(z') a.e. onw x {-1}},
and its associated vector space is:
Co(Q) :={ve H'(Q), v=0ae onwx {-1}}.

The dependence of the energy upon ¢ is now explicit and the minimization problem (or
equivalently the variational formulation of the equilibrium equations) can be posed on
fixed domains independent of e. It is clear by the expression of the rescaled energy (3.5)
that the meaningful parameters are only two, namely v, € R defined by the relations:

y=a+f and o=0—a—2. (3.6)

The former is the order of magnitude of the ratio between the “membrane” strain energy
of the middle layer and that of the film, the latter is the order of magnitude of the ratio
between the “shear” energy of the middle layer and the membrane energy of the film.
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Remark 3.2. We commit here a slight abuse of notation in labeling by “membrane”
(resp. “shear”) the strain terms just identified since we are dealing here with a “thermal
plate”. Problem 3.1 is indeed that of stationary thermal diffusion [DL72]. The analogy,
and hence the justification, of these labels will be clear in the study of the general vectorial
problem tackled in Section 3.2.

We refer to the terms:

1 a|2

1
§|63U8| and m|agu

as the scaled transverse strains, within the film and the middle layer respectively. The
boundedness of these terms turns crucial for establishing the asymptotic properties
of the elastic multilayer. Owing to the linearity of the problem, up to a rescaling of
displacements, we can always set:

L) = L), (3.7)

i.e. we can fix the order of magnitude of the work of external loads at the order of
magnitude of the membrane energy of the film. Consequently, we expect the loads to
work on membrane deformations.

Remark 3.3. Note that this freedom of the arbitrary rescaling of the loads only holds
in the setting of linearized elasticity. In the more general setting of genuine nonlinear
elasticity, it is indeed the order of magnitude of the applied loads that hierarchically
determines the limit regimes, see e.g. [MMOG], [FIMOG]. In the current setting, this is
hidden by the linearity which renders equivalent (up to a rescaling) all the asymptotic
problems, regardless of the order of magnitude of the applied loads.

In the scaled non-dimensional energy, indeed, the membrane energy of the film is
of order zero with respect to e, whereas the energy related to transverse strains within
the film is singular, of order O(¢72). In the bonding layer, the in-plane and transverse
components of the energy are singular or regular depending on the values of the exponents
a and 5.

For the sake of conciseness and without any restriction, we set to one all coefficients
independent of . Recalling the definitions of v and ¢, the scaled energy reads:

1 , 1
E.(v) = 5/9 {|V v + ;|8311|2} dx
s

1 1
+ —57/ |V'v|*dz + —55/ |0sv|2dx — LO(v).
2 o 2 o,

The elasticity problem in the unit, rescaled, e-independent, domain is:



70 Derivation of the limit models

Problem 3.2 (Rescaled minimization problem on the unit domain in scalar elasticity).

P(e,Q) 1 Find u® € Cy(2) minimizing E-(v) among v € Cy(£2)

Two parameters identify the single three-dimensional multilayer, we perform the
parametric study of the families three-dimensional system in a two-parameter phase
space: («, ) or equivalently (d,7). We divide the parametric study in several steps.

First we discuss the systems belonging to open half space o > 0, which leads us to the
study of the degenerate case of a material without transverse coherence. Then we study
the open half plane § < 0. It has, at first order, a trivial homogeneous limit solution to
the elasticity problem. In this case in fact, the boundary condition of place on the lower
interface determines a uniform and homogeneous solution. We sketch the analysis of the
first non-trivial higher order term, whose order of magnitude depends upon the stiffness
ratio. Lastly, we study the straight line 6 = 0 along which we further identify three
limit regimes: the slender bars under shear, the membranes over a three-dimensional
elastic substrate and finally the membranes over an elastic foundation. This last regime
provides an rich asymptotic limit and lays the basis of the sequel of the work.

The Problem P(g,2) can be put into the equivalent variational form, see [Cia88]:

Problem 3.3 (Rescaled variational problem on the unit domain).

P(e, ) : Find u® € Co(Q) such thatEL(u®)(v) =0, Yv € Cy(Q)

Problem 3.3 represents the first order necessary optimality conditions for minimality
and amounts to the weak formulation of the equilibrium equations. It reads explicitly:

Find «® such that :
1
/ {V/UEV/?J + —283u883v} dx + 5"’/ V'usV'vdx
Qs € Q0

+ & | OsutOsvdr = LO(v), Yo € Co(R2) (3.8)

Qp
First, we have a useful general result which holds independently of the values of v and §.

Lemma 3.1 (Poincaré inequality in the rescaled system). For any admissible u® € C,,(2)
the following inequality holds:

07l < € (1050, + 10507,

Proof. The proof is trivial, it suffices to use Cauchy-Schwartz’s inequality to estimate
displacements on a vertical segment, use Holder inequality and then integrate along the
in-plane coordinate. O

This inequality provides a means to control (the L?-norm of) displacements once
the transverse gradients are controlled, i.e. |u®|, and |O5u°|(, are equivalent norms over

Co(€).
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3.1.2 The open half space § > 0.

When > 0, the energy of transverse strains within the middle layer is small compared
to that of in-plane deformations in the film and the work of external loads. The
rescaled transverse strains in the middle layer are unbounded and can be arbitrarily large.
Considering displacements delivering a uniformly bounded energy, they can be as large
as e 79/2. Hence, loosely speaking, the middle layer can undergo unbounded transverse
deformations without any energy expense. This corresponds to a material without a
transverse coherence, i.e. a material behaving as a stack of superposed planes at each
x3 € (—1,0]. Despite an elastic energy is associated to in-plane deformations, the stress
is not transferred along the vertical direction and the middle layer is unloaded, i.e. no
elastic energy is stored. This limit case is not interesting for our purposes and is skipped.

3.1.3 The closed half space § < 0.

If 6 < 0, on the contrary, the boundedness of the energy provides a bound on the
scaled transverse strains throughout the whole domain. Taking v = »® in the variational
formulation of the equilibrium, we can write the following bounds:

g2 ]83u5|?2f +¢° \83u€|?2b
< VR, + 2 Oy, + 2 Vol + & o, < L man e [l
< C (10507l + 10501, )
< C (=210, + 05]g,) (3.9)
from which we can derive that:
e 2|05l + € |Osutly, < C,  if 8 <0, (3.10)
This estimate allows us to refine (3.9) as follows:
V'l +&72 1050, + 7 [V, + & |05, < C (3.11)
We can establish the following property.

Property 3.1 (Convergence of the rescaled displacements in L*(Q2)). For § <0 there
exists a function u € L*(Q) such that:

ut —u  weakly in L*(2)

and in particular
u® — u  strongly in L*(€).

Proof. Using again the Poincaré inequality we infer that |u®|, < C. In addition, strong
convergence within the film follows from the boundedness of the scaled gradient of u® as
a consequence of Rellich-Kondrachov theorem [Dac04]. O
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It is hence meaningful to study the asymptotic properties of the order zero weak limit
displacement u, depending upon the values of v and § < 0.

Within the film and for any ¢ < 0, the weak limit displacement u enjoys the following
property:
Property 3.2 (Transverse invariance within the film). For any v, and § < 0 the weak
limit u is such that, within the film:
83U = 0, m Qf
or equivalently, we can identify the weak limit uw € H' () to a function u € H*(w)
u = u(z'), in Qy
Proof. For any v and 0 < 0, the energy estimate (3.9) yields:

IViutlg, < C, 050, < Ce* 2 0ase—0,

hence there exists a function v € H*(;) such that u* — u in H'(Qy). In addition the
weak limit displacement u is such that dsu = 0 in Qy, 4.e. the limit displacement in the

film is a function of the in-plane coordinates alone u = u(z’) in {2f; equivalently, it can
be identified to a function v € H'(w) defined on the middle surface w. [

The invariance with respect to the transverse direction is a consequence of the
“thinness” of the film, i.e. that its thickness scales as € (or, in general, as a positive
power of ) with respect to the diameter L. As a consequence, the unscaled transverse
strains are singular and the rescaled transverse strain vanishes, implying the transverse
invariance of displacements in the film.

3.1.4 The open half space § < 0.

This regime physically corresponds to very stiff systems along the vertical direction. For
0 < 0 from the bound (3.10) and the Poincaré inequality (Lemma (3.1)) we deduce that:

[ulg < |05u7lg, + [O5u]g, < Ceminl 0 as e — 0, in L*(Q).

Hence the first order limit displacement u is the trivial homogeneous solution. The
system is so stiff that, at order 0 in ¢, the displacement vanishes as a consequence of the
transverse strains converging to zero. We are driven to look for higher order terms. To
this end, we refine the estimate used to establish (3.11) which was not optimal. Indeed,
from (3.9), by solving asymptotically the inequality:

1
S5 105G, + &0, < O (1wl + 10wl ), 6 <0

we identify three regimes and derive the associated energy estimates which depend upon
the relative transverse stiffness between the film and the middle layer. The three regimes
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correspond to: —2 < § < 0, d = —2 and § < —2. These regimes are associated to
systems in which the middle layer is more compliant, as stiff as, and stiffer than the film,
respectively.

We sketch some elements of analysis of the first case, namely for —2 < § < 0. This
regime is identified on the phase diagram of Figure 3.2 with the gray-shaded region. We
expect the first order non-trivial displacement to be driven by the middle layer (and
hence its order of magnitude by the exponent 0 of the stiffness), since the latter is more
compliant relatively to the film. Here, transverse strains in the film are more singular than
those in the middle layer and the order of magnitude of the first non-trivial displacements
is that which allows to balance the applied load. Hence, we look for displacements of
order £°, we rescale 4° = %uf, so that the associated variational formulation of the
equilibrium equations reads:

{e°V'uEVy + e 205u 050 } da
Qf

+ / VU vdr + | OsutOsvdr = LO(v), Vo € Co(8).
o 2

Remark 3.4. Note that we would have obtained the same variational formulation if,
instead of (3.7), we had considered loads whose potential is of order O(e'=%). In this
sense, firing the order of the applied loads is strictly equivalent to a suitable rescaling of
the unknown displacements.

Taking v = @° in the variational formulation of the equilibrium (at order £°) and
dropping the tilde we obtain the estimate:

e [V, + 7077 105wl 4+ €770 [V, da + |05uc [, = £0(u)
<NL N 2 @ym) Ul -

Since displacements are controlled by the transverse strains, we need to establish their
boundedness. Again, by solving asymptotically the inequality

=2 oy, + 1057}, < C (10l + 10wl ) 0 <0,
for ¢ — 0 we have:

O], <Ce™5° = 0ase— 0,
Qy
|(93UE|Qb S C.

Hence, from the Poincaré inequality, it derives that |u®|, < C, hence there exists a
function u € L?(2) such that (possibly passing to a subsequence) u® — u in L?*(Q).
Moreover, the weak limit u in the film is such that dsu = 0, hence u = u(z’), i.e.
displacements are constant with respect to the thickness in the film and can be identified
to a function u € H'(w) defined on the middle surface w.
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The boundedness of the displacements allows to further refine the estimate on the
in-plane gradients:
86/2 |V’u€\9f < 07

g2 |V, < C.

We can rewrite the variational formulation as follows:

(3.12)

5_5/2/ 5_5/2V’U8V’vdx+6(_5_2)/2/ (D290 Ogvdx
or QO
—1—5(7_5)/2/ 002"V vdr + Osu® Dsvdx
Qb Qb

=L%), Yvely(Q). (3.13)
Since all the integrands are now bounded, we can pass to the limit.

i) If vy =6 <0, by (3.12) we have that [V'u®|,, — 0 as ¢ — 0, hence the weak limit
u is a function of z3 alone,i.e. u = u(x3) in 2. It is now possible to test the
variational formulation of the equilibrium equations (3.13) for all test functions v
that are independent of x3 within €2, constantly extended in §2y. Passing to the
limit we obtain:

/ﬂ u'v' = fo(0),  Yve {H'([-1,0]),9(0) =0},

where f = fo f(z)dz is the averaged load within the film. To the last variational

equation is associated the following strong equilibrium equation and natural boundary
conditions: )
u"(x3) =0, x3€[-1,0], u'(0) = f.

ii) If v —9 > 0 the in-plane gradient of displacement in the middle layer is not uniformly
bounded and is allowed to be as large as ¢(779/2 as ¢ — 0. Taking in (3.13) test
functions v € H'([—1,0]) constantly extended in (0, 1] we obtain:

i 83uv':/f(:c’,x3)v(0)dx', Vo e {H'([~1,0]), 9(0) = 0}

It follows an equilibrium equation where x; has the role of a parameter. Hence, for
almost every x; € w the limit displacement u(z’, z3) satisfies the following strong
equilibrium equation and natural boundary condition:

1
Oszu(z’,x3) =0, x3€[—1,0], u'(2',0) :/ f(x)dxs.
0

iii) If v — § = 0, membrane and shear strains in the middle layer are of the same order
of magnitude and, along with the imposed load, the only regular terms in (3.13). In
this case, a coupling between in-plane and transverse strains occurs in the middle
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layer and the equilibrium displacement is determined as a function of the imposed
load, averaged within the entire film layer. Indeed, it suffices to pass to the limit in
(3.13) taking test functions v € H'(€),v = 0on w x {—1}, constantly extended in
(2, to obtain the weak, limit, equilibrium equations in €2, namely:

Vqudm:/f(x’)vdx’, vo € {H'([-1,0]),0(0) =0},
Qp w

where f (') denotes, as usual, the applied load averaged along the thickness of the
film.

Higher order models for § < —2 can be derived systematically with the same spirit.
However, a pedissequous investigation of higher order regimes would not be of much
help for the sequel of the work, since the most interesting regimes arise at order 0, for
9 = 0. This regime is identified by a straight segment in the phase diagram (y — 4), see
Figure 3.2.

3.1.5 The straight line § = 0.

Three-dimensional systems laying on the straight 6 = 0, are such that the energy of the
transverse strains of the middle layer is of the same order of magnitude as the membrane
energy of the film, a coupling is hence expected. The energy reduces to:

1 1 1
—/ ‘V/U’2d$+—/ —2|83u5\d1:
2 Qf 2 Qfg
1 1,12 1 €12 0¢,,€
+ =7 | |V|*de 4+ = | |0su®|"dx — L7 (u®)
2 Q, 2 Jq,

and the associated weak formulation of the equilibrium equations reads:
!, € !/ 1 € !, € !/
/ V'u Vvdx—l—/ —Osu 83vda:+€7/ V'u*V'vdx
Qf Qf € Qb
+ / Osufdzvdr = LO(v), Vo € Co(Q)
Qp
From 6 = 0 follows that v = 2a + 2 and 8 = «a + 2. Physically, the desired scaling of
energies (given by 6 = 0) can be obtained either with a very thick and stiff or with a

very thin and compliant middle layer. We furthermore discriminate three limit regimes
depending upon the value of ~, determining the thickness of the middle layer.

“Pointed bars”. For v < 0, the boundedness of rescaled transverse strains (3.10) and
the energy estimate (3.9) imply:

V|, < Ce/2,
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This, combined with the uniform bound on the rescaled transverse strains within the
middle layer, yields the existence of a function u € H'(€) such that u® — u € H'(£2).
As a first consequence, along the whole straight line 6 = 0 in the phase diagram,
Property 3.1 can be refined. Owing to the weak convergence of the gradient, the
convergence of displacement is strong in L?(2).

Moreover, the weak limit w in €2 is such that Vu = 0, hence

u — u(z3), in L?().

Loosely speaking, the limit system only allows for displacements with zero in-plane
gradient in the middle layer, that is functions that depend only upon the transverse
coordinate x3. Within the film, on the other hand, limit displacements are invariant by
transverse translation (Property 3.2), i.e. they depend only upon the in-plane coordinate.
Displacement must be continuous at the interface: these two properties are compatible
if and only if the displacement at the interface is a constant. Hence, at w x {0} the
following must hold:
(") ]wxgor = w(ws)|wxgoy = U € R,

where U is an unknown constant determined by the loads and boundary conditions.

Taking test functions v = 0 in the film and v = 0(z3) in the middle layer, with
v € Hi([—1,0]), the variational formulation of the equilibrium reads:

dzutt'dx = 0, Vo € Hy([—1,0]).
)
We can now pass to the limit and get:
dzud'dr = 0, Vi € Hy([—1,0]).
Qp
Localizing along the vertical segment [—1, 0], integrating by parts, solving and imposing
boundary conditions one obtains:

w(zs) = U(xs + 1), x3 € (—1,0].

The equilibrium displacement belongs, along each vertical segment, to the one-parameter
family of the affine continuous functions indexed by U. They belong to a space
parametrized by a real constant which we denote by Cj((—1,1)) and write as follows:

Cy((-1,1):={ve H(Q) :v="U,for 3 € (0,1),v =U(z3 + 1),
for z3 € (—1,0,U € R}.

We need to determine the constant U delivering the minimal energy. The problem
reduces to the minimization of an energy with respect to a real constant. Taking in the
variational formulation of the equilibrium v = o € C{,((—1, 1)), we have:

/ (%,ugagﬁdx = EO(?A)), Yo € C‘l/((—l, 1))
Qp
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by the convergences established above we can pass to the limit ¢ — 0 and obtain:

U(/dex)V:</fodx>V, vV R

which we integrate to determine the optimal value U*:

U* = ﬁ /w fla')da'. (3.14)

Here we denote by |w| := [ dx the area of the middle surface w and by fla) =

fo ¥, x3)dzs the applied load in the film, averaged along the thickness. The constant
U~ Just identified delivers the optimal (mlmmum) energy and solves the equilibrium
problem.

In the case under study, the displacement is the same along each segment z'x €
(—1,1), for 2’ € w: it reduces essentially to a one-dimensional problem. We are indeed
tackling the case of a (trivial) theory of thermal bars undergoing only shear deformations.
In fact, with 0 = 0, then v is negative only when a < —1. Recalling the form of the
scaling in (3.1), this identifies the unscaled three-dimensional systems consisting of a
film whose thickness goes to zero with ¢ and a middle layer whose thickness goes to
infinity with e~1**1 as e — 0. Hence, the system is more and more slender in the
transverse direction as ¢ — 0, its limit is that of a bar (undergoing only shear) with
a superficial added stiffness due to the film supporting the loads. It is clear that a
symmetrical distribution of the applied load f (2') results into an elastic response with
zero displacement.

A three-dimensional middle layer. For v = ¢ = 0, all derivatives of displacements
are bounded and the convergence of displacements (Property 3.1) can be refined. Indeed,
there exists u € H*(Q) such that v — w in H'(Q). Taking test functions ¥ € H'(w) in
Qpandv =10 ¢ {Hl(Qb) D V|wx -1} = 0} in €, for all such functions the following must
hold:
/ V'uVudz + | VueVuda+ = L0(v).
Qf Qb

by the convergences established above, we can pass to the limit and get, for the same
test functions:

/ V'uV'vdz' + / VuVode = L(v),
Qp

Where ﬁo = f f "Yodzs and the averaged load along the thickness is defined as

in (3.14). Although in the film, owing to the invariance with respect to the transverse
direction (Property 3.2), we can integrate along z3 and obtain in the limit an integral
defined on the middle surface w, i.e. a reduced dimension theory for the film, the same
is not true for the middle layer. The variational formulation of the equilibrium equations
satisfied by the weak limit is hence three-dimensional, because of the middle layer €2;.
Recalling the scalings (3.1), v = 6 = 0 imply that « = —1 and 8 = 1. The unscaled
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Figure 3.2: The phase diagram of three-dimensional film systems. The order of magnitude of
the first non-trivial limit displacements decreases with §. The dotted region corresponds to
possibly unbounded displacements, see Section 3.1.2. Along the straight line § = 0 displacements
are of order one, see Section 3.1.5. For v < 0 we identify the regime of slender bars under shear,
(a) in the figure. For v = 0 we have a thin film over a three-dimensional substrate, (b). For
~v > 0 we find the interesting limit regime of membranes over an elastic foundation (c¢). Along
this open straight line we further individuate different (unscaled) three-dimensional systems:
thin films over a thick substrate (c;), stiff films over a compliant bonding layer (c2) and stiff
films over a thin bonding layer (c3). In the region —2 < d < 0 (shaded in light gray), the first
order non-trivial displacement is of order £9. We identify an interesting regime of “thermal
beams” (d), see Section 3.1.4.
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(a) The “pointed bar” is asymptotically a one dimensional bar under
shear with an added stiffness which carries the load.
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(b) The displacement field is piecewise linear and identified univocally by
the real constant U to be determined, as a consequence of equilibrium,
by (3.14).

