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Introduction

Contents

1.3 Contributions . . . . .« ¢ v v v i i e e e e e e e e e e
1.3.1 UNSUBPATT . . . . . . . . . . .
1.32 TRS . . . .
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1.4 Outline of the manuscript . . ... ... ........

1.1 Aims

In this chapter, we introduce the context and the main motivations of this
thesis. We briefly present and discuss the proposed contributions. We also
highlight the outline of each chapter in the manuscript as well as the appen-
dices.
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1.2 Context and motivations

This thesis is in the intersection of two of the most expanding research fields,
namely data mining and bioinformatics. Data mining is one of the most active
fields in computer science. It consists in analyzing complex data to extract
useful information and transform them into understandable and more conve-
nient format enabling and/or facilitating further use. The main goal of data
mining is to provide useful tools and technical knowledge through algorithmic
solutions for real world applications. Bioinformatics is an important applica-
tion field for data mining. This is due to the complexity of biological processes
and data that keep increasingly growing everyday. Manual work alone is un-
able to match the explosive growth of the amount of biological data. This
rises an urgent need for automatic mining techniques to study these data.

Proteins are biological macromolecules that play crucial roles in almost
every biological process. They are responsible in one form or another for a
variety of physiological functions. Proteins are made of complex structure
composed of a number of amino acids that are interconnected in space. The
amino acids themselves are composed of a set of interconnected atoms. Thanks
to both computational and biological advances we are witnessing these years,
huge amounts of protein structures are currently available in online databases
in computer analyzable formats. The biological importance of proteins, their
complexity, and their availability in computer analyzable formats made us
consider them as the main application data in this thesis.

Biologically speaking, the tertiary structure (shortly 3D-structure) of pro-
tein already contains its primary structure besides the connections between
distant amino acids. It is the native form that controls the basic function of
the protein. During the evolution some distantly related proteins may lose
sequence homology while retaining some common folding. Hence, studying
the tertiary structure of proteins is of great importance. A crucial step in
the computational study of protein 3D-structures is to look for a convenient
representation of their spatial conformation. Since a protein is composed of
a set of connected amino acids, it can then be easily transformed into graphs
where the amino acids are the graph nodes and their connections are the graph
edges. Transforming protein 3D-structures into graphs enables using graph
mining and more generally data mining techniques to study them.

Pattern mining is one of the most important tasks in data mining. The
main purpose behind pattern mining is to find hidden relations and behaviors
in data in order to better analyze them and to help in understanding the
observed phenomena. Pattern mining has been extensively addressed during
the last two decades for different types of patterns including association rules
and itemsets. In the last few years, many efforts have been devoted to mine
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patterns from graph data. This is not an easy task especially because of the
combinatorial nature of graphs that makes the search space exponential.

Graph patterns can be in the form of properties (density, diameter, ...) or
in the form of substructures. In this thesis, we are interested in patterns in the
form of substructures and more specifically in the form of subgraphs. In this
context, pioneer works were interested in mining subgraphs that are frequent
in graph databases. This is mainly because of the benefit of antimonotonicity
that offers the frequency measure. However, in the later studies, frequency
taken by its own, is no longer enough to justify the importance of subgraphs.
First, because many of the discovered frequent subgraphs are redundant or just
useless for the user. Second, because of the high number of frequent subgraphs
that hinder and even sometimes makes unfeasible further explorations. In the
literature, this problem is sometimes referred to as the curse of dimensionality
or information overload.

Several attempts have been made trying to resolve both mentioned issues
by selecting only a small yet more interesting subset of subgraphs using in-
terestingness measures that are defined according to the application needs.
However, it is not always obvious to integrate the selection in the extraction
process because most of the interestingness measures are neither monotonic
nor antimonotonic.

Many approaches have been proposed for selecting interesting subgraphs,
some of them are integrated in the extraction process, others perform the
selection in post-processing. These approaches are investigated in Chapter
3. An interesting observation in existing subgraph selection approaches is
that the prior information and knowledge about the application domain are
often ignored. However, the latter provides valuable knowledge that may
help building dedicated approaches that best fit the studied data. In this
thesis, we propose two selection approaches for subgraphs. Both approaches
alm to select representative subgraphs among the frequent ones in order to
remove redundancy. Redundancy in frequent subgraphs is mainly caused by
structural and/or semantic similarity, since most discovered subgraphs differ
slightly in structure and may infer similar or even the same meaning. We
attempt to overcome these shortcomings. Each of the proposed approaches
addresses one type of redundancy, ¢.e., the first approach focuses on semantic
redundancy using the prior domain knowledge, while the second approach
focuses on structural redundancy.
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1.3 Contributions

1.3.1 UNSUBPATT

In existing subgraph selection approaches, the prior domain knowledge is of-
ten ignored. However, it can be exploited to build dedicated approaches that
best fit the studied data. In our context, proteins evolve during the evolution
where amino acids mutate from one type of amino acid into another through
the action of DNA mutations. These mutations are quantified in the so-called
substitution matrices. These matrices represent valuable domain knowledge
that can be exploited. We propose UNSUBPATT (Unsubstituted patterns),
a subgraph selection approach that uses the substitution matrices to detect
similarities between subgraphs. We show that this allows UNSUBPATT to de-
tect similarities between subgraphs that current subgraph selection approaches
ignore. This also enabled UNSUBPATT to select a small yet more representa-
tive and informative subset of subgraphs among frequent ones, enabling easier
and more efficient further explorations. UNSUBPATT is unsupervised, thus,
it can be used in any subgraph-based task. It is also worth noting that UN-
SUBPATT can be used for other sub-classes of patterns like trees and strings
(represented as line graphs). Although UNSUBPATT is currently tested only
on protein structures, this represents an immediate application example due
to the availability of the substitution matrices. Indeed, UNSUBPATT can be
used in any other application context whenever it is possible to define a matrix
that quantifies similarities between the nodes labels.

1.3.2 TRS

The similarity between subgraphs in UNSUBPATT is purely semantic as it
depends on the relations between nodes’ labels, defined in the matrix. We
introduce another subgraph selection approach, we term TRS (Topological
Representative Subgraphs), that focuses on the structural similarity rather
than the semantic similarity. Existing works for structural subgraph selection
are based on exact or approximate structural similarity. This similarity de-
tection strategy is not efficient enough in many real-world applications. On
one hand, the combinatorial nature of graphs makes looking for a possible
matching between every pair of subgraphs computationally very costly. On
the other hand, exact and even approximate structural similarity are not effi-
cient enough to detect all similar subgraphs in real-world data. Indeed, exact
structural similarity does not allow detecting similar yet slightly different sub-
graphs, and approximate structural similarity has the problem of threshold
setting. A tight threshold prevent detecting similar subgraphs that slightly
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differ in structure beyond the tolerance threshold. In contrast, a loose thresh-
old will hinder the soundness of the selection because of false positives.

Unlike these approaches that look into every single detail, TRS follows
a more meaningful selection by considering the overall structural similarity
between subgraphs through a set of topological descriptors. This makes it
easily extendable with any user-specified set of descriptors depending on the
application and the sought information. TRS involves two steps. First, it
encodes each subgraph into a topological description-vector containing the
corresponding values for each one of the topological descriptors. Secondly,
subgraphs with similar topological descriptions are clustered together and the
central subgraph in each cluster is considered as a representative delegate.
We show that TRS is able to select a set of topologically non-redundant and
informative subgraph-delegates by considering hidden topological similarities
between subgraphs that are ignored by current selection approaches. In ad-
dition, TRS is easily extendable with other types of descriptors and is not
limited to biological data or to protein 3D-structures but can be used with
any graph data. Moreover, TRS is unsupervised and can be used in any
subgraph-based tasks.

1.4 Outline of the manuscript

The rest of this thesis is organized as follows. Chapter 2 presents the research
field of this thesis namely, data mining as well as the application domain which
is bioinformatics. It defines the basic notions and the preliminary concepts
needed for the understanding of the rest of the thesis. We also focus on
defining bioinformatics data and more precisely protein structures. We show
the complexity of the latter and we review methods from the literature that
allow transforming protein 3D-structures into graphs. We implemented these
methods and made them available for public in a website which is presented
at the end of the chapter and in the appendices.

In Chapter 3, we make a survey on related works over three levels. Since
subgraph selection is always coupled with the extraction, in the first part we
detail and discuss frequent subgraph mining algorithms in graph databases
as well as existing approaches that address this task. The second part of the
chapter focuses on the problem of feature selection in general and the last part
of it reviews the most interesting subgraph selection approaches.

In Chapter 4, we propose a novel feature selection approach, termed UN-
SUBPATT, for selecting a subset of representative unsubstituted subgraphs
among frequent ones. UNSUBPATT detects similarity between subgraphs by
incorporating a specific domain knowledge which, in our context, consists of
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the protein substitution matrices. Experimental evaluation of UNSUBPATT
and comparison with other subgraph selection approaches from the literature
are presented in the end of the chapter.

In Chapter 5, we propose another approach for subgraph selection, termed
TRS. Tt selects a subset of topological representative subgraphs among the
frequent ones. TRS focuses on the structural similarity to detect redundancy
between subgraphs. It uses a set of user-defined measures to characterize
the subgraphs, then it groups similar subgraphs into clusters to detect the
representative subgraphs. We define a set of topological attributes then we use
them to perform experimental analysis of TRS on a set of real and synthetic
graph datasets.

Chapter 6 concludes the thesis by summarizing the proposed contributions
and revealing ongoing works.

Appendix A describes the data format that we used in the experiments.

Appendix B gives a brief survey about PROTEIN GRAPH REPOSITORY
(PGR) which is an online website that contains a tool for transforming protein
3D-structures into graphs and a repository mainly dedicated to protein graphs.
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2.1 Aims

In this chapter, we present the preliminary concepts and the basic notions
of the two main research fields of this thesis, namely data mining and bioin-
formatics. Specifically, we investigate the task of pattern mining, its main
problem and how to resolve it. We also focus on defining bioinformatics data,
precisely protein structures. We show their complexity and we review methods
from the literature that allow transforming protein 3D-structures into graphs.
This enables further analysis of protein structures using graph mining and
more generally data mining techniques.
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2.2 Data mining

In recent years, data mining has become one of the most active fields in
computer science. This can be explained by the availability of increasingly
huge amounts of data with an urgent need to analyze them. Besides, the huge
advances we have witnessed in recent years in computational and storage
technologies allow running greedy algorithms and analyzing more and more
amounts of data.

Data mining is an interdisciplinary field in computer science. Different
definitions have been given to data mining. One of the pioneer definitions was
given in [Fayyad 1996]: "Data mining is the application of specific algorithms
for extracting patterns from data”. In Wikipedia,' it is defined as the compu-
tational process of discovering patterns in large data sets involving methods
at the intersection of artificial intelligence, machine learning, statistics, and
database systems. Han and Kamber defined it in [Han 2006] as: "data mining
refers to extracting or mining knowledge from large amounts of data"”. Zaki
and Meira Jr. gave a similar definition in [Zaki 2014|: "Data mining comprises
the core algorithms that enable one to gain fundamental insights and knowl-
edge from massive data”. A cross view over the existing definitions allows us
to simply consider data mining as the process of analyzing data to extract
useful information and transform them into understandable and more conve-
nient format, enabling and/or facilitating further use. Data mining often uses
algorithms and techniques from statistics, artificial intelligence and databases,
but may sometimes also involve techniques inspired from other domains such
as physics, biology, chemistry, and so on.

2.2.1 Knowledge discovery in databases

Data mining is sometimes referred to as Knowledge Discovery in Databases
or simply KDD [Fayyad 1997]. Yet, it only represents a part of the KDD
process. In fact, KDD involves two other parts besides data mining, namely
data pre-processing and data post-processing. Nevertheless, data mining may
sometimes cover these two parts which makes it equivalent to KDD. Figure
2.1 illustrates the different levels of the KDD process.

It is necessary to differentiate between data, information and knowledge.
From a computer science perspective, numbers, text, signals or in general
any raw facts that can be processed by a computer is considered as data.
Patterns, associations, and relationships among data can provide information.
Thus, information is simply any meaning that could be understood from data.

"http://en.wikipedia.org/wiki/Data_mining (October 2013)
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Figure 2.1: The different levels of the KDD process.

Based on the importance of information and its relevance to a given problem
it can be considered as knowledge.

According to pioneer studies [Brachman 1996, Simoudis 1996,
Mannila 1997, Fayyad 1997, Han 2006], the different steps of the KDD
process can be defined as follows:

Definition 1 (Pre-processing) It comprises all necessary procedures to pre-
pare and parse data into adequate format for the data mining step. These
procedures involves data cleaning to remove noise, data integration to combine
multiple data source, data selection to extract subsets of data from the database
that are concerned by the analysis, and data transformation to transform data
into convenient formats that are required from data mining algorithms.

Definition 2 (Data mining) It consists on applying mining techniques and
computational methods in order to extract particular knowledge from data.

Definition 3 (Post-processing) It consists on the evaluation, validation and
interpretation of the knowledge discovered in the mining step. It can be per-
formed based on algorithmic or visualization techniques.

2.2.2 Pattern mining in knowledge discovery

In statistics, the word population refers to the set or universe of the entities
under study.

Definition 4 (Pattern) A pattern (also referred as motif) consists generally
on a feature which characterizes a given population.
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Pattern mining is one of the core tasks and most important research fields
in data mining. It consists on finding existing patterns in data. In fact, pat-
terns can be in different forms ranging from simple patterns such as itemsets
and association rules to more complex patterns such as sequences, trees and
even to extremely complex patterns such as graphs and temporal or time
evolving patterns. The main purpose behind pattern mining is to find hid-
den relations and behaviors in data in order to better analyze them and to
help understanding the observed phenomena. Many of the pioneer works in
pattern mining have been devoted to association rules. Indeed, the original
motivation for finding association rules in data came from the desire to un-
derstand customers behavior in terms of the associations between purchased
products in supermarket transactions. For example, how often do costumers
buy milk and sugar, i.e., find the support of the association rule "milk —
sugar". Such associations are very valuable to the supermarket owners as
they may help, for instance, reorganizing the products positions according
to the costumers preferences which may yield the increase of sales. Besides
supermarket transactions, association rules and pattern mining in general are
used in many other real application contexts such as identifying terrorists’
activities and music information retrieval.

The identification of patterns in a given population is a hard task, since
the miner has to answer to, at least, these questions in the first place:

Which patterns are we seeking?

How do they look like?
- How can we characterize them?
- How can we identify them?

Answering these questions before starting the pattern mining process is cru-
cial, since each one of them highly affects the mining process.

2.2.3 Curse of dimensionality in pattern mining

A pattern can be identified in data based on one or several parameters such
as its frequency in the population, its rarity or other user-defined criteria.
The most common criterion used for pattern mining is frequency where the
aim is to mine patterns that often occur in data. A pattern is considered
as frequent if it occurs at least a minimum-number of times in the database.
The minimum-number is user-defined and called menimum support. Mining
frequent patterns stands under the assumption that patterns which frequently
occur in data can be considered as features (events, relations, transactions, ...)
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to characterize them. Indeed, it helps discovering interesting information and
common behaviors in data. Yet, a serious problem that arises directly after
mining frequent patterns consists in the huge number of discovered patterns
that may reaches thousands and even millions. Such huge number of patterns
may hinder or even makes unfeasible any further exploration. For example,
it would make no sense to provide millions of patterns for visual inspection.
In such case, instead of helping to resolve the problem, using frequent pat-
terns will add a supplementary problem layer to resolve. This problem is
referred to as the information overload. This problem has several side effects
and consequences especially if the large set of patterns are used as attributes
(dimensions) for further knowledge discovery tasks. This problem is referred
to as the curse of dimensionality. It can be observed with simple patterns as
well as with complex and sophisticated ones. Facing this problem, the main
raised questions are:

- Are all the discovered patterns interesting?

- If not, how can we decrease the number of patterns without loosing
(at least approximately) any knowledge, such that only the significant
patterns remain?

2.2.4 Measuring the quality of patterns

Resolving the problem of dimensionality is one of the biggest challenges in
pattern mining, since a pattern mining algorithm will potentially generate a
tremendous number of patterns especially in real world cases.

Definition 5 (Interesting pattern) A pattern is considered as interesting if
it represents knowledge, i.e., it brings additional information regarding the
mining problem or the information that is sought by the user.

In order to overcome the dimensionality problem and to identify the truly
interesting patterns that represent knowledge, some interestingness measures
can be adopted to assist the pattern mining process. Interestingness measures
are in the form of statistical functions. So far, there is no agreement on a
formal definition of a universal measure that quantifies the importance of a
pattern, or that allows distinguishing between the interesting patterns and
the uninteresting ones. This is obvious, because in diverse applications and
for different users the definition of the word interesting is relative and related
to the goals. For this reason, a panoply of interestingness measures have been
proposed in the literature.
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Figure 2.2: Using interestingness measures to mine interesting patterns.
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Generally, the existing interestingness measures can be classified into
two main groups, namely objective measures and subjective measures
[McGarry 2005, Geng 2006]. Objective measures are usually based only on the
raw data without requiring any knowledge about the user or the application.
Most objective measures are based on statistical strength or characteristics
of the patterns to assess their degree of interestingness. However, consider-
ing only objective interestingness measures may not allow highlighting the
most interesting patterns. In contrast, subjective interestingness measures
take into account both the domain knowledge and the user’s beliefs. This
is done by incorporating the background knowledge about the data and the
user’s knowledge and expectations during the mining process.

Both objective and subjective interestingness measures are used to assess
the interestingness of patterns in two manners: ranking and filtering (see Fig-
ure 2.2). Ranking is performed by ordering the patterns according to their
scores using the interestingness measures. Filtering is performed by elimi-
nating all patterns that do not satisfy the criterion required by a measure.
Since many measures quantify the interestingness of a pattern by a score, a
user-defined threshold can be adopted to prune the irrelevant patterns such
that only the ones satisfying the criteria remain. Filtering patterns can be
performed during the mining process to avoid considering the irrelevant pat-
terns by directly generating only the interesting ones. Or, it can be performed
in post-processing where the interesting patterns are selected after generating
the whole set. Computationally speaking, an efficient interestingness measure
is the one that can be incorporated in the mining process and allows early
termination to avoid walking over the whole pattern search space.
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2.2.5 Applications of patterns in data mining

Patterns are widely used in many data mining frameworks. In some applica-
tions, patterns can directly be considered as the sought information or even
the sought knowledge, for instance for visual inspection. In other applica-
tions such as indexing and recommendation systems, patterns are used as
a way to characterize the data under consideration and thus pattern min-
ing will present only a pre-processing step for the pattern-based data mining
framework. Classification and clustering are two of the major data mining
applications where pattern mining is extensively used to transform raw data
into pattern-based description that is accepted and processed by classification
and clustering algorithms. In this context, patterns which occur in data are
simply considered as features that characterize them. Patterns describing the
data are also called explanatory variables. In the following, we define both
classification and clustering since they are used later in the rest of the thesis.
patterns which occur in data can be considered as features to characterize
them.

2.2.5.1 Classification

Classification is a supervised learning task. It consists of predicting the class
label of an unknown object based on the observed labels of an already known
set of objects. The set of known objects is usually referred as training set.
Generally, a model is created by the classification algorithm, also called clas-
sifier, over the training data allowing to distinguish between the data classes.

There exists a panoply of classifiers that have been defined based on dif-
ferent techniques. The model building differs from one classifier to another.
These classifiers range from simple ones like "One Rule" classifier to complex
and sophisticated ones like "neural networks" and "support vector machines".
In the following, we present three of the most known classifiers.
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Naive bayes Naive bayes is a probabilistic classifier based on Bayes theorem
[Stigler 1986, Wasserman 2010]. The idea is to use probability conditions
to compute probability of each class. The predicted class is the one that
maximizes the posterior probability. Naive bayes is called naive or simple
because it assumes the independence of variables. Naive bayes is powerful
and works well in many cases, however, in many applications, variables are
not independent. Naive bayes is not suitable in such cases. Some variants of
naive bayes were proposed attempting to overcome this drawback by assuming
that variables can be related. Although this may contribute enhancing the
results, it highly increases the computational cost. Thus, according to the
no-free-lunch theorem [Wolpert 1995, no method is better than the others,
every method counts and is appropriate for specific cases.

Decision trees Decision trees are ones of the most popular classifiers
[Li 2008]. The most popular algorithms are ID3 [Quinlan 1986] and C4.5
[Quinlan 1993]. The goal consists in finding with the best possible accuracy
the values taken by the variables to predict from a set of descriptors, i.e., to
best predict the class affiliation using the descriptors as features. The main
idea is to consider the features as classification rules’ conditions, then, try to
find the best combinations of rules that best optimize the classifier prediction.
Using the features, it constructs a tree-like model where the nodes are the fea-
tures, the branches are the features’ values, and the leaves are the predicted
classes. Each path from the root node to a leaf present a classification rule.

Support vector machines Support Vector Machines, or shortly SVM
[Vapnik 1995, Bi 2003], is a powerful classifier. SVM attempts to separate
between positive and negative examples in the training set. Each example is
represented by a feature vector. SVM seeks the hyperplane that best sepa-
rates positive from negative examples, by ensuring that the margin between
the closest positive and negative is maximal. New examples are encoded using
the same features and predicted to belong to a class based on which side of
the hyperplane.

2.2.5.2 Clustering

Clustering, also known as unsupervised classification, is the task of creating
groups of objects based on one or more similarity criteria. The created groups
of objects are also called clusters. Unlike classification, in clustering the class
labels are unknown. Clusters presents homogeneous groups of objects that
are created based on objects similarity. Thus, a good clustering tends to
maximize similarity between objects within the same cluster (intra-cluster
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similarity) while minimizing the overall similarity between different clusters
(inter-cluster similarity).

There exists different clustering techniques depending on how the clus-
tering is performed. Clustering techniques involves partitioning methods, hi-
erarchical methods, density-based methods and others. In the following, we
present some of the most known clustering algorithm. The list of existing
clustering algorithms is not limited to the ones detailed below, namely k-
Means [MacQueen 1967] and k-Medoids [Kaufman 1987|, but it also involves
other well known algorithms like EM [Dempster 1977], DBSCAN [Ester 1996],
BIRCH [Zhang 1996, OPTICS |Ankerst 1999| and so on. We do only explain
k-Means and k-Medoids as examples since clustering is not the main subject
of this thesis, besides, k-Medoids is used later in Chapter 5.

