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Introduction 

"So it is clear, since there will be no end to time and the world is eternal, that 

neither the Tanais nor the Nile has always been flowing, but that the region 

whence they flow was once dry: for their effect may be fulfilled, but time cannot. 

And this will be equally true of all other rivers. But if rivers come into existence 

and perish and the same parts of the earth were not always moist, the sea must 

need change correspondingly. And if the sea is always advancing in one place and 

receding in another it is clear that the same parts of the whole earth are not 

always either sea or land, but that all this changes in course of time.” 

Meteorologica by Aristotle 

 

The environment of Earth keeps changing since ever. Understanding the phenomena underneath 

this change has always been a challenge for Human, who is in quest of exploring the physical 

principles governing the universe. To understand these phenomena, one needs studying the Earth as 

a system and precisely tracking the changes in the physical parameters governing it. Remote 

sensing (RS) provides the primary means necessary to accomplish this task. 

Automatic methods of artificial cognition combined with the availability of advanced space and 

electronic sensor technologies have made remote sensing and its tremendous applications a reality. 

The launch of the first satellite by USSR in 1957 marked the beginning of the era of RS. Soon 

USSR and USA had placed their meteorological and Earth observation satellites in the Earth’s orbit. 

With the RS technology becoming commercially viable and feasible, it is not only broadening its 

scope of applications but also making inroads into the developing countries. This is evident from 

the fact that India launched its first RS satellite in 1997, followed by joint RS satellite of China and 

Brazil in 1999, and the fact that there are several other developing countries soon planning to have 

their own RS satellites. Those who do not posses their own RS satellites are also using commercial 

RS facilities to their benefit.  

The RS satellites have been using various technologies, e.g. synthetic aperture radar (SAR), 

optical sensors in the visible and infrared bands, and LIDAR, etc. for imaging. The SAR images 

provide information regarding land-covers that is complimentary to the optical images. The optical 

images provide spectral information of the land-covers, whereas the SAR images provide structural 

information. Therefore, conventionally, the optical and SAR images are fused together to obtain the 

optimal information for land-cover classification. Sometimes, spectral features and structural 

features extracted from optical and SAR images, respectively, are fused before performing the 

classification.  

Although SAR and optical RS have been providing high-resolution images since long, the optical 

images from RS satellites never had a sub-metre resolution before the launch of IKONOS RS 

satellite at the end of the 20th century and QuickBird as well as Orbview-3 RS satellites in the 

beginning of this century. The spatial resolution of present and near-future non-military space-
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borne SAR sensors is weaker than that of the optical sensors. In addition, the inherent speckle noise 

in SAR images reduces the effective resolution. The availability of high-resolution optical RS 

images has made it possible to apply texture analysis for discrimination of land-covers that remain 

indistinguishable otherwise due to their similar spectral characteristics.  

This thesis aims at presenting the work carried out for applying texture analysis on very high-

resolution RS images and combining the results of supervised and unsupervised classifications of 

the RS images for improved classification of vegetation covers. It takes a site from Nîmes, France 

as a test case, which includes the apple trees, orchards, vineyards, fields, truck crops, fallows, and 

forest. The author’s contribution includes an initialisation method for the unsupervised 

classification method called k-means clustering, a method of introducing rotation invariance into 

the texture features based on discrete Fourier transform, and a fusion method that merges the 

results of unsupervised classification and supervised classification. 

Chapter 1 introduces remote sensing technology and its applications with the emphasis on 

environmental management. After presenting the state-of-the-art on environmental management, it 

goes on discussing more precisely the problem of land-cover classification by introducing the land-

covers themselves and their spectral characteristics. The vegetation indices extracted from 

multispectral RS imagery are also explained. These indices are conventionally used by the RS 

community in diverse applications in remote sensing of the environment. The chapter also presents 

image fusion and its applications in remote sensing. 

Since this thesis concentrates on texture-based identification of the land-covers, chapter 2 

introduces methods of extracting texture features. It also suggests improvements in one of the 

texture features-sets and compares their performance for image recognition as well as retrieval. The 

chapter also proposes a parameter called rotation variance for performance evaluation of the texture 

features. 

Chapter 3 presents the problems of image segmentation, and classification. It also introduces 

methods of supervised and unsupervised classification. Further, it discusses the pros and cons of k-

means clustering in depth and then proposes improvements by suggesting an initialisation method 

for it. 

Chapter 4 reinforces the theoretical notions presented in the preceding chapters by segmenting 

and classifying the parts of a high-resolution RS image. The texture features proposed in chapter 2 

are applied to the RS image from the test site. Improved classification of the RS image results from 

the fusion of unsupervised classification driven by spectral features and supervised classification 

driven by texture features. The conclusion marks the end of this thesis and proposes possible 

extensions to this research. 
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This chapter introduces the reader to the remote sensing as a field of research, and image fusion as 

applied to remote sensing. The chapter has two parts.  

The subject of the first part is the science and practice of remote sensing. It introduces the 

fundamental concepts in remote sensing (RS), platforms of remote sensing, types, and different 

applications of the RS imagery. It also highlights the use of RS imagery in various problems of 

environmental management.  

The second part of this chapter concerns with the image fusion. It introduces image fusion and 

abstraction levels of image fusion, discusses different applications of image fusion in assorted areas 

in general and in the area of remote sensing in particular. 

1
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Part A: Remote Sensing 

1.1 Introduction to remote sensing 

Quest of understanding the Earth as a system and the physical phenomena observed therein is as 

old as Man’s history. Apart from hypothesis, pursuing this quest also requires global but precise 

observations and measurements of the underlying physical parameters. Observing and measuring 

from a distance without any direct physical contact, namely remote sensing, fulfils this task. The 

remote sensing (RS) helps detect and make exact estimates of the physical parameters relating to 

the lands, the oceans, and the atmosphere of Earth. Platforms of kites, balloons, model airplanes, 

airplanes and artificial satellites collect large scale but precise data regarding the physical 

conditions at the surface as well as the atmosphere of Earth. The remote sensing experts later 

interpret these data to extract information useful for specific applications discussed in the 

succeeding sections.  

According to one point of view, invention of photography in the 18th century founded the remote 

sensing. Aerial photography was introduced in France as early as in 1858 and was used for military 

purposes in the First World War, and therefore was under extensive use in the beginning of the 20th 

century. The unmanned aircrafts, including remote-controlled model crafts, have also been used to 

carry the remote sensing equipment for landscape survey, advertisement, and espionage. Satellite-

borne remote sensing became an earnest reality after the USSR placed its first artificial satellite in 

the space on 4th October 1957. Satellites for meteorological measurements were soon in the orbit 

around Earth. The RS satellites further divide into two broad categories of meteorological 

(weather) satellites and the earth observation satellites. Although the weather satellites are 

platforms of remote sensing, usually the term remote sensing satellite refers to the Earth 

observation satellites. 

Remote sensing has two modes of operation, the active and the passive. The passive remote 

sensing involves using optical sensors capable of capturing energy emitted by sun and reflected by 

objects on Earth’s surface, in visible, near infrared and thermal infrared bands. The energy that 

reaches back to the satellite’s sensor is subject to physical and chemical properties of the objects 

under observation. This provides passive remote sensing the opportunity to identify and map the 

objects under observation using automatic means of intelligent computing. On the other hand, the 

active remote sensing satellites carry synthetic aperture radars (SAR) and light detection and 

ranging (lidar) apparatus that emit electromagnetic energy to recapture it as it bounces back from 

objects on Earth’s surface. This thesis is concerned with the analysis of RS images from satellite-

borne optical sensors only. 
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1.2 Applications of remote sensing 

Recent developments in electronics in general and optical sensor technology in particular, satellite 

imagery has now attained the ground resolutions finer than ever before; resulting in the true colour 

optical images with sub-metre resolution and spreading its use in almost every arena of life. 

[Gnauck 1999] presents a case study on commercial use of remote sensing. 

While fieldwork remains a source of information for some RS applications [Mumby 2004], the 

cost and time to carry out these methods sometimes may not be feasible for the study. Therefore, 

the use of RS imagery is finding increasingly more acceptability and use. This section puts some 

light on the applications of remote sensing in general, and then the applications of remote sensing 

in particular to the environmental management.  

1.2.1 Remote sensing in assorted areas 

Defence and military necessities provided the thrust to the earliest development in the remote 

sensing technology. Later, with the technology being cheaper with time, the remote sensing 

extended its applications in civilian use. Today, the remotely sensed data find their use in as diverse 

applications as disaster assessment [Chen 2005b], weather forecasting, natural resources 

exploration, agricultural research [Doraiswamy 2007], rural land use, urban land use [Herold 

2002], urban planning [Harman 2002], and ecological studies [Wang 2004]. More examples 

include healthcare management [Tran 2002], cartography [Akono 2000], archaeology [Pantani 

2000], vegetation cover mapping [Hirose 2004], extraction of road network [Shackelford 2003], 

and estimation of socioeconomic attributes [Jensen 1999]. All the types of RS images including 

optical images, SAR images, and the lidar images [Baek 2005] are used to develop digital elevation 

models (DEM) and digital terrain models (DTM). The DEM and DTM provide the height 

information, i.e. 3D information, of the imaged area, used in positioning systems. 

1.2.2 Remote sensing of environment 

The environmental concerns are at height for last few decades as the problems of global warming 

and environmental pollution have surfaced. Since then, scientific research has substantially been 

diverted to natural conservation, environmental protection, and sustainable development. The 

pertinent fields of environmental management are ocean and coastal management, agricultural 

management, forest management, oceanography, wetland management, assessment of damage by 

natural disasters, and wildlife management. The notable but non-exhaustive literature on these 

fields include [Ward 2000] that presents methods of identifying populations potentially exposed to 

agricultural pesticides using remote sensing, [Curran 1987] that shows that remote sensing was 

used for agricultural management as far back as in 1987, [Tsiligirides 1998] that explores remote 

sensing as a tool for agricultural statistics, [Wright 2007] that introduces methods of wetland 

mapping, [Gordon 1983] that presents a review of remote sensing of oceans as far back as in 1983, 
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[Chen 2005c] that demonstrates how remote sensing can be effective in monitoring the dynamics of 

coastal zones, [Sande 2003] that assesses damages caused by flood, and [Lelong 2003] that applies 

RS technology to map the coffee crops in Uganda.  

In ocean remote sensing, the most researched problem is the oil spill detection, whereas in case 

of remote sensing of forests, it is the detection of forest fires. [Fingas 1997] and [Brekke 2005] 

present state-of-the-art of the research on the oil spill detection by satellite remote sensing. The 

studies of the coastal marine pollution [DiGiacomo 2004] and the land-cover change [Chen 2005c] 

dominate the remote sensing of coastal areas. Mapping invasive plants in estuaries is also a popular 

application of remote sensing [Laba 2008]. For agricultural management, [Lelong 2003] considers 

the identification of crop covers the most challenging job because of the similar spectral 

characteristics of different crops. In addition, the spectral features also vary in the same crop with 

its health and growth level. 

1.3 The remote sensing imagery 

The firsthand product of remote sensing is an image captured by a detector or a sensor onboard a 

platform high above in the atmosphere of Earth or even higher in the space. Each of the platforms 

and the sensors has its own advantages and limitations as discussed in the following sections. 

1.3.1 Platforms of remote sensing 

The remote sensing (RS) images are the images captured by various sensors onboard a spacecraft 

or an aircraft. Each RS platform has its own pros and cons. The images from airborne-sensors have 

many advantages over their space-borne counterparts and at the same time have many limitations 

and disadvantages as well. [Rees 2001] discusses pros and cons briefly but exhaustively. Besides 

others, the problem of the geometrical deformations in the images from the airborne sensors caused 

by turbulence in the aircraft is the most critical problem. Three kinds of aircraft movement called 

pitch, yaw and roll cause the geometrical deformations in the images. Figure 1.1, from [Rees 2001] 

depicts the same. 

The satellite imagery now provides relatively cheaper, versatile and quite frequent detail than 

ever before to assist the researchers in many disciplines. The space-borne images also have the 

problem of the geometric distortions but less severe. However, for some applications, e.g. scouting 

over agricultural lands, the temporal resolution required is much higher than is available with the 

satellite borne platforms. In addition, acquiring multi-temporal data from space-borne platforms 

becomes prohibitively expensive. In addition, some applications like crop scouting [Jensen 2003] 

are not severely affected by geometrical deformations and do not require covering very large areas. 

In such cases, imaging equipment mounts over a radio-controlled model airplane to collect the data 

over the target area quickly and repeatedly as desired. The radio-controlled model airplanes can fly 
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at altitudes as low as 100 metres to gather the data with the resolutions of a few centimetres per 

pixel [Harman 2002]. 

 

Figure 1.1:  Geometric Distortions in an image captured by airborne sensor due to Pitch, Yaw and Roll 

motions of the platform 

With each platform having its own pros and cons, the trade-off lies between the cost of platform, 

spatial, temporal, spectral, and radiometric resolution of the data that are displayed and interpreted 

as an image. 

1.3.2 Types of RS imagery 

The remote sensing images divide into three broad categories:  

• Optical images  

• Synthetic aperture radar (SAR) images 

• Light detection and ranging (lidar) images 

1.3.2.1 Optical images  

Optical sensors on board a spacecraft (satellite) or an aircraft capture the optical images. The 

optical images divide into two broad categories, Panchromatic (PAN) and Multi-spectral (MS). 

Most of the satellite platforms, all the prominent ones, have instruments to capture both, MS as 

well as PAN images. The SPOT, QuickBird, IKONOS, and Orbview are among well-known 

remote sensing satellites observing the Earth and providing the two kinds of optical images, 

whereas NOAA and METEOSAT are well-known series of satellites observing the Earth’s 

atmosphere. 

1.3.2.1.1 Panchromatic images 

These are black & white photographs taken by a single sensor of a wide spectral range covering 

visible as well as IR wavelengths. These usually appear as grey scale images, i.e. the displayed 

brightness of a particular pixel is proportional to the pixel digital number, which corresponds to the 

intensity of solar radiation reflected by the targets in the pixel and detected by the sensor. Thus, a 

panchromatic image appears to be a black-and-white photograph of the area as in picture 1.1 that 
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shows PAN image of Washington DC captured by IKONOS. Though it is also different in a way 

that unlike black and white photograph, PAN sensors of some satellites also cover the infrared 

wavelengths and in some satellites, these do not cover the blue wavelengths. The PAN images 

always have greater resolutions than the MS images from the same satellite. It is due to the much 

more energy per unit area gathered by a PAN sensor due to its wider bandwidth. Refer figure 1.2 

that shows the responses of the PAN as well as MS sensors of QuickBird2 satellite to the visible 

and the infrared part of the electromagnetic spectrum. 

 

Figure 1.2:  Sensor bands of QuickBird2 remote sensing satellite1 

1.3.2.1.2 Multi-spectral (MS) image 

An MS image is comparatively a low resolution image captured by more than one sensors 

simultaneously in different bands; collectively covering the visible as well as infrared range of 

wavelengths. Table 1.1 shows different bands of various satellites that provide optical image data. 

As shown in the table, some satellites like IKONOS and QuickBird have three bands in the visible 

spectrum, each corresponding to a basic colour i.e. red, green, and blue, which can be used to 

generate true colour images. Picture 1.2 depicts a scene from an urban area with a true colour 

image having 1 m resolution captured by IKONOS. The original resolution of the MS image is 4 

m, but it is enhanced by its fusion with the corresponding panchromatic image having 1 m 

resolution.  

In the satellites like SPOT-5, which do not have a sensor corresponding to blue colour band, the 

RS image analysts generate false-colour images by substituting the Blue colour band with the near 

infrared (NIR) band. Sometimes, they assign the NIR, Red and Green bands to red, green, and blue 

channel, respectively, of the display to generate false-colour images [Rees 2001]. 

                                                      

1 Source: http://www.satimagingcorp.com/satellite-sensors/quickbird.html  
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Picture 1.1:  An IKONOS Panchromatic image of Washington DC [Jensen 2005] 

 
Picture 1.2:  A true colour IKONOS image2 

Picture 1.3 from [Jensen 2005] shows a false colour composite image of Pearl harbour captured 

by TERAA-ASTER. The image appears with following false colour combination: 

 

                                                      

2 Source: http://www.crisp.nus.edu.sg/~research/tutorial/image.htm  
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Table 1.1:  Sources of satellite-borne optical images from different nations (Note: All the measurements are in µmeters)

Multispectral 

Infrared 
Visible 

Near IR Thermal IR 
Satellite Instrument Nation 

Launch 

Date 

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 

PAN 
Max  

Resolution 

10 m 
SPOT 5 HRG France 

May 3, 

2002 
- 

0.50 – 

0.59 

0.61 – 

0.68 

0.78 – 

0.89 

1.58 – 

1.75 
- - - 

0.48 – 

0.71 2.5 m 

NOAA-N 

(POES-4) 
AVHRR-3 USA 

May 20, 

2005 
- - 

0.58 – 

0.68 

0.725 – 

1.10 

1.58 – 

1.68 
3.55 – 3.93 

10.3 – 

11.3 

11.5 – 

12.5 
- 1.09 km 

30 m 
Landsat-7 ETM USA 

April 15, 

1999 

0.45 – 

0.52 

0.53 – 

0.61 

0.63 – 

0.69 

0.78 – 

0.90 

1.55 – 

1.75 
2.09 – 2.35 10.4 – 12.5 

0.52-

0.90 15 m 

4 m 
IKONOS OSA USA 

September 

24, 1999 

0.45 – 

0.52 

0.52 – 

0.60 

0.63 – 

0.69 

0.76 – 

0.90 
- - - - 

0.45-

0.90 0.82 m 

2.44 m 
QuickBird BGIS2000 USA 

October 18, 

2001 

0.45 – 

0.52 

0.52 – 

0.60 

0.63 – 

0.69 

0.76 – 

0.90 
- - - - 

0.45-

0.90 0.61 m 

TERRA 
ASTER 

VNIR 
USA & 

Japan 

December 

1999 
- 

0.52 – 

0.60 

0.63 – 

0.69 

0.76 – 

0.86 

1.6 – 

1.7 
2.145 – 2.43 

10.25 – 

11.65 
- - 15 m 

23.5 m 
IRS-1D 

LISS III 

& PAN 
India 

September 

29, 1997 
- 

0.52 – 

0.59 

0.62 – 

0.68 

0.77 – 

0.86 

1.55 – 

1.7 
- - - - 

5.8 m 

 
ERS-2 GOME  Europe - - 

0.54 – 

0.56 

0.66 – 

0.68 

0.86 – 

0.88 

1.45 – 

1.75 
3.55 – 3.85 

10.3 – 

11.3 

11.5 – 

12.5 
- 

 

10 m 
ALOS-1 

PRISM 

AVNIR-2 
Japan 

January 24, 

2006 

0.42 – 

0.50 

0.52 – 

0.60 

0.61 – 

0.69 

0.76 – 

0.89 
- - - - 

0.52 – 

0.77 2.5 m 

32 m Beijing-1 

DMC 

CMT 

ESIS 
China 

October 27, 

2005 
- 

0.50 – 

0.59 
 

0.79 – 

0.89 
    - 

4 m 

20 m CBERS 

2B 

CCD 

IRMSS 

WFI-1 

China & 

Brazil 

September 

10, 2007 

0.45 – 

0 52 

0.52 – 

0.59 

0.63 – 

0.69 

0.79 – 

0.89 

0.50 – 

1.10 
1.55 – 1.75 

2.08 – 

2.35 

1040 – 

12.50 

0.51 – 

0.73 80 m 

4 m 
Orbview-3 OHRIS USA 

June 26, 

2003 

0.45 – 

0.52 

0.52 – 

0.60 

0.625 – 

0.695 

0.76 – 

0.90 
- - - - 

0.45 – 

0.90  1 m 

5 m 
TopSat-1 

RALCamPAN 

RALCamMS 
UK 2005 

0.40 – 

0.50 

0.555 – 

0.60 

0.6 0– 

0.70 
- - - - - 

0.5 – 

0.7 2.5 m 
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Display channel Satellite band 

Red Band 4 (invisible NIR) 

Green Band 3 (Visible Red)  

Blue  Band 2 (Visible Green) 

 

 
Picture 1.3:  An image remotely sensed in two visible and one NIR band displayed and printed in one RGB 

colour space 

 
Picture 1.4:  Natural colour composite of a SPOT image3 

                                                      

3 Source: http://www.crisp.nus.edu.sg/~research/tutorial/sar_int.htm   
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The RS image analysts combine visible as well as non-visible MS bands in such a way that the 

appearance of the displayed image resembles a visible true colour photograph, i.e. vegetation in 

green, water in blue, soil in brown or grey, etc. Image generated using such a colour composite is 

called a natural colour image. Picture 1.4 is such an example generated with following 

combination:  

Display channel Satellite band 

Red Band 2 (Green) 

Green 0.75 Band 2 + 0.25 Band 3 (Visible Red)  

Blue 0.75 Band 2 - 0.25 Band 3 

Sometimes only visible bands are displayed on an RGB display using different colour composites.  

Table 1.2:  Characteristics of AVHRR sensor of remote sensing satellites from NOAA series 

Spectrum (µm) 
Band 

No. NOAA-6, 8, 10 
NOAA- 

7, 9, 11, 12, 13, 14 

NOAA- 

15, 16, 17 

Band utility 

1 0.58 – 0.68 0.58-0.68 0.58 – 0.68 
Daytime cloud, snow, ice, and 

vegetation mapping 

2 0 .725 – 1.1 0 .725 – 1.1 0.725 – 1.1 
Land/water interface, snow, ice, and 

vegetation 

A: 1.58 – 1.64 
3 3.55 - 3.93 1.1 – 3.93 

B: 3.55 – 3.93 

Monitor hot targets (volcanoes, 

forest fires), night-time cloud 

mapping 

4 10.5 – 11.5 10.3 – 11.30 10.3 – 11.30 
Day/night cloud and surface-

temperature mapping 

5 Band 4 repeated 12.50 11.5 – 12.5 

Cloud and surface temperature, day 

and night cloud mapping; removal 

of atmospheric water vapour path 

radiance 

Since each object on Earth’s surface and atmosphere has its own reflectivity to electromagnetic 

waves of various frequencies, each band in a multi-spectral image is useful for imaging or 

measuring some specific object or quantity. For example, table 1.2 from [Jensen 2005] states the 

use of each band of the advance very-high resolution radiometer (AVHRR) sensor in the series of 

NOAA satellites. This fact establishes the importance of multi-spectral imagery and the fact that 

each one of the bands in a multi-spectral image collects different information. Extracting spectral 

information is not all about remote sensing. SAR images provide information on land-covers that is 

complimentary to that provided by the optical images  

1.3.2.2 SAR images  

These are the images synthesised from the radar signals captured by a moving radar onboard a 

spacecraft or an aircraft. There are several space-borne sources of SAR images. Tropical rainfall 

measuring mission (TRMM), RADARSAT-1, constellation of small satellites for Mediterranean 

basin observation (COSMO-SkyMed), ERS-2, ENVISAT and advanced land observing satellite 

(ALOS) are among the well known remote sensing satellites providing SAR images. ERS-2 and 
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ALOS satellites also provide the optical images besides SAR images. The SAR images have high 

resolution suitable for analysis of urban areas; however, researchers are harnessing the SAR images 

for environmental studies and military applications as well. [Matsuoka 2004] explains the use of 

SAR imagery in natural disaster assessment, [Di Giacomo 2004] describes the use of SAR images 

for observing coastal pollution and [Mathiew 1998] discusses the use of SAR imaging for military 

surveillance.  

Radar instruments in different satellites have different polarizations. For example, some have HV 

polarization, whereas the letter on the left, i.e. H shows that the emitted wave is horizontally 

polarised and the letter on the right, i.e. V shows that the received wave is vertically polarised. 

Similarly, other instruments have VH, or more than one polarisations indicated by “&” sign in 

between. The radar instruments in various satellites also have different operating frequencies. Some 

satellites have multiple operating frequencies, providing observations of the same scene at different 

operating frequencies. This provides better discrimination among different vegetation types or the 

same vegetation type in different states of health or growth. Airborne-radar scanners also capture 

SAR images. Picture 1.5 shows a high-resolution airborne SAR image.  

 
Picture 1.5:  A high-resolution airborne SAR image of Washington DC4 

An image analyst displays or prints the multi-frequency and/or the multi-polarisation SAR 

images in colour by assigning one of the RGB display channels to each frequency-polarisation 

combination. Such an example is illustrated in picture 1.6 showing SAR image of New York city 

metropolitan area in false colour composite of three bands LHH (displayed in red), LHV (displayed 

in green), and CHV (displayed in blue) of a space-borne radar imager [Rees 2001]. Here, the letter 

L represents the band of frequencies ranging from 40 to 60 GHz and letter C represents the band of 

frequencies ranging from 500 MHz to 1000 MHz. 

