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Résumé

Le calcul de l’infimum global f⋆ d’un polynôme à n variables sous contraintes est une
question centrale qui apparaît dans de nombreux domaines des sciences de l’ingénieur.
Pour certaines applications, il est important d’obtenir des résultats fiables. De nom-
breuses techniques ont été développées dans le cas où les contraintes sont données par
des inéquations polynomiales.
Dans cette thèse, on se concentre sur le problème d’optimisation d’un polynôme à n
variables sous des contraintes définies par des équations polynomiales à n variables.
Notre but est d’obtenir des outils, algorithmes et implémentations efficaces et fiables
pour résoudre ces problèmes d’optimisation.

Notre stratégie est de ramener le problème d’optimisation sous des contraintes qui
définissent des ensembles algébriques de dimension quelconque à un problème équivalent,
sous des nouvelles contraintes dont on maîtrise la dimension. La variété algébrique définie
par ces nouvelles contraintes est l’union du lieu critique du polynôme objectif et d’un
ensemble algébrique de dimension au plus 1. Pour cela, on utilise des objets géométriques
définis comme lieux critiques de projections linéaires.

Grâce au bon contrôle de la dimension, on prouve l’existence de certificats pour des
bornes inférieures sur f⋆ sur nos nouvelles variétés. Ces certificats sont donnés par des
sommes de carrés et on ne suppose pas que f⋆ est atteint.

De même, on utilise les propriétés de nos objets géométriques pour concevoir un al-
gorithme exact pour le calcul de f⋆. S’il existe, l’algorithme renvoie aussi un minimiseur.
Pour un problème avec s contraintes et des polynômes de degrés au plus D, la com-
plexité est essentiellement cubique en (sD)n et linéaire en la complexité d’évaluation des
entrées. L’implantation, disponible sous forme de bibliothèque Maple, reflète cette com-
plexité. Elle a permis de résoudre des problèmes inatteignables par les autres algorithmes
exacts.
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Abstract

Computing the global infimum f⋆ of a multivariate polynomial subject to some con-
straints is a central question since it appears in many areas of engineering science. For
some particular applications, it is of first importance to obtain reliable results. A lot of
techniques has emerged to deal with constraints defined by polynomial inequalities.
In this thesis, we focus on the optimization problem of a n-variate polynomial subject
to constraints defined by n-variate polynomial equations. Our goal is to obtain reliable
and efficient tools, algorithms and implementations to solve polynomial optimization
problems.

To do that, our strategy is to reduce the optimization problem subject to constraints
defining algebraic sets of arbitrary dimension to an equivalent optimization problem,
subject to constraints defining algebraic sets whose dimension is well-controlled. The
algebraic variety defined by these new constraints is the union of the critical locus of the
objective polynomial and an algebraic set of dimension at most 1. This is done by means
of geometric objects defined as critical loci of linear projections.

Since the dimension is well-controlled, the existence of certificates for lower bounds
on f⋆ can be proved on this new variety. This is done by means of sums of squares and
it does not require that f⋆ is reached.

Likewise, we use the properties of our geometric objects to design an exact algorithm
computing f⋆. If it exists, a minimizer is also returned. If there are s constraints and if
all the polynomials have degree at most D, its complexity is essentially cubic in (sD)n

and linear in the evaluation complexity of the input. Its implementation, available as
a Maple library, reflects the theoretical complexity. It solves problems unreachable by
previous exact algorithms.
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Introduction

Problem Statement

Let X = {X1, . . . , Xn} be a set of indeterminates and F = {f1, . . . , fs} be a sequence of
polynomials in Q [X] of degree at most D. Let S be the semi-algebraic set

S = {x ∈ Rn | f1 (x) ≥ 0, . . . , fs (x) ≥ 0} .

Let f ∈ Q [X] be another polynomial of degree at most D. The global polynomial
optimization problem is the following.

Given f ∈ Q [X] and a semi-algebraic set S ⊂ Rn as above, solve the global optimiza-
tion problem

f⋆ = inf
x∈S

f (x) .

The real algebraic number f⋆ can lie in an extension of Q whose degree is exponential
in n. Hence, it can be hard to give an exact representation. In the sequel, an algebraic
representation of f⋆ is defined by a polynomial P ∈ Q[T ] and an interval I ⊂ R such
that P has only one root in I, that is f⋆.

Let V ⊂ Cn be the algebraic variety V (F) = {x ∈ Cn | f1 (x) = · · · = fs (x) = 0}. In
this thesis, we focus on the global optimization problem when S = V ∩ Rn.

Given f ∈ Q [X] and an algebraic variety V ⊂ Cn as above, solve the global polynomial
optimization problem

f⋆ = inf
x∈V ∩Rn

f (x) .

Solving the optimization problem may have several meanings:

(A) Computing certificates for lower bounds on f⋆.

(B) Deciding the finiteness and computing an algebraic representation of f⋆.

(C) Deciding whether there exists x⋆ ∈ V ∩Rn such that f (x⋆) = f⋆ and computing a
rational parametrization of x⋆.

These problems are NP-hard (see [98]). For some applications such as program ver-
ification, it is important to obtain reliable results. The goal of this thesis is to provide
efficient tools, algorithms and implementations for solving problems (A), (B) and (C).
Furthermore, our goal is to combine practical efficiency with reliability.

1



2 Introduction

Motivations and Goal of the Thesis

Motivations

Polynomial optimization appears in various areas of engineering sciences. For instance,
it is natural to deal with optimization in economics or in control theory [60, 62].

It also appears in static analysis of programs [36, 95], where the correctness of some
particular programs can be reduced to a polynomial optimization problem. Likewise,
some combinatorial problems can be translated into polynomial optimization problems
[34]. Applications of these problems can be found in very-large-scale integration circuit
design and statistical physics [40, 48].

Geometric problems such as the computation of the Fermat-Weber point can be
translated to polynomial optimization problems. Given points p1, . . . , ps ∈ Rn, the goal
is to find a point p ∈ Rn that minimizes

∑

1≤i≤s

‖p− pi‖2. Introducing new variables and

using elimination techniques, the problem can be reduced to the minimization of a new
variable d on a set of constraints defined by polynomial equations in the variables X and
d. This problem appears when we try to find the best place to locate a firm in a given
region [49].

The polynomial optimization problem also appears in computer vision. Consider
the triangulation problem, that is a fundamental problem in multi-view geometry [56].
The space of pictures of three-dimensional objects seen from more than two cameras
has an algebraic description. Then the triangulation problem can be translated to an
optimization problem with constraints defined by polynomial equations [3, 4].

State of the Art

Methods based on sum of squares decomposition have been developed to tackle problem
(A). A non-negative univariate polynomial can always be written as a sum of squares
[128]. This is not true for the multivariate case. However, if a sum of squares rep-
resentation exists, an approximation can be computed using semidefinite programming
[61, 84, 103, 135]. Furthermore, there exist methods to compute rational certificates by
rationalizing a numerical certificate obtained by semidefinite programming [75, 105]. The
idea is then to add constraints to ensure the existence of certificates. It has been done
in [39, 101] when f⋆ is reached. In [141], existence of certificates on a semi-algebraic set
is obtained without assuming that f⋆ is reached. However, because many auxiliary con-
straints are introduced and because they have high degree, the SOS relaxations can be
hard to solve. It is then relevant to obtain simpler constraints, without the assumption
that f⋆ is reached. In [1, 2, 99, 100], hierarchies of semidefinite relaxations, based on
Lasserre’s relaxations, are presented. If f⋆ is reached, these relaxations converge to f⋆

in a finite number of steps.
Problems (B) and (C) are quantifier elimination problems over the reals. They can

be solved by the cylindrical algebraic decomposition [22, 31, 32, 33, 67, 94]. However, its
complexity is doubly exponential in the number of variables. Practically, it can not deal
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with non-trivial problems of more than 4 variables. In [68], an algorithm for a variant
of quantifier elimination is presented. It requires extra conditions on the inputs. These
conditions are naturally satisfied in many real-life applications. Likewise, the output is
almost equivalent to the input formula, this is sufficient for many applications. It allows
to solve problems unreachable with quantifier elimination solvers.

A quantifier elimination algorithm designed to solve problems (B) and (C) whose
complexity is DO(n) for n-variate polynomials of degree at most D is presented in [16,
Section 14.2]. However, the constant in the exponent of the complexity is not known.
The only known algorithm whose complexity is singly exponential and well-controlled to
solve problem (B), namely O

(
n7D4n

)
, is given in [118]. It deals with the unconstrained

case.
In [13], a study of the intrinsic complexity in polynomial optimization is given. It is

done with constraints defined by polynomial equations satisfying some assumptions of
regularity.

In this thesis, we generalize the gradient variety approach so that f⋆ is not assumed to
be reached. The introduced constraints and the certificates are simpler and with smaller
degree than [141].

We generalize [118] to solve problems (B) and (C) in the constrained case. We design
a dedicated algorithm whose complexity is essentially (sD)3n. Its implementation reflects
its complexity.

Methodology

We transform efficiently the previous problems to equivalent problems of small dimension.
To this end, we construct geometric objects defined as critical loci of linear projections.
These objects are close to the polar varieties. Polar varieties have been introduced by
Severi [132, 133] and Todd [139, 140] at the beginning of the century. Then, they have
been studied in the context of computer algebra by Bank, Giusti, Heintz, Mbakop and
Pardo (see e.g. [9, 11, 12]).

We prove that the union of our geometric objects is the union of the critical locus of
f and a variety of dimension 1, on which the infimum of f is f⋆. Hence, problems (A),
(B) and (C) can be considered these new varieties, whose dimension is essentially 1.

In order to solve problem (A), we follow the approach introduced in [101]. To this
end, we use the fact that the dimension of our varieties is essentially 1. We are then able
to prove that the set of values of f at infinity on our varieties is finite and use results
from [130]. Hence, we prove the existence of certificates without assuming that f⋆ is
reached.

To solve problem (B) we take into account asymptotic phenomena. To compute the
set of potential values of f⋆, a set of values of f at infinity is computed. Since we can
work on a set whose dimension is essentially 1, they can be computed by seeing them as
a set of non-properness (see [70, 120]).

Problem (C) can be solved by computing a finite set meeting each connected com-
ponent of the critical locus of f . We prove that such a set can be obtained from our
geometric objects.



4 Introduction

Main Results

Modified Polar Varieties

Solving problems (A), (B) and (C) is easier on a variety of small dimension. We present
tools to construct a variety that is the union of the critical locus of f and an algebraic
set of dimension 1. Furthermore, the infimum on V ∩Rn and on this new variety are the
same.

Let f ∈ Q [X] and let F = {f1, . . . , fs} ⊂ Q [X] such that the ideal 〈F〉 is radical and
the variety V = V (F) is d-equidimensional with finitely many singular points.

We define the modified polar varieties as follows: for 1 ≤ i ≤ d− 1, let C (f,F, i) be
the algebraic variety defined by

• f1 = · · · = fs = 0,

• the vanishing of all minors of size n− d+ 1 of the Jacobian matrix of f, f1, . . . , fs
with respect to the variables Xi+1, . . . , Xn,

• and X1 = · · · = Xi−1 = 0.

By convention, C (f,F, d) = V ∩ V (X1, . . . , Xd−1). Let C (f,F) be the union

C (f,F) =
⋃

1≤i≤d

C (f,F, i).

In the sequel, given A ∈ GLn (Q), we denote by fA the polynomial f (AX). Likewise,
let F

A =
{
fA1 , . . . , f

A
s

}
and V A = V

(
F
A
)
.

Main Result 1. There exists a non-empty Zariski-open set O ⊂ GLn (C) such that for
all A ∈ GLn (Q) ∩ O,

• f⋆ = inf
x∈V ∩Rn

f (x) = inf
x∈C (fA,FA)∩Rn

fA (x),

• C (fA,FA) \ Crit (fA, V A)
Z

has dimension at most 1,

• C (fA,FA) \ Crit (fA, V A)
Z ∩ Crit

(
fA, FA

)
has dimension at most 0 and con-

tains, for each critical value of fA|V A∩Rn that is not isolated in fA
(
V A ∩ Rn

)
, at

least one corresponding critical point.

Furthermore, for 1 ≤ i ≤ d, the algebraic varieties C
(
fA,FA, i

)
and

C (fA,FA, i) \ Crit (fA, V A)
Z ∩ Crit

(
fA, V A

)

have degree bounded by

D ((n− d+ 1) (D − 1))n .



Introduction 5

From this result, the optimization problems (A), (B) and (C) can be solved on
C

(
fA,FA

)
∩ Rn instead of the original variety V ∩ Rn. Because of this reduction

of dimension, the asymptotic phenomena are better controlled. More precisely, since
C (fA,FA) \ Crit (fA, V A)

Z
has dimension 1, f has finitely many asymptotic values on

this set. Thanks to Sard’s theorem, f has finitely many value on Crit
(
fA, V A

)
. Finally,

this means that f has finitely many asymptotic values on C
(
fA,FA

)
.

Exact Algorithm for Global Polynomial Optimization

The second main result is an algorithm solving problems (B) and (C) and an implemen-
tation of the algorithm. It is based on symbolic computation. A real algebraic number
α is represented by a polynomial P ∈ Q [T ] and an isolating interval I. This means that
P has only one root in I, that is α. Let Y be a real finite variety. It can be represented
by a rational parametrization. This is a sequence of polynomials q, q0, q1, . . . , qn ∈ Q [U ]
such that for each x = (x1, . . . , xn) ∈ Y , there is a unique u ∈ R such that





q(u) = 0
x1 = q1(u)/q0(u)

...
xn = qn(u)/q0(u)

In other words, there is a bijection between the roots of q and the points in Y . Thus, a
single point in x ∈ Y can be represented by q, q0, q1, . . . , qn and an interval isolating the
root of q corresponding with x.

Let F = {f1, . . . , fs} ⊂ Q [X] and f ∈ Q [X]. Assume that

• the ideal 〈F〉 is radical,

• V (F) is equidimensional of dimension d > 0,

• V (F) has finitely many singular points.

Note that these assumptions are far from being restrictive since they often hold in prac-
tice. For instance, any set of polynomials F = {f1, . . . , fs} ⊂ Q [X] whose Jacobian
matrix has full rank satisfies them.

We design an exact probabilistic algorithm taking as input f and F satisfying the
above assumptions and that returns

• −∞ if f is not bounded from below,

• +∞ if V (F) ∩ Rn is empty,

• an algebraic representation of f⋆ = inf
x∈V(F)∩Rn

f (x) if f⋆ is finite,

• if and only if f⋆ is reached, an algebraic representation of a point x⋆ ∈ V (F) ∩Rn

such that f (x⋆) = f⋆.
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The algorithm solves problems (B) and (C). It exploits properties that are satisfied
up to a generic change of coordinates. Practically, a random change of coordinates is
chosen. However, we provide some routines to test if it is suitable, which removes the
probabilistic aspect.

The implementation is available as a Maple library. It can be downloaded at
http://www-polsys.lip6.fr/~greuet/. With this implementation, we are able to solve
problems unreachable with other algorithms. For instance, it solved random problems in
7 variables in several hours and problems coming from applications in 10 variables in less
than a minute. Furthermore, problems that seem difficult with numerical approaches are
solved efficiently too. Others implementations solving problems (B) and (C) are based
on the cylindrical algebraic decomposition. Practically, they can not deal with problems
of more than 4 variables.

To illustrate its theoretical efficiency, we state the main result in a simpler case, that
is a bit more restrictive than the general case. We use the soft-O notation: Õ(a) indicates
the omission of polylogarithmic factors in a.

Main Result 2. There exists a probabilistic algorithm taking as input

• F = {f1, . . . , fs} ⊂ Q [X] that generates a radical ideal of dimension n − s such
that the Jacobian matrix associated with f1, . . . , fs has rank s,

• f ∈ Q [X],

and that returns −∞ if f is not bounded from below, +∞ if V (F) ∩ Rn is empty, an
algebraic representation of f⋆ = inf

x∈V(F)∩Rn
f (x) if it is finite. If f⋆ is reached, it also

returns an algebraic representation of x⋆ ∈ V (F) ∩ Rn such that f (x⋆) = f⋆. Moreover,
assume that the input polynomials have degree bounded by D and are represented by a
straight-line program of length ≤ L. Then the algorithm performs

Õ

(
LD6

(
3
√
2 (s+ 1) (D − 1)

)3n
)

arithmetic operations in Q.

Our algorithm follows a classical pattern. It first performs a change of coordinates to
ensure some technical assumptions that are satisfied in general position. Then, roughly
speaking, it computes a finite set of real points containing f⋆. Moreover, for any interval
between two consecutive real points in this set is either contained in f (V (F) ∩ Rn) or
has an empty intersection with f (V (F) ∩ Rn). The computation and the properties of
these sets rely on the modified polar varieties.

Algebraic Certificates of Positivity

The third main result is about solving problem (A). It is done by reducing the problem
to the problem of finding certificates on the union of the modified polar varieties.

http://www-polsys.lip6.fr/~greuet/
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Let I by an ideal of R [X], f ∈ R [X] and f⋆I = inf
x∈V(I)∩Rn

f (x). Using semidefinite

programming, one can compute successive lower bounds on the number f sos

I defined as

f sos

I = sup
{
a ∈ R | ∃σi ∈

∑
R [X]2 , f − a = σ0 + σ1 (B − f) mod 〈I〉

}
,

where B ∈ f (V (I) ∩ Rn). In general, f sos

I ≤ f⋆I but f sos

I 6= f⋆I . However, assume that on
V (I), any positive polynomial can be written σ0 + σ1 (B − f) mod 〈I〉, where σ0 and
σ1 are sums of squares of polynomials in R [X]. Since for any ε > 0, f − f⋆ + ε > 0, f sos

I

is actually equal to f⋆I . Hence, one can focus on proving the existence of such a sum of
squares identity for positive polynomials.

Let f ∈ Q [X] and let F = {f1, . . . , fs} ⊂ Q [X] such that the ideal 〈F〉 is radical
and the variety V = V (F) is d-equidimensional with finitely many singular points. Let
C (f,F) be the union of our modified polar varieties. We prove that the original opti-
mization problem can be reduced to the optimization problem on C (f,F) and that there
exist certificates of positivity on C (f,F) by means of sum of squares.

Main Result 3. There exists a non-empty Zariski-open set O ⊂ GLn (C) such that for
all A ∈ GLn (Q) ∩ O, fA ≥ 0 on V ∩ Rn if and only if for all ε > 0, there exist a sum
of squares of real polynomials SA and TA such that, for any B ∈ f (V ∩ Rn),

fA + ε = SA + TA
(
B − fA

)
mod I

(
C

(
fA,FA

))
.

Assume that A ∈ O ∩ GLn (Q). Note that it is true if A is generic enough, e.g.
randomly chosen. Using semidefinite programming, this leads to the computation of a
sequence of lower bounds on f⋆. This sequence is monotonically increasing and tends to
f⋆. Remark that in this statement, V ∩ Rn is not assumed to be compact.

Conclusion

In this thesis, we adapt the definition of the classical polar varieties in order to deal
with the optimization problem. This leads to considering the modified polar varieties.
By studying their geometric properties, we prove that the optimization problem can be
reduced to a new optimization problem on a variety of smaller dimension. It allows to
take into account asymptotic phenomena in the optimization problem. We use these
properties to solve the optimization problem in two ways.

First, we deduce an exact algorithm solving the optimization problem. It can compute
an algebraic representation of the infimum of a polynomial on an algebraic variety under
some assumptions of regularity. Moreover, it can decide whether this infimum is reached
or not. If so, an algebraic representation of a minimizer is also returned. Its correctness
and its complexity rely on the properties of the modified polar varieties. We prove
that it is singly exponential in the number of variables. A major part of this work
consists of an efficient implementation of this algorithm. It is available as a Maple
library, downloaded from http://www-polsys.lip6.fr/~greuet/ and can be used free
of charge. Experiments on random inputs and toy examples show that it is practically

http://www-polsys.lip6.fr/~greuet/


8 Introduction

efficient, even for problem hard to solve using numerical approaches or for problem with
huge coefficients, substantial degree or substantial number of variables. As far as we
know, this is the first exact dedicated algorithm solving the optimization problem in the
constrained case.

The second application is the existence of algebraic certificates of positivity. We
prove that a positive polynomial f on an algebraic variety admits a sum of squares
representation on its associated modified polar varieties. Such a representation can be
numerically approximated using semidefinite programming. Then, we expect that a
rational identity can be recovered from the numerical one. We do not require that the
given variety is compact or that the infimum of f is reached.

Perspectives

We first focus on problems for which the properties of the modified polar varieties should
be used. Sharp bounds on the value and the degree of the infimum should be obtained
by using the modified polar varieties, even if f⋆ is not reached. Likewise, the existence
of rational certificates of positivity should be obtained on the modified polar varieties.
When f⋆ is reached, the computation of such certificates should be done by reducing the
problem to the univariate case.

Then we are interested in the computation of asymptotic critical values. This should
be useful to improve the algorithmic resolution of problem (B) and (C).

Finally, we discuss the resolution of problems (B) and (C) with constraints defined
by polynomial inequalities.

Bounds and Degree of the Infimum

Consider the infimum of a polynomial with rational coefficients on a semi-algebraic set
defined by inequalities of polynomials with rational coefficients. Under the assumption
that it is reached, bounds on its degree and on its absolute value are given in [73]. These
bounds are sharp. They can be computed from the degrees and the coefficients of the
involved polynomials.

It is straightforward that a lower bound on the absolute value of the infimum gives
information for the optimization problems (A), (B) and (C). Likewise, an upper bound on
its degree should allow to obtain useful information about the degree of the polynomials
involved in a sum of squares representation.

In this context, our goal would be to get analogous bounds when the infimum is not
supposed to be reached. This could be done by reducing the problem on the modified
polar varieties.

Rational Sum of Squares and Computation

In Chapter 7, we prove the existence of certificates of positivity by means of sum of
squares on an algebraic variety. Our input polynomials have rational coefficients whereas
the result gives the existence of sum of squares with real coefficients.



Introduction 9

It would be interesting to obtain the existence of rational certificates. Such results
have been proved in the unconstrained case [64] and on the constrained case, when the
semi-algebraic set defined by the constraints is compact [107]. To deal with a more
general case, without the assumption of compactness, one can try to adapt the results
of real algebra in [129, 130] to the rational case. Then, they can be used to prove the
existence of rational certificates on the modified polar varieties.

To compute rational certificates, rationalizing a numerical certificate obtained by
semidefinite programming can be done [75, 105]. However, since it relies on numerical
solvers, numerical instabilities can occur. From the results in [55], one can decide whether
a polynomial with rational coefficient has a rational sum of squares representation. For
the optimization problem (A), we can expect to be able to compute rational certificates
for lower bounds on f⋆.

Assume that the critical locus of f is 0-dimensional and f⋆ is reached. Using a rational
parametrization, a rational sum of squares representation on the gradient variety [101]
can be transformed into a univariate sum of squares identity. Hence, the algorithm from
[128] can compute such a rational certificate.

If the gradient variety is not 0-dimensional, the modified polar varieties should be
used to get an equivalent problem on a 0-dimensional variety.

Computation of Asymptotic Critical Values

The set of generalized critical values is the union of classical critical values and their
analogous at infinity, the asymptotic critical values (see [71, 72, 80]). It is a fundamental
mathematical notion, that appears naturally in optimization. Indeed, in [118], it is proved
that the infimum of a polynomial over Rn is necessarily a generalized critical value. This
result is based on topological properties of the generalized critical values given in [80].
These topological properties still hold in the constrained case, thus the result should be
generalized to the constrained case. Hence, it would be interesting to be able to compute
efficiently these values.

The computation of a set containing the classical critical values can be done using
Gröbner bases. However, computing the asymptotic critical values is not straightforward.
In [118], the author deals with the unconstrained case. To this end, the computation of
the asymptotic critical values is reduced to the computation of the set of non-properness
of a projection restricted to a curve. To ensure an assumption of Noether position, a
generic change of variables is performed. It is then computable using Gröbner bases, but
the change of variable can make the computations harder.

A view of this problem through the projective space could lead us to get information at
infinity. In particular, one expects to be able to replace the Noether position assumption
with a test of dimension, that is much faster in practice.

Exact Algorithm on Semi-Algebraic Sets

The exact algorithm presented in Chapter 6 solves the optimization problems (B) and (C)
with constraints that define an algebraic variety. For some applications, it is necessary to
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be able to deal with semi-algebraic sets. A first step would be the generalization of our
approach to semi-algebraic sets defined by equations and non-strict inequalities. In our
algorithm, we can actually get the values of all extrema. Thus, adapting it to the semi-
algebraic case where the infimum is reached should be straightforward. Nevertheless,
since our goal is still to provide a general algorithm, we want to avoid the assumption
that the infimum is reached. To this end, the goal would be to be able to compute the
values attained by a polynomial “at infinity” on a semi-algebraic set.

Organization of the Thesis

In Chapter 1, we recall some notions of algebraic and semi-algebraic geometry. In par-
ticular, we recall algorithms to compute algebraic representations of geometric objects
such as union, intersection, difference, projection of algebraic varieties, using Gröbner
bases in Section 1.2. Likewise, we present a method to test the Noether position using
Gröbner bases. We also mention tools used to estimate the complexity of these geomet-
ric operations in Section 1.3. Then we introduce quantifier elimination over the reals
and its connection with global optimization. Then, we present a state of the art of the
techniques coming from computational real algebraic geometry that can be used to solve
symbolically the optimization problems (B) and (C).

In Chapter 3, we first present the context of real algebra and the historical results
about certificates of positivity. Then we show that the problem of finding such a cer-
tificate can be relaxed to a semidefinite program. Thus if the existence of certificates is
ensured then accurate lower bounds for the infimum can be computed numerically. Fi-
nally, we present a state of the art of the recent result about the existence of certificates.

Chapter 4 is devoted to introduce the (classical) polar varieties. Given an algebraic
variety, these objects are defined as critical loci of some projection restricted to the given
variety. This leads to the computation of varieties of smaller dimension. From these
varieties, a finite set of points that meets each connected component of the real trace of
the given variety can be computed. It will be used in our algorithms to compute some
critical points and to test the emptiness of real varieties.

In the second part of the thesis, we present our contributions. Most parts of the con-
tribution are published or submitted, but our presentation does not follow the chronology
of the publications. Indeed, some results are generalization of some previous works, so
that the old result becomes a particular instance of the new one.

In Chapter 5, we define and study the properties of the modified polar varieties. This
is a synthesis of some of our results coming from [53] and [52].

Chapter 6 is devoted to present an exact algorithm solving problems (B) and (C). It
can compute the infimum of a polynomial under constraints defining a regular algebraic
variety and decide whether it is reached or not. This algorithm has been implemented
and is available as a Maple package at http://www-polsys.lip6.fr/~greuet/. This im-
plementation can solve instances of global optimization problems that were not tractable
with previous algebraic algorithms. This work can be found in [52] and contains the one
given in [51].

http://www-polsys.lip6.fr/~greuet/
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Finally, in Chapter 7, we show how the modified polar varieties can be used to obtain
the existence of certificates of positivity, be means of sum of squares. This work has been
published in [53].
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Chapter 1

Algebraic and Semi-Algebraic

Geometry

In this chapter, we introduce notions and properties of algebraic and semi-algebraic ge-
ometry. Basic definitions and notations are given in Section 1.1. Then we present in
Section 1.2 the Gröbner bases and explain how to use them to perform geometric oper-
ations like computing the intersection, the union, the difference of two varieties or the
projection of an algebraic variety (about the projection, see [37, Chapter 4]). We also
show how to check whether an ideal is in Noether position (a notion described in [7,
Chapter 5]). Gröbner bases can also be used to compute a rational parametrization of
a finite algebraic set of points in Rn [115]. Likewise, the geometric resolution algorithm
is presented in Section 1.3. It is a probabilistic algorithm that can perform the above
geometric operations [43, 50, 91, 126]. Furthermore, it provides a complexity estimate
that will be useful for our complexity analyses. Finally, we introduce the definitions of in-
finitesimals and Puiseux series in Section 1.4. They will be used to consider deformations
of an algebraic variety.

1.1 Definitions and Notations

This section is devoted to introduce algebraic varieties, the Zariski-topology and the
connection between polynomial ideals and algebraic varieties. These definitions and
properties will be used throughout this thesis. Without more precision, f1, . . . , fs are
polynomials in Q [X1, . . . , Xn] and F is the set of polynomials {f1, . . . , fs}.

Basic definitions. For simplicity, X is the set of indeterminates {X1, . . . , Xn}, X≤i

the set {X1, . . . , Xi} and X>i = {Xi+1, . . . , Xn}. An ideal I is a subset of Q [X] such
that

• 0 ∈ I;

• if f ∈ I, g ∈ I then f + g ∈ I;

15
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• if f ∈ I, g ∈ Q [X] then gf ∈ I.
Let S ⊂ Q [X]. Then 〈S〉 stands for the ideal generated by S, that is the smallest ideal
containing S.

An algebraic variety is the complex solution set of a set of polynomial equations.
Given S ⊂ Q [X], we can define the algebraic variety V (S) as the set of common zeros
in Cn of the polynomial equations in S in indeterminates X1, . . . , Xn. More precisely,

V (S) = {(x1, . . . , xn) ∈ Cn | ∀f ∈ S, f (x1, . . . , xn) = 0} .
Given a variety V , we denote by

I (V ) = {f ∈ C [X] | ∀ (x1, . . . ,xn) ∈ V, f (x1, . . . ,xn) = 0} .
It is an ideal and it is called the ideal of the variety V . An algebraic variety V is reducible
if it can be written as the union of two proper algebraic varieties, irreducible else. For
any algebraic variety V , there exist irreducible varieties V1, . . . , Vs such that for i 6= j,
Vi 6⊂ Vj and such that V = V1 ∪ · · · ∪ Vs. The algebraic varieties Vi are the irreducible
components of V . The decomposition of V as the union of its irreducible components is
unique.

Proposition-Definition 1.1 (Zariski topology). A topology can be defined on Cn spe-
cifying that its closed sets are the algebraic varieties. This topology is called the Zariski
topology .

In the sequel we show the connection between an ideal and the ideal associated with
its associated variety. Let I be an ideal of Q [X]. The radical of I is defined as

√
I =

{
f ∈ Q [X] | ∃N ∈ N∗, fN ∈ I

}
.

It is easy to show that the radical of an ideal is an ideal itself.

Theorem 1.2. [83, Chapter 9, §1, Theorem 1.5 p. 380] Let k be a field and let K be an
algebraic closure of k. Let I be an ideal in k [X]. Let f be a polynomial in k [X] such that
f (c) = 0 for all c ∈ {x ∈ Kn | ∀g ∈ I, g (x) = 0}. Then there exists an integer m > 0
such that fm ∈ I.

In particular, if f1, . . . , fs ∈ Q [X] then I (V (f1, . . . , fs)) ∩Q [X] =
√
〈f1, . . . , fs〉.

Given an arbitrary set A ⊂ Cn, the Zariski-closure of A is the smallest algebraic
variety containing A. It will be denoted by AZ . The following lemma gives information
about the closure of a union and will be helpful in the sequel.

Lemma 1.3. Let A and B be two subset of Cn. Then A ∪BZ
= A

Z ∪BZ
.

Proof. Since A ⊂ A
Z and B ⊂ B

Z , AZ ∪ BZ is a closed set (as a union of two closed
sets) containing A∪B. By definition, A ∪BZ is the smallest closed set containing A∪B.
In particular, this implies that A ∪BZ ⊂ AZ ∪BZ .

Conversely, let x ∈ A
Z ∪ BZ . Then either x ∈ A

Z or x ∈ B
Z . In the first case,

every neighbourhood of x meets A, thus it also meets A∪B then x lies in the closure of
A ∪ B. Likewise if x ∈ BZ , every neighbourhood of x meets B ⊂ A ∪ B meaning that
x ∈ A ∪BZ . Finally, AZ ∪BZ ⊂ A ∪BZ
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1.2 Gröbner Bases

We present a short introduction (and refer to [37] for further details) of the notion of
Gröbner basis, that is a “good” representation of a polynomial ideal. We will see that
Gröbner bases allow to

• test whether a set of polynomial define an empty complex variety;

• compute the intersection, the union and the Zariski-closure of the difference of two
varieties;

• compute the Zariski-closure of the projection of a variety to a linear subspace;

• test whether a variety is in Noether position;

• compute an exact representation of a finite algebraic set.

In order to define a Gröbner basis, we first fix an order on the monomials. A monomial
ordering ≻ is a total ordering on the set of monomials compatible with the multiplication
(α ≻ β ⇒ αγ ≻ βγ) and for which there is no strictly decreasing sequence. Given
f ∈ Q [X], LT (f) stands for the greatest monomial term in f with respect to ≻ and
LC (f) the coefficient of LT (f).

Let I ⊂ Q [X] be an ideal and denote by 〈LT (I)〉 the ideal generated by LT (f) for
all f ∈ I. A finite subset {g1, . . . , gt} of I is a Gröbner basis of I if I = 〈g1, . . . , gt〉 and
〈LT (g1) , . . . ,LT (gt)〉 = 〈LT (I)〉.

Proposition-Definition 1.4. Let I ⊂ Q [X] be an ideal. Then I has a unique reduced
Gröbner basis, that is a basis G such that for all g ∈ G, LC (g) = 1 and no monomial of
g lies in 〈LT (G \ {g})〉.

Note that there exist algorithms to compute Gröbner bases (see e.g. [26] for the
historical Buchberger algorithm, [46], [47] for Faugère’s F4 and F5 algorithms). Imple-
mentations of Faugère’s algorithms are available in computer algebra systems, or as a
standalone library at http://www-polsys.lip6.fr/~jcf/Software/.

In the sequel, let V = V (f1, . . . , fs) and W = V (g1, . . . , gp), where all polynomials fi
and gj are in Q [X]. Denote by IV the ideal 〈f1, . . . , fs〉 and by IW the ideal 〈g1, . . . , gp〉.

Testing the emptiness.

Hilbert’s weak Nullstellensatz (see [37, Chapter 4, §1, Theorem 1, p. 170]) gives a
theoretical answer to decide the emptiness of a complex algebraic variety.

