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Résumé

L’objet de cette thèse est de contribuer à l’étude numérique des lois de
conservation hyperboliques avec termes sources, ce qui est motivé par les
applications aux équations de Saint-Venant pour les eaux peu profondes.

La première partie traite des questions habituelles de l’analyse des ap-
proximations numériques des lois de conservation scalaires. On se concentre
sur des schémas aux volumes finis semi-discrets, dans le cas général d’un
maillage non-uniforme. Pour définir des discrétisations appropriées du terme
source, on introduit le formalisme spécifique de la méthode ”Upwind Interface
Source” et on établit des conditions sur les fonctions numériques telles que le
solveur discret préserve les solutions stationnaires. Une définition rigoureuse
de consistance est ensuite formulée, adaptée aux ”schémas équilibres”, pour
laquelle on est capable de prouver un théorème de convergence faible de type
Lax-Wendroff.
La méthode considérée dans un premier temps est essentiellement d’ordre un
en espace. Pour améliorer la précision, on développe des approches à haute
résolution pour la méthode ”Upwind Interface Source” et on montre que
celles-ci sont un moyen efficace de dériver des schémas d’ordre plus élevé
avec des propriétés convenables. On prouve une estimation d’erreur dans
Lp, 1≤ p <+∞, qui est un résultat optimal dans le cas d’un maillage uni-
forme. On conclut alors que les mêmes taux de convergence O(h) et O(h2)
que pour les systèmes homogènes correspondants sont valables.

La deuxième partie présente un schéma numérique pour approcher les
équations de Saint-Venant, avec un terme source géométrique, qui vérifie les
propriétés théoriques suivantes : il préserve les états stationnaires de l’eau
au repos, vérifie une inégalité d’entropie discrète, préserve la positivité de la
hauteur de l’eau et reste stable avec des profiles du fond discontinus. Cela
est obtenu grce à une approche cinétique au système ; dans ce contexte, on
utilise une description formelle du comportement microscopique du système
pour définir les flux numériques aux interfaces d’un maillage nonstructuré.
On utilise aussi le concept de variables conservatives centrées (typique de la
méthode des volumes finis) et des termes sources décentrés aux interfaces.
Finalement, on présente des simulations numériques du système des équations
de Saint-Venant modifiées pour prendre en compte le frottement et la visco-
sité, afin de retrouver les résultats de certaines études expérimentales.
Une application à la modélisation des termes de frottement pour les ava-
lanches de neige est discutée dans l’Appendice.
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Abstract

The purpose of this dissertation is to contribute to the numerical study of
hyperbolic conservation laws with source terms, motivated by the application
to the Saint-Venant equations for shallow waters.

The first part deals with usual questions in the analysis of numerical
approximations for scalar conservation laws. We focus on semi-discrete finite
volume schemes, in the general case of a nonuniform spatial mesh. To define
appropriate discretizations of the source term, we introduce the formalism
peculiar to the Upwind Interface Source method and we establish conditions
on the numerical functions so that the discrete solver preserves the stationary
solutions. Then we formulate a rigorous definition of consistency, adapted to
well-balanced schemes, for which we are able to prove a Lax-Wendroff type
convergence theorem.
The method first considered is essentially first order. To improve accuracy, we
develop high resolution approaches for the Upwind Interface Source method
and we show that these are efficient ways to derive higher order schemes with
suitable properties. We prove an error estimate in Lp, 1 ≤ p < +∞, which
is an optimal result in the case of a uniform mesh. We thus conclude that
the same convergence rates O(h) and O(h2) hold as for the corresponding
homogeneous systems.

The second part presents a numerical scheme to compute Saint-Venant
equations, with a geometrical source term, which satisfies the following theo-
retical properties : it preserves the steady states of still water, it satisfies a
discrete entropy inequality, it preserves the non-negativity of the height of
water and remains stable with a discontinuous bottom. This is achieved by
means of a kinetic approach to the system ; in this context, we use a natural
description of the microscopic behaviour of the system to define numerical
fluxes at the interfaces of an unstructured mesh. We also use the concept
of cell-centered conservative quantities (typical of the finite volume method)
and upwind interfacial sources.
Finally, we present some numerical simulations of the Saint-Venant system
modified by including small friction and viscosity, in order to recover the
results of experimental studies. An application to the numerical modelling of
friction terms for debris avalanches is proposed in the Appendix.
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4.1 Systèmes modifiés et comparaisons expérimentales . . . 26
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4.3 Une application aux écoulements granulaires . . . . . . 27

Bibliographie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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10 INTRODUCTION

Cette introduction entend présenter les considérations générales et ex-
traire les idées fondamentales qui sont à la base des résultats exposées dans
la suite de la thèse, pour la formulation rigoureuse desquels on est invité à
se reporter aux chapitres correspondants.

1 Présentation du problème

1.1 Les lois de conservation hyperboliques avec terme

source géométrique

On considère le problème aux valeurs initiales pour une loi de conservation
scalaire avec un terme source,

∂u

∂t
+

∂A(u)

∂x
+B(x, u) = 0, t ∈ R+, x ∈ R, (1.1)

u(0, x) = u0(x) ∈ Lp(R) ∩ L∞(R), 1 ≤ p < +∞, (1.2)

avec u(t, x)∈R et une fonction de flux régulière A à valeurs réelles, avec

a(u) = A�(u) ∈ C1(R). (1.3)

On se restreint ici aux termes sources dans l’équation (1.1) définis par

B(x, u) = z�(x)b(u), z� ∈ Lp(R), b ∈ C1(R). (1.4)

L’équation (1.1) admet une famille d’inégalités d’entropie,

∂S(u)

∂t
+

∂η(u)

∂x
+ S �(u)B(x, u) ≤ 0, η�(u) = S �(u)a(u), (1.5)

pour toute paire d’une fonction d’entropie convexe S et flux d’entropie η

correspondant (voir [37], [17] et [38]). Pour des hypothèses de régularité plus
fortes sur le terme source, Kružkov [37] démontre existence et unicité de
la solution entropique du problème (1.1)-(1.2), dans l’espace des fonctions
L∞ ([0, T );Lp(R)), pour tout T ∈ R+. Des résultats récents concernants les
systèmes hyperboliques de lois de conservation avec termes sources (voir [4],
par exemple) généralisent les travaux classiques [18] sur l’existence globale
de solutions faibles à variation bornée (voir aussi [28] et [5]).
Pour le cas délicat d’un terme source singulier de la forme (1.4), notamment
avec une fonction z discontinue, un résultat d’unicité est prouvé dans [55],
en utilisant l’approche cinétique formulée rigoureusement dans [44] et [51].

Par comparaison au problème homogène, une différence significative est
observée pour les solutions stationnaires de l’équation (1.1), qui sont définies
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par l’équilibre entre terme source et forces internes ; en intégrant l’équation
stationnaire associée à (1.1), on obtient alors la relation algébrique

D(u) + z(x) = Cst, D�(u) =
a(u)

b(u)
. (1.6)

On suppose dans la suite que la fonction D est strictement monotone, ce qui
garantit l’existence d’une solution unique et lipschitzienne de l’équation (1.6).
Cette dernière hypothèse apparait restrictive et n’est pas toujours satisfaite
dans des situations réalistes, néanmoins elle est utilisée pour simplifier la
formulation de certaines théories numériques (voir [10] et [26], par exemple).

1.2 Le système des équations de Saint-Venant

L’analyse des solutions stationnaires des lois de conservation avec terme
source géométrique est motivée par leur application aux écoulements perma-
nents dans les rivières et les canaux avec une topographie complexe.

Z(x)

h(t,x)u(t,x)

Les équations de Saint-Venant décrivent l’écoulement monodimensionnel
dans un canal rectangulaire par l’intermédiaire de la hauteur d’eau h(t, x)≥0
et de sa vitesse moyenne u(t, x)∈R, qui vérifient le système hyperbolique

∂h

∂t
+

∂(hu)

∂x
= 0, (1.7)

∂(hu)

∂t
+

∂

∂x
(hu2 +

g

2
h2) + ghZ � = 0, (1.8)

o g est la gravité et Z(x) représente le profil longitudinal du fond du canal,
donc h+Z est la cote de la surface libre et hu la quantité de mouvement.
La fonction d’entropie du système (1.7)-(1.8) est l’énergie physique,

E(h, u, Z) = h
u2

2
+

g

2
h2 + ghZ, (1.9)

pour laquelle on démontre (voir [17] et [54]) l’inégalité d’entropie

∂E

∂t
+

∂

∂x
[u(E +

g

2
h2)] ≤ 0. (1.10)
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La prise en compte d’une topographie variable introduit un terme source
dans l’équation (1.8) sur la quantité de mouvement, qui intervient dans la
définition des états stationnaires,

hu = C1, (1.11)

u2

2
+ g(h+ Z) = C2, (1.12)

avec C1 et C2 constantes arbitraires. En particulier, l’équilibre simple d’un
lac au repos est donné par u=0, h+Z=Cst.

Une dérivation formelle du système (1.7)-(1.8) à partir des équations de
Navier-Stokes est obtenue dans [24], sous certaines hypothèses (hauteur d’eau
faible, approximation hydrostatique de la pression, homogénéité verticale des
vitesses horizontales). Des questions analogues sont discutées dans [1] et [2].
Des difficultés persistent dans l’analyse du système (1.7)-(1.8), qui sont liées à
sa structure mathématique complexe : la preuve de l’existence globale de solu-
tions faibles après apparition de singularités est dans [43] ; d’autres résultats
sont présentés dans [38], [46], [47], [35], [16], [48], [13], [3] et [22].

1.3 La question numérique des solutions stationnaires

La présence du terme source dans l’équation (1.1) influence ses propriétés
analytiques, par conséquent une approximation correcte de celui-ci apparait
comme un point crucial de l’approche numérique du problème (1.1)-(1.2), en
particulier pour préserver les solutions stationnaires au niveau discret.

Des nombreux travaux sur le sujet ont déjà été conduits, dans le cas des
équations scalaires comme pour le système de Saint-Venant, initialement avec
des objectifs différents (voir [11], [14], [25] et [39], par exemple).

Schéma de Godunov implicit

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

La plupart des méthodes proposées se basent sur des schémas classiques
pour les lois de conservation hyperboliques, avec un traitement spécifique du
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terme source, ce qui assure une résolution précise des problèmes d’évolution
mais se révèle quelquefois insuffisant pour préserver des états stationnaires :
l’équilibre simple d’un lac au repos sur une topographie régulière n’est pas
bien approché par des schémas centrés standards (même si les perturbations
tendent à disparâıtre avec une diminution du pas d’espace, voir [57]).

Schéma cinétique standard

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Une formulation générale du problème des solutions stationnaires pour la
méthode des volumes finis est examinée dans le Chapitre 1, o des définitions
rigoureuses sont introduites et confirmées par les résultats correspondants.

Des approches différentes de cette question ont également été développées
dans la littérature, qui conduisent à la construction de schémas numériques
adaptés et avec les propriétés requises de conservation des états stationnaires.
On se réfère notamment à la méthode des éléments finis, appliquée aux
schémas de relaxation (voir [34], [33] et [19]), ainsi qu’aux ”schémas cen-
traux” (voir [45], [52] et [49]), qui sont utilisés pour les applications au cas
de termes sources singuliers (voir [41], [15] et [53], par exemple).
D’autres techniques sont basées sur les maillages adaptatifs (voir [8], [12]
et [7]) et des questions diverses liées à l’analyse numérique du système des
équations de Saint-Venant (1.7)-(1.8) sont considérées (voir [6], par exemple).

2 L’approche numérique

2.1 La méthode ”Upwind Interface Source” pour les

termes sources

La théorie numérique générale présentée dans la première partie de cette
thèse utilise la notation classique de la méthode des volumes finis, pour ca-
ractériser les structures fondamentales des schémas numériques analysés.
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On pose un maillage non-uniforme sur R, composé de mailles Ci=[xi− 1

2

, xi+ 1

2

),
de centre xi, i∈Z et longueur ∆xi, donc les points xi+ 1

2

sont des interfaces.

✲�xi−1

xi− 1

2

�xi

xi+ 1

2

�xi+1

zi
zi+1

On considère une approximation, constante par maille, de la fonction z dans
le terme source (1.4), avec des coefficients zi =

1
∆xi

�

Ci

z(x) dx par exemple,
et on remarque que la dérivée de cette fonction discrète est donnée par les
différences des valeurs aux interfaces,

z
∆
(x) =

�

i∈Z

zi 1Ci
(x), z�

∆
(x) =

�

i∈Z

∆zi+ 1

2

δi+ 1

2

, (2.1)

o δi+ 1

2

indique la fonction de Dirac du point xi+ 1

2

et ∆zi+ 1

2

=zi+1 − zi.
La méthode des volumes finis, dans le cas semi-discret en espace, com-

mence par une intégration de l’équation (1.1) sur chaque maille, pour obtenir

∆xi

d

dt
ui(t) + A(u(t, xi+ 1

2

))− A(u(t, xi− 1

2

)) +

�

Ci

B(x, u(t, x)) dx = 0,

avec ui(t)=
1

∆xi

�

Ci

u(t, x) dx la moyenne par maille de la solution analytique.
Un schéma volumes finis pour le problème (1.1)-(1.2) est une approximation
de la relation précédente, sous la forme générale présentée dans le Chapitre 1.

S’agissant de lois de conservation hyperboliques, les flux numériques sont
définis aux interfaces et la condition habituelle de consistance est imposée,
pour retrouver les résultats théoriques du cas homogène (voir [36]).

La question de la discrétisation du terme source est loin d’être accessoire
et un traitement inapproprié produit des résultats insatisfaisants, notamment
pour la conservation des solutions stationnaires.
Une approche efficace et adaptée au terme source géometrique (1.4) est basée
sur des approximations aux interfaces et décentrées, qui apparaissent comme
les seules compatibles avec la méthode des volumes finis. En effet, on déduit
directement de (2.1) les relations suivantes,

�

Ci

z�(x) b(u(t, x)) dx ≈

�

Ci

z�
∆
(x) b(u(t, x)) dx (2.2)

≈
1

2
∆zi− 1

2

b(u(t, xi− 1

2

)) +
1

2
∆zi+ 1

2

b(u(t, xi+ 1

2

))

≈
1

2
∆zi− 1

2

B(ui−1, ui) +
1

2
∆zi+ 1

2

B(ui, ui+1),
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avec B(u, u)= b(u) la condition de consistance conséquente à cette formula-
tion, qui est généralisée rigoureusement par les définitions du Chapitre 1.

Dans les dernières années, la méthode Upwind Interface Source pour les
lois de conservation hyperboliques avec terme source a pris un certain essor,
en particulier pour son application au problème des états stationnaires du
système de Saint-Venant (1.7)-(1.8), et jusqu’aux situations complexes des
équations en deux dimensions d’espace (voir la bibliographie du Chapitre 1
et du Chapitre 3, aussi que [40], [23], [56], [32], [9] et [31], par exemple).

2.2 L’extension aux discrétisations d’ordre deux

La méthode décrite précédemment est essentiellement d’ordre un en espace,
sans autres hypothèses sur les fonctions numériques que la simple consistance.

Une technique classique pour construire des schémas d’ordre deux consiste
à remplacer l’approximation constante par maille des fonctions numériques
avec des approximations linéaires, par exemple, qui fournissent des valeurs
plus précises aux interfaces (se reporter au Chapitre 2 pour les détails).

✲�xi−1

xi− 1

2

�xi

xi+ 1

2

�xi+1





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




z+i−1












z−i
z+i

✥✥✥✥✥✥✥✥z−i+1

La dérivée de l’approximation linéaire par maille de la fonction z dans (1.4)
est alors définie par une partie centrée et les contributions aux interfaces,

z�
∆
(x) =

�

i∈Z

z�i 1(x
i−

1
2

, x
i+1

2

)(x) +
�

i∈Z

∆
2zi+ 1

2

δi+ 1

2

, (2.3)

avec z�i une valeur numérique pour la dérivée constante par maille, calculée
en utilisant un opérateur discret spécifique, et dans ce cas ∆2zi+ 1

2

=z−i+1−z+i .

Un procédé analogue à (2.2) conduit, pour (2.3), à la relation
�

Ci

z�(x) b(u(t, x)) dx

≈ z�i

�

Ci

b(u(t, x)) dx+
1
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b(u(t, xi+ 1
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2
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i ) +
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∆
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B(u+
i , u

−
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o B(ui)≈
1

∆xi

�

Ci

b(u(t, x)) dx et les valeurs aux interfaces de la reconstruction
linéaire par maille de la solution numérique interviennent dans les termes
décentrés de l’approximation précédente.

Quoique la question de préserver les états stationnaires au niveau discret
ne soit traitée rigoureusement que pour des discrétisations d’ordre un (voir la
théorie dans le Chapitre 1), les résultats numériques obtenus pour le système
de Saint-Venant indiquent que l’extension d’ordre deux du schéma cinétique
proposé dans le Chapitre 3 reproduit précisement l’équilibre d’un lac au repos
(se reporter au Chapitre 4 pour plus de détails).

Pour construire des extensions d’ordre deux de la méthode ”Upwind In-
terface Source”, une alternative à l’approche que l’on vient d’illustrer consiste
à formuler des critères de consistance plus restrictifs sur les discrétisations
décentrées aux interfaces du type (2.2). Cette idée est suggérée par la forme
du terme source géométrique (1.4), donné par le produit de fonctions avec
un ordre de régularité différent. On utilise alors l’approximation constante
par maille (2.1) de la fonction z et une reconstruction linéaire par maille de
la solution numérique.
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Par conséquent, les fonctions numériques de la discrétisation (2.2) sont dans
le cas présent calculées sur des nouvelles valeurs aux interfaces,

�

Ci

z�(x) b(u(t, x)) dx ≈
1

2
∆zi− 1

2

b(u(t, xi− 1

2

)) +
1

2
∆zi+ 1

2

b(u(t, xi+ 1

2

))

≈
1

2
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2

B(u+
i−1, u

−

i ) +
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2
∆zi+ 1

2

B(u+
i , u

−
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La généralisation formelle de la relation précédente s’écrit
�

Ci

z�(x) b(u(t, x)) dx ≈ B+(u+
i−1, u

−

i ,∆zi− 1

2

) + B−(u+
i , u

−

i+1,∆zi+ 1

2

),

pour laquelle on considère la définition de consistance d’ordre deux suivante,

lim
∆z → 0

B+(u, u,∆z) + B−(u, u,∆z)

∆z
= b(u) +O(|∆z|2).
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La théorie des approximations numériques d’ordre deux admet une formu-
lation univoque, puisqu’on peut passer de l’une à l’autre des discrétisations
d’ordre deux décrites précédemment par un simple calcul algébrique sur les
quantités utilisées.

2.3 Les résultats de convergence

La question d’énoncer des critères de consistance appropriés pour les ap-
proximations numériques adoptées revêt une importance particulière dans la
démonstration des théorèmes de convergence.

Dans le cas d’un maillage non-uniforme, vérifiant la condition géométrique
de non-dégénérescence suivante,

∃ α, β > 0 / α∆xi+1 ≤ ∆xi ≤ β∆xi+1, ∀i ∈ Z, (2.4)

une extension du théorème de Lax-Wendroff est présentée dans le Chapitre 1,
pour les lois de conservation hyperboliques avec terme source (1.4). Sous la
seule hypothèse de consistance sur la discrétisation considérée, on prouve la
convergence dans l’espace D�(R+×R) de la suite approchée obtenue à partir
du schéma numérique vers une solution faible du problème (1.1)-(1.2).
Cependant, dériver des estimations d’erreur et en déduire la convergence forte
dans un espace Lp(R), 1≤p<+∞, reste difficile même dans la situation d’un
maillage bien construit mais toujours non-uniforme.

On peut d’ailleurs démontrer par un contre-exemple qu’un tel résultat
est faux pour la méthode (2.2), si la discrétisation associée ne prend pas en
compte explicitement les variations de la taille des mailles.
Un modèle extrêmement simple de problème (1.1)-(1.2) est donné par

∂u

∂t
= z�(x), u(0, x) = u0(x), (2.5)

pour lequel une intégration du terme source suivant la méthode des volumes
finis conduit à la discrétisation (2.2), pour l’approximation

1

∆xi

�

Ci

z�(x) dx ≈
1

∆xi

�

zi + zi+1

2
−

zi−1 + zi
2

�

.

D’après un développement asymptotique des moyennes par maille dans la
rélation précédente, utilisant aussi l’hypothèse (2.4), on obtient

1

2∆xi

(zi+1 − zi−1) ≈
1

2∆xi

z�(xi) (xi+1 − xi−1) +O(∆xi),

avec |xi+1 − xi−1|=∆xi +
∆xi−1

2
+ ∆xi+1

2
. Il parait alors évident que cette
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approximation converge vers la valeur z�(xi) souhaitée uniquement quand on
se restreint au cas d’un maillage uniforme, ∆xi=∆x, ∀i∈Z.

Les estimations d’erreur pour la méthode ”Upwind Interface Source” sont
détaillées dans le Chapitre 2, dans le cas d’un maillage uniforme, pour le
schéma numérique d’ordre un et pour ses extensions d’ordre deux.
Pour les discrétisations d’ordre deux, certaines hypothèses de régularité sur
les coefficients des dérivées discrètes dans la formulation (2.3) sont nécéssaires
afin de garantir l’ordre de convergence attendu. Cela est confirmé par différents
calculs numériques menés autour de l’équation (2.5).
La stabilité des méthodes considérées est, par contre, relativement simple à
prouver même pour un maillage non-uniforme de la forme (2.4) en utilisant
les arguments du Chapitre 2.

3 La méthode cinétique

3.1 Interprétation cinétique du système de Saint-Venant

Par analogie avec les équations d’Euler compressibles de la dynamique des
gaz, on peut établir un lien mathématique entre les équations de la mécanique
des fluides et la description microscopique du système de particules associé.

On considère une fonction χ à valeurs réelles, définie sur R, qui vérifie

χ(ω) = χ(−ω) ≥ 0,

�

R

χ(ω) dω = 1,

�

R

ω2χ(ω) dω =
g

2
. (3.1)

On introduit une densité de particules dans l’espace des phases, présentes au
temps t≥0 à la position x∈R et ayant une vitesse ξ∈R, définie par

f(t, x, ξ) =
�

h(t, x)χ

�

ξ − u(t, x)
�

h(t, x)

�

. (3.2)

D’après la définition (3.2) et les propriétés (3.1), on déduit les égalités

h =

�

R

f(t, x, ξ) dξ, hu =

�

R

ξf(t, x, ξ) dξ,

hu2 +
g

2
h2 =

�

R

ξ2f(t, x, ξ) dξ.

(3.3)

Le système de Saint-Venant (1.7)-(1.8) est obtenu comme limite formelle
de l’équation cinétique suivante pour la densité microscopique (3.2),

∂f

∂t
+ ξ

∂f

∂x
− gZ �

∂f

∂ξ
= Q(t, x, ξ), (3.4)
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avec Q(t, x, ξ) un ”terme de collision” qui vérifie
�

R

Qdξ = 0,

�

R

ξQdξ = 0. (3.5)

En intégrant l’équation (3.4) par rapport à ξ ∈R, simplement ou multipliée
par ξ, on retrouve les équations du système et l’énergie (1.9) s’écrit

E(h, u, Z) =

�

R

�

ξ2

2
f(t, x, ξ) +

π2g2

6
f 3(t, x, ξ) + gZf(t, x, ξ)

�

dξ. (3.6)

On remarque que, en l’absence de terme source externe, le modèle cinéti-
que (3.4)-(3.5) est analogue à l’équation de Boltzmann de la théorie cinétique
des gaz, pour laquelle les notations utilisées dans cette partie ont d’abord été
introduites (se reporter à [27], par exemple).

3.2 La formulation générale du schéma cinétique

La démarche que l’on vient de présenter permet de construire une classe de
schémas numériques, appelés ”schémas cinétiques”, particulièrement adaptés
aux équations de la mécanique des fluides, compatibles avec la méthode de
volumes finis et qui assurent la conservation au niveau discret des propriétés
naturelles du système continu (voir [50] pour la théorie générale).

On applique à l’équation (3.4) une méthode de différences finies en temps,
avec tn=n∆t, n∈N, et un schéma décentré classique en espace, avec le terme
source pris en compte directement dans la définition des flux numériques,

fn+1
i (ξ)− fn

i (ξ) +
∆t

∆xi

ξ
�

fn,−

i+ 1

2

(ξ)− fn,+

i− 1

2

(ξ)
�

= 0. (3.7)

L’intégration par rapport à ξ∈R de l’équation précédente fournit un schéma
pour les quantités macroscopiques associées à (3.3), définies par

Un
i = (hn

i , (hu)
n
i ), hn

i =

�

R

fn
i (ξ) dξ, (hu)ni =

�

R

ξfn
i (ξ) dξ, (3.8)

qui se présente sous la forme

Un+1
i − Un

i +
∆t

∆xi

�

A
n,−

i+ 1

2

− A
n,+

i− 1

2

�

= 0, (3.9)

o les flux numériques sont donnés par les formules cinétiques

A
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R
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�

1
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�
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2

(ξ) dξ, (3.10)

A
n,+

i− 1

2
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ξ

�

1
ξ

�
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i− 1

2

(ξ) dξ. (3.11)
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En toute rigueur, il faudrait remarquer que l’équation (3.7) est employée
improprement pour représenter la discrétisation de l’équation cinétique (3.4),
puisque le rôle du terme Q n’apparait qu’implicitement dans le procédé
numérique. En effet, la présence de collisions introduit dans le cas général une
discontinuité en temps sur la densité miscroscopique, ce qui devrait affecter
la valeur fn+1

i calculée par le schéma numérique. Cependant la définition de
la densité discrète, correspondant à la formule (3.2),

fn
i (ξ)=

�

hn
i χ

�

ξ − un
i

�

hn
i

�

, (3.12)

et les propriétés (3.1) de la fonction χ garantissent que les variables macro-
scopiques (3.8) restent continues en temps. On obtient donc un schéma (3.9)
valable pour la résolution numérique du système de Saint-Venant (1.7)-(1.8).

Les flux cinétiques dans les intégrales de (3.10) et (3.11) peuvent être
reécrits sous la forme suivante,

fn,±

i+ 1

2

(ξ) = fn

i+ 1

2

(ξ) +
�

fn,±

i+ 1

2

(ξ)− fn

i+ 1

2

(ξ)
�

, (3.13)

avec fn

i+ 1

2

(ξ)≈ 1
∆t

� tn+1

tn
f(t, xi+ 1

2

, ξ) dt une approximation consistante des va-

leurs moyennes aux interfaces, et par conséquent une formulation analogue

s’étend aux flux macroscopiques correspondants A
n,±

i+ 1

2

=A
n

i+ 1

2

+
�

A
n,±

i+ 1

2

−A
n

i+ 1

2

�

.

Les quantités entre parenthèses sont alors des approximations aux interfaces
et décentrées du terme source, pour l’équation (3.4) et le système (1.7)-(1.8)
respectivement, en accord avec la théorie exposée au Chapitre 1.

3.3 Le schéma cinétique pour la méthode ”Upwind In-

terface Source”

Les propriétés du schéma (3.9) dépendent en général de l’approximation
choisie pour les flux numériques (3.10)-(3.11), ainsi que du critère retenu pour
sélectionner la fonction χ appropriée dans (3.2), et donc dans (3.12), parmi
les nombreux choix compatibles avec les propriétés (3.1).

Pour la construction du schéma cinétique ”avec réflexions” présenté dans
le Chapitre 3, la définition de χ est basée sur la minimisation de la fonc-
tionnelle d’énergie (3.6) et sur la conservation au niveau microscopique des
états stationnaires (1.11)-(1.12) du système de Saint-Venant (se reporter au
Chapitre 3 pour les détails).
La structure des flux numériques est liée à la description physique du système
microscopique et du comportement des particules en présence de la barrière
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de potentiel représentée par les variations de la topographie (une particule de
fluide passe dans une maille voisine ou est réfléchie selon la quantité d’énergie
cinétique dont elle dispose).

✲�xi�xi−1 �xi+1

xi− 1

2

xi+ 1

2

Zi−1
Zi

Zi+1

✛ ✆☎

✞
✑✛

|ξ|2 ≤ 2g∆Z
i+ 1

2

✲✓
✑

|ξ|2 ≥ 2g∆Z
i−

1

2

On montre, dans le Chapitre 3, que le schéma cinétique ”avec réflexions”
vérifie au niveau discret certaines propriétés importantes des équations de
Saint-Venant, notamment la positivité de la hauteur d’eau et la conservation
des états stationnaires d’un lac au repos, sous une condition de CFL adaptée.
De plus, la discrétisation assure l’absence d’effets dus aux termes sources dans
le cas du problème homogène (l’équation (1.8) avec Z �=0), o elle s’identifie
avec le schéma cinétique standard. Il faut souligner que la condition de CFL
introduite dans le Chapitre 3 ne dépend pas explicitement du terme source,
ce qui permet de traiter numériquement le cas de termes sources singuliers.
La consistance du schéma cinétique ne peut plus s’énoncer ici comme pour les
équations scalaires (voir [10]) et une définition spécifique est requise (comme
indiqué dans le Chapitre 4).
Enfin, une inégalité d’entropie discrète correspondant à (1.10) est démontrée.
On considère l’énergie microscopique associée à l’interprétation cinétique du
système de Saint-Venant dans (3.6), qui est définie par la fonctionnelle

H(f) =
ξ2

2
f +

π2g2

6
f 3 + gZf.

