Im ∇u u(t, x) dx = Im ∇u 0 u 0 dx

(3)

Par ailleurs le groupe des symétries de l'équation (2) peut se résumer en * Invariance par translation d'espace-temps : si u(t, x) est solution de (2), alors u(t

* Invariance par changement de phase : si u(t, x) est solution de (2), alors u(t, x) e i γ aussi, γ ∈ R.

* Invariance par changement d'échelle : si u(t, x) est solution de (2), alors

Dans le cas particulier L 2 -sous-critique, à savoir 1 < p < 1 + 4 N , l'inégalité de Gagliardo-Nirenberg

fournit une majoration dans H 1 des solutions de (2) qui sont donc globales en temps. Cet argument s'évanouit dans le cas critique p = 1 + 4 N qui est le plus petit exposant de non-linéarité pour lequel il peut y avoir explosion, et a donc souvent constitué un cadre d'étude privilégié.

Une particularité notable de l'équation (2) est l'existence de solutions périodiques de la forme W (t, x) = Q(x) e i t où pour faire au plus simple Q est l'unique solution positive, radiale et exponentiellement décroissante à l'infini de l'équation elliptique

Cette solution Q est communément appelé le "Ground-State" ou état fondamental dans la mesure où elle fournit d'importantes informations sur les solutions de (2).

Dans le cas L 2 -sous-critique, les symétries de l'équation (2) par invariance d'échelle et par transformation Galiléenne sont responsables de deux types d'instabilité : * Pour tout λ > 0, la solution de l'équation (2) avec condition initiale u 0

* Pour tout β ∈ R N , la solution de l'équation (2) avec condition initiale u 0 (x) = Q(x) e i β est u(t, x) = Q(xβ t) e i t+ β 2 ( β 2 t) .

* ou bien ∇u(t) L 2 ≥ C

Explosion des solutions de Schrödinger de masse critique sur une variété riemannienne.

par Thomas Boulenger

Résumé détaillé en Français

Le but de ce travail est de mieux comprendre le processus d'explosion d'une solution dans le cadre de l'équation de Schrödinger non linéaire focalisante en dimension 2, sur une variété riemannienne (M, g) en présence d'une fonction d'inhomogénéité k devant la non linéarité, en somme d'étudier les solutions qui cessent d'exister dans l'espace d'énergie H 1 en temps fini pour le problème

i ∂ t u + ∆ g + V (x) u + k(x) |u| p-1 u = 0, (t, x) ∈ [0, T ) × M u(0, .) = u 0 : M → C ∈ H 1 (1)
Mais commençons avec quelques rappels généraux.

Solutions explosives en métrique plane dans le cas homogène

Lorsque l'on regarde l'équation en dimension N ≥ 1 dans le cas d'une métrique plane g ≡ 1 et d'une non linéarité homogène, k ≡ 1, il est déjà connu depuis les résultats de Ginibre-Velo [START_REF] Ginibre | On a class of nonlinear Schrödinger equations I, II. The Cauchy problem, general case[END_REF] que le problème associé en est bien posé pour toute condition initiale u 0 ∈ H 1 (R N ), et toute non-linéarité H 1 -sous critique. Autrement dit, lorsque 1 < p < +∞ si N = 1, 2 et 1 < p < 1 + 4 N -2 si N ≥ 3, il existe un temps T > 0 tel que le problème i ∂ t u + ∆u + |u| p-1 u = 0, (t, x) ∈ [0, T ) × R N u(0, .) = u 0 : R N → C ∈ H 1

(2) admet une unique solution maximale u ∈ C([0, T ), H 1 ). De plus le temps d'existence T d'une solution peut être minoré par une fonction de u H 1 , laissant pour seuls choix T < +∞ et lim t→T u(t) H 1 = +∞ ou T = +∞ et ( u(t) H 1 ) t bornée. L'étude de l'explosion, à savoir si une solution reste ou non dans H 1 , est donc directement liée au contrôle de la taille dans H 1 d'une solution. On comprend alors que les lois de conservations de masse, d'énergie et de moment y jouent un rôle important :

M asse : |u(t)| 2 dx = |u 0 | 2 dx Energie : E(u) = 1
On constate là une forte dépendance aux conditions initiales puisque la solution ne reste alors pas uniformément proche du soliton W (t, x) = Q(x) e i t . Néanmoins, Cazenave et Lions [START_REF] Lions | Orbital stability of standing waves for some nonlinear schrödinger equations[END_REF] ont prouvé que ces instabilités sont alors les seules :

∀ ǫ > 0, ∃ δ > 0, u 0 -Q H 1 < δ ⇒ ∃ α(t) ∈ R N , ∃ γ(t) ∈ R, u(t, x) -Q(x -α(t)) e i γ(t) H 1 < ǫ
Ce résultat repose sur une caractérisation variationnelle du Ground-State : la famille des fonctions translatées et déphasées à partir de Q est solution du problème de minimisation de l'énergie E(u) à masse constante. De plus les suites minimisantes d'un niveau d'énergie à masse constante admettent toute une sous-suite qui converge vers une fonction du type précédent. Ce résultat repose à son tour sur la description des cas possibles dans le défaut de compacité de l'injection de Sobolev H 1 ֒→ L p+1 . Dans les cas critique et sur-critique, c'est à dire p ≥ 1 + 4 N , l'argument dit du Viriel assure un critère d'explosion dans un espace d'énergie plus petit que H 1 : pour toute condition initiale u 0 ∈ Σ = H 1 ∩ {x u ∈ L 2 } telle que E(u 0 ) < 0, la solution associée de (2) explose en temps fini 0 < T < +∞. Si pour des conditions initiales suffisamment petites la solution est toujours globale, l'inégalité de Gagliardo-Nirenberg ne permet plus d'empêcher l'explosion de certaines solutions.

Concentrons nous maintenant sur le cas critique p = 1 + 4 N et le problème associé

i ∂ t u + ∆u + |u| 4/N u = 0, (t, x) ∈ [0, T ) × R N u(0, .) = u 0 : R N → C ∈ H 1 (6) 
La caractérisation variationnelle précédente du Ground-State ne tient plus, mais le manque d'information peut être comblé justement en considérant le problème de minimisation de la constante C GN dans l'inégalité de Gagliardo-Nirenberg (4) comme le fait Weinstein [START_REF] Weinstein | Nonlinear Schrödinger equations and sharp interpolation estimates[END_REF]. Ce changement de régime peut se comprendre par le fait que le cas critique correspond à l'équilibre entre énergie cinétique et énergie potentielle (E(Q) = 0). Ceci permet alors d'obtenir une condition de globalité dépendant uniquement de la masse d'une solution, à savoir que pour toute condition initiale u 0 ∈ H 1 de masse u 0 L 2 < Q L 2 , la solution associée de (6) est globale.

Le rôle fondamental du Ground-State dans la compréhension des propriétés du problème non linéaire (6) ne s'arrête pas là. Alors que les solutions de schrödinger linéaire se dispersent suivant l'inégalité u(t)

L ∞ ≤ C |t| N/2 u 0 L 1 , l'onde solitaire W (t, x) = Q(x) e i t
se propage sans dispersion. Par ailleurs un résultat de dispersion peut aussi être obtenu pour les solutions globales précédentes associées aux conditions initiales u 0 ∈ Σ, u 0 L 2 < Q L 2 . Le Ground-State apparaît donc comme le représentant de la masse minimale pour laquelle il peut ne pas y avoir de dispersion. Enfin, la combinaison d'une onde solitaire et d'une symétrie de l'équation (6) dite pseudo-conforme fournit une solution explosive explicite de masse Q L 2 , rendant au passage optimal le critère de Weinstein.