Theorem 1.5 (Hilbert’s Weak Nullstellensatz). Let k be a field and let K be an algebraic
closure of k. Let I be an ideal in k [X]. Then {x ∈ Kn | ∀g ∈ I, g (x) = 0} = ∅ if and
only if I = 〈1〉.

http://www-polsys.lip6.fr/~jcf/Software/
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Then testing the emptiness of V (I) is equivalent to test whether I = 〈1〉. That can be
achieved using Gröbner bases. Indeed, it is easy to verify that {1} is a reduced Gröbner
basis of the ideal 〈1〉. Then a consequence of Proposition-Definition 1.4 and Theorem
1.5 is the following.

Proposition 1.6 (Testing the (complex) emptiness). Let f1, . . . , fp ⊂ Q [X] and G be a
reduced Gröbner basis of 〈f1, . . . , fp〉. Then V (f1, . . . , fp) = ∅ if and only if G = {1}.

Geometric Operations.

In this section, we show how to perform some basic geometric operations on varieties
represented by a set of polynomials. The first one allows to compute a set of polynomials
that define the intersection of two varieties that are given by sets of polynomials.

Proposition 1.7. [37, Chapter 4, §3, Theorem 4, p.184] The variety defined by

IV + IW = 〈f1, . . . , fs, g1, . . . , gp〉

is the variety V ∩W .

Then we are interested in the computation of the union of two varieties.

Proposition 1.8. [37, Chapter 4, §3, Theorem 7, p.185] The variety defined by

IV .IW = 〈figj , 1 ≤ i ≤ s, 1 ≤ j ≤ p〉

is the variety V ∪W .

The projection of an algebraic variety is not necessarily an algebraic variety. However,
an ideal defining its Zariski-closure can be computed.

Proposition 1.9. [37, Chapter 3, §2, Theorem 3, p.125] The variety Velim defined by

Ielim = IV ∩Q [Xℓ+1, . . . , Xn]

is the Zariski-closure π>ℓ (V )
Z

of the projection of V to Xℓ+1, . . . , Xn.

Since we are now able to characterize the ideal of the Zariski-closure of a projection, we
are interested in computing generators of this ideal. This can be done using Gröbner bases
with an elimination order. A monomial order on Q [X] such that any monomial involving
one of the indeterminates x1, . . . , xℓ is greater than any monomial in Q [xℓ+1, . . . , xn] is
called an order eliminating {x1, . . . , xℓ}.

Proposition 1.10. [37, Chapter 3, §1, Theorem 2, p.116] Let G be a Gröbner basis of
IV with respect to an order eliminating {x1, . . . , xℓ}. Then Gelim = G∩Q [Xℓ+1, . . . , Xn]
is a Gröbner basis of the ideal Ielim = IV ∩Q [Xℓ+1, . . . , Xn].
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Practically, the elimination ordering used is the block grevlex order. The grevlex
order compares the total degree first, then compares exponents of the last indeterminate
Xn but reversing the outcome (so the monomial with smaller exponent is larger in the
ordering), followed (as always only in case of a tie) by a similar comparison of Xn−1, and
so forth ending with x1. For the block grevlex order, indeterminates are splitted into two
blocks, [x1, . . . , xℓ] and [xℓ+1, . . . , xn]. Monomials are first compared with respect to the
grevlex ordering on the first block. In case of a tie, they are compared with respect to
the grevlex ordering on the second block.

Like the image of a projection, the difference of two varieties is not necessarily a
variety. Nevertheless, its Zariski-closure can be seen as the one of a projection. Hence,
its computation can be done by elimination. We first present the case of the differ-
ence by a hypersurface. Since any algebraic variety is the intersection of finitely many
hypersurfaces, the general case is obtained by induction.

Proposition 1.11. [37, Chapter 4, §4, Exercice 9, p. 195] Let g ∈ Q [X] and L be a
new indeterminate. Then the variety defined by the ideal

Ielim = (IV + 〈L× g − 1〉) ∩Q [X]

is the variety V \ V (g)
Z
.

Assume now that IW is given by an arbitrary finite number of generators. In order
to compute the difference of a variety by the one defined by IW , we use the fact that if
W1,W2 are any varieties then

V \ (W1 ∩W2) = V ∩ c(W1 ∩W2)

= V ∩ (cW1 ∪ cW2)

= (V ∩ cW1) ∪ (V ∩ cW2)

= (V \W1) ∪ (V \W2)

Then considering the Zariski-closure and using Lemma 1.3, we obtain

V \ (W1 ∩W2)
Z
= (V \W1)

Z ∪ (V \W2)
Z
.

Test for the Noether position.

We first introduce the basic notions to define the Noether position of an ideal. Recall
that a map f : V ⊂ Cn → Ci is proper at y ∈ Ci if there exists a closed neighborhood
U of y such that f−1 (U) is compact.

We will see that the notion Noether position is strongly related to the notion of
properness of projections to linear subspaces. In our algorithms, the Noether position
of ideals is sometimes required. Hence, is is fundamental to be able to test it. For a
complete introduction to the algebraic notions related to the Noether position see [7,
Chapter 5]. For an effective point of view of the Noether position, see [42, Section 2.2].
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Noether position and properness. Let R be a ring and A ⊂ R be a subring of R.
An element x ∈ R is integral over A if it is a root of a monic polynomial with coefficients
in A. The ring R is an integral extension of A if every element x ∈ R is integral over A.

The dimension of V = V (f1, . . . , fs) is the Krull dimension of its coordinate ring,
that is the maximal length of the chains p0 ⊂ p1 ⊂ · · · ⊂ pd of prime ideals of the
quotient ring C [X] / 〈f1, . . . , fs〉 (see [44, Chapter 8]). We write dimV = d. The variety
is equidimensional of dimension d if its irreducible components have dimension d.

An ideal I ⊂ C [X1, . . . , Xn] such that V (I) has dimension d is in Noether position
if the ring extension C [X1, . . . , Xd] −→ C [X1, . . . , Xn] /I is integral.

Example 1.12. Let I =
〈
X2

1 −X2

〉
⊂ C [X1, X2]. It has dimension 1 and X2 is integral

over C [X1, X2] /I: it is a root of the monic polynomial T −X2
1 ∈ C [X1] modulo I. Then

I is in Noether position.
Let J = 〈X1X2 − 1〉 ⊂ C [X1, X2], of dimension 1. It is not in Noether position since

X2 is not integral over C [X1, X2] /J . Indeed, it is a root of X1T − 1 ∈ C [X1] modulo I,
meaning that it can not be the root of a monic polynomial in C [X1].

Remark 1.13. Assume that f is a polynomial mapping and let y ∈ Ci be a point at which
f is not proper. This means that for all neighborhood O of y, the preimage f−1

(
O
)

is
not bounded. In particular, one can construct, by induction, a sequence (xk)k in V that
is not bounded such that f (xk) −→

k→+∞
y.

Then we exhibit the relationship between Noether position and properness of projec-
tions.

Proposition 1.14. Assume that IV is such that V = V (IV ) has dimension d. Then IV
is in Noether position if and only if the projection

π≤d : V ⊂ Cn −→ Cd

(x1, . . . , xn) 7−→ (x1, . . . , xd)

is proper.

Proof. Let π≤d be the above projection. Denote by C [V ] the coordinate ring of V , that
is the quotient ring C [X1, . . . , Xn] /IV . According to [70, Proposition 3.2], π≤d is proper
if and only if the map

(π≤d)∗ :C [X1, . . . , Xd] −→ C [V ]

h 7−→ h ◦ π≤d

is finite, i.e. its fibers are finite. By [70, Proposition 3.2], this is equivalent to say that
(π≤d)∗C [X1, . . . , Xd] ⊂ C [X1, . . . , Xn] /IV is an integral extension. In our case, the map
(π≤d)∗ is the identity.

Example 1.15. Let us consider the ideals given in Example 1.12. The ideal I =〈
X2

1 −X2

〉
⊂ C [X1, X2] is in Noether position. Geometrically, the associated variety

is the parabola in Figure 1.1(a), for which the projection to X1 is proper.
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The ideal J = 〈X1X2 − 1〉 ⊂ C [X1, X2] is not in Noether position. Geometrically,
the associated variety is the parabola in Figure 1.1(b), for which the projection to X1 is
not proper at 0.

X1

X2

x

(a) For all x ∈ R and all ε > 0, the preimage of
[x− ε, x+ ε] by the projection to X1 is compact.

X1

X2

(b) For all ε > 0, the preimage of [−ε, ε] by the
projection to X1 contains an unbounded branch of
the hyperbola.

Figure 1.1: Polar varieties with properness.

Test for the Properness. According to the previous result, it is sufficient to test the
properness of a given projection restricted to the variety. To this end, we will check the
existence of points at infinity using homogenization with respect to a block of indetermi-
nates. Given f ∈ Q [X], denote by degXd+1,...,Xn

(f) the degree of f with respect to the
indeterminates Xd+1, . . . , Xn.

The homogenization of f with respect to the indeterminates Xd+1, . . . , Xn is the

polynomial X
degXd+1,...,Xn

0 f

(
X1, . . . , Xd,

Xd+1

X0
, . . . ,

Xn

X0

)
. Likewise, given an ideal I ⊂

Q [X], the homogenization of I with respect to the indeterminates Xd+1, . . . , Xn is the
ideal of Q [X0, X1, . . . , Xn] of all the polynomials

X
degXd+1,...,Xn

0 f

(
X1, . . . , Xd,

Xd+1

X0
, . . . ,

Xn

X0

)
,

for each f ∈ I.
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An algorithm to compute the set of non-properness is given in [96, Theorem 1]. In
order to test whether a projection is proper, we obtain the following.

Proposition 1.16. [96, Theorem 1] Let IhV be the homogenization of IV with respect to
the set of indeterminates Xd+1, . . . , Xn, and V h = V

(
IhV

)
. Then the restriction of π≤d

to V is proper if and only if the set

(
V h \ V (X0)

Z ∩ V (X0)
)
\ V (Xd+1, . . . , Xn)

is empty.

Representation of finite algebraic varieties.

An objective in this thesis is to design an exact algorithm computing algebraic represen-
tations of f⋆ and a minimizer x⋆, if such a minimizer exists. To this end, finite algebraic
sets are represented by a rational parametrization. Such a representation can be com-
puted from a Gröbner basis (see [115]). Let Y ⊂ Rn be a finite algebraic set defined
by polynomials in Q [X]. A rational parametrization of Y is a sequence of polynomials
q, q0, q1, . . . , qn ∈ Q [U ] such that for all x = (x1, . . . , xn) ∈ Y , there exists a unique
u ∈ R such that 




q(u) = 0
x1 = q1(u)/q0(u)

...
xn = qn(u)/q0(u)

In other words, there is a bijection between the roots of q and the points in Y . Thus,
a single point in x ∈ Y can be represented by q, q0, q1, . . . , qn and an interval isolating
the root of q corresponding with x. Then, box isolating a single point can be computed.

Likewise, an algebraic number α ∈ R is represented by a univariate polynomial P
and an isolating interval I: P has only one root in I, that is α.

Example 1.17. Consider the intersection of the circle x2 + y2 = 1 and the line y = 2x.
This is the 0-dimensional variety

V
(
x2 + y2 − 1, y − 2x

)
=

{(−1√
5
,
−2√
5

)
,

(
1√
5
,
2√
5

)}
,

that can be parametrized by 



5u2 − 4 = 0
x = 2/5u
y = 4/5u

The point
(

1√
5
, 2√

5

)
is characterized by the isolating intervals I0 =

[
1
2 , 1

]
, I1 =

[
2
5 ,

4
5

]

and I2 =
[
4
5 ,

8
5

]
. Indeed, the polynomial 5U2−4 has only one root u in

[
1
2 , 1

]
. The corre-

sponding point (2/5u, 4/5u) is the only point of V
(
x2 + y2 − 1, y − 2x

)
in the rectangle

I1 × I2.
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Likewise, the point
(
−1√
5
, −2√

5

)
is characterized by the isolating intervals I ′0 =

[
−1,−1

2

]
,

I ′1 =
[
−4

5 ,−2
5

]
and I ′2 =

[
−8

5 ,−4
5

]
(see Figure 1.2, the upper rectangle being I1 × I2 and

the other one I ′1 × I ′2).

x

y

Figure 1.2: Isolation of each point in V
(
x2 + y2 − 1, y − 2x

)
.

1.3 Geometric Resolution

The geometric operations presented in Section 1.2 can be performed by the geometric
resolution algorithm. This algorithm can be used to compute a parametrization of a finite
algebraic set too. The geometric resolution algorithm is a classical routine in polynomial
system solving solvers.

Let C ⊂ Cn be an irreducible variety. Its geometric degree degC is the maximum
finite cardinal of C ∩L , for every linear subspace L ⊂ Cn. If V is a reducible variety,
deg V =

∑
degC where the sum is over each irreducible component C of V . The

geometric degree of a hypersurface V (f) is bounded by deg f . Given a variety V =
V (g1, . . . , gp), we denote by δ (V ) the maximum of the degrees deg (V (g1, . . . , gi)), for
1 ≤ i ≤ p.

The geometric resolution algorithm takes advantage of the representation of polyno-
mials as straight-line programs. To perform geometric operations on a variety V , the
complexity is essentially cubic in δ (V ). Then it can be used to obtain complexity esti-
mates.

We recall the basic definitions and then recall the complexity results of the subroutines
we will use in our complexity estimates. For further details, see [43, 50, 90, 91, 126].
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Let F = {f1, . . . , fs} ⊂ Q [X], g ∈ Q [X]. Assume that the polynomials fi and g
have degree ≤ D, that they are given by a straight-line program of size L and V (F) has
dimension d.

In the sequel, a geometric resolution is a representation of a variety by a parametriza-
tion. A lifting fiber is a data from which a geometric resolution can be recovered. We
refer to [50, 90, 91, 126] for precise statements.

The subroutines required to estimate the complexity of our algorithm are the follow-
ing.

• GeometricSolveRRS [50]: let F = {f1, . . . , fn} and g as above. Assume that F

defines a reduced regular sequence in the open subset {g 6= 0}. In case of success,

the procedure returns a geometric resolution of V (F) \ V (g)
Z

in time

Õ
((
nL+ n4

)
(Dδ (V (F)))2

)
.

• GeometricSolve [91]: let F and g as above. In case of success, the procedure returns

an equidimensional decomposition of V (F) \ V (g)
Z

, encoded by a set of irreducible
lifting fibers in time

Õ
(
sn4

(
nL+ n4

)
(Dδ (V (F)))3

)
.

• LiftCurve [91]: given an irreducible lifting fiber F of the above output, in case of
success, the routine returns a rational parametrization of the lifted curve of F in
time

Õ
(
sn4

(
nL+ n4

)
(Dδ (V (F)))2

)
.

• OneDimensionalIntersect [50]: let 〈F〉 be a 1-dimensional ideal, I be a geometric
resolution of 〈F〉, and f and g be polynomials. In case of success, the routine

returns a rational parametrization of V (I+ f) ∩ V (g)
Z

in time

Õ
(
n
(
L+ n2

) (
Dδ (V (F))2

))
.

• LiftParameter [126]: let T be a parameter and let PT be a set of polynomials in
Q(T )[X1, . . . , Xn]. Let t ∈ R be a generic point and Pt be the polynomial system
specialized at t. If V (Pt) is 0-dimensional, the routine takes as input a geometric
resolution of Pt and returns a parametric geometric resolution of Pt in time

Õ
((
nL+ n4 + n

)
δ (V (Pt)) (4δ (V (PT )) + 1)

)
.
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1.4 Infinitesimals, Puiseux Series

In order to formally consider small deformations of algebraic varieties, we introduce
infinitesimals and Puiseux series. In this section, K stands for R or C. We refer to [16,
Chapter 2.6] and [16, Chapter 12.5] for precise statements and properties of the notions
presented in the sequel.

Let F ⊂ F ′ be two ordered fields. An element ε ∈ F ′ is infinitesimal over F if for
any x > 0 in F , 0 < |ε| < x.

Let ε be an infinitesimal and denote by K 〈ε〉 the field of algebraic Puiseux series in
ε with coefficients in K, that is the set of series

∑

i≥k

aiε
i/q, with k ∈ Z, i ∈ Z, ai ∈ K, q ∈ N∗

that are algebraic over K (ε).

Proposition 1.18. [16, Corollary 2.98 p. 81] The field R 〈ε〉 is a real closed field and
C 〈ε〉 is an algebraically closed field.

An element
∑

i≥k

aiε
i/q ∈ K 〈ε〉 such that k ∈ N is bounded . The set of bounded ele-

ments in K 〈ε〉 is denoted by K 〈ε〉b. If α =
∑

i≥k

aiε
i/q ∈ K 〈ε〉b then we define lim0 α = a0.

We also denote by lim0 the mapping K 〈ε〉nb −→ Kn that apply lim0 on each coordinate.
Let S ⊂ Rn defined by a system of polynomial equations and inequalities. We will

denote by ext (S,R 〈ε〉) the solution set in R 〈ε〉n of the same system.





Chapter 2

Symbolic Algorithms for

Optimization

Let X = {X1, . . . , Xn} be a set of indeterminates and F = {f1, . . . , fs} be a sequence
of polynomials in Q [X] of degree at most D. Let V ⊂ Cn be the algebraic variety
V (F) = {x ∈ Cn | f1 (x) = · · · = fs (x) = 0}. Given another polynomial f ∈ Q [X] of
degree at most D, we denote by f⋆ the infimum inf

x∈V ∩Rn
f (x).

We present a state of the art of algorithms solving the following problems.

(B) Deciding the finiteness and computing an algebraic representation of f⋆.

(C) Deciding whether there exists x⋆ ∈ V ∩Rn such that f (x⋆) = f⋆ and computing a
rational parametrization of x⋆.

To this end, we first introduce the real quantifier elimination in Section 2.1 and we
show that problems (B) and (C) are actually quantifier elimination problems.

In 1930, Tarski has proved that a quantifier-free equivalent formula always exists and
has given an algorithm to compute it [138]. In Section 2.2, we present the cylindrical
algebraic decomposition (CAD). It has provided a new and more efficient symbolic al-
gorithm to solve the quantifier elimination problem. The CAD has been introduced by
Collins in 1973 and described in [31]. The first complete implementation, done in 1981, is
described in [5]. Then in the 1990s, several works have provided improvements and sim-
plifications of the CAD, see e.g. [22, 32, 33, 67, 94]. The main drawback of this approach
is its complexity that is doubly exponential in the number of variables. Practically, its
best implementations are limited to non-trivial problems involving 4 variables at most.

In Section 2.3, we present algorithms based on the critical point method. In Section
2.3.1, we present a brief introduction to a quantifier elimination algorithm based on
critical point methods [15]. Its theoretical complexity is singly exponential in the number
of variables but there is no practical implementation. Finally, Section 2.3.2 is devoted
to present a dedicated algorithm solving problem (B) without constraints. Unlike the
previous methods, that are general quantifier elimination solvers, it take into account the
structure of the optimization problem to solve it. This algorithm is singly exponential

27
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in the number of variables. Furthermore, its implementation has a good behavior in
practice, allowing to solve problems intractable with the previous methods.

2.1 Real Quantifier Elimination

In this section, we give a short introduction to real quantifier elimination (QE). Then we
show how problems (B) and (C) can be seen as QE problems. Since there exist symbolic
algorithms to solve the quantifier elimination problem, they can be used to solve problems
(B) and (C). These algorithms are briefly presented in Sections 2.2 and 2.3.

We refer to [16], [20] and [35] for more details about semi-algebraic geometry, real
fields and real quantifier elimination.

A first order formula is a formula constructed from the following rules.

• If f ∈ Q [X] then f = 0 and f > 0 are formulas;

• if φ1 and φ2 are formulas then φ1 ∧ φ2 and φ1 ∨ φ2 are formulas;

• if φ is a formula then so is ¬φ;

• if X is a variable and φ a formula then ∃X φ and ∀X φ are formulas.

A quantifier-free formula is a formula in which there is no quantifier such as ∃ or ∀. Re-
mark that since (φ1 ⇒ φ2)⇔ (¬φ1 ∨ φ2), if φ1 and φ2 are formulas then so is (φ1 ⇒ φ2).
Given a first order formula φ (X1, . . . , Xn) with quantifiers, the goal of quantifier elimi-
nation is to find an equivalent quantifier-free formula.

We show the connection with optimization with an example. Let f = (xy − 1)2+y2+
z2 ∈ Q [x, y, z] and V = V (z − 2). The optimization problem “compute inf

x∈V ∩Rn
f (x)”

can be rephrased as

“compute the greatest t ∈ R such that ∀ (x, y, z) ∈ R3,
(
z − 2 = 0 =⇒ f ≥ t

)
."

The formula ∀ (x, y, z) ∈ R3,
(
z − 2 = 0 =⇒ f ≥ t

)
is equivalent to the quantifier-free

formula t − 4 ≤ 0, meaning that f⋆ = 4. We can check that f ≥ 4 on V . Furthermore,
f
(
x, 1x , 2

)
= 1

x2 + 4 tends to 4 when x→∞.
In general, the existence of an equivalent quantifier-free formula is given by the fol-

lowing theorem that we state in the special case of the real closed field R.

Theorem 2.1. [16, Theorem 2.77 p. 69] Let φ (X1, . . . , Xn) be a formula with coefficients
in an ordered subring R of R. Then there is a quantifier-free formula ψ (X1, . . . , Xn) with
coefficients in R such that for every x ∈ Rn, the formula φ (x) is true if and only if ψ (x)
is true.

2.2 Cylindrical Algebraic Decomposition

The cylindrical algebraic decomposition is an algorithm that allows to perform a quan-
tifier elimination over the reals. Furthermore, there exists implementations available in
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computer algebra systems like Maple, Mathematica or Redlog, or as a standalone inter-
active command-line program like QEPCAD. However, because of the intrinsic doubly
exponential complexity, computing an infimum involving polynomials of more than 4
variables is intractable with this method. See e.g. [16, 31, 32, 33] for further reading
about the cylindrical algebraic decomposition.

Definition 2.2. Let S ⊂ Rn and let F be a finite set of polynomials in R [X1, . . . , Xn].
The set S is said to be F-invariant if for all P ∈ F, P has a constant sign on S (that is
P > 0, P < 0 or P = 0).

A cylindrical algebraic decomposition (CAD) of Rn adapted to F is a partition of Rn

into semi-algebraic sets called cells, such that each cell is F-invariant.

The following theorem ensures the existence of such a decomposition.

Theorem 2.3. ([16, Theorem 5.6 p. 163] For every finite set P ⊂ R [X1, . . . , Xn], there
is a cylindrical algebraic decomposition of Rk adapted to P.

Collins has given an algorithm to compute a CAD (see [31] for the historical algorithm,
[32, 67, 94] for improvements). The algorithm is based on two steps. The first one is a
step of recursive projections. It is based on subresultant computations, which is a variant
of Euclidean remainder sequence. At each step, the degree is squared. Since the depth
of the recursion is the number of variables, this leads to a complexity at least doubly
exponential in the number of variables. The second step is a lifting step: an explicit
representation of the decomposition is build from the previous projections.

Adding slight modifications in the algorithm, the CAD can be adapted to perform
a quantifier elimination (see [22] and [16, Section 11.3]). This leads to the following
theorem.

Theorem 2.4. There exists an algorithm solving the quantifier elimination problem by
computing a cylindrical algebraic decomposition.

Several implementations of the cylindrical algebraic decomposition are available. All
of them can perform a quantifier elimination based on the CAD.

• Maple (http://www.maplesoft.com/, SemiAlgebraicSetTools package, imple-
mented by C. Chen, M. Moreno Maza, B. Xia and L. Yang [28]).

• Mathematica (http://www.wolfram.com/mathematica/, implementation due to
A. Strzebonski [137]).

• QEPCAD (http://www.usna.edu/cs/~qepcad/B/QEPCAD.html, due to H. Hong
and subsequently added on to by C. W. Brown, G. E. Collins, M. J. Encarnacion,
J. R. Johnson, W. Krandick, S. McCallum, S. Steinberg, R. Liska, N. Robidoux
[23]).

• Redlog (http://www.redlog.eu, implemented by A. Seidl and T. Sturm [41, 131]).

http://www.maplesoft.com/
http://www.wolfram.com/mathematica/
http://www.usna.edu/cs/~qepcad/B/QEPCAD.html
http://www.redlog.eu
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2.3 Critical Point Method

In this section, we denote byD an upper bound on the degree of the involved polynomials.

2.3.1 Critical Point Method for Quantifier Elimination

We mention, without details, a critical point method to solve problems (B) and (C). We
refer to [15] and [16, Section 14] for more precise information.

Given a polynomial family F ⊂ R [X1, . . . , Xn], it allows to compute a tree of real-
izable sign conditions of F in singly exponential time. Then it can be used to decide
the truth of a given formula ([15], [16, Section 14.1]), to perform a quantifier elimination
([16, Section 14.3]) and more particularly to solve problems (B) and (C) ([16, Section
14.2]). In this last case, the complexity is DO(n).

However, the techniques that allow to obtain such complexity results such as infinites-
imal deformations did not provide yet practical results that reflect this complexity gain.
Furthermore, the constant factors are not precised and seem to be high in practice. Then
this algorithm is not usable for the size of our problems.

2.3.2 Dedicated Algorithm for Optimization

In this section, we present a dedicated algorithm for solving problem (B), coming from
[118]. This is a probabilistic algorithm for the unconstrained case, that is computing
f⋆ = inf

x∈Rn
f (x). It is a symbolic algorithm, that requires Õ

(
D4n

)
arithmetic operations

in Q. Furthermore, its implementation, that relies on Gröbner bases, is efficient in
practice and has solved problems intractable before (up to 6 variables).

To this end, the potential values for f⋆ are characterized, using the notion of gener-
alized critical value. The generalized critical values are introduced in [81]. The infimum
f⋆ is necessarily a generalized critical value. Then, the problem is reduced to the compu-
tation of the smallest generalized critical value. The computation of a set that contains
the critical values can be done using Gröbner bases. Moreover, the computation of the
asymptotic values can be reduced to the computation of the set of non-properness of a
projection restricted to an algebraic variety of dimension at most 1. Hence, it can be
done using Gröbner bases or the geometric resolution algorithm. Since the set of values
computed can strictly contain the critical values, one must be able to detect an eventual
redundant value. This is done by using the fact that f is a locally trivial fibration out-
side the generalized critical values. Thus the detection of a redundant value is reduced
to testing the emptiness of finitely many sets of the form f−1 (t) ∩ Rn for t ∈ Q.

Let f ∈ Q [X]. We recall that a real number c is a real critical value of f if and only
if there exists x ∈ Rn such that

• f(x) = c;

• ∂f

∂X1
(x) = · · · = ∂f

∂Xn
(x) = 0.
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A real number c is a real asymptotic critical value of f if and only if there exists a
sequence (xℓ)ℓ∈N ⊂ Rn such that

• f (xℓ) tends to c when ℓ tends to ∞;

• ‖xℓ‖ tends to ∞ when ℓ tends to ∞;

• for all (i, j) ∈ {1, . . . , n}2, ‖Xi(xℓ)‖
∥∥∥∥
∂f

∂Xj
(xℓ)

∥∥∥∥ tends to 0 when ℓ tends to ∞.

The set of real generalized critical values of f is the union of real critical values and
the real asymptotic critical values.

Using the result of [81] stating that outside its set of generalized critical values,
a polynomial mapping realizes a locally trivial fibration, we can obtain the following
characterization for the infimum.

Theorem 2.5. [118, Theorem 5] Let f ∈ Q [X] and E = {e1, . . . , eℓ} (with e1 < . . . < eℓ)
be the set of real generalized critical values of f . Then inf

x∈Rn
f (x) is finite if and only if

there exists i0 ∈ {1, . . . , ℓ} such that inf
x∈Rn

f (x) = ei0 .

Since the infimum is necessarily a real generalized critical value, the next step is the
computation of a set that contain the real asymptotic critical values.

Theorem 2.6. [117, Theorem 3.6] There exists a Zariski-open set O ( GLn(C) such
that for all A ∈ GLn(Q) ∩ O, the set of asymptotic critical values of f is contained in
the set of non-properness of the projection

πT : Cn+1 −→ C

(x1, . . . , xn, t) 7−→ t

restricted to the Zariski-closure of the constructible set defined by

WA =

{
fA − T =

∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0,

∂fA

∂Xn
6= 0

}
.

Example 2.7. Let f = (xy − 1)2 + y2. The Zariski-closure of
{

∂f
∂x = 0, ∂f∂y 6= 0

}
is

the variety V (y (xy − 1)). The above theorem ensures that if there exists an asymp-
totic critical value c ∈ R, then there exists a sequence (xk)k ⊂ V (y (xy − 1)) such that
f (xk) −→

k→+∞
c. One can check that 0 is an asymptotic critical value and that it is the

limit of the evaluation by f of the sequence

(
k,

1

k

)
∈ V (y (xy − 1)).

The algebraic variety WA has dimension at most 1, thus the set of non-properness of
any polynomial restricted to WA is finite. In particular, the above set of non-properness
can be computed using [120, Lemma 4].

However, it can contain useless values. To detect these values, the following topolog-
ical property is used.
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Theorem 2.8. [118, Theorem 6] Let f ∈ Q[X1, . . . , Xn] and E = {e1, . . . , eℓ} be the set
of its real generalized critical values as above. Consider {r0, . . . , rℓ} a set of rationals
such that

r0 < e1 < r1 < · · · < rℓ−1 < eℓ < rℓ

The infimum inf
x∈Rn

f(x) is finite if and only if there exists i0 ∈ {1, . . . , ℓ} such that

{x ∈ Rn | f(x) = ri0} 6= ∅

and for all j ≤ i0 − 1,
{x ∈ Rn | f(x) = rj} = ∅

In this case, we have inf
x∈Rn

f(x) = ei0 .

It is then sufficient to test the emptiness of some real fibers between the computed
set to detect which value is the infimum. Finally, the following theorem is obtained.

Theorem 2.9. ([118, Theorem 7]) There exists a probabilistic algorithm computing the
global infimum of a polynomial in Q [X1, . . . , Xn] of degree D with a complexity within
Õ
(
D4n

)
.

Note that its implementation has solved some problems not tractable before (up to
6 variables).



Chapter 3

Real Algebra

We first introduce some tools and results coming from real algebra in Section 3.1. We
present results about the existence of a representations as sum of squares of rational
functions or of polynomials for a non-negative polynomial. Since there is not bound
on the degree of the denominators in a representation as a sum of squares of rational
functions, we focus on the representation as sum of squares of polynomial. Nevertheless,
all non-negative polynomials can not be expressed as a sum of squares of polynomials.
Though, the existence of certificates on a semi-algebraic set can be obtained.

In Section 3.2.1, we explain how to compute approximations of sums of squares.
Writing the condition of being a sum of squares in terms of linear matrix inequalities,
numerical semidefinite programming solvers can be used for practical computations. In
general, this provides a sequence of certificates for lower bounds on f⋆. A natural question
is then to know when these computed lower bounds tends to or are close to f⋆.

Then in Section 3.2.2, we are interested in the computation of certificates with rational
coefficients.

To prove the existence of certificates, constraints can be added to reduce the problem
to an equivalent one on a semi-algebraic set on which being a sum of squares is equivalent
to being non-negative. We present a state of the art of this approach in Section 3.3.

3.1 Real Algebra and Sums of Squares

In the context of real algebra, the goal is to characterize a non-negative element by writing
it as a sum of squares. A real non-negative polynomial is a sum of squares of rational
functions. However, because there are no bounds on the degree of these rational functions,
from a computational point of view, we focus on writing a non-negative polynomial as a
sum of squares of polynomials. All non-negative polynomials can not be expressed as a
sum of squares of polynomials.

However, assume that a polynomial f can be written f = σ0+
∑

1≤i≤s

σifi, where each

fi is a polynomial and each σi is a sum of squares. Then f is necessarily non-negative
on the semi-algebraic set defined by f1 ≥ 0, . . . , fs ≥ 0. The aim of Schmüdgen’s and
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Putinar’s Positivstellensatz is to ensure the existence of this type of certificate.

3.1.1 Positivstellensatz

In this section, we present historical results dealing with the positivity of polynomial.
In the context of real algebra, the goal is to obtain a certificate of positivity using
expressions with sums of squares. Indeed, in his 17th problem, Hilbert asked whether a
real non-negative polynomial in several variables is a sum of squares of rational functions.
Artin solved this problem in 1927 [6]: the answer is yes. However, his proof was not
constructive. Given a set S, f > 0 (resp. f ≥ 0) on S means that for all x ∈ S, f (x) > 0
(resp. f (x) > 0). For K = R or Q, one denotes by

∑
K [X]2 the set of sums of squares

of polynomials in K [X].
Krivine [78] and Stengle [136] independently got a refinement of Artin result, from

which the following is a consequence.

Theorem 3.1 (Positivstellensatz). Let F = {f1, . . . , fs} ⊂ R [X1, . . . , Xn] and let

S = {x ∈ Rn | f1 (x) ≥ 0, . . . , fs (x) ≥ 0} .

Then f > 0 on S if and only if f can be written in the form

f =

1 +
∑

δ∈{0,1}s
σδf

δ1
1 . . . f δss

1 +
∑

δ∈{0,1}s
θδf

δ1
1 . . . f δss

,

where δ = (δ1, . . . , δs) and σδ, θδ ∈
∑

R [X]2.

To compute such a representation, the degrees of the numerator and denominator are
chosen. Nevertheless, as far as we know, there are no praticable information about the
degree of the involved polynomials in Theorem 3.1. Indeed, bounds on the degree of the
Positivstellensatz on Rn depending only in the number of variables and the degree of f
are either non-explicit (see e.g. [110, Theorem A]) or explicit but too large for practical
computation (see [124, Chapter 11, Theorem 11.14] for a n-fold exponential bound in n
and in the degree of f). Lombardi, Perrucci and Roy recently announced a 5-fold bound
in n and in the degree of f . However the results is not published yet.

3.1.2 Sum of Squares

To avoid the Positivstellensatz issue about the degree, we consider the representation of
a positive polynomial as a sum of squares of polynomials. Indeed, if a polynomial f of
degree 2d is a sum of squares of polynomials gi then each gi has degree at most d. Then it
provides a natural bound on the degree of the polynomials involved in the decomposition
as a sum of squares. In general, there exist non-negative polynomials that are not a sum
of squares. However, the existence of certificates of positivity on semi-algebraic set S can
be obtained under additional assumptions.
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In 1888, Hilbert [63] prove that f ≥ 0 over Rn is necessarily a sum of squares only
when

• n = 1 or

• f has degree 2 or

• n = 2 and f has degree ≤ 4.