                                                      

4 Source: http://www.sandia.gov/radar/images/dc_big.jpg  
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Picture 1.6:  Three-band SAR image of New York City metropolitan area [Rees 2001] 

The SAR images can be captured any time, in presence or absence of sunlight, in any season or 

weather conditions. The SAR data is introduced to areas of no information on the optical data, i.e., 

areas covered by clouds and their shadows, providing useful information about the surface 

roughness or structure. Hence, the SAR images help differentiate the cover types that are otherwise 

indistinguishable in the optical images due to their similar spectral characteristics. However, SAR 

images are more susceptible to noise than their optical counterparts are. The SAR images usually 

suffer from severe levels of a non-Gaussian multiplicative speckle noise. 

SAR provides the structural information in 2D. A more recent technology called lidar provides 

the same in 3D. 

1.3.2.3 Light detection and ranging (LIDAR) images 

The lidar technology is relatively new and the satellite-borne lidar is a very recent development in 

the field of remote sensing. Lidar works on the same principle as radar, but uses laser light instead 

of radio waves. The lidar throws a pulse of laser light onto a target at the ground and receives back 

its echo reflected from the target. The echoed back pulse carries the information of time taken in 

the round trip, the intensity, and the phase of the echo. One estimates the distance to the target, i.e. 

the range, from the time it takes for the laser pulse to echo back. On the other hand, phase of the 

echoed back signal determines the velocity and temperature of the target. The frequency of the 

laser light used in lidar is usually in the ultra-violet, visible or near infrared range [Thomasson 
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2001]. In some remote sensing applications, multiple light-beams with different frequencies are 

used. One such example is [Ulrich 1998] that uses airborne multiple-beam lidar to detect oil spills 

and algae. Lidar system can also detect more than one echoes of the same pulse so that it can view 

through water, canopies and trees onto the ground to map surface terrain and to estimate the depth 

of the water body or plantation. See figure 1.3 showing such a lidar system used to generate surface 

terrain shown in picture 1.7. 

NASA acquired the first remotely sensed lidar-data using a three-wavelength backscatter lidar 

called lidar in-space technology experiment (LITE). Developed by NASA Langley research centre, 

LITE flew on the space mission called Discovery in September 1994 and collected over 40 giga 

bytes of data during its 53 hours long operation, providing highly detailed global view of the 

vertical structure of cloud and aerosol from the Earth's surface through the middle stratosphere 

[Winker 2004]. This and other similar missions showed the importance of the data that a space-

borne lidar can provide.  

 

Picture 1.7:  LIDAR images (a) shows the canopy heights in green shades, (b) shows the surface terrain5  

After the success of LITE and similar missions, the Geoscience laser altimeter system (GLAS) 

flew aboard Ice-Sat in January 2002. Later, cloud aerosol lidar and infrared pathfinder observations 

(CALIPSO) was launched in April 2006, and atmospheric Doppler lidar called ALADIN is planned 

to be flown aboard European space agency’s (ESA) atmospheric dynamics mission ADM-Aeolus 

                                                      

5 Source: http://www.interactions.org/sgtw/2006/0719/lidar_more.html 



1 State-of-the-art vista of remote sensing and image fusion 

14 

in June 2009. The lidar satellites are different from the conventional technologies of passive optical 

sensors and the active SAR sensor in the sense that it can observe both, the Earth and its 

atmosphere simultaneously. The primary goal of ICESat is to quantify ice sheet mass balance and 

understand how changes in the Earth's atmosphere and climate affect polar ice masses and global 

sea level. Its GLAS instrument has a lidar channel for height-resolved data and, therefore, is 

designed to make aerosol and cloud measurements including measuring ice-sheet topography, 

cloud and atmospheric properties, and the height and thickness of radiatively important cloud 

layers needed for accurate short term climate and weather prediction. However, since the lidar 

instrument of CALIPSO, called CALIOP has as coarse spatial resolution as 125m, it combines the 

active lidar instrument with passive infrared and visible imagers to probe the vertical structure and 

properties of thin clouds and aerosols. Similarly, the spatial resolution of GLAS is not sufficient for 

remote sensing of vegetation either; therefore, [Koetz 2007] combines lidar driven data with the 

spectral information to forest canopy characterisation. 

 
Figure 1.3:  An airborne LIDAR remote sensing system6 

Another space-borne lidar instrument called the Mercury laser altimeter (MLA) is on its way to 

Mercury, where it will make measurements of the topography of Mercury. 

                                                      

6 Source: http://www.hypernexussolutions.com/Projects/Examining_lidar_in_remote_sensing-%5BSlide_show%5D.pdf 
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1.3.3 Very high resolution satellite imagery 

The launch of American RS satellite IKONOS in the end of 1999 marked the age of very high-

resolution satellite (VHRS) RS images. IKONOS provides the panchromatic images with the finest 

resolution of 82 cm at nadir and the multi-spectral images with the resolution of 4 m. Two years 

later followed another VHRS QuickBird that provides panchromatic images with the finest 

resolution of 61 cm at nadir. Again, with the gap of two years, OrbImage, a subsidiary of Orbital 

Sciences Corporation (OSC) launched another American VHRS called Orbview-3. Orbview-4 

failed to orbit. OSC launched its next mission called Orbiew-5, now renamed as GeoEye-1 on 

September 6, 2008. Orbview-5 provides imagery with the finest resolution of 41 cm. The optical 

imagery with this much high resolution carries sufficient detail to provide texture information of 

the land-covers and hence makes them distinguishable despite their similar spectral characteristics. 

1.4 Typical land-covers 

The discriminatory performance of any features extracted from the high-resolution RS images is 

subject to the number of unique classes to be discriminated within a single scene. Therefore I 

studied the work carried on land-cover classification using IKONOS images with the scene size of 

121 km2 and found that the minimum number of classes is generally 5 including, water (natural as 

well as artificial water bodies), greenery (trees, vegetation, grass, fields), bare soil, manmade 

structures (roads, houses, and other buildings), and ice or snow. Precise classification of land-

covers in a large scene, specifically from a rural area, may result in as many as 12 classes including 

water plant, grass, deciduous tree, coniferous tree, bamboo, bush, bare land, orchard, vegetable 

field, rice field, open water, and manmade structure [Hirose 2004]. While classifying a scene from 

forest, [Tatiana 2006] identifies as many as 14 classes including dark/deep water, light/low deep 

water, water, non-vegetated area, herbaceous vegetation, sparse herbaceous vegetation, eucalyptus, 

maritime pine, stone pine, cork tree, broadleaved trees, new plantations of eucalyptus, burnt area, 

and shadow. From ecological point of view, NASA has pointed out nine land-covers, shown in 

figure 1.4 on the global scale. It should however be noted that these land-covers do not include 

water and ice/snow. 

19%

6%

13%

10%8%
13%

17%

11% 3% Desert
Mountains
Tropical Rain Forests
Savannah
Temperate Forest
Temperate Grassland
Boreal Forest
Tundra
Scrub

 
Figure 1.4:  Land-cover types identified on global scale7 

                                                      

7 Source: http://rst.gsfc.nasa.gov/Sect3/Sect3_1.html 
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1.5 Spectral signatures of land-covers 

The natural land-covers can be broadly categorised into three, i.e. water, bare non-vegetated land 

(soil) and vegetation. The three have distinct spectral characteristics that help discriminate them in 

the RS imagery. Figure 1.5 shows spectral response of five classes with water subdivided into two 

categories of clear water and turbid water, and the soil subdivided into two categories of silty clay 

and musk soil. It shows how the reflectance of the five classes varies with frequency. The five 

land-covers in figure 1.5 appear spectrally distinct and can be easily distinguished in satellite-borne 

RS imagery. However, each of these classes subdivides into several other subclasses as required by 

the underlying application or problem. For example, figure 1.4 shows several subclasses of 

greenery, i.e. grassland, forest, savannah, and scrub. Similarly, the following section discusses the 

classification of vegetation into several subclasses. In such cases of more specific subclasses within 

the class of vegetation, the classes are spectrally close and sometimes very close, making the 

distinction among them very difficult. 

 

Figure 1.5:  Spectral reflectance of vegetation, soil and water 

1.6 Vegetation covers and their mapping 

The vegetation covers have immense diversity. The vegetation covers further divide into the 

subclasses that subdivide further into smaller subclasses as per requirement and purpose of the 

classification. Mapping the vegetation-covers is useful in studying environmental degradation 

[Feng 2006], managing natural resources [Scott 2003], identification of fire-fuels in the forests for 

better fire fighting [Raymond 2006], and estimating crop yield and land use for agricultural 

management [Akbari 2006] besides many other applications. Therefore, States or regional 

governments maintain their own classifications and keeps statistics of the vegetation covers found 

in the region.  

Table 1.3 lists the simplified classification of the vegetation in the Australian state of Victoria as 

given by the Australian department of sustainability and environment. It has as many as 300 

vegetation classes with 20 major classes and 34 subclasses. Some of these classes appear spectrally 
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the same and discrimination among them becomes a challenging task. For example, [Cablk 2007] 

found that using satellite imagery could not spectrally distinguish riparian grass and the areas of 

dark soil from shrubs. Their mapping becomes impossible when these classes subdivide further into 

subclasses and the spectral difference among the classes becomes more and more subtle. 

Environment Canada finds as many as 23 subclasses of wetland in the region of St. Lawrence in 

Canada. Refer table 1.4. 

Table 1.3:  Simplified classification of vegetation in Victoria8 

1 
Coastal Scrubs Grasslands and 

Woodlands 
11 Sub-alpine Grasslands, Shrublands or Woodlands 

2 Heathy Woodlands  12 Plains Grasslands and Chenopod Shrublands 

3 Lowland Forests 13 Plains Woodlands or Forests 

4 
Box Ironbark Forests or dry/lower 

fertility Woodlands 
14 Riverine Grassy Woodlands or Forests 

5 Lower Slopes or Hills Woodlands 15 Wetlands 

6 Dry Forests 16 Heathlands 

7 Wet or Damp Forests 17 Mallee 

8 Riparian 18 Salt-tolerant and/or succulent Shrublands 

9 Rainforests 19 Rocky Outcrop or Escarpment Scrubs 

10 
Montane Grasslands, Shrublands or 

Woodlands 
20 

Herb-rich Woodlands - Alluvial terraces and 

/or creek lines 

1.7 Vegetation indices 

In the process of photosynthesis, live vegetation absorbs part of the solar radiation in the 

frequencies called photo-synthetically active radiation (PAR) spectral region. The absorbed solar 

energy includes the visible light from wavelengths of 0.4 to 0.68µm. Refer figure 1.5. Leaf cells 

scatter, i.e., reflect and transmit solar radiation in the near-infrared spectral region, i.e. the light 

with the wavelengths from 0.68 to 1.3 µm. Therefore, live vegetation has relatively low reflectance 

in the PAR and relatively high reflectance in the near-infrared region. However, the exact 

difference or ratio of the reflectance in the two regions, i.e. PAR and the non-PAR spectral regions, 

varies from one vegetation type to the other. This makes possible devising vegetation indices, a 

number generated by some combination of spectral reflectance of the target to remote sensing 

bands, that has some relationship to the amount and type of vegetation in a given image pixel. 

Using these indices helps identifying different vegetation types and estimating amount and 

condition of vegetation. However, it should be noted that these vegetation indices are generally 

based on empirical evidence and not on some analytical proof. Most of the indices used 

successfully for various applications are ratio based. Since these are ratios of the reflectance in the 

                                                      

8 Source: http://www.dpi.vic.gov.au/DSE/nrence.nsf/LinkView/ 
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bands of MS images, these do not have any dimension. Indices that are more complex are not 

important enough to be discussed here, since those have been almost abandoned. 

Table 1.4:  Subclasses of wetland in the region of St. Lawrence, Canada9 

Name of Species S. 

No. English French Scientific 

1 
Shallow water dominated by 

submerged vegetation 

Eau peu profonde à herbier 

submergé 
- 

2 
Shallow water dominated by 

floating vegetation 

Eau peu profonde à herbier 

flottant 
- 

3 
Low marsh dominated by 

Common Three square 

Bas marais à Scirpe 

d'Amérique 

Schoenoplectus 

Pungens 

4 
Low marsh dominated by 

wild rice 
Bas marais à zizanies Zizania sp. 

5 
Low marsh dominated by 

arrowheads 
Bas marais à sagittaires Sagittaria sp. 

6 
Low marsh dominated by 

Great Bulrush 

Bas marais à Scirpe des 

étangs 

Scirpus 

Lacustris 

7 
Low marsh dominated by 

River Bulrush 
Bas marais à Scirpe fluviatile 

Bolboschoenus 

Fluviatilis 

8 
Low marsh dominated by 

Smooth Cord grass 

Bas marais à Spartine 

alterniflore 

Spartina 

Alterniflora 

9 
Low marsh dominated by 

Flowering Rush 

Bas marais à Butome à 

ombelle 

Butomus 

Umbellatus 

10 
Low marsh dominated by 

Pickerelweed 

Bas marais à Pontéderie 

cordée 

Pontederia 

Cordata 

11 
Low marsh dominated by 

Purple Loosestrife 

Bas marais à Salicaire 

commune 

Lythrum 

Salicaria 

12 
Low marsh dominated by 

cattails 
Bas marais à typhas Typha sp. 

13 
Low marsh dominated by 

Broad fruit Bur-reed 

Bas marais à Rubanier à gros 

fruits 

Sparganium 

Eurycarpum 

14 

Low marsh dominated by 

dense narrow-leaved 

vegetation (cattails and 

bulrushes) 

Bas marais à végétation 

angustifoliée dense (typhas et 

scirpes) 

Typha sp. 

Scirpus sp. 

15 

Low marsh dominated by 

River Bulrush and Purple 

Loosestrife 

Bas marais à Scirpe fluviatile 

et à Salicaire commune 

Bolboschoenus fluviatilis 

Lythrum salicaria 

16 
High marsh dominated by 

sedges 
Haut marais à carex Carex sp. 

17 
High marsh dominated by 

Common Reed 

Haut marais à Phragmite 

commun 

Phragmites 

Australis 

18 
High marsh dominated by 

Purple Loosestrife and sedges 

Haut marais à Salicaire 

commune et à carex 

Lythrum salicaria 

Carex sp. 

19 
High marsh dominated by 

Reed Canary grass 
Haut marais à Phalaris roseau 

Phalaris 

arundinacea 

20 
High marsh dominated by 

Blue joint 

Haut marais à Calamagrostis 

du Canada 

Calamagrostis 

canadensis 

21 
High marsh dominated by 

American Manna grass 
Haut marais à Glycérie géante 

Glyceria 

grandis 

22 
High marsh used for 

agriculture 

Haut marais à affectation 

agricole 
- 

23 High salt marsh Haut marais salé - 

                                                      

9 Source: http://www.qc.ec.gc.ca/geo/mil/mil004_e.html 
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Beginning from the simplest index called simple ratio, more complex indices have been proposed 

to consider other factors so that index becomes more robust undesired effects. These indices 

directly relate the sensor response to different biophysical parameters, such as percentage of 

vegetation cover, leaf area index, absorbed photo-synthetically active radiation, production rate of 

the biomass, etc. 

1.7.1 Simple ratio (SR) 

The simple ratio is the first ever and the simplest vegetation index introduced by [Birth 1968] to 

classify land-cover under observation as live green vegetation or otherwise. It is the ratio of red 

reflected radiant flux (ρred) to the near-infra red flux (ρnir). In (1.1), the numerator and the 

denominator represent the reflectance in red and infrared regions, respectively. 

 
nir

redSR ρ
ρ=  (1.1) 

Similarly, inverse of this ratio called ratio vegetation index (RVI) is also used. Since this ratio is 

very simple, it is susceptible to many noise sources that render it limited in its use. 

1.7.2 Normalized difference vegetation index (NDVI) 

NDVI is a simple numerical indicator used to analyse remote sensing measurements, typically but 

not necessarily from a space platform. It is one of the most successful and well-known indices used 

to detect live green plant canopies in multi-spectral remote sensing data. This index is generally 

ascribed to [Rouse 1973], but [Kriegler 1969] first presented the concept of a normalised difference 

index. NDVI computes as in (1.2). 

 
rednir

rednirNDVI ρρ
ρρ

+
−= , (1.2) 

where ρred and ρnir stand for the spectral reflectance measurements acquired in the red and near-

infrared regions, respectively. It is functionally equivalent and related to SR by the (1.3), i.e. a 

given SR value has a unique NDVI value and vice versa. While the SR ranges from 0 to infinity, 

NDVI has the advantage of varying between -1 and 1, where vegetated areas typically have values 

greater than zero, whereas values near or below zero show non-vegetated surfaces such as water, 

barren land, ice, snow, or clouds. Table 1.5 shows the typical NDVI values for various land-covers 

and its capacity to distinguish vegetated areas broadly from other surface types. 

 
SR

SR
NDVI +

−=
1

1
 (1.3) 

The remote sensing experts have used NDVI and other similar indices in many diversified 

applications other than classification of the vegetation covers. For example, [Sellers 1985] and 
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[Myneni 1995] use NDVI to estimate the photosynthetic capacity of plant canopies, [Haboudane 

2004] uses several vegetation indices including NDVI to estimate green leaf area index (LAI), 

[Ogawa 1999] uses NDVI to estimate evapotranspiration taking place in the vegetation, [Scott 

2008] estimates biomass, [Jones 2007] uses NDVI to estimate chlorophyll concentration in spinach, 

[Pettorelli 2006] uses NDVI to estimate the plant productivity, and [Petja 2004] estimates 

accumulated rainfall from it. 

Table 1.5:  Typical NDVI values for various land-covers 

Reflectance S. 

No. 
Land-cover type 

near-infrared Red 
NDVI value 

1 
free standing 

water 
very low Low negative ~-0.3 

2 soils or rocks 
somewhat larger than 

the red 

somewhat smaller 

than the infrared 

small positive 

from 0.1 to 0.2 

3 
live green 

vegetation 
high low from 0.5 to ~1 

4 snow and ice low ~0.4 
slightly lower than 

infrared 

very slightly 

negative value 

 

 

Figure 1.6:  NDVI vs. LAI10 

These diversified uses of NDVI point out that even for a given amount, type and/or condition of 

vegetation, NDVI changes depending on many other factors as well. For example, [Xiao 2003] 

presents the effects of atmospheric aerosols on the vegetation indices, [Adegoke 2002] studies the 

                                                      

10 Source: http://rangeview.arizona.edu/Tutorials/intro.asp 



21 

effects of soil moisture, [Franke 2006] investigates the effects of sensor characteristics on NDVI, 

and [Trigg 2005] explores the effects of anisotropy, i.e. the effects of the viewing angle parameters 

on commonly used spectral indices. [Zoran 2006] presents findings on effects of climate on the 

performance of various vegetation indices. These perturbing factors can result in severe errors if 

not addressed properly before using the NDVI for quantitative assessments. Figure 1.6 shows how 

it varies with leaf area index (LAI). It illustrates that the NDVI has a non-linear response to the 

vegetation cover density and it saturates, as the vegetation gets denser. 

1.7.3 Soil adjusted vegetation index (SAVI) 

[Huete 1988] observes that the soil background of the vegetation affects the overall reflectance of 

the vegetation. Therefore, he proposes SAVI, expressed in (1.4), to compensate this undesired 

effect on the calculation of the vegetation index. The soil-adjusted index includes a new L factor, 

which represents height of the vegetation linearly and takes values from 0 representing very high 

vegetation to 1 representing very low vegetation. The most typical value is 0.5 that represents 

intermediate vegetation cover, but the RS expert chooses this value according to some a priori 

knowledge of the land-cover. As the multiplicative factor L tends to zero, the SAVI index 

approaches NDVI. 

 
( )( )

L

L
SAVI

rednir

rednir ++
−+= ρρ
ρρ1

 (1.4) 

The need for a priori knowledge of L leads to the circular problem of knowing the vegetation 

cover before calculating the vegetation index that one wants to use for knowing the vegetation 

cover. To overcome this problem, many researchers have proposed modified versions of SAVI, 

such as MSAVI, MSAVI2, etc. 

1.7.4 Modified SAVI (MSAVI) 

MSAVI is the Modified Soil Adjusted Vegetation Index introduced in [Qi 1994]. It proposes 

estimating a reasonable value of L from other indices that required the slope of soil line. The soil 

line is the hypothetical line [Kauth 1976] whose slope comes from the RS image itself. However, 

this process is also difficult, error prone, and highly sensitive to the climatic conditions. Therefore, 

another solution, [Qi 1994b] suggests MSAVI2 that does not need to know the slope of soil line or 

any other a priori knowledge to determine the value of L. He suggestes substituting L in (1.4) with 

the value of SAVI itself that arrives at the recursive solution given in (1.5).  

 ( ) ( )rednirnirnirMSAVI ρρρρ −−+−+= 8125.05.02
2  (1.5) 
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1.7.5 Transformed difference vegetation index (TDVI) 

[Bannari 2002] notes that unlike other perturbing factors that affect the vegetation cover 

classification, the problem of saturation and non-linearity is a weakness that results from the design 

and the analytical formulation of the vegetation indices. To overcome that weakness, [Bannari 

2002] proposes TDVI, formulated in (1.6) and claims that it performs always better than NDVI, as 

good as SAVI and in some cases even better than SAVI. In addition to this, TDVI carries the 

advantages of being linear and non-saturating at a maximum limit. The TDVI was shown to have 

more linear relationship with percent cotton cover and Balsam Fir cover than NDVI and SAVI. 

However, the notion behind this particular algebraic formulation has never been justified 

theoretically. 

 
( )

5.0
5.1

2 ++
−×=

rednir

rednirTDVI ρρ
ρρ

 (1.6) 

Similarly, there are several other indices, not discussed here, that use trigonometric, logarithmic, 

or even complex formulations that have never been popular. There are also the indices that make 

use of the frequency bands other than red and near infrared. The following sections present two of 

those. 

1.7.6 Normalized green-red difference index (NGRDI) 

This index was proposed by [Hunt 2005] for precision monitoring of crops using low altitude aerial 

photography with a digital camera. Since the red and green reflectance varies greatly with the 

exposure, [Hunt 2005] proposes the NGRDI, as in (1.7) to normalise the effects of different 

exposures and claims that the index relates to the crop biomass. 

 
redg

redg
NGRDI ρρ

ρρ
+
−=  (1.7) 

[Hunt 2005] finds this index to relate linearly with dry biomass at low amounts, and to reach a 

maximum value when biomass was greater than 120 g/m2 for soybean and corn. This index does 

not directly relate to chlorophyll content of corn. For soybeans, alfalfa and corn, dry biomass from 

zero to 120 g/m2 is linearly proportionate to the NGRDI, but for biomass greater than 120 g/m2 in 

corn and soybean, the index does not increase further. 

1.7.7 Atmospherically corrected vegetation indices 

The atmospherically resistant indices are a family of indices with built-in atmospheric corrections. 

The atmospheric correction is carried by replacing the red reflectance ρred with the term ρrb given 

by 
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 bredrb ρρρ −= 2  (1.8) 

where ρb represents the blue reflectance. This was first proposed by [Kaufman 1992] for NDVI 

that resulted in atmospherically resistant vegetation index (ARVI). [Marshall 2004] finds ARVI 

four times less sensitive to the atmospheric effects than NDVI. Similarly, the same substitution in 

SAVI yields soil adjusted atmospherically resistant vegetation index (SARVI) and the same 

substitution in MSAVI2 yields atmosphere-soil-vegetation index (ASVI).  

The vegetation indices driven from the multispectral data prove insufficient in many applications 

of remote sensing. This fact forced the remote sensing experts to use sources of information 

complementary to spectral data. Here comes the idea of fusing the structural information from SAR 

or textural information from the optical images with the spectral information.  
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Part B: Image Fusion 

In general, the image processing community describes image fusion as the process of producing a 

single image from two or more images from same or different sources/sensors. Broadly speaking, 

image fusion is a particular case of data fusion. [Ranchin 2000] defines image fusion as 

“combination of two or more images to create a new image containing more information by using a 

certain algorithm”. There are many other narrow-scope definitions of image fusion. However, in an 

attempt to summarize all those, I define it as:  

“the process of gathering all information from images and/or non-images of different nature, 

resolution, and source of origination, required for the application under consideration, into a 

single image or non-image representation”. 

According to [Phol 1998] and [Varshney 1997], image fusion can be performed at three different 

processing levels or at three levels of abstractions, i.e., pixel level at the lowest level of abstraction, 

feature level, and the decision level at the highest level of abstraction. Figure 1.7 illustrates this.  

 

Figure 1.7:  The fusion at three different levels of abstraction 

Many others have asserted the same idea, but [Wald 1999] also argues that this categorization 

may be misleading and it may falsely imply that fusion processes do not deal simultaneously with 

these different levels. [Stubberud 2003] also points out that the boundaries between the three levels 

are unclear. So in some situations, it becomes controversial to decide the level of the fusion 

performed.  

