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Abstract: The aim of this text is to give an accessible overview to some recent results
concerning contact manifolds and their symplectic fillings. In particular, we work out the
weakest compatibility conditions between a symplectic manifold and a contact structure on
its boundary to still be able to obtain a sensible theory (Chapter II), furthermore we prove
two results (Theorem A and B in Section I.4) that show how certain submanifolds inside a
contact manifold obstruct the existence of a symplectic filling or influence its topology. We
conclude by giving several constructions of contact manifolds that for different reasons do not
admit a symplectic filling.
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Introduction

The aim of this work will be to explain and develop the following paragraph in Mikhail
Gromov’s famous ’85 paper [Gro85] on pseudo-holomorphic curves:

2.4.D′

2
(c) The above results generalizes to submanifolds W of dimension n in those

(2n − 1)–dimensional contact manifolds X which appear as J–convex boundaries of
almost complex 2n–dimensional manifolds (V, J), where J can be tamed by a sym-
plectic form on V . The submanifoldsW ⊂ X = ∂V in question are quite special: The
space Θ ∩ Tw(W ) must be of dimension n − 1 for all w ∈ W outside a codimension
two submanifold W0 ⊂W and the hyperplane field Θ∩T (W ) on W \W0 must be in-
tegrable. One shows in certain cases (see [Gr02]1 the existence of “sufficiently many”
J–holomorphic disks (D2, ∂D2) 7→ (V,W \ W0). This imposes a non-trivial global
condition on the geometry of the foliation on W \W0 tangent to the field Θ ∩ T (W )
on W \W0. Then one easily produces examples of submanifolds W in some contact
manifolds X diffeomorphic to R2n−1 where this condition is not met; this prevents
any contact embedding of such an X into R2n−1 with the standard contact structure
(given by the form

∑
n−1

i=1
xi dyi + dz).

In his article from ’85 [Gro85], Gromov introduced the study of pseudo-holomorphic
curves that made symplectic topology as we know it today only possible. Using these tech-
niques, Gromov presented many spectacular results in this initial paper, and soon many
other people started using these methods to settle questions that before had been out of
reach [Eli90a, McD90, McD91, Hof93, Eli96, Abr98] and many others; for more recent
results in this vein we refer to [Wen10b, OV12].

While the references above rely on studying the topology of the moduli space itself,
Gromov’s J-holomorphic methods have also been used to develop powerful algebraic theories
like Floer Homology, Gromov-Witten Theory, Symplectic Field Theory, Fukaya Theory etc.
that basically rely on counting rigid holomorphic curves (that means holomorphic curves that
are isolated). In my own work I have mostly ignored such algebraic techniques, and they will
not be mentioned in this text.

Gromov’s approach for studying a symplectic manifold (W,ω) consists in choosing an
auxiliary almost complex structure J on W that is compatible with ω in a certain way. This
auxiliary structure allows us to study so called J-holomorphic curves, that means, equivalence
classes of maps

u : (Σ, j) → (W,J)

1The reference given is an article that to my knowledge has never been published:
[Gro2] Gromov, M.: Pseudo-holomorphic curves in symplectic manifolds, II. Berlin-Heidelberg-
New York-Tokyo: Springer (In press)
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2 INTRODUCTION

from a Riemann surface (Σ, j) toW whose differential at every point x ∈ Σ is a (j, J)-complex
map

Dux : TxΣ → Tu(x)W .

Conceivable generalizations of such a theory based on studying J-holomorphic surfaces
or even higher dimensional J-complex manifolds only work for integrable complex structures;
otherwise generically such submanifolds do not exist. A different approach has been developed
by Donaldson [Don96, Don99], and consists in studying approximately holomorphic sections
in a line bundle over W . This theory yields many important results, but has a very different
flavor than the one discussed here by Gromov.

The J-holomorphic curves are relatively rare and usually come in finite dimensional fam-
ilies. Technical problems aside, one tries to understand the symplectic manifold (W,ω) by
studying how these curves move through W .

Let us illustrate this strategy with the well-known example of CPn. We know that there
is exactly one complex line through any two points of CPn. We fix a point z0 ∈ CPn, and
study the space of all holomorphic lines going through z0. It follows directly that CPn \ {z0}
is foliated by these holomorphic lines, and every line with z0 removed is a disk. Using that the
lines are parametrized by the corresponding complex line in Tz0CP

n that is tangent to them,
we see that the space of holomorphic lines is diffeomorphic to CPn−1, and that CPn \ {z0}
will be a disk bundle over CPn−1.

In this example, we have used an ambient manifold that we understand rather well, CPn,
to compute the topology of the space of complex lines. So far, it might seem unclear how one
could obtain information about the topology of the space of complex lines in an ambient space
that we do not understand equally well, to then be able to extract in a second step missing
information about the ambient manifold, which we would not be able to read off directly.

The common strategy is to assume that the almost complex manifold we want to study
already contains a family of holomorphic curves. We then observe how this family evolves,
hoping that it will eventually “fill up” the entire symplectic manifold (or produce other
interesting effects).

To briefly sketch the type of arguments used in general, consider now a symplectic man-
ifold W with a compatible almost complex structure, and suppose that it contains an open
subset U diffeomorphic to a neighborhood of CP 1 × {0} in CP 1 × C (see [McD90]). In
this neighborhood we find a family of holomorphic spheres CP 1 × {z} parametrized by the
points z. We can explicitly write down the holomorphic spheres that lie completely inside U ,
but Gromov compactness tells us that as the holomorphic curves approach the boundary of
U , they cannot just cease to exist but instead there is a well understood way in which they
can degenerate, which is called bubbling. Bubbling means that a family of holomorphic curves
decomposes in the limit into several smaller ones. Sometimes bubbling can be controlled or
even excluded by imposing technical conditions, and in those cases, the limit curve will just
be a regular holomorphic curve.

In the example we were sketching above, this means that if no bubbling can happen,
there will be regular holomorphic spheres (partially) outside U that are obtained by pushing
the given ones towards the boundary of U . This limit curve is also part of the 2-parameter
space of spheres, and thus it will be surrounded by other holomorphic spheres of the same
family. As long as we do not have any bubbling, we can thus extend the family by pushing
the spheres to the limit and then obtain a new regular sphere, which again is surrounded
by other holomorphic spheres. This way, we can eventually show that the whole symplectic
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manifold is filled up by a 2-dimensional family of holomorphic spheres. Furthermore the
holomorphic spheres do not intersect each other (in dimension 4), and this way we obtain a
2-sphere fibration of the symplectic manifold.

In conclusion, we obtain in this example just from the existence of the chart U , and the
conditions that exclude bubbling that the symplectic manifold needs to be a 2-sphere bundle
over a compact surface (the space of spheres).

Note that many arguments in the example above (in particular the idea that the moduli
spaces foliate the ambient manifold) do not hold in general, that means for generic almost
complex structures in manifolds of dimension more than 4. Either one needs to weaken the
desired statements or find suitable work-arounds. The principle that is universal is the use
of a well understood local model in which we can detect a family of holomorphic curves.
If bubbling can be excluded, this family extends into the unknown parts of the symplectic
manifold, and can be used to understand certain topological properties of this manifold.

Fillability in dimension 3. The main question I have studied during my career is the
one of fillability. A common point of view is to consider contact manifolds as hypersurfaces
or as boundaries of a symplectic manifold requiring a certain type of compatibility between
the contact and the symplectic structures. An important observation is that such a contact
hypersurface splits its tubular neighborhood into a convex and a concave component, and
that these have very different properties.

The fillability problem then consists in asking if a given contact manifold (M, ξ) can be
realized as the boundary of a compact symplectic manifold (usually without other boundary
components), and again, it is a fundamentally different question of being a convex or a concave
boundary: It has been shown by Eliashberg [Eli04] and Etnyre [Etn04] independently that
every contact 3-manifold is the concave boundary of some symplectic manifold.

For convex fillings the situation is radically different. The first known examples of non-
convexly fillable contact manifolds were the so-called overtwisted contact 3-manifolds. The
proof of this fact by Eliashberg and Gromov [Gro85, Eli90a] was highly non-trivial and
was based on the same J-holomorphic curve ideas that we are presenting in this text. A
contact manifold is overtwisted if it contains an overtwisted disk. It had already been shown
by Bennequin [Ben83] that the standard contact structure on S3 is not overtwisted using only
topological techniques, but J-holomorphic curve methods gave via the non-fillability result
an easy criterion to test if a much wider class of contact manifolds is tight, that means, not
overtwisted.

Overtwisted contact manifolds are also interesting for other more important reasons,
mainly because Eliashberg gave a complete classification [Eli89], which implies that an
oriented 3-manifold admits in every homotopy class of plane fields up to isotopy a unique
overtwisted contact structure. In this sense overtwisted contact manifolds are flexible, and
distinguish little more than basic topological properties, while the tight contact structures
depend in subtle ways on the 3-manifold itself.

In subsequent years, many refinements of the fillability question arose, but the most
important one was if being overtwisted is equivalent to being non-fillable. The answer to
this was given by Eliashberg and Giroux [Gir94, Eli96], where they showed that the 3-torus
admits many contact structures that are tight, but that are not strongly fillable (even though
they are weakly fillable). In [EH02], it was then shown that there are also tight contact
structures that are not even weakly fillable, confirming again that the properties of tight
contact structures were hard to decipher.
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In retrospect it was understood that the reason why many of the contact structures on the
3-torus are not strongly fillable is because they have positive Giroux torsion. As was shown
by Gay [Gay06] using gauge theoretic arguments, and Ghiggini and Honda [GH08] using
Heegaard-Floer methods, positive Giroux torsion contradicts strong fillability and sometimes
also weak fillability. In [Wen10b] and [NW11], these results were reproved only using J-
holomorphic curve techniques. Apart from the arguable advantage of using more classical
and basic methods, another important point is that J-holomorphic curve techniques partially
generalize to higher dimensions (as we will show in this text), while the other methods are
more specialized for the 3- and 4-dimensional situation. Note also that nowadays the easiest
proof of the non-fillability of contact manifolds with positive Giroux torsion is via a cobordism
construction between the manifold with torsion and an overtwisted contact manifold. This
then contradicts the existence of any type of filling of the first manifold that could be glued
to the cobordism, because otherwise this would yield a filling of an overtwisted manifold
[Wen10a].

We should also mention that even though Giroux torsion does not share the flexibility
of overtwisted contact structures, they play an important role in the coarse classification of
tight contact structures [CGH03, CGH09].

There are many other filling obstructions for manifolds that don’t have positive Giroux
torsion, but we will not try to list them here. Instead going back to the initial notion of
overtwistedness, we want to mention that overtwistedness of a contact manifold can be stated
in terms of existence of certain open book decompositions [Gir02]. Given the contact open
book decomposition of a 3-manifold, it can be negatively stabilized; the contact structure
corresponding to this negatively stabilized open book is always overtwisted. Conversely,
there exists for every overtwisted 3-manifold an open book decomposition that is the negative
stabilization of another one.

Before discussing the situation in higher dimensions, a final remark about overtwisted
contact manifolds is that they have vanishing contact homology [Yau06], and it is an open
conjecture that vanishing of SFT invariants might also be equivalent to having an overtwisted
contact structure.

Fillability in higher dimension. The paragraph from [Gro85] which we reproduced at
the beginning of this introduction, indicates that Gromov already had formulated a fillability
obstruction in higher dimension that was similar to an overtwisted disk in dimension 3. We
believe what he had in mind is what we called in [Nie06] a plastikstufe, the product of an
overtwisted disk with some closed submanifold, foliated in a trivial way2. Unfortunately, at
the time our article was published, no closed contact manifold was known that contained
such an object. Francisco Presas was the first one to find such manifolds [Pre07] by a
beautiful construction that combined contact fibrations and fiber connected sums. It was
then not very difficult to surger down these first examples and reduce them to smooth spheres
[KN07], obtaining as a result PS-overtwisted contact structures on spheres of any dimension.
Using connected sums, it followed that every contact structure on a given manifold could be
converted into one that is PS-overtwisted. A different construction given in [EP09] was a bit
more explicit, and implied that every contact structure can be modified into a PS-overtwisted
one even without changing its homotopy class as almost contact structure. A further very
geometric construction of PS-overtwisted contact structures in dimension 5 is the one given
by Atsuhide Mori [Mor09] that generalizes Lutz twists in a convincing way to dimension 5.

2Yuri Chekanov had an unpublished proof of the same statement based on Lagrangian tori.
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In dimension 3, it had been shown by Hofer [Hof93] that setting up the non-fillability
proof of overtwisted contact structures given by Eliashberg and Gromov in the context of a
symplectization, implied the existence of a closed contractible Reeb orbit (independently of
the chosen contact form). As it was shown in [AH09], the same argument also works for
PS-overtwisted contact structures. Together with Frédéric Bourgeois, we realized how the
Hofer proof could be used to show vanishing of contact homology [Obe07, pp. 1945–1949]
(and in fact of all SFT [BN10]) for PS-overtwisted contact structures. Unfortunately, we
have not written down the details yet, but little doubt exists that this line of proof should
work out (we have reproduced the relevant pages from [Obe07] in the appendix).

Meanwhile the initial definition of the plastikstufe has been generalized to the one of
bordered Legendrian open book (bLob), see [MNW13]. It is more general than a plastikstufe,
but in particular it clarifies the structure of the Legendrian foliation for the holomorphic curve
argument by not depending on an explicit product structure. bLobs are the main object that
we will be discussing in this text.

Emmanuel Giroux has proposed a possible definition of overtwistedness in higher dimen-
sion using negatively stabilized open books. As it has been shown in [BvK10], all such man-
ifolds have vanishing contact homology – and in fact, the same proof implies non-existence of
a weak filling, and existence of closed contractible Reeb orbits. Unfortunately, even though
in dimension 3 it is relatively straight forward to find an overtwisted disk in a negatively sta-
bilized manifold, so far no direct links between bLobs and negative stabilizations have been
established in higher dimensions. A fundamental question is if there is a unique notion of
overtwistedness in higher dimension or if it might be that there are non-equivalent classes of
overtwisted contact manifolds.

Initially meant as a method to find the link between negative stabilizations and the
plastikstufe, together with Francisco Presas we studied tubular neighborhoods of overtwisted
contact manifolds [NP10]. We realized that from some critical size on, these neighborhoods
contain a bLob, but that underneath this threshold these neighborhoods do not obstruct
fillability. This has lead us to speculate that the most general notion of PS-overtwistedness
in high dimension should be formulated as admitting a chart that is contactomorphic to an
overtwisted contact R3 and a large neighborhood in R2n with the standard Liouville form.

In the discussion of overtwisted 3-manifolds, we explained that their main feature is not the
non-fillability, but rather their flexibility. No such universal property has been established for
PS-overtwisted contact structures, but a first indication that flexibility might partially hold
has been given in [MNPS13]. There it has been shown that in a contact manifold containing
a certain type of plastikstufe, every Legendrian submanifold not intersecting this plastikstufe
is necessarily loose, which implies by Emmy Murphy’s results [Mur12] that the Legendrian
is flexible. As a consequence, it follows that many exotic Stein structures [SS05, McL09]
can be undone by performing a connected sum with a PS-overtwisted contact manifold.

Before finishing this short overview, we would like to come back to the discovery that
many tight contact 3-manifolds are not fillable. The most basic examples for this were man-
ifolds with positive Giroux torsion. In [MNW13], Patrick Massot, Chris Wendl and I gave
first examples of higher-dimensional contact manifolds that are non-fillable, but that are cer-
tainly not overtwisted either; even though the final definition of overtwistedness has not been
settled, there are many properties that one would expect from such manifolds. For example,
after introducing the notion of a weak filling in higher dimension, we showed that some of
the examples constructed do admit a weak filling even though they do not have strong fill-
ings. Furthermore they do not have contractible Reeb orbits or vanishing contact homology.
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The examples were all obtained by a generalization of a positive torsion domain to higher
dimensions that has similarities to the Lutz tube in [Mor09].

Topology of fillings. Above we have mostly discussed the question whether a contact
manifold is or is not the convex boundary of a symplectic manifold. Assuming that a contact
manifold is fillable, a further question could be to determine the class of all such potential
fillings.

In dimension 3, many contact manifolds imply surprisingly restrictive conditions on their
filling. Using the J-holomorphic curve techniques from [Gro85], it has been proved for
example that the only symplectic filling of the standard sphere is up to blow-up a standard
symplectic 4-ball [Eli90a], that lens spaces have essentially unique fillings [McD90], that a
filling of the connected sum of two contact manifolds is the boundary connected sum of two
fillings, or that S1 × S2 has up to blow up a unique filling [Eli90a].

For more recent results in dimension 3, we would like to mention that every symplectic
filling of a contact manifold that admits a planar open book decomposition needs to be
essentially equivalent to a Lefschetz fibration [Wen10b]. In this large class of examples,
understanding the potential fillings reduces then to a combinatorial problem. We should also
mention that there are many results that have been obtained via Seiberg-Witten theory, but
since these methods work exclusively in dimension 4, and we are mainly interested in higher
dimensions, we will not discuss them here any further.

In higher dimensions, J-holomorphic curve techniques cannot yield comparable results,
mostly due to the lack of the adjunction inequality. The results are hence only topological and
do not give unfortunately any information about the symplectic structure of the filling. Among
the few known results, the most prominent one is a theorem by Eliashberg-Floer-McDuff that
states that every symplectically aspherical filling of the standard sphere is diffeomorphic to a
smooth ball [McD91]. This result is obtained by showing that the filling needs to be simply
connected and have vanishing homology, and then applying the h-cobordism theorem. An
important implication of this fact was that in contrast to dimension 3, higher dimensional
spheres do admit exotic contact structures that are (even Stein) fillable. Nowadays there exist
much better techniques that show that there are infinitely many non-equivalent Stein fillable
contact structures on the sphere [Ust99], or that there are even exotic contact structures
bounding Stein manifolds that are diffeomorphic (but not symplectomorphic) to a smooth
ball [SS05, McL09] (and in particular cannot hence be distinguished from the standard
sphere using the Eliashberg-Floer-McDuff Theorem).

The techniques from [McD91] have been pushed in [OV12] to the limit, showing many
homological implications for the fillings of contact manifolds that embed into Cn or that admit
a subcritically Stein filling (possibly different from the considered filling).

A completely different direction has been taken in [Eli90b, CE12] by studying Stein
manifolds from a homotopical point of view. This produces very strong results, including
a Stein h-cobordism result, but for one, these methods work in the Stein category which is
different from the symplectic one, and they mostly give information about a given filling, and
not so much about the class of all possible fillings.

Outline of the notes. This text is based to a large extend on the lecture notes [Nie13]
of a course I held in Nantes in June 2011, and on the article [MNW13] with Patrick Massot
and Chris Wendl. I have tried to give a relatively self-contained overview on how to deduce
fillability properties using J-holomorphic curves with boundary lying in a submanifold with
Legendrian foliation.
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Chapter I gives an overview on submanifolds with a singular Legendrian foliation. The
initial aim while writing up this chapter was to give a general theory on such submanifolds.
The main difficulty in understanding such manifolds in higher dimensions compared to di-
mension 3 is that typical codimension-1 distributions aren’t foliations, and hence the property
of a submanifold of having a Legendrian foliation is not automatic anymore. This makes it
more subtle to apply many of the arguments that in dimension 3 can be taken for granted,
and it is not possible to treat such submanifolds in a purely topological way.

Unfortunately due to lack of time, I have not succeeded in developing the general theory
I had in mind. Still I show many preliminary results, which would be unavoidable for anyone
trying to pursue the initial project (see also [Hua13]). Among them it is shown that a
Legendrian foliation determines the germ of the contact structure in its neighborhood, see
Theorem I.1.3. This statement is very easy to see both in the neighborhood of the singularities
and away from the singularities, but gluing these models is surprisingly tedious. I also show
that there are very few obstructions for a given foliation to be realizable as a Legendrian
foliation under some embedding, see Theorem I.1.5. We spend some time understanding the
local shape of codimension-1 and codimension-2 singularities, and we finish the chapter by
explaining in Section I.4 what a Legendrian open book (Lob), and what a bordered Legendrian
open book (bLob) is, and stating the main consequences for fillability of contact manifolds
(Theorem A and B).

Chapter II gives first a basic introduction to the constraints imposed by J-plurisubharmonic
functions on holomorphic curves, and how the imposed behavior can be understood geomet-
rically. This is then compared in Section II.2 to weak fillability, in particular we explain that
the notion of weak fillability given in [MNW13] is equivalent to the existence of almost com-
plex structures that are tamed and that make the contact boundary J-convex. We finish this
chapter by giving local models for almost complex structures living close to the singularities of
a Legendrian foliation. These are then used to describe the behavior of J-holomorphic disks.
In particular we show that elliptic codimension-2 singularities emit a Bishop family of holo-
morphic disks, and that there are no other holomorphic disks nearby, and that codimension-1
singularities can be used as walls, blocking holomorphic disks from escaping the enclosed
domain. These properties will be fundamental in the proof of Theorem A and B.

Chapter III finally contains the proof of Theorem A and B. These results had been stated
first in a special form in [Nie06], and had then been adapted in subsequent publications to
various situations. Here I try to give a self-contained account for a reasonably general case.
The only part that is missing is the behavior of holomorphic disks for families of Lobs that
we will use in our future research, see Chapter V (or for example also the results in [Eli90a]
or the overtwisted annulus argument in [NW11]).

Chapter IV deals with the construction of S1-invariant contact manifolds given in [MNW13].
In some special cases, the S1-action allows us to read off PS-overtwistedness, but more in-
teresting it may prove non-fillability for certain non-overtwisted manifolds, analogously to
the case of 3-manifolds with positive Giroux torsion. We only explain here the non-fillability
results without constructing explicit examples (which was a crucial part of [MNW13]), as
this would have taken us too far from the main subject of this work. Initially, we would have
liked to generalize the results to non-trivial circle bundles hoping that this would give a large
source of new examples, but again time-constraints prevented us from doing so.

In a second part of that chapter, we reprove the main result of [NP10] about large
neighborhoods of overtwisted contact manifolds, but instead of using the initial proof of the
statement that was based on analyzing the bubbling behavior of holomorphic disks with
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boundary on an immersed submanifold, we use the methods presented in the first part of this
chapter.

Chapter V explains the research directions that I’m currently studying (in collaboration
with Paolo Ghiggini and Chris Wendl). Our main aim is to understand the topology of
symplectic fillings. Since this is work in progress, the contents of this chapter are rather
vague.

We first show how to reprove the Eliashberg-Floer-McDuff Theorem [McD91] using holo-
morphic disks and families of Lobs. Similarly, we can produce families of Lobs for subcritical
surgeries, and we would like to use these to show that the belt sphere of a subcritical contact
surgery will be contractible in any symplectically aspherical filling of the contact manifold.
An important detail in this approach is to understand the tangent bundle of the space of
holomorphic disks.

A second very preliminary idea consists in proving that certain contact manifolds admit
a strong filling but not an exact one. The obstruction to the exact fillability could be a
family of Lobs producing a moduli space whose boundary has non-vanishing Stiefel-Whitney
numbers. The moduli space itself cannot be a smooth compact manifold, hence there need
to be holomorphic spheres bubbling off.

In the Appendix we have added the notes Frédéric Bourgeois and I submitted for the
report [Obe07]. They explain why contact homology vanishes for PS-overtwisted manifolds.
Unfortunately, we still haven’t worked out the technical details of the argument, but we feel
that the idea is very intuitive and it does not rely on choosing a particular contact form to
work with explicitly.
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Notation

We assume throughout a certain working knowledge on contact topology (for a refer-
ence see for example [MS98, Chapter 3.4] and [Gei08]) and on holomorphic curves [AL94,
MS04]. Contact structures considered in this text are always cooriented (unless explicitly
stated otherwise). Remember that by choice of a coorientation, (M, ξ) always obtains a nat-
ural orientation and its contact structure ξ carries a natural conformal symplectic structure.
For both, it suffices to choose a positive contact form α, that means, a 1-form with ξ = kerα
that evaluates positively on vectors that are positively transverse to the contact structure.
The orientation on M is then given by the volume form

α ∧ dαn ,
where dimM = 2n+ 1, while the conformal symplectic structure is represented by dα|ξ.

One can easily check that these notions are well-defined by choosing any other positive
contact form α′, because there exists a smooth function f : M → R such that α′ = ef α.
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We denote the 1-jet space of a manifold M by

J 1(M) := R× T ∗M

and its canonical contact structure is ξcan := ker
(
dz − λcan

)
, where z is the coordinate on R

and λcan is the canonical 1-form that satisfies σ∗λcan = σ.

Further conventions. Note that D2 denotes in this text the closed unit disk.
I owe it to Patrick Massot to have been converted to the following jargon.

Definition. The term regular equation can refer in this text to any of the following objects:

(1) When Σ is a cooriented hypersurface in a manifoldM , then we call a smooth function
h : M → R a regular equation for Σ, if 0 is a regular value of h and h−1(0) = Σ.

(2) When D ≤ TM is a singular codimension-1 distribution, then we say that a 1-form
β is a regular equation for D, if D = kerβ and if dβ 6= 0 at singular points of D.

In particular, we can call contact forms for a given contact structure ξ a (regular) equations
of ξ.

Let E be a vector bundle over a manifold M , and assume that E is equipped with a
metric g. We use the notation

E<R =
{
v ∈ E

∣∣ g(v, v) < R2
}
.

for the open disk bundle of size R in E, and use similar subscripts to refer to other subsets
of the bundle E.





CHAPTER I

Legendrian foliations

I.1. General facts about Legendrian foliations

Let (M, ξ) be a contact manifold that contains a submanifold N . Generically, if we look at
any point p ∈ N the intersection between ξp and the tangent space TpN will be a codimension-
1 hyperplane. Generally though, the distribution D = ξ∩TN may be singular, because there
can be points p ∈ N where TpN ≤ ξp, and equally important the distribution D will only be
in very rare cases a foliation. In fact, if we choose a contact form α for ξ, then we obtain by
the Frobenius theorem that D will be a (singular) foliation if and only if

(
α ∧ dα

)∣∣
TN

≡ 0 .

Another way to state this condition is to say that we have dα|Dp = 0 at every regular

point p ∈ N of D, so that Dp has to be an isotropic subspace of (ξp, dαp). In particular, this
shows that the induced distribution D can never be integrable if dimD > 1

2 dim ξ.
We will usually denote the distribution ξ ∩ TN by F whenever it is a singular foliation.

Furthermore, we will call such an F a Legendrian foliation if dimF = 1
2 dim ξ, which

implies that N has to be a submanifold of dimension n + 1 in an ambient contact manifold
of dimension 2n + 1. For reasons that we will briefly sketch below, but that will be treated
extensively from Chapter III on, we will be mostly interested in this monograph in subman-
ifolds carrying such a Legendrian foliation. Note in particular that in a contact 3-manifold
every hypersurface N carries automatically a Legendrian foliation.

Denote the set of points p ∈ N where F is singular by Sing(F). One of the basic properties
of a Legendrian foliation is that for any contact form α, the restriction dα|TN does not vanish
on Sing(F), because otherwise TpN ⊂ ξp would be an isotropic subspace of (ξp, dαp) which is
impossible for dimensional reasons. Since dα|TN does not vanish on Sing(F), we deduce in
particular that N \ Sing(F) is a dense and open subset of N .

Remark I.1.1. The main reason, why we are interested in submanifolds that have a
Legendrian foliation is that they often allow us to successfully use J-holomorphic
curve techniques. On one side, such submanifolds will be automatically totally real for
any suitable almost complex structure on a symplectic filling, thus posing a good bound-
ary condition for the Cauchy-Riemann equation: The solution space of a Cauchy-Riemann
equation with totally real boundary condition is generically a finite dimensional smooth man-
ifold, so that it follows that the moduli spaces of J-holomorphic curves whose boundaries
lie in a submanifold with a Legendrian foliation will have a nice local structure. A second
important property is that the topology of the Legendrian foliation controls the behavior of
J-holomorphic curves, and will allow us to obtain many results in contact and symplectic
topology. Elliptic codimension 2 singularities of the Legendrian foliation “emit” families of
holomorphic disks; suitable codimension 1 singularities form “walls” that cannot be crossed
by holomorphic disks.

11
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In the rest of this section, we will study some general properties of Legendrian foliations.
Theorem I.1.3 shows that a manifold with a Legendrian foliation determines the germ of the
contact structure on its neighborhood. This allows us to describe small deformations of the
Legendrian foliation, and study almost complex structures more explicitly (see Chapter II).
Theorem I.1.5 gives a precise characterization of the foliations that can be realized as Leg-
endrian ones. Note that a similar study to ours has also been carried out by Yang Huang
[Hua13].

I.1.1. Neat singular foliations. The principal aim of this section will be to explain a
result due to Kupka [Kup64] that tells us that the behavior of a Legendrian foliation close
to a singular point can always be reduced to the 2-dimensional situation (see Fig. 1). We
will furthermore define the secondary foliation. I thank Nguyen Tien Zung for pointing out
Kupka’s result to me.

Definition. Let N be a compact manifold possibly with boundary. A neat singular folia-
tion F on N is a singular foliation that satisfies the following conditions:

• F is of codimension-1 and admits a regular equation. In particular it follows that
regular leaves are cooriented.

• If a boundary component ∂jN contains a singular point p ∈ Sing(F), then ∂jN will
be tangent to F in a small neighborhood of p.

Many results stated in this chapter can be proved for more general types of foliations, but
for simplicity we will mostly assume that all foliations are neat.

Theorem I.1.2. Let N be a manifold with a neat singular foliation F given by the regular
equation β.

(a) If p is a singular point of the foliation lying in the interior of N , then we find a chart
centered at p with coordinates (s, t, x1, . . . , xn−2) ∈ Rn such that β is represented by
the 1-form

a(s, t) ds+ b(s, t) dt

with some smooth functions a and b that only depend on the s- and t-coordinates.
(b) If p is a singular point on the boundary of N , then we find a chart U centered at p

with coordinates (s, t, x1, . . . , xn−2) ∈ [0,∞)× Rn−1 such that the boundary U ∩ ∂N
corresponds to the subset {s = 0} and such that β is represented by the 1-form

a(s, t) ds+ b(s, t) dt

for smooth functions a and b. Since F is neat, b vanishes along the boundary {s = 0}.
We will call any chart of (N,F) of the form described in the theorem a Kupka chart.

Proof. (a) If dimN = 2, then there is nothing to show, hence assume that dimN ≥ 3.
The linear bundle map F : TN → T ∗N, v 7→ dβ(v, ·) has at every point in a neighborhood of
p at least rank 2, but from the Frobenius condition β∧dβ ≡ 0, it follows that dβ2 = 0. Hence
kerF defines a codimension-2 subbundle of TN , and we may choose a non-vanishing vector
field X on a neighborhood of p with dβ(X, ·) = 0. We can also easily see that X ∈ kerβ and
LXβ = 0, because

0 = ιX
(
β ∧ dβ

)
= β(X) dβ − β ∧

(
ιXdβ

)
= β(X) dβ ,

and dβ does not vanish on a neighborhood of p.
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Translating a small hypersurface Σ that is transverse to X with the flow ΦXt of X, we
can define a diffeomorphism

Ψ: Σ× (−ε, ε) → N, (p, t) 7→ ΦXt (p) .

The pull-back of the 1-form β to Σ×(−ε, ε) reduces to β|TΣ, and by repeating this construction
the necessary number of times we obtain the desired statement.

(b) Choose a smooth chart around p diffeomorphic to [0,∞) × Rn−1 with coordinates
(y1, . . . , yn). The 1-form β is represented by

β =
n∑

j=1

fj(y1, . . . , yn) dyj

with a set of smooth functions fj , and because F is neat, the boundary component of N
needs to be tangent to F , so that f2(0, y2, . . . , yn) = · · · = fn+1(0, y2, . . . , yn) = 0.

Along ∂N we easily compute

dβ =
n∑

j=2

(
∂1fj − ∂jf1

)
dy1 ∧ dyj = dy1 ∧

( n∑

j=2

(
∂1fj − ∂jf1

)
dyj

)
,

and it follows that if dim(∂N) ≥ 2, there is a vector field X tangent to ∂N that lies in the
kernel of dβ. The rest of the proof is identical to case (a). �

Figure 1. The singularities of a neat singular foliation look locally like the
product of Rn−2 with a foliation in the plane. The directions ∂x1 , . . . , ∂xn−2

correspond to the secondary foliation associated to a contact form.

Definition. Let F be a singular foliation on a manifold N given by the regular equation β.
We call

Fβ :=
{
v ∈ F

∣∣ dβ(v, ·) = 0
}

the secondary foliation associated to β. The singular points Sing(Fβ) of Fβ are those at
which dβ vanishes.

It is easy to see that the secondary foliation really is a foliation: Let X and Y be any two
vector fields in Fβ , and let Z be any other vector field. It suffices to show that [X,Y ] also
lies in Fβ . This is true by the Leibniz rule

dβ([X,Y ], Z) = LX
(
dβ(Y, Z)

)
− dβ(Y, [X,Z]) = 0 .
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Note however that the secondary foliation depends on the regular equation chosen and that
it is not intrinsic to F . It is however well-defined at singular points Sing(F), as d

(
f α
)
=

f dα+ df ∧ α reduces at such points to the first term only.
Comparing with Theorem I.1.2, it is also clear that close to singular points of F , Fβ is

the codimension-2 foliation that corresponds in the Kupka chart to the directions spanned by
∂x1 , . . . , ∂xn−2 .

I.1.2. Local behavior of Legendrian foliations. The first major aim in this section
will be to prove the following result, which states that the Legendrian foliation determines in
its neighborhood the germ of the contact structure.

A neat Legendrian foliation is a Legendrian foliation that is a neat singular foliation.

Theorem I.1.3. Let N be a compact manifold (possibly with boundary) that has been embed-
ded into two contact manifolds (M1, ξ1) and (M2, ξ2). Assume that ξ1 and ξ2 induce the same
neat Legendrian foliation F on N . Then there are neighborhoods U1 ⊂ M1 and U2 ⊂ M2 of
N and a contactomorphism

Ψ: (U1, ξ1) → (U2, ξ2)

such that Ψ|N = idN .

The proof of the theorem is based on the following lemma.

Lemma I.1.4. Let (M1, ξ1) and (M2, ξ2) be two contact manifolds with contact forms α1 and
α2, and let J1 and J2 be tame complex structures on

(
ξ1, dα1|ξ1

)
and

(
ξ2, dα2|ξ2

)
respectively.

Suppose that N is a compact manifold (possibly with boundary) that has been embedded into
M1 and into M2 in such a way that ξ1 and ξ2 induce the same neat Legendrian foliation F
on N . Let β be a regular equation for F and assume additionally that α1|TN = α2|TN = β.

Then there is a bundle isomorphism

Φ: TM1|N → TM2|N
such that:

(i) Φ restricts to the identity on TN , that is, Φ|TN = idTN .
(ii) The pull-back α2 ◦ Φ is equal to the restriction of α1 to TM1|N .
(iii) Let Fβ be the secondary foliation of β. The restriction of Φ to Fβ ⊕ J1Fβ is a

(J1, J2)-linear map, that means,

Φ(J1X) = J2Φ(X)

for every X ∈ Fβ ⊕ J1Fβ.
(iv) Φ is orientation preserving.

Proof. To construct the isomorphism Φ, we need to distinguish two types of neighbor-
hoods on N : Write Nreg := N \ Sing(F), then we see that for every p ∈ Nreg and j = 1, 2

(
Jj Fp

)
∩ Fp = {0} ,

because
(
dαj
)∣∣

Fp = 0. For dimensional reasons it then follows that

TMj |Nreg
= TN |Nreg

⊕
(
Jj F

)∣∣
Nreg

.

We define a first bundle isomorphism

Φreg : TM1|Nreg
→ TM2|Nreg

by setting Φreg(vN + J1w) := vN + J2w for every vN ∈ TN and w ∈ F .
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Next, we consider the open set

Nsing =
{
points p in N where dβp 6= 0

}
= N \ Sing(Fβ) .

Since dβ does not vanish in a neighborhood of the singular points of the Legendrian foliation,
we obtain Sing(F) ⊂ Nsing, so that the union of Nsing and Nreg covers all of N .

Note that with the same type of argument as above, it follows that Jj Fβ ∩ TN = {0} on
Nsing, because otherwise there would be a non-vanishing vector v ∈ Fβ such that Jjv ∈ F .
But this would imply that 0 = dβ(v, Jjv) = dαj(v, Jjv) > 0.

Furthermore, the Reeb field Rj of αj is also transverse to TN |Nsing
⊕ Jj Fβ |Nsing

. Assume

this were false, then we could write Rj(p) as v + Jjw for vectors v ∈ TpN and w ∈ Fβ . It is
easy to see that w needs to be 0, because dαj(Rj , ·) = 0 implies

0 = dαj(Rj , w) = dαj(v, w) + dαj(Jjw,w) = dβ(v, w) + dαj(Jjw,w) = dαj(Jjw,w) .

Now if there were a point p ∈ Nsing for which Rj(p) ∈ TpN , we could further deduce from
dαj(Rj , ·) = 0 in particular that dβ(Rj , ·) = 0, and so it would be obvious in a Kupka chart
that Rj(p) ∈ Fβ ⊂ ξj , which cannot be true.

Together, these arguments yield

TMj |Nsing
= TN |Nsing

⊕ (Jj Fβ)|Nsing
⊕ span〈Rj〉|Nsing

for j = 1, 2, and we can define a second bundle isomorphism

Φsing : TM1|Nsing
→ TM2|Nsing

mapping Φsing(vN + J1w + z R1) := vN + J2w + z R2 for every vN ∈ TN , every w ∈ Fβ and
z ∈ R.

Now let h : N → [0, 1] be a smooth function that has support in Nsing, and is equal to 1
in a smaller neighborhood of Sing(F). We define the desired bundle map Φ on all of N by
interpolating between Φreg and Φsing:

Φ: TM1|N → TM2|N
vp 7→ h(p) Φsing(vp) +

(
1− h(p)

)
Φreg(vp)

.

It is easy to see that Φ restricts to the identity on TN , and we will show next that Φ is in
fact a bundle isomorphism.

Outside the support supph ∩ supp(1− h), this is obvious, so we only need to study
Nsing ∩Nreg: Note that the two maps Φsing and Φreg agree at all points of Nsing ∩Nreg on the
subspaces TpN ⊕ J1Fβ so that

(I.1.1) Φ(vN + J1w) = vN + J2w

for every vN ∈ TN and every w ∈ Fβ . We have in particular that Φ
(
TpN ⊕ J1Fβ

)
=

TpN ⊕ J2Fβ , and to show that Φ is an isomorphism, it suffices hence to show that the image
Φ
(
R1(p)

)
of the Reeb field never lies in TpN ⊕ J2Fβ .

Since this is a pointwise property, we consider a neighborhood of p ∈ Nsing \ Sing(F),
and choose a Kupka chart UK ⊂ Nsing ∩Nreg with coordinates (s, t, x1, . . . , xn−1) such that β
takes the form

a(s, t) ds+ b(s, t) dt .

The subbundle Fβ is spanned by ∂x1 , . . . , ∂xn−1 , and we can choose the basis

span〈∂s, ∂t, ∂x1 , . . . , ∂xn−1 , ∂y1 , . . . , ∂yn−1 , ∂z〉
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for TpM1, where ∂yj := J1 ∂xj and ∂z := R1(p). Using the analogous basis for TpM2 it follows
Φsing is represented with respect to these two basis by the unit matrix.

The contact form simplifies in the chosen basis to

α1|TpM1
= a ds+ b dt+ dz

with kernel

ξ1 = span〈X1, X2〉 ⊕ Fβ ⊕ J1Fβ ,
where X1 := b ∂s − a ∂t and X2 := (a2 + b2) ∂z − a ∂s − b ∂t.

To describe the map Φreg it is necessary to better understand J1X1, hence write J1X1 as

J1X1 = AX1 +BX2 + v + J1w

with smooth functions A,B : UK → R and vector fields v, w ∈ Fβ . A short computation
shows that for every p ∈ UK

0 < dα1

(
J1 (X1 − w), X1 − w

)
= B dα1(X2, X1) = B (a2 + b2)

(
∂b

∂s
− ∂a

∂t

)
,

where we have used that dα1 does not contain any dz-terms, or any terms of the form ds∧dxj ,
dt ∧ dxj or dxj ∧ dxk. Using the analogous basis in TpM2, we may write J2X1 as

J2X1 = A′X1 +B′X2 + v′ + J2w
′

with functions A′, B′ : UK → R and vector fields v′, w′ ∈ Fβ , and an identical computation as
the previous one yields that the coefficients B and B′ must have the same sign on UK .

Using that Φ maps TN⊕J1Fβ over UK ⊂ Nsing \Sing(F) onto TN⊕J2Fβ , we can define
an induced bundle map

Φ̂ : TM1/
(
TN ⊕ J1Fβ

)
→ TM2/

(
TN ⊕ J2Fβ

)
.

Showing that Φ̂ is a bundle isomorphism over UK is equivalent to showing that Φ is an
isomorphism. We obtain in the quotient space TpM1/

(
TpN⊕J1Fβ

)
over UK ⊂ Nsing\Sing(F)

the equation

J1X1 + TpN ⊕ J1Fβ = (a2 + b2)BR1 + TpN ⊕ J1Fβ ,

and similarly it follows that

J2X1 + TpN ⊕ J2Fβ = (a2 + b2)B′R2 + TpN ⊕ J2Fβ .
An easy computation then shows that

Φ̂
(
R1 + TpN ⊕ J1Fβ

)
= Φ(R1) + TpN ⊕ J2Fβ
= hΦsing(R1) + (1− h) Φreg(R1) + TpN ⊕ J2Fβ

=
(
h+ (1− h)

B′

B

)
R2 + TpN ⊕ J2Fβ .

Since we have shown that B′ and B have the same sign, it follows that the R2-component

will never vanish and so we conclude the proof that Φ̂ and hence also Φ defines a bundle
isomorphism.