K-Means K-Means is the most known clustering algorithm
[MacQueen 1967, Jain 2010]. Tt is considered as a partitioning method.
It takes as input a set of objects to be partitioned and a user-defined parame-
ter k which corresponds to the number of clusters. The main goal of k-Means
is to partition the objects into k clusters such that the intra-cluster similarity
is maximized and the inter-cluster similarity is minimized according to a
similarity (or inversely to a dissimilarity) function that computes distance
between pairs of objects. K-Means proceeds as follows. It starts by randomly
generating k fictive points as the clusters means (centroids). Then iteratively,
it assigns each data point to the same cluster of the closest centroid. After
assigning all the data points, the new mean point is computed and the
assignment is reinitialized. K-Means iterates the cluster assignment and
mean update until no change or local minima of criterion function converges.

K-Medoids K-Medoids [Kaufman 1987] is another partitioning method. It
is considered as a variant of k-Means. It also accepts as input a set of objects
to be partitioned and a user-defined number of clusters k. Then, it tries
to partition the objects into k clusters following almost the same clustering
procedure as k-Means. The main difference between k-Medoids and k-Means
is that the latter defines the cluster’s centers as fictive points, whereas, k-
Medoids requires that the cluster’s centroids be real points. This makes k-
Medoids less sensitive to noise and outliers in the data. In addition, this makes
it suitable for applications that looks for representative objects among data
such that each centroid can be considered as the representative for all objects
within the same cluster.
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2.2.6 Applications of data mining

The main goal of data mining is to provide useful tools and technical knowl-
edge through algorithmic solutions for real-world applications. Data min-
ing can be useful in a variety of domains of application ranging from mar-
ket analysis to chemistry and physics. One of the currently most expand-
ing domains of application of data mining is bioinformatics. The main goal
is to discover meaningful information and useful knowledge from biological
data in order to help understanding biological phenomena such as the study
of viruses [Diallo 2009|, metabolic pathways [Morgat 2012|, protein docking
[Ritchie 2010], etc. In the following section, we try to define and detail the
biological background as well as the biological data used in this thesis.

2.3 Biological background : bioinformatics and
biological data

2.3.1 Bioinformatics

Bioinformatics is an interdisciplinary field. It can be simply defined by the
application of computer science concepts and techniques to deal with biological
data. Bioinformatics involves not only the collection, storage, prediction and
analysis of molecules (nucleic acids, proteins, etc.) but also the development
of tools for modeling biological systems through mathematical, statistical and
computer science methods. Due to technological advances, bioinformatics has
exponentially evolved during the past few years becoming one of the most
expanding research fields nowadays. The emergence of bioinformatics did not
only create a new application field for computer science, but also brought to
biology many valuable benefits [Viari 2003|. Indeed, some tasks that used to
require tremendous efforts and weeks or even months of lab work, do only
need minutes or even seconds with the help of bioinformatics tools to perform
the same task with often nearly similar quality. This is thanks to the high
computational ability of current computer processors and to the algorithmic
advances in the analysis and modeling of biological systems.

2.3.2 Biological data

Mainly, bioinformatics data revolve around three biological macromolecules
namely DNA, RNA and protein. These three macromolecules are the essential
component for all known forms of life.
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2.3.2.1 DNA, RNA and proteins
Nucleic data Both DNA and RNA are called nucleic data.

- DNA: Deoxyribonucleic acid (shortly DNA) has a double helical twisted
structure (as in Figure 2.4). Each side of the spiral is called a polymer.
It is made of four parts called nucleotides: A (adenine), T (thymine), C
(cytosine), and G (guanine). Both sides of the DNA are complementary,
1.e., whenever there is an edge of T, there is A in the corresponding
position on the other side, and the same thing for G and C. DNA can
be represented by a sequence of four letters, or bases. DNA is known to
be the molecule that encodes the genetic instructions of all known living
organisms and many viruses.

- RNA: Ribonucleic acid (shortly RNA| see Figure 2.4), is a long molecule
but usually simple, except when it folds on itself. RNA perform multiple
vital roles in the coding, decoding, regulation, and expression of genes.
It differs chemically from DNA by containing the sugar ribose instead
of deoxyribose and containing the base uracil (U) instead of thymine.
Thus, the four RNA bases are A (adenine), U (uracil), C (cytosine), and
G (guanine).

Protein Proteins are biological macromolecules formed by concatenation of
20 distinct amino acids (defined and detailed in Section 2.3.3)(see Figure 2.7
for the common structural scheme of amino acids) into long chains. They
play crucial roles in almost every biological process. They are responsible in
one form or another for a variety of physiological functions including enzy-
matic catalysis, binding, transport and storage, immune protection, control
of growth, etc. A real example of a protein (the hemochromatosis protein) is
illustrated in Figure 2.5 and more details about proteins are given in section
2.3.3.

2.3.2.2 The central dogma of molecular biology

The central dogma of molecular biology, detailed in [Crick 1958, Crick 1970],
describes the biological macromolecules and the flow of genetic information
between them (Figure 2.6). DNA is transcribed into RNA and the RNA is
translated into proteins. The circular arrow around DNA denotes its ability
to replicate which is the process of producing two identical copies from one
original DNA molecule. From a computational perspective, these data can

http:/ /en.wikipedia.org/wiki/Nucleic _acid _analogue (October 2013)



20 Chapter 2. Data mining and biological background

Cytosine — Cytosine .
NH; —Nucleobases NH
C 1
o o
H
Guanine . Guanine .

o] Q

N NH
{ \ N)“NH;
N

H

N NH
(?\ \ NJLNHZ
N
H

Base pair

Adenine Adenine
A L &
N -—-..bj N ---..[j
I\ i\ s
QN N QN N
H H
Uracil 7] Thymine [
o] 0

helix of
H ° sugar-phosphates H
Nucleobases Nucleobases
of RNA of DNA
RNA DNA
Ribonucleic acid Deoxyribonucleic acid

Figure 2.4: The structure of DNA (right) and RNA (left).?

Figure 2.5: A representation of the 3D-structure of the hemochromatosis pro-
tein.

be seen as computer-readable structures defined within given alphabets as
summarized in Table 2.1.
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Table 2.1: Alphabets of biological data.
Type Data Alphabet
Nucleic DNA {A, T, C, G}
RNA {A, U, C, G}
Protein {A,C,D,E,F,G,H I, K, L, M, N,
P,Q,R,S, T,V,W, Y}

2.3.3 Protein structure

As in this thesis we are mainly interested in proteins as application data, here
we further detail proteins, the different levels of protein structure as well as

their chemical composition.
g

Figure 2.7: The common structural scheme of amino acids.
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As previously mentioned, proteins are formed by the concatenation of a set
of amino acids. These amino acids are within an alphabet of 20 distinct (see
Table 2.1). Here is the list of amino acids where each one can be represented
by a letter: alanine (A), cysteine (C), aspartic acid (D), glutamic acid (E),
phenylalanine(F), glycine (G), histidine (H), isoleucine (I), lysine (K), leucine
(L), methionine (M),asparagine (N), proline (P), glutamine (Q), arginine (R),
serine (S), threonine (T), valine (V), tryptophan (W) and tyrosine (Y). All
amino acids share a common structural scheme as illustrated in Figure 2.7.
An amino acid is composed of a central carbon atom called C, and four
chemical groups namely a hydrogen atom, an amino group (NH,), a carboxyl
group (COOH) and a side chain or radical (R). The four chemical groups are
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attached to the C, atom. It is the side chain that differentiates one amino acid
to another and gives it its physico-chemical properties. The common parts
between the amino acids compose the so called backbone [Branden 1991].

2.3.3.1 The four levels of protein structures

Amino acids constitute the building blocks of proteins. All amino acids of any
protein are joined together by peptide bonds. Most proteins fold into unique
three dimensional structures. However, it is possible to differentiate between
four levels of protein structure as illustrated in Figure 2.8.

- Primary structure: The sequence of the amino acid residues in the
chain is called the protein primary structure.

- Secondary structure: The chains of amino acids in the primary struc-
ture can fold to form complex three dimensional structures due to a com-
bination of chemical interactions. These three dimensional fragments
can take the form of one of three standard forms: a spiral conformation
called o — helixz, a twisted pleated sheet called § — sheet and a turn
where the polypeptide chain reverses its overall direction.

- Tertiary structure: The final folded state of a protein gives it its over-
all shape, i.e., what is known as the protein tertiary structure (or simply
protein 3D-structure). Precisely, it is formed by the spatial relations of
the secondary structures such that even residues that are far away in
the chain can be very close in the 3D-space.

- Quaternary structure: In reality, proteins are often composed of sev-
eral sequences of amino acids. The quaternary structure of a protein
consists on the combination of its sequences where each one has a pri-
mary, a secondary and a tertiary structure.

During the evolution, proteins go through changes. From one generation
to another, the amino acids forming protein sequences are exposed to changes
where they gradually mutate from one type of amino acid into another through
the action of DNA mutations. Mutations of amino acids are quantified in the
so-called substitution matriz.

2.3.3.2 Protein substitution matrices

A protein substitution matrix is a 20*20 matrix where each value v between
a pair of amino acids (z,y) presents the score of mutation of the amino acid
x to the amino acid y, such that z,y € [1..20].

3http://en.wikipedia.org/wiki/Protein_structure (October 2013)
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Figure 2.8: The four levels of protein structure.?

Definition 6 (Substitution matriz) Given an alphabet ¥ and a substitution
matriz A over X, VI,I' € 3, A is defined as follows:

A:| ¥ — [L,TICR
L,y — s

The higher the value of s is, the more likely is the substitution of I by l. Each
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substitution score s is in [ L, T]. If s = L then the substitution is impossible,
and if s = T then it is certain. The values 1 and T may appear or not in A.

The most known protein substitution matrices are PAM [Dayhoff 1978|
and BLOSUM [Henikoff 1992] :

PAM matrices PAM (Point Accepted Mutation) matrix was developed by
Dayhoff [Dayhoff 1978]. This mutation matrix corresponds to a substitution
accepted for 100 sites in a particular time of evolution, 7.e., a mutation that
does not destroy the activity of the protein. This is known as a one-percent-
accepted-mutation matriz (1PAM). If we multiply the matrix by itself a few
times, we obtain a matrix XPAM that gives the probabilities of substitution
for larger evolutionary distances under the assumption that repeated muta-
tions would follow the same pattern as those in the 1IPAM matrix. To be more
easily used in sequence comparison programs, each XPAM matrix is trans-
formed into a matrix of similarities PAMX called mutation matrix of Dayhoff
[Dayhoff 1978]. This transformation is performed by considering the relative
frequencies of mutation of amino acids and by taking the logarithm of each
element of the matrix.

BLOSUM matrices A different approach was undertaken to highlight the
substitution of amino acids. While PAM matrices derive from very similar pro-
teins, here the degree of substitution of amino acids is measured by observing
blocks of amino acids from more distant proteins. Each block present a short
and highly conserved region. These blocks are used to group all segments of
sequences having a minimum percentage of identity within their block. The
frequency of substitution is deduced for each pair of amino acids then a loga-
rithmic probability matrix called BLOSUM (BLOcks SUbstitution Matrix) is
calculated over these frequencies. Every percentage of identity is a particular
matrix. For instance, the BLOSUM62 matrix (see Table 2.2) is obtained using
an identity threshold of 62%. Henikoff and Henikoff [Henikoff 1992] conducted
such process from a database containing more than 2000 blocks.
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PAMX, BLOSUMX: Which one is the best substitution matrix?
The choice of protein substitution matrices depends on the type of exper-
iments, the desired results, and the nature of data. Although many com-
parative studies have been conducted in this context [Yu 2005, Mount 2008,
Brick 2008, Zimmermann 2010], no matrix is considered as the ideal one yet.
However, it is clear from these studies that the matrices rather based on com-
parisons of sequences or 3D-structures usually give better results than those
based primarily on the model of Dayhoff. For the most known substitution
matrices, X is among {45, 52, 60, 80, 90} for BLOSUMX, and among {100,
120, 160, 200, 250} for PAM X. Higher BLOSUM matrices and lower PAM ma-
trices are used to compare sequences that are relatively close and short while
to compare more divergent and longer sequences, it is better to use lower BLO-
SUM or higher PAM. Most of current bioinformatics tools use BLOSUMG62
(Table 2.2) as the substitution matrix selected by default.

2.3.3.3 Availability of biological data

The fast development we have witnessed in the past few years and still nowa-
days in both computer science and biological technologies, has highly facili-
tated the acquisition of biological data, transforming them into a computer
readable format, and storing them into big databases. Indeed, this engendered
the emergence of many online databases containing data that concerns differ-
ent research areas from biology including genomics, proteomics, phylogenetics,
metabolomics, and others. According to the Nucleic Acids Research (NAR)
online molecular Biology Database Collection,* the number of databases reg-
istered in NAR has grown from 202 databases in the year 1999 to 1512 in
2013. This increase has not only been noticed on the number of databases
but also on their sizes. This fact is illustrated in Figure 2.9 which shows the
exponential increase in size of some of the most known biological databases.
Manual work alone is unable to match the explosive growth of the amount
of biological data. This arises an urgent need for new bioinformatics tools and
new data mining algorithms for automatic analysis and knowledge retrieval.

2.3.4 From protein 3D-structures to protein graphs

For many years, proteins have been mainly studied based on their primary
structure. This is because the primary structure is more simple to represent
than all the other structures since it can be seen as string of characters where
each character represents one corresponding amino acid from the chain. In
addition, there has been a huge gap between the number of unique protein

thttp:/ /www.oxfordjournals.org/nar/database/a/
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Figure 2.9: Exponential growth of the size of biological databases.

primary structures in databases and that of protein 3D-structures. Moreover,
in that stage, the algorithmic advances allow to efficiently handle and deal
with strings of characters.

In recent years, increasing efforts have been devoted to deal with protein
3D-structures. This is due to the huge number of currently available protein
3D-structures in online databases. Besides, the algorithmic and technological
advances have allowed to run greedy algorithms and to better handle more
complex data. Biologically speaking, the tertiary structure of protein is more
important than its primary structure. First, because the tertiary structure
already contains the primary structure besides the connections between dis-
tant amino acids. In addition, the tertiary structure is the native form that
controls the basic function of the protein. Moreover, during the evolution
some distantly related proteins may lose sequence homology while retaining
some common folding.

There exists online databases allowing the acquisition of protein structures
in computer readable formats. Protein Data Bank [Berman 2000] is the most
known one.
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2.3.4.1 PDB: Protein Data Bank

One of the most known databases is the Protein Data Bank® (shortly PDB)
[Berman 2000] which is a free online repository of information about the 3D-
structures of large biological molecules, including proteins and nucleic acids.
The PDB was created in 1971 at Brookhaven National Laboratory, and is
continuously expanding. By the end of September 2013, it contains already
94540 structures, and the repository gets updated every week. In addition,
the PDB website allows users to perform simple and complex queries on the
data, analyze them, and visualize the results.

Protein structures are available in the PDB website in a special data format
also called PDB. In fact, the PDB file is simply a textual format describing
the coordinates of atoms of a molecule in the 3D-space (see Section A.1 for
more details).

2.3.4.2 Parsing protein 3D-structures into graphs

A crucial step in the computational study of protein 3D-structures is to look
for a convenient representation of their spatial conformation. Since a pro-
tein can be seen as a set of connected elements (amino acids and atoms),
it can then be easily transformed into a graph where the elements are the
graph nodes and the connections are the graph edges. In most existing works,
proteins are transformed into graphs of amino acids where each one of the
latter is represented by a node in the graph and the graph edges represent the
connections between the amino acids.

Transformation techniques: Some approaches have been proposed in the
literature for transforming protein 3D-structures into graphs of amino acids
[Saidi 2009]. These approaches use different techniques. In the following, we
present the most known approaches. In all these approaches, nodes of the
graphs represent the amino acids. However, they differ in the way of consid-
ering the edges in attempt to reflect the truly existing interactions. Some of
them express the edges by the strength of interaction between amino acids’
side chains, while, others express the edges based on the distance between
pairs of amino acids.

- Triangulation Triangulation is used to transform an object, repre-
sented by a set of points in a plane or in a 3D-space, into a set of
triangles. Tt is possible to have multiple triangulation for the same
object. The Delaunay triangulation |[Delaunay 1934] is a special way

Shttp://www.rcsb.org/pdb/ (August 2013)
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of triangulation. It was used to build protein graphs in several works
|Bostick 2004, Huan 2005, Stout 2008]. The main idea is to consider
the amino acids as a set of points in the space, then to iteratively try to
create tetrahedrons such that no point is inside the circum-sphere® of
any tetrahedron, i.e., empty spheres (see the example in Figure 2.10).

O

Figure 2.10: Triangulation example in a 2D-space. Left: Triangulation do
meet the Delaunay condition. Right: Triangulation do not meet the Delaunay
condition.

- Main Atom This is the main approach used in the literature. The main
idea is to abstract each amino acid only to a main atom M4 of it. This
main atom can be real, like the C,, or the Cz atoms, or fictive, like the
amino acid centroid or the side chain centroid [Lovell 2003, Huan 2005].
Two nodes representing the amino acids u and v are linked by an edge
e(u,v) = 1, if the euclidean distance between their two main atoms
A(Ma(u), Ma(v)) is below a threshold distance §. Formally:

(uv) = {1, if A(Ma(u), Ma(v)) <6 1)

0, otherwise

In the literature, many works used this method basically with C, atom
and with usually 6 > 7A on the argument that C, atoms define the
overall shape of the protein conformation [Huan 2005].

- All Atoms Some extensions have been made to the main atom method.
For instance in [Saidi 2009|, authors proposed all atoms where instead
of considering the distances only between the main atoms of amino acid,

6A tetrahedron is a polyhedron composed of four triangular faces that meet at each
corner. A circum-sphere of a polyhedron is a sphere that contains the polyhedron and
touches each of its vertices.
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they consider it between all the atoms of the amino acids (A4). For-
mally:

o) = {1, if A(Aa(u), Aa(v)) <6 (22)

0, otherwise

Discussion Here, we discuss the above mentioned transformation tech-
niques of protein 3D-structures into graphs. We assume that the correctness of
each technique is measured by its ability to reflect in the edges of the graph it
generates, the really existing links in the protein. The Delaunay triangulation
method suffers from two main drawbacks because of the empty circum-spheres
condition. First, we can find many false links between very far nodes in the
protein especially at the surface of the protein where the circum-spheres get
easily out of the cloud of atoms. Second, the empty sphere condition does
not allow a node to make connection with any other one outside of its tetra-
hedron sphere. This makes it omit many edges even in the presence of real
interactions.

The main atom method suffers a drawback. Since it abstracts the amino
acids into one main atom, it may omit possible edges between other atoms in
the amino acids that are more close than the main atoms. Moreover, in the
case of considering the centroids of the amino acids as the main atoms, it may
also suffer from two problems. In the case where the amino acids are big, if
the centroids of the amino acids are farther than the given distance threshold
then they will be considered with no links while a real connection could be
established between other close atoms. In the case where the amino acids are
small, if the distance between the centroids of the amino acids is smaller than
the given distance threshold then they will be considered as connected while
they can be disconnected in reality. To overcome main atom drawbacks, all
atoms method considers theoretically the distance between all the atoms in
the amino acids, this highly increases the complexity of the execution time.
Besides, among the heuristics the authors proposed to alleviate the complexity
of their approach, they do consider only the distance between the centroids of
the side chains of amino acids to decide whether they are connected or not,
without considering their chemical properties. This may engender many false
edges.

As biologically speaking the C,, atoms define the overall shape of the pro-
tein conformation [Huan 2005|, we choose to use the main atom method in
the experiments we conduct, using C, as the main atom. A real example
of a protein 3D-structure (the hemochromatosis protein) transformed into a
graph is illustrated in Figure 2.11. Although using such representation may
omit some edges and contains some false ones, it opens new challenges and
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perspectives by allowing the use of graph mining techniques to study proteins.
Besides, it enables extending previous works from the literature on primary
sequences like pattern discovery [Kleywegt 1999, Doppelt 2007].

Figure 2.11: Example of protein 3D-structure (hemochromatosis) transformed
into graph of amino acids (272 nodes and 1059 edges) using the main atom
methods with C,, as the main atom and a distance thresholds § > 7A.

PGR: protein graph repository We have implemented the mentioned
transformation methods from protein 3D-structures to graphs and other ones
in a jar file. This file is used as the core program of a web repository for
proteins graphs termed Protein Graph Repository (shortly PGR) [Dhifli 2010].
PGR accepts protein PDB files as input and outputs graphs of amino acids
under several format (see Appendix B for more details).

2.4 Conclusion

In this chapter, we presented the main research area of this thesis, namely
data mining. Particularly, we focused on one of the core tasks in data mining
and more generally in knowledge discovery which is the task of pattern mining.
We investigated the curse of dimensionality which is one of the main problems
in pattern mining that consists on the exponential number of patterns and we
showed how to resolve it using the interestingness measures. We also presented
the main domain of application of this thesis namely bioinformatics and more
precisely protein 3D-structures. We showed that proteins are complex data
that need to be analyzed and mined using automatic methods because of the
large amounts of data that keep increasing everyday. We reviewed the existing
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methods to transform protein 3D-structures into graphs which enables using
graph mining and more generally data mining techniques to study them. In
the next chapter, we will review existing works in the area of pattern mining
over graph data, and we will focus on the problem of feature selection for
graph patterns as a way to tackle the curse of dimensionality.
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3.1 Aims

In this chapter, we present works in the literature that are relevant to this
thesis. These works are presented over three levels. As many of the subgraph
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selection approaches as well as the ones proposed in this thesis perform the se-
lection over the set of frequent subgraphs, the first part of the chapter details
and explains the problem of frequent subgraph mining in graph databases and
lists the main used approaches to address this task. In the second part of the
chapter, we present in general the problem of feature selection and discuss the
different possible techniques and search strategies. In the last part, we review
a panoply of the most interesting subgraph selection approaches. We try to
partition these approaches into different groups depending on the selection
strategy and or the type of the selected subgraphs. A descriptive table pre-
senting the characteristics of the mentioned subgraph selection approaches is
presented as well.

3.2 Graph mining

Graphs are one of the most powerful structures to model complex data
[Cook 2006]. In fact, any data composed of entities having relationships can be
represented by a graph where the entities will be seen as the graph nodes and
the relationships as the graph edges. Recently and thanks to the increasingly
cheaper cost of storage devices and the availability of high processing power,
graphs are becoming ubiquitous. They are increasingly used in the model-
ing and the analysis of many real world applications such as the world wide
web, blogs, cell phone communications, XML documents, and even electronic
circuits. In chemoinformatics and bioinformatics, graphs are used to model
various types of molecules and biological data such as chemical compounds,
gene and metabolic networks, protein structures and protein-protein interac-
tion networks. Graphs are also used in the analysis of social networks such as
Facebook and Google+, where graphs represents networks of connected users
and are used to understand phenomenons such as rumors propagation and
criminal networks or to predict links or to detect central users.