The fusion procedure at each level has its own methods, techniques, and pros and cons. The 

choice of a suitable fusion level depends on many different factors such as data sources, application 

and available tools. At the same time, the selection of the fusion level determines the necessary pre-

processing involved. For instance, fusing data at pixel-level requires co-registered images at sub-

pixel accuracy because the existing fusion methods are very sensitive to misregistration. Though so 

far the most researched domain is the data or pixel in the field of image fusion, one finds recent 
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examples of the research on all the three levels of fusion. The succeeding sections present a brief 

view of the image fusion at all the three levels of abstraction apart from multilevel fusion. 

1.8 Pixel level fusion 

This is the fusion at the lowest possible level of abstraction, in which the data from two different 

sources fuse directly. In image fusion, the data are the pixels of the images from different sources. 

Fusion at this level has the advantage that it uses the original data that is most possibly close to the 

reality. The images merge on the pixel-by-pixel basis, after the software co-registered them exactly 

at the same resolution level. Most of the times, the images are geo-coded as well before fusion 

since the fusion on pixel level requires accurate registration of the images to be merged. The 

accurate registration requires re-sampling and geometric correction. There are several methods of 

re-sampling and registration of the images. The geometric correction requires the knowledge of the 

sensor viewing parameters along with software that takes into account the image acquisition 

geometry and Ground Control Points (GCPs). The GCPs are the landscape features whose exact 

locations on the ground are known. The GCPs may be naturally occurring, e.g. road intersections 

and costal features; or may be intentionally introduced for the purpose of geometric corrections. In 

some cases, where the surfaces are highly uneven, a DEM is required. This is especially important 

for SAR data processing, whose sensor has the side-looking geometry, i.e. oblique view. The 

oblique radar waves strike a bump on the rough terrain instead of the targeted location on the 

surface. The image fusion at this level has the highest requirements of computer memory and 

processing power and it takes longer processing times. Figure 1.8 depicts a block diagram showing 

sequence of actions taking place in a system employing pixel-level-fusion. 

 

Figure 1.8:  The pixel level fusion 

The collateral data may include the sensor characteristics and imaging parameters required for 

radiometric correction, as well as the information regarding GCPs required for the geometric 

correction. The term data alignment refers to the registration of the images. [Geerling 2007] fuses 

spectral data from CASI sensors and lidar data for classification of floodplain vegetation. Apart 
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from remote sensing, pixel level image fusion finds its applications in defence [Xue 2003], 

computer vision [Goshtasby 2005], and medical imaging. In case of medical image fusion, the two 

source images might be coming from ultrasound and computer tomography scan [Wein 2005], or 

from x-rays and magnetic resonance imaging that often provide complimentary information [Qu 

2001]. The experts in remote sensing fuse the images carrying complementary information for 

more accurate classification, better interpretability, and/or to develop digital elevation models 

(DEM) [Simone 2002]. However, the simplest and the most frequent example of RS image fusion 

is the fusion of multi-spectral (MS) and panchromatic (PAN) sensors from the aboard the same 

satellite. Several works, for example, [Zhang 2002] and [Tian 2004] propose and assess the 

techniques for fusing high-resolution PAN images with the low-resolution MS images. SAR and 

optical images also provide complimentary information, and sometimes fuse on the pixel level for 

enhanced interpretability [Westra 2004]. 

1.9 Feature level fusion 

This approach merges the datasets, i.e. images at an intermediate level of abstraction. It is suitable 

to opt for feature-level fusion only if the features extracted from various data sources, i.e. images 

can properly be associated with each other, for example the features like edges and segments can 

be extracted from both, the optical as well as SAR images and then can be merged together to work 

out joint features and classification. SAR images provide textural information that is 

complementary to the spectral information from the optical images. Therefore, texture features 

extracted from SAR images and spectral features extracted from MS images may fuse before a 

classifier classifies them. [Greiwe 2005] fuses hyper-spectral image with high-resolution image on 

the feature level. Some works propose fusing different kinds of features extracted from the same 

image before classifying the image. For example, [Zhao 2005] fuses texture features for 

classification of very high-resolution RS images and [Clausi 2001] fuses different texture features 

extracted from SAR images. 

1.10 Decision level fusion 

The decision level fusion takes place after classification of the two or more sets of data. The 

different sets of data might come from the same source image using different features or from 

different source images. In case of different source, the two or more different source images are 

classified using the same or different classifiers and the resulting classifications are then fused to 

obtain a single classification that is often more accurate than any one of the two fused 

classifications alone. Sometimes, the same dataset is classified using two, or more, different 

classifiers and then the classifications are fused. There are several methods of classifier fusion, 

including those based on majority vote, Bayesian average and the maximum posterior probability 

as noted in [Bruzzone 2002]. Fusion at decision level results in concluding the results that were 
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impossible from the individual classifications. For example, fusing individual classification of a CT 

scan and an MRI may help in better diagnosis. The fused classification often helps have better 

interpretation of the input data, i.e. an observed scene in remote sensing.  

1.11 Multilevel Fusion 

It is not necessary to perform fusion at only one of the three levels. The fusion may take place at 

any two or all the three levels and there exist example of techniques that allow fusion of image and 

non-image data at multiple levels of inference [Hall 2003]. [Borghys 1998] applies multi-level 

fusion to multi-spectral image sequences for target detection. [Petrovic 2003] proposes the multi-

level image fusion framework to perform image fusion at all the three levels and reports 

significantly better results with the image fusion simultaneously performed at the first two levels 

(i.e. pixel and feature level) than with the fusion performed at any one level alone. Figure 1.9 

illustrates the multilevel fusion framework proposed by [Petrovic 2003]. However, multilevel 

fusion may take in several forms such as the one in the succeeding section. 

 

Figure 1.9:  The multilevel fusion 

1.12 Region based fusion 

Some researchers proposed the fusion schemes that one cannot explain to be working on any of the 

three levels of abstraction. For example, [Zhang 1997] suggests what they call region-based fusion. 

It is in fact another scheme of multilevel fusion. One can also think of it as lying between the 

abstraction level of pixel and that of the features. [Piella 2003] is a more recent but similar work 

that proposes the pixel level fusion guided by feature analysis as depicted in figure 1.10. 
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Figure 1.10:  The region-based fusion 

1.13 Conclusion 

Traditionally, remote sensing of environment has depended highly on the vegetation indices driven 

by multi-spectral data from remote sensing satellites. However, all the vegetation indices designed 

for different applications remain susceptible to various climatic conditions and they remain 

vulnerable even to the change of data source, i.e. the sensors. the remote sensing experts often 

regard Multi-spectral data on a pixel as insufficient for land-cover classification, and emphasise on 

using the spatial context in which some spectral pixel value occurs; in other words, the texture. On 

the other hand, the RS satellites now provide the RS imagery that is both, affordable and high-

resolution, making the identification of land-covers from remote sensing images easier than ever 

before. In the high-resolution imagery, every region covering a single land-cover type now 

comprises several image pixels, providing fine details and thereby making it possible to use texture 

information for identification of the land-covers apposed to the use of spectral information alone in 

the past. Therefore, the next chapter is dedicated to texture feature extraction and comparison of 

different texture features. 

The image fusion techniques have been used to bring the resolution of the multispectral imagery 

at par with that of the panchromatic images. This utilises the image fusion at the lowest level of 

abstraction. Apart from this, the complimentary information provided by the radar and the optical 

images has traditionally encouraged the use of image fusion techniques in the remote sensing 

applications. Using the techniques of image fusion at higher levels of abstraction helps accomplish 

such tasks. Therefore, remote sensing applications often use image fusion techniques at one or 

more levels of abstraction. The land-cover mapping scheme presented in chapter 4 of this thesis 

also uses image fusion at two levels of abstraction. 
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Conventionally, the optical remote sensing is all about the extraction of spectral information on the 

land-cover and sometimes even precise information regarding objects on the surface of Earth, from 

multispectral remote sensing images. However, the constraint of such a classification lies in the fact 

that the reflectance of the pixel is not a function of only the part of land it corresponds to; instead, 

the pixel reflectance is a function of neighbouring regions also. It means that the spatial context of 

occurrence of a given spectral response is also important in the land-cover classification. This fact 

is even more important after the emergence of the high spatial resolution imagery, where a pixel 

represents a piece of land no bigger than 70cm×70cm. Therefore, it is logical to think of using 

2
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contextual information as well, i.e. the neighbourhood in which a particular reflectance occurs. The 

image texture is best at representing this contextual information. Nevertheless, extraction of texture 

characteristics from the remote sensing images has never been an easy task. [Schaale 2000] makes 

the same observations, noting that the standard practice of using only spectral information for the 

land-cover classification is because the extraction of texture features from land-covers is a 

challenging task. With the advent of very high-resolution satellite imagery, the remote sensing 

experts are now utilising texture information from the RS images to extract the required 

information. 

This chapter divides into two parts. Part A discusses theoretical notions of texture and methods of 

extracting texture features. It also suggests improvements in a method of extracting the texture-

features. Part B compares the performance of various texture features for image retrieval and 

recognition on noiseless and noisy images alike. Before presenting the results, it explains all the 

experimental conditions including training image set, test image sets, methods of performance 

evaluation. Part B also introduces a new performance parameter, called rotation variance, for the 

texture features.  

Part A: Theoretical concepts 

2.1 Image texture  

Although one can find many definitions of texture in the contemporary literature, it has no 

definition that is uncontroversial and agreed upon unanimously by the image processing research 

community. Researchers have devised several definitions of texture comprising from a single 

sentence to several sentences. Nonetheless, one can described texture as a pattern of gray level 

changes in an image or a local region therein. The image processing research community considers 

this property of image, called texture, an important image characteristic and an essential part of the 

content-based image retrieval (CBIR) systems and remote sensing alike. 

Texture processing, including texture segmentation, recognition, classification, synthesis, and 

shape from texture, is now already a mature field of research. The texture segmentation and 

classification is performed on medical images for diagnostics, on natural images for computer 

vision, and on remote sensing images for land-cover classification besides several other 

applications. 

2.2 Texture description 

Many a times, understanding images requires segmenting and classifying textures found therein 

and that in turn requires efficient texture descriptors. Following subsections explains the salient 
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characteristic features of an efficient texture description and the possible methods of efficient 

texture description.  

2.2.1 Ideal texture description 

An ideal texture descriptor is one that represents image textures with the attributes invariant to 

image rotation, translation, scale change, gray-level change, and noise. Practically, the texture 

description requires invariance to one or more of these factors depending on the application. 

Classically, in remote sensing, the texture classification has been performed on SAR images, often 

to supplement the land-cover classification using spectral information from optical images. SAR 

images come with severe levels of noise. Therefore, working with SAR images requires highly 

noise-insensitive texture description. Recently the development of the very-high-resolution optical 

sensor, the optical RS images are source of both, the, spectral as well as the textural information. 

Luckily, noise is not a very serious issue in the optical remote sensing images. However, the optical 

RS images also suffer from the Gaussian additive noise. Therefore, the most important aspects of 

the texture description of the RS images remain that of rotation invariance, grey level insensitivity 

and noise insensitivity in the order of importance. 

2.2.2 Practical texture description 

There are several kinds of texture descriptors, which are generally [Chen 1998, Tuceryan 1998] 

categorised as based on:  

• Signal processing methods 

• Statistical methods 

• Model-based methods 

• Geometrical methods  

The first approach considers the spatial frequencies involved in the textures and analyses the 

textures in the spatial frequency domain using Gabor filters, discrete wavelet transforms, curvelet 

transforms and ridgelet transforms. These methods are very popular in texture analysis for 

computer vision, remote sensing [Schaale 2000] and other applications.  

The second category includes the texture features that come from histogram-like representations 

like gray level co-occurrence matrix (GLCM), local binary patters (LBP), and the local Fourier 

histograms (LFH). These features are known for their power of describing the textures with local 

neighbourhood properties. 

The third category includes Markov random fields (MRF) and fractals [Mandelbrot 1982]. The 

methods based of MRF consider that each pixel depends statistically on the rest of the image. 

[Cicala 2004] is an example of using MRFs for texture analysis of a remote sensing image. These 

methods have not been very popular in the remote sensing applications. The methods based on 
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fractals have been used for compressing remote sensing images [Sankaragomathi 2007] and for the 

remote sensing of geological structures [Gloaguen 2007]. However, there does not appear any 

significant work on the use of texture attributes based on fractals for the classification of land-

covers in a remote sensing image.  

The two methods categorised in the model-based approaches can be recategorised. Those based 

on MRF can be considered as belonging to the category of statistical methods, because MRF is a 

statistical entity. Furthermore, methods based on fractals can be categorised as belonging to the 

geometrical methods, since these texture features are based on the principles of fractal geometry, 

despite the fact that it is non-Euclidean geometry. 

The fourth category includes the texture descriptors based on geometric features. This type of 

texture description finds applications in texture synthesis and texture mapping for 3D rendering of 

the surfaces. Refer [Stamos 2002] and [Elber 2005]. These techniques have never been popular in 

the texture recognition in general and description of land-covers classification in particular. 

The most popular methods of texture analysis belong to the first two categories. Methods from 

the first category are usually computationally expensive [Verma 2003], since these come from 

large filter banks, but these are moderately insensitive to noise [Ursani 2007]. On the other hand, 

those from the second category are computationally less expensive and have comparatively much 

higher descriptive power than the former, but are highly sensitive to the image noise [Ursani 2007]. 

[Verma 2003] observes that the texture features based on statistical methods and extracted from 

neighbourhoods as small as 3×3 pixels can yield as good as or even better results than the features 

extracted from large filter banks, since texture information is contained in the local characteristics 

of the immediate pixel neighbourhood. Therefore, following sections present the texture descriptors 

from these two categories and part B of the chapter compares them on a large datasets of noiseless 

and noisy images. 

2.2.3 Texture features based on Gabor filters 

The studies on human vision system analyses the perceived image in the spatial frequency domain. 

For this reason, the Gabor filters are popular among the image processing and computer vision 

experts who believe that the Gabor filters are best at replicating human vision system [Lee 1996]. 

Although there are several works reporting the use of texture descriptors based on Gabor filters, we 

present experimental results with the descriptor first presented in [Manjunath 1996], again in 

[Zhang 2000] along with a method of rotation invariant similarity measurement and compared in 

[Toyoda 2005]. These descriptors are designed quite carefully to avoid filter outputs carrying 

redundant information. Equations (2.2) through (2.10) are the expressions as they appear in 

[Manjunath 1996] and [Zhang 2000]. 
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where ψ is the mother Gabor wavelet, σx and σy are the functions of scale (m), described in (2.8) 

and (2.9), and W is the modulation frequency described in (2.7). The child Gabor wavelets are 

defined as  
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respectively, where θn = nπ/N, n specifies the orientation of the wavelet, N is the total number of 

orientations, a>1 and is given by 
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where M is the number of scales, Ul and Uh are the lower and upper centre frequencies, whose 

values are proposed in [Manjunath 1996] and [Zhang 2000] as 0.05 and 0.4 respectively. The 

modulation frequency Wm is given as 

 l
m

m UaW =  . (2.7) 

The σx and σy of the children wavelets are given by 
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The mean (µmn) and standard deviation (σmn) of the magnitude of the filter outputs (Gmn) from 

(2.1) are used as texture features. [Zhang 2000] proposed five scales (M=5) and six orientations 

(N=6), hence 30 filters in all. Therefore, the resulting texture descriptor has 60 values in all, as 

shown in (2.10). 

 { }454501010000 ,..,,.........,,, σσσ µµµFgabor =  (2.10) 

The rotation invariance is achieved by circularly shifting the feature vector so that the features 

(mean and variance) from the filter giving highest output energy are placed first [Zhang 2000]. 

Since our test images are only 128×128 in size against 200×200 in [Zhang 2000], we used the filter 

size of 31×31 instead of 61×61 proposed in [Manjunath 1996] and [Zhang 2000]. There are two 

reasons of using smaller filters. First, the larger filters cause computational load, and other that 

larger filter causes larger regions of no information near the image edges. The filter of 61×61 pixels 

would be too large for processing an image of 128×128 pixels. 

Keeping in view the closeness of Gabor filters with the human vision system, computer vision 

community has extensively used Gabor filters for the extraction of texture features, but [Cutter 

2003] observes that the human vision is deceptive for remote sensing applications. This is also true 

in the specific remote sensing application dealt here in this thesis, which processes a panchromatic 

image. This panchromatic image is a set of grey values corresponding to the response from a sensor 

having a very wide band that does not cover a part of frequencies visible to human vision system 

and covers a large part of infra-red frequencies invisible to human vision system. See figure 1.2 in 

chapter 1. Multispectral analysis in remote sensing also frequently uses the NIR band that is 

invisible to humans and at the same times is vital to the spectral discrimination of the land-covers. 

2.2.4 DFT-based texture signatures 

[Zhou 2001] proposed extracting texture features using discrete Fourier transform (DFT) in one 

dimension. Coefficients of the DFT of the 8-pixel sequence around each image pixel provide the 

texture signatures that are useful in texture segmentation, texture recognition, and retrieval. These 

coefficients are histogrammed, i.e. binned to compute local Fourier histogram (LFH). [Cutter 2003] 

notes that the LFH features are an accurate description of the local spatial distribution of the pixel 

grey-levels, and uses features extracted from local DFT from 3×3-pixel neighbourhoods for remote 

sensing application. In [Ursani 2007], we found these features more efficient and computationally 

less expensive than the features based on Gabor filters. 

2.2.4.1 Extraction of LFH based features 

Moving 3×3-pixel window across a texture image, 1D DFT of the digital numbers (pixel values) of 

sequence of 8 pixels, P0 through P7, in the spatial domain, shown in figure 2.1 is computed as 
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where 0 ≤ k ≤ 7, Xk represents the kth Fourier coefficient, x0 through x7 correspond to digital 

numbers of pixels P0 through P7. The symbol x, hereafter, represents the sequence of eight pixel 

values x0 through x7.  

 
Figure 2.1:  The 9-pixel neighbourhood in the spatial domain 

From the computed DFT, the absolute values of the first five coefficients, i.e. |X0| through |X4| 

are used for the texture description. Altogether, the computed coefficients are normalised to take 

values from 0 to 255. After normalisation, |X0| is linearly quantised into 8 bins and |X1| through |X4| 

are linearly quantized into 16 bins. For describing the textures, all the eight bins of |X0| are made 

part of the resulting texture models, but only first eight bins of the remaining coefficients are used 

as features. This is because all the bins following bin 8 remain zero in all the experiments 

undertaken herein, which is evident from the histograms shown in figure 2.2. It can be seen that the 

histograms of the coefficients other than X0 do not go beyond 127 on the x-axis. In this way, we 

have 8×5, i.e. 40 features in the texture descriptor, hereafter referred to as LFH 40. 

In (2.11), replacing k with 0, 1, 2, 3, and 4 yields the DFT coefficient X0, X1, X2 , X3 , and X4 , 

respectively. X0 and X4 are real, whereas others are complex. It is easy to show that the eight 

templates of table 2.1 yield the real and imaginary values of these DFT coefficients if convolved 

with the 9-pixel neighbourhood of figure 2.1. 
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Figure 2.2:  Histograms of the coefficients X0 through X4 for image D2 

Table 2.1:  The templates to extract the DFT-based texture signatures  
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Resulting from the unique combination of the eight pixels values, the DFT texture signatures 

provide 8th order statistics, against only 2nd order statistics provided by grey level co-occurrence 

matrices. There are ways to improve the LFH features further as described in the following 

sections. 

2.3 Modifications to LFH-based features 

There are several possibilities of variations in the LFH-based texture features introduced in [Zhou 

2001]. For example, using circular neighbourhood [Arof 1998] instead of the rectangular one, also 

using phase features instead of the amplitudes only [Ursani 2008b], and using smaller 

neighbourhoods as well [Ursani 2008a], and using prior image quantisation. Following sections 

present these possibilities in detail. 

2.3.1 Circular neighbourhood 

The magnitudes of the DFT coefficients are also susceptible to changes if the image is rotated, 

since the pixel values in the 9-pixel neighbourhood get altered in the rotated image. Therefore, the 

magnitudes of the DFT coefficients are not fully rotation insensitive. 
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[Arof 1998] suggested a circular neighbourhood instead of the rectangular for extraction of 

similar texture features based on 1D DFT. It argues that because rotating the image alters the pixel 

values in the rectangular 9-pixel neighbourhood, and therefore, the features extracted from the 

rotated and non-rotated image are dissimilar. On the other hand, the pixel values in the 

corresponding 9-pixel circular neighbourhood remain unaltered in the wake of rotation.  

Figure 2.3 shows the circular neighbourhood with the neighbours 1, 3, 5 and 7 (shown using 

empty circles) having non-integer pixel coordinates. [Arof 1998] interpolates these neighbours of 

non-integer coordinates using bilinear interpolation. For example, he interpolates neighbour x1 

(having the coordinates X=0.707 and Y=0.707) between the four closest neighbours of integer 

coordinates, i.e. P0 (1, 0), P1 (1, 1), P2 (0, -1), and C (0, 0) of the rectangular neighbourhood. In 

addition, [Arof 1998] suggests using mean and standard deviation of the feature images of the DFT 

coefficients X0 through X4 instead of computing their histograms and using bins values as features 

as in [Zhou 2001]. 

 
Figure 2.3:  The circular neighbourhood as suggested in [Arof 1998] 

Despite being computationally more expensive, the features extracted from the interpolated 

circular neighbourhood prove less efficient than those from rectangular neighbourhood. The reason 

of this failure is that there is a pitfall in the hypothesis of the circular neighbourhood itself. The 

interpolated neighbours also come from the same pixel values of the 9-pixel neighbourhood that is 

unstable to the rotation. 

2.3.2 The phase features 

The phases of DFT coefficients X1 through X3 were also proposed as features in [Zhou 2001] but 

only for those applications that do not deal with image-rotation. The phase features were otherwise 

excluded because, unlike amplitudes, the phases of the DFT coefficients are sensitive to image 

rotation. 

Consider that an image rotates by an arbitrary angle, with the centre of rotation exactly in the 

middle of the image. The angle of rotation at any other point Pxy on the image would be different 

from what it is at the centre of rotation. Let the angle of rotation be ψ at point C00 (see figure 2.1), 
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corresponding to a shift in string x by m places. This shift in x causes nothing but the changes in the 

phases of the resulting DFT coefficients. Equation (2.12) states the shift property of DFT. 

 { } { } km
i

knkmn exFxF 4)()(

π−
− = , (2.12) 

where { }( )
knxF  represents the kth coefficient of the DFT of { }nx , and { }( )

kmnxF −  represents the kth 

coefficient of the DFT of the string { }mnx −  that is the same string { }nx  shifted by m places. 

Equation (2.13) shows that any displacement in time- or space-domain causes a phase shift in the 

coefficient Xk given by 

 km
k 4

πθ −=Δ  (2.13) 

in the Fourier domain. Replacing k with 1 in (2.13) gives the phase shift in ∠X1 as 

 ψπθ =−=Δ m
41 . (2.14) 

Intuitively, the change in the local image-gradient angle (δ) is equal to the angle of rotation at 

point C00 (ψ) that causes equal change in ∠X1. Comparing (2.13) and (2.14) gives the phase shift in 

∠Xk as 

 1
θθ Δ×=Δ k

k . (2.15) 

Therefore in [Ursani 2008b], we proposed using the histograms of the phases of X2 and X3 as 

well, but after compensating with the angle of local image gradient. We suggested adjusting phases 

2X∠  and 3X∠  accordingly against the rotation by subtracting the angle of local image gradient (δ) 

as in (2.15). For k∈{2, 3} 

 δφ kX kk −∠= , (2.16) 

where φk represents the rotation compensated phase ∠Xk, and δ represents the angle of local image 

gradient. 

Further, in [Ursani 2008b] we showed that the phase of DFT coefficient X1, i.e. is itself the local 

image gradient. Following section gives the mathematical evidence. 

