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Résumé

Ce travail cherche a comprendre comment 1’ajout d’une géométrie non euclidienne dans un probléeme
de Schrodinger non linéaire influe sur ’existence et 'unicité des solutions explosives de masse critique. On
s’inspire pour beaucoup des travaux de Merle et Raphaél sur la méthode de modulation des parametres
d’invariance géométrique pour une EDP qui posséde de bonnes lois de conservations. On s’appuie ici
plus particulierement sur larticle de Raphaél et Szeftel | ] qui prouve l'existence et I'unicité d’une
solution de masse critique en dimension 2 pour l’équation de Schrddinger non linéaire avec potentiel
d’inhomogénéité devant la non-linéarité, et qui explose par ailleurs au maximum de I'inhomogénéité.

Dans un premier temps, il s’agit de reprendre la méthode dans son ensemble afin de 'adapter a des
cas ou la Laplacien n’est plus plat, mais remplacé par un opérateur du type £ = ﬁ div(G(x) V) +V(x)
afin de comprendre le role qu’une déformation de type métrique peut jouer dans le processus d’explosion
des solutions de Schrodinger.

Ayant mis en avant le role de la courbure au point d’explosion, comme des conditions sur les déri-
vées de G et g, on reprend dans un deuxieéme temps I’étude du début dans le cas plus général d’une
variété riemannienne. Le Laplacien est alors remplacé par un opérateur de Laplace-Beltrami A, pour
une métrique g, et grace a un ansatz sur la solution qui inteégre maintenant la transformation induite
par la métrique, on est capable d’énoncer un résultat d’existence et d’unicité similaire & celui de [ 1,
en termes de conditions géométriques sur la variété elle méme. Par soucis de simplicité, on se limite
néanmoins au role local de la métrique, en supposant la métrique définie globalement dans une certaine
carte, et asymptotiquement équivalente & la métrique euclidienne.

Mots-clefs : équation de Schrédinger non linéaire en dimension 2, lois de conservations et d’invariances
géométriques du flot de Schrodinger, inégalités optimales de Gagliardo-Nirenberg et définition variationnelle
du Ground-State, Théoreme de Merle, méthode de modulation des parametres d’invariance géométrique,
géométrie riemannienne en dimension 2.

Blowing-up solutions of the Shrédinger equation on a riemannian
manifold.

Abstract

The present work aims at investigating the effects of a non-euclidean geometry on existence and
uniqueness results for critical and blowing-up NLS solutions. We will use many ideas from the works of
Merle and Raphagl, particularly ideas for modulation of the geometric invariants parameters. We will
rely more specifically on | ] for existence and unicity of a critical mass solution in dimension two of
the nonlinear Schréodinger equation with inhomogeneous potential acting on the nonlinearity, and which
blows up where the inhomogeneity reaches its maximum.

At first, we consider a generalized Laplacian operator £ = ﬁ div(G(x) V) + V(z) and deploy the
classical ansatz method to point out difficulties inherited from the non-flat metric terms, and in particular
the key role played by the curvature at the blow-up point.

In a second part, we reproduce the method when modifying the geometrical ansatz on which the
parametrix is constructed, and investigating more precisely what is needed for existence and then unicity
when dealing with an operator Ay + V, where A, is the Laplace-Beltrami operator associated with
the metric g. For simplicity, we shall only consider the role of g locally around the blow up point we
are constructed, by assuming g is globally defined in some map, and asymptotically equals the usual
euclidean metric.

Keywords : nonlinear Schrédinger equation in dimension 2, conservations and geometrical invariance
laws, optimal Gagliardo-Nirenberg inequalities and variational definition of the Ground-State, Merle’s The-
orem, modulation metod of geometrical invariance parameters, basic of riemannian geometry in dimension

2.
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Introduction

What is so important about studying the Schrodinger equation and its solutions properties ? Since the
equation itself was first formulated in the mid 20’s by Austrian Physicist Erwin Schrodinger, it has been a
first step into the quantum world for many students as a quantum mechanics equivalent of the Newton’s
second law of motion : how does a quantum system evolve through time ?

As a key topic for quantum mechanics, it has of course been discussed for decades, and many interpreta-
tions, refinements have been proposed so the equation would describe even more complex physical systems.
For instance, while the simple equation is linear, has good invariance properties that passes on the solutions,
adding nonlinear or semilinear terms may yields to modelling nonlinear optics, lasers or plasmas, which
proves much more challenging to handle. In many cases, the seemingly simplicity of the resulting equation
goes with an ordeal when trying to find solutions analytically, and one is quickly compelled to use modelling
through computer science to solve an issue.

In the last thirty years or so however, the nonlinear Schrodinger equation has been the center of many
mathematical studies which aim at giving tools for a better understanding of PDE’s. The theory of global
existence or blow-up solutions for NLS has been developed in relation with the theory of Ground States, that
is solitons which are special periodic solutions to the Hamiltonian system. It is therefore of great interest to
investigate the stability of these special solutions, and to describe the flow around these solutions.

Among special cases, the self-focusing nonlinear Schrédinger equation i9;u + Au + ulu[P~! = 0 has been
one of the most studied, as it intervenes in plasma theory or nonlinear optics. It has also been described
in terms of stability depending on which side it is from a L2-subcritical region 1 < p < 1+ 2, or a L?-
supercritical one p > %. For any initial condition ug € H'!, the associated NLS problem has a unique global
in time solution. The critical cas p = % has been dealt with thanks to the Merle Theorem which states all
the solutions are given by the Ground State up to geometrical invariances modifications, and blow up in
finite time. The so-called log-log result of Merle and Raphaél then deal with some supercritical cases, which
are close enough to the critical mass, and provided some energy bound holds, then there is still a unique
blowing up solution.

The critical case appears to hold a particular role in the classification of NLS solutions, as one may see
that for any datum ug € H', if |Juo||z> < ||Q]| 2, where @ stands for the corresponding NLS Ground State,
then the associated solution w is global in time. The result was proven on R, and as a Master Thesis, I have
proven the result still holds on a compact and complete riemannian manifold. The stability of the solutions
around the critical case, even in some non euclidean special context is the key to what we are doing here
using the fact that even with some deformations on the nonlinear terms or on the metric, the solution should
look like a deformation of some arranged Ground State.
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1 Introduction and modulation tools

1.1 The Inhomogeneous NLS with a smooth metric

We study the 2 dimension NLS equation with nonlinearity potential k, a metric defined by nonnegative
function g, symmetric matrix G, and a potential V :

10w + ﬁ div(G(z)Vu) + k(2)[ul*u+V(z)u=0, (t,z) €[0,T) x R? (1.1)

u(0,z) = ug(z), wup:R* — Ce H! (1.2)

We first recall some results established in the case g =1, G =1 and V = 0, when £ = A is the usual
Laplace operator.

1.1.1 The flat homogeneous case.
For any dimension N, when k(x) = kg, the L?-critical NLS problem may be written as

i+ Au+ [u[*Nu=0, (t,z)€0,T)xRY
u(0,z) = ug(x), wuo:RY — Cec H! (1.4)
and given an initial datum uy € H'(RY), it is a well known fact (see | ] or | ]) that equation

(1.1)-(1.2) is well-posed, with solutions u(t) € C([0,T), H'(R"Y)) that satisfy the following conservation
laws

Conservation of Mass : / lu(t)|? do = / luo|? dx

1
2+ &

Conservation of Energy :  E(u(t)) = % / |Vu(t)|* de — / |u(t)|2+% dz = E(uo)

Conservation of Momentum : M (u(t)) = Zm /EVU dz = M (uy)

and a large group of H! symmetries which leaves the flow invariant, that is, if u solves (1.3), then so does
B0 (p B ,
v(t,x) = )\éV/Q u(t +to, Aoz + zo — Bo t) el (1_70’5) el o
for any (Ao, %0, %0, B0,70) € Rf x R x RN x RN x R

Moreover, a last symmetry which does not lies in the H' energy space, but in the virial space ¥ = {zu €
L?} N H! is the pseudo-conformal invariance. Whenever u solves (1.3) then so does

v(t,z) = LU Lz R
N2 Tt
Let @ be the unique nonnegative radially symetric solution to the elliptic equation (see | | for existence
and | | for uniqueness)

AQ+QYF —Q=0

@ is the so-called ground state solution, and all solutions to

A¢+¢’|¢|%*¢:0, »€ HY(RYN), ¢(x) >0 are a translate of Q

In | ], thanks to the the variational characterization of @), Weinstein gives a simple but powerful
criterion to find out whether a NLS solution with H'! initial datum blows up or not :
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either |luo|lr2 < [|Qkollrz then T =400
or |luollpz > |QkellLz  then both T < +o0o and T = 400 may happen

Then, at the critical mass threshold, the pseudo conformal symmetry applied to the periodic solitary
wave solution u(t,z) = Q(x) €'t yields a minimal mass blow up solution

1 T\ =2
S(t0) = g Q7)€ T 15Ol agan, = 1@l ey
that blows up at time ¢ = 0. In] ], Merle proves that solution is the only critical mass blow up

solution : if u € H! is solution to (1.3)(1.4), with |jug||z2 = ||@Q||z> and blowing up at ¢t = T, then u(t) is
equal to S(t), up to the symmetries of the flow, so that u is given by

N/2 2 2
_(w wz—z) _ i [o- =]
u(t,x) = (T—t) Q( T wxo>e
w>0 0eS zoeRY, z, eRY,

1.1.2 The flat inhomogeneous case.

In the usual euclidean case g = 1, the introduction of a smooth bounded inhomogenity & : R2 — R raises
the problem of how to treat NLS solutions when symmetries are lost, among which the pseudo conformal
symmetry and thus the explicit description of blowing up solutions that had been deduced. Notice both
conservation of Mass and conservation of Energy still hold, while the Momentum now varies with time ¢ :

Conservation of Mass : / lu(t)|? do = / luo|? dx

1
2+ &

1 4
Conservation of Energy :  E(u(t)) = 5 / |Vu(t)|? do — /k(ac) [u(t)|**~ dz = F(u)

Variation of Momentum : %Im/ﬂVU dx = % /Vk(x) |u(t)|2+%

Merle also initiated the study of the inhomogeneous case in | ]. In the case N = 2, given k > 0, one
now defines ), as

Qu(r) = 75 Q). = € B

Let

ko = maxk(x) < +00
z€R?

then for small initial data that satisfy

l[uollz2 < My = || Qs | 2

the associated (1.3)-(1.4) solutions are global and bounded in H!, while blow up may occur for solutions
with big initial data ||ug||zz > M. Moreover, Merle obtained a more precise result about the localization of
the concentration point, and a non existence criterion for critical blow up elements :

Theorem. (] /)
Assume that k € C1(R?).

- Localization of the concentration point :  Let u € H* with ||ul|z2 = My, be a solution to (1.3) blowing
up at T = 0. Assume that {x € R? such that k(z) = ko} is finite. Assume that there is § > 0 and
R > 0 such that k(z) < ko — & for |z| > R. Then there is o € R? such that k(xg) = ko and

|U(t)|24||Qk(m0)|‘ig5xzmo as t—0

9
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- Criterion of non existence : Assume that k(z¢) = ko and
Vk(z). (x —x0) < —|z — 20|* T near zo and for some g > 0 (1.5)

then there is no critical mass blow up solution at xg.

In particular, it follows from this theorem that blow up must occur at some point for which k reaches its
maximum, so it satisfies Vk(xg) = 0, and the repulsivity condition (1.5) implies a blow up solution may not
exist at some point for which Vk(zg) # 0.

Now, Banica, Carles and Duyckaerts | | prove the existence of critical elements for any point z
where k is smooth enough, that is Vk(xg) = V2k(zg) = 0 : after linearizing the problem close to the
explicit S(t) approximate solution, they use modulation theory and energy estimates to treat pertubatively
the unstable modes and integrate the system backwards from the singularity.

In that approach, the problem is treated pertubatively from the homogeneous case. Then, in the case
of smooth k with non degenerate Hessian at zg, V2k(zo) < 0, Raphaél and Szeftel prove in | ] both
a necessary condition for existence of a critical blow up solution, and a existence and uniqueness theorem,
focusing their proof on the case N = 2.

They assume k satisfies

keC®nwh>®  0<k <k(z)<1, m%xk(x) =1 is attained (1.6)
zER?

so that the critical mass is My = [|Q|| 2.

Proposition. Let u with ||u||p2 = ||Q||L2 be a solution to (1.3)-(1.4) for N = 2, which blows up at time
T =0, then there exists o € R? such that

k(l‘o) =1
and u blows up at xg in the sense
lu(t)]> = Q|32 6xmny as t—0 (1.7)
Moreover, the energy Ey of u satisfies
1
Bot g [ Vhlao)(u) @' > 0 (19)

and they claim the energy bound (1.8) is sharp. Then, they focus on the case VZk(xo) < 0 which is
expected to be the most delicate one. The main result is stated

Theorem. (Existence and Uniqueness of a critical element at a nondegenerate critical point).
Let zo € R? with

k(zg) =1 and VZ3k(zo) <0

Then for all Eqy satisfying (1.8), there exists a unique up to phase shift H' critical mass blow up solution
to (1.1) which blows up at time T' = 0 and the point xo in the sense of (1.7), with energy Ey. Moreover

lim Zim </Vuu> =0 (1.9)

10
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1.1.3 The almost euclidean and inhomogeneous case.

We assume that the inhomogeneity & is bounded and reaches its maximum at some point £y € R2. Whithout
loss of generality, we may suppose xo = 0 and k(zg) = 1. We will now aim at constructing a solution u of
(1.1)-(1.2) that blows up at z¢ = 0.

We will also assume the metric is almost euclidean at point o = 0, which should also be a critical point
for both the scalr function g and the matrix function G.

Since the degenerate cases are more easily dealt with, we wish to assume all tensors V2k(0), V2¢(0) and
V2G(0) to be non-degenerate. However the non-degeneracy cases V2g(0) # 0 and V2G(0) # 0 compel to
assume technical hypotheses about the scalar function g and the matrix function G which may not seem
natural or meaningful. So first we give a set of reasonable hypotheses (Ho) under which the following main
theorem will hold. Then we give a refined set of minimal hypotheses (#) that we will later look into so we
may link it to geometric elements.

From now on, and in all the sequel, notice we will use a more compact Einstein notation for matrices.

Jo: keCnWh>®  0<k <k<1, k(0)=1, Vk0)=0, V2k0)<0
Jo: ¢ VeCTNW*([R%LR), ¢>0, g(0)=1, Vg(0)=0, V>V(0)
0: GeC NWH®(REM(2,2)), Giy=Gy, Gi(0)=26; VG;0)=0, ij=12
J J J J J
Jo: V?g(0) =V?Gi;(0) =0, i,j=1,2
Jo:  Whatever is requested to ensure the Smoothing Effect and The Strichartz estimates in 8.3 :
() VpeN? |0°(Gyy — )| S (@)™ 1 <ij <2, 7N N*, 7(m) >m+1, Ym >0

d 2
(2)3v>0, V(2,0 €RY, D Gy&& = v, 3C >0, % <g<Cldz|?
(2]
3)V (x,6) € T*R?\ {0}, the flow is neither trapped backwards, nor forwards : lim |z(t,z,€)| = +o0
t—+
—+oo

where (z(t, z,£), £(t, z,€)) would denote here the bicharacteristic originating at (z,£), that is the integral
curve of the Hamilton vector field associated to the principal symbol of £, with initial condition (z,£). Also
notice assumption (1) here implies assumption (8.8) since 7(|p| = 1) > 1. Assumptions (H1)o-(H4)o are
describing the local behavior of metric terms around the blow up point, while assumption (H5)g describe
their asymptotic behavior.

As one will realise later, a little less restrictive set of hypotheses (H) may replace (H1)o-(H4)o to complete
the proof :

(H1): keC’nWh>® 0<k <k<1, k(0)=1, Vk0)=0, Vk0)< 3 V2Tr(G)(0)
(H2): ¢, VeC’nW> ([R%R), ¢>0, g¢(0)=1, Vg(0)=0, V?k(0)<V?4(0), V>V(0)
(H3) : G e 05 N VV5’0O (R27M(2, 2)), Gij = Gji, Gij(O) = (Sij, VG”(O) =0, ,75=12
(H4):  Ag(0) = 2 K21 V2G45(0).(0;,0;) + A(Tr(G))(0) + 2 Koz V2G55(0).(8,, 9,)
. ! (2] 20y — L (01,01 = 02) (02,01 — 02)
(H5): V* ('“ "3 TT(G)) 0+ M3z (0) <0, Miz(0) = 5 V361 (0). ((ai, 02— 01) (0200 — ai))
. 1 1 ly| ?
(HO): 29(0) > Ak =5 Tr(@) )l | Ivel|

with constants

2
Koy = / [(3+ M) Q* -3yl IVerﬂ (el s

8 2
1 2 —
k=5 [ [(0-1) @ - e iwar] 14l

11
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Notice, those hypotheses will be needed in some differents part of the proof, in the following way :

(H1)-(H3) are the natural requirements to get a second order expansion of the equation and all the
terms computed in rescaled variables.

(H4) is the main issue of this paper : as we shall see, introduction of metric terms G and g has brought
a (’)()\2) term in the expansion of the b law which will prove hard to deal with. That is why, for now
we choose to nullify it in (1.42).

(H5) is a condition needed in the Uniqueness proof to get (5.74), ensuring the matrix ¢y defined in
(1.50) will be negative definite.

(H6) is an additional identity designed to ensure (5.38) in the Uniqueness proof as one shall see in
(5.93).

As one may see, it means (H1)-(H4) are existence conditions, while (H5) and (H6) are uniqueness condi-
tions. However, all these seem rather technical assumptions, which are not easily linked to anything relative
to what was changed in the geometry when introducing the metric terms. In section 6 we will introduce
geometric aspects that will clarify and refine the problem.

Indeed, considering the pseudo-Laplacian operator £ = %dz’v(GV) + V in (R?,dz), is pretty much
the same to considering the Laplace-Beltrami operator in the riemannian manifold (Rz,h) with A% =
1 Gijdx; @ dzj, the previous hypothesis may now be rewritten in terms of geometric properties at the origin,
that is where the blow-up is designed to occur.

Thus, we denote by R;jx = hip {(Vaj (Va,) —Va,(Vo, ))84 ! 0, the coordinates of the riemannian curva-
ture tensor at x = 0 in a geodesic normal chart around the origin x = 0. All previous assumptions regarding
the local behavior around blow up point may then be assembled as the more geometric set of hypotheses

(Hr)
(Hl)gp: keC°nWh>® 0<k <k<1, k(0)=1, Vk0)=0,
(H2)r: ¢, VeC'nW>R%R), ¢g>0, g0)=1 )
(H3)g: GeC NW»®(R*M(2,2)), Gyj=Gj, Giy(0)=4d,
0k0,Gi(0) = O0k019(0) 635 i,5,k,1=1,2
(H4)r: Ag(0) =0, Rigiz=0, V*k-g)(0)<0

Remark 1. Vg(0) = VG;; =0, 4,5 = 1,2 are a natural consequence of computations at the origin in a
geodesic normal set of coordinates. See Appendixz A 7 for more details.

Eventually, since our problem lives in R?, in which every metric is conformal, one may also consider a
metric defined by h¥(z) = e §;;, for some smooth function ¢. For such a metric which represents a
pertubation of the euclidean structure around the origin, the previous hypotheses may be rewritten as the
set (H),

(Hl),: keC°nWh>® 0<k <k<1, k(0)=1, Vk(0)=0,
(H2),: g,V eC NW>([R*R), g>0, g(0)=1 )
(H3)<p : Ge 05 n WS’OO(R2,M(2, 2)), Gij = Gji» GZ](O) = 5ija Z,] =1,2
Ok01Gij(0) = 0k (g — ¢)(0) 635 0,5k, 1=1,2
142 Ko
2+ 2Ko3

(H5),: Ak(0) < (1 ¥ hgg —

(H4),:  Ap(0) Ag(0), V2(k - g)(0) + V%p(0) <0,

1+2K23)
—_— 0
2+ 2 Kog 9(0)

12



1.1 The Inhomogeneous NLS with a smooth metric 13

with constants

1yl
2

1 —
Kas = 5 / {QQ — ly|? |VQ|2] ||%Q||L§, Koo = 6|Q|| 2

and notice that [(H4), + Ag(0) > 0] = (H5),.

Back to our analysis, one should note the laplacian operator Ly = ﬁ div (G(:E) V) is symmetric with

respect to the scalar product of space L2 (g(m) d:c), since one may obtain after two integration by parts

(ﬁu, )L2(gdz) /ﬁuvg x)dx /G Wu. Vvdm—/u[,vg( )dx—( 7Lv)Lz(ng)

Notice in the sequel we will sometimes denote the measures g(z) dz by gdx and g(Ay + «) dy by gdy to
shorten computations.

We then recall the classical result that a solution u of (1.1)-(1.2) satisfies the following conservation laws

e Conservation of Mass :

u@)l,, (s(x)ds) = HUOHLQ(Q(I)dI)v vitelo,T) (1.10)
e Conservation of energy :

B(u(t)) = % /G(x)Vu(t) Va(t) de — i /k(m) lu(t)|* g(a)de — % /V(x) ()2 g(z)de
:E(Uo) :Eo, Vite [O,T)

(1.11)

In the sequel we will also use the homogeneous and flat metric energy as follows

5 [1wse- m/m4 (112)

for which the usual Ground State function Q satisfies E°(Q)

Theorem 1.1. (Existence and Uniqueness of a critical element at a nondegenerate critical point).
Let xo € R? with functions k,g,V and G satisfying one of the previous set of hypotheses (H)o or (H) or
(H)r or (H), at xo.

Then for all Ey such as Eg + % Cg > 0, with

e s

there exists a unique up to phase shift H' critical mass blow up solution to (1.1) which blows up at time
T =0 and the point xo in the sense of (1.7), with energy Ey. Moreover

lim Zrm (/Vuu> =0 (1.13)

Notice the energy constant Cr has been expressed using the (Hpg) set of hypotheses, although we will
find more convenient to do otherwise when it appears in (2.9).

Cr = Alk+9)(0) [ U2

13



1.2 The slow modulated ansatz 14

1.2 The slow modulated ansatz

Let Py = (b, A\, 0, B,7) be the set of geometric parameters that embody the invariants of the 2-dimensional
inhomogeneous nonlinear problem. On the one hand A is a scalling parameter that will measure the blow up
speed, « is a translation parameter that approximates the blow up point position, and v is a phase angle.
On the other hand b is a pseudoconformal speed and § a galilean invariance parameter. Now our goal is
to form an approximate solution of the 2-dimensional inhomogeneous non-linear schrédinger equation with
respect to these parameters. By introducing the inhomogeneity &, we lost the pseudo conformal symmetry
of (NLS) equation, so that we need to find a dynamical way of controlling the solution through the set of
small invariants parameters P = (b, \, o, ).

Thus, we aim to forming an approximate solution with repect of all the P parameters. To do so, we
consider the following ansatz for u, a critical mass blow up solution :

1 1 x—a(t)\ ; ds 1
tr)=——— pt, L)) d — =— 1.14
ut2) = TR D ”( T )e Mme w7 e (1.14)
Note we will use the following notation :
Af=f+y.Vf

v(s,y) is now solution of :

7k0\y+a)v|v|2:iﬁAeri%.(Vv )\Vk'(a)) Vs

1050 + LaqV — v + k(@) \ 3 ) k() v )
Lra = PEYE) div(G\y + ) V) + X V(Ay + @)
with 75 = 75 — 1. Let us now introduce the two last parameters :
w(s,y) =v(s,y) eib% — By (1.16)
In the case g =1, G =1,V =0, w(s,y) must now satisfy :
i0sw + Aw — w + W@UWP + (bs - b% - b(% + b)) %w
RGOS - S U SO
+i(25—%) Vw — (7S+|B|2—%.B)w:0
This leads us to fix the laws of the P parameters such as :
Yo b =0, =08 ftbE=B(a), F.=|8P (1.18)

One should note, it is an unexpected algbraic cancellation that allows a rather simple modification of
these laws to work out when introducing the inhomogeneity k.

However, when introducing the metric through g and G, one should modify a bit the b law along with
the B law. Still, we keep the following ansatz as a geometrical decomposition for u solution of (1.1) :

B 1 1 T —a(t)\ ds _ 1
e T e K G S S b 119

o ly)2 .
w(s,y) =v(s,y) ¥ 5 P,

14



1.2 The slow modulated ansatz 15

Remark 2. We will see later this ansatz is not as well-adapted as it was in the flat case, for the metric part
bring in our computations some drastic changes in the b law.

Note the pertubation induced by g and G could have been dealt with otherwise. For instance one may
choose to introduce a pertubated set of orthogonality conditions (3.7)-(3.11) which drive the modulations laws,
as it is done later on in (5.80)-(5.81) for both the b and the [ laws.

For the sake of simplicity, and compactness of our further computations, we now introduce some notations
we will use a lot in the sequel. In particular, we introduce the pseudo Einstein notation we will use to leave
our matrices terms out of the summation symbol > .

F being a well defined function of the P parameters, we will denote by F(®) the expansion of F at order
p with respect to P, and FIP! the term of order p in that expansion.

Acv = div(G(A\y + @) Vv) = 0;(G(A\y + ) 9;v)

4
= Ao+ Y (GFoZ0 + 20,6T050) + O(P o] 2)
p=2

4
=Av+ Y ARy £ O(P5 o) e
2 Advro(P Il 20

Al = ala2 + ao,6lMo;

1
Gl = 3 VPG (0).(Ay + )P
1
(p—1)!

2,6l = VPG;(0). (s, (hy + )P~

and

Aggv= o
G177 gy +a) 9(\y +a)
=Av+ (A[GZ] - g[z]A) v+ (A[Gg] - g[B]A) v
[2])2
+ (A[é] — g2 A (7(92) - 9[41)A> v+ O(P[loll: ) (1.21)

gy +a) =1+ g+ g8+ g+ O(P?)

div(G(\y + a) Vv) = i (G(\y + a) 9;v)

1
g = o V'9(0)-0 + a)?
Eventually, the expansion of our operator £y, will be given by

Lrqv = div(G(\y + @) Vo) + X V(Ay + a)v

1
gy + )
4
=M+ > Wt 0(735 ||v||H2)
p=2

1.22
LB = AP gPIA £ X2V (0) (22
B = A _ gBIA £ X2 VV(0).(\y + @)

WA Al (@ A, )
£fd = Al = g? Al + (- — ) A+ S VRV (0).0y + )

Notice in the sequel we will often write g or G;; instead of g(Ay + a) or G;;(Ay + @), so one should be

15



1.2 The slow modulated ansatz

16
cautious when derivating with respect to y that a A factor appears.
Assuming g, G and V satisfy respectively (H2) and (H3), v must solve
k(A As Qs AVE ~
i85v+£,\av—v+Wv|v2 :z’/\Av—kzO;\.(Vv—kzvk(S)v) sU (1.23)

For further computations, we need some more notations that will shorten our expressions, so let

_ 2 ) W
b=b(1+9) U — By,
Gij = (1= 9) Lij + (Gij — Iiy)
Notice one has then, for any function v

1 2
LraV = Av—i—; [Aév—i-Vg.Vv} + XV
with Aé v = 81 (éijaﬂ})

Now, we claim we have

: i _ |y|2
10,ve'Y =i0,w + bSTf s Y| w
Vvew:Vw—i—i{—b%—l—ﬂ}w

2
AveW:Aw—i—i[—b%—i—B.y}w

(1.24)
Aggve? = Ag w+%Gi-(—b%+&)8-w—iél{Gii—&—)\BiGi-y}w
g g g J 2 J 29 JJ]

S S A S/
Lo, (-0 o) (4 0)-

Putting all previous terms together, using equation (1.23), we now see w must satisfy

k 2
105w + Lygw —w + (>\I§/®J:)a)1u|w2 + (bs + %) Mw

4
- {(53 +bB).y+i [/\,3- vlf(;(()j) + % (AaiGijyj +(1—9)Gii + (G — 2))} }w

{éij [P w + i (bys 9w — 2 B Ow)] +ib (1 — g) (Gij — Lij) s 3;‘“)}

2
+b) [iAw+2bi|w—ﬁ.yw] — (e — 1B) w

26).[i<Vw+)\Vk(a))+bgﬂw] —0

(1.25)

/N /N Q|-

S8 S

2 k(a)
where

Pl =pl(y) = v? % —bBiy; + Bi B (1.26)

For now, we claim we may choose the P parameters laws such as :

AL .
S 4b=0, b +8’=Bi(\a,bp), 0‘7 — 928,

(1.27)
Bs+bﬁ:BQ()\7aaba6)7 ﬁS:‘BP

16



1.2 The slow modulated ansatz 17

so that w(s,y) is solution of equation

k(Ay + a) 2 lyl?
MAY T B, L
k() w|w|® + By Y

— {Bz.y +i [)\ﬂ Vk]z((j) + % (AaiGijyj +(1—9)Gii + (Gii — 2))} }w (1.28)

10,w + Lygw — w +

1~ . .
— 5 {Glj [pg] w +Z(byi 8jw — 2ﬁz @w)] -l—lb(]. —g) (G” — Ilj)yl 8j’UJ)} =0

by introducing pertubation terms, we rewrite the equation as
E(Ay + )

k()

_ {Bg.y—l—i [)\ﬁ, V}:Z((lo)‘) + grlz} }w — (Parw +1i (T22), O5w) =0

2
wlw|? 4+ By Mw

10w + Lygw — w + )

(1.29)

' = ()\ 0G5 + (1 —g) Gy + (Gii — 2))

Iy =

QIR Q|

Gij vl
17~
(F22)j =5 {Gij (byi —28;) +b(1—g) (Gij — 1ij) yz}

Until the end of the first section, we look forward to building a fourth order approximation Pp for function
w. Then, introducing Qp = Pp e~*¥, the exact solution u of (1.1) will be approximated by

1 1
k(a(t))172 A1)

u(t, ) = Op (t, x%a(t))e”(f) + (9(7>5 e ) (1.30)

Note that when introducing the inhomogeneity k, a S-law change was enough to ensure the existence of an
approximate solution. Now we also introduce metric terms g and G in the equation, so now both changes on
the b and g laws seem to be needed to easily ensure the existence of such an approximate solution. However,
the Backward Propagation of smallness method which consists in integrating backward from blow-up time
our approximate profile to ensure the whole geometrical decomposition (1.30) describes our solution w near
blow-up point, one needs the b-law to be at most (9(|oz|2 + )\4) for the sake of its integrability.

Note also the metric brings some extra mass to the approximate profile as a sign that our solution v now
naturally lies in a L?(dg) space where dyg is slightly modified from euclidean measure.

All small terms we have obtained in the previous equation will need to be expanded near the origin,
which we will do in the next section.

Remark 3. Note in [ ], it is assumed from the begining that

A Gy
with Cy > 0 a constant to be set later. All computations are therefore much more simple. However, this
may only be proved after quite some work, that is at the end of the fourth section in (4.61) of Lemma 4.7.
So we decide here to do as much computations as possible to make clear where this is needed.
In the [ | proof, that assumption may be used only from the third section, since it is previously used

only to make computations more simple. Yet, we will use it more dramatically, since it comes in handy from
the construction of our approximate profile at order 3.

P(laf® + 18 +P° (b 1) <PP (1.31)

17



1.3 Expansion near the origin 18

1.3 Expansion near the origin

We will now expand equation (1.28) near the origin up to fourth order. Let us recall that A should be thought
as the scalling parameter that drives the blow up of the solution u of (1.1) for ||Vullr2 = }||Vv|[z2 ~ }.
Assuming w is blowing up at g = 0, when ¢t — T = 0, provided A and « are chosen as continuous function
of time, they must satisfy :

A—0, t—=>T=0 (e s—+400), A0)=T=0
T

1.32
a—0, t—-T=0 (e s—+00), a(0) =29 =0 (1.32)

We list here expansions up to order 4 with respect to the P parameters of all terms of equation (1.28).
Recall such a description has already been given for the laplacian term Ly,w in (1.22). First, to deal with

the % term :

kQAy+a) 1+ 1V2E(0).(Ay + )? + £ V3E(0).(A\y + a)® + 5 V2E(0).(Ay + )* + O(P?)

k(c) 1+ 1Vv25(0).(0)% + £ V3E(0).(a)® + 55 VAK(0).(a)* + O(P)
=1+ k3 + k¥ 4+ 54+ O(P?)

)\2
k2 — ?V%(O).(y,y) + AV?E(0).(y, @) (1.33)

K9 = X 03h(0).(1,5,9) + 2 VIR(0). (9. ,0) + 2VR(O). (v, . )
6 v, vy, B) \Y,Y, 2 \Jr &
F = (). [ 0)* — (0)'] — [ 92R(0).(5.9) + 5 VH(0).(,0)] °K(0).(0, )

then there only remains two terms we wish to expand, one term appearing in the imaginary part of the
multiplier of w

Vik(a) b
AB. | AOiGiy; + (1 — ii i — 2
8.5t o (A0Gugyy + (1= 9) G+ (G - 2))
=1+ 1+ o(P?)
3 bA 5 o0 b o (139
' = AV2E(0).(o, B) + 5 0iGy; — byl + 5 Gii
A bA b
it = 3 VOk(0).(ev 0, 8) + = 8iGly; — b gl + 3 Gl
and another one which gathers all non-diagonal terms
1) ~ . .
E {Gij [pg] w+1i(by; jw—2p; @-w)] +ib(1—g)(Gij — Lj) ys @-w}
= F[241] w+1 [(Fzg)?] + (F22)£,4]:| 8jw + O(PS)
(1.35)

4 2 2
i = (G5 = g 1)) pl3)

(P)} = (G5 — g™ 1) (b —22)

J

(o) = (G — ¥ 1)) (by: — 25.)

Since we are only working here in dimension 2, one will find convenient that given p € {1;2}, we denote
by p the associated index such as {p;p} = {1;2}.

Moreover, when needed, it will sometimes be convenient to use the notation (81,32) to denote the
canonical basis for R2.

18



1.4 Modulation and construction of the approximation 19

We will also denote by T'r the trace linear operator as Tr(A) = A; = > Ay

In the sequel we will make use of all these notations, referring to this section.

1.4 Modulation and construction of the approximation

Let us recall, that the Ground State of the 2 dimension NLS is the unique H'!, positive and radial solution
of the elliptic equation :

AQ-Q+Q@Q*=0 (1.36)

First one should note that taking scalar product of AQ = Q — Q> with Q on the one hand, and its scalar
product with AQ on the other hand, then computing it both directly and after integrating by parts, one get

[@=[var=[% (137

Now, @ being radial, it may be expressed as a function Q(y) = h(|y|?) = h(y? +y?) with h a well defined
real function of class C''. In the sequel the radiality property will help to simplify computations.

We will now form an approximate solution of the equation (1.28) or (1.29) up to the fourth order with
respect of the P parameters as an asymptotic expansion near the Ground State. Let :

4
Pp = Q+ Y (T;+is)) (1.38)
j=1
where T; and S; are regular functions of order j.

We now introduce the linear expansion of the 2 dimension NLS operator near @, namely L = (L, L_)
with :

Lif=-Af+f-3Q%, L f=-Af+f-Qf (1.39)

We now state the result :

Proposition 1.1. Let Cy > 0. One can find a universal constant ¢ > 0 and a small constant n*(Cy) > 0
such that whenever |P| = |(b, A\, i, B)| < n*, what follows is satisfied :
We have regulars and well-localized functions (T, S;)1<j<a of order j with respect to P such that :

Pp = Q+i (7 +i5;)
j=1

is an approzimate solution of (1.28) or (1.29), that is :

19



1.4 Modulation and construction of the approximation 20

i(—b°+B1)0yPp —ibAO\Pp +2iXB0oPp +i(—bB+ Bs) 9sPp

+,C,\aw—w+k(>];‘y(;—)a) lw|* + By |y4|
{Bz Y+ [/\5 VIZ( )) + [2) F12:| }w — (Porw +i (Fgg)j djw) = —Up
(1.40)
[y = é (A 0;Gij9; + (1 —g) Gii + (Gii — 2))
Iy = éé” pg]
(o), = - [Gus (b =280+ (1 = 0) Gy = 1) ]
with Up polynomial in P, and well-localized in vy :
Vpe N2 3C, >0, [0PUp(y)| S PPe Ol (1.41)

In order to satisfy this construction, the b and 3 laws are set in such a way that By € R and By € R?
are :

2
B, = A—Kag + bo(a,a) + X lo(a) + O(PY)
_Ag (2K21+1)a2 u() (2K22+1)62~GPP(0)_4K21852G12(0)
Ko = / <3+ lyl” )Q2 3yl? |VQ|2} HMQHL2
(1- Eik )@t -l vcz?} 14Qll,. (1.42)
1 )
bofa,a) = §v2<k, Tr(@)) (O)-(o ) QU || 5 @1l

zo(a):a.v[A(g—

N = N =

TT(G)) — (Kgl 8i2jG,»j + Koo 8§5Gpp)] (0)

= Aco(@) + N’ Cs + O(P?)

with C3 € R? a constant, and ¢y a linear form on R2.

Proof of Proposition 1.1 :

Order 0 (1.40) now becomes AQ — @ + @ = 0 which is the Ground State equation. This proves (1.38)
is an order 1 pertubation of the Ground State equation.

Order 1 Expanding the non-linear term up to first order and using (1.33) leads to :

k(Ay + a) 2 _ 2 3 2 -2 2
Hay - PrlPel = (1+0(P)) (@ +3Q°T: +iQ*S) + O(P?)) w3
= Q% +3Q°Ty +iQ*S) + O(P?)
Then, first order terms in (1.40) must verify :
— L Ty —il_ S =0 (1.44)

20



1.4 Modulation and construction of the approximation 21

Hence we may choose T} =0, S; =0.

Construction of T; and S, j > 2 : Before going any further, we need a bit more of explanations regarding
the constructions of the T; and S; functions. When calculating the j-th order of equation (1.40) we exhibit
equations on L T; and L_S;. So we need to recall some facts about operators L and L_. Let us begin
with :

Ker(L_) = span(Q), Ker(Ly) = span(0;Q,j =1,2) = span(VQ) (1.45)
Now using (1.22), at order j equation (1.40) is equivalent to :

L_Sj = Gj, Gj = O(Pj) in L2

Then, L, and L_ are self-adjoint operators. This implies :

ATy € HY,  LyTy = F; & F; € ImLy) = Ker(Ly)* & (F;,9Q) =0
(1.47)
I8, € HY LoS; =G Gy € Im(L-) = Ker(L-)* & (G;,Q) =0

We now have found a process to decide wether or not 7} and S; exist.

Order 2 Expanding the non-linear term up to second order and using (1.33) leads to :

E(y + «)

Hay PrlPel? = (1452 + 0(P)) (@° +3Q°T; +iQ2S, + O(P?))

(1.48)
= Q% +3Q%Ty +iQ%S, + kP Q3 + O(P?)

Thus equation (1.40) at order 2 implies :

2
LT =2 Q+ k2 Q8+ B?]%Q B yQ=F
L 8 =0

(1.49)

We can choose at once Sy = 0. Still, we need to ensure (F2 , VQ) =0.
Computation of (Fg, 8PQ), 1<p<2

B?]%Q being radial, we have (B?]%Q, GPQ> = 0. Now from (1.22) and (1.37), one may compute

(hle. 9,Q) = 2 {V2T7’(G)(O).(a,5‘p) + V2G12(0).(a, D5 — ap)} / Q?
and from (1.33)

(ka?», an) - fgv%(o).(a,ap) /Q2

Now by integration by parts, we have :

(-8 .y Q.00) = (BY)

Then, one easily check that choosing

r) 2

1 A
(BéQ])p =\V? (k —3 Tr(G)) (0).(ov, 0p) + 3 V2G12(O).(a, Op — 05) (1.50)
ensures the existence of T5.

Order 3 Expanding the non-linear term up to third order yields :
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1.4 Modulation and construction of the approximation 22

E(Ay + )
k(a)
= (14 KB+ K9+ O(PY)) (Q° +3Q°T> +iQS; + 3Q°Ts +iQ%Ss + O(P")) (1.51)

Pp|Pp|?

= Q"+ [3Q°T> +iQ2S: + K Q] + |3QTs +iQ%Sy + ¥ Q*] + O(PY)
Thus, using (1.34) equation (1.40) at order 3 yields :

2
LTy = £51Q + kP Q% + BE’]%Q ~BY yQ=F )

L Sy =-TVQ— (), 0,Q + 0AT; = G5 = Ga1 + 02Ty
where :
. [7+1]
o5 = (0.1)
[i+1] (1.53)
_ l((_zﬂ +B1) 3 —bAON+2AB00 + (— b8+ By) aﬁ) f]

Here 3,[31] T, is a source term coming from approximation of 9,75 at order 3.
4] [5+1]
T, = (0,715

Computation of (Fg, 8PQ), 1<p<2

First, BP%Q being radial, we have :

2
3] 1Y
(B0 0,0) =0
Then from (1.22), (1.37) integration by parts and the radially symmetry of @, one may compute

3 2
(£80. 0,) = 5 [B,ATHG)0) +208,0.G,0)] [ |vqp
o~ lyl® Q!
— 5 OpAGH(0) /T (Q2 - T)
2
+% [V?’TT(G)(O).(a,a,ap) + v3G12(0).(a,a,aﬁ)} /%
and since (QS, 8,,@) =0

(HQ*, 0,Q) = —%361,Ak(0) /lfQ‘*— %Vsk(()).(a,a,(“)p) /(”;2

Now we can decide that Bg)’] = A3C3+\ci(a,a) at order 3, with C3 € R? a constant and ¢; : R2 x R? —
R? a bilinear symmetric map. As before, the last term is calculated by integration by parts :

[3] 3 Q2 Q2
(~ 8w 0. 80) =x(@), [ Faveraem), [ S
Then we can ensure T3 existence by choosing :

Ayl

(), =2 [apmc(m Q" — B,ATH(E)(0) |vc2|2] 1l

2 ) 4
+A® /|y4|2 {‘%AG@(O) (Q2 - %4) ~ 0120,Gip(0) |VQ|2} QN2 (1.54)
(er(a,0), = 5 [VB’ (k= 5 Tr(E)) 0)-as.0y) = 5 TGz 0)- (e, 813)}

22



1.4 Modulation and construction of the approximation 23

Computation of (G3, Q)
Let us begin with recalling some identities :

Li(VQ)=0, Li(AQ)=-2Q

L.Q=0, L-(yQ)=-2VQ, L_(ly’Q)=-4AQ
L, being self-adjoint, this implies

(1.55)

(03, Q) = <G31+3 Tz, Q)
= (G31’ Q) (L+ 5[ alz, AQ)

Now to ensure the existence of Sz, we just need to make (Gg , Q) =0.

First, L, being a linear operator not depending on P, one gets

Ly 2T, = o (L+ Tg)

and

(L4 0BT, 2Q) =82 (L4 T2, AQ)
Now, using (1.49) and (1.22) and the radial property of the Ground State as we did before

(e, 2Q) =2 [A(g_;Tr(G))( ) = (83,G35(0) Ko1 + V3G (0).(35, 5) K22)} 4|2,

+ % v2(g - %TT(G)) (0).(e, ) /Q2
(1.56)
K =5 [ [+ 1) @2 - vare] |20

1 2 —
K22 = g / |:<1 - %) Q2 - |y‘2 VQ2:| H%CQHLQ2

Moreover, thanks to the following algebraic cancellation

(@ AQ) =0, forjl=1.2 (1.57)

we get from (1.33)

(km o3, AQ) -0

Eventually, we have

( Iy\ Q- B2 40, AQ B[z/\yl 02

so that

(L472, AQ) = 2 [A (05 77(@)(0) ~ (8,Gi5(0) Kor + V2C(0).(05.95) Km)] [Eel

(1.58)
+ %W (g - %TT(G))(O).(a, a) /Q2 — Bl /'3{4'2 Q?
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1.4 Modulation and construction of the approximation 24

Then, using (1.34), (1.35), and again the radial symmetry of @), one may finally compute

2
(_F[IS]Q_ (F[232])]63Q7 Q) *v2 Ot a /Q2 b)\ g(o) /MQQ

A{Vz(kg)(O).( B) + V2G5 (0) ]/Q2 (1.59)

The first and the last terms of that expression raise the first issue, as we see it does not fit in our
construction of the solution. Indeed, the first one seems far from looking like some 0; f, while the last one is
a priori not symmetric in o« and 5.

Fortunately, it seems possible to get rid of those, claiming they were not third order terms in the first
place. We thus assume here, o and 3 are very small regarding the others parameters, namely we use Remark
3

Plaf> SP°, Plallf] < P°

Now, for any symmetric bilinear form ¢

1 1
— 505 () = —5[—0A (V)] =b N’

so that altogether the previous computations yield

(6s. Q) = 2853{ [;A[g—Tr(G)]U (92635 (0) K1 + VG (0).(95, 05) Kmﬂ 1%l

(1.60)
+2 V2<g—fTr( (a,0) /Q2 B[z]/lyl Q2}
so that to get (Gg , Q) = 0 as targeted, it is enough to choose
)\2
B — 5 [Ag(O) — (2 K21 + 1) 03Gii(0) — (2 Koz + 1) 855Gpp(0) — 4 Koy afzcm(())}
(1.61)
Y (g - trre)o 21 4ql;?
592 (9- 2 Tr(@)) (000 0) QIR |20
Notice that (1.58) and (1.61) now yield
(241, 0Q) = % ag0) [ g2 (162

Notice the A\? term that now appeared in B?] - in other words, in the b law. That is the term which we
will have to nullify later to make b integrable, so the proof may be going on.

Order 4 Expanding the non-linear term up to fourth order yields :

E(Ay + )
k(a)
- Q%+ [3Q2T2 FiQ28, + k12 QB} n [3Q2T3 Q285 + kB Q?’} (1.63)

Pp|Pp|?

[3Q2T4 +iQ%Sy +3Q (T2 + kP QTy) + k¥ Qﬂ +O(P?)
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1.4 Modulation and construction of the approximation 25

Thus, using (1.22) equation (1.40) at order 4 yields :
LTy = L8 Q + k1 Q3 +3Q (T2 +KPQT)
+ Bl |y| PeQ-BY .y Q-rilQ=F (1.64)

L,S4 = —F[14]Q — ]_—‘[;2])]8]@ + 81[31]1—'3 =: G4

Computation of (F4, 19) Q) 1<p<2

First, let fy := 3Q (T2 + k2 QTQ) a polynomial function with respect to T», that is a well-localized
function in y, of order 4 with respect to the P parameters.

Then, B£4] %Q being radial, we have :

(B?] %Qa apQ) =0

Here we do not compute the terms in detail, since we will not need it. Notice as for the term f;, we get
here some source terms coming from the second order computations.

/[4] yQ0,Q = (BIY) /Q

hence it is clear one can ensure the existence of T, provided

As before, one gets

(BY), = ~201QlI2 (£l + H9Q* + £, - THQ, 0,Q) (1.65)

Computation of (G4, Q) First, let G4 = Gy41 + 81[,?;} T5. As before, we need to nullify (G4, Q) =

<G41 , Q) - %6‘,[,?;] (L+ s, AQ). First, like our previous computations at order 3, we have

1
(ACE\S(]IQ, AQ) =\a.V {A(g —3 TT(G)> — (K21 81-2]-Gij + Koo a%ﬁGpp):l (0) ||%Q||i2

X : (1.66)
4579 377(@) O)(avaa) [ @2
and according to (1.33) and (1.57)
(W 03, AQ) ~0 (1.67)
so that
(£:T5, AQ) = 0. ¥ {A (9- %TT(G)) — (K1 0Gij + Koo agﬁapp)} 0) |22,
(1.68)
1 1 2
+5 V(9 - 5Tr(@)) (0)-(, 0,0) /Q2 ~ B} /‘% Q’
Then, using (1.34) and (1.35), one may compute
b/\Z 2
(-mVe- (00 @) = -*5-v(a / "o
A
-3 [v3 (k= 9)(0).(av,cx, B) + VgGij(O).(a,aﬁj) Bi /Q2 (1.69)

AP [V(Ag)(o) B— 8;AG;(0) ﬁi] /|y| Q2 + —v3 (a, ;0 /Q2

= O(P* (lal +18]) + Pl + Plaf|3]) = O(P)
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where we have used again Remark 3. Hence one may discard those previous remaining terms so one has

| 1
(G4 : Q) == o {)\2 a.V {A(g -5 TT(G)) - <K21 0%,Gyj + Koo agﬁapp)} 0) [ 2q|?,

) (1.70)
Lo, L > g [1WF o
+5 7o 5@ Oae) [@ -8 [
Consequently, to ensure <G4 , Q) = 0 it is enough to choose
: 1
B = \a.V [A (9-377(@)) = (K2 03Gi; + Ko agﬁapp)] (0)
(1.71)
1 1 -2
+5 V(9 - 3 T7(@) (0)-(a 0, 0) QU3 |40
Notice that (1.68) and (1.71) now yield
<L+T3, AQ) =0 (1.72)

This concludes the construction of our approximate solution. [

Exponential estimate of the remaining terms We now look forward to proving (1.41).
We recall that the description (8.1) of the kernel of the linearized operator (L+ , L,) ensures the standard
uniform elliptic estimates :

1 _
Ve (VQ)T, e LI fllue S 11X
€ ; _
Ve @7, 1L (e S 1€ e

for a universal constant é > 0.

(1.73)

So far, we have constructed a fourth order approximate solution of (1.40), which means there is a well-
localized function W, and regulars functions F5, G5 of order at least 5 with respect to the P parameters such
that :

{Lﬂ%e\l’ —F : Fe(VQ)" w70

L ImU=Gs : Gse(Q)

Considering that [|e® ¥ |l g2 ~ 3 ||e®1¥1 0P f|| 12, we have for every y € R?
Ip|<2

17 Rew |2 S €M Fylli2 S PP, [l 0 Tm¥| 2 < [} ¥ s |12 S P°

2 Estimation of mass and energy for the approximate profile

We denote by Pp the fourth order approximate solution we have formed in the previous section. Let :

Qp = Ppeib 548y 2.1)
Then according to (1.40) and (1.23) Qp must solve
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i( = b+ B1)0wQp — ibAOAQp +i( — bB + Bg)aﬁQp +2i\30.Qp

+ LrxaQp — Qp + k()\y(—: ®) QrlQp|* — Vlz( )) Qp

+ibAQp —2iB.VQp — B> Qp = —Vp

with :

2
Wp = p e 45

Of course, like (1.41) one gets

VpeN% 30, >0, [0PUp(y)| < PoeCrlvl

2
Before going any further, recalling Pp = Q + T3+ T3+ Ty +1i(S3 +S4) + O(P® e~ and ¢ =b %

one should note

Qr=Q+Us+Us+Us+i(—vQ+Vs+ Vi) +O(P°)
w2

U = T2_7Q
Us =13
4 2
Uy = T4+£Q+1/JS —£T2
3
Ss+w*Q (M D)
Via=8,—9T;s

and in particular

Qr=Qe "W +0O(P)=%+i0O

2 =Q cos (¥) + O(P2e W) = Q + O(P2 e~ 2 1)

0 =-Qsin () + O(P?e W) = —y @ + O(P?e~2l¥)
|Qp|* = |Pp|®

—6?47

(2.5)

We move to the next step, with the computation of the @p invariants, that is its mass and energy. We

state :

Lemma 2.1. Mass of Qp :

/|Qp\2 (A +a)dy = (1+ A2 k) /Q2+ V24(0).(a, /cf
2

A
+ 5 V(Ag)(0) /‘y| Q* +O(P* + o)

Ag(0) [ |yl _
=200 [ a2
Energy of Qp :
2 2
B@e) = 5 [P+ 15 /Q2 (Co + d(@)) — Jp(a,) + O(P + [af?)

with

27
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) 2
o= 1340 [ 501 [ty Lo+t o] [
+4V(0) /Q2
oe(0) =9 [8(k9)] 0.0 [ 0t [; 8100 + B0u0) + HuGia] 000 [ 7@ (20

+4VV(0).« /Q2

Proof of Lemma 2.1

Computation of the mass
First, note that |Pp|? = (Q +T» + Tg) +O(PY) = Q% +2Q T +2Q T3 + O(P*). Then

Qp[* = [Pp|* = Q* +2Q T2 +2QT5 + O(P")
so that using (1.55) :

/|Q7:|2dy - /Q2 dy — L+T2, AQ) - (L+T3, AQ) +O(PY

e (2.10)
= [@ -5 ag0) [ @ 0P laf)
where we have used (1.62) and (1.72). Then
/|Qp\2g<Ay+a)dy:/|Qp|2dy+/( 24+ g) @2 + O(P* + laf?)
/\Qp|2dy+/\2 [Ag( )+ 5 V(Ag /|y| Q@+ 3 L v24(0) a,a)/Q2+O(P4+|a|3)
Eventually,
2
/|Qp\2 Ow+ady = [ @2+ [200) + 9(20)(0).0] [
—i—fVQg( (o, @) /Q2+O(P4+|a| )
, (2.11)
=1+ Nk /QQ—F V2g(0).(a, @) /Q2+f (0).@/%@2—&-0(?4—%\043)

Computation of the energy.
First note that after changing variables in (1.11), one gets

E(@p) = 5 [ 60w+ )VQp T dy —4/k(23’(+)“)|c2p|4 (Ay+a)dy—f/v (O + ) Qp 2 gy + a)dy

1
— 5 [Ivasiay+ 5 [ (68 +c)oaraas dey—f/@ﬂ 90 + a)dy

- i / (k(Aky(onr) - 1) Qpl* gy + a)dy — & /V(Ay +0) |Qp[* 9Ny + a)dy + O(P*)

/IVQp|2dy+ /(GWG ) 9:00,Q dy — /|Qp\4g<Ay+a>dy

_i / (k(?cy(;)a) —1> Q4dy—/\;(1+oz.V)V(O) /QQderO(P“)
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Then, one needs to compute
VQp = (VPp—iPpVip)e ™
- (VQ VT + VT +i [ — (Q+T) Vi + VS;),D e~ 1+ O(PY)
with Ve = b% By
so that
IVQp|* = |VQI* +2VQ.VT: +2VQ.VT; + Q* [VY|* + O(P*)
— IVQI? +2VQ.VTs +2VQ.VT; + ‘5—&%‘ Q2 + O(PY)
2
=|VQ|?+2VQ.VTy +2VQ.VTs + |8]? Q* + v? %cﬁ —bﬁ.%Q2+O(P4)
and hence, using the radial symmetry of @
L vy + (G2 + G 9,Q0;Q d
B Pl ay ) ij ij ) 0ik 0 ay
1 2 18> 2 b? 2 2 Y ~2
=5 [IVQPdy— [ (o +T5)AQdy + - [ Q*+ 5 [’ Q%dy— [b5.5Q%dy
A2 2 2 yl® o
1
+ 3 V2Tr(G)(0).(a, ) /Q2 dy + O(P* + |of?)
Moreover, using the following approximation
4 4 4
Q' = (Q+ T3+ 1) +O(P'e )

— Q' +4Q Ty +4Q* T + O(Pre )

one has
—7/\Qp|4 (Ay + a)d, /Q4 (\y + a)dy — /(T2+T3)Q3dy+(9(774)
:_7/Q4dy—— (1+a.V)(Ag)(0 /'y| Qtdy 3 29(0).(a,a)/Q2
—/(T2+T3) Q* dy + O(P*)

and with (1.33)

_i/(W—l)@PI‘*dy:_i [ 2 K @ty + 0P

2

- AS (1+a.v)( /|y| +O(P* + |af?)

Then using the Ground State equation along with (1.55)

(LsTo+ L. T3, AQ)

N =

- [ @) [aQ+ @y = - [ (T2 +172) Qi -

Summing everything up, using (1.62), (1.72), we have :

2
B@e) =5 [ WP+ 187 /Q2 (Co + d5()) — Jo(@,a) + O(P* + [af)
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where we have used E°(Q) =0, [ |VQ|? = [ Q? from (1.37), and where Cg, ¢ g, Jg are defined by (2.9).
(]

3 Estimation of Energy. Existence of critical elements.
3.1 Introduction of the nonlinear decomposition and Modulation of the param-
eters
We assume u(t) € H* is solution of (1.1)-(1.2) on [tg,t1], t1 < 0. We look for u such as :
1T
k(D)7 A(D)

Moreover, we assume the uniform bound ( bootstrap’s initialization ) :

u(t,x) = (@pr) +¢) (t x%a(t))@”(” (3.1)

PO+ lle®)llar S A®), V€ [to, 1] (3.2)
and that u(t) has almost critical mass
/ lu|? g(x)dx — (1 + 22 Ii) /Q2

this may also be written when its mass is estimated in some L?(dg) :
[uan- [

dg(t) = C(\®)) g(x) dz, C(A(1)) = (1+r A1) (3.5)

is a time dependant metric that embodies the ammount of mass our approximate solution Qp gained
through introduction of g as we found out in (2.7).

<A, VteE [t t] (3.3)

SAB)?*, VY tE [t t] (3.4)

where

Now let :

Qp =X +10, €=¢€1 + i€y (36)
Recall we already stated in (2.5) that

ly|?

Y =Q+O(P2e Ol @:Q(—bT+B.y> + O(P?e=C2luly

A standard modulation idea based on the implicit function theorem, see | ], prove one may ensure
unicity of decomposition (3.1) provided we set the following orthogonality conditions :

(2. vE) = (&1, vO) =0 (3.7)
(617 yz) + (62, y@) —0 (3.8)
7<61, A@) + (62, AZ) —0 (3.9)
(61’ IylgE) + (ez, |y|2®) =0 (3.10)
—(q, Qz) + (62, Ql) =0 (3.11)
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3.1 Introduction of the nonlinear decomposition and Modulation of the parameters 31

with o the unique H', radial solution of Lo = |y|> @ and :

plvl®
01 + iy = o(y)e T HIBY (3.12)
In the case P = (0,0,0,0), these orthogonality conditions give a first order approximation of the kernel
of linearized operator L = (L+, L_) around the Ground-State @. Indeed, we remind :

LQ=0 L.(yQ)=-2VQ. L_(s*Q)=-1AQ

(3.13)
Li(VQ)=0, Ly(AQ)=-2Q, Lio=plQ
and :
— Y10, 0Q) = -1 ; (3.14)
0, Q __5 +0; Q __iHyQHL? .
Note it is a well-known argument that P may be chosen C! with respect to time, see | ]. Let
todr

s(t) = 3.15
0= 3oy (315)

be the rescaled time.