On multiplie l’équation cinétique (3.4) par H �, pour obtenir la relation sui-
vante vérifiée par les solutions faibles,

∂H

∂t
+ ξ

∂H

∂x
− gZ �

∂H

∂ξ
≤ 0.

Cette inégalité d’entropie au niveau microscopique a une structure analogue
à l’équation cinétique (3.4) et une intégration par rapport à ξ∈R conduit à
la formule macroscopique conservative (1.10), écrite sous la forme

∂E

∂t
+

∂η

∂x
≤ 0. (3.14)
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On identifie alors facilement les fonctions numériques qui figurent dans le
schéma dérivé pour (3.14) au sens des volumes finis,

ηn
i+ 1

2

≈
1

∆t

� tn+1

tn
η(f)(t, xi+ 1

2

, ξ) dt.

Le schéma cinétique ”avec réflexions” et l’inégalité d’entropie correspon-
dante peuvent être interprétés par la méthode des caractéristiques relative à
l’équation (3.4), en appliquant laquelle on retrouve exactement les formules
données dans le Chapitre 3 pour les flux numériques cinétiques.

4 Conclusions et perspectives

4.1 Systèmes modifiés et comparaisons expérimentales

Les différentes approximations effectuées pour établir formellement le
système des équations de Saint-Venant (1.7)-(1.8) restreignent évidemment
son champ d’applications. Néanmoins ces équations fournissent un modèle as-
sez réaliste pour décrire les écoulements de rivières ou de canaux et rendent
également compte des mouvements d’eau dans des baies peu profondes, ce
qui permet notamment d’étudier les problèmes de marées.

L’écoulement d’un fleuve est, sur la majeure partie de son cours (seules
les zones de confluents ou les débordements nécessitent un traitement par-
ticulier), un problème pour lequel le système de Saint-Venant monodimen-
sionel reste pertinent. Cependant, les hypothèses considérées habituellement
d’écoulement irrotationnel et non-visqueux doivent être corrigées quand on
s’intéresse à la simulation numérique à partir des données expérimentales.
La prise en compte dans le modèle analytique de la viscosité du fluide et du
frottement au fond du canal conduit alors à des systèmes modifiés capables
de prévoir des comportements très divers de la surface libre (trains d’ondes,
ressauts hydrauliques, déferlement).

Les simulations numériques présentées au Chapitre 4 s’inscrivent dans ce
contexte. En particulier, on se concentre sur le profil du fond de la rivière
pour analyser le cas de perturbations de l’écoulement dues à un obstacle
unique placé au fond d’un canal rectangulaire.
Les données utilisées proviennent des expériences menées dans le cadre de
l’ACI ”Catastrophes Naturelles : modélisation de processus hydrauliques à
surface libre en présence de singularités” (Ministère de la Recherche - France).
Pour d’autres études expérimentales d’écoulements permanents au-dessus
d’un obstacle, on peut se reporter aussi à [30], ainsi qu’à [20], [21] et [29]
pour des simulations numériques de situations réelles.
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4.2 Introduction à la page web

Les codes Fortran et les sous-programmes correspondants pour le schéma
cinétique ”avec réflexions” développé dans le Chapitre 3 sont disponibles à
l’adresse Internet suivante :

http ://www-rocq.inria.fr/m3n/CatNat/
Des nombreux tests numériques sont présentés, traités par le schéma d’ordre
un et ses extensions d’ordre deux, avec les indications détaillées sur les
procédés à suivre pour les reproduire.

4.3 Une application aux écoulements granulaires

La validité des modèles considérés au Chapitre 4 dépend de la précision
dans la définition des paramètres physiques utilisés, notamment de la forme
du terme de frottement.

Les interactions entre les termes sources correspondant à la topogra-
phie du fond et au frottement dans le système de Saint-Venant sont par-
ticulièrement importantes pour déterminer les états stationnaires.
Différentes approches pour la discrétisation des termes de frottement doivent
être mises au point selon la nature spécifique de ces termes. Si cette ques-
tion parait relativement simple à résoudre dans le cas d’un frottement fluide,
le problème devient beaucoup plus complexe lorsqu’il s’agit de simuler des
écoulements granulaires. Pour ce dernier cas, l’analyse de la dynamique mi-
croscopique du système conduit à la formulation d’un terme de frottement
discontinu, difficile à traiter par des méthodes classiques.

Une première solution du problème numérique des états stationnaires
pour un modèle d’avalanche est proposée dans l’Appendice. La méthode est
basée sur une représentation cinétique des équations de type Saint-Venant
qui décrivent les phénomènes et qui sont traitées ensuite par des schémas
cinétiques adaptés. Des progrès dans ce domaine devraient ouvrir un vaste
champ d’applications nouvelles.
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LA MÉTHODE ”UPWIND INTERFACE

SOURCE” POUR LES LOIS DE

CONSERVATION HYPERBOLIQUES

31



32



Chapitre 1

Convergence de la méthode ”Upwind
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Abstract

This paper deals with typical questions arising in the analysis of

numerical approximations for scalar conservation laws with a source

term. We focus our attention on semi-discrete finite volume schemes,

in the general case of a nonuniform spatial mesh. To define appropriate

discretizations of the source term, we introduce the formalism peculiar

to the Upwind Interface Source method and we establish conditions

on the numerical functions so that the discrete solver preserves the

steady state solutions. Then we formulate a rigorous definition of

consistency, adapted to the class of well-balanced schemes, for which

we are able to prove a Lax-Wendroff type convergence theorem. Some

examples of numerical methods are discussed, in order to validate the

arguments we propose.

Key-words: hyperbolic conservation laws, source terms, upwind

interfacial methods, well-balanced schemes, consistency, convergence.

1 Introduction

We consider a scalar conservation law with a source term, in one space
dimension,

∂u

∂t
+

∂A(u)

∂x
+B(x, u) = 0, t ∈ R+, x ∈ R, (1.1)
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with u(t, x) ∈ R and a real-valued flux function A, associated with a Cauchy
problem by introducing the initial condition

u(0, x) = u0(x) ∈ L1(R) ∩ L∞(R). (1.2)

We set
a(u) = A�(u) ∈ C1(R) (1.3)

and we restrict our analysis to a particular form of source term,

B(x, u) = z�(x)b(u), z� ∈ L1(R), b ∈ C1(R). (1.4)

This is suggested by the usual application of hyperbolic conservation laws as
simple mathematical models in continuum mechanics: in the Saint-Venant
system for shallow water, for instance, z(x) describes the bottom topography.
The equation (1.1) is endowed with the family of entropy inequalities

∂S(u)

∂t
+

∂η(u)

∂x
+ S �(u)B(x, u) ≤ 0, η�(u) = S �(u)a(u), (1.5)

for any pair of a convex entropy function S and the corresponding entropy
flux η (see [21] and [24]). Under stronger assumptions on the source term,
Kružkov [21] proved existence and uniqueness of the entropy solution for the
initial value problem (1.1)-(1.2), in the functional space L∞([0, T );L1(R)), for
all T ∈ R+. Many results concerning the convergence of numerical approxi-
mations for the entropy solution of hyperbolic conservation laws are inspired
by this fundamental theory. In the case of singular source terms (i.e. the
function z(x) is discontinuous), a remarkable uniqueness result has recently
been proved by Vasseur [31].

The presence of source terms modifies the analytical properties of the
equation (1.1), in comparison with the homogeneous case. More specifically, a
fundamental change is the occurrence of other kinds of steady state solutions,
resulting from the balance between source terms and internal forces, given
by the formula

D(u) + z(x) = Cst, D�(u) =
a(u)

b(u)
. (1.6)

This fact also influences the numerical approach to the problem, as it was
pointed out by several authors (refer to [15] and [27]), in order to investigate
discrete approximations preserving the properties of the continuous system.

A well-known difficulty encountered in the numerical treatment of hy-
perbolic conservation laws with a source term relates to the approximation
of such a source term, to assure that the scheme preserves the steady state
solutions at discrete level.
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Initially for scalar problems, Greenberg, LeRoux and others introduced the
notion of well-balanced schemes (see [15],[16] for details). This definition has
been further developed by Gosse and LeRoux [11], which used a reformu-
lation of the source terms by means of non-conservative products to derive
numerical fluxes at the interfaces of an unstructured mesh. A recent approach
by LeVêque [27] is based on the Godunov scheme extended for an appropri-
ately modified system. Botchorishvili, Perthame and Vasseur present in [2]
a kinetic scheme, that maintains steady states and which is proved to con-
verge when stiff source terms are considered. Using interfacial values, instead
of the cell-averages, for the source term, Jin proposes in [17] a rather sim-
ple method for capturing steady state solutions with a high order accuracy.
Previous schemes have also been modified for this target by Bermudez and
Vasquez [1] and some different approaches are developed in [22],[23] and [18].
Quite recently, these kinds of numerical processing have been extended to
hyperbolic systems of balance laws (like the Saint-Venant system for shallow
water), to obtain stable schemes which preserve the steady states (see [8],
[13],[14] and [28], for instance). In particular, one of the main conclusions in
[28] is that, while preserving steady states, well-balanced schemes can also
enjoy stability under the usual CFL condition (independent of z�).

The aim of this paper is to present a general consistency condition for
discrete approximations of equation (1.1). In fact, to analyze theoretical
properties of numerical solvers for a conservation law with a source term,
the only classical condition on the flux function is not enough and specific
definitions for the discrete source term are required.

The outline of the paper is the following. In Section 2, we illustrate the
Upwind Interface Source method, which consists in upwinding source terms
at the interfaces of the mesh cells, as usual for the fluxes according to the
finite volume formalism. Then, in Section 3, we consider discretizations which
preserve steady state solutions (well-balanced schemes) and we review several
classical methods to build such schemes. The question of consistency is
addressed in Section 4 and we show that well-balanced schemes are consistent
in the sense we have established. By using these arguments, in Section 5, we
finally prove an extension of the Lax-Wendroff theorem.

2 Upwind Interface Source method

The finite volume method is possible for treating numerically hyperbolic
systems of conservation laws, it is robust and presents the advantage to be
conservative (we refer to [6] for a survey of its properties). We look at the
semi-discrete scheme, called method of lines, where only a space discretization
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of equation (1.1) is performed.
We consider a mesh of R made up of cells Ci, with center xi, i ∈ Z and

nonuniform length ∆xi; we denote xi+ 1

2

the cell interfaces, so that the control

volume can be identified as Ci = [xi− 1

2

, xi+ 1

2

) and xi =
x
i−

1
2

+x
i+1

2

2
. Then, we

construct a piecewise constant representation of the function z(x) on the
mesh, whose coefficients are zi =

1
∆xi

�

Ci
z(x) dx for example.

✲�

xi−1
�

xi
�

xi+1

xi− 1

2

xi+ 1

2

zi
zi+1

In this context, the discrete unknowns are expected to be approximations
of the mean values of u on the mesh cells (the conservative quantities are cell
centered),

ui(t) ≈
1

∆xi

�

Ci

u(t, x) dx, t ∈ R+, i ∈ Z,

while the numerical fluxes are defined at the interfaces of the mesh.
To correctly treat the source term is more difficult than it seems and

centered schemes give unsatisfactory results, as it is well reported in the
literature: a direct discretization of the source term by cell-averages, for
instance, can not preserve the steady state solutions. A better approach
is based on the Upwind Interface Source method (upwinding of external
terms was originally formulated by Roe [29]), where the source term is also
upwinded at the interfaces.

The general finite volume scheme for equation (1.1) can thus be written
in the explicit form

∆xi

dui

dt
+ (Ai+ 1

2

− Ai− 1

2

) + B+
i− 1

2

+ B−

i+ 1

2

= 0, (2.1)

dropping the time dependence of the numerical functions for simplicity.
We proceed to explain the notation in the previous formula. We first intro-
duce the discrete fluxes

Ai+ 1

2

= A(ui, ui+1), A ∈ C1, (2.2)

where the numerical function A is chosen as a consistent approximation of
the analytical flux,

A(u, u) = A(u). (2.3)
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Because of the choice of particular source terms (1.4), the function z(x) is
defined up to a constant. Therefore, without loss of generality, we suppose
the source term is discretized at the cell interfaces by means of functions

B±

i+ 1

2

= B±(ui, ui+1, zi+1 − zi), B± ∈ C2, (2.4)

and, in view of (1.4), it is natural to impose

B+(u, v, 0) = B−(u, v, 0) = 0. (2.5)

The last condition refers to the interpretation of the numerical solver (2.1),
applied to the model (1.1)-(1.4). According to the finite volume formalism,
we can identify

B+
i− 1

2

+ B−

i+ 1

2

≈

�

Ci

z�(x)b(u)dx; (2.6)

formally, this leads to deduce

B−

i+ 1

2

+ B+
i+ 1

2

≈

� x
i+1

2

xi

z�(x)b(u)dx+

� xi+1

x
i+1

2

z�(x)b(u)dx, (2.7)

that is a way to perform an interfacial approximation of zero order terms.
Such a discretization is also upwinded, in the sense that B−

i+ 1

2

represents

the contribution of the waves coming from the left of the interface xi+ 1

2

and

moving towards the cell Ci if they have a nonpositive velocity, while B+
i+ 1

2

represents the waves moving forwards from the right of xi+ 1

2

and counted only
if they have nonnegative velocity. Notice that, when the problem becomes
homogeneous (for example, z�(x) = 0 in equation (1.4), motivated by the
analogy with the Saint-Venant model), this scheme reduces to the usual
finite volume approximation for a scalar conservation law.

We observe that all what is stated in this section and in the following is
also valid for a fully explicit scheme (obtained, for instance, using a standard
forward Euler method for the time discretization),

∆xi

∆t
(un+1

i − un
i ) + (An

i+ 1

2

− An
i− 1

2

) + Bn,+

i− 1

2

+ Bn,−

i+ 1

2

= 0,

where we introduce a time-step ∆t and set tn = n∆t, n ∈ N. We then have
to consider an additional restriction on the size of the ratio ∆t

∆xi

, the usual
CFL condition, to guarantee numerical stability.
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3 Well-balanced schemes

We define general conditions on the discretizations B±

i+ 1

2

so that the nu-

merical scheme (2.1) preserves the steady state solutions. Note that all the
methods developed in the references mentioned above are compatible with
the formalism introduced in Section 2 and can be put in form (2.1), as we
will do later for some particular cases.

By integrating the stationary equation associated with (1.1)-(1.4), we ob-
tain the algebraic relation (1.6) for smooth steady state solutions. A discrete
version is given by

D(ui) + zi = Cst, ∀ i ∈ Z. (3.1)

We consider appropriate hypotheses on D, to ensure the existence of a unique
Lipschitz continuous solution of that problem, namely that D is strictly
monotonic. This assumption is restrictive and not always satisfied in realistic
situations, but it is usually made (we are aware of that does use it in [2]).

For all initial data defined according to (3.1), a solver preserving steady
states has to verify

(Ai+ 1

2

− Ai− 1

2

) + B+
i− 1

2

+ B−

i+ 1

2

= 0.

This last statement can be formulated in terms of numerical functions, thanks
to definition (2.2) and (2.4), so that it writes

A(ui, ui+1)−A(ui−1, ui)+B+(ui−1, ui, zi− zi−1)+B−(ui, ui+1, zi+1− zi) = 0,

for all ui−1, ui, ui+1, such that D(uj)+zj = H, j = i−1, i, i+1. In particular,
we choose alternatively ui−1 = ui and ui = ui+1 (then we deduce, respectively,
zi−1 = zi and zi = zi+1), to obtain equivalent conditions at the interfaces,
also exploiting properties (2.3) and (2.5),

A(ui, ui+1)− A(ui) + B−(ui, ui+1, zi+1 − zi) = 0,

A(ui+1)−A(ui, ui+1) + B+(ui, ui+1, zi+1 − zi) = 0.

We summarize the previous statements in the following proposition.

Lemma 3.1. A numerical scheme in form (2.1)-(2.5) is well-balanced, i.e.
it preserves the steady state solutions (3.1), if and only if the equalities

A(u, v)− A(u) + B−(u, v, z+ − z−) = 0, (3.2)

A(v)−A(u, v) + B+(u, v, z+ − z−) = 0, (3.3)

hold true, for all u, v, z−, z+ such that

D(u) + z− = D(v) + z+. (3.4)
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We call well-balanced or Steady State Preserving schemes the numerical
solvers for the problem (1.1)-(1.2) which satisfy those conditions.
We present some numerical schemes to which Lemma 3.1 applies. We check
these approaches enable to preserve the discrete steady state solutions, ac-
cording to the result stated above.

B.P.V. method In [2], the authors introduce their solver in a compact
form, taking into account the source term directly in the definition of the
numerical fluxes,

∆xi

dui

dt
+ (A−

i+ 1

2

− A+
i− 1

2

) = 0, (3.5)

with
A−

i+ 1

2

= A(ui, u
−

i+1), A+
i− 1

2

= A(u+
i−1, ui). (3.6)

The numerical flux used in [2] is given by a standard Engquist-Osher function,
but one readily finds out that similar methods can be formulated with any
consistent flux function A. The points u−

i+1 and u+
i−1 are defined by means

of the relations

D(u−

i+1) + zi = D(ui+1) + zi+1, (3.7)

D(u+
i−1) + zi = D(ui−1) + zi−1. (3.8)

To reproduce this scheme in form (2.1), we identify

B+
i− 1

2

= A(ui−1, ui)−A(u+
i−1, ui), B−

i+ 1

2

= A(ui, u
−

i+1)−A(ui, ui+1).

For a steady state, we immediately deduce from (3.1), (3.7) and (3.8) that

u−

i+1 = ui, u+
i−1 = ui,

then resulting in the conditions (3.2) and (3.3).
This method extends to more general classes of function D, such as

quadratic functions, and it also applies to hyperbolic systems of conservation
laws endowed with a kinetic interpretation (see [28]).

We remark that, combined with specific approximate Riemann solvers,
the algorithm (3.5)-(3.6) can be interpreted as the well-balanced scheme de-
rived by Greenberg and LeRoux [15] or by Gosse and LeRoux [11], for which
the condition (3.2)-(3.4) is verified.

The quasi-steady wave-propagation algorithm The basic idea of the
method developed by LeVêque [27] is to introduce a new Riemann problem
in the center of each mesh cell, with values u−

i on the left half of the cell
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and u+
i on the right half, whose flux difference exactly cancels the effect of

the source term. These artificial states are defined so that the cell-average is
preserved,

u−

i = ui − δi, u+
i = ui + δi,

1

2
(u−

i + u+
i ) = ui; (3.9)

moreover, if δi is chosen according to the in-cell balance condition

A(u+
i )− A(u−

i ) + z�ib(ui)∆xi = 0, (3.10)

then the jumps occurring at the cell interfaces will correspond to perturba-
tions from the steady states. Note that (3.10) represents a discrete version of
the stationary problem associated with equation (1.1). The explicit formula
for the scheme thus obtained looks like the classical Godunov solver,

∆xi

dui

dt
+
�

∆
+A(u+

i−1, u
−

i ) +∆
−A(u+

i , u
−

i+1)
�

= 0,

with

∆
+A(u+

i−1, u
−

i ) = A(u−

i )− A(u∗

i− 1

2

), (3.11)

∆
−A(u+

i , u
−

i+1) = A(u∗

i+ 1

2

)− A(u+
i ), (3.12)

where u∗

i+ 1

2

now denotes the solution to the modified Riemann problem at

the cell interfaces, between values u+
i and u−

i+1. If the solution we are looking
for is quasi-steady then we deduce from (3.9) and (3.10) that u+

i ≈ u−

i+1, as
δi tends to 0, so that the steady states are asymptotically preserved.

As for previous examples, this method can extend to any consistent nu-
merical flux function A, by rewriting the flux differences (3.11)-(3.12) in the
more general form

∆
+A(u+

i−1, u
−

i ) = A(u−

i )−A(u+
i−1, u

−

i ),

∆
−A(u+

i , u
−

i+1) = A(u+
i , u

−

i+1)− A(u+
i ).

Jin’s formulas A simple scheme for handling hyperbolic systems of con-
servation laws with source terms is proposed in [17], which preserves the
steady state solutions exactly at the cell interfaces. For methods based on
a generalized Riemann solver, it takes the form (2.1) and the source term is
discretized by

B+
i− 1

2

+ B−

i+ 1

2

=
Ai+ 1

2

− Ai− 1

2

Di+ 1

2

−Di− 1

2

(zi+ 1

2

− zi− 1

2

), (3.13)
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using interface values Ai+ 1

2

= A(ui+ 1

2

) and Di+ 1

2

= D(ui+ 1

2

), rather than the
cell-averages. Consequently, if one gets a steady state at the interfaces,

Di+ 1

2

+ zi+ 1

2

= Cst, ∀i ∈ Z,

a direct computation leads to verify that it is preserved, as we have

(Ai+ 1

2

− Ai− 1

2

) +
Ai+ 1

2

− Ai− 1

2

Di+ 1

2

−Di− 1

2

(zi+ 1

2

− zi− 1

2

) = 0.

A more generic scheme, again proposed in [17], is defined by

∆xi

dui

dt
+ (Ai+ 1

2

− Ai− 1

2

) +
bi− 1

2

+ bi+ 1

2

2
(zi+ 1

2

− zi− 1

2

) = 0. (3.14)

Although it is not possible to derive an explicit expression of D for a gen-
eral flux function A, some applications considered by the author (shallow
water equations, for instance) show this method yields formally second order
approximations to the steady states at the interfaces, as suggested by an
asymptotic expansion of (3.14).

The numerical discretizations formulated by Jin are called Steady State
Capturing schemes, that is a weaker definition since only the interface values
are preserved. According to the idea to process the source term by making
use explicitly of relations on the steady states, a Steady State Preserving
variation of (3.13), which agrees with the general formalism (2.1)-(2.4), is
given by

B+
i− 1

2

=
A(ui−1, ui)− A(ui)

D(ui−1)−D(ui)
(zi − zi−1),

B−

i+ 1

2

=
A(ui, ui+1)− A(ui)

D(ui+1)−D(ui)
(zi+1 − zi).

Again we can readily check the condition (3.2)-(3.4) for this method.

4 Consistency

In order to investigate theoretical properties of the Upwind Interface
Source method, a crucial question to discuss is that equation (2.1) verifies
the consistency with the continuous equation (1.1)-(1.4).

We indicate a rigorous definition of consistency, which also results to be
satisfied by well-balanced schemes.
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Definition 4.1. A numerical scheme in form (2.1)-(2.5) is said to be con-
sistent with (1.1) if the following limit is verified, locally uniformly in u,

lim
λ → 0

B+(u, u,λ) + B−(u, u,λ)

λ
= b(u). (4.1)

We point out that the above definition of consistency for the source term, in
finite volume sense, does not imply that the consistency error vanishes just as
for the flux terms. Indeed, because of the choice of an arbitrary nonuniform
spatial mesh, the space-step ∆xi could be very different from the length of
an interfacial interval ∆xi+ 1

2

= |xi+1 − xi| = ∆xi/2 + ∆xi+1/2; therefore,

the corresponding interfacial discretizations (2.6) and (2.7) may have very
different values. The condition (4.1) we have established is closer to (2.7),
which is the most appropriate interpretation of the discrete source term for
the general method illustrated in this paper.

As it will be seen clearly in next section, consistency plays an important
role to achieve convergence properties of a numerical solver, in particular to
prove that the strong limit of discrete approximations (as the mesh is refined)
is the suitable weak solution of the continuous problem.

The following result guarantees consistency for the numerical schemes
described in Section 3.

Lemma 4.2. We assume D is monotonic. Let a numerical solver for the
system (1.1)-(1.4) satisfy the conditions (3.2)-(3.4) in Lemma 3.1, then the
property (4.1) is verified. In other words, all Steady State Preserving schemes
are consistent.

Proof. We perform a Taylor expansion of the relation (3.4) and we deduce
that, for some ξ ∈ (u, v),

D�(ξ)(u− v) = z+ − z−. (4.2)

After adding equality (3.2) to (3.3), thanks to the definition (1.3) and (1.6),
this leads to

B+(u, v, z+−z−)+B−(u, v, z+−z−) = A(u)−A(v) =
a(ζ)

D�(ξ)
(z+−z−), (4.3)

for some ζ ∈ (u, v). We also note that the regularity assumed for the numer-
ical functions enables to perform the general approximations

B±(u, v, z+ − z−) = B±(u, u, z+ − z−)

+
∂

∂v
B±(u, u, z+ − z−)(v − u) +O(|v − u|2).
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It thus follows from (2.5) that

∂

∂v
B+(u, u, 0) =

∂

∂v
B−(u, u, 0) = 0

and, in view of (4.2), we obtain that

lim
z+ − z− → 0

B+(u, u, z+ − z−) + B−(u, u, z+ − z−)

z+ − z−

= lim
z+ − z− → 0

B+(u, v, z+ − z−) + B−(u, v, z+ − z−)

z+ − z−
.

(4.4)

By combining relation (4.3) with (4.4), since

a(ζ)

D�(ξ)
−→

a(u)

D�(u)
= b(u),

we finally conclude that the property (4.1) is satisfied.

5 A Lax-Wendroff type convergence theorem

We are now interested in the convergence of the numerical scheme (2.1),
as the mesh size tends to zero, by analyzing the convergence properties of its
solution {ui(t)}i∈Z.
A discretization of the initial condition is given, for instance, by the sequence

u0
i =

1

|Ci|

�

Ci

u0(x)dx, i ∈ Z.

As a measure of mesh refinement, we consider the parameter

h = sup
i∈Z

∆xi.

For our purpose, we introduce the piecewise constant function uh, defined
a.e. in R+×R by

uh(t, x) =
�

i∈Z

ui(t)1Ci(x), (5.1)

and we study the convergence towards a solution to the problem (1.1)-(1.2),
as h tends to 0.
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Theorem 5.1. Assume z∈W 1,1 for the source term (1.4). Let uh be obtained
from a numerical scheme in form (2.1)-(2.5), which satisfies the consistency
condition (4.1). Suppose there exists a constant C such that, uniformly in h,

||uh||L∞

loc
(R+×R) ≤ C (5.2)

and that uh converges to a function u in L1
loc(R+×R), as h tends to 0. More-

over, we assume either that, for all bounded intervals I of R,

�

i∈K

∆xi+ 1

2

|ui+1(t)− ui(t)|
h→0
−→ 0, in L1

loc(R+), (5.3)

where K denotes the set of indices such that xi∈I; or a geometrical constraint
on the spatial mesh, that is

∃ α, β > 0 so that α∆xi+1 ≤ ∆xi ≤ β∆xi+1, ∀i ∈ Z. (5.4)

Then u is a weak solution to the initial value problem (1.1)-(1.2), i.e.

∂u

∂t
+

∂A(u)

∂x
+ z�(x)b(u) = 0, u(0, x) = u0(x), in D�(R+×R).

Proof. The proof is an adaptation of the classical Lax-Wendroff theorem [25]
for homogeneous systems of conservation laws.
Let ϕ ∈ C1

0(R+×R) be a test function and set

ϕi(t) = ϕ(t, xi), i ∈ Z. (5.5)

After multiplying equation (2.1) by ϕi, we sum over i and integrate in dt, to
obtain

�

R+

�

i∈Z

∆xi

dui

dt
ϕidt+

�

R+

�

i∈Z

�

Ai+ 1

2

− Ai− 1

2

�

ϕidt

+

�

R+

�

i∈Z

�

B+
i− 1

2

+ B−

i+ 1

2

�

ϕidt = 0.

An integration by parts in the first term and a summation by parts in the
other ones give

�

R+

�

i∈Z

∆xiui

dϕi

dt
dt+

�

R+

�

i∈Z

Ai+ 1

2

(ϕi+1 − ϕi)dt

−

�

R+

�

i∈Z

�

B+
i+ 1

2

ϕi+1 + B−

i+ 1

2

ϕi

�

dt+
�

i∈Z

∆xiu
0
iϕi(0) = 0.

(5.6)
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We define a.e. in R+×R the piecewise constant functions Ah and Bh, associ-
ated with the numerical flux and source term by

Ah(t, x) = A(ui, ui+1), (5.7)

Bh(t, x) =
1

∆xi+ 1

2

�

B+(ui, ui+1, zi+1 − zi) + B−(ui, ui+1, zi+1 − zi)
�

, (5.8)

for t ∈ R+ and x ∈ [xi, xi+1), recalling that ∆xi+ 1

2

= |xi+1−xi| =
∆xi

2
+ ∆xi+1

2
.