2.3.2.1 Local image gradient 

Traditionally as a good compromise between cost and accuracy, the 3×3-pixel edge detection 

operators such as Sobel operator and Prewitt operators are often used to estimate local image 

gradient at a given pixel. Below are the general 3×3 edge detection operators, in which the value of 

the parameter b varies from 1 as in Prewitt operator to 2 as in Sobel operator. 
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SX and SY are convolved with a texture image to obtain two gradient images GX and GY 

respectively. The local image gradient angle (δ) is calculated as 

 ⎟⎟⎠
⎞⎜⎜⎝

⎛= −
X

Y

G

G1tanδ . (2.18) 

Convolving the edge detection operators of (2.17) with the 3×3-pixel neighbourhood of figure 2.1 

gives GY and GX that are substituted in (2.18) giving 

 
754310

765321tan
xxbxxxbx

xbxxxbxx

+−−−+
+++−−−=δ . (2.19) 

By substituting k=1 in (2.11), it can be shown for x that 
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22

22
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xxxxxx

xxxxxx
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Expressions (2.19) and (2.20) happen to be exactly the same if 2=b  and are very close 

otherwise, because the value 2  falls between usual values, i.e. 1 as used in Prewitt operator and 2 

as used in Sobel operator. To demonstrate this fact, histograms of the local image gradient angle 

were computed from 1X∠  and from Sobel operator (b=2) for image D87 of Brodatz album 

[Brodatz 1966]. The two have a cross-correlation-coefficient (XCC) of 0.97 and a signal-to-noise 

ratio (SNR) of 69 dB verifying that the former is a very close approximation of the latter. All other 

images of the album were tested, and more or less similar values of SNR were found. Hence, 

instead of computing local image-gradient angle using any 2D edge detection operators, it suffices 

to use the value ∠X1 to compensate the phases of the two other DFT coefficients, i.e. 2X∠  and 

3X∠  against the effects of image rotation. It can now be said that 

 1X∠=δ . (2.21) 

Therefore for k∈{2, 3}, (2.16) resolves as  

 1XkX kk ∠−∠=φ , (2.22) 

where φk represents the rotation compensated phase ∠Xk, and ∠X1 replaces δ. These phases are 

histogrammed into 12 bins each, yielding 24 values in total. Hence, there are 40+24, i.e. 64 values 

in the feature-set hereafter referred to as LFH 64. Before using these gradient-compensated phases 

as texture features, their invariance to rotation is subject to experimental verification. 
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2.3.2.2 Rotation invariance of the phase features 

The images from Brodatz album were rotated to 30°, 45°, 60° and 90°, and histograms of φ2 and φ3 

were computed at each orientation. Table 2.2 shows the XCC as a similarity measure between the 

histograms corresponding to 0° and those to 30°, 45°, 60°, 90° averaged over all the images from 

Brodatz album. As an example, figure 2.4 shows the histograms of φ2 and φ3, for the image D87 

from Brodatz album. All the histograms appear the same and do not exhibit any left- or right-shift, 

indicating that the two phases are highly rotation-invariant. 

 

Table 2.2:  XCC between the histograms of φ2 and φ3 corresponding to 0° and to 30°, 45°, 60°, 90° averaged 

over all the images from Brodatz album 

 30° 45° 60° 90° 

φ2 0.9974 0.9976 0.9954 0.9989 

φ3 0.9953 0.9834 0.9855 0.9709 
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Figure 2.4:  Histograms of φ2 (middle column) and φ3 (right most column) for image D87 at 4 angles of 

image orientations, θ = 0°, 30°, 45°, 60°, and 90° (left column) 

2.3.3 Smaller neighbourhoods 

Sometimes, it is desirable to extract more and more information from the smallest possible 

neighbourhoods. In [Ursani 2008], we proposed improvements in the LFH-based features [Zhou 

2001] by suggesting more features extracted from the four 2×2-pixel neighbourhoods within the 

same 3×3-pixel neighbourhood as shown in figure 2.5. The coefficients of the DFT of the four 4-

pixel sequences provide 32 additional texture features. The magnitude of the second DFT 

coefficient, i.e. |X1| from each of the four 4-pixel sequence quantises to 8 bins to provide 32 texture 
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features. In this way, the total number of values grows to 72 in the resulting feature-set hereafter 

referred to as LFH 72. 

These were the three possible variations in the LFH-based features tested herein. Following 

paragraph presents a modification that applies to all the variations of the LFH-based feature set 

presented in the preceding sections. 

 
Figure 2.5:  The four 4-pixel sequences 

2.3.4 Quantisation 

The LFH features perform even better when extracted from the images quantised to a number of 

grey levels much less than the usual value of 256 [Ursani 2008b]. The best value for the number of 

quantisation levels, found experimentally is 32. Therefore, this thesis proposes linearly quantising 

the test images, either noiseless or noisy, to 32 levels before the process of feature extraction. 

2.4 Computational cost analysis 

The computational complexity of performing convolution [Lu 1996] is as in (2.23).  

 )( 2MOComplexity =  (2.23) 

where M×M is the size of the template convolved with the image. Since one generally convolves a 

number of templates, say n, with an image for extracting multiple features, this complexity also 

becomes a function of the n. Therefore, the complexity comes to be as in (2.24). 

 )( 2nMOComplexity =  (2.24) 

In case of the DFT-based texture signatures, the size of the template, i.e. M=3, and the number of 

templates is n=8. Therefore, the computational complexity of the process of extracting DFT-based 

signatures is as in (2.25) 

 )72()83( 2 OOComplexity DFT =×=  (2.25) 

Similarly, in case of the features based on Gabor filters, the size of the template is 31 (M=31), and 

the number of templates used is 30 (n=30). Hence, the computational complexity of extracting 

these features becomes as in (2.26). 
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 )72(4.2)72()28830()3031( 4.22 OOOOComplexity GBR ×===×=  (2.26) 

Equations (2.25) and (2.26) show that the computational complexity of the texture signatures based 

on Gabor filters is 2.4 times more than that of the DFT-based texture signatures. 

Whatever be the computational complexity, part B of the chapter experimentally evaluates the 

features based on Gabor filters and the DFT. 
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Part B: Experimental setup 

This part of the chapter explains the datasets and the experimental conditions, before presenting the 

experimental results, so that the results are understandable and well interpretable.  

2.5 Texture datasets 

Evaluating a texture descriptor requires two separate datasets; one for training the classifier, and 

other for testing its performance. The following subsections explain separately the training image 

set and the test image sets used herein. The classification experiments use the training set to make 

models considered as class centres, and then label the test images as belonging to the nearest class. 

The experiments of retrieval use the class centres obtained from the training sets as queries to find 

the matches from within the test images. Figure 2.6 and figure 2.7 illustrate this intricate structure 

of the experimental setup. 

2.5.1 The training set 

The 112 Brodatz texture images [Brodatz 1966] were downloaded from a webpage on the website 

of University of Stavanger11 with the size of 640×640 pixels each. The training set comprises all 

but five, i.e. D14, D43, D44, D45, and D59. The excluded five texture-images are too irregular and 

chaotic to be considered as a single texture. Consequently, there are 107 images in the training set. 

These images serve as the training set for the nearest neighbour classifier used to produce the 

results presented in this chapter. Both, the nearest neighbour classifier and the k-nearest neighbour 

classifier are topics of the next chapter, but following is a brief explanation of the training 

procedure. 

Feature vectors extracted from 500 square-windows randomly selected from each of the training 

images trained the classifier. These windows comprise X2 pixels, where X takes values from 71, 45 

and 27 respectively. Each of the three training-window-sizes forms a different lookup table used 

one at a time by the nearest neighbour classifier. Every lookup table contains 500×107, i.e. 53500 

feature vectors, carrying 500 representatives of each texture class and a class label at the end of 

every feature vector. This is a very big table, which becomes computationally expensive to use. 

Therefore, k-means clustering method introduced in the next chapter reduces i.e. edits these lookup 

tables, to have only 10 representatives of each class. Figure 2.6 elucidates all this process. For a 

given size of training window, the four methods of extracting texture features yield four different 

lookup tables with different number of columns for the kNN classifier. For example, the lookup 

tables corresponding to the LFH 40 features, LFH 64, and LFH 72 features have 41, 65, and 73 

                                                      

11 http://www.ux.uis.no/~tranden/brodatz.html 
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columns respectively. The last column in all the tables carries the class indicator whom the feature 

vector represents. Similarly, the lookup table corresponding to the Gabor features has 31 columns.  
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 Full size  

 Brodatz Image 
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 Window 1 Window 2 Window 3 
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Figure 2.6:  The training setup generating three lookup tables for a given feature-set, each resulting from a 

different training window size 

This chapter presents the results using the 3 sizes of training window and the 4 methods of 

extracting texture features. As shall be seen later, the classification accuracy is function of the 

training-window size; larger the training window, higher the accuracy.  
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2.5.2 The test image sets 

The texture features are tested on the set of texture images without noise and the set of texture 

images with Gaussian white noise.  

2.5.2.1 Test images without noise 

Two sets of noiseless test images were developed for performance evaluation. The first one 

consists of the variants of all the 107 Brodatz images in the training image set. The second one is a 

subset of the full test set. 

2.5.2.1.1 Full set of test images 

Each one of the 107 training images was rotated to 0°, 30°, 45°, 60° and 90°. This gave five 

variants of each of the training images. Sixteen images measuring 128×128 pixels were cropped 

from each one of the rotated images. This gave 8560 test images in all comprising 5×16, i.e. 80 

siblings of each of the training images. Figure 2.7 depicts this process of generating the test image 

sets, whence the texture features are extracted and fed to the kNN classifier for recognition and 

retrieval.  
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Figure 2.7:  The testing setup, generating the noised and noiseless test image sets 
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2.5.2.1.2 Subset of test images 

Realising that the Brodatz album indeed contains many images of a given type (paper, woven wire, 

canvas, stone, cloth, brick wall, flower, water, skin, etc) with different lighting conditions, zoom, 

etc., only one image of each type has been included in the reduced test image set, resulting in a 

subset comprising 32 texture classes shown in figure 2.8. Each class contains 80 siblings resulting 

from five orientations and 16 cropped parts, as explained in figure 2.7. In this way, there are 2560 

test images in all. 

 
Figure 2.8:  The subset of 32 texture images from Brodatz collection selected for experimentation 

2.5.2.2 The test images with Gaussian white noise 

This chapter also presents results on a set of images carrying Gaussian white noise. Generally, to 

exploit the RS images, these are pre-processed against noise before extracting any features thence. 

Therefore, Gaussian noise is added to the subset of test images comprising 32 classes and 2560 

images. The added noise is quite severe and results in an average signal to noise ratio (SNR) of 2.9 

dB. Table 2.3 shows SNR values for all the 32 images. Equation (2.27) estimates the SNR of the 

images with Gaussian white noise. Figure 2.9 shows image D87 with and without Gaussian white 

noise. Later, a 5×5-pixel Gaussian filter denoises these images before extracting any features from 

these test images. This replicates the experimental conditions similar to practical remote-sensing 

applications, where an RS image is received carrying Gaussian noise and is pre-processed against 

the same. 
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Figure 2.9:  (a) the noiseless texture image D87, (b) the same image with Gaussian white noise 

Table 2.3:  The SNR values in decibels for the images with Gaussian white noise 

S. No. Image SNR (dB)  S. No. Image SNR (dB) 

1 D5 2.90  17 D56 2.88 

2 D6 2.87  18 D57 2.81 

3 D8 2.89  19 D60 3.54 

4 D10 4.14  20 D64 2.85 

5 D18 2.87  21 D66 2.88 

6 D21 2.80  22 D68 2.84 

7 D24 2.91  23 D74 3.39 

8 D26 2.88  24 D84 2.85 

9 D29 2.87  25 D87 2.31 

10 D33 2.06  26 D89 3.61 

11 D35 2.91  27 D92 2.88 

12 D37 2.88  28 D93 2.89 

13 D40 1.61  29 D98 2.89 

14 D49 2.99  30 D101 3.68 

15 D50 2.86  31 D107 2.28 

16 D52 2.51  32 D111 2.64 

2.6 Performance evaluation 

To evaluate the performance of the various texture feature sets, following sections present the 

results of experiments performing image recognition and image retrieval on the test image sets 

explained in the preceding section.  

Following sections explain the process of recognition and retrieval as well as the performance 

measures used to evaluate the texture feature sets. The four texture feature sets include the features 

extracted from Gabor filters as proposed in [Zhang 2000], the LFH 40 features from the rectangular 

neighbourhood as proposed by [Zhou 2001] (explained in section 2.2.1), LFH 64 features from the 

rectangular neighbourhood as we proposed in [Ursani 2008b] (explained in section 2.3.2), and the 

LFH 72 features from the rectangular neighbourhood as we proposed in [Ursani 2008a] (explained 

in section 2.3.3). 

(a) (b)
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2.6.1 Recognition 

In these experiments, the k-nearest neighbour classifier, explained in the next chapter assigns each 

of the test images, one of the 107 or 32 classes, as the case may be. The overall recognition 

performance is estimated as percentage of the total number of images correctly classified from the 

total number of test images. In addition, individual results of recognition are also presented for 

each orientation of the test images. 

2.6.2 Rotation invariant texture features 

Although many works on rotation invariant texture features have been published, including [Zhang 

2000], [Zhou 2001], [Pun 2003], [Miguel 1994], and [Do 2002], practically there has not been any 

effort of numerically estimating the claimed rotation invariance or otherwise of the texture features. 

Therefore, this thesis also proposes a quantifier for rotation variance of the texture features. Since 

the test images are oriented at 0°, 30°, 45°, 60° and 90°, the results are also presented for each 

orientation separately apart from the overall accuracy. This allows us estimating the rotation 

variance of the feature sets. Equation (2.28) analytically defines the parameter called rotation 

variance (RV). 

 
{ }( )

100
,,,, 906045300 ×=

OA

AAAAAstd
RV , (2.28) 

where std represents standard deviation, OA represents overall percent accuracy of recognition, and 

A0 through A90 represent the percent recognition accuracies in the respective orientations.  

2.6.3 Retrieval 

The process of retrieval sorts out the images from a database, which are relevant to a query image 

in the order of relevance. In the retrieval experiments reported herein, each of the models from the 

training images presents itself as a query, and the classifier finds the closest N matches from the 

database that contains 80 siblings of each of the query images. The N takes 20 values from 16 to 

320, with the step of 16. Often, the image processing community presents the results of the content 

based image retrieval using precision and recall curves. Equation (2.29) and (2.30) mathematically 

explain the performance parameters called precision and recall, respectively.  

 
BA

A
recall +×=100 ,  (2.29) 

where A represents the number of relevant images retrieved and B represents the number of 

relevant images not retrieved. The precision is calculated as 

 
CA

A
precision +×= 100 ,  (2.30) 
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where A represents the number of relevant images retrieved and C is the number of irrelevant 

images retrieved. It should be noted that the precision and recall curves show the consolidated 

retrieval results for the complete sets rather than for individual images. 

In case of the full set test images, the retrieval tests reported in the following sections take each 

of the 107 training images as a query image and searches for its matches among 8560 test images. 

In case of the subset of test images, these take each of the 32 images training as a query image and 

looks for its matches among 2560 test images. The average precision is plotted against average 

recall for all the values of N. 

2.7 Results 

This section presents the results of texture recognition and texture retrieval using the texture 

features explained in the preceding sections. The k-nearest neighbour classifiers using the training 

window sizes of 71×71 pixels, 45×45 pixels, and 27×27 pixels, respectively, produce the results of 

texture recognition, whereas the nearest neighbour classifiers with the same training window sizes 

produce the results of texture retrieval. The results are presented successively on the test images 

without and with noise. 

2.7.1 The test images without noise 

Following sections present the recognition and retrieval results on the full set as well as subset of 

the noiseless test images. 

2.7.1.1 Recognition 

The following subsections present the results of texture recognition. In the results presented in the 

tables, the bracketed value shows the value of k that yields the best results while using the kNN 

classifier.  

2.7.1.1.1 Full set of test images 

The classifier takes each one of the 8560 test images as a query image, recognises it as belonging to 

any one of the families corresponding to the 107 images. Table 2.4 through table 2.6 show the 

results obtained using the training window size of 71×71 pixels, 45×45 pixels, and 27×27 pixels 

respectively. The numbers in bold indicate the best results.  

The LFH-base features sets exhibit less rotation variance as compared to the feature sets based on 

Gabor filters. This shows that the texture features proposed herein, i.e. LFH 64 and LFH 72; 

perform better not only in terms of percent accuracy but also in terms of the rotation invariance. 

Among all, the LFH 64 features perform the best.  
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Table 2.4:  Recognition results using the training window size of 71×71 pixels 

Orientation-wise Percent Accuracy 
A total of (107×16×5) 

8560 images recognized Gabor 

(k=1) 

LFH 40 

(k=1) 

LFH 64 

(k=1) 

LFH 72 

(k=1) 

0° 67.46    84.35    84.23    80.20    

30° 47.78    65.95    75.00    72.08    

45° 38.90    60.16    74.53    68.87    

60° 48.25    57.77    70.74    70.97    

O
ri

en
ta

ti
o

n
 

90° 66.30 69.63 79.09 81.31 

Overall % Accuracy 53.74 67.57 76.72 74.68 

Rotation Variance 23.39 15.51 6.70 7.60 

Table 2.5:  Overall and orientation-wise recognition results using the training window size of 45×45 pixels 

Orientation-wise Percent Accuracy 
A total of (107×16×5) 

8560 images recognized Gabor 

(k=1) 

LFH 40 

(k=1) 

LFH 64 

(k=3) 

LFH 72 

(k=1) 

0° 55.08    70.85    76.46 70.56    

30° 43.16    63.32    67.35 62.91    

45° 35.35    62.38    66.82 58.00    

60° 40.43    61.04    62.32 61.33    

O
ri

en
ta

ti
o

n
 

90° 53.13 69.92 70.04 72.55 

Overall % Accuracy 45.43 65.50 68.60 65.07 

Rotation Variance 18.55 6.94 7.57 9.56 

Table 2.5 shows the results using the training window size of 45×45 pixels. Again, LFH 64 

features perform the best. However, LFH 72 features could not perform better than LFH 40.  

Table 2.6:  Overall and orientation-wise recognition results using the training window size of 27×27 pixels 

Orientation-wise Percent Accuracy 
A total of (107×16×5) 

8560 images recognized Gabor 

(k=250) 

LFH 40 

(k=1) 

LFH 64 

(k=5) 

LFH 72 

(k=5) 

0° 2.80 53.33 58.18   56.72  

30° 2.80 46.90 50.47    48.31  

45° 2.80 46.09 50.12   45.74    

60° 2.80 46.26 48.60    47.08 

O
ri

en
ta

ti
o

n
 

90° 2.80 53.33 53.45 56.95 

Overall % Accuracy 2.80 49.18 52.16 50.96 

Rotation Variance 0 7.72 7.27 10.68 

Once again, the Gabor features are the worst. Table 2.6 shows the results using the training 

window size of 27×27 pixels. In this case, also, LFH 64 feature-set perform the best. This time, 

LFH 72 features outperform LFH 40 features.  

The results are quite low obviously, because there are many variants of the same texture in the 

full set of 107 images that the classifier does not consider as belonging to the same class in this 
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experiment. It is also noticeable that the classification accuracy decreases phenomenally with the 

decreasing size of the training-window. 

2.7.1.1.2 Subset of test images 

Table 2.7 through table 2.9 show the overall accuracy, the orientation-wise accuracies and the 

rotation variance for the test images without noise, with the training window size of 71×71 pixels, 

45×45 pixels, and 27×27 pixels respectively.  

In table 2.7, the best results were obtained with the value of k being 1. In this case, LFH 72 

features yield the best overall accuracy, but for the test images oriented at 0°, 30°, 45° and 60°, the 

best accuracy come with LFH 64 features. LFH 72 features outperform LFH 64 features only when 

the test images are oriented at 90°. The performance of LFH 72 features is slightly better in overall 

classification, but has higher rotation invariance than LFH 64 features have. 

Table 2.7:  Overall and orientation-wise recognition results using the training window size of 71×71 pixels 

Orientation-wise Percent Accuracy 
A total of (32×16×5) 

2560 images recognized Gabor 

(k=1) 

LFH 40 

(k=1) 

LFH 64 

(k=1) 

LFH 72 

(k=1) 

0° 87.11    93.75    96.09 95.51    

30° 71.09    91.41    93.75 92.77    

45° 57.42   92.38    93.16 91.02    

60° 67.97    90.82    91.21 91.60   

O
ri

en
ta

ti
o

n
 

90° 85.94 94.73 91.80 96.29 

Overall % Accuracy 73.91 92.62 93.20 93.44 

Rotation Variance 17.03 1.75 2.05 2.51 

In table 2.8, the orientation-wise result remains the same as before, but this time LFH 64 features 

outperform LFH 72 features in the overall accuracy as well. LFH 72 features yield their best results 

with k=3, as compared to other that perform at their best with k=1. 

Table 2.8:  Overall and orientation-wise recognition results on the smaller set of test images using the training 

window size of 45×45 pixels  

Orientation-wise Percent Accuracy 
A total of (32×16×5) 

2560 images recognized Gabor 

(k=1) 

LFH 40 

(k=1) 

LFH 64 

(k=1) 

LFH 72 

(k=3) 

0° 55.08 89.26 93.16    90.23 

30° 43.16    85.74 91.02    84.96 

45° 35.35    83.79 88.09    84.38 

60° 40.43    83.79 86.33    85.55 

O
ri

en
ta

ti
o

n
 

90° 53.13 90.04 87.50 91.02 

Overall % Accuracy 45.43 86.52 89.22 87.23 

Rotation Variance 18.55 3.44 3.14 3.60 



53 

In table 2.9, LFH 64 features outperform all others. The best results come with k=10. Once again, 

LFH 72 features outperform LFH 64 features when the test images are oriented at 90°. The 

difference in overall accuracies of the two is not very big but LFH 64 features have considerably 

lower rotation variance than LFH 72 features have. 

Table 2.9:  Overall and orientation-wise recognition results using the training window size of 27×27 pixels 

Orientation-wise Percent Accuracy 
A total of (32×16×5) 

2560 images recognized Gabor 

(k=25) 

LFH 40 

(k= 10) 

LFH 64 

(k=10) 

LFH 72 

(k=3) 

0° 9.38 76.37   82.23   81.84 

30° 9.38 72.85  78.52   74.80 

45° 9.38 73.63  79.49    73.05 

60° 9.38 71.48    76.76   75.00 

O
ri

en
ta

ti
o

n
 

90° 9.38 74.41 74.61 83.20 

Overall % Accuracy 9.38 73.75 78.32 77.58 

Rotation Variance 0 2.47 3.66 5.93 

The results of texture recognition show that the LFH-based features have higher description 

power than the features based on Gabor filters for all the sizes of the training window. In addition, 

performance of all the texture descriptors decreases phenomenally with the decreasing size of the 

training window. However, the size of training window affects the performance of Gabor-based 

features the most drastically. The Gabor features 9.375% accuracy, because they correctly 

recognise the test images belonging to only three classes, i.e. D10, D21, and D49. They recognise 

all other test images incorrectly as belonging to the class D10.  

Among the LFH-based features, LFH 64 features perform the best, but yield accuracy lower than 

that of LFH 72 features when the test image is oriented at 90°.   

2.7.1.2 Retrieval 

Following sections present the results of image retrieval using the four texture feature-sets on the 

two datasets. In these experiments, each of the training images presents itself as query, and the 

nearest neighbour classifier sorts out the closest matches among all the test images. 

2.7.1.2.1 Full set of test images  

This section presents the results of retrieval on the full set of test images consisting of 107 classes. 

The graph of figure 2.10 illustrates the results of retrieval obtained with the four feature sets, while 

using the training-window size of 71×71 pixels.  

The results reveal that for a given value of precision, the LFH-based features provide higher 

recall than the features based on Gabor filters do. The Gabor features perform far below the LFH-

based features. Similarly, for a given value of recall, LFH features attain higher precision than 

others do. Among the LFH-base feature-sets, LFH 64 feature-set outperforms the two others and 
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always remains on the upper-right side of the curves representing other feature-sets. Similarly, 

figure 2.11 presents the results of retrieval while using the training-window of 45×45 pixels. All 

the features perform worse than while using the larger training window. However, the performance 

of LFH-based feature-sets is affected much less severely than that of the Gabor-based features.  

 
Figure 2.10:  Performance of texture features while retrieving the images from the database comprising 107 

classes and 8560 test-images using the classifier trained with window size of 71×71 pixels 

  
Figure 2.11:  Performance of texture features while retrieving the images from the database comprising 107 

classes and 8560 test-images using the classifier trained with window size of 45×45 pixels 

Figure 2.12 shows the retrieval results while using the smallest size of the training-window. In 

this case, LFH 64 features have the clear edge over all others. However, LFH 72 features seem 

slightly better than LFH 40 features. The features based on Gabor filters perform the worst. Its 

curve appears at the bottom-left corner of the plot. 
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Figure 2.12:  Performance of texture features while retrieving the images from the database comprising 107 

classes and 8560 test-images using the classifier trained with window size of 27×27 pixels 

2.7.1.2.2 Subset of test images 

Figure 2.13 through figure 2.15 show the retrieval results with the subset of test images 

(comprising 32 classes), using the window size of 71×71 pixels, 45×45 pixels, and 27×27 pixels 

respectively. The results show that the overall performance becomes worse with the decreasing size 

of the training window size. One can also conclude that the features based on Gabor filters perform 

much poorly as compared to the performance of LFH-based texture features.  