One of the most powerful techniques to analyze and study graph data
is to look for interesting subgraphs among them. Subgraphs are said to be
interesting if they obey to one or different constraints. These constraints can
be structural and topological, based on frequency, coverage, discrimination or
even semantic if the graphs are labeled.

3.3 Subgraph mining

One of the main and most challenging tasks in graph mining is to look for
recurrent substructures, i.e., to extract frequent subgraphs [Cheng 2010|. In
fact, there exists two types of frequent subgraph discovery namely
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- From a single large graph: In this case, we wish to determine all sub-
graphs that occur at least a certain number of times in a one large graph
(e.g., the World Wide Web graph).

- From a database of many graphs: In this case, we have a database of
graphs (e.g., a family of protein 3D-structures represented by graphs)
and we wish to determine all subgraphs that occur at least in a certain
number of graphs of the database.

In different applications, we may be interested in different kinds of sub-
graphs, such as subtrees, cliques (or complete graphs), bipartite cliques, dense
subgraphs, and so on. These subgraphs are used later as patterns to describe
the data under consideration. Indeed, they may represent, for example, com-
munities in social networks, hubs and authority pages on the WWW | clusters
of proteins involved in similar biochemical functions in protein-protein inter-
action networks, and so on. But in the most common case, subgraphs are
mined from data based on their frequency.

3.4 Frequent subgraph discovery

The problem of frequent pattern mining has been widely addressed in data
mining. Yet, in the case of graph data, mining frequent patterns is more
challenging mainly because of the combinatorial nature of graphs [Zaki 2014].
Indeed, in the case of graphs the process of determining support is different.
As in this thesis we are more interested in the mining of frequent subgraphs
from a graph database, this subsection defines and gives the formal statement
of the problem of frequent subgraph discovery in graph databases.

3.4.1 Problem definition

Let G be a graph database. Each graph G = (V, E) of G is given as a collection
of nodes V' and edges E. We denote by |V| the number of nodes of G (also
referred as the graph order) and by |E| the number of edges of G (also called
the graph size). If two nodes u and v € V and {u,v} € E then u and v are
said to be adjacent nodes. The nodes and edges of G can be labeled within an
alphabet X such that G becomes G = (V, E, 3, L) where ¥ = ¥y, UXg and L
is the label function that maps a node or an edge to a label (Figure 3.1 shows
an example of an unlabeled graph (a) and a labeled graph (b)). G is called a
labeled graph and the labels of nodes and edges are denoted respectively by
L(u) and L{u,v}.
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(a) (b)
Figure 3.1: Example of an unlabeled graph (a) and a labeled graph (b).

Definition 7 (Graph isomorphism) A graph isomorphism ezists between two
graphs G = (V,E, ¥, L) and G' = (V' E', 3| L") if there is a bijective function
f: V= V' such that:

-VYu,v eV :Y{u,v} € E< {f(u), f(v)} € E
-Yw eV : L) =L (f(v))
- V{u,v} € B L{u,v} = L'{f(u), f(v)}
where L and L' are respectively the label functions of G and G'.

Definition 8 (Subgraph isomorphism) A labeled graph G is subgraph of an-
other labeled graph G', denoted by G C G, if there exists an injective function
f:V =V’ such that:

-Vu,v eV :V{u,v} € E— {f(u), f(v)} € E
-Yv eV, L(v)=L'(f(v))

- V{u,v} € B L{u, v} = L'{f(u), f(v)}

Under these conditions, the function f is called an embedding of G in G', G
is called a subgraph of G', and G’ is called a supergraph of G.

Definition 9 (Frequent subgraph) Given a subgraph g, a graph database G,
and a minimum frequency threshold T (minimum support), let G, be the subset
of G where g appears (i.e., g has a subgraph isomorphism in each graph in G, ).
The number of graphs where g occurs is denoted by | G, |. The subgraph g is
considered as frequent if:

support(g) = ||ggg|’ >T (3.1)
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Figure 3.2: Example of a subgraph (g) that is frequent in the graphs (a), (b)
and (c) with a support of 3 = 1.

Figure 3.2 shows an example of a subgraph (g) that is frequent in the
graphs (a), (b) and (c) with a support of FH =
all minimum frequency threshold 7 € [0..1].

1, i.e., (g) is frequent for

Mainly, frequent subgraph mining is performed over two steps. The first
step consists on generating the candidate subgraphs. In the second step,
each one of the subgraph candidates is checked for frequency. Among the
different kinds of frequent pattern mining, frequent subgraph mining is more
challenging. Indeed, the challenge in frequent subgraph mining comes from the
costly graph isomorphism and subgraph isomorphism which are known to be
NP-complete in their generalization. In the first step, the graph isomorphism
is used to avoid the generation of duplicate subgraph candidates. In the
second step, subgraph isomorphism checks are needed in order to determine
the support of each subgraph candidate in all graphs in the database.

Since graphs are combinatorial by nature, the number of possible exten-
sions of subgraph candidates is exponential. Thus, it is of an urgent need to
limit the search space.

Property 1 (Anti-monotonicity) All subgraphs of a frequent subgraph are
themselves frequent. Consequently, all supergraphs of an infrequent subgraph
are infrequent.

This property is very useful in pruning the candidates search space, since it
says that there is no need to make further extensions if the subgraph candidate
is no longer frequent.
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Figure 3.3: Example of a candidates search tree in a BFS manner (a) and
in a DFS manner (b). Each node in the search tree represents a subgraph
candidate.

3.4.2 Candidates generation

The generation of candidates is an essential step for the discovery of frequent
subgraphs. Generally, a candidate search space is iteratively constructed,
in a tree-like form, by extending the subgraph candidates where each node
in the tree represents a subgraph candidate and each child node of the latter
represents one of its possible extensions, i.e., one of its supergraphs. There are
two main techniques for generating candidates, namely Breadth First Search
(BF'S) and Depth First Search (DFS) (see the illustrative example below).
The first approach (BFS) follows a level-wise strategy where candidates of
size k+1 are generated by merging and fusing candidates of size k. That is to
say, that no candidate of size k+1 is generated before generating and exploring
all candidates of size k. In a DF'S strategy, a subgraph candidate is iteratively
checked for frequency then arbitrarily extended until it is no longer frequent
or no further extension is possible. Most recent algorithms prefer DFS over
BFS because it uses less memory and is faster since it avoids the costly merge
and fusion of subgraphs used in BFS.

Illustrative example Figure 3.3 shows an illustrative example of a candi-
date search tree in a BF'S manner (a) and in a DFS manner (b). Each node in
the search tree represents a subgraph candidate. Since BFS (Figure 3.3 (a))
follows a level-wise strategy, the tree is constructed using the following order:

1. Level 1: ng
2. Level 2: ny, ny, n3

3. Level 3: ny (constructed from n; and n3), ns (constructed from ny and

Hg).
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The DFS (Figure 3.3 (b)) follows the same branch until the bottom of the
tree before visiting the other branches. Supposing that nodes on the right are
visited before those on the left, candidates in the tree are constructed using
the following order:

- Ng, Ny, Ny, Ny, N5, n3, (ng: but pruned for duplication since already gen-
erated from ny), (ns: but pruned for duplication since already generated
from ny).

3.4.3 Frequent subgraph discovery approaches

Many approaches for frequent subgraph mining have been proposed
[Jiang 2013, Lakshmi 2012, Krishna 2011]. A pioneer work is [Cook 1994],
where authors proposed an approximate and greedy search algorithm named
SUBDUF for discovering frequent graph patterns based on a minimum de-
scription length and background knowledge. Other works have been proposed
based on the principles of artificial intelligence, like W ARM R [King 2001] and
FARMER [Nijssen 2001]. They successfully mined frequent subgraphs from
chemical compounds data. Although these approaches allow to completely dis-
cover all frequent subgraphs, they suffer from the high consumption in terms
of time and computational resources. In addition, the discovered subgraphs
are semantically very complex since the graphs where initially transformed
into datalog facts.

Besides these studies, there exists two main categories of the approaches
of frequent subgraph discovery namely: the apriori-based approaches and the
pattern-growth approaches.

3.4.3.1 Apriori-based approaches

Generally, apriori-based approaches start from subgraphs of small sizes. Then,
in a bottom-up manner, they generate subgraph candidates by adding a node
or an edge to an existing frequent subgraph. The main idea behind apriori-
based approaches is that subgraph candidates of size k + 1 are generated
by means of a join operation on two frequent subgraphs of size k& having a
common subgraph of size k—1. Thus, in order to be able to generate subgraph
candidates of level k4 1, all subgraphs of size k have to be already generated.
Hence, the name apriori-based approaches. Consequently, all apriori-based
approaches has to use the BFS strategy since they follow a level-wise candidate
generation.

The main algorithms that have been proposed in this category are AGM
[Inokuchi 2000, FSG [Kuramochi 2001] and DPMine [Vanetik 2002]. AGM
and FSG are very similar, but the main difference between them is that AGM
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generates a candidate by extending a frequent subgraph with a node. While,
FSG generates a candidate by extending a frequent subgraph with an edge.
DPMine uses edge-disjoint paths as the expansion units for candidate gener-
ation. It starts by identifying all frequent paths, then, all subgraphs with two
paths. After that, it starts generating subgraphs with k£ paths by merging
pairs of frequent subgraphs of k-1 paths having k-2 paths in common.

3.4.3.2 Pattern-growth approaches

Pattern-growth approaches extend an already discovered frequent subgraph by
adding an edge in every possible position. Adding an edge may result adding
a new node. Extensions are recursively performed until no more frequent sub-
graph is generated. In contrast to apriori-based approaches, pattern-growth
approaches are more flexible on the search method. Both BFS and DFS can
work. Pattern-growth approaches do not need the expensive join operations
used in the apriori-based approaches, nevertheless, they highly suffer the prob-
lem of duplicates generation. Indeed, the edge extension strategy can results
generating the same subgraph multiple times from different extensions. Hence,
existing pattern-growth approaches tried to propose ways to avoid or at least
minimize the generation of duplicate subgraph candidates.

The main algorithms that have been proposed in this category are
MoFa [Borgelt 2002], gSpan [Yan 2002, FFSM [Huan 2003] and GASTON
[Nijssen 2004]. MoFa is mainly proposed to mine frequent subgraphs in a set
of molecules. In order to accelerate the mining process, MoFa stores the em-
bedding list of previously found subgraphs such that the extensions will be
restricted only to these embeddings. Even though MoFa also uses structural
and background knowledge for pruning, it still generates many duplicates.

The gSpan algorithm addresses the problem of duplication differently. It
first starts generating candidates using the right-most extension technique. In
this technique, according to a DF'S on the graph, the path that goes straightly
from the starting node to the target node is called the right-most path. Only
extensions on the right-most path are allowed. It was proved that candidates
generation using the right-most extension technique is complete. To alleviate
the cost of isomorphism between subgraphs, gSpan uses a canonical represen-
tation where each subgraph is simply represented by a unique code called the
minimum DFS code, allowing an easy detection of isomorphic subgraphs.

FFSM also uses a canonical representation, in a matrix form, called the
Canonical Adjacency Matrix (CAM) to represent graphs and to detect iso-
morphism. It generates new subgraph candidates either by extension of a
CAM or by joining two CAMs using a set of adapted operators.

In many contexts, GASTON is considered as the fastest subgraph mining
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algorithm. In contrast to all existing approaches, it exploits the fact that a
wide range of the discovered frequent patterns are paths and trees, and only
a portion (that is sometimes very small) represents subgraphs with cycles.
Hence, GASTON considers them differently by splitting the frequent subgraph
mining into path mining, then subtree mining, and finally subgraph mining.
Consequently, the subgraph isomorphism is only performed in the final step.
GASTON also records the embedding list to save unnecessary isomorphism
detection by extending only patterns that appear in the list.

3.4.4 Variants of frequent subgraph mining: closed and
maximal subgraphs

According to the antimonotonicity property, all subgraphs of a frequent sub-
graph are also frequent. This arises a problem of dimentionality. Indeed, this
problem becomes even more serious with large subgraphs as they contain an
exponential number of smaller frequent subgraphs. To overcome this prob-
lem, variants of frequent subgraph mining have been proposed, namely closed
subgraph mining and maximal subgraph mining.

Definition 10 (Closed subgraph) A frequent subgraph g is said to be closed, if
it has no supergraph g (g C ¢') that is also frequent and has the same support.

Definition 11 (Mazimal subgraph) A frequent subgraph g is said to be maz-
imal, if it has no supergraph ¢’ (g C ¢') that is also frequent.

According to the definitions 10 and 11, both closed and maximal frequent
subgraphs present a compact representation of the frequent subgraphs. Closed
subgraph compactness is lossless since it contains all the information about
the frequent subgraphs and their supports. However, maximal subgraph com-
pactness does not consider the whole information since although all frequent
subgraphs can be restored, the exact support of each subgraph is lost. The
main approach that have been proposed in the literature for closed subgraph
mining is CloseGraph [Yan 2003] and those for maximal subgraph mining are
SPIN [Huan 2004b| and MARGIN |[Thomas 2006|. Although the set of closed
or maximal subgraphs is much smaller than the set of frequent ones, the num-
ber of subgraphs is still very high in real-world cases.

3.5 Feature selection

Feature selection is also known in the literature as pattern selection, attribute
selection, variable selection or variable subset selection [Liu 1998, Guyon 2003,
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Liu 2007a, Saeys 2007, Ladha 2011]. The task of feature selection has been
widely addressed in data mining not only for subgraphs but also for other
types of patterns such as association rules, itemsets and sequential motifs.
Although many approaches have been proposed in the literature allowing an
efficient computation of frequent patterns, the number of discovered patterns
is often very high. This is an obvious impact of the high dimensional nature
of many types of data. Besides, most frequent pattern discovery approaches
were not originally designed to consider the relevance of features.

The main goal of feature selection is to reduce the number of features
by removing the redundant and irrelevant ones such that only a subset of
interesting features is retained.

Relevance of a feature: According to an interestingness criterion, a feature
is redundant if it does not bring any additional information over the currently
selected features and thus it can be replaced by at least one of the already
selected features. A feature is considered as irrelevant if it does not provide
any useful information in any context such that it does not have any influence
on the output of the prediction.

3.5.1 Feature selection techniques

Many approaches have been proposed for feature selection to resolve the di-
mensionality problem when the number of patterns is high. It is possible to
categorize the existing approaches in different ways depending on the criterion
used for classification. For instance, according to their relation to the learning
task, feature selection approaches can be classified into:

- Learning task dependent selection approaches they attempt to
find a subset of features that enhance the prediction capabilities of a
target learning task, 7.e., classification, clustering, etc.

- Learning task independent selection approaches they tend to en-
hance the quality of the feature set and to remove irrelevant features
without regards to the learning task.

The most conventional classification of feature selection approaches com-
prises three categories, namely wrapper, embedded or filter approaches
[Liu 2007a).

3.5.1.1 Wrapper approaches

Wrapper approaches [Cadenas 2013] are used to optimize the feature set to
best fit a specific learning model. As shown in the Figure 3.4, they start
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Figure 3.4: General schema of wrapper approaches for feature selection.
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dividing the whole feature space into subsets using a sampling technique,
generally cross-validation. Each one of the feature subsets is evaluated by
training and testing the learning model. The subsets are ranked according to
their predictive power and the selected subset of features is the one having
the best score. Wrapper approaches are generally able to find the feature
subset that best fit the learning model, but they are prone to overfitting and
computationally very costly.

3.5.1.2 Embedded approaches

Predictor
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Figure 3.5: General schema of embedded approaches for feature selection.
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The general schema of embedded approaches is illustrated in Figure 3.5.
Similarly to wrappers, embedded approaches [Ladha 2011] are also related to
a specific learning model. In contrast, the selection process is performed as
part of the model construction by searching in the combined space of feature
subsets. This helps alleviating the high complexity and computational cost
that are in wrapper approaches. Yet, the same reason makes them also prone
to overfitting.

3.5.1.3 Filter approaches

Filter approaches |[Lazar 2012| select features independently of the chosen pre-
dictor. Figure 3.6 illustrates the general feature selection schema of filter
approaches. Generally, they assess the relevance of features based on their
relevance according to a significance criterion (statistical test). Based on the
evaluation method of features, filter approaches can be classified into:

- Univariate filter approaches where features are evaluated solely ac-
cording to a statistical test, such as the Pearson correlation, and without
any consideration of the rest of the features.



44 Chapter 3. Related works

- Multivariate filter approaches where features are selected based on
a combinatorial search through the space of possible feature subsets.
Only the most significant subset of features is selected.

Selected .
All features fe ecte Predictor
eatures

Figure 3.6: General schema of filter approaches for feature selection.

As filter approaches are independent of the learning model, they can score
less than wrappers and embedded approaches for a specific predictor. How-
ever, they provide a generic selection and thus they are more robust against
overfitting. In addition, compared to wrappers, filter approaches are faster.
Still, they are in competition with embedded approaches since the computa-
tional complexity of the latter tends to be between filters and wrappers.

3.5.2 Feature selection search strategy

In all the previously detailed feature selection approaches, the search in the
feature space is performed following one of these two strategies:

- Forward selection starts with an empty set then progressively add
features one by one by choosing the features that yield the best result
until no more gain on the evaluation function is obtained or it reaches
a specified number of features.

- Backward selection: starts with the whole set of features then itera-
tively removes them one by one. Only features with no benefits for the
mining task are removed.

Since forward selection involves fewer features in the beginning, it is gen-
erally faster than backward selection. However, the latter performs better
in detecting relations between features. This is because forward selection is
unable to detect relations between features if one of them was not already
selected in an earlier step.

3.6 Feature selection for subgraphs

Because of the combinatorial nature of graphs, graph mining is currently still
one of the most concerned fields by the dimensionality problem. To be able to
handle the exponential number of frequent subgraphs, many feature selection
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approaches have been proposed for selecting significant subgraphs. Although
the main goal of these approaches is to obtain a smaller yet more informative
subset of subgraphs, each approach has a different way of evaluation.

3.6.0.1 Problem statement

In general, the process of feature selection for subgraphs can be formulated as
follows. Given a graph database G = {G4, ..., G, } and an evaluation function
F'. find all significant subgraphs g* € G such that :

- g* are the set of subgraphs that maximize the evaluation function F,
i.e., g- = argmazy(F(g)). Or,

- g* are the subgraphs having an evaluation score that is greater or equal
to a given threshold, i.e., ¢* = F(g) > 7, if F' is a threshold based
function. Or,

- g* are the k subgraphs having successively the best score with F, i.e.,
g* = TopyF(g).

In all three cases, the best scenario is that when the evaluation function F
is embedded within the subgraph mining such that the significant subgraphs
are directly mined from G without needing to exhaustively generate all the
set of subgraphs. However, it is not always simple to do, especially if the
evaluation function is not antimonotonic. As many approaches have been
(and are being) proposed for significant subgraph selection, in the following
subsections, we present and discuss some of the recent and most interesting
methods in the literature. We try to group them into categories based on
their selection strategy.

3.6.1 Mining top-k subgraphs

The main idea behind top-k selection approaches is that in many application
domains a user may be interested in finding a specific number of patterns that
best qualify to a given evaluation criteria. Thus, in this selection strategy, the
methods accept a parameter k and a criterion F, then return the best k
frequent subgraphs which are ranked according to F'.

An interesting top-k approach was proposed in [Xin 2006]. Authors pro-
posed a greedy algorithm that approximates an optimal solution with perfor-
mance bound for mining redundancy-aware top-k patterns. Their algorithm
was applied on graph patterns aiming to find subgraphs with the highest sig-
nificance and the minimal redundancy simultaneously. The significance of a
pattern p is measured using a function S such that S(p) is associated to a
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real value, and S is defined by the context of application. The redundancy
between pairs of patterns R(p,q) is measured by their structural similarity,
i.e., by computing the edit distance between them. It is worth mentioning
that authors assume that the combined significance of two patterns is no less
than the significance of any individual pattern and does not exceed the sum
of two individual significance. Authors showed experimentally the efficiency
of the their approach on two real world applications namely document theme
extraction and correlation-directed disk block prefetch. However, to mine the
redundancy-aware top-k patterns, the user needs to find all frequent patterns
and assess their significance in the first place.

A recent work, termed TGP |Li 2010], mainly motivated by the fact that
in most real-world cases it is difficult to select a proper value of minimum
support. Indeed, if the value of the minimum support is too low thousands
of patterns are extracted, but many of them are irrelevant. However, if the
the value of the minimum support is too high, several large subgraphs will
be excluded from the extraction result. TGP is an approach for mining top-
k frequent closed graph patterns with size no less than a minimum size but
without specifying a minimum support. It adopts a new structure called Lex-
icographic Pattern Net to store the patterns and relationships between them
which helps facilitating the mining process. Indeed, it helps in both dynami-
cally raising the minimum support threshold to ensure the completeness and
correctness of results, and in avoiding to generate again the same candidate
patterns in the next mining step. Experimental evaluation was conducted on
financial, chemical compound, and synthetic datasets. Authors showed that
in the case where the user is unable to provide a minimum support thresh-
old, TGP is able to find the top-k frequent closed graph patterns completely
and accurately. Although TGP allows to avoid specifying a minimum support
threshold, the user still has to define a proper number of patterns to select,
i.e., the k constraint.

3.6.2 Clustering-based subgraph selection

The task of clustering-based subgraph selection aims generally at obtaining a
set of representative patterns, where each representative resembles a cluster
centroid. In fact, clustering is the process of bringing together a set of objects
into classes of similar objects. The definition of similarity between the input
objects varies from one clustering model to another. In most of these models
the concept of similarity is based on distances, such as Euclidean distance or
cosine distance.

RP-FP and RP-GD [Liu 2007b] are two approaches for summarizing fre-
quent graph patterns by a smaller number of representatives. Authors ex-
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ploited and extended the concepts of d-cover and d-jump, to efficiently find
the representative subgraphs. A graph ¢ is d-covered by another graph ¢ if
g C ¢’ and the distance between them D(g, ¢’) is lower than 6. A d-jump sub-
graph ¢ is a graph pattern such that the distance between g and any proper
supergraph of g is greater than §. The first approach, RP-FP, selects a subset
of representative patterns from a set of closed frequent subgraphs. The RP-FP
method works well when the size of the set of frequent closed subgraphs is not
very large. However, in real applications where the number of frequent closed
patterns is usually high, RP-FP does not scale well. Therefore, authors pro-
posed the second approach RP-GD which directly mines representative graph
patterns from graph databases with lower tightness on the summarization
quality. RP-GD calculates the representative set of patterns simultaneously
during the extraction of frequent closed patterns. Thus, when the number of
closed graph patterns is very large, RP-GD is much more efficient than RP-
FP. Experiments conducted by authors on chemical compound and synthetic
graph databases showed that RP-GD is much more efficient than RP-FP while
achieving comparable summarization quality. Yet, the user has to define the
right value of 9.

