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Introduction

Between 1999 and 2001, three measurements changed Cosmology forever: the discovery of
Cosmic Acceleration (Perlmutter et al. 1998; 1999, Riess et al. 1998, Schmidt et al. 1998) in-
dicated that the density of the Universe is dominated by some kind of repulsive Dark Energy
(of unknown nature), the measurement of the first acoustic peak in the CMB temperature
anisotropy spectrum (de Bernardis et al. 2000) combined with the precise determination of
H0 (Freedman et al. 2001) gave strong constraints on the flatness of space-time. These mea-
surements contributed to solve the persisting disagreements between the observations that
were favouring a low density of matter, and theoretical motivations for a higher-density (criti-
cal) Universe. It favoured the emergence of the Standard Model of Cosmology (Λ-CDM) that
describes nearly all of today’s observations with only a handful of free parameters (Planck
Collaboration et al. 2013b). Cosmology has now entered an era of precision measurements,
and the goal of observations is now to hunt for “tensions” within the cosmological model.

The case of Supernova cosmology is very characteristic of this situation. The measure-
ment of luminosity distances to SNe Ia as a function of their redshift allowed one to discover
(with less than 100 supernovae) the acceleration of cosmic expansion. Today, SNe Ia are
still the most sensitive probe to w, the Dark Energy equation of state parameter, and grow-
ing number of SNe Ia are being detected and studied by several Collaborations all over the
world, in order to pin down the value of w, and to start ruling out Dark Energy models. The
precision on w is now as low as 7% (Howell et al. 2009, Conley et al. 2011, Sullivan et al.
2011) with nearly 1000 SNe Ia in the Hubble diagram. Unfortunately, the measurement is
now dominated by systematic uncertainties, the dominant source of systematics being the
photometric calibration of the imagers used to measure the SN Ia fluxes.

So, this work is about photometric calibration. This is a rather esoteric subject, which
is seldom chosen by PhD students. But the thing is that, to improve on the current results,
astronomers have no choice but to revisit the ancient calibration schemes. Since 2005, most
Dark Energy Collaborations (with the invaluable help of the HST calibration program) have
launched ambitious calibration efforts, redefined primary standards and metrology between
those standards and their science images and push down their error budget well below 1%
(e.g. Betoule et al. 2013). One suspect however, that these techniques, which rely on observa-
tions of stellar calibrators, will not allow one to reach the calibration requirements of future
surveys. For this reason, several groups in the world are working on experimental laboratory
sources, that would allow one to inject very well characterised light into the telescope optics
and derive, from these measurements, the telescope throughput as a function of wavelength.

Since 2007, LPNHE cosmology group has been involved in the construction of a spec-
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trophotometric calibration system for the last generation of wide field imagers (Barrelet and
Juramy 2008). In particular, the team has designed and built two devices: SnDICE (Super-
novae Direct Illumination Calibration Experiment) and SkyDICE (SkyMapper Direct Illu-
mination Calibration Experiment), the first installed in the enclosure of the Canada France
Hawaii Telescope (CFHT) on top of Mauna Kea, and the other in the dome of SkyMapper
(Siding Springs Observatory, NSW, Australia).

This thesis is about SkyMapper. I started my PhD a few months after the SkyDICE
project was funded. I was involved in nearly all stages of the project, in particular the
integration and the calibration of the device on our test bench, as well as the installation
and commissioning at Siding Springs. I then spent my third year analysing the commissioning
data.

This memoir is organised as follows. In chapter 1 I described the standard model of
Cosmology, with particular attention on the cosmological probes. I then (chapter 2) describe
the experimental context of this thesis: SkyMapper, the stellar calibration techniques and
their limitations and I review the main instrumental calibration projects. In chapters 3 I
discuss the design and implementation of the SkyDICE calibration source. Chapters 4, 5
and 6 present the central part of my work: the calibration and characterisation of the source
on our spectrophotometric test bench. In chapter 7 I describe the installation of the device
on site, and the pre-analysis of the commissioning data I did then. Finally, in 8, I present
the method developed to constrain the SkyMapper passbands, from series of calibration
observations, I test it on a simulation, and I estimate the uncertainties that will affect our
result.
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Chapter 1

Modern Cosmology

At the end of the XIXth century our knowledge about the Universe outside the solar system
was limited. Essentially our Galaxy, the Milky Way, was all we knew about Universe and
Cosmology.

A theory to construct a real model of the Universe only came out with Einstein in 1917
and the publication of Theory of General Relativity (Einstein 1917); the first model of the
Universe studied by Einstein static and uniform. We have to wait for the work of Freidmann
(Friedmann 1922), Lemaitre (Lemaître 1927), and later De Sitter (Einstein and de Sitter
1932), to see a first theory where the Universe is dynamic and expanding. Around the
same time Edwin Hubble made distance measurements of nearby galaxies, and discovered
that Universe was in fact expanding. The publication of the famous Hubble’s law in 1929
(Hubble 1929), can be seen as the birth of modern Cosmology.

In the 1930s, observations of the nearby clusters by Zwicky (Zwicky 1937), proved that
the galaxy halos were surrounded by something invisible, a type of matter that could only
be inferred from its gravitational effect; today, astronomers call this dark matter.

In 1998, two independent teams, working on supernovae projects, published observations
of distant type Ia supernovae (Riess et al. 1998, Perlmutter et al. 1999), that indicated that
the Universe was not only expanding but also that this expansion was accelerating. This
milestones opened the way to the re-introduction of something that Einstein believed was
his worst error: the cosmological constant.

After this brief history of modern cosmology we are going to focus on the basic concepts
and equations used. In particular in §1.1 and §1.2 we describe the general principles behind
modern Cosmology and the Λ-CDM model (also namely Concordance Model). Then, in the
second part of the chapter, §1.3 and §1.4, we talk about Hubble’s law, the expansion and
the discovery of acceleration. Moreover, we define the most important cosmological probes
that astronomers use to constrain models, with particular attention on type Ia supernovae.
Finally, in the third part of the chapter §1.5 and §1.6, we talk about the dark side of the
Universe with the actual hypothesis for dark energy and dark matter.
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1.1. THE COSMOLOGICAL PRINCIPLE

1.1 The Cosmological Principle

In 1543 Nicolaus Copernicus died and the same year one of the miles stone of human thinking
the De Revolutionibus Orbium Coelestium were published. This book contained the seed of
modern cosmology, known as the Copernican Principle. In a few words it says that our planet
Earth is not at the centre of the Universe neither in a special position, this idea opened a
new point of view about our Solar system and Universe.

To be more precise, Copernicus put the Sun at the centre of the Universe (and we
know now this is not more true), but the power of this revolution was to eliminate the
centrality of human being from science, in other words: there is not special observer. At
the same time the works of Galileo and Newton, generalised in the past century with the
introduction of General Relativity of Gravity, lead the way to the cosmology as we know it.
A contemporaneous version of the Copernican Principle is the Cosmological Principle. In a
simple way can be written as (Rowan-Robinson 1996):

«The Universe as seen by fundamental observers is homogeneous and isotropic»

This simple and pedagogic statement implies more profound meanings. First, homoge-
neous, means that every observer sees the same image of the Universe or, more simply, there
is no special places in the Universe (see figure 1.1).

Figure 1.1: Map of the distribution of galaxies. Earth is at the centre, and each point
represents a galaxy. Galaxies are coloured according to the ages of their stars. The outer
circle is at a distance of two billion light years (Blanton M. and SDSS Collaboration 2008).

The second terms, isotropic, means that the Universe looks the same for every observer.
There is not preferential direction or, in other way, an observation evidence taken from
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1.2. SHAPE AND MATTER OF THE UNIVERSE

different positions in the Universe must be the same. The two terms homogeneous and
isotropic are distinct but related, a Universe that is isotropic from any two locations must
also be homogeneous.

Until now the cosmological principle is consistent with observations taken in all the
wavelengths, from radio to gamma rays. One of the best proof about the isotropy of the
universe is the measurement of the Cosmic Microwave Background (CMB) done by COBE
(Mather et al. 1990; 1994), WMAP and PLANCK (see fig. 1.2). For example, the map
from WMAP 7 years describes an uniform microwave background with a temperature of
T0 = 2.72548 ± 0.00057 K and oscillations less than 10−5 (Fixsen 2009).

Figure 1.2: This is a detailed all-sky picture of the Universe created from PLANCK data.
The image reveals old temperature fluctuations that correspond to the seeds that after became
galaxies, (Planck Collaboration et al. 2013a).

1.2 Shape and Matter of the Universe

We now briefly describe the metric in a homogeneous and isotropic Universe, the connection
between geometry, mass and gravity (Einstein equations), and the solution of the Einstein
equations within this metric, the Friedmann equations.

1.2.1 Friedmann-Lemaitre-Robertson-Walker Metric

The Friedmann-Lemaitre-Robertson-Walker metric (FLRW) describes an expanding, homo-
geneous, isotropic Universe:

ds2 = −cdt2 + a2(t)





dr2

1 − kr2 + r2dθ2 + r2sin2θφ2



 (1.1)

where the spherical polar coordinates r − θ − φ describe the spatial dimensions, while the
ds is the space-time distance corresponding to a shift dt in time and a shift dr, dθ and dφ
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in space. The metric contains two unknown quantities, the scale factor a(t) (see §1.2.3)
and the curvature k. The latter is a constant, derived from observations, and the metric
is qualitatively different depending on the value of k: every positive, zero or negative value
corresponds to a possible geometry of the Universe,

k















= 0, zero curvature: Euclidean Flat Universe

> 0, positive curvature: Spherical Closed Universe

< 0, negative curvature: Hyperbolic Open Universe

(1.2)

Recent measurements of the cosmic background anisotropies (see (Hinshaw et al. 2012)
or (Planck Collaboration et al. 2013b)), show that curvature k is close to 0. meaning our
actual Universe has an euclidean geometry. This metric is one of the possible exact solutions
of the Einstein’s field equations.

1.2.2 Einstein Equations

Those equations are the mathematical core of the Theory of General Relativity (GR), pub-
lished in 1915 (Einstein 1915). In GR the gravity is caused by the curvature of the space-time,
curvature induced from the presence of matter in the space-time structure. One of the most
important assumption of the theory is the Equivalence Principle, which is a generalisation
of the the Galilean Principle of Relativity for non-inertial systems. Roughly speaking the
principle says that the laws of physics experience by observers on a gravitational field are
the same of the those in inertial systems. One of the direct derivation of this postulate are
the equivalence of the gravitational mass and the inertial mass. Coming back on Einstein
equation, its last version can be written as:

Gµν = Rµν − 1
2

gµνR − Λgµν (1.3)

where Gµν is:

Gµν =
8π

c4
GTµν (1.4)

On the right hand side Tµν is the energy-momentum tensor representing the properties
of matters in the Universe. On the left hand side is the expression of the geometry of the
space-time. More precisely, Rµν is the Ricci’s tensor, R is its trace and most important
gµν is the metric tensor directly connected with the metric geometry of space-time from the
equation ds2 = gµνdxµdxν . The symbol Λ is the cosmological constant; previously insert by
Einstein for the Steady-State model and then resurrected by modern Cosmology to account
for the dark energy part (see §1.5).

Because of the lack of space in this work, we can schematically resume the meaning of
this equation as follow (Liddle and Loveday 2009):

Curvature <–> Matter
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1.3. THE ACCELERATING UNIVERSE

as J. Wheeler said: Matter tells Space-Time how to curve, Space-Time tells matter how
to move.

One last point: eliminating matter (right hand side equal to zero) from the equation is
not enough to remove curvature. This is consistent with the fact that from observations
effect of the gravitational field still present in the vacuum around astronomical objects.

1.2.3 Friedmann-Lemaitre Equations

Before the discovery of the expansion of the Universe, Friedmann in 1922, and Lemaitre
in 1927 found from Einstein equation a model of the Universe homogeneous, isotropic, and
expanding. Two independent equations were found. The first one derived from the (0, 0)
component of the Einstein’s equations is:

(

ȧ

a

)2

+
k

a2
=

8πG

3
ρ +

Λ
3

(1.5)

the second one comes from the (i, i) trace of the Ricci’s tensor:

2
ä

a
+

(

ȧ

a

)2

+
k

a2
= −8πGp + Λ (1.6)

The terms ρ and p are respectively the density and pressure of the matter contained
in the Universe. The first equation describes the expansion rate of the Universe from the
parameter ȧ. Combining the two equations 1.5 and 1.6, we get the term of the acceleration
of the Universe:

ä

a
= −4πG

3
(ρ + 3p) +

Λ
3

(1.7)

Studying these equations for different initial conditions we have three majors solutions:

a(t)



















= ±t2/3 : matter domination

= ±t1/2 : photons domination

= e±t
√

Λ

3 : dark energy domination

(1.8)

the scale factor a(t) is a function that describes the variations of the Universe at different
time of its history. In §1.3.1 we are going to discover that this parameter is directly connected
with the expansion rate of the Universe and the concept of redshift.

1.3 The Accelerating Universe

In 1917, Slipher discovered that galaxies were moving away us (Slipher 1917); but it was the
work of Hubble (Hubble 1929), measuring the redshifts of nearby galaxies and discovering
the law that has his name, to show the expansion of the Universe. Here we describe the
Hubble’s law and redshift in §1.3.1, then we define cosmological parameters in §1.3.2. Finally
we show recent progresses made by the discovery of the acceleration of the expansion done
in 1998 by two teams leading by S. Perlmutter, and B. Schmidt, H. Riess.
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1.3. THE ACCELERATING UNIVERSE

1.3.1 Hubble’s Law

The linear proportion of the velocity recession of galaxies (and more generally for every
astronomical object) and its distance is called the Hubble’s law and can be written as:

v = H0(t) · d (1.9)

where H0(t) = ȧ(t)
a(t)

is the expansion rate of the Universe. The constant is called Hubble’s
constant and it has an actual value of (Planck Collaboration et al. 2013b):

H0 = 68.0 ± 1.4 km · s−1 · Mpc−1

By measuring the redshift of galaxies, Hubble was able to achieve this result, although
finding a value for the Hubble constant 10 times larger than obtained by modern mea-
surements. When a galaxy moves away from us, taking his spectra, we can see that the
wavelength is stretched to the redder part of the spectrum. More precisely, if we call λe the
wavelength emitted by the source and λo the light seen by an observer, we have:

λo

λe

− 1 =
a(to)
a(te)

− 1 = z (1.10)

z is what we call the redshift of the object. Using the FLRW metric and co-moving coordi-
nates (equation 1.1), we can write the redshift as a function of the scale factor a(z):

a(z) =
1

z + 1
(1.11)

this equation connects the scale factor a with the redshift of object. That means if we look
an object at high redshift, for example z = 1, we are looking at the Universe how was in
the past when its dimension were a = 1/2, roughly half the dimension of now. The scale
factor says us that galaxies are not simply moving away from us only because of their proper
motions, but it is all the space-time that is expanding.

1.3.2 Cosmological Parameters

Defining cosmological parameters is the first step towards testing theoretical model with the
observational data. In this sense, cosmological parameters are a series of numbers which
describe the detailed properties of our Universe such as density of matter. Using the Freid-
mann equations 1.5, 1.6, 1.7, we can extract the definition of the first of these parameters,
the critical density ρc:

ρc =
3H2

8πG
(1.12)

the critical density is the density of the Universe that corresponds to a flat euclidean
geometry of the space-time, the actual value is ρc = 1.88 · 10−26h2

0 · kg · m−3. Extracting the
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1.3. THE ACCELERATING UNIVERSE

different components inside the Friedmann equation, we can redefine the density parameter
as follow:

ΩM =
ρM

ρc

(1.13)

is the density parameter for matter components of the Universe,

Ωr =
ρr

ρc

(1.14)

is the density parameter for the radiation component of the Universe,

ΩΛ =
Λ

3H2
(1.15)

is the density parameter for the cosmological constant (dark energy), and:

Ωk =
ρk

a2H2
(1.16)

describe the geometry of the Universe. Putting these four parameters together we can
rewrite the Friedmann equation 1.5 in a simple form:

1 + Ωk = ΩM + Ωr + ΩΛ = Ω (1.17)

This equation links explicitly the curvature of the Universe (the left hand side of the
equation), with the density of single components (the right hand side). A universe with
Ω = 1 is flat, while Ω < 1 (Ω > 1) means a closed (open) Universe.

Another important parameter is the deceleration parameter that can be evaluated from
Friedmann equations 1.5 and 1.6 as:

q(z) = − ä(t)
a(t)H2

=
1
2

∑

i

Ωi(z)[1 + 3wi(z)] (1.18)

We have rewritten the equation in terms of the new parameters Ω − i and wi, where the
latter is the equation of state (EoS) parameter w = p

ρ
.

1.3.3 The Acceleration of Expansion

The expansion rate of the Universe would be expected to be slowing down due to the grav-
itational force between galaxies opposes to the expansion; in another way the expansion
of the Universe should be decelerating. But in 90s, two different groups published results
about the studies of distant type Ia supernovae (Perlmutter et al. 1998; 1999, Riess et al.
1998, Schmidt et al. 1998), indicating that the expansion of the Universe was accelerating.
Measuring their redshift, they discovered that the supernovae were more faints (distant)
that could be expected from a matter dominated Universe. This meant that at some point
in the history of the Universe, the expansion has started to accelerate, see fig. 1.3. As a
consequence a Universe characterised by low density matter can be described in terms of
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1.4. OBSERVATIONAL COSMOLOGY

an equation of state often expressed as p = w(z), where w(z) = w0 + wa(z)/(1 + z) (e.g.
Chevallier and Polarski 2001, Linder 2003)

consequence of that is a Universe with less matter density, lead by fluid with negative pres-
sure. Nowadays, comparing different studies, we are able to say that almost ∼ 68, 3%(Planck
Collaboration et al. 2013b), of the observable Universe is made by this unknown kind of en-
ergy, namely dark energy.

Figure 1.3: Hubble diagram for 42 high-redshift SNe Ia from the Supernova Cosmology
Project, and 18 low-redshift SNe Ia from the Calan/Tololo Supernova Survey, after correcting
both for the light-curve width-luminosity relation (Perlmutter et al. 1999).

1.4 Observational Cosmology

To evaluate the view of the Universe that until now we have described, we need a way to
measure its main parameters (§1.3.2), in order to confirm or reject the model. In these last
years lots of progresses have been made in astronomy thanks to the advantage of the new
satellites mission (i.e., HST, FERMI, PLANCK), and new sensible and big ground based
telescopes (i.e., CFHT, VLT, KECK). In this section we show some of the most important
probes in observational cosmology that put strong constrains in the Λ-CDM Model. In
particular in §1.4.1 we describe the Cosmic Microwave Background, in §1.4.2 we talk about
Baryonic Acoustic Oscillations, in §1.4.3 we briefly describe Large Scale Structures, and
finally in §1.4.4 we talk about type Ia supernovae.
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1.4.1 Cosmic Microwave Background (CMB)

The CMB is the relic radiation from the young Universe after the Big Bang. It is the
dominant form of radiation in the present Universe and extremely close to isotropy, meaning
that the radiation received from all direction is more or less identical. The origin of the
CMB falls in the early stage of the evolution of the Universe, at a time corresponding to a
z ∼ 1000, when the temperature was cooling down sufficiently to allow electrons and nuclei
to bound together and form stable atoms; the average temperature was T ∼ 3000 K. At that
time the Universe made the transition from opaque to transparent lead photons to propagate
freely.

Technically, two separate physical processes were taking place around the formation of
the CMB. One is recombination, and it is referred to the phenomena where electrons and
nuclei could combine together and form atoms (t ∼ 380000 years after the Big Bang). The
other effect is the decoupling, and it is the time when the photons can fly freely (it happened
shortly after the recombination). The CMB was discovered in 1965 by Penzias and Wilson
(Penzias and Wilson 1965, Wilson and Penzias 1967).

After the decoupling, the Universe continued to expand and photons continued to redshift.
This expansion increased their wavelength about one thousand time, putting them into the
microwave part of the electromagnetic spectrum. The spectrum of the CMB is a thermal
spectrum with an actual temperature of roughly T0 ≃ 2.73 K, and it is one of the most
accurate measurements in Cosmology. One of the most important features of the CMB are
the little fluctuations in temperature. This anisotropies are the signature of the density
fluctuations of matter at the time of recombination and they are absolutely important in
order to form the structures that we see in the present Universe. Since before the discovered
by COBE in 1992 (Smoot et al. 1992), lots of studies have been made to constrain and
understand anisotropies of the CMB. The main quantity to be measured is the radiation
angular power spectrum, known as Cl:

Cl =
l
∑

m=−l

|alm|2 (1.19)

where alm is the amplitude of spherical harmonics of temperature fluctuations, describe
by the following equation:

∆T

T
(θ, φ) =

∑

m,l

almYlm(θ, φ) (1.20)

Because of the angular distribution of fluctuations depending on the geometry of the
space-time, from the power spectrum we can have information about the real geometry of
the actual Universe. The first peak of this spectrum (see fig. 1.4), corresponds to temperature
fluctuations at the time of the recombination, and in the case of a flat Universe this peak
is roughly at l ∼ 220 (l is the multipole momentum, connected with the angular size by
θ ≃ π/l). The last result from PLANCK analysis (Planck Collaboration et al. 2013b), comes
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out with a value of the dark energy density parameter ΩΛ:

ΩΛ = 0.686 ± 0.020 (1.21)

Figure 1.4: Planck TT power spectrum. The points in the upper panel show the maximum-
likelihood estimates of the primary CMB spectrum. The red line shows the best-fit base CDM
spectrum. The lower panel shows the residuals with respect to the theoretical model (Planck
Collaboration et al. 2013b).

1.4.2 Baryonic Acoustic Oscillations (BAO)

In the last years, the acoustic peaks in the cosmic microwave background power spectrum
(BAO) have emerged as one of the strongest cosmological probes. Before of the period of
decoupling, baryons (read neutrons, protons and electrons) interact strongly with photons,
this interaction creating a strong pressure force. In the region of high matter density, gravity
tried to draw the baryons in, while the pressure offered a opposite force; these two factors
created oscillations analogous to acoustic waves in a medium (while the radiation dominated,
the speed of sound at these condition was really high v ∼ c/

√
3).

The scale of these oscillations is set by the acoustic horizon at the time of recombination,
defined as the co-moving distance travelled by sound waves between their creations and the
time of the recombination, in numbers:

s =
∫ trec

0
cs(1 + z)dt =

∫ ∞

zrec

cs

H(z)
dz (1.22)
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where cs is the speed of sound defined by the ratio from the baryonic density and the
density of photons at that time. Density perturbations on larger scales lead to oscillations in
a longer time scale because of the proportional relation between their period and the length
scale of the Universe. This relation shows us the fact that BAO can be used as “standard
ruler” for length scale in cosmology: the length of this standard ruler can be measured by
looking at the large distant scale structures as cluster of galaxies. In particular resolving the
equation 1.22 gives us where to look for them, at s ≃ 150 Mpc.

Figure 1.5: The large-scale redshift-space correlation function of the SDSS LRGs sample.
The models are Ωmh2 = 0.12 (green), 0.13 (red), and 0.14 (blue), all with Ωbh

2 = 0.024 and
n = 0.98. The magenta line shows a pure CDM model with Ωmh2 = 0.105 (Eisenstein et al.
2005).

Because of perturbations from dark matter are dominants compared to the baryonic ones,
the peak in the correlation function is smaller and the acoustic signatures are fainter than
the CMB signal. It is necessary to probe large structures of matter to find this signature;
the magnitude of this volume is 1h−3Gpc3.

The first detection of BAO peak was found in 2005 (Eisenstein et al. 2005). To measure
BAO they used sample of Luminous Red Galaxies (LRGs) taken from the Sloan Digital Sky
Survey (SDSS). The correlation function is showed in the fig. 1.5; in that figure we can see
a little peak at 100h−1 Mpc. The position and intensity of the peak is strictly correlated to
the density of baryons, meaning that it is possible to examine the amount of the ordinary
matter in the Universe and, comparing that with theoretical predictions from WMAP 9 years
(Hinshaw et al. 2012) and Hubble Space Telescope (HST) (Riess et al. 2009), we obtained a
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value for the total density Ωtot:

Ωtot = 1.0027+0.0039
−0.0038 (1.23)

This result is confirmed by the seven years analysis of the SDSS data (Kazin et al. 2010).
The detection of the BAO peak is direct demonstration of the Big Bang model and the early
evolution of the Universe at the epoch of the recombination and decoupling; the value found
from SDSS analysis is in accord with a z ≃ 1000.

1.4.3 Large Scale Structures (LSS)

The various forms of structures we observe today in the universe are collectively referred to
LSS. Observations of these structures provide us important constrains on the cosmological
model since they are believed to trace regions with over-density in the early Universe after
the epoch of inflation. There are several ways to measure them, but the two most important
are cluster counts and the weak gravitational lensing.

Galaxy Clusters

Clusters of galaxies have a long history as cosmological probes, beginning with the first dis-
covery of dark matter (Zwicky 1937), through study of cluster of galaxies, and then providing
evidence for a low matter density distribution (White et al. 1993). These discoveries came
from observations of the properties of individual systems. But we know now that also the
population of clusters as a whole contains lots of cosmological information.

The number of galaxy clusters in the local Universe measures the size of the density
perturbations on a scale corresponding to the cluster mass. The way on which the number
of clusters change with distance give us the changing-rate of the density perturbations. This
rate depends on the total density of matter, but also on properties of the dark energy. The
measurement of the spatial density and distribution of galaxy clusters is sensitive to dark
energy through the angular-diameter and distance-redshift relation. To do that astronomers
use several observables, either separately or combined, to infer the number and galaxy cluster
mass function: direct counting, through the X-ray emission of the hot cluster gas (Mantz
et al. 2008), although Sunyaev-Zeldovich and optical surveys are also making significant
progress in that field.

In the Λ-CDM model, the number density of dark halos as a function of redshift can
be compared with the number obtained in the large cluster surveys. The relation between
galaxies cluster and its mass distribution can be written as:

d2N(z)
dzdΩ

=
dM(z)
H(z)

∫ inf

0
f(O, z)dO

∫ inf

0
p(O|M , z)

dn(z)
dM

dM (1.24)

where f(O, z) is the observable redshift dependent selection function, dn(z)/dM is the
co-moving density of dark halos, and p(O|M , z) is the probability that a halo of mass M at
redshift z is observed as a cluster with observable O. This equation is sensitive to cosmology
by the co-moving element d2

M(z)/H(z) and the growth structure term dn(z)/dM , which
depends on the primordial spectrum and density perturbation.
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Gravitational Lensing

Another method to study the large scale structures as galaxy clusters is to use the well known
gravitational lensing effect. The light deflection caused by the gravitational potential of the
cluster of galaxies, creates a distortion of the images of galaxies behind the lens. This kind
of distortion allows us to measure the geometry and, overall, the distribution of total dark
matter with its evolution in time. The observed shape of distant galaxies become slightly
distorted as light from them passes through foreground mass structures. The distortion
pattern depends then on the distances to the source and lens as well as its mass, being thus
both a geometrical (distance-redshift) and mass distribution probe. This lensing signal that
induces an observable ellipticity (cosmic shear) in the background galaxies has been detected
(Bacon et al. 2000, Hoekstra et al. 2006), and wide field galaxy surveys are now being carried
out (e.g. Fu et al. 2008), to improve the quality of this cosmological probe.

1.4.4 Type Ia Supernovae (SNe Ia)

A supernova is the phenomenon that occurs when a star ends its life in a violent explosion.
This is one of the most energetic events in the universe, creating a new short-lived object in
the sky, that outshines its host galaxy during a time of few weeks (≈ 30 days). Supernovae
play a central role creating elements heaver than Fe, and distributing these elements through
space; more important, their extreme intrinsic luminosity make supernovae observable up to
cosmological distances and a standardisable object to constrain dark energy equation.

Historically, supernovae classification has been based on their spectral features. Minkowski
divided them into two groups (Minkowski 1941), depending on the existence of hydrogen lines
on their spectra at maximum light: type I supernovae do not show hydrogen lines, whether
type II supernovae do. This division was later extended by Filippenko (Filippenko 1997)
and Turatto (Turatto 2003), as it became noticeable that there were more spectral and pho-
tometric differences inside each group (see fig. 1.6). Furthermore, SNe Ia present an overall
homogeneous spectroscopic and photometric behaviour, contrary to the other types. Those
evidences are connected with the different physical mechanisms of origin between the SNe
Ia and all the other SNe.

Assuming that a supernova originates from a single stellar object, two physical mech-
anisms can explain the observed energy amount: the release of the nuclear energy by an
explosive reaction (thermonuclear supernovae), or a gravitational collapse of a massive star
(> 8M⊙), through the creation of a neutron star or a black hole (core-collapse supernovae).

Type Ia Supernovae as Standard Candles

Observationally, SNe Ia are defined as supernovae without any hydrogen lines in their spec-
trum, but with a broad silicon absorption line, Si − II, at about 400 nm. The progenitor is
believed to be a binary system in which a CO white dwarf (no hydrogen layer), accretes ma-
terial from a companion star (SD, single degenerate system), or possibly another white dwarf
(DD, double degenerate system). The process continues until the mass of the white dwarf
approaches the Chandrasekhar limit, at which point a thermonuclear explosion is triggered.
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Figure 1.6: Spectra of SNe at maximum, three weeks, and one year after. The representative
spectra are those of SN1996X for type Ia, of SN1994I (left and centre) and SN1997B (right)
for type Ic, of SN1999dn (left and centre) and SN1990I (right) for type Ib, and of SN1987A
for type II (Turatto 2003).

The fact that all SNe Ia have a similar mass explains their consistent properties. They are
very homogeneous in luminosity, colour and spectrum. Only a small, correlated variations
of these quantities are observed.

In 1992 Phillips (1993) discovered, for nearby SNe Ia, a correlation between their intrinsic
brightness at maximum light and the duration of light curve. After that SNe Ia started to
be largely observed, and it was clear that a correlation existed between the peak luminosity
and the decline rate of their light curve. By applying an empirical correction model to the
absolute magnitude of SN (Hamuy et al. 1996), they found a good linear relation between
peak and decline-rate, which allowed to push down the dispersion of SN Ia distance estimates
to 7 − 10%.

In the 1990s, other standardisation and correction methods were created: the MLCS
(Riess et al. 1996), and stretch methods (Perlmutter et al. 1997, Goldhaber et al. 2001), using
supernovae light curve shape templates (see fig. 1.7); the C12 method for the “brighter-bluer”
relation (Wang et al. 2005); the MLCS2k2 (Jha et al. 2007) and SALT/SALT2 methods (Guy
et al. 2005; 2007), using both light curve shape and colour parameters.

While light-curves are determined with photometric measurements in several broadband
filters (i.e., SDSS ugriz filters), spectroscopy near maximum light allows us to (1) identify
the SN Ia among all the discovered transients, and (2) at the same time determining its
redshift. The key feature of the spectrum is the Si − II absorption line, whose its detection
identifies the SN as a type Ia, and its position determines the redshift.
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Figure 1.7: Calan/Tololo nearby Supernovae absolute magnitudes in V band, (a) - as observed
and (b) - after correction using the stretch parameter (Kim et al. 1997).