Computation of equation of e. We remind Qp + € is solution of (1.15). Let us begin with the non-linear
term development :

|Qp + ¢ (Qp +€) = Qp[*Qp + Mi(€) +iMs(€) + Ri(e) + iRs(e)

Mi(e) = |Qp|%er + 2%%; + 25O¢y

Ma(€) = |Qp|%e2 + 20%€; + 250¢ (3.16)
Ri(€) = 35€? + X2 + 20¢1 e + |e?ey

Ra(€) = 3063 + Ocr + 25165 + |e|er

Let :
M](E) = _E)\QGJ‘ + €5 — WMJ<E)7 ] = 172 (317)
Using (1.15), € must satisfy :
10;Qp + |:»C)\(1QP —Qp+ W|QP2QP:|
. . E(Ay + « .
+ 1056 — (My(€) +iMa(e)) + (k‘y(a))(Rl(E) + iRs(e€)) (3.18)
As Qg AVE
=i A Qp +6) + z% : [V(QP +e)+3 k(g) (Qp + e)}
+ s (QP + 5)
Moreover, with (1.33) and (3.2) :
MRj(e) = Rj(e) + O(P°) (3.19)
k(@)
Then we have thanks to (2.2)
i(bs + 0> — B1)0yQp +1i (As +bA)0rQp + i (Bs + b8 — B2)0gQp +i (g — 21 3) 0 Qp
+i0se — (Mi(e) +iMa(e)) + (Ri(e) + i Ra(e)) +ibAe — 24 3. (Ve + ;\Vklzio)z)e) — |B|?e
(3.20)

y (% + b) (AQp + Ae) + (% — IBIQ) (Qp +¢)
éVk(oz)
2 k(a)

+i(%—25).(VQp+ve+5Vk(a)Qp+

2 k(o) )) - wr
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3.2 A first estimation of the P parameters. 32

Then, one needs only to take on the one hand the real and on the other hand the imaginary part of (3.20)
to get the equations of €; and ey respectively.

3.2 A first estimation of the P parameters.

We now make use of the signs hypothesis we assumed in (H). We show how this forces the regime of the P
parameters in such a way that X is the greatest parameter and thus controls the P set.
We then prove a consistency result, which shows the approximate laws we built in the first section for
those parameters are indeed like we constructed them to be, that is at least fourth order approximations.
To get those results, we will write the conservation laws for the approximation.

Lemma 3.1. For s € [sg, s1], we may estimate :

e Refined variational control :

Provided Ey + £ Cp > 0 and V2 (k — 3 Tr(G))(0) <0
1
B2+ 181 + [af + leln S X (Bo+ 5 Cn ) + O(P* + |af’) (3.21)

e Control of the geometrical parameters :

Let
Mod(t) := <Lb—Kb()\,a), Ly, Lo, Lg, Ly —K@()Ha))
)\S S
Ly = bs +b* — By, Ly="5+b, La:%fgﬂy (3.22)
Lg=Bs+b8— By, Lj=7—|B]

be the vector of modulations equations with

2
Ky o) = ~V2K(O).(0n0) U 420l Kyfa] = ~L V(Ag)(0)
2[5 Qll o
ly|? 3.23
7Qa
K’Y()‘a Oé) = Kb()‘a Oé) M
(Q, 9)
Then :
|Mod(t)] S O(P* + Plaf + P ellzs + llell3: + llel:) (3.24)

Remark 4. Note the vector of modulation laws Law(t) = (Ly, Lx, La, Lg, L) only differs from a |o|? term,
so that

|Law(t)| S P*+[af® + P?|lellm + lelz2 + llelzn
|Law(t)| = |Mod(t)| + |a|?

Proof of Lemma 3.1 :
Step 1
The L? norm being conserved ( conservation of Mass ) :
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3.2 A first estimation of the P parameters. 33

[1Gp+ 2 g + )ty = k@) [ 1o (3.25)

so that using (3.3), (2.7) and (3.5) show :
2Re / €eQp g(\y + a)dy + / le> g(\y + a)dy
o) [ 1u g(w)dz = [ 1@pl? g0 + a)dy
[/|u|2 z)dz — (1+ N k) /Q2] —1)(1+ Xk /Q2 (3.26)
—%VQ (a,a) /QQ——V(Ag /'y| Q*+ O(P* +af?)

— %VQ(k —9)(0).(a, @) /Q2 - ?V(Ag)(o).a /%QZ +O(P* + |af?)

Now with conservation of energy, we have :

E(Ay + «)

k‘(Oé) |QP+€|49(>‘y+a)dy

%/G(Ay+a)V(Qp+e).mdy_i/

)\2
=% [VOuta) Qe + e g0y + ady

= k(a) \? (; /G(;v) Vu.Vudz — i /k(x) lul* dx — % /V(x) |ul? dx)

= k() N2 Ey

Then, notice expanding the non linear terms yield with the 2-dimensional Gagliardo-Nirenberg estimate

(A\y + )
1/T|QP+€| g(Ay + a)dy
Ay+a 252 202
-1 [ et atu e [100f |14+ 525)d g aa+ (1+ )4
)\
/ y* ¢ [QrEQr 90y + a)dy + O[3 + P2 [1ll2)

and

)\2
5 [ V0w ai@e + g0+ )iy

)\2
=5 /V(Ay+a)IQP\QQ(Ay+a)dy+Re/e X V(Ay+a)Qp g(\y+a)dy + O(P?||e]3)

so that using the symmetry of G, integration by parts, and eventually (2.8) we get

33



3.2 A first estimation of the P parameters. 34

3 [ COut @+ 9@+ gar—1 [ 0n g + aray

)\2
. / VO +a) [Qp + €2 g0 + a)dy

E(Ay + «) A2

=5 [ COu+aVQr. Varay - [ FEELQn1 g0y + )y = T [ VO ) [Qpl o0 + o)y

) 20?2
/G Ay +a)Ve.Vedy — = /|Qp|2[(1 + |Q7>|2> €+ 4W6162 + (1 + W)e%}
k(A
7726/6 div(G(\y + ) VQp) dyfRe/ ¢ ((IE/J)O‘) 1Qp12Qp + X2V (\y + ) Qp> g(\y + a)dy

+O(llellzn +P* lell2)

2
_E Q'p /G Ay + a)Ve. Vedy—f /QPF{ 2%

20?2

* o) g+ (14 o))
k(X
Re / ; (EAanJrW Qpl? QP> 0w+ a)dy + O(|lel3s +P? [le]22)

2

_0 /| Q% + Ll /Q2 (Cg + ¢p(a ))—JE(Oé,a)—i—%/G()\y—ka)Ve.ﬁdy

25,2 202

"3 /QP'Q[(” )4 gt (1410, |2)€§}
—Re/e (%QH’W QPPQP) 9Oy + a)dy + O(P* + [af* + [|ell3 + P [le]2:)

2 2

! /| *Q* + Ll /Q2 (Ce +¢r(a) — Jp(a, @)

252 YO 202

+§ /‘V6|2dy_§ /lQP|2|: 1+|6277|2)6%+46277|26162+(1+|62'p|2)€§:|

E(\y + «
~Re / c (,cMQp LR Ea) o QP) 9Oy + )y + O(P + [af + [l + P2 elZn)

k(a)
With (3.3), since k(a) A2 Ey = A2 Ey + O(P*), we get :

A2 <E0+ (Ce + d(a ))>+JE(a,a>

2
-+ wiq?+ 0 [@-re | (CMQP-FW QP2 @:) 9O+ 0)dy

20?2
V2—7/ 2{1—&- ee-l—l-l—ez]
wg [1v =5 [l | (14 ) g e+ (14 575)
+O(PH+ [al + llellfn + P el )

(3.27)

Step 2
We sum conservation of Mass (3.26) and conservation of Energy (3.27) :
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3.2 A first estimation of the P parameters. 35

)2 (E0+ [CE + ép(a) - V(Ag)(O).a/lsz]>+jE(a,a)

2
:%/ |y\2Q2+ﬂ/Q2+Re/e <—£MQ7>+Q7>—W |Q7>|2Q7’) 9y + a)dy

1 2 / 2 / 2|: 2 ) 2@2 2:|
+ = € Vel — = e +4 e1ea+ (1 4+ ——= )¢
2 /' Ty v <l |Qp|2) tragepae+ (14 gm)

+O (P +1af + leldn + P2 el3 )

(3.28)

where

Je(a,a) = Jep(a,a) + = Vz(k’ 9)(0).(a, /Q2 V2 k— §T7‘( ))(0).(@,@) /Q2
With (2.2), we have the following estimation in L? :

k(A
—LroQp +Qp — (y(Jr)a)|QP Qp

=ibAQp —2i3.VQp + O(P?)
so that, thanks to orthogonality conditions (3.9) and (3.7) :

Re/ € (—EAaQP-FQP - W |QP2QP) gy + a)dy
=b Im(e,m) -2 Im(e’m) + O(PQHGHLQ) (3.29)
= O(P?||e]| )

Thanks to (3.2), Qp being close to @, we see the quadratic form in e that appears in (3.28) is to be
thought as a small pertubation of the energy in a neighbourhood of Q. First, let

LY = Ly +1-3@Q
- A N (3.30)

M= Ly +1-Q?

be the operators that linearize the NLS operator we are studying here. Integration by parts yields :

1 1 1 _
5{(LL‘L_’]61,61) + (L[;(]]GQ,GQ)] = §/|e\zg()\y+a)dy+ §/G()\y+oz) Ve.Veg(hy + a)dy

2

1 A
5 [ @B gty - T [VOw )l g0+ a)dy

Thus, using expansions ¥ = Q + Uy + Uz + O(P*) and © = - Q + V3 + O(P*), we have
1 ) 1 - A2 5
= [ el g()\y-l—a)dy-i- — | G(Ay+a)Ve.Veg(A\y + a)dy — > V( Ay + ) lel” gy + a)dy
2 207 \ ,
- +4 (14 s
/‘QP' o) et (14 o)
1 1
=5 |(£¥e 61>+<LM€2762)}+2/<3Q2‘(1 @r |2)Q7"2> -2 [zeqe
2 2
<Q (1+ 10, |2)|Q7>|>

[(L¥era) + (t9aa)] -2 [ SO e+ o)

3
1
2
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Then, using hypothesis (3.2), one easily shows [0 € e2 = O(P|le||2.) = O(P?[|e||12)
So that (3.28) becomes :

2 <E0 L0 +0(|a|)>
5 [+ B [ o= fvr (k- jrve)) 0rea) [@ (331)

+% [(L[f]ehq) + <L[f]e2762)} + 0(7)4 + |a|3 + HGH?fIl 4 p2 ||€||L2)

To conclude, we need to deal with the bilinear form we introduced in (3.31). A coercivity result will do
it :

Lemma 3.2. We can find a universal constant co > 0 such asV e € H! :

() on0)

> et~ H{ (e @)+ (o 12 Q)" (e 9Q)" (e, )"} o
Thanks to orthogonality conditions (3.10), (3.8) we can prove :
(. wP@) =0, (a,y@)=0 (3.33)
In [MRO5], it is proved that the orthogonality condition (3.11) yields (62, g) — 0. Moreover (3.26) shows
(o Q) < e )] = (4113 531
Hence by (3.32) :
(eena) + (Eoerer)] = Lleln +O(P* + el (3.35)
then,
b[(Eena) # (ene)] = [(becne) (b r0(rii)
> Zllel% +0(P2 el )

Injecting this into (3.31) :
9 1
N Bot g Cp O(|el)
b? 2 c 1 1
> 5 [wrer+ BF [ @4 it - 192 (k- 310@) 010 [@2 33D

+O(P* +1af + lelifs + P ellz2 )

Eventually, provided Ey + ¢ Cg > 0 and V2 (k— 3 Tr(G))(0) < 0, since A? v = 0(A\?), for a small enough
( that is for a time t close enough to 0 ) :
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3.2 A first estimation of the P parameters. 37

1
0+ B + laf® + [lelFn S N° (Eo +3 CE) +O(P* + o) (3.38)

And (3.21) is proved thanks to (3.2).

Computation of the P laws.

Quantities «a, B, A, b, 4 have been introduced in the first section as geometrical parameters, adjusted
to our situation through a system of ODE satisfied by P. Each law was chosen so it was simplifying our
computations to build approximate solution Pp by using symmetric invariances. Now, assuming we have an
exact solution u of (1.1) on [tg,t1], we want to check the correspondant parameters defined by geometrical
decomposition (3.1) follow the laws we build our approximate profile with, up to fourth order, and as long
as u is defined in H! - which is assumed here to be t € [to,t1].

In the previous section, we checked as long as u is defined, those parameters were controled in some sense.
We now work out a consistency type of result, checking the parameters laws are not blowing up, or strongly
modified on the way to blow-up time.

Here we will reproduce analysis led in Appendix A of | ] with more details about computations.

First, we simplify the € real and imaginary parts equations obtained thanks to (3.20) :

(bs + b2 - -Bl)abE + (65 + bﬂ - BZ)aﬁE
+ 0s61 — Ma(€) + bAey —26.Vey

_ (%+b)AE+ (5. = 187) (@ + ) + (52 —28) . 9% (3.39)
+Im(1;) — Ra(€)
and
(bs +b* = B1) 3O + (Bs + b3 — B2) 050
+ 0460 + M1(6) +bAes —25.Veq
_ (%—Fb)/\@— (5 = 181) (= +e0) + (52 - 28) . ve (340)
- Re(?l;) + Ry (e)
with :
B(y) = Ro(P)Fi(y) + O (P2 + [Mod(t)] ) { lew)| + [(1 + [y Ve(w)| } (3.41)

where R is polynomial in P such as |Rg| < |P|?, and Fy is a regular function such as |F (y)| < e=l¥l.

Remark 5. Terms in 9\ and 9, are hidden in 7,Z~1 Indeed :

(A + D) OIS = A(% +0)0r% = O(P?| Mod(1))) (3.42)

(0 — 208) 803 = )\(% _ 25)5—)&2 - O(P2|Mod(t)y)

Computation of the P laws now relies on combinations of scalar products of equations (3.39) and (3.40),
making use of orthogonality conditions (3.7)-(3.11). Thus, as proved in | ]
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Lemma 3.3. We claim the following computations hold

- (—Mg(e)—i—bAel —98.Ve, V@) + (Ml(e)+bAeg—2ﬁ.Veg, vz)

= O(P|ellz2)

(—Mg(e)+bAel—2B.Vel, yz) + <M1(6)+bA62—25.V62, y@)

0( ?||e ||Lz)

/_\

—2R e(e, @r) +O(P2lel2)

VS

(P2e ||Lz)

(7’2|| m

€) +bAer —28. Ve, A@) (M1(6)+bAeg —98.Ves, AE)
— Ma(€) + bAer — 28. Ve, , |y|22) + (Ml(e)+bA62—25.v62, W@)

o\P
( €)+bAe;p —28.Vey, QQ) + (M1(€)+bA€2*2ﬂ-V€2, Ql)
O

(3.43)

We focus only on the third scalar product, for it brings the remaining term —2Re (e, @) which,

according to (3.26), contains some second and third order terms that will perturb the P laws :

_2736(6, @) :/|e|2— ;V2(k—g)(0).(a,a)/Q2+)\;V(Ag)(O).a /'%‘JQQ2+O(P4+|@|3+P2E||%2)

First things first we compute the equation satisfied by AQp based on (2.2). We state

Lemma 3.4. For Qp = X +i© solution of (2.2), we have

— LA +AY - Q°AT - 2% (SAZ + O AO)
=ReAVZ —2 (X —2B.VO +bAO — Re¥%) — bA*O
+28.V(AB) + O(P?)

and
— L3aAO + A0 — QA0 — 20 (SAZ + O AO)
=TImAV% —2(0+25.VS —bAS — Im¥3) + bA’S
—28.V(AX) + O(P?)

where Lo f = %div(GVf) + ANV f= dw(G()\y+ a)Vf) + O(P2 |f|)

g(/\y+a)

Proof of Lemma 3.4 :
Rewriting (2.2) up to second order, Qp satisfy :

LraQp — Qp + Qp|Qp> +ibAQp —2i3.VQp = -V
W3] < PP

Then we check

AQp |Qp|* = A[Qp |Qp’] —2Re(y. VQr Qp) Qp
=A[Qr Qp*] +2Qp |Qp|° —2Qp (SAZ + O AO)
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and
div [GV(y VQP)] = A[dlU(GVQp)] + (Gij - Y. VG”) aszp - 6i2mGijymanP
= A[div(GVQp)] + div(GVQp) + O(P?)
so that

Lo (AQp) = A[L2aQp] + (2 + y‘j‘") LraQp + O(P?)

= A[£2aQp] +2L2aQp + O(P?)

A straightforward computation now shows

LroAQp — AQp + AQp |Qp|* +2Qp (EAS + ©OAO) +ibA*Qp —2i 3.V (AQp)
= A|£2aQp — Qp + Qpl@p[ +ibAQp — 21 5.VQp| +2 (£2aQp — @p + Qp|Qp[?) +2Qp + O(P?)
=AU} +2(Qp +2iB.VQp —ibAQp — T%) + O(P?)

which leads to (3.44) and (3.45) by taking real and imaginary parts. O

Proof of Lemma 3.3 :
First we recall from (3.16) and (3.17) we may write up to second order

Ml(e) = _£)\a61 + €1 — [(QQ + 222) €1 + 22@62] + O(P2 HEHLZ)
Ms(€) = —Lraez + €2 — [(Q* +20%) &2 +2E2 O €] + O(P? €| 2)

We continue to recall small expands up to second order that will prove useful. Remind from (2.1) we
have

(3.46)

2
Y=0qQ COS(—b% +B,y> _|_(')(7D26—Czly|)
= Q + O(’]D2 6_02 |y|)

3.47
@:Qsin(—b%-kﬁ.y)+O(7;2efcz|y\) ( )
2
:Q(—b%+5.y)+o(7ﬂe-@lyl)
We also have
VI =VQ + O(P?eC2lv)
_ Y lyI® _Caly]
VO = (—b5+8)Q+(—b4+8.y) VQ+O(P? ) .

AY = AQ + O(P? e~ C21uly
2 2
AG = (—b%wLﬁ.y)Q—ir (—b% +8.y) AQ + O(P2 e~ 1)

We now have everything we need to proceed to the computation of the third scalar product in (3.43).
Using (3.46), then integration by parts we see

(M1(0),A%) = (1, ~LraAZ + AT = (@ +232) AT) — (2,28 O AT)
+O(P? el r2)
(Mg(e), A@) - (62, —L2oAO + A — (Q* +20?) A@) — (61, 2% @A@)
+O(P?||el|z2)
Then injecting (3.44) and (3.45) yields
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3.2 A first estimation of the P parameters. 40

<M1(6)7 AZ) + (Mg(e), A@)
= (4, -L2aAT + AZ - QAT - 23 (TAT + ©.46))

/N

+ (,~£20A0 + A0 — Q*AO — 20 (SAS + 0 A6) ) + O(P* [e] 12)

=2 (6172—2ﬁ.V@+bA9—Re\P%) —2(62, @+2B.V2—bAE—Im\IJ%)
+b [f (el,A2®> n (62, A22)] n [(el : 26.V(A®)) - (62, 25.V(AE))]

+ (e, ReAWS ) + (e, TmATS ) + O(P? el 12)

_ —2716(6,@) +2b [— (el,AG) + (ez,Az)] 148, [(el : ve) . (62 : vz)}
_ (fbAelJrQﬁ.Vel,A@) + (—bAngrQﬁ.VeQ,AE) +O(P? el 12)

Eventually, using orthogonality condition (3.7) and (3.9) we get our result. O

It remains to find some linear equations that will help us to estimate the vector Mod(t) of the laws of
the P parameters. Again, to do so we need some second order expansions which we list here

0. = (—bw+ﬁ. ) |y|2c2+0(732 e=C2vl)

8@: |y|2Q+O( 2 *CZ‘ZU')
b (3.49)

2
8[32:—( |y\ + 8. y)yQ+O(P2 e~ C2ll)
aﬁezycz+o(7ﬂ e~ C21ul)

Now we will get our equations on the vector of modulations laws Mod(t) = (Lb—Kb()\, «),Ly, Lo, Lg, Ly—
K:,()\, Oé))

Law of b We compute (@, —A@) + (@,AE), with @ = (3.39), @ = (3.40) :
w. B { [ 0P} - 2Re (6,@)
(s — 16P) [(617 AE) + (62, A@)] % —m /Q2 (3.50)

+ (31(6)7 AE) n (Rg(e), A@) +0(7>2 (||e\|Lz + |Mod(t))) +7>4)

Note from Holder estimates

(Rate), AD) + (Ba(0). 40) = O(elZ: + [leli)

Let

= UG s [E om (23] e 26) - Ol

we compute
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3.2 A first estimation of the P parameters. 41
2 [l 2 A
(bs + b —Bl){/TQ +0(P)} —2Re (<. Q)
_ > _ L 2 Lgeg 2 X LI
= (bs +b° — By) 1 Q°+ [ | 2V (k=9)(0).(,a) | Q%+ 5 V(Ag)(0). a 1 Q
+0(7>2 by + 02 — By +7>4)
2
— (by + 6% — By — Ky) /% Q>+ / e[+ O(P? [Mod(t)] +P* +|af*)
Ky(\ ) = % v? (k—9)(0).(o, ) — )\—2 V(Ag)(0).a
2[5 Q| 2
Our first equation, which is linear with respect to the Mod(t) coordinates, is then
Ay Ly+ay Ly +az Ls = (9(||e||§2 + lell3 +P? (llell 22 + |Mod(t)]) + P* + |a|3) (3.51)
Law of A We compute (@, ly|? E) + (@, ly|? @) with @ = (3.39), @ = (3.40) :
As -
0= (5 +0) {~ [P @+ 0P} + G- 15P) [~ (a. WP e) + (e bx)) .
+ (Ri(e), 1912©) = (Ra(e), 132 %) + O (P (lellz= + [Mod(t)]) + P*)
Let
A== [P as=—(a, WP O) + (2, WP S) = Ollels2)
also note
G = 1812) [~ (e1- w2 ©) + (&2, yl*%)]
= (5= 18P = 15) | = (a1, W2€) + (e2, W %)] + O(Plal)
Again, with Holder estimates we have
Ay Ly + a3 Ly = o(uen?;,l +P2 (el 2 + | Mod(t)]) + P* + P |a\2)
Law of « We compute (@,yZ) + (®7y®) with @ = (3.39), @ = (3.40) :
—((%s _ 2| % _
0= ((5-26)-va. v@) + 0P[5 -24))
+ (35 — 18%) {* (61, y@) + (62, ZIEH + (Rl(e)a y@) - (R2(€)7 yE)
+O (P2 (|lellz= + [Mod(t)]) +P*)
(3.53)

- (5 -20)-v0. v0) + ([ -23)
K [ (o 90) (o 93] (00, 58) (140 9
+O(P2 (lellz2 + [Mod(t)]) + P* + Pla?)

Let
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3.2 A first estimation of the P parameters. 42

/Q2 (1. 90) + (e ¥=) = O(elz2)

from integration by parts and Holder estimates we have

Ai Lo+ a1 Ly = O( 3z + el + P2 (llellz2 + [Mod(t)]) +P* + P laf?)

Law of g We compute (@, fV@) + <®,VZ) with @ = (3.39), @ = (3.40) :
((55+b5—Bz)-yQ VQ) +O(P2|B, + b5 — B
:(A7 ﬂ/Q—JrOPQ} (s — |ﬂ|)[(el,vz)+(eg,ve)}
~(Ri(9), V=) = (Ra(e), ¥O) +O(P (|elz= + [Mod(t)]) + P*) (3.54)
(AS +b /QQ+0 P} - (G - 18 - K5) [(ar, V%) + (e, VO]
o

(R1 ) (RZ )
_/%{ as__ﬁ/f_@(p), as=—(e1, V8) = (e, VO) = O(le|12)

O(P2 (llellz2 + IMod(t)]) +P* + Plal?)

Let

so we have

As Ly + a5 L +ag Ly = Ol +P* (el 2 + [Mod()]) +P* + P |af?)

Law of ¥ We compute (@, —Qg) + (@, gl) with @ = (3.39), @ = (3.40) :
We recall that o was introduced as the unique radial H* solution to Lo = |y|? Q, and g1, g2 are therefore
the real, radial and H' functions introduced as
: —ib e 4ip
o1 +iga=o(y)e "3 v

so that their second order extensions are given as before by

_ 2 —Calyl _ |y|2 2 oyl
91—Q+0(736 ), 02—( +5. y)Q‘FO(P )

Thus, the computation we announced leads to

—ter2 =80 {( Q. o)+ 0P} =~ G- 191) [(@. o) + (a1 1) + (a2 22)] )
~(Ri(9), 1) = (Ra(e), 02) + O(P? (lell s + |Mod(t)]) + P*)
so that

1B K) (W0, o)+ G- 158 - 5) [(@. o) + (1. 01) + (0 02)]
= —(R1(0), &1) = (Re(©). 22) +O(P* (llellz2 + |Mod(t)]) + P* +Plal?)

/yTQ& A7=/QQ
)+

1= (e, o) + (e, 02) = Olllel2)

(3.56)

Let
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3.3 Refined Energy identity 43

so we have

Ao Ly + (A7 + a7) Ly = O(llelldn +P* (llellz2 + [Mod(d)]) + P* + P |af?)

Conclusion All these almost linear identities we got may be written as a matrix equation. Let
X = '"Mod(t) = *(Ly, Lx, La, Lg, L5) € R7 be the vector of the laws modulations, and let

AL 0 0 0 0 0 O 0 0 (a1)1 (a1)200 az
0 A2 0 0 0 0 0 00 0 0 00 as
0 0 A0 0 0 0 00 0 0 00(ai)
A=] 00 04,0 0 0 |, a=]0 0 0 0 00/ (a): (3.57)
EERE0E oo & 00
5 0 0 0 0 00 (as)2
A 0 0 0 0 0 As 00 0 0 00 ar

Eventually, let Z € R® which satisfies
2; = O(Ilel + lelld + P (lellz= + [Mod(1)]) + P+ Plal?), 1<j<8
Now our previous computations simply become
(A+a)X =2, a=0(P+|elr2)
so that
(A+a+O(P?*)) X =Y, with
Y; = O(Jlellfe + P2 llellzz + lellfs + P+ Plaf?), 1<j<8

1/A; o0 0 0 0 0 0
0 /A, 0 0 0 0 0
0 0 1/A, 0 0 0 0
Since A is invertible, with A= = 0 o 0 1/A4, 0 o 0 |,andsince a+ O(P?) =0
0 0 0 0 1/A4s 0 0
0 0 0 0 0 1/As O
—AjAg/A7 O 0 0 0 0 1/A;
ast — 0
X=Y(~Ala+0P)) A'Y = (A7 +O(P+ el 12)) Y
7=>0
and hence

X; = O(llel3z + P2 llellzz + llellfp +P* +Plaf?), 1<;<8
This completes the proof of (3.24) for we have

|(Lo — Kb, L, Lo, Lg, Ly — K5)| < lellZ2 4+ P? |lell 2 + el 3 + P* + P laf?

3.3 Refined Energy identity

We proceed now, following the method of | ]. Note the following energy estimate will prove useful in the
uniqueness part of the proof, when all a priori bounds assumed here will have been shown. In particular, to
take all benefit from this estimate, it is crucial to first obtain b ~ A, which will then be investigated in the
next section.

Let u be a solution to (1.1)-(1.2) on [tg,0), and w a be an approximate solution to that same equation :

i Opw + Lw + k(z) |w]?w =4 (3.58)

with a priori bounds :
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3.3 Refined Energy identity 44

1

1
lwllzzgazy S 1, IVwllre(gar < N ||wHH3/2(gdgc) S /2 (3.59)
Then, we decompose u = w + @ so that :
i0yi + La+ k(z) (Jul*u — ww) = = (3.60)
We assume the a priori bounds on # :
”va”L2(gdw) S )" HQHLQ(gd:c) S )‘2 (3'61)
and on the geometrical parameters :
AN 0 S A b~ X, Ao SN b <1 (3.62)

where A > 0, @ € R?, b < 1. We let A > 0 a large enough constant, to be chosen later, and ¢ a cut off
function such that :

PN r for r<1,
¢(T)_{ 3—e " for r>2 (3.63)

Let
Fa(u) = i Wl fa(w) = JulPu, so that F'(w).h = Re(fa(u)T)

! (3.64)
Fy(u) = 3 lul?, so that Fj(u).h = Re(uh)

We now want to look at the variation of the conservation laws on an exact solution u with respect to the
approximate profile w we have just introduced. So let

=1/M%WMr

My a(u) = Im / AGV¢<

) Vuug(x)dz
and recall E(u) was defined in (1.11). A simple computation shows

1 b
B(u) ~ B(w) + 15 (m(w) — m(w)) + 55 (Mya(0) — My,(w))

=-R /{£w+>\2w+k()|w| w]ugderQ)\Im/AGng(

xA)\a).ﬁVw+ﬂVw] gdx
ﬂ2
+% /G(z)Vﬁ.Wd:rJr% /'A—L gdx—/k(x) [Fi(w + @) — Fy(w) — Fy/(w) . 4] gdx

_/V(x) [Fo(w + 1) — Fa(w) — Fy'(w) . 4] gdm—i—% AGqu( 3 > Vit gdx

The first line term can easily be estimated. On the one hand, using (2.5), the Ground State equation
(1.36) and both orthogonality conditions (3.7) and (3.9)

/[a%; wt k(@) [w]?w| T gde = k(l | 3 [ 64Q~25.9Q) e gdy + Ol 1)
1 1 -
- /(bA@ 25.V0) erdy + O([lellzz) = O(llellzz) = O(llallz2)

On the other hand, defintion (3.63) of function ¢ imply

Vo(y) =y, |yl <1, Vo) S 1, |yl >1
Ap(y) =2, [yl <1, Ap(y)| Se M,y >1
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3.3 Refined Energy identity 45

so that, since G(A\y + a) = I + O(P?)

Im/AGV¢<x;)\a> [avVw +iVuw] gde

1 1 Y
= __ —eaAX + €, AO) gd +/ 2AVO( = ). (— VI 46, VO) gd
k(a) A {/ySA( “ o ) 9 ly|>A ¢(A) ( ° o ) e

Yy
n /|y>A A¢(Z) (—e2X 46 0) gdy} +O(P ell.2)

1 1 /
=— = 7€AE+6A@dy+/ Rpady p+ O(P €] 2
k(&))\{ \<A( ? ' ) ly|>A > A ( | HL)
with

Roa=2AV9(4) (~VE+a VO) +2¢(4) (-2 T+a0)

and obviously, thanks to orthogonality condition (3.9)
/ (—62AZ+61A@)dy—>/(—62A2+€1A@)dy20, as A — +oo
lyl<A
/ Ry ady—0, as A— 400
y[>A

Then, we claim the following

Lemma 3.5. (Generalized energy estimate) Let

/G ) V. Vudx+ ‘K'; gdx+/AGv¢( ) Vi gds
f/k(x) [Fi(w + @) — Fy(w) — Fy'(w) . @] g(x)dx (3.65)

- /V(x) [Fo(w + 1) — Fo(w) — F>'(w) . i) g(z)dx

then, we have

%_ )\lgIm</k(:c)w2ﬂ2 gdm) —Re(/ (z) Opw (2 a2 w + @2 W) gdgﬁ)

b ||2 1 2 [T —a e 1 z—ay |il?
+ﬁ AQ gd$+R€/E(gGV) Qb( A)\ )(VU7VU) dx—m /AGAG’9’2¢(TA) v dx

b - - . _
+X'R6/AGV¢<:EA)\Q) k(z) 2wla)® + wa?) Vo gda

+Im/l w,7+k( ) (2 |w* e —w 1/1)+17AGV¢( e

)9 g () o] g

+O(N 9132 + 3 Nl + il

Remark 6. (i) Note that (3.66) brings a better control, for it keeps track of the quadratic terms in 4. It
is all about getting a control of the form :
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3.3 Refined Energy identity 46

d o 1, b
T {(GVu, Vu)Lgm + 2 |u||L§dr} > 2 < GVi.Vadr + — )\2 ||uHL2(gdm) + lLo. t) (3.67)

lz—a| <A

(it)  From hypothseis (H2) on g, notice that for a function f

1 f g az) = O f 1eaw))
I f Nl dyy = I1fl2e(ay) + @(/\2 ||f||7-t(dy))

where H is any LP or H* space.

(3.68)

(#it)  Before proving the lemma, let us take some time to talk about hypotheses (3.59) to (3.62). Indeed,
based on the previous sections, one should check those assumptions are satisfied by the approrimate profile
we have built, that is when

B 1 1 =)\ iy
Y7 ka(0)2 X0 Qoo (- () )<
ao L 1 e[t La(t))em(t)

k(a(t)172 A(t) A(t)

So here it comes
1. From (2.7)
1
0l = a7 [ 109 9y = [ @+ 00+ o) <1

2. From computation of energy

1 1
Vw22 (g an) = "a)2 /|VQ79|2 gdy =13 [/ IVQI* + O (N + |a\2)}

1
hence ||Vwl|r2(gdz) S Y

3. Fourier transform computation leads to

N A —ia.§ A —iax. &
B = i A = L (R0 +O(P)
so that  ||wl[Fs» =/ L+ €72\ QMO de + O(P?) 5 Ad 1QI /2 +O(1)

1
hence (Wl gs/2(gaey S N0l garz S 52

4. From (5.51), since |Mod(t)| < P*+ P |a|? thanks to (3.24), and using (3.21)
(14 O(lellz= +P2)) / e = O(P* +Plal?)
- 1
hence Hu||L2(gdw) = W ” ||L2(gdy) < )\2 /\1/2 |Oé‘

5. From (3.21), the best we can say so far is |Vl r2(gae) S + [IVellz2 (14 |af?) 1

6. Eventually, from (3.24) and (3.21) one successively gets

AN + b = <A?
\Aat|=\ﬁ s[5 -28]+ 18152
1
\bt|—A2|b S 53 [[bs+ 02 = Bi+ 02 - Bif] S A2+ 1 51
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3.3 Refined Energy identity 47

Provided we have proven |a| < A2, all needed assumptions are satisfied but two which are left to prove.
Indeed, both b~ X and |G| g1 (g az) S A* have to be shown. We will do so in the fourth section.

Proof of Lemma 3.5 :
Step 1 The computation is essentially the same as in | ], except for the term A which is replaced
by L. Thus, derivating the first part of Z, using (3.60) and (3.64) yield

122
;lt{; /G(I') Vﬁﬁdl‘Jr% /%g(x)dxf/k(x) [F4(w+a)*F4(w)*F4/(w).ﬁ]gdx

— /V(x) [Fo(w + 1) — Fa(w) — Fy'(w) . 4] gdx}

= Re(@tﬂ, —édiv(GVﬂ) + %a— k(z) [fa(w+ @) — fa(w)] = V(z) [w+ @ —w

+Re(8tw, —k(z) [fa(w + @) — fa(w) = f1'(w).a] — V(z) [w+ﬂ—w—a])

Ao [
- /\UI2 gdx

.1 1
=Tm(v, Lii— g i+ k) [0 = L)) = 5 Tm (k@) [fa() = fa)] ),
_ ﬁ 7712 _ =\ £ ~
%o [13 gdz - Re(ow, K [alw+ ) — falw) — f'Cw)al)
Then, notice that fy'(w).% = 2|w|? @ + w? @, and
_ e — -
T, k(@) [falw ) = faw) = fa'(w) )
= Im/k(x) 2wala)® + |a* + wa|af’] gdx
:Im/k(x)ﬁlﬂfdz gdz
so that the last line can be rewritten
Im(@b La— 1 i+ k(z) [2|w]?a +5w2]> - iIm/k(x)ﬁ2 w? gdx
’ A2 L2(gdx) A2
_ M /|7:L|2 gdx — Re(@tw k(z) [0a? + 2w \a|2]) - Re(&tw k(z)a |a|2)
A3 ’ L2(gdzx) ’ L2 (gdx)

$Tm (v~ gt K@) [falw) — falw) — fo/(w) )

L2(g dx)

We now estimate some of those remaining terms. First, from (3.62) one gets

A . b N . b - -
f)\—; /|u|2 gdr = F/MQ gdr — (AN +b) /|u|2 gdr = F/|u|2 gdm+(9(||u||§{1(gdx))

Then, the last two terms are to be treated with a priori bounds (3.59) and (3.61)
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3.3 Refined Energy identity 48

T (6= 55 i, W) [Fale) = falw) = fi'(w) @

])L2(gdw)

- Im(¢ - %u  k(z) [2wlal® + @ |af? +ma2])

L2(g dx)
1
~ 112 ~113 ~113
Sl (e Twles, +lalde )+ 1@l el
1
2/3 ~14/3 1/3 1/3 . - -
Sl (1125 19alZ Tl IVl + g, )+ 5z e, 1Val?,
dx gdx gda g da gdx gdz gdx
SNl + Il
gdz gdx
where we have used the Gagliardo-Nirenberg estimate

lull s < Cllull}s Va3

To deal with the last term, we use (3.58) to replace dyw, then by integration by parts, using (3.59) we
have

L?(g de)

ynegzw,kg@a,ap)

= Im/dw(GVw)k|m2adx+Im/k[k|w|2w+Vw+w} gdx

S iv(@Vw)|[ o Halal e+ (HwPwlze + 1%l +1Vwlle, ) aPals,
S leolgsgo 8P @l g+ lwliFs NlEs o+ I6lze, s
dx gdx g dx gdx

1/2 5/2 ~ ~ ~
S s NS WlZfE + 5 Vs Nalea, + Doz, Nl Wlls

S ele + lalin
gdz gdx
where we have used twice the pseudo derivative estimate

D21l )| o < [|1DY2 (1) || oo lallzs + a1z || D2l
< [1DY2a|  llal7s

then the Sobolev embedding result Theorem 8.2

H3/4(R2) g L8(R2)

to get

|W”%wam<uwm(wW“HW“)<nn“nnm
Eventually
dt{ /G ) V. VUdI+ ‘)\|22 gdx—/k [Fi(w + @) — Fy(w) = Fy'(w) . 4] gdz

_ /V(x) [Fo(w + @) — Fa(w) — Fy(w). i gdx}
(3.69)

1 — e b
——Im/k(m)w%ﬂgdw—’Re/ () Oyw (2|42 w + @?w )gd:z:—i—A2 5V3

+ﬂn/zwf—f+m)@mﬁ¢fwﬁﬂﬁmm+ooﬂwmr+ﬁwwa+ww%)
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3.3 Refined Energy identity 49

Step 2 Again, as in | |, we compute the algebraic derivation of the localized virial part. Let
~ b T -«
Y 3.70
Vo(t,x) /\AV(;S( B\ ) ( )
then

1d[b T—Q =
2dt<>\Im/AGV¢( B\ ).Vuugdat)

1 R I - -
= §Im/Gatv¢.vaa gdx+Re/i8tﬂ |5div(GVé) i+ G V6. Vil gdo

(3.71)

+ Re/iataaev&.vg dx

First, thanks to (3.62) and the computation :

A A3 A AN A AN

B b)) el

s = A L o] Bl E) o (B () (55 ) ool

we have :
-1
VoIS 1 (3.72)
so that, since g is smooth
L 2m [ 0,96 VaT gdu| < - | Vi — 0~ |laf? i} 3.73
5Im [ 0Vé. Vi gda| S 5 llez, [Vallez,, = O(55 1@l +lial ) (3.73)
Now, with the second term
1 - - _ -
Re/iatﬂ |5 div(GVE) i+ G V. Vil gdx+Re/i8tﬂﬁGV¢.ngx
1 - — 1 1 -
= Re/—2 (9GV)?d. (Va, Va) do — f/AG {2 div(g* Gws)} [af* da
g 4 g
X (3.74)
— Re/ [k(z) (fa(u) = fa(w)) + ] (292 div(g> GV @) @ + GV(Z).V&) gdx

1 -
- §/GV¢.V(gV) |a|? dz

where assuming g,V € W1 yields

_ 1. _
S llgVilwa e = 0 (55 lali3: + lallf )

%/Gvé.v(gv) a|? da

thus

49



3.3 Refined Energy identity 50

Re/i@tﬂ [%dw(av&)a+0v$.va] gdzwze/iatﬁcv&.vgdx
b 1 2 (X — J— 1 b T—a\ -
:FRe/?(gGV) (Z)( o) ).(Vu,Vu) dx—mﬁ /A(;AG,M(b( P ) |i|? dx
b - =
- g Re [ B0,u6(U5E) @) (fiw) ~ fitw) gds

A
_ fRe/AGV(;S a) Va k(z) (f4(u) —f4(w)) gdx

Q

AN

(3.75)
T — = T—Q\ ——
—ﬁRe/ Gq2¢( - ) T gdfoRe/AGVqS( - ).Vuz/) gdr
1 . -

+ 055 Il + il )

where

1

A, 0= g—u div(g” GV(;S)

We aim at using the same estimation as in [ |, using (3.59) to (3.62) along with integration by parts,

Holder estimates and Gagliardo-Nirenberg inequalities. First we decompose
faluw) — fa(w) = (|w\2 +|a)? +w i+ wa) (w+a) — lw|? w
- (2 \w|2a+w2§) + (2w|12|2 LT+ \a|2a)

Then using (3.21)

b — = ~ ~2 — ~ ~
‘ _ﬁ /AG,9,2¢<%) u k(lL’) (2’w|u|2+u2w+|u|2u) gdw

-« = ~ ~ ~ ~
y ).Vu k(z) (2w @] + @®w + |a]* @) gdx

b T
4 faem
([P 1ol gdo+ [1at gar) + [ (1Pl + 1) Vil gds

(g lnollza + Nalide) + | 12 el +1af* |, 192

N N

N
>/\H>/\H>/\>—‘>/\

(alis tfwllze + allge) + (NalZe ol + @l ) 193] .2

~ ~ ~ ~ 2/3 4/3 1/3 4/3 ~ ~
(Nallze 1@l + a2 193 ) + (1235 19l ol 5 19wl + lalze 1Val.)

A

. 1. .
S lalldn = 055 Ialize + )

Moreover

—L/ Gg2¢( )ak(m)(2|w|2u+w ) gdm—g/AGV(ﬁ(Jjj;)\a).ﬁ k(z) (2|lwa+w’a@) gde

2)2
%Re/AGqu ) |9V ) @wal + (wa)?) + 2k Quwaf + @) Vo + 2k (2w + w? ) Vi| gda
— - ) @ k(z) (2w @+ w?a) gdz
! k - =\ 2 - _ _
—ﬁRe 3 ) [gV(g) 2lwaf + (wa)”) +2k (2wla)* +wa?) Vo | gdx
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51

and one gets the estimate

—Re

).gV(S) (2lwal® + (wa)Q) gdx’

1. _
S Nl ol S 5 ol [Valze = O (55 s + 1l )

~X

Finally, integrating the last term of (3.75) by parts, we have
b

- Re / AGw(

zgRe/u AGV(;S(

) Vi gdx

AA) W’gdg”x /“¢A092¢( A/\a> gdv

so that

Re/i@tﬂ [ldw(Gv&)aJeré.va] gdz+7ze/iataﬁav¢3.vgdx

%Re/ gGV ( ) Vu Vu) dx 4A2 N /AGAGQ2¢(

+§R€/AGV¢( ) ) 2w la]* + wa®) Vo gda

=) Jaf? da

—

) ) Vo gdz + 22 Re/AGM(z)(%) T gds

b
+XRe/u AGV¢(

1 -
+ 053 Il + il )

3.4 Working the bootstrap under further assumptions
Say we are now able to put a more precise estimation on the «, § parameters in out bootstrap
o] SA% 8IS A% b~
All previous computations are much more simple. We have then from (1.42)

)\2
B, = 5 Kg g+ 00

By = Aco(a) + A2 Cs + O\

(3.76)

(3.77)

(3.78)

the A2 pertubation in the b law is something too big to be dealt with through the method we are following

here. So we need to assume a somewhat strong condition on the metrics terms g and G :
Kag=0

3.4.1 Backward propagation of smallness

(3.79)

Once again, we stick with the proof in | J. We use the last section to get a bootstrap result. Let u be a
solution of (1.1)-(1.2) on [tg,0), to < t; < 0, and assume, there is a geometrical decomposition of u on [tg, 1]

such that

B 1 1 T — Oé(t) iy(t
u(t,x) = W m (QP(t) + 6) (t7 W) et ()

where € satisfies orthogonality conditions (3.7)-(3.11) and
(@)l + [P(£)] < 1. Let

) - 1 1 T —alt)\ iy
0 = e o )
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3.4 Working the bootstrap under further assumptions 52

Assume that the energy Ey satisfy :

1
Ey+ 3 Cg >0
we define Cj as
2
o — | M@l (3.80)
8Fy+ Cg
We claim, as in | | the Backwards propagation estimates, with corrected mass (3.4) :

Lemma 3.6. Assuming there holds for some t1 < 0 close enough to 0 :

lullzz,, = (14 A2(0) 5) Qllaz| S A(ta), (3.81)
IVa(ty)|7e + % <N (t), (3.82)
T+ S| sam. pe+ glsee. [ -glsee e

Then, there exists a backward time ty depending only on Cy such that V't € [tg, t1],

va i + I < ywaps. + LGE 1 e (359
‘;(t) Cfo‘ < 22 (1) (3.85)

‘A(t) + Cio‘ < 23(t) (3.86)

S| a0, [So] a0 (3.57)

Proof of Lemma 3.6
Since u € C’([to, t1], Hl) is continuous, we can find a backwards time ¢y such that Vit € [to, 1] :

a(t)]| > < KA2(t), |lat)|m < K A(t) (3.88)
| 8 |+ \Ag;\ <KA®), P+ Cio\ < KX, i((t _ 7’ < KX (3.8

for some large enough universal constant K > 0. Then we claim that (3.84)-(3.87) hold on [tg, t1] which
improve (3.88), (3.89) on [tg, t1] for some ¢y = to(Cp) small enough independent of ¢;.

Step 1 Monotonicity of the norm
We then apply previous lemma to function

1

w0 = Q0D = oo 2

Qp(t)( zAg)(t)) et (3.90)
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3.4 Working the bootstrap under further assumptions 53

note we may apply previous lemma 3.5, since (3.81) to (3.83) ensure all needed hypotheses are satisfied :
on the one hand (3.82) imply ||Vl 2 < A? on [to, 1], while on the other hand (3.83) imply b ~ A on [to, 1],
which were the two missing assumptions for our approximate profile as we already pointed out.

Let Z be given by (3.65). We will check later (3.66) implies

dI
kvt /|u\2gdx+(’)(K4>\5+||u||H1) (3.91)
A first rough estimation of Z using Holder estimates show
< (vare, + JlE: 5o

Then, looking a bit closer we may check using both result and proof of Lemma 3.2 that

/G Va.Va dz + /|“|2d
uux2)\g

k

W {(L[‘f]ela 61) + (L[g]€27 62) +/(Q2 + A V) [ef? gdy—i—2/Q2 e gdy}
= m {(Iurq7 61) + (L,EQ, 62) _|_/Q2 (3|€1|2 + ‘62‘2) gdy+0<7?2 ||e||%11)}
Zmﬁ@w@W%GMQY}

Furthermore with (3.26), (3.77) and (3.81)
[Re(e, @p)| S lellfe + A1+ |a\2+j/\u|2 gdr — (1472 k) /Qz\
S llellz + K2 X (2)

therefore

(61 y Q)2 5 0(”6”%2) +K4 AB(t)

from which

1 _ a7
> 2 48 > 2 L2 _ 70446 .
IN2M®V{¢H KAaﬁanm+—v K1) (399)

Integrating (3.91) between ¢ and t; gives

z)-20) = [ G = [N+ i) dr

thus from (3.92) and (3.93) one gets

I ()HL2

<T(1)
Sﬂm+[1mﬂ%ﬂHWﬂﬁqw

w+/t C(KO() + [0 |20) dr

Altogether, we conclude for ¢ty = to(Cy) small enough

— K*\5(¢)

< IVat)lz. +
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3.4 Working the bootstrap under further assumptions 54

la(0)l32 S I " e
IV + 5 S Vit + g 2+ KA + [ (50°) + ) dr

and (3.84) follows from Gronwall lemma. In particular, from (3.82)

a3 + IO < e (394)

which closes the bootstrap of (3.85).
Step 2 Integration of the laws for the parameters
From both (3.24) and (3.77) we have the following estimations

wy+#—3q+L%+bh¢@+bﬁ—3ﬂ+¥§—2ﬂ§A4 (3.95)

We now aim at integrating these laws to get (3.85)-(3.87). To do so, we first see from (3.78)

(3, - () B

hence integration leads to

b b b s 2 200) < )2
X(Sl)*x(s): <X>Sd05 A do S A (s1) = A7(s) S A°(s)
Thanks to (3.86) it proves

&30 g 3+ 2%(s) %) (3.96)

By the same token that led to (3.31) then to (3.38), we sum conservation of energy and of mass at time ¢

o [+ [or- Lo (k- g @) ontae) [0 =0 (B+ g ox) +o(x)

where we used our assumption |a| < A2, and the fact that from (3.94)
[Vel72 = k(a) N [|Vi][7. = O(AY), sothat ||e]|3: = O(AY)
Thus from the choice of Cy we see it implies thanks to (3.96)

W+@<L_E<L_é<)\2
A2 AN YO NGy AT

In particular using (3.96) again, that last estimation evenually yields

which concludes (3.85). Then by (3.95)

EHCROIER

And finally,

Q—iyﬂm+ﬁm5vm

‘)\( ‘<‘At1+—’+/ G
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3.4 Working the bootstrap under further assumptions 55

Step 3 Coercivity of the quadratic form in the % expression

We now come back to the proof of (3.91). To begin with, we compute explicitly the quadratic terms in

(3.66) for w = Q given by

K(ﬁ):—)\zIm</k(x)w2122 gda:) —Re(/ (x) Opw (2|u|? w + a2 w) gda:)

b |al? 1 2, (T — |al?
+F 2 gdac—l—Re/?(gGV) (/5( B\ ) (Vu Vu) Az /AgAng(b( ) 2 dx
b T — 2
+XR6/AGV¢( AA).k( z) 2w |a]* +wa®) Vo gdx
(3.97)
we claim
K(a) > AS /|Ve|2e f+/\ | + O(K*\?) (3.98)
for some universal constant ¢; > 0.
First we compute
= . .Vk(a) = A =2 Ao+ M(z—a) T—ay .
20 ="k ¢ lo() /2 )3 ‘VQP( ) )e
.o~ 1 o0Qp rx—ay ,,
‘H%Q-&-k(a)lﬂ)\fpt op ( Y )6
B _(/\at—Qﬁ).Vk(oz)_Zﬂ.Vk(a)_/\/\t—i—b_i_i o
B 2k(a) A 2k(a) A A2 A2
(3.99)

(L, Na—eP 1P
“(v*v e

R 255 e (R

U el 22 3 | k)
1 0Qp [z —ay 4,
T RN P ()

then, by the same procedure that led to (1.41), we see
0
‘Qp - Q| < |Ple”¥!,  therefore ’%’ < el

moreover we check that [Py < 1, so that using (3.88) and (3.95)

atQ=<Ab2 >Q+ ( A°‘).v@+o<[§e”ﬂﬁ”'>

now putting this together and using the exponential decay of Qp
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3.4 Working the bootstrap under further assumptions 56

—Re (/k(w) Q: (2]l Q + Q) gdw)

= %Im (/k(w)Q(ZIﬂI'ZQHFQ) gdx> - %Re </k(x) (2|ﬁ2Q+a2Q)dix> (3.100)

im(/(w;a)k(w)(mmzm *Q). vcggdx> + 55 O(K Al

and

< ) Qy 2u|2Q+u2Q)gdx> —Im(/k‘ w? @2 gdx)
1

b [ EQwy+
= e ¥ /M [(1Qp? +252) & + 4506 & + (IQp* +20%) & gdy

"k k(a)
1 b k(Ay + )
WFRG/W@‘ ?Qp+EQp)y.VQp gdy

Injecting this into (3.97) yields

K (@) = k( l/ o gdy+Re/g (9GV)*0(%) - (Ve. Vo) dy—& /AgAG,ﬂgb(%) el dy

—/W [(1Qpf +25%) & + 450 crea + (1Qpf +26%) ] gy

+Re / (AG(Ay+a)v¢(fl) —y> W Qe Qp + € Qp).VQp gdy]

+ 55 O(KAJel32)

Notice that expanding the metric terms g and G yields

/ {1 - WA%(Z)] Ek derRe/V?gb(%) (Ve, Ve) dy

|Qp\2+222) E+4506 62+ (|Qp[* +20?) g} dy

/(Aw( )- y)w(zlePQpﬂQQp).mdy}

k(@)

1
+ 55 O (K Mell3 + 2% ellf)

and

K(ﬂ):ﬁ% U {1 EAQ (fx)] ]2 dy+7ze/v2¢(%).(ve,ﬁ) dy
—/{(\Qp|2+222) 6%+4E@6162+(|QP|2+2@2) e%} dy}

1
+ 5 O K X7 +/ le|? dy + A2 ||e||32
A ly|>A

From proximity of @p to @, from our choice of orthogonality conditions, from (3.32) and from (3.88),
the above quadratic form is for A large enough a small deformation in A of energy which satisfy
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3.4 Working the bootstrap under further assumptions 57

_ 1
U)Zp

e2e V1 [1e?— (. Q)| 2 5 | [ Vel + [ e
1, ~ )\3

where we have used (3.34) to get the last line. (3.98) is proved.

+ O(K4 X”) (3.101)

Step 4 Control of the remainder terms in the < W expression

We have left to deal with the 1) terms in the expressmn According to the definition of ¢ we see with
(1.15), (2.2) and (3.20)

Y = —idi — La — k(z) (|a]*a — |w|*w)

— i (e aae = e HGEE (10 + ()
- z% Ae—iS . Ve—F e (F52) e
- [ mage e e spacs O
03 m0aas (5 ) aae (5 20) (var + T gy)
— (s — 1B Qr + 1/)7,] (” ; Of) (D)
where 1p is the remainder term in the construction of Qp :
p = 030 c-5)
First see that (3.95) along with (3.88) and (3.89) gives a rough bound on v, that is for i = 0,1,2 :
V'l S )\3+z o (IMod(®)] + | K| + K51+ X°) 3 Nt © - (K A2 [fel| 2 + K2 AT) (3.103)

and thus

IV*%llze < )\QH (KA [lellze + K2 %)

In particular we find the bound

N 9lI7e S A2 llellZ + K*A°

~

then for any v > 0

b -« -
Im/{ZAGV(zS( A)\) Vi +i— 2 G’-"‘QQS(A/\)w}u gdx
(0
< IVlge e + L2022
1/2
2 214 || ||L2 4 y5—v\1/2 ||€||%2
<3 [ ||L2+KAM e = 152 + (1N (522
< )\y || HL2 +K4 )\5 v o__ (”6”%2) +K4 )\5—1/
A3 o A3

Yet bound (3.103) is not precise enough to take care of remainder terms in (3.65). Let us remind that
the construction of Qp induces

—i lv|? i
QP:PPG b3 +ﬁy+(9(\7:|2), Pp:Q+O(|P|2)
so that using (3.95)
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i b+ 8 = B1) 34Qp = (b, +5 = 51 22 @+ 0P 210d(t)
i(Bs +b8—B2)9sQp = —(Bs + b8 — B2) .y Q + O(|P| Mod(t))

now we have ¥ = 11 + 1o where

1 ly/?
1= 1753 |(bs +0* = B1) == Q — (B + b — B2) .y Q
k()\oz)l/2 A3 [ A 4 (3.104)
il (G Q- (R — |82 T i)
—i(5 D) AQ -G (5 -28).VQ - (B - 181 Q) (F57) e
and for i =0,1,2 :
1 e
|Vips| < ol (|P||Mod(t)| + K2 \?)
U . (3.105)
5 )\3+i (>\ || HL2 + K=\ )
This implies the remainder term 15 in (3.65) may be estimated as the previous one
¢2 2 27\ =
Lo — 5 + k(z) 2 |w|]" 2 —w o) | u
szllm (3.106)

< [I920ale + 252
el|Z2 4 45-v
So(H85) + KA
while the one in v is estimated using (3.13) and the orthogonality conditions (3.7) and (3.9) on € which
allow to gain a factor O(P)

+ all e ol Nl o

zm [ [0 = 5% + ko) @Jof o - w50 @

[Mod(t)| + |a|?

S {(2 L4 Q)) + (e, L-(vQ)) + (e, L4 (VQ))

+ (62, L_(Q)) +0O(P ||6|L2)] + (3.107)

3+ tll( 200

1
Iy
X2 el e + K2\

Aellzz + K2 X8
< Mellee 2B e 4 202 FEEAT (e 412 0)
||€H%2 4 \5—v
§0( 3 )—I—K A

where we have used the fact

Laaf = AF+000) (1941 +[9211)

and (3.13) together with the conservation of mass through estimate (3.24) to get the bound

(%) + (2, ©) + 5 el £
hence (61, Q)’ SAlellzz + K2 A%, so that
Al +b‘ )(61’ L+(AQ))‘ |Mod(>?l+ o (El,Q)‘

Now injecting (3.105), (3.106), (3.107) and (3.98) into (3.66) we see
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dz

(/|Ve|26 Vi gdy—|—/| |2 gdy>—|—K4)\5 v

> 1
~ A3
b 2 ~ig 1 —lz=al 4\5-v
)\— |a|* gdx + | |Vl —6 VAx gdr+ K* A

2 [lar gdw+0(|unH1+K‘*A5 ‘)

and since it is true for any v > 0, it remains true when v = 0, proving (3.91) holds.
This concludes the proof of the Lemma.

3.4.2 Existence of critical mass blow up solutions

As a first consequence of previous lemma, we may integrate the flow backward from the singularity to prove
there are critical mass blow up solutions. The following proposition ends the existence part.

Proposition 3.7. (Ezistence of critical mass blow up solutions)
Let

1
Y € R, Fy+ 3 Cg >0, (3108)

and Cy given by (3.80), then there exists to < 0 and a solution u. € C([to,0), H>/?) to (1.1)-(1.2) which
blows up at T = 0 with

E(uc) = Eo and lucllz2 = 1@ (3.109)

Moreover, the solution admits on [tg,0) a geometrical decomposition :

1 1 =B\ o0
uc(t,x) = Qp, ) + €t (t,7>emc()
)= oty ety (90 * O35 110
= Qc + U
where €. satisfies the orthogonality conditions (3.7)-(3.11), and there holds the bounds :
lcllze S A8 el S AL Naellmsz S X2,
t b 1
At =01, - —=0
-t =00, g =00, (3.111)
> s
love| + [Be| S A ’Yc:_T""YO‘FOO\c)
Proof of Proposition 3.7
Step 1 Backwards uniform bounds.
Let a sequence ¢, — 0 and w,, be the solution to (1.1) with initial data at ¢ = t,, given by :
1 T ;
- _ iYn (tn) 11
Unp (tna .’13) )\n QPn <)\n) € (3 2)
with P,, = (bn(tn),)\n(tn),ﬁn(tn),an(tn)) and :
tn tn Cc?
bn(tn) = _0737 /\n(tn) = _605 an(tn) = Bn(tn) =0, 77L(tn) Yo — T: (3-113)
Recall the conservation of mass identity we have computed in (2.7) which here becomes
lun(ta)l72 = (1+ KA /Q2 +O(t}) (3.114)
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3.4 Working the bootstrap under further assumptions 60

Furthermore, we have ,(¢,) = 0 by construction. Hence w,, satisfies at t; = ¢,, the assumptions of
the backward propagation of smallness lemma, and thus we can find a time ¢y independent of n such that
YVt € [to, tn), un admits a geometrical decomposition

_ 1 L= Oén(t) i')’n(t) 7
un(t,m)—k( NOLEENC ()QP (t)( WD) )e + iy,
with uniform bounds in n :
Van(®)2 + 12 Ol5 < o (3.115)
r A% (1)
L S I PO A PEPUITY
An C ~ " Col ™7 (3.116)
| (8)] + B ()] S X2(t)
From Strichartz bounds, this implies the uniform H3/2 bound :
(Ol e 10,1, 10002) S A (3.117)

that we will prove in step 2.