RING [Zhang 2009] is another clustering-based subgraph selection ap-
proach. It aims at finding a subset of N representative subgraphs among
the frequent ones. The representative subgraphs should satisfy the distinc-
tion where all representative subgraphs should be dissimilar to each other,
and the completeness where the number of frequent subgraph patterns which
cannot be delegated by the representative patterns should be as small as pos-
sible. RING adopts the idea of transforming each subgraph into a vector of
invariants. Then, it uses the euclidean distance between these vectors to com-
pute the distance between subgraphs instead of using the costly edit distance
measure (the minimum amount of deletion/insertion of nodes and edges to
transform one graph into another). To find the N representative subgraphs,
all frequent subgraphs are grouped into N clusters, and the subgraphs that
are closest to the clusters centers are selected as representatives. Authors
also proposed a way of integrating RING selection into the mining process of
frequent subgraphs to directly discover the representative subgraphs. They
process the subgraph discovery in a DF'S manner. For any frequent subgraph
P, represented by another representative subgraph P,. If while P; is being
extended another pattern P, represented by the same representative P, has
been reached then the growing stops. If such subgraph has not been reached,
the growing continue and if the frequent subgraph is not covered by any one
of the representatives, then it is considered as a new representative. The DFS
mining algorithm stops when all the supergraphs of existing representative are
not frequent. RING was tested on a synthetic graph dataset as well as on a
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graph representing a protein-protein interaction network. RING was able to
select representative subgraphs in a fast way. Yet, its pruning condition as-
sumes that the supergraphs of the pruned subgraph will be also represented by
the same representative which is not always true. This may prevent reaching
many representatives and thus leading to poor selection.

3.6.3 Sampling-based approaches

In statistics, sampling can simply be defined by the task of selecting a subset
of individuals among a given statistical population to estimate the character-
istics of the whole set. In our context (i.e., pattern selection), sampling is a
method for selecting a subset of n patterns out of N such that the sampled n
patterns allows (or approximately) estimating the characteristics of all the N
patterns. Sampling-based approaches are mainly proposed due to the assump-
tion that in many real application contexts, it is very costly or even impossible
to generate the entire set of frequent patterns. Thus, sampling-based selection
approaches tries to approximately generate the set of significant patterns by
only considering a sample of the entire set of patterns.

ORIGAMI |Hasan 2007] is a method for the extraction of representative
subgraphs. Unlike most of the existing selection approaches that considers
relations between patterns in the transaction space to obtain representatives,
ORIGAMI considers the distances in the pattern space which is obviously
more complex especially in the case of graph patterns. ORIGAMI is com-
posed of two steps. First, it starts by extracting a sample of frequent max-
imal subgraphs through a random walk along the frequent subgraph lattice.
Then straightforwardly, it selects a subset of a-orthogonal (non-redundant)
and [-representative subgraphs. Two subgraphs are a-orthogonal if their sim-
ilarity is bounded above by «, and a subgraph is said to be S-representative
for another if their similarity is at least 8. The similarity between two sub-
graphs is computed they finding how much their maximal common subgraph
|Abu-Khzam 2007] represent from their overall structure. Experiments were
conducted on various types of datasets: chemical coumpounds, protein struc-
tures, protein-protein interaction network and a synthetic dataset. They
showed the efficiency and scalability of the approach. However, the selection in
ORIGAMI is straightforward and is performed after discovering the frequent
maximal subgraphs. In addition, the randomized search used in ORIGAMI
risks walking only over a portion of the frequent subgraph space while the rest
of it is ignored. This may leads to discover poor quality representatives.

In [Hasan 2009]|, authors proposed an output space sampling approach for
subgraphs. It samples interesting subgraph patterns without enumerating the
entire set of candidate frequent patterns. The sampling is driven by a distri-
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bution that is predefined by the user. This is performed through a random
walk on the candidate subgraph partial order. When the walk converges to a
desired distribution, the algorithm stops and returns the discovered subgraph
samples. Experimental analysis was performed on graph datasets (namely
chemical coumpound, protein interaction and cell-graphs datasets) as well
as on an itemset dataset. Results showed that the output space sampling
approach is scalable and able to discover a sample of significant patterns ac-
cording to the desired distribution. This approach is useful in the case where
traditional approaches fail to run. Although authors successfully performed
experiments on small and large graph datasets, their approach stores the en-
tire database in the memory which makes it inefficient if the database does
not fit the memory. Besides, the user should carefully define the distribution
parameter since it highly affects the quality of the sampling.

In [Schietgat 2011], authors proposed an approach for mining a specific
type of subgraph patterns. The main idea of their approach is to mine the
maximum common subgraphs (MCSs) [Abu-Khzam 2007] between pairs of
graphs in the database. The pairs of graphs are randomly selected from
the database and thus the mined subgraphs represent only a sample from
the entire set (MCSs sample). Experimental evaluation was performed on
60 benchmark datasets of molecular compounds representing problems from
chemoinformatics. To evaluate the quality of the mined subgraphs, they were
used as features for classification. Results show that their approach produces
a smaller and less redundant set of subgraph patterns, and allows better pre-
diction performance in classification than other state-of-the-art approaches.
Besides, it is parameter free and runs in polynomial time. However, the pro-
posed approach is restricted to outerplanar graphs [Schietgat 2011]. Although
it works well with chemical compounds datasets, this approach may not scale
well with larger graphs (such as the case of graphs representing protein 3D-
structures), and larger datasets since the search is pairwise.

3.6.4 Approximate subgraph mining

Approximation is usually used when the exact result is unknown or difficult
to obtain such that the obtained inexact result are within required limits of
accuracy. In many applications, mining the whole set of frequent subgraphs is
very difficult. Besides, in applications like the analysis of protein interaction
networks and social networks, slight differences between subgraphs may not
be important. In such cases, approximation is a way to handle both issues
by only enumerating an approximate set of subgraphs such that similar but
slightly different subgraphs will collapse into one representative. Approxima-
tion in subgraph mining is performed by structural approximation or label
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approximation.

An interesting work that falls in this category is [Chen 2008]|, where au-
thors proposed an approach for mining a set of structural representative sub-
graphs among the whole set of frequent ones. After mining all frequent sub-
graphs, they perform a smoothing-clustering selection that is based on approx-
imate structural similarity on micro and macro sides. In the smoothing step,
they consider a tolerance threshold to summarize approximately isomorphic
subgraphs into one representative. In the clustering step, they collapse mul-
tiple structurally similar subgraphs into one representative using a clustering
algorithm where the center of the cluster is considered to be the representa-
tive subgraph delegate. They used K-Medoids [Ng 2002| for non-overlapping
clustering and e-bounded clustering [Hochbaum 1997| for overlapping clus-
tering where each subgraph may belong to multiple clusters and thus may
be represented by more than one structural representative. Efficiency of the
smoothing-clustering approach was evaluated through experiments on chem-
ical compounds and synthetic graph dataset. Yet, in order to find the rep-
resentatives, all frequent subgraphs have to be discovered first. Besides, the
method contains many parameters that need to be properly defined in order
to prevent poor selection.

Unlike structural approximation, less attention have been devoted to label
approximation. A very recent work have been developed in [Anchuri 2013]
for mining significant subgraphs based on label approximation. This work
operates in the context of single large graph, however, we are here interested in
approaches devoted to graph databases. Thus, this approach is more discussed
in chapter 4 as a matter of comparison. Structural approximation is also more
discussed in chapter 5.

3.6.5 Discriminative subgraph selection

Supervised classification is one of the important applications that use frequent
subgraphs and in general frequent patterns. In the case where graphs in the
database are labeled (i.e., each graph is affiliated to a class), it is possible to
extract discriminative frequent subgraphs. These subgraphs are lately used
as attributes for machine learning classifiers to help building models that
best discriminate between classes. Several selection methods and algorithms
have been proposed for mining discriminative frequent graph patterns. In the
following, we list and explain some of the best known in the literature.
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3.6.5.1 Filter methods

In |Yan 2008], authors proposed LEAP, an approach for mining the most dis-
criminative subgraphs. LEAP is designed to exploit the correlation between
patterns through both structural similarity and significance. It iteratively
looks for the optimal patterns until all graphs are covered. LEAP was tested
on a collection of molecular compound datasets transformed into graphs. It
is able to quickly locate few number of highly discriminative subgraphs with-
out exploring the whole pattern space. The selected subgraphs facilitate the
training of a classification model and help enhancing its accuracy.

GraphSig [Ranu 2009| provides a solution to mining discriminative sub-
graph patterns with low frequencies. It starts by converting graphs into fea-
ture vectors through a random walk with restarts on each node. Domain
knowledge is used to select a meaningful feature set. GraphSig assumes that
graphs with similar feature vectors share highly frequent subgraphs. Thus,
it clusters the graphs having similar feature vectors into small groups. After
that, it mines frequent subgraphs in each group with high frequency thresh-
olds ensuing a high reduction in the computation cost. GraphSig was tested
on molecular compound datasets. Results show that GraphSig is scalable and
able to find discriminative patterns in large graph datasets and even with low
frequencies.

GAIA [Jin 2010] is another approach for mining discriminative subgraphs
for graph classification. GAIA adopts evolutionary computation in discrim-
inative subgraph mining through a randomized exploration of the candidate
subgraphs search space. Further, as the search is randomized, GATA uses
parallel computation to improve the quality of the set of selected discrimina-
tive patterns by integrating the results from independent instances of pattern
evolution. After discovering the discriminative patterns, GAIA employs se-
quential coverage and uses the mined patterns to generate association rules
as graph classifiers. Experimental evaluation of GATIA was performed on a
number of protein and chemical compound datasets. It showed that due its
parallelization technique, GAIA is scalable and able to quickly find highly
discriminative subgraphs.

CORK [Thoma 2010] is a subgraph selection method for mining discrim-
inative subgraphs. The main idea in CORK is to preserve subgraphs that
eliminate the correspondence between graphs of different classes and that also
enhance the discrimination power of the set of already selected subgraphs.
It attempts to discover frequent subgraphs that are most discriminative for
classification using a submodular quality function. Authors showed that the
used submodular quality function criterion can be integrated into the state-
of-the-art tool for frequent subgraph mining gSpan, allowing fast pruning of
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the search space for discriminative frequent subgraphs mining. Efficiency of
CORK was evaluated on various protein and chemical compound datasets.
Results showed that CORK works well with two classes as well as with multi-
class classification problems.

In [Zhu 2012], authors proposed an approach for mining diversified dis-
criminative subgraphs termed D&D. The main idea in D&D is that besides
a discrimination measure it additionally explores the diversity between sub-
graphs. Diversity is considered by reducing the overlapping between a new
candidate subgraph and the already selected subgraphs, based on an edge-
cover. To further enhance diversity, it also considers how to reduce the over-
lapping between the occurrence list of the candidate subgraph and those of
all the already selected subgraphs. Experimental analysis on protein and
chemical compound datasets showed that besides the discriminative power,
considering the diversity between subgraphs during the selection highly af-
fects the results and enhances the classification by making the positive and
negative graphs more separable.

3.6.5.2 Boosting methods

In the previously mentioned selection methods, the training and building of
classification models are performed separately, i.e., after mining the set of
discriminative features. There exists other methods in the literature where
the search for discriminative subgraphs is performed at the same time as the
construction of the classification models. In the following, we try to cover
some of the most interesting works in the literature.

An approach termed gPLS was proposed in [Saigo 2008]. It uses DFS
to mine the frequent graph patterns. It adapts the powerful mathematical
tool of PLS (Partial Least Squares) regression to graph mining to select in-
formative subgraphs then uses them to directly build a classifier with fewer
iterations than typical boosting methods. The gPLS algorithm was evaluated
on chemical compound datasets. It creates latent variables involving response
variables, thus leading to better predictions. However, these latent variables
have the known disadvantage of poor interpretability.

COM [Jin 2009] is a graph classification method which follows a process
of pattern mining and classifier learning. COM employs a pattern exploration
order such that the complementary discriminative patterns are examined first.
Based on the subgraphs co-occurrences information, it constructs classification
rules by assembling weak features in order to generate strong ones. Patterns
are grouped into co-occurrence rules during the pattern exploration, leading
to an integrated process of pattern mining and classifier learning. Evaluation
of COM on protein and chemical compound datasets showed that it has com-



3.6. Feature selection for subgraphs 53

petitive results in terms of classification accuracy and execution time. Besides,
it produces an interpretable classifier.

The gBoost algorithm [Saigo 2009] is a mathematical programming boost-
ing method for classifying labeled graphs. It progressively collects discrimina-
tive subgraph patterns through a branch-and-bound pattern search algorithm
based on the DFE'S code tree. The search algorithm of gBoost is integrated into
gSpan. It uses the class labels as an extra information source for pruning the
search space and also reuse the constructed search space in later iterations to
minimize the computation time. gBoost repeatedly constructs multiple weak
classifiers where each weak classifier (called decision stump) uses a subgraph
as a classification feature. Experiments of gBoost were conducted on chemical
compound datasets. They showed that gBoost scores very high in classifica-
tion as well as in regression. In addition, it is flexible and can be coupled with
any pattern mining algorithm.

In [Fei 2010], authors designed LPGBCMP, a boosting method for graph
classification. Tt selects clustered features by considering the structure re-
lationship between subgraph patterns in the functional space. The selected
subgraphs are used as weak classifiers (also called base learners) to obtain high
quality classification models. Authors theoretically proved that LPGBCMP
exhibits a natural grouping effect for nearby spatial or overlapping features,
and they showed that the proposed method can be naturally extended to
other semi-structured data such as sequences. Experimentally, they evaluated
LPGBCMP on classifying a set of protein datasets. Results showed that their
approach provides high classification performance.

A common drawback of all these methods is that in the case where graphs
in the database has no class labels, they become useless. Besides, they con-
siders the discrimination power of patterns individually. This may fail if no
individual pattern has high discrimination power, yet, jointly some patterns
may have higher discrimination. Moreover, the selected patterns may be in-
dividually discriminative but redundant if there exists a significant overlap in
their supporting graphs. This makes them more vulnerable to overfitting.

3.6.6 Other significant subgraph selection approaches

Some other selection approaches have been proposed for mining significant
subgraphs, not necessarily for a specific application context, but only for
extracting relevant or hidden information or to simply characterize a given
dataset. Many of these approaches have their own original and unique selec-
tion technique and thus it is difficult to classify all of them under one of the
above subgraph-selection categories. In the following, we present some of the
most interesting approaches.
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In [Pennerath 2009, authors were interested in mining a small number of
patterns for characterizing a given dataset. The selected patterns should guar-
antee maximum informativeness and minimum redundancy. They introduced
the class of Most Informative Patterns (MIPs). In fact, structural redundancy
is assessed in MIPs through mining only the closed patterns and not all the
frequent omnes, and the informativeness of a pattern is measured with respect
to a scoring function given by the expert. Authors presented two algorithms
for extracting MIPs: the first one directly searches for MIPs in a dataset while
the second one selects MIPs from frequent patterns. They showed that MIPs
can be used on different kinds of patterns and they applied it on itemsets and
subgraphs. Experimental analysis was performed on different itemset datasets
and a chemical compound graph dataset. Results showed that MIPs is able to
provide a reduced set of patterns that are representative of a dataset. Yet, the
selected MIPs still contains some redundancy. In addition, the redundancy
function is user-defined. Although this makes the approach flexible, it may
be a hard task in some applications.

Recently, some approaches for patterns selection have adopted the notion
of dominance between patterns to mine skyline patterns [Papadopoulos 2008,
Soulet 2011, Bouker 2012]. In [Papadopoulos 2008|, authors proposed Sky-
Graph a selection approach dedicated to graph patterns. The main goal of this
approach is to consider simultaneously, in the selection, a set of user-defined
criteria. These criteria are usually in the form of interestingness measures.
The set of defined measures are considered together through skyline process-
ing. In skyline processing, the patterns returned to the user are the ones that
are not dominated by any other pattern. A pattern P, dominates another pat-
tern P, if P; is as good as P, with all measures and P; scores better than P; in
at least one measure. The higher the subgraph scores with the measures, the
more important it becomes. SkyGraph was applied in the context of graphs
towards retrieving skyline subgraphs. Experiments were conducted on graph
databases representing a microarray network, road network of San Francisco,
and co-authors network using two measures to determine the importance of
subgraphs namely the order of the subgraph (the number of nodes) and the
subgraph edge connectivity. They showed that the dominance relation allows
SkyGraph to detect important subgraphs. However, SkyGraph risks selecting
only one subgraph in the case were the latter outperforms all the other sub-
graphs for the considered measures. Thus, analyzing the correlation between
the considered measures may help avoiding such problem. Besides, introduc-
ing a ranking function to score the patterns may help specifying a sufficient
number of patterns in the case were the selected ones is not enough for the
application.

Some other works addressed the interestingness of patterns differently,
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they assessed the significance of patterns based on their structure. Depending
on the application, it may be interesting to target patterns having a spe-
cific type of structure. An interesting example of such approaches was pro-
posed in [Saidi 2012] were authors proposed an approach for extracting the
so-called ant-motifs from protein 3D-structures. First, they transform protein
3D-structures into protein graphs, then they try to discover common substruc-
tures having an ant-like shape such that each substructure is mainly composed
of a fragment from the primary structure that is enriched with other distant
amino acids that are directly linked to the considered fragment. Experimen-
tal evaluation was conducted on real protein graph datasets for classification.
They showed that ant-motifs outperform frequent subgraphs in classification.
Besides, ant-motifs are based on biological basis and their number is signif-
icantly smaller than that of frequent subgraphs. Although theoretically the
approach can be used with traceable graphs (having Hamiltonian paths), it
still currently limited to protein graphs and no other application contexts have
been tested so far.

3.7 Discussion

As there exists currently many subgraph selection approaches, it is difficult
and even unfair to compare them in general since the majority of the ap-
proaches were originally designed to solve a particular issue. Hence, the choice
of an appropriate selection method highly depends on the users’ needs and the
application constraints. In order to help assisting such choice, in Table 3.1, we
list all the subgraph selection approaches that have been investigated in this
chapter and we state their characteristics according to a set of descriptors.



Table 3.1: Characteristics of Subgraph selection approaches according to different discription criterions.

Subgraph Descriptor

selection approach Post-processing Learning-task dependent Selected subgraphs

TGP No No Top-k frequent closed

Redundancy aware top-k Yes No Top-k frequent significant&non-redundant
RP-FP Yes No Frequent closed representatives
RP-GD No No Frequent closed representatives

RING No No Frequent representatives

ORIGAMI Yes No a-orthogonal S-representative

Output space sampling No No Sample of frequent

MCSs sample No No Maximum common subgraphs
Smoothing-clustering Yes No Approximate structural representatives
D&D No Yes Diverse discriminative

GATIA, CORK, GraphSig,

LEAP, LPGBCMP, COM,

gBoost, gPLS No Yes Discriminative

MIPs No No Most informative closed

SkyGraph No No Undominated

Ant-motifs No No Ant-like shape
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3.8 Conclusion

Frequent subgraph discovery is one of the most important mining techniques
in graph mining. Because of the high number of frequent subgraphs, many
subgraph selection approaches have been proposed in the literature. In gen-
eral, they attempt to resolve the dimentionality problem by assessing the re-
dundancy or the relevance of subgraphs through similarity or interestingness
measures. In this chapter, we first presented the context and formalization
of frequent subgraph discovery and the main approaches and techniques pro-
posed in the literature. We also presented the general framework for feature
selection and the complexity of adopting the old techniques for frequent sub-
graphs. We further investigated a panoply of the most interesting subgraph
selection approaches proposed in the literature. In the next two chapters,
we propose and discuss two novel selection approaches for subgraph patterns
namely UnSubPatt and TRS.
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Chapter 4. UnSubPatt: Mining representative unsubstituted
62 graph patterns by means of substitution matrices

4.1 Aims

In the previous two chapters, we investigated methods for transforming pro-
tein structures into protein graphs enabling using graph mining techniques to
study them. We also mentioned that mining frequent subgraphs is one of the
best ways to analyze graph data, yet, it suffers from the curse of dimentional-
ity. We showed how to overcome this issue through feature selection, and we
reviewed methods from the literature for subgraph seclection. In existing sub-
graph selection approaches, the prior information and knowledge about the
application domain are often ignored. However, the latter provide valuable
knowledge that may help building dedicated approaches that best fit the stud-
ied data. In our context, the existence of substitution matrices for the amino
acids composing protein structures, represents a valuable domain knowledge
that can be exploited. In this chapter, we propose a novel feature selection
approach for subgraphs. It selects a subset of so-called representative unsub-
stituted subgraphs from the frequent ones by incorporating a specific domain
knowledge which, in our context, consists of the protein substitution matrices.

4.2 Introduction

Studying protein structures can reveal relevant structural and functional in-
formation which may not be derived from protein sequences alone. During
recent years, various methods that study protein structures have been elabo-
rated based on diverse types of descriptors such as profiles [von Ohsen 2004,
spatial motifs [Kleywegt 1999, Sun 2012] and others [Mavridis 2010]. Besides,
the exponential growth of online databases such as the Protein Data Bank
(PDB) [Berman 2000], CATH [Cuff 2011], SCOP [Andreeva 2008] and oth-
ers, arises an urgent need for more accurate methods that will help to better
understand the studied phenomenons such as protein evolution, functions, etc.

In this scope, proteins have recently been interpreted as graphs of
amino acids and studied based on graph theory concepts [Vishveshwara 2002,
Huan 2004a|. This representation enables the use of graph mining tech-
niques to study protein structures in a graph perspective. In fact, in
graph mining, any problem or object under consideration is represented in
the form of nodes and edges and studied based on graph theory concepts
[Bartoli 2007, Hasan 2009, Jin 2009, Cheng 2010]. As mentionned in the pre-
vious chapter, one of the powerful and current trends in graph mining is
frequent subgraph discovery. It aims to discover subgraphs that frequently
occur in a graph dataset and use them as patterns to describe the data. These
patterns are lately analyzed by domain experts to reveal interesting informa-
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tion hidden in the original graphs, such as discovering pathways in metabolic
networks |Faust 2010], identifying residues that play the role of hubs in the
protein and stabilize its structure [Vallabhajosyula 2009], etc.