La symétrie pseudo-conforme de l'équation (6) vient du fait que si u(t) est solution, alors

v(t) = |t| -N/2 u 1 t , x t e i |x| 2 4t l'est également. Ainsi la fonction S(t, x) = 1 |t| N/2 Q x t e -i |x| 2 4t + i t (7)
est-elle solution de (6) avec explosion en T = 0. Un très important théorème de Merle [START_REF] Merle | Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power[END_REF] permet qui plus est de connaître toutes les solutions explosives de masse minimale Q L 2 : pour toute condition initiale u 0 ∈ H 1 de masse critique u 0 L 2 = Q L 2 , si la solution associée de l'équation (6) explose en temps fini 0 < T < +∞, alors u(t) = S(t) aux symétries de l'équation près. Il est intéressant de remarquer que S est une solution à énergie strictement positive, de vitesse d'explosion ∇S(t) L 2 ∼ 1 |t| , t → 0 et qu'elle explose sans perte de masse en un Dirac à l'origine :

|S(t)| ⇀ Q L 2 δ x=0 , t → 0.
Le résultat de stabilité déjà énoncé dans le cas L 2 -sous critique peut être encore ici prolongé au cas critique, avec cette fois une stabilité par rapport aux invariants de masse et d'énergie :

Pour tout η > 0, assez petit, et toute solution u(t) de (6) existant jusqu'au temps 0 < T ≤ +∞ telle que

|u(t)| 2 dx ≤ Q 2 dx + ǫ et E(u) ≤ ǫ |∇u| 2 dx, il existe α(t) ∈ R N , γ(t) ∈ R, et δ(η) > 0, tel que δ(η) → 0, η → 0, de sorte que λ(t) N/2 u(t, λ(t)x + α(t)) e -i γ(t) -Q H 1 < δ(η) où λ(t) = ∇Q L 2 ∇u(t) L 2
mesure la taille H 1 de la solution et l'explosion éventuelle en t = T.

Ce résultat est très important puisqu'il permet de décomposer toute solution explosive u ∈ B(η

) = {v ∈ H 1 , Q L 2 ≤ v L 2 ≤ Q L 2 + η} de (6) sous la forme u(t, x) = 1 λ(t) N/2 Q + ǫ t, x -α(t) λ(t) e i γ(t) , avec ǫ(t) H 1 ≤ η et λ(t) ∼ 1 ∇u(t) L 2 (8) 
ce qui permet de renvoyer l'étude u caractère explosif de la solution à l'analyse des paramètres ainsi introduit. La vitesse d'explosion est alors pilotée par λ(t) et son comportement à l'approche du temps d'explosion; l'existence d'un point de concentration de la masse à l'explosion correspond à l'existence d'une limite forte pour α(t), t → T ; et l'excès de masse par rapport à une solution de masse critique est représenté par ǫ(t). Cette décomposition géométrique est la première étape dans la construction de solutions explosives dont on peut également déterminer le régime d'explosion.

La question du régime d'explosion a longtemps été problématique, la théorie ne retrouvant les prévisions numériques [START_REF] Papanicolaou | Singular solutions of the Zakkharov equations for Langmuir turbulence[END_REF] qu'avec les travaux de Raphaël et Merle [START_REF] Merle | The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation[END_REF], [START_REF] Merle | Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation[END_REF], [START_REF] Merle | On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation[END_REF]. Commençons par introduire un invariant des solutions de l'équation (6) :

E G (u) = E(u) - 1 2 Im ∇u u dx u L 2 2
On peut résumer rapidemment les régimes connus des solutions explosives aux données initiales légèrement sur-critiques u 0 ∈ B(η) de la façon suivante :

• Energie positive : si E G (u 0 ) > 0 et si la solution de (6) u(t) associée explose au temps T < +∞, alors pour des temps t suffisamment proches de T : • Energie négative : si E G (u 0 ) < 0, la solution est alors dans le régime du log-log.

* ou bien ∇u(t) L 2 ∼ log | log(T -t)| T -t 1/2 ,
Il est important de remarquer que les solutions de type S(t) sont instables, au sens où pour toute condition initiale u 0 engendrant une solution explosive de ce type, on peut trouver une autre condition initiale souscritique

v 0 ∈ { v -u 0 H 1 < η} ∩ { v L 2 < Q L 2 }
aussi proche de u 0 dans H 1 que l'on veut qui engendre cette fois une solution globale.

Classification des solutions explosives dans le cadre d'une géométrie particulière

Dans le cas d'une géométrie plane, Raphaël et Szeftel [START_REF] Raphaël | Existence and Uniqueness of minimal blow up solutions to an inhomogeneous mass critical NLS[END_REF] utilisent la méthode dite de modulation des paramètres géométriques pour obtenir un résultat d'existence et d'unicité de la solution explosive de type S(t) pour les niveaux d'énergies supérieures à une borne dépendant de l'inhomogénéité k : à supposer que la fonction k est assez régulière k ∈ C 5 ∩ W 1,∞ , bornée et atteint un maximum en un point non dégénéré x 0 ∈ R 2 tel que ∇ 2 k(0) < 0, alors pour toute condition initiale u 0 de masse critique

u 0 L 2 = Q L 2 et de niveau d'énergie E 0 = E(u 0 ) tel que E 0 + 1 8 ∇ 2 k(0).(y, y) Q 4 dy > 0
il existe une unique solution explosive associée, à déphasage près, qui concentre alors toute sa masse au temps d'explosion T en un Dirac au point

x 0 : |u(t)| 2 ⇀ Q 2 L 2 δ x=x0 , t → 
T ; qui plus est, cette solution est de moment nulle, la valeur de sa loi de conservation étant obtenue asymptotiquement : lim t→T Im ∇u u dx = 0.

Par ailleurs, utilisant un résultat de Merle [START_REF] Merle | Non existence of minimal blow-up solutions of equation iu t = -∆uk(x)|u| 4/N u in R N[END_REF], la condition d'existence d'un extremum de k en un point x 0 est nécessaire, ce qui permet de traiter le problème par perturabtions autour de ce point.

Cas où l'opérateur vaut ∆ g = 1 g(x) div G(x)∇

Dans une première partie, on remplace le Laplacien usuel ∆ par un opérateur introduisant des termes métriques : la fonction numérique g(x) et la matrice G(x). On suppose par ailleurs que le point x 0 en lequel k atteint son maximum est également point critique pour les fonctions g et G. Cette hypothèse pourra se justifier par l'étude variationnelle qui sera menée sur la décomposition géométrique utilisée, arguant qu'une déformation trop violente en ce point empêche l'explosion; ou plus simplement comme on le redira en comprenant que cette hypothèse peut être réduite à un bon choix de coordonnées. Pour plus de simplicité, on suppose encore que les valeurs de ces fonctions au point x 0 sont unitaires : g(0) = 1 et G(0) = Id. L'idée principale pour la preuve de l'existence d'une solution explosive en T = 0 de masse critique (pour la métrique induite g(x)dx) est d'obtenir une solution de masse critique approchée suffisamment précise et d'en déduire une solution exacte par intégration temporelle rétrograde depuis le temps d'explosion. La convergence de ce processus est assurée par des estimations des paramètres et des différents termes d'erreurs en jeu mettant en place une méthode de bootstrap : sachant qu'une fonction F (t) existe sur un intervalle [t 0 , 0) où elle est contrôlée en un sens assez assez précis pour assurer son existence sur un un intervalle [t 0η, 0), η > 0, on finit par assurer le prolongement de F (t) sur un intervalle [-1, 0) indépendant des estimées locales.