Next, according to (5.5), we introduce the piecewise constant approximation
of the test function

ϕh(t, x) = ϕi(t), t ∈ R+, x ∈ Ci,

which converges to ϕ (together with ∂ϕh

∂t
towards ∂ϕ

∂t
) uniformly in C0(R+×R),

as h tends to 0. We also consider a continuous piecewise linear function ψh

such that

ψh(t, xi) = ϕi(t), i ∈ Z,

∂ψh

∂x
(t, x) =

ϕi+1(t)− ϕi(t)

∆xi+ 1

2

, t ∈ R+, x ∈ [xi, xi+1),

so that ψh and ∂ψh

∂x
converge respectively to ϕ and ∂ϕ

∂x
in C1

0(R+ × R), as h
tends to 0. As a direct consequence of these definitions, we have

ϕj =
ϕi + ϕi+1

2
+O(h), j = i, i+ 1,

� xi+1

xi

ψh(t, x)dx =
ϕi + ϕi+1

2
∆xi+ 1

2

.

Taking into account all the relations stated above, we can put the discrete
sum (5.6) into the integral form

�

R+

�

R

uh(t, x)
∂ϕh

∂t
(t, x)dxdt+

�

R+

�

R

Ah(t, x)
∂ψh

∂x
(t, x)dxdt (5.9)

−

�

R+

�

R

Bh(t, x) (ψh(t, x) +O(h)) dxdt+

�

R

u0
h(x)ϕh(0, x)dx = 0.

As h tends to 0, passing to the limit in (5.9), we claim that it turns out

�

R+

�

R

�

u(t, x)
∂ϕ

∂t
(t, x) + A(t, x)

∂ϕ

∂x
(t, x)− B(t, x)ϕ(t, x)

�

dxdt

+

�

R

u0(x)ϕ(0, x)dx = 0.

(5.10)
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The computation is obvious for the first and the last terms, by exploiting the
convergence properties of approximations uh and ϕh.
For the other integrals of (5.9), the process is less straightforward: as we
remarked in Section 4, due to the presence of a variable space-step, the
interfacial interval [xi, xi+1) could be really different from the mesh cell Ci
(where the conservative unknowns are discretized); so, standard techniques
do not work in this case and proving convergence requires the additional
hypotheses on the structures that we have imposed.

✲�

xi−1
�

xi
�

xi+1

xi− 1

2

xi+ 1

2

ui
ui+1

We need to characterize the functions A(t, x) and B(t, x) in equation (5.10)
as the weak limits of Ah(t, x) and Bh(t, x), for reproducing them in terms of
the numerical unknowns.

We first observe that, thanks to (5.2) and the properties (2.2)-(2.3) of the
numerical flux, Ah is locally bounded on R+×R (uniformly in h). Coming
back to discrete notation (5.7), we decompose on the subintervals [xi, xi+ 1

2

)

and [xi+ 1

2

, xi+1), rearranging terms as follows,

Ah(t, x) =
�

i∈Z

A(ui)1[x
i−

1
2

,x
i+1

2

)(x)

+
�

i∈Z

[A(ui, ui+1)− A(ui)] 1[xi,x
i+1

2

)(x)

+
�

i∈Z

[A(ui−1, ui)− A(ui)] 1[x
i−

1
2

,xi)(x)

= A(uh(t, x)) +R+
h (t, x) +R−

h (t, x).

(5.11)

We conclude that A(u(t, x)) is the expected value for the limit A(t, x), as h
tends to 0, provided that the two remainders in (5.11) vanish.
We only treat with R+

h , the other one results in the same way. According to
definition (5.1), since uh converges to a function u in L1

loc(R+×R), we also
derive

�

i∈Z

|ui(t)− ūi(t)|1Ci(x) −→
L1
loc

(R+×R)
0, (5.12)

where the sequence {ūi(t)}i∈Z is defined by the cell-averages of u on the
discretization mesh. Let I be any bounded interval of R and we denote by
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CA a Lipschitz constant for A, then the assumptions on the numerical flux
lead to estimate (with the notation set out above in the theorem)

�

I

�

�R+
h (t, x)

�

� dx ≤

�

I

�

i∈Z

|A(ui, ui+1)− A(ui)| 1[xi,x
i+1

2

)(x) dx

≤ CA

�

i∈K

∆xi

2
|ui+1 − ui|.

(5.13)

Under the hypothesis (5.3), this last term vanishes and the conclusion is done.
Otherwise, we can further manipulate the previous bound by introducing
appropriate quantities, that is

�

i∈K

∆xi|ui+1 − ui| ≤
�

i∈K

∆xi|ui+1 − ūi+1|

+
�

i∈K

∆xi|ūi+1 − ūi|+
�

i∈K

∆xi|ūi − ui|.
(5.14)

In particular, for the alternative hypothesis of nondegeneracy (5.4) made on
the mesh, we have

�

i∈K

∆xi|ui+1 − ūi+1| ≤ β
�

i∈K

∆xi+1|ui+1 − ūi+1|,

so that property (5.12) ensures that first and last sum in the right-hand side
of (5.14) vanish, as h tends to 0. It remains the second term to be studied,
involving only the function u, which immediately converges to 0 if u ∈BV
(or smooth enough); this result also holds for u ∈ L1, by applying standard
regularization arguments (we define u�∈BV , u�→u in L1, then we perform
an estimation on the cell-averages ūi and ū�

i like in (5.14) and we finally con-
clude by combining convergence properties).

We now pass to the source term, to which a similar procedure applies. Taking
into account the definition (5.8), setting B = B++B−, we can write

Bh(t, x) =
�

i∈Z

B(ui, ui+1, zi+1 − zi)

zi+1 − zi
·
zi+1 − zi
∆xi+ 1

2

1[xi,xi+1)(x).

Notice that the hypothesis z∈W 1,1 guarantees that discrete differences con-
verge to the derivative z� ∈ L1; together with condition (4.1), this leads to
justify the assertion that Bh(t, x) is L

1 − weak bounded in R+×R.
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We proceed as in (5.11), by performing the following decomposition

Bh(t, x) =
�

i∈Z

B(ui, ui, zi+1 − zi)

zi+1 − zi
·
zi+1 − zi
∆xi+ 1

2

1[xi,x
i+1

2

)(x) + E+
h (t, x)

+
�

i∈Z

B(ui, ui, zi − zi−1)

zi − zi−1

·
zi − zi−1

∆xi− 1

2

1[x
i−

1
2

,xi)(x) + E−

h (t, x).

(5.15)

The sum of the two principal terms of (5.15) converges to z�(x)b(u), in view
of the arguments just mentioned and the strong convergence of uh towards u,
by means of Lebesgue’s theorem.
For the remainders, we give details in the case of E+

h (t, x), for instance. We
then have

E+
h (t, x) =

�

i∈Z

1

∆xi+ 1

2

(B(ui, ui+1, zi+1 − zi)

−B(ui, ui, zi+1 − zi)) 1[xi,x
i+1

2

)(x).

(5.16)

The analogue of estimation (5.13) for (5.16) becomes
�

I

|E+
h (t, x)|dx ≤

�

i∈K

|B(ui, ui+1, zi+1 − zi)− B(ui, ui, zi+1 − zi)|

=
�

i∈K

�

�

�

�

� ui+1

ui

∂B

∂v
(ui, v, zi+1 − zi)dv

�

�

�

�

=
�

i∈K

�

�

�

�

� ui+1

ui

�

∂B

∂v
(ui, v, zi+1 − zi)−

∂B

∂v
(ui, v, 0)

�

dv

�

�

�

�

≤ CB

�

i∈K

|ui+1 − ui||zi+1 − zi|,

where we exploited property (2.5) and the regularity assumed in (2.4). Then
we can regularize the function z by introducing z� ∈W 1,∞, z� → z in W 1,1,
for which we write

�

i∈K

|ui+1−ui||zi+1 − zi| ≤
�

i∈K

|ui+1 − ui||zi+1 − z�i+1|

+
�

i∈K

|ui+1 − ui||z
�
i − zi|+

�

i∈K

|ui+1 − ui||z
�
i+1 − z�i |

≤ 4C
�

i∈K

|z�i − zi|+ C�

�

i∈K

∆xi+ 1

2

|ui+1 − ui|,

(5.17)

with C defined as in (5.2) and C� only depending on the regularization. The
same procedure we have considered before allow us to conclude that the up-
per bound (5.17) vanishes, as h tends to 0.
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Thanks to the previous computations, we have proved that the limit function
u satisfies the weak formulation of the Cauchy problem (1.1)-(1.2),
�

R+

�

R

�

u(t, x)
∂ϕ

∂t
(t, x) + A(u(t, x))

∂ϕ

∂x
(t, x)− z�(x)b(u(t, x))ϕ(t, x)

�

dx dt

+

�

R

u0(x)ϕ(0, x)dx = 0,

so that the proof of the theorem is completed.

Remark 5.2. For the particular case of uniform spatial mesh, i.e. ∆xi = h,
∀i ∈ Z, sets of weaker hypotheses can be considered and the proof is simplified,
due to the fact that the consistency error vanishes for the source term (refer to
[9] and [26]). The version presented above is compatible with those general
statements (see also [10]) and actually extends the classical Lax-Wendroff
theorem to scalar conservation laws with a source term.

6 Conclusion

We have proposed a consistency condition for hyperbolic conservation laws
with a source term z�(x)b(u), discretized according to the Upwind Interface
Source method. We have proved that numerical schemes which preserve the
steady state solutions are consistent in that sense. Moreover, a strong limit
of discrete solutions satisfies the continuous equation, as the mesh is refined.
Theorem 5.1 thus constitutes a fundamental result in the theoretical analysis
of the numerical method.

Nevertheless, the conditions established in the previous sections do not
guarantee that discrete approximations given by (2.1)-(2.5) do converge and
we do not know whether the limit weak solution is the unique physical so-
lution of the Cauchy problem (1.1)-(1.4). For that we need to precise some
criteria of stability for the approximate solution and we have to consider fur-
ther assumptions on the discrete functions to derive suitable error estimates.

In order to ensure that a weak solution obtained as limit of (5.1) satisfies
the family of entropy inequalities (1.5), it suffices to show that a discrete
entropy inequality,

∆xi

d

dt
S(ui) +

�

ηS
i+ 1

2

− ηS
i− 1

2

�

+ BS,+

i− 1

2

+ BS,−

i+ 1

2

≤ 0, (6.1)

holds for the numerical scheme, with the usual formalism

ηS
i+ 1

2

= ηS(ui, ui+1), BS,±

i+ 1

2

= BS,±(ui, ui+1, zi+1 − zi), (6.2)
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where ηS and BS,± are some numerical entropy flux function and source term,
which must be consistent with η(u) and S �(u)B(x, u) in the same way that we
required A and B± to be consistent with A(u) and B(x, u) in (1.1). There-
fore, mimicking the proof of the Lax-Wendroff theorem, we can prove that
the weak form of the entropy inequality (1.5) is also verified.
Note that the possibility to write formulas (6.1)-(6.2) relies only on the char-
acterization of the numerical flux (namely, at least the condition of E-scheme
has to be assumed); for the source term, the definition is automatically made,
since we have

BS,+

i− 1

2

= S �(ui)B
+
i− 1

2

, BS,−

i+ 1

2

= S �(ui)B
−

i+ 1

2

.

The question to determine the order of accuracy of the numerical scheme
by means of error estimates is more delicate than for the homogeneous sys-
tem, due to the presence of source terms. The approach formulated by
Kruzkov is used henceforth in the literature (see [11],[12] and [19],[20] for
instance), providing a method to convert any discrete entropy inequality
into an error estimate. The general procedure consists in the following for-
mulation for the approximate solution, in D�(R+ × R),

∂S(uh)

∂t
+

∂

∂x
ηS(uh) + S �(uh)z

�(x)b(uh) ≤
∂

∂x
Err2(t, x) + Err1(t, x),

where we set

∂

∂x
Err1(t, x) =

∂

∂x
ηS(uh)−

�

i∈Z

1

∆xi

�

ηS
i+ 1

2

− ηS
i− 1

2

�

1Ci(x),

Err2(t, x) = S �(uh)z
�(x)b(uh)−

�

i∈Z

1

∆xi

�

BS,+

i− 1

2

+ BS,−

i+ 1

2

�

1Ci(x).

Then the results of [3] apply to this particular problem, to deduce stability
bounds and conclude the convergence properties we have assumed in the
Theorem 5.1. We remark that regularity hypotheses like (5.3) and (5.4) are
necessary to control the variations of the numerical solution in comparison
with the space-step (refer to [30] for the homogeneous problem).
In order to avoid BV estimates, which are not available in case of insufficiently
smooth source terms and for multidimensional systems on an unstructured
mesh, arguments based on the measure-valued method and the so-called weak
BV estimates are developed (see [7] and [4],[5], for instance) or the kinetic
approach presented in [2].
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Abstract

The Upwind Interface Source method for hyperbolic conservation
laws presented in [30] is essentially first order accurate. Under appro-
priate hypotheses of consistency on the source discretization, we prove
Lp-error estimates, for 1≤ p <+∞, in the case of a uniform spatial
mesh, for which an optimal result can be obtained. We thus conclude
that the same convergence rate holds as in the corresponding homo-
geneous problem (refer to [8]). To improve the numerical accuracy, we
develop two different approaches of treating the source term and we
discuss the question to derive second order error estimates. Numerical
evidence shows that those techniques produce high resolution schemes
compatible with the Upwind Interface Source method.

Key-words: scalar conservation laws, source terms, upwind in-
terfacial methods, consistency, error estimates.

1 Introduction

We consider the initial values problem for a transport equation with non-
linear source term, in one space dimension,

∂tu+ ∂xu = B(x, u), t ∈ R+, x ∈ R, (1.1)

u(0, x) = u0(x) ∈ Lp(R) ∩ L∞(R), 1 ≤ p < +∞, (1.2)

with u(t, x) ∈ R and the analytical source operator is given by

B(x, u) = z�(x) b(u), z� ∈ Lp(R), b ∈ C1(R). (1.3)
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The system (1.1)-(1.3) corresponds to the simplest model of scalar conserva-
tion law with a geometrical source term, extensively treated in [30].
The entropy inequalities associated to (1.1) are described by the equation

∂tS(u) + ∂xS(u) + S �(u)B(x, u) ≤ 0, (1.4)

for any convex entropy function S (see [17] and [18]). Under stronger assump-
tions on the source term, Kružkov [17] proved existence and uniqueness
of the entropy solution to the problem (1.1)-(1.2), in the functional space
L∞([0, T );Lp(R)), for all T ∈ R+. Another approach, based on convergence
analysis for special approximations, is presented in [1]. In the case of singu-
lar source terms (namely, z discontinuous), a uniqueness result has recently
been proved by Vasseur [35].

1.1 Formalism of the Upwind Interface Source method

We set up a uniform mesh on R, whose vertices are xi, i ∈ Z and with
characteristic space-step h. We denote by Ci = [xi− 1

2

, xi+ 1

2

) the control

volume (cell) centered on xi, where xi+ 1

2

= xi+xi+1

2
are the cell interfaces, so

that h = length(Ci). Then we construct a piecewise constant approximation
of the function z on the mesh, for example

zh(x) =
�

i∈Z

zi1Ci
(x), zi =

1

h

�

Ci

z(x) dx, (1.5)

where 1Ci
is the characteristic function of the cell Ci.

✲�

xi−1

xi− 1

2

�

xi

xi+ 1

2

�

xi+1

zi
zi+1

We also introduce a piecewise constant approximation of the analytical so-
lution to the problem (1.1)-(1.2), defined by

uh(t, x) =
�

i∈Z

ui(t)1Ci
(x), ui(t) =

1

h

�

Ci

u(t, x) dx. (1.6)

In the above framework, the numerical solution obtained from a finite volume
scheme applied to (1.1)-(1.2) is a function vh(t, x), whose cell-averages

vi(t) =
1

h

�

Ci

vh(t, x) dx, i ∈ Z, (1.7)
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are interpreted as approximations of the cell-averages of the analytical solu-
tion, vi(t) ≈ ui(t), i ∈ Z. The general scheme for (1.1) reads

∂tv
h + ∂xv

h = BN(x, vh), (1.8)

with initial data corresponding to the approximate initial condition

vh0 (x) =
�

i∈Z

u0i1Ci
(x), u0i =

1

h

�

Ci

u0(x) dx. (1.9)

According to the Upwind Interface Source method in [30], appropriate
discretizations of the source term in (1.8) are given by

BN(x, vh) =
�

i∈Z

1

h

�

B+(vi−1, vi,∆zi− 1

2

) + B−(vi, vi+1,∆zi+ 1

2

)
�

1Ci
, (1.10)

where we set ∆zi+ 1

2

= zi+1 − zi (we dropped the time and space dependence

in the formula, for simplicity). We assume the following consistency proper-
ties for the numerical source operator (1.10), in respect of (1.3), which are
fundamental to the convergence analysis,

B± ∈ C2, B±(u, v, 0) = 0,
∂B±

∂u
(u, v, 0) =

∂B±

∂v
(u, v, 0) = 0, (1.11a)

lim
ζ→0

B+(u, u, ζ) + B−(u, u, ζ)

ζ
= b(u). (1.11b)

The last limit holds uniformly in u, as specified by the further assumption
�

�

�

�

B+(u, u, ζ) + B−(u, u, ζ)

ζ
− b(u)

�

�

�

�

≤ KB ζ, (1.12)

where KB is a fixed constant (independent of u). Moreover, we denote by Lb

and LB any Lipschitz constant associated respectively to the continuous or
discrete source operator.

1.2 What is a second order scheme for the Upwind
Interface Source method?

In order to obtain second order extensions of the discrete solver (1.8)-(1.9),
we apply a slope limiter method to the numerical functions: the basic idea
is to replace the piecewise constant reconstruction on the mesh of the ap-
proximate solution by more accurate reconstructions, namely piecewise linear
(refer to [10] and [22] for a survey of high resolution methods).
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We associate to the numerical solution (1.7) some coefficients, defined as
second order interpolation of the discrete unknowns,

v̄i(t, x) = vi(t) + (x− xi)v
�

i, i ∈ Z, x ∈ Ci, (1.13)

where v�i indicates a generic numerical derivative (computed by means of an
appropriate limiter, as it will be discussed more precisely later on).
From (1.6), analogous definitions are introduced for the analytical solution,

ūi(t, x) = ui(t) + (x− xi)u
�

i, i ∈ Z, x ∈ Ci. (1.14)

The function z can also be represented in terms of piecewise linear approxi-
mations on the spatial mesh, departing from (1.5), with coefficients

z̄i(x) = zi + (x− xi)z
�

i, x ∈ Ci.

At the cell interfaces, the values of the numerical functions are given by

v−i = v̄i(xi− 1

2

) = vi −
h

2
v�i, v+i = v̄i(xi+ 1

2

) = vi +
h

2
v�i, (1.15a)

z−i = z̄i(xi− 1

2

) = zi −
h

2
z�i, z+i = z̄i(xi+ 1

2

) = zi +
h

2
z�i, (1.15b)

as represented in the figure below, so that ∆zi+ 1

2

= z−i+1− z+i in this case (we

drop the time and space dependence when no mistake is possible).

✲�

xi−1

xi− 1

2

�

xi

xi+ 1

2

�

xi+1













�

zi−1

z+i−1













�

zi

z−i
z+i

✥✥✥✥✥✥✥✥

�

zi+1z−i+1

Therefore, it is natural to perform a discretization of the source term (1.3)
by using the interfacial values (1.15a)-(1.15b), as follows,

BN(x, vh) =
�

i∈Z

1

h

�

B+(v+i−1, v
−

i ,∆zi− 1

2

) + B−(v+i , v
−

i+1,∆zi+ 1

2

)
�

1Ci

+
�

i∈Z

z�i b(vi) 1Ci
,

(1.16)

with an additional term in comparison to the discrete source operator (1.10),
which depends on the cell-averages and is necessary to achieve second order
estimates (see Section 4 for details).
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An alternative approach to formulating second order extensions of the
Upwind Interface Source method is based on improving the consistency prop-
erties of the numerical source operator.
We consider a piecewise constant approximation (1.5) of the function z and
piecewise linear reconstructions (1.13) of the numerical solution on the mesh,
to define the upwind interfacial discretization

BN(x, vh) =
�

i∈Z

1

h

�

B+(v+i−1, v
−

i ,∆zi− 1

2

) + B−(v+i , v
−

i+1,∆zi+ 1

2

)
�

1Ci
, (1.17)

where the numerical functions are computed on the interfacial values (1.15a)
and ∆zi+ 1

2

= zi+1 − zi. To obtain second order accuracy, we need to assume

that (1.11a) holds and the second order definition of consistency
�

�

�

�

B+(u, u, ζ) + B−(u, u, ζ)

ζ
− b(u)

�

�

�

�

≤ KB ζ2. (1.18)

This is suggested by the particular form of the source term (1.3), given by
the product of functions which exhibit different orders of derivative.

Remark 1.1. In effect, the two discretizations (1.16) and (1.17) are strictly
related, as formally verified by means of standard asymptotic expansions on
the numerical functions and simple algebraic calculations with the discrete
differences of values (1.5) or (1.15b). We also note that many of the second
order schemes proposed in the literature do not include the additional term
in (1.16), for the sake of simplicity (see [25], [2] and [29], for instance), but
that is probably recovered implicitly in the formulation.

1.3 Convergence and error estimates

To deal with the question of deriving error estimates for the approxima-
tion (1.8) to the equation (1.1), we introduce the error function

e(t, x) = u(t, x)− vh(t, x), (1.19)

which satisfies

∂te+ ∂xe = B(x, u)− BN(x, vh)

=
�

B(x, u)− BN(x, uh)
�

+
�

BN(x, uh)− BN(x, vh)
�

:= C(u; uh) + S(uh; vh).

(1.20)

From (1.6) and (1.7), we obtain the usual expression for the cell-averages,

ei(t) =
1

h

�

Ci

e(t, x) dx = ui(t)− vi(t), i ∈ Z. (1.21)
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The operators C(u; uh) and S(uh; vh) in the formula (1.20) indicate the con-
sistency and stability error term respectively.

The following result constitute the main stage of the convergence analysis
for the Upwind Interface Source method.

Theorem 1.2. We assume z ∈ W 2,p, 1 ≤ p < +∞, and we consider the
numerical source operator (1.10) in (1.20). Then, for all t ∈ R+, the error
function (1.19) verifies the first order estimate

�e(t)�Lp ≤ C(t)

�

�e0�Lp + h�z�W 2,p + h

� t

0

exp{−Cs}�u(s)�W 1,p ds

�

,

(1.22)
where C(t) is a constant independent of h.

The convergence properties of second order schemes are notably affected
by the technique used to construct piecewise linear approximations of the nu-
merical functions, namely the choice of the slope limiter, as pointed out by
several authors (see [27], [36] and [15]). Without appropriate hypotheses on
the coefficients of such approximations, the proof of the consistency estimate
given in Section 3.2 fails and numerical evidence shows that the discretiza-
tion (1.16) loses second order accuracy (refer to Section 4 for details).

The following results extend the one which is established in Theorem 1.2
to the discretization (1.16) and (1.17).

Theorem 1.3. We assume z ∈ W 3,p, 1 ≤ p < +∞, and we consider the
numerical source operator (1.16), with discrete derivatives computed in the
restricted class of slope limiters introduced in Section 3. Then, for all t∈R+,
the error function (1.19) verifies the second order estimate

�e(t)�Lp ≤ C(t)

�

�e0�Lp + h2�z�W 3,p + h2

� t

0

exp{−Cs}�u(s)�W 2,p ds

�

,

(1.23)
where C(t) is a constant independent of h.

Theorem 1.4. We assume z ∈ W 3,p, 1 ≤ p < +∞, and we consider the
numerical source operator (1.17), with the consistency property (1.18). Then,
for all t∈R+, the error function (1.19) verifies the second order estimate

�e(t)�Lp ≤ C(t)

�

�e0�Lp + h2�z�W 3,p + h2

� t

0

exp{−Cs}�u(s)�W 2,p ds

�

,

(1.24)
where C(t) is a constant independent of h.
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Because of the definition (1.6) and (1.9), we have vh0 = uh
0 and then we

deduce from (1.19) that e0(x) = u0(x)− uh
0(x), x∈R. Besides, the following

statements are classical and not difficult to prove (see [5], for instance),

�uh
0�Lp ≤ �u0�Lp , 1 ≤ p < +∞,

�e0�Lp ≤ Ch if u0 ∈ W 1,p,

�e0�Lp ≤ Ch2 if u0 ∈ W 2,p.

The convergence of initial data in (1.22), (1.23) and (1.24), as the mesh size
tends to zero, is thus guaranteed by the first and second order convergence
of piecewise constant approximations.
The detailed proofs of Theorem 1.2, Theorem 1.3 and Theorem 1.4, with the
corresponding intermediate stages, are presented in Section 2 and Section 3.

Remark 1.5. The same approach as described above applies to nonlinear
scalar conservation laws with a source term, also to define numerical fluxes
in semi-discrete methods (refer to [30] for specific notations). Therefore, the
arguments developed in this paper might extend to the general case, to derive
complete error estimates for the Upwind Interface Source method.

2 Error estimates for first order schemes

Before giving details about the estimates, we introduce some relations on
the discrete differences of numerical functions, we will frequently use later
on the proofs.

We consider a generic function w ∈ C1, whose cell-averages on the spatial
mesh are denoted by wi =

1
h

�

Ci
w(x) dx, i∈Z. By performing appropriate

expansions, we obtain

wi+1 − wi =

�

Ci

w�(ξ(x)) dx (2.1a)

= hw�(xi) +

�

Ci

w��(η(x))(x− xi) dx, (2.1b)

wi+1 − 2wi + wi−1 = h

�

Ci

w��(ϑ(x)) dx, (2.1c)

for some ξ(x), η(x),ϑ(x) ∈ Ci. We also recall the classical Taylor’s formula,

w(x) =
n

�

k=0

1

k!
wk(xi)(x− xi)

k +
1

n!

� x

xi

(x− s)nwn+1(s) ds, (2.2)

in the particular form with an integral expression for the remainder.
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2.1 Stability estimate

We begin by dealing with the stability error term S(uh; vh) in (1.20), to
test the stability of the numerical source operator.

Lemma 2.1. For the assumptions of Theorem 1.2, together with (1.11a),
there exists a constant C := C(LB, �z

��L∞), independent of h, such that
�

�

�

�

�

R

S(uh; vh) |e|p−1sgn(e) dx

�

�

�

�

≤ C�e�pLp . (2.3)

Proof. From (1.20), we have
�

R

S(uh; vh) |e|p−1sgn(e) dx =

�

R

�

BN(x, uh)− BN(x, vh)
�

|e|p−1sgn(e) dx.

Then, according to (1.10) and (1.6), we deduce
�

R

S(uh; vh) |e|p−1sgn(e) dx

=

�

R

�

�

i∈Z

1

h

�

B+(ui−1, ui,∆zi− 1

2

) + B−(ui, ui+1,∆zi+ 1

2

)
�

1Ci

−
�

i∈Z

1

h

�

B+(vi−1, vi,∆zi− 1

2

) + B−(vi, vi+1,∆zi+ 1

2

)
�

1Ci

�

|e|p−1sgn(e) dx

=
�

i∈Z

�

B+(ui−1, ui,∆zi− 1

2

)− B+(vi−1, vi,∆zi− 1

2

)
�

e
p−1
i

+
�

i∈Z

�

B−(ui, ui+1,∆zi+ 1

2

)− B−(vi, vi+1,∆zi+ 1

2

)
�

e
p−1
i

=
�

i∈Z

�

B+(ui, ui+1,∆zi+ 1

2

)− B+(vi, vi+1,∆zi+ 1

2

)
�

e
p−1
i+1

+
�

i∈Z

�

B−(ui, ui+1,∆zi+ 1

2

)− B−(vi, vi+1,∆zi+ 1

2

)
�

e
p−1
i := S1 + S2,

where we set e
p−1
i = 1

h

�

Ci
|e|p−1sgn(e) dx (as usually, we dropped the time

and space dependence in the above formulas for simplicity).
We estimate the terms S1 and S2 separately. For S1, we have

S1 =
�

i∈Z

�

B+(ui, ui+1,∆zi+ 1

2

)− B+(vi, ui+1,∆zi+ 1

2

)
�

e
p−1
i+1

+
�

i∈Z

�

B+(vi, ui+1,∆zi+ 1

2

)− B+(vi, vi+1,∆zi+ 1

2

)
�

e
p−1
i+1
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=
�

i∈Z

�
� ui

vi

∂B+

∂u
(u, ui+1,∆zi+ 1

2

) du

�

e
p−1
i+1

+
�

i∈Z

�
� ui+1

vi+1

∂B+

∂v
(vi, v,∆zi+ 1

2

) dv

�

e
p−1
i+1 ,

(2.4)

so that, in view of (1.11a), we get

S1 =
�

i∈Z

�
� ui

vi

�

∂B+

∂u
(u, ui+1,∆zi+ 1

2

)−
∂B+

∂u
(u, ui+1, 0)

�

du

�

e
p−1
i+1

+
�

i∈Z

�
� ui+1

vi+1

�

∂B+

∂v
(vi, v,∆zi+ 1

2

)−
∂B+

∂v
(vi, v, 0)

�

dv

�

e
p−1
i+1

≤ LB

�

i∈Z

|∆zi+ 1

2

| (|ui − vi|+ |ui+1 − vi+1|) |e
p−1
i+1 |.