The graph isomorphism test is one of the main bottlenecks of frequent
subgraph mining. Yet, many algorithms have been proposed in the litera-
ture and made it feasible for instance FFSM [Huan 2003], gSpan [Yan 2002],
GASTON [Nijssen 2004, etc. Unfortunately, the exponential number of dis-
covered frequent subgraphs is another serious issue that still needs more atten-
tion, since it may hinder or even make any further analysis unfeasible due to
time, resources, and computational limitations. This problem becomes even
more serious with graphs of higher density such as those representing pro-
tein structures. In fact, the issues raised from the huge number of frequent
subgraphs are mainly due to two factors, namely redundancy and significance
[Thoma 2010]. Redundancy in a frequent subgraph set is caused by structural
and /or semantic similarity, since most discovered subgraphs differ slightly in
structure and may infer similar or even the same meaning. Moreover, the
significance of the discovered frequent subgraphs is only related to frequency.
This yields an urgent need for efficient approaches allowing to select relevant
patterns among the large set of frequent subgraphs.

In this chapter, we propose a novel selection approach which selects a sub-
set of representative patterns from a set of labeled subgraphs, we term them
unsubstituted patterns. In order to select these unsubstituted patterns and
to shrink the large size of the initial set of frequent subgraphs, we exploit
a specific domain knowledge, which is the substitution between amino acids
represented as nodes. The main contribution of this work is to define a new
approach for mining a representative summary of the set of frequent subgraphs
by considering the ability of substitution between nodes’ labels of the graph
which is defined in the domain knowledge. In this work, we apply the proposed
approach on protein structures because of the availability of substitution ma-
trices in the literature. However, it can be considered as general framework
for other applications whenever it is possible to define a matrix quantifying
the possible substitutions between the labels. For instance, in graphs repre-
senting protein-protein interaction networks, each node of the graph represent
a protein in the network and these proteins share structural and sequential
similarities. Since it is possible to measure such similarity using for instance
an alignment tool, then it would be possible to define a matrix quantifying
similarities between the labels. Another possible application example is on-
tology alignment. Ontology alignment refer to the process of determining
correspondences between concepts. Each ontology can be represented in the
form of a graph were the nodes represent the concepts. Since the concepts are
semantically similar, it is possible to define a matrix quantifying these simi-
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larities and thus to adapt our approach to be used for detecting similarities
between ontologies. Our approach can also be used on any type of subgraph
structure such as cliques, trees and paths (sequences). In addition, it can be
easily coupled with other pattern selection methods such as discrimination or
orthogonality based approaches. Moreover, unlike other approaches that are
supervised and learning task dependent, this approach is unsupervised and
can help in various mining tasks.

Recently, several approaches have been proposed for pattern selection in
subgraph mining. To the best of our knowledge, in all existing subgraph
selection approaches, the selection is usually based on structural similarity
[Hasan 2007] and/or statistical measures (e.g. frequency and coverage (closed
[Yan 2003|, maximal [Thomas 2006]), discrimination [Thoma 2010], etc). Yet,
the prior information and knowledge about the application domain are often
ignored. However, these prior knowledge may help building dedicated ap-
proaches that best fit the studied data.

A very fresh work have been proposed in [Anchuri 2013], where the authors
presented an approach for mining an approximate set of frequent subgraph
patterns from a single large graph database in the presence of a cost matrix
label. This approach is very similar to the one we propose in this chapter,
in the sense that both approaches aim to find representative subgraphs, and
incorporate a matrix that defines distances (i.e., similarities) between the
labels. In addition, both approaches preserve the topology of subgraphs but
allow bounded label mismatches. However, they have many differences. First
of all, their approach is used in the context of mining representative subgraphs
from a single large graph, however our approach is used with graph databases.
In addition, both approaches differ in the way of exploiting the label matrix,
1.e., in the way they measure similarities between subgraphs. Moreover, their
approach is based on sampling and thus it generates an approximate set of
representative subgraphs, but our approach ensures generating the optimal
set of representatives. A major advantage of their approach is that it is
incorporated in the extraction process of frequent representative subgraphs,
while our approach operates in post-processing. Although this makes their
approach more appropriate to very large graphs, our approach is more efficient
in the case of moderate and small graph databases.
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Figure 4.1: An example of two representative unsubstituted patterns sampled
from our experiments (from C-type lectin domains (DS3)). The figure also
shows the corresponding position of each node of the subgraphs in the real
protein 3D-structure.

4.3 Mining representative unsubstituted pat-
terns

4.3.1 Background

Statistical pattern selection methods have been widely used to resolve the
dimensionality problem when the number of discovered patterns is too large.
However, these methods are too generic and do not consider the specificity
of the application domain and the used data. We believe that in many con-
texts, it would be important to incorporate the background knowledge about
the application domain in order to create approaches that best fit the con-
sidered data. In proteomics, a protein structure is composed by the folding
of a set of amino acids. During evolution, amino acids can substitute each
other. The scores of substitution between pairs of amino acids were quanti-
fied by biologists in the literature in the form of substitution matrices such
as Blosum62 [Eddy 2004]. Our approach uses the substitution information
given in the substitution matrices in order to select a subset of unsubstituted
patterns that summarizes the whole set of frequent subgraphs. We consider
the selected patterns as the representative ones. Figure 4.1 shows two repre-
sentative unsubstituted patterns (sampled from DS3 (C-type lectin domains)
from our experiments) and shows the corresponding position of each node of
the subgraphs in the real protein 3D-structure.

The main idea of our approach is based on node substitution. Since the
nodes of a protein graph represent its amino acids, hence, using a substitution
matrix, it would be possible to quantify the substitution between two given
subgraphs. Starting from this idea, we define a similarity function that mea-
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Figure 4.2: Unsubstituted pattern selection framework.

sures the distance between pairs of subgraphs. Then, we preserve only one
subgraph from each similar pair with respect to a user-specified threshold such
that the preserved subgraphs represent the set of representative unsubstituted
patterns. An overview of the proposed approach is illustrated in Figure 4.2
and a more detailed description is given in the following sections.

The substitution between amino acids was also used in the literature but
for sequential feature extraction from protein sequences in [Saidi 2010], where
the authors proposed a novel feature extraction approach termed DDSM for
protein sequence classification. Their approach is restricted to protein se-
quences and generates every subsequence substituting another one. In other
words, DDSM eliminates any pattern substituted by another one and which
itself does not substitute any other one. We believe that their approach does
not guarantee an optimal summarization since its output may still contain
patterns that substitute each other. In addition, they do consider negative
substitution scores as impossible substitutions which is biologically not true
since negative scores are only expressing the less likely substitutions, which
obviously does not mean that they are impossible. Moreover, DDSM is limited
to protein sequences and does not handle more complex structures such as the
protein 3D-structure. Our approach overcomes these shortcomings, since it
can handle both protein sequences and 3D-structures (since a sequence can be
seen as a line graph). In addition, it considers both the positive and negative
scores of the substitution matrix. Moreover, our approach generates a set of
representative unsubstituted patterns ensuring an optimal summarization of
the initial set. Besides, it is unsupervised and can be used in classification
as well as in other analysis and knowledge discovery contexts unlike DDSM
which is dedicated to classification.
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4.3.2 Preliminaries

Here, we present the preliminaries and the formal statement of the proposed
approach. Let G be a dataset of protein structures represented as graphs.
Each graph G = (V, E,%, L) of G is given as a collection of nodes (amino
acids) V' and edges (interactions) E. The nodes of V' are labeled within an
alphabet 3 (amino acids types) and L is the label function that maps each
node in V' to a label in 3. We denote by |V/| the number of nodes (the graph
order) and by |E| the number of edges (the graph size). Let also € be the set
of frequent subgraphs extracted from G, also referred here as patterns.

Definition 12 (Substitution matriz) Let A be a substitution matriz defined
over X.. A is defined as follows:

A:| ¥ — [L,TICR
L) — 2 (41)

where 1,1 € ¥ and x is the substitution score between the labels | and [’

The higher the value of x is, the more likely is the substitution of I’ by [.
If x = L then the substitution is impossible, and if z = T then it is certain,
i.e., the substitution should happen. The values | and T are optional and
user-specified. They may appear or not in A. Table 2.2 shows a real example
of a protein substitution matrix defined over the amino acids types.

In proteins’ substitution matrices, both positive and negative values rep-
resent, possible substitutions. However, positive scores are given to the more
likely substitutions while negative scores are given to the less likely ones. In
order to give more magnitude to higher values of x, we define M over ¥ such
that V 1,1’ € ¥: M([,I') = e*®!). As we consider only substitutions between
patterns having the same structure, we define the structural isomorphism as
follow:

Definition 13 (Structural isomorphism) Two patterns P = (Vp, Ep, %, L)
and P" = (Vpi, Epi, 3, L) are said to be structurally isomorphic (having the
same shape), we note shape(P, P") = true, iff:

- P and P’ have the same order and size, i.e.,|Vp| = |Vp| and |Ep| =
|EP"7

- 3 a bijective function f : Vp — Vpr : Yu,v € Vp, if {u,v} € Ep then
{f(u), f(v)} € Ep and inversely.
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It is worth mentioning that in this definition, we consider only the isomor-
phism on structure and we ignore the labels.

As we are seeking the most representative patterns based on the substi-
tution of amino acids, the best representatives are supposed to be the ones
that represent as much other patterns as possible. Thus, each representative
should have the highest probability of mutation to all the patterns it sub-
stitutes, i.e. the most mutable one. It is also possible to choose the least
mutable pattern over the most mutable one, however, a good representative
pattern is supposed to be the one having the maximal overall similarity to all
the other patterns it represents. Patterns with higher ability of mutation are
supposed to substitute more other patterns which allows a better summariza-
tion of the pattern set. Based on these assumptions, we are considering the
most mutable patterns as the representatives. We define the pattern mutation
score as follows:

Definition 14 (Pattern mutation score) Given a pattern P =
(Vp,Ep,X,L) € Q, the pattern mutation score Mpu(P), measures the
possibility that P mutates to any other pattern having the same order.

[V
Mo (P) = 1= [ [ Ma(Ve[i]) (4.2)

i=1
where ng' M (Vpli]) represents the score that the pattern P does not
mutate to any other pattern (i.e. P stays itself), and M (Vpli]) represents the
elementary conservation score for each node Vpli] € Vp. Precisely, given a
node v having a label (amino acid type) | € &, My (v) measures the possibility

that v does not mutate to any other node depending on its label [:

M(1,1)
Sl M1, 1)

The lower the values of elementary conservation of nodes are, the more is
the mutation ability of the pattern.

Based on the pattern mutation score, we are able to rank patterns and thus
to chose between each substitutable pair of patterns which one is supposed to
be the representative. We define the pattern substitution score which measures
the possibility that a pattern substitutes another one.

Mel(v) = (43)

Definition 15 (Pattern substitution score) Given two structurally isomorphic
patterns P and P', we denote by Spa(P, P') the substitution score of P’ by
P. It measures the possibility that P mutates to P'. Formally:

Vel S (Vili], Viri])
| Vp |

Spatt(P7 Pl) - Z (44)
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Se1(Vpli], Vpr[i]) measures the possibility that the node Vp[i] substitutes the
node Vp/[i] based on the substitution scores between their amino acids types.
Obviously and according to all proteins’ substitution matrices, for any amino
acid [ there is only another one that best substitutes it. It is obviously itself.
Accordingly, given two nodes v and v’ having correspondingly the labels [, I’ €
L, the elementary substitution score between v and v’, denoted by S¢ (v, v'),
is computed as follows:

ML)

Sa(v,v') = M)

(4.5)

Definition 16 (Pattern substitution) Based on definitions 13 and 15, we say
that a pattern P substitutes P', we note subst(P, P',T) = true, iff:

1. P and P are structurally isomorphic (i.e., shape(P, P") = true),

2. The score of substitution of P' by P is greater then a given user-threshold
T (i.e., Spae(P, P') > 1), where 0% < 7 < 100%.

Since we are proposing a pattern selection approach, the output set of rep-
resentative patterns should be as small as possible. It is not supposed to have
any pair of substitutable patterns such that it contains only the representative
ones which guarantees a maximal summarization.

Definition 17 (Unsubstituted pattern) Q* C Q) represents the subset of rep-
resentative unsubstituted patterns if and only if there does not exist any pair
of patterns (Py, Py) in Q* that are substitutable, with respect to the minimum
substitution threshold T.

A pattern P* is considered as representative unsubstituted pattern, i.e.,
P* in QF, if there does not exists any pattern P in 2 such that Mpy.u(P) is
greater than My, (P*) and P substitutes P*.

P* € QO if BP € QO | Mpare(P) > Mpau(P*) and subst(P, P*,7) = true
(4.6)

Definition 18 (Joint support) Given two patterns P and P', if P substitutes
P’ then P should represent P’ in the graphs where P’ occurs. In Q*, the
occurrence list of P will contain both the occurrences of P as well as those of
P’ (the occurrence lists are joined). Formally:

VP, P' € Q, if subst(P, P',T) = true then Dp = Dp U Dp (4.7)

where Dp and Dp: are correspondingly the occurrence list of P and that of P’.
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4.3.3 Algorithm

Given a set of patterns ) and a substitution matrix M, we propose UNSUB-
PATT (see Algorithm 1), a pattern selection algorithm which enables detecting
the set of unsubstituted patterns 2* within 2. Based on our similarity con-
cept, all the patterns in 2* are dissimilar, since it does not contain any pair
of patterns that are substitutable. The general process of the algorithm is

Algorithm 1: UNSUBPATT

Data: Q, M, 1
Result: Q*: {unsubstituted patterns}
1 begin
2 divide Q into k subsets | VP, P” € QF |Vp/| = |Vp»| and
|Ep| = |Ep|;
3 foreach OF C 2 do
4 QF « sort(QF by Mpay);
5 foreach P € QF do
6 if M,a:(P) > 0 then
7 foreach P’ € OF\{P} | Myuu(P') < Mpat(P) do
8 if My (P') > 0 then
9 if shape(P, P') then
10 foreach mapping between P and P’ do
11 if subst(P, P',7) then
12 support(P) < join supports(P, P’);
13 remove P’ from QF;
14 goto 7;
15 O« QU QFk;

described as follows: first, 2 is divided into subsets of patterns having the
same number of nodes and edges. In order to preserve the most mutable pat-
terns, each subset is sorted in a descending order by the pattern mutation
score Mpqu. Then, each subset is browsed starting from the pattern having
the highest M,,,. For each pattern, we look for all the other patterns it is
able to substitute, with respect to the substitution threshold. The test of
substitution is performed iteratively for every possible mapping between pairs
of patterns until a substitution is found. If a substitution is found with a par-
ticular mapping then there is no need to proceed testing the substitution with
the rest of the mappings since we are not looking for the best substitution
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but we are only looking for a possible one, with respect to the given thresh-
old. For each pattern, we remove all the patterns it substitutes and we add
their supports’ lists to that of the preserved pattern such that the latter will
represent all the patterns it substitutes wherever they occur. The remaining
patterns represent the representative unsubstituted pattern set.

Property 2 Let Q) be a set of patterns and 0* its subset of unsubstituted pat-
terns based on a substitution matric M and a threshold 7, i.e., UNSUBPATT
(QM, 1) = Q. QF can not be summarized by one of its proper subsets but
only by itself, with respect to 7. Formally:

UNSUBPATT(2", M, 7) = Q~ (4.8)
Proof 1 Lets suppose that :
- hypothesis 1: Q* \ UNSUBPATT(Q*, M, 7) # ()
- hypothesis 2: UNSUBPATT(Q*, M, 1)\ Q* £ ()

Hypothesis 1 supposes that Q2 still contains substitutable patterns. This
15 1mpossible, since according to Definition 17, there does not exist any pair
of patterns in Q* that are substitutable. Given a threshold T, Q* cannot be
summoarized by one of its proper subsets but only by itself. Formally: VP €
O, PP € | Mpast(P) > Myar(P') and subst(P, P, 7)

As for hypothesis 2 to be true, UNSUBPATT is supposed to generate new
patterns that were not originally in Q*. This contradicts UNSUBPATT basics
especially Definition 17 since UNSUBPATT s supposed to remove substituted
patterns, not Lo generate new ones.

The minimum description length (MDL) principle [Rissanen 1978,
Griinwald 2007| suggests that given a set of observed data, the best explana-
tion is the one that permits the greatest compression of the data. According
to the MDL, Q* represents a reliable summarization of €).

Complexity Suppose ) contains n patterns.  is divided into g groups,
each containing patterns of order k. This is done in O(n). Each group QF
is sorted in O(|Q*| x log|Q2*|). Searching for unsubstituted patterns requires
browsing QF (O(|QF|)) and for each pattern, browsing in the worst case all
remaining patterns (O(]Q2%|)) to check the shape O(k) and the substitution
O(k). This means that searching for unsubstituted patterns in a group QF
can be done in O(|Q2*|? * k?). Hence, in the worst case, the complexity of our
algorithm is O(g x m2,,, * k2,,.), where k.., is the maximum pattern order

max max
and Myqe is the number of patterns of the largest group QF.
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4.3.4 Illustrative example

Figure 4.3: An example of two substitutable subgraphs. *

Given the following toy subgraphs G1 and G2 (see Figure 4.3), we want
to check if G1 and G2 are substitutable, and if so, which subgraph will be
considered as the representative one. The substitution test is based on the def-
initions in section 4.3.2 using the substitution matrix Blosum62. The general
substitution test is processed as follows:

e For each substitution score x € Blosum62, x < e

e Elementary conservation score (we compute the elementary conservation
scores for all nodes of G1 and G2):

CMa(A) = —MAY 5.4
1(A) S, M(AL) 0.840

- My (C) = % ~ 0.999

- M(T) = MED .
alT) = 5o My = 0-936

- My(S) = % ~ 0.776

e Pattern mutation score:

- My (G1) = 1 — (Mg (A) % My(C) % My (T)) ~ 1 — (0.840 % 0.999 x
0.936) ~ 1 — 0.786 ~ 0.214

- My (G2) = 1 — (My(A) % My (C) % My(S)) ~ 1 — (0.840 % 0.999 x
0.776) ~ 1 — 0.652 ~ 0.348

- Thus Mpatt(G1> < Mpatt(G2)

e Structural isomorphism: shape(G1,G2) = true. This function check if
G1 and G2 are isomorphic and returns all possible mappings between
them.

!The subgraphs are considered as substitutable for all substitution thresholds 7 <
68.32% using Blosum62 as substitution matrix.



4.4. Experiments 73

In UNSUBPATT, we compute the substitution score for every possible map-
ping between G'1 and G2, until a substitution score with a value greater or
equal to the given substitution threshold is found or no other mapping is
possible. Here, we only show, as an example, how the substitution score is
computed for only one mapping between G1 and G2 among the possible ones.
The considered mapping for this example is: A< A, C+~ C, S+ T.

e Pattern substitution score:

e e e
GATMENTMED) A~ () 6332

- patt(GQ,Gl> = G2

- Thus, G2 substitutes G1 for all substitution thresholds 0% < 7 <
68.32%

If the user-specified substitution threshold is greater than 68.32% (i.e.,
V7 > 68.32%) then UNSUBPATT proceed checking the other possible map-
pings. Otherwise (i.e., V7 < 68.32%), G2 substitutes G1. In this case, sup-
ports of G2 and G'1 are joined then G1 is removed:

e Joining support: Dge = Dgo U D1 (Dg; is the occurrence list of Gi)

e Remove G1

4.4 Experiments

4.4.1 Datasets

In order to experimentally evaluate our approach, we use four datasets of
protein 3D-structures, which also have been used in [Yan 2008] and [Fei 2010].
Each dataset consists of two classes equally divided into positive and negative
samples. Positive samples are proteins selected from a considered protein
family whereas negative samples are proteins randomly gathered from the
Protein Data Bank [Berman 2000]. Table 4.1 summarizes the characteristics
of each dataset:

SCOP ID: identifier of the protein family in SCOP [Andreeva 2008]

|G|: number of proteins in the datase

Avg.|V|: average number of nodes

Avg.|E|: average number of edges

Max.|V|: maximal number of nodes



Chapter 4. UnSubPatt: Mining representative unsubstituted
74 graph patterns by means of substitution matrices

- Max.|E|: maximal number of edges

G-proteins : DS1 contains protein 3D-structures from the G-protein fam-
ily, also known as guanine nucleotide-binding proteins. These proteins are
mainly involved in transmitting chemical signals originating from outside a
cell into the inside of it. G-proteins are able to activate a cascade of further
signaling events resulting a change in cell functions. They regulate metabolic
enzymes, ion channels, transporter, and other parts of the cell machinery,
controlling transcription, motility, contractility, and secretion, which in turn
regulate diverse systemic functions such as embryonic development, learning
and memory, and homeostasis.

C1l-set domains : The Cl-set domains composing DS2 are immunoglobulin-
like domains, similar in structure and sequence. They resemble the antibody
constant domains. They are mostly found in molecules involved in the im-
mune system, in the major histocompatibility complex class I and II complex
molecules, and in various T-cell receptors.

C-type lectin domains : Lectins occur in plants, animals, bacteria and
viruses. In DS3, the C-type (Calcium-dependent) lectins are family of
lectins which share structural homology in their high-affinity carbohydrate-
recognition domains. There are at least twelve structural families of lectins,
of which C-type lectins is one. This family involves groups of proteins playing
divers functions including cell-cell adhesion, immune response to pathogens
and apoptosis.

Protein kinases, catalytic subunit : Protein kinases, catalytic subunit
composing DS4 play a role in various cellular processes, including division,
proliferation, apoptosis, and differentiation. They are mainly proteins that
modifies other ones by chemically adding phosphate groups to them. This
usually results in a functional change of the target protein by changing en-
zyme activity, cellular location, or association with other proteins. The cat-
alytic subunits of protein kinases are highly conserved, and several structures
have been solved, leading to large screens to develop kinase-specific inhibitors
for the treatments of a number of diseases.

Table 4.1: Characteristics of the experimental datasets

Dataset SCOP ID  Family name |G| Avg.V| Avg.E] Max.V| Max.|E|
DS1 52592 G-proteins 66 246 971 897 3 544
DS2 48942 Cl-set domains 76 238 928 768 2 962
DS3 56437 C-type lectin domains 76 185 719 755 3016
DS4 88854 Protein kinases, catalytic 82 275 1077 775 3016

subunit
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Proteins are parsed into graphs of amino acids using the main atom method
(see section 2.3.4.2). Each node represents an amino acid residue and is labeled
with its amino acid type. Two nodes u and v are linked by an edge e(u,v) =1
if the euclidean distance between their two C,, atoms A(C,(u), Cy(v)) is below
a threshold distance §. In the literature, many methods use this definition with
usually § > 7A on the argument that C, atoms define the overall shape of
the protein conformation [Huan 2005]. In our experiments, we use § = 7A.