Afin de gérer les perturabtions par rapport à l'Hamiltionien du flot linéaire de Schrödinger, apportées d'un côté à la non linéarité par la fonction k, et d'un autre côté aux mesures des éléments géométriques par les termes métriques g et G, il faut modifier la fonctionnelle d'énergie et en mesurer les termes supplémentaires. Ceci est permis par une estimation d'énergie et un Viriel local dont on déduit une propriété de monotonie sur la fonctionnelle d'énergie grâce à laquelle on peut conclure l'existence.

Première étape : construction d'une solution approchée

De même qu'avec la seule inhomogénéité k, la décomposition géométrique (8) n'est pas suffisante pour mener à bien l'analyse par perturbations autour de l'extremum x 0 de k. En effet, le Ground-State Q est solution du problème linéarisé de Schrödinger mais pour y inclure les apports des fonctions k, g et G, on commence par affiner le profil autour duquel on va construire la solution approchée. On utilise alors les symétries de l'équation, en développant la solution u de (1) suivant l'ansatz

u(t, x) = 1 k(α(t)) 1/2 1 λ(t) v t, x -α(t) λ(t) e i γ(t) , ds dt = 1 λ 2 , y = x -α λ w(s, y) = v(s, y) e i b |y| 2 4 -i β . y (9) 
de sorte que l'on utilise la décomposition géométrique suivante pour u

u(t, x) = 1 k(α(t)) 1/2 1 λ(t) Q P(t) + ǫ(t) t, x -α(t) λ(t) e i γ(t) , lim t→0 ǫ(t) H 1 = 0 ( 10 
)
où P = (b, λ, β, α, γ) forme l'ensemble des paramètres géométriques par rapport auxquels on développe la solution, et où le passage en coordonnées réajustées (s, y) permet en quelque sorte de zoomer sur le processus d'explosion. Comme expliqué précédemment, la propriété λ(t) → 0, t → 0 symbolise l'explosion à l'approche du temps T = 0 en un Dirac, le comportement asymptotique de α(t) renseigne sur le le devenir du point d'explosion, alors que celui de ǫ(t) indique le sort de l'excès de masse, sa dissipation, la vitesse de son expulsion. De plus, en vertu du théorème des fonctions implicites, l'unicité de la décomposition (10) est assurée par un ensemble de conditions supplémentaires, dites conditions d'orthogonalités, puisqu'il s'agit de chercher ǫ = ǫ 1 + i ǫ 2 dans l'intersection d'un certain nombre d'espaces orthogonaux définis par

Q P = Σ + i Θ                          ǫ 2 , ∇Σ -ǫ 1 , ∇Θ = 0 ǫ 1 , y Σ + ǫ 2 , y Θ = 0 -ǫ 1 , ΛΘ + ǫ 2 , ΛΣ = 0 ǫ 1 , |y| 2 Σ + ǫ 2 , |y| 2 Θ = 0 -ǫ 1 , ̺ 2 + ǫ 2 , ̺ 1 = 0 (11)
Dans le cas homogène k ≡ 1, la solution explosive (7) obtenue par symétrie pseudo-conforme se retrouve

avec Q P + ǫ = Q(y) e -i b |y| 2 4 +i β . y où P est solution du système dynamique b s + b 2 = 0, λ s λ + b = 0, α s λ + 2 β = 0, β s + b β = 0, γ s + 1 = 0 (12)
dont les lois apparaissent dans le calcul de l'équation satisfaite par w et permettent ainsi de quantifier sur les paramètres la proximité voulue de la solution par rapport à la solution S(t). Les modifications apportées par l'équation (1) par rapport au cas plat et homogène vont maintenant se lire directement sur les lois de P, de sorte que la dynamique régissant le problème est maintenant de la forme

b s + b 2 = B 1 (λ, α, b, β), λ s λ + b = 0, α s λ + 2 β = 0, β s + b β = B 2 (λ, α, b, β), γ s + 1 = |β| 2 (13) 
Q P est l'approximation de v, c'est la version approchée du Ground-State précédant qui inclus dans sa construction les apports de k, g et G. Afin de mener à bien la preuve de l'existence d'une solution explosive, une précision à l'ordre 2 par rapport à P est nécessaire; cela étant, l'unicité nécessite de savoir gérer les erreurs jusqu'à l'ordre 4; de sorte que l'on détermine le profil Q P par son développement jusque l'ordre 4 par rapport à P. La construction de cette approximation Q P , comme solution du problème suppose encore quelques informations sur le noyau de l'opérateur linéarisé autour du Ground-State :

Q P = Q + 4 j=1 (T j + i S j ) + O(|P| 5 ), où L + T j = F j ∈ V ect(∇Q) ⊥ = Ker(L + ) ⊥ = Im(L + ), L + = -∆ + 1 -3 Q 2 L -S j = G j ∈ V ect(Q) ⊥ = Ker(L -) ⊥ = Im(L -), L -= -∆ + 1 -Q 2
Une fois le profil Q P construit, les fonctions B 1 et B 2 intervenant dans la dynamique (13) de P sont explicites. Une compensation algébrique providentielle dans le calcul du cas plat avait permis d'éviter de trop fortes perturbations et même en particulier d'assurer B 1 = 0. Ce n'est ici plus le cas. Alors que le système dynamique dans le cas homogène fournit des paramètres explicites du type λ(t) ∼ |t|, b(t) ∼ |t| avec une perturbation en O(|t| 3 ) dans le cas inhomogène plat, l'apport d'un terme B 1 = O(λ 2 ) ici est responsable d'une perturbation en O(|t| 2 ) du système dynamique précédent qui nous fait changer de régime. Dans la première partie, on choisit de suivre le plus longtemps possible les effets de cette perturbations, avant de l'annuler pour terminer la preuve, en ajoutant des hypothèses sur les dérivées secondes de g et G au point d'explosion, hypothèses que l'on relie ensuite à la courbure au point d'explosion.

Deuxième étape : calcul des invariants de masse, d'énergie du profil et de la solution approchée dont on déduit une première indication de taille sur le régime.

On cherche à estimer la stabilité de la méthode de bootstrap en supposant que l'on a une solution sur un intervalle de temps à gauche de l'explosion [t 0 , t 1 ], t 1 < 0, admettant une décomposition (10) avec les hypothèses

|P(t)| + ǫ H 1 ≤ C λ(t), t ∈ [t 0 , t 1 ] ( 14 
)
qui introduit le fait que le paramètre d'échelle λ est supposé contenir la taille du système P qui doit rester suffisamment petit, ainsi que le contrôle a priori sur l'excès de masse ǫ, qui doit lui aussi rester assez petit dans

H 1 ; et |u(t)| 2 g(x)dx -(1 + λ 2 ∆g(0) c) Q 2 dy ≤ C λ(t) 4 , t ∈ [t 0 , t 1 ] (15) 
qui introduit le fait que u est solution de masse quasi-critique. A noter que bien que trop perturbateur par la suite, on maintient le terme λ 2 ∆g(0) tant que possible afin de mieux voir son rôle dans la sortie du régime l'on essaie d'instaurer. La construction du profil Q P nous fournit un développement de sa masse et de son énergie jusque l'ordre 4 par rapport à P. Réinjecter ces développements dans les lois de conservations pour la solution u = 1 k(α) 1/2 λ (Q P + ǫ) e i γ fournit une estimation du type :

b 2 8 |y| Q 2 L 2 + |β| 2 2 Q 2 L 2 + c 0 2 ǫ 2 H 1 - 1 4 ∇ 2 k - 1 2 T r(G) (0).(α, α) Q 2 L 2 ≤ λ 2 E 0 + 1 8 C E + O P 4 + |α| 3 + λ 2 |α| + ǫ 3 H 1 + P 2 ǫ L 2 C E = ∆ k + g (0) |y| 2 Q 2 2 L 2 - 1 2 ∆ g + 1 2 T r(G) (0) + ∂ 2 ii G ii (0) + ∂ 2 12 G 12 (0) |y| Q 2 L 2 + 4 V (0) Q 2 L 2 (16) 
Dés lors que E 0 + 1 8 C E > 0, on obtient alors une première estimation de la taille des paramètres qui affine et stabilise (14) et va conditionner le régime. Au passage la minoration précédente sur l'énergie semble optimale en ce sens que sans elle on quitte a priori le régime où P est piloté par λ. Ceci sera confirmé dans la suite par l'étude variationnelle de la décomposition géométrique d'une solution.