Now the H! compactness of u,(ty) is a consequence of a standard localization procedure. Indeed let a
cut off function x(z) = 0 for |z| <1 and x(z) =1 for [z| > 2, and x,(z) = x(%), then since

Oy, =1 [Eun + Ek(x) \un\zun]

we have
d , _1
7 | Xa lun|* gdz| =2|Im [ G(x) Vuy, . VX, U, dx S
and
d 1 1 . 1 )
G [ (566 Vi Va7 = S 1@l 9(0) = 5 V(@) [ual? 9(a)) d
1
Im/VxR @) Vi, (Lup + k(@) [un 2 uy) do| S I

where we have used (3.115), (3.116) and (3.117). Integrating this backwards from t; to ¢y we have :

1 1
/XR |un (o) S = | Xa [Vun (to)? < i (3.118)

Let’s say a bit more on how we got the last estimation. We have used the Gagliardo-Nirenberg inequality
as follows

/XR Vun|? dz < /XR [; () Vuy . Vit — g(2) (i () fun |t — %V(m) |un|2)] do

+/’X;/4un‘4 dx—l—/xR |t |? da

1
N *-i-/ 1/2 |un|2dx/xi/2\Vun|2dx+f

R
1/2 2
R R/ Vn|” do

1
b [nlVuPdes g [ 002 = x) Fu do

A

AN
:o\H

then
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/(Xi/z—xR)\Vunlzdxs/ V| dz < 1

R<|e|<2R
so that
[xalVun o <
R
This last result (3.118) gives us a control at infinity of functions wu,(tp) that will help us to get H*
compactness of the (u,(tg)) sequence. So we use Lemma 8.4 of Appendix B to get for any 6 > 0

H}(gdz) = {ue H'(R?, gdz), ((2)° +(Du)%) (Jul +|Vul) eLz(gd:v)} < HYR?,gdr)

compact

Our next move is to claim (3.118) ensures (u,(tp)) C H}. Once this is done, we know there is a
subsequence of u,(ty) which converges to some u.(ty) € H*(R?).

First, since we have u,(to) € H3/?(R?). Now we prove u,(to) € H}(R?) whenever 0 < § < 1.

Using (3.118) we say for every j € N

s
(x)” 1
/2:‘<z|<2j+1 <2J’+1>25 funlto)* gdo S Xaia [un (t0)* g e < 291

and since § < %, summing this over j finally yields

“+o0
2 2 = 2% |u 2 gdx )% |u 2 gdx
/<x> (o) gdx/0<lx[<1<> fun(to)? g +;/ ()2 Jun (to)? gd

i <|a|<2i+1

+oo
1
S 22(1—25)]‘ < 400
=0
The same preocess applied to Vuy,(to) instead of u,(to) yields [ () |Vun(to)]? < +o0 O

Eventually, we have proved

un (to) — ue(to) in H'(R?), as n — +o0

Let u. be the solution to (1.1)-(1.2) with initial data u.(tg). From the H' continuity of the flow of our
Schrodinger operator, we have

Yt € [t,0), un(t) — u(t) in H'(R?), as n— +oo
Of course u, admits a geometrical decomposition like in (3.110) and we claim as in | ] it implies

Vtet,0), Pnlt)— P.t), as n— 400

By passing to the limit in (3.115), (3.116) we obtain the H' bound along with the estimates on the
parameters in (3.111). This implies in particular that u. blows up at ¢ = 0. Similarly the conservation of
the L? norm ensures

gz, =, T _Jlun(ta)lzz,. = 1Ql122

Recall that from the very method we used to approximate our solution through the geometric decompo-
sition

szppe—zb%-&-zﬁ.y, PP:Q-FO()\QB_CQ“A)
which along with (3.115) and the computation we already led in (2.8) yields
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E(uc(t))

= % /G(w) Vue. Vi, dr — i /k(x) lue|* g da — % /V(x) luc|? g da

_ 1 [1 — 1 Ry + o) 4
=t |5 [ GO+ 00 Van VG gdy -1 [ A5 105 gay

Ay +00) | Q. gdy] Lo

|
NIk
—
=

U (0 [ e A
—W_S/m @ —SOE}+O<AC>
L (b2 1
~8 (()\) - cg> ly @I72 + Eo + O(\e) — Eo

Now from the conservation of energy, we may conclude E(u.) = FEy.

There is only left to prove the estimate about the phase parameter. This may be done using equation
(1.15) along with (3.115) and (3.116) that lead to the rough bound

|Gn)s| S A2

so that

0o D=5 - =15+ (g - Bl s

from which we may conclude after integrating
02
Tlt) + = =0+ 0(1)
and taking the limit n — 400
2

C
Ye(t) + = =0+ O(t)

Step 2 H?/2 bound

It remains to prove the bound (3.117). In particular, when done this implies the H3/2 bound in (3.111)
by taking the weak limit of H3/2.
U, satisfies
1Oyl + Ll = Y — k() iy | |* — Fy
with
Fo = k(@) (Qn + @n) [Qn + @n|* = k(2) Qn |Qnl* — k(@) y, ||
Given ay (t,) = 0, using the Duhamel formula

ﬂn(t):i/t e DL (4, (8) + k(@) i (8) [t (8)]* + Fr(s)) ds

n

then the Strichartz estimates coupled with the smoothing effect of the linear Schrédinger flow leaves us

with three terms to control

V3240, || o

[t:tn]

2SIVl s+ N0+ 10B) Fallig, o+ 1992 (i 60 s s (3.120)
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See Appendix B 8.3.2 for more details about that last statement.
First, we deal with the error 1, which is to be estimated thanks to (3.102)

IV 24l s S Ag (IModn ()] + lom|” +A3) < An

where of course Mod,, (t) corresponds to the modulation equation of P, (t) which is estimated as in (3.24),
and where we use (3.115) and (3.116) to get |Mod,,(t)| < A%. Hence

||V3/2wn||L?/§ s SA (3.121)

The F,, term is local in y with linear and quadratic terms in 4,. Expanding (3.119) we see

B [in|?  |ln]|\ _clz=anl B lan|? |, Vi| & |tn| | [V cle=an|
F"_O{( W )\%)e Sk VF”_O(Ag LD VRS VR V! ) e

n

so that

_ [ _
IVin|[L2 + <= l[tnllLs [ Vin]| s

11+ fol®) Fall g2 + 11+ 22V Fall 22 S = )

Again by Sobolev embedding 8.2 along with a Gagliardo-Nirenberg estimate

Sobolev  H'/?(R?) C L*(R?)
~ ~ 1/2 1/2
OGN liinlla S il 5° 11 Vin | 5
and (3.115) yields

11+ [22) Fallan S A4+—A3+—(A‘*)”"(Ai)lﬂnvannw

~ )\3
S+ A2 ||V3/2Un||L2

Thus

IO+ @) Fallzz , o S A2+ N2V 2 e, 2o (3.122)

nl

There only remains to deal with the nonlinear term. A little caution here, remind the symbol V3/2 we
are working with is a generalized non-integer derivative that stands for

3/2 1 . & ([ 3/2 ~
VO ula) = oy [ e (1) e ag
where fu(f):ﬂ(f):/ e "-Sy(z)dr is the Fourier transform, (3.123)
RQ
1

and Fu(r) = e /R? e L) dE s its inverse

Then, standard non linear estimates show

19%/2 @ )| S 1920l 22 Nl S 9%/ 20l X5 (3.124)

where we have used (3.115), see Appendix B 8.2.2 for details. Eventually (3.117) follows from (3.121),
(3.122) and (3.124). This ends the proof of our Proposition, existence of solutions for equation (1.1) is now
done provided we justify the boot strap is actually valid, that all terms involved are in control as we assumed
they should be when moving toward blow up time. It is what we do in the next section.

63



64

4 Critical mass blow up solutions have conformal speed

All that is proved in the previous sections strongly depends on hypothesis (3.77), which was

ol A% 18IS A% b~ A el S A2 (4.1)

Recall this particularly simplifies our parameters laws since they should satisfy (3.78). We now want to
justify the use we have made of these assumptions in the first sections and to prove they are are in fact a
rigidity in the regime that governs the (P, €) parameters of the decomposition (3.1). As a result this is also
a first step to get uniqueness of the critical mass blow up solution u. we have just constructed since it will
determine the size of dispersion between two given solutions. To do so, we keep following the procedure of
[ ] with a variational study of the decomposition.

We let k satisfy assumption (H1).

In this section we start proceeding in a perturbation kind of way. In the next section we consider a
solution for equation (1.1) which would be given by profile ) and a remaining term e¢. We then prove the
Lemma 4.1 that proves such a solution tends, as ¢ — 0 - that is as we move forward to blow up time -
to satisfy all assumptions we made to build approximate solution @p in previous sections. Therefore, for
some time close enough to blow up time, our solution will enter in a regime where its approximation may
be sharpened by considering Q» the approximate profile instead of Ground State ). So this will prove, the
geometric decomposition (4.10) still provides a good description, with all due estimations on parameters and
remaining term €, even when moving to blow up time.

Then, a localized virial type of estimation, along with a refined dispersion result on the tail of the (4.10)
decompisotion - the one induced by remaining term € - will get us to a final argument in which we manage to
ensure the control of the geometric parameters for (4.10), and so closing the loop on our boot strap argument.

4.1 Variational estimates and convergence of the concentration point.

The existence of a geometrical decomposition for a mass critical blowing up solution, and its consequences,
among which is the convergence of the concentration point, are a well known result based on a variational
analysis. We begin with adapting this one to our metric situation.

Lemma 4.1. (Variational control of minimal mass blow up solutions).
Let u(t) be a critical mass solution to (1.1)-(1.2) which blows up at T = 0. Then fort < 0 close enough
to 0, u(t) admits a geometrical decomposition

1 z—alt)\ iy
- i S I 4.2
u(t, x) 0 (Q + e) (t, N0 ) e , (4.2)
for some C parameters (A(t), a(t), v(t)) € Ry x R?* x R with

1. Uniform bound on the decomposition :

|Gla) = 1d]? +|g(a) = 1" + |1 — k()2 + [le(t)l| i 2y S A(E) —> 0 as ¢t =0 (4.3)

2. Convergence of the concentration point :

a(t) — o™ with k(a*) =1, gla*)=1 (4.4)
3. Lower bound on the blow up rate :
A(t) < Cluo) || (4.5)
Proof of Lemma 4.1
Step 1
Let
IVQ 2

vo(t, ) = Xo(t) u(t, Ao(t)z) with Xo(t) = — =
(f G@) Vut). Vu(?) dz)
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4.1 Variational estimates and convergence of the concentration point. 65

then

/|’U0 g(Mo ) dm—/|u 2)dz =||Q||3:, and
/G()\O x) Voo (t,z) . Vog(t, ) do = M3 /G(z) Vu(t,z). Vu(t, z) dz = / IVQ|? dz

so that using assumption (H1), k <1

N | =

/ G(No ) Vuolt, z) . VT3 (t, ) di — i [0z it o)l ga)de = 5 [ VO0a) (e, ) g(daa)do

> 2 /\Vvo (t,x)* do — ~ /|vo (t,z) )\Ox)dx—% /V()\Ox) lvo(t, 2)|? g(No x) dz

=3 /‘V’UOP dx—z /\v0|4 dr — /\ 12 g( (z)dz 4+ O(Xo)

and the conservation of energy

L /G()\o ) Voot @) . VT (t, &) do — i /k(AOx) oot 2)|* g(No ) da — % /V(/\O ) Joo ()2 g(Ro 2) da
/G Vu(t, z) . Vu(t, z) dz——/k‘ ) Ju(t, z)[* (z)dz—%/V(z)|u(t,z)|2g(z)dz
— X B -5 (1-X) [V P g(2)ds

Eventually using (H2), V > V(0), one gets

% /\Vvo(t,x)|2 dx — % /|v0(t,y)|4 dr < % / (V(0) = V(2)) lu|? g(2) dz + O(No)
<0, as t—0

From a standard concentration compactness argument along with the variational characterisation of the
Ground State @, this implies we can find (:Co(t),'yo(t)) € R? x R such that

Uo(t,.+x0(t))ei7°(t)—>Q in H' as t—0

In another words, u(t) admits near blow up time a decomposition

1 z—alt)\ iy
u(t,z):m(QJre)(t,W)e (),

with A(t) = A\o(t) — 0, as t — 0 from blow-up assumption, and since the decomposition is set so that

— 0, ast—0

x — Of@)) i (®)
H'(gdx)

u(t,x) — ﬁ ( D)

one easily deduce from approximate values of mass and energy the smallness conditions

el + [g(e) = 1] + ‘%TT(G(O&)) - k(a)‘ —0, ast—0 (4.6)

Using the implicit function theorem, the uniqueness of the decomposition (4.2) can be ensured through
a suitable choice of orthogonality conditions. We then set the orthogonality conditions on € to be

(e WP@) =0, (@, y@) =0, (e 0)=0

where we wrote € = €1 + i €s.

Let v = @ + ¢, it almost satisfies (1.15)
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4.1 Variational estimates and convergence of the concentration point. 66

As O ~
1050 + Laav — v + k(Ay + a) v|v]* = iTAv + z% Vo +7sv

where 75 = 75 — 1. Note that we are currently considering @) an approximate solution of (1.28) or (1.29).
It is a very rough approximation, but since we do not know yet that «(t) converges to a*, there is no point
using our approximation Qp for it takes sense only for a(t) close enough to a*.

Now the implicit function theorem leads to the C'! regularity of our parameters A and .. Then expanding
g, G, k around « and using the Ground State equation

(s o ~ 1 9 1
z(TAQ+7.VQ)+%Q:m(Gi( a) - 1d) 9% Q+(ﬁ—1)AQ+( (@) - 1) Q°
+ ﬁGlj(a) O+ O(X+ lel +|Ve)

Taking the scalar product of that last equation, first with AQ, then with V@Q yields

IRIZ- g(a)

so that

N [AQl7= 1 (; Tr(G(a)) — k(a)) + (g(la) - 1> + O+ el ), z% = O+ |lella)

\%T (Gl@)) = k(@)| + [g(@) = 1]+ A(®) + el m (4.7)

Step 2 Expansion of the conservation laws

5y

To get a more precise estimation of our approximation remainings, we expand the conservation laws in
the e variables. From the critical mass assumption, we know we have

/QQdy=/|u(t,x)| dﬂc—/|v s, )7 g(Ay + o) dy

2 [aQay+ [[Ief dy=(1-g(e) [ Q@ dy+O((r+lg(a) = 11) l2) (43)

Using the boundedness of the k’s, g’s and G’s derivatives around « we have
gy +a) =1+ (g(a) = 1) + (9(A\y+ a) — g(a)) =1+ (g9(a) — 1) + O(N)
kEAy+a)=1—(1-k(a))+0(), Gy+a)=1+(G(a)—1I)+0(N)

As already said, and very similarly to the calculation which led to (6.66), the conservation of energy
simply becomes by rescalling

and thus

A2 By = % /G(Ay+a)w.w dy-%/’“@yw) [ol* g(Ay + @) + O(N?)

:EO(Q)-i—%(GZJ ~ I /aQa Qdy+ 7 (1—k: /Q4dy+ /|V6I2dy+/V€1 VQdy

B / €1 QP dy — / Q (& + 5 ) dyw(V Flelif + A+ [Gigla) = Ly 411~ k(@) g(@)]) el )
(2Tr —1 /—dy+ /QQder /|V€|2dy /Eley

-3 / Q* (36 +e3) dy + O(AN + [lellfys + (A +1Gis (@) = Tigl + 1 = k(@) g()]) el )

which together with (4.8) leads to

66



4.2 Strict lower bound on the energy. 67

2
FO(N 4 lellin + (A +1Gi5(0) — Iyl + o) — 1] + 1~ k(@)]) el

A2y = <1 Tr(G(e)) + gla) (1 — k(a)) — 1) /%2 dy + % [(Lm,el) + (LEQ,EQ)}

Now using (4.6) and (3.32) of Lemma 3.2, one easily get the following estimate
1
|5 77(G(@) = k()| + lg(@) = 1| + llelF S A2
Step 3 Convergence of the concentration point and upper bound on the blow up rate.

There is only (4.4) left to prove. It essentially follows from (4.7) since

lellirs + |3 Tr(Gla)) = hla)| + lg(a) = 1] + A
S - <1

This implies a(t) - a* as ¢ — 0 and k(a*) = 1, g(a®) = 1 from (4.3). Similarly since the blow up
assumption at ¢ = 0is A(0) =0

_ Nell + |3 7r(@ (@) ~ k)| + lgte) 1| + A 1

As
)\ ~ )\ ~ ’

|At] =

N

A
0

so that A(t) < / Al S It
¢

This ends the proof of our lemma.

4.2 Strict lower bound on the energy.

From previous section we have underlined fact that center of mass «(t) must stabilize as t — 0 around some
a* where both k and g reach their maxima. Without loss of gnerality we may naturally assume

o =0, k(0)=1, Vk(0)=0, V2k(0)<3V2Tr(G)(0)
g9(0) =1, Vg(0)=0, (4.9)
G(0)=1, VG(0)=0, Kgg=0
Then, for Ty > 0 close enough to blow up time, |P(t)|, t € [T,0), is small enough for u to be in the

regime described in section 3.1. This induces we can sharpen our previous approximation profile by replacing
Q by Qp which is a small deformation of Q. Hence for ¢t € [Tp,0) let

1 1 T —alt)\ iy
u(t,z) = R 72 XD (Qp@) +e) (t, Tt)) e (4.10)

where € satisfies orthogonaliy conditions (3.7)-(3.11). We also introduced the global rescaled time

t
s(t):/ ;lT — 400, as t—0
7, A*(T)

Thus, for every s € [sg, +00) applying Lemma 3.1 we get
1
b+ |82 + ol + ell3n S N (Bo+ 5 Ci) + O(P* + P2lal +[al?) (4.11)
where Cg is given by (2.9), and

|Mod(t)| < P*+Pla + P |lellm + [lell7 (4.12)

We claim these estimations bring the following strict lower bound on the energy
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Lemma 4.2. There holds the strict lower bound on the energy :

1

Proof of Lemma 4.2
By contradiction, if By = Eg + § Cg < 0, from (4.1) and (4.11) we have

b2+ 812 + |af? + [e)| 3 S A2 Er + A%
hence b? + |B]> + |a|® + |le]| % < A
Then, thanks to (4.12) this yields

A
5 _ 22
Y O(\)
so that

% =0O(1), andhence In(A(t))=0(1), as t—0

which contradicts the fact A(t) — 0 as t — 0, that is u blows up at ¢ = 0. It ends proof of Lemma 4.2.

4.3 The localized virial identity

In order to improve our estimate (3.21) as announced in (4.1) we need to get a more precise estimate on €
locally on the singularity that will help us treat the remaining terms of Lemma 3.5.

Keep in mind, since no a priori upper bound holds on blow up speed, we may not rule out the regime for
which b < A that would make the % terms a negligible part. This makes the (3.66) estimate useless for the
gain might as well degenerate.

It is a Morawetz type computation in the spirit of the local virial estimate that will here help us.

Lemma 4.3. (Local Virial Control)
Let ¢ be given by (3.63). There exists universal constants ¢, ¢ > 0, and a large enough constant A > 0
such that for t close enough to 0, we have :

{ - (;) % + %Im/AG(/\y—FOé) chﬁ(%) -Vee gdy}s

(4.14)
4 2 2 -1 2 2 3 2
> 2 {la] +/|ve| ¢ r+/\e| }+o(Alleld: + P +1572)

Note from (3.21), the terms involved in the right hand side are uniformly bounded in time

2
\—(—)Wjufz /AGAy+a)V¢() Egdy’fl%—kinelfpfsl

From (3.21) again, and the finite time blow up assumption

Foo +00 0
[ (e + 7o v 182)as s [ syds= [arsa

S0 So

Hence, integrating (4.14) between sy and +00

oo g _lul
/ X{|a|2+/\ve\2e Vi +/|e|2}dsg1 (4.15)
So

On the other hand, thanks to (4.5)

/S:mz\(s)ds:/t:;z:):—koo
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69

Proof of Lemma 4.3

The proof relies on an algebraic computation and the specific structure of the quadratic terms in €

appearing in (4.14).
Step 1 Computation of (%)S
We have

()= 5525 G o)+ R =3 oot o)

where we have made use of both our hypotheses b ~ X\ and B; = O(A?) in (3.77).
We recall that (3.50) along with (3.26) now yields

(b + b° —BQ{/'Z"QQMO(P?)} —2Re (e@)

_ <R1(€), AZ) + (Rg(e), A@) + (’)(734 +P? ||€HL2>

and

- 1
27?,6(67@73) + / |e\2 —5 (k g (o, ) /Q2 44 |oz|3 +P? la| + P2 ||6HL2)

so that

(3) QI =4[ Fle2 ~ 1%z v2(k — g) (0).(a,0) — (Ba(e), AS) — (Ra(e), 20)]

3 2 2 2 A 2
+O(P 4| +18 + P2 (b= &) +Plellx + el )
1 2 2 2 2 2
=-5 /|e| —(3261—1—2@6162—1—262,AZ)—<3962+226162+961,A@)]
HQ”L2 2 3 2 2 2 A 2
L2 (k= 9)(0)-(a,0) + O(P? + |af? + |8 + P (b—a)+7aue||L2+\|e||Hl)

Step 2 Computation of the localized virial identity.

Our goal is now to compute, for A > 0 large enough, the following identity

(;\Im/AG(/\y—I—Oz)V(/ﬁ(i) .Vee gdy)S
= —%Im/AG()\y—&-a)V(é(%) .Vee gdy

+lzm/ [AGM¢(y)€+2AG(Ay+a)V¢(i) .Ve}@segdy

+Im/ { +b y+<—2,8>+(2ﬁ—by)}.Vg Gng(%).VeEdy

+Im/AV2G. ((AA +o)y+ (5 -26) + (zﬁ—by),w(i’l)) Ve gdy

From (3.21) and (3.24) we first see

which implies
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Al .
- ﬁlm/AG()\y +a)Vo(L) . Vee gdy = O(A el3p)

so that (4.17) may be rewritten as

(im/AG(Ay + a)w(%) Vee gdy>

S

1
= XIm/ [Ac,g,l qb(%) (8361 € — €1 8362) +2AGM\y+ a)Vfb(%) . (8361 Veg — D69 Vel) gdy
+0(A(1+P) ell3: )
and since

Bour () = 80(F) +O(P (186] + A|V4)))
AGOw + ) v(;s(%) - Aw)(%) +0(AP?|vg|)

we may simply write (4.17) as

sz/AG(Ayw)w(Z) -Ve€9dy)

S

1 2
= XIm/A(;S(%) (8561 € — €1 8562) + XIm/AV(;S(%) . (8561 Veg — D69 Vq) + (’)(A H6||§{1)
Reintroducing (3.39)-(3.40) along with the estimates of Lemma 3.1 we get

<1Im/AG(/\y+a)V¢(y)-V€€ gdy)

fzm/Aqs (Ma(e) ez + Mi(e) er) + < Im/Ang =) . (Ma(e) Vea + My (e) Ver)
+O(A|| 78 +7’3+7’H z2)
772 /v2 (ve. ve>_2A2/\/ A% () I
/AWS (Q2+222) 61+4V(2@)6162+V(Q2+2@2>62}
+ O(A |lellzs +7>3 +P|\ellm)

where we have made use of integration by parts, along with the identity [uAeje; =1 [Au & —[u|Ve;]?
when j = 1,2. Eventually, the second term of the local virial identity is estimated as

1
(MIm/AG(Aera)ng(Z) Vee gdy>

S

/v2 Ve Ve)—4A2/A2 )|e\2

/AV¢ (Q2+222)61 +4V(E@) 6162+V(Q2+2@2) 62:|
+O(A|\ 112 +7>3+7>||e||L2)

(4.18)

Step 3 Conclusion
Summing up (4.16) and (4.18), using (3.48) to expand non-linear terms of (4.16) finally leads to
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S

e eere [ o) (709 - fo@aced)]

||Q||L2

{ b IIyQIIL2+7I /AG Ay+a)v¢( ). Veegdy}
1
A

2(k — 1 Yy _ 2 2
V2 (k= 9)(0)-(wa) + 1 [ (AVe(4) ~v)- [3QVQe +QVQd]
+ O(A el +P° + P lellz2)
Now, the choice for the cut-off function ¢ in (3.63) implies

y L 1
Re [V2o(%). (Ve ve) + [l — o5 [a20() 1Pz [e ¥ ve + [ 12 +0( 5 )

The previous quadratic term is hence to be seen as a small deformation (as always, around the Ground-
State) of the linearized energy <L+61, 61) + (L,eg, 62). It can be estimated thanks to the coercivity

property (3.32), which will ensure the existence of some universal constant ¢ > 0 such that whenever A is
chosen large enough

cl/|6|2+/6_\l/yﬁ w?} < [etimep s [l - [ (37 G+ @)+ o(jelin +P)

Altogether, previous statements, the bound (3.21) and assumption V2 (k—g)(0) < 0 shows that for A > 0
large enough, and t(A) < t < 0 close enough to 0, we have

A4 2\

_ 1yl
|a|2—|—/\6|2+/e v |Ve|?

This concludes the proof of Lemma 4.3. Note A > 0 may now be fixed once and for all.

{ 7& HyQH%Z +71- /AGO\yﬂLOl)V(ﬁ(%)'VEE gdy}
s (4.20)

> < +O(A el +P%)

4.4 Convergence to 0 of @ in H' away from the concentration point.

We wish to prove that profile Qp contains all of the solution mass ( in a H' sense ) when staying away
from the concentration point ( which, for the record, has been chosen as o = 0 € R? ). In other words,
the difference between the exact solution v and the approximate solution () we have consctructed so far
completely vanish in H! as t — 0. More precisely, working with the original variables, let

~ 1 1 T —alt)\ i
QU 2) = (a(t))l/QA(t)QP( ) )e Y

) ) 0 (4.21)
T —a« ;
a(t S t iy(t)
UET) = a2 3D (b 5)e
Using its very definition, and estimate (3.21) we have
[a)llz> S A@),  [la@®)lm ST, Vio<t<0 (4.22)

The goal is now to improve the energy bound (4.22) for the dispersive bound

w(t) =0 in H' as t—0

The first step is dispersion away from the blow up point.
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Lemma 4.4. (H' dispersion away from the concentration point).
There holds :

e [0(6) 71 (o) = 0 (4.23)

for some small constant n > 0 small enough that only depends on G and g.

Remark 7. Because of assumptions (H2), (H3) and in particular Vg(0) = 0, VG(0) = 0 we choose the
region |x| > 3n as the one away from the blow up point, for we will need an estimate of the type :

|z.VgG—(1001)gVGz| < 2g (4.24)

so we choose and fix some constant n > 0 that satisfies these, and keep it in the sequel.

Proof of Lemma 4.4

Let Q, @ be given by (4.21), then @ satisfies
i 0t + L1 = —R — k() |a|* @ (4.25)
with
R = k(z) [(Q +a)|Q+al” - QP - a |a|2} +i0Q + LQ+k(2) QI Q (4.26)

Step 1 L? H 130/62 bound away from the concentration point.

Here we use some technical results a bit like we already did in the proof for Proposition 3.7. We will also
use the smoothing effect of the linear Schrédinger flow to claim the space time bound

0
/t Vg2t A < +00 (4.27)
0
We introduce the Fourier multiplier D = (1 — A) 2 Note that using our definition (3.123) for the
Fourier transform, for every s € R one has

Diu(z) = ﬁ /R et (14 |»§|2)3/2 a(g) de

so that, the H® norm may be written (4.28)
[ull e = [[D*u] L2
Starting with the nonlinear term in (4.25), let ¢ be the solution to
10,( + £ = —k(z)[af*a, {(0)=0 (4.29)

Now following the procedure explained in Appendix B 8.3.2, using successively Strichartz bounds and
the smoothing effect of the linear Schréodinger flow, we have

||<\|L2(t070) HY/2 < ||k:(:z:) |a1]? ﬁHLf HL. (smoothing effect)
||§\|Loc(t070)H1 = ||D<||L°°(t0,0) 2 S HD(k(x) |ﬁ|2 ﬂ) ||L4/3(t070) 1473 (strichartz bound)
so that using paraproduct and Hélder estimates along with the Sobolev embedding Theorem result 8.2,
and in particular (8.5)
D k() |af* @)|| .o < ||al® Dal paps S llallzs [|Dallze < N7
one gets

||5||L2(t0,0) 111130/82 + ||€||L°°(t0,0) H! rg HD(I{:('I) |ﬂ|2 ’lL) ||L4/3(t0,0) LA/3 5 ||ﬂ'||i°°(t0’0) H! 5 1 (430)
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where we have used the L>((to,0), H') bound (4.22) in the last line.
Then let @ = DV/2(i — ¢), and x be a radial smooth cut-off function with
r 0 for 0<r<n,
X = [ )de. with X0 =4 1 for m=r<dp (431)
0 % for r > 5n
and such that
IX'[? " 4.39
Yr>0, 2 <Sx"(r) <1. (4.32)
We claim (4.27) follows from (4.30) and
0 2
/t vaHL2(2n§r§4n) S (4.33)
0
Since D/? commutes with £ = 5 div(GV) +V, from (4.25) @ satisfies
i 0y + L = DY?R (4.34)

where R is defined by (4.26).

Let e, = (cos(f),sin(f)) be the unit vector in the radial direction and ey = ( — sin(6), cos()) the unit

orthoradial vector. Then, let

Gy Grg\ _ (Ger.e, Ge,.eg
Gor Goo) \Geg.e, Gey.eg

Notice that since G is symmetric, so is the previous matrix, so that G,.¢ = Gy,

We compute the associated localized virial identity :

| =

Im/Vx.Vﬁ)@ gdzx

N —
U

t

- —Re/ [cm—DWR} (; [AXJF%.VX] 7I)+Vx.V111) gdz

/ ar ~ / / 87’
= / |:X// Grr + X (Grr 79 - arGrr):| |ar'w|2 + / |:X Gge + Xf (Geg g
g r g

2 2

!/
+ Re / {x” G+ X (Gre (1 +r 09 ) — ra,«Grr)] 0,0 010
r g

1 Vg ~ 1 Vg -
—Z/ﬁ{AX+7~VX} |w|2gdx+i/[7—V(QV)}.Vx|w|2 dz

-|-7€e(D1/2R7 % {Ax—k %.Vx} 1D+Vx.VzD)L2

or

73
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74
1d _
27T YOG
57 m/VX Vow gdz
- pepl (L Vg N ~

= —Re [Ew—D R] §[AX+?-VX}IU+Vx.Vw gda

(G O0rg = 90:Grr) ] o r (Goo 0rg — 90,G
:/[X//GTT+X ( g—g )] |6,-w\2+/x— Goo + ( 000rg — g 99)

r 2g r 29
+Re/[><”G +— i p . } Oph O

1 Y o Tiat etesd [T o] ol
4/£{Ax+ . .Vx] || gdﬂc+4/{ . V(gV)_.V)dw\ dx

+Re(D1/2R, % [AX+ %.vx} w+vx.vw)L2

gdx

where 0, = %8971).

L2
1 > 0 is chosen small enough, from hypothesis (H3) :
Guu=1+0(r"), p=r,0
Grg = O(T’Z)
and |rd.g| = |z.Vyg| = (9(r2) hold whenever 2n < r < 47, which is enough to ensure

(GT’I" a’l"g g a’l" G’l"’l")

X// Gr’r _|_ A 29 — Xl/ + 0(7‘2) — Xl/ + 0(772)
G99 n r (GGO 67”92; garGGG) =1+ 0(72) — 14+ 0(7]2)
X”G +X Gro Or (97’)797’8 Grr :O(TQ):O(’UQ)

g
hence

%Im/VX.VQDEng

1

2

z/ |arw|2+/ 18,02
2n<r<dn 2n<r<4n

1 Vg - 1 Vg .
—Z/E[AX‘F?-VX} |w|29da3+1/{?—V(QV)}.VMMQ dx

—|—Re<D1/2R, % [Ax+ % .vx} w+vx.vw)L2
gds

then, one can easily deduce the following estimate

0 ~ 112 0 ~12 ~12
/ R /t /MM" (10v0f2 + 10,312 drdr
Vg V(gV )
/ /‘ Ax+— vi] - [2 - v )}.VX‘wlzgdx
to g g
+/
to

Re(Dl/QR, = [AX+ %.vx} w+vx.vw)
0
+

L2
gdzx

1
2 dt

Im/Vx Vi gdx

74

Note the metric terms G and g here pertubated our computation which aims to estimate w in space
(to,O)L%27]§r§4n) as in (4.33). Thanks to (4.32) x” is the dominant term, so that one may check provided
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We now have to estimate the terms in (4.35). To begin with, using (4.22) and (4.30), from definition of
w the boundary term in time is bounded

2 [ V. V0T gdo| S s < il + 10 <1 (137

and similarly

‘ //‘ [+ v - [Vf—v(gv)].vx‘wgdx

g g (4.38)
Slallzp + 10132 S 1
Now with the R term in (4.35), first by Cauchy-Scwharz
1 \Y
Re(DYV2R, 5 [Ax+ =2 Vx| @+ Vx. Vi)
2 g L2 .
Ax X' 5 -
Slle DY Rl || S ) |- 2ra]
~ ||J) R”L (r>n) w L2 (r>m) , Op 1
A d 2
1/2 X - X 5 -
||ch RIs(sy +26 (‘ : ( - (9rw‘ L2)
1
<3 [P penf w2l + [ 1 o)
lz|=n
1
55/){” |0, w|* + = / |:17|2|D1/2R|2+1
0 Jiz|2n
for some small § > 0, where we have used (4.32) and the H! bound (4.22) in the last line.
We now claim
Lemma 4.5. 0
/t ||« DY2R||7, < +oo (4.39)
0
Proof of Lemma é%g) :
Recall D = (1 — A) / , with use of Pseudo Differential Calculus, one may prove
DY?2 22 DY2 =2 Dz +a_i(x,D), a_; €S 'isasymbol of order — 1 (4.40)

In particular, what will be useful for us now, is that a_; (z, D) is a bounded operator LA3 — WA C A
thanks to Sobolev embedding result Theorem 8.1. For details about these statements, see Appendix B 8.4.
Indeed, from (4.40) we have

|z D2 R, = (Dl/2 2 DV2 R, R) SIIDY2 2 R|2, + IR s (4.41)
We then change to rescaled variables
Rt = ke ( NG )e (4.42)
so that (4.26) becomes
) E(Ay + o
S(5,3) = 10.0p + £30Qp - Qp + G0 1Qp G
A Vk(a) -
— fA — — s 4.4
P AQp—i T (V@ + 5 S5 Q) ~:Qp (4.43)

k()\y +a)

k(@) [(Qp +€)|Qp + €> — Qp 1Qp|* — €le?]
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which is well localized in y. Changing variables (Z,n) = <z;°‘ , )\5), with dZ dn = dz d€ and from Sobolev
embedding

D2z R = (2m)2 /ei (””—Z)'5<£>1/QZR(Z) dz d¢

2m) 2
- 15(031/2 /6 Hma /\1/2 (A + [ )1/4 " NZ +a)S(2)dZ dn
— 1 2 1/4 Q
= s -8 (v 5) 50
1

g P 5 ) S+ 0+ ) 50

A -1
. _ — O —3/2
,3/2(77) [()\2 + |77|2)1/4+ <77>1/2} [()\2 + |77| )1/2 <77>] <<77> )
_3/2 L4/3 W3/2’4/3 — Hl C L2
so we have
2
/ypl/%m da = Agk /’ 2 (y+5) S| ay

and thus from (3.21)

1920 Rl 53 (1928l + 1042 1+ 1T10)

Now thanks to (4.41), this yields

1
l= D2 R . < r(!lD”stHer +ID28] 12 + ISl o2 (4.44)

We now explicitely expand the nonlinear terms in €, in S, from definition (4.26) of R and (4.42), (4.43)
of S, together with (2.2) and (2.3) we have

As
S = —tbp +i (bs +b% — B1) 9Qp +iA (52 +5) :Qp

+i(ﬁs+b5—32)8ﬁQp+m(%—25) aan—i(%M) AQp

A
—i (5 -26) [vor+ 5 0 0p] - G- P 05
_’_W |:Q73|6|2+26R6<6’Q7) +|Qp|? (6+261)}

Thus, (3.24) implies

E(Ay + )
k(e)
=Qple* + 267'\’,6(6, @) +1Qp|? (e+2€) + O(()\4 + \a|2) e Iy‘)

S= [QP le|® + 26R€<6, @) +1Qp? (6 + 261):| + (’)<(|oz|2 + A1) e |y|>

(4.45)

Then using standard commutator estimates together with the good localization in space of S(s,y), the
bound on the geometrical parameters (3.21), (3.24) and the O(A?) control in the construction of Qp (1.40),
(1.41) to conclude :
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1 _lul
WD“M@s;;/wweﬁ+wm+v+mﬂ
(4.46)
S14 5 ([ 19 e+ Jelz)

and (4.39) follows from (4.15) ( remind % = & ).

Step 2 Strong H' convergence outside the blow up point.

The strong convergence (4.23) is now straightforward. Let a smooth cut off function 1/1 with 1/) =1 on
|z] > 3n and ¢ =0 on |z| < 2n, then w = ¢u satisfies the following equation

iOyw + Lw + k(z)|wPw=F, wlt) =0 in L* as t—0

(4.47)
1 - - - - -
with F = o) [Acv i +2G(z) VY. V] — k(z) ¢ (1—9°) Jal*a— P R
where R is given by (4.26). To get (4.23) we now only have to show
1l (1.0, r1) 70 28 0 =0 (4.48)

First we write down Duhamel formula for (4.47)

w(t) = e Fw(ty) — z/ el (t=mE [F()] dr

to
t
hence Vw(t) = e“ﬁvw(to) - l/ et (=L [VF(T)} dr
to

then, we use the Strichartz estimates for the 2-dimensional Strichartz pairs (4,4), (00, 2) along with the
smoothing effect, see Appendix B 8.3.2; to get

IVl s (to.0y.29) T IVl e ((10.0).22) o)
S V&) Rl s (0, 075) + 171N o (.00,00072) '
We estimate the nonlinear term as follows, using the Gagliardo-Nirenberg estimate
[V (k(x) [w]* w )HLMS(@O,O)’HB)
S0P @l s (g 0y, 2070) +I0F V0l s (4,00, 2005)
S IVl (,09,0) 17 |\L4((t 0.24) (4.50)
S IV 0y, 20) T e (0.09.00) 1P (10.0).22)

S I o0y V0] Loy S 9wl

£4((t0,0),L (t0,0),L4)

for a constant § > 0 small enough, where we have used (4.22) in the last inequality. For the second term,
we make use of the compact support property of Vi, Agt, (1 —?) and (4.27) along with (4.39)

|||IZ’| FHLQ((tg,O),Hl/?) 5 |||:L‘|RHL2((to,(])’Hl/z(‘ﬂZn)) + ||ﬂ||L2((to,()),H3/2(2n§T§477))

(4.51)
So(l) as tg—0
Altogether, these last estimations prove
190l ) Il ) SO0 35 1050 (452

which ends the proof of Lemma 4.4.
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4.5 Convergence to 0 in average of @ in H'.

The goal now is to propagate the H! convergence of & away from the concentration point (4.23) to the blow
up region as well. We will now make use of the refined estimate (4.15) provided by localized virial estimate
(4.14) which implies

0 1, . 5 +o0 1 )
| a0l de= [ 5 a1 ds < oo
to

50

so that

o clla)lee
h?i)%lfw =0 (4.53)

The first step is to obtain a convergence in average in time.

Lemma 4.6. (H' dispersion in average in time.) There holds

’ 1 /9,1 o ,
tim 0 [ (5 [ Nl do) dr =0 (454)

Proof of Proposition 4.6 : Thanks to (4.23), we may here restrict the H' norm to the region |x| < 3n.

Step 1 Morawetz identity.
First, we claim the virial type bound

[yl

0 0.2 2 2~
12 . o + [le(r)I72 + [ Ve[ e VA
\v4 < oflt t d 4.55
[ [ il Sl + Il + | e - (4.55)
Let x a smooth radial cut off function on R? such that
supp(x) C {|x] < 4n}
frx =2 GV3x + (AX + % . Vx) G — A, xId is positive semidefinite (4.56)

Vx(z) =2, on |z|<3n
thus 8321X =0 for j #1, and 8]2)( =1 on |z| < 37, so that the form f, is given by the matrix
\%

FX:4G—TT(G)12+;U.79G—(1001)vax, |z| < 31

From hypothesis (H2), g(0) =1, G(0) = Iz, Vg(0) = 0, VG(0) = 0, so that by continuity

Fy=2L+0(z]*), |z <3n

Hence we know it is reasonable to assume for x close enough to 0, here on region |z| < 37, f, 2 1
holds, which considering our choice for x is satisfied as long as n > 0 is chosen small enough to ensure
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|z.VgG—(1001)gVGz| < 2g.

%Im/VX.Vﬁagd;v
- ~12 - 1 Vg — -
= —2Re [ (La+ k(z)|a|*a+ R) 5(Ax+?.VX)u+Vx.Vu gdz

=2Re/Gv2x.(va.vﬁ) dm+/(AX+%.Vx>GVﬂ.Vﬁdx—/AGX\Vﬂ|2 dz

1 (4.57)

v
- / {AG,Q (Ax+ 79~Vx) —2vv.vx] af? gde

2
1 A\
- = / {k(m) (Ax—|— J.Vx) — Vk;(x).Vx] |il|4 gdx
2 g
1 _ _
—2Re/R[2 (AX+Vgg.vx)a+vx.va} gdz

where @, Q and R are defined as in (4.21) and (4.26). We estimate the various terms of the right-hand
side of (4.57). Using (4.22), and a Gagliardo-Nirenberg estimate, we have

v v
’/ {AG,Q (AX+ f.vx) - 2vv.vx] a2 gd:c+/ [k(w) (AX+ 79 .vx) - Vk(m).VX} la|t gd
S lall7e + a7

Slallzs +llalz lalF < A%

~

(4.58)
Then, recall from (4.45)
S =Qple* + 26736(6, @) +1Qp? (6 + 261) + (’)((/\4 + |a|2) e ‘yl)
and hence, making use of assumption Vyx(z) ~ x near the origin, it is now clear that
1 _ _
’Re/R [ (Ax+ vg.Vx)fH—Vx.Vﬁ] gdzx
2 g
1 1 \Y 1
=3 /S(y) [5 (Ax()\y +a)+ 7‘(] Vx(Ay + a)) €+ X Vx(A\y + ). VE} gdy‘ (4.59)

1 _lyl
S 55 [l + 2 + el + [ v ]

Eventually, we inject (4.58) and (4.59) in (4.57) and integrate in time, then we use assumption f), > 0
and (4.5) to get

/t0/|x53n|v11(7')|2d7'5/to/fx(vﬂ7W)

0 0 0
7 ! _ll
: {Im/VX.Vﬂﬁgda;] +/ AT(T){|O‘|2+HE||%2+/|VEI26 ﬁ]dw/ () dr (4.60)
t t f
0
U 1 2 2 2 _ 1yl
Sollt) + Nat®lle+ | oy [l + iz + [ 1Vel?e ] ar

where we have used (4.22) which ensures

2m [ Vx. VT gde| S [Vaso e S oo
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And (4.55) is proved.
Step 2 Averaged in time dispersion.

We now divide (4.55) by |¢| and integrate in time. From the pointwise lower bound (4.5) and the dispersive

bound (4.15), once recalling 9 = {5, we have

L0 2 2 2~ ° 1 2 2 2 —d
i gy el el + [1vere Vi fars [ ]laf + e + [ Ve eV ar

—0 ast—0

Similarly, from Cauchy-Schwarz, and then (4.5), (4.15) again

O a(r)]| 2 O a(r)]| 2 Oa(r)|| L2
LU g (O g (1

| 1/2
<</ XHEHQLQda) —0ast—0

~

Thus, (4.54) is proved, which concludes the proof of Lemma 4.6.

4.6 Control of the modulation parameters.
We now claim the H! dispersion (4.54) together with the conservartion laws imply the sharpen control of

the modulation parameters we already announced.

Proposition 4.7. (Pointwise dispersive bounds)
There holds the pointwise bounds :

18]+ laf + llellm 5 A* (4.61)
b(S) _ 1 < )\2
50~ Gl s (4.62)
At) = —Ci +O(|tf), forto <t <0. (4.63)
0

Moreover, there exists vy € R such that :

V(t) = _073 + 70 + O(]t]) (4.64)

Remark 8. Note that (4.61) imply the zero momentum limit }in{l)ImeuU =0 so (1.13) is proved, and
—
also sharpens the bound (4.22) by a factor .

Proof of Proposition 4.7 :
Step 1 Control in average of o and .

We claim
1001 [Pral* | (B
1 T ), (T|/T<)\2+/\2>dg)dT 0 (4.65)
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First, we deal with . From the pointwise bound (4.5) and the dispersive bound (4.15)

0 ‘04|2 0 \a|2 +oo | |2
dr = do — 0 t—0
\t|/ ’“/t ps / A h

which proves (4.65) as far as « is concerned. Now dealing with /3, we have

R

A A A
« a.f Qg
:2WF+(—bﬂ+Bg.X+b—y~+CX—2ﬂ>ﬂ
! As a.p (4.66)
+ (B +bB—B2) . S~ (7+b)T

= 2|82 + Bs. % + O(|Mod(t)))
= 2182 + co(a) . a + O + |le|22)

where we have used (1.42) for definition of B, and (3.24) in the last line. Integrating (4.66) between s
and +o00, using (3.21) which imply that O‘Tﬁ — 0 as s — +00, we obtain :

Feo a(s).B(s too Foo .
2/ |52da_(j(f)()/ co(a).adaJr/ O(N(0) + le|2.) do

+o0 +oo
< Ja(s)] + / (o) 2 + [[e]2) do + / X (o) do

Now dividing that last estimate by |7|, changing variables - % = 35 - and using (4.15) yields
|B|2 |v(7)] 0 2 2 do 1 /0
——+— | Xo)d
w1 s 5 gy [ e 1) s+ o [ N
()] /0 2 2 do
< —= — 1
S [ (@) + 16l 5055 +ot0)
la(7)]
S +o(1)
7|

Integrating once more, using Cauchy-Scwharz and (4.15) again, we have

’ ? o Yla(r) 2 1/
\t|/ I/ B w5 ||T| o5 ( 'Aﬁ,(l') ar) "+ o)

1/2
5(/ ~laf*d ) +o(l) -0 ast—0

hence (4.65) follows for 8 as well.
Step 2 Limit of % on a subsequence as t — 0.

From (4.65) and (4.54) we have now

|04|2 1B el _
t—>0\t|/ |T\/ 7—’—?4— A2 )dU)dT—O

This obviously imply the existence of a sequence t,, — 0 such that

lata)l 18] [leCtn)llan
li = 4.
AN A T M) (467
Injecting this into (3.31) yields

- (3 g [ s (5" (56) ()

so that
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_ b(tn)\2 Eo+:iCp 1
| _ _1 4.68
n—stoo ()\(tn)) TR~ Cg (4.68)
Then, observe from (4.16) the bound
b 1 9 9
3) =53] /| 2+ lal2] + 0(3?) (4.69)

and thus, (4.15) ensures

[0,

Hence, £ has a limit as s — 400, so that from (4.68)

b 1
X-)Ztcio ast — 0

Yet that limit cannot be _C%)’ since it would contradict the finite blow up assumption. Indeed, since
A(t) > 0, and from (3.21), (3.24), one gets

b A
A\ 7‘:7‘1 b‘<A 4.70
3= 3 15+ s (4.70)
so that g — _C%) would mean at the same time A\ — 0 and \; > ﬁ which imply A cannot reach 0.
Eventually
b(t) 1
lim —% = —
150 A(t)  Co
At last, injecting this into (4.70) and then integrating in time yields in particular the pseudo conformal
speed :

>0 (4.71)

il

A= ¢

(1+0(1)), ast—0 (4.72)
Step 3 Improved bounds.

We now claim the knowledge of the limit of %, together with monotonicity result (4.14) and the conser-
vation of energy will bring a spectacular improvement on the bounds of ||e|| g.
Indeed, we integrate the local virial identity (4.14) between ¢ and t,, and then let ¢,, — 0.

First, the boundary term in ¢, is estimated using (3.21), (4.71)

o) [ s

2)\(1tn) Im/AG(Ay ) V() Veltn) 0] g dy

(4.73)
_i /|y|2Q2 ast, =0
Co 4
and thus V s > 0
b § (s)
( ((S _ /qu Im/AG Ny + ) Vo( %) Vels)e(s) gdy
s) 0 (s)
+oo c
> i [lef® + [lel|22] + O(P% + 181> + IIellip)) do
so that from (3 21)
+o0 1
5 o+ ] do
s (4.74)

AN

b(s h
(§$‘$)ﬂMm+/ (% + 181 + Nelz) do

S
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4.6 Control of the modulation parameters. 83

We now recall (3.31) which implies

/\2
B+ laf* + [lelfn S 5z =07+ A (4.75)
0

and dividing by A, we obtain

Bl el o 18,

1

b(s) and adding to (4.76), noticing the terms ?\—22 — ¢, cancel each other

Now, multiplying (4.74) by O
yields

8-

B> el | llellf o [0 2
2 T e : X[M + [lellz2] do

—+o00
SN [ (0 B o+ ) do (2.77)
S
“+oo
§A2+/ MNdo <[t < A
where we have used both (3.21) and (4.72). This yields the improved bound

B + llellFn < A?

which reinjected into (4.77), using (4.72) once more, now shows

181> | lal* el ARt S 2
74‘7"‘ )\2 + . X UO&| +||€||L2] do

+oo
g/\2+/ (A + B + [le]|F) do
s (4.78)

“+oo
§>\2+/ M do
S
0
§A2+/ Ndr < N2
t

This proves the pointwise bound (4.61).

Now let’s turn to the proof of (4.62). Integrating the localized virial identity (4.14) between s and o0,
using (4.71) and (4.78) we may estimate

b(s 1 teeq oo
ol [ S el do e + [ o

< )\2
which proves (4.62). Then, (4.63) simply follows from (3.24), (4.61) and (4.62) :

O(\?) :%+b:/\</\t+§> :A(At+ci0+o(x2)) o

and thus  A; + 1o o(Jt]*)
Co

which proves (4.63) by integration in time. Eventually, using also (3.24), (4.61) this implies

G0+ Dl=% e e (G-

= 3 (187 + O + lal? + |Mod()))) 51

CE N2 1
Vs — T‘ =
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which finally proves (4.64).

This concludes the proof of Proposition 4.7.

Remark 9. We have finally proved the P parameters are not of same orders, and that compared to )\, «
and B are of order 2, b is of order 1 - that is b~ X\ - and 7 is of order —1.

This ends the proof of (1.31) and (3.77).

5 Uniqueness

Once again, we follow linearly the paper [ ]. So we now look forward proving the solution we built in
Proposition 3.7 is actually the only one blowing up at T'= 0, o* = 0, with energy Ey and phase parameter
o given by (4.64). In the sequel, we will call u. that solution given by Proposition 3.7.

So far, we have proved b ~ A which provides the exact blow up speed, and we have obtained the dispersive
behavior for the remains @ of the approximation

@—0, in H' as t—0
We now need to prove that given u a solution of (1.1)-(1.2), we have u = u.. Again, as in [ ], we will
proceed in two steps.
First we will show the refined estimates of Proposition 4.7 together with the Backward Propagation of
Smallness achieved in Lemma 3.6 imply the strong H' convergence

Ue—u—0, in H' as t—=0

Then, we will have to show the estimates obtained for u — u, will be strong enough to treat pertubatively
the growth induced by the null space of L9} = (L[f],L[;QJ) when linearizing the equation close to u. and
running the estimates of Lemma 3.5.

Both these steps will make clear why the construction of an approximate solutions with an error term of
at most O(A\%) order was needed.

5.1 H! convergence to the critical element.

We claim the following dispersive property which somehow uses all previous estimates on the solution and
is a key result for the proof of uniqueness.

Lemma 5.1. (H! convergence to the critical element)
There holds the strong convergence at blow up time :

Ue —u—0, in H' as t—0 (5.1)
More precisely

[[u = wel| 2

m <t as t—0 (5.2)

IV (e =uo) 2 +

Proof of Lemma 5.1
Step 1 Backward propagation of smallness and improved bounds on the solution.

We claim that the bounds of Proposition 4.7 coupled with Lemma 3.6 imply a refined bound
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5.2 Energy estimates for the flow near u. 85

lallz2 S X8, [IVallze S X°(1) (5.3)

To prove it, first decompose u according to the geometrical decomposition (3.1). Then, let ¢, — 0 be an
increasing sequence of times. From conservation of mass (3.26) we have

lellz < [2Re(e. Q) +/|6|2

so that from Proposition 4.7

<laf + At

lallre S

~

(14 lof?) flell 2 < A*

Still thanks to Proposition 4.7, it is now clear that assumptions (3.81)-(3.83) of Lemma 3.6 are satisfied
at any t,. In particular, there is a time ¢y < 0 such that we have (3.84) for any to <t < t, :

. ()17 .
IVa)llz: + th < Iva(ta)lz +

Eventually, let n — 400 and (4.61) yields (5.3).

a(tn)|7
e (tn)L + A%(¢) (5.4)

Step 2 Comparison between the modulation parameters of u and wu..
Let b, A\, o, 3, denote the modulation parameters of u and b, A., a., B¢, 7. denote the modulation param-
eters of u.. We claim

‘)‘_ )‘c|
It

la — ac|
It
The proof of (5.5) is rather technical, and will be led later according to what is done in Appendix C of

[RS11].

Step 3 Comparison between u and u..

+[b—be| + +18 = Bel + v = vel S It (5.5)

(5.2) is now a simple consequence of (5.3) and (5.5). Indeed

[l — uel| >
T+ ||V(U_UC)HL2
all 72 B Ue| 12 - Q_Q 2 o 9
5 ”|!|L + ||Vu||L2 + H|Ct|||L + ||VUc||L2 + ”MC”L + HV(Q - Qc)||L2

Thus, thanks to (5.5) a simple computation yields

1Q = Qellzz S 1t1*, IV(Q = Qc)llz= < 1t
and (3.111), (5.3) then imply (5.2) and concludes the proof of Lemma 5.1.

5.2 Energy estimates for the flow near u..

Let us now decompose :

= = 1 T — O‘C(t) i
=uc+a, ult,r)= (t, ) P7e(®) 5.6
et D = e )¢ >

Here there is no further orthogonality conditions on e, neither is there modulations equations on the
parameters. Indeed, there is no uniform well localized bounds on the 4. part of u., and the only control
there is on the 9, part is given by the H3/? bound (3.111). However, we claim from (3.111) and (5.2) that

lall o X% flallp < 4° (5.7)

|H1 ~
is a sharp enough bound to treat pertubatively the instability generated by the null space of L. Let
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5.2 Energy estimates for the flow near u. 86

Hi{l n Hu(;—)HL2> (5.8)

and

Scal(t) := (61 ; Q)2 + (627 AQ>2 + (617 |y|2Q)2 + (62, 9)2 (5.9)
+<e1,yQ>2+(62,VQ)2 |

We first claim the following energy bound :

Lemma 5.2. There holds for t close enough to 0 :

0
N(t)gtiﬂﬁosfg(lg)Jr /t ng(li? dr (5.10)

Proof of Lemma 5.2
Tt is a consequence of the energy estimate (3.66) together with the a priori bound (3.111).
Step 1 Application of Lemma 3.5.