Counterexamples can be constructed in all other cases (see [29, 97, 114] for some special
cases and [113] for a survey).

According to Blekherman [19], "there are significantly more non-negative polynomials
than sums of squares".

Theorem 3.2. [19] For every fixed degree, the volume of the set of sums of squares
of polynomials in the set of non-negative polynomials tends to 0 when the number of
variables increases.

However, the Positivstellensatz can be generalized without denominators over a semi-
algebraic set under some assumptions. We present the first historical results about the
existence of sum of squares decompositions. Some recent results, that have been studied
in the context of global optimization, are presented in Section 3.3.

Theorem 3.3 (Schmüdgen’s Positivstellensatz [125]). Let f1, . . . , fs ∈ R [X] and

S = {x ∈ Rn | f1 (x) ≥ 0, . . . , fs (x) ≥ 0} .

Assume that S is compact. Then f > 0 on S if and only if f can be written in the
form

f =
∑

δ∈{0,1}s
σδf

δ1
1 . . . f δss ,

where δ = (δ1, . . . , δs) and σδ ∈
∑

R [X]2.

Let F = {f1, . . . , fs} ⊂ R [X]. The quadratic module M (F) generated by F is the
set

M (F) =



σ0 +

∑

1≤i≤s

σifi |σi ∈
∑

R [X]2



 .

The quadratic module M (F) ⊂ R [X] is archimedean if there exists N ∈ N such that
N − ‖X‖2 ∈ M (F). Note that if M (F) is archimedean then S is compact (see [111] or
[102]).

Theorem 3.4 (Putinar’s Positivstellensatz). Let F = {f1, . . . , fs} ⊂ R [X] and

S = {x ∈ Rn | f1 (x) ≥ 0, . . . , fs (x) ≥ 0} .
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Assume that M (F) is archimedean. Then f > 0 on S if and only if f can be written
in the form

f = σ0 +
∑

1≤i≤s

σifi,

where σi ∈
∑

R [X]2.

These results require the compactness of the semi-algebraic set. In Section 3.3, we
present existence of algebraic certificates of positivity results that do not require the
compactness.

3.2 Computation of Sum of Squares Representations

We present now the practical aspect of the real algebra approach. From the previous
section, we know the theoretical existence of certificate of positivity as sum of squares in
some cases. The goal is to compute practically such a certificate of positivity in order to
obtain information for the optimization problem

First, we introduce semidefinite programming. Then we show the connection between
optimization and sum of squares problem. This sum of squares problem can be expressed
as a semidefinite program. Hence, successive approximations of a sum of squares certifi-
cate can be numerically obtained. This provides a sequence of certified lower bounds on
f⋆.

Finally, we present two approaches that can be used to compute a sum of squares
identity with rational coefficients.

In this section, we denote by Symn (R) the set of symmetric matrices of size n with
real coefficients. Given X ∈ Symn (R), we write X � 0 if and only if X is positive
semidefinite, that is if zTXz ≥ 0 for all vector z ∈ Rn.

3.2.1 Semidefinite Programming and Sum of Squares

This section is devoted to define a semidefinite program (SDP) and present softwares
solving this problem. Then we show how to relax the optimization problem to a sum of
squares problem, that itself can be expressed as a SDP problem.

Semidefinite programming.

We refer to [86] for a general survey on semidefinite programming and the computation
of sums of squares of polynomials.

A semidefinite program (SDP) is a problem of the form

minimize 〈C,X〉 = Tr (CX)

s.t. Tr (AiX) = bi, i = 1, . . . ,m

X � 0



3.2. Computation of Sum of Squares Representations 37

where the unknown X lies in Symn (R) and C ∈ Symn (R), Ai ∈ Symn (R) and bi ∈ R

are given entries.
There exist numerical algorithms solving this problem.

• ConicBundle: http://www-user.tu-chemnitz.de/~helmberg/ConicBundle/

• CSDP: http://infohost.nmt.edu/~borchers/csdp.html,

• DSDP: http://www.mcs.anl.gov/hs/software/DSDP/,

• PENSDP: http://www.penopt.com/pensdp.html,

• SeDuMi: http://sedumi.ie.lehigh.edu/

• SDPA: http://sdpa.sourceforge.net/,

• SDPLR: http://dollar.biz.uiowa.edu/~sburer/,

• SDPT3: http://www.math.nus.edu.sg/~mattohkc/sdpt3.html,

Most of them are based on interior point methods: a barrier function is associated
with the problem. It depends on the variables of the original problem and a parameter µ.
It is a convex function for µ > 0. As µ→ 0, the minimum of the barrier function tends
to a solution of the original problem. To compute the minimum of the barrier function,
Newton’s method is used to approximate a point at which the necessary optimality
conditions for the function are satisfied (see e.g. [21, Section 4] and [38] for more details
on interior point methods).

ConicBundle is based on another approach. The semidefinite program is transformed
into a problem of eigenvalue optimization [59]. To solve this eigenvalue optimization
problem, bundle methods are used [58, 65, 66, 76, 127].

Sum of Squares Relaxations.

Let f ∈ R [X]. We consider the SOS relaxation

f sos = sup
{
a ∈ R | ∃σ ∈

∑
R [X]2 , f (x)− a = σ

}
.

The number f sos gives a lower bound on f⋆ = inf
x∈Rn

f (x). Furthermore, writing a

polynomial as a sum of squares of polynomials is strongly related with the theory of
positive semidefinite matrices. In the sequel, given t ∈ N, we denote by Nn

t the set

Nn
t =



α = (α1, . . . , αn) ∈ Nn |

∑

1≤i≤n

αi ≤ t



 .

http://www-user.tu-chemnitz.de/~helmberg/ConicBundle/
http://infohost.nmt.edu/~borchers/csdp.html
http://www.mcs.anl.gov/hs/software/DSDP/
http://www.penopt.com/pensdp.html
http://sedumi.ie.lehigh.edu/
http://sdpa.sourceforge.net/
http://dollar.biz.uiowa.edu/~sburer/
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
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Lemma 3.5. [87, Lemma 3.8] Let f =
∑

α∈Nn
2D

fαX
α ∈ R [X] of degree ≤ 2D. Then

f ∈
∑

R [X]2 if and there exists a matrix X = (Xα,β)α,β∈Nn
D

such that





X � 0∑

β,γ∈Nn
D

β+γ=α

Xβ,γ = fα

Example 3.6. Let f = 2x21 + x22 − 2x1x2 + 2x1 + 1. It can be written

(
1 x1 x2

)
︸ ︷︷ ︸

zT
1



1 1 0
1 2 −1
0 −1 1




︸ ︷︷ ︸
X




1
x1
x2




︸ ︷︷ ︸
z1

.

The eigenvalues of the matrix X are 0, 1 and 3. Hence, it is positive semidefinite.
We compute the Cholesky decomposition of X. We get X = UT .U with

U =



1 1 0
0 1 −1
0 0 0


 .

Hence, f = (Uz1)
T (Uz1) =

(
1 + x1 x1 − x2 0

)



1 + x1
x1 − x2

0


 = (1 + x1)

2 + (x1 − x2)2.

Thanks to this connection between sums of squares and semidefinite matrices, the
problem of computing f sos can be expressed as a SDP, see e.g. [29]. Let Nn

2D =

α ∈ Nn |

∑

1≤i≤n

αi < 2D



. Let zd be the vector of all monomials of degree ≤ d. In the

sequel, we denote by Eij the matrix whose entries are 0 except for the (i, j)-coefficient,
that is 1.

Proposition 3.7. [104, Lemma 3.1] Computing f sos is equivalent to solving the semidef-
inite program:

minimize 〈C,X〉 = Tr (CX)

s.t. Tr (AαX) = fα, α ∈ Nn
2D

X � 0

with C = E11 and Aα such that
∑

β,γ∈Nn
D

β+γ=α

Xβ,γ = Tr (AαX), that can be obtained by equating

the coefficients of the two polynomials f and zTd Xzd.
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Example 3.8. Let f = 2x21 + x22 − 2x1x2 + 2x1 and z1 =




1
x1
x2


. We want to compute

f sos = sup
{
a ∈ R | ∃σ ∈

∑
R [X]2 , f (x)− a = σ

}
.

According to Lemma 3.5, f − a is a sum of squares if and only if there exists a positive
semidefinite matrix X such that f − a = zT1 Xz1. By equating the coefficients, we see

that X =



−a 1 0
1 2 −1
0 −1 1


. Thus we want to find a matrix X � 0 such that X =



−a 1 0
1 2 −1
0 −1 1


, where the coefficient a is maximal. In order to formulate this problem

as a SDP, we translate the condition X =



−a 1 0
1 2 −1
0 −1 1


 in terms of Tr (AX) for

symmetric matrices A.
Remark that the matrix (Eij + Eji) is symmetric and that

Tr


(Eij + Eji)



x11 x12 x13
x12 x22 x23
x13 x23 x33




 = 2xij .

Then the condition X =



x11 x12 x13
x12 x22 x23
x13 x23 x33


 =



−a 1 0
1 2 −1
0 −1 1


 can be written





Tr (E11X) = x11 = −a
Tr (E22X) = x22 = 2
Tr (E33X) = x33 = 1
Tr ((E12 + E21)X) = 2x12 = 2
Tr ((E13 + E31)X) = 2x13 = 0
Tr ((E23 + E32)X) = 2x23 = −2

Finally, minimizing −a such that f − a is a sum of squares is equivalent to the
following SDP formulation.

minimize Tr (E11X)

s.t. Tr (E22X) = 2

Tr (E33X) = 1

Tr ((E12 + E21)X) = 2

Tr ((E13 + E31)X) = 0

Tr ((E23 + E32)X) = −2
X � 0



40 Chapter 3. Real Algebra

Using YALMIP [92], we get the solution



1.0 1.0 0.0
1.0 2.0 −1.0
0.0 −1.0 1.0


, meaning that f sos = −1.

As seen in the previous section, a non-negative polynomial is not necessarily a sum
of squares. However, results like Schmüdgen’s or Putinar’s Positivstellensatz ensure the
existence of certificates of positivity by means of sums of squares on a semi-algebraic set.
Hence, given f1, . . . , fs ∈ R [X], we can try to compute

f sos = sup



a ∈ R | ∃σi ∈

∑
R [X]2 , f (x)− a = σ0 +

∑

1≤i≤s

σifi



 .

However, this problem can not be expressed as a SDP. Indeed, the degrees of the sums of
squares σi are not known a priori. Nevertheless, fixing an upper bound on these degrees
allows to translate the problem into a SDP. We show how to get a SDP problem in the
following example.

Example 3.9. Let f be a polynomial of degree ≤ 2d and g a polynomial of degree ≤ 2δ.

Given t ∈ N, we want to find sums of squares σ and τ such that f − a = σ+ τg, with
deg σ ≤ 2t and deg τg ≤ 2t. This is equivalent to finding positive semidefinite matrices
X1 and X2 such that

f − a = zTt X1zt + zTt−δX2zt−δg. (3.1)

To satisfy such an equation, the matrices X1 and X2 are subject to constraints ob-

tained by equating the coefficients, as in example 3.8. Let X1 =
(
X

(1)
β,γ

)

β,γ∈Nn
t

, X2 =
(
X

(2)
β,γ

)

β,γ∈Nn
t−δ

, g =
∑

α

gα∈Nn
2δ
xα and f =

∑

α∈Nn
2d

fαx
α. By equating the coefficients,

Equation 3.1 is equivalent to the problem





X � 0

X
(1)
0,0 +X

(2)
0,0 × g0 = f0 − a∑

β,γ∈Nn
t

β+γ=α

X
(1)
β,γ +

∑

b,c∈Nn
2δ

b+c=α

gb
∑

a,b∈Nn
t−δ

a+b=c

X
(2)
a,b = fα

Since X =

(
X1 0

0 X2

)
� 0 is equivalent to X1 � 0 and X2 � 0, the computation of

f sos is a semidefinite program.

Then we can consider the following sequence of relaxations:

f sos

t =sup



a ∈ R | ∃σi ∈

∑
R [X]2, f (x)− a = σ0 +

∑

1≤i≤s

σifi, deg (σ0) , deg (σifi) ≤ 2t



,
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Since the above set become larger as t grows, f sos

t < f sos

t′ if t < t′, leading to a hierarchy
of relaxations.

We present now Matlab implementations that translate an SOS problem into a SDP
and use a SDP solver to solve it:

• Gloptipoly3: http://homepages.laas.fr/henrion/software/gloptipoly/,

• SOSTOOLS: http://www.cds.caltech.edu/sostools/,

• SparsePOP: http://www.is.titech.ac.jp/~kojima/SparsePOP/,

• YALMIP: http://users.isy.liu.se/johanl/yalmip/.

Hence the computation of an approximation of f sos (resp. f sos

t in the constrained
case) is possible. In Section 3.3, we present results that, under some assumptions on
f1, . . . , fs, ensure that f sos = f⋆. In this case, the sequence (f sos

t )t converges monoton-
ically increasing to f⋆. This leads to methods that compute successive approximations
of f⋆, that are more and more accurate.

3.2.2 Computation of Rational Certificates

As explained before, using SDP to solve SOS relaxations leads to the computation of
approximations of representations as sums of squares. Let f be a polynomial of degree
2d and

f sos = sup
{
a ∈ R | ∃σ ∈

∑
R [X]2 , f (x)− a = σ

}
.

Assume that there exists σ ∈
∑

R [X]2 with algebraic coefficients such that f −f sos = σ.
Then using semidefinite programming, an approximation with floating point coefficients
of the form f − f̃ sos ≃ σ̃ is computed. In this section, we want to compute an ap-
proximation with rational coefficients. We present two methods to obtain such rational
certificates.

Method based on numerical computation.

The first method comes from [75] and [105]. In this section, let N =
(
n+d
d

)
, that is the

size of the vector zd of all monomials of degree ≤ d. The main steps are the following.

1. Compute a representation f − f̃ sos ≃ zTd Q̃zd, where f̃ sos and Q̃ have floating point
coefficients, using semidefinite programming;

2. Approximate f̃ sos by a rational number r′ ≤ f̃ sos and convert Q̃ to a rational matrix
Q′;

3. Compute Π(Q′), the orthogonal projection of Q′ to the linear affine hyperplane

{
Q ∈ SymN (R) | f − r′ = zTd Qzd

}
.

http://homepages.laas.fr/henrion/software/gloptipoly/
http://www.cds.caltech.edu/sostools/
http://www.is.titech.ac.jp/~kojima/SparsePOP/
http://users.isy.liu.se/johanl/yalmip/
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According to [75, Section 2.2] and [105, Proposition 7], since Π(Q′) is an orthogonal
projection, its coefficients can be computed exactly from the coefficients of Q′. Since Q′

is a rational matrix, so is Π(Q′).
If Π(Q′) � 0, then a rational certificate f − r′ = zTd Π(Q′) zd is obtained for r′, that

is a certified lower bound on f sos. Else, we start again with a better precision or with a
lower r′.

In [75], the representation of Step 1 is refined using Gauss-Newton iterations before
Step 2.

In [105], it is suggested to use continued fractions in order to convert Q̃ to a rational
matrix. Furthermore, conditions are given to ensure that the projection Π(Q′) is positive
semidefinite. In the sequel, dist is the Euclidean distance between two matrices.

Proposition 3.10. [105, Proposition 8] Let Q ∈ SymN (R) and Q′ a rational matrix in
SymN (R). Assume that there exist τ, ε, δ ∈ R+ such that τ2 + δ2 ≤ ε2 and

• every eigenvalue of Q is greater than or equal to ε,

• dist (Q,Π(Q)) ≤ δ,

• and dist (Q,Q′) ≤ τ .

Then Π(Q′) is positive semidefinite.

If the SDP is strictly feasible then one can choose ε > 0. Then if δ2 < ε2, this proves
that it is possible to compute a rational certificate using sufficiently many digits. Up to
considering the dual form of the SDP problem, it is proved in [105, Proposition 9] that
it is always possible to get δ = 0.

Direct computation.

In this paragraph, we briefly introduce results that leads to the computation of rational
certificates.

Univariate case. In the univariate case, a recursive algorithm is given in [128]. Let
f ∈ Q[T ] such that for all t ∈ R, f (t) ≥ 0. The algorithm is based on the following
results.

1. if f has degree 2 then this is a sum of squares or rational polynomials;

2. if f is not square-free, it is enough to consider its square-free part;

3. if f is square-free of degree D, then there exists t ∈ Q and a polynomial ft ∈ Q[T ]
of degree 2 such that

• f ≥ ft ≥ 0 on R;

• the square-free part of f − ft ≥ 0 has degree ≤ D − 2.
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Assertion 1 comes from [128, Lemma 2.25], where an expression of a sum of squares
depending on the coefficients of f is given. Assertion 3 from [128, Theorem 2.27]. An
expression of ft depending on f and f ′ is given.

Hence, one can compute recursively a rational sum of squares: if f has degree 2, then
we return the rational sum of squares expression of f . Else, we consider the square-free
part of f and we compute the polynomial f − ft. It is non-negative on R, then one
can call the algorithm on its square-free part, that has degree D − 2. Then we obtain a
rational representation as a sum of squares of the square-free part of f − ft. Since ft has
degree 2 and is non-negative on R, it has a representation as a rational sum of squares.
This leads to a representation as a rational sum of squares for f − ft.

Computing rational solution of LMI. This algorithm comes from [55]. Given a
symmetric matrix A whose entries are linear forms in Q [X], it computes a rational point
in Qn that is a solution of the Linear Matrix Inequality A � 0, if and only if such a
solution exists. Let f ∈ Q [X] of degree 2d. Since the constraints in Lemma 3.5 are
linear, this algorithm can be used to compute a rational symmetric matrix Q � 0 such
that f = zTd Qzd. Such an equation gives a representation as a rational sum of squares
for f .

The algorithm is based on the one in [122], that computes rational points in a convex
semi-algebraic set. Linear Matrix Inequalities define convex semi-algebraic sets since
they can be seen as sign conditions on the coefficients of characteristic polynomials [108].

Let S ⊂ Rk be a semi-algebraic set. In the sequel, a set of sample points of S is a
finite set of points that meets each connected component of S (see [15, Section 3] and
[16, Chapter 5] for an algorithm computing a set of sample points). The algorithm is
based on the following results.

1. if S ⊂ Rk has dimension k then it has rational points and the proof of [15, Theorem
4.1.2 page 1032] leads to an algorithm computing such a point;

2. if k = 1 and S has dimension < 1 then it is either empty or a single point. By
computing a set of sample points of S, we obtain either an empty set, meaning that
S is empty or a single point if it is not empty. It is then sufficient to test whether
this single point is rational or not;

3. if k > 1 and S ⊂ Rk has dimension < k then it is included in an hyperplane H of
Rk. Hence, we can consider the intersection S ∩H. This leads to considering a new
convex semi-algebraic set S ′ ⊂ Rk−1 such that S ′ has rational points if and only if
S has rational points. Furthermore, one can recover a rational point in S from a
rational point in S ′.

Assertion 1 comes from [122, Section 2.1]. Assertion 2 and 3 are explained in [122,
Section 3.2].

This leads to a recursive algorithm that computes a rational point in S if and only if
such a point exists: if S has dimension k, then we can compute rational points. If k = 1
and S has dimension < 1, then one can compute a rational point in S if and only if such
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a point exists. If S has dimension < k then from Assertion 3, we can call the algorithm
with a new convex semi-algebraic set S ′ ⊂ Rk−1. Then at each step of the recursion,
the dimension of the ambient space decrease. From Assertions 1 and 2, the algorithm
terminates and return a rational point in S if and only if such a point exists.

This algorithm can be used to compute a rational solution of a LMI A � 0. Its
description for this special case is given in [55]. Furthermore, assume that A has size N×
N and that its coefficients are linear forms in Q [X], with coefficients of bit size ≤ τ . Then
according to [55, Section 4], the algorithm runs within (nτ)O(1) 2O(min(n,N)N2)NO(N2)

bit operations and its output has bit size dominated by τO(1)2O(min(n,N)N2).

3.3 Existence of Certificates

In this section, recent results providing the existence of certificates of positivity by means
of sums of squares are presented. These results have been developed in order to compute
lower bounds on the infimum of a polynomial. Indeed, following the approach described
in Section 3.2.1, if the existence of certificates is proved then a sequence of lower bounds
converging to f⋆ can be computed. This is done by constructing a hierarchy of sum
of squares relaxations. These relaxations lead to semidefinite relaxations, that can be
solved numerically using SDP solvers.

The relaxations are splitted into three families. In Section 3.3.1, we present results
that can be used in the unconstrained case, that is when f⋆ = inf

x∈Rn
f (x). Section 3.3.2

deals with the constrained case, that is f⋆ = inf
x∈S

f (x), where S ⊂ Rn is a semi-algebraic

or a real algebraic set.
The idea is to add constraints to ensure that over the set defined by these new

constraints,

• a positive polynomial is necessarily a sum of squares and

• if a polynomial is positive over these new constraints then it is positive over the
original set.

Finally in Section 3.3.3, results about the existence of rational certificates are pre-
sented.

3.3.1 Unconstrained Case

"Big ball" method.

This method is due to Lasserre [84], using the following theorem (that is a special case
of Schmüdgen’s Positivstellensatz and that has been proved by Cassier [27]).

Given R ≥ 0, let B (0, R) be the closed ball centered at 0 of radius R.

Theorem 3.11. [84, Theorem 3.4] Let f ∈ R [X] and R ≥ 0. Then f ≥ 0 over B (0, R)
if and only if for all ε > 0, f + ε can be written

f + ε = σ + θ
(
R2 − ‖x‖2

)
,
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where σ, θ ∈
∑

R [X]2.

If f⋆ is reached on the ball B (0, R) then f sos = inf
B(0,R)

f (x) = f⋆, so that this method

allows to approximate f⋆.

Gradient variety.

Let ∇f =
(

∂f
∂X1

, . . . , ∂f
∂Xn

)
. Demmel, Nie and Sturmfels [101] proved the following result,

that allows to approximate inf
x∈V(∇f)

f (x).

Theorem 3.12. [101, Theorem 9] Let f ∈ R [X]. Then f ≥ 0 over V (∇f) if and only
if for all ε > 0, f + ε can be written as

f + ε = σ +
∑

1≤i≤n

φi
∂f

∂Xi
,

where σ ∈
∑

R [X]2 and φi ∈ R [X].

If f⋆ is reached on Rn, then it is at a critical point. In this case, inf
x∈Rn

f (x) =

inf
x∈V(∇f)

f (x). Then the above theorem make possible to compute an approximation of

f⋆. However, the infimum f⋆ is not necessarily reached so that the approximation can
be inaccurate.

Example 3.13. Let f = (XY − 1)2+X2. Solving the system ∂f
∂X = ∂f

∂Y = 0, we get that
V (∇f) = {(0, 0)}. Since f (0, 0) = 1, this means that inf

x∈V(∇f)
f (x) = 1.

However, f⋆ = 0. Indeed, as a sum of squares, f ≥ 0. Moreover, the sequence

f

(
1

k
, k

)
=

1

k2
tends to 0 when k tends to infinity, thus f⋆ = 0.

Gradient tentacle.

In [130, Theorem 9], real algebra tools from [129] generalizing Schmüdgen’s Positivstel-
lensatz are used to give the following characterization for the existence of certificates.
Let S be the semi-algebraic set {x ∈ Rn | f1 (x) ≥ 0, . . . , fs (x) ≥ 0}.

Notation 3.14. In the sequel, we denote by

• R∞(f, S) the set of values t ∈ R such that there exists a sequence (xk)k∈N ⊂ S such
that ‖xk‖ −→

k→+∞
∞ and f (xk) −→

k→+∞
t,

• S (∇f) the set
{
x ∈ Rn | ‖∇f(x)‖2‖x‖2 ≤ 1

}
.
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Definition 3.15. Let f ∈ C [X]. We denote by fi its homogeneous component of degree
i. The polynomial f has only isolated singularities at infinity if it is constant or if it has
degree d ≥ 1 and there are finitely many z ∈ Pn−1 (C) such that

∂fd
∂X1

(z) = · · · = ∂fd
∂Xn

(z) = fd−1 (z) = 0.

Theorem 3.16. [130, Theorem 9] Assume that f is bounded on S and that R∞(f, S) is
a finite subset of ]0,+∞[. Then f > 0 on S if and only if it can be written in the form

f =
∑

δ∈{0,1}s
σδf

δ1
1 . . . f δss ,

where δ = (δ1, . . . , δs) and σδ ∈
∑

R [X]2.

Applying this result, the following theorem is obtained.

Theorem 3.17. [130, Theorem 25] Let f ∈ R [X] bounded from below and assume that
f has only isolated singularities at infinity or that S(∇f) is compact. Then f ≥ 0 on Rn

if and only if for all ε > 0, f + ε can be written

f + ε = σ + θ
(
1− ‖∇f(x)‖2‖x‖2

)
,

where σ, θ ∈
∑

R [X]2.

As far as we know, this result is the first one where f⋆ is not assumed to be reached
over Rn. It requires that f has only isolated singularities at infinity. According to a
private communication with the author, the computation of certificates seems to work
for polynomials that do not satisfy this assumption. However, since there is no proof of
this fact, one can introduce the higher gradient tentacles. The gradient tentacle S (∇f,N)

of order N is defined as the semi-algebraic set
{
x ∈ Rn | ‖∇f(x)‖2N

(
1 + ‖x‖2

)N+1 ≤ 1
}

.
Then the analogous of Theorem 3.17, without the assumption on the number of isolated
singularities at infinity, can be proved.

High order perturbation method.

This method, due to Lasserre [85], is more general than its previous “big ball” method
since it does not require the assumption that f⋆ is reached. It is based on the following
theorem.

Theorem 3.18. [85, Theorem 4.1] Let f ∈ R [X]. Then f ≥ 0 on Rn if and only if for
all ε > 0, there exists r ∈ N such that

f + ε
∑

1≤i≤n

∑

0≤k≤r

X2k
i

k!
= σ,

where σ ∈
∑

R [X]2.
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Generalized critical values.

In [54], the notion of generalized critical values and Schweighofer’s Theorem 3.16 are used.
Furthermore, a method improving the convergence of the sum of squares relaxations when
f⋆ is not attained on Rn is presented.

Theorem 3.19. [54, Theorem 3.3] Let f ∈ R [X]. There exists a non-empty Zariski
open set O ⊂ GLn (C) such that for all A ∈ GLn (Q) ∩ O, fA ≥ 0 on Rn if and only if
for all ε > 0, fA + ε can be written

fA + ε = σ + θ
(
M − fA

)
+

∑

1≤i≤n−1

φi
∂fA

∂Xi
.

where σ, θ ∈
∑

R [X]2 and M ∈ f (Rn).

More precisely, computing certificates on Rn can be reduced to computing certificates
on a set whose dimension is well controlled. The critical locus of f

WA

0 =

{
x ∈ C,

∂fA

∂X1
(x) = · · · = ∂fA

∂Xn
(x) = 0

}

and the constructible set

WA

1 =

{
x ∈ C,

∂fA

∂X1
(x) = · · · = ∂fA

∂Xn−1
(x) = 0,

∂fA

∂Xn
(x) 6= 0

}
.

are considered.
According to [117], there exists a non-empty Zariski open set O ⊂ GLn (C) such that

for all A ∈ GLn (Q) ∩ O, the Zariski-closure of WA
1 has dimension 1. This implies that

R∞
(
fA,WA

1

)
is finite. The set R∞

(
fA,WA

0

)
is a subset of the set of critical values of

f , that is finite by Sard’s theorem. Hence, Schweighofer’s theorem can be applied on
WA = WA

0 ∪WA
1 . To conclude, it is proved that finding the infimum on WA ∩ Rn is

equivalent to finding the one on Rn.

Lemma 3.20. ([54, Lemma 3.1]) There exists a non-empty Zariski open set O ⊂
GLn (C) such that for all A ∈ GLn (Q) ∩ O,

inf
x∈Rn

fA (x) = inf
x∈WA∩Rn

fA (x) .

Remark that Theorem 3.19 does not require that f⋆ is reached on Rn.

3.3.2 Constrained Case

KKT ideals.

In this section, let S = {x ∈ Rn | f1 (x) ≥ 0, . . . , fs (x) ≥ 0}, where fi ∈ R [X]. Dem-
mel, Nie and Powers [39] generalized the gradient variety approach to get certificates of
positivity over S.
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Let IKKT ⊂ R [X, λ1, . . . , λs] be the Karush-Kuhn-Tucker ideal defined by

IKKT =

〈
∂f

∂X1
−

∑

1≤j≤s

∂fj
∂X1

, . . . ,
∂f

∂Xn
−

∑

1≤j≤s

∂fj
∂Xn

, λ1f1, . . . , λnfn

〉
.

Theorem 3.21. [39, Theorem 3.5] Let f ∈ R [X]. Then f > 0 over V (IKKT ) if and
only if for all ε > 0, f + ε can be written as

f + ε =
∑

δ∈{0,1}s
σδf

δ1
1 . . . f δss +

∑

i

φihi,

where δ = (δ1, . . . , δs), σδ ∈
∑

R [X]2, φi ∈ R [X, λ1, . . . , λs] and hi ∈ R [X, λ1, . . . , λs]
are the generators of IKKT .

If f⋆ is reached, then it is reached at a KKT point. Thus, it is attained on V (IKKT )
where the existence of certificates is ensured, so that f⋆ = inf

x∈V(IKKT )
f (x) can be ap-

proximated by a sequence of SDP relaxations. However, as in Example 3.13, f⋆ may
be a limit that is not reached. In this case, f⋆ 6= inf

x∈V(IKKT )
f (x), so that the computed

approximation may be far away from f⋆.

Truncated tangency variety.

Hà and Pha.m [141] used Schweighofer’s Theorem 3.16 to prove the existence of certificates
with constraints.

In this section, let S = {x ∈ Rn | gi (x) = 0, 1 ≤ i ≤ l and hj (x) ≥ 0, 1 ≤ j ≤ m},
where gi, hj ∈ R [X].

Definition 3.22. Let J (x) be the set of indices j such that hj (x) = 0. Then the set S
is regular if all x ∈ S, for 1 ≤ i ≤ j and j ∈ J (x), the vectors ∇gi, ∇hj are linearly
independent.

Theorem 3.23. [141, Theorem 4.1] Let f ∈ R [X] and M ∈ f (Rn) and assume that S
is regular. Then f ≥ 0 on S if and only if for all ε > 0,

f + ε = σ + θ (M − f) +
∑

1≤i≤l

φigi +
∑

1≤j≤m

τjhj +
∑

J⊂{1,...,m}
ψJhJpJc ,

where pJc is a polynomial constructed from the partial derivatives of f , gi and some hi.
Moreover, σ, θ, τj ∈

∑
R [X]2 and φi, ψJ ∈ R [X].

In the above theorem, f⋆ is not assumed to be reached. In Section 7.2, we will also
deal in the case where f⋆ is not necessarily reached. Indeed, we will prove the existence
of certificates on a set on which the infimum is f⋆. Then even if if is not reached, this will
allow to compute an approximation converging to f⋆. Furthermore, the new constraints
we introduce and the certificates are simpler and with smaller degree than [141].
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3.3.3 Existence of Rational Certificates

Since the methods and algorithms presented in Section 3.2.2 can be used to compute a
rational certificate, we want to prove the existence of rational certificates instead of real
certificates. For the univariate case, the existence of rational certificates is known, see
[82, 106] and the algorithm in [128], presented in Section 3.2.2.

In the multivariate case, Sturmfels asked whether all polynomials with rational coef-
ficients that are sums of squares in R [X] are also sums of squares in Q [X]. Scheiderer
gave a counterexample in [123]. However, the existence of rational sums of squares on a
semi-algebraic set can be proved in some cases.

Rational Positivstellensatz. In [18, Theorem 4.1] a generalization of Schmüdgen’s
Positivstellensatz is given. The statement of Theorem 3.3 remains true when R [X] is
replaced by any affine algebra on a field K. In particular with K = Q and the affine
algebra Q [X], we get the following.

Theorem 3.24. [18, Theorem 4.1, Corollary 4.4] Let f1, . . . , fs ∈ Q [X] and

S = {x ∈ Rn | f1 (x) ≥ 0, . . . , fs (x) ≥ 0} .

Assume that S is compact. Then f > 0 on S if and only if f can be written in the
form

f = a+
∑

δ∈{0,1}s
σδf

δ1
1 . . . f δss ,

where 0 < a ∈ Q, δ = (δ1, . . . , δs) and σδ ∈
∑

Q [X]2.

Likewise, a generalization of Putinar’s Positivstellensatz is given in [69, Theorem 6].
The statement of Theorem 3.4 remains true when R [X] is replaced by any affine algebra
on an archimedean ordered field.

We recall that

M (F) =



σ0 +

∑

1≤i≤s

σifi |σi ∈
∑

R [X]2





is the quadratic module generated by F = {f1, . . . , fs} ⊂ Q [X].
Then [69, Theorem 6] with K = Q and the affine algebra Q [X] gives the following.

Theorem 3.25. [69, Theorem 6] Let F = {f1, . . . , fs} ⊂ Q [X] and

S = {x ∈ Rn | f1 (x) ≥ 0, . . . , fs (x) ≥ 0} .

Assume that M (F) contains N −
∑

1≤i≤n

X2
i for some N ∈ N. Then f > 0 on S if and

only if f can be written in the form

f = σ0 +
∑

1≤i≤s

σifi + σ


N −

∑

1≤i≤n

X2
i


 ,
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where σi, σ ∈
∑

Q [X]2.

These special cases of Jacobi’s and Berr and Wörmann about rational certificates has
also been presented in [107].

Sums of squares over totally real fields. Let K be a totally real number field.
Then in [64], it is proved that if f ∈ Q [X] is a sum of squares in K [X] then f is a sum
of squares with rational coefficients. Furthermore, a results that ensure the existence of
a rational sum of squares decomposition is given.

Let f ∈ Q [X] of degree 2d and N =
(
n+d
d

)
be the size of the vector zd of all monomials

of degree ≤ d.