We only need to verify properties (i)–(iv).
(i) Since both Φreg and Φsing restrict to the identity on TN , statement (i) follows imme-

diately.
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(ii) Using the splitting TpMj = TpN ⊕ Jj F at a point p ∈ Nreg, it is easy to check that
α2 ◦ Φreg|TpM1

= α1|TpM1
. Similarly we obtain at every q ∈ Nsing that α2 ◦ Φsing|TqM1

=

α1|TqM1
by using the decomposition TqMj = TqN ⊕ Jj Fβ ⊕ span〈Rj(q)〉. Combining these

results, it follows for every p ∈ N that

α2 ◦ Φ|TpM1
= h(p)α2 ◦ Φreg +

(
1− h(p)

)
α2 ◦ Φsing = α1|TpM1

.

(iii) Recall that by equation (I.1.1) we have for every pair of vectors v, w ∈ Fβ the
relation Φ(v + J1w) = v + J2w. This implies that Φ is (J1, J2)-linear on Fβ ⊕ J1Fβ , as
can be seen by decomposing a vector X ∈ Fβ ⊕ J1Fβ into X = v + J1w, because then
Φ(J1X) = Φ(J1v − w) = J2v − w = J2Φ(X).

(iv) From property (iii) it follows that Φ preserves the coorientations of the contact struc-
tures, hence it is sufficient to study the restriction of Φ to the contact structures themselves.
Note that Φreg restricts to a (J1, J2)-linear map on ξ1, and hence it is orientation preserving.
If there is a p ∈ N at which h(p) = 0, this finishes the proof, otherwise choose any point
p ∈ Nsing ∩Nreg, and consider the 1-parameter family of linear maps

Φτ : TpM1 → TpM2

defined by Φτ = τ Φsing + (1 − τ) Φreg for every τ ∈ [0, 1]. By the discussion above the
Φτ are isomorphisms, and Φ0 = Φreg, hence all Φτ and hence also Φ itself are orientation
preserving. �

Proof of Theorem I.1.3. Choose contact forms α1 and α2 for ξ1 and ξ2 respectively.
Using Lemma I.6.3, we find a function F : N → R such that

α1|TN = F α2|TN .

Extending this function from N to all of M1, and then denoting F α1 again by α1, we may
assume that

α1|TN = α2|TN .

Let J1 be a complex structure on ξ1 that is tamed by dα1|ξ1 and let J2 be one on ξ2 tamed

by dα2|ξ2 .
As the proof of the theorem will be based on some variation of Gray stability and the

Moser trick, we will first need to identify the normal bundles of N inM1 and inM2. Applying
Lemma I.1.4 to (M1, ξ1, α1, J1), (M2, ξ2, α2, J2) and (N,F), we obtain a bundle isomorphism

Φ: TM1|N → TM2|N .

We will now find neighborhoods U1 of N in M1 and U2 of N in M2 together with a diffeo-
morphism

Ψ: U1 → U2

that restricts on N to the identity, and whose differential DΨ coincides with the bundle
map Φ, that means

DΨ: TM1|N → TM2|N
is equal to Φ.

If N has boundary, extend it by a small open collar and denote the resulting manifold by

N̂ . This enlarged manifold also embeds intoM1 and intoM2 extending the given embeddings

of N , and (after possibly shrinking N̂) we find a bundle isomorphism TM1|N̂ → TM2|N̂ that
restricts over N to Φ. For simplicity we denote this new bundle isomorphism also by Φ.
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Choose a Riemannian metric on N̂ , and extend it to a Riemannian metric on all of M2.
Use Φ to pull this metric back to the bundle TM1|N̂ and extend it also there to a metric on all

ofM1. By the tubular neighborhood theorem, we find open neighborhoods U1 of N̂ inM1 and

U2 of N̂ in M2 and neighborhoods V1 and V2 of the 0-sections in the normal bundles ν1(N̂)

and ν2(N̂) respectively, such that the exponential normal maps

expj : Vj ⊂ νj(N̂) → Uj ⊂Mj

define for both j = 1, 2 diffeomorphisms. By our construction, Φ: TM1|N → TM2|N is an
isometry, hence it maps ν1(N) isomorphically onto ν2(N). After restricting the neighbor-
hoods V1 and V2 suitably, we may assume that Φ(V1) = V2, so that we obtain a diffeomor-
phism Ψ from U1 to U2 by setting Ψ(p) := exp2 ◦Φ◦exp−1

1 (p) for every p ∈ U1. Using that the
differential of the exponential map is the identity along the 0-section, we obtain that DΨ = Φ
at every p ∈ N .

Using the Moser trick, we will now isotope Ψ to the desired contactomorphism. Let βτ
for τ ∈ [0, 1] be the linear interpolation

βτ := (1− τ)α1 + τ Ψ∗α2

on U1. Using Lemma I.6.4, we will show that (after possibly decreasing U1) all of the 1-forms
in the family βτ are contact.

Write αN for α1|N and JN = J1|N . The bundle map Φ obtained by Lemma I.1.4 pulls-
back α2 to α1 along N , so that βτ |N = αN for all τ ∈ [0, 1]. Since Φ is (J1, J2)-linear on
FαN ⊕ JN FαN , it follows that

(Φ∗dα2)(J1X,X) = dα2

(
J2Φ(X),Φ(X)

)
> 0

for every non-vanishing vector X ∈ FαN ⊕ JN FαN , so that the restriction of J1 to FαN ⊕
JN FαN is tamed both by α1 as well as by Ψ∗α2. It follows that both α1 and Ψ∗α2 are
elements of the convex set A(αN , JN ) defined in Lemma I.6.4.

We will now finish the proof by applying the Moser trick: Lemma I.6.4 states that these
forms all satisfy the contact condition on a sufficiently small neighborhood of N , and that
the βτ are constant on TM1|N .

The Moser trick uses the unique vector field Yτ on U1 defined by the equations
(
ιYτdβτ

)∣∣
kerβτ

= − β̇τ
∣∣∣
kerβτ

and βτ (Yτ ) = 0 .

The 1-form β̇τ vanishes along N , so that Yτ (p) = 0 for every point p ∈ N . This allows us to
integrate the flow ΦYττ on a smaller neighborhood of N up to time 1 and the submanifold N

remains pointwise fixed by this flow. Furthermore we have
(
ΦYτ1

)∗
β1 = F β0 for some positive

function F , so that Ψ′ = Ψ ◦ΦYτ1 is the desired contactomorphism between neighborhoods of
N in M1 and in M2, finishing the proof. �

Another useful fact is the following theorem that tells us that the singular foliations that
can be realized as Legendrian ones are precisely those that admit a regular equation (in
accordance with the 3-dimensional situation [Gir91], where this property was called “non
isochore”).

Theorem I.1.5. Let N be a manifold with a neat singular foliation F . There is an (open)
cooriented contact manifold (M, ξ) that contains N as a submanifold such that ξ induces F
as Legendrian foliation on N .
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Proof. Assume for now that N does not have boundary.
Choose a regular equation β for F . As in the proof of Lemma I.1.4, we will cover N with

the open set of regular points Nreg = N \ Sing(F), where β does not vanish, and the set of
points Nsing :=

{
p ∈ N

∣∣ dβp 6= 0
}
. We will construct a vector bundle over each of these two

regions and show that we find suitable contact structures close to the 0-sections in both total
spaces. In a final step, we glue the two models together to obtain the desired manifold M .

Choose any Riemannian metric g on N , then we can define the orthogonal projection

πF : TN → F
of the tangent space onto the foliation. Let F∗|Nreg

be the dual vector bundle of F|Nreg
, and

write the bundle projection as π : F∗|Nreg
→ Nreg.

Using these two maps, we can construct a 1-form on the total space of F∗|Nreg
that

resembles the canonical 1-form on a cotangent bundle. Let (p, ν) be a point of F∗, that
means, p is a point of N , and ν is a covector on Fp, and assume that v ∈ T(p,ν)F∗ is any
vector at (p, ν). We can project v with Dπ first into TpN , and then with πF into Fp. Then we
may just plug πF

(
Dπ(v)

)
into ν ∈ F∗

p to obtain a real number. Clearly this map is fiberwise

linear, and so we can define a 1-form λF (v) = ν
(
πF
(
Dπ(v)

))
on the total space F∗|Nreg

. We

claim that

αreg := π∗β + λF

is a contact form with the desired properties. The canonical embedding of Nreg as the 0-
section preserves the Legendrian foliation F , and so we only need to check that αreg really is
contact. Let U ⊂ N be a standard chart of the foliation with coordinates (q0, q1, . . . , qn), in
which the subsets {q0 = const} correspond to the leaves of F . We obtain an induced chart
for F∗|U with coordinates (q0, q1, . . . , qn; p1, . . . , pn) which represent the 1-form p1 q

∗
1 + · · ·+

pn q
∗
n, where 〈q∗1, . . . , q∗n〉 is the dual basis of 〈∂q1 , . . . , ∂qn〉. Note that the q∗j are elements

of F∗ so that plugging in ∂q0 into any of them is not defined. Write a vector v ∈ TF∗

as (q̇0, q̇1, . . . , q̇n; ṗ1, . . . , ṗn), then we have πF
(
Dπ(v)

)
= πF (q̇0, q̇1, . . . , q̇n) = (q̇1, . . . , q̇n) +

πF (q̇0, 0, . . . , 0). Combining these results, we obtain that the 1-form λF can be written in
these coordinates as

λF = p1 dq1 + · · ·+ pn dqn + F (q0, q1, . . . , qn; p1, . . . , pn) dq0

with a smooth function F that is linear in the pj-coordinates. Since λF vanishes along the
0-section (q0, q1, . . . , qn; 0, . . . , 0), we compute there that

αreg ∧ dαnreg = (π∗β) ∧ dλnF = n! (π∗β) ∧ dp1 ∧ dq1 ∧ · · · ∧ dpn ∧ dqn ,
so that αreg is a contact form on a neighborhood of Nreg. We will denote the total space of
F∗|Nreg

by Mreg so that we obtain the manifold with 1-form
(
Mreg, αreg

)
that is close to the

0-section Nreg contact.
Now we will construct a neighborhood for the setNsing. Remember that dβ2 = d

(
β∧dβ) ≡

0, so that there is a well-defined codimension-2 foliation Fβ , the secondary foliation, spanned
by the vectors on which dβ vanishes. In the same way as before, we use the metric g to define
a generalized “canonical” 1-form λFβ on the total space of the bundle F∗

β . Add a trivial
R-factor with coordinate z to obtain the bundle F∗

β ⊕R over Nsing, and equip the total space
with the 1-form

αsing = π∗β + λFβ + dz .
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To see that αsing is a contact form, choose a Kupka chart U with coordinates (s, t, q1, . . . , qn−1)

where β takes the form a(s, t) ds + b(s, t) dt, and extend it to a bundle chart of
(
F∗
β ⊕ R

)∣∣∣
U

with coordinates (s, t, q1, . . . , qn−1; p1, . . . , pn−1, z). The pj represent the dual form p1 q
∗
1 +

· · ·+ pn−1 q
∗
n−1 ∈ F∗

β as above. The “canonical” 1-form simplifies on this chart to

λFβ = p1 dq1 + · · ·+ pn−1 dqn−1 + Fs ds+ Ft dt ,

where Fs and Ft are functions that vanish on the 0-section (s, t, q1, . . . , qn−1; 0, . . . , 0). It is
easy to see that

αsing ∧ dαnsing = dz ∧
(
nd(π∗β) + dλFβ

)
∧ dλn−1

Fβ ,

and furthermore since the Fs- and the Ft-coefficients do not vary along the 0-section in any
of the qj-directions, it follows that

αsing ∧ dαnsing = n! dz ∧ d(π∗β) ∧ dp1 ∧ dq1 ∧ · · · ∧ dpn−1 ∧ dqn−1 6= 0

on the 0-section, and thus there exists a small neighborhood of Nsing on which αsing will
be contact. We denote the total space of F∗

β ⊕ R by Msing and so we obtain the manifold(
Msing, αsing

)
that is contact close to the 0-section Nsing. Furthermore note that Fβ is the

secondary foliation both for αsing and for αreg.
We finally need to glue both partsMreg andMsing. As a preparation, we will first construct

a bundle isomorphism

Φ: TMreg|(Nreg∩Nsing)
→ TMsing|(Nreg∩Nsing)

.

Choose a complex structure Jreg on ξreg = kerαreg compatible with dαreg|ξreg , and a

complex structure Jsing on ξsing = kerαsing compatible with dαsing|ξsing . We set

E :=
(
Fβ ⊕ Jreg Fβ

)∣∣
(Nreg∩Nsing)

⊂ TMreg|(Nreg∩Nsing)
,

so that we may decompose ξreg along the 0-section Nreg ∩ Nsing into the two Jreg-invariant
subbundles

ξreg|(Nreg∩Nsing)
= E ⊕ E⊥ ,

where E⊥ is the dαreg-symplectic complement of the subbundle E. The intersection E⊥∩TN
is a (real) line bundle, and we will next choose a non-vanishing vector field X⊥ in E⊥ ∩ TN .
For this let X be any vector field in TN |Nreg

such that β(X) = 1. The 1-form dβ(X, ·) does
not vanish anywhere onNreg∩Nsing, and so it follows that there is a vector fieldX⊥ ∈ E⊥∩TN
with dβ(X,X⊥) = 1. The vector field X⊥ is in fact unique and does not depend on the choice
of X. Hence we can split TMreg|(Nreg∩Nsing)

into

TN |(Nreg∩Nsing)
⊕
(
Jreg Fβ

)∣∣
(Nreg∩Nsing)

⊕ span〈JregX⊥〉 ,
and using this decomposition, we define a bundle isomorphism

Φ: TMreg|(Nreg∩Nsing)
→ TMsing|(Nreg∩Nsing)

by mapping any vector v + Jregw + c JregX
⊥ with v ∈ TN , w ∈ Fβ and c ∈ R to the

vector v + Jsingw + c (X − Rsing), where X is the vector field in TN chosen above for which
β(X) ≡ 1, and Rsing is the Reeb field of αsing. The map Φ is clearly injective, because

Φ
(
JregX

⊥) = X − Rsing = X − ∂z does not lie in Φ
(
TN ⊕ Jreg Fβ

)
= TN ⊕ Jsing Fβ , and Φ

is hence an isomorphism.
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We will use Φ to glue Mreg and Msing in a neighborhood of N to each other. Choose a
Riemannian metric on N and extend it to all of Msing. Let N− ⊂ Nreg and N+ ⊂ Nsing be

open sets such that N− ∪N+ still covers all of N , and such that N− ⊂ Nreg and N+ ⊂ Nsing.
From now on let Φ always denote the restriction

Φ: TMreg|(N−∩N+) → TMsing|(N−∩N+) .

Use this map to pull-back the metric from TMsing|(N−∩N+) to TMreg|(N−∩N+), and extend it

then to a metric on all of Mreg that coincides with the chosen metric on N .
By our construction, Φ is an isometry, and hence, if we further restrict Φ to the normal

bundle νreg(N−∩N+) of (N−∩N+) inMreg, the image of Φ will be the normal bundle νsing(N−∩
N+) of (N− ∩ N+) in Msing. We use Φ to glue νreg(N−) and νsing(N+) over N− ∩ N+ via a
clutching construction together and obtain this way a vector bundle

ν(N) := νreg(N−) ∪Φ νsing(N+)

over all ofN . The total space of this bundle is a manifoldM that containsN as a submanifold.
By the tubular neighborhood theorem (and because we have decreased the size of N− and

N+), there is a small neighborhood U− of the 0-section in νreg(N−) that is via the exponential
map diffeomorphic to an open set in Mreg containing N− and a neighborhood U+ of the 0-
section in νsing(N+) that can be identified with an open set in Msing. This way, after possibly
decreasing the size of U− and U+ further, we can pull-back αreg to U−, and αsing to U+.

Using Lemma I.6.4, we will show that the interpolation between these two forms gives a
globally defined contact form on a neighborhood of N . The following remarks will allow us
to verify more easily the necessary conditions of the lemma. Remember that the differential
of the exponential map

D exp+ : Tνreg(N−) → TMreg

can be naturally identified along the 0-section with the identity map on
(
TMreg

)∣∣
N−

by

representing the domain in the form
(
Tνreg(N−)

)∣∣
N−

∼= TN− ⊕ νreg(N−) =
(
TMreg

)∣∣
N−

.

A similar representation exists for
(
Tνsing(N+)

)∣∣
N+

, and together they allow us to reduce the

differential

DΦ:
(
Tνreg(N−)

)∣∣
(N−∩N+)

→
(
Tνsing(N+)

)∣∣
(N−∩N+)

naturally to Φ: TMreg|(N−∩N+) → TMsing|(N−∩N+).

We construct the 1-form α on a neighborhood of N in M = ν(N) by using a partition of
unity {ρ−, ρ+} subordinate to {N−, N+} and setting

α := ρ− · α− + ρ+ · α+ ,

where α− := (exp−)
∗αreg and α+ := (exp+)

∗αsing. We will prove by applying Lemma I.6.4
that α is close to the 0-section N a contact form. Note that by the previous remarks, α can be
written at points of N−∩N+ as α := ρ− ·αreg+ρ+ ·(αsing◦Φ), and it can be easily checked that
the pull-back αsing◦Φ is identical to αreg along N−∩N+ by evaluating both forms on the basis

of TMreg used above. Similarly, we obtain that Jreg is tamed on
(
F∗
β ⊕ Jreg F∗

β

)∣∣∣
(Nreg∩Nsing)

by Φ∗dα+ = dαsing ◦ Φ. To see that Φ∗α+ lies along N− ∩ N+ in the space A(α−, Jreg), it
only remains to see that Φ∗α+ induces the same orientation as α−.
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We can evaluate for the basis chosen above

αreg ∧ dαnreg
(
X, JregX

⊥, X⊥, ∂y1 , ∂x1 , . . . , ∂yn−1 , ∂xn−1

)

= ndαreg(JregX
⊥, X⊥) · dαn−1

reg

(
∂y1 , ∂x1 , . . . , ∂yn−1 , ∂xn−1

)

using that X is the only vector that does in the kernel of αreg, and that X⊥ lies in the
dαreg-symplectic complement of Fβ ⊕ Jreg Fβ .

If we repeat the same computation for Φ∗αsing, we obtain

Φ∗(αsing ∧ dαnsing
)(
X, JregX

⊥, X⊥, ∂y1 , ∂x1 , . . . , ∂yn−1 , ∂xn−1

)

= αsing ∧ dαnsing
(
X,Φ(JregX

⊥), X⊥,Φ(∂y1), ∂x1 , . . . ,Φ(∂yn−1), ∂xn−1

)

= αsing ∧ dαnsing
(
X,X −Rsing, X

⊥, Jsing ∂x1 , ∂x1 , . . . , Jsing ∂xn−1 , ∂xn−1

)

= dαnsing
(
X,X⊥, Jsing ∂x1 , ∂x1 , . . . , Jsing ∂xn−1 , ∂xn−1

)
.

Here we have that dαsing(X, ∂xj ), dαsing(X
⊥, ∂xj ), and dαsing(∂xi , ∂xj ) vanish, and so that we

finally obtain

Φ∗(αsing ∧ dαnsing
)(
X, JregX

⊥, X⊥, ∂y1 , ∂x1 , . . . , ∂yn−1 , ∂xn−1

)

= ndαsing(X,X
⊥) · dαn−1

sing

(
Jsing ∂x1 , ∂x1 , . . . , Jsing ∂xn−1 , ∂xn−1

)

yielding the desired orientation.
We can hence interpolate between the two contact forms to obtain a global contact form

on a neighborhood of N .
If N has boundary, the proof is more tiresome, but not fundamentally different. We attach

in a first step a small open collar to the boundary of N and denote the resulting manifold

by N̂ . Bundles always extend naturally over collars, and we obtain neighborhoods M̂reg and

M̂sing. We can also extend the two forms αreg and αsing smoothly to these two subsets. If

necessary, we need to shrink the size of M̂reg and M̂sing to guarantee the contact properties.

Also in general the contact structures will not induce a Legendrian foliation on N̂ \N .
Finally we extend also the gluing map Φ, and note again that reducing the size of the

collars further, we can make sure that Φ̂ will be an isomorphism. For the rest of the proof we
can proceed as in the case without boundary. �

I.2. Singularities of the Legendrian foliation

The singular set of a Legendrian foliation F can be extremely complicated. We will briefly
comment on some general properties of such points, but we will soon need to specialize to
singularities forming isolated codimension-2 and codimension-1 submanifolds.

Let N have a singular foliation F given by a regular equation β, and let p ∈ Sing(F) be
a singular point of F . Choose a Kupka chart U with coordinates (s, t, x1, . . . , xn−1) centered
at p. In this chart β is represented by

a(s, t) ds+ b(s, t) dt

with two smooth functions a, b : U → R that only depend on the s- and t-coordinates, and
that vanish at the origin.
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(a) Type (S1) with
C1 = 1

(b) Type (S1) with
C1 ∈ (0, 1)

(c) Type (S1) with
C1 ∈ (−1, 0)

(d) Type (S2) (e) Type (S3)

Figure 2. The linearized singularities correspond to one of the five possible
cases sketched here (or to type (S1) with C1 = 0 which we have omitted
because the linearization does not necessarily correspond to the actual shape).

Remark I.2.1. To understand the shape of the foliation depending on the functions a and
b, we might study trajectories of the vector field

X = b(s, t)
∂

∂s
− a(s, t)

∂

∂t

that spans the projection of the foliation to the (s, t)-plane. Its divergence divX = ∂b/∂s−
∂a/∂t does not vanish, since dβ 6= 0. Up to a genericity condition, we know by the Grobman-
Hartman theorem that the flow of X is C0-equivalent to the flow of its linearization (see
[PdM82]). In dimension 2, the Grobman-Hartman theorem even yields a C1-equivalence,
but this does not suffice for our purposes, so we will use a more hands-on approach.

After a change of coordinates, we can assume according to Lemma I.6.5 that β agrees
with one of the following three models around p

β = s dt− C1t ds+O2(s, t) ,(S1)

β = (s+ εt) dt− t ds+O2(s, t) ,(S2)

or

β = (s− C2t) ds+ (C2s+ t) dt+O2(s, t)

= C2r
2 dϕ+

1

2
d(r2) +O2(r, ϕ) ,(S3)

where O2(s, t) stands for a 1-form of order 2, that means, a form whose coefficient functions
can be written as s2f(s, t) + stg(s, t) + t2h(s, t); C1, C2, and ε are real constants with C1 ∈
(−1, 1], C2 6= 0, and ε arbitrarily small.
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In every 2-dimensional slice with fixed (x1, . . . , xn−1)-coordinates in a Kupka chart, the
origin is an isolated singularity (see also Figure 2), with the possible exception of case (S1)
when C1 = 0, where the linearization is not enough to determine anymore the topology of
the foliation. In the section below, we will study codimension 1 singularities which of course
correspond always to this exceptional case. From then on, we will suppose that every singular
point of type (S1) with C1 = 0 lies in a codimension 1 component of Sing(F), so that all the
remaining singularities will be collections of isolated codimension-2 submanifolds. We will
study those in Section I.2.2.

I.2.1. Singularities of codimension-1. Legendrian foliations with singular codimension-
1 sets are rather ungeneric, but can often be found through explicit constructions (as in Ex-
ample I.3.2). We will show in this section that by slightly deforming the foliated submanifold
one can sometimes modify the Legendrian foliation in a controlled way that turns the singular
set into a regular compact leaf (see Fig. 3).

Figure 3. In dimension 3, it is well-known that we can get rid of 1-
dimensional singular sets of a Legendrian foliation by slightly tilting the surface
along the singular set. The figure depicts an overtwisted disk with singular
boundary. By pushing the interior of the disk up keeping its boundary fixed,
we obtain the standard form of an overtwisted disk whose boundary is a com-
pact leaf of the foliation.

Lemma I.2.2. Let N be a manifold with a singular codimension-1 foliation F given by the
regular equation β. Assume that there is a closed codimension-1 submanifold S ⊂ N that is
cooriented and lies in the singular set Sing(F) of the foliation.

Then we can find a tubular neighborhood of S diffeomorphic to (−ε, ε) × S such that β
pulls back to

s · β̃ ,
where s denotes the coordinate on (−ε, ε), and β̃ is a non-vanishing 1-form on S that defines
a regular codimension-1 foliation FS on S.

Remark I.2.3. The foliation FS agrees on S with the secondary foliation Fβ . The lemma
then says that there is a neighborhood diffeomorphic to (−ε, ε) × S for which F is the pro-
longation of the secondary foliation Fβ in (−ε, ε)-direction, and F becomes singular along
{0} × S by flipping its coorientations.

Remark I.2.4. In case the hypersurface S ⊂ Sing(F) is not coorientable, the results of the

previous lemma can be adapted by constructing the orientation double cover S̃
π→ S of the
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normal bundle ν(S) of S in N . We find a natural cover

S̃ × R ∼= π∗ν(S) → ν(S) ∼= S̃ ×Z2 R ,

and we can apply Lemma I.2.2 to the pull-back of F to S̃ × R, and then quotient out the
model situation by the Z2-action.

Proof of Lemma I.2.2. Choose a coorientation for S. We will first construct on a
neighborhood of S a vector fieldX that is transverse to S and lies in the kernel of β. Study the
local situation in a Kupka chart U around a point p ∈ S with coordinates (s, t, x1, . . . , xn−1).
Assume that β restricts to

a(s, t) ds+ b(s, t) dt ,

such that S ∩ U corresponds to the subset {s = 0}, and such that s increases in direction of
the chosen coorientation.

Since a and b vanish along S ∩U , we can write this form according to Corollary I.6.2 also
as

s as(s, t) ds+ s bs(s, t) dt = s
(
as(s, t) ds+ bs(s, t) dt

)

with smooth functions as and bs that satisfy the conditions

as(0, t) =
∂a

∂s
(0, t) and bs(0, t) =

∂b

∂s
(0, t) .

The function bs does not vanish in a small neighborhood of S ∩ U , because 0 6= dβ =
∂sb ds ∧ dt. Choose then on the Kupka chart U the smooth vector field

XU

(
s, t, x1, . . . , xn−1

)
:= ∂s −

as(s, t)

bs(s, t)
∂t = ∂s −

a(s, t)

b(s, t)
∂t .

This field lies in F , and is positively transverse to S ∩ U
The desired vector field X is now obtained by covering the singular set S with a finite

number of Kupka charts U1, . . . , UN , constructing on each of them a vector field XUj using
the method described above, and gluing the XUj together using a partition of unity {ρj}
subordinate to the cover, so that

X :=
N∑

j=1

ρj ·XUj .

The flow of X allows us to define a tubular neighborhood of S that is diffeomorphic to
(−ε, ε) × S, where {0} × S corresponds to the submanifold S, and X corresponds to the
field ∂s, where s is the coordinate on the interval (−ε, ε). Since β(X) ≡ 0, it follows that β
does not contain any ds-terms in this model.

Let γ be the 1-form ιXdβ. A short computation shows that

0 ≡ ιX
(
β ∧ dβ

)
= β(X) dβ − β ∧

(
ιXdβ

)
= −β ∧ γ ,

and since γ does not vanish on a neighborhood of the singular set S (because dβ 6= 0, while
β|TS ≡ 0), there is a smooth function F : (−ε, ε)×S → R with F |S = 0 such that β = Fγ. In

particular, it follows that γ defines a regular foliation F̃ that agrees outside Sing(F) = {0}×S
with the initial one. Furthermore, using that F vanishes along S, but that γ does not, we
obtain from

γ = ιXdβ = dF (X) γ + F ιXdγ

that dF (X) = 1 on S, and S is hence a regular zero level set of the function F .
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Finally, we can use ιXγ ≡ 0 to see that

0 ≡ ιX
(
γ ∧ dγ

)
= −γ ∧ (ιXdγ) ,

and hence there is a smooth function f : (−ε, ε) × S → R such that LXγ = ιXdγ = f γ.
The flow in s-direction only rescales the 1-form γ, but it leaves its kernel invariant, thus

the foliation F̃ is tangent to the s-direction and s-invariant. We can hence represent F̃ on

(−ε, ε)×S as the kernel of the 1-form β̃ = γ|TS that is independent of the s-coordinate, and

does not have any ds-terms. It follows that γ is equal to F̃ γ|TS with a function F̃ such that

F̃ (S) = {1}. Set h := FF̃ .

For the initial 1-form β this means that β = hβ̃, and h is a smooth function for which
{0} × S is the (regular) 0-level set. Rearranging the model (−ε, ε)× S by using the flow of a

vector field G−1 ∂s with G = ∂sh, we obtain a new model for which β simplifies to s β̃. �

Suppose that we are in the model situation of Lemma I.2.2, that means, we have a singular

foliation F on the space N := (−ε, ε)× S given as the kernel of the 1-form s β̃, where S is a
closed manifold, s is the coordinate on (−ε, ε), and S has a regular codimension-1 foliation

FS given as the kernel of the 1-form β̃ ∈ Ω1(S).
The canonical 1-form λcan on T ∗S has the important property that σ∗λcan = σ for every

1-form σ on S. If we embed N = (−ε, ε)×S via the map (the map is an embedding, because
β does not vanish anywhere)

(s, p) 7→ (0,−s β̃)
into the 1-jet space J 1(S) = R × T ∗S, the contact structure ξcan = ker(dz − λcan) induces
a singular Legendrian foliation on N that agrees with the given one. According to Theo-
rem I.1.3, every embedding of N into a contact manifold, inducing F as Legendrian foliation,
will be equivalent to this model.

Sometimes (and in the cases that are important for us), a slight perturbation of the
embedding removes the codimension-1 singularities of the Legendrian foliation and replaces
them by closed leaves.

Proposition I.2.5. Let S be a closed manifold with a non-singular codimension-1 foliation FS
defined by a closed, nowhere vanishing 1-form λ. Note that by a result of Tischler [Tis70],
the manifold S always fibers over the circle.

Let J 1(S) be the corresponding 1-jet space R × T ∗S with its natural contact structure
ξ = ker(dz − λcan). Consider the embedding

R× S →֒ J 1(S)

given by the map (s, p) 7→ (0,−sλ). The contact structure ξ induces a singular Legendrian
foliation F on R× S that agrees outside its singular set Sing(F) = {0} × S with R×FS.

We can define a C∞-small perturbation of this embedding by choosing a smooth odd func-
tion f : R → R with compact support such that the derivative f ′(0) equals −1, and setting

R× S →֒ R× T ∗S, (s, p) 7→
(
δf(s), sλ

)

for small δ > 0. This new map is clearly an embedding that differs only in an arbitrarily small
neighborhood of S from the initial one. The perturbed submanifold carries a non-singular
Legendrian foliation F ′ for which {0} × S is a regular closed leaf.
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Proof. The pull-back of ds+ λcan to the perturbed submanifold yields the 1-form λ′ =
δf ′ ds+ sλ, which never vanishes. It is easy to check the Frobenius condition

λ′ ∧ dλ′ =
(
δf ′ ds+ sλ

)
∧
(
ds ∧ λ+ s dλ

)
= 0 ,

and to see that {0} × S is a closed leaf of F ′ = kerλ′. �

I.2.2. Non-degenerate singularities. From now on, we will assume that the singu-
lar foliation F on N is of a “Morse-Bott”-kind. We mean by this that all singular points
p ∈ Sing(F) whose Kupka chart can be written in the form (S1) with C1 = 0, lie on
codimension-1 singular set as described in the previous section. In particular it follows that all
other singular points admit a Kupka chart with coordinates (s, t;x1, . . . , xn−1), where the sin-
gular points are isolated in each 2-dimensional slice with constant (x1, . . . , xn−1)-coordinates.
Correspondingly, these singular components are embedded codimension-2 submanifolds, and
we will from now on assume additionally that none of these components intersect the bound-
ary ∂N .

Let from now on, S be such a connected codimension-2 component of Sing(F). We will
try to understand the foliation in a neighborhood of S and describe in some specific cases
how we may homotope the foliation to an easier form.

We will briefly explain what the holonomy of a regular foliation is. Let F0 be a regular
codimension-k foliation on a manifold M . Choose a point p ∈ M and a small k-disk Dp

through p that is transverse to the leaf Fp of p. Since the foliation is transverse, Dp will
also be transverse to every leaf passing through a small neighborhood of p. For every closed
loop γ ⊂ Fp with γ(0) = γ(1) = p, we can define a diffeomorphism on a small neighborhood
of the origin of Dp in the following way: Cover the loop with foliation charts U1, . . . , UN , in

which the leaves are parallel hyperplanes
(
{s1, . . . , sk} × Rn−k

)
∩ Uj , and such that Fp lies

always in the slice {s1 = · · · = sk = 0}. We assume for simplicity that Dp ∩ U1 and Dp ∩ UN
lies in the Rk × {(0, . . . , 0)}-slice.

Choose a point q ∈ Dp that corresponds in the chart U1 to a point (s1, . . . , sk; 0, . . . , 0),
and follow the parallel copy of the path γ in the (s1, . . . , sk)-leaf until the translated path
enters chart U2. In U2 we follow the parallel copy of γ in the corresponding leaf until we
arrive in chart UN , where the lifted path will end at some point of Dk (that will usually be
different from the initial one).

It is not hard to see that this construction defines a diffeomorphism Φγ : V0 → V1 between
sufficiently small open neighborhoods V0, V1 of the origin in Dp. It is also not difficult to see
that a different choice of charts or a slight deformation of the loop γ in Fp yield always the
same map Φγ , which implies that Φγ does not depend on the loop γ itself, but only on its
homotopy class (it may be necessary though to decrease the domain when using a homotopic
path). The correct way to formalize this notion, consists in saying that the loop γ defines the
germ of diffeomorphisms on Dp

∼= Rk mapping the origin to itself.

Definition. The holonomy at a point p ∈ N is the map

π1(Fp, p) → Diffgerm(R
k, 0)

from the fundamental group of the leaf Fp to the group of germs of diffeomorphisms of Rk

that keep the origin fixed.

Up to conjugation the holonomy only depends on the leaf F ⊂ F and neither on the
choice of the point p ∈ F or the disk Dp used in the construction. It is also not difficult to
see that the holonomy defines a group homomorphism.
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The following theorem is a well-known standard result from foliation theory.

Theorem I.2.6. Let F be a closed manifold, and let Φ be a group homomorphism

Φ: π1(F ) → Diffgerm(R
k, 0) .

Then we can construct an (open) manifold M with a regular codimension k-foliation F
that has a compact leaf diffeomorphic to F whose holonomy is isomorphic to Φ. If Φ was the
holonomy of a codimension k foliation with compact leaf F , then (M,F) constructed as above
will be on some neighborhood of F diffeomorphic to the initial foliation.

Proof. We only give a short sketch of the construction. Denote the universal cover of

F by F̃ , then we can choose a foliation F̃ on F̃ × Rk whose leaves are the sections F̃ ×
{(x1, . . . , xk)} for x1, . . . , xk fixed. Next we choose a finite set of generators γ1, . . . , γN of
Γ = π1(F ), acting on an open neighborhood U ⊂ Rk. We define M to be the quotient

M := F̃ ×Γ U

by the equivalence relation (p;x1, . . . , xk) ∼
(
pg−1; Φ(g) · (x1, . . . , xk)

)
for g in the system of

generators. �

Let us now come back to the initial situation of a compact manifold N carrying a neat
singular foliation F with a closed component S ⊂ Sing(F) of codimension 2. Assume that
F is given by a regular equation β. The secondary foliation Fβ is a regular codimension 2
foliation around S, and S is one of its leaves. Hence, Fβ determines a holonomy

Φ: π1(S) → Diffgerm(R
2, 0) ,

and this holonomy encodes the local shape of Fβ .
Note that the secondary foliation Fβ is everywhere tangent to the original one F . Hence

the holonomy Φ preserves the 1-dimensional foliation induced by F on the transverse 2-disk D
which we have used in the construction of Φ. In fact, after a moment’s thought, we see that
the holonomy even preserves the restriction of β to D: This is because we can cover the whole
singular leaf S with Kupka charts with coordinates {(s, t;x) = (s, t;x1, . . . , xn−1)} where β
takes the form

a(s, t) ds+ b(s, t) dt .

The coordinate transformations on the overlap of two charts are of the form

(s, t;x) 7→
(
s̃(s, t), t̃(s, t); x̃(s, t,x)

)
,

because they preserve the secondary foliation. The holonomy of a loop can be recovered only
from the concatenation of the coordinate transformations of the first two coordinates, but
these transformations need to preserve the defining 1-form β.

Proposition I.2.7. Let (N,F) be a compact manifold with a neat foliation that is given
by a regular equation β. The foliation on a neighborhood of a submanifold S ⊂ Sing(F) is
determined by the restriction β|D to a 2-dimensional disk D that is transverse to S, and by
the holonomy

Φ: π1(S) → Diffβgerm(D, 0)

taking values in the germs of diffeomorphisms on D that preserve the 1-form β|D, and that
map the origin to itself.

Note that we immediately obtain the following easy case.
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Corollary I.2.8. If S ⊂ Sing(F) is simply connected, then the neighborhood of S is diffeo-
morphic to S × R2, and the foliation is the product of a foliation on R2 with S.

In general though, the foliation might be very complicated, and further results would
require us to understand the deformations of the holonomy.

After having studied the shape of the codimension-2 singularities themselves, we are going
to describe the neighborhoods of such singularities inside a contact manifold. Our aim will
be to slightly perturb them to an easier form corresponding to the models we use in the next
chapter, where we study holomorphic disks.

Remember that the holonomy map Φ allows us to reconstruct the singular foliation in a
neighborhood of S. For this we used a product between the universal cover of S and a small
2-disk

S̃ ×D2

foliated by the constant sections S̃ × {z0}. The desired model neighborhood was build by
identify pairs (p, z) ∼

(
pg−1,Φg(z)

)
(see the proof of Theorem I.2.6) for elements g ∈ Γ =

π1(S).

In our case, D2 is equiped with a 1-form β̃ that defines a singular codimension-1 folia-

tion FD2 on D2. We extend FD2 to all of S̃ ×D2 simply by taking the product of FD2 with

S̃, and then we quotient again by the action of Γ as before. If the holonomy Φ preserves FD2 ,

the foliation S̃ × FD2 will descend to the quotient. Similarly, since Γ also preserves β̃, the

defining 1-form induces a 1-form on S̃ ×ΓD
2 that defines the foliation on the quotient space.

We can now define a contact manifold
(
T ∗S̃ ×D3, ker(dz + β + λcan)

)
,

where λcan is the canonical 1-form on the cotangent bundle T ∗S̃, and where we denote the
coordinates on D3 by (s, t, z). The contact form α̃ = dz+ β+λcan induces the given singular

foliation on S̃ ×D2. We let Γ = π1(S) act on the cotangent bundle by the canonical diffeo-

morphisms induced from the action on S̃, and we let it act on the D3-factor by keeping the
z-coordinate invariant, and using the holonomy on the (x, y)-coordinates.

The quotient of T ∗S̃ ×D3 by Γ is a contact manifold, and it contains the embedding of

S̃ ×Γ D
2 with the desired singular foliation. Hence we have found by Theorem I.1.3 a model

contact manifold containing the given singular Legendrian foliation.
It is easy to convince oneself that we can modify a submanifold with a singular Legendrian

foliation looking in a neighborhood of a codimension-2 singularity like a product foliation by
a C∞-small perturbation into one that looks like the linearization of this singularity.

I.3. Examples

The following example will be the first one that relates Legendrian foliations to Lagrangian
submanifolds.

Example I.3.1. Let P be a principal circle bundle over a base manifold B, and suppose
that ξ is a contact structure on P that is transverse to the S1-fibers and invariant under the
action. It is well-known that by averaging, we can choose an S1-invariant contact form α for
ξ and that there exists a symplectic form ω on B such that π∗ω = dα, where π is the bundle
projection π : P → B. The symplectic form ω represents the image of the Euler class e(P )
in H2(B,R), and hence P cannot be a trivial bundle (see [BW58]). The manifold (P, α) is
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usually called the pre-quantization of the symplectic manifold (B,ω) (or the Boothby-
Wang manifold).

Let L be a Lagrangian submanifold in (B,ω), and let PL := π−1(L) be the fibration
over L. Note first that in this situation, we have ω|TL = 0, so that e(PL) = e(P )|L will
automatically either vanish or be a torsion class. If e(PL) = 0, the fibration PL will be trivial,
and we can find a genuine section σ : L→ PL, otherwise let k be the order e(PL), then we find
a k-fold multi-section in PL: By basic computation rules of characteristic classes, we know
that the k-fold tensor product P kL = PL ⊗ · · · ⊗ PL has Euler class e

(
P kL
)
= k e(PL) = 0,

and hence it follows that P kL is a trivial bundle over B. We find a global section σ0 of P kL,

which allows us to write fiberwise equations νk = ν ⊗ · · · ⊗ ν = σ0(p) where ν ∈ PL is an
element in the fiber over p ∈ B. In a bundle chart, one sees easily that there are k solutions
to this equation and that Zk ⊂ S1 acts on the possible solutions. In fact we obtain as solution
space a smooth submanifold of PL that intersects every fiber k-times transversely, and this
submanifold is hence a k-fold covering of the base manifold L.

In both cases, we have
(
α ∧ dα

)∣∣
TPL

=
(
α ∧ π∗ω

)∣∣
TPL

≡ 0, so that ξ induces a Legendrian

foliation F on PL. Furthermore, since the infinitesimal generator Xϕ of the circle action
satisfies α(Xϕ) ≡ 1, it follows that F is everywhere regular. Assume for simplicity that the
fibration is trivial, so that we can identify PL with S1 × L. Then we can write α|TPL as

dϕ+ β ,

where ϕ is the coordinate on the circle and β is a closed 1-form on L. The leaves of the
foliation F are local sections, but they need not be global ones, and usually these leaves will
not even be compact. Instead the proper way to think of them is as the horizontal lift of the
flat connection 1-form α|TPL .

Choose any loop γ ⊂ L based at a point p0 ∈ L. To better understand the Legendrian
leaves, we lift γ(t) to a path γ̃(t) =

(
eiϕ(t), γ(t)

)
in PL ∼= S1 × L that is always tangent to a

leaf of F , so that

γ̃′(t) =
(
−β(γ′(t)), γ′(t)

)
.