Figure 3.3: The three dimensional domain and displacement field in the “pointed bar” regime.

three-dimensional domain is a film of thickness of order € upon a layer of finite thickness
whose stiffness is of order €. In this case, the elasticity couples both the shear and
in-plane strains of the middle layer to the membrane strains of the film and to the
work of external loads (all are of order zero with respect to €). The limit model is that
of a three-dimensional body with a linear membrane on the upper surface undergoing
in-plane displacements and acting as an added stiffness, see Figure 3.3. Differently
from the case 3.1.4.iii), here, the membrane strains of the topmost film are coupled to
the three-dimensional elasticity problem of the middle layer and appear explicitly in
the equilibrium equations. These three-dimensional systems are identified in the phase
diagram 7-9 by the intersection denoted by A in Figure 3.2 and the associated energy
functional is:

1 | .
Fy(u) = 5/ Vulde' + 5 [ [VulPde — £2w)
w Qp

A reduced theory with an internal length. The last case is v > 0 and corresponds
to systems for which the in-plane deformations within the middle layer are allowed to be
large. Such systems lay on the open half line (6 =0, > 0).

Let us focus on the rescaled transverse strains. First, note that the energy of in-plane
deformations within the middle layer vanishes in the limit. Indeed, the energy estimate
(3.9) and Poincaré inequality (3.1) provide the following bound on the in-plane strains
within the middle layer:

/2 |V'u5\ﬂb < C.
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By the bound (3.10) we obtain that:
|05ulg, < C,

hence there exists a function & € L?*(£2,) such that (up to a subsequence, not relabeled)
Ozuf — & in L2(€Y).

We now show that the weak limit & of the rescaled transverse strain is constant with
respect to z3. Localizing the variational formulation of Equation (3.8) in the middle
layer, i.e. choosing test functions v =0 in Q, and v € H} () in the middle layer, the
rescaled equilibrium equations (3.8) reduce to:

/2 / VU vdx + | Osutdsvdr = LO(0), Vo € HE(Qy).
Qb Qb

By the convergences established above, the first term converges to 0 as ¢ — 0, we can
pass to the limit in the last equation and obtain:

Oyidr =0, Vo e HY(Q)
Qp

We write © = g(x4)h(z3) where g € C§°(w) and h € L((—1,1)) and for all such functions:

/w </01 §h’dac3) gdz' = 0.

This allows to derive an equation, for each ' € w, along the vertical segment (—1,0) in
the middle layer. After integration by parts we obtain:

03€ =0, a.e. ¥ €w, 3 € (—1,0)

from which follows that £ = £(2'), i.e. £ is a constant with respect to x3.

The value of this constant is fixed imposing the continuity of displacements across
the interface w x {0} and the boundary condition of place on w_. Since we also have
that & = dsu (the derivative taken in the sense of distributions), we compute the value
of the displacement on the interface. From below:

0
Uy io-y = u(z’, —1) +/ £(2)dxs = £(2),
-1
where we have used the boundary condition u(z’, —1) = 0. From above:

u’wx{0+} = u(x’),

since in the film displacements are constant through the thickness. Finally, the continuity
[u]wx oy = O fixes:

§(a') = u(a).
Consequently, for 6 = 0 and v > 0, the rescaled transverse strains within the middle
layer equal the mismatch between the film displacement and the imposed substrate’
displacement.
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Property 3.3. For § =0 and v > 0, transverse strains of a sequence of minimizers u®
converge, in the middle layer, to a constant function with respect to the thickness which
equals the value of the displacement mismatch between the film and imposed boundary
condition at w x {0}

u® such that dzu® — £(2) = u(z’)

where u € H'(w) is the displacement of the film, defined on the middle surface w.

Note that the weak convergence of the scaled transverse strains in the bonding layer is
sufficient to determine the elastic response of the system. Indeed, since in-plane gradients
of displacements can be large, the sequences of displacements in the bonding layer do
not in principle converge to a limit. Displacements in the bonding layer may exhibit
large variations in the in-plane directions since no in-plane stress is transfered within the
bonding layer. In this sense, each segment 2’ x (—1,0) is independent from the others,
analogously to what was observed in the case of Section 3.1.2 along the orthogonal
direction. However, displacements are controlled by the boundary condition of place at
w x {—1} and the continuity at w x {0} with the displacement of the film. Since the
former is not affected by the rescaling, the control of the displacements within the whole
domain reduces to the control of the displacements of the film.

At this point the optimal transverse profile of the weak limit displacement is known
both in the film and within the middle layer: it is constant and linear with respect to
the transverse coordinate respectively. Choosing, in the variational formulation (3.8),
test functions with the same profile as the optimal limit displacement, 7.e.

o(e) = {z:;(w(:cg £, @) ed (W)
o(z'), if (2, 23) € Qy

we obtain:

/ V'ufVida 4 &7/ / AVUEVOdr + | Osutodr = LO(d),
Qf Qb Qb

Yo € HY(w).

By the bounds established above all the integrals are bounded, we can pass to the limit
¢ — 0, integrate through the thickness, and obtain:

/ (V'uV's +ud}de’' = LO(0), Vo e H'(w). (3.15)

The limit equations (3.15) are the weak two-dimensional limit equilibrium equations
satisfied by the weak limit u under the averaged load and correspond to the first order
necessary conditions for minimality of the following limit energy:

Eyp(u) == %/ {IV'u? +u?} da’ — LO(u). (3.16)
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ipfﬁa

Figure 3.4: Different three-dimensional systems afferent to the same asymptotic regime of
thin films over elastic foundation. From left to right: a thin film over a thick substrate; a film
over a bonding layer, their thickness of the same order of magnitude; and a thin film over a
much thinner compliant interface.

defined for displacement fields u € H'(w). The relations 6 = 0 and v > 0 identify a class
of three-dimensional systems admitting the same two-dimensional limit energy. The
equilibrium configuration of these systems is determined solving Equation (3.15). In the
limit equilibrium equations a new term appears with respect to the three-dimensional
equations, namely [ wu?dx’, estimating the limit shear energy of the bonding layer. It is
interpreted as a linear elastic foundation. This model has been known to the engineering
community since the late 1860’s under the name of (bilateral) “Winkler foundation”
[Win67] and widely applied, other than in thin film systems, especially to soil engineering,
railroad systems, highway slabs, floating structures, floor systems etc. Although this
model is commonly introduced by phenomenological intuition, it indeed has the rigorous
asymptotic derivation just shown.

We can further discriminate among these systems. which are equivalently identified
by the relations: a > —1 and 8 = a + 2 (recall the definitions of v and ¢ in (3.6)).

For a > 0 the corresponding unscaled three-dimensional systems are composed of a
middle layer whose thickness goes to zero faster than that of the film. That is, at fixed
¢ the middle layer is much thinner than the film. For o = 0 the thickness of both the
film and bonding layer is of the same order of magnitude. Finally, for —1 < a < 0 the
unscaled three-dimensional system (at fixed €) is constituted by a film much thinner than
the middle layer. Equivalently, for these systems the thickness of the film goes to zero
faster than that of the middle layer. These three scenarios are illustrated in Figure 3.4
and offer a key to interpret the vast and fruitful application of this simple linear model
to a plethora of problems, some of which recalled above.

We synthesize the main results of this section in the following theorem.

Theorem 3.1 (Zoological characterization of the asymptotic regimes). Let u® be the
solution of the problem P(e,2). Then, if § <0, the family of scaled displacements (u®)c=o
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admits a weak limit u, as € — 0, in the space L*(?). Depending upon the values of v, o
we identify the following asymptotic regimes:

a) If 6 < 0, the first order weak limit u is zero. The order of the first non-trivial
limit displacement field depends upon 6. For —2 < § < 0 the first non-trivial limit
displacement is of order . We distinguish three sub-regimes depending upon the relative
membrane-to-shear order of magnitude in the middle layer: the one-dimensional bar
(for v — & < 0, see Section 3.1.4.1), a three-dimensional layer under surface loads (for
v—38 =0, see Section 3.1.4.1i), a system of mutually independent, vertical, linear
bars (for v —d > 0, see Section 3.1.4.1ii)

b) If § =0 and v = 0, the weak limit u is the (unique) solution of the following scaled
three-dimensional problem.:

Psp(2): Find u € C,(2) such that :
/ VuV'ods' + | VuVidr = L0(v), Vo € Co(9).
w Qp
This is the asymptotic regime of membranes over a three-dimensional elastic body.

c) If 6 =0 and v > 0 the weak limit u is the (unique) solution of the following scaled
two-dimensional problem:

Pop(Q): Find uw € H (w) such that
/ {(V'uV'0 4 ud} da’ = L), Vo € H' (w).

This is the asymptotic regime of membranes over elastic foundation.

d) If 6 =0 and v < 0 the weak limit u reduces to the one-parameter family of displace-
ments, parametrized by the constant U and constructed as follows:

u(zs) = {U ’ in Qs with U™ = 1’ /f(x’)dx'.

. )
U*xs, in |w

This is the asymptotic regime of one-dimensional bars undergoing shear deformations.

3.1.6 The energy of the two-dimensional limit model

The only interesting asymptotic regime for the sequel of the study is that of linear
membranes over elastic foundation, case ¢) of Theorem 3.1. The additional term
(quadratic with respect to u) arises from the coupling of the shear deformation of the
middle layer and the in-plane strains of the film. Although in-plane strains are not
controlled by the energy bound within the middle layer, the boundary condition on the
interface with the substrate and the continuity of displacements at the interface with the
film control the displacements of the middle layer. Note that the boundary condition
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plays a crucial role delivering affine displacements in the intermediate layer which in
turn determine the contribution to the limit energy as an elastic foundation.

It is useful at this point to reintroduce the geometric and material parameters to
highlight their mechanical role. The energy of Equation (3.16) is issued from the limit
analysis of the energies defined on the rescaled unit domains. In order to let the material
and geometric quantities appear in the limit energy we map the non-dimensional unit
domains Q; and €, to the non-dimensional domains w x {0,hs} and w x {—hy, 0},
respectively. Reintroducing the tilde notation for non-dimensional quantities, a scale for
displacements ug and a scale for lengths xy we define the dimensional displacements and
lengths as follows:

u = upl, 2 = x0T

We perform a change of variable, inverse to that of Equation (3.2), in order to explicitly
recover the imposed boundary displacement. After some calculations we obtain:

N L 2 .
ugE(v) = %/ {|Vu|2 - %(u — w)Q} dx’ — eLL(v)
w f

Taking the as length scale the diameter of the domain w, since the membrane and elastic
foundation terms are not homogeneous, the intrinsic length scale

_ QuL2 _ 0%
onh3  whihy’

2

e

emerges from the competition between the membrane and the elastic foundation energy
densities, determined by the geometric and material parameters. This length scale,
issued from the asymptotic process and to be compared to the size of the structure,
emerges as a new feature springing from the original three-dimensional system where
no characteristic scale is involved. This length scale, as it has been seen in the simple
one-dimensional fracture problem in Chapter 2 case, is responsible of the richness of
phenomenology revealed by fracture processes and essentially characterizes a class of
different three-dimensional systems allowing for the same limit representation.
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3.2 A reduced dimension theory for thin films in
vector elasticity

The asymptotic study in the framework of scalar elasticity of the previous section
provides a qualitative picture of the elastic couplings that arise, and has allowed for the
identification of a class of thin film systems whose fundamental asymptotic characteristic
is to express an intrinsic length scale in the limit.

The study performed in the preceding section is confined to the case of scalar elasticity.
With a slight abuse of language, we have associated the in-plane deformations, i.e. the
in-plane gradient of the scalar displacement u, to membrane strains and the transverse
variations of displacement to shear strains. The scalar assumption is restrictive but
sufficient to highlight the qualitative key couplings between the components of the
energy. We now extend the study to the more physically relevant case of vectorial three-
dimensional elasticity, establishing the link between the “thermal plates” of the preceding
section and the “elastic plates”. In this setting, the fundamentally new phenomenology,
inexistent in scalar elasticity, is the possibility to undergo rotations still associated to
infinitesimal strains. It is indeed from such rotations that plate (or beam) theories with
bending emerge, see [Cia97].

The present study focuses on the derivation of an asymptotic plate-like theory for
the elastic multilayer, allowing both in-plane and transverse deformations.

We use the techniques of asymptotic analysis by formal asymptotic expansions and
look for the solution of the elasticity problem under the form of a power series of the small
parameter €. Besides the initial ansatz providing the power expansion, the procedure is
rigorous and deductive. The model system is sketched in Figure 3.5. Allowing ourselves
to redefine symbols already introduced, the notation is kept consistent with that of
Section 3.1. The energy density associated to the elastic strains e reads:

W(e) = Mz)tr(e)® + 2u(x)e - e. (3.17)

where (A, 1)(z) are the non-homogeneous piecewise constant Lamé parameters of the
elastic body.

Assumptions on the data. We perform an asymptotic study of one instance of the
class identified in Section 3.1, i.e. the class of systems for which the shear energy of the
middle layer is of the same order of magnitude of the membrane energy of the film.

We choose to specialize to systems whose layers’ thickness is of the same order of
magnitude, that is we specialize our scaling law to a system analogous to that labeled
¢ in Figure 3.2. In addition, we assume a uniform scaling with respect to ¢ of the two
elastic parameters (A, p) in (3.17), i.e. we do not introduce strong material anisotropies.
The associated scaling law hence reads as follows:

Hypothesis 2 (A stiff film over a compliant bonding layer). Setting

hy
= — 1
€ 7 < 1,
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Figure 3.5: The three-dimensional elastic multilayer in vectorial elasticity.

we assume that both the thickness of the film hy and that of the bonding layer hy scale
with & with respect to L. Also, we assume that the ratio between the elastic constants of
the bonding layer and that of the film scales as €*:

hy <)\b Mb) 2
—— = Oh, ~ ] =& (on0
hy AfHy (03 2)

where oy, 05 and g, are non-dimensional coefficients independent of €.

The film and the bonding layer occupy the domains Q_fc = @ x (0,eL] and Q, =
X [_QhELa 0]
Denoting by (2° = Q% U (2} the reference configuration of the two layers, the space of
admissible displacements is:

Co() :={ve H(Q),v=wa.e. onwx {—opeL}},
and its associated vector space is:
C5(x) := {v e H' (), v =0a.e. onw x {—oucL}},

to each of such displacements we associate the family of three-dimensional elastic energies
indexed by e:

E.( {)\ )* + 2u(z)e(v) - e(v) } da — L5(v),
where
(Mg, pyp), ifz e Qf
A p)(x) =< !
()\b, [Lb) if x € Q
and £ (v fQE ffvdx is the potential of the loads in the film, whose order of magnitude

can be expressed as a function of e. Equilibrium displacements @ € C¢(€2°) are then
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sought as the energy minimizers. The equilibrium problem for u° is posed on the
e-dependent domain §2°.

The usual anisotropic scaling of the space coordinates (3.4) maps 2° = Q% U Qf into
N=Q;,UQ =wx(0,1) Uw x [—1,0]. We also scale the components of the unknown
displacement field as follows:

u;, = U, ug = u3/e (3.18)
Using the above scalings, the components of the scaled strain tensor are related to
those of the strain tensor by the following relations:
€ € 1 € € € € € € 2 5
es(U”) = gess(u),  eas(u’) =eas(uw’),  eqp(u) = eap(u),

The first term is the transverse strain associated to variations of the vertical displacement
through the thickness, the second is the shear strain and the third the in-plane strain.
Plugging the above expressions into the energy and collecting the terms of the same
power in g, the scaled elastic energy reads as:

E.(u?) 1 ]
e 24 /QfW + 2uy)ess(u”) da
1
b= / { M (eaa(w)ess(u%)) + 2upeas(u)’ } do
g Q

45 O+ 2 canl0)es (4)) + 2 p60s(u)eas(0°) o

1 £
o3 (oA + 20upp)ess(u®)’
£ o

n / oA (Can(1)ess () + 20t cas (i)’
Qp

Ll /Q {(os A s + 20upt5) (Canl(u®)ess(u®)) + 20uptreap(u®)eas(u®) } dz

2
B Ea(ua)'

3

As in Section 3.1, we extend constantly the boundary displacement to 2 and perform
the change of variable to recover homogeneous boundary conditions for the unknown
displacements.

The associated minimization problem on the fixed domain €2 reads:

Problem 3.4 (Rescaled minimization problem on the unit domain in vector elasticity).

P(e, ) : Find u® € Cyu(2) minimizing E(u®) in Co(€2)
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The above manipulations allow us to let the explicit dependence upon ¢ of the terms
of the energy appear, and thus to reveal the order of magnitude of the different elastic
contributions in the regime determined by the geometric and constitutive assumptions
of Hypothesis 2.

In the present analysis, we want to model loads inducing in-plane deformations of
the film. It is therefore reasonable to consider the external work L° to be of the same
order of magnitude as the energy of in-plane deformations within the film. We hence fix:
L% := L¢/e. The same remarks raised after the rescalings in Section 3.1 apply here. The
legitimacy of the arbitrariness in the rescalings of £¢ and of the displacements (3.18) is a
byproduct of the linear setting. Indeed, it is only from a genuinely nonlinear asymptotic
theory that one can derive the proper scaling of loads yielding the linear limit and its
regime of validity. The scalings (3.18) suggest that the regime of validity of the limit
linear theory is limited to transverse displacements of the order of the thickness of the
plate, which in turn implies that the first non-trivial term in the expansion of the in-plane
displacements is of order 2.

The inspection of the above energy provides some useful insight on the problem and
on the expected behavior as € \, 0. The most singular term (of order O(e™*)) is the
energy of scaled transverse strains in the film. Requiring a bounded energy at the order
of the external work implies that such term must vanish. The same applies at order
O(e?) for shear the strain within the film and the transverse strain in the bonding layer.
We shall see that, it is the vanishing of all these terms in the limit, that contributes to
the limit energy and the kinematic characterization of limit displacements. The leading
term of the energy in bonding layer is that related to transverse strains. Up to O(e72)
the elasticity of the film is uncoupled from that of the bonding layer. At O(£°) the
in-plane problem of the film and the shear terms of the bonding layer are coupled, under
the action of the external loads.

We tackle the problem using the techniques of formal asymptotic expansions. Sup-
posing that the displacement field can be expanded as a power series of the parameter
e we plug such expression in the variational formulation of the equilibrium equations.
We then identify and solve the cascade of variational problems verified by subsequent
orders of the expansion until we are able to compute the leading term. The expansion of
displacements is given by the following Ansatz.

Ansatz 3.1. Displacements u® can be written as an integer power series of €. The
problem being linear, we shall let the series start at order 0.

ut(e) = u’ + et + et 4 -+ ¥ (3.19)

where u® # 0. Each component of u® for i > 0 belongs to H'(Q). We require that the
first order u® satisfy the boundary condition of place on w_.

Note that it is sufficient to consider only even terms of the expansion since only even
terms are present in the expression of the energy. The same arguments (and equations)
would then hold wverbatim for the odd terms. Note also that this method is only formal,
in the sense that convergence of u*(¢) to a limit u is not guaranteed. However, apart
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the assumption that the displacement can be expanded as powers of ¢, the method is
rigorous and deductive. A stronger convergence result is the object of Theorem 3.2.

The first order optimality conditions (the variational formulation of the equilibrium),
obtained by plugging Ansatz (3.19) into Problem 3.4, read:

Problem 3.5.

