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Abstract
The underlying structure in the region A∼100, N∼60 has been under intensive and extensive investigation,

mainly by β-decay and γ-ray spectroscopy from fission processes. Around N∼60, by adding just few neutrons,
protons a rapid shape change occurs from spherical-like to well deformed g.s. shape. Shape coexistence has
been observed in the Sr and Zr nuclei, and is expected to take place in the whole region.
The mechanisms involved in the appearance of the deformation is not well understood. The interplay between
down-sloping and up-sloping neutron Nilsson orbital is evoked as one of the main reasons for the sudden
shape change. However, a clear identification of the active proton and neutron orbitals was still on-going.
For that purpose, the neutron rich 93,95,97,99Rb isotopes have been studied by Coulomb excitation at CERN
(ISOLDE) using the REX-ISOLDE post-accelerator and the MINIBALL setup.
The completely unknown structures of 97,99Rb have been populated and observed. Prompt γ-ray coincidences
of low-lying states have been observed and time correlated to build level schemes. The associated transition
strengths have been extracted with the GOSIA code. The observed matrix elements of the electromagnetic
operator constituted new inputs of further theoretical calculations giving new insight on the involved orbitals.
The sensitivity of such experiment can be increased using nuclear spin polarized RIB. For that purpose the
Tilted Foils Technique (TFT) of polarization has been investigated at CERN. A new TFT polarizer with
a β-NMR setup have been created and installed after REX-ISOLDE. The uncomplete knowledge of the
polarization process associated to the technique needs to be investigated. Conclusive preliminary tests have
been performed on 8Li in order to determine the potential of the present setup.

Résumé
La structure sous-jacente dans la zone A∼100, N∼60 a été étudiée intensivement et extensivement, principa-
lement par décroissance β et spectroscopie γ suite à des réactions de fission. Autour de N∼60, en ajoutant
juste quelques neutrons, protons un changement de forme rapide des états fondamentaux se produit, allant de
sphérique à bien déformé. La coexistence de forme observée dans les noyaux de Sr et Zr est supposée avoir
lieu dans toute la région.
Les mécanismes impliqués dans l’apparition de la déformation n’était pas clairement identifiés. L’interaction
entre les orbitales de Nilsson montantes et descendantes est évoquée comme l’une des principales raisons
du changement de forme. Cependant, une identification claire des orbitales proton et neutron en jeu était
nécessaire. A cet effet, l’étude des isotopes 93,95,97,99Rb rich en neutrons a été réalisée par excitation Coulom-
bienne au CERN (ISOLDE) en utilisant le post-accélérateur REX-ISOLDE et le dispositif MINIBALL.
Les structures excitées encore inconnues des isotopes 97,99Rb ont été peuplées et observées. Les coïncidences
de transitions γ des états de basse énergie ont été observées et leur corrélations ont permis la construction
de schémas de niveaux. Les probabilités de transitions associées ont été extraites grâce au code Gosia.
Les éléments de matrice de l’opérateur électromagnétique observés constituent de nouveaux apports afin
d’effectuer de nouveaux calculs théoriques permettant de statuer sur les orbitales impliquées.
La sensibilité des expériences de ce type peut être accrue en utilisant des faisceaux radioactifs d’ions dont le
spin nucléaire est polarisé. La technique de polarisation des feuilles orientées (TFT) fut étudiée dans ce but
au CERN. Un nouveau polariseur TFT et un dispositif β-NMR ont être créés et installés après REX-ISOLDE.
La connaissance du processus de polarisation associé à la technique reste incomplète à ce jour et de plus
amples études sont nécessaires. Des tests préliminaires prometteurs ont été effectués sur le noyau de 8Li afin
de déterminer le potentiel du dispositif actuel.

Mots clés: structure nucléaire; spectroscopie γ; excitation Coulombienne; excitation multiple;
modèle rotationnel; déformation; feuilles orientées; polarisation nucléaire; β-RMN;

Key words: nuclear structure; γ-ray spectroscopy; Coulomb excitation; multi-step excitation;
rotational model; deformation; tilted foils; nuclear polarization; β-NMR;

Discipline/Matter: Constituants élémentaires/Elementary constituents
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Synthèse

Durant les dernières décennies, la région autour de N∼60, A∼100 riche en neutrons
a été sujette à des études intensives et extensives. La structure nucléaire sous-jacente de
la région fut principalement étudiée par décroissance β et spectroscopie γ grâce à des
réactions de fissions induites via des protons de haute énergie ou des neutrons thermiques
et des réactions de fission spontanée.
Dans cette partie de la charte nucléaire, le développement de déformation le plus soudain
est observé. En ajoutant juste quelques neutrons/protons, une transition de forme rapide se
produit, allant d’une forme sphérique à une forme bien déformée pour les états fondamen-
taux autour de N∼60.
Généralement, l’observation de transitions de forme est accompagnée par le phénomène de
coexistence de formes. Observé dans les noyaux de Sr et Zr, elle est supposée être présente
dans l’ensemble de la région. Bien que les états fondamentaux déformés ont été clairement
observés autour de N∼60, entre les chaînes isotopiques de Mo et de Rb incluses, il n’est
pas aisé de déterminer une limite stricte au développement de déformation. Les dernières
mesures de masses et de rayons de charge indiquent l’absence d’apparition soudaine de
déformation pour la chaîne isotopique du Kr (Z=36). Les mesures systématiques des
moments dipolaires électriques et quadrupolaires magnétiques mettent en exergue le fait
que les isotopes de Rb sont les premiers à présenter l’apparition soudaine de déformation
pour les faibles numéros atomiques de la région.

Les mécanismes impliqués dans ce développement de déformation sont peu compris.
Dans une première approche, les calculs de modèles théoriques pointaient l’interaction
proton/neutron résiduelle des partenaires spin-orbite πg9/2 et νg7/2 comme responsable du
développement de déformation. Cependant, de plus amples calculs prenant en compte
un espace de valence plus large remirent en question cette hypothèse en obtenant un
meilleur accord avec les données expérimentales (notamment pour les isotopes de Mo).
L’interaction entre les orbitales de Nilsson neutron montantes et descendantes est évoquée
comme l’une des principales raisons du soudain changement de forme. Cependant, jusqu’à
aujourd’hui peu d’expériences avaient été proposées pour établir l’importance relative des
ces orbitales.

Des bandes rotationnelles ont déjà été identifiées à N∼60 pour les numéros atomiques
les plus élevés de la région, exhibant une déformation des noyaux dans leurs états fon-
damentaux. Une claire identification des spins de tête de bandes, des déformations en
présence et des orbitales de Nilsson sur lesquelles sont construites les bandes rotationnelles,
devrait constituer une source suffisante de nouvelles informations afin de déterminer les
mécanismes responsables du développement de déformation. La nature de la plupart des
nucléides de la région fait de leur étude expérimentale un challenge; par exemple, étant
situé loin de la vallée de stabilité, ils possèdent de faibles durées de vie, de surcroît, leurs
natures chimiques très différentes des nucléides en présence, offrent plus ou moins de
difficulté pour les produire.
Les récents développements effectués dans le domaine des faisceaux radioactifs d’ions
(RIB) permirent l’étude de la région via d’autres mécanismes de réaction. La collaboration
établie autour du spectromètre MINIBALL situé au CERN envisagea l’étude extensive de

3



SYNTHÈSE

la région par excitation Coulombienne afin de clarifier la situation.

L’excitation Coulombienne est gouvernée par différentes règles de sélection que les
réactions précédemment utilisées pour peupler les états excités. Elle consiste en la colli-
sion de deux noyaux à une énergie proche de la barrière Coulombienne. Si l’excitation
relève uniquement d’une interaction purement électromagnétique, les seules propriétés
nucléaires en jeu sont décrites par les éléments de matrice de l’opérateur multipolaire
électromagnétique. Nous nous restreindrons à ce cas, communément appelé excitation
Coulombienne "sûre" pour lequel l’interaction forte est négligeable et peut être traitée à un
ordre perturbatif.
De part leur collision, les noyaux peuvent subir une transition d’un état nucléaire initial
à un état nucléaire final. Cet état final excité décroît principalement par émission de
transition γ ou d’électrons de conversion.
Les intensités de transitions γ observées ainsi que les différents rapports d’embranchement
sont directement reliés aux éléments de matrice de l’opérateur multipolaire. Ils décrivent
les processus d’excitation et de dés-excitation caractéristiques de la structure nucléaire.
Par exemple, les éléments de matrice diagonaux décrivent la déformation via les moments
quadrupolaires. Les probabilités de transitions B(E2) découlant des éléments de matrice
constituent des ingrédients essentiels pour évaluer la collectivité proche des nombres
magiques et des transitions de formes.
L’atout principal de cet technique est de pouvoir extraire des informations sur la structure
nucléaire sans dépendance à un modèle quelconque.

Concernant la chaîne isotopique du Kr, le développement de déformation n’était pas
observé en terme de mesures de masse et de rayon, mais il se pourrait que ce change-
ment s’opère graduellement. Afin d’évaluer cette hypothèse, une étude par excitation
Coulombienne des isotopes 94,96Kr a été effectuée dans le cadre de la même collaboration
(MINIBALL).
Les systématiques présentes dans ces isotopes pair-pair, pour les énergies E(2+1 ), E(4+1 ),
leur ratio R4/2 et probabilité de transition B(E2, 2+1 → 0+1 ) indiquent un faible développe-
ment de déformation. Ce constat confirme que la chaîne isotopique des Rb est la première
présentant un développement soudain de déformation. Placé à la frontière du changement
rapide de forme, son étude constitue un ingrédient clé pour comprendre les mécanismes en
présence.

Dans la chaîne isotopique des Rb, les états fondamentaux présentent un rapide développe-
ment de déformation à N=60 pour le noyau 97Rb. Auparavant, il n’était pas possible
d’étudier leurs structures nucléaires du fait de leurs exotismes. Les récents développements
dans le domaine des faisceaux radioactifs permettent maintenant leur étude . L’existence
de bandes rotationnelles pouvait être raisonnablement envisagée dans les isotopes de ru-
bidium riches en neutron de masse impaire à N & 60. L’identification des configurations
de particule célibataire sur lesquelles sont basées les bandes rotationnelles constituerait
une étape essentielle quant à la compréhension des mécanismes de déformation. De plus,
l’arrangement des orbitales proton pour N & 60 n’est pas connu. L’étude de la structure
nucléaire de basse énergie par excitation Coulombienne des isotopes de 93,95,97,99Rb consti-
tuait la meilleure option afin d’identifier les orbitales proton actives.

Etant au niveau d’une transition de forme, l’observation du phénomène de coexistence
de formes dans les isotopes de Rb étudiés peut être raisonnablement envisagée. De plus,
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des calculs théoriques basés sur le modèle QPRM ont prédit l’existence d’isomères de
forme à basse énergie. Cependant, compte tenu de leurs longues durées de vie et de
leurs basses énergies, il sera difficile de les observer par les dispositifs expérimentaux
d’excitation Coulombienne.

Des études par excitation Coulombienne similaires à l’expérience proposée ont d’ors et
déjà démontré la performance du dispositif expérimental MINIBALL avec REX-ISOLDE
au CERN. Nous pouvons citer à titre d’exemple l’étude des isotopes de Cu de masse
impaire. Cette dernière apporta la confirmation qu’un tel type d’expérience apportait un
gain d’informations conséquent à la fois sur les états collectifs et de particule célibataire
des noyaux exotiques.

Lors d’une expérience d’excitation Coulombienne, les noyaux d’intérêt doivent être
produit de façon à former un faisceau d’ions radioactifs (RIB) correspondant aux spécifica-
tions d’intensité, de pureté et d’énergie requises. Ce faisceau radioactif est ensuite conduit
à une cible secondaire où l’excitation Coulombienne prend place.
L’utilisation de faisceaux radioactifs implique de dépasser plusieurs obstacles techniques
provenant de la nature instable du faisceau et généralement de leurs faibles sections effi-
caces de production. Du fait que ceux-ci sont produits avec de faibles intensités dans un
environnement très radioactif, ils doivent être extraits et transportés loin de leur source
de production afin d’améliorer le rapport signal/bruit. L’efficacité la plus haute dans les
phases de production, de préparation et de transport du faisceau doit être atteinte.
Le temps de vie des noyaux d’intérêt impose de réduire au maximum le temps de chacun
des processus allant de la production au dispositif expérimental chargé de faire l’étude.
De plus, la plupart des faisceaux produits contiennent des contaminants qui peuvent être
considérablement plus abondants que les noyaux d’intérêt. Ces contaminants doivent être
réduit au maximum pour permettre l’identification des noyaux étudiés. Leur présence
peut engendrer des dommages aux détecteurs d’un point de vue balistique, mais aussi des
temps morts additionnels dans les systèmes d’acquisition. Du fait de sa nature radioactive,
le faisceau ne peut être stoppé. Donc, il est crucial d’avoir la plus précise des sélections
afin de réaliser l’étude expérimentale avec la meilleure efficacité et dans des conditions de
sûreté effective.

Les noyaux d’intérêt ont été produits par la technique ISOL (Isotopic Separation On-
Line). Elle consiste au bombardement par un faisceau primaire (par exemple: protons,
deuterons ou ions lourds) avec une cible suffisamment épaisse pour stopper les projectiles.
Les atomes produits dans la cible sont stoppés dans un élément de "recueil", quelques fois
comme à ISOLDE celui-ci est la cible elle-même. Les atomes alors diffusent/effusent hors
de la cible et passent à travers une ligne de transfert. Afin de limiter le temps de transfert,
la cible est portée à haute température (>2000°C) tout comme la ligne de transfert. Les
atomes entrent alors dans une source d’ions qui ionise et permet l’accélèration de ceux-ci.
L’intensité finale dépend grandement de la nature chimique des noyaux étudiés. En effet, la
diffusion et effusion des noyaux sont gouvernées par les processus chimiques. Le principal
avantage de cette technique vient du découplage en un faisceau primaire et secondaire. Le
découplage permet d’atteindre une qualité optique de faisceau optimum. Cependant, les
processus de diffusion/effusion/ionisation restreignent l’usage de la méthode à des noyaux
dont le temps de vie est de plus de quelques millisecondes.
ISOLDE bénéficie du complexe d’accélérateurs du CERN. Le faisceau de protons utilisé
pour produire les noyaux radioactifs est fourni par le PS-Booster. Il est pulsé avec un
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temps de répétition de 1.2 s. Le PS-Booster est composé de quatre synchrotrons couplés
qui délivre à ISOLDE des faisceaux de protons de 1.4 GeV jusqu’à 4 µA. Le faisceau de
protons impactant une cible de 238UCx produit jusqu’à 1013 produits de fission par sec-
onde. La cible est relativement épaisse ∼ 50mg/cm2. Les isotopes de Rb ont un potentiel
d’ionisation de ∼ 4.2eV relativement faible, ce qui va limiter la quantité de contaminants.
Dans notre cas, les atomes sont ionisés via la technique d’ionisation de surface.
Après extraction de la source d’ions, les isotopes de plusieurs éléments sont présents dans
le faisceau. Afin de sélectionner les ions radioactifs d’intérêt, le faisceau (RIB) passe au
travers d’un séparateur de masses, dans notre cas le HRS (High Resolution Separator). Un
dispositif "RFQ Cooler" améliore ensuite l’espace de phase du faisceau, en réduisant la
dispersion axiale, radiale et en énergie.
Le faisceau provenant de la source d’ions à 60 keV est injecté dans un piège de Penning, ap-
pelé REXTRAP. Le faisceau est capturé dans le piège par des champs électromagnétiques.
Ce dernier est rempli de gaz (généralement un gaz noble). Les collisions des ions avec le
gaz réduisent la "température" du faisceau, le faisant décélérer de 60 keV à quelques eV,
lui conférant une meilleure émittance transversale. Les ions sont alors concentrés en une
collection compacte. Ils sont extraits du piège en décroissant le seuil du potentiel piégeant.
L’étape suivante consiste à accroître l’état de charge des ions afin de pouvoir post-
accélérer le faisceau au travers d’un LINAC (LINear ACcelerator), en utilisant le processus
d’impact d’électrons (EBIS). Les ions sont bombardés par un faisceau d’électrons mono-
énergétique arrachant les électrons externes. REX-TRAP et REX-EBIS sont synchronisés
afin d’extraire et d’injecter le faisceau proprement selon les collections d’ions. Donc, le
temps de piégeage et le temps d’accroissement de la charge sont identiques.
Le gaz résiduel ainsi que certains contaminants ayant des A/q proches des noyaux d’intérêt
sont également ionisés et extrait d’EBIS. En considérant la faible intensité du faisceau
radioactif, il apparaît essentiel de purifier celui-ci. Un spectromètre de Nier à été installé
dans ce but entre REX-EBIS et le LINAC. Ce dernier est composé de différents disposi-
tifs d’accélération, notamment des cavités accélératrices. Il post-accélère le faisceau de
quelques 5 keV/u à 2.83 MeV/u. Finalement, le faisceau est délivré au dispositif expéri-
mental MINIBALL par un aimant de distribution.

L’excitation Coulombienne étant un processus de réaction laissant les noyaux émetteur
en mouvement, l’application de corrections Doppler est requise pour recouvrer l’énergie
photopic. Le dispositif MINIBALL a été designé dans ce but, avec une haute efficacité
et une importante granularité, qui est nécessaire pour déterminer précisément l’angle
d’émission des transitions γ. Le spectromètre MINIBALL consiste en un ensemble de
détecteurs HPGE (High Pure Germanium) de haute résolution, disposer en géométrie
rapprochée. Les détecteurs Germanium sont segmentés afin d’augmenter la granularité
du dispositif. Celui-ci est composé de 8 groupes de détecteurs. Chaque groupe consiste
en 3 cristaux de Germanium encapsulés dans une enceinte d’Aluminium. Les cristaux
sont électriquement séparés en 6 segments le long de la direction radiale et autour d’une
électrode de collection (appelée "core"). Les groupes de détecteurs sont placés à environ
11 cm de la cible secondaire, autour de la chambre d’excitation.
Sept différents signaux peuvent être extraits indépendamment pour chaque cristal: les éner-
gies collectées par les segments et l’énergie collectée par l’électrode centrale de collection.
La résolution intrinsèque des segments et "cores" sont différentes, respectivement ∼ 2.8
keV et ∼ 2.3keV.

Un système d’acquisition spécifique à été mise en œuvre afin de mettre en forme et
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d’intégrer le plus efficacement et précisément les signaux d’énergie des transitions γ.
Des pré-amplificateurs associés à des modules DGF (Digital Gamma Finder) réalisent
respectivement l’amplification des signaux d’énergie brutes, leurs mises en forme et leurs
intégrations. Les modules DGF possèdent quatre chaînes spectroscopiques complètes
chacun. Ils ont une horloge interne rapide de 40 MHz. Afin d’éviter les décalages en temps
de chaque module, ceux-ci sont synchronisés.
Le point d’interaction des transitions γ est défini comme le point d’impact (dépôt d’énergie)
où la plus haute énergie à été détectée. L’énergie collectée par l’électrode centrale est
assimilée à l’énergie totale.

Durant l’excitation Coulombienne les noyaux de recul et éjectiles sont collectés par un
détecteur de silicium segmenté double face (DSSSD: double-sided silicon strip detector),
appelé détecteur CD. Le détecteur de particules consiste en 4 différents quadrants. La face
avant du détecteur est composée de 16 jonctions p+n annulaires de 1.9 mm de largeur. La
face arrière possède 24 secteurs n+n angulaires (dépendance en φ) de type ohmique d’une
ouverture de 3.4°. La couverture angulaire de diffusion dans le référenciel du laboratoire
est 16.2°-53.3°, et la couverture azimutale représente 83% de l’espace azimutal total. Le
détecteur de particules fut positionné à ∼ 29.5 mm de la cible secondaire.
Les signaux correspondant aux dépôts d’énergie produits par l’impact des particules dans
le détecteur CD, sont préamplifiés par des cartes RAL-108 charge-sensible. Le signal
résultant est mise en forme et discriminé à l’aide de cartes RAL-109, fournissant une chaîne
électronique analogique complète pour chacun des éléments de détection du détecteur
CD. Les signaux finaux des particules sont convertis au sein de module MADC-32. Ces
derniers possèdent une horloge interne similaire au DGF de 40 MHz.
Comme décrit, le choix du système d’acquisition et de ses modules électroniques associés
a été entièrement pensé afin d’optimiser la détection des coïncidences γ − particule (haute
granularité, échantillonnage court, haute efficacité, ...).

Le faisceau arrivant sur la cible secondaire n’est généralement pas complètement pur,
et d’autres composantes que les noyaux d’intérêts peuvent être présents. Les composantes
indésirables constituent une source de temps mort et peuvent endommager les détecteurs
si le taux de comptage devient trop élevé.
De plus, dans le cadre de notre étude nous avons envisagé de normaliser les éléments
de matrice de l’opérateur multipolaire par un élément de matrice connu. Dans notre cas,
nous souhaitions réaliser la normalisation en prenant comme référence le(s) élément(s)
de matrice de la cible. On comprend aisément que si la proportion de contaminants est
importante alors l’excitation de la cible que nous observons est non seulement due aux
noyaux d’étude mais également aux noyaux contaminants.
Les principales sources de contaminants proviennent de la cible primaire (contaminant
isobarique avec leur nombre de masse similaire) et de REX-TRAP par l’extraction du
piège du gaz de confinement. Afin de déterminer précisément la composition du faisceau
une chambre d’ionisation est utilisée à la fin de la ligne de faisceau dédiée au dispositif
MINIBALL.
La chambre d’ionisation consiste en un télescope de détection ∆E-E. Le détecteur ∆E est
une chambre remplie de gaz CF4. Le détecteur E correspond à un détecteur silicium.
Lorsque les particules entrent dans la chambre, elles passent au travers du gaz et déposent
une partie de leur énergie en ionisant les particules de gaz voisines. La différence de
potentiel entre des électrodes placées dans la chambre transporte et collecte les charges.
L’énergie restante est déposée dans le détecteur de silicium.
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L’analyse des données s’est effectuée selon plusieurs étapes clés que nous allons décrire
brièvement. Cependant, il est important de préciser que dans ce genre d’étude, il est
courant de réaliser plusieurs fois la chaîne d’analyse afin de raffiner les résultats. En
effet, l’obtention des différents paramètres permettant l’analyse provient en majorité de
processus de minimisation.

Le système d’acquisition enregistre les données selon un format similaire aux systèmes
MBS, nommé medfile (.med). Le code d’extraction des données brutes a été réalisé en
langage C/C++ par Hans Törnqvist et moi-même. Il se base sur le code standard d’analyse
on-line des expériences d’excitation Coulombienne de la collaboration MINIBALL. Les
données brutes se présentent comme une collection de valeurs ordonnées en temps et
modules, cependant aucune corrélation n’exite entre elles. Lors de l’extraction, les données
sont structurées selon des arbres contenant seulement les corrélations particule-γ. Afin de
rendre le processus plus rapide, une partie du bruit de fond est exclu du traitement; par
exemple, un seuil de traitement des données a été fixé aux détecteurs de particules pour
lesquels d’important bruits de fond sont observés à basse énergie.

La calibration en énergie des détecteurs germanium de MINIBALL a été réalisée en
utilisant des sources de 152Eu et 138Ba dont on connaît précisément les énergies et rapports
d’embranchement des transitions les plus intenses. Afin de déterminer l’efficacité absolue
des détecteurs de germanium, une source additionnelle de 60Co, dont on connaît l’activité,
a été employée. L’efficacité absolue, sur la large gamme d’énergie balayée par les sources,
est obtenue en normalisant les efficacités relatives par l’efficacité absolue trouvée pour la
source de 60Co.
Comme nous l’avons déjà mentionné lors de l’excitation Coulombienne, la plupart des
transitions γ sont émises en vol. De ce fait, des corrections Doppler sont nécessaires.
Afin de réaliser celles-ci dans de bonnes conditions, la connaissance précise de la position
des détecteurs germanium et silicium est requise. Les détecteurs germanium sont montés
sur des bras amovibles permettant un changement des angles (θ,φ,α). Le couple (θ,φ)
dénote la position de l’axe central du groupe de détecteurs, l’angle α correspond à la
rotation de l’ensemble du groupe autour de son axe de symétrie. Grâce aux graduations
présentent sur les bras amovibles, la position des détecteurs est approximativement connue.
Mais afin d’obtenir un positionnement plus fin, la réaction de transfert 2H(22Ne,23 Ne)p a
été utilisée. Durant la réaction de transfert l’état 1/2+ de 1017 keV du noyau 23Ne peut
être peuplé. Sa courte durée de vie lui permet de se désexciter en vol. L’optimisation de
la position est faite grâce à la minimisation de la largeur des pics photoélectriques pour
lesquels la correction Doppler doit être optimisée. L’optimisation des largeurs Doppler est
un processus itératif. Notons que dans le cas présent la position du détecteur de particules
est supposée connue. Si un raffinement de la position du détecteur CD est nécessaire alors
le processus de positionnement des détecteurs germanium doit être réitéré, et inversement.

La calibration en énergie des détecteurs de particules s’effectue en plusieurs étapes. Une
pré-calibration est réalisée à l’aide de sources d’alpha d’une énergie d’environ 5 − 6MeV.
Etant donné que l’énergie de notre faisceau est de l’ordre de ∼ 270MeV, on devra beau-
coup extrapoler et cela donnera des résultats médiocres mais suffisant pour commencer un
raffinement de la calibration.
Dans une seconde approche nous avons réalisé une calibration à l’aide de la diffusion
Rutherford d’un faisceau cocktail en provenance de REX-EBIS sur une cible de 196Pt. La
diffusion Rutherford étant bien connue, nous pouvons déterminer l’énergie attendue pour
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un angle θ donné. La calibration fut améliorée, mais sa qualité était toujours insuffisante
pour l’obtention de corrections Doppler satisfaisantes.
Finalement, en se basant sur les données de calibration obtenues via le faisceau cocktail, la
calibration a été raffinée en utilisant les données avec faisceau de Rb.
La calibration obtenue correspond à une énergie de faisceau incident d’environ 180 −
200MeV, ce qui est significativement plus bas que l’énergie de faisceau utilisée d’environ
∼270 MeV. Considérée dans un premier temps comme erronée de plus amples tests ont été
réalisés; ils convergèrent sur une énergie incidente plus faible.
Les processus d’excitation et de des-excitation ont des échelles de temps différentes. En
effet, l’excitation est un processus rapide de l’ordre de 10−20s et la des-excitation de l’ordre
de 10−12s. Donc, même si l’excitation se produit dans la cible, le temps de désexcitation est
suffisamment long pour que le noyau excité parcourt l’ensemble de la cible avant d’émettre
une transition γ. Lors de son parcours, le noyau perd de l’énergie ce qui explique pourquoi
une plus faible énergie incidente de faisceau est trouvée.
Afin d’améliorer les corrections Doppler le positionnement précis du détecteur de partic-
ules à également été réalisé.

Après une première calibration de l’ensemble des détecteurs, les spectres de transitions
γ simples (correspondant à une coïncidence particule-γ) peuvent être obtenus. Afin
d’obtenir l’intensité correcte des transitions, nous sélectionnons les événements (particule-
γ) prompts par le biais de la différence en temps, entre la détection de la particule et de
la transition γ. A ces événements prompts, nous soustrayons des événements aléatoires
provenant de coïncidences fortuites. La largeur en temps des composantes aléatoires
et prompts doit être équivalente. D’autres corrections doivent être également apportées
comme l’efficacité et les coefficients de conversion électronique.

L’investigation de structures excitées totalement inconnues requiert l’utilisation d’outils
spécifiques, afin d’identifier et construire les différentes cascades de transitions γ. Si
durant le processus de des-excitation, les transitions γ d’une même cascade sont détectées
dans des détecteurs différents au même instant, alors elles sont qualifiées de transitions
coïncidentes. La fenêtre de coïncidence temporelle doit être aussi courte que possible en
optimisant le ratio N

γ

vrai coinc./N
γ

alatoire coinc.
. Elle a été obtenue en étudiant l’évolution du

nombre de coïncidences en fonction de la largeur de la fenêtre de coïncidence. Après un
certain temps, l’accroissement du nombre de coïncidences se stabilise. Cela correspond au
temps après lequel la grande majorité des coïncidences sont fortuites.
Grâce à l’identification des événements coïncidants, nous avons construit une matrice
γ − γ des événements coïncidants (Eγ

1 vs E
γ

2). Les projections de ces matrices assurent
l’identification des transitions γ coïncidantes.
La diffusion Compton impacte directement sur l’identification des énergies de transitions
γ, créant des événements avec des énergies plus basses que l’énergie photopic. L’ensemble
de détection MINIBALL n’a pas de détecteurs visant à identifier les événements Compton.
Cependant, selon la formule énoncée par Klein et Nishina, une couverture angulaire
minimisant la probabilité d’avoir des événements Compton peut être définie. Dans notre
cas nous avons rejeté l’ensemble des événements coïncidants ayant un angle de 40 degrés
entre eux.

Comme mentionné précédemment, l’analyse d’une expérience d’excitation Coulom-
bienne "sûre" à pour but l’extraction des éléments de matrice d’une manière modèle
indépendant. Le code GOSIA a été utilisé dans ce but. Celui-ci réalise une minimisation
de moindre carré des taux de transition expérimentaux et théoriques en utilisant des calculs
d’équations couplées dans la limite des considérations semi-classiques.
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En d’autres termes, GOSIA ajuste chaque élément de matrice par minimisation du χ2 afin
de reproduire les intensités de transitions γ observées en fonction de l’angle de diffusion.
Cette minimisation prend en compte l’ensemble des données spectroscopiques connues.

Ces expériences d’excitation Coulombienne des isotopes de Rb avec une cible de 60Ni
permirent l’identification de nouvelles transitions et structures excitées. L’analyse de ces
excitations Coulombiennes par le code GOSIA a fourni de nombreux éléments de matrice
transitionnels et diagonaux. Cependant, le nombre d’observables et leurs précisions ne
sont pas suffisantes pour contraindre fermement les éléments de matrice.
Les éléments de matrice transitionnels peuvent être traduits en transitions de probabilité
réduites et les éléments de matrice diagonaux en moments quadrupolaires statiques.

A l’issue de cette expérience, de nouvelles transitions de basse énergie d’excitation ont
été identifiées dans les isotopes 93,95Rb. Ces derniers présentent des structures excitées de
type particule-célibataire similaires. A la fermeture de sous-couche à N=56, l’inversion
des configurations de spins des états fondamentaux entre les isotopes 91Rb(N = 54,3/2−)
et 93Rb(N = 54,3/2−) peut être expliquée par une force tenseur entre les partenaires spin-
orbite νg7/2 et πg9/2.
Ayant des structures similaires, ils sont susceptibles d’avoir des configurations similaires
et donc des transitions de probabilité proches. En effet, cela est le cas pour les transitions
de probabilité B(E2). Cependant, la faible sensibilité de la technique par rapport au car-
actère M1 ne nous permet pas de déduire plus d’informations sur leurs propriétés physiques.

Cette étude expérimentale permit la première observation des structures excitées des iso-
topes 97,99Rb. Ces derniers présentent tous les deux des bandes rotationnelles très similaires.
L’observation de bandes rotationnelles constitue une preuve directe de la non-sphéricité de
leurs états fondamentaux.
Entre la réalisation de l’expérience présente et son analyse, deux expériences réalisées
à l’ILL (Grenoble) et RIKEN (Japan) prouvèrent la présence d’une transition d’environ
76.5 keV provenant d’un état isomérique de ∼5-7 µs. Deux différents assignements ont été
supposés pour cet état isomérique, l’un basé sur l’orbitale 3/2−[312] déformée oblate, et
l’autre sur l’orbite sphérique f5/2. Du fait de sa nature, cette transition n’a pas été identifiée
dans notre expérience.
Lors de notre expérience une transition de 275keV a été observée en coïncidence avec
certaines transitions de la bande rotationnelle de l’état fondamental. Celle-ci pourrait cor-
respondre à une autre configuration que celle de l’état fondamental et de l’état isomérique
de 76.5 keV.
La présence d’une quantité importante de Kr stable dans le faisceau de 99Rb, ainsi que
la très faible excitation de la cible n’ont pu permettre la normalisation des éléments de
matrice pour cet isotope.

Concernant le noyau 97Rb, des calculs du modèle Quasi-particule + Rotor ont été
réalisés par G. Simpson. Ceux-ci reproduisent parfaitement les données expérimentales
et prédisent l’existence de deux états nucléaires de configurations différentes à 600 keV
(1/2+[440] et 5/2+[422]). D’autres calculs théoriques réalisés par F. Kondev ont été
confrontés aux résultats expérimentaux afin d’identifier l’orbitale déformée sur laquelle la
bande rotationelle est construite. Le modèle à quasi-particules consiste en l’utilisation du
potentiel de Yukawa et de la théorie BCS. Les rapports d’embranchements, de probabilités
de transitions B(M1)/B(E2), ainsi que |gK−gR| et |δ| ont été calculés pour les configurations
possibles de part les mesures de moments dipolaires magnétiques: 3/2+[431], 3/2−[312]
et 3/2−[301]. La configuration 3/2−[312] est complètement exclue, ne reproduisant pas
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les résultats expérimentaux pour chacune des variables citées plus haut. La configuration
3/2+[431] est la plus favorisée étant en très bon accord avec les résultats expérimentaux.
La dernière configuration est peu favorable du fait d’une déviation significative comparée
à l’expérience.
La présence d’un effet d’oscillation de la constante rotationelle (A=~2/(2I)) en fonction
du spin nucléaire à été mise à jour. Le moment d’inertie est presque constant sans compter
la présence de séparation de signatures. Le découplage des signatures pourrait être dû à
une importante force de Coriolis ou à la perturbation appliquée par une autre bande avec
un nombre quantique K différent.

La technique de l’excitation Coulombienne constituant d’ors et déjà un outil très per-
formant pour l’étude de la structure nucléaire pourrait être améliorée dans le cas d’une
utilisation de faisceaux radioactifs polarisés. On peut vraisemblablement envisager de
possibles effets dans les distributions angulaires, ce qui pourrait aider à déterminer la
nature des transitions (M1, E2, ...).
Nous nous proposons d’étudier la possibilité de polariser des faisceaux radioactifs via la
technique dite des feuilles orientées (TFT) au CERN. Le projet de polarisation au CERN
débuta il y a de nombreuses années avec la plate-forme haute tension. Le but ultime de ce
projet serait d’offrir la possibilité de délivrer des faisceaux radioactifs polarisés que l’on
puisse post-accélérer.

Plusieurs techniques existent déjà pour produire des ensembles de noyaux orientés.
L’orientation peut être obtenue par des mécanismes de réaction où le noyau étudié est
produit, ou, par l’interaction de la collection de noyaux avec son environnement. La
plus ancienne technique employée pour produire des ensembles polarisés est l’orientation
nucléaire à basse température (Low Temperature Nuclear Orientation: LTNO). Les noyaux
sont généralement implantés dans un échantillon ferromagnétique à très basse tempéra-
ture (∼ mK) et un champ magnétique intense d’environ quelques Tesla est appliqué à
l’ensemble. Les spins nucléaires s’orientent dans la direction préférentielle du champ. Le
taux de polarisation résultant est de l’ordre de 10-100%.
Nous pouvons citer un autre processus de polarisation, le pompage optique. On peut
obtenir une polarisation quasi totale des ensembles nucléaires, cependant le degré de
polarisation dépend grandement de la structure atomique.

La technique des feuilles orientées consiste à faire passer le faisceau au travers de
fines feuilles de carbone ayant un angle avec l’axe du faisceau. Durant son passage dans
la feuille, la polarisation atomique et nucléaire sont considérées comme complètement
découplées. A la surface de sortie de la feuille, les états électroniques des ions sont
polarisés par asymétrie de charge créée par l’angle d’orientation.
Après la feuille, l’ion est atomiquement polarisé. Le transfert de la polarisation atomique à
la polarisation nucléaire se produit en vol par interaction hyperfine. Dans ce cas, F est un
bon nombre quantique et se conserve, il résulte du couplage du spin nucléaire I et du spin
atomique. Afin de réaliser ce transfert, le système doit avoir suffisamment de temps pour
précesser un nombre important de fois (ωt ≫ 1), afin de moyenner le spin nucléaire qui
aura tendance à pointer dans la direction de F.
Afin d’obtenir un haut degré de polarisation, le faisceau peut traverser un certain nombre
de feuilles. La polarisation atomique sera affectée par la feuille suivante alors que le spin
nucléaire sera supposé non affecté.

Un polariseur contenant jusqu’à 10 feuilles orientées a été conçu afin d’étudier les
différents impacts de la technique sur le degré de polarisation résultant. Afin de mesurer
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l’asymétrie des distributions de particules β, un dispositif β-NMR à été installé dans la
continuité du polariseur. Une expérience test a été réalisée récemment en juillet 2012
afin d’évaluer le potentiel du nouveau polariseur. Les résultats préliminaires indiquent
l’obtention d’une asymétrie d’environ 1%.

L’expérience de préparation a prouvé que le dispositif créé à ISOLDE était prêt pour de
plus amples investigations de la technique, exemples: dépendance en énergie du faisceau,
nombre de feuilles, angle des feuilles, la fermeture des couches atomiques après polarisa-
tion etc.

La prochaine étape consistera en l’étude de la post-accélération de faisceaux radioactifs
polarisés.
Le dispositif de polarisation est d’ors et déjà l’objet d’une proposition d’expérience visant
à mesurer le moment magnétique des isotopes d’indium.
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Introduction

During the last decades, the neutron rich A∼100 N∼60 region has been under intensive and extensive
investigations. The underlying structure in the region has been mainly studied by β-decays and γ-ray
spectroscopy from induced fission via high energy protons or thermal neutrons and spontaneous fissions.
In this part of the nuclear chart, the most sudden development of deformation has been observed. By adding
just few neutrons/protons, a rapid shape transition occurs from spherical to well deformed ground state shape
around N∼60. Shape coexistence has been expected and observed in the Sr and Zr nuclei.
Deformed ground states are clearly observed around N∼60 between the Mo and Rb isotopes, it is not
straightforward to determine a strict limit of this onset of deformation. The last mass and charge radii
measurements indicates the lack of sudden onset of deformation for the lowest atomic Kr isotopes (Z=36).

The mechanisms involved in the development of deformation are not well understood. The interplay
between down-sloping and up-sloping neutron Nilsson orbitals is evoked as one of the main reasons for the
sudden shape change. However, until now no experimental evidence has been forthcoming that establishes
the relative importance of these orbitals. A clear identification of the active proton and neutron orbitals was
still ongoing, and more experimental data were requested on low-lying excited structure.

The recent development of Radioactive Ion Beam (RIB) allowed to study the region via other reaction
mechanisms. The collaboration around the γ-ray array MINIBALL at CERN envisaged to study extensively
the A∼100 mass region by Coulomb excitation in order to clarify the situation. The Coulomb excitation is
governed by different selection rules than the previous reactions used to populate excited states. Its strong
potential to improve our knowledge on single particle-like and collective states in the exotic nuclei has been
illustrated many times, e.g. in the odd-A and odd-odd Cu isotopes. Recently, Coulomb excitation studies of
94,96Kr isotopes corroborated the mass and charge radii measurements. Positioned between the Kr and Sr
isotopic chains, the Rb isotopes are the first exhibiting deformed ground states. Thus, placed at the corner of
the shape transition, they are of great interest to understand the underlying nuclear structure as well on the
proton side as on the neutron side.

The Coulomb excitation studies of the neutron rich 93,95,97,99Rb isotopes reported here aim at identifying
the active orbitals in low lying states. A number of excited states have been already identified in 93,95Rb from
previous β-decay and isomeric studies. On contrary, the excited states of 97,99Rb were completely unknown.
Far from stability, the study of such short lived and high mass beam requests a high purity, selectivity and
intensity. The nuclei of interest have been produced at ISOLDE (CERN), purified and post-accelerated up
to 2.85 MeV/u by REX-ISOLDE and delivered to the MINIBALL setup, where they are Coulomb excited
impinging in a secondary target.
Prompt γ-ray coincidences of low-lying states have been observed and time correlated to build partial level
scheme. The associated transition strengths have been extracted with the code GOSIA. The observed matrix
elements of the electromagnetic operator constitutes new inputs of further theoretical calculations giving
new insight on the involved orbitals.

In order to increase the sensitivity of the odd mass Rb Coulomb excitation, it has been envisaged to use
radioactive nuclear spin polarized beams with the Tilted Foils Technique (TFT). This technique presents
different advantages such as the possibility to polarize any nuclei with an atomic/nuclear spin different from
zero. Designed as a compact setup to be easily introduced in existing beam lines, it can constitute a powerful
tool for future experiments. Some models have been developed to describe and reproduce the experimental
data, trying to explain the polarization mechanism in presence. However, more experimental data are
requested to establish the relative impact of the technical parameters on the obtained beam polarization, such
as the foils angle of the incoming beam energy.
A β-NMR setup has been developed at CERN to clarify the situation and to investigate the possibility to use
polarized post-accelerated RIB. The development phase and the first tests on 8Li are presented here. They
constitute an important step for further investigations.

The study realized on the Coulomb excitation of odd-mass Rb isotopes and the experimental setup to
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polarize radioactive beams using the Tilted Foils Technique are discussed in two distinct parts.
In the Coulomb excitation part, an effort has been made to introduce some basic concepts and models in

nuclear physics. The physics motivations supporting such study will be argued, describing the problematic
of the region A∼100 N∼60. A special attention will be made to understand why the study of neutron rich Rb
isotopes is a keystone. Afterwards, the production and experimental setup will be described in details as well
as the analysis tools developed and used for the present study. At the end, the different results extracted from
the collected data will be discussed and interpreted.

The second part is dedicated to the nuclear spin polarization using the specific tilted foils technique.
A complete presentation of the β-NMR experimental setup and different issues of the development will
be described. The last chapter treats about the preliminary results obtained during the first successful test
performed in July 2012.

Finally, a conclusion on the present studies and the possibility to combine them will be drawn. Some
outlooks will be put into perspectives in order to give clues for further studies.
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Chapter 1

Generalities on the Nuclear Structure

1 Introduction: The atomic nucleus

The study of the atomic nuclei is a piece of the puzzle constituting our knowledge of some aspects of the
Nature. The mass of matter is essentially concentrated in the nucleus. Basically, the mass and charge of the
atoms determine most of the physical and chemical properties of the matter. The knowledge of the atomic
nucleus is important to probe the forces governing this many body system, but it also impacts other domains
such as the astrophysics helping to understand the nucleosynthesis processes.

The evolution of the nuclear shell structure far from stability is one of the fundamental and still opened
questions in nuclear physics. Many models exist to reproduce the experimental observables. All of them are
based on a representation of the nuclear matter. Each model leads to some simplifications or approximations
of certain aspects of the nucleus. By virtue to the nucleus, some of the models are more appropriate than the
other, describing in a better way some of its behaviours under specific conditions.

The atomic nucleus is constituted by two types of fermions - the neutrons and protons - with opposite
isospin. The nucleus forms a bound system where the neutron and proton are in strong interaction to maintain
the cohesion of the system. The strong interaction can not been treated as a perturbation problem. In addition,
the approach of statistical physics can not be applied for such small system.

The nuclear shape is intrinsically linked to its tendency to minimize the energy inside a constant volume.
The perfect minimization for an isotropic system would correspond to a uniform distribution of nucleons as
a sphere. Browsing the nuclei chart it appears clearly that the tendency to roll away the spherical form is the
most common case. Taking into account the degrees of freedom related to the deformation, the experimental
observables such as the level schemes or the transition strengths could be reproduced.

1.1 Interactions and cohesion in the atomic nucleus

1.1.1 Stability and radioactivity

Firstly, to unearth the stable or unstable (N, Z) combinations, we have to understand the principle of
the total relativistic energy. For example in case of unstable/metastable (N, Z) combinations, in order to
minimize the total energy, a decay can occur and thus create a new (N, Z) combination more stable.

Those radioactive processes are governed by several laws such as the conservation of the total number
of nucleons (conservation of the baryon number). If we consider a collection of unstable nuclei searching
to minimize their total relativistic energy by decay, they will emit particles (α, β+, β−, . . . ) in order to
find a more stable (N, Z) combination. The experimental observation led to a characteristic down-sloping
exponential, proportional to the number of nuclei (N(t)) at a given time t. The radioactivity law is written as:

dN(t)
dt
= −λN(t) (1.1)

Resolving this differential equation, one obtains: N(t) = N0(t)e−λt : nuclei number at a given time t, N0 the
initial number of nuclei, λ : decay constant.

One defined the lifetime as : τ =
1
λ

and the half-life as : T1/2 =
ln(2)
λ
�

0.693
λ

.
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1.1.2 Forces and cohesion in the microscopic world

A nucleus is so small that the macroscopic and mesoscopic physics "rules" are not relevant anymore,
their order of magnitude are staggered. At the scale of a nucleus (femtometer = 10−15 m), the only in-play
macroscopic forces are the repulsive Coulomb force acting between the protons and the attractive gravitation
force. However, the gravitation can be neglected due to the simple reason that at such range the Coulomb
interaction is several order of magnitude higher. The nucleus is constituted of neutrons (neutral) and posi-
tively charged protons, which should be repulsed under the effect of the Coulomb interaction. Thus, how the
cohesion of nucleons is possible?

An interaction from other origins was needed to restore the cohesion of the nucleus: the strong nuclear
interaction. This one acts as a strong attraction in a really reduced range of distances, explaining its none
observation in the macroscopic world.

Another interaction called the weak interaction plays an important role, its intensity is several orders of
magnitude lower than the strong interaction. For example, the electrons being not sensitive to the strong
interaction can feel intensively the weak interaction. The β-decays are one of the expression of the presence
of weak interaction.

One of the primordial principle administering the infinitesimally small world, is the Pauli principle [1].
According to their fermionic nature the protons and neutrons obey to the Pauli principle. They have anti-
symmetric wave functions, this character results in the impossibility for fermions to possess the same
quantum numbers. In quantum physics, the corrections associated to this principle are called exchange
corrections, see Ref. [2] for application.
This principle is necessary to restore the over-stability observed experiementally for specific protons/neu-

trons numbers, commonly called "magic" numbers, see Ref. [3]. We could roughly explain the building of
level scheme by the way that nucleons should have different quantum states, which are pushed higher in
energy under the effect of the Pauli principle.

At high energy the strong interaction is more or less understood, but at low energy the problem is far to
be completely solved. In order to study the fundamental strong interaction, it is also important to study the
many-body problem that constitutes the atomic nucleus. The two-body problem would not provide the same
informations than the many body interactions.

The experimental observables can be explained by nuclear potentials with different forms. Note that
the intrinsic interaction between the free nucleons are more important than between the nucleons bound
inside the nucleus. This effect is mostly explained by the Pauli principle, taking into account quantumly
the presence of more than one particle. The structure of nuclei is essential to understand the forces in presence.

Due to a unaccomplished portrait of the strong interaction, it remains difficult to create a unified theory
permitting to reproduce the N-body problem that constituted the nucleus. Therefore, the simplest models
have been investigated, passing through the liquid drop model to the more complicated model such as the
Nilsson model. Each model stresses on a particular characteristic of the nuclear matter reproducing the
nuclear structure locally.

1.2 Distribution of matter in the nucleus

The nuclear matter can be represented with an average density function ρ(r), see Fig. 1.1, called the
Fermi function, defined as:

ρ(r) =
ρ0

1 + e( r−R
a )

(1.2)

with: R≈R0·A1/3 [fm] is the nuclear radius, a≃ 0.55-0.60 [fm] is the diffuseness constant, ρ0 is the initial
density found at the center.