In particular start and end point of γ̃ are related by the monodromy

Cγ := −
∫

γ

β ,

that means, if γ̃ starts at
(
eiϕ0 , p0

)
∈ S1 × L, then its end point will be

(
ei(ϕ0+Cγ), p0

)
.

Note that since the connection is flat, that means, β is closed, and two homologous paths
from p0 to p1 in L will lift the end point in the same way. Thus we have a well-defined group
homomorphism

H1(L,Z) → S1 .

The leaves of the Legendrian foliation will only be compact, if the image of this map is
discrete. Later, in particular in Section IV.1, we use a similar construction to work with
holomorphic curves. But there it will be important that the Legendrian foliation over PL
is given by a fibration over S1. We will briefly show that by slightly perturbing L this can
always be achieved in the considered example.

The embedding of H1(L,Q) → H1(L,R) is dense, and hence we find a closed 1-form β′

on L, arbitrarily close to β, that represents a rational homology class. Let δ := β′ − β, and
extend δ to a neighborhood of L in B by pulling it back to the normal bundle of L in B
and multiplying it with a bump function ρ with small support around the 0-section. If δ is
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sufficiently small, then the 1-form α′ = α + ρδ defines a contact structure that is isotopic
to the one given by α, and PL will still carry a Legendrian foliation, but now its foliation
is given by dϕ + β′, and all the leaves are compact submanifolds. In fact, since H1(L,Z) is
finitely generated, we find a number c ∈ Q such that all possible values of the monodromy
are a multiple of c, and we obtain a regular Legendrian foliation on PL, with compact leaves.

The second example gives a Legendrian foliation with a codimension-1 singular set.

Example I.3.2. Let L be any smooth (n + 1)-dimensional manifold with a Riemannian
metric g. It is well-known that the unit cotangent bundle S

(
T ∗L

)
carries a contact structure

given as the kernel of the canonical 1-form λcan. The fibers of this bundle are Legendrian
spheres, hence if we choose any smooth regular loop γ : S1 → L, and if we study the fibers
lying over this path, we obtain the submanifold Nγ := π−1(γ) that has a singular Legendrian
foliation.

In fact, we can naturally decompose S
(
T ∗L

)∣∣
γ
into the two subsets U+ and U− defined

as

U± =
{
ν ∈ Nγ

∣∣ ±ν(γ′) ≥ 0
}
.

These sets correspond in each fiber of Nγ to opposite hemispheres. We claim that the singular
set of the Legendrian foliation on Nγ is U+ ∩ U−, and that the regular leaves correspond to
the intersection of each fiber of Nγ with the interior of U+ and U−. In particular, if Nγ is
orientable, we obtain that it can be written as

(
S1 × Sn, x0 dϕ

)
,

where ϕ is the coordinate on S1, and (x0, . . . , xn) are the coordinates on Sn.
Remember that the canonical 1-form λcan is defined like this: Let v ∈ Tν(T

∗L) be a vector
at a base point ν ∈ T ∗L. We can project v with the differential of the map π : T ∗L→ L into
TL, and then evaluate it in ν, that means,

λcan(v) := ν
(
Dπ · v

)
.

It follows that the restriction of λcan to Nγ vanishes only at points that lie in U+ ∩ U−.

I.4. Legendrian open books

Even though we discussed Legendrian foliations quite generally, we will only be interested
in two special types: Legendrian open books introduced in [NR11] and bordered Legendrian
open books introduced in [MNW13]. Both objects were defined with the aim of generalizing
results from 3-dimensional contact topology that hold for the 2-sphere with standard foliation
and the overtwisted disk respectively [BG83, Gro85, Eli90a, Hof93].

Definition. Let N be a closed manifold. An open book on N is a pair (B, ϑ) where:

• The binding B is a nonempty codimension 2 submanifold in the interior of N with
trivial normal bundle.

• ϑ : N\B → S1 is a fibration, which coincides in a neighborhood B×D2 of B = B×{0}
with the normal angular coordinate.

Definition. If N is a compact manifold with nonempty boundary, then a relative open
book on N is a pair (B, ϑ) where:

• The binding B is a nonempty codimension 2 submanifold in the interior of N with
trivial normal bundle.
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• ϑ : N \B → S1 is a fibration whose fibers are transverse to ∂N , and which coincides
in a neighborhood B × D2 of B = B × {0} with the normal angular coordinate.

We are interested in studying contact manifolds with submanifolds with a Legendrian
foliation that either define an open book or a relative open book.

Definition. A closed submanifold N carrying a Legendrian foliation F in a contact man-
ifold (M, ξ) is a Legendrian open book (abbreviated Lob), if N admits an open book
(B, ϑ), whose fibers are the regular leaves of the Legendrian foliation and whose binding is
the singular set of F .

Definition. A compact submanifold N with boundary in a contact manifold (M, ξ) is called a
bordered Legendrian open book (abbreviated bLob), ifN carries a Legendrian foliation F
and if it has a relative open book (B, ϑ) such that:

(i) the regular leaves of F lie in the fibers of ϑ,
(ii) Sing(F) = ∂N ∪B.

A contact manifold that contains a bLob is called PS-overtwisted.

Example I.4.1. (i) Every Lob in a contact 3-manifold is diffeomorphic to a 2-sphere
with the binding consisting of the north and south poles, and the fibers being the
longitudes. This special type of Lob has been studied extensively and has given
several important applications, see for example [BG83, Gro85, Eli90a, Hof93].
It is easy to find such Lobs locally, for example, the unit sphere in R3 with the
standard contact structure ξ = ker

(
dz + x dy − y dx

)
.

(ii) A bLob in a 3-dimensional contact manifold is an overtwisted disk (with singular
boundary).

(iii) In higher dimensions, the plastikstufe had been introduced as a filling obstruction
[Nie06], but note that a plastikstufe is just a specific bLob that is diffeomorphic
to D2 × B, where the fibration is the one of an overtwisted disk (with singular
boundary) on the D2-factor, extended by a product with a closed manifold B, see
Fig. 4b. Topologically a bLob might be much more general than the initial definition
of the plastikstufe. For example, a plastikstufe in dimension 5 is always diffeomorphic
to a solid torus D2 × S1 while a 3-manifold admits a relative open book if and only
if its boundary is a nonempty union of tori.

The importance of the previous definitions lie in the following two theorems, which will
be proved in Chapter III.

Theorem A. Let (M, ξ) be a contact manifold that contains a bLob N , then M does not
admit any semi-positive weak symplectic filling (W,ω) for which ω|TN is exact.

The statement above is a generalization of the analogous statement found first for the
overtwisted disk in [Gro85, Eli90a].

Remark I.4.2. (i) In dimension 4 and 6, every symplectic manifold is automatically
semi-positive.

(ii) A bLob always obstructs (semi-positive) strong symplectic filling, because in that
case the restriction of ω to N is exact.

(iii) The condition that the restriction of the symplectic form ω should be exact is triv-
ially satisfied in dimension 5 for the plastikstufes defined in [Nie06], which were
all diffeomorphic to S1 × D2. In general however this condition could fail, and we
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(a) The overtwisted disk. (b) A plastikstufe in dimension 5.

Figure 4. The easiest two examples of bLobs are the overtwisted disk, and a
plastikstufe in a 5-dimensional contact manifold. In both of the pictures above,
the objects do not quite correspond to the definition of the bLob, because the
boundary is a closed Legendrian leaf. We can imagine that these models have
been obtain by deforming the embedding in a neighborhood of the boundary
using Proposition I.2.5.

believe that this could provide a hint as to varying degrees of filling obstructions
or overtwistedness. Though it is unknown whether there is a unique natural notion
of overtwistedness beyond dimension 3, or whether the different definitions known
thus far are nonequivalent, it would be interesting to speculate that a manifold can
only be overtwisted in some “universal” sense if the bLob (or a similar object) can
be embedded into a ball within the contact manifold. In this way the cohomological
condition is satisfied automatically, thus defining an obstruction to weak fillings due
to the above theorem. We will refer to any bLob that lies inside a ball in the contact
manifold as a small bLob .

Theorem B. Let (M, ξ) be a contact manifold of dimension (2n+1) that contains a Lob N .
If M has a weak symplectic filling (W,ω) that is symplectically aspherical, and for which
ω|TN is exact, then it follows that N represents a trivial class in Hn+1(W,Z2). If the first
and second Stiefel-Whitney classes w1(N) and w2(N) vanish, then we obtain that N must be
a trivial class in Hn+1(W,Z).

Remark I.4.3. The methods from [Hof93] can be generalized for Theorem A, see [AH09],
and for Theorem B, see [NR11], to find closed contractible Reeb orbits.

I.5. Examples of bLobs

The most important result in this section is the construction of PS-overtwisted manifolds
in higher dimensions. Later, we will show a few other methods in Chapter IV. The first
such manifolds were obtained by Presas in [Pre07], and modifying his examples it was soon
possible to show that every contact structure can be converted into one that is PS-overtwisted
[KN07].

This result was reproved and generalized in [EP09], where it was shown that we may
modify a contact structure into one that is PS-overtwisted without changing the homotopy
class of the underlying almost contact structure.
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A very nice explicit construction in dimension 5 that is similar to the 3-dimensional Lutz
twist was given in [Mor09]. In [MNW13] the construction was extended and produced
examples that are not PS-overtwisted but share many properties with 3-manifold that have
positive Giroux torsion.

The following unpublished construction is due to Francisco Presas who explained it to me
during a stay in Madrid. It is probably the easiest way to produce a closed PS-overtwisted
manifolds of arbitrary dimensions.

Theorem I.5.1 (Fran Presas). Let (M1, ξ1) and (M2, ξ2) be contact manifolds of dimen-
sion 2n + 1 that both contain a PS-overtwisted submanifold (N, ξN ) of codimension 2 with
trivial normal bundle. The fiber sum of M1 and M2 along N is a PS-overtwisted (2n+ 1)-
manifold.

Proof. Let αN be a contact form for ξN . The manifold N has neighborhoods U1 ⊂ M1

and U2 ⊂M2 that are contactomorphic to

D2√
ε ×N

with contact structure given as the kernel of the 1-form αN + r2 dϕ [Gei08, Theorem 2.5.15].
We can remove the submanifold {0}×N in this model, and do a reparametrization of the

r-coordinate by s = r2 to bring the neighborhood into the form

(0, ε)× S1 ×N

with contact form αN + s dϕ. We extend M1 \ N and M2 \ N by attaching the negative
s-direction to the model collar, so that we obtain a neighborhood

(
(−ε, ε)× S1 ×N, αN + s dϕ

)
.

Denote these extended manifolds by (M̃1, ξ̃1) and (M̃2, ξ̃2), and glue them together using
the contactomorphism

(−ε, ε)× S1 ×N → (−ε, ε)× S1 ×N

(s, ϕ, p) 7→ (−s,−ϕ, p) .
We call the contact manifold (M ′, ξ′) that we have obtained this way the fiber sum of M1

and M2 along N .
If S is a bLob in N , then it is easy to see that {0} × S1 × S is a bLob in the model

neighborhood (−ε, ε)× S1 ×N . �

With this proposition, we can now construct non-fillable contact manifolds of arbitrary
dimension. Every oriented 3-manifold admits an overtwisted contact structure in every ho-
motopy class of almost contact structures.

Let (M, ξ) be a compact manifold, let αM be a contact form for ξ. A fundamental result
due to Emmanuel Giroux gives the existence of a compatible open book decomposition for M
[Gir02]. Using this open book decomposition, it is easy to find functions f, g : M → R such
that (

M × T2, ker(αM + f dx+ g dy)
)

is a contact structure, see [Bou02], where (x, y) denotes the coordinates on the 2-torus. The
fibers M × {z} are contact submanifold with trivial normal bundle, so that in particular if
(M, ξ) is PS-overtwisted, we can apply the construction above to glue two copies of M × T2
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along a fiber M × {z}. This way, we obtain a PS-overtwisted contact structure on M × Σ2,
where Σ2 is a genus 2 surface.

Using this process inductively, we find closed PS-overtwisted contact manifolds of any
dimension ≥ 3.

Note that in dimension 5, we can find more easily examples to which we can apply
Theorem I.5.1, so that it is not necessary to rely on [Bou02]. Let (M, ξ) be an overtwisted
3-manifold with contact form α. After normalizing α with respect to a Riemannian metric,
it describes a section

σα : M → S(T ∗M)

in the unit cotangent bundle. It satisfies the fundamental relation σ∗αλcan = α, hence it gives
a contact embedding of (M, ξ) into

(
S(T ∗M), kerλcan

)
.

For trivial normal bundle, this allows us to glue with Theorem I.5.1 two copies together
and obtain a PS-overtwisted 5-manifold.

I.6. Appendix: Technical lemmas

The aim of this appendix is to state several lemmas which were needed in previous sections,
but which are relatively technical so that we decided to exclude them from the main text for
the sake of readability. Some of the results are well known, and we only present them here
for completeness and as reference.

Throughout this text we often use the following standard result (see for example [Mil63,
Lemma 2.1]).

Proposition I.6.1. Let U be an open convex neighborhood of 0 in Rn. For every smooth
function f : U → R we find smooth functions g1, . . . , gn : U → R with

gj(0) =
∂f

∂xj
(0)

such that f may be written in the form

f(x1, . . . , xn) = f(0) +
n∑

j=1

xj gj(x1, . . . , xn) .

Corollary I.6.2. Let f be as in the proposition above. Then we find a neighborhood V of 0
in U , and a smooth function f1 : V → R with

f1(0, x2, . . . , xn) =
∂f

∂x1
(0, x2, . . . , xn)

such that f may be written in the form

f(x1, . . . , xn) = f(0, x2, . . . , xn) + x1 f1(x1, . . . , xn) .

Proof. Simply interpret f as a family of functions parametrized by (x2, . . . , xn) depend-
ing only on x1. �

The following lemma has been taken from [Mas08] and is due to Giroux. We have used
it as a preliminary step in the proof of Theorem I.1.3.

Lemma I.6.3. Let N be a compact manifold that may have boundary, and let F be a neat
singular foliation on N given by the regular equation β1. If β2 is any other regular equation
of F , then there exists a unique smooth and nowhere vanishing function F : N → R such that
β2 = F β1.
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Proof. Neither of the two 1-forms β1 and β2 vanish at regular points of the foliation, and
since both have equal kernel, it follows that β1 is a non-zero multiple of β2 over N \ Sing(F).
This shows the existence of the desired function F over the regular points, and we are only
left with studying the points p ∈ Sing(F), where β1 = β2 = 0, and prove that F extends
smoothly to a non-vanishing function.

If p is a singular point, we work in a Kupka chart around p provided by Theorem I.1.2
with coordinates

{
(s, t, x1, . . . , xn)

}
such that β1 is given by

a(s, t) ds+ b(s, t) dt ,

and β2 is of the form

f(s, t, x1, . . . , xn) ds+ g(s, t, x1, . . . , xn) dt .

If p lies in the interior of N , then the Kupka chart will be an open set, if p lies on ∂N , then
the set {s = 0} corresponds to the boundary of the chart, and the functions b and g both
vanish on {s = 0}.

Since the two forms have equal kernels, it follows that β1 ∧ β2 ≡ 0, which means that

(I.6.1) a(s, t) g(s, t, x1, . . . , xn)− b(s, t) f(s, t, x1, . . . , xn) ≡ 0 .

If p is a point in the interior of N , and since dβ1 does not vanish in p, we may assume
either directly or by permuting the s- and the t-coordinates that ∂b

∂s
(0, 0) 6= 0. Then we can

apply the implicit function theorem to find a coordinate system (S, T, y1, . . . , yn) in which p
corresponds to the origin, and such that

b(S, T, y1, . . . , yn) = S .

Equation (I.6.1) then simplifies to

(I.6.2) a(S, T, y1, . . . , yn) g(S, T, y1, . . . , yn)− S f(S, T, y1, . . . , yn) ≡ 0 .

The function g has to vanish along the whole subset {S = 0}: If (0, T, y1, . . . , yn) is a
singular point of F , this is true by definition, otherwise we have a(0, T, y1, . . . , yn) 6= 0. Using
Corollary I.6.2, we can find a smooth function gS(S, T, y1, . . . , yn) so that we can write g as

g(S, T, y1, . . . , yn) = S gS(S, T, y1, . . . , yn) .

This way, we may factor S out of equation (I.6.2) and we find

a(S, T, y1, . . . , yn) gS(S, T, y1, . . . , yn) = f(S, T, y1, . . . , yn)

everywhere. Setting F = gS , we obtain the desired result, because g = S gS = gS b, and
f = gS a, so that β2 = F β1 as we wanted to show.

If p lies on ∂N , slightly more care needs to be taken, because the s- and t-coordinates
are not equivalent. If ∂b

∂s
(0, 0) 6= 0, then the argument is similar to the previous one: Using

the fact that b and g are 0 along the boundary {s = 0}, we find by Corollary I.6.2 smooth
functions bs and gs such that

b(s, t) = s bs(s, t) and g(s, t, x1, . . . , xn) = s gs(s, t, x1, . . . , xn) .

Because bs(0, 0) = ∂b
∂s
(0, 0), it follows that bs(0, 0) does not vanish, and we may set

F (s, t, x1, . . . , xn) := gs(s, t, x1, . . . , xn)/bs(s, t). After factoring out an s-factor, equation (I.6.1)
reduces to

f(s, t, x1, . . . , xn) = F (s, t, x1, . . . , xn) a(s, t) ,

and so we obtain β2 = F β1.
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We still need to understand the case when p ∈ Sing(F) lies on the boundary of N , but
∂b
∂s
(0, 0) = 0 in the Kupka chart. From dβ1 6= 0, we see that ∂a

∂t
(0, 0) 6= 0, so that the subset

{a = 0} is a smooth hypersurface transverse to ∂N . We can find a chart for the (s, t)-plane
with coordinates (S, T ), where {S = 0} corresponds to ∂N and {T = 0} corresponds to
the subset {a = 0}. The rest of the proof is then analogous to the previous case: Using
Corollary I.6.2, we can write

a(S, T ) = T aT (S, T )

with a non-vanishing smooth function aT (S, T ). In equation (I.6.1)

T aT (s, t) g(S, T, x1, . . . , xn)− b(S, T ) f(S, T, x1, . . . , xn) ≡ 0 ,

we see that f needs to vanish along {T = 0}; either because the considered point lies in
Sing(F) or because otherwise b does not vanish. Applying Corollary I.6.2 to f , we conclude
as above. �

The following lemma is used in the proofs of Theorem I.1.3 and Theorem I.1.5. It gives
sufficient (but rather strong) conditions under which interpolations between two contact forms
lie themselves in the space of contact forms.

Lemma I.6.4. Let M be an oriented (2n+1)-manifold that contains an (n+1)-dimensional
compact submanifold N (possibly with ∂N 6= ∅). Assume that

• ξN is a cooriented codimension-1 subbundle of TM |N ,
• αN is a section of T ∗M |N with ξN = kerαN ,
• ξN induces a (possibly singular) foliation F = ξN ∩ TN on N ,
• JN is a complex structure on ξN .

Denote by A(αN , JN ) the space of germs of 1-forms α defined on a neighborhood of N
that satisfy the following properties:

(i) The restriction of α to TM |N is equal to αN .
(ii) Let Fα be the secondary foliation (see page 13) on N associated to α. The restriction

of JN to Fα ⊕ JN Fα is tamed by dα.
(iii) α is a contact form compatible with the orientation on M .

Then it follows that A(αN , JN ) is either empty or a pointwise convex set, that means, if α, α′

are any two 1-forms in A(αN , JN ), and if we choose a smooth function ρ : M → [0, 1], then
the 1-form

αρ := ρα+ (1− ρ)α′

will also lie in A(αN , JN ).

Proof. Choose two 1-forms α and α′ in A(αN , JN ), and a smooth function ρ : M → [0, 1],
and let αρ be the corresponding interpolated form. It is directly clear that property (i) holds
for the whole family αρ, and since dρ∧

(
α′−α

)
vanishes along N , it follows in particular that

the differential dαρ simplifies along this submanifold to the interpolation between dα and dα′

(1− ρ) dα+ ρ dα′ .

Both properties (ii) and (iii) only depend pointwise on αρ and dαρ, hence we may from now
on assume without loss of generality that ρ ≡ C for a constant number C in [0, 1].

Property (ii) is now also obvious, because the secondary foliation Fα does not depend on
a 1-form itself, but only on its restriction to N . Since the 1-form αC agrees along N with
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αN , it follows that the secondary foliation FαC is equal to the one of αN . If (ii) holds both
for α and α′, then we can easily check that

dαC(X, JNX) = (1− C) dα(X, JNX) + C dα′(X, JNX) > 0

for every non-vanishing vector X ∈ Fα ⊕ JN Fα.
We are left with proving that αC is a contact form. Assume first that p ∈ N is a point at

which dαN |TN vanishes. Then p cannot lie in Sing(F), because otherwise α could not be a
contact form. The secondary foliation Fα at p is equal to F , and Fα ∩ JNFα = {0}, because
the restriction dα|TpN vanishes, and dα tames JN on Fα ⊕ JN Fα. For dimensional reasons,

we then obtain that Fα ⊕ JN Fα = ξN at p, and we easily verify that

dαC(Xp, JNXp) = (1− C) dα(Xp, JNXp) + C dα′(Xp, JNXp) > 0

for all non-vanishing vectors Xp ∈ ξN , and hence αC satisfies the contact condition at p.
Let p ∈ N be now a point at which dαN |TN 6= 0. We find a chart U of M around p

with coordinates (s, t, x1, . . . , xn−1, y1, . . . , yn−1, z) such that N ∩ U corresponds to the set{
y1 = · · · = yn−1 = z = 0

}
, and we may assume by Theorem I.1.2 that αN restricts on N ∩U

to the Kupka form

αN |T (N∩U) = a(s, t) ds+ b(s, t) dt .

The secondary foliation Fα is spanned by {∂x1 , . . . , ∂xn−1}, and we may additionally suppose
that ∂yj = JN ∂xj along N ∩ U . Let ∂z be the Reeb field Rα of α, which is along N ∩
U transverse to TN ⊕ JN Fα as has already been shown at the beginning of the proof of
Lemma I.1.4. The family αC can be written on U as

αC = aC ds+ bC dt+ uC dz +
∑

j

fCj dxj +
∑

j

gCj dyj

with coefficient functions aC , bC , uC , f
C
j , g

C
j : U → R, and because αC is equal to αN along

N ∩ U , we have fCj

∣∣∣
N∩U

= gCj

∣∣∣
N∩U

≡ 0 and uC |N∩U ≡ 1, and consequently none of the

coefficient functions depend along N on the xj-coordinates, so that the only dxj-terms in
dαC |N∩U will come from dfCj ∧ dxj . Now we will check the contact condition αC ∧ dαnC > 0,
which by the previous remark simplifies significantly along N ∩ U . We obtain

(
αC ∧ dαnC

)∣∣
N∩U = n!αN ∧

(
daC ∧ ds+ dbC ∧ dt+ duC ∧ dz+

+
∑

j

dgCj ∧ dyj
)
∧ dfC1 ∧ dx1 ∧ · · · ∧ dfCn−1 ∧ dxn−1 .

On the other hand, we also know that the only contributions with a ds- or dt-term come from
aC ds+ bC dt and its exterior derivative, so that, we may further simplify
(
αC ∧ dαnC

)∣∣
N∩U = n!

(
a ds+ b dt+ dz

)
∧

∧
(
daC ∧ ds+ dbC ∧ dt

)
∧ dfC1 ∧ dx1 ∧ · · · ∧ dfCn−1 ∧ dxn−1

= n!
(
b
∂aC
∂z

− a
∂bC
∂z

+
∂b

∂s
− ∂a

∂t

)
ds ∧ dt ∧ dz∧

∧ dfC1 ∧ dx1 ∧ · · · ∧ dfCn−1 ∧ dxn−1 .
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By our assumptions, it is clear that the restriction of the 2-form

ΩC :=

n−1∑

j=1

dfCj ∧ dxj

to Fα ⊕ JN Fα = span〈∂x1 , . . . , ∂xn−1〉 ⊕ span〈∂y1 , . . . , ∂yn−1〉 tames JN and is hence also
symplectic, so that the sign of αC ∧ dαnC depends only on the sign of the leading factor

(I.6.3) b
∂aC
∂z

− a
∂bC
∂z

+
∂b

∂s
− ∂a

∂t
.

The functions aC and bC are the linear interpolation between the corresponding coeffi-
cient functions of α and α′. It follows that (I.6.3) is the linear interpolation between the
corresponding factor of α and the one of α′. Since both α and α′ are contact forms that
induce the same orientation, both factors need to be positive, showing that αC is a contact
form. �

Lemma I.6.5 (Linearizated normal form for singularities). Let F be a singular foliation given
by a regular equation β on an open subset U ⊂ R2. Assume that (0, 0) lies in U and that it
is a singular point of F . A linear diffeomorphism of R2, allows us to write β in one of the
three following forms

β = s dt− C1t ds+O2(s, t) ,

β = (s+ εt) dt− t ds+O2(s, t) ,

or

β = (s− C2t) ds+ (C2s+ t) dt+O2(s, t)

= C2r
2 dϕ+

1

2
d(r2) +O2(r, ϕ)

with real constants ε, C1, C2 ∈ R such that C1 ∈ (−1, 1] and C2 6= 0, and an ε 6= 0 that can
be chosen arbitrarily small. The term O2(s, t) stands for 1-forms with coefficient functions of
order 2, that means, smooth functions of type s2f(s, t) + stg(s, t) + t2h(s, t).

Proof. Write β first as

β = a(x, y) dx+ b(x, y) dy

with smooth functions a and b that vanish at the origin, and use Proposition I.6.1 to bring β
into the form (

xax(x, y) + yay(x, y)
)
dx+

(
xbx(x, y) + yby(x, y)

)
dy

with smooth function ax, ay, bx, and by. By assumption β is a regular equation, hence

dβ(0,0) =
(
bx(0, 0)− ay(0, 0)

)
dx ∧ dy 6= 0 .

We obtain the desired model by applying a suitable linear coordinate transformation to
U . Define for two linearly independent vectors v = (v1, v2) and w = (w1, w2) ∈ R2 a map

Φ: (s, t) 7→ (x, y) = s v + t w .

The pull-back of β by Φ yields

Φ∗β =
(
sãs(s, t) + tãt(s, t)

)
ds+

(
sb̃s(s, t) + t̃bt(s, t)

)
dt
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with coefficient functions

ãs(s, t) = v1 (v1ax + v2ay) + v2 (v1bx + v2by) ,

ãt(s, t) = v1 (w1ax + w2ay) + v2 (w1bx + w2by) ,

b̃s(s, t) = w1 (v1ax + v2ay) + w2 (v1bx + v2by) , and

b̃t(s, t) = w1 (w1ax + w2ay) + w2 (w1bx + w2by) .

A compact way to express this transformation behavior is to arrange the coefficients in the
following matrix

B =

(
bx(0, 0) by(0, 0)
−ax(0, 0) −ay(0, 0)

)
,

whose trace trB = bx(0, 0)− ay(0, 0) is non-zero. If we then set

DΦ =

(
v1 w1

v2 w2

)
,

and if we suppose that DΦ is invertible, then we can easily check that the coefficients of Φ∗β
fit into the matrix

B̃ =

(
b̃s(0, 0) b̃t(0, 0)
−ãs(0, 0) −ãt(0, 0)

)
= (detDΦ) · (DΦ)−1 ·B ·DΦ .

That means that the coefficients of β transform up to scaling like a matrix under conjugation.
We will now choose suitable vectors v, w to bring B and hence Φ∗β into the desired normal

forms at the origin. There are three possible cases for the eigenvalues of B: If B has at least
one purely real eigenvalue, the Jordan normal form of B will either be

(
λ1 0
0 λ2

)
or

(
λ3 1
0 λ3

)

with λ1, λ2, λ3 ∈ R and λ1 + λ2 6= 0 and λ3 6= 0. If the eigenvalues of B are not purely real,
then they must be conjugate complex numbers λ4, λ̄4 ∈ C \ R and B will be diagonalizable
over C. We denote the eigenvectors in this case by vλ and vλ̄ with vλ̄ = v̄λ.

In the first case, where B was diagonizable over the reals, let λ1 be the eigenvalue for which
|λ1| ≥ |λ2|, and choose for v the eigenvector of λ1, and for w the eigenvector of λ2. Additionally
suppose that the vectors have been normalized in such a way that v1w2−w1v2 = 1/λ1. Then

we can read off the coefficients of Φ∗β at the origin by looking at the matrix B̃:

ãs(0, 0) = 0

ãt(0, 0) = −λ2/λ1
and

b̃s(0, 0) = 1

b̃t(0, 0) = 0
.

We obtain the desired form

Φ∗β = s dt− C1t ds+O2(s, t)

with |C1| ≤ 1 and C1 6= −1.
When the matrix B is not diagonizable, then choosing for v the eigenvector of λ3, scaled

in such a way that we can choose a second vector w such that Bw = λ3w+λ3εv, and assuming
that the vectors have been normalized in such a way that v1w2 − w1v2 = 1/λ3, we find

Φ∗β = (s+ εt) dt− t ds+O2(s, t) .
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In case the eigenvalues are not purely real, we write v = 1
2 (vλ + v̄λ) = Re(v) and w =

1
2i (vλ− v̄λ) = Im(v), and we suppose again that v1w2− v2w1 = 1/ Imλ4. The matrix B takes
the form

1

Imλ4

(
Reλ4 Imλ4
− Imλ4 Reλ4

)
=

(
Reλ4
Imλ4

1

−1 Reλ4
Imλ4

)

with respect to this basis, and the coefficients at (0, 0) simplify to

ãs(0, 0) = 1

ãt(0, 0) = −C2
and

b̃s(0, 0) = C2

b̃t(0, 0) = 1
.

The 1-form reduces then in this last case to

Φ∗β =
(
s− C2t

)
ds+

(
C2s+ t

)
dt+O2(s, t) =

1

2
d(r2) + C2r

2 dϕ+O2(s, t) . �





CHAPTER II

Almost complex structures and Legendrian foliations

The next sections only fix notation, and explains some well-known facts about J-convexity.
With some basic knowledge on J-holomorphic curves, one can safely skip it and continue di-
rectly with Section II.3, which describes the local models around the binding and the boundary
of the Lobs and bLobs and the behavior of holomorphic disks that lie nearby.

II.1. Preliminaries: J-convexity

II.1.1. The maximum principle. One of the basic ingredients in the theory of J-
holomorphic curves with boundary is the maximum principle, which we will now briefly
describe in the special case of Riemann surfaces. We assume in this section that (Σ, j) is
a Riemann surface that does not need to be compact and may or may not have boundary.
We define the differential operator dj that associates to every smooth function f : Σ → R a
1-form given by (

djf
)
(v) := df(j v)

for v ∈ TΣ.

Definition. We say that a function f : (Σ, j) → R is

(a) harmonic if the 2-form −ddjf vanishes everywhere,
(b) it is subharmonic if the 2-form −ddjf is a positive volume form with respect to

the orientation defined by 〈v, j v〉 for any non-vanishing vector v ∈ TΣ.
(c) If f only satisfies

−ddjf
(
v, j v

)
≥ 0

then we call it weakly subharmonic.

In particular, if we choose a complex chart
(
U ⊂ C, φ

)
for Σ with coordinate z = x+ iy,

we can represent f by fU := f ◦ φ−1 : U → R. The 2-form −ddjf simplifies on this chart to
−ddifU , because φ is holomorphic with respect to j and i, and we can write −ddifU in the
form

(
△fU

)
dx ∧ dy, where the Laplacian is defined as

△fU =
∂2fU
∂x2

+
∂2fU
∂y2

.

Note that fU is subharmonic, if and only if −ddifU (∂x, ∂y) > 0, that means, △fU > 0.
For strictly subharmonic functions, it is obvious that they may not have any interior

maxima, because the Hessian needs to be negative definite at any such point. We really
need to consider both weakly subharmonic functions and the behavior at boundary points.
To prove the maximum principle in this more general setup, we use the following technical
result.

43
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Lemma II.1.1. Let f : D2 ⊂ C → R be a function that is C1 on the closed unit disk, and both
C2 and weakly subharmonic on the interior of the disk. Assume that f takes its maximum
at a boundary point z0 ∈ ∂D2 and is everywhere else strictly smaller than f(z0). Choose an
arbitrary vector X ∈ Tz0C at z0 pointing transversely out of D2.

Then the derivative LXf(z0) in X-direction needs to be strictly positive.

Proof. We will perturb f to a strictly subharmonic function making use of the auxiliary
function g : D2 → R defined by

g(r) = r4 − 9

4
r2 +

5

4
.

Figure 1. The function g(r) is subharmonic, vanishes on the boundary, and
has negative radial derivative.

The function g vanishes along the boundary ∂D2, and its derivative in any direction v
that is positively transverse to the boundary ∂D2 is strictly negative, because ∂ϕg = 0 and
because

r ∂rg =
1

2
r2 (8r2 − 9) .

Finally, we also see that g is strictly subharmonic on the open annulus Å = {z ∈ C | 3/4 <
|z| < 1} as

△g =
∂2g

∂x2
+
∂2g

∂y2
= 16r2 − 9 .

We slightly perturb f by setting fε = f + ε g for small ε > 0, and we additionally restrict
fε to the closure of the annulus Å. Note in particular that fε must take its maximum on ∂A,

because fε is strictly subharmonic on the interior of A so that one of ∂2fε
∂x2

or ∂2fε
∂y2

must

be strictly positive. This contradicts existence of possible interior maximum points. The
functions fε are equal to f along the outer boundary of A so that the maximum of fε will
either lie in z0 or on the inner boundary of A.

The initial function f is by assumption strictly smaller than f(z0) on the inner boundary
of the annulus and by choosing ε sufficiently small, it follows that the perturbed function fε
will still be strictly smaller than fε(z0) = f(z0). Thus z0 will also be the maximum of fε. Let
X be a vector at z0 that points transversely out of D2. The derivative LXfε at z0 cannot be
strictly negative, because z0 is a maximum, and so since

0 ≤ LXfε = LXf + εLXg ,
the derivative of f in X-direction has to be strictly positive, yielding the desired result. �

Now we are prepared to state and prove the maximum principle.
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Theorem II.1.2 (Weak maximum principle). Let (Σ, j) be a connected compact Riemann
surface. A weakly subharmonic function f : Σ → R that attains its maximum at an interior
point z0 ∈ Σ \ ∂Σ must be constant.

Proof. The proof is classical and holds in much greater generality (see for example [GT01]).
Nonetheless we will explain it in the special case needed by us to show that it only uses ele-
mentary techniques. The strategy is simply to find a closed disk in the interior of the Riemann
surface with the properties required by Lemma II.1.1. Then the function f increases in radial
direction further, so that the maximum point was not really a maximum.

Figure 2. Constructing a disk that has a single maximum on its boundary.

More precisely, assume f not to be constant, and to have a maximum at an interior point
z+ ∈ Σ \ ∂Σ with C+ := f(z+). The subset K := f−1(C+) ∩ Σ̊ is closed in Σ̊. For every

point z ∈ K and every complex chart (U ⊂ Σ̊, ϕ) containing z0, we find an Rz > 0 such that
the open disk DRz(z) lies in U . There must be a point z0 ∈ K for which the half sized disk

D 1
2
Rz0

(z0) intersects Σ̊ \ K, for otherwise K would be open and hence as Σ̊ is connected,

K = Σ̊.
Let p be a point in D 1

2
Rz0

(z0) \ K (see Fig. 2). It lies so close to z0 that the entire

closed disk of radius |p− z0| lies in the chart ϕ(U), and then we can choose first a disk D2
R(p)

centered at p, where R is the largest number for which the open disk does not intersect K.
We are interested in finding a closed disk that intersects K at a single boundary point: For
this let q be the mid point between p and one of the boundary points in ∂D2

R(p) ∩K. The
disk D2

1
2
R
(q) touches K at exactly one point.

This smaller disk satisfies the conditions of Lemma II.1.1, and so it follows that the
derivative of f at the maximum is strictly positive in radial direction. But since this point
lies in the interior of Σ, it follows that f still increases in that direction and hence this
point cannot be the maximum. Of course, the whole existence of the disk was based on the
assumption that f was not constant, so we obtain the statement of the theorem. �

If Σ has boundary, we also get the following refinement.

Theorem II.1.3 (Boundary point lemma). Let f : Σ → R be a weakly subharmonic function
on a connected compact Riemann surface (Σ, j) with boundary. Assume f takes its maximum
at a point z+ ∈ ∂Σ, then f will either be constant or the derivative at z+

LXf(z+) > 0
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in any outward direction X ∈ Tz+Σ has to be strictly positive.

Proof. Denote the maximum value f(z+) by C+. By the maximum principle, Theo-
rem II.1.2, we know that f will be constant if there is a point z ∈ Σ\∂Σ for which f(z) = C+.
We can thus assume that for all z /∈ ∂Σ, we have f < C+. Using a chart U around the point
z+, that represents an open set in H := {z ∈ C| Im z ≥ 0}, such that z+ corresponds to the
origin, we can easily find a small disk in H that touches ∂H only in 0, and hence allows us to
directly apply Lemma II.1.1 to complete the proof. �

II.1.2. Plurisubharmonic functions. We will now explain the connection between the
previous section and contact topology.

Let (W,J) be an almost complex manifold, that means that J is a section of the endo-
morphism bundle End(TM) with J2 = −1. Define the differential dJf of a smooth func-
tion f : W → R as before by (

dJf
)
(v) := df(J · v)

for any vector v ∈ TW .

Definition. We say that a function h : W → R is J-plurisubharmonic, if the 2-form

ωh := −ddJh
evaluates positively on J-complex lines, that means that ωh(v, Jv) is strictly positive for every
non-vanishing vector v ∈ TW .

If ωh vanishes, then we say that h is J-harmonic.

Remark II.1.4. (1) If h is J-plurisubharmonic, then ωh is an exact symplectic form
that tames J .

(2) If ωh is only non-negative, then we say that h is weakly J-plurisubharmonic.
This notion might be for example interesting in the context of confoliations.

Let (Σ, j) be a Riemann surface that does not need to be compact, and may or may not
have boundary. We say that a smooth map u : Σ → W is J-holomorphic, if its differential
commutes with the pair (j, J), that means, at every z ∈ Σ we have

J ·Du = Du · j .
Using the commutation relation, we easily check for every J-holomorphic map u and every
smooth function f : U → R the formula

(II.1.1) − u∗dJf = −df · J ·Du = −df ·Du · j = −d(f ◦ u) · j = dj(f ◦ u) = −dju∗f .
Corollary II.1.5. If u : (Σ, j) → (W,J) is J-holomorphic and h : W → R is a J-plurisubharmonic
function, then h ◦ u will be weakly subharmonic, because

−ddj(h ◦ u) = −d u∗dJh = −u∗ddJh
and because the differential Du commutes with the complex structures, so that

−ddj(h ◦ u)
(
v, jv) = −ddJh(Du · v, J ·Du · v) ≥ 0

for every vector v ∈ TΣ. The function is strictly positive precisely at points z ∈ Σ, where
Duz does not vanish.

The maximum principle restricts severely the behavior of holomorphic maps:
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Corollary II.1.6. Let u : (Σ, j) → (W,J) be a J-holomorphic map and h : W → R be a
J-plurisubharmonic function. If u is not a constant map then h ◦ u : Σ → R will never take
its maximum on the interior of Σ.

Proof. Since h ◦ u is weakly subharmonic, it follows immediately from the maximum
principle (Theorem II.1.2) that h ◦ u must be constant if it takes its maximum in the interior
of Σ, and hence d(h ◦ u) = 0. On the other hand, we know that if there were a point z ∈ Σ
with Dzu 6= 0, then ωh(Du · v,Du · jv) would need to be strictly positive for non-vanishing
vectors. This is not possible though, because u∗ωh = −ddj(h ◦ u) = 0. �

Corollary II.1.7. Let (Σ, j) be a Riemann surface with boundary, u : (Σ, j) → (W,J) a J-
holomorphic map and h : W → R be a J-plurisubharmonic function. If h ◦ u : Σ → R takes
its maximum at z0 ∈ ∂Σ then it follows either that d(h ◦ u)(v) > 0 for every vector v ∈ Tz0Σ
pointing transversely out of the surface, or u will be constant.

Proof. The proof is analogous to the previous one, but uses the boundary point lemma
(Theorem II.1.3) instead of the simple maximum principle. �

Remark II.1.8. Note that if h is only weakly plurisubharmonic, then we can only deduce
in the two corollaries above that u has to lie in a level set of h, and not that u itself must be
constant.

II.1.3. Contact structures as J-convex boundaries. Now we will finally explain the
relation between plurisubharmonic functions and contact manifolds.

Definition. Let (W,J) be an almost complex manifold with boundary. We say that W has
J-convex boundary, if there exists a smooth function h : W → (−∞, 0] with the properties

• h is J-plurisubharmonic on a neighborhood of ∂W ,
• h is a regular equation for ∂W , that means, 0 is a regular value of h and ∂W = h−1(0).

Note that the function h in the definition takes its maximum on ∂W , so that it must be
strictly increasing in outward direction.

We will show that the boundary of an almost complex manifold is J-convex if and only if
it carries a natural cooriented contact structure (whose conformal symplectic structure tames
J). Remember that we are always assuming our contact manifolds to be cooriented. Hence
the manifold is oriented, and its contact structure will have a natural conformal symplectic
structure.

Definition. Let M be a codimension-1 submanifold in an almost complex manifold (W,J).
The subbundle of complex tangencies of M is the J-complex subbundle

ξ := TM ∩ (J · TM) .

Proposition II.1.9. Let (W,J) be an almost complex manifold with boundary M := ∂W and
let ξ be the subbundle of complex tangencies of M . We have the following equivalence:

(1) The boundary M is J-convex.
(2) The subbundle ξ is a cooriented contact structure whose natural orientation is com-

patible with the boundary orientation of M , and whose natural conformal symplectic
structure tames J |ξ.