Let Z(u) be given by (3.65), we claim that

;. Scal(t)\ _ dZ
N +0 ()+T S (5.11)

We are willing to use Lemma 3.5 with w = u, = (u¢)1 +1 (uc)2, then the bound (3.59) holds from (3.111)
and v given by (3.58) is now identically zero, since u. is an exact solution. Hence (3.66) becomes

A =2 = =
%: Im(/k‘ Yutu gd >—Re(/k(x)@tuc(2|ﬂ|2uc+ﬂ2m) gdm)

b ‘U|2 1 2 T — Q¢ ~ —=
w55 | [ 5 gt e re [ 5069 o(S) - (Vi V) dr
|a*
4A2/AgAGg2¢< oS ) e (5.12)

Y Re/AGV¢( ’oe

lalz: | -
+0< S+ il

Remind we do not have good enough well localized bounds on ., so we need to rely on (3 111) Now we
consider the first two terms in the right-hand side of (5.12) and expand u, = Q. + e, with Q. = 2. + i 0,

) k(x )(2uc|u\ + Ut )Vuc gdm}
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5.2 Energy estimates for the flow near u. 87

— %Im (/k(x) uiEQ gdcc) —Re (/k(sc) Ostie (2|1:L|2uC —&—ﬁ%T,) gdm)

([ k<x>@ga29dx)_ne< / k<x>8t©c<2|ﬁ|2@c+é2@c>gdx> .
5.13

_ %Im (/k(m) (2 Q. —1—1]3) 52 gdm) —Re (/k‘(x) Q. (2]0|? G + 12 Te) gdm)

C

—Re </k(x) Oyl (2 |1)? Qe + 12 @) gdx) —Re (/k(x) Oyl (2|2 Ge + 12 Te) gd:r)

Now, we may rewrite the first two terms in the right-hand side of (5.13) the same way that led to (3.100)

_ %zm ( / k(z) Q27 gda:) ~Re ( / k(x) Q. (2102 Qo + 72 Q.) gdm)

@24 45,0, 0 iy + (|Q2 +26%) 0 ]gdm
(5.14)

,ERS/(x;aC>k(x) 21i* Q. + 2 Q.) . VQ. gdx

lalg: | -
+o< S+ il

We then treat the next two terms in the right-hand side of (5.13) by Holder estimates and (3.111) to get

1 . =2 ~ - —
‘ = FIm (/k(x) (20 Q. +@2) u gda:) —Re (/k(x) 0,Q. (2 |0|? i + 42 ) gda:)
(5.15)
1
< 2 1Qellzos llacllz NalFs + 5 /\2 laclZs allZs + 10:Qcll oo llcl 22 l1alls
furthermore, recall as in computation (3.99)
= (ae)e.VE(ae) = M)t = Ae (@)t + (Ae)e (x — ap) T— Qe .
0Qe = —S SR Q- Qe TR V@ (57 e -
_ ~ 1 IQp, (T —ac\ i '
+ (’YC)t Qc + m (Pc)t a,PC ( )\C ) €

which is to be estimated only with bounds (3.111), and one may check the worst term is generated by
% in the last term so that

1
0G5 55

thus, injecting into (5.15) we obtain

'—va</k 2uCQc+u )u gdx) —Re </k(x)8tQC(2|ﬁ|2ﬂc+52ﬂc)gdz)‘

(5.17)
||’INL||%2 +||5 2

To deal with the last two terms in the right-hand side of (5.13), we need to focus a bit more on the
equation satisfied by . and its remain

i Optic = —Liie — k(x) (Jue|? ue — |Qcl* Qc) —

- . . . (5.18)
e =10,Qc + LQc + k(2)|Qcl* Qe
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5.2 Energy estimates for the flow near u. 88

Expanding this term like we did with (3.102), then using (3.24) and (3.111)

Mod,(t) + |ae|® + A3

c<)\2
A2

Iellzz S

Now, using this together with (5.18), integration by parts, Holder estimates and the H3/? bound in
(3.111) yields

’—Re (/k(z)@tﬂc 22 Qo + 2 Qv gdz) ~Re (/k(x) Oyiie (2|02 e + 22700 gdx>|

< Naellgsrs [|1217 Qe + 8 Qell o+ 12107 e+ 8 e

(5.19)
+ k(@) (lucl® ue = 1Qcl* Qc) + el o (1 + [V L) {Hchle allZs + lldc] £ ”'LNL”%G}
172
SIS + Nl
There is but one last term in the right-hand side of (5.12) we need to compute
=2 o0\ = —
(/AG V(b( ey )k(x)(?\u| Ue + U uc).Vucgdx>
(5.20)
— Re (/AG( ) ¢( AAO‘ )k(x) @i Q. + @2 Q.).VQ. gdx) + Error
where the remaining Error term may be handled with Holder estimates and (3.111)
T — Q¢ 19 ~ 9 = — N
|Error| < |Re AG(x) ng( o ) kE(x) (2|a|” G, + u* @) . VQ. gdx
— Q¢ 2 N o X\ ==
+Re ([ 4G@ Vo (") k) (21 G+ 8 Qo). T gda
AN
_ (5.21)
— Q¢ 12 ~ 9= =
4 |Re </ G@) Vo (5 ) ko) Q1P T, + 8 T) . V& gdm)‘

S (IVQellze el z2 + 1Qell 2 IV@ellz2) I Zs + el o Vel 2= allZs

313 -
< B i
c

Eventually, summing everything up, we obtain the following estimate

xT

gda:—l—Re/g—lQ(gGV)qu( Ai)\ ) (Vu Vu) dx

AT _ be | [ [af?
at Ag A2

T Az /AG GH¢( AN ) |1;|22 de

- /k(x) (IQCI2 +2352) 4} + 450, 1 Uz + (|Qc|* +262) US} g da (5.22)
+ A Re (/ {AG(I) vd,(x;)\c:c) _ (:c )\cac)}k(x) @il Q. +&2@) VO, gdx)]

+0<” ui ||H1>

changing variables with (5.6), this may be rewritten
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o [ Beto,a (%) 16 dy

dT be
o E(ag) A [/|e|2 gdy+/|Ve|2 dy —
(s09)°6(%) _Id} (Ve, Vo) dy

1
_/k()‘cy""ac) |:(3Q2+O()\§€_|yl)) 6%-"—0()\36_'3/‘)61 € + (QQ—FO()%@—‘Z”)) 6§:| gdy

+Re /k(/\cy + ac) [2 ‘€|2 Qp, + e a’Pc] {A G(Aey + ac) vﬁb(%) - y} VQp, gdy]

CTER
+O<” AH; + [l 7
so that

dT _ b
dt  klag) A

[(L+61 , 61) + (L,eg, 62) - & /AGAG%2 qb(%) |e\2 dy

y)—Id](Ve,Ve) dy

+Re/ [912 (9GV)*0 (4
+ Re /k()\cy+ac) [2‘€|2Q’Pc —I—GQQPC] {AGV(b(Z) —y} .VQnp, gdy]

a7 =
+ (’)( )\ZLZ + || a||3
And it now looks clear from the uniform proximity of @p, to @ and the coercivity property (3.32) of
(5.23)

Lemma 3.2, that we may conlude as we did for the proof of (3.101)
lall3 =
+ (’)( )\QLz + [ a| %

[/Veze_\/y% +/|e|2+(’)(5’cal(t))

4z - be
dt ~ N

This concludes the proof of (5.11)

gdx

S

Step 2 Coercivity of Z.

Recall from (3.65) the formula
L[ lap do + ¢ /AGng T Qe
5 ] a2 9Ty, AN

z:%/G(x)vﬁ.%dH ).vﬁ
1 ~ 1 - ~
5 [H@ e+ it gdo+ [ k@) el gdo - [ ke Juol [(uc)s B + (uc)a ta] g

5 /V(x) lue + a|? gdx + 1 /V(z) luc|* gdx + /V(x) [(ue)1 a1 + (ue)2 1:12] gdz
(5.24)

1
As we did proving (5.11), by expanding u. = Q.+ i, one may get thanks to (5.7) the rough upper bound

a7z | =2
\ |SW+HU@)”H1 =0 as t—0
Then, very similarly to the proof of (3.93), using also control of interaction terms such as those we handled

in (5.15), (5.19) and (5.21), we may obtain the lower bound
1 2
(Leersen) + (Loe, &) + o(lel3n)
(5.25)

Z(t) > —
=112
B 1 s, — sear(t)

A2

C
2 [Nl + 1€l — Seal()] > ¢
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5.3 Control of the scalar products and proof of Theorem 1.1 90

To finally get (5.10), we now integrate (5.11) between ¢ and 0. Using (5.25) we have

dz Scal(t) |ul?. -
[ =30 70 £ S0 WL g,

Hence (5.23) and (5.24) yield

Seatt) WOLE: itz [ 1 (e o ) ar o [ (St 4 wery)ar]

which involves using (5.7)

0 7:147— 22 x 2
v 5 s (BN 4 o) + [0 (100 4o, ) ar

t<7T<0 2(7)
0
< sup Sc;zl(T) SC;ll(T)
t<T<0 AC(T) t A0(7—)

This concludes the proof of Lemma 5.2.

5.3 Control of the scalar products and proof of Theorem 1.1

There now only remains to control the possible growth of the scalar product terms in (5.10). We claim :

Lemma 5.3. (A priori control of the null space).
There holds for t close enough to 0

Scal(t) < [t|Y2 [t N(t) (5.26)

Let us assume Lemma 5.26 and conclude the proof of Theorem 1.1.
Proof of Theorem 1.1
From (5.10), (5.26) and the law A. ~ |t| as shown in (3.111), we have for ¢ close enough to 0

N SN + i % dr < 1]V N (1)

and hence N(t) = 0 for ¢ small enough. From definition (5.8) of N, this yields u = u, and achieves the
proof of the Theorem (1.1).

Proof of Lemma 5.3

The proof follows by deriving the null space close to Qp, to sufficiently high order and reintegrating the
corresponding modulation equations from blow up time. The worst behavior is on the even terms where the
modulation equations are a deformation of the ones for Ly, L_, and roughly correspond to the system of
ODE '’ s

(6:46), =2(0@). (@) = 5(e080). (e5), = (e o)

with initial degeneracy provided by the L? norm conservation law and the a priori bound (5.7) :

61, /I # < llellz2 Ac(t) /N () S Xe(t) Ae(t) VN (2)
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5.3 Control of the scalar products and proof of Theorem 1.1 91

The control of the worst paramater (related to the phase) requires
JET A A

+oo +oo —+oo
s)v/N(s) / / / M (s3) ds3 dsg ds;
S S1 S2

€1 53 ) ‘ d83 d82 d51

This implies (5.26) and explains why we needed a small enough estimate ||e[[z2 < A2 in (5.2), (5.7).
Let us now implement the above strategy which requires being careful with respect to polynomial losses,
and in particular demands a high order approximation of the null space close to Qp,.

Step 1 Approximate equation in conformal variables to the order O()\ﬁ).

Let v, w be defined as in the ansatz (1.19)

1 1 T —ac(t)\ ds 1
; _ ¢ ive(t) d = =_—_
uts) = g (e ) G (5.27)

w2
w(s,y) = v(s,y) e 4 e
Then we may compute as we did to get equation (1.25) and show that here again w is solution to

. kAey +ac) | g 2 [yl
2 QW — —_— be)s + (be
iDsw + Lyaw —w + ===t wlwl + ((be)s + (b)) 7w

{( Be)s +beBe) .y +i {Ac Be - vklzg)‘)) +;’—; (Ac 9;Gijy; + (1 —g) Gy + (Gyi — 2))} }w

{ pc ” ’LU +i(bey; 8jw -2 (60)1' 8]‘11])] ~+ i b (1 —9) (Gij — Iij) Yi 6Jw}

) [zAw+2b \y| w— fe. yw] - (ﬁc)s— ‘5c‘2)“’

) e ) ]

(%
(%

where

2 2 YilYj
(pe)i] = (Pe)if () = (0e) =2 = be (B)iws + (Be)i (Be);
Doing the same with u., we also define v, and we(s,y) = ve(s,y) eibe 4=~ ¥ We let u = u, + & and
define
P = ibe W2 g,y 5.98
V=V.+€ W=W,+€ le. e€=¢€e ¢ 4 ¢ ( )

Since u, satisfies (1.1), € is solution to
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kE(Aey + ) - |wc|2wc) + ((be)s + (bc)Z) %E

o~ . - 2
z@se+£,\cace—e+W(w|w|

{( Be)s + be Be) - y+z’[)\cﬁc.vklzéoj)) +;i (A Gy + (1—g)Gii+(Gii—2)>”e

1
g { pc ” 6+’L'(bcyi 8j€—2(ﬁc)i 6J€)] +’ibc (1 —g) (Gij _Iij)yi 8J€} (529)
pe+20, e gyl - (G- 18.7)
1Ae+2 €—Be.ye ((’YC)S |Bc| )6
Ac Vk( c) y | _
Then, from (3.24), and (4.61)-(4.63), one has
|O‘C|2 + |ﬁ0|2 +[Modc(t)] 5 )‘g
so that using (3.78), (5.29) may be rewritten as
(058 + L,0,é — E+ M(MwF — w2 we) — ibe Gij yi B¢
cte k(ac)
(5.30)

{()\c colae) +A2C3) .y +i— [)\ 2:Gijy; + (1 —g)Tr(G) + (Tr(G) — 2)} }

= O(NE (1 Iyl?) €+ A2 (1 + lyl?) Ve)

or

i~ ~ o~ k()‘cy+a0)
10s€+ L, 0 € — €+ W(whﬂ

— {(/\c Co(ac) + /\i 03) .Y €+ Z% [VQGM(O)( 0; (Ey))

- |w0|2 w0)

- V(0 ) A+ 5 THTTG) 0. |

- O(A‘g (1+[y2) e+ M2 (1 + [y)?) vg)
We now expand the nonlinear term in (5.30) as well as

Let € = €1 +iéy and w, = (we)1 + @ (we)2.
= Pp, + €. and the expansion of the approximate solution (1.40) to obtain up to order O()\4)

— 056 + MW (&) + ib, G”ylae

{(/\c colae) + )\f C’g) y+i— [)\ 0,Gijy; +(1—g)Tr(G)+ (T’/‘(G) — 2)} }é (5.31)
= =
where M is the fourth order expansion of M defined in (3.17) and
MO @) = M @) +i M50 (@)
which, according to (1.33) and its now simplified version induced by (4.61), are given by
- . 3
M{"(&) = ~Laa @1+ — [3Q7+6QTy + 5 VR(0).(y.y) N2 Q* + 6 QT
(5.32)

1 N -
+3 VQk'(O)(y, ac) /\c Q2 + 5 V%(O)(y, Y, y) A? Q2] €1 — 2 Q SS €2

and

92



5.3 Control of the scalar products and proof of Theorem 1.1 93

1
M) = ~La,afo+ & — |2 +2QT+ 5 V2(0)-(0.y) N Q* +2QTs
(5.33)
1
+ V2k(0).(y, @e) Ae Q% + 5 V7k(0). (3,9, 9) A QQ} & —2Q83¢

and where the remainder ). satisfies

wczo(xg (1+[y?) e+ 24 (1 + [yP?) Vé+€cg+€ze+wc€2+g3)

Step 2 Approximate null space.

Let f(s,y) = O(e“m) be a smooth well localized slowly time dependent function. Then from equation
(5.31)

%Im(é, ?) - —Re(g, M®(f)—id.f +ms f) +0[(¢, f)} (5.34)

with

](w, f)’ S llellze + el zz llellze + NEcllZa el e + 1€l za el za 1€l e + €17 1€l 22

(5.35)
SNl e
and where mg is the operator
be =
m3 = {()\c colae) + A2 C3) .y +i 0} [/\c 9:Gijy; + (1 —g)Tr(G) + (Tr(G) — 2)} } +1Gijyi0;
3 . Ag 2 2 1
= (eeolac) +N2Cs) y+i gt [V2G35(0).010)w; + V2 (5 Tr(C) — 9) (0)-(v.0)] (5:36)

3
c

oA
+1

ToA v? (Gij - inj) (0)-(y,y) 4 9; + O(A;)

where we have used (4.62) to get b62>\§ = ;CEU +O(A2).

We now claim that we can find some real valued smooth well localized functions As(y), B2(y), Ds(s,y),
EQ(Sa y)v E3(87 y)a FQ(sv y) with

AQ,BQZO(Aieilyl), E27F2:O(>\gei‘y‘)7 E37D3:O()\i’ef‘y|)

such that we have the following approximate null space relations

MW(VQ+ A2 A2) —i0,(VQ+ N2 As) = —a; N2y Q + O(A3 e~ V) (5.37)

for some universal constant

a1 >0 (5.38)

MWi(yQ+ A2 Bs)] —i0s[i (yQ + A2 Bs)]

) (5.39)
=20 (VQ+ A2 A45) + O(A\2e V)
and for the even part
MW (APp, + Ey + E3 +iD3) —i95(APp_ + By + F3 +1i D)
+ ()\c Co(ac) + )\g Cg) ) (APPC + E2 + E3 +1 D3> , (540)
A
= -2 ]D'pC -+ (AC agl(ac) -+ )\? CL31) . yQ + Z)\E ass 0 — 7 ﬁ h,g + (9()\21 67‘y|)
0
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for a linear map ao; on R?, a vector as; € R? and a constant ass € R, hs an even function to be fixed
later

MO i (|yP Pp, + Fo)] —i0s[i (ly* Pp, + F>)]

(5.41)
= —4i(APp, + E3) + i) as 0+ O(X2e V)

for a constant ass € R, and

MW (o) = [y Q + O(AZ eI (5.42)
The Algebraic derivation of (5.37), (5.39), (5.40), (5.41) and (5.42) is done in Appendix 5.B 5.5
Step 3 Control of (61 , yQ) and (62 , yQ).

Let A=VQ+ )2 Ay and B = yQ + A2 By. We now use (5.34) and (5.35) when f = A on one hand, and
when f =i B on the orther hand to get

(12:2), =2 1 06) - 02 )

(5.43)
(6, B) =-2(&, 4) +0o(ie )
Then, using the fact )\2 together with (4.62) yields
Co 1
Ac(8) = —+ 0| = 5.44
0 =240(5) (5.44)

Rewritting (5.43) in view of (5.44) and B =y Q + O(A2) thus leads to the following 2-dimensional ODE
system

(51, B)S:—Q (52, A) tF

(2 4), ot e v0)

with Fy, Fy = (9('1'52) (5.45)

As we will do later in Appendix 5.A 5.4, we may now apply Lemma 8.10 with ¢ = a; C3 > 0 thanks to

(5.38), hence
(51,3)‘-# (527 A)’ 5/5 wln; %) €]l 2 do

Using the fact that A = VQ + 0(5*2) and B=yQ + 0(5*2) yields

(0 5Q)| | (e V@) £ 10 4 [ e

then, the definition (5.8) together with (5.28) and (3.111) imply

Jets) 112 = hlae) o) 5 YO < iy /) (5.46)

so that we have

CIRDIE ||5||2Lz L VNG) /*""ln(;f)dg

S VT (1, 1o

s 52 s

S 1t VN ()

(El(t)a yQ)‘ +
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This ends the proof of (5.26) for the odd directions.

Step 4 Control of (61, Q), (62 , AQ), (el, |ly|? Q), (eg, g).

Notice here the L?(dy) scalar product will not be accuate enough to properly estimate the remaining
terms. From the use of Conservation laws, it is the L?(g dy) scalar products that will be relevant.

We first have from the L? conservation law, the critical mass assumption and (5.28)

/\vl2 gdy=/lw\29dy=k(ac) /QQdy=/lvc\2gdy:/leIQQdy
/\wl2gdy:/\wc+€f2gdy:/lwc|2gdy+/|€\29dy+27€e/€w79dy
\v|2 duy — 2 _ 2 2 —
gdy = |vc+e’ gdy = [ |v|* gdy+ [ |e|* gdy+2Re [ ez gdy

thus from (5.7) and the definition (5.8)

Re [ewgdy=Re [evgay =3 [1ef gdy = OO elzz) = O il /N D)

Moreover, from (5.28) again and the fact that [ |Pp,|> gdy = [|Qp.|* gdy we have

/|P7>c ek gdy:/|PpC\2 gdy+/|€|2 gdy+2Re/€P?gdy

) .
=/|Q7>c+6| gdy:/l@pﬁgdy+/|€\29dy+27€e/e Qp. gdy

so that

2Re/€P7ngdy:2Re/eQipcgdy:7/|e|2 gdy = O(\L[t|V/N(1)). (5.47)

Going back to (5.34), doing the same computation with the L?(gdy) scalar product, one needs to be
careful, for a remaining derivative part shows up

d%zm(a ?)LQ(W - —Re/€ (M®(f) = i0sf + ms ) gdy—zm/e? ((Ae)sy + (0)s) - Vg dy
+O(Aéllz2)
= fRe/g (M@W(f) —i0sf +ms f) gdy

~zm [ o7 (S ndus (2 -20) - G20 ) A Tady + O(3 el

C

)\3
= 772@/& (M(4)(f) *iﬁsf+m3f+icfgv29(0)-(y,y) f> gdy+0(>\3 ||€||Lz>

Using (5.34), (5.35) and (5.40) where we take f = APp, + E5 + E5 + i D3, we have
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d
£Im(€, APp. + E» + E5 1 D3)

L2(g dy)

3

_ Y A
= —Re/e (—2P7>C + (/\Cazl(ac)—k)\iagl) Q+z)\3a329—th3+lf [f3+V29(0)-(y,y)AQ}) gdy

=2Re/€P7cgdy— (Acagi (o) + Al asy) . /€1 yQ gdy — az X3 /€z 0gdy
)\3
2C
= 2Re/€PT>ngy— (Acazi(ac) + Al as) . (51 ; yQ) —aza A2 (52, Q) + O éllL2)

& [f3+ V?9(0).(y,y) AQ — h3] gdy + O (N2 ||€]|2)

with

fs = [2G15(0)-00) s + 9 (3 T(G) ~ 9) (0)-(v.) AQH;CSO V2(Gij = 91, ) (0)-(y.9) i 9;AQ

where we have now fixed once and for all

hs = f3+V?9(0).(y, ) AQ (5.48)
(5.44), (5.47), the definition (5.8) of N(¢) and the result of the previous step now imply after integration

‘Im(%, APp. + B> 1 E5 +iD3)

L2(g dy)

+oo S 1 1 €Il 2
< Re | ¢ P d‘ ~ (s, ‘ —‘~7 ‘ nellzz ) 4
N/s (‘ e/e mgy+3(61yQ)+03(62@)+04 o

) /fo[ JZ<U>(04+07/2) ol o] ,
/N(5) +o<>
/ 07/2 %)da
St |'5|\/7

thus we have proved

S P VN S Y2 1 VN () (5.49)

’Im(é, AP, + By + By +1 D)

L2(g dy)

Using (5.34), (5.35) and (5.41) where we take f =i (|y|*> Pp, + F), we have

d L d L
I (e, i (Y2 Ppe+ F2)) = Re(e, [y Pr. + )
ds L2(g dy) ds

—N2az (&, 0) + O(A2 e 2)

L2(g dy)
- 4Im(€, APp + EQ)
L2(g dy)

(5.44) and (5.49) yield

‘Re(a [y Pp, + F2)

+oo =
[ (e wTE) |l o)+ 1)
s L2(g dy) g g

<[ (ﬁf L ey, (5.50)
< [t v N

L2(g dy)
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Using (5.34), (5.35) and (5.42) where we take f = p, we have

(2. 0) = (& Q) + O éllz2) (5.51)

which eventually yields after integration using (5.50), the fact that Pp, = @ + O([¢|? e_|y|), and once

agin the definition (5.8)
(il [ (oo - 82
S @ /:OO (% + %) do (5.52)
SIRERVINO)

Notice that (5.50) and (5.49) can now be rewritten in terms of the L?(dy) scalar product since ||| z2 =

t|\/N(t) and Pp, = Q + O(|t|> e71¥!), so we have

(2, 4Q) =Zm (e, APy, + B2 + Bs i D3 ) + Ot léll2) S 117 1t VN )
L2 (g dy)
(e Q) =Re(e. WP Pr.+ F2) — +O(Ilelsz) S It 1l VN D)
L2 (g dy)

Finally, putting altogether (5.47), (5.49), (5.50) and (5.52) yields

(e Q)|+ |(e: 2Q)| + (a1 12 Q) |+ | (2. 2) | < 117211 VN )

This ends the proof of (5.26) for the even directions.

5.4 Appendix 5.A : Proof of (5.5)

Here we now complete the proof of the step 2 of Lemma 5.1. Once again all we do here is to adapt the proof
of Appendix C of | ] which we follow linearly. We will here prove a sligtly more precise estimate than
(5.5), for we will need a refinement to control the phase parameter. We claim

A= Xl +[b=bc| ST Ja—ac + 18— Bl S P, by — el St (5.53)

Step 1 Improved bound on the modulation equations.

Let Mod(t) be the vector of modulation equations given by (3.22), for which we have proved estimation
(3.24). The very same process we used in the proof of (3.24) leads in Appendix A of | | to a slightly
more general result :

Mod(t) = R(P) + (9(7’7 + (P2 + [Mod(t)|) llell = + llel|Z2 + llellZn + (1 —eX?) JullZ: — QI |)
(5.54)
where the parameter ¢ is introduced through the computation in (3.26), and R(P) is polynomial in P
that satisfies

A
[R(P)| S P +P (ol +18) +P* (b- 50)
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Now using bounds (5.3) and (4.61), there is a polynomial R(P) in P such that
Mod(t) = R(P) + O(P" 4+ P |lell 2 + llell 7 + llell 1)
=R(P) +0O(|t[°) (5.55)
A
RSP +P (ol +187) +P* (b— 5 ) S 14"
Co

Unifortunately, this estimate is not strong enough, and we have to first refine both scalar products with
VQpr and AQp in (3.43) to gain a cancellation on the null space for the (b, 8) laws which should be set to
satisfy

(bs+b2—Bl—Kb7ﬁs+bﬁ—Bz)

z(p) +O(P? |lellz2 + llell2s + llellF) (5.56)

(P)+0(|t")

For now, we assume (5.56) and finish the proof of (5.53)

We wish to compare Mod(t) and Mod.(t), so writing (5.55) for both, and using the fact R vanishes at
least at order 2 at the origin

|Mod(t) — Mod.(t)] < [t]* [P —Pe| + O(]t|%) (5.57)
Similarly, using (5.56), the definition of K} (3.23), and the degeneracy a,a. = O([t[?), we have

|(bs + b2 - Bl) - ((bc)s + bg - (Bl)c)| + |(ﬂs + bﬂ - B2) - ((Bc)s + bc Bc - (B2)c)|
S ’(Lb — Ky, Lg) — (Lo, — KbC;LﬂC)| + |(/\2 M) ko] + M ki[o — aCH

X g . (5.58)
SIRP) + Ot | + lal |a = ac| + |af X+ Ae| [A = Ac| + A2 o — ac
< |t? ‘77 - PC| + O(|t|7)
Step 2 Estimates for A — A. and b — b,.
Let us define
P=P-P.=0(tf) (5.59)
from (4.61), (4.62), (4.63).
We will now prove
0 0
d
b — be| + A — Ac| §|t|6+/ 1P| dr + |1 (/ Fad l) (5.60)
t t T
First, we have
b1/ o1 9
2 _ (2 Z - 5.61
Nty =5 (540) bt =5 (b0 (5.61)
Then observe from (4.62), (4.63), (3.111)
b b 1 1 1 Cy be 1
———==((b-b)+b:|~——)=—b+0O(]t —— =
X Al (5 /\c> ;LrO(HR) - 5 A (5.62)
C 1 ’
=—"b+ A+ 0(lP)
Injecting this into (5.61) together with (5.57) for A and the improved bound (5.58) for b yields
Co 1 b be
A — TQ‘F ;A— ()\t + X) — (()\c)t + )\70) +O(‘t|£)
_ % (Mod(t) — Mody(t)) + O(lt| P) (5.63)

=F, Fi=0(t’+tP)
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2 2 b2
el GRS ) B (GO A2)+0(It|7>)
1 5.64
v (Lo — Ly, — | Ky — Ky, |) + |A2| loo — ae| + O(|t] P) (5.64)

— Py, F=O(tf +1|P)
We may now rewrite (5.63), (5.64) as

1
Zt:¥MZ+F

- ) - 2 ) -
b -5 2 F
The eigenvalues of the matrix M are 0 and 1, hence the system may be rewritten in an eigenbasis
- 1.~ -
Zy = n DZ+F with D= (8 (1)> (5.66)
and from (4.62), (4.63), (5.63), (5.64)

|F| S 1t° + |2,

Z
?—>0 as t—0

the explicit integration of (5.66) implies

0 0 7
Zy = / Fi(r)dr, Zy= t/ (") 4
t t

T

0
|Z@t)| < |Z) /\F |d¢+|t|/|
O
< Jt|S + /]P )| dr +|t|/ |P

Step 3 Estimates for a — a,, 8 — .

Thus

which proves (5.60).

We now claim the bound

0
ool |3 Al s maen] + 1 [ 2 oy ar (5.67)
t 7]
First, we have
B_ 1 o b3 By 1
a-25=1(52-28), Aty -2 =15 (BbB-B2) (5.68)
then from (3.111)
A ti-wea ot
o s o (5.69)
B R AR

hence from both (3.111) and (4.62), using defintion (1.42) of By and (4.63)

99



5.4 Appendix 5.A : Proof of (5.5) 100

PR CEERSY XTTAN XA

_ (L o (B Be\  col@) +ANCs colae) + X205
1 1 1 1
=~ 8 5 ((@) = cofar)) + cofac) (X - Tc) +0(P)
1 C
=16+ cla) +O(P)
Thus, injecting this into (5.68), using bound (5.57) we have
26VO o 1 Qg (ac)s A (ac)s
et a=5(5 —20) - (50 2| -5 (50 —20) ro®
= 3 (Lo - Lo) + O(P) (571)
=G, Gi=0(tP +P)
and thanks to the improved bound (5.58)
1, Gy 1 A
ét - Eé"‘ 7 co(a) = 2 (Lﬁ - Lﬁe) - (AX)? Lg. + O(B) (5.72)
=Gy, G2=0(tf +P)
Now we set
n = % (5.73)

so that we may rewrite the system of equations (5.71)-(5.72) as

C 1
a, +2Con = G, Qt-ﬁ-?;Co(Q)ZEGQ

Recall from (1.50) that
(co(g))p = V2 (k — ;TMG)) (0).(a,0p) + %V2G12(0).(Q7 dp — 05)

so that matrix cg is given by

a1 1 [ V2G15(0).(01,01 — Bs)  V2Gr2(0).(Dn, 1 — o)
=V (’“ ~3 TT(G)) 0)+3 (—V2G12(0).(81,61 —0y) —V2Gha(0).(D2, D1 — 82))

Let F =k — 1 Tr(G), one may compute

1
det(co) = det(V>F(0)) — 1 V?G12(0).(01 — 92,01 + 02) V2F(0).(81 — 02,01 + 92)
1
+ 3 V2G12(0).(01 — 22)° V2F(0). (91 — )

hence from hypothesis (H5), matrix ¢y is negative definite, with eigenvalues 71,79 < 0. Thus, we can
find an eigenbasis, so that for j = 1,2

_ 5
(Qj)t__200ﬂj+0<t +B) (5.74)
(n,), = - a; + Ot + 7) '
45/t 2 =J t
Then, we perform the change of variables s = ‘71“ and rewrite (5.74), for j = 1,2
n. 0 -2
Zi=\.al | (&)= (c,- > Zj+Fj, (=-r;C3 (5.75)
29 s 0
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with

Fj = ((Fj)17 (Fj)Q)’ (Fj)1 — O(— +
Moreover, from (4.62), (4.63), (5.59)
1
Jim Z;=0 and Fi(s) = 0(5)-

Now recall Lemma 8.10, see Appendix B, that now yields

0
P log(T
sl < [ (g5 B togtordo 5 [Ptogtl] + [ 19 1piryar
S

and hence (5.67) follows from (5.73).

Step 4 Bound on P.
We conclude from (5.60), (5.67) that

log(T
1< Etogil] + [ elar i [ oy ar

Injecting the a priori bound (5.59) in the previous estimate

0 0
[P| < 19 floglt]|* + / rf2dr + |t / 7| tog(r)| dr
t t
< 19 [loglt]|* + [t + t[* |Logl]
< |t |loglt|
and iterating 3 more times now imply
1P| < % [log]t]|*

Eventually, injecting this into (5.60), (5.67) clearly yields

A=l +[b=be| ST Ja—acl+ 8~ B| S It° (5.76)

Step 5 Bound on the phase parameter.
There is only left to get control on the phase parameter, which is why we had to sharpen control on the
scalling parameter A in previous steps. We are willing to prove
[y = vel S 1 (5.77)
Indeed we have
1+ 8P +K; 1 .

= I - 5 G- 18P - 1) (579

and from (5.76)

L+ 8P+ Ky 1+ 8.7+ Kj, _O(|)\—)\c\
22 22 B It]3
= O(|t*)

+ |5_ﬁc|+|a_ac|) (579)

so that (5.57), (5.78) and (5.79) imply

7, = O(tf + [B))
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which after integration yields (5.77) and concludes the proof of (5.53) assuming (5.56).

Step 6 Proof of the improved bound (5.56)

To get the refinment (5.56) we now need to go back to the very definition of the remaining e through
the choice of the orthogonality conditions (3.7)-(3.11). Indeed, one way to sharpen the modulation laws
estimate, is to pertubatively modify the remain e through the orthogonality conditions (3.7) and (3.9) which
respectively govern the law of 5 and b, that one should now replace by

(62 LV + A)\Q) - (q , ve) ~0 (5.80)
(62, AE+B>\2> . <61 : A@) =0 (5.81)

where A and B are well-localized real functions to be chosen. We claim for a suitable choice for A and
B, the computation of the modulations equations, like we did in (3.54) and (3.50) will lead us to get (5.56).

Let My, My and M, M, given by (3.16) and (3.17), and then let the complex operator for € = €1 + i €
M(e) = My (e, €2) + i Ma(er, €2)
= M (€1,€2) + i Ma(er,63) —ibAe+2i.Ve

These refined orthogonality conditions allow one to sharpen the scalar products computations (3.43) such
that

Re(e, M(VQp + N2 A) —i0,(VQp + N2 A)) = O(It* [lell2) (5.82)

Re(e, M(AQp + X2 B) —i0,(AQp + A2 B)) + 2736(67 @) (5.83)
= O(|t1* el =)

First, note one has the following adjunction formula

Re(M(e), ) = Re(e, M())
then, recall the equations of real and imaginary parts of € (3.39)-(3.40), and given an orthogonality

condition Zm (e, ?) =0 up to (9(|t|3 ||e||L2)7 the linear term in the computation of these equations is

_<M1(61,62), f1> + (ez, 85f1) - (M2(€1,€2), fg) - (61 , 8Sf2> = —Re(e, m)

Proof of (5.82)
From (2.2), Qp satisfies

MQP\QPF

. 2
Z( —b + Bl)abQP + ‘C)\CKQP - QP + ]{Z(OZ) (584)

+ibAQp —2i3.VQp = O(|t]* e V)

By differentiating (5.84), since
V(IQr|* Qp) = M1(VE,VO) +i My(VE, VO)
and
1 Vg 2
VLraQp = L2a(VQp) + 531 (VGi; 0,Qp) — o A, ,Qp + A" QpVV

= EAa (VQ’P) + VG” 812]6273 — Vg AQP + O(MS e*\y|)

we obtain
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W (V1(VQp) +i My(VQp)

+ibA(VQp) —2iB8.V?Qp + VGy; 0;,Qp — Vg AQp (5.85)

k
W QP2 Qp +ibVQp = O(Jt]* ™)

Z( — b+ Bl)ﬁbVQp + Lra (VQP) - VQp +

Thus
M(VQp) —i0s(VQp) = AVGi;(\y + a) 0;,Qp — AVg(hy + a) AQp
ARSI g gp + 1V + O )

moreover thanks to (2.5) and Proposition 4.7 one easily check

(5.86)

Mi(NA) =22 (3Q*A+0(tle™N) =3X2 Q% A+ O(Jt]* e~ )
My(A\2 A) = O([t]* e~ 1)
then, expanding the remaining terms
M(VQP + A2 A) — 10 (VQP + A2 A)
= X2 [V2(k+9)(0)-(y, ) Q@ + V2G(0).(y, ) 03Q = V29(0)-(y, ) Q+ Le(A)]  (5.87)
+ibVQp + O([t] e ¥
From (8.3), (8.1), (8.2) we then choose A solution to
Lo (4) = [V2(k + 9)(0).(0. ) Q" + VG4 (0).(y. ) 95,0 — T29(0). (5. -) Q] +a1Q
(V2(k+ 9)(0).(5, ) @ + V2Gy5(0).(5, ) 93,Q — V29(0).(v, ) Q. VQ)
(v, vQ)
a = A/{?(O) + V2 <G11 — GQQ)(O).(al, 81) + V2 <G22 — Gu)(O).(ag, 82) + 4V2G12(0>.<61, 82)

a =

and thus from (5.87) for f = VQp + A? A, using orthogonality conditions (3.8) and (5.80)

'Re(e, M(f) — iasf) = bIm(e, V@) + a2 Re(e, m) + (9(|t\3 67|y|)
= O([t]° [lell =)
This concludes the proof of (5.82)

Proof of (5.83)

First, we gather some computational results
AQp =AQp +y.VQp +y.A(VQp)
B.V(AQp) =28.VQp +y.3.V(VQp)
My (AQp) +i Ma(AQp) = 3|Qp> Qp +y. Mi(VQp) +iy. Ma(VQp)
1
Lra(AQp) =3LxaQp +y.Lra(VQp) —2XV Qp — ;@‘szan’P
=3LxQP + .- L2a(VQP) —2X°V(0)Q — N> V?Gy5(0).(y,9;) 0,Q
+O([tPe )
thanks to which and (5.84), (5.85) we deduce

(5.88)
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. 2 EAy +a) - - .
i( = b°+ B1)0(AQp) + Laa(AQp) — AQp + ) [M1(AQp) + i Ma(AQp)]
+ibA*Qp —2i3.V(AQp)
E(Ay + a)

=3[i(= 0+ B1) 2@ + L20Qp — Qp + QplQp|* +ibAQp —2i5.VQp|

k(a)
+y. [i( — b+ B1)VQp + Lra(VQP) — VQp + W (M1(VQp) + i Mx(VQp))
+ibA(VQp) fzm.pr} +2i (b2~ B1)%Qp +2Qp +iby.VQp
—2ibAQp +2iB.VQp —2X2V Qp — éaiaijajcgp
=2i(b* = B1)0yQp +2Qp —2ibAQp +2i3.VQp
- [P 15 Gp 4. V6, 08Qr — 1. Ta AQp + 202V @ + 0,Gis0,Q |
+O(|t)P e ¥

Eventually, with (1.42) we obtain

M(AQp + N° B) —i0,(AQp + \* B)
= (2V0Q+ T+ 9)(010:0) @ ~ (0.0 @+ TGy 0). [(10) 2@ + (1.0) 0,0) + L ()
—~2ib?8,Qp —2Qp +2ibAQp —2i B.VQp + O([t]* e~ V)
(5.89)
‘We hence choose B solution to

Li(B)=~ (2 V(0)Q+ V2(k+9)(0).(y,y) Q° — V?9(0).(y,y) Q + V>Gy;(0) . [(y, y) 05,Q + (y,0)) 8]'62}) =: f
which is possible thanks to (8.2), since f3 is even while V@Q is odd, and thus (fz , VQ) =0.

Then, observe as in (3.49) that

2
HhQp = —i % Q+0(|tl e

so that (5.89) yields

Re (e, M(AQp + X2 B) ~i0,(AQp + X B) ) +2Re(c, Qp)
= —%Re(e, |y|2@> —2Re(e, @) +2bIm(e, A@) - 2ﬂ.Im(e, V@)
+ 2Re(e, @) +O(Jt)? ef‘yl)

=O(|t]* e ¥
where we have used (3.10), (5.80), (5.81). This concludes the proof of (5.83).

5.5 Appendix 5.B : Computation of the approximate null space of the linearized
NLS operator around the Ground-State.

Proof of (5.37) and (5.38) We compute thanks to (5.32), (5.33) along with the control of the modulation
parameters of (4.61)
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MW(VQ + N2 As) —i8s(VQ + N2 Az)
= L (VQ+ 2 4) — é A, (VQ) +V2Q . Vg| - 22V vQ (5.90)
~6QT,VQ — % V2k(0).(y,y) X2 Q*VQ + O (A e7IV))
where we have used
Loav=Avt - [A v+ Vg, w] A2V,

with  Gij = (1 - g) Lij + (Gij — 1)
Recall L (V@) =0, and then from (1.49) using again (4.61) the following identity which defined T%

LTy = 32 |5 V3 + 0)(0)-(0,) @ + VG 0):[5 (0,9)9,Q + (4,0)0:0] — 5 V2900, ) @+ V(0) Q).

Using (8.2) we may now introduce Ty, such as Ty = A2 TY, a function which thus satisfy

1 1 1
LyTy = 5 V2 (k+9)(0)-(4,y) Q° + VG (0). b (v,9)05,Q + (v, 31')83‘@} =5 V90,1 Q+V(0)Q
so that we may rewrite (5.90) as
MW(VQ + A2 Ay) —i8,(VQ + N2 Az)

= X2 [6QTYVQ + V2G,;(0). [%

(1.9)FVQ + (5,9)0,9Q] ~ £ V?9(0).(4,4) VQ + V(0) VQ
+ % V2E(0).(y,y) Q> VQ — L+(A2)} +ON\ e~V
To fulfill (5.37) we may now simply choose A, solution to
Li(A2) =6QTVQ+ Ay —a1yQ
with Ay = V?Gj;(0). [% (v, 9)05VQ + (y,ai)ajVQ} = %VQg(O)-(y,y) VQ+V(0) Ve (5.91)
2 VH0).(,9) @7 VQ

Q being is radial, 7% is hence a second order polynomial function in y with radially symmetric coefficients
(also in variable y), and therefore from (8.2) one should also set constant a; as

<6QT2° VQ + A, VQ)
(vo. vQ)

Yet there is left to ensure that a; > 0. To do so, one needs to compute a; more explicitly, which may be

done provided one observe by differentiating twice the Ground-State equation (1.36) L4 (AQ) =6Q ’VQ|2.
But first, note that () being radial, some computations show

a1 =

(5.92)

(42, Q) = [ ¥2G5(0).[ w08V + (1,099,7Q] V@ + V() [ @2
+ [ (3ak0)@* - ag0) - jvar
= 5 V2Ga(0). ~ 0,0 [Kas — [ @]+ 5 V2G5(0).(0,.0,) K
+ 5 V2C0(0).(01,82) /Q2 / (502 VQP] + V(o) /Q2
+ [ ak0)@ - a90)) - var
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with

2
Ko = [ivoiQ.va= [vae.ve =3 [1-(2-3¢) var

2
Koo= [9030.9Q = [#vorq.va =5 [W- (2430 ver

Thus using again the fact that @ is radial and 7% is somehow even, for j = 1,2

(6@T9vQ. vQ) =6 (1. Q|VQ[") = (17, L+(2Q)) = (L+(19). AQ)
= (5 P20k + 9)(0)-(0,9) @° + V2G5 (0). 5 (0. 1)33Q + (1.000,Q] — 3 T0(0).0,) Q +V(0) Q, AQ)
= (392 + 9)0). (0.9 @*VQ, Q) ~ (5 VIV?(k +9)(0).(.1)] @°, VQ)
— (v{v26,0).[5 w0)#@ + 1.0)5,0] }. V@) - V(o) (vQ, vQ)
+%(v[v2 0)-(5,9) @] . VQ)
/V2 k+9)(0).(y.9) Q* IVQ[* + /A[Vz(k+g)(0)~(y,y)} Q"

- / VQGU(O).[% (y,y)af,vczﬂy,ai)ajvcg} VQ—fA Tr(G / Q% — V(0) / Q?
+ Ag(0 / i IVQI]

~ AK(O /—3/"”'2 @ 1vaP] + a0 [ (1-507) ivop

- [ V60 §<y,y>83jvcz+<y,ai>8jw} vQ- 1 AH@)0) [@*-vo) [¢

Altogether, this yields

a = -2 Ak 2 7r(@) O +3800) QU2 [ jver (5.93)

Consequently, from hypothesis (H1), V? (k - %Tr(G)) (0) < 0 is negative definite, and from hypothesis
(H6), the second term in the RHS is positive. This now imply a; > 0, and ends the proof of (5.38).

Proof of (5.39) We compute thanks to (5.32), (5.33) along with the control of the modulation parameters
of (4.61)

M(‘”( (yQ + N2 By)) —id(i yQ+)\2B2 )
Loy Q4 A B) — 102 [2QT8 + 5 THOL) @] 5@ + OO
so that to ensure (5.39), using L_(y Q) = —2 VQ, we may simply choose By solution to
1
L (B2 = ~22 4 [2Q78 + 5 VK006 @+ V(0 4@
which is solvable from (8.2) since its right-hand side is orthogonal to @ by definition of Az (5.91).

Proof of (5.40) We compute thanks to (5.32), (5.33) and (1.38) along with the control of the modulation
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parameters of (4.61)

MW (APp, + E3 + E5 +1iDs) —i95(APp, + B> + E3 + i D3)
+ (Acco(ac) + A2 Cs) .y [APp, + E2 + E3 +i D3]
=MD (APp.) + Ly (B + E3) +i L_(D3) — i 0sE5 — i OsATs
+ (Aecolae) + A2 C3) .y AQ + O (N2 e~ V)

Then, one easily checks from (1.49), (1.52) that O\Pp = (9(7)), OuPp = 0(73), O Pp = (’)(772) and

d3Pp = O(P?). Thus, recall from (1.40), which is now simplified thanks to (4.61), (1.35) and (1.42), that
Pp,_ is solution to

(5.94)

. EOey + ac
—1bAcON Pp. + La.a.Pp, — Pp. + (kz(/a)a)P’PJPPJQ —ma1 Pp,
Al _
—ig6 V' (Cig = 9 1) (0).(y ) y:0; Pp, = O(Az ™) (5.95)
with
3 . )‘g 2 2 1
min = (Accol0) + X1 Cs) oy i 55 (V26 (0)-00) 3y + V2 (5 T7(G) — ) (0).01)

Therefore, as we did in (5.89), we derive (5.95) and use (5.88) to get

k )\c c) a7

—ibAeOr. (APp,) + La.a. (APp,) — APp_+ (k?(J;—)a)M(APpU) — m3 APp,
. k(Acy + ac
=3 |: —ib e a)\chC + Ly, a.Pp. — Pp, + (];(Joé)OL)|F)7>C|2]37>C — ms PPC:|
)\3
+2ibAe O, Pp, +2Pp, +2maz Pp, +y.Vmg Pp, +i 2000 VZ(Gij — 9 1i)(0).(y, y) yi 9; Pp,
, E(Aey + o) ~

+y. [ — iboAeOs. (VPp.) + Li.a. (VPp.) — VPp, + (kg(/a)a)M (VPp,) —my VPPU]

3
c

A
= 2P73c +2z’bc)\C8,\chc + 2ms PPc +vy.Vms Ppc + 1

2Cy
- | AT P P 4y VG0 P~ 5.V AP | + O(3 M)

A {VQ (Gij — 91i;)(0).(y, ) s ajPPc}

|Pp,

)\3
2Cy

=2 PPC +21b A 8,\CP7>C + 3mag Ppc +1 A [V2 (G” — gI”)(O)(y, y) Yi @-Ppc}

2A020 (726300 01,) 3+ V2 (5 T7(6) — 9) 0)- ()| P,

B {)\Cy VE(Ay + ac)
k(o)

+1

|Pp,|> Pp, +y.VGi;0;Pp, —y.Vyg APPC} +O(N e vl

thus

ko‘cy + ac)

X 8)\0 (AP’pc) + ,C,\Cac (Aprc) — APPC + k(ac)

M(APPC) —ms3 A]DpC

=2Pp, +2ibA:0x,Pp, + 3 (Acco(ac) + A2 C3) .y Pp,

)\3
+i

' 2C,
Ay VE(Ay + ac)
k(o)

{4 [92G15(0).06,) 55 + 97 (5 T7(G) — 0)(0)-(w,9)] Pr. + A[V? (G — 9 15) (0). (3 ) i 5 P }

|P’Pc|2 Pp, +y. VGijainPpc —y.Vg APPC:| + (/)()\2l €_|y‘)
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so that

ibede On. (APp.) + MW (APp.) + (Accolae) + A2 C3) .y APp,
=-2 P’PC —2ibcAc aACTQ -3 (>\c CO(QC) + XZ 03) YQ+ /\z go1 + Ac Q22(04c) + A? 431

; (5.96)
oA _
~ 50, B2 +O(N eV
where
g21 = V2(k + 9)(0).(y,y) Q° + V?G4;(0).(y,y) 9,Q — V?9(0).(y,y) Q
g22(ac) = V2(k + 9)(0).(y, ac) @ + V?Gi;(0).(y, o) 05,Q — Vg (0).(y, ) Q
1 1 1
g51 = 5 VA(k+9)(0)-(v,4,9) Q" + 5 V?Gi5(0).(y,9,9) 95Q — 5 V?9(0)-(4,9,9) Q (5.97)
1
q32 = [VQGU‘(O)-(@‘, Y) yj + v? (5 Tr(G) — 9) (0).(y, y)} (4Q + AQ)
+ V(G5 — 913;)(0).(y, y) 9:0; AQ + A [V2 (Gij — 91i;)(0).(y,y) ys 33‘@}
Eventually, with (4.62), (5.94) becomes
MW (APp, + Ey + E3 +iD3)) —i0s(APp_ + By + E3 +1i D))
+ ()\c Co(Oéc) + /\i 03) LY [APPC + FEy + E3+14 Dg}
=L (FEy+ E3)+iL_(D3) —i0sEy — 2ibA.Ox, T — 2 Pp, (5.98)
) bY:
+ A2 o1 + Aeqaa(ae) + A2 gz — i ﬁ 32 + O(\e )
0
To ensure (5.40) we choose F, E3 and Dj solutions to
LiEy = —X2qa1 — Ae qaa(ae) + 3 A colac) .y Q + Acasi(ae) .y Q (5.99)
with
-2 (qo2(ac), VQ
a21(ac) _ ( f Q2 > _ 360(045)7 (5100)
and
LiB3=-Xqs +3)\C3.9yQ + \2asi.yQ, (5.101)
with
-2 (g3, V@Q
- (IQ2 ) 30, (5.102)
and finally we wish to choose D3 such as
2 1 3 3
L Ds=—"X20,\,Tp — — N0\, Fy + =% 2 - < 5.103
3 Cy cOx .12 Co e Ox, 2+QCOQ32+ c @320 20, 3 ( )

From (8.2), (5.99) and (5.101) are solvable since their right-hand side are both orthogonal to VQ. So
there is only left to prove that the right-hand side of (5.103) may be chosen orthogonal to @ provided ass is
chosen wisely.

First remind from (1.62) and(3.79), with use of Lemma 4.7 that

T = 1 = 2 1 w 2 4

Let By = Eo1 + Fa and Eyy = A\? EY, defined as
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LBy = —A2V?Gy(0).(y,y) aisz

then from (5.99) along with a straightforward computation which yields

1 A2
(E21, Q) =-3 <L+E21 ; AQ) = *f (Q21, AQ)
w2 (5.105)
—-x2ag0) [P
hence
Lo
C—O)\C O, [2 (Tg, Q) — (E21 ; Q)} =0
so that (5.103) becomes
A2 AS 0 3
L_Ds= 250\ (2T2 — En) + =5 (q32 —4E3, — h3) + A asz 0
C() 2 CO
and thus to ensure the existence of Dj it is enough to choose
(hs +4ES, — g3z, Q)
agza — (5106)

2Co (@, o)

Proof of (5.41) We compute thanks to (5.32), (5.33) along with the control of the modulation parameters
of (4.61) and the equation (5.95)

MW (i (Jy* Pp, + F»)) —i0s(i (|y|* Pp, + F»))
k(APy + ac)

=—i { ibede Ox|y[*Pp, + Lo, ([yI*Pp.) — |y|* Pp, + k(o)

y|2PPC|PpC|2}

+iL_Fy + O\ e )

k(. . 5.107
= —iyl? |:_ibc)\c O.Pp, + Lx.a.Pp. — Pp. + WPPJPPCF] —4iAPp, ( )
—iX gy +iL_F>+O(N e_‘yl)
=9 |:LF2 — 4APP¢ — )\z QQ3:| + O(/\g e_‘y\)

with
423 = V*(Tr(G))(0).(y,9) Q + 2 V>Gy;5(0). [(y, y) 9;Q + (y,0i) y; Q] —2V?%9(0).(y,y) AQ (5.108)
To fulfill (5.41), we choose F5 solution to
L_Fy=—4Ey+ X qas + N axo (5.109)
using (5.105) and (3.14) it is now enough to take
(4 B3 — q23, Q)
(5.110)

Az = ———F——~
(Q, 9)
which is obviously possible from (8.2).

Proof of (5.42) Ultimately, (5.42) simply relies on (3.13) and

M®(g) = Ly (o) + O(A2 e )
=ylPQ+0(\e W)
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6 The Inhomogeneous NLS problem on a riemannian manifold.

Recall Theorem 1.1 has been proven with a set of assumptions which could actually be written in term of
curvature at the origin - our blow up point.

Indeed, in Appendix A 7 we have shown how introducing the metric factors g and G may be reinterpreted,
at least near the origin, as considering the Laplace-Beltrami operator for a riemannian metric h = g G¥ d; ®
dx;, so that our solution has now to be thought as living on a riemannian manifold, for which we may focus
on its geometrical aspects such as its curvature at the origin point.

In two dimensions as we are working with here, there is only one possibly non-zero component of the
riemannian tensor curvature (which also corresponds to the Gaussian curvature up to some constant factor).
We have already shown how our euclidean computations suggested we needed to assume the curvature is
equal to zero at the origin (Ri212 = 0), meaning the metric terms g ans G should be flat enough at the
origin.

However, there are special cases in which such a flatness seems not to be required. It is already noticed
in the work of Banica-Carles-Duyckaerts [ ] : given a metric gas = dr? + ¢(r)? df? expressed in polar
coordinates, and a two-dimensional riemannian manifold (M, gys), they get the result :

Proposition 6.1. (part 1.3 [ /)
If @ is a radially symmetric solution of NLS on M : i 0t + Apti + |G]? @ =0

Then, u defined by u(t,r) = (¢'(’;ﬂ))1/2 u(t,r) satisfies the equation i Oyu+ Au+ k(x) [ul*u—V(z)u =0
with

Kr)= o~ Vi =g fb(<)> _ i[(qb'(r)y ) 1]

In the previous theorem, Aj; denotes the Laplace-Beltrami operator for the metric gps, and can thus be
expressed as

S, , 1
o) " Gy

AM2872+ Agt

This proves for that types of metrics, a refined ansatz allows one to get rid of the annoying terms which
has prevented us so far from solving the equation in a non-flat case. Here, we are willing to use the | ]
idea to somehow include the geometric deformation induced by the metric terms by modifying the geometric
decomposition we are using to build the approximate solution with.

We consider a two-dimensional riemannian manifold (M , g), M ~ R?, and we focus on the inhomogeneous
and critical non-linear schrédinger problem

{i@tu+ Apu+ k(@) [uPu+V()u=0, (t,z)el0,T)x M 61)

u(0,7) = ug(z), wup: M — Cec H' (M)

For details about elementary riemannian differential geometry, and in particular the exponential map
and its expression in polar coordinates, one may refer to | -

Say we wish to build a solution of (6.1) that blows up at some point py € M, and at some time 7. At
first, we will be working on a small neighborhood Uy C M of pg, on which the exponential map at pg is a
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C>-diffeomorphism and thus provides a set of coordinates, namely the geodesic normal coordinates for g.
Notice one can take for Uy any geodesic ball of radius stricly smaller than the radius of injectivity.
Then, for z = exp,, [xo] € Up we introduce y = exp,, [”0; O‘] € Vp where A and « are respectively

scalling and translation parameters.

Consider now the euclidean space T, M ~ R? the associated tangent plane at py, and introduce the
spherical coordinate system (g, ). Composition of (rg, 6p) with exp,, is then the polar coordinate system

(r,0) = exp,, © (ro, 00) where r is now the geodesic length of ray (rg, ) which has been projected on our
surface M thanks to exp, . Let us also denote by (p, w) the polar coordinates associated to the rescaled
coordinates y. Using the geodesic polar coordinates, the metric g may now be expressed as

1 2
g:dﬁ+f@ﬁfw2zwﬂ2+émlfcq}(ﬁdﬁ+x%m§+hhbdmd@) (6.2)
T r

so that the Laplace-Beltrami operator may be written in geodesic polar coordinates

o.f 0ol
;TR

1
%:&+ﬁ%+

Og

One may read in Part 3 of | ], it is proved that for such a metric g, when written in geodesic polar
coordinates as we just did, k being the riemannian curvature of M at point py, one has

f(r,0) :r—gr3+0(7“379)

Now ¢ being smooth, we assume a bit stronger regularity for the function f

F(r,0) =r— gr3+0(r4,9) (6.3)
The metric g may then be expanded as
K x3 -z T
=1d— - 2 52 )+ gs(r,6
g=1a-5 (L2, ) P (o)

Remark 10. Locally, that expression is always true and relies only on a good choice of coordinates. Thus
it seems mo assumption other than that the metric g has no trapped geodesics is required to prove the result.

So the proper way to work this out would be to consider from now on some cut-off function x € C§°,
with compact support that would be x =1 on B(po, 1) and express the Laplace-Beltrami operator as Agu =
AV (X u) +4y ((1 -X) u) The first term may be expressed using the previous expressions. Then, dealing with
the part that lives away from the bow up point would require to include some a priori concentration bound of
the second term in the bootstrap.

Nevertheless, rather than doing that and facing the difficulty to glue all pieces together, we shall consider
there is a global geodesic map in M for which the metric has the previous form with some compactly supported
functions instead of the constants.

From now on, the situation is thus as follows : we are working with a set of coordinates defined on R?
which we assume to map R? to M (so that M ~ R?). Then, 0 will stand for the blow up point, around which
these coordinates are defined as the geodesic normal coordinates. Basically, {|z| < 1} will be the geodesic
ball zone around blow up point, while {|z| > 1} will be the area of properties at infinity.

For the sake of simplicity, we shall assume there is a global geodesic normal map given by the polar
coordinates (r, ) associated to variable x, for which at any point z € R?, the metric and its volume form
may be expressed

1 2 2 _
9=g0=dr + f(r.0)d0* = Id + [(f) — 1] ( 2 “2:”2) , g€ C°(RL My(R)),

—21 T2 7
dgs = \/ga] dz = | f2| d i fure of M at x = — 207
gz =V |9z| dx = |fz| dx, gaussian curvature o at x = — 2
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and therefore the metric may be expressed as

k(r, 0 2 —

with k € C§ (R, R) satisfying x(0) = ko that stands for the Gaussian curvature at = = 0, c3 € C5(R?, R),
and g4 € C§ (R27 MQ(R)). The idea is we may assume either that s, c3, g4 have compact supports or that
they decay fast enough at infinity to ensure the metric g is close enough to the euclidean metric so the usual
analytical tools such as the smoothing effect and the Strichartz inequalities are availables.

In all the sequel, we consider potentials k£ and V', along with the metric g so the following assumptions
hold :

5 1,00 A _ _ @ Z% —X1 T2 3 5 5
(1Y) g€ W, gy =g g=1a- "0 (LTI P, n e CE),
(H2) keC’nNWh®, 0<k <k(x)<1l, k(0)=1, VEk(0)=0,
V?k(0) 4 max (0, %) Id <0, ko= k(0) = gaussian curvature of M at 0,
(H3) VeC*nWwh> VvV >V(0)
(H4) co=Tr(g3(0)) =0, V3k(0)=0, VV(0)=0
(H5): Whatever is requested to ensure the Smoothing Effect and Strichartz in 8.3 :
(1) Vpe N, |0Pk| < (x) "WPD=2 ] |oPgs| < (2)77IPD=3 7 N - N*, 7(m) > m+1, Ym >0

O 0,
=5+ |22 = 0q1), 2] = +oo
K gs
2
(2)3v>0, V(2,8 €RY, D gij(@)&g = v, IC >0, L < g < C|ldxf?

(2]
(3) ¥V (x,€) € T*R?\ {0}, the flow is neither trapped backwards, nor forwards : tlirin |z (t,@,&)| = o0
— 00

where (w(t, x,§),&(t, x, 5)) would denote here the bicharacteristic originating at (z, ), that is the integral
curve of the Hamilton vector field associated to the principal symbol of A, with initial condition (z,§).
Assumptions (H1)-(H4) are describing the local behavior of g around the blow up point, while assumption
(H5) describes its asymptotic behavior.

Remark 11. Notice the hypothesis (Hj) is not required when dealing with a riemannian metric of constant
curvature. Indeed when M resembles at O the sphere or the hyperbolic space of constant curvatures respectively
1 and —1, the function f defined in (6.3) which locally represents the metric may then be respectively given
by f(r,0) =sin(r) or sinh(r), so it is an odd function hence there is no third order term for g and co = 0.
Also notice assumption (H1) together with (H5) — (1) here implies assumption (8.8) since 7(|p| =1) > 1.