A noter qu'avec l'hypothèse supplémentaire sur les dérivées secondes de g et G dont on a parlé précédemment, on pourra obtenir une amélioration de cette estimation des paramètres de P par rapport à λ :

|α| 2 + |β| 2 + P b λ - 1 C 0 ≤ C λ 4 , C 0 = lim t→0 b(t) λ(t) = y Q 2 L 2 8 E 0 + C E > 0 (17)
on pourra utiliser cette estimation dés que l'on aura besoin de l'hypothèse supplémentaire, comme une rétroaction afin de simplifier les calculs en négligeant notamment les termes en

O |α| 2 + |β| 2 + λ 2 (|α| + |β|) + λ 2 |α| |β| .
Par ailleurs, lorsque l'on réinjecte dans l'équation de la solution exacte v = Q P + ǫ celle vérifiée par le profil approché Q P , on obtient l'équation de l'excès de masse ǫ. De cette équation et du calcul des produits scalaires introduits par les conditions d'orthogonalités (11), on déduit un contrôle sur les lois des paramètres de P :

|b s + b 2 -B 1 -K b | + λ s λ + b + α s λ -2 β + |β s + b β -B 2 | + |γ s + 1 -|β| 2 -K γ | ≤ C λ 4 + λ 2 |α| + |α| 2 + λ 2 ǫ L 2 + ǫ 2 L 2 + ǫ 3 H 1 K b = -∇ 2 k(0).(α, α) C Q,1 - λ 2 2 α . ∇(∆g)(0), K γ = C Q,2 K b (18) où C Q,1 , C Q,2
sont des constantes dépendant seulement de Q. On obtient ainsi un premier résultat de consistance : on mesure ainsi de combien dévient les lois fixées pour les paramètres. On verra que cette déviation est suffisamment faible pour assurer la convergence de la méthode.

Enfin il faut noter qu'une information supplémentaire sur le régime qui influera sur la suite est contenue dans la conservation de la masse de la solution exacte et lie plus particulière la taille L 2 de l'excès de masse ǫ aux paramètres α et λ :

2 Re ǫ Q P g(λy + α)dy + |ǫ| 2 g(λy + α)dy = 1 2 ∇ 2 k -g (0).(α, α) Q 2 - λ 2 2 ∇ ∆g (0) . α |y| 2 4 Q 2 + O P 4 + |α| 3 (19)
Troisième étape : Intégration rétrograde et conservation de la petite taille des paramètres. Introdution d'une nouvelle fonctionnelle d'énergie calcul de sa dérivée temporelle.

On arrive ici au bout de ce qu'il est possible de faire avec cette méthode sans ajouter de condition supplémentaire sur les dérivées secondes de g et G. En effet, jusqu'à présent les loi des paramètres λ et β sont modifiés en (13) par l'introduction des termes métriques par l'ajout des fonctions B 1 et B 2 qui sont données par

B 1 = λ 2 2 K G,g + O P 4 + |α| 2 + λ 2 |α| K G,g = ∆g(0) -2 K 21 + 1 ∂ 2 ii G ii (0) -2 K 22 + 1 ∂ 2 p pG pp (0) -4 K 21 ∂ 2 12 G 12 (0) B 2 = λ c 0 (α) + λ 3 C 3 + O P 4 (20)
avec la notation {p, p} = {1, 2} et où K 21 et K 22 sont des constantes dépendant uniquement du Ground-State Q. Le problème s'illustre simplement lorsque l'on cherche à évaluer le ratio b λ . En effet utlisiant les lois de (13) on obtient avec (20

) b λ s = b s + b 2 -B 1 λ - b λ λ s λ + b + B 1 λ ∼ λ ceci implique donc après intégration en variable réajustée sur [s, s 1 ] : b λ (s 1 ) - b λ (s) = s1 s b λ s dσ ≤ C s1 s λ(σ) dσ = t1 t dτ λ(τ )
Une petite étude perturbative issue du cas homogène où λ(τ ) ∼ |τ | suggère que cette dernière intégrale n'a aucune raison d'exister. On constate alors très précisemment dans ce cas la sortie du régime instauré dans la partie précédente, avec maintenant b ≫ λ.

A partir de maintenant, on suppose donc K G,g = 0 ou plus simplement ∇ 2 g(0) = 0 et ∇ 2 G(0) = 0, ce qui permettra d'obtenir dans la dernière partie de l'existence les estimations plus précises (17) qu'on utlise dés maintenant pour simplifier les calculs.

On décompose encore la solution u = w + ũ où w représente la partie du profil Q P dans la déomposition (10) et ũ celle de l'excès de masse ǫ. On considère alors la fonctionnelle d'énergie modifiée selon les données du problème :

I = 1 2 G(x) ∇ũ . ∇ũ dx + 1 2 |ũ| 2 λ 2 g dx + b 2λ A G∇φ x -α Aλ . ∇ũ ũ g dx -k(x) F 4 (w + ũ) -F 4 (w) -F 4 ′ (w) . ũ g(x)dx -V (x) F 2 (w + ũ) -F 2 (w) -F 2 ′ (w) . ũ g(x)dx avec F 4 (u) = 1 4 |u| 4 , F 2 (u) = 1 2 |u| 2 (21) 
qui représente à O( ǫ L 2 ) près les variations homogénéisées des lois de conservation :

E(u) -E(w) + 1 λ 2 m(u) -m(w) + b 2λ M φ,A (u) -M φ,A (w) = I + O( ǫ L 2 ) avec m(u) = 1 2 |u| 2 g(x)dx, M φ,A (u) = Im A G∇φ x -α Aλ . ∇u u g(x)dx φ fonction C ∞ à support compact telle que ∇φ(y) = y, si |y| ≤ 1, et |∇φ| bornée, si |y| > 1
Quelques efforts de calculs permettent alors d'aboutir à une première estimation sur la dérivée temporelle de cette fonctionnelle :

dI dt ≥ b λ 4 |ũ| 2 g dx + O λ 5 + ũ 2 H 1 (22) 
Cette estimation associée à l'intégration temporelle rétrograde des lois de conservations et de l'estimation de leurs déviations déjà estimées en (18) permet d'obtenir un résultat de stabilité qui pourra être implémenté dans dans l'ultime procédé pour la preuve de l'existence : à supposer qu'il existe t 1 < 0 assez proche de 0 tel que

u L 2 g dx -1 + λ 2 (t 1 ) κ Q L 2 λ 4 (t 1 ), ( 23 
)
∇ũ(t 1 ) 2 L 2 + ũ(t 1 ) 2 L 2 λ 2 (t) λ 2 (t 1 ), (24) 
β λ (t 1 ) + α λ (t 1 ) λ(t 1 ), λ(t 1 ) + t 1 C 0 λ 3 (t 1 ), b(t 1 ) λ(t 1 ) - 1 C 0 λ 2 (t 1 ) (25) 
alors il existe un temps t 0 < t 1 dépendant seulement de

C 0 = y Q 2 L 2 8 E0+C E tel que pour tout t ∈ [t 0 , t 1 ], ∇ũ(t) 2 L 2 + ũ(t) 2 L 2 λ 2 (t) ∇ũ(t 1 ) 2 L 2 + ũ(t 1 ) 2 L 2 λ 2 (t 1 ) + λ 6 (t) (26) b λ (t) - 1 C 0 λ 2 (t) (27) 
λ(t) + t C 0 λ 3 (t) (28) α λ (t) λ(t), β λ (t) λ(t) (29) 
Quatrième étape : Existence d'une solution explosive de masse critique comme limite d'une suite par un argument de concentration compacité.