P(e,Q):  Find u) € Co(Q),u € H'(Q) forn=1,2...,
i €{1,2,3} such that :

ey (u(e),v) + e 2By (' (e), ) + G (u*(¢), v)
+ e 2 (u*(e), v) —i—ggb( *(e),v)
+ 4G, (u*(e),v) = LOv), Yo € Co(2)

In the last expression, we let:

g (u,v) = o (u,v,Qf), Bi(u,v) = B(u,v,Qy), €r(u,v) = €(u,v,Qy),
vQ{b(u7 U) = ”Q{(u7 v, Qb)u '%b(u7 U) = %<u7 v, Qb)a (gb(u7 U) = Cg(ua U, Qb)?

where

A (u,v; Q) = /Q()\ + 2pu)es3(u)eszs(v)
PB(u,v; ) = /Q)\(em(u)egg(v) + e33(t)ena(v)) + 4peqs(u)eqs(v)

Cl0i0) = [ O 20 can(u)esnlv) + 2ncas(weas(o).

The first bilinear form (&7 (u,v;-)) defined above is associated to the work of transverse
strains, the second (Z(u,v;-))to the work of shear strains and that due to the Poisson
effect, the last (4'(u,v;-)) to the work of in-plane strains. For ¢ < 1 the equality in
Problem 3.5 must hold separately in cascade for all the terms factoring the powers of ¢.
We are lead to identify four variational problems, starting from the most singular term
at order O(e™%).

3.2.1 Identification of the cascade problems
Problem at O(c™%)

The identification of the coefficient of =4

u? € Cy(2) such that

in the equilibrium equations leads to find

o (u,v) = 0, Vo € H' (),
that is:
/ (Af + 2uf)633(u0)633(v) =0, You € Hl(Qf).
Qf
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We deduce that transverse strains are constant and vanish due to the free condition at
the upper boundary,
es3(u’) =0, in Qy (3.20)

This implies:
uj=G(e'), GeH'W)

i.e. transverse displacements at order zero are constant with respect to the thickness in
the film. This is essentially the same result as Property 3.2, although here we do not
track the rate of convergence.

Problem at O(s7?)
The problem at order O(¢7?) is to find v, uj € H' (), u) € Co(2) such that:

s (u',v) + B (u,v) + o (u’,v) = 0, Vo € Co(€2y)

which reads explicitly:

/Q (Af + 2up)ess(u')ess(v)
b [ As(eaa(u)ess(0) + 2arens(u)@avs + Or00)
Qy
+/ (03 + 20u1f)ess(u)ess(v) = 0, Vo, € H'(Q),
Qp

Here we have used the fact that ez3(u’) = 0 in ;. From the variational formulation we
can always derive two sets of variational equations (coupled in principle) associated to
the in-plane (resp. transverse) equilibrium problem, taking test functions whose in-plane
components (resp. vertical) are the only non zero terms.

Kinematics in the film

Choosing test functions v = (0,,0) with 0, € Hix{o}(Qf) and 0, = 0 on w x {0} in Qy
and v; = 0 in £, equilibrium implies:

/ 2sens(u®)sd, = 0, Vo € HE ()
Qf

from which we deduce that necessarily e,3(u’) = 0 in ;. Combined with (3.20) yields:
e(u’) =0, i=1,2,3 inQy.

The last relation characterizes the subspace of H'(2;) of Kirchhoff-Love displacements
VKL(Qf) = {U S Hl(Qf),€i3<U) =0in Qf}
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Lemma 3.2. In addition, the identification of this space allows to identify the kinematics
of displacements. A function v belonging to Vi () is necessarily of the form:

Vo (7', 13) = Na(2') — 230am3(7") ' 1 2
; , thn, € H ,n3 € H
{US (.Tg) =15 (Q? ) witn 1) (w> 3 (CU)

Proof. Tt suffices to integrate the equations ;3 = 0 with respect to the vertical direction.
O

Note that the vanishing of shear strains implies a higher regularity (H?*(w)) on
transverse displacements. We summarize the characterization of the kinematics in the
film with the following property.

Property 3.4 (Kinematics in the film). The first order displacement u° belongs to the
space Vi (82y), equivalently it is of the form:

ug(x’, x3) = Ca(xl) - ZL’38QC3(ZE/) ) 1 )
{ug(xs) = (3(a) , o with Go € H (w), 63 € H(w). (3.21)

Now, choosing test functions v = (0,,0) in Q; with o € H'(Qy), ¢ =0 on w x {0},
v = 0 in , and integrating by parts the equilibrium equations, one determines the
optimal second order transverse strain as a function of the first order in-plane strain:

Af

_ 0 in . .22
)\f—l—Q,LLfew(u ), in Qf (3.22)

€33 (Ul) =

Transverse displacements in the bonding layer

Localizing the problem at order £~2 in the bonding layer, i.e. choosing test functions

v=">03 € H(), 93 =0 on w x {—1} leads to:
/ (0 + 2001 )ess(W)ess(0) = 0, Vo € H'(C)
Qp

from which we infer that:
es3(u’) =0, in Q, (3.23)

i.e. the first order transverse strain vanishes and first order transverse strains depend
only upon the in-plane coordinate, i.e. is a constant with respect to the thickness:
ud(2,x3) = (3(2') in Q, with (3 € H'(w). Consequently, the transverse displacement is
determined by the boundary condition at the interface w_ := w x {—1} between the
bonding layer and the substrate, i.e.

(3(2") = w3(2"), in Q. (3.24)
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Problem at O()

The problem at order £° is to find «°, u!, u? such that:

oy (u?,v) + By (u',v) + G (u’, v)
+ %(ul,v) + @b(uo,v) = E(’U), Yu € Hl(Qf U Qb)

The last variational equation reads explicitly:

| (0 2up)enn(e) + Areanu)) ) + | dreas(aea(v)

Qf

+/ ————¢aal(u)egs(v) + 2ureqs(u”)eqs(v)

+/ (036 + 20,417 )ess(u')ess(v)
Qp
+/ A MCan(U’)ess (V) + doutireas(u®)eas(v) = L(v), Vv, € H (Qp UQy),
Qp
where we used (3.20), (3.22), (3.23) and the fact that ez3(u") = 0 in the bonding layer.

Shear in the bonding layer

Localizing the equilibrium equations in bonding layer, i.e. testing the equilibrium for all
v=0in Q; and 0 € H} ,, () we write:

wolUw_

| @t 20mp)em(uentd)
b
+/Q 03 NoCaa (u’)ess () + 4QM,ufea3(u0)ea3(ﬁ) =0, Yo, € Hblj()Uwf ()
b
from which, restricting to the in-plane equation, we obtain:
/Q s (W)Oyva = 0, Voo € HL 0 ().
b

After integration by parts we derive that the shear within the bonding layer is a constant
with respect to the thickness: eq3(u”) = c¢(2'). Unlike within the film, the constant c(z’)
is fixed by the essential boundary conditions on w_ and the continuity on wqy. Localizing
and integrating by parts the last equation we get:

333u2 = 0, in Qb,

where we have used u} = ws(2’). Integrating twice with respect to the transverse variable
we obtain:

ud = (') (w3 + 1) + w,.
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Imposing the boundary condition on w_ and the continuity on w_ we determine the first
order in-plane (membrane) displacement as:

ug = (ug(x’, 0) - wa)(x3 + 1) + Wa,

where, by what we saw above:
U (7', 0) = Cal’)

Note that the constant shear in the bonding layer is given by the mismatch displacement
between the film and that imposed by the substrate:

ea3(t’) = (Ca = wa)(2'). (3.25)

This result is the analogous of Property 3.3 obtained in the scalar case. Now, however,
we have the correct mechanical interpretation of the shear strains. Finally, recalling
(3.24), the first order displacement within the bonding layer is completely determined
as a function of the first order in-plane displacement (,(z") of the film and boundary
conditions:

(3.26)

[0 = G~ w) e+ D)
w(@’) = wi(a) S

The limit model

Equations (3.21) and (3.26) determine the order one displacements in €2 as a function of
(o- The vertical problem is trivially solved imposing the continuity of displacements at
wy and gives a constant vertical displacement within both layers, fixed by the boundary

condition, namely:

uy(2, x3) = ws(z'), in Q.

The elastic equilibrium reduces to an in-plane problem. Indeed, taking test fields
0 = (1a,0) in Qf and & = (n,(x3 + 1),0) where 1, € H'(w) one is led to solve the
following variational problem:

Problem 3.6 (Reduced limit in-plane problem).

P(w) : Find {, € H'(w) such that :

LAy )
/W{Aer?/Lf CaOpCp + 215 0als Cﬂ} x

+ / oty (Co — wa) ada’ = L£(n) + £(V1),
Ve € H'(w),a =1,2.
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Figure 3.6: Profile of order zero optimal displacements. In-plane displacements (left) are affine
in the bonding layer, varying linearly between the boundary condition w, and the constant
film displacement. Transverse displacements (right) are constant within the entire domain and
equal the boundary condition usz = ws.

In the last expression:
1
L(n) :/f(x')vdx', with f(z") ::/ f(2', x3)dz3 and
w 0

~ A ,
,C/(Vn) = / {ﬁ@aawg%nﬁ + 2uf8agw36ang} dx’.

The profile of optimal (first order) displacements is shown in Figure 3.6.

3.2.2 Comments and extensions

The major novelty in vector elasticity (with respect to scalar elasticity) is the possibility
to undergo rotations, this is seen in the characterization of the Kirchhoff-Love subspace
Vi1, of admissible displacements.

The starting three-dimensional problem breaks down, along the asymptotic process,
into an in-plane and a vertical problem. Unlike in classical theory of (possibly partially)
clamped plates (see [(ia97]), the latter is trivial and the solution is fixed by the boundary
condition of place at the lower boundary. Despite such boundary condition renders the
vertical problem trivial, it allows for non-vanishing shear deformations and enlarges (with
respect to classical plate theories) the space of admissible functions within the bonding
layer. In classical linear plates, bending arises as a way to deliver shear-free deformations.
Since here the shear is prescribed, see Equation (3.25), the bonding layer does not
undergo rotations, i.e. there is no bending. On one hand, the boundary condition on
w_ is crucial to obtain the shear term which, in turn, yields the elastic foundation and
the existence of an intrinsic length scale. On the other hand, it rules out any bending
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and vertical displacements are constant. This constant vertical displacement, however,
appears as an additional loading term (the linear form £'(Vn)) for the membrane and
the in-plane and vertical displacements are necessarily coupled. In this case indeed,
we cannot exploit symmetry to decouple the in-plane displacements from the vertical
displacements, as it may the case for standard partially clamped plates [Cia97].

The increased richness of the two-dimensional model with respect to the original
three-dimensional one (associated to the emergence of an intrinsic length scale) is only
apparent. It is indeed present but not explicit in the three-dimensional equations. The
asymptotic analysis allows to highlight how the assumptions on the data determine the
limit model, through the influence of the associated singular terms. We stress that the
singular terms (e.g. in the variational Problem 3.5) do indeed contribute to the limit
energy. They provide the elastic foundation term and determine the two-dimensional
membrane elasticity operator a whose components are:

A\
A s

« 50’7‘ 2 5040'5 T 5(17'5 o R.
N 20 + 241(0a00pr + 6ardps) €

QaBor =

This operator associates the stresses to elastic strains ¢ = a : e. It cannot be seen stricto
sensu as a constitutive equation since it crucially depends upon the assumption on the
data and imposed loads.

The deductive asymptotic analysis sketched above provides a valuable insight on the
asymptotics of the bilayer system, it can be refined to establish a stronger result, in the
spirit of I'-convergence which we state as follows:

Theorem 3.2. Define E. : L*(QU Q/;R3?) — [0, +00] by

[ ueH(QUY),
E.(u) := Je(u) if { u(-,—1) =0,

+00  otherwise,

and let Ey : L*(S;R3) — [0, +-00] be given by

5 | {5 cantidean(u) + 2nseanlu)eastu)

Af+2pp )
o uy € HY (W),
Zf { Uz = 07

EO(U) = +Qf,uf fw Ug U, dx',

+00 otherwise.

e Lower bound. For every u € L*(;R3) and every sequence (u.) C L*(QUQ;R3)
such that u. — u strongly in L*(Q;R3), then

Ey(u) < liminf E.(u.);
e—0
e Upper bound For every u € L*(Q;R3), there exists sequence (u.) C L*(QUQ; R3)
and such that u. — u strongly in L*(Q;R3) and

Eo(u) > limsup E.(u.).

e—0
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Remark 3.5. If u is smooth enough (e.g. u, € H?(w)) then the optimal sequence
reaching the upper bound in Theorem 3.2 is given by

0
— u(x) — 228 0 it xeq,
Ue (2, x3) == (') A2 (1) ()

(x3 + Du(z) if ze@.
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3.3 Brittle thin films in scalar elasticity

We have studied the asymptotic properties of the purely elastic systems and the interplay
of the elastic energy components, whose separation of scales is induced by the geometric
and the material behavior. We now introduce the surface energies and the possibility
to develop arbitrary cracks within the layers. The object of the study is, to obtain the
geometric characterization of crack surfaces as the outcome of a crack path selection.
Here, the cracks I" are a genuine unknown of the problem, whose properties we determine
exploiting the minimality principle used as a selection criterion for crack paths.

3.3.1 Constitutive assumptions

We study a thin film whose thickness is of the same order of magnitude of the thickness
of the bonding layer. As in the asymptotic study in vectorial elasticity, we specialize the
asymptotic study to one instance of the class providing the limit model of a membrane
over elastic foundation. Referring to the notation introduced in Section 3.1, we choose
a =0 1in (3.1); hence the ratio between the shear modulus of the film with respect to
that of the bonding layer is fixed, in order for the shear and membrane energies of the
bonding layer and film to be of the same order of magnitude. We summarize the elastic
and geometric assumptions as follows:

Hypothesis 3 (A stiff film on a compliant bonding layer in scalar elasticity). Setting

hy
=K1,
T
we assume that both the non-dimensional thicknesss of the film hy and of the bonding
layer hy scale as €L, whereas that the ratio between the elastic constant of the bonding
layer and that of the film scales as €:
Iy Mo 2
— = 0n, — = 0,¢ (3.27)
hy peo
where oy, and o, are non-dimensional coefficients independent of €.

The sketch in Figure 3.7 represents the reference system with the usual notation with
the addition of the jump set J, (of a displacement field u) and its unit normal oriented
vector v,.

In order to highlight the coupled interplay between cracks in the film and in the
bonding layer, simple dimensional considerations allow us to identify a regime where
coupling between transverse fractures and debonding cracks is expected. Indeed, the
elastic energy stored in the bonding layer and that stored in the film are of the same
order of magnitude, to exhibit an interplay between transverse and debonding cracks,
their associated surface energy must be of the same order of magnitude. Hence, being
G and G the toughnesses of the film and bonding layer respectively, the following must
hold:

GrhyL ~ GyL?.
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Figure 3.7: The brittle elastic thin film system. The jump set of a function v € SBV(Q) is
displayed along with its normal vector v,. The transverse

For thin layers, this regime corresponds to a system where the film is much tougher
(by a factor 1/¢) than the bonding layer. By this dimensional argument we assume the
following scaling law for the material toughnesses:

Hypothesis 4 (Scaling law of toughnesses). Being ¢ = hy/L, the fracture toughnesses
of the film G¢ and of the bonding layer Gy are such that:

where oG s a non-dimensional constant independent of €.

3.3.2 Variational formulation in SBV

We formulate the problem on an extended domain 2 = Q¢ U, U €2 including a portion
of the substrate, say € := @ X [—2hy, —hp). This allows to consider possible cracks at
the interface w_ identified as the set of points for which the one-sided traces on w_ differ.
As is customary in free-discontinuity problems, in order to state the problem in a
suitable mathematical framework, we interpret the crack set I' as the set of discontinuity
points of the displacement u. The proper functional setting is that of the space of special
functions with bounded variations SBV', which allows introduce a notion of jump set .J,
of the function u and an approximate gradient, i.e. the regular part of the differential.
We shall denote the latter by Vu in analogy to the usual gradient for smooth functions.
The space of all admissible displacements is given by:

Co(Q) :={u e SBV(Q) : & = w a.e. in Q,, and ]| Lo,y < M}
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Note that the Dirichlet datum w is only defined at the interface 3 between the substrate
and the bonding layer. We implicitly extend it constantly to the whole domain € so
that, from now on, w is identified to a function on € independent of the out of plane
variable. Therefore, the boundary condition % = w on ¥ = w x {—h,} is expressed on
the whole set of finite volume 2;. We further assume that every deformation takes place
in a container K which is a compact subset of R?, i.e. ||t/ < M for some fixed
constant M > 0, and ||w||pe(,) < M. The last hypothesis and can be removed at the
expense of some additional technicalities (see [MET05]).

To state the variational problem in a framework suitable for the mathematical analysis,
the energy functional is rewritten in the following form. For any displacement @ € C,,(€2),
let

ég(a)zﬂ/ Vi—eo2 di+ 522 [ |Vii—ep|? di
2 Jo, 2 Jq,

+ GyH?(Ja N Q) + GyH (Ja N ).

As already familiar and with the usual notation, we apply the anisotropic scaling of
Equation (3.4) of the spatial coordinates in order to reveal explicitly the dependence
upon ¢ and state the variational problem in domains independent of €. In the present
case, denoting by &’ = (71, %2) € Q5 and by 2’ = (71, 72), the anisotropic scalings read
as follows:

7= (T, 33) € QO v (2, ex3) € Q.

The anisotropic rescaling of the coordinates intervenes in the surface energy via the
rescaling of the unit normal v; to the jump set J;. Thinking of the jump set as a regular
curve given by an implicit relation J; : f(2',Z3) = 0, its unit normal v is given by:

8f(£’,£3)>

073

(0,50,

Vg =

-2
\/V’f(j’, F)? + %ﬁ

where we denote the in-plane components of the unit normal by v}, = ((va)1, (va)2).
Consequently, denoting respectively by v; and v, the unit normal to the jump sets J;
and J, before and after rescaling (see Figure 3.8), the scaled unit normal reads:

(V'f(f, 3), afgx;x3>>

1
/ 2 B (Vﬁ, E(Vﬂ)?))
\/V’f(x’, r3)? + —8]”(6:;;:153)

Finally, the surface measure of J; rescales as follows:

(V;, (”?3)‘ dH2.

~

Vy = (Vz/u (vu)3) =

H2(J,) = |yu|d7-[2=/

Ju
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Q° Q

Figure 3.8: Rescaling of the unit normal to the jump set by the mapping 7°. of Equation 3.3.2.
The unscaled (left) and the scaled (right) unit normal vectors to the jump set are related by
Equation 3.3.2. Note that only the vertical component is affected by the anisotropic rescaling.

The total scaled energy of the brittle system (up to a multiplicative constant 1/¢)
reads as:

E(u) = @ - %/Q (w’u — e+ 6—12(83u . (60)33)2> dz

+ M/ (52\V’u|2 + (83u)2> dx
2 Ja,

e /
Juﬂﬂf

In the previous expression we have supposed for simplicity that the inelastic strain is
of the form ey = (€}, 0), with ej € L*(Q;R?), i.e. there is no transverse imposed strain.
Note that since w is independent of the out of plane variable, it is not affected by the
change of variable. Identifying w with a function defined only on the plane, we henceforth
assume that w € H'(w) N L>®(w). Consequently, the rescaled space of all admissible
displacements is

<y;, (”;)3>' d’H2+GfQG/ (e, (va)3)| dH2 (3.28)

JuNp

Cw(Q) :=={v € SBV(Q2) : v =w a.e. in €, and ||v||p~(q,) < M}

and is independent of e.
In this setting, the static fracture mechanics problem is formulated as follows.

Problem 3.7 (Static problem for scalar elasticity. Weak formulation). For a given load
intensity (eg, w), find u € Cy(QQ) that satisfy the following global minimality condition:

E(u) < E(v), Yo € Cyp(92)
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Standard arguments ensure that this problem is well posed for fixed ¢, in the sense
that there exists at least a solution and its energy is finite. The result is formalized
by the following proposition. Note that, in general, uniqueness cannot be expected in
fracture mechanics.