We now state the result

Theorem 6.2. (Existence and Uniqueness of a critical element at a nondegenerate critical point).

Let 2o € R? with functions k,V and g satisfying the previous set of hypotheses (H1) — (H3) and (H5).
Then for all Ey such as Eqg + Cg > 0, with

CEZ%/[V%(OH%M -(y,y)Q4dy+%/[V(0)+%} Q dy

there exists a H' critical mass, ||u(t)||12(ag,) = ||@Qlz2 » blow up solution to (6.1) with energy Eo, which
blows up at time T = 0, and at point xy in the sense

lu(®)]?> = Q|32 Opmsy, ast—0, in L*(dgs)

Moreover one also has the momentum that goes to 0 at blow up time
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lim Zm </Vuu dgx> =0 (6.5)
t—0

Furthermore, whenever assumption (H4) also holds, the above solution is the unique up to phase shift
H' critical mass, ||u(t)| r2(ag,) = QL2 ., blow up solution to (6.1) with energy Eo, which blows up at time
T =0, and at point xg.

We are now willing to take benefit from the form itself of the profile @Qp of the approximate solution we
have constructed in the first sections. Indeed the function v = @Qp + € introduced in the ansatz was such
that its profile @Qp is radially symmetric with respect to the rescaled variable y, at least up to the second
order with respect to its modulation parameters. Thus the derivatives d,,, Gf,w, 02 are at least (9()\2) when

applied to Qp.

Like we have already done in the first sections, we now introduce the ansatz

1 1 T—a\ .
u(t,z) = L U(t, iy ) e (6.6)
where the new time variable s is such as % = % Then we will also introduce the conformal speed

parameter b and the galilean invariance parameter 5 through

L yl2
w(s,y) = v(s,y) et T8 (6.7)

Once again, we use the modulation method. We will choose an appropriate set of laws, that is ODE’s,
for these parameters to make the associated approximate solution being a precise enough profile for our NLS
solution. Along with the local existence (of both the profile and its parameters) which we intend to extend
up to the blowing time, we will consider as before, the set of estimates to be checked later (in section 6.7.5)
that we include in the bootstrap process

la] SN2 181 S A2 b X, 0<p SN (6.8)

where

pe=blafs o) = | Wd (6.9)

is a parameter we will need to consider when building the approximate profile of the solution. In the
sequel, to make short we shall often write remainings terms as fourth order terms such as

MR=0\"+o]*+ X a|+Alaf) or MR= o(x* + 0"+ o> + 2 (Jo] + [8]) + A (laf* + W))
where R should be some regular and smooth function.

Next, the Laplace-Beltrami operator expressed in the polar coordinates associated to the rescaled variable
y is
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(8), = 32 (&),

1 1 1
= O {(yfg“ + 9597 +201129") 2+ (59" + 1yt 977 —2y1929") (; O+ 3 53)
p

1 1
+ [y1 y2 (9" — 6*) + (v3 — 47) g“} (? O — p [0,0. + &uap])}

L[y, Y20 g Vg
+)\2{(pag+pag)3p+( 7209 +p289)8w

11 21 22 12
with 8glzay1( l919™) + 9y, (v/I9l ") and 89226742( l919%%) + 9y, (V/19]9*%)

Vldl Vldl

then one needs to expand (6.4) with respect to the modulation parameters

KAy +a) =Ko + VE(0) .y + O(XN* + Aa), es(Ay+a) =co+O(X+|al)

K 1 2 -
g=1Id— 30 Mg\ a,y) + X (cop— 3 Vk(0).y) (—512112 yy%yz) + AR, (N, ),

1 2
g t=1Id+ %Mq(/\,oz,y) — N (cop— §V/-@(O).y) ( Y2 s y2> + AT R, (N a,y),

—Y1 Y2 y% (6‘10)

6

2 - _ 2 —
M\ a,y) = A2 ( Y5 y12y2> L (( 205 ys (a1y2+azy1)> +( a3 ozmz)

—Y1 Y2 Y1 a1 y2 + 2 yr) 201 Y1 -y o of

K 1
Vigl=1- oo [()\,o)2 +2 a.y+ |oz|2] + 5 (3c0p—V/<a(0).y) A3 p? —|—)\4R‘g‘(/\,a,y)

where Ry, R,-1, R|y are regulars functions in y such that A Ry, g-1 /1 = O(X* + |a* + A? |a| + A |al?),
and so the Laplace-Beltrami operator becomes

1 Ko al.yQ 4 pA | a2 Ko 9 3 Ko [o.y\2 4 HA
_AQHH?)( ) HARA| 82+ 1= 2 (W) + A 53+§( ) HNRE| -0,

P p

=

2 2
+ (1—&—’? [(Ap)2+2)\a.y+ (ap;y) } -\ {Cop3—%Vl€(0).y} +)\4R2A2> ! a2

02
1
- (“0 [AaL Y+ W} + At Rﬁ) % (0,0 + 0,0,
ko 1 (a.y) (a".y) /\73 1 apa) 1
—(3 ot y+ p |- 5 VRO X RS ) 0,

where 03 = 1 (3cop® — p? Vk(0).y) and RS, RS, 4, j = 1,2, are regulars and L7 (R?) functions in

17 loc

rescaled variable y such that A* R, ;- = O(X + |af* + A |a| +- X |a]?), and in addition we used the notation

ot = (— a2, 1) that stands for the orthogonal vector of .
Next, between the two parts of the ansatz, following the method explained in part 1.3 of | ], we
first introduce
pN\/2
W)= (5) " sw) (6.11)

where ¢ is a function to be chosen such that the previous expression of the Laplace-Beltrami operator
would be of the form
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(8), = 33 (&),
= % {(1 +O(M + |a|2)) a; + (6”7@ +O(X + \aIQ)) 9, + (1 + (’)()\2)) pizaf, +0(M) (% 02, + plzaw)}

Such a transform is designed to flatten the Laplace Beltrami operator around the blow up point, so
the geometric contributions, such as the riemannian curvature, appear more clearly in the equation. Some
computations and later simplifications show that ¢ should be chosen as

6 6

where ® is a regular function such that A\* ® = O(A + |a|® + A*|a| + A|a|?). Thanks to that change,
one gets

(A prw) = p oxp (— " (rp)? + 2 <Ap>3) —p (1 1O () D (a7 4 X @) (6.12)

Lon2 N A3 LY 2 ~ 1
cg@:Am(”g)(ap ) +A4Rﬁ>a§ﬁ+(—2&%(0).;,#?(?) +)\4R1A>p(9p6
Ko 2 a.y\? (AP)?’ Y apa) L a2
+ (3 () +2)\a.y+(7) |+ ! {VR(O).;—?)CO} +A R22> L (6.13)
. L A3 _ 1
7 (“30 [ML'y+(ay)p(2ay)] - GW(O)L.y+A4R2A> 500
Ko 1 (a.y) (al-y) 4 pA ~
_(3 [aty+ . |+ X RS ) < [9,0. +0.0,]0
and
1[/0,N\2 1 Do 1 [3 /0.p\2 03¢ 4 Ko \o  9C0 |3 4
R AN A N L _ %y _ Foye 6.14
v, 4{(@) pQ} 2¢+p24(¢) G| PNy =N TR Xy (614)

It is then equivalent to say the function u is solution of NLS on M and that the function ¢ is solution to

A~ _ Bk()\y—i—a) Lo A, . in(oz)~ .
100 + LT U+<p7k(a) |o|* z/\Av Z/\'<VU+27k(a) v) s D 615)
9 i[As ry. Vo as (Vo gy s\ - '
o (X ) 2 (X2 L) =
+()\ V(Ay+a)+V¢+2[A( . )+5 ((p pQ) =0

Eventually, introduce the last part of the ansatz which we have used in the previous sections

- s oy lwl®
W(s,y) =0(s,y) et T iy

we are now able to rewrite approximate equation 1.40 and see what have changed. Thus, up to the fourth
order with respect to the parameters, function w is now solution to
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DD+ Ly — wwwwb (b +13) 2+ [V 0) + V] 0

vy i[re D B ok, y+§0(g_% (S2) 2050 fa
B It | L L
(o) [(65 —p)a+i(ra+ 3 [(1- W)m;@]w)]_@s—ww

(5 -20) [0 -o) o g [ - (- 2] o]+ e s imt e =

where f3 = O(P? (|| + |B]) + P |8]) and R is a regular function such that A* Rp = O(A* + (A +
b) (|e> + |B8]%) + (A + b)® (|| + |B])). Some more calculations from (6.12) lead to

¢ p?

bA@AsoJrQ(w_l)_ﬁ (Vw y):’ZOAQB.y_?’CO

_ 2 ZAr . 5

2 o T2 SpB.y (6.17)

It now requires very similar a proof to the one of Theorem 1.1 to build an approximate solution of
equation 6.16 provided the parameters satisfy the set of ODE equations

A o} -
b5+b2:Bl()\,Oé), 68+b6:BQ()‘7a7b76)7 784_1):07 75_26:()’ ’78_‘ﬂ|220 (618)
Now we include into the initial bootstrap assumption that the P = (/\, a, b, ﬁ) parameters satisfy to these
equations up to some fourth order corrections. In section 6.3, we show the bootstrap runs well : the previous
system of ODEs keeps consistency while time is going towards the blow-up time. Thus w is solution to

o - P kQytae) o ﬁ~_,@ atiyN2 .
10w + L0 w+g07k(a) |@|* W+ By 1 w—1 3 bp( p ) 0, + f30,w

_ Vk(a) bA® Ko (b By 2*%0 2 . 6.19
—{Bg.y—i—z[/\ “ho) 5 P V&(0).y + 3 (2— = )( 5 ) A B. } w (6.19)

9 :
+ [X“ (V(o) + %) + A3 (VV(O) Ly — %p) FA2VV(0). } W+ P* (Re+iP> Im) Rp =0
where Ry is a regular function in y such that

P*ReRp = O(P* + |of* + P (la)* + [B*) + P? (Ja| + 18)),
P ImRy = O(P* +P |’ + P* (laf* +16) + P* (|| +5)

Remark 12. Notice it has been made clear before that in order to get the estimate b ~ X, it was necessary
that the b law satisfies at least By = (’)()\3). Unlike the previous sections in which we had to assume the
riemannian curvature at 0, that is the blow up point, was null, it will no longer be necessary as the refined
ansatz includes that geometric pertubation. However, that perturbation will later modify the conservation
laws, on which we will therefore focus on.

Like in Proposition 1.1 we want to prove there is a solution

W= Pp+O(P°), Pp=(To+Ts+Ts)+i(S;+Si)

with 7T and S; regular functions, of order j with respect to P. One may then prove very similarly to
Proposition 1.1 the following
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Proposition 6.3. Let Cy > 0. One can find a universal constant ¢ > 0 and a small constant n*(Cy) > 0
such that whenever |P| = |(b, \, o, B)| < n*, what follows is satisfied :
We have regulars and well-localized functions (T, S;)1<j<a of order j with respect to P such that :

Pp :Q+z4: (Tj+z'Sj)
j=1

is an approzimate solution of (6.19), that is

i(—b%+By)0yPp —ibXO\Pp +2iAB.0,Pp +i(—bB+ Ba).0sPp + LyPp — Pp

EQAy+a)  ~ ~ 2. K 9¢ -
+ g (kym)) \Pp|2 Pp + B pz Pp+ [V (V(O) n §0> 3 (VV(O).y - TO,O> A2 VV(O).a] Pp
. Vk(a) b\ ko (b B.y\ fa.y\2  2K0 o N
‘{Bwy+zpﬁ-u@ ‘ifpV%@*y+§(§‘27)C;ﬁ - X8 P
1 2 - 1 - -
—i%bp (%) 0,Pp +P* (ReRp +iP* ImRy) = —p
i (6.20)
with Up polynomial in P, and well-localized in y :
VpeN?, 3C, >0, |0"Tp(y)| S Pl (6.21)

In order to satisfy this construction, the b and 3 laws are set in such a way that By € R and By € R?
are :

I _ ko __ ko 3 4
By = {2 (v CORE Id).(a,a) - u} Ky + Ko A\ + O(\%)

By = [TV(0) 4 1Q1; (Tr(0) [ 22 [9QPdy + § [ THOL000)Q )|

22
+ AVZE(0).(a,.) + O(AY) (6.22)
with :
_ % 2 12 2 Lyl H||—2 _ 2 ||yl H|—2
Ko=3 [ [9+,7QpQ%dy[|5 Q2 Ki=IQI%: |I'f @l

Proof of Proposition 6.3 :

Clearly the equation is satisfied at order 0 since it is the Ground State equation for @), and then it is
enough to take 77 = S; = 0 to ensure it is saisfied at order 1. Proceeding with the second order, the equation
is satisfied provided

1 2 21 22

Ko [ra—.y 5 a.y 9 Ko o] A3

L= (—)8 <—>78 2 V2k(0).(y, y) + 2

= () e (S) S a0] + 5 [0t + 2 @

2 - 6.23

+ AV2E(0).(y, o) Q® + BF]%Q + A2 (V(o) + %) Q-BY yQ=F (6.23)
L_S5,=0

Hence one may choose at once Sy = 0. Then, to ensure the existence of T> one has to check that

(Fg , VQ) = 0, which is obviously satisfied provided B£2] = 0, since for any j = 1,2, Fy 0,Q = % F 0,Q

is then polynomial in y with only monomials of odd degrees and radially symmetric coefficients, so that its
integral over R? is zero.

Focusing then on the third order, one may not neglect A V2k(0).(a, 3) @ which according to (6.8) is
O()\4), so one has to get
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AP A1 2
LiTs = == pVK(0).y9,Q + (g V2E(0).(y, ,y) — co p3) Q° + B{“%Q

e 3 3 9co 2
+ 5 VH(0).(y 9, 0) Q° + [A (VV(0).y = =2 p) + N2 YV (0). a} 0
— B .y Q= Fy
LS5 = By Ts — AV2K(0).(a, ) Q + % N3 yQ = Gy

(6.24)

where 0,4 = —bAO\+2AB. 0o+ (—b*+ B1)0y + (—bB+ Bs) . d5. Once again, the existence of T5 is ensured
provided (Fg , VQ) = 0 which may be done by taking

1
B =0 [0+ 10132 (950) [ 7 90 dy+ 5 [ TR0 Q1 dy ) | £ 270 (0. )
The existence of Ss is then ensured provided

o:(ég,Q)z—;a [(L+T2,AQ)+ V2k( aa/QZdy

Using then (6.23), identities [y, yx Q* AQ =0, for any 1 < j,k < 2, L, (AQ) = —2Q, (Q,AQ) =0 and
change of variable (21, z2) = (—y2,¥1), one may compute

(141 0Q) = "2 [ @2ay - 5P [ g2
Hence it suffices to set
1 K )
B = 2 (V2k(0) - 5 1d) (o, 0) 14 Q[ 2 1Q13 (6.25)
By the way, notice that
1
(L+T2, AQ) = =5 V2R(0)-(0,0) [ Q32 (6.26)

Eventually, focusing then on the fourth order, one has to get

2 ~
LTy = F(Ty, S, \, a) + BIY %Q B yQ=F

B bA® ko (b By (a-y\?
L-Si=0pa Ts+ - p VK(O).yQ—?<§—7) (7) Q (6.27)

_ ’;(’bp(i'yfapcg -Gy

where F(Ty, S3, A\, «) is a fourth order function of the parameters, and is sum of terms which are either
radially symmetric in y, or polynomials in y with radially symmetric coefficients. All the same as before,
one may ensure the existence of T, by adding some fourth orders terms to Bgl], that we will not need to
compute. As for the existence of Sy, one needs now a bit of caution as it must be ensured that (C~¥4, Q) =0.

First, one may compute

1

(Gi. Q) = —5 By (LT3, Q) + 2 bJa \Q/dey

with no obvious antiderivative in time for the b|a|? term, which is precisely why we have introduced the
parameter p in (6.9). To ensure the existence of Sy now requires to solve

0= (64.Q) = L 0y {COSA [P Q9502 dy- 3[31/ Q? dy Ou/dey]

which is done provided
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23
By’ = (008 /[9+p QlpQ*dy -2 u/QQdy> 15 el (6.28)

By the way, notice then that

(L+T3. 4Q) = 22 QI (6.29)

Eventually, to prove the estimates (6.21), one uses the same arguments as in (8.3). That ends the proof
of Proposition 6.3.

6.1 The pseudo conservation laws of the approximate profile.

In the previous section, we have built the approximate profile Qp of solution ©, after the changes (6.6),
(6.11) we have made from solution u of (1.1), so that @p has the form

2 D, . 2 3 . 2 .
Q’P = P’P efzb%Jrlﬁ‘y — <Q 4+ Ty +Ts +14S5+ 0(7)4)) 671b%+zﬁ.y

, (6.30)
Qp = (1- ib%) Q+ O(P*e=c )
Using (6.12), (6.13) (6.15), equation (6.20) and estimate (6.21), Qp is now solution of
i(—0*+B1)9Qp —ibANQp +2iXB.0.Qp +i(—bB+ B2).0sQp
~ k(A ~ ~

+L,Qp—Qp+ 7 W QP Qr + [NV +0) +V,] Qp —i 5 N By Qp

- A VE(a ) (6.31)
+1bAQp —28. (V0p + 5 5 Qp) — 3 Qp =~V

- . e
where Up = [\Ilp + i P92 ImRE} e~ bl +if.y

Since the Laplacian operator in rescaled variable has been flattened up to the third order in the equation
of the approximate solution Pp, the mass of profile Qp is now to be computed with the measure i Vigl(Ay+

a)dy

Lemma 6.4.
Mass of Qp :

) 1
/|Q7>\2 g Vgldy = {1 +5 (v2k(0) - % Id).(a,a) - % u] /Q2 dy + N Ry (6.32)

b? 2 12 182 2 1 2 ko 2
= dy + 20 — = (v2k(0). _ o d
e [y I [ Q2 (TkO)-@a) - 2 u) [y o)
— N (Kg+¢p(a) —AK1) + A Rg
where Ry g is a regular function such as \* Ryp = O(A* + |af* + X3 |a| + X |af?) and

Energy of Qp :

KE:;(/[v2k<0)+"“Id].(y,y>cz4dy+4vm>/QQdy), Ki=2 [FQtay

(/v3 (3,9,0) Q' dy +4VV(0) /Q%)

119
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Proof of Lemma 6.4 :

First, notice that

/\3
g 910 + @) = 1= T 9 VR(0) .y - % 2Xa.y+ |o?] + M Ry, (6.35)

Using (6.30), (6.26) and (6.29) one may calculate
/IQP\2 g Vlgldy = / |Ppl? g Vlgldy = / (@*+2QT+2QT5+0(PY)) g Vlgldy
_ /@2 g Vigldy = (24T, AQ) — (1475, AQ) + M Ry
_ /Q2dy+ % (V2k(0) - %Id).(a,a)/@zdy— %M/Q2dy+A4RM

Similarly, the Energy should be

p kQy+a)

B(@p) = 5 [ 4900 +0)0.0r 0,@p £ Vgl + )y 7 [ £ XL 1Gplt £ gl + )y

A2 ~
=5 [ VOu+)1Ge £ VIO + aldy
with
VQp = { VP (0] 4 ) Py f i
- {(VQ + VI + VTB) +i [( - b% + ﬁ) (Q+1T2) + VSg] +0(PY) } e—ib5 +iB .y

hence from integration by parts and radial symmetry of @

~ b2
/|VQP|2dy:/|VQ|2dy—2/AQ (T + T3) dy+Z/p2Q2dy+I6|2/Q2dy+0(7>4)

A simple computation based on the previous decomposition, expansion (6.35) and definition (6.10) shows
that

1 g J—
5 [ 9700+ )0.0r 2,Qp £ Vgl Oy + )iy

1 ~ ~ ~
= 5/ (1 - % |04|2) |VQ73|2 dy + %/ [/\2 ‘(y261 - y132)Q73|2 + ‘(04281 - 04132)6273‘2} dy
+ % A/ [a2 92 [01Qp[* + a1 y1|02Qp|* — (a1 Y2 + a2 y1) Re(91Qp 52@)] dy

A3 1 - 1 .
5 [cop— 3 VE(0) . y] | (y201 — y182)Q73]2dy - 6/ [2k0 A+ A p? VK(0)] .y [VQp[*dy + \* R

from (6.30) and the radial symmetry property of @, (y102 — ygal)Qp = 0,Qp = (’)(732 e_c‘y‘), so the
energy becomes after some having calculated the potentials

E(QP):EO(Q)*/(AQ+Q3) (T2+T3)dy+l§/p2Q2dy+|52|2/Q2+,;;|a|2 /Q2dy
;(/ [(V%(O)Jr%fd).(y,y) _CO/\p?a} Q4dy+4V(o)/Q2 dy)

)\2
-5 (/V3k(0).(y,y,a)cz4dy+4VV(0).a/QQdy> +%M/Q2dy+>\4RE
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then to conclude the proof, one needs only to use E°(Q) = %f IVQ|? dy — %IQ‘L dy = 0, the Ground
State equation along with (6.26) and (6.29).

6.2 Introduction of the nonlinear decomposition of the solution and initializa-
tion of the bootstrap argument.

We begin with introducing the modulation method thanks to which we aim at building a NLS solution on
time interval [to, 0] blowing-up at time ¢ = 0. In this section, we assume we have a solution u(t) of

i0pu + Agu+ k(@) |ufPu+V(z)u=0, (t,z)€ [to,t1] x M (6.36)
u(0,2) = ug(z), wug:M — Cec H* (6.37)

with tg < t; < 0. In addition we assume we have the following nonlinear decomposition for u

p\1/2 1 1~ x—at)y )
t = | — S t. — Y .
uta) = (2) " ammEm @o ot ) (6.38)
with the uniform bound (bootstrap’s initialization) :
PO+ lle@®llar S A®), Ve [to, t] (6.39)

We also assume u(t) has almost critical mass

‘/|u|2dg—/cz2

Remark 13. Notice the proper measure to evaluate the mass of u is indeed the volume form dg = \/|g|(z) dx,
since it is the one which makes of A4 a self-adjoint operator. In the sequel we will often denote that measure

by dg. = +/|g|(x) dz or dhy = /|g|(Ay + a) dy.

SN t), Y€ [to,t] (6.40)

Now let :

Qp =X +10, €=¢€1 + i€y
From (6.30) it is straightforward that

2
S =Q+O(P*em 2l @:Q(—b%+5.y) + O(P2e=C2lv)

9 (6.41)
A . P 2 _—Cylyl
hence sz[l—&—z(—bz—i—ﬁ.y)}Q—&—(’)(Pe 2y)
A standard modulation idea based on the implicit function theorem, see | ], proves one may ensure
unicity of decomposition (6.38) provided we set the following orthogonality conditions :
(62, vz) - (61, ve) ~0 (6.42)
(61, yE) + (62, y@) =0 (6.43)
—(el, A@) + (62, AZ) =0 (6.44)
(e, 1w2%) + (e, WO) =0 (6.45)
*(61, Q2) + (62, Ql) =0 (6.46)
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with o the unique H', radial solution of Lo = |y|> @ and :

. Lul
01 + 02 = o(y)e —ibltf s Y

In the case P = (0,0,0,0), these orthogonality conditions give a first order approximation of the kernel
of linearized operator L = (L+, L_) around the Ground-State @. Indeed, we remind :

L.Q=0, L-(yQ)=-2VQ, L_(jy*Q)=-4AQ

(6.47)
Li(VQ) =0, Li(AQ)=-2Q. L.o=yPQ
and :
1 2

(0. @) = —5(Lso. AQ) = —F[well, (6.48)

Note it is a well-known argument that P may be chosen C! with respect to time, see | ]. Let

todr

s(t) = 6.49
0=/ 5o (6.49)

be the rescaled time.

Computation of equation of €. Let us begin with the non-linear term development :

Qp +¢|*(Qr + €) = |Qp?Qp + My (€) + iMa(e) + Ry (€) + iRa(e)
M (e) = |Qp|%e1 + 252, + 2%O¢,
M;(e) = |Qp|%es + 20%¢; + 250¢; (6.50)
Ri(€) = 3%¢? + X2 + 20¢16 + |e|?e;
Ra(€) = 3063 + O + 2%¢€165 + |e|er
Recall from (6.13) that £, = A+ O(P?V,P?V?) and let :

pk(Ay+a) - :
Mi(e) =—(Ly+Vy)ej+e; — ———=M;(e), j=1,2 (6.51
i(€) (Lg+Vy)ei+e ¢ k(a) i(€) )
with V, = A2 V(A\y + «) 4+ V,, the corresponding potential. Remind using (6.12), (6.13), (6.15) and (6.17)
the © equation may be rewritten as

i@sﬂﬁ-ﬁgﬁ—ﬁ—l—pk():(—:a)17|217—i<,?)\25.y—3260)\3ﬂ.y)5
"2 (07
6.52
+)\2[V(/\y+a)+V]v—z>\—Av—z— (v* Aw“(a))—mv:o i
\ \ 2 k(a) .

Now since & = Qp + € is solution of (6.52) and Qp is solution of (6.31), e must satisfy

p k(A\y +a)
k(@)

Bik()\y—i—a) Ri(e) +iRo(e
k;(a) ( 1( )+ 2( )) (6.53)

i9,Qp + [ﬁgQP +X [V +a)+V,] Qp — Qp + [e23 QP]

+ i 0s€ — (M1(6) + Z’]\42(6)) T

:i%A(QP—i—e) +ist V(@ + )+;\vk]z())(@72+6)} +75 (Qp +¢)
—i(%)\zﬂ.y 3COA3B )(Qp+e)
Moreover, with (6.39) :
BM (€)= R (e 212
o k() Rj(e) = Rj(e) + O(P" [e]) (6.54)
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and so we have thanks to (6.31), and denoting A = A; +i Ag, for A= M, R

i(bs +b% — B1)3Qp +i (As +bN)Qp + i (Bs + b8 — B2)9sQp + i (s — 2X 8) 0uQp

. p k(\y+ ) . . A VE(a)
+2886—M(e)+;WR(e)+sze—226.(Ve+§ 7o) 6)
—|ﬂ|26—i(%)\2ﬁ.y—3—;0)\36.y)6 (6.55)
(A ~ Qs ~ AVEk(a) ~ A VE(a)
=i (5 +0)(AQp +Ae) +i (52 —28) . (VQp + Ve+ 5 o P 3R ¢)

+ (3 = 181) (@p + ) — Wp + O(P? [ Mod(t))

where Mod(t) is the vector of the P-laws we introduce in (6.60). Then, one needs only to take on the
one hand the real and on the other hand the imaginary part of (6.55) to get the equations of €; and ey
respectively. From (6.41), (6.23) and a little calculations one easily gets

2 2 2
Y = (— b% —l—ﬁ.y) %Q—i—(’)(PQ el 9,0 = —%Q+O(P26‘Cz‘y|)

2
953 = —(—b% +8.y)yQ+O0(P e ), 9,0 =yQ+O(P?e M)

(6.56)
hQp = O(Pe ), sothat (A, +bA)0\Qp = O(P?|Mod(t)))
0aQp = O(P e_cly‘), so that (as -2\ ﬁ)aaé}p = O<P2 |M0d(t)\)
so the equation of € may be simplified as
2
2 P (s . ([ Qs

(bs+0* = B1) L Q= (B + 08— Bo) .yQ—i (S +0) AQ —i (5 —26) . VQ
— (3 — 1BI*) Q + 1956 — M () + R(e) +ibAe —2i 3. Ve (6.57)

= ~Wp + Sp Mod(t) + O( (P + [Mod(t)]) [le + (1 + |y]) [Ve]| )

where Up is defined in (6.31), and Sp = O(P) is a matrix of order 1 with respect to P.

6.3 A first estimation of the modulation parameters.

We now make use of the signs hypotheses we assumed in (H2). We show how this forces the regime of the
‘P parameters in such a way that A is the greatest parameter and thus controls the P set.

We then prove a consistency result, which shows the approximate laws we built in the first section for
those parameters are indeed like we constructed them to be, that is at least fourth order approximations.

Proposition 6.5. For s € [sg, $1], we may estimate :

e Refined variational control :

Provided Ey + Cg + ¢p(a) — AC1 > 0 and V?k(0) + % 1d < 0

b2+ 817 + |af® + [le|Fn S A% (Eo + Cp + ér(a) — AC1) + O(P* + |af?)

1 1
with Cp = §/ (V2RO + 3]0 ) @ dy + 5/ Vo + 3] Q*ay (6.58)
=3 [ [P Q" +18pQ% dy

There is also the refinement

lellzz < At +faf® + p (6.59)
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6.3 A first estimation of the modulation parameters. 124

e Control of the geometrical parameters :

Let
Mod(t) := (Lb — Ky(a,p), L, Lo, Lg, Ls —Kﬁ(a,u))
A .
Ly =bs +b2— By, Ly=5+b, La:%,m (6.60)

Lg=Bs+b8—Ba, Ly =7 —|B?

be the vector of modulations equations with

mo IIQIZ: (4 Q. o)
Kp(la,u) = — —— (la]* + 1), Ki(a,p) = —F—-= Kp(a,p) (6.61)
o figof, 17 =Ty
Then :
[Mod(t)] S O(P*+P (Jaf? +18) + P2llellzz + 3= + el ) (6.62)
moreover there is the improvement
As
|52+ S O(P+P (a2 +182) + P2llellzs + llelz= + lleldn ) (6.63)

Remark 14. (i)  Since \(t),a(t) = 0, ast — 0, as long as time tq is chosen close enough to blow up time
- that is so big enough - both asumptions Ey + Cg > 0 and V2k(0) + 2 < 0 allow to prove the same result.

(ii)  Though we have assumed from (6.8) that || < N3/2, in this section, we will get all estimates up to
O(AX* + |af?) remaining terms, so we can obtain a first estimate || < X that will help us get the announced
refinement.

(iii)  Note the vector of modulation laws Law(t) = (Lb,LA,La,Lﬁ,L:Y) only differs from a |a|? term,
so that from (6.8)

|Law(t)] < P* + |of? + P laf* + P?|lell 2 + el 72 + lellzn (6.64)

Proof of Proposition 6.5 :
Step 1

1
Recall the cancellation effect on the volume form when introducing the multiplier (g) 2

6

Now, we compute the mass of solution u with nonlinear decomposition as in (6.38), with use of (6.39),
(6.40), (6.35) and the radially symmetric form of @p up to the second order as shown in (6.41). The critical
mass assumption for solution u and almost critical-mass assumption (6.40) for profile @p brings

/IQp+e|2£\/de=k(a)/|u|2\/mdx=k(a) [/mﬁ@m-/cﬂ +k(a)/Q2dy

so that using (8.2), see Appendix B 8.1, and assumption (H2) that k(0) =1, Vk(0) =0

P AP ko 2 4
- |g|:1—6p Ve(0).y — — [2Xa.y+|al*] + X' Ry,

= 1 K
Re/e Qp gv lgldy + 5 / le|* dy — Tg (lof* + 1) /Q2 dy = O(P* + |af® + P? [|e] 12) (6.65)

This proves the (6.59) bound, as the previous expression shows
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6.3 A first estimation of the modulation parameters. 125

lellze + o(llellzz) = O(P* + [af* + )

Notice here that it is the almost critical mass assumption (6.40) that has put in the bootstrap process the
previous estimate (6.65) which says what should be the size of the remaining term e through its L? norm.

Next, we compute the energy of solution w. But first, notice that from (6.38) and (6.12)
pyz 11 ~ 1y Ve
v t7 - (7) 22 v 92 < ) ’Y
u(t, z) o k‘(a)% )\2{ (QP + 6) + 2 (2 - (QP + e)

() T+ (2 )y @ e

so that

Bw) =+ [ g9 0wBu/Jglde -+ [ k@) ju* Viglde — & [ V(@) [uf? Tg]da
2 4 2

= )\2%() {1/gij()\y+a) [@-(Qp—ke) 8j(@73+6) + (%)\2 —3co>\3p) yiRe<C~2p6jQp)] B\/@dy
—4/ZW|Q +et 2 Mdy—f/ (g +a)|Qp + e 2 5 Vigldy+ O(X B+ [lellir +P* e Lz)}

Notice expanding the non linear terms yields with the 2-dimensional Gagliardo-Nirenberg estimate, and
using (6.35) and (6.39)

p k(A\y + a)
4/<pk()|QP+E|4 Vgl dy

_ 1 [pkyta) s up [
_4/¢ wa) @7 @Mdy%/@p\ [(1+ e+ (14

ECRPIVE: 3

Gr) " N arP
pEAY+a) = oz p

+Re [ LECELE) (1Go2Gp Lglay + O(P* + el + P el

Eventually

)\2 B )\2 _ N
T [ V0wt @e -+ EVldldy =5 [VOu-+ )@l Evialdu+ Re [ X VOw-+ ) @n £ Ialdy
+O(P? |lelli2)

so that using integration by parts this all together implies

A2k<a>E<u>=E<@p>+/(%A?—?’ﬂm)czy.va
1 , ) 20?2 2}
vy fiwear- 5 [z |Q7>|2) et (1 G4

~Re [[e (18,220 +))Gr+ £ ECEED G0 Gp) L gldy + O+ el + 7 el

From conservation of energy for solution u, since A\ k(a) E(u) = A2 Ey + O(P*), using (6.33) this may
be rewritten as
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6.3 A first estimation of the modulation parameters. 126

z2 <E0+; / [V2k<0>+%]<y,y>cz4dy+% [lro+2]@a- 2 [[FQ+ 13007 dy)
+)\2( /v3 (y,y, )Q4dy+ vV (0 /Q%@)

=0 e+ B [oray -2 (vro) ) - 2u) [@2ay o0
/|V| dy **/IQ IQ{ \QPP) §+4|gj|26162+(1+|§£2)63] dy

fRe/e ([A A?V(Ay+a)}Qp+ZWIQPIQQp) gx/@dy

+O(P* + el +P? llell =)

Step 2
We sum conservation of Mass (6.65) and conservation of Energy (6.66) :

z (Eo+;/[v2k<o>+*;“}«y,y)@‘*dw;/[w> P@a- 5 [P Qt+ 13002 ay)

+A2( /V3 (y,y,a )Q4dy+ vV (0 /QQdy>
2
_0 o [ @ ay L 1BE / Q% dy K(0) + 2 1d) (0,) / Q% dy (6.67)

/| I*dy + = /]Ve| dy — = /QP|2[ é;;) 14 ‘QP|26162+ (1+|§£2|2)e§} dy
_Re/e (AQP Qr+ = W

With (6.31), we have the following estimation in L? :

@pP? @p ) dy + O(P* + lelfp + P2 el 12)

~AQp+Qp -~ k(i;y(ia)

so that, thanks to orthogonality conditions (6.44) and (6.42) :

|Qp*Qp = ibAQp —2i 3. VQp + O(P?) (6.68)

Re/( AQp +Qp — W@pmp)

= b Zm(e,AQp) — 28 Tm (e, VQp) + O(P*|ell12) = O(P|e] 2)
Thanks to (6.39), Qp being close to Q, we see the quadratic form in e that appears in (6.67) is to be

thought as a small perturbation of the energy in a neighbourhood of Q. From (6.41), (6.39) and definition
of the linearized operator L = (L4, L_), one may check

1
2|:(L+61761) + (L,e%ez ] /| 1 dy + = /|V6|2 dy

20
-5 101+ )84 et (14 225) ] 0Pl
Thus (6.67) becomes :

<E0+CE+¢E( ) — /\C’1> - bz/ y[2Q2 + 15° /Q2 { L+el,el)+(L_62,62)}
1
4

-5 (¥ k(O)+%Id)-(a,a)/Q2dy+O(P4+IIGH‘Zn +P? el z2)

(6.69)

(6.70)
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where

Co=g [ [0+ 2w @ay+ 5 [ [vor+ 2] @2 ay

=2 [P Q +180Q7 dy

To conclude, we need to deal with the bilinear form we introduced in (6.70). A coercivity result will do
it :

Lemma 6.6. We can find a universal constant ¢ > 0 such asV e € H' :

(i) + (1 )
> el ~ +{ (1, @) + (. WPQ) + (a1 4Q) + (e, o)}

(6.71)

Thanks to orthogonality conditions (6.45), (6.43) we can prove :

(517 WQ) =0, (el, yQ) =

In the same way than what is done in | ], we may also prove that the orthogonality condition (6.46)
yields (62, Q) = 0. Moreover (6.65) shows :

‘(61 ’ Q)‘z S [QRB(e’ @ﬂz = 0(7’4 + IIGH%) (6.72)
Hence by (6.71) :

o

(treva) + (2-0uc)]

el +O(P* + leltn )

DO =
[N

Injecting this into (6.70) :
2 _ f 22 W 2 Chp2
M Eo+Cr+¢p(a) =ACy | > 3 Iy Q" dy + 5 Q dy+2||€HH1

1 K
— 1 (V?k(0) + 2 1d) (0, ) / Qdy+O(P* + laf* + ellfys + P2 lel2)

Eventually, provided Ey + Cg + ¢g(a) — ACy > 0 and V2k(0) + %2 Id < 0 one gets

b+ 81 + o + llell7n S A (Eo + Cr + ¢u(a) — AC1) + O(P?) (6.73)
And (6.58) is proved thanks to (6.39).

Computation of the P laws.

Quantities «a, B, A, b, ¥ have been introduced in the first section as geometrical parameters, adjusted
to our situation through a system of ODE satisfied by P. Each law was chosen so it was simplifying our
computations to build approximate solution Pp by using symmetric invariances. Now, assuming we have an
exact solution u of (6.1) on [tg,?1], we want to check the correspondant parameters defined by geometrical
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decomposition (6.38) follow the laws we have built our approximate profile with, up to fourth order, and as
long as u is defined in H' - which is assumed here to be ensured whenever t € [to, t1].

In the previous section, we checked as long as u is defined, those parameters were controled as in (6.73).
We now work out a consistency type of result, checking the parameters laws are not blowing up, or strongly
modified on the way to blow-up time.

Here we are reproducing analysis led in Appendix A of | ] with some more details about calculations.
We also prove a slightly more general result than what is needed to get (6.62), and that will be useful when
turning to the unicity proof.

We claim that we can find a polynomial vector R(P) with

[RPI| S P (o +15P) + P+ 7 (b &) (6.74)

using (6.58), and such that

Mod(t) = R(P) + O (P + (P* + | Mod(t))) llll 2 + I3 + el + [lullag) — IQUz2])  (6:75)

First, we simplify the € real and imaginary parts equations obtained thanks to (6.57) :

- (% + b)AQ - (O‘7 - 25) VQ + Byer — My(€) + Ry(e) + bAey —28. Ve, = Im (1)) (6.76)

and

2
— (bs +b* — By) %Q+ (Bs + b8 — B2) .yQ + (75 — |B*) @ + dse2 + My () — Ry(e)
+bAes —28.Vey = —RG(?Z))

(6.77)

where, using (6.31) and (6.21), there exists smooth, regulars in y and polynomials in P, a function Fp
and a matrix Sp, such that the remainder 1 has the following form

Bly) = Pr(y) + Sp(y) Mod(t) + O(P* + | Mod(t)| ) {Ie()| + | (1 + [y)Ve(w)| } + OPT) =M (6.75)
with

0S| S P, [oEp(w)] S [P (ol +18P) + P°+ 7% (b= 5 )] el (6.79)

Remark 15. Terms in 9y and 8, are hidden in . Indeed, from (6.41) since NQp, 0.Qp = O(P 6*52|y|)

(As +00)0xQp = A(% +0)or@p = O(P*[Mod(1)])

(0w — 208)0aQp = )\(% - 2/3)8an = 0(7’3|M0d(t)!)

Computation of the P laws now relies on combinations of scalar products of equations (6.76) and (6.77),
making use of orthogonality conditions (6.42)-(6.46). Thus, as proved in | ]

Lemma 6.7. We claim the following computations hold
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( €) +bAes — 28. Ve, ve) (Ml(e)—i—bAeQ —28. Ve, vz)
-0

(P2|| I12)

— Ma(€) + bAer — 28.Ver, yz) + <M1(6)+bA62—26.V62, y@)
O(P?lle ||L2)

( €) +bAer —28. Ve, , A@) (Ml(e)erAez —98.Vey, AE)
2R e(e, @r) +O(P2el12)

— Ma(€) + bAer — 28. Ve, , |y|22) + (Ml(e)+bA62—25.v62, W@)

P2ellzz )

Oo\P
( 2(€) +bAey —28.Vey, QQ) + <M1(6)+bA62—2B.V62, Ql)
=0(|P

(Plellz2)

We will focus only on the third scalar product, the only one that brings a seemingly low-order term,
which has actually already been proven otherwise, since according to (6.65)

/N

(6.80)

/

- 2736(6, @) :/|e|2 +O(P* + |af? + 1)

1
Remark 16. Notice the (ﬁ) 2 term introduced in the goemetric decomposition (6.38) embodies the metric
induced perturbation, which otherwise would have radically perturbated the P laws through the previous scalar
products.

First things first we compute the equation satisfied by AQp based on (6.31). We state

Lemma 6.8. For Qp = X +i© solution of (6.31), we have

—A(AD) +AY - Q*AZ - 2% (SAZ + © AO)

=ReAV: —2(Z—25.VO+bAO — Re¥%) — bA*O (6.81)
+28.V(AB) + O(P?)

and

~A(AO) + AO — Q*AO — 20 (TAZ + © AO)

=ImAV} —2(0+2B.VE - bAZ — Im¥%) + bA’S (6.82)
—2B.V(AZ) + O(P?)

Proof of Lemma 6.8 : 5
Rewriting (6.31) up to second order, Qp satisfy :

AQp — Qp + Qp|Qp|* +ibAQp —2iB.VQp = —T3
W) < PP Ol
Then we check
AQp |Qp)* = A[Qp |QpI%] — QRe(y-VQP@) Qp
=A[Qp|Qp’] +2Qp|Qp> —2Qp (AT + © AO)

and
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A(AQp) = A[AQp] +2AQp + O(P?)

A straightforward computation now shows

A(AQp) — AQp + AQp |Qp* +2Qp (SAS +OAB) +ibA%Qp —2i 8. V(AQp)
= A[AQP —Qp +Qp|Qp> +ibAQp — 2i5~VQP} +2 (AQP ~-Qp +QP|QP\2> +2Qp + O(P?)
= —AT3 +2(Qp +2iB8.VQp —ibAQp — ¥3) + O(P?)

which leads to (6.81) and (6.82) by taking real and imaginary parts. O

Proof of Lemma 6.7 :
First we recall from (6.50) and (6.51) we may write up to second order

Ml(e) =—Aey t+61 — [(Q2 + 222) €1 + 22@62} + O(PQ ||€HL2)

2 2 9 (6.83)
My(e) = —Aez + €2 — [(Q° +20°) e2 +2X O er| + O(P? €| 12)
From (6.41) we have
VY =VQ + O('PQ e C2 Iy\)’ AY = AQ + O('P2 e |y|)
_(_b _be 2 —C2
v9_( §y+B)Q+( 1P +ﬁ.y)VQ+O(7>e ) (6.84)

AO = (—ZpQ—i—ﬁ.y) AQ + (—g,02+ﬁ.y>Q+(9(7726_02|y|)

We now have everything we need to proceed to the computation of the third scalar product in (6.80).
Using (6.83), then integration by parts we see

(1), A%) = (1, ~A(AT) + AT = (@2 +252) AT) — (2,2 OAT) + O(P? e 12)
(MQ(G),A@) - (62,—A(A@) +A0 — (@ +2@2)A@) . (61,22@/\@) +O(P? || 2)
Then injecting (6.81) and (6.82) yields
(Ml(e),AE> + (Mg(ﬁ),A@)
= (0, ~A(AD) + AT - Q*AT - 23 (TAT + ©A0))
+ (€2, ~A(AB) + A0 — @ AO — 20 (SAX + O AO) ) + O(P? el 12)
-2 (el,z—zﬁ.veerA@—Rew?,) —2(62, @+2,8.VZ—bAE—Im\IJ%)
+0] = (@, 2%0) + (e, 422) | + [ (@1, 28.9(40) ) - (e, 28.V(AT) )|
+ (e, ReAW) + (2, TmAWE ) + O(P? el 12)
— —zne(e,@) +2b {— (el,AG)) n (eQ,Az)} +48. Kel , V@) - (62 , VE)}
—(—bAe +258.Ver, A0) + (—bAe; +25.Ver, AS) + O(P? e 2)

Eventually, using orthogonality condition (6.42) and (6.44) we get our result. O

It remains to find some linear equations that will help us to estimate the vector Mod(t) of the laws of
the P parameters. In the sequel we will use some derivatives estimates that have already been pointed out
in (6.56) along with the rough estimates

jZZJQ+O(Pe_C|y|), ._7(9:(’)(7)6_0‘3"), whenever J = Id,V, A
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Law of b We compute (@, —A@) + (@,AE), with @ = (6.76), @ = (6.77) :

2 _
(bs + b% — By) / WE 02y — 2me (E,QP) - [(Rl(e), AE) + (Rg(e), Ae)}
4 (6.85)
= Ru1(P) + $1(P) Mod(t) + O( (P + [Mod(t)]) lle] 12 + P7)
with Rq; satisfying (6.74), where we have used the scalar products estimates (6.80) and orthogonality
condition (6.44) to get
(3561, —A@) n (aSEQ,Az) - (q,&sA@) - (62,351\2) = O(P? |lel|.2)
Note also that from Hélder estimates, with definition (6.50) we have
(Ri(€), AD) + (Ra(e), A0) = O(lell3= + lellf)

then one has from (6.65)

- K -
2Re [ ¢ Qpdy=— [IePdy+ "2 (o +1) [ Q% dy+O(P* lella + [lulzzan ~ Q12 ])

SO we can Compute
2 _
(bs + b2 — By) % ~2Re (e, Qp>

2
Y
=t 8 = By = K(ap)) [0+ [+ Raa(P)+ O(P lelse + [l ap — Q1)

) 2
with Kb(Oé,,u) _ ﬂ ||QHL2

3 [lpQl17-
where R15 polynomial satisfying (6.74), hence

(laf* + p)

2
(bs + V2 — By — K) / P QP dy = Ri(P) + 51(P) Mod(7)

(6.86)
+ O((P? + 1Mod(®)) lellzs + el + el + | ulzagag) — [@llz| +P7)
where R is a polynomial satisfying (6.74).
Law of A We compute (@, ly|? E) + (@, ly|? G)) with @ = (6.76), @ = (6.77) :
As
(5 +0) [P @y (Ra(@). 7€) + (Ra(e). oI°%)
(6.87)

= Ra(P) + S2(P) Mod(t) + O((P2 + [Mod(t)]) lellz2 + P7 + llel3: + llel:)
where we have used the scalar products estimates (6.80), and orthogonality condition (6.45) to get

(01, 12 =) + (0se2: 12 ©) = = (1, Dulyl* =) = (e2Dulyl? ©) = O(P* e 12)

and So(P) is polynomial of order 1, while Rs is a polynomial term in P that only contains remaining
terms of the form Fp through Up, so that according to (6.79) it satisfies

Ro(P) :o(7>5+7>(\a|2+|3|2)+7>3 (b— c%)) (6.88)

Again, with Holder estimates we have
2 2% _ 2 3
= (Ri@), 12 0) + (Ra(e), 1w2) = O(llelZz + llel})
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Law of « We compute (@,yZ) + (@,y@) with @ = (6.76), @ = (6.77) :

7_23 /—dy—i— ),y@)—(Rz(f)ayz)

(6.89)
= Ry(P) + S5(P) Mod(t) + O((P* + |Mod(t)]) llel 2 +P7 + [lell32 + el )

where we have used the scalar products estimates (6.80), and orthogonality condition (6.43) to get

(8361,y2) + (3362,y@> = —(61,33y E) - (62,883/ @) = (’)(732 He||L2)

also R3 is a polynomial satisfying (6.74), while S5(P) is polynomial of order 1. From Hoélder estimates
we also have

Ri(e), y©) — (Ra(e), y2) = O(llellz2 + llellz)
( )= (709, )

Law of g We compute (@, —V@) + (@,VZ) with @ = (6.76), @ = (6.77) :

_(5s+bﬁ—32)/Q;dy— (R1(6)7 Vz) - (32(6)7 ve)

(6.90)
= Ru(P) + Su(P) Mod(t) + o((7>2 + | Mod(t)

) llellzz + 7+ llel32 + el )

where we have used the scalar products estimates (6.80), and orthogonality condition (6.42) to get

(8561,—V@> v (as@,vz) - (61,85V@> - (eQ,asvz) = O(P? |lel|12)

and R4 is a polynomial satisfying (6.74), while S4(P) is polynomial of order 1. From Hélder estimates
we also have

(Rie), V) + (Ra(e), VO) = O(llel3= + ellf)
Law of ¥ We recall that o was introduced as the unique radial H! solution to L, o = |y|?> @, and
01, 02 are therefore the real, radial and H' functions introduced as
. —i M i
o1 +ioy=o(y)e T

so that their second order extensions are given by

o =0+0(P2e eV, gy = (—b— +8. y) 0+ 0O(P?eclvl)
We then compute (@, 792> + (@, 91> with @ = (6.76), @ = (6.77) :
= (bs + 0 —Bl)/%ﬁQQder (%s — IBIQ)/Q@dy— (Rl(f), 91) - (Rz(e), 92)

= R5(P) + S5(P) Mod(t) + O( (P2 + [Mod(t)]) ell12 + PT)

where we have used the scalar products estimates (6.80), and orthogonality condition (6.46) to get

(63617—92) + (3562,671) = (61,8302) - (6278301) = O(P? €|l 12)

and Rs5 is a polynomial satisfying (6.74), while S5 is of order 1 with respect to P, and using again Holder
estimates

(R0, 01) + (Re(), 02) = OlelZ2 + llely)
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6.4 Refined Energy identity 133

so that
2
— (bs +b* — By _Kb)/%QQdy‘F (%s — |5|2—K:,)/diy
= Rs5(P) + S5(P) Mod(t) + (9((732 + [Mod(#)]) llell 2 + PT + [|ell7- + ||e||§,1)
2
with K5 = (5Q.9 K,
(Q.0)
Conclusion

We therefore have proven that there are an invertible matrix A, a polynomial vector 7@(7’) satisfaying
(6.74), and a one order with respect to P function S(P) so that

(A+S8(P)) Mod(t) = R(P) + O( (P + |Mod(1)]) llell 2 +P7 + llellZ2 + llellF + [llull 2 (any — ||Q||L2D

~—

/N

fin
9]

Av= QP dy A= [|yP Qdy
c ) As=[Sdy  A=-[1EQody
As = [Qody

@

with A=

w
O:LOOOOO

@
a>OOOOOO

>oococoo®
cococoPo
coocoroo
OOO&OOO
coProococo
o

4

Since A is an invertible matrix, for ¢ close enough to 0, A + S(P) is also invertible. Let AS; ' be the
second order Taylor expansion of (A + S(P))~!. One may now complete the proof of (6.62) by choosing
R(P) = ASy ' R(P).

Now injecting this into the computation of the law of A, using (6.88) yields improvement (6.63) O

6.4 Refined Energy identity

Now we have proven the approximate construction using profile Qp transformed through the geometric pa-
rameters of P is a valid process, which is made stable when going to the blow-up time, we may want to
consider the conservation laws variation between that approximate solution and our exact one u. The follow-
ing energy estimate will prove particularly useful in the next section that consists in integrating backwards
the profile, and later in the uniqueness part of the proof, when all a priori bounds assumed here will have
been shown. In particular, to take all benefit from this estimate, it is crucial to first obtain b ~ A.

Let u be a solution to (6.1) on [tg,0), and w a be an approximate solution to that same equation :

i Ow + Agw + V(z)w + k(z) |lw*w = (6.91)
with a priori bounds :
< < 1 < 1
lwllzzag) S 1, IVwllzz@g < 50 lwllaszwg < 557 (6.92)
Then, we decompose © = w + @ so that :
iy + Ayt + V() d+ k(z) (Jul®u — [w]> w) = —¢ (6.93)
We assume the a priori bounds on « :
IVallL2ag) S A [lillz2ag) S A (6.94)
and on the geometrical parameters :
AN +0 <A b~ X Dol SN, b S0 (6.95)

where A > 0, o € R?, b < 1. We let A > 0 be a large enough constant, to be chosen later, and ¢ a cut
off function such that :
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6.4 Refined Energy identity 134

reN r for r<1,
d)(r)—{ 3—e™ " for r>2 (6.96)

Let also

Fy(u) = 1 lul*,  fa(u) = |u*u, so that Fj(u).z = Re(fs(u)Z)
1 (6.97)
Fy(u) = 3 lul?, so that Fj(u).z = Re(uz)

We now want to look at the variation of the conservation laws on an exact solution u with respect to the
approximate profile w we have just introduced. So let

1
—5 [ 1P Viglde.
My a(u Im/Ag“@ng( >8uu vV gldx

be respectively the mass of u, and a cut-off of momentum for u. Now using the energy expression F(u)
and (1.11), a simple computation shows

B(a) ~ B(w) + 5 (m(s) - m<w>) b o (Mya(w) = My, 4 ()
= % /gij 9t 954 dgy + = |>\|2 dg. — / [A w— )\2 + k(z) [w)?w+ V(z)w| @ dg,

Im/Ag”BmS( ) d;utu dg, — /k(m) [Fu(w + 1) — Fy(w) — Fy'(w) . @] dg,

Im/Ag Jal¢< > [@0;w + 0;uw| dg, f/V(os) [Fo(w+ 1) — Fo(w) — Fy'(w) . 4] dgy

The first line term can easily be estimated. On the one hand, considering the approximate solution is as
we have described before

(VR g rmay e ()L g amay
v (gp) k(a) AQP(t’ ) )e T (gp) k(a) )\e(t’ ) )e
At first, notice estimates (6.92), (6.94), (6.95) are easily obtain from the previous sections. Then using
(6.15), both orthogonality conditions (6.42) and (6.44), and (6.41)
) _ 11
Re [ |Agw — )\2 +k(z)|ww+V(x)w|a dgx—k( e (bAQ —25.VQ) €2 dgy + O([l€l| L2 (ay))

1 1 i
= k( ) 2z /(bA@ Qﬂ.V@) eldy+(9(||e||Lz(dy)) :O(HEHLQ(dy)) :O(Hu||L2(dw))

On the other hand, defintion (6.96) of function ¢ imply

Voly) =y, |yl <1, Vo) S1, Jyl >1
Ad(y) =2, |yl <1, Ap(y)| Se M,y >1

so that, since g/ = [;; + (9(772)7 from integrations by parts
Im/Ag”c'Mﬁ( ) Ta w + 0, uw} dg, —Im/ {Ag”@mﬁ( )8w+ grj)( ) ] dgy
- - = i 9. J O il <
- )\k(a)Im/e {Ag 81¢<A> 9;Qp + 2Ag¢(A)Qp+o( )] Vgldy

1

= )\k(a)Im{ /ygA EAQp dy + O(||€‘|L2(|y‘>A) +P ||e|L2>} = O(||6||L2), as A — +oo
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6.4 Refined Energy identity 135

since thanks to orthogonality condition (6.44)
lim [Im/ gAQP dy+O(H6||L2(\y|>A)> =0
lyl<A

A—+oo

Now this should be enough motivation, thus we claim the following result

Proposition 6.9. (Generalized energy estimate)

Let
1 %3 ~ 0 ~ |’U,|2 )
I:i/gjaiuﬁjudgx f/ dg —|—fIm/Agjaz¢ d;utu dg,
(6.98)
— /k(x) [Fu(w + @) — Fy(w) — Fy'(w) . 4] dg, — /V Fy(w+ a) — Fy(w) — Fy'(w) . 4] dg,
then, we have
Py Im | k(z)w"a? dg, —Re | k(z) 0w (2142w + 42 W) dgs
b |“‘2 2 1 2 (T —ay |a]?
Ha[ S o+ Re [ Vio("50) (9, ) do— [ 30(" ") K do
(6.99)

@ dg,

—|—Im/[Agw—;é H@) 2w v —0?B) +i o Ag? 0.0( o) o+ i s w6 T0)

-

A

_ . _ 1. .
3 Re [ g7 0i0(L58 ) ki) (2wla + w ) 05w dg, + O(N 0l + 55l + il

Remark 17. (i)  Note that (6.99) brings a better control, for it keeps track of the quadratic terms in .
It is all about getting a control of the form :

d ~112 L b ija~a= Lo
@ {vaule(de) + F ||u||L2(dgw)} > ﬁ (/m_agsi o 8j’u dgw + F HUHLQ(dgm) +l.o.t.

(#1)  In the sequel, we will mainly use (’)(% )2, + Hd”f{l) as estimation in H' for the tail i of
-2
solution w. Notice that in the context of a riemannian manifold, we should more strictly use O(I ‘K—Iz dg +

Ik (Vﬁ, Vﬁ)g dgm>. But since g is assumed smooth and W1°°, there is no harm in using the previous

estimate.

Proof of Proposition 6.9 :
Step 1 The computation is essentially the same as in | ], except for the term A which is replaced
by Ag4. Thus, derivating the first part of Z, using (6.93) and (6.97) yields

135



6.4 Refined Energy identity 136

df1 [ .. L 1 [ |af? _ _
dt{Q /gJ(x) 3iu8judg$+§ Vdgxf/k(x) [F4(w+u) — Fy(w) —F4/(w).u] dg.

_ /V(x) [Fo(w + @) — Fa(w) — Fy’(w). i dgx}

= Re(@tﬂ, —Agu+ % o — k(z) [f4(w +a) — f4(w)] —V(x) [w + 4 — w] L2(dg ) /| 12 dg,
+ Re (atw, —k(z) [fa(w+ @) — fr(w) — f1'(w). @] = V(z) [w+a—w— u])m(dgl,)
=Tm (v, Ayi - % -+ k() [falu) - f4(w)])L2(dgz) - %Im(k(m) [fw) ~ fi(w)] . 7) v

_ /WIQ dge — Re(Ow, k() [falw + @) — fa(w) — fa'(w) 7] )

Then, notice that f;/(w) .4 = 2 |w|? @ + w? @, and

Im(@, k() [falw+ @) = falw) = fi'(w) 4] )
:Im/k(x)@ﬂ|ﬁ|2 dg.

:Im/k(x) Rwalal®+ |a* +walal?] dg,

L2(dge)

so that the last line can be rewritten

1 _ = 1 =2
Im<¢, Agu—ﬁu%—k(x) [2|w|2u—|—uw2]) —FIm/k(x)u w? dg,

L2(dga)

_ /\—; /|ﬂ|2 dgs — Re(@tw, k(x) [ﬁfﬂ + 2w |ﬂ|2]) — Re(@tw, W)

L2(dg.)
+Im(1/’ - %ﬁ , k(@) [fa(u) = fa(w) — fa'(w) 'QDL"‘(ng)

L?(dga)

We now estimate some of those remaining terms. First, from (6.95) one gets

A . b [ . 3 b _ .
—% /|u\2 dgs = F/|u|2 dg — (A X\ +b) /\u|2 dge = v / |a* dg. + O(||il72(4q.))