Proof. To prove the direction “(1) ⇒ (2)”, let h be the J-plurisubharmonic equation
of M that exists by assumption. A straight forward calculation shows that the kernel of the
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1-form α := −dJh
∣∣
TM

is precisely ξ, and in particular that α does not vanish. Furthermore
dα|TM = ωh|TM is a symplectic structure on ξ that tames J |ξ, so that α is a contact form.

To check that α ∧ dαn−1 is a positive volume form with respect to the boundary orientation
induced on M by (W,J), let Rα be the Reeb field of α, and define a vector field Y = −J Rα.
The field Y is positively transverse to ∂W , because LY h = dh(Y ) = −dJh(Rα) = α(Rα) = 1
is positive. Choosing a basis 〈v1, . . . , v2n−2〉 for ξ at a point p ∈M , we compute

α ∧ dαn−1
(
Rα, v1, . . . , v2n−2

)
= dαn−1

(
v1, . . . , v2n−2

)
= ωn−1

h

(
v1, . . . , v2n−2

)
.

Similarly, we obtain

ωnh
(
Y,Rα, v1, . . . , v2n−2

)
= nωh(Y,Rα) · ωn−1

h

(
v1, . . . , v2n−2

)

= nωh(Rα, JRα) · ωn−1
h

(
v1, . . . , v2n−2

)
,

where we have used that ωh(Rα, vj) = dα(Rα, vj) = 0 for all j ∈ {1, . . . , n − 1}. The first
term ωh(Rα, JRα) is positive, and hence α∧dαn−1 and ιY ω

n
h induce identical orientations on

M .
To prove the direction “(2) ⇒ (1)”, choose any collar neighborhood (−ε, 0] ×M for the

boundary, and let t be the coordinate on (−ε, 0]. First note that α = −dJ t
∣∣
TM

is a non-
vanishing 1-form with kernel ξ, so in particular it will be contact. Let Rα be the Reeb field
of α, and set Y := −J Rα. As before, the field Y is positively transverse to M , because of
LY t = −dt(J Rα) = α(Rα) = 1.

Let C be a large constant, whose size will be determined below, and set h(t, p) := eCt−1.
Clearly, h is a regular equation for M .

The 1–form αC = −dJh
∣∣
TM

= CeCt α is a contact form that represents the same coorien-
tation as α. We claim that for sufficiently large C, h will be a J-plurisubharmonic function.

Let v ∈ TpW be any non-vanishing vector at p ∈M and represent it as

v = aY + bRα + cZ ,

where Y and Rα were defined above, and Z ∈ ξ is a vector in the contact structure that
has been normalized such that dα(Z, JZ) = ωt(Z, JZ) = 1. Note that the 1-form αC =
−dJh

∣∣
TM

= CeCt α is a contact form that represents the same coorientation as α.

We compute ωh = −ddJh = CeCt
(
ωt − C dt ∧ dJ t

)
, which simplifies for t = 0 further to

ωh = C
(
ωt − C dt ∧ dJ t

)
and so we have

ωh(Rα, ·) = C
(
ωt(Rα, ·)− C dt

)
and ωh(Y, ·) = C

(
ωt(·, J Rα)− C dJ t

)

This implies ωh(Rα, Z) = ωh(Rα, JZ) = 0 for all Z ∈ ξ, and ωh(Y,Rα) = C2+C ωt(Rα, JRα)
can be made arbitrarily large by increasing the size of C. With these relations we obtain

ωh(v, Jv) = ωh(aY + bRα + cZ, aRα − bY + cJZ)

=
(
a2 + b2

)
ωh(Y,Rα) + c2 ωh(Z, JZ) + ac ωh(Y, JZ) + bc ωh(Y, Z)

=
(
a2 + b2

) (
C2 +O1(C)

)
+ C

(
c2 ωt(Z, JZ) + ac ωt(Y, JZ) + bc ωt(Y, Z)

)
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and setting Aa = ωt(Y, JZ) and Ab = ωt(Y, Z) and using that ωt(Z, JZ) = 1

=
(
a2 + b2

) (
C2 +O1(C)

)
+ C

(
c2 +Aaac+Abbc

)

=
(
a2 + b2

) (
C2 +O1(C)

)
+
C

2

((
c+ aAa

)2 − a2A2
a +

(
c+ bAb

)2 − b2A2
b

)

= a2
(
C2 +O1(C)

)
+ b2

(
C2 +O1(C)

)
+
C

2

(
(c+ aAa)

2 + (c+ bAb)
2
)
.

By choosing C large enough, we can ensure that the a2- and b2-coefficients are both pos-
itive. Then it is obvious from the computation above that ωh tames J , and hence h is
J-plurisubharmonic. �

II.1.4. Legendrian foliations in J-convex boundaries.

Definition. A totally real submanifold N of an almost complex manifold (W,J) is a
submanifold of dimension dimN = 1

2 dimW that is not tangent to any J-complex line, that
means, TN ∩ (J TN) = {0}, which is equivalent to requiring

TW |N = TN ⊕ (J TN) .

Proposition II.1.10. Let (W,J) be an almost complex manifold with J-convex boundary
(M, ξ). Assume N is a submanifold of M for which the complex tangencies ξ induce the
Legendrian foliation F = TN ∩ ξ. Then it is easy to check that N \ Sing(F) is totally real.

Proof. If X ∈ TN is a non-vanishing vector with JX also in TN , then in particular

X ∈ TN ∩ (JTN) ⊂ TM ∩ (JTM) = ξ ,

so that X and JX have to lie in F . The 2-form dα tames J |ξ so that dα(X, JX) > 0, but

dα|F vanishes at regular points of the foliation, and hence X must be 0. �

We will next study the restrictions imposed by a Legendrian foliation on J-holomorphic
curves. Let (Σ, j) be a compact Riemann surface with boundary, and let A be a subset of
an almost complex manifold (W,J). We introduce for J-holomorphic maps u : Σ → W with
u(∂Σ) ⊂ A the notation

u : (Σ, ∂Σ, j) → (W,A, J) .

Note that we are always supposing that u is at least C1 along the boundary.

Corollary II.1.11. Let (W,J) be an almost complex manifold with convex boundary (M, ξ).
Let N →֒ M be a submanifold with an induced Legendrian foliation F , and let u be a J-
holomorphic map

u : (Σ, ∂Σ, j) → (W,N \ Sing(F), J) .

If there is an interior point z0 ∈ Σ \ ∂Σ at which u touches M , or if ∂u is not positively
transverse to F , then u is a constant map.

Proof. Choose a J-plurisubharmonic function h : W → R that is a regular equation
for M . The first implication follows directly from Corollary II.1.6, because z0 would be an
interior maximum for h ◦ u.

For the second implication note first that h ◦ u takes its maximum on ∂Σ so that if u is
not constant, we have by Corollary II.1.7 that the derivative Lv(h ◦ u) is strictly positive for
every point z1 ∈ ∂Σ and every vector v ∈ Tz1Σ pointing out of Σ. Now if w ∈ TΣ is a vector
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that is tangent to ∂Σ such that jw points inward (so that w corresponds to the boundary
orientation of ∂Σ, because 〈−jw,w〉 is a positive basis of TΣ), we obtain

α(Du · w) = −dh(JDu · w) = −dh(Du · jw) = −d(h ◦ u)(jw) > 0 .

The boundary of ∂u has thus to be positively transverse to ξ, and so it is in particular
positively transverse to the Legendrian foliation F . �

Note that the result above applies only for holomorphic maps that are C1 along the
boundary.

II.2. Preliminaries: ω-convexity

Above we have explained the notion of J-convexity, and the relevant relationship be-
tween contact and almost complex structures. In this section, we want to discuss the notion
of ω-convexity, that means the relationship between an (almost) symplectic and a contact
structure.

In fact, we are not interested in studying almost complex manifolds for their own sake,
but we would like to use the almost complex structure to understand instead a symplectic
manifold (W,ω). As initiated by Gromov, we introduce an auxiliary almost complex structure
to be able to study J-holomorphic curves in the hope that even though the J-holomorphic
curves depend very strongly on the almost complex structure chosen, we’ll be able to extract
interesting information about the initial symplectic structure.

For this strategy to work, we need the almost complex structure to be tamed by ω, that
means, we want

ω(X, JX) > 0

for every non-vanishing vector X ∈ TW . This tameness condition is important, because it
allows us to control the limit behavior of sequences of holomorphic curves (see Section III.3).

As explained in the previous section, J-convexity is a property that greatly helps us in
understanding holomorphic curves in ambient manifolds that have boundary. When (W,ω)
is a symplectic manifold with boundary M = ∂W , we would thus like to chose an almost
complex structure J that is

• tamed by ω, and
• that makes the boundary J-convex.

In particular, if such a J exists, we know that the boundary admits an induced contact
structure

ξ = TM ∩
(
J · TM

)
.

From the symplectic or contact topological view point, the opposite setup would be more
natural though: given a symplectic manifold (W,ω) with contact boundary (M, ξ), can we
choose an almost complex structure J that is tamed by ω, and that makes the boundary
J-convex such that ξ is the bundle of J-complex tangencies?

The general answer to that question was given in [MNW13], and we will rediscuss it
here:

Definition. Let (M, ξ) be a cooriented contact manifold of dimension 2n− 1, and let (W,ω)
be a symplectic manifold whose boundary is M . Let α be a positive contact form for ξ, and
assume that the orientation induced by α∧dαn−1 onM agrees with the boundary orientation
of (W,ω). We call (W,ω) a weak symplectic filling of (M, ξ), if

α ∧
(
T dα+ ω

)n−1
> 0
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for every T ∈ [0,∞).

The proofs of the following statements are quite lengthy and have been postponed to
Section II.4.

Theorem II.2.1. Let (M, ξ) be a cooriented contact manifold, and let (W,ω) be a symplectic
manifold with boundary M = ∂W . The following two statements are equivalent

(i) (W,ω) is a weak symplectic filling of (M, ξ).
(ii) There exists an almost complex structure J on W that is tamed by ω and that makes

M a J-convex boundary whose J-complex tangencies are ξ.

A weak filling is a notion that is relatively recent in higher dimensions; traditionally it is
the concept of a strong symplectic filling that has been studied for a much longer time. Let
(W,ω) be a symplectic manifold. A vector field XL is called a Liouville vector field, if it
satisfies the equation

LXLω = ω .

Definition. Let (M, ξ) be a cooriented contact manifold, and let (W,ω) be a symplectic
manifold whose boundary is M . We call (W,ω) a strong symplectic filling of (M, ξ), if
there exists a Liouville vector field XL on a neighborhood of M such that λ :=

(
ιXLω

)∣∣
TM

is
a positive contact form for ξ.

It is easy to see that a strong filling is in particular a weak filling. Note that the symplectic
form of a strong filling becomes always exact when restricted to the boundary, but that this
needs not be true for a weak filling; if it is then it will usually still not be a strong symplectic
filling, but by Corollary II.2.4 it can deformed into one.

Lemma II.2.2. Let (W,ω) be a symplectic manifold and let M be a hypersurface (possibly
a boundary component of W ) together with a non-vanishing 1-form λ. Assume that the
restriction of ω to kerλ is symplectic.

Then there is a tubular neighborhood of M in W that is symplectomorphic to the model
(
(−ε, ε)×M, d(t λ) + ω|TM

)
,

where t is the coordinate on the interval (−ε, ε). The 0-slice {0} ×M corresponds in this
identification to the hypersurface M . If M is a boundary component of W then of course we
need to replace the model by (−ε, 0]×M or by [0, ε)×M depending on whether λ ∧ ωn−1 is
oriented as the boundary of (W,ω) or not.

Proof. In a first step we define a collar neighborhood of M by choosing a vector field
that is transverse to M . In a second we then deform the collar to the desired shape. Let
E ⊂ TW |M be the ω-orthogonal complement of ξ alongM . The intersection of E with TM is
a 1-dimensional subbundle, and we can uniquely define a Reeb-like vector field Xω by taking
the section in E ∩ TM that satisfies λ(Xω) ≡ 1. By our definition, ω(Xω, ·)|TM vanishes.
Choose now a second section Y in E that is transverse to M , and normalize it such that
ω(Y,Xω) ≡ 1. Note that if such a section is already given near some subset of M , then we
can choose Y to be an extension of that section. We now have ω(Y, ·)|TM = λ, since both
forms vanish on ξ and agree on Xω.

Extend Y to a smooth vector field in a neighborhood of M , and use the flow ΦY of this
vector field to define a smooth diffeomorphism

Φ: (−ε, ε)×M →֒W, (t, p) 7→ ΦYt (p) ,
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which agrees with the canonical identification on {0}×M . Next, compare the 2-forms Φ∗ω and
ωM + d(tλ) on (−ε, ε)×M . Both forms coincide along {0}×M , thus the linear interpolation
of these forms is a path of symplectic structures (decreasing ε > 0 if necessary). We can then
use the Moser trick to show that they are all symplectomorphic to each other (perhaps in a
smaller neighborhood) by an isotopy that keeps the level set {0} ×M fixed. �

Proposition II.2.3. Let (W,ω) be a weak filling of a contact manifold (M, ξ), and let Ω be
a 2-form on M that is cohomologous to ω|TM . Choose a positive contact form α for (M, ξ).
Then if we allow C > 0 to be sufficiently large, we can attach a collar [0, C]×M to W with
a symplectic form ωC that agrees close to {C} ×M with d

(
tα
)
+ Ω, and such that the new

manifold is a weak filling of
(
{t0} ×M, ξ

)
for every t0 ∈ [0, C].

The proof can be found in [MNW13, Lemma 2.10].

Corollary II.2.4. Let (W,ω) be a weak symplectic filling of (M, ξ) and assume that the
restriction of ω to M is exact. Then we may deform ω on a small neighborhood of M such it
becomes a strong symplectic filling.

Proof. Since ω|TM is exact, we can apply the proposition above with Ω = 0. Afterward
we can isotope the collar back into the neighborhood of the boundary of W . �

Note that two contact structures that are strongly filled by the same symplectic manifold
are isotopic, while a symplectic manifold may be a weak filling of two different contact man-
ifolds. This is true even when the restriction of the symplectic structure to the boundary is
exact, see [MNW13, Remark 2.11].

II.3. Local models for maximally foliated submanifolds and J-holomorphic
curves

Let (W,J) be an almost complex manifold with J-convex boundary (M, ξ), and letN ⊂M
be a submanifold carrying a Legendrian foliation F . The aim of this section will be to better
understand the behavior of J-holomorphic maps

u : (Σ, ∂Σ, j) → (W,N, J) ,

that lie close to a singular point p ∈ Sing(F) of the Legendrian foliation. For this we will
assume that J is of a very specific form in a neighborhood of the point p. With this choice
of the almost complex structure, elliptic singularities (see Fig. 2.(A) and (B)) give birth to
a family of holomorphic disks. Apart from these disks and their branched covers, no other
holomorphic disks may get close to the elliptic singularities (see Sections II.3.2 and II.3.3).
Similarly certain codimension-1 singularities may be used as barriers for holomorphic curves,
preventing them to get nearby (see Section II.3.4).

II.3.1. Existence of J-convex functions close to totally real submanifolds. As
a preliminary tool, we will need the following result.

Proposition II.3.1. Let (W,J) be an almost complex manifold that contains a closed totally
real submanifold L. Then there exists a smooth function f : W → [0,∞) with L = f−1(0)
that is J-plurisubharmonic on a neighborhood of L. In particular, it follows that dfp = 0 at
every point p ∈ L.
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Proof. We will first show that we find around every point p ∈ L a chart U with coordi-
nates {(x1, . . . , xn; y1, . . . , yn)} ⊂ R2n such that L ∩ U = {y1 = · · · = yn = 0} and

J
∂

∂xj

∣∣∣∣
L∩U

=
∂

∂yj

∣∣∣∣
L∩U

.

For this, start by choosing coordinates {(x1, . . . , xn)} ⊂ Rn for the submanifold L around the
point p, and consider the associated vector fields

Y1 = J
∂

∂x1
, . . . , Yn = J

∂

∂xn

along L. These vector fields are everywhere linearly independent and transverse to L, hence,
we can define a smooth map from a small ball around 0 in R2n = {(x1, . . . , xn; y1, . . . , yn)} to
W by

y1 Y1(x1, . . . , xn) + · · ·+ yn Yn(x1, . . . , xn) 7→ exp
(
y1 Y1 + · · ·+ yn Yn

)
,

where exp is the exponential map for an arbitrary Riemannian metric on W . If the ball is
chosen sufficiently small, the map will be a chart with the desired properties.

For such a chart U , we will choose a function

fU : U → [0,∞), (x1, . . . , xn; y1, . . . , yn) 7→
1

2

(
y21 + · · ·+ y2n

)
.

It is obvious that both the function itself, and its differential vanish along L∩U . Furthermore
f is plurisubharmonic close to L ∩ U , because

−ddJfU = −d
(
y1 d

Jy1 + · · ·+ yn d
Jyn
)

= −dy1 ∧ dJy1 − · · · − dyn ∧ dJyn − y1 dd
Jy1 − · · · − yn dd

Jyn

simplifies at L ∩ U to

−ddJfU
∣∣
L∩U = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn ,

where we have used that all yj vanish, and that J ∂
∂xj

= ∂
∂yj

and J ∂
∂yj

= J2 ∂
∂xj

= − ∂
∂xj

. It is

easy to check that this 2-form evaluates positively on complex lines along L ∩ U , and hence
also in a small neighborhood of p.

Now to obtain a global plurisubharmonic function as stated in the proposition, cover
L with finitely many charts U1, . . . , UN , each with a function f1, . . . , fN according to the
construction given above. Choose a subordinate partition of unity ρ1, . . . , ρN , and define

f =

N∑

j=1

ρj · fj .

The function f and its differential df =
∑N

j=1

(
ρj dfj + fj dρj

)
vanish along L so that the only

term in

−ddJf = −d
N∑

j=1

(
ρj d

Jfj + fj d
Jρj
)

= −
N∑

j=1

(
ρj dd

Jfj + dρj ∧ dJfj + fj dd
Jρj + dfj ∧ dJρj

)
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that survives along L is the first one, giving us along L

−ddJf = −
N∑

j=1

ρj dd
Jfj .

This 2-form is positive on J-complex lines, and hence there is a small neighborhood of L
on which f is plurisubharmonic. Finally, we modify f to be positive outside this small
neighborhood so that we have L = f−1(0) as required. �

Corollary II.3.2. Let (W,J) be an almost complex structure that contains a closed totally
real submanifold L. Then we find a small neighborhood U of L for which every J-holomorphic
map

u : (Σ, ∂Σ, j) →
(
W,L, J

)

from a compact Riemann surface needs to be constant if u(Σ) ⊂ U .

Proof. Let f : W → [0,∞) be the function constructed in Proposition II.3.1, and let
U ⊂ (W,J) be the neighborhood of L, where f is J-plurisubharmonic. Because u(Σ) ⊂ U ,
we obtain from Corollary II.1.6 that f ◦ u must take its maximum on the boundary of Σ, but
because f ◦u is zero on all of ∂Σ, it follows that f ◦u will vanish on the whole surface Σ. The
image u(Σ) lies then in the totally real submanifold L, and this implies that the differential
of u vanishes everywhere. Hence there is a q0 ∈ L with u(z) = q0 for all z ∈ Σ. �

II.3.2. J-holomorphic curves close to codimension-2 singularities: The 4-dimensional
situation. Before studying the higher dimensional case in the next section, we will first con-
struct a model situation for a 4-dimensional almost complex manifold with convex boundary.
The planar singularities we are interested in, were all described in Section I.2 (see also Fig-
ure 2).

Consider C2 with its standard complex structure i. Then it is easy to check that h0(z1, z2) =
1
2

(
|z1|2 + |z2|2

)
is a plurisubharmonic function whose regular level sets are the concentric

spheres around the origin. The level set M0 = h−1(1/2) is the unit sphere S3 which is the
i-convex boundary of the closed unit ball W0 := h−1

0

(
[0, 1/2]

)
, and has the induced contact

form

α0 = −dih0
∣∣
TM0

= x1 dy1 − y1 dx1 + x2 dy2 − y2 dx2 .

It is easy to check that the embedding of a small disk by the map

Φ: D2 →M0, z 7→
(
z,

√
1− |z|2

)

is foliated by ξ0 = kerα0 with a singularity in Φ(0) = (0, 1). In fact, the pull-back of α0 to
the disk is just Φ∗α0 = x dy − y dx, hence the foliation corresponds to one with radial leaves
depicted in Fig. 2.(A).

For all applications in this text, it is sufficient to use the model just described. If the reader
is only interested in that situation, he can just study case (S1) below, setting everywhere
ε = 0. We will keep the situation for now slightly more general by considering the case (S1),
with arbitrary ε-coefficients (but still assuming that the model has been linearized). For
this, we will modify the plurisubharmonic function h0 by adding the real part of a suitable
holomorphic function f . The function hf := h0+Re(f) is still plurisubharmonic, because the
real part of a holomorphic map is always harmonic. The chosen functions we will use will all
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Figure 3. As a model situation, we study a 1-parameter family of pluri-
subharmonic functions in C2, and consider for each one the level set 1/2. The
surfaces represented here are the intersection of these level sets with the 3-
dimensional slice C × R. The induced Legendrian foliation for each of those
intersections can be seen in Fig. 2.(A), and Fig. 2.(B) that correspond to the
graph (A) and (B) respectively. The hyperbolic case in Fig. 2.(C) corresponds
to graph (D). The holomorphic disks attached to these surfaces are just the
subsets of the horizontal flat planes lying beneath these graphs.

vanish at (0, 1) and also have vanishing differential at that point so that the hypersurfaces
Mf = h−1

f (1/2) all intersect tangentially in the point (0, 1).

Let f be now the function f(z1, z2) = εz21 , then we set Mε := h−1
f (1/2). The natural

contact structure induced by i on Mε is the kernel of the contact form

αε = −dihf
∣∣
TMε

= (1 + 2ε)x1 dy1 − (1− 2ε) y1 dx1 + x2 dy2 − y2 dx2 .

We can embed a small disk by the map

Φε : D
2 →Mf , z 7→

(
z,

√
1− |z|2 − 2εRe(z2)

)

into the level set Mf . We denote the image of Φε by Nε (see Fig 3 for a sketch of the graph
of Φε for different values of ε). The pull-back of αε by Φε is

(II.3.1) Φ∗
εαε = (1 + 2ε)x dy − (1− 2ε) y dx ,

and the Legendrian foliation is thus singular at the origin. Assuming without loss of generality
that ε ≥ 0 (otherwise permute the x and the y-coordinates), the singularity corresponds to
class (S1) on page 23 with C1 = (1−2ε)/(1+2ε). When ε = 0, we have C1 = 1, and we are in
the standard situation described at the beginning of this section and depicted in Fig. 2.(A);
when ε lies in the range (0, 1/2), the constant C1 lies in (0, 1), hence we have an elliptic
singularity as the one drawn in Fig. 2.(B); and when ε > 1/2, then we have C1 ∈ (−1, 0) and
thus there is a hyperbolic singularity as in Fig. 2.(C). We exclude ε = 1/2, because in that
case the singularity won’t be isolated.

Let Uε be the subset

Uε =
{
(z1, z2) ∈ C2

∣∣ Re(z2) ≥ 1− δ
}
∩ h−1

ε

(
(−∞, 1/2]

)

for small δ > 0, that means, we just cut off the points under a certain x2-height. In the elliptic
case when |ε| < 1/2, the subset Uε will be compact. Decreasing δ, we can make Uε arbitrarily
small, and we will use this subset later as our almost complex model of a neighborhood of an
elliptic singularity.
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The following two lemmas explain that in the elliptic case there is for any point (z1, z2) ∈
Uε essentially a unique holomorphic disk passing through (z1, z2) that is entirely contained
in Uε and whose boundary lies in Nε. All other holomorphic curves with the same boundary
condition will either be constant or will be (branched) covers of that disk.

Lemma II.3.3. Assume that 0 ≤ ε < 1/2. For every x2 ∈ [1 − δ, 1), there exists a unique
injective holomorphic map

ux2 : (D
2, ∂D2) →

(
Uε, Nε

)

with u(D2) ⊂
(
C× {x2}

)
∩ Uε, with ux2(0) = (0, x2) and ux2(1) ∈ {(x1, x2) ∈ Uε|x1 > 0}.

The last two conditions only serve to fix a parametrization of a given geometric disk by
setting the center point and a point on the boundary of the disk.

Proof. Let ux2 be a map as in the lemma. To prove uniqueness assume that there were
a second holomorphic map

ũx2 : (D
2, ∂D2) →

(
Uε, Nε

)

with the required properties. Denote the intersection of Uε with the complex plane C× {x2}
by Lx2 . It is easy to check that Lx2 = {(x+ iy, x2) ∈ C2

∣∣ (1 + 2ε)x2 + (1− 2ε) y2 ≤ 1− x22}
is a planar domain bounded by an ellipse.

By Corollary II.1.11, the restriction ux2 |∂D2 of the map to the boundary has non-vanishing
derivative, and since it is by assumption injective, it is a diffeomorphism onto ∂Lx2 . For
topological reasons, ux2 has to be surjective on Lx2 (because otherwise we could construct
a retract of the disk onto its boundary). Note also that the germ of a holomorphic map
around the origin in C is always biholomorphic to z 7→ zk for some integer k ∈ N0, so that
the differential of ux2 may not vanish anywhere, because otherwise ux2 could not be injective.

Together this allows us to define a biholomorphism

ϕ := u−1
x2

◦ ũx2 : (D2, ∂D2) → (D2, ∂D2)

with ϕ(0) = 0 and ϕ(1) = 1, but the only automorphism of the disk with these properties is
the identity, thus showing that ux2 = ũx2 .

To see existence of the map ux2 , note that for ε = 0, the map can be explicitly written
down as

ux2(z) =
(
Cz, x2

)

with C =
√
1− x22. It is probably not very hard to find an explicit formula for ux2 for

general ε, but instead we would like to appeal to the Riemann mapping theorem. The
Riemann theorem itself only guarantees us that the interior of the domain Uε ∩

(
C×{x2}

)
is

biholomorphic to the an open unit disk, so we use a strengthening by Painlevé which extends
to a smooth map on the closed unit disk [Pai87] (see [BK87] for a modern account). By
using Möbius transformations, we can now arrange for the map to be of the required form. �

Lemma II.3.4. Let

u : (Σ, ∂Σ, j) →
(
Uε, Nε, i

)

be any holomorphic map from a connected compact Riemann surface (Σ, j) to Uε with u(∂Σ) ⊂
Nε.

If the singularity in Nε is hyperbolic, that means, if |ε| > 1/2, then u is a constant map.
If on the other hand, |ε| < 1/2 so that the singularity is elliptic, then the image of u has to lie
in one of the slices Lx2 = Uε∩

(
C×{x2}

)
. If u is injective at one of the points of its boundary,
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then Σ will be a disk, and u will be up to reparametrization by a Möbius transformation the
map ux2 described in Lemma II.3.3.

Proof. Note that we are supposing that u is at least C1 on the boundary so that inde-
pendently of the value of ε, the map u will be constant if it touches the singularity in Nε. This
is in general important, because in the hyperbolic case there may be non-constant holomor-
phic curves that have a boundary cusp that touches the singular point of Nε [BK91, Hin97]
(the curves cannot be entirely contained in Uε though).

The proof of the proposition will be based on the harmonicity of the coordinate func-
tions x1, y1, x2, and y2. Let πy2 : U → R be the function (z1, z2) 7→ y2 = Im(z2). As functions
on a compact domain, both πy2 ◦ u and −πy2 ◦ u must have a maximum, and by the maxi-
mum principle (Corollary II.1.6), these points have to lie on ∂Σ. But since u(∂Σ) ⊂ Nε has
vanishing imaginary z2-part, it follows that πy2 ◦ u ≡ 0 on the whole surface. Using now
the Cauchy-Riemann equations, it immediately follows that the real part of the z2-coordinate
of u has to be everywhere constant. Hence the first conclusion is that the image of u has
to lie in one of the slices Lx2 = C × {x2}, and the image of u(∂Σ) has to lie in the subset
∂Lx2 = {(x+ iy, x2) ∈ C2

∣∣ (1 + 2ε)x2 + (1− 2ε) y2 = 1− x22}.
For a hyperbolic singularity with |ε| > 1/2, the boundary of the slice ∂Lx2 has two

disconnected components that are both diffeomorphic to R. Let z0 ∈ ∂Σ be the point for
which u(z0) ∈ ∂Lx2 lies farthest away from the origin. At that point, u|∂Σ will have vanishing
derivative, and hence it follows by Corollary II.1.11 that u has to be constant.

Assume on the other hand from now on that |ε| < 1/2, and that u is not constant. Since
u lies in Lx2 , we can choose the map ux2 from Lemma II.3.3, to define a holomorphic map

ϕ := u−1
x2

◦ u : (Σ, ∂Σ) → (D2, ∂D2) .

If u were not surjective on Lx2 , we could suppose (after a Möbius transformation) that the
image of ϕ did not contain 0. The function h(z) = ln |z| is the real part of a holomorphic
one, and hence it is harmonic on D2 \ {0}. It follows that h ◦ ϕ takes its minimum on the
interior of Σ, which implies that the image of ϕ has to be a single point in ∂D2, and hence in
contraction to our assumptions, u will also be constant.

By Corollary II.1.11, the restriction u|∂Σ : ∂Σ → ∂Lx2 may not have vanishing deriva-
tives, hence every boundary component of Σ covers ∂Lx2 at least once. If u is injective at
one of its boundary points, then ∂Σ must be connected, and u|∂Σ : ∂Σ → ∂Lx2 must be a
diffeomorphism. Furthermore, there must be a small collar neighborhood of ∂Lx2 on which
u will also be injective, for otherwise we could find two sequences (zk)k and (z̃k)k getting
arbitrarily close to ∂Σ with u(zk) = u(z̃k), but with zk 6= z̃k for every k. Possibly reducing to
subsequences, we may assume that they both converge with z∞ := lim zk and z̃∞ := lim z̃k,
and by continuity it follows that u(z∞) = u(z̃∞). Since z∞ and z̃∞ lies both in ∂Σ where
u is injective, we can conclude that lim zk = lim z̃k. Using that the differential of Du is not
singular in z∞, we obtain that for k sufficiently large, we will always have zk = z̃k showing
that u is indeed injective on a small neighborhood of ∂Σ.

Assume z0 ∈ Σ is a point at which the differential Dϕ vanishes. Then we know that ϕ
can be represented in suitable charts as z 7→ zk for some k ∈ N with k > 1. This however
yields a contradiction, because we know that ϕ is a biholomorphism on a neighborhood of
∂Σ, and hence its degree must be 1. Since ϕ is holomorphic, it preserves orientations, so that
on the other hand, we would have that the degree would need to be at least k, if there were
such a critical point.
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We obtain that ϕ has nowhere vanishing differential, and hence it must be a regular cover,
but since it is of degree 1, it is in fact a biholomorphism, and Σ must be a disk. �

II.3.3. J-holomorphic curves close to elliptic singularities: The higher dimen-
sional situation. In this section, L will always be a closed manifold, and we will choose for
T ∗L an almost complex structure JL for which the 0-section L is totally real. Hence there is
by Proposition II.3.1 a function fL : T

∗L → [0,∞) that vanishes on L (and only on L) and
that is plurisubharmonic on a small neighborhood of L.

Also, we will only treat elliptic singularities, that means, we will use the level sets of
the function hf (z1, z2) =

1
2

(
|z1|2 + |z2|2

)
+ εRe(z21) described in the previous section, always

supposing that |ε| < 1/2. Note also that we are only studying the product case, where the
holonomy of the foliation around the codimension-2 singular set is trivial.

We will now describe an explicit manifold that will serve as a model for the neighbor-
hood of an elliptic singularity. Let C2 × T ∗L be the almost complex manifold with almost
complex structure J = i⊕ JL, where i is the standard complex structure on C2. We define a
function F : C2 × T ∗L→ [0,∞) by

F (z1, z2,q,p) = hf (z1, z2) + fL(q,p)

If we stay in a sufficiently small neighborhood of the 0-section of T ∗L, this function is clearly
J-plurisubharmonic and we denote its regular level set F−1

(
1/2
)
by M ; its contact form is

given by

α := −dJF
∣∣
TM

= −
(
dihf + dJLfL

)∣∣
TM

.

Let Nε ⊂ C2 be the submanifold introduced in the previous section as image of the
map Φε. The product manifold Nε × L ⊂ C2 × T ∗L, where we consider L as the 0-section of
T ∗L, embeds into M and it carries a Legendrian foliation F induced by

α|T (Nε×L) = −dJF
∣∣
T (Nε×L) = −dihf

∣∣
TNε

.

In particular, the leaves of the foliation are parallel to the L-factor in Nε × L and F has an
elliptic singularity in Φε(0)× L.

Note that both the almost complex structure as well as the submanifold Nε × L split as
a product, thus if we consider a holomorphic map

u : (Σ, ∂Σ; j) →
(
C2 × T ∗L,Nε × L; J

)
,

we can decompose it into u = (u1, u2) with

u1 : (Σ, ∂Σ; j) → (C2, Nε; i)

u2 : (Σ, ∂Σ; j) → (T ∗L,L; JL) .

This allows us to treat each factor independently from the other one, and we will easily be
able to apply the results from the previous section.

Since we are interested in finding a local model, we will first restrict our situation to the
following subset

(II.3.2) U :=
{
(z1, z2;q,p)

∣∣ Re(z2) ≥ 1− δ
}
∩ F−1

(
(−∞, 1/2]

)

that is, for δ sufficiently small (and ε < 1/2), a compact neighborhood of {(0, 1)}×L ⊂ Nε×L
in F−1

(
(−∞, 1/2]

)
, because the points (z1, z2;q,p) in U satisfy

0 ≤ 1

2
|z1|2 + fL(q,p) + εRe(z21) ≤

1

2

(
1− |z2|2

)
≤ δ − 1

2
δ2 ≤ δ
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so that all coordinates are bounded. Note in particular, that this bound on the p-coordinates
guarantees that F will be J-plurisubharmonic on U .

The submanifold (Nε × L) ∩ U can also be written in the following easy form
{
(z, x2)

∣∣ x2 ≥ 1− δ and (1 + 2ε)x2 + (1− 2ε) y2 = 1− x22
}
× L .

Corollary II.3.5. Let
u : (Σ, ∂Σ, j) →

(
U, (Nε × L) ∩ U ; J

)

be any holomorphic map from a connected compact Riemann surface (Σ, j) to U with u(∂Σ) ⊂
Nε × L.

Either u is constant or its image is one of the slices Lx2,q0 =
(
C×{x2}×{q0}

)
∩U with

x2 ∈ [1− δ, 1) and q0 a point on the 0-section of T ∗L. If u is injective at one of its boundary
points, then Σ will be a disk, and u is equal to

u(z) =
(
ux2 ◦ ϕ(z);q0,0

)
,

where ux2 is the map given in Lemma II.3.3, and ϕ is a Möbius transformation of the unit
disk.

Proof. Let u be a J-holomorphic map as in the statement. We will study u by decom-
posing it into u =

(
uC2 , uT ∗L

)
with

uC2 : (Σ, ∂Σ, j) → (C2, Nε, i)

uT ∗L : (Σ, ∂Σ, j) → (T ∗L,L, JL) .

Using that fL is JL-plurisubharmonic on the considered neighborhood of the 0-section
contained in U , it follows from Corollary II.3.2 that uT ∗L is constant. Once we know that
uT ∗L is constant, the situation for uC2 is identical to the one in Lemma II.3.4, so that we
obtain the desired result. �

The results obtained so far only explain the behavior of holomorphic curves that are
completely contained in the model neighborhood U . Next we will extend this result to show
that a holomorphic curve is either disjoint from the subset U or is lies completely inside U .

Assume (W,J) is a compact almost complex manifold with convex boundary M = ∂W .
Let N be a submanifold of M diffeomorphic to Nε × L, and assume that there is a compact
subset U in W such that U is diffeomorphic to the model above, with M ∩U , N ∩U and J |U
all being equal to the corresponding objects in our model neighborhood.

Proposition II.3.6. Let
u : (Σ, ∂Σ; j) → (W,N ; J)

be a holomorphic map, and let U be a compact subset ofW that agrees with the model described
above.

If u(Σ) intersects U , then it has to lie entirely in U , and it will be consequently of the
form given by Corollary II.3.5.

Proof. Assume u to be a holomorphic map whose image lies partially in U . The set U
is a compact manifold with corners, and we write ∂U = ∂MU ∪ ∂WU , where

∂MU = U ∩M
is the upper boundary of U given by M , and

∂WU =
{
(z1, z2;q,p)

∣∣ Re(z2) ≥ 1− δ
}
∩ F−1

(
(−∞, 1/2]

)



60 II. ALMOST COMPLEX STRUCTURES AND LEGENDRIAN FOLIATIONS

is the boundary obtained by cutting off U at some chosen height (see also Fig. 4). We will
show that the real part of the z2-coordinate of u needs to be constant. This then proves the
proposition, because it prevents u from leaving U .

Figure 4

If the image of u lies only partially in U , then we may assume that u has varying real
part for z2. Slightly decreasing the cut-off level δ in (II.3.2) and using Sard’s theorem, the
holomorphic map u will intersect ∂WU transversely, so that u−1

(
∂WU

)
will be a properly

embedded submanifold of Σ. We will restrict u to the compact subsetG = u−1
(
U
)
, and denote

the boundary components of this domain by ∂MG = u−1
(
N ∩ U

)
and ∂WG = u−1

(
∂WU

)
.

We thus have a holomorphic map

u|G : (G, ∂G; j) →
(
U, ∂U ; J

)

with u
(
∂MG

)
⊂ N ∩ U and u

(
∂WG

)
⊂ ∂WU .

The coordinate maps πx2 : (z1, z2;q,p) 7→ Re(z2) and πy2 : (z1, z2;q,p) 7→ Im(z2) are har-
monic, and by the maximum principle it follows that for each component of G the maximum
of πx2 ◦ u|G needs to lie on the boundary of that component.

Furthermore the maximum of πx2 ◦ u|G cannot lie on ∂WG, because by our assumption
u|G is transverse to ∂WU . It follows that the maximum of πx2 ◦ u|G will be a point z0 ∈ ∂MG;
in particular z0 does not lie on one of the edges of G. By the boundary point lemma, either
πx2 ◦ u|G is constant or the outward derivative of this function at z0 must be strictly positive.
On the other hand, the function πy2 ◦ u|G is equal to 0 all along the boundary ∂MG so that
the derivatives of πx2 ◦ u|G and πy2 ◦ u|G vanish both at z0 in directions that are tangent
to the boundary. Using the Cauchy-Riemann equation we see that this implies that the
derivatives of these two functions at z0 vanish in every direction, in particular this implies
that the function πx2 ◦ u|G needs to be constant.

In either case, we have proved that the image of u lies completely inside U . �

The conclusion of this section is that by choosing a particular almost complex structure,
the elliptic singularities will have a neighborhood for which every holomorphic curve is either
completely contained within or it lies completely outside this neighborhood. All holomorphic
curves lying inside this neighborhood can be explicitly specified.

II.3.4. J-holomorphic curves close to codimension-1 singularities. Let (N,F) be
a submanifold with Legendrian foliation in a contact manifold (M, ξ). We will show in this
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section that certain codimension-1 components S ⊂ Sing(F) in N exclude that any holomor-
phic curves get close to this component. This way, if S is for example a boundary component
of N (as in the case of a bLob), it may block any holomorphic disks from escaping the sub-
manifold N . The argument is similar to that of the previous section, where we constructed
an almost complex manifold that served as a model for the neighborhood of the singular set.

Assume in this section that the Legendrian foliation F is given on a manifold N of the
form (−ε, ε)× S, where S is a closed manifold, and that {0} × S is a component of singular
points of codimension-1. Let r denote the coordinate on (−ε, ε). By Lemma I.2.2, we know

there is up to diffeomorphism a 1-form β̃ on S, such that β = rβ̃ is the regular equation

determining F on N . We will assume that ker β̃ determines a foliation F0 in {0} × S that

fibers over the circle hence we can write β̃ as the pull-back of an angular 1-form on the base
circle.

We will now find a suitable model neighborhood in the case, where S lies in the interior
of N . The following steps can all be easily adapted to the situation, where S ⊂ Sing(F) is a
boundary component of N (as is for example the case for the boundary of a bLob).

The model neighborhood for {0}×S in a symplectic manifold will be a bundle with exact
symplectic fibers and holomorphic projection map. Let F0 be a leaf of the foliation F0, then
S is the mapping torus of some diffeomorphism ψ : F0 → F0. We consider the T ∗F0-fibration

π : C× R×
(
R× T ∗F0

)
/ ∼ → C× T ∗S1

(z, r; s;q,p) 7→ (z; s, r)
,

where we use the equivalence relation (z, r; s;q,p) ∼
(
z, r; s+1;ψ(q), (Dψ−1)∗p

)
on the total

space. The submanifold S can be naturally embedded into this model as S′ := {1} × {0} ×(
R × F0

)
/ ∼, where F0 denotes the 0-section in T ∗F0. The foliation F0 corresponds under

this identification to the fibers with constant s-value.

Remark II.3.7. Note that the construction of the local model includes the case of contact
3-manifolds (for example the boundary of a “flat” overtwisted disk), because we may choose
F0 to just be a point.

Since (ψ, (Dψ−1)∗) : T ∗F0 → T ∗F0 is symplectic, we get a symplectic structure dλcan on
the vertical bundle kerDπ. Let JF be a compatible complex structure on this bundle. Note
that the directions ∂r, and ∂s are well defined, so that we can extend JF to an almost complex
structure J = i⊕ i⊕JF on the total space, where i ∂r = ∂s, and i ∂s = −∂r. By construction,
π is holomorphic with respect to J upstairs and i⊕ i on C× T ∗S1 downstairs.