Theorem 3.26. [64, Theorem 1.2] If there exists an invertible positive semidefinite ma-
trix Q ∈ SymN (R) such that f = zTd Qzd then there exists a positive semidefinite matrix
Q′ ∈ SymN (Q) such that f = zTd Q

′zd.

Then, the existence of rational sums of squares for polynomials in a totally real
number field is given.

Theorem 3.27. [64, Theorem 1.4] Let K be a totally real number field with Galois
closure L. If f ∈ Q [X] is a sum of m squares in K [X], then f is a sum of

4m · 2[L:Q]+1

(
[L : Q] + 1

2

)

squares in Q [X].

A refinement of this last result is presented in [112].

Theorem 3.28. [112, Theorem 3.1] Let K be a totally real Galois extension of Q. Let
f ∈ Q [X] be a sum of m squares in K [X]. Then f is a sum of (4[K : Q]− 3) .m squares
in Q [X].



Chapter 4

Polar Varieties

We present the polar varieties. Polar varieties have been introduced by Severi [132, 133]
and Todd [139, 140] at the beginning of the century. Then, they have been studied in
the context of computer algebra by Bank, Giusti, Heintz, Mbakop and Pardo (see e.g.
[9, 11, 12] and [14]). Geometric objects close to the notion of polar varieties are used in
[13] in the context of global optimization.

Given an algebraic variety V , the polar varieties are defined as the critical loci of the
canonical projections restricted to V . Polar varieties are a core notion in real polynomial
system solving. They have been studied in a computer algebra context in order to
compute at least a point in each connected component of the real trace of an algebraic
variety. Thus testing the emptiness of a real algebraic variety given by a polynomial
equations can be done using polar varieties. In [9], the authors studied the case were
the variety is a smooth hypersurface such that its real part is compact. Then in [11],
the authors extend the properties of polar varieties to a real smooth and compact real
variety, given by a reduced regular sequence. In [119], the compactness assumption is
removed, replaced by an assumption of properness. This assumption can be ensured
up to a generic change of coordinates. This leads to an algorithm singly exponential in
the number of variables that compute a set of representative points of each connected
component of a real algebraic variety. We present the results of [119] that will be used
in our algorithms.

4.1 Definition and Properties

Regular and critical points. This section is devoted to define the critical points and
critical values of a polynomial mapping defined on an algebraic variety.

The Zariski-tangent space to a variety V at x ∈ V is the vector space TxV defined
by the equations

∂f

∂X1
(x)v1 + · · ·+

∂f

∂Xn
(x)vn = 0,

for all polynomials f that vanish on V .

51
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Given a polynomial f , ∇f , is the gradient vector
(

∂f
∂X1

. . . ∂f
∂Xn

)
. The Jacobian

matrix of the system F = {f1, . . . , fs} ⊂ Q [X] is the (s× n)-matrix




∂f1
∂X1

· · · ∂f1
∂Xn

... · · · ...
∂fs
∂X1

· · · ∂fs
∂Xn


 .

This Jacobian matrix will be denoted by Jac (F,X) or simply Jac (F). Likewise, Jac (F, k)
denotes the truncated Jacobian matrix of size p×(n− k + 1) with respect to the variables
Xk, . . . , Xn.

Given a matrix M of size s × p and an integer m ≤ min {s, p}, we denote by
Minors (M,m) the set of all minors of size m×m of M . In the sequel we assume that the
polynomials in F generate a radical ideal and that the variety V (F) is equidimensional.
Under these assumptions, the singular points are defined by polynomial equations.

Assume that V is equidimensional of dimension d and that the ideal 〈F〉 is radical.
The set of singular points in V is V (F,Minors (Jac (F), n− d)). The regular points are all
other points of V . We denote by Reg (V ) the set of regular points of V and by Sing (V )
its set of singular points. A variety V is smooth if Sing (V ) = ∅.

We can now define the critical points and critical values of a polynomial mapping f
defined on an algebraic variety V . The set of critical points of f|V , denoted by Crit (f, V ),
is the set of points in Reg (V ) where the differential dxf : Tx (V )→ Cn is not a surjection.
A value c ∈ R is a critical value of f|V ∩Rn if there exists a critical point xc ∈ V ∩Rn such
that f (xc) = c.

Remark 4.1. If the algebraic variety V is smooth then Crit (f, V ) is the variety defined by
F and Minors (Jac (f,F), n− d+ 1). If V is not smooth, it defines the union Crit (f, V )∪
Sing (V ).

The computation of the critical points is relevant when considering an optimization
problem: it is well known that if a point x ∈ V ∩Rn is such that f (x) is a local extremum
then x ∈ Crit (f, V ).

Moreover, according to Sard’s theorem (algebraic version), the set of complex critical
values is a 0-dimensional algebraic variety of C. In other words, it is a finite algebraic
set. The following statement is a consequence of [44, Corollary 16.23, p. 409].

Theorem 4.2 (Sard). Let f : V −→ C. Then the set of critical values of f is an algebraic
variety strictly contained in C.

Projections. We will manipulate geometric object constructed as the critical locus of
projections to linear subspaces, that we define now.

Given 1 ≤ ℓ ≤ n, let π>ℓ be the projection

π>ℓ : Cn −→ Cn−ℓ

(x1, . . . , xn) 7−→ (xℓ+1, . . . , xn)
.
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Likewise, we define the projection π≤ℓ

π≤ℓ : Cn −→ Cℓ

(x1, . . . , xn) 7−→ (x1, . . . , xℓ)
.

Sometimes, we will keep the notation π≤ℓ for the projection

π≤ℓ : Cn × C −→ Cℓ × C

(x1, . . . , xn, t) 7−→ (x1, . . . , xℓ, t)
.

Finally, if {Xi1 , . . . , Xis} is a subset of X then πXi1
,...,Xis

denotes the projection

πXi1
,...,Xis

: Cn −→ Cs

(x1, . . . , xn) 7−→ (xi1 , . . . , xis)
.

Change of coordinates. The correctness of the results presented in Chapters 5, 6
and 7 depends on some properties that are satisfied up to a generic change of variables.
Let A ∈ GLn (Q). In this thesis, we denote by fA the polynomial f

(
AX

T
)

and F
A the

set {fA1 , . . . , fAs }. Likewise, if V = V (F) then V A is the algebraic variety V
(
F
A
)
.

Polar varieties. Let F = {f1, . . . , fs} ⊂ Q [X] and V = V (F). The polar varieties
associated with V are defined as critical loci of projections to linear subspaces. In order
to compute these critical loci, one assumes that 〈F〉 is a radical ideal and that V is
smooth and equidimensional of dimension d.

Under these assumptions, we are able to define the polar varieties by polynomial
equations constructed from the input system F.

Definition 4.3 (Polar variety). For 1 ≤ i ≤ d, let ∆i =
〈F,Minors (Jac (F, i+ 1), n− d)〉, that is the ideal defining the critical locus of π≤i

restricted to V .

The (d+ 1)-th polar variety Wd+1, by convention, is V itself. For 1 ≤ i ≤ d, the i-th
polar variety is Wi = V (∆i).

Remark 4.4. Under the assumptions that 〈F〉 is radical and that V is smooth and
equidimensional of dimension d, the polar variety Wi is the critical locus of

π≤i : V −→ C

(x1, . . . , xn) 7−→ (x1, . . . , xi)
.

We refer to [11] for the results on the dimension and properties of polar varieties
when V ∩ Rn is assumed to be compact.

We focus on the generalization in [119]. The compactness assumption is replaced
with an assumption of properness of canonical projections.
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Theorem 4.5. [119, Theorem 2] Assume that W1 has dimension at most 0 and that for
1 ≤ i ≤ d, the restriction of π≤i to Wi+1 is proper. Then each Wi ∩V (X≤i) is empty or
0-dimensional.

Furthermore, the union
⋃

1≤i≤d+1

Wi ∩ V (X≤i) meets every connected component of

V ∩ Rn.

Example 4.6. Consider the algebraic variety defined as the union of the circle and the
line drawn in Figure 4.1. Consider the projection of this variety to the x-axis, that is
proper.

The projection of the circle has two critical points, at each extremity (Figure 4.1(a)).
Then the polar variety W1, that is the union of these two points, is 0-dimensional and
contains at least one point in the circle.

The projection of the line has no critical points. This means that the image of the
projection is the entire x-axis. Therefore, the intersection of this line with any line
orthogonal to the x-axis is non-empty. Hence, W2 ∩V (x) is 0-dimensional and contains
a point in the line (Figure 4.1(b)).

x

y

(a) Critical points of the projection to x.

x

y

(b) Intersection with the y-axis.

Figure 4.1: Polar varieties with properness.

Remark 4.7. The properness assumption is required. Consider the hyperbola in Figure
4.2. Its projection to the x-axis is the x-axis without the origin, that is a point of non-
properness. Hence, the intersection of the hyperbola with the y-axis V (x) is empty.

Nevertheless, after a generic change of coordinates, the projection is on another axis,
that is proper. Then the situation is reduced to one of those of Example 4.6. If the
new projection has no critical points, because of the properness, the intersection of the
hyperbola with any line orthogonal to the axis of projection is non-empty and meets each
connected component of the hyperbola (Figure 4.3(a)). If the new projection has critical
points, then each connected component contains such a critical point (Figure 4.3(b)).



4.1. Definition and Properties 55

x

y

Figure 4.2: Polar varieties without properness: no critical point for the projection to x
but the projection is not the entire axis.

x

y

P

D

(a) No critical points but any line D orthogonal
to the axis of projection P meets each connected
component of the variety.

x

y

P

(b) Critical points for the projection to P, at least
one in each connected component of the variety.

Figure 4.3: Polar varieties after a generic change of coordinates.

It is known (see for instance [42, Section 2.4]) that the Noether position can be
obtained by performing a generic linear change of coordinates. Then from Proposition
1.14, this means that the properness of a projection to a linear subspace is a generic
property.

However in Theorem 4.5, it is necessary to obtain a change of coordinates that gives
the properness of each projection.

The following ensures that assuming the properness of all projections is not a loss of
generality since it can always be ensured, up to a linear change of coordinates.
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Theorem 4.8. [119, Theorem 1] There exists a Zariski-open set O ⊂ GLn (C) such that
for all A ∈ GLn (Q) ∩ O, WA

1 has dimension at most 0 and that for 1 ≤ i ≤ d, the
restriction of π≤i to WA

i+1 is proper.

4.2 Computing a set of Sample Points

Given a variety V , a set of sample points of V ∩ Rn is a finite set that contains at least
one point in each connected component of V ∩ Rn.

From Theorem 4.5 and Theorem 4.8, the computation of a set of sample points
of V ∩ Rn is reduced to compute the solutions of a 0-dimensional system in generic
coordinates. It can be done using Gröbner bases but to obtain a complexity estimate,
the computations can be performed by the geometric resolution algorithm.

Theorem 4.9. ([119, Theorem 1]) There exists a probabilistic algorithm computing a
geometric resolution of a 0-dimensional set containing at least one point in each connected
component of V ∩ Rn. Its complexity is singly exponential in the number of variables.

An implementation based on the results presented in this section is distributed in the
Maple package RAGlib by Safey El Din. This Maple package can be downloaded at http:
//www-polsys.lip6.fr/~safey/RAGLib/. It relies on the computation of suitable sec-
tions of polar varieties. These sections are computed with Gröbner bases, using Faugère’s
FGb package, available at http://www-polsys.lip6.fr/~jcf/Software/FGb/.

http://www-polsys.lip6.fr/~safey/RAGLib/
http://www-polsys.lip6.fr/~safey/RAGLib/
http://www-polsys.lip6.fr/~jcf/Software/FGb/
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Chapter 5

Modified Polar Varieties

5.1 Introduction

This chapter is part of the submitted paper [52]. It contains a strong generalization
of [51], where geometric results used to test the reachability of the global infimum of a
polynomial on Rn are presented.

Motivation and prior work

Let f , f1, . . . , fs be n-variate polynomials with rational coefficients. For the moment, we
assume that the ideal 〈f1, . . . , fs〉 is radical and that V = V (f1, . . . , fs) is equidimensional
with finitely many singular points. Let f⋆ = inf

x∈V ∩Rn
f (x). Recall that our goal in this

thesis is to solve problems:

(A) Computing certificates for lower bounds on f⋆.

(B) Deciding the finiteness and computing an algebraic representation of f⋆.

(C) Deciding whether there exists x⋆ ∈ V ∩Rn such that f (x⋆) = f⋆ and computing a
rational parametrization of x⋆.

In this context, the set of critical values of the restriction of f to V ∩Rn plays a crucial
role. Indeed, if f⋆ is reached, then it is a critical value. However, consider the polynomial
f = (xy − 1)2+x2 on Rn. Its set of critical values is {1}. Since f

(
k/

(
1 + k2

)
, k
)
−→

k→+∞
0

and f ≥ 0 as a sum of squares, we see that f⋆ = 0, that is not a critical value. This is
actually a real asymptotic critical value. A value c ∈ R is an asymptotic critical value if
there exists a sequence (xk)k∈N ⊂ Rn such that f (xk) −→

k→+∞
c, ‖xk‖ −→

k→+∞
∞ and for all

(i, j) ∈ {1, . . . , n}2, ‖Xi(xk)‖
∥∥∥∥
∂f

∂Xj
(xk)

∥∥∥∥ −→k→+∞
0. This notion is introduced in [72, 81].

Asymptotic critical values are taken into account in [118] to solve problem (B), where
f⋆ = inf

x∈Rn
f (x). It is proved that f⋆ is either a critical value or an asymptotic critical

value. To compute these values, an algebraic set of dimension 1 is constructed. Then
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computing asymptotic critical values is reduced to computing the set of non-properness
of the restriction of a projection to this algebraic set of dimension 1.

To solve problem (A) without assuming that f⋆ is reached, Schweighofer’s results
[130] can be used. They ensure the existence of certificates under the assumption that
f has finitely many asymptotic values. This is done in [54] to prove the existence of
certificate on Rn. To this end, an algebraic variety C such that inf

x∈Rn
f (x) = inf

x∈C∩Rn
f (x)

is constructed. Furthermore, C is the union of the critical locus of f and an algebraic set
of dimension one. This is sufficient to prove that f has finitely many asymptotic values
on C ∩ Rn.

Solving problem (C) can be done by computing at least one point in each connected
component of Crit (f, V ) ∩ Rn. Nevertheless, efficient methods based on polar varieties
[9, 11, 119] require some properties of regularity. These properties can not be ensured
for Crit (f, V ) so that these methods can not be applied to answer this question. We
give a first answer in [51] to compute a minimizer when f⋆ = inf

x∈Rn
f (x) is reached. To

this end, we construct a set that is generically finite and that intersect each connected
component of Crit (f) ∩ Rn.

We see that the common idea is to reduce the original problem to an equivalent
problem on a set of smaller dimension, on which asymptotic phenomena are well con-
trolled. This chapter is devoted to construct an algebraic set C (f,F) ⊂ V such

that f⋆ = inf
x∈C (f,F)∩Rn

and such that C (f,F) \ Crit (f, V )
Z

has dimension 1. Since

f⋆ = inf
x∈C (f,F)∩Rn

, computing the infimum of f on V ∩ Rn is equivalent to computing it

on C (f,F) ∩ Rn. Since C (f,F) \ Crit (f, V )
Z

has dimension 1, asymptotic phenomena
and computation of minimizers can be managed on C (f,F).

Problem statement

Let f ∈ Q [X] and let F = {f1, . . . , fs} ⊂ Q [X]. The problem in this chapter is to
construct a new algebraic set C (f,F) such that

• f⋆ = inf
x∈V ∩Rn

f (x) = inf
x∈C (f,F)∩Rn

f (x),

• C (f,F) \ Crit (f, V )
Z

has dimension at most 1,

• C (f,F) \ Crit (f, V )
Z ∩ Crit (f, V ) has dimension at most 0 and contains at least

one point in each connected component of Crit (f, V ) ∩ Rn.

To this end, it is natural to consider some objects related to polar varieties. Indeed,
the dimension of the polar varieties is well controlled while information about the original
object are kept (see Chapter 4). We use geometric objects which are close to the notion
of polar varieties. We refer to [13] for geometric objects similar to the ones we manipulate
in a more restrictive context.
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Main results

Let f ∈ Q [X] and let F = {f1, . . . , fs} ⊂ Q [X] such that the ideal 〈F〉 is radical and the
variety V = V (F) is d-equidimensional with finitely many singular points.

We define the modified polar varieties as follows: for 1 ≤ i ≤ d− 1, let C (f,F, i) be
the algebraic variety defined as the vanishing set of

• the polynomials in F,

• the minors of size n− d+ 1 of Jac ([f,F] , i+ 1),

• and the variables X1, . . . , Xi−1.

By convention, C (f,F, d) = V ∩ V (X1, . . . , Xd−1). Let C (f,F) be the union

C (f,F) =
⋃

1≤i≤d

C (f,F, i).

Then we are able to prove the following, that is a summary of Theorems 5.9, 5.11
and 5.12 page 65.

Theorem 5.1. There exists a non-empty Zariski-open set O ⊂ GLn (C) such that for all
A ∈ GLn (Q) ∩ O,

• f⋆ = inf
x∈V ∩Rn

f (x) = inf
x∈C (fA,FA)∩Rn

fA (x),

• C (fA,FA) \ Crit (fA, V A)
Z

has dimension at most 1,

• C (fA,FA) \ Crit (fA, V A)
Z ∩ Crit

(
fA, FA

)
has dimension at most 0 and con-

tains, for each critical value of fA|V A∩Rn that is not isolated in fA
(
V A ∩ Rn

)
, at

least one corresponding critical point.

Note that we are able to compute critical points associated with critical values that
are not isolated. However, critical points associated with isolated critical values can be
obtained by computing a point in each connected component of V ∩Rn (see Proposition
6.7).

Furthermore, Proposition 5.22 page 76 gives a bound on the maximum geometric
degree attained in the computation of each modified polar variety. More precisely,
given a variety V = V (g1, . . . , gp), we denote by δ (V ) the maximum of the degrees
deg (V (g1, . . . , gi)), for 1 ≤ i ≤ p. Then the following is obtained. Remark that this
bound in singly exponential in the number of variables.

Proposition 5.2. For all A ∈ GLn (Q) ∩ O, for 1 ≤ i ≤ d, δ
(
C

(
fA,FA, i

))
and

δ
(
C (fA,FA, i) \ Crit (fA, V A)

Z ∩ Crit
(
fA, V A

))
are bounded by

D ((n− d+ 1) (D − 1))n .
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Organization of the chapter

In Section 5.2, we define the modified polar varieties C (f,F, i) and their union C (f,F).
Section 5.3 is devoted to state and prove the properties of our modified polar varieties.
We prove that for a generic matrix A ∈ GLn (Q), f⋆ = inf

x∈C (fA,FA)∩Rn
fA (x). Then we

prove that the dimension of C (fA,FA) \ Crit (fA, V A)
Z

is at most one. Furthermore,
the algebraic set

C (fA,FA) \ Crit (fA, V A)
Z ∩ Crit

(
fA, FA

)

is finite and contains at least one critical point for each critical value of fA|V A∩Rn that is

not an isolated value in fA
(
V A ∩ Rn

)
.

Finally, we give bounds on the maximum geometric degree attained in the computa-
tion of the modified polar varieties in Section 5.4. It will be useful in order to estimate
the complexity of the algorithms, since it depends on these degrees.

5.2 Definition

We define the modified polar varieties. In order to obtain the expected properties and to
be able to perform computations, we make some assumptions on the input set of poly-
nomials F ⊂ Q [X]. Then we give an algebraic definition of our modified polar varieties.
Finally, we explain the geometric meaning of these definitions and the connection with
the classical polar varieties.

Notation 5.3. A set F ⊂ Q [X] is said to satisfy assumptions R if:

• the ideal 〈F〉 is radical,

• the variety V = V (F) ⊂ Cn is equidimensional of dimension d > 0,

• V = V (F) has finitely many singular points.

In this thesis, we fix F ⊂ Q [X] satisfying assumptions R so that the definitions of
regular, singular, critical points, etc. as solutions of polynomial systems given in Section
4.1 can be used.

Definition 5.4. For 1 ≤ i ≤ d− 1, let C (f,F, i) be the algebraic variety defined as the
vanishing set of

• the polynomials in F,

• the minors of size n− d+ 1 of Jac ([f,F] , i+ 1),

• and the variables X1, . . . , Xi−1.
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By convention, C (f,F, d) = V ∩ V (X1, . . . , Xd−1). Let C (f,F) be the union

C (f,F) =
⋃

1≤i≤d

C (f,F, i).

For 1 ≤ i ≤ d− 1, let P (f,F, i) = C (f,F, i) \ Crit (f, V )
Z ∩ Crit (f, V ). For i = d,

let P (f,F, d) = C (f,F, d). Finally, let

P (f,F) =
⋃

1≤i≤d

P (f,F, i).

Example 5.5. Let f = x2 ∈ Q [x1, x2, x3] and V = V
(
x21 + x22 + (x3 − 1)2 − 1

)
. The

first modified polar variety, C (f,F, 1), is the variety V
(
x21 + x22 + (x3 − 1)2 − 1, x3 − 1

)
,

of dimension 1 (see Figure 5.1(a)).

The second modified polar variety is C (f,F, 2) = V
(
x21 + x22 + (x3 − 1)2 − 1, x1

)
, of

dimension 1 (see Figure 5.1(b)).
Remark that the critical locus of f|V ∩Rn , that is {(0, 1, 1) , (0,−1, 1)} is contained in

each modified polar variety.

Remark 5.6. Since the critical locus Crit (f, V ) is the algebraic variety defined by F

and the minors of size n− d+ 1 of Jac ([f,F]), if x ∈ Crit (f, V ) then any minor of size
n− d+ 1 of Jac ([f,F] , i+ 1) vanish at x. In particular, under assumptions R,

Crit (f, V ) ⊂ C (f,F, 1).

Definition 5.7. For 1 ≤ i ≤ d, let P (f,F, i) = C (f,F, i) \ Crit (f, V )
Z ∩ Crit (f, V )

and let P (f,F) be the union

P (f,F) =
⋃

1≤i≤d

P (f,F, i).

Example 5.8. Let f = x2 ∈ Q [x1, x2, x3] and V = V
(
x21 + x22 + (x3 − 1)2 − 1

)
as in

Example 5.5. Then P (f,F, 1), is the variety

V
(
x21 + x22 + (x3 − 1)2 − 1, x3 − 1, x1

)
= {(0, 1, 1) , (0,−1, 1)} .

Its dimension is 0 and it contains all the critical points of f|V ∩Rn .
In this example, P (f,F, 2) = P (f,F, 1). Then the union P (f,F, 1) ∪P (f,F, 2)

contains at least one critical point for each critical value of f|V ∩Rn . We prove in the next
section that it is always true up to a generic change of coordinates.

In this Section, π≤i stands for the projection, where T is a new indeterminate,

π≤i :
V (f − T ) ∩ V −→ Ci+1

(x1, . . . , xn, t) 7−→ (x1, . . . , xi, t) .

Remark that since F satisfies assumptions R, the variety C (f,F) is the union of
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x1

x2

x3

(a) C (f,F, 1)

x1

x2

x3

(b) C (f,F, 2)

Figure 5.1: Modified polar varieties for f = x2 and F =
{
x21 + x22 + (x3 − 1)2 − 1

}
. The

two points are the critical points of f|V ∩Rn .

• the set of singular points πX (Sing (V ∩ V (f − T ))) = Sing (V ),

• the projection to X of the intersection of the linear subspace V (X1, . . . , Xi) and
the critical locus of the projection π≤i restricted to V ∩ V (f − T ), for 1 ≤ i ≤ d.

Roughly speaking, the idea is to consider the section of the polar varieties of V ∩V (f − T )
with linear subspaces, where T is a parameter, in order to obtain at least one point in
each connected component of V ∩ V (f − T ) ∩ Rn. Then we project on X in order to
eliminate the parameter T , so that we obtain an object that contains information about
the values of the objective polynomial f .

Moreover, P (f,F) is the intersection of Crit (f, V ) and the components of C (f,F)
that are not included in Crit (f, V ).

5.3 Generic Properties

In this section the properties that will be used to solve optimization problems (A), (B) and
(C) are stated. We first show that the original problem can be reduced to an optimization
problem on the union of the modified polar varieties. Then we explain how to compute,
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using these modified polar varieties, at least one critical point for each critical value. It
will be useful in order to test whether f⋆ is reached or not. Finally, we state the results
about the dimension of our objects. The proofs of these results are given in Section 5.3.2.

5.3.1 Statements

Theorem 5.9. There exists a non-empty Zariski-open set O1 ⊂ GLn (C) such that for
all A ∈ GLn (Q)∩O1, there exists a non-empty Zariski-open set QA ⊂ C such that for all
t ∈ R∩QA, V A ∩V

(
fA − t

)
∩Rn is empty if and only if C

(
fA,FA

)
∩V

(
fA − t

)
∩Rn

is empty too.

This theorem ensures that the computation of f⋆ can be done on C
(
fA,FA

)
instead

of V A∩Rn. Indeed, assume first that f⋆ is reached. It is then necessarily a critical value.
By Remark 5.6, the critical points lie in C

(
fA,FA

)
, so that f⋆ = inf

x∈C (fA,FA)∩Rn
fA (x).

If f⋆ is not reached, it is the limit of an infinite sequence of points in fA
(
V A ∩ Rn

)
.

By the above Theorem 5.9, up to removing the values in R \QA, that are finitely many,
this sequence lies in fA

(
C

(
fA,FA

)
∩ Rn

)
. Then f⋆ is in the closure (for the strong

topology) of fA
(
C

(
fA,FA

)
∩ Rn

)
, thus in this case, we also have

f⋆ = inf
x∈C (fA,FA)∩Rn

fA (x) .

Example 5.10. Let f = x2 ∈ Q [x1, x2, x3] and V = V
(
x21 + x22 + (x3 − 1)2 − 1

)
as in

Example 5.5 63. One can check on Figure 5.2(a) that for all t ∈ R, V ∩ V (f − t) ∩ Rn

is empty if and only if C (f,F) ∩ V (f − t) ∩ Rn.

The following shows that computing critical points of fA|V A∩Rn that correspond to

non-isolated critical values can be reduced to computing critical points in P
(
fA,FA

)

instead of V A ∩ Rn.

Theorem 5.11. There exists a non-empty Zariski-open set O2 ⊂ GLn (C) such that
for all A ∈ GLn (Q) ∩ O2, for any critical value c of fA|V A∩Rn that is not isolated in

fA
(
V A ∩ Rn

)
, there exists xc ∈P

(
fA,FA

)
such that fA (xc) = c.

We will see in Chapter 6 that the values corresponding to isolated critical values can
be reached by computing at least one point in each connected component of V ∩ Rn.

Finally, the dimensions of the objects are known.

Theorem 5.12. There exists a non-empty Zariski-open set O3 ⊂ GLn (C) such that for
all A ∈ GLn (Q) ∩ O3,

• C (fA,FA, i) \ Crit (fA, V A)
Z

has dimension at most 1,

• P
(
fA,FA

)
has dimension at most 0.
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x1

x2

x3

V (f − t)∩V (F)∩Rn

C (f,F, 1)

t

(a) C (f,F, 1)

x1

x2

x3

V (f − t)∩V (F)∩Rn

C (f,F, 2)

t

(b) C (f,F, 2)

Figure 5.2: V ∩ V (f − t) ∩ Rn is empty if and only if C (f,F) ∩ V (f − t) ∩ Rn.

5.3.2 Proofs

Proof of Theorem 5.9.

This proof has been published in [53] in the case where F is supposed to define a smooth
variety. It is a generalization of [119].

We first prove intermediate results before concluding with the proof of Theorem 5.9.

Lemma 5.13. Let F ⊂ Q [X] satisfying assumptions R. For all real number t not in
f (Crit (f, V ) ∪ Sing (V )),

• V (F, f − t) is either empty or equidimensional of dimension d− 1,

• V (F, f − t) is smooth,

• the ideal 〈F, f − t〉 is radical.

Proof. Let t ∈ R \ f (Crit (f, V ) ∪ Sing (V )). Since πX (Sing (V ∩ V (f − T ))) = Sing (V )
and t 6∈ f (Crit (f, V ) ∪ Sing (V )), t is neither a value of f at a point in

πX (Sing (V ∩ V (f − T )))

nor a critical value of f . Then at every (x, t = f (x)) ∈ V ∩ V (f − t), the matrix
Jac ([F, f − t]) has rank n− d+ 1. Let Zt be an irreducible component of V ∩V (f − t).
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Then, there exists an irreducible component Z of V such that Zt is an irreducible com-
ponent of Z ∩ V (f − t). Since assumptions R is satisfied, V is equidimensional of
dimension d so that Z has dimension d. Remark that since t is not a critical value
of f|V ∩Rn , Z 6⊂ V (f − t). By Krull’s Principal Ideal Theorem [79, Corollary 3.2 p.
131], this means that Zt is either empty or is equidimensional of dimension d − 1.
Since V ∩ V (f − t) has finitely many irreducible components, this proves that for all
t ∈ R \ f (Crit (f, V ) ∪ Sing (V )), V ∩ V (f − t) is either empty or equidimensional of
dimension d− 1.

To prove that V (F, f − t) is smooth, remark that x is a singular point of V (F, f − t)
if and only Jac (f,F) has a rank defect at x. In other words, x is a singular point of
V (F, f − t) if and only if it is a singular point of V or a point such that t = f (x) is a
critical value of f|V . This is not possible since t ∈ R \ f (Crit (f, V ) ∪ Sing (V )).

To prove that It = 〈F, f − t〉 is radical, assume that It 6= 〈1〉 (otherwise the an-
nounced claim is immediate). Let It = Q1 ∩ · · · ∩ Qr ∩ Qr+1 ∩ · · · ∩ Qs be a minimal
primary decomposition of It. We assume that the Qi’s are isolated for 0 ≤ i ≤ r. It is
then sufficient to prove that for 1 ≤ i ≤ r, Qi is a prime ideal.

Let i ∈ {1, . . . , r}. There exists x ∈ V (Qi) such that x 6∈ V
(⋂

i 6=j Qj

)
. Let m be

the maximal ideal at x. For an ideal I (resp. a ring R), we denote by Im (resp. Rm) its
localization at m.

Since V ∩ V (f − t) is smooth, Jac ([F, f − t]) has rank n − d + 1 at all points of

V ∩ V (f − t). According to [44, Theorem 16.19, Chapter 16, p. 404],
Q[X1, . . . , Xn]m

(It)m
is a regular ring. Hence, by [7, Lemma 11.23 p. 123]), it is integral, which implies that
the ideal (It)m is prime. Note that, since Qi is the unique isolated primary component
contained in m, the following equalities hold:

(It)m = (Qi)m ∩
⋂

Qj⊂m
j≥r+1

(Qj)m = (Qi)m .

Thus (Qi)m = (It)m is also prime and using [7, Proposition 3.11 p. 41], we conclude that
so is Qi. Finally, as an intersection of prime ideals, It is a radical ideal.

In the sequel, our goal is to prove that generically, the restriction of π≤i−1 to V A ∩
V
(
fA − t

)
∩ C

(
fA,FA, i

)
is proper, that is stated in Lemma 5.17. To this end, we

will use several intermediate results. They are strongly inspired by the results in [119,
Theorem 1] and uses its intermediate results. For clarity and simplicity we refer to
those results which can be used mutatis mutandis and focus on steps requiring a specific
treatment to prove Lemma 5.17.

Notation 5.14. In the sequel, we denote by

• A a n× n matrix whose entries are new indeterminates (Ai,j)1≤i,j≤n,

• t a new indeterminate,
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• ∆A
d (t) the ideal

〈
F
A, fA − t

〉
,

• ∆A
i (t), for 1 ≤ i ≤ d− 1, the ideal generated by F

A, fA − t and the minors of size
n− d+ 1 of Jac

([
F
A, fA

]
, i+ 1

)
.

Then we can restate [119, Section 2.3, Proposition 1], replacing Q with Q(t). Indeed,
the tools used in this proof, namely Nœther normalization, Krull’s Principal Ideal The-
orem, Quillen-Suslin’s Theorem and algebraic Bertini’s Theorem can be used with any
field of characteristic 0.

Lemma 5.15. Let i ∈ {1, . . . , d}, let Pt be a prime components of
√

∆A
i (t) and let r

be its dimension. Then r is at most i − 1 and the extension Q (t) (Ai,j) [X1, . . . , Xr] →
Q (t) (Ai,j) [X] /Pt is integral.

The next Proposition shows that this result remains true specializing the indeter-
minates Ai,j and t in a suitable non-empty Zariski-open set. This is similar to [119,
Proposition 2], except that we manage the parameter t.

Lemma 5.16. There exists a non-empty Zariski-open set O1 ⊂ GLn (C) such that for
all A ∈ GLn (Q) ∩ O1, there exists a non-empty Zariski-open set T A ⊂ C such that for
all t ∈ R ∩ T A, the following holds:

• Let i ∈ {1, . . . , d}, let PA
t be a prime components of

√
∆A

i (t) and r its dimension.

Then r is at most i− 1 and the extension C [X1, . . . , Xr]→ C [X1, . . . , Xn] /P
A
t is

integral.

Proof. Let i be in {1, . . . , d}. Since i is fixed, we write ∆ = ∆A
i (t). Applying [119,

Proposition 2] with C (t) as a ground field yields the existence of a non-empty Zariski-
open set O1 such that for all A ∈ GLn (Q) ∩ O1 and all prime component P of ∆A the
following holds:

• the dimension r of P is at most i− 1;

• the extension C (t) [X1, . . . , Xr]→ C (t) [X1, . . . , Xn] /P is integral.

Thus it is sufficient to prove that the ideal Pt obtained specializing t to t contains a
monic polynomial in Xr. Since the extension C (t) [X1, . . . , Xr] → C (t) [X1, . . . , Xn] /P
is integral, as an ideal in Q (t) [X1, . . . , Xn], P contains a monic polynomial, that lies in
Q (t) [X1, . . . , Xr−1] [Xr] non-identically zero, that we denote by mP . Let α (t) ∈ Q [t] be
the least common multiple of the denominators of mP in Q [t].