On commence par fixer une phase γ 0 ∈ R et un niveau d'énergie E 0 + 1 8 C E > 0. On prouve alors qu'il existe une solution u c ∈ C([t 0 , 0), H 3/2 ) explosive en T = 0, de masse critique u c L 2 g dx = Q L 2 , d'énergie E(u c ) = E 0 admettant une décomposition géométrique du type (10) pour laquelle l'excès de masse associé vérifie les conditions d'orthogonalité (11) et les paramètres correspondant satisfont aux estimations suivantes

u c L 2 λ 4 c , u c H 1 λ 3 c , u c H 3/2 λ 3/2 c , λ c + t C 0 = O λ 3 c , b c λ c - 1 C 0 = O(λ 2 c ), |α c | + |β c | λ 2 c , γ c = - C 2 0 t + γ 0 + O(λ c ) (30) 
Avec ces estimations, on vient ni plus ni moins de mesurer l'écart que prend le régime par rapport au cas plat et homogène à mesure que l'on approche du temps d'explosion.

La preuve est séquentielle et en deux temps. D'abord on construit u c comme limite forte H 1 d'une suite aux propriétés satisfaisantes. Ensuite on affine la régularité de cette limite par des estimations H 3/2 qui nécessiteront pour la première fois de s'intéresser aux propriétés spatiales asymptotiques du flot de l'opérateur ∆ g + V . Pour cela on sera amené à utiliser des outils d'étude du semi-groupe associé e i t (∆g+V ) , en particulier les inégalités de Strichartz, l'effet régularisant de Schrödinger, pour lesquels il faudra encore ajouter des hypothèses sur les termes métriques. Essentiellement que la métrique sous jacente est non captante, ou autrement dit qu'aucune géodésique périodique n'est engendrée par cette métrique.

On se donne donc une suite croissante de temps t n → 0 et u n la solution de (1) associée à la condition initiale donnée au temps t n par

u n (t n , x) = 1 λ n Q Pn(tn)
x λ n e i γn(tn) (31) où l'ensemble des paramètres au temps

t n P n (t n ) = b n (t n ), λ n (t n ), β n (t n ), α n (t n ) est défini par : b n (t n ) = - t n C 2 0 , λ n (t n ) = - t n C 0 , α n (t n ) = β n (t n ) = 0, γ n (t n ) = γ 0 - C 2 0 t n . ( 32 
)
de sorte que l'excès de masse associé ǫ n et son équivalent en coordonnées non-réajustées (t, x) vérifie ũn (t n ) = 0.

De plus le calcul de la masse du profil Q Pn implique le caractère quasi-critique de la masse de u n :

u n (t n ) 2 L 2 g dx = 1 + κ λ 2 n (t n ) Q 2 + O(t 4 n ) (33) 
A ce stade, la solution u n satisfait donc les hypothèses du résultat précédent au temps "t 1 = t n ", ce qui permet de lui appliquer une intégration temporelle rétrograde et prouve l'existence d'un temps t 0 < t n indépendant de n tel que la décomposition géométrique de la solution u n est valable sur [t 0 , t n ] :

u n (t, x) = 1 k(α n (t)) 1/2 1 λ n (t) Q Pn(t) t, x -α n (t)
λ n (t) e i γn(t) + ũn (34) avec la borne uniforme sur l'excès de masse

∇ũ n (t) 2 L 2 + ũn (t) 2 L 2 λ 2 n (t) λ 6 n (t), t ∈ [t 0 , t n ] (35) 
et les estimations associées à ( 27)-(29) sur les paramètres. Ceci étant fait, on prouve que (u n (t 0 )) est compacte dans H 1 afin d'en déduire une limite forte dans cet espace de Hilbert. Pour ce faire, on localise u n (t 0 ) en la multipliant par une fonction C ∞ à support compact du type χ R (x) = χ( x R ) où χ(x) = 0 pour |x| ≤ 1 et 1 pour |x| ≥ 2. On prouve alors les estimées pour tout

R > 0 χ R |u n (t 0 )| 2 1 R , χ R |∇u n (t 0 )| 2 1 R
ce qui permet ensuite de placer u n (t 0 ) dans un espace intermédiaire qui s'injecte de façon compacte dans H 1 . Ceci prouve qu'il existe alors une limite forte dans H 1 pour la suite (u n (t 0 )), que l'on note u c (t 0 ). On considère alors la solution, encore notée u c , de l'équation (1) avec condition initiale au temps t = t 0 donnée par u c (t 0 ). Par continuité du flot de Schrödinger pour ∆ g , pour tout temps t ∈ [t 0 , 0), la suite (u n (t)) converge donc fortement dans H 1 vers u c (t).

En décomposant la solution u c ainsi trouvée comme en (10) avec un sensemble de paramètre associé P c , par continuité de la décomposition, on obtient également P n (t) → P c (t) pour tout t ∈ [t 0 , 0). Par passage à la limite dans (33), on retrouve que la solution u c est de masse critique : u c L 2 g dx = Q L 2 . Par passage à la limite dans les estimations des paramètres de P n issues de l'application du résultat d'intégration de la partie précédente, on obtient les résultats de (30). Enfin, par passage à la limite dans la conservation de l'énergie, on retrouve un niveau d'énergie E 0 pour u c .

Comme expliqué précédemment, les estimées de régularité H 3/2 s'obtiennent par l'écriture implicite de la solution en utilisant la formule de Duhamel, puis par une application des inégalités de Strichartz et de l'effet régularisant du flot qui permettent de gérer les différents termes.

Cinquième étape : Complément d'étude des propriétés des paramètres. Premiers pas vers l'unicité.

Depuis le début de l'étude, on a utilisé une décomposition géométrique (10) d'une solution u avec diverses hypothèses sur les paramètres associées, sur les valeurs des fonctions caractérisant le problème au point

d'explosion (k(0) = 1, g(0) = 1, G(0) = Id) et sur le niveau d'énergie acceptable d'une solution (E 0 + 1 8 C E > 0).
On justifie maintenant ces hypothèses en étudiant quelles sont les conséquences d'une telle décomposition sur une solution. Certaines hypothèses deviennent des conditions nécessaires, on prouve que la minoration sur les niveaux d'énergie est optimale. On obtient également un résultat de dispersion de l'excès de masse à l'explosion, une indication sur la vitesse de dispersion, ainsi qu'une estimation affinée des paramètres géométriques.

Etude variationnelle de la décompoition géométrique et conditions nécessaire d'existence d'une telle décomposition sur les paramètres.