The next step consists in finding a J-plurisubharmonic function on a neighborhood of
S′. Define a function h on C × R ×

(
R × T ∗F0

)
/ ∼ by using a metric on the vector bundle

C × R ×
(
R × T ∗F0

)
/ ∼ over C × R ×

(
R × F0

)
/ ∼, and defining h(v) = ‖v‖2/2 for every

vector v in this bundle. In a bundle chart, we obtain

h(z, r; s;q,p) =
1

2

∑

i,j

gi,j(z, r; s;q) pipj ,

and it follows that −ddJh = −d(dh ◦ J) simplifies on the 0-section of this bundle to

−ddJh = −
∑

i,j

gi,j dpi ∧ (dpj ◦ J) .
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We claim now that the function

F : C× R×
(
R× T ∗F0

)
/ ∼ → [0,∞),

(z, r; s;q,p) 7→ |z|2 + r2 + h(z, r; s;q,p)

is J-plurisubharmonic in a neighborhood of S′. Here one just needs to check that −ddJF
simplifies near {1} × R×

(
R× F0

)
/ ∼ to

−ddJF = 4 dx ∧ dy + 2 dr ∧ ds− ddJh ,

where x = Re z and y = Im z. This 2-form is positive on complex lines.
We find a neighborhood of {z = 1} in the level set F−1(1), where the restriction of the

1-form α := −dJF defines a contact structure. Furthermore, the submanifold N ′ ⊂ F−1(1)
given by the embedding

(−ε, ε)×
(
R× F0

)
/ ∼ →֒ C× R×

(
R× T ∗F0

)
/ ∼

(r; s;q) 7→
(√

1− r2, r; s;q,0
)

inherits a singular Legendrian foliation given by the form r ds, whose singular set is as desired
the submanifold S′ = N ′ ∩ {r = 0}. This foliation is diffeomorphic to the foliation F on N
which was our point of departure. By Theorem I.1.3, a small neighborhood of N ′ in F−1(1)
may be regarded as a model for an embedding of (N,F) in (M, ξ)

Choose a small relatively open set U ⊂ F−1
(
(0, 1]

)
containing S′ in its boundary, such

that ∂+U := U ∩ F−1(1) with contact form α is contactomorphic to a neighborhood of S in
M . If δ > 0 is a sufficiently small number, the level set {x = 1− δ} is a compact hypersurface
with boundary in ∂+U , and we will set ∂−U := {x = 1 − δ} ∩ U , redefining U to be the
compact set U ∩ {x ≥ 1− δ}.

Assume from now on that (W,J) is an almost complex manifold with convex boundary,
that N is a submanifold in M = ∂W with a singular Legendrian foliation, and that there is a
compact subset UW ⊂W diffeomorphic to U such that the almost complex structures agree,
and such that N ∩ UW is identified with U ∩N ′.

Proposition II.3.8. If the image of a J-holomorphic map

u : (Σ, ∂Σ, j) → (W,N, J)

intersects the neighborhood UW , then its image must be contained in UW . In fact, in the
identification of UW with the model neighborhood U , the image of u lies in a slice UW ∩ {z =
x0} for a fixed real value x0.

Proof. Let u : (Σ, ∂Σ) → (W,N) be any J-holomorphic curve that intersects the neigh-
borhood UW . Our aim is to show that u must be completely contained in UW . Define
G := u−1(UW ) and write u|G for the restriction of u. Perturbing δ slightly, we can assume
that u−1

(
∂−U

)
⊂ G is a properly embedded submanifold so that G has piecewise smooth

boundary. Project the holomorphic map u|G via

π : C× R×
(
R× T ∗F0

)
/ ∼ → C× T ∗S1 ,

and note that π ◦ u|G is a holomorphic map with respect to the standard complex structure.
The boundary π ◦ u(∂G) lies in the union of

π
(
∂+U ∩N ′) =

{
(z; s, r)

∣∣ Re z ≥ 1− δ, Im z = 0, r = −
√

1− |z|2
}



II.3. LOCAL MODELS FOR MAXIMALLY FOLIATED SUBMANIFOLDS AND J-HOLOMORPHIC CURVES63

and

π(∂−U) =
{
(z; s, r)

∣∣ Re z = 1− δ, |z|2 + r2 ≤ 1
}
.

Since both coordinate functions x = Re z and y = Im z are harmonic, it follows that
their maxima and minima are both attained on ∂G, so that if we assume y is not everywhere
equal to 0, then u must intersect π(∂−U), and in particular the minimum value of x needs
to be 1 − δ. Let z0 ∈ ∂G be a point for which u(z0) has both minimal x-coordinate and
extremal y-coordinate. At z0, the derivative of π ◦ u|G along the boundary direction ∂G has
vanishing x and y-coordinates. Using the Cauchy-Riemann equation at the point z0, we then
see that the derivatives also vanish in the radial direction, thus contradicting the boundary
point lemma, making both x and y constant on G.

Using that the boundary of u lies in N , it follows now that u is completely contained in
the slice UW ∩ {z = x0} for x0 ∈ R. �

The previous proposition showed that holomorphic curves intersecting the neighborhood U
need in fact to be entirely contained in U . Note that the singular set S splits the foliated
submanifold locally into two components (N \ S) ∩ U .

Proposition II.3.9. A J-holomorphic map

u : (Σ, ∂Σ, j) → (U,N ∩ U, J)
from a compact Riemann surface into U must be constant, if its boundary is mapped only into
one component of (N \ S) ∩ U .

This proposition ensures in particular that no holomorphic curves may get close to the
boundary of a bLob.

Proof. From Proposition II.3.8, we immediately recover that the boundary u|∂Σ needs

to have r-coordinate equal to ±
√
1− x20, where the x0-value fixes the slice that contains the

image of u. Since we are assuming that the boundary of u lies on one side of S, it must have
constant r-coordinate, and using that (z; s, r) 7→ r is a harmonic function, we obtain that
π ◦ u must have constant r-coordinate everywhere, because its maximum and its minimum
values are equal. The Cauchy-Riemann equation then implies that the s-coordinate is also
constant.

This finishes the proof, because it follows that the projection π ◦ u is constant, so that
u is completely contained in a fiber of π, which we will denote by W0. By construction,
W0 is diffeomorphic to T ∗F0 and J restricts on W0 to JF , so that W0 is an almost complex
submanifold equipped with a plurisubharmonic function F |W0

= h|W0
+1. Since the boundary

of u lies in W0 along the 0-section of T ∗F0, where h attains its minimum, it follows that u
must be constant. �

Remark II.3.10. Note that when the codimension 1 singular set lies in the interior of the
maximally foliated submanifold, the almost complex structure J that we have chosen above
allows us to easily write down holomorphic annuli with one boundary component on each
side of the singular set. These annuli cannot be stable under perturbations of the Cauchy-
Riemann operator, because the expected dimension of the moduli space (given by the index of
the linearized CR-problem) does not agree with the observed dimension for J . In particular,
the holomorphic annuli for this J do not give rise to a Bishop family. In [NW11], we
increased the index of the considered problem by choosing a family of foliated submanifolds,
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and allowing each boundary of the holomorphic annuli to sit on different foliated submanifolds.
This approach has allowed us to give an alternate proof for the non-fillability of contact 3-
manifolds that have positive Giroux torsion, using only classical holomorphic curve methods.

II.4. Appendix: Cotamed complex structures – Existence and contractability

The aim of this appendix is to give the proof of Theorem II.2.1. All of the statements
given here can also be found in the appendix of [MNW13], only Proposition II.4.5 has been
mildly modified to increase its clarity.

Theorem II.2.1. Let (M, ξ) be a cooriented contact manifold, and let (W,ω) be a symplectic
manifold with boundary M = ∂W . The following two statements are equivalent

(i) (W,ω) is a weak symplectic filling of (M, ξ).
(ii) There exists an almost complex structure J onW that is tamed by ω and that makes

M a J-convex boundary whose J-complex tangencies are ξ.

Proof. Suppose (W,ω) is a weak filling of (M, ξ), and choose a positive contact form α
for ξ. Let p ∈ M be an arbitrary point. Since all the 2-forms T dα + ω on ξp for T ≥ 0
are symplectic, we may use Proposition II.4.4 to find a complex structure Jξ(p) on ξp that
is cotamed by ω|ξp and dα|ξp . Then using the fact that the cotaming property is open, it

follows that every point in the manifold M has a small neighborhood on which there exists a
complex structure Jξ on ξ tamed by both ω|ξ and dα|ξ. The contractability of the space of

all such Jξ(p)’s (Proposition II.4.1), allows us to replace the local complex structures with a
global one defined on all of ξ that is cotamed by both 2-forms.

Choose now any vector field X on M that spans ker ω|TM , and extend it to a collar
neighborhood U of M . Let Y be a vector field on U that lies along M in the ω-orthogonal
complement of ξ and that satisfies ω(X,Y ) > 0. We extend Jξ to an almost complex structure
J on U by setting JX = Y . Clearly, J is tamed by ω on a small neighborhood of M , and we
can then extend J to the interior of W to obtain the desired tamed almost complex structure
on the entire fillingW . By construction, ξ = TM ∩(JTM), andM is strictly J-pseudoconvex
since Jξ is tamed by dα|ξ.

Conversely, assume W has an almost complex structure J that is tamed by ω and makes
the boundary strictly pseudoconvex, with ξ being the field of complex tangencies TM ∩
(JTM). We can then write ξ as the kernel of a nonvanishing 1-form α, and pseudoconvexity
implies that we can choose the sign of α in such a way that dα|ξ tames J |ξ, and such that the
natural orientation of ξ together with its co-orientation defined via α is compatible with the
boundary orientation of W . Since ω tames J , ωξ also tames J |ξ. We therefore have cotaming

2-forms on ξ, so the easy implication (3) =⇒ (2) of Proposition II.4.4 guarantees that (W,ω)
is a weak filling of (V, ξ). �

II.4.1. Contractibility of the space of cotamed almost complex structures. To
go from the linear situation to global existence results on a manifold we used the following
result.

Proposition II.4.1 (Sévennec). The space of complex structures on a vector space tamed by
two given symplectic forms is either empty or contractible.

Using the fact that the space of complex structures tamed by a symplectic form is
nonempty (which follows for instance by the linear Darboux theorem), and applying the
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proposition above twice to the same symplectic form, we recover as a special case the classi-
cal result of Gromov that states that the space of tamed complex structures is contractible.
The proof of the proposition uses the following two lemmas, of which the first is more or less
standard.

Lemma II.4.2 (Cayley, Sévennec). Let V be a real vector space and J (V ) the space of
complex structures on V . We can define for any fixed J0 ∈ J (V ) a map

µJ0 : J 7→ (J + J0)
−1 · (J − J0)

which is a diffeomorphism from

J ∗
J0
(V ) :=

{
J ∈ J (V ) | J + J0 ∈ GL(V )

}

to
A∗
J0
(V ) :=

{
A ∈ End(V ) | AJ0 = −J0A and A− I ∈ GL(V )

}
.

The inverse of this map is given by µ−1
J0

: A 7→ (A− I)J0(A− I)−1.

Proof. One can view A∗
J0
(V ) as the set of J0-complex antilinear maps that do not

have any eigenvalue equal to 1. Using the equations (J − J0) J0 = −J (J − J0) and (J +
J0) J0 = J (J + J0), one sees that the image of µJ0 consists of J0-complex antilinear maps,
and µJ0(J)− I = −2 (J + J0)

−1 J0 is invertible. �

Lemma II.4.3 (Sévennec). Let (V, ω) be a symplectic vector space and denote by Jt(ω) ⊂
J (V ) the space of complex structures tamed by ω. Choosing any J0 ∈ Jt(ω), it follows that
Jt(ω) lies in J ∗

J0
(V ), and the image of Jt(ω) under the associated map µJ0 is a convex domain

in A∗
J0
(V ).

We first explain how to prove Proposition II.4.1 using the above lemma. Suppose there
is a complex structure J0 tamed by ω0 and ω1. The space of cotamed complex structures
Jt(ω0) ∩ Jt(ω1) is then diffeomorphic under the map µJ0 to the intersection of the convex
subsets given by the lemma. This intersection is again convex and hence contractible.

Proof of Lemma II.4.3. For any complex structure J tamed by ω, the endomorphism
J+J0 is invertible because for any nonzero w, ω

(
w, (J+J0)w

)
> 0, so in particular (J+J0)w

is not zero. This proves the first part of the lemma.
Now fix a nonzero vector v ∈ V , and let Cv be the set of A ∈ End(V ) that anticommute

with J0, and that satisfy

ω
(
(A− I) v, (A− I) J0v

)
= −ω

(
(A− I) v, J0(A+ I) v

)
> 0 .

We now prove that Cv ⊂ End(V ) is convex. Every segment As = (1 − s)A0 + sA1 with
s ∈ [0, 1] for arbitrary A0, A1 ∈ Cv defines a polynomial of degree 2

P (s) = −ω
(
(As − I) v, J0(As + I) v

)
,

and the above inequality corresponds to checking that P (s) is positive for all values s ∈ [0, 1].
The leading coefficient −ω

(
(A1 − A0) v, J0(A1 − A0) v

)
of P (s) is never positive, because

J0 tames ω, so that P (s) is either a line or a parabola facing downward. In both cases
P (s) ≥ min{P (0), P (1)} > 0 for all s ∈ (0, 1) so the inequality holds for the whole segment
As.

Note that Cv 6= ∅ since 0 ∈ Cv. Define the intersection

C∗ :=
⋂

v 6=0

Cv ,
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which is a nonempty convex subset of End(V ). In fact, one has C∗ ⊂ A∗
J0
(V ), because if

there were a matrix A ∈ C∗ with det(A − I) = 0, then A would have an eigenvector w ∈ V
with eigenvalue 1, but then −ω

(
(A− I)w, J0(A+ I)w

)
= 0 so that A /∈ Cw.

Since C∗ lies in the domain of µ−1
J0

and Jt(ω) lies in the domain of µJ0 , we have C∗ =

µJ0
(
Jt(ω)

)
, so that the image of the complex structures tamed by ω is convex as we wanted

to show. �

II.4.2. Existence of a cotamed complex structure on a vector space.

Proposition II.4.4. Let V be a real vector space equipped with two symplectic forms ω0 and
ω1. The following properties are equivalent:

(1) the segment between ω0 and ω1 consists of symplectic forms
(2) the ray starting at ω0 and directed by ω1 consists of symplectic forms
(3) there is a complex structure J on V tamed both by ω0 and by ω1.

The equivalence between (1) and (3) was explained to us by Jean-Claude Sikorav. It relies
on the simultaneous reduction of symplectic forms. Specifically, we need [LR05, Theorem 9.1]
which we shall state (in a slightly weakened form) and reprove (in its full force) below as
Proposition II.4.5, since the very general context of [LR05] makes it hard to read for people
interested only in the symplectic case.

Recall that according to the linear Darboux theorem, any symplectic form on a 2n-
dimensional vector space is represented in some basis by the standard matrix

Ω2n =

(
0 1
−1 0

)
.

We now want to understand what can be said for a pair of symplectic structures. Below we
give an approximate normal form which is sufficient for our purposes and more pleasant to
state than the precise result (cf. [LR05, Theorem 9.1]), though the precise result can also be
extracted from the proof that we will give at the end of this section.

Proposition II.4.5. Let ω0 and ω1 be symplectic forms on a vector space V . There exists a
matrix A1 that is block diagonal with blocks of the form

(
0 λ
−λ 0

)
∈ Mat

(
R2×2

)
and




0 0 µ ν
0 0 −ν µ
−µ ν 0 0
−ν −µ 0 0


 ∈ Mat

(
R4×4

)

for λ, ν 6= 0. Using A1 we define a second matrix A0 by removing in A1 the blocks on the
diagonal and replacing them either with Ω2 or with Ω4 depending on the size of the erased
block.

For any ε > 0, there is a basis of V such that ω0 is represented with respect to this basis by
A0, and ω1 is represented by a matrix which is ε-close to A1. If the linear segment between ω0

and ω1 consists of symplectic forms, then the coefficients λ in the 2× 2-blocks of A1 described
above cannot be negative.

The relation with cotamed complex structures will come from the following.

Proposition II.4.6.
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(a) Let V = R2 with two antisymmetric bilinear forms ω0 and ω1 defined by ωj(v, w) =
vtAjw, where

A0 =

(
0 1
−1 0

)
and A1 =

(
0 λ
−λ 0

)
.

If λ > 0, then J =

(
0 −1
1 0

)
is tamed by both forms.

(b) Let V = R4, and let ω0 and ω1 be antisymmetric bilinear forms defined by the
matrices

A0 =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 and A1 =




0 0 λ µ
0 0 −µ λ
−λ µ 0 0
−µ −λ 0 0


 ,

with µ 6= 0. Then there exists a complex structure J on R4 that is tamed by both
forms.

Proof. We only need to prove (b). For simplicity write V as C2, and the matrices A0

and A1 as

A0 =

(
0 1
−1 0

)
and A1 =

(
0 z
−z̄ 0

)

with z = λ+ iµ = reiψ. The matrices

Jφ =

(
0 eiφ

−e−iφ 0

)

define complex structures on V , and it follows that A0Jφ = −
(
e−iφ 0
0 eiφ

)
is positive definite

if cosφ < 0, and A1Jφ = −r
(
ei(ψ−φ) 0

0 ei(φ−ψ)

)
is positive definite if cos(ψ − φ) < 0. As long

as ψ 6= π (which we have excluded by requiring that µ 6= 0), it follows that we can choose φ
such that φ ∈ (π/2, 3π/2) and φ− ψ ∈ (π/2, 3π/2) + 2πZ. �

Proof of Proposition II.4.4. We first explain the easy equivalence between (1) and
(2). The (open) ray starting at ω0 and directed by ω1 and the open interval between ω0 and
ω1 span the same cone in the space of skew symmetric bilinear forms. Since being symplectic
is invariant under nonzero scalar multiplication, we have the equivalence.

The implication (3) =⇒ (1) is also direct because, for any t ∈ [0, 1], we have
(
(1− t)ω0 + t ω1

)
(v, Jv) = (1− t)ω0(v, Jv) + t ω1(v, Jv) ,

which is positive whenever v ∈ V is nonzero. So in particular, no such v can be in the kernel
of an element of the segment between ω0 and ω1.

To prove (1) =⇒ (3), we use the fact that by Proposition II.4.5, there is a matrix A′
1

that splits into certain standard blocks, such that we can find for any ε > 0 a basis of V for
which ω0 is in canonical form, and for which ω1 is represented by a matrix that is ε-close
to A′

1.
If condition (1) holds, then the blocks of A′

1 correspond to the ones described in Propo-
sition II.4.6, and we obtain the existence of a complex structure J on V that is tamed both
by the standard symplectic form and by A′

1. By choosing ε > 0 sufficiently small, it follows
that J is also tamed by ω0 and ω1, because tameness is an open condition. �
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Proof of Proposition II.4.5. The proof will proceed in several steps.
Decomposition into generalized eigenspaces. In the first step we shall decompose

V into suitable subspaces that are both ω0- and ω1-orthogonal.
Let ϕr : V → V ∗ for r = 0, 1 be the isomorphisms defined by ϕr(v) := ωr(v, ·). We consider

the endomorphism B = ϕ−1
0 ◦ ϕ1 of V so that ω1(v, w) = ω0(Bv,w). The endomorphism B

is invertible and it is ω0-symmetric since:

ω0(Bv,w) = ω1(v, w) = −ω1(w, v) = −ω0(Bw, v) = ω0(v,Bw) .

To define the generalized eigenspaces of B, complexify the vector space V to obtain V C,
and extend the ωr to sesquilinear forms ωC

r . A computation analogous to the preceding one
shows that B is ωC

0 -symmetric and we still have ωC
0 (v,Bw) = ωC

1 (v, w).
The characteristic polynomial of B splits over C as P (X) =

∏
λ(X − λ)mλ , so we can

decompose V C into generalized eigenspaces

V C =
⊕

λ∈Sp(B)

EC
λ ; EC

λ = ker(B − λ)mλ .

Lemma II.4.7. If λ and µ are eigenvalues of B such that λ 6= µ̄, then EC
λ and EC

µ are both

ωC
0 - and ω

C
1 -orthogonal.

Proof. We prove by induction on k and l that ker(B−λ)k and ker(B−µ)l are orthogonal.
To start the induction, note that if vλ ∈ ker(B − λ), and vµ ∈ ker(B − µ), then

(λ̄− µ)ωC
0 (vλ, vµ) = ωC

0

(
(B − µ̄) vλ, vµ

)
= ωC

0

(
vλ, (B − µ) vµ

)
= 0 ,

thus since λ 6= µ̄, it follows that ωC
0 (vλ, vµ) = 0. Similarly, ωC

1 (vλ, vµ) = ωC
0 (vλ, Bvµ) =

µωC
0 (vλ, vµ) = 0.

Assume now it has already been shown for the integers k and l that ker(B − λ)k and
ker(B−µ)l are both ωC

0 - and ω
C
1 -orthogonal. Choose a vector v′λ ∈ ker(B−λ)k+1 and use the

fact that Bv′λ = λ v′λ+w for some w ∈ ker(B−λ)k. Then we obtain for any vµ ∈ ker(B−µ)l,
(λ̄− µ)l ωC

0 (v
′
λ, vµ) = (λ̄− µ)l−1 ωC

0

(
(B − µ̄) v′λ − w, vµ

)

= (λ̄− µ)l−1 ωC
0

(
(B − µ̄) v′λ, vµ

)
= ωC

0

(
v′λ, (B − µ)l vµ

)
= 0 ,

and also ωC
1 (v

′
λ, vµ) = ωC

0 (Bv
′
λ, vµ) = λ̄ ωC

0 (v
′
λ, vµ)+ω

C
0 (w, vµ) = 0, which proves the induction

step from (k, l) to (k+1, l). Since λ and µ have completely symmetric roles, this also explains
how to go to (k, l + 1). �

We now relate this decomposition of V C to the initial real vector space V . For a real
eigenvalue λ, the intersection V ∩ EC

λ defines a real subspace Eλ with dimREλ = dimCE
C
λ .

Complex conjugation defines an isomorphism EC
λ → EC

λ̄
, vλ 7→ v̄λ, and we can write V ∩

(
EC
λ ⊕

EC
λ̄

)
for λ ∈ C \R as the direct sum of real subspaces E{λ,λ̄} =

{
v+ v̄

∣∣ v ∈ EC
λ

}
⊕
{
i (v− v̄)

∣∣
v ∈ EC

λ

}
.

This way we find a decomposition of V into pairwise ω0- and ω1-orthogonal subspaces

Eµ1 ⊕ · · · ⊕ Eµk ⊕ E{λ1,λ̄1} ⊕ · · · ⊕ E{λl,λ̄l}

with µ1, . . . , µk ∈ R \ {0}, and λ1, . . . , λl ∈ C \ R.
Blocks with real eigenvalue.
For the following considerations, we restrict to one of the subspaces Eλj with λj ∈ R,

and denote λj for simplicity just by λ. We will construct a basis of Eλ such that ω0 and ω1
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have the particularly nice form described in the proposition. Note that ω0 and ω1 are both
nondegenerate on Eλ.

Let k+ 1 be the nilpotency index of B − λ, i.e. (B − λ)k+1 = 0 and (B − λ)k 6= 0. Let v0
be an element of Eλ not in ker(B − λ)k. We set vj := ε−j(B − λ)jv0 to define a collection of
vectors v0, . . . , vk. Choose now a vector wk ∈ Eλ with ω0(vk, wk) = 1 and ω0(vj , wk) = 0 for
every j 6= k, and define inductively wj−1 := ε−1 (B − λ)wj , or equivalently

Bwj = λwj + εwj−1

for j ≥ 1.

Lemma II.4.8. The vectors v0, . . . , vk, w0, . . . , wk are linearly independent and satisfy the
relations ωr(vj , vj′) = ωr(wj , wj′) = 0 for all r = 0, 1, and j, j′, and

ω0(vj , wj′) = δj,j′ and ω1(vj , wj′) = λ δj,j′ + ε δj,j′−1 .

Proof. We start by proving ωr(vj , vj′) = 0. For this we will use an induction on |j − j′|.
If j − j′ = 0 then the statement follows directly from the antisymmetry of ωr. Suppose that
the claim is true for j − j′ ≤ m and consider any j and j′ with j − j′ = m+ 1 (in particular
j ≥ 1). We have

ε ω0(vj , vj′) = ω0

(
(B − λ) vj−1, vj′

)
= ω1(vj−1, vj′)− λω0(vj−1, vj′) = 0

by the induction hypothesis. Using the fact that Bvj′ = ε vj′+1 + λ vj′ , we compute

ω1(vj , vj′) = ω0(vj , Bvj′) = ε ω0(vj , vj′+1) + λω0(vj , vj′) .

The first term is zero by the induction hypothesis and the second one is zero because of the
preceding computation. The proof of ωr(wj , wj′) = 0 follows the same lines, and will be
omitted.

Note that

ω0(vj , wj′) = εj
′−k ω0

(
vj , (B − λ)k−j

′

wk
)

= εj
′−k ω0

(
(B − λ)k−j

′

vj , wk
)
= ω0(vk+j−j′ , wk) = δj,j′ ,

and in particular this implies that v0, . . . , vk, w0, . . . , wk are linearly independent vectors with
respect to which ω0 has standard form.

The remaining relation for ω1 can be obtained by

ω1(vj , wj′) = ω0(vj , Bwj′) = λω0(vj , wj′) + ε ω0(vj , wj′−1) = λ δj,j′ + ε δj,j′−1 . �

If we restrict ω0 and ω1 to the subspace E = 〈v0, . . . , vk, w0, . . . , wk〉 and represent them
in this basis, we now find that ω0 is in standard form Ω2k and ω1 is represented by a matrix
ε-close to λΩ2k.

To continue the proof, restrict ω0, ω1, and B to the ω0-symplectic complement E′ of the
space E. Note that E′ is stable under B because for u ∈ E′,

ω0(vj , Bu) = ω0(Bvj , u) = λω0(vj , u) + ε ω0(vj−1, u) = 0 ,

and similarly for ω0(wj , Bu) = 0. We can thus proceed as before to reduce all eigenspaces Eλ
with λ ∈ R to ω0-symplectic blocks in normal form.

Blocks with complex eigenvalue. We proceed now to the generalized complex eigenspace
EC
λ with λ ∈ C\R. Let k be the largest integer for which EC

λ 6= ker(B−λ)k, and construct as
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before a chain of vectors v0, . . . , vk ∈ EC
λ by starting with an element v0 ∈ EC

λ \ ker(B − λ)k,
and defining inductively

vj+1 := ε−1 (B − λ) vj .

Using complex conjugation, we also find a chain v̄0, . . . , v̄k that lies in EC
λ̄
. Since B is the

complexification of a real linear map, v̄j+1 := ε−1 (B − λ̄) v̄j holds.
Next, we define two chains w0, . . . , wk in EC

λ̄
and w̄0, . . . , w̄k in EC

λ by starting with a

vector wk ∈ EC
λ̄

with ωC
0 (vk, wk) = 1 and ωC

0 (vj , wk) = 0 for every j 6= k, and defining

wj−1 := ε−1 (B − λ̄)wj , or equivalently

Bwj = λ̄ wj + εwj−1

for j ≥ 1. Similarly, we obtain w̄j−1 = ε−1 (B − λ) w̄j .

Lemma II.4.9.

(a) The space spanned by v0, . . . , vk, v̄0, . . . , v̄k and the one spanned by w0, . . . , wk, w̄0, . . . , w̄k
are each isotropic with respect to both ω0 and ω1.

(b) The ωC
0 -pairings for these vectors are given by

ωC
0 (vj , w̄j′) = 0 , ωC

0 (vj , wj′) = δj,j′ ,

ωC
0 (v̄j , wj′) = 0 , ωC

0 (v̄j , w̄j′) = δj,j′ .

(c) The ωC
1 -pairings for these vectors are given by

ωC
1 (vj , w̄j′) = 0 , ωC

1 (vj , wj′) = λ δj,j′ + ε δj,j′−1 ,

ωC
1 (v̄j , wj′) = 0 , ωC

1 (v̄j , w̄j′) = λ̄ δj,j′ + ε δj,j′−1 .

Proof. To prove (a) note that since λ 6= λ̄, the spaces EC
λ and EC

λ̄
are both ωC

0 - and

ωC
1 -isotropic, so we only need to show that ωC

r (v̄j , vj′) = ωC
r (w̄j , wj′) = 0 for all j, j′, and for

r = 0, 1. If j = j′, we write vj as vx + ivy, and we use sesquilinearity as follows:

ωC
0 (v̄j , vj) = ωC

0 (vx, vx) + ωC
0 (vx, ivy)− ωC

0 (ivy, vx)− ωC
0 (ivy, ivy)

= ω0(vx, vx) + iω0(vx, vy) + iω0(vy, vx)− ω0(vy, vy)

= 0 .

By the same computation, ωC
1 (v̄j , vj) = 0.

If the statement is true for j′ − j = m ≥ 0, then

ε ωC
0 (v̄j , vj′+1) = ωC

0

(
v̄j , (B − λ) vj′

)
= ωC

1 (v̄j , vj′)− λωC
0 (v̄j , vj′)

= 0

and

ωC
1 (v̄j , vj′+1) = ωC

0 (Bv̄j , vj′+1) = ωC
0 (λ̄ v̄j + ε v̄j+1, vj′+1)

= 0 ,

which finishes the induction. The argument for ωC
r (w̄j , wj′) is identical.

To prove (b), note first that the second two equations are the complex conjugate of the
first two. Since vj , w̄j′ ∈ EC

λ , it also follows immediately that ωC
0 (v̄j , w̄j′) = 0, so that we are

only left with showing ωC
0 (vj , wj′) = δj,j′ , but the required computation is identical to the

one used to show the analogous relation in the proof of Lemma II.4.8.
The equalities for (c) follow similarly. �
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We will now intersect the complex subspace spanned by the chains defined above with
the initial real vector space V to finish the proof of the proposition. For this, define for all
j ≤ k the real vectors

v+j =
1√
2
(vj + v̄j), v−j =

i√
2
(vj − v̄j)

and

w+
j =

1√
2
(wj + w̄j), w−

j =
i√
2
(wj − w̄j)

which all lie in Eλ,λ̄. Using the results deduced above, we obtain for all r = 0, 1, and j, j′ the
equations ωr(v

+
j , v

±
j′ ) = ωr(v

−
j , v

±
j′ ) = 0 and ωr(w

+
j , w

±
j′ ) = ωr(w

−
j , w

±
j′ ) = 0, and finally

2ω0(v
+
j , w

+
j′ ) = ωC

0 (vj , wj′ + w̄j′) + ωC
0 (v̄j , wj′ + w̄j′) = 2 δj,j′ ,

2ω0(v
+
j , w

−
j′ ) = i ωC

0 (vj , wj′ − w̄j′) + i ωC
0 (v̄j , wj′ − w̄j′) = 0 ,

2ω1(v
+
j , w

+
j′ ) = ωC

1 (vj , wj′ + w̄j′) + ωC
1 (v̄j , wj′ + w̄j′)

= ωC
0 (vj , Bwj′) + ωC

0 (v̄j , Bw̄j′) = λ̄ ωC
0 (vj , wj′) + ε ωC

0 (vj , wj′−1)

+ λωC
0 (v̄j , w̄j′) + ε ωC

0 (v̄j , w̄j−1)

= (λ+ λ̄) δj,j′ + 2ε δj,j′−1

and similar computations for the other matrix elements, which prove the desired result with
µ = Reλ and ν = Imλ.

Sign of real eigenvalues. Assume that all 2-forms in the family

ωt := (1− t)ω0 + t ω1

for t ∈ [0, 1] are nondegenerate. The λ-coefficients in the 2 × 2-blocks of A′
1 correspond

to the real eigenvalues of the map B, so that if λ < 0 with eigenvector v, then we have
ω1(v, ·) = ω0(Bv, ·) = λω0(v, ·), and it follows that ωt(v, ·) = (1− t+ tλ)ω0(v, ·) has to vanish
for a certain value t0 ∈ (0, 1), so that ωt0 is degenerate. �





CHAPTER III

Moduli spaces of holomorphic disks and filling obstructions

III.1. The moduli space of holomorphic disks

Let us assume again that (W,J) is an almost complex manifold, and that N ⊂ W is a
totally real submanifold. We want to study the space of maps

u : (D2, ∂D2) → (W,N ; J)

that are J-holomorphic (strictly speaking they are (i, J)-holomorphic), meaning that we want
the differential of u to be complex linear, so that it satisfies at every z ∈ D2 the equation

Duz · i = J
(
u(z)

)
·Duz .

Note that J depends on the point u(z)!
A different way to state this equation is by introducing the Cauchy-Riemann operator

∂̄Ju = J(u) ·Du−Du · i ,
and writing ∂̄Ju = 0, so that the space of J-holomorphic maps, we are interested in then
becomes

M̃
(
D2, N ; J

)
=
{
u : D2 →W

∣∣ ∂̄Ju = 0 and u(∂D2) ⊂ N
}
.

Remark III.1.1. The situation of holomorphic disks is a bit special compared to the one of
general holomorphic maps, because all complex structures on the disk are equivalent. If Σ
were a smooth compact surface of higher genus, we would usually need to study the space of
pairs (u, j), where j is a complex structure on Σ, and u is a map u : (Σ, ∂Σ) → (W,N) that
should be (j, J)-holomorphic, that means, J(u) ·Du−Du · j = 0.

To be a bit more precise, we do not choose pairs (u, j) with arbitrary complex structures j
on Σ, but we only allow for j a single element in each equivalence class of complex structures:
If ϕ : Σ → Σ is a diffeomorphism, and j is some complex structure, then of course ϕ∗j
will generally be a complex structure different from j, but we usually identify all complex
structures up to isotopy, and use that the space of equivalence classes of complex structures can
be represented as a smooth finite dimensional manifold (see [Hum97] for a nice introduction
to this theory).

Fortunately, these complications are not necessary for holomorphic disks (or spheres), and
it is sufficient for us to work with the standard complex structure i on D2.

In this section, we want to explain the topological structure of the space M̃
(
D2, N ; J

)

without entering into too many technical details. Instead of starting directly with our par-
ticular case, we will try to argue on an intuitive level by considering a finite dimensional
situation that has strong analogies with the problem we are dealing with.

Let us consider a vector bundle E of rank r over a smooth n-manifold B. Choose a
section σ : B → E, and let M = σ−1(0) be the set of points at which σ intersects the 0-
section. We would “expect” M to be a smooth submanifold of dimension dimM = n− r (if

73
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n − r < 0, we could hope not to have any intersections at all); unfortunately, this intuitive
expectation might very well be false. A sufficient condition under which it holds, is when σ is
transverse to the 0-section, that means, for every x ∈ M , the tangent space to the 0-section
TxB in TxE spans together with the image Dσ · TxB the whole tangent space TxE. It is
well-known that when the transversality condition is initially not true, it can be achieved by
slightly perturbing the section σ.

Let us now come again to the Cauchy-Riemann problem. The role of B will be taken
by the space of all maps u :

(
D2, ∂D2

)
→ (W,N), which we will denote by B

(
D2;N

)
. We do

not want to spend any time thinking about the regularity of the maps and point instead to
[MS04] as reference. It is sufficient for us to observe that the space B

(
D2;N

)
is a Banach

manifold, that means, an infinite dimensional manifold modeled on a Banach space.
The section σ will be replaced by the Cauchy-Riemann operator ∂̄J , and before pursuing

this analogy further, we want first to specify the target space of this operator. In fact, ∂̄J
associates to every map u ∈ B

(
D2;N

)
a 1-form on Σ with values in TW . The formal way to

state this is that we have for every map u a vector bundle u∗TW over D2, which allows us to
construct

Hom
(
TD2, u∗TW

)
.

The sections in Hom
(
TD2, u∗TW

)
form a vector space, and if we look at all sections for all

maps u, we obtain a vector bundle over B
(
D2;N

)
, whose fiber over a point u are all sections

in Hom
(
TD2, u∗TW

)
. We denote this bundle by E

(
D2;N

)
.

The operator ∂̄J associates to every u, that means, to every point of B
(
D2;N

)
an element

in E
(
D2;N

)
so that we can think of ∂̄J as a section in the bundle E

(
D2;N

)
. The J-holomorphic

maps are the points of B
(
D2;N

)
where the section ∂̄J intersects the 0-section. In fact, ∂̄Ju is

always anti-holomorphic, because

J(u) · ∂̄Ju = −Du− J(u) ·Du · i =
(
Du · i− J(u) ·Du

)
· i = −

(
∂̄Ju

)
· i ,

and for analytical reasons we will only consider sections in Hom
(
TΣ, u∗TW

)
taking values

in the subbundle HomC

(
TΣ, u∗TW

)
of anti-holomorphic homomorphisms. We denote the

subbundle of sections taking values in HomC

(
TΣ, u∗TW

)
by ĒC

(
D2;N

)
.

III.1.1. The expected dimension of M̃
(
D2, N ; J

)
. The rank of ĒC

(
D2;N

)
and the

dimension of B
(
D2;N

)
are both infinite, hence we cannot compute the expected dimension

of the solution space M̃
(
D2, N ; J

)
as in the finite dimensional case, where it was just the

difference dimB − rankE. Nonetheless we can associate a so-called Fredholm index to a
Cauchy-Riemann problem. We will later give some more details about how the index is
actually defined, for now we just note that it is an integer that determines the expected

dimension of the space M̃
(
D2, N ; J

)
.

For a Cauchy-Riemann problem with totally real boundary condition the index has an
easy explicit formula (see for example [MS04, Theorem C.1.10]) that simplifies in our specific
case of holomorphic disks to

(III.1.1) indu ∂̄J =
1

2
dimW + µ

(
u∗TW, u∗TN

)
,

where we have used that the Euler characteristic of a disk is χ
(
D2
)
= 1.

Remark III.1.2. We would like to warn the reader that the dimension of a moduli space
of holomorphic disks or holomorphic spheres tends to increase, if we increase the dimension
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of the symplectic ambient manifold. Unfortunately, the opposite is true for a higher genus
curve Σ: The formula above becomes

indu ∂̄J =
1

2
χ(Σ) dimW + µ

(
u∗TW, u∗TN

)
,

and since the Euler characteristic is negative, it is harder to find curves with genus in high
dimensional spaces than in lower dimensional ones.

The Maslov index µ is an integer that classifies loops of totally real subspaces up to
homotopy:

Definition. Let EC be a complex vector bundle over the closed 2-disk D2 and let ER be a
totally real subbundle of EC|∂D2 defined only over the boundary of the disk. The Maslov
index µ(EC, ER) is an integer that is computed by trivializing EC over the disk, and choosing
a continuous frame A(eiφ) ∈ GL(n,C) over the boundary ∂D2 representing ER with respect
to the chosen trivialization. We then set

µ(EC, ER) := deg
detA2

det(A∗A)
,

where deg(f) is the degree of a continuous map f : S1 → S1.

In these notes, we will compute the Maslov index only once, in Section III.1.3, but note

that the index indu ∂̄J depends on the holomorphic disk u in M̃
(
D2, N ; J

)
, we are considering;

this should not confuse us however, because it only means that the space of disks may have
different components and the expected dimensions of the different components do not need
to agree.

We will now briefly explain how the index of ∂̄J is defined. We have a map ∂̄J : B
(
D2;N

)
→

ĒC
(
D2;N

)
, and we need to compute the linearization of ∂̄J at a point of u ∈ B

(
D2;N

)
, that

means, we have to compute the differential

D̄J(u) : TuB
(
D2;N

)
→ T∂̄JuĒC

(
D2;N

)
.

To find D̄J(u), choose a smooth path ut of maps in B
(
D2;N

)
with u0 = u, then we can regard

the image ∂̄Jut, and take its derivative with respect to t in t = 0. If we set u̇0 = d
dt

∣∣
t=0

ut,

this allows us to obtain a linear operator D̄J(u) by

D̄J(u) · u̇0 =
d

dt

∣∣∣∣
t=0

∂̄Jut .

It is a good exercise to determine the domain and target space of this operator, and find a
way to describe them.

The index of ∂̄J at u is defined as

indu ∂̄J := dimker D̄J(u)− dim coker D̄J(u) .

It is a remarkable fact that the index is finite and determined by formula (III.1.1) above. Also
note that the index is constant on each connected component of B

(
D2;N

)
.

III.1.2. Transversality of the Cauchy-Riemann problem. Just as in the finite di-
mensional analogue, it may happen that the formal dimension we have computed does not
correspond to the dimension we are observing in an actual situation. In fact, if the section σ
(or in our infinite dimensional case, ∂̄J) are not transverse to the 0-section, there is no reason

why M or M̃
(
D2, N ; J

)
would need to be smooth manifolds at all.
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On the other hand, if σ is transverse to the 0-section, then M = σ−1(0) is a smooth
submanifold of dimension dimB−rankE, and the analogue result is also true for the Cauchy-

Riemann problem: If ∂̄J is at every point of M̃
(
D2, N ; J

)
transverse to 0 (or said equiva-

lently, if the cokernel of the linearized operator is trivial for every holomorphic disk), then

M̃
(
D2, N ; J

)
will be a smooth manifold whose dimension is given by the index of ∂̄J .

In the finite dimensional situation, we can often achieve transversality by a small pertur-
bation of σ, but of course, this might require a subtle analysis of the situation, when we want
to perturb σ only within a space of sections satisfying certain prescribed properties.

Definition. Let u : Σ →W be a holomorphic map from a Riemann surface with or without
boundary. We call u somewhere injective, if there exists a point z ∈ Σ with Duz 6= 0, and
such that z is the only point that is mapped by u to u(z).

We call a holomorphic curve that is not the multiple cover of any other holomorphic curve
a simple holomorphic curve. Simple holomorphic curves are somewhere injective.

It is a non-trivial result that by perturbing the almost complex structure J , we can achieve
transversality of the Cauchy-Riemann operator for every somewhere injective disk in W with
boundary in a totally real submanifold N . We could hope that this theoretical result would
be sufficient for us, because the considered disks are injective along their boundaries, but we
have chosen a very specific almost complex structure in Section II.3, and perturbing this J
would destroy the results obtained in that section. Below, we will prove by hand that ∂̄J is
transverse to 0 for the holomorphic disks in our model neighborhood.