This density is almost constant in the inner part of the nucleus and a surrounded density takes place with
a relatively high gradient to reach zero. It also agrees with the simple representation of the nucleus as an
inert core surrounded by a valence space which confers most of the properties of the nucleus.
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Figure 1.1: Average radial distribution of the nuclear matter density. ǫF is the Fermi energy, defined as the
energy of the highest occupied state in a fermion particle system. d∼ (4 · ln(3))a [fm] is the skin thickness of
the nucleus [1].

One of the most common experimental observables used to probe the distribution of matter in the nucleus
is the root mean square charge radius. The average square radius of the charged particle distribution (ρc(r)) is
defined as:

< r2
c >=

∫

r2ρc(r) d3r
∫

ρc(r) d3r
(1.3)

In order to get informations on the nuclear proton distribution, the probe needs to have a wavelength
smaller than the object of the analysis. The electrons were the most appropriated particles available to
evaluate the nuclear radius, thanks to the well known Coulomb interaction, see Fig. 1.2. Note that the
discovery of the atomic nucleus has been done in 1903 by Rutherford [4] with impinging α-particle on an Al
target (Au target had been used after).

Au

e−

e−

e−

e−

e−

e−

e−

e−

e−

e−

e−

Figure 1.2: Electron scattering from the Coulomb attraction of the nuclear charge. This experiment is similar
to the discovery of nucleus in 1903 by Rutherford and Soddy [4].

2 Nuclear Structure and deformation

2.1 Introduction: nuclear structure

In a simple representation, the nucleus can be regarded as a sphere whose the neutrons and protons
distribution would be isotropic. We retrieve such spherical form for a few nuclei and particularly in the
case of magic nucleus with totally occupied nuclear shells (8, 20, 28, 50, 82 ...) according to the standard
shell model. Nevertheless, most of nuclei deviate from the sphere and acquire deformed shapes in order to
minimize their potential energies, allowing them to be more stable. A nucleus is considered as deformed if
its shape deviates from the sphere.

In an appropriate quantum description, the nucleons occupy specific orbits. By analogy, classically, static
charge and current distributions generate fields. If they vary sinusoidally with an angular frequency (ω), a
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radiation field is produced. It can be described as a development in electric/magnetic multipole moments for
a point at a distance R from the z-axis.

V(R) =
1
R

∫

ρ(r)dr +
1

R2

∫

zρ(r)dr +
1

R3

∫

(3z2 − r2)ρ(r)dr + ... (1.4)

For most of the cases, the nucleus can get an elongated shape that can be approximated as an ellipsoid
with axial symmetry. In such a case, the monopole and quadrupole terms can describe the nuclear shape.

2.2 Parametrization of the deformation

The nuclear shape can be expressed through the following parametrization of the nuclear radius as seen
in Subsec. 1.2. Usually the nuclear radius is expanded in spherical coordinates:

R (θ, φ) = R0




1 +

∞∑

λ=1

λ∑

µ=−λ
αλµYλµ (θ, φ)




(1.5)

with: R (θ, φ) ∈ R, i.e. R (θ, φ) = R∗ (θ, φ), R0: sphere radius of the same volume.
The spherical harmonics Yλµ (θ, φ) have the standard characteristics:

Y∗λµ (θ, φ) = (−1)µ Yλ−µ (θ, φ) (1.6)

and ∫

Y∗λµYλ′µ′dΩ = δλλ′δµµ′ (1.7)

The parameters αλµ represent the shape deformation.The equation 1.6 leads to:

α∗λµ (θ, φ) = (−1)µ αλ−µ (θ, φ) (1.8)

with: λ the deformation mode (or degree) and µ the order:






λ = 0 : monopole deformation (volumic variation)
λ = 1 : dipolar deformation
λ = 2 : quadrupolar deformation (axially symmetric deformation: prolate, oblate)
λ = 3 : octupolar deformation
λ = 4 : hexadecapolar deformation

After a transformation in the body-fixed frame described by the Euler angles, the symmetry properties impose
the disappearance of the αλµ coefficients except α2−2, α22 with α2−2 = α22. The two intrinsic variables of the
deformation α20 and α22 can be re-expressed with the β and γ deformation parameters formulated by Hill
and Wheeler [5]:






α20 = β cos γ

α22 =
1
√

2
β sin γ (1.9)

For small oscillations of the ellipsoid, introducing the Hill and Wheeler deformation parameters, the
radius is found to be:

R = R0



1 + β

√

5
16π

cos γ(3 cos2 θ − 1) +

√

15
16π

sin γ sin2 θ cos(2φ)



 (1.10)

The extreme deformation modes are found to be:





If γ mod 60°, 0 : the nucleus has a triaxial shape.
If γ = 0°, 120°and 240° : the ellipsoid has a stretched shape called prolate shape.
If γ = 60°, 180°and 300° : the ellipsoid has a flatten shape called oblate shape.

A summary of the different possible configurations in the (β, γ) plane are shown on the Fig. 1.3.
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Figure 1.3: Deformation parametrization of Hill and Wheller, see Ref. [5].

3 Nuclear Models

Most of the nuclear models are often used locally in order to describe a specific region of the chart. For
light nuclei, the relatively small amount of nucleons gives the possibility to use the two-body interaction to
reproduce the nuclear behaviours, e.g. in ab-initio calculations, see Ref. [6], see Fig. 1.4. However going to
heavier nuclei, the amount of correlations impedes an analytic solution treated via the two-body interaction.
Usually called N-body problem, it exists different approach to reduce the number of correlations, e.g. the
nucleons can be separated in an inert core and a valence space assumed responsible of the nuclear properties.
An effective two body interaction of the nucleon-nucleon force can be considered and a nuclear mean field
can be generated in a self consistent way. Each nucleons constituting the nucleus feels a mean potential
corresponding the sum up of all interactions. Those calculations are usually called mean field theory calcula-
tions. Other models exists, among them, the nuclear "shell model" calculations considering as inert the inner
shells. In the following, some of the precursor and more recent models representing the nucleus are briefly
described in order to present some concepts and formalisms.
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Figure 1.4: Different types of calculations used in the nuclear chart. The current ab-initio calculations are
restricted to light nuclei with limited nucleon-nucleon correlations. The Unified Nuclear Energy Density
Functional technique can potentially be applied on the whole nuclear chart excepted the light nuclei. The
blue sector is sufficient to describe the nuclear deformation. From Ref. [7].

3.1 Liquid Drop Model

In 1932, Chadwick [8] discovered the neutron and gave rise to a new field in physics, the nuclear structure
study. Actually, the same year, Heisenberg developed a theoretical model representing the nucleus based on
a combination of neutrons and protons. In the following years, several experiments showed a characteristic
feature: the binding energy has a saturation level for the binding energy per nucleon (

(
B(N,Z)

A

)

max
≈8.8 MeV),

see Fig. 1.5. In 1935, Weizsäeker [9] published a model of the binding energy making the analogy between
the nucleus and a liquid drop. The nucleus is assimilated to a quantum fluid of nucleons confined by strong
interaction in a finite volume. In fact, for a liquid drop the evaporation energy is proportional to the number
of evaporated atoms; concerning the nuclei, the binding energy is roughly proportional to the nucleon number.

As a result, the Weizsäeker-Bethe-Bloch formula has been established:

B(N,Z) = avA
︸︷︷︸

Volume term

+ asA
2/3

︸︷︷︸

Surface term

+ ac

Z2

A2/3
︸ ︷︷ ︸

Coulomb term

+ aa

(N − Z)2

A
︸        ︷︷        ︸

Asymmetry term

− δ(A)
︸︷︷︸

Pairing term

(1.11)

with:






avA: av ≈ +16 MeV, proportional to the volume (∝ A), called volume term, it
represents the evaporation energy of one nucleon in an infinite space.

asA
2/3: as ≈ −18.56 MeV, proportional to the surface of the nucleus (∝ A2/3), is called

surface term. It describes the lower strength felt by the nucleons on the boundary
surface of the nucleus.

ac
Z2

A2/3 : ac ≈ −0.7 MeV, this term called Coulomb term represents the repulsion due to
the Coulomb interaction (∝ Z2) acting between protons.

aa
(N−Z)2

A
: aa ≈ −25 - −30 MeV, called the asymmetry term, it describes the difference in

energy created by a none equal numbers of neutrons and protons (minimal for
N = Z).

δ(A) ≈






+34A−3/4, if (N:odd, Z:odd)

0, if (N:even, Z:odd) or(N:odd, Z:even)

−34A−3/4,

The binding energy per nucleon increases rapidly along the mass number and reaches at A ∼ 15 a value
of ∼ 8 MeV, see Fig. 1.5. The volumic term is predominant for low masses, the surface energy starts to
become the dominant term of the semi-empirical mass formula, see Eq. 1.11 on the facing page. The largest
value is obtained for the 56Fe which is logically the last nucleus produced in the stars. For higher masses the
Coulomb repulsion deflects the binding energy curve giving less cohesion of the nuclear structure.
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Figure 1.5: Relative binding energy. The Coulomb, surface, volumic contribution are represented qualitatively
on the inner graphic. 62

28Ni, 58
26Fe, 56

26Ni are the most tightly bound isotopes with a 8.8 MeV binding energy per
nucleon. Elements heavier than iron can yield energy by nuclear fission. From Ref. [10].

An "asymmetric term" has been added to correct the effect of the isospin dependence of the surface and of
the volume terms, see Ref. [11, 12]. A slightly different effect occurs if the neutron/proton number is even or
odd. A pair of same isospin lowers the binding energy leading to a more stable nucleus.
The even-even nuclei are more stable than the odd-odd one, and the δ(A) term describes this effect, called
pairing effect (Pauli principle).

Defining different parameters helps to describe the pairing effect:






∆n = E(odd−N) − E(even−even)
∆p = E(odd−Z) − E(even−even)

∆p + ∆n − Enp = E(odd−odd) − E(even−even)
(1.12)

with Enp representing the coupling energy associated to unpaired neutron/proton.
The relative mass excess, see Fig. 1.6, in the (odd-Z,odd-N) nuclei implied ∆n ∼ ∆p. For (odd,odd) and
(even,even), extra coupling between neutrons and protons impacts the binding energy in a non-negligible
proportion.

The neutron and proton separation energy are written:
{

S n = B(A,Z) − B(A − 1,Z)
S p = B(A,Z) − B(A − 1,Z − 1)

(1.13)

The two neutrons and protons separation energy are written:
{

S 2n = B(A,Z) − B(A − 2,Z)
S 2p = B(A,Z) − B(A − 2,Z − 2)

(1.14)

The liquid drop model is useful to describe the macroscopic behaviour of the nucleus. It cannot explain
the presence of magic nuclei but permit the highlighting of substructure inside the nucleus: the nuclear shells,
see Subsec. 3.2.1.
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Figure 1.6: Relative Mass Excess shown for nuclei close to onset of deformation. Almost no pairing is
present for odd-Z and odd-N nuclei. On contrary, a pairing gap is observed between the odd-odd and
even-even nuclei characterized by two different parabola. From Ref. [10].

3.2 Single Particle Model

3.2.1 Nuclear Shell Model

Noble gas atoms He, Ne, Ar, Kr, and Rn are chemically stable and inert. In order to explain such
behaviour, the introduction of quantum treatment was necessary. The quantum numbers thereby created form
electronic shells and their full filling confers to the noble gas their chemical stability, see Fig. 1.7. With the
same philosophy, D. Ivanenko and E. Gapon [13] transposed this framework onto the atomic nucleus for the
first time in 1932, in order to explain the "over-stability" observed for certain numbers of neutrons (N) and
protons (Z).

Figure 1.7: Atomic shell effect observed via the ionization potential where the atomic magic numbers 2, 10,
18, 36, 54, 86 are observed. Modified from Ref. [10].

The Fig. 1.8 shows the differences between the measured nuclear masses and the semi-empirical mass
formula of Myers and Swiatecki [11]. Characteristic substructure appears in the residues for specific neutron
number except for the very light nuclei. The hypothesis of the viability of the atomic formalism into the
nuclear framework was correct, however all the shell closures were not reproduced. M. Goeppert-Mayer and
H. Jensen worked on a mathematical model and formalism associated to this idea and introduced corrections
associated to the spin-orbit coupling. They shared the Physics Nobel Price in 1963 [14] for their work in the
field.
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Figure 1.8: Differences between the measured nuclear masses and the semi-empirical mass formulae of
Myers-Swiatecki, see Ref. [11]. The "magic numbers" corresponding to the effect of shell closures appears
clearly at N=28, 50, 82, and 126.

The established "magic numbers" are:

N = 2, 8, 20, 28, 50, 82, 126
Z = 2, 8, 20, 28, 50, 82

(1.15)

3.2.2 Formalism and magic numbers

The Hamiltonian describing the motion of a particle in a spherical symmetric potential can be expressed
in two main parts: the radial and angular degrees of freedom. The number of nodes appearing in the
radial wave-function is denoted n, the angular momentum l and its projection ml. Taking into account the
independence of the eigenvalues from the ml, the total degeneracy is (2s + 1)(2l + 1) = 2(2l + 1) 1. If
spin-dependent forces are present this degeneracy is broken. Usually the sub-shell associated to the angular
momentum quantum number l is denoted as in atomic physics: s(l=0), p(l=1), d(l=2), f(l=3), g(l=4), h(l=5),
etc.

countries. Soustenu par son colleague Hahn, elle échangea épistolairement avec celui-ci lui permettant
de poursuivre ses travaux dans le domaine. The community attributed the understanding of the extra energy
lacking from the intrinsic masses of products as the cohesion energy that Einstein mentioned in his works.
Indeed, the history told us that during a discussion with her nephew on vacation, she refused to understand
the results of Hahn as an error of manipulation, considering the brillant and cleaver scientific "démarche" of
her colleague Hahn. Her "obstination" were "prolific" and she realized the fact that the energy lacking from
the experiments such as Hahn experiments corresponded to the cohesion energy.

3.2.3 Mean Field Models

Instead of describing the nucleon-nucleon interaction and extrapolating the nuclear behavior from this
basis, the nucleon can be considered as immersed in a mean field potential created by all the nucleons, and
each nucleon feels the potential independently. Several mean field potentials exist and we will cite some of
them.

Potentials To describe the nucleus the Hamiltonian problem described by the time-independent Schrödinger
equation, Eq. 1.16, has to be solved.

Hψ = − ~
2

2M
∆ + V(r)ψ (1.16)

with V(r) the nuclear one-body potential. In spherical coordinates, the Hamiltonian could be rewritten:

H = − ~
2

2M

1
r

∂2

∂r2
r +

l2(θ, φ)
2Mr2

+ V(r) (1.17)

1. ms = − 1
2 , +

1
2
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In the spherical framework one could separate the wave-function in two parts: ψ =Rnl(r).Ylml
(θ, φ).

l2Ylml
(θ, φ) = ~2l(l + 1)Ylml

(θ, φ) (1.18)

The radial part can be written:
(

− ~
2

2M

1
r

d2

dr2
r +
~

2l(l + 1)
2Mr2

+ V(r) − E

)

R(r) = 0 (1.19)

The Wood-Saxon potential is the most famous among the modified potentials. This refined potential
takes into account the aspect of the infinite square potential and the harmonic oscillator potential:

Harmonic Oscillator: VH.O. =
Mω2

0r2

2
(1.20)

Infinite Square Well: Vin f .squ. =

{

−VO if r 6 R

+∞ if r > R
(1.21)

For the harmonic oscillator potential, one extracts the main quantum number N and the energy such as:

N = 2n + l (1.22)

E = ~ω0

(

2n + l +
3
2

)

= ~ω0

(

N +
3
2

)

(1.23)

For the energy degeneracy of each N-value one finds
∑N

l (2l + 1), and the degeneracy of each energy is
(N+1)(N+2).

From the harmonic oscillator and the infinite square potentials one can reproduce some of the magic
numbers, see Tab. 1.1 and Tab. 1.2.

N E/~ω0 States Degeneracy "Magic Number" Magic
(n + 1)l Sum or not?

0 3/2 1s 2 2 yes
1 1 + 3/2 1p 6 8 yes
2 2 + 3/2 2s, 1d 12 20 yes
3 3 + 3/2 2p, 1f 20 40 no
4 4 + 3/2 3s, 2d, 1g 30 70 no
5 5 + 3/2 3p, 2f, 1h 42 112 no

Table 1.1: Closed shells of the spherical harmonic oscillator potentials. The "Magic Numbers" are well
reproduced until N/Z=20.

Woods-Saxon The Wood-Saxon potential, see Ref. [15], considers the nucleus as a sphere. The nuclear
potential could be on a first approach considered as radial:

Vr(r) =
V0

1 + exp

[

(r − R0)
d

] (1.24)

with:






V0 ≈ [−60,−50] MeV : well potential deep, independent from the nucleon number,
R0 : mean radius of the nucleus,
d : diffuseness parameter.

With such potential the internal nucleons (Core) and the external (Valence) ones don’t feel the same
potential. The core nucleons (r < R0) feel an almost constant potential V0. In this state, the Wood-Saxon
potential cannot reproduce the magic numbers.

The harmonic oscillator potential leads to an extra degeneracy due to the spherical symmetry. And, in
the infinite potential, the degeneracy of l is removed. A centrifugal potential is necessary to restore the
experimental ordering of the nuclear states:

V(r) = Vr(r) +
~

2

2Mr2
l(l + 1) (1.25)
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l n State E
[
~

2

2MR2

]

Degeneracy "Magic number" Magic
Sum or not?

0 1 1s 3.14 2 2 yes
1 1 1p 4.49 6 8 yes
2 1 1d 5.76 10 18 no
0 2 2s 6.28 2 20 yes
3 1 1f 6.99 14 34 no
1 2 2p 7.73 6 40 no
4 1 1g 8.18 18 58 no
2 2 2d 9.10 10 68 no
5 1 1h 9.35 22 90 no
0 3 3s 9.43 2 92 no
3 2 2f 10.42 14 106 no
6 1 li 10.51 26 132 no
1 3 3p 10.90 6 128 no

Table 1.2: Closed shells obtained with the square well potential. The "Magic Numbers" are well reproduced
until N/Z=8.

The same result can be obtained with the following formalism:

Vcentri f ugal = −µ′~ω0l(l + 1) (1.26)

A spin-orbit and a Coulomb term were added by M. Goeppert-Mayer, H. Jensen, O. Haxel,J. Hans and H.E.
Süss, see Ref. [16, 17, 18, 19]. The magic number N/Z=50 was not reproduced at that time and a quantum
treatment was needed.

Finally, the Wood Saxon potential takes the form:

VW−S (r) = Vr(r) + VLS (r) + VCoul(r) (1.27)

with:






VLS (r) = λ
1
r

dVr

dr
~l.~s : spin-orbit coupling correction term,

Vr : nuclear radial potential,
λ : the coupling strength.

A Coulomb term is added to describe the presence of protons subject to Coulomb repulsion:

VCoul(r) =






Ze2

R0

1
2



3 −
(

r

R0

)2
 , for r ≤ R0

Ze2

r
, for r ≥ R0

(1.28)

The Wood Saxon potential cannot be used analytically in the calculations. Nilsson and Gustafsson
created the modified oscillator in order to apply calculations, see Ref. [20, 21].

Modified Oscillator The Modified Oscillator can reproduce the results obtained with the Wood Saxon
potential, it falls between the infinite and the harmonic oscillator potentials, see Fig. 1.9, 1.10, and Tab. 1.4.
The "Nilsson" anisotropic harmonic oscillator associated to the single particle model of deformed nuclei is
discussed separately, see Appendix 205.

VM−O =
1
2
~ω0ρ

2 − κ~ω0

[

2~l · ~s + µ
(

l2− < l2 >N

)]

(1.29)

with:






< l2 >N=
N(N+3)

2 ,

ρ =
(

Mω0

~

) 1
2

r

In order to reduced the compression effect of the l2 term the average value over neutron shells is subtracted.

The model is governed by three major parameterizing terms: κ, µ and ω0.
ω0 is employed to determine the radius of the matter distribution. For high mass number, the stable nuclei
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have more neutrons than protons subjected to the Coulomb repulsion, such as in the Fermi gas model. The
Pauli principle needs also to be considered. Those phenomenon can be included in the potential via the
parameter ω0 declined in two terms 2 associated to neutrons (N) and protons (Z):






ωN
0 = ω0

(

1 + γ
N − Z

A

)

ωZ
0 = ω0

(

1 − γN − Z

A

) (1.30)

The condition < r2 >N≃< r2 >Z leads to γ ≃ 1
3 .

κ and µ′ 3 are obtained generally by fitting the level spectra for nuclei around the doubly-magic cases.The
energy can be expressed as:

E(Nl j) =






~ω0

[

N +
3
2
− κl − µ′

(

l(l + 1) − N(N + 3)
2

)]

, if j = l + 1
2

~ω0

[

N +
3
2
+ κ(l + 1) − µ′

(

l(l + 1) − N(N + 3)
2

)]

, if j = l − 1
2

(1.31)

where N denotes the equivalent shell number of the harmonic oscillator.
The parameters change according to the part of the chart studied, in some case to reproduce the behaviour of
nuclei in a specific part of the chart one uses the same κ and µ′ values or different values for different shells.
Some examples of values are given in Tab. 1.3.

Protons Neutrons
N κ µ κ µ

0 0.120 0.00 0.120 0.00
1 0.120 0.00 0.120 0.00
2 0.105 0.00 0.105 0.00
3 0.090 0.30 0.090 0.25
4 0.065 0.57 0.070 0.39
5 0.060 0.65 0.062 0.43
6 0.054 0.69 0.062 0.34
7 0.054 0.69 0.062 0.26
8 0.054 0.60 0.062 0.26

Table 1.3: κ and µ values obtained for the Modi-
fied Oscillator by Bengtsson and Ragnarsson [22].
N denotes the equivalent shell number of the har-
monic oscillator.

Figure 1.9: Shape of different potentials. The
Woods-Saxon potential falls between the infi-
nite and the harmonic oscillator potentials.

Actually, if the potential shape is mathematically well defined, the final work consists in the fitting of
relevant parametrization reproducing the considered nuclei. Generally, specific parameters are allocated to a
given region of the nuclear chart. A "universal parametrization" can be obtained by fitting on the nuclear
chart. Nazarewicz et al. described the process to obtained such parametrization, see Ref. [23].

Finally the modified-oscillator describing the spherical nuclei can be written as:

HSph. Single Part. = −
~

2

2M
∆ +

1
2

Mω2
0r2 −C~l · ~s − D

(

~l2− < ~l2 >N

)

(1.32)

where:






< ~l2 >N= N(N + 3)/2
C = 2κ~ω0

D = µ′~ω0

µ′ = κµ
The different discussed potentials are shown on the Fig. 1.9.

Further solution: the Yukawa potential In the mean field theory, another famous potential similar to the
Wood Saxon potential use different parametrization for example the Yukawa potential created by Hideki
Yukawa, see Ref. [24].

2. In the same philosophy than for the Fermi gas model, the separated treatment of neutrons and protons is effective.
3. µ′ is defined as µ′ = κ · µ
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Figure 1.10: Nuclear Shell Model. A single-particle shell model with a harmonic oscillator (H.O.) poten-
tial including angular momentum and with spin-orbit interaction. The fourth column indicates the level
degeneracy, the number of nucleons per shell. The resulting magic numbers are shown in the last column,
representing shell closures.

States Degeneracy Magic number Sum Magic or not?
1s1/2 2 2 yes
1p3/2, 1p1/2 4, 2 8 yes
1d5/2, 2s1/2, 1d3/2 5, 2, 4 20 yes
1 f7/2 8 28 yes
2p3/2, 1 f5/2, 2p1/2 1g9/2 4, 6, 2, 10 50 yes
1g7/2, 2d5/2, 2d3/2, 3s1/2, 1h11/2 8, 6, 4, 2, 10 82 yes
1h9/2, 2 f7/2, 2 f5/2, 3p3/2, 3p1/2, 1i13/2 10, 8, 6, 4, 2, 14 126 yes

Table 1.4: Closed shells obtained with the Modified Oscillator. The "Magic Numbers" are well reproduced.
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4 Unified Nuclear Model

The nuclear ground state can be considered as an equilibrium state of the nucleon assembly. The
perturbation of the ground state caused by a diffusion probe might lead to collective motions of the nucleons.
They can be vibrational or rotational, depending on the shape of the equilibrium state. Indeed, generally if
the ground state is spherical then the collective motion is vibrational, and if the ground state is ellipsoidal the
motion is generally rotational.

Nuclei in the vicinity of "magic numbers", with few particles/holes, are usually spherical at equilibrium
(ground state) and their lowest excited states exhibit generally collective vibration. In the present work, one
focuses on the deformed nuclei, thus the vibrational nuclei will not be described. Adding particles/holes,
the residual interaction from the valence space enforces the nucleus to adopt a deformed shape in order
to minimize its energy. Such nuclei present an ellipsoidal shape easily subject to a rotation. The valence
space deforming the shape confers collective character to the nucleus, such as large quadrupole moments
(Q0) and high transition strengths (B(E2)). This coherent motion exhibits characteristic excited structure
called rotational bands. The observation of such bands in the nuclear level scheme is a direct proof of its
non-sphericity.

4.1 Rotational models

4.1.1 The Rotor

In case of a deformed shape, one can define orientation of the nucleus in space. The separation of
nucleons in an intrinsic and a collective motion leads to consider the nucleus as constituted with a core
and a valence space. The nuclear feature is thus described as resulting from the intrinsic motion of the
valence nucleons in the deformed potential, and from the collective rotation of the whole nucleus. The
easiest deformation adopted by the nucleus consists in an elongation along an axis. In our studies, we
would consider only axially symmetric nuclei. The axial deformation breaks the least possible the spherical
symmetry. In order to determine the nuclear orientation, one needs 3 Euler angles and 3 quantum numbers to
describe the motion along this direction, see Fig. 1.11.

The Hamiltonian considered as rotational invariant leads naturally to a specific parametrization. A
possible set of quantum numbers describing the nuclear state is constituted by the total angular moment ~I, its
projection M on the z-axis of the laboratory frame and its projection K on the 3-axis of nucleus frame. The
total angular momentum is the sum of the angular momentum related to the intrinsic motion of valence nucle-
ons ~J with its projection on the nuclear frameΩ, and the angular momentum related to the collective motion ~R:

~I = ~R + ~J (1.33)

The intrinsic angular momentum J does not constitute a "good" quantum number, instead of its projection
Ω along the symmetry axis which can be considered as such.

z-axis

M

~I ~R

~J
3-axisKΩ

Figure 1.11: Coupling between the core and the valence nucleons.

In terms of nuclear wave function, the rotation in the laboratory frame (x, y, z) can be expressed as a
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function of the rotating coordinates (1, 2, 3):

ΨI
M =

∑

K

DI
M,K(θEuler)Ψ

I
K (1.34)

with: DI
MK

(θEuler) is the rotational matrix.

As a consequence of the time-reversal invariance the nuclear state |I+KM > and |I-KM > should have the
same energy. Finally, considering that the time reversal invariance is equivalent to the rotational invariance,
the intrinsic states ψK is found as [25]:

ΨI
M,K =

√

2I + 1
16π2

{

DI
M,K (θEuler)ψK + (−1)I+KDI

M,−K (θEuler)ψ−K

}

(1.35)

The intrinsic states can be expressed in the parametrization |αJΩ > diagonalizing the operators ~J2 and
J3(=Ω):

|ψΩ >=
∑

αJ

CαJ
Ω
|αJΩ > (1.36)

or the basis diagonalizing the operators ~l2, l3(=Λ), s2 and s3(=Σ):

|ψΩ >=
∑

αlΛ aαlΛ|αlΛΣ > with: Λ + Σ = Ω > 0 (1.37)

with: Σ the projection of the intrinsic spin on the 3-axis and Λ the projection of the orbital momentum. α is
used to substitute the rest of quantum number to identify the nuclear state, see Fig. 1.12. Usually the Nilsson
notation is used to express the nuclear state as a function of the asymptotic quantum numbers [20]:

Ωπ [Nn3Λ] (1.38)

with:






N is the principal quantum number (i.e. the total number of oscillator quanta),
Ω is the projection of the angular moment on the 3-axis,
π = (−1)N is the parity of the nuclear state,
Λ and Σ are respectively the projection of the orbital and intrinsic spins on the 3-axis

1-axis

3-axis

~J

~l

~s

Ω

Λ Σ

~R
~I

Figure 1.12: Coupling of the angular moment ~J = ~l + ~s of the valence nucleons and the collective rotation
~I = ~R + ~J, for axially symmetric nucleus. Ω, Λ and Σ are the respective projections of ~J, ~l and ~s.

The introduction of the deformation parameter removes the J degeneracy (2J+1) compared to a spherical
nucleus.

4.1.2 Particle + Rotor Model

For an axially symmetric nucleus, the Hamiltonian can be described as a rigid rotor at the first order with
the form:

Hcore = Hrotor =
~

2(R2
1 + R2

2)

2J =
~

2~R2

2J (1.39)

with J the inertia momentum with respect to the rotation axis.

4. UNIFIED NUCLEAR MODEL 31



CHAPTER 1. GENERALITIES ON THE NUCLEAR STRUCTURE

If the rotation is purely collective: ~I = ~R and the excited state energies follow the rule:

EI =
~

2I(I + 1)
2J (1.40)

Only the deformed nuclei have rotational spectra and it constitutes a manner to identify them. However,
the pure rotor conditions (e.g. see Eq.1.40) are never fulfilled due to the influence of the valence particle
on the whole nuclear feature. For spherical-like nuclei, the valence particle(s) determines the ground state
angular momentum. Similar non-collective effects occur in deformed nuclei. The low energy nuclear
structure results from the mixing of single-particle and rotational collective components.

Let us take the case of odd nuclei, as in our study, for which the valence nucleon determines the ground
state and the main energy structure. The valence nucleon is more or less coupled with the core, producing
numerous effects. This model developed in the 1950s has been unified and describe by A. Bohr and B.R.
Mottelson [25] to create a proper formalism associated.
This model proved its utility by the good reproduction of rotational bands notably in odd nuclei. It implies
also a better description of high spin states. The coupling between the valence nucleon and the core is
assumed adiabatic: the motion of the single nucleon is supposed rapid and not affected by the core motion.
In this frame, the valence nucleon turns around the core giving specific properties to the nucleus. In this
representation, the Hamiltonian is separated in two different parts:

H = Hcore + Hvalence (1.41)

The spin of the nucleus is built from the two contributions: ~I = ~R + ~Jvalence with ~Jvalence =
∑

i
~ji (for one

valence nucleon ~Jvalence = ~j), see Fig. 1.13. For ground state and low energy states only the non-paired
nucleons are summed up and contribute to the angular momentum of the intrinsic motion ( ~J).

1-axis

3-axis

~R
~j

~I = ~R + ~j

Ω = K

(a) Deformation aligned.

1-axis

3-axis

~R

~j

~I

α

(b) Rotation aligned.

Figure 1.13: Coupling between the core and the single nucleon (single particle) of axially symmetric nuclei.
Two cases are presented the strong coupling (a) (or coupling to the deformation) at the left and the coupling
to the rotation (b) at the right.

According to the Eq. 1.33, ~R = ~I − ~J, we can re-express the rotor Hamiltonian as:

Hrotor =
~

2

2J
(

~I2 + ~j2 − 2~I · ~j
)

(1.42)

From the Eq. 1.42 and using the standard quantum mechanics operators X+, X− the Hamiltonian can be
separated in three components:

Hrotor =
~

2

2J





~I2 − I2
3

︸ ︷︷ ︸

Core Rotation

+ ~j2 − j23
︸ ︷︷ ︸

Single Nucleon(s) Rotation

− (

I+ j− + I− j+
)

︸          ︷︷          ︸

"Coriolis Effect"





(1.43)

The "Core Rotation" term is the angular momentum of the core. The second term describes the
characteristics of the single nucleon. The last term describes the coupling between the core (with a collective
rotation) and the valence part, it has been called Coriolis effect due to its strong similarity with the classical
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Coriolis effect, see Ref. [1]. In this framework, the valence nucleon(s) is in motion inside the rotating frame
of the nuclei (the rotor). Sometimes the Coriolis effect is defined as:

Coriolis term =
~I~j

J (1.44)






- For high ~j value the Coriolis effect is important, and the projection of Ω is small. On the contrary if
~j is small and Ω high the Coriolis effect is negligible.
- The Coriolis effect grows as the importance of the nuclear angular momentum.
- The Coriolis effect is directly affected by the deformation via the moment of inertia value.

Moment of Inertia Assuming that the nucleus can be considered as a rigid rotor or an hydrodynamic fluid,
the moment of inertia is found as [10, 26] with the body-fixed axis k:

JRigid

k
=

2
5

mAR2
0



1 −
√

5
4π
β cos

(

γ − 2π
3

k

)

 , k=1, 2, 3,

JHydrodynamic

k
=

2
5

mAR2
0β

2 sin2

(

γ − 2π
3

k

)

, k=1, 2, 3.
(1.45)

For a purely prolate nuclei γ = 0, and one obtains JRigid =
2
5

mAR2
0(1 + 0.315β) and JHydrodynamic =

0.258mAR2
0β

2.
The moment of inertia can be determined from the experimental data as:

2J
~2
=

(

dE

dI(I + 1)

)−1

≃
(

EI − EI−2

4I − 2

)−1

(1.46)

The nuclear rotation can be evaluated from the frequency, defined as ω =
∂H

∂I
which can be determined from

the experimental data as:

~ω =
EI − EI−2

[I(I + 1)]
1
2 − [(I − 2)(I − 1)]

1
2

(1.47)

4.2 Coupling Mode

4.2.1 Strong Coupling or Coupling to the deformation

The strong coupling conditions are fulfilled if the Coriolis effect is negligible compared to the individual
particle energies, see Ref. [25]. The strong coupling case is shown on the Fig. 1.13(a).
The intrinsic motion of the single particle is assumed decorrelated from the rotational motion of the core 4.
The Coriolis interaction characterizing the influence of the core rotation on the intrinsic motion of the
single particle can be treated in first order perturbation theory of the rotor. Thanks to the axially symmetric
hypothesis, the nucleus is expected turning along a perpendicular axis to the 3-axis (~R perpendicular to
the 3-axis, thus Ω =K), in this condition K can be approximately considered as a good quantum number.
Finally, the nuclear state is written |IKM >. The Hamiltonian used to evaluate the collective energy would
correspond to the Eq. 1.43:

Hrot =
~

2

2J
[

~I2 + ~j2 − (I+ j− + I− j+) − 2K2
]

(1.48)

If Ω = K (coupling to the deformation), the matrix elements of the operators are found as:

{

< jΩ | j±| jΩ ∓ 1 >=
√

( j ± K)( j ∓Ω + 1),
< IK |I±| IK ± 1 >=

√
(I ∓ K)(I ± K + 1).

(1.49)

with:

{

2~I ~J = (I+ j− + I− j+) + 2K2 and,
I± = I1 ± iI2, j± = j1 ± i j2

4. It is the adiabatic condition
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The selection rules of j+ and j− impose that only ∆Ω = ±1 eigenstates can be coupled. For large value
of K or large deformation, the K2 term dominates and the Coriolis effect is reduced. Grodzins [27] found

for the even-even nuclei the phenomenological relation
~

2J =
204

A7/3β
. It confirms the Coriolis reduction at

large deformation. Each orbital is degenerated according to the two signs of the Ω quantum number. In such
conditions, for the odd nuclei, the diagonal matrix elements of the "Coriolis effect" term, see Eq. 1.43, are

different from zero if Ω = ±1
2

(two signatures).

For high deformation, the orbitals of the same shell with different Ω = ±1
2

, Ω = ±3
2

, ... are splitted in

energy 5.
Far in energy from each other, those orbitals can be coupled together. However, the orbitals from different
shells, crossing with the increase of the deformation, can also be coupled, see Fig. 1.16.

Applying that on the Coriolis Hamiltonian HCoriolis = −
~

2

2J (I+J− + I−J+), for K= 1
2 :

< IKM |HCoriolis| IKM >=
~

2

2J a(−1)I+ 1
2

(

I +
1
2

)

(1.50)

If the intrinsic decoupling parameter, defined as aintr. = −(φK= 1
2

j+φK=− 1
2
), is null, the two signature partner

bands of the Nilsson state are in strong coupling. This matrix element can be expressed in the spherical basis:

aintr. =
∑

j

(−1)( j− 1
2 )

(

j +
1
2

)

C2
jΩ= 1

2
(1.51)

The energies of the rotational bands are found as:

EIK = EK +
~

2

2J

{

I(I + 1) − K2 + δK, 1
2
a(−1)I+ 1

2

(

I +
1
2

)}

(1.52)

The Coriolis effect increases when the nuclear spin I increases and for high spins, the situation can change
and the Coriolis term can predominate.

4.2.2 Coupling to the rotation

In the 1970, F.S. Stephens [28, 29] showed for the first time the existence of another important coupling to
the rotation motion. Previously, one treated the case of nuclear deformation and rotational motion completely
uncoupled. The rotational motion was not high enough to break this coupling.
The coupling to the rotation case is represented on the Fig. 1.13(b). The total Hamiltonian can still be written

as: H = Hs.p. + Hrot = Hs.p. +
~

2

2J
(

I2 + j2 − 2~I~j
)

. If j is pure the orbitals are splitted according to, see

Ref. [10]:

eΩ = e0 +
1
6
ǫMω2

0 < r2 >
3Ω2 − j( j + 1)

j( j + 1)
, with: < r2 >=

(

N +
3
2

)

~

Mω0
(1.53)

For the extreme case the orbitals can be quantized along the 1-axis. If the nuclear momentum I is high and
K is small, the (I+ j− + I− j+) term will predominate and the eigenvalues of the total Hamiltonian would
correspond to the ones diagonalizing Hrot. In such condition, K is not a "good" quantum number; however,
the projection of j along the rotation axis (α) is as such.
The rotation energies for such coupling can be estimated for I ≫ K, j ≫ K and j close to a "good" quantum
number ( j ≈ α) as:

Erot =
~

2

2J
[

I(I + 1) + j( j + 1) − 2Iα
]

=
~

2

2J [(I − α)(I − α + 1) + 2α] =
~

2

2J R(R + 1) +C ste (1.54)

with: R=I−α. The structure of the energy states corresponding to R=0, 2, ... constitutes a rotational
band (usually qualified as decoupled) built on the rotational aligned Nilsson state is equivalent than in the
neighboring even nuclei. Such decoupled band can also be exhibited for K = 1

2 due to the diagonal matrix
elements of the Coriolis term.

5. The orbitals go away from each other if the deformation increases.
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4.2.3 Weak Coupling

The two extreme cases have been treated but the intermediate situations exist in the Nature, see Ref. [30,
31, 32].

1-axis

3-axis

~R

~j

~I "No favoured orientation"

Figure 1.14: Weak coupling between the core and the single nucleon (single particle).

If the deformation is small, the nuclear shape is close to a sphere. The eigenstates are close to the
spherical states. The angular moment of the single particle is independent of the core rotation. All the values
of the nuclear spin | R − j |6 I 6| R + j | are degenerated. This configuration is called weak coupling, see
Fig. 1.14 The spin of the intrinsic motion of the valence nucleon (conserved) cannot be oriented in a specific
direction. For a given total angular momentum, the nucleus searches to be in the lowest energy state, the
Coriolis effect plays an important role promoting the gain of momentum of inertia.

4.2.4 Rotor + 2 particles Model

Considering the nuclear system with two valence particles in the rotational model. The resulting
Hamiltonian is found as:

HTotal = HRotor + Hs.p.1 + Hs.p.2 +Ws.p.12 (1.55)

with:






HRotor: the rotor Hamiltonian treated previously,
Hs.p.1 and Hs.p.2: the single particle Hamiltonians,

Ws.p.12: Interaction between the two particles.

The intrinsic Hamiltonian combines now the two valence particles, such as ~j = ~j1 + ~j2. The projection of
~j on the symmetry axis (z-axis) is noted K, with: K = Ks.p.1 ± Ks;p;2.

Consider two paired nucleons with one reverse in time compared to the other one. The Coriolis interaction
drives the nucleons to be aligned along the rotational axis (x-axis). If the Coriolis effect is strong, the pair
can be broken, this situation is called "back-bending", see Fig. 1.15. The alignment of the pair is followed by
an increase of the moment of inertia and a reduction of the rotational frequency. Note that the back-bending
effect is usually observed for high nuclear spins.

Rotor Plus Particle(s) Model As the Eq. 1.41 implies the total energy is the sum of the rotational energy
and the energies of the constituents of the individual valence particles.

Hvalenceψvalence,Ω = Evalence,Ωψvalence,Ω (1.56)

The Rotor + Particle(s) model has been treated to describe systems with rotational nucleus with relatively
low spins. For high spins, the rotation and the Coriolis effect affect the nucleus 6.
Another model is commonly used to describe high rotational nuclei: the "Cranked Shell Model". Introduced
by D.R. Inglis in 1954, see Ref. [33], the "Cranking" model considers the nucleus in the coordinates system
fixed to the nucleus with a constant rotation around the rotational-axis 7. The collective rotation is taken into
account due to the treatment of the nucleons inside a mean field potential in rotation.
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Figure 1.15: Backbending: Pairing and Alignment of nucleons. Following the configuration of the nucleons,
one can observe different kind of γ-rays energies, for example on this figure for 158Er. Initially the nucleons
are coupled and adding rotation, the nucleon pair breaks. The two single particle aligns along the rotational
and are part of the core corpus turning with it (their spins contributes to the rotation). The alignment of the
pair is followed by an increase of the moment of inertia and a reduction of the rotational frequency. When
the nucleons are paired, they don’t contribute to the moment of inertia. If the pair is broken, the two nucleons
contribute to the total moment of inertia. From Ref. [10]
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Figure 1.16: Shell Model, Collective Model and degeneracies. The successive introduction of corrections
leads to a total breaking of the degeneracies.

4.2.5 From the models, a description of the nuclei

The introduction of the different corrections from the shell to the collective models led to remove totally
the degeneracies. The introduction of the different ingredients in the Nilsson model is summarized in the
Fig. 1.16 for some of the neutron orbitals discussed in the present study.

6. The rotation is not adiabatic and the non-diagonal matrix elements cannot be treated as perturbations.
7. Considering the axial symmetric nuclei, the rotational axis corresponds to the 1-axis on Fig. 1.13
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The simple Particle + Rotor model constitute a good approximation in a first approach for the present
study where one populated low-lying states. However, more sophisticated model has been used to reproduce
and discuss the results of the present experiments. For example, an iterative process using the Wood Saxon
potential and the BCS model was employed. A brief description of such process is done on the Appendix
207.

5 Conclusion

In this first chapter, the different theoretical models which can be used to describe the nuclear structure of
the studied nuclei have been presented. They constitute theoretical elements helping to understand the nuclear
structure going from the liquid drop model to the single particle models and the collective models. The
pairing interaction has been mentioned and described in the liquid drop model. However, more information
on the pairing is present in the Appendix 207.

The nuclear matter is usually described locally with a specific model. Few models try to describe the
nuclear structure of whole chart such as models based on energy density functionals. Most of the theoretical
models arose from the investigation of a specific property/feature of the nuclear matter. The reciprocal
emulation coming from theory and experimental results is a key ingredient in nuclear structure studies.
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Chapter 2

Physics Motivation

1 Introduction: Overview of the region A∼100, N∼60

In 1965, the work of S.A.E. Johansson [34] reported the existence of a new region of stable deformation
in the neutron-rich side of the nuclear chart around A=100. Actually, it is one of the most sudden and intense
development of deformation observed in the nuclear chart. The shape change is so abrupt that it has been
qualified as a "phase transition". The presence of strong similarities between the A=100 mass region and the
rare earths region, which was already considered as a "deformed" region, gave hints of deformation. They
both present rotational-like spectra in the emission of γ-rays.

Since then considerable efforts have been made to understand the properties of the region, see Ref. [35,
36, 37]. The mass and charge measurements are of great importance to describe the rough behavior in the
whole tendency of the region. Firstly, accessible by fission in the study of S.A.E. Johansson [34], the region
has been studied later on by mass and charge radii measurements, highlighting the presence of deformation
at N∼60. The mass and charge radii measurements in the region are presented in the Sec. 2 on the following
page.

A few decades ago, the mass 100 region has been mainly investigated by studying the β-decays of mass
separated fragments from induced and spontaneous fissions. It provided the identification of the lowest levels
of rotational bands (mainly for even-even nuclei) characterizing the presence of deformed structures with the
increase of the neutron number, see Ref. [38, 39, 40, 41, 42, 43, 44, 45, 46] as examples.

Most of the electric quadrupole moments of the ground states or first excited states of nuclei in the
region have been already determined, highlighting the shape transition, see Ref. [47]. Across the years, it
has been demonstrated that many nuclei in the region are characterized by a strong prolate deformation
(β2 ≃ 0.3-0.4).The energies of the first 2+1 states E(2+1 ) of the even-even nuclei and the E(4+1 )/E(2+1 ) ratios
can be used as a tool to reveal the deformation trend, see Sec. 3 on page 43.

The Sr and Zr isotopic chains show the strongest development of deformation at N∼60. The shape
transition is disappearing for the Kr isotopes. The deformation increases from Z=36 until Z=38-40, and then
decreases until the Mo isotopic chain, for which the transition is smoother. This feature has been explained in
many articles by a possible triaxiality; the triaxiality in Z>37 nuclei is discussed in the following publications,
see Ref. [48, 49, 50, 51]. Transitional structures have been observed for intermediate cases.
The study of Rodriguez et al. [51] suggests a too low degree of triaxiality in the rubidium isotopes to be
taken into account. The latter can be considered as axially symmetric nuclei. The shape coexistence at low
excitation energy has been highlighted in the region notably for the N=59 isotones for the 96Rb, 97Sr, 98Y
and 99Zr, see Ref. [37, 52, 53, 54, 55, 56, 57], see Sec. 5 on page 47.

The dramatic change appearing at N=60 could be assigned to the filling of specific orbitals. The iden-
tification of the driving mechanism(s) of the deformation constitutes the main motivation of the present
experimental study of odd-mass rubidium isotopes. Nilsson diagrams, calculated for protons and neutrons
numbers of the region, are shown on the Fig. 2.1.

Using the spherical shell model, the deformation due to the iso-vector interaction between the πg9/2

and νh11/2 particles for the Zr isotopes has been considered of great importance according to Federman et
al. [58, 59]. Extensive calculations by Etchegoyen et al. [60] emphasized the importance of this interaction.
However, they consider of low importance the influence of the νh11/2 intruder orbitals at the onset of
deformation, as claimed for the Zr and Mo isotopes [60]. The νh11/2 orbit plays an dominant role for larger
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neutron number than the ones found at the shape transition.

(a) For neutrons in the N=60 region . The energies were calcu-
lated using the potential parameters κ = 0.066 and µ = 0.35.

(b) For protons in the Z=40 region. The energies were calculated
using the potential parameters κ =0.07 and µ =0.40.

Figure 2.1: Expanded portion of the Nilsson diagrams for neutrons (a) and protons (b). From Ref. [35, 44].