Now, let U A

P be the non-empty Zariski-open set such that for all t ∈ U A

P , Pt is
equidimensional of dimension the one of P and contains the polynomial mP,t obtained
when instantiating t to t in mP : such a Zariski-open set exists since

• one can perform equidimensional decomposition without factorization;

• one can decide that a polynomial lies in an ideal without factorization.



5.3. Generic Properties 69

Thus, U A

P can be obtained as the non-vanishing of all the denominators appearing in the
execution of such algorithms with input polynomials defining P for the first algorithm
and a Gröbner basis of P and mP for the second algorithm.

Consider now the non-empty Zariski open set VA,P defined by the non-vanishing of
α and let T A

P be U A

P ∩ VA,P . For t ∈ T A

P , we instantiate t to t: since t ∈ U A

P , Pt is
equidimensional and contains mP,t. Moreover, since t ∈ VA,P , mP,t is monic.

Consequently, for all t ∈ T A

P , the extension C [X1, . . . , Xr] → C [X1, . . . , Xn] /Pt is
integral. We conclude by defining T A =

⋂
UA,P , where the intersection is taken for the

finitely many prime components of ∆A.

We are now able to prove the following.

Lemma 5.17. There exists a non-empty Zariski-open set O1 ⊂ GLn (C) such that for
all A ∈ GLn (Q) ∩ O1, there exists a non-empty Zariski-open set T A ⊂ C such that for
all t ∈ R∩T A, the restriction of π≤i−1 to V A ∩V

(
fA − t

)
∩C

(
fA,FA, i

)
is proper for

1 ≤ i ≤ d.

Proof. According to Lemma 5.16 for A ∈ GLn (Q)∩O1 and t ∈ T A, the following holds:

for any prime component PA
t of dimension r of

√
∆A

i (t), then r is at most i− 1 and the

extension C [X1, . . . , Xr] −→ C [X1, . . . , Xn] /P
A
t is integral.

Then according to Proposition 1.14, this is true if and only if the restriction of π≤i−1

to V
(
∆A

i (t)
)
= V A ∩ V

(
fA − t

)
∩ C

(
fA,FA, i

)
is proper.

We can now prove Theorem 5.9.

Proof of Theorem 5.9. By Lemma 5.17, there exists a non-empty Zariski-open set O1 ⊂
GLn (C) such that, for all A ∈ GLn (Q) ∩ O1, there exists a non-empty Zariski-open set
T A ⊂ C such that for all t ∈ R ∩ T A, the restriction of π≤i−1 to V A ∩ V

(
fA − t

)
∩

C
(
fA,FA, i

)
is proper for 1 ≤ i ≤ d.

Let A ∈ GLn (Q) ∩ O1 and QA = T A \ fA
(
Crit

(
fA, V A

)
∪ Sing

(
V A

))
. By Sard’s

theorem, fA
(
Crit

(
fA, V A

))
is finite. Because of assumptions R, fA

(
Sing

(
V A

))
is

finite too. Then QA is a Zariski-open set.
By Lemma 5.13 applied to F

A and fA, for all t ∈ R ∩QA, the ideal
〈
F
A, fA − t

〉
is

radical, V
(
F
A, fA − t

)
is either empty or smooth and equidimensional of dimension d−1.

Moreover, for all t ∈ R∩T A, the restriction of π≤i−1 to V A∩V
(
fA − t

)
∩C

(
fA,FA, i

)

is proper.
Then [119, Theorem 2] can be applied to F

A, fA − t for all t ∈ R ∩ QA. It states
that for 1 ≤ i ≤ d, V A ∩V

(
fA − t

)
∩ C

(
fA,FA, i

)
have a non-empty intersection with

each connected component of V A ∩ V
(
fA − t

)
∩ Rn and dimension at most 0.

Proof of Theorem 5.11.

This is a generalization of [51] where the proof is done when V ∩Rn = Rn and has been
published in [52].

We will use the following result, that has been proved in [51, Theorem 3, page 134].
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Theorem 5.18. Let V ⊂ Cn be an algebraic variety of dimension d. There exists a non-
empty Zariski-open set O2 ⊂ GLn (C) such that for all A ∈ GLn (Q)∩O2 and 0 ≤ i ≤ d,
there exist algebraic sets V A

i ⊂ V A such that for all connected component CA of V A∩Rn,

(i) the restriction of π≤i to V A
i is proper;

(ii) the boundary of π≤i

(
CA

)
is contained in π≤i

(
CA ∩ V A

i−1

)
.

Its proof is a consequence of Lemma 5.19, Lemma 5.20 and Proposition 5.21 below.
We give the intuition of the proof. It consists of constructing recursively V A

i−1 from
V A
i with V A

d = V A. Suppose that we have found A such that properties (i) and (ii)
are satisfied by V A

i . Then, we construct V A
i−1 such that the boundary of π≤i(C

A) is
contained in π≤i(C

A ∩ V A
i−1). We will see that we can construct V A

i−1 as the union of

• the j-equidimensional components of V A
i for 1 ≤ j ≤ i− 1

• the singular locus of the i-equidimensional component of V A
i .

• the critical locus of the restriction of π≤i to the i-equidimensional component of
V A
i ;

Nevertheless, for this matrix A, the restriction of π≤i−1 to V A
i−1 may not be proper.

Then, a generic change of variables on the coordinates X1, . . . , Xi will not alter V A
i−1 but

will restore the properness property of π≤i−1.
This proof is widely inspired by the one of [119, Theorem 1 and Proposition 2]. We

introduce some notations and preliminary results.
In the sequel, we denote by A a n × n matrix whose entries are new indeterminates

(Ai,j)1≤i,j≤n, k an algebraic closure of Q (Ai,j) and Br ∈ GLn (Q) a matrix of the form

Br =

[
B

′
0

0 In−r

]
, where B

′ is square of size r and In−r is the identity matrix of size

n − r. Then, B = ABr, whose entries are linear forms in the entries of A. SubsB (g)
stands for the polynomial obtained by substituting in g the entries of A by those of
B, for g ∈ Q (Ai,j) [X]. Given an ideal I ⊂ Q (Ai,j) [X], IBr is defined as the ideal
{f(BrX) | f ∈ I}. Given an ideal I ⊂ Q (Ai,j) [X], we denote by SubsB (I) the ideal
{SubsB (f) | f ∈ I}. Finally, G (I) denotes a finite system of generator of the ideal I,
e.g. a Gröbner basis.

Then we define recursively the ideals defining

• the j-equidimensional components of V A
i for 1 ≤ j ≤ i− 1

• the singular locus of the i-equidimensional component of V A
i .

• the critical locus of the restriction of π≤i to the i-equidimensional component of
V A
i ;

To this end, we use the following notations: let ∆A
d be the ideal

〈
F
A
〉
⊂ Q (Ai,j) [X].

Then ∆A
d,i is either



5.3. Generic Properties 71

• the intersection of the prime ideals of dimension i associated to ∆A
d if such prime

ideals exist,

• or 〈1〉 if there is no such prime ideals.

Then we define ∆A
d,≤k as the intersection

⋂

0≤i≤k

∆A
d,i and Vi,i as the i-equidimensional

component of the algebraic set defined by ∆A
i,i in kn. The ideal MA

i is defined either as

• 〈1〉 if ∆A
i,i = 〈1〉

• or as the ideal generated by the n− i-minors of Jac
(
G

(
∆A

i,i

)
, i+ 1

)
else.

Finally, let ΣA
i−1 be the radical ideal

√
∆A

i,i +MA
i and ∆A

i−1 = ΣA
i−1 ∩∆A

i,≤i−1.

By construction, the ideal ΣA
i−1 is the ideal associated with the union of the singular

locus of Vi,i and the critical locus of the restriction of π≤i to Vi,i. Thus, the definition
of ΣA

i−1 does not depend on G
(
∆A

i−1

)
.

Lemma 5.19. Let r ≤ i. If ∆ABr

i = SubsB
(
∆A

i

)
, then ∆ABr

i−1 = SubsB
(
∆A

i−1

)
.

Proof. The proof is done by induction. We detail below the induction; the initialization
step being obtained by substituting i by d in the sequel.

By assumption ∆ABr

i = SubsB
(
∆A

i

)
. Since these ideals are radical, the uniqueness of

prime decomposition implies that ∆ABr

i,i = SubsB

(
∆A

i,i

)
and ∆ABr

i,≤i−1 = SubsB

(
∆A

i,≤i−1

)
.

Thus, to conclude it remains to prove that ΣABr

i−1 = SubsB
(
ΣA
i−1

)
. Let G = G

(
∆A

i,i

)
.

Since ∆ABr

i,i = SubsB

(
∆A

i,i

)
, we get

〈
G

Br
〉
= 〈SubsB (G)〉. Because of the equality

〈
G

Br
〉
= 〈SubsB (G)〉, both ideals define the same algebraic variety V in kn. By con-

struction, the ideal ΣABr

i−1 is the ideal associated to the union of the singular locus of
V and the critical locus of the restriction of π≤i to V. The same statement occurs for
SubsB

(
ΣA
i−1

)
so these ideals coincide.

Lemma 5.20. Let i ∈ {0, . . . , d} and P be a prime ideal appearing in the prime

decomposition of
√
∆A

i and r its dimension. Then r ≤ i − 1 and the extension

Q (Ai,j) [X≤r] −→ Q (Ai,j) [X≤r] /P is integral.

Proof. We prove the property by decreasing induction on i = d, . . . , 0. The case i = d is
obtained following the Noether Normalization Theorem.

In the sequel, we say that R
(
∆A

i

)
holds if for all prime ideal P of dimension r appear-

ing in the prime decomposition of ∆A
i , the extension Q (Ai,j) [X≤r] −→ Q (Ai,j) [X≤r] /P

is integral.
Let us now assume that the property holds for index i, and prove it for index i− 1.

We first establish property R
(
∆A

i

)
. The dimension property will follow from it since it

implies that π≤i restricted the variety defined by ∆A
i is a finite map. Then, the algebraic

Bertini-Sard theorem allows us to conclude.
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Recall that ∆A
i−1 = ΣA

i−1 ∩∆A
i,≤i−1. Since R

(
∆A

i

)
holds by assumption, R

(
∆A

i,≤i−1

)

holds trivially. Thus, it is sufficient to prove that R
(
ΣA
i−1

)
holds. Recall also that

ΣA
i−1 is the radical of ∆A

i,i +MA
i where MA

i is the ideal generated by the (n − i)-minors

M1, . . . ,MN of Jac
(
G

(
∆A

i,i

)
, i+ 1

)
. We will consider this intersection process incre-

mentally since for proving that R
(
∆A

i,i +MA
i

)
holds, it is enough to prove that property

R
(
∆A

i,i + 〈M1, . . . ,Mj〉
)

holds for 1 ≤ j ≤ N . Note that by assumption R
(
∆A

i

)
holds

and we prove below by increasing induction that if R
(
∆A

i,i + 〈M1, . . . ,Mj〉
)

holds then

R
(
∆A

i,i + 〈M1, . . . ,Mj+1〉
)

holds. To simplify notations, we fix ∆ = ∆A
i,i+〈M1, . . . ,Mj〉,

M =Mj+1 and ∆′ = ∆+ 〈M〉 for 0 ≤ j ≤ N − 1.
Consider now the prime decomposition

⋂

ℓ≤L

Pℓ of
√
∆ for some L and remark that the

set of prime components of
√
∆′ is the union of the prime components of

√
Pℓ + 〈M〉

for 1 ≤ ℓ ≤ L. Consequently, it is enough to prove that Pℓ + 〈M〉 satisfies property R
for those ℓ such that Pℓ + 〈M〉 6= 〈1〉. Thus, as in [119], we partition {1, . . . , L} in four
subsets:

• ℓ ∈ L+ if dim (Pℓ) = r and M ∈ Pℓ,

• ℓ ∈ L− if dim (Pℓ) = r, M /∈ Pℓ and Pℓ + 〈M〉 6= 〈1〉,

• ℓ ∈ S if dim (Pℓ) = r, M /∈ Pℓ and Pℓ + 〈M〉 = 〈1〉,

• ℓ ∈ R if dim (Pℓ) 6= r.

We will prove that R (Pℓ + 〈M〉) holds for ℓ ∈ L+ ∪ L− while letting r ≤ i vary will
conclude the proof.

For ℓ ∈ L+, M ∈ Pℓ, since Pℓ + 〈M〉 = Pℓ while R (Pℓ) holds by assumption, the
conclusion follows. Suppose now that ℓ ∈ L−. Since Pℓ is prime, by Krull’s Principal Ideal
Theorem, Pℓ + 〈M〉 has dimension r − 1 and is equidimensional. By [119, Lemma 1], it
is sufficient to prove that the extension Q (Ai,j) [X≤r−1]→ Q (Ai,j) [X≤r−1] / (Pℓ + 〈M〉)
is integral which is what we do below.

This step of the proof is common with the one of [119, Proposition 1]. We summarize
it. By assumption, the extension

Q (Ai,j) [X≤r]→ Aℓ = Q (Ai,j) [X≤r] /Pℓ

is integral, it only remains to prove that Pℓ + 〈M〉 contains a monic polynomial that lies
in Q (Ai,j) [X≤r−1] [Xr]. To this end, the characteristic polynomial of the multiplication
by M in Aℓ is naturally considered and more particularly, we consider its constant term
αℓ. Since ℓ ∈ L−, M does not divide zero in Aℓ and αℓ is not a constant and hence it is
not zero. Moreover, by Cayley-Hamilton’s Theorem, αℓ ∈ Pℓ+ 〈M〉. This polynomial αℓ

is proved to be monic in Xr hereafter.
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Consider a matrix B = GLn (Q) which lets invariant the last n − r variables and
such that αℓ (BX) is monic in Xr (recall that r ≤ i). Following mutatis mutandis the
reasoning of [119, Section 2.3] (paragraph entitled Introduction of a change of variables),
we get that

• the constant term of the multiplication by M (BX) modulo PB

ℓ is αℓ (BX);

• the one of the multiplication by SubsB (M) modulo SubsB (Pℓ) is SubsB (αℓ);

Note that we have chosen B such that αℓ (BX) is monic in Xr. Thus, if we prove that
αℓ (BX) = SubsB (αℓ), we are done (recall that SubsB (.) only consists in substituting
the entries of Ai,j with those of AB which do not depend on X1, . . . , Xn).

Since B lets invariant the last n − r variables Xr+1, . . . , Xn, Lemma 5.19 implies
that ∆B = SubsB (∆) and MB = SubsB (M). The uniqueness of prime decomposition
implies that

{
PB

ℓ , ℓ ∈ L
}

= {SubsB (Pℓ) , ℓ ∈ L}. Moreover, since dim (SubsB (Pℓ)) =
dim

(
PB

ℓ

)
= dim (Pℓ), we also have

{
PB

ℓ , ℓ ∈ L+ ∪ L− ∪ S
}
=

{
SubsB (Pℓ) , ℓ ∈ L+ ∪ L− ∪ S

}
.

The rest of the reasoning is the same as the one of [119]. Indeed, the above equality
implies that for ℓ ∈ L−, there exists ℓ′ ∈ L+ ∪L− ∪ S such that SubsB (Pℓ) = PB

ℓ . Since
MB = SubsB (M), the characteristic polynomials of MB modulo PB

ℓ′ coincides with the
characteristic polynomial of SubsB (M) modulo SubsB (Pℓ), so SubsB (αℓ) = αℓ′ (BX).
Recall now that αℓ is neither 0 nor a constant, then ℓ′ ∈ L−. Thus, SubsB (αℓ) = αℓ′ (BX)
is monic in Xr as requested.

As in [119, Section 6.4], this property specializes. For A ∈ GLn (Q), we denote by
∆A

i the ideal obtained by substituting the entries of A by those of A. The proof of the
result below is skipped but follows mutatis mutandis the one of [119, Proposition 2].

Proposition 5.21. There exists a non-empty Zariski open set O1 ⊂ GLn (C) such that
for A ∈ GLn (Q) ∩ O1, the following holds. Let 0 ≤ i ≤ d, PA be one of the prime
components of ∆A

i , and r its dimension. Then C [X≤r] −→ C [X] /PA is integral.

We can deduce the proof of Theorem 5.18.

Proof of Theorem 5.18. We use Proposition 1.14 page 20, that gives a connection be-
tween the properness property and the above normalization result to prove the first
assertion.

For the second assertion, we define V A
i ⊂ Cn as the algebraic variety associated to

∆A
i for 0 ≤ i ≤ d. For j ≤ i, we denote by V A

i,j ⊂ Cn (resp. V A
i,≤j ⊂ Cn) the algebraic

variety associated to ∆A
i,j (resp. ∆A

i,≤j). Consider now a connected component CA of
V A
i ∩Rn. It is the union of some connected components CA

1 , . . . , C
A

k of the real algebraic
sets V A

i,j1
∩ Rn, . . . , V A

i,jk
∩ Rn. Consequently, the boundary of π≤i (C) is contained in

the boundary of
⋃

1≤ℓ≤k

π≤i (Cℓ). By construction of V A
i−1, if jℓ > i then the boundary of
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π≤i (Cℓ) is contained in π≤i

(
V A
i−1

)
. By construction of V A

i−1, the variety V A
i−1,i−1 is the

union of the singular points of V A
i,i and the critical locus of π≤i restricted to V A

i,i . Thus,
if jℓ = i, the properness of π≤i restricted to V A

i,i implies that the boundary of π≤i (Ci) is
contained in the image by π≤i of CA ∩ V A

i−1,i−1.

We are now able to give a proof of Theorem 5.11.

Proof of Theorem 5.11. Let A ∈ GLn (Q) ∩O2 and c be a critical value of fA|V A∩Rn . We

prove that there exists xc ∈ P
(
fA,FA

)
∩ Rn such that fA (xc) = c. Let CA be a

connected component of V
(
fA − c

)
∩ V A ∩ Rn.

Consider the largest i ∈ {1, . . . , d} such that CA ∩ V (X≤i−1) 6= ∅ while CA ∩
V (X≤i) = ∅.

Let ϕi be the projection
ϕi : Cn −→ C

(x1, . . . , xn) 7−→ xi
. Then ϕi

(
CA ∩ V (X≤i−1)

)
⊂ R∗

is a strict subset of R. Moreover, it is closed because of (i) and (ii) in Theorem 5.18.
Then every extremum of the projection is reached. Since ϕi

(
CA ∩ V (X≤i−1)

)
6= R,

there exists at least either a minimizer or a maximizer of ϕi. Without loss of generality,
we assume that it is a local minimizer, denoted by x⋆.

Since c is not an isolated point in fA
(
V A ∩ Rn

)
, the set

(
V
(
fA − c− ε

)
∪ V

(
fA − c+ ε

))
∩ V A ∩ V (X≤i−1) ∩ Rn

is non-empty. Then by [116, Lemma 3.6], the following sets coincide:

• V
(
fA − c

)
∩ V A ∩ V (X≤i−1) ∩ Rn

• lim0

(
V
(
fA − c± ε

)
∩ V A ∩ V (X≤i−1)

)
∩ Rn

Then, there exists a connected component CA
ε ⊂ R 〈ε〉n of

V
(
fA − c± ε

)
∩ V A ∩ V (X≤i−1) ∩ R 〈ε〉n

such that CA
ε contains a xε such that lim0 (xε) = x⋆. Furthermore, one can assume that

xε minimize the projection ϕi over CA
ε . Indeed, in the converse, there exists x′ε ∈ CA

ε

such that ϕi (x
′
ε) < ϕi (xε), that implies lim0 ϕi (x

′
ε) ≤ ϕi (x

⋆). Since x⋆ is a minimizer,
this implies that lim0 ϕi (x

′
ε) = ϕi (x

⋆) and we replace xε with x′ε.
As a minimizer of the projection, xε lies in the algebraic set defined as the vanishing

set of

• the polynomials in F
A,

• the minors of size n− d+ 1 of Jac
([
fA − c± ε,FA

]
, i+ 1

)
,

• and X1, . . . , Xi−1.
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Since Jac
([
fA − c± ε,FA

]
, i+ 1

)
= Jac

([
fA,FA

]
, i+ 1

)
, this algebraic set is actually

C
(
fA,FA, i

)
. Furthermore, since ε is an infinitesimal, c ± ε is not a critical value of

fA. Then xε 6∈ Crit
(
fA, V A

)
. This means that x⋆ is the limit of points that lies in

C (fA,FA, i) \ Crit (fA, V A)
Z

. Hence x⋆ ∈ C (fA,FA, i) \ Crit (fA, V A)
Z

too. More-
over since fA (x⋆) = c that is a local extremum of fA|V A∩Rn , x⋆ ∈ Crit

(
fA, V A

)
. In other

words,

x⋆ ∈ C (fA,FA, i) \ Crit (fA, V A)
Z ∩ Crit

(
fA, V A

)
= P

(
fA,FA, i

)
,

that concludes the proof.

Proof of Theorem 5.12.

This proof has been published in [52].

Proof of Theorem 5.12. Let O3 = O1 ∩ O2 and A ∈ GLn (Q) ∩ O3 and 1 ≤ i ≤ d. We

first prove that C (fA,FA, i) \ Crit (fA, V A)
Z

have dimension at most 1.
Since A ∈ O3, the properties in Theorem 5.9 and 5.11 hold. Thus there existsQA ⊂ C

such that for all t ∈ QA, the algebraic set V
(
fA − t

)
∩ C

(
fA,FA, i

)
has dimension at

most zero.
Now let ZA be an irreducible component of C (fA,FA, i) \ Crit (fA, V A)

Z
. In

particular, ZA is an irreducible component of C
(
fA,FA, i

)
that is not contained in

Crit
(
fA, V A

)
. Consider the restriction fA|CA : ZA −→ C. Its image has a Zariski-closure

of dimension 0 or 1.
Assume first that fA

(
ZA

)
is 0-dimensional. Then as a continuous function, fA|CA is

locally constant. This implies that ZA is contained in critical locus of fA|V A . In particular,

this means that ZA ⊂ Crit
(
fA, V A

)
, a contradiction.

Then assume fA (ZA)
Z

has dimension 1. From the Theorem on the dimension of
fibers ([134, Theorem 7, Chapter 1, pp. 76]), there exists an Zariski-open set U ⊂ C such
that for all y ∈ U , dim

(
fA

)−1
= dimZA − 1. In particular if t lies in the non-empty

Zariski-open set U ∩ QA, we obtain

0 ≥ dim
(
fA

)−1
= dimZA − 1.

Then every irreducible component ZA of C (fA,FA, i) \ Crit (fA, V A)
Z

has dimen-

sion ≤ 1, so that dimC (fA,FA, i) \ Crit (fA, V A)
Z ≤ 1.

Now let ZA
1 ∪ · · · ∪ ZA

α ∪ · · · ∪ ZA

β be the decomposition of C
(
fA,FA, i

)
as a union

of irreducible components. Up to reordering, assume that

• for 1 ≤ i ≤ α, ZA
i 6⊂ Crit

(
fA, V A

)
,

• for α+ 1 ≤ j ≤ β, ZA
i ⊂ Crit

(
fA, V A

)
.
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Then the decomposition of C (fA,FA, i) \ Crit (fA, V A)
Z

as a union of irreducible com-
ponents is ZA

1 ∪ · · · ∪ ZA
α .

Let 1 ≤ i ≤ α and consider ZA
i ∩ Crit

(
fA, V A

)
. If it is non-empty, since ZA

i 6⊂
Crit

(
fA, V A

)
, [79, Corollary 3.2 p. 131] implies that ZA

i ∩Crit
(
fA, V A

)
has dimension

less than or equal to dimZA
i − 1 ≤ 1− 1 = 0. Finally, this prove that

C (fA,FA, i) \ Crit (fA, V A)
Z ∩ Crit

(
fA, V A

)

has dimension ≤ 0.

5.4 Degree Bounds

In this section, we assume that the polynomial f and the polynomials fi have degree
≤ D. Recall that the degree of an irreducible algebraic variety V ⊂ Cn is defined as the
maximum finite cardinal of V ∩ L for every linear subspace L ⊂ Cn. If V is reducible,
deg V =

∑
degZ where the sum is over every irreducible component Z of V . The degree

of a hypersurface V (f) is bounded by deg f . Given a variety V = V (g1, . . . , gp), we
denote by δ (V ) the maximum of the degrees deg (V (g1, . . . , gi)), for 1 ≤ i ≤ p.

As explained in Section 1.3, we will use the geometric resolution to estimate the
complexity of our algorithms. Since its complexity of the computation of a variety V
depends essentially on δ (V ), it is relevant to give a bound on these degrees. We prove
that δ

(
C

(
fA,FA, i

))
and δ

(
P

(
fA,FA, i

))
are bounded by a quantity that is singly

exponential in the number of variables. Since the complexity of the geometric resolution
is polynomial in the maximum geometric degree, this means that we can expect our
algorithms to be singly exponential in the number of variables.

Proposition 5.22. For all A ∈ GLn (Q) ∩ O, for 1 ≤ i ≤ d, δ
(
C

(
fA,FA, i

))
and

δ
(
P

(
fA,FA, i

))
are bounded by D ((n− d+ 1) (D − 1))n.

Proof. Let E1 = V
(
fA

)
and denote by E2, E3, . . . , Ep the zero-sets of each polynomial

in F
A and each minor of size n − d + 1 of Jac

([
fA,FA

]
, i+ 1

)
. Then for 2 ≤ j ≤ p,

each Ej has degree bounded by (n− d+ 1) (D − 1). Moreover, E1 has degree bounded
by D and dimension n− 1. Let 1 ≤ k ≤ p. Then using [57, Proposition 2.3] we get

deg




⋂

1≤j≤k

Ej


 ≤ degE1

(
max
1<j≤k

degEj

)dimE1

. (5.1)

In particular,

deg




⋂

1≤j≤k

Ej


 ≤ D ((n− d+ 1) (D − 1))n−1 .
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By Bézout’s inequality ([57, Proposition 2.3]), it follows that
⋂

1≤j≤k

Ej ∩ V (X≤i−1) has

also its degree bounded by D ((n− d+ 1) (D − 1))n−1. Finally, this means that

δ
(
C

(
fA,FA, i

))
≤ D ((n− d+ 1) (D − 1))n−1 . (5.2)

It remains to prove that δ
(
P

(
fA,FA, i

))
≤ D ((n− d+ 1) (D − 1))n. From the

above inequality 5.2, we deduce that

δ
(
C (fA,FA, i) \ Crit (fA, V A)

Z) ≤ D ((n− d+ 1) (D − 1))n−1 .

Finally, we apply [57, Proposition 2.3] with the varieties F1, . . . , Ft, where

F1 = C (fA,FA, i) \ Crit (fA, V A)
Z

and F2, F3, . . . , Ft are the zero-sets of each minor defining Crit
(
fA, V A

)
. Since these

minors have degree bounded by (n− d+ 1) (D − 1), so are their associated varieties. By

Proposition 6.8, F1 = C (fA,FA, i) \ Crit (fA, V A)
Z

has dimension 1. Then inequality
5.1 becomes

deg




⋂

1≤j≤t

Fj


 ≤ D ((n− d+ 1) (D − 1))n−1 × (n− d+ 1) (D − 1) .

This means that

δ
(
P

(
fA,FA, i

))
≤ D ((n− d+ 1) (D − 1))n .





Chapter 6

Algorithm for Global Optimization

6.1 Introduction

This chapter is part of the submitted paper [52]. It is a strong generalization of our paper
[51], where an algorithm testing the reachability of the global infimum of a polynomial
on Rn is presented.

Motivation and prior work

Let F = {f1, . . . , fs} ⊂ Q [X] and V = V (F) ⊂ Cn. Given another polynomial f ∈ Q [X],
let f⋆ = inf

x∈V ∩Rn
f (x). By convention, if V ∩ Rn is empty then f⋆ = +∞.

In this chapter, we present an algorithm solving the following problems.

(B) Deciding the finiteness and computing an algebraic representation of f⋆.

(C) Deciding whether there exists x⋆ ∈ V ∩Rn such that f (x⋆) = f⋆ and computing a
rational parametrization of x⋆.

The goal is to obtain a dedicated algorithm whose complexity meets the best known
bounds and whose practical behaviour reflects its complexity to solve problems

The problem of computing such algebraic representations is a quantifier elimination
problem over the reals. Hence, it can be solved by the cylindrical algebraic decomposition
algorithm, that is a general solver (see e.g. [22, 31, 32, 33, 67, 94]). This algorithm is able
to decide whether f⋆ is finite. If so, it can compute an algebraic representation of f⋆ and
if it exists, of a minimizer. However, its complexity is intrinsically doubly exponential
in the number of variables. Practically, it can not deal with problems of more than 4
variables.

In [16], an algorithm whose complexity is singly exponential in the number of quan-
tifiers alternates is presented. For problems (B) and (C) with a n-variate polynomial of
degree D, this complexity becomes DO(n). Nevertheless, the techniques that allow to
obtain such complexity results, such as infinitesimal deformations, did not provide yet
practical results that reflect this complexity gain.

79
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In [1, 2], criteria to decide whether the infimum is reached are given, when there are
finitely many minimizers. If so, the set of minimizers can be represented by a border
basis. However, there is no information about the complexity.

Thus, our goal is to obtain an algorithm for solving problems (B) and (C) with
good control on the complexity constant in the exponent. We allow to have regularity
assumptions on the input that are reasonable in practice (e.g. rank conditions on the
Jacobian matrix of the input equality constraints). We also allow probabilistic algorithms
provided that probabilistic aspects do not depend on the input but on random choices
performed when running the algorithm.

A first attempt towards this goal is presented in [118]. Given a n-variate polynomial
f of degree D, a probabilistic algorithm computing inf

x∈Rn
f (x) in O

(
n7D4n

)
operations

in Q is given. Furthermore, it is practically efficient and has solved problems intractable
before (up to 6 variables).

In [13], algorithm and a study of the intrinsic complexity for polynomial optimization
are given. It is done with constraints defined by polynomial equations satisfying some
assumptions of regularity.

Our goal is to generalize these two approaches to the case of equality constraints
and design an algorithm whose complexity is essentially cubic in (sD)n and linear in the
evaluation complexity of the input.

Problem statement

Algebraic representation In the sequel, a real algebraic number α is represented by
a polynomial P ∈ Q [t] and an isolating interval I. This means that P has only one root
in I, that is α. Likewise, a finite real algebraic set Y ⊂ Rn defined by polynomials in
Q [X] can be represented by a rational parametrization. This is a sequence of polynomials
q, q0, q1, . . . , qn ∈ Q [U ] such that for all x = (x1, . . . , xn) ∈ Y , there is a unique u ∈ R

such that 



q(u) = 0
x1 = q1(u)/q0(u)

...
xn = qn(u)/q0(u)

In other words, there is a bijection between the roots of q and the points in Y . Thus, a
single point in x ∈ Y can be represented by q, q0, q1, . . . , qn and an interval isolating the
root of q corresponding with x. Note that such a representation can be computed from
a Gröbner basis [115] and algorithms computing such a representation are implemented
in computer algebra systems.

Algorithm specification Let F = {f1, . . . , fs} ⊂ Q [X] and f ∈ Q [X]. The goal of
this chapter is to provide an algorithm taking as input f and F and that returns

• an algebraic representation of f⋆ = inf
x∈V(F)∩Rn

f (x) if f⋆ is finite,
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• if f⋆ is finite and reached, an algebraic representation of a point x⋆ ∈ V (F) ∩ Rn

such that f (x⋆) = f⋆.

Note that a point x⋆ is returned if and only if f⋆ is reached so that its reachability can
be decided.

Furthermore, our goal is to obtain an algorithm with good control on the complexity
constant in the exponent and whose behaviour in practice reflects its complexity.

Main results

Let F = {f1, . . . , fs} ⊂ Q [X] and f ∈ Q [X]. We provide a symbolic algorithm comput-
ing f⋆ = inf

x∈V(F)∩Rn
f (x) and deciding whether it is reached or not under the following

assumptions R:

• the ideal 〈F〉 is radical,

• V (F) is equidimensional of dimension d > 0,

• V (F) has finitely many singular points.

These assumptions are far from being restrictive since they often hold in practice. For
instance, they are satisfied by any set of polynomials F = {f1, . . . , fs} ⊂ Q [X] whose
Jacobian matrix has full rank.

For clarity, we state the main result in a simpler case. See also Section 6.5 for a
complexity estimate in the general case. We count arithmetic operations +,−,×,÷ in Q

and sign evaluation at unit cost. We use the soft-O notation: Õ(a) indicates the omission
of polylogarithmic factors in a.

Theorem 6.1. There exists a probabilistic Las Vegas algorithm taking as input

• F = {f1, . . . , fs} ⊂ Q [X] defining a reduced regular sequence,

• f ∈ Q [X],

and that returns an algebraic representation of f⋆ = inf
x∈V(F)∩Rn

f (x). If f⋆ is reached, it

also returns an algebraic representation of x⋆ ∈ V (F)∩Rn such that f (x⋆) = f⋆. More-
over, assume that the input polynomials have degree bounded by D and are represented
by a straight-line program of size less than L. Then the algorithm performs

Õ

(
LD7

(
3
√
2 (s+ 1) (D − 1)

)3n
)

arithmetic operations in Q.

We present the sketch of the algorithm.

Optimize(f,F).
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1. Perform a generic change of coordinates;

2. Compute a finite subset of R containing all the local extrema;

3. Decide which value in the previous set is f⋆;

4. Compute a finite set that intersect each connected component of Crit (f, V ) ∩ Rn;

• if f⋆ is the image by f of a point x⋆ in this set then return f⋆ and x⋆.

• else return f⋆, that is not reached.

Let C (f,F) be the union of the modified polar varieties defined in Chapter 5.
Step 2 is done by computing the critical values of f|V ∩Rn and the asymptotic values

of f on C (f,F). To this end, we prove that they are values of non-properness of a
projection restricted to C (f,F).

To perform step 3, we use a topological property. This property reduces the problem
of deciding the value of f⋆ among the local extrema to testing the emptiness of finitely
many real algebraic varieties.

Finally, step 4 can be done by computing C (f,F) \ Crit (f, V )
Z ∩ Crit (f, V ) and a

set of sample points of V ∩Rn. Indeed, the union of these two sets is finite and contains
at least one point in each connected component of Crit (f, V ).

We provide an implementation of this algorithm, available as a Maple library at
http://www-polsys.lip6.fr/~greuet/. Its practical behaviour reflects its complexity
and allows to solve problems that are either hard from the numerical point of view or
unreachable by previous algorithms based on symbolic computation.