 
Figure 2.13:  Retrieval results on the subset of 32 test images using the training window of 71×71 pixels 
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Figure 2.14:  Retrieval results on the subset with 32 test images using the training-window of 45×45 pixels 

 
Figure 2.15:  The retrieval results on the subset of 32 test-images using the training-window of 27×27 pixels 

The results show that the smallest training window gives the worst precision and recall. 

However, the LFH 64 features consistently prove the best among all and the Gabor-based features 

consistently prove the worst among all. In case of the smallest training window, the features based 

on Gabor filters simply fail to perform at all. 

2.7.2 The test images with Gaussian white noise 

Since the remote sensing images contain Gaussian white noise, this section presents results on the 

images contaminated with the Gaussian noise. As will be observed in chapter 4, the texture-based 

classification of the remote-sensing image under process cannot use the training window sizes 

larger than 27×27 pixels. Therefore, following sections present the results with the smallest training 
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window size, i.e. 27×27 pixels only. With this size of the training window, texture features based 

on Gabor filters failed in the noiseless conditions. Even the results on the images without noise 

with the Gabor features are worse than the results of the LFH-based features in the noisy 

conditions. Therefore, following experiments do not consider the texture features from Gabor 

filters any more.  

2.7.2.1 Recognition 

Table 2.10 shows the recognition results. In the noisy conditions as well, the LFH 64 features 

perform the best among all. This time, best results are obtained with much higher values of k. LFH 

64 and LFH 72 features yield their best results with k=15, whereas LFH 40 features yield their best 

results with k=25. LFH 72 features perform the worst and LFH 64 features perform the best. 

Although LFH 72 features exhibit less rotation variance than LFH 64 features, the latter 

outperforms the former at every orientation of the test images. Contrary to the results in the 

noiseless conditions, the LFH 64 features are at their best with the test images oriented at 90°. 

Table 2.10:  Recognition results on the smaller set of test images with Gaussian noise 

Orientation-wise Percent Accuracy 
A total of (32×16×5) 

2560 images recognized LFH 40 

(k=25) 

LFH 64 

(k=15) 

LFH 72 

(k=15) 

0° 19.34 21.88 11.52    

30° 20.51 22.27 10.55    

45° 20.31 21.68 10.55   

60° 20.51 22.46 11.33 

O
ri

en
ta

ti
o

n
 

90° 19.14 24.41 10.55 

Overall % Accuracy 19.96 22.54 10.90 

Rotation Variance 3.35 4.85 4.46 

 

2.7.2.2 Retrieval 

Figure 2.16 shows the results of retrieving noisy test images when a noiseless training image 

presents itself as a query. The LFH 64 features perform the best among all. In this case, the LFH 72 

features also fail to respond in a normal fashion of the decreasing precision with the increasing 

recall; the precision remains somewhat constant for a big range of recall values. It can be seen that 

for a number of retrieved matches higher than 196, LFH 72 feature-set outperforms other LFH 

feature-sets. On the other hand, if the number of retrieved matches is less than 192, the other two 

variants of the LFH features outperform the LFH 72 feature-set.  

Since the purpose of using texture features in the research reported herein is to recognise the 

land-covers, it is the requirement is the high precision. Therefore, LHF 64 texture feature-set is the 

best among all feature-sets tested herein for the applications under consideration. 
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Figure 2.16:  The retrieval results on subset comprising 32 test images using the training window size of 

27×27 pixels 

2.8 Conclusion 

This chapter dealt with the extraction of texture features from the images containing a single 

texture and their recognition as belonging to a class or family of textures for evaluating the texture 

features. The experiments conducted in this chapter also include retrieval tests. 

The texture features based on LFH exhibit greater description power than the features based on 

Gabor filters. LFH-based features also exhibit low values for the parameter of rotation variance 

introduced herein, which verifies its better robustness against rotation as compared to the features 

based on Gabor filters. The experimental results also help conclude that among the LFH-based 

features, LFH 64 features set that we proposed in [Ursani 2008b] performs the best, but yields 

lower accuracy than that of LFH 72 when the test images are oriented at 90°. This shows that there 

is a room for improving the implementation of the LFH 64 features. 

This chapter concludes with the remark that the texture features based on LFH suit the 

application of remote sensing, since they are more objective and independent of human perception 

unlike Gabor features [Cutter 2003]. As the remote sensing images are captured using the 

electromagnetic energy visible as well as invisible to human vision system, they may contain the 

texture that are apparently similar to humans.  

[Julesz 1973] found that textures with similar 2nd order statistics appear indistinguishable to the 

human vision system. Therefore, the texture features based on grey level co-occurrence matrices 

(GLCM) features that are 2nd orders statistics, suit to the applications that aim at mimicking human 

vision. However, in the applications like remote sensing requiring more objective assessment and 
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hence higher order statistical analysis of texture, GLCM do not yield good results [Schröder 1998]. 

On the other hand, LFH-based features provide 8th order statistics of textures. As all coefficients of 

Fourier transform except the first one are invariant to the grey-level shift, the LFH-based features 

inherit the property of grey level invariance if used without the first coefficient.  

The window-size in the training phase affects the accuracy of both, recognition as well as the 

retrieval. Larger the window size, higher the performance. The features based on Gabor filters are 

impractical in training the kNN classifier with the window sizes smaller than 45×45 pixels. In the 

situations where the training samples are even smaller than 45×45 pixels, the texture features based 

on signal processing approaches become impractical. Such is the case while training the land-

covers in an RS image to the kNN classifier using texture features based on Gabor filters.  

Classifying a remote-sensing image, using these or any other features, involves the processes of 

segmentation and classification for delineating and recognising the regions of homogeneous land-

cover, the topics of the next chapter. 
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Procedures in remote sensing of environment include segmentation and classification of the RS 

images captured by the sensors aboard a distant platform like an Earth observation satellite. Image 

segmentation is a fundamental step in most of the applications of image processing by large 

[Lucchese 2001], including computer vision, apart from remote sensing. The region-based 

techniques of classifying an RS image consist of the image segmentation process before the 

classification of segments or regions takes place [Hirose 2004] [Liu 2006]. The image 

segmentation involves extraction of some image attributes, such as texture and then using a data 

clustering method. Therefore, this chapter suggests improvements in the clustering method called 

k-means, and presents results of the new algorithm called FOOS, on remote sensing images, non-

remote sensing images as well as some non-image datasets. The image characteristics used for 

image segmentation are the texture features introduced in the previous chapter.   

The following sections introduce the problem of segmentation and classification, as well as the 

techniques of unsupervised clustering and supervised classification. The subsections present k-

means clustering method and analysis of the problems associated with it and causes of its possible 

failure, before suggesting improvements. This chapter also explains the k-nearest neighbour 

classifier that produced the results presented in the previous chapter. 

3
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3.1 Segmentation and classification 

In the context of remote sensing, segmentation is the process of demarcating individual regions of 

homogenous land-cover in an RS image, whereas classification is the subsequent process of 

identifying the delineated regions as belonging to a specific land-cover.  

The segmentation may or may not be a supervised process. Depending on the application, 

different levels of supervision have been proposed. Some researchers have described their work on 

segmentation even as semi-supervised [Xia 2005] and weakly supervised [Vasconcelos 2006]. 

However, the process involves only delineating different regions that are homogeneous with regard 

to some characteristics. Therefore, in its simplest way, it consists of the feature extraction and the 

subsequent unsupervised clustering process, and does not necessarily require any prior learning. 

Since the segmentation process only requires distinguishing among the homogenous regions 

present in the image without needing to know the region- or class-specific characteristics a priori, it 

is generally an unsupervised process, more formally known as unsupervised classification, apart 

from the usual names of clustering and segmentation. In this thesis, an unsupervised classification, 

i.e. a clustering method segments the remote sensing images into the regions of homogeneous 

texture using texture features. 

In the context of remote sensing, classification is the process of land-cover mapping, i.e. 

assigning each image-region of homogeneous characteristics, called as land-cover hereafter, a 

specific class name such as water, barren land, vegetation, ice, etc. It is essentially a supervised 

process that requires knowing a priori, the characteristics of the specific land-covers to be 

recognised or identified. This needs the human-supervision and requires a method to model the a 

priori knowledge of the land-covers or classes at hand. Usually, one refers to the process of 

supervised classification simply as the classification. 

3.2 Unsupervised classification 

The clustering is a process of dividing a dataset into a number of disjoint clusters by putting the 

member data elements, hereafter called as instances, similar in some respects into a single cluster. 

Clustering methods come to use when there is no information available a priori regarding the 

dataset to be classified, like the clusters/classes themselves, their probability of occurrence, mean 

and/or variance in the feature space. These unsupervised algorithms segment the datasets without 

requiring any a priori knowledge regarding the dataset itself or the expected classes therein. These 

methods decide upon the similarity and dissimilarity among the instances of the dataset on the basis 

of some features and a distance measure in the feature space. The most common distance measure 

is Euclidean distance, a specific case of Minkowsky distance expressed in (3.1). 
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where Dij represents the distance between ith and jth instances, L is length of the feature vector, vi 

and vj are the feature vectors of the ith and the jth instace, respectively. In case of Euclidean 

distance, r equals 2. Similarly, in case of Manhattan distance, r equals 1. 

Different tradeoffs in the problem of clustering include the number of clusters, the minimum 

distance between the cluster-centres, maximum number of instances in a cluster, etc. The user must 

specify some of these parameters to initiate the execution of the clustering process. For example, 

user must specify any one of the minimum distance between the cluster-centres, the maximum 

number of instances in a cluster, or the expected number of clusters. 

Despite continued research by many researchers engaged for many long years, data clustering 

remains one of the most non-trivial and one of the most challenging tasks in the fields of data 

mining [Raymond 1994], bioinformatics [Alon 1999], and image segmentation [Shi 2000] alike. 

Many a times, the correct classification of the remote sensing (RS) images also depends on the 

correct segmentation of the image. Data mining applications also need to dig out the relevant 

information from the volumes of data that have never been as huge as today. This requires a 

clustering technique that is as quick as possible. ISODATA [Verbyla 1995], k-means [McQueen 

1967], quality threshold clustering [Heyer 1999], among others are the data clustering methods 

equally applied to image and non-image data.  

Although there are many clustering techniques, so far k-means remains the most popular among 

unsupervised techniques of data clustering due to its simplicity and faster convergence. In addition, 

k-means algorithm suits the requirements of the application dealt in this thesis. All the algorithms 

of clustering require some prior information. The k-means algorithm requires the number of 

clusters to find. Other algorithms require for example, the maximum population of a cluster, the 

minimum population of a cluster, the maximum variance of a cluster, the maximum diameter of a 

cluster in the feature space, etc. All these are dependent on the type of features and the feature 

space of the dataset, and are difficult to find. On the other hand, the number of clusters is pre-

decided in our application described later in chapter 4. Therefore, k-means becomes the most 

suitable among all other methods.  

Nevertheless, often falling into a local minimum remains a problem semper instans. This thesis 

puts insight into and analyses the problems of the k-means clustering, presents solution to the 

problem in the light of that analysis, by suggesting improved way of initialising the iterative 

process of k-means clustering. 
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3.2.1 Single-run k-means algorithm 

The k-means algorithm, also called Lloyd’s algorithm is an iterative partitioning algorithm that 

starts with a known number of disjoint clusters. In the simplest case, the algorithm chooses the 

cluster centres arbitrarily from the dataset. Afterwards, it associates each instance in the dataset to 

the cluster whose centre lies closest to the instance as explained in (3.2). 
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where Xn is the nth cluster, dj,n is the Euclidian distance of  xj from nth cluster-centre, and dj,i is the 

Euclidian distance of xj from ith cluster-centre. The first iteration ends here and before starting next 

iteration, k-means updates the cluster centres by replacing older ones with the mean of the cluster 

members in the feature space. The new cluster centres are the means vectors as in (3.3). 
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where Nk represents cardinality of kth cluster, kμr  is the centre of kth cluster, ikx ,

r
 is the feature 

vector of ith instance in kth cluster, and K is the number of clusters to be found. Sometimes, 

statisticians use medians to represent the cluster-centres instead of means.  

This iterative process continues until it reaches the termination condition. The condition of 

termination may be set as no change in the old and the new cluster centres, or as not a single 

change in the cluster associations of the instances or less than 1% change in the class centres, the 

maximum number of iterations, and so on. There are several variants of k-means mainly differing 

in the way of initialisation and termination.  

3.2.1.1 Methods of initialisation 

Several methods of initialising the k-means clustering process have been proposed and been under 

use. The most simple is the McQueen’s method that initialises the initial cluster-centres with the 

samples randomly selected from the dataset under segmentation. Others are more complicated 

involving the determination of concentrations of population in the feature space. Reference 

[Lozano et al. 1999] presents a good comparison of the initialisation methods for k-means and 

discusses the problems associated with the k-means clustering. 

In addition, k-means procedure can progress in two ways, one that gives the results that are 

invariant to the instance order and other that give different results for the same dataset and 

initialisation if the instance order is changed. The k-means, more specifically k-medians invariant 

to instance order is the subject of interest herein, and the term k-means refers to k-medians 

hereafter. 
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Although the simplest, due to random initialisation, the McQueen’s k-means algorithm has a 

poor repeatability, i.e. it may result in amazingly different clusters each time it executes. Here 

comes the k-means with multiple restarts to help. 

3.2.1.2 K-means with multiple restarts 

The k-means is generally performed several times (usually hundreds of times) before choosing best 

solution among the several ones found therein. The number of solutions found is generally a 

function of cardinality of the dataset under process. The best solution is the one that minimises 

intra-cluster distance, also called total classification error, defined as 
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where K is the total number of clusters, Nk is cardinality of the kth cluster, µk is the mean feature 

vector of kth cluster, and xn is the feature vector of nth data member of a running cluster k. This 

approach, called k-means with multiple restarts, is usually successful and many professional 

computer programs such as Gene Cluster 3.0 introduced in a later section employs this method. 

However, one is never sure that the best solution found is the optimal one.  

3.2.1.3 Gene Cluster 3.0 

Gene Cluster 3.0 is a computer program [Hoon 2004] based on the original Cluster program written 

by Mike Eisen of Berkley Lab. Gene Cluster uses a variant of k-means with multiple restarts. It 

works out a maximum acceptable value of intra-cluster distance [Lozano 1999] and computes it as 

defined in (3.4) after finding every clustering solution. If the intra-cluster distance is lower than the 

maximum acceptable value, it stops finding clustering solution any further, or it continues 

otherwise until it finds the user-defined number of solutions. In the later case, it selects the solution 

with the least intra-cluster distance. 

3.2.1.4 Problems with k-means 

K-means method of clustering assumes that the desired clusters are populated in spherical Gaussian 

distributions; and that any deviation from this situation causes k-means algorithm to fall into a sub-

optimal point. [Chen 2005] is a recent work that points out three established problems/ 

disadvantages with the k-means algorithm, which many earlier works have already pointed out. 

First that it requires the number of clusters beforehand, second that it is sensitive to the outliers, 

and third that any two randomly chosen initial cluster-centres might be too close to be considered 

as centroids of two distinct clusters. Reference [Lozano 1999] notes that despite having all the 

advantages of convergence and computational simplicity, the k-means is highly sensitive to the 

choice of initial cluster-centres and may easily converge into a local optimum due to its assumption 

that the clusters it is trying to find lie in a spherical Gaussian distribution. Fusion of over-
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segmentations (FOOS) [Ursani 2007] is one of the possible solutions to these problems. Following 

sections present the method called FOOS and the theory behind its conception.  

3.2.2 Notion behind FOOS 

Let us have deeper look at into and analyse the three problems of k-means pointed out by [Chen 

2005] and others. Requiring the number of clusters beforehand is not always a problem. Often, the 

user prefers to decide upon it. Even the results of manual clustering of any given dataset yield 

different outcomes since the number of clusters is almost always subjective depending on the 

required rigour of segmentation. Therefore, in many situations, the number of clusters (K) is a user-

defined parameter. It is hence rather an advantage in many situations. The random selection of a 

cluster-centre may repeat if it does not lie at a considerable distance to all other selected cluster-

centres. Rest of the problems, i.e. its assumption of spherical Gaussian distribution, sensitivity to 

outliers, and dependence on the initial cluster-centres, all are inter-related. Keeping in view the 

determination of the number of clusters using Gaussian separation in [Chang 2002], one can 

summarize these problems into a single problem statement as follows: 

A given dataset usually has a different number of clusters from the Gaussian analysis [Chang et 

al. 2002] viewpoint than the number of clusters determined by the application, the requirement, 

and/or the subjective assessment. This disagreement makes distributions of the desired clusters 

look non-Gaussian and some of their members as outliers to the k-means algorithm, making it 

sensitive to the choice of initial cluster-centres. 

The problem of so-called outliers is the same problem of non-Gaussian distribution in the 

different words. For a given dataset, segmenting into a larger number of clusters relieves the 

problem of outliers or that of skewness in the cluster distributions; since more and smaller/finer 

Gaussian classes can more closely approximate non-Gaussian distributions. [Steinwolf 1993, 1996, 

2006] explain how piecewise Gaussian distributions approximate a non-Gaussian distribution. 

Therefore, following section proposes over-segmentation as a computationally simple way of 

resolving the problem of non-Gaussian cluster distributions. 

The poor repeatability of k-means results because all the dataset is open for random selection of 

the initial cluster-centres. K-means generally succeeds in reaching the optimal solution, with the 

exception of failure caused by the selection of an outlier as one of the K initial cluster-centres. A 

possible solution of the poor repeatability can be determining two over-segmentations and fusing 

the clusters from the two clustering solutions to determine the K initial cluster centres for 

performing the third and the decisive k-means clustering. Over-segmenting the dataset keeps the 

outliers in separate but insignificantly smaller Gaussian clusters away from the random selection of 

the K initial cluster-centres and the process of fusion makes the choice of initial cluster-centres 
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stable, i.e. repeatable. Consequently, one reaches to the optimal or a near-optimal solution with a 

high repeatability. 

3.2.3 Fusion of over-segmentations (FOOS) 

FOOS is a means of finding the initial means that, unlike other initialisations methods, leads to the 

optimal or a near-optimal solution even if the desired clusters do not lie in the spherical Gaussian 

distribution. FOOS performs the k-means procedure only 3 times: it initialises 3rd and the last run 

of k-means with the cluster-centres found from the two preceding runs of the algorithm. The 

algorithm suggests finding out two over-segmentations and then performing a kind of fusion of the 

clusters found therein. Refer figure 3.1. 

3.2.3.1 Over-segmentations 

The first step is to over-segment the dataset into P and Q clusters, respectively, using the Mac 

Queen k-means algorithm, where K is the desired number of clusters, P>K and Q=P+1. The initial 

cluster-centres come from the successively randomly sub-sampled dataset, assuring a minimum 

distance between any two randomly selected initial cluster-centres. The condition of terminating 

the iterative process of the k-means algorithm is the sum of distance between present and previous 

cluster-centres to be less than the preset minimum value (0.01 in this study). This termination 

condition seems working well in all the experiments presented herein. The two over-segmentations 

then fuse, as described in the next sub-section, to determine good initial cluster-centres to perform 

the same process of k-means clustering for the third and the last time. 

 

Figure 3.1: The fusion of over-segmentations 
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Least possible over-segmentation is suggested for the datasets with K≤5. In this case, P=K+1. 

For the datasets having more classes, i.e. K>5, the least possible over-segmentation doesn’t seem to 

be the best solution, as shown in the results in section 3.2.5.2.2. In case where K≤5, FOOS 

performs least possible over-segmentation leading to P=K+1, and Q=K+2. In case when K=5, P 

becomes 6 and Q becomes 7; i.e. two more on five or 40% over-segmentation. If this idea of 40% 

over-segmentation extends to a dataset with K=10, the two proposed over-segmentations become 

P=13 and Q=14.  

3.2.3.2 Fusion 

The process of fusion determines the P×Q clusters of instances, which are in fact the sets of 

common instances. New K initial cluster-centres for clustering the dataset into K segments come 

from the medians of the largest sets of the common instances. In this way, FOOS rejects the 

smallest sets, selecting only the K largest clusters among P×Q sets of common data points, i.e. Zp,q. 

FOOS algorithm then computes the corresponding K medians from them to be considered as initial 

cluster-centres to perform the following and decisive iterative process of k-means over the dataset 

as in (3.2). Equations (3.5) and (3.6) explain the process of fusion. 
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where P=K+1, Q=K+2, I is the set of all the instances in the dataset, Xp is one of the P clusters 

found in the first over-segmentation and Yq is one of the Q clusters found in the 2nd over-

segmentation. 

 qpqp YXZqp ∩=∃∀ ,,, , (3.6) 

where 1≤p≤P  and 1≤q ≤Q. FOOS uses medians of the K largest sets among Zp,q sets as the initial 

cluster-centres for the third and the last run of k-means.  

As an example, figure 3.2(a) shows a synthetic image with 256×256 pixels having four (K=4) 

textures, D92, D55, D4, and D21 from the Brodatz album. Figure 3.2(b) shows its over-

segmentation into five (P=5) clusters and figure 3.2(c) shows its over-segmentation into six (Q=6) 

clusters. Pixels in white and three grey levels of figure 3.2(d) show the four (K=4) largest sets of 

common members, whereas the pixels in black form the smaller sets of common members among 

the P-cluster and Q-cluster over-segmentations.  



69 

 
Figure 3.2: (a) The image with four textures from Brodatz collection, Segmentation into (b) 5 clusters (c) 6 

clusters (d) The 4 largest classes of common member pixels 

To segment the shown image into four clusters, the four initial cluster-centres come from the four 

largest sets of common members. Table 3.1 shows the statistics of the P×Q sets, i.e. 30 sets of 

common members. The numbers in bold indicate the largest sets of common members. The largest 

one is the intersection of class 3 from P-cluster segmentation and class 4 from Q-cluster 

segmentation. 

Table 3.1: Statistics of the clusters formed after over-segmentation of the image in 5 clusters (left column) 

and 6 clusters (top row).  The other cells in the table show the number of common pixels (Npq) found in the 2 

over-segmentation, with the highest 4 numbers in bold 

Segmentation into Q (k+2) 6 clusters 

Class # q 1 2 3 4 5 6 

qY  7395 11245 3656 16388 14075 12777  

p 

pX         

1 3660 13 0 3647 0 0 0 

2 16710 2598 96 0 52 13964 0 

3 16405 38 10 0 16324 33 0 

4 15975 4746 11135 5 12 77 0 

Segmentation 

Into P 

(k+1) 

5 

clusters 
5 12786 0 4 4 0 1 12777 

 

3.2.4 Computational complexity 

The computational complexity of k-means happens to be 

 )( KtNOC kmeans = , (3.7) 

(a) (b)

(c) (d)
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where K represents the number of clusters to be found, t is the number of iterations performed, and 

N is the cardinality of the dataset to be clustered. [Eduardo 2005] argues that since {K, t}<<N, the 

computational complexity in (3.7) can be approximated by 

 )( NOC kmeans = . (3.8) 

Since FOOS is equivalent to three successive executions of k-means to perform clustering into 

K+1, K+2, and K clusters respectively, its computational complexity becomes  

 )))2()1((( tNKKKOC FOOS ++++=  (3.9) 

and considering that 3Kt<<N, approximates to 

 )()3( NOKtNOC FOOS ≈≅ , (3.10) 

which tells that the computational complexity of the two methods happens to be the same. 

Computationally, FOOS takes fewer iterations than 3 times those taken by a single run of k-means, 

ensuring that it is almost never more expensive than three runs of k-means. 

One finds that the contemporary methods devised for clustering problem have much higher 

computational complexity. For example, (3.11) estimates the computational complexity of the 

global k-means [Likas 2003] that suggests clustering the dataset into from 1 to N clusters. 

 )(
1

∑=
= N

k
gkm KtNOC  (3.11) 

When K approaches N, (3.12) approximates the computational complexity for a single iteration, 

and predicts the curse of cardinality. Moreover, for a number of classes/clusters that is close to 

reality, the k-means converges quickly. On the other hand if executed to workout incorrect number 

of clusters (much higher than the actual number of classes), it becomes less probable and more 

difficult for k-means to converge that usually requires unusually higher number of iterations.  

 )( 2NOC gkm ≅  as Nk →  (3.12) 

The conventional k-means with multiple restarts too is obviously computationally more 

demanding than FOOS, because the number of trials is known, i.e. only three, in case of the later, 

whereas it is a function of cardinality in case of the former. 