(2.5)

We proceed in similar way for S2 and we establish the relations corresponding
to (2.4) and (2.5). Therefore, also recalling (1.21), we conclude

S1 ≤ LB

�

i∈Z

|∆zi+ 1

2

| (|ei|+ |ei+1|) |e
p−1
i+1 |, (2.6)

S2 ≤ LB

�

i∈Z

|∆zi+ 1

2

| (|ei|+ |ei+1|) |e
p−1
i |. (2.7)

Because of |sgn(e)| ≤ 1, by using the Hölder’s inequality for 1 ≤ p < +∞,
simple computations lead to obtain |ep−1

i | ≤ |ei|
p−1. This implies, after rear-

ranging terms in (2.6) and (2.7), that

�

�

�

�

�

R

S(uh; vh) |e|p−1sgn(e) dx

�

�

�

�

≤ LB

�

i∈Z

|∆zi+ 1

2

|
�

|ei|
p + |ei|

p−1|ei+1|+ |ei||ei+1|
p−1 + |ei+1|

p
�

.
(2.8)

Now the Young’s inequality, ab ≤ ap

p
+ bq

q
, 1

p
+ 1

q
= 1, applied to (2.8) and the

immediate property |ei|
p ≤ 1

h

�

Ci
|e|p dx, i∈Z, provide

�

�

�

�

�

R

S(uh; vh) |e|p−1sgn(e) dx

�

�

�

�

≤ 2LB

�

i∈Z

|∆zi+ 1

2

|

h

�
�

Ci

|e|p dx+

�

Ci+1

|e|p dx

�

.

(2.9)
In the case of (1.5), according to (2.1a), a direct estimate yields the first order

approximation
|∆z

i+1
2

|

h
≤ �z��L∞ . The proof of (2.3) is thus completed.
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2.2 Consistency estimate

We turn our attention to the consistency error term C(u; uh) in (1.20), for
which an optimal result in terms of the rate of convergence is obtained.

Lemma 2.2. For the assumptions of Theorem 1.2, together with (1.11a),
(1.11b) and (1.12), there exists a constant independent of h such that

�

�

�

�

�

R

C(u; uh) |e|p−1sgn(e) dx

�

�

�

�

≤ Ch (�z�W 2,p + �u�W 1,p) �e�p−1
Lp . (2.10)

Proof. From (1.20), we have

�

R

C(u; uh) |e|p−1sgn(e) dx =

�

R

�

B(x, u)− BN(x, uh)
�

|e|p−1sgn(e) dx.

We compute the integral of the discrete source operator,

�

R

BN(x, uh) |e|p−1sgn(e) dx

=

�

R

�

�

i∈Z

1

h

�

B+(ui−1, ui,∆zi− 1

2

) + B−(ui, ui+1,∆zi+ 1

2

)
�

1Ci

�

|e|p−1sgn(e) dx

=
�

i∈Z

�

B+(ui−1, ui,∆zi− 1

2

) + B−(ui, ui+1,∆zi+ 1

2

)
�

e
p−1
i ,

where e
p−1
i = 1

h

�

Ci
|e|p−1sgn(e) dx. Then we decompose as follows,

�

R

BN(x, uh) |e|p−1sgn(e) dx

=
�

i∈Z

�

B+(ui, ui+1,∆zi+ 1

2

) + B−(ui, ui+1,∆zi+ 1

2

)
�

e
p−1
i +

+
�

i∈Z

�

B+(ui−1, ui,∆zi− 1

2

)− B+(ui, ui+1,∆zi+ 1

2

)
�

e
p−1
i := T1 + T2.

(2.11)

We estimate each Tj, j = 1, 2 separately. Setting B = B+ + B−, we write

T1 =
�

i∈Z

�

B(ui, ui+1,∆zi+ 1

2

)− B(ui, ui,∆zi+ 1

2

)
�

e
p−1
i

+
�

i∈Z

�

B+(ui, ui,∆zi+ 1

2

) + B−(ui, ui,∆zi+ 1

2

)
�

e
p−1
i := T 1

1 + T 2
1 .

(2.12)
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For the remainder T 1
1 , thanks to (1.11a), we get

T 1
1 =

�

i∈Z

�
� ui+1

ui

�

∂B

∂v
(ui, v,∆zi+ 1

2

)−
∂B

∂v
(ui, v, 0)

�

dv

�

e
p−1
i

≤ LB

�

i∈Z

|∆zi+ 1

2

||ui+1 − ui||e
p−1
i |,

so that (2.1a) applied to (1.5) and (1.6) leads to conclude

T 1
1 ≤ LB�z

��L∞

�

i∈Z

�
�

Ci

|∂xu| dx

��
�

Ci

|e|p−1 dx

�

. (2.13)

The second term T 2
1 of (2.12) can be further decomposed into three parts,

T 2
1 =

�

i∈Z

B(ui, ui,∆zi+ 1

2

)

∆zi+ 1

2

∆zi+ 1

2

h
he

p−1
i

=
�

i∈Z

B(ui, ui,∆zi+ 1

2

)

∆zi+ 1

2

�

∆zi+ 1

2

h
− z�(xi)

�

he
p−1
i

+
�

i∈Z

�

B(ui, ui,∆zi+ 1

2

)

∆zi+ 1

2

− b(ui)

�

z�(xi)he
p−1
i

+
�

i∈Z

z�(xi)b(ui)he
p−1
i := T

2,1
1 + T

2,2
1 + T

2,3
1 .

(2.14)

We give details for each part. By using (1.11a), from (2.1b) we deduce that

T
2,1
1 ≤

�

i∈Z

�

�

�

�

�

B(ui, ui,∆zi+ 1

2

)− B(ui, ui, 0)

∆zi+ 1

2

�

�

�

�

�

�

�

�

�

�

∆zi+ 1

2

h
− z�(xi)

�

�

�

�

�

h|ep−1
i |

≤ LB

�

i∈Z

�
�

Ci

|z��| dx

��
�

Ci

|e|p−1 dx

�

.

(2.15)

Because of the consistency property (1.12) and (2.1a) for (1.5), we derive

T
2,2
1 ≤ KB�z

��L∞

�

i∈Z

�
�

Ci

|z�| dx

��
�

Ci

|e|p−1 dx

�

. (2.16)

Finally, the third term in (2.14) is equivalent to the integral of the analytical
source operator (1.3). Indeed, by means of Taylor’s expansions in (1.6), we
obtain the midpoint formula (dropping the time dependence, for simplicity)

ui = u(xi) +Ri, Ri =
1

h

�

Ci

∂xu(ξ(x))(x− xi) dx,
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for some ξ(x) ∈ Ci, and the regularity assumed in (1.3) guarantees that

b(ui) = b(u(xi)) + b�(νi)Ri, |b�(νi)| ≤ Lb, ∀i ∈ Z.

We thus write
T

2,3
1 =

�

i∈Z

z�(xi)b(u(xi))he
p−1
i +R1, (2.17)

where the remainder satisfies

R1 ≤ Lb�z
��L∞

�

i∈Z

�
�

Ci

|∂xu| dx

��
�

Ci

|e|p−1 dx

�

. (2.18)

The Taylor’s formula (2.2), applied to the source term (1.3), yields
�

R

B(x, u) |e|p−1sgn(e) dx =
�

i∈Z

�

Ci

z�(xi)b(u(xi)) |e|
p−1sgn(e) dx+R2

and we readily check that the remainder satisfies

R2 ≤ Lb

�

i∈Z

�
�

Ci

|z��| dx

��
�

Ci

|e|p−1 dx

�

+ Lb�z
��L∞

�

i∈Z

�
�

Ci

|∂xu| dx

��
�

Ci

|e|p−1 dx

�

.

(2.19)

Therefore, from (2.17) we have

T
2,3
1 =

�

R

B(x, u) |e|p−1sgn(e) dx+R1 −R2, (2.20)

with the remainders (2.18) and (2.19), which are conveniently bounded.
Coming back to decomposition (2.11), using (1.11a) we have for the last term

T2 =
�

i∈Z

�

B+(ui−1, ui,∆zi− 1

2

)− B+(ui, ui,∆zi− 1

2

)
�

e
p−1
i

+
�

i∈Z

�

B+(ui, ui,∆zi− 1

2

)− B+(ui, ui,∆zi+ 1

2

)
�

e
p−1
i

+
�

i∈Z

�

B+(ui, ui,∆zi+ 1

2

)− B+(ui, ui+1,∆zi+ 1

2

)
�

e
p−1
i

=
�

i∈Z

�
� ui−1

ui

�

∂B+

∂u
(u, ui,∆zi− 1

2

)−
∂B+

∂u
(u, ui, 0)

�

du

�

e
p−1
i

+
�

i∈Z

�

B+(ui, ui,∆zi− 1

2

)− B+(ui, ui,∆zi+ 1

2

)
�

e
p−1
i

+
�

i∈Z

�
� ui

ui+1

�

∂B+

∂v
(ui, v,∆zi+ 1

2

)−
∂B+

∂v
(ui, v, 0)

�

dv

�

e
p−1
i
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≤ LB

�

i∈Z

�

|∆zi− 1

2

||ui − ui−1|+ |∆zi+ 1

2

−∆zi− 1

2

|

+ |∆zi+ 1

2

||ui+1 − ui|
�

|ep−1
i |,

so that we conclude by means of (2.1a) and (2.1c),

T2 ≤ 2LB�z
��L∞

�

i∈Z

�
�

Ci

|∂xu| dx

��
�

Ci

|e|p−1 dx

�

+ LB

�

i∈Z

�
�

Ci

|z��| dx

��
�

Ci

|e|p−1 dx

�

.

(2.21)

We put (2.11), (2.12), (2.14) and (2.20) together, with the corresponding esti-
mates stated in (2.13), (2.15), (2.16), (2.18), (2.19) and (2.21). We apply the

discrete Hölder’s inequality,
�

i∈Z
aibi ≤

�
�

i∈Z
a
p
i

�
1

p ·
�
�

i∈Z
b
q
i

�
1

q , 1
p
+ 1

q
= 1,

to the products and then the usual continuous inequality to each integral on
the mesh cells. This provides a coefficient h in front of all expressions and
the result in (2.10) thus follows, with C := C(LB, KB, Lb, �z

��L∞).

2.3 Proof of Theorem 1.2

We multiply equation (1.20) by |e|p−1sgn(e) and we integrate as follows,
�

R

(∂te+ ∂xe) |e|
p−1sgn(e) dx

=

�

R

C(u; uh) |e|p−1sgn(e) dx+

�

R

S(uh; vh) |e|p−1sgn(e) dx.

(2.22)

An integration by parts shows
�

R
|e|p−1sgn(e) ∂xe dx = 0, then we deduce

from (2.22), (2.3) and (2.10) that

1

p
∂t�e(t)�

p
Lp ≤ C�e(t)�pLp + Ch (�z�W 2,p + �u(t)�W 1,p) �e(t)�p−1

Lp . (2.23)

Let t∗ ∈ R+ be such that �e(t∗)�Lp = maxt∈R+
�e(t)�Lp . By integrating in

time from 0 to t∗, we get

�e(t∗)�pLp ≤ �e(0)�pLp + Cp

� t∗

0

�e(s)�pLp ds

+ Cph�z�W 2,p

� t∗

0

�e(s)�p−1
Lp ds+ Cph

� t∗

0

�u(s)�W 1,p�e(s)�p−1
Lp ds

≤ �e(0)�Lp�e(t∗)�p−1
Lp + Cp�e(t∗)�p−1

Lp

� t∗

0

�e(s)�Lp ds

+ Cph t∗�z�W 2,p�e(t∗)�p−1
Lp + Cph�e(t∗)�p−1

Lp

� t∗

0

�u(s)�W 1,p ds,
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which implies that

�e(t∗)�Lp ≤ �e(0)�Lp + Cp

� t∗

0

�e(s)�Lp ds

+ Cph t∗�z�W 2,p + Cph

� t∗

0

�u(s)�W 1,p ds.

(2.24)

Finally, a straightforward extension of Gronwall’s inequality yields the de-
sired result (1.22), where C(t) := C(t; p, LB, KB, Lb, �z

��L∞) is any positive
constant depending on time by the factor exp{−Ct}.

3 Error estimates for second order schemes

The convergence properties of the approximation (1.16) are shown by
mimicking the proof of the analogous results for (1.10), provided in Section 2.

As in the case of first order approximations, we derive some preliminary
estimates on the discrete differences of numerical functions.
For a function w ∈ C2, with cell-averages wi = 1

h

�

Ci
w(x) dx, i ∈ Z, we

construct piecewise linear approximations on the spatial mesh by means of
the coefficients

w̄i(x) = wi + (x− xi)w
�

i, i ∈ Z, x ∈ Ci, (3.1)

where the numerical derivatives are defined as appropriate interpolations of
the discrete increments between neighboring cells,

w�

i = lmtr

�

wi+1 − wi

h
,
wi − wi−1

h

�

, i ∈ Z. (3.2)

We consider a general representation of the slope limiter introduced in the
above formula, i.e. if M = lmtr{α, β}, then M =κα + λβ, with κ,λ ∈ [0, 1]
and κ+λ = 1 or κ+λ = 0. In particular, we restrict our analysis to the special
class of operators which satisfy the condition κi + λi = 1, ∀i ∈ Z (that ex-
cludes, for instance, the classical minmod limiter in the case of nonmonotonic
numerical functions). We also assume that the numerical application (3.2)
relating the cell-averages wj, j= i−1, i, i+1, to the discrete derivative w�

i is
Lipschitz continuous on its arguments, with constant C

h
. Several examples

of slope limiter which satisfies these properties have been formulated in the
literature (refer to [12], [13], [14], [26], [32] and [33]).

We deduce from those definitions that

w�

i = κi

wi+1 − wi

h
+ λi

wi − wi−1

h
, i ∈ Z. (3.3)
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The interfacial values of the reconstruction (3.1) are given by

w−

i = w̄i(xi− 1

2

) = wi −
h

2
w�

i, w+
i = w̄i(xi+ 1

2

) = wi +
h

2
w�

i, (3.4)

and we are interested in evaluating the jumps at the interfaces, i.e. w−

i+1−w+
i .

Taking into account (3.4) and (3.3), we have

w−

i+1 − w+
i = wi+1 − wi −

h

2

�

w�

i + w�

i+1

�

=

�

1−
κi

2
−

λi+1

2

�

W1 −
λi

2
W2 −

κi+1

2
W3,

(3.5)

where we indicate

W1 = wi+1 − wi, W2 = wi − wi−1, W3 = wi+2 − wi+1. (3.6)

Consequently, to deal with (3.5) we use the same procedure as (2.1a)-(2.1b),
based on high order Taylor expansions applied to the various terms in (3.6).
Besides, we observe that

wi+1 − wi =
1

h

�

Ci

[w(x+ h)− w(x)] dx =
1

h

�

Ci

� h

0

w�(x+ s) ds dx,

then the following result holds,

|Wj| ≤ �w��L1(Ci), i ∈ Z, j = 1, 2, 3. (3.7)

The simplest first order approximation reads

w−

i+1 − w+
i =

�

1−
κi

2
−

λi+1

2

�
�

Ci

w�(ξ(x)) dx

−
λi

2

�

Ci

w�(η(x)) dx−
κi+1

2

�

Ci

w�(ϑ(x)) dx,

(3.8)

for some ξ(x), η(x),ϑ(x) ∈ Ci, so it follows also from (3.7) that

|w−

i+1 − w+
i | ≤ Di+ 1

2

�w�W 1,1 or |w−

i+1 − w+
i | ≤ Di+ 1

2

h�w��L∞ . (3.9)

Recalling that κi + λi=1, ∀i∈Z, we obtain the second order approximation

w−

i+1 − w+
i =

�

1−
κi

2
−

λi+1

2

�
�

Ci

w��(ξ(x))(x− xi) dx

+
λi

2

�

Ci

w��(η(x))(x− xi) dx−
3

2
κi+1

�

Ci

w��(ϑ(x))(x− xi) dx,

for some ξ(x), η(x),ϑ(x) ∈ Ci, and then it follows

|w−

i+1 − w+
i | ≤ Di+ 1

2

h�w�W 2,1 or |w−

i+1 − w+
i | ≤ Di+ 1

2

h2�w���L∞ . (3.10)
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Remark 3.1. We note that the constant in (3.9) and (3.10) satisfies, uni-

formly for i∈Z, the estimate Di+ 1

2

≤max
��

1− κi

2
−

λi+1

2

�

, λi

2
, 3
4
κi+1

�

≤ 1.

Moreover, for any set of values (κi,λi)i∈Z, the bounds on these quantities are
always not degenerate.

Finally, a long but straightforward computation, involving also the third
order expansions, leads to conclude that

w−

i+1 − w+
i = (λi+1 − κi)

h2

2
w��(xi) (3.11)

+

�

1−
κi

2
−

λi+1

2

�
�

Ci

w���(ξ(x))(x− xi)
2 dx

−
λi

2

�

Ci

w���(η(x))(x− xi)
2dx−

κi+1

2

�

Ci

w���(ϑ(x))(x− xi)
2dx,

for some ξ(x), η(x),ϑ(x) ∈ Ci.

Remark 3.2. According to the piecewise linear reconstruction (3.1), dis-
crete interfacial jumps approximate the second derivative of the numerical
functions, as it can be roughly deduced from (3.5).

3.1 Stability estimate

The following result corresponds to that presented in Section 2.1 and
then we adapt the proof of Lemma 2.1 in the case of the numerical source
operator (1.16).

Lemma 3.3. For the assumptions of Theorem 1.3, together with (1.11a),
there exists a constant C := C(LB, Lb, �z

��L∞ , �z���L∞), independent of h,
such that

�

�

�

�

�

R

S(uh; vh) |e|p−1sgn(e) dx

�

�

�

�

≤ C�e�pLp . (3.12)

Proof. From (1.20), (1.16) and (1.6), we deduce
�

R

S(uh; vh) |e|p−1sgn(e) dx

=

�

R

�

�

i∈Z

1

h

�

B+(u+
i−1, u

−

i ,∆zi− 1

2

) + B−(u+
i , u

−

i+1,∆zi+ 1

2

)
�

1Ci

−
�

i∈Z

1

h

�

B+(v+i−1, v
−

i ,∆zi− 1

2

) + B−(v+i , v
−

i+1,∆zi+ 1

2

)
�

1Ci

�

|e|p−1sgn(e) dx

+

�

R

�

�

i∈Z

z�i b(ui) 1Ci
−
�

i∈Z

z�i b(vi) 1Ci

�

|e|p−1sgn(e) dx
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=
�

i∈Z

�

B+(u+
i , u

−

i+1,∆zi+ 1

2

)− B+(v+i , v
−

i+1,∆zi+ 1

2

)
�

e
p−1
i+1

+
�

i∈Z

�

B−(u+
i , u

−

i+1,∆zi+ 1

2

)− B−(v+i , v
−

i+1,∆zi+ 1

2

)
�

e
p−1
i (3.13)

+
�

i∈Z

z�i [b(ui)− b(vi)]he
p−1
i := S1 + S2 + S3,

where e
p−1
i = 1

h

�

Ci
|e|p−1sgn(e) dx.

To deal with S1 and S2, we proceed exactly as in (2.4) and (2.5). Because
of the definition (3.3) and (3.4), together with the Lipschitz property of the
application (3.2), simple computations lead to verify that

|u+
i − v+i | ≤ max (|ui − vi|+ |ui+1 − vi+1|+ |ui−1 − vi−1|) ,

and the same relation is satisfied by |u−

i −v−i |. So, we can establish for the
second order methods similar estimates to (2.6) and (2.7).
On the other hand, a direct treatment of the last term in (3.13) yields

S3 ≤ Lb

�

i∈Z

|z�i| |ui − vi|h|e
p−1
i |. (3.14)

We give some details about the estimate of numerical derivatives (3.3), for
the particular case of (1.5), we will use later on the proofs.
By performing appropriate expansions, also recalling that κi+λi=1, ∀i ∈ Z,
we obtain

z�i =
κi

h

�

Ci

z�(ξ(x)) dx+
λi

h

�

Ci

z�(η(x)) dx

= z�(xi) + (κi − λi)
h

2
z��(xi)

+
κi

3
h

�

Ci

z���(ϑ(x)) dx+
λi

3
h

�

Ci

z���(�(x)) dx,

(3.15)

for some ξ(x), η(x),ϑ(x), �(x)∈Ci, which implies that |z�i| ≤ �z��L∞ in (3.14).
Thanks to the arguments used for passing to (2.8) and (2.9), with the first
order approximation (3.9) applied to (1.15b), we conclude (3.12).

3.2 Consistency estimate

The proof of the following result is also an extension of that of Lemma 2.2.
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Lemma 3.4. For the assumptions of Theorem 1.3, together with (1.11a),
(1.11b) and (1.12), there exists a constant independent of h such that

�

�

�

�

�

R

C(u; uh) |e|p−1sgn(e) dx

�

�

�

�

≤ Ch2 (�z�W 3,p + �u�W 2,p) �e�p−1
Lp . (3.16)

Proof. We consider the integral of the source operator (1.16), computed on
the approximation (1.6) of the analytical solution,

�

R

BN(x, uh) |e|p−1sgn(e) dx

=

�

R

�

�

i∈Z

1

h

�

B+(u+
i−1, u

−

i ,∆zi− 1

2

) + B−(u+
i , u

−

i+1,∆zi+ 1

2

)
�

1Ci

�

|e|p−1sgn(e) dx

+

�

R

�

�

i∈Z

z�ib(ui)1Ci

�

|e|p−1sgn(e) dx

=
�

i∈Z

�

B+(u+
i−1, u

−

i ,∆zi− 1

2

) + B−(u+
i , u

−

i+1,∆zi+ 1

2

)
�

e
p−1
i +

�

i∈Z

z�ib(ui)he
p−1
i ,

where we set e
p−1
i = 1

h

�

Ci
|e|p−1sgn(e) dx. In the sequel, we neglect the de-

pendence on time of the numerical functions to simplify the notation.
We decompose the first part of the above formula, similarly to (2.11), into
two terms Tj, j=1, 2 treated separately. The remainder can be rewritten as

T2 =
�

i∈Z

�

B+(u+
i−1, u

−

i ,∆zi− 1

2

)− B+(u+
i , u

−

i ,∆zi− 1

2

)
�

e
p−1
i

+
�

i∈Z

�

B+(u+
i , u

−

i ,∆zi− 1

2

)− B+(u+
i , u

−

i ,∆zi+ 1

2

)
�

e
p−1
i

+
�

i∈Z

�

B+(u+
i , u

−

i ,∆zi+ 1

2

)− B+(u+
i , u

−

i+1,∆zi+ 1

2

)
�

e
p−1
i

and the usual procedures for the differences, by using (1.11a), leads to deduce

T2 ≤ LB

�

i∈Z

�

|∆zi− 1

2

||u+
i − u+

i−1|+ |∆zi+ 1

2

−∆zi− 1

2

|

+ |∆zi+ 1

2

||u−

i+1 − u−

i |
�

|ep−1
i |.

(3.17)

According to the definition (3.3) and (3.4), concerning (1.14), we easily obtain

|u+
i − u+

i−1| = ui − ui−1 +
h

2

�

u�

i − u�

i−1

�

≤

�

Ci

|∂xu| dx,
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with an analogous estimate for |u−

i+1 − u−

i |, while a second order approxima-
tion is needed for the central term in (3.17), that is

|∆zi+ 1

2

−∆zi− 1

2

| = (zi+1 − 2zi + zi−1)−
h

2

�

z�i+1 − z�i−1

�

≤ h2

�

Ci

|z���| dx.

These estimates and (3.10) for (1.15b) provide an analogous inequality to (2.21),

T2 ≤ 2LB h�z���L∞

�

i∈Z

�
�

Ci

|∂xu| dx

��
�

Ci

|e|p−1 dx

�

+ LBh
�

i∈Z

�
�

Ci

|z���| dx

��
�

Ci

|e|p−1 dx

�

.

(3.18)

For the term corresponding to (2.12), setting B = B+ + B−, we thus have

T1 =
�

i∈Z

�

B(u+
i , u

−

i+1,∆zi+ 1

2

)− B(u+
i , u

+
i ,∆zi+ 1

2

)
�

e
p−1
i

+
�

i∈Z

B(u+
i , u

+
i ,∆zi+ 1

2

) ep−1
i := T 1

1 + T 2
1 .

(3.19)

We use again the property (1.11a) and we deduce

T 1
1 ≤ LB

�

i∈Z

|∆zi+ 1

2

||u−

i+1 − u+
i ||e

p−1
i |,

to conclude from (3.8) and (3.10) that

T 1
1 ≤ LB h�z���L∞

�

i∈Z

�
�

Ci

|∂xu| dx

��
�

Ci

|e|p−1 dx

�

. (3.20)

The second term of (3.19) is further decomposed, also thanks to (3.11),

T 2
1 =

�

i∈Z

B(u+
i , u

+
i ,∆zi+ 1

2

)
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2

�
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2
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2
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2
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he
p−1
i

+
�

i∈Z

�

B(u+
i , u

+
i ,∆zi+ 1

2

)

∆zi+ 1

2

− b(u+
i )

�

Qi+ 1

2

h

2
z��(xi)he

p−1
i

+
�

i∈Z

Qi+ 1

2

h

2
z��(xi)b(u

+
i )he

p−1
i := T

2,1
1 + T

2,2
1 + T

2,3
1 ,

(3.21)

where Qi+ 1

2

= λi+1−κi ≤ 1, ∀i ∈ Z, for the properties of coefficients in (3.3).

We give a few details of the estimate for each part. We proceed as in (2.15),
by means of (1.11a) and (3.11), to obtain

T
2,1
1 ≤ LBh

�

i∈Z

�
�

Ci

|z���| dx

��
�

Ci

|e|p−1 dx

�

. (3.22)
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From the consistency bound (1.12), together with the approximation (3.8),
we derive that

T
2,2
1 ≤ KB h�z���L∞

�

i∈Z

�
�

Ci

|z�| dx

��
�

Ci

|e|p−1 dx

�

. (3.23)

Then we pass to the crucial point of the proof, to show the convergence
towards the integral of the analytical source operator (1.3). On the one
hand, by applying to that function classical Taylor’s expansions, we have
�

R

B(x, u) |e|p−1sgn(e) dx =
�

i∈Z

�

Ci

z�(xi)b(u(xi)) |e|
p−1sgn(e) dx

+
�

i∈Z

�

Ci

(z�b(u))
�
(ξ(xi))(x− xi) |e|

p−1sgn(e) dx,

(3.24)

for some ξ(xi)∈Ci. On the other hand, recalling the definition of interfacial
values (1.15a) and by the regularity assumed in (1.3), we can write

b(u+
i ) = b(ui) + b�(νi)

h

2
u�

i, |b�(νi)| ≤ Lb, ∀i ∈ Z,

so that from (3.21) we deduce

T
2,3
1 =

�

i∈Z

Qi+ 1

2

h

2
z��(xi)b(ui)he

p−1
i +R1 (3.25)

and we use analogous approximations to (3.15) for the numerical derivatives
of the analytical solution to obtain

R1 ≤ Lbh�z
���L∞

�

i∈Z

�
�

Ci

|∂xu| dx

��
�

Ci

|e|p−1 dx

�

. (3.26)

To conclude the announced result, we need to take into account the contri-
bution of the additional term in the numerical source operator, neglected in
the first part of the proof. The second order approximation of cell-averages,

ui = u(xi) +Ri, Ri =
1

h

�

Ci

∂xxu(ξ(x))
(x− xi)

2

2
dx, (3.27)

for some ξ(x) ∈ Ci, together with the usual Taylor’s expansion

b(ui) = b(u(xi)) + b�(νi)Ri, |b�(νi)| ≤ Lb, ∀i ∈ Z, (3.28)
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after proceeding according to (3.15), setting Pi+ 1

2

= κi − λi, i∈Z, leads to
�

i∈Z

z�ib(ui)he
p−1
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i∈Z
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i +R2
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(3.29)

with the following estimates for the remainders,

R2 ≤ Lb h�z
��L∞
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i∈Z
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|∂xxu| dx
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Ci

|e|p−1 dx
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, (3.30)

R3 ≤ Lb h
�

i∈Z

�
�

Ci

|z���| dx
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�

Ci

|e|p−1 dx

�

. (3.31)

Therefore, up to the bounded remainders (3.26), (3.30) and (3.31), by com-
bining (3.24), (3.25) and (3.29), we have
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(3.32)

where again we used (3.27)-(3.28) and Pi+ 1

2

+Qi+ 1

2

=λi+1 − λi, i∈Z.