Remark III.1.3. Note that often it is not possible to work only with somewhere injective
holomorphic curves, and perturbing J will in that case not be sufficient to obtain transversality
for holomorphic curves. Sometimes one can work around this problem by requiring that
W is semi-positive, see Section III.3. Unfortunately, there are many situations where this
approach won’t work either, as is the case of SFT, where transversality has been one of the
most important outstanding technical problems.

III.1.3. The Bishop family. In this section, we will show that the disks that we have
found in Section II.3.3 lying in the model neighborhood are regular solutions of the Cauchy-
Riemann problem.

Before starting the actual proof of our claim, we will briefly recapitulate the situation
described in Section II.3.3. Let (W,J) be an almost complex manifold of dimension 2n with
boundary that contains a model neighborhood U of the desired form. Remember that U was a
subset of C2×T ∗L with almost complex structure i⊕JL, that we had a function f : C2×T ∗L→
[0,∞) given by

f(z1, z2,q,p) =
1

2

(
|z1|2 + |z2|2

)
+ fL(q,p) ,

and that the model neighborhood U was the subset

U :=
{
(z1, z2;q,p)

∣∣ Re(z2) ≥ 1− δ
}
∩ f−1

(
[0, 1/2]

)
.

The totally real manifold N is the image of the map

(z;q) ∈ D2
ε × L 7→

(
z,

√
1− |z|2;q,0

)
⊂ ∂U .
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For every pair (s,q) ∈ [1− δ, 1)× L, we find a holomorphic map of the form

us,q :
(
D2, ∂D2

)
→ U

z 7→
(
Csz, s;q,0)

with Cs =
√
1− s2. We call this map a (parametrized) Bishop disk, and we call the

collection of these disks, the Bishop family. Sometimes we will not be precise about whether
the disks are parametrized or not, and whether we speak about disks with or without a marked
point (see Section III.2), but we hope that in each situation it will be clear what is meant.

To check that a given Bishop disk us,q is regular, we will first compute the index of
the linearized Cauchy-Riemann operator that gives us the expected dimension for the space
of holomorphic disks containing the Bishop family. Note that the observed dimension is
1 + dimL+ 3 = 1 + (n− 2) + 3 = n+ 2. The first part, 1 + dimL corresponds to the s- and
q-parameters of the family; the three corresponds to the dimension of the group of Möbius
transformations acting on the complex unit disk: If us,q is a Bishop disk, and if ϕ : D2 → D2

is a Möbius transformation, then of course us,q ◦ ϕ will also be a holomorphic map with
admissible boundary condition. On the other hand we showed in Corollary II.3.5 that every
holomorphic disk that lies in U is up to a Möbius transformation one of the Bishop disks.

For the index computations, it suffices by Section III.1.1 to trivialize the bundle EC :=
u∗s,qTW over D2, and study the topology of the totally real subbundle ER = u∗s,qTN over

∂D2.
Before starting any concrete computations, we will significantly simplify the setup by

choosing a particular chart: Note that the T ∗L-part of a Bishop disk us,q is constant, we can
hence choose a chart diffeomorphic to R2n−4 = {(x1, . . . , xn−2; y1, . . . , yn−2)} for T ∗L with
the properties

• the point (q,0) corresponds to the origin,
• the almost complex structure JL is represented at the origin by the standard i,
• the intersections of the 0-section L with the chart corresponds to the subspace
(x1, . . . , xn−2; 0, . . . , 0).

In the chosen chart, we write us,q as

us,q(z) =
(
Csz, s; 0, . . . , 0

)
∈ C2 × R2n−4

with Cs =
√
1− s2. By our assumption, the complex structure on the second factor is at the

origin of R2n−4 equal to i, and there is then a direct identification of u∗s,qTW with C2×Cn−2.
The submanifold N corresponds in the chart to

{
(z1, z2;x1, . . . , xn−2, 0, . . . , 0) ∈ C2 × R2n−4

∣∣ Im z2 = 0, |z1|2 + |z2|2 = 1
}
.

The boundary of us,q is given by eiϕ 7→
(√

1− s2 eiϕ, s; 0, . . . , 0
)
, and the tangent space of

TN over this loop is spanned over R by the vector fields
(
ieiϕ, 0; 0, . . . , 0

)
,
(
− s√

1− s2
eiϕ, 1; 0, . . . , 0

)
,
(
0, 0; 1, 0, . . . , 0

)
, . . . ,

(
0, 0; 0, . . . , 0, 1, 0, . . . , 0

)
.

We can now easily compute the Maslov index µ(EC, ER) as

deg
detA2

det(A∗A)
= deg

−e2iϕ
1

= 2 ,
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where A is the matrix composed by the vector fields given above. Hence we obtain for the
index

indu ∂̄J =
1

2
dimW + µ

(
u∗s,qTW, u

∗
s.qTN

)
= n+ 2 ,

which corresponds to the observed dimension computed above.
We will now show that the linearized operator D̄J is surjective. We do not do this directly,

but we compute instead the dimension of its kernel, and show that it is equal (and not larger
than) the Fredholm index. From the definition of the index

indu ∂̄J := ker D̄J(u)− coker D̄J(u) ,

we see that the cokernel needs to be trivial, and this way the surjectivity result follows.
We now compute the linearized Cauchy-Riemann operator at a Bishop disk us,q. Let vt

be a smooth family of maps
vt :
(
D2, ∂D2

)
→ (U,N)

with v0 = us,q (think of each vt as a smooth map, but for an analytically correct study, we
would need to allow here for Sobolev maps).

In this chart, we can write the family vt as

vt(z) =
(
z1(z, t), z2(z, t);x(z, t),y(z, t)

)
∈ C2 × R2n−4 ,

where we have set x(z, t) =
(
x1(z, t), . . . , xn−2(z, t)) and y(z, t) =

(
y1(z, t), . . . , yn−2(z, t)),

and we require that the boundary of each of the vt has to lie in N . When we now take the
derivative of vt with respect to t at t = 0, we obtain a vector in Tus,qB that is represented by
a map

v̇0 : D
2 → C2 × R2 (n−2), z 7→

(
ż1(z), ż2(z); ẋ(z), ẏ(z)

)

with boundary conditions ẏ(z) = 0 and Im ż2(z) = 0 for every z ∈ ∂D2. Furthermore taking

the derivative of |z1(z, t)|2 + |z2(z, t)|2 = 1 for every z ∈ ∂D2 with respect to t, we obtain the
condition

z̄1(z, 0) · ż1(z) + z1(z, 0) · ˙̄z1(z) + z̄2(z, 0) · ż2(z) + z2(z, 0) · ˙̄z2(z) = 0 ,

which simplifies by using the explicit form of
(
z1(z, 0), z2(z, 0)

)
to

Csz̄ · ż1(z) + Csz · ˙̄z1(z) + sż2(z) + s ˙̄z2(z) = 0

for every z ∈ ∂D2.
The linearization of the Cauchy-Riemann operator ∂̄J at us,q given by

D̄J · v̇0 :=
d

dt

∣∣∣∣
t=0

∂̄Jvs

decomposes into the C2-part (
idż1 − dż1i, idż2 − dż2i

)

and the R2 (n−2)-part

d

dt

∣∣∣∣
t=0

(
JL
(
x(z, t),y(z, t)

)
·
(
dx(z, t), dy(z, t)

)
−
(
dx(z, t) · i, dy(z, t) · i

))
.

The second part can be significantly simplified by using first the product rule, and applying
then that x(z, 0) = 0 and y(z, 0) = 0 are constant so that their differentials vanish. We
obtain then

JL
(
0,0

)
·
(
dẋ, dẏ

)
−
(
dẋ · i, dẏ · i

)
,
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and using that JL(0,0) = i, it finally reduces to
(
dẏ − dẋ · i,−dẋ− dẏ · i

)
.

We have shown that linearized Cauchy-Riemann operator simplifies for all coordinates to
the standard Cauchy-Riemann operator, so that if v̇0(z) =

(
ż1(z), ż2(z); ẋ(z), ẏ(z)

)
lies in

the kernel of D̄J then the coordinate functions ż1(z), ż2(z) and ẋ(z) + iẏ(z) need all to be
holomorphic in the classical sense.

Now using the boundary conditions, we easily deduce that ẏ(z) needs to vanish, because
it is a harmonic function, and it takes both maximum and minimum on ∂D2. A direct
consequence of ẏ ≡ 0 and the Cauchy-Riemann equation is that ẋ(z) will be everywhere
constant. We get the analogous result for the function ż2(z), so that we can write

v̇0(z) =
(
ż1(z), ṡ; q̇0,0

)
,

where ṡ is a real constant, and q̇0 is a fixed vector in R2 (n−2), and we only need to still
understand the holomorphic function ż1(z).

The boundary condition for ż1(z) is z̄ · ż1(z) + z · ˙̄z1(z) = −2 sṡ
Cs

for every z ∈ ∂D2. Using

that the function ż1(z) is holomorphic, we can write it as power series in the form

ż1(z) =

∞∑

k=0

ak z
k

and we get at eiϕ ∈ ∂D2

ż1
(
eiϕ
)
=

∞∑

k=0

ak e
ikϕ .

Plugging these series into the equation of the boundary condition, we find

e−iϕ ·
∞∑

k=0

ak e
ikϕ + eiϕ ·

∞∑

k=0

āk e
−ikϕ = −2 sṡ

Cs

so that ∞∑

k=0

(
ak e

(k−1) iϕ + āk e
−(k−1) iϕ

)
= −2 sṡ

Cs

and by comparing coefficients we see that

a1 + ā1 = −2 sṡ

Cs
, a0 + ā2 = 0, ak = 0 for all k ≥ 3.

This means that the three (real) parameters we can choose freely are a0 and Im a1.
Concluding, we have found that the dimension of the kernel of D̄J is equal to 3+1+n−2 =

n + 2 which corresponds to the Fredholm index of our problem. Thus there is no need to
perturb J on the neighborhood of the Bishop family to obtain regularity.

Corollary III.1.4. Let (W,ω) be a compact symplectic manifold that is a weak symplectic
filling of a contact manifold (M, ξ). Suppose that N is either a Lob or a bLob in M , then
we can choose close to the binding and to the boundary of N the almost complex structure
described in the previous sections, and extend it to an almost complex structure J that is
tamed by ω, whose bundle of complex tangencies along M is ξ and that makes M J-convex.
By a generic perturbation away from the binding and the boundary of N , we can achieve that
all somewhere injective holomorphic curves become regular.

We call a J with these properties an almost complex structure adapted to N .
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The argument in the proof of the corollary above is that the Bishop disks are already
regular, and that all other simple holomorphic curves have to lie outside the neighborhood
where we require an explicit form for J . Thus it suffices to perturb outside these domains to
obtain regularity for every other simple curve.

III.2. The moduli space of holomorphic disks with a marked point

Until now, we only have studied the space of certain J-holomorphic maps

M̃
(
D2, N ; J

)
=
{
u : D2 →W

∣∣ ∂̄Ju = 0 and u(∂D2) ⊂ N
}
,

but many maps correspond to different parametrizations of the same geometric disk. To get
rid of this ambiguity (and to obtain compactness), we quotient the space of maps by the bi-
holomorphic reparametrizations of the unit disk, that means, by the Möbius transformations,
but we will also add a marked point z0 ∈ D2 to preserve the structure of the geometric disk.

To simplify the notation, we will also omit the almost complex structure J in M̃
(
D2, N

)
.

From now on let

M̃
(
D2, N ; z0

)
=
{
(u, z0)

∣∣ z0 ∈ D2, ∂̄Ju = 0 and u(∂D2) ⊂ N
}
= M̃

(
D2, N

)
× D2

be the space of holomorphic maps together with a special point z0 ∈ D2 that will be called the
marked point. The moduli space we are interested in is the space of equivalence classes

M
(
D2, N ; z0

)
= M̃

(
D2, N ; z0

)
/ ∼

where we identify two elements (u, z0) and (u′, z′0), if and only if there is a biholomorphism
ϕ : D2 → D2 such that u = u′ ◦ ϕ−1 and z0 = ϕ(z′0). The map (u, z) 7→ u(z) descends to a
well defined map

ev : M
(
D2, N ; z0

)
→W

[u, z0] 7→ u(z0)

on the moduli space, which we call the evaluation map.
Let N be a Lob or a bLob, and assume that B0 is one of the components of the binding

of N . Since this is the only situation, we are really interested in in these notes, we introduce

the notation M̃0

(
D2, N

)
for the connected component in M̃

(
D2, N

)
that contains the Bishop

family around B0. When adding a marked point, we write M̃0

(
D2, N ; z0

)
and M0

(
D2, N ; z0

)

for the corresponding subspaces.
It is easy to see that M0

(
D2, N ; z0

)
is a smooth (non-compact) manifold with boundary.

Note first that M̃0

(
D2, N ; z0

)
is also a smooth and non-compact manifold with boundary:

If J is regular, we know that M̃0

(
D2, N

)
is a smooth manifold, and so the boundary of the

product manifold M̃0

(
D2, N ; z0

)
is

∂M̃0

(
D2, N ; z0

)
= M̃0

(
D2, N

)
× ∂D2 .

Passing to the quotient preserves this structure, because the boundary of the maps in

M̃0

(
D2, N

)
intersects each of the pages of the open book exactly once (this is a consequence

of Corollary II.1.11 and Section II.3.3), and hence each of the disks is injective along its
boundary.
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The only Möbius transformation that preserves the boundary pointwise is the identity,
hence it follows that the group of Möbius transformations acts smoothly, freely and properly

on M̃0

(
D2, N ; z0

)
, and hence the quotient will be a smooth manifold of dimension

dimM0

(
D2, N ; z0

)
= dimM̃0

(
D2, N ; z0

)
− 3 = indu ∂̄J + 2− 3 = n+ 1 .

As before the points on the boundary of M0

(
D2, N ; z0

)
are the classes [u, z] with z ∈ ∂D2.

It is also clear that the evaluation map evz0 : M0

(
D2, N ; z0

)
→W is smooth.

Remember that the Bishop disks contract to points as they approach the binding B0. We
will show that we incorporate B0 into the moduli space M0

(
D2, N ; z0

)
and that the resulting

space carries a natural smooth structure that corresponds to the intuitive picture of disks
collapsing to one point.

The neighborhood of the binding B0 in W is diffeomorphic to the model

U =
{
(z1, z2;q,p) ∈ C2 × T ∗B0

∣∣ Re(z2) > 1− δ
}
∩ h−1

(
(−∞, 1/2]

)

for small δ > 0 with the function

h(z1, z2;q,p) =
1

2

(
|z1|2 + |z2|2

)
+ fB0(q,p) ,

see Section II.3.3.
The content of Proposition II.3.6 and of Corollary II.3.5 is that for every point

(z, s;q0,0) ∈ U

with s ∈ (1− δ, 1) and q0 in the 0-section of T ∗B0,

• there is up to a Möbius transformation a unique holomorphic map u ∈ M̃0

(
D2, N

)

containing that point in its image, and

• M̃
(
D2, N

)
does not contain any holomorphic maps whose image is not entirely con-

tained in U ∩ (C× R×B0).

As a result, it follows that V = ev−1
z0

(U) is an open subset of M0

(
D2, N ; z0

)
, and that

the restriction of the evaluation map

evz0 |V : V → U

is a diffeomorphism onto U ∩
(
C× (1− δ, 1)×B0

)
. The closure of this subset is the smooth

submanifold

U ∩
(
C× R×B0

)
,

which we obtain by including the binding {0} × {1} ×B0 of N .
Using the evaluation map, we can identify V with its image in U , and this way glue B0 to

the moduli space M0

(
D2, N ; z0

)
. The new space is also a smooth manifold with boundary,

and the evaluation map extends to it, and is a diffeomorphism onto its image in U so that we
can effectively identify U with a subset of the moduli space. In particular, it follows that B0

is a submanifold that is of codimension 2 in the boundary of the moduli space.
The aim of the next section will consist in studying the Gromov compactification of

M0

(
D2, N ; z0

)
.
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III.3. Compactness

Gromov compactness is a result that describes the possible limits of a sequence of holo-
morphic curves, and ensures under certain conditions that every such sequence contains a
converging subsequence. In the limit, a given sequence of holomorphic curves may break into
several components, called bubbles, each of which is again a holomorphic curve. We will
not describe in detail what “convergence” in this sense really means, but we only sketch the
idea: The holomorphic curves in a moduli space can be represented by holomorphic maps,
and in the optimal case, one could hope that by choosing for each curve in the given sequence
a suitable representative, we might have uniform convergence of the maps, and this way we
would find the limit of the sequence as a proper holomorphic curve. Unfortunately, this is
usually wrong, but it might be true that for the correct choice of parametrization we have
convergence on subdomains. Choosing different reparametrizations, we then obtain conver-
gence on different domains, and each such domain gives then rise to a bubble, that means, a
holomorphic curve that represents one component of the Gromov limit.

Theorem III.3.1 (Gromov compactness). Let (W,J) be a compact almost complex manifold
(with or without boundary), and assume that J is tamed by a symplectic form ω. Let L be a
compact totally real submanifold. Choose a sequence of J-holomorphic maps uk : (D

2, ∂D2) →
(W,L) whose ω-energy

E(uk) :=

∫

D2

u∗kω

is bounded by a constant C > 0.
Then there is a subsequence of

(
ukl
)
l
that converges in the Gromov sense to a bubble tree

composed of a finite family of non-constant holomorphic disks u
(1)
∞ , . . . , u

(K)
∞ whose boundary

lies in L, and a finite family of non-constant holomorphic spheres v
(1)
∞ , . . . , v

(K′)
∞ . The total

energy is preserved so that

lim
l→∞

E
(
ukl
)
=

K∑

j=1

E
(
u(j)∞
)
+

K′∑

j=1

E
(
v(j)∞
)
.

If each of the disks uk is equipped with a marked point zk ∈ D2, then after possibly reducing
to a another subsequence, there is a marked point z∞ on one of the components of the bubble
tree such that limk zk = z∞ in a suitable sense.

The ω-energy is fundamental in the proof of the compactness theorem to limit the num-
ber of possible bubbles: By [MS04, Proposition 4.1.4], there exists in the situation of The-
orem III.3.1 a constant ~ > 0 that bounds the energy of every holomorphic sphere or every
holomorphic disk uk : (D

2, ∂D2) → (W,L) from below. Since every bubble needs to have
at least an ~-quantum of energy, and since the total energy of the curves in the sequence is
bounded by C, the limit curve will never break into more than C/~ bubbles (the upper bound
of the energy is also used to make sure that each bubble is a compact surface).

We will show in the rest of this section that we can apply Gromov compactness to se-
quences of holomorphic disks lying in the moduli space M0

(
D2, N

)
studied in the previous

section, and how we can incorporate these limits into M0

(
D2, N ; z0

)
to construct the com-

pactification M0

(
D2, N ; z0

)
.

Proposition III.3.2. Let N be a Lob or a bLob in the contact boundary (M, ξ) of a symplectic
filling (W,ω), and assume that we find a contact form α for ξ such that ω|TN = dα|TN .
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There is a global energy bound C > 0 for all holomorphic disks in M̃0

(
D2, N

)
.

Proof. There is a slight complication in our proof, because we may not assume that
ω is globally exact, which would allow us to obtain the energy of a holomorphic disk by
integrating over the boundary of the disk. To prove the desired statement, proceed as follows:

Let u : (D2, ∂D2) → (W,N) be any element in M̃0

(
D2, N

)
. By our assumption, there exists a

smooth path of maps ut that starts at the constant map u0(z) ≡ b0 ∈ B0 in the binding and
ends at the chosen map u1 = u. This family of disks may be interpreted as a map from the
3-ball into W . The boundary consists of the image of u1, and the union of the boundary of
all disks ut|∂D2 .

Using Stokes’ theorem, we get

0 =

∫

[0,1]×D2

u∗tdω =

∫

D2

u∗1ω +

∫

[0,1]×∂D2

u∗tω

so that E(u) = −
∫
[0,1]×∂D2 u

∗
tω.

By our assumption, we have a contact form on the contact boundaryM for which ω|TN =
dα|TN , so that using Stokes’ theorem a second time (and that u0(z) = b0) we get

E(u) =

∫

∂D2

u∗α .

The Legendrian foliation on N is an open book whose pages are fibers of a fibration
ϑ : N \ B → S1. Hence the 1-form dϑ and α|TN have the same kernel, and it follows that
there exists a smooth function f : N → [0,∞) such that

α|TN = f dϑ .

The function f vanishes on the binding and on the boundary of a bLob, and f is hence
bounded on N so that we define C := 2π maxx∈N |f(x)|.

Using that the boundary of u intersects every leaf of the open book exactly once, we
obtain for the energy of u the estimate

E(u) =

∫

∂D2

u∗α ≤ max
x∈N

|f(x)|
∫

∂D2

u∗dϑ ≤ 2π max
x∈N

|f(x)| = C . �

With the given energy bound, we obtain now Gromov compactness in form of the following
corollary.

Corollary III.3.3. Let N be a Lob or a bLob in the contact boundary (M, ξ) of a symplectic
filling (W,ω), and assume that we find a contact form α for ξ such that ω|TN = dα|TN . Let

(uk)k be a sequence of holomorphic maps in M̃0

(
D2, N

)
.

There exists a subsequence
(
ukl
)
l
that converges either

• uniformly up to reparametrizations of the domain to a J-holomorphic map u∞ ∈
M̃0

(
D2, N

)
,

• to a constant disk u∞(z) ≡ b0 lying in the binding of N ,
• or to a bubble tree composed of a single holomorphic disk u∞ : (D2, ∂D2) → (W,N)
and a finite family of non-constant holomorphic spheres v1, . . . , vj with j ≥ 1.

Proof. We will apply Theorem III.3.1. The submanifold N is not totally real along the
binding B and ∂N , but we simply remove a small open neighborhood of both sets. By Propo-
sition II.3.9, none of the holomorphic disks uk may get close to ∂N , and by Proposition II.3.6
we know precisely how the curves look like that intersect a neighborhood of B. If we find
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disks in (uk)k that get arbitrarily close to the binding of N , then using that B is compact,
we may choose a subsequence that converges to a single point in the binding. If (uk)k stays
at finite distance from B, we may assume that the neighborhood, we have removed from N
is so small that the holomorphic disks we are studying all lie inside.

If the sequence (uk)k does not contain any subsequence that can be reparametrized in
such a way that it converges to a single non-constant disk u∞, we use Gromov compactness
to obtain a subsequence that splits into a finite collection of holomorphic spheres and disks.
But as a consequence from Corollary II.1.11, we see that non-constant holomorphic disks
attached to N need to intersect the pages of the open book transversely in positive direction.
A sequence of holomorphic disks that intersects every page of the open book exactly once,
cannot split into several disks intersecting pages several times. In particular possible bubble
trees contain by this argument a single disk in its limit. �

Above, we have obtained compactness for a sequence of disks, but we would like to
understand how these limits can be incorporated into the moduli space. Adding the bubble
trees to the space of parametrized maps does not give rise to a valid topology, because the
bubbling phenomenon can only be understood by using different reparametrizations of the
disk to recover all components of the bubble tree.

We will denote the compactification of M0

(
D2, N ; z0

)
by M0

(
D2, N ; z0

)
. For us, it is

not necessary to understand the topology of M0

(
D2, N ; z0

)
in detail, but it will be sufficient

to see that bubbling is a “codimension-2 phenomenon”. In fact, it is not the topology of
the moduli space itself we are interested in, but our aim is to obtain information about the
symplectic manifold. For this we want to make sure that the image under the evaluation map
of all bubble trees that appear in the limit, that means, of M0

(
D2, N ; z0

)
\ M0

(
D2, N ; z0

)

is contained in the image of a smooth map defined on a finite union of manifolds each of
dimension at most

dimM0

(
D2, N ; z0

)
− 2 .

For this to be true, we need to impose additional conditions for (W,ω).

Definition. A (2n)-dimensional symplectic manifold (W,ω) is called

• symplectically aspherical, if ω([A]) vanishes for every A ∈ π2(W ).
• It is called semipositive if every A ∈ π2(W ) with ω([A]) > 0 and c1(A) ≥ 3−n has
non-negative Chern number.

Note that every symplectic 4- or 6-manifold is obviously semipositive.

In a symplectically aspherical manifold no J-holomorphic spheres exist, because their
energy would be zero. So in particular they may not appear in any bubble tree and Corol-
lary III.3.3 implies in our situation that every sequence of holomorphic disks contains a
subsequence that either collapses into the binding or that converges to a single disk in
M0

(
D2, N ; z0

)
. Using the results of Section III.2, we obtain the following corollary.

Corollary III.3.4. Let (W,ω) be a compact symplectically aspherical manifold that is a weak
filling of a contact manifold (M, ξ). Let N be a Lob or a bLob in M , and assume that we find
a contact form for ξ such that ω|TN = dα|TN . Choose an almost complex structure J that is
adapted to N (as in Corollary III.1.4).

Then the compactification of the moduli space M0

(
D2, N ; z0

)
is a smooth compact mani-

fold

M0

(
D2, N ; z0

)
= M0

(
D2, N ; z0

)
∪
(
binding of N

)
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with boundary. The binding of N is a submanifold of codimension 2 in the boundary ∂M0

(
D2, N ; z0

)
.

The condition of asphericity is very strong, and we will obtain more general results by
studying instead semipositive manifolds. The important point here is that a generic almost
complex structure only ensure transversality for somewhere injective holomorphic curves, see
Section III.1.2. Even though the holomorphic disks in M0

(
D2, N ; z0

)
are simple, it could

happen that once the disks bubble, there appear spheres that are multiple covers. For these,
we cannot guarantee transversality, and hence we cannot directly predict if the compactifi-
cation of M0

(
D2, N ; z0

)
consists of adding “codimension-2 strata” or if we will be forced to

include too many bubble trees
Still, we know that every sphere that is not simple is the multiple cover of a simple one

(by the Riemann-Hurwitz formula a sphere can only multiply cover a sphere), we can hence
compute the dimension of the moduli space of the underlying simple spheres, and use this
information as an upper bound for the dimension of the spheres that appear in the bubble
tree.

Let v : S2 →W be a holomorphic sphere that is a k-fold cover of a sphere ṽ representing a
homology class [v] and [ṽ] ∈ H2(W,Z) respectively with [v] = k[ṽ] and with ω

(
[ṽ]
)
> 0. The

expected dimension of the space of maps containing v is by an index formula

indv ∂̄J = 2n+ 2 c1
(
[v]
)
= 2n+ 2k c1

(
[ṽ]
)
.

The space of biholomorphisms of S2 has dimension 6, and hence the expected dimension of the
moduli space of unparametrized spheres that contain [v] is indv ∂̄J −6 = 2 (n−3)+2k c1([ṽ]).

As we explained above and in Section III.1.2, this expected dimension does not correspond
in general to the observed dimension of the bubble trees, instead we study the expected
dimension of the underlying simple spheres. The dimension of the space containing ṽ is given
by indṽ ∂̄J − 6 = 2 (n − 3) + 2 c1

(
[ṽ]
)
. If c1

(
[ṽ]
)
< 3 − n, then the expected dimension will

be negative, and since we obtain regularity of all simple holomorphic curves by choosing a
generic almost complex structure, it follows that the moduli space containing ṽ is generically
empty. As a consequence bubble trees appearing as limits do not contain any component that
is the k-fold cover of a simple sphere representing the homology class [ṽ].

If c1
(
[ṽ]
)
≥ 3−n, the definition of semipositivity implies that c1

(
[ṽ]
)
≥ 0. When we com-

pare the expected dimension of the moduli space containing v with the one of the underlying
disk ṽ, we observe that indv ∂̄J −6 = 2 (n−3)+2k c1

(
[ṽ]
)
≥ 2 (n−3)+2 c1

(
[ṽ]
)
= indṽ ∂̄J −6.

Consider now the image in W of all spheres in the moduli space of v that are k-fold
multiple covers of some simple sphere. Their image is contained in the image of the simple
spheres lying in the same moduli space as ṽ. The dimension of this second moduli space is
smaller or equal than the expected dimension of the initial moduli space containing v, and
even though we cannot ensure regularity for v, we have an estimate on the dimension of the
subset containing all singular spheres.

The following result allows us to find the desired bound for the dimension of the image of
complete bubble trees.

Proposition III.3.5. Assume that (W,ω) is semipositive. To compactify the moduli space
M0(W,N, z0), one has to add bubbled curves. We find a finite set of manifolds X1, . . . , XN

with dimXj ≤ dimM0(W,N, z0) − 2 and smooth maps fj : Xj → W such that the image of
the bubbled curves under the evaluation map evz0 is contained in

∪fj(Xj) .
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When we consider instead the compactification of the boundary ∂M0(W,N, z0), that means
the space of holomorphic disks with a marked point on the boundary of the disk only, then
we obtain the analogue result, only that the manifolds X1, . . . , XN have dimension dimXj ≤
dim ∂M0(W,N, z0)− 2 = dimM0(W,N, z0)− 3.

Proof. The standard way to treat bubbled curves consists in considering them as ele-
ments in a bubble tree: Here such a tree is composed by a simple holomorphic disk u0 : (D2, ∂D2) →
(W,N) and holomorphic spheres u1, . . . , uk′ : S2 → W . These holomorphic curves are con-
nected to each other in a certain way. We formalize this relation by saying that the holomor-
phic curves are vertices in a tree, i.e. in a connected graph without cycles. We denote the
edges of this graph by {ui, uj}, 0 ≤ i < j ≤ k′.

Now we assign to any edge two nodal points zij and zji, the first one in the domain of
the bubble ui, the other one in the domain of uj , and we require that evzij (ui) = evzji(uj).
For technical reasons, we also require nodal points on each holomorphic curve to be pairwise
distinct. To include into the theory, trees with more than one bubble connected at the same
point to a holomorphic curve, we add “ghost bubbles”. These are constant holomorphic
spheres inserted at the point where several bubbles are joined to a single curve. Now all the
links at that point are opened and reattached at the ghost bubble. Ghost bubbles are the
only constant holomorphic spheres we allow in a bubble tree.

The aim is to give a manifold structure to these bubble trees, but unfortunately this is
not always possible, when multiply covered spheres appear in the bubble tree.

Instead, we note that the image of every bubble tree is equal to the image of a simple
bubble tree, that means, to a tree, where every holomorphic sphere is simple and any two
spheres have different image. Since we are only interested in the image of the evaluation
map on the bubble trees, it is for our purposes equivalent to consider the simple bubble tree
instead of the original one. The disk u0 is always simple, and does not need to be replaced
by another simple curve.

Let u0, u1, . . . , uk′ be the holomorphic curves composing the original bubble tree, and let
Ai ∈ H2(W ) be the homology class represented by the holomorphic sphere ui. The simple
tree is composed by u0, v1, . . . , vk such that for every uj there is a bubble sphere vij with
equal image

uj(S
2) = vij (S

2)

and in particular Aj = mjBij , where Bij = [vij ] ∈ H2(W ) and mj ≥ 1 is an integer. Write

alsoA for the sum
∑k′

j=1Aj andB for the sum
∑k

i=1Bi. Below we will compute the dimension
of this simple bubble tree.

The initial bubble tree u0, u1, . . . , uk′ is the limit of a sequence in the moduli space
M0(W,N, z0). Hence the connected sum u∞ := u0# · · ·#uk′ is, as element of π2(W,N),
homotopic to a disk u in the bishop family, and the Maslov indeces

µ(u) := µ(u∗TW, u∗TN) and µ(u∞) := µ(u∗∞TW, u
∗
∞TN)

have to be equal. With the standard rules for the Maslov index (see for example [MS04,
Appendix C.3]), we obtain

2 = µ(u) = µ(u∞) = µ(u0) +

k′∑

j=1

2c1([uj ]) = µ(u0) + 2c1(A) .
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The dimension of the unconnected set of holomorphic curves M̃[u0](W,N, z0)×
∏k
j=1 M̃Bj (W )

for the simple bubble tree is

(
n+ µ(u0)

)
+

k∑

j=1

2
(
n+ c1(Bj)

)
= n+ 2− 2c1(A) + 2nk +

k∑

j=1

2c1(Bj)

= n+ 2 + 2nk + 2
(
c1(B)− c1(A)

)
.

In the next step, we want to consider the subset of connected bubbles, i.e. we choose a total
of k pairs of nodal points, which then have to be pairwise equal under the evaluation map.
The nodal points span a manifold

Z(2k) ⊂
{
(1, . . . , 2k) → D2 ∐ S2 · · · ∐ S2

}

of dimension 4k. The dimension reduction comes from requiring that the evaluation map

ev : M̃[u0](W,N, z0)×
k∏

j=1

M̃Bj (W )× Z(2k) →W 2k

sends pairs of nodal points to the same image in the symplectic manifold. By regularity and
transversality of the evaluation map to the diagonal submanifold △(k) →֒W 2k, the dimension
of the space of holomorphic curves is reduced by the codimension of △(k), which is 2nk.

As a last step, we have to add the marked point z0 used for the evaluation map evz0 , this
way increasing the dimension by 2, and then we take the quotient by the automorphism group
to obtain the moduli space. The dimension of the automorphism group is 6k + 3. Hence the
dimension of the total moduli space is

n+ 2 + 2nk + 2
(
c1(B)− c1(A)

)
+ 4k − 2nk + 2− (6k + 3)

= n+ 1− 2k + 2
(
c1(B)− c1(A)

)
≤ n+ 1− 2k .

The inequality holds because by the assumption of semipositivity, all the Chern classes are
non-negative on holomorphic spheres, and all coefficients nj in the difference c1(B)−c1(A) =∑

j c1(Bj)−
∑

i c1(Ai) =
∑

j c1(Bj)−
∑

imic1(Bji) =
∑

j njc1(Bj) are non-positive integers.

The computations for the disks in ∂M0

(
D2, N ; z0

)
only differs by the requirement that

the marked point needs to lie on the boundary of the disk u0 instead of moving freely on the
bubble tree. Instead of having two degrees of freedom for this choice, we thus only add one
extra dimension. �

III.4. Proof of the non-fillability Theorem A

Theorem A. Let (M, ξ) be a contact manifold that contains a bLob N , then M does not
admit any semi-positive weak symplectic filling (W,ω) for which ω|TN is exact.

Assume there were a semi-positive symplectic filling (W,ω) for which ω|TN is exact. Let
α be a positive contact form for ξ. By Proposition II.2.3, we can extend (W,ω) with a collar
in such a way that we have ω|TN = dα|TN , which will allow us to use the energy estimates
of the previous section. Now we choose an almost complex structure that is adapted to the
bLob N as in Corollary III.1.4, and we will study the moduli space M0

(
D2, N ; z0

)
defined in

Section III.2 of holomorphic disks with one marked point lying in the same component as the
Bishop family around a chosen component B0 of the binding of N .
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Trace a smooth path γ : [0, 1] → N that starts at γ(0) ∈ B0 and ends on the boundary ∂N .
Assume further that γ is a regular curve, and that it intersects the binding and ∂N only on
the endpoints of [0, 1]. We want to select a 1-dimensional moduli space in M0

(
D2, N ; z0

)
by

only considering

Mγ := ev−1
z0

(
γ(I)

)
.

It will be important for us that γ(I) does not intersect the image of any bubble trees in
M0

(
D2, N ; z0

)
\M0

(
D2, N ; z0

)
.

By Proposition III.3.5, we have that the bubble trees in ∂M0

(
D2, N ; z0

)
lie in the image

of a finite union of smooth maps defined on manifolds of dimension dim ∂M0

(
D2, N ; z0

)
−2 =

dimN − 2. The subset N \ evz0(bubble trees) is connected and we can deform γ keeping the
endpoints fixed so that it does not intersect any of the bubble trees.

For a small perturbation of J (away from the binding and the boundary of N), we can
make sure that the evaluation map evz0 is transverse to the path γ(I). If the perturbed J
lies sufficiently close to the old one, then γ will also not intersect any bubble trees for this
new J , for otherwise we could choose a sequence of almost complex structures Jk converging
to the unperturbed J such that for everyone there existed a bubble tree vk intersecting γ.
We would find a converging subsequence of vk yielding a bubble tree v∞ for the unperturbed
almost complex structure intersecting γ, which contradicts our assumption.

It follows thatMγ is a collection of compact 1-dimensional submanifolds of ∂M0

(
D2, N ; z0

)
.

There is one component in Mγ , which we will denote by Mγ
0 that contains the Bishop disks

that intersect γ
(
[0, ε)

)
. We know that the Bishop disks are the only disks close to the binding,

and hence it follows that Mγ
0 cannot be a loop that closes up, but must be instead a closed

interval.
The first endpoint of Mγ

0 is the constant disk with image γ(0) ∈ B0, and we will deduce
a contradiction by showing that no holomorphic disk can be the second endpoint of Mγ

0 .
By Proposition II.3.9, there is a small neighborhood of ∂N that cannot be entered by any

holomorphic disk. By our construction the endpoint of Mγ
0 cannot be any bubble tree either.

It follows that the endpoint needs to be a regular disk [u, z0] ∈ ∂M0

(
D2, N ; z0

)
for which

the boundary of u lies in N \
(
∂N ∪ B

)
and whose interior points cannot touch ∂W either,

because we are assuming that the boundary of W is convex.
It follows that this regular disk cannot really be the endpoint of Mγ

0 , because the evalu-
ation map evz0 will also be transverse to γ at [u, z0] so that we can extend Mγ

0 further.
This leads to a contradiction that shows that the assumption that the boundary of W is

everywhere convex cannot hold.

III.5. Proof of Theorem B

For the proof, we first recall the definition of the degree of a map.

Definition. Let X and Y be closed oriented n-manifolds. The degree of a map f : X → Y
is the integer d = deg(f) such that

f#[X] = d · [Y ] ,

where [X] ∈ Hn(X,Z) and [Y ] ∈ Hn(Y,Z) are the fundamental classes of the corresponding
manifolds. When the manifolds X and Y are not orientable, we define the degree to be
an element of Z2 using the same formula, where the fundamental classes are elements in
Hn(X,Z2) and Hn(Y,Z2).
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Note that we can easily compute the degree of a smooth map f between smooth manifolds
by considering a regular value y0 ∈ Y of f (which by Sard’s theorem exist in abundance), and
adding

deg f =
∑

x∈f−1(y0)

signDfx ,

where the point x contributes to the sum with +1, whenever Dfx is orientation preserving,
and contributes with −1 otherwise. In case the manifolds are not orientable, we can always
add +1 in the above formula, but need to take sum over Z2.

Theorem B. Let (M, ξ) be a contact manifold of dimension (2n+1) that contains a Lob N .
If M has a weak symplectic filling (W,ω) that is symplectically aspherical, and for which
ω|TN is exact, then it follows that N represents a trivial class in Hn+1(W,Z2). If the first
and second Stiefel-Whitney classes w1(N) and w2(N) vanish, then we obtain that [N ] must
be a trivial class in Hn+1(W,Z).

Using Proposition II.2.3 we can assume that ω|TN = dα|TN for a chosen contact form α.
Choose an almost complex structure J onW that is adapted to the LobN , and letM0

(
D2, N ; z0

)

be the moduli space of holomorphic disks with one marked point lying in the same component
as the Bishop family around a chosen component of the binding of N .

Since W is symplectically aspherical, we obtain by Corollary III.3.4 that M0

(
D2, N ; z0

)

is a compact smooth manifold with boundary. It was shown in [Geo11] that M0

(
D2, N ; z0

)

is orientable if the first and second Stiefel-Whitney classes of N \ B vanish. With our as-
sumptions this is the case, because wj

(
N \B

)
= wj(N)|(N\B). If M0

(
D2, N ; z0

)
is orientable

then M0

(
D2, N ; z0

)
will also be orientable: If there were an orientation reversing loop γ in

the compactified moduli space (which is obtained from M0

(
D2, N ; z0

)
by gluing in B as codi-

mension 3 submanifold), then due to the large codimension we could easily push γ completely
into the regular part of the moduli space, where it would still need to be orientation reversing.

It follows that the boundary ∂M0

(
D2, N ; z0

)
is also homologically a boundary (either

with Z- or Z2-coefficients depending on the orientability of the considered spaces).
Denote the restriction of the evaluation map

evz0 |∂M0

(
D2,N ;z0

) : ∂M0

(
D2, N ; z0

)
→ N ,

by f . We know that close to the binding every point is covered by a unique Bishop disk, this
implies by the remarks made above that the degree deg(f) needs to be ±1.

We have the following obvious equation

evz0 ◦ ι∂M = ιN ◦ f ,
where ι∂M denotes the embedding of ∂M0

(
D2, N ; z0

)
inM0

(
D2, N ; z0

)
and ιN the embedding

of N inW . The homomorphism induced by ι∂M is the trivial map on the (n+1)-st homology
group, so that the left side of the equation gives rise to the 0-map

Hn+1

(
∂M0

(
D2, N ; z0

)
, R
)
→ Hn+1

(
W,R

)

with R being either Z or Z2. Since f# is ± identity, it follows that ιN has to induce the trivial
map on homology, which implies that N is homologically trivial in W .





CHAPTER IV

Constructions of contact manifolds

IV.1. S1-invariant contact manifolds

Lutz classified in ’77 3-dimensional contact manifolds with free S1-actions [Lut77]. Even
though such manifolds are topologically rather exceptional, they form a very rich class of
examples. Most of the relevant contact properties up to this day can be studied on these
structures.

The aim of this section is to show how one can construct higher dimensional contact
S1-manifolds starting from certain symplectic domains, and to explain how we can extract
relevant contact information. For this we start with a complete symplectic domain, and
construct from it in Section IV.1.2, a compact S1-principal bundle with non-empty boundary
and with an S1-invariant contact structure. We call these building blocks Giroux domains.
Giroux domains can be glued along their boundaries, and boundary components may be
blown down, see Section IV.1.3. Every S1-invariant contact manifold with only free orbits is
either a Boothby-Wang manifold or it can be obtained by gluing Giroux domains [DG12]
together; it is easy to convince oneself that every S1-invariant contact manifold with only
free orbits or with fixed point components of codimension 2 can be obtained by gluing and
blowing down Giroux domains.