As an example, considering an objective polynomial and one constraint, both of
degree 2 and increasing the number of variables, our implementation can solve problems
with up to 32 variables in 4 hours. With two constraints, our implementation can solve
problems with up to 11 variables in 5.3 hours. With a linear objective polynomial subject
to one constraint of degree 4, both in 5 variables it takes 34 minutes.

We also considered examples coming from applications. We are able to solve problems
with 5 constraints of degree 2 and 10 variables in less than 1 minute. Likewise, we solved
an unconstrained problem with an objective polynomial in 6 variables of degree 8.

Note that this algorithm is a strong generalization of [118].

Organization of the chapter

In Section 6.2 definitions and notations that will be used throughout the chapter are
introduced. Then the specifications and the description of the algorithm and its subrou-
tines are presented in Section 6.3. Their proofs of correctness are presented in Section
6.4. A complexity analysis of the algorithm is given in Section 6.5. Practical results are
presented in Section 6.6. The examples used in this section are detailed in Section 6.7.

http://www-polsys.lip6.fr/~greuet/
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6.2 Basic Definitions

6.2.1 Definitions

Assumptions of regularity. Let F ⊂ Q [X] be a polynomial family such that 〈F〉
is radical and V = V (F) is equidimensional of dimension d. In this context, the set of
singular points of V is the variety Sing (V ) defined as the vanishing set of

• the polynomials in F

• and the minors of size n− d of Jac (F).

If Sing (V ) = ∅ then V is said to be smooth.
The polynomial family F satisfies assumptions R if

• the ideal 〈F〉 is radical,

• V (F) is equidimensional of dimension d > 0,

• V (F) has finitely many singular points.

In this chapter, we consider a polynomial family F = {f1, . . . , fs} that satisfies as-
sumptions R.

Sample points and modified polar varieties. We will denote by S (F) any finite
set that contains at least a point in each connected component of V ∩ Rn. Such a set
can be computed using [119].

We recall the definition of the modified polar varieties.

Definition 6.2. For 1 ≤ i ≤ d− 1, let C (f,F, i) be the algebraic variety defined as the
vanishing set of

• the polynomials in F,

• the minors of size n− d+ 1 of Jac ([f,F] , i+ 1),

• and the variables X1, . . . , Xi−1.

By convention, C (f,F, d) = V ∩ V (X1, . . . , Xd−1). Let C (f,F) be the union

C (f,F) =
⋃

1≤i≤d

C (f,F, i).

For 1 ≤ i ≤ d− 1, let P (f,F, i) = C (f,F, i) \ Crit (f, V )
Z ∩ Crit (f, V ). For i = d,

let P (f,F, d) = C (f,F, d). Finally, let

P (f,F) =
⋃

1≤i≤d

P (f,F, i).
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6.2.2 Some Properties for Optimization

We state the properties we will request to solve problems (B) and (C).

Definition 6.3. Given a set W , we say that property Opt (W ) holds if:

• W is finite,

• W contains every local extremum of f|V ∩Rn ,

• let W = {a1, . . . , ak}, a0 = −∞ and ak+1 = +∞. There exists a non-empty
Zariski-open set Q ⊂ C such that for all 0 ≤ i ≤ k:

– either for all t ∈ ]ai, ai+1[ ∩ Q, (f)−1 (t) ∩ V ∩ Rn = ∅,

– or for all t ∈ ]ai, ai+1[ ∩ Q, (f)−1 (t) ∩ V ∩ Rn 6= ∅.

6.2.3 Genericity Properties

In the sequel we will assume some properties that are proved to be generically true. A
value c ∈ R is isolated in f (V ∩ Rn) if and only if there exists a neighborhood B of c
such that B ∩ f (V ∩ Rn) = {c}. For simplicity, given f ∈ Q [X] and F ⊂ Q [X], we will
denote by

• R (f,F): for all t ∈ R \ f (Crit (f, V ) ∪ Sing (V )), the ideal 〈F, f − t〉 is radical,
equidimensional and V (F, f − t) is either smooth, of dimension d− 1 or is empty.

• P1 (f,F): there exists a non-empty Zariski-open set Q ⊂ C such that for all t ∈
R∩Q, the restriction of π≤i−1 to V ∩V (f − t)∩C (f,F, i) is proper for 1 ≤ i ≤ d.

• P2 (f,F): for any critical value c of f|V ∩Rn that is not isolated in f (V ∩ Rn), there
exists xc ∈P (f,F) such that f (xc) = c.

Note that these properties are consequences of properties of modified polar varieties.
Indeed, we proved, up to a generic change of coordinates, that:

• R (f,F) holds in Lemma 5.13 page 66;

• P1 (f,F) holds in Lemma 5.17 page 69;

• P2 (f,F) holds in Theorem 5.11 page 65;

6.3 Algorithm

6.3.1 Specifications

In the descriptions of the algorithms, a polynomial family F = {f1, . . . , fs} ⊂ Q [X]
is represented by the list [f1, . . . , fs]. Likewise, an ideal (resp. an algebraic variety) is
represented by a finite list of polynomials generating it (resp. defining it), for instance a
Gröbner basis.
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Let Y ⊂ Rn be a finite set defined by polynomials in Q [X]. It will be represented
by a rational parametrization, that is a sequence of polynomials q, q0, q1, . . . , qn ∈ Q [U ]
such that for all x = (x1, . . . , xn) ∈ Y , there exists a unique u ∈ R such that





q(u) = 0
x1 = q1(u)/q0(u)

...
xn = qn(u)/q0(u)

In other words, there is a bijection between the roots of q and the points in Y . Thus, a
single point in x ∈ Y can be represented by q, q0, q1, . . . , qn and an interval isolating the
root of q corresponding with x. Such an algebraic representation can be computed from
a Gröbner basis ([115]) and algorithms computing such a representation are implemented
in computer algebra systems. Likewise, a real algebraic number α is represented by a
univariate polynomial P and an isolating interval I.

6.3.2 Main Algorithm

One introduces the subroutines used in the description of the main algorithm. A complete
description will be given in the sequel. Given a univariate polynomial P , RootsR (P )
denotes its set of real roots.

The routine SetContainingLocalExtrema. This routine takes as input f ∈ Q [X] and
F ⊂ Q [X] satisfying assumptions R. If P1 (f,F), P2 (f,F) and R (f,F) hold, it returns
a list ListSamplePoints ⊂ Q [X], a list ListCriticalPoints ⊂ Q [X] and a polynomial PNP ∈
Q [T ] such that, denoting by W the set

W = f (V (ListSamplePoints)) ∪ f (V (ListCriticalPoints)) ∪ RootsR (PNP) ,

property Opt (W ) holds.

The routine FindInfimum. This routine takes as input f ∈ Q [X], F ⊂ Q [X] satisfying
assumptions R, a list ListSamplePoints ⊂ Q [X], a list ListCriticalPoints ⊂ Q [X] and a
polynomial PNP ∈ Q [T ] such that, denoting by W the set

W = f (V (ListSamplePoints)) ∪ f (V (ListCriticalPoints)) ∪ RootsR (PNP) ,

property Opt (W ) holds. If R (f,F) holds, it returns

• +∞ if V (F) ∩ Rn is empty;

• −∞ if f is not bounded below on V (F) ∩ Rn;

• if f⋆ > −∞ is not reached: PNP ∈ Q [T ] and an interval I such that f⋆ is the only
root of PNP in I;
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• if f⋆ is reached, a rational parametrization with isolating intervals representing f⋆

and a minimizer x⋆.

The main routine Optimize takes as input f ∈ Q[X] and F ⊂ Q[X] satisfying assump-
tions R. It returns

• +∞ if V (F) ∩ Rn is empty;

• −∞ if f is not bounded below over V (F) ∩ Rn;

• if f⋆>−∞ is not reached: PNP ∈ Q [T ] and an interval I isolating f⋆;

• if f⋆ is reached, a rational parametrization encoding x⋆ and f⋆ (x⋆).

We give the description of Optimize.

Optimize(f,F)

• A← a random matrix in GLn (Q);

•
(
ListSamplePointsA, ListCriticalPointsA, PA

NP

)
← SetContainingLocalExtrema

(
fA,FA

)
;

• Infimum ← FindInfimum
(
fA,FA, ListSamplePointsA, ListCriticalPointsA, PA

NP

)
;

• return Infimum.

Example 6.4. Let f = (xy − 1)2 + y2 + z2 + 1 and V = V (z). After the change of
variables, the routine SetContainingLocalExtrema returns ListSamplePointsA = [x, y, z],
ListCriticalPointsA = [x, y, z] and PA

NP
= T − 1. This means that the point (0, 0, 0) is a

critical point, with associated critical value 2, and that 1 is potentially a value at infinity.
The set containing the local extrema is {1, 2}.

The next step is to decide which value in this set is the infimum. To this end,
FindInfimum test whether f reaches values in ] −∞, 1[, {1} and ]1, 2[. The way to test
such a property is described in the next section. In this example, f does not reach any
value in ] −∞, 1[, {1} but reaches all the values in ]1, 2[ (see Figure 6.1). This means
that f⋆ = 1, that is not attained.

6.3.3 Subroutines

We describe the subroutines SetContainingLocalExtrema and FindInfimum. They are them-
selves based on other standard subroutines. The algorithm SetContainingLocalExtrema

uses the subroutines RealSamplePoints and SetOfNonProperness described below.

The routine RealSamplePoints. Given F ⊂ Q [X] satisfying assumptions R, Re-

alSamplePoints returns a list of equations ListSamplePoints ⊂ Q [X] such that
V (ListSamplePoints) contains at least a point in each connected component of V (F)∩Rn.
Such an algorithm is given in [119].
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−∞

f−1(t) ∩ V ∩ Rn = ∅

1

f−1(1) ∩ V ∩ Rn = ∅

f−1(t) ∩ V ∩ Rn 6= ∅

2

Figure 6.1: f does not reach any value ≤ 1 but reaches each value in ]1, 2[. Thus f⋆ = 1.

The routine SetOfNonProperness. It takes as input f ∈ Q[X] and G ⊂ Q[X] such
that the set of non-properness of the projection πT restricted to V (f − T ) ∩ V (G) is
finite. It returns a univariate polynomial in T whose set of roots contains the set of
non-properness of the restriction of πT to V (f − T )∩V (G). Such an algorithm is given
in [89, 117, 120].

The algorithm SetContainingLocalExtrema is described below. It takes as input f ∈
Q [X] and F ⊂ Q [X] satisfying assumptions R, P1 (f,F), P2 (f,F) and R (f,F). It
returns a list ListSamplePoints ⊂ Q [X], a list ListCriticalPoints ⊂ Q [X] and a polynomial
PNP ∈ Q [T ] such that property

Opt (f (V (ListSamplePoints)) ∪ f (V (ListCriticalPoints)) ∪ RootsR (PNP))

holds.
To this end, a list containing polynomials that generates a 0-dimensional set of sample

points of V is first computed, using the subroutine RealSamplePoints. Then, for 1 ≤ i ≤
d, it computes a list of polynomials generating C (f,F, i). Afterward, a polynomial
whose set of roots contains the set of non-properness NP (πT ,C (f,F, i)) is computed
by SetOfNonProperness. It is multiplied by the polynomial obtained at the previous
step. Then at step i, a polynomial whose set of roots contains

⋃

j≤i

NP (πT ,C (f,F, j))

is obtained. Finally, a list of equations defining P (f,F, i) is computed from the one
defining C (f,F, i). Now we can describe the algorithm.

SetContainingLocalExtrema(f,F)

• ListSamplePoints← RealSamplePoints (F);

• PNP ← 1;

• for 1 ≤ i ≤ d do

– LC [i]← a list of equations defining C (f,F, i);

– PNP ← the univariate polynomial PNP × SetOfNonProperness (f,C (f,F, i));

– ListCriticalPoints[i]← a list of equations defining P (f,F, i).
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• return (ListSamplePoints, ListCriticalPoints, PNP);

Its correctness is stated in Proposition 6.6. Its proof relies on intermediate results
presented in Section 6.4.1.

The routine FindInfimum uses the following subroutine.

The routine IsEmpty. Given G ⊂ Q [X] satisfying assumptions R, this routine returns
either true if V (G) ∩ Rn is empty of false if it is non-empty. The routine SamplePoints,
based on [119], can be adapted to provide such an algorithm.

Finally, we present the routine FindInfimum. It takes as input:

• f ∈ Q[X],

• F ⊂ Q[X] satisfying assumptions R and R (f,F),

• ListSamplePoints ⊂ Q [X], ListCriticalPoints ⊂ Q [X] and PNP ∈ Q [T ] such that
Opt (W ) holds with W = f (V (ListSamplePoints)) ∪ f (V (ListCriticalPoints)) ∪
RootsR (PNP) .

It returns

• +∞ if V (F) ∩ Rn is empty;

• −∞ if f is not bounded below over V (F) ∩ Rn;

• if f⋆>−∞ is not reached: PNP ∈ Q [T ] and an interval I isolating f⋆;

• if f⋆ is reached, a rational parametrization encoding x⋆ and f⋆ (x⋆).

Let W = f (V (ListSamplePoints))∪ f (V (ListCriticalPoints))∪RootsR (PNP) . By def-
inition, f⋆ is the smallest value c in V ∩ Rn such that

(i) if t < c then t 6∈ f (V ∩ Rn) and

(ii) for all t ≥ c, [c, t] meets V ∩ Rn.

Since Opt (W ) holds, f⋆ ∈ W . Then we explain how to find the smallest value in W
satisfying the above condition. We consider a0 = −∞, a1 < · · · < ak the values in W
and ak+1 = +∞. If the algorithm get in step i then this means that f⋆ 6∈ {a0, . . . , ai−1}.
Then it first checks whether ai is the image of a point x⋆ in RealSamplePoints (F) or in
C (f,F). If it is, then the minimizer x⋆ and ai = f⋆ are returned. Else, it checks whether
ai satisfies condition (ii). To this end, because of the last point in property Opt (W ), it
is sufficient to test the emptiness of f−1 (t) ∩ V ∩ Rn for only one value of t ∈ ]ai, ai+1[.
If f−1 (qi) ∩ V ∩ Rn is not empty for some random rational qi ∈ ]ai, ai+1[ then f⋆ = ai
and it is not reached. Else, ai 6= f⋆ and we go on with ai+1. If the algorithm leaves step
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k without returning a finite value for f⋆, this means that f takes no value on V (F)∩Rn,
so that V (F)∩Rn is empty. Hence, +∞ is returned. Now we can describe the algorithm.

FindInfimum(f,F, ListSamplePoints, ListCriticalPoints, PNP)

• a1 < · · · < ak ← f (V (ListSamplePoints)) ∪ f (V (ListCriticalPoints)) ∪ RootsR (PNP);

• ak+1 = +∞;

• q0 ← a random rational < a1;

• if IsEmpty({f − q0,F})=false then

– return −∞;

• i← 1;

• while i ≤ k do

– if ai ∈ f (V (ListSamplePoints)) ∪ f (V (ListCriticalPoints)) then

∗ RP ← a rational parametrization encoding a minimizer x⋆ and f (x⋆) = ai;
∗ return RP

else

∗ qi ← a random rational in ]ai, ai+1[;
∗ if IsEmpty({f − qi,F})=false then
· return (PNP, ]qi−1, qi[)

else
· i← i+ 1

• return ak+1

Its proof of correctness is given by Proposition 6.10 in Section 6.10.
By assumption on the inputs, the variety V (ListSamplePoints)∪V (ListCriticalPoints)

is finite. As explained in Section 6.3.1, a single point x that lies in this variety can be
represented by a rational parametrization q, q0, q1, . . . , qn and an interval isolating the
corresponding root of q. From this parametrization and the isolating interval, an interval
isolating f (x) can be computed. Likewise, the values in RootsR (PNP) are represented
by isolating intervals. These intervals can be computed such that they do not intersect.
Hence, they can be sorted so that the i-th interval corresponds with ai.

Then, testing whether ai ∈ f (V (ListSamplePoints))∪f (V (ListCriticalPoints)) is done
by testing whether the interval corresponding with ai comes from the parametrization of
V (ListSamplePoints) ∪ V (ListCriticalPoints). If so, the parametrization and the isolating
interval of q corresponding with ai are an encoding for ai and a point xai such that
f (xai) = ai.
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6.4 Proof of Correctness of Optimize

We first consider the following theorem, stating that under assumptions R, the properties
R
(
fA,FA

)
, P1

(
fA,FA

)
and P2

(
fA,FA

)
hold up to a generic change of coordinates.

Theorem 6.5. Let f ∈ Q [X] and F ⊂ Q [X] satisfying assumptions R. There exists a
non-empty Zariski-open set O ⊂ GLn (C) such that for all A ∈ GLn (Q) ∩ O, properties
R
(
fA,FA

)
, P1

(
fA,FA

)
and P2

(
fA,FA

)
hold.

Proof. This is a consequence of the properties of the modified polar varieties.
Property R

(
fA,FA

)
. We proved in Lemma 5.13 that for all real number t not in

f (Crit (f, V ) ∪ Sing (V )),

• V (F, f − t) is either empty or equidimensional of dimension d− 1,

• V (F, f − t) is smooth,

• the ideal 〈F, f − t〉 is radical.

This means that property R (f,F) holds. In particular, for any change of coordinates
A ∈ GLn (Q), property R

(
fA,FA

)
holds.

Property P1

(
fA,FA

)
. According to Lemma 5.17, there exists a non-empty Zariski-

open set O1 ⊂ GLn (C) such that for all A ∈ GLn (Q) ∩ O1, there exists a non-empty
Zariski-open set T A ⊂ C such that for all t ∈ R ∩ T A, the restriction of π≤i−1 to
V A ∩ V

(
fA − t

)
∩ C

(
fA,FA, i

)
is proper for 1 ≤ i ≤ d. In particular, for all A ∈

GLn (Q) ∩ O1, property P1

(
fA,FA

)
holds.

Property P2

(
fA,FA

)
. We proved in Theorem 5.11 that there exists a non-empty

Zariski-open set O2 ⊂ GLn (C) such that for all A ∈ GLn (Q)∩O2, for any critical value
c of fA|V A∩Rn that is not isolated in fA

(
V A ∩ Rn

)
, there exists xc ∈ P

(
fA,FA

)
such

that fA (xc) = c. In particular, for all A ∈ GLn (Q) ∩ O2, property P2

(
fA,FA

)
holds.

Finally, let O = O1 ∩ O2. Since O1 and O2 are non-empty Zariski-open sets, so is
O. Furthermore, for all A ∈ GLn (Q) ∩ O, properties R

(
fA,FA

)
, P1

(
fA,FA

)
and

P2

(
fA,FA

)
hold.

Let O ⊂ GLn (C) be the Zariski-open set given in Theorem 6.5. We prove in the
sequel that if the random matrix chosen in Optimize lies in O then Optimize is correct.

Given A ∈ GLn (Q), let WA be the set of values

WA = fA
(
S

(
F
A
))
∪ fA

(
P

(
fA,FA

))
∪ NP

(
πT ,C

(
fA,FA

))
⊂ C.

The correctness of Optimize is an immediate consequence of the correctness of the
subroutines SetContainingLocalExtrema and FindInfimum. The correctness of SetContain-

ingLocalExtrema is given in Section 6.4.1 below while the one of FindInfimum is given in
Section 6.4.2 page 95.
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6.4.1 Correctness of SetContainingLocalExtrema

We first state the correctness of SetContainingLocalExtrema
(
fA,FA

)
.

Proposition 6.6. Let f ∈ Q [X] and F = {f1, . . . , fs} ⊂ Q [X] satisfying assumptions
R. Let O ⊂ GLn (C) be the Zariski-open set given in Theorem 6.5. Then for all A ∈
GLn (Q) ∩ O, SetContainingLocalExtrema

(
fA,FA

)
is correct.

Proving the above proposition is equivalent to prove that Opt
(
WA

)
holds. That is

the purpose of Propositions 6.7, 6.8 and 6.9 below.
Since V A is an algebraic variety, the image fA

(
V A ∩ Rn

)
is a semi-algebraic subset

of R. Hence, it is a finite union of real disjoint intervals. They are either of the form
[bi, bi+1], [bi, bi+1[, ]bi, bi+1] or {bi}, for some b0 ∈ R∪{−∞} and b1, . . . , br ∈ R. Then the
local extrema of fA|V A∩Rn are exactly the bi. If bi is an endpoint included in the interval,
then it is reached, meaning that it is either a minimum or a maximum. If the interval
is a single point then bi is isolated in fA

(
V A ∩ Rn

)
. Else, it is not isolated. If bi is an

endpoint that is not included in the interval, then bi 6∈ fA
(
V A ∩ Rn

)
is an extremum

that is not reached. Remark that our goal is to find b0, that is necessarily f⋆.

Proposition 6.7. For all A ∈ GLn (Q)∩O, the set WA contains every local extremum
of fA|V A∩Rn . More precisely, let ℓ ∈ R be a local extremum of fA|V A∩Rn .

1. If ℓ is a value that is isolated in fA
(
V A ∩ Rn

)
then ℓ ∈ fA

(
S

(
F
A
))

;

2. if ℓ is a value that is not isolated in fA
(
V A ∩ Rn

)
such that there exists xℓ ∈

V A ∩ Rn with fA (xℓ) = ℓ then ℓ ∈ fA
(
P

(
fA,FA

))
;

3. if ℓ 6∈ fA
(
V A ∩ Rn

)
then ℓ ∈ NP

(
πT ,C

(
fA,FA

))
.

Proof. Let ℓ ∈ R be a local extremum.

Case 1. Since ℓ is isolated, there exists xℓ ∈ V A ∩ Rn such that fA (xℓ) = ℓ. Let CA

be the connected component of V A ∩ Rn containing xℓ. We prove that fA is constant
on CA. Let x′ ∈ CA and assume that fA (x′) 6= ℓ. Since ℓ is isolated, there exists
a neighborhood B of ℓ such that fA

(
CA

)
would be the union of {ℓ} and some set S

that contains fA (x′) but that does not meet B. In particular, fA
(
CA

)
would not be

connected. This is a contradiction since fA is continuous and CA connected.
The set S

(
F
A
)

is a set containing at least a point in each connected component of
V A∩Rn. In particular it contains a point y in the connected component CA of xℓ. Since
the restriction of fA to CA is constant, fA (y) = ℓ, so that ℓ ∈ fA

(
S

(
F
A
))

.

Case 2. Since A ∈ GLn (Q) ∩ O, property P2

(
fA,FA

)
holds. This means that there

exists xℓ ∈P
(
fA,FA

)
such that fA (xℓ) = ℓ, that is ℓ ∈ fA

(
P

(
fA,FA

))
.



92 Chapter 6. Algorithm for Global Optimization

Case 3. If ℓ 6∈ fA
(
V A ∩ Rn

)
, by definition, as a local extremum, there exists a closed

neighborhood U of ℓ such that we can construct a sequence (x(k))k∈N ⊂
(
fA

)−1
(U) ∩

V A ∩ Rn such that fA
(
x(k)

)
→ ℓ. We first prove that we can not extract a converging

subsequence from (x(k)). Indeed, assume that there exists a converging subsequence
(x′(k)) and denote by x its limit. Since V A ∩Rn and

(
fA

)−1
(U)∩Rn are closed sets for

the euclidean topology, x lies in
(
fA

)−1
(U) ∩ V A ∩ Rn.

As a subsequence of fA
(
x(k)

)
, the sequence fA

(
x′(k)

)
tends to ℓ. Moreover, by

continuity of fA, fA
(
x′(k)

)
tends to fA (x). This would imply that fA(x) = ℓ, that is

ℓ is attained, which is a contradiction. Since this is true for all converging subsequence
(x′(k)) of (x(k)), this implies that (x(k)) can not be bounded. Finally, this proves that
‖(x(k))‖ tends to ∞.

Let ε > 0. There exists k0 ∈ N such that for all k ≥ k0, fA
(
x(k)

)
∈ [ℓ− ε, ℓ+ ε]. By

construction of x(k),
(
fA

)−1 (
fA

(
x(k)

))
∩ V A ∩ Rn 6= ∅.

By Theorem 6.5 and since by assumption, A ∈ O, properties R
(
F
A
)

and
P1

(
fA,FA

)
hold. Thus Theorem 5.9 ensures that for all t ∈ R∩QA, V A∩V

(
fA − t

)
∩

Rn is empty if and only if C
(
fA,FA

)
∩ V

(
fA − t

)
∩ Rn is empty.

Then
(
fA

)−1 (
fA

(
x(k)

))
∩C

(
fA,FA

)
∩Rn 6= ∅. Picking a point x̃k in this last set,

for each k ≥ k0, leads to the construction of a sequence of points (x̃k) in C
(
fA,FA

)
∩Rn,

that converges to ℓ. Since C
(
fA,FA

)
⊂ V A and ℓ is not reached, this sequence is

unbounded. Then considering the sequence
(
x̃k, t = fA (x̃k)

)
proves that πT restricted

to V
(
fA − T

)
∩ C

(
fA,FA

)
is not proper at ℓ.

Proposition 6.8. For all A ∈ GLn (Q) ∩ O, the set WA is finite.

Proof. Since WA = fA
(
S

(
F
A
))
∪ fA

(
P

(
fA,FA

))
∪ NP

(
πT ,C

(
fA,FA

))
, it is suf-

ficient to prove that

1. S
(
F
A
)

is finite,

2. for 1 ≤ i ≤ d, P
(
fA,FA, i

)
is finite and

3. NP
(
πT ,C

(
fA,FA

))
is finite.

The first assertion is true for all A, since by assumption, S
(
F
A
)

is a finite set and
the second assertion is proved in Theorem 5.12 page 65. Let us prove the third assertion.

By Theorem 6.5 and since A ∈ O, R
(
F
A
)

and P1

(
fA,FA

)
holds.

We first prove that the set of values t ∈ C such that there exists a sequence (x(k))k∈N ⊂
C

(
fA,FA

)
satisfying lim

k→+∞
||x(k)|| = +∞ and lim

k→+∞
fA(x(k)) = t is finite.

Let O1 ⊂ GLn (C) be the Zariski-open set given in Theorem 5.9 and O3 ⊂ GLn (C)
the Zariski-open set given in Theorem 5.12 (page 65). Let O = O1 ∩ O3 and let A ∈
GLn (Q)∩O. Let ZA be an irreducible component of C

(
fA,FA

)
and consider the map

x ∈ ZA → fA (x) ∈ C.
Suppose first that fA

(
ZA

)
has dimension 0. Then, R∞

(
fA, ZA

)
⊂ fA

(
ZA

)
which

has dimension 0.
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Suppose now that fA
(
ZA

)
has dimension 1. By the theorem on the dimension of

fibers, [134, Theorem 7, Chapter 1, p. 76], there exists a non-empty Zariski-open set
W ⊂ C such that for all t ∈ W , dim

(
ZA ∩ V

(
fA − t

))
= dim

(
ZA

)
− 1.

Let QA ⊂ C be the Zariski-open set given in Theorem 5.9. According to Lemma 7.2,
if t belongs to R ∩ QA then ZA ∩ V

(
fA − t

)
is either empty or 0-dimensional.

Hence, two situations may occur:

• either ZA∩V
(
fA − t

)
is empty and then dim

(
ZA

)
= 0 which is not possible since,

by assumption, dim
(
fA

(
ZA

))
= 1;

• or ZA∩V
(
fA − t

)
has dimension 0 and then dim

(
ZA

)
= 1. This implies that the

set R∞
(
fA, ZA

)
⊂ C is the set of non-properness of the map x ∈ ZA 7−→ fA (x).

Since ZA has dimension 1, this set of non-properness has dimension at most 0 by
[70, Theorem 3.8].

Since C
(
fA,FA

)
has finitely many irreducible components, the lemma is proved.

Finally, we prove in the sequel that a value t ∈ C such that there exists a sequence
(x(k))k∈N ⊂ C

(
fA,FA

)
satisfying lim

k→+∞
||x(k)|| = +∞ and lim

k→+∞
fA(x(k)) = t lies in

NP
(
πT ,C

(
fA,FA

))
and conversely.

Let t0 ∈ C and
(
x(k)

)
=

(
x
(k)
1 , . . . , x

(k)
n

)
be a sequence of points in C

(
fA,FA, i

)

satisfying lim
k→+∞

∥∥∥x(k)
∥∥∥ = +∞ and lim

k→+∞
fA

(
x(k)

)
= t0.

Let ε > 0. There exists N ∈ N such that for all k ≥ N ,
∣∣fA

(
x(k)

)
− t0

∣∣ ≤ ε. In
particular, for all k ≥ N ,

(
fA

) (
x(k)

)
lies in the closed ball B (t0, ε). This means that

π−1
T

(
B (t0, ε) ∩ V

(
fA − T

)
∩ C

(
fA,FA, i

))
contains all the points

(
x
(k)
1 , . . . , x(k)n , t = fA

(
x(k)

))

for k ≥ N . Since
(
x(k)

)
is not bounded,

π−1
T

(
B (t0, ε) ∩ V

(
fA − T

)
∩ C

(
fA,FA, i

))
,

contains points that are not bounded. By the definition of properness, this means that
t0 is a point where the projection πT restricted to V

(
fA − T

)
∩ C

(
fA,FA, i

)
is not

proper.
Conversely, if t0 ∈ C is such that for all ε > 0,

π−1
T

(
B (t0, ε) ∩ V

(
fA − T

)
∩ C

(
fA,FA, i

))

is not bounded, we can construct by induction a sequence
((
x(k), fA

(
x(k)

)))
k∈N, such

that:

• for all k ∈ N,
(
x(k), fA

(
x(k)

))
∈ π−1

T

(
B
(
t0,

1
k

)
∩V

(
fA − T

)
∩ C

(
fA,FA, i

))
;

• for all k ∈ N, ‖xk+1‖ > 2
∥∥x(k)

∥∥.
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In particular,
(
x(k)

)
k∈N ⊂ C

(
fA,FA, i

)
, lim

k→+∞

∥∥∥x(k)
∥∥∥ = +∞ and lim

k→+∞
fA(x(k)) =

t0.

Proposition 6.9. For all A ∈ GLn (Q) ∩ O, writing WA = {a1, . . . , ak}, a0 = −∞
and ak+1 = +∞, there exists a non-empty Zariski-open set QA ⊂ C such that for all
0 ≤ i ≤ k:

• either for all t ∈ ]ai, ai+1[ ∩ QA,
(
fA

)−1
(t) ∩ V A ∩ Rn = ∅,

• or for all t ∈ ]ai, ai+1[ ∩ QA,
(
fA

)−1
(t) ∩ V A ∩ Rn 6= ∅.

Proof. Assume on the contrary that there exists i such that there exists a ∈ ]ai, ai+1[∩QA

such that
(
fA

)−1
(a)∩V A∩Rn = ∅ and b ∈ ]ai, ai+1[∩QA such that

(
fA

)−1
(b)∩V A∩

Rn 6= ∅. Then without loss of generality, we can assume that a < b and

b = inf
{
t ∈ ]ai, ai+1[ ∩ QA s.t.

(
fA

)−1
(t) ∩ V A ∩ Rn 6= ∅

}
.

Then b is a local infimum of fA|V A∩Rn . According to Proposition 6.7, b lies in WA. Hence
there exists i such that b = ai, which is a contradiction.

We are now able to give a proof of correctness of SetContainingLocalExtrema, that
relies on the above propositions.

Proof of Proposition 6.6. Let ListSamplePoints ⊂ Q [X], ListCriticalPoints ⊂ Q [X] and
PNP ∈ Q [T ] be the output of SetContainingLocalExtrema(f,F). Denote by W the set

f (V (ListSamplePoints)) ∪ f (V (ListCriticalPoints)) ∪ RootsR (PNP) .

The routine SetContainingLocalExtrema is correct if property Opt (W ) holds. Then we
prove that

1. W is finite,

2. W contains every local extremum of f|V ∩Rn ,

3. let W = {a1, . . . , ak}, a0 = −∞ and ak+1 = +∞. There exists a non-empty
Zariski-open set Q ⊂ C such that for all 0 ≤ i ≤ k:

• either for all t ∈ ]ai, ai+1[ ∩ Q, (f)−1 (t) ∩ V ∩ Rn = ∅,

• or for all t ∈ ]ai, ai+1[ ∩ Q, (f)−1 (t) ∩ V ∩ Rn 6= ∅.

The first assertion comes from Proposition 6.8. The second one is a consequence of
Proposition 6.7. Finally, the last assertion is given by Proposition 6.9.
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6.4.2 Correctness of FindInfimum

Finally, we prove that FindInfimum is correct.

Proposition 6.10. Let A ∈ GLn (Q)∩O, f ∈ Q [X], F ⊂ Q [X] satisfying assumptions
R, ListSamplePointsA ⊂ Q [X], ListCriticalPointsA ⊂ Q [X] and PA

NP
∈ Q [T ]. Let WA =

{a1, . . . , ak}, be the finite algebraic set

fA
(
V
(
ListSamplePointsA

))
∪ f

(
V
(
ListCriticalPointsA

))
∪ RootsR

(
PA

NP

)
,

and assume that Opt
(
WA

)
is satisfied. Then let a0 = −∞, ak+1 = +∞ and let QA ⊂ C

be the Zariski-open set satisfying, for all 0 ≤ i ≤ k:

• either for all t ∈ ]ai, ai+1[ ∩ QA,
(
fA

)−1
(t) ∩ V A ∩ Rn = ∅,

• or for all t ∈ ]ai, ai+1[ ∩ QA,
(
fA

)−1
(t) ∩ V A ∩ Rn 6= ∅.

If the random rational numbers computed in FindInfimum lie in QA then FindInfimum is
correct.

Proof. Since we assumed Theorem 6.5 and A ∈ O, property R
(
fA,FA

)
is satisfied.

Hence IsEmpty is always called with a correct input.
If f⋆ = −∞ then because of assertion 3 of Opt

(
WA

)
, the fiber of fA at a rational

q0 ∈ QA such that q0 < a1 is not empty. Hence the first call of IsEmpty returns false so
that FindInfimum returns −∞.