4.4.2 Protocol and settings

Generally, in a pattern selection approach two aspects are emphasized, namely
the number of selected patterns and their interestingness. In order to evaluate
our approach, we first use the state-of-the-art method of frequent subgraph
discovery gSpan [Yan 2002| to find the frequent subgraphs in each dataset
with a minimum frequency threshold of 30%. Then, we use UNSUBPATT to
select the unsubstituted patterns among them with a minimum substitution
threshold 7=30% and Blosum62 (see Table 2.2) as the substitution matrix.
We use Blosum62 because it turned out that it performs well on detecting the
majority of weak protein similarities [Eddy 2004], and it is used as the default
matrix by most biological applications such as BLAST [Altschul 1990]. It is
worth mentioning that the choice of 30% as minimum frequency threshold for
frequent subgraph extraction is to have fewer patterns in order to make the
experimental evaluation feasible due to time and computational limitations.

In order to evaluate the number of selected subgraphs, we define the se-
lection rate as the rate of the number of unsubstituted subgraphs from the
initial set of frequent subgraphs. Formally :

|©2*] % 100

Selection rate =
12|

(4.9)

To evaluate the interestingness of the selected patterns, we use them as
features for classification. We perform a 5-fold cross-validation classification (5
runs) on each protein dataset. We encode each protein into a binary vector,

denoting by "1" or "0" the presence or the absence of the feature in the

considered protein. For classification, we use classifiers from the workbench
Weka [Witten 2005].

4.5 Results and discussion

In this section, we conduct experiments to examine the effectiveness and effi-
ciency of UNSUBPATT in finding the representative unsubstituted subgraphs.
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Table 4.2: Number of frequent subgraphs ({2), representative unsubstituted
subgraphs (2*) and the selection rate

Dataset | Q| | *| Selection rate (%)
DS1 799094 7291 0.91
DS2 258371 15898 6.15
DS3 114792 14713 12.82
DS54 1073393 9958 0.93

Moreover, we test the effect of changing the substitution matrix and the substi-
tution threshold on the results. We further study the size-based distribution
of patterns and we compare the classification results of our approach with
those of other subgraph selection methods from the literature.

4.5.1 Empirical results

We show the results of our experiments in terms of number of patterns and
classification results. The obtained average results are reported in the Tables
4.2 and 4.3.

The high number of discovered frequent subgraphs is due to their com-
binatorial nature. It may increase or decrease depending on the number of
graphs, their density and mainly on the similarity between graphs since the
more similar they are, the more common fragments they would have. The
results reported in Table 4.2 show that our approach decreases considerably
the number of subgraphs. The selection rate shows that the number of un-
substituted patterns | Q* | does not exceed 13% of the initial set of frequent
subgraphs | € | in the worst case with DS3 and even reaches less than 1% with
DS1 and DS4. This proves that exploiting the domain knowledge by incorpo-
rating, in our case, the substitution matrix in the selection enables detecting
many similarities between patterns that are possibly ignored by current sub-
graph selection approaches.

The classification results using naive bayes (NB) is reported in Table 4.3.
They help evaluating the quality of the selected patterns. Indeed, they will
demonstrate if the unsubstituted patterns are really representative or arbi-
trarily selected. Table 4.3 shows that the classification accuracy significantly
increases with all datasets. We notice a huge leap in accuracy especially with
DS1 and DS4 with a gain of more than 17% and reaching almost full accuracy
with DS4. To better understand the accuracy results, we report the average
precision, recall, F-measure and AUC values for all cases. We also notice an
enhancement of performance with all the mentioned quality metrics. This
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Table 4.3: Accuracy, precision, recall (sensitivity), F-score and AUC of the
classification of each dataset using NB coupled with frequent subgraphs (FSg)
then representative unsubstituted subgraphs (USP)

Dataset Accuracy  Precision Recall F-score AUC

FSg USP FSg USP FSg USP FSg USP FSg USP

DS1 062 078 061 069 07 09 064 078 064 0.78
DS2 080 090 08 094 074 08 079 089 0.79 0.89
DS3 086 094 0.8 1.00 086 089 086 094 0.8 0.94
DS54 0.79 098 0.8 092 070 098 0.7 094 0.76 0.94

supports the reliability of our selection.

4.5.2 Results using other substitution matrices

Besides Blosum62, biologists also defined other substitution matrices describ-
ing the likelihood that two amino acid types would mutate to each other in
evolutionary time. We want to study the effect of using other substitution ma-
trices on the experimental results. Hence, we perform the same experiments
following the same protocol and settings but using two other substitution ma-
trices, namely Blosum80 and Pam250. The results are reported in Table
4.4. We compare the obtained results in terms of number of subgraphs and
classification accuracy with those obtained using the whole set of frequent sub-
graphs and those using subgraphs previously selected by UNSUBPATT with
Blosum62. A high selection rate accompanied with a clear enhancement of the
classification accuracy is noticed using UNSUBPATT with all the substitution
matrices. It is clearly noticed that even using different substitution matrices,
UNSUBPATT is able to select a small yet relevant subset of patterns. It is
also worth mentioning that for all the datasets, the best classification accu-
racy is obtained using Blosum62 and the best selection rate is achieved using
Pam250. This is simply due to how distant proteins within the same dataset
are, since each substitution matrix was constructed to implicitly express a
particular theory of evolution.

4.5.3 Impact of varying the substitution threshold

In our experiments, we used a substitution threshold (of 30%) to select the
unsubstituted patterns from the set of discovered frequent subgraphs. Here,
we study the impact of varying the substitution threshold on both the num-
ber of selected subgraphs and the classification results. We perform the same



Chapter 4. UnSubPatt: Mining representative unsubstituted
78 graph patterns by means of substitution matrices

Table 4.4: Number of subgraphs (#SG) and accuracy (Acc) of the classifi-
cation of each dataset using NB coupled with frequent subgraphs (FSg) then
representative unsubstituted subgraphs using Blosum62 (USPgs), Blosum80
(USPgo) and Pam250 (USP250)

FSg USP62 USPgQ USP250
#SG Acc #SG Acc #SG Acc #SG Acc
DS1 799094 0.62 7291 0.78 7328 0.67 6137 0.68
DS2 258371 0.80 15898 0.90 15930 0.87 15293 0.87

DS3 114793  0.86 14713 0.94 14792 0.91 14363 0.93
DS54 1073393 0.79 9958 0.98 10417 0.90 9148 0.90

Dataset

experiments following the same protocol and settings while varying the sub-
stitution threshold from 0% to 90% with a step-size of 10. Figure 4.4 presents
the selection rate for all substitution thresholds. In order to check if the en-
hancements of results are due to our selected patterns or to the classifier, we
perform the same experiments using naive bayes (NB) (Figure 4.5) and two
other well-known classifiers namely the support vector machine (SVM) (Fig-
ure 4.6) and decision tree (C4.5) (Figure 4.7). The classification accuracy of
the initial set of frequent subgraphs (gSpan) is considered as a standard value
for comparison. Thus, the accuracy values of UNSUBPATT that are above
the line of the standard value are considered as gains, and those under the
standard value are considered as losses.

In Figure 4.4, we notice that UNSUBPATT reduces considerably the num-
ber of patterns especially with lower substitution thresholds. In fact, the
number of representative unsubstituted patterns does not exceed 50% for all
substitution thresholds below 80% and even reaches less than 1% in some
cases. This important reduction in the number of patterns comes with a
notable enhancement of the classification accuracies over all datasets.

Figures 4.5, 4.6 and 4.7 show that the unsubstituted patterns allow better
classification performance compared to the original set of frequent subgraphs.
UNSUBPATT scores very well with the three used classifiers and even reaches
full accuracy in some cases. Overall, the same behavior is noticed with the
three datasets. A cross view over the figures is possible, showing that there
is no bias of the datasets nor of the classifier. This confirms our assumptions
and shows that our selection is reliable and contributes to the enhancement
of the accuracy.
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Figure 4.4: Rate of representative unsubstituted patterns Q* from all frequent
subgraphs €2 depending on the substitution threshold (7).
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Figure 4.8: Distribution of patterns of DS1 for all the frequent subgraphs and
for the representative unsubstituted ones with different substitution thresholds
(left: standard arithmetic scale. Right: logarithmic scale.).

4.5.4 Smoothing the distribution of patterns

In this section, we study the distribution of patterns based on their size (num-
ber of edges). We try to check which sizes of patterns are more concerned by
the selection. Figures 4.8, 4.9, 4.10 and 4.11 draw the distribution of patterns
for the original set of frequent subgraphs and for the final set of representa-
tive unsubstituted ones with all the substitution thresholds using Blosum62.
The downward tendency of UNSUBPATT using lower substitution thresholds
and with respect to the original set of frequent subgraphs is very clear. In
fact, an effect of smoothing is clearly noticed over the whole sets, since UN-
SUBPATT leans towards cutting off the peaks and flattening the curves with
lower substitution thresholds. The same tendency is also noticed with all the
datasets. Another interesting observation is that the curves are flattened in
the regions of small subgraphs as well as in the regions of large and dense
ones. This demonstrates the effectiveness of UNSUBPATT with both small
and large subgraphs.

4.5.5 Comparison with other approaches

Here, we compare UNSUBPATT with some of the current subgraph selection
approaches. Figure 4.12 illustrates the classification accuracies of UNSUB-
PATT besides those of the other approaches from the literature namely LEAP
[Yan 2008], gPLS [Saigo 2008], COM [Jin 2009] and LPGBCMP [Fei 2010).
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Figure 4.9: Distribution of patterns of DS2 for all the frequent subgraphs and
for the representative unsubstituted ones with different substitution thresholds
(left: standard arithmetic scale. Right: logarithmic scale.).
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Figure 4.10: Distribution of patterns of DS3 for all the frequent subgraphs and
for the representative unsubstituted ones with different substitution thresholds
(left: standard arithmetic scale. Right: logarithmic scale.).
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Figure 4.11: Distribution of patterns of DS4 for all the frequent subgraphs and
for the representative unsubstituted ones with different substitution thresholds
(left: standard arithmetic scale. Right: logarithmic scale.).

As these approaches were originally tested on the same datasets used in our
experiments, we report the results of each approach with the parameters rec-
ommended from their authors. For UNSUBPATT, we report the results us-
ing a substitution threshold 7 = 30%, Blosum62 and SVM. We also report
UNSUBPATT,,., as the best accuracies among all the substitution thresholds
(used in Figure 4.6). For LEAP+SVM, LEAP is used iteratively to discover
discriminative subgraphs with a leap length=0.1. The discovered subgraphs
are consider as features to train SVM with a 5-fold cross validation. COM is
used with ¢, = 30% and t,, = 0%. For gPLS, the frequency threshold is 30%
and the best accuracies are reported among all parameters combinations for
m = 2,4,8 16 and k = 2, 4, 8, 16, where m is the number of iterations and
k is the number of patterns per search. For LPGBCMP, threshold values of
MaT,., = 1 and & = 0.25 were respectively used for feature consistency map
building and for overlapping. As we are testing on protein classification, it
would be also interesting to compare with tool of biologists. We performed an
alignment-based classification over the four datasets. One is sequential (using
protein primary structure in FASTA format (see Section A.2)) using Blast
[Altschul 1990] and the other is structural (using protein 3D-structure) using
Dali [Holm 2010]. For each dataset, we make an alignment of each protein
against all the others. We assign to the query protein the class of the reference
protein with the best hit score.

Although Dali-based classification represents the most competitive ap-
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Figure 4.12: Classification accuracy comparison with Blast, Dali and pattern
selection approaches.

proach over Blast and the other pattern-based classifications, UNSUBPATT
outperforms them all in the four cases except for DS4 when UNSUBPATT, 4.
and Dali reached both full accuracy. This proves that UNSUBPATT represents
a very competitive and promising approach and that using the substitution
between amino acids allows it to select a significant and very informative
subset of patterns.

4.5.6 Runtime analysis

To study the variation of UNSUBPATT’s runtime with larger amounts of data,
we use different sets of frequent patterns from 10000 to 100000 with step-size
of 10000. In Table 4.5, we report the runtime results for the pattern sets using
three substitution thresholds: 10%, 30% and 50%.

Even though the complexity of the problem due to the combinatorial
test of substitution between subgraphs, our algorithm scales well with higher
amounts of data. Although the number of patterns increases, the runtime stills
reasonable and not exponential in real world cases. This can be explained by
the fact that the complexity of UNSUBPATT is equal to O(g*m?2,,, *k2,.) in
the worst case (as previously explained in 15), where ¢ is the number of groups,
kmaz is the order of the largest pattern and m,,,., is the number of patterns
of the largest group QF. In practice, many patterns are substituted and thus
removed during the selection. Hence, in most real world cases, the complexity
of UNSUBPATT is equal to O(g * (Mmaz * 10g(Mmaz) * (kmaz * 10g(kmaz))-

The use of different substitution thresholds slightly affected the runtime
of UNSUBPATT, since the numbers of selected patterns are comparable for all
thresholds.

A possible way to make UNSUBPATT runs faster is parallelization. In fact,
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Table 4.5: Runtime analysis of UNSUBPATT with different substitution
thresholds

Number of Substitution thresholds
patterns 7 =10% 7 =30% 7 = 50%

10000 4s 4s 4s

20000 8s 8s 10s
30000 13s 13s 17s
40000 18s 18s 25s
50000 23s 23s 33s
60000 28s 28s 41s
70000 35s 35s 52s
80000 40s 42s 66s
90000 46s 49s 80s
100000 53s 57s 136s

UNSUBPATT can be easily parallelized, since it tests separately the substitu-
tion among each group of subgraphs having the same size and order. Hence,
these groups can be distributed and treated separately in different processes.

4.6 Conclusion

In this chapter, we proposed a novel selection approach for mining a repre-
sentative subset of patterns from a set of frequent subgraphs. Unlike current
methods that are based on the relations between patterns in the transaction
space, our approach considers the distance between patterns in the pattern
space. Experimental results revealed the importance of incorporating the prior
domain knowledge and showed that using the information of substitution be-
tween amino acids allowed UNSUBPATT to detect many similarities between
patterns that current subgraph selection approaches ignore. UNSUBPATT is
able to considerably reduce the number of subgraphs by selecting a more rep-
resentative and informative subset enabling easier and more efficient further
explorations. UNSUBPATT can also be used on protein sequences (seen as line
graphs) and it is unsupervised which allows it to be used in different mining
tasks and in other motif-based analysis.

It is also worth mentioning that UNSUBPATT is not limited to protein 3D-
structures but can be generalized to other types of data whenever it is possible
to define a matrix representing the similarity between the nodes labels.

A promising future direction is to consider also the insertions and dele-
tions over patterns with different sizes. Although this increases exponentially
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the complexity and the difficulty of the selection, it is closer to the real world
substitution phenomenon. Another interesting future work could be to em-
bed the selection within the extraction process in order to directly mine the
representative patterns from data. This is further discussed in Section 6.4.1.2.
This chapter was the subject of a number of publications, namely a poster
paper in ACM BCB [Dhifli 2012b], a conference paper at JOBIM [Dhifli 2013c]
and a journal paper in JCB |Dhifli 2013b]. It was also the subject of two oral
presentations given at MLCB [Dhifli 2012a] and JFD [Dhifli 2013a].
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5.1 Aims

In the previous chapter, we proposed a novel approach, called UNSUBPATT,
for subgraph selection that incorporates the prior domain knowledge that are
often ignored by current subgraph selection methods. Precisely, it uses the
substitution information between the nodes labels (amino acid types) to de-
tect similarities between subgraphs. In other words, the similarity between
subgraphs is purely semantic as it depends on the similarities between nodes
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labels that is defined in the substitution matrix. In this chapter, we introduce
another subgraph selection approach that focuses on the structural similarity
rather than the semantic similarity. Unlike existing structural-based selec-
tion approaches that look into every single detail, this approach considers the
overall topological similarity between subgraphs by means of a set of topolog-
ical descriptors. This makes it easily extendable with a user-specified set of
descriptors depending on the application and the sought information.

5.2 Introduction

Feature selection for graph data is a way to tackle the dimensionality problem
when the number of frequent subgraphs is very high. As structural similarity
represents one major cause of redundancy in frequent subgraphs, many works
have been proposed for subgraph selection based on exact or approximate
structural similarity [Yan 2003, Thomas 2006, Hasan 2007, Chen 2008|. Two
pioneer works that fall in this type are [Yan 2003| for mining closed subgraphs
and [Thomas 2006] for mining maximal subgraphs. In both works, only the
closed or maximal subgraphs are maintained and the rest of frequent sub-
graphs are removed. Many works have been proposed based on closed and
maximal subgraphs such as [Takigawa 2011, Li 2007]. Although the set of
closed or maximal subgraphs is much smaller than the set of frequent ones,
the number of subgraphs is still very high in real-world cases.

Many works have been proposed for subgraph selection based on approx-
imate structural similarity. In [Hasan 2007|, authors proposed an approach
for subgraphs extraction and selection. For selection, the structural similar-
ity between two subgraphs is measured by how much does their maximum
common subgraph [Abu-Khzam 2007| represents from their overall structure.
A very close work is [Chen 2008], where authors proposed an approach for
mining a set of structural representative subgraphs among the frequent ones.
They adopted a two-step approach that is based on approximate structural
similarity on micro and macro sides. In the first step, they consider a tol-
erance threshold to summarize approximately isomorphic subgraphs into one
representative. In the second step, they collapse multiple structurally similar
subgraphs into one representative using a clustering algorithm.

Existing selections approaches that are based on exact or approximate
structural similarity, look into every single detail and test the structural simi-
larity of subgraphs by establishing a matching between them. This similarity
detection strategy is not efficient in many real-world applications. On one
hand, because the combinatorial nature of graphs makes computing every
possible matching between pairs of subgraphs very costly. On the other hand,
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exact and even approximate structural similarity are not efficient enough to
detect all similar subgraphs in real-world data. Indeed, exact structural sim-
ilarity does not allow detecting similar yet slightly different subgraphs, and
approximate structural similarity has the problem of threshold setting. Since
a tight threshold will prevent detecting many similar subgraphs that slightly
differ in structure beyond the tolerance threshold and thus preserve a high
number of subgraphs. In contrast, a loose threshold will hinder the soundness
of the selection because of false positives. This rises the need for a differ-
ent way to consider the structural similarity such that both close and distant
structural similarities would be detected with respect to the soundness of re-
sults.

Considering  topological properties instead of exact or ap-
proximate structural isomorphism was inspired by works like
[Rodenacker 1990, Leskovec 2005, Veeramalai 2008, Li 2012, Ranu 2012,
Tong 2012, Gibert 2012 where authors showed the importance and efficiency
of topological attributes in describing graph data. For instance, in [Li 2012],
authors proposed a classification framework based on the assumption that
graphs belonging to the same class have similar topological descriptions.
Our approach is based on similar assumption and consider that structurally
similar subgraphs should have similar topological properties such that even
a slight difference does not affect the overall topological similarity. Besides,
depending on the application context, a user may be interested only in some
specific structural properties. However, considering exact or approximate
structural similarity approaches does not allow this specificity.

In order to overcome these drawbacks and to select a small yet structurally
non-redundant set of subgraphs, we propose a novel approach that mines the
top-k topological representative subgraphs among the frequent ones. At a
glance, our approach involves two steps. In the first step, each subgraph
is encoded into a topological description-vector containing the correspond-
ing values for a set of topological attributes. In the second step, subgraphs
with similar topological descriptions are clustered together and the central
subgraph in each cluster is considered as the representative delegate. Our
approach overcomes the costly isomorphism needed to perform the exact or
approximate structural similarity and allows detecting hidden similarities like
spectral radius or closeness centrality, that exact or approximate structural
similarity approaches are unable to detect. Besides, our approach can be easily
extended by enabling the user to target a specific set of topological attributes
depending on how important each one is to the application.
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5.3 Top-k topological representative subgraph
selection

5.3.1 Problem Statement

Even though the existing approaches for subgraph selection greatly enhanced
the selection process, the number of selected subgraphs is still high. Yet,
we want to show as few subgraphs as possible so that the user’s reviewing
efforts are minimized. The general framework of our selection strategy is as
follows. Given a set of frequent subgraphs Q and an integer k € [1..|Q]],
we want to select up to k representative subgraphs 2, C €2 such that each
frequent subgraph g € ) has one representative subgraph-delegate ¢’ € €,
and each representative subgraph is the closest one to all the subgraphs it
represents. To do so, the set of frequent subgraphs is divided into k clusters
using a clustering algorithm, then the cluster centroids are selected to be the
representative subgraph-delegates such that each centroid is representative for
all subgraphs within the same cluster.

5.3.2 Naive approach

As we are attempting to select top-k representative subgraphs based on clus-
tering, a fundamental part in our selection framework is the graph encoding
which consists in the transformation of each subgraph into a different for-
mat that is accepted by the clustering algorithm. A naive solution is to
transform the input subgraphs into a context-matrix where each subgraph is
represented by a binary vector denoting by 1 or 0 the presence or the absence
of the subgraph in each graph in the database. After that, the context-matrix
is considered as input for clustering (see Algorithm 2).

Algorithm 2: NATVE APPROACH
Data: Frequent subgraphs 2, number of representatives k
Result: Representative subgraphs Q* = {g1, 92, ..., gx }

1 begin

2 M <+ Ugl%: each subgraph g; € () is encoded into a binary vector
V; denoting by 1 or 0 correspondingly the presence or the absence of
the subgraph in each graph in the database;

3 0 «Clustering(M, k);

4 end
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5.3.3 Topological representative subgraph selection

The main idea of our approach is based on the assumption that struc-
turally similar subgraphs should have similar topological properties such that
even a slight difference in the structure does not affect the overall similar-
ity [Ingram 2006, Knabe 2008, Li 2012|. Accordingly, we adopt a two-step
selection framework, where in the first step we encode each subgraph into a
topological description-vector containing the corresponding values for a set of
topological attributes. In the second step, we perform a clustering using the
topological description-vectors in order to select one representative subgraph
delegate from each set of topologically similar subgraphs.

5.3.3.1 Topological attributes

In the first step of our approach each subgraph is encoded into a topological
description-vector. We select a set of topological attributes from the litera-
ture [Li 2012, Leskovec 2005] that are interesting and efficient in describing
connected graphs. In the following, we list and define the selected attributes:

1. Number of nodes: The total number of nodes in the graph, also called
the graph order |V|.

2. Number of edges: The total number of edges in the graph, also called
the graph size |E|.

3. Average degree: The degree of a node u, denoted deg(u), represents
the number of nodes adjacent to u. The average degree of a graph G is
the average value of the degrees of all nodes in G. Formally: deg(G) =
L3~ deg(u;) where deg(u;) is the degree of the node u; and n is the
number of nodes in G.