In a final step, we explain how we can read off in very special cases properties like PS-
overtwistedness or fillability of such manifolds. The first non-fillability result we give, see
Section IV.1.3, is a generalization of the following idea in dimension 3: If we have a contact
3-manifold with an S1-action that has both fixed points and Legendrian orbits, then we can
find an overtwisted disk simply by connecting a fixed point to a point on a Legendrian orbit
using an embedded segment γ that is tangent to the contact structure. The union of the
S1-orbits passing through γ is then an overtwisted disk.

The core results of this section were first described in [MNW13]. We state them here
without too many modifications. We would have liked to extend those techniques by studying
also non-trivial circle bundles (for related results see [DG12] and [CDv12]), but time did
not allow me to arrive to analogous results as for trivial bundles.

IV.1.1. Complete symplectic domains. In this section we will discuss a definition of
a complete symplectic domain that is due to Giroux. This definition adds precision to the
classical notion by keeping in an elegant way account of the “structure at infinity”. We use
this as a preparation for the next section, where we will construct contact manifolds starting
from such symplectic domains. A written account for exact symplectic manifolds (called ideal
Liouville domains) can be found in [MNW13]. This notion has been extended in [DG12]
to non-exact structures. We thank Sylvain Courte for his generous help with many problems
we encountered, and for explaining to us many implications of the definition.
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Definition. Let Σ be a compact (2n)-manifold with boundary, and let ω ∈ Ω2(Σ̊) be a

symplectic form defined only on the interior Σ̊ = Σ \ ∂Σ.
We say that Σ is a complete symplectic domain , if we can choose a 1-form λ ∈ Ω1(Σ̊)

and a 2-form ω0 ∈ Ω2(Σ) that is defined on all of Σ with the following properties:

• The restriction to Σ̊ is cohomologous to ω, and λ is a primitive of ω − ω0|Σ̊ so that

ω = dλ+ ω0|Σ̊ .
• If we choose a function f : Σ → [0,∞) for which ∂Σ = f−1(0) is a regular level set,
then

f λ

can be extended to a smooth 1-form λf on all of Σ, and the restriction of λf to ∂Σ
is a contact form compatible with the positive boundary orientation.

We denote the cooriented contact structure induced on the boundary by ξω.
When ω is exact, we call (Σ, ω) an ideal Liouville domain , and if we choose additionally

ω0 = 0, then we call any primitive λ as above with dλ = ω a Liouville form.

Remark IV.1.1. It is easy to extend the definition also for negative ends by requiring that
the auxiliary 2-form ω0 vanishes at negative ends, and that 1

f
λ extends to a contact form at

every negative ends.

This definition may seem at first very abstract compared to the standard definition of a
symplectic manifold with positive cylindrical ends, so let us briefly discuss its advantages. As
we will prove below a symplectic manifold with positive cylindrical ends is symplectomorphic
to the interior of a complete symplectic domain, but the power of the definition lies in the
fact that it captures the precise behavior “at infinity” of a symplectic structure.

Sylvain Courte [Cou14] showed that there exist contact manifolds of dimension 5 and
higher, that are not even diffeomorphic, but that have symplectomorphic symplectizations.
This implies that the symplectic structure alone is not sufficient to understand behavior at
infinity if we do not fix an additional Liouville vector field. On the other hand, there are
different Liouville vector fields that lead to the same structure, which would make it difficult
to state when two Liouville manifolds are equivalent. A complete symplectic domain fixes
the behavior at infinity without depending on additional choices, and gives a compact way of
defining precisely the cylindrical structure one has in mind.

We should of course also mention that Giroux’s initial motivation was to describe several
operations in contact topology in a compact way, without the “fiddling” that is usually
necessary. Among them, there is for example the construction of a contact manifold from an
abstract open book, where the classical method requires several choices of cut-off parameters
and other data, which makes it afterward necessary to show manually that the resulting
manifold does not depend on them.

Before proving any further properties about complete symplectic domains, we will first
show that the contact structure ξω on ∂Σ is completely determined by ω and does not depend
on any of the auxiliary choices in the definition.

Remark IV.1.2. For any two smooth functions f0, f1 : Σ → [0,∞) for which f−1
j (0) = ∂Σ

is a regular level set, there exists a smooth positive function g with f1 := gf0. It is clear
that the contact forms induced by λf0 and λf1 only differ by multiplication with g, and hence
define the same contact structure.
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Fix a smooth function f as above, then we can show that f2ω extends from Σ̊ to a smooth
2-form ω̂ defined on all Σ. Choose for this a 2-form ω0 ∈ Ω2(Σ) and a primitive λ ∈ Ω1(Σ̊)
with

ω = dλ+ ω0|Σ̊
as in the definition. We can easily compute on Σ̊

(IV.1.1) fω = fω0 + f dλ = fω0 + d(fλ)− df ∧ λ
so that f2ω extends smoothly to ω̂ := f dλf − df ∧ λf + f2ω0 on Σ. Along ∂Σ, this 2-form
simplifies to −df ∧ λf , which means that we recover the contact structure ξω at every point
p ∈ ∂Σ as the subspace

ξω =
{
v ∈ TpΣ

∣∣ ω̂(v, ·) = 0
}
.

Clearly, the extension ω̂ does not depend on the choice of the primitive λ or the choice of
the 2-form ω0.

Lemma IV.1.3. Let f : Σ → [0,∞) be a regular equation for the boundary of a complete
symplectic domain (Σ, ω). The volume form

µf := fn+1ωn

on Σ̊ extends to a smooth volume form µ̂f on all of Σ.

Proof. Compute µf by taking the maximum exterior power of Equation (IV.1.1), and
multiplying the result with f . We obtain

µf = f
(
fω0 + d(fλ)

)n − ndf ∧ (fλ) ∧
(
fω0 + d(fλ)

)n−1
,

which we can extend smoothly over all of Σ by replacing the fλ-terms by λf . This way we
find the desired extension to all of Σ as

µ̂f := f
(
fω0 + dλf

)n − ndf ∧ λf ∧
(
fω0 + dλf

)n−1
.

It is clear, that µ̂f is a volume form on Σ̊, and along the boundary, µ̂f simplifies to

−ndf ∧ λf ∧ dλn−1
f , which by the contact condition does not vanish either. �

The following lemma will be important for technical reasons, but also because it shows
that a complete symplectic domain as defined by Giroux has cylindrical ends like the ones of
the classical definition.

Lemma IV.1.4. Let (Σ, ω) be a complete symplectic domain, and let α ∈ Ω1(∂Σ) be a positive
contact form for ξω. There is a collar neighborhood of ∂Σ diffeomorphic to (−ε, 0]× ∂Σ such
that the symplectic form ω is given by

ω|(−ε,0)×∂Σ = −d
(1
s
α
)
+ ω∂ ,

where s denotes the coordinate on (−ε, 0], and ω∂ ∈ Ω2(∂Σ) is a closed 2-form on ∂Σ.

Proof. Choose a function f : Σ → [0,∞) that is a regular equation for the boundary,
and let λ be a primitive of ω such that fλ extends on Σ to a 1-form λf whose restriction

α := λf |T∂Σ
is a contact form of ξω. If desired we can arrange the given situation to find instead any contact
form α′ of our choice on ∂Σ. Simply let g : ∂Σ → (0,∞) be a smooth positive function such



94 IV. CONSTRUCTIONS OF CONTACT MANIFOLDS

that α′ = gα, and extend g to a positive function on all of Σ, then replacing f by h := gf ,
we obtain a 1-form hλ that will induce the contact form α′ on ∂Σ.

The standard method of constructing a collar neighborhood, is to follow the flow of a
vector field transverse to the boundary. The Liouville field XL of λ is the vector field on Σ̊
defined by the equation

(IV.1.2) ιXLω = λ .

Unfortunately XL is not defined along ∂Σ (in fact, its extension vanishes along the boundary),
but it is easy to see from Equation (IV.1.2) that the vector field Xf := 1

f
XL is the unique

solution of

(IV.1.3) ιXf (f
n+1ωn) = nfλ ∧ (fω)n−1 .

We will show below that Xf extends to a field on all of Σ that is positively transverse to ∂Σ.
This will allow us to use its flow to construct a collar neighborhood of ∂Σ.

Using Lemma IV.1.3, we can replace the left hand side of Equation (IV.1.3) by ιXf µ̂f ,
and for the right hand side, we find

nfλ ∧ (fω)n−1 = nfλ ∧
(
fω0 + d(fλ)− df ∧ λ

)n−1
= nλf ∧ (fω0 + dλf )

n−1 ,

which also extends smoothly to all of Σ. Using that µ̂f is a volume form, we can define Xf

equivalently as the unique solution of

ιXf µ̂f = nλf ∧
(
fω0 + dλf

)n−1
,

which shows that Xf is defined on all of Σ. To see that Xf is positively transverse to ∂Σ,
note that the previous equation reduces on the boundary to

−n ιXf
(
df ∧ λf ∧ dλn−1

f

)
= nλf ∧ dλn−1

f .

Clearly, plugging Xf a second time into the equation makes the left side vanish, so that

ιXf
(
λf ∧ dλn−1

f

)
= 0, and in particular we obtain that df(Xf ) = −1 along ∂Σ.

Let (−∞, 0]× ∂Σ be the collar neighborhood of the boundary obtained by following the
flow of Xf in negative time direction starting from ∂Σ. We denote the (−∞, 0]-coordinate by
s, and write Xf as ∂s.

We will now deform the symplectic structure to bring it in the collar neighborhood into the
desired form, and then show that there is an isotopy of Σ that fixes the boundary pointwise
and whose restriction to Σ̊ is a symplectomorphism between the old and the new form. We
may write the given symplectic structure on the collar (−∞, 0)× ∂Σ as

ω = dλ+ ω∂ + dγ ,

where we have set ω∂ := ω0|T∂Σ, and where γ is a smooth 1-form such that ω0 = ω∂ + dγ on
(−∞, 0]× ∂Σ. We would like to deform ω to

−d
(1
s
α
)
+ ω∂ .

Let ρ0 be a smooth function ρ0 : (−∞, 0] → [0, 1] that vanishes on (−∞,−1] and that is
equal to 1 in a small neighborhood of 0. We may assume that the derivative of ρ0 only takes
values in the interval [0, 2]. Using ρ0, we can define cut-off functions with arbitrarily small
support by setting ρ(s) := ρ0(Cs) for large constants C. Independently of the choice of C,
we obtain for all s ∈ (−∞, 0] the uniform bound

−2 ≤ sρ′(s) ≤ 0 .
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Let λs be the extension of the 1-form s λ to all of (−ε, 0]× ∂Σ. Note that the restrictions
of λs is equal to −α, because

s λ =
s

f
λf

on (−ε, 0)×∂Σ, and df(Xf ) = −1. Define now a family of 2-forms parametrized by T ∈ [0, 1]

ΩT := −d
(Tρ(s)

s
α+

1− Tρ(s)

s
λs

)
+ ω∂ + d

(
(1− Tρ(s)) γ

)

and extend it outside the collar neighborhood to ω. The family ΩT is a homotopy of 2-forms
between the given structure ω = Ω0 and a 2-form Ω1 that has the desired shape in a small
neighborhood of ∂Σ.

To check that the ΩT are symplectic forms on Σ̊, simply compute sn+1ΩnT . Outside the
support of ρ all the forms agree with sn+1ωn, and hence there is nothing to show. Using that
sΩT can be written on the collar neighborhood as

sΩT = −Tρ′ ds ∧
(
α− λs + sγ

)
+ Tρ

(1
s
ds ∧ α− dα+ sω∂

)

+
(
1− Tρ

) (1
s
ds ∧ λs − dλs + sω0

)
,

we obtain

sn+1ΩnT = (−1)n−1nds ∧
(
Tρα+

(
1− Tρ

)
λs

)
∧
(
Tρ dα+

(
1− Tρ

)
dλs

)n−1

− nTsρ′ ds ∧
(
α− λs

)
∧
(
−Tρ dα−

(
1− Tρ

)
dλs

)n−1
+O1(s) ,

where we have grouped all terms whose order in s is 1 or higher in O1(s). The right hand side
is also defined on the boundary of Σ, and we write µT for the smooth extension of sn+1ΩnT
to all of Σ. If we choose the support of ρ sufficiently small, then the terms of order one
composing O1(s) can be neglected, and sρ′ ds ∧

(
α− λs

)
can also be made arbitrarily small,

because sρ′(s) is bounded and because λs agrees along ∂Σ with α. The only the term on
the right hand side relevant for the sign of µT is thus the first, which simplifies on ∂Σ to
(−1)n−1nds∧ α∧ dαn−1. It follows that µT is a family of volume forms on Σ, and hence the

ΩT are symplectic forms on Σ̊.
Now we are ready to apply the Moser trick to show that Ω1 and ω are isotopic. As

explained for example in [MS98, Section 3.2], we can obtain the desired isotopy if we can
integrate the vector field YT given as solution of the equation

ιYTΩT = λT ,

where λT is a 1-form with dλT = d
dT

ΩT on Σ̊.
We can choose

λT = −ρ(s)
(1
s
α− 1

s
λs + γ

)

which vanishes outside the collar neighborhood. Since the ΩT are all symplectic forms, the
vector field YT is uniquely determined on Σ̊. By repeating the strategy applied previously,
that means by finding an alternate equation that is defined on all of Σ for which YT is the
unique solution, we can show that YT extends to a smooth vector field on all of Σ that vanishes
along the boundary ∂Σ (so that we may integrate its flow).

A short computation shows that YT can be equivalently defined by the equation

ιYTµT = ιYT
(
sn+1ΩnT

)
= nsn+1λT ∧ Ωn−1

T .
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The right hand side is everywhere defined, and vanishes along ∂Σ as can be seen by a short
computation for s = 0

sn+1λT ∧ Ωn−1
T = (n− 1) ds ∧

(
α− λs

)
∧
(
T α+ (1− T )λs

)
∧
(
−T dα−

(
1− T

)
dλs

)n−2
.

The vector field YT is hence also defined on all of Σ, and we can integrate its flow ob-
taining the desired isotopy that keeps the boundary pointwise fixed, and maps the deformed
symplectic structure to the original one. �

Remark IV.1.5. Let (Σ, ω) be a complete symplectic domain, and let Σδ = Σ \ (−δ, 0]× Σ
be a compact subdomain, where we have cut-off a cylindrical end given by Lemma IV.1.4. It
is easy to see that (Σδ, ω) is a weak filling of (∂Σδ, α) if δ > 0 has been chosen small enough.
Conversely, if (W,ω) is a weak filling of a contact manifold (M,α) then we can easily attach
a collar as in Proposition II.2.3, that compactifies to a complete symplectic domain.

IV.1.2. Giroux domains. Consider first an ideal Liouville domain (Σ, ω) with Liouville
form λ, then one can endow Σ×R with the contact structure ker(f dt+ fλ) for any smooth
function f : Σ → [0,∞) with regular level set f−1(0) = ∂Σ. Over the interior of Σ, ker(f dt+
f λ) = ker(dt+ λ), so one recovers the standard notion of the contactization of the Liouville
manifold defined by λ. On the boundary we have f dt = 0, so the contact hyperplanes are
ξω ⊕ TR. Since the contact forms constructed on Σ×R are R-invariant, one can just as well
replace R by S1.

Suppose now more generally that (Σ, ω) is a complete symplectic domain, but that ω

represents a class in H2(Σ̊,R) that is not necessarily trivial, but that is integer valued. We

can choose a 2-form ω0 ∈ Ω2(Σ) whose restriction to Σ̊ is cohomologous to ω and a primitive λ
as in the definition of a complete symplectic domain such that

ω = dλ+ ω0|Σ̊ .
By the classification of circle bundles, we find an S1-bundle Eω over Σ whose Euler class e

(
Eω
)

is equal to [ω], and we can actually chose a connection 1-form A0 on the total space of Eω
such that dA0 = π∗ω0. To simplify notation, we will just write f , λ and ω0 instead of f ◦ π,
π∗λ and π∗ω0, when doing computations on Eω.

This allows us to define a contact structure on Eω given as the kernel of the 1-form

α := fA0 + λf .

Note first that this form is globally defined and invariant under the natural circle action on
the fibers. Over Σ̊, we have

α ∧ dαn =
(
fA0 + fλ

)
∧
(
fω + df ∧ (A0 + λ)

)n
=
(
fA0 + fλ

)
∧ (fω)n

= A0 ∧ (fn+1ωn) ,

and we had already seen in Lemma IV.1.3, fn+1ωn extends to a volume form µ̂f defined on
all of Σ. This shows that α is a contact form on Eω.

Definition. We refer to Eω with the contact structure defined by ker
(
fA0 + λf

)
as the

Giroux domain associated to (Σ, ω).

Example IV.1.6. We consider

Σ = S1 × [0, π], ω =
1

sin2 s
dθ ∧ ds
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where s is the coordinate in [0, π] and θ the coordinate in S1, carrying the trivial contact
structure ker±dθ. One can take as a Liouville form β = cot s dθ. Setting f(θ, s) = sin s, we
get the contact form f(θ, s) · (β+dt) = cos s dθ+sin s dt on Σ×S1. Thus the Giroux domain
associated to this ideal Liouville domain is a Giroux π-torsion domain.

Observe that the contact form α simplifies over the boundary ∂Eω = Eω|∂Σ to π∗λf so
that the contact structure intersects ∂Eω in (Dπ)−1(ξω). In particular by Remark IV.1.2,
this intersection does not depend on the choice of the connection 1-form A0, on λ, or on f .

The properties of the boundary of a Giroux domain will allow us to glue different Giroux
domains or to blow down their boundary components by a technique called contact cuts
[Ler01]. This motivates the following definition.

Definition. Let P be a circle bundle π : P → B over a closed contact manifold (B, ξB). We
call an embedding of P into a contact manifold (M, ξ) a contact cutting hypersurface if
it is of codimension 1, and if the intersection

ξ ∩ TP
projects by Dπ onto ξB.

Observe that in dimension three, a cutting hypersurface is simply a pre-Lagrangian torus
with closed characteristic leaves.

Lemma IV.1.7. The Giroux domains associated to (Σ, ω) are up isotopy independent of the
auxiliary choices of the connection 1-form A0, of λ, or of f .

Proof. Different regular equations f1 and f2 for ∂Σ only rescale the contact form but
do not change the contact structure, hence we may fix a function f for the rest of the proof.
The admissible choices of the connection 1-form and of the primitive λ, form a convex set,
and hence it is sufficient to show the statement for paths of contact forms

ατ = f
(
Aτ + λτ

)
.

The Gray stability theorem, e.g. [Gei08, Theorem 2.2.2], provides the desired isotopy by
integrating the vector field Yτ defined by the two equations

ατ (Yτ ) = 0 and
(
ιYτdατ

)∣∣
kerατ

= − α̇τ |kerατ .
By Remark IV.1.2, f2ω extends to a smooth 2-form on all of Σ that can be written along
the boundary as −df ∧ λf , but in particular it is independent of the choice of λ, and all of
the ατ agree when restricted to T∂Eω. Hence we obtain for every v ∈ (T∂Eω) ∩ kerατ that
dατ (Yτ , v) = −α̇τ (v) = 0, and it follows that Yτ needs to be parallel to the boundary of the
Giroux domain, because every vector in kerατ transverse to ∂Eω would pair positively with
some v.

The flow of Yτ exists and defines the desired isotopy on Eω. �

Remark IV.1.8. A Giroux domain is an S1-bundle over a symplectic manifold (Σ, ω). A
different construction, also due to Giroux, known as the mapping torus of a symplectomor-
phism ϕ with compact support in Σ̊ produces instead a Σ-bundle over S1. When the boundary
of the resulting bundle is blown down as describe in the next section below, we obtain a con-
tact manifold associated to the abstract open book (Σ, ω, ϕ). Observe that unlike Giroux’s
original construction of the contact structure associated to an open book (see e.g. in [Gei08,
Section 7.3]), the construction based on ideal Liouville domains does not require any tweaking
near the binding.
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IV.1.3. Blowing down. In the previous section, we defined contact cutting hypersur-
faces. Typical examples are the boundary of a Giroux domain, but not all contact cutting
hypersurfaces arise as boundaries of such domains. What is true tough is that the S1-fibration
on such a cutting surface can always be extended to a circle action on a small tubular neighbor-
hood, that preserves the contact structure. In this section, we will show that if the boundary
component of a contact manifold is a cutting hypersurface, we may collapse the S1-fibers
using the contact cut construction [Ler01], and produce a smooth contact manifold without
boundary. In case the hypersurface lies in the interior of the contact manifold, we may split
the contact manifold along a contact cutting hypersurface, and apply the same construction.

Topologically the contact cut just consists in removing the boundary component, and
gluing a certain disk bundle in an S1-invariant way to the collar of the hypersurface.

Lemma IV.1.9. Let P be a ξ-cutting hypersurface that fibers over the contact manifold (B, ξB)
and that lies in the interior (or boundary) of (M, ξ). Then it has a neighborhood (−ε, ε)× P
(or [0, ε)× P respectively) on which ξ can be defined by the contact form π∗αB + sA0 where
s is the coordinate on the interval, A0 is a connection 1-form of P , and αB is a contact form
for ξB. In particular, there is a free contact action on S1 on this neighborhood that is outside
P transverse to the contact structure.

Proof. Fix any tubular neighborhood (or collar neighborhood) of P with coordinate s.
The 1-form given in the lemma defines a contact structure near P which induces the same
hyperplane field on P as ξ, hence by the same argument as in the proof of Lemma IV.1.7,
they are isotopic keeping P fixed as subset. �

Suppose P is a cutting hypersurface in a boundary component of (M, ξ). We will now
explain how to modify (M, ξ) by blowing down P to B.

The disk bundle, we want to glue in is obtained in the following way: Consider the
(complex) line bundle EP associated to P , i.e. the bundle obtained from P ×C by identifying
(p, z) with

(
e−iφ · p, eiφ z

)
for every eiφ ∈ S1. The base manifold of this bundle is the space

B = P/S1, and P embeds naturally into EP as its unit bundle via the map

P →֒ EP , p 7→ [p, 1] .

Define on P × C the 1-form

α̂ := π∗αB + |z|2A0 + x dy − y dx ,

where A0 is a connection 1-form on EP , and where z = x + iy denote the coordinates on
the C-factor. It is easy to check that α̂ descends to a well-defined 1-form α on EP , because
it is invariant under the circle action on the product, and because α̂(ZP×C) = 0 for the
infinitesimal generator ZP×C = −ZP + x ∂y − y ∂x. We can see that

α̂ ∧ dα̂n :=
(
π∗αB + |z|2A0 + x dy − y dx

)
∧
(
π∗dαB + |z|2 dA0 + d|z|2 ∧A0 + 2 dx ∧ dy

)n

simplifies at P × {0} to

α̂ ∧ dα̂n := π∗αB ∧
(
π∗dαB + 2 dx ∧ dy

)n
= 2ndx ∧ dy ∧ π∗

(
αB ∧ dαn−1

B

)
,

which has exactly 1-dimensional kernel. Hence the 1-form α will be (at least in a neighborhood
of the 0-section of EP ) a contact form.

Let us now come back to the contact manifold (M, ξ) whose boundary has a component
P that is a contact cutting hypersurface. Choose a collar neighborhood P × [0, ε) given
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by Lemma IV.1.9 assuming that the contact form is π∗αB + sA0 with the same connection
1-form A0 as the one used in the line bundle construction above.

Remove the hypersurface P = P × {0} from M , and glue a small disk bundle E<δ of EP
with δ2 < ε onto the remaining collar neighborhood using the diffeomorphism

Ψ: E<δ \B → P × (0, ε) ⊂M \ P

[p, z] =
[ z
|z| · p, |z|

]
7→
( z
|z| · p, |z|

2
)
.

The pull-back of π∗αB+ sA0 is π∗αB+ |z|2A0. To recognize that this is just α, pull back the

form a from EP to P ×C. We see that |z|2A0 pulls up to |z|2A0 + x dy − y dx as we wanted

to show, and hence π∗αB + |z|2A0 is equal to α.
Note that gluing map Ψ is S1-equivariant with respect to the circle action on EP that

multiplies the fibers with complex numbers of modulus 1, and the given action on P × (0, ε),

because eiθ · [p, z] := [p, eiθz] =
[
eiθz
|z| · p, |z|

]
so that

Ψ
(
eiθ · [p, z]

)
=
(eiθz

|z| · p, |z|2
)
= eiθ ·Ψ([p, z]) .

Thus we can glue E<δ to M \ P to get a new contact manifold in which P has been
replaced by B, and where the S1-action has fixed points along B.

Let P1 ∪ · · · ∪ PN be a union of connected components of the boundary of a Giroux
domain Eω. These components are contact cutting hypersurfaces and can thus be blown
down as just described. We shall denote the resulting manifold by Eω//

(
P1 ∪ · · · ∪ PN

)
. It

inherits a natural contact structure for which each of the blown down boundary components
becomes a codimension two contact submanifold. The S1-action on Eω is not modified outside
P1∪· · ·∪PN , but the blown down boundary components convert into fixed points of the action.

Example IV.1.10. Continuing the annulus example, a Giroux π-torsion domain with one
boundary component blown down is a so-called Lutz tube, i.e. the solid torus that results
from performing a Lutz twist along a transverse knot. With both boundary components
blown down, it is the standard contact structure on S2 × S1.

In the above example, when one boundary component is blown down but not the other, the
resulting domain contains an overtwisted disk. We now generalize this to higher dimensions.

Proposition IV.1.11. Suppose (M, ξ) is a contact manifold containing a subdomain G with
nonempty boundary, obtained from a Giroux domain by blowing down at least one boundary
component (but not all!).

If the blown down Giroux domain was constructed from an ideal Liouville domain (Σ, ω),
then (M, ξ) contains a small bLob (cf. Remark I.4.2.(iii)).

The bLob in the above proposition will come from a Lagrangian submanifold in a com-
plete symplectic domain (Σ, ω). We first need a technical definition describing how these
submanifolds will be allowed to approach the boundary. We say that a submanifold L prop-
erly embedded inside Σ and transverse to the boundary is a Lagrangian with cylindrical
end if:

• L̊ is Lagrangian in Σ̊.
• ∂L is Legendrian in ∂Σ.
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• We find a boundary collar (−ε, 0]× ∂Σ of Σ with symplectic form

−d
(α
s

)
+ ω∂ ,

as in Lemma IV.1.4 in which L is parallel to the s-direction, that means,

L ∩
(
(−ε, 0]× ∂Σ

)
= (−ε, 0]× ∂L ,

and ω∂ vanishes on a neighborhood of ∂L.

Next we show that a Lagrangian with cylindrical ends inside a complete symplectic mani-
fold determines a submanifold with a Legendrian foliation in the corresponding Giroux domain
(cf. Example I.3.1). If additionally a certain homological condition holds, then the Legendrian
foliation will be a fibration over S1.

Lemma IV.1.12. Let (Σ, ω) be an ideal Liouville domain. If L is a Lagrangian with cylin-

drical end in Σ, then L̂ := L × S1 inside the contactization Eω = Σ × S1 is isotopic to
a maximally foliated submanifold whose singular set is its boundary and whose foliation is
otherwise defined via a fibration

ϑ : L̂→ S1, (l, t) 7→ F (l) + t ,

for some smooth function F : L→ S1 that is constant on a neighborhood of ∂L.

Proof. We first assume that there is a Liouville form λ adapted to L which induces a
rational cohomology class on L. This implies there is a real number ~ > 0 such that ~−1 times
the cohomology class of the restriction of λ to L is integral: ~−1 [i∗λ] ∈ H1(L;Z). First note
that ~f dt+ λf defines a contact structure isotopic to ker(f dt+ λf ) relative to the boundary
of the Giroux domain G := Σ × S1 (compare this to the situation in Section IV.3, where
we need sufficient “space” to realize the isotopy). Furthermore, the vector field constructed
in the standard proof of Gray’s theorem vanishes along ∂Σ × S1, so this isotopy is actually
tangent to the identity along the boundary. We shall now prove the lemma using this contact
form (and no further isotopy of L× S1).

In the interior of G, the contact structure is defined by ~ dt + λ, which restricts to η =

~ dt+ i∗λ on L̂. Since η is closed, L̂ is foliated. Moreover, ~ dt never vanishes in L̂, so there
is no singularity there. Along the boundary, the contact structure is defined by λf , whose

restriction to L̂ vanishes, thus the singularities are as claimed.
We now define the fibration ϑ using Tischler’s construction (cf. [Tis70]). Let (l0, t0) be

any base point in the interior of L̂. We define ϑ(l, t) = 1
~

∫
γ
η, where γ is any path from (l0, t0)

to (l, t). Since η is closed, Stokes’ theorem guarantees that this is well defined modulo the
integral of η along loops based at (l0, t0). If (γL, γt) is such a loop, then the integral over it is〈
[λ], [γL]

〉
+ ~

〈
[dt], [γt]

〉
, which belongs to ~Z+ ~Z = ~Z, thus ϑ has a well-defined value in

S1 = R/Z. Observe that ϑ(l, t) = ϑ(l, 0)+ t, and two points (l1, t1) and (l2, t2) lie in the same
connected component of a fiber of ϑ if and only if they lie on the same leaf of the Legendrian
foliation. On a suitable collar neighborhood of the boundary, the 1-form η simplifies to ~ dt,
so the behavior of ϑ is also as claimed.

We now explain how to enforce the rationality assumption by perturbation of the Liouville
structure. Suppose λ0 is any Liouville form adapted to L, in which case λ0|TL is a closed
1-form that vanishes on a collar neighborhood of ∂L. For every ε > 0, we will find a closed
1-form λL on L with compact support in L̊ and ‖λL‖ < ε (in the C0-norm with respect to
a fixed auxiliary metric on L) such that i∗λ0 + λL represents a rational cohomology class
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on L. Since the restriction of λ0 to L vanishes near ∂L, its cohomology class belongs to the
kernel K of the map H1

dR(L) → H1
dR(∂L) induced by inclusion. Let β1, . . . , βp be a set of

closed 1-forms representing a basis of the image in K of H1(L;Z). By the definition of K,
we can assume that all these 1-forms vanish near the boundary of L. The restriction of λ0 to
L can be written as

∑
ciβi + df for some real coefficients ci and some function f . Since Q is

dense in R, one can find arbitrarily small numbers εi such that ci+ εi is rational for all i and
then set λL =

∑
εiβi.

We extend λL to a tubular neighborhood U of L in Σ by pulling it back to the normal
bundle, and multiply it by a fixed cutoff function ρ : U → [0, 1] that has compact support on
U and equals 1 on L. In this way we obtain a 1-form λ′0 given by λ0+ ρλL on U that extends
smoothly to β0 on Σ \ U , and whose restriction to L yields the desired closed 1-form with

compact support in L̊ that represents a rational cohomology class. We can choose ε above
arbitrarily small, hence we can assume that all forms in the segment between dβ0 and dβ′0
are symplectic. The corresponding contact structures are then isotopic relative to Σ \ U and
∂Σ. �

Proof of Proposition IV.1.11. Let (Σ, ω) denote the ideal Liouville domain used to
construct G. We will construct a Lagrangian L ⊂ Σ with cylindrical end and blow down the
foliated submanifold of Lemma IV.1.12 to find the desired bLob. If dimΣ = 2, it suffices to
take for L an embedded path between two distinct boundary components of Σ, where one
corresponds to a blown down boundary component of G and the other does not. More gener-
ally, choose two disjoint boundary parallel Lagrangian disks Lbd and Lp with cylindrical ends
in Σ such that ∂Lbd is a Legendrian sphere in one of the blown down boundary components
of ∂Σ, and ∂Lp is a Legendrian sphere in another boundary component that is not blown
down. By a symplectic isotopy supported in a tube connecting them, we can deform Lp away
from ∂Lp so that it intersects Lbd transversely.

One can remove transverse self-intersection points between two Lagrangians L and L′

using [Pol91]. This construction works by removing for each intersection two small balls from
L and L′ containing this point, and gluing in a tube diffeomorphic to [−ε, ε] × Sn−1 joining
the boundaries of the two balls. In fact, the construction is explicit: choose a Darboux
chart around the intersection point such that L and L′ are represented by the n-planes
{(x1, . . . , xn, 0, . . . , 0)} and {(0, . . . , 0, y1, . . . , yn)} respectively. Remove a disk of radius ε
around 0 in both planes and glue in the tube

(−ε, ε)× Sn−1 →֒ R2n, (t;x1, . . . , xn) 7→
(
ρ1(t) · (x1, . . . , xn); ρ2(t) · (x1, . . . , xn)

)

for a smooth function ρ1 : (−ε, ε) → [0, 1] that is 0 for values between −ε and −ε/2, has
positive derivative for t > −ε/2 and is the identity close to +ε. Define ρ2(t) := ρ1(−t). This
defines a Lagrangian manifold that glues well to L \ ε · Dn for t close to ε and to L′ \ ε · Dn
for t close to −ε.

The symplectic isotopy and the surgery process both took place far away from the
boundary, so we obtain by this construction a Lagrangian that still has cylindrical ends.
Lemma IV.1.12 then produces a foliated submanifold which becomes a bLob in the blown
down Giroux domain. This bLob also embeds into a ball, because L is obtained from two
Lagrangian disks parallel to the boundary and a thin tube that lies in the neighborhood
of an embedded path, so that L lies in a ball of the form [0, 1] × D2n−1 ⊂ Σ. Moving to
the contactization and blowing down the corresponding boundary components then gives a
neighborhood diffeomorphic to a ball D2 × D2n−1 that contains the bLob. �
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Remark IV.1.13. As in [MNW13], we have only stated Proposition IV.1.11 for Giroux
domains constructed over ideal Liouville domains (Σ, ω), even though we have also introduced
in this section the blow down operation for more general domains, where ω is not exact. The
difficulty of carrying out the proof above for these more general examples is that we are not
able to rescale the connection form A0 used in the construction of the contact form, because
a non-trivial curvature would change by this same scaling factor, and this would result in a
different contact manifold.

One of the main difficulties for applying Proposition IV.1.11 is that it is extremely hard to
find examples of Giroux domains with disconnected boundary, and a large part of [MNW13]
was dedicated to the construction of such examples. One could hope that generalizing Proposi-
tion IV.1.11 for general Giroux domains, one would be able to find much more easily examples
where one could apply the theory (for example, it is easy to see that T ∗S1 × T2 is a weak
filling of two 3-tori [Gir94]).

IV.1.4. Obstructions to fillability. We now want to state a non-fillability result. As
preparation, note that any embedding of the interior of a Giroux domain IΣ := Σ̊ × S1

into a contact manifold (M, ξ) determines a distinguished subspace H1(Σ;R) ⊗H1(S
1;R) ⊂

H2(M ;R). We call its annihilator in H2
dR(M) the space of cohomology classes obstructed

by IΣ, and we denote it by O(IΣ). Classes in O(IΣ) are exactly those whose restriction to IΣ
can be represented by closed 2-forms pulled back from the interior of Σ. If N ⊂ (M, ξ) is any
subdomain resulting from gluing together a collection of Giroux domains IΣ1 , . . . , IΣk , then
we define its obstructed subspace O(N) ⊂ H2

dR(M) to be O(IΣ1) ∩ · · · ∩ O(IΣk). We will say
that such a domain is fully obstructing if O(N) = H2

dR(M).

Theorem IV.1.14. Suppose (M, ξ) is a closed contact manifold containing a subdomain N
with nonempty boundary, which is obtained by gluing and blowing down Giroux domains
constructed from ideal Liouville domains.

(a) If N has at least one blown down boundary component then it contains a small bLob,
hence (M, ξ) does not have any (semipositive) weak filling.

(b) If N contains two Giroux domains Σ+×S1 and Σ−×S1 glued together such that Σ−

has a boundary component not touching Σ+, then (M, ξ) has no (semipositive) weak
filling (W,ω) with [ωM ] ∈ O(Σ+ × S1).

In particular (M, ξ) has no (semipositive) strong filling in either case.

The first statement in this theorem follows immediately from Proposition IV.1.11 and
Theorem A. We will prove the second in Section IV.2.3, essentially by using the symplectic
cobordism construction explained below to reduce it to the first statement, though some care
must be taken because the filling obtained by attaching our cobordism to a given semipositive
filling need not always be semipositive.

IV.2. Surgery along Giroux domains

IV.2.1. A handle attachment theorem. In Section IV.1.3, we explained a method
for blowing down the boundary of a Giroux domain. The surgery procedure which we will
study in this section consists in removing the interior of a Giroux domain from a contact
manifold and then blowing down any resulting boundary component. The main result will
be that if the Giroux domain is constructed from an ideal Liouville domain, we can realize
this surgery by a symplectic cobordism that can be glued on top of any weak filling satisfying
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suitable cohomological conditions, leading to a proof of Theorem IV.1.14. The construction
in this section has been taken from [MNW13].

Suppose (M, ξ) is a (2n− 1)-dimensional contact manifold without boundary, containing

a Giroux domain G ⊂ M . Removing the interior of G, the boundary of M \G is then a
ξ-cutting hypersurface

∂(M \G) = P ,

that fibers over a (possibly disconnected) closed contact manifold (B, ξB). We can thus blow
it down as described in Section IV.1.3, producing a new manifold

M ′ := (M \G)//∂G
without boundary, which inherits a natural contact structure ξ′.

Topologically, the surgery taking (M, ξ) to (M ′, ξ′) can be understood as a certain handle
attachment. We now give a point-set description of this handle attachment which is sufficient
to state the theorem below, and postpone the smooth description to the next subsection.
Assume that G is a Giroux domain over an ideal Liouville domain

(
Σ, ω

)
with boundary ∂Σ

so that G = Σ× S1.
We want to glue the disk bundle EΣ = Σ ×D2. Note that the boundary of EΣ consists

of G and the product ∂Σ ×D2 over ∂Σ. Then we can consider the manifold with boundary
and corners defined by (

[0, 1]×M
)
∪{1}×G Σ×D2 .

After smoothing the corners, this becomes a smooth oriented cobordism W with boundary

∂W = −M ⊔M ′ .

We can now state the main theorem of this section.

Theorem IV.2.1. SupposeW denotes the 2n-dimensional smooth cobordism described above,
and Ω is a closed 2-form on M such that:

• Ω weakly dominates ξ
• the cohomology class of Ω belongs to the obstructed subspace O(G), i.e. for every
1-cycle Z in Σ, ∫

Z×S1
Ω = 0 .

Then W admits a symplectic structure ωW with the following properties:

(1) ωW |TM = Ω.
(2) The co-core Σ× {0} embedded into Σ×D2 ⊂W is a symplectic submanifold weakly

filling (∂Σ× {0}, ξΣ).
(3) (M ′, ξ′) is a weakly filled boundary component of (W,ωW ) that is contactomorphic

to the blown down manifold (M \G)//∂G.

Remark IV.2.2. Recall that due to Lemma II.2.2, a pair of weak symplectic cobordisms
can be smoothly glued together along a positive/negative pair of contactomorphic boundary
components whenever the symplectic forms restricted to these boundary components match.
Thus the symplectic cobordism of the above theorem can be glued on top of any weak filling
(W,ω) of (M, ξ) for which [ω|TM ] ∈ O(G).
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IV.2.2. Construction of the symplectic cobordism. In this section we will give the
proof of Theorem IV.2.1. The proof will consist of the following five steps:

(1) Find a standardized model with a special contact form αM for tubular neighborhoods
of ∂G.

(2) Construct a symplectic form on our proto-cobordism [0, 1]×M that is well adjusted
to both Ω and λ.

(3) Carve out the interior of {1}×G from [0, 1]×M . This creates a notch with corners
along its edges, and we will then smoothly glue the handle Σ ×D2 into the cavity,
creating a smooth manifold.

(4) Study the symplectic form induced from the proto-cobordism on the glued part of
the handle and extend it to the whole handle.

(5) Check that the new boundary of the cobordism has the desired properties.

Step 1: Neighborhoods and contact form for G
Since (Σ, ω) is an ideal Liouville domain, there is a 1-form λ on Σ̊ such that ω = dλ. Fur-
thermore by Lemma IV.1.4, we can assume that for a chosen contact form α on (∂Σ, ξω), we
find a collar neighborhood (−ε, 0]× ∂Σ, on which λ restricts to −α/s, so that

ω|(−ε,0)×∂Σ = −d
(1
s
α
)
.

We denote by u a smooth function Σ → [0, 1] which has the boundary ∂Σ = u−1(0) as a
regular level set, equals −s in the region s ≥ −ε/3 and 1 in the region s ≤ −ε/2 and outside
the collar, and satisfies u′ ≤ 0 everywhere on the collar (see Fig. 1). We set λu = uλ. The
contact form on G associated to (Σ, ω) can be chosen to be αG := u dθ + λu. In the collar,

one can set αG to be u dθ+fα, where f(s) is the function u(s)
s
. The contact condition implies

(IV.2.1) uf ′ − fu′ 6= 0 .

Appealing to Lemma IV.1.9, we can slightly extend our collar neighborhood embedded in
(M, ξ) to one of the form (−ε, ε′)× ∂G, with αG being of the form −s dθ + α also for s > 0.

Figure 1. The functions u and f .

Step 2: The symplectic form on [0, 1]×M
The assumption that Ω weakly dominates ξ implies that the 2-form ωW = d(tαG) + Ω is
symplectic on (−δ, 1]×M for some small positive constant δ. The cohomological assumption
[Ω] ∈ O(G) implies that Ω is cohomologous to some 2-form Ω0 such that Ω0|G is the pull back
of a 2-form on Σ. In addition, since the collar neighborhood (−ε, 0]× ∂Σ retracts to ∂Σ, we
can assume that ι∂sΩ0 = 0 when s ≥ −ε/2.
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Lemma IV.2.3. We can modify the form ωW defined above to a new symplectic form on
(−δ, 1] × M , keeping the assumption that ωW restricts to Ω on {0} × M and ξ be weakly
dominated by ωW on each slice {t}×M , but asking in addition that ωW restrict to C d(tαM )+
Ω0 on [1/2, 1]×M for some large constant C > 0.