If f⋆ is finite, because the second assertion of Opt
(
WA

)
holds, it is sufficient to

know the smallest local extremum of fA|V A∩Rn in WA. To this end, we want to detect an

eventual redundant value in WA. Such a redundant value, say ai, is such that the interval
[ai, ai+1[ does not contain any value reached by fA. In particular, it is a value that is
not in fA

(
V
(
ListSamplePointsA

))
∪ f

(
V
(
ListCriticalPointsA

))
and such that fA|V A∩Rn

does not reach any value in the interval ]ai, ai+1[. Because of assertion 3 of Opt
(
WA

)
,

testing this last point is equivalent to test the emptiness of the real fiber of fA at some
rational qi ∈ QA ∩ ]ai, ai+1[.

If V (F)∩Rn is empty then V
(
ListSamplePointsA

)
∩Rn and V

(
ListCriticalPointsA

)
∩Rn

are empty. Since V (F) ∩ Rn is empty, each call of the routine IsEmpty in the loop
returns false. Hence, the algorithm leaves the loop without returning any value, so that
ak+1 = +∞ is returned.

Finally, this proves that the routine FindInfimum is correct.

6.5 Complexity Analysis

Let A ∈ GLn (Q)∩O. Let F = {f1, . . . , fs} ⊂ Q [X], f and g in Q [X] of degree bounded
by D. Assume that each polynomial is given by a straight-line program (SLP) of size at
most L. Recall that d denotes the dimension of V = V (F).

We study the complexity of the subroutines SetContainingLocalExtrema and FindInfi-

mum. Gröbner bases can be used to compute the geometric objects. However, to estimate



96 Chapter 6. Algorithm for Global Optimization

the complexity, we use the Geometric Resolution subroutines GeometricSolve, LiftCurve

and OneDimensionalIntersect presented in Section 1.3. We first estimate the size of the
SLP representing the polynomials involved in the computations.

Size of SLP.

We want to estimate some parameters depending on the inputs of the Geometric Res-
olution routines, that are the polynomials defining the algebraic varieties C

(
fA,FA, i

)

and P
(
fA,FA, i

)
. Since bounds on δ

(
C

(
fA,FA, i

))
and δ

(
P

(
fA,FA, i

))
have been

obtained in Section 5.4, it remains to estimates the size of the straight-line programs
representing these polynomials. These polynomials are either a polynomial fA or fAi or
a minor of size n−d+1 of the Jacobian matrix Jac

([
fA,FA

]
, i+ 1

)
. The polynomials f

and fi are given as a SLP of size L. Then fA and fAi , can be represented by a SLP of size
O
(
L+ n2

)
. Then we estimate the size of the minors. Let ω be the matrix-multiplication

exponent.

Proposition 6.11. Each minors of size n− d+1 of Jac
([
fA,FA

]
, i+ 1

)
can be repre-

sented by a SLP of size Õ
(
(n− d+ 1)ω/2+2 (L+ n2

))
.

Proof. The partial derivatives appearing in the Jacobian matrix come from fA and fAi ,
represented by a SLP of size O

(
L+ n2

)
. According to [17], each partial derivative

∂fA

i

∂xj
and ∂fA

∂xj
can be represented by a SLP of size O

(
L+ n2

)
. Moreover, according

to [74], the determinant of an n × n matrix can be computed using only +, − and

× in Õ
(
(n− d+ 1)ω/2+2

)
operations. We combine these two results to conclude the

proof.

Remark 6.12. Recall that ω ≤ 3. In the sequel, to lighten the expressions of complex-

ity, we replace the above complexity Õ
(
(n− d+ 1)ω/2+2 (L+ n2

))
with Õ

(
n4

(
L+ n2

))
,

that is less accurate but that dominates the first one.

Is the sequel we use the routines of the geometric resolution, described in Section 1.3.

Computing C
(
fA,FA, i

)
.

Recall that C
(
fA, FA, i

)
is defined as the vanishing set of

• the polynomials fA1 , . . . , f
A
s ,

• the minors of size n− d+ 1 of Jac
([
fA,FA

]
, i+ 1

)
,

• and the variables X1, . . . , Xi−1.

Practically, X1, . . . , Xi−1 are set to 0. Hence, C
(
fA, FA, i

)
can be computed by

GeometricSolve called with s+
(

s+1
n−d+1

)(
n−i

n−d+1

)
= O

(
s+

(
s+1

n−d+1

)(
n

n−d+1

))
polynomials in

n − i = O (n) variables. Each polynomial is given by a SLP of size Õ
(
n4

(
L+ n2

))
. By
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Proposition 5.22, δ
(
C

(
fA, FA, i

))
is bounded by D ((n− d+ 1) (D − 1))n. Hence, the

computation can be done within

Õ

((
s+

(
s+ 1

n− d+ 1

)(
n

n− d+ 1

))
LD6 ((n− d+ 1) (D − 1))3n

)

arithmetic operations in Q. Since s ≤ n and
(

n
n−d+1

)
≤ 2n, we get the following result.

Lemma 6.13. There exists a probabilistic algorithm that takes as input fA,FA and i
and that returns an equidimensional decomposition of C

(
fA, FA, i

)
, encoded by a set of

irreducible lifting fibers. In case of success, the algorithm has a complexity dominated by

Õ

(
2n

(
s+ 1

n− d+ 1

)
LD6 ((n− d+ 1) (D − 1))3n

)
.

Computing P
(
fA,FA, i

)
.

Since P
(
fA,FA, i

)
is defined as C (fA,FA, i) \ Crit (fA, V A)

Z ∩ Crit
(
fA, V A

)
, a

geometric resolution of P
(
fA,FA, i

)
can be obtained from the lifting fibers of

C (fA,FA, i) \ Crit (fA, V A)
Z

. There are at most D ((n− d+ 1) (D − 1)) lifting fibers.
The routine LiftCurve is used on each fiber in order to obtain a parametrization of each
component of the curve C (fA,FA, i) \ Crit (fA, V A)

Z
. Lifting one fiber is done in

Õ

((
s+

(
s+ 1

n− d+ 1

)(
n

n− d+ 1

))
LD4 ((n− d+ 1) (D − 1))2n

)
.

From such a parametrization, the routine OneDimensionalIntersect is used with every
polynomial that defines Crit

(
fA, V A

)
. There are

(
s+1

n−d+1

)(
n

n−d+1

)
such polynomials, so

that the cost is at most

Õ

((
s+ 1

n− d+ 1

)(
n

n− d+ 1

)
LD4 ((n− d+ 1) (D − 1))2n

)
.

Finally, the total cost for the D ((n− d+ 1) (D − 1)) lifting fibers is dominated by

Õ

((
s+

(
s+ 1

n− d+ 1

)(
n

n− d+ 1

))
LD5 ((n− d+ 1) (D − 1))3n

)
.

Since s ≤ n and
(

n
n−d+1

)
≤ 2n, we get the following result.

Lemma 6.14. There exists a probabilistic algorithm that takes as input a set of lifting

fibers of C (fA,FA, i) \ Crit (fA, V A)
Z

and that returns a rational parametrization of
P

(
fA,FA, i

)
. In case of success, the algorithm has a complexity dominated by

Õ

(
2n

(
s+ 1

n− d+ 1

)
LD5 ((n− d+ 1) (D − 1))3n

)
.



98 Chapter 6. Algorithm for Global Optimization

Complexity of SetOfNonProperness.

As explained in [117], the computation of the set of non-properness of the restriction of
fA to C

(
fA,FA, i

)
from the representation of C

(
fA,FA, i

)
can be done using a para-

metric geometric resolution [126]. Indeed, from a set of lifting fibers of C
(
fA,FA, i

)
,

obtained by the routine GeometricSolve, one can compute a geometric resolution of
the variety C

(
fA,FA, i

)
∩ V

(
fA − t

)
for a generic t ∈ R. Since there are at most

D ((n− d+ 1) (D − 1)) lifting fibers, this can be done using OneDimensionalIntersect on

all the fibers in Õ
(
LD5 ((n− d+ 1) (D − 1))3n

)
. From these geometric resolutions, Lift-

Parameter computes a parametric geometric resolution of C
(
fA,FA, i

)
∩ V

(
fA − T

)
,

where T is a parameter, in Õ
(
LD3 ((n− d+ 1) (D − 1))3n

)
. Each coordinate in the

parametrization is represented as a a rational function with coefficients in Q(T ). Each
of these rational function has the same denominator q0, that is a univariate polynomial
with coefficients in Q(T ). Then the set of non-properness is contained in the set of roots
of the least common multiple of the denominators that appears in the coefficients of q0.
Finally, we get the following.

Lemma 6.15. There exists a probabilistic algorithm that takes as input a set of lifting
fibers of C

(
fA,FA, i

)
and that returns a polynomial whose set of roots contains the set

of non-properness of the projection πT restricted to V (f − T ) ∩ C
(
fA,FA, i

)
. In case

of success, the algorithm has a complexity dominated by

Õ
(
LD5 ((n− d+ 1) (D − 1))

)3n
.

Complexity of RealSamplePoints and IsEmpty.

Given F = {f1, . . . , fs}, an algorithm computing a set of real sample points of V (F)∩Rn

is given in [119], using the polar varieties. Using techniques described in [10, 11, 121] and
[14, Section 3], a local description of the polar varieties as a complete intersection can be
obtained. Assume that V (F) is equidimensional of dimension d. Such a local description
depends on the choice of a minor of size n−d of the Jacobian matrix Jac (F). Since there
are

(
s

n−d

)(
n

n−d

)
minors of size n − d in Jac (F), a full description of the polar varieties

is obtained by computing the
(

s
n−d

)(
n

n−d

)
possible localizations. Each local description

is given by a reduced regular sequence involving n − d polynomials in F and minors of
degree bounded by (n− d+ 1)(D− 1). Hence, the routine GeometricSolveRRS computes

one local description in Õ
(
LD6 ((n− d+ 1) (D − 1))2n

)
. The cost for all localizations

is then in Õ
((

s
n−d

)(
n

n−d

)
LD6 ((n− d+ 1) (D − 1))2n

)
. Since

(
n

n−d

)
≤ 2n, this leads to

the following complexity result.

Lemma 6.16. There exists a probabilistic algorithm that takes as input F satisfying
assumptions R and that returns a set of real sample points of V (F ) ∩ Rn, encoded by a
rational parametrization. In case of success, the algorithm has a complexity dominated
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by

Õ

(
2n

(
s

n− d

)
LD6 ((n− d+ 1) (D − 1))2n

)
.

Complexity of SetContainingLocalExtrema.

The first step in SetContainingLocalExtrema is the computation of a set of real sam-
ple points of V

(
F
A
)
∩ Rn. Its complexity is given in Lemma 6.16. Then at the

i-th step of the loop, C
(
fA,FA, i

)
, the set of non-properness of the projection πT

restricted to V (f − T ) ∩ C
(
fA,FA, i

)
and P

(
fA,FA, i

)
. The costs are given in

Lemma 6.13, Lemma 6.15 and Lemma 6.14. The complexity for one step is then in
Õ
(
2n

(
s+1

n−d+1

)
LD7 ((n− d+ 1) (D − 1))3n

)
. Finally, for the d steps, using that d ≤ n

can be omitted, we get the following complexity.

Lemma 6.17. In case of success, the routine SetContainingLocalExtrema performs at
most

Õ

(
2n

(
s+ 1

n− d+ 1

)
LD6 ((n− d+ 1) (D − 1))3n

)

arithmetic operations in Q.

Complexity of FindInfimum.

The most expensive steps in this routine are the calls to IsEmpty. There are at most k
such steps, where k is the number of points of non-properness, of critical values and of
real sample points. Using the Bézout inequality, k lies in Õ (D ((n− d+ 1) (D − 1))n).
Using the complexity estimate given in Lemma 6.16, this leads to the following.

Lemma 6.18. In case of success, the routine FindInfimum performs at most

Õ

(
2n

(
s

n− d

)
LD7 ((n− d+ 1) (D − 1))3n

)
.

Complexity of the Algorithm.

Finally, the complexity of Optimize comes from Lemma 6.17 and Lemma 6.18, using that(
s

n−d

)
≤

(
s+1

n−d+1

)
.

Theorem 6.19. In case of success, the algorithm Optimize performs

Õ

(
2n

(
s+ 1

n− d+ 1

)
LD7 ((n− d+ 1) (D − 1))3n

)

arithmetic operations in Q.

Remark that if F is a reduced regular sequence then the above complexity is simpler.
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Theorem 6.20. If F is a reduced regular sequence, the algorithm Optimize performs, in
case of success,

Õ

(
LD7

(
3
√
2 (s+ 1) (D − 1)

)3n
)

arithmetic operations in Q.

6.6 Implementation and Practical Experiments

We give details about our implementation in Section 6.6.1. Instead of using the geomet-
ric resolution algorithm [50] for algebraic elimination, we use Gröbner bases that still
allow to perform all geometric operations needed to implement the algorithm. Moreover,
there exist deterministic algorithms for computing Gröbner bases [46, 47]. This way, the
probabilistic aspect of our algorithm relies on the random choice of a linear change of
variables. In practice, we check if a given linear change of variables is suitable so that
the exactness can be guaranteed. This is explained in Section 6.6.1.

In Sections 6.6.2 and 6.6.3, we present practical experiments. First, we run our
implementation with random dense polynomials, that is the hardest case for the inputs.
As an example, considering an objective polynomial and one constraint, both of degree 2
and increasing the number of variables, our implementation can solve problems with up
to 32 variables in 4 hours. With two constraints, our implementation can solve problems
with up to 11 variables in 5.3 hours. With a linear objective polynomial subject to
one constraint of degree 4, both in 5 variables it takes 34 minutes. These results show
that our implementation outperforms general solvers based on the Cylindrical Algebraic
Decomposition.

Then we run examples coming from applications. Some of these examples can be
solved by QEPCAD. The timings are given in Section 6.6.3.

We do not report timings of methods based on sums of squares or numerical proce-
dures, e.g. [61, 92, 109] since their outputs are numerical approximation while we look
for exact representations.

6.6.1 Implementation

Since our algorithm depends on the choice of a matrix that defines a change of coordi-
nates, it is probabilistic. However, we present a technique to make sure that this choice
is a correct one. This technique is used in our implementation.

As stated in Section 6.4, the algorithm is correct if the subroutines SetContainingLo-

calExtrema and FindInfimum are correct. According to Proposition 6.6, if the random
matrix chosen at the first step of Optimize is such that P1

(
fA,FA

)
, P2

(
fA,FA

)
and

R
(
fA,FA

)
hold, then SetContainingLocalExtrema is correct. Then its output satisfies

property Opt (W ). Hence, FindInfimum can be called with the output of SetContainingLo-

calExtrema.
Then the choice of the matrix A leads to a correct output if P1

(
fA,FA

)
,

P2

(
fA,FA

)
and R

(
fA,FA

)
hold.
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Property R (f,F) always holds if F satisfies assumptions R. Since for any change of
coordinates, F satisfies assumptions R if and only if FA does, R

(
fA,FA

)
holds for any

A ∈ GLn (Q). Then it remains to check P1

(
fA,FA

)
and P2

(
fA,FA

)
. Both properties

depend on the properness of projections of the form

π≤d : W ⊂ Cn −→ Cd

(x1, . . . , xn) 7−→ (x1, . . . , xd)

where W is an algebraic variety. According to [70, Proposition 3.2], if IV is an ideal such
that V = V (IV ) has dimension d then the projection

π≤d : V ⊂ Cn −→ Cd

(x1, . . . , xn) 7−→ (x1, . . . , xd)

is proper if and only if IV is in Noether position.
Thus we choose the matrix A such that after the change of variables, the ideals are

in Noether position. This can be done using techniques described in [77, Section 4.1.2]
and [93]. These techniques are used in our implementation to obtain a matrix as sparse
as possible that makes SetContainingLocalExtrema correct.

6.6.2 Practical Experiments

The analysis of the degree of the algebraic varieties involved in the computations pro-
vides a singly exponential bound in the number of indeterminates. This matches the
best complexity bounds for algorithms computing an algebraic representation of f⋆ and
a minimizer using quantifier elimination. Our implementation is written in Maple. Gröb-
ner bases are computed using the package FGb (http://www-polsys.lip6.fr/~jcf/
Software/.)

The computations were performed on a Intel Xeon CPU E7540 @ 2.00GHz and 250GB
of RAM.

The notations below are used in the following tables :

• d: degree of the objective polynomial f ;

• D: upper bound for the degree of the constraints;

• n: number of indeterminates;

• s: number of constraints;

• obj terms: number of terms in the objective polynomial;

• terms: average number of terms.

To test the behavior of the algorithm, we run it with randomly generated polynomials
and constraints as inputs.

Considering an objective polynomial and one constraint, both of degree 2 and in-
creasing the number of variables, our implementation can solve problems with up to 32
variables in 4 hours. For this special case, the algorithm seems to be sub-exponential.

http://www-polsys.lip6.fr/~jcf/Software/
http://www-polsys.lip6.fr/~jcf/Software/


102 Chapter 6. Algorithm for Global Optimization

Constraints of degree 2.

n d D s obj terms terms time
8 2 2 1 44 45 9 sec.
12 2 2 1 91 91 30 sec.
16 2 2 1 153 153 2 min..
20 2 2 1 229 231 8 min.
24 2 2 1 323 323 27 min.
28 2 2 1 433 433 1.5 hours
32 2 2 1 559 557 4 hours
7 2 2 2 36 36 92 sec.
8 2 2 2 45 45 7 min.
9 2 2 2 55 55 27 min.
10 2 2 2 65 66 1.6 hours
11 2 2 2 78 78 5.3 hours

Constraints of degree 3.

n d D s obj terms terms time
4 2 3 1 15 34 4 sec.
5 2 3 1 21 55 28 sec.
6 2 3 1 27 84 9 min.
7 2 3 1 36 120 3.5 hours
4 2 3 2 15 34 81 sec.
5 2 3 2 21 56 2.2 hours

Constraints of degree 4.

n d D s obj terms terms time
2 3 4 1 10 14 2 sec.
3 3 4 1 20 34 4 sec.
4 3 4 1 34 70 7 min.
3 3 4 2 20 35 22 sec.
4 3 4 2 35 70 4.8 hours.
2 2 4 1 6 15 1 sec.
3 2 4 1 10 35 2 sec.
4 2 4 1 15 68 83 sec.

Linear objective function.
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n d D s obj terms terms time
4 1 3 1 5 34 3 sec.
4 1 4 1 5 69 30 sec.
4 1 5 1 5 126 13 min.
5 1 3 1 6 56 7 sec.
5 1 4 1 6 126 34 min.
5 1 5 1 6 252 87 hours
6 1 3 1 7 84 68 sec.
6 1 4 1 7 207 62 hours
4 1 3 2 5 35 36 sec.
4 1 4 2 5 70 1 hour
4 1 5 2 5 126 33 hours

6.6.3 Examples coming from Applications

We consider simple examples coming from applications to compare the execution time
of our algorithm with a cylindrical algebraic decomposition algorithm. These decompo-
sitions are computed using QEPCAD version B 1.691

Some of these problems cause issues to numerical algorithm because the infimum is
not reached.

n d D p obj terms terms time QEPCAD
nonreached 3 4 1 1 4 1 2.3 sec. 0.03 sec.
nonreached2 3 10 3 1 5 5 2 sec. ∞

isolated 2 4 3 1 2 2 0.8 sec. 0.04 sec.
reachedasymp 3 14 1 1 3 1 1 sec. 7.3 sec.

GGSZ2012 2 2 3 1 2 2 0.6 sec. 10.5 sec.
Nie2010 3 6 1 1 7 4 1.3 sec. ∞
LaxLax 4 4 1 3 5 2 0.6 sec. ∞

maxcut5-1 5 2 2 5 11 2 0.3 sec. ∞
maxcut5-2 5 2 2 5 11 2 0.3 sec. ∞
Coleman5 8 2 2 4 8 4 5 sec. ∞
Coleman6 10 2 2 5 10 4 33 sec. ∞

Vor1 6 8 n/a 0 63 n/a 2 min. ∞

6.7 Description of Examples

In this section we give detailed descriptions of the examples coming from applications
considered in the previous section. They are available as a plain text file, that can be
opened with Maple, at http://www-polsys.lip6.fr/~greuet/.

1Implementation originally due to H. Hong, and subsequently added on to by C. W. Brown, G.
E. Collins, M. J. Encarnacion, J. R. Johnson, W. Krandick, S. McCallum, S. Steinberg, R. Liska, N.
Robidoux. Latest version is available at http://www.usna.edu/cs/~qepcad/.

http://www-polsys.lip6.fr/~greuet/
http://www.usna.edu/cs/~qepcad/
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Example 6.21 (nonreached, nonreached2). Let g (x1, x2, x3) = x21−x1x2+x1x2x3+x2+
3. They cause instabilities to numerical algorithms because their infima are not reached.
The only way to get close to them is to evaluate the objective polynomial at a sequence

of the form
(
x1,

1
x1
, x3

)
, where x1 tends to infinity:

{
inf
x∈R3

(x1x2 − 1)2 + x22 + x23 + 42

s.t. x3 = 0.
{

inf
x∈R3

(x1x2 − 1)2 + x22 + x23g + (x1 + 1) g3 + 42

s.t. g (x1, x2, x3) = 0.

Example 6.22 (isolated). It is a toy example: f⋆ is isolated in f (V ∩ Rn).
{

inf
x∈R2

(
x21 + x22 − 2

) (
x21 + x22

)

s.t.
(
x21 + x22 − 1

)
(x1 − 3) = 0.

Over V ∩ Rn, either x21 + x22 = 1 or x1 = 3, so that the objective polynomial is either
equal to −1 or

(
7 + x22

) (
9 + x22

)
. The second expression is positive over the reals.

Example 6.23 (reachedasympt). The infimum is both attained and an asymptotic value.
Indeed, f⋆ = 42 is reached at any point (x1, 0, 0), but is also the limit of sequences of

the form
(
x1,

1
x1
, 0
)

when x1 tends to infinity. Some iterative methods do not return a

minimizer close to (x1, 0, 0).
{

inf
x∈R3

(
10000 (x1x2 − 1)4 + x61

)
x62 +

1
124x

2
3 + 42

s.t. x3 = 0.

Example 6.24 (GGSZ2012). It comes from [53] (Example 4.4). The minimizer does
not satisfy the KKT conditions.

{
inf
x∈R2

(x1 + 1)2 + x22

s.t. x31 = x22.

Example 6.25 (Nie2011). It comes from [100] (Example 5.2) and has been studied in
[53] because of the numerical instabilities that occurs with numerical algorithms.

{
inf
x∈R3

x61 + x62 + x63 + 3x21x
2
2x

2
3 − x21(x42 + x43)− x22(x43 + x41)− x23(x41 + x42)

s.t. x1 + x2 + x3 − 1 = 0.

Example 6.26 (LaxLax). The objective polynomial appears in [88] and [75]. Its infimum
is 0 and is reached over V (x1, x2 − x3, x3 − x4) ∩ Rn.





inf
(x)∈R4

x1x2x3x4 − x1 (x2 − x1) (x3 − x1) (x4 − x1)

−x2 (x1 − x2) (x3 − x2) (x4 − x2)− x3 (x1 − x3 )(x2 − x3) (x4 − x3)
−x4 (x1 − x4) (x2 − x4) (x3 − x4)

s.t. x1 = x2 − x3 = x3 − x4 = 0.
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Example 6.27 (maxcut5-1/5-2). A cut of a graph with weighted edges is a partition of
the vertices into two disjoint subsets. Its weight is the sum of the weights of the edges
crossing the cut. The maxcut problem is to find a cut whose weight is greater than or
equal to any other cut. This problem has applications, among other, in Very-large-scale
integration circuit design and statistical physics ([40, 48]). It can be reformulated has a
constrained polynomial optimization problem ([34]). For a graph of p vertices and weight
wij for the edge joining the i-th vertex to the j-th one, it is equivalent to solve





inf
x∈Rp

−1

2

∑

1≤i<j≤p

wij (1− xixj)

s.t. x2i − 1 = 0, for i ∈ {1, . . . , p} ,

We use the set of weight WG5−1 and WG5−2 in [8], that leads to solve





inf
x∈R5

−98 + 23
2 x1x2 + 8x1x3 + 9x1x4 +

17
2 x1x5 +

25
2 x2x3

+13x2x4 +
23
2 x2x5 + 7x3x4 + 12x3x5 + 5x4x5

s.t. x2i − 1 = 0, for i ∈ {1, . . . , 5} .

and




inf
x∈R5

−31 + 3x1x2 + 3x1x3 + 4x1x4 + 5x1y5 +
5
2x2x3 +

5
2x2x4 + 3x2x5

+2x3x4 + 3x3x5 + 3x4x5
s.t. x2i − 1 = 0, for i ∈ {1, . . . , 5} .

Example 6.28 (coleman5/6). They come from optimal control problems and appears in
[30]. For M ∈ {5, 6}, let x1, . . . , xM−1 and y1, . . . , yM−1 be the indeterminates.





inf
(x,y)∈R2M

1

M

M−1∑

i=1

x2i + y2i

s.t. y1 − 1 = yi+1 − yi − 1
M−1

(
y2i − xi

)
= 0, for i ∈ {1, . . . ,M − 2} .

Example 6.29 (Vor1). It comes from [45] and have no constraints.
Vor1 (a, α, β, u, x, y) = −16a3u3αβ + 16a2u3xα + 16a2u3yβ − 16au3αβ − 8u2xβa3 −
24u2aαβ+24u2yβa2−24u2αβa3−8u2axβ+24u2xαa2−8u2ya3α−8u2ayα−12uαβa3−
8uya3α+4uαa4x+12uyβa2− 4uya3x− 8uaxβ+12uxαa2− 4uaxy− 12uaαβ− 8uayα−
8uxβa3 + a4α2 + y2a2 + x2a2 + a2β2 + a2α2 + a4x2 + 32a2u3 + 4u2β2 + 16u2a2 + 2βy +
16a2u4+4uβ2+β2+y2+4uβy+8ua2β2+4u2x2a2+4u2y2a2−2ya3x+2αa4x+4ua4α2−
2axy+8ua2α2+4uy2a2−2ya3α−2ayα+16a2u4α2+16a2u4β2+32a2u3β2+24u2a2β2+
24u2a2α2+4u2a4α2+32a2u3α2+4ux2a2−2aαβ−2xβa3+2yβa2−2αβa3−2axβ+2xαa2.





Chapter 7

SOS Certificates of Positivity

7.1 Introduction

This chapter is based on the article [53]. In this paper, we assumed that the algebraic
variety defined by the constraints is smooth.

However, we will use results presented in Chapter 5 and in [52] that allow to present
a bit more general statements. In this Chapter, the results are stated and proved for
constraints defined by polynomial equations that define an algebraic variety with finitely
many singular points.

Motivation and methodology

Let f1, . . . , fs ∈ Q [X] and let V = V (f1, . . . , fs). Given f ∈ Q [X], let f⋆ = inf
x∈V ∩Rn

f(x).

In this chapter, our goal is to provide results to solve problem (A) : Computing
certificates for lower bounds on f⋆.

As explained in Section 3.2.1, if the existence of certificates of positivity by means of
sum of squares on V is proved, then semidefinite programming can be used to compute
these lower bounds. Furthermore, we want our results to be as general as possible: we
allow to have regularity assumptions on the input that are reasonable in practice and we
do not require any assumption on the infimum.

To prove the existence of certificates of positivity, we use Schweighofer’s results (see
[130] and Theorem 3.16). These results do not assume that f⋆ is reached. We use these
results on the modified polar varieties, defined in Chapter 5.

Let A ∈ GLn (Q) and C
(
fA,FA

)
be the union of the modified polar varieties associ-

ated with V A. If A is generic enough then f⋆ = inf
x∈C (fA,FA)∩Rn

fA (x). Hence, the exis-

tence of certificates of positivity for f on V ∩Rn is equivalent to the existence of certificates
for fA on C

(
fA,FA

)
∩ Rn. Furthermore, since dimC (fA,FA) \ Crit (fA, V A)

Z
= 1,

asymptotic phenomena of fA on C
(
fA,FA

)
are well controlled.

Thus, Schweighofer’s results can be used to prove the existence of certificates of
positivity by means of sum of squares on C

(
fA,FA

)
.

107
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Problem statement

Let f, f1, . . . , fs ∈ Q [X], let V = V (f1, . . . , fs) and let f⋆ = inf
x∈V ∩Rn

f(x). Let C (f,F) =

V (g1, . . . , gp) be the union of the modified polar varieties defined in Chapter 5 and let
O ⊂ GLn (C) be the Zariski-open set given in Theorem 5.1. Our goal is to prove that for
all A ∈ O ∩GLn (Q),

• fA ≥ 0 on C
(
fA,FA

)
∩ Rn if and only if f ≥ 0 on V ∩ Rn,

• if fA ≥ 0 on C
(
fA,FA

)
∩ Rn then for all ε > 0, there exists sums of squares of

real polynomials σi such that

fA + ε = σ0 +
∑

1≤i≤p

σig
A

i .

Furthermore, our goal is to obtain a result that does not require that f⋆ is reached on
V ∩ Rn.

Prior works

Unconstrained case. This approach has been previously developed in the uncon-
strained case. In [84], Schmüdgen’s Positivstellensatz is used to prove the existence of
certificates on a closed ball centered at 0: a polynomial f > 0 on B (0, R) can be written

f = σ + θ
(
R2 − ‖x‖2

)
, where σ, θ ∈

∑
R [X]2. Hence, this provides a local certificate

of positivity.
To recover a global certificate from a local one, a method which can be used if f⋆ is

reached is proposed in [101]. Denote by 〈∇f〉 the ideal
〈

∂f
∂X1

, . . . , ∂f
∂Xn

〉
. If 〈∇f〉 is radical,

then a non-negative polynomial over V
(

∂f
∂X1

, . . . , ∂f
∂Xn

)
is a sum of squares of polynomials

modulo 〈∇f〉. Moreover, if the polynomial is positive, the radical assumption on 〈∇f〉 is

not required. Note that if the infimum is reached, it is reached over V
(

∂f
∂X1

, . . . , ∂f
∂Xn

)
∩

Rn. Then f − f⋆ can be written as a sum of squares on the gradient variety while it is
necessarily non-negative outside. Here the local certificate is actually a global certificate
of non-negativity. Remark that if f⋆ is not reached then f − f⋆ can be non-negative on
the gradient variety but negative outside. This approach is followed in [2]. A hierarchy
of semidefinite relaxations converging to f⋆ in a finite number of steps is presented, if f⋆

is reached.
When we do not know a priori if f attains a minimum, we should take into account

asymptotic phenomena. To do so, in [130] the gradient variety is replaced with the
gradient tentacle. This is the semi-algebraic set S (∇f) =

{
x ∈ Rn | ‖∇f(x)‖2‖x‖2 ≤ 1

}
.

Over the gradient tentacle, a positive polynomial for which its set of values “at infinity”
is a finite subset of R>0 can be written as a sum of squares modulo

(
1− ‖∇f(x)‖2‖x‖2

)
.

In [54], simpler critical loci of linear projections are considered. They lead to con-
sider only (n−d+1, n−d+1)-minors of the Jacobian matrix associated to f1, . . . , fs, f .
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This leads to simpler algebraic certificates, even if f⋆ is not reached, and a better nu-
merical behavior of programs computing numerical approximations of sum of squares
decompositions via semidefinite programming.

Constrained case. Let S = {x ∈ Rn | f1 (x) ≥ 0, . . . , fs (x) ≥ 0}, where fi ∈ R [X].
In [39], the gradient variety approach is generalized to obtain certificates of positivity
over S. To this end, the gradient ideal is replaced by the Karush-Kuhn-Tucker ideal, its
analogous in the constrained case. It is defined by

IKKT =

〈
∂f

∂X1
−

∑

1≤j≤s

∂fj
∂X1

, . . . ,
∂f

∂Xn
−

∑

1≤j≤s

∂fj
∂Xn

, λ1f1, . . . , λnfn

〉
,

that is a subset of R [X, λ1, . . . , λs].
Then it is proved that a polynomial is positive over its KKT variety V (IKKT ) if

and only if it can be written as a sum of squares modulo IKKT . As in the gradient
variety approach, if the KKT ideal is radical then a non-negative polynomial over the
KKT variety is necessarily a sum of squares modulo KKT ideal. If f⋆ is reached, then
it is reached at a KKT point. Thus, it is attained on V (IKKT ) where the existence of
certificates is ensured, so that f⋆ = inf

x∈V(IKKT )
f (x) can be approximated by a sequence

of SDP relaxations. However, f⋆ may be a limit that is not reached. In this case,
f⋆ 6= inf

x∈V(IKKT )
f (x), so that the computed approximation may be far away from f⋆.

This approach is followed in [1, 99, 100] on a semi-algebraic set. Based on Lasserre’s
relaxations, these hierarchies of semidefinite relaxations converge to f⋆ in a finite number
of steps, if f⋆ is reached.

In [141], the approach initiated by Schweighofer is followed. The truncated tangency
variety is introduced. It is a subset of the region defined by the constraints of smaller
dimension and on which the target function f has a finite number of values “at infinity”.
These truncated tangency varieties are related to critical loci of the square of distance
functions to a given point, say (a1, . . . , an). They are defined by considering (n − d +

2, n− d+2) minors of the Jacobian matrix associated to f1, . . . , fs, f and
n∑

i=1

(Xi− ai)2.

Under some assumption of regularity on S, the existence of certificates is proved on the
semi-algebraic set S. Then, lower bounds on the infimum of f on the truncated tangency
variety can be certificated. However, because many auxiliary constraints are introduced
and because they have high degree, the SOS relaxations can be hard to solve. It is then
relevant to obtain simpler constraints, without the assumption that f⋆ is reached.

Main results

Let f ∈ Q [X] and let F = {f1, . . . , fs} ⊂ Q [X] such that the ideal 〈F〉 is radical and the
variety V = V (F) is d-equidimensional with finitely many singular points. Let C (f,F)
be the union of the modified polar varieties defined in Chapter 5. We summarize the two
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main results in the following theorem. The first item comes from Proposition 7.6 page
114 and the second one from Theorem 7.4 page 112.

Theorem 7.1. There exists a non-empty Zariski-open set O ⊂ GLn (C) such that for all
A ∈ GLn (Q) ∩ O,

• fA ≥ 0 on C
(
fA,FA

)
∩ Rn if and only if f ≥ 0 on V ∩ Rn,

• fA ≥ 0 on C
(
fA,FA

)
if and only if for all ε > 0, there exist a sum of squares of

real polynomials SA and TA such that, for any B ∈ f (V ∩ Rn),

fA + ε = SA + TA
(
B − fA

)
mod I

(
C

(
fA,FA

))
.