1.4.5 Measuring Distances in Cosmology

Measuring distances in Cosmology is a complicated task. We need to know precisely the flux
of the object, the redshift, and fundamental parameters as the Hubble constant H0. For an
object of intrinsic luminosity L, and a measured energy flux F , one can define the luminosity
distance dL to the object, trough the inverse square law. This luminosity distance is defined
as:

dL(z) =

√

L

4πF
= (1 + z)r(z) (1.25)

where r(z) is the co-moving distance to an object at redshift z,

r(z) =
∫ z

0

dz′

H(z′)
=
∫ 1

1/(1+z)

da

a2H(a)
(k = 0) (1.26)

r(z) = |k|−1/2χ



|k|1/2
∫ z

0

dz′

H(z′)



 (k 6= 0) (1.27)

and where χ(x) = sin(x) for k > 0 and sinh(x) for k < 0.
Specialising to the flat model and constant w,

r(z) =
1

H0

∫ z

0

dz′

√

ΩM(1 + z′)3 + (1 − ΩM)(1 + z′)3(1+w) + Ωr(1 + z′)4
(1.28)

here ΩM is the present fraction of critical density in non-relativistic matter, and Ωr ∼
0.8×10−4 represents the small contribution to the present energy density from radiation and
relativistic neutrinos. In this model, the dependence of cosmic distances upon dark energy is
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controlled by the parameters ΩM and w. The luminosity distance is related to the distance
modulus µ by:

µ(z) ≡ m − M = 5 log10





dL

10pc



 = 5 log10





(1 + z)r(z)
pc



− 5 (1.29)

where m is the apparent magnitude of the object (proportional to the log of the flux) and
M is the absolute magnitude (proportional to the log of the intrinsic luminosity). “Standard
Candles”, objects of fixed absolute magnitude M as SNe Ia, and measurements of the loga-
rithmic energy flux m constrain the cosmological model and thereby the expansion history
through this magnitude-redshift relation, known as the Hubble diagram (see figure 1.8). Ex-
panding the scale factor around its value today, the distance-redshift relation can be written
in its historical way:

H0dL = z +
1
2

(1 − qo)z2 + ... (1.30)

The expansion rate and deceleration rate today appears in the first two terms of its
taylor expansion. This expansion, only valid for z ≃ 1, is of historical utility; it is not more
useful today since objects as distant as redshift z ∼ 2 are being used to probe the expansion
history. However, it illustrates the general principle: the first term on the right hands side
represents the linear Hubble expansion, and the deviation from a linear relation (starting
from the second term), reveals the deceleration.

Another way to measure distances is trough the angular-diameter distance relation dA, a
distance inferred from the angular size δθ of a distant object of fixed diameter D is defined
by:

dA ≡ D

δθ
=

r(z)
(1 + z)

=
dL

(1 + z)2
(1.31)

The use of “Standard Rulers” (objects of fixed intrinsic size), provides another means of
probing the expansion history, again through r(z).

Measuring Distances Using SNe Ia

As we know from §1.4.4 SNe Ia can be used as “standard candles” to measure luminosity
distances. These distances are determined from the measurement of their restframe magni-
tude at the SN peak of luminosity in the (restframe) B band. As the rest-frame magnitude
of supernovae is not directly observable, we need to infer it from the observer frame light
curves, using a spectrophotometric model of the SN.

Many empirical SN Ia models have been built to fit SN light curves (see §1.4.4 and its
references). For example, the SALT2 light curve fitter is a package developed at LPNHE
(Guy et al. 2007), for the analysis of the SNLS (SuperNova Legacy Survey) dataset. This
model allows us to estimate the rest-frame B-band magnitude (noted m⋆

B) of a SN Ia at a
given redshift from its (observer frame) light curve, along with other observables, such as
the light curve decline rate (or equivalently, its stretch (s), and the rest-frame colour, c, of
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the object. Building upon the “brighter-bluer” and “brighter-slower” relations, we define the
“standardised” distance modulus:

µ = m⋆
B − M + α × (s − 1) − β × c (1.32)

where the so-called “standardisation parameters”, α and β describe the slope of the brighter-
slower and brighter-fatter relations.

The cosmological parameters are determined by minimising the χ2 function:

χ2 =
∑

i

µ(M , α, β) − µ(z, ΩM , w, . . .)
σ2

i

(1.33)

where µ(M , α, β) is the observed distance modulus defined in equation 1.32 and µ(z, ΩM , w, . . .)
the cosmological model prediction. In practice, the (average) absolute magnitude M of
SNe Ia is totally degenerate with the Hubble constant. Both parameters are grouped into one
single nuisance parameter which is fit along with the cosmology and then marginalised over.
Same thing for the standardisation parameters, α and β which are also fit and marginalised
over. See (Sullivan et al. 2011, Conley et al. 2011) for details.

Figure 1.8: Hubble diagram of the same combined Low-Z, SDSS, SNLS and HST sample.
The residuals from the best fit are shown in the bottom panel (Conley et al. 2011).

Figure 1.8 shows the latest Hubble diagram published by SNLS (Conley et al. 2011). It
contains a sample of 472 SNe Ia at different redshifts, from low to the 14 high-redshift taken
by HST. Constrains on the w parameter are shown in figure 1.9 as a function of the Ωm

density parameter. Supernova results combined with the BAO and CMB data give an value
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Figure 1.9: Statistical joint constraints on ΩM , w, flat cosmological models (including system-
atics), CMB and BAO. The common contours (grey), constrain models close to a cosmological
constant (Sullivan et al. 2011).

of w = −1.068 ± 0.08 stat + syst. Such a value is compatible with what we would expect
from a cosmological constant. The corresponding confidence contours in the plane ΩM − w
are shown on figure 1.9. From this same figure, it is clear that systematic uncertainties
represent at least half of the total error budget.

The statistical and systematic uncertainties affecting this measurement are analysed in
detail in Conley et al. (2011). As of today, the error budget is dominated by the systematics,
the main contributions being (1) photometric calibration (2) uncertainties carried by the
SALT2 light curve models (due to the finite size of the training sample) (3) uncertainties
due to a un-completeness of the SNe Ia samples (Malmquist bias) and (4) uncertainties of
astrophysical origin, such as a correlation between the SN and its host galaxy.

1.5 Dark Stuff

Observations have confirmed that the expansion of the Universe is accelerating under the
influence of a repulsive form of energy, dark energy, that built two-thirds of the Cosmo
(∼ 68.3%), ∼ 26.8% seems to be dark matter, and roughly ∼ 4.9% normal (baryonic)
matter (fig. 1.10). Here we describe briefly some of the most plausible ideas about the dark
problem. We spend only few lines with the description of the dark matter problem because
is not the object of our work and then we come up in more detail with some hypothesis for
the explanation of the dark energy problem.

1.5.1 Dark Matter

It is almost universally accepted that a large part of the Universe is filled with a material
that can be see only by its gravitational effects. As we told in the introduction, dark matter
was suggested by Zwicky in the 30s, studying the nearby Coma galaxy cluster. Comparing
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the motion of galaxies with their total mass, he discovered that the velocity in the outskirt
of galaxies did not decrease as we expect if the total amount of mass would have been
only the visible one. Nowadays is widely accepted that this kind of unknown matter, called
dark matter, plays a key role in the Concordance Model, allowing the total baryonic and
non-baryonic matter to form the cosmological structures and cluster of galaxies that we see
today. We know that a very little percentage of dark matter is normal baryonic matter, as
red-brown dwarf stars and planets, interstellar material, dust and diffuse gas. But it counts
only for 0.5% of the total, so what is the rest? The most common accepted theories to
describe dark matter the Hot Dark Matter and Cold Dark Matter model.

First the weak hypothesis: hot dark matter. A classical candidate is the neutrino particle.
Neutrino is an extraordinary weakly interacting particle, coming in three types, each believed
to have a particular mass. At the moment the possibility of only a hot dark matter Universe
is ruled out by observations, but there is still a little possibility that the total dark matter
is a mix of hot and cold weakly “particles”.

Nowadays, the most accepted dark matter candidate is the second one: Cold Dark Matter
(CDM) particles. In that sense is now used within the Λ-CDM model. Two main types o
candidates are considered: the WIMPs and the Axions. Weakly-interacting massive particles
are motivated by super-symmetry, which is not yet confirmed and it regarded as a property
of modern standard model of particle theory, where axions are particles proposed to explain
why particles and anti-particles are similar properties.

1.5.2 Dark Energy

Since the discovery of the cosmic accelerating expansion, cosmologists around the world have
tried to describe the force responsible for the acceleration: it accounts for the majority of the
cosmic energy density, it is gravitationally repulsive, it does not appear to cluster in large
structures, and it is stretching “space-time” apart. It is beyond the scope of this work to
describe all the theory behind dark energy hypothesis, instead we give only a glimpse into
the subject choosing three of the most accepted ideas: the cosmological constant, the scalar
field hypothesis, and finally the modified gravity.

Cosmological Constant and Vacuum Energy

The cosmological constant was introduced by Einstein himself in order to modify GR equa-
tions and account for a static Universe. After the discovery of expansion, this constant
disappeared from cosmology models for years until 1998. This constant appears to perfectly
fit the Einstein equation, and in that sense one can expects such a term because it is indis-
tinguishable from the contributions as gravitational source of what we call zero-point energy
(vacuum energy), expected in quantum field theories.

Vacuum energy is one of the most puzzling candidate. GR requires that the stress-energy
of the vacuum takes the form of a constant metric tensor, T µν

vac = ρvacg
µν . Without entering

into a mathematical discussion we can prove that the vacuum energy has a pressure equal
to minus its energy density, pvac = −ρvac. That means the vacuum energy is equivalent to a
cosmological constant. Problems come when we tried to compute the value of the vacuum
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Figure 1.10: After Planck the baryonic matter counts for 4.9% of the total. Dark matter
gives the rest 26.8%; this matter has only been detected indirectly by gravity effect. The
rest is composed of dark energy, that acts as a sort of an anti-gravity force (ESA/Planck
Collaboration 2013).

energy density. To illustrate the magnitude of the problem, we can write the general equation
for the density energy of the vacuum:

ρvac =
1
2

∑

fileds

gi

∫ inf

0

√
k2 + m2

d3k

(2π)3
≃

∑

fields

gik
4
max

16π2
(1.34)

where gi is the degree of freedom of the field and kmax is an imposed cutoff of the momentum.
If the energy density contributed by just one field, then the cutoff kmax must be < 0.01 eV:
below any energy scale thought. Taking the cutoff to be the planck scale (≃ 1019 GeV),
then quantum field theory does not work more using a classical space-time metric, then the
zero-point energy density would exceed the critical density by some 120 orders-of-magnitude.
This very large discrepancy is known as the cosmological constant problem (Weinberg 1989).

Scalar Field

Vacuum energy does not vary with space-time. However, if we introduce a degree of freedom,
namely a general scalar filed φ, we can make vacuum energy dynamic (Wetterich 1988,
Frieman et al. 1995, Zlatev et al. 1999). Just for the completeness we give the equation of a
typical scalar field dark energy equation of state:

w =
−1 + φ̇2/2V

1 + φ̇2/2V
(1.35)
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where φ̇2/2 is the kinetic energy and V is the potential energy. When φ̇2/2V ≪ 1, then
w ≃ −1, and the scalar field becomes a varying vacuum energy. Different scalar field can
be classified as thawing and freezing (Caldwell and Linder 2005). In thawing models, the
field is frozen by a friction term, and it acts as a vacuum energy; when the time evolves
and expansion rate drops a certain value, the field roll out and w evolves away from −1. In
freezing models, field rolls out more slowly as time goes on.

Scalar fields might be solve the problem introducing a degree of freedom in the equation
but this contribution costs the raise on new unexpected problems, such as the correlation
between the accelerating expansion and the primordial inflation.

Modified Gravity

A very different approach involves a modification of Einstein equations and theory of gravity
itself. Assuming that we can still described space-time by a metric, to change GR directly we
need to step: a new version of the Friedmann equations (section §1.2.3), and a modification
of equations that govern the evolution of LSS. A number of ideas have been explored until
now, motivated by > 5D dimensional theories and string theory (Deffayet 2001), or by
modifications of the GR Lagrangian itself (Hu and Sawicki 2007). We can easily change
the Friedmann equation maintaining the Concordance Model valid at early times (from Big
Bang to the CMB anisotropies and structure formation); the only request is that the new
Friedmann equations must reduce to the GR standard form for z ≃ 1. If we consider the
model of (Dvali et al. 2000), which arises from a 5-dimensional gravity theory and has a 4D
Friedmann equation:

H2 =
8πGρ

3
+

H

rc
(1.36)

where rc is a length scale related to the 5-dimensional gravitational constant. As the energy
density in matter and radiation ρ, becomes small, there is an accelerating solution, with
H = 1/rc. From the viewpoint of expansion, the additional term in the Friedmann equation
1.36, has the same effect as dark energy which evolves from w = −1/2 (for z ≫ 1) to w = −1
in the distant future. Unitl now there are no evidence that this model is consistent with
observations (Gregory et al. 2007).

1.6 Open Problems

All the knowledge learnt until now is summarised what is called the Standard Model of
Cosmology, or Λ-CDM model. This theory describes us the geometry and dynamics of an
expanding Universe, described by the GR equations and the FLRW metric; the Universe
is flat (k = 0 and Ωtot = 1), and had inhomogeneities in the density perturbations, which
are responsible for structures that we see today, as predicted by the inflation theory (Guth
2004). The total energy density of the universe is divided into three major parts (see fig.
1.10): 4.9% by the baryon energy density, constraint by the big bang model of primordial
nucleosynthesis. 26.8% by a non-baryonic matter (dark matter). The rest 68.3% is describe
by a cosmological constant Λ representing a dark energy model with w = −1.
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Those model predictions and assumptions are currently well constrained by observational
data. As we said there are tentatives of explanation without solution (i.e., vacuum energy
explanation has a difference of 120 orders of magnitude between the quantum mechanics
prediction and the measured values). Another problem is the so-called coincidence problem
(Frieman et al. 2008): why is ΩM + ΩΛ ≃ 1 precisely today, after an expansion of several
billion years? If ΩM decreases with time and ΩΛ remains constant, why has the cosmological
constant begin to dominate only now? All these questions have no answers yet.
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Chapter 2

Instrumentation for Cosmology

We now present the context of this thesis. In 2006, the LPNHE Cosmology Group was
contacted by Pr. B. Schmidt, the initiator of the SkyMapper project (and co-discoverer
of the accelerated expansion of the Universe). Pr. Schmidt suggested that we collaborate
on the analysis of the supernovae that would be discovered by SkyMapper. As photometric
calibration was becoming an important issue, the group proposed to contribute to the project
a calibration source that would be used to monitor the transmission of SkyMapper.

The project was named SkyDICE, and presented to the EMERGENCE program of Uni-
versité Pierre et Marie Curie (UPMC). It was accepted and funded by UPMC, and I was
hired, as a PhD student, to work on the construction, calibration and commissioning of
the source. In what follows, we will first present the SkyMapper telescope (§2.1) for which
the SkyDICE source was built. Then, we will present the main motivations for trying to
improve so aggressively the calibration of wide field imagers (§2.2), and we will discuss the
current techniques, based on observations of stellar calibrators. Finally (§2.3), we review the
relatively new field of instrumental calibration, to which SkyDICE belongs.

2.1 The SkyMapper Southern Survey (S3)

SkyMapper is one of a new generation of dedicated wide-field survey telescopes based at
the Siding Spring Observatory (see fig. 2.1)1. The telescope has been operating since 2010.
The goal of the survey is to obtain a complete map of the southern sky at small redshift
(z < 0.1), unfortunately it has not yet started due to instrumental problems. The facility
operates in an automated way and requires minimal support. The telescope is controlled on
remote with an scheduling and data quality system. Data is transferred via a fast network to
the ANUs Supercomputing Facility where the data reduction pipeline resides. When ready,
SkyMapper will do the multi-colour and multi-epoch Southern Sky Survey, called S3.

1see http://rsaa.anu.edu.au/observatories/siding-spring-observatory
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Figure 2.1: Arial view of the Siding Spring Observatory (SSO). SkyMapper is the one at the
top of the mountain in the centre (Siding Spring Observatory 2012).

Figure 2.2: (Left) - Image of the SkyMapper telescope inside the dome. (Right) - Overview
of the optical design of the telescope.

28



2.1. THE SKYMAPPER SOUTHERN SURVEY (S3)

2.1.1 Optical Design

The SkyMapper telescope optics was designed by Electro Optics Systems (Australia)2. It
has a 1.35 m primary mirror and a large 0.69 m secondary mirror. This results in a collecting
area equivalent to an un-obstructed aperture of 1.13 m, see figure 2.2. The telescope is a
modified Cassegrain, optimised for wide-field observations between 340 nm and 1000 nm.

The structure design is really compact. The primary mirror is an Astro-Sital Glass
Ceramic made by LZOS (Russia)3. The secondary mirror is carried on an actuated hexapod
mount that allows for tip − tilt, x&y and telescope focus. The telescope control system
uses the hexapod to adjust for gravity induced flexure and focus change due to temperature.
The three transmissive corrector elements are anti-reflection coated and is composed of fused
Silica to maximise the UV response. The telescope can point to ±3 arcsec and track to 0.5
arcsec RMS for ∼ 5 minutes. Both of the telescope principal axes are driven by direct on-axis
DC ring motors and direct on-axis incremental encoders.

2.1.2 SkyMapper Camera

The SkyMapper focal plane is built with a mosaic of 32 CCDs resulting in a total of 268
Mega pixels, with high speed device controllers, and low noise readout (Keller et al. 2007).
The imager has been designed at ANU Astronomy department (Granlund et al. 2006). Due
to the large focal plane, the instrument is heavy for the size of telescope: fig. 2.3 shows the
auto-guider, science filters and the focal plane imager with the CCD mosaic. The Imager
vacuum jacket is at the centre, capped in a helium cryostat. The shutter is above the vacuum
jacket window. The shutter is composed of two blades that form a moving slot of variable
width to provide uniform exposure of the focal plane. The shortest exposure is about 1 ms
and exposure homogeneity is 0.3% at 100 ms exposure (Reif et al. 2004). The vacuum jacket
window is 25 mm thick fused Silica with an antireflection coating. A uniform flow of dry air
is passed over this window to prevent condensations.

SkyMapper has 6 interchangeable filters (u, v, g, r, i, z) similar to those used in the SDSS
project, each one is 309 × 309 mm and 15 mm thick. The filter set is constructed of coloured
glass where possible. Coloured glass filters show a better homogeneity across the focal plane
than can be currently achieved with multi-layer interference filters. The filter glass was
made by Macro-Optica (Russia), and Schott (Germany). Only the r and i band filters have
additional short wave-pass coatings to define the total bandpass (Bessell et al. 2011).

The CCD Mosaic

The SkyMapper Imager CCD mosaic is a 4 × 8 array of E2V4 CCD44-82 detectors. Each
CCD detector has 2048 × 4096, 15 µm squared pixels. The deep depletion device is back-
illuminated. They have a good quantum efficiency in the range of 350 − 950 nm (fig. 2.4),
and low readout noise.

2see http://www.eostech.com
3see http://lzos.ru/en/
4see http://www.e2v.com/
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Figure 2.3: (Top) - Design of the SkyMapper imager system as seen from above. (Bottom) -
The CCD mosaic of the SkyMapper wide field camera (Siding Spring Observatory 2012).

All 32 CCDs are carried on a 10 mm thick carrier plate. Its surface is uniform with a
factor to 10 µm. The aim for focal plane flatness is to match the single pixel geometric depth
of field in the f/4.78 beam of ±32 µm. The inner two rows of CCDs are put together with
a 1.5 mm gap between the rows and a 0.5 mm gap between columns. This assembly gives a
filling factor of ∼ 91%.

CCDs Controller

The wide field imager uses a custom version of the 16-channel STAR-GRASP controller
developed for Pan-STARRS (Onaka et al. 2006). A hybrid 300MHz CPU FPGA is used in
the controller for the digital signal processing. The controller has different Gigabit ethernet
ports for a rapid readout, which enables the camera to easily meets a reading in ∼ 20 s.
Both detector controllers are connected to a single server computer that transfers data to
local storage. The server is commanded by the Computerised Instrument Control And Data
Acquisition system - CICADA (Young et al. 1999), built by ANU for all SSO instruments.
Finally, the Telescope Automation and Remote Observing System - TAROS (Wilson et al.
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2005), controls CICADA to configure the instrument and acquire the required exposure.

Figure 2.4: Spectral response of SkyMapper science CCDs (Keller et al. 2007).

2.2 Photometric Calibration

We now turn to the problematic of photometric calibration, the core of this thesis work.
We discuss briefly the motivation for improving the flux calibration of future imagers. We
then present successively the standard calibration techniques, based on the observation of
standard stars. In a last section, we present the current efforts, inside the community, to
develop an alternate calibration chain, anchor on the modern flux metrology techniques.

2.2.1 Motivations for Photometric Calibration

The measurement of the cosmological parameters, in particular, the Dark Energy Equation
of state parameter with Type Ia Supernovae is now dominated by systematic uncertainties.
The good news, however, is that the dominant (by far) contribution to the systematic error
budget is the photometric calibration of the imagers, used to follow the flux of the SNe Ia.
Improving the precision of the recent SNLS measurement of w (e.g. Conley et al. 2011,
Sullivan et al. 2011) requires improving the accuracy of the calibration of MegaCam.

Why is photometric calibration so important in SN cosmology ? Let’s have a look at
figure 2.5. It shows the spectra of several supernovae at different redshifts. The cosmological
information is extracted from the comparison of the restframe flux of the nearby and distant
supernovae, i.e. the integral of an (arbitrary) reference region of the spectrum. In general,
one choose the restframe-B band (the spectral regions overlined in blue on the figure).
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Figure 2.5: SN Ia spectra at various redshifts. The shaded areas represent the imager pass-
band. The distance estimate is generally chosen as the integral of the SN spectrum in the
rest-frame B-band (Regnault 2013).

The shaded areas on the figure represent the imager passbands. What the observer
actually measures are the integrals of the SN spectra in those passbands. From these mea-
surements, the core of the cosmology analysis consists in (1) infering the SN restframe B-flux
from the observer frame measurements (using a spectrophotometric model of the supernovae)
and (2) intercalibrating the fluxes measured in the bluer and redder bands of the imagers.

This intercalibration step is essential as the SN restframe B-band flux is not inferred
from the same imager passbands, depending on whether the SN is nearby or distant. Hence,
any error on the intercalibration of the telescope passbands will translate into a redshift
dependent bias on the SN distance estimates, and therefore, into a bias on the cosmological
measurements.

As we see, what is essential for supernova cosmology, is to make sure that the fluxes
measured in the blue and red bands of the imagers are measured in the same units. On the
other hand, it is not necessary to perform an accurate absolute calibration of the instrument,
since the cosmology is actually insensitive to the absolute flux scale.

The traditional flux calibration techniques in use today are based on the observations
of absolute stellar spectrophotometric standards. In the next section, we review the main
standards in use today.

2.2.2 Primary Standards

Vega The α Lyrae star has been the primary standard for years. In the 60s and 70s, there
have been many attempts to calibrate its spectrum using laboratory sources (see Hayes 1985;
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and references therein). The precision of the flux standards was not what it is today, and
the precision on the (relative) colour calibration is estimated to be of about 1%.

Unfortunately, Vega is too bright and cannot be observed with large telescopes. For
example it is about 10, 000 times brighter than the magnitude 10 stars that themselves can
be observed only by defocussing the telescope and reducing the exposition to a fraction of
a second. As a consequence, people have been relying on increasing long and complicated
metrology chains (e.g. Landolt (1992) → Landolt (1983) → Landolt (1973) → Johnson and
Morgan (1953)) to tie their science images to the flux scale of Vega (which they could not
observe themselves). This metrology chain is today considered as broken (Regnault et al.
2009, Betoule et al. 2013).

DA White Dwarfs Model Another approach, first proposed to Finley and Koester (Finley
and Koester 1991) is to rely on primary standards whose spectral energy distribution (SED)
can be modelled. In particular, hot DA (pure hydrogen) white dwarfs have reputedly a
simple atmosphere that contains only pure hydrogen, and very few heavier elements. As a
consequence, modelling their atmosphere relies on the physics of only one element (H) and
one can predict their SED with a good accuracy.

Several stellar atmosphere codes are in use today: ATLAS (Kurucz 1993) calculates a 1D,
plane-parallel, horizontally homogeneous stellar atmospheres, in radiative and hydrostatic
equilibrium (LTE). TLUSTY (Hubeny and Lanz 1995) makes essentially identical assump-
tions for NLTE atmospheres, PHOENIX (Hauschildt and Baron 1995) is a multi-purpose
stellar atmosphere code, developed initially for modelling novae and supernovae.

The most interesting feature of stellar models is that they depend on a very small number
of parameters, specifically, the temperature of the star, its surface gravity and its metallicity.
These parameters can be inferred from the profile of the spectral lines of the stars (e.g.
for white dwarfs, the Balmer lines). As a consequence, they can be estimated from high-
resolution spectroscopy of a few selected spectral features, and then injected into the model
that predicts the entire SED of the star, from the far-UV to the infra-red.

CALSPEC The need for high-accuracy flux standards, valid from the far-UV to the infra-
red has become stronger and stronger, with the advent of the Hubble Space Telescope (HST).
For this reason, the HST community started implementing the program described above in
the early 1990’s.

This calibration program is now called CALSPEC 5 and its goal is to define an accurate
“white dwarf flux scale” and to establish a set of spectrophotometric standards anchored on
this flux scale. The program has selected 3 white dwarfs as primary standards candidates,
derived synthetic SEDs using the TLUSTY model atmosphere code, and used them to cal-
ibrated the HST instruments, notably the STIS spectrograph (in the visible), and NICMOS
the NIR spectro-imager. These two instruments have been used in turn to expand the HST
flux scale to a larger number of fainter objects that can be observed with large modern
telescopes.

5see http://www.stsci.edu/hst/observatory/cdbs/calspec.html
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As of today, CALSPEC seems to be the only set spectrophotometric standards with
a traceable calibration chain. As a consequence, most cosmological surveys than need an
accurate calibration are anchored on the white dwarf flux scale.

However, the CALSPEC flux standards are themselves affected by uncertainties, which
have two origins. First, there are uncertainties which are related to the finite repeatability
of HST, in particular due to the fact that due to a finite pointing precision, even with a large
slit, the flux losses affecting a same star vary from one epoch to another. These uncertainties
can be estimated from repeated measurements of a same object (e.g. Regnault et al. 2009).
They are of a few mmags, and decrease with the number of epochs.

Another source of uncertainty come from the stellar atmosphere models. Indeed, even DA
white dwarfs are complex objects, and the modeling systematics that affect the CALSPEC
flux scale are actually difficult –if not impossible– to estimate with precision. Accepted
values are in the range 3 mmag < σg−z < 8 mmag.

The calibration of SNLS and SDSS As an example, the SNLS and SDSS supernova sur-
veys, the two major contributors to the SN Ia Hubble diagram have invested a lot a effort
into anchoring their calibration on the HST flux scale (Holtzman et al. 2008, Regnault et al.
2009). Until recently, their uncertainty budget was dominated by the sophisticated calibra-
tion chain they had to set up in order to link their science observation to the CALSPEC
standards. In 2010, the two surveys joined forces and launched an ambitious intercalibra-
tion program. In particular, they managed to build four redundant calibration chains from
their respective science images to a series of CALPSEC stars. This allowed them to push
the uncertainty of the transfer of the CALSPEC flux scale to the survey images down to
unprecedented levels of ∼ 3 mmags (Betoule et al. 2013), on par with the CALSPEC error
budget. As a result, it is now time to start challenging the HST flux scale if we want to
improve further the calibration of future surveys.

2.3 Instrumental Calibration

Despite tremendous progress, we see that the accuracy of the fundamental flux standards is
still slightly uncertain, this uncertainty being itself uncertain (σg−z ∼ 3 − 8 mmag). This
was not a problem when the calibration of wide field instruments by uncertainties in the
metrology chain, linking the primary standard to the science images. It is starting to be a
problem now that these uncertainties are as low as ∼ 3 mmag.

In this context, several groups have proposed alternatives to the current stellar calibra-
tion techniques. In particular, they have proposed to build upon the new detector based
flux metrology techniques, accurate at the 0.1%-level and to anchor the flux calibration of
modern instruments to the calibration chain developed and maintained at NIST (Larason
and Houston 2008).
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2.3.1 Metrology Chain

Before the introduction of Silicon photodiodes, instrumental calibration were performed using
Pt or Cu ovens emulating blackbody radiation. These calibrators were heavy, difficult to
control and were precise at the 1-2% level. Everything changed with the advent of Silicon
photodiodes, which are small, stable, compact and inexpensive detectors, sensitive from the
UV to the near-IR with an average accuracy of ∼ 0.2%. At about the same time, the NIST
flux metrology chain evolved, from source based standards (i.e. ovens) to detector based
standards (figure 2.6).

The new primary standard maintained at NIST is an electrical substitution cryogenic
radiometer, called the Primary Optical Watt Reference (POWR Houston and Rice 2006).
POWR is used to calibrate a laser source called SIRCUS (Brown et al. 2006). The SIRCUS
calibration is then transferred to a set of photodiodes. Finally the calibration carried by
these photodiodes is then finally transferred to the client photodiodes at the Spectral Irradi-
ance Facility (SCF), which operates a large set of lamp and monochromator based sources.
The reported accuracy of POWR is of a few 10−4. The accuracy of the client photodiode
calibration if of about 0.2% in the visible and almost 1% in the UV and the near-IR.

Several photodiodes are used to disseminate the NIST calibration. We use the Hama-
matsu S22816, which is a large area photodiode, with a good sensitivity from the UV to the
near-IR. Today, almost all proposed alternatives to stellar calibration (including our project)
anchor themselves to the calibration chain represented on figure 2.6, and implement the two
steps represented on figure 2.7. In the remaining of this section, we review some of these
projects.

2.3.2 Instrumental Calibration Projects

ACCESS

The Absolute Colour Calibration Experiment for Standard Stars ACCESS (Kaiser et al.
2010), is constructing a small rocket telescope of ∼ 40 cm, equipped with a low-resolution
spectrograph. The goal is to calibrated the telescope+spectrograph ensemble directly at the
SIRCUS facility and observe, during a series of flights a handful of bright stars 0 < V < 10
in the 350 − 1700 nm range. The targeted accuracy should be . 1%. ACCESS have chosen
to use a rocket borne telescope to reach an altitude of > 100 km in order to avoid the
absorption lines from OH radicals, those lines affecting in particular near-IR observations.
It also allows them to avoid UV absorption from the atmosphere. The target stars have
been selected using two criteria: either they have been already used as primary standards
by previous surveys (this is the case for bright historical standards, such as Vega or Sirius),
and they possess a simple atmosphere, with as few absorption features as possible.