Proposition 3.1. (Ezistence of minimizers at fized €) For each € >0, w € L*(;) and
w € H'Y(w) N L>®(w), there exist a minimizer:

ue € argmin &, (u).
UECy ()

For the proof, the reader can refer to [AFP00]. The inspection of the energy of
Equation (3.28) provides some useful insight on the expected asymptotic behavior of the
System.

e Looking in (3.28) at the terms proportional to €72 and 7!, one may expect that

the solution of the limit problem for ¢ — 0 has transverse strains dsu in the film
equal to the transverse component of the inelastic strain (eg)s3 and that the cracks
in the film should be purely transverse (i.e. with (1,)3 = 0).

e The scaling hypotheses of Section 3.3.1 imply that the energy contributions as-
sociated to in-plane deformations in the film, through-the-thickness shear in the
bonding layer, transverse cracks in the film, and in-plane cracks in the bonding layer
are of the same order in ¢ in (3.28). This entails the emergence of an interesting
coupled problem involving all these phenomena. This will be captured by the
forthcoming limit energy of Equation (3.29).

e In the energy (3.28) the elastic energy density associated to the in-plane gradient
of the displacement inside the bonding layer €2, is proportional to €2, and thus
vanishing for ¢ — 0. This fact implies that in the limit ¢ — 0 these gradients
may possibly diverge. From a mathematical point of view, it translates into a lack
of compactness inside the bonding layer. This issue is bypassed by the fact that
the displacement on the bottom surface of the bonding layer is imposed by the
Dirichlet boundary condition on the substrate, and the displacement on the top
surface of the bonding layer is given by the displacement in the film. In debonded
regions no compatibility between the substrate and the film is enforced, hence the
film is free to accommodate the inelastic strain.

The main result of this section is summarized in the following theorem:

Theorem 3.3. For any u € C(w) let us define:

L L
Eolu) = “f/yv' 2 +2hff2b /\A = w]? da’

L
+ LGyHMN ) + G

h ——H*(AL), (3.29)
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where

2Gyh
A, = {x' €w: |u(@) —w@)| >ug = C’ib b} (3.30)
b

is the delamination set. Then the energy & admits at least one minimizer over C(w) and

in &(u) = li in £ (u).
ity £l = limg, nin &)

In addition, if u. is a minimizer of & over Cw(Q), and u. — uqy strongly in L*(Qy) for
some ug € C(w), then ug is a minimizer of & over C(w).

Up to the debonding term, the elastic part of the limit energy & (u) of Equation (3.29)
is analogous to that encountered in the preliminary study in Section 3.1. The elastic
energy density comprises a contribution %|V/ u — €p]? given by the membrane energy,
estimating the elastic energy in the film, and a term ££|u — w|?/(hshy) due to the
interaction with the substrate, estimating the elastic energy of the bonding layer. This
latter is present only in bonded regions. The novel result regards the crack sets. The
limit system naturally discriminates between transverse cracks J,, and debonded regions
A,. The former are of codimension 1 whereas the latter are of codimension 0 in the
two-dimensional limit domain w. A sketch of the limit two-dimensional body is given in
Figure 3.9. Debonded regions are explicitly determined by the local threshold criterion
(3.30) on the absolute value of the mismatch between the membrane displacement u and
the imposed displacement w by the substrate. We shall show this with an argument
similar that in Section 2.2.2.

The proof of Theorem 3.3 is based on a ['-convergence approach, its structure is
rather classical and rests on three lemmas:

i) Compactness: If (u.) is a sequence with uniformly bounded energy &, then (up to
a subsequence) it converges strongly in L*(;) to some u € C(w);

ii) Lower bound: For any u € C,(w) and for any sequence (u.) C C,(€2) such that
u. — u strongly in L*(€2;), then

Eo(u) < liminf & (u,);
e—0
iii) Upper bound (existence of a recovery sequence): For any u € C(w), there exists a
sequence (u.) C C, () such that w. — u strongly in L*(;) and

Eo(u) > limsup & (T.).

e—0

The three previous properties ensure the convergence of minimizers as well as the
convergence of the minimal value of the energy. Indeed, the compactness property implies
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Figure 3.9: In the limit two-dimensional body w, transverse cracks I' and debonded regions
A are naturally discriminated. Their nucleation and evolution under imposed loads is ruled by
the variational principle.

that, if u. is a minimizer of &, over C,(2), then a suitable subsequence converges strongly
in L*(Qy) to some ug € C(w), and the lower bound gives

Eolug) < ligl_)iglf E-(ue).

On the other hand, if v € C(w) is a competitor for the reduced two-dimensional problem,
the upper bound gives in turn the existence of some recovery sequence (v.) C C,(£2)
converging strongly in L*(Q;) to v, and such that

Eo(v) > limsup E.(ve).

e—0

According to the minimality property of u. at fixed e, we infer that

Eo(up) < liminf & (u.) < limsup & (u:) < limsup &.(v.) < & (v),
e—0 e—0 e—0
where the second inequality follows trivially from the definition of lim sup. This ensures
that g is a minimizer of & over C(w). Taking in particular v = ug in the previous chain
of inequalities yields

ugﬂlj{lﬂ) E(u) = E(us) = En(ug) = urellcla) Eo(u)
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which gives the convergence of the minimal value.

The limit energy & is therefore a “good” variational approximation of the sequence
of functionals &, as € N\, 0. Although the structure of the proof by Lemmas i)—iii) is
classical, the mechanical interpretation of the lemmas, besides the expression of the limit
energy itself, is original for it sheds light upon the asymptotic behavior of the system. In
particular we obtain the geometric characterization of cracks within the film and within
the bonding layer, the general representation of the energy of the bonding layer and the
profile of optimal displacements through the thickness.

We outline below the essential mechanical implications springing from the mathemat-
ical analysis, postponing to Section 3.A the detailed proof of Lemmas i)-iii).

Cracks within the film

First, a classical result for bounded sequences in SBV spaces ensures compactness of
sequences of displacements (u,,) of finite energy in the film. Hence, there exists a function
u € SBV(€y) such that w, converges (possibly up to a subsequence) in SBV to w.
Furthermore, we obtain a characterization of (the regular part of) displacements and the
geometry of the associated cracks. In fact, the weak limit u satisfies:

/ |83U|2dl’ +/ ’(I/u)gdeQ =0
Q QNJy

Hence, in the limit €, N\, 0 for n — oo, any sequence of displacements u,, of uniformly
bounded energy in the film converges to a limit displacement u such that, in the film,
i) cracks are transverse to the mean membrane, i.e. the crack set J, is (in the scaled
unit domain) necessarily of the form J, = J! x (0, L) where J] is a curve belonging to w,
and i) vertical strains vanish. As a consequence, in the film, the limit displacement is
independent of the thickness, i.e. it can be identified to a function v € SBV (w) defined
on the middle surface w.

Cracks within the bonding layer

We now turn the attention to the bonding layer. Analogously to the pure elastic
case tackled in Section 3.1 we cannot conclude a compactness result for sequences of
displacements of bounded energy within the bonding layer which allows for unbounded
in-plane strains. This is due to the presence of the factor 2 in front of the in-plane
gradient term in the expression of the energy (3.28). However, limit displacements u are
controlled by those of the film and those imposed by the substrate. Unlike in the coating
film, the contribution to the surface energy associated to cracks within the bonding layer
arises from the in-plane component of the jump set. In the expression of the surface
energy in the film, see Equation (3.28), the energy of transverse cracks within the bonding
layer vanishes in the limit as € N\, 0. Hence the transverse component of cracks in the
bonding layer J, N €2, is negligible and cracks are essentially planes, their contribution
to the energy derives from their projection on the middle surface w. The orthogonal
projection of the jump set J, (of a function u) is denoted by A and shown in Figure 3.7.
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The limit energy of the bonding layer the onset of debonding

Given a minimizing sequence u, and denoting by A, the projection of its crack set
on the mean membrane, we show that the characteristic function of A, converges in
L>(w;[0,1]) to a function 9 taking values on [0, 1]. It is a convergence in an “averaged
sense” and 1 can be thought of as a point-wise “debonding density”. The projection of
the crack set of an admissible displacement v is shown in Figure 3.7 and denoted by A.
Using ¢ we write the general integral representation of the energy of the bonding layer
defined on the middle surface w. It reads:

(u,9) : H'(w) x L*®(w) %[)'Z—:(l —9)(u —w)?dz’ + /“;Gbﬁdx’

The first term is the elastic energy. Its density takes all values in the interval [0, hﬂ;(u—w)Z],
the extrema attained respectively at points where the debonding density ¢ is 1 and 0. By
optimizing (i.e. minimizing the bonding layer’s energy with respect to) ¥ we determine,
as an explicit function of the displacement mismatch (v — w), the limit crack set within
the bonding layer. The minimization of this energy with respect to the characteristic
function of the debonded domain is a trivial box-constrained minimization of a local
linear functional, and reduces to checking the sign of the slope of the linear problem.
The local first order optimality condition reads:

hence a minimizer is:

(@) = X{\u7w|>\/@} ().

The minimization of the energy of the bonding layer yields a point-wise criterion for
the onset of debonding based on the absolute value of the mismatch between the film’s
displacement v and the imposed boundary displacement w. Since the boundary datum
is a given, optimal limit cracks within the boundary layer are necessarily planes parallel
to the medium surface and determined explicitly

Lastly, a regularity consideration. No relaxation effect is present at the boundaries of
the debonded set A, and no microstructure of arbitrary fine length scale develops. The
boundary of the debonded domain is necessarily “smooth” and its perimeter finite.

Profile of displacements

The construction of a recovery sequence allows to conclude that the lower bound is indeed
an optimal bound, i.e. that there exists a particular sequence (the recovery sequence)
such that the lower bound is attained in the limit. The asymptotic study tackled in
Section 3.1 provides the intuition for the construction of such optimal displacement.
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In analogy to the purely elastic case, in order not to let the bulk energy associated to
transverse strain (of order 1/£?) blow up in the film, we expect that the displacements
be constant through the thickness. In addition, to ensure that the term of order 1/¢
in the surface energy remains finite, we expect the jump set to be purely transversal.
Concerning the bonding layer, as already intuited and made clear in the proof of the lower
bound inequality, we expect no contribution from the in-plane strain and the out-of-plane
cracks since these terms vanish as the thickness tends to zero. In the purely elastic
case, we had shown that optimal displacements were affine, matching the boundary
condition w(z’) at the interface with substrate and the displacement of the film wu(z’)
at the interface with the film. The same applies in the present case at bonded points
¥’ € w\ A. On the other hand, if 2’ is a debonded point, then the displacement of the
film is free to accommodate the imposed inelastic strain and no compatibility conditions
are enforced. The optimal profile of displacements is sketched in Figure 3.10 for bonded

and debonded points. Defining the critical displacement threshold wug := 4/ 2C;—"bhb, optimal
displacements v are hence constructed as follows:

u(z'), if (z/,23) € Qy,
(x3 + Du(z’) — zzw(z’), if (2/,z3) € Q
o(2 x3) = and |u(z") —w(z)| < ug €9y,
w(a'), if (2, 23) € Qg or (2/,x3) € (Y
and |u(z") —w(2")| > ug

u(zs) u(z1)

Figure 3.10: Crack surfaces are geometrically characterized based on the variational principle.
Cracks are transverse within the film and parallel to the mid-surface within the bonding layer.
The displacement profile is displayed at a bonded (x1) and debonded (x3) points.
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3.4 Brittle thin films, application in two-dimensional
vectorial elasticity

This section concludes the chapter which focuses on the derivation of reduced dimension
theories for brittle thin films.

The results shown so far are in the setting of scalar elasticity for what regards the
identification of the class of three-dimensional systems and in vectorial three-dimensional
elasticity the asymptotic analysis of one instance of the class brittle multi layers.

The gap between the latter and the application we are going to present is due to
major technical mathematical difficulties arising in the non-trivial extension from scalar
to vectorial free-discontinuity problems in linearized elasticity. However, we believe
that the preliminary studies have given a sufficient insight into the problem to allow
us to inductively apply the results to the vectorial case. Here we choose to proceed by
induction and simply transpose (without proof) the results of the preceding Section in
the vectorial setting. In particular, we retain the form of the limit elastic energy, as the
sum of the membrane energy of the film and the elastic foundation estimating the energy
of the bonding layer, and of the surface energy, as the sum of the contributions due to
transverse fracture and debonding, with the corresponding geometric characterization of
the crack surfaces. Currently, we are able to provide a full proof (not reported here) of
this limit model only in the purely elastic case without fractures. The two dimensional
reduced model for thin brittle films is constructed as follows.

3.4.1 The reduced limit energy in two-dimensional vectorial
elasticity

We consider a two-dimensional brittle elastic membrane occupying the domain w € R2.
In analogy to the scalar case, we discriminate between transverse cracks I' and debonded
regions A,. In two dimensions, the former are sets of codimension 1 whereas the latter
are sets of codimension 0. We assume that the membrane undergoes only in-plane
displacements u = (u1, us) € H'(w; R?) and that the displacement field is regular on the
crack-free domain w \ I'. The space of admissible displacement is:

H'((w\ D) R2).

In analogy to the reduced elastic energy in the scalar case (Equation (3.29)), given the
loading as an inelastic isotropic strain e € L?(w;R?**?) and an imposed displacement of
the substrate w € H'(w;R?) N L>®(w;R?), in the case of vectorial elasticity the strong
limit two-dimensional elastic energy is taken as follows:

P(u,T) = %/\FA(e(u) o) - (e(u) — e9) da + %/

where A is the forth-order tensor representing the isotropic stress-strain relation for the
film as a two-dimensional membrane in plane-strain. It is defined by

Hb
™ h—b(u —w) - (u—w)dz, (3.31)

Arfhy

Ae=h tre)ls + 2ush
e f)\f+2/lf(re)2+ frhye
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where I is the two-dimensional identity tensor. The second integral in the elastic energy
(3.31) accounts for the presence of the bonding layer as an elastic foundation. The surface
energy is assumed to be the sum of the contribution given by the transverse cracks I'
and the debonded regions A,:

S(u,T) = hyGHNT) + GyH?(Ay),

A, being given explicitly as function of the displacement u by the following threshold
criterion as in (3.30):

JAWIRES {$€w:]u(x)—w(x)]>ud = }

Hence, the total energy of the two dimensional model is:

E(u,T') := P(u,T") + S(u,T")
1
=5 " Ale(u) — eg) - (e(u) — eg) dx +/wf(u —w) dx

+ hyGHN T, (3.32)

where the total energy of the bonding player is rewritten in terms of the nonlinear energy
density:

L .

——u-u, if|u| <u
Fu) =< 2hy ful < ua

Gy, otherwise

A non-dimensional form of such energy density is plotted in Figure 3.11.

Remark 3.6. Equation (3.31) is the energy of a linear elastic prestressed plate undergoing
purely in-plane displacements plus the energy of a linear elastic foundation in the bonded
regions. In the purely elastic (i.e. when T'= A, =10), for the scaling hypotheses (3.27)
and the assumed in-plane loading, the elastic energy (3.31) is be obtained as an asymptotic
limit for € 0 of the elastic energy of the three dimensional system in Theorem 3.2.
The problem is much more difficult in the brittle case because of the technicalities arising
when dealing with vectorial fields in free discontinuity problems.

Remark 3.7. The energy density of the film is a quadratic function of the the mismatch
between the geometric strains e(u) and inelastic strains eq. On the other hand the energy
density of the bonding layer, f, is quadratic before debonding, i.e. where |u —w| < ug,
and constant after debonding. Its dependence on u is sketched in figure 3.11. Hence,
even in the case without transverse cracks, the total elastic energy E(u, () is non-linear,
non-smooth and non-convex with respect to u. As a consequence of the lack of convexity,
we expect lack of uniqueness of the displacement solution as soon as debonding is triggered,
recall Section 2.2.2.
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3.4.2 Nondimensionalization and free parameters
Introducing the non-dimensional space variable and displacement field defined by
U —w

VG iwo s

the total energy (3.32) may be rewritten in the following non-dimensional form:

T =x/x, U=

zamiA%:%/Wﬁwmy—%y@@y—ﬁwi+%[@mmﬁﬁ

+HY(T) +yH3(A), (3.33)

where
~ E ~ A I T _ 1o
E — A e — — _
thf$0’ ,ufhf’ ¢ Gf & “0 Gf (60 e(w))
and

_mw G
1953 hfhb’ Gf hf
Henceforth we consider the total energy in this form dropping the overset tilde for

sake of conciseness. We conclude from this dimensional analysis that the non-dimensional
parameters that fully characterize the energy are:

(3.34)

e The loading parameter ey, which may be used to model both the effect of inelastic
strain in the film and the imposed displacement of the substrate;

e The relative stiffness of the bonding layer and the film x;
e The debonding to transverse cracking relative fracture toughness 7;
e The Poisson ratio in the film.

Note that one can always choose the scaling length xg = \/hshyps/pp in order to
have k = 1. However in that case the dimension of the domain (in x¢-units) will be an
additional parameter. In the following we will adopt the opposite point of view, setting
xo such that the diameter of the domain @ is of order 1 and keeping x as a free parameter.

3.4.3 Formulation of the reduced problem

We formulate below the static problem and the discrete-in-time evolution problem for
the reduced model by extending those of Sections 1.2.3-1.2.4 to include the presence of
the two fracture modes given by transverse cracks and debonding cracks.
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Problem 3.8 (Static solution of the reduced model). Given a loading ey, find u €
H'(w\T;R?), T Cw, A Cw such that

E(,T,A) < E(v,T,A), VI Cw, VA Cw, Yv e H'(w\T;R?).

This condition is equivalent to require that (u, ', A) solve the following minimization
problem R
inf{E(u,[;A): TCw, ACw, uc H'(w\T;R»)}.

Remark 3.8. As done in the case of scalar elasticity, for any admissible u, one can
find explicitly the optimal debonded set by solving a linear optimization problem for the
characteristic function xa of the domain A, see Theorem 3.3, which gives:

A, = {a: cw:u(x)] > ug:= 2%} : (3.35)

Hence the static problem may be alternatively reformulated as the minimization of the
energy

E(u,T) = / lA(e(u(m)) —eg) - (e(u) — eg) dx

\r 2
+H1(F)+/

w

f\u|2d:c+/ vdz (3.36)
\Ay 2 A,

In Equation (3.36), the energy density due to the film is a quadratic function of the
mismatch between the geometric strains e(u) and inelastic strains ey. On the other hand
the energy density due to the bonding layer, say f, is quadratic in u (f(u) = kKu-u/2)
before debonding (Ju| < ug) and constant (f(u) =) after debonding. Its dependence on
u s sketched in Figure 3.11. Hence, even in the case without transverse cracks, the total
elastic energy E(u, D) is non-linear, non-smooth and non-convex with respect to u. As a
consequence of the lack of convexity, we expect lack of uniqueness of the displacement
solution as soon as debonding is triggered, even without considering transverse cracks.
This kind of problem has been studied is detail in the one-dimensional case in [Leo+15d].

Problem 3.9 (Time-discrete evolution of the reduced model). Let be 0 =ty < t; <
... <ty =T the discretization of the time interval [0,T] into N time steps. A time-
discrete quasi-static evolution for the displacement field and crack set of the reduced
two-dimensional model is a mapping t; — (u', T, A?) that, given the initial crack state
% A% and the loading history €}, verifies the following global unilateral minimality
conditions Vi € 1,...  N:

Mol ATD AL

E@!,T",AY) < E(a,T,A), VI withT" ' CT C w,
VA with A" C A Cw, Vi e H'(w\T;R?). (3.37a)
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f(u)
A
>
_ 0 2y
k k

Figure 3.11: Qualitative properties of the energy density of the reduced model. The total
energy density in the film is quadratic with respect to u in the elastic phase and constant after
debonding, see Equation (3.36).

These conditions are equivalent to require (u', T, A") to be a solution of the minimization
problem

inf{E(u,[,A): T"'Clrcw A™'CACw, uec H'(w\T;R?)}.