Then, the last two terms are to be treated with a priori bounds (6.92) and (6.94)

Zm(v - % i, k(@) [falu) = fa(w) = fu'(w) 'a])wdgm)

1 _ — = -
_ Im(i/) vil k(z) [2w\u|2 Ak +wUQ])L2(dgw)

- - 1.
S 19 lz2age) (1176 0ag.) 0l zoage) + NllZs ag.)) + 3z 180120 ag) 10llc2(ag.)

2/3 4/3 1/3 1/3 - 1. .
S 1022 agy (18050, 195 100 5y 0 ) + 180 ) + 35 10 22 00) 19

SN0l L2(dge) + 1801 (4.

where we have used the Gagliardo-Nirenberg estimate

lull s < Cllull}s Va3,
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To deal with the last term, we use (6.91) to replace d;w, and then by integration by parts, using (6.92)
we have

= Im/ [Agw k(z)|a® @+ k(z) @] @ (k(z) lw]> w + V(z) w + w)} dgy

L2 (dgx)

’Re (atw, W)

< [0 (VIglg™ 0510) | -1s2 Wl @l g e+ (10 0 2agy + 11 ey + 11V 0 2gagy ) 111 @ L2
< HwIIHa/z Il e + ||w||Le<dqz> g,y + 18022 a0 19035

1/2 5/2 ~ ~ ~ ~
< s VA2 N2+ 5 Wl gy Vil + 19y Nt 122
SN ||¢HL2(dgz) + ”uHHl(dgm)

where we have used twice the pseudo derivative estimate

D21l @)| o < [|1PY2 (1) || oo lallzs + @ s || D2l
S [PVl . algs

then the Sobolev embeddings Theorem results 8.2 and 8.3 give

HY4(R?) C L¥(R?®), and H'(R?) C W'/>*(R?)

to get
3/4 1/4 1/2 5/2
|02 e S Nl (a2 1210 < Il e a3
Eventually
df1 [af? i o
dt g auaUdgx a5 ngrf k(x) [F4(w+u)7F4(w)7F4 ('UJ)’U,] dgat

_/v(g;) [Fo(w+ @) — Fa(w) — Fy'(w) . ] dgx}
b [ lu]?

1 — o120 & 7277

+Im/ (A6~ 35 + k(e ><2|w\2w—w2@>}adgz+o(v|\w||%2+$naniz+nauip)

Step 2 There remains to deal with the localized momentum part. First, let

Vo(t,z) = - AV¢( AAO‘)

1d 1d L _
el i __-° 8.5 .07
2dt< Im/Ag &(b )8uu dgx> 5 (Im/g 0;¢ 000 dgz>

,Im/ 7 9, 1¢6 i dgw—f—Re/z@tu{l g¢u+gw@¢8 u} dg.

First, thanks to (6.95) and the computation :

then

—Q

atv([s:A{/\S [0 4] o (2 )—%)\At [; N W R )
()G el
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we have :

0: Vel < 5

so that, since g is smooth

1, . N 1. -
S b\ %] 2 (ag.) ”vu”LQ(dgz) = O(p HUHQL?(dgw) + Hu”?{l(dgm))

1 g -
§Im/g” 0:0;¢ ;0 dg,

Now, with the second term

Re /z@tu[ g¢u+gﬂaz¢8 u] dg,
= Re [ 490,(5™ 89) 0i1 00t dgs — 3 Re [ 4™ 0160197 031057 dg — [ AZD NP da.
1 i1 7 ~ 1 7= 7 7 =
+3 /g” 2ip 0,V |2 dgs —Re/ [k(x) (fa(u) — fa(w)) + ] (5 Ag¢u+g]3i¢aju) dgs
e ~ = 1 7 7 ~ = 1 T~
= Re/v§¢. (Va, Va) dg, — 5Re/ (Vo, Vg])gaiuaju dg. — 1 /A§¢\u|2 dge
1 7 ~12 1 = 2] 7 =

+3 (Vo, VV), lal* dge — Re | [k(z) (fa(u) = fa(w)) + ] (5 Agpu+g 8i¢8ju) dge

where we have denoted
Vy=9"70; and (X, Y)g =97 X;Y;

From here, first notice that from (6.95) b ~ ), and since ¢, V, g € WH>°(R?), we have

1 ~ . - 1 ~
~3Re [ (V6. 9g"), 000, dga+ 5 [ (6. 9V), 0P dg = Ol + )

thus

Re / X [1 Agdii + gi 0id aja} dg,
—Re/VQ (Vu Vu) dg, — L /AQQZ)(JU ) \u|2 dg.
v gAzye | S9%\TaN
~Re [ [k) (o) = futw)) + 0] (35 o0 () T+ 5 A 0i0(“1,2) 057) da

1 -
+0( 53 Il + il )

(6.100)

There is left to deal with the non-linear terms. We will use (6.92) to (6.95) along with integration by
parts, Holder estimates and Gagliardo-Nirenberg inequalities. First we decompose

fa(w) = fa(w) = (Jw* + @ + Wi +w i) (w+ a) — [w]*w
= (21wl a+w?@) + (2wla? + @@ + a2 @)

Then using (6.58)
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_ b . — _
| /k(z) (2w |af? + @2 + |af? @) {w g¢( ) a+AAg”ai¢(xA;‘)aja] dg,

[ ol dg.+ [1al dg.)+ [ (Rl +3) (9] dg,

IVl

A

A
NI S RS e e

A

(Ml el + Nl ) + || 2 feol + 1a? |

e leollze + @lEs ) + (e llollze + @l ) 1Vll2

A

~ ~ ~ ~ 2/3 4/3 1/3 4/3
(Hallze V7@l + a3 1V als: ) + (117 1Val s ol 19wl + lalls (vals.)
_ . _
< Nl = (53 Il + il )

Moreover

—/k:(x)(2|w|211+w25) [2>\2 gé( ) -+ iA9”81¢( )8u] dga

—Re/Ag”a ) [6k(2|wu| + (wu) )+2k(2wla)® +wa?) ow+ 2k (2|w]* @+ w’ @) 815] dygq
/Ag“az(b( B )35k(x)(2|w|271+w25) dg.
,fne/Agwagz)( =) ok @ lwal + (7)) + 2k (2ulaf? + wa?) ] dg
2 TTNAN ’ ’

and since k is smooth, one gets the estimate
b i 2 2
| R /Agjazqﬁ( ) oy (2w l? + (7)) dgs
1, . - - -
< 5 lllzs 192 = O (5 i3 + a3 )
Finally, integrating the last term of (6.100) by parts, we have
b b
_2 ij — ij
SRe [ Ag900( ") 0, b da. = { Re [T g7 06( T ") 00 da.
b
+ 3 /u v 8,0() ds

< llallf [lwllZs

so that

Re/z@tu[ g¢>u+9761¢6 u} dg,
b T —
Re/V2 = ) (Vii, Vi) dgz—m /qua( = )|u|2 dg,

+§Re/uAg”31¢(A)\)¢dgx o Re [Tun0(52) da.

b Iy —« . . _ - -
+ XRe/Ag J @d)( e ) k(z) (2w |a|* +wa?) 0;w dg, + O(F l@l|32 + ||u||§{1)

(6.101)
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6.5 Backward propagation of smallness

We use the last section to get a bootstrap result : the geometrical decomposition we have already used
to approximate the NLS solution can be integrated backward from the blowing-up singularity time while

keeping its parameters properties as defined in section 6.3.

That will allow us in the next section 6.6 to build the formal exact NLS solution with all wanted properties.

Then the existence would be done, except the proof of (6.8).

Let u be a solution of (6.1) on [to,0), ty < t; < 0, and assume, there is a geometrical decomposition of u

on [tg,t] such that

p 1

1/2
ult,e) = (so<y,x<t>,a<t>>) ka(t) /2 A<>(

where e satisfies orthogonality conditions (6.42)-(6.46) and
ez + |P(#)| < 1. Let

Qe +¢) (- ;(?)(t)) e

~ P )1/2 1 1 l‘_a(t)) i’y(t)
t,x) = —e(t,—
w0 = (oam)  we@eawm aw )
Assume that the energy Fy satisfy :
Ey+Cg>0
We now may define constant Cj as
lpQI1Z- : b1
Co= (| 77—~ Il hold — — = 1 t—0
0 S(E()—FCE)’ SO W1 O. b\ CO 0( )’ as t —
We claim, as in | | the Backwards propagation estimates, with corrected mass (6.40)

Lemma 6.10. Assuming there holds for some t; < 0 close enough to 0 :
lull 22 (ag,) = 1Qllz2| S A*(t1),

ivac i + LGOI < e,

’g(h)’Jr‘%(h)’ 5)\1/2@1)7 ‘)\(151)+tf1 (@)

Co
‘ b(tl 1
At1)  Co

— Ko Coua(ty) + K1 LECQ] (tl)‘ SN ()

CoA(t1) — Ky Lk(a)(tl)‘ S A ()

Then, there exists a backward time to depending only on Cy such that V't € [tg, t1],

va i + B < jwaps. + LGE 1 )
10— 5 + KaCod®) - Ky (0] 2200
)A( )+ Fo — Ko Coun(t) + Ky 7 (t )‘ < A1)
S0+ 50" S tw(00) + Ko M) - L i)+ 2200
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with

2 dr
wwlt) = [ v () gy = 0.

t
ia(t) = / Mr)dr = O(t?), 1o (t) = / (e (1) dT = O([t?), 1p(0) = 6u(a) || Q|2 see (6.3)
Ko=% [D+/@o@ il Ki=lQ 1H el K= [/ a| Q|2

Proof of Lemma 6.10
Since u € C([to,t1], H') is continuous, we can find a backwards time ¢, such that V¢ € [to, t1] :

la@)lce < KX*(8), [[a(®)|m < K1) (6.113)

B(t) (t) 124 t ) b(t) 1
5 ] \M < KAV2(t), ‘A(t)+a)‘ < K22(t), ’Wt)fc*io’ < K A(t) (6.114)
by the way, this also implies [tx(t)| + |tr(a) ()] + |Li(a)(t)‘ < K A(¥) (6.115)

for some large enough universal constant K > 0. Then we claim that (6.109)-(6.112) hold on [to, t1], and
thus improves (6.113), (6.114) on [to, 1] for some tg = to(Cp) small enough and independent of ¢;.

Step 1 Monotonicity of the norm
We then apply previous lemma to function

1

- B p 1/2 z—a(t)\ iy
w(t,z) = Q(t,x) = (cp(y,)\(t),a(t))) HaD) 72 A1) QP(t)( W) et

note we may apply previous lemma 6.9, since (6.105) to (6.108) ensure all needed hypotheses are satisfied
: on the one hand (6.106) imply [|Val|zz < A% on [to,t1], while on the other hand (6.108) imply b ~ X on
[to, t1], which were the two missing assumptions for our approximate profile as we have already pointed out.

Let Z be given by (6.98). We will check later (6.99) implies
dZl b _ -
=y [1a dg+ O+ ) (6.116)

A first rough estimation of Z using Holder estimates show

@)l
17| < ||Val2s + A;Q (6.117)

Then, looking a bit closer we may check using both result and proof of Lemma 6.6 that
1 R 1 [ ]ul?
3 /(Vu, Vu)g dg. + 3| 2 dgy

1{/[(Ve Vo), +0(P* )] Lglay+ [ 12 £l an
i | 19 dy+/| 2 dy+0(7>2e||H1)}

= { L+e1, 61 (L,ez, 62) +/Q2 (3lex]® + le2|?) dy‘f‘O(PQ ||€|12LII)}
{n i~ (e Q)z}
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6.5 Backward propagation of smallness 142

Furthermore with (6.65), (6.8) and (6.105)

[Re(e, Qp)| S llelF + A%+ lal® + o+ \/|u|2 dg. — /QZ\ S llell2a + K2 N3 (1)
therefore
(. Q) Sollels) + K*X°()
from which

1 al|?
T2 s {||e||§q1 - K* Aﬁ(t)} > \Val|3. + ” /\”2” — K \4(t) (6.118)

~ 2k(a) A

Integrating (6.116) between ¢ and t; gives

BdAT _ Mb _ "l -
It)-IM= | - > / (F )22 + K* X3 (7) + ||u(7)\|ip) r 2 / ( 2 HIVallz: + K As(T)) dr
t t t

thus from (6.117) and (6.118) one gets

”fil'f KON ST() ST(h) + / () + () ) dr

SVl + B 4 [ () + )l ) dr

Altogether, we conclude for ty = to(Cy) small enough

IVa)ll. +

LOLie < pwaenizs + LSG0IE 1 ity + [ (00 + ) ar

V()3 + e

and (6.109) follows from Gronwall lemma. In particular, from (6.106)

Va2 + '“;22”;2 < A1) (6.119)
which closes the bootstrap of (6.113).
Step 2 Integration of the laws of the geometrical parameters
From both (6.62) and (6.8) we have the following estimates
[bu 482 By~ K|+ |32 48] (8, 408 — By +] 5 — 28] 5 X (6.120)

We now aim at integrating these laws to get (6.110)-(6.112). To do so, we first see from (6.22)

b\ b0 —B —K, b (), Bi+K, K1 _, .
(X)Sf R ’X(T b)+f X! Ko + 53 V2R(0):(0) + O(X7)
with

Ko=2 [+r@e@ a4 ell K =1Ql 4 al,?

At first, from 4 = L using (%)s = O()\?), integration with (6.114) and (6.115) leads to

i(sl)—i(s):/:l (?\)Sda:/:IO(K)?(J))ngK/:I dr < K |t|

next, thanks to (6.107) and (6.108) it proves
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6.5 Backward propagation of smallness 143

1 b < 1 b

&~ 36 S 5~ 30+ Kl S A0+ K[ S KAG) (6.121)

By the same token that led to (6.70) then to (6.73), we sum conservation of energy and of mass at time ¢

b2 2y \ﬂl2 2 2, 2
lyI*Q* + Q - V()+*1d a,a) [ Q7 dy
=)\2 <E0 +Cg+ ¢p(a) — )\Cl> + O()\4)
where we used the fact that from (6.119)

IVe®)Z2 = k(a®) X [Vat)llZ: = O(\'(1)),  so that [le(t)][Fn = O(X (1))
Thus from the choice of Cy we see it implies thanks to (6.121) that

<1
Co

B2 e 1 P 8

0+ 5 05 g =m0+ o (6s(a0) X0 O) +O(0) 5 7~ 30 +OO®) S A0

y\@

which proves |a(t)]? + |8(t)]?> < A3(t). In particular, this also proves C%, — % >0, so that using (6.121)
again, that last estimation evenually yields

b 1
—(t) — —| < |t
‘)\) CO‘NH

which concludes (6.110). Then by (6.63)

‘)\H—g’ )\‘—+b‘<>\3

And finally, from integration

t b 1
‘)\(t)—k—‘ ’A(tl +—’+/ ———‘(T)dT—F)\?’(t)f,)\Q(t)
CO CO
Now, to refine (6.110), let
s do t dr
L= V2k(0).(a, ) —~ = / V2k(0).(a, ) —= (6.122)
+oo 2\ 0 2)\3
be an antiderivative for the remaining term in the ( g)s expression. Then using the previously obtained
estimate |— — 2(t)| S A(t), using also (6.63) one gets A2 = CobA + O(A3) = —=Cy As + O(X3), so that
(i — E) = (KoCoA— Ky 1)_+ O(X\?)
Co AN s s

which, using (6.108), proves (6.110) after integration.

Also notice reinjecting these estimates into p and ¢ definitions yields

0<pt)SA@®), t)y=0(t]) =0A@®), To<t<t; <0

Eventually, let us give some refinements of the above bounds that will be useful in the end of the proof,
so first rewrite (6.70) with use of Lemma 6.6
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(ﬁ 1 (vho + 2 1a) S ) s cpei ||s<t>||%p) Il 1 )2

A2 2 3 A
b P
@ - )\* )+2 H QHL2 op(a(t) — A(t) C1) + O(X(1))
0
1 b2
= 32 (1) = 2K () + Ip(a(t) + K2 A1) + O(N(1) (6.123)
2K, )
=Ky A(t) — N iy (8) + e (a(t) + O (N (1))
. 9¢ _ B
with Ko = [pQdy |5 Q)2 et =25 Q)2 éel)
where we have used (6. 121) soone has (&= —3—Ko Co M K1 1) (+3%) = dr— = —2 Ko M35 +0(N),
0 0
and reinjecting the refined 7 — 3 bound into the A(t) + CLO bound yields
B2 al? 2K
|/\—|2(t) + %(t) S Ko A(t) — C—Ol t(t) +lp(a(t)) + A2 (t)
. , , (6.124)
At) + = — Ko Co/ A(T)dr + Kl/ (1) dT‘ < A1)
Co T T

Step 3 Coercivity of the quadratic form in the L expression

We now come back to the proof of (6.116). To begin with, we compute explicitly the quadratic terms in

(6.99) for w = Q given by

k(@) = _i Im /k(x) W22 dg, — Re /k(x) oy AP w + 2 w) dge

b \u|2 2 1 2 (T« |m2
42 Re/Agij aqb(;o‘) k(z) (2w|a)? +wa®) 0;w dg
A ! AN J w
we claim
_ 1yl
K(a) > F (/\vd?e ﬁdy+/\e|2dy) + O(K*)?) (6.126)

for some universal constant ¢; > 0.

First we compute

) +i2@

. Vk(a) = A ~ (£>1/2>\at+>\t(x—a) ~VQP<$

%Q = 2k(a) @-3 le(a) 172 )3 A
1/2 1 aQP T— N e
) a2 n ! 079( )y )”_%
)\at—25 Vk(a) 2B8.Vk(a) AM+b b 0Op)\ =~
79 W 77y 5 W CRS A v B (6.127)

<.
/—\*G\b

L, RS —I8 1P 21 0Qp jr—an
et )\2 >Q+<> ) 2n 67?( ) )eV

+<P>“[“t“<%ﬁ>+2<ﬁa>“‘t-”if]~k<a)1m@p<x;“>ew

© A2 A A2
then, by the same procedure that led to (6.21), we see

144



6.5 Backward propagation of smallness 145

|Qp — Q| S|P e~ therefore ’aaQ—PP’ Se Ml (6.128)

moreover we check that |P;| < 1, so that using (6.113) and (6.120)

~ b ) ~ brr—a ~ K _lz—a@l

now putting this together and using the exponential decay of Qp

~Re / k(e) O 2102 Q + 32 Q) dg,

Im/k 2\u|2Q+u2Q dg, — Re /k Q2la]? Q + u? Q) dg. (6.129)

_gne/k(@ (57) -vaeErQ+ia) dgzw(p el

so that
—Re/k( ) (2|u\2Q+u2Q ) dgs — — Im/ Yw? a2 dg,

Qu
:_lb/Zk(/\y_Fa) [(‘QP|2+222)6%+4Z@6162+(‘Qp|2+2@2)€§} gdgy

k(o) A k(a)
1 b k(Ay + ~ IRV K
k())\‘lRe/p(ky(a)a)(2|€2Q73+€2Q'p)y.VQP gdgerO(ﬁHEH;)

Remind the geometrical decompositions (6.102) and (6.103) imply the derivatives are decomposed as

1

s (8) g w Vel @ e (550 e e =5 (5 0) = (F -5 )¢

Injecting this into (6.125) yields

K(a) = L% l/ (1— A“QJ(ﬁ(’l{‘)>|e|2 gdgy—l—Re/V;qb(%) . (Ve—i—@e,m) gdgy

k(o) 4A?
[ EQyta) 1,5 2 2y 2 52 2y 2] P
/@7,{((1) [(|Q7>| +2%5%) 6] +450€ 62+ (|Qp°+26 )62:| (pdgy

ij k(X 5 .
+Re/ (Agw 8@(2) —l/j> P kQy+a) 21el?Op + & 0p) 0,Qp gdgy

1
= K 2,
v k(a) + A3 O( Allellz )

Notice that expanding around the origin the metric terms according to (6.4), one has V, = V + O()\?),
A, = A+ 0N, £ dhy = (1+ O(A?)) dy and from (6.17) ® = O(A?) hence

K(@) = ﬁ % [/ [1 - WA%(Z)} €] dy+’Re/V2¢<%> (Ve, Ve) dy

k(A
—/W {(|Qp|2+222) € +4Y0e e+ (|Qp)* +267) eg} dy

+Re/<AV¢<Z)—y> W(m?@pﬂ?@;).md;jl

1
O(K A ellfz + A2 lel:)

T
and using (6.96)
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0= g [ [ e 0] e [0(5) e 50 0

—/[(|Qp|2+222) € +4Y0e e+ (|Qp|° +267) eg} dy}

1
+ /\30<K)\||6||%2 +/

¥ AI6|2 dy + \? IIEII%1>
y|>

From proximity of Qp to @, from our choice of orthogonality conditions, from (6.71) and from (6.113),
the above quadratic form is for A large enough a small deformation in A of energy which satisfy

K(a) 2 % l/|Ve|26_VyK dy—l—/\6|2dy - (61, Q)Q]

1 _lul
zv[/w% Fayr 1P ay

where we have used |(e1, Q) |2 < }Re(e,@ip) |2 S (At +al? +u)2 < A8 from (6.59), (6.65) and (6.8) along
with Lemma 6.6 to get the last line. (6.126) is thus proved.

(6.130)
+ O(K4 )\3)

Step 4 Control of the remainder terms in the % expression

We have left to deal with the ¢ terms in the % expression. According to the definition of v we see with
(6.15), (6.31), (6.55) and (6.93)

Y = —idi — Ayt — V(2) @ — k(z) (|a]*a — |w|*w)

_(3)1/2‘3” . p k(dy+a
=—r [2856—1— (£g+Vq)€_6+S@(k@))

v -)\s Qg ~
(o) 72 (M(e) + R(e)) —i=> Ae—zT.Ve—fys e]

( \
1/2 i'y . ~ . )\s ~ . s A
- (g) W {z(bs + 02— B)30p + 1(7 + b) AOp + z(‘i - 25) A9aQp (6.131)

A
+i(6+ 08— B2) 95Qr —i( +0) AQp —i5 (5 - 26). (Var + L)

A 2 QP)

— (3 — 1B8*) Qp + 1/)7:] (?) i)

where hp is the remainder term in the construction of Qp :

vp = 0N et )
First see that (6.8), (6.64) along with (6.113) and (6.114) gives a rough bound on v, that is for ¢ = 0,1, 2

VIS e (IMod(t)] + Kol +1K5| +X°) S sgze ™ (KA%ellpe + K2A%)  (6.132)
and thus
; 1
IV9lee S o (K N2 le]| 2 + K2 X%)

In particular we find the bound

M $lI7e S A [lellze + KA
then for any v > 0
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a dg,

|

SIVYllze allze + —=

Ag”@@( ) Jz/1+z
||¢||L2

()

e S 5 [2 Nellze + 2 5] [l

:mﬁﬁwwﬁwwzmmzm< lelE=) | pet ya-v
A A\3—v ~ A3

Yet bound (6.132) is not precise enough to deal with remainder terms in (6.98). Let us remind that the
construction of @p induces

A 5 —iblliig. =
Qp=Ppe ' THIVLO(IPP), Pp=Q+O0O(P]?)
so that using (6.120)

i b+ 8 = B 34O = (b +5* ~ B) U2 @+ 0P| 2od(r)
i(Bs+bB — By) 95Qp = —(ﬁs+b6—Bg).yQ+O(\P|Mod( )

now we have 1) = 11 + 15 where

£ 2
wl:]f:(iy)l/;/\g {(554—52—31)%@—([33—#()6—32) yQ—z(A +b)AQ

_@(f_ag)VQ—wy—mﬁq

and from (6.21), (6.62), (6.8) for i =0,1,2

) 1 _lz—qal
[V*4a| S N

This implies the remainder term 15 in (6.98) may be directly estimated as before for any v > 0 as

1 el
~ /\3+

(|P||Mod(t)| + K> X°) < (A [|ellz2 + K2 X%) (6.133)

/@m—@+uﬂmww—w%wm%
Ll

|| HLz 2 5/2-vs2 el €l 45—
1% < v
< K2 572 V/2N0< I )—i—K)\

while the remaining term in ¢ is estimated using identities (6.47) and the orthogonality conditions (6.42)
and (6.44) on e which allow to gain a factor O(P)

+ I lleee lwlida] il 22

T [ [By0n = 52+ ba) 2ol on — w2 00)] @ dg,

5|A4mﬂQ1+hﬂ2[(Q,1A43A2Q>)+-Q@,L_(yQ))+-Qn,L+<vaD)

+ (2 2-(@) + O(P el

(6.135)

As b‘
)\-i-

L (a5 00)
o A2 el + K2 X8
< e

<0(||)|\|L2) LKA

~

)\2 ||€HL2 + K2 )\5
24

[P llel|z= + (A% |le]| 2 + K2 2%)

where we have used again the fact
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6.6 Existence of critical mass blow up solutions 148

Anf = Af+0() (IVf]+|V2f1)

and (6.47) together with the conservation of mass through estimate (6.62) and the improved bounds
(6.59), (6.63) to get the estimates

(61 : z) + (62, @) + % lel|2-

L )|, 2o (a@))| g 2 K2 )

<M 4 ]al* +p, hence

(61 : Q)‘ <A2|lellpe + K2 X%, so that

A
s b‘
/\+

Now injecting (6.133), (6.134), (6.135) and (6.126) into (6.99) we see

‘ZW Ag </|Ve|2e Vi dy+/| 2 dy>+K4)\3 v

N/\4 /\u|2 dg. + /|Vu|2 e W* dgs + KA X3V

250 [ 1P oo 0Nl + K12

and since it is true for any v > 0, it remains true when v = 0, proving (6.116) holds.
This concludes the proof of the Lemma.

6.6 Existence of critical mass blow up solutions

As a first consequence of previous lemma, we may integrate the flow backward from the singularity to prove
there are critical mass blow up solutions. The following proposition ends the existence part.

Proposition 6.11. (Ezistence of critical mass blow up solutions)
Let
v €R, Ey+Cg >0,
and Cy given by (6.104), then there exists to < 0 and a solution u. € C([to,0), H*?) to (6.1) which
blows up at T = 0 with
E(uc) = Eo  and luc|z2(ag,) = Q|2
Moreover, the solution admits on [tg,0) a geometrical decomposition :

x — a(t)

21 1~ ) A
wlt) = (o5 5man) k(ae()17 Aolt) @r.o+ ) (675757 ) €0 = Qeb e (6.136)

where €. satisfies the orthogonality conditions (6.42)-(6.46), and there holds the bounds

lclle S AL aelm SN2 el gsre < A,

t b 1 C? (6.137)
>‘C+7:O()‘z)7 A =00, ad + 5] g)\g/Q, '762_704‘70"‘0()‘6)

Co e (o t

Proof of Proposition 6.11
Step 1 Backwards uniform bounds.

Let a sequence ¢, — 0 and wu,, be the solution to (6.1) with initial data at ¢ = ¢,, given by :
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149
1 - )
— Z'Yn(t )
tn(tn, ) = - Qpn( n)e (6.138)
with P, = (b (tn), An(tn), Bu(tn), an(tn)) and :
tn ot
b (tn) cz n(tn)

lyn(tn) =% — 70
tn
Recall the conservation of mass identity we have computed in (6.32) which here becomes

Jun () a0 = [ @y + O(2)

Furthermore, we have @,(t,) = 0 by construction. Hence u,, satisfies at t; = ¢, the assumptions of
the backward propagation of smallness lemma, and thus we can find a time ¢y independent of n such that
YVt € [to, tn), u, admits a geometrical decomposition

Up(t, ) = ( P

1/2 1 1 = x—an(t)\ ~
t n 7/'Y'n(t) "
w(y,/\n(t),an(t))> k(o (t))1/2 An(t) Qpn(t)( T Aa(t) )e o
with uniform bounds in n :

(6.139)
- U (1)[|3 2

V013 + L < x40 (6.140)
bn L. t 2 3/2
T =g 20, P+ G| R0, a0+ 1801 £ 2(0) (6.141)

From Strichartz estimate, this implies the uniform H3/2 bound :
IIﬁn(t)HLoo([t’tn]’Hm) <A@ (6.142)
that we will prove in step 2.

Now the H' compactness of (un (to)) is a consequence of a standard localization procedure. Indeed let a
cut off function x(z) =0 for |z| <1 and x(x) =1 for |z| > 2, and x, ()

= x(%), then since
Oy, = 1 [Agun + Ek(x) \un|2 un + V() Un}
we have

d
G [ xalunl da.

=2

Zn [ 4901 0y, do.
and

<1
~ R

d

dt

i 1 1
[ e (397 00055~ 5 K@)l = 5 V) ) d

<!

~ R
where we have used (6.140), (6.141) and (6.142). Integrating this backwards from t; to ¢ty we have :

1
[ e lunto) dos 5

Im/gijaiXR ajﬂn (Agun + /{i(.i?) |un|2 Uy, + V(l‘) un) dga:

1
/XR [Vun(to)]” dgs S

6.143
Let’s say a bit more on how we got the last estimation. We have used the Gagliardo-Nirenberg inequality
as follows
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6.6 Existence of critical mass blow up solutions 150

1 .. _ 1 1
[Vl dae 5 | [ |97 00— 150 lual* = 5 V() ol d

4
+ / i/l g+ [ do

1
Sqt / V2 unf? dgs [ 1/ Vun? dga +

R
= 1/2 2
R = / |Vu,|® dg.

—/XR|Vun\ dgx+f/ 1/2 |Vun\ dg.

A
bc\H

then

/(x;/Q—xR) |V, |? dgzs/ . |V, |* dge < 1
R<|z|<2 R

This last result (6.143) gives us a control at infinity of functions u,(tp) that will help us to get H*
compactness of the (u,(tg)) sequence. Then using Lemma 8.10, see Appendix B, with /|g|dz in the role of
the volume form, we have for any § > 0

H}(R/|gldx) = {u € H'(R?), ({2)°+(Dy)®) (lul+|Vul) € LQ(\/@dx)} o (R?,/]g|dz)

where D, is the derivative with respect to x, defined by its Fourier transform.

Our next move is to claim (6.143) ensures (uy(tg)) C Hji. Once this is done, we know there is a
subsequence of u, (ty) which converges to some u.(ty) € H'(R?).

First, from (6.138), (6.139) and (6.140) we have u,, (to) € H*/?(R?). Now we prove u,(ty) € H} whenever
0<6< 3.

Using (6.143) we have for every j € N

i—1

)

()

/,< |<2i+1 W ‘un(t0)|2 dg, S X,i-1 |un(t0)\2 dg, 5
27 <|x|<29

and since § < 3, summing this over j finally yields

[ @ tuneo)? de = /0<I[<1<> un(to) d9x+z / % Jun (to)? dge

J<\:r,|<29+1
+oo 1
< -
S gy <
j=

The same preocess applied to Vu,(to) instead of u, (to) yields [ (2)° [Vun(to)]2 < 400 O

Eventually, we have proved

un (to) — ue(to) in HY(R?), as n — +o0

Let then u. be the solution to (6.1) with initial data u.(tp). From the H! continuity of the flow of our
Schrodinger operator, we have

V1€ [tg,0), un(t) — uc(t) in HY(R?), as n — 4oo

By the way . admits a geometrical decomposition like in (6.136) with
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6.6 Existence of critical mass blow up solutions 151

YVt € [to,0), Pn(t) — P.(t), as n— +oo

By passing to the limit in (6.140), (6.141) we obtain the H' bound along with the estimates on the
parameters in (6.137). This implies in particular that u. blows up at ¢ = 0. Similarly the conservation of
the L? norm ensures

||UCHL2(dgz) = nETDOHun(tn)”LZ(dgz) = Q>
Recall that from the very method we used to approximate our solution through the geometric decompo-
sition
~ ~ oyl ~
Qp=Ppe VT HY Pp=Q+ O\ e )

which along with (6.136), (6.137), (6.140) and the calculation of the Energy that we have done in the
first step of Proposition 6.5 yields

1 iy 1 )
E(uc(t)) = 5 /gu Oiue 0, dg, — 1 /k(x) luo|* dgs — - /V(x) P dg,
1 1 [ ...~ _ "y C
oz |2 [ 97 0@ 00 Ly~ [ EEEGEED Gn £l
2
_jc/ Aey + ) IQPZP\/Edy]Jro( o)
1

2
~ e | € [ WP a2 cs| o)

k(ac
1 be \ 2
~3 (()\) - C§> ly QIIZ= + Eo + O(\e) —3 Eq

Now from the conservation of energy, we may conclude E(u.) = Fy.

There is only left to prove the estimate about the phase parameter. This may be done using equation
(6.15) along with (6.140) and (6.141) that lead to the rough bound

|(Fn)s| S A%

so that

-
0o D)= - B =15+ (- Bl =

from which we may conclude after integrating

Cs
Yu(t) + 5~ +O(t)

and taking the limit n — 400

2

C
Ye(t) + = =0+ O0(1)

Step 2 H*/2 bound

It remains to prove the bound (6.142). In particular, when done this implies the H>/? bound in (6.137)
by taking the weak limit of H3/2.

U, satisfies

i Optly, + (Ag + V)it = —by — k() @y, |1 |* — V(2) U — Fr
with
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10:Qn + 8gQn + V(@) Qn + k(@) Qn |Qnl® = ¥n (6.144)
Fy = k(z) (Qn + tp) |Qn + i [* — k(x) @n |Qn|2 — k(@) |, |?
Given 4y (t,) =0, and Ly, = Ay, + V using the Duhamel formula

Un(t) =i /t e =0 Lo (4, (5) + k(@) tin () [@n(5)|* + V() Gn(s) + Fu(s)) ds

n

then the Strichartz estimates coupled with the smoothing effect of the linear Schrédinger flow leaves us
with three terms to control

IV anlage, 2SIV allyan a0+ 10P) Bl i + IV (i) 0 s (6.145)

See Appendix B 8.3.2 for more details about that last statement.

First, we deal with the error 1, which is to be estimated thanks to (6.131)

V324, || pas < AS (|Mod,(t)] + e + X3) S 1

where of course Mod,, (t) corresponds to the modulation equation of P, (¢) which is estimated as in (6.62)

and where we use (6.140), (6.141) to get |[Mod,, (t)| < A% and |a,|? < A2, hence
IIV‘”’/anIILi@ e S A3/4, (6.146)

The F,, term is local in y with linear and quadratic terms in 4,. Expanding (6.144) we see

PN IR N N T R T N O T v (N ey
Fn_o{(% —i—)\—%)e xn 7VFn—O<)\% R XZ) o

so that

1 1, 1, 1 _
I+ ) Fallze + (1 + 2l*) VEllz2 < 3 lanllee + 45 I 175 + 3z IVanlize + = llallzs [V s

Again by Sobolev embedding result Theorem along with a Gagliardo-Nirenberg estimate
Sobolev  H'/?(R?) C L*(R?)
_ - 1/2 1/2
GN  liinl|zs S |nl|5" 11Vt o

and (6.140) yields
I+ |2 ) Eallan S 14+ A2 V2|2

Thus
I+ 1) Fallze e S A+ ALV 20|, Lo (6.147)

There only remains to deal with the nonlinear term. A little caution here, remind the symbol V3/2 we

are working with is a generalized non-integer derivative that stands for

V) = oo [ e a0 ds where Fu(@) =a(©) = [ (o) do
R R (6.148)

(2m)?
1
is the Fourier transform, and Fu(x) = / - Eh(€)dE s its inverse
(27T) R2
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6.7 Rigidity of the flow around Qp 153

Then, standard non linear estimates for paraproducts, see Appendix B 8.2.2, show

1952 (@ ) oo S 1952l 22 30 S 1952 22 X2/ (6.149)

where we have used (6.140). Eventually (6.142) follows from (6.146), (6.147) and (6.149). This ends the
proof of our Proposition, existence of solutions for equation (6.1) is now done provided we justify the boot
strap is actually valid, that all terms involved are in control as we assumed they should be when moving
toward blow up time. It is what we do in the next section.

6.7 Rigidity of the flow around Qp

We cannot delay any longer a more precise study of the geometrical decomposition we have been working
with so far. We intend to prove that close enough to the (¢, z) = (0,0) point, a solution to (6.1) that would
be decomposed as in (6.38) must satisfy to some precise and restrictive properties, such as dispersive results
and the estimate (6.8) we have claimed we could prove since the beginning, which basically was

ol + 181 S A2 b A, 0<p S A
This will mean two things for the study :

the modulation of the geometrical parameters built on the decomposition (6.38) is actually stable
enough to ensure the convergence process we have established for the existence proof in Theorem 6.11.

for any two solutions of (6.1) the rigidity of the flow will imply dispersion estimates which oblige them
to be so close they will in fact be the same

For the record, recall estimate (6.8) particularly simplifies our parameters laws since they should satisfy
(6.22). We now want to prove these assumptions are a a result of rigidity in the regime that governs the
parameters (P, €) and that it opens the door to discussions for unicity of the critical mass blow up solution.
We then lead a variational study of the decomposition (6.38) in the same fashion than what it done in | ].

We let k satisfy assumption (H1). In this section we start proceeding in a perturbation kind of way. In
the next section we consider a solution for equation (6.1) which would be given by profile  and a remaining
term e. We then prove the Lemma 6.12 that proves such a solution tends, as ¢ — 0 - that is as we move
forward to blow up time - to satisfy all assumptions we made to build approximate solution Qp in previous
sections. Therefore, for some time close enough to blow up time, our solution will enter in a regime where
its approximation may be sharpened by considering Qp the approximate profile instead of Ground State
Q. So this will prove, the geometric decomposition (6.158) still provides a good description, with all due
estimations on parameters and remaining term e, even when moving towards blow up time.

Then, a localized virial type of estimation, along with a refined dispersion result on the tail of the (6.158)
decomposition - the one induced by remaining term e - will get us to a final argument in which we manage
to ensure the control of the geometric parameters for (6.158), and so closing the loop on our bootstrap
argument.

6.7.1 Variational estimates and convergence of the concentration point.

The existence of a geometrical decomposition for a mass critical blowing up solution, and its consequences,
among which is the convergence of the concentration point, are a well known result based on a variational
analysis. We begin with adapting this one to our metric situation.

Lemma 6.12. (Variational control of minimal mass blow up solutions).
Let u(t) be a critical mass solution to (6.1) which blows up at T = 0. Then for t < 0 close enough to 0,
u(t) admits a geometrical decomposition

u(t,z) = % (Q+e) (t, x;((:)(t)) et ®), (6.150)

for some C parameters (A(t), a(t), v(t)) € Ry x R?* x R with
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6.7 Rigidity of the flow around Qp 154

1. Uniform bound on the decomposition :
ij 1/2 1/2 < 6.151
’g (Oz)—[ij| +|1—]€(0¢)| +||€(t)||H1(]R2) N/\(t) — 0, as t—0 ( . )
2. Convergence of the concentration point :
alt) — o* with k(a*) =1, ¢9(a*)=1j, i,j=1,2 (6.152)
3. Lower bound on the blow up rate :

At) < C(uo) [t] (6.153)

Proof of Lemma 6.12

Step 1
Let
vty x) = Ao(t) u(t, Ao(t) )  with  Ag(t) = IVQIlz2 7
(/97 dsu(t) 6u(0) dg. )
then

[ 1w ®F Vislww)dz = [ u(®) dh. = @I, and
/ 67 (o ) v t, ) 0,55t ) v/ Tg o) dr = A2 / 47 (2) Brult, =) Dya(t, =) dh, — / VO dz

so that using assumption (H1), k <1, and (6.4) one gets

1 1 1
- / ()\0 x) Oivo(t, x) 0575 (t, ) dgrgs — 1 /k()\ox) |vo (¢, 1:)|4 dgrgz — 3 /V()\Ox) |vo(t, :z:)|2 dgxyz

> /|w0|2 dr — = /| @ /|u\2dgz+0()‘0)

and the conservation of energy

1 i 1 1
5 [ 97 000) 0t ) 0y75(0,0) dgnse — [ K)ot ) dgnse = 5[ Va2) (e, g

2
:%/ I(2) Opult, z) O5u(t, 2) dg, — =2 /k |utx|4dgz—f/V(z)|u(t,z)|2dgz
=\ Ey— % (1-X) /V(Z) |ul® dg.

Eventually using (H2), V' > V(0), one gets

% /|Vv0(t,:z:)|2 dx — i /|vo(t,y)|4 dx < % /(V(O) —V(2)) ul® dz +O(Xg) <0, as t—0

From a standard concentration compactness argument along with the variational characterisation of the
Ground State @, this implies we can find (zo(t), 70(t)) € R? X R such that

vo(t, .Jr:co(t))e”‘)(t)—)Q in H' as t—0

In another words, u(t) admits near blow up time a decomposition
1 x—a(t)\ ,;
ta) = (5 ) e,
ut2) = 3 @+ )
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6.7 Rigidity of the flow around Qp 155

with A(t) = A\o(t) — 0, as ¢ — 0 from blow-up assumption, and since the decomposition is set so that

1 l'_a(t) iy(t
u(t,x) — WQ(W> et

one easily deduce from approximate values of mass and energy the smallness conditions

— 0, ast—0
H1(dgs)

€]l e + ’\/E(a) — 1| + ‘%Tr(gij(a)) — k(a)‘ —0, ast—0 (6.154)

Using the implicit function theorem, the uniqueness of the decomposition (6.150) can be ensured through
a suitable choice of orthogonality conditions. We then set the orthogonality conditions on € to be

(617 |y|2Q>:O7 (elayQ) :Oa (6279):0
where € and ey respectively stand for the real and imaginary parts of e.
Let v = Q + ¢, it almost satisfies (6.15)

As Qg ~
1050 + Dgrytra)t — v+ k(Ay + @) vjo]? + NPV ( Ay + o) v = ijAv + ZOZT‘ Vv + 7550

where 75 = 75 — 1. Note that we are currently considering @ an approximate solution of (6.16) or (6.19).
It is a very rough approximation, but since we do not know yet that «(t) converges to o, there is no point
using our approximation Qp for it takes sense only for a(t) close enough to a*.

Now the implicit function theorem leads to the C! regularity of our parameters A and .. Then expanding
k and h around «, and using the Ground State equation

(s Qs ~ ij : ij
i (TAQ + .VQ) +7:Q = (9 (a) — I;j) 82,Q + (k(a) — 1) Q° + g” (a) 0}y + O(A + |e| + |Ve])
Taking the scalar product of that last equation, first with AQ, then with V@Q yields

D AQIE (1
‘H”|QQ||£L2 - (2 Tr(g"(a)) —k(a)) O+ lel), 55 = O+ [iellm)

so that

% N ‘%Tr(g”(a)) —k’(a)‘ M) + el (6.155)

+ |15
X

Step 2 Expansion of the conservation laws

To get a more precise estimation of our approximation remainings, we expand the conservation laws in
the € variables. From the critical mass assumption, we know we have

/ Qdy = / fu(t, 2)[? dg, = / o(s,9)I? dgy = v/Tgl(a) / (@ +26Q+]e) dy+ OO + e 2)

and thus

\/E(Oé){/ﬁley-f—;/dey} _

Using the boundedness of the derivatives of f = 1/|g|, g%, k up to order 2 we have

(1= Vgl(a)) /Q2 dy + O (N + Xel|r2) (6.156)

DN | =

fOy+a)=14+(f(a) = 1) +AVf(a)y+O(N\?)

As already said, and very similarly to the calculation which led to (6.66), the conservation of energy
simply becomes by rescalling
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N Ey =

DO =

[ o0+ ) 0womdg, — [ by +a)lolt dg, + O()
Igl(a){Eo(Q)Jr;(g” — I /aQa Qdy—|— (1-k /Q4dy+ /|Ve|2dy

Jr/Vel.VQdyf/elQ:def/Qz (ef+§|e|2)dy

+ O(A2 + [lell3 + (A + 19" (a) = Iij| + |1 — k(a)]) ||6||H1)}

i) { (370t @) ~1) [ Fav+ 30 -r@) [@ar+ [1veay- [cr@ay

1 g
s [@ e O(V el + (0 lg @) = Iyl + 1= k(@) lellan) |

which together with (6.156) leads to

1 y 2 1
25 = Viglia) { [(zw(g”(a» — @)+ (Vi) -] [Gans g |(Beana) + (1))
+O (N +lellf + (A + g7 (@) = Iyl + [VIgl(@) = 1] + |1 = k(a)]) e||H1)}
Now using (6.154) and (6.71) of Lemma 6.6, one easily gets the following estimate

5 7r(57()) = k)| +1V/Tgl(@) = 1] + i3 S ¥

Step 3 Convergence of the concentration point and upper bound on the blow up rate.

There is only (6.152) left to prove. It essentially follows from (6.155) since

e i+ [ Tr(g(a) = k(e)] + A 0
<1, so that /|at|<+oo

[ /\’ ) .

This implies a(t) — o* as t — 0 and k(a*) = 1, h"(a*) = I;; from (6.151). Similarly since the blow up
assumption at t = 0is A(0) =0

e i+ |1 Tr (g (@) = k(@)| + A 0
3 <1, sothat A() < [Ae] < |t
t

=]

This ends the proof of our lemma.

6.7.2 Strict lower bound on the energy.

From previous section we have underlined fact that center of mass «(t) must stabilize as t — 0 around some
a* where both k and g reach their maxima. Without loss of gnerality we may naturally assume

a* =0, k(0)=1, Vk(0)=0, V() <0, ¢(0)=1I;, Vg(0)=0 (6.157)

Once more, notice the last assumption Vg(0) = 0 is not absolutely necessary. As explained in the
beginning it may be obtained when working with a well suited set of geodesic normal coordinates.

Then, for Ty < 0 close enough to blow up time, |P(¢)|, t € [Tp,0), is small enough for « to be in the
regime described in section 6.2. This induces we can sharpen our previous approximation profile by replacing
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6.7 Rigidity of the flow around Qp 157

Q by Qp which is a small deformation of ). Now we use the decomposition we have long been working with;
for ¢t € [Tp,0) let

o 14 1/2 1 1 A T — a(t) iy(t
w0 = (Gxiam) wamy s @ro 95 ) (6:158)

where e satisfies orthogonaliy conditions (6.42)-(6.46). We also introduced the global rescaled time

¢
d
s(t) = 277—%1—00, as t—0
7, A(T)

Thus, for every s € [sg, +00) applying Proposition 6.5 we get

B>+ B + ol + [lel7n S A? (Eo +Cp + ¢p(a) — Acl) + 0(P4 +P o+ \a|3> (6.159)
where recall Cg is given by (6.58), and

[Mod(t)] S P*+P (laf* +[B°) + P* llellmr + [le]| (6.160)
We claim these estimations bring the following strict lower bound on the energy

Lemma 6.13. There holds the strict lower bound on the energy :

Ey > —Cg (6.161)

Proof of Lemma 6.13
By contradiction, if Ey + Cg < 0, then let F1 = Ey + Cg + ¢r(a) — ACq, for ¢ close enough to 0, one
has FE; < 0, so that from (6.159) we have

b+ 1B+ lal* + llell7n SA?Er+ A%, hence b°+|B° + |of* + |le]F S A*
Then, thanks to (6.160) this yields

As 9
o)
so that

% = 0O(1), and hence In ()\(t)) =0(1), as t—=0

which contradicts the fact A(t) — 0 as t — 0, that is u blows up at t = 0. It ends proof of Lemma 6.13.

6.7.3 The localized virial identity

In order to improve our estimate (6.58) as announced in (6.8) we need to get a more precise estimate on e
locally on the singularity that will help us treat the remaining terms of Lemma 6.9.

Keep in mind, since no a priori upper bound holds on blow up speed, we may not rule out the regime for
which b < A that would make the % terms a negligible part. This makes the (6.99) estimate useless for the
gain might as well degenerate.

It is a Morawetz type computation in the spirit of the local virial estimate that will here help us.

Lemma 6.14. (Local Virial Control)
Let ¢ be given by (6.96). There exists universal constants ¢, ¢ > 0, and a large enough constant A > 0
such that for t close enough to 0, we have :

{ ()\) Hygﬂm +—Im/Ag” )\y+a)3¢(g) dje€ dgy — Co CO)‘}S (6.162)

&
> {laf + [ VeV dy + [ ey} + O (Il + P+ 13P)

with

= [0+ Q@ ay
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Note from (6.58), the terms involved in the left hand side are uniformly bounded in time

by lly @l | 1 ij y _ - < 1ol el <
\— (X)TJrﬁIm/Ag ()\era)alqb(Z)Bjeedgyfcng)\’ S Rt

From (6.58) again, and the finite time blow up assumption

+oo +o00 0
[ (et P+ 18R)as s [ syas= s
0 to

So S

Hence, integrating (6.162) between sg and +oo

oo _lul
/ X {\a|2 + / |Ve|? e VA dy + / le|? dy} ds <1 (6.163)

S0

while on the other hand, thanks to (6.153)

/S:OOA(s)ds/t:)\(Z) — +o0

Proof of Lemma 6.14

The proof relies on an algebraic computation and the specific structure of the quadratic terms in €
appearing in (6.162).

Step 1 Computation of (%)S
We have from (6.22)

A A
b+ — B — K,
N A
where we have made use of both estimates (6.58), (6.62).

by _ bs+b0*—Bi—Ky, b () B + K,
(5).= (F+0)+ =5
+ N Ko+ % V2E(0).(a, @) + O(P?)

We recall that (6.86) along with (6.65) now yields

by +b>—B — K 2 1
D [ 2 Qa5 | [ ar- (R, 45) - (Ret). 46)] =O(lelf +P el +7)

so that from (6.22)
b
(5) 1zl

- —1\[/|62dy—)\31?0 - %V%(O)-(a,a)/QQdy— (Rl(e), AE) - (32(6)7 A@)}

A
+O(POtlaf 4182+ P (b= &) + Plelse + el )
0

(6.164)
5| [ -2 - g vhOL00) [ @2y

— (326%+2@6162+E€%, AZ) - (396%+226162+@6%, A@)}

A
£ (P 1ol + 18+ P (b= 2 ) + Pl + Ielin )
0
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where ¢o = % [19+ p? Q%] pQ* dy.
Step 2 Computation of the localized virial identity.

Our goal is now to compute, for A > 0 large enough, the following identity

1 . As ii _
()\ Im/AgZJ(/\y + a)am(%) Oje€ dgy> = 7)\7(2 Im/Ag T(\y + oz)@igb(%) 0j€€ dgy
+ lIm/ [Ag(b ﬁ e+2A97 Ny + a)(‘?@(%) @e] Os€ dg, (6.165)

+Im/ { +b y+<——2ﬂ) (25—by)}.v( |g|gij(Ay+a))ai¢(%)ajezdy

From (6.58) and (6.62) we have

b-1Ce) o

which implies

- %Im/Agiﬂ'(Ay + )06 (%) ¢ dhy, = O(Allel)

so that (6.165) may be rewritten as

1 g
<)\ Im/AgZj Ay + a)@mﬁ(%) 0j€€ dgy>
1 Y ij Y
= 7/ {Ag(b(A) (8361 €2 — €1 8362) +2Ag97(\y + a)@igb(z) (8561 0j€a — Os€a 8]'61)] dgy

A
+0(Allel3:)

and since

8,0(%) = 80(%) +0(P* (180 + AV6))),  Ag”(y+)0:6(%) = A0i( %) +0(aP?(Ve)
we may simply write (6.165) as
1 ;
()\ Im/AglJ(/\y + Oz)&;gb(%) Oje€ dgy>S

1 2
Y / Aqﬁ(%) (8561 €9 — €71 8562) dy + X/Av¢(%) . (8561 Vey — 062 Vel) dy

+O(Alelin)
Reintroducing (6.76)-(6.77) along with the estimates of Proposition 6.5 we get

<21/\ Im/Agij()\y + oz)@id)(g) Oje€ dgy)

/A¢ (Ma(€) e2 + My(e) €1) dy + — Im/Aw =) . (Ma(e) Vea + Mi(e) Ver ) dy

S

A
+0(A|\e||H1 £ P a4 18P + P2 (b= &)+ Plel2)

1 (6.166)
2 A2 2
=5 Re [ Vo(%) (Ve Ve dy - s [ A%(%) 6P ay
/AW (Q2+2E2)el+4v(2@)61ez+v(Q2+292)62} y
A
3 2 2 2
+0(AH6||H1+P +lol® + [+ P (bfa)wvnenm)
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Step 3 Conclusion
Summing up (6.164) and (6.166), using (6.84) to expand non-linear terms of (6.164) finally leads to

b HyQH%2 1 ij Y _
{ 5 1 + ﬁIm/Ag (Ay+a)3z¢(z) dje€ dgy

S

:i [/[1 mA? ( )] le |2dy+Re/V2 ).(ve,ve)dy—/(:aQ?e%JrQQeg)dy] (6,167

+3 /(AW(%) ~y).[peveed +Qved] dy—)\zéo—%VQk(O).(a,a)/dey

A
+O(Alelfin +P*+ o + 18P +P* (b 5 ) + P el

Notice from (6.114) that —A? = Cy As + O(A?) so the —\? & term may be put in the left hand side.

Now, the choice for the cut-off function ¢ in (6.96) implies

2 2. (Y 2 — vl 2 2 1 2
v P — = > 24 |V -+ + - 2
Re/ Y7€ :76) dy / |:1 5 A ( ):| ‘€| dy /6 | €| dy /|€| dy O( 5 H6||L )

The previous quadratic term is hence to be seen as a small deformation (as always, around the Ground-
State) of the linearized energy <L+61, 61) + (L,eg, 62). It can be estimated thanks to the coercivity

property (6.71), which will ensure the existence of some universal constant ¢ > 0 such that whenever A is
chosen large enough

1yl y
cl/|e|2+/em VeQ] < /e—% \Ve\2+/|e|2—/(3Q2 i+ Q%) +(9(||e\|j§,1 +7>4)

Altogether, previous statements, the bound (3.21) and assumption (H2) V?k(0) < 0 shows that for A > 0
large enough, and t(A) < t < 0 close enough to 0, we have

b [yQl7- ij Y _ ~
{)\ 4 L +51— /Agj(/\era)quS(Z)@jee dgychCO)\

s (6.168)
|yl
of? + / 2 dy + / e Vel dy

This concludes the proof of Lemma 6.14. Note A > 0 may now be fixed once and for all.

+ O(Alle)3 +P?)

6.7.4 Convergence to 0 of & in H! away from the concentration point.

We wish to prove that profile Qp contains all of the solution’s information (in a H' sense) when staying
away from the concentration point (which, for the record, has been chosen as r¢o = 0 € R?). In other words,
the difference between the exact solution u and the approximate solution Qp we have consctructed so far
completely vanish in H' as t — 0. More precisely, working with the original variables, let

2= (2) e @ (e

i 1z T« in(t
u(t,m):(g) Wﬁe(t f(t))e )

Using its very definition, and estimate (6.58) we have

(6.169)
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[a(®)[[2 S AE), lla®)llag S1, Vip<t<0 (6.170)
The goal is now to improve the energy bound (6.170) for the dispersive bound

a(t) =0 in H' as t—0

The first step is dispersion away from the blow up point. From now on and in the next two sections, we
fix n > 0 so that

‘(1—%3:.V)gij =

[ =dy and 5rf2%f2 on 2n<r<d4dn, do>0

Iij—&-O(?“z)’Zl, on|z|=r<3n (6.171)

which we will use in the next section. Now we prove the following result in the region {|z| > 371} away
from the concentration point.

Lemma 6.15. (H*! dispersion away from the concentration point).
There holds :

Yin[|@(8) | 11 2] >8n) = O (6.172)

Remark 18. This is the first time, we really focus on what is going on away from the blow up point. We
have already explained we are considering the metric g is asymptotically euclidean. So the calculations here
will be basically the same as for the euclidean case.

Proof of Lemma 6.15
Let Q, @ be given by (6.169), then @ satisfies

10+ Ay + V(z) = —R — k() |a* @ (6.173)
with
R = k(x) [(Q +a) |Q+al” — QAP — alal?| +i8Q + (Ag + V)Q + k(2) Q] @ (6.174)

Step 1 L? H l3 O/C2 bound away from the concentration point.

Here we use some technical results a bit like we already did in the proof for Proposition 6.11. We will
also use the smoothing effect of the linear Schrodinger flow to claim the space time bound

0
J I s o < 400 (6.175)
to

Starting with the nonlinear term in (6.173), let ¢ be the solution to

10,0+ (Ag + V(2))C = —k(x) @, C(0)=0 (6.176)

Now following the procedure explained in Appendix B 8.3, using successively Strichartz bounds and the
smoothing effect of the linear Schrodinger flow, we have

||<HL2(t070) H3? < k(=) || ﬁHLQ(tmO) HL S ||11Hioc(t0’t) H <1 (smoothing effect)

IC11 2o 1,0y 111 = 1DC N Lox (t0,0) 22 S (1D (k(@) 1> @) || aso gy 0 pass  (strichartz bound)

so that using paraproduct and Holder estimates along with the Sobolev embedding Theorem result 8.2

D (k@) [al* @)[| as < 1al* Da| aps S Nall7s [1DallLe < Nl
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one gets

x s ~12 ~ ~12 ~113
||C||L2(t0,0) ngo/f + HCHLN(tmO) H! /S 1+ H|u‘2uHL4/3(t0,0) W1.4/3 S 1+ H‘u|2u||Loo(t0’0) H /S 1 (6177)

where we have used the L*°((to,0), H') bound (6.170) in the last line.

We introduce the Fourier multiplier D = (1 — A)l/ ®. Note that using our definition (6.148) for the
Fourier transform, for every s € R one has

1
(2m)?

In order to get (6.175), let & = D'/2({ — ). Indeed, ¢ being controlled as seen in (6.177), a H' bound

for w, would bring a H l/ bound for @ as required in (6.175). Then let also x be a radial smooth cut-off
functlon with

Diu(z) = /R2 et (14 ¢ )8/2 u(§)deg, sothat |ullgs = ||D%ullL2 (6.178)

r 0 for 0<r<n,
X = [ X)dp. with X'() =4 1 for m=r<dp (6.179)
0 % for r>5n
and such that
2
V>0, |X| <\'(r) < 1. (6.180)
We claim (6.175) follows from (6.177) and
0 2
/t vaHLZ(QWSTS4n) S1 (6.181)
0

Since D'/? commutes with A, + V, from (6.173) 1 satisfies

i 0 + (A, + V) = DY?R
where R is defined by (6.174).