As the ballistic flights are short (400 sec of usable time), the target stars are all very
bright. As a result, ACCESS will rely heavily on HST observations, to bridge the gap
between the 0 < V < 10 magnitude range and the V > 15 range that can be observed with
modern telescopes.

6see http://www.nist.gov/calibrations/
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Figure 2.6: NIST metrology chain (Regnault 2013).

NIST Standard Star Network

NIST institute is funding a similar project but with a small (10-cm) ground based telescope,
equipped with a spectrophotometer, (called AESoP) (McGraw et al. 2012). The plan is to
calibrate the telescope+instrument together, using an artificial source (calibrated at NIST),
and to monitor the telescope + atmosphere system using another distant calibrated source.
The goal of the project is to establish a series of spectrophotometric standard stars, charac-
terised with an accuracy of ∼ 1%. Again, these are bright stars, in the 0 < V < 5 magnitude
range.

In any case, with the help of HST, both projects will permit a direct comparison of the HST
and NIST flux scales, which is an invaluable piece of information. However, they will not
relieve survey calibrators from monitoring their instrument (in particular their passbands).
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(b)

NIST Hamamatsu−S2281

Sn/Sky DICE

MegaCam / SkyMapper

(a)

Figure 2.7: DICE metrology chain.

SDSS Calibration

The main purpose of system described in Doi et al. (2010) and installed on the SDSS 2.5 m
telescope at Apache Point Observatory is to measure the imager passbands “in situ”, and to
monitor them over the life of the survey. The source is a lamp coupled to a monochromator
and an integrating sphere. The flux is monitored in real time by a calibrated Hamamatsu
photodiode. The source hits the camera from a position close to the cryostat window. Several
measurements campaigns have been conducted to measure the SDSS passbands, as well as
the passbands of the auxiliary “Photometric Telescope” which is used to complement the
SDSS observations with calibration patches.

Wavelength uncertainties are dominated by the monochromator resolution (±3 Å), and by
the fact that the system can not reproduce the exact beam geometry and angular distribution.
An important result of this calibration system is the demonstration of a slow degradation
in the imager response during its life-time, directly affecting the accuracy of photometric
measurements. The work also demonstrated that telescope passbands are not stable as we
thought, and that ageing comes out as a major problem for calibration in the era of 0.1%
accuracy. A regular precision monitoring of the telescope response must be implemented if
one seeks to do precision cosmology with future surveys.

ESSENCE and PanSTARRS

The device designed and built by the Harvard team led by C. Stubbs (Stubbs et al. 2010), is
composed of a large flat field screen fed with a tuneable laser, and monitored in real time by
an Hamamatsu Si photodiode calibrated at NIST. This light source illuminates the telescope
aperture, generating a diffuse and uniform illumination on the focal plane. Demonstrators
were installed at the Blanco 4.2 m telescope (Cerro-Tololo) to calibrate the Mosaic-II imager,
and at the PanSTARRS telescope (Hawaii) to calibrate the 3 sq. deg. Giga pixel camera.
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The wavelength uncertainties of filters are of about 2 Å, which fit very well with general
specifications for current dark energy surveys. This project is slightly more advanced that its
competitors, as it has been able to compare directly its instrumental calibration with a stellar
calibration. However, they observed a disappointing 5% discrepancy between both, which
they attribute to systematic errors affecting their flux measurements. Several sources of
systematics have been found that dominate their error budget. The non perfect uniformity
of the screen and pollution of the calibration frames by stray light are two of the most
important ones.

The DICE Experiment

All systems describe above are only a part of the next generation of calibrators that will be
installed on modern telescopes and future survey projects. There even more projects that we
did not talk about, like the DECCal calibrator (Rheault et al. 2010), built for DEC (Dark
Energy Camera).

Our laboratory (LPNHE), proposed a new light source design, based on LEDs (Barrelet
and Juramy 2008). It was called Direct Illumination Calibration Experiment (DICE). As of
today, two demonstrators have been built and installed, one at the Canada France Hawaii
Telescope (Hawaii - USA), and the other in the enclosure of the SkyMapper Telescope at
Siding Spring Observatory (Australia). These two systems are the core of the next part of
the thesis. In the next chapter we discuss the design and implementation of SkyDICE, the
second generation light source.
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Chapter 3

The DICE Calibration System

The goal of the DICE system (Direct Illumination Calibration Experiment), is to calibrate
wide field imagers with a precision of a few per mil. A first demonstrator, called SnDICE
(Supernova DICE), was designed and built in 2007, then installed in 2008 at the Canada
France Hawaii Telescope (CFHT). A twin copy was also built, so that we could test and
monitor the device in our laboratory over long durations. For a detailed description of the
SnDICE project see the thesis work of Guyonnet (2012) and Villa (2012).

In 2011-2012, a second generation instrument, called SkyDICE (SkyMapper DICE), was
built and installed at the Siding Spring Observatory inside the enclosure of the SkyMapper
telescope (see section §2.1 on chapter 2). The design of SkyDICE is very similar to that of
SnDICE, besides a few key improvements that were added from the lessons learned operating
SnDICE.

In this chapter we describe the principles that have guided the design of the DICE
calibration source (§3.1 and §3.2), and we give an overview about the physics of our source
of calibration. We then describe the internals of DICE systems, with a particular emphasis
on SkyDICE in§3.3. Finally, in §3.4, we introduce the Data Acquisition System (DAQ), and
we describe how SkyDICE is interfaced with the telescope control system.

3.1 Goals of the DICE system

DICE was designed with three goals in mind. First, we wanted to build a stable source that
would allow us to monitor the imager, follow the small fluctuations of the readout gains,
and also follow the slower degradation of the telescope throughput. Second, we wanted to
be able to monitor the telescope passbands, in particular, to detect any alteration of the
passband fronts. Finally, we wanted to anchor the calibration of the telescope to the modern
flux metrology chain defined by the Institutes of Standards, and maintained primarily by
NIST.
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3.1.1 Monitoring

On most imager, the gains of the CCD readout chain are not perfectly stable, and display
fluctuations at a level of 1 − 2h. Gain variations are easily absorbed into the imager zero
points, which are determined nightly with observations of stable stellar calibrators. On
wide field imagers, though, they have an impact on the flat field solution. With the advent
of segmented CCDs which are read through multiple readout channels, there is a stronger
incentive to monitor the gains in real time, with a dedicated instrument.

Also, the thought-put of a telescope degrades slowly over time, because of dust deposits
on the optical surfaces (especially the mirror) and normal ageing of the optical coatings.
Several authors have reported significant changes of the effective passband of their telescope
(e.g. Doi et al. (2010), Betoule et al. (2013)). Again, the calibration requirements on modern
imagers make it necessary to follow precisely these degradations.

3.1.2 Flat-Fielding

Another problem is the control of the uniformity of the imager photometric response as a
function of the position on the focal plane. This can be seen in the MegaCam CCDs mosaic,
where the difference between the centre of the focal plane and corners are of about ∼ 10%
(Betoule et al. 2013). Much of these non-uniformities are due to flat pollution by stray-light.
In practice, they are mapped using dithered observations of dense stellar fields. But this
approach costly in terms of observation time, and the technique is very sensitive to image
quality and absorption variations along the dithering sequence. Mapping these effects with
a controlled illumination, which would permit to distinguish between direct light and stray
light would be extremely helpful.

3.1.3 Flux Calibration

Now, the main goal of DICE is the flux calibration of the broadband imagers used to measure
the SN Ia luminosity distances. More precisely we want to secure the inter-calibration of the
effective passbands of the telescope. As discussed in chapter 2, it is a fundamental ingredient
of SN Ia cosmology. The techniques in use today rely on stellar models, and an important
on-going project in the community is to anchor the flux calibration of modern telescopes on
the flux metrology chain maintained at NIST.

DICE is therefore a light source designed to transfer the flux calibration carried by a
calibrated light detector (a photodiode calibrated at NIST) to another light detector (the
focal plane of the telescope).

Figure 3.1 summarises our goals regarding flux calibration. First, we need to follow
precisely the relative normalisation of the telescope passbands (the blue arrows). These
normalisation however are not enough, as the shape of the telescope passbands, in particular,
their positioning is wavelength may evolve with time. As a consequence, we also need to
monitor, at the very least, the absolute positions of the filter cutoffs (the red arrows). The
are the main calibration variables we want to extract from DICE calibration frames.
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Figure 3.1: Calibration variables monitored by DICE: passband normalizations and filter
cutoffs.

3.2 Design Principles

In this section we discuss the ideas that have guided the design of DICE. In particular we
describe the calibration beam, the stability requirements of the source, and the choice of the
light emitters.

3.2.1 DICE Calibration Beam

Beam Geometry Ideally, a calibration device should mimic as much as possible the science
objects under study. Since a supernova survey is dealing with point sources (supernovae and
field stars), we should try and generate quasi-parallel beams, covering the entirety of the
primary mirror (see figure 3.2). Such a beam would result in a spot on the focal plane,
and we could use the photometry code in production in the survey photometry pipeline to
estimate its flux, thereby avoiding the systematic errors that arise from using different flux
estimators.

Unfortunately, it is very difficult to emulate a good artificial star, especially in the small
volume of a telescope enclosure. As a consequence, we opted for a totally different design.

The DICE calibration beam is presented on figure 3.2. DICE is a point source, placed
at a finite distance to the telescope entrance pupil. As can be seen, the DICE beam is the
conjugate of the typical science beam. What is emitted is a conical (divergent) beam, and the
optics transforms it into a quasi-parallel beam, that generates a quasi-uniform illumination
on the focal plane. The aperture of the beam is chosen taking into account the field of view
of the imager, the goal being to illuminate quasi-uniformly the focal plane. For example for
the SnDICE version, because MegaCam has a FoW of about 1 sq. deg., we opted for an
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aperture of the beam of about ≃ 2◦. The FoW of SkyMapper is bigger and this fact drove
us to adopt an aperture ≃ 3.2◦.

Figure 3.2: (Left) - Standard telescope illumination with a point source. (Right) - DICE
calibration beam (Regnault et al. 2012).

As shown on figure 3.2, the calibration beam is radically different from the science beam.
In particular, the angular distribution of the light rays that hit the various optical surfaces
is not comparable. It also differs from the beams generated by alternate devices designed
by other groups who use a diffusive screen to re-emit the light is all directions (Stubbs et al.
2010, Rheault et al. 2010). We adopted this beam design for at least two reasons.

Direct Illumination First, this light beam is extremely simple to generate. It requires just
a point source, and some baffling to shape a conical beam. In particular, no intermediate
optical elements (monochromator, folding mirror etc.) subject to ageing need to be placed
between the light emitter and the telescope entrance pupil. This design is extremely simple,
easy to implement, easy to maintain, and reduces greatly the number of optical surfaces to
monitor over the life of the source.

Beam Model Another nice property of the beam is that it is compact, easy to characterise
with a photodiode, and easy to model. Furthermore, the structure of the beam is much
simpler than that of the science beam, in the sense that each pixel sees photons that came
through a unique path. In other terms, there is a one-to-one relationship between the focal
plane elementary surface elements and the calibration beam elementary solid angles. It is
therefore quite simple to predict the focal plane illumination at position x, φ(x), once one
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knows the beam radiant intensity, B(u) (i.e. the power emitted per unit solid angle in
direction u:

φ(x) = B(u) × T (x) ×
∣

∣

∣

∣

∂x

∂u

∣

∣

∣

∣

(3.1)

T (~x) is the imager response function at position ~x , and
∣
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∣
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∣

∣
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∣

is the geometrical response of

the optical system. The latter can be calculated using a ray-tracing model of the optics (see
e.g. appendix A).

3.2.2 Light Emitters

Narrow-spectrum light emitting diodes (LED) were chosen as light emitters. LEDs are known
to be extremely stable, as long as they are fed with stable currents. It it is relatively easy
today to build current sources stable at a few 10−5 over a temperature range of a few degrees,
therefore, with some care, it is relatively easy to build a LED-based light source that can
deliver very stable beams over long durations.

Light Emitting Diodes

A LED is a particular type of diode that uses a physical phenomenon called electrolumines-
cence. Some kind of materials, typically doped semiconductors, when they are stimulated
with an electrical power source, emit light in a narrow range of wavelengths; this phenomenon
occurring at room temperature. This is possible because of the radiative recombination that
occurs inside the depletion zone of the pn junction of the semiconductor.

Figure 3.3: Theoretical emission spectrum of a LED, see Schubert (2007).

Generally, radiative recombination happens in every semiconductors but the distinction
from a possible light emitter and a simple semiconductor is given by the their type of gap.
The are two possible gap: an indirect gap (i.e., the Si) where the radiative recombination is
mediated by phonons of the lattice structure producing no emissions, and direct gap where
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the radiative recombination creates a photon that can easily escape from the material. The
latter is the kind of gap that we want to create light emitting diodes.

This emission of light is caused by the injection of electrons through a direct polarised pn
junction of the LED. The emission of photons is created when the energy of the polarisation
is equal to the energy gap of the semiconducting material.

At that moment holes of the pn junction are radiatively recombined with electrons,
creating photons with the same energy of the energy gap. A LED stimulated by an external
current, can create a spontaneously emission of photons. The equation that governs the
typical I − V characteristic of a LED is the modified Shockley equation:

I − (V − IRs)
Rp

= Ise
(V −IRs)/(nikT )

where Rs and Rp are parasitic resistances, due to imperfection or non-radiative recombi-
nation, Is is the saturation current, and ni is the ideality factor and it generally spams from
a 0 to 2. For a perfect diode ni = 1. For the current work we also need to understand the
shape of the LED spectrum. Without entering inside the argument, we just need to remind
us the spectrum created by a LED. As we can see from the figure 3.3, a general LED spec-
trum is the product of two main physical distributions: one is the Boltzmann distribution
and the other is the density of states for carriers inside the junction. The emission intensity
I depends on the Density of State of electrons (holes) inside the junction well represented
by the law N(E) ∝

√

E − Eg, where Eg is the energy gap of the junction, and is limit by

the Boltzmann Distribution ∝ e−E/kT . The intensity and shape is directly depending to the
average temperature and to the current injected in the pn junction. Moreover the medium
peak wavelength of the spectrum (the central colour), slightly changes with the temperature
and current.

Wavelength Coverage

LEDs do not emit monochromatic light. The typical FWHM of a LED spectrum is of about
δλ/λ ∼ 5 − 7% (i.e. 20-nm to 50-nm). This means that we need 20 to 25 LEDs to cover
the entire visible spectrum (from 350-nm to 1100-nm). On figure 3.4, we show the sampling
that could be obtained with the first DICE prototype, built for MegaCam (figure 3.4a).
We also show, for comparison, what could be achieved four years later for SkyDICE, the
second prototype built to calibrate the SkyMapper imager (figure 3.4b). As can be seen, the
diversity of LEDs available on the market improved very significantly in the interval between
both projects. Today, combining the catalogs of the three main LED manufacturers, it is
possible in theory to cover the entire spectral range of silicon imagers, with about 1 LED
every 5-nm.

The LEDs was were selected for SkyDICE are listed in table 3.1. A similar table with
the SnDICE LEDs can be found in Guyonnet (2012) and Villa (2012).
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(a) MegaCam passband coverage (SnDICE) (b) SkyMapper passband coverage (SkyDICE)

Figure 3.4: (Left) - MegaCam passband sampling by SnDICE. (Right) - SkyMapper sampling
with SkyDICE LEDs.

Sensitivity to temperature

LEDs come with just one caveat: their emission properties vary with temperature. As
temperature increases, the LED emission efficiency drops by up to 0.5%/℃, and the mean
wavelength of the emitted light shifts red-wards by about 0.1 Å/℃. As will be seen in
chapter 4, these variations are generally linear and always extremely reproducible. As a
consequence, once each emitter has been well characterised, one only needs to implement a
real time follow-up of the source temperature to account for these effects.

3.3 Description of the DICE Device

We now describe the implementation of DICE, in particular the mechanical layout of the
system, as well as its control electronics. We wanted to build a source that would be modu-
lar and easy to install, with a stable and robust current generator. In what follows we will
describe the main parts of the system: the source and its mount (§3.3.1 and §3.3.2), the cali-
bration LED channels (§3.3.3), the off-axis control photodiodes (§3.3.4), the artificial planet
system (§3.3.5), the backend electronics (§3.3.6) and finally, the offline control photodiodes
(§3.3.7).

3.3.1 Mechanical Layout

A DICE source an assembly of anodised aluminium blocks, each pierced with 25 holes to let
the light through. In particular the blocks are identical and they permit to have a modular
system able to be configured for different telescopes and configurations. SnDICE is made of
8 of those blocks. SkyDICE which generates a wider beam is shorter and is made of 5 blocks
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Figure 3.5: 3-dimensional view of the illumination system. Two DC-MOTORS (1). The
LED head (2). The front face of the device (3) displays 24 holes. The lens is mounted on
a tip-tilt support (4). A linear motor (5) permits to shift the lens along the optical axis to
adjust the focus. The lens arm is mounted on a manual X-Y plate (6). The planet LEDs
are mounted on a board (7) placed behind the radiator (8). This board can slide linearly (9).
A webcam (10) is mounted on the device. The LED and control photodiodes are mounted
on two boards located on the back and front of the device. These board are connected to the
backend electronics with two flat cables (11).

only.
Figures 3.5 and 3.6 show the mechanical layout of the SkyDICE source. This LED-head

is a 13 × 15 × 22.7 cm box, hooked on a motorised structure, itself attached to one of the
telescope dome arch-beams. It can rotate around two axes, so that its optical axis can be
aligned with the telescope axis. The full device, including the cables has a total weight of
∼ 15 kg. The head itself, with the small auxiliary motors that control the position of the
planet-LED weights ∼ 8 kg.

The LEDs are located on the back of the device. They are glued to a radiator whose
main function is to thermalise them. The calibration beams exit through � 9-mm apertures
located on the front face of the source. This design permit to generate conical beams, whose
aperture is determined by the distance between the LEDs and the front face. The additional
elements that can be seen on figure 3.5 are described in the next sections.
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3.3.2 Mount System

During operations, the DICE system scans a selected fraction of the telescope primary mirror.
This is done by moving simultaneously the telescope and the LED head between exposures.

The illumination system may be rotated around an altitude axis and an azimuth axis
using two remote-controlled DC motors (AXMO 16200ENS001)1. The mount itself has an
L-shape made of aluminium, holding the two motors and attached to a ELCOMő structure,
finally fixed to the dome. The position and orientation of the rotation axes have been chosen
to minimise the torque-force on the motor axes. The LED head is balanced with the vertical
axis, so that the residual torque force is almost zero. On the horizontal axis we have detected
a small residual torque, but it does not add errors on motors control.

The system needs to cover approximately a range of ∼ 20° in azimuth and ∼ 15° in
altitude. Motor stops are implemented, in order to reduce the range of possible orientations
and errors from users and to give us a origin position for both axes. Since there is no reason
to drastically limit the device motion, we target a range of 180° in azimuth and [−80° ; +25°]
in altitude.

The isotropic beams are generated by � 5 mm holes placed in front of each LED. The
light propagates from the LED board to the front side through ∼ 150 mm long tubes drilled
in the LED head structure. As we said before different masks are superimposed in every
blocks to shape the beam and to eliminate any possible stray light. The front side aperture
of each channel is 9 mm hole. For the SkyDICE version the beam has an aperture θ ≃ 3.42°
and covers a solid angle dΩ = 0.0028 sr. Finally, a radiator is fixed on the back of the
LED-head, directly connected with LED board. This simple system is used to cool down the
temperature of LEDs.

3.3.3 Calibration Beams

Figure 3.7 presents a sketch of the LED beam seen from the inside of the device. From right
to left we have the LED board where diodes are physically mounted. The light generated
passes through a first mask: this mask has the role to eliminate stray light from the LED
board, and to shape the beam.

An anodised mask pierced with �2-mm holes (one for each LED) is inserted just after
the LED board, in order to prevent stray light pollution. After this first mask, the beam
passes in different aluminium blocks. These blocks are anodised and painted in black to
eliminate parasite light and internal reflections. Furthermore, anodised, circular masks are
inserted between the aluminium blocks, to help shaping the beam and eliminate stray light.

Each hole has an elongated shape (13×23 mm). This permits to place an off-axis control
photodiode in each LED channel, in order to monitor in real time the light delivered by the
source. These photodiodes are built to provide us with an independent measurement of the
flux delivered by LEDs.

At first order, LEDs are Lambertian emitters. The beam that comes out of the LED
board is quasi-Lambertian, but nevertheless presents small fluctuations of ∼ 1%. Those

1see http://www.axmo.fr/
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variations has created by:

1. residual stray light,

2. small imperfections on the holes shape,

3. imperfect centring of the LEDs, during the soldering procedure.

3.3.4 Off-Axis Control Photodiodes

Another component of the DICE project are the off-axis control photodiodes. These elec-
tronics devices are necessary to monitor the flux of LEDs during operations. This task is
extremely important because, as we said, the beam is not perfectly uniform and the intensity
varies with temperature. As we will see in chapter 5, monitoring the beam before it hits the
mirror and the focal plane of the telescope, help us to control the stability of each source.

Figure 3.7: Layout of the LED beam projection inside the DICE system.

For our purpose, we adopted a set of 24 Hamamatsu S2387 Si photodiodes2, with a pass-
band from 320-nm to 1100-nm. These are multipurpose photodiodes with a good efficiency
(especially in the UV) and a small temperature coefficient along all the passband. Finally,
all 24 LEDs are mounted on a front-end board connected to the electronics of control by a
flat and flexible cable.

3.3.5 The Artificial Planet

As the calibration beam is compact and illuminates only a small fraction of the mirror, it
is necessary to control the alignment of the telescope and the source. This is done with a
special pencil beam generated with a white LED, and called the artificial planet. Such a

2see http://www.hamamatsu.com/us/en/product/category/3100/4001/4103/S2387-1010R/index.

html
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3.3. DESCRIPTION OF THE DICE DEVICE

LED Type 〈λp〉 Ivendor
max SkyMapper LED

Passband Number
UVTOP315-FW-TO39a 320 nm 20 mA u 8
UVTOP335-FW-TO39a 340 nm 20 mA u 21

APG2C1-365-S a 365 nm 350 mA u, v 2
APG2C1-385a 385 nm 350 mA u, v 23
APG2C1-395a 395 nm 350 mA v, g 3
APG2C1-420a 420 nm 350 mA v, g 22
LD W5AMb 450 nm 500 mA g 4
LB W5SMb 465 nm 500 mA g 17
LV W5AMb 512 nm 500 mA g, r 5
LT W5SMb 525 nm 500 mA g, r 24
LT W5AMb 550 nm 500 mA g, r 6
LY W5SMb 590 nm 500 mA g, r 20
LA W5SMb 625 nm 500 mA g, r 7

APG2C1-660a 660 nm 500 mA g, r 18
APG2C1-690a 690 nm 500 mA r 1
APG2C1-720a 720 nm 500 mA r, i 16
APG2C1-760a 760 nm 500 mA i 15
APG2C1-810a 810 nm 500 mA i, z 10
APG2C1-830a 830 nm 500 mA i, z 19
APG2C1-850a 850 nm 500 mA i, z 12

SFH421b 880 nm 100 mA z 13
APG2C1-905a 905 nm 500 mA z 9
APG2C1-940a 940 nm 500 mA z 14
APG2C1-970a 970 nm 500 mA z 11
Planet LEDs

APG2C1-365-S a 365 nm 350 mA u, v
APG2C1-395a 395 nm 350 mA v, g
LB W5SMb 465 nm 500 mA g
LY W5SMb 590 nm 500 mA g, r
ZW W5AMb white 500 mA u, v, g, r, i, z 29
LA W5SMb 625 nm 500 mA g, r

APG2C1-720a 720 nm 500 mA r, i
SFH4230b 850 nm 1000 mA z

APG2C1-940a 940 nm 500 mA z

a - UV and IR LEDs, see http://www.roithner-laser.com/.
b - Visible and IR Golden Dragon, see http://www.osram-os.com/

osram_os/en/.

Table 3.1: SkyDICE LEDs. The table shows the type, the central wavelength, the maximum
current and the corresponding SkyMapper filters.
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3.3. DESCRIPTION OF THE DICE DEVICE

beam results in a spot on the focal plane, and the position on this spot tells us about the
angle between the planet beam and the telescope optical axis.

To generate the pencil beam we use a smaller (�10 µm) mask, to emulate a point source,
and we place a convergent lens in front of the mask (at the focal distance). This generates a
quasi-parallel beam, as shown on figure 3.8. The quality of the spot we obtain is quite good:
∼ 250 pixels for SnDICE (Guyonnet 2012, Villa 2012; and), ∼ 100 pixels for SkyDICE (see
chapter 7).

lens

parallel 

beam

micron mask

baffling

planet LED

f

Figure 3.8: Sketch of the artificial planet source path.

In the SnDICE experiment, when analysing the planet images we discovered that the
spot was followed by a set of ghosts due to reflections from filters glass and correction lenses
(see figure 3.9). We found that these ghosts could be used to estimate the reflectivity of
the various optical surfaces, hence to estimate the level of contamination of the calibration
frames by ghosts.

Pushed by this idea, we decided that we would equip SkyDICE with a new planet system
which could generate light at various wavelengths, so that we could test the reflectivity of the
optics over the full optical wavelength range. We constructed a LED board with 9 different
LEDs covering almost all the passband of SkyMapper camera (see table 3.1 at the end of
the chapter). The LEDs are selected by translating the board using a small motor fixed on
the back of the radiator.

An additional improvement of the system consisted in mounting the lens on a step motor,
so that its position can be translated remotely. The idea was to be able to adjust the focal
distance between the lens and the exit hole, and therefore to improve the quality of the
planet spots. The planet system and the focus system are represented on figure 3.5.

3.3.6 Electronics

The electronics, in particular, the LED current generation system is the last critical part of
the DICE system. It was entirely designed and built at LPNHE.
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Figure 3.9: Image taken from SnDICE data. We can clearly see the ghosts created by the
primary and secondary reflections of the DICE source through optics and the filter of the
CFHT telescope (Villa 2012).
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The electronics of DICE can be divided in two parts. First, we designed two passive
boards that hold respectively the calibration LEDs (on the back of the device) and the
off-axis control photodiodes (close to the front face). Figure 3.10 shows the LED board
mounted in its crate. Second, the current generation system, and the control photodiode
readout system are all implemented on an external board call the “backend board”. This
board is connected on one hand to the LED head with a flat cable, and on the other hand
to a control PC, with a standard USB link.

golden dragon

APG2C1

Figure 3.10: (Left) - SkyDICE main LEDs board with all 24 sources positioned. The hole
at the centre is the place of the artificial planet. (Right) - CAD drawing of the same circuit
board.

The backend board is equipped with a FPGA circuit, which allows it to interact with the
control PC. It can set the level of the LED current, measure and digitise the current that
passes through a given LED, measure and digitise other useful observables such as (1) the
reference voltage of the circuit Vref , (2) the backend temperature, (3) the temperature of
the PT1000 thermistor mounted on the LED-head radiator, the off-axis control photodiode
currents Iphd. The digits are stored on board in a 16MB buffer and sent on request to the
control PC.

The most important part of the backend control circuit is the LED current generator
(see figure 3.11). This current source has a stability of 10−4 over the all range of working
temperature (usually 0 − 20 ◦C) . Technically speaking is a transistor current source with a
programmable voltage level. The stabilisation of the source is done by a negative feedback
loop. The voltage level is sampled by another 16 bit ADC, directly implemented in the circuit.
The accuracy of the backend control system gives an output LED flux with a stability around
10−5.
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Figure 3.11: LED current generator and its feedback circuit.

3.3.7 Cooled Large Area Photodiode (CLAP)

DICE is constructed to be a very redundant device, with different levels of monitoring
systems, but it lacks an external independent system that would monitor in real-time the
light actually delivered by the source on the primary mirror. To close the chain, for both
SnDICE and SkyDICE, we built an external device called CLAP. This system is an external
calibrated photodiode mounted next to the primary mirror and used to control the flux that
hits the mirror before it enters the optical path of the telescope.

The chosen device is an Hamamatsu S3477-043 photodiode coupled to a ultra-low noise
current amplifier designed at LPNHE, and implemented as an ASIC. To increase its sensitiv-
ity, the photodiode is polarised in reverse and operated in photoelectric mode. It is coupled
to a small Peltier effect, which allows one to operate it around −20℃, hence reducing very
significantly the dark current when the photodiode is polarised in reverse. Then all the sys-
tem is connected with a backend circuit which samples and digitises the signal. The CLAP
module has been extensively used during the test-bench and stability tests. Several CLAP
modules have been sold to others research group in Europe.

3.4 Data Acquisition System & Operation

Finally, we discuss the implementation of the SkyDICE Data Acquisition System (DAQ),
and its interface with the SkyMapper DAQ (CICADA & TAROS protocol).

The control system is composed of three elements: the two boxes containing the LED head
backend electronics and the CLAP control and sampling system, an external box containing
the SkyDICE motor controllers, and two dedicated PC104s to control the whole system.

3see http://www.hamamatsu.com/jp/en/index.html
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3.4. DATA ACQUISITION SYSTEM & OPERATION

All the subsystems (LED and CLAP backends, and motor controllers) are connected to the
PC104s through USB links. Those PCs communicate with the SkyMapper Data Acquisition
System (DAQ) via an ethernet cable.

3.4.1 Data Acquisition (DAQ) Architecture

The diagram on figure 3.12 illustrates how the system works. There are two subsystems: the
LED head system, attached to the telescope dome, and the CLAP subsystem, mounted on
the telescope. Both are controlled with a PC104, connected to the SkyMapper DAQ with
an ethernet link.

Each PC104 runs a dedicated server which interacts with the DAQ with a simple, high-
level protocol (XML-RPC). The LEAD-head server controls the four motors (the alt/az
rotation motors, and the planet LED and focus motors) and the LED backend electronics.
A second server runs on the PC which operates the CLAP subsystem.

Both servers are under the control of the SkyMapper DAQ system (Young et al. 1999),
which coordinates data taking. It executes orders sent through CICADA, such as (1) ori-
entation of the LED head (2) LED current configuration and control (3) retrieval of the
monitoring data (control photodiode fluxes, LED currents and temperatures).

3.4.2 Standard Operation Protocol

SkyDICE is built to work during day time. This model has two advantages: first we do not
use the telescope night time which is expensive. Also, because calibration is done during the
day, SkyDICE can have the full control of the telescope and take a larger amount of data.

In a typical calibration session the dome tracking system is disconnected and and the
dome aperture closed. In the case of SkyMapper, all the surface of the telescope enclosure is
covered by a grey foam but is not perfectly dark. As a consequence, there is some amount
of stray light, which we have to account for, as will be discussed in chapter 7. Then we align
the SkyDICE + telescope system to allow the LEDs source to point directly into the primary
mirror. This alignment is done using the planet beam as a reference spot in the focal plane
of the telescope. A perfect alignment is reached when the planet-spot is placed at the centre
of the CCD mosaic. We then take exposures, altering the LED and the filters, and we store
them into the main server of the SkyMapper telescope. Then we move again the telescope
to cover a different area of the mirror and we take again a series of exposures. We iterate
until the end of the run.
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Chapter 4

SkyDICE Test Bench

The main goal of the test bench studies is to transfer the calibration carried by the NIST
photodiode to the light source. In practice, this means that we will characterise the emissivity
of each LED using the NIST photodiode as our primary flux standard.