Dans un premier temps, on mène une étude variationnelle de la décomposition de la solution autour du Ground-State Q. Ceci afin de justifier la validité du régime dynamique de P grâce auquel la construction de la solution exacte a été rendue possible. Cela permet également de justifier un certain nombre d'hypothèses qui ont été faites, les rendant nécessaire dans un tel régime. A supposer que la solution u admet une décomposition géométrique de la forme

u(t, x) = 1 λ(t) Q + ǫ t, x -α(t) λ(t) e i γ(t) ,
on obtient des conditions de contôle par λ des paramètres de décomposition

|G(α) -Id| 1/2 + |g(α) -1| 1/2 + |1 -k(α)| 1/2 + ǫ(t) H 1 (R 2 ) ≤ C λ(t)
ainsi que la convergence du point de concentration et une minoration du paramètre d'échelle λ

α(t) -→ α * et k(α * ) = 1, g(α * ) = 1, de plus λ(t) ≤ C(u 0 ) |t|
On retrouve ainsi comme une condition nécessaire l'hypothèse de condition initiale qui a été choisie pour les termes métriques, à savoir qu'au point d'explosion que l'on a voulu en 0, on a g(0) = 1 et G(0) = Id. On remarque par ailleurs que durant cette étude apparaît également une condition sur le potentiel V ≥ V (0).

Ceci prouve également que la décomposition précédente va dans le bon sens puisque les paramètres associés (λ, α) sont dans un régime qui les fait tendre vers (0, 0) lorsque l'on se rapproche du temps d'explosion.

Pour des temps t assez proches de 0, on peut donc décomposer u selon (10) avec les paramètres de P(t) qui sont alors dans le régime décrit lors de la Deuxième étape avec ( 14), (15), ( 16) et (18).

Enfin, une fois dans ce régime, l'estimation (16) issue de la sommation des conservations de masse et d'énergie, fournit une condition nécessaire sur l'énergie, celle-là même que l'on avait imposée afin de contrôler la taille de P par λ, justifiant au passage son caractère optimal :

E 0 + 1 8 C E > 0
Dans un second temps, afin de tirer meilleur profit des estimations sur dI dt avec la fonctionnelle d'énergie I définie par (21), on cherche à affiner le contrôle sur les termes issus du moment. Exprimée dans les variables réajustées, cela débouche sur une estimation de type Viriel faisant intervenir une mesure de l'énergie sur l'excès de masse ǫ : la fonction de coupure φ étant définie comme précédemment, on peut trouver des constantes c, c > 0, et une constante A > 0 choisie suffisamment grande de sorte que pour des temps t assez proches de 0 : 

- b λ y Q 2 L 2 4 + 1 2λ Im A G(
+∞ s0 1 λ |α| 2 + |∇ǫ| 2 e - |y| √ A + |ǫ| 2 ds 1 ou encore 0 t |α| 2 λ 3 + 1 λ(t) ∇ũ(t) 2 L 2 exp - |x-α| √ Aλ dx + ũ(t) 2 L 2 λ 2 dt (37)
Dispersion de l'excès de masse.

On cherche ensuite à prouver un résultat de dispersion de l'excès de masse ǫ dans H 1 . Autrement dit, on veut montrer que ũ(t) → 0 dans H 1 : la solution que l'on a construite explose au temps T = 0, au point x 0 = 0 avec toute la masse contenue dans le profil Q P , et seulement cette masse. Tout supplément de masse est comme spatialement éjecté vers l'infini et aura disparu à l'heure de l'explosion.

Ce résultat de convergence vers 0 du reste ũ s'obtient en deux temps, traitant séparemment les cas du voisinage du point d'explosion et son complémentaire, des points situés loin de ce point. Afin de ne pas alourdir le problème d'hypothèses suplémentaire, on prendra ces régions de la forme {|x| ≥ 3 η} et {|x| ≤ 3 η} où η > 0 est une constante assez petite pour tirer profit des hypothèses g(0) = 1, G(0) = Id et assurer que g et G sont assez proches de 1 et Id respectivement sur {|x| ≤ 3 η}.

Pour le cas de la région 'loin du point d'explosion', on cherche d'abord à obtenir une estimation L 2 t H 3/2 loc de l'excès de masse ũ qui vérifie l'équation

i ∂ t ũ + (∆ g + V )ũ = -R -k(x) |ũ| 2 ũ ( 38 
)
où la fonction R contient l'équation du profil ainsi que les termes linéaires et quadratiques dans le développement autour du profil de la non-linéarité. Afin de se concentrer sur l'apport principal que constitue ce terme R dans l'équation de ũ, on considère l'unique solution ζ de l'équation

i ∂ t ζ + (∆ g + V ) ζ = -k(x) |ũ| 2 ũ, ζ(0) = 0 On cherche alors à obtenir une estimation L 2 t H 1 loc de w = D 1/2 (ũ -ζ) où D = (1 -∆) 1/2 qui fournira alors l'estimation L 2 t H 3/2
loc voulue sur ũ, puisque l'effet régularisant du flot de Schrödinger linéaire associé aux inégalités de Strichartz assurent un contrôle suffisant sur ζ.

Pour estimer w, on procède ici aussi à une régularisation de w par une bonne fonction radiale de coupure dont on contrôle la dérivée seconde χ ′′ = 1 sur la couronne 2 η ≤ |x| ≤ 4 η, nulle au voisinage de 0 et rapidemment décroissante hors de cette couronne. Ceci afin que le calcul de la variation du moment ainsi localisé de w, soit 1 2 d dt Im ∇χ . ∇ w w g dx, mène à un contrôle H 1 de w grâce à un passage en coordonnées polaires

0 t0 ∇ w 2 L 2 (2η≤r≤4η) dt ≤ C + x D 1/2 R 2
L 2 < +∞ la dernière borne s'obtenant au prix de quelques efforts de calcul pseudo-différentiel. On implémente alors cette méthode pour obtenir une borne uniforme dans H 1 en procédant encore par régularisation de ũ avec cette fois une simple fonction de coupure ψ = 0 sur |x| ≤ 2 η et ψ = 1 sur |x| ≥ 3 η. L'application des inégalités de Strichartz couplées à l'effet régularisant à la fonction w = ψ ũ permet alors de conclure w L ∞ [t0,0);H 1 → 0 quand t 0 → 0, ce qui assure la dipersion loin de l'origine.

Afin de propager la dispersion à la région autour du point d'explosion, on commence par obtenir un résultat de dispersion en moyenne de ũ qui lisse les éventuels effets trop violents

lim t→0 1 |t| 0 t 1 |τ | 0 τ ũ 2 H 1 (R 2 ) dσ dτ = 0
Ce résultat est encore une fois basé sur une bonne localisation de ũ avc une fonction de coupure, une estimation du moment localisé associé qui permet des estimations H 1 contrôlés par des termes de reste du type de la fonction R, et l'utilisation de l'estimation (37) sur la taille en moyenne des paramètres α et ǫ issue du Viriel local basé lui aussi sur une minoration d'un moment localisé.

Enfin, un résultat du même type de dispersion en moyenne, sur les quantités α λ , β λ basé sur le calcul des lois de α, β et λ associé à (39) donne lim t→0 A partir de là, en réinjectant cette suite de temps dans l'estimation (16) issue des lois de conservations, on obtient la convergence de b(tn) λ(tn) → 1 C0 , lorsque n → +∞ avec C 0 définie comme on l'avait annoncé en (17). En reprenant la loi du Viriel local (36) et en l'intégrant entre t et t n , puis en faisant tendre n vers +∞, on obtient avec une utilisation combinée de (16) et de la limite finie de b λ une amélioration des estimations sur les paramètres de

1 |t| 0 t 1 |τ | 0 τ |α| 2 λ 2 + |β| 2 λ 2 + ǫ 2 H 1 λ 2 dσ dτ =
P |β| + |α| + ǫ H 1 λ 2 , b(s) λ(s) - 1 C 0 λ 2 , λ(t) = - t C 0 + O |t| 3 , pour tous t 0 ≤ t ≤ 0 De plus, il existe γ 0 ∈ R tel que γ(t) = - C 2 0 t + γ 0 + O |t| (40) 
qui conclut à la fois la preuve de la dispersion, de l'estimation améliorée annoncée par (17), ainsi que la caractérisation des paramètres associés à la décomposition géométrique d'une solution. On achève là aussi la preuve de l'existence.