We introduce an appropriate hypothesis on the slope limiter (3.2)-(3.3), as
discussed in Section 1.3, namely an additional property for its coefficients,

∃ Λ0 > 0 such that λi+1 − λi ≥ Λ0, ∀i ∈ Z. (3.33)

This condition and general properties of the numerical functions allow us to
rewrite the difference between first and third term in the right-hand side of
(3.32) in integral form, to conclude that

�
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�
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p−1sgn(e) dx
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An analogous estimate is proved for the difference between second and fourth
term in the right-hand side of (3.32), which also involves the second derivative
of the analytical solution, similarly to the remainder (3.30).
We apply to the previous computations the arguments in the conclusion of
Lemma 2.2, to obtain (3.16) with C = C(LB, KB, Lb, �z

��L∞ , �z���L∞).

3.3 Proof of Theorem 1.3 and Theorem 1.4

With the stability estimate (3.12) and the consistency estimate (3.16), we
proceed as in Section 2.3 to conclude the second order error estimate (1.23).

The proof of Theorem 1.4 is obtained by using the main tools introduced
for proving the results of Section 2 and Section 3.
Because of the consistency hypotheses (1.11a)-(1.18), the same techniques as
in Lemma 2.2 extend to the numerical source operator (1.17), while we apply
the arguments formulated in Lemma 3.3 to deduce stability estimates.

4 Remarks and numerical evidence

The principal issue in the proofs of Theorem 1.2 and Theorem 1.3 is to
establish the consistency estimates (2.10) and (3.16) respectively, in partic-
ular to show the convergence of the numerical source operators towards the
analytical source term (1.3) from the relations (2.17) and (3.25).

We note that, due to the introduction of piecewise linear reconstructions
of the function z, the differences of interfacial values approximate the second
order derivative and the upwind part of the discretization (1.16) “overtakes”
the desired result; an additional term is thus needed to recover the first
order derivatives in the Taylor’s expansion of the source term. Moreover,
some restrictions on the definition of the slope limiter are also required, to
guarantee the occurrence of suitable error estimates (refer also to [7], [23]
and [24]). Without these assumptions, only suboptimal results are derived
(see [19] and [20], for instance).

These considerations can also be justified numerically: the tables above
reproduce the convergence rates observed when the Upwind Interface Source
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||e(t)||L1 ||e(t)||L2 ||e(t)||L∞

Error Rate Error Rate Error Rate

50 0.323743E-02 0.772868E-02 0.368811E-01

100 0.816610E-03 1.987 0.270992E-02 1.512 0.184893E-01 0.996

200 0.207343E-03 1.982 0.951254E-03 1.511 0.921217E-02 1.001

400 0.516765E-04 1.990 0.336009E-03 1.508 0.461648E-02 0.999

800 0.128919E-04 1.993 0.118745E-03 1.506 0.231075E-02 0.999

1600 0.321149E-05 1.995 0.419888E-04 1.505 0.115659E-02 0.999

Table 1

||e(t)||L1 ||e(t)||L2 ||e(t)||L∞

Error Rate Error Rate Error Rate

50 0.129563E-02 0.148671E-02 0.324608E-02

100 0.326417E-03 1.989 0.368537E-03 2.012 0.814699E-03 1.994

200 0.819300E-04 1.992 0.917495E-04 2.009 0.203996E-03 1.996

400 0.205217E-04 1.993 0.228873E-04 2.007 0.509962E-04 1.997

800 0.513540E-05 1.995 0.571567E-05 2.006 0.127479E-04 1.998

1600 0.128447E-05 1.996 0.142815E-05 2.005 0.318655E-05 1.998

Table 2

method illustrated in this paper is applied to the simplified problem

∂tu = z�(x), u(0, x) = u0(x),

with z(x) = sin(π ∗x), x ∈ [0, 1], for which an analytical solution is available
to make direct comparisons, u(t, x) = u0(x) + z�(x) t.
The results plotted correspond to the discretization (1.16), for the standard
VanLeer limiter, with a simple TVD reconstruction (see [34]) in Table 1 and
with an appropriate ENO reconstruction (see [12]) in Table 2.

The problems just discussed do not arise in the case of discretization (1.17),
for which stronger consistency hypotheses are made, to compensate reduced
regularity of the reconstructions.

Some classical convergence results for numerical approximations of hyper-
bolic conservation laws are presented in [28], [37], [11], [6] and its references.
Further applications of these methods to different situations are proposed
in [3] and [4].

Although the question of preserving stationary states at the discrete level
is only handled rigorously for discretizations of the first order (refer to [30]),
the numerical results obtained for the Saint-Venant system indicate that the
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discretization (1.16) exactly simulates simple equilibria (refer to [16]). As far
as we know, similar issues are only addressed in [9] and [21].
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Abstract

The aim of this paper is to present a numerical scheme to compute
Saint-Venant equations with a source term, due to the bottom topog-
raphy, in a one-dimensional framework, which satisfies the following
theoretical properties: it preserves the steady state of still water, sat-
isfies an entropy inequality, preserves the non-negativity of the height
of water and remains stable with a discontinuous bottom. This is
achieved by means of a kinetic approach to the system, which is the
departing point of the method developed here. In this context, we use
a natural description of the microscopic behaviour of the system to
define numerical fluxes at the interfaces of an unstructured mesh. We
also use the concept of cell-centered conservative quantities (as usual
in the finite volume method) and upwind interfacial sources as advo-
cated by several authors. We show, analytically and also by means of
numerical results, that the above properties are satisfied.

Key-words: Saint-Venant system, finite volume method, upwind
interfacial sources, kinetic schemes.

1 Introduction

The Saint-Venant equations, a particular case of shallow water equations,
are commonly used to describe physical situations such as flows in rivers or
coastal areas. The one-dimensional version is well adapted for ideal rectan-
gular rivers. It allows to describe the flow, at time t ≥ 0 and at point x ∈ R,
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through the height of water h(t, x) ≥ 0 and its velocity u(t, x) ∈ R, by the
hyperbolic system

∂h

∂t
+

∂(hu)

∂x
= 0, (1.1)

∂(hu)

∂t
+

∂

∂x
(hu2 +

g

2
h2) + gh

∂Z

∂x
= 0, (1.2)

where g denotes the gravity intensity and Z(x) is the bottom height; therefore
h + Z is the level of the water surface (in what follows, we also denote the
discharge by q = hu).

These equations were originally written by A. de Saint-Venant in [21]
and more complete systems can be derived from the Navier-Stokes equations
(see [8] and its references). In fact, the system (1.1)-(1.2) corresponds to a
particularly simple case: other terms can be added to the right-hand side in
order to take into account frictions on the bottom and the surface; a more
general system can also be stated for rivers with variable sections.

The bottom topography introduces a source term in equation (1.2), in-
fluencing the unknowns of the problem. Hence, analytical properties of the
system of isentropic Euler equations are deeply modified in comparison with
the homogeneous model. For instance, a well-known problem is the occur-
rence of different kinds of steady states.

Several methods for solving hyperbolic systems of conservation laws with
source terms have been investigated. The main problem is related to the
approximation of such a source term, to assure the numerical preservation
of properties fulfilled by the continuous model. A classical approach consists
in using finite volume schemes (refer to [9], [16] and [6]), the finite volume
method displaying the remarkable property of being water height conserva-
tive. But of course other methods are possible, such as finite elements (see [2]
and the references therein).

A difficulty arising specifically with the Saint-Venant system is that of
forcing the scheme to preserve steady states given by a lake at rest (u = 0,
h+Z = Cst), as has been pointed out by several authors. To treat these par-
ticular problems, a specific numerical approach is needed. Here it is based on
two concepts: first, the conservative quantities are cell-centered, as usual for
finite volume schemes; second, as introduced by Roe [20], the source terms are
upwinded at the cell interfaces. Initially for scalar conservation laws, Green-
berg and LeRoux [14], then Gosse and LeRoux [10],[11] introduced the notion
of well-balanced scheme and they use a reformulation of the source terms by
means of non-conservative products to derive their numerical fluxes; this
kind of numerical processing has been recently extended by Gosse [12],[13]
to hyperbolic systems of balance laws. A kinetic scheme, which introduces
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the notion of reflexions on bottom jumps and maintains steady states, is pre-
sented in Botchorishvili, Perthame and Vasseur [4] , which is proved to be
convergent. Still using the interface values, instead of the cell-averages, for
the source terms, Jin proposes in [15] a rather simple method for capturing
the steady state solutions with a high order accuracy. Quite recently, vari-
ous approaches appeared to build stable schemes which preserve the steady
states: previous schemes have been modified for this purpose by Bermudez
and Vasquez [3]; the Godunov scheme for an appropriately extended system
is developed in [17]; an appropriate linearized Godunov scheme preserving
all steady states has also been obtained by Gallouët, Hérard and Seguin [7].

But to our knowledge none of these methods are proved to satisfy all the
stability properties: (i) water height remains nonnegative, (ii) the energy
(entropy) inequality is satisfied, (iii) it preserves the steady states of still
water. Certainly, Godunov schemes as modified in [14] or [7] can do that, at
the expense of a fixed point, but this has not been proved.

In this paper, we consider a particular class of numerical schemes to
compute the Saint-Venant equations, based on the kinetic interpretation of
the system, which is presented in [1]. These kinetic schemes have many good
properties that other solvers have difficulty in achieving; in particular, they
are able to treat the case of a vacuum (h = 0 here, corresponding to dry soils,
when the system loses hyperbolicity) and satisfy the properties (i), (ii), (iii)
above. We refer to Perthame [19] for a survey of the theoretical properties
of these schemes. We only note that kinetic schemes are a simple way to
generate efficient building blocks (interpolations at the interfaces) in finite
volume methods; they do not involve rarefied flows except for the technique
used in proving their theoretical properties.
We present a numerical scheme for the system (1.1)-(1.2) by using a new
kinetic solver, which exhibits all the advantages of this specific approach. We
propose a way to take the source term directly into account in the definition
of the numerical fluxes, whose structure relies on a natural description of the
microscopic behaviour of the system through a potential barrier which is the
bottom Z(x).

The paper is organized in four sections. In the second section, we recall
some properties of the Saint-Venant equations and we explain the kinetic
approach to this system. In the third, we illustrate the kinetic scheme “with
reflexions” and we demonstrate the properties (i), (ii), (iii). Several test
problems for the flat and non-flat bottom cases are reported in the last sec-
tion. We leave the extension of this method to higher order accuracy for a
future work. Implementation in two spatial dimensions is also in progress
(see [1] for a first attempt).
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2 Preliminaries about the Saint-Venant equa-

tions

We recall here some well-known properties of the shallow water system.
We take them into account to develop our numerical method so as to be
coherent with the physical model. Then, by analogy with the Euler equations
of compressible gas dynamics, we link the macroscopic Saint-Venant system
to a microscopic description of the fluid, on which the method proposed in
this paper is based.

2.1 Properties of the system

First of all, the system is naturally posed for h(t, x) ≥ 0 and the wa-
ter height h can indeed vanish (flooding zones, dry soils, tidal flats); this
fact leads to a theoretical and numerical difficulty, because the system loses
hyperbolicity at h = 0.

Another fundamental property is related to the entropy inequality of the
Saint-Venant system, satisfied by the weak solutions, defined as in the fol-
lowing theorem.

Theorem 2.1. The system (1.1)-(1.2) is strictly hyperbolic for h > 0.
It admits a mathematical entropy, which is also the physical energy,

E(h, u, Z) = h
u2

2
+

g

2
h2 + gZh, (2.1)

which satisfies the “entropy inequality”

∂E

∂t
+

∂

∂x
[u(E +

g

2
h2)] ≤ 0. (2.2)

We do not prove this theorem, which relies on the classical theory of hyper-
bolic equations (see Serre [22], Dafermos [5]) and simple algebraic calcula-
tions. We remark only that for smooth solutions the inequality (2.2) becomes
an equality.

Also, the system admits a family of smooth steady states characterized
by the relations

hu = C1, (2.3)

u2

2
+ g(h+ Z) = C2, (2.4)

where C1 and C2 are two arbitrary constants. In particular, the simplest is
the traditional steady state of a lake at rest, given by u = 0, h+ Z = Cst.
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2.2 Kinetic approach

We pass to explain how it is possible to introduce a kinetic approach for
the Saint-Venant system. We describe it for the one-dimensional problem,
but the construction is similar in two dimensions.

We consider a real function χ defined on R, with the following properties,

χ(ω) = χ(−ω) ≥ 0,

�

R

χ(ω)dω = 1,

�

R

ω2χ(ω)dω =
g

2
(2.5)

and define the density of particles M(t, x, ξ) by a so-called Gibbs equilibrium

M(t, x, ξ) = M(h, ξ − u) =
�

h(t, x)χ

�

ξ − u(t, x)
�

h(t, x)

�

. (2.6)

These definitions allow to obtain a kinetic representation of the system.

Theorem 2.2. The pair of functions (h, hu) is a strong solution of the Saint-
Venant system (1.1)-(1.2) if and only if M(h, ξ − u) satisfies the kinetic
equation

∂M

∂t
+ ξ ·

∂M

∂x
− g

∂Z

∂x
·
∂M

∂ξ
= Q(t, x, ξ), (2.7)

for some “collision term” Q(t, x, ξ) which satisfies, for a.e. (t, x),

�

R

Qdξ = 0,

�

R

ξQdξ = 0. (2.8)

Proof. The proof relies on a very obvious computation. The two Saint-Venant
equations are obtained by taking the moments of the kinetic equation (2.7)
in dξ, against 1, ξ and ξ2 respectively: the right-hand side vanishes according
to (2.8) and the left-hand sides coincide exactly thanks to hypothesis (2.5).
These are consequences of the easy relations,

h =

�

R

M(h, ξ − u)dξ, (2.9)

hu =

�

R

ξM(h, ξ − u)dξ, (2.10)

hu2 +
g

2
h2 =

�

R

ξ2M(h, ξ − u)dξ, (2.11)

directly obtained from the microscopic equilibrium (2.6).
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This theorem produces a very useful consequence: the non-linear shallow
water system can be viewed as a single linear equation on a non-linear quan-
tity M , for which it is easier to find simple numerical schemes with good
theoretical properties.
We note that this form is much weaker than the kinetic formulation proposed
by Lions, Perthame and Tadmor in [18], which represents all the entropies
of the system.

We characterize the function χ which defines the density of particles
M(t, x, ξ) in the kinetic approach; in particular, we justify the interpretation
of such a density as the microscopic equilibrium of the system, the Gibbs
equilibrium. These facts are stated in the following propositions.

Lemma 2.3. The minimum of the energy

E(f) =

�

R

�

ξ2

2
f(ξ) +

π2g2

6
f 3(ξ) + gZf(ξ)

�

dξ, (2.12)

under the constraints

f ≥ 0,

�

R

f(ξ)dξ = h,

�

R

ξf(ξ)dξ = hu,

is attained by the function M(h, ξ − u) =
√
hχ

�

ξ−u√
h

�

, with χ defined by

χ(ω) =

√
2

π
√
g

�

1− ω2

2g

�
1
2

+

. (2.13)

Remark 2.4. The cubic term in the functional (2.12) takes the internal
energy into account. In one dimension, it results from the transverse trans-
lational energy. Indeed the corresponding two-dimensional variational prob-
lem, for Z = 0, gives

1

2
h(u2 + v2) +

g

2
h2 = min

��

R2

|ξ|2

2
f(ξ)dξ;

f ≥ 0,

�

R2

f(ξ)dξ = h,

�

R2

ξf(ξ)dξ = (hu, hv)

�

and we deduce f(ξ1) =
�

R
g(ξ1, ξ2) dξ2.

Proof. Because of the constraints, it is sufficient to minimize the functional

E0(f) =

�

R

�

ξ2f(ξ) +
π2g2

3
f 3(ξ)

�

dξ.
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Since E0(f) is a convex functional, the formula for M (and thus for χ) follows
directly from the Euler-Lagrange equation associated to the minimization
problem, for f > 0,

ξ2 + π2g2f 2 = λ+ µξ,

where λ(h, u) and µ(h, u) are Lagrange multipliers. One readily checks by
convexity that it is a strict minimizer.

Recalling the formula (2.1), we see that the minimum considered in
Lemma 2.3 is given by

E(M(h, ξ − u)) = E(h, u, Z),

again an immediate consequence of the relations stated in (2.9)-(2.11) and

by the choice of the specific value π2g2

6
in the energy. Hence, the properties

of the function χ are consistent with the kinetic approach to the system, as
introduced above.

We conclude this section by pointing out another motivation for the choice
of χ in Lemma 2.3.

Lemma 2.5. The function χ(ω) =
√
2

π
√
g

�

1− ω2

2g

� 1
2

+
is the only choice such

that M(h, ξ − u) =
√
hχ

�

ξ−u√
h

�

satisfies the equation

ξ ·
∂M

∂x
− g

∂Z

∂x
·
∂M

∂ξ
= 0 (2.14)

on all steady states given by a lake at rest,

u(t, x) = 0, h(t, x) + Z(x) = H, ∀t ≥ 0.

Proof. Exploiting the hypotheses, we compute

∂M

∂x
=

1

2
√
h

∂h

∂x

�

χ

�

ξ√
h

�

− ξ√
h
χ�

�

ξ√
h

��

,

∂Z

∂x
= −∂h

∂x
,

∂M

∂ξ
= χ�

�

ξ√
h

�

,

so that the equation (2.14) becomes

ξ

2
√
h

∂h

∂x
χ

�

ξ√
h

�

− ξ2

2h

∂h

∂x
χ�

�

ξ√
h

�

+ g
∂h

∂x
χ�

�

ξ√
h

�

= 0.
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Let ω = ξ√
h
, the last relation can be rewritten as

1

2

∂h

∂x

�

ωχ(ω) + (2g − ω2)χ�(ω)
�

= 0.

A characterization for χ is therefore given by the equation

ωχ(ω) + (2g − ω2)χ�(ω) = 0,

that admits, under the constraints (2.5), the unique solution

χ(ω) =
�

2g − ω2
� 1

2

+
.

Remark 2.6. We note that the difficulty in preserving such steady states at
the kinetic level might explain why the Maxwellian case does not work well
(see Xu [24]).

3 The kinetic scheme with reflections

We present a finite volume scheme for the one-dimensional Saint-Venant
system, based on the kinetic approach described in Section 2, which has the
property of preserving the steady state of a lake at rest. Also, it preserves the
stability properties of the usual kinetic solvers and satisfies a precise in-cell
entropy inequality.

3.1 The formulas

We consider a uniform mesh of R, whose vertices are denoted xi, i ∈ Z.
Let Ci = [xi− 1

2
, xi+ 1

2
) be the control volume (cell), with xi+ 1

2
= xi+1+xi

2
, and

we denote the space-step by ∆x = length(Ci), so that xi = i∆x, i ∈ Z. We
also consider a discretization in time by introducing a time-step ∆t and we
set tn = n∆t, n ∈ N.
If Z(x) is the function describing the bottom height, its piecewise constant
representation is given by Z̄(x) = Zi1Ci

(x), with Zi = 1
∆x

�

Ci
Z(x)dx, for

example.
We start from the microscopic equation (2.7), to perform a discretization

directly on the density of particles

fn+1
i (ξ)−Mn

i (ξ) +
∆t

∆x
ξ
�

M−
i+ 1

2

(ξ)−M+
i− 1

2

(ξ)
�

= 0, (3.1)
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where the interface equilibrium densitiesM±
i+ 1

2

are defined later. As usual, the

”collision term” Q(t, x, ξ) in the kinetic representation (2.7) of Saint-Venant
equations, which relaxes the kinetic density to an equilibriumM , is neglected
in the numerical scheme; at each time-step we project fn

i (ξ) on Mn
i (ξ), which

is a way of performing all collisions at once and to recover the Gibbs equilib-
rium without computing it.

Note that the fluxes can also be written as

M−
i+ 1

2

(ξ) = Mi+ 1
2
(ξ) +

�

M−
i+ 1

2

(ξ)−Mi+ 1
2
(ξ)

�

and the quantity δM−
i+ 1

2

(ξ) = M−
i+ 1

2

(ξ)−Mi+ 1
2
(ξ) holds for the discrete con-

tribution of the force term h∂Z
∂x

in the system, for negative velocities; indeed,
δM−

i+ 1
2

(ξ) = 0 for ξ ≥ 0 in the scheme to be presented below. This is the

principle of the Interfacial Upwind Sources method: the source is not treated
as a volumic term but at the interfaces and it is upwinded.

Now, we integrate the equation (3.1) in dξ against 1 and ξ, with notation

Un+1
i = (hn+1

i , (hu)n+1
i ), (3.2)

hn+1
i =

�

R

fn+1
i (ξ)dξ, (hu)n+1

i =

�

R

ξfn+1
i (ξ)dξ (3.3)

and we obtain the macroscopic scheme

Un+1
i − Un

i +
∆t

∆x

�

IF−
i+ 1

2

− IF+
i− 1

2

�

= 0. (3.4)

The numerical fluxes are thus given by the kinetic fluxes

IF−
i+ 1

2

=

�

R

ξ

�

1
ξ

�

M−
i+ 1

2

(ξ)dξ, (3.5)

IF+
i− 1

2

=

�

R

ξ

�

1
ξ

�

M+
i− 1

2

(ξ)dξ. (3.6)

In order to take the neighboring cells into account by means of a nat-
ural interpretation of the microscopic features of the system, we formulate
a peculiar discretization for the fluxes in (3.1), computed by the upwind
formulas

M−
i+ 1

2

(ξ) = Mn
i (ξ)1ξ≥0 +Mn

i+ 1
2
(ξ)1ξ≤0, (3.7)

M+
i− 1

2

(ξ) = Mn
i− 1

2
(ξ)1ξ≥0 +Mn

i (ξ)1ξ≤0, (3.8)
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where we define

Mn
i+ 1

2
(ξ) = Mn

i (−ξ)1|ξ|2≤2g∆Z
i+1

2

+Mn
i+1

�

−
�

|ξ|2 − 2g∆Zi+ 1
2

�

1|ξ|2≥2g∆Z
i+1

2

,

Mn
i− 1

2
(ξ) = Mn

i (−ξ)1|ξ|2≤2g∆Z
i− 1

2

+Mn
i−1

��

|ξ|2 − 2g∆Zi− 1
2

�

1|ξ|2≥2g∆Z
i− 1

2

.

The figure below illustrates the typical situation occurring in a cell Ci of
the mesh, centered at the point xi ∈ R; without loss of generality, we con-
sider here the case of an increasing bottom slope, so that the bottom jumps
are positive and negative for the neighboring cells Ci−1 and Ci+1 respectively.

✲�xi�xi−1 �xi+1

xi− 1
2

xi+ 1
2

Zi−1

Zi

Zi+1

✛

✆
☎

−ξ

✞
✑✛

|ξ|2 − 2g∆Zi+ 1
2

✲✓
✑

|ξ|2 − 2g∆Zi− 1
2

The effect of the source term is made explicit by treating it as a physical
potential. The definitions (3.7)-(3.8) are thus a mathematical formalization
to describe the physical microscopic behaviour of the system: contributions
to the value fn+1

i (ξ) are also given by particles in Ci+1 and in Ci−1 at time tn,
with kinetic energy sufficient to surpass the potential difference (speeded up
or down through the potential jump) and by particles coming at velocity −ξ,
reflected on the bottom jumps according to classical mechanics, when their
energy is too small (i.e. |ξ|2 ≤ 2g∆Zi+ 1

2
).

Remark 3.1. We see immediately that the kinetic scheme (3.4)-(3.6) is
water height conservative. In fact, still referring to the figure, we compute
the first component of the numerical fluxes at the interface xi+ 1

2
of the mesh
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by the formulas (3.5)-(3.6),

(IFh)
−
i+ 1

2
=

�

ξ≥0

ξMn
i (ξ)dξ +

�

ξ≤0

ξMn
i (−ξ)1|ξ|2≤2g∆Z

i+1
2

dξ

+

�

ξ≤0

ξMn
i+1

�

−
�

|ξ|2 − 2g∆Zi+ 1
2

�

1|ξ|2≥2g∆Z
i+1

2

dξ

and

(IFh)
+
i+ 1

2
=

�

ξ≤0

ξMn
i+1(ξ)dξ +

�

ξ≥0

ξMn
i

��

|ξ|2 − 2g∆Zi+ 1
2

�

dξ,

so that a simple change of variable |ξ�|2 = |ξ|2− 2g∆Zi+ 1
2
, ξ�dξ� = ξdξ allows

to conclude that
(IFh)

−
i+ 1

2
= (IFh)

+
i+ 1

2
, ∀i ∈ Z.

The conservation of water height and momentum is also obvious for the sys-
tem with a flat bottom: the continuous system (1.1)-(1.2) becomes homoge-
neous (∂Z

∂x
= 0) and we obtain a conservative scheme, with the flux-splitting

form of the standard kinetic scheme.
We emphasize that to show the property of the numerical scheme (3.4)-(3.6)
to be consistent cannot be achieved in the classical manner. Because of
the presence of the source term and the choice to process it implicitly, this
question is much more delicate here.

3.2 Properties of the numerical scheme

We establish some theoretical properties of the numerical scheme intro-
duced in the previous subsection, which represent the discrete analogue of
the main properties of the Saint-Venant system stated in Section 2.

Theorem 3.2. We assume the CFL condition

∆t max
�

|un
i |+

�

2ghn
i

�

≤ ∆x. (3.9)

Then, (i) the kinetic scheme (3.4)-(3.6) keeps the water height positive, i.e.
hn
i ≥ 0 if this is the case initially; (ii) it satisfies the conservative in-cell

entropy inequality,

En+1
i − En

i +
∆t

∆x

�

ηn
i+ 1

2
− ηn

i− 1
2

�

≤ 0,

with the discrete entropy fluxes given in the formulas (3.11)-(3.12) below and
the discrete energy

En
i = hn

i

|un
i |

2

2
+

g

2
(hn

i )
2 + gZih

n
i ;
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(iii) the scheme (3.4)-(3.6) preserves the steady states of the system given by
a lake at rest,

un
i = 0, hn

i + Zi = H, ∀i ∈ Z, ∀n ∈ N.

Proof. To prove the first stability property (i) of the scheme, we come back
to the kinetic interpretation and we proceed by induction. We assume that
hn
i ≥ 0, ∀i ∈ Z, and we prove that hn+1

i ≥ 0, ∀i ∈ Z; since

hn+1
i =

�

R

fn+1
i (ξ)dξ,

it is sufficient to prove that fn+1
i (ξ) ≥ 0. We introduce the quantities

ξ+ = max(0, ξ), ξ− = max(−ξ, 0), σ =
∆t

∆x
,

so that we can rewrite the microscopic scheme (3.1), (3.7)-(3.8) in the form

fn+1
i (ξ) = Mn

i (ξ)− σξ
�

M−
i+ 1

2

(ξ)−M+
i− 1

2

(ξ)
�

= (1− σ|ξ|)Mn
i (ξ) + σξ−

�

Mn
i (−ξ)1|ξ|2≤2g∆Z

i+1
2

+Mn
i+1

�

−
�

|ξ|2 − 2g∆Zi+ 1
2

�

1|ξ|2≥2g∆Z
i+1

2

�

+ σξ+

�

Mn
i (−ξ)1|ξ|2≤2g∆Z

i− 1
2

+Mn
i−1

��

|ξ|2 − 2g∆Zi− 1
2

�

1|ξ|2≥2g∆Z
i− 1

2

�

.

(3.10)

Since the function χ has a compact support, it follows that

Mn
j (ξ) = 0 if |ξ − un

j | ≥
�

2ghn
j ;

we deduce that

fn+1
i (ξ) ≥ 0 if |ξ − un

j | ≥
�

2ghn
j , ∀j ∈ Z,

as a sum of non-negative quantities.
Now, if Mn

i (ξ) �= 0 then |ξ − un
i | ≤

�

2ghn
i and

|ξ| ≤ |ξ − un
i |+ |un

i | ≤
�

2ghn
i + |un

i |.