We compute the associated localized virial identity :

1
2 dt

- —Re/ [(Ag V)i — Dl/QR] (

Im/VX Vo w dg,

vVl
s TGt

.vx} W+ V. VzI)) dg,
(6.182)

. arf - 1 X/(()Tf .
_ " 2 ! 2 _ = 2
_/fX |0,0|* dx + 72 X' |0-w|* dx 1 /(Ag—kv){ 7 ]|w| fdx
1 12 1/2 1 X O f7 ~
+3 /arvx || fdx—l—Re(D R, 3 [AX+ ; }w‘LVX'V“))Lz(dgm)

where 0, = 1 9pw. According to (6.179), x” = XT/ =1on 2p < r < 4n. From (6.3), provided n > 0
is chosen small enough, one may assume as previously announced in (6.171), f > dy and 9, f > % % on
2n < r < 4n for some dy > 0, we have

1
. m/VX Vo dg, > do(/ |0 d95+/ |0 ] dx)
2 dt 2n<r<dn 2n<r<dn
1 r ~12 1 1,2

4/ }\w| fda:+4/8rVX |@|° fdx

Re(Dl/zR, = { X/?Tf

} W+ vx.vw)
L2(dgs)
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6.7 Rigidity of the flow around Qp 163

then, one can easily deduce the following estimate

0 0
o2 — P 212
/t HVU}HLZ(QWSTS%) —/t /2<'<4 <|8rw| + |07 0| ) drdr
0 0 N=r=2n

0 !
51/ / (A +V) [AX+X—W}—8TVX’ )2 f do
4 Ji, f
0 1 "o f 1 _
1/2 L X Or . . 1 L=
+/t0 Re(D R, 5 [Ax—i— 7 }w—l—Vx.Vw)L%dgz) +‘21m/VX.wa dgy

We now have to estimate the terms in (6.182). To begin with, using (6.170) and (6.177), from definition
of w the boundary term in time is bounded

SlFe < allzn + IClz S 1 (6.183)

‘Im/vx.vwﬁ dg,

and similarly

i/t:)/’(Ag—FV) [Ax—l—xlirf] -0,.Vy

Now with the R term in (6.182), first by Cauchy-Scwharz, from (6.2) and assumption (H5)(1), 8;.f =0(1)
so that
y

[@* fdz S a7 + 1017 S 1 (6.184)

X' O f
f

1 /[° 0
<5 10t w25 [ |
<5/ [ 12 (r>n) " L2(r2n)
1 /0 21 11/2p|2 ° 2 2
< 5/ / |? | D'/2R) +2/ <||1D||Lz+/><”|3rﬁ’| >
to J|z|>n to
0 1 O 2
so [ [xioal 5 [ [ japUeRf
o 0 Jio Jjwi>n

for some small § > 0, where we have used (6.180) and the H! bound (6.170) in the last line. And there
is only left to prove the following

0
2Ax .
S [l D Rl |[22¥ d]
to

r
2
L2

!
+ HX— aﬂa‘
r>n) r

Re(Dl/QR, % [AX+ ]w+vx.vw)m(dgz)‘ »

2

0
[o

2Ax ~‘
W

!/
+ H&aﬂz}‘
T T

Lemma 6.16. 0
/ || DY2R||7, < +oo (6.185)
to

Proof of Lemma 6.16 :
With use of Pseudo Differential Calculus, see Appendix B 8.4, one may prove

DY2|2?DY2 =2 Dz +a_1(x,D), a_y €S~ 'is asymbol of order —1 (6.186)

In particular, what will be useful for us now, is that a_; (z, D) is a bounded operator L*/3 — W14/3 C L*
thanks to Sobolev embedding result Theorem 8.1. For details about these statements, see Appendix B 8.4.
From (6.186) we then deduce

|l D2 R, = (D212 DY2 R, R) < |[DY2 2 R[S, + [ RI3. s (6.187)
We then change to rescaled variables
p\1/2 1 x—alt)\ ,;
R t - — S Z'Y(t) 1
(t,2) (<p) T(@) 17203 (1) ( NO) )e (6.188)

where, recalling the calculation that led to (6.15), S should quite naturally be defined as
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6.7 Rigidity of the flow around Qp 164

S(s,y) =i10:Qp + Ly QPQPJrZW|QP|2QP+[A2V(>\Z/+04)+V¢]QP

AV’f() y. Ve as (Vo y\ Osp] =
% (Va4 3 T @r) -Gt g |5 (P 1) + 5 (- 4) - 22]Gr 0a89)
~i 200Gy +;W[(@p+e>|@p+e|2—@7:@pﬁ—eem

which is well localized in y. Changing variables (Z,7n) = (Z;”‘, ), with dZ dn = dz d¢ and from Sobolev

embedding result Theorem 8.3

Dl/sz:(%r)_Q/ H@=2)-£(eV1/2 5 R(2) dz d€

(271-)_2 / i(y—2Z).n 2 1/4 |Z‘ 1/2 ¢!
= —_—— )\ _—
W) | ¢ )\1/2( + Inl*) (cp()\,a,Z)) Yl

=5 = |(2) (5 sw)

Furthermore using (6.12) one easily sees

(A\Z + a) S(Z) dZ dn

1/2
(g) (v +5) =+ 5 +ml) p2=0((C+laP) ), and (- 8)" =DV 40, (0D)
, B A2 -1 B 3/2
with @O = e e e ]~ Ol )
i LYP 5 WA < HY C L2, hence
1/2
(2 —a) [(Z) (v+5) s<y>] = D2y S(y) + O(W|DY2yS| + [a_, (A D)S|)
so we have
1/4 o 2
/|D1/2xR| dx—)\?’k /‘ +X)S(y)‘ dy
< F/\DW v+ S S| dy+ 55 lla .00 D)8
and thus from (6.58)
1D 22 R . < A3/2(||D“2y5lh +[[DY2 S 2 + 1Sl 2ars)
Now thanks to (6.187), this yields
1
l= D2 B[, < W(HDW?JSHLQ + | DY2S| 2 + ||S||L4/3> (6.190)

We now explicitely expand the nonlinear terms in €, in S, from definition (6.174) of R and (6.188), (6.189)
of S, together with (6.31) we have

S(s,y) = —p +i (bs +b% — B1) Qp + i A (% +b) MnQp +i(Bs +bB — Ba) 05Qp

A VE(a) ~
2 k(a) }

3 +0) A0 —i( - 25) [0

- o= 161) Qo+ LX) (G e 4 2eRe(c, @) + 1p P (e 261)]

Thus, (6.41), (6.61) and (6.62) implies

+i/\<%f2ﬂ> aa(gpfz‘(
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6.7 Rigidity of the flow around Qp 165

~ —— ~ 2
S0 =2 G [k w20 Br) 100 200+ (0 1)
+O([M + A(laf + 1) + X fel] e~ )

T , (6.191)
=Qple]® + 26R€(6, Qp) + |Qp? (e+2€) + (Kb % - Ki) Q

+O([X 4 A (Jal? + ) + X2 [el] =11
Then using standard commutator estimates, see Appendix B 8.4, together with the good localization

in space of S(s,y), the bound on the geometrical parameters (6.58), (6.62) and the O(X*) control in the
construction of @p (6.20), (6.21) to conclude :

1 _ 1yl
o D2 R}, 5 55 ([ 19?4 dy el + 2 +1aP)

T . (6.192)
e _lyl
S1+ 50+ ([ 1w eV dy + el
L C Y . ds
and (6.185) follows from (6.163) (remind % = ).

Step 2 Strong H' convergence outside the blow up point.

The strong convergence (6.172) is now straightforward. Indeed, with space time bound (6.175) we have
gained regularity in some region 2n < r < 4n away from concentration point. Now we see any truncation of
a solution that cuts off the region near concentration point may be controlled in some way by that bound,
using once more Strichartz estimates and the smoothing effect to deal respectively with nonlinearities and
additional remaining terms.

Let a smooth cut off function ¢ with ¢ = 1 on |#| > 37 and ¢ = 0 on |z| < 27, then w = ¢ @ satisfies
the following equation

i0yw+ Lyw + k(z) lwPw=F, w(t)—0 in L* as t—0

(6.193)
with F = Ay +2g"(z) 019 0;i — k(x) 9 (1 —4?) [a*a— P R
where R is given by (6.174) and L, = A, + V. To get (6.172) we now only have to show
IIwIILm((tO,O),Hl) —0 as 1 —0 (6.194)

First we write down Duhamel formula for (6.193)

t t
w(t) = et Law(ty) —i / e =DLs [F(1)] dr, hence Vuw(t)=e''F9Vuw(ty) —i / et ML [V (7)) dr

to to

then, we use the Strichartz estimates for the 2-dimensional Strichartz pairs (4,4), (00, 2) along with the
the smoothing effect for the linear Schrédinger operator (again, see Appendix B 8.3.2 for details) to get

191 000) + 190

(t0,0),L4)
S|V (E(@) [w? w)||

£ ((t0,0),L?)

(6.195)
+ [l 7|

£4/3((t0,0),L4/3) £2((t0,0),H1/2)

We estimate the nonlinear term as follows, using the Gagliardo-Nirenberg estimate
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6.7 Rigidity of the flow around Qp 166

HV |w| )HL4/3((to,0),L4/3)

S [[lewfw] + [[lwl® V]

L4/3((t0 0), L4/3) L4/3 ((to,O),L4/3)

SVl (.0).20) 12 I\L4((t 0.29) (6.196)
~ ||Vw||L4 ((to,O),L4) ||uHLoo ((to,O),Hl) ||€LHLOO ((t0,0)7L2)

S Mz to,0) [Vl SERAH

£4((t0.,0),) £4((t0,0),)

for a constant § > 0 small enough, where we have used (6.170) in the last inequality. For the second
term, we make use of the compact support property of Vi), Agt, (1 —?) and (6.175) along with (6.185)

it 2] ol .

< .

£2((to,0),H1/2) ~ I (t0,0), HL/2(|2|>n)) * HUHL2((to,o),H3/2(2n§r§47l)) (6.197)
So(l) as tH—0

Altogether, these last estimations prove

||V“’||L4(t00 )+||Vw||Loo((t0’0),L2)§0(1) as to—0 (6.198)

which ends the proof of Lemma 6.16.

6.7.5 Convergence to 0 in average of 7 in H'.

The goal now is to propagate the H' convergence of % away from the concentration point (6.172) to the
blow up region as well. We will now make use of the refined estimate (6.163) which has been deduced from
localized virial estimate (6.162) and which now implies

[ () e 75 as = [ (e o) o
5/50 i</|e|2dy>ds<+oo

u(t 2
e
t—0 /\(t)

The first step is to obtain a convergence in average in time.

so that

=0

Lemma 6.17. (H*! dispersion in average in time.) There holds
lim — O(i 0||~||2 do) dr = 0 (6.199)
w0 il Jy N Jp T e € 6T |

Proof of Lemma 6.17 : Thanks to (6.172), we may here restrict the H! norm to the region |z| < 3.

Step 1 Morawetz identity.

First, we claim the virial type bound

0 0.2 2 2 —1d
- 2 - al*+ |le(T)||52 + | |Vel“e va
/ / Va(r)| dgwdT§0(|t|)+||u(t)\|Lz+/ [af” + [le( )||§2 JIVel ir (6.200)
|| <37 t (1)

Let x a smooth radial cut off function on R? such that
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6.7 Rigidity of the flow around Qp 167

supp(x) C {|z| <4n}, Vx(z)==z, on |z <3p

1 6.201
frx =h7'V IV — 3 Vx. V(h_l) is positive semidefinite ( )

thus 07,x = 0 for j # [, and 97x = 1 on [z| < 37, so that the form f, is given by the matrix

1 y .y
(fx)i,j:(l_ix‘v)g”zjijv 17]21723 |$|§377

thanks to the choice we have made for n > 0 small enough as announced in (6.171).

Then, to control the H! norm of @ on region |z| < 37, one may as before use an estimate on the localized
momentum. So, recall 4 is solution to equation (6.173), one gets

d _
—T Vi
T m/Vx Vuu dg,

1 V(lgl2 _ _
:—2Re/(Lg&+k(x) @i+ R) [2 (Ax+ ﬂj‘ ).vx)mvx.va} dg,
f (6.202)
V(lg|z -
) o] i

.Vx) u+ Vx.Vﬂ} dge

. 1 - - 1
= 2Re/ [g“@laix —3 aig" 31)(] 010U dg, — 5 / (Lg + k(z) |ﬁ|2) {Ax +

V(lglz)
lgl2
where @, Q and R are defined as in (6.169) and (6.174). We estimate the various terms of the right-hand
side of (6.202). Using (6.170), and a Gagliardo-Nirenberg estimate, we have

2

+% /Vx. [VV () + [af? VE()] |l dgz—2Re/R B (ax+

‘/(Lﬁk(w) jf?) {Ax+ vgﬂ;)

SlallZs +llalzs < lalize + Gz lalz < 2%

.vx] af? dg, — /vx. [VV(z) n |a|2wc(x)] @ dgs

(6.203)

Then, recall from (6.191)

~ —_ ~ p2
S =Qplef +2cRe(e, Qp) +1Qpf (e+261) + (Ko 2 = K5) @+ O([X* + A(Jal + 1) + A2 [ef] 1))

and hence, making use of property Vyx(x) ~ = near the origin, it is now clear that

1 V(| _ _
‘Re/R(:c) {2 (Ax+ |(g£|J|§ ) .Vx)ﬂJrVX.Vﬂ} dg,

/S(y) [% <AX + V(;f']f) .Vx> Ay + a)e+ % Vx(Ay + ). VE} (g)

1 _ lul
< v [|a\2 + 234+ HE”%z + / \Ve\ze VA dy]

S

1
A2

|g|édy‘ (6.204)

Eventually, we inject (6.203) and (6.204) in (6.202) and integrate in time, then we use property f, 2 1
and (6.153) to get

[ [, wsores [ f i v

0 0 .
n 1 _ 1yl
5 [Im/VXVﬂﬁ dgm:| +/ 32 |:‘Ck|2+ ”6”%2 +/|VE|2€ 7 dyjl dT+/ )\(T)2 dr
t t (1) \

0
- 1 _ vl
Soflt) +a®lls + [ sz [laP + el + [ Ve dy) ar
¢ A (7')
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6.7 Rigidity of the flow around Qp 168

where we have used (6.170) which ensures

[zm [ Vx. 90T dga| £ [Vales il <l

. . . 1 O T _
and (6.200) is proved since lgr(l)m Ji A(r)dr = tlg)r(l))\(t) =0.

Step 2 Averaged in time dispersion.

We now divide (6.200) by [|t| and integrate in time. From the pointwise lower bound (6.153) and the

dispersive bound (6.163), once recalled that % = 75, we have

101 ) ) 5 _lul o1 _lul

- < 2 2 2

" / oy el + el + [1vep e ayar / oy ol + el + [ Ivep e ayar
—0 ast—0

Similarly, from Cauchy-Schwarz estimate, and then (6.153) together with (6.163) again

1[0 fla(r)| Olla(mz. NP 0 dr\M? O la(r)l2. , \1/2 O lla(r)lfZ. , \/2
= Lt SaA1F Vil < WA /L2 - < LAY g < LA SaALD Vg
|t|/t ER / e O / ] ~</t &) ~</t 55t 4)

+oo q 1/2
:(/ X||e||%2do> —0ast—0

Thus, (6.199) is proved, which concludes the proof of Lemma 6.17.

6.7.6 Control of the modulation parameters.
We now claim the H! dispersion (6.199) together with the conservartion laws imply the sharpen control of

the modulation parameters we have announced in (6.8).

Proposition 6.18. (Pointwise dispersive bounds)
There holds the pointwise bounds :

o + 18]+ [lelar S A2, 0<pu SN (6.205)
b(s) 1
— — | <
t 2
AMt) = =z +O(tF),  forto<t<0. (6.207)
0

Moreover, there exists vy € R such that :

V() = —%g + 70+ O(|t]) (6.208)

Remark 19. Note that (6.205) imply the zero momentum limit }inéImeuﬂ =0 so (1.9) is proved, and
—

also sharpens the bound (6.170) by a factor .

Indeed, let G =V + % (p% — %), so that using (6.41) one easily sees

Im/Vuﬂng: ! )/[(E+e1)g(@+ez)—(@—%—ez)g(E—kq)}g\/@dy

Ak (o
1

= Me(@) {/(EV@—@VZ) dy+ O\ + |€||H1)} =0(\) =0, ast—0
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6.7 Rigidity of the flow around Qp 169

Proof of Proposition 6.18 :
Step 1 Control in average of a and .

We claim

fim / o / @ + Vj—f) da) dr =0 (6.209)

First, we deal with . From the pointwise bound (6.153) and the dispersive bound (6.163)

0 2 0 2 +o0 2
N - Tyl PR
t s

which proves (6.209) as far as « is concerned. Now dealing with /3, we have

. B B8 a o As
(57), =a 3 +85 -5 5
1B+ (—bB+Bs). S+ b2 (Y 9p).
A (o) 50T ;)5 (6.210)
.
A +0) 55

+(ﬂs+b5782).g—</\7
= 2|8 + By 5 + O(IMod(t)]) = 2|8 +Io(a) .a+ O(N* + [e]|32)

where we have used (6.22) for definition of B, and (6.62) in the last line. Integrating (6.210) in time
between s and 400, using (6.58) which imply that % — 0 as s — +o0, we obtain :

+o00 als).p(s oo e
2 [T ipde =~ LB [ ey ado s [T 000 + el do

+o0 +oo
< Ja(s)| + / (Ja(0)[2 + [le]22) dor + / X (o) do

S

Now dividing that last estimate by |7|, changing variables - % = )\—12 - and using (6.163) yields

1B g <ol 1[0 2 _do
|T‘/ ~||+|| (l()""”HL2 |/)‘

il 0 2 2 L o
St [ (lalo) + el) A3(0)+ 1)

<o

Integrating once more, using Cauchy-Scwharz and (6.163) again, we have

° %o O la(r)]? /
tl/ TI/ L ~|t|/ ||T| <1>5(/t |x§<3|> ar) + o)

+o0 q 1/2
<(/ |a|2do) +o(l) -0 ast—0

~

hence (6.209) follows for 5 as well.
Step 2 Limit of % on a subsequence as t — 0.
From (6.209) and (6.199) we have now

Iozl2 18P llellzn _
t%O t|/ |7_/ BVa )\2 + 2 )da)deo

This obviously imply the existence of a sequence t,, — 0 such that
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6.7 Rigidity of the flow around Qp 170

. Ja@a)] | 18E)] | leCa)llmr
R v s T s vy el (6.211)

Injecting this into (6.70) yields

Eo+ce-(5) g [P Qs (";‘E;:;')Q " <'f§tn§') + (1)l (A(t)n”)ﬂlf £ Ata) + la(t)

so that, recall definition (6.104) of constant Cy

. b(tn) 2 Ey+Cg 1
| _ _ 1 6.212
e (A(tm) TP (6.212)

Then, observe from (6.164) the bound

1(2) |5 2 (1ela +102) + 0002) 6213)

[0,

Hence, £ has a limit as s — 400, so that from (6.212)

and thus, (6.163) ensures

b 1
——+— ast—0
A Co
Yet that limit cannot be fc—, since it would contradict the finite blow up assumption. Indeed, since

A(t) > 0, and from (6.58), (6.62), one gets

A
A 7’:7‘; b‘<A 6.214
t T \ DY +0| 3 ( )
so that & X —C— would mean at the same time A — 0 and A\; > ﬁ which imply A can never go below

a certain posmve constant, thus certainly does not tend to 0. Eventually

b(t 1

m 20 _ L

t=0A(t)  Co

At last, injecting this into (6.214) and then integrating in time yields in particular the pseudo conformal
speed :

>0 (6.215)

At) = % (1+0(1)), ast—0 (6.216)

Step 3 Improved bounds.
We now claim the knowledge of the limit of %, together with monotonicity result (6.162) and the conser-

vation of energy will bring a spectacular improvement on the bounds of ||e|| g.
Indeed, we integrate the local virial identity (6.162) between s and s,, and then let ¢, — 0.

First, the boundary term in t,, is estimated using (6.58), (6.215)

( ZZ ) ”yQHL2 (Sn Im/Ag” (\y + «) Zqﬁ( )@e(sn)@ dgy — €0 Co A(sn)

_ (tn) ||le| 2 le(tn)2 1Ol
- ((tn)) e | ( )\(tn)H +>\(tn)>%CO4L as t, 0

and thus V s > 0, from definition of Ky in Lemma 6.10, and of ¢y in Lemma 6.14

(6.217)
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6.7 Rigidity of the flow around Qp 171

s 2, g _
(f\((s) — Cio + Ky Cy /\(s)> % — %(S)Im/Ag” Ay + «) &d)(%) 0je(s) e(s) dgy

400
>/
S

so that from (6.58

~—

/N

(&
S (laf + llel22) + O(P* + (82 + llel3) ) do

~

Foeq b 1 oo
/ (Je® + llelF2) do < (ﬂ — =+ KoCy A(s)) + [l€ll 1 +/ (A + 181> + llell3) do

A As)  Co
(6.218)
We now recall (6.70) implies
2 2 2 A2 2 _4\3 2 4
1BI° +lal* + el S Gz = 0" = X (2Ko = K2) + A () + 4
0
with (6.219)
9c P -2 P Ap -2
Ko =2 [o@ay|5al 2 te(e) =250 3 ole)
where ¢ () is defined in (6.34). Dividing by A2, we obtain
2 2 2 1 b2
ﬂ+ﬁ+ lellz —5 — 5 — A (2Ko— K2) +lg(a) + N° (6.220)

PO AL VAN e

Now, multiplying (6.218) by f’\((i)) + C%) and adding to (6.220), noticing thanks to (6.110) that the terms

f\i; - Cig -+ 2 Ky A cancel each other yields

181> | lal* | el Ml R 2
V—Fv—F )\2 + i X(|O&| +||6||L2)d0'

+oo
< Kod+1p(a) + A% + A4 B2 + el 3 do (6.221)
H

+o0 )
§A+/ Mdo <t <A
where we have used both (6.58) and (6.216). This yields the improved bound

a2 + B + [lellF < A°

This proves the pointwise bound (6.205) for a and 3. It also proves the property about parameter p by
estimating the integral in definition (6.9).

Now let’s turn to the proof of (6.206). Integrating the localized virial identity (6.162) between s and 400,
using (6.215) we may estimate

+oo 1 +oo
SA+ [ 5 o+ ) do+ el + [ X S0

S

A(s)  Co
which proves (6.206). Then, (6.207) simply follows from (6.62), (6.205) and (6.206)

b(s) 1 ’

As b 1
O(») :7+b:>\()\t+x) :A(At+5+0(x))
) 0 (6.222)
— =0(Jt
& = Ot
which proves (6.207) by integration in time. Eventually, using also (6.62), (6.205) this implies

o ()

and thus \; +

d Céy) 1 CExN 1
\a(“T)’—ﬁ 2 \—ﬁ

= 5 (181 + O(tF + |a + |Mod(9)])) £ 1

Vs —
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6.8 Uniqueness 172

which finally proves (6.208).

Now to prove the last refinement of (6.205), we use the result of Lemma 6.9, proving estimate (6.116)
with use of the bound we have just proved ||e||z1 < A3/2 and the refined bound (6.59)

lellze S A+ laf® +p S N°
Then, since we have just proved )\% = ﬁ + 0(%) pe %, recall (6.116) proves

[ e
Tg + ||U\|12Hl(dgm)>

using also (6.117) to get }111(1) Z(t) = 0, integrating dt L hetween t and 0 yields
—

dl _ b
>

=2 7 [, + OO + Nl ,)) 2 O (N +

0 Jua(r 22 0 lla(r 22
I(t) £ / (WH%H|a<r>||zl(dgw))dfsv<t>+ / (”(;(Z)(“g“+||a<r>|ip<dgw>)dr

t

Now using again Lemma 6.6 and (6.59) in the same way that we did to obtain (6.118), one gets

a(t)|3 o ). 9z ~ 2
il + B < i+ [* (PORRO) iy ,) dn

From Gronwall Lemma, one may eventually deduce the refined bound

)]z
IVa)|z. + A()L SA)

This concludes the proof of Proposition 6.18.

Remark 20. We have finally proved the P parameters are not of same orders, and that compared to \, «
and B are of order 2, b is of order 1 - that is b~ X\ - and 7 is of order —1.
This also completes the proof of (6.8), and therefore justifies the use we have previously made of it.

6.8 Uniqueness

First of all, we will need to restrain our choice of the metric g as we need some refined estimates about the
remaining tail element € of the profile Qp we have built a NLS solution with, along with refinements about
the geometrical parameters we have used, so the uniqueness is ensured following the procedure that was
already used in [ ]

6.8.1 Refined estimates under stronger assumption

From here, we claim that whenever assumption (H4) holds, the bound (6.8) we have used from the start can
be improved to

la] + 18] S N2 (6.223)

Therefore the computation of the approximate profile is simplified, since many terms we had to deal
with are now negligible : all O(P(|a|?+[B]> + |a||8])) disappear in the 1p remaining terms, so that we no
longer need to introduce parameter y at all, while O(P? (Ja| + |8])) terms are hidden in the fourth orders
approximation terms. The § law is not noticeably changed, while one should notice now that
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By = —% o> Ky + O\, By =ALo(a)+ A\ Cs, with :
-2

K = |QIIz: |4 Qll 2

Lo(a) = V?k(0).(a, .), C3=Q| 7 W(o)/,o2 IVQ|? dy,

and moreover (L+T2,AQ) = (L+T3,AQ> =

(6.224)

In particular, the conservation of mass for profile Qp, and the computation of the P laws are improved
in the following way

= 1 K
Re [« @r2laldu+ [ 1P dy— 1310 [ Q*dy=O(P*+1af + P el
K —2
(@) s and K =2 jal QI £ Q2

The last two bounds prove ; (Bi + K;) = O(A*) and may then be used to improve the backward
propagation of smallness Lemma 6.10 conclusions that become

(6.225)
so that

lla®)lz- < llatt)lI7.

IVa@®lz: + 3 @~ IVt Ollz + () +2%(t) (6.226)
’;(t) - Cio‘ SR, A+ cio’ SN() (6.227)
‘X ¢ ‘ < ‘?(t)) < A(t) (6.228)

notice also the following refinement that allows one to get a A® remaining term in (6.226) and is a
consequence of the gain (6.223) on the estimates of o and 3 :

dI

dat = )\4 /| |* dgo + O(K* X + ||al|3) (6.229)

Having done all this, the Proposition 6.11 that proves existence of a NLS solution with profile Qpc and
tail remaining term €. may then be improved with the conclusions

t
el S AS Maclmr S AL aellgae SN2 A(t) + 5= = O(AN())
Co
b 1 o2 (6.230)
FPL AN ON®), ol 418l S AL 7e ===+ + O(\)
Then there is only left to go back to part 6.7 to 6.7.6 and see what refinements there are. Nothing changes
really before 6.7.6 and the third step of the proof of Proposition 6.18 in which we actually get the improved
bounds. Now rewrite (6.220) and (6.221) with new improved bounds, knowing there is no longer the I ()

which was dismissed earlier for being of higher order and that Ks = 0, one has

181>l el /*‘” L, o
— + =+ + la|? + le||22
22 22 22 s ( L )

. (6.231)
<2 +/ (A 4+ 182 + [elfr) do < X2

so we actually prove any solution built with geometric decomposition (6.136), using the profile Qp that
we have constructed in the first sections and with parameters solutions to the laws described initially in
(6.18) and then verifying (6.62) and (6.63) are also satisfying (6.230) as proven in Proposition 6.18

| + 8 + el S X, (6.232)
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t

bt) = =gz + O(It), forto <t <0, (6.233)
0

A(t) = —Cio +O([t), forto <t <0. (6.234)

Moreover, there exists 79 € R such that :

%
%w=—77+%+£XM) (6.235)

Eventually, the backward propagation of smallness lemma which conclusions were improved in (6.226)-
(6.228) now yields improved bounds on the e remaining term as we claim the previous improvements yield

[a@®)lc: S A @), [IVa@)llee S X)) or [le®)m S A (1) (6.236)

To prove it, first decompose u according to the geometrical decomposition (6.38). Then, let ¢,, — 0 be an
increasing sequence of times. From previous improvements and bound (6.59), one has then ||e|| 2 < A* hence
@l L2(ag,) S A*. Thanks to Proposition 6.18, it is now clear that assumptions (6.105)-(6.107) modified as

above, of Lemma 6.10 are satisfied at any ¢,. In particular, there is a time ¢y < 0 such that we have (6.109)
for any to <t <t,:

()17
A%(t)
Finally, let n — +o00 and (6.232) yields (6.236).

IVa(t)||7- + N ()

< Iva(ta)lz +

We then look forward to proving the solution we built in Proposition 6.11 is actually the only one blowing
up at T = 0, o* = 0, with energy Ey > —Cg and phase parameter 7y given by (6.235). In the sequel, we
will call u. that solution given by Proposition 6.11.

So far, we have proved b ~ A which provides the exact blow up speed, and we have obtained the dispersive
behavior for the remains @ of the approximation

@—0, in H' ast—0
We now need to prove that given w a solution of (6.1), we have u = u.. Again, as in | ], we will
proceed in two steps.

First we will show the refined estimates of Proposition 6.18 together with the Backward Propagation of
Smallness achieved in Lemma 6.10 imply the strong H' convergence

ue—u—0, in H' as t—0

Then, we will have to show the estimates obtained for u — u. will be strong enough to treat pertubatively
the growth induced by the null space of L9 = (—Lg+1-3Q%—-Ly+1—Q?), with Ly = Ay + V, when
linearizing the equation close to u. and running the estimates of Lemma 6.9.

Both these steps will make clear why the construction of an approximate solutions with an error term of
at most O(A\%) order was needed.

6.8.2 H' convergence to the critical element.

We claim the following dispersive property which somehow uses all previous estimates on the solution and
is a key result for the proof of uniqueness.

Lemma 6.19. (H' convergence to the critical element)
There holds the strong convergence at blow up time :

w—u,—0, in H' as t—0 (6.238)
More precisely

[l — uel| >

i <P as t—0 (6.239)

HV(u - uC)HL2 +
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6.9 Energy estimates for the flow near u.. 175

Proof of Lemma 6.19
Step 1 Comparison between the modulation parameters of v and ..

Let b, A\, a, 8,7y denote the modulation parameters of u and b, A., a;, B¢, 7. denote the modulation param-
eters of u.. We claim

A — A lo — acl
1| It]
The proof of (6.240) is rather technical, and will be done in Appendix 6.11 according to what is done in
Appendix C of | ]

+18=Bel+ v =l S It (6.240)

+|b—be| +

Step 2 Comparison between u and u..

(6.239) is now a simple consequence of (6.236) and (6.240). Indeed

1Q — Qcll 2
1|

|72 N Ue|| 1,2 .
IV = )z < '|L' T |Vl + ”|t Ve +

||u_uc||L2

T +IV(Q — Qo)llz2

Thus, thanks to (6.240) a simple computation yields

1Q = Qcllz= S 181, 1V(Q = Qo)llz= S [t
and (6.230), (6.236) then imply (6.239) and concludes the proof of Lemma 6.19.

6.9 Energy estimates for the flow near ..

Let us now decompose :

- = = - P % 1 x — ac(t) ive(t
u=1u.+u, ultx) = (ipc()\C7amy)> ACROIEEEND) e(t, ) ) et 7o) (6.241)

Here there is no further orthogonality conditions on e, neither is there modulations equations on the
parameters. Indeed, there is no uniform well localized bounds on the 4. part of u., and the only control
there is on the 0,4, part is given by the H3/? bound (6.230). However, we have from (6.230) and (6.239)
that

ol = S X% fall 547 (6.242)
and that this is sharp enough a bound to treat pertubatively the instability generated by the null space
of (—Ly;4+1-3Q* —L,+1—Q?). Let

(Gl

and

Secal(t) := (61 , Q)2 + (62, AQ)2 + (61, |Z/|2Q)2 + (627 Q>2

9 9 (6.244)
+ (617 ZUQ) + (62 ) VQ)
We first claim the following energy bound :
Lemma 6.20. There holds for t close enough to 0 :
Scal(T) O Scal(r)
N(t) < 6.245
W52 em T N (04
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6.9 Energy estimates for the flow near u.. 176

Proof of Lemma 6.20

Tt is a consequence of the energy estimate (6.99) together with the a priori bound (6.230).
Step 1 Application of Lemma 6.9.

Let Z() be given by (6.98), we claim that

[l Seal(t)\ _ dI

We are willing to use Lemma 6.9 with w = u. = (uc)1 + i (uc)2. Note that the bounds (6.92) hold from
the proof of existence of . in Proposition 6.11, which was refined to the bounds (6.230). Moreover 1 given
by (6.91) is now identically zero, since u, is an exact solution. Hence (6.99) becomes

T 1 = = =
C;—t =2 Im /k(w) u? 42 dg, — Re /k;(x) Orue (2|ul? ue + u?Tg) dgy
be |a|? 9, [T — U= 1 o (T — e\ |ul?
+)\7§ [ BYl dgm—l—Re/Vg(b( 5y ).(Vu, Va) dg, — Ve /Ag(b( e )7 dg. (6.247)
id T — Q¢ x99 =9 J— ”,ELH22 =12
+)\C’Re/AgJ8i¢( oy )k(x) (2uc |al* + 7w w*) O;u. dgm} +(9< )\EL + ||a|7:

_ Now we consider the first two terms in the right-hand side of (6.247) and expand u. = Q. + 1., with
Qc =2 +1 @c

- ;gIm/k(x) u?‘,? dg, — Re/k(x) Opue (2|02 ue + @2 g) dgs

1 - R
L /k(x) 527 dg. _Re/k(m) 9,Qc (282 Q. + @2 Q.) dg. (6215

1 -~ A ~ ?2 ~ =0 ~ o =
- )\—gIm/k:(a:) (26,0, +32) & dgw—Re/k;(x) 0,00 2|77 @ + 2 o) dgs

_Re / k(2) Briie (2 [ Qo + 72 Qo) dgs — Re / k(z) Brite (20 G + 2 ) dgs

Now, we may rewrite the first two terms in the right-hand side of (6.248) the same way that led to (6.129)

1 ~o T2 ~ Zio A o X
- )\%Im/k(z) qu dg, fRe/k(x) hQc (2]ul? Qe + w? Q.) dgs
b ~ = = S A <= ~ ~ >
e [k [(0 25 4456, (042692 6210
be T —a. P lal2: | =
- ):,R’e/ (T) k(ﬂl‘) (2 |u|2Qc +u2 QC) VQC dgw + O( )‘EL + HuH%-Il

We then treat the next two terms in the right-hand side of (6.248) by Holder estimates and (6.230) to
get

1 -~ A ~ EQ ~ o ~ o =
‘ - )\—%Im/k(x) (2 e Qe + uf) u dg, — Re/k(x) WQc (21u|? U + v ac) dg,

1 ~ - ~ 1 . = ~ . =
< G el 13120 + = el 1124 + 19l e il 22 124 (6.250)
A A
C C
=12
m -
< Ml iy,
3
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Indeed, recall as in computation (6.127)

~ (o). VE(ae) ~ At ~ P\2 A (o)t + (M)t (T — ) T— 0N o
Qe =~ 2k(ae) Qe Ae @ - (@) T(ae) 172 A3 'VQPc< Ae )6 i (6.25)
- 3 0Q —ae\ drpe '
+i(ve)t Qe + (ﬁ) k(ac)11/2 N (Pe)e 8%3726 (33 )\COé ) eive _ 215%0 Qe

which is to be estimated only with bounds (6.230), and one may check the worst term is generated by

(T\—)’ in the last term so that

1
0G5 55

and so one gets (6.250).

To deal with the last two terms in the right-hand side of (6.248), we need to focus a bit more on the
equation satisfied by 4. and its remainings

i Oytie = —Lytu. — k() (\uc|2 e — |Qe)? QC) —

Ve =10iQc + LyQe + h(2) Qe Qe
Expanding this term like we did with (6.131), then using (6.62) and (6.230)

(6.252)

~ Mod,(t) + |ae|® + A3
ez < 3 <

Now, using this together with (6.252), integration by parts, Holder estimates and the H?3/? bound in
(6.230) yields

|Re/k(9c) Aite (2|02 Q. + 2 Q) dgy fRe/k(x) Ayt (2|02 Gie + 12 Te) dgy

5 HﬂC”Hl‘/2 [H2 |5“‘2 Qc + ﬁ2@”H1/2 + ||2 |ﬁ|2 Ue + U uCHHl/z]
- [[8(@) (el v = 1Qel @c) + Bell 2 (14 1VILoe) [IQellnoe I3 + el 2o 3]
< Iz,

< T Nl

(6.253)

There is but one last term in the right-hand side of (6.247) we need to compute

Re [ Ag(@) 0i0( 112 ) Ko (2 e + 8 w0) T d,
- Re/Agij(x) 5‘@(3;14 AQC) k(z) (212 Q. + % Q.) 0,Qc dgy + Error

where the remaining Error term may be handled with Holder estimates and (6.230)

(6.254)

(Brror| < ) k(o) (23 0 + 77 9,0 da

Re/Ag”(x) aiqb(xA)\a

+[Re [ 4g() am(j—;j) k@) 232 Qo + 7 Qo) By dgs

(6.255)

@ — Q¢ 219 ~ 2=\ =
Re/Ag A)\ )k(gc) (2]a]* e + ) Ojtc dgs

< (IVQellze llaclzz + 1Qcllzz I Vacllz2) lal7a + llac] o Vel z2 1l Ze

|3
<
C
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Eventually, summing everything up, we obtain the following estimate

dZ b, |u|? ) 1 0 (T — |a*
thg[ v dg;,;+Re/V o(*; i ) Vi, Vi) dgs — o [ A2e(T . ) S dge
i — Q. T — Qg 9
+ACR6/{A99@¢( 5 ) ( . )j}k( 2) (2ue [if? + 5 i2) 0,777 dga (6.256)
— K@) [(Qu +252) 8 +45, 6.+ Q7 +262) ] da. +o<' e 4 g ||H1>
changing variables with (6.241), and recall
_ﬁ% 1 ~ T—Qc\ 4, _ Yy Voo 2
Vu_(@c) k(a )% /\2 {v+ C}(Q7)C—'_€)<t7 Ae )e’y’ CI)C_PQ Pe _O()\C)

(6.256) may be rewritten in the same way as we have already used in step 3 of the proof of the backward
propagation of smallness Lemma 6.10

dT _ 1 b
dt  klaw) M

[ kAt al) 144 2 2\ 2 5 2 2y 2] P
/E k(ac) I:(‘Q'F’J +2Zc) €1+426966162+(‘Q7’0| +2@c) 62i| Edgy
+re [ (agi00(L) -y, L RO F A (5106 26, )0.0m L d
g G; A Yj 00 k(ac) € P. T € WP, ) UiP, ©0 9y
lallz: =
+O< AgL + a3

from (6.242) and since £ dg, = dy + O(\3), = %«Sﬁr) =1+0(\?)

Az(b( ) p Ac Ac 4
/(1— e >|2 dgy+Re/V2 ).(Ve-i-j@ce,Ve-l-?@ce)Edgy

dZ b

dt T k(o) A

+ Re / 2]e] Qp. + € Qp.] {Ag“(Acy + ac) 0¢¢(%) - yj} 9;Qp, dy

<L+€1, 61) + (L_eg, 62) — ;?/Af@(%) le|? dy—l—Re/ (V?J(b(%) — Id) (Ve, Ve) dy

all7-
+O< AQL + [lall7

so that from uniform closeness of Qpc and @ along with (6.96), the choice we have made for A > 0 so we
could get some localized virial control in (6.167) and (6.168), and the coercivity property (6.71) of Lemma
6.6, that we may conlude as we did for the proof of (6.130) which may be refined with a O(K4 /\5) rest

instead of O(K*A3) thanks to (6.225)
T _lul a2, .
Cth 2 % [/|€|2dy+/|V6|26 VA dy + O(Scal(t)) +(9<”1f\”; + ||a||§,1> (6.257)

This concludes the proof of (6.246).
Step 2 Coercivity of Z.

Recall from (6.98) the formula
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I—l/iﬂ’()a:a:d +7 |“|2 /A gige( L2 o,ia d
T g ) 9Tt G 2 e i A)\ FuY e
1 ~ 1 = =
— 3 [l it g+ [ k) el g+ [ k@) f? [(ae)y 1+ (a0 o] d.
1 ~ 1 et =
) /V(:c) lue + ul? dg, + 3 /V(az) luel* dge +/V(m) [(ue)1 1 + (uc)2 t2] dgs

As we did proving (6.246), by expanding u, = Q. + . one may get thanks to (6.242) the rough upper
bound

1< O 4 i >0 as 10 (6.258)
Then, very similarly to the proof of (6.118), using also control of interaction terms such as those we
handled in (6.250), (6.253) and (6.255), we may obtain the lower bound

1 c
I() > 55 | (Lear @) + (-2, e2) +o(||e||%p)] > 5 [leli3z + 1 Vell3 = Seal(t)]
el , - ¢ (6.259)
Jal3: | omypn  Scal(t) I3 Scal(t)
> 5 — > ;-
> O[5 +IVillE - =57 ] 2 ¢ B + il - =55

To finally get (6.245), we now integrate (6.246) between ¢t and 0. Using (6.258) and (6.259) we have

Scal(t [|]|? ~
[ =30 - 70 £ S0 Ve,

Hence (6.257) and (6.258) yield after change of variables

Seal(t) JFOIZ:  1=ns o (01 (I N\, O Seallr)
N e 0l 2 [ Ac< 22 Tl ””’“)d WM () d]

C

[ (S o [ S

which involves

@3> = /0 Jla(r))12. ) Scal(r) /OScal(T)
o (U5 ) [ (Mg vt Jar oo S+ [ 505 o

that eventually yields the wanted estimate (6.245), since from (6.230)

0 alr ) 9 0 a(r 2, = 2
/t i(HA(?()”)LJFH (r )||H1>d7'2 ﬁ/t (%Hu(ﬂlml)dT:@(N(t))

This concludes the proof of Lemma 6.20.

6.10 Control of the scalar products and proof of Theorem 6.2

To achieve the unicity proof, there is now only left to control the possible growth of the scalar products
terms involved in estimate (6.245). So, we claim

Lemma 6.21. (A priori control of the null space).
There holds for t close enough to 0

Scal(t) < |tV |2 N(t) (6.260)
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Let us assume Lemma 6.21 and estimate 6.260 are proved and conclude the proof of Theorem 6.2.
Proof of Theorem 6.2

From (6.245), (6.260) and the law A. ~ |t| as shown in (6.230), we have for ¢ close enough to 0

N(t) S ItV2N d SN ()

and hence N(t) = 0 for ¢ small enough. From definition (6.243) of N, this yields u = u. and achieves the
proof of the Theorem (6.2).

Proof of Lemma 6.21

The proof follows by deriving the null space close to Q”pa to sufficiently high order and reintegrating the
corresponding modulation equations from blow up time. The worst behavior is on the even terms where the
modulation equations are a deformation of the ones for L, L_, and will roughly correspond to the system
of ODE ’ s

(0:80) =20 @), (0. %) = 4(040). (e00), = (s )

with initial degeneracy provided by the L? norm conservation law (6.65) and the a priori bound (6.242) :

61, /I # < llellz2 Ac(t) VN () S Xe(t) Ae(t) VN (2)

The control of the worst paramater (related to the phase) requires

+oo +oo +oo
‘ / / / 61 83 ) ‘ dS3 dSQ d81

+oo +oo +oo
)V N(s) / / / M (s3) ds3 dsg dsy

Ac(s) VN(s)

S

<

This implies (6.260) and explains why we needed a small enough estimate ||¢]| 2 < A2 in (6.239), (6.242).

Let us now implement the above strategy which requires being careful with respect to polynomial losses,
and in particular demands a high order approximation of the null space close to Qpc for which we have been
working hard computing the approximation up to the fourth order.

Step 1 Approximate equation in conformal variables to the order O(A2).

Let v, w be defined from solution u as in the ansatz we have used from the start

3 T —ac(t)\ iy S _
“(t’x):(£> k(a 1()) 1()v(t’ Ac t)e " and flt)\l? (6.261)

ibe M2 gy

w(s,y) =v(s,y) e

Then we may compute as we did to get equations (6.15), (6.14) and (6.16) and show that here again w
is solution to
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- g L ROy ta), 2 P

i 0sw + Ly w w—|—spc k(o) |w|* w+ ((be)s + b2) Y

B Vk(ae) | Ospe y-Veoo o\ Voo y
{(Bc)s+bc5c) y“[/\ Pe- (o) +2<pc+2< 1) 5'(900 p2> v

M){@c—m) vl
f<<;jvwc {@cz ;< ‘”Y:?»H

vac_ ]
y
ol

Ly =8+ 22 (VO)+3) + A2y [VV(0) = £ Tk(0)9,] + A RA(9: 62,,02) + Xt A

( (6.262)
=A+A2Cy + A2y [VV(0) + @3(y) 9,] + O(A2 V| + A2)

where we have used hypothesis (H4), noticeably ¢y = 0. Doing the same with u., we also define v, and

. yl2 . ~
we(s,y) = ve(s,y) etbe B —ifey We let u = e + @ and define

V= vede we=wet+E e E=eetbe d iy (6.263)

Since u, satisfies (6.1), and therefore w, is also solution to that same previous equation, hence substracting
those, € is solution to

P kQAey + o)

2
(Jwf? w — [wel? we) + ((be)s + b?) % é

Ot L e el

@ bn). yﬂ[ L T ;;f; e (12 1) g (T )L

- (B2 ) (0.5 -5 ) i (re- (y Yee )] (6.264)
(5 ) [ g (505 - (5 )

(Ge)e— 1BP) (( W)

Then, from (6.62), and (6.232)-(6.234), one has
Joel? + 1Bef* + [Mode ()] < X
so that using (6.224), (6.264) may be rewritten as

k(Ac c
106+ Ly € — €+ P kQey + ac) (Jw* w — |we|?> we) — (A Lo(awe) + A3 C5) .y

e k(ac) (6.265)
- O(A;% (1+ [y2) e+ A2 (1 + [y)?) vg)

Let € = € +ié& and w. = (w.)1 +i(w.)2. We now expand the nonlinear term in (6.265) as well as
we = Pp_ + €. and the expansion of the approximate solution (6.20) to obtain up to order O()\ﬁ)

— 105 + MW (&) + (Ae Lo(ae) + A2 C3) .y & = —1he (6.266)

where M is the fourth order expansion of M defined in (6.51) and
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MW@ = M@ +i 137 (@)
which, according to their now simplified definitions induced by (6.232) and assumption (H4), are given
by

MBI @) = -Lyer+6-6Q(To+Ty) & —2Q S5 6 -
6.267

2 3
3@ [1+ 2 (Vo) + 2 1d).(y.y) + A V2(0).(y, ac) + % VEk(0)-(9,5.9)] &

and

MY (@) = —Lgés+é&—2Q (Th+T5) & —2Q S5 &
A2 K A3 ) (6.268)
— @ [1+ 5 (V2R(0) + 5 1d).(9,9) + Ac V2R(O)-(y, ) + 2 V2R(0)-(9,9)| &

and where the remainder ). satisfies

wczo(xg (1+[y?) e+ X (1 + [yP?) ve+€ce+gze+w652+g3)

Step 2 Approximate null space.

Let f(s,y) = (9(6*49‘) be a smooth well localized slowly time dependent function. Then from equation
(6.266)

%Im(%, ?) - 772@(5, M@ (f) —i0sf + (Me Lo(ae) + A3 Cs) .yf) - Re(wc, ?) (6.269)

with

| (e 7)| S AL Uellze + eclze Nelze + 1€l Nelze + Iechse el lelza + Ili2a lellz»

(6.270)
S llell e

where we have used (6.233) to get b“2>‘§ = ;‘Cgo + (9()\‘01).

We now claim that we can find some real valued smooth well localized functions As(y), Ba(y), Ds(s,y),
EQ(Sa y)7 E3(57 y)a FQ('S’ y) with

Ag, By = (9()\5 e—CIy\)’ Ey, Fy = (’)()\3 e—clyl)’ Es,D3 = (9()\3 e—c|y\)

such that we have the following approximate null space relations

MW(VQ+ A2 A5) —i0,(VQ+ A2 As) = —a; N2y Q + O (A3 e~l) (6.271)

for some universal constant

a1 >0 (6.272)

MW[i(yQ+A2B)] —i0s[i(yQ + A2 Ba)] (6.273)
= =2 (VQ+ A2 4;) + O (A2 e=“M) |

and for the even part

MW (APp, + Ey + B3 +1iDs) —i0,(APp, + E> + E3 +i D)
+ (Accolac) + A2 Cs) .y (APp, + B3+ E3 + i Ds) (6.274)
= —2Pp + (Acaz(ae) + A2 az) .y Q + O(\: e_c‘y‘)
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for a linear map as on R?, a vector az € R? to be fixed calculated later in Appendix 6.B 6.12

MWTi(|y]?> Pp, + Fu)] —i0s[i ([y|* Pp. + F»)] = —4i (APp_ + Es) + O (A3 e~clvl) (6.275)

and

M (o) = [yI* Q + O(\Ze™*) (6.276)
The Algebraic derivation of (6.271), (6.273), (6.274), (6.275) and (6.276) is done in Appendix 6.B (6.12).
Step 3 Control of (61 , yQ) and (62 , yQ)

Let A=VQ+ X2 Ay and B = yQ + A2 By. We now use (6.269) and (6.270) when f = A on one hand,
and when f =i B on the orther hand to get

(Ez, A)S =ai )\3 (€1 , yQ) + 0()\2‘ e—c\y\)

(6.277)
(a1, B) =-2(a, A) +O(Eee)
Then, using the fact % = )%2 together with (6.230) yields
Co 1
Ae(s) = —+0( = 6.278
5 =L40(%) (6.273

Rewritting (6.277) in view of (6.278) and B = y Q+O (A2 e~} thus leads to the following 2-dimensional
ODE system

(51, B)S - 9 (ez, A) +F

(52, A)S:alki (glva) + I

with Fy, Fy = 0('1'52) (6.279)

As we will do later in Appendix 6.A 6.11, we may now apply Lemma 8.10 with ¢ = a; C3 > 0 thanks to

(6.272), hence
% In(o)
. - < .
(a.8)|+](2.a) < [ Nelee o

Using the fact that A = VQ + (’)(5‘2 e_c‘y‘) and B=yQ + 0(8_2 e‘c‘-’”) yields

(- v) (oo v0) < 102 [ 2D g

then, the definition (6.243) together with (6.263) and (6.230) imply

Jets) 12 < bae) 7o) 5 YO < iy ) (6.250)

so that we have

(61(t)a yQ)’ +

COROIE ||ﬁ||2L2 L VNG /+oo Ino) , < VNG) ( 1, ln(s))

o s 52 s

S 12 1t VN ()
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This ends the proof of (6.260) for the odd directions.

Step 4 Control of (el, Q), (62 , AQ), (61, ly|? Q), (eg, g).

Notice here we have to keep the L? (@L dgy) scalar products until the end so the calculations are precise
enough.

We first have from the L? conservation law, the critical mass assumption and (6.263)

14 2 P 2 P 2 P
k<a>/cz2dy=/|v|2—dg =/|w| L :/|v,| Lp =/|wc\ Lp
‘ Pe Y Pe Y ¢ Pe Y Pe Y
2 P -2 P 2 P -2 P )
w|” —dg :/ we+ €] —dg :/wc —dg —l—/e —dg +2Re/ewc—dg
/||%y oo+ Ldg, = [ Ly, + [ @ L dg, 2 dg,

/|v|2 fdgy=/\vc+ey2 §d9y=/|vc\2 wﬁdgy+/|e|2 fdgy+2Re/emﬁdgy

thus from (6.242) and the definition (6.243)

O _ 1
Re/e We fdgy = Re/e Ve S%dgy =-3 /|6\2 fdgy = O lellz2) = O(Me|t| VN (1))

Moreover, from (6.263) again and the fact that [ |Pp,|? £ dgy = [1Qp. 2 £ dg, we have

c

/|15pc+e\2 @ﬁdgy:/\ﬁpf Lpﬁdgy+/|é|2 fdgﬁme/gPT;c p

P
~ 2 ~ —
— [10n+ e Lag, = [10n Ly, + [1e? Ldg, +2Re [ Gp. L dg,
Pec Pe Pe Pe
so that
2736/5 Pp. ; dg, = 2726/6 Op. @ﬁdgy = —/|e|2 fdgy = O\ [t VN(D)). (6.281)

Going back to (6.269), doing the same computation with the LQ(WL dgy) scalar product, notice from
(6.35) the remaining derivative part is negligible since 8s(£ dgy) = O(A\tdy)

d _
£Im<€, f)w(&dgy) - —Re/g (MO (f) = i0sf + (Ae colae) + X2 Cs) .y f) ﬁdgy—&-(’)()\i ||€HL2)

Using (6.269), (6.270) and (6.274) where we take f = APp_ + E5 + E5 + i D3, we have

d - ,
gIm(e, APp, + Bz + E3 + lD?’)L?(ﬁ dgy )

~—Re [¢ (—2157% + (e an(o) + N ag) .yQ) L dg, + Ol
= 2726/%]57736 fdgy - ()\cag(ac) —|—)\z’a3) . /61 yQ fdgy —1—(’)()\(% H€||Lz)

= 2Re/€prc fdgy — ()\cag(ac) + )\i a3) . (él , yQ) + (’)()\ﬁ ||€||Lz)

(6.278), (6.281), the definition (6.243) of N (t) and the result of the previous step now imply after inte-
gration
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‘Im(g, APp + Bs + B3+ Dg)

Lz(Ldgy)
+oo c
~ € 2
</ (\Re/epwgy\ww@)\ o) a
i (6.282)
_ [T [VN(o) (iJr )+ |é(e ||L2
~ /. o ot 572
\/ +°° 1 1
(=7 + 53 do S 17211 VN )
Using (6.269), (6.270) and (6.275) where we take f =i (|y|*> Pp, + F»), we have
d T S— —_
R ( 2 Pp, F) — AT (~,AP E O3 e
HRe(E WP Pt B) L m(e APr 1 B2) o+ O(RE22)
(6.278) and (6.282) yield
‘Re(é ‘y|2pp +F2) </+OO (‘Im(é App +E2) +H€”L2> do
’ ‘ 12 doy) |~ Js o 12(&do)| o
«/ +°° 1 (6.283)
03/2 JS)dU

S \tl3/2 |t \/

Using (6.269), (6.270) and (6.276) where we take f = p, we have

(eg, g)s = —(61, ly[? Q) + O\ |E||2) (6.284)

which eventually yields after integration using (6.283), the fact that Pp, = Q + O(|t\2 6*5|y‘), and once

agin the definition (6.243)
(52,9)15/:00(( 1(0), Wl2Q) |+ ”””)da
< VN (s) /+°° (l N i) o (6.285)

S 12 1t VN ()

Notice that (6.283) and (6.282) can now be rewritten in terms of the L?(dy) scalar product since ||é||z> =
t| /N(t) and Pp, = Q + O(|t|>e=l¥l), so we have

(20 4Q) = T (6. PR T B4 Ba+iD5) 3+ O ) S o 1] VAT
(a0 WP @) =Re(e. WP PR F) , ) + O elz2) S 1 1l VN

Finally, putting altogether (6.281), (6.282), (6.283) and (6.285) yields

(1:Q)|+ (2. 20) e @) e )] 2 v
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This ends the proof of (6.260) for the even directions.

6.11 Appendix 6.A : Proof of (6.240)

Here we now complete the proof of the step 2 of Lemma 6.19. Once again all we do here is to adapt the
proof of Appendix C of | ] which we follow linearly. We will here prove a sligtly more precise estimate
than (6.240), for we will need a refinement to control the phase parameter. So we claim

A=Al +1b=be| S I Ja —acl + 18— Bl S, |y — el St (6.286)

Step 1 Improved bound on the modulation equations.

Let Mod(t) be the vector of modulation equations given by (6.60), for which we have proved estimation
(6.62). Recall the process we used in the proof of (6.62) had led to a slightly more general result than what
we had announced :

Mod(t) = R(P) + O (P + (P2 + | Mod(t)]) lellza + 2 + el + 134y, — 1QUZ:1)  (6:287)

where R(P) is polynomial in P that satisfies

A
[RP)| S P*+P (ol +18) +P* (b - 50)

Now using bounds (6.236) and (6.232), there is a polynomial R(P) in P such that

Mod(t) = R(P) + O(P" + P el + e} + ) = R(P) + O (1)
6.288
[R(P)| < P* + P (laf + 182) +P° (b 2) S I* (025

0

_Unifortunately, this estimate is not strong enough, and we have to first refine both scalar products with
VQp and AQp in (6.80) to gain a cancellation on the null space for the (b, 8) laws which should be set to
satisfy

(bs + % = Bi = Ky, Bs + b8 — Ba) = R(P) + O(P? ||el| 2 + [|e[|7= + [lel|F:)

- 6.289
=R(P)+O(|t|") ( )

For now, we assume (6.289) holds and finish the proof of (6.286).
We wish to compare Mod(t) and Mod.(t), so writing (6.288) for both, and using the fact R vanishes at
least at order 2 at the origin
|Mod(t) — Mod.(t)| < [t]* [P — Pe| + O(]t|%) (6.290)
Similarly, using (6.289), the definition (6.61) of K}, and from (6.232) the degeneracy a, e = O([t[?), we
have
|(bs + b2 - Bl) - ((bc)s + bg - (Bl)c)| + |(ﬁs + bﬁ - BQ) - ((/Bc)s + bc 60 - (BZ)C)|
< [Mod(t) — Mod.(t)| + | Ky — K| S [t [P = Pe| + +O(|t]7) | + ol |o — ac| (6.291)
S|P =P +O(|t]")

Step 2 Estimates for A — A. and b — b...
Let us define
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P=P—-P.=0(t]) (6.292)
from (6.232), (6.233), (6.234).
We will now prove
0 0 dr
w—bA+M—AA§uP+/|£Mr+m/|gy; (6.293)
t t
First, we have
b1/ I )
Z_Z(Zs - - 6.294
Nty =5 (54 bty =5 (048 (6.294)

Then observe from (6.233), (6.234), (6.230)

boob 1 1y G
e (b b)+bc(x—)\—c)———b+(’)(|t|73)
Co

—f—b+ A+O(|t|£)

MS
>

(6.295)

Injecting this into (6.294) together Wlth (6.290) for X\ and the improved bound (6.291) for b yields

Co 1

A-=tb+ A= (At+§)—((AC)t+i—z)+o(\t|g)

= % (Mod(t) — Mod.(t)) + O(|t| P) (6.296)
=F, F=0(t+tP)
2 2 b2 b
bt_;é‘i’@/\ (bt+)\2> ((b) )\2)+(’)(|t|73)
! 6.297
:ﬁ(Lb*Lbc*|Kb*KbcD | | |afac|+(9(|t|7)) ( )

=F, F=0(t’+]tP)
We may now rewrite (6.296), (6.297) as

1
Zi=MZ+F

Z:(;y A4:<;é](?>’F:<g> (6.298)

The eigenvalues of the matrix M are 0 and 1, hence the system may be rewritten in an eigenbasis

. 1 - -

Zy = n DZ+F with D= <8 (1)> (6.299)
and from (6.233), (6.234), (6.296), (6.297)

|F| < 1tf?

the explicit integration of (6.299) implies

0 0 77
21:/ Fl(T)dT, ZQZt/ F2(T) dr
t t

Thus

0 0
1Z(t)| S |Z(¢) /]F Mi+M/‘ dr < |t)° + /]P hi+m/|P
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which proves (6.293).
Step 3 Estimates for a — a., 5 — f..