According to deformed mean field calculations [49, 61, 62, 63], the deformation driving components
of the νh11/2 intruder orbit lie below the Fermi level at N∼60. The low-Ω orbital from the νh11/2 are in this
picture preferably occupied compared to the νg7/2 orbitals.
By analogy with the rare earth isotopes, the intruder orbitals are expected to stabilize the deformation, as
done in the rare earth nuclei by the intruder orbitals arising from the νi13/2 orbit.

Even if the presence of deformation for N&60 is well known, its origins are not clearly determined. The
energies of the low lying states and the transition strengths can be used to distinguish the nature of the
collectivity.

After an overview of the problematics of the region, we will show, in the following section, the most
relevant parameters highlighting the onset of deformation, and present several theoretical calculation per-
formed along the years. Moreover, we will emphasize the different spectroscopic properties known before
this experiment and the ones necessary to complete our knowledge.

2 Mass and Charge Radii Measurements

The mass measurements, constituting a qualitative and quantitative observation of the deformation, are
corroborated by the charge radii measurements. The latter confirmed in a clear way the presence of an onset
of deformation for nuclei in their ground states.

2.1 Mass Measurements

The region is of great interests and fences other observations such as the sub-shell closure at N=56
observed between Z=37-42 and the N=50 shell closure. The decrease in separation energies describes the
ease to pull out the nucleons from a nucleus. The proton sub-shell closure occurring at Z=40 can also be
observed looking on the two proton separation energies S2p, see Fig. 2.2.

Passing from spherical to well deformed shape at N=60, the two-neutron separation S2n should increase,
see Fig. 2.2, see Ref. [1, 26, 64]. The jump in S2n at N∼60 indicates an increase of the binding energy due to
the appearance of the deformation.

The mass informations presented in this document are reported from the Atomic-Mass Evaluation collab-
oration AME2012 under the coordination of G. Audi, see Ref. [65].

From the mass measurements, one can deduce that the most important deformation is observed for the Zr,
Y and Sr cases. Furthermore, in all the cases there is a sudden increase of the deformation at N∼60, but it
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(a) Two-neutron separation energies vs neutron number.
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Figure 2.2: S2n (a) and S2p (b) values over neutron number around A∼100, N∼60 from tabulated values of
AME2012 [65] and the Ref. [66, 67, 68, 69, 70, 71, 72]. The dark blue bands highlight the shell closure at
N=50, Z=40 and sub-shell closure at N=56. The light blue band indicates the rubidium isotopes. The red
band corresponds to the development of deformation at N∼60.

continues along neutron number until N&62. The molybdenum isotopic chain is considered as the upper
limit of the shape transition region where a rather continuous trend takes place instead of a jump. However,
the limits of the shape transition region are not clear and the determination of its boundaries should help to
understand the responsible processes of the development of deformation. The krypton isotopic chain is placed
at the border of the shape transition region and raised interest in the community. According to microscopic
calculations, we should observe the same deformation for 96Kr, 98Sr, and 100Zr, see Ref. [52, 58, 73, 74].
Some other calculations, such as HFB-17 using the Skyrme force or HFB based on the Gogny energy
density functional with two parametrization D1S and D1M, predicted a strong and sudden development
of deformation, see Ref. [51, 74, 75]. The status of the Kr isotopic chain has been clarified firstly by the
Penning-trap measurements of S. Naimi et al. [66], showing that the deformation development should be
gradual or absent. The results for 94,96Kr isotopes are presented on the S2n of the Fig. 2.2, exhibiting no
sudden change at N=60; which is in sharp contrast with the heavier isotopic chains.

The differential variation of the two-neutron separation energy dS2n(Z,N) which is defined as a function
of the neutron number, see Fig. 2.3 and Ref. [76], as:

dS 2n(Z,N) =
S 2n(Z,N + 2) − S 2n(Z,N)

2
(2.1)

This parameter is more difficult to interpret than the two-neutron separation for example, since it involves
three different masses. The dS2n(Z,N) is expected to be negative at the neutron "magic number" (shell closure,
sub-shell closure) and positive at the increase of binding energy indicating the presence of deformation.
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Figure 2.3: Differential variation of the two-neutron separation energy dS2n(Z,N).

The shell closure and sub-shell closure are respectively observed at N=50 and 56. The onset of deforma-
tion is clearly identified around N=60.

The mass measurements are just one of the hints for the presence of deformation. The charge radii
measurements could additionally confirm the onset of deformation in the region. The charge radii are directly
linked with the nuclear shape and their increases at N∼60 constitute an irrefutable proof, see Sec. 2.2.

2.2 Mean square charge radii

Additional informations from mean square charge radii measurements support the conclusions on the
onset of deformation. The mean square charge radii variations may be accessed by measuring the optical
isotopic shift thanks to laser spectroscopy.
The mean square charge radii variations exclude the contribution from the neutron distribution, therefore they
cannot be considered as an absolute measurement of the nuclear deformation. However, the combination of
mass and charge measurement are direct observations of the deformation, characterizing qualitatively its
amplitude. The mean square charge radii have been systematically measured in the region and a summary is
given on Fig. 2.4.

The jump of the mean square charge radii at N=60 is drastic for the Rb’s, see Ref. [77]. The same
behavior is observed for upper isotones until Mo (Z=42), where a linear trend is restored. The krypton case
does not exhibit an increase of the charge radii. The rubidium is thus identified as the first one exhibiting the
sudden onset of deformation.
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Figure 2.4: Difference in mean square charge radii in the N=60 region shown for krypton [78], rubidium [77],
strontium [79, 80, 81], yttrium [82, 83], zirconium [84, 85], niobium [86] and molybdenum [87, 88] given
relative to their spherical form. Each isotonic chain is set apart by 0.25 fm2 for clarity.
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3 Low-lying Excited States

3.1 Introduction

Let us consider what happens when filling the valence shells of a "magic" nucleus. Such "magic" nucleus
should be spherical. By adding protons and neutrons, it could get deformed.

The spherical-like and ellipsoidal-like (deformed) low-lying nuclear structure can be differentiated in
even-even nuclei by the energy of their first and second excited states, E(2+1 ), E(4+1 ) and their ratio R4/2.
The unified nuclear model predicts a lowering of the E(2+1 ) energies, an increase of the transition strength
B(E2, 2+1 → 0+1 ) and of the R4/2 ratio in case of ellipsoidal shape, see Ref. [1, 10, 26, 89].

In the studied region, the nuclei are far from stability and from a shell closure. Thus, the residual
nucleon-nucleon interaction becomes more complicated to treat. However, some simplification in model
calculations can be applied, for example, the assumption of a specific core associated to a valence space. In
general, the valence space and the residual nucleon-nucleon interaction infers the observed nuclear properties.

3.2 Measurements

The systematic comparison of the first E(2+1 ) energies, the R4/2 and the B(E2, 2+1 → 0+1 ) values presents
relevant characteristics, see Fig. 2.5 and Fig. 2.6. Their features confirm again the scenario of ellipsoidal
shape.
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Figure 2.5: Energies of the first excited 2+1 states (a) and (b) ratio of the energies of the first excited 4+1 and
2+1 states in the even-even isotopes of Kr, Sr, Zr, Mo and Ru for N>50. Values extracted from the Ref. [90].

In the Kr case, the development of deformation was not observed for mass and mean square charge
radii measurements, see Sec. 2 on page 40, but it could appear gradually. To investigate this hypothesis, a
Coulomb excitation study has been performed at ISOLDE with the MINIBALL array on 94Kr, 96Kr, see
Ref. [73, 91], the results are also presented in the Fig. 2.5 and 2.6.

For N.60, the 2+1 state energies are around 1 MeV instead of few hundred keV for N&60. The R4/2 ratios
also exhibit a large variation passing from ∼1.5-2 for N.60 to 3 for N&60, see Fig. 2.5(b).
The E(2+1 ), R4/2 and B(E2, 2+1 → 0+1 ) systematics for the krypton isotopic chain exhibit a smooth development
of deformation.
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Figure 2.6: Transition strengths B(E2, 2+1 → 0+1 ) in the even-even isotopes of Se, Kr, Sr, Zr, Mo and Ru.
Picture modified from Ref. [92].

4 The First Theoretical Calculations

In the past, the sudden onset of deformation has been firstly studied via calculations on Zr isotopes, by
P. Federman and S. Pittel, with a restricted valence space (π2p1/2, π1g9/2, ν2d5/2, ν3s1/2, ν2d3/2, ν1g7/2 and
ν1h11/2) assuming an inert core of strontium 88,94Sr, see Ref. [58, 59, 93], see Fig. 2.7. They interpreted the
obtained experimental results as if the deformation in the region is due to the the proton-neutron correlation
between the π1g9/2 and ν1g7/2 spin-orbit partners orbitals. Moreover, they mentioned the possible importance
of the occupancy of the ν1h11/2 and its significant correlation with the π1g9/2 orbit.

Figure 2.7: Single-particle levels used to describe the Zr-Mo region from Ref. [58].

Further calculations performed for the Mo isotopes needed the inclusion of the νh11/2 in order to re-
produce the features of deformed isotopes [94]. The importance of this rather selective proton-neutron
interaction between spin-orbit partner orbitals π1g9/2 and ν1g7/2 was called into question.

A few years later, A. Kumar and M.R. Gunye [63], performed Hatree-Fock-Bogoliubov (HFB) calcula-
tions including a larger valence space: π1 f7/2, π2p3/2, π1 f5/2, π2p1/2, π1g9/2, π2d5/2, π1g7/2, π2d3/2, π3s1/2,
ν1g9/2, ν2d5/2, ν1g7/2, ν2d3/2, ν3s1/2, ν1h11/2, ν2 f7/2, ν1h9/2, ν2 f5/2, ν3p3/2, ν3p1/2, with an inert core of
60
20Ca, in oder to reproduce the experimental data in the 98Sr, 100,102Zr, and 104,106Mo, see Fig. 2.8. The larger
configuration space helped to reproduce the trend of the experimental data and indicates a non-satisfying
use of the 94Sr or 88Sr core. The energy levels are not well reproduced; in addition, even if the tendency
is respected the reproduction is not reliable for the E(2+1 ) and the B(E2, 2+1 → 0+1 ) values if we compare
the difference between the experimental and calculated values for the same spin/parity configuration in the
neighboring nuclei (see respectively Fig. 2.8(a) and Fig. 2.8(b)).

However, enlarging the valence space helped to reproduce the sudden onset of deformation, and thus
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(a) Calculated energy spectra up to J = 12+ in the 98Sr, 100,102Zr, 104,106Mo compared
with the corresponding experimental energy spectra.

(b) Static quadrupole moment Q(2+)
(eb) and B(E2, 2+1 → 0+1 ) (e2b2).

Figure 2.8: HFB calculations realized by A. Kumar and M.R. Gunye on the Sr-Zr-Mo region using a large
valence space with an inert core of 60Ca, from Ref. [63].

one could propose the hypothesis of the presence of another interaction than the neutron-proton interaction
between π1g9/2 and ν1g7/2.

Large-scale finite-range drop model calculations (FRDM) with a folded Yukawa single particle potential
by P. Moller, J.R. Nix, W.D. Myers and W.J. Swiatecki, see Ref. [95], exhibit the shape transition from
spherical to well deformed shape. However, this change occurs gradually in the range N=54-64. The
experimental ground state masses, deformation parameters, halflives, Qβ values are well reproduced which is
important for astrophysicists. In terms of deformation, the experimental data are better reproduced after the
deformation gap (N&60).

In many articles, the role of the unique-parity down-sloping orbitals from νh11/2 around N∼60 has been
stated as favoring the appearance of a low-energy deformed minimum at around ǫ2 ∼ 0.4, see Ref. [94].
The unnatural parity of those intruder orbitals confers them a low interaction with the neighboring neutron
orbitals. The hypothesis of their filling could explain the onset of deformation. The scenario should imply a
gradual establishment of deformation corresponding to the consecutive filling of the orbitals. This picture
seems not appropriated with regards to the sudden development of deformation observed experimentally.

A phenomenological explanation has been provided by W. Urban and J.A. Pinston [96, 97] concerning
the rapid shape change. They spotlighted the importance of the ν9/2[404] extruder orbital which should favor
the spherical shape. The shape coexistence observed in the 97Sr and 99Zr corroborates such a hypothesis,
see Sec. 5, see Fig. 2.9. Indeed, in the N=59 isotones, different deformations are observed for different
rotational bands which should correspond to different internal arrangement of the core (different orbitals).

In the specific case of the 99Zr, W. Urban and J.A. Pinston explained that the rotational bands based on
the ν9/2[404] orbital have the maximum of deformation in the region of around ǫ2 ∼ 0.4 which could be due
to the presence of the down-sloping ν1/2[550] and ν3/2[541] close to the Fermi surface. The observation
of rotational bands based on the ν1/2[550] and ν3/2[541] orbitals at around ǫ2 ∼ 0.3 forces the ν9/2[404]
orbital to stay inside the core, acting against the deformation. Their work emphasizes the importance of
the mentioned neutron orbitals in the onset of deformation, however a major role of the proton-neutron
interaction cannot be excluded and it would be of great interest to study the evolution of the deformation
with the removal of protons from the πg9/2 orbitals. Indeed, the latter could interact strongly with the νh11/2

orbitals.
In the 99Zr, two regular bands of rotational character based on the 575.5, 657.7 and 821.4 keV levels are
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(a) (b)

Figure 2.9: Level scheme in N=59 97Sr (a) and 99Zr (b) with shape coexistence. The nuclei have been
produced by spontaneous fission of 248Cm. Modified pictures from Ref. [55].

observed coexisting with spherical-like excited structure at low energy.
In the 97Sr, two regular bands of rotational character based on the 584.9, 687.0 and 771.1 keV levels are
observed coexisting with spherical-like excited structure at low energy. The excited nuclear structure is
similar, the rotational bands are shifted according to the filling of protons and neutrons. For example, inside
the same isotopic chain, going from N∼58 to 60, the rotational bands are lowered taking the place of the
spherical-like excited structure. The rotational character replaces the spherical one in their ground state.

5 Shape coexistence

5.1 Definition

Following the definition of J.L. Wood and K. Heyde [98], the shape coexistence is the result of the
equilibrium between the tendencies to stabilize the nucleus with spherical or ellipsoidal shapes. The nucleon
configurations (orbitals) are almost degenerated and it leads to the observation of several shapes in a short
energy range.

Shape coexistence is not a new field of nuclear physics (50 years of investigation), but recently experi-
mental tools have been developed to get an insight into those structures. The nuclear properties used to probe
the evidence of shape coexistence are the electric quadrupole moments, inertia parameters, branching ratios,
Fermi levels, transition probabilities (ρ2(E0)).

5.2 Regions of shape coexistence

Firstly considered as a singularity of few regions of the nuclear chart, it appears as a universal effect and
was observed "practically" everywhere in the chart, Fig. 2.10. The regions of shape transition are usually
subject to shape coexistence.

It constitutes one of the main important challenge for theoreticians to explain such behaviors. There are
two principal theoretical approaches to describe the phenomenon : the microscopic shell and the mean field
models.

The appearance of shape coexistence results from the competition between a residual interaction and an
energy gap. It would lower the energy difference between the configurations. This effect is observed around
the singly shell and mid-shell closures. In the region (N∼ 60, Z∼ 40), close to the single shell closure at
Z∼ 40 and/or N∼ 56, the presence of shape coexistence has been proven (an example is given on Fig. 2.11).
In those cases, the collectivity of the ground state is suppressed.
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Figure 2.10: Shape coexistence regions already known or under discussions (red). Modified picture from
Ref. [98].

5.3 Shape isomers

When there is a rapid shape change, it is reasonable to expect the presence of such isomers. Indeed, in or-
der to change the shape, the nucleons configurations should change and it requires a high level of complexity
to rearrange. The transition between different shapes have usually "forbidden" leading to isomerism.

This should result from the crossing of spherical and deformed configurations, see Ref. [99].

The observation of such isomers would constitute a further confirmation of the shape transition.

5.4 Region: A∼100, N∼60

In this region, many examples can be cited, such as the observation of shape coexistence in the N=58
isotones 96Sr and 98Zr, see Fig. 2.11. Those nuclei have spherical ground states and deformed shapes at
higher energies in their excited structure, see Fig. 2.12. In the 98Zr, the E0 transitions of 853 keV and
1859 keV states reveals a basic spherical configuration strongly mixed with the deformed configuration of
the deformed band (the band head is the 0+ at 1436 keV). In general, weakly deformed bands appear at
around 1.5 MeV above the spherical ground states. The appearance of E0 transitions exhibits the persistence

Figure 2.11: Example of shape coexis-
tence in the N=58 isotones 96Sr and 98Zr,
see Ref. [100, 101]. The orange vertical
arrows indicate E0 transitions with their
observed values for ρ2(E0) × 103; the
value for 96Sr is the largest known for
A>56. The band heads for the 96Sr and
98Zr are respectively the 0+ at 1465 keV
and 1436 keV.
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of coexisting structures. The E0 transition strengths are model independent signature of the mixing of
configurations with different mean-square charge radii. If two configurations are mixed with the mixing
amplitudes a and

√
1 − a2, the E0 transition strength is expressed as:

ρ2(E0) =
Z2

R4
0

a2(1 − a2)
[

∆<r2>
]2

(2.2)

with: R0 = r0A1/3 and ∆<r2> = <r2>1 − <r2>2.

Shape coexistence has also been observed in many N=59 isotones such as 96Rb, 97Sr, 98Y and 99Zr,
present at the ground states shape transition, see Fig 2.9,Fig 2.12. They exhibit rotational bands, at around
0.7 MeV, and also single particle like transition scheme on top of the ground states at the same time. In this
framework, the transitional nuclei have bands corresponding to the underlying even-even core coupled to the
odd-particle; the deformation of the core changes under its interaction with the odd particle.

Figure 2.12: Example of shape coexistence in the N=59 isotones 96Rb (presented on the figure), 97Sr, 98Y
and 99Zr, see Ref. [53, 55, 102]. Modified picture from Ref. [53].

Most of the calculations in the region predict the possibility for shape coexistence. The presence of
shape isomers has been expected for the 97,99Rb isotopes, see Ref [103]. According to the mean field
calculations of S. Hilaire and M. Girod, see Ref. [99], using the HFB approach based on the Gogny effective
nucleon-nucleon interaction for axially symmetric nuclei, a scenario of shape coexistence for the Rb isotopic
chain is possible. On the Fig. 2.13, the potential energy surfaces obtained from those calculations are shown
for Rb isotopes.
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(a) Spherical. (b) Still spherical-like but gradual appearance of oblate/prolate minima.

(c) Shape coexistence. Presence of two major minima for oblate and prolate deformation.

Figure 2.13: Potential energy curves for the Rb isotopes obtained by S. Hilaire and M. Girod from mean field
calculations using the HFB approach based on the Gogny effective nucleon-nucleon interaction for axially
symmetric nuclei, from Ref. [99, 103].

6 Our knowledge on level schemes/excited states of Rb isotopes be-
fore the present study

6.1 Spectroscopic informations: tool to probe the shape transition

The amount of known spectroscopic properties, in the heaviest isotopic chains of the deformation region
(Sr, Zr, Mo), is enough to be able to give a description of the nuclear interactions in presence. However,
the experimental results for lower masses such as the odd-mass Rb isotopes are quite difficult to obtain.
The heaviest odd-mass Rb with known nuclear excited states was the 95Rb, see Ref. [104, 105]. The level
schemes for 93,95,97,99Rb built on the knowledge of Rb isotopes established before our study are shown on
Fig. 2.14.

The excited structures have been essentially studied by isomeric decay and in fission. The ground state
magnetic dipole and electric quadrupole moments have been measured as well as the hyperfine structures up
to 97Rb, see Fig. 2.15. The spin and parity for the ground states of the latest were also firmly determined
from the hyperfine structure studies, excepted for the spin of 99Rb was not measured, the parity of the 97Rb
isotope not determined, see the study of C. Thibault et al. in Ref. [77]. The development of deformation
is observed by a sudden increase of the quadrupole moment at N=60. The magnetic dipole moments of
the ground states for N<60 are in good agreement with the spherical states p3/2 and f5/2. The calculations
performed by I. Ragnarsson [106] are based on the experimental study of C. Thibault et al. on the magnetic
dipole and electric quadrupole moments. The gyro-magnetic factor for N=60 (97Rb) could be explained by
the filling of one of the following Nilsson orbitals: π 3

2
+
[431], π 3

2
−
[301], π 3

2
−
[312].

The considerably different deformations require the use of different models for the description of the
sperical-like (N< 60) and the deformed (N> 60) Rb isotopes. Particle + Rotor calculations for the deformed
Rb isotopes were performed by G. Simpson to clarify the situation on the Rb isotopic chain [103]. The
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Figure 2.14: Level schemes of 93,95,97,99Rb before the present study. Modified figure, based on the study of
G. Simpson et al., see Ref. [104].
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(a) Electric quadrupole moment measurements in the neutron rich
Rb region.

(b) Dipole magnetic moment measurements in the
Rb isotopes.

Figure 2.15: Ground state properties of Rb isotopes. Figure has been created based on the study of C.
Thibault et al., see Ref. [77], for the Rb isotopes, and the nuclear table of N.J. Stones, see Ref. [47].

results will be discussed and compared with experimental data.

For the spherical case, i.e. lighter mass isotopes 93,95Rb, shell model calculations have been performed
using an inert core of 78Ni and the gwbxg interaction with the NushellX code, see Ref. [107], in order
to reproduce the already known level schemes. The use of shell model is particularly appropriated for
spherical-like nuclei.
The results are shown on the Fig. 2.16(a). The energy level scheme tendency of known transitions in the
93Rb are well reproduced. Predictions on the same parametrization have been also performed for the 95Rb.

Concerning the deformed isotopes, combining the nuclear spin, the deformation and the magnetic dipole
moment the spin can possibly be assigned. From the study of C. Thibault et al., I. Ragnarsson calculated
with a particle + rotor model the magnetic dipole moment for the different possible Nilsson orbitals, see
Ref. [106, 108]. Several sets of parameters have been employed to reproduce the measured magnetic dipole
moments, they are summarized in the Tab. 2.1.

The inconsistency of the experimental and theoretical magnetic dipole moment values for the π 3
2
−
[312]

orbital discounted this possibility. The similar magnetic dipole moments obtained for the 3
2
+
[431] and

3
2
−
[301] does not permit to discriminate them. Unfortunately, the study of C. Thibault et al. could not
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(a) NuShellX calculations (shell model nuclei).

(b) QPRM calculations (deformed nuclei).

Figure 2.16: Theoretical and experimental level schemes of Rb isotopes.
The theoretical schemes for 93,95Rb (a) are from shell model calculations while 97,99Rb are obtained using
the quasi-particle-rotor model (QPRM) (b). From Ref. [103].

K Iπ Qs [eb] µ [µN] Orbital
3/2 3/2− 0.6 1.9 π 3

2
−
[301]

3/2 3/2+ 0.6 1.99 π 3
2
+
[431]

3/2 3/2− 0.6 0.7 π 3
2
−
[312]

Experimental Values 0.6 1.84 -

Table 2.1: Low lying properties predicted by QPRM calculations. Values from Ref. [77, 106].

determine the electric quadrupole moment sign, which could help to assign a specific configuration to the
ground state, see Ref. [77].

The knowledge of the B(E2) transition strengths at low energies should allow to identify the active orbital.
The Coulomb excitation study of odd-mass Rb isotopes should provide more informations on the low lying
structure, such as the level energies and the transition strengths of the transitions. Those studies should
complete the β-decay and/or spontaneous fission investigations which are not governed by the same selection
rules and cannot access to the low-lying states observables as in Coulomb Excitation.
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6.2 Theoretical calculations on odd-mass neutron-rich Rb isotopes by Rodriguez-
Guzman et al.

HFB-D1S/D1M calculations [51, 75, 109] allowed some predictions on the charge radii and mass, they
were discussed previously. In this Subsubsec., one focus on the description of the theoretical results obtained
concerning the levels and involved Nilsson orbitals.
In order to describe the onset of deformation in the Rb isotopes, the proton and neutron single-particles
energies are plotted as a function of the quadrupole moment in the closest 98Sr (Z=38, N=60) even-even
nucleus, see Fig. 2.17(a). Indeed, the calculations on odd-mass nuclei are quite scarce. The experimental
excitation energies and spin parity assignments are compared to the HFB-EFA Gogny-D1S calculation
results, see Fig. 2.17(b).

(a) Single-particle energies for protons and neutrons
in 98Sr as a function of the axial quadrupole moment
Q20. The Fermi level is depicted as a thick dashed
red line. The results have been obtained with the
Gogny-D1S EDF. Asymptotic Nilsson quantum num-
bers (N, nz,Λ)Kπ. The orange arrows are placed on the
energy minima in the oblate and prolate cases.

(b) Experimental excitation energies (top) and spin
parity assignments compared with Gogny-D1S
HFB-EFA results (bottom) for one quasi-proton states
in odd-A Rb isotopes. Prolate configurations are shown
by black lines, oblate ones by red lines, and spherical
ones by blue lines.

Figure 2.17: HFB Gogny-D1S calculations on the single-particle energies and excited states in 97Rb.
(a) Comparison between the experimental and theoretical excitation energies and spin parity assignments.
The quasi-particle states are identified by their Kπ quantum number.
(b) Single-particle energies for protons and neutrons in 98Sr.
From Ref. [51, 75, 109].

On the Fig. 2.17, the single-particles energies exhibit minima for oblate and prolate deformation regions
at around |Q20| ∼ 5 b.
The nuclei start to be deformed when the valence protons fill the down-sloping πg9/2 orbitals. On the neutron
side, approaching N=60, the valence neutrons start to fill the down-sloping νh11/2 orbitals for important
deformation (Q20 ∼ 4 − 5 b).
The strong sensitivity to the occupancy of the considered single-particle orbitals, resulting in the sudden
onset of deformation, can be explained as originating from the strong n-p interaction polarizing the core.
This polarization should favor the population of the g9/2 orbitals for the same deformation.
Moreover, this scenario is in agreement with the Jahn-Teller consideration, in which the nuclear states close
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to the Fermi level avoid a high density and prefer the higher energy gaps which leads to deformation, see
Ref. [110, 111].
In our case, the unpaired proton (A

37Rb) gives the spin and parity of the nucleus ground state, and thus, the

jump from the 5
2
−
[303] to the 3

2
+
[431] orbital has to occur. However, one has to mention the importance

of the proton-neutron interaction between the g7/2 and g9/2 spin-orbit partner orbitals acting in favor of the
deformation.

The results obtained for the excited energies on Fig. 2.17(b) reproduce well the shape change. However,
the spin and parity assignments in the slightly deformed 91−95Rb differ from the experimental observations.
This can be explained by a quasi-degenerated oblate and prolate states in the low-lying energies. But note
that the deformation jump is well reproduced between the weakly deformed 91−95Rb and well deformed
prolate 97−101Rb, as well as the most probable 3

2
+
[431] orbital assignment for the 97Rb.
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7 Conclusion

A clear identification of the band-head spins, their deformations and the Nilsson orbitals on which the rota-
tional bands are built should give insights into the mechanism responsible of the sudden onset of deformation.

Rotational bands have been already identified in the closer to stability isotopic chains at N∼60, exhibiting
a deformation in their ground states. Mass and mean square charge radii measurements confirmed the
phenomenon and determined the limit of the onset of deformation. Complementary, Coulomb excitation
studies were performed to understand the low lying structure in the region and extract more information
concerning the importance of the residual nucleon-nucleon interaction.

On a first approach, theoretical model calculations involved the residual proton-neutron interaction
between the πg9/2 and νg7/2 spin-orbit partners as the issue of the problem. However, further calculations
taking into account a larger valence space, obtained a better agreement with the experimental results (for the
Mo isotopes). Thus, the importance of the residual n-p interaction may be questioned.
More data are requested to distinguish the deformation drivers which may act on the residual proton-neutron
interaction. The nature of many of the nuclides in the region make their experimental study challenging ( e.g.
short life-time, chemical nature).

Concerning the rubidium, placed at the corner of the sudden onset of deformation, Coulomb excitation
studies could cover all the mentioned observables in order to understand the mechanisms involved in the
development of deformation.
In the rubidium isotopic chain, the ground states showed also a rapid onset of deformation at 97Rb. Neverthe-
less, the detailed nuclear structure of the nuclei could not yet be investigated. The existence of rotational
bands could be expected in the odd-mass neutron-rich rubidium isotopes at N&60 and the single-particle
configuration on top of which the rotational bands are built has to be identified. The ordering of proton
orbitals in the well deformed 97Rb is not yet known. The study of the low-lying nuclear structure via
Coulomb excitation in the odd-mass Rb isotopes would constitute one of the best way to gain information on
the active proton orbitals.

Furthermore, shape isomers are expected for the Rb isotopes close to N∼60. However, in case of low
energy and long lived isomers it would be difficult to identify.

Similar Coulomb excitation studies have already been performed at CERN with REX-ISOLDE and
the MINIBALL array for the odd-mass and odd-odd Cu isotopes, see Ref. [112]. It has shown the strong
potential to gain informations both on the single particle-like and collective states in the exotic nuclei.

The physics motivations, related to the study of the discussed onset of deformation an more precisely its
mechanisms, justify naturally the experimental study of the low lying structure of 93,95,97,99Rb by Coulomb
excitation.
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Chapter 3

Coulomb excitation - probe of nuclear
structure

The Coulomb excitation is a "purely" electromagnetic interaction, consisting in a collision between
two nuclei at an energy lower than the Coulomb barrier. In such a reaction, if the nuclear interaction
can be neglected or treated as a perturbation, the reaction is qualified as a "safe" Coulomb excitation. In
the case of non negligible nuclear interaction compared to the electromagnetic interaction, the reaction is
qualified as "unsafe" Coulomb excitation. In the following, the reactions would be considered as "safe"-like
Coulomb excitation. The electromagnetic interaction in presence confers the main properties of the observed
de-excitation.

1 Coulomb excitation: a probing tool

1.1 Introduction

In the following section, one describes briefly the opportunities that the Coulomb excitation presents [113].
At first, it has been developed as a tool to investigate low-lying states of nuclei. The respect of the "safe"
requirement involves a low excitation energy.
The Coulomb excitation has been extensively used to study the nuclear structure of nuclei produced close
to the beta stability valley. The use of Radioactive Ions Beam (RIB) opened up new perspectives for this
technique. The Coulomb excitation is governed by specific selection rules different from other kinds of
reactions. This technique is nowadays extensively used for short lived radioactive nuclei.

1.2 Historical developments

The Coulomb excitation is a well known excitation reaction used as a trustworthy tool. As a matter of
fact, this process has been theoretically studied in the 30’s, see Ref. [114]. It’s only twenty years later, when
the possibility to populate rotational states in deformed nuclei described by A. Bohr and B. Mottelson [115],
that the process has been unearthed. Being in good agreement with the semi-classical theory calculations of
K. A. Ter-Martirosyan [116] it was experimentally confirmed by T. Huss and C. Zupancic [117]. At that
time only light beams were delivered in the nuclear facilities and just a few excited levels could be populated.
The development of heavy ion beams allowed the possibility of multiple Coulomb excitations by stronger
electromagnetic fields.

1.3 Overview and classical picture of the Coulomb excitation phenomenon

In the present introduction, the description will be restricted to the pure (or "safe) Coulomb excitation,
i.e. well below the Coulomb barrier, so that no penetration into the strong nuclear field occurs. The strong
interaction is considered as negligible compared to the electromagnetic interaction. The excitation will only
be caused by the electromagnetic interaction and only the matrix elements of the electromagnetic operator
are in play.

In order to respect the condition of exclusive electromagnetic interactions, the collision should have a
wave length (projectile) smaller than the closest approach distance occurring in a head-on collision. One can
evaluate the relative position to the Coulomb barrier via the following parameter (usually called Sommerfeld
parameter), see Ref. [113] :

η = b/2Żpro jectile (3.1)
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b(θC.M.)

Projectile De-excitation

Projectile

| ψ(−∞) >=| 0 >

| ψ(t) >=
∑

n an(t) | n >

Electromagnetic
Interaction

Centre-of-mass Frame

θC.M.

γ

γ

~v
V(~r(t)) Target

Excited Projectile

Excited Target

Target De-excitation

γ γ

γγ

Figure 3.1: Coulomb excitation kinematics in the centre of mass.

where:

{

b: distance of closest approach in a head-on collision,
Ż = ~

p
= ~

mv
: wave length.

Expressed in terms of velocity:

η =
Z1Z2e2

~v
(3.2)

where:

{

Z1,Z2: charge numbers of projectile and target nucleus,
v: projectile velocity far away from the target.

The monopole-monopole interaction
Z1Z2e2

r
expressing the Coulomb repulsion does not excite the nuclei

but can describe the tendency of the kinematics to follow a "perturbed" Rutherford scattering.
η is the parameter describing this point charge interaction. It constitutes an important parameter to estimate
the strong interaction involved in the process (comparison with the Rutherford scattering).

For a safe Coulomb excitation one needs to have:

η ≫ 1 (3.3)

In this framework, the relative motions of nuclei can be described classically, in terms of wave packets,
with dimensions small compared to the dimensions of classical hyperbolic orbit. Thus, the reaction kinematics
can be approximately described by hyperbolas.

(

dσ

dΩ

)

Ruther f ord

=
1
4

a2 sin−4
(
θ

2

)

(3.4)

Where:






a =
b

2
=

Z1Z2e2

µv2
,

µ =
mpro jectilemtarget

mpro jectile + mtarget

: reduced mass,

θ : polar angle,
v : velocity.

During the collision, there is a certain probability Pn to populate the given nuclear state |n >. The
differential cross section to populate such state could be written as:

(

dσ

dΩ

)

n

=

(

dσ

dΩ

)

Ruther f ord

Pn (3.5)
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n specifies the level and the magnetic quantum number.

In the classical framework the excitation is realized by the time-dependent electromagnetic field. The
projectile moves along the hyperbolic orbit according to the classical equations of motion, see Fig. 3.1
and 5.8. One needs to solve the time-dependent Schrödinger equation of motion:

i~
∂

∂t
|ψ(t) >= (H0 + V(~r(t)))|ψ(t) > (3.6)

Where:






H0: Hamiltonian of the free nucleus,
V(~r(t)): electromagnetic potential of interaction,
~r(t): time dependent position,
|ψ(t) > : time dependent wave function of the nucleus.

One can consider the nucleus in its ground state for t= −∞ and |n > for t= +∞, with V(~r(−∞)) =V(~r(+∞)) =
0 leading to |ψ(−∞) >= 0, and |ψ(+∞) >= |n > when the state after the collision is |n >.
The final nuclear state |n > is defined as |n >= |Inmn >

The excitation amplitude is defined as:

an =< n|ψ(+∞) > (3.7)

With the energy En solution of free nucleus for the the eigenstate |n >, in other terms, i.e.:

H0|n >= En|n > (3.8)

and the excitation probability can be written as:

P0→n = |an|2 , or

Pi→ f =
1

2Ii + 1
∑

mi,m f
|aI f m f ,Iimi

|2 (3.9)

To solve the Eq. 3.6, several methods can be used, among them, the perturbation expansion valid for
small and adiabatic excitation with negligible nuclear interaction. The excitation amplitudes are used in the
determination of the involved cross section, angular distribution of γ-rays including polarization process.
The physics state |ψ > can be expanded in terms of eigenstates and excitation amplitudes for the unperturbed
Hamiltonian H0:

|ψ(t) >=
∑

n

an(t)e−ωnt |n > , with: ωn =
En

~
(3.10)

The Eq. 3.6 can be rewritten as a set of linear differential coupled equations:

i~ȧn(t) =
∑

m

< n|V(t)|m > ei(En−Em)t/~am(t) (3.11)

In order to fit in the classical picture, the energy lost by the projectile (given to the target nucleus) should
be rather small to be neglected (the energy transfer should not change significantly the orbits):

∆En

Ekinetic

≪ 1 , with: ∆En = En − E0 (3.12)

where En is the excited state energy of the target nucleus (|n >), Ekinetic =
1
2µv2 is the centre-of-mass energy

and E0 is the energy at rest.
The reaction will populate mainly the low-lying states, but sometimes the high-lying states are also

weakly populated by violating the Eq. 3.12, i.e.
∆En

Ekinetic

∼ 1. The adiabatic nature of the Coulomb excitation

enforces the system to be able to excite a high lying state |n > only if: the collision time is short compared to
the nuclear period (in other terms: ~/∆En), or, a collision time of the same order of magnitude as the nuclear
period of the transition |0 >→ |n >.

The collision time τ is estimated as the duration it takes for the projectile to travel the distance of closest
approach when the scattering angle is θ:

b(θ) = a



1 +
1

sin θ
2



 (3.13)
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The adiabadicity of the collision is evaluated via the parameter ξ, which is the product between the

collision time τ and the nuclear frequency: fnuclear =
∆En

~
, ξ0→n =

∆Enτ

~
( 1), leading to:

ξ0→n(θ) = ξ0→n

1
2



1 +
1

sin θ
2



 , with: ξ0→n(θ) = ξ0→n(π) =
∆En

~

a

v
(3.14)

We can now re-express the energy loss as:

∆En

Ekinetic

=
2ξ0→n

η
(3.15)

For a classical picture of one step processes, one needs the conditions: η ≫ 1 and ξ . 1 leading to
∆En

Ekinetic
≪ 1. For heavy ions, η ∼ 10-500 and ξ becomes large but without violating the condition ∆En

Ekinetic
≪ 1.

Moreover, it is important to note that for large ξ the excitation probabilities decrease exponentially with
ξ, see Sec.4 on page 62 and Fig. 3.2.
For a safe Coulomb excitation, the adiabatic requirement should respect the condition ξ . 1.

In order to estimate the magnitude of excitation energies, one can calculate the strength by the matrix
elements which can be approximated by the value of the interaction V(−→r (t)) at the closest approach and the
collision time:

< n|
∫ +∞

−∞
V(−→r (t))|0 >≈< n|V(b(θ))|0 > τ , (3.16)

leading to the parameter:

χ0→n ≈
< n|V(b(θ))|0 > b(θ)

2~v
. (3.17)

Expressed in ~ units, χ0→n permits to evaluate the number of quanta exchanged during the collision time
τ for the excitation of the state |n >. It translates also the possibility to excite more than one state.

– if χ is small, few quanta of energy are exchanged and the excitation probability is low,
– if χ is large and ξ relatively small, the state is well excited and more quanta are exchanged.
In order to quantify the impact of multipole orders, one can decompose χ as:

χ =
∑

λ

χ(λ), (3.18)

With χ(λ) the partial of multipole order λ. To give an idea of the order of magnitude of the probability to
excite |n > by developing onto multipoles, one can express their upper limits:






χ(0) =
Z1Z2e2

~v
= η , the monopole part

χ(1)
. 10

χ(2)
. 10 , the quadrupole part

χ(3)
. 0.5

χ(4)
. 0.1

(3.19)

The higher the multipole order, the smaller is the excitation probability.
For θ = 180°, the quadrupole moment can be approximated as a function of χ(2) expressing the quadrupole
part of the Coulomb interaction between a projectile and a nucleus, as:

V(b) ≈ Z1eQ

b3
, with Z1e: charge of the projectile (3.20)

leading to:

χ(2) ≈ Z1eQ

2~b2
(3.21)

The introduction of the χ parameter highlights again the strong relation between the observables, the
deformation and more precisely with the intrinsic quadrupole moment.

1. |0 >→ |n > can only occur if ξ0→n . 1
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2 The Electromagnetic interaction in Coulomb excitation

In this brief introduction to the electromagnetic interaction, an overview of the link between the Coulomb
excitation experimental observables and the electromagnetic operator is presented.

2.1 The Multipole-Multipole interaction in the electromagnetic framework

In presence of charge and current distribution, the magnetic and electric moments are expressed as a
series of multipole moments.
In case of collision, the Hamiltonian describing the nucleus can be expressed as:

HCollision = H0
1 + H0

2 +W12 (3.22)

with: H0
1 and H0

2 are the Hamiltonians of free particles,
W12 is the Hamiltonian of the multipole-multipole electromagnetic interaction between the projectile and
target nuclei.

The electromagnetic interaction Hamiltonian between the beam particle and the target can be expressed
as, see Ref. [113, 118]:

W(1, 2) =
∫ ∫

dτ1dτ2

ρ1(~r′1)ρ2(~r′2) − 1
c2
~j1(~r′1)~j2(~r′2)

|~r + ~r′1 − ~r′2|
(3.23)

where:






ρ1(~r′1) and ρ2(~r′2) are the charge distributions,
~j1(~r′1) and ~j2(~r′2) are the current distributions,
~r′1, ~r′2 : coordinates of target and projectile,
~r : relative coordinates.

2.1.1 Stationary Treatment

In a first approach, the electric and magnetic interactions can be considered as independent (no elec-
tromagnetic interaction). One can separate the Hamiltonian of interaction in an electric and magnetic part
as:

WStationary(1, 2) = WElectric(1, 2) +WMagnetic(1, 2) (3.24)

with: λ the multipole order and µ their projection, see Ref. [113], and:





WElectric(1, 2) =
∑

λ1λ2µ1µ2
c(λ1, λ2)

(

λ1 λ2 λ1 + λ2

µ1 µ2 −(µ1 + µ2)

)

×M1(Eλ1, µ1)M2(Eλ2, µ2)
1

~rλ1+λ2+1
Yλ1+λ2,−(µ1+µ2)(~r)

WMagnetic(1, 2) =
∑

λ1λ2µ1µ2
c(λ1, λ2)

(

λ1 λ2 λ1 + λ2

µ1 µ2 −(µ1 + µ2)

)

×M1(Mλ1, µ1)M2(Mλ2, µ2)
1

~rλ1+λ2+1
Yλ1+λ2,−(µ1+µ2)(~r)

M(Eλ, µ) andM(Mλ, µ) are respectively called the electric and magnetic multipole moments. They are

defined as [25]:





M(Eλ, µ) =
∫

ρ(~r)~rλYλµ(r̂)dτ

M(Mλ, µ) =
−i

c(λ + 1)

∫
~j(~r)~rλ~LYλµ(r̂)dτ

(3.25)

with:






~L = −i~r × ~∇ : orbital moment,
ρ(~r) =

∑A
k=1 e(k)δ(~r − ~rk) : charge distribution,

e(k) = 0 : for neutron and e(k) = +e : for proton (charge),
Yλµ(r̂) : spherical harmonic function.

The sensitivity of electric and magnetic multipole moments, related respectively to the charge and current
distributions, are explicitly introduced in their definition. Their matrix elements represent most of the nuclear
structure properties such as the quadrupole deformation.
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2.1.2 Dynamic Treatment

Since the collision process is a dynamic process the electric and magnetic multipole terms will interact
together. Indeed the charge current densities will be modified by the relative motion of the two nuclei. An
electromagnetic interaction needs to be taken into account. If the retardation effects are negligible and ~r is
still a function of time as ~̇r

c
≪ 1, then, a simple electromagnetic term can be added as:

WDynamic(1, 2) = WElectric(1, 2) +WMagnetic(1, 2) +WElectromagnetic(1, 2) (3.26)

The charge-current densities can be expressed as, see Ref. [113]:

{
~j′1 = ~j1 + ~̇r ρ1 ,
ρ′1 = ρ1 +

1
c2 ~̇r · ~j1

(3.27)

Those considerations lead to:

WElectromagnetic(1, 2) =
∑

λ1λ2µ1µ2
ic(λ1, λ2) {M1(Eλ1, µ1)M2(Mλ2, µ2) −M1(Mλ1, µ1)M2(Eλ2, µ2)}

×~̇r
c

1
~rλ1+λ2+1

{(

λ1 λ2 λ1 + λ2

µ1 µ2 µ

)

1
λ1 + λ2

~LYλ1+λ2,µ(θ, φ)

−
(

λ1 λ2 λ1 + λ2 − 1
µ1 µ2 µ

) √

λ1

λ2(λ1 + λ2)
~Φλ1+λ2,λ1+λ2−1,µ(θ, φ)

(3.28)
with: ~ΦlJµ the spherical harmonic vector defined in Ref. [119], θ is the polar angle, φ is the azimuth angle.
The interaction of the mutual electric and magnetic terms of the electromagnetic operator is expressed as an
antisymmetric combination of its matrix elements.

2.2 B(Lλ, Iπ
i
→ Iπ

f
) strength

During the experiment, the intensity of the different gamma transitions are measured as a function of
time. The electromagnetic interaction strengths associated to each of them are directly linked to the matrix
elements of the electromagnetic operator.

2.2.1 Definition

The general definition of the electromagnetic transition strength of multipolarity λ is:

B(Lλ, Ii → I f ) =
∑

M f ,µ | < τ f , I f M f |M(Lλµ)|τi, IiMi > |2

=
1

2Ii + 1
| < τi, Ii||M(Lλ)||τ f , I f > |2

(3.29)

The reduced matrix elements are defined by the Wigner-Eckart theorem, see Ref. [1]:

< τi, Ii,Mi|M(Lλµ)|τ f , I f ,M f >= (−1)Ii−Mi

(

Ii λ I f

−Mi µ M f

)

< τi, Ii||M(Lλ)||τ f , I f > (3.30)

2.2.2 Electromagnetic excitation/De-excitation

The B(Lλ,Ii →I f ) strength is directly proportional to the partial γ ray transition probability of multipo-
larity Lλ. Moreover, the excitation and de-excitation transition strengths, respectively B(Lλ,Ii →I f ) and
B(Lλ,I f →Ii), are linked together with a geometrical spin factor as:

B(Lλ, I f → Ii) =
2Ii + 1
2I f + 1

B(Lλ, Ii → I f ) (3.31)

Each multipole matrix element describes the electromagnetic excitation/de-excitation of the considered
nuclear transition.
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2.2.3 Weisskopf Model

This precursor model can be used to determine accurately the width of a measured γ-ray transition,
however it can provide a reasonable estimation comparing the strengths associated to this transition and the
average strength in the specific mass region of the given nucleus. One should determine if the transition from
a hypothetic single particle state is accelerated/decelerated. It provides in a first approach the information of
the collective or single particle character of the state.

The strength defined as S =
Γγ

ΓW

, the ratio of the experimental width over the estimated width from the

Weisskopf model, is commonly used to calculate the branching ratios. The width of the γ-rays directly linked
to the lifetime of the state τ as: Γγ = ~τ.
The model is based on the following considerations:

- The nucleus is separated in a inert core (spectator nucleons) and a valence particle,

- The γ-ray transitions occur between the states J f inal = I +
1
2

and Jinitial = λ + I +
1
2

,

- The radial part of the initial and final wave functions u(r) should respect the condition:
{

u(r) = C st , if r 6 R,
u(r) = 0 , if r > R.

Within the Weisskopf model, the ΓW width of the transition of energy Eγ [MeV] and multipolarity λ are
given as:






ΓW (Eλ) = ~
4.4(λ + 1)

λ[(2λ + 1)!!]2

(

3
λ + 3

)2 (
Eγ

197

)2λ+1

R2λ.1021 [eV]

ΓW (Mλ) = ~
1.9(λ + 1)

λ[(2λ + 1)!!]2

(

3
λ + 3

)2 (
Eγ

197

)2λ+1

R2λ−2.1021 [eV]

(3.32)

From the strength (S), the reduced transition probabilities can be found as:






BW.u.(Eλ) =

(

3
λ + 3

)2 (

1.2A
1
3

)2λ
[e2 f m2λ]

BW.u.(Mλ) =
10~
π

(

3
λ + 3

)2 (

1.2A
1
3

)(2λ−2)
[µ2

N
f m2λ−2]

(3.33)

In such way, the different transition strengths can be estimated on the same basis and expressed in the
single-particle units, called also Weisskopf units [W.u.]. As a matter of comparison the reduced transition
strengths of single particle character are of around a few W.u. instead of around 100 W.u. for the collective-
like transitions.