3.2.5 Comparison 

Following sections present the results of segmenting various image and non-image datasets. All the 

three methods, the single-run k-means implemented in the author-written matlab® program, k-

means with multiple restarts implemented in Gene Cluster, and FOOS segment the datasets. In the 

following sections, unless specified otherwise, the three algorithms segment the images in the 

feature space of texture signatures from 30 Gabor filters [Manjunath 1996].  
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3.2.5.1 Synthetic texture images 

Since it is easy to numerically evaluate the results of segmenting the synthetic images, table 3.2 

shows seven results on the collages of texture images from Brodatz album. Each collage contains 

four textures and has the size of 256×256 pixels. The three clustering algorithms segment the 

images into four clusters. Figure 3.3 shows the first one of these collages; along with the 

segmentation-results obtained using a single-run of k-means algorithm, the Gene Cluster, and the 

FOOS. In case of Gene Cluster, apart from accuracy, the table also lists the number of times it finds 

the clustering solution before reaching an acceptable solution.  

The overall accuracy averaged over the seven results show that the FOOS outperforms both, the 

single-run k-means and the Gene Clusters that takes on 172 runs on the average against 3 runs of 

the FOOS.  

 

Figure 3.3: (a) The image with 4 textures from Brodatz collection, (b) its ideal segmentation, segmentation 

result with (c) k-means, (d) Gene Cluster, (e) FOOS algorithm 

(a) (b)

(c) (d)

(e) 
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Table 3.2: The list and details of the images with a collage of four Brodatz textures each: The last column 

shows how many times the Gene Cluster found clusters using k-means.   

Segmentation Accuracy 

Gene Cluster 3.0 S. No. 

Textures Selected 

(From top left to bottom 

right) K-Means 
FOOS 

(3 runs of k-means) Accuracy 
No. of 

Runs 

1 D73, D34, D57, D29 69.5% 88.8% 69.2% 274 

2 D4, D55, D9, D21 67.6% 97.0% 96.9% 178 

3 D24, D84, D4, D21 67.8% 95.4% 95.4% 453 

4 D92, D55, D4, D21 67.5% 81.1% 67.2% 029 

5 D3, D22, D112, D80 60.4% 91.5% 91.4% 192 

6 D54, D84, D57, D100 52.3% 69.8% 69.5% 028 

7 D73, D37, D57, D29 55.0% 73.2% 55.0% 050 

Overall Average Accuracy 62.8% 85.3% 77.8% 172 

 

3.2.5.1.1 Natural digital photos 

Apart from the synthetic images, here are the results on natural photos to allow subjective 

assessment of the clustering algorithms. The natural photos come from two online image databases, 

i.e. Berkley Segmentation Database12 (BSD) [Martin 2001] and the Defence Image Database13. The 

author sought the required prior explicit permission of publishing the images from the intellectual 

property rights section of Defence Image Database. Refer appendix A. 

All the images from BSD measure 481×321 pixels. These images come with segregation by more 

than one human subjects, thereby called users. These segmentations by human subjects help 

compare the results from the three clustering methods. 

                                                      

12 Source: http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/  
13 Photograph by: ………; © Crown Copyright/MOD, image from www.photos.mod.uk. 

Reproduced with the permission of the Controller of Her Majesty’s Stationery Office 
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Figure 3.4: (a) A natural photo of leopard from BSD, its segmentation by (b) a human subject, (c) k-

means, (d) Gene Cluster, (e) FOOS 

Figure 3.4(a) shows a photo of leopard from BSD. Figure 3.4(b) shows its segmentation by a 

human subject (user# 1124), outlining the leopard. K-means, Gene Cluster, and FOOS go for 

finding two clusters from the 30 filter outputs with the aim of delineating the leopard from the rest 

of the image. Figure 3.4(c) and figure 3.4(d) show that k-means and Gene Cluster fail in 

accomplishing the task, whereas FOOS succeeds to a high extent. 

Figure 3.5(a) shows another natural photo from the same database (BSD). As shown, the image 

apparently has three textures, 1st one that of the grass, 2nd one that of the zebras, and 3rd in the rest 

of the image, mainly the non-grass background. Figure 3.5(b) illustrates its segmentation (into 36 

segments) by a human subject (user #1107) as given in the BSD benchmark, clearly outlining the 

zebras, the grass, and rest of the image (the non-grass background). It should be noted however that 

the segmentation by human subjects or otherwise provided at BSD website are with regard to the 

edge detection only, and not with regard to the texture.  

(d)(c) 

(a)

(e) 

(b)
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Figure 3.5: (a) The zebra image from BSD, its segmentation (b) as provided by BSD, (c) with k-means, (d) 

with Gene Cluster, (e) with FOOS 

Figure 3.5(c) and 3.5(d) show the result obtained with k-means and Gene Cluster, respectively, 

with the outline of figure 3.5(b) overlaid on them. Figure 3.5(e) shows the result obtained with 

FOOS. The Gene Cluster performed 472 k-means processes and took hours to complete. The 

FOOS seems to have outperformed the other two methods by successfully separating the zebras, 

the grass, and the non-grass background. Having no texture, the mouths and the feet of the zebras 

also appear different from the zebra skin. The remaining misclassifications apparently point out the 

reduced discrimination ability of the extracted features. On the other hand, the k-means and Gene 

Cluster fail in distinguishing between the grass and the non-grass background, forcefully creating a 

class within the zebra texture and classifying legs as different from zebra’s main body. The k-

means and Gene Cluster also misclassify the non-occluded part of the otherwise occluded zebra’s 

back.  

Table 3.3 shows the results on ten more images from Berkley segmentation database. The first 

column of the table indicates the number of clusters found in the corresponding image. 

(a) (b)

(c) (d)

(e) 
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Table 3.3: Ten more segmentation results on the images from Berkley segmentation database 

NO

C 
Image 58060 Ideal Segmentation 

  

K-means Gene Cluster (45 runs) FOOS 
3 

   

Image 134008 Ideal Segmentation 

  

K-means Gene Cluster (20 runs) FOOS 

2 

   

Image 253027 Ideal Segmentation 

  

K-means Gene Cluster (49 runs) FOOS 

2 
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Image 326038 Ideal Segmentation 

  

K-means Gene Cluster (100 runs) FOOS 

2 

   

Image 66075 Ideal Segmentation 

  

K-means Gene Cluster (50 runs) FOOS 
2 

   

Image 12003 Ideal Segmentation 

  

K-means Gene Cluster (1 run) FOOS 

2 
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Image 196073 Ideal Segmentation 

  
K-means Gene Cluster (39 runs) FOOS 

 

2 

   
Image 277095 Ideal Segmentation 

  
K-means Gene Cluster (13 runs) FOOS 

2 

   

Image  198054 Ideal Segmentation 

  

K-means Gene Cluster (50 runs) FOOS 

2 
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Image 198023 Ideal Segmentation 

  

K-means Gene Cluster (45 runs) FOOS 

3 

   

In case of image 58060, image 134008, image 253027, image 326038, image 66075, and image 

12003, FOOS clearly outperforms single-run k-means and Gene Cluster. In the first one, only 

FOOS succeeds in separating the grain from the background. In the second one, only FOOS 

succeeds in delineating the leopard from the background. In the third one, only FOOS succeeds in 

outlining the cat from the background. In the fourth image again, only FOOS succeeds in 

demarcating the bird from the background. In case of image 196073, FOOS performs equally well 

as single-run k-means but Gene Cluster fails miserably. Interpretation of the results for images 

198054, 277095, and 198023 depends on the subjective assessment. 

Table 3.4 shows the results on nine images from the Defence image database. These images have 

varying sizes. Therefore, all the images are resized/re-sampled to 321×481 pixels. The images were 

also converted to grey-scale images before extracting the texture features. The first column of table 

3.4 indicates the number of clusters found and in the braces, the number of runs Gene Cluster goes 

for. The Defence image database did not grant us the permission to reproduce the third image; 

therefore, the table lists its reference number instead. Refer appendix A on page 113. 

For the first three images, all the three methods yield the same outcome. However, Gene Cluster 

took 42 iterations before arriving to the clustering solution of the first image, whereas FOOS 

assures the solution always in only three runs of k-means. Interpretation of results of the next four 

images depends on the subjective assessment and/or application. In the third image from the 

bottom, FOOS fails in discriminating the trees from the hills, whereas the single-run k-means and 

Gene Cluster succeed in doing so. On the contrary, FOOS succeeds in separating two cyclists from 

the background, whereas the single-run k-means and the Gene cluster fail to do so. The results of 

the last two images demonstrate that the FOOS clearly outperforms the single-run k-means and the 
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Gene Cluster. In case of the last image, even the clustering solution of single-run k-means is better 

than that of the Gene Cluster. 

Table 3.4: The segmentation results on five images from Defence Image database 

NO

C 
Image K-means Gene Cluster FOOS 

2 

(42

) 

 

2 

(2) 

 

3 

(5) 
45147231 

   

2 

(5) 

 

3 

(30

) 

 

3 

(1) 

 

3 

(4) 

 

2 

(28

) 

 

2 

(22

) 
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3.2.5.1.2 The remote-sensing images 

Here are some results on the remote sensing (RS) image acquired from the QuickBird satellite 

having the ground resolution of 70 cm per pixel. Chapter 4 gives more details on this RS image. 

Gabor filter-based texture features used here come from the same filters except the change of filter 

size that is 15×15 pixels instead of 31×31 pixels. This is because of the small size of the individual 

regions of the homogeneous texture in the RS image. The three clustering algorithms, i.e. single-

run k-means, Gene Cluster, and FOOS now cluster different regions cropped into sub-images 

measuring 256×256 pixels and having different number of classes.  

Figure 3.6 (a) shows a sub-image from the RS image, and figure 3.6(b) shows its ground truth. 

It comprises three land-covers, namely, truck crops, wine, and old orchards. The ground truth also 

shows the uncultivated parts on the frontiers between any two land-covers.  

 
Figure 3.6: The results of segmenting (a) remote sensing image with (b) ground truth into 3 classes using (c) k-means (d) 

Gene Cluster, (e) FOOS, and into 4 classes using (f) k-means (g) Gene Cluster, (h) FOOS 

Since the ground truth has three classes, the single run k-means algorithm, the Gene Cluster, and 

the FOOS segment this image in three clusters. As can be seen, apart from some misclassifications 

around the borders, more or less all the algorithms perform the same. However, result from FOOS 

appears a little better, since it has more errors only on the border between the two land-covers on 

the right, but has fewer errors in the regions of homogeneous land-covers. In case the user is not 

sure about the exact number of the clusters, and he segments into four clusters, even then the Gene 

Cluster and the FOOS find a meaningful segmentation, with the uncultivated borders between the 

land-covers as the fourth cluster. On the other hand, single run k-means fails to do so. Gene Cluster 

performs the k-means for five times. 

(a) (b)

(e)(d)(c) 

(f) (g) (h)
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Figure 3.7 shows another sub-image from the same remote sensing image. It comprises three 

land-covers, namely young orchards in the top-right, wine in the bottom-left and old orchards, but 

the image has two possible ground truths. In the first one, shown in figure 3.7(b), there is a single 

class of old orchards in the top-left and the bottom-right corners. However, in the second possible 

ground truth, shown in figure 3.7(c), the class of old orchards divides into two. The ones on the 

bottom-right have grassy ground and the ones on the top-left corner have the bare ground, hence 

the second ground truth has four classes instead of three. The two parts of the old orchards are also 

different in terms of vegetation density and the size of the trees. The middle row of figure 3.7 

shows the segmentation into three classes, whereas the bottom row of figure 3.7 shows the 

segmentation results into four classes.  

 
Figure 3.7: (a) an RS image (b) ground truth with 3 land-covers, (c) ground truth with 4 land-covers, 

segmentation into 3 clusters using (d) k-means (e) Gene Cluster, (f) FOOS, segmentation into 4 

clusters using (g) k-means, (h) Gene Cluster, (i) FOOS 

In case of three classes, k-means fails in discriminating between the old orchards and the young 

orchards as can be seen in figure 3.7(d), and achieves only 70.6% accuracy. On the other hand, 

FOOS achieves 97.1% accuracy. Gene Cluster also performed marginally worse than the FOOS, 

achieving 97.0% accuracy after 446 runs of k-means. 

In the case of four classes, the k-means once again fails in discriminating the young orchards 

from old ones and achieves on 52% accuracy. On the other hand, FOOS not only successfully 

discriminates between the old and the young orchards but also between the two kinds of the old 

orchards as well, thereby achieving 85.0% accuracy. Refer figure 3.7(i). The result of Gene Cluster, 

shown in figure 3.7(h) is slightly worse than FOOS, achieving 84.7% accuracy after 366 runs of k-

(a) (b) (c) 

(d) (e) (f)

(g) (h) (i)
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means. In this example, k-means (single run) took 43 iterations, whereas FOOS took 93 iterations, 

i.e. much less than three times those of single-run k-means. 

3.2.5.2 Non-image datasets 

Following are the results on two datasets from UCI machine learning repository14 [Murphy 1994]. 

As seen in the results on the image data, the single-run k-means may result in a very good or a very 

bad clustering solution depending on its random initialisation. Hence, following results no more 

consider the single-run k-means. 

3.2.5.2.1 A dataset with 2 classes 

This is a dataset of human body dimensions, whose original source is [Heinz 2003]. The dataset 

includes 507 observations of 21 body dimensions as well as age, weight, height, and sex. The 

subjects include 247 male and 260 female individuals. The feature of sex was removed from this 

dataset. Further, all the feature values were rescaled from -250 to 250 to ensure that all the feature 

values receive the equal weight in the distance measurement. The dataset was segmented into 2 

clusters corresponding to the 2 sexes. Evaluation phase uses the removed column of sex as the 

ground truth. The results from Gene Cluster and FOOS are exactly the same, i.e. 87.4%, with 443 

instances classified correctly. Very small number of classes makes the task quite easy; therefore, 

results ought to be the same. However, Gene Cluster performed 9216 runs of the k-means before 

reaching the solution, against three runs by FOOS.  

3.2.5.2.2 A dataset with 10 classes 

Originally, E. Alpaydin and C. Kayna provided this dataset. The dataset contains 2000 instances 

corresponding to hand-written digits “0” to “9”. The class distribution is uniform, viz. 200 

instances of each class. The number of dimensions is 649. Gene Cluster stopped after performing 

just a single run of k-means, and as suggested, it was therefore run repeatedly four times. Each 

time, it stopped after performing a single run of k-means, yielding accuracies of 80.45%, 80.15%, 

80.55%, and 80.60%, respectively. FOOS ran four times, each time with a different value of Q, as 

illustrated in table 3. 

Table 3.5: FOOS Results with different over-segmentations 

P Q Over-segmentation Accuracy 

11 12 20% 75.95% 

12 13 30% 83.15% 

13 14 40% 91.70% 

14 15 50% 91.15% 

                                                      

14 http://mlearn.ics.uci.edu/MLSummary.html  
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The last three results, i.e. corresponding to 30-50% over-segmentations are better than that of 

Gene Cluster. The best result is the one corresponding to 40% over-segmentation, with an accuracy 

of 91.7%, i.e. 11% more than that of Gene Cluster.   

[Breukelen 1998] reports that using neural network classifiers (NNC), even the learning error 

was not less than 10%, which corresponds to accuracies of below 90%! It further states that the 

combined NNC failed in distinguishing between class “6” and class “9”. The clusters resulting 

from FOOS show that class “6” is well separated from class “9” with not a single member of class 

“6” classified as belonging to class “9” or vice versa; though both the clusters, i.e. cluster “6” and 

cluster “9”, have some 10% misclassifications. 

3.3 Supervised classification 

The process of supervised classification has two major phases. The first one is training, in which 

one collects and organises the a priori knowledge of the classes to be identified; and the second 

one, in which the classifier uses that a priori knowledge to classify an instance as belonging to a 

specific class. The maximum likelihood, naïve Bayes, neural networks, and the nearest neighbour 

are among the most famous methods of supervised classification. Among these, the nearest 

neighbour classification is the simplest, and is used herein. The following sections explain the 

nearest neighbour classification and its variants. 

3.3.1 The nearest neighbour classification 

The NN classifiers are an example of instance-based learning [Kotsiantis 2007]. Unlike simple 

nearest-to-mean classification, an NN classifier keeps several representative samples from each 

class and the NN classification process compares each of the queries with every representative of 

all the classes. Depending on the application and nature of data, the number of samples 

representing a class may vary from class to class or all the classes may have equal representation. 

In case a class has much more variance in the feature space than the others, the NN classifier may 

choose to represent the class with more representatives than it chooses for the rest of the classes. 

Similarly, if a class has much less variance in the feature space than the others, it may get smaller 

representation accordingly. 

The training phase of nearest neighbour classification consists only of building a lookup table 

that lists the instances from training data and their corresponding classes. In the 

testing/classification phase, for each query, similarity is determined with every entry in the lookup 

table resulting from the training phase. The class corresponding to the nearest entry from the 

lookup table is assigned to the query. Since the similarity of query must be measured with all the 

entries in the lookup table, the time classification takes is a function of the size of the lookup table. 
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The nearest neighbour classification is in fact a specific case of the k nearest neighbour (kNN) 

classification, in which k equals 1. 

3.3.2 K nearest neighbours classification 

Under this scheme of classification, from the lookup table of S entries, k nearest matches instead of 

one, are selected to decide upon the class of the query, where k>2 and k<<S. When k=1, it becomes 

the nearest neighbour classification as discussed above. The simplest way to classify the query is 

the voting, i.e., to assign the class most frequent in the k nearest neighbours to the query. However, 

this causes undue favour to the most populous class in the lookup table that might be containing 

uneven number of instances for different classes. To alleviate this problem, each occurrence of a 

class among k neighbours is weighted by its corresponding degree of similarity. Hence, the 

similarity values of the closest neighbours belonging to a class simply add up and the classifier 

assigns the class with highest similarity value to the query. 

3.3.3 Similarity criterion 

Normally, the k-nearest neighbours (kNN) classification method uses the inverse Euclidean 

distance as the most common criterion of similarity. Inverse of Manhattan, Chebyshev, Camberra, 

distances are also used apart from Kendall’s Rank Correlation and variations of the Minkowsky 

distance as noted by [Kotsiantis 2007]. However, repeated experiments with the LFH-based 

features show that the best accuracies result while using the similarity measure of the cross-

correlation as follows:  
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where x represents the feature vector of the instance to be classified, y represents the feature vector 

of the median of a cluster, ρxy represents the coefficient of cross correlation between x and y, σ 

represents standard deviation, µ represents the mean or the expected value, and L represents the 

length of the feature vector. 

3.3.4 Editing the lookup table 

It is known that the kNN classifier performs very close to much more sophisticated classifiers such 

as Naïve Bayes’ classifier. To keep the classification time to acceptable limits, the training data is 

either minimised or the larger lookup table from full-length training set is edited. The process of 

editing selects only those points in the feature space that are crucial in decision making, i.e. which 

define the very frontiers between the classes. If the total number of classes is quite limited and the 

lookup table is reasonably large, the process of editing is skipped. However, it is usually preferable 

to have larger amount of data to train the classifier and then to have a smaller lookup table after 
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editing. The most popular method of editing the kNN classifier is the Voronoi diagram [Inaba 

1994]. However, [Belongie 2002] proposed using k-medoid, a variant of k-means clustering for 

editing the lookup table of the nearest neighbour classifiers. Texture recognition and retrieval 

experiments with the dataset made from Brodatz album presented in chapter 2 use FOOS clustering 

for editing the lookup table of the kNN classifier. However, instead of using the usual similarity 

criterion of inverse Euclidian distance, it uses the similarity criterion based on cross correlation 

coefficient, as explained in the previous section. The experiments of kNN classification in chapter 

2 use 100 training points per class and 10 centroids per class after editing with FOOS, whereas 

k=1. 

3.4 Conclusion 

This chapter studied the methods of supervised and unsupervised classifications of images with the 

texture signatures. The supervised classification comes to the use when the goal is to look for the 

known classes. In this case, the classifier needs training of the known classes before it can 

recognise the same classes as they appear in an image earlier unseen by the classifier. On the other 

hand, unsupervised classification is only a process of clustering an image in a given number of 

segments. In this case, the classifier does not know either the classes or the number of classes 

beforehand. The classifier goes for finding an approximate number of classes, generally bigger than 

the actual number of classes, in the image. The result is a number of clusters that comprise the 

pixels with similar characteristics.  

This chapter also introduced an improved method of k-clustering, called FOOS. In most of the 

cases, FOOS outperforms the single-run McQueen k-means algorithm and the k-means with 

multiple restarts implemented in the computer program called Gene Cluster. It is also noticeable 

that while segmenting some of the natural digital photos, even the single-run McQueen k-means 

clustering implemented by the author performed as good as or outperformed Gene Cluster in 

clustering the natural images. This shows that either the maximum allowable intra-cluster distance 

worked out by Gene Cluster is over-estimated or the criterion of intra-cluster distance, also called 

Classification Error does not necessarily lead to the optimal solution. However, the unsupervised 

classification does not resolve the class identification of the clusters. Moreover, any two clusters 

might belong to the same class/land-cover type. Usually, the most interesting information in the 

unsupervised classification is the class delineation.  

The succeeding chapter applies these methods of supervised and unsupervised classifications on 

the remote sensing images and merges the two outputs to obtain the land-cover classification that is 

much more accurate than the one obtained from supervised classification alone. 
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Today, the remote sensing experts believe that no single source of information is sufficient for 

recognition of land-covers in a remote sensing image. This has made researchers propose different 

ways of fusing multiple sources of information on land-cover, such as spectral information and the 

textural information. Therefore, this chapter is about the fusion of spectral and textural information 

for land-cover mapping. The chapter presents results of land-cover mapping in a very high-

resolution satellite-borne RS image using the methods of segmentation and classification presented 

in the preceding chapters. Spectral signatures from the vegetation indices drive the process of 

segmentation, whereas the texture signatures drive the process of classification. Finally, the chapter 

presents a novel way of fusing the two different pieces of information resulting from image 

classification and image segmentation, respectively. 

The following sections describe the source RS images and the eight land-covers found therein. 

The succeeding sections explain the process of image segmentation, block-wise classification of 

4
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image, and the method of fusing the segmentation and the classification results. The last sections of 

the chapter propose some future work for further improving the results before concluding the 

chapter.  

4.1 The source RS images 

The land-cover maps presented herein result from the fusion of information extracted from a 

panchromatic image and a three-band multi-spectral (MS) image remotely sensed by the sensor on 

board QuickBird satellite captured simultaneously in July 2006 over the region near Nîmes in 

France. The geographical coordinates of the top-left, i.e. NW corner of the image are 4° 24’ 

44.687’’ E (longitude), and 43° 42’ 33.22’’ N (latitude); or Universal Transverse Mercator (UTM) 

coordinates: 613790.8/4840547.6. The coordinates of the centre of the imaged area are 

approximately 4° 25’ E and 43° 42’ N. The images have the radiometric resolution of 8 bits, and 

have been radiometrically corrected as per coefficients of the calibration provided in the metadata 

accompanying the images, but no orthorectification has been carried out on the images. 

Mrs. Camille Lelong of CIRAD15 generously and graciously provided not only these RS images 

including the panchromatic and the multispectral images for this research, but also the 

corresponding ground truth collected through field survey. 

4.1.1 Panchromatic image 

The spatial resolution of the panchromatic (PAN) image is 70 cm/pixel, and has the dimensions of 

2122×2411 pixels, i.e. an area of 5116142 pixels corresponding roughly to a surface area of 2.3 

km2. However, this area includes a triangular region of no information as well. PAN image is 

source of textural information in this research work, but it has some places of saturation despite 

radiometric correction. The panchromatic image, as received in tif format after the pre-processing, 

contains only 43 grey levels. This has possibly removed the information content that could be 

useful in discrimination of the land-covers. Picture 4.1 shows the PAN image. 

4.1.2 Multi-spectral (MS) image 

The MS image has three bands including near infrared, red and green. Originally, the MS image-

bands have the spatial resolution of 2.8 meters per pixel, but the pixel-level fusion of these MS 

bands with the panchromatic image using Brovey transform [Wang 2005] brings the resolution of 

the former up to that of the later. Therefore, both of the RS images used herein have the identical 

spatial resolution of 70 cm per pixel. Picture 4.2 shows the MS image using the false colour 

composite, assigning NIR, red, and green bands to R, G, and B channels, respectively, of the 

                                                      

15 CIRAD – maison de télédétection – 500 Rue JF Breton Montpellier, France 
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display. Therefore, the redder parts in the MS image correspond to more densely vegetated areas 

that usually have higher spectral response to the NIR frequencies. 