Sixième étape : Unicité.

On a maintenant construit une solution exacte u c de (1). On cherche à prouver que dans les conditions du Théorème énoncé au début de ce cas, c'est aussi la seule. Pour cela, on suppose qu'il en existe une autre u, et on cherche à prouver que u = u c . On procède en trois étapes.

u converge vers u c dans H 1 .

On commence tout d'abord par prouver la proximité asymptotique des solutions u et u c dans H 1 et plus précisemment l'estimation

∇(u -u c ) L 2 + u -u c L 2 |t| ≤ C |t| 3 , quand t → 0 (41)
Pour comparer ainsi u et u c , il faut d'abord comparer les paramètres associées aux décompositions P et P c . On utilise là de façon déterminante les raffinements issus de (17) afin d'obtenir

|λ -λ c | |t| + |b -b c | + |α -α c | |t| + |β -β c | + |γ -γ c | ≤ C |t| 4
Estimation d'énergie pour u autour de u c .

On décompose ensuite la solution u autour de u c selon

u = u c + ũ, ũ(t, x) = 1 k(α c (t)) 1/2 λ c (t) ǫ x -α c (t) λ c (t) e i γc(t) (42) 
Il faut alors faire bien attention : il ne s'agit plus ici d'une décomposition géométrique autour du Ground-State comme on l'a fait depuis le début. On perd donc les conditions d'orthogonalités et les estimations qui en découlaient pour contrôler ǫ. On peut néanmoins utiliser les estimations (30) issues de la construction explicite de u c ainsi que (41) pour déduire

ũ L 2 λ + ũ H 1 ≤ C λ 3 (43) 
Afin de conclure, on va justement regarder ce que deviennent les produits scalaires intervenants dans les conditions d'orthogonalités précédentes

Scal(t) = ǫ 1 , Q 2 + ǫ 2 , ΛQ 2 + ǫ 1 , |y| 2 Q 2 + ǫ 2 , ̺ 2 + ǫ 1 , y Q 2 + ǫ 2 , ∇Q 2 (44)
en les comparant à l'estimateur d'énergie

N (t) := sup t<τ <0 ũ(τ ) 2 H 1 + ũ(τ ) 2 L 2 λ 2 c (τ ) (45) 
En utilisant les estimations (30) et le même type de développements qui avaient conduit au estimations la dérivée temporelle de la fonctionnelle d'énergie (21), on obtient une première estimation

N (t) ≤ C sup t<τ <0 Scal(τ ) λ 2 c (τ ) + 0 t Scal(τ ) λ 3 c (τ ) dτ (46) 
Contrôle sur les produits scalaires des conditions d'orthogonalité.

Grâce à un contrôle plus précis de ũ sur le noyau de l'opérateur linéarisé (qui correspond aux conditions orthognales) de la forme

Scal(t) ≤ C |t| 1/2 |t| 2 N (t) (47) 
on peut conclure à l'unicité. En effet, sachant que λ c ∼ |t| d'après (30), réinjecter ce dernier résultat dans l'estimation précédente (46) aboutit à N (t) ≤ C |t| 1/2 N (t) pour t assez proche de 0. Ceci permet d'affirmer que N (t) = 0 pour t assez proche de 0, et donc par définition de N que u = u c .

Ce résultat s'obtient là encore par une réécriture précise des équations des différentes parties des décompositions en jeu, ainsi que d'estimations précises sur chaque produit scalaire, de la même manière que l'on avait précédemment calculé les lois des paramètres.

Cas où ∆ g est vu comme un opérateur de Laplace-Beltrami sur une variété riemannienne

On se place maintenant dans un contexte plus géométrique en supposant que l'on travaille sur une variété riemannienne (M, g). Le problème (1) est toujours bien posé au moins localement comme on le voit par exemple avec [START_REF] Burq | The Cauchy problem for the nonlinear Schrödinger equation on compact manifold[END_REF], [START_REF] Burq | Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces[END_REF]. Dans le cas précédent, on a vu que les dérivées secondes des termes métriques g et G ont été une vraie opposition à la méthode employée, notamment dans l'intégration temporelle rétrograde, avec une perturbation qui a'avère non intégrable. Ces dérivées secondes sont liées à la courbure au point d'explosion de la surface R 2 sur laquelle on considère la métrique induite par les termes g et G, comme on tente de l'expliquer en Appendice ??. On souhaite donc appliquer la méthode décrite dans le cas précédent avec cette fois une mise en avant du rôle de cette courbure. Pour cela on va utiliser une idée inspirée de [START_REF] Banica | Minimal blow-up solutions to the mass-critical inhomogeneous NLS equation[END_REF], qui pour nous va consister à intégrer dans le profil Q P les contributions de la métrique par une modification de l'ansatz (9).

On commence par mener une discussion sur la meilleure description à choisir pour la métrique. Etant donné que le phénomène d'explosion est local, et ne voit finalement pas tellement les contributions hors de la région du point d'explosion, à part comme on l'a vu dans le cas précédent lors des troisième et quatrième parties dans lesquelles on a besoin d'informations sur le comportement du flot à l'infini afin d'utiliser les outils techniques que sont les inégalités de Strichartz et d'effet régularisant pour obtenir de bonnes estimations, on choisit de décrire la métrique seulement localement autour du point d'explosion. Etant donnée la variété (M, g), on étudie donc le problème (1) associé à l'opérateur de Laplace-Beltrami, qui s'écrit en coordonnées locales

∆ g = 1 |g|(x) ∂ i |g| g ij (x) ∂ j , (g ij ) =
écriture matricielle en coordonnées locales de g (g ij ) = écriture matricielle de l'inverse de g, |g| = det(g ij )

Au point x 0 ∈ M en lequel on souhaite réaliser l'explosion comme précédemment, on considère autour de x 0 une carte géodésique normale polaire. A noter que l'on cartographie ici aussi la région du point d'explosion x 0 par un ouvert autour de 0 dans R 2 associé à une care normale. Il est intéressant de se placer dans une carte normale dans la mesure où cela rend automatique la nullité ∇g(x 0 ) = 0. Au moins localement, en notant κ(0) la courbure au point x 0 , on écrit la métrique sous la forme

g = Id - κ(x) 3 x 2 2 -x 1 x 2 -x 1 x 2
x 2 1 + r 3 g 3 (r, θ), (r, θ) coordonnées polaires associées à x dans R 2 κ, g 3 des fonctions régulières (48)

A partir de là, il conviendrait de considérer d'une part une écriture pour g valable dans cette zone autour du point d'explosion, d'autre part une écriture loin de la région d'explosion, et de les recoller en utilisant par exemple une fonction de coupure. Ceci dit, pour s'épargner des lourdeurs de notations on prend le parti de mettre le point de vue local au centre du problème en globalisant l'expression précédente de g. On suppose donc qu'il existe une carte globale dans laquelle g est de cette forme. Ainsi pourra-t-on suivre le chemin de la courbure κ(0) dans la méthode. On retraduit alors les hypothèses asymptotiques spatiales du flot de ∆ g nécessaires à l'application des inéglités de Strichartz et de l'effet régularisant par des hypothèses sur κ et g 3 . Grâce aux hypothèses 