3 Condition of the application of Semi-classical description

The semi-classical description of the process is essential in the Coulomb excitation. A quantum de-
scription can be done, but most of the results exhibited during the Coulomb excitation are described in the
semi-classical framework. However, a quantum theory treatment can be applied to check the magnitude of
the error generated by the semi-classical approximation.

As mentioned above the bombarding energy should be sufficiently lower than the Coulomb barrier and
should satisfy the condition: η ≫ 1, see Eq.3.2 on page 56.

In a pure semi-classical description, the kinematics should follow the Rutherford scattering including the
Rutherford cross section. However, in this case, the excitations generated in the orbits have to be neglected.
At these energies, during the excitation process, energy and momentum transfers can occur. The energy
transfer has to be negligible compared to the total energy in order to respect the semi-classical description:

∆En/E ≪ 1 (3.34)

In practice, this relation is not fulfilled by all nuclear states |n >. Indeed the excitation probabilities associated
to each state are different. For weak inelastic processes the excitation may happen only if the frequency
corresponding to the excitation is . 1

τ
. As seen above, this condition can be expressed as:

ξ0 . 1 (3.35)
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Considering now an excitation with many exchanges of quanta (strong excitation χ>1), such that the
processes are not weak, the condition ξ0 . χ has to be fulfilled:

η ≫ χ (3.36)

As said the momentum transfer should be relatively small such as:

∆l/l ≪ 1 (3.37)

For low excitation probability, the momentum transfer can be described as ∆l ≤ 1 because of the possibility
to use the perturbation theory, which is not the case for strong excitations.
In the case of strong excitation probability, the angular momentum transfer is estimated as :∆l ∼ λχ(λ)λ.
Thus,

η ≫ χ(λ)λ (3.38)

Neglecting the energy and angular momentum transfer at the orbit, the collisions can be determined just
from the initial intrinsic wave functions of the projectile and target, |Ψpro jectile

intrisic
> and |Ψtarget

intrisic
> respectively.

i~
∂

∂t
|Ψintrisic(t) >=

(

H0(projectile) + H0(target) +W(projectile, target,~r(t)) − Z1Z2e2

r(t)

)

|Ψintrisic(t) > (3.39)

with: |Ψintrisic(−∞) >= |Ψpro jectile

intrinsic, g.s. > |Ψ
target

intrinsic, g.s. > (target and projectile are assumed at there ground states
before the collision)
W(projectile, target,~r(t)) describes the multipole-multipole interactions
~r(t): centre-of-mass coordinates.

Since the problem can be separated, the Schrödinger equation to solve is of the form:

i~
∂

∂t
|Ψ(t) >= (H0 + V(t)) |Ψ(t) > (3.40)

Thus, V(t) can be expressed as:

V(t) =
∞∑

λ=1,µ

4πZ1e

(2λ + 1)
(−1)µS̄ Lλµ(t)M(Lλ,−µ) (3.41)

with the electric and magnetic excitation S-matrices defined as in Ref. [113]. The S-matrices express the
probability amplitude of the excitation.

4 First Order of perturbations approximations

In this frame, the coupling between weakly excited states and strongly excited states can be evaluated via
the perturbation theory, and the high-lying states can be neglected (low excitation probabilities).
However, if the high-lying states are strongly coupled to the considered excited state, the considered
perturbations start to be not adequate. Moreover even if the high-lying states are not excited they should
nevertheless influence the excitation of lower states.
The phenomenon associated is called polarization effect, see Ref.[113]. During the calculation one can add
extra levels to optimize properly this effect, such as in GOSIA, see further Chap 5.

4.1 Excitation

At the first order the excitation amplitudes of the state |I f M f > from the ground state |I0M0 > is given by:

aI f M f ,I0 M0 =
1
i~

∫ +∞

−∞
< I f M f |V(t)|I0M0 > e

i
~

(E f−E0)tdt (3.42)
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4.1.1 Electric excitation

For an electric excitation, the excitation amplitude results in, see Eq.3.41 on the preceding page,3.25 on
page 59:

aI f M f ,I0 M0 =
4πZ1e

i~

∑

λµ

(−1)µ

2λ + 1
< I f M f |M(Eλ,−µ)|I0M0 > S Eλµ

=
4πZ1e

i~

∑

λµ

1
2λ + 1

< I0M0|M(Eλ,−µ)|I f M f >
∗ S Eλµ

=
4πZ1e

i~

∑

λµ

1
2λ + 1

(−1)I0−M0

(

I0 λ I f

−M0 µ M f

)

× < I0||M(Eλ)||I f > S Eλµ

(3.43)

Differential cross section Usually the differential cross section resulting from the excitation of nuclear
states is written:

dσE =
∑

λ dσEλ ; dσEλ =

(
Z1e

~v

)2

a−2λ+2B(Eλ, I0 → I f )d fEλ(θ, ξ) (3.44)

with the differential cross section function as:

d fEλ(θ, ξ) = 4π
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(λ − 1)!
(2λ + 1)!!

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

R2
λ(θ, ξ)dΩ/ sin4

(
θ

2

)

(3.45)

where,






R2
λ(θ, ξ) =

∑

µ |Rλµ(θ, ξ)|2

Rλµ(θ, ξ) =
∫ +∞
−∞ Qλµ(ǫ,w)eiξ[ǫ sinh w+w]dw

with the eccentricity ǫ = 1
sin( θ

2 ) , ξ =
a

v

E f − E0

~
, w is related to the position and the time dependence as:

r = a[ǫ cosh w+1], t =
a

v
[ǫw+w], and, the collision function: QEλµ(ǫ,w) = aλ

(2λ − 1)!!
(λ − 1)!

√

π

2λ + 1
r(w)S̄ Eλµ

Finally, the cross section is proportional to the transition strength and the excitation:

σEλ =

(
Z1e

~v

)2

a−2λ+2B(Eλ, I0 → I f ) fEλ(ξ) (3.46)

The total electric cross section function fEλ(ξ) is represented on the Fig.3.2.

4.1.2 Magnetic excitation

For a magnetic excitation the amplitude is, see Eq. 3.25 on page 59, 3.41 on the facing page:

aI f M f ,I0 M0 =
4πZ1e

i~

∑

λµ

1
2λ + 1

< I f M f |M(Mλ,−µ)|I0M0 > S Mλµ (3.47)

Differential cross section Usually the differential cross section resulting from the excitation of nuclear
states is written:

dσM =
∑

λ dσMλ ; dσMλ =

(
Z1e

~c

)2

a−2λ+2B(Mλ, I0 → I f )d fMλ(θ, ξ) (3.48)

with the differential cross section function as:

d fMλ(θ, ξ) = 4π
∣
∣
∣
∣
∣

∣
∣
∣
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∣

(λ − 1)!
(2λ + 1)!!

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

R2
Mλ(θ, ξ)dΩ/ sin4

(
θ

2

)

(3.49)

where,






R2
Mλ(θ, ξ) =

∑

µ |RMλµ(θ, ξ)|2

RMλµ(θ, ξ) =
∫ +∞
−∞ QMλµ(ǫ,w)eiξ[ǫ sinh w+w]dw

And, the collision function: QMλµ(ǫ,w) =
aλc

v

(2λ − 1)!!
(λ − 1)!

√

π

2λ + 1
r(w)S̄ Mλµ.

Finally, the cross section is directly linked with the transition strength and the excitation:

σMλ =

(
Z1e

~c

)2

a−2λ+2B(Mλ, I0 → I f ) fMλ(ξ) (3.50)

The total magnetic cross section function fMλ(ξ) is represented on the Fig.3.2.
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Figure 3.2: The total cross section function fE/Mλ(ξ) for electric/magnetic dipole and quadrupole excitations
in logarithmic scale. Modified from Ref. [113].

4.2 Excitation and De-excitation

In "safe" Coulomb excitation experiment, the nuclear states are excited by a purely electromagnetic
interaction favoring deeply the electric mode. The ratio of electric and magnetic excitation cross sections
exhibit such rule:

σEλ

σMλ

∼
(
c

v

)2
, in our experiment

v

c
∼ 0.07, thus,

σEλ

σMλ

∼ 200 (3.51)

For example, the electric E2 excitation mode is more favored than the magnetic M1 excitation mode.
In contrary, the de-excitation is not governed by the same selection rules, and therefore, lower multipole
transitions, if possible, are favored.
This aspect is illustrated by the total cross section function fE/Mλ(ξ) on Fig. 3.2.

4.3 Multipole-Multipole excitation

Usually projectile and target particles are assumed spherical-like and the multipole-multipole excitations
are neglected. However, for a collision between deformed nuclei, corrections to the excitation amplitudes

can be achieved. The semi-classical picture can be modified accordingly but this effect is of the order of
1
η2

.

For a safe Coulomb excitation, the condition η ≫ 1 should be respected, thus the multipole-multipole
excitations vanish or can be treated as perturbations.

4.4 Quantum effects

In order to refine the semi-classical picture quantum mechanical effects could be taken into account.
However, a simple consideration of the initial and final velocities can rather compensate the excitation
amplitudes by replacing respectively a and ξi f by:

ai f =
Z1Z2e2

mov f vi

; ξi f =
Z1Z2e2

~

(

1
v f

− 1
vi

)

(3.52)
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Those considerations have been experimentally confirmed, see Ref. [113].

5 Higher orders of perturbation

For high transition probabilities or forbidden transitions, the excitation by more than one virtual photon
starts to influence the excitation cross section. Higher perturbation orders need to be taken into account. The
excitation of high spin states is then possible via the absorption of at least 2 virtual photons. This process
is usually called multi-step Coulomb excitation, exciting the final states via the excitation of intermediate
state(s).
In the higher perturbation orders, the excitation amplitudes can be written as:

ai f =
∑

(λ)

∑

z

a
(λ)
iz f

(3.53)

with : i, z, f denote respectively the initial, intermediate and final nuclear states.

5.1 Second Order of perturbation

For the second order of perturbation the excitation amplitudes are found to be:

ai f = a
(1)
i f
+

∑

z

a
(2)
iz f

(3.54)

The second order term can be rewritten as:

a
(2)
iz f
=

(

1
i~

) ∫ +∞

−∞
< f |V(~r(t))|z > eiωtdt ×

∫ +∞

−∞
< z|V(~r(t))| f > eiω′tdt (3.55)

As mentioned above, the excitation of higher states can be reached through the excitation of intermediate
states. Note that intermediate states can be higher in energy than the final populated state, thus a decay
occurs in the population of such state.
If the direct excitation (I0 →I f ) is small, an indirect excitation such as a double excitation (I0 →Iz →I f ) can
occur, see Ref. [120].

σE2,E2 ∼
1
4

a−2σE2(I0 → Iz)σE2(Iz → I f ) (3.56)

One can take as example the following case:

σE2,E2

σE4
= 2.1

A1Z2
1

EMeV

B(E2, 0→ 2)B(E2, 2→ 4)
e2B(E4, 0→ 4)

∼ 103 B(E2, 0→ 2)B(E2, 2→ 4)
e2B(E4, 0→ 4)

(3.57)

The double excitation is well favored compared to the direct excitation.
For the second perturbation order the total transition probability can be written, see Eq. 3.9, as:

Pi→ f ∝ |ai f |2
∝ |a(1)

i f
|2 + |a(2)

i f
|2 + 2|a(1)

i f
a

(2)
i f
| (3.58)

The three different terms are respectively the excitation amplitude of the first, second order and an interfer-
ence term. The diagonal matrix elements and their signs are directly accessible. The second order term a

(2)
i f

contains the diagonal matrix element corresponding to the electric quadrupole operator, < i||M(E2)||i >. The
average value of the electric quadrupole operator is the static electric quadrupole moment of the state |i >. In
general terms, the diagonal matrix elements express the static moments of the nucleus. The non-diagonal
elements represent the transitional moments.

< Q >=< i|Q̂|i > (3.59)

The access to the electric quadrupole moment Q is a direct measurement of the charge distribution inside
the nucleus. The charge distribution is representative of the nuclear shape (deformation). The second order
of the perturbation gives a direct access to the diagonal matrix element, notably the quadrupole moment.
The amplitude and the sign of this matrix element will determine the type of the deformation (for example
prolate, oblate in axially symmetric deformation).
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5.2 Static Electric Quadrupole moment effect or Reorientation effect

The reorientation effect has been predicted by Breit and Lazarus, see Ref. [121, 122, 123]. An electric
field gradient of the bombarding particle is created at the excitation of the nucleus. A reorientation of the
nuclear axis can be operated by such a strong and inhomogeneous electric field gradient.
Compared to the electric field gradient present in crystalline structure the electric field gradient in Coulomb
excitation can be calculated accurately (no lattice) by the model. The interaction of the electric field gradient
with the static quadrupole moment is still possible considering the short collision time (∼ 10−20s) because
the projectile and the target are close (in the present configuration the electric field gradient is 12 orders of
magnitude larger than in a lattice).

The reorientation of the nuclear spin modifies the angular distribution of the γ-rays. The excitation cross
section and the angular distribution can be influenced by the static quadrupole moment of the considered
excited state. The first order amplitudes (direct excitations) interfere with the second order amplitudes.

Taking the example of a 2+ state, the interaction can be constructive in a prolate rotor (Q(Jπ) > 0)or
destructive for oblate (Q(Jπ) < 0).

The resulting shift can be written as :

∆E = −e2Q(Jπ)

16a3
0

(3.60)

Note that the quadrupole measurement via the reorientation effect process is sensitive to the proton
number of the target nucleus. Then, changing the target nature could help to clearly identify the reorientation
effect.

The principal interest of the reorientation effect lies in the possibility to measure the quadrupole moment
of the excited states. The technique has been largely investigated via the quadrupole moment measurement
of 2+ states in the even-even nuclei.

5.3 De-orientation process

During the collision, the projectile can be firstly excited reaching a certain excited state (I f ). Before a
γ-decay, the scattered projectile and the target recoil nucleus exit the target into the vacuum highly excited
and ionized. At that time, the scattered projectile decays rapidly by gamma emissions. However, the strong
fluctuations of the hyperfine fields can lead to a de-orientation of the nuclear state, see Ref. [26].

The main hyperfine interaction responsible of the de-orientation comes from the interactions between the
magnetic dipole moment of the considered nuclear state and the atomic hyperfine magnetic field. 2

The de-orientation effect depends on the recoil velocity, the atomic and nuclear spins, the lifetimes of
the excited states considered and some dephasing effects. In the GOSIA code, the de-orientation effect is
restricted to a two-states model, see Ref. [124, 125].

The possible de-orientation effect affects the angular distribution of the de-exciting nucleus. This
attenuation can be taken into account with the attenuation factor G(τ), including the dependence on the spin
and lifetime. The different processes are summarized on Fig. 3.3.

2. If the atomic hyperfine magnetic field is well known, the de-orientation effect could be used to measure the magnetic dipole
moment of the excited states.
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Figure 3.3: Different excitation possibilities.

6 Which informations can be extracted from Coulomb excitation?

In Coulomb excitation the matrix elements of the electromagnetic multipole operator can be determined.
In order to understand the meaning of the matrix elements, several parameters are used, such as the electric
quadrupole moment related to specific diagonal matrix elements.

6.1 The Experimental Observables

In even-even nuclei, the first 2+ states and the B(E2,0+1 → 2+1 ) strengths are correlated together. The
evolution of B(E2,0+1 → 2+1 ) and 2+1 energy over the neutron/proton number reflects some characteristics
of the nuclear structure in presence. Generally, a development of deformation exhibits an increase of the
reduced transition strengths B(E2,0+1 → 2+1 ) and a decrease of the E(2+1 ) energies. On contrary, close to the
(sub)shell closures, the inverse tendency is observed, the E(2+1 ) energies increase and the B(E2,0+1 → 2+1 )
decrease. Their behaviors help to understand the nuclear medium with extreme N/Z ratios, for example the
Kr and Sr cases presents at the studied shape transition which are discussed in the Chap. 2 on page 39.
Other bench-marks are used such as the ratio between the magnetic and electric transition strengths
B(M1)/B(E2).The odd-even cases are less trivial, notably due to the broken pairs of nucleons (single-
particle), like in the studied Rb isotopes case (one proton more than Kr isotopes).

The collectivity of the nucleus generates most of the time, a collective deformation, which can fit for
example in rigid rotor nuclei model. Comparing two collective nuclei close to each other in the chart, the
differences in their B(Lλ, Jπ

i
→ Jπ

f
) strengths (electric and magnetic) coupled with their energies can help to

draw more precisely the underlying structures of those nuclei.

The study of shape transitions constitutes a key ingredient to understand the strong interaction, where the
nuclear structure change quickly by adding/subtracting a few nucleons. Generally, the nuclear shape changes
from spherical to deformed shape. Among the possible observables highlighting a clue of sphericity, the
energy level scheme can show a single particle like behavior, without any rotational band.

Collective and single particle like nuclear feature observed at the shape transition are discussed more in
details in the Chap. 2 and 6.
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6.2 Particle + Rotor Model

For "rotational" nuclei, the nuclear states result mainly from the valence space and rotation wave function.
This consideration engenders simple relations between electromagnetic properties inside rotational band and
between the bands.
The electromagnetic interaction contrary to the strong interaction is well known. The study of magnetic and
electric moments, the associated transitions probabilities can be used to probe the nuclear structure.
Considering the Particle + Rotor model, neglecting the Coriolis interaction, such relations can be established
in a simple picture.

The reduced transition probabilities are :

B(Mλ; IInitialK → IFinal) =
∑

µ,MFinal

|< IFinalMFinalK | Mλµ | IinitialMInitialK >|2 (3.61)

The dipole and quadrupole electromagnetic properties are discussed in the following, since they constitute
the most probable de-excitation channels in safe Coulomb excitation.

6.2.1 Magnetic Dipole Properties

The magnetic dipole moment of deformed nucleus can be separated in two terms: the first one is
associated to the collective rotation and the second one describes the contribution from the valence nucleons:

~µ = gR
~R

︸︷︷︸

Collective rotation

+

A∑

i

(

g
(l)
i
~li + g

(s)
i
~si

)

︸                ︷︷                ︸

Valence nucleon

(3.62)

with:






~si the intrinsic spin and g
(s)
i

the gyromagnetic factor associated to the intrinsic spin of the valence nucleon i
~li the orbital spin and g

(l)
i

the orbital gyromagnetic factor of the valence nucleon i

~ji = ~li + ~si total moment of the nucleon i

The gyromagnetic factors of free nucleons are found experimentally as: g
p, f ree
s =5.58, g

n, f ree
s =-3.82,

g
p, f ree

l
=1, and g

n, f ree

l
=0. The nuclear magnetic moment is defined as µ =< µz >. After some developments,

the magnetic moment µ is found as, see Ref. [89]:

µ = gRI + (gK − gR)
K2

I + 1

{

1 + (2I + 1)(−1)I+ 1
2 b0δK, 1

2

}

(3.63)

b0 is the magnetic decoupling parameter defined as:
√

3
4π

q~

2Mpc
(gΩ − gR) b0 ≡ −

√
2 < Ω = 1

2 |M(M1, µ = 1)|Ω = − 1
2 > and linked to the intrinsic decoupling

parameter a as (gΩ − gR) b0 = (gl + gR)a − 1
2 (−1)l(gs + gK − 2gl).

For a rotor, the moment of inertia can be expected proportional to the protons number, see Ref. [25], thus:

gR =
Z

A
(3.64)

However, it has been proven that the gR values go away from the Z
A

ratio, see Ref. [126, 127], for deformed
and superdeformed nuclei. In the region (A ∼ 100,N ∼ 60), the rotation g-factor can be approximated by:
gR ≈ 0.7 Z

A
.

The magnetic dipole reduced transition probability within a rotational band is defined as:

B(M1; IInitial → IFinal) =
3

16π
e2

m2
K2 (gK − gR)2 < IInitialK10 | IFinalK >2

(

1 + b0δK, 1
2
(−1)I>+ 1

2

)2
(3.65)

6.2.2 Electric Quadrupole Properties

Lets consider a deformed nucleus as a charged liquid drop, its surface can be described by an ellipsoid.
For the followings, only the axially symmetric nuclei along the z axis are discussed. The quadrupole moment
associated is, see Ref. [25]:

Q0 =
2
5

ZR2

((
c

a

)2
− 1

) (
c

a

)− 2
3

(3.66)

68 6. WHICH INFORMATIONS CAN BE EXTRACTED FROM COULOMB EXCITATION?



CHAPTER 3. COULOMB EXCITATION - PROBE OF NUCLEAR STRUCTURE

Q0 is the intrinsic electric quadrupole moment expressed in the frame of reference of the nucleus. a and
c are the semi-axis of the ellipsoid. The electric quadrupole moment expressed in the laboratory frame is
called spectroscopic quadrupole moment, corresponding to the average value of the quadrupole operator.
The intrinsic quadrupole moment can be expressed as a function of the deformation parameter β:

Q0 =
3
√

5π
ZR2β



1 +
1
8

√

5
π
β



 (3.67)

Quadrupole moment and matrix elements The Coulomb excitation allows to determine the matrix
elements, see Ref. [26]. To access to the shape of the nucleus, the quadrupole moment Q0 and the deformation
parameter β can be defined from those matrix elements. Moreover, if the quadrupole moment is well known
(as for the Rb isotopes), the matrix elements will be defined more precisely.

The quadrupole moment accessible from the experiment is the spectroscopic quadrupole moment. Q is
defined as the average of the quadrupole moment operator Q =< IKM|Q̂|IKM >.
For point charges:

qQ =
∑

i

(

3z2
i − r2

i

)

(3.68)

For a continuous charge distribution:

qQ̂ =
∫

ρe(~r)
(

3ẑ2 − r̂2
)

dτ , (z = r cos θ in spherical coordinates)

=
∫

ρe(~r)r̂2
(

3 cos2 θ − 1
)

dτ
(3.69)

According to the definition of the electric multipole moment, see 2.1.1:

M(E2, µ) =
∫

ρe(~r)~r2Y2µ(θ, φ)dτ ,with Y20(θ, φ) =

√

5
16π

(

3 cos2 θ − 1
)

(3.70)

then,

M(E2, 0) =
∫

ρe(~r)~r2

√

5
16π

(

3 cos2 θ − 1
)

dτ (3.71)

Finally, a direct relation between the spectroscopic quadrupole moment and the matrix element is found
to be:

qQ̂ =

√

16π
5
M(E2, 0) (3.72)

and z is parallel to the nuclear spin I,

qQ =

√

16π
5

< IKM = I|M(E2, 0)|IKM = I > (3.73)

Applying the Wigner-Eckart theorem, one obtains:

qQ =

√

16π
5

(2I + 1)−
1
2 < II20|II >< I||M(E2)||I > (3.74)

In order to obtain the intrinsic quadrupole moment which is used to describe the nuclear shape, a frame
of reference change is applied from the laboratory frame to the nucleus. The intrinsic quadrupole moment is
linked to the matrix element as:

qQ0 =

√

16π
5

1
√

2Ii + 1

< I f inal||M(E2)||Iinitial >

< IinitialK20|I f inal0 >
(3.75)

Quadrupole moment and transition strength The transitional quadrupole moments (Iinitial ,I f inal) are
function of the transitional matrix elements, denoted QTransition

0 . It describes the transition probability and the
collectivity of the nucleus. QTransition

0 is directly a function of the transition strength:

B(E2, Iinitial → I f inal) =
5

16π

(

qQTransition
0

)2
< IinitialK20|I f inal0 >

2 (3.76)
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A direct relation between QMeasured and Q0 can be obtained according to the Eq. 3.75 and 3.73, see
Ref. [128]. For axially symmetric nuclei in rotation, the simple relation between the measured and intrinsic
quadrupole moment is found as :

QMeasured =
3K2 − I(I + 1)
(I + 1)(2I + 3)

Q0 (3.77)

Thus, we need to keep in mind that the intrinsic quadrupole moment is derived from the measured quadrupole
moment.

6.3 Experimental extraction of electromagnetic properties and nuclear structure

The extraction of electromagnetic properties can be made from the B(M1), B(E2) and their ratio
B(M1)/B(E2). Accessing to the relative transition intensities, the electromagnetic branching ratio Rγ can be
determined. Let us consider a nuclear state de-exciting by the emission of γ-ray of multipolarity E2 or M1,
the branching ratio is found as:

Rγ =
Tγ(M1, I → I − 1)

Tγ(E2, I → I − 2)
(3.78)

The transition probabilities T(Lλ;Iinitial →I f inal) can be evaluated with the transition strengths as, see
Ref. [25]:

T (Lλ; Iinitial → I f inal) =
8π(λ + 1)

λ[(2λ + 1)!!]2

1
~

(
Eγ

~c

)2λ+1

B(Lλ; Iinitial → I f inal) (3.79)

For M1 and E2 transitions, one obtains the electric quadrupole and the magnetic dipole transition probabilities
as:

{

T (M1) = 1.779 × 1013E3
γB(M1) ,

T (E2) = 1.223 × 109E5
γB(E2)

(3.80)

with: Eγ in [MeV], B(E2) in [e2 f m4], B(M1) in [µ2
N

] and T in [s−1].

In the strong coupling of the Particle + Rotor model, the electric quadrupole and magnetic dipole
transition strengths ratio can be expressed as:

B(E2; I → I − 2)
B(M1; I → I − 1)

= 6.87 × 10−1
E5
γ(E2)

E3
γ(M1)

Rγ(I)





µ2
N

e2b2



 (3.81)

and the branching ratio is found as:

Rγ(I) = 3.49 × 104 (gK − gR)2K2

Q2
0

E3
γ(M1)

E5
γ(E2)

|< IK10|(I − 1)K >|2
|< IK20|(I − 2)K >|2 (3.82)

The magnetic moment associated to the orbital of the single nucleon can be determined experimentally from
the branching ratio via the gK gyromagnetic factor.

The experimental branching ratio is determined taking into account the relative intensities corrected in
efficiency and by the conversion electron factor:

Rγ(I) =
Nγ(M1)

Nγ(E2)
ǫ(E2)
ǫ(M1)

αConv. (3.83)

For the extraction, one assumes that the branching ratio are equivalent to the transitions yields ratio.

7 Conclusion

The Coulomb excitation is a purely electromagnetic interaction, the only nuclear properties involved
are described by the matrix elements of the electromagnetic multipolar operator. The nucleus undergoes a
transition from an initial state (|initial >) to a final state (| f inal >) via a pure electromagnetic interaction
if the "safe energy" criterion is respected. The final state can decay by emitting a γ-ray or a conversion
electron.
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The γ-rays intensities observed are directly in relation with the matrix elements < f inal||M(E2)||initial >

which describe the excitation and decay processes characteristics of the nuclear structure. As mentioned
above the matrix elements can directly describe the deformation of the nucleus via a change from the
laboratory frame to the nucleus frame.

In this type of experiment, the nuclear structure information is extracted in a model-independent way.
The B(E2) values measured via the Coulomb excitation are a benchmark to evaluate the collectivity notably
close to magic numbers or shape transitions.
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Chapter 4

Experimental Setup

1 Introduction

For Coulomb excitation experiment, the nuclei of interest must be produced in a way allowing to form a
Radioactive Ion Beam corresponding to the requested specifications of intensity, purity and energy. This RIB
then will be sent on a secondary target where they are submitted to Coulomb excitation.

Using Radioactive Ions Beams implies to face several technical obstacles coming from their unstable
nature and from their low cross-sections of production. Since they are produced with low intensities in a
very radioactive environment, they have to be extracted and transported away from their production place in
order to improve the signal/noise ratio. The highest efficiency from the production passing through beam
preparation and transport phases has to be reached.
The short half-lives of the nuclei of interest also imposes to reduce at maximum the process time from the
production to the experimental setup built to study their properties.
Furthermore, the produced beam generally contains unwanted contaminants which may be considerably
more abundant than the nuclei of interest. These contaminants must be eliminated in order to make the
identification of the studied nuclei and to not introduce dead times or biases in the data acquisition system or
even damages in the detectors themselves.
Thus, the finest selection is required to be able to perform an efficient and safe experimental study with
the purest beam. For example, isobaric separation or ionization processes can be operated to reduce the
proportion of contaminants. Due to their radioactive nature, RIB cannot be stopped at any place. The
accumulation of radioactive nuclei would lead to dangerous of unreasonable high activities, emphasizing on
the importance of a selection.

Two main techniques have been developed to achieve the study of radioactive nuclei far from the beta
stability valley: the ISOL and In-Flight techniques, which are described in the following section. Then the
production modes will also be presented.

1.1 The production of radioactive beams: ISOL versus In-Flight Fragmentation
technique

In order to realized a Coulomb excitation experiment at low energy according to the criteria defined in
the Chap. 3 on page 55, the produced radioactive beam needs to respect several conditions:

– its energy has to be lower than the Coulomb barrier in order to neglect the strong interaction compared
to the electromagnetic excitation, see Chap. 3 on page 55 and Chap. 5 Sec. 8.

– its purity should be maximized to ascertain the identification of projectile and target nuclei.
– its optics needs to be sufficiently good to avoid complex kinematics.
– its resulting intensity has to be high enough to perform the experiment in a reasonable time.

Nowadays, several techniques are available to produce radioactive beams and among them the In-flight
Fragmentation and the ISOL techniques presenting different characteristics.

1.1.1 In-Flight Fragmentation (from few tens MeV/u to GeV/u)

The In-Flight Fragmentation is a part of In-Flight techniques family, and can be used to produce neutron
rich isotopes.
The radioactive nuclei are produced by a fragmentation reaction of projectile nuclei(primary beam) impinging
on a thin target. Through this reaction radioactive nuclei are created and could be selected and treated by
several devices (such as spectrometers, achromatic degraders, slits ...) The wide choice of the primary beam
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colliding the thin target allows to produce a large panel of nuclei whose mass is principally lower than the one
of the projectile. The beam passing through the target is decelerated in the target. The energy lost in the target
is sufficiently weak to produce a secondary beam at high energy (usually at least few tens of MeV/u) and
keep reasonable optical beam properties. After the target, the nuclei produced are mass-separated In-Flight.
On one hand, one of the main advantage of this technique is the possibility to study nuclei with very short
lifetimes, thanks to a relatively short beam transport around the microsecond. On the other hand , the use of
a primary target and degraders affects the optical quality of the beam in terms of angular dispersion and of an
important energy loss in the target. The intensity of the beam increases with thicker targets but the optical
beam properties are degraded. It is a compromise to ensure a relatively good optical beam quality and a high
intensity.
The beam intensity is thus limited by the nature of the technique itself. However, since this technique does
not include any chemical process, it allows the production of all chemical elements. The counterpart is that
isobaric contaminants may be present.

1.1.2 ISOL Technique

The ISOL technique (Isotopic Separation On-Line) [129] as regards to the In-Flight Fragmentation tech-
nique presents other advantages and inconveniences. The method consists in bombarding by a primary beam
(for example protons, deuterons, or heavy ions) a target sufficiently thick to stop the incoming projectiles.
The atoms produced in the target are stopped in a catcher (sometimes the target itself acts as a catcher, as at
ISOLDE). The atoms then diffuse/effuse outside the catcher and pass through a transfer line. In order to
minimize the transfer time, the target is strongly heated at >2000°C, as well as the transfer line. The atoms
then enter the ion source which ionizes and accelerates them.
It is this type of technique that we have used at ISOLDE for the present study.

The final intensity depends mainly on the chemical nature of the studied nuclei. Indeed the chemical
processes govern the diffusion and effusion efficiency. The main advantage of this technique comes from the
decoupling in a primary and secondary beam. The decoupling infers an optimal optical beam quality and
leads to an important chemical selection. On the other hand the diffusion/effusion/ionization process restricts
the usage of such a method for nuclei whose lifetimes are higher than several milliseconds.

1.2 Nuclear Reaction Energy Ranges for Production

1.2.1 Low Energy Production

At low energies, the production of radioactive ions occurs above the Coulomb barrier, see Fig. 4.1.
→ For an important impact parameter transfer reactions (see Fig. 4.1(a)) occur, consisting in the transfer of
one or several nucleons between the projectile and the target nuclei. In this kind of reaction the final products
are not so far from their parent nuclei. Such production has been performed e.g. at Louvain-la-Neuve [130].
Note that those reactions can also be performed on the secondary target (like at ISOLDE with the transfer
reaction MINIBALL chamber).

→ For a small impact parameter, the projectile collides the target close to a head-on configuration (central
collision), so that excited compound nuclei can be created. The de-excitation of the compound nucleus can
occur via fission and fusion-evaporation, and does not depend on the production path.

Fusion-Evaporation (see Fig. 4.1(b)) During the reaction, the projectile and target nuclei fuse to make
one excited nucleus, qualified as "compound". The de-excitation pass through the emission of light particles
and γ rays. The way that the compound nucleus is created does not influence the way it decays, neither the
branching ratio of each decay branch. Neutron deficient nuclei can be produced with light ion beam at low
energy. Heavier beams used at higher energies can produce neutron deficient nuclei with lower cross section
but further from beta stability.

Fusion-Fission (see Fig. 4.1(c)) For heavy nuclei, the compound nucleus can fission in fragments. The
mass sharing in the fission products may be either symmetric or asymmetric.
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(a) Multi-nucleon transfer (b) Fusion evaporation

(c) Fusion fission

Figure 4.1: Reactions present at low energy production. (a) Transfer Reaction, characterized with an
important impact parameter and products close to the parent nuclei; (b) Fusion-Evaporation, characterized by
a small impact parameter, the formation of a compound nucleus and the emission of light nuclei or nucleons;
and, (c) Fission, characterized by a small impact parameter, the formation of a compound nucleus and the
fission of the compound nucleus in other nuclei (plus sometimes evaporation products);

1.2.2 High Energy Production

Three main processes involved in the reaction of high energetic proton beam are: the fission, the spallation
and the fragmentation. The three different reaction are describe in details by J. Benlliure in his lectures [131]
and P. Armbruster et al. [132].
The impact of light projectiles on heavy target nuclei at high kinetic energies (∼MeV/u6Epro j 6∼ GeV/u
) favors the emission of light fragments with high neutron/proton ratios similar to those of the target, see
Fig. 4.2.

Spallation (see Fig. 4.2(a)) During spallation, the target nucleus emits protons and neutrons 1. The
emission of neutron is the first process involved. Due to the absence of Coulomb barrier, eutrons are easier
to emit so that the process favors the production of n-deficient nuclei. However, the nuclei far from stability
have not high cross section via this reaction. The main limitation of this technique is the mass of the stable
target nucleus used to produce radioactive species.

1.2.3 Medium Energy Production

Between high and low energies, ∼ 10 MeV/u <Epro j < ∼ 100 MeV/u, some "intermediate" phenomenons
are taking place, see Fig. 4.2. For high impact parameter, quick fragmentation produces two fragments close
to the original projectile-target nuclei. For small impact parameter, the multi-fragmentation becomes the
principal channel of production, the couple projectile-target fragments in several light particles.

1.2.4 Fission

The production of neutron rich nuclei is favored in fission reaction of UCx, UCx-Th and other fissile
targets. The fission process can be induced by thermal/hot neutrons, low/high energetic proton beam, heavy
ions beam, and via photo-fission.

The reaction process chosen to produce a given ion depends on several parameters: first of all, the
position of the isotope onto the nuclear chart (proton/neutron rich) close/far from stability; secondly, its
chemical nature allowing or not the ISOL technique; thirdly, the half life of the nucleus.

1. A nucleus, created in an excited state above the "p" or "n" emission threshold can emit p/n before reaching an excitation level,
where only γ-rays can be emitted.
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(a) Spallation (b) "Quick"-fragmentation

(c) Multi-fragmentation

Figure 4.2: Reactions present at high and medium energy production. (a) Spallation, characterized with a
small impact parameter and a product close to the parent nuclei; (b) Fragmentation or "quick fragmentation",
characterized by an important impact parameter and the emission of light nuclei or nucleons and products
close to the parent nuclei; (c) Multi-fragmentation, characterized by a small impact parameter and the
separation of the compound nucleus in many nuclei (sometimes evaporation products i.e. "light");

Figure 4.3: Rubidium cross section for several reactions. Modified from Ref. [129], see Ref. [133].

In the present work, the rubidium isotopes are the subject of our interest. A summary of the rubidium
production cross section obtained with different reactions using 238,235U target is given in the Fig. 4.3. The
production cross section is a part of a long process to choose the right place to study a given nucleus. Indeed,
even if the production cross section is important, the half life for example can restrict the amount of the
nuclei of interest in the ISOL case.
We have chosen to produce the Rb isotopes in the fission reaction 238U+p(1GeV) and to create a RIB by the
ISOL technique at ISOLDE (CERN). We now focus on this technique and the different involved processes.
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1.3 Diffusion and Effusion

Diffusion and effusion are the two main processes involved in the extraction of the radioactive Rb atoms
from the target. Those processes can be influenced by different ways. A brief introduction of the diffusion and
effusion is given to demonstrate the importance of the different parameters involved in an ISOL production.

1.3.1 Diffusion

The diffusion is defined by the random motion of atoms through defects in a solid crystal, they originate
from the thermal agitation.

Principles and laws Considering the system at equilibrium (steady state, steady regime) the first Fick’s
law, see Ref. [134], can be employed:

~J = −D.
−−−→
grad( ~C) (4.1)

where: D = D0e(− Ea
k.T ), ~J is the atomic stream, C is the concentration, D is the diffusion coefficient. D0 is the

diffusion constant depending on the crystalline mesh parameter and the vibration frequency of the diffusing
atom. Ea corresponds to the energy necessary to jump from a position (site) to another one. D0 and Ea are
called Arrhenius’ coefficients.

Between two equilibriums the system is dynamic (transitional regime). The second Fick’s law governs
the concentration variations:

∂C

∂t
= −div( ~J) = div(D.

−−−→
grad( ~C)) (4.2)

Taking into account the loss of radioactive ions by radioactive decay occurring during the diffusion
process, i.e. −λC(~r, t), the equation can be re-expressed as:

∂C

∂t
= −div( ~J) = div(D.

−−−→
grad( ~C)) + λC(~r, t) = F (4.3)

To determine the diffusion efficiency for an atom to get out of the target, L. Maunoury, see Ref. [135, 136],
solved this equation and with the second Fick’s law, the diffusion time is found with the form :

τdi f f usion = −D
∂C(ρ, t)
∂~r

4πρ2 =
6Q

π2

∞∑

k=1

µ0

µk + λ

(

1 − e−(µk+λ)t
)

(4.4)

where: Q = F
4
3
πρ3 is the total number of radioactive ions produced by a grain.

More explanations and further investigations are given in Ref. [136, 137].

Temperature If the solid is constituted by more than one polycrystalline structure, thus several phe-
nomenons will happen at the same temperature.

At low temperature(T ≪ Tm), the diffusion is superficial, the atom goes to the neighbor hole if it has
sufficient energy, the motion should continue step-by-step.

At medium temperature (0.3Tm . T . 0.5Tm), close to the most perturbed region of the solid, i.e. seals,
the atoms exchange preferentially their position with the neighbors defects in the seals. The diffusion is thus
qualified as inter-grains type.

At high temperature (T & 0.7Tm), the diffusion increases proportionally to the number of defects,
following an exponential law. This diffusion takes place inside all the volume and superimposes to the others.
The diffusion is thus volumic.

Effusion The effusion is defined as the process permitting to move an atomic nucleus inside the crystalline
structure in straight line until the surface of the solid where it gets stuck a certain time, and finally reaches
the ionization source.

The term of effusion is generally assigned to the phenomenon describing the path of a gas through a
small hole. The "delay" function of effusion can be expressed as, see Ref. [138]:

pv(t) = ve−vt (4.5)

1. INTRODUCTION 77



CHAPTER 4. EXPERIMENTAL SETUP

v is related to the mean time of effusion τe f f usion by:

τe f f usion =
1
v
= χ (τa + τv) (4.6)

where:






χ: mean number of collisions with the surfaces met until the ionization source.
τa: average sticking time on the surface correlated to the adsorption enthalpy Ha, see Ref. [139].
τv: average time between two "sticks", see Ref. [140, 141].

More explanations and further investigations are given in Ref. [139, 140, 141].

1.4 Ion Sources

The ions effusing from the catcher pass through a transfer line. Inside the transfer line or a specific ion
source, the atoms can be ionized by several techniques depending on the chemical properties of the studied
species.

1.4.1 Electron Impact Ionization

This technique is used for chemical elements whose an ionization potential Ipot. higher than ∼7 eV. The
ions are bombarded by mono-energetic electrons knocking out its outer electrons. The cross section of the
process is mainly governed by the electron current, the ions density, the charge states and the ionization
potential of the given ion. The electron impact ionization is used in ECRIS (Electron Cyclotron Resonance
Ion Source), as for example at SPIRAL, Louvain-la-Neuve, TRIUMF, high temperature gaseous discharge
cavities and EBIS ion sources. An EBIS ion source has been used to post accelerate our Rb isotopes,
see Subsubsec. 2.6.3 on page 84. This method may be applied for a very large number of elements. In
counterpart, it is not chemically selective.

1.4.2 Laser Ionization

The atoms present in the transfer line undergo stepwise ionization. The atoms are ionized only if the
laser frequency corresponds to atomic transitions. The process is usually performed through two or three
ionization steps. The different resonances lead to the continuum, to auto-ionization states or highly excited
states. By this way the efficiency and the selectivity of the target-ion source couple can be improved. This
technique allows to deliver isobaric pure beam and even isomeric pure beam if the laser bandwidth is
sufficiently narrow. As example for more investigation one can cite the laser ionization device present at
ISOLDE, RILIS [142, 143], and the following Ref. [144, 145].

1.4.3 Surface Ionization (or Thermal Ionization)

The surface ionization technique consists in a thermal ionization of atoms due to the high temperature of
the transfer line (tube). This technique is used for chemical elements with low ionization potential (Ipot. <7
eV). The reaction products effuse inside the heated transfer line and interact with its surface. Inside the
transfer line, the thermal agitation increases the interaction between the ions and the heated surface, leading
to a loose or gain of electron(s).
The thermal ionization process which takes place is described by the Saha-Langmuir equations, see
Ref. [133]:






n+
i

n0
=

g+
i

g0
exp

(
e(φ − Ipot.)

kT

)

: positive surface ionization, Ipot. < 7 eV ,

n−
i

n0
=

g−
i

g0
exp

(

e(EA − φ)
kT

)

: negative surface ionization, Ipot. < 7 eV, EA >1.5 eV .
(4.7)

where:
n+

i

n0
,

n−
i

n0
are the ratios of ion density to neutral density;

g+
i

g0
,

g−
i

g0
are the ratios of statistical weights of

ionic and atomic ground state; e is the electron charge; φ is the surface work function of the transfer line.
In our case, the Rb ions were produced by surface ionization and accelerated to 60 kV before being charge

bred by the EBIS source and post-accelerated by the REX-LINAC. See Fig. 4.6, for more informations on
thermo-ionization, see Ref. [146].
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1.4.4 Gas Cell Ionization

In this technique, the transfer line can consist in a gas cell filled by noble gas (generally He, Ar) acting as
a catcher. The reaction products exiting the target (high charge state) are thermalized in the gas cell. The
charge-exchange process lowers their charge state. The high ionization potential of the noble gas lead to an
ion charge state usually 1+, 2+. The residues are extracted from the gas cell and guided to a mass separator
to be mass analyzed.

1.4.5 Plasma Ion Sources

Usually the plasma ion sources are used to ionize elements that cannot be ionized with the other processes.
There are two major types: the hot plasma ion sources and cooled plasma ion sources. In the first case, the
plasma is produced from an ionized gas mixture with electrons accelerated between the transfer line and the
extraction electrode. In the latter case, the transfer line is cooled down. In such way, the production of noble
case elements is favored. The volatile element are transported in an easier way and the isobaric contaminants
are reduced.
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2 The Radioactive Ion Beam (RIB) facility: ISOLDE

2.1 ISOL

Elaborated for the first time in 1951 by O. Kofoed-Hansen and K.O. Nielsen [147], the ISOL technique
has been under intensive developments and is still a powerful tool used nowadays. The investigation of the
ISOL technique as a relevant and efficient way to produce radioactive nuclei far from stability has been
presented in 1966 at the Swedish conference in Lysekill. In 1989, the first post accelerated beam has been
delivered at Louvain-la-Neuve, see Ref. [148, 149, 150]. Since this period, several new radioactive ion beam
post acceleration facilities have been constructed. Moreover many similar projects are under commissioning,
in progress or being upgraded such as SPIRAL2 (GANIL), see Ref. [151, 152], EURISOL (EURopean
Isotope Separation On-Line radioactive ion beam facility), see Ref. [153, 154], ISAC2 (TRIUMF), see
Ref. [155].
Among the ISOL facilities, ISOLDE produces stable and radioactive 60 kV beams at CERN since around
50 years, see Ref. [156]. In 1994, the REX-ISOLDE (Radioactive ion beam EXperiments at ISOLDE)
post-acceleration project of low energy beams impulsed the exploration of the nuclear chart far from stability
opening new opportunities.
A new upgrade of the CERN facilities, has been approved by the INTC Committee, in order to increase the
beam intensity and velocity, called HIE-ISOLDE (High Intensity and Energy ISOLDE), see Ref. [157, 158].
The addition of superconducting cavities will help to reach the 10 MeV/u instead of the current 3 MeV/u.

In the following, the ISOLDE facility will be described in more details, including a description of the
different phases of transport and preparation of the beam, like the post acceleration. Finally, the experimental
setup will be detailed in order to understand the different analysis steps.

2.2 ISOLDE at CERN

Figure 4.4: CERN Accelerator Complex.

The ISOLDE facility has been in operation since the first experiments in 1967 using the initial synchro-
cyclotron, see Ref. [159]. Now, ISOLDE benefits of the CERN accelerators complex situated on the border
between France and Switzerland. A sketch of the CERN accelerators complex is given on Fig. 4.4. The
proton beam used to produce radioactive nuclei is provided by the PS-Booster. It is a pulsed beam with a 1.2
s time repetition. The impact of protons on a primary target produces the radioactive isotopes of interest.
They diffuse and effuse from the primary target and an ionization source allows to accelerate and transport
the beam until a mass separator.
ISOLDE has two separators at disposal the HRS (High Resolution Separator) and the GPS (General Purpose
Separator). Sketches of the ISOLDE hall, target areas and separators are shown on Fig. 4.5, 4.6.
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Figure 4.5: ISOLDE hall

Figure 4.6: Target area and mass separators.

2.3 Production of radioactive beams

The PS-Booster (Proton Synchrotron Booster) is composed of four coupled synchrotrons which deliver to
ISOLDE a proton beam of 1.4 GeV up to 4 µA. The proton beam impinging a 238UCx uranium carbide target
produces around 1013 fission products per seconds. The target is relatively thick ∼ 50 mg/cm2, and important
mechanical stress is applied to the target assembly. The studied isotopes (93,95,97,99Rb) are on the neutron rich
side of the nuclear chart. The Rb isotopic production yields are shown on Fig. 4.7. For Rb which has a rather
small ionization potential ∼ 4.2 eV, see Fig. 4.8, surface ionization in target and transfer lines have been used.
They were heated at 2000 − 2500 K in order to accelerate the diffusion-effusion processes and to provide
a high ionization efficiency. However, as shown in Fig. 4.8, the probability to extract contaminants such
as Sr and Y might be of concern, the others (Ga, Ge, ...) have too high ionization potential. The chemical
properties of the Rb element are summarized in Appendix B p. 211.