 

Picture 4.1: The panchromatic remote sensing image captured by QuickBird 

 

Picture 4.2: The MS image in false colour composite 
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4.1.3 The land-covers 

The eight known classes and a non-class shown in table 4.1 cover this remotely sensed area. As can 

be seen, some classes are bigger in population than the others are, with the largest class being class 

3, the crop fields, with the total population of 1090856 pixels and the smallest class being class 6, 

the apple trees with the total population of 44194 pixels. Figure 4.1 shows the ground truth of the 

remotely sensed area of picture 4.2. The non-class covers the triangular area of no information on 

the bottom right part of the image, the civil structures like roads, chambers, and the borders 

between the regions of the eight known land-covers. The pie chart of figure 4.2 shows the 

percentile population size of each of the eight classes and the non-class. The land-cover of truck 

crops also includes the greenhouses as well. Two greenhouses are clearly visible close to the 

triangular region of no-information near the bottom right corner of image. The third greenhouse is 

situated just below the top-left corner of the image. The manmade structures in the image also 

include a principal road that passes from top to bottom of the image, and along the twin 

greenhouses, dividing it into two approximately equal parts. 

 

 

Figure 4.1:  The ground truth of the image 

 



91 

Table 4.1:  The land-covers in the source RS image 

Class 
S. No. 

English French 
Colour Population 

1 Forests Forêts Navy blue 238097 

2 Fallow Friche Blue 650099 

3 Crop fields Champ Cyan 1013992 

4 Truck crops Cultures maraîchères Green 155475 

5 Vineyards Vignes Yellow 896382 

6 Apple trees Pommiers Orange 44194 

7 Old Orchards Vieux Vergers Red 1052101 

8 Young Orchards Jeunes Vergers Brown 181810 

9 Non-class Non-classe Black 883992 

Total 5116142 

 

 

Figure 4.2:  Percentile population of the eight classes and the non-class  

4.1.4 The training regions 

With the availability of only one image containing the eight classes, there does not remain a lot to 

have separate images for training and testing. Therefore, test images and the training images come 

from the same source image. Since a given land-cover appears apparently different from one region 

of its occurrence to other, the training from one region only becomes insufficient. Therefore, the 

classifier trains; i.e. learns the eight known classes from the training regions scattered throughout 

the image, because each of the known classes varies not only in grey scale and texture, but also 

from the agricultural point of view. For example, there can be several sub-classes within the class 

of the fields. Therefore, the training regions are quite small and are selected carefully to cover 

every variation of each class. One of the training regions is as narrow as 28 pixels wide. Since the 

size of the selected training regions is quite small, the training area covers a little proportion of the 

total area of the RS image. The filled rectangles in figure 4.3 indicate the location of the training 

regions as scattered throughout the remotely sensed area. The colour of the regions represents its 

corresponding class/land-cover.  
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Figure 4.3:  The regions selected for classifier’s training (filled rectangles) and the square test regions 

(hollow squares) 

4.1.5 The test regions 

To have several results and to perform several tests on the proposed scheme of land-cover 

mapping, several sub-images have been cropped from the source RS image. Table 4.2 gives a list 

and complete details of the eight sub-images cropped from the RS image and used as test images. 

All the selected regions measure 256×256 pixels. The large squares in figure 4.3 outline the 

locations of all the test regions in the RS image. The test images have from one to four land-covers, 

and have been selected so as cover all the eight classes. Figure 4.4 through figure 4.11 show the 

eight test images, corresponding to test region 1 through test region 8, respectively, of table 4.2, 

and their corresponding ground truths.  

Table 4.2:  Description of the test regions 

Coordinates Region 

No. 
Up Down Left Right 

No. of Classes Classes 

1 84 339 1491 1746 1 3 

2 400 655 1610 1665 2 3, 5 

3 1678 1933 598 853 2 7, 8 

4 452 707 410 665 3 4, 5, 7 

5 1 256 1 256 3 3, 5, 6 

6 253 508 791 1046 3 2, 5, 7 

7 251 506 928 1183 3 2, 3, 7 

8 1018 1273 638 893 4 1, 3, 5, 7 
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Figure 4.4:  test region 1 and (b) its ground truth 

 

Figure 4.5:  (a) The test region 2 and (b) its ground truth 

 

Figure 4.6:  (a) The test region 3 and (b) its ground truth 

 

Figure 4.7:  (a) The test region 4 and (b) its ground truth 

(b)(a)

(a) (b)

(a)

(a) (b)
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Figure 4.8:  (a) The test region 5 and (b) its ground truth 

 
Figure 4.9:  (a) The test region 6 and (b) its ground truth 

 

Figure 4.10:  (a) The test region 7 and (b) its ground truth 

 
Figure 4.11:  (a) The test region 8 and (b) its ground truth 

(a) (b)

(a) (b)

(a) (b)

(a) (b)
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4.2 Segmentation 

Segmentation is the process of clustering the pixels of a test image into regions of homogeneous 

class/land-cover, whereas the number of regions can be greater than the number of classes found 

therein. The purpose of segmenting the test image is to identify major regions of homogeneous 

classes in the image so that any two regions with dissimilar land-covers become disjoint. To assure 

this, the proposed approach segments the images into a pre-decided number of clusters that is 

always more than actual number of classes. The exact number of classes, in a test image is 

unknown to the classification process, but the human expert always has an idea on what is the 

maximum possible number of classes in the area under remote sensing. The test regions selected 

herein always have four land-covers at the most; though a region of this much area may possibly 

have five land-covers at the most. Apart from this, a test region may have considerable size of the 

non-class as well. In some case, it may have two variations of a single land-cover. Therefore, all 

the experiments reported hereunder segment all the test regions into six clusters using the FOOS, 

clustering method, introduced in the preceding chapter. 

This chapter presents three ways of finding the regions of homogenous classes, i.e. using 

template matching, texture signatures, and spectral signatures. All the three methods extract the 

multivariate attributes for each pixel, which a clustering algorithm exploits to segment the test 

images. The multivariate attributes from the last two methods are quite grainy and therefore need 

smoothening by a Gaussian filter before the clustering algorithm can process them. The land-covers 

of “truck crops” has the coarsest texture with 17 pixels wide texton. Therefore, the 17×17-pixel 

Gaussian filter smoothens the multivariate data resulting from the extraction of texture signatures. 

The third method uses the spectral signatures. The varying filter-widths provide a look at the 

spectral features on different scales. The larger is the filter, coarser is this scale and more is the 

border effect in the segmentation results; and smaller the Gaussian-averaging window, finer is the 

scale and grainer is the segmentation result. The window size of 9×9 pixels proves experimentally 

an acceptable and the optimal one in this trade-off. The standard deviation of the Gaussian filter 

used is σ=x/5, where x is the filter’s width. This standard deviation is found to give the optimal 

results. 

4.2.1 Template matching 

As there are only eight possible classes known a priori in a test image, the samples from the 

training regions can serve as templates to segment a test-image. Using the correlation found 

between the test image and each of these templates, FOOS segments a test image into the required 

number of clusters. The templates are the 17×17-pixel samples of the classes. This approach uses 

two samples per class. Because there are eight classes, the total number of templates becomes 16. 

Figure 4.12(a) shows the test region 3 and figure 4.12(b) shows its segmentation into six clusters 
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using template matching. Similarly, figure 4.13(a) shows the test region 4 and figure 4.13(b) shows 

its segmentation into six clusters using template matching. It takes little longer in segmenting this 

dataset. Therefore, this proves a little more expensive than using texture features for segmenting a 

test region. Although the template matching seems to work well, it does not guarantee a reasonable 

outcome with the rotated test images or if it encounters another image captured at another date. In 

addition, it exhibits severe border effects in some cases. 

 

Figure 4.12:  (a) The test region 3, its segmentation using (b) templates, (c) texture signatures, and (d) 

spectral signatures 

 

Figure 4.13:  The test region 4, its segmentation using (b) templates, (c) texture signatures, and (d) spectral 

signatures 

(b)

(c) (d)

(a) (b)

(c) (d)

(a) 
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4.2.2 Texture signatures 

The texture signatures based on DFT [Ursani 2008b], introduced in chapter 2, can also help 

segment a test image. The magnitudes of the DFT coefficients, i.e. |X0|, |X1|, |X2|, |X3|, and |X4| and 

the two phases ∠X2 and ∠X3 of the 8-pixel sequence around each pixel in the test image result in 7 

images carrying DFT-based texture signatures. Figure 4.12(c) and figure 4.13(c) show the 

segmentation of test region 3 and test region 4, respectively, using the DFT-based texture 

signatures. It takes much less time to segment this dataset having 7 dimensions as compared to the 

time it takes to segment the 16-dimensions dataset generated using template matching. In addition, 

generating this dataset is comparatively cheaper than the template matching as well. 

4.2.3  Spectral signatures 

The vegetation indices NDVI, SAVI, MSAVI2, and NGRDI, introduced in chapter 1 are 

computed for each pixel of the test image from the NIR, R, and G bands of multi-spectral images. 

This results in four images carrying the spectral signatures. These four spectral signatures then 

segment the test image into six clusters using FOOS that takes lesser time as compared to the time 

taken in the two preceding methods. Moreover, generating this dataset is computationally the 

simplest one, since it only involves the basic arithmetic operations. Figure 4.12(d) and figure 

4.13(d) show the segmentation of test region 3 and test region 4, respectively, using the spectral 

signatures. It should be noted that it was also tried segmenting the test regions using PAN image 

and the three bands of the MS image altogether, but it did not yield acceptable results. 

Up to this point, a test image has only divided into the segments or regions. In order to have a 

complete land-cover map, it yet requires classifying each of the delineated regions as belonging to 

a specific class of a land-cover. Therefore, following sections explain the details of the 

classification process. 

4.3 Classification 

The k-nearest neighbour (kNN) classifier explained in the previous chapter assigns a specific land-

cover to each of the delineated regions in a segmented test images. To determine the class of a 

region, the classifier uses LFH 64 texture-features extracted from the PAN image [Ursani 2008b]. 

Experiments show that the LFH 64 texture features described in section 2.3 of chapter 2 perform 

best with 32 grey levels [Ursani 2008]; therefore, the PAN image quantises to 32 levels. There are 

two phases of the process of classification, i.e. the training and the testing. The following sub-

sections explain the way the two phases take place.  
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4.3.1 The training phase 

The training of a k-nearest-neighbour classifier involves building a lookup table. The look table 

keeps the representative feature vectors of all the known classes to be learnt. These representative 

feature vectors come from the training regions located in figure 4.3. Table in appendix B gives 

more details including coordinates and area (in pixels) of the training regions for each class. Table 

4.3 gives statistics on the percent area used for training each class, which shows that none of the 

classes, i.e. land-covers is trained unreasonably heavily. 

Table 4.3:  The training regions 

Class 
No. of Training 

Regions 
Total Training Area 

Total area of the 

class 

Percentage of the 

Training Area 

1 3 10803 238097 4.54% 

2 5 27007 650099 4.15% 

3 8 39209  1013992 3.87% 

4 3 9121 155475 5.87% 

5 7 19819 896382 2.21% 

6 3 3511 44194 7.94% 

7 13 14794 1052101 1.41% 

8 8 9702 181810 5.34% 

Total 50 133966 4232150 3.17% 

The classifier-training phase extracts at least a single vector from each training region. The exact 

number of feature-vectors extracted from a test region depends on both, size of the training region 

and size of the training window. Table 4.4 shows details of the lookup tables of the kNN classifier, 

corresponding to various window sizes. 

Texton size of the coarsest texture puts the lower limit to the training-window-size at 17×17 

pixels. On the other hand, the narrowest training region (See appendix B) puts the upper limit to the 

training-window-size at 28×28 pixels. Nevertheless, the maximum window size that seems useful 

in classification is 21×21 pixels. The windows larger than this simply yield the results that are 

always worse than the smaller windows. Therefore, the training window-sizes ranging from 17×17 

to 21×21 pixels were tested to classify the test images.  

The texture-features extracted from the windows measuring from 17×17 pixel to 21×21 pixel 

become part of the kNN classifier’s respective lookup table. This means that there are five lookup 

tables, which all come from a different window size. Therefore, the parameter of training-window-

size passes to the classifier while classifying a test image and the classifier uses the corresponding 

lookup table accordingly.  
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Table 4.4:  Details of training the kNN classifiers – number of feature vectors representing each class for a 

given window-size 

Class Size of the 

training window 1 2 3 4 5 6 7 8 

Total number of 

feature vectors 

17 50 114 154 37 75 13 63 41 547 

18 50 97 147 37 75 13 63 41 523 

19 43 94 141 31 75 13 63 41 501 

20 34 90 141 31 75 13 63 41 474 

21 28 76 111 31 70 13 58 37 424 

4.3.2 The testing phase 

There are two parameters governing the kNN classifier, i.e. the training-window-size and the 

number of neighbours (k) to consider. The kNN classifier uses the lookup table corresponding to 

the window-size passed to it. Following sections explore two ways of classifying the test images, 

i.e.  region classification and the grid classification. 

4.3.2.1 Region classification 

From the segmentation results shown in figure 4.12 and figure 4.13 it is evident that most of the 

delineated regions include pixels from more than a single land-cover. The delineation is never 

accurate. This makes the texture features extracted from such delineated regions misleading 

causing incorrect classification of the whole region. Therefore, the region based classification fails. 

Moreover, even if the regions delineate with utmost perfection, and thereby contain only a single 

land-cover, even then the intra-class variations across the region tend to cause misclassifications, 

because the extracted features are averaged over the entire region and are more representative of 

the region that is a unique occurrence of the given land-cover. The LFH-base texture features come 

from the histogram of the DFT-based texture signatures of an entire region. Therefore, LFH-based 

feature vector representing a large region simply fails to resemble with the features vectors 

extracted from the comparatively much smaller training regions. Contrarily, the features extracted 

from several blocks of much smaller area allow modelling the intra-class variations more 

effectively.  

4.3.2.2 Grid classification 

This approach divides the test image into a grid of X×X pixel square blocks, and recognises each 

block as belonging to any one of the eight classes. The value of X varies from 17 to 21, 

corresponding to the training-window-size. The experiments of grid-classification performed on the 

eight test images show that for each test image, a different window-size results in the best 

classification accuracy. However, as shown later, only two window sizes, i.e. 18 and 20 suffice to 

classify all the test images. 
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Figure 4.14 and figure 4.15 show the test region 3 and test region 6, respectively, and their 

corresponding ground truths and the outcomes of the grid classification. The grid classification is 

performed over the block size of 17×17 pixels.  

 

Figure 4.14:  (a) the test region 3, (b) its ground truth, (c) its grid classification with the block size of 17×17 

pixels 

 
Figure 4.15:   (a) the test region 6, (b) its ground truth, (c) its grid classification with block size of 17×17 

pixels 

In the result of region 3, the class 7 (old orchards in red) is classified with a high accuracy. 

However, class 8 (young orchards in brown) remains mostly misclassified. Class 7 is confused with 

class 8 and others. The blocks on the borders of the two classes and on the edges are also 

misclassified as belonging to a third class. In the result of region 6, there are relatively fewer errors. 

The blocks in all the three classes are classified mostly correctly, with the classification accuracy of 

82.3%.  

4.4 Fusion of the region and the class information 

The grid classification accuracy is highly dependent on the block size. Generally, larger blocks 

have more description power, i.e. the discrimination power than the smaller ones, but the larger 

blocks tend to increase the errors around the class borders. On the contrary, the smaller blocks 

usually have less description power but result in fewer errors around the borders. However, 

whatever be the size of the block, there appear some misclassified blocks even in the regions of 

homogenous classes, in addition to the fact that the grid classification lacks the important 

information on the accurate borders or the frontiers between the land-covers. 

Since demarcation of regions in the test image representing similar or dissimilar land-covers 

provides the lacking contour information, it is useful to merge this information with the image 

carrying the class or the land-cover information from the grid classification. Hence, the process of 

(a) (b) (c) 

(a) (c)(b)
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fusion merges the two images, i.e. one resulting from the grid classification and the other resulting 

from the segmentation into regions, to obtain the final and more accurate land-cover classification. 

This not only adds the lacking contour information to the classification, but also removes the errors 

within the regions of homogenous classes/land-covers. There are two possible schemes of such a 

fusion. Following subsections present the two. 

4.4.1 Scheme 1 

Figure 4.16 illustrates the first possibility, where panchromatic RS image provides both, the class 

information and region information. FOOS segments the RS image using the texture signatures, 

and kNN classifier classifies each block of the image discretised into blocks. Finally, the results of 

the segmentation and the classification fuse together to produce the final classification map. 

 PAN Image 

 

 

 Texture Analysis 

  
 Texture  signatures 

 

  

 Discretisation 

  into blocks 

  Segmentation Texture   features 

  (FOOS) 

  Block-wise Lookup 

  Classification Table 

    Contour / frontier  information  (kNN) 

   
 Land-cover/Class 

  Information 

 
 

  Fusion 

 

 
 Classified image / Land-cover map 

  
Figure 4.16:  The process of fusing the region/frontier and the land-cover information 

4.4.2 Scheme 2 

Figure 4.17 depicts the other possibility, where the region information comes from the multi-

spectral images and the class information comes from the PAN image. It should be noted that the 

resolution of the MS image has been enhanced using the pixel-level fusion with the panchromatic 

image. FOOS segments the test image using spectral signatures and kNN classifies the test image 



4 Fusion of Region and Class information for classifying Remote Sensing Images 

102 

discretised into blocks using texture features. Finally, the results of segmentation driven by spectral 

features and the classification driven by the textural information fuse together to give the final 

land-cover map.  

To fuse the class and the region information, each of the pixels within a region vote in favour of 

the corresponding class or land-cover in the grid classification. Then, the highest vote count 

decides upon the class of each region. 

 MS Image  PAN Image 

 
 

  Spectral Analysis Textural Analysis 

   Texture   features 
    Spectral  signatures 

  Discretisation   

  In blocks 

  Segmentation 

 (FOOS) Texture   features 
 

   Block-wise Lookup 

  Classification Table  

      Contour / frontier  information (kNN)   

  

 
  Land-cover/Class 

  Information 
 

 Fusion 
 

 
 

 Classified image / Land-cover map 

 

Figure 4.17:  Scheme of fusing the spectral information and the textural information 

4.4.3 Discussion 

The preceding sections presented two possible ways of fusing the contour information with the 

class information. The first one has the advantage that it does not need the multispectral data and 

only panchromatic image from the target area suffices. Its disadvantage is that it is computationally 

expensive. FOOS requires more time to segment the dataset comprising texture signatures than it 

takes to segment the dataset of spectral signatures. The advantage of the second scheme is that it is 

computationally less demanding and that it utilises complimentary information of MS images and 

provides a means of fusing the spectral information with the textural information. The later reason 

is the most important aspect in the contemporary techniques of remote sensing. Due to availability 
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of the MS imagery, the results presented in the succeeding section use the scheme 2 that fuses 

region information obtained using the spectral signatures with the class information obtained using 

the texture features. 

4.5 Performance evaluation  

This section presents the results of classifying the 8 test regions introduced in the section 4.1.5. The 

results include both, before fusion and after fusion classification. The remote sensing community 

often carries out performance evaluation in terms of Kappa statistics and a measure called Kappa. 

4.5.1 Kappa statistics 

The Kappa value is a function of user’s accuracy (UA), producer’s accuracy (PA), overall accuracy 

(OA), and the expected classification accuracy (ECA) that are computed from an error matrix (EM) 

and a power matrix. Therefore, following subsections explain the Kappa statistics. 

4.5.1.1 Error matrix (EM) 

An EM, also called confusion matrix or contingency table, is the statistics of ground truth and the 

classification results presented in rows and columns. Table 4.5 shows the EM resulting from the 

grid classification of the test region 3 shown in figure 4.14 and table 4.6 shows the EM resulting 

from the grid classification of the test region 6 shown in figure 4.15.  

The eight cover types appear row-wise as well as column-wise. The last column shows the total 

number of pixels classified as belonging to each class and the last row shows the number of pixels 

actually belonging to each class. Since there are only two land-covers in the test region 3, only two 

corresponding columns are non-zeros in its EM of table 4.5. Similarly, since there are only three 

land-covers in the test region 6, only three corresponding columns are non-zeros in its EM of table 

4.6. 

Table 4.5:  The EM for the grid classification of the test region 3 shown in figure 4.10 

Reference Data 
 

1 2 3 4 5 6 7 8 

Cover Type Forests Fallow Fields 
Truck 

crops 

Vine-

yard 
Apple 

Old 

Orchards 

Young 

Orchards 

Rows 

Total 

1 Forests 0 0 0 0 0 0 1656 849 2505 

2 Fallow 0 0 0 0 0 0 2453 438 2891 

3 Fields 0 0 0 0 0 0 578 269 847 

4 Trck crops 0 0 0 0 0 0 835 1585 2420 

5 Vineyards 0 0 0 0 0 0 149 289 438 

6 Apple 0 0 0 0 0 0 3823 4709 8532 

7 Old Orch 0 0 0 0 0 0 22026 4347 26373 

8 Yng Orch 0 0 0 0 0 0 3515 14195 17710 

Column Total 0 0 0 0 0 0 35035 26681 61716 
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Table 4.6:  The EM for the grid classification for test region 6 shown in figure 4.11 

Reference Data 
 

1 2 3 4 5 6 7 8 

Cover Type Forests Fallow Fields 
Truck 

crops 
Vine-yard Apple 

Old 

Orchards 

Young 

Orchards 

Rows 

Total 

1 Forests 0 617 0 0 237 0 276 0 1130 

2 Fallow 0 14144 0 0 7 0 486 0 14637 

3 Fields 0 4678 0 0 644 0 0 0 5322 

4 T. crops 0 40 0 0 734 0 299 0 1073 

5 Vineyards 0 966 0 0 24264 0 0 0 25230 

6 Apple 0 0 0 0 0 0 399 0 399 

7 O. Orch 0 0 0 0 1323 0 12994 0 14317 

8 Y. Orch 0 441 0 0 517 0 621 0 1579 

Column Total 0 20886 0 0 27726 0 15075 0 63687 

 

4.5.1.2 User’s accuracy (UA) 

The term UA refers to the ratio of the number of pixels correctly classified as the cover type of 

interest to the total number of pixels that are classified in the cover type of interest.  
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where UAi represents user’s accuracy for ith class, N represents the number of classes, and EM(i,j) 

represents value in the ith row and jth column of the error matrix. For example, for a user interested 

in cover type forest, the UA is the ratio (percentage) of pixels correctly classified as forest to the 

total number of pixels classified as forest. 

4.5.1.3 Producer’s accuracy (PA) 

The term PA refers to the ratio of the number of pixels correctly classified as the cover type of 

interest to the number of pixels actually belonging to that class.  
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where PAj represents producer’s accuracy for jth class. For example, the PA for the class forest is 

ratio (percentage) of the no. of pixels correctly classified as forest to the no. of pixels that actually 

belong to the class forest. 

4.5.1.4 Overall classification accuracy (OCA) 

The OCA is the ratio of the number of correctly classified pixels to the total number of the pixels in 

the test image. The number of pixel correctly classified comes from the diagonal (in bold) of the 

EM. The OCA is the ratio of the sum of the values in diagonal (with colour background) of EM to 

the sum of last column (bottom-right value of the EM). 
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4.5.1.5 Product matrix (PM) 

The product matrix derives from the error matrix. ith row and jth column of the PM equals the 

product of the EM (last row, jth column), and EM (ith row, last column). As an example, table 4.7 

and table 4.8 give the PMs corresponding to the EMs of table 4.5 and table 4.6, respectively. 

Equation (4.4) explains the same analytically. 
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Table 4.7:  The PM corresponding to the EM of table 4.5 

 Reference Data 

1 2 3 4 5 6 7 8 

Cover Type 
Forests Fallow Fields 

Truck 

crops 

Vine- 

yard 
Apple 

Old 

Orchards 

Young  

Orchards 

1 Forests 0 0 0 0 0 0 13943930 10619038 

2 Fallow 0 0 0 0 0 0 30795765 23452599 

3 Fields 0 0 0 0 0 0 206321115 157124409 

4 Truck crops 0 0 0 0 0 0 29569540 22518764 

5 Vineyards 0 0 0 0 0 0 13488475 10272185 

6 Apple 0 0 0 0 0 0 312477165 237967839 

7 Old Orchard 0 0 0 0 0 0 994258265 757180099 

8 Y. Orchard 0 0 0 0 0 0 561365805 427509663 

Table 4.8:  The PM corresponding to the EM of table 4.6 

 Reference Data 

1 2 3 4 5 6 7 8 

Cover Type 
Forests Fallow Fields 

Truck 

crops 
Vineyard Apple 

Old 

Orchards 

Young 

Orchards 

1 Forests 0 23601180 0 0 31330380 0 17034750 0 

2 Fallow 0 305708382 0 0 405825462 0 220652775 0 

3 Fields 0 111155292 0 0 147557772 0 80229150 0 

4 Truck crops 0 22410678 0 0 29749998 0 16175475 0 

5 Vineyards 0 526953780 0 0 699526980 0 380342250 0 

6 Apple 0 8333514   0 0 11062674 0 6014925 0 

7 Old Orchard 0 299024862 0 0 396953142 0 215828775 0 

8 Y. Orchards 0 32978994 0 0 43779354 0 23803425 0 

4.5.1.6 Expected classification accuracy (ECA) 

The ECA is the accuracy by chance, i.e. the accuracy resulting from random assignment of a class 

to each image pixel. It comes from the PM described in the preceding sub-section. The ECA equals 

the ratio of the sum of all the diagonal values (with colour background) to the sum of all the values 

in the PM. Equation (4.5) expresses the ECA mathematically. 
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where N is the number of classes, and in the experiments presented herein, N=8. 