The physical quantity which describes the emissivity of a point source is its spectral
intensity, S(λ, ~u). It is defined as the power emitted by the source, per unit wavelength and
per unit solid angle (at a given wavelength λ and in a given direction ~u). As the properties of
many of the SkyDICE LEDs are sensitive to temperature, we expect S to be also a function
of the temperature T of the source: S(λ, T , ~u).

In this chapter, we describe the measurements that will allow us later to build a model
of the spectral emissivity of each LED. In the first section (§4.1), we define the spectropho-
tometric quantities we want to measure. We then describe the layout of the test bench
(§4.2).

As I spend a significant fraction of my time automating the test bench, and getting it
to work properly, I will describe in some detail the instrumentation, and the improvements
I was able to obtain implementing a fully automated measurement protocol. In the second
and third sections, §4.3 and §4.4, we present the test bench configuration for photometric
and spectroscopic data taken during the 2012 calibration run. Finally we describe the pre-
analysis study of the test bench data I did shortly after the data was taken. It is much more
succinct than what will be presented in chapter 6 but gives a good sense of how the data
looks like.

4.1 Definitions

S(λ, T , ~u) depends on 4 parameters. This is a lot, especially if we want to calibrate the
source at several temperatures. For this work, we have assumed that the spectral intensity
of all the LEDs which equip the DICE light sources can be written as:

S(λ, T ) × B(~u) (4.1)

where S is the spectral intensity of the LED, in an (arbitrary) reference direction, while
B(~u) is a dimensionless function, which accounts for the variations of the beam intensity as
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a function of the angle of emission. B(~u) is normalised to 1 in the reference direction.
In what follows, we refer to S(λ, T ) as the the LED “spectrum”, keeping in mind that

it is actually a spectral intensity. Following the usage in astronomy, we choose to express
S in erg/s/Å/sr. The dimensionless quantity B(~u) is called the “beam map”. In the next
sections, we report on the measurement of these two components.

There are two key quantities, the calibration of the light source is performed in two
distinct steps. The beam maps B can be measured simply by intercepting the beam with a
calibrated photodiode placed at a known distance from the source, and moved with respect
to the source, in order to sample the whole beam. The measurement of S is a little more
complex. We need to perform spectroscopic measurements, by inserting a monochromator
between the source and the calibrated photodiode.

4.1.1 Beam maps

The radiant intensity of each calibration beam is mapped by moving the standard photodiode
in a series of planes orthogonal to the Z-axis. These calibration sequences, called hereafter
“photometric calibration sequences” are performed at about 10 to 15 different temperatures,
ranging between ∼ 0℃ to ∼ 20℃. They allow us to study how the intensity delivered by each
LED varies with temperature and how the intensity varies with the direction of emission.
They also permit to assess the stability of the source.

Since detailed beam maps are quite expensive (∼ 30 to 60 minutes) to acquire, we optimise
the photometric measurements as follows. In a first series of measurements, we concentrate
on a few specific beam locations, keeping the photodiode fixed, while varying the bench
temperature. These sequences, called “mini-maps”, are targeted at measuring, for each
LED, the relative variations of the LED emission with temperature.

We also realise maps of the LED beams, at two or three temperatures, keeping the tem-
perature of the bench as constant as possible during data taking. From this data, we obtain
fine grained maps of the beams, and we verify that these maps are stable with tempera-
ture. Such measurements are taken at several distances to the source, in order to verify the
projectivity of the beam, and to check that we control the LED-source geometry well.

4.1.2 Spectra

In a second step, we insert a Digikröm DK240 Czerny-Terner monochromator between the
light source and the calibrated photodiode. The LEDs are then positioned in turn in front of
the monochromator entrance slit, while the photodiode senses the output. These measure-
ments are performed at about 10 distinct temperatures, between 0℃ and room temperature.

The spectroscopic test bench is somewhat more delicate to operate. In particular, we need
to control the wavelength calibration of the monochromator, as well as its transmission. On
this point, we rely a lot on the work performed by A. Guyonnet who devoted a lot of energy
to the precise calibration of our DK240. We ourselves checked our calibration by applying
the procedure described in Guyonnet (2012).
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4.1.3 On the choice of the LED currents

The flux emitted by a LED depends (generally linearly) on the current that traverses it. For
some LEDs, the shape of the spectrum also depends slightly on the current, in particular,
the position in wavelength of the spectrum peak. Mapping the spectral response of all LEDs
as a function of the current value can be done with the test bench as it exists. However, this
would require much more data, for little added value, as all LEDs are generally operated at
the same current level. As a consequence, we define for each LED a nominal current, and
the source is calibrated at those currents only.

The LED nominal currents are listed in table 4.1. They are chosen to obtain an illumi-
nation on the focal plane of the telescope of about 103 electrons per second, while avoiding
saturation of the control photodiode placed inside the LED head (see table A.5 in the ap-
pendix A). As can be seen, all LEDs are operated at a low regime, at a fraction of the
maximum intensity reported by the vendor.

In practice, the LED currents are a function of the LED forward tension VDAC assigned
by the DAC controller (see 3.11) and of a resistance RL, which is different for each LED.
The relation between the LED current and the DAC command is linear (Iled = kled × IADU).
In the last column of table 4.1, we report the conversion factor kled for future reference.

4.2 Test-Bench Overview

The general configuration of the test bench is shown on figure 4.1. There are three main
elements:

[A] - the DICE LED-head is mounted on a computer controlled linear table, that can
move in the X and Y directions (orthogonal to the Z-axis of the bench). Thus, the LED
head can be moved automatically with a precision of ∼ 10 µm.

[B] - The calibrated photodiode which is used as our fundamental flux standard is
mounted on an almost identical support, that can be moved in the X, Y and Z directions.
The distance z between the photodiode and the LED-head can be varied.

[C] - A Digikrom DK240 monochromator can be placed between the LED-head and the
NIST to perform spectroscopic measurements (see section §4.4.1 below for details).

[D] - Finally the NIST photodiode support is fixed in a z-axis motorised optical bench
that can be moved with a precision of ∼ 10 µm. All the devices can be controlled remotely.

The test bench is installed inside a 2 m×1.5 m×3.5 m thermally-insulated dark enclosure.
This enclosure (and the whole test bench) is not fully thermalised. Indeed, the insulation
is not perfect, and more importantly the air conditioning system is not powerful enough to
reach the low temperatures typical of what is measured at the summit (T ∼ 0℃) everywhere
in the enclosure. For those reasons, even after hours of operations, a gradient of temperature
between the LED-head and the opposite side can still be measured. This is not really a
problem, as we monitor in real time the temperatures of all the test bench devices. This is
done using PT1000 thermistors (typical precision of 0.1℃), a Digisense1 sensor (0.1 ◦C) and

1see http://www.coleparmer.com/
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LED 〈λp〉 kled Iled Isat/I(DICE)
max

number (nm) (mA/ADU) (mA) (mA)
01 690 3.051944 10−3 3.1 50.0/ 50.0
02 367 2.136363 10−3 10.7 35.0/ 35.0
03 395 2.136363 10−3 10.7 35.0/ 35.0
04 451 3.051944 10−3 3.1 15.3/ 50.0
05 512 3.051944 10−3 3.1 15.3/ 50.0
06 525 3.051944 10−3 3.1 36.6/ 50.0
07 625 3.051944 10−3 3.1 21.4/ 50.0
08 320 1.220778 10−3 6.2 20.0/ 20.0
09 906 3.051944 10−3 3.1 36.6/ 50.0
10 810 3.051944 10−3 3.1 21.4/ 50.0
11 959 3.051944 10−3 3.1 42.7/ 50.0
12 849 3.051944 10−3 3.1 30.5/ 50.0
13 735 6.103888 10−3 6.2 30.5/ 100.0
14 950 3.051944 10−3 3.1 50.0/ 50.0
15 763 3.051944 10−3 3.1 30.5/ 50.0
16 720 3.051944 10−3 3.1 36.6/ 50.0
17 464 3.051944 10−3 3.1 9.2/ 50.0
18 659 3.051944 10−3 3.1 50.0/ 50.0
19 831 3.051944 10−3 3.1 21.4/ 50.0
20 593 3.051944 10−3 15.5 50.0/ 50.0
21 338 1.220778 10−3 6.1 20.0/ 20.0
22 415 2.136363 10−3 2.1 35.0/ 35.0
23* - − - -
24 544 3.051944 10−3 3.1 3.1/ 50.0

Table 4.1: Typical SkyDICE LED currents and current upper limits. Iled is a nominal current
defined for each LED. Isat is the current level at which control photodiode starts to saturate.
Finally IDICE

max is the maximum current the backend electronics can deliver to the LED (it
varies from LED to LED, as it is a function of the serial resistor RL (see figure 3.11). (*)
LED23 turned out to be faulty during the tests.
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Figure 4.1: (Left) - Test bench set up for spectrophotometric measurements, [A] the LED
head with its support and [B] the NIST photodiode support, then in [C] we can see the
monochromator and in [D] the optical bench. (Right) - A real picture of the set up used to
take spectra with the SkyDICE system.

two Lakeshore2 sensors (0.001 ◦C).
At the precision level we target (∼ 10−4), the system response may be sensitive to tiny

details, such as the length of the cables. Therefore, we made sure that the system under tests
was the exact same system that would be installed in the telescope enclosure. No hardware
changes were allowed between the calibration run and the installation and commissioning of
the device.

As described in the previous chapter, the LED head is controlled by an industrial com-
puter (PC104), connected to the backend electronics. The DAQ program running on this
system is very similar to the final program installed on site. The only difference is that, in
its test bench version, this program also controls the various temperature sensors installed in
the bench, as well as the Keithley pico-ammeter connected to the NIST photodiode. Another
PC104 is dedicated to the control of the linear tables and moves on demand the LED head
and/or the NIST photodiode with respect to each other.

4.2.1 The NIST Photodiode

As described above, the fundamental standard is a 1 cm2 Silicon photodiode (Hamamatsu
S22813). This photodiode was calibrated at NIST (National Institute of Standards and
Technology). The spectral response of the device, as reported by NIST, is shown on figure

2see http://www.spectralproducts.com/dk240
3see http://www.hamamatsu.com/us/en/index.html
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4.2 along with its uncertainties. The photodiode is sensitive in the range of 200 − 1100 nm.
The average accuracy reported by NIST is of about ∼ 0.2% from 430-nm to 950-nm. Note
that NIST does not report on the full covariance matrix of the measurements. We suspect
that a fraction of these uncertainties are correlated, however, we did not manage to get
information from our contacts at NIST on this subject. We discuss this problem later in
chapter 6.

As discussed in the previous chapter, a typical LED, operated in a low regime, emits
intensities ranging from 0.1 - 0.5 mW/sr. In photometric mode, the NIST photodiode is
typically placed at a distance of ∼ 1-m to 1.5-m from the source, and therefore covers a solid
angle δΩ of a few 10−5 sr. As a consequence, the photodiode intercepts fluxes of a few nano-
watts and generates photocurrents of a few nano-amperes. In spectroscopic mode, the flux
that can be measured around the spectrum peak is of about 5% of that value. So, depending
on the bench setup, we have to measure photocurrents of pA to nA. These low currents are
measured with a Keithley 6514 feedback pico-ammeter, that can measure currents as low as
∼ 10−14 Ampere, two orders of magnitude smaller than our ordinary values.

Following the recommendations issued by NIST, the photodiode is operated in photo-
voltaic mode, i.e. unbiased, at room temperature. The average dark current given by the
constructor is of 10 − 100 pA for a reverse voltage on the range 0.01 − 1 V. This value agrees
with what we measure using the Keythley pico-ammeter at standard condition Ta = 25℃,
inside our dark-enclosure.

The connection between the photodiode and the measurement hardware is made by a
metal shielded BNC connector. The metal shield is necessary to avoid any kind of electro-
magnetic interference in the measurement. During the calibration runs, we discovered that
the connection between the cable and the pico-ammeter itself was not properly shielded.
This explains that the noise affecting some of the spectra is higher that it should be.

4.2.2 Test Bench Automation

To calibrate a LED, we need to acquire about 10 spectra, at different temperatures, plus
a series of mini-maps, also at different temperatures, plus two to three fine grained maps.
Therefore, a calibration run represents several days of data-taking, millions of data samples
(essentially flux and temperature measurements) and dozen of small motions of the LED
head and the photodiode relative to each other. It was therefore essential to optimise the
automation of the test bench, in order to speed up data taking as much as possible. During
the second year of my thesis, I spent several months working on this subject. The new DAQ
system I wrote under the guidance of L. Le Guillou, is flexible and easy to deploy and to
adapt to new instruments. It allowed us to increase the cadence and the repeatability of the
measurements.

While designing the new system, we aimed for simplicity and robustness. As described
above, the system is controlled with two industrial PC104. Those computers are directly
connected to the bench devices through standard RS-232 serial ports. We have developed
a generic interface to RS232 instruments in the python language, that can be adapted to
virtually any lab instrument equipped with a serial port. The high-level control of the test
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Figure 4.2: Efficiency η(λ) of the calibrated NIST photodiode (Hamamatsu S2281) used for
our measurements. The associated average error σ(λ)rel given by the NIST is ∼ 0.2%.

bench is therefore performed with a series of very simple, easy to maintain python scripts.
The only manually controlled part is control of the climate chamber used to thermalised the
test-bench for temperature driven measurements.

The data is stored in tables in ASCII format. It comprises flux measurements, along with
meta-data, acquired at a lower cadence, necessary for the subsequent analysis. In a typical
data file we store the description of the set up used during the run, the computer time in
seconds (both PCs are synchronised), the LED input current, all the science data, like the
measured NIST photodiode current and the off-axis control photodiodes current, the x, y, z
position of the NIST photodiode and the LED-head (for photometric data), or the wavelength
and measured currents (for spectroscopic data). Moreover, we record all temperatures from
different thermistors, and the reference voltage of the backbend electronics (this latter used
to recover temperatures from the PT1000 mounted and to check the system).

4.3 Photometric Test Bench

In order to calibrate our LEDs source we have to map the flux of every Lambertian beam at
different distances and nominal currents, using our NIST calibrated photodiode. Fixing the
position of the LED-head, the beam delivers an almost uniform illumination, the intensity
of it depending as the inverse of the squared distance r and the Iled. The relation that allow
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us to reconstruct the beam intensity and shape for every measurement is given by:

IP D = INIST − Idark = B(~u; T ) × δΩ × η(λ) (4.2)

where IP D is the fraction of the photodiode current that corresponds to the signal we want to
measure, i.e. the difference between the raw photodiode current INIST and the dark current
Idark. B(~u) is the radiant intensity of the beam (in W/sr), δΩ is the solid angle subtended
by the NIST photodiode at its current position (~u · d~S/r2), and η(λ) is the efficiency of the
NIST photodiode (in A/W).

As described above, the set up used for these measurements is similar to what is shown
on figure 4.1, with the only difference that we have eliminated the monochromator. During
a typical measurement session we turn on the LED at its nominal current, we record and
fix the position of the LED-head, and we scan the surface of the beam using the mobile xy
support of the NIST photodiode. The photodiode is moved in steps of 2-mm, in x and y,
which allows us to over-sample the beam profile.

This measurement sequence is repeated for different z positions of the photodiode, placing
it in turn 0./500./1000. and finally 1500.-mm away from the LED-head beam exit hole. As
we measure the flux sensed by the calibrated photodiode, we also register (1) the flux sensed
by the off-axis control photodiode placed behind the exit hole of the LED-head, the current
actually injected into the LED (3) the temperature of the LED head (4) the temperature of
the backend electronics and finally, the temperatures reported by the various sensors placed
on the key test bench devices, such as the monochromator. We repeat this measurement
sequence at different temperatures, using the climate chamber installed in the test bench.

Before and after each measurements we take a set of dark current samples. We need
indeed to subtract the intrinsic dark current coming form the NIST photodiode. the dark
current represents a small fraction of the raw signal (. 0.1%), however, it has been found to
be slightly variable as a function of time.

The main difficulty during these measurements is the control of the relative positions of
the photodiode with respect to the source. Indeed, the main axes of the calibration beams are
not perfectly orthogonal to the z-axis of the source, due to small misalignments of the LEDs
themselves relative to the masks which define the conical beams. As a consequence, the map
of each beam is measured relative to the position of the planet beam (i.e. the pencil beam
which allows us later to reconstruct the position of the source relative to the telescope). The
photometric data, complemented with additional data taken with a laser telemeter allows us
to reconstruct a geometrical model of the LED head emission. This aspect of the analysis is
not developed in detail in this memoir as I have not explicitly worked on it.

4.3.1 Data Set

The photometric data have been taken during Mars and May of 2012, just before shipping
the LED source to Australia. We started with initial checks during which we discovered
and solved problems related to the shape of the beams themselves (due to a faulty mask).
We also adjusted the current of a few LEDs (LED02, LED08 and LED21, a UV LED) form
their initial values, listed in table 4.1, because their measured flux turned out to be too
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Figure 4.3: The plot shows the temperature of LEDs (PT1000), the average temperature
of the test bench (LakeshoreA), and the temperature of the radiator (LakeshoreB) versus the
time for all mini-maps taken in the run of 13th May 2012. As we aspect that the PT1000 and
the Lakeshore probe are in good agreement. However, values of the LakeshoreA are different
due to the temperature gradient inside dark-enclosure.

weak. Then, over a few days, we took several sets of maps and mini-maps, at different
temperatures.

The analysis of the maps themselves is not presented in this memoir. We have rather
concentrated on the analysis of the mini-maps, which allowed us to check the stability and
the repeatability of our photometric calibration chain, and to control the linearity of the
LED response. In figure 4.5, we show the profile a complete beam map. We discovered that
some LEDs display a small bump at the centre of the beam, probably due to the shape of
the LED emission zone, and the packing chosen by the constructor. This effect has already
seen with SnDICE, the early DICE prototype (Guyonnet 2012), and (Villa 2012).

The last photometric data was taken on May 13th 2012. Figure 4.3 shows the temperature
ramp of the calibration run, during which we took the reference set of mini-maps. The content
of the dataset is summarised on figure 4.4 and in table 4.2. As can be seen, this is a rich
dataset, that spans all temperature ranges, from about 4℃ to room temperature. With some
more time, we may have been able to go down to 0℃. However, these temperatures seems to
be rarely attained at Siding Springs observatory, hence, we decided to stop our temperature
descent slightly above that point.

4.4 Spectroscopic Test Bench

We now turn to the description of our work on the spectroscopic measurements. These are an
essential piece of information to characterise the LED radiant intensities. In the spectroscopic
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Figure 4.4: We show all the temperatures reached during the full set of measurements for all
LEDs. The average range is from ∼ 275 to ∼ 295 K.

Figure 4.5: An example of the beam map produced by the LED05 (〈λp〉 = 512 nm) of the
SkyDICE source at room temperature. This is a row map where we only subtracted the dark
current contribution from the NIST.
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LED 〈λp〉 Iled Maps z (xref , yref ) Accuracy
Number (nm) (ADU) /(mA) # (mm) (mm) (A)

01 690 1000/3.1 7 0/-500/-1000/-1500 100, 175 2E-7
02 367 10000/21.4 7 “ “ 100, 150 2E-7
03 395 5000/10.7 7 “ “ 110, 125 2E-7
04 451 1000/3.1 7 “ “ 110, 100 2E-7
05 512 1000/3.1 7 “ “ 125, 180 2E-7
06 525 1000/3.1 7 “ “ 125, 160 2E-7
07 625 1000/3.1 7 “ “ 125, 125 2E-7
08 320 10000/12.2 7 “ “ 125, 80 2E-7
09 906 1000/3.1 7 “ “ 130, 160 2E-7
10 810 1000/3.1 7 “ “ 110, 140 2E-7
11 959 1000/3.1 7 “ “ 160, 170 2E-7
12 849 1000/3.1 7 “ “ 150, 160 2E-7
13 735 1000/6.2 6 “ “ 160, 120 2E-7
14 950 1000/3.1 6 “ “ 160, 100 2E-7
15 763 1000/3.1 6 “ “ 165, 170 2E-7
16 720 1000/3.1 6 “ “ 165, 100 2E-7
17 464 1000/3.1 6 “ “ 185, 175 2E-7
18 659 5000/15.5 7 “ “ 170, 155 2E-7
19 831 1000/3.1 6 “ “ 165, 145 2E-7
20 593 5000/15.5 6 “ “ 175, 110 2E-7
21 338 10000/12.2 6 “ “ 185, 100 2E-7
22 415 1000/2.1 6 “ “ 200, 170 2E-7
23* - - - - - -
24 544 1000/3.1 6 “ “ 200, 110 2E-7

Table 4.2: SkyDICE photometric data sample taken during the 13 of May 2012 run. We
represent the current Iled used, the wavelength of the LEDs, the distance from the 0 point of
the test bench z axis, points representing the rough centre of each beam (xref and yref) and
the chosen range for the pico-ammeter. (*)LED23 is faulty.
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configuration of the test bench, we insert a monochromator between the source and the NIST
photodiode. The photodiode current is then given by:

IP D = INIST − Idark = S(λ; T ) ⊗ Wmono(λ) × Tmono(λ) × η(λ) (4.3)

where IP D is the photodiode current minus the dark current, Wmono(λ) is the transfer
function of the monochromator, Tmono(λ) is the transmission of the monochromator as a
function of the wavelength, and finally the η(λ) is the efficiency of the NIST photodiode.
Our goal is to reconstruct and model the spectral intensity of each LED, S, the IP D from
the photodiode measurements, knowing the transfer function of the monochromator and its
transmission.

As mentioned already, one of the disadvantages of LEDs is the fact that their peak
wavelength is temperature dependent: typical LEDs display a small shift of their peak of
about 1Å/K (or less) up to 5Å/K. Of course, this has to be taken into account if we want
to construct a good calibrator, and we need to build a temperature-dependent model of
the LED spectral intensities. Again, we will therefore need to take calibration data over a
wide range of temperatures, with the additional burden of monitoring the monochromator’s
temperature in additional to all the other sensors.

To do those type of measurements we need to add the monochromator to the photometric
configuration as showed on figure 4.1 at the beginning of this chapter. The monochromator
is the most important element. Before discussing the data taken, in the next section we are
going to describe basic principles of function of the Digikrom DK240 monochromator. Then
we spend some words about its calibration (for more details see the thesis work of Guyonnet
(2012)).

4.4.1 The Digikrom-DK240 Monochromator

The monochromator used for the spectral calibration is a Czerny-Turner Digikröm DK240
(Spectral Products 4) device, of focal length 240 mm, and equipped with a triple grazing
system (figure 4.6). The gratings are controlled by a microprocessor-driven stepper motor,
itself controlled by software through a universal serial port RS-232. The width of the entrance
and the exit slits are also controlled by software. They can be set from 10 µm to 3000 µm.

The transmission of a typical monochromator depends on the diffraction properties of the
grating system and on the reflectivity of the mirrors. To calibrate our spectra, we need to
know the transmission of the monochromator, as well as its transfer function (which depends
on the slit aperture). For the Digikröm DK240, the transfer function is a trapezoid, whose
width depends on the width of the entrance and exit slits. If both slits are open at 625µm, it
is well described by a triangle of FWHM 2-nm. On figure 4.6 we show a plot of this typical
transfer function for this particular monochromator.

We also need to calibrate the spectra in wavelength, i.e. to control the relation between
the position of the grating system and the exit wavelength. In practice, the monochromator
comes with a default calibration which is reputedly stable. The DICE team has nevertheless

4http://www.spectralproducts.com
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checked it extensively over the last years Guyonnet (see 2012). Before taking the spectro-
scopic data described below, we have applied the wavelength calibration protocol described
in the reference above.

Figure 4.6: (Left) - Optical design of a “Czerny-Turner”. The illumination source [A] passes
through the entrance slit [B]. The amount of light energy available for use depends on the
intensity of the source in the space defined by the slit. The slit is placed at the focus of a
curved mirror [C]. The collimated light is diffracted from the grating [D] and then is collected
by another mirror [E] which refocuses the light, now dispersed, on the exit slit [F]. A rotation
of the dispersing element causes the band of colours to move relative to the exit slit, so the
desired entrance slit image is centred on the exit slit. (Right) - The Diagram shows the typical
triangle-shape transfer function for the Digikröm DK240 when the entrance slit and exit slit
have the same aperture.

Principles of the Monochromator

A typical monochromator is designed to select a narrow band of wavelengths from some
incoming radiation. The typical response function is a triangular profile, peaking at the
selected wavelength. As the monochromator is an essential component of the spectral bench,
we will briefly describe below how it works.

If we consider an uniform and point-like source at the entrance slit of the monochromator
as represented in figure 4.7, then we can write the electric field diffraction as the product of
two main components: the diffraction term produced by one of the grating grooves and the
interference term of the whole grating system:

Etot(αx, αy, θ, λ) = Ediff (αx, αy, θ, λ) × Einterf (αx, θ, λ) (4.4)

where the meaning of the variable can be understood looking on figures 4.7 and 4.8 left. We
can recognise the incident angle ix of the wavelength coming form the first convex mirror
and the reflection angle αx, the tilt angle θof the grating system, the Ebert angle α that
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represents a fixed angle between the two mirrors and the grating system (the value for our
monochromator is 18.7◦), and the blaze angle ǫ that is the angle between the grating plane
and the single grating groove.

Figure 4.7: Optical path of a monochromator. The mirror-grating system splits a polychro-
matic point-like source in the different wavelength components.

Figure 4.8: (Left) - Single diffraction path. Here ǫ = θ is the grating inclination. (Right) -
Interference between two grating grooves.

From this angles we can define ix = α/2 − ǫ − θ and αx = α/2 + ǫ + θ + α‘
x and finally

we can write the diffraction term Ediff of the equation 4.4 it can be explicitly written using
the following equation:

Ediff (α‘
x, αy, θ, λ) = E0sinc

(

πd

λ

[

2cos(
α

2
)sin(θ+ǫ)+cos(

α

2
+θ+ǫ)sin(α‘

x)
])

×sinc
(

πh

λ
sin(αy)

)

(4.5)
The second term is the interference between two grating grooves. We can calculate this

term as the difference between two incident rays on two different grating grooves . Looking
on figure 4.8 right, we can define the angle αr and ir with the similar meaning of the ix
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and αx of the last equation 4.5. Then with the same substitutions we can finally write the
interference term Einterf :

Einterf (α‘
x, θ, λ) =

sin(Nπd
λ

[2cos(α
2
)sin(θ) + cos(α

2
+ θ)sin(α‘

x)])

sin(πd
λ

[2cos(α
2
)sin(θ) + cos(α

2
+ θ)sin(α‘

x)])
(4.6)

From equation 4.5 and 4.6 one can evaluate the term of the transmission for the central
wavelength, Tmono given by the following expression:

Tmono(λc) = A0 × sinc
(

πcos(ǫ) − πd

λ
2cos(

α

2
)sin(ǫ)

√

√

√

√1 − λ2

4d2cos2(α
2
)

)2

(4.7)

This equation is used with the expression of IP D given before to reconstruct the spectral
energy distribution of every LED.

Transmission of the Monochromator
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Figure 4.9: Measurement of the monochromator transmission using the LED head itself
(Guyonnet 2012).

The transmission of our DK240 monochromator is studied in detail in (Guyonnet 2012).
The classical way to measure the transmission of a monochromator is to manufacture a
monochromatic source with a auxiliary monochromator, characterise it with the photodiode,
and then insert the monochromator under study between the monochromatic source and the
photodiode. Was was done instead it to manufacture a narrow spectrum source delivering a
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Grating ∆λgr βgr = d∆λ/dT
# (nm) (nm/◦C)
1 +0.154 ±0.246 -0.002499 ±0.0023
2 +0.020 ±0.059 -0.002526 ±0.0016
3 -0.008 ±0.096 -0.002654 ±0.0022

Table 4.3: Wavelength dispersion offset for the three grating configuration measured at Ta =
25◦C with the their temperature dependence (Guyonnet 2012).

quasi-pencil beam, slightly smaller than the entrance slit, by placing a mask in front of the
LED head. Then, measurements were performed with and without the monochromator and
the results were used to constrain the relation 4.7 above (figure 4.9).

Wavelength Calibration of the Monochromator

The procedure use to calibrate the DK240 is the following. The monochromator is configured
with exit and entrance slit positioned at 625µm. Then, several different primary spectral
sources are placed in front of the entrance slit: a low pressure Cadmium lamp, a Sodium
lamp and a polymetallic lamp.

The Sodium and Cadmium lamps have spectra that contain known doublets at known
wavelength distance. Measuring this doublets with different grating configuration and at
different dark-enclosure temperature, one can evaluate the dispersion of the monochromator.
Measuring the positions of known spectral lines allows one check the wavelength calibration
of the monochromator.

One last point. Because what we want to calculate is the spectral energy distribution
S(λ, T ) as a function of temperature, we need to keep in mind that even the grating system
of the monochromator is weakly sensitive to a gradient of temperature. The sensitivity of
the monochromator response to temperature has been studied in Guyonnet (2012). It is well
described by a linear law:

∆λ = ∆λgr + βgr(T − Ta) (4.8)

and table 4.3 shows the coefficients that have been determined.
Finally, the uncertainty of the monochromator wavelength calibration (taking into ac-

count this temperature sensitivity) has been estimated in detail in (Guyonnet 2012). It is
summarised on figure 4.10. As can be seen, it is of about 0.1-nm w on the entire visible
wavelength range.

4.4.2 Data Set

The spectroscopic dataset has been acquired in April 2012. In an initial phase, we have
checked the monochromator calibration, and performed initial tests. In particular, we have
decided to add additional temperature sensors, notably two Lakeshore5 temperature moni-

5see http://www.lakeshore.com/
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Figure 4.10: The figure presents the wavelength dispersion σmono and its temperature depen-
dence (Guyonnet 2012).

tors, so that we could follow the temperature of the monochromator and to obtain a redun-
dant measurement of the LED temperatures during the tests.

We also worked on optimising the configuration of the Keithley 6514 pico-ammeter. It
was initially programmed to take itself several measurements, average them and report on
the mean and the variance. In this configuration, it became clear that the measurement
noise was under-estimated, probably because a good fraction of the noise power was peaking
at lower frequencies (in particular the 50 Hz). We therefore decided to take about 20 single
measurements for each point of the spectrum. This would be slower, but would allow us to
gather more statistics and to obtain a correct estimate of the measurement noise.

The final spectroscopic dataset was taken on April 26th and 27th. The monochromator
slits were open at 625µm, the pico-ammeter configured as said above. Several spectra were
first acquired for each LED, with the grating the most adapted to the LED wavelength.
On April 27th, we turned on the cooling system and started ramping down from room
temperature to 0℃, while taking data. Figure 4.11 shows the temperature variations reported
by several of our probes during this run. The probe labeled “PT1000” is mounted inside the
LED board of the SkyDICE-head, while the others three sensors are mounted respectively
on the radiator of the LED board, on the monochromator (Lakeshore probe A) and on the
optical bench (Digisense sensor).