Following the proton pulse, the radioactive ions are spread in time according to their release characteristics.
If the release time of the contaminants reaching the experimental setup are different enough, it can be useful
to identify their nature.

The identification by release time requires more statistics than the one we obtained.
The main fission products reaching the experimental setup were in majority the rubidium and the
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Figure 4.7: Rb release yields obtained at ISOLDE with different target material according to their mass. The
previous yields obtained for our cases of interest are represented by purple squares for masses: A=93, 95, 97,
99. PSB: 1.0-1.4 GeV protons, SC: 0.6 GeV protons. Picture from Ref. [160].

Chemical Elem. Ionization potential (Ipot.)
Gallium (Ga) 5.9993 eV

Germanium (Ge) 7.900 eV
Arsenic (As) 9.5 eV

Selenium (Se) 9.7524 eV
Bromine (Br) 11.8138 eV
Krypton (Kr) 13.9996 eV

Rubidium (Rb) 4.1771 eV
Strontium (Sr) 5.6948 eV

Yttrium (Y) 6.217 eV

Figure 4.8: (left) Surface ionization target. (right) Ionization potential of some isotopes produced during the
fission process. Picture and values from Ref. [160].

strontium, for example, in the 93Rb one obtained 95% of Rb and 5% of Sr, see Subsec 11.2 on page 125.

2.4 Mass Separation

After the extraction from the ion source, isotopes of several elements are present in the beam. To select
the radioactive ions of interest the RIB passes through a mass separator. Inside this magnetic analyzer the

mixed beam is separated into isobaric or mono-isotopic beams.The resolving powers
M

∆M
of the GPS and

HRS are respectively 2400 and 5000. The GPS provides isobaric beams, while the HRS may eventually
provide mono-isotopic beams. "On-line" yield measurements can be performed after the separator (tape
station) in order to examine the possibility to make an experiment.

2.5 RFQ Cooler: ISCOOL

Cooling a beam should be understood as the reduction of its axial and radial emittance as well as its
energy dispersion. The RFQ Cooler increases the optical properties of the beam, which will be submitted
later to another major cooling process inside the Penning trap of REX-ISOLDE, see Subsubsec.2.6.2.

2.6 REX-ISOLDE

2.6.1 Introduction

The project has been proposed in 1994, see Ref. [161], as an experimental setup to bunch, charge breed
and post accelerate the radioactive ion beams. The successful results of REX-ISOLDE led to the continuation
of the project as a permanent setup at ISOLDE. In order to apply the charge breeding a bunching and cooling
of the beam is necessary; it is performed by a Penning trap. The bunched structure helps also to increase
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the signal-to-noise ratio considering the low intensities of radioactive beams, and is also necessary for the
acceleration process originating from RF cavities. The Fig. 4.9 shows the REX-ISOLDE facility.

Figure 4.9: REX-ISOLDE. Picture from Ref. [162].

2.6.2 REX-TRAP (Penning Trap)

The beam coming from the ion source at 60 keV is injected inside a Penning trap, see Fig. 4.10. It is
captured inside the trap by electromagnetic fields. The Penning Trap is filled with a buffer gas usually a
noble gas like Ar 2; the pressure is around a few 10−3 mbar. The collisions of ions with the gas cool down the
beam and decelerate it from 60 keV to a few eV conferring a better transversal emittance. The Brillouin
limit fixes the maximum intensity inside a magnetic field like for the Penning Trap to the ∼ 108/cm3, see
Ref. [163] (Trap capacity & 106). The ions are thus bunched. They are extracted from the trap by lowering
the potential threshold with a typical extraction time of 10-50 µs, and re-accelerated up to 60 kV. Finally the
beam is transported to the EBIS ion source. transversal emittance is significantly improved.

2.6.3 REX-EBIS (Charge Breeder)

The next phase consists in increasing the charge state of the ions in order to be able to post-accelerate
them through the LINAC (LINear ACcelerator). This is performed using the Electron Beam Ion Source
(EBIS) by electron impact ionization process (A/q<4.5), see Subsubsec. 1.4.1.
The singly-charged ions are injected inside the trap. They are confined radially in the potential by a strong
solenoid magnetic field (B=2 T), and, longitudinally by electrical potential barriers. During the confinement
(tcon f inement < 20 ms) the ions are impacted with fast moving mono-energetic electrons from an electron gun
(Eelectron =3-6 keV) with a beam current of 100-500 mA. The electrons are knocked out of the ions. The
charge breeding process requires a high vacuum quality, for that purpose, several pumping stations are placed
along the beam transport to reach . 10−11 mbar. At a certain time, a given equilibrium charge state (A/q∼ 4)
is obtained and the bunch is extracted to the REX-LINAC by applying a voltage, see Fig. 4.11.
The phase space overlap between the ions and electrons determines mainly the breeding potential ("cross
section"). The limitation of the technique should come from the limit of the overlap.
REX-TRAP and EBIS are synchronized in order to extract and inject properly the beam, respecting the
bunching. Thus the charge breeding time in the EBIS is identical to the trapping time in REX-TRAP. The
charge breeding time was modified according to the different isotopes of interest. From the extraction of the
Penning Trap, a small part of the buffer gas can be transmitted and acts as contaminant after EBIS.
The REX-EBIS platform is submitted to high voltage. At the injection, the platform is subject to 60 kV and

2. A lighter buffer is used for lighter nuclei that we want to study.
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Figure 4.10: The Penning Trap: REX-TRAP. Sketch of the trapping and bunching process realized by the
Penning Trap. During the trapping process a part the nuclei bunch from ISOL is rejected (red, blue). The
Cooling process is presented according to the buffer gas and RF-Field impact. Its selective capacity is
illustrated by looking at the contaminants which are ejected during the cooling process.

switched at ∼ 20 kV to convert the ISOLDE energy 60 keV to ∼ 20 keV·q in accordance with accelerator
specifications.
During the Coulomb excitation study of Rb the repetition rates for the different isotopes were ∼ 14.08 Hz
(93Rb), ∼ 12.20 Hz (95,97Rb) and ∼ 14.29 Hz (99Rb), see Tab. 4.1 on page 88.

2.6.4 A/q separator

The residual gas is also ionized and extracted from EBIS. Considering the low intensity of the radioactive
beam it is necessary to get ride of the extracted buffer gas to increase the signal-to-background ratio. The
amount of contaminants have to be smaller than the intensity of the radioactive beam.
Since the potential lowering of the REX-EBIS electron beam impacts the emittance in terms of energy
spreading, limiting the q/A resolution of a standard magnetic separator, a specific one -Nier spectrometer-
is used. An electrostatic 90° cylinder deflector and a 90° magnetic bender position in a "S" configuration,
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Figure 4.11: REX-ISOLDE Electron Beam Ion Source setup: REX-EBIS. For the injection, the optical
devices guide the ion beam to the EBIS and in the opposite sens for the extraction until the Nier-spectrometer.
Lenses and reflectors are switched for the injection and extraction. Modified picture from Ref. [162], see
Ref. [164].

with a resolution of ∆(q/A)/(q/A) = 1/150. The first deflector separates the ions according to their energies
irrespective of their masses to the focal plane. The bending magnet is used to select specific A/q mass-to-
charge ratio. To minimize the presence of residual gas 3, a scan over the different A/q is done before the
experiment.

2.7 REX-LINAC

ISOLDE is one of the eldest installations for nuclear physics studies at CERN and several other ex-
periments and buildings have been built around the ISOLDE hall. The space limitation motivated the
development of REX-ISOLDE associated to a compact Linear Accelerator. The LINAC is designed to keep
the possibility to use heavy nuclei with an A/q acceptance of 4.5 and a charge breeder increasing the charge
states higher than 1+. The REX-LINAC is constituted by 4 resonator types, presenting different advantages,
see Fig. 4.12.
The LINAC beam preparation and post-acceleration are synchronized with the REX-ISOLDE bunching
process.

Figure 4.12: REX-LINAC.

2.7.1 RFQ

The first experimental demonstration of a RF acceleration has been performed by R. Wideröe in 1928, see
Ref. [165]. Placing a drift tube between two tubes grounded and applying an alternating voltage of 25 kV to
the drift tube, he succeeded to accelerate ions up to 50 keV. Several developments followed the highlighting
of the possibility of an RF acceleration, among them the Radio-Frequency Quadrupole whom the invention
of the concept is attributed to Kapchinskii and Teplyakov in 1970.
The first device, a RFQ, is favored for low energetic beam acceleration and bunching. The extracted particles
arriving from REX-EBIS at 5 keV/u are accelerated through the RFQ up to 300 keV/u.

3. Generally, at this stage the contaminants from the primary target with close A/q are not removed.
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The 4-vane REX-RFQ are similar to electrodes on which an alternating voltage is applied to accelerate the
ions. The field of the RF quadrupole focuses transversally the beam. The spacial modulation performed by
the design of the four rods creates smooth bunching of the injected DC-beam and acceleration.

Before the IHS (Interdigital H Structure) two magnetic quadrupole triplet lenses and a rebuncher are
placed to reach the acceptances of the IHS.

2.7.2 IHS

The structure type H (or TE "Transverse Electric") is inspired from the RFQ and presents the advantage
of an important focusing electric field. Inside the resonator of type IHS, several cylindrical cavity drift tubes
of different lengths are mounted on opposite sides alternatively. The resulting magnetic field is directed
along the beam line axis. The induced currents on the wall 4 produce electric fields of alternating direction
between the drift tubes. The resulting strength pushes the ions along the beam line axis.

The final energy of the ions, at the exit of the IHS, can be adjusted between 1.1-1.2 MeV/u via the gap
voltage distribution 5.

2.7.3 7-gap resonator

Three 7-gap resonators accelerate the beam in the range of 0.8-2.2 MeV. The special design consisting of
split ring resonators is used for the synchronous particle velocities of: β = 5.4%, 6.0%, 6.6%. The resonance
frequency is 101.28 MHz.
The final energy is adjustable by tuning the RF power and phase of the three active resonator.

2.7.4 IH-9-gap resonator

In the earliest project, two identical 7-gap IH structures were envisaged. They had the advantage to
provide a wide range of energy (3.7-5.9 MeV/u) with two short cavities. But the 9-gap geometry allowed to
match the lowest injection energy of 2.2 MeV/u. The resonance frequency is 202.56 MHz.
The final energy range accessible is 0.8-3.0 MeV/u, see Ref. [166]. The cross sections obtained by Coulomb
excitation depends highly on the initial energy and the 9-gap resonator is essential in the LINAC leading to
the range of "safe" Coulomb excitation, see Chap. 3 on page 55.

2.7.5 Bender

Finally, after the post acceleration, the beam can be distributed among different beam lines. A bender
with a charge an mass selection (A/q) sends the beam to the experimental setup beam line of MINIBALL,
where the nuclear structure of the nuclei can be studied. The final energy obtained at the secondary target
(MINIBALL Spectrometer) is around 2.84 MeV/u.

2.8 The time structure

The time structure of the beam and the preparation phase of this one is essential for the data acquisition
(DAQ). A summary of the relevant signals related to REX-ISOLDE operations sent to the MINIBALL DAQ
system, called Marabou, see Ref. [167], are given in the Fig. 4.14.
The PS-Booster (PSB) is able to deliver proton pulses every 1.2 s. A series of such pulses constitutes the
so-called Supercycle time. The PSB pulses feed all CERN machines so that only a part of them are sent
to the ISOLDE target. The number of pulses in a Supercycle is variable, it was 38 pulses in the case of
95Rb. A specific structure of pulses allocated to ISOLDE takes place, a summary of the different cases which
happened during the experiment is given in the Tab. 4.2. An example of the PSB time structure is given in
the Fig. 4.14. The corresponding signals to the PSB and proton pulses are sent to the MINIBALL DAQ. The
proton pulse signal is called T1.
Due to the ionization of the air in the target area when the protons impinge the primary target, the HV (High
Voltage) is switched off to avoid the formation of sparks.

4. azimuthal
5. possible via capacitive plunger.
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Arriving from REX-EBIS, the bunched and purified beam is injected into the LINAC. An EBIS injection
signal is sent to MINIBALL. This timing signal serves to synchronize the LINAC with the REX-EBIS
extraction. For the DAQ, this signal used as a trigger, defines the "In Beam" measurement window.

AXcharge T 1
2

[168] Tperiod
Beam
Gate

TBreeding Eff. Extrac. Intensities(∗) Collec.

87Rb21+ 4.81 1010 y 9 60 ms 10 ms 55 ms ∼ 8%
87Rb23+ 4.81 1010 y 9 80 ms 2 ms 69 ms 8.7%
93Rb22+ 5.84 s 2 71 ms —— 68 ms ∼ 8% slow 6 106 pps (2 107 µCu) 12 h
95Rb23+ 377.7 ms 8 82 ms —— 79 ms ∼ 8% slow 1 106 pps (3 106 µCu) 11 h
97Rb23+ 169.1 ms 6 82 ms —— 69 ms ∼ 8% slow 5 105 pps (4 105 µCu) 40 h
99Rb23+ 54 ms 4 70 ms 2 ms 69 ms ∼ 6% normal ∼few 103 pps 19 h

Table 4.1: Preparation phase settings for REX-TRAP and REX-EBIS. The efficiency is related to REX-TRAP
and REX-EBIS. Tperiod: time difference between two injections (switching of the optical devices). A beam
gate can be used as a selector. Extrac.= extraction mode, Collec.= approximate collection time of data.∗

Intensities measured by Faraday Cups.

Isotope Proton pulses/cycle Main proton supercycle used
93Rb 14/38 4, 6, 8, 10, 12, 18, 23, 25, 27, 29, 32, 34, 36, 38
95Rb 12/38 4, 6, 8, 10, 13, 18, 21, 23, 26, 28, 33, 38

14/38 4, 6, 8, 10, 12, 18, 23, 25, 27, 29, 32, 34, 36, 38
97Rb 14/38 4, 6, 8, 10, 12, 16, 18, 20, 23, 28, 30, 33, 37, 38
99Rb 14/38 4, 6, 8, 10, 12, 18, 23, 25, 27, 29, 32, 34, 36, 38

Table 4.2: Proton Supercycles during the experiment. Note that there is not any consecutive proton injection.

The 87Rb isotope has been easily produced thanks to a mass marker added in the standard primary target.
The 87Rb stable beam has been used to make tests of the MINIBALL setup.In order to reduce the loss of
99Rb by decay, a shorter extraction has been opted compared to the less exotic cases. The different decay
patterns are illustrated on the Fig. 4.13. The different settings of REX-EBIS and REX-TRAP as well as the
final intensities obtained at the second target are summarized in the Tab. 4.1.

Figure 4.13: Decay patterns of the studied Rb isotopes. The studied cases are framed by a red square, the
β-decays are represented with blue arrows.
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PS Supercycle = 38× 1.2 s
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Figure 4.14: Time structure of the beam. The period of the PS Supercycle is not fixed and can be changed.
For example the PS Supercycle had a period of 46.8 s = 39 injections every 1.2 s. The injection sequence has
been changed during the experiment. For the 99Rb the sequence was principally 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39
(injection NORMHRS => ISOHRS in red).

2.9 MINIBALL Setup (γ-ray detection)

At the origins of the REX-ISOLDE project, a high resolution gamma spectrometer was included into
the guidelines to perform nuclear structure studies with low intensity radioactive beam from REX-ISOLDE.
After some discussions and preliminary works on the spectrometer project, the MINIBALL detector array
emerged as a consensus. Most of the tests were realized in Germany while the REX-ISOLDE project was
in progress. Finally in 2001, the MINIBALL detector array was operational to perform experiments with
radioactive beams.

The MINIBALL array consists of a high resolution HPGe (High Pure Germanium) detector array in a
close geometry to optimize the efficiency. In order to perform Doppler correction of in-flight emitted gamma
rays, the Germanium detectors are segmented and pulse shape analysis is available in order to increase the
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granularity. As mentioned in the previous section the MINIBALL setup is installed after the bending magnet
on line at 65°, see Fig. 4.15. The Germanium detector array is placed around the secondary target chamber
sketching a ball.

Figure 4.15: MINIBALL setup with the frames holding the Germanium detectors. The beamdump and
ionization chamber are placed at the end of the 65° beamline. The secondary target is on the beamline
surrounded by the Germanium MINIBALL array. Created from Ref. [169]

2.9.1 The Germanium detectors of the MINIBALL array

The MINIBALL detector array is constituted of 8 cluster detectors. A cluster consists of 3 individual
Germanium crystals encapsulated in an aluminum cap. The crystal is electrically separated in 6 segments
along the radial direction and around a central electrode called "core". The electrical segmentation improves
the intrinsic granularity to 144 individual detecting parts (8 clusters x 3 crystals x 6 segments). The clusters
are placed at around 11 cm from the target around the target chamber, see Fig. 4.16.

Seven different energy signals can be extracted separately from the crystal: the energies collected in
the segments and the total energy collected by the core. The standard high voltage to deplete the HP Ge
MINIBALL crystal is 2.5-4.5 kV. The Germanium detectors are permanently cooled down by liquid nitrogen
during the experimental time.

The intrinsic energy resolution of segments and cores are different, respectively ∼ 2.8 keV and ∼ 2.3 keV.

2.9.2 Electronic modules and DAQ

Specific electronics is used to shape and integrate the most efficiently and accurately the energy signal of
γ-ray transitions. Pre-amplifiers associated to "Digital Gamma Finder"(DGF) 6 modules perform respectively
the amplification of the raw energy signal coming from the Germanium detector, and the shaping and
integration of the energy signals.
Two DGF modules with 8 inputs are dedicated to one crystal. The pre-amplified core signal is sent to a
"master trigger channel" in order to readout the associated segment channels only if the gamma energy is
collected by the core electrode, constituting the hardware selection. The interaction point of the γ-ray is
defined as the hit point where the highest energy is detected. The core energy is assimilated as the total
energy. However, the angular information coming from the segment of the interaction point is used to
perform the Doppler correction of the in-flight gamma rays.
In order to collect properly the gamma ray energy an add-back algorithm has been implemented to sum
the neighboring core energies; indeed the cross talk effect can bias the gamma ray energy determination
while collecting the energy in different cores. This effect should be negligible in our case of low gamma
ray transition energy range (40 keV-600 keV) but start to be considered for higher gamma ray energies
(600 keV-1500 keV). An analysis has been performed with the add-back algorithm but it did not contribute
to a considerable increase of the photo-peak intensities. Moreover, another add-back implementation (on
Germanium detector) has been performed. However, the results obtained were quasi unchanged. Finally,
considering the low energy range covered by our gamma spectra, it has been decided to not apply any
add-back algorithm. Of course, the algorithms are not efficient for the low energy range considered, and they
could rather distort or deteriorate the energy resolution and energy determination, see Fig. 5.4 in the next
chapter.

6. X-ray Instruments Associates, California - www.xia.com
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Beam

target

CD

∼ 29.5 mm

To Beamdump
Implantation chamber

Figure 4.16: Miniball setup - schematic view. When the beam impacts the secondary target, the incident
nuclei react with the target. A part of the recoils and ejectiles are detected into the CD detectors. Another
part of the reaction products are sent to the ionization chamber or the beamdump. The target-cluster distance
is ∼ 11 cm.

The particle energy readout is decorrelated from the γ-ray DGF readout (except the particle-γ coincidence
time window). The correlation between particle and γ is reconstructed during the event building in software
considering the timestamp data.

DGF and time synchronization The Digital Gamma Finder are CAMAC modules with four complete
spectroscopic channels. The spectroscopic channels are independent from each other, they process each
event separately (Analog part, ADC, FIFO, FPGA). The logical part generates a fast multiplicity used to
decide if the event is interesting. An external NIM signal can validate the events, but the limitation of the
module imposes the delivery of those ones after a fast trigger of ∼ 10µs.

The timestamps synchronization In order to make the experiment several XIA DGF4-C modules have
been used. Each of them have a counter (timestamps) which is incremented every 25 ns for each ADC
sample. This counter is recorded in the data stream acting as a timestamps signal. The time differences
between γ signals is taken as their DGFs timestamps differences. Moreover the DGFs’ timestamps need to
be synchronized, since their internal 40 MHz clock can drift in time. A simple solution has been applied,
one clock has been used as reference distributed to all modules.
The synchronization is done at the "same" time than the busy signal. When DGF modules are not acquiring
they send a busy signal to a logical OR module which generates the logical OR operation and distributes the
result back to the SYNCH DGF inputs. When the last module starts, their clock are reset to zero.

2.10 Particle detector

During the Coulomb excitation recoil and beam particles are collected into a segmented double-sided
silicon strip detector (DSSSD), called CD detector. The particle detector consists in 4 different quadrants, see
Fig. 4.17, Tab. 4.3. The front side of the quadrant is constituted by 16 annular p+n junction strips of 1.9 mm
width (2 mm pitch). The back side possesses 24 sectorial n+n ohmic strips of 3.4° (3.5° pitch). This leads
to an important granularity of the CD assembly: 160 discrete detector elements. The total surface is 5000
mm2 with 93% active. The polar coverage in the laboratory frame is 16.2°-53.3° and the azimuthal coverage
represents 83% of the total azimuthal space. The particle detector was placed at ∼ 29.5 mm. The outer radius
is around 40.9 mm, and inner radius 9 mm. A summary of the characteristics is given in Tab. 4.3.

To avoid an early deterioration of the particle detector, an inner plug can be installed in the center
of the CD, reducing the particle flux for the inner strips. In the last configuration, the most relevant
information is related to the angular distributions and high laboratory angles (especially in quadrupole
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Figure 4.17: CD detector - This DSSSD divided into 4 quadrants, 16 annular strips and 24 sectorial strips is
used to detect the position and the energy of the particles incoming on the forward side.

Total area 50 cm2 (93% active)
Quadrants 4
Annular p+n junction strips per quadrant 16 (i.e. 64 total)
Sector n+n ohmic strips per quadrant 24 (i.e. 96 total)
Dead layer thickness ∼ 0.4 − 0.5 µm p+n implantation,

∼ 0.2 − 0.3 µm Al metalization,
equivalent to 7 µm of Si

Table 4.3: Summary of the main characteristics of the DSSSD used during the Coulomb excitation study.

moment measurements, see Subsec. 5.2 on page 66.).
During an experiment, the leakage current is constantly followed up in order to have an estimation concerning
the deterioration of the quadrants. (For example, if the beam intensity is too high the leakage current will
increase.)

2.10.1 Electronic modules and DAQ

Silena 7710 quad suppliers, see Ref. [170], provide the bias voltages. The detector bias is applied to the
p+n junction strips.
The pre-amplifiers are composed of RAL-108 charge-sensitive preamplifier boards, see Ref. [171]. The
particle signals are sent to the RAL-109 shaping amplifier/discriminators, see Ref. [171], providing a
complete analogue electronic instrumentation for each individual CD detector strip. The gain range has been
changed several times during the experiment (justifying the process of calibration 7) by changing the gain
resistors between experiments. The assumed full-scale range and lower discriminator was 444 MeV, for the
10 Volts maximum input voltage taken in maximum MADC-32 input. The final particle signals are converted
inside a peak-sensing MADC-32 (Mesytec Analogue-to-Digital Converter 32 input channels), see Ref. [172].
The MADC-32 has a similar internal clock as the DGF modules (40 MHz) used for the particle timestamping.
The main advantage presented by this type of ADC is the low conversion time reached (1.6 µs in our case 8).

3 Data Acquisition System

The DAQ (Data Acquisition System) and the electronic modules chosen are used to optimize the γ-particle
coincidences detection.

7. Indeed the resistors are slightly different and if the arrangement is changed the gains should be mixed.
8. The dead time is around the conversion time.
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3.1 Synchronization with REX-ISOLDE

EBIS pulse and readout Every signal from the REX-ISOLDE beam preparation systems are digitalized
by a DGF module. The data acquisition system is synchronized via the EBIS pulse timestamp 9 with the
EBIS extraction and the LINAC. At the EBIS extraction, an "ON beam" window of ∼ 800 µs is opened to
record data, see Fig. 4.18. After the "ON beam" window is closed, the readout of the module is operated and
an "OFF beam" window is opened. Around 8 ms after the EBIS pulse the "OFF beam" window is closed
(if there is enough time between the "ON beam" and the next EBIS pulse). If an event occurs in the "OFF
beam" window a second readout will be forced. All the events arriving 10 ms before the next EBIS pulse
are rejected to be ready for the next "ON beam" window. A simple electronic layout of the DAQ trigger
generation is summarized in the global picture of the triggering process, see Fig. 4.19.

EBIS pulse

"ON BEAM"
window

"dead" time before

"OFF BEAM"
window

"ON BEAM"
readout

"OFF BEAM"
readout

the next EBIS pulse

∼80 ms

∼800µs

∼3 ms

∼8 ms

∼2 ms

∼10 ms

Figure 4.18: For each EBIS cycle, the readout of one event ("ON beam") or more ("ON beam" and "OFF
beam") is performed. Typical gate widths are presented.
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Figure 4.19: DAQ triggering. If a "OR particle" signal arrives in the 4 µs event-building time window outside
the "ON beam" window, the "free" particles can be downscaled. The process is applied on each quadrants
with the same γ gate constituting 8 DAQ triggers.

The total module readout and data transfer time of XIA DGF4-C modules and MADC-32 need ∼ 3-5 µs
and have an impact on the acquisition deadtime. The scalers are readout at a 10 Hz rate. They are used to
check the beam status and operations giving the particle and gamma rates of the detection systems.

9. including the readout of MINIBALL electronic modules

92 3. DATA ACQUISITION SYSTEM



CHAPTER 4. EXPERIMENTAL SETUP

T1 proton pulse After a proton impact on the primary target, the signal called "T1" is sent to the DAQ. At
each proton pulse a main ISOLDE beamgate can be applied to compare the moments with and without RIB.
This comparison would be useful if the release time convoluted with the lifetime is sufficiently short. In our
experiment, some tests have been performed with the beamgate to identify the radioactive beam components.
However, this beamgate has not been used during the accumulation of statistics. A typical proton release
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Figure 4.20: Proton Release.

feature observed for the present study is shown on the Fig. 4.20. An exponential decay feature is observed
between the "start" and 2.4 s without any truncation. It exhibits that the typical proton pulse sequence for our
experiments was constituted mainly with a frequency of one pulse every 2.4 s.

3.2 Particle-γ Coincidence

In our experiment only the events of Coulomb excitation are interesting. In order to reduce the dead time
and the amount of data recorded, only the particle-γ coincidences have been stored. In that way, most of
the pure elastic scattering can be removed. This selection process is done in hardware with the electronic
modules.
The EBIS release is set for a relatively slow/normal extraction, see Fig. 4.21. The slow extraction mode used
for 93,95,97Rb has a total extraction time of 620 µs. The normal extraction has been used only for 99Rb in
order to minimize the β-decay products and the total extraction time is reduced until 330 µs.
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Figure 4.21: EBIS Release. (a)The slow extraction mode used for 93,95,97Rb has a total extraction time of
620 µs; an example is given on the first plot. (b)The normal extraction has been used only for 99Rb in order
to minimize the β-decay products; the total extraction time is reduced until 330 µs.
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Each signal from the CD detector passes through RAL108 pre-amplifiers and the RAL109 sampling
amplifiers. Afterwards, the signal is sent to constant fraction timing and Gaussian shaping in order to produce
both a fast time signal and an energy signal corresponding to the detected particle energy. The front strips
signals pass by a Logic Fan-IN Fan-Out (FIFO) where they are merged according to an "OR condition". The
resulting signal is shifted in time via a delay module in order to compensate the slower DGF timing signal.
The back strip signals are sent to TDC modules (Time-Digital-Converter).
The timing signals of cores are sent to a Logical OR module, the resulting signal opens up a coincidence
gate for the particle. The gammas are detected before the particle, thus they are triggering the acquisition
waiting for a coinciding particle. On the particle side, a delayed particle trigger has been generated and if it
arrives during the gamma gate, the particle energy is recorded by the opening of an ADC gate (without any
gate the ADC is passive and does not consider the event). Note that just the particle are conditioned; there
is not specific condition applied on the gammas, the particle conditioning is qualified as "downscaling" 10

instead of "single" for the gamma. The downscaling is used when a particle is recorded even if there was not
a detected γ-ray. An additional trigger in the DAQ has been added, allowing to verify on-line the correct
proportion of Rutherford scattering. The low intensities obtained in our studies allowed to downscale all the
events, avoiding the loss of right coincidences. The coincidence treatment is summarized on the Fig. ??.

10. The events are qualified as downscaled if not any condition are applied on them. Those events are added in addition to the
particle-γ coincidence.
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Figure 4.22: Particle-γ condition. (1) Energy signal of the scattered particles (RAL109) with longer rising
time than the Germanium detector (6). (2) Time signal of the particles. (3),(4) The particle trigger needs to
be delayed ∼ 800 ns in order to make coincidence. (5) The delayed particle trigger opens a coincidence gate
∼ 800 ns. (6) The rising time of the Germanium detector is shorter than for the particles, however the DGF
are not able to send a timing signal in a short time, and a processing time of ∼ 200 ns is needed to output a
Fast Timing Signal (7). (8) After the coincidence trigger an ADC gate ∼1.5 µs is opened.

4 Ionization Chamber

The beam arriving at the secondary target has often more than one component. The undesired components
constitute a source of dead time and could damage the detectors by an increase of the hits rate.
The main sources of contaminants result from ISOLDE target (isobaric contaminants with the same A) and
from the combination of REX-TRAP and REX-EBIS releasing buffer gases in the LINAC. The ISOLDE
separators (HRS and GPS) are used only to separate nuclei according to their mass A, and there is no Z
selection, resulting in possible isobaric contaminants in the beam. The Nier separator present after REX-EBIS
has a limit of resolution around 0.02 A/q; even if slits are used to stop a part of the contaminants some of
them could pass if their A/q values [173] are close to the one of the isotope of interest.

In order to determine precisely the beam components an ionization chamber is used at the end of the
MINIBALL beamline, see Fig. 4.23.
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Figure 4.23: Ionization chamber.

The ionization chamber consists of a ∆E - E telescope. The ∆E detector is a chamber filled with a CF4
gas. The incoming particles, passing through the chamber, loose a part of their energy by ionizing the
surrounding gas particle(s). A potential difference between electrodes carry off the charges for collection.
The remaining energy is detected inside a silicon detector.

The energy lost by charged particle in a material can be determined by the equation of Bethe, see
Ref. [174].

The amplitude of the corresponding signal is proportional to
q2

A
. It is important to note that q is the

charge of the ions and not its proton number Z. Nevertheless, every nuclide may enter the chamber with
different charges (or acquired a different charge state in the ionization chamber), so that they will not all
loose the same energy amount in the gas. Studies realized by Vinzenz Bildstein [175], on the MINIBALL
ionization chamber parameters dependencies, led to the formulation of an empirical solution to setup the gas
pressure:

P[mbar] = 1000 × 30
Zpro j

· 1.57
3.69

(4.8)
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5 Conclusion

Depending on the nucleus of interest, neutron/proton rich, several reaction mechanisms exist. The neutron
rich nuclei are generally produced in fission or fragmentation. On contrary, the neutron deficient nuclei are
usually favored in spallation.
At the production target a large background from multiple nuclear reactions is present. The transport of
radioactive beam far from their production place allows to increase the signal/noise ratio.
Even if the isotope of interest is well produced, the efficiency of all the different stages should be the best
(low intensities) and the fastest as possible (short lived). At some point high count rates of contaminants
coming from the production or preparation stages need to be removed by accurate selections.

The two principal techniques, In-Flight and ISOL, used to produce nuclei far from stability have been
presented and compared. Both of them were developed to optimize the efficiency, the intensity and selectivity
of the production.
The technique used to produce the Rb isotopes was the ISOL technique at ISOLDE (CERN). The chemical
nature of the Rb element confers to it an easier production. Produced after the impact of proton beam
with an energy of 1 GeV on the UC-x primary target, the different isotopes were thermalized in a catcher.
Extracted from the latest, they were ionized (surface ionization). After their exit from the ion source, they
are mass/charge analyzed and accelerated up to 60 keV. The beam is then purified (Penning Trap) and charge
bred (EBIS) to be post-accelerated up to 3.0 MeV/u. Finally, the RIB is delivered to the experimental setup
for study.

To study the low-lying nuclear states of Rb isotopes via Coulomb excitation, the MINIBALL array
was used. Specially designed for that purpose, the high absolute efficiency (∼ 20% at 250 keV), the high
resolution and high granularity, have been optimized to operate optimum Doppler correction of in-flight
γ-rays with low intensity beams.

The data acquisition system has been elaborated for the establishment of particle-gamma coincidence,
synchronized on the post acceleration, aiming to reduce the dead time.

In Coulomb excitation, the matrix elements of the electromagnetic operator related to the nuclear excited
states are generally normalized on known matrix element(s), in order to obtain absolute values. In our case,
none of the excited states of 97,99Rb were known. The matrix elements were normalized onto the target
excitation. The knowledge of the beam purity and beam components is thus crucial to obtain reliable matrix
elements. To overcome the impact of contaminants on target excitation, an ionization chamber has been
installed at the end of the beamline.
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Chapter 5

The Analysis of Coulomb excitation Ex-
periment

1 Introduction

The different stages of the whole analysis process are presented in this chapter. The first part of the
analysis has been focused on the extraction of raw data. The event building and particle-γ rays correlations
were done at the same time as the conversion into root format, see Ref. [176].
After a pre-calibration of the detectors, a pre-analysis can be performed to check the validity of the extraction
code. A more precise calibration with sources and reactions have been performed afterwards due to their
dependencies (such as the CD calibration depending on the Doppler correction). The increase of the
signal/noise ratio requires specific treatments such as the rejection of a part of the events. Carefully applied,
the identification of the nucleus nature and of some of its nuclear characteristics are eased. For example, the
creation and treatment of γ-γ matrices are used to assign the transition nature (e.g. from 99Rb). However, a
Compton rejection can be performed to favor the photoelectric events.
At the end of the analysis of raw data, the γ-ray transitions can be identified and their intensities extracted.
Afterwards, those informations have been introduced into the GOSIA code to perform a proper extraction of
the matrix elements of the electromagnetic operator for the studied nuclei.

2 Extraction of Raw Data

The data acquisition system stores the data stream following a similar pattern to MBS systems "med",
see Ref. [167]. An extraction code, written in C/C++ language, has been written to transfer the data from the
"med" format to a "root" format. This extraction based on a standard code (used on-line) has been developed
by Hans Törnqvist and myself for Coulomb excitation experiment offline analysis 1.
During the extraction, the low particle energies are excluded from the analysis by applying a threshold,
because they are difficult to correlate with gamma due to the background noise. The data stream in the
medfile is arranged in bunches of time, constituting a MINIBALL event. Inside each MINIBALL event, the
particles and gammas are stored also according to time and module but there is not any correlation between
particles and gammas. Conditions in time have to be applied in order to build correctly the events.

3 First Data Treatment at the Extraction Development Phase: Particle-
Gamma Correlations and Event Building

As mentioned, each hit is ordered in time and module. No correlation between hits and types of hits
(particle, γ-ray) is established.
After a pre-calibration of the detectors (alignment of signals on a same channel number), a first treatment is
applied to shorten the processing time, consisting in the rejection of low particle and γ-ray energies. The
amount of resulting statistics is submitted to a scan in order to record temporarily the characteristics of the
hits inside MINIBALL event bunches.
The ADC (particles) and DGF (γ-rays) channels of the MINIBALL array (including all cores and segments)
are then calibrated.
After the calibration, the prompt and random particle-γ ray coincidences have to be identified. A gate
on the difference between particle and γ-ray detection times is applied. The time windows selecting the

1. The code is adapted for the specific module used for the current experiment, it includes the MADC-32
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prompt/random events are defined as shown in the Fig. 5.1. In order to increase the signal/noise ratio a
subtraction of the random events is done on the prompt events. The window associated to random events
is positioned before the prompt events in order to avoid the short-lived isomers present after the random
subtraction. Applying this first selection, the processing time of the analysis is quicker thanks to smaller
number of events to handle.
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Figure 5.1: Prompt/Random Coincidences - Time difference particle-γ for 97Rb (a) without any condition,
(b) for the restricted kinematic zone; (c) Energy spectra of 95Rb for the restricted kinematic zone defined
later on the Fig.5.7(b) on page 110.

3.1 CD Detector Algorithm

To avoid an eventual "cross talk" in the particle events, an add-back algorithm has been implemented,
consisting to apply the following considerations:

– the detecting element with the highest collected energy hit is considered as the interaction "point"
(detectors where the particle enters inside the CD detector). Its coordinates (θ,φ) are taken into account
for the correction of the Doppler effect

– the energy of the neighboring elements are added to the hit of highest energy
However, the quality of the Doppler correction was not improved significantly. The weak impact of this
cross talk effect algorithm led to reject it from the analysis.

3.2 Cluster "add-back" Algorithm

For gamma energy, the gamma hit is considered occurring in the segment with the highest signal, and the
energy collected inside the core is taken as the integration of energies inside the crystal, corresponding to the
γ-rays. The segment position informations were used in the Doppler correction. The use of the standard
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add-back algorithm for the Germanium detector has been investigated. The reduction of efficiency at low
energies when using the application of the algorithm avoided the perspective to use it in the analysis, see Fig.
5.4 on page 106. The MINIBALL efficiency is treated in the Subsec. 4.4 on page 105.

3.3 γ-γ Coincidences

Finally, in order to identify γ-rays cascades and build the level scheme, γ-γ coincidences analysis were
used. The Sec. 9 on page 117 is specially dedicated to the γ-γ matrices creation and treatment since it plays
an important role to build the level scheme.

4 Germanium Detectors

4.1 The γ-ray Spectroscopy and Interactions

In order to detect the γ-ray transitions, they should interact with matter and deposit some energy inside.
Usually the energy collection is done via the ionization of the neighboring atoms. The electromagnetic nature
of the γ-rays confers them an important interaction with the electrons present in the matter. A part of the
γ-ray energy can be transmitted partially or totally to the electron(s). A cascade of electrons can be created
in such way. The collection of those electrons creates a certain current representative of the γ-ray energy.

Three major interactions, acting in the range of our experiments are described in the followings: the
photoelectric effect, the Compton effect and the pair creation, see Ref. [177].
During a photoelectric event, the total energy of the photon is absorbed by the crystal.
In order to create an electron-positron pair, the physical system needs to have more energy than the electronic
pair mass (> 1022 keV). The pair creation does not play an important role in the energy range of the present
study.
The case of Compton effect is treated more in details in the followings.

4.1.1 Compton and Rayleigh Effects

The Compton effect is an inelastic scattering on an electron. A part of the γ-ray energy is transmitted to
the electron via kinetic energy. The energy and momentum are conserved leading to:

hν =
m0c2α

1 + α(1 − cos θ)
(5.1)

where: α =
hνincident

me−c2
, me− is the electron mass, θ is the scattering angle between the incident direction and

the scattering gamma, hν is the energy of the scattering γ-ray.

For energies &200 keV, the Compton effect starts to play an important role. According to the Klein-
Nishina formula [178], the differential cross section can be expressed as:

dσe

dΩ
=

r2
e−

2
1

[1 + α(1 − cos θ)]2

(

1 + cos2 θ +
α2(1 − cos θ)2

1 + α(1 − cos θ)

)

(5.2)

The differential cross sections normalized at θ = 0 is given in the Fig. 5.2 for different energies.
The Rayleigh effect may be considered as a specific case of the Compton effect. During the Rayleigh

process the γ-ray is scattered as for the Compton. However the incident γ-ray does not transmit kinetic
energy to the electron, thus Eγ,incident =Eγ,scattered.

The importance of the different main effects is summarized in the Fig. 5.3.

4.2 The Germanium: a Semiconductor

The Germanium detectors are p-n junctions, doped n or p, with a large depleted volume. When they are
polarized by a high voltage an active zone appears. Thermal or photon excitations can force the electron
to pass in the band gap 2. The following ionizations create many electron-hole pairs. The charges thereby

2. ∼ 0.77 eV for Germanium to get free electron)
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around 8 MeV.

created can be collected. The number of collected charges is proportional to the original energy of the
excitation: Eγ ≃kN (According to the Ref. [177], k∼2.96 eV). The collected charges are then transformed in
an electrical impulse sent to the DAQ.

In order to limit the thermal excitation, considered as noise in nuclear structure studies, the Germanium
detectors are maintained at low temperature with a liquid nitrogen cryostat.

4.3 Energy Calibration of Germanium Detectors

The energy calibration of Ge detector has been performed using an (152Eu,133Ba) source. The characteris-
tic γ-ray transition energies of the sources used during the calibration can be found in the Ref. [180].
Firstly, the segments are roughly calibrated on the same channel for the on-line analysis.Secondly, each
segment is calibrated on the energy corresponding to the sources, see Fig. 5.4. Finally, the calibration of each
detecting element is checked manually one-by-one in order to correct the set of calibration values. A linear
calibration has been envisaged in a first approach. However the non-linearity of the Germanium response
directed our final choice on a quadratic calibration.

102 4. GERMANIUM DETECTORS



CHAPTER 5. THE ANALYSIS OF COULOMB EXCITATION EXPERIMENT

4.4 MINIBALL Array Efficiency

The efficiency has been determined using 152Eu (T 1
2
=13.537(6) y), 133Ba (T 1

2
=10.51(5) y) and 60Co

(T 1
2
=1925.28(14) d) sources, placed at the target position.

Knowing the activities of the sources at a certain time, the number of awaited gammas can be estimated. The
ratio of 152Eu transitions allows us to determine the relative efficiency for different energies over an important
range from 80 keV to 1500 keV. The absolute efficiency has been determined using the 60Co source with
a peak at 1332.492(4) keV (Iabs.

γ = 99.9826(6) %). According to the efficiency found for the Cobalt peak
a normalization factor can be applied to the 152Eu relative efficiency found in order to obtain the absolute
efficiency for the whole energy range. Note that most of the γ-transitions in our experiments are ∼ 40-600
keV.
As mentioned, an addback algorithm could be employed. The addback has a beneficial impact on the
efficiency at high energies (> 600 keV). The most important informations extracted from different Coulomb
excitations performed are at low γ-ray energies, where the addback could reduce the efficiency. Thus, it had
not been employed in the analysis.

The efficiencies are expected with the following forms:

ln(ǫγ) =
4∑

i=0

ai(ln(Eγ[keV])) (5.3)

The following coefficients have been obtained:

a0 a1 a2 a3 a4

Without Addback -2262 1530 -377 41 -1.6
With Addback -1884 1268 -310 33 -1.3

 5

 10

 15

 20

 25

 30

 0  200  400  600  800  1000  1200  1400

A
b

so
lu

te
 E

ff
ic

ie
n

cy
 [

%
]

 Gamma Energy [keV]

Fit Efficiency without addback

Efficiency without addback

Fit Efficiency with addback

Efficiency with addback

Figure 5.4: MINIBALL cluster efficiency performed for 152Eu and 133Ba sources.

The calibration points and efficiency curve of the Eq. 5.3 are shown in the Appendix B on the Fig. 5.4 on
the next page. Absolute efficiencies of 20% and 10% are obtained respectively at 250 keV and 900 keV.

5 Doppler Correction

During a "standard" Coulomb excitation experiment, the excited beam and recoil nuclei emit their γ-rays
mainly in flight. A Doppler shift is attached to such emission according to the respective particle motion and
γ-ray energy and angle.
The energy detected in the laboratory frame is shifted and does not correspond to the characteristic gamma

5. DOPPLER CORRECTION 103



CHAPTER 5. THE ANALYSIS OF COULOMB EXCITATION EXPERIMENT

energies observed in the intrinsic frame. In order to derive the original energy, Doppler corrections must be
applied :

Elab = γ
Eintr.

1 − β cos(θ)
(5.4)

where: β =
v

c
=

√

1 − 1
γ2 is the velocity, Elab is the γ-ray energy detected in the laboratory frame, Eintr. the

γ-ray energy in the intrinsic frame and γ =
1

√

1 − β2
is the relativistic factor. Thanks to the CD detector, the

determination of the kinetic energy and position of the particle is possible. Correlating γ-rays and particle
hits via the time difference Tparticle−γ, Doppler corrections can be performed. All the couples γ-particle
entering inside the prompt and random gate are Doppler corrected constituting the Doppler corrected spectra,
see Sec. 3 on page 101.

The calculation used to extract the angle between the emitted γ-ray and particle is:

θ = arccos
[

sin(θPart.) sin(θγ) cos(φPart. − φγ) + cos(θPart.) cos(θγ)
]

(5.5)

To summarize the correction of the Doppler effect is possible knowing the energy and position of both
particle and γ-ray hits.

6 Germanium Detector Positioning

The Germanium detectors are mounted on rotative arms allowing to change the distance cluster-chamber
and the angles (θlab, φlab, α), see Fig. 5.5 on the next page. The couple (θ, φ) denotes the position of the
central axis of the cluster and α corresponds to the rotation of the cluster around its "symmetry" axis. Thanks
to indicating rulers on the arms the mechanical positions of Germanium detectors are roughly known.
To refine the Germanium detectors positioning, a transfer reaction 2H

(
22Ne, 23Ne

)

p has been used due to

firstly the disponibility at anytime of 22Ne from REX-EBIS (rest gas) and secondly the kinematic and decay
properties of this reaction. The reaction is performed sending a 22Ne beam at 2.25 MeV/u on a Deuterium
polyethylene target.
During the transfer reaction the first 1

2
+

excited state at 1017 keV of 23Ne can be populated. The short

lifetime 178(10) ps of the first excited level insures a de-excitation "in-flight"( 1
2
+ → 5

2
+

(g.s.)) leading to
proper Doppler corrections. The optimization of the position is done by the convolution of :

– the minimization of the FWHM (Full Width Half Maximum), i.e. Doppler correction optimization.
– the relative position of "segments-core" peaks (relative shifts to each other).

The 23Ne products cannot be detected by the CD detectors. The reaction allows a maximum scattering angle
of 4.3°. The 23Ne were assumed to be ejected along the beamline (θ = 0, φ = 0), thus the angle between the
excited particle and the γ-ray corresponds to the γ-ray detected angle in the laboratory frame. Moreover, the
proton reaching the CD detector can be used for the Doppler corrections via its angle and energy.
During the optimization of the Doppler corrections, an additional tunable parameter corresponding to the
distance between the detecting element and the target could be added in the optimization loop.

The MINIBALL angles obtained after the positioning treatment are summarized in Appendix B p. 212.
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Figure 5.5: MINIBALL reference position system of clusters. The couple (θ, φ) are the angular position of
the central axis of the cluster and α corresponds to the rotation of the cluster around its "symmetry" axis.

7 Particle Detectors

7.1 Centering of the beam

The CD detector has to be well centered with respect to the beam. Otherwise, the cylindrical symmetry is
broken and the angles deduced for the detectors will be erroneous. Moreover, the Doppler correction and the
matrix elements will be affected. Indeed, the angles will change but also the angular coverage used to extract
and integrate the matrix elements. The dependency of the azimuth angle with the scattering angle would
need to be introduced in all the analysis process.

The target and CD detector are fixed on the reaction chamber. Due to the compact geometry of the setup,
the influence of the positioning of each device could be potentially important. However, the mechanical
conception of the chamber ensures a sufficient precision to neglect the mechanical errors (at most 0.5 mm)
introduced with the positions of each device in the vacuum chamber.

The vacuum chamber and target have been geometrically positioned with laser tripod positioning system.
Therefore, the main contribution of a possible offset should come from the beam deviation.