4. Density: The density of a graph G = (V, E/) measures how many edges
are in F/ compared to the maximum possible number of edges between

the nodes in V. Formally: den(G) = —(|v\*2(‘\€||—1))‘

5. Average clustering coefficient: The clustering coefficient of a node
u, denoted by c(u), measures how complete the neighborhood of u is,
i.e., c(u) = % where k, is the number of neighbors of u and e, is

the number of connected pairs of neighbors. If all the neighbor nodes of

u are connected, then the neighborhood of u is complete and we have

a clustering coefficient of 1. If no nodes in the neighborhood of u are

connected, then the clustering coefficient is 0. The average clustering

coefficient of an entire graph G having n nodes, is given as the average
1

value over all the nodes in G. Formally: C(G) = — > | ¢(u;).
n
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10.

11.

12.

13.

14.

. Average effective eccentricity: For a node u, the effective eccentric-
ity represents the maximum length of the shortest paths between u and
every other node v in G, i.e., e(u) = mazx{d(u,v) : v € V}. If uis
isolated then e(u) = 0. The average effective eccentricity is defined as
Ae(G) = 37" | e(u;), where n is the number of nodes of G.

. Effective diameter: The effective diameter represents the maximum
value of effective eccentricity over all nodes in the graph G, i.e.,
diam(G) = max{e(u) | u € V} where e(u) represents the effective
eccentricity of u as defined above.

. Effective radius: The effective radius represents the minimum value
of effective eccentricity over all nodes in the graph G, i.e., rad(G) =
min{e(u) | u € V'} where e(u) represents the effective eccentricity of .

Closeness centrality: The closeness centrality measures how fast in-

formation spreads from a given node to other reachable nodes in the

graph. For a node u, it represents the reciprocal of the average shortest

path length between u and every other reachable node in the graph, 7.e.,
— -1 ;

Ce(u) = m where d(u,v) is the length of the shortest path

between the nodes u and v. For a graph G, we consider the average

value of closeness centrality of all the nodes, i.e., Co(G) = 23" u,.

Percentage of central nodes: Here, we compute the ratio of the
number of central nodes from the number of nodes in the graph. A
node u is considered as central point if the value of its eccentricity is
equal to the effective radius of the graph, i.e., e(u) = rad(G).

Percentage of end points: It represents the ratio of the number of
end points from the total number of nodes of the graph. A node u is
considered as end point if deg(u) = 1.

Number of distinct eigenvalues: Any graph G can be represented
by an adjacency matrix A. As the adjacency matrix A has a set of
eigenvalues, these eigenvalues are not necessarily different. Here, we
count the number of distinct eigenvalues of A.

Spectral radius: Let A be the adjacency matrix of the graph G and
A1, N2, - A De the set of eigenvalues of A. The spectral radius of G,
denoted p(G), represents the largest magnitude eigenvalue, i.e., p(G) =
maz(| X; |) where i € {1,..,m}.

Second largest eigenvalue: The value of the second largest eigenvalue
of the adjacency matrix of the graph.
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15.

16.

17.

Energy: The energy of an adjacency matrix A of a graph G is defined
as the squared sum of the eigenvalues of A. Formally: E(G) =" | 2.

Neighborhood impurity: The impurity degree of a node u belonging
to a graph G, having a label L(u) and a neighborhood (adjacent nodes)
N (u), is defined as ImpurityDeg(u) =| L(v) : v € N(u), L(u) # L(v) |.
The neighborhood impurity of a graph G represents the average impurity
degree over all nodes with positive impurity.

Link impurity: An edge {u,v} is considered to be impure if L(u) #

L(v). The link impurity of a graph G with k edges is defined as:
|{u,v}€E:§(u)7ﬁL(v)\

Figure 5.1: An example of a graph of a chemical compound. !

Example Given the graph in Figure 5.1, the corresponding values of each
of the defined attributes are as follows:

Number of nodes = 20,

Number of edges = 21,

Average degree = 2.1,

Density = 0.11,

Average clustering coefficient = 0,
Average effective eccentricity = 5.75,
Effective diameter = 8,

Effective radius = 4,

!Source: [Li 2012]. Labels of nodes represent the atoms: O=oxygen, H=hydrogens,
N=nitrogen, C=carbon.
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- Closeness centrality = 0.29,

- Percentage of central nodes = 0.15,
- Percentage of end points = 0.45,

- Number of distinct eigenvalues = 20,
- Spectral radius = 2.56,

- Second largest eigenvalue = 2.15,

- Energy = 42,

- Neighborhood impurity = 1.11,

- Link impurity = 0.48

As efficiency and scalability remain big challenges for graph mining al-
gorithms, the proposed description is unified which helps to overcome both
challenges. On one hand, these attributes present an efficient description that
is able to reveal hidden topological similarities that exact and approximate
structural isomorphism do not consider. On the other hand, considering a
fixed number of descriptors guarantee that the encoded vectors would be of
a fixed size no matter what the number of graphs in the database is. This
makes the approach scalable and computationally efficient in real-world appli-
cations. Oppositely, the context-vectors in the the naive approach are as big
as the number of graphs in the database which is usually very high in real-
world applications. This can highly affect the scalablity and computational
consumption of the naive approach.

5.3.3.2 K-Medoids clustering

As previously mentioned, our approach follows a two-step selection frame-
work. First, we discussed the first part of the framework which consists of
the description of the data whether by the context-vectors or by the topo-
logical description-vectors. Here, we discuss the second part of our selection
approach which is the clustering step. We use k-Medoids [Kaufman 1987
which is a well known clustering algorithm that is widely used in unsuper-
vised learning [Jain 2010]. It takes as input a set of objects 2 and a number
of clusters k, and gives as output the k clusters’ centers (called medoids). To
do so, k-Medoids uses these definitions:

Definition 19 (Pairwise distance between objects) Given two objects Oy and
Oy correspondingly described by the vectors X and Y, the distance between
them, denoted d(Oq,0,), is defined as follows:
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d(01,05) = XX |2 — il

Definition 20 (Global distance between objects) Given a set of objects S, the
total distance between an object O and all the other ones in Q) is defined by:

Do = Zvoiea\o d(0,0;)

Definition 21 (Cluster medoid) An object O* is said to be cluster’s medoid
(the most centrally located object of the cluster), if it has the minimum sum
of distances to all the other objects O; within the cluster C'. Formally:

DO* = mmOZ S C(DOL)

Using real objects as the clusters’ centers makes k-Medoids less sensitive
to noise and outliers than many other clustering algorithms. Besides, in k-
Medoids, medoids are real data objects. Each medoid represents the most
similar object to all the other ones within the same cluster. Thus, medoids
can be directly considered as the representative-delegates for all the objects
in the same cluster.

The general algorithm of k-Medoids is described in Algorithm 3. First,
it starts by randomly selecting k objects from 2 to be the medoids, i.e. 2*.
Then, it assigns each non-selected object to the cluster of the nearest medoid.
After that, it swaps the £ medoid objects with other non-medoid objects aim-
ing to minimize the overall distance. D(Q2*) is the total distance before the
swap and D(€)) is the total distance after the swap. If the cost of the swap
(C = D(Q,) — D(2)) is strictly negative then the swap is considered as
beneficial, otherwise it is ignored. The assignment and swap steps are iter-
atively performed until no change or until a user-defined maximum number
of iteration is reached. Many implementations of k-Medoids have been pro-
posed in the literature. PAM [Kaufman 1987] is a pioneer implementation of
k-Medoids. Later, two other implementations have been proposed which are
CLARA [Kaufman 1990] and CLARANS [Ng 1994, Ng 2002]. The main dif-
ference between these implementations is in the way of performing the swap
where in attempt to make the algorithm more scalable to larger amounts of
data. In this work, we use CLARANS since it was shown [Ng 2002| that it is
an efficient implementation for large-scale data clustering and it gives similar
clustering quality to PAM and CLARA.

Property 3 (Termination) There is only a finite number of possible parti-
tionings of the set of objects ) into k groups. As we are looking for the
partitioning that best minimizes the overall distance, we do not go from one
partitioning to another only if it improves the clustering. Thus, in each swap
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Algorithm 3: K-MEDOIDS
Data: Set of objects €2, number of clusters k£, maximum number of

iterations max;ie,

Result: Set of medoids Q* = {01, Os, ..., O}

1 begin

2 O« Qp: start with K objects randomly selected from €2;

3 repeat

4 Assign each one of the non-selected objects to the cluster having
the most similar medoid;

5 Calculate the cost C; = (D(§2},) — D(92*)) for each swap of one
medoid with another object;

6 if C; <0 then

7 | Qe

8 end

9 nbiter = nbiter + 17

10 until (no change) or (Mbier > MaZier);

11 end

the algorithm must choose a new partitioning. Consequently, after a finite
number of iterations, bounded by a user-defined mazimum number of itera-
tions, the algorithm will run out of partitionings or no improvement will be
observed. Hence, the algorithm terminates.

5.3.3.3 Why k-Medoids and not k-Means?

K-Means [MacQueen 1967] is one of the most used algorithms for cluster-
ing. We adopt the k-Medoids clustering instead of k-Means because the latter
defines the clusters’ centers as fictive points. Thus, in order to detect the sub-
graph delegates, we have to compute the distance between the subgraphs and
the center within the same cluster and consider the closest subgraph to the
centeroid as the representative subgraph delegate. Whereas, the k-Medoids
algorithm requires that the clusters’ centroids be real points instead of being
fictive. Hence, the clusters’ medoids are directly considered as the representa-
tive subgraph delegates which prevents performing unnecessary computation
needed to detect the delegates with k-Means. Besides k-Medoids is less sensi-
tive to noise and outliers.
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5.3.3.4 The main algorithm

We propose TRS, an approach for selecting Topological Representative
Subgraphs. The general algorithm of the approach is described in Algorithm
4. TRS follows a two steps framework. As previously mentioned, TRS
assumes that structurally similar subgraphs have similar topological proper-
ties. Thus, in the first step of the approach, each subgraph is encoded into
a topological description-vector using the previously defined topological at-
tributes. The second step uses the topological description-vectors to select
the representative subgraphs. Each representative subgraph is supposed to
have the maximal overall similarity to all the other subgraphs it represents.
Hence, the topological description-vectors are considered for clustering using
k-Medoids. The selected medoids are considered as the topological represen-
tative subgraph-delegates.

Algorithm 4: TRS
Data: Frequent subgraphs 2, number of representatives k
Result: Topological representative subgraphs Q* = {g1, g2, ..., gx }
1 begin

2 M <+ ULZ'J/;: each subgraph g € (2 is encoded into a topological
description vector V' using the topological attributes;

3 0 «K-Medoids(M, k);

4 end

Property 4 (Termination) Since k-Medoids terminates, TRS terminate too.

5.4 Experimental analysis

5.4.1 Datasets

To experimentally evaluate our approach, we use different types of graph
datasets: protein 3D-structures and chemical compounds. Table 5.1 summa-
rizes the characteristics of the four datasets: dataset, |G|, Avg.|V| and Avg.|E|
correspond respectively to the name of the corresponding protein family or
chemical compound dataset, number of graph, average number of nodes, av-
erage number of edges in each dataset.

The first two datasets were previously used in [Fei 2010] and [Yan 2008].
Both datasets will be used to evaluate the interestingness of the selected
subgraphs. In fact, each dataset is composed of two groups of protein 3D-
structures equally divided between positive and negative samples. Positive
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Table 5.1: Benchmark datasets

Dataset |G| Avg.|V| Avg.|E|
G-proteins 66 246 971
C1 set domains 76 238 928
Enzymes 664 358 910
AIDS antiviral screen 43850 28 30

proteins are sampled from a selected protein family, namely G-proteins and
C1 set domains, whereas negative proteins are randomly sampled from the
Protein Data Bank |Berman 2000]. G-proteins are also known as guanine
nucleotide-binding proteins. These proteins are mainly involved in transmit-
ting chemical signals originating from outside a cell into the inside of it. They
regulate metabolic enzymes, ion channels, transporter, and other parts of the
cell machinery, controlling transcription, motility, contractility, and secretion,
which in turn regulate diverse systemic functions such as embryonic develop-
ment, learning and memory, and homeostasis.

The C1 set domains composing the second dataset are immunoglobulin-
like domains, similar in structure and sequence. They resemble the antibody
constant domains. They are mostly found in molecules involved in the im-
mune system, in the major histocompatibility complex class I and II complex
molecules, and in various T-cell receptors. The two other datasets are used to
evaluate the runtime and the distribution of subgraphs according to their sizes.
The dataset of Enzymes, previously used in [Dobson 2003| and [Thoma 2010],
is composed of 664 proteins. Enzymes act as biological catalysts. They are
large biological molecules responsible for the thousands of chemical intercon-
versions that sustain life. The last dataset shows a set of antiviral screen
data (AIDS). It contains the activity test information of 43850 chemical com-
pounds. This dataset was previously used in many studies such as [Chen 2008]
and is publicly available on the website of the Developmental Therapeutics
Program.?

5.4.2 Protocol and settings

Graph building: For chemical compounds, each atom is represented by a
node and labeled with the atom type (Hydrogen (H), Carbon (C), etc.). An
edge exists between two nodes if there exists a chemical bond between their
corresponding atoms. For protein 3D-structures, each protein is parsed into a
graph of amino acids using the main atom (C,) method (see section 2.3.4.2).
In the literature, many methods use this method with usually § > 7A on the

2http://dtp.ncinih.gov/docs/aids/aids_ data.html
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argument that C, atoms define the overall shape of the protein conformation
[Huan 2005]. In our experiments, we use § = 7A.
Frequent subgraph mining: We use the state-of-the-art method of frequent
subgraph discovery GSPAN [Yan 2002] to find the frequent subgraphs in each
dataset. We tried different minimum frequency threshold in order to obtain
a reasonable number of frequent subgraphs from each dataset. The retained
minimum frequency threshold are 30% for G-proteins and C1 set domains,
10% for Enzymes, and 5% for AIDS antiviral screen dataset. Table 5.2 shows
the number of frequents subgraphs obtained from each dataset.
Representative subgraph selection: Both selection frameworks, i.e., the

Table 5.2: Number of frequent subgraphs (€2) extracted from each dataset
Dataset | |
G-proteins 114792
C1 set domains 258371
Enzymes 253404
Sida 6749

naive approach and TRS, were implemented in R.

Subgraph encoding: To measure the quality of subgraphs, each one of
them is encoded into a binary vector by denoting 1 or 0, the presence or the
absence of the subgraph in each graph in the dataset. The quality of the
selected subgraphs is measured over their encoding vectors.

5.5 Results and discussion

5.5.1 Empirical results

As previously mentioned, we first evaluate our approach over the classification
datasets G-proteins and C1 set domains. We measure the quality of the
selected subgraphs using the information gain which is one of the most popular
interestingness measures in data mining. Given a set of training examples (2
and an attribute att. The information gain of att is computed using the
following formulas:

InformationGain(Q, att) = Entropy(2) — Entropy(§2|att)
where Entropy(Q2) is calculated as follows:

Entropy(Q) = —Si p(x,)log p(z,)
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where p(z;) is the probability of getting the x; value when randomly selecting
an example from the set.

The information gain is measured over all the frequent subgraphs then over
the subgraphs selected by TRS and those selected by the naive approach using
different number of representatives. The information gain value obtained over
all the frequent subgraphs is considered as standard value for comparison.
Table 5.3 shows the obtained results.

Table 5.3: Comparison of average information gain of the topological repre-
sentative subgraphs (TRS) with those selected by the naive approach (NA)
and the initial set of all frequent subgraphs (FSG).

G-proteins C1 set domains

FSG 0.216 0.148
# representatives NA TRS NA TRS
50 0.104 0.324 0.068 0.254
100 0.092 0.342 0.061 0.285
200 0.096 0.343 0.044 0.273
300 0.097 0.347 0.058 0.267
400 0.094 0.339 0.051 0.276
500 0.090 0.348 0.052 0.269
600 0.096 0.340 0.054 0.267
700 0.097 0.343 0.055 0.272
800 0.098 0.352 0.054 0.274
900 0.094 0.358 0.054 0.276
1000 0.094 0.353 0.056 0.276

Average 0.095730%8  0.34470018  0.05570012  0.27175913

Table 5.3 shows that TRS is able to select a subset of subgraphs that
are more informative than either the initial frequent ones or those selected by
the naive approach. Whereas, the quality of the subsets of representative sub-
graphs selected by the naive approach did not even reach the information gain
value of the whole set of frequent subgraphs. Both previous interpretations
goes with all the used numbers of representatives. This proves the reliability
of our selection approach and shows that using the topological attributes for
description is more efficient than using the occurrence information. It enables
k-Medoids to better detects similarities between subgraphs and thus to select
a subset of representative subgraphs that are most informative.

It is also worth mentioning that the topological attributes used in TRS are
not limited to the ones mentioned in this chapter. They can be extended by
removing or adding other attributes depending on the data and the application
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Figure 5.2: Distribution of subgraphs by size for the Enzymes dataset.

goals. For instance, for graphs containing loops, it could be interesting to
consider the number of loops in each subgraph as feature.

5.5.2 Size-based distribution of patterns

In this section, we study the distribution of subgraphs based on their size
(number of edges). We try to check which sizes of subgraphs are more con-
cerned by the selection. The Figures 5.2 and 5.3 draw the distribution of the
original set of frequent subgraphs over Enzymes and AIDS antiviral screen
datasets. For both datasets, we notice a high concentration of the number of
frequent subgraphs in the center especially with the Enzymes dataset, ranging
from three to five for the latter, and from four to nine for the AIDS antiviral
screen dataset. These concentration zones presents high level of redundancy
and must be the most concerned by the selection.

Figures 5.4 and 5.5 draw the distribution of the topological representative
subgraphs with different number of clusters k. The downward tendency of
TRS using lower values of k and with respect to the original set of frequent
subgraphs is very clear. In fact, TRS leans towards cutting off the peaks and
flattening the curves with lower value of k. Another interesting observation
is that the curves are flattened in the regions of small subgraphs as well as in
those of large subgraphs. This demonstrates the effectiveness of TRS on both
small and large subgraphs.
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Figure 5.5: Distribution of subgraphs by size for the AIDS antiviral screen
dataset using different values of k (number of representatives).

5.5.3 Runtime analysis

In this section, we study the runtime of our algorithm compared to that of the
naive approach on three levels: in terms of variation of number of clusters,
numbers of frequent subgraphs, and number of graphs. It is worth mentioning
that here we only compare the clustering runtime and we omit the time of
the encoding of subgraphs since it does not change along the experiments and
only counts few seconds. Besides, it depends on the selected attributes for
TRS.

5.5.3.1 Scalability to higher number of clusters

We study the effect of varying the number of clusters £ on the runtime of
clustering for both TRS and the naive approach. We select the representa-
tive subgraphs among the frequent ones previously extracted from the AIDS
antiviral screen dataset. Figure 5.6 illustrates the evolution of runtime us-
ing different values of k& (number of clusters) ranging from 200 to 800 with a
step-size of 200.

Figure 5.6 shows a huge difference in execution time between the two
approaches. In fact, for 200 clusters, the naive approach consumes more than
one and half hour to finish the clustering, whereas TRS needed only few
seconds. This difference becomes much bigger with higher values of k. As
the number of clusters increases, the execution time of the naive approach
exponentially increases as well. Yet, the clustering time in TRS does not
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Figure 5.6: Runtime of clustering for TRS and the naive approach with dif-
ferent number of clusters (k).

increase significantly and almost stays steady with higher values of k. Since
the clustering is combinatorial and considers each possible pair of subgraphs
for comparison, the smaller the description of the subgraphs is, the faster the
clustering would be. Consequently, the huge gain in execution time is basically
due to the small and fixed size of the topological description-vectors used in
TRS compared to the context description-vectors in the naive approach.

5.5.3.2 Scalability to higher number of subgraphs

Here, we study the effect of varying the number of frequent subgraphs on
clustering runtime for both TRS and the naive approach. We select the rep-
resentative subgraphs among different sets of frequent subgraphs ranging from
10000 to 100000 with a step size of 10000. The input subgraphs were randomly
selected among the frequent subgraphs previously extracted from the C1 set
domains dataset. The Figures 5.7 and 5.8 illustrate the evolution of runtime
with higher number of subgraphs, respectively for 100 and 500 clusters.

As shown in the Figures, TRS takes only few seconds to select the rep-
resentative subgraphs, whereas, the naive approach takes clearly much more
time. Increasing the number of subgraphs does no affect the runtime of TRS
as much as it does with the naive approach. This shows that TRS is more
scalable than the naive approach to higher numbers of subgraphs.
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Figure 5.7: Runtime of clustering for TRS and the naive approach to select
100 representatives among different number of subgraphs.
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Figure 5.9: Runtime of clustering for TRS and the naive approach to select
100 representatives among 10000 subgraphs with variation of the number of
graphs.

5.5.3.3 Scalability to higher number of graphs

In real-world applications, the size of graph databases is usually very high.
We study the effect of varying the number of graphs on the runtime of both
TRS and the naive approach. We fix the number of subgraphs to 10000, and
we synthetically manipulate the list of occurrences of each frequent subgraph
by replacing it with a random list of random occurrences between 0 and a
considered number of graphs. The considered numbers of graphs in the oc-
currence lists range from 1000 to 10000, with a step size of 1000. Figures 5.9
and 5.10 illustrate the evolution of runtime with higher number of graphs,
respectively for 100 and 500 clusters.

As the naive approach uses the occurrence lists of subgraphs to construct
the context description-vectors. Thus, the size of each context-vector is equal
to the number of graphs in the database. Consequently, the runtime of the
naive approach is highly affected by the increasing of the number of graphs in
the database. Both Figures 5.9 and 5.10 show that the runtime of the naive
approach increases exponentially with higher numbers of graphs. Whereas,
the runtime of TRS corresponds only to few seconds and remains stable no
matter what the size of the database is. This shows that TRS is scalable and
more robust in real world-applications that usually deals with large amounts
of data.
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Figure 5.10: Runtime of clustering for TRS and the naive approach to select
500 representatives among 10000 subgraphs with variation of the number of
graphs.