Figure 4.12 illustrates the range of temperatures reached from the all data run taken
during the April period. We can easily see that we sampled all the possible temperature
values for every LED of the SkyDICE system. This range of temperatures in agreement with
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Figure 4.11: The plot shows the temperature of LEDs (PT1000), the average temperature of
the monochromator (LakeshoreA) and the temperature of the radiator (LakeshoreB) vs. the
time for all data taken in the last two runs of 26 and 27 April 2012. As we aspect the PT1000
and the LakeshoreB probe are in good agreement. However, the values of the LakeshoreA are
slightly higher due to the temperature gradient.

what we expect to measure inside the enclosure of the SkyMapper telescope during a full
year. The full dataset is summarised in table 4.4. Again, it is very rich, and will allow us to
model the LED emission from almost 0 ℃ to room temperature (see chapter 6).

4.5 Pre-Analysis of the Test Bench Dataset

During data taking, and shortly afterwards, I conducted several quick analyses in order to
assess the quality of the data that was on disk. The goal was also to prepare the commis-
sioning of the device on site. These studies are much less sophisticated than what will be
presented in chapters 6 and 8. However, they give a good sense of how the data looks like.
For this reason, I will summarise them here. It can be seen as an overview of the test bench
dataset.
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Figure 4.12: A plot with temperatures reached during the full set of spectra measured. The
average range is from ∼ 275 to ∼ 300 K.

4.5.1 Photometric Mini-maps

The main purpose of the mini-maps is to normalise the LED emission, and to measure the
relative variations of the LED flux as a function of temperature. In this section, we describe
the preliminary analysis of the reference photometric dataset, taken on the 13th of May
2012. The only pre-processing was only the subtraction of the dark current. Also, we did
not re-evaluate the noise.

Our main goal here is to study the variations of the LED flux with temperature. In
particular, we want to evaluate (1) how large the effect is and (2) whether it is well described
with a linear law, or whether we have to resort to a quadratic function for some LEDs.
Another goal is to check that in each calibration channel, the control photodiode works as
expected, and that the flux registered is nicely correlated with what is measured with the
NIST photodiode.

The dependence of the LED flux is parametrized with a linear law which is is fitted on
the data using the standard least square method. The estimated slopes a0 and reference
fluxes φ0 can be found in table 4.5, where dφiphd/dT refer to the off-axis control photodiode
data, while the dφNIST /dT refers to the NIST photodiode data.

All control photodiodes have been found to work properly. In particular, they give results
which are consistent with what is measured with the NIST photodiode. This is clearly
apparent for example on figure 4.13, which shows on the x axis the dφNIST /dT parameter of
the NIST photodiode, and on the y axis the dφphd/dT of the off-axis photodiode parameter.
As we see, the slopes are perfectly correlated (ρ ≃ 0.99).
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LED 〈λp〉 Iled Spectra Grating Slits Accuracy
Number (nm) (ADU) # position (µm) (A)

01 690 1000/5000 17 2 625.0 2E-9
02 367 5000/10000 14 1 625.0 2E-9
03 395 5000 11 2 625.0 2E-9
04 451 1000/5000 15 2 625.0 2E-9
05 512 1000/5000 18 2 625.0 2E-9
06 525 1000/5000 15 2 625.0 2E-9
07 625 1000/5000 17 2 625.0 2E-9
08 320 5000/10000 15 1 625.0 2E-9
09 906 1000/5000 17 3 625.0 2E-9
10 810 1000/5000 14 2 625.0 2E-9
11 959 1000/5000 16 3 625.0 2E-9
12 849 1000/5000 14 2 625.0 2E-9
13 735 1000/5000 16 2 625.0 2E-9
14 950 1000/5000 15 3 625.0 2E-9
15 763 1000/5000 14 2 625.0 2E-9
16 720 1000/5000 14 2 625.0 2E-9
17 464 1000/5000 14 2 625.0 2E-9
18 659 5000/5000 13 2 625.0 2E-9
19 831 1000/5000 14 2 625.0 2E-9
20 593 5000 12 2 625.0 2E-9
21 338 5000/10000 13 1 625.0 2E-9
22 415 1000/5000 13 2 625.0 2E-9
23* - - - - - -
24 544 1000/5000 13 2 625.0 2E-9

Table 4.4: SkyDICE spectroscopic data sample taken during the 26 and 27 of April run.
Iled is the nominal current in ADU for this run. Grating position is the chosen set up
for the monochromator: in particular 1 = 1200 groove/mm, 1 = 600 groove/mm 1 = 300
groove/mm. (*)LED23 seems to be faulty.

During these tests, it was established that LED23 does not work (it was probably broken
during its soldering on the LED mother board). We also detected that the flux delivered by
LED17 (a UV LED) is unstable flux for all input currents.

In most cases, as expected, the flux decreases as a function of temperature (see e.g.
table 4.5 as well as figures 4.14 (LED03) and 4.15) (LED07). The measured slopes are in
accordance with what is expected from the constructor data-sheets. The variations are linear
for all LEDs, with residuals in the range 0.2-0.3%.

For two LEDs, i.e. LED05 (figure 4.16) and LED24 (figure 4.17), the flux has been found
to increase as a function of temperature. This probably related to the fact that these LEDs
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Figure 4.13: The correlation between the NIST and the off-axis control photodiodes slope
parameters for all studied LEDs.

are operated at a very low current, at the limit of the operating range recommended by the
constructor. The effect actually disappears if we increase the LED current. This is not a
real problem for the calibration analysis and for the correct functioning of the DICE system.
What it is important instead, is the stability of the behaviour of the source.

The slopes discussed in this section have been found to be reproducible from one run to
another. The study of the source stability is the subject of chapter 5. We now know that
we have a source that works, that seems to be stable, and whose flux varies linearly as a
function of temperature. We now turn to the description of the spectral dataset.

4.5.2 Pre-Analysis of the Spectroscopic Dataset

We now discuss the final spectroscopic data sample, taken on the 26th and the 27th of April
2012 (see table 4.4 for details).

The total number of spectra taken were 401 with an average of 17 spectra for each LED.
After a quick check we decided to use only 323 spectra of the 401 for the analysis and
modelling. This happened because we observed a displacement of few millimetres of the
LED-head working position, probably caused by the displacement of the y axis motor of
the SkyDICE support. The 78 “bad” spectra display a significantly lower intensity profile
compared with what was expected. However, the shape of the spectra was still good.

As for the photometric data, we needed to measure and subtract the dark current from the
raw photodiode current measurements. To do that we took an amount of 100 measurements
before turning on each LED, and after turning it off. The dark current varies slightly as a
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Figure 4.14: Linear fit of the LED03 (395 nm). In the left is shown the data plus the fit
obtained for the off-axis control photodiode, where in right side we presents the same results
for the NIST photodiode. The two fit are in good agreement.

Figure 4.15: For the red LED07 (625 nm), the result is in good agreement with what we
expect from the constructor data-sheets. Again the flux decrease as the temperature increase.
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Figure 4.16: The same plot but for the LED05 (505 nm) at 1000 ADU. In that case it is
clear the strange behaviour that affect the LED at low current. The average flux increase
as the temperature increase, instead decreasing as we expected from the data-sheets of the
constructor. This effect disappears as soon as we augment the forward current of the device.

Figure 4.17: We obtain the same result of LED05 for the LED24 (528 nm). Both are green
LEDs.
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LED Iled dφphd/dT dφNIST /dT
number (ADU) %/K %/K

1 1000 -0.491 ± 0.002 -0.477 ± 0.004
2 10000 -2.193 ± 0.006 -2.214 ± 0.005
3 5000 -1.278 ± 0.004 -1.257 ± 0.003
4 1000 -0.132 ± 0.003 -0.120 ± 0.004
5 1000 0.233 ± 0.001 0.246 ± 0.005
6 1000 -0.414 ± 0.001 -0.404 ± 0.001
7 1000 -0.575 ± 0.002 -0.574 ± 0.002
8 10000 -0.353 ± 0.010 -0.350 ± 0.010
9 1000 -0.477 ± 0.002 -0.480 ± 0.003
10 1000 -0.213 ± 0.001 -0.187 ± 0.035
11 1000 -0.355 ± 0.003 -0.368 ± 0.002
12 1000 -0.323 ± 0.002 -0.313 ± 0.005
13 1000 -0.640 ± 0.001 -0.636 ± 0.002
15 1000 -0.172 ± 0.001 -0.168 ± 0.007
16 1000 -0.431 ± 0.001 -0.472 ± 0.003
18 5000 -0.459 ± 0.002 -0.455 ± 0.003
19 1000 -0.375 ± 0.003 -0.377 ± 0.003
20 5000 -0.291 ± 0.003 -0.282 ± 0.004
21 10000 -0.763 ± 0.004 -0.765 ± 0.008
22 1000 -0.617 ± 0.003 -0.600 ± 0.004
24 1000 0.013 ± 0.001 0.015 ± 0.003

Table 4.5: The table contains the slope parameters from the least-square fit of the control
photodiode current and the NIST current, measured during the 26 and 27 of April run. The
only missed value is the LED17 because of an instability of the flux at low forward current,
and the LED14 because the fit did not converge.

function of time, and we interpolate linearly between the measurements in order to account
for this. The average intensity of the dark current is at the level of 10−13 − 10−14 A, more
that three orders of magnitude lower than the typical intensity of a spectrum from IR to
UV.

Spectra Features

Let’s first have a look at the spectral diversity of our LED sample. In the following figures
we show examples of spectra taken from UV to near IR LEDs, along with a zoom on the
spectrum peak. The y axis is the NIST photodiode current measured by the Keythley
pico-ammeter (with caliber 10−9). On the x we plot the wavelength λ, in nm.

We start with two UV LEDs LED03 (395 nm) and LED08 (320 nm) represented on
figures 4.18 and 4.19 respectively. LED03 is an APGC1-395 UV single chip, with a spectrum
that displays a small bump around 405 − 410 nm. We notice the variation of the total LED
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flux as a function of temperature. However, the variations of the shape of spectrum as a
function of temperature seems to be weak. In particular, we do not observe any significant
shift with wavelength.

LED08 is a UVTOP315-FW-TO39. As this LED is further in the UV, it is also much
weaker, with measured currents around 32 pA (which explains that the spectrum is somewhat
noisier). It displays however a spectrum which is similar as that of LED03 but without any
unusual features.

Figure 4.18: Spectra of the UV LED03 (〈λp〉 = 395 nm). The shape of the spectrum still the
same over the temperature, only the flux decrease as the temperature increase. There is also
al small shift on the central wavelength of the spectrum.

We now move to the visible part of the spectrum. The next LED represented is the green
LED05 with 〈λp〉 = 512 nm. It is a Golden Dragon LV W5AM LED, a green diode made
with a ThinGaN semi-conductor, which displays a broad asymmetric spectrum. This LED
has already been encountered in the previous section: it is, along with LED24, the one whose
flux increases with temperature when operated in sub-regime. On figures 4.20 and 4.21 we
present spectra of LED05 taken with two different forward currents, respectively Iled = 1000
ADU and 5000 ADU. In both cases the device works in the sub-regime region. On the
first plot, the LED flux increases as a function of temperature, on the second, the LED
is operated at a higher current, its flux decreases with temperature, and the temperature
sensitivity seems to be weaker.

This effect is unexplained at the moment, neither data-sheets from the constructor, nor
literature do report any indication of this behaviour at low forward current. For our purpose,
what it is important is that (1) the flux varies linearly with temperature and that (2) the
spectrum shape varies as little as possible with temperature. From the test bench data we
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Figure 4.19: Another UV LED, this time the LED08 (〈λp〉 = 320 nm) at different tempera-
ture. In this case the intensity of the current INIST is really weak, ∼ 32 pA, as we expected
for UV LEDs. This resulting on a really noisy spectrum.

have discussed so far, this seems to be the case.
Finally, we take a look at the LEDs that emit in the redder part of the spectrum, for

example LED07 (〈λp〉 = 625 nm), and the near IR LED10 (〈λp〉 = 810 nm) whose spectra
are shown on figures 4.22 and 4.23 respectively. The first one is a Golden Dragon LA W5SM,
and the second is an APG2C1-810 near-IR LED. Here the situation is more complex. Both
LEDs show a normal behaviour regarding the flux vs. temperature variations. However, they
display a strong wavelength shift with temperature that can be clearly seen on the figures.

Wavelength vs. temperature

We now move to a more quantitative study of the LED spectral dependence with temper-
ature. We will estimate the variations of the average LED wavelength as a function of
temperature.

In this pre-analysis we did not normalised the flux spectra using information from beam
map measurements. What we done is essentially a first level parametrisation of the wave-
length variation using as a model a simple linear law:

〈λ(Tled)〉 = a0∆Tled + 〈λ0〉 (4.9)

where 〈λ(Tled)〉 is the wavelength of our NIST photodiode, a0 is the slope of the linear law,
∆Tled = Tled − T0, with T0 = 293.15 K, and finally 〈λ0〉 is the intercept equal to value of the
wavelength at the temperature T0. For each LED, we estimate the first moment of each of
the spectra, and we fit the law by minimising a χ2.
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Figure 4.20: Spectra of the green LED05 (〈λp〉 = 512 nm). This spectrum shows a small
bump at high wavelength, but in that case, due to a too few current, the LED works at sub-
regime and shows an increase of the the measured current INIST as the temperature increase.
The wavelength is almost not shift along all temperatures range.

Figure 4.21: The same LED05 but with an higher forward current. In that case the LED
works properly, showing a decrease of the flux as the temperature increase.
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Figure 4.22: Spectra of the red LED07 (〈λp〉 = 625 nm). In that case not only the flux
decrease, but it is evident that the all the spectrum shift with its central wavelength.

Figure 4.23: For spectra of the near-IR LED10 (〈λp〉 = 810 nm) the behaviour is similar to
the red LED07 shown on figure 4.22.
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The results are presented in table 4.6. In this table we do not report results for LED23
because it is broken, LED17 (a green LED), because the flux was too unstable due to the small
forward current. Also LED14 (a IR LED) is not shown because we got too few temperature
measurements and the fit did not converge properly.

Most LEDs display the same behaviour: their spectrum becomes slightly redder as the
temperature increases. However, the intensity of the effect varies greatly from one LED to
another.

UV LEDs

We start, as the section above, with the result from from the LED03, presented on figure
4.24. What we see in that case is a small positive temperature dependence of the wavelength,
this is the case also for the LED02 at 5000 ADU forward current. Those values contrast with
the one obtained for LED02 at 10000 ADU and for the slope obtained with the LED08. The
explication is probably due to a lack of data in temperature for those last two LEDs.

Visible LEDs

The result from the fit of LED05 is shown on figure 4.25. This time, as we expected looking
its spectrum on figure 4.20 and 4.21, the temperature dependence is almost null. The average
wavelength maintains the same value along all DICE working temperature. We obtained the
same result for the LED24, with a small value of d〈λ〉/dT = 0.009. A small temperature
dependence is found for almost all LEDs in the visible.

Red and near-IR LEDs

In the case of red and near IR LEDs we obtained a different result. As we shown on figure
4.26 and 4.27, it is clear a strong temperature dependence on wavelength. Almost all LEDs
give value of the slope d〈λ〉/dT in the range of 0.1 − 0.3 nm per degree Kelvin. This value
is much bigger compared with visible and UV LEDs.

All this spectroscopic pre-analysis has been taken in account as a starting point for the
most difficult task of modelling and normalising the spectral energy distribution S(λ; T ).

4.6 Test Bench Systematics

We end this chapter with a discussion on the uncertainties that affect our test bench mea-
surements. These uncertainties will become sources of systematic errors when the calibrated
source is operated in the telescope enclosure. At the moment, we have identified two main
sources of systematics. First, our knowledge of the monochromator transmission and wave-
length calibration, which may respectively distort or shift in wavelength our estimates of the
LED spectra. Second, the uncertainties affecting the efficiency of the NIST photodiode. We
discuss both below.
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LED Iled 〈λp〉 [T ≃ 300K] 〈FWHM〉 d〈λ〉/dT
number (ADU) (nm) (nm)/K

1 1000 690 23.6 0.141 ±0.009
5000 23.4 0.144 ±0.001

2 5000 367 10.2 0.002 ±0.018
10000 10.1 -0.019 ±0.016

3 5000 395 13.8 0.018 ±0.002
4 1000 451 21.9 0.014 ±0.003

5000 22.6 0.011 ±0.004
5 1000 512 28.0 -0.003 ±0.002

5000 28.7 0.001 ±0.003
6 1000 525 34.4 -0.019 ±0.009

5000 34.3 -0.013 ±0.002
7 1000 625 13.9 0.099 ±0.006

5000 14.0 0.108 ±0.001
8 5000 320 10.2 -0.016 ±0.047
9 1000 906 66.7 0.136 ±0.027

5000 65.8 0.127 ±0.002
10 1000 810 31.5 0.176 ±0.012

5000 31.2 0.180 ±0.003
11 1000 959 17.6 0.290 ±0.019

5000 20.7 0.273 ±0.004
12 1000 849 33.6 0.192 ±0.011

5000 33.3 0.206 ±0.008
13 1000 735 24.6 0.151 ±0.003

5000 25.2 0.159 ±0.004
14 5000 940 67.5 0.173 ± 0.003
15 1000 763 27.4 0.164 ±0.010

5000 27.2 0.171 ±0.004
16 1000 720 25.9 0.138 ±0.012

5000 25.8 0.157 ±0.006
18 5000 659 21.2 0.144 ±0.004
19 1000 831 32.1 0.195 ±0.009

5000 31.9 0.211 ±0.009
20 5000 593 16.7 0.101 ±0.004
21 5000 338 12.6 0.018 ±0.036

10000 12.3 0.052 ±0.031
22 1000 415 13.8 0.008 ±0.008

5000 13.9 0.011 ±0.006
24 1000 544 43.8 0.009 ±0.005

5000 41.7 0.010 ±0.005

Table 4.6: The table show the full list of the slope parameter found using the linear fit
discussed in §4.5.2.
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Figure 4.24: The plot represents the average wavelength computed from the NIST photodiode
measurements for the LED03. We fit data with a linear law as a function of the temperature.
The plot below show the small residual from the original data.
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Figure 4.25: Here is fit drawn for the LED05. In that case the wavelength is weakly depen-
dents by the temperature.
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Figure 4.26: The fit for the red LED07. The temperature dependence in that case are strong.
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Figure 4.27: The fit for the near-IR LED10. As the LED07 the temperature dependence is
strong for near-IR LEDs.
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4.6.1 Monochromator

The key point here is the control of the monochromator calibration. We have checked (1) the
wavelength calibration of the monochromator (2) its transmission Tm(λ) and (3) its spectral
response, Wm(λ).

• The wavelength calibration of the device is checked (at several temperatures), using a
series of calibration lamps, notably sodium lamp, and a polymetallic lamp. We obtain
from this dataset a correction to the calibration given by the manufacturer. This
correction does not exceed 0.1 nm in amplitude. We find a small linear dependance of
the wavelength calibration with temperature, of about 0.1nm/℃ which is taken into
account. Overall, the uncertainty on the monochromator calibration never exceeds 0.1
nm.

• The transmission of the monochromator, Tm(λ), is measured at several discrete wave-
lengths. For Czerny-Turner designs, it is relatively easy to compute the shape of Tm(λ),
as a function of two specific angles: the so-called Ebert angle αE, which depends on
the optical design of the device, and the blaze angle ǫblaze of the grating i being used.
Fitting this model on the measurements, we are able to reproduce the values of αE

and ǫblaze with a precision of 1% and 0.3% respectively. We use the continuous mod-
els fitted on the data as our estimates of the monochromator transmission (see figure
4.9). At first order, Tm(λ) depends only on ǫblaze. The error on the monochromator
transmission is then estimated by propagating the uncertainty on the blaze angles. On
figure 4.28 we show the (normalised) transmission of the three gratings. We also show
how it varies as a function of ǫblaze.

Note that although the shape of Tm(λ) is well constrained, its absolute normalisation
is affected by an uncertainty which is small but difficult to assess. This uncertainty
depends primarily on the the absolute vertical centring of the LED head with respect
to the entrance slit of the monochromator.

• Finally, the shape of Wm(λ) is set by the respective widths of the entrance and exit
slits. For this work, we have chosen to open both slits at 0.625-nm, which results in a
triangular-shaped spectral response of FWHM 2-nm.

4.6.2 NIST photodiode

The calibration of the NIST photodiode is itself uncertain. NIST provides its clients with
an error budget, as shown on figure 4.2. NIST reports typical uncertainties of 0.2% in the
visible (400 λ < 950 λ) which goes up to 1% in the UV- and the near-infrared.

Unfortunately, no information is available on how these uncertainties are correlated. We
expect a fraction of the error budget to be wavelength-dependent, and since we are primarily
interested in the relative inter-calibration of the passbands, it is essential for us to account
for the off-diagonal terms of the NIST uncertainties. As of today, we have not been able to
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Figure 4.28: Digikrom240 transmission for the 3 gratings used in the measurements.

obtain this information from our contacts at NIST. As a consequence, we choose to build
two different error budgets, depending on how we interpret the NIST uncertainties.

In the “best case” scenario, we assume that the NIST uncertainties are all positively
correlated. In other words, what is uncertain is the global flux scale, but the slope of the
photodiode response is very well known. For us, this would be an excellent situation: we are
primarily interested into calibrating passbands, and we do not seek to perform an absolute
calibration of the image response. The uncertainty on the global flux scale (about 0.2%
according to NIST) cancels out as we compare the bands with each other.

In the “worst case” scenario, we assume that a fraction of the NIST uncertainties are
correlated in such a way that distant passbands are negatively correlated. In other terms,
there is a “colour uncertainty” in addition to a grey scale uncertainty. This may be modelled
by two noise terms αNIST and βNIST , affecting the determination of the NIST efficiency
estimate:

ηNIST (λ) = ηtrue(λ) × (αNIST (λ − 〈λ〉) + βNIST + 1) (4.10)

From this, one can easily express the uncertainty on ηNIST as a function of σαNIST
and σβNIST

,
and choose the latter terms so that we stay compatible with the uncertainties reported by
NIST (see figure ??). The impact on these two scenarios on our determinations of the
telescope passbands is detailed in chapter 8.

All the test bench uncertainties studied so far are listed in table 4.7. They will be further
discussed in the next chapters.
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Figure 4.29: Variance of the NIST efficiency η(λ).

1 − σ Comment

uncertainty

Monochromator

Wavelength calibration 0.1 nm

αEbert 1°

ǫblaze (grism #1) 0.17° 〈λled〉 < 450 nm

ǫblaze (grism #2) 0.28° 450 nm < 〈λled〉 < 750 nm

ǫblaze (grism #3) 0.43° 〈λled〉 > 750 nm

Calibrated photodiode
From the

calibration
uncertainties

provided by NIST.

αNIST 2.9 10−5 nm−1

βNIST 0.002

Table 4.7: Summary of the test bench systematics.
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Chapter 5

Stability Study

If we want to achieve the h target, the first requirement is the stability and repeatability
of our calibration source. Following that demand, the stability of a the whole DICE system,
LEDs source + backend electronics + off-axis control photodiodes, has been checked.

As the stability studies typically require very long (weeks) acquisition sequences, this
work has not been performed on the original SkyDICE instrument, but rather on a spare
source, equipped with similar LEDs and connected to a replica of the SkyDICE backend
electronics.

In fact, we have seen in the previous chapter that a DICE source cannot be intrinsically
stable, at least for one good reason: it is not kept at constant temperature while all LEDs
display a temperature dependence of their emission. Therefore, our goal is not to see whether
the source is stable or not, but whether we can predict the relative flux variations of the
source, using various monitoring data, the question being how well our predictions match
the observed flux variations.

There are two types of monitoring data. First, we have our records of the LED tem-
perature, and of the current actually injected into the LED. Second, we have direct flux
measurements by the off-axis control photodiodes which are placed in each LED channel. In
what follows we will first use the first set of metadata, to see how well we can predict the
flux variations with these alone. Then, we will roll out the off-axis measurements, in order
to see whether they increase our ability to understand the variations of the source emissions.

This chapter is divided in four sections: we first (§5.1) describes the test bench set up
and the type of data that was acquired. We then discuss (§5.2) a stability analysis using the
current and temperature records only. Then, we will estimate in (§5.3) the improvements
obtained by adding the measurements performed with off-axis control photodiodes. Finally,
in §5.4, we give some details on the result of a spatial relative stability analysis of LED
beams, and its uniformity.

5.1 Data Set

The Spare Source Because of the impossibility to use directly the SkyDICE device, the
measurements has been performed using a spare LED-head. This source had been built a few
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LED LED SkyDICE λpeak Imax Beam Iled

number type type (nm) (mA) shape (ADU)

01 SMC - 805 50.0 Lambertian 6000
02 Golden Dragon yes 633 35.0 Lamb. 10000
03 Golden Dragon - 472 35.0 Lamb. 4000
04* - - - - *planet led channel -
05 SMC - 951 50.0 Lambertian 6000
06 APG2C1 yes 721 50.0 Lamb. 14000
07 Golden Dragon - 535 50.0 Lamb. 8000
08 SFH yes 880 20.0 Lamb. 12000
09 APG2C1 - 763 50.0 Lamb. 8000
10 Golden Dragon yes 463 50.0 Lamb. 6000
11 APG2C1 yes 831 50.0 Lamb. 3000
12 APG2C1 - 656 50.0 Lamb. 14000
13 Golden Dragon - 526 100.0 Lamb. 4000
14 400/420 - 407 50.0 Lamb. 6000
15 Golden Dragon yes 851 50.0 Lamb. 3000
16 400/420 yes 422 50.0 Lamb. 14000
17 APG2C1 - 908 50.0 Lamb. 5000
18 Golden Dragon yes 633 50.0 Lamb. 6000
19 Golden Dragon yes 623 50.0 Lamb. 8000
20 Golden Dragon yes 593 50.0 Lamb. 14000
21 APG2C1 - 959 50.0 Lamb. 14000
22 APG2C1 yes 688 50.0 Lamb. 14000
23 Golden Dragon yes 464 35.0 Lamb. 10000
24 UV yes 342 50.0 Lamb. 14000

Table 5.1: LEDs list for the spare LED-head device used in this analysis with the SkyDICE
LEDs identification. Imax represents the maximum DAC value available for the input current
(corresponding to DACmax = 16384). Iled is the DAC current value used in this experience.

years before, along with the early DICE prototypes. It has been retrofitted with a modern
electronics, and equipped with the same type of LEDs used for SkyDICE. The goal was to
obtain a device as similar to SkyDICE as possible, and also to build an upgraded calibration
source that would be ready to use with any imager. Table 5.1 lists all the new LEDs, that
are mounted on the spare source.

Test bench configuration We used a bench set up very similar to the one used by SkyDICE
to measure beam maps; the LED-head is fixed in a central position, parallel to the z-axis of
the test bench, then the NIST photodiode is moved around its xy plane at a fixed z-distance
from the LED-head. To ensure a good signal to noise ratio, we chose a value of the input
current ILED corresponding to ∼ 80% of the off-axis photodiodes saturation.

94



5.2. STABILITY ANALYSIS

As described in the previous chapters, the temperatures of all devices were monitored
during data taking. The LED temperature is measured with a PT1000 sensor, soldered
on the LED radiator, complemented with a Lakeshore probe, located inside the radiator.
Other temperatures control were performed at the backend box level, and from another
Lakeshore-probe mounted inside the dark-enclosure. As we have seen before (see chapter 4),
those temperatures are in good agreement even though, as we expect, a small temperature
gradient exists from the LED-head and the dark-enclosure temperatures due to a not perfect
thermal-insulation of our test bench.

To simplify the operations we decided to run at room temperature, without varying the
temperature of the bench. The temperature range probed during data taking is smaller
(∼ 5℃) but representative of what can be measured in the SkyMapper dome over similar
durations.

Dataset Since the DICE sources are installed almost permanently in the telescope enclo-
sure, we wanted to test their behaviour over long durations (i.e. weeks, at least). As a
consequence, we ran data taking session over 3 weeks, from 03/05 to 27/05 of 2013.

During these runs, we performed continuing flux measurements, using all LEDs at a
specific input current. At the end of the run we obtained almost 37 small beam maps for
each LED. In the end, every LED had been turned on for almost 24 hours in accumulated
illumination beam. This value may be considered small compared to the average life time of
a LED, but we have to keep in mind that the DICE LEDs are used only for the time of an
exposure (generally < 1 min) during a flat-fielding session with SkyMapper (or MegaCam).

5.2 Stability Analysis

To reduce and analyse data obtained from the 3 weeks run, we implemented a pipeline to
process the data sample. Before and after every beam map, the dark current was measured.
Again, the interpolated linearly between dark current variations, and these interpolated
values were subtracted from the original signal. At this stage, we found that the overall
dispersion of the LED flux measurements, using only data uncorrected for temperature or
LED current variations was about 5 × 10−3, well above the target of 10−4.

LED flux vs. temperature The spare head is equipped with LEDs of the same model
as those which equip SkyDICE. However, as there are variations between the properties of
LEDs of the same model, the first step is to study again the dependence of the LED fluxes as
a function of temperature. The approach has already been described in the previous chapter,
and is not discussed again here. We model the LED flux variations with a linear law:

φled = a0∆Tled + φ0 (5.1)

which is fit on the data. For all LEDs, we find that the flux varies linearly with temperature
over the temperatures range tested.

95



5.2. STABILITY ANALYSIS

Figure 5.1: (Up) - The plot shows the dark corrected flux contribution of the LED23 (〈λp〉 =
464 nm), as a function of the temperature measured by the Lakeshore-probe. The response is
linear over all range of measured temperatures. The flux variations are due to readout noise
coming from the not perfect shielded Keithley-NIST connection and from electromagnetic
interference generated inside the cable. (Bottom) - This figure shows the residual distribution
from the linear law fit (red line). Here the RMS represents the relative uncertainties and its
value is ∼ 4 · 10−4.

Figure 5.1 represents what was obtained for one of the 23 LEDs, LED23 with a 〈λp〉
centred at 463 nm. As we can see from the distribution of the residuals (bottom figure), the
RMS is around 4·10−4. The small variations of the flux are due to readout noise coming from
the Keithley pico-ammeter NIST connection. We also discovered a small electromagnetic
interference in the signal recorded by the Keithley.

Unfortunately, all LEDs are not as stable as LED23. Figure 5.2 shows the stability of
all 23 LEDs. As can be seen, the average value is of about 1.6 · 10−3. This value is not far
from our target of 10−4 but is still disappointing. The temperature alone does not allow us
to predict the variations of the source at the precision level we would like to attain.
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5.2. STABILITY ANALYSIS

Figure 5.2: The plot shows the dispersion of the flux when the flux follows a linear law only
function of the Tled. The computed average value for all 23 LEDs is around 1.6 · 10−3. The
second plot is the same when we do not consider the worst two LEDs.