3.5 Conclusions of the chapter

In this chapter we have progressively constructed a reduced two-dimensional model to
take account of the competition between the elasticity and fracture in film systems. It
seemed necessary to study the purely elastic system at first, its simplicity in the scalar
case allows to rapidly investigate the three dimensional systems possibly showing severe
mismatches in stiffness and thickness. These two are indeed the only parameters to take
account of in linear elasticity. Performing a complete parametric asymptotic study we
have observed that, among all three dimensional systems, there exists a particular class
of systems which, in the limit, are represented by the same equivalent system: a linear
membrane over an elastic foundation. These systems naturally manifest the existence of
an intrinsic length scale determined by the elastic and geometric quantities, and plays
its role by measuring the relative weight of the film and elastic foundation energies. The
limit energy is the same as the one proposed by [XH00] and assumed in Chapter 2 for
the study of the one-dimensional response. We then chose to further investigate one
instance of the identified class: a thin film bonded to the substrate through a soft brittle
bonding layer.
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Allowing for cracks, on the other hand, is more challenging. The difficulties are
essentially related to the characterization and representation of the arbitrary free surfaces.
Fractures may appear both in the membrane and in the bonding layer. The asymptotic
analysis characterizes their respective nature. In the limit two-dimensional model,
transverse cracks in the membrane are curves where the displacement may jump, whilst
debonding cracks are two-dimensional surfaces which are explicitly identified. Indeed,
the debonding condition reduces to a simple threshold criterion on the norm of the
displacement. The extension of the dimension reduction result to the case of full vectiorial
elasticity is not straightforward. We hence inductively propose a reasonable application
to two-dimensional elasticity which will serve as a basis for the numerical exploration,
the topic of the next Chapter.

The model presented here is based on several strong hypotheses, which may be
difficult to reproduce in experimental conditions. Perhaps the strongest among them is
to assume a perfectly linear-elastic brittle behavior of the bonding layer, while in real
materials plastic effects may play an important role.

From the mathematical point of view, the present dimensional reduction results
should be extended to fully justify the limit model in the framework of vectorial elasticity.
Another investigation thread is to consider the effect of bending and its interplay with
stretching, in circumstances where it is not inhibited by boundary conditions, and
derive a complete plate model (membrane and flexural equations) under general scaling
hypotheses on the material and geometric properties of the three-dimensional system.
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3.A Proof of the dimensional reduction for scalar
elasticity

This section is devoted to give a rigorous proof of Theorem 3.3. As explained in Section

3.3.2, it will be obtained in three steps: we first show that sequences with uniformly

bounded energy admit converging subsequences. Then we prove a lower bound for

the limit energy. Eventually, we show that this lower bound is optimal through the
construction of a recovery sequence which gives an upper bound.

Compactness in the film
Lemma 3.3. Let (g,,) \ 07 and (u,) C C,(Q2) be sequences satisfying
sup &, (uy,) < 00. (3.38)

neN

Then there ezists a subsequence (not relabeled) and w € SBV () such that

u, — u strongly in L*(Qy),
U, — u weakly™ in L>(y),
Vu, — Vu weakly in L*(Q; R?).

Moreover, dsu = 0 a.e. in Qy, and (v,)s = 0 H*-a.e. on J,N;. Hence, the limit
displacement field u (can be identified to a function that) belongs to SBV (w), it satisfies
lull o) < M, and

1
L/ (V'u — eyl da’ < liminf/ (\V’un —epl* + —2]83%\2) de,
w n— 00 Qf 6n
1
LH'(J!) < lim inf/ <(1/un)’, —(Vun)g)
an‘jun E:n

n—oo
Proof. According to (3.38), the definition of the energy &, and of that of the space of
kinematically admissible displacements C,,(2), we have the following bounds

dH?.

[tnl o= (@) + 1VUnll 20, 25) + H(Ju, N Q) < C

for some constant C' > 0 independent of n. According to Ambrosio’s compactness
Theorem in SBV (see [AFP00, Thms 4.7 and 4.8]), we deduce the existence of a
subsequence (uy,,) C (u,) and a function u € SBV(Qy) such that w,, — u strongly in
L*(Qy), un, — u weakly* in L>®(Qy), Vu,, — Vu weakly in L*(Q;; R?), and
2 < lim inf H? :
H(J, N Q) < 11ir£+120f7{ (Jun, N 2)

Let us prove that u is actually independent of x3. Using the expression of the energy
in the film, we deduce that

/ |83Unk|2d$ +/ |(Vunk)3| dHQ < Cfnk — 0.
Qf

anJunk
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Since the left hand side of the previous inequality is lower semicontinuous with respect to
the convergences established for (u,,) (see e.g. [Bab06], [BFO1], [BFL02]), we conclude
that d;u = 0 a.e. in Qy, and (v,)3 = 0 H*a.e. on J, N . This implies that the
distributional derivative Dzu = 0 in D’(€2f), and thus the limit displacement field u (can
be identified to a function that) belongs to SBV (w).

By definition of C,(£2), we have that |u,||~@q,; < M. Therefore, we deduce by
lower semicontinuity of the norm with respect to weak® convergence in L>(£2y) that
lull e < M.

Since u is independent of x3, the approximate gradient is given by Vu = (V'u, 0)
and the jump set can be written as J, = J] x (0, L) for some 1-rectifiable set J;, C w.
Finally, since ¢,, < 1, we infer that

L/[V’ — epl* da’ <hrn1nf/ |V, — (e, 0)]* dx

1
< liminf/ (|V/umc —ep)* + T|a3unk|2) dz,
k—o0 Qf Enk

and

LH(J,) = H*(Ju N Q) < liminf H?(J,, N Q)
— 00

< lim inf /
k—o0 Qfm‘]unk

which completes the proof of the lemma. ]

/ 1 2
((uung , —k<uunk>3) \ e,

€n

Lower bound

Proposition 3.2. For any u € C(w), and any sequences (g,) \ 01 and (u,) C Cy(Q)
such that u,, — u strongly in L*(Qy), then

Eo(u) < liminf &, (uy).
n—oo

Proof. Let us extract a subsequence (not relabeled) such that the previous liminf is
actually a limit. Then for n large enough, one has

&, (un) < C, (3.39)
for some constant C' > 0. According to Proposition 3.3, u,, — u strongly in L2(Qf),
Uy — u weakly* in L®(Qy), Vu, — Vu weakly in L*(Qf;R?), and

1
,LLfL/ |V'u — 66|2 dr’ < liminf,uf/ <\V’un _ 66’2 + —2]83un|2> dr

(@n)', L (h)a)

dH?.

n—o0

GiLH'(J) < hmmfo/
QN
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Consequently, it is enough to consider the energy in the bonding layer €2,, and to check
that

L L
i / |u—w|2dx'+ﬁ7—[2(Au)
hihy Joa, Iy

< lirr_1>inf (,ufg#/ (e2]V'un|?* + |O5un|?) dx
+Gre [ Iealon)' (0, dHZ) . (3.40)
QN

The rest of the proof is devoted to show (3.40). The main difficulty consists in defining
the debonding set. This is performed as follows: let 2’ € w, we define the transverse
section of the jump set of u, by J* := {x3 € (—2Loy, L) : (¢',23) € J,,} and

A, ={2 €w:JY # 0}

The set A,, is made of all points in the plane from which the vertical section intersects
the jump set J,, or, in other words, A,, is the orthogonal projection of J,, on w. It can
be interpreted as an approximation of the debonding zone. Unfortunately, it is not clear
how to show that it converges to some (debonding) set because we only control the L>(w)
norm of its characteristic function. Therefore, possibly for a subsequence (not relabeled),
one can find some ¥ € L*(w;[0,1]) such that xa, — ¢ weakly® in L*°(w; [0, 1]).

Step 1. We first obtain that, outside the debonding set A,,, the trace u,(+,0) of u,
at the interface w x {0} between the film and the bonding layer converges strongly in
L?(w) to the limit displacement u (which is independent of z3). In absence of debonding,
this property is standard as a consequence of the compactness of the trace operator
from H'(§y) to L?(w). However, in the presence of debonding, since u,, is a SBV ()
function, this property does not hold anymore. What makes the argument work in
our case is that the function x3 — u, (2, z3) is Sobolev whenever z’ lives outside the
debonding set A,,. To be more precise, let us show that

/ lu(z") — u,(2',0)*da’ — 0. (3.41)
w\Ap

For each 2/ € w, let us define u® (x3) := u,(2', 23). According to slicing properties of SBV
functions (see [AFP00, Thms 3.107 and 3.108]), we have u¥ € SBV(—2Lo, L), and
Syt = J* for a.e. 2’ € w. Hence by definition of A,,, we deduce that u* € H'(—2Loy, L)

for a.e. ' € w\ A,. In addition, for a.e. x5 € (0, L), we have (u® ) (23) = Osun,(2', x3)
(by [AFPOO, Prop. 4.35]), and

[un (@', 23) = ua (@', 0)] = uy; (23) — un(a’, 0)] < /Oxs (i)' (5)] ds

L
< / |03, (2, s)| ds.
0
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Integrating with respect to x3 € (0, L) and 2’ € w \ A,,, the Cauchy-Schwarz inequality
and (3.39) yield

L
/ / [un (', 23) — up (2, 0))? das da’
w\A, JO

< I? / / 03w, (2, 23)|* dogda’ < L? [ |Osu,(2)|? de < Ce2.
w\Ap Qf

In addition, since u, — u strongly in L*(2;), and u is independent of x3, we finally
obtain (3.41).

Step 2. We next show lower bounds in terms of the density 9 of debonding for the
volume and surface energies in the bonding layer:

L
; /;lb /(1 —9)(u — w)*dr’ < liminf ,ufgu/ (£2|V'up — €p)* + |O5un|?) da (3.42)
f b n—oo Qb

and

LGy / i de’ < liminf G o / (en(v Y (v )s) | dH2. (3.43)
Q

pNJup,

Intuitively the term of order €2 in (3.42) and the term of order ¢, in (3.43) can be
neglected so that we only focus on terms of order 1. Let us start by proving (3.42). Usmg
the Cauchy-Schwarz inequality and the fact that ya, — ¢ weakly™® in L*(w; [0, 1]), w
infer that

lim inf/ (82|V’un —epl? + |83un!2) dz
Qp

n—oo
> lim mf/ / |03, |? das da’
> lim inf — ( / O3y, dxg) da’
n—reo L "J\An —Lop
> —/ (1 —9)(u—w)?da’

1 0 ’
+ lim inf — (/ O3y, dxg) — (u—w)?| da’. (3.44)
n—o0 LQh w\Ar — Loy,

Since u,(z',-) € H(=2Lgp, L) for a.e. € w\ A, then the trace u,(-, —2Loy) of u,
at the interface {x3 = —2Lg,} between the bonding layer and the substrate satisfies
un(2', —2Lop) = w(x'), and thus

/w\An [(/_[)Lgh Ostin dx?’) - (u— w)2] da’

- / [ (2,0) — w(a'))? — (u(’) — w(x'))?] ',
w\Anp
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Using now (3.41), the fact that u,, (and hence its trace u,(-,0)) is uniformly bounded by
M, and the Cauchy-Schwarz inequality we deduce that

/ [(un(2,0) — w(2))? = (u(z') — w(z"))?*] da’ — 0.
w\Ap

Thus (3.42) follows from (3.44).

We next prove (3.43). Let us denote by 7 : R® — R? x {0} the orthogonal projection
onto the hyperplane {x3 = 0}. Then

lim inf [(en (), (W, )3)| dH? > lim inf (v, )3| dH?
n—oo QbmJun n—o0 QbﬂJun
= liminf H?(7(J, N Q) > liminf H*(7(J,,)) — limsup H?(7(J, N Q).
n—00 n—00 n—00

But since 7(J,, ) = A,, and, in view of (3.39)
He(n(J,, O19y)) = / ()l dH2 < Cz, =0,
QfﬁJun

we obtain that

lim inf ((en(Va,)'s (Vu,)3)| dH? > liminf H?(A,) = / Jdr’,

n—oo QbmJun n—0o0

which completes the proof of (3.43).
Step 3. Let us prove that

L L
Qhuibz /(1—19)(u—w)2dx'+% Jdr’
o Jw f Jw
Lﬂb/ o v LGo o
> u—w| de + —H(A,), (3.45
2hshy w\Au! | ¥ (Au), (3.45)

where A, is the debonding set defined by (3.30). Clearly, one has

L,Ub/ 2 7. LGb/ /
1— 9 (u—w)Pde + =22 [ 94
2N hy, w( J(u = w)7da’ + ny )0

L . o 2 o 2 '
> = f — —(u— —(u — dx’.
= wné%,ll {n (Gb 2hb(u w) ) + o (u—w)*| dx

It is easy to check that a minimizer n* in [0, 1] of

nn Gy — 2 (u—w)? ) + By — w)?
2hy

is given by

3
*
I

X{\upr@} (')

and (3.45) follows from the definition (3.30) of the debonding set. O
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Upper bound and existence of a recovery sequence

Proposition 3.3. For any u € C(w) and any sequence (g,) N\, 0, there exists (u,) C
Cw(Q) such that w, — u strongly in L*(Q2) and

Eo(u) > limsup &, (ay).

n—oo

Proof. In order to get an intuition of the form of the recovery sequence, let us analyze
what would make optimal the lower bound established in Proposition 3.2. Concerning
the part in the film, we expect a displacement independent of the transverse variable
x3 in order to ensure that the term of order 1/£2 in the bulk energy, and that of order
1/e, in the surface energy, do not blow up. Concerning the bonding layer, as already
observed in the proof of the lower bound, we expect no contributions from the in-plane
strain and of in-plane cracks since these terms vanish as the thickness tends to zero. On
the other hand, according to estimate (3.44), we used the Cauchy-Schwarz inequality
for the function 3 +— Jsu(2’, z3) when 2’ lives outside the debonding set. It is known
that such inequality is an equality whenever the function is constant. Therefore, when
2’ does not belong to the debonding set, we expect that the function z3 — u(2’, x3) is
affine, joining continuously the prescribed displacement w(z’) on the substrate and the
displacement w(z’) of the film. Finally, if 2’ is a debonded point, then the displacement
of the film does not match that of the substrate.

Let us make this observation rigorous. By the coarea formula in BV ([AFPO0,
Theorem 3.40]), there exists a sequence (t;) \, uq such that the sets {|u —w| < t;} have
finite perimeter for each k € N. Let us define

(u(z') if (2/,23) € Qy,
X3 ’ T3 ’ . (1:/7'753) S Qbu
— +1|u(z") — —w(z) if ) .
u(@’) —w(z)] < t,
w(z') if (2, 23) € Qs

r {(I/,.Tg) € Qba

ub (2, x3) =

lu(z") — w(z")| >t

Clearly, u* € SBV(Q), v* = w a.e. in Qg and ||u”|| @) < M so that u* € C,(Q) is
admissible. Then for each k € N,

1
/Q (|V'ulC —epl? + 6—2|33uk|2> dr = L/ |V'u — ej|* da’, (3.46)
f n w

/ () = 00a)

dH? = LH'(J)), (3.47)
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and

/ (£2|V'u — ep|* + |Osul?) dx
Qp
1
Lon J{ju—w<tiy

+ 52 /
{lu—w|<t} X (= Lop,0)

(u — w)*da’ + Lope? / |V'w — ep|? da’
{lu—w|>tx}
2

dx

T3 / T3 / /
—4+1)Vu——Vw-—ce¢
(LQh ) Lop 0

1
— — (u —w)?da’. (3.48)
n=oe Lon J{ju—ul <y

It remains to compute the surface energy in the bonding layer. To this end, we observe
that

T QY C [J; x [~ Lo, o]} U [{|u —w| > ) x {o}}
U [a*{yu —w| <) x [—Lgh,O]],

where 0*F stands for the reduced boundary of the set of finite perimeter £ (see [AFP00,
Definition 3.54]). Then, for each k € N,

[ leatv ess) aw?
QT

< Lope HY(J)) + H2({|u — w| > t.}) + Lope H (0" {|u — w| < ti})

Gathering (3.46), (3.47), (3.48), (3.49) yields, for each k € N,

L
limsup &, (u*) < L,uf/ |V'u|? dz’ + a / (u —w)* da’
n—oo w hph Jpu—wl<u)
LG,

f

Letting £ — +o00 and using the monotone convergence theorem leads to

L
lim sup lim sup &, (u*) < L[Lf/ |V'u|? da’ + ol / (u — w)?* da’
w heho J(ju—wi<uay

k—+o0co0 n—+oo
LG,

hy

+ LGyHY(J)) + H:({|u — w| > ug}).
Finally, thanks to a diagonalization procedure, it is possible to find a sequence k, 400
such that

lim sup &, (@) < E(u)

n—-+o00

with 1,, := u**, which completes the proof of the proposition. n
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3.B Spaces of functions with measure derivatives

The object of this section is to recall some notations about spaces of functions with
measure derivatives that are used throughout the paper. Let U be a bounded open
subset of R"”. The Lebesgue measure is denoted by £" while H" ! stands for the
(n — 1)-dimensional Hausdorff measure.

Special functions of bounded variation

The space SBV (U) of special functions of bounded variation is made of all (scalar)
functions u € L'(U) such that the distributional derivative Du is a bounded Radon
measure which can be written as In the previous formula:

e Vu € L'(U;R"™) denotes the approximate gradient, i.e. the density of Du with
respect to the Lebesgue measure L£";

e J, is the jump set of u. It is a rectifiable set whose unit normal is denoted v,;

e u™ are the one-sided traces of v on J,.

We refer to [AFPO0] for systematic study of that space.

Special functions of bounded deformation

The space SBD(U) of special functions of bounded deformation is made of all vector
valued functions u € L'(U;R™) such that the symmetric part of the distributional
derivative, i.e. Fu := (Du+ Du")/2, is a bounded Radon measure which can be written
as In the previous formula:

e c(u) € L} (U;R™") denotes the density of Fu with respect to the Lebesgue measure
L
e J, is the jump set of u. It is a rectifiable set whose unit normal is denoted v,;
+

e u™ are the one sided traces of u on J,.

We refer to [ACMI7], [BCDIS] for more informations about that space.



Chapter 4

Exploring crack patterns: numerical
experiments

We propose an irreversible, rate-independent approximation of the fracture problem 1.3
based on a gradient damage model with local minimization. The latter provides a “smeared”
representation of crack surfaces and converges to the brittle fracture model in the sense
of I'-convergence. Its numerical implementation allows us to perform several numerical
experiments where, without any a priori assumption on the crack geometry, we capture
complex evolving crack patterns in different regimes. We explore parallel, sequential, peri-
odic cracking and possible debonding in a uniaxial traction test; appearance of polygonal
crack patterns in a two-dimensional wafer under equi-biaxial load; and cracking in a
geometrically complex domain. Finally, we present a novel experiment in which the crack
pattern characterized by a strong coupling between fracture and debonding.

The numerical experiments shown in Subsections 4.3.1-4.3.3 are presented in the pa-
per [Leo+13a], submitted for review. The experiment introduced in Subsection 4.3.4 is
still unpublished.
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We now turn the attention to the numerical experimentation of evolving crack patterns
that follow the evolution law stated in Problem 3.9 to explore to what extent it can
capture the rather wide range of observed phenomenology.

We propose to investigate the regimes of sequential periodic cracking in one and two
dimensions under uniform equi-biaxial loads; highlight hierarchical domain subdivision;
as well as crack-to-crack interactions and their interplay with debonding. Crack patterns
commonly observed include isolated star-shaped cracks, independent channeling cracks,
partially connected network of intersecting cracks and fully connected polygonal patterns.
Classically, a non-dimensional “cracking number”, depending on the thickness of the film,
the stiffness mismatch of the multilayer and on the toughnesses of the layers, is related to
the observed crack pattern as proposed in [EDHS8], see also [HS91]. A typical scenario of
multiple cracking of a thin film on rigid substrate is shown in Figures 4.1. The upper row
of images (4.1(a))) refers to a layer of drying cornstarch [LLNOO], the lower row (4.1(b)))
to consolidating colloidal particles by dessiccation on a rigid substrate [LP11]. In both
cases, the images are related to different thicknesses of the film layer, increasing from left
to right. In thicker films (right), the initial stages of cracking are dominated by isolated
running cracks starting from the boundaries. They can be identified in Figure 4.1(a)
since are those associated to wider aperture of the crack lips. Successive cracks (e.g.
the two horizontal cracks approximately in the middle of the domain in Figure 4.1(a))
intersect at right angles. Further cracking produces a finer segmentation and although
the size of all cells is of the same order of magnitude, they do not show a preferred shape.
In a thinner film (center), a clear distinction between two cracking regimes, the first with
isolated cracks and a second characterized by successive segmentation, is not evident. In
the thinnest specimens in Figure 4.1(a)(left), a single characteristic length scale related
to the size of the cells is manifest. A similar trend appears in Figure 4.1(b)(b). A closer
inspection shows that 27/3-junctions between cracks are more prominent than right
intersections and that nucleation of cracks is more likely to appear in the interior than at
the boundaries. In Figure 4.1(b)(a), triangular star-shaped nucleating cracks are present
in the bulk of the body. These features are robust and reported in many experimental
works, see [GIK94], [LP11], [TAOG].