The Fig. 5.6 represents the number of particles detected in the CD detector in polar coordinates for the
Coulomb excitation reaction of 93,95,97,99Rb with the 60Ni target. The beam and the CD detector are well
centered along the beam axis for 93,95,97,99Rb. The low beam intensity obtained for the 99Rb led to a low
statistics collection. Thus, a high binning has been applied on the Fig.5.6(d) in order to distinguish a feature.
We can only confirm that the beam is not deviated significantly to be observed.Some annular and sectorial
strips were damaged or broken and removed from the analysis treatment. They are visible on the Fig. 5.6(c)
for which one recorded a consequent amount of data compared for the other studied nuclei.
The resulting angles of the CD detector are summarized in the Tab. 5.1 on the facing page.

7.2 Energy Calibrations

The difference phases to obtain a proper calibration are presented by order of application in the followings.

7.2.1 α Source Pre-Calibration

A preliminary calibration of the annular strips can be performed to obtain a rough on-line calibration used
during the experiment. It consists in a triple alpha source of 239Pu, 241Am and 244Cm, with alpha energies
of 5.156 MeV, 5.486 MeV, and 5.805 MeV. This is the easiest way to calibrate the annular strips thanks to
its "offline" implementation. However, in our experiment, the energy range of the alphas is far from the
kinetic energy of the beam particles (∼ 270 MeV). Thus, the alpha sources are not the best candidates to
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Figure 5.6: Centering of the particle detector and beam. Some annular and sectorial strips were damaged
or broken. In case of damage they produced a low signal which could affect the statistics. To be rid of this
problem those detecting elements were removed during the analysis.
(a) The 93Rb radioactive beam on 60Ni. The beam and CD detector are well centered;
(b) The 95Rb radioactive beam on 60Ni. The beam and CD detector are well centered;
(c) The 97Rb radioactive beam on 60Ni. The beam and CD detector are relatively well centered; and
(d) The 99Rb radioactive beam on 60Ni. The beam and CD detector are well centered. The low binning
applied due to the low statistics has the tendency to shade off the contours.

finely calibrate the CD detector, and then, other methods presented in the followings has been employed to
properly calibrate the CD detector.

7.2.2 A/q=4 Cocktail Beam Calibration

In order to refine the pre-calibration, we used a cocktail beam available at anytime from REX-EBIS (pres-
ence of residual nuclei 12C3+, 16O4+, 20Ne5+, 40Ar10+, 84Kr21+ with a parametrization of A/q=4) scattered on
a 196Pt target (2.0 mg/cm2). The known kinematic properties of the cocktail beam were used to calibrate the
CD detector.
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Stopping power and kinematic calculations have been done, with the SRIM and LISE packages, for
each nucleus of the cocktail beam taking into account the beam velocity of each before and after the target
according to their scattering angle. The same calculations have been realized for the Rb isotopes. The
particles are not able to reach the E detector which is a PAD detector positioned behind the CD detector, see
Subsec. 8.2 on page 115. It confirms that they are stopped in the ∆E-detector. Thus, just the calibration of
the ∆E detector (CD) is necessary.

Annular Strip <θ>[degree] θmin[degree] θmax[degree]
Strip 0 53.7 53.0 54.3
Strip 1 52.3 51.6 53.0
Strip 2 50.8 50.0 51.5
Strip 3 49.1 48. 49.9
Strip 4 47.4 46.6 48.3
Strip 5 45.6 44.7 46.5
Strip 6 43.6 42.6 44.6
Strip 7 41.5 40.4 42.5
Strip 8 39.2 38.1 40.3
Strip 9 36.8 35.6 38.0

Strip 10 34.2 32.9 35.5
Strip 11 31.5 30.1 32.8
Strip 12 28.5 27.1 30.0
Strip 13 25.4 23.9 27.0
Strip 14 22.2 20.6 23.8
Strip 15 18.8 17.1 20.4

Table 5.1: Angles of each different strip constituting the ∆E particle detector.

We performed kinematic calculations with the LISE++ package, see Ref. [181], in order to evaluate the
deposited energy inside each detecting element of the CD, for each nucleus constituting the cocktail beam.
The energy and θ-angle after the scattering reaction are relatively well known. The couple (Ekinetic vs θ) are
summarized in the Tab. B.6 on page 214 in Appendix.

Each annular strip and sectorial strip were firstly aligned by quadrants on the same channel. Then, they
were calibrated in order to obtain the same values as given by the kinematic calculation realized via LISE++,
see Tab. B.6 on page 214.

The calibration obtained by fitting with the LISE ++ calculations (A/q=4 beam particles) does not
constitute the best set of calibration parameters considering the width of the Doppler corrections.The
obtained calibration coefficients are applied on Rb data, a gain shift has been observed and the coefficients
have to be corrected.

7.2.3 Rb Data Calibration

Finally, the calibration coefficients obtained from the "A/q=4 calibration" are refined directly with the
ARb(60Ni,60Ni)ARb data by optimizing the Doppler correction of each annular strip (60Ni target thinckness
2.1 mg/cm2). The final calibration performed for the 93Rb is shown on the Fig. 5.7(a).

The obtained kinematics has been fitted by LISE++ kinematics calculations with the incident beam
energy as free parameter, see Fig. 5.7(a). The set of calibration are well reproduced around Ebeam ∼ 180−200
MeV. Firstly this result was considered as inconsistent due to a largely lower beam energy compared to the
REX-ISOLDE settings for which a beam energy of around ∼274 MeV is found.

From the last calculations, the Doppler corrections are optimized for an incident beam energy of around
∼180-200 MeV, which is lower than the experimental value of the beam energy ∼ 2.85 MeV/u. Firstly, this
result was considered as inconsistent. Further investigations have been performed as the minimization of
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the FWHM 3 with the couple (φCD, Eincidente
beam

), see Subsec. 7.3 on the facing page. This difference can be
partially explained by the energy loss in the target.

The excitation and de-excitation processes have different time range. Indeed the excitation is a quick
process of around 10−20 s and the de-excitation around 10−12 s. Thus, the excitation is supposed to occur in
the target. However, with such considerations the γ-rays are mainly emitted after the target (or at the end)
with an important beam energy loss. This scenario explains the lowering of the beam energy used to obtained
the best Doppler corrections. The latter energy does not correspond to the kinetic energy at the excitation
point (in the target) but the kinetic energy of the nucleus when the γ de-excitation occurs.
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Figure 5.7: Calibration obtained for the reaction 93Rb on 60Ni target.
(a) The final calibration of the CD detector is shown. The results obtained with LISE ++ for an incident
beam energy of 180 MeV are shown for different depths of interaction (entrance, middle and exit of the
target);
(b) The Coulomb excitation of 93,95,97,99Rb isotopes on 60Ni leads to a kinematic overlap, not allowing the
identification of the particle nature. A restricted kinematic zone can be defined for the detection of target
nuclei for which there is no overlap. The restricted kinematic zone corresponds to the total target kinematic
(observed in the CD detector) minus the overlap part.

7.2.4 Doppler Correction, Calibration and Beam Velocity

The particle energy and angle informations will be used to determine the velocity of the in-flight decaying
nucleus and thus the expected Doppler correction.

During the collision, the profile of the beam phase space is not perfect, and spacial and velocity dis-
persions are present (the phase space is not punctual). In addition, the beam passing through the target is
submitted to the stopping power of the target matter. An angular (∆θ) and velocity (∆β) dispersion needs to
be associated to such path.

The resulting Doppler-corrected spectra quality depends highly on the CD calibration (energy and posi-
tion). Indeed even if the Germanium detector energy and position calibrations were done properly, the CD
detector resolution is the predominant factor for high quality Doppler corrections.

The resulting kinematics of Rb isotopes on 60Ni have an overlap at low θLab.. The identification of the
particle nature in the CD detector is not possible in this region. Under this condition, the type of Doppler
correction is uncertain. The Doppler correction applied on the projectile or target nuclei without knowing the
particle nature would enlarge the width of the peak. Thus, a specific kinematic zone without any overlap has
been used to integrate the γ-ray intensities, see Fig. 5.7(b).

3. Full Width Half Maximum of the energy peaks
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7.3 CD Azimuth Angle Optimization

In order to perform the possible best Doppler shift correction, a position calibration of the CD-detector
in the MINIBALL target chamber has been done. If the polar angle θCD of the annular strip is well known,
nevertheless the azimuth angle is determined within a constant, and the sectorial segments can be rotated
around the beam axis.
A nominal value of the azimuth angle φCD is obtained by measuring the angle manually inside the secondary
target chamber. To determine the offset angle ∆φCD of the CD detector, an optimization of the energy
resolution has been performed with the reactions ARb(60Ni,60Ni)ARb. It consists in the minimization of the
FWHM of the energy peak with the ∆φCD.
The Coulomb excitation kinematics, with the following reaction AX(A′Y,A

′
Y(∗))AX(∗), is close to the Ruther-

ford scattering. In a first approach, the Rutherford scattering can be considered as the kinematics of a
Coulomb excitation reaction. If the nature of the particle is clearly distinguishable, the reconstruction of the
kinematic products can be performed.

The reconstruction of the kinematics has been performed for the restricted kinematic area, see Fig. 5.8.
The Rutherford scattering has been used to optimize the offset angle ∆φCD of the CD detector and the average
beam energy. As mentioned the beam energy should correspond to the incident beam energy averaged by the
stopping power of the target. The restricted kinematic zone corresponds to high θ angle, then high deposited
energy in the target. Logically, a lower "incident beam energy" compared to the LISE++ calculations should
be found for this optimization.
According to the target thickness (2.5 µm) and the incident beam energy (23 µm/s) the beam time to pass
through the target is around ≃ 0.1 ps, thus more than 90 % of the γ-rays are emitted after the target (the
typical lifetimes of the nuclear states should be around a few ps).
The minimization for 93,97Rb(60Ni,60Ni)93,97Rb reactions are shown on the Fig. 5.9, 7.3.

The minimization process for 93Rb on 60Ni converges to the solution: ∆φCD = 5°, Eincidente
beam

=170-130
MeV. For this reaction the FWHM is sensitive to both parameters.
Concerning the 97Rb on 60Ni reaction, the minimization process converges to the solution: ∆φCD = 5°,
Eincidente

beam
=170-130 MeV. However, the optimization is less sensitive to the energy. The 103 keV transition

(of a low lying state) should have a longer lifetime compare to the transitions shown for the 93Rb on 60Ni
reaction, and, it can explain the lower sensitivity to the energy.

Considering the restricted kinematic events, the amount of γ-ray transitions observed corresponds to the
same set of excitation process for the beam/target particles. Thus, a proper extraction of matrix elements
from the intensities of the reconstructed spectra can be obtained.
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b(θLab.) : distance of closest approach
~r(t)

De-excitation

Projectile

Target

| ψ(−∞) >=| 0 >

| ψ(t) >=
∑

n an(t) | n >

Electromagnetic
Interaction

Laboratory Frame

θLab.

Particle Detector

Germanium Detector

γ

γ

γ

~v
V(~r(t))

Not detected Recoil
Possible reconstruction

Deposited energy

Figure 5.8: Coulomb excitation kinematics in the laboratory frame. When one of the particle (target/ejectile)
is detected, the other one can be reconstructed following the Rutherford scattering, close to the Coulomb
excitation kinematics. On the picture, the ejectile is detected.
In our case, inside the restricted kinematic zone the target scattering angle is detected. The target energy,
ejectile energy and scattering angle are deduced from the Rutherford scattering.

Figure 5.9: CD azimuth angle and beam energy optimization of 97Rb on 60Ni for the transition 103 keV.
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(a) 93Rb on 60Ni for the transition 324 keV.

(b) 93Rb on 60Ni for the transition 913 keV.

(c) 93Rb on 60Ni for the transition 1332 keV.

Figure 5.10: CD azimuth angle and beam energy optimization for 93Rb on 60Ni (low statistics).
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8 Kinematic and "Safe" Coulomb Excitation Considerations

From the optimization of the Doppler corrections, the obtained beam energy corresponds to the average
projectiles energy at the target exit (for the chosen angular coverage). The possible Coulomb excitation
should occur inside the target, thus for a higher projectile energy than the one found for the optimization.
The following section treats the different kinematics using the average energy of the incident beam assuming
that the excitation occured at the middle of the target.

8.1 "Safe" Coulomb Excitation and Coulomb Barrier

The Coulomb excitation process remains valid as long as the nuclear interaction is negligible compared
to the electromagnetic interaction, i.e. under the Coulomb barrier energy:

ECoul. =
ZTargetZPro j.e

2

Rmin.

[MeV] (5.6)

with e2 = 1.44 fm.MeV and Rmin. [fm] is the minimum distance between the target and the projectile which
allows to neglect the strong interaction, see Ref. [182], see Tab. 5.2 and Chap.3 on page 55.
During the collision, the two nuclear surfaces should be distant by at least a "safe" distance ∆sa f e. The
distance of closest approach in the centre-of-mass (CM) based on a pure Rutherford scattering is given by:

bCoul.(θ) = a0




1 +

1

sin
(
θCM

2

)




[fm] (5.7)

where: a0 = 0.71999

(

1 +
APro j.

ATarget

)
ZPro j.ZTarget

EPro j.

[fm], EPro j. in [MeV], see Ref. [113].

This condition can be expressed in terms of nuclear surfaces. The estimation of ∆sa f e takes into account
the nuclear force (a few fm) and the surface diffuseness of the nuclear density distribution, see Ref. [182, 183].
It can be determined by comparing theoretical and experimental cross sections for different beam energies,
see Ref. [184]. Typical values for ∆sa f e are found to be close to 5 fm, see Ref. [182, 183]. The minimum ∆
according to the Ref. [182], is ∆ = 3.2 fm.

Rmin. = RPro j. + RTarget + ∆ (5.8)

where, RPro j./Target can be calculated as: Ri = 1.28A
1
3
i
− 0.76+ 0.8A

− 1
3

i
(it exists different way to calculate

the nuclear radius depending on the investigated region of the chart), see Ref. [182]; Rmin. =Rsa f e

min. if ∆ = ∆sa f e.
The "safe" Coulomb excitation condition, see Ref. [185], is fulfilled if:

b(θ) ≥ R
sa f e

min. (5.9)

According to the Ref. [113] p. 277, the maximum available energy is:

Emax
Lab. =

Z1Z2

(

1 +
APro j.

ATarget

)

e2

A
1
3

1 + A
1
3

2 + 2
[MeV] (5.10)

According to the calculations realized with the approximations of the Ref. [113], our experimental
conditions would be too close to the Coulomb Barrier, see Fig. 5.11. However, other more realistic
calculations, like LISE++ calculations in Tab. 5.2, place them in a "safe" Coulomb excitation case.
For example, the maximum available energy is around 265 MeV for the 93Rb, the maximum energy to
consider the excitation as "safe" is of around 264 MeV according to the LISE++ calculations. However, such
calculations does not take into account the energy lost in the target, placing the different configurations in the
"safe" Coulomb excitation case.

The angles of the CD detector in the centre-of-mass framework are presented in the Tab. 5.3.
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Isotope RLIS E
min. Rsa f e,LIS E

min
Rsa f e,pheno.

min. Emax.,pheno.
CM

Emax.,LIS E
CM

Emax.,pheno.

Lab.
Emax.,LIS E

Lab.

[fm] [fm] [fm] [MeV] [MeV] [MeV] [MeV]
Ref. [185] Ref. [185] Ref. [113] Ref. [185] Ref. [181] Ref. [113] Ref. [181]

93Rb 12.21 14.01 12.46 119.76 103.8 244 264.8
95Rb 12.25 14.05 12.50 119.38 104.7 242.3 270.5
97Rb 12.29 14.09 12.54 119 105.5 240.5 276.3
99Rb 12.32 14.12 12.57 118.64 106.3 238.8 282.0

Table 5.2: Energies and distances for a "safe" Coulomb excitation. RLIS E
min. : minimum radius to feel the strong

interaction at first order. Rsa f e,LIS E

min
: minimum radius for which the "safe" conditions are fulfilled. pheno:

phenomenological calculations. LISE: calculations realized with the LISE++ package, see Ref. [181].

Projectile Target Energy [MeV/u] θCM1 θCM2 θCM3 θCM4
93Rb 60Ni 2.85(3) 46.6 169.9 70.5 144.9
95Rb 60Ni 2.85(3) 47.2 169.2 70.9 144.6
97Rb 60Ni 2.85(3) 47.6 168.3 70.2 144.6
99Rb 60Ni 2.85(3) 48.1 168.0 70 144.3

Table 5.3: Kinematics of the different experiments, obtained from Ref. [181]. The energies and target used
during the experimental analysis are shown. The centre-of-mass angles of the CD detector used to extract the
informations of the scattered particles. θCM1 and θCM2 are the extreme angles of the CD related to Rb in the
centre-of-mass frame. θCM3 and θCM4 are the extreme angles of the CD related to Ni in the centre-of-mass
frame. With such beam energy the Sommerfeld parameter η fulfilled the "safe" conditions, η ≃ 97 ≫ 1
(dependance in Zp and Zt).

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

θ C
M

3

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

θ C
M

3

θ C
M

2

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

θ C
M

3

θ C
M

2

θ C
M

4

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

θ C
M

3

θ C
M

2

θ C
M

4

93Rb on 60Ni

R
sa f e,LIS E

min

R
∆=2.75 f m,LIS E

min

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

θ C
M

3

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

θ C
M

3

θ C
M

2

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

θ C
M

3

θ C
M

2

θ C
M

4

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

θ C
M

3

θ C
M

2

θ C
M

4

95Rb on 60Ni

R
sa f e,LIS E

min

R
∆=2.75 f m,LIS E

min

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

θ C
M

3

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

θ C
M

3

θ C
M

2

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

θ C
M

3

θ C
M

2

θ C
M

4

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

θ C
M

3

θ C
M

2

θ C
M

4

97Rb on 60Ni

R
sa f e,LIS E

min

R
∆=2.75 f m,LIS E

min

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

θ C
M

3

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

θ C
M

3

θ C
M

2

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

θ C
M

3

θ C
M

2

θ C
M

4

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

b
(θ

C
M

)
[f

m
]

Scattering Angle θCM[degree]

θ C
M

1

θ C
M

3

θ C
M

2

θ C
M

4

99Rb on 60Ni

R
sa f e,LIS E

min

R
∆=2.75 f m,LIS E

min

Figure 5.11: Distance of closest approach in the center-of-mass frame. The minimal distance for a "safe"
Coulomb excitation R

sa f e

min
is shown with the dashed line. The range of the CD detector is shown in yellow.
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8.2 Kinematics and Scattered Nuclei Detection

In the Chap. 3 on page 55, we mentioned that the trajectories of the scattered particles could be treated
classically. Thus, the point mechanics relations can be used. The conservation of the transverse momentum
implies that, the projectile and target are scattered in opposite direction in the reaction plane.

The collision takes place with a Rb isotope on a 60Ni target of 2.1 mg.cm−2 at around 2.85 MeV/u of
incident energy. The velocity of the Rb isotopes is around 7.8 % of the light velocity so that the relativistic
effects cannot be neglected when correcting the Doppler effect.

The Fig. 5.12 summarizes the parameters of the 93Rb(60Ni,60Ni)93Rb reaction. Those curves show that
the projectile and target are not easy to distinguish for low scattering angle in the CD detector (overlap).
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Figure 5.12: Kinematics of the reaction 93Rb(60Ni,60Ni)93Rb. The energy deposited in the target and the
kinematic have been calculated by the LISE package. The angles θ1,Lab. and θ2,Lab. correspond to the extreme
angles of the CD detector. The yellow surface represents the angular coverage of the CD detector. The
kinematics associated to the Rb and Ni are respectively drawn in red and green. At low θ angles there is an
overlap of the projectile and target nuclei detection leading to an uncertain determination of the detected
particle nature.

The detection of scattered particles is possible in good conditions if:
– The energy resolution is high enough to distinguish projectile and target nuclei. It should be sufficient

to apply proper Doppler correction on the γ-ray energies.
– The particle detectors are able to work until a typical frequency of a few kHz, and support the amount

of incoming particle.
– The granularity needs to be sufficient to determine the angle and the nature of the scattered particle

(usually determined via the kinematics). The highest granularity of the particle detector will help to
make Doppler corrections, however the γ-rays detector should also have an important granularity, since
it is working by pairs. Indeed a precise determination of the angle between the γ-emitting particle and
the γ-ray is the keystone for proper Doppler corrections.

The silicon detector used during the experiment is described in the Chap. 4 on page 73. The central hole
on the CD detector let pass the particles scattered at low angles (higher cross section). They correspond to
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low impact parameter with a low probability of electromagnetic excitation, see Chap. 3 on page 55.

The Tab. 5.4 presents the different results concerning the energy deposited in the target, see Ref. [186, 187].
In each case the deposited energy in the target is less than the energy transfered in the collision: after the
target 33.0-35.3 µm of silicon are still necessary to stop the nucleus, which is less than the thickness of
the CD detector silicone layer. Thus, the scattered nuclei are stopped in the CD detector, and they will be
accumulated in the CD detector. Their radioactive nature will contribute to the background by their decays
(β and γ decays).

Projectile Target Deposited Energy Angular Straggling Si Thickness to stop
[MeV] [mrad] [µm]

93Rb 60Ni 34 6.8 33.1
95Rb 60Ni 34 6.6 33.8
97Rb 60Ni 34 6.5 34.5
99Rb 60Ni 34 6.3 35.2

Table 5.4: SRIM calculations, see Ref. [186, 187]. The simulation of the energy deposited in the 60Ni target
is less than the energy transfered during the collision. The angular straggling is around 6.3-6.8 mrad, which
is smaller than the smallest detecting element of the CD detector (1.3 °). The mean trajectory has been
assumed straight without any scattering. In our experimental cases, the scattering imposes a higher deposited
energy in the target and a slightly larger angular straggling.
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9 The γ-γ Coincidences

9.1 Why γ-γ Matrices?

The investigation of low excited states from a totally new level scheme requests a tool to be able to
identify and build the different γ-rays cascades. If during the de-excitation process, the γ-rays from the same
cascade can be detected in different detectors at the same time, they are qualified as "coincident" γ-rays. A
coincidence time gate between 2 γ-rays can be defined and applied to identify coincident γ-rays thus nuclear
transitions. However, the detection chains have a timestamp of 25 ns and several other delays are engendered
before the treatment of the signal.

The projections of the γ-γ matrices insure the identification of coincident γ-ray transitions. An example
of γ-γ matrix and projections are shown on Fig. 5.13. The process is repeated for different transition energies
until obtaining a consistent result (level scheme).
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(a) γ-γ matrix of the reaction 97Rb on 60Ni. (b) Gate of γ-γ matrix of the reaction 97Rb on 60Ni for the transition 68 keV.

Figure 5.13: Treatment of the γ-γ matrix of the reaction 97Rb on 60Ni. The γ-γ matrix is symmetrized thus
the x-axis and y-axis are equivalent.

9.2 How to Choose the Coincidence Gate?

The coincidence gate should be as short as possible to optimize the ratio
N
γ

true coincidence

N
γ

random coincidence

.

The best correlation time gate has been found studying the amount of prompt coinciding γ-rays as a function
of the width of the time window. The Fig. 5.14 shows the characteristic behavior for 99Rb. As expected the
amount of coincidences increase when opening the time window. After a certain time, the increase saturates
characterizing the time for which afterwards the coincidence are just random.
From those results, a 250 ns coincidence has been adopted for all the γ-γ matrices.

9.3 Compton suppression

The Compton scattering impacts directly the identification of γ-ray transition energies creating events
with lower energies than the γ-ray (photo-electric). The Compton events can overlap the photo-electric
events in terms of energy.
The rejection of such event is usually done using detection materials surrounding the HPGE detector (called
Compton suppressor), unfortunately the MINIBALL array does not possess such suppressors yet.
However, according to the Klein-Nishina formula, see Eq 5.2 on page 103 and Fig. 5.2 on page 104, an
optimal angular coverage minimizing the Compton events can be found. The "labeled" Compton events can
be subtracted from the whole set of coinciding events.

A simple rejection according to the angle between the two detected gammas was performed. An optimized
rejection angle (∼ 40°) has been taken for a complementary analysis of the level schemes identification, see
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Figure 5.14: γ-γ coincidence gate for 99Rb. The "all CD" label corresponds to the total angular coverage of
the CD detector. The "restricted CD" label corresponds to the angular coverage of the CD detector for whom
there is no overlap of the beam and target nuclei in the kinematics.

Figure 5.15: Compton rejection angle - The number of γ-γ coincidences is plotted versus the angle between
the two detected γ-rays. According to the statistics, an angle of 40° has been adopted for the Compton
rejection. It is lower than the minimum observed in the differential cross section of the Compton events, see
Fig.5.2 on page 104.

Fig. 5.15.

An illustration of the obtained Compton suppression is presented on Fig. 5.16.
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Figure 5.16: Treatment of the Compton suppression. The γ-γ matrix of the reaction 93Rb on 60Ni for
the restricted kinematic zone is presented without Compton suppression on Fig. (a) and with Compton
suppression on Fig. (b).

10 Beam contaminations

In Coulomb excitation experiments the relative γ-ray intensities of the projectile and target nuclei
constitutes the essence of the results. Thus, the determination of beam impurities/components appears like
one of the main concerns of Coulomb excitation experiments with post-accelerated beam from an ISOL
production.

10.1 Source of contaminants

As mentioned in the Chap. 4 on page 73, the beam delivered at ISOLDE via REX-ISOLDE is never pure.
The reason comes from the nature of the production, transport and acceleration techniques. There are three
main sources of contaminants coming between the ISOL production and the delivery at the experimental
setup.

The first source comes from the ISOL production technique itself. During the proton impact on the
primary target a multitude of nuclides are produced and the Rb isotopes of interest represent a very small
fraction of the total yields. A first selection happens after the production thanks to the mass spectrometer
HRS which leads ideally to have a single mass number beam. However, if the isobars are not well separated
and isobaric contaminants can also be present.

The second source is related to the β-decaying nature of the beam, bringing the daughter nuclei along the
transport, the beam manipulations and the beam decays "In-Flight".

The third source appears with the post acceleration technique. During the trapping and breeding processes,
the best compromise between the Trapping/Breeding/Intensity has to be performed. Moreover, another
important contaminant is the gas contained inside REX-TRAP and REX-EBIS which can be transmitted
until the secondary target.

In certain cases the β-decay could be an advantage. Recently the production of 98Sr has been performed
via the decay in-trap of the 98Rb parent. Setting the trapping time to optimize the proportion and the intensity
of Sr, a Coulomb excitation has been successfully performed, see Ref. [188].
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10.2 Beam components or beam Impurities

During the data analysis, several methods have been investigated to determine qualitatively and quantita-
tively the beam impurities. In the followings of this Subsec., the different techniques are presented but they
don’t represent the exhaustive list of possible techniques (for example, the laser system RILIS was not used
and the impurities determination techniques related to it will not be discussed).

10.2.1 Ionization Chamber and T1 pulse

The ionization chamber consists in a ∆E gas volume and a silicon detector leading to an identification in
mass number (A) and charge (q), see Sec. 4 on page 97. The energy deposited in the gas is proportional to
q2

A
. q is the charge of the ion. A selection according to q/A � 1/4 is done through the transport. An analysis

of the ionization chamber data is given in the Subsec. 11.1 on page 124.
The deposited energy (∆E) can be correlated with the time difference between the proton impact and the

detection in the ionization chamber, t=TIon.Chamb.-T1. This technique is used mainly to identify the stable
and radioactive components with different mass number (A). The halflife must be of the order of the time
between two proton pulses (∼ 1.2 s).
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Figure 5.17: Correlation between the ∆E detector of the ionization chamber and the time since proton impact
for the 93,95,97,99Rb beams. The stable 86Kr is well identified. However the radioactive components have
the same mass number and it is difficult to identify them by the ∆E informations only. The release time of
the different isotopes are not well known and are difficult to determine. To separate properly the different
isotopes and quantify their amounts, the deconvolution of the release is necessary.

The release times of the different chemical elements are not well known and are difficult to determine. To
separate properly the different isobars and quantify their amounts, the deconvolution of the release would
be necessary. For this reason this technique did not give clear enough results to identify and quantify the
radioactive components with the same mass (A).

The detection of nuclei correlated with the time after the proton impact has been used during the online
setting of the radioactive beams to identify the radioactive/stable components for a specific mass (A).
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The stable isotopes are easy to identify in our case. On the Fig. 5.17, the stable 86Kr is well seen, however
the radioactive components, coming from the β-decay of 99Rb and its daughter nuclei: 99Sr and 99Y, cannot
be separated. They have the same mass number and their ∆E signals are overlapping.The stable 86Kr could
come from the production from REX-EBIS.
The trapping and breeding time has been set in such a way to optimize of course the amount of Rb isotopes
and minimize the amount of contaminants, see the technical report of F. Wenander [189].

10.2.2 CD detector

Since the transport (mass spectrometers, Nier-spectrometer, EBIS) is selective according to A/q, the
number of possible contaminants is very restricted. Using the CD detector, the mass number (A) of the
impinging nuclei may be deduced from the measured total energy correlated with the detection angle; thus,
the contaminants amounts and their nature may be determined:

ECD =
1
2

Auβ2 (5.11)

where: ECD is the collected energy by the CD detector in [MeV], A is the mass number, β =
v

c
, u is the

atomic mass unit.
The energy lost in the target and the relative cross section can be taken into account in the kinematics.

During the Rb experiments, three different targets have been employed also for this purpose : 60Ni, 120Sn
and 196Pt. In our experiments, no contaminants have been identified after applying the time gates related to
prompt gamma and the associated random windows. By using different targets, the angular cross sections
change and the deposited energies in the target also. According to the deposited energy with different targets
some contaminants could be identified (not in our case).

10.2.3 Beam dump

A coaxial Germanium detector is positioned next to the beam dump. The γ-rays and X-rays detected by
it are used to identify the beam components and natural radioactivity present.

The coaxial Germanium detector of the beam dump has been calibrated with a 152Eu source. The γ-rays
coming from the source and the beam components were recorded at the same time.

As an example, the analysis of the beam dump detector is given for the 93Rb beam, see Fig. 5.18 and
Tab. 5.5. The expected result would be the presence of γ-rays from the radioactive decays of the Rb, Sr, and
Y isotopes, and the X-rays from the species present in the shielding elements (concrete, lead pave, ...). If the
beam is not pure, the amount of radioactive components could be estimated from the relative intensities of
the observed γ-rays.
In all the cases of Rb radioactive beams, the main "contaminants" are the daughter nuclei. The other detected
γ-rays comes from the Pb shield surrounding the devices.
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Eγ [keV] Associated Nuclide(s)
74.1 Pb Kα

85.0 Pb Kβ

168.5 93Y
213.4 93Sr
219.2 93Sr
260.2 93Y(260.1 keV)
266.9 93Zr(266.9 keV)
346.7 93Y(346.4 keV)
377.5 93Y(377.4 keV)
433.0 93Sr(433.1 keV), 93Y(432.7 keV)
446.4 93Y(446.2 keV)
483.2 93Y(482.0 keV)
511.5 From e+/e− pair annihilation
591.0 93Y(591.2 keV)
611.0 93Y(610.9 keV)
664.5 93Y(663.6 keV)
690.5 93Y(690.5 keV)
711.3 93Sr(709.95 keV), 93Y(710.3 keV)
719.7 93Y(718.3 keV)
772.2 93Y(771.2 keV)
789.9 93Y(788.7 keV)
795.5 93Sr(793.7 keV)
836.5 93Y(834.5 keV)
877.8 93Y(875.7 keV)
890.2 93Y(888.1 keV)
903.4 93Y(901.0 keV)
912.8 93Y(910.2 keV)
931.3 93Y(927.8 keV)
988.6 93Sr(986.0 keV)

1043.2 93Y(1040.6 keV)
1068.1 93Sr(1068 keV)
1072.6 93??(?? keV)

Eγ [keV] Associated Nuclide(s)
1096.9 93Sr(1196.7 keV), 93Y(1094.0 keV)
1125.4 93Y(1122.5 keV)
1152.2 93Sr(1148 keV)
1200.2 93Y(1196.2 keV)
1219.0 93Y(1215.48 keV)
1242.9 93Sr(1238 keV)
1272.9 93Y(1269.5 keV)
1280.0 93Y(1277.9 keV)
1311.4 93??(?? keV)
1325.0 93Y(1321.2 keV)
1337.5 93Y(1332.5 keV), 93Sr(1334.5 keV)
1390.0 93Sr(1385.2 keV), 93Y(1387.1 keV)
1439.6 93Y(1434 keV), 93Sr(1437 keV)
1465.7 K
1474.6 93??(?? keV)
1495.9 93Y(1492.1 keV)
1525.4 93??(?? keV)
1556.3 93Y(1551.6 keV)
1568.3 93Sr(1562 keV)
1600.6 93??(?? keV)
1618.5 93??(?? keV)
1640.1 93??(?? keV)
1653.2 93??(?? keV)
1689.9 93Y(1684.8 keV)
1702.8 93Y(1694.1 keV), 93Y(1699.1 keV)
1770.5 93Y(1765.4 keV)
1816.2 93Sr(1808 keV), 93Y(1811 keV)
1876.5 93Sr(1869.7 keV)
1918.7 93??(?? keV)
1935.7 93Y(1928.8 keV)
1987.4 93Sr(1978.3 keV)
2062.4 93Y(2063.6 keV)

Table 5.5: Contaminants and natural radioactivity found in the beamdump detector for 93Rb radioactive
beam.

10.2.4 ISOLDE Beam gate

The ISOLDE beam gate consists in electrostatic deflectors which stop the beam just after the primary
target. The amount of contamination coming from EBIS has been evaluated by comparing the measurements
with and without the ISOLDE beam gate. The trapping and breeding time have been notably optimized in
such way.

Usually, the beamgate is used to reduce the amount of particles impinging on the CD detector (selection
in release time). If the intensity is too high, the silicon detectors are deteriorated and if the experiment doesn’t
request the total products from the ISOL target, the beam gate can be closed. In our case, the total intensity
was sufficiently low and without any contaminants to let the beam gate opened for the whole Coulomb
excitation experiments 4.

10.2.5 β-decay

The radioactive beam brings along its daughter nuclei. The proportion of daughter nuclei produced
during the transport until the secondary target can be calculated from their known half-lives. However, the
recoil energy of the decay can de-confine them in REX-TRAP and REX-EBIS. This process reduces the

4. during the accumulation of statistics
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amount of daughter nuclei on the secondary target, see Tab. 5.6.

The radial electrical potential of the trap is around 10-15 V, which is low compared to the recoil energy
calculated. The radial confinement in the trap is provided by a magnetic field of 3 T. The axial potential is
around 170 V.

The radial electrical potential of REX-EBIS is around 400 V and can let escape some recoil nuclei.
Regarding the axial potential of around 600-700 V, an almost complete confinement is achieved.

However, the amount of daughter nuclei lost by beta decay is difficult to evaluate, because it depends on
several parameters: the recoil energy, the confining potential and the geometry.

Isotope (parent) Mass Qβ Max. Recoil Energy
[a.m.u.] [MeV] [eV]

93Rb 92.9220419 (81) 7.465 (9) 365.976
93Sr 92.9140256 (81) 4.140 (12) 123.459
93Y 92.909583 (11) 2.895 (10) 65.513

95Rb 94.929303 (23) 9.284 (21) 541.019
95Sr 94.9193588 (80) 6.090 (7) 244.930
95Y 94.9128206 (78) 4.451 (7) 137.767

97Rb 96.937352 (33) 10.432 (28) 661.641
97Sr 96.926153 (21) 7.470 (16) 351.299
97Y 96.918134 (13) 6.689 (11) 285.663

99Rb 98.94538 (13) 11.38 (11) 765.642
99Sr 98.933241 (86) 7.530 (19) 349.388
99Y 98.924636 (26) 7.568 (14) 352.742

Table 5.6: Qβ values for the different nuclides, see Ref. [65].

In our case, the daughter nucleus of 97Rb, 99Rb and 99Sr, respectively 97Sr, 99Sr and 99Y, were already
well known, but the β-decay gave us an occasion to study them.

10.2.6 Release

The intensity of the beam after the proton impact on the primary target is called a release curve. If the
release time of a specific species is far from the release time of contaminants and short enough as compared
to the PSB Supercycle (multiple of 1.2 s), thus a selection of the nuclei of interest can be performed.
For example, tagging on a specific γ-ray energy, one could evaluate the half life of the species at the origin
of the transition. The amount of γ-rays, detected along the difference in time between the proton impact and
their detection in the MINIBALL array, is the convolution of the release coming from the primary target and
the half life of the nucleus (β-decay).
The difference between the Rb and Sr isobars release times was too small to be able to separate the different
species.

11 Ionization Chamber

11.1 Calibration

Initially used to set the different devices along the beam transport, the 87Rb has also been employed to
calibrate the ionization chamber. The stable 87Rb is produced from a mass marker in the primary target, see
Fig. 5.19.
The stable 87Rb is charge bred in REX-EBIS up to 21+ (A/q=4.1429) (or 23+) and sent through the LINAC
with a A/q≈ 4.14, close to the settings of the radioactive beam A/q=4.13-4.30.
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Figure 5.19: Ionization Chamber. The 87Rb mass marker.

11.2 Analysis of the Ionization Chamber Telescope

The results of the ionization chamber are shown for the different radioactive beams on the Fig. 5.20.
Some components coming from REX-EBIS were identified in the ionization chamber by closing the

ISOLDE beamgate, e.g. 38Ar9+. The 86Kr is present in the 99Rb radioactive beam. It has an A/q close to the
Rb isotopes and can be brought along from REX-TRAP/REX-EBIS.
An applet is provided by the REX-ISOLDE team on the website of the setup, see Ref. [173], allowing to
identify easily the contaminants candidates in terms of their selection in A/q.

Concerning the 93Rb, there are some rebounds in the ∆E detector corresponding to a bad collection of the
energy, see Fig. 5.19. At some point the gain of the E detector flipped, explaining the two different spots
along the abscissas. If one observes carefully and with attention the plot, the two drops are also seen for the
38Ar9+ contaminant.

The results has been summarized inside the Tab. 5.7.

Beam Nuclide Composition [%] Relative ratio [%] A/q
93Rb 93Rb22+ 64 (0.5) 94.5 (0.6) for Rb+Sr 4.2273

93Sr22+ 4 (0.5) 5.5 (0.3) for Rb+Sr 4.2273
93Nb22+ 7.5 (0.3) 4.2273
38Ar9+ 0.7 (0.1) 4.222

95Rb 95Rb23+ 64 (4) 75 (3) for Rb+Sr 4.1304
95Sr23+ 21 (2) 25 (3) for Rb+Sr 4.1304

97Rb 97Rb23+ 74 (4) 80 (2) for Rb+Sr 4.2174
97Sr23+ 17 (1) 20 (2) for Rb+Sr 4.2174
97Nb22+ 0.23 (0.05) 4.227
38Ar9+ 0.1 (0.05) 4.222
21Ne5+ 0.4 (0.1) 4.2

99Rb 99Rb23+ 6.5 (5) 6.5 (4) for Kr+Rb+Sr+Y 4.304
99Sr23+ + 99Y23+ 8.5 (5) 8.4 (0.4) for Kr+Rb+Sr+Y 4.304

86Kr20+ 85 (1) 85 (1) for Kr+Rb+Sr+Y 4.3
99Rb23+ 43 (3) for Rb+Sr+Y 4.304

99Sr23+ + 99Y23+ 57 (3) for Rb+Sr+Y 4.304

Table 5.7: Beam composition found with the ionization chamber. The "Composition" are normalized on the
total number of particles detected inside the ionization chamber. Some components at low ∆E energy cannot
be identified and contribute to the background.
The "Relative ratio" are normalized to the identified components (indicated in the fifth column).

This technique was the most precise to identify the amount of the different isotopes. The amount of the
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Figure 5.20: Ionization Chamber. The results of the ∆E-E detector inside the ionization chamber are shown
for the different radioactive beams. Thanks to the ionization inside the gas a part of the energy is deposited
and the rest is collected inside a silicon detector placed at the end of the beamline.
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β-decay products increases with shortening the lifetime. However the increase is not a simple proportional
law because a part of the recoiling nuclei are lost in the Penning Trap.
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12 Extraction of Matrix Elements

As mentioned in the Sec. 7 on page 70, the analysis of such Coulomb excitation experiment aims to the
extraction of the matrix elements. The code GOSIA has been used for this purpose. This code has been
developed at the Rochester University in 1980, mainly by Tomasz Czosnyka, see Ref. [190, 191, 192, 193].
The code is regularly updated by the collaboration.

The code performs a "least squares" minimization of calculated and experimental transition yields using
the coupled channel in the semiclassical picture.
To be more explicit, GOSIA adjusts each matrix element according to the minimization of the χ2 in order to
reproduce the observed γ-ray intensities versus the scattering angle. The χ2 values are calculated taking into
account the spectroscopic data already known.

This section describes the different parameters used for the matrix elements extraction. Several files
are used to describe the experiment and the nuclei properties. The steps to extract the matrix elements are
described in details in the following chapter.

12.1 The code GOSIA

12.1.1 Calculated Intensities

The minimization algorithm is an iterative process converging on local solutions. GOSIA operates a
minimization of the χ2, comparing the observed intensities and the calculated intensities from the matrix
elements. The matrix elements are modified for the next iteration. The process stops when the χ2 value is
low enough, or when a certain number of iterations is applied without important modification of the χ2 or
when a certain number of iterations is applied.

Due to the time difference between the excitation (collision) and decay (γ-ray emission) of excited states,
respectively ≃ 10−20 s and ≃ 10−12 s, the two different processes are treated sequentially and independently.
As mentioned previously the energy found for the Doppler corrections does not correspond to the energy at
the excitation time, but at the "average" energy at the exit of the target. However, only the projectile energy
at the excitation point is the relevant, and the energy entered into GOSIA corresponds to the average beam
energy at the middle of the target.

The electromagnetic de-excitation of a nuclear state populated by Coulomb excitation is described in
GOSIA via the double differential cross section over the particle and γ-ray solid angle, see Ref. [113]:

d2σ

dΩParticledΩγ
= σRuther f ord(θParticle)

∑

λµ

Rλµ(IInitial, IFinal)Yλµ(θγ, φγ) (5.12)

where:






θParticle: scattering angle of the particle,
θγ: angle of the γ-ray,
ΩParticle: solid angle for the particle detection,
Ωγ: solid angle for the γ-ray detection,
Rλµ(IInitial,IFinal): statistical tensor of electromagnetic decay for the transition IInitial →IFinal,
σRuther f ord(θParticle): Rutherford cross section.

Single-step excitation The statistical tensor of decay describing the electric and magnetic transitions is
expressed for a single-step excitation as:

Rλµ(IInitial, IFinal) =
1

2γ(I)
√
π

Gλρλµ
∑

λdλ
′
d

δλd
δλ′

d
Fλ(λdλ

′
dIFinalIInitial) (5.13)
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where:






Fλ(λdλ
′
d
IFinalIInitial): correlation coefficient between the magnetic sub-states of the IInitial and

IFinal nuclear states, usually called Ferentz-Rosenzweig coefficient, see Ref. [194],
δλd

: amplitude of the transition IInitial →IFinal with the multipolarity λd. This amplitude is
proportional to the matrix element <IInitial||M(Eλd)||IFinal >, see Ref. [194],
ρλµ: polarization tensor of the nuclear state Iz from a single-step Coulomb excitation I0 →Iz,
Gλ: attenuation factor,
γ(I): emission probability.

The polarization tensor describing the population of magnetic sub-states m f after the excitation of the
corresponding nuclear states I from the initial state I0 can be expressed as:

ρλµ =

√
2I + 1

2I0 + 1

∑

m0m f m′
f

(−1)I−m′
f

(

I λ I

−m′
f

µ m f

)

a∗Im′
f
,I0m0

aIm f ,I0m0 (5.14)

Multi-step excitation As mentioned multi-step excitations to a final nuclear state IFinal can also occur.
During this process, the probability to populate the nuclear states via the decay of higher nuclear states
cannot be excluded. The statistical tensor of electromagnetic decay is re-expressed as:

R
multi−step

λµ (IInitial, IFinal) = Rλµ(IInitial, IFinal) +
∑

z

Rλµ(Iz, IFinal)Hλ(IFinal, Iz) (5.15)

The nuclear states Iz are intermediate states through which the excitation occurs to feed the state IFinal and
Hλ depends on the emission probability (δλd

(Iz →IFinal)).

12.1.2 De-orientation

The attenuation related to the de-orientation effect (Gd
λ) for the recoil in vacuum should be taken into

account. Indeed the hyperfine interaction, taking place between the electron and the nucleus, perturbs the
population of magnetic substates. As a consequence an attenuation of the angular distribution is observed.
The γ-rays angular distribution is expressed as a sum of the Legendre Polynomia Pk(x) as:

W(θγ) =
∑

odd k

akPk(cos(θγ)) (5.16)

with: ak proportional to ρk and Fλ(λdλ
′
d
IFinalIInitial) For an electromagnetic decay by γ-ray of type E2, the

angular distribution is found as:

WE2(θγ) = 1 + a2P2(cos(θγ)) + a4P4(cos(θγ)) (5.17)

Including the de-orientation effect, the E2 angular distribution can be written :

WE2(θγ) = 1 + a2Gd
2P2(cos(θγ)) + a4Gd

4P4(cos(θγ)) (5.18)

where: Gd
λ takes into account the de-orientation effect according to the de-excitation time, the spin and the

gyro-magnetic factor 5 of the nuclear state. If the gyro-magnetic factor is not known, it is evaluated using the
approximation g ≈ Z

A
.

Attenuation factor The attenuation factor has been already mentioned in the Chap. 5.3 on page 66. Gλ

takes into account the angular distribution corrections due to the geometry of the detecting elements and
corrections due to the de-orientation effect. The coefficient corrects the effect of the relativistic Lorentz
boost, the finite size of the detecting elements and its time perturbation caused by the de-orientation effect
(depolarization).
GOSIA uses a modified version of the original two-state de-orientation model of Abragam and Pound, see
Ref. [195].

5. The gyro-magnetic factor (g) is usually gfactor.
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12.1.3 Geometry

The attenuation related to the experimental setup depends on its geometry, the materials and the γ-ray
energy. The introduced geometry of the detectors in GOSIA is based on a coaxial type. The attenuation due
to surrounding materials, such as the capsule material (Al) which can stop X-rays, is also taken into account.
The experimental γ-rays yields are obtained summing over the cluster array, they constitute inputs of the
code. An efficiency curve can be associated to the yield in order to correct them.
The particle detector is represented by a cylindrical volume placed perpendicularly to the beamline axis 6.

12.1.4 Conversion Electrons

The raw experimental yields serves as input parameters. However as mentioned previously, the elec-
tromagnetic decays are partially converted and corrections have to be included. The internal conversion
coefficients for the different nuclei can be calculated inside GOSIA, but they have been extracted from the
online application "BrIcc v2.3S Conversion Coefficient Calculator", see Ref. [124, 125, 196, 197].

12.1.5 Nuclear Structure

Some nuclear structure data are available for the 60Ni target. The Coulomb excitation can populate the
first 2+1 nuclear state of the target at 1332.518(5) keV. Its static quadrupole moment is known Q = +0.03(5).
The half life is 0.77(4) ps. The transition strength is B(E2)=12.5 W.u.
The associated matrix elements < 0+1 ||E2||2+1 > and < 2+1 ||E2||2+1 > have been included in the minimization
calculation.