Next, we claim the bound

O log(r
loe — ae| + |8 = Be| < |t° W(t])| + |¢] (/t ’gTﬂ)‘ |P(7)| dT) (6.300)
First, we have
B _ 1 as b3 By 1
a—25=5(5-28), Bty -3 =35 (B +bB—B) (6.301)
then from (6.230)
L1 11
R (TR R
N o 3 c ¢ (6.302)
0 c 0
=T Ao AT T o)
hence from both (6.230) and (6.233), using defintion (6.22) of By = A3 C3 + A Lo(c) and (6.234)
@_&_bcﬁc (B2)c_éé_bic&_(@_(32)c)
A2 )2 A2 A2 AN A A A2 A2
(1 o (B B\ (Lo(@) +A*Cs  Lo(ae) +A2Cs
1 1 1 1
=~ 85 (Lo(0) — Lo(a)) ~ Lo(a) (5 = 1) +O(P)
1 C
=B+ Lo(a) +O(P)
Thus, injecting this into (6.301), using bound (6.290) we have
2C’O o 1 Qg o o (ac)s o N A (ac)s o
ot 2= [(5 —28) - (5 28)| =55 (5 28 +o@)
1
=G, Gi=0(tf+P)
and thanks to the improved bound (6.291)
1, Co 1 A
=Gy, G2=0(t +P)
Now we set
. % (6.306)

so that we may rewrite the system of equations (6.304)-(6.305) as
Co
2

Recall from (6.22) that matrix Ly = V2k(0) is negative definite from assumption (H2), with eigenvalues
r1,72 < 0. Thus, we can find an eigenbasis, so that for j = 1,2

(ay), =—2Con, + O<t5 +B)
(ﬂj)t = _%gj + O(t4 + %)

Then, we perform the change of variables s = ‘71|, and rewrite (6.307), for j = 1,2

1
Qt‘f‘QCoﬂ:Gh ﬂt—i_ Lo(g)ngg

(6.307)
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n 0 2
Zi=\wed | @)=(a o)%+EH G=-C>0 (6.308)
2 &y 52
with
1 P 1 P
Fj = ((Fj)1, (Fy)2), (Fjh= O(g; + ;), (Fj)2 = 0(87 + 3*2)
Moreover, from (6.233), (6.234), (6.292)
lim Z; =0 d F; @) !
Jim Z;=0 and Fi(s)=0(5).
We then use Lemma 8.10, see Appendix B, that we apply to (a,n) so we get
L 2] 5 * Jlog(7)|
MA+5@H§L (o5 + E) toglo o < [ togit]| + [ 1 (o) ar
and hence (6.300) follows from (6.306).
Step 4 Bound on P.
We conclude from (6.293), (6.300) that
log
1< togil] + [ elar i [ oy ar
Injecting the a priori bound (6.292) in the previous estimate
0 0
P15 e lloglll*+ [ IrPar-+1t] [ Irlliog(r)|dr 12 logltl* + 6° + 18* [togll] 5 It togie
t t
and iterating 3 more times now imply
|| < t°[log|t][*
Eventually, injecting this into (6.293), (6.300) clearly yields
A=+ [b=be| S Ja—acl+ |8~ B| S It° (6.309)

Step 5 Bound on the phase parameter.

There is only left to get control on the phase parameter, which is why we had to sharpen control on the

scalling parameter A in previous steps. We are willing to prove

[y = el S It

Indeed we have

1+ BP+Ky 1 .
Vt_$zﬁ(75_|ﬁ‘2—ff:y)

and from (6.309)

1+[B2+ Ky 14|62 + K. A=A
|ﬂ)|\2 1 — |/8)|\2 e :O<| ‘t|3 |+|Biﬂc‘+|aia6|):0(|t‘3)

so that (6.290), (6.311) and (6.312) imply

7, = O([tl* + |Bl)

189
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which after integration yields (6.310) and concludes the proof of (6.286) assuming (6.289).

Step 6 Proof of the improved bound (6.289)

To get the refinment (6.289) we now need to go back to the very definition of the remaining e through
the choice of the orthogonality conditions (6.42)-(6.46). Indeed, one way to sharpen the modulation laws
estimates, is to pertubatively modify the remain e through the orthogonality conditions (6.42) and (6.44)
which respectively govern the law of § and b, and that one should now replace by

(62 L VS A)\z) - (61 , ve) —0 (6.313)
(62  AS+ B /\2> - (el : A@) -0 (6.314)
where A and B are well-localized real functions to be chosen. We claim for a suitable choice for A and
B, the computation of the modulations equations, like we did in (6.90) and (6.85) will lead us to get (6.289).
Let My, My and My, M, given by (6.50) and (6.51), and then let the complex operator for € = €1 + i €
M(e) = My(e1,e2) + i Ma(er, €2)
= M1(61,62) +’iM2(€1,€2) —ibAe+2i.Ve

These refined orthogonality conditions allow one to sharpen the scalar products computations (6.80) such
that

Re(a M(V@p+ N2 A) —i0,(VQp + X2 A)) = O(It* ell.2) (6.315)

Re(e, M(AQp + X2 B) —i0,(AQp + N B) ) + zne(e, @) = O(It* |lell =) (6.316)
First, note one has the following adjunction formula

Re(M(e), ) = Re(e, M)

then, recall the equations of real and imaginary parts of e (6.76)-(6.77), and given an orthogonality
condition Zm(e, f) =0 up to O([¢t|* [|€]|z2), the linear term in the computation of these equations is

—(M1(61,62), f1) + (62, 8sf1) — (M2(61,€2), fz) — (61 , 8sf2) = —’Re(e, M(f) —iasf)

Proof of (6.315) .
From equation (6.31), definition (6.13) and expansion (6.41) Qp satisfies

. ~ = ~ ~ EQy+a) ~ | ~
— b+ B1)3yQp + AQp + A2 (V(0) + 2 Qe+ 2T 2
i( 1)0,Qp Qp ( (0) 3)QP Qp o E() Qr|Qr| (6.317)
+ibAQp —2iB.VQp = O([tP e~ )
By differentiating (6.317), since
V(lQr> Qp) = My(VE,VO) +i My(VE, VO)

we obtain

i(— 8+ B)avQp + [+ 22 (V(0) + 52) | (VQp) - VQr
E(Ay + )

+ g T (M1(VQp) +i Ma(VQp) +ibA(VQp) —2i8.V?Qp (6.318)
plry VeykQy+a) AVEQy+a)] = 24 R —ly|
" ® [(pQ © ) k(a) * k(a) } Qrl Qr +16VQp = O(ftf ™)

Thus
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EQAy+a) AVEQy+a)] ~ 54 S
) Kay | QPP @rHibV@r )

M(VQp) —i0.(VQp) = g [(pyZ _ %)
+ Ot e

moreover thanks to (6.41) and Proposition 6.18 one easily check

Mi(NA) =X (3Q*A+0([t|e™ ) =3X2Q* A+ O(t)P e M), Ma(N2A) = O(Jt]> e V)
then, expanding the remaining terms with (6.17)
M(VQp + A2 A) —i8,(VQp + N2 A) = \2 [Vzk(()).(y, QP+ % yQ* + L+(A)}

+ibVQp + O([t] e~ 1)
From (8.3), (8.1), (8.2), see Appendix B 8.1 we then choose A solution to

(6.320)

La(4) = = [Vk(0).(y, ) + 5 y] Q° +ayQ.

([72k(0).(5, ) + 59] @*. VQ)

a = =

1
(ve. vQ) 2

and thus from (6.320) for f = VQp + A2 A, using orthogonality conditions (6.43) and (6.313)

Re(e, M(f) — iasf) = bIm(e, v@) +ar? Re(z, yQ) +O([tPe ) = O(1t]? |lell =)
This concludes the proof of (6.315)

Proof of (6.316)
First, we gather some computational results. We use definition (6.13) of L4, and let L, = L, + A2V (\y+
a)+Vy
AQp=AQp +y.VQp +y.A(VQp)
B.V(AQp) =28.VQp +y.B.V(VQp)
Ml (AQP) +1 MQ(AQP) =3 |Q7’|2 QP +y. Ml (VQP) +iy. MQ(VQP) (6.321)
~ K ~
L,y (AQp) = [A+ 22 (V(0) + %) + O(t)] AQ»
~ ~ K ~
=3L,Qp +y-V(L,Qp) ~ 23 (V(0) + 30) Qp + Ot e 1)

thanks to which and (6.317), (6.318) we deduce
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i(— 0%+ B1)0y(AQp) + L4 (AQp) — AQp + g kO 1 o) [M1(AQp) + i Ma(AQp)]

k(a)
+ibA?Qp —2iB.V(AQp)

=3 [i(~ 8+ B)aQr + L,Qp — Qp + 2 EVED i +10AGp 215 V05
+y. [Z( — b+ B1)0VQp + Ly(VQp) — VQp + g W (M1 (VQp) +i Ma(VQp))

+ibA(VQp) —ZiB.VQQp} 1 2i(0% — B1)80p +20p +iby.VOp
—2ibAOp +2iB.VOp — 2\ (V(O)—k%) Op
=2i(b> = B1)3yQp +2Qp —2ibAQp +2i3.VQp

p y. Vo k(Ay+a)  Ay.VEQy+a)]  ~ ~ Ko\ ~
- {@ {(1 - ) e TG } Qp2Qp +232 (V(0) + ) QP}
+O([t]P e
Eventually, with (6.22) and (6.17) we obtain
M(AQp + X? B) —i9,(AQp + \* B)
=\ [(v%(O) + 2 1)1y @ +2 (VO + ) @ + LAB)} (6.322)

—2ib?0Qp —2Qp +2ibAQp — 20 B.VQp + O([t]> e~ ¥)
We hence choose B solution to

R0

L+(B) = —(V2k(0) + 2 1d).(y.9) Q" =2 (V(0) + ) @ = fo

which is possible thanks to (8.2), since one easily checks that (fg , VQ) =0.

Then, observe as in (6.56) that

5 2
HhQp = —i % Q+0(|tle!)

so that (6.322) along with refined orthogonality conditions (6.313), (6.314) and usual orthogonality con-
dition (6.45) yields

Re (e, M(AQp + X2 B) = i0,(AQp + X2 B) ) + 2Re(e, Qp)

= —%’Re(e, |y|2@) — Q’Re(e, @) —|—2bIm(e7 A@) — ZB.Im(e, V@) +2Re(e, @) +O(Jt? e_|y|)
:(’)(|t\3e‘|y|)

This concludes the proof of (6.316).

6.12 Appendix 6.B : Computation of the approximate null space of the lin-
earized NLS operator around the Ground-State.

Proof of (6.271) and (6.272) We compute thanks to (6.267), (6.268) along with the control of the
modulation parameters of (6.232)

c3

M®(VQ+ )2 A5) = i0,(VQ + N2 Ag) = Ly (VQ+ A2 45) — 2 (V(0) - g) vQ
3
2

(6.323)

~6QTVQ — 2 (V2K(0) + = 1) (4.9) @ VQ + O (N e~V
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Recall L (VQ) = 0, and then from (6.224), using (6.23) and again (6.230) to discard O(|a|? + X|a]) =
O()\?) terms, the following identity which defined T, thanks to (8.2), let 7% be the radial solution to

1 K K
0_ 1 (2 Ko 3 Ko
L1 = 5 (V2h(0) + 52 1d).-(0.) @ + (VO + 3 ) @
so that we may rewrite (6.323) as

MW(VQ + A2 A5) —i0,(VQ + A2 Ay)

= 2|4 (40) 0 QTIVQ - (VO0) + ) vQ - 5 (VPH(0) + 5 14)-1) @ V@) + O (3

To fulfill (6.271) we may now simply choose A, solution to

Lo(As) =6QTIVQ + (V(o) + %) VO + g (v%(o) + % Id) () Q2VQ — a1y Q (6.324)

Q being is radial, 7% is hence a second order polynomial function in y with radially symmetric coefficients
(also in variable y), and therefore from (8.2) one should also set constant a; as

(6QTEVQ+ (V(0) + %) VQ + 3 (V2h(0) + % 1d).(s,9) Q* VQ, VQ)
(vo. vaQ)

Yet there is left to ensure that a; > 0. To do so, one needs to compute a; more explicitly, which
may be done provided one observe by differentiating twice the Ground-State equation AQ = Q — Q?,
2
L (AQ)=6Q|VQ|".

a; =

(6.325)

(6@78vQ, vQ) =6 (17, Q|VQ[") = (17, L+ (2Q)) = (L+(19), AQ)
- (% (V2k(0) + % 1d).(y,9) Q* + (V/(0) + @) Q. AQ)
_ _@ (v2k(0) + ?Id).( Y) Q2 VQ, VQ) ( [(VQk( )+ %Id)-(y,y)} Q°, VQ)
- (v + @) (ve.vQ)
= (3 (V) + "2 1d) (5.9) Q*VQ + (V(0) + ) ¥Q, VQ) + ¢ /A[(Vzk(o) + 3 1d).(y.9)| Q" dy
= (5 (v +§Id) (5:9) @ VQ + (V(0) + go)vcz VQ)+ Tr (V2k(0) +—1d /Q2

Altogether, this yields

N W N W

1 2 Ko
1 Ko 6.326
ar=—5 T (v CONE Id) (6.326)

Consequently, from hypothesis (H2), VZk(0) +

2 < 0 is negative definite, which now imply a; > 0, and
ends the proof of (6.272).

Proof of (6.273) We compute thanks to (6.267), (6.268) along with the control of the modulation
parameters of (6.232)

M@ (i(yQ+ N2 B2)) —i0s(i (yQ+ A2 Ba)) =i L_(yQ + A2 Ba)

—iA [QQTQO T (Vzk(O) + 2 Id).(y,y) Q*+ (V(O) + HO)} yQ+ O(N2 el
2 3 3
so that to ensure (6.273), using L_(y Q)

—2 V@, we may simply choose B solution to

L_(By) = —2 Ag + [QQTQO + % (v%(()) + % Id).(y,y) Q>+ (V(O) + ?)} yQ
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which is solvable from (8.2) since its right-hand side is orthogonal to @ by definition of A (6.324).

_ Proof of (6.274) We compute thanks to (6.267), (6.268) and the foruth order precision of approximation
Pp,_ along with the control of the modulation parameters of (6.232)

MW (APp, + Ey + Es +1iD3) —i95(APp, + By + E3 +i D3)
+ (Ac Lo(ae) + A2 C5) .y [APp, + Es + E3 + i Ds]

=MD (APp.) —i0;ATs + Ly (B + E3) +i L_(D3) — i 0sEs
+ (A Lo(ae) + A2 C5) .y AQ + O(NE el

Then, one easily checks from (6.23), (6.24) that d\Pp,, 8. Pp, = O(P.) and dyPp,, d3Pp, = O(P?).
Thus, recall from equation (6.20), which is now simplified thanks to (6.232), definition (6.262) and (6.224),
that Pp, is solution to

(6.327)

—ibcAc 8&167% + (A + A2 Cye + Ai’y-[VV(O) + ®5(y) 80})’2% - PPC

6.328
P k(ey + ac) (6.328)

Pe k(o)
Therefore, as we did in (6.322), we derive (6.328) and use (6.319), a more accurate version of (6.321) to
get

Pp.|Pp.|? = (e Lo(ae) + A3 C5) .y Pp. = O(ALeell)

p k(Acy + o)

—ibeAe O, (APp,) + Ly, (APp,) — APp, + — ="M (APp,) — (A Lo(ce) + A3 C3) .y APp,

-

Pe k(aC)

; - KOy +
b\ Or. Pp, + Ly, Pp, — Pp, + L EOAYF )
Pc k(ozc)

p k(Aey + ac)

‘ﬁ'pc|2ppc — ()\C Lo(ac) + )\3 Cg) .yﬁ'pc]

+y. {— ibeXe Or.(VPp,) + Ly VPp, — VPp, + — 22 T _CN(VPp,) — (Ae colac) + A3 C3) .yvﬁpc]

Pe k(ae)

+ 20 b\ Ox, Pp, — (2 A2Cy + A3y [2VV(0) + @3 ap]) Pp, +2Pp, +2 (A Lo(ae) + A3 C3) .y Pp, + O(NLe™e)

=2Pp, +2ib\.0x Pp, —2)2C,, Pp—3)\3y. [VV(O) + @3 ap] Pp +3 (A Lo(ae) + A3 C3) .y Pp,

£
Pe

[(1 Y- V(pc) EQAey +ac) | Ae VE(AY + )

2 k(a.) k(o) } |P7>\2 Pp + 0()\3 e—CIyI)

Ko

~ ~ ~ 1
= 2Pp, +2ibeXc O, Pp, +3 (A Lo(ac) + N Cs) .y Pp, — 22 [2 (V2k(0) + 5 1) () @° + (V(0) + 52) Q}

3

e TRO) (5, 00) @ — 25 [FOHO0).(1.1.) @+ 3. 2TV (0)Q - pVR(0)8,Q)| + O (ke

Eventually, with (6.233), (6.327) becomes

MW (APp, + By + B3 +1iDs) —i0,(APp, + E> + E3 + i D3)
+ (Ae Lo(ae) + A2 C5) .y [APp, + Es + E3 +i D3]
= —2Pp, — 2ib Ay Pp, — 3 (e Looe) + A2 C3) .y Pp, + A2 (v2k(0) 450 Id).(%y) 0%

3 (6.329)
+202 (V) + ) @+ A V2K(0).(y, 00) Q° + Ly (B2 + By) + i L (Ds) — 10,y
A3 )
+ 5 [VHR0)-(4, 1 9) @ +3y. (2VV(0) Q = p VK(0) 9,Q) | + O (A2 e~ )
To ensure (6.274) we choose E3, E3 and Ds solutions to
LyEy = -\ (V2k(0) + 22 1d). 3 _ 92 B0Y @ — A V2K(0).(y, o) Q3
cBy = =22 (V2R(0) + 5 1d).(9,9) Q° =222 (V(0) + 51) Q = A VZ(0)-(3,00) Q (6.330)

+3A Lo(ae) . yQ + Aeas(ae) . yQ
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with
—2(V2k(0).(y, ) Q*, VQ
as(a) = ( 7o ) — 3 Lo(ac), (6.331)
and
LiBy= =2 [VR0).00.0.0) @ +35. (29V(0) @~ pV(0)0,Q)|
s 2 R ' P (6.332)
+3NC5.9Q + \asz.yQ,
with
3.
o0 = 310152 ([ FHOLC ) @y +29k0) [0 V0P ay ) - 34 (6.333)
and finally we wish to choose D3 such as
2 1
L_D3s=—X0o\To— =— )0\ E 334
5= G cO\T2 o ¢ Ox.En (6.334)

From (8.2), (6.330) and (6.332) are solvable since their right-hand side are both orthogonal to VQ. So
there is only left to prove that the right-hand side of (6.334) is orthogonal to Q.

First remind from (6.224) that

(T2 : Q) - —% <L+T2, AQ) ~0 (6.335)

Similarly, using the algebraic cancellation (yj y Q3 AQ) = 0, for 5,1 = 1,2 that we have already en-
countered, along with expression (Q,AQ) = 0, we also get

1
(E2 : Q) =2 (L+E2 : AQ) ~0 (6.336)
(6.335) and (6.336) now proves the existence of Ds.
Proof of (6.275) We compute thanks to (6.267), (6.268) along with the control of the modulation
parameters of (6.230) and the equation (6.328)

MW (i (|y? Pp, + F»)) —i95(i (ly)* Pp, + F))

p k(Ay + ac)

=—i [— ibede O, |y Pp, + Ly, (ly1*Pp,) — |y|* Pp, + |y|2157>c|15790|2}

E k(O‘C)
+iL_Fy+ O\ ecl)
- - - k(X .. - 6.337
= —iy)? {— ibeXeOx. Pp, + Ly Pp, — Pp, + L (CeraC)PpJPpCQ} —4iAPp, (6.337)
Pe k(o)
+iL_Fy+ O\ emcl)
=i [L_Fz —~ 4A]5pc} +O(A2 vl
To fulfill (6.275), we choose F» solution to
L_Fy=—4F, (6.338)

which is obviously possible from (8.2).
Proof of (6.276) Ultimately, (6.276) simply relies on (6.47) and

MW (g) = Ly(0) + O(Ze M) = [y Q + O(AZ ™M)
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7 Appendix A : Some remarks about the Riemannian Geometric
aspects

In the sequel, we denote by (M , gM) a smooth Riemannian Manifold of dimension 2, equipped with the
Levi-Civita connection V.

First, recall the Levi-Civita connection is a smooth section V € F( R2T*M ® TM) that satisfies

(1) Vgu =0 ( Metric is preserved )
(i) VX, Y eT(TM), VxY —VyX=I[X,Y] (Itis torsion free)

where [X , Y] is the Lie-brackets for vector fields X and Y
(i) VfeC®M),VYXel(TM) Vxf=Xf
(iv) In local coordinates(z") : Fzé‘ = %g]\’}l (0;(gnr) + 0i(gne) ;0 — Oilgm).,)

where Vp,0; = FZ—I; Ok
(v) Inlocal coordinates (2'), the connection Laplacian is defined by : V f € C*°(M) :

2
Af=(gm) Y Vo, Vo, f = (ga1) ! (&i@fﬂ B F;;jﬂ)

(vi) The curvature tensor Ry € I'( ®* T*M @ TM) is defined by
Ry(X,Y)E =Vy(VxE) = Vx(Vy&) + Vixyié, VXY, el (TM)
The Riemannian Curvature Tensor R € F( QT « M ) is defined by

R(X,Y,Z,W) = gu(Rv(X,Y)Z,W), VXY, Z W eT(TM)

(vii) 1In local coordinates (z") :
Ry = (Ry),, de' @ da’ © da' © ), with Ry(9;,0;)0 = (Rv),,, 0
R= Rijklda:i ®d’) @ dr' ® dz!, with Rijr = (9m),, (Rv)

P
ijk O
l —

and:  (Ry), . =T —alj + T L), —T Ty,

1
Rijei = 5 <ajak(gM)u + 0;01(gnm) 5 — 9i0k(gnr) 5, — 3j81(9M)ik) + (9m),, (FJC" rh —Iy Fz’fn)

The whole purpose of introducing the metric terms g and G was to make our laplacian operator in the
NLS equation to mimic the so-called Laplace-Beltrami operator, which, in a local set of coordinates (z*),
may be written as

1 -
A = a.( o (gar) a)
gm NG i (V9 (9m) J
where the metric gy is locally given by its matrix ((gar),;) = (9a(9; , 9;)), while the inverse matrix of
gy is denoted by ((gar) 7).
In terms of the connection V, one may now easily check that the operator Ag 4 =
be written

%@ (Gijﬁj) may now

1 1 1
Agyf = gGijVaivajf + ;Gij L5V, f+ ;VaiGijVajf
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In other words,

Aggf =2y, f, with gy =gG™* (7.1)

Now, seeing the euclidean space R? we are working with from the begining as the riemannian manifold

(R2, h), with metric h € T'(Sym?T*R?) C I'( ®? T*R?) the smooth section defined by h(z) = g(z) G(z)™*
for all z € R2.

Then, we focus on what must look like that metric in our region of interest in R2, in our case near the
blow up point we have described, that is near the origin the way we built it. A proof to the Gauss Lemma
may be found in details in | ], as we recall it

Lemma 7.1. Let (M, gM) be a riemannian manifold. With respect to a geodesic normal coordinates system
about p € M, the metric (grr),, may be expressed as :

ij

1
= Rigjia® 2! + O(|lz[?)

(gM)ij(m17x2) = 675j - 3

This means the normal mapping provides a coordinates system that describes the neighborhood of some
point p € M and directly link the default of flatness at p with the riemannian curvature tensor. Recall for a
riemannian manifold of dimension n the exponential map at p is defined by

exp, : T,M =R" - M, X e€T,M+— yx(1)
where yx is the unique geodesic passing through p at 0 and whose tangent vector at 0 is X. Thus,

yx 1t yx(t) = exp,(tX).

Consider here M = R?, p = 0 € R? is the blow-up point, then there are neighborhoods Uy, V C R2, such
that

(expg) ™' :Up C (R* h) = Vo CToR* =R? z€R*— 2= (2',2%) = (expy) ()

(expg) ! : Uy — Vj being a diffeormorphism, given a system of cartesian coordinates on Vp, one may now
define the normal coordinates system (2!, 22) on Uy. One may now recall the following lemma for normal
coordinates :

Lemma 7.2. In normal coordinates, the Levi-Civita connection equals at the origin the naive connection,
i.e. the Christoffel symbols vanish at the origin.

Back to our case, Lemma 7.1 together with Lemma 7.2 easily imply
oh (0) = oh
ozt~ 0z

which of course justify the part of hypothesis (H2) and (H3) that

0)=0, i=1,2
Vg(O) = O, VG”(O) = 0, i,j = 1,2

Our next goal is to go deeper into the riemannian manifold structure idea to rewrite hypothesis (H4)-
(HT7). This will inolve we look a bit closer the Riemannian curvature in the riemannian manifold (RQ, h) we
consider our situation in - or at least considering a neighborhood of the origin is a piece of that manifold.
First, from Lemma 7.1, one can deduce the components of the riemannian curvature tensor in a small
neighborhood of the origin are given by

1 . 2

3 Bingt + O(llzl?), so that VZ?h7(0). (9, ) = 3 Bkt
1 2

hence V2 <§ Gij) (0) . (8k, 81) = g Rikjl

hij(Il,l‘z) = 5@' +
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Then, using that g(0) =1, G;;(0) = d;; and Vg(0) = VG,;(0) =0, ¢,j = 1,2, one gets

2
V2Gi;(0) . (O, ;) = 3 Rirji + 03,9(0) 6;; (7.2)

Recall the symmetries of the riemannian curvature tensor are given by

Rijii + Rjikt = 0 = Rijp + Rijuk
Rijii = Riuij
Rijri + Rjrit + Riiji = 0 ( First Bianchi identity )

Now, since the metric h is symmetric, so is the riemannian curvature tensor component R;;; with respect
to index 4 and j, or k and [ respectively : Ripji = Rjra (*). In particular this means one has the equalities :

)
R1112 = R22217 R1221 = R2112 = R2211 = R1122; R1212 = R2121

In terms of curvature components, using (7.2), the (1.42) definitions, (H4) — (H6) become
(H4)r: Ag(0) + K3 Riz12 =0

1 (—R 0
H . Qk_ - 1212
s V-0 + g (T 0) <o

(H6)r: Ak —g)(0) < ka2 Ag(0) + gR1212

3
with constants
4 14+2Ko —o ||yl -2
Kp=- : =0 5 1val
9 31+ 2(K21 n K22) K22 HQHLz 9 | Q‘ 12
Ko 1 m 2 2 2| ||l ol 2
n=g [ |(3+75)@ —3WlPIVQP|[4el,.
1 yl? -2
Ko =< / {(1 - %) Q* — ly)? VQIZ} 15l

Now consider a more simple situation where the metric h is actually a perturbation of the identity near
the origin, where our schrédinger solution was designed to blow up. Recall, in two-dimensional manifolds,
every metric is conformal. So let ¢ be a mooth function so that h(z) = e?(*) I'd, then

Gij(x) = g(x) e_“"('”) (Sij, i,j = 1, 2

and using as before the fact that in geodesic normal coordinates, the first derivatives of the mertic terms

g and G;; vanish, one gets
V2Gi5(0). (0, 01) = O (9 — #)(0)0ij, 4,5 = 1,2
and the (H4)-(H6) hypothesis may then be written as

(HY,: Ap(0) = 502 2g(0)
(H5), :  V%(k — g)(0) + VZp(0) < 0
(HO)p : AR(0) < (14 k22 7; I 322) Ag(0)
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with constants

1

Ko =5 [ @ = bFIVQR| |40l w62

-2
2 L2

Yivall

Eventually, notice that provided Ag(0) > 0, (H5), = (H6),.

8 Appendix B : Some remarks about technical arguments

8.1 The kernel of the linearized operator

In order to approximate the inhomogeneous NLS solution of equation (1.1) or (6.1), we have used properties
of the NLS operator linearized around the ground state L = (L, L_) which we will recall here. For details
about the ground state properties and the previous operator along with introduction of the modulation
theory, one should refer to | I, I, [ ]

First, the kernel of the linearized operator close to () may be computed as

Ker(L_) = span(Q), Ker(Ly) = span(0;Q,j =1,2) = span(VQ) (8.1)

so that Ly and L_ being self-adjoint operators, it implies the image of L may then be deduced as follows

ITeH?, L.T=F&Feclml,)=Ker(L )" & (F, VQ) ~0
(8.2)
1SeH? L.S=GoGelm(l_)=Ker(L_)* & (G,Q) =0

which gives a simple process to decide wether or not 7" and S exist.

Exponential estimate of the remaining terms We now look forward to proving (1.41) and (6.21). We
recall that the description (8.1) of the kernel of the linearized operator (L+, L,) ensures the standard
uniform elliptic estimates :

1 _
Ve (VQ)T, e LI fllue S 1L
€ ; _
Ve @7, 1L (e S 1€ e

for a universal constant § > 0. At the end of part 1.4 and the beginning of part 6, we have constructed
a fourth order approximate solution of (1.40) and (6.20), which means there is a well-localized function ¥p
that embodies the polynomials remaining terms of NLS equation and satisfies thanks to (8.3)

(8.3)

&S 1! \I/p(y):O(P5+P(|a|2+|ﬂ|2)+733 (bfcio» in H2(R?)

so that for any p € N?

U (y) = 0([735 +P (lof?> +18]%) + P (b - Cio)] =0 'y) (8.4)

8.2 Estimates in Sobolev Space.
8.2.1 Sobolev embeddings.

Often in the study of PDEs have we need to use functional analysis tools among which Sobolev Spaces are
of most importance. A comprehensive introduction to Sobolev Spaces may be found in | ]. Let us here
only recall the Sobolev emedding results theorems we have been using
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Theorem 8.1. (a) For any u € WYP(RY), and 1 < p < N, one has

[ull o S IVl za

In particular, there is a continuous embedding

N
Wl’p(RN) C LYRN), forallp < q<p* = ~ —pp

(b) WLN(RN) is continuously embedded in L4(R™N), for all N < q < +oo
N
(¢c) For any N < p < +oo, WLP(RYN) is continuously embedded in Cit P (RY)
The Paley-Littlewood decomposition (or dyadic decomposition) is a key tool to get useful results for
PDEs study, such as Sobolev embeddings, paradifferential operators. For a more detailed study of the

decomposition and some applications, one may refer to [ ]. Let us recall then Sobolev embedding
theorem results obtained that way

Theorem 8.2. (a) For any s € R, we have continuous embedding H*(RN) ¢ C*~N/2(RN)

(b) For any 0 < s < N/2, we have continuous embedding H*(RN) C L1(RY), for all 2 < ¢ < 25—
(¢) We have continuous embedding HN/?(RN) c VMO

where VMO denotes the vanishing mean oscillation functions that satisfy u € L} (RY) and

! / ju—uplds < +oo  lim / ju — up| dz = 0
sup—; [ |u—up|dz 00 im — | |[u—upgldx=
B |B| B B diam(B)—>0|B| B B
In particular notice
H'(R?*) Cc LY(R?), 2<¢< 4o (8.5)

Now one may also find a slightly more general result, for instance, see the lectures notes of Pr. T.
Tao on his UCLA webpage http://www.math.ucla.edu/ " tao/254a.1.01w/, where the author uses again
Paly-Littlewood analysis to get the weak derivatives version of Sobolev embedding

Theorem 8.3. For any n € N, we have the following

np

S,pRn S/,QRTL 1< < <

n
<oo, 0<s <s<s +—
p

Let us then finish with a weighted Sobolev space embedding type of result that is useful. We consider here
a smooth metric g(x)dx which asymptotically resembles the euclidean metric in the sense we have pointed
out earlier, that is it has the form g(z) = 1 + o(|z| 1), as |z| — +oo.

Lemma 8.4. For § >0, and z € R?, let (z) = (1 + |z[*)'/2.
Let

H} (gdr) = {u € H'®2,gdo),  ({2)° +(D,)°) (lul + |Vul) € L*(gda) |
where D, is the derivative with respect to x, defined by its Fourier transform. Then

H}(R? gdx) — H'Y(R? gdx)

compact
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Proof of Lemma 8.4
Let (v,,) C H}. Our goal is to show there is a subsequence of (v,,) that converges in H'. H'(R?) being
a Hilbert space, it suffices to prove (v,) is a Cauchy sequence.

First we use the well known fact that for every N > 0, By being the closed ball of radius N which
is a compact of R?, from Rellich-Kondrachov theorem we have : H}(By) — H'(By). Thus, there is a
subsequence of (v,,) we still note by v,, that satisfies :

Un|By — Wn in H'(By), asn— +oo
Now, let > 0. Let R > 0 such that (R)* > L. This implies

26
T
/|x|>R ("4 [70F) g do < /z|>R <<R>>25 (W? +Vo]?) gdz < [0l 2 (g aa)

Then, since v, — wg in H'(|z] < R), for p, ¢ big enough we have ||v, — vgl|g1(jsj<r) < 7 and hence

lvp — vl < llvp — vl (ai<r) + vp — voll gt (2)>R) <0+ llvp — 'Uq”Hg <Cn

This proves the Lemma.

8.2.2 Paraproducts estimates.

A last tool for estimating in Sobolev spaces that may prove very useful is the so-called Paraproducts, that is
a non-commutative multilinear operator which in some sense is acting on functions very much like products.
Here we only recall the Coifman-Meyer multilinear theorem, whose proof can be found in [ ], and
that well summarizes the kind of estimates we intend to obtain from its use

Theorem 8.5. Let m € L (R"™) be a bounded function which is smooth away from the origin and satisfies
the following Marcinkiewicz-Mihlin-Hérmander type condition
10°m(&)| < €71, for sufficiently many multiindices o

and for fi1,..., fn schwartz functions on the real line, we define the n-linear operator T,, by the formula

Tm(fl, ey fn)(x) = ]:g_l,l,gn [m(g) fl(gl)fn(gn)]
where F designs the Fourier transform. Then T, maps LP* X ... x LP» — LP as long as 1 < p; < oo, for

any1<i<n,and 0<p<oo, and 1/p=1/p1 + ...+ 1/p,.

More details and extensions may be found in [IXP], | ] or | ]. Basically, this all work is
about generalizing estimates of the type

||Vs(uv)| S ||VsuHLP||v||Lq + ||UHLPHVSUHL4’ for any u,v € S, s> 0,

and1§p7(I§00a 1/7’:1/p+1/q

We use the result in the following situation to get (3.124) or (6.149). Indeed, since 3 = § + 1 + £, using
also Sobolev embedding (8.5) we get

1722 alul®)]| s S (197" 2ull 2 llullZe S (V220 o llull
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8.3 The Strichartz Estimates and The Smoothing effect.
8.3.1 The Strichartz estimates for Schrodinger equations with variable coefficients

The Strichartz estimates are a set of LY L" estimates for solutions of homogeneous and inhomogeneous linear
dispersive and wave equations. For the Schrodinger equation, it may be proved using a dispersion result,
the Hardy-Littlewood-Sobolev Lemma and a duality argument (the so called TT* method). While the
dispersion result is easily obtained in the flat Laplacian case from writing the homogeneous solution in term
of the initial datum uy with Fourier transform of the Schrodinger kernel. In a general non-flat Laplacian
case, an explicit formula is out of the question, and the dispersion result is therefore much harder to get and
may be replaced by a microlocalized dispersion result | ] combined with the Keel-Tao Theorem [ ]
and the Christ-Kiselev Lemma [CK]. For even weaker assumptions, one may look into [ST].

For a comprehensive study of local in time Strichatz estimates for the Schrédinger operator, one should
read [ ] for an operator related to a non trapping asymptotically flat pertubation of the usual Laplacian
in R™, with a bounded potential, or | | for an operator with variable coefficients and unbounded elec-
tromagnetic potentials. Though it would be possible to refine the assumptions we have made regarding the
potential V', for convinience we keep working with a bounded potential.

dLlet L= édiv (GV) + V be the type of operator we have been working with (which satisfies G;; = G;),
and let

T:(t,f) ERXLIL. s Tf =€t~ f

be the action of its associated semi-group. Let also

p(x,§) = Gij(x) & &5

be the principal symbol of operator £. In order to recall the Theorem 1.0.1 from | ], we first introduce
its assumptions. Associate to the symbol p the bicharacteristic flow given by the system

_ 9
0¢;

£(t) = —fipj(x(t)ﬂt)), &(0) = ¢

z;(1) (z(t),€@1), x;(0) =

Now for any 0 < g9 < 1, set the following space

Boy = {a € C¥(E") : VaeN", 3C, >0 : [0Pa(a)| <

= (z)l+lal+oo’ v R}

We shall then assume

The coefficients g(z), Gi;(x), V(x) are real valued, 1 <1i,j <n
Jo90>0, GY9—-1;€B,, g—1€B,, VeL®R" (8.6)
Fv >0,V (@, €R" xR, p(x,€) > v [

Denote by (z(t,z,£),&(t,z,€)) the solution of the above system. That flow exists for every ¢ € R, since
from (8.6) and the fact that p is constant along the bicharacteristic, the times derivatives remain bounded

4501 < 2(G9(@) & < CLE)] <~y p(a(0),£(0))

£0] < [0, 69 @) &8 < CleI? < < p((0).£0)

Now the non-trapping condition we have been referring to before can be expressed by the fact the above
flow is neither trapped backward nor forward in time (the flow goes out of any compact set in finite time),
in other words

V(e,€) € TR\ {0}, lim |a(t,4,6)| = +oo (8.7

Theorem 1.0.1 of | ] now states
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Theorem 8.6. Under assumptzons (8.6) and (8.7), for any ug € L*(R™), 7 > 0 and (g,7) a couple of real
numbers such that ¢ > 2, 2 + T=3

HGHEUOHL?J L < JJuo| 22

Then denote the hermitian adjoint T of previous operator T', one has

TT: f € L{(R,L(R")) — / e =L (f(s)) ds € L{ (R, LT (R™))
R

and the Christ-Kiselev Lemma, together with the T7T*-principle yields the inhomogeneous Strichartz
estimates

|\TT* £ Vf e L% (R, L™ (R"))

Lai (R,Ln (Rn)) N HfHLaQ (R,L@(Rn))»

for any couples (g;,7;), j = 1,2 such that 2 < ¢; < 400, and % , where * —|— =1

Further details and externsions may be found for instance in the the81s of EY. Ovcharov avalaible on
the website of the University of Edinburgh :
http://www.maths.ed.ac.uk/pg/thesis/ovcharov.pdf.

Then, using the Duhamel formula for the solution of the Schrodinger equation ¢ dyu + Lu = F', with
initial datum ug € H', one has

t
u(t) = e Fug — z/ et t=s) £ [F(s)] ds
0
so the solution u satisfies the local in time Strichartz estimates

S lluollze + ([l

Hu||qu ([77,7],L7‘1 (R™) ) Lq2( —7,7],L72 (R"))

8.3.2 The Smoothing Effect of the Schrédinger linear flow

The smoothing effect of the Schréodinger linear flow has been extensively studied since the 1980’s. For a sharp
view of the problem, one could read the complete study of the matter in | ], or the works that followed
with [ ], [R7Za] or [RZb]. Here we are working with a Laplace-Beltrami type of operator and a potential.
The associated metric has been assumed from the begining to be a perturbation of usual euclidean metric
around zero which was our blowing-up point. Also see | ] for complementary statements.

The smoothing effect requires similar assumptions than those we have made to obtain the Strichartz
estimates. We begin with recalling some statement from S. Doi | I, 1 ]

Theorem 8.7. Assume (M, go) is either the euclidean space or the hyperbolic space of constant curvature
—p%, p>0, and g = go outside of a compact set, then one has
ug € L2(M) s et Boqy € L7 (R, H;O/CQ(M)) is continuous

if and only if there is no complete geodesic contained in a compact subset.

which suggests that the existence of a trapped geodesic is a key obstruction to the smoothing effect. With
basically the same assumptions, | ] proved

Theorem 8.8. Assume M = R"™, and g is equal to the euclidean metric outside of a compact set, then for
any k € N the two following applications are also continuous

up € L2(M, (1 + |z|*) dx) — t*/2 et Bauy € L3 ([0,00), HLLTH2 (1))

loc

up € L? (M, (1 + |z[¥) dz) — th/2 g1t Bay € CO([O,oo),Hk/2(M))

loc

giving a higher order smoothing effect. However, these results are homogeneous. To see how to get
inhomogeneous local smoothing results, and to somehow comprehend how the local smoothing effect may be
reduced to bounds on the cut-off resolvent of the operator, one may refer to | ].

Following [R7ZD], and | ] denote again by p(x, £) the principal symbol of operator L, we assume 8.6
still holds, and now denote by ®; the bicharacteristic flow of p. Recall ®; was defined for all ¢ € R thanks to
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8.6, and Py(x,&) = (x(¢),&(t)) were its geodesics. Then define S*(R™) = {(z,&) € T*(R™) : p(z,§) =1}, so
that @, (S * (R")) is the set of geodesics with unit velocity. The non trapping assumption may be written as

V K compact C S*(R™), 3 tx > 0, such that Vi > tg, O(K)NK =1

and is equivalent to 8.7. Eventually a last assumption regarding the asymptotic behavior of the metric
terms is required

|z| V,Gij(x) = 0, as|z|— +o0, 1<i,j<n

8.8
Ve LOO(RH), V> —Co, Cop>0 ( )

Now Theorem 1.1 of [RZb] or Theorem 1.2 of | ] may be weakened to

Theorem 8.9. Assuming the operator L satisfies to assumptions 8.6, 8.7, 8.8, and since L is self-adjoint
in L*(gdz), for any v € (1/2,1], and s € (—=1/2,1/2), if u(t) is solution of the Schrédinger equation
i0wu+ Lu=F on [0,T] with initial datum ug € H', one has

H< > Ds+1 /2 UDS 1/2F||L2

“||L2[o T);L2(g(z)de) ~ < ID%uol|z2 + [|{2) [0,T);L2(g(z)d)

where D = ((1 + Cp) Id + ﬁ) which is well defined by functional calculus of self-adjoint positive
operators.

Appliying this last result for () u and s =0, v = 1 yields

HDl /2 >2D 1/2};\||L2

U‘HL2[O T);L2(g(z)dz) ~ < (@) uollz2 + || [0,7):L2 (g(x)dar)

it L

In other words the operator T'=e we have introduced in the previous section satisfies

T:L* = L0, T{z) *HY? and T*:L*0,T)(x)HY? — L? are continuous
so that combined with Strichartz estimates of the previous section with admissible pairs (4,4) and (oo, 2)

TT* : L2 LA3 0 120, T)(x)2H' — L°L2 N L2[0, T)H?? is continuous

Altogether with the Duhamel formula, this explains how we got estimates of type (3.120) and (6.145).
Indeed, whenever a solution for the Schrédinger equation would satisfy i0;u + Lu = Fy + Fy, one could thus
write

el vz S (Bl ars s+ [+ 2P) Bl

8.4 Elements of pseudodifferential calculus.

We recall now a few basic properties about pseudo-differential calculus. For more details, one may read

[ ], or | ] for even further details about nonlinear PDE’s aspects. Here we mainly refer to [ ]
and the lectures notes [ ] available on Mr Taylor’s webpage http://math.unc.edu/Faculty/met/.
Let (p) = (1 + |p|2)1/2. Assuming p > 0, 61, 02,6 € [0,1], m € R, we define the space of symbols S5 5,

to consist of C>°((IR?)?) functions satisfying

|D3* D> Dga(a,y,€)| < Capyp, (&) Pl BITe21820 -y gy ¢ € R

We then consider the Fourier integral representation of a pseudodifferential operator on R? given by

Au(z) = Op(a)u(x) = (2m) 2 / / ¢ € a(w,y, €) uly) dy dé (8.9)

where we have defined the Fourier transform and its inverse of u as
€)= [ Suly)dy, (o) = (2m) 2 [ <a(e) de
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Also define the differential operators

19 18 _ 1/2

One may then notice an operator of the form (8.9) can be rewritten in the following form

Au(a) = Oplp)uta) = (2m) 2 [ [ € () uty) dy e
with p(z.€) = (2m)~2 / [ -0t dydy = ¢ a9,

and it is proved in | | that assuming 0 < do < p <1, A € OPS s, with § = max(d1,02). So one
may reduce the study of operators as in (8.9) to those as in (8 10) with symbols p of S5 that satisfy

(8.10)

|DIDEp(z,§)] < Cap (1P 2y, ¢ € R?

Furthermore, the above symbol p for operator A satisfy the asymptotic expression

161
? o Jo m— —4
p(x, &) — E o dg dya(x,y,f)}y:m € SWS N(p )7 VY NeN
0<|a|<N

The asymptotic expression is particularly useful when studying compositions, and commutators for such
operators. Thus, given two symbols p; € S 5> J =1,2, it is proven in [ ] that

Op1 Op2 mi+ma—2 (p—0)
Od S 1 2 P
P o 5

[p1(2,d), pa(2,d)] = [p1,pa)(w,d) € OPSIS 7070 with : (8.11)

(p1op2)(x,8) = pr(x, &)p2(x, &) +

2

1N~ (0p10p2 _ Opr Opa m1+ma =2 (p=9)
[p1, p2](2,€) = ZZ(agj dx; Oz 3§j) med %,

Eventually, notice the following useful property

p(,€) €8s, 0<d<p<1, Op(p): WP — WP VseR, 1<p<+oo (8.12)

Now this may be used to prove the decomposition we have used in (4.40) and (6.186) :

DY?|z|>DY? — xDx = [Dl/Qx,xDl/z} € OPS;&
First, let {¢;,j7 € N} be a partition of unity such that > 1; = 1. Then define also (¢;) a collection

J
of compactly supported functions such that ¢;(z) = ¥;(z)z, * € R?. We then use these and (8.11) to
decompose

D25 = Op((€)} y Zop j<y>)=ZOp<pj<x,e>), pi(2,€) = (€)2 ¢;(x) mod Sy

«DV/? = &)%) Zop i) (€)?) Zop @(2,9),  @(z,8) =¢;(z) (€)* mod S,
dp; O Op; O _ _
[D'/%2,aD*"?) = 3 [0p(r,). Op(a)] = 22(3? e~ Ba ) mod Sib =0 mod sy

Jil

In particular, using (8.12) a_y(z,D) = [DY2z,2DY?] is a bounded operator L*/? — Wh#/3 C L4
thanks to Sobolev embedding result of Theorem 8.1. Indeed, from (4.40) that proves
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|l D2 B[}, = (D2 |of? DY2 R, R) = ([¢D2 +a-1(z, D)] R, R)
= [D"2 & R||}. + (a-1(z, D)R,R)
S0V B, + [|ai (@ D)R]| 1Bl ors
S|Pz R, + IRIG s

8.5 An estimating Lemma for an ODE solutions

Here we recall Lemma 5.4 of Appendix A in | |, that is needed in the Unicity argument to get bounds
on the parameters.

Lemma 8.10. Let Z = (Z1,Z5) : R — R? satisfying the following ordinary differential system
0 -2
82

where ¢ > 0 is a constant and where F = (Fy, Fy) : R — R%. Assume also that

lim Z(s)=0 and |F(s)| < :

s—+o00 33 ’

Then we have the following estimate for Z for s > 2

+oo
‘Zl(s)’ +s ’Zg(s)‘ < / (\F1(0)| +o |F2(U)D log(o)do.

S

The proof is straightforward, and we don’t reproduce it here.

206



REFERENCES 207

References

[AH11] B. Andrews and C. Hopper. The Ricci Flow in Riemannian Geometry. A complete Proof of the
Differentiable 1/4-Pinching Sphere Theorem. Lecture Notes in Mathematics. Springer, 2011.

[AKR12] L. Alaoui, M. Khenissi, and L. Robbiano. The Kato smoothing effect for regularized Schrédinger
equations in exterior domains. HAL : hal-00683876, version 1, 2012.

[Ban04] V. Banica. Remarks on the blow-up for the Schrédinger equation with critical mass on a plane
domain. Arziv preprint math. AP /0401129, 2004.

[BCD11] V. Banica, R. Carles, and T. Duyckaerts. Minimal blow-up solutions to the mass-critical inho-
mogeneous NLS equation,. Comm. P.D.E., 36(3):487-531, 2011.

[BGTa] N. Burq, P. Gerard, and N. Tzvetkov. The Schrodinger equation on a compact manifold:
Strichartz estimates and applications. Jour.SEquations aux Derivees Partiellesg(Plestin—les—
Graves, 2001), Ezpose, page 18.

[BGTh) N. Burqg, P. Gérard, and N. Tzvetkov. On nonlinear Schrédinger equations in exterior domains.
Ann. I. H. Poincaré, 21:295-318.

[BGT03a] N. Burq, P. Gérard, and N. Tzetkov. Two singular dynamics of the nonlinear Schrédinger
equation on a plane domain. Geometric And Functional Analysis, 13(1):1-19, 2003.

[BGT03b] N. Burq, P. Gerard, and N. Tzvetkov. The Cauchy problem for the nonlinear Schrédinger
equation on compact manifold. J. Nonlinear Math. Physics, 10:12-27, 2003.

[BL83] H. Beretycki and P.L. Lions. Non linear scalar field equations I. Existence of a ground state;
IT. Existence of infinitely many solutions,. Arch. Rational Mech. Anal.,, 82:313-375, 1983.

[Cha08] S.; Nakanishi K.; Tsai T.P. Chang, S.M.; Gustafson. Spectra of linearized operators for NLS
solitary waves. SIAM J. math. Anal., 39:1070-1111, 2007/08.

[CK] M. Christ and A. Kiselev. Maximal functions associated to filtrations. Journal of Functional
Analysis, 179(2):409-425.

[CKS] W. Craig, T. Kappeler, and W. Strauss. Microlocal Dispersive Smoothing for the Schrodinger
equation. Communications on Pure and Applied Mathematics, 48(2):769-860.

[Doia| Shin-Ichi Doi. Smoothing effects for Schrodinger evolution equation via commutator algebra.
Séminaire E.D.P. (1996-1997), Exposé ni XX, 13 p.

[Doib)] Shin-Ichi Doi. Smoothing effects of Schrodinger evolution groups on rimannian manifolds. Duke
Mathematical Journal, 82(3):679-706.

[Gla77] RT Glassey. On the blowing up of solutions to the Cauchy problem for nonlinear Schrédinger
equations. Journal of Mathematical Physics, 18:1794, 1977.

[GV79] J. Ginibre and G. Velo. On a class of nonlinear Schrédinger equations I, IT. The Cauchy problem,
general case,. J. Func. Anal., 32:1-7T1, 1979.

[Kat87] T. Kato. On nonlinear schrédinger equations,. Ann. Inst. Henri Poincaré, Physqgiue Théorique,
49:113-129, 1987.

[KP] T. Kato and G. Ponce. Commutator estimates and the Euler and Navier-Stokes equations.
Comm. Pure Appl. Math., 41:891-907.

[KT98] M. A. Keel and T. Tao. Endpoint Strichartz estimates. American Journal of Mathematics,
120(5):955-980, 1998.

[Kwo89] M.K. Kwong. Uniqueness of positive solution of Au—u-+u? =0 in RY,. Arch. Rational Mech.

Anal., 105:243-266, 1989.

207



REFERENCES 208

[Leo09]

[Lio84]

[Lio85)]

[Mar02]

[Mer93]

[Mer96]

[Miz12]

[MPTT03a]

[MPTTO3b]

[MPTT04]

[MRO4]

[MRO5]

[MZ07]

[RS11]

[RZa]

[RZb]

[RZ05]

[Spigo]

[ST]

[Tay91]

[Tay97]

G. Leoni. A first course in Sobolev Spaces, volume 105. Graduate Studies in Mathematics,
American Mathematical Society, 2009.

P.L. Lions. The concentration-compactness principle in the calculus of variations. The locally
compact case. I. Annales de 1SInstitut Henri Poincare. Analyse Non Lineaire, 1(2):109-145,
1984.

PL Lions. The Concentration-Compactness Principle in the Calculus of Variations.(The limit
case, Part. II.) El principio de concentracién-compacidad en el cédlculo de variaciones. El caso
limite, Parte II. Revista matemdtica iberoamericana, 1(2):45-121, 1985.

André Martinez. An Introduction to Semiclassical and Microlocal Analysis. Springer, 2002.

F. Merle. Determination of blow-up solutions with minimal mass for nonlinear Schrédinger
equation with critical power. Duke Math. J. 69, 1993.

F. Merle. Non existence of minimal blow-up solutions of equation iu; = —Au — k(z)|u|*Nu in

RN .. Ann. Inst. H. Poincaré Phys. Théor., 64(1):33-85, 1996.

H. Mizutani. Strichartz estimates for Schrodinger equations with variables coefficients and
unbounded potentials. arXiv:1202.5201v2 [math.AP], 2012.

C. Muscalu, J. Pipher, T. Tao, and C. Thiele. A short proof of the Coifman-Meyer multilinear
theorem. available on http://www.math.brown.edu/ jpipher/trilogyl.pdf, 2003.

C. Muscalu, J. Pipher, T. Tao, and C. Thiele. Bi-parameter paraproducts. submitted, Acta
Math, available on arXiv:math/0310367v1 [math.CAJ, 2003.

C. Muscalu, J. Pipher, T. Tao, and C. Thiele. Multi-parameter paraproducts. submitted, Revista
Math, available on arXiv:math/0310367v1 [math.CAJ, 2004.

F. Merle and P. Raphaél. On universality of blow-up profile for L? critical nonlinear Schrédinger
equation. Inventiones mathematicae, 156:565-672, 2004.

F. Merle and P. Raphaél. The blow-up dynamic and upper bound on the blow-up rate for
critical nonlinear Schrodinger equation. Ann. of Math., 161(1):157-222, 2005.

L. Ma and L. Zhao. Blow-up of solutions to the nonlinear Schrédinger equations on standard
N-sphere and hyperbolic N-space. Arziv preprint math/0701200, 2007.

P. Rapha¢l and J. Szeftel. Existence and Uniqueness of minimal blow up solutions to an
inhomogeneous mass critical NLS. J. Amer. Math. Soc., 24:411-469, 2011.

L. Robbiano and C. Zuily. Microlocal analytic smoothing effect for the Schréodinger equation.
Duke Mathematical Journal, 100(1):93-129.

L. Robbiano and C. Zuily. The Kato smoothing effect for Schrodinger equations with unbounded
potentials in exterior domains. International mathematics research notices, 2009(9):1636-1698.

L. Robbiano and C. Zuily. Strichartz estimates for Schrodinger equations with variables coeffi-
cients. arXiv:math/0501319v1 [math.AP], 2005.

M. Spivak. A comprehensive introduction to differential geometry, volume 2. Publish Or Perish,
1990.

G. Staffilani and D. Tataru. Strichartz estimates for a Schrédinger operator with nonsmooth
coefficients. Comm. Partial Differential Equations, 27(7-8):1337-1372.

Michael E. Taylor. Pseudodifferential Operators and Nonlinear PDE, Progress in Math. 100.
Birkhauser, Boston, 1991.

Michael E. Taylor. Partial Differential Equations II : Qualitative Studies of Linea Equations.
Springer, 1997.

208



REFERENCES 209

[Tay08]
[VZ00]

[Weig3]

[Wei5)

[Wei86]

[Xu96]

Michael E. Taylor. Pseudodifferential Operators, Four Lectures at MSRI. September 2008.

A. Vasy and M. Zworski. Semiclassical estimates in asymptotically euclidean scattering,. Comm.
Math. Phys., 212:205-217, 2000.

M.I. Weinstein. Nonlinear Schrodinger equations and sharp interpolation estimates. Comm.
Math. Phys., 87:567-576, 1983.

M.I. Weinstein. Modulational stability of ground states of nonlinear Schrédinger equations.
SIAM J. math. Anal., 16:472—-491, 1985.

Michael I. Weinstein. Lyapunov stability of ground states of nonlinear dispersive evolution
equations. Pure Appl Math., 39:51-67, 1986.

Chao-Jiang Xu. General theory of partial differential equations and microlocal analysis. Pitman
Res. Notes Math. Ser. 349, Longman, Harlow, 1996.

209



	Introduction and modulation tools
	The Inhomogeneous NLS with a smooth metric
	The flat homogeneous case.
	The flat inhomogeneous case.
	The almost euclidean and inhomogeneous case.

	The slow modulated ansatz
	Expansion near the origin
	Modulation and construction of the approximation

	Estimation of mass and energy for the approximate profile
	Estimation of Energy. Existence of critical elements. 
	Introduction of the nonlinear decomposition and Modulation of the parameters
	A first estimation of the P parameters.
	Refined Energy identity
	Working the bootstrap under further assumptions
	Backward propagation of smallness
	Existence of critical mass blow up solutions


	Critical mass blow up solutions have conformal speed
	Variational estimates and convergence of the concentration point.
	Strict lower bound on the energy.
	The localized virial identity
	Convergence to 0 of u in H1 away from the concentration point.
	Convergence to 0 in average of u in H1.
	Control of the modulation parameters.

	Uniqueness
	H1 convergence to the critical element.
	Energy estimates for the flow near uc.
	Control of the scalar products and proof of Theorem 1.1
	Appendix 5.A : Proof of (5.5)
	Appendix 5.B : Computation of the approximate null space of the linearized NLS operator around the Ground-State.

	The Inhomogeneous NLS problem on a riemannian manifold.
	The pseudo conservation laws of the approximate profile.
	Introduction of the nonlinear decomposition of the solution and initialization of the bootstrap argument.
	A first estimation of the modulation parameters.
	Refined Energy identity
	Backward propagation of smallness
	Existence of critical mass blow up solutions
	Rigidity of the flow around Qp
	Variational estimates and convergence of the concentration point.
	Strict lower bound on the energy.
	The localized virial identity
	Convergence to 0 of u in H1 away from the concentration point.
	Convergence to 0 in average of u in H1.
	Control of the modulation parameters.

	Uniqueness
	Refined estimates under stronger assumption
	H1 convergence to the critical element.

	Energy estimates for the flow near uc.
	Control of the scalar products and proof of Theorem 6.2
	Appendix 6.A : Proof of (6.240)
	Appendix 6.B : Computation of the approximate null space of the linearized NLS operator around the Ground-State.

	Appendix A : Some remarks about the Riemannian Geometric aspects
	Appendix B : Some remarks about technical arguments
	The kernel of the linearized operator
	Estimates in Sobolev Space.
	Sobolev embeddings.
	Paraproducts estimates.

	The Strichartz Estimates and The Smoothing effect.
	The Strichartz estimates for Schrodinger equations with variable coefficients
	The Smoothing Effect of the Schrödinger linear flow

	Elements of pseudodifferential calculus.
	An estimating Lemma for an ODE solutions