The numerical simulation of such complex evolving pattern has been undertaken by
many authors since the pioneering work of [Mea&7] where a two-dimensional elastic thin
film is represented by a discrete lattice of springs and the bond with the underlying rigid
substrate is obtained by a second series of elastic springs: the discrete analogous of the
asymptotic elastic foundation term. The same approach is used in [CdR93], [HSBI6],
[LNOO]. In [Mea87], crack nucleation and propagation, under tensile stresses, is obtained
by randomly breaking the elastic bonds based upon a probability that depends on the
local stress at each node. The same type of inhomogeneity is introduced in [HSBI6]
whereas in [CMP09] localization of stresses is introduced by adding spatial randomness
to the applied loads. In [Kit99] in addition to film cracking, possible slipping (i.e.
debonding) of the film is considered and both mechanisms are assumed to respond to a
threshold criterion based on the elastic strain energy density. Cracking and debonding
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(b) Crack patterns in a film of colloidal particles desiccating on a rigid substrate, adapted from
[LP11].

Figure 4.1: The images refer to three specimens of increasing thickness from left to right.
In the extreme regimes, spontaneous nucleation in the bulk with 27 /3 junctions, one evident
length scale (left) dominate over the successive appearance of hierarchical running cracks before
fragmentation (right). Images adapted from [LNOO], [LP11].

are also studied in [[LNOO] using the same threshold law for cracking and debonding. In
this case, nucleation is ruled by the homogeneous time-dependent degradation of the
two thresholds for cracking and debonding. In [Lia03] is proposed a pseudo-dynamic
model for the propagation of pre-existing cracks based upon a Griffith condition written
with a crack-tip velocity-dependent toughness. Griffith’s scalar condition and the XFEM
technique limit the ability to investigate complex patterns, ruling out any possible
branching and intersection of cracks. Consequently, only regular, not intersecting cracks
are represented. In [CMP09], nucleation is obtained with a threshold criterion on the
local stress, propagation using Griffith condition along a path selected by enforcing pure
Mode I conditions at the crack tip.

In this Chapter, we intend to explore numerically the stages of nucleation, propagation
and path selection for film and debonding cracks. In order to solve Problem 3.9, we
adopt a regularized approximation of the energy functional extending that proposed in
[Bou00], where it is shown that a suitable elliptic regularized problem converges to a
mathematically well-posed weak formulation of a brittle fracture problem. Section 4.1
is devoted to the illustration of the regularized approximation via a gradient damage
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model, see also [Pha+10]. The latter is exploited in Section 4.2 to state the regularized
evolution problem which is numerically implemented to approximate Problem 3.9. Such
approximation, besides being useful from a computational standpoint, offers a rich
mechanical interpretation, as is briefly discussed at the end of the section. Finally,
Section 4.3 is dedicated to illustrate some numerical experiments. In the first set we
consider the case of cracking of a narrow strip under equi-biaxial load. These experiments
are also used to validate the code against the closed form solutions obtained in Chapter 2.
Then, more complex crack patterns are explored considering a circular wafer subject to
equi-biaxial loads. Next, we perform a numerical experiment inspired from a real-life
example of cracking of a shrinking thin vinyl sticker bonded to an aluminum panel,
providing a qualitative comparison of the numerical crack pattern to the observed one.
Then, inspired by experimental observations by [Mar+13], we provide the first elements
of analysis of an interesting scenario in which a strong coupling between thin film cracking
and debonding causes the selection of an optimal distance in a pattern constituted by
two parallel cracks separated by a debonded region.

4.1 The regularized energy

The issue in dealing numerically with energies such as (3.33) resides in the difficulty of
finding and representing the crack set I and its irreversible evolution. This requires the
ability to approximate any possibly discontinuous function (the crack set), allowed jump
anywhere within the computational domain, as well as its length, their evolution based
on the unilateral energy minimality (3.37a).

The numerical formulation of Problem 3.9 extends that originally proposed in [Bou00],
where it is shown that a suitable regularized elliptic problem converges to a mathematically
well-posed weak formulation of the brittle fracture problem. The latter, in turn, is shown
to be equivalent to the strong brittle fracture problem as proposed in [F'M98]. The
main idea, underlying the notion of approximation, involves in the introduction of a
smooth additional scalar variable o € H'(w) and a small parameter 1, both responsible
of tracking the crack set I' as well as its length. The inspiration for these results, thanks
to the analogies between the strong Griffith problem in brittle fracture and the strong
Mumford-Shah problem in image segmentation [MS89], comes from the approximation
proposed originally by [AT92] (see also [AT90], [Brad8]). The novel element with respect
to the problem in computer vision is the irreversible evolution of the crack field resulting
in the unilaterality of the underlying minimization principle.

The extension of [Bou07] for the definition of the regularized energy is straightforward.
It amounts to restricting the original energy functional to the two-dimensional case, and
adding the two continuous perturbations associated to the elastic foundation and the
debonding terms. In fact, in the limit reduced energy of Equation 3.33, displacement
discontinuities are due only to transverse cracks, the debonding term does not require reg-
ularization and its associated problem is solved explicitly enforcing first order optimality
conditions which reduce to the threshold criterion (3.35).
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The non-dimensional regularized energy E, defined over H'(w;R?) x H'(w) X
L>(w;{0,1}), approximating (3.33), is taken as follows:

E,(u,a,A) = %/a(a)A(e(u) —ep) - (e(u) —eg) dx + % / ku-u(l—xa)de

+cw/ (#Jrnw’aﬁ) dx+/’yXAdx (4.1)

where the stiffness function a(«)A and the dissipation function w(«) read:
ala) = (1—a)*+ky), w(a) = a. (4.2)

Note the linear dependence of the dissipation function w(«) upon o which entails the
existence (starting from a sound state with a = 0) of a truly elastic phase, with & =0
everywhere, before localization take place. The mechanical properties of energies of the
type of (4.1) and for different choices of the constitutive functions (4.2) are analyzed in
[Pha-+10].

In order to correctly estimate the transverse fracture energy, the normalization
constant ¢, has to be chosen as ¢,, = 4f01 Vw(a) = 8/3; see [Brads.

In the bulk energy, the function a(«) determines stress softening in the neighborhood
of a crack, the stiffness a(a)A drops to k,A in correspondence to a crack (o = 1) and is
(1 + k,)A away from cracks. Hence, k,A < 1 is the residual stiffness at a cracked point,
it is needed to ensure coercivity of the energy with respect to u € H(Q).

The notion of approximation of (3.33) by (4.1) can be understood in the sense of
[-convergence. The elements of the convergence proof are essentially given in [Cha04], in
the case without substrate energy (A =0, k = 0) and w(a) = a?. The statement can be
adapted to the case A # (), k # 0 observing that the additional terms are a continuous
perturbation of the functional considered in [Cha04] with respect to which I'-convergence
is stable (see e.g. [Bra98]). The extension to more general energies including the case
w(a) = «a is done in [Bra9d8] for scalar elasticity and can be generalized without major
issues to vectorial elasticity. Note also that, up to the debonding effect, the energy
functional (3.33) is equivalent to a vectorial Mumford-Shah functional [MS89], where
the role of the “fidelity term” is played here by the elastic foundation.

I-convergence further provides the term-by-term convergence of (4.1) to (3.33). In
particular the first term in (4.1) converges to the elastic energy of the film (the stiffness
a(a) converging to one in the sound domain and to zero in correspondence to cracks).
The second term in (4.1) converges to the bonding layer’s energy. The third term in (4.1)
converges to the length of transverse cracks, i.e. the transverse fracture surface energy;
finally the last term converges to the surface energy of debonding (the dependence upon
n is via the displacement field w).

A functional of the type (4.1), while falling within the class of the elliptic approxi-
mations of free discontinuity problems as proposed in [AT90], [AT92], [Bra98], enjoys
—at fixed n— an independent mechanical interpretation. It is shown in [Pha-+10] that
upon requiring additional constitutive hypotheses upon the functions a(«), w(«) and
their derivatives, other than the sufficient requirements for I'-convergence (given e.g. in
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(a) In the regularized model, cracks are repre-
sented by the localization of the damage field «
within bands of width of order of the internal
damage length 1. Debonded regions A do not
need regularization and are computed explicitly
from first order stability conditions.

To — \/§n o To + \/§U
(b) The one-dimensional optimal damage profile
for a crack at zp, constructed with the law (4.2)

with &, = 0. Damage is positive on a band of
width sv/2n, see [Pha+10]

Figure 4.2: In the regularized model cracks are represented by the narrow band in which
damage localizes Figure 4.2(a). The profile along a transverse one-dimensional section is shown

in Figure 4.2(b).
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[AT90], [AT92], [Bra98]), then the regularized energy has to be interpreted as a nonlocal
gradient damage functional whose internal length is 7, o being the damage field. The
choice (4.2) satisfies such additional requirements, hence the energy (4.1) is formally
equivalent and qualitatively different from the elliptic approximation in [AT92] since it
embodies the new physical phenomenology of possibly irreversible damage processes.

In this sense, discontinuous Griffith models of brittle fracture arise as asymptotic
limit models associated to a particular class of nonlocal gradient damage functionals,
as their internal length scale (here 1) tends to zero. Consequently, the heuristic idea of
smeared approximation of fracture surfaces by localized damage is consistent both from
a physical and mathematical standpoint.

The additional parameters, with respect to Griffith’s functional (3.33), appearing
in (4.1) are the internal length scale 7 and the residual stiffness k,. The latter ensures
coercivity of the energy (hence existence of minimizers when « reaches the value 1). It
has to be an infinitesimal with respect to 7, i.e. lim, ,ok,/n = 0. In the numerical
experiments it is fixed to a reasonably small value, as a compromise between numerical
stability and the correct estimation of the energy. A large value of k,, indeed, produces a
spurious systematic overestimation of the stiffness in the cracked regions, leading to the
overestimation of the associated elastic energy and the underestimation of the released
energy.

Localization of damage into narrow bands is related to the value of the internal
length 7, discriminating between regimes of diffused damage and fracture. As studied in
detail in [Pha+10] for a one-dimensional bar under traction, for sufficiently long bars
the localization of damage in narrow bands of thickness of order 1 (see Figure 4.2(b))
is a consequence of the selection of solutions by a stability principle. In this regime,
the size effect renders unstable solutions with diffused damage. On the other hand, for
short bars, solutions with homogeneous diffused damage are observed, thanks to their
stability. Since we focus on the phenomena associated to fracture, the value of 7 is
kept much smaller than the characteristic diameter of the computational domain, so
that localization is privileged over diffuse damage. Its value is specified in each of the
presented experiments.

4.2 The regularized formulation

The static problem. The regularized energy (Equation (4.1)) is suitable for the
numeric solution of the static and quasi-static evolution problems. Consequently, the
static problem 3.8 is approximated by the solution, at a given load intensity, of:

min{E,(u, o, A):  uwe€ H' (w;R?), a € H'(w), 0<a <1, A Cw}

The quasi-static evolution problem. A natural approach to numerically solve the
quasi-static evolution Problem (3.9) is to construct a linear interpolation of the solutions
at discrete time steps along a time horizon [0,7]. Defining t; : 0 =ty <t; <t, =T,
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for n € NT, the quasi-static evolution is approximated by the following constrained
minimization problem:

min { E,(u', o', A") : v’ € H'(w;R?),
o' € H'(w), o ' <a' <1, AT C A C w} for i € NT (4.3)

The proof of the convergence of the regularized evolution problems is given in [Gia05] for
the case of scalar elasticity, assuming that at each time one performs a global minimization
of the regularized energy.

The numerical implementation of the global minimization, both for static and quasi-
static problems, still presents major issues due to its non-convexity with respect to the
triple (u, «, A). In one-dimension methods exist, based on dynamic programming, that
are guaranteed to converge to global minimizers of the total energy. Of course, this
is at the cost of versatility as these do not generalize easily to the multi-dimensional
case. An example of application of such algorithms in a verification test for a problem of
variational fracture of thin films under out-of-plane loads is given, in one-dimension and
for a non-convex energy, in [MBI13]. Our approach is suited to the numerical simulation
of two-dimensional problems in situations where complicated crack and debonding
geometries are expected.

We rely on the necessary first order optimality conditions enforcing the weak form
of Euler-Lagrange equations on u and «, for admissible test fields verifying the growth
condition. Hence, we expect to converge to critical points of the energy £,. However,
taking advantage of the separate convexity of £, with respect to u,a and A, it is
guaranteed to converge either to a (local or global) minimizer or a saddle point.

It is well known that such an algorithm applied to a non-convex energy may not
converge to a global minimizer, but only to a critical point. In the case of the uncoupled
problems (transverse fracture or debonding only), this can me mitigated by implementing
a backtracking algorithm relying on a necessary condition for optimality with respect to
the time evolution in the same spirit as [BouO0]. This allows to construct an evolution
satisfying necessary conditions for global minimality. In the current situation, when the
competition takes place between three terms in the energy, a similar optimality condition
can be written, but the construction of an evolution satisfying it is not as straightforward.
Moreover, as it highlighted in the sequel, the solution of the problem based upon order
one stability conditions has an additional mechanical interpretation. Hence we choose not
to enforce necessary conditions for global minimality through a backtracking algorithm.

First order optimality conditions yield the following system of coupled variational
problems:

u—problem: D, E, (u, o, A)(u) = 0, Vi € H' (w; R?) (4.4a)
A—problem: DB, (u, a, A)(A=A) > 0, YA D A, (4.4Db)
a—problem: D, E, (u, o, A)(&d—a) > 0, Vo1 <ae€ HYw) (4.4c)
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, where

D, E,(u, o, A) (1) =

DyE,(u, a, A)(&) =

/
DAE,(u,, A)(A) :/w (1= Su-u) xade
/w (—(1 —a)Ale(u) — eg) - (e(u) — ep) + _) G
- /w co V' - V'adz

To solve this system at each time-step we extend the alternate minimization algorithm
used in [BEMOS] for two and three dimensional elasticity without the presence of the
bonding layer, to the present three-field case. We solve iteratively each subproblem
with respect to the corresponding field, leaving the other two fixed to the previously
available values. We resume in Algorithm 1 the numerical scheme. More precisely, we
first solve in this way the u — A subproblem (elasticity-debonding) until convergence at
fixed o (lines 7-13, Algorithm 1) and than iterate solving the a-problem (lines 14-16,
Algorithm 1). The u-problem (i.e. the mechanical equilibrium) at fixed « and A is a
linear unconstrained variational equation.

The solution of Problem (4.4b) at fixed v and « (i.e. the debonding criterion) is
explicit and local in space. Considering the irreversibility condition on the debonding
set, the condition (4.4b) simply gives xa(x) = 1 if either the displacement exceeds the
critical threshold at the point x or if it is already debonded.

The a-problem at fixed u and A (i.e. the fracture criterion) is a linear, bound
constrained, variational inequality.

The regularized functional is finally discretized by piecewise linear finite elements.
Provided that the characteristic diameter of the discrete elements h is o(n), the con-
vergence of the discretized functionals to the regularized energy is proved in [BC94],
[Bou02] in the case of scalar elasticity. The physical domain w is discretized with an
unstructured conforming triangulation by a Delaunay algorithm and the discretization of
the fields is done by standard finite elements of class P! on the fixed mesh. The discrete
approximation of £, is constructed by projection onto a discrete space of piecewise linear
functions [Cia78]. Classical results (see e.g. [BC94], [Bou02]) ensure I'-convergence of
E,, to E, as h ™, 0 and compactness of minimizers, provided that h < 7. Unstructured
meshes are preferred to structured ones as the latter are known to induce anisotropies of
the Hausdorff metric, hence a spuriously anisotropic toughness in the weak limit problem
as (h,m) \( 0, see [Neg99]. The computational mesh is uniformly fine (the mesh is such
that h < n) in order to capture and represent the steep gradients within the localization
band. A coarse mesh produces a systematic overestimation of the dissipated surface
energy, the first order interpolation error due to the discretization being of the order h/n,
as it can be seen in the construction of the lower bound inequality in the finite element
approximation result, see e.g. [BI'MOS, Chapter §].
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A note on the implementation. The problem of mechanical equilibrium (Equa-
tion (4.4a)) is a linear, unconstrained variational equality which we solve using standard
iterative Krylov Subspace Solvers, the linear steps being solved with a preconditioned
conjugated gradient algorithm. On the other hand, the fracture problem (Equation (4.4c))
is a linear, constrained, variational inequality which we solve using the bound-constrained
Newton Trust-Region solver provided by the optimization toolbox TAQ [Mun-+12]. Parallel
data representation and linear algebra are based on the PETSc toolkit [Bal+12].

1 Init: g, ag, xo < 0, tol = 1074 ; /* Sound, unloaded */
2 fori=1:ndo

3 Uiy Oty Xi ¢ Ui—1,Q—1, Xi—1 ; /* Initial guess: solution at previous TS */
4 a?ld — oy

5 repeat /* Alternate minimizations */
6 X?ld < Xi s

7 repeat /* Solve for (u,x) */
8 u; solution of (4.4a) with & = a;, x = x; ; /* Linear elastic solver */
9 Xi € Xi—1;

10 Xi(x) < 1if |uj(z)| > u. /* Debonding: solve (4.4b) with a =a; */
11 err, = sup(x; — x2'4);

12 X2 i

13 until err, = 0;

14 v solution of (4.4¢) with u = w;, x = Xxi; /* Constrained solver for o */
15 erry = [|a; — a9 o;

16 a?d o

17 until err, < tol;

18 end

Algorithm 1: Algorithm for the solution of the quasi-static time-discrete evolution
problem with transverse fracture and debonding. At each time step ¢;, minimization
in (u,y) and « is performed until convergence. For the sake of conciseness, we replace

here xa by x.

4.2.1 Mechanical interpretation of the regularized model with
local minimization

The regularized energy (4.1) falls within the class of the Ambrosio-Tortorelli approxima-
tions of free discontinuity problems and is an instance of a non-local damage functional.
Indeed, the functions w(a),a(a) besides satisfying the hypotheses required for the
[-convergence approximation result (see [Bra9g]), verify the additional constitutive
assumptions that allow us to identify a(a) as stiffness function, w(«) as a dissipation
function and a(x) as a damage function, see [Pha-+10]. The parameter 7 is the internal
characteristic length of the damage functional, and in this sense it has to be thought as
a material parameter: its value discriminates the regimes of diffuse damage for values
of n comparable to the size of the structure and localized damage (i.e. fracture) for
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small values of n compared to the size of the structure. The evolutions associated to
the computed solutions of (4.3), numerically obtained enforcing the order one necessary
local optimality conditions, are consistent with the notion of irreversible evolution of
energetically stable states, i.e. of unilateral local minimizers of the total energy. In this
sense, transitions between states take place in correspondence to the loss stability of
the energy-minimizing states. Although a study of the stability properties of the energy
E(u,a,A) of Equation (4.1) depending upon the parameters (k, v, vy,n) is beyond the
scope of this work, we provide an interpretation of the critical loads in the one-dimensional
traction test of a slender strip in Section 4.3.1.

The introduction of the additional length scale n determines the boundedness of
the set of admissible stresses corresponding to the sound solution. Denoting by o =
a(a)A (e(u) — eg) the (non-dimensional) stress tensor in the film, equation (4.4c) implies
that an elastic state where a = 0 is admissible only if

Alg .0 < 3

S STRT (4.6)

The inequality above gives an explicit relation between the internal length 7 and the
elastic limit stress o, in the film, showing that o, oc 1/,/7.