After the shape transition, none of the excited structures of Rb isotopes are known. The only available
informations are the gyromagnetic factors of the ground states and their quadrupole moments.

12.2 Particle Kinematic Integration

Finally, the result of GOSIA is expressed as the integrated yield of each γ-ray transition from each
excited state I. In order to reproduce the experimental transition yields, the double differential cross section
integrations needs to take into account the azimuth angular coverage of each θParticle describing the particle
detector. In our case the angular coverage is simulated via annular cylindrically symmetric volumes along
the beamline axis. The empty spaces separating the different quadrants of the CD detector have been not
taken into account.
The incident particle loss energy passing through the target. GOSIA is not able to evaluate the stopping
powers in the target. The energy loss can be expressed as a sequential list of stopping power inside the target
(different values of stopping power are associated to different thicknesses). The γ-ray and Rutherford cross
section can be respectively integrated over the total Germanium and CD detector solid angles. However,
in our case the overlap of kinematics impose to integrate on the restricted set of events. The calculated
intensities(or yields) are found as:

YCalculated
γ =

∫ EMax.

EMin.

dE
1
dE
dx

∫ θParticle,Max.

θParticle,Min.

sin(θParticle)dθParticle

∫

φParticle

d2σ(IInitial → IFinal)
dΩParticledΩγ

dφParticle (5.19)

The ratio of the yields is assumed equivalent to the experimental intensities ratios, and one can have a direct
access to the transition strengths.

12.3 Minimization

In the code, the studied nucleus can be defined as target or projectile. Again due to the kinematics overlap,
the studied nucleus is chosen as the target nuclei (identifiable). Several targets can be used in the same
minimization process, for which the angular coverage is properly defined.
This technique should work pretty well at condition that least one transitional matrix element is known. If
not, the normalization of the different matrix elements is impossible.
An alternative version of the code GOSIA2 has been used and permits to treat at the same time the target and
projectile excitation leading to an easier normalization of the matrix elements. Generally like in our case, the

6. The empty spaces between the detecting elements are neglected.
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projectile matrix elements are normalized to the target excitation.

During the minimization process, all the unknown nuclear properties of the nuclear states are treated as
free parameters or can be forced to evolve inside a specific range. In addition, the integration over a large
angular distribution contributes to reduce the sensitivity. In order to optimize the minimization process and
reduce the systematic errors, the totality of the spectroscopic data needs to be included.

The lowest requirement is the input of the relative experimental yields and the angular coverages.

12.4 Error determination

The statistical errors on the non-diagonal matrix elements are determined using the intensities of the
related transitions of the projectile and target nuclei. They are the most important errors, due to the important
errors found for the γ-ray intensities.

The systematic errors found for the matrix elements come principally from the uncertainties on the beam
energy, the error on the target matrix elements used to normalize.

After Doppler correction, some of the peaks cannot be identified due to their too close energies, and they
form e.g. doublet, triplet. In our cases, one observe some γ-ray transitions coming from the same nucleus.
Their respective intensities can be summed or dispatched in two different transitions. This error has to be
taken into account if the intensities have the same order of magnitude. In our case, one doublet are present in
each 93,95Rb. Fortunately, those transitions were already known and the respective intensities of the double
peaks have been evaluated from the present data set and the previous studies. The resulting error would be
taken as the enlargement of the errors on the two respective γ-ray intensities. The presence of the higher
transition would impact on the minimization "more" than its intensities.

In the 93,95Rb, the level scheme are already well known and the coupling to unknown excited states is
very small and thus neglected. I contrary, the 97,99Rb states are not known and the potential coupling to
unknown transition can influence significantly the matrix elements calculated with the minimization process.
One can cite the appearance of virtual excitations influencing the Coulomb excitation cross section and thus
the diagonal matrix elements (second order treatment).
Extra states have been added on top of the rotational bands. The systematics observed in the energies of the
rotational bands has been used to placed them in energy. The influence of such introduction is discussed in
the following Ref. [198] notably in terms of parity nature.

The description of the different numerical processes to obtain the error is presented in the GOSIA User’s
manual [192]

13 Conclusion

A specific code has been developed to perform such Coulomb excitation analysis with all the requested
tools to extract from the raw data the relevant informations. Trees of events has been created creating
correlation between particles and γ-rays hits. Several algorithms have been investigated to "reconstruct" the
event, to improve their quality and increase the statistics. Their small impact on the data imposes to reject
their use.
The ratio signal/noise has been mainly improved by the substraction of a random set of events taken before
the prompt events.
After the calibration of the different detectors, the efficiency of the γ-ray detectors has been performed,
insuring an appropriated normalization of the transition intensities.
In order to integrate the different γ-ray transition intensities, Doppler correction has been applied on the data.
To be able the application of such correction the position of the detectors of the whole setup had to be well
known.
The importance of the beam components sometimes including a important proportion of contaminants has
been evaluated with an ionization chamber. The presence of contaminants changes the excitation of the
target/projectile nuclei. It can deteriorates the normalization of the projectile excitation matrix elements
with the target excitation matrix elements. Finally, to extract the matrix elements of the electromagnetic
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multipolar operator the Coulomb excitation sofware GOSIA has been used.
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Chapter 6

Results

1 Introduction

The results of the Coulomb excitation experiments on 93,95,97,99Rb are presented in this chapter by case
by case. The 95,97,99Sr and 99Y nuclei are also discussed, giving new insight on neighboring nuclei.
Level schemes and excitation transition strengths are deduced from the present work. Some coincidence
spectra are given for 97Rb as example of typical analysis used to deduce the level schemes.
Candidates for unknown transitions are sought by scanning spectra gated on previously known transitions or
transitions already assigned to a specific nucleus.

2 93Rb case

In this Coulomb excitation experiments, the reduced transition strengths of the 93Rb isotope are obtained
from the corrected γ-ray transition yields (efficiency and conversion electron corrections). They are normal-
ized to the target excitation using its known transition strength of the first excited state B(E2, 0+1 → 2+1 ).
The 60Ni target has been chosen because it permits to fulfill the "safe" Coulomb excitation conditions and
the high energy of the first excited state avoids an overlap with the expected low transition energies. The
entire set of data corresponding to the 93Rb is discussed in this section.

The Coulomb excitation of the 93Rb isotope has been taken as an experimental reference in order to test
and validate our analysis treatment, justifying at the same time the use of the MINIBALL experimental setup
for such study.

2.1 Analysis

2.1.1 Prompt/Random Subtraction

In order to operate a data selection and improve the Signal/Noise ratio, the subtraction of random events to
prompt events has been applied using prompt particle-γ condition. Similar subtractions have been applied for
each cases. A representation of the time difference between the particle and gamma detection (TParticle−Tγ)
is given for the 93Rb case on Fig. 6.1 on the next page. The prompt and random coincidence time-window are
equal in time. Sometimes, the random coincidence gate is taken larger than the prompt one and a rescaling is
applied on it; however, in such case the decay lifetimes will be averaged. No conditions are applied on the
particle-γ ray coincidences except the application of thresholds to reject low particle/γ-ray energy events
(their nature cannot be determined).

2.1.2 Doppler correction

As mentioned previously, the Doppler correction has been produced in two main different ways. The first
is applied using the restricted kinematics and the other on the total kinematics. The advantage of the first
case is the absence of overlap between the target and projectile events, leading to a correct identification
of the particle nature. In the second case the resolution and the peak ratios are deteriorated, however the
statistics is higher in the overlap zone.
Using the restricted kinematics zone, the Rutherford scattering kinematics can be adopted. Detecting the
position of a particle hit in the CD detector, the projectile and scattering angles can be calculated by giving
the incident beam energy. The Doppler corrected spectra for the projectile/target particle are shown on the
Fig. 6.3(landscape).
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Figure 6.1: Prompt/Random Coincidences - Time difference particle-γ for mass A=93.

2.2 Gamma ray Intensities

The γ-ray intensities obtained in the Coulomb excitation are given on the Tab. 6.2(landscape) for the
restricted kinematics. The raw intensities extracted from the data set have been corrected considering the
absolute efficiency of the detectors and the conversion electron coefficients. The latest were assumed of pure
M1 or E2 type.

2.3 The nuclear structure at low energy

The level schemes have been constructed using single γ-ray intensities and γ-γ coincidences. The level
scheme of 93Rb is presented on the Fig. 6.2.

A self-coincidence has been identified at 253 keV analyzing the intensities of the related peaks in multiple
projections of γ-γ matrices. The relative intensities have been estimated taking in to account the intensities
found in projections.
The single spectra led also to highlight the long lived nature of the nuclear state at 266 keV. Comparing the
Doppler corrected and non-Doppler corrected spectra, we could identify that the 266 keV transition has
relatively long lifetime. Taking into account that the time of flight between the target and the CD detector is
around ∼2 ns, we could estimate that the lifetime of the transition is around the same value.
The more intense 253 keV transition has been observed as prompt, thus the half life of 57 µs previ-
ously deduced is discounted. The wrong assignment has already been reported by J.J. Ressler et al., see
Ref. [199, 200, 201]. New transitions have been identified compared to the beta-decay studies.

A summary of the estimated half-live from the previous and the present studies is given on Tab. 6.1.

Nucleus Elevel [keV] Iπ T 1
2

93Rb 0 (g.s.) 5/2- 5.84 (2) s
253.39 (3) 3/2-, 5/2- 57 (15) µs
266.86 (3) 1/2-, 3/2-, 5/2- 2.0 (2) ns
323.95 (3) 3/2-, 5/2- < 0.7 ns
506.01 (4) 1/2-, 3/2- < 0.7 ns
733.40 (24) (7/2-)
820.52 (3)
912.71 (24) (7/2-)

Table 6.1: Estimated half-live and spins for 93Rb from previous experiments.

Sometimes, the nucleus emitting γ-ray is difficult to identify for some transitions with low intensities, see
Tab. 6.3(landscape). Some of them are not in coincidence with strong transitions and cannot be confirmed.
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Figure 6.2: 93Rb level scheme. The nuclear spin Iπ and the energy of the states are given respectively at the
left/right. The energy of the transition are positioned in the middle or beside the transition arrow. The width
of the transition is proportional to the observed transition intensity.

However, the high purity of the beam (∼ 5% of Sr and ∼ 95% of Rb) emphasizes that those transitions should
come from the 93Rb nucleus or one of its beta-decay daughter nuclei, see Sec. 11.2 on page 125.
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Figure 6.3: γ-ray Energy Spectra for 93Rb (restricted zone). (*) Unknown.
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Eγ [keV] IMeas.
γ Coef. (M1) Coef. (E2) IE f f+Conv(M1) IE f f+Conv(E2) Observation

(3/2-) 3/2- 71 (2) 38 (20) 0.377 3.40 259 (136) 826 (435) (γ-γ (253,497))?, rest. kin. (extremely weak),①
(7/2-) (7/2-) 179.5 (5) 107 (20) 0.03 - 446 (83) -
3/2- 5/2- 253.2 (6) 7425 (105) 0.01239 - 35910 (508) - γ-γ (70)

(3/2-) 3/2- 253.0 (5) ∼153 (33) 0.0124 - 740 (162) - ②

1/2- 5/2- 265.9 (1) 1178 (152) - 0.0276 - 5948 (767)
(3/2-) 5/2- 323.8 (2) 707 (45) 0.00671 - 3956 (252) -
(7/2-) (3/2-) 409.4 (15) - - 0.00641 - - pmr93DC, ③

(7/2-) (3/2-) 481.0 (15) 40 (19) - 0.00386 - 290 (138)
(3/2-) (3/2-) 497.1 (4) 357 (37) 0.00241 - 2645 (274) -
(7/2-) 5/2- 733.8 (5) 2935 (62) 0.000994 - 27706 (585) -
(3/2-) 5/2- 819.9 (6) 218 (19) 0.000781 - 2191 (191) -
(7/2-) 5/2- 913.0 (6) 1854 (48) 0.000618 - 19765 (512) -
Target Excitation 1332.8 (5) 2196 (50) - - - 29940 (682)

Table 6.2: 93Rb γ-ray intensities. IMeas.
γ are the raw intensities measured. Coef. (M1) and Coef. (E2) are respectively the M1 and E2 conversion electron coefficients calculated

from Ref. [196]. IE f f+Conv(M1) and IE f f+Conv(E2) are intensities with efficiency correction and conversion electrons correction. Some comments or observations are added in
case of difficulties to determine the properties of the transition. In order to respect a proper ratio between intensities, the identification of the particle is necessary. For that
purpose, the detected particles in the restricted kinematic zone have been treated.
Observation legend :
–––– rest. kin. : restricted kinematics spectra with Doppler corrections (A=93), with random subtraction
– pmr93DC : spectra with Doppler corrections (A=93), with random subtraction, all kinematics
– γ-γ (Eγ [keV]) : observation of the transition in the projection of the γ-γ matrix for an energy gate at Eγ, with Doppler correction (A=93), random subtraction, all kinematics
Observation comments :
① possible transition of 93Rb between the level 323.8 and 253.1
② The intensity of the 253.23 and 253.0 keV transitions are estimated using the single and γ-γ spectra and their related efficiencies.
③ The intensity is too weak in the restricted zone, however the transition is observed in random subtracted spectra for all the kinematics.
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Eγ [keV] IMeas.
γ Coef. (M1) Coef. (E2) IE f f+Conv(M1) IE f f+Conv(E2) Observation

? ? 314.1 (6) 93 (30) 0.00723 0.01548 510 (165) 514 (166) rest. kin.
? ? 401.3 (3) 96 (18) 0.00684 0.00399 620 (116) 618 (116) rest. kin.
? ? 431.9 (5) 176 (24) 0.00335 0.0054 1189 (162) 1192 (163) rest. kin.

Target Excitation 1332.8 (5) 2196 (50) - - - 29940 (682)

Table 6.3: Unknown or Weak γ-ray intensities for the 93Rb case. IMeas.
γ are the raw intensities measured. Coef. (M1) and Coef. (E2) are respectively the M1 and E2 conversion

electron coefficients calculated from Ref. [196]. IE f f+Conv(M1) and IE f f+Conv(E2) are intensities with efficiency correction and conversion electrons correction. Some comments
or observations are added in case of difficulties to determine the properties of the transition. In order to respect a proper ratio between intensities, the identification of the
particle is necessary. For that purpose, the detected particles in the restricted kinematic zone have been treated.
Observation legend :
–– rest. kin. : restricted kinematics spectra with Doppler corrections (A=93), with random subtraction

138
2.

93R
B

B
E

A
M



CHAPTER 6. RESULTS

2.4 Extraction of matrix elements and transition strengths with GOSIA2 calcula-
tions for 93Rb

The transitions strengths deduced from the γ-ray yields are normalized to the target excitation. In order
to treat simultaneously the target and projectile excitation a new version of GOSIA has been used : GOSIA2.
The relative intensities were extracted from the restricted kinematics zone. They are given in the Tab.
6.2(landscape).
The corrected transition yields of the target excitation (0+1 → 2+1 ) are input to GOSIA2. The different
characteristics of the first excited level of the 60Ni are well known and used as inputs, see Tab. 6.4. The

Levels
Index Iπ

nb.
Energy T 1

2

[keV] [ps]
1 0+1 stable
2 2+1 1333.518(5) 0.77

Iπ
Final

Iπ
Initial

Transition Energy Q Matrix Elt.(*)
[keV] [eb]

2+1 0+1 1332.501(5) - 0.3060.308
0.303

2+1 2+1 - 0.03(5) -0.137−0.113
−0.161

Iπ
nb.

Lifetime Calculated Error Exp. Calc. Error
[ps] Lifetime [ps] [ps] Yield Yield [%]

2+1 1.11 (0.06) 1.039 0.06 25110 25180 0.3

Table 6.4: Properties of the first excited states (0+1 → 2+1 ) of the 60Ni (target nucleus). (The minimization
calculations stopped at 0.3%, it corresponds to the experimental error.) (* error bars put in the minimization
code)

minimization routine fits the matrix elements of the 93Rb. The matrix elements of the target (60Ni) has been
fixed to their adopted values, see Tab. 6.4, see Ref. [168].

The known characteristics from previous experiments [104] are used as input in GOSIA2 and are used
to constrain the minimization: level schemes, lifetimes, quadrupole moments, known matrix elements and
branching ratios.

In the present case, additional information like the lifetime of the 266 keV states were already known.
Consequently, one tried to evaluate the influence of the different parameters in the minimization. The
transition strengths obtained with the GOSIA2 minimization are given in the Tab. 6.6.
The weight applied on the matrix elements does not change significantly the minimization, as well as the low
quadrupole moment of the 93Rb. Nevertheless, in our case, the introduction of branching ratios constrains
noteworthy the matrix elements.

Iπ
Final

Iπ
Initial

Energy Transition strengthUpper Error
Lower Error

[keV] no BR/LT; w=1 BR/LT; w=0.5 BR/LT; w=1 BR/LT ; w=1; Q
(3/2−) (5/2−) 253 0.046+0.011

−0.002 0.044+0.011
−0.002 0.044+0.011

−0.002 0.043+0.010
−0.001

B
(E

2)
[e

2
b

2
]

(1/2−) (5/2−) 266 0.016+0.005
−0.004 0.018+0.004

−0.003 0.017+0.004
−0.003 0.017+0.003

−0.001
(3/2−) (5/2−) 324 0.002+0.002

−0.002 0.002+0.002
−0.002 0.002+0.002

−0.002 0.002+0.001
−0.001

(7/2−) (5/2−) 734 0.033+0.003
−0.005 0.032+0.003

−0.004 0.032+0.003
−0.005 0.034+0.002

−0.003
(3/2−) (5/2−) 820 0.015+0.007

−0.003 0.014+0.005
−0.002 0.014+0.005

−0.002 0.013+0.003
−0.001

(7/2−) (5/2−) 913 0.036+0.008
−0.009 0.034+0.002

−0.008 0.034+0.002
−0.008 0.037+0.001

−0.006
(3/2−) (3/2−) 252 0.012+0.079

−0.013 0.013+0.080
−0.014 0.013+0.08

−0.014 0.013+0.079
−0.013

(7/2−) (3/2−) 481 0.003+0.004
−0.003 0.003+0.004

−0.003 0.003+0.004
−0.003 0.003+0.003

−0.002
(7/2−) (3/2−) 409 0.025+0.020

−0.007 0.023+0.018
−0.007 0.023+0.02

−0.007 0.025+0.015
−0.007

(3/2−) (3/2−) 497 0.004+0.079
−0.005 0.007+0.068

−0.008 0.011+0.091
−0.012 0.016+0.012

−0.005
(7/2−) (7/2−) 179 0.002+2.4

−0.003 0.001+2.3
−0.002 0.002+2.3

−0.003 0.002+1.8
−0.002

(3/2−) (5/2−) 253 0.003+5.8
−0.004 0.001+6.0

−0.002 0.002+6.2
−0.003 0.001+6.0

−0.001

B
(M

1)
[µ

2 N
]

(3/2−) (5/2−) 324 0.003+5.8
−0.004 0.001+6.0

−0.002 0.001+6.0
−0.002 0.001+6.0

−0.001
(3/2−) (3/2−) 252 0.002+6.3

−0.003 0.000+6.0
−0.000 0.000+6.0

−0.000 0.000+6.0
−0.000

(3/2−) (3/2−) 497 0.018+0.011
−0.005 0.014+0.004

−0.003 0.013+0.003
−0.003 0.011+0.002

−0.002
(7/2−) (7/2−) 179 0.066+0.053

−0.035 0.063+0.05
−0.033 0.063+0.050

−0.033 0.068+0.052
−0.035

Table 6.6: Transition strengths extracted with the GOSIA2 code for the 93Rb case. Constraint added during
the minimization: BR = branching ratio, LT = lifetime , Q = quadrupole moment , w = weight of the matrix
elements.
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The Coulomb excitation is not sensitive towards the M1 matrix elements. For example, in our case, the
B(M1) transition strengths are consistent with zero within the error bars, except for the 497 keV and 179
keV transition which are relatively mixed according to the minimization calculation, see Tab. 6.6.

3 95Rb case

3.1 Analysis

Similar analysis than for the 93Rb isotope have been performed for the 95Rb case, see Subsec. 2. The
Doppler corrected spectra for the projectile/target particle are shown on the Fig. 3.3(landscape).

3.2 Gamma ray Intensities

The γ-ray intensities obtained in the Coulomb excitation are given on the Tab. 6.7, 6.8(landscape) for the
restricted kinematics. The raw intensities extracted from the data set have been corrected considering the
absolute efficiency of the detectors and the conversion electron coefficient. The latest were assumed of pure
M1 or E2 type.

3.3 The nuclear structure at low energy

The level scheme has been constructed using single γ-ray intensities and γ-γ coincidences. The level
scheme of 95Rb is presented on the Fig. 6.4.

Figure 6.4: 95Rb level scheme. The nuclear spins Iπ and the energy of the nuclear states are given respectively
at the left/right. The energy of the transition are positioned beside the transition arrow. The width of the
transition is proportional to the observed transition intensity.

A self-coincidence has been identified at 254 keV analyzing the intensities of the related peaks in multiple
projections of γ-γ matrices. The relative intensities have been estimated taking into account the intensities
found in the projections.
The single spectra led also to highlight the long lived nature of the nuclear state at 236 keV. Comparing
the Doppler corrected and non-Doppler corrected spectra we could identify that the 236 keV transition
has relatively long lifetime. Taking into account that the time of flight between the target and the CD
detector is around ∼2 ns, we could estimate that the lifetime of the transition is around the same value. New
transitions have been identified compared to the beta-decay studies. The 85 keV transition has been observed
in coincidence with the 254 keV energy and in the single spectra, it can correspond to the 71 keV transition
in the 93Rb isotope.

Sometimes, the nucleus emitting γ-ray is difficult to identify for some transitions with low intensities,
see Tab. 6.9(landscape). Some of them does not coincide with strong transitions and cannot be confirmed.
However, the high purity of the beam excludes the contaminant possibility and emphasizes that those
transitions should come from the 95Rb or one of its beta-decay daughter nuclei, see Sec. 11.2 on page 125.
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Figure 6.5: Gamma ray Energy Spectra for 95Rb radioactive beam (restricted zone). (*) Unknown.
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Eγ [keV] IMeas.
γ Coef. (M1) Coef. (E2) IE f f+Conv(M1) IE f f+Conv(E2) Observation

1/2- 5/2- 235.6 (2) 961 (228) - 0.0423 - 4598 (1091)
3/2- 5/2- 253.9 (10) 5934 (93) 0.0123 - 28741 (450) - γ-γ (85,384)

(3/2-) 3/2- 252.8 (10) ∼135 (45) 0.0123 - 652 (217) - ①

(7/2-) (7/2-) 312.5 (3) 232 (30) 0.00732 - 1269 (164) -
(3/2-) 5/2- 339.2 (4) 376 (41) 0.006 - 2165 (236) -
(7/2-) 3/2- 366.3 (5) 161 (33) - 0.00923 - 979 (201)
(3/2-) (3/2-) 399.2 (4) 147 (27) 0.00404 - 943 (173) -
(7/2-) 5/2- 619.3 (1) 3798 (67) 0.001452 - 32422 (572) -
(3/2-) (3/2-) 737.7 (3) 411 (30) 0.000982 - 3891 (284) -
(7/2-) (3/2-) 932.2 (2) 1386 (40) 0.000592 - 14944 (431) -
Target Excitation 1332.5 (3) 1772 (43) - - - 24159 (586)

Table 6.7: 95Rb γ-ray intensities. IMeas.
γ are the raw intensities measured. Coef. (M1) and Coef. (E2) are respectively the M1 and E2 conversion electron coefficients calculated

from Ref. [196]. IE f f+Conv(M1) and IE f f+Conv(E2) are intensities with efficiency correction and conversion electrons correction. Some comments or observations are added in
case of difficulties to determine the properties of the transition. In order to respect a proper ratio between intensities, the identification of the particle is necessary. For that
purpose, the detected particles in the restricted kinematic zone have been treated.
Observation legend :
–– γ-γ (Eγ [keV]) : observation of the transition in the projection of the γ-γ matrix for an energy gate at Eγ, with Doppler correction (A=95), random subtraction, all kinematics
Observation comments :
① The intensity evaluation of 253.9 and 252.8 keV transition are done comparing the single and γ-γ spectra.
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Eγ [keV] IMeas.
γ Coef. (M1) Coef. (E2) IE f f+Conv(M1) IE f f+Conv(E2) Observation

(7/2+) (3/2+) 204.0 (20) - - - - - prompt, random
(3/2+) (3/2+) 328.5 (2) 239 (32) 0.00648 0.01329 1349 (181) 1358 (182) rest. kin., γ-γ (352)
(3/2+) 1/2+ 351.9 (2) 750 (52) 0.00548 0.01054 4425 (307) 4447 (308) rest. kin., γ-γ (328)
(9/2+) (7/2+) 682.4 (20) - - - - - prompt, random
Target Excitation 1332.5 (3) 1772 (43) - - - 24159 (586)

Table 6.8: 95Sr γ-ray intensities. IMeas.
γ are the raw intensities measured. Coef. (M1) and Coef. (E2) are respectively the M1 and E2 conversion electron coefficients calculated

from Ref. [196]. IE f f+Conv(M1) and IE f f+Conv(E2) are intensities with efficiency correction and conversion electrons correction. Some comments or observations are added in
case of difficulties to determine the properties of the transition. In order to respect a proper ratio between intensities, the identification of the particle is necessary. For that
purpose, the detected particles in the restricted kinematic zone have been treated.
Observation legend :
––––– prompt : prompt spectra without Doppler correction, all kinematics
– random : random spectra without Doppler correction, all kinematics
– rest. kin. : restricted kinematics spectra with Doppler corrections (A=95), with random subtraction
– γ-γ (Eγ [keV]) : observation of the transition in the projection of the γ-γ matrix for an energy gate at Eγ, with Doppler correction (A=95), random subtraction, all kinematics
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Eγ [keV] Observation
(3/2-) 3/2- 85 (2) γ-γ (254), It could correspond to the transition between the 339.2 keV and 253.9 keV levels, similar to the 71 keV transition in the 93Rb.
(3/2-) (3/2-) 197 (2) γ-γ (339), It could correspond to a level above the 253.9 kev, between the 339.2 keV level and a hypothetic level at around 536 keV.
(7/2-) (3/2-) 280.4 (30) γ-γ (254,339), It could correspond to the transition between the level 619.4 keV and 339.2 keV

? ? 283 (2) γ-γ (254), It could correspond to a level above the 253.9 kev, between the 253.9 keV level and a hypothetic level at around 536 keV.
(7/2-) 3/2- 383.8 (30) γ-γ (254), It could correspond to the transition between the 619.4 keV and 235.62 keV levels.
(7/2-) 3/2- 480 (3) γ-γ (254), It could correspond to the transition between the 737.7 keV and 253.9 keV levels, or decay from the daughter nucleus 95Sr

Table 6.9: Unknown or Weak γ-ray intensities for the 95Rb case. Some comments or observations are added in case of difficulties to determine the properties of the transition.
The present transition are too weak to be identified in the restricted kinematics plots.
Observation legend :
–– γ-γ (Eγ [keV]) : observation of the transition in the projection of the γ-γ matrix for an energy gate at Eγ, with Doppler correction (A=95), random subtraction, all kinematics
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CHAPTER 6. RESULTS

3.4 Extraction of matrix elements and transition strengths with GOSIA2 calcula-
tions

The transitions strengths values deduced from the γ-ray yields are normalized to the target excitation, see
Tab. 6.4. In order to treat simultaneously the target and projectile excitation the GOSIA2 has been used.
The relative intensities were extracted from the restricted kinematic zone. They are given in the Tab. 6.7(land-
scape).

Iπ
Final

Iπ
Initial

Energy Tr. strengthUpper Error
Lower Error

[keV] no BR/LT; w=1 ; Q
1/2− 5/2− 236 0.018+0.004

−0.004

B
(E

2)
[e

2
b

2
]

3/2− 5/2− 254 0.055+0.010
−0.007

(3/2−) 5/2− 339 0.003+0.001
−0.003

(7/2−) 5/2− 619 0.055+0.005
−0.004

(3/2−) 5/2− 738 0.023+0.003
−0.003

(7/2−) 5/2− 932 0.048+0.004
−0.003

(3/2−) 3/2− 252 0.012+0.005
−0.012

(7/2−) 3/2− 366 0.093+0.034
−0.038

(3/2−) (3/2−) 399 0.071+0.258
−0.071

(7/2−) (7/2−) 312 0.002+0.213
−0.002

(3/2−) (3/2−) 254 0.002+5.0
−0.002

B
(M

1)
[µ

2 N
]

(3/2−) 5/2− 339 0.002+5.0
−0.002

(7/2−) (5/2−) 619 0.025+0.030
−0.010

(3/2−) 5/2− 738 0.058+0.039
−0.015

(7/2−) 5/2− 932 0.018+0.013
−0.009

(3/2−) 3/2− 252 0.000+6.0
−0.000

(3/2−) (3/2−) 399 0.109+0.042
−0.041

(7/2−) (7/2−) 312 0.174+0.034
−0.035

Table 6.10: Transition strengths extracted with the GOSIA2 code for the 95Rb case. Constraint added during
the minimization: BR = branching ratio, LT = lifetime , Q = quadrupole moment , w = weight of the matrix
elements in the minimization process.

Contrary to the 93Rb case, the low amount of known branching ratio cannot constrain the minimization
process and it leads to relatively high B(M1). However, the minimization process merges probably on a local
solution for which the B(M1) deviate from zero (low M1 sensitivity of Coulomb excitation). The M1 matrix
elements have been changed and does not impact the minimization on the E2 transition strengths.
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4 97Rb case

4.1 Analysis

Before the present study, the excited structure of the 97Rb nucleus was completely unknown, which
added an extra difficulty to assign the transition to a specific nucleus. Fortunately, a clear identification of the
decay parents was possible mainly thanks to a high beam purity (∼ 75% Rb, ∼ 25% Sr), see Subsec. 11.2 on
page 125.
The amount of 97Sr in the beam allowed to realize its Coulomb excitation at the same time. Thus, the
excitation engendered by the 97Sr needs to be taken into account during the normalization. It is meaningful
to estimate that the Sr and Rb nuclei excite in the same way the target nucleus thanks to their close (A,Z)
combinations. The excitation yields observed from the target would be assumed coming for the Sr and Rb
nuclei proportionally to their respective presence in the beam.

Similar analysis than for the previous cases has been performed for the 97Rb case, see Sec. 2, 3.
The Doppler corrected spectra for the projectile/target particle are shown on the Fig. 6.6(landscape).

4.2 Gamma ray Intensities

The γ-ray intensities obtained in the Coulomb excitation are given on the Tab. 6.11(landscape) for the
restricted kinematics. The raw intensities extracted from the data set have been corrected considering the
absolute efficiency of the detectors and the conversion electron coefficient. The latest were assumed of pure
M1 or E2 type.
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Kπ Iπ
i

Iπ
f

Eγ [keV] IMeas.
γ Coef. (M1) Coef. (E2) IE f f+Conv(M1) IE f f+Conv(E2) Observation

3/2+ (5/2+) 3/2+ 68.10 (1) 24668 (202) 0.424 - 182607 (1495) -
3/2+ (9/2+) (7/2+) 103.1 (2) 5915 (101) 0.1333 - 25497 (435) -
3/2+ (7/2+) (5/2+) 123.7 (1) 20670 (144) 0.0807 - 83499 (582) -
3/2+ (13/2+) (11/2+) 136.6 (6) 259 (45) 0.0623 - 1037 (180) -
3/2+ (7/2+) 3/2+ 191.9 (2) 1297 (44) - 0.0887 - 5872 (199)
3/2+ (9/2+) (5/2+) 226.8 (3) 1274 (46) - 0.0485 - 6010 (217)
3/2+ (11/2+) (9/2+) 242.7 (3) 1826 (51) 0.0138 - 8632 (241) -
1/2+ (9/2+) 9/2+ 275.3 (3) 127 (16) 0.01003 0.0244 644 (81) 653 (82) rest. kin.
3/2+ (11/2+) (7/2+) 345.8 (4) 516 (28) - 0.0112 - 4352 (203)
1/2+ (1/2+) 3/2+ 355.3 (3) 729 (34) 0.0807 - 83499 (582) - ①

3/2+ (13/2+) (9/2+) 379.2 (6) 261 (22) - 0.0083 - 1623 (137)
? ? ? 492.0 (10) - - - - - pmr97DC

Target Excitation 1332.9 (5) 542 (25) - - - 7387 (341)

Table 6.11: 97Rb γ-ray intensities. IMeas.
γ are the raw intensities measured. Coef. (M1) and Coef. (E2) are respectively the M1 and E2 conversion electron coefficients calculated

from Ref. [196]. IE f f+Conv(M1) and IE f f+Conv(E2) are intensities with efficiency correction and conversion electrons correction. Some comments or observations are added in
case of difficulties to determine the properties of the transition. In order to respect a proper ratio between intensities, the identification of the particle is necessary. For that
purpose, the detected particles in the restricted kinematic zone have been treated.
Observation legend :
––– rest. kin. : restricted kinematics spectra with Doppler corrections (A=97), with random subtraction
– pmr97DC : spectra with Doppler corrections (A=97), with random subtraction, all kinematics
Observation comments :
① possible overlap with the 355 keV of 97Sr
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Eγ [keV] IMeas.
γ Coef. (M1) Coef. (E2) IE f f+Conv(M1) IE f f+Conv(E2)

1/2+ 3/2+ 1/2+ 166.9 (2) 986 (42) 0.0405 - 4053 (173) -
1/2+ (3/2+) 3/2+ 432.8 (3) - - - - -
1/2+ (1/2+) 1/2+ 522.7 (3) 203 (19) - 0.0032 - 1558 (146)
1/2+ 3/2+ 1/2+ 586.7 (6) 100 (16) 0.0018 0.0023 826 (132) 826 (132)
1/2+ (3/2+) 1/2+ 600.2 (6) 113 (29) 0.0017 0.0022 946 (243) 946 (243)

Target Excitation 1332.9 (5) 542 (25) - - - 7387 (341)

Table 6.12: 97Sr γ-ray intensities. IMeas.
γ are the raw intensities measured. Coef. (M1) and Coef. (E2) are respectively the M1 and E2 conversion electron coefficients calculated

from Ref. [196]. IE f f+Conv(M1) and IE f f+Conv(E2) are intensities with efficiency correction and conversion electrons correction. Some comments or observations are added in
case of difficulties to determine the properties of the transition. In order to respect a proper ratio between intensities, the identification of the particle is necessary. For that
purpose, the detected particles in the restricted kinematic zone have been treated.
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Eγ [keV] IMeas.
γ Coef. (M1) Coef. (E2) IE f f+Conv(M1) IE f f+Conv(E2) Observation

1/2+ 3/2+ 1/2+ 88.0 (4) 273 (97) 0.232 1.627 1360 (483) 2900 (1030) rest. kin., random, ①

1/2+ (1/2+) 3/2+ 113.9 (4) 85 (40) 0.1135 0.632 355 (167) 520 (245) rest. kin., γ-γ (355), ②

1/2+ 7/2+ 3/2+ 141.0 (15) - - - - - random, prompt, ②

1/2+ 3/2+ 1/2+ 417.9 (6) - - - - - random, prompt, ②

? ? ? 57.6 (10) - - - - - prompt, random, ③

? ? ? 79.0 (15) - - - - - pmr97DC, prompt, random, ④

? ? ? 232.7 (10) - - - - - pmr97DC, prompt, random, ⑤

? ? ? 367 (2) - - - - - random, prompt
? ? ? 584.9 (25) - - - - - random, prompt, ②

? ? ? 637.4 (30) - - - - - pmr97DC, rest. kin.
Target Excitation 1332.9 (5) 542 (25) - - - 7387 (341)

Table 6.13: Unknown or Weak γ-ray intensities for the 97Rb case. IMeas.
γ are the raw intensities measured. Coef. (M1) and Coef. (E2) are respectively the M1 and E2 conversion

electron coefficients calculated from Ref. [196]. IE f f+Conv(M1) and IE f f+Conv(E2) are intensities with efficiency correction and conversion electrons correction. Some comments
or observations are added in case of difficulties to determine the properties of the transition. In order to respect a proper ratio between intensities, the identification of the
particle is necessary. For that purpose, the detected particles in the restricted kinematic zone have been treated.
Observation legend :
–––––– prompt : prompt spectra without Doppler correction, all kinematics
– random : random spectra without Doppler correction, all kinematics
– rest. kin. : restricted kinematics spectra with Doppler corrections (A=97), with random subtraction
– pmr97DC : spectra with Doppler corrections (A=97), with random subtraction, all kinematics
– γ-γ (Eγ [keV]) : observation of the transition in the projection of the γ-γ matrix for an energy gate at Eγ, with Doppler correction (A=97), random subtraction, all kinematics
Observation comments :
① isomer populated in Coulomb excitation, probably 97Sr
② probably 97Sr
③ isomer probably 97Sr
④ isomer populated in Coulomb excitation
⑤ isomer ?
A none exhaustive list of transitions from daughter nuclei of 97Rb observed as random and prompt transitions has been established. Those transitions like 141.4 keV and 417.9
keV of 97Sr nuclei were already known from previous studies. The 113.9 (4) keV transition can correspond to the transition between the 97Rb levels at energies 191.8 keV and
68.1 keV.

150
4.

97R
B

C
A

S
E



CHAPTER 6. RESULTS

4.3 The nuclear structure at low energy

The level schemes have been constructed using single γ-ray intensities and γ-γ coincidences. A level
scheme can be drawn uncovering the underlying nuclear structure. The level schemes of 97Rb and 97Sr are
presented on the Fig. 6.7. A rotational band is observed in the 97Rb denoting the presence of deformation as
expected. No different single-particle levels have been clearly identified in the present Coulomb excitation
experiment. One would need to look for a different approach in order to shed light on the expected
shape-coexisting structures in 97Rb.

Figure 6.7: 97Rb and 97Sr level schemes. The nuclear spins Iπ and the energy of the nuclear states are given
respectively at the left/right. The energy of the transition are positioned beside the transition arrow. The
width of the transition is proportional to the observed transition intensity. The isomeric transition of 76.5 keV
has been identified by G. Simpson et al. and has been added in order to give a complete picture. However
the latest isomer has not been observed in the present work. It should correspond to another single particle
configuration, possibly from the 3

2
−
[312] orbital or the f 5

2 orbit [202].
The 275.3 keV transition has been observed in coincidence with the 103.1 keV and 123.7 keV transitions
and placed on top of the 294.9 keV level.

Sometimes, the nucleus emitting γ-ray is difficult to identify for some transitions with low intensities.
Too low in intensity to coincide with strong transition, they cannot be confirmed. However, the high purity
of the beam (∼ 75% Rb, ∼ 25% Sr) emphasizes that those transitions should come from the 97Rb or one of
its beta-decay daughter nuclei, see Subsec. 11.2.

Projections used to build the level schemes are presented as example for the 97Rb case on the Fig. 6.8(land-
scape) and for the 97Sr case on the Fig. 6.8. Sometimes, the most intense transitions such as the 68.1 keV or
the daughter nuclei transitions (e.g. 167 keV) of the Rb isotopes are found in coincidence with incompatible
transitions. They can be consider as "random" coincidences. The same effect is observed for the gated
transition for which self coincidences can appear considering the time structure of the beam and setup.
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(a) Gated on 68.1 keV. (b) Gated on 103.1 keV.

(c) Gated on 123.7 keV. (d) Gated on 136.6 keV.

Figure 6.8: Projections of γ-γ matrix for the 97Rb case. The transition of 76.5 keV corresponding to the isomeric state identified by G. Simpson et al. has not been observed due
to its long lived nature. The 275.3 keV transition has been observed in coincidence with the 103 keV and 123.7 keV and placed on top of the 123.7 keV.
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(e) Gated on 191.8 keV. (f) Gated on 226.8 keV.

(g) Gated on 242.7 keV. (h) Gated on 275.3 keV.

Figure 6.8: Projections of γ-γ matrix for the 97Rb case. The transition of 76.5 keV corresponding to the isomeric state identified by G. Simpson et al. has not been observed due
to its long lived nature. The 275.3 keV transition has been observed in coincidence with the 103 keV and 123.7 keV and placed on top of the 123.7 keV.
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(i) Gated on 345.8 keV. (j) Gated on 355.3 keV.

(k) Gated on 379.2 keV. (l) Gated on 492.0 keV.

Figure 6.8: Projections of γ-γ matrix for the 97Rb case. The transition of 76.5 keV corresponding to the isomeric state identified by G. Simpson et al. has not been observed due
to its long lived nature. The 275.3 keV transition has been observed in coincidence with the 103 keV and 123.7 keV and placed on top of the 123.7 keV.
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CHAPTER 6. RESULTS

Figure 6.8: Projections of γ-γ matrix for the 97Sr case gated on the 167 keV transition energy.

4.4 Extraction of matrix elements and transition strengths with GOSIA2 calcula-
tions

The input of GOSIA2 requires the corrected transition yields of the target excitation (0+1 → 2+1 ), see
Tab. 6.4.

Iπ
Final

Iπ
Initial

Tr. Energy Transition strengthsUpper Error
Lower Error

/Level[keV] no Q Q(rigid rotor)
5/2+ 3/2+ 68 / 68 0.285+0.127

−0.025 0.313+0.042
−0.032

B
(E

2)
[e

2
b

2
]

7/2+ 3/2+ 192 / 192 0.235+0.016
−0.031 0.262+0.037

−0.043
7/2+ 5/2+ 124 / 192 0.386+0.360

−0.207 0.407+0.183
−0.242

9/2+ 5/2+ 227 / 295 0.265+0.041
−0.015 0.268+0.025

−0.019
9/2+ 7/2+ 103 / 295 0.199+0.095

−0.033 0.207+0.046
−0.036

11/2+ 7/2+ 346 / 538 0.160+0.032
−0.007 0.150+0.009

−0.008
11/2+ 9/2+ 243 / 538 0.149+1.40

−0.150 0.178+0.170
−0.178

13/2+ 9/2+ 379 / 674 0.257+0.051
−0.096 0.313+0.044

−0.049
13/2+ 11/2+ 137 / 674 0.052+0.285

−0.052 0.000+0.149
−0.000

5/2+ 3/2+ 68 / 68 0.225+3.26
−0.201 1.22+2.57

−1.22

B
(M

1)
[µ

2 N
]

7/2+ 5/2+ 124 / 192 0.344+0.046
−0.036 0.384+0.049

−0.041
9/2+ 7/2+ 103 / 295 0.391+0.051

−0.031 0.398+0.031
−0.028

11/2+ 9/2+ 243 / 538 0.135+0.077
−0.019 0.127+0.025

−0.015
13/2+ 11/2+ 137 / 674 0.387+0.441

−0.132 0.502+0.193
−0.136

Table 6.14: Transition strengths extracted with the GOSIA2 code for the 97Rb case. Constraint added during
the minimization: BR = branching ratio, LT = lifetime , Q = quadrupole moment , w = weight of the matrix
elements.

The B(E2) transitions strengths, found for this Rb isotope, are one or two orders of magnitude higher
than in the previous 93,95Rb cases.

Regarding to the systematics present in the rotational band additional states can be added in order to
guide the minimization. Their introduction confers a more realistic treatment, constraining the highest states
found experimentally (excitation of high-lying states, multi-step excitation).
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5 99Rb case

5.1 Analysis

Similar analysis than for the previous cases has been performed for the 99Rb case, see Sec. 2, 3, 4. The
Doppler corrected spectra for the projectile/target particle are shown on the Fig. 6.9(landscape).

5.2 γ-ray Intensities obtained

The γ-ray intensities obtained in the Coulomb excitation are given on the Tab. 6.15, 6.16, 6.17(landscape)
for the restricted kinematics. The raw intensities extracted from the data set have been corrected considering
the absolute efficiency of the detectors and the conversion electron coefficients. The latest were assumed of
pure M1 or E2 type.