We use the CFL condition to conclude that σ|ξ| ≤ 1, so that fn+1
i (ξ) is a

convex combination of three non-negative quantities and thus fn+1
i (ξ) ≥ 0,
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∀ξ ∈ R, ∀i ∈ Z.
For the entropy inequality (ii), the conclusion results from the relation (3.10),
which describes fn+1

i (ξ) as a convex combination of density functions. Recall-
ing the definition (2.12) for the energy convex functional E(f), we calculate
it on the previous convex formula and, thanks to the relations stated in the
proof of Theorem 2.2, we obtain

E(fn+1
i )− En

i +
∆t

∆x

�

ηn
i+ 1

2
− ηn

i− 1
2

�

≤ 0,

where the entropy fluxes have the expressions

ηn
i+ 1

2
=

�

ξ≥0

�

ξ3

2
Mn

i (ξ) +
π2g2

6
ξ [Mn

i (ξ)]
3 + gZi ξM

n
i (ξ)

�

dξ

+

�

ξ≤0

�

ξ3

2
Mn

i+ 1
2
(ξ) +

π2g2

6
ξ
�

Mn
i+ 1

2
(ξ)

�3

+ gZi ξM
n
i+ 1

2
(ξ)

�

dξ,

(3.11)

ηn
i− 1

2
=

�

ξ≥0

�

ξ3

2
Mn

i− 1
2
(ξ) +

π2g2

6
ξ
�

Mn
i− 1

2
(ξ)

�3

+ gZi ξM
n
i− 1

2
(ξ)

�

dξ

+

�

ξ≤0

�

ξ3

2
Mn

i (ξ) +
π2g2

6
ξ [Mn

i (ξ)]
3 + gZi ξM

n
i (ξ)

�

dξ.

(3.12)

Next, we use Lemma 2.3 to deduce

En+1
i = E(Mn+1

i ) ≤ E(fn+1
i ).

Finally, we can again give a direct proof of the last statement (iii) at the
microscopic level. We emphasize that this approach is also justified by the
result stated in Lemma 2.5. From the formula (3.1) for the numerical scheme,
it is enough to prove that

M−
i+ 1

2

(ξ) = M+
i− 1

2

(ξ), ∀ξ ∈ R

and (iii) follows: indeed, this implies fn+1
i (ξ) = Mn

i (ξ), which also gives
hn+1
i = hn

i , u
n+1
i = un

i , ∀i ∈ Z.
According to the definition (3.7)-(3.8), we can distinguish two cases of the
previous equality, for ξ ≥ 0 and ξ ≤ 0; since these cases present the same
difficulty, we only consider the case ξ ≥ 0. We also remark that, exploiting
the hypothesis ui = 0, we have

Mn
i (ξ) =

√
2

π
√
g

�

hn
i

�

1− ξ2

2ghn
i

�
1
2
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and

Mn
i±1

�

∓
�

|ξ|2 − 2g∆Zi± 1
2

�

=

√
2

π
√
g

�

hn
i±1

�

1−
ξ2 − 2g∆Zi± 1

2

2ghn
i±1

� 1
2

.

Next, for the case ξ ≥ 0 and |ξ|2 ≤ 2g∆Zi− 1
2
, the result is obvious. There

remains the case ξ ≥ 0 and |ξ|2 ≥ 2g∆Zi− 1
2
, for which the statement reduces

to verifying the equality

�

hn
i

�

1− ξ2

2ghn
i

�
1
2

=
�

hn
i−1

�

1−
ξ2 − 2g∆Zi− 1

2

2ghn
i−1

� 1
2

.

Thanks to the hypothesis hn
i + Zi = hi−1 + Zi−1, ∀i ∈ Z, it follows that

∆Zi− 1
2
= hn

i − hn
i−1, so that a simple algebraic computation completes the

proof.

4 Numerical implementation

To proceed to the actual implementation of the scheme (3.4)-(3.6), we
have to compute the numerical fluxes explicitly. Since their expressions are
not always immediate to calculate, it is necessary to use an approximation
technique for some of them; in this section we indicate some fundamental
properties and we give a possible appropriate approximation.

4.1 Computation of the integrals

According to the kinetic representation of the Saint-Venant system, the
density of particles Mn

i (ξ) in the formulas (3.7)-(3.8) is defined by

Mn
i (ξ) =

�

hn
i χ

�

ξ − un
i

�

hn
i

�

,

which represents the discrete analogue of the microscopic Gibbs equilibrium
considered in Section 2. With this definition, the formula (3.5) becomes

IF−
i+ 1

2

=

�

ξ≥0

ξ

�

1
ξ

�

Mn
i (ξ)dξ +

�

ξ≤0

ξ

�

1
ξ

�

Mn
i+ 1

2
(ξ)dξ

=
�

hn
i

�

ξ≥0

ξ

�

1
ξ

�

χ

�

ξ − un
i

�

hn
i

�

dξ

+
�

hn
i

�

ξ≤0

ξ

�

1
ξ

�

χ

�

−ξ − un
i

�

hn
i

�

1|ξ|2≤2g∆Z
i+1

2

dξ
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+
�

hn
i+1

�

ξ≤0

ξ

�

1
ξ

�

χ





−
�

|ξ|2 − 2g∆Zi+ 1
2
− un

i+1

�

hn
i+1



1|ξ|2≥2g∆Z
i+1

2

dξ.

We consider a change of variable ξ� = −
�

|ξ|2 − 2g∆Zi+ 1
2
, ξ�dξ� = ξdξ, in

the third term to obtain

�

ξ≤0

ξ

�

1
ξ

�

χ





−
�

|ξ|2 − 2g∆Zi+ 1
2
− un

i+1

�

hn
i+1



1|ξ|2≥2g∆Z
i+1

2

dξ

=

�

ξ�≤0

ξ�

�

1

−
�

|ξ�|2 + 2g∆Zi+ 1
2

�

χ

�

ξ� − un
i+1

�

hn
i+1

�

1|ξ�|2≥−2g∆Z
i+1

2

dξ�;

then, a simple computation allows to conclude that

IF−
i+ 1

2

= hn
i

�

ω≥−
un
i√
hn
i

(ω
�

hn
i + un

i )

�

1

ω
�

hn
i + un

i

�

χ(ω)dω

− hn
i

�

(ω
�

hn
i + un

i )

�

1

−(ω
�

hn
i + un

i )

�

× χ(ω)1
0≤ω

√
hn
i +un

i ≤
�

2g(∆Z
i+1

2
)+
dω

+ hn
i+1

�

ω≤
−

�

2g(∆Z
i+1

2
)
−

−un
i+1√

hn
i+1

(ω
�

hn
i+1 + un

i+1)

×
�

1

−
�

|ω
�

hn
i+1 + un

i+1|
2 + 2g∆Zi+ 1

2

�

χ(ω)dω,

where we have used the classical algebraic notations

(∆Zi+ 1
2
)+ = max(0,∆Zi+ 1

2
), (∆Zi+ 1

2
)− = max(−∆Zi+ 1

2
, 0).

Similar manipulations in the formula (3.6) lead to

IF+
i− 1

2

= −hn
i

�

(ω
�

hn
i + un

i )

�

1

−(ω
�

hn
i + un

i )

�

× χ(ω)1−
�

2g(∆Z
i− 1

2
)+≤ω

√
hn
i +un

i ≤0
dω

+ hn
i−1

�

ω≥

�

2g(∆Z
i− 1

2
)
−

−un
i−1√

hn
i−1

(ω
�

hn
i−1 + un

i−1)

×
�

1
�

|ω
�

hn
i−1 + un

i−1|
2 + 2g∆Zi− 1

2

�

χ(ω)dω
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+ hn
i

�

ω≤−
un
i√
hn
i

(ω
�

hn
i + un

i )

�

1

ω
�

hn
i + un

i

�

χ(ω)dω.

Remark 4.1. As observed earlier, we are not able to compute all the integrals
in the previous formulas. In fact, the choice of function χ in Section 2,
which is necessary to achieve the properties of the numerical scheme stated
in Theorem 3.2, leads to integrals which do not generically have an explicit
primitive function.

We distinguish three terms, for each component, in the formula of IF−
i+ 1

2

stated above. We point out that similar integrals characterize the expression
of IF+

i− 1
2

, only with changes of sign in the domains of integration; thus we

proceed to describe the flux IF−
i+ 1

2

.

Recalling that the function χ is defined as in (2.13), some elementary ma-
nipulations lead to obtain

IFh
i+ 1

2
=

2
√
2g

π

�

(hn
i )

3
2 IIh1(Fri) + (hn

i )
3
2 IIh2(Fri, K

−
i+ 1

2

) + (hn
i+1)

3
2 IIh3(Fri+1, K

+
i+ 1

2

)
�

and

IFq

i+ 1
2

=
4g

π

�

(hn
i )

2IIq1(Fri) + (hn
i )

2IIq2(Fri, K
−
i+ 1

2

) + (hn
i+1)

2IIq3(Fri+1, K
+
i+ 1

2

)
�

,

where we introduce the dimensionless numbers

Fri =
un
i

�

2ghn
i

, K−
i+ 1

2

=
∆Zi+ 1

2

hn
i

, K+
i+ 1

2

=
∆Zi+ 1

2

hn
i+1

,

with, dropping the indices when no ambiguity is possible,

IIh1 =

�

ω≥−Fr

ω
�

1− ω2
� 1

2

+
dω + Fr

�

ω≥−Fr

�

1− ω2
� 1

2

+
dω,

IIh2 = −
�

−Fr≤ω≤
√

(K−)+−Fr

ω
�

1− ω2
� 1

2

+
dω

− Fr

�

−Fr≤ω≤
√

(K−)+−Fr

�

1− ω2
� 1

2

+
dω,

IIh3 =

�

ω≤−
√

(K+)−−Fr

ω
�

1− ω2
� 1

2

+
dω

+ Fr

�

ω≤−
√

(K+)−−Fr

�

1− ω2
� 1

2

+
dω,
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IIq1 =

�

ω≥−Fr

ω2
�

1− ω2
� 1

2

+
dω + 2 Fr

�

ω≥−Fr

ω
�

1− ω2
� 1

2

+
dω

+ Fr2
�

ω≥−Fr

�

1− ω2
� 1

2

+
dω,

IIq2 =

�

−Fr≤ω≤
√

(K−)+−Fr

ω2
�

1− ω2
� 1

2

+
dω

+ 2 Fr

�

−Fr≤ω≤
√

(K−)+−Fr

ω
�

1− ω2
� 1

2

+
dω

+ Fr2
�

−Fr≤ω≤
√

(K−)+−Fr

�

1− ω2
� 1

2

+
dω

and, finally,

IIq3 = −
�

ω≤−
√

(K+)−−Fr

(ω + Fr)
�

(ω + Fr)2 +K+
�

1− ω2
� 1

2

+
dω.

Note that almost all the previous terms reduce to the same basic forms,
except the last term which is quite different from the others and we will
treat it later on. Classical techniques of integration, along with the usual
goniometric equalities, allow us to conclude that

� b

a

ω(1− ω2)
1
2dω = −1

3
(1− ω2)

3
2

�

�

�

�

b

a

,

� b

a

(1− ω2)
1
2dω =

1

2

�

arccosω − ω
√
1− ω2

�

�

�

�

�

a

b

,

� b

a

ω2(1− ω2)
1
2dω = −1

3
ω(1− ω2)

3
2

�

�

�

�

b

a

+
1

12

�

3

2
arccosω + ω

√
1− ω2

�

ω2 − 5

2

���

�

�

�

a

b

.

The choice of limits in these integrals is made according to the support of
the function χ, so that

−1 ≤ a = a(Fr,K−, K+,±1) ≤ 1,

−1 ≤ b = b(Fr,K−, K+,±1) ≤ 1;

we specify the values of a and b at the moment of writing the final procedures
in the actual implementation of the numerical method.
Then, a short computation leads to the following results:

IIh1 =
1

3
(1− α2)

3
2 +

1

2
Fr arccosα− 1

2
Frα

√
1− α2,
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IIq1 =
1

3
(1− α2)

3
2 (2Fr + α) +

1

2
arccosα

�

1

4
+ Fr2

�

+
1

2
α
√
1− α2

�

1

6
α2 − 5

12
− Fr2

�

,

where α = min {1,max{−1,−Fr}};

IIh2 =
1

3
(1− β2)

3
2 − 1

3
(1− α2)

3
2 +

1

2
Fr(arccos β − arccosα)

+
1

2
Fr(α

√
1− α2 − β

�

1− β2),

IIq2 =
1

3
(1− α2)

3
2 (2Fr + α)− 1

3
(1− β2)

3
2 (2Fr + β)

+
1

2

�

1

4
+ Fr2

�

(arccosα− arccos β)

+
1

2
β
�

1− β2

�

5

12
− 1

6
β2 + Fr2

�

− 1

2
α
√
1− α2

�

5

12
− 1

6
α2 + Fr2

�

,

where α = min {1,max{−1,−Fr}} and β = max
�

−1,min{
�

(K−)+ − Fr, 1}
�

;

IIh3 = −1

3
(1− β2)

3
2 +

1

2
Fr(π − arccos β)− 1

2
Frβ

�

1− β2,

where β = max
�

−1,min{−
�

(K+)− − Fr, 1}
�

.

We now return to the most complicated term IIq3. Setting α = −1 and

β = max
�

−1,min{−
�

(K+)− − Fr, 1}
�

, we can rewrite it as

IIq3 =

� β

α

f(ω, F r,K+)dω,

with
f(ω, F r,K+) = −(ω + Fr)

�

(ω + Fr)2 +K+
�

1− ω2
� 1

2

+
.

The presence of the square root makes it impossible to compute immediately;
we need to formulate a suitable approximation, preserving the main theoret-
ical features of the real integral. We propose a rather natural choice, based
on a numerical method of integration, by means of a quadrature formula: in
particular, comparison tests lead us to prefer a classical repeated midpoint
formula,

IIq3(Fr,K+) � II∗(Fr,K+) =
β − α

N

N
�

j=1

f

�

α + (j − 1

2
)
β − α

N

�

,
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where N is chosen in order to assure the best compromise between the ac-
curacy of the numerical method and a reasonable computating time. Of
course faster algorithms are possible but at this level we are only interested
in testing the method and we leave it for further extensions to improve the
computational performance.

4.2 Some numerical tests

We conclude these notes with some numerical examples, that illustrate the
results stated in the previous sections, in order to confirm that the properties
of the Saint-Venant system (1.1)-(1.2) are preserved by the numerical scheme
(3.4)-(3.6) introduced in this paper and to evaluate its performance on other
classical test cases.
We check the properties of the scheme on different test cases for which analyt-
ical solutions of the equations are available and on more realistic applications
(most of the experiments simulated here come from a workshop on dam-break
wave simulation).

4.2.1 We begin with a non-stationary test case, a dam-break problem in
a rectangular channel with flat bottom (Z = 0). The initial conditions are

u(0, x) = 0,

h(0, x) =

�

hl for x ≤ 0
hr for x > 0,

where hl > hr in order to be consistent with the physical phenomenon of a
dam-break from the left to the right.
Note that this case corresponds to a Riemann problem for the simpler ho-
mogeneous model of system (1.1)-(1.2) and we can compare the numerical
solution with the exact solution (plotted with a dotted line), computed by
the classical theory (see Dafermos [5], Serre [22]).
The channel length is L = 2000m and the computational domain is chosen
to be symmetric around the point x = 0; the mesh size is Ds = L/100 and
the time-step Dt is computed according to the CFL condition (3.9), in order
to verify numerically that the water height positivity is preserved.
The Figures (1)-(2) and (3)-(4) present respectively the results observed at
time T = 200s for a dam-break on a wet bed (hl = 1m, hr = 0.5m) and at
time T = 150s for a dam-break on a dry soil (hl = 1m, hr = 0m).
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Figure (1): DAM BREAK on a WED BED  final water level
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Figure (2): final velocity values
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Figure (3): DAM BREAK on a DRY SOIL  final water level

1000 800 600 400 200 0 200 400 600 800 1000
0

1

2

3

4

5

6

7
Figure (4): final velocity values

4.2.2 We now consider a test case concerning the steady state of a lake at
rest, on a non-trivial topography, in order to validate the numerical scheme
on a steady flow: we show that this steady state is preserved, up to the
accuracy in the approximation of the integral we have discussed at the end
of Subsection 4.1.
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Figure (5): LAKE AT REST  final water level
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Figure (7): LAKE AT REST  final water level
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The initial conditions are

u(0, x) = 0,

h(0, x) + Z(x) = H,

with H = 2m and we set the same computational parameters as in the first
test case, except for the channel length L = 20m. The solution plotted in
the Figures (5)-(6) corresponds to a channel with a parabolic bump on the
bottom, described by the function

Z(x) =
�

0.2− 0.05 ∗ x2
�

+
;

in the Figures (7)-(8) we present the same test case on a different topography,
given by a discontinuous step

Z(x) =

�

Zl for x ≤ 0
Zr for x > 0,

with Zl = 0m and Zr = 0.3m (note that the geometry of the source term
is not regular here, which is not in agreement with the assumptions of the
classical theory).

4.2.3 Our purpose in the following test cases is to study the convergence in
time towards a more general steady state. We consider a rectangular channel
with the same geometry as in Figure (5) and we compute the steady state
occurring since a constant discharge is imposed at the upstream boundary
condition. We compare the numerical solution with the analytical solution,
provided by the means of the formulas (2.3)-(2.4) in Section 1.
According to the boundary and initial conditions, the flow may be subcritical
(or fluvial), transcritical without shock (the flow becomes torrential at the
top of the bump and the outflow is torrential) and transcritical with shock
(the flow becomes torrential at the top of the bump and the outflow is flu-
vial). We impose an upstream boundary condition Qin on the discharge and
a downstream boundary condition Hout on the water level, as follows:

· subcritical flow

�

Qin = 4.42m2/s
Hout = 2m,

· transcritical flow without shock

�

Qin = 1.53m2/s
Hout = 0.66m,

if the outflow is subcritical (remark that no condition is imposed on the
downstream limit when the outflow becomes supercritical),

· transcritical flow with shock

�

Qin = 0.18m2/s
Hout = 0.33m.
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Figure (9): RIVER at FLUVIAL FLOW  final water level
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Figure (10): final discharge

For all these cases, the initial conditions are

u(0, x) = 0,

h(0, x) + Z(x) = H,

whereH is the constant level of the water surface prescribed downstream. All
solutions are plotted at time T = 200s (analytical solutions are also plotted
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with a dotted line) and a mesh with Ds = L/100 is used, but of course some
results can improve according to the mesh refinement.
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Figure (11): RIVER at TORRENTIAL FLOW without shoch  final water level
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Figure (12): final discharge

Notice that Figures (10), (12) and (14) refer to steady states generally not
at rest (u �= 0) and thus property (iii) does not apply. To the best of our
knowledge, only the results in [7] are comparable to these tests.
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Figure (13): RIVER at TORRENTIAL FLOW with shock  final water level
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Figure (14): final discharge

4.2.4 The last test case we deal with in this paper is the quasi-stationary
case proposed by LeVeque in [17], to compute small perturbations of the
steady state of a lake at rest. According to the parameters fixed by the
author, as bottom topography we take

Z(x) =
�

0.25 (cos (π(x− 0.5)/0.1) + 1)
�

+
,
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centered in a rectangular channel of length L = 1m and the mesh size is
Ds = L/100. The initial conditions are

u(0, x) = 0,

h(0, x) + Z(x) = H + �(x),

with H = 1m and we consider a perturbation of the water surface

�(x) = e 10.1<x<0.2.
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Figure (15): QUASI STATIONARY CASE   e = 0,001
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Figure (16): QUASI STATIONARY CASE   e = 0,2
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Figure (15) and Figure (16) show the water surface given by the numerical
solution at time T = 0.7s (the usual simplification g=1 is also assumed in
this example), respectively for e = 10−3 and e = 0.2.
We only remark that perturbations in quasi-steady problems are computed by
our scheme with the same resolution as would be expected if calculating small
perturbations about constant states for the homogeneous system (∂Z

∂x
= 0).
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Abstract

We present numerical simulations of the Saint-Venant equations
for shallow water, including small friction and viscosity, motivated by
the interest in recovering the results of experimental studies on the
free-surface flows over an obstacle. We use the kinetic scheme “with
reflexions” formulated in [17], appropriately extended to obtain second
order accuracy according to the theory developed in [11].

1 Introduction

The Saint-Venant equations for shallow waters were originally written by
A. de Saint-Venant in 1871 from heuristic considerations about the mecha-
nisms governing physical phenomena such as the flows in rivers or coastal
areas (see [20]).

In a one-dimensional framework, these equations constitute simple math-
ematical model for the flow in ideal rectangular rivers, described at time t≥0
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and at point x ∈ R through the height of water h(t, x)≥ 0 and its velocity
u(t, x)∈R by means of the hyperbolic system

∂h

∂t
+

∂

∂x
(hu) = 0, (1.1)

∂

∂t
(hu) +

∂

∂x

�

hu2 +
g

2
h2

�

+ ghZ � = 0, (1.2)

where g denotes the gravity intensity and Z(x) is the bottom topography;
therefore h+Z is the level of the water surface and, in what follows, we also
denote the discharge by q=hu.
Besides, other terms can be added to the right-hand side of equation (1.2) to
take into account further natural features of the physical context, for instance
friction on the bottom and viscosity inside the fluid.

The question to introduce more complete systems becomes crucial when
one deals with the experimental verification of situations typically occurring
in hydraulics, to provide a classification of different flow regimes in presence
of an obstacle, for which the description based on the model (1.1)-(1.2) is
unsatisfactory. Indeed, for dam breaks or hydraulic jumps, it does not allow
to recover mathematically the right position with respect to the topography
(see [12], for example) and the interaction of the source terms corresponding
to bottom slope and friction in the shallow water equations is dominant for
characterizing the steady states.

Despite its simple configuration, the shallow water flow in channels with
nontrivial topography present a wide variety of regimes, producing some pe-
culiar behaviours of the free-surface (wave trains, hydraulic jumps, turbulent
profiles), which have not yet been fully examined. In [1], the results of classi-
cal analytical theories are reviewed, even though these models are validated
only in the weakly nonlinear and weakly dispersive limits. Based on two-
dimensional numerical simulations of the nonlinear uniform potential flow
around moving obstacles, an accurate description of the different types of
breaking waves is proposed in [14].
However, due to the inherent limitations of the theoretical formulations, their
predictions have to be interpreted in terms of experimental verifications.

We refer to [26] for a survey of the experimental study of free-surface flows
over an obstacle: the behaviour of an incident subcritical channel flow is in-
vestigated for various blocking factors (namely, obstacle shape and stationary
water depth); the results are analyzed in comparison with the classification
schemes proposed in the previous works (see the references in that paper).

We present in this paper some numerical simulations of the Saint-Venant
system, according to the experimental configuration set in [26].
To take into account dissipative effects in the physical phenomenon, we con-
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sider a modified equation for the momentum including small friction and
viscosity, well then the system under analysis reads

∂h

∂t
+

∂

∂x
(hu) = 0, (1.3)

∂

∂t
(hu) +

∂

∂x

�

hu2 +
g

2
h2

�

+ ghZ � = −
g

K2

u|u|

h1/3
+ µ

∂

∂x

�

h
∂u

∂x

�

, (1.4)

whereK is the Strickler’s coefficient of the Manning’s equation and µ denotes
the kinematic viscosity of the fluid. The particular form of the source terms
is suggested by empirical laws, which were originally obtained for steady
state flows (refer to [25]). Similar models have been derived from the Navier-
Stokes system for incompressible flows with a free moving boundary (see [5]
and its references) and more complex laws for the friction term can also be
formulated to modelize analogous problems in the case of granular media
(snow avalanches, for example, as referred in [15]).

The numerical approximation of system (1.3)-(1.4) is carried out by means
of the kinetic scheme proposed and extensively studied in [17]. In fact, for
all experimental tests performed in the works quoted above, the flow was
observed to be stationary and a zone of supercritical flow downstream the
obstacle always occurs, though the cases examined concern the subcritical
regime. So, we use a method which preserves the free-surface profile of steady
states with nontrivial bottom topography and which is able to deal with
transcritical regimes.
The discretization of the additional source terms in (1.4) is rather standard,
based on a semi-implicit approach for the friction term and direct integrations
by the finite volume method for the diffusive term. Moreover, when friction
and viscosity are neglected, we recover the system (1.1)-(1.2).
Appropriate extensions of the primitive algorithm are thus considered, in
order to improve the numerical accuracy.

The paper is organized as follows. In Section 2, we recall some specific
notations of the Upwind Interface Source method for hyperbolic conservation
laws with geometrical source term, illustrated in [18], by extending its general
formalism to the system (1.1)-(1.2). We also introduce the approximation of
the dissipative terms, for treating the system (1.3)-(1.4). Connected with the
numerical approach developed in [17], the question to derive a second order
scheme is addressed in Section 3. We describe the experimental configuration
underling our analysis in Section 4 and we present the results of numerical
simulations made according to the experimental data provided in [26]. Some
remarks are discussed to justify theoretical tests in comparison with the
experiments.
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2 Formalism of the numerical method

The Saint-Venant system for shallow waters (1.1)-(1.2) belongs to the class
of the hyperbolic systems of balance laws, with a geometrical source term,
and can be written in the equivalent form

∂U

∂t
+

∂

∂x
A(U) = B(x,U), (2.1)

where U = (h, hu) represents the vector of conservative variables, the flux
function is given by A(U) =

�

hu, hu2 + g
2
h2
�

and B(x,U) = (0,−ghZ �) indi-
cates the external term.
The equation (2.1) reproduces the general formalism introduced in [18] for
the particular case of scalar conservation laws, so the numerical theory stated
in that context formally extends to system (1.1)-(1.2), to characterize approx-
imations with suitable theoretical properties.

We set up a mesh on R, whose central vertices are xi, i∈Z, made of cells
Ci=[xi− 1

2

, xi+ 1

2

) with nonuniform length ∆xi and the points xi+ 1

2

indicate the
cell interfaces. We also consider a time discretization tn, n∈N, with variable
time-step ∆t. Then we construct a piecewise constant representation of the
function Z(x) on the mesh, with coefficients Zi=

1

∆xi

�

Ci
Z(x) dx for example.

✲�

xi−1

xi− 1

2

�

xi

xi+ 1

2

�

xi+1

Zi
Zi+1

A classical approach to nonlinear hyperbolic problems consists in using
finite volume methods, which are designed for computations with arbitrary
meshes (refer to [4], for instance). Taking into account the source term di-
rectly in the definition of the numerical fluxes, the fully explicit finite volume
scheme for equation (2.1) is written in the compact form

Un+1

i − Un
i +

∆t

∆xi

�

A
n,−
i+ 1

2

− A
n,+

i− 1

2

�

= 0, (2.2)

where A
n,±

i+ 1

2

=A±(Un
i ,U

n
i+1,∆Zi+ 1

2

), with ∆Zi+ 1

2

= Zi+1−Zi, are defined by

means of appropriate numerical functionsA±=
�

A±
h ,A

±
q

�

for each component
of (2.1) and the following consistency properties are required,

A+

h (U ,V ,∆Z) = A−
h (U ,V ,∆Z), (2.3a)

A+

q (U ,V ,∆Z)−A−
q (U ,V ,∆Z) = −gh∆Z +O (|∆Z|+ |U−V|) , (2.3b)

A+(U ,U , 0) = A−(U ,U , 0) = A(U). (2.3c)
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We note that condition (2.3a) ensures that the numerical fluxes are conserva-
tive for the equation (1.1). Moreover, we have An,±

i+ 1

2

=An
i+ 1

2

+(An,±

i+ 1

2

−An
i+ 1

2

)

and the quantity in brackets holds for discrete contributions of the source
term at the cell interfaces, according to the Upwind Interface Source method;
therefore, the relation (2.3b) guarantees consistency with the continuous
model, as readily obtained by standard asymptotic expansions. We deduce
from (2.3c) that the numerical scheme (2.2) satisfies the classical definitions
for homogeneous problems.

The kinetic scheme for the Saint-Venant system proposed in [17] is compa-
tible with the above formalism and endowed with further stability properties
associated to the physical model (it preserves the steady state of still water,
satisfies a discrete entropy inequality and makes non-negative water height).

In order to perform numerical simulations with experimental data, we
consider the modified shallow water equations (1.3)-(1.4), for which that
scheme applies to terms corresponding to the hyperbolic system (1.1)-(1.2).
The discretization of the friction term is implicit (see [16], for example) and
splitted into two steps, only concerning the equation (1.4), which include the
approximation of the viscous term,

q
n+ 1

2

i − qni +
∆t

2∆xi

�

A
n,−
q, i+ 1

2

− A
n,+

q, i− 1

2

�

= µ
∆t

2∆xi

�

V n
i+ 1

2

− V n
i− 1

2

�

, (2.4)

qn+1

i − q
n+ 1

2

i = −
∆t

2

g

K2

qn+1

i |q
n+ 1

2

i |
�

hn+1

i

�
7

3

, (2.5)

where the numerical formulas used for calculating viscosity,

V n
i+ 1

2

=
hi + hi+1

2

ui+1 − ui

∆xi+ 1

2

, (2.6)

with ∆xi+ 1

2

= ∆xi

2
+∆xi+1

2
, are derived by means of simple finite volume inte-

grations on the mesh cells and appropriate approximations of the resulting
interfacial values (we note that the discretization (2.6) can be reinterpreted
according to the classical first order finite element method). Some different
methods for processing friction terms are proposed in [2], [6] and [7].