4.5.1.7 Kappa 

The kappa is a measure to evaluate the performance of automatic classification especially in case of 

the land-cover classification in the remote sensing applications. Kappa, often represented as 

KHAT, is a performance measure of the automatic classification process as compared to the 

random classification of an image. Equation (4.6) defines it: 

 
ECA

ECAOCA
KHAT −

−=
1

 (4.6) 

Table 4.9 shows performance of classification in terms of kappa statistics including UA, PA, and 

KHAT obtained from the error matrix of table 4.5 and power matrix of table 4.7, corresponding to 

the test region 3. Similarly, table 4.10 shows the results obtained from error matrix of table 4.6 and 

power matrix of table 4.8, corresponding to test region 6. Higher values of KHAT reflect better 

classification performance, whereas lower KHAT values reflect poorer classification performance.  

Table 4.9:  The statistics derived from EM of table 4.5 and PM of table 4.7 

UA PA 

Class 7 Class 8 Class 7 Class 8 Grid 

Classification Young 

Orchards 

Old 

Orchards 

Young 

Orchards 

Old 

Orchards 

ECA OCA KHAT 

Accuracy 83.6% 79.2% 63.7% 49.9% 36.4% 57.8% 0.3362 

Table 4.10:  The statistics derived from EM of table 4.6 and PM of table 4.8 

UA PA 

Class 4 Class 5 Class 7 Class 4 Class 5 Class 7 Grid 

Classification Truck 

Crops 
Vine-yard 

Young 

Orchard 

Truck 

Crops 
Vine-yard

Young 

Orchard 

ECA OCA KHAT 

Accuracy 91.2% 100.0% 73.8% 77.7% 52.7% 67.6% 27.9% 68.0% 0.5556 

4.5.2 The resulting land-cover maps and their accuracy 

Here are some results of the land-cover classifications before and after the fusion performed as per 

scheme 2 of figure 4.17. Table 4.11 lists the results in terms of Kappa statistics for eight regions. 

The table shows results of the grid classification, i.e. before fusion, and after fusion with the 

contour information. The value of k (the number of neighbours) is 1 in all the results, i.e. the 
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nearest neighbour classification has been used rather. Different values of k result in different 

accuracies in the grid classification. Values other than 1 may result in better accuracies in the grid 

classification, but will not change the post-fusion classification accuracies that are highly 

dependent on the accuracy of the segmentation. Therefore, results are only given for k=1, since the 

interest is to find a single value that can be used in all cases and for all the test images. Similarly, 

window/block sizes other than 18×18 pixels and 20×20 pixels perform better in some images, but 

the interest was to find a single value that performs acceptably well for all the test images. Window 

sizes of 18×18 pixels and 20×20 pixels work acceptably for almost all the test images. The two 

window sizes result in the same land-cover map after the fusion, with the exceptions of test region 

3, 5 and 8, for which the results are little worse with one or the other.  

Table 4.11:  The classification results in terms of Kappa statistics for eight test regions 

Accuracy 

Before Fusion After Fusion 
Test 

Region 
Classes 

ECA OCA KHAT ECA OCA KHAT 

k 

Block/ 

window 

size 

1 3 69.4% 69.4% 0 99.9% 100% 1 1 18, 20 

2 3, 5 36.1% 67.8% 0.4950 50.2% 91.3% 0.8250 1 18, 20 

3 7, 8 36.1% 55.2% 0.2999 50.8% 98.9% 0.9774 1 20 

4 4, 5, 7 28.4% 72.0% 0.6084 34.5% 93.9% 0.9074 1 18, 20 

5 3, 5, 6  22.3% 53.5% 0.4010 35.3% 92.7% 0.8878 1 18 

6 2, 5, 7 30.1% 80.7% 0 7240 35.1% 94.1% 0.9098 1 18, 20 

7 2, 3, 7 31.9% 77.3% 0.6662 37.6% 90.2% 0.8423 1 18, 20 

8 1, 3, 5, 7 18.1% 46.2% 0.3430 26.2% 79.0% 0.7161 1 18 

Figure 4.18 through figure 4.25 show the land-cover maps resulting after fusion of the class and 

the contour information for test region 1 through 8, respectively. The maximum classification 

accuracy achieved is 100%, corresponding to the first test region and the least classification 

accuracy achieved is 79%, corresponding to the last test region, i.e. test region 8. 

Figure 4.18(a) shows the results on the test region 1. As shown in figure 4.18 (b), this test image 

contains only one class, i.e. crop fields in four disjoint regions separated by the strips of non-class. 

Part (c) of the figure shows the test image as segmented using the spectral indices. Therefore, the 

pixels/regions having the same colour are spectrally similar to each other and spectrally dissimilar 

to the pixels/regions having different colour. However, the regions in figure 4.18(c) do not 

correspond to any specific class or land-cover type, since it is the result of the unsupervised 

segmentation process. Part (d) of the figure shows the grid segmentation of the test image 

performed as explained in section 4.3.2.2. Part (e) of the figure shows the improved classification 

using the process of fusion as explained in the section 4.4. Part (f) of the figure shows the binary 

error image, indicating the misclassified pixels in black. The calculation of the accuracies and the 

error image does not take into account the pixels in the non-class that always appear white in the 

error image. Since there appear no black pixels in the error image of figure 4.18 (e), therefore, the 
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overall classification accuracy is 100% and the corresponding KHAT value is 1 as shown in table 

4.11. 

 

Figure 4.18:  (a) the test region 1, (b) its ground truth, (c) its segmentation, (d) its grid classification map, (e) 

the fused classification map, and (f) the error image 

In case of test region 2, the accuracy in the grid classification is not more than 70%, but the 

process of fusion considerably improves the classification accuracy. There still appear some errors 

in the regions of homogeneous land-cover due to the imperfections in the segmentations. A process 

of polygon filling as discussed in a later section can help remove these errors largely. 

 

Figure 4.19:  (a) the test region 2, (b) its ground truth, (c) its segmentation, (d) its grid classification map, (e) 

the fused classification map, and (f) the error image 

In case of test region 3 as well, the process of fusion brings in a big gain in classification 

accuracy. In the final land-cover map, the errors remain only around the borders. Class 8 is 

misclassified very heavily. Mostly, it is confused with class 6 and 7 and others. As the 

misclassifications divide into several classes, the highest vote count goes in favour of the correct 

(a) (c)(b)

(d) (e) (f)

(a) (c)(b)

(d) (e) (f)
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class, i.e. class 8. Consequently, the following step of fusion results in the correct classification of 

class 8. However, this land-cover map results only with the window-size of 20×20 pixels. With the 

window-size of 18×18, there remain some errors that can be removed with improved segmentation. 

 

Figure 4.20:  (a) the test region 3, (b) its ground truth, (c) its segmentation, (d) its grid classification map, (e) 

the fused classification map, and (f) the error image 

In the grid classification of region 4, the misclassified blocks are mainly on the borders. The 

misclassified block in the bottom-left corner is one of the few exceptions. The process of fusion 

rectifies this misclassification and all other misclassifications as well. In the result after fusion, the 

errors appear mostly around the class borders. The process of polygon filling explained in a later 

section can remove the small patches of errors and hence can improve the accuracy. 

 

Figure 4.21:  (a) the test region 4, (b) its ground truth, (c) its segmentation, (d) its grid classification map, (e) 

the fused classification map, and (f) the error image 

(a) (c) (b)

(d) (e) (f) 

(a) (c) (b)

(d) (e) (f) 
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There are several misclassifications in the grid classification of region 5. However, after fusion, 

the classification accuracy becomes quite high and the misclassification are either on the borders or 

are granular in the region 5.  

 

Figure 4.22:  (a) the test region 5, (b) its ground truth, (c) its segmentation, (d) its grid classification map, (e) 

the fused classification map, and (f) the error image 

The grid classification of region 6 is quite successful. There are not too many misclassified 

blocks in class 5 and class 7. The incorrectly classified parts of class 2 are rectified after fusion. On 

the other hand, a part of class 2 that was correctly classified in the grid classification is 

misclassified after fusion and appears as a black patch in the error image.  

 

Figure 4.23:  (a) the test region 6, (b) its ground truth, (c) its segmentation, (d) its grid classification map, (e) 

the fused classification map, and (f) the error image 

The test region 7 contains quite large area of the non-class comprising the manmade structures. 

This generally makes the process of classification more difficult and becomes the cause of 

(a) (c)(b)

(d) (e) (f)

(a) (c)(b)

(d) (e) (f)
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misclassifications. However, the block classification is quite successful and the following process 

of fusion further improves the classification accuracy. 

 

Figure 4.24:  (a) the test region 7, (b) its ground truth, (c) its segmentation, (d) its grid classification map, (e) 

the fused classification map, and (f) the error image 

In case of test region 8, a part of class 7, i.e. old orchards has been misclassified as class 1, i.e. 

forest. This is because the misclassified part of old orchards is spectrally different from other parts 

of the same class and is more close to the forest. In addition, the misclassified part of the old 

orchards is different from other parts of the same class with regard to the texture as well. The error 

images show that there remain errors within regions of homogenous land-cover, due to imperfect 

demarcation. Most of the times, these errors can be eliminated using the polygon filling, a post-

processing on FOOS-generated segmentation. 

 

Figure 4.25:  (a) the test region 8, (b) its ground truth, (c) its segmentation, (d) its grid classification map, (e) 

fused classification map, and (f) the error image 

(a) (c) (b)

(d) (e) (f) 

(a) (c) (b)

(d) (e) (f) 
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4.6 Further improvements 

There are certain possibilities of further improvement in the classification performance. Following 

sections present the ideas behind the possibilities and the limited results available on one of those 

possibilities of improvement.  

4.6.1 Polygon filling 

Sometimes, the FOOS-segmented image has some clusters comprising the pixels from dissimilar 

land-covers. Such clusters are often spatially disjoint and are the cause of misclassification. 

Usually, these patches are numerous and small in area. Similar is the situation in the segmentation 

result of figure 4.23(c) that contains several small patches as apposed to only three large regions in 

the corresponding ground truth. The process of polygon filling refines the FOOS-generated 

segmentation by: 

• dissociating the patches with the same spectral class but different land-covers and 

• systematically removing the patches that are too small 

The first step finds the contours, removes the spectral information, and gives each polygon a 

unique label. The second step removes the patches that are too small. The area-to-perimeter ratio is 

a good criterion for a region being or not being too small. The critical value of this parameter is 

chosen to be 5. A too small patch gets replaced with the most frequent label in its surroundings. It 

starts with the patch having the smallest area-to-perimeter ratio. The process continues until there is 

no patch having the area-to-perimeter ration smaller than 5. The process of polygon filling usually 

improves the results but is computationally expensive. 

Figure 4.26 shows the classification results for region 6 after polygon filling. In this case, the 

errors are limited to places near borders, and the overall percent accuracy of the classification 

improves considerably.  

The result of figure 4.26(e) has the overall classification accuracy of 99.3%. Table 4.12 shows 

the corresponding Kappa statistics. Similarly, all the results presented in table 4.11 can improve 

largely with polygon filling.  

4.6.2 Two block-sizes 

The MS image used herein is a fused product, resulting from the pixel level fusion. The fusion of 

region and class information proposed in the preceding sections is a form of fusion at the decision 

level. However, another fusion is also possible at the decision-level. Experimental observations 

show that the block/window size of 18×18 pixels is preferable for successful classification of 

certain land-covers such as young orchards whereas the block/window size of 20×20 pixels for the 
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old orchards. Hence, it is interesting to perform the grid classification twice, once with each of the 

two preferred block/window sizes, and then perform the decision level fusion. In this case, every 

pixel votes two times, either for two different classes or for the same class twice, but the method of 

fusion remains the same.  

 
Figure 4.26:  (a) the test region 6, (b) its corresponding ground truth, (c) its segmentation after polygon 

filling, (d) grid-classification map, (e) fused classification map, and (f) the error image 

Table 4.12:  The Kappa statistics for region 6, after polygon filling 

UA PA 

Class 2 Class 5 Class 7 Class 2 Class 5 Class 7 Fused 

Classification 
Fallows 

Vine-

yard 

Young 

Orchrd 
Fallows 

Vine-

yard 

Young 

Orchrd 

ECA OCA KHAT 

Accuracy 99.4% 99.0% 99.7% 99.7% 99.99% 97.6% 35.4% 99.3% 0.9894 

4.6.3 Feature-level fusion 

The final classification map is dependent on the quality of segmentation of the test region. In some 

cases, like in case of test region 7, segmentation with textural and/or spectral information alone 

becomes difficult, especially if there is significant presence of manmade structures or other non-

class in the test region. Refer figure 4.24. In those cases, the results of segmentation may improve 

if both, spectral and textural signatures drive the process of segmentation.  

4.7 Conclusion 

The land-cover classification has proved to be a difficult task that becomes quite impossible using 

only the spectral information. Therefore, this chapter introduced a method of fusing spectral 

information with the textural information for land-cover classification. The chapter also presented 

the results of segmenting remote sensing image using spectral as well as textural features and the 

FOOS clustering method introduced earlier in chapter 3.  

(a) (c) (b)

(d) (e) (f) 



4 Fusion of Region and Class information for classifying Remote Sensing Images 

114 

Clustering the dataset based on four spectral signatures is considerably less expensive than 

clustering the dataset based on seven textural features, since the complexity of the clustering 

algorithms are known to curse of dimensionality [Lu 2008]. This clustering provides the contour 

information, i.e. delineation of the land-covers or classes. The window size of 9×9 pixels is suitable 

for averaging/smoothening the images carrying spectral signatures before using them for the image 

segmentation. 

The chapter also presented results of classifying the remote sensing images discretised into 

blocks and showed that the classification of regions fails due to the intra-class variation found in a 

class and the imperfect delineation of the classes. Several experiments performed over the eight 

test-regions show that the window/block size of 18×18 pixels is workable on all the test images. 

Later, the chapter introduces a method of fusing the contour information with the block-wise 

classification that largely improves the classification accuracy. In the end, the chapter also explores 

the possibilities of further improvements in the process of land-cover mapping and suggests 

improving the results using: 

• polygon filling 

• the two preferred sizes of training-window sizes and the subsequent decision-level fusion 

• feature-level fusion for improved segmentation 

The first one of these three suggestions has also been tried on a test image that gave improved 

results, while other options need yet to be explored. 
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Conclusion 

The remote sensing technologies are now quite mature, and so are the techniques and algorithms of 

remote sensing. Remote sensing of the environment is a cross road between the fields of image 

processing, machine learning and the natural sciences. Hence, this thesis is the blend of the three. It 

introduces the vegetation indices that are the traditional means of discriminating one land-cover 

from the others. These indices also have practical limitations.  

Since a land-cover may vary spectrally quite largely depending on the climate, weather 

conditions, and many other factors, the vegetation indices prove incapable to recognise the land-

covers. Nevertheless, whatever be the conditions, different land-covers however remain spectrally 

dissimilar. Therefore, although the land-covers may be spectrally unrecognisable, they are always 

spectrally separable anyways. Keeping this in view, the approach proposed herein suggests using 

the spectral signatures for segmenting the RS images into regions of homogenous land-covers. This 

discrimination is realised using clustering techniques. Therefore, this thesis proposes Fusion of 

Over-Segmentations (FOOS) as an improved version of k-means clustering. The new clustering 

algorithm outperforms k-means with multiple restarts while segmenting natural digital photos, 

remote sensing images, and non-image datasets. 

Once the regions of homogeneous land-covers become disjoint, it is turn to recognise these 

regions as belonging to a particular land-cover. The high-resolution RS images have created the 

possibility of harnessing the image texture features for classification of the land-covers as 

compared to spectral features alone in the past. However, since a region with homogenous land-

cover may contain a small number of pixels, the texture features extraction method must be able to 

extract the useful signatures from the smallest possible sample of the texture patterns. In the case 

study presented herein, the available training regions were as small as 28 pixels wide and the 

texture features based on signal processing approach become impractical in this situation. 

Therefore, the texture features extracted from immediate pixel-neighbourhood, such as the features 

based on local Fourier histograms (LFH), remains the only choice available. This thesis proposes 

two improved versions of the LFH-based texture features. One of those best suites the problem of 

very small training regions. 

The approach of recognising each region with the help of texture features also fails since the 

regions of homogeneous land-cover comprise assorted regions of different textures. Therefore, the 

consolidated texture features extracted from a region comparatively bigger than the training regions 

becomes misleading. The texture features are capable of separately modelling each of the variations 

within a land-cover. To resolve this problem, the LFH texture features extracted from all the 

possible variations within a land-cover represent the same class in a lookup table of the k-nearest 

neighbour classifier. To assure the successful and fast recognition of land-covers, the test image is 
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divided into blocks as small as the smallest training-region and the block-wise classification of the 

image follows. 

The block-wise or the grid classification alone does not provide high classification accuracies. 

The scheme of land-cover mapping proposed herein concludes with a new approach to image 

fusion at the decision level, which is in fact the fusion of spectral information and textural 

information. The process of image segmentation driven by the spectral signatures provides the 

regions of homogenous land-covers and the contours between them. The grid classification 

provides the class or land-cover information on each pixel. Fusion of these two images results in a 

land-cover map with very high classification accuracies and well-delineated regions. 

Naturally, due to the diversity of the problem dealt herein, there remain many possibilities yet 

unexplored. In this way, this thesis also points out the potential future work to improve the results 

presented herein. The future work may include: 

• Further improvement in the LFH-based features 

• Feature-level fusion of spectral and textural characteristics, for better improved 

segmentation of the test images 

• Using the two preferred sizes of training-window sizes and the subsequent decision-level 

fusion 

• Trying other, more involved classifiers such as naïve Bayes’ classifier preferably on 

another RS image with the same land-covers 

The methods introduced herein placed the prime importance to the computation simplicity that is 

vital in determining how many data sources may fuse together to enrich and refine the final product. 

Despite ever-increasing computational power of the computing machines, the computational 

simplicity remains the key aspect of any algorithm in the area of image processing and machine 

intelligence. 
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Appendix A: Letter of permission from Defence Image Database for reproducing 
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electronic format shall be no greater than 200Kb and that there is no commercial reproduction of the images 

on merchandise or any resale of the same.  There may be no further reproduction including any by the 

Institute. 

  

The fee is waived on the condition that your use of the images is not for commercial gain, as we do not allow 

such gain to be made when the MOD provides free use of its resources. 
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Appendix B: Fuller details of the training regions listed in table 4.3 of page 98 

Table B: Details on area and locations of the training regions in the source RS image 

Coordinates 
Class 

Region 

# Up Down Left Right 
Area 

Total 

Training 

Area 

Percentage 

of the Training 

Area 

1 

1 

2 

3 

1122 

741 

1400 

1160 

797 

1460 

807 

1374 

2261 

900 

1434 

2320 

3666 

3477 

3660 

10803 
4.54% 

(238097) 

2 

1 

2 

3 

4 

5 

1122 

 1290 

1190 

1740 

1915 

1260 

1360 

1250 

1790 

1965 

1080 

1970 

1435 

1496 

2025 

1140 

2110 

1485 

1550 

2075 

8479 

10011 

3111 

2805 

2601 

27007 
4.15% 

(650099) 

3 

1 

2 

3 

4 

5 

6 

7 

8 

245 

210 

95 

385 

1220 

1900 

1025 

615 

295 

260 

155 

435 

1250 

1955 

1085 

665 

1645 

1350 

1735 

1780 

880 

1330 

310 

2345 

1695 

1400 

1795 

1830 

930 

1430 

370 

2395 

2601 

2601 

3721 

2601 

1581 

5656 

3721 

2601 

39209 
3.87% 

(1013992) 

4 

1 

2 

3 

660 

480 

945 

715 

530 

992 

23 

485 

310 

73 

540 

360 

2856 

2856 

2448 

9121 
5.87% 

(155475) 

5 

1 

2 

3 

4 

5 

6 

7 

280 

490 

675 

770 

630 

1000 

1000 

310 

520 

725 

820 

680 

1050 

1050 

770 

1740 

1725 

1880 

1915 

1955 

2040 

800 

1770 

1775 

1930 

1965 

2002 

2100 

961 

961 

2601 

2601 

2601 

2448 

3111 

19819 
2.21% 

(896382) 

6 

1 

2 

3 

35 

455 

1090 

85 

504 

1135 

95 

5 

1190 

145 

55 

1240 

2601 

2550 

2346 

3511 
7.94% 

(44194) 

7 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

450 

465 

500 

675 

780 

860 

960 

1400 

1885 

1960 

2065 

2070 

1925 

480 

495 

530 

705 

810 

890 

990 

1430 

1915 

1990 

2095 

2100 

1965 

710 

590 

660 

465 

365 

480 

570 

565 

840 

855 

810 

980 

700 

740 

640 

690 

495 

395 

510 

600 

595 

870 

885 

840 

1010 

740 

961 

1581 

961 

961 

961 

961 

961 

961 

961 

961 

961 

961 

1681 

14794 
1.41% 

(1052101) 

8 

1 

2 

3 

4 

5 

6 

7 

8 

1400 

1495 

1805 

1815 

650 

835 

835 

903 

1430 

1525 

1835 

1845 

680 

875 

875 

953 

700 

730 

665 

830 

1235 

1094 

1130 

1170 

730 

760 

695 

860 

1265 

1121 

1157 

1220 

961 

961 

961 

961 

961 

1148 

1148 

2601 

9702 
5.34% 

(181810) 

Total 50 training regions 133966 
3.1654% 

(4232150) 
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Résumé 

La télédétection s’avère être une discipline aux nombreuses applications telles que, la défense 

du territoire, la planification urbaine, la santé et la gestion de l’environnement. La collecte 

d’informations statistiques sur le rendement des cultures dans un pays, est une tâche importante 

de la télédétection. L’acquisition et le traitement d’images satellitaires à très haute résolution 

(THR) fournissent les moyens d’accomplir de telles tâches. Le traitement de ces images 

satellitaires exige non seulement de la puissance de calcul mais aussi les algorithmes efficaces 

en segmentation et classification d’images.   

Cette thèse présente un travail de mise en œuvre de traitements efficaces en analyse, dans le 

domaine spectral et celui de la texture, sur des images à très haute résolution (THR). Ce travail 

combine les résultats de ces deux analyses pour une classification améliorée du couvert végétal. 

L’analyse spectrale présentée ici s’appuie sur une classification non supervisée, tandis que 

l’analyse de texture adopte une procédure de classification supervisée. La fusion des 

informations de type contour, issues de l’analyse spectrale non supervisée, et des informations 

de type bloc, issues de l’analyse texturale supervisée, conduit à des résultats de classification 

intéressants et encourageants. 

En guise d’application, la thèse étudie le cas d’un site comportant vergers, cultures maraîchères, 

vignes, forêts, jachères de la région de Nîmes en France. 

La contribution apportée ici concerne, d’une part, une amélioration de la méthode des « k-

means », d’autre part, une solution à l’invariance en rotation des caractéristiques texturales 

issues d’une transformée de Fourier discrète, et enfin une méthode de fusion d’une classification 

supervisée avec une classification non supervisée. 

Mots clefs : Télédétection, Gestion de l’environnement, Fusion d’images, Analyse de textures 

 

Abstract 

Remote sensing is a promising technology that finds as diverse applications as defence, urban 

planning, healthcare, and environmental management. Collecting countrywide statistics of crop 

yield is one of the main tasks of remote sensing. Acquiring and processing very high-resolution 

(VHR) satellite images are means accomplishing this task. Processing these remotely sensed 

(RS) images requires not only great computational power but also efficient algorithms for image 

segmentation and classification. 

This thesis aims at presenting the work carried out for applying computationally efficient 

spectral and textural analysis on very high-resolution RS images, and combining the results 

from the two analyses for improved classification of vegetation covers. The spectral analysis 

presented here adopts the unsupervised approach of classification, whereas the textural analysis 

adopts the supervised approach of classification. The fusion of the contour information from the 

unsupervised spectral analysis with the pixel class information from the supervised textural 

analysis yields successful classification results. 

The thesis takes as a test case, a site covered with orchards, truck crops, crop fields, vineyards, 

forest, and fallows from Nîmes region, France. The real contribution includes improved version 

of the unsupervised classification method based on k-means clustering, a method of introducing 

rotation invariance into the texture features based on discrete Fourier transform, and a method 

of fusing a supervised classification with an unsupervised classification. This thesis is all about 

developing these algorithms. 

Key words: Remote Sensing, Environmental management, Image fusion, Texture analysis 

 