5.2.1 Flux Variations versus backend Temperature

So, we need other observables to standardise our source. It is illuminating to take a look at
figure 3.11 of chapter 3, which describes the circuit that generates the LED current. As we
can see from that circuit, there are three main components that are sensitive to temperature
variations: the DAC and ADC devices, the LED itself, and the load resistance RL, directly
connected with the DAC circuit, and linked to the LED forward voltage by the Ohm law
Vled = RL · Iled.

Variations of temperature can cause small changes on the value of resistance RL in the
circuit that can directly affect the input current generated by the forward voltage Vled. If we
call Tbe the temperature of the backend electronics, Tled the LED temperature (the Lakeshore-
probe measurement), and Iled the current that varies itself due to resistance RL variations,
then, we may insert all these new parameters Tbe and Vled in our analysis and obtain a better
model of the source fluctuations. The fact that backend electronics (and the voltage Vled)
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5.2. STABILITY ANALYSIS

Figure 5.3: The two histograms represent the distribution of dispersion for all 23 LEDs when
we consider only the contribution from the temperature of LEDs Tled and the one from the
backend electronics Tbe. In the first one we considered all LEDs, while in the second one at
the bottom, we eliminated the worst two LEDs: LED09 and LED24.

suffers from a temperature dependence is already confirmed from measurements taken with
the first generation of DICE, SnDICE.

Equation 5.1 contains only the Tled dependency of the LED flux. At first order, a simple
way to study the backend temperature effect is to expand the relation 5.1 with a more
complete model:

φmod(Tled, Tbe, Vled) = φ0 + a0∆Tled + a1∆Tbe + a2∆Vled (5.2)

This last equation contains, all temperatures dependences Tled, Tbe, and the voltage Vled, via
the parameters φ0 and a0,a1,a2. As the previous model, we take into account not simply
the parameter but its variations from the average measured value, so ∆Tbe = Tbe − T be and
∆Vled = Vled − V led.
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5.2. STABILITY ANALYSIS

This new model 5.2 is fit on the data, minimising a standard χ2 function, as follows:

χ2 =
∑

i

[φNIST
i − φmod(Tled, Tbe, Vled)i]2

σ2
i

(5.3)

where the sum is done over all the measurements. The φNIST
i are the NIST flux measure-

ments, the φmod is the model describe in the equation 5.2, and σ is the error associated with
measurements i. Minimise this sum is the goal of our test.

We divided the test in two steps: first, we only took into account the temperature
variations, forgetting the voltage Vled. Then, we inserted both temperatures plus the voltage
Vled into the fit.

5.2.2 Tled and Tbe Fit

If we consider only the temperature read by the Lakeshore-probe, namely Tled, and the
temperature of the backend electronics Tbe, the equation above is simplified as follows:

φmod(Tled, Tbe) = φ0 + a0∆Tled + a1∆Tbe (5.4)

Figure 5.3 represents the stability obtained for each LED (i.e. the dispersion of the residuals
around the law above). From the plot on the top of the figure we can see that 6 of the 23
LEDs are above the 10−3 limits with two, LED09 and LED24 almost at the 10−2. We discuss
just below the reason of that instability. If we discard this last two LEDs, we go down, from
an average dispersion of 10−3 to a few 10−4. To be more precise, we have a total of 17 LEDs
with a value that is around the 5 · 10−4 level.

5.2.3 Tled, Tbe and Vled Fit

With the last result in mind we can go further and add the last parameter Vled in our model
5.2. Putting all parameters, Tled, Tbe and Vled to see how better we can do from the value
∼ 8.1 · 10−4 of the last fit.

Figure 5.4 shows the result of the χ2 minimisation. As we can see, this time we get only
5 LEDs above the level of 10−3, and if we eliminate the worst two (LED09 and LED24), we
achieve an average value of ∼ 7 · 10−4, which represent an improvement which is small if we
consider the entire source, but is quite significant for a few LEDs.

5.2.4 The LED09 and LED24 instability

LED09 and LED24 display a different behaviour compared with the others LEDs. We decided
to investigate this situation, in order to understand why these LEDs are significantly less
stable than the others. reasons. We come out with two different possible explications.

The LED09 case

To understand what happens to the LED09 (〈λp〉 = 763 nm) we focus our attention on
figure 5.5 that represents the time series of all monitored parameters during the run. What
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5.2. STABILITY ANALYSIS

Figure 5.4: The two figures show the distribution of the flux dispersion evaluated taking into
account the temperatures Tled, Tbe and the variations of the voltage Vled. In the figure on the
top we put all LEDs where in the figure on the bottom we eliminated (as figure 5.3) the two
worst LEDs, LED09 and LED24.

is interesting is the unexpected jump of ∼ 2% measured both by the NIST and the control
photodiodes during the 4th day of measurements. This jump is not due to any variation
of temperatures, nor to any backend control parameters (i.e., Vref and Vled), as we can see
from the plots on the centre of the figure where there is only a smooth decrease, the last
bottom figures show where signals are only affected by an intrinsic fluctuation less than 10−5.
The only conclusion is that variation comes directly from the LED and probably is due to
physical effects of the junction itself that constitutes the emission region.

A simple explanation could be a not perfect soldering between the LED and the circuit
board, this latter causing a change of the parasitic resistance of the LED diode. Anyway,
this kind of rapid LED variation is very rare, and moreover, as we can see from the next
section §5.3, those variations are monitored by the off-axis control photodiode.
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5.2. STABILITY ANALYSIS

Figure 5.5: Time series of all measured parameters of LED09. We can recognise the NIST
flux, the photodiode flux, the LED and backend temperature and, finally, the LED current
and the Voltage reference Vref used to calculate the LED and backend temperature. All flux,
current and voltage values are normalised to one.

The LED24 case

The case of LED24 is different. To understand what happened we need again to take a look
at figure 3.11. To explain the instability of the LED we need to show how the LED current
generator works. Every LED has an input voltage Vcc of +7.5 V. When we set up a DAC
value changing the Iled and hence the luminosity of the LED, we change the Vled. This value
is applied at the boundaries of the load resistance RL, but also affect the voltage applied on
the transistor mounted between the LED and the RL. The LED24 is an UV LED, with a
λpeak = 342 nm, and its threshold voltage is high being ≃ 5 V. Moreover, as its flux intensity
is really faint, we need to impose an high voltage Vled to obtain a sufficient current LED flux.
All these constrains lead to an instability of the Iled due to the fact that the transistor is not
working in a saturated mode.
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5.3 Flux Variations Control with Off-Axis Photodiodes

The linear model of the LED flux as a function of various temperatures gives good results
for almost all LEDs. But we can also go one step forward, and use directly the LED flux
measurements performed with the off-axis control photodiodes, in order to check directly the
stability of LEDs flux. Mathematically, we model the LED flux variations as:

φmod(Vphd, Tbe) = φ0 + a0∆Vphd + a1∆Tbe (5.5)

This time we have only two parameters: the voltage Vphd related to the photodiode current
Iphd by the simple law Vphd = Iled · R‘

L (R‘
L is the load resistance for the current generator of

the off-axis control photodiode), and the backend electronics temperature Tbe. As discussed
above, ∆Vphd = Vphd − V phd, and ∆Tbe = Tbe − T be.

Figure 5.6 shows the result obtained. The dispersion is around 5.8 ·10−4 when we discard
the worst three ones LED09, LED24 and this time LED08. This result is compatible with
the one obtained using the LED model described in equation 5.2.

But what happened to LED08? Taking a look at its off-axis control photodiode we
discovered no signal. Simply the photodiode was faulty and broken. For this LED we cannot
use this model and we have to take the dispersion value computed with the LED source
model 5.2.

5.3.1 Final Results

The final result from the flux analysis is well represented on figure 5.7. This plot shows
flux dispersions σflux (computed over weeks of continuous data taking) for every LED, as a
function of the wavelength.

In this figure we compare the raw dispersion (in black), with results coming from the
two models discussed above (green is the LED model 5.2, and blue is the off-axis control
photodiode model 5.5). We can see more clearly that for the majority of LEDs, the sigma is
below the 10−3. Moreover the best result coming from blue points where only three LEDs are
expected to be above the 10−3 level. The behaviour of those three LEDs has been explained
before in this chapter.

It important to say that these two different analysis paths represent also two completely
different approach. The model described by the equation 5.2 is trying to directly model
the LED source, using the dependence from the temperature and from the LED current, in
the equation 5.5 we forget the source of light and we try to constrain the stability and so
the uncertainties of the flux using instead the control photodiode current. However the two
final results are totally in agreement showing that our DICE device is capable to achieve the
stability level required for our calibration chain. Both approaches are complementary, and
comparing them should even allow us to detect slow drifts of the source emission over the
life of the instrument.
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Figure 5.6: Those two plots represent dispersion values calculated using the photodiode model
5.5. The plot at the bottom is the same distribution when we discarded the three worst LEDs:
LED09, LED24 and LED08 because of its photodiode problem.

5.4 Beam Uniformity Analysis

A last analysis was done to check the relative uniformity of LEDs beam in its central region.
This kind of test is done using beam mini-maps collected during the stability run. Every
maps contains only 9 points, with the central one chosen as a reference point. This central
position is where we take different measurements at different time during the same run to
check the stability of LEDs and of all the hardware set up used for the measurements.

The general method adopted to analyse this data is really simple: first of all we subtracted
measured points from the NIST dark current. We normalise each single data point, using
the average current obtained from the central position of every beam (this permits to absorb
global variations of the LED flux). Finally, we histogram these normalised values. The
RMS of that distribution represents an estimate of the map profile variation as a function
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Figure 5.7: This plot shows the final computed flux dispersion as a function of the wavelength.
In particular we plotted the raw data (black diamond) versus the best result of the two different
model. With green points the σflux using the LED source model describes by equation 5.2,
and with blue points using the off-axis control photodiode model with equation 5.5.

of temperature.

5.4.1 Results

Figure 5.8 shows the distribution of the relative flux dispersion for all the LEDs. In particular
we obtained an average value below 3 · 10−4 equivalent to results obtained with previous
stability analysis in this chapter.

Finally, we have to stress in that case what we measured is not the absolute shape
uniformity of the beam, but instead, it is a indicator of the relative uniformity of the beam
shape during a typical run.

5.5 Conclusion

We have studied the stability of the source over very long durations. We have developed
two different approaches to model and predict the LED flux variations as a function of
time. Using both models, we have verified that we can control the source fluctuations with a
precision of a few 10−4 for most LEDs. The beam maps also display an impressible stability of
. 5 10−4. As a conclusion, we believe we are well within the informal stability requirements
that were drawn before DICE design studies were started.
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Figure 5.8: This histogram shows the average flux dispersion for every LED beam map,
normalised by its reference central point. Even in that case the distribution is centred around
2.7 · 10−4.
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Chapter 6

Spectrophotometric Calibration of
SkyDICE

Our goal is now to build a smooth model Ŝ(λ, T , u) of the LEDs true spectral intensity
S(λ, T , u), valid at least in the temperature range −5℃ < T < +10℃, which is typical
of what is measured in most telescope enclosures. Along with this model, we build an
uncertainty model, that accounts for the finite precision of the test bench measurements
and the finite stability of the source. These two ingredients will then allow us to predict,
with a known accuracy, the amount of calibration light delivered by the source, for any real
calibration exposure, taken under any condition.

In the following of this chapter, we describe how the test bench measurements are com-
bined in to build such a model. The next section (§6.1) presents how we combine the test
bench measurements presented in the last chapter to build the spectral intensity model
Ŝ(λ, T ) of each LED. We have tested the modelling technique on series of simulated test
bench data on we present the results in §6.3. Then, we apply it on the SkyDICE calibration
data and derive a spectrophotometric model of the source (§6.4). This dataset will be used
in the last chapter to constrain the SkyMapper passbands. Finally, in §4.6, we say a word
on how we will propagate the test bench systematics in the subsequent analyses.

6.1 Modelling Technique

We choose to develop the shape of the LED spectra on a basis of two-dimensional B-splines:

Ŝ(λ, T ) =
∑

p

θpBp(λ, T ) (6.1)

where the Bp(λ, T ) functions are classically built as the product of one-dimensional-splines
in the λ and T directions. For this work, we choose to use splines of order 3 to describe the
wavelength variations, and splines of order 2 to model the temperature variations: Bp(λ, T ) ≡
Bij(λ, T ) = B

(3)
i (λ) × B

(2)
j (T ).

The model above is linear, and can easily be fit on the spectral data gathered on the
spectroscopic test bench described in chapter 4. There is a complication, however, which is
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that the absolute transmission of the monochromator is not known with a good precision. In
chapter 4 we have determined its relative variations as a function of wavelength. However,
we do not know its absolute scale with certainty. In fact, we suspect that it varies slightly
with each spectrum, as there is a small uncertainty in the repositioning of the source with
respect to the entrance slit of the monochromator. This uncertainty affects primarily the
vertical direction, hence the absolute normalisation of the spectrum.

As a consequence, we would like to fit for the (unknown) normalisation fs of each spec-
trum measurement s. This means that the only piece of information we extract from the
spectroscopic measurements is the spectrum shape, and not the spectrum normalisation. Our
model of the photodiode current (equation 4.3 in chapter 4) therefore becomes:

I|spec = fs ×
∑

p

θp [η(λ) · Tm(λ) · Bp ⊗ Wm(λ, T )] (6.2)

Since the θp’s and the fs’s are degenerate, we impose that the absolute normalisation of the
Ŝ models is determined by the photometric measurements (performed without a monochro-
mator). In practice, this is done by adding the following term to the fit χ2:

∑

s

wi ·
(

J (Ts) −
∫

η(λ) · Ŝ(λ, Ts) dλ
)2

(6.3)

where J (T ) is the photocurrent measured with the NIST photodiode at a reference position,
as defined in chapter 4.

With this approach, the uncertainty affecting the monochromator transmission is entirely
absorbed, and the normalisation of the LED spectral intensity models is set exclusively by
the photometric measurements. We estimate of the LED spectral intensities by fitting the
model above on the photodiode current measurements, and then marginalising on the fs

nuisance parameters.

6.2 Implementation Details

As described above, we develop the model on a basis of B-splines. In wavelength, we grid the
space with one node every 2-nm, which corresponds to the resolution of the monochromator.
In temperature, we use 2-order splines (i.e. piecewise linear functions) with 3 nodes on the
0℃ < T < 25℃ temperature range. Depending on the extension of the spectrum, this means
that the model is a function of about 500 parameters.

For each LED, we first fit the photometric data (i.e. the total flux variation as a function
of T ) with a linear law: J (T ) = αled(T − T0) + βled (following the notations of chapter 4).
Then, we fit the spectral model by minimising the χ2:

χ2 =
∑

s

∑

i

(

Isi|spec(fs, θ) − ysi

)2
+
∑

s

ws

(

J (Ts) −
∫

η(λ) · Ŝ(λ, Ts) dλ
)2

(6.4)

as a function of the fs and θ parameters. Here, the s index runs over the spectra, the i index,
over the measurements for each spectrum s; the ysi’s are the flux measurements registered by
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the bench, Isi|spec(fs, θ) is the corresponding prediction using the spectral intensity model.
The second part of the χ2 ensures that the normalisation of the spectral intensity model,
Ŝ(λ, T ), follows what is measured on the photometric test bench.

As the model is non-linear, the fit is linearised at each minimisation step. We use classi-
cally the Newton-Raphson method to predict the next minimisation direction, combined at
each step with the Brent algorithm to check the amplitude of the minimisation step along
that direction. The minimisation is stopped when the χ2 has decreased by less than 0.01
points at the last iteration. On simulated data, the fit generally converges in a small number
of steps (typically 5 steps). On real data, the procedure is about twice as long, as we use an
outlier rejection procedure.

The model is implemented in C++, and uses some of the libraries developed for the SNLS
project, in particular, easy-to-use bindings to the BLAS and LAPACK linear algebra libraries.
On a standard laptop, a typical fit takes less than 30 seconds on simulated data, and less
than 1 minute on real data.

6.3 Tests on Simulated Data

As the approach described above is somewhat complex, and relies on a non-linear fit, it has
been tested on simulated data. These simulations will be used again in chapter 8 to test
another method developed in this thesis, to constrain the telescope passbands from series of
SkyDICE observations.

6.3.1 Simulated Dataset

In this simulation, we describe the LED spectra as gaussian functions of width σ ∼ 12-nm.
We simulate a linear evolution of the spectrum wavelength as a function of temperature,
with a coefficient of dλmax/dT ∼ 1Å/℃. This value corresponds to the highest coefficients
observed for the SkyDICE LEDs. We also adopt a high value for the LED flux variation as
a function of temperature (1% / ℃).

For the monochromator transmission, we adopt the model described in chapter 4 and the
values determined for each grating, listed in table 4.7. The (normalised) transmissions of
each grating are shown on figure 4.28. The monochromator spectral response is modelled as a
triangle function of FWHM ∼ 2 nm, and the simulated (gaussian) spectra are convolved into
this window, following equation 4.3. To simulate the photocurrent measurements recorded
on the bench, we use the efficiency curve of the NIST photodiode. For the noise level, we
adopt a value typically observed on test bench measurements, of about ∼ 0.03 pA.

For each LED, we simulate about 15 spectra and 10 mini-maps, taken in the temperature
range 0℃ < T < 25℃. This corresponds to the average number of spectra and maps actually
gathered on the test bench during the April 2011 calibration runs. Typical simulated spectra
are shown on figure 6.1.
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Figure 6.1: Synthetic spectra taken as an input for the model.

6.3.2 Fitting the Spectral Intensity Model on Simulated Data

Each LED data has been fit following the procedure described above. Figure 6.2 shows one
model in the T − λ plane, as well as the comparison with real data. Not surprisingly, the
residuals do not show any significant feature.

A better check, is to see how the model does reproduce an independent spectral dataset
for the same LED. The results are shown on figure (??). Again, we do not see any significant
feature.

We also tried to see whether there is any bias affecting the recalibration parameters f .
Indeed, this would affect the model normalisation, in a possibly temperature-dependent way,
and this could affect the final normalisation of the LED head and the

We also tried to see whether there is any bias affecting the recalibration parameters f .
Indeed, this would affect the model normalisation, in a possibly temperature-dependent way,
and this could affect the final normalisation of the LED head and the telescope. Figure 6.3
shows the estimates of the f -parameters as a function of temperature. Again, the dispersion
small, and no trend can be seen as a function of the temperature.

Finally, as we will see in chapter 8, these estimates of the LED spectral intensity Ŝ(λ, T )
will be used to predict the broadband flux registered on the focal plane of the imager being
calibration. A last important check is therefore to see how the true broadband flux, computed
from the true spectral intensity compares with the synthetic broadband flux, computed from

110



6.4. SPECTROPHOTOMETRIC CALIBRATION OF SKYDICE

   [nm]λ
450 500 550 600 650

  
 [

p
A

]
N

IS
T

I

0

2

4

6

8

   [nm]λ450 500 550 600 650

  
 [

p
A

]
N

IS
T

I

-0.1
-0.05

0
0.05

0.1

Figure 6.2: Synthetic spectra taken as an input for the model.

the estimated LED spectral intensity model. This is shown on figure (??). The error bars
are the propagation of the model error estimates. As can be seen, the estimated spectral
intensity models will allow us to estimate the broadband fluxes with typical uncertainties of
about (xx %).

6.4 Spectrophotometric Calibration of SkyDICE

We calibrate the SkyDICE LEDs following the procedure that has been exposed above.
The main difference between the real and simulated data, comes from the fact that due to
the deficient shielding of the BNC connection between the NIST photodiode and the pico-
ammeter, the level of noise affecting the data varies with time. One observes bursts of noise,
as seen on figure 6.4, and also slow variations of the noise level, from one spectrum to another.
We have not been able to locate the exact source of noise. However, its level has been very
significantly reduced once we replaced the faulty connection between the photodiode and the
pico-ammeter.

The noise level we infer from the repeated measurements performed with the pico-
ammeter is smaller than what can be derived from the dispersion of nearby spectrum samples.
As a consequence, the noise level was re-determined by fitting locally a 2-degree polynomial
on a 20-nm wide sliding window, and by requesting that the local fit χ2 be 1. Figure (??)
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Figure 6.3: Recalibration parameters fs of all the spectra that were taken for one single LED.
For some LEDs, such as this one, one can measure a small residual dependency as a function
of temperature.

shows the noise difference.

6.5 Systematics

The LED spectral intensity models Ŝ(λ, T ) derived in this chapter are affected by the sys-
tematics related to the calibration of the test bench itself. These latter uncertainties are
discussed in §4.6 of chapter 4. Obvious examples are the wavelength calibration of the
monochromator, or the finite precision of our determination of the monochromator trans-
mission. They are all listed in table 4.7. As any test bench error may affect our calibration
of the SkyMapper passbands, we must propagate these systematics through the analysis.

To do so, we have to compute the impact of each systematic error on the estimated LED
spectral intensity (Ŝ). The most direct way to do so, is to compute the derivatives of the
θled parameters as a function of each test bench systematic ηb:

Hled ≡ ∂θ

∂ηb

(6.5)

and later use these derivatives to propagate the bench uncertainties to Ŝ, using the standard
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Figure 6.4: A spectrum affected by a burst of noise. Before and after recomputing the errors.

error propagation techniques.
In practice, the Hled matrix is determined in a straightforward way, by shifting in turn

each bench systematic, refitting the model, and then computing numerically the correspond-
ing derivatives ∂θp/∂ηq. Determining the model along with its derivatives is somewhat longer
(5 to 7 minutes per LED), but this has to be done only once, after each recalibration.

As an illustration, we show the impact of a wavelength shift of 1-nm on the monochro-
mator calibration (figure 6.6), and the impact of a small modification of the NIST response
(figure 6.7), computed at first order, using the derivatives of the model: δŜ = Hled · δηb.

Note that the bench systematics induce correlated uncertainties on the various spectral
intensity estimates, Ŝled(λ, T ). As a consequence they will also induce correlated uncer-
tainties on our determinations of the imager passbands (see chapter 8). For example, a
systematic error in the wavelength calibration of the monochromator will shift our determi-
nations of the filter fronts; a systematic error in the NIST photodiode efficiency will bias the
relative calibration of the passbands. This is the reason why we propagate these systematics
as carefully as possible. As we will see in chapter 8 this technique allows us to account for
all these correlations automatically.

6.6 Conclusion

We have shown that it is possible to build smooth models of the LED spectral intensities by
combining in an optimal way the photometric and spectroscopic bench data. These models
account for the LED spectral dependence as a function of temperature. They are normalised,
in the sense that their integral is equal to the radiant intensity of the LEDs (in watt/sr).
As we will see, these models will allow us to predict the broadband flux measured by the
imager, in a large temperature range.

Along with each model, we determine a covariance matrix, that allows us to account for
the finite precision of the bench measurements. We also compute the model derivatives as a
function of the identified test bench systematics. All this material will be used in chapter 8
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Figure 6.5: Fit of a SkyDICE spectrum (+residuals).

for the study of the SkyMapper passbands.s
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Figure 6.6: Reconstructed LED spectra (from simulated data) (black). Effect of a 1-nm error
on the monochromator calibration, computed using the model derivatives w.r.t. the bench
calibration systematics (dashed red line).
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Figure 6.7: Recomputed LED spectra (from simulated data) (black). Effect on the recon-
structed spectra of a colour error in the determination of the NIST photodiode efficiency
(dashed red).
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Chapter 7

SkyDICE Commissioning and First
Data

In this chapter we discuss the first data obtained at the SkyMapper telescope. In section
§7.1 and §7.2, we illustrate the physical installation of the SkyDICE calibrator inside the
enclosure of the telescope, then in section §7.3 we describe the interface of the SkyDICE
DAQ with the telescope DAQ. In section §7.4, we give details on the alignment protocol
used to centre the SkyDICE beam in the focal plane of the telescope. Then, in section §7.5,
we describe all the data taken during the June-July 2012. Finally, in sections §7.6.3, §7.6.4
and §7.6.2, we illustrate preliminary results of SkyMapper filters transmission, the study
of the possible filter light leaks, and a study of the average illumination of the telescope
enclosure.

7.1 pre-Test

During the summer 2012, the team went to the Siding Spring Observatory to install the
SkyDICE system inside the enclosure of the SkyMapper telescope.

Before the installation, we needed to evaluate the integrity of the whole hardware and
software components of the SkyDICE calibrator necessary to its installation after its arrival
at the observatory. We mounted the whole system in a technical room close to the telescope
following the installation plan shown on figure 7.1 and 7.4. The pre-test has been done
during the first two days. We can divide it in four main checks:

• We tested the PC104 and software interface to the LED-head as well as the four motors.

• We checked all LED sources at different input current Iled.

• We mounted the LED-head on metallic support and we tested the correct functionality
of xy motors, the artificial planet and the lens focus motors.

• We tested the alignment and the intensity of the artificial planet using a target put at
different distances.
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We repeated this test different times to ensure the repeatability of the whole system.
After that we proceeded with the physical installation of the SkyDICE calibrator.

7.2 SkyDICE Installation

In this section we describe the installation of the SkyDICE LED-head, of the CLAP system
and of the electronics of control necessary to interface the apparatus with the telescope. All
aspects of installation had been discussed a few months earlier, with the team based at the
Siding Spring Observatory and at the Stromlo Observatory (both observatories are part of
the Australian National University1). Preliminary measurements of the dome and telescope
dimensions had been taken during a previous visit to the observatory on 2011 by N. Regnault
and R. Pain of the LPNHE laboratory.

7.2.1 LED-head Installation

The plan that our team followed is represented on figure 7.1. This diagram is divided in two
main parts: the LED-head and motors, and the unit of control composed by the backend
box, the PC104 and the RPC (remote power control), that interfaces the whole system with
the local network of the observatory.

In agreement with the SkyMapper team, we decided to fix the LED-head support to one
of the major metal arch of the telescope enclosure, close to the dome aperture. This is was
the best solution to obtain a mechanical stability for the whole system and to maximise the
clearance between the instrument and the telescope mount during standard operations. The
device was fixed at 60◦ from the zenith, and about 2.3 meters from the ground. With this
angle we have a distance between the telescope and the illumination system always larger
than 0.2 meters. Furthermore, we may scan the whole mirror without having to push the
telescope further than 75◦ from zenith. Finally, to fix the LED-head on the metal arch we
used a set of modular ELCOM© bars, represented on the left side of figure 7.2. This permits
to easily set the correct position and to ensure a stable installation. Figure 7.3 shows two
pictures of the LED-head at the end of the installation process.

With this solution the average LED-head distance from the primary mirror is ∼ 3 meters.
Figure 7.2 on the right shows the CAD drawing of the LED-head and the telescope, and at
the top of the LED-head we can recognise the backend box installed close to it.

Then, the motor controllers, the PC104 for the LED-head and the RPC unit (remote
power control unit), have been mounted below the aperture of the dome (as shown on figure
7.2 on the right), in a secure position and covered with a black painted mask that eliminates
any possible leakage of light from the control unit.

7.2.2 CLAP Installation

After the LED-head and its unit of control, we installed the CLAP device close to the primary
mirror, as shown on the diagram of figure 7.4). As described in chapter 3, the CLAP is used

1see http://rsaa.anu.edu.au/
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7.2. SKYDICE INSTALLATION

Figure 7.1: The figure shows the SkyDICE installation diagram for the LED-head and the
units of control.

Figure 7.2: (Left) - Particular of the SkyDICE mounting system used to fix the device on the
telescope’s enclosure. he mount is attached to a structure made of 3 ELCOM© bars, each of
them fixed on three points. (Right) - SkyDICE is placed at 60◦ from zenith. We can recognise
the backend box at the top of the device and all components mounted below the dome aperture.
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7.3. SKYDICE - SKYMAPPER DAQ INTERFACE

Figure 7.3: The pictures show the SkyDICE LED-head attached to the main arch of the
SkyMapper dome at the end of its installation in June 2012.

as an external sensor to monitor the flux that hits the primary mirror. This allows one to
have a strong feedback on our measurements and to inter-calibrate the beam flux.

The mirror CLAP has been placed at a distance of ∼ 0.05 m from the primary mirror.
Since the spot generated by the LED beams is ∼ 0.3 − 0.35 m wide, at that distance from
the primary we are able to illuminate simultaneously both the CLAP and the mirror of the
telescope. We mounted the CLAP to a metallic support, made of two ELCOM bars fixed on
the telescope mechanical structure. All support and CLAP height is lower than the mirror
protection.

The backend unit box, the power supply, the PC104 and the RPC unit have been fixed
inside one of the arms of the azimuthal mount as shown on the top of figure 7.5. This allow
us to eliminate any problems coming from electronics interferences and from any kind of
light pollution.

Originally the idea was also to install a twin CLAP close to filters box; this project has
been postpone due to technical difficulties. Figure 7.5 on the bottom shows the CLAP after
installation, we can recognise the photodiode window and, on the left side of the picture, a
fraction of the primary mirror.

7.3 SkyDICE - SkyMapper DAQ interface

After these operations we went on to configure the remote control of the whole system and
its DAQ with the CICADA/TAROS unit. This is used to control the telescope and to take
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Figure 7.4: The installation diagram for the CLAP system.

CLAP

front*end-CLAP

Figure 7.5: A zoom of the CLAP installed in the mirror support system. We can recognise
the small hole of the CLAP photodiode, and on the left a part of the primary mirror.
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images. This step is necessary to combine a reliable and stable calibration system with the
possibility to monitor on real-time and for long durations the telescope + camera. To do
that we needed a robust remote control interface to access the SkyDICE control system and
the telescope functions during the operation.

First we installed the RPC system and the two PC104 ethernet interfaces within the
main network of the observatory using fixed IPs. In a first attempt to install the network we
adopted a wireless solution to eliminate problems with ethernet cable. This issue came out
because all the dome is physically detached from the reinforced concrete where the telescope
mount is fixed, that means every cable has to pass from the central column and has to have
the proper length to avoid distortions during operations. The disadvantage of using wireless
solutions is a narrower pass band that permits only ∼ 1, 5 − 2 MB/s.

After the network connection was established, we installed the software interface and the
main command scripts, written mainly by L. Le Guillou and myself, on the PC104s and inside
the main server of the Stromlo Observatory, where physically the computing and controlling
centre is located. In that operation we have been remotely helped by the software team of
the Stromlo Observatory. Once installed, we were able to control the system remotely, takes
images and monitor all operations between the telescope and the SkyDICE device.

7.3.1 SkyDICE - SkyMapper Remote Protocol

The protocol used to communicate between SkyDICE, the CLAP and the SkyMapper DAQ is
XML-RPC, a simple, open, text-based network protocol, implemented in many different open
source libraries. Communication between devices and the CICADA/TAROS system works as
follow: (1) - a request is initiated by the client (CICADA), which sends a message to the LED-
head or the CLAP PC104s to execute a command. (2) - the PC104 executes the command.
(3) - a return response is sent to the client; this can either be a status code or status code
plus data. All commands are always initiated by the SkyMapper CICADA/TAROS system.

7.3.2 SkyDICE Operation Mode

During a typical session SkyDICE can be work in four mode:

Silent in that mode LEDs are off and the LED-head is in a fixed position. The Sky-
DICE control channels (LED, off-axis photodiodes, CLAP current and temperatures) are
monitored. This mode is used to check the stability of the electronics, and to perform
measurements of the control photodiodes and CLAP dark current.