4.3 Numerical experiments

We perform three sets of numerical experiments to illustrate the capabilities of the
formulation in simple cases. We focus on multiple cracking and possible debonding of a
slender strip, of a disk and on cracking of a geometrically complex domain. The first
set of experiments is also intended to verify the numerical code against the closed form
solutions presented in Chapter 2, (see also [Led+13d]). The second set of experiments
shows the capability of capturing geometrically complex two-dimensional crack patterns.
The third experiment provides a qualitative comparison with a real-life example inspired
by the multiple cracking of a vinyl lettering panel. Lastly, we introduce a numerical
experiment in which we observe the appearance of a coupled front of two parallel cracks
plus debonding which selects an optimal spacing. This emerging distance is related to
the internal elastic length scale. Such patterns have been reported by [SW03] and later
isolated by [Mar-+].

In what follows, we consider the systems loaded by an inelastic isotropic strain
eg = tl, increasing linearly with time.

4.3.1 Multiple cracking and debonding of a slender strip

We perform a set of verification experiments for the problem of multifissuration and
delamination of a one-dimensional stiff film bonded to a substrate. Let us consider
a slender brittle elastic body, its reference domain being w : {z € [0, z0L] x [0, x¢a]},
with a < L. To get an exact reference solution, the problem may be conveniently
approximated by the one-dimensional model considered in Chapter 2, provided that
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a < l,, where f, = k~'/? is the characteristic length of the elastic problem. The condition
a < ., implies that the stress field, under an equi-biaxial imposed inelastic strain, is
essentially uniaxial.

The computational domain is of unit length and height a = 2 - 1072, it consists of
approximately 7 - 10% degrees of freedom. The average mesh size is h = 2- 1073, the value
of n = 2-1072 is held fixed for the three experiments, the ratio n/h is 10 and in the
quasi-static simulation we consider load up to 7" = 11.0. Note that as long as n < /. no
coupling arises at the length scale of 17 between the damage localization bands and the
elastic displacement field which varies over a length scale of order /..

We perform numerical experiments based on the closed form evolutions analyzed in
Chapter 2. Recall that the analytical computations are obtained by a global minimization
statement whereas the numerically computed solutions presented here satisfy first order
local optimality conditions and are not necessarily global minimizers.

Transverse fracture experiment In Figure 4.4 we represent the outcome of a trans-
verse fracture experiment. The non-dimensional parameters characterizing the experiment
are: k£ = 36.0 and v = 10 - 10*. The chosen stiffness ratio x corresponds to an internal
characteristic elastic length scale ¢, = 1/6, hence /¢, = 0.12. The sound elastic energy
branch loses stability at ¢ = 4.81, see Figure 4.4(c), the system jumps towards the cracked
state with one transverse crack in the center of the domain. This releases elastic energy
at the expense of the surface energy, as it can be seen in the energy chart in Figure 4.4(c).
As the load increases further, the system undergoes the elastic loading phase of the two
segments. At t = 7.46 the loss of stability of this state leads to the appearance of two
add-cracks, each at the middle of the segments. The snapshot of the last loading step is
shown in Figure 4.4(a), the profile of the displacement and fracture fields is shown in
Figure 4.4(b). The computed energy branches are seamlessly superposed to the analytical
ones. Nonetheless, as it is observed in the space-time chart in Figure 4.4(d), critical times
at which cracking happens differ between the numerical experience and the analytic
computation due to the global vs. local setting of minimization. As expected, the critical
loads corresponding to the local minimization criterion systematically overestimate those
satisfying the global criterion.

The critical fracture loads are interpreted under the light of the considerations
sketched in Section 4.2.1. Using a one-dimensional model, the critical load for the
purely elastic domain is computed analytically using Equation (4.6). Indeed, for the
elastic solution (o = 0), the stress o as a function of the load may be easily computed
analytically, recall Equation (2.6). Substituting this expression into Equation (4.6), one
finds that purely elastic solutions are admissible for loadings not greater than

3/8 1
n(1+ky) (1 — sech (4)) .

tc(’%a 77) = (47)

The critical load for the equilibrium, sound, elastic solution is plotted in Figure 4.3 as
a function of the stiffness ratio x for n = 0.02. It is a monotonic function of x decreasing
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Figure 4.3: Critic loads of the transverse fracture experiments are compared to the elastic
limit (Equation (4.6)) computed with the stability condition (4.4c) and plotted against the
relative stiffness k. The plot is for n = 0.02. The asymptote k — oo corresponds to the limit
case of a long film with homogeneous stress. For k — 0 the critic load t. — oo, this corresponds
to the limit case of system in which no energy is stored in the bonding layer and the film freely
accommodates the inelastic strain.

from +oo for k — 0% to \/3/8n(1 + k) for kK — oco. In the same figure, we display with
black dots the critical load captured by the numerical experiment. The first transverse
fracture appears for the strip of stiffness ratio k = 36.0 for ¢ = 4.81. It creates two
uncracked strips of half-length that, recalling the definition of x, have an equivalent
stiffness ratio k/4 = 9. Both these two strips further break into two parts at the second
critical load t = 7.46. Both critical loads coincide, within a small error, with the critical
loads of the elastic solution given by Equation (4.7) for  equal to 36 and 9, respectively
(see Figure 4.3). Indeed, as done in [Pha+10] for the case of a bar in traction, it may be
shown that for sufficiently long strips the elastic limit also coincides with the stability
limit of the solution without damage localizations (i.e. fractures). When exceeding
this limit, the fundamental undamaged solution becomes unstable. At this load, the
numerical algorithm based on alternate minimizations detects new descent directions
and reaches a new (stable) solution branch, implying newly added cracks. Note that
after the first transverse crack, the first order stability properties of the two cracked
segments are almost insensitive of the half crack localizations at the boundaries. This
does not hold asymptotically when inducing further fragmentation, upon increasing the
load and producing small segments whose characteristic elastic length is comparable to
the internal length 7 associated to the damage localization. This regime is not explored
in the present work and left for further investigation. In all the experiments the internal
length of the damage process 7 is kept smaller than the elastic length ¢, = x=1/2.

Debonding experiment Figure 4.5 refers to a debonding experiment with the same
equivalent stiffness k = 36.0 as the preceding case (and hence the same elastic length
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l. = 1/6) and a lower toughness ratio v = 0.50. The sound elastic bonded branch is
followed by the debonding phase whose onset is at ¢ = 2.25. Elastic energy is continuously
released at the expense of the debonding surface energy. The total energy asymptotically
approaches the limit energy of the completely debonded film F., = Lvy. The computed
energy coincide with the analytical ones and also the evolution are identical. In fact,
unlike the perfectly bonded transverse cracking experiment, both in the numerical
and closed form computations, the evolution of debonding relies only on first order
optimality conditions, see Chapter 2.2.2. A snapshot of the last time step is displayed in
Figure 4.5(a), the displacement and debonding fields are shown in Figure 4.5(b). The
debonded domain is symmetric with respect to the axes of the film. In the debonded
domain, the displacement is linear and accommodates the imposed inelastic strain,
the energy vanishes therein. We remark that in spite of the lack of uniqueness of the
displacement field in the debonding problem (recall from Section 2.2.2 that all states with
equal debonded length have equal energy, irrespective of the location of the debonded
region), numerical computations seem to favor symmetric solutions. The space-time
chart in Figure 4.5(d) illustrates the evolution showing the bonded domain for a given
load intensity.

Coupled experiments Experiments in Figures 4.6 and 4.7 show the interplay between
the two failure modes. In these two experiments, the system exhibits one (resp. three)
transverse cracks prior to peripheral debonding. The evolutions are obtained choosing
k=360 (. =1/6) and v = 2.2 (resp. k = 64.0 i.e. £, = 1/8, and v = 3.1). The
corresponding energy chart and state diagrams are shown in Figures 4.6(c) and 4.7(c).
A higher order effect is observed at the onset of debonding for the second coupled
experiment due to the boundary layer induced in the neighborhood of the middle crack
due to local softening. This breaks the symmetry of the boundary conditions for the
two segments. The effect is visible in the space-time evolution and in the debonding and
elastic energy terms in Figure 4.7(d), although not noticeable at the global level of the
total energy.
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Figure 4.4: Top: snapshot of the fracture field at ¢t = T for the perfectly bonded transverse
fracture experiment. Cracks are equidistributed and represented by the localization of the
damage field . The values of a € [0, 1] are mapped onto a “inverted-hot” color table, blue
corresponding to & = 0 (sound material), red corresponding to o = 1 (fully developed fracture).
Middle: displacement and fracture field along the axis [-L/2, L/2] x {0} for ¢t = Tpq,. The
displacement field u*(x) = u(x)/ maxye, u(x) is normalized and displayed with a thick solid
line. The fracture field « is shown with a thin black stroke. Bottom: in the energy chart (left)
the total energy is plotted in bold line, the energy transverse fracture energy with a dashed line
and the elastic energy with a thin solid line. Grid lines indicate the critic loads for transverse
cracking. The total energy of the closed form solutions of Section 2.2.3 is plotted with a dotted
line. In the space-time evolution diagram (right), the domain w is represented on the vertical
axis and the load on the horizontal axis. Solid black horizontal lines indicate the position of
cracks during the evolution.
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Figure 4.5: Top: Fracture and debonding fields at ¢t = T},,4, for the deboonding experiment.
Debonding (xa(xz) = 1 is the darker area) is symmetric about the two axes. Middle: The
characteristic function of the debonded domain is shaded gray, displacement is plotted with a
thick stroke. Note that, in debonded regions, the displacement in linear and accommodates the
imposed strain. Bottom: energy chart (left) and evolution diagram (right). The asymptote in
the energy chart corresponds to the limit energy of a completely debonded film. Debonding
onset and its evolution coincide in both numeric and analytic computations as they are derived
as consequences of the first order necessary condition for energy optimality. The thin black
line in the space-time evolution plot (right) is the analytical solution to the debonding problem
obtained, see 2.2.2.
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Figure 4.6: Top: fracture and debonding fields on the reference domain w at t = T},,4, for
the first coupled experiment; we observe one transverse crack in the center and symmetric
debonding starting from the boundaries. Middle: a single crack in the center of the film,
the symmetric debonded region and the displacement field. Bottom: the analytic solution
(global minimization) anticipates the appearance of the crack of the numerical experiment
(local minimization). The debonding onset and evolution in both cases are equal.
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Figure 4.7: Top: fracture and debonding fields on the reference domain w at ¢t = T4, for the
second coupled experiment; we observe three equidistributed transverse cracks and debonding
starting from the free boundaries of each segment. Middle: three equidistributed cracks (thin
solid), debonded region (light gray shaded) and displacement field (thick solid). Bottom: energy
chart and space-time evolution of the film. In (right) horizontal lines identify the position of
the cracks: solid and dotted lines refer to the numerical experiment and the analytic solution,
respectively. Note the higher order effect due to softening at the onset of debonding in the
center, at x = 4.
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4.3.2 Multiple cracking and debonding of a thin disk

We illustrate the ability to capture complex crack geometries and time-evolutions con-
sidering the problem of a homogeneously prestressed circular elastic wafer. We analyze
qualitatively the outcome of the experiments showing its soundness on a mechanical
basis and its coherence with mechanical intuition and commonly reported experimental
observations.

The computational domain is of unit radius, each experiment is univocally identified
by four non-dimensional parameters: the relative stiffness x, the relative toughness 7,
the Poisson ratio v and the maximum load intensity 7.

We introduce a non-homogeneity in order to explore more complex crack patterns
around the sound elastic state. In the center of the wafer, we place a domain D,; of size
of O(n) where we set o« = 1, see Figure 4.8(a).

Multiple cracking only The non-dimensional parameters for this experiment are
k = 800.0 (£, = 0.28), v = 18.4,v = 0.3 and T" = 7.54. The wafer undergoes a first
elastic loading phase during which the domain w \ D, remains sound, identified in the
energy chart of Figure 4.9 by the parabolic, elastic energy branch. As the load increases,
nucleation is localized in the neighborhood of the domain D,,. Sudden fracture occurs at
t = 4.0: a network of cracks of finite length appears in a single loading step and a network
of hexagonal polygons forms. We observe a non-axisymmetric solution to a problem
with axisymmetric data, not surprising when dealing with bifurcation problems with
nonconvex energies. Away from the boundaries, the cracks are structured in a network
of six hexagons, all with the same characteristic diameter. We capture spontaneous
nucleation of cracks within the domain, away from possible boundary non-homogeneities,
with preference of 27 /3-junctions over 7 /2-junctions. In this regime, the sound solution
is stable until load intensities high enough to release sufficient energy to pay for the
creation of the network of cracks, which, in the numerical experiment, consists in six
hexagons. Fracture patterns with 27/3-junctions are observed in the experiments of
[GK94], [San+07], [TAO6]. More commonly, experiments on thin film fracture under
isotropic and homogenous loads reports irregular mud cracks with 7/2-junctions. This is
supposedly related to a regime in which the material heterogeneities and imperfections
dominate the nucleation phase letting a cracks appear at lower load levels. In fact, in
the cited experimental references, the predominance of 27 /3-junctions is prominent in
regimes where cracking is less likely, or equivalently, when cracking appears for high
(non-dimensional) load intensities, that is, for systems in which the film’s thickness is
close to the so-called critical thickness h.. The latter quantity identifies the thickness
below which no cracking is observed in the experimental conditions, i.e. at a given load.
A shift, from 7/2 to 2m/3, of the distribution of the joint angles, is reported in [G1<{94]
in the regimes where the thickness of the film hy approaches h. and in [Goe+10] along
cyclic loading tests which favour crack reorganization and maturation.

Note that when cracks intersect a free boundary (either the domain boundary dw
or an existing crack) form a right angle, instead of the 27 /3 angles observed in the
spontaneous nucleation in the bulk of the sound domain. This is the case for all six
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intersections with the edge of the wafer. Indeed, under homogeneous loads near a free
boundary, the direction of maximum stress is parallel to that boundary and elastic energy
release per unit of crack length is maximized by a crack advancing perpendicularly to it.
As soon as cracks are close enough to be able to interact, they turn and produce the
same phenomenology observed for the intersection of a crack with a free boundary. In
Figures 4.8(b) and 4.8(c) we observe a crack turning to approach the existing crack at
an angle of 7/2.

As the load intensity increases further, new cracks are created by subdivision of the
polygons. New isolated cracks appear forming joints at 7/2 with pre-existing cracks of
free boundaries, and new 27/3-joints form, see Figures 4.8(d)-4.8(f). The crack pattern
becomes tighter, all polygons having the same characteristic size. As the polygons become
smaller, new joints at sound points are less likely to appear and straight joints become
predominant.

Multiple cracking and debonding Reducing the toughness of the bonding layer
to 7 = 5.6, all other conditions held fixed, highlights the interplay between transverse
cracking and debonding. The evolution of the elastic sound phase and the first stages
of cracking are the same as in the previous experiment, as it can be seen in the energy
chart of Figure 4.11. Since polygons have different sizes, unlike in the one-dimensional
experiment, debonding does not appear simultaneously at the boundary of each polygon.
At t = 5.0 the largest cells start debonding from the outer boundary. As the load
increases further, smaller polygons undergo debonding. At ¢ = T all polygons have
debonded and the diameter of the bonded regions is the same in all polygons. In this
experiment, like in the one-dimensional slender strip, we observe a size effect due to the
existence of an intrinsic characteristic length scale. The latter is revealed by the fracture
processes. Indeed, the competition between the surface energies fixes the maximum
diameter (at a given load) of the domain that can be completely bonded. This quantity
is a decreasing function of the load and it determines a threshold distinguishing two
phenomenologically different regimes: that of multiple cracking and that of extensive
debonding. Cracking will occur as long as the size of the subdomains identified by the
cracks is smaller than the maximum diameter of the domain that can be completely
bonded. With the increase of the load and sequential cracking, debonding is triggered
in correspondence to subdomains where this threshold is exceeded. Debonding is hence
energetically favorable and releases energy continuously with the increasing load, no
additional transverse cracks appear and the energy is only released through debonding.
In the energy chart (Figure 4.11), the transverse fracture surface energy stays constant
after the onset of debonding. In this sense, the experiments presented here are weakly
coupled, for multiple cracking and debonding do not occur simultaneously in order to
release the stored elastic energy but the latter follows the former, the transition between
the two phenomena being determined by the size effect. Analytic proofs of this qualitative
argument have been given in one dimension in Chapter 2.
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(a) t =1.24 (b) t =3.98 (c) t =4.06

(d) t =5.62 (e) t =476 (f) t = 4.96

(g) t = 5.88 (h) ¢ =7.14 (i) t=T =756

Figure 4.8: Snapshots of the fracture field in the wafer experiment under uniform load. The
first fracture pattern consists of periodic hexagonal cells while for higher loadings, new cracks
intersect preexisting boundaries at a right angle.
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100 -

Figure 4.9: Energy chart for the transverse fracture wafer experiments, the corresponding
snapshots are shown in Figures 4.8. Total, elastic, and surface energies are plotted with thick
solid, thin solid, and dashed lines, respectively. A network of six hexagonal cracks appears at
t =4.0.

(a) t =5.44 (b) t =7.14 () t=T =756

Figure 4.10: Combined fracture and debonding experiment of a wafer. Dark areas identify
debonded regions whose first onset is at the boundaries of the largest cells, for ¢ = 5.00. At the
last time step all cells have undergone debonding, in each of these, the diameter of the bonded
domain is the same.
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Figure 4.11: Energy chart for the coupled fracture and debonding wafer experiment, the
corresponding snapshots are shown in Figures 4.10. The evolution of the initial stages of
cracking is the same as in the transverse fracture experiment, see Figure 4.9. After the onset of
debonding at t = 5.0 in no other cracks form and the fracture energy remains constant.
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4.3.3 Vinyl lettering on a metal substrate

This numerical experiment is inspired by a real-life example, given by the stickers
identifying research labs at the Ecole Polytechnique in Palaiseau, France. A thin vinyl
sticker is bonded to a metal panel and exposed to atmospheric conditions. Among other
effects, the incident radiation from the sun generates inelastic mismatch strains leading
to transverse cracking and possibly debonding. The inelastic stresses are due to shrinkage
of the sticker, evidenced by the trace of glue left on the panel. A few panels relative to
numbers in the range “401”—-“408”, all of the same material and subject to similar loading
conditions, show recurring crack patterns. One picture is reproduced in Figure 4.14.
From the analysis of the current state, we infer some qualitative informations about the
evolution of the cracking process. The succession of cracks in time can be related to the
opening of crack lips: wider apertures indicate cracks appeared at earlier stages of loading.
Peripheral debonding is present but limited to a tiny region. Comparing the cracks
of all stickers (not shown here), the robustness of crack patterns is striking. The first
cracks are the ones at the center of the number “4”, nucleating from the weak geometric
singularities. Within the number “0”, the first four cracks appear in the lower and upper
lobes. After, cracks open in the two longest vertical sides. The stem of the number
“1” exhibits almost equidistributed cracks, the extreme aspect ratio producing almost
one-dimensional solutions. Foot’s and head’s serifs are responsible of stress concentration
and favor the appearance of cracks whereas slender segments show almost equidistributed
cracks.