Proof. Using Lemma II.2.3, we find a symplectic form ω′ on (−δ,∞) ×M such that
each {t} × M is still weakly filled and ω′ restricts to d(tλ) + Ω0 for t greater than some
large constant C/2. The scaling diffeomorphism (t, v) 7→ (t/C, v) pulls back ω′ to the desired
symplectic form. �

Step 3: Handle attachment
We now give a smooth description of the handle attachment which is compatible with the
smooth description of the blow-down process for ξ-cutting hypersurfaces. For this, we will
first create a small basin in the top of [0, 1]×M to which we can glue in the handle.

(a) The precise construction of the handle at-
tachment works by creating a trench on the
top side of the cobordism [0, 1]×M to which
we can glue in the handle. In the picture above
we need to remove the hatched area under the
Giroux domain Σ× S1.

(b) The vector field X is tangent to the top
face and transverse to the hypersurface H,
which is Σ pushed inside [0, 1]× Σ relative to
its boundary. Everything above H has been
discarded to make room for the handle.

Figure 2

Let h be a smooth function from Σ to (1/2,∞) such that

• h restricts on the special collar of Step 1 to a function only depending on s with
nonnegative derivative h′(s),

• outside the collar on (−ε/2, 0]× ∂Σ, h is constant,
• for s ≥ −ε/3, h(s) = 1 + s near ∂Σ, so that in particular ∂Σ = h−1(1).

Let hG : G→ (1/2,∞) be the S1-invariant extension of h from Σ to the Giroux domain G =
Σ × S1. We denote by H ⊂ [0, 1] ×M the graph of hG over G, see Fig. 2. We discard the
region {t ≥ hG} from [0, 1]×M to get an open manifold, to which we will glue the “handle”
Σ × D. Here D denotes the disk of radius

√
ε. In the following, we will find a symplectic

vector field X in a neighborhood of the hypersurface H in [0, 1]×M that is transverse to H,
never points in the positive t-direction, and is tangent to {1} ×M near the boundary of H.
Shrinking ε if needed, we may assume that the flow of X starting from H embeds H× [0, ε]
into [1/2, 1] ×M . We denote by ΦXτ the flow of X at time τ . The manifold W ′ is obtained
by attaching Σ×D to

(
[0, 1]×M

)
\ {t ≥ h} using the gluing map Ψ from Σ×D∗ (where D∗

the punctured disk D \ {0}) to [0, 1]×M defined by

Ψ(σ, reiθ) = ΦXr2
(
h(σ);σ, eiθ

)
.
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Here ΦX
r2

is the flow of the vector field X followed for time r2. Note that as a point-set
operation, the handle attachment reduces to the operation of adding the co-core Σ to the
open manifold

(
[0, 1]×M

)
\ {t ≥ hΣ}.

The vector field X that we will use below coincides with ∂s near {1} × ∂G. This implies
that the attachment using Ψ restricts precisely to the gluing map used to blow down the
cutting hypersurface ∂G.

As a gluing vector field X, we choose the ωW -dual of −C dθ, where C is the constant
appearing in ωW , and θ is the circle direction in the Giroux domain Σ×S1. Since this 1-form
is closed, X is a symplectic vector field.

Lemma IV.2.4. The vector field X is transverse to the hypersurface H and coincides with
∂s near {1} × ∂G.

Proof. Away from the special collar neighborhood considered in Step 1, αM = dθ + λ,
and computing

ωW (X, ∂θ) = −C ,

we see that dt(X) = −1. Elsewhere, on the collars [0, 1]×
(
[− ε

2 , 0]× ∂G
)
, we use the ansatz

X = Xt ∂t+X
s ∂s. Computing the interior product ιXωW using ωW = C d

(
t(u dθ+fα)

)
+Ω0

and ι∂sΩ0 = 0, we find that X is indeed ωW -dual to −C dθ provided

uXt + tu′Xs = −1 ,

f Xt + t f ′Xs = 0 .

This system is everywhere nonsingular due to the contact condition (IV.2.1). For s ≥ −ε/3
and t = 1, we have X = ∂s as promised. For s < −ε/3, the conditions f(s) > 0 and f ′(s) > 0
imply Xt < 0 and Xs > 0, hence X is transverse to H. �

Step 4: Symplectic form on the handle

Lemma IV.2.5. The gluing map Ψ from Σ×D∗ to [0, 1]×M pulls back ωW to

Ψ∗ωW = 2CωD + C d(hu) ∧ dθ +Ω0

where ωD := −r dr ∧ dθ and Ω0 is a symplectic form on Σ which weakly fills (∂Σ, kerλu).

Proof. Let jH denote the embedding G →֒ H ⊂ [0, 1] ×M, (σ, eiθ) 7→
(
hΣ(σ);σ, e

iθ
)
.

Then we can decompose Ψ as Ψ = Φ ◦ P , where P is the map from Σ × D∗ to G × (0, ε]
defined by P (σ, reiθ) = (σ, eiθ; r2) and

Φ(σ, eiθ; τ) := ΦXτ
(
h(σ);σ, eiθ

)
= ΦXτ

(
jH(σ, e

iθ)
)
.

Using the fact that the flow of
(
ΦXτ
)
∗∂τ = X preserves ωW and ιXωW = −C dθ, we obtain

for the pull back

Φ∗ωW = −C dτ ∧A0 + j∗HωW ,

and since the symplectic form ωW is given in the range of jH by C d(tαM ) + Ω0 with αM =
u dθ + λu, we can compute

j∗HωW = C d(hΣαM ) + ω0 = C d(hΣu) ∧ dθ + ω0 ,

where we have set ω0 = C d(hΣλu) + Ω0 (which is a 2-form on Σ).
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Now since P ∗dτ = 2r dr, the only thing left to prove is that ω0 is a symplectic form which
weakly fills (∂Σ, kerα). Since ωD is the only term in Ψ∗ωW that contains a dr-factor, and
thus it follows that (Ψ∗ωW )n = 2nCωD ∧ ωn−1

0 6= 0, we deduce that ω0 is symplectic.
The 2-form ω0 restricts on ∂Σ to C dα+Ω0. Recall that the weakly dominating condition

on {1} ×M means that for any constant ν ≥ 0, αM ∧
(
ωW + ν dαM

)n−1
> 0. Restricting to

{1} ×G, where αM = u dθ + λu and ωW = C dαM +Ω0, this becomes:

(u dθ + λu) ∧
[
(C + ν) du ∧ dθ +

(
C dλu +Ω0 + ν dλu

)]n−1
> 0 ,

which we expand along {1} × ∂Σ× S1 as

(n− 1)(C + ν)α ∧ du ∧ dθ ∧
(
C dα+Ω0 + ν dα

)n−2
> 0 .

In particular, this proves that α ∧ (Ω0 + ν dα)n−2 never vanishes. In order to check that it
has the correct sign, it suffices to consider the case ν = 0. �

To finish the construction of the symplectic cobordism, we want to define a symplectic
structure on Σ×D that agrees in a neighborhood of the boundary Σ× ∂D with Ψ∗ωW , and
that has a split form near Σ× {0}. Let ρ1 and ρ2 be functions from [0,

√
ε] to R (constraints

will be added later). We set:

ω̃ := 2Cρ1ωD + C d(ρ2hΣu) ∧ dθ + ω0

= gωD + Cρ2 d(hΣu) ∧ dθ + ω0 with g :=

(
2ρ1 −

huρ′2
r

)
C.

We choose ρ1(r) = ρ2(r) = 1 for r close to
√
ε, so that ω̃ extends Ψ∗ωW . Near 0, we

choose ρ1 to be a large positive constant and ρ2 to vanish so that ω̃ makes sense near the
center of D. One can compute ω̃n = ngωD ∧ ωn−1

0 . Since ω0 is symplectic on Σ, we see that
ω̃ is symplectic as soon as g is positive. This condition is arranged by choosing ρ1 sufficiently
large away from r =

√
ε.

Step 5: Properties of the new boundary of W
We now consider the new boundary component M ′ resulting from the above construction.
Since hu is constant on ∂Σ, the restriction of ω̃ to ∂Σ×D is gωD +ω0. As we already noted,
the gluing map Ψ extends the one used to define the blow-down, and the contact form on M ′

is λ = λu − r2dθ. Thus in order to check the weak filling condition, we only need compute,
for any constant ν ≥ 0,

λ ∧ (ω̃ + ν dλ)n−1 = (n− 1)(g + 2ν)ωD ∧ γ ∧ (ω0 + ν dλu)
n−2.

This is indeed a positive volume form for any nonnegative ν because (Σ, ω0) is a weak filling
of (∂Σ, kerλu) according to Lemma IV.2.5.

IV.2.3. Giroux domains and non-fillability. We now use the cobordism of the pre-
ceding section to prove Theorem IV.1.14 on filling obstructions.

IV.2.4. Proof of Theorem IV.1.14. Part (a) of the theorem follows immediately from
the fact that if (M, ξ) contains a Giroux domain N that has some boundary components that
are blown down and others that are not, then by Proposition IV.1.11 it contains a small bLob,
so Theorem A implies that (M, ξ) does not admit any semipositive weak filling.

To prove part (b), suppose N has the form

N = (Σ+ × S1) ∪Y×S1 (Σ
− × S1) ,
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where Σ± are ideal Liouville domains with boundary ∂Σ± = ∂glueΣ
±⊔∂freeΣ±, Y := ∂glueΣ

+ =
∂glueΣ

− carries the induced contact form α and ∂freeΣ
− is not empty. Arguing by contra-

diction, assume that (M, ξ) is weakly filled by a semipositive symplectic filling (W0, ω) with
[ω|TM ] ∈ O(Σ+). This establishes the cohomological condition needed by Theorem IV.2.1 on
Σ+×S1, so applying the theorem, we can enlarge (W0, ω) by attaching Σ+×D2, producing a
compact symplectic manifold (W1, ω) whose boundary (M ′, ξ′) supports a contact structure
that is weakly filled.

Since the boundary M ′ of the new symplectic manifold (W1, ω) is contactomorphic to

(M \ (Σ+ × S1))//Y , we find in (M ′, ξ′) a domain isomorphic to (Σ− × S1)//Y that contains
a small bLob. Unfortunately this does not directly obstruct the existence of the weak filling
(W1, ω), because even though W0 was semipositive, W1 might not be. We will follow the
proof of Theorem A, with the difference that we need to reconsider compactness to make sure
that bubbling is still a “codimension 2 phenomenon”.

Choose an almost complex structure J on (W1, ω) with the following properties:

(i) J is tamed by ω and makes (M ′, ξ′) strictly J-convex,
(ii) J is adapted to the bLob in the standard way, i.e. it is chosen close to the boundary

of the bLob as in Section II.3.4 and in a neighborhood of the binding according to
Section II.3.3 (cf. the proof of Theorem A),

(iii) for some small radius r > 0, J = JΣ+ ⊕ i on Σ+ × D2
r ⊂ W1, where JΣ+ is a tamed

almost complex structure on Σ+ for which ∂Σ+ is JΣ+-convex.

The third condition uses the fact from Theorem IV.2.1 that the co-core K′ := Σ+ × {0}
of the handle is a symplectic (and now also J-holomorphic) hypersurface weakly filling its
boundary. The binding of the bLob lies in the boundary of the co-core K′

+, and the normal
form described in Section II.3.3 is compatible with the splitting Σ+ ×D2

r so that (ii) and (iii)
can be simultaneously achieved.

By choosing JΣ+ generic, we can also assume that every somewhere injective JΣ+-holomorphic
curve in Σ+ is Fredholm regular and thus has nonnegative index. Note that any closed J-
holomorphic curve in Σ+ ×D2

r is necessarily contained in Σ+ × {z} for some z ∈ D2
r , and the

index of this curve differs from its index as a JΣ+-holomorphic curve in Σ+ by the Euler char-
acteristic of its domain. This implies that every somewhere injective J-holomorphic sphere
contained in Σ+ × D2

r has index at least 2. Likewise, by a generic perturbation of J outside
of this neighborhood we may assume all somewhere injective curves that are not contained
entirely in Σ+ × D2

r also have nonnegative index.
Now let M be the connected moduli space of holomorphic disks attached to the bLob

that contains the standard Bishop family. We can cap off every holomorphic disk u ∈ M by
attaching a smooth disk that lies in the bLob, producing a trivial homology class in H2(W1).
The cap and the co-core intersect exactly once, and it follows that u also must intersect the
co-core K′

+ exactly once, because u and K′
+ are both J-complex.

To finish the proof, we have to study the compactness of M and argue that M \ M
consists of strata of codimension at least 2. A nodal disk u∞ lying in M\M has exactly one
disk component u0, which is injective at the boundary, and one component u+ that intersects
the co-core once; either u+ = u0 or u+ is a holomorphic sphere. Every other nonconstant con-
nected component v is a holomorphic sphere whose homology class has vanishing intersection
with the relative class [K′

+]. So either v does not intersect the J-complex submanifold K′
+

at all or v is completely contained in K′
+. In either case, v is homotopic to a sphere lying in

W0: indeed, if v does not intersect the co-core, we can move it out of the handle by pushing



IV.3. OVERTWISTED CHARTS 109

it radially from Σ+× (D2 \ {0}) into the boundary Σ+×S1 ⊂W0, and if v ⊂ K′
+ = Σ+×{0},

then we can simply shift it to Σ+ × {1} ⊂ W0. Using the fact that u0 and u+ are both
somewhere injective, together with the semipositivity and genericity assumptions, we deduce
that every connected component of u∞ has nonnegative index, thus M\M has codimension
at least two in M. The rest of the proof is the same as for Theorem A.

IV.3. Overtwisted charts

It is not difficult to equip R2n+1 with a contact structure that contains an embedded bLob.
For this it suffices to embed a bLob N smoothly into R2n+1 and take a contact structure on
a neighborhood of N (using for example Theorem I.1.5). Under weak topological conditions,
the h-principle [Gro86], [EM02, Theorem 10.3.2] allows us to extend this contact structure
to all of R2n+1. We presume this is the approach that Gromov had in mind in [Gro85,
2.4.D′

2 (c)], when he wrote:

Then one easily produces examples of submanifolds W in some contact mani-
folds X diffeomorphic to R2n−1 where this condition is not met; this prevents
any contact embedding of such an X into R2n−1 with the standard contact
structure (given by the form

∑n−1
i=1 xi dyi + dz).

See page 1 for the full quotation.
The aim of this section is to reprove the main result from [NP10]. Let αot be the standard

overtwisted contact form

αot = cos(r) dz + r sin(r) dφ

written in cylindrical coordinates on R3, and let

λcan =
n∑

j=1

xj dyj

be a Liouville form on R2n. We will study the open contact manifold
(
R3 × R2n, kerα

)

equipped with the contact form α = αot + λcan.
Write Dot for the overtwisted disk {z = 0, r ≤ π

}
in
(
R3, αot

)
.

Proposition IV.3.1. Let U0 be an open neighborhood of Dot in R3, and let BR be the neigh-
borhood

BR :=
{
(x,y)

∣∣ ‖x‖ < R, ‖y‖ < R
}
⊂ R2n .

If R is chosen sufficiently large, then
(
U0 ×BR, kerα

)

contains a bLob. In particular,
(
R3 × R2n, kerα

)
contains a bLob.

In comparison to the construction based on the h-principle, the proposition just stated
has the advantage of giving a very explicit contact structure. Furthermore, it is interesting
that the PS-overtwistedness depends on the size of R: It is easy to see that every Darboux
ball contains subsets that are contactomorphic to U0 × BR for R small. In particular, this
chart has a formal similarity to the loose charts discovered by Emmy Murphy [Mur12]. This
loose charts characterize loose Legendrian submanifolds, a class of Legendrians that is flexible.
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Proof of Proposition IV.3.1. Note that α is invariant under S1-rotations in the φ-
coordinate. This allows us to consider U0×BR as a blown down (non-compact) exact Giroux
domain (see Section IV.1.3).

Let (Σ, dλ) be the (non-compact) ideal Liouville

Σ =
{
(r, z, x1, . . . , xn, y1, . . . , yn) ∈ R2n+3

∣∣ r ∈ [0, π], z ∈ (−ε, ε), ‖x‖ < R′, ‖y‖ < R′}

with the 1-form

λ :=
cos r

sin r
dz +

n∑

j=1

xj
sin r

dyj .

defined only on Σ̊ = Σ \ {r = 0 or r = π}, and for an R′ ≪ R.
Taking the Giroux domain over Σ and blowing down the boundary component {r = 0}

will produce a subdomain of U0 ×BR.
As in the proof of Proposition IV.1.11, we choose to Lagrangian disks with cylindrical

ends sitting on the boundaries {r = 0} and {r = π} respectively. Create two transverse
intersections between the two Lagrangians, by pulling one with a Hamiltonian isotopy along
a small path towards the other one, and then resolve the intersections by using a Lagrangian
Polterovich surgery.

The symplectic isotopy and the surgery process both took place far away from the bound-
ary, so we obtain by this construction a Lagrangian L that still has cylindrical ends. We have
also created by the surgery a loop in L and λ will not vanish, when integrated over this loop,
but we may assume that λ|TL represents a class in H1(L,Q). If we now construct the Giroux
domain Σ× S1 with contact form

cos(r) dz + ~ sin(r) dφ+

n∑

j=1

xj dyj

for suitable value of ~, we will obtain on the submanifold L×S1 a Legendrian foliation fibering
over S1. In the lemma below we show that we can choose an R sufficiently large so that we
can embed

(
U0 ×BR′ , cos(r) dz + ~r sin(r) dφ+

n∑

j=1

xj dyj

)

into the domain
(
U0 ×BR, cos(r) dz + r sin(r) dφ+

n∑

j=1

xj dyj

)
,

hence the bLob we have constructed will also live in the larger domain, and the proposition
has been proved. �

Lemma IV.3.2. Let U0 ×BR′ be the open domain with contact structure given as kernel of

α~ := cos(r) dz + ~r sin(r) dφ+
n∑

j=1

xj dyj

for a positive ~ > 1. For every R′, ~, we find an R(R′, ~) such that we can embed
(
U0 ×

BR′ , kerα~

)
by a contactomorphism into

(
U0 × BR, kerα

)
with the standard α = α1 defined

at the beginning of this section.
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Proof. The proof will of course be based on the Moser trick. Note that the reason, why
we have a size condition in this section, which we did not have in Proposition IV.1.11 is that
on the compact domain, it is easier to guarantee existence of the flow for the Moser trick.

Define on R3 × R2n a family of contact forms

αT := cos(r) dz + (1− T + T~) r sin(r) dφ+
n∑

j=1

xj dyj

with T ∈ [0, 1]. It is easy to check that the αT are all contact forms since

αT ∧ dαn+1
T = (n+ 1)!αT ∧ dαT ∧ dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn

= (n+ 1)! (1− T + T~)2αot ∧ dαot ∧ dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn .
To apply the Moser trick, one would use the flow of the vector field YT uniquely specified by
the equations (

ιYT dαT
)∣∣

kerαT
= − α̇T |kerαT and ατ (YT ) = 0 .

The vector field YT can be computed to be of the form

YT = AT (r) ∂r +BT (r)
∑

xj ∂xj ,

so the only coordinates that are not invariant under the flow are the r- and the xj-coordinates.
TheAT -function vanishes for r = π, and since the xj-coefficients can be bounded by xj maxr |BT |,
it follows that the flow is bounded by an exponential function. Hence if we have enough space
in the domain, the flow of a compact subset, will exist for all T ∈ [0, 1]. �





CHAPTER V

Outlook and future directions

In this chapter, we want to give an overview of several research projects I’m currently
working on (with Paolo Ghiggini and Chris Wendl). Statements in this chapter may be vague
as this is still work in progress.

V.1. The Eliashberg–Floer–McDuff Theorem revisited

We slightly modify the proof of the Eliashberg–Floer–McDuff Theorem [McD91, The-
orem 1.5] by using holomorphic disks and Lobs instead of using holomorphic spheres and a
symplectic cap as in the original paper. The main reason, why we give a sketch of the fol-
lowing statement is to illustrate how one can find a family of Lobs by deforming the contact
boundary into a submanifold with edges.

Theorem V.1.1 (Eliashberg–Floer–McDuff). Let S2n−1 ⊂ Cn be the unit sphere with its
standard contact structure ξ0 given by the complex tangencies to the sphere, that means,

ξ0 = TS2n−1 ∩
(
i · TS2n−1

)
.

Every symplectically aspherical filling of
(
S2n−1, ξ0

)
is diffeomorphic to the 2n-ball.

Proof. As in the original paper, the aim of the proof consists in showing that the filling
needs to be simply connected and have vanishing homology so that the desired result follows
from the h-cobordism.

Let z = x + iy =
(
x1 + iy1, . . . , xn + iyn

)
be the coordinates of Cn. The function

f : Cn → [0,∞) given by

f(z) =

n∑

j=1

(x2j + y2j )

is plurisubharmonic, and the unit sphere is the J-convex boundary of the ball

B2n =
{
z ∈ Cn

∣∣ f(z) ≤ 1
}
.

We would like to find a family of Lobs in S2n−1 foliating the unit sphere. Unfortunately
we have not succeeded and it seems unlikely that this is even possible. Instead we will deform
the sphere into a shape that does make it possible for us to find a suitable family of Lobs.
Define two functions g, h : Cn → [0,∞) by

g(z) = x21 + · · ·+ x2n−1 + x2n + y2n

h(z) = y21 + · · ·+ y2n−1 .

Note that g is strictly plurisubharmonic and h is weakly plurisubharmonic as

−ddCg = 2 dx1 ∧ dy1 + · · ·+ 2 dxn−1 ∧ dyn−1 + 4 dxn ∧ dyn
−ddCh = 2 dx1 ∧ dy1 + · · ·+ 2 dxn−1 ∧ dyn−1 .

113
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Additionally, we have g(z) + h(z) = f(z).
We will now consider the subset

B̂2n =
{
z ∈ Cn

∣∣ g(z) ≤ 2
}
∩
{
z ∈ Cn

∣∣ h(z) ≤ 2
}
.

By reordering and rescaling the coordinates, we see that B̂2n is a bi-disk Bn+1×Bn−1 ⊂ R2n

that clearly contains the unit ball. It is also easy to see that B̃2n deformation retracts to B2n

rel B2n.
Unfortunately the boundary of B̂2n

∂B̂2n ∼=
(
∂Bn+1

)
×Bn−1 ∪Bn+1 ×

(
∂Bn−1

)
= Sn ×Bn−1 ∪Bn+1 × Sn−2

is not a smooth manifold, but it is nonetheless homeomorphic to the unit sphere (see Fig. 1).

Figure 1. We find a family of Lobs by deforming the sphere to the boundary
of a bi-disk. One of the two parts of the boundaries will then be foliated by
Lobs.

Let now (W,ω) be a symplectic filling that is symplectically aspherical. If it is only a weak
filling, we can extend it by attaching a symplectic collar to obtain a strong symplectic filling
of the sphere, because ω|TS2n−1 is exact, see Corollary II.2.4 . This filling is diffeomorphic to
the initial one, and it is also still symplectically aspherical, because any 2-sphere can just be
pushed by a homotopy entirely into the old symplectic filling. After rescaling the symplectic
form, the extended symplectic manifold will be a strong symplectic filling of the unit sphere.

Remove now the interior B̊2n of the unit ball from B̂2n, and glue then B̂2n \ B̊2n sym-

plectically onto the filling W . Denote this new symplectic manifold by (Ŵ , ω̂). To study Ŵ

using holomorphic curves, choose first an almost complex structure J on Ŵ that is tamed by

ω̂ and that agrees on a small neighborhood of B̂2n \ B̊2n in Ŵ with the standard complex
structure i on Cn.

The moduli space we are interested in is linked to a family of Lobs, which we will introduce
now. Embed Sn ×Bn−1 via the diffeomorphism

Ψ:
(
(a1, a2, . . . , an+1); (b1, . . . , bn−1)

)
7→
(
a1 + ib1, . . . , an−1 + ibn−1, an + ian+1

)

into the boundary of Ŵ . The image of Ψ lies in the level set g−1(1) ⊂ ∂Ŵ , and the J-complex

tangencies on the corresponding part of ∂Ŵ are the kernel of the 1-form

−dCg = 2x1 dy1 + · · ·+ 2xn−1 dyn−1 + 2
(
xn dyn − yn dxn

)
.
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Hence the restriction of Ψ∗(−dCg
)
to each sphere with Sn ×

{
(b1, . . . , bn−1) = const

}
gives

2
(
an dan+1 − an+1 dan

)
,

that means, every sphere Sn×
{
(b1, . . . , bn−1)

}
is a Lob whose page is just an (n−1)-ball and

that has trivial monodromy. We denote from now on the points in Bn−1 by b = (b1, . . . , bn−1),
and denote the Lobs by

Lb = Ψ
(
Sn,b

)
.

We study the space

M̃ =
{
(b, u, z0)

∣∣∣ b ∈ Bn−1, u : (D2, ∂D2) →
(
Ŵ , Lb

)
, z0 ∈ D2

}

of holomorphic maps with a marked point z0 that map the boundary of the disk into any of
the Lobs Lb, and we quotient it out by the biholomorphisms of the disk as in Section III.2.
Restrict to the component that contains the Bishop disks, then we have a smooth manifold M
with boundary and a smooth evaluation map

evz0 : M → Ŵ , [b, u, z0] 7→ u(z0)

that restricts on the boundary to a degree 1 map.
Note that if we forget the marked point, the moduli space M projects as a 2-disk bundle

onto a smooth moduli space M0 of unparametrized disks. In fact, the open book structure of
the pages allows us trivialize this bundle, and it follows that M is diffeomorphic to M0×D2.

This product structure is what will allow us to understand the topology of Ŵ .

Note that it is easy to see that Ŵ is simply connected: Choose the base point of π1
(
Ŵ
)

in the domain of the Bishop family. Any class in the fundamental group can be realized by an
embedded loop γ, and we may assume that γ is transverse to evz0 . It follows that ev

−1
z0

(γ) will
be a collection of properly embedded 1-dimensional submanifold of M, and by the uniqueness
of the Bishop disks there will be a unique component that covers the whole loop γ. The image
of this component is homotopic to γ, and it can be easily pushed into M0×S1 ⊂ ∂M. Hence
we can homotope γ to a loop in

evz0
(
∂M

)
⊂ ∂Ŵ ∼= S2n−1 ,

and we have π1(Ŵ ) = {0}.
Careful use of the universal coefficient theorem, and the Leftschetz-Poincaré Theorem as

in [McD91] and in [OV12] allow us to conclude that
(
evz0

)
∗ : H∗

(
M,K

)
→ H∗

(
Ŵ ,K

)

needs to be surjective for field coefficients K. But since the homology classes of the moduli

space M can all be shifted into the boundary of M, where they are then mapped to ∂Ŵ ∼=
S2n−1, we obtain that the homology with K-coefficients vanishes. Since this is true for every
field, it follows that homology with integer coefficients also needs to be trivial. The h-
cobordism theorem then implies our claim. �

V.2. Subcritical surgery and the topology of potential fillings

Conjecture V.2.1. Let (M ′, ξ′) be a contact manifold that has been obtained by subcritical
surgery from (M, ξ), and let S ⊂ M ′ be the belt sphere of the surgery. If (W ′, ω′) is a
symplectically aspherical filling of M ′, then S will be contractible in W ′.
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Idea of a possible proof. Attach an infinite cylindrical collar to W ′, and deform M ′

inside this collar in such a way that the belt sphere S contains a large family of Lobs as in
the proof above. Now we study a family of holomorphic disks attached to these Lobs, and we
can prove relatively easy that there is a smooth manifold M consisting of holomorphic disks
with a marked point giving us a map

evz0 :
(
M, ∂M

)
→ (W ′, S) .

The moduli space is again a product M = M0 × D2, and the restriction

evz0 |∂M : ∂M → S

of the evaluation map is of degree 1.
If M happened to be a ball, we would be done, because evz0 being of degree 1 could be

deformed close to the boundary to a homeomorphism between ∂M and S. The idea is now
to modify M by surgeries, handle attachments and maybe other operations to convert it into
a ball. Assuming that this can be done on the level of abstract manifolds without difficulty,
one needs to check at each step, if the evaluation map can be modified correspondingly.
Attaching a handle to the boundary of M works for example without any problems, because
∂M is mapped into S, and there is no topological obstruction to extending a continuous
map to the handle, because the image of the attaching sphere is contractible in S. We have
checked that these techniques work in very easy cases (for example 1-subcritical surgery on
5-manifolds), but it is unclear if we will be able to work out the general situation. If our
strategy proves succesful, we can modify the original map

evz0 :
(
M, ∂M

)
→ (W ′, S)

into a map
F :
(
Bk, Sk−1) → (W ′, S)

with degree one along the boundary, and the desired statement would follow.
A preliminary approach for applying the sketched strategy is that surgeries for example

can only be performed along embedded spheres that have trivial normal bundle. In our case,
this leads to the following technical conjecture we would like to show. �

Conjecture V.2.2. Let (W,J) be an almost complex manifold with J-convex boundary
(M, ξ), and suppose that L ⊂ (M, ξ) is a Lob. Let M be the space of J-holomorphic disks
described in Section III.2, assume that no bubbling happens, and that J has been chosen
generically, so that M is a smooth compact manifold with boundary.

Let B ⊂ L be the 0-page of the Lob, then the tangent bundle TM is stably isomorphic to
the pull-back of TB ⊕ R2.

Idea of a possible proof. The tangent bundle of M can be seen as the kernel of the
linearized Cauchy-Riemann operators for each holomorphic disk u ∈ M. More explicitly,
if u0 is a given disk in our moduli space, and if we fix a path u(t, ·) of smooth disks with
u(0, ·) = u0(·), then we can set u̇0 =

d
dt

∣∣
t=0

u(t, ·), and we obtain a linear operator D̄J(u) by

D̄J(u0) · u̇0 =
d

dt

∣∣∣∣
t=0

∂̄Jut .

Choosing the correct range and domain, the kernel of this operator gives us the tangent space
of Tu0M. In a model, we see roughly that the linearized operator has the form

D̄J(u0) · u̇0 = J(u0) ·Du̇0 −Du̇0 · j +
(
Lu0J

)
· du0 .
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The first two terms on the right hand side are in our case just the standard Cauchy-Riemann
operator, and it is the last term that complicates the situation significantly.

Now we can consider the map M× [0, 1] that just associates to every holomorphic disk
u0 and every τ ∈ [0, 1], the linear Fredholm operator

J(u0) ·Du̇0 −Du̇0 · j + τ
(
Lu0J

)
· du0 ,

that means we start for τ = 1 with the given linearized Cauchy-Riemann operator and deform
them continuously to one where the last term vanishes. Similarly to the appendix in [Ati67],
there should be a well-defined element in K-theory over M× [0, 1] associated to this family
of Fredholm operators. Then on one end of the interval, we find for M×{1} the equivalence
class of [TM], and hence the K-theory element over M×{0} will be isomorphic to [TM].

We hope that we will be able to write down all the solutions for M × {0} explicitly,
in a similar way as we did for the Bishop family in Section III.1.3, and in fact we expect
the solutions are essentially constant vector fields. If this were the case, we could identify
the solution space with the vectors in TB at a point of the boundary, yielding the hoped
result. �

V.3. Further filling obstructions

If the previous conjecture was true, we could hope to find a further more subtle filling
obstruction based on Stiefel-Whitney numbers. A well-known result by Pontryagin states that
a closed manifold that is boundary of a compact one has vanishing Stiefel-Whitney numbers
[Pon47].

The conjecture above claims that the tangent space to certain moduli spaces are stably
isomorphic to the pull-back bundles of Lobs. Additionally we know that the evaluation map
on the boundary of the moduli space to the Lob has degree 1, hence the Stiefel-Whitney
numbers of the Lob should correspond to the Stiefel-Whitney numbers of the boundary of the
moduli space.

This might be exploited to find a contradiction: The moduli space cannot be smooth
and compact, if its boundary has non-vanishing Stiefel-Whitney numbers, hence some type of
bubbling needs to occur. If there are no disks that can bubble, then the symplectic manifold
needs to contain holomorphic spheres, and hence it cannot be an exact symplectic manifold.

The aim would be to apply these methods to higher dimensional real projective spaces.
It is known that they are strongly fillable, but not Stein fillable. This approach would give
hope to show that they do not admit any exact symplectic filling either. Unfortunately, some
technical problems related to bubbling of holomorphic disks have appeared, because we are
not working directly with Lobs, but with rational open books.





APPENDIX A

PS-overtwisted manifolds are algebraically overtwisted

The notes printed below are taken from [Obe07]. They explain why contact homology
has to vanish in the presence of a bLob.
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PS–overtwisted contact manifolds are algebraically overtwisted

Klaus Niederkrueger

(joint work with Frédéric Bourgeois)

The plastikstufe [Nie06] is an attempt to generalize the overtwisted disk to
higher dimensional contact topology. Since it is unclear whether the notion is
general enough, we call contact manifolds containing a plastikstufe PS–overtwisted
(instead of just calling them overtwisted).

Over the last two years several indications have been collected that give some
justifications for the definition of the plastikstufe: PS–overtwisted manifolds are
non fillable [Nie06], and after the first closed higher dimensional examples of such
manifolds were found [Pre06], it was not difficult to convert any contact structure
into one that is PS–overtwisted [KN07]. Recently the Weinstein conjecture has
been shown to hold for these structures [AH07].
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In the work sketched here, we show that a PS–overtwisted manifold has van-
ishing contact homology (a manifold with trivial contact homology is called alge-

braically overtwisted). In fact, we seem to be able to prove that symplectic field
theory vanishes for such manifolds, extending the well known result for dimen-
sion 3 [Yau06], and giving virtually the first explicit computations of symplectic
field theory.

Sketch of the proof. Contact homology is the homology of a differential graded
algebra (A, ∂) with 1–element. The vanishing of H∗(A, ∂) is equivalent to the
exactness of the 1–element. The aim of our proof is thus to show that the 1–
element of the differential graded algebra A is exact. Recall that the algebra A is
generated by linear combinations of abstract products of closed Reeb orbits {γj},
and the boundary operator is given by

∂γ =
∑

(

#MA
0 (γ; γa1

, . . . , γam
)
)

eAγa1
∗ · · · ∗ γam

,

where MA(γ; γa1
, . . . , γam

) is the moduli space of the (n + 1)–times punctured
holomorphic spheres in the symplectization W of the contact manifold such that
the first puncture converges in a certain sense to the closed Reeb orbit {+∞}× γ,
and for each orbit γaj

there is a puncture converging to {−∞}× γaj
. The symbol

#MA
0 (γ; γa1

, . . . , γam
) denotes a rational number that counts the 0–dimensional

components of MA(γ; γa1
, . . . , γam

) taking into account orientations and the order
of the automorphism group. Note that the “empty product” of closed Reeb orbits
corresponds to the 1–element in A and we also have to include in the definition
of ∂γ the term

(

#MA
0 (γ; ∅)

)

· ∅ =
(

#MA
0 (γ; ∅)

)

· 1

in the summation. The elements in MA(γ; ∅) are called finite energy planes, and
if such an element lies in a 0–dimensional moduli space, it is called a rigid finite
energy plane.

We have to find a finite combination of closed Reeb orbits

σ =
∑

j∈I

ajΓj ,

where Γj is a formal product γ1 ∗ · · · ∗ γm of closed Reeb orbits, such that

∂σ = 1 .

Our proof can now be sketched like this: In a first step we find a closed Reeb
orbit γ0 that bounds a rigid finite energy plane. Existence of such an orbit fol-
lows Hofer’s argument in the proof of the Weinstein conjecture for overtwisted
3–manifolds [Hof93] (for higher dimensions [AH07] respectively). Regard the
manifold M as the 0–level set in W . Then there is a 1–dimensional family of
holomorphic disks, the so-called Bishop family, living in the “lower half” of the
symplectization W , and having its boundary on the plastikstufe. The moduli
space is a compact closed interval. On one of its ends, the disks collapse to a
point on the singular set of PS(S), and on the other one some kind of bubbling
has to occur. The only type of bubbling that is possible in this situation is that
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the disks grow deeper and deeper into the negative direction finally breaking as a
punctured disk uC in

(

W,PS(S)
)

that goes from the plastikstufe to a closed Reeb
orbit {−∞}× γ0, and a rigid finite energy plane u0 in W that is bounded on the
top by {+∞}× γ0 (see Figure 1).

Figure 1. The disks in the Bishop family start as a point on the
singular set S of the plastikstufe PS(S). They grow down into
the symplectization until they finally break into a punctured disk
uC ending asymptotically at the Reeb orbit γ0 and a finite energy
plane u0 having γ0 as its top boundary.

If there was no other rigid punctured sphere having γ0 as the only top punc-
ture, then the proof would finish here, because then ∂γ0 = ±1. Unfortunately,
this is in general not the case. So assume there are other rigid punctured holo-
morphic spheres u1, . . . , uN in W having γ0 as the only top boundary (N is finite
because the moduli space is a discrete compact set). Let u1 have the closed Reeb
orbits γ1, . . . , γm as bottom punctures. We can glue u1 and uC to obtain a 1–
dimensional moduli space of punctured holomorphic disks in

(

W,PS(S)
)

, whose
boundary sits on the plastikstufe and whose punctures converge asymptotically to
{−∞}×γ1, . . . , {−∞}×γm (see Figure 2). This moduli space can also be naturally
compactified, and becomes this way a closed interval. Both of its ends correspond
to breaking. The left boundary point of the interval represents the breaking into
the curves we glued together, i.e., into uC and the punctured sphere u1. The other
end breaks into a single punctured sphere u′

1 and a collection of vertical cylinders
in one level of W and a punctured disk u′

C lying one level higher. The boundary
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of the disk u′

C sits on the plastikstufe and its punctures converge to closed Reeb
orbits {−∞} × γ′

1, . . . , {−∞} × γ′

k at the bottom. The vertical cylinders and the
sphere u′

j connect at the orbits {+∞}× γ′

1, . . . , {+∞}× γ′

k to u′

C and converge at
the bottom punctures to the orbits {−∞}× γ1, . . . , {−∞}× γm. The reason why
the holomorphic curve in the lower part of the breaking consists of a single non
trivial element is that otherwise the dimensions of the bubbled moduli space would
be larger than 0, because disconnected components could be moved independently
against each other increasing the dimension.

When applying the boundary operator ∂ to the sum of the element γ0 ∈ A and
the product γ′

1 ∗ · · · ∗γ
′

k, we do not find terms of the form γ′

1 ∗ · · · ∗γ
′

k in the result,
because the punctured spheres uj and u′

j represent points with different orienta-
tion in the moduli space. By repeating the gluing argument first for all curves
u1, . . . , uN , and collecting the elements corresponding to the second boundary of
the 1–dimensional moduli spaces, we obtain a term σ0 = γ0 +

∑

γ′

j1
∗ · · · ∗ γ′

jkj
. In

the boundary ∂σ0, we have succeeded in canceling out all the contributions from
γ0 with the exception of the 1–element. Unfortunately, the “correction terms”
γ′

j1
∗ · · · ∗ γ′

jkj
may give new undesired terms in the boundary ∂σ0. But each of

these elements can be dealt with by repeating analogous steps as above, and after a
finite number of applications of this method, we arrive at a collection of elements,
whose boundary is finally just the 1–element.
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Think global, act local - a new aproach to Gromov compactness for

pseudo-holomorphic curves.

Joel Fish

Since their introduction by Gromov, pseudo-holomorphic curves have been stud-
ied as maps from closed Riemann surfaces into almost complex manifolds with a
taming symplectic form. This parameterized view has lead to a number of ver-
sions of Gromov compactness which are quite global in nature. For instance, in
order to obtain convergence of a sequence of pseudo-holomorphic curves mapping
into a family of symplectic manifolds, typically one must first assume the family
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Figure 2. If γ0 bounds several rigid punctured curves, we can
perform gluing of any of these new planes to the punctured disk
uC to obtain a 1–dimensional moduli space of (punctured) holo-
morphic disks.

has uniform global bounds on geometric quantities like curvature, injectivity ra-
dius, energy threshold, etc. This talk will focus on a new approach to Gromov’s
compactness theorem, in which the curves are treated as generalized (unparam-
eterized) surfaces. In particular, we prove a local compactness theorem which is
useful when considering a family of target manifolds which develop unbounded ge-
ometry. This result recovers for instance compactness in the standard ”stretching
the neck” construction. Furthermore we will also provide applications of the local
result to families of connected sums of contact manifolds in which the connecting
handle degenerates to a point.

KAM-Liouville Theory for quasi-periodic cocycles

Raphael Krikorian

In this joint work with Bassam Fayad (CNRS, Paris 13) we extend the reducibil-
ity theory of cocycles of the form (α,A) : R/Z × SL(2,R) → R/Z × SL(2,R),
(θ, y) 7→ (θ+α,A(θ)y), A ∈ C∞(R/Z, SL(2,R)) to the case where α is of Liouville
type (qn+1 ≥ qnn infinitely many times). We prove that such a C∞ cocycle which is



Index

PS-overtwisted, 32
bLob, 32

small, 33
Lob, 32

almost complex structure
adapted to a Lob/bLob, 79

almost complex structure
tamed, 50

blowing down, 98

contactization, 96

degree of a map, 88
domain

ideal Liouville, 91

equation
regular, 9

fiber sum, 34
filling

strong symplectic, 51
weak symplectic, 51

foliation
neat singular, 12
neat Legendrian, 14

function
harmonic, 43, 46
plurisubharmonic, 46
subharmonic, 43

Giroux domain, 96

holomorphic curve
simple, 76

holomorphic map, 46
somewhere injective, 76

holonomy of a foliation, 27
holonomy of a foliation, 27
hypersurface

contact cutting, 97

jet space, 9

Legendrian
loose, 109

Legendrian foliation, 11
Liouville domain

ideal, 92

map
evaluation, 80

marked point, 80

plastikstufe, 32

submanifold
totally real, 49

symplectic structure
aspherical, 84
semipositive, 84

symplectic domain
complete, 92

vector field
Liouville, 51

125





Publications by the author
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