Then finding a certificate of positivity on V ∩Rn is equivalent to finding a certificate
on C (f,F) ∩ Rn. Furthermore, the existence of certificates on C (f,F) ∩ Rn is ensured
for positive polynomials. Hence, for any ε > 0, one can compute successive lower bounds
on f − f⋆ + ε > 0 using semidefinite programming. Remark that this result works even
if f⋆ is not assumed to be reached.

Organization of the chapter

We first prove the existence of certificates of positivity on C (f,F) ∩ Rn in Section 7.2.
In Section 7.3, we briefly recall the connection between sum of squares computation
and semidefinite programming. We prove that our result on the existence of certificates
leads to a hierarchy of SDP relaxations. It allows to compute numerically an increasing
sequence of lower bounds on the number f sos. It is defined as the supremum of the
a ∈ R such that there exists sums of squares of polynomials SA and TA such that
f − a = SA + TA

(
B − fA

)
mod I

(
C

(
fA,FA

))
. Then we prove that the infimum of

f on V ∩ Rn and on C (f,F) coincide. This means that f sos is actually f⋆. Finally in
Section 7.4, we consider the computational aspect of this approach. We first present a
method to reduce the number of equations defining C (f,F). Then we give some practical
results, that we compare with the previous approaches.

7.2 Existence of Certificates on C
(
fA,FA

)

Let C
(
fA,FA

)
be the algebraic variety defined in Section 5.2. In this section, we prove

that for almost all A ∈ GLn (Q), if fA ≥ 0 on C
(
fA,FA

)
then fA + ε can be written

as fA + ε = SA + TA
(
B − fA

)
mod I

(
C

(
fA,FA

))
, where B ∈ fA

(
V A ∩ Rn

)
and

SA and TA are sums of squares of polynomials in R [X].
Remark that the polynomials depending on fA that appear in the definition of

C
(
fA,FA

)
are actually partial derivatives of fA. Hence, for any c ∈ R, C

(
fA,FA

)
=

C
(
fA + c,FA

)
. In particular, if fA > 0 on C

(
fA,FA

)
can be written as a sum of

squares then for all ε > 0, so is fA − f⋆ + ε.
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Our goal is to use Schweighofer’s theorem (coming from [130], see Theorem 3.16 page
46). To this end, we prove that the set

R∞
(
fA,C

(
fA,FA

))
=

{
t ∈ R | ∃ (xk)k∈N ⊂ C

(
fA,FA

)
, ‖xk‖ −→

k→+∞
∞ and fA (xk) −→

k→+∞
t

}

of asymptotic values of the restriction of fA to C
(
fA,FA

)
is finite.

The set of values of fA over Crit
(
fA, V A

)
is finite by Sard’s theorem. Hence, proving

that there are finitely many asymptotic values on a set S is finite is equivalent to prove
that it is finite on S \ Crit (fA, V A)

Z
. We have seen in Theorem 5.12 page 65 that the

components of C
(
fA,FA

)
not included in Crit

(
fA, V A

)
have dimension 1. We will see

that the set of asymptotic values over such a component is finite. Hence, C
(
fA,FA

)
∩Rn

is a good candidate to get certificates of positivity.
We first prove an intermediate result, used to prove the finiteness of the set of asymp-

totic values.

Lemma 7.2. There exists a non-empty Zariski-open set O ⊂ GLn (C) such that for all
A ∈ GLn (Q) ∩ O, there exists a non-empty Zariski-open set QA ⊂ C such that for all
t ∈ R ∩ QA, C

(
fA,FA

)
∩ V

(
fA − t

)
is either empty or 0-dimensional.

Proof. Let O1 ⊂ GLn (C) be the Zariski-open set given in Theorem 5.9 and O3 ⊂ GLn (C)
the Zariski-open set given in Theorem 5.12 (page 65). Let O = O1 ∩ O3 and consider
A ∈ GLn (Q) ∩ O. Denote by QA ⊂ C be the Zariski-open set given by Theorem 5.9.

According to Theorem 5.12, C (fA,FA, i) \ Crit (fA, V A)
Z

has dimension at most 1.
Recall that by construction, QA does not contain any critical value of fA|V A∩Rn . Hence

for all t ∈ R ∩ QA,

C (fA,FA, i) \ Crit (fA, V A)
Z ∩ V

(
fA − t

)
= C

(
fA,FA, i

)
∩ V

(
fA − t

)
.

Let ZA
t be an irreducible component of C

(
fA,FA, i

)
∩ V

(
fA − t

)
. There is an

irreducible component ZA of C (fA,FA, i) \ Crit (fA, V A)
Z

such that ZA
t = ZA ∩

V
(
fA − t

)
. In particular ZA has dimension at most 1.

Since ZA 6⊂ Crit
(
fA, V A

)
, the restriction of f to ZA is not constant. In particular

ZA is not included in V
(
fA − t

)
.

According to Krull’s Principal Ideal Theorem ([79, Corollary 3.2 p. 131]), this means
that ZA

t = ZA ∩ V
(
fA − t

)
has dimension dim

(
ZA

)
− 1 ≤ 0.

Lemma 7.3. There exists a non-empty Zariski-open set O ⊂ GLn (C) such that for all
A ∈ GLn (Q) ∩ O, the set R∞

(
fA,C

(
fA,FA

))
is finite.

Proof. Let O1 ⊂ GLn (C) be the Zariski-open set given in Theorem 5.9 and O3 ⊂ GLn (C)
the Zariski-open set given in Theorem 5.12 (page 65). Let O = O1 ∩ O3 and let A ∈
GLn (Q)∩O. Let ZA be an irreducible component of C

(
fA,FA

)
and consider the map

x ∈ ZA → fA (x) ∈ C.
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Suppose first that fA
(
ZA

)
has dimension 0. Then, R∞

(
fA, ZA

)
⊂ fA

(
ZA

)
which

has dimension 0.
Suppose now that fA

(
ZA

)
has dimension 1. By the theorem on the dimension of

fibers, [134, Theorem 7, Chapter 1, p. 76], there exists a non-empty Zariski-open set
W ⊂ C such that for all t ∈ W , dim

(
ZA ∩ V

(
fA − t

))
= dim

(
ZA

)
− 1.

Let QA ⊂ C be the Zariski-open set given in Theorem 5.9. According to Lemma 7.2,
if t lies in R ∩ QA then ZA ∩ V

(
fA − t

)
is either empty or 0-dimensional.

Hence, two situations may occur:

• either ZA∩V
(
fA − t

)
is empty and then dim

(
ZA

)
= 0 which is not possible since,

by assumption, dim
(
fA

(
ZA

))
= 1;

• or ZA∩V
(
fA − t

)
has dimension 0 and then dim

(
ZA

)
= 1. This implies that the

set R∞
(
fA, ZA

)
⊂ C is the set of non-properness of the map x ∈ ZA 7−→ fA (x).

Since ZA has dimension 1, this set of non-properness has dimension at most 0 by
[70, Theorem 3.8].

Since C
(
fA,FA

)
has finitely many irreducible components, the lemma is proved.

Let B ∈ R and ε ∈ R. For 1 ≤ i ≤ d, we will say that property

SOS
(
fA + ε,C

(
fA,FA, i

)
, B

)

holds if there exist:

• sums of squares of polynomials SA
i and TA

i in
∑

R [X]2,

• polynomials CA
i,j in the ideal I

(
C

(
fA,FA, i

))
and

• polynomials gAi,j in R [X]

satisfying
fA + ε = SA

i + TA

i (B − fA) +
∑

j

gAi,jC
A

i,j .

We will say that property SOS
(
fA + ε,C

(
fA,FA

)
, B

)
holds if for all 1 ≤ i ≤ d,

properties SOS
(
fA + ε,C

(
fA,FA, i

)
, B

)
hold.

We are now ready to state the main results of this Chapter.

Theorem 7.4. There exists a non-empty Zariski open set O ⊂ GLn (C) such that for all
A ∈ GLn (Q)∩O, if f ≥ 0 on C

(
fA,FA

)
∩Rn and B ∈ f (V ∩ Rn), then for all ε > 0,

property SOS
(
fA + ε,C

(
fA,FA

)
, B

)
holds.

Proof. Let O ⊂ GLn (C) be the Zariski-open set given in Lemma 7.3. Recall that O =
O1 ∩ O3, where O1 ⊂ GLn (C) is the Zariski-open set given in Theorem 5.9 and O3 ⊂
GLn (C) the Zariski-open set given in Theorem 5.12 (page 65).

We use Schweighofer’s theorem (see Theorem 3.16 page 46). Since f is not nec-
essarily bounded above, we consider the semi-algebraic sets EA

B,i = C
(
fA,FA, i

)
∩{

x ∈ Rn | fA (x) ≤ B
}

for 1 ≤ i ≤ d. Then for all ε > 0 and all 1 ≤ i ≤ d,



7.3. Application in Optimization 113

1. for all x ∈ EA

B,i, f
A (x) + ε > 0 since f (x) ≥ 0;

2. fA is bounded above on EA

B,i by definition of EA

B,i;

3. R∞
(
fA + ε, EA

B,i

)
is finite since R∞

(
fA,C

(
fA,FA

))
is;

4. R∞
(
fA + ε, EA

B,i

)
⊂]0,+∞[ since f + ε ≥ ε > 0.

Hence Theorem 3.16 implies that fA + ε can be written as

fA + ε =
∑

δ∈{0,1}p
σδe

δ1
1 . . . e

δp
p ,

where δ = (δ1, . . . , δp) and σδ ∈
∑

R [X]2 and the ej are the polynomials defining the
semi-algebraic set EA

B,i. An equation h = 0 is replaced by the two inequalities h ≥ 0

and −h ≥ 0. By definition of EA

B,i, the ej are then either fA − B or a polynomial in
I
(
C

(
fA,FA, i

))
or the opposite of a polynomial in I

(
C

(
fA,FA, i

))
. Then changing

the names and reorganizing, we get

fA + ε = SA

i + TA

i (B − fA) +
∑

j

gAi,jC
A

i,j ,

where SA
i , T

A
i ∈

∑
R [X]2, for all j, CA

i,j ∈ I
(
C

(
fA,FA, i

))
and gAi,j ∈ R [X], where gAi,j

is the difference of two sums of squares.

7.3 Application in Optimization

In this paragraph, consider

• f, h1, . . . , hp ∈ Q [X],

• S = {x ∈ Rn | h1 (x) = · · · = hr (x) = 0, hr+1 (x) ≥ 0, . . . , hp (x) ≥ 0}

• and f⋆ = inf
x∈S

f (x).

In Section 3.2.1, we have seen that using semidefinite programming, an approximation
of a real number defined as

f sos

t = sup



a ∈ R | ∃σi ∈

∑
R [X]2, f − a = σ0 +

∑

1≤i≤p

σihi , deg (σ0) , deg (σifi) ≤ 2t



,

can be computed.
If a belongs to the above set then for all x ∈ S, the inequation f (x) − a ≥ 0 holds.

Then f (x) ≥ a, so that f⋆ ≥ f sos

t . This provides a lower bound on the infimum but in
general, f sos

t is not equal to f⋆.
However, we prove in the sequel that under additional properties, the f sos

t are terms
of a sequence converging to f⋆.



114 Chapter 7. SOS Certificates of Positivity

Proposition 7.5. Let h1, . . . , hp ∈ Q [X] and f⋆ the infimum of f on the semi-algebraic
set {x ∈ Rn | h1 (x) = · · · = hr (x) = 0, hr+1 (x) ≥ 0, . . . , hp (x) ≥ 0}. Assume that for all
ε > 0, there exists σi ∈

∑
R [X]2 such that

f − (f⋆ − ε) = σ0 +
∑

1≤i≤p

σihi.

Then the sequence (f sos

t )t∈N∗ converges monotonically increasing to f⋆.

Proof. First we show that the sequence (f sos

t )t∈N∗ is monotonically increasing. For t ∈ N∗,
let R2t [X] be the set of polynomials in R [X] of degree ≤ 2t. Let t1 ≤ t2. It is clear that
R2t1 [X] ⊂ R2t2 [X]. Thus, f sos

t1 ≤ f sos

t2 and the sequence is monotonically increasing.

Furthermore, since R [X] =
⋃

t

R2t [X], the sequence (f sos

t )t∈N∗ tends to the number

f sos = sup



a ∈ R | ∃σi ∈

∑
R [X]2 , f − a = σ0 +

∑

1≤i≤p

σihi



 .

We finish the proof by showing that f⋆ = f sos. By assumption, for all ε > 0,
f − (f⋆ − ε) can be written

f − (f⋆ − ε) = σ0 +
∑

1≤i≤p

σihi,

for some σi ∈
∑

R [X]2. Then a = f⋆ − ε belongs to the set


a ∈ R | ∃σi ∈

∑
R [X]2 , f − a = σ0 +

∑

1≤i≤p

σihi



 .

This means that f⋆−ε ≤ f sos. Since this is true for all ε > 0, this implies that f⋆ ≤ f sos.
Conversely, since f⋆ ≥ f sos

t holds for all t, the inequality f⋆ ≥ f sos always holds too.

According to this proposition, if the existence of certificates of positivity on S is
ensured then we are able to compute a sequence of lower bounds on f⋆ = inf

x∈S
f (x) that

converges to f⋆.
Since we prove the existence of certificates on EA

B,i, we are able to compute a sequence
converging to inf

x∈EA

B,i

fA (x) = inf
x∈C (fA,FA,i)

fA (x). Then to get a sequence of lower bounds

converging to f⋆ = inf
x∈V ∩Rn

f (x), we prove that the infimum on V ∩ Rn and the one on
⋃

1≤i≤d

C
(
fA,FA, i

)
= C

(
fA,FA

)
are the same.

Proposition 7.6. Let O1 ⊂ GLn (C) be the Zariski-open set given in Theorem 5.9 and
f⋆ = inf

x∈V ∩Rn
f (x). Then for all A ∈ GLn (Q) ∩ O1,

f⋆ = inf
x∈V ∩Rn

f (x) = inf
x∈C (fA,FA)∩Rn

fA (x) .
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Proof. Note first that if x ∈ V ∩ Rn then y = A
−1x belongs to V A ∩ Rn and satisfies

f (x) = fA (y). Then the set of values of f on V ∩ Rn and the one of fA on V A ∩ Rn

are the same, so that inf
x∈V ∩Rn

f (x) = inf
x∈V A∩Rn

fA (x).

Since by definition, C
(
fA,FA

)
∩ Rn ⊂ V A, the inequality

f⋆ = inf
x∈V A∩Rn

fA (x) ≤ inf
x∈C (fA,FA)∩Rn

fA (x)

holds. In the sequel, we prove that

inf
x∈C (fA,FA)∩Rn

fA (x) ≤ inf
x∈V A∩Rn

fA (x) = f⋆.

Suppose first that there exists x ∈ V A ∩ Rn such that fA(x) = f⋆. Then x is a
critical point of fA|V A∩Rn so that it belongs to C

(
fA,FA

)
∩ Rn (see Remark 5.6 page

63). Since fA (x) = f⋆ is a value of fA on C
(
fA,FA

)
∩ Rn, it is greater than or equal

to the infimum inf
x∈C (fA,FA)∩Rn

fA (x). Thus in this case,

inf
x∈C (fA,FA)∩Rn

fA (x) ≤ f⋆.

Suppose now that for all x ∈ V A ∩Rn, fA(x) > f⋆. Since f⋆ = inf
x∈V A∩Rn

fA (x), this

implies that there exists a real number c > f⋆ such that for all t ∈]f⋆, c[, V A ∩ V (fA −
t) ∩ Rn is not empty.

Let QA ⊂ C be the Zariski-open set given by Theorem 5.9. Without loss of generality,
one can suppose that c is small enough so that ]f⋆, c[⊂ QA.

Then by Theorem 5.9, this implies that for all t ∈]f⋆, c[, C
(
fA,FA

)
∩V

(
fA − t

)
∩Rn

is not empty. Thus we can construct by induction a sequence of points (xk) in
C

(
fA,FA

)
∩ Rn such that fA (xk) −→

k→+∞
f⋆. Since by definition of the infimum,

fA (xk) ≥ inf
x∈C (fA,FA)∩Rn

fA (x) for all k, we get f⋆ ≥ inf
x∈C (fA,FA)∩Rn

fA (x), that ends

the proof.

Using the previous results, we know how to compute a sequence of relaxations that
provides certified lower bounds on f⋆ that converge to f⋆. Practically, it is better to
compute the infimum on each EA

B,i instead of the union
⋃

1≤i≤d

EA

B,i directly. Indeed,

the number of variables involved in the computation over EA

B,i is smaller that in the
computation over the union. Then, f⋆ is the smaller of previous infima.

More precisely, let B be any value in f (V ∩ Rn). In the sequel, for A ∈ GLn (Q) and
t ∈ N∗, denote by f sos,A

i,t the supremum of the numbers a ∈ R such that there exist

• sums of squares of polynomials SA
i and TA

i in
∑

R [X]2,

• polynomials CA
i,j in the ideal I

(
C

(
fA,FA, i

))
and
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• polynomials gAi,j in R [X]

satisfying
fA − a = SA

i + TA

i (B − fA) +
∑

j

gAi,jC
A

i,j .

Then for 1 ≤ i ≤ d, we denote by f⋆i = inf
x∈C (fA,FA,i)∩Rn

fA (x). Since C
(
fA,FA

)
=

⋃

1≤i≤d

C
(
fA,FA, i

)
,

inf
x∈C (fA,FA)∩Rn

fA (x) = min {f⋆1 , . . . , f⋆d} .

Theorem 7.7. There exists a non-empty Zariski-open set O ⊂ GLn (C) such that for

all A ∈ GLn (Q)∩O, for 1 ≤ i ≤ d, each sequence
(
f sos,A
i,t

)

t∈N∗

converges monotonically

increasing to f⋆i . Furthermore, f⋆ = min {f⋆1 , . . . , f⋆d}.

Proof. Let O ⊂ GLn (C) be the Zariski-open set given in Theorem 7.4. By definition of
f⋆i , fA ≥ f⋆i on C

(
fA,FA, i

)
∩ Rn. We apply Theorem 7.4 with the polynomial f − f⋆i

on C
(
fA,FA, i

)
∩ Rn. Since for any value v ∈ R, C

(
fA + v,FA, i

)
= C

(
fA,FA, i

)
,

Theorem 7.4 implies that for 1 ≤ i ≤ d, there exist:

• sums of squares of polynomials SA
i and TA

i in
∑

R [X]2,

• polynomials CA
i,j in the ideal I

(
C

(
fA,FA, i

))
and

• polynomials gAi,j in R [X]

such that
fA − (f⋆i − ε) = SA

i + TA

i (B − fA) +
∑

j

gAi,jC
A

i,j .

Thus from Proposition 7.5, we deduce that f sos,A
i,t converges monotonically increasing to

f⋆i when t tends to ∞.
Finally, Proposition 7.6 implies that

f⋆ = inf
x∈C (fA,FA)∩Rn

fA (x) ,

that is necessarily min {f⋆1 , . . . , f⋆d} .

7.4 Computational Aspect

7.4.1 Reducing the Number of Equations

Lemma 7.8. The set Minors
(
Jac

([
F
A, fA

]
, i+ 1

)
, n− d+ 1

)
can be replaced with (n−

i)(p+ 1)− (n− d+ 1)2 + 1 equations.
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Let N = (Nij) be an m × n matrix of indeterminates over C, ∆N its set of minors.
Define the determinantal variety

Dm,n
t−1 =

{
N ∈ Cm×n | rankN < t

}
.

For indices a1, . . . , at, b1, . . . , bt such that t ≤ min (m,n) and

1 ≤ a1 < · · · < at ≤ m, 1 ≤ b1 < · · · < bt ≤ n,

we define [a1, . . . , at|b1, . . . , bt] to be the determinant of the submatrix N whose row
indices are a1, . . . , at and column indices are b1, . . . , bt. Then

Dm,n
t−1 =

{
N ∈ Cm×n | ∀[a1, . . . , at|b1, . . . , bt] ∈ ∆(N) , [a1, . . . , at|b1, . . . , bt] = 0

}
.

We define a partial ordering on ∆(N) as follows (see also [25, page 46]):

[a1, . . . , au|b1, . . . , bu] ≤ [c1, . . . , cv|d1, . . . , dv]
⇐⇒ u ≥ v, a1 ≤ c1, . . . , av ≤ cv, b1 ≤ d1, . . . , bv ≤ dv.

For an arbitrary minor ξ = [a1, . . . , au|b1, . . . , bu] in ∆(N), we define its length by:

lengthξ = k ⇐⇒ there is a chain ξ = ξk > ξk−1 > . . . > ξ1, ξi ∈ ∆N,

and no longer chain starting with ξ exits.

We prefer the notation of the length instead of the rank defined in [25, page 55].
Let Ω (N) be the set of all k-minors of N with k ≥ t. For every 1 ≤ l ≤ mn− t2 + 1,

define
θl (N) =

∑

ξ∈ΩN
length(ξ)=l

ξ.

Lemma 7.9. [25, Lemma 5.9] We have that

Dm,n
t−1 =

{
N ∈ Cm×n : θl (N) = 0, l = 1, . . . ,mn− t2 + 1

}
.

In [24, Theorem 2], they also proved that mn − t2 + 1 is the smallest number of
polynomials for defining the determinantal variety Dm,n

t−1 .
To find all minors of a given length, it is convenient to generate all chains composed

by minors in Ω (N). The following proposition gives the minor of the maximal length in
Ω (N). Furthermore, we show in its proof how to construct all chains in Ω (N) starting
with this minor.

Proposition 7.10. The minor of the maximal length in Ω (N) is [m− t+ 1, . . . ,m|n−
t+ 1, . . . , n] and its length is mn− t2 + 1.
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Before the proof is given, we illustrate the construction of all chains for a special case
where m = 3, n = 4 and t = 2. First we generate the set of chains consisting of 2-minors.
Starting with the minor of the maximal length, if we decrease one of the indices of the
previous minor by 1 and keep the indices of the new minor in strictly ascending order,
a new minor of smaller length is generated. All chains consisting of 2-minors are shown
in Figure 7.1, where the arrows point to minors of higher orderings. Then we collect all
3-minors and add them to the chains we have already constructed. The set of chains
consisting of all minors in Ω (N) for m = 3, n = 4, t = 2 is shown in Figure 7.2.

From Figure 7.1 and 7.2, we notice the following two facts:

1. The k-minors in the same column have the same summation of their indices which
is one less than that of the previous column.

2. The (k + 1)-minors that can increase the length of chains consisting of k-minors
are the ones with the form [1, 2, . . . , k, a|1, 2, . . . , k, b], where k + 1 ≤ a ≤ m and
k + 1 ≤ b ≤ n.

12|12

12|13

13|12

12|14

12|23

13|13

23|12

12|24

13|14

13|23

23|13

12|34

13|24

23|14

23|23

13|34

23|24

23|34

Figure 7.1: All chains consisting only of the 2-minors.

12|12

12|13

13|12

123|134
123|124123|123 123|234

12|14

12|23

13|13

23|12

12|24

13|14

13|23

23|13

12|34

13|24

23|14

23|23

13|34

23|24

23|34

Figure 7.2: All chains consisting of the 2-minors and 3-minors.

Proof of Proposition 7.10. The first part of the statement is obvious. We prove the
second part in the following. Without loss of generality, we assume that m ≤ n.

First, we show how to generate the set of chains consisting of t-minors, denoted by Ct.
Starting with ξ = [m−t+1, . . . ,m|n−t+1, . . . , n], the t-minor with the maximal length,
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we construct new t-minors by decreasing one of the indices in ξ by 1 and keeping the
indices of new minors in strictly ascending order. This process continues until we reach
the minor ξ1 = [1, 2, . . . , t|1, 2, . . . , t] with the lowest ordering. Based on the observation
(1), we can show that the maximal length of the chain χt from ξ to ξ1 is

(2m− t+ 1)t/2 + (2n− t+ 1)t/2− (1 + t)t+ 1 = (m+ n)t− 2t2 + 1.

Secondly, we show how to add the (t+1)-minors in Ω (N) to the set of chains Ct con-
structed above. Notice that for every (t + 1)-minor ξ = [a1, . . . , at, at+1|b1, . . . , bt, bt+1],
the t-minor η = [a1, . . . , at|b1, . . . , bt] has already appeared in Ct. Since ξ < η, we put ξ
in the column next (on the left) to the column consisting of η. Therefore, we generate the
set of chains consisting of all t + 1-minors in Ω (N), denoted by Ct+1. According to (1)
and (2), we obtain that the maximal length of the chain χt+1 from [1, . . . , t,m|1, . . . , t, n]
to [1, . . . , t, t+1|1, . . . , t, t+1] is m+n−2(t+1)+1. Since all minors in χt+1 are smaller
than minors in χt, we can add the chain χt+1 to the end of the chain χt.

Going through the same process, we can generate the chains χt+2, . . . , χm. It is
clear that the chain χm → . . . → χt+1 → χt consisting in the minors in Ω (N) from
[1, . . . ,m|1, . . . ,m] to ξ and has the largest length

(m+ n)t− 2t2 + 1 +
m∑

s=t+1

(m+ n− 2s+ 1) = mn− t2 + 1,

which is the length of ξ.

We are now able to conclude with the proof of Lemma 7.8.

Proof of Lemma 7.8. The size of the Jacobian matrix Jac
(
[FA, fA], i+ 1

)
is (p + 1) ×

(n−i). Applying Lemma 7.9 to it for t = n−d+1, we can reduce the number of equations

in the set Minors
(
Jac

(
[FA, fA], i+ 1

)
, n− d+ 1

)
from

(
n− i

n− d+ 1

)(
p+ 1

n− d+ 1

)
to (n−

i)(p+ 1)− (n− d+ 1)2 + 1.

7.4.2 Numerical Results

In this section, our method is applied to compute certificates for lower bounds on f⋆.
We set A to be the identity matrix. Thus we denote by f sos

i,t = f sos,A
i,t . We call the

command IsRadical in the Maple package PolynomialIdeals to test if an ideal I is radical
and the command HilbertDimension in the package Groebner to compute the dimension of
the variety V (I). In the following examples, this takes less than 1 second. The Matlab
software SOSTOOLS [109] is then used to compute an approximation of f sos

i,t .

Optimization with only equality constraints. We consider polynomial optimiza-
tion with only equality constraints for which we can apply our method directly,

inf
x∈Rn

f(x) (7.1)

s.t. f1(x) = . . . = fp(x) = 0. (7.2)
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The main contributions of our approach compared with [84], [39], and [100] are:

• There is no compactness requirement of the feasible set.

• We do not assume that the KKT conditions are satisfied at the minimizer or the
minimum f⋆ is reached.

• Our regularity assumptions R are weaker than the assumptions in [100].

Example 7.11. [100, Example 5.2] Consider the optimization problem

inf
x∈R3

x61 + x62 + x63 + 3x21x
2
2x

2
3 − x21(x42 + x43)− x22(x43 + x41)− x23(x41 + x42)

s.t. x1 + x2 + x3 − 1 = 0.

The feasible set is non-compact. The objective function is the Robinson polynomial which
is non-negative everywhere but not SOS. We have f⋆ = 0. Let F = [x1 + x2 + x3 − 1].
Then the dimension of the ideal 〈F〉 is 2.

• To compute f sos

1 , we have C (f,F, 1) = V (F, h) where

h =6x52 + 6x21x2x
2
3 − 4x21x

3
2 − 2x2x

4
3 − 2x2x

4
1 − 4x23x

3
2

− 6x53 − 6x21x
2
2x3 + 4x21x

3
3 + 4x22x

3
3 + 2x3x

4
1 + 2x3x

4
2.

Setting B = f(1, 0, 0) = 1, the lower bounds we computed are: f sos

1,3 = −5.8186 ×
10−2, f sos

1,4 = −1.6531× 10−2, f sos

1,5 = −4.1363× 10−4, f sos

1,6 = 4.2929× 10−10. The
sign of the last lower bound is not correct due to the numerical issues.

• To compute f sos

2 , we have C (f,F, 2) = V (x1, g). It is equivalent to solving, replac-
ing x1 with 0,

inf
(x2,x3)∈R2

x62 + x63 − x22x43 − x23x42

s.t. x2 + x3 − 1 = 0.

Setting B = f(1, 0) = 1, the lower bounds we obtained are: f sos

2,2 = −8.0658×10−12,

f sos

2,3 = −9.1665× 10−12. It is clear that f sos

2 is also equal to f⋆.

Example 7.12. Consider the optimization problem

inf
x∈R2

(x1 + 1)2 + x22

s.t. − x31 + x22 = 0.

Obviously, we have x⋆ = (0, 0) and f⋆ = 1. It is easy to check that the feasible set is
non-compact and the KKT conditions are not satisfied at the minimizer. The regularity
assumption R is satisfied and d = 1. With C (f,F, 1) = V

(
−x31 + x22

)
and B = f(0, 0) =

1, the lower bounds we obtained are: f sos

1,2 = 0.99842, f sos

1,3 = 0.9989, f sos

1,4 = 0.99865,
f sos

1,5 = 0.99844. Although there are numerical errors, we do get good approximations of
the minimum f⋆.
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Example 7.13. Consider the constrained optimization problem

inf
x∈R2

x1

s.t. x1x
2
2 − 1 = 0.

The KKT system {1− λx22, −2x1x2λ, x1x22 − 1} has no solution. Applying our method,
d = 1 and C (f,F, 1) = V

(
x21x

2
2 − 1

)
. With B = f(1, 1) = 1, the lower bounds we

obtained are: f sos

1,3 = 2.5255×10−3, f sos

1,4 = 1.902×10−2, f sos

1,5 = 8.1335×10−2. Obviously,
there are big numerical problems: x2 →∞, which leads to some elements of the moment
matrices used to solve the associated SDP’s tending toward infinity. We can employ
the sparse support monomials in the computation of f sos,A

i,t to fight against this problem.
Similar analysis can be found in [54].

Optimization with inequality constraints. In the following we consider the general
optimization problem

inf
x∈Rn

f(x)

s.t. f1(x) = · · · = fp(x) = 0,

g1(x) ≥ 0, . . . , gq(x) ≥ 0.

(7.3)

Although our method applies to the global optimization of polynomials restricted to a
smooth variety, it can be used to solve the problem (7.3) if we introduce new variables
t = [t1, . . . , tq] and turn inequalities into equality constraints:

inf
x∈Rn,t∈Rq

f(x)

s.t. f1(x) = · · · = fp(x) = 0,

g1(x)− t21 = 0, . . . , gq(x)− t2q = 0.

However, we notice that related SDP problems may become very ill-conditioned be-
cause of these extra variables. Here are some techniques we used to handle numerical
difficulties in order to improve the accuracy of a computed solution:

• Scaling the problem to make the magnitudes of all nonzero components of optimal
solutions close to 1. Although it is impossible to make an ideal scaling before we
know the optimal solutions, sometimes we can still do so by performing a linear
transformation of the variables if we know finite lower and upper bounds constraints
on them.

• Choosing B as close to the optimum as possible.

• Normalizing the coefficients of the polynomials in (7.3).

For more details about these techniques, see [142].
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Example 7.14. [39, Example 4.3] Consider the optimization problem under constraints

inf
x∈R2

(−4x21 + x22)(3x1 + 4x2 − 12)

s.t. 3x1 − 4x2 ≤ 12, 2x1 − x2 ≤ 0, −2x1 − x2 ≤ 0.

The semi-algebraic set defined by the constraints is non-compact. The global min-
imum is f⋆ = −1024

55 ≈ −18.6182 and the minimizer is x⋆ = (24/55, 128/55) ≈
(−0.4364, 2.3273). Let g1 = 12− 3x1 +4x2− t21, g2 = x2− 2x1− t22, g3 := x2 +2x1− t23,
then the dimension of the ideal 〈g1, g2, g3〉 is 2.

• To compute f sos

1 , we have C (f,F, 1) = V (g1, g2, g3, h), where h = (−16x21+6x2x1+
12x22 − 24x2)t1t2t3. Setting B = f (0, 0, 0) = 0, the lower bounds we computed are:
f sos

1,3 = −20.184, f sos

1,4 = −18.618.

• To compute f sos

2 , we have C (f,F, 1) = V (g1, g2, g3, x1). It is equivalent to solving

inf
x∈R4,t∈R3

x22(4x2 − 12)

s.t. − 4x2 + t21 = 12, −x2 + t22 = 0, −x2 + t23 = 0.

It is easy to see that f sos

2 = −16 which is not equal to f⋆.

Example 7.15. [39, Example 4.5] Consider the following non-convex quadratic opti-
mization

inf
x∈R2

x21 + x22

s.t. x22 − 1 ≥ 0,

x21 −Nx1x2 − 1 ≥ 0,

x21 +Nx1x2 − 1 ≥ 0.

It is shown in [39] that the global minimum is f⋆ =
1

2

(
N2 +N

√
N2 + 4

)
+ 2. Let

• g1 = x22 − 1− t21,

• g2 = x21 −Nx1x2 − 1− t22,

• g3 = x21 +Nx1x2 − 1− t23.

Then the dimension of the ideal 〈g1, g2, g3〉 is 2. It can be checked that C (f,F, 2) = ∅.
Hence, in the following we only compute f sos

1 for some given constants N . We have
C (f,F, 1) = V (g1, g2, g3, h), where h = x2t1t2t3.

• N = 2, then we have f⋆ = 6.8284. For B = f(3, 1) = 10, the results are: f sos

1,2 = 4,
f sos

1,3 = 6.7692, f sos

1,4 = 6.8284.
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• N = 3, then we have f⋆ = 11.9083. For B = f(4, 1) = 17, the results are: f sos

1,2 = 5,
f sos

1,3 = 11.316, f sos

1,4 = 11.908.

• N = 4, then we have f⋆ = 18.9443. For B = f(5, 1) = 26, the results are:
f sos

1,2 = 6, f sos

1,3 = 17.2, f sos

1,4 = 22.168. If we set B = f(4.3, 1) = 19.49, the results
are: f sos

1,2 = 15.333, f sos

1,3 = 18.944.
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