5.6 Conclusion

In this chapter, we proposed TRS, a novel approach that mines a subset of
topological representative subgraphs among the frequent ones. Instead of ex-
act and approximate structural similarity, TRS follows a more meaningful
selection strategy that helps on both selecting a subset of topologically non-
redundant and informative subgraph-delegates. TRS is also able to detect
hidden topological similarities between subgraphs that are ignored by current
selection approaches, and can be easily extended using any user-defined at-
tributes. Empirical studies on real and synthetic graph datasets showed that
our approach is fast and scalable. Besides graph databases, it can handle
other cases such as the problem of subgraph selection in a single large graph.

In many application, the user may not be able to define a specific number
of clusters. A promising future direction could be to remove the k constraint.
This is further discussed in Section 6.4.2.2.
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In this chapter, we conclude the thesis by summarizing the proposed con-
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TRS.
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6.2 Summary of contributions

In this thesis, we proposed two feature selection approaches for subgraphs.
Here, we recall both approaches as well as the main results and conclusions.

6.2.1 UNSUBPATT

The first approach we proposed is termed UNSUBPATT. It aims to select-
ing a subset of representative subgraphs among frequent ones. The selected
subgraphs are termed representative unsubstituted patterns. Unlike existing
subgraph selection approaches where the prior domain knowledge is often
ignored, UNSUBPATT incorporates matrices that quantify the similarities be-
tween nodes labels. UNSUBPATT uses similarity scores of the matrix to detect
the overall similarity between pairs of subgraphs. Graphs representing pro-
tein structures are an immediate application example due to the availability
of amino acids substitution matrices. However, UNSUBPATT can be used in
any other application context whenever it is possible to define a matrix that
quantifies similarities between the nodes’ labels. UNSUBPATT is unsupervised,
thus, it can be used in any subgraph-based task.

Experimental evaluation of UNSUBPATT was performed by classifying a
set of protein structure datasets. Results showed that UNSUBPATT is able to
select a small yet representative and informative subset of subgraphs among
the frequent ones. Moreover, UNSUBPATT outperformed many other sub-
graph selection approaches in classifying the considered protein structure
datasets. It even reached full accuracy with one dataset. This shows that
UNSUBPATT is a very competitive and promising approach, and that using
the substitution between amino acids allows it to select a very informative
subset of subgraphs.

6.2.2 TRS

Similarity in UNSUBPATT is purely semantic as the similarity between a pair
of isomorphic subgraphs depends on how similar their labels are. We also
introduced another subgraph selection approach, we term TRS (Topological
Representative Subgraphs). Redundancy in UNSUBPATT is based on seman-
tic similarity, while redundancy in TRS is based on structural similarity. Ex-
isting subgraph selection approaches that are based on structural similarity
are either exact or approximate. We discussed, in 5.2, how current exact and
approximate structural similarity approaches are less efficient in many real-
world applications. Unlike these approaches, TRS follows a more meaningful
selection by considering the overall structural similarity between subgraphs
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through a set of topological descriptors. This makes it easily extendable with
any user-specified descriptors depending on the application and the sought
information.

Experimental evaluation of TRS was performed mainly on protein struc-
ture datasets but also on a chemical compound dataset. Results showed that
TRS is able to select a set of topologically non-redundant and informative
subgraph-delegates. In addition, it considers hidden topological similarities
between subgraphs (density, diameter, clustering coefficient, etc) that are ig-
nored by current selection approaches. Moreover, TRS is extendable and
unsupervised, thus it can be used in any subgraph-based task. It is also
worth noting that the application domain of TRS is not limited to protein
3D-structures or to biological data but it can also be used with any graph
data.

6.3 Discussion

We resume the discussion previously reported in 3.7. As previously discussed,
many subgraph selection approaches are currently available. It is difficult to
compare them, in general, since the majority of them were originally designed
to resolve a particular issue. The choice of an appropriate selection method
highly depends on the users preferences and the application constraints. In
Table 6.1, we list all the subgraph selection approaches that have been inves-
tigated along Chapter 3 and we state their characteristics according to a set of
descriptors. In addition to what was reported in Table 3.1, Table 6.1 lists our
proposed approaches, UNSUBPATT and TRS. It also contains an additional
descriptor which indicates whether the selection approach considers the prior
domain knowledge in the selection or not. It is possible to consider similarity
functions and measures, that are defined by the user, as domain knowledge
like in Redundancy aware top-k, SkyGraph, Mips or TRS. However, here we
refer to prior domain knowledge as specific external data or information from
the application domain that a method exploits during the selection, as in UN-
SUBPATT which uses the substitution matrices that are already defined by
domain experts.



Table 6.1: Characteristics of Subgraph selection approaches according to different discription criterions.

Subgraph Descriptor
selection approach Prior Post- Learning- Selected subgraphs
domain processing task de-
knowledge pendent
TGP No No No Top-k frequent closed
Redundancy aware top-k No Yes No Top-k frequent significant&non-redundant
RP-FP No Yes No Frequent closed representatives
RP-GD No No No Frequent closed representatives
RING No No No Frequent representatives
ORIGAMI No Yes No a-orthogonal B-representative
Output space sampling No No No Sample of frequent
MCSs sample No No No Maximum common subgraphs
Smoothing-clustering No Yes No Approximate structural representatives
D&D No No Yes Diverse discriminative
GATIA, CORK, GraphSig,
LEAP, LPGBCMP, COM,
gBoost, gPLS No No Yes Discriminative
MIPs No No No Most informative closed
SkyGraph No No No Undominated
Ant-motifs No No No Ant-like shape
UNSUBPATT Yes Yes No Representative unsubstituted
TRS No Yes No Topological representative

¢cIt

SI0M 2ININJ pue uoisnPuo)) -9 1ddeyn



6.4. Ongoing works and prospects 113

6.4 Ongoing works and prospects

Like any algorithm, the proposed selection approaches have their limitations.
In the following, we discuss some of the major limitations and we propose
possible extensions to enhance them.

6.4.1 UNSUBPATT extensions
6.4.1.1 Parallel UNSUBPATT

Even though UNSUBPATT scales well with higher numbers of subgraphs, the
problem still of high complexity due to the combinatorial test of substitution
between subgraphs. In real-world applications, the number of subgraphs can
be exponential. It would be interesting to make UNSUBPATT runs faster to be
able to deal with exponential numbers of subgraphs and to be more efficient
in real-world applications. A possible way to make UNSUBPATT run faster is
parallelization. UNSUBPATT tests separately the substitution among groups
of subgraphs having the same size and order. Hence, an easy way to parallelize
it is to test the substitution in groups in parallel threads or processors or even
machines as in a grid or a cloud environment.

6.4.1.2 Approximate early termination

Another possible way to make UNSUBPATT runs faster and more efficiently
is to integrate the selection in the subgraph extraction process through an
early termination condition. Introducing such condition is very difficult in
either breadth or depth first search approach, as there is no guarantee that the
resulting set of selected subgraphs is the optimal representative set. Moreover,
the resulting set may only cover a small portion of the search space since the
search would not be complete in many branches of the search tree. Indeed, in a
breadth first search approach, the output subgraphs would be only up to some
levels of the search tree, and in a depth first search, the selected subgraphs
would cover other branches of the search tree only to a certain levels. In both
cases, there is no guarantee that the cut branches do contain only irrelevant
and redundant subgraphs. Thus, many representative subgraph candidates
may be lost.

A possible way to perform UNSUBPATT selection during the extraction of
subgraphs is through approximation. Although this do not guarantee selecting
the optimal set of representatives, we claim that this may provide a near
optimal solution. For any frequent subgraph P;, if it substitutes another
subgraph P, and a child node Pj; of P; (in the search tree) also substitutes a
child node P of P, then the growing stops from P»;. Otherwise, the growing
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continues until the same condition is verified or no other frequent subgraph is
discovered. The frequent subgraphs that have not been substituted represent
the set of representative unsubstituted patterns.

6.4.2 TRS extensions
6.4.2.1 Parallel TRS

In real-world applications, the number of subgraphs can be exponential. Al-
though TRS scales well with higher numbers of subgraphs, making TRS runs
faster would be very interesting for real-world applications. Since TRS is com-
posed of two steps, parallelization should cover both of them. The first step
consists in computing the corresponding values of the topological attributes
for each subgraph. This step can be parallelized easily in two ways: the first
way is to compute the values of each attribute in parallel processes such that
each process deals with one attribute for all subgraphs. The second way, is to
divide the subgraph set in different groups then to compute the values of all
attributes for each group in parallel processes such that each process computes
the values of all attributes for a single group. The second step of TRS consists
in clustering subgraphs based on their description-vectors into groups using k-
Medoids. In [Gamblin 2010], authors proposed CAPEK, a massively scalable
parallel version of k-Medoids clustering algorithm. TRS can use CAPEK in
the second step. Hence, TRS can be fully parallelized.

6.4.2.2 Removing the k constraint

In many applications, the user may not be able to define a specific number of
clusters. An interesting extension of TRS is to remove the £ constraint. This
can be performed using a clustering algorithm that do not require specifying
the number of clusters. For instance, CAPEK |Gamblin 2010] can determine
the value of k automatically and thus it eliminates the need to specify the
number of clusters in advance. This can also be performed using Medoidshift
[Sheikh 2007] which is a non-parametric partitioning algorithm that automat-
ically computes the number of clusters. Many other clustering techniques also
offer this possibility such as hierarchical and density-based clustering.
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Bioinformatics data formats

A.1 PDB format

A PDB file is a textual format describing the position of atoms in a molecule in
the 3D-space. To reduce the size of PDB files, the hydrogen atoms are omitted
from the description files of macromolecules. Even for small molecules, the
double bonds are rarely present. An example of a PDB file is in Figure A.1.
The file describes the coordinates of the atoms that are part of the protein.
For example, the first ATOM line above describes the alpha-N atom of the
first residue of peptide chain A, which is a proline residue, the first three float
numbers are its z, y and z coordinates and are in units of Angstroms. The
next three columns are respectively the occupancy, temperature factor, and
the element name.

HERDER EXTRACELLULAR MATRIX 22-JRN-33 1R3T1
TITLE K-RAY CRYSTALLOGRAPHIC DETERMINATION OF A COLLAGEN-LIKE
TITLE 2 PEPTIDE WITH THE REPEATING SEQUENCE (PRO-PRO-GLY)

EXPDTR H-FAY DIFFRACTION
AUTHOR R.Z.KRAMER, L.VITAGLIANO,J.BELLA,R.BERISIO, L.MAZZARELLA,
AUTHOR 2 B.BRODSKY, L.ZMGIRI, H.M.EEEMAN

BEMRRK 350 BIOMOLECULE: 1
EEMRRK 350 RPPLY THE FOLLOWING TO CHAINS: &R, B, C

EEMRRE 350 BEIOMT1 1 1.000000 0.000000 ©.000000 0.00000
BEMRRE 350 BIOMT2 1 0.000000 1.000000 0.000000 0.00000

SEQRES 1A 9 FRO FRO GLY FRO PRO GLY FRO FRO GLY
B 6 FRO FRO GLY FRO PRO GLY
SEQRES 1.c 6 FRO FRO GLY FRO PRO GLY

ATCM 1 N FROZ 1 8.316 21.206 21.530 1.00 17.44 H
ATCM 2 ChL PROAR 1 7.608 20.729 20.336 1.00 17.44 C
ATOM 3 C FRO &L 1 8.487 20.707 19.0%2 1.00 17.44 C
ATCM 4 0 FROZ 1 9.466 21.457 19.005 1.00 17.44 0
ATCM 5 CB.FROA 1 6.460 21.723 20.211 1.00 22.24& C

Figure A.1: PDB format.
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A.2 FASTA format

FASTA format is used to represent biological sequences, such as protein pri-
mary structures, in textual files. In a FASTA file, each biological sequence
is represented by a string of characters where each character represents a
nucleotide or an amino acid and are ordered as the latter appear in their se-
quence. Different sequences are separated by a greater-than (">") symbol.
The line containing the (">") symbol are also used for descriptions such as
the name of the sequence. Figure A.2 shows an example of a FASTA file.

>»ExTopoDEID: 1[Uniprot AC:004714]

NS AVL TAGGGLTAGDRSIITAIN TGASSLAFVGSAF IVLCYCLFEELREFSFELVF YL AL
SDMLCEFFLIVGDPSEGF ICTAQGYTTHFFCWASFLWTTTIAF TLHRTWWVEHETDVEDLE
AMFHLTVIWGTALVVTVIRSF GHNHSHLGPWC W TOTGLEGKAVHFLTF TAPLWGATLYIGE
TYFOVIEMLENARRMAVGHSDEVDOF DNRAELEVLNENGYYFLILIGSWAFGTINEIHDF
IEPGHEIFWLSYLDWGTAALMGLFN S TAVGFNSSVRERATHERLELFLPERLYRULPSNFR
PENHL ILHOOQOOORIEMVSLETED OO

>»ExTopoDEID: 10[Uniprot AC:034653]

NTEQTIAHKOEQLTEQVAAF AOPETENSLIQLLNTF IPFFGLWFLAYLALDYWSTLLTLAL
TVIALGFLTRIFIIFHDCCHOSFFEOERYNHILGFLTGVLTLFPYLOWOHSHS ITHHATSS
NLDERGTGDIWNL TWHNEVEALS PR TELAYRLYRNPFINF ILGPIVVFLITNRFNEKGLRR
EERVHNTYLTNLATIWALAAACCLIFGWOSFLLVOGPIFLISGEIGVWLFYWOHTFEDSYFE
ADENTS Y OLAVEGSSFYELPELLOWL TGN I GYHAVHHLSFPEVPNYELEVAHEHHEFL ET
VPTITLETELOALAFRLWDEDHNEQFVAFRATKHIPVIELPPLDEPEKQKLREIL
>»ExTopoDEID: 100[Uniprot AC:PO7340]

MARGELKEEGSWEEF INNSEEEEFLGRTGGSWFKILLFYVIFYGCLAGIFIGTIOVMLLT
ISELEPTYVODRVAPPGLTOIPQIQETEISFRPNDPESYELTVILNITRFLEEVEDSLOEDD
NIFEDCGSMPSEPKERGEFNHERGEREVCRFELDWL GHCSGLNDESYGYREGEPCIIIEL
NEVLGFEPEFPEMESLETYPL THEYNFNVLFVQC TGERDEDEDEVGIEYF GHGGF YGF P
LOVYPYVGELLOPEYLOPLLAVOF TNLTLD TEIRIECEAYVGENTIGYIEEDRFQGRFDVET
EVES

>»ExTopoDEID: 1000[Uniprot AC:PE7143]
MEIIGAAVLLILINDPLGHLPIFMSVLEHTEPKRRRAINVEELLTALLVHLVFLF AGEE
ILAFLSLEAETYSISGGIILFLIATENMIFPSASGNSSGLPAGEERPFIVPLAIFLVAGETT
LATLHMLLSHOYPNOMGHLVIALLLAWGGTFVILLOSSLFLELLGEEGVNALERLUGLILY
NMATOHFLLDGIRMWHEG

Figure A.2: FASTA format.



APPENDIX B

Protein Graph Repository

B.1 Description

Protein Graph Repository (PGR) is an online repository mainly dedicated to
graphs representing protein 3D-structures. The core of this online repository is
developed using both JAVA and PHP as a programing languages and MySQL
as a database management system. PGR was deployed using the latest web
technologies and respecting the web standardization specifications.

B.2 How to use PGR ?

The general operation schema of PGR is as follow :

Protein Graph Repository

Building graphs
from PDB files Searching

v

Parser Repository

Saving

T {graphs)

Uploading Downloading
(FDE format)

Figure B.1: PGR general schema.

B.2.1 Parser

The parser tool (see Figure B.2) allows the transformation of PDB files
[Berman 2000] (see Section A.1) into graphs (see Figure B.3). Many graph
formats can be generated enabling the use of panoply of existing tools such
as Biolayout [Theocharidis 2009], Network Workbench [Bérner 2010|, Graph-
Clust [Recupero 2008], tec.

Several methods of graph construction are supported. The use of the
parser is very simple:
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Connection
PROTEIN GRAPH REPOSITORY

Computational Processing of Protein Structures

Parser
Method : 10+
Distance :
H-Bond Distance: | |
Upload pdb file: | [ Parcaunr. |
W 1CRN.pdb
W HIU.pdb
Run

Home - Contact Us - Site map - Site Rules

Figure B.2: Parser.

- The user upload his set of PDB files

- Specify : the graph construction method, the appropriate parameters
values, and the output format

- Run the parser

A more detailed description is reported in the site.

B.2.2 Repository

The repository (see Figure B.4) represents a protein graph data bank that is
freely available online. It is coupled with a filtering tool allowing the selection
and targeting of a specific set of protein graphs. The repository is fed each
time the parser is run. A download option is enabled making the existing
protein graphs available for any further purpose.
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fHurl file:/D: .-’.PhD-_PrDject,.-"DevelD‘pr_ﬂe'nt_.f.PrDGr.aMXKIPrDGr.aMXE LAd1A1J80. pdb
#graph_building_method BasedOnillitoms 3.64
fivertices 4

u]

v
FP
w
F
F
38
T

L R I

b I = - = R - = B = S~ = e = s I T A~

Figure B.3: PGR file.

EgﬁEﬁnuc?u‘h

[l | sy
18U
1j8U

1j8U
B sy

id pdb

PROTEIN GRA

I.

PH REPOSITORY

Computational Processing of Protein Structures

Method
|BasedOnCAlpha
Baseddnc‘A\ﬁHa
|BasedOnCAlpha
;BasedDHCA\pha
|BasedOnCAlpha
;BasedOHCA\pha

|10
10

10

o

1.0
20

Distancei

Distance?

Home - Contact Us - Site map - Site Rules

Figure B.4: Data
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Topological and Domain Knowledge-based Subgraph
Mining: Application on Protein 3D-Structures

Abstract: This thesis is in the intersection of two proliferating research
fields, namely data mining and bioinformatics. With the emergence of graph
data in the last few years, many efforts have been devoted to mining frequent
subgraphs from graph databases. Yet, the number of discovered frequent
subgraphs is usually exponential, mainly because of the combinatorial
nature of graphs. Many frequent subgraphs are irrelevant because they are
redundant or just useless for the user. Besides, their high number may hinder
and even makes further explorations unfeasible. Redundancy in frequent
subgraphs is mainly caused by structural and/or semantic similarities, since
most discovered subgraphs differ slightly in structure and may infer similar
or even identical meanings.

In this thesis, we propose two approaches for selecting representative
subgraphs among frequent ones in order to remove redundancy. Each of
the proposed approaches addresses a specific type of redundancy. The
first approach focuses on semantic redundancy where similarity between
subgraphs is measured based on the similarity between their nodes’ labels,
using prior domain knowledge. The second approach focuses on structural
redundancy where subgraphs are represented by a set of user-defined topo-
logical descriptors, and similarity between subgraphs is measured based on
the distance between their corresponding topological descriptions.

The main application data of this thesis are protein 3D-structures. This
choice is based on biological and computational reasons. From a biological
perspective, proteins play crucial roles in almost every biological process.
They are responsible of a variety of physiological functions. From a com-
putational perspective, we are interested in mining complex data. Proteins
are a perfect example of such data as they are made of complex structures
composed of interconnected amino acids which themselves are composed of
interconnected atoms. Large amounts of protein structures are currently
available in online databases, in computer analyzable formats. Protein
3D-structures can be transformed into graphs where amino acids are the
graph nodes and their connections are the graph edges. This enables using
graph mining techniques to study them. The biological importance of
proteins, their complexity, and their availability in computer analyzable
formats made them a perfect application data for this thesis.
Implementation of the research works are available on my personal home
page http://fc.isima.fr/~dhifli or upon email request.

Keywords: Feature  selection, pattern  mining, fre-
quent subgraph, representative unsubstituted subgraph,
topological representative subgraph, protein structure




Fouille de Sous-graphes Basée sur la Topologie et la
Connaissance du Domaine: Application sur les
Structures 3D de Protéines

Résumé: Cette thése est a I'intersection de deux domaines de recherche
en plein expansion, a savoir la fouille de données et la bioinformatique.
Avec I'émergence des bases de graphes au cours des derniéres années, de
nombreux efforts ont été consacrés a la fouille des sous-graphes fréquents.
Mais le nombre de sous-graphes fréquents découverts est exponentiel, cela
est due principalement & la nature combinatoire des graphes. Beaucoup de
sous-graphes fréquents ne sont pas pertinents parce qu’ils sont redondants
ou tout simplement inutiles pour l'utilisateur. En outre, leur nombre élevé
peut nuire ou méme rendre parfois irréalisable toute utilisation ulterieure.
La redondance dans les sous-graphes fréquents est principalement due a la
similarité structurelle et / ou sémantique, puisque la plupart des sous-graphes
découverts différent légérement dans leur structures et peuvent exprimer des
significations similaires ou méme identiques.

Dans cette thése, nous proposons deux approches de sélection des sous-
graphes représentatifs parmi les fréquents afin d’éliminer la redondance.
Chacune des approches proposées s’intéresse a un type spécifique de redon-
dance. La premiére approche s’adresse a la redondance sémantique ou la
similarité entre les sous-graphes est mesurée en fonction de la similarité entre
les étiquettes de leurs noeuds, en utilisant les connaissances de domaine. La
deuxiéme approche s’adresse a la redondance structurelle ou les sous-graphes
sont représentés par des descripteurs topologiques définis par ['utilisateur,
et la similarité entre les sous-graphes est mesurée en fonction de la distance
entre leurs descriptions topologiques respectives.

Les principales données d’application de cette thése sont les structures 3D des
protéines. Ce choix repose sur des raisons biologiques et informatiques. D’un
point de vue biologique, les protéines jouent un role crucial dans presque tous
les processus biologiques. Ils sont responsables d’une variété de fonctions
physiologiques. D’un point de vue informatique, nous sommes intéressés a la
fouille de données complexes. Les protéines sont un exemple parfait de ces
données car elles sont faites de structures complexes composées d’acides am-
inés interconnectés qui sont eux-mémes composées d’atomes interconnectés.
Des grandes quantités de structures protéiques sont actuellement disponibles
dans les bases de données en ligne. Les structures 3D des protéines peuvent
étre transformées en graphes ou les acides aminés représentent les noeuds du
graphe et leurs connexions représentent les arétes. Cela permet d’utiliser des
techniques de fouille de graphes pour les étudier. L’importance biologique
des protéines et leur complexité ont fait d’elles des données d’application
appropriées pour cette thése.

Les implémentations des ces travaux de recherche sont disponibles sur ma
page personnelle http://fc.isima.fr/~dhifli ou sur demande par courriel.
Mots clés: Sélection de motifs, fouille de motifs, sous-
graphe fréquent, sous-graphe représentant non-substitué,
graphe représentant topologique, structure de protéine
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