3 Second order schemes

To obtain second order extensions of finite volume schemes in form (2.2),
a rather geometrical approach is based on slope limiter techniques.
We construct a piecewise linear approximation of the function Z(x) on the
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mesh, whose coefficients are Zi+(x− xi)Z
�
i, x∈Ci, and we denote by Z �

i the
numerical derivatives computed by applying an appropriate slope limiter (we
refer to [8] and [13] for a survey of these discrete operators).

✲�

xi−1

xi− 1

2

�

xi

xi+ 1

2

�

xi+1












Z+

i−1












Z−
i

Z+

i
✥✥✥✥✥✥✥✥Z−

i+1

According to the arguments in [11], a second order scheme for the Upwind
Interface Source method formally reads

Un+1

i − Un
i +

∆t

∆xi

�

A
n,−
i+ 1

2

− A
n,+

i− 1

2

�

+∆t Bn
i = 0, (3.1)

where the numerical fluxes An,±

i+ 1

2

=A±(Un,+
i ,Un,−

i+1 ,∆Zi+ 1

2

) use the interfacial

values of piecewise linear reconstructions of the numerical functions,

Un,±
i = Un

i ±
∆xi

2
Un �
i , Z±

i = Zi ±
∆xi

2
Z �

i, (3.2)

and therefore ∆Zi+ 1

2

=Z−
i+1−Z+

i in this case.

The additional discrete source term is defined by Bn
i =(0, gZ �

ih
n
i ). Although

other methods exhibit noticeable improvements, it was shown in [11] that
the centered term Bn

i is necessary to achieve second order accuracy for the
Upwind Interface Source method, if the slope limiter used to construct the
values (3.2) is correctly defined (see [21], [22] and [23]).

For the sake of simplicity, we consider in (3.1) only the first order dis-
cretization in time. It is standard to obtain higher order accuracy by applying
Runge-Kutta methods for instance (see [9], [10] and its references).
The second order scheme (3.1) is validated by the numerical results obtained
for the steady states of the Saint-Venant system (1.1)-(1.2).

4 Experimental configuration and numerical

results

The situation studied in [26] is the one-dimensional flow of an incompress-
ible fluid over an obstacle on the bottom of a smooth rectangular channel.
The parameters of the problem are the stationary water depth H and the
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F0 Z0 α β Re

0.62 1.7cm 0.179 0.58 2.37 ∗ 104

0.66 1.7cm 0.26 0.58 1.51 ∗ 104

0.64 4.1cm 0.68 0.58 1.32 ∗ 104

mean velocity U , the kinematic viscosity of the fluid µ, the characteristic
length of the obstacle L and its height Z0. By combining these values, we
define some specific dimensionless numbers: the Froude number F0 =

U√
gH

,
which relates the depth-averaged flow velocity to the characteristic wave
propagation speed, in the long waves approximation; the blocking factor
α = Z0

H
, controlling the flow linearity in the absence of other perturbations

(when α tends to zero, the flow becomes linear); the obstacle ratio β = Z0

L
,

which can be interpreted as a control on the flow hydrostaticity (by analogy
with the long waves approximation); the Reynolds number Re= HU

µ
, for the

simple case of an ideal rectangular channel.
We note that the definitions above correspond to simplifications adapted to
the theoretical system described by (1.3)-(1.4), when the fluid density and
the channel width are formally reduced.

u(t,x)

L

H

Z

h(t,x)

0

The experiments have been carried out in a channel of length 12m, in-
clined at slope 0.002 and entirely made of glass. Two obstacle shapes are

considered, a smooth Gaussian bump given by Z(x) =Z0 exp
�

−
x2

2L2

�

, with

ratio β=0.23, and a semi-circular bump with ratio β=0.58 (this last shape
is commonly used for experimental analyses). Two sizes Z0 = 1.7 cm and
Z0 = 4.1 cm are fixed for each shape, which allow to access a wider range
of α values (0.147≤α≤ 0.7). The tests are performed in subcritical regime
(F0< 1) and the obstacles are placed in the channel so that fully developed
turbulent flow conditions are attained before the obstacle.

We present some numerical results corresponding to the test cases illus-
trated in the above table, for which experimental data are available to make
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direct comparisons. The pairs of figures reproduce the level of the water sur-
face and the local Froude number in the vicinity of the obstacle, obtained at
time T =150 s (when the flow has become completely stationary), normalized
with respect to the obstacle size. According to the experiments, the flow is
classified by means of the free-surface profile and three different regimes are
observed as function of the blocking factor. The boundaries of each regime,
in terms of α values, are essentially independent of the obstacle shape.
Several tests have been performed also varying the Strickler’s coefficient K
introduced in (1.4), to evaluate the physical adequacy of the friction law
(refer to [19] for a more precise discussion). The nonuniform mesh used for
the numerical simulations is refined around the obstacle or in regions of stiff
topographical variations, with a minimal mesh size of 5 ∗ 10−4 m.
The subcritical flow downstream of the obstacle displays many of the features
of a supercritical flow behind a sluice gate with ensuing hydraulic jumps, im-
plying a certain independence of the upstream conditions. The treatment
of the boundary conditions, which turns out to be crucial for the numerical
accuracy, is provided by the method developed in [3].

Regime I (α ≤ 0.25)

The graphics of the local Froude number show a transition from super-
critical to subcritical flow downstream of the obstacle, through a hydraulic
jump (Figure 2); the flow remains subcritical downstream the jump. The
lower boundary of this regime is expected to be the value of α below which
a classical subcritical regime should occur.

The results of the experimental test reveal the presence of a wave train
on the free-surface profile (Figure 1). Moreover, some photographs taken
during the experiments show bubbles arising on the crest of the hydraulic
jump, as consequence of the turbulent motion. These phenomena are not
taken into account in the mathematical model (1.3)-(1.4) and cannot be
obtained numerically (we refer to [24] for further analysis).

Regime II (0.26 ≤ α < 0.68)

The graph of the local Froude number shows that a region of supercritical
flow appears downstream the obstacle, followed by a transition from super-
critical to subcritical flow through a hydraulic jump (Figure 4); however, in
this regime, the local Froude number undergoes further transitions and its
values remain close to F =1 downstream the jump.

In the experimental tests, the local Froude number is oscillating around
the critical value and the wave train on the free-surface profile becomes a
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Figure 1: water surface (α = 0.179)
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Figure 2: local Froude number
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Figure 3: water surface (α = 0.26)
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Figure 5: water surface (α = 0.68)

series of triangular hydraulic jumps. This flow regime is essentially three-
dimensional, the friction on the channel walls plays a significant role for the
energy dissipation across the jumps (inducing water deceleration) and con-
finement effects seem to control the behaviour of the flow. Theoretical values
obtained for the water depth (Figure 3) are higher than the experimental
ones, suggesting that the numerical results are necessarily inaccurate.
Nevertheless, as two-dimensional side wall effects have not been considered
in the model (1.3)-(1.4), it seems impossible to reproduce all the phenomena
with one-dimensional simulations.

Regime III (α ≥ 0.68)

The experiments performed until α=0.7 show that the flow remains super-
critical downstream the obstacle; in other words, no hydraulic jumps arise in
this regime. Small perturbations appear on the free-surface profile, in form
of a supercritical wave train located downstream the obstacle.
We remark a rather good agreement with the experimental results concern-
ing the position of hydraulic jumps and the length of the supercritical region
predicted by the shallow water equations (1.3)-(1.4), when friction and vis-
cosity are included.
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Abstract

Numerical modelling of debris avalanches is presented here. The

model uses the long waves approximation, based on the small aspect

ratio of debris avalanches, as in classical Saint-Venant models for shal-

low water. Depth-averaged equations using this approximation are de-

rived in a reference frame linked to the topography. Debris avalanches

are treated here as a dry granular flow with Coulomb-type behavior.
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The numerical finite volume method uses a kinetic scheme, based on

the description of the microscopic behavior of the system, to define

numerical fluxes at the interfaces of a finite element mesh. The main

advantage of this method is to preserve the height positivity. The

originality of the present scheme stands in the introduction of a Dirac

distribution of particles at the microscopic scale, in order to describe

the stopping of a granular mass when the driving forces are under

the Coulomb threshold. Comparisons with analytical solutions for

dam-break problems show the efficiency of the method to deal with

significant discontinuities. The ability of the model to describe de-

bris avalanche behavior is illustrated here by schematic 1D numerical

simulations of an avalanche over simplified topography. Coulomb-type

behavior with constant and variable friction angle are compared in the

framework of this simple example. Numerical tests show that such ap-

proach does not only provide insights into the flowing and stopping

stage of the granular mass but it also allows us to observe interesting

behaviors, such as the existence of a fluidized zone behind a stopped

granular mass in specific situations, suggesting the presence of hori-

zontal surfaces in the deposited mass.

Key-words: avalanche modelling, Coulomb friction, Saint-Venant

equations, finite volume kinetic scheme.

1 Introduction

Granular avalanches such as rock or debris flows regularly cause large
amounts of human and material damages. The numerical simulation of gran-
ular avalanches should provide a useful tool for investigating, within realistic
geological contexts, the dynamics of these flows and their arrest phase and
for improving the risk assessment of such natural hazards. Computational
models must however be able to correctly capture several features such as
the formation of interacting surges [Iverson, 1997].

The physics and rheology of granular avalanches are indeed challenging
problems and the subject of an active research [e.g. Hunt, 1994; Laigle and

Coussot, 1997; Arattano and Savage, 1994; Macedonio and Pareschi, 1992;
Cheng-Lun et al., 1996; Whipple, 1997; Iverson, 1997]. Despite the lack
of a clear physical understanding of avalanche flows, useful basic behaviors
of granular avalanches can be derived from experimental approaches [e.g.
Pouliquen, 1999; Douady et al., 1999]. During a granular avalanche, the
characteristic length in the flowing direction is generally much larger than
the vertical one, i.e. the avalanche thickness. Such a long waves scaling ar-
gument has been widely used in the derivation of continuum flow models for



CHAPITRE 5. KINETIC SCHEME FOR AVALANCHES 143

granular avalanches [e.g. Hunt, 1985; Iverson, 1997, Iverson and Denlinger,
2001; Jenkins, 1999; Jenkins et al., 1999; Savage and Hutter, 1989; Hutter et
al., 1995; Harbitz, 1998; Douady et al., 1999]. This leads to depth-averaged
models governed by generalized Saint-Venant equations. These models pro-
vide a fruitful paradigm for investigating the dynamics and the extent of
granular avalanches in the presence of smooth topography [e.g. Hutter et

al., 1995; Naaim et al., 1997; Pouliquen, 1999]. It is worth to mention that
by construction these flow models do not address the problem of the initia-
tion and destabilization phases of an avalanche, see Aranson and Tsimring

[2001] for models describing these processes. Granular surface flow models
are closely related to other Saint-Venant models used in ocean and hydraulic
engineering to describe both wave propagation, hydraulic jumps and open
channel flows among others.

Without going into detailed rheological assumptions, which would be
rather uncertain due to the lack of a physical understanding of the actual
forces acting in debris avalanches, it is of interest here to emphasize some of
the characteristics that make such flows quite specific.
The first characteristic is that granular media have the ability to remain
static (solid) even along an inclined surface. This observation is related by
Coulomb to some macroscopic solid-like friction and the system is able to flow
only when the driving force reaches a critical value. In classical Coulomb’s
friction, the friction coefficient remains constant [e.g. Hutter et al., 1995;
Naaim et al., 1997]. More evolved friction models, which assume a friction
coefficient that depends on both the avalanche mean velocity and thickness,
has been recently proposed [e.g. Pouliquen, 1999; Douady et al., 1999] based
on laboratory experiments and theoretical assumptions. These models have
been shown quite useful to explain the geometry of the flow in the presence
of topography as well as the observed runout of granular avalanches. In both
cases, the existence of a macroscopic friction threshold leads to nonsmooth
dynamics that has to be handled within appropriate mathematical and nu-
merical formulations.
The second characteristic is that topography along which the avalanche is
flowing can be quite steep and rough. Long waves approximation has there-
fore to be derived in a reference frame locally tangent to the bedrock or to
the free surface of the flow, in contrast with the Galilean reference frame
used in classical Saint-Venant models for hydraulic engineering. The defini-
tion of such a tangent frame of reference is not obvious for a realistic earth
topography and is still a challenge problem. Strong variations of the bottom
topography introduce a stiff source term in the governing flow equations, that
strongly influences the properties of the models and leads to the occurrence
of new steady states. When taking into account a Coulomb-type friction and
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a realistic bottom topography, the source term becomes not only stiff during
the flow but also nonsmooth and shocks are expected to develop in finite time
regardless of the initial conditions. These difficulties have long hindered the
development of realistic models for debris avalanches.

Computational methods developed in geophysics for solving the govern-
ing conservation laws of debris avalanches have mostly focused on the res-
olution of shock waves and surges. They are often based on fractional step
methods and high resolution approximate Riemann solvers, like the Harten-
Lax-vanLeer (HLL) solver [e.g. Toro, 1997]. Most of these methods are
based on conservative nonoscillatory finite differences [e.g. Gray et al., 1999;
Wieland et al., 1999; Tai, 2000; Tai et al., 2002] or finite volumes which have
the nice property of being conservative with respect to the flow height [e.g.
Naaim et al., 1997; Laigle and Coussot, 1997; Denlinger and Iverson, 2001].
They are based on an Eulerian formulation, a Lagrangian formulation [e.g.
Zwinger, 2000] or a Lagrangian-Eulerian operator splitting [e.g. Mangeney et

al., 2000]. Even though these Riemann methods present significant improve-
ments over the early Lagrangian finite difference methods [e.g. Savage and

Hutter, 1989, 1991; Greve et al., 1994], they do not preserve height positivity.
Specific numerical development has to be introduced in the wetting-drying
transition, where the system loses hyperbolicity, and generally an artificial
small height has to be introduced in the regions where no fluid is present (see
Heinrich et al., 2001).

We consider here an alternative numerical scheme to compute debris
avalanches, based on the kinetic interpretation of the system. Kinetic schemes
have been proposed by Audusse et al. [2000] and Bristeau et al. [2001] to
compute Saint-Venant equations in hydraulic problems. A survey of the
theoretical properties of these schemes can be found in Perthame [2002]. Re-
cently, kinetic schemes have been extended to include stiff source terms [e.g.
Botchorishvilli et al., 2000; Perthame and Simeoni, 2001]. Kinetic schemes
have been shown to preserve the height positivity and to be able to treat the
wetting-drying transition. However, classical kinetic schemes do not allow
liquid-solid transitions, associated with a nonsmooth friction. The idea of
the present scheme is to introduce a “zero-temperature” kinetic approxima-
tion when the driving force is under the Coulomb threshold.

We first present the basic equations and the conservation laws which
govern the evolution of granular avalanches along a realistic topography. In
particular, by using classical scaling arguments for surface flows, we derive
the depth-averaged Saint-Venant equations in a reference frame linked to
the bed topography. Then we review some minimal assumptions, inspired
from experiments, on the characteristics of the frictional behavior of granular
avalanches. Then we present a numerical scheme based on a finite volume
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approximation of the governing set of conservation laws. At this stage, we
introduce a kinetic solver which takes into account the existence of a friction
threshold. The accuracy of this kinetic scheme is assessed against the classical
dam-break problem over an inclined plane. Finally, some of the potentialities
of the kinetic scheme are illustrated by simulating a debris avalanche over
a simple bed topography. Comparisons between models with constant and
nonconstant friction are discussed based on the runout, the shape of the
deposit and the mechanism of the stopping phase.

2 Equations

Debris avalanches are described here within a continuum theoretical frame-
work, as an incompressible material with constant density [e.g. Savage and

Hutter, 1989; Iverson and Denlinger, 2001]. The evolution is therefore gov-
erned at time t ≥ 0 by the mass and momentum conservation laws,

∇ · u = 0, (2.1)

ρ

�

∂u

∂t
+ u · ∇u

�

= −∇ · σ + ρg, (2.2)

where u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) denotes the three-
dimensional velocity vector inside the avalanche in a (x, y, z)-coordinate sys-
tem that will be discussed later, σ(x, y, z, t) is the Cauchy stress tensor, ρ is
the mass density and g the gravitational acceleration. The bottom boundary,
or bed, is described by a surface ψb(x, y, z, t) = z − b(x, y) = 0 and the free
surface of the flow by ψs(x, y, z, t) = z−s(x, y, t) = z−b(x, y)−h(x, y, t) = 0,
where h(x, y, t) is the depth of avalanche layer.
A kinematic boundary condition is imposed on the free and bed surfaces,
that specifies that mass neither enters nor leaves the free surface or the base,

dψs

dt
|s =

�

∂ψs

∂t
+ u · ∇ψs

�

|s = 0, (2.3)

dψb

dt
|b =

�

∂ψb

∂t
+ u · ∇ψb

�

|b = 0, (2.4)

as well as a stress free-boundary condition at the surface, neglecting the
atmospheric pressure,

σ · ns = 0, (2.5)

where ns denotes the unit vector normal to the free surface.
Depth-averaging of these equations and some shallow flow assumptions

require the choice of an appropriate coordinate system. During the flow, the
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Figure 1: Reference frame (x, y, z) linked to the topography and Galilean
reference frame (x̃, ỹ, z̃) with θ the steepest slope angle.

avalanche thickness is much smaller than its extent parallel to the bed. In
the case of significant slopes, the shallow flow assumption is more significant
in a reference frame linked to the topography and the classical shallow water
approximation relating horizontal and vertical direction is not appropriate.
As in Denlinger and Iverson [2001], the equations are written here in terms
of a local orthogonal Cartesian coordinate system in which the z-coordinate
is normal to the local topography. We define a local x-axis corresponding to
the projection of an arbitrary fixed x̃-direction in the local tangent plane to
the topography and y = z ∧ x (Figure 1).
Note that the choice of an appropriate reference frame is not straightforward
when dealing with real complex topography and may lead to nonorthonormal
coordinate systems as in Heinrich et al. [2001], Assier-Rzadkiewicz et al.

[2000] and Sabot et al. [1998]. The variation in space of a local coordinate
system introduces errors in the calculation of the derivatives and require slow
variation of the bedrock. The equations developed in a coordinate system
linked to the topography are not directly applicable in a fixed reference frame
as it was performed by Naaim et al. [1997] and Naaim and Gurer [1998]:
appropriate rotations have to be used to transform properly topography-
linked equations in a fixed reference frame [see Douady et al., 1999].

In the reference frame linked to the topography (Figure 1), the equations
of mass and momentum in the x- and y-direction, derived by integration of
the Navier-Stokes equations (2.1)-(2.2) with boundary conditions (2.3)-(2.4)
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and (2.5), read

∂h

∂t
+ div (hū) = 0, (2.6)

∂

∂t
(hū) +

∂

∂x
(hu2) +

∂

∂y
(huv) = γxgh+

1

ρ

∂

∂x
(hσxx) +

1

ρ

∂

∂y
(hσxy) +

1

ρ
Ttx,

(2.7)

∂

∂t
(hv̄) +

∂

∂x
(huv) +

∂

∂y
(hv2) = γygh+

1

ρ

∂

∂x
(hσxy) +

1

ρ

∂

∂y
(hσyy) +

1

ρ
Tty,

(2.8)

where ū = (ū, v̄) denotes the depth-averaged horizontal flow velocity in the
reference frame (x, y, z) defined below, h is the fluid depth, γi are coefficients
(function of the local slope) defining the projection of the gravity vector along
the i-direction and Tti = σiz|b represents the traction at the base of the flow.
A small aspect ratio � = H/L, where H and L are characteristic dimensions
along the z-axis and in the xOy plane respectively, is then introduced in
the depth-averaged x- and y-equations (2.7)-(2.8) and in the nonaveraged
z-equation obtained from the z-projection of equation (2.2). An asymptotic
analysis with respect to � [e.g. Gray et al., 1999] leads to neglect the accel-
eration normal to the topography in the z-equation, leading to

σzz = ρgγz (h− z) , (2.9)

where γz = cos θ, with θ defined as the angle between the vertical axis and
the normal to the topography (Figure 1). The shape of the vertical profile of
the horizontal velocity in debris avalanche flows is still an open question. The
conservation of the initial stratigraphy, sometimes observed in the deposits
of a debris avalanche, has led to the assumption that all the deformation is
essentially located in a fine boundary layer near the bed surface, so that the
horizontal velocity is approximately constant over the depth [e.g. Savage and
Hutter, 1989; Naaim et al., 1997]. More recently, laboratory experiments on
granular flows suggest a linear profile of the horizontal velocity [e.g. Azanza,
1998; Douady et al., 1999]. A weak influence of the vertical profile of the
horizontal velocity has been observed by Pouliquen and Forterre [2002] for
granular flows over inclined plane. We note that, in the locally tangent frame
of reference, simple assumptions for the velocity profile (i.e. constant or linear
profile) can be made unlike in the Galilean fixed reference frame. We assume
here a vertically constant velocity so that uiuj = ūiūj. In the following, the
overline will be dropped and (u, v) will represent the mean velocity field.
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3 Flow and friction law

3.1 Simple friction law

A relation deduced from the mechanical behavior of the material has to
be imposed between σij, Tti, u and h in order to close equations (2.6)-(2.7)
and (2.8). We consider here the minimal model, by using the hydrostatic
assumption, i.e. σij = 0, i �= j and σxx = σyy = σzz. The depth-averaged
mass is then considered as an effective material submitted to empirical fric-
tions, introduced in the traction term Tti in a way similar to the experimental
approach by Pouliquen [1999].

Dissipation in granular materials is generally described by means of a
Coulomb-type friction law, relating the tangential traction Tt on the bed to
the normal stress Tn = σzz|b through a factor µ = tan δ involving the dynamic
bed friction angle δ, namely

�Tt� ≤ σc = µ�Tn�,

which is acting opposite to the velocity. The value of σc defines the upper
bound of the admissible stresses. In the coordinate system considered above,
using the equation (2.9), we have

σc = µρgγzh.

The resulting Coulomb-type behavior can be summarized as follows,

�Tt� ≥ σc ⇒ Tti = −σc

ui

�u� , (3.1)

�Tt� < σc ⇒ u = 0, (3.2)

with i = x, y.

3.2 Flow variable friction law

Laboratory experiments [see Pouliquen, 1999] have shown that laws in-
volving constant friction angle are restricted to granular flows over smooth
inclined planes or flows over rough bed with high inclination angles. The
assumption of constant friction angle seems to fail for granular flows over
rough bedrock in a range of inclination angles for which steady uniform flows
can be observed [Pouliquen, 1999]. In this range, the frictional force is able
to balance the gravity force, indicating a shear rate dependence.
Pouliquen [1999] proposed to choice an empirical friction coefficient µ as
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function of the Froude number �u�/
√
gh and the thickness h of the granular

layer, in the form

µ(�u�, h) = tan δ1 + (tan δ2 − tan δ1) exp

�

−β
h

d

√
gh

�u�

�

, (3.3)

where δ1, δ2 and d are characteristics of the material which can be measured
from the deposit properties. In particular, d is a characteristic length of the
friction law, which is scaled on the mean diameter of particles; in the case of
spherical glass particles used in these laboratory experiments d is of the order
of the diameter of the beads and β = 0.136 [Pouliquen, 1999]. Equation (3.3)
provides a friction angle, ranging between two values δ1 and δ2, depending
on the values of the velocity and the flow thickness. The friction is higher for
small values of the thickness and high values of the velocity, contrary to the
function proposed by Gray et al. [1999] where lowest elevations (i.e. the rear
and the front) are subject to small friction. What this empirical law means
in terms of microscopic forces is still an open problem. Hydraulic models
using this flow law has been shown to be able to predict the spreading of a
granular mass from released to deposit [Pouliquen and Forterre, 2002].

Finally, if �Tt� ≥ σc, the granular mass is flowing following the dynamical
equations

∂

∂t
(hū) +

∂

∂x

�

hū2
�

+
∂

∂y
(hūv̄) = γxgh+

∂

∂x
(gγz

h2

2
)− µgγzh

ux

�u� , (3.4)

∂

∂t
(hv̄) +

∂

∂x
(hūv̄) +

∂

∂y

�

hv̄2
�

= γygh+
∂

∂y
(gγz

h2

2
)− µgγzh

uy

�u� , (3.5)

and, if �Tt� < σc, the granular mass stops, i.e. u = 0.

4 Numerical Model

4.1 Finite volume method

The model developed here is based on the classical finite volume approach
for solving hyperbolic systems, using the concept of cell-centered conservative
quantities. This type of methods requires the formulation of the equations
in terms of conservation laws. The system of equations (2.6) and (3.4)-(3.5)
can be rewritten as

∂U

∂t
+ div F(U) = B(U), (4.1)
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with

U =





h
qx
qy



 , F(U) =







qx qy
q2x
h
+ g

2
h2 qxqy

h
qxqy
h

q2y
h
+ g

2
h2






, (4.2)

B(U) =





0
ghγx − σxz|b
ghγy − σyz|b



 , (4.3)

where q = hu is the material flux.
The equations are discretized on general triangular grids with a finite

element data structure, using a particular control volume which is the median
based dual cell (Figure 2a). The finite element grid is appropriate to describe
variable topography and refinement is performed when strong topographic
gradients occur. Dual cells Ci are obtained by joining the centers of mass of
the triangles surrounding each vertex Pi. We also use the following notations:

• Ki, set of nodes Pj surrounding Pi,

• |Ci|, area of Ci,

• Γij, boundary edge belonging to cells Ci and Cj,

• Lij, length of Γij,

• nij, unit normal to Γij, outward to Ci.

If Pi is a node belonging to the boundary Γ of the numerical domain, we join
the centers of mass of the triangles adjacent to the boundary to the middle
of the edge belonging to Γ (see Figure 2b).

Let ∆t denote the time-step, Un
i is the approximation of the cell-average

of the exact solution at time tn = n∆t, n ∈ N, i.e.

Un
i � 1

|Ci|

�

Ci

U(tn, x)dx,

and B(Un
i ) is the approximation of the cell-average of the exact source term,

B(Un
i ) �

1

|Ci|

�

Ci

B(U(tn, x))dx.

Then, the finite volume scheme reads

Un+1

i = Un
i −

�

j∈Ki

αij F
�

Un
i ,U

n
j ,nij

�

−∆tB (Un
i ) , (4.4)
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Figure 2: Triangular finite element mesh: (a) dual inner cell Ci, (b) dual
boundary cell Ci.

with

αij =
∆tLij

|Cij|
, (4.5)

and F
�

Un
i ,U

n
j ,nij

�

denotes an interpolation of normal components of the
flux F(U) ·nij along the edge Γij. The treatment of the boundary conditions,
namely the calculation of the boundary fluxes, using a Riemann invariant is
addressed in Bristeau et al. [2001].

The main difficulty is to compute numerical fluxes at the control volume
interfaces Γij and the overall stability of the method requires some upwinding
in the interpolation of the fluxes [see Audusse et al., 2000]. The computation
of these fluxes constitutes the major difference between the kinetic scheme
used here and Godunov-type methods, which are usually very accurate for
shock-capturing but not well suited to deal with vacuum front at the margins
of the avalanche where the system looses hyperbolicity (h = 0 corresponding
to dry soils). This drawback results from the lack of definable wave speeds
in advance of a flow front. Many shock-capturing upwind schemes produce
negative heights of water at these points and subsequently they break down
or become unstable. An artificial small height of fluid in the whole domain
has to be imposed to stabilize the scheme [e.g. Mangeney et al., 2000].
Tai [2000] and Tai et al. [2002] overcome this imperfection by tracking the
vacuum front. Denlinger and Iverson [2001] calculate the theoretical speed
of a flow front using the Riemann invariant of the wave emanating from the
front directed in the inner part of the mass.

We follow here an alternative approach to solve Saint-Venant equations
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by using a kinetic solver, which is intrinsically able to treat vacuum and is
appropriate to handle discontinuous solutions. These properties are of the
highest importance for gravitational flow modelling. One further important
property of this scheme is that it does not require any dimensional splitting.
Kinetic schemes might be one of the best compromise between accuracy, sta-
bility and efficiency for the resolution of Saint-Venant equations [see Audusse
et al., 2000]. To our knowledge, this type of schemes has never been applied
to avalanche flow modelling over slopping topography.