Planet exposures are being taken with one of the planet LEDs on. This mode is used to
align the optical axis between the SkyDICE and telescope. In this mode we can also perform
ghosts study of the telescope optical elements.

Shutter the telescope is illuminated with one of the 24 LEDs. The a sequence of exposure
of various durations are taken. In this mode, the duration of the CCD illumination is
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determined with the telescope shutter. Taking data in shutter mode follows the time sequence
describe on figure 7.6. Notice that the telescope and SkyDICE must be aligned.

E-shutter same of shutter except that the exposure time is determined by the illumination
system. A specific LED is turned on just after the shutter has been opened, and turned off
just before the shutter is closed. This mode contains a difficult because is not easy to keep
the time interval between the shutter closure and the illumination as small as possible. The
time sequence for this operation is describe on figure 7.6. The problem is then to minimise
the time during which the shutter is open while no-illumination is delivered. The operation
depends of how dark the dome is.

Figure 7.6: (Top) - Shutter mode time sequence. (Bottom) - E-shutter mode time sequence.

First Light

After the SkyDICE installation and the first configuration of the units of control and the
DAQ, we manually aligned the SkyDICE + Telescope system to obtain a first image from
the SkyMapper focal plane.

Because SkyMapper is an automated telescope, there is no control room inside the build-
ing of the telescope an to do all these operations we used the one inside the ANU 2.3 m
telescope2, close to SkyMapper.

2http://rsaa.anu.edu.au/observatories/siding-spring-observatory/telescopes/
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We turned on the LED05 at the nominal current Iled = 1000 ADU, and we recorded the
image on the SkyMapper server (file ccd00007.fits on the data archive). The alignment was
not perfect. This was visible as the upper side of the FITS image was clearly vignetted; the
average illumination of the focal plane was of about ∼ 21954 ADU.

We repeated the operation for different LEDs and also using the artificial white planet
LED29, to check the focal plane illumination and to focus the artificial planet LED using
the lens system mounted on the LED-head. Then we pass to the alignment procedure and
configuration.

7.4 Alignment Procedure

The final task before we could start taking science data was to secure a procedure to align
the two main axes of both, SkyDICE and SkyMapper, to be parallel with an error of few
dozen arcseconds. Because the LED-head is attached on the dome, first we checked the
repeatability of motors those move the dome structure: we obtained a repeatability of ±3
mm after several cycles, which is excellent for a dome. This means that we control the
initial positioning of the head with respect to the telescope with a precision of . 0.1°. Then
we tested again errors given by the two main xy motors of the LED-head mount, and we
obtained a repeatability of ∼ 10 µm (i.e. a few arcses).

After this operation we started tuning an alignment model, based on a geometrical model
of the SkyDICE source and the telescope. Our starting point was a series of distance mea-
surements, taken with a laser telemeter. Then, we refined this preliminary model with a
series of planet exposures.

7.4.1 SkyDICE - Telescope Reference Frames

Before aligns both, SkyDICE and the telescope, we needed to choose a reference frame for the
whole system. Because the DICE device, the telescope and the dome are totally independent,
the first step is to obtain a reference frame for these three systems.

The first ones were the dome coordinates; as natural choice is the centre of the dome at
the ground position. This set of coordinates, shown on figure 7.7, are represented by the
vector:

RD = (OD, ~E, ~N , ~Z)

where OD is the origin, ~E is the east direction, ~N is the north and ~Z is the zenith
of the dome. The next reference frame to choose was the one associated to the telescope
mount/mirror. As illustrated on figure 7.7 this is a moving frame centred on the primary
mirror and describe by the following set of coordinates:

RT = (OAl, OAz, θAl, θAz, ~Z)

anu-23m-telescope
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7.4. ALIGNMENT PROCEDURE

where OAl and OAz are the origin respectively of the altitude and of the azimuth of the
telescope mount, θAl and θAz the angle associated to the azimuthal mount, and ~Z the zenith
of the telescope that corresponds at the zenith of the dome when the telescope is on is home
position.

The last set to be choose were the one associated to the SkyDICE LED-head (see figure
7.8). As natural choice we decided to take as origin the interception of the xy motors, so we
obtained:

RDICE = (ODICE, ~XDICE, ~YDICE, ~ZDICE)

as usual, ODICE is the origin of the reference frame, ~XDICE and ~YDICE are the coordinates
of the xy motors and finally, the ~ZDICE is the z axis that points toward the primary mirror.

With this set of coordinates, we were able to find the perfect alignment positions before
taking every images.

OD

OAl

θAl

θAz

OAz

E

N

Zenith

Figure 7.7: Origins and main reference frames for the telescope mount and primary mirror
(OAl, OAz), and for the dome position OD.
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YDICE

ZDICE

XDICE

θx

θy

Figure 7.8: Reference frame for the SkyDICE position. The origin ODICE (invisible in this
image), falls inside the device.

7.4.2 Artificial Planet Alignment

Once obtained, the set of reference frames and dome measurements have been put inside
a SkyDICE/SkyMapper model to align the two RT and RDICE frames. To do that we
used a modify version of the software already tested with SnDICE/MegaCam system during
different data runs (Villa 2012).

Before correctly set up the system, the software has been trained using different artificial
planet session. This procedure is easily explain:

• We set the zero position of the telescope, usually the zenith coordinates.

• We set the zero position of the dome before moving the SkyDICE device.

• We set the zero positions of the SkyDICE motors, using the mechanical stops mounted
on the LED-head.

• We move the telescope and then the LED-head to the positions given by the geometrical
model.

• We take an image using the white artificial beam and we check the centring of the
beam on the CCD focal plane.
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• We calculate the xy displacement of the beam from the centre and we correct the
software parameters.

• We repeat the loop until we obtained a good alignment of the artificial planet on the
CCD focal plane.

This last procedure has been repeated for the four main positions of the LED beam on
the primary mirror, illustrated on figure 7.9. These positions has been also used to take the
first set of data from SkyMapper.

Once we have corrected the parameters of our geometrical model, the align procedure is
generally reached only adjusting the SkyDICE xy axis, and it takes at maximum 4 exposures.

Figure 7.9: Because we could not scan all the primary mirror, we chose 4 positions A,B,C,D.
These represent 4 different configuration between the telescope, the dome and the SkyDICE
LED-head. Once we set up the altitude and the azimuth of the telescope, we move the dome
to the decided position, then we centre the beam of SkyDICE with the focal plane of the
telescope using the xy motors mounted on the LED-head.

7.5 First Data

During a typical run, SkyDICE is put into silent mode, and the electronics is monitored dur-
ing a few minutes. The data taken is analysed in real time and we check that all parameters
are nominal.
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The system is then put into planet mode. On the telescope side, the dome and telescope
are desynchronised, and the telescope put into a position, pointing roughly towards the LED-
head. A series of planet images are then taken, each followed by a correction of the LED
head orientation, in order to align the optical axes of both systems; few shoots are required
to determine the dome position and get a good alignment. After this operation, SkyDICE -
SkyMapper were able to take science data.

Almost all images in these first runs have been taken during the day light, when the
telescope was not used for routine observations, expect for half of data taken the 2 of July,
where, because of the bad weather, we used part of the night to take images for the position
C and D of the mirror.

The full data sample is divided in different set of images, each one taken shooting the
LED beam on a different position of the telescope’s primary mirror; these positions are
illustrated on figure 7.9. The real science data have been taken during the 23 June and the
30 June, 1-2 July run. We can divide these runs in two sub-set, a set of flat-fields images
using the main 23 LEDs (30 of June and 1-2 of July data), and a second set of planet images
using the artificial planet (23 of June data).

For data until 06/27/2012 we centred the artificial planet spot at the xy position (560,
510) of the focal plane. After we decided to slightly changed this with another position at
the xy coordinates (432, 569) to obtain a better beam centring. This has suggested that
the artificial planet beam is tilted by an angle of ∼ 0.1 degree respect to LED-head z axis.
Every exposure has been chosen to obtain a good signal to noise ratio but avoiding CCDs
saturation. The typical average level for most of the images is in the range of ∼ 10000−20000
ADU. A table contains summary informations about all the 2012 data sample is shown in
7.1.
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7.5. FIRST DATA

7.5.1 DICE Flat Fields and Filters Study

The 30 of June and 1 of July data samples have been taken using the whole set of 23 working
LEDs of SkyDICE. For the position A on the mirror we have taken images with the complete
set of 6 filters u, v, g, r, i, z for each LED. We have used this set of images to study the filter
transmission for each passband. Preliminary results on the filter transmission analysis are
reported on the last section of this chapter. Another reason of taking images using all filters
is to monitor that filters works properly.

Figure 7.10 illustrates a set of 4 images taken using the LED05 (〈λp〉 = 505 nm). They
have been taken using no filter, then g filter and r filter, then the v filter (to monitor the
filter passband). For all images we have chosen different exposure time to obtain a similar
signal level, expect for the last one where we used a long exposure of about 100 second, only
to monitor the filter passband. We can see by eyes that level of each images is similar and
the illumination is almost uniform expect for a small vignetting on the left side of the focal
plane. This is created by the finite angular aperture of the LED beam and the fact that we
cannot physically point the SkyDICE at some positions because of mechanical obstructions
of the telescope such as the secondary mirror spiders. Finally, some interesting features that
emerged from images, are the diffraction patterns created by the dust and small defects (such
as scratches) on the mirror and the various optical surfaces along the path of light.

Another interesting image that introduce us on the reason to take a second subset of
images using artificial planets, is presented on figure 7.11. This is a flat field image took
using the near-IR LED12 (〈λp〉 = 850 nm) with 15 s of exposure with the filter z. The image
is in false colour to highlight the pattern created by the reflection of the CCDs grid itself on
the bottom side of z filter. It is clear that to analysis images like that is necessary to take
into account this type of ghosts (reflections) created by the filter set and the optical lenses
between the LED source and the focal plane of the telescope. The first step to reconstruct
this ghosts is to create a model of the telescope optics and a simple ray-tracing system to
analyse the path of the light source.

This has already been done, and the complete description of this model can be found
on appendix A. The full analysis of this set of images and the reconstruction of ghosts is in
progress and not yet finished. To understand how we reconstruct the direct and reflected
lights from these images we can refer to the work ok the SnDICE team and F. Villa thesis
(Villa 2012).

7.5.2 The Artificial Planet and Ghosts Study

Ghosts are a central problem on the way to analyse flat field images taken by SkyDICE and
SnDICE. An interesting possibility to use these ghosts is represented on figure 7.12 and 7.13.
These examples are taken from the 23 of June data set using the set of artificial planet LEDs
built for the SkyDICE device. In particular these images have been taken with the white
artificial planet LED29. The spot created is around 100 pixels. On figure 7.12 we did not
used any filter, while on figure 7.13 we used the g filter.

For both images it is easy to see a set of small spots along a virtual line that passes
through the main artificial planet spot. The direction of this virtual line depends in the
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Figure 7.10: These are a set of images took using the LED05 (〈λp〉 = 505 nm) with differ-
ent exposures time. From top-left to bottom-right the filters used are: no filter with 3 s of
exposure, g filter with 3 s, r filter with 15 s, and v filter with 100 s of exposure. Interest-
ing features that emerged from images, are the diffraction patterns created by the dust and
impurities on the CCDs focal plane and on the lens system.

Figure 7.11: This is another image in false colours took with LED12 (〈λp〉 = 850 nm) and
15 s of exposure. In that case the filter used was the z. We can notice the CCD grid reflected
by the filter itself.
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position of the beam on the primary mirror. We can also see how the number and the
intensity disappear as we modify the light path adding a filter between it. The analysis of
these images is not yet completed but what we can already say is that every of that small
spot represents a ghost created by a particular light path on the telescope optics. Again,
to reconstruct those ghosts we need the help of the optical model created by the team and
described on appendix A.

An interesting use of this is the study of the optics and filters reflectivity of the telescope.
In particular once we know the intensity of each ghosts and we reconstruct its optical path,
one is able to compute the reflectivity of each refracting elements in the telescope. This
feature is extremely useful if we want to study the total transmission of the telescope and
monitor the efficiency of lenses and filter coating system along their durations.

7.6 Preliminary Analysis

In this section we are going to describe first results of a preliminary analysis done using the
whole set of images taken from 30 of June to the 2 of July 2012. First we illustrate a sample
of the full data set, then in describe the study of the dark dome images, used to evaluate
the average illumination of the dome during the shoots, then we pass to describe the first
preliminary result of the filter transmission computed using SkyDICE data and finally, we
briefly discuss some first result from filter leakage study.

7.6.1 Data Sample

In table 7.2 we report a small sample of the data taken during the whole session. In that
case we use as an example the LED03 with the SkyDICE device aligned along the A position
of the primary mirror (see figure 7.9).

The first eight images are the dome dark images. These images have been taken to obtain
an average dark frame of the background light inside the enclosure of the telescope after we
turned off every artificial light. This allow us to obtain not only the dark frame but also
a preliminary study of the possible Because the dome is not completely dark and because
images are taken during the day light, this effect slightly depends on the outside weather
conditions. As general procedure, these images are subtracted from the real science images
to take into account this tiny effect (the average intensity for images taken during the day
was not bigger than 30 ADU).

After dark frames, we turned on the LED at the nominal current, and we shot the beam
into the primary mirror to obtain an uniform illumination of the focal plane. For some LEDs
we were not able to cover perfectly the focal plane due to the physical obstructions of the
secondary mirror spiders: some images have small vignetting on the corners of the CCDs
focal plane.

Furthermore, in the first position A of the mirror, for every LEDs we repeated the mea-
surement using the whole set of filters. This allowed us to obtain a preliminary study of
the possible filter leakages at different wavelength. For the remain position B,C,D, we took
images using only filters associated with the correct wavelength of each LED.
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7.6. PRELIMINARY ANALYSIS

Figure 7.12: Here we have the image of the focal plane illuminated by the artificial white
planet with 5 s of exposure without using filter. It is clearly possible the sum of the ghosts
created by the internal reflections of the filter and the correction lenses system between the
secondary mirror and the focal plane.
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Figure 7.13: The same picture but putting the filter g in front of the camera. Again the
ghosts are created by the lenses correction system and the filter.
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This has permitted us to obtain a set of images to study the transmission of the SkyMap-
per passband and. Here we present the preliminary results of this study.
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7.6. PRELIMINARY ANALYSIS

7.6.2 Dark Dome Study

Before we can study the filter transmissions, we need to take into account the effect due to
the fact that our device is inside a dome which is not perfectly dark. As a consequence, we
need to measure the count rate inside the dome, so that we can estimate the pollution of
our calibration frames by the ambient luminosity. The typical procedure is to take a dark
exposure before and after every images, but because of the lack of time at the telescope, for
these first runs we decided to take only one dark (in the case of the A position for every
filters) before and after a set of images using the same LED.

This method, even though not full correct, has permitted to obtain a good estimate of
the level of background light, during the day and during the night (we expect to obtain
different count rates and dispersion depending on whether the calibration frames are taken
during the day or at night).

The analysis has been done as follows. We checked every dark dome exposures for
bad centring of the beam and for bad illumination, and at the same time we estimated the
average illumination (in ADU). After that we divided the exposures in the for mirror position
A,B,C,D. For each of these images we created another subset of images taken during the day
light and during the night. Because the winter season, the hour chosen as limit between day
and night was the 5 : 00 pm (local time, 7:00 am UTC). The images is a mosaic of 32 CCDs
each built with two amplifiers for a total of 64 CCDs sections. Each of these amplifiers have
a physical overscan region made by 50 × 4096 pixels and a second virtual region (using the
CCD pixels) of the same dimension. The dimension of the science data sector is 1024×4096.

For each of the 64 amplifiers we extracted the illumination level, in particular the mean,
the median and the rms using a data pipeline created by the L. Le Guillou and his student
R. Le Breton. The same data pipeline has been used for the whole set of images taken during
the 30 June and the 1-2 July 2012.

To calculate a preliminary dark dome level we implemented a simple program that has
taken into account only the contribution of the overscan regions in the science images. In
particular, for each CCDs amplifier we subtracted the mean of the two overscan regions, the
physical and the virtual one. We did that for the day and night dark dome and for every
filter. Table 7.3 shows the result for the central region of the CCD mosaic, in the case of the
amplifier #33 and #26. In particular these values are the mean of the whole set of usable
images. The error associated with the dark dome illumination during the day is larger that
one of the night values, as shown on figure 7.14, because of variability of illumination due
to a really unstable weather conditions. As can be seen, the contamination we observe is
small. In the worst case of a 10-second calibration exposure taken during the day, we obtain
a contamination of ∼ 2 ADU, i.e. less than 0.1% of the expected signal (a few thousand
ADUs).

7.6.3 Measuring the Filters Transmission

The data used for this analysis is divided in 4 subsets, each one contained data taken at
one of the chosen mirror position A,B,C,D. A typical session for one LED at one position is
shown in table 7.2. The method is repeated for each of the 23 working LEDs.
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7.6. PRELIMINARY ANALYSIS

Figure 7.14: Dark dome illumination in ADU/s for the CCD amplifiers #33 and #26.
Without filter we can see that the contribution of the dome illumination is not trivial.
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Filter Amplifier Night Day
(#) (ADU/s) (ADU/s)

NO 33 0.047 ±0.008 0.22 ±0.09
26 0.027 ±0.004 0.20 ±0.09

u 33 - 0.007 ±0.004
26 - 0.012 ±0.006

v 33 - 0.007 ±0.004
26 - 0.013 ±0.007

g 33 - 0.004 ±0.002
26 - 0.007 ±0.003

r 33 0.012 ±0.004 0.03 ±0.01
26 0.003 ±0.004 0.01 ±0.01

i 33 0.010 ±0.004 0.03 ±0.01
26 0.020 ±0.002 0.02 ±0.01

z 33 0.010 ±0.005 0.06 ±0.03
26 0.003 ±0.004 0.05 ±0.03

Table 7.3: Dome dark study of night and daylight along all the filters set for #33 and #26.

Analysis

As for the dark dome frames, we divided every FITS image in the 64 CCDs amplifier and
using the same technique we extracted the mean, the median and the rms of the flux for the
overscan regions and for the main science data. To avoid vignetting effects of the images,
here we focus our analysis on two amplifiers, the #26 and the #33. These amplifier has
chosen because mounted in the central region of the CCD mosaic. The data set used as
reference measurement for our analysis is the one described on Bessell et al. (2011), of the
SkyMapper team.

What we present here is an analysis that was done shortly after data taking, in order to
check the quality (and completeness) of the dataset. The technique presented in the next
chapter is more sophisticated and exact. Our goal here is to take the ratio of the flux level
measured with a filter over the flux level measured without a filter, and to compare it to the
expected filter transmissions.

As we said in chapter 3 and in the wavelength pre-analysis in chapter 4, LEDs wave-
length depends on the temperature of the pn junction. The first step is to compute the real
wavelength of each LEDs beam using the linear model described by the equation 4.9 and
results from table 4.6. Because the computation of the filter transmission is a ratio of the
flux of the same LEDs with and without filter it is not necessary to normalise the flux with
the temperature. Moreover, from the SkyMapper monitor, we knew that inside the dome
the average temperature was ∼ 285 K. Putting this value inside the equation we were able
to calculate the real λpeak for every LED used in the data sample.

Once we get the real wavelength, next step is to calculate the real illumination of the focal
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plane for each LEDs and filter set up. To do that we subtracted each images with the dark
dome associated, then we subtracted to the result the mean of the overscan regions. Finally
we normalise the flux with the exposure time of each images. We repeated the operation for
images with filters and images without filters. To summarise in a simple relation the filter
transmission computation. we can write all the operations as follows:

T =
[ [ccdf − (prescanf + overscanf )/2) − darkf ]/tf

[ccdnf − (prescannf + overscannf )/2) − darknf ]/tnf

]

(7.1)

where ccdf and ccdnf are the flux values of the chosen amplifier respectively, with and
without filter, prescanf and overscanf ) are the overscan regions, tf and tsf are the time
of exposures and darkf , darknf are the dark dome estimations. This procedure has been
repeated for every CCDs amplifiers and images for the four position A,B,C,D of the primary
mirror.

All the results shown in this section have been calculated using the median of the flux
for each amplifier rather than its mean value, because it represents better the real average
flux of the signal.

Results

Preliminary results are shown on figure 7.15, 7.15, and 7.17. As we can see, for the u
and v we have few points but in a good agreement with the reference filter transmission.
The best result, even if it is a preliminary analysis, is with the g. The accordance of
reference data versus calculated points is really strong. Note that we are comparing here
integrated fluxes (ADU/s) with a differential transmission (ADU/nm/s) which explains the
disagreement between the curves and the points. A more exact method will be presented in
the next chapter.

7.6.4 Filters Leakage Study

Another that was performed shortly after data taking is the search for possible leakages and
defects of the SkyMapper filters set. The study has been done only for the position A of the
mirror and during the 30 June and 1 of July. Moreover all data set has been taken during
the day when the telescope was not used for observations.

The procedure followed was the same of studying the transmission of filters, but this
time using the whole set of LEDs outside the passband of each filter. As for the transmission
analysis the method to reduct data was the same. Again, we took the mean, the median
and RMS of both science exposures and overscan regions. Moreover, we calibrated the LED
wavelength using the mean temperature and the equation 4.6.

Finally, using the same procedure describe in the relation 7.6.3, we were able to calculate
the transmission of each filter. Preliminary results are shown on figures 7.18, 7.19, and 7.20.

In these plots the most important result is the one shown on figure 7.18 for the filter u.
The green band it represents the transmission given by the SkyMapper team (Bessell et al.
2011) and the blue points are form SkyDICE data analysis. We can see that our device is
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Figure 7.15: The picture shows the preliminary result for the u, v filters transmission using
the data taken from the 30 June to the 2 July 2012 with the SkyDICE system. The CCD
amplifier is the #33.
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Figure 7.16: The same analysis of figure 7.15 but for the g, r filters. The amplifier is the
#33..

able to reconstruct, even with only a preliminary analysis, the faint leakage on the near-IR
of the u filter, where the transmission is lower than 4 × 10−2. Again in the same figure for
the v filter we see another small feature, probably linked to leakage on the near-IR. In that
case because of the lack of data from the SkyMapper team, and because this analysis does
not take into account systematics expect for the dark dome frames, we cannot discriminate
at the moment from a real filter feature or from background noise.

For the others filters g,r,i,z the analysis does not reveal strange feature or strong leakage
expect for some isolated points. More data and a more accurate analysis should be necessary
to study in details those filter transmission.
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Figure 7.17: The same analysis of figure 7.15 but for the i, z filters. Again the CCDs amplifier
is the #33.
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Figure 7.18: Here we show the transmission parameters for the u, v filters outside the filters
passband. Even in that case the CCDs amplifier was #33.
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Figure 7.19: Same plot of figure 7.18 but for the g and r filters.
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Figure 7.20: Again the same plot for filters i and z.
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Chapter 8

Constraining the Passbands of
SkyMapper

At first sight, no matter how stable and well calibrated the calibration source may be, the
design of DICE seems sub-optimal, when it comes to measuring the passbands of a telescope.
A quasi-monochromatic source, such as a tuneable laser, or a stabilised lamp coupled to a
monochromator, seems to be a more judicious choice, as it permits to scan the telescope
transmission every 1-nm or even less. This approach is costly, as it requires to acquire and
process about O(100) exposures per filter, but permits to capture all the tiny features of the
telescope passbands.

In this chapter we will show, that DICE is a very economical way to determine and
follow precisely all the important features of broadband transmissions, and this, with about
ten times less data (. 10 exposures per filter). This makes it possible to implement a
lightweight calibration program, that may be run several times a week, during daytime. As
we will see, the calibration precision that can be obtained with this approach is well within
the specifications that were issued for the next generation Dark Energy surveys.

In this last chapter, we present the method we have developed to derive constrains on
the imager passbands, from a series of measurements taken with a device such as SkyDICE
(§8.1 and §8.2). We discuss the propagation of the test bench systematics (§8.4). We test
the method on a simulated dataset, built from the simulated test bench data presented in
chapter 6 (§8.3). In particular, we discuss the precision that can be attained by the various
DICE instruments on the MegaCam and SkyMapper passbands (§8.5).

8.1 Telescope Transmissions

In general, the shapes of the passbands are known long before the first star light hits the
focal plane. The transmissions of all optical components, the quantum efficiency curves of
the detectors are all carefully measured before assembly. One can therefore combine these
measurements to build a synthetic model of the telescope passbands:

T (λ) = g × A × Rmirror(λ) × Toptics(λ) × Tfilter(λ) × ε(λ) (8.1)
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Here ε(λ) is the quantum efficiency of the CCD, g is the gain of its readout chain, A is the
area of the mirror and the other terms of the various transmissions and reflectivity of the
optical elements. Note that T (λ) is a dimensioned quantity: here it has units of ADU/γ/m2.

Although the shape of T (λ) is known a priori, its absolute normalisation varies with time
and must be monitored: the gain g of the readout electronics may vary by a few per-mil
over timescales of a few hours; also, alterations of the optical surfaces (dust deposits, ageing
of the coatings . . . ) degrade slowly the transmission of the instrument, by as much as 5-
10% per year. The resulting attenuation of the telescope transmission is slightly wavelength
dependent. Therefore, the relative normalisation of the passbands with respect to each other
may itself vary by a few percents per year. The main purpose of calibration is therefore to
monitor the relative variations of the passband normalisation over time. In most applications,
we need to measure in the evolution of the relative normalisation of the passbands, with
respect to each other.

The shape of the passbands is not expected to vary very significantly over time. This
is generally a design requirement. However, several studies have reported evidence for slow
evolution of the passbands shape. For example, Doi et al. (2010) reports a significant evo-
lution of the blue side of the SDSS 2.5-m u-band channels, probably due to ageing of the
CCD antireflective coatings. Another example can be found in Betoule et al. (2013), who
shows hints that the MegaCam r- and i-filters may be 2 − 3-nm off, with respect to the
scans provided by the manufacturer. In this case, it is not clear whether this evolution of
the passbands took place in an early phase of the life of the instrument, or later. As a conse-
quence, there is a strong incentive for future surveys to monitor the shape of their effective
passbands.

8.2 Constraining Passbands with a DICE Source

The broadband flux of an astrophysical object is primarily sensitive to (1) the normalisation
of the passband and (2) the position (in wavelength) of the blue and red filter cutoffs. These
three quantities are therefore what should be monitored in the long run.

An alternative to a full transmission scan is to alter the synthetic passband model T (λ)
presented in equation 8.1, for example by allowing for a different normalisation, and for small
variations of the filter blue and red cutoffs (called δλb, δλr hereafter). Then, one would use the
DICE calibration frames to constrain these alterations of the synthetic passbands. Shifting
the filter fronts can be done by composing T (λ) with a function f(λ) which stretches (or
dilates) the λ variable around the filter maximum:

f : λ 7→ λ′ = α × (λ − λmax) + β

In practice, we reparametrize the function above, so that it depends directly on δλb and δλr.
This way, one can shift easily each front essentially independently of the other, as shown on
figure 8.1 for the SkyMapper g and r filters.

With such an approach, we reduce our problem to fitting only three parameters per
filter: a normalisation, N , and two filter front displacements, δλblue and δλred. For an
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Figure 8.1: Altered SkyMapper bands. Illustration of how we can alter the red front of the
g-band and the blue front of the r-band, without displacing the other front.

imager equipped with N (typically 5) filters, we end up with 3 × N calibration parameters,
which we group in a single vector, noted ϑt hereafter:

ϑt =
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(8.2)

To constrain these unknowns, we compare measurements of the DICE calibration flux
performed with the imager, with a model of the same measurements, built from the altered
passband shapes described above, and the LED spectral intensity estimates presented in
chapter 6. The model predictions depend on ϑt, and a least-square fit will yield estimates
of the alterations.

More specifically, the model is built as follows. We implement a parameterized model
of the shape of each passband (b ≡ ugriz): Tb(λ; ϑt), as discussed above. From these
parametrized passbands, and from the LED spectral intensity estimates, Ŝl(λ, T ), we can
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predict the flux registered on the focal plane for each band b and each LED l:

ϕbl = δωp ×
∫

Ŝl(λ, T ) Tb(λ, ϑt) dλ (8.3)

where δωp is the solid angle covered by the focal plane pixel or super-pixel where we measure
the imager flux. It is useful to write the equation above in matrix form:

ϕbl = δωp × θT
Ŝl

· Σb,ϑt
(8.4)

θŜl
are the parameters of the Ŝl model, and Σ is a vector whose components are the integrals

of the basis functions Bp(λ, T ) defined in chapter 6, convolved with the telescope transmission
Tb(λ): Σp =

∫

Bp(λ, T ) Tb(λ, ϑt) dλ.
The calibration parameters are classically determined by minimising a χ2 built from

the measurements of the LED calibration light observed through the different telescope
passbands, and from the corresponding predictions ϕbl. Since ϕbl is not a linear function of
ϑt we linearise it:

ϕbl = δωp × θT
Ŝl

· (Σ0 + Y δϑt) (8.5)

at each minimisation step. Σ0 is the the “current” value of the Σ vector at a given step, and
Y is a matrix containing its derivatives with respect to the calibration parameters. Both are
computed numerically, the full minimisation taking a little less than 5 seconds on a laptop.

8.3 Tests on Simulated Data – Statistical uncertainties

As the method described above involves a slightly non-linear fit, we test it on simulated data.
A goal is to check that the problem is not degenerate, and that the fit is not biased. Another
important output of this simulation work is the assessment of the quality of the constraints
that may be obtained from typical 45-mn to 1 hour DICE calibration runs.

Simulated scenarios The precision obtained after a few runs is going to be a function of the
precision of the flux measurements performed on site, but also of the wavelength coverage
of each filter. For each imager (MegaCam and SkyMapper) and each calibration source
(SnDICE and SkyDICE), we assess what can be done with the source already installed in
the telescope enclosure (SnDICE for MegaCam and SkyDICE for SkyMapper respectively).
We therefore study two different situations which are summarised in table 8.1.

Simulated datasets To emulate these situations, we run the simulation described in chap-
ter 4 (ideal gaussian LED spectra) with three different possible wavelength coverages: the
SnDICE-like coverage (as seen for example on figure 3.4a), the SkyDICE coverage (figure
3.4b). In table 8.1 we indicate, for each band, the number of LEDs that may be used to
constrain the passband shape and normalisation. These numbers depend on the filter width
and the density of LEDs in the corresponding wavelength range. We see in particular that
for SkyMapper, the u- and v-filters which are quite narrow are not extremely well covered.
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u v g r i z Duration

(mn)

1
MegaCam
(SnDICE)

6 – 8 7 7 6 54

4
SkyMapper
(SkyDICE)

3 3 8 7 5 6 52

Table 8.1: Typical MegaCam and SkyMapper calibration runs.