(H1) g ∈ C 5 ∩ W 1,∞ admet l'expression globale (48) (H2) k ∈ C 5 ∩ W 1,∞ , 0 < k 1 ≤ k(x) ≤ 1, k(0) = 1, ∇k(0) = 0, ∇ 2 k(0) + max 0, κ 0 3 Id < 0, κ 0 = κ(0) = coubure Gaussienne de M en 0, (H3) V ∈ C 3 ∩ W 1,∞ , V ≥ V (0) (H4) c 0 = T r g 3 (0) = 0, ∇ 3 k(0) = 0, ∇V ( 
C E = 1 8 ∇ 2 k(0) + κ 0 3 Id .(y, y) Q 4 dy + 1 2 V (0) + κ 0 3 Q 2 dy
il existe une solution à (1) de masse critique u(t) L 2 (dg) = Q L 2 , d'énergie E 0 , explosant au temps T = 0, au point x 0 avec toute sa masse Ici, on favorise l'écriture en coordonnées polaires pour une autre raison : les calculs de la partie précédente prouvent que le profil Q P = Q + T 2 + O(P 3 ) est radial en coordonnées ajustées, au moins jusqu'à l'ordre 2. On va tâcher ici d'en profiter.

|u(t)| 2 ⇀ Q 2 L 2 δ x=x0 , lorsque t → 0,
De même que précédemment, on considère d'un côté les variables spatio-temporelles de départ (t, x), et de l'autre des variables ajustées au problème (s, y) définies avec les paramètres d'échelle et de translation intervenants dans la décomposition géométrique comme en (10). A noter que ces paramètres (λ, α, γ) devraient dépendre de la coordonnée x utilisée pour les définir, c'est à dire de la carte sur laquelle on travaille. On voit bien ici qu'en supposant l'existence d'une carte globale dans laquelle exprimer la métrique, et ainsi tous les calculs, on s'est également épargné un recollement sur les paramètres pour obtenir une définition globale sur toutes les cartes. Ainsi ayant défini globalement une variable x vu maintenant comme élément de R 2 , on défini globalement des paramètres (λ, α) grâce auxquels on définit encore les variables (s, y) telles que y = x-α λ et ds dt = 1 λ 2 . On note encore (r, θ) les coordonnées polaires associées à x, et (ρ, ω) les coordonnées polaires associées à y.

Afin d'incorporer les modifications métriques sur la solution, on considère maintenant l'ansatz suivant : Après la définition des nouvelles lois régissant le système dynamique que doit vérifier P, et la construction jusque l'ordre 4 du profil, on constate que l'action de ∆ g sur QP peut en effet se résumer à

u(t, x) = ρ ϕ 1/2 1 k(α(t))
∆ g QP = ∆ + V ϕ ) QP + O λ 3 + |α| 2 O ∇ 2 QP V ϕ = κ 0 3 λ 2 + O(λ 3 ) potentiel résiduel (52) 
De même que dans la Cinquième étape précédente, on peut prouver des estimations sur les paramètres comme en (17) qui s'avèrent plus précises que celles obtenues par les lois de conservations comme en (16). Néanmoins, la correction métrique continue de perturber les paramètres géométriques qui deviennent a priori moins petits que précédemment. Avec le même état d'esprit que celui du cas antèrieur, on pousse le raisonnement aussi loin que possible, avec aussi peu d'hypothèses que possible. On est donc amené à n'avoir à dispositions que les estimées :

|α| + |β| + ǫ H 1 λ 3/2 , b ∼ λ, 0 < µ λ 3 avec µ s = b |α| 2 , µ(t) = t 0 b(τ ) |α(τ )| 2 λ 2 (τ ) dτ (53) 
Cette restriction, se ressentira donc jusque dans la dispersion H 1 de l'excès de masse qui ne s'effectuera plus assez vite pour assurer l'unicité. Il faudra alors inclure l'hypothèse (H4) afin de supprimer le frein métrique et de retrouver des estimées du type (17) avec lesquels on pourra reproduire la méhode déjà employée au cas précédent, et ainsi récupérer l'unicité.

On reprend alors toute la méthode décrite lors du cas précédent. Les idées sont les mêmes, mais les calculs sont assez différents, parfois plus techniques, mais aussi d'expression plus élégante, notamment parce que le profil QP mieux adapté au problème est en quelque sorte plus proche du Ground-State associé.

Conclusion

Pour finir, les enseignements de cette méthode aboutissent à une meilleure compréhension de ce que peut être un phénomène d'explosion en présence de termes métriques. La courbure au point d'explosion semble être le bon paramètre à regarder et à inclure dans le traitement des solutions. Les termes métriques semblent agir comme un frein, un obstacle à la méthode de modulation des paramètres de décomposition géométrique d'une solution autour du Ground-State du problème. Cependant avec des ajouts assez simples d'hypothèses comme un simple décalage sur la borne de la Hessienne de la fonction d'homogénéité proportionnel à la courbure au point d'explosion ont suffit à assurer l'existence d'une solution explosive de masse critique. Pour obtenir l'unicité, il faut encore regarder la vitesse à laquelle évolue la courbure en ce point.

Il semble par ailleurs qu'une adaptation de ce travail à des dimensions supéreures soit possible au simple prix de quelques soucis techniques principalement issus de la régularité de la non linéarité en dimension supérieure.

Une modification métrique dans la résolution de Schrödinger non linéaire avec des fonctions explosives dans un régime de type log-log paraît également possible.

  0 dont on déduit l'existence d'une suite de temps t n → 0 pour laquelle lim n→+∞ |α(tn)| λ(tn) + |β(tn)| λ(tn) + ǫ(tn) H 1 λ(tn) = 0.

0) = 0 (

 0 H5) : Toute hypothèse nécessaire pour appliquer Strichartz et l'Effet régularisant On obtiendra finalement le résultat plus concis et plus élégant suivant : à supposer que les fonctions k, V and g vérifient (H1) -(H3) et (H5), alors pour tout niveau d'énergie E 0 tel que E 0 + C E > 0, où

  dans L 2 (dg) De plus, on obtient une valeur nulle du moment à l'asymptote temporelle lim t→0 Im ∇u u dg x = 0Par ailleurs, l'hypothèse (H4) assure l'unicité à déphasage près de la solution précédente.

  une intégration en temps ajusté fournit une estimation plus précise sur α et ǫ et va s'avérer très utile :

	≥	c λ	|α| 2 + |∇ǫ| 2 e	-	λy + α) ∇φ A dy + |ǫ| 2 dy + O A ǫ 2 y A . ∇ǫ ǫ g dy H 1 + P 3 + |β| 2 s |y| √	(36)
	Sachant que d'après (16) le premier terme est borné puisque contrôlé par b λ +	ǫ 2 H 1

λ ≤ C,

  est une fonction choisie de sorte que la transformation pécédente aplanisse à un ordre suffisant l'action de l'opérateur ∆ g sur le nouveau profil QP . En choisissant

							1/2	1 λ(t)	ṽ t,	x -α(t) λ(t)	e i γ(t) ,	ds dt	=	1 λ 2 , y =	x -α λ	(49)
	w(s, y) = v(s, y) e i b |y| 2 4 -i β . y		
	associé à la décomposition géométrique suivante pour u
	u(t, x) =	ρ ϕ	1/2	1 k(α(t)) 1/2	1 λ(t)		QP(t) + ǫ(t) t,	x -α(t) λ(t)	e i γ(t) , lim t→0	ǫ(t) H 1 = 0	(50)
	où ϕ ϕ(λ, ρ, ω) = ρ exp -	κ 0 6	(λρ) 2 +	c 0 2	(λρ) 3 = ρ 1 -	κ 0 6	(λρ) 2 +	c 0 2	(λρ) 3 + λ 4 Φ	(51)