4.2 Kinetic formulation

The kinetic approach consists in using a fictitious description of the mi-
croscopic behavior of the system, in order to define numerical fluxes at the
interface of an unstructured mesh. In fact, the macroscopic discontinuities
disappear at the microscopic scale. We introduce here the main concepts
of the kinetic scheme used for this model; a more complete description and
deatils about its numerical implementation are done in Audusse et al. [2000]
and Bristeau et al. [2001]. The scheme will be discussed by omitting the
friction term, which is further introduced by using a semi-implicit scheme
(see Section 4.3). In this method, fictitious particles are introduced and the
equations are considered at the microscopic scale, where no discontinuities
occur. A distribution function M(t, x, y, ξ) of fictitious particles with micro-
scopic velocity ξ is introduced to obtain a linear microscopic kinetic equation
equivalent to macroscopic equation (4.1), with (4.2)-(4.3). The microscopic
density of particles present at time t in the vicinity ∆x∆y of the position
(x, y) and with velocity ξ is given by

M(t, x, y, ξ) =
h(t, x, y)

c2
χ

�

ξ − u(t, x, y)

c

�

, (4.6)

with “fluid density” h, “fluid temperature” proportional to

c2 =
gh

2
, (4.7)

and χ(ω) a positive even function defined on �2 and satisfying
�

�2

χ(ω)dω = 1,

�

�2

ωiωjχ(ω)dω = δij, (4.8)

with δij the Kronecker symbol and ω = (ωi,ωj). This function χ is assumed
to be compactly supported, i.e.

∃ ωM ∈ � such that χ(ω) = 0, for |ω| ≥ ωM . (4.9)
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Note that the rectangular shape of the distribution function χ imposed for
the fictitious particles would change in time if real particles where considered.

Simple calculations show that the macroscopic quantities are linked to
the microscopic density function by the following relations,

U =

�

�2

�

1
ξ

�

M(t, x, y, ξ)dξ, (4.10)

F(U) =

�

�2

�

ξ

ξ ⊗ ξ

�

M(t, x, y, ξ)dξ, (4.11)

Bi(U) = gγi

�

�2

�

1
ξ

�

�ξ M(t, x, y, ξ)dξ, (4.12)

with i = x, y. These relations imply that the nonlinear system (2.6) and
(3.4)-(3.5) is equivalent to the linear transport equation for the quantity M ,
for which it is easier to find a simple numerical scheme with good properties,

∂M

∂t
+ ξ ·�xM − g γ ·�ξM = Q(t, x, y, ξ), (4.13)

for some collision term Q(t, x, y, ξ) which satisfies
�

�2

�

1
ξ

�

Q(t, x, y, ξ)dξ = 0. (4.14)

As usual, the collision term Q(t, x, y, ξ) in this kinetic representation of the
Saint-Venant equations, which relaxes the kinetic density to the microscopic
equilibrium M , is neglected in the numerical scheme, i.e. at each time-step
we project the kinetic density on M , which is a way to perform all the
collisions at once and to recover the Gibbs equilibrium without computing it
[see Perthame and Simeoni, 2001].

Finally, the discretization of this simple kinetic equation allows us to
deduce an appropriate discretization of the macroscopic system. A simple
upwind scheme is applied to the microscopic equation (4.13), leading to the
formulation of the fluxes defined in equation (4.4),

F(Ui,Uj,nij) = F+(Ui,nij) + F−(Uj,nij), (4.15)

F+(Ui,nij) =

�

ξ·nij≥0

ξ · nij

�

1
ξ

�

Mi(ξ)dξ, (4.16)

F−(Uj,nij) =

�

ξ·nij≤0

ξ · nij

�

1
ξ

�

Mj(ξ)dξ. (4.17)

The simple form of the density function (here a rectangle-type function Π)
allows analytical resolution of integrals (4.16)-(4.17) and gives the possibility
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to write directly a finite volume formula, which therefore avoids using the
extra variable ξ in the implementation of the code. The resulting numer-
ical scheme is consistent and conservative. Furthermore, it is proved that
the water height positivity is preserved under the Courant-Friedrichs-Levy
condition [see Audusse et al., 2000],

∆tmax (|un
i |+ ωMcni ) ≤

|Ci|
�

j∈Ki
Lij

. (4.18)

In comparison with flood modelling, avalanche modelling introduces a
further difficulty relating to the property of granular media to be able to
remain static (solid) even with an inclined free surface. This equilibrium is
not intrinsically preserved by finite volume schemes and specific processing
has to be introduced in the numerical scheme for the particular case of kinetic
scheme, as it will be developed in the next section.

4.3 Friction

The friction is introduced in two steps. A first estimation of the numerical
fluxes q̃n+1

i is obtained by solving equation (4.4) without any friction term
and the flow thickness hn+1

i is calculated by solving explicitly the mass con-
servation (2.6). As friction does not change the direction of the velocity, we
impose that the corrected flux qn+1

i has the same direction of q̃n+1

i .
If the norm of the driving force q̃n+1

i /∆t is lower than the Coulomb threshold
σc/ρ = µgγz h

n+1

i , then the mass stops, i.e.

�q̃n+1

i � − µgγz h
n+1

i ∆t ≤ 0 ⇒ qn+1

i = 0. (4.19)

On the other hand, if the driving force q̃n+1

i /∆t is higher than the Coulomb
threshold, then the norm of the friction term σ|b is equal to σc.
Following Bristeau et al. [2001], we introduce a semi-implicit treatment of
the friction term. Equation (4.4), written in terms of the variable q, reads

qn+1

i =
�

�q̃n+1

i � − µgγz h
n+1

i ∆t
� q̃n+1

i

�q̃n+1

i � . (4.20)

This threshold-type behavior is generally not taken into account in numerical
models, due to the resulting discontinuity in the velocity field. Generally, the
magnitude of active and Coulomb friction forces is compared only for parts
of the flow where u �= 0 [e.g. Mangeney et al., 2000; Eglit, 1983].

Due to the possible space variations of h, classical kinetic schemes do not
allow the mass stopping even though its velocity is equal to zero. In fact,
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for the kinetic scheme based on a rectangle-type distribution function χ as
in equation (4.6), perturbations propagate at velocity c̃ =

√
gh even though

the fluid is at rest because the “temperature” is not equal to zero.
In our case, perturbations linked to the h-gradient of a nonflat free surface
generate fluxes and the fluid never stops. On the opposite, the Coulomb cri-
terium imposes that, under a given threshold, a perturbation (of the surface
elevation, for example) do not propagates. It can be represented by a fluid
at “temperature” equal to zero, so that the local speed of propagation of the
disturbance relative to the moving stream is equal to zero. It can be obtained
by using a Dirac distribution for the function χ.

The idea of the present scheme is to introduce a “zero-temperature fluid”
with a Dirac-type density of particles M when the fluid is under the Coulomb
threshold and a “nonzero-temperature fluid” using a rectangular-type density
of particles when the fluid is over the Coulomb threshold, so we have

�q̃n+1

i � − µgγz h
n+1

∆t < 0 ⇒ M(t, x, y, ξ) = h(t, x, y)δ (ξ − u(t, x, y)) ,

(4.21)

�q̃n+1

i � − µgγz h
n+1

∆t ≥ 0 ⇒ M(t, x, y, ξ) =
h(t, x, y)

c2
χ

�

ξ − u(t, x, y)

c

�

,

(4.22)

where the rectangular function χ given by Bristeau et al. [2001] reads

χ(ω) =
1

12
Π|ωi|≤

√
3
, i = 1, 2. (4.23)

The expression of the flux related to the edge Γij in the mass conservation
equation using (4.16) then reads

�q̃n+1

i � − µgγz h
n+1

∆t < 0 ⇒ F+

h (Ui,nij) = hiui,nY (ui,n), (4.24)

�q̃n+1

i � − µgγz h
n+1

∆t ≥ 0, ⇒ F+

h (Ui,nij) =
1

2
hiui,n +

√
3

4
hici +

1

4
√
3
hi

u2
i,n

ci
,

(4.25)

where Y is the Heaviside distribution and ui,n is the velocity in the normal
direction of the edge Γij. Similar expressions are obtained for F−(Uj,nij).
Note that the Dirac distribution does not allow us to recover the momentum
equation. In fact, the flux calculated for the momentum equation using this
function reads

F+

m(Ui,nij) = hiu
2

i,nY (ui,n), (4.26)

without the pressure gradient due to the zero-temperature fluid. However,
when the fluid is under the Coulomb threshold, the momentum equation
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Figure 3: 1D mesh and dual cell Ci with center Pi (full circles denote the
points under the Coulomb threshold and stars the points above the Coulomb
threshold).

is replaced by q = 0, so that the Dirac-type function is only used for the
calculation of the fluxes in the mass conservation equation.

The first step of the numerical scheme is to evaluate the grid points that
are under the Coulomb threshold using q̃n+1

i . We look at the simple 1D case
(Figure 3) where the points P0, P1 and P2 are under the Coulomb threshold
(full circles) and the points P3 and P4 are above this threshold (stars). In
order to obtain the flux Fh,i = F+

h (Pi−1)+F−

h (Pi) at the interfaceMi allowing
to satisfy conservation laws, the same distribution function has to be used in
both side of the interface: a rectangular distribution is imposed if one of the
two points Pi or Pi−1 is above the Coulomb threshold and a Dirac distribution
elsewhere. As a result, the flux through the interface M3 is calculated using a
rectangular function whereas the flux through the interface M2 is calculated
using the Dirac function. The propagation of the h-gradient is then allowed
to the right where the fluid is above the Coulomb threshold and forbidden to
the left where the fluid is under the Coulomb threshold, recalling the typical
solid-fluid transition of granular material. Numerical tests show that this
method is mass conservative.

The resulting 2D scheme consists in evaluating at time t the points under
the Coulomb threshold and in calculating at time t+ dt the flux Fh through
the interface Mij of a cell Ci

• using the rectangular distribution if one of the two points Pi and Pj

situated on both sides of this interface is above the Coulomb threshold;

• using a Dirac distribution if the two points Pi and Pj are under the
Coulomb threshold.

The numerical method is illustrated on the 2D mesh presented in Figure 4
where the points M1, M2, M3, P2, M10, M11 surrounding the point P1 are
under the Coulomb threshold. The fluxes Fh through the interfaces of the



CHAPITRE 5. KINETIC SCHEME FOR AVALANCHES 157

Figure 4: Triangular mesh and dual cell C1, C2, C3 and C4 (full circles
denote the points under the Coulomb threshold and stars the points above
the Coulomb threshold).

cell C1 is then calculated using the Dirac distribution, whereas in cell C4 all
the fluxes are calculated using the rectangular distribution. For the cell C2,
the surrounding points P3 and M8 being above the Coulomb threshold, the
fluxes Fh through the edges cutting P2M8, P2P3 are calculated using the
rectangular distribution, while the fluxes Fh through the edges cutting P2P1,
P2M3, P2M9, P2M10 are calculated using the Dirac distribution. With this
scheme, verifying the mass conservation at the machine accuracy, the fluid is
able to stop.

5 Validation

The precision and performance of the numerical model is tested by com-
paring numerical results with those of an analytical solution, which takes
into account a Coulomb-type friction on the base of the flow, provided the
angle of friction is smaller than the slope angle and the fluid never stops on
the inclined plane [see Mangeney et al., 2000].

The test case consists of the instantaneous release of a fluid mass of
1m high on a dry flat bottom, infinitely long in the negative x-direction.
The numerical domain ranges from 0m to 2000m. Note that the aspect
ratio of the geometry considered here is � = 10−3, so that the long waves
approximation is valid. All 1D numerical experiments are carried out with
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the 2D model using the same number of points in the transversal direction
(101 points with the same space-step as in the flow direction).
From Figure 5 and Figure 6, showing the comparison between analytical
and numerical solution for two grid steps (dx = 20m and dx = 2m), it
can be observed that the numerical model provides a good representation
of the dam-break problem as well without and with friction law. The main
difference between analytical and numerical results is located at the front
position and at the corner of the dam, as it was observed in Mangeney et

al. [2000] with a Godunov-type numerical model. Note that the deviation
from the analytical solution is qualitatively the same with the Godunov-type
model and the kinetic model: the corner at the left discontinuity is rounded
and the position of the front is lower than the position of the analytical front
after a few seconds: the shock is smoothed, as usual with a first order scheme,
as it was observed in Audusse et al. [2000].
Finally, the results are expressed in terms of the mean relative error

dh =
Σ (h− ha)

2

Σh2
a

, (5.1)

where ha is the analytical solution for h and Σ represents the sum over a
fixed interval including the points where 0 < h < h0. Figure 7 shows that,
when the space-step is reduced by a factor 10, the mean relative error is
reduced by a factor about 4, which is compatible with other general conver-
gence rates that can be proved for simple models in presence of singularities
(e.g. Perthame [2002]). Similar results are obtained when the error on hu is
considered.

6 One-dimensional simulation over simplified

topography

To illustrate the potentiality of the numerical model, we have performed
a series of numerical experiments using the friction laws described above
over simplified 1D geometry. As an example, let us consider an exponential
shape for the topography Z(x), with characteristic dimensions of the order
of the real topography of White River Valley in Montserrat island (Lesser
Antilles) where an extensively studied debris avalanche occurred 26 December
1997 [Sparks et al., 2002]. This debris avalanche with an estimated volume
of about 40 − 45 × 106 m3 was caused by the failure of the upper south
flank of the Soufriere Hills Volcano. Geological and numerical studies of
this event have been performed and estimation of the thickness, velocity and
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Figure 5: (a) Fluid thickness h and (b) discharge flux hu versus distance,
obtained for δ = 0◦ and θ = 0◦ at time t = 37 s and t = 137 s, calculated
with the analytical solution (dotted lines) and with the numerical model for
dx = 20m (solid lines) and dx = 2m (dashed lines).
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Figure 6: (a) Fluid thickness h and (b) discharge flux hu versus distance,
obtained for δ = 0◦, δ = 1◦ and δ = 4◦ for inclination angle θ = 5◦ at time
t = 35 s, calculated with the analytical solution (dotted lines) and with the
numerical model for dx = 20m and dx = 2m (solid lines).
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Figure 7: Mean relative error ∆h for the dam-break problem for dx = 20m
(symbols) and and dx = 2m (solid lines with symbols) for inclination angle
of the bottom θ = 5◦ with various angle of friction δ = 0◦, δ = 1◦ and δ = 4◦

and mean relative error ∆h for θ = 0◦ (dx = 20m solid lines and dx = 2m
dashed lines).

runout distance of this debris avalanche are now available. The maximum
deposit thicknesses range from 60m to 100m. Front heights of about 20m
are observed at a distance of 200m from the shoreline. It can be inferred
from the observations that the avalanche travels approximately 3.5 km from
the center of the destabilized mass, in the reference frame linked to the
topography.

Let us investigate the influence of the various flow laws in the range
of parameters allowing the mass to stop around the position x = 4500m,
corresponding approximately to the observed runout of the Boxing Day debris
avalanche down the White River Valley. In the White River Valley, the
altitude decreases from 900m at the top of the avalanche with a maximum
slope inclination of 35◦ to the sea, with slope inclination of a few degrees at
the shore. The corresponding angle is defined by

θ(x) = θ0 exp
�

−x

a

�

, (6.1)

with θ0 = 35◦ and a = 1750m (Figure 8b). The summit is located at an
altitude of 950m with an initial slope of 35◦, the topography being almost
horizontal in the right part (Figure 8a). The results are presented in the
coordinate system (x,z) linked to the topography. The initial conditions
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Figure 8: (a) Bed topography in Cartesian coordinates (x̃, z̃) and initial
volume of the granular mass in topography-linked coordinates (x, z); (b) slope
angle θ(x) of the bed in degrees in the topography-linked coordinates (x, z).

are defined by the instantaneous release of a parabolic mass over a rigid
topography, represented in Figure 8a in the coordinate system (x,z) where

h(x, t = 0) = K
�

l − (x− x0)
2
�

, (6.2)

u(x, t = 0) = 0, (6.3)

with K = 1.26 × 10−3 m−1, l = 1.6 × 105 m2 and x0 = 500m. Initially, the
maximal thickness of the mass is 200m in the direction perpendicular to the
topography with a length of 800m, close to the estimations of the Boxing
Day debris avalanche destabilized mass. The numerical domain is discretized
using 880 points in the x-direction with a space-step of 6.25m.

6.1 Curvature effects

We note that equations (3.4)-(3.5) are obtained by neglecting the first
order curvature terms. At first order in 1D, curvature effects lead to an
additional friction force linked to centrifugal acceleration. According to the
scale analysis of Savage and Hutter [1989], this first order curvature effect
is taken into account by a term involving the curvature radius R of the bed
profile in the momentum equation

∂

∂t
(hū)+

∂

∂x
(hū2)+

∂

∂y
(hūv̄) = γxgh+

∂

∂x
(gγz

h2

2
)−µh(gγz+

u2

R
)
u

|u|
. (6.4)
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When either µ or λ = L/Rc, where Rc is a characteristic value of the curva-

ture radius, or both are smaller than O(�
1

2 ) and when u does not become too
large, then this term may be dropped in comparison with the others terms
[see Greve and Hutter, 1993].

Numerical tests confirm that the first order curvature effects involved in
the last term of equation (6.4) is not too large in our case, where the radius of
curvature is relatively high. Note that, in the present case, � is of order 0.1,
µ = 0.27 for δ = 15◦ is of order �

1

2 and λ is lower than 4× 10−3.
Figure 9 shows that the results with and without this curvature term are close
to each other for a simple friction law with δ = 15◦, especially during the flow.
Furthermore, the fluid stops almost at the same time (t = 86.4 s without
curvature effects and t = 86 s with curvature effects) and the maximum
elevation of the deposit is the same (hmax = 67.8m without curvature and
hmax = 68m with curvature). However, a difference of 156m (5% of the
deposit length) is observed in the runout distance.
When curvature effects are not taken into account, i.e. when the exponential
shape does not slow down the granular mass, the front is located further
away. The empirical nature of the friction angle in such a model is well
illustrated in this example. In fact, curvature effects are difficult to take into
account in 2D experiments. Dropping these effects leads to unverifiable error
in the determination of the well-fitted friction angle. In the following 1D
simulations, first order curvature effects have been also taken into account.

6.2 The Coulomb friction law

We first look at the results obtained by using the friction law with constant
angle. Sensitivity study is performed just by varying the value of this angle.
The avalanche deposit extends further for lower values of δ, as shown in
Figure 10, where the geometry of the deposits is obtained when the flow
comes to rest. A difference of approximatively 740m on the front position is
obtained when δ varies from 14◦ to 16◦, while a difference of approximatively
1060m when δ varies from 16◦ to 20◦. Furthermore, the length of the deposit
is larger and the maximum elevation lower when the friction angle decreases.
The deposit extends along 2900m when δ = 14◦ with a maximum elevation
h = 65m, while the extension is only 2290m when δ = 20◦ with a maximum
elevation h = 75m. It appears that only low values of the friction angle
around 15◦ are appropriate to reproduce the great mobility of real debris
avalanches, as it was observed in 2D simulation [see Heinrich et al., 2001].

The low value of δ is a consequence of the widely observed ability of
large avalanches to travel distances much larger than expected from classical
models of slope failure. Note that, dispite of the extreme simplification of this
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Figure 9: Fluid thickness h at t = 25 s, t = 45 s and t = 87 s (i.e. when the
fluid stops) with and without the curvature term for a simple friction law
with δ = 15◦. The dash-dotted lines represent the result without curvature
effect and the corresponding full lines those with curvature effect at the same
time. Note that the fluid stops approximatively at the same time.

test, the calculated values are in the range of the deposit elevation estimated
from geological observation [see Sparks et al., 2002]. The x-position of the
maximum elevation is situated toward the rear of the mass. In fact, with a
constant friction angle, in the accelerating stage, the fluid flows with higher
velocity near the front than near the rear due to a driving negative h-gradient.
The positive h-gradient near the downhill rear of the fluid plays a braking
role in the balance of forces, as it is illustrated in Figure 11. It is worth
pointing out that the force due to the pressure gradient (i.e. the h-gradient)
is relatively small compared to the other forces as well, at t = 25 s as at
t = 65 s in the rest of the mass. This feature may explain the weak effect of
the parameter kactpass involved in the pressure gradient when non-isotropy of
normal stresses is assumed [see Pouliquen and Forterre, 2002].

6.3 Pouliquen’s friction law

We propose to use here the more recent law developed empirically by
Pouliquen [1999] (see Section 3.2). Contrary to the one-parameter simple
friction law, three parameters have to be determined: two friction angles δ1,
δ2 and the coefficient d. Debris avalanches are composed of particles with
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Figure 10: Profile of the mass at the time when the fluid stops, for various
values of the friction angle δ using the simple friction law.

Figure 11: Forces involved in the x-momentum equation for a simple friction
law with δ = 15◦ versus distance (a) at time t = 25 s and (b) at t = 65 s.
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Figure 12: Fluid thickness at t = 25 s and when the fluid stops for various
values of d in the Pouliquen’s flow law, with δ1 = 13◦ and δ2 = 20◦, and for a
simple friction law with δ = 15◦. The dash-dotted lines represent the result
for the Pouliquen’s flow law and the corresponding full lines those for the
simple friction law.

sizes varying from less than one millimeter to tens of meters. It is therefore
difficult to estimate the value of d in the model. However, a value of d = 1.5m
allows the mass reaching x = 4500m for δ1 = 13◦ and δ2 = 20◦ (Figure 12).
The variation of δ with the position is represented in Figure 13 at the instants
t = 25 s and t = 65 s for d = 1, d = 1.5 and d = 2.

Note that for low value of d the results are similar to those obtained for
simple friction law with δ = 13◦ and for high values of d the results are close
to those obtained using a simple friction law with δ = 20◦. In this range of
values, the flow is governed by δ2 near the front and the rear of the flow and
by δ1 in the inner part of the mass. The friction angle evolves in time as a
function of the flow parameters (h, hu) as in Figure 13. Differences of more
than 1◦ are observed on δ when d-value goes from 1 to 2, leading to strong
differences in the deposit (Figure 12). Figure 12 also shows that the shapes
of the flowing mass at t = 25 s are similar for both various values of d and
for the simple friction law.

During the flowing stage, the friction force does not play a leading role,
as it is illustrated in Figure 14a at t = 25 s. During the deceleration stage,
the importance of the friction forces increases (Figure 14b) to the stopping
stage, where the friction forces balanced by the gravity force dominate the
other forces. Concerning the deposit, not only the runout distance changes
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Figure 13: Friction angle δ versus position x in Pouliquen’s flow law with
δ1 = 13◦ and δ2 = 20◦ and d = 1 (full lines), d = 1.5 (dotted lines) and d = 2
(dashed lines) at time t = 25 s and t = 65 s. At the rear and the front, i.e.
for small values of h, the friction angle tends to δ2.

Figure 14: Forces involved in the x-momentum equation for Pouliquen’s flow
law with δ1 = 13◦, δ2 = 20◦ and d = 1.5 versus distance at time (a) t = 25 s
and (b) t = 65 s.
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with d but also the shape. As d increases, the front becomes more marked
and the rear finer. Such a shape seems to be closer to real observed front
of avalanches. The shape of the deposit using Pouliquen’s friction law with
d = 1.5 is quite different from that obtained by simple friction law with
δ = 15◦ even though the runout distance is the same and the extension
of the deposit is similar (see Figure 12). The downhill part of the deposit
using this variable friction angle is 18m high at 250m from the rear and
35m high for constant friction angle. Contrary to simple friction law, the
maximum thickness is situated near the front for Pouliquen’s flow law, due
to low friction for high elevation in the inner part of the avalanche. In this
example, contrary to simple friction law, Pouliquen’s flow law can describe
front height of approximatively 20m at a distance of 200m from the runout
distance. As it was observed for simple friction law, the force due to the
pressure gradient is relatively small compared with the other forces as well
at t = 25 s as at t = 65 s, except at the front (Figure 14).

These simple 1D simulations are in agreement with the results obtained
using 2D simulations by Heinrich et al. [2001], where comparisons between
flows calculated by Coulomb and Pouliquen’s friction laws have shown the
importance of the dependence of the friction angle on the Froude number and
the flow height, suggesting a rate dependence in the mechanical behavior of
debris avalanches.

6.4 Mass stopping

The major originality of the model presented in this paper consists in the
introduction of the stopping mechanism in kinetic schemes. Let us look with
more details at this stopping stage, illustrated in Figure 15 and Figure 16 for
simple friction law and Pouliquen’s flow law respectively.

For the simple friction law (δ = 15◦) the mass stops at t = 86 s and for
the Pouliquen’s flow law (δ1 = 13◦, δ2 = 20◦ and d = 1.5) at t = 97.6 s. With
these rheological parameters, the runout distance for both simple friction
law and Pouliquen’s flow law is approximatively 4500m. With the constant
angle friction law, the front encountering low slope begins to stop. The
stopping propagates toward the rear of the mass until the whole fluid stops.
The asymmetric shape becomes more pronounced when the fluid stops, due
to this downward propagation of the stopping stage. Note that, with this
topography and with this initial released mass, the Coulomb threshold is
never reached in the rear of the flow for friction angle higher than δ = 23◦.
For such high friction, the front stops and this stopping propagates toward
the rear. However, the driving force and in particular the gravity near the
rear of the flow is still higher than the Coulomb threshold due to high slope
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Figure 15: Fluid thickness (full lines) versus distance at (a) t = 75 s, (b)
t = 80 s and (c) t = 87 s during the stopping stage for simple friction law
with δ = 15◦. A value of 0 is allocated to the fluid under the Coulomb
threshold and a value of 20 to the fluid above the Coulomb threshold.
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Figure 16: Fluid thickness (full lines) versus distance at (a) t = 85 s, (b)
t = 90 s and (c) t = 98 s during the stopping stage for Pouliquen’s flow
law with δ1 = 13◦, δ2 = 20◦ and d = 1.5. A value of 0 is allocated to the
fluid under the Coulomb threshold and a value of 20 to the fluid above the
Coulomb threshold.
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of the topography. In this case, the h-gradient may play a significant role
in controlling the balance of forces. As an example, at t = 70 s for δ = 24◦,
the whole fluid is stopping except a 150m long part in the rear of the mass.
In this region, the fluid is stopped by the downhill mass which is under
the Coulomb threshold. The presence of a fluidized zone behind a rigid
mass would be an interesting point to verify by comparing numerical results
derived from mathematical models with empirical or geological observation
of deposits. The stopping scenario is not the same for Pouliquen’s flow law,
for which the central part of the fluid is stopping first. In this case, the
friction angle is not constant, as it was observed in the previous section.
The difference in the stopping behavior of a debris mass controlled by simple
friction law or Pouliquen’s flow law can be a useful test to determine the
more appropriate flow law.

The presence of a fluidized zone behind a rigid mass is also observed,
for example, with rheological parameters δ1 = 12◦, δ2 = 20◦ and d = 10,
suggesting the existence of horizontal surfaces in the deposit. Further analysis
of this phenomenon requires the development of a model reproducing the
equilibrium of a fluid at rest [e.g. Perthame and Simeoni, 2001].

7 Conclusion

Numerical modelling of debris avalanches has been presented here based
on Savage and Hutter’s equations. Granular avalanche behavior has been
described using a Coulomb-type friction law with constant and flow variable
friction angle.

The numerical model is based on a kinetic scheme. The main idea is
to introduce two different descriptions of the microscopic behavior of the
system, suggested by the ambivalence of the fluid-solid behavior of granular
material. The resulting solver appears to be stable and preserves height
positivity, contrary to several Godounov-type methods. Efficiency of this
model has been tested by comparisons with analytical solution of dam-break
problems. The numerical scheme remains stable in spite of the introduction
of the discontinuous Coulomb criterium. Furthermore, the discretization on
a finite element mesh is well suited to simulate avalanches over real complex
topographies.

Preliminary 1D simulations on a simplified geometry have allowed us to
test the capacity of the numerical model and to compare constant and vari-
able angle friction laws. The shape of the deposit strongly depends on the
used friction law. Pouliquen’s flow law, with a friction angle depending on
the height and velocity, leads to steepest front of the granular deposit with
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more elongating rear. Furthermore the stopping stage differs depending on
the flow law. While the stopping propagates from the front to the rear when
a constant friction angle is used, the inner part of the mass begins to stop
when Pouliquen’s flow law is used. This feature may be a useful tool to de-
termine the best fitted flow law when comparing with experimental results.
In these oversimplified numerical tests, Pouliquen’s friction law appears to
be more appropriate to describe debris avalanches than a simple Coulomb
friction law, suggesting that frictional effects may play a significant role in
debris avalanche mechanics.
Numerical modelling of debris avalanches provides the only way to estimate
typical velocities and relative weight of the involved forces. The above anal-
ysis shows that the h-gradient force does not play a significant role in the
examples studied here, except at the rear and front of the granular mass.
The friction force begins to be a leading force only when the granular mass
approaches the stopping stage.

The numerical tests show the possible existence of a fluidized zone in the
deposit, under particular conditions. In such situations, part of the fluid
remains over the Coulomb threshold, subjected for example to high gravity
forces, and it is still blocked by the down slope deposit suggesting the exis-
tence of horizontal zones in the deposit. Observation of such features in real
or experimental deposits would be interesting and may provide information
on the mechanical behavior of a granular mass.
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