We perform a numerical experiment meshing a domain corresponding to the number
“401”. Material parameters as well as numerical parameters are the same for all digits and,
in order to proscribe debonding, we set a high value for the toughness ratio v = 2-10%. We
decide for simplicity not to include the effect of debonding in the numerical experiment.
Consequently the only parameters identifying the experiment are the relative stiffness
k = 17.68 (the corresponding elastic length is ¢, = 0.056), the Poisson ratio v = 0.3
and the internal length 7 = 72 - 10~%. The characteristic diameter of the triangular
elements is h = 12 - 107* and the ratio h/n is 6. The digits “4”, “0”, “1” consist of (1.6,
0.6, 0.3)-10° dofs respectively. We do not model the circadian loading and impose a
uniform equi-biaxial inelastic strain increasing linearly with time. Figure 4.12 shows the
energy evolution and Figure 4.13 successive snapshots of the crack field on the reference
configuration. The first cracks appear at the intersection of the stem and the crossbar of
the number “4” nucleating at the weak geometric singularities, see Figure 4.13(a). A
triple junction is first created by three cracks originating at the North-East, North-West
and South-West corners. Subsequently a third crack nucleating at the South-East corner
intersects the free edge just created at a right angle. The same pattern is observed for the
vinyl sticker. In Figure 4.13(c) the stem and crossbar of the number “4” are cracked at
the center and respectively two and one cracks are produced at their intersection with the
diagonal segment. In the numeric experiment, six cracks appear simultaneously in the
number “0”, two in each lobe (upper and lower) and one horizontal crack at the center
of each of the two side arches. The crack pattern is symmetric. Here, the aspect ratio
of the domain plays an important role and, as the width-to-height ratio increases, the
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cracks on the side arches are favored over those on the lobes. For the same load intensity,
the number “1” shows three cracks at the serifs and two in the stem. The cracks at the
serifs are favored by the sudden thickness variation and match the observed pattern.
At higher loadings, periodicity of the cracks becomes prominent (Figure 4.13(d)) and
secondary cracks (orthogonal to the former) appear (Figures 4.13(e-f)). A comparison of
the observed patterns and our numerical experiments is shown in Figure 4.14.
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Figure 4.12: Energy charts for the subdomains corresponding to the digits “4”, “0”, and “1”.
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401401
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Figure 4.13: Computed crack pattern at (a) t = 1.05, (b) ¢t = 1.25, (c) t = 1.65, (d) t = 1.88,
(e) t =2.15, (f) t = 2.48
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(a) Cracked lettering at Ecole Polytechnique, Palaiseau, France. A vinyl
sticker is bonded to an aluminum substrate and exposed to the Sun which
causes tensile stresses and subsequent cracking.

40

(b) Numerical experiment inspired by the real life example. We
reproduce the main qualitative features of the observed crack pattern:
nucleation at weak singularities, multiple cracking in the smooth
domain, periodic fissuration of slender segments. The imposed load
corresponds to ¢ = 1.75.

Figure 4.14: Qualitative comparison of the crack pattern obtained in the numerical experiment
to that observed. Proscribing debonding, the free parameters are, other than the Poisson ratio,
the relative stiffness k and the load intensity.
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4.3.4 QOwuverture: a strongly coupled two-dimensional pattern

As last example, we provide some elements of analysis of an interesting scenario in which
a strong coupling between transverse fracture and debonding produces a pattern, proper
to the two-dimensional setting, that shows a novel phenomenology related to the existence
of the internal length scale. In fact, the cooperation of debonding and transverse cracking
renders possible the release of stored elastic energy in a regime in which neither isolated
propagation of channeling cracks nor extended debonding is energetically favorable. It is
indeed their coupling, across distances that are long compared to the thickness of the
film system, that produces a stable propagating front consisting of two transverse cracks
separated by a debonded region. These patterns have been systematically reproduced by
[SWO03]. More recently, a single motif of the propagating coupled front is isolated and
robustly reproduced in [Mar+13]. This pattern has been obtained for film systems that
are stable, at a given load, with respect to channel cracking, by progressively reducing the
debonding toughness. This is, recalling the expression of the non-dimensional parameters
(3.34), by reducing v in a thin film system for which the value of k does not allow for
channeling cracks, under the given load. We expect that such coupling be captured by
our reduced model (3.9) as a phenomenon related to the existence of the internal length
scale /..

Preliminary results show that, indeed, with the proposed reduced model we are able
to:

e Show that the parallel, straight propagation of the coupled front is possible for a
given spacing d. An estimation based on energy stationarity, namely:

0 0
——PF(l,d) = =S(l,d
al t(? ) alSt<7 )
can be solved to obtain d. Here P;(,d) is the elastic energy associated to two
cracks of length [ separated by a debonded region of width d. The associated energy
release rate is computed analytically as a boundary value problem by differentiation
with respect to the domain [DD&I].

e Capture the regime of material parameters in which such pattern is observed in
the experimental setting. For the solution d found above, the relative toughness
has to verify v < 1, that is, this coupled regime can be found only in the case of
low adhesion, as in the experiments.

e Estimate the critic load for the propagation. The onset of the propagation is
dominated by localized debonding, an estimation of the boundary displacement
provides an estimation of the lower bound for the critic load, namely:

e 2 V7

e Place this regime within its natural limits of channeling cracks propagation and
extensive debonding. The energy estimate gives a solution in the low adhesion
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et 100pum
(a) Coupled propagation of transverse cracks and (b) A single motif of
debonding produces a front of parallel propagating a coupled propagat-
cracks with debonding in between. An optimal dis- ing front, isolated by
tance emerges robustly [Mar+13]. Similar patterns [Mar+13].

are also obtained by [SWO03].

Figure 4.15: A regime exists in which the cooperation between transverse cracks and debonding
produces a stable self-organized propagating front which shows an optimal distance.

regime for loads ¢ such that 0 <t < /27 < v/2. This means that this regime can
be observed for loads unable to trigger neither extensive debonding nor isolated
channel cracking. Numerical experiments show indeed that such propagation mode

is observed in the regime:
VY St <2y,

that is for loads above the localized debonding threshold, and below the extended
debonding threshold.

e Obtain a numerical estimation equilibrium distance, coherent to the order of
magnitude suggested by laboratory experiments. In terms of internal length units
C, the equilibrium distance (see Figure 4.16(b)) is of order (10=-20)-£.. This entails
the existence of three separated length scales in the numerical experiment, namely
n < l. < L. A screenshot of a computed evolution is shown in Figure 4.16. The
pattern has shown to be insensitive to variations of the initial conditions, namely
the initial length ly and spacing of the initial two cracks dy, see Figure 4.16(a).
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g — L

(a) The schematics of the experi- (b) The final crack pattern. The strong coupling
ment. We solve on a symmetric  between transverse cracks and debonding mani-
domain, since straight propaga- fests the optimal distance d*.

tion is observed also in numerical

experiments on the full domain.

Figure 4.16: Schematics and outcome of the numerical experiment, whose parameters are:
dp = 0.05,1p = 0.02, ¢, = 0.015,y = 0.45. The computed patterns are insensitive of dy (both
from above and below the optimal distance d*), ly, and also essentially insensitive of the
boundary conditions.

4.4 Conclusions of the chapter

We have shown several numerical experiments based on the application of the two-
dimensional model of transverse fracture and debonding of a bonded film, obtained
by the asymptotic study presented in Chapter 2, to the case of vectorial elasticity.
Notwithstanding the strong simplifications, the proposed model seems to be able to
recover the main qualitative effects observed in experiments and provide a first unified
framework to perform numerical experiments of the coupled transverse fracture and
debonding problem without any a priori hypotheses on the crack shape.

The experiments performed on the thin strip, shown in Section 4.3.1, validate the
numerical code against the closed form solutions studied in Chapter 2. We are able
to capture numerically the properties, established analytically, of transverse fractures
and debonded regions and of their mutual interplay. The computed evolutions show
sequential, cascade, appearance of periodic cracks in the film, the onset of debonding
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at the free boundaries, and provide coupled evolutions consisting in a cascade of cracks
prior to the onset of debonding in each of the split segments.

We provide a quantitative explanation of the critical loads for transverse cracking
encountered in the numerical experiments. Such critical loads manifest the richness
of the underlying gradient damage model used in the numerical approximation of the
brittle fracture problem. Such regularized model introduces the notion of a critical
stress above which the sound body cannot be in equilibrium. This, in turn, drives the
localization of damage into fractures. Consequently, fractures are a consequence of the
loss of stability of the current state which jumps into a new stable state. Along this
transition, the elastic energy released is dissipated to create new cracks. An interesting
regime exists for small values of the elastic characteristic length /., not shown here, in
which a sound bar attains its critical state (i.e. o = o) for very high loads. It ensues a
sudden, i.e. not sequential, formation of a periodic crack pattern, its spacing depending
on the characteristic length scales of the system. The bifurcation of the initial state is
ruled by the convexity properties of the energy. This regime, which is clearly not existent
in the case considered in Chapter 2, deserves further investigation, profiting from the
availability of analytical (and semi-analytical) tools for a complete study.

The fully two-dimensional experiment on a circular wafer, presented in Section 4.3.2,
shows the capabilities of our approach to capture complex patterns, both with respect
to their geometry and to the time evolution. We recover, coherently with mechanical
intuition, many of the features observed in laboratory experiments regarding the evolution
of cracks in such complex systems. Cracks approaching free boundaries and existing
fractures form right junctions, whereas those nucleating at sound points within the bulk
of the body form equi-triangular star shaped junctions, i.e. cracks join at 27/3. In
this situation, cracks arrange into an hexagonal network, the size of the cells being
function of the internal length scales. This is qualitatively coherent with laboratory
observations which show that a regime exist where the nucleation of a periodic network,
of a clearly distinguishable length scale, showing 27 /3-junctions is preferred over the
propagation of isolated running cracks. Analogously to the one-dimensional case, the
computed evolutions consist in a first phase of multiple transverse cracking followed by
extensive debonding from the boundaries. This is the manifestation in two-dimensions of
the size effect discussed in Chapter 2. It is interesting at this point, to perform a more
detailed study of the correlation between the characteristic length scale and that of the
manifested periodic crack pattern. Unlike in the 1D case, this can reasonably be done
only numerically. Also the other regime, that dominated by isolated running cracks, is
under current numerical investigation.

A third set of numerical experiments is inspired by a real life example. We perform a
fracture experiment of a geometrically complex lettering panel. In this case, the visual
comparison is of striking fidelity. The robust crack patterns observed in real life are well
captured, in addition we compute a temporal evolution that seems coherent to what the
analysis of the pictures suggests.

A totally new regime, observed in laboratory experiments, is also isolated in the
numerical experiments. It consists in a strongly coupled fracture and debonding front.
Promising preliminary results open the way for the semi-analytical and numerical study
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of a completely new regime, inexistent in one-dimension, that determines a wide set of
fracture patterns such as stable parallel cracks, oscillating fractures and single or multiple
spiraling cracks. In all these cases the fundamental ingredient seems to be, once again, a
size effect that fixes an optimal distance for the propagation of the coupled front. The
internal elastic length scale of the proposed model seems to be right one to capture this
complex scenario. However, new challenges arise in the mechanical modeling. They are
essentially linked to the existence, in laboratory experiments, of a characteristic velocity
of propagation. The latter is low, not attributable to dynamic effects, and provided by
some other physical mechanisms. Ongoing studies are dedicated to the investigation of
a possible diffusive or poro-elastic couplings, susceptible to determine the velocity of
propagation of the front.



Conclusions and perspectives

We have studied the phenomena of fracture and debonding in thin film systems in the
framework of variational mechanics. The reference system is a three-dimensional brittle-
elastic layer consisting in a thin film bonded to a rigid substrate by an intermediate
layer.

The study of the elastic case without fractures, Section 3.1, allows us to proceed
to a parametric study of the different regimes arising as asymptotic limits, depending
upon the order of magnitude of the ratios of geometrical and mechanical parameters.
Among all limit models, one interesting regime emerges. A non-trivial coupling of
energies associated to two different elastic mechanisms, namely membrane deformations
in the film and shear in the middle layer, determines an asymptotic regime in which a
characteristic length scale emerges, just hidden in the three-dimensional equations. This
limit regime is indeed proper to a wide class of three-dimensional systems. In this sense,
we find a class of equivalence for elastic multilayer systems, which in the limit, behave as
a linear membrane upon an elastic foundation. In the preliminary observation of the
natural phenomenology, the existence of such length scale was estimated to be of primary
importance in order to understand the complex mechanisms of multiple fissuration and
debonding. This particular regime calls for further investigation in order to study the
interplay between fracture mechanisms and elasticity.

We proceed in Section 3.3 to deepen the study of one instance of this equivalence
class, i.e. the particular case of a thin stiff film bonded to a rigid substrate by a compliant
bonding layer. We now consider also fracture. Based on energetic considerations, we
identify a regime in which a possible interplay exists between cracks in the film and cracks
within the bonding layer. The study of the brittle fracture problem in the setting of
variational fracture mechanics provides a rigorous framework to investigate the nucleation
and the evolution of complex crack patterns, both in space and time. This allows us to
derive the properties of crack surfaces, based on an energy optimality principle, instead
of postulating them. By prescribing a scaling law on the relevant quantities (namely,
thicknesses, stiffnesses and toughnesses), we perform an asymptotic study as the small
parameters tend to their natural limit. We obtain a limit, two-dimensional model which
accounts for the interplay between elasticity and fracture, both in the film and in the
bonding layer. Moreover, the asymptotic analysis characterizes the nature of cracks
surfaces: fractures in the film are transverse and cut the entire thickness of the layer,
whereas fractures in the bonding layer are planar regions across which no stress is
transferred between the film and the underlying substrate. In the limit two-dimensional
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model, the former are curves and the latter are surfaces, i.e. they have codimension
1 and 0 respectively. This study rigorously justifies the choice of such limit model in
the past literature, previously made only on the basis of mechanical intuition. Finally,
we state the static and evolution problems. The latter allows to study the evolution of
irreversible fractures under increasing loads.

The rate-independent, irreversible, asymptotic model is rich. Already in dimension
one, which is studied in depth in Chapter 2, it captures many features observed in these
systems: periodicity of cracks in the film, peripheral debonding and sequential cascade
appearance of cracks. The exploration of the fundamental features of the equilibrium
states culminates in the univocal determination of the evolution of a one-dimensional film
under increasing load: it necessarily consists in n sequential, cascade, periodic cracks and
then simultaneous peripheral debonding in each segment. This is the way in which the size
effect associated to the internal length scale, is revealed in one-dimension: it essentially
discriminates between two mutually exclusive phases, one of periodic fissuration and one
of extensive debonding.

We propose in Chapter 4 to apply the asymptotic results to the case of two-dimensional
vector elasticity and perform numerical experiments. The nature of the two failure modes
naturally demands for a different numerical treatment. We approximate the energy of the
brittle elastic body by a regularized gradient damage model. This approximation renders
the problem treatable from the numerical standpoint and is justified both from a mathe-
matical and a mechanical point of view. Moreover, the gradient damage approximation
is richer than the original brittle fracture model. Its implications are discussed in some
detail in the set of numerical experiences devoted to the verification of the numerical
model against the one-dimensional analytic solutions. Fully two dimensional experiments
confirm the capabilities of the proposed formulation to capture the appearance of com-
plex crack patterns whose essential features are in agreement with those observed in
laboratory experiments. From the few numerical simulations performed, many different
regimes arise: that dominated by possible local inhomogeneities and macroscopic effects
at the scale of the structure, leading to nucleation at the singularities and successive
bisections by channeling cracks; that in which the elastic characteristic length scale is
revealed by fractures arranged in a network of quasi-periodic polygons, showing the
emergence of macroscopic self-organized patterns; that of coupled and simultaneous
propagation of a fracture and debonding front, opening the way for the interpretation of
other geometrically involved crack patterns. The advantage of the proposed numerical
approach is that it makes it possible to perform experiments that encompass the full
evolution of fractures and all the stages of cracking, studying the effects of the film’s and
interface’s properties separately, or jointly, via the four non-dimensional parameters that
identify one single experiment.

At this point, a necessary further step has to be taken, after that of the observation
of the natural phenomena and subsequent theoretical abstraction. Indeed, now, the
quantitative comparison with experimental evidence is foreseen, allowing to corroborate
the first elements of qualitative investigation already performed. Our results, indeed,
rely on several strong assumptions which may be difficult to reproduce experimentally.
Nonetheless, the small number of non-dimensional parameters to be identified in the
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proposed model can turn helpful in the experimental comparison. It is further to be
assessed which, and to what extent, other physical mechanisms may possibly play an
important role.

From a more general standpoint, the asymptotic approach (and not the asymptotic
techniques!) plays a foremost role throughout the whole work. It has indeed allowed us
to reveal the existence of an internal elastic length scale for a class of elastic systems, and
the nature of crack surfaces in brittle multilayers, that is the essential properties of the
systems in our concerns. Aware of the power of this approach, care must be taken when, in
the mechanical modeling, new characteristic scales and “small parameters” are introduced.
Their presence, or lack thereof, has indeed to be seen already as the result of a suitable
asymptotic process, which determines implicitly an order relation between the different
scales. This applies, for instance, when we introduce the damage length scale 1 (associated
to the width of regularized cracks) through the gradient damage model regularizing the
limit two-dimensional brittle system. This successive construction of asymptotic models
implies an order relation between the small parameter ¢ of the geometric and constitutive
scaling law, and the internal length of the damage model 7. This order relation is not ano-
dyne since in general “asymptotic limits do not commute”. Precisely, it means that ¢ < 7.
Moreover, attention should payed in situations where the internal characteristic length
scale /. becomes small, possibly comparable to n, due e.g. to successive film cracking.
Indeed, while for “large” /. cracking in the film and in the bonding layer responds essen-
tially to first order stability conditions, when /. is “small” transverse cracks are essentially
dominated, not by first order, but by second order stability conditions. This interesting
behavior deserves further investigation. The same caution is expected for the advocated
introduction, at the end of Chapter 4, of a time scale to take account of the velocity of the
propagating coupled transverse cracks and debonding front. In fact, the underlying frac-
ture model is itself quasi-static, in other words, it is a limit model for suitably “slow” loads
in more general rate-dependent process. This latter regime is radically different and still
much less known than the quasi-static limit. Hence, the introduction of a time scale could
have a profound impact in the physics of the model, i.e. it may be a singular perturbation.
Nonetheless, preliminary results, not presented here, show that a mechanically reasonable
diffusion process associated to crack advance that modifies locally the material properties
(like in corrosive cracks) is a reqular perturbation of the model presented here: it does not
alter the phenomenology associated to fracture (i.e. the crack pattern is the same) but
manifests the propagative character of the front at finite velocity. In conclusion, the varia-
tional approach to the analysis of fracture and debonding of a thin film system presented
here, as an instance of an irreversible, rate-independent problem with a singular perturba-
tion, motivates to tackle other problems arising in different fields of solid mechanics. One
of possible interest is that of phase transformation in alloys. Indeed, valuable results,
both from a theoretical and numerical standpoint, have been obtained in this domain with
the use of energetic theories, based on the introduction of mesoscopic internal variables
accounting for the presence and features of the different phases. Here, inelastic behavior
resulting in the formation of micro-structures, hysteretic response and the consequent
multi-scale coupling, manifest a very appealing scenario for future investigation.
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Appendix A

Scientific contribution

Part of the material presented in this work has been proposed to the scientific commu-
nity in papers in international peer reviewed journals and proceedings of international
conferences. We list here these contributions.

Papers in peer reviewed journals

[Le6+13a] A. A. Le6n Baldelli et al. “A variational model for fracture and debonding
of thin films under in-plane loadings”. In: (submitted for review) (2013).

[Le64+13d] A. A. Ledn Baldelli et al. “Fracture and debonding of a thin film on a stiff
substrate: analytical and numerical solutions of a one-dimensional variational
model”. In: Continuum Mechanics and Thermodynamics 25.2-4 (May 2013),
pp. 243-268. 1SSN: 0935-1175.

Contributions in peer reviewed conference proceed-
ings

[Le6+11]  A. A. Leén Baldelli et al. “Etude de la multifissuration ¢ délamination par
I’approche variationnelle a la mécanique de la fracture”. In: 10e Colloque
National en Calcul des Structures. Giens, 2011, pp. 1-8.

[Le6+12]  A. A. Le6n Baldelli et al. “Multifissuration and Debonding of Thin Films .
Analytic and Numeric 1D Solutions Via a Variational Approach”. In: The
23rd International Congress of Theoretical and Applied Mechanics. Vol. 1.
August. Beijing, PRC, 2012.



[Led+13b]

[Le6+13c]|

A. A. Le6n Baldelli et al. “Complex crack patterns: transverse fractures and
delamination in thin film systems”. In: Third International Conference on
Computational Modeling of Fracture and Failure of Materials and Structures.
Vol. 43. June. Prague, 2013.

A. A. Le6n Baldelli et al. “Delamination and fracture of thin films: a
variational approach.” In: Direct and variational methods for nonsmooth
problems in mechanics. Amboise, 2013.
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