We then generate synthetic flux measurements by integrating the true (gaussian) spectral
intensities of the LEDs into the (un-distorted) passbands of the imager under-study. For each
measurement, the photon noise is negligible, as the flux is generally measured on large super-
pixels (millions of photo-electrons). On the other hand, the main source of noise comes from
the presence of diffraction patterns all over the calibration frame. This contribution to the
noise is very significantly reduced to ∼ 0.1% is we average the calibration flux over large
enough super-pixels. It is further reduced by making sure that the relative position of the
telescope with respect to the source varies slightly from one calibration run to another –
this way, the position of each diffraction pattern changes. Another issue seems to be the
estimate of contamination by ghosts (stray light), which is proportional to the flux. For
SkyMapper, contamination by ghosts is small, as most filters are made of coloured glass.
Given the repeatability observed on typical sequences, we simulate a relative uncertainty of
0.5% (i.e. the uncertainty affecting each measurement is proportional to the flux registered
on the focal plane).

The calibration parameters ϑt are reconstructed from these simulated datasets following
the method in the previous section.

Typical calibration runs As can be seen from table 8.1 and figures 3.4a and 3.4b, each
passband is covered by 3 to 9 LEDs, depending on the extension of the filter. In general,
each filter front is sampled by one to two LEDs –except with SnDICE, the early prototype,
which presented an under-sampled region around 700-nm, precisely at the location of the
red front of the r-filter, and the blue front of the i-filter. In table 8.1 we estimate the
number of exposures of typical MegaCam and SkyMapper calibration runs. We also give a
(conservative) estimate of the run duration, assuming about one minute per exposure, plus
20-minutes of overheads (filter changing, telescope pointing. . . ) per run.

DICE has been designed to be run in routine mode, every day or so. We expect the
normalisation of the passbands to change slightly from one night to another. On the other
hand, we do not expect the position of the filter fronts to move in a measurable way overnight.
As a consequence, we will typically combine all the calibration data into one single fit, fitting
for one normalisation per filter and per run, but only one position for each filter front. This
allows us to improve sizeably the precision of all calibration parameters, at the price of a
slightly more complex procedure, as we typically fit for ∼ Nbands × Nruns + 2 × Nbands (e.g.
72 parameters for 10 SkyMapper calibration runs).
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8.4 Systematics

The calibration measurements are expected to be dominated by systematics after a short
number of calibration runs. These systematics come predominantly from the test bench
characterisation of the source. We have studied them in chapter 4 (see in particular table
4.7). They are described by seven parameters: two related to the NIST photodiode, and five
to the monochromator (wavelength calibration and transmission). We group them into one
single vector δηb, and we note Vsys the associated (diagonal) covariance matrix, built from
the uncertainty estimates listed in table 4.7.

Propagation In section 6.5 of chapter 6 we have discussed how we propagate the test bench
systematics on our estimates of the LED spectral intensities Ŝled(λ, T ). What we do is that
we compute numerically the derivatives H Ŝ of the spectral intensity models Ŝ(λ, T ) as a
function of δηb. The impact of the bench systematics on the value of Ŝ or on the associated
broadband systematics is derived from there by a simple Taylor expansion.

We now detail how we compute their impact on the determinations of the calibration
parameters, ϑt. There are several equivalent ways to go about it. What we do is that
we include the δηb parameters as nuisance parameters into the calibration fit described in
the previous section, adding their uncertainty estimates V sys as priors in the χ2. More
specifically, the χ2 to minimize is of the form:

χ2 =
∑

bl

wbl (ϕbl(ϑt, δηb) − φbl)
2 + δηT

b V −1
sysδηb (8.6)

where the b and l run over the bands and the LEDs respectively, the ϕbl are the model
predictions and the φbl are the flux measurements performed with the imager. The δηb are
fit along with the calibration parameters, and marginalised over. This is the most direct and
exact way to compute their contribution to the total error budget.

Again, the fit is non linear, and the model is linearised at each step, as follows:

ϕbl = δωp ×
[

θT
Ŝl

· (Σ0 + Y δϑt) + ΣT
0 H ŝ δηb

]

(8.7)

which is the equivalent of equation 8.5, with the systematics. Our (un-optimised) imple-
mentation of the calibration fit with systematics is reasonably fast. On a standard laptop,
is takes from 10 seconds for a single run, to 2-3 minutes if we combine 20 to 25 runs.

Covariances The test bench systematics are shared by all LEDs. Hence, we expect them to
introduce sizeable off-diagonal terms in the covariance matrix of the calibration parameters.
On figure 8.2, we show typical correlation matrices obtained from the fit of ten (simulated)
calibration runs. The matrix elements labeled Nx are related to the filter normalisation
(relative to the r-filter normalisation). The elements labeled δλx are the filter front displace-
ments.

The left panel shows what is obtained when we assume that the NIST uncertainty display
wavelength-dependent correlations (worst case scenario), while the right panel shows what
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Figure 8.2: Correlation matrix of the calibration parameters for two hypotheses of the NIST
error budget. In both cases, the filter fronts are all positively correlated. This is because they
all share the monochromator calibration uncertainty, which is the dominant contribution to
the error budget.

we get when assuming that the NIST uncertainties are all positively correlated (best case
scenario). Not surprisingly, in the worst case scenario, the band-to-band correlations of the
normalisation terms are sizeable, while they essentially vanish is the best case scenario. We
also see that the filter front displacements are all positively correlated. Indeed, they all
share the uncertainty on the monochromator wavelength calibration, which is the dominant
contribution to their error budget.

In all cases, our method permits to compute exactly the stat+syst covariance matrix
affecting all the calibration parameters. It can then be propagated into the subsequence
cosmological analyses.

8.5 Expected Precision for SkyMapper

The scenarios discussed in section 8.3 have been explored with a series of simulations. The
analysis of the commissioning data with the method described above is still ongoing, and
we therefore present here the main results obtained from the simulated datasets. In all
cases, we have found that the fits are well constrained, and do not display any sizeable bias
(as shown for example on figure 8.3). Besides a series of checks of the method, the most
valuable output of the simulations is a quantitative estimate of the statistical and systematic
uncertainty budget. We present the main results of this study in the remaining of this section.
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Figure 8.3: Average of the calibration parameters reconstructed from 100 independent reali-
sations. All the parameters are well constrained, and no significant bias can be detected on
average. The error bars show the uncertainties as estimated from one single realisation.

8.5.1 Filter Fronts

The statistical and systematic uncertainties affecting our estimates of the filter front dis-
placements, after one calibration run, are displayed on figure 8.4. As expected, the statistical
uncertainties are a close-to-linear function of the measurement noise. The total (stat+syst)
uncertainty budget follows a similar law, expect that it is bounded from below by a systemat-
ics floor (which corresponds to the 1Å error on the monochromator wavelength calibration).

From our inspection of the commissioning dataset, we expect the measurement noise to
be of about 0.5%. This means that in one single calibration run, we should be sensitive
to filter front displacements of 1Å to 5Å (depending on the quality of the filter coverage).
This is an important result, as it shows that we can get to high precisions despite the fact
that we are measuring our filters with non-monochromatic sources. The key here is a good
knowledge of the source spectrum, and some a-priori knowledge of the telescope effective
passbands.

We show on figure 8.5 that the uncertainty budget decreases significantly as we increase
the number of calibration runs. For an expected measurement noise of 0.5%, we reach the
systematics floor after about 10 calibration runs.

For MegaCam, we find similar sub-nanometer uncertainty budgets, excepted for the red-
cutoff of the r-band and the blue-cutoff of the i-band which are essentially unconstrained.

This is due to the poor quality of the filter coverage in this wavelength area. As noticed
earlier in this manuscript, the large number of LEDs available today permits to obtain
excellent constraints in the entire visible range.

8.5.2 Relative Normalisation of the Passbands

We now turn to the expected precision on the normalisation of the passbands. As noticed
earlier, the cosmological measurements performed with SNe Ia are not sensitive to the abso-
lute flux scale. For this reason, we are interested in assessing the uncertainties on the relative
passband normalisations. In what follows, we will only consider the passband throughputs
relative the the r-band throughput.
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Figure 8.4: Statistical and systematic uncertainties on the measurement of the SkyMapper
filter front displacements with the SkyDICE source, as a function of the precision of the
calibration flux measurements.
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Figure 8.5: Statistical and systematic uncertainties on the measurement of the SkyMapper
filter front displacements with the SkyDICE source, as a function of the number of runs
(assuming a precision of the flux measurements of 0.5%).
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We expect the NIST error budget to dominate the uncertainties on the passband normali-
sations. As discussed earlier, this budget is not well known, in the sense that the off-diagonal
terms on the measurements on the photodiode efficiency η(λ) are not known. In chapter 4
we have discussed two scenarios: an optimistic scenario, in which all the NIST uncertainties
are positively correlated, hence, have essentially no impact on the relative normalisation of
the passbands. We also discussed a “worst-case scenario”, where the uncertainties at the
extremes of the wavelength range are negatively correlated. In the first scale, the NIST error
budget is assumed to affect only the absolute flux scale, while in the second case it almost
entirely corresponds to a “colour uncertainty”.

The correlation matrices displayed in figure 8.2 show that both hypotheses result in very
different off-diagonal terms. In figures 8.6 and 8.7 we show the diagonal terms as a function
of (respectively) the measurement noise and the number of runs, for both interpretations of
the NIST errors.

Let’s first have a look on figure 8.6. In the best case scenario (dashed red line), the total
uncertainty is almost equal to the statistical error budget, which is a linear function of the
input noise (with a slope that depends essentially on the number of LEDs used to constrain
the filter. In the worst-case scenario (plain black line), the calibration error is slightly higher,
due to the impact of the colour uncertainty affecting η(λ). The true calibration error lies
somewhere is the band defined by the two lines. For a measurement noise of ∼ 0.5%, the
total uncertainty reached in a single calibration run is comprised between 0.5% and 1% (or
slightly less), depending on how we interpret the NIST error budget.

On figure 8.7 we show how the error varies as a function of the number of runs. Again,
the systematics floor is almost attained in 15 to 20 runs. This floor is comprised between
0.4% and 0.6% for the bluer bands and 0.3%-0.4% for the redder bands of the imager.

8.5.3 Relative impact of the Bench Systematics

The test bench systematics floor seems to be attained after a relatively small number of runs.
Of course, we also have to consider the systematics affecting the imager measurements of
the calibration flux (currently under investigation). These systematics will also play a role,
and push the final error budget slightly higher. However, preliminary investigations let us
think that these contributions will not be dominant, especially for SkyMapper.

The relative importance of each bench systematics is summarised in table 8.2. Regarding
the filter positions, our main systematics is clearly the error on the wavelength calibration of
the monochromator. This uncertainty affects simultaneously all estimates of the filter fronts,
which are therefore (almost completely) positively correlated after a few runs.

On the flux calibration side, the dominant contribution seems to be the NIST error
budget.

8.6 Conclusion

In this chapter, we have presented a method to constrain the passbands shapes are normali-
sations with series of SkyDICE exposures. This method combines results from the test bench
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Figure 8.6: Statistical and systematic uncertainties on the measurement of the SkyMapper
filter normalisation (relative to the r-band) as a function of the precision of the imager flux
measurements.
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Figure 8.7: Statistical and systematic uncertainties on the measurement of the SkyMapper
filter normalisation (relative to the r-band) SkyDICE source, as a function of the number of
calibration runs (assuming a precision of the imager flux measurements of 0.5%).
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filter fronts flux calibration

(nm) (relative to r, %)

Wavelength calibration 0.1 < 0.2

Monochromator transmission . 0.1 . 0.2

NIST photodiode calibration (best case) < 0.1 . 0.2

NIST photodiode calibration (worst case) < 0.1 0.3 − 0.6

Total ∼ 0.1 ∼ 0.3 − 0.6

Table 8.2: Systematics affecting the final SED measurements.

analysis presented in chapters 4 and 6 into a model that can predict the calibration flux, as a
function of the passband shapes and normalisations. This model is compared to the calibra-
tion measurements performed with the telescope, in order to determine a series of calibration
parameters, namely passband normalisations, and potential filter front displacements. The
method yields the full (stat+syst) covariance matrix of the calibration parameters, which
can then be propagated into any subsequence science analysis.

The DICE calibration source does not emit monochromatic light. As a consequence, it
cannot constrain entirely the shape of the passbands. We have shown that it is nevertheless
sensitive to ∼ 1Å variations of the position of the filter cutoffs. A DICE calibration source
is therefore a very sensitive monitoring tool that can be used to follow potential passband
alterations at minimal cost (i.e. ∼ 1 hour calibration runs).

Regarding the passband normalisations, DICE again seems to display an excellent con-
straining power. The systematics floor is of about 0.3%, and comes mostly from our knowl-
edge of the NIST photodiode efficiency. In order to improve on this, a better knowledge of
the NIST error budget seems to be essential.

The analysis of the commissioning data (chapter 7) using the method presented here is
still ongoing, and first constraints on the SkyMapper passbands should be soon available.
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Conclusion

A few months after SkyDICE was installed on site, Siding Spring Observatory was ravaged
by a bush fire. Fortunately, no telescope was seriously damaged, except for ashes and smoke
in the domes (especially on the optical surfaces). SkyMapper has resumed taking data a few
weeks ago. It is possible that SkyDICE was affected by the smoke and the high temperatures
that have been recorded in the enclosure of the telescope. Very likely, a recalibration of the
device is in order.

The outcome of the project is nevertheless extremely positive. We have shown that it is
possible to build a LED based light source that samples evenly the full visible wavelength
range. The stability of the source is remarkable, ranging from a few ∼ 10−4 for a few
of the LEDs, to 10−3 for the less stable channels. I have detailed the spectrophotometric
characterisation of the device on our test bench at LPNHE. More importantly, I have shown
that it is possible to build a smooth spectrophotometric model of each LED, that can predict
the LED spectrum at any temperature (in a temperature range representative of what is
measured in the telescope enclosure). Each of these models comes with an uncertainty budget
that accounts for (1) the finite number of spectroscopic and photometric measurements and
(2) the test bench uncertainties.

Finally, I have described a method to calibrate the effective passbands of the imager,
and monitor their fronts from series of calibration frames taken with SkyDICE. This method
takes into account all the test bench uncertainties and they are propagate as exactly as
possible to the final result. It is currently being applied to the real SkyDICE dataset, and
what has been presented here is a set of tests performed on (realistic) simulated datasets. A
important result of this work is that, despite the fact that the LEDs are not monochromatic
sources, we are able to control the position of the filter fronts with an accuracy well below
1-nm.

Regarding the passband inter-calibration, we have computed the expected uncertainties
affecting our estimates of the passband normalisation, relative to the r-band. These uncer-
tainties actually depend on how we interpret the uncertainties that affect the calibration
of the NIST photodiode. In the “best case” scenario, where the NIST uncertainties are all
positively correlated, we have shown that after a few calibration runs, we get down to a
precision of ∼ 0.4% in the u- and v-bands (near-UV) and of ∼ 0.3% in the other bands.

Depending on how we estimate the CALSPEC uncertainties (which are themselves un-
certain), this result is either a major improvement on CALSPEC, or on par with what can
be obtained with CALSPEC. In any case, this means that by using routinely a DICE source
to calibrate a survey telescope, we should be able to test the CALSPEC flux scale.
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8.6. CONCLUSION

The analysis of the SkyDICE commissioning dataset is still ongoing. The main missing
ingredient is the control of the relative positions of the telescope and the sources, as well as
an estimate of the pollution of the calibration frames. These two aspects of the analysis are
actively worked on, and the first constrains should be published soon.

162



Appendix A

SkyMapper Optical Model

A.1 Optical Model of SkyMapper Telescope

We have developed a simple model of SkyMapper optics, to predict the focal plane illumi-
nation for each SkyDICE exposure. This model is used as a tool to guide the design of the
illumination system. It will also be used to interpret the SkyDICE exposures. The model
is written in C++ using the ROOT1 framework software. In what follows, we summarise the
characteristics of the optical surfaces and optical materials that were used into the model.
Then we present in section §A.2, various tests of the optical model. Finally, we describe how
we computed the focal plane illumination for any SkyDICE exposure in §A.3.

A.1.1 Strategy

The modelling strategy is very simple. SkyMapper and SkyDICE are implemented as a set
of volumes. The position, orientation and shape of these volumes is defined with the help of
ROOT framework.

The model actually comprises two main components. First, a set of geometrical routines
that allow one to compute relative positions and orientations of the illumination device and
the telescope, this for any exposure. Second, an optical model of SkyMapper, that permits to
track any ray emitted from SkyDICE, and to predict the focal plane position of the resulting
impacts, and this, for the direct light as well as for a selection of ghosts. To track the rays,
we have written a very simple ray-tracer, implementing the snell-descartes law.

The intensity of rays (direct light or ghosts), that hits the focal plane depend on the
reflectivity and transmissions of the optical surfaces. The goal of SkyDICE is to measure
these quantities. Hence, the reflectivity and transmissions of each optical element are treated
as parameters of the model. Knowing them a priori is not really important, since our goal
is to measure them by comparing the model predictions with the SkyDICE data.

On the other hand, the position of the rays depend on the geometry of the optical surfaces.
The SkyDICE planet channel will allow us to check the correctness of the model, but does
not permit to measure them directly. Hence, it is crucial to ensure, that this simple optical

1CERN data analysis framework (http://root.cern.ch).
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A.1. OPTICAL MODEL OF SKYMAPPER TELESCOPE

model is correct. In what follows, we summarise the characteristics of all the model elements,
and we describe the tests we have performed on the model.

The information on the SkyMapper optics was extracted from a ZEMAX file sent to us
by P. Tisserand. Some additional information was obtained from the published SkyMapper
paper (Keller et al. 2007, Bessell et al. 2011).

A.1.2 Mirrors and Lenses

The optical design of SkyMapper has been optimised for wide-field observations in visible
and near-IR. The main configuration is a modified Cassegrain (focal plane behind primary
mirror), with hyperbolic primary and secondary mirrors completed by a set of three wide
field corrector lenses.

The first lens, L1 is positioned between the primary and secondary mirrors, the other
two (L2-L3), between the primary mirror and the focal plane. The front-face of L1 is an
aspherical surface.

The optical system is baffled to ensure that no stray light reaches the CCD detector.
We have modelled very carefully all the optical elements (mirrors, lenses, filters, cryostat
window). For the baffling, we have included only the surfaces that might block the beam
for some orientations of SkyDICE relative to the telescope. On figure A.1 we show a 3
dimensional visualisation of our model, along with a realistic representation of the SkyDICE
beam.

The position and shapes of the optical elements included in the model are summarised
in table A.1. The characteristics of the optical materials (refraction index) are summarised
in table A.3.

At almost all wavelengths, the lens transmittance is greater than 88% (Keller et al. 2007).
We do not know much about the internal absorption of these elements. At this point we
assume that the transmission T is related to the reflectivity R by: T = 1 − R.

A.1.3 Filters

SkyMapper has a set of 6 filters uvgriz made by different manufacturers (Bessell et al. 2011).
The characteristics of each filter are summarised in table A.2. The exact position of each
filter along the optical path is not known with micro metric precision.

The u, v, g and z filters are made of coloured glass. Hence, their transmission is extremely
uniform and does not depend on the incidence angle. r and i, on the other hand, are dielectric
filters. Their uniformity is not as good and their effective transmissions are expected to
depend on the incidence angle of the rays.

The angular dependence of interference filters transmissions can be approximated by:

T (λ, θ) = T



λ

[

1 − sin2 θ

n2

]−1/2

, θ = 0



 (A.1)

where n is the refracting index of the filter, and θ the incidence angle. This expression,
exact for a single fabry-perrot layer, should be accurate enough to describe the angle depen-

164



A.1. OPTICAL MODEL OF SKYMAPPER TELESCOPE

Figure A.1: 3-dimensional model of the SkyMapper optics. In red we have represented the
SkyDICE beam used for our simulations.
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A.1. OPTICAL MODEL OF SKYMAPPER TELESCOPE

dance of the transmission. For these filters, we still have to measure n from transmission
measurements performed at various angles by the SkyMapper team. In any case, these trans-
missions will be measured in situ from SkyDICE observations, so it is not crucial to known
them a priori. The filters should have a uniformity of 1% across the entire surface. These
variations are believed to be radial at first approximation. The transmission of each filter
has been measured at normal incident angle, at various positions.

A.1.4 Detectors and Optical Materials

The SkyMapper focal plane is made by 32 CCDs. The exact spacing between all these CCDs
is currently not known with precision. It will be possible later to measure it in situ, using
a set of science exposures with well measured WCS transformations. There are significant
disparities between detectors, that should be routinely measurable from SkyDICE exposures.
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A.1. OPTICAL MODEL OF SKYMAPPER TELESCOPE
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A.2. CHECKING THE MODEL

Optical Material n
HPFS 7980 Class AA 1.465763
Filters(a) 1.531250
Fused Silica 1.458464
BBAR-384 1.459000
(a) - We have used the average value

of the g filter.

Table A.3: Materials and coating properties.

A.1.5 Baffling System

Some non-optical surfaces have been added to the model, especially those which may block
the SkyDICE beam. They are currently modelled as perfect absorbers. The most important
ones are:

1. The baffles of M1 and M2: the most important is the one on the secondary mirror.
The correct shape is a cone section with a length of 0.4518 m.

2. The baffles of L1 and L2/L3.

3. The spiders and the upper cap over the secondary mirror.

A.2 Checking the Model

The best way to check the model is to compare it with the SkyDICE exposures. Before
SkyDICE is installed, we were able to perform simple checks. Among those:

• checking that a parallel beam is correctly focussed.

• checking with the SkyMapper team (using the original ZEMAX model) that we predict
correctly the position of the ghosts for some relative orientations of SkyDICE and
SkyMapper telescope.

• checking (with the ZEMAX model), that we can predict the correct plate scale varia-
tions.

In particular, we have checked the focus of the mirror and the pattern of direct and
reflected lights. To evaluate that we have built a simple model of the SkyDICE source using
C++ language. Inside this model we have three different type of beams:

• The “single shot” source.

• The “random” beam.
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A.2. CHECKING THE MODEL

• The “planet” beam.

For the “planet” beam we can also choose the width of the conical beam. We also set up
two others different types of beam: “half-moon" (like the “planet" but with a semi-conical
beam) and a “slit" beam (like a grating system).

Figure A.2: The plot represent the Root Mean Square (in pixel units) versus the position of
the secondary mirror (focus of the telescope). We found a value of ∼ 1.5 pixels (22.5 µm) at
a focus of +0.01702 m.

A.2.1 Focus

The simplest test is the focus of the telescope. This test is fundamental because it tell us if
we have set correctly the shapes and positions of optical surfaces. Figure A.2 shows the size
(RMS in pixels) of the resulting spot when illuminating the telescope with a parallel beam
(∼ 100, 000 rays). The best focus is obtained by shifting the secondary mirror by +0.01702
m with respect to the original position (see tables above). The resulting spot has a RMS
size of about 22.5 µ m, around 1.5 pixels.

Using a “random” source with ≈ 100, 000 rays perpendicular to the z axis of the telescope
at a distance of 3 m from the main mirror. The final value of the average position of all rays
inside a circle of 22.5 µm. The fact that each pixel of SkyMapper CCD camera is 15 µm, we
have obtained a focus of ∼ 9 pixels. This value is not acceptable for simulating real data,
but is good enough for our purpose. The figure A.2 shows the result.
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A.2. CHECKING THE MODEL

A.2.2 Model Prediction and ZEMAX Model

A second test is to check and predict accurately the focal plane position of the ghosts. This
would tell us if our optical surfaces are accurately positioned along the optical path.

Table A.4 gives the position of a fews ghosts, when illuminating the telescope with a
single ray defined as:

O ≃







0.22
0.48
3.





 ~u =







0.
0.

−1.





 (A.2)

For each ghost, we indicate the focal plane position.

Figure A.3: Direct light illumination on the focal plane. We can see a vignetting effect on
borders on the focal plane.

A.2.3 Plate Scale Variations

A last test is to check that we are predicting the plate scale variation across the focal plane
well. Indeed, the flux recorded on the telescope focal plane is proportional to the solid angle
subtended by each pixel. Figure A.3 shows the predicted plate scale variations. Our model
predicts about 1%, centre-to-corner. Then on figure A.4 we show the ratio between the direct
and the indirect (reflected) light in the focal plane of the camera model. The ratio is around
3%, acceptable for our purpose.
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A.2. CHECKING THE MODEL

Ghost name FPx (m) FPy (m)

PrimaryMirror-SecondaryMirror -0.002011182165 -0.004388033816
L3int-L3int L3int-L3int -0.03932275974 -0.08579511216
L3int-L3int L2ext -0.03746922209 -0.08175103002
L3int-L3int L2int-L2int -0.009866133205 -0.02152610881
WINDOWint-WINDOWint WINDOWint-WINDOWint -0.004453119919 -0.009715898005
WINDOWint-WINDOWint FILTERext -0.01096399921 -0.02392145281
WINDOWint-WINDOWint FILTERint-FILTERint -0.01166190422 -0.02544415466
WINDOWint-WINDOWint L3ext -0.044206974 -0.09645157963
WINDOWint-WINDOWint L3int-L3int 0.0008832500757 0.001927091074
WINDOWint-WINDOWint L2ext -0.00245442498 -0.005355109046
WINDOWint-WINDOWint L2int-L2int -0.0612575745 -0.1336528898
FILTERint-FILTERint FILTERint-FILTERint -0.00270908718 -0.005910735665
FILTERint-FILTERint L3ext -0.02587750034 -0.05646000073
FILTERint-FILTERint L3int-L3int -0.008148212183 -0.01777791749
FILTERint-FILTERint L2ext -0.009667691117 -0.02109314425
FILTERint-FILTERint L2int-L2int -0.03735389848 -0.08149941486
L1int-L1int L1int-L1int -0.0236988068 -0.05170648757
CCDext WINDOWext -0.003233016619 -0.007053854442
CCDext WINDOWint-WINDOWint -0.005674954373 -0.01238171863
CCDext FILTERext -0.01218583366 -0.02658727344
CCDext FILTERint-FILTERint -0.01288373867 -0.02810997529
CCDext L3ext -0.04673083695 -0.1019581897
CCDext L3int-L3int 0.002144467508 0.0046788382
CCDext L2ext -0.001449741465 -0.003163072288
CCDext L2int-L2int -0.06456548714 -0.1408701538
L3ext L2ext 0.0007562862785 0.001650079153
L3ext L2int-L2int 0.04915643275 0.1072503987
FILTERext L3ext -0.02445889926 -0.0533648711
FILTERext L3int-L3int -0.008844646513 -0.01929741057
FILTERext L2ext -0.01022504185 -0.02230918222
FILTERext L2int-L2int -0.03551172876 -0.07748013548
WINDOWext FILTERext -0.008522061453 -0.01859358862
WINDOWext FILTERint-FILTERint -0.009219966467 -0.02011629047
WINDOWext L3ext -0.03918041164 -0.08548453449
WINDOWext L3int-L3int -0.00161031173 -0.003513407412
WINDOWext L2ext -0.004442901084 -0.009693602364
WINDOWext L2int-L2int -0.05468211567 -0.1193064342
L2int-L2int L2int-L2int 0.04604744374 0.10046715

Table A.4: Position on the focal plane of all reflections calculated using our ray-tracing
model.
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A.3. ILLUMINATION BY A LAMBERTIAN BEAM

Figure A.4: Ratio of reflected light over direct light on the focal plane. The max value is
around 3%, acceptable for our purpose.

A.3 Illumination by a Lambertian Beam

One of the nice aspects of the SkyDICE design, is that simulating the focal plane illumi-
nation is not computationally heavy, since there is a one-to-one relationship between the
infinitesimal beam solid angles δΩ and the infinitesimal focal plane surfaces δS.

Simulating a SkyDICE flat field does not require computing an integral over the angles
and/or the mirror positions. Then, it can be determined very quickly, without requiring
expensive Monte-Carlo computations. The illumination recorded on a focal plane surface
element δS at location (x, y) on the focal plane is given by:

φ(x, y)δS =
∑

p

αp
Φ

Jp(xy)
δΩ (A.3)

where p runs over all possible paths (including at least two or more reflections within the
optics), Φ is the emitted flux per unit solid angle and Jp(x, y) is the Jacobian ‖∂(xy)/∂Ω‖.

Figure A.3 shows the resulting illumination for two SkyDICE orientations. As can be
seen, there is a significant level of contamination by ghosts, at the level of ∼ 2 − 3%.

In table A.5 we also calculated the expected illumination in the focal plane for each LED
installed in the SkyDICE source. In this calculus we used as reference current the nominal
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A.3. ILLUMINATION BY A LAMBERTIAN BEAM

Iled of every LED.

LED 〈λp〉 Iled B Beam Eγ Ne−

number (nm) (ADU) W/sr/ADU (W) (10−19 J)
8 320 5000 8.394723 10−9 1.174467 10−7 6.2076 3.5241 102

21 340 5000 8.283531 10−9 1.158911 10−7 5.8425 3.6947 102

2 365 5000 4.163912 10−8 5.825539 10−7 5.4423 1.9938 103

3 395 5000 1.879078 10−7 2.628932 10−6 5.0290 9.7371 103

22 420 1000 3.017910 10−7 8.444441 10−7 4.7296 3.3256 103

4 450 1000 1.093368 10−6 3.059363 10−6 4.4143 1.2909 104

17 465 1000 1.579288 10−6 4.419021 10−6 4.2719 1.9268 104

5 505 1000 7.692614 10−7 2.152477 10−6 3.9729 1.0092 104

24 528 1000 - - 3.8201 1.0092 104

6 550 1000 3.356951 10−7 9.393113 10−7 3.6117 4.8442 103

20 590 5000 6.680035 10−8 9.345732 10−7 3.3669 5.1703 103

7 625 1000 3.832214 10−7 1.072295 10−6 3.1783 6.2842 103

18 660 1000 1.017161 10−7 2.846127 10−7 3.0098 1.7614 103

1 690 1000 1.833168 10−7 5.129403 10−7 2.8789 3.3187 103

16 720 1000 2.451453 10−7 6.859433 10−7 2.7590 4.6310 103

13 745 1000 4.998257 10−7 1.398567 10−6 2.6664 9.7700 103

15 760 1000 2.585281 10−7 7.233896 10−7 2.6137 5.1551 103

10 810 1000 2.697023 10−7 7.546563 10−7 2.4524 5.7318 103

19 830 1000 3.191477 10−7 8.930100 10−7 2.3933 6.9500 103

12 850 1000 2.466564 10−7 6.901713 10−7 2.3370 5.5008 103

9 905 1000 1.772280 10−7 4.959031 10−7 2.1950 4.2082 103

14 940 1000 9.967060 10−8 2.788892 10−7 2.1132 2.4582 103

11 970 1000 1.614272 10−7 4.516907 10−7 2.0479 4.1083 103

Table A.5: Expected focal plane illumination for the whole set of SkyDICE LEDs.
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Salimmo sù, el primo e io secondo,
tanto ch’i’ vidi de le cose belle

che porta ’l ciel, per un pertugio tondo.
E quindi uscimmo a riveder le stelle.
(D. Alighieri / Inferno - Canto XXXIV)

Everyone is a genius.
But if you judge a fish on its ability to climb a tree,

it will live its whole life believing that is stupid.
(G. H. Reavis / The Animal School)
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