Figure 6.9: Gamma ray Energy Spectra for 99Rb radioactive beam (restricted zone). (*) Unknown.
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Eγ [keV] IMeas.
γ Coef. (M1) Coef. (E2) IE f f+Conv(M1) IE f f+Conv(E2) Observation

(3/2+) (5/2+) (3/2+) 64.8 (7) 320 (22) 0.487 - 2692 (185) - rest. kin.
(3/2+) (9/2+) (7/2+) 104.0 (2) 88 (13) 0.1299 - 377 (56) - rest. kin.
(3/2+) (7/2+) (5/2+) 117.9 (1) 249 (21) 0.0922 - 1017 (86) - rest. kin.
(3/2+) (7/2+) (3/2+) 183.2 (15) 26 (11) - 0.1050 - 117 (50) rest. kin.
(3/2+) (9/2+) (5/2+) 222.3 (6) 42 (14) - 0.0521 - 197 (66) rest. kin.
(3/2+) (11/2+) (9/2+) 223.0 (30) ∼22 (22) 0.01725 - 100 (100) - pmr99DC
(3/2+) (11/2+) (7/2+) 327 (3) ∼9 (9) - 0.01364 - 51 (51) pmr99DC

Target Excitation 1332 - - - - - ①

Table 6.15: 99Rb γ-ray intensities. IMeas.
γ are the raw intensities measured. Coef. (M1) and Coef. (E2) are respectively the M1 and E2 conversion electron coefficients calculated

from Ref. [196]. IE f f+Conv(M1) and IE f f+Conv(E2) are intensities with efficiency correction and conversion electrons correction. Some comments or observations are added in
case of difficulties to determine the properties of the transition. In order to respect a proper ratio between intensities, the identification of the particle is necessary. For that
purpose, the detected particles in the restricted kinematic zone have been treated.
Observation legend :
––– rest. kin. : restricted kinematics spectra with Doppler corrections (A=99), with random subtraction
– pmr99DC : spectra with Doppler corrections (A=99), with random subtraction, all kinematics
Observation comments :
① Low excitation not even measurable for the restricted kinematics
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Eγ [keV] IMeas.
γ Coef. (M1) Coef. (E2) IE f f+Conv(M1) IE f f+Conv(E2) Observation

(3/2+) (5/2+) (3/2+) 90.5 (1) 753 (32) 0.191 - 3573 (152) - rest. kin.
(3/2+) (7/2+) (5/2+) 125.2 (1) 494 (23) 0.078 - 1991 (93) - rest. kin., ①

(3/2+) (7/2+) (5/2+) 162.3 (2) 60 (13) 0.0391 - 244 (53) - rest. kin.
(3/2+) (11/2+) (9/2+) 192.4 (15) 32 (12) 0.0250 - 137 (51) - rest. kin.
(3/2+) (7/2+) (3/2+) 215.5 (15) 93 (10) - 0.0583 - 432 (46) rest. kin.
(3/2+) (11/2+) (9/2+) 230.5 (15) ∼5 (5) 0.0157 - 23 (23) - rest. kin.
(3/2+) (9/2+) (5/2+) 286.9 (15) 41 (14) - 0.0521 - 222 (76) rest. kin., pmr99DC
(3/2+) (11/2+) (7/2+) 353.6 (25) 37 (13) - 0.01011 - 220 (77) rest. kin., pmr99DC
(3/2+) (13/2+) (9/2+) 422.3 (15) - - 0.00580 - - rest. kin., pmr99DC, ①

Table 6.16: 99Sr γ-ray intensities. IMeas.
γ are the raw intensities measured. Coef. (M1) and Coef. (E2) are respectively the M1 and E2 conversion electron coefficients calculated

from Ref. [196]. IE f f+Conv(M1) and IE f f+Conv(E2) are intensities with efficiency correction and conversion electrons correction. Some comments or observations are added in
case of difficulties to determine the properties of the transition. In order to respect a proper ratio between intensities, the identification of the particle is necessary. For that
purpose, the detected particles in the restricted kinematic zone have been treated.
Observation legend :
––– rest. kin. : restricted kinematics spectra with Doppler corrections (A=99), with random subtraction
– pmr99DC : spectra with Doppler corrections (A=99), with random subtraction, all kinematics
Observation comments :
① The error bar of the intensity has been enlarged due to the presence of the 125.3 keV transition from 99Y
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Eγ [keV] IMeas.
γ Coef. (M1) Coef. (E2) IE f f+Conv(M1) IE f f+Conv(E2) Observation

? ? ? 32.6 (20) 4 (4) - - - - rest. kin., prompt
? ? ? 37.7 (20) 8 (4) - - - - rest. kin., prompt
? ? (9/2+) 73 (2) 8 (2.5) 0.347 3.06 51 (16) 153 (48) random, γ-γ(90,125,116,103), ①, ②

? ? ? 78.0 (15) - - - - - random, ②

? ? ? 97.6 (15) 23 (15) 0.1548 1.062 103 (67) 183 (119) rest. kin.,
? ? ? 136.6 (15) 14 (12) 0.0619 0.308 56 (48) 69 (59) rest. kin.
? ? ? 143.5 (15) 8 (8) 0.0543 0.257 32 (32) 38 (38) rest. kin.
? ? ? 152.5 (15) 26 (11) 0.0461 0.2050 105 (44) 121 (51) rest. kin., random, γ-γ(125,91) ③

? ? (7/2+) 158.2 (3) 36 (12) 0.0419 0.18 146 (49) 165 (55) rest. kin., random, γ-γ(125,91) ④

? ? ? 199.5 (20) 10 (10) 0.0231 0.0784 43 (43) 46 (46) rest. kin.
? ? (9/2+) 777 (2) 6 (4) 0.000876 0.000994 58 (39) 58 (39) rest. kin., ⑤

Table 6.17: Unknown or Weak γ-ray intensities for the 99Rb case. IMeas.
γ are the raw intensities measured. Coef. (M1) and Coef. (E2) are respectively the M1 and E2 conversion

electron coefficients calculated from Ref. [196]. IE f f+Conv(M1) and IE f f+Conv(E2) are intensities with efficiency correction and conversion electrons correction. Some comments
or observations are added in case of difficulties to determine the properties of the transition. In order to respect a proper ratio between intensities, the identification of the
particle is necessary. For that purpose, the detected particles in the restricted kinematic zone have been treated.
Observation legend :
––––– prompt : prompt spectra without Doppler correction, all kinematics
– random : random spectra without Doppler correction, all kinematics
– rest. kin. : restricted kinematics spectra with Doppler corrections (A=99), with random subtraction
– γ-γ (Eγ [keV]) : observation of the transition in the projection of the γ-γ matrix for an energy gate at Eγ, with Doppler correction (A=99), random subtraction, all kinematics
Observation comments :
① Unknow decay or from daughter nuclei 99Sr 99Y ② It could be an isomer similar than for 97Rb
③ Probably populated in Coulex and decay of 99Y
④ Probably populated in Coulex and decay of 99Y
⑤ Probably decay of 99Sr
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5.3 The nuclear structure at low energy

The level schemes have been constructed using single γ-ray intensities and γ-γ coincidences. A level
scheme can be drawn uncovering the underlying nuclear structure. The level schemes of 99Rb and 99Sr are
presented on the Fig. 6.10.

Figure 6.10: 99Rb and 99Sr level schemes. The nuclear spins Iπ and the energy of the nuclear states are given
respectively at the left/right. The energy of the transition are positioned beside the transition arrow. The
width of the transition is proportional to the observed transition intensity.

Sometimes, the nucleus emitting γ-ray is difficult to identify for some transitions with low intensities.
Too low in intensity to coincide with strong transition, they cannot be confirmed.

As shown on Fig. 6.7 and Fig. 6.10, there is a striking similarity between the ground-state rotational
bands of 97Rb and 99Rb. This situation is equivalent than for the 98,100Sr isotopes, which has already been
discussed by Lhersonneau et al. in the Ref. [56]. The two Sr isotopes have identical deformations within
errors (β2 ≃ 0.4). Considered as perfect rigid rotors, the same behavior is expected for the 97,99Rb isotopes.

5.4 Matrix elements and transition strengths with GOSIA2 calculations

Normalization As in the 97Rb case, the large amount of 99Sr in the beam contributes to excite the target
nuclei. The presence of the 86Kr in the beam will affect in the same way the target excitation. Indeed,
even if none of the transitions of the Kr isotope have been identified, the Kr can still excite the target. The
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normalization of the intensities is not facilitated in such case, because the target excitation does not come
only from the Rb nuclei. Moreover, the target excitation of the 60Ni was not observed.
The matrix element of the electromagnetic operator could not be extracted since there is not any experimental
reference to normalize them, such as the matrix element corresponding to the target excitation used in the
97Rb case.
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6 Discussion

6.1 Introduction

The analysis of the Coulomb Excitation via the GOSIA code provided a lot of transitional and diagonal
matrix elements for the Rb isotopes; however, the number of observables and their accuracies are not
sufficient to constrain them firmly. The transitional matrix elements can be translated in reduced transition
strengths and the diagonal matrix elements in static quadrupole moments. More generally the matrix elements
of the electromagnetic operator tell us how important is the electromagnetic coupling between the different
nuclear states.
The main information discovered from this experiment will be synthesized and discussed in this section.
The results obtained for the 97Rb isotope, the first exhibiting deformed ground state, will be compared to
theoretical calculations. The values obtained from the analysis will be put in perspectives.

6.2 Nuclear Structure before N=60 : the 91,93,95Rb isotopes

The 93,95Rb isotopes have similar excited structures and should have as well similar configurations. They
both present single-particle like low lying structures. At the N=56 sub-shell closure, the inversion of the
ground state spins configurations between 91Rb(N=54, 3/2−) and 93Rb(N=56, 5/2−) can be explained by a
repulsive tensor force between the νg7/2 and π f5/2 orbit, see Fig. 6.11, see Ref. [203, 204, 205]. By filling
the νg7/2 orbit the tensor force will repulse the π f5/2 orbit up in energy. At the same time, the π2p3/2 orbit is
attracted and reach lower excitation energy.
The π2p3/2 and π f5/2 orbits are quasi-degenerated in energy. A small variation in their single particle energies
caused by e.g. tensor force when filling the νg7/2 orbit, could move one or the other closer to the Fermi level.

Figure 6.11: Tensor force at the N=56 sub-shell closure in the Rb isotopes. The energy of the orbital changes
according to their spins: if they are anti-parallel the tensor force is attractive, if they are parallel the force is
repulsive.

In the present experiment, new low-lying transitions have been identified in the 93,95Rb isotopes. This
experiment reports for the first time the strong similarities of the low-lying states of the 95Rb with the
93Rb isotope. Both should have similar configurations, as proven for the higher-lying and isomeric states
(populated by β-decay), see Ref. [104, 206]. By adding two neutrons the low-lying structure is almost
unchanged.

A shell model description for higher-spin states of the 91,93,95Rb has been provided by shell model
calculations using the m-scheme code ANTOINE in the Ref. [104]. They aimed to confirm the different
proposed dominant configurations in the region for which the following orbitals π f5/2, πg9/2, νd5/2, νg7/2

and νh11/2 are near the Fermi level.
The calculations used a valence space based on a 78Ni core, including the π1 f5/2, π2p1/2, π2p3/2, π1g9/2,
ν2d5/2, ν3s1/2, ν2d3/2, ν1g7/2 and νh11/2 orbits. The calculations performed for 91,93Rb and 95Y are presented
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in the Fig. 6.12. For convenience, the 5/2- state is placed at 0 keV for both experimental and calculated
values.

(a) Comparison of the excited state energies
between the experimental and the shell model
calculation values in the 91Rb.

(b) Comparison of the excited state energies
between the experimental and the shell model
calculation values in the 93Rb.

(c) Comparison of the excited state energies
between the experimental and the shell model
calculation values in the 93Rb and 95Y.

Figure 6.12: Shell model calculation realized in order to compare the experimental and calculated values of
the yrast and near-yrast states in the 91,93Rb and 95Y. From Ref. [104].

The calculations for the negative parity states reproduce properly the excited pattern observed in the 93Rb
nuclei. The results for the 93Rb are compared to the 95Y for which the same interaction has been used. The
ordering of the low lying states, specially for the 3/2− and 5/2− is respected. One can reasonably assume that
the results would be the same for the 95Rb nucleus, according to its very similar excited structure.
However, in the calculations, the 1/2− state is not in accordance with the experiment. The 1/2− state is
observed experimentally with an "isomeric" nature at around 250 keV in the 93,95Rb isotopes.

The Coulomb excitation technique allowed the extraction of transition strengths. It is more sensitive to
E2 excitation constrains efficiently the B(E2), providing confident results. However, the B(M1) are weakly
constrained.
Indeed, comparing states of 93Rb and 95Rb with similar configurations, they should have close transition
strengths, which is the case for the B(E2) transition strengths. However, the low sensitivity of the technique
regarding the M1 cannot allow us to deduce any physics properties from them. Actually, even if some of the
matrix elements present small error bars, it does not mean that the result is correct but only that locally a
minimum is found.
The shell-model calculations reproduce well the higher-spin low excitation energy structures in the 93,95Rb
isotopes. However, in Coulomb excitation we can observe a larger variety of low-spin and low excitation
energy states. Those ones cannot be easily identified within the shell-model calculations. In the following
Subsec., new calculations performed on the Rb isotopes for N > 60 are presented in order to give a physical
interpretation of the structure change observed experimentally.
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6.3 Nuclear Structure at N>60 : the 97,99Rb cases.

As shown on Fig. 6.7 and 6.10, there is a striking similarity between the excited structure of the 97Rb and
99Rb isotopes, presenting both rotational bands. The observation of rotational bands is a direct proof of the
non-sphericity of the ground states. The different Nilsson orbitals involved in the appearance of deforamtion
are sown on Fig. 6.13.

In 97Rb, the 275.3 keV transition has been placed on top of the 294.9 keV level, according to the
single spectra and coincidences analysis. The nature of the corresponding state is not known and cannot be
confirmed with the present set of data. However, some propositions could be done regarding the systematics
present in the neighboring nuclei. Similar configurations are found in neighboring nuclei of the region, such
as the νg9/2 orbit configuration observed for example at 1133.9 keV in the 91Rb, at 1285.2 keV in the 93Rb
and at 1133.9 keV in the 95Rb isotopes; one proposes to explain the presence of the 275 keV transition as
coming from a similar configuration. With such configuration, the spin and parity assignment of the 9/2+ to
the related state can be favored with the possibility of M1(+E2) transitions.

6.3.1 Isomeric decay study

In the meantime 1, the 97Rb isotopes has been studied by G. Simpson et al. via fission with thermal
neutron at the Institut Laue-Langevin with LOHENGRIN, see Ref. [207]; and by Kameda et al. [202] via
the study of isomeric γ-decays of fission fragments at 345 MeV/u 238U at the RIKEN Nishina Center RI
Beam Factory using BigRIPS.
The purpose of both experiments was to investigate the isomeric states present in the region. They revealed
the presence of an isomeric γ-ray transition around ∼77 keV in the 97Rb nucleus.

ILL experiment The identification of the transition at 76.5 keV has been done via the analysis of single
events from Germanium detectors and also by applying time gates. The identification of the transition was
possible thanks to the presence in the time gated spectra of the 68.2 keV transition found in our present
experiment (coincidence analysis).

The 76.5 keV transition is found decaying from an isomeric state with an half life of around ∼5.1(3)
µs. Due to its low energy, the transition is strongly converted. The conversion electron coefficients were
determined using Si(Li) detectors. The isomeric transition can be assumed decaying to the ground state.

According to the self-consistent HFB calculation of Rodriguez-Guzman et al., see Ref. [75], see Fig. 2.17,
based on the Gogny EDF (Energy Density Functional) DS1 parametrization, the ground state should be
based on the 3/2+[431] orbital with prolate deformation. Moreover, the calculations predicted an oblate
excited state based on the 3/2−[312] orbital, but at higher energy (∼0.5 MeV).

Preliminary quasiparticle-rotor-model (QRPM) calculations have been realized on the specific case of
the 76.5 keV isomeric transition by the same collaboration, see Ref. [207]. They corroborate the hypothetic
filling of the 3/2−[312].

RIKEN experiment The study of isomeric decays from fission fragments confirmed the presence of an
isomeric transition, found at 77.1 keV with an half-life of 6.33+0.37

−0.34 µs. They interpreted the 77.1 keV as
decaying to the ground state of 97Rb nucleus. In this case, the corresponding isomeric state is understood as
a shape isomer, coming from the competition between deformed and spherical configurations resulting in a
shape coexistence.
They tentatively assigned the spin and parity to 5/2− according to the Iπ assignment of the 95Rb spherical
ground state. It fits the picture described in the physics motivations, where from nucleus-to-nucleus on the
onset of deformation, one observed the presence of the different shape configuration moving up/down in
energy.
Moreover, such state would confer an E1 characteristic to the transition with hindered B(E1), supporting self
consistently the 5/2− assignment (f5/2 shell).

Unknown nature Two different assignments, deformed and spherical, have been assumed for the nuclear
state associated to the 77 keV transition. Taking into account the very low energy difference between the
ground and isomeric states in 97Rb it is very difficult to compare their structure in any theoretical calcula-
tions. The nature of this isomer might be clarified, e.g. with moments measurements which could provide

1. between the proposal and the experiment
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information both on its intrinsic structure (magnetic dipole moment) and its deformation (electric quadrupole
moment).

(a) For neutrons in the N=60 region . The energies were calcu-
lated using the potential parameters κ = 0.066 and µ = 0.35.

(b) For protons in the Z=40 region. The energies were calculated
using the potential parameters κ =0.07 and µ =0.40.

Figure 6.13: Expanded portion of the Nilsson diagrams for neutrons (a) and protons (b). The different orbital
of interest have been colored. The pink band corresponds to the intrinsic quadrupole moment measured, see
Ref. [77]. Modified picture from Ref. [35, 44].

6.3.2 Shape change

As mentioned, the shape changes for a new deformed configuration. It has been expected that the
3/2+[431] orbital from the πg9/2 orbit and the 3/2−[312] orbital from the πp3/2 orbit can correspond to the
ground state configuration according to the laser spectroscopic measurements [77]. The present data gave
new insight to perform further calculations.

In order to assign in a consistent way the configuration observed for the ground state rotational band in
the 97Rb nucleus, the branching ratios were used to deduce the |gK − gR| values. It can be obtained from the
formula, see Ref. [25, 35] :

∣
∣
∣
∣
∣

(gK − gR)
Q0

∣
∣
∣
∣
∣
= 0.934Eγ |δ|−1 [(I − 1)(I + 1)]−

1
2 in [e · b]−1 (6.1)

where: Eγ is the energy in MeV of the γ-ray transition between the nuclear states of respective spin I and
(I-1); |δ2| is the E2/M1 mixing ratio of the transition, which is found from the branching ratio (R) as:
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where: Eγ,Yγ are respectively the energy in MeV and yield of the transition between the nuclear states of
respective spin I and (I-1); Eγ′ ,Yγ′ are respectively the energy in MeV and yield of the transition between the
nuclear states of respective spin I and (I-2).
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The ratios B(M1)/B(E2) can be derived form the experimental branching ratios obtained from the analysis,
see Eq. 6.3.

The experimental values of the different parameters describing the nuclear structure of the 97Rb nucleus
are summarized in the Tab. 6.18.

6.3.3 Comparison with theory

Quasi-particle + Rotor Model The calculations performed on the 97Rb by G. Simpson [208] with a
quasiparticle + rotor model are presented on the Fig. 6.14. The correct level spacing between the different
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nuclear states has been well reproduced for a 3/2+[431]-like configuration by "adjusting" the deformation
and the Coriolis force. The B(E2) transition strengths and branching ratios constitute also minimization
parameters of the theoretical models, which have to reproduce the level spacing and the transition strengths
at the same time.

Figure 6.14: Quasi-particle + Rotor calculations performed by G. Simpson [208]. The calculations assumes
a rigid rotor.

According to those calculations, one cannot exclude that the state corresponding to the 275 keV transition
is based on the 1/2+[440] orbital.

Independent Quasi-particle Model Mean Field calculations on 97Rb isotope have been performed by
Filip Kondev [209] on the specific case of the 97Rb nucleus. A Wood-Saxon potential with a "universal"
parametrization, as described by P. Moller et al. [95], has been used with the BCS model. Some basical
concepts of such model are shown in Appendix. A 207.
The deformed band structure observed in the 97Rb isotopes spectra for N > 60 led us to assume the pos-
sibility to use the rigid rotor approximation as a plausible hypothesis. The ratios B(M1)/B(E2) can be
derived form the experimental branching ratios obtained from the analysis, see Eq. 6.3. Due to the rigid ro-
tor assumption, a specific value for gR is used. In the calculation, gR has been considered as fixed (rigid rotor).

As expected the |gK − gR| value stay constant in our case, see Tab. 6.19 because the treated nuclear states

are inside the same ground state band, implying that they have the same gK (and gR ≈ 0.7
Z

A
is fixed).

The theoretical calculations are in good agreement with the 3/2+[431] orbital. At the same time, they
exclude the 3/2−[312] orbital possibility. The branching ratios related to the 3/2+[431] orbital are of the
same order of magnitude than the experimental values, and in the same order of intensities. The states related
to the 7/2 and 11/2 spins respect the same behavior than in the experimental values, however they deviate
slightly more than the other. This difference could come from the perturbation applied by the Coriolis force,
explaining the deviations of the mixing ratios and the |gK − gR| values.

The ground state bands of the 97,99Rb isotopes are expected to exhibit similar rotation and moment of
inertia. The dynamic moment of inertia (J2) is defined as:

J2 =

(

d2E

d2Ix

)−1

≈ 2~
∆Ix

∆Eγ

(6.4)

where Eγ is the energy of the transition between the nuclear states of spin (I+1) and (I-1), which is

proportional to the rotational frequency, and the total aligned angular moment Ix =

√
(

I + 1
2

)2
− K2. The

moment of inertia (J) is represented as a function of the nuclear spin I on the Fig.6.15(a). The total aligned
angular moment (Ix) is plotted as a function of the rotational frequency on the Fig.6.15(b). The slope of the
latest curve is the dynamic moment of inertia.
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K,I RI B(M1)/B(E2) |gK − gR| |δ|
3/2, 7/2 0.065±0.003 1.46+0.065

−0.068 0.95+0.09
−0.09 0.105+0.002

−0.002

3/2, 9/2 0.26±0.010 1.48+0.053
−0.056 1.11+0.10

−0.10 0.057+0.001
−0.001

3/2,11/2 0.27±0.04 0.88+1.1
−1.5 0.91+0.14

−0.12 0.042+0.003
−0.003

3/2,13/2 1.34±0.41 1.59+0.42
−0.56 1.26+0.31

−0.25 0.046+0.008
−0.006

Table 6.18: Experimental values obtained for the 97Rb isotope. The branching ratios, B(M1)/B(E2) ratios,
|gK − gR| and |δ| values are summarized for each nuclear state.

Q0= 2.90 gR = 0.30
K=3/2 gK=1.71 3/2+[431]

K,I RI B(M1)/B(E2) |gK − gR| |δ|
3/2, 7/2 0.03 3.19 1.41 0.071
3/2, 9/2 0.16 2.38 1.41 0.045
3/2,11/2 0.11 2.13 1.41 0.086
3/2,13/2 1.07 2.00 1.41 0.041

Q0= 2.90 gR = 0.30
K=3/2 gK=0.25 3/2−[312]

K,I RI B(M1)/B(E2) |gK − gR| |δ|
3/2, 7/2 4.76 0.004 0.050 2.0
3/2, 9/2 48.7 0.003 0.050 1.3
3/2,11/2 13.1 0.003 0.050 2.4
3/2,13/2 365 0.003 0.050 1.2

Table 6.19: Results obtained for the low-lying states of the 97Rb isotope from the Mean Field calculations
of F. Kondev [209]. The calculations have been performed for the 3/2−[312] and 3/2+[431] orbital, see
Fig. 6.13. The gK values are fixed according to he configuration, see text for details.
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Figure 6.15: Experimental moment of inertia, rotational constant and total aligned moment for 97,99Rb and
99Sr.

The presence of staggering effect is highlighted in the Fig. 6.15(c) where the rotational constant is plotted
as a function of the spin. The cascade transition energy divided by twice the initial spin give the rotational
constant A = ~

2

2I
. The moment of inertia is almost constant with just a trace of signature splitting. The
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presence of the signature splitting can be explained by the presence of an important Coriolis force or a
perturbation applied by a band with another K quantum number, such as K=1/2.

6.4 Decay products

Considering the half-live of the 97,99Rb and due to the technique employed to deliver the beam, the 97,99Sr
decays products represented an important portion of the beam and their Coulomb excitation occurred, see
Chap. 4 on page 73. The low-lying excited structures of the latter have been already investigated by several
experiments. Representative level schemes of the 97,99Sr isotopes, including the low-lying nuclear states
found experimentally, are shown on the Fig. 2.9(a) for 97Sr and Fig. 6.16 for 99Sr.

(a) Partial decay scheme of 100Rb to 99Sr. (b) Band structures in 99Sr.

Figure 6.16: Level schemes of 99Sr. (a) Partial decay scheme of 100Rb to 99Sr. (b) γ-transitions and their
relative intensities are given, together with the Nilsson configurations of the band heads deduced from shell
model calculations in the RPA.
Figures modified and based on the studies of Lhersonneau et al. [210] and Pfeiffer et al. [42], see Ref. [211]
for the complete level scheme.

According to the "Table of Isotopes" of R.B. Firestone [180], a 3/2+ spin has been assigned to the ground
state of the 99Sr nucleus. This assignment is claimed due to the observed yields from the 99Rb β-decay [42]
feeding the 99Sr states of the rotational ground state band. The β-branch from the expected π3/2+[431]
ground state of the 99Rb nucleus to the 99Sr g.s. has a log( f t) ∼ 5.0; and the β-branch from the 99Sr g.s. to
the π5/2+[422] 99Y g.s. has a log( f t) ∼ 5.2. The latter β-branches led to consider the related transition as
β-allowed. In such way, the two ground states should have the same parity and spins with I f = Ii ± 0, 1.
The possible g.s. with negative parity are thus excluded. The different configurations in the region which
could fit the 99Sr case are the ν3/2+[411] and the ν5/2+[413] orbitals, see the Nilsson diagram Fig. 6.13.
The ν5/2+[413] orbital is placed higher in energy and thus unfavored. Consequently, the spin/parity of the
99Sr ground state has been assigned to 3/2+ of the ν3/2+[411] orbital. It has been confirmed by shell model
calculations, see Ref. [42]. Moreover, the steady assignment of the 3/2+ from the π3/2+[431] orbital to the
99Rb g.s. is in agreement with the 99Sr assignment in a self consistent way.

The transitions identified for the 97Sr were already known and not any other structure has been observed.
On top of the single particle spectra observed in the present Coulomb excitation, deformed configurations
similar to the neighboring nuclei have been uncovered by previous studies. For example, the rotational band
proposed with a K=3/2, ν3/2−[541] configuration is found at 644.5 keV in the 97Sr and at 614.5 keV in the
99Zr.

The 99Sr rotational ground state band configuration has been also observed higher in energy in the 101Sr
isotope at 271.2 keV, see Fig. 6.17.
The 422 keV and 230 keV transition have been placed in the rotational g.s. band. It has been observed in
single spectra and coincidence matrices as respectively on top of the 378.0 keV and 570.4 keV levels of the
rotational band. However, they are mainly observed in coincidence with strong transitions, such as the 90
keV transition.
The observed 422 keV transition can possibly correspond to the 422.8 keV state in the 99Sr (direct decay to
the g.s.). However, the appearance of the 230.5 keV transition in the single spectra and γ-γ matrices led to
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Figure 6.17: Very similar bands built on the ν3/2+[411] orbital in 99Sr and 101Sr. Level energies in 101Sr are
indicated relative to the band head at 271.2 keV. From Ref. [212].

envisage the hypothesis that they belong to the ground state rotational band.
The systematics of the rotational frequency (ω), moment of inertia (J) and aligned angular momentum (Ix)
in the 99Sr case are in good agreement with this assumption, following the trend observed for lower excited
energies.
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7 Summary and Conclusions

The present work demonstrates the possibility to study in details the nuclear structure of very neutron-rich
nuclei using γ-ray spectroscopy. The present results concern the neutron rich rubidium isotopes in the A∼100
mass region, where nuclei exhibit strong deformation in their ground states adding one neutron around N∼60.
If one takes the proton point of view, adding just one proton to the N=60 isotones the nuclei pass from
spherical-like shape to well deformed.

Rotational bands in the newly excited 97,99Rb isotopes and 99Sr nucleus confirmed the presence of
deformation for N>60. Moreover, the scenario of a rapid shape transition at the onset of deformation is also
validated. These nuclei exhibit the characteristics of good rotors up to the highest observed spins.

The particle-rotor model constitutes a appropriated tool to interpret the level scheme as rotational bands
for nuclei with N>60. The experimental values have been compared to theoretical quasi-particle models
which both merge on the steady assignment of the 3/2+[431] orbital as the ground state configuration of the
97Rb. The strong similarities observed in the rotational frequency, moment of inertia and total aligned angu-
lar moment between the 97Rb and 99Rb isotopes led to assign the same configuration for the 99Rb ground state.

Two possible new transitions on top of the 99Sr nucleus have been observed. Their introduction in the
99Sr level scheme is in adequacy with the systematics observed in terms of rotational frequency, moment of
inertia and total aligned angular moment.

8 Outlooks and Perspectives

A Coulomb excitation experiment realized with a 196Pt target is still under investigation for the 99Rb
beam and could lead to a direct normalization of the matrix elements using the low γ-ray energy of the 196Pt
first excited state. It remains difficult to disentangle the part of the target excitation due to the 99Rb nucleus.
The restriction of beam time with this target enforced to collect a low statistics. From this normalization, one
could deduce the absolute normalization of all the matrix elements, convoluting the results from the relative
intensities obtained with the 60Ni and the absolute normalization obtained with the 196Pt target.

It would be interesting to evaluate the de-orientation effect for the different probed nuclei by adding the
magnetic dipole moment in the calculation. In a first time using the approximation g = gR ≈ Z

A
and after

with the g-factor found from the experimental data.

For the 97Rb, the isomeric state (∼75 keV) and the state corresponding to the 275 keV would be
introduce in the GOSIA minimization in a close future, in order to evaluate their impact. Moreover, moments
measurements could be envisage to gain significant information in terms of intrinsic structure and deformation.
In addition, it would help to firmly constrain the matrix elements.

Polarized beam The Coulomb excitation technique constituting already a powerful tool for nuclear
structure study could be improved by using nuclear spin polarized beam. One can envisage the possible
effects of such polarization in the angular distributions which would help for example to determine the
transition nature (M1, E2, ...).
A project supported by CERN envisaged the use of the Tilted Foils Technique (TFT) in order to operate such
polarization. It constituted the original thesis project of my doctoral studies. The experimental setup and
preliminary results are briefly discussed in the following.
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Introduction

In our studies, we try to investigate the nuclear properties in order to understand the interaction which
binds the protons and neutrons inside the nucleus. Our experiments aim to measure the basic nuclear
properties such as the lifetime, the decay, the moments and the spins. The knowledge of those properties
give new insight on the nuclear structure and the strong nuclear force binding the nucleus. They are used to
derive new information and interpretations from different nuclear models.

The intrinsic angular momentum, or usually called spin, characterizes directly the nature of the particle.
It is submitted to the same laws governing the quantum momentums such as the orbital angular momentum.

The control of the spin population of nuclei is of great interest to probe the nuclear structure. Nuclear
spin-polarized Radioactive Isotope Beams (RIBs) represent a powerful tool to study the nuclear structure and
electromagnetic properties of materials with β-NMR (Nuclear Magnetic Resonance) and γ-ray spectroscopy.
As example of experimental methods using oriented beams, one can cite the Time Differential Perturbed
Angular Distribution (TDPAD) used to measure the magnetic dipole and electric quadrupole moments of
microsecond isomeric states.
The possibility to obtain nuclear spin-polarized ensembles has already been investigated for many decades
with different methods, e.g. the Low Temperature Nuclear Orientation (LTNO). Concerning specifically
the polarization of RIBs, two main techniques are used nowadays: the optical pumping employed in ISOL
facilities, and the projectile-fragmentation reaction method used at the In-Flight facilities. The optical
pumping technique is not suitable for any RIBs far from stability and any chemical elements. The projectile-
fragmentation can produce polarization only in a specific beam energy range.
The tilted foils technique offers the possibility to use short lived radioactive beams by polarizing the nuclei
in-flight. Already investigated in the past, new interests for this technique arose since the recent use of RIBs
far from the β-stability valley.

One proposes to investigate the possibility to nuclear spin-polarize RIBs using the specific Tilted Foils
Technique (TFT) at the CERN-ISOLDE facility. The nuclear polarization project at CERN started many year
ago with the High Voltage Platform (HV Platform); in the present study, one uses post-accelerated beams
from REX-ISOLDE. The REX-ISOLDE setup offers the possibility to post-accelerate polarized beams, but
also the possibility to investigate several charge states and beam energies.

The polarization project can be separated in three different parts. The first part consists to investigate
the effect of polarized beams in reactions. A Coulomb excitation of 21Ne has been realized with a mobile
tilted foils setup, in order to look for an asymmetric feature in the angular distributions of scattered particles.
Its analysis has been reported by my colleague H.T. Törnqvist in his licentiate thesis and in the following
Ref. [213, 214]. At the origins of the project, the Coulomb excitation experiment presented in the previous
part was envisaged to be performed with polarized beam using the mobile tilted foils setup.
The second part, corresponding to the present work, consists to study the impact of the different parameters
of the TFT used to obtain a high degree of polarization. In order to measure the spin polarization, the β-NMR
technique has been employed. An important phase of development preceded the first experiment. The main
part of our work consisted to design a TFT polarizer and a β-NMR setup as well as the development of the
related electronic system and acquisition system.
The last part consists to investigate the possibility to post-accelerate polarized beam keeping a high degree of
polarization, see Ref. [215, 216].

The preliminary results of the commissioning experiment with a 8Li beam realized in July 2012 will be
presented and discussed.
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Chapter 1

Physics Motivation

A manner to increase our knowledge on the atomic nucleus, is to control one or several of its properties.
Among the properties of the nuclear matter under extreme conditions, the nuclear spin represents a crucial
parameter.

The control over the nuclear spin-oriented ensemble (non-uniform population of states) is beneficial to
improve the sensitivity of several experimental methods. In a statistical point of view, the introduction of
oriented spins in collection of nuclei, reactions or decay channels reduces the number of degrees of freedom .
It can allow the experimentalist to access to otherwise inaccessible observables.
As an example, we already envisaged to determine the spin/parity of the nuclear states populated in the
Coulomb excitation of Rb isotopes with a polarized beam.

Several techniques already exist to produce ensembles of spin-oriented nuclei. The orientation can be
obtained from reaction mechanisms where the studied nuclear state is produced, or, from the interaction of
the ensemble of nuclei with its environment after the production of the nuclear states.

The oldest technique employed to produce polarized ensembles is the Low Temperature Nuclear Ori-
entation (LTNO), see Ref. [217]. The nuclei are usually implanted in a ferromagnetic host at very low
temperature of around few mK, and a strong magnetic field of around few T is applied on the nuclei ensemble,
orienting the spins in the preferential direction of the field. At this temperature, the nuclear spins follows the
Boltzmann distribution with different population of the magnetic sub-states. The amount of polarization
resulting from this technique varies in the range of around 10% to ∼ 100%.strong magnetic field the nuclei
are usually implanted in a ferromagnetic host placed at very low temperature of around few mK. At this
temperature, the nuclear spins follow the Boltzmann distribution creating different population of the magnetic
sub-states.

Another renowned technique is the optical pumping, see Ref. [218]. It can be used to polarize an
ensemble of nuclei. The process consists to apply several absorption of polarized photons and spontaneous
emissions of photons on the atomic cloud. This process can be performed by using circularly polarized
laser light. For an appropriate atomic scheme of the related nucleus, the atomic spins can be oriented. By
hyperfine interaction the atomic orientation is transfered to the nucleus.

Among the different reactions used experimentally, the projectile-fragmentation reaction produces directly
a certain magnetic sub-states distribution. The projectile impinges the target with a beam energy of around
few MeV/u and produce fragments based on the initial projectile, plus abrazed nucleons. K. Asahi [219, 220]
and H. Okuno [221] demonstrated experimentally that for a small angle respect to the primary beam direction,
the fragment can be polarized. This in-flight technique can reach a level of polarization of ∼10-15% at most.

According to the envisaged experimental study, the appropriate polarization technique has to be chosen.
The mentioned polarization techniques used today benefits of high degree of polarization; however, they are
restricted due to the final beam energy, lifetimes or chemical nature.

A project has been established at the CERN-ISOLDE facility [222] in order to evaluate the possibility to
use the tilted foils technique to polarize RIBs.
It consists to spin polarize the ion beam, passing through thin foils tilted at an oblique angle with respect
to the beam direction. The initially obtained atomic polarization is transferred to the nucleus by hyperfine
interaction. This technique does not depend on the chemical nature of the element. Short lived nuclei can be
polarized in-flight without any need to be stopped in a catcher. It opens up the possibility to post-accelerate

175



CHAPTER 1. PHYSICS MOTIVATION

such polarized RIB. The range of polarizable nuclei is assumed wide due to the only restrictions of the
method to have nucleus with atomic/nuclear spins different from zero and a low beam energy (∼ few tens or
hundreds of keV/u).
Imagined as a compact setup, it can be easily introduced in existing beam-lines. This technique offers an
easy control of the polarization direction, which can be changed at any time. The degree of polarization
increases with the number of foils used. It also increases as a function of the tilt angle between the beam axis
and the axis normal to the foil. It saturates as a function of the atomic spin and number of foils. However,
the method is not as efficient as the others with a maximum of around 10% of polarization observed up to now.

The tilted foils technique is deemed to polarize beams, nevertheless, the mechanisms governing the
polarization process and their related parameters need to be investigated in order to understand and control it.
Afterward it would be simpler to adapt the technique to a specific studied nucleus. For this purpose, one
developed a β-NMR setup to observe and measure the polarization of radioactive beam.
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Chapter 2

Generalities

1 Polarization and alignment

1.1 Angular distribution of radiation from an oriented nuclei ensemble

The emission of the γ-rays and β-particle is determined by the spin direction (θ, φ). The general angular
distribution of radiation emitted from an oriented state of spin Ii is found as, see Ref. [217, 223]:

W(θ, φ) =
√

4π
√

2Ii + 1
∑

k,n

ρk
n ∗ (Ii)AkYkn(θ, φ)
√

2k + 1
(2.1)

with ρk
n the statistical tensor and Ykn(θ, φ) the spherical harmonics. The statistical tensor is derived from the

density matrix and is defined as:

ρk
n =
√

2k + 1
∑

m,m′

(−1)Ii+m′
(

Ii Ii k

−m′ m n

)

<Iim|ρ|Iim
′> (2.2)

The statistical tensor is directly linked with the orientation parameters (Bk(I)), for axially symmetric
ensemble, as:

ρk
n(Ii) =

1
√

2Ii + 1
Bk(Ii)δn0 (2.3)

For axially symmetric oriented state 1, the components of the angular distribution for n , 0 are null, see
Ref.[223]. Thus, the diagonal matrix elements of the statistical tensor corresponds to the population of
nuclear magnetic sub-states, noted p(m) with

∑

m p(m) = 1. Then, according to the Eq. 2.1 and 2.3 one
obtains:

W(θ, φ) =
∑

k

Bk(Ii)AkPk(cos θ) (2.4)

where Pk(cos θ) are the Legendre polynomials.

1.2 Orientation in space for axially symmetric states

An ensemble of nuclei can be qualified as isotropic, polarized or aligned depending on the space
orientation of the nuclear spins. Those terms are used to describe the distribution of the m-states as:

isotropic distribution : p(m) =
1

2I + 1
for all m; Bk = 0 and k , 0

polarization : p(m) , p(−m); Bk , 0 for odd k
alignment : p(m) = p(−m); Bk = 0 for odd k

(2.5)

where Bk is the orientation parameter, see Ref. [217]. The different types of orientation are illustrated on the
Fig. 2.1

The β-decays is a manifestation of the weak interaction and due to the parity violation of the latter, thus,
the β-decays are sensitive to the polarization of nuclei ensemble. The γ-rays distribution is symmetrical with
respect to θ = π/2 2, thus the latter are in general only sensitive to the alignment of nuclear ensemble.

1. the z-axis is chosen as the symmetry axis
2. We reminds that θ is the angle between the polarization direction and the emission of the β- γ-ray
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Figure 2.1: Isotropic, aligned and polarized distributions, see Ref. [224].

1.3 β-decay in Oriented Nuclear Ensemble

In order to describe the behavior of β-decay in oriented nuclear ensemble, the weak interaction is
considered as of pure V-A interaction type with full violation of parity conservation and it respects the time
reversal invariance 3, see Ref. [225].

1.3.1 Allowed β-decay

The electron and neutrino do not carry orbital momentum in allowed β-decay, thus their spins add up
either to 0 (Fermi) or 1 (Gamov-Teller). The selection rules are found to be:

Ii − I f = 0,±1 and πi = π f (2.6)

– If I f = Ii = 0, one cannot observe any anisotropy due to the only contribution of the Fermi matrix
element in the decay.

– If I f − Ii = ±1, the Gamow-Teller matrix element is the only contributor and the angular distributions
are found to be:

Wβ± (θ) = 1 + A1(β±)B1(I) cos θ (2.7)

where the β-decay angular distribution coefficients are defined as:

A1(β±) =






∓v

c

√

Ii + 1
3Ii

for I f = Ii − 1

±v

c

√

Ii

3(Ii + 1)
for I f = Ii + 1

(2.8)

– If I f = Ii , 0 mixed Fermi - Gamov-Teller decay can occur. The mixing ratio defined as:

y =
CV<1>
CA<σ>

(2.9)

where <1> is the Fermi (vector) matrix element and <σ> is the Gamow-Teller (axial vector) matrix
element. The angular distribution becomes:

Wβ± (θ) = 1 +
v/c

1 + y2

{

∓1
√

3I(I + 1)
+

2
√

3
y

}

B1(I) cos θ (2.10)

3. In those conditions, one finds C
(′)
A,V
= C

(′)
A,V
∗
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1.3.2 First-forbidden β-decay

In first-forbidden β-decay, six different matrix elements contribute to the decay due to the orbital angular
momentum (L=1) carried away. The selection rules are found as:

Ii − I f = 0,±1,±2 and πi = −π f (2.11)

In this case, the maximum angular momentum is J =
3
2

and the angular distribution functions have six

different coefficients A1(β±), A2(β±) and A3(β±). The A1(β±) and A3(β±) coefficients are associated with
parity non-conserving terms. The A2(β±) is associated to terms deriving from the orbital angular momentum
L=1 carried away by the β-particle. The different coefficients can be found in the Ref. [225].

2 Tilted Foils Polarization Process

The beam passing through a thin foil experience electron exchange inside the material. During its pass,
one consider that the atomic and nuclear spins are completely decoupled. At the exit of the thin foil, the ion
exhibits a important atomic polarization which is transferred in-flight to the nucleus via hyperfine interaction,
see Ref. [226].

2.1 Atomic Polarization

The mechanisms responsible of the atomic spin polarization of ions passing through a foil are not fully
identified and are still under investigation. One will give some explanations using a "macroscopic" treatment
of the mechanisms, which corresponds to the most common picture employed to describe this phenomenon.

The degree of atomic polarization increases with the tilt angle (α) between the beam axis (~ki) and the axis
(~n) normal to the foil surface, see Fig. 2.2. The direction of polarization (P̂J) corresponds to the unit vector
of the vectorial product of the normal axis (~n) and the beam direction (~ki). The polarization direction can be
easily changed by turning the foils along the beam axis , which would modify the normal axis direction of
the foil surface, see Ref. [227].
At the exit surface of the foil, the electronic states of the outgoing ions are polarized due to the asymmetry of
charge created by the tilt angle.

Another explanation has been provided by S. Momota et al. [228] and M. Lindroos [229]. The beam
passing through a thin foil is submitted to interaction inside the foil with cylindrical symmetry respect to
the beam axis (z-axis). During its pass through the foil, the ion is submitted to electron exchange and the
atomic spin is completely decoupled to the nuclear spin. The ion exits the foil with a cylindrical electron
cloud (aligned ions). At the exit of the tilted foil, a torque is produced between the positively charge ion and
the electrons in the foil, see Fig 2.2. This torque can modify the atomic spin projection and thus polarize an
ensemble of ions. In other terms, due to the angle the cylindrical symmetry is broken and a different field is
felt in +z than in -z, resulting in the shift of the electron cloud mass center. Then the asymmetric charge
distribution at the foil surface can polarize the atoms, see Ref. [228].

The atomic polarization depends highly on the tilt angle and it has been proven experimentally that the
maximum of atomic polarization is obtained for the largest angles.

In this scenario the quality of the foil surface is potentially important. The presence of defects could
create statistically more perpendicular surfaces with respect to the beam direction; and thus it would have a
direct impact on the polarization efficiency.

2.2 Transfer of atomic polarization to the nucleus

After the foil, the outgoing ion has its atomic spin polarized. The transfer from atomic to nuclear
polarization occurs in-flight in vacuum via hyperfine interaction. In the following, one denotes ~J the atomic
spin, ~I the nuclear spin and ~F the total spin ( ~F = ~I + ~J). F is a good quantum number, resulting from the
coupling of the atomic and nuclear spins.
The atomic polarization creates a hyperfine field in which the nuclear spin precess as well as the atomic spin.
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Figure 2.2: Polarization process. (top) The polarization direction is the same as the vectorial product of the
axis normal to the foil surface and the beam velocity. α denotes the tilt angle. ~n is the outgoing surface normal.
(bottom) Interaction of the outgoing ion with the foil surface. See text for more details, see Ref. [227, 228].

The total angular momentum is a constant of motion and the atomic polarization can be transferred to the
nucleus via hyperfine interaction.
In order to perform the transfer, one needs to let the system precessing a large number of times (ωt ≫ 1)
in order to make an average of the nuclear spin which has the tendency to point in the direction of ~F, see
Fig. 2.3. The time scale to generate to transfer the polarization to the nucleus has been estimated of the order
of the nanosecond or less from an experimental results where an isomeric state of T1/2 = 26.8 ns in 147Gd
has been successfully polarized up to ∼11(2)%, see Ref. [230].

2.3 Multi-foils stack

In order to obtain a high degree of polarization many foils are installed one following the other. The
atomic spin will be affected with the next foil on contrary to the nuclear spin which is assumed remaining
unaffected (decoupling of the atomic and nuclear spins in the foil). The phenomenon is illustrated by M.
Hass et al. and G. Goldring and Y. Niv in the following Ref. [231, 232]. The process is repeated for each foil,
reducing progressively the angle between the average nuclear spin and the average atomic spin, see Fig. 2.3.

The experimental transfer of polarization can be estimated via the transfer tensor G
qq′

kk′ (t) as described
in the Ref. [226], which can be integrated over the time. A detailed quantum theoretical treatment is given
in the Ref. [226] and will not be described deeply in this section. However, one can provide the relevant
conclusions.
The total polarization transfer realized via N foils is found as

(

G
qq′

kk′ (t)
)N

, if only the atomic spin is interacting
with the foils and the nuclear spin is affected by hyperfine interactions, if only the outgoing surface con-
tributes to the atomic polarization (and the reset), orientation with ranks k>2 are negligible and ωFF′ t ≫ 1
(ωFF′ is the quantum angular velocity).

The most suitable beam energies to polarize RIBs are in the range of few keV/u due to the major role of
the effective capture and stripping of electrons in the atomic polarization, see Ref. [230, 233].

The degree of nuclear polarization PI and the saturation of the transfer (occurring when F and I coincide)
has been found experimentally as following a classical model, see Ref. [232].
The nuclear polarization after a number of N foils is found to be:

P′I(N) = P′I(∞)





1 −

(

1 −
P′

I
(1)

P′
I
(∞)

)N




(2.12)

where P′
I
(1) is the polarization after one foil which is expressed as the product of the atomic polarization P′

J

and the polarization transfer operator P(I, J), thus P′
I
(1) = P′

J
P(I, J). The polarization transfer operator is
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Figure 2.3: Transfer of atomic spin polarization to the nucleus with multi-foils stack. The atomic spin
polarization is transferred to the nucleus via hyperfine interactions. If the multi-foils stack respects ωt ≫ 1,
the atomic polarization is reset at the exit of each foil. The nuclear polarization is assumed remaining
unaffected. In this scenario, after a certain number of foils, the nuclear polarization reaches a saturation.
From Ref. [230].

defined as:

P(I, J) =
1

4λ4

{

2λ + (λ2 − 1) ln

(

1 + λ
1 − λ

)}

with λ =
2IJ

I2 + J2
(2.13)

The saturation of polarization is found to be:

P′I(∞) =
P′

J

P′
J
+ (1 − P′

J
)/I

(2.14)

The usual atomic and nuclear polarization (PX) can be directly derived from the present expressions as:

P′X = PX

√

(X + 1)/X with X = I, J (2.15)

An example of the nuclear polarization function expressed as above is given in Fig. 2.4. The nuclear
polarization becomes more sensitive to low number of foils if J increases. The saturation of the degree
nuclear polarization decreases as a function of J.

Figure 2.4: Estimated curves of the nuclear polarization form the Eq. 2.12 varying the atomic spin value J
assuming a nuclear spin value of I=2 and atomic polarization PJ of 3%. From Ref. [234].

We mentioned the important dependence of the technique on the atomic/nuclear spin, on the tilt angle, on
the time dependence (ωt) and on the number of foils; however, there is still a crucial parameter to possibly
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control the process: the beam velocity.

H.G. Berry et al. [235] and Bendahn et al. [236] investigated the energy dependence of the orientation
created by the tilted foils technique.
This parameter can possibly have an important impact on the final degree of polarization. The few experi-
mental data does not constitute a sufficient statistics to firmly interpret the tendency. However, it seems that
the nuclear spin polarization decreases going higher in energy (& 100 keV). Moreover, the last experimental
data exhibited for the 8Li by Hirayama et al. [234] that the nuclear polarization should be optimum at a lower
energy of around 60 − 100 keV.

3 β-NMR and Tilted Foils techniques

3.1 External magnetic field applied on an oriented nuclear ensemble

Let us consider the case of an oriented nuclear ensemble implanted in a cubic crystal. In this case no
electric field gradient is induced and thus the magnetic sub-states (m) remain degenerated.
The degeneracy is lifted when we apply a static magnetic field typically of few hundred up to few 104 Gauss
via an external field, or via an internal hyperfine magnetic field of the host which is typically of around
10-100 Tesla.
In this case the energy difference between nuclear sub-states (m) is given by the Zeemann Hamiltonian:

H = −~µ.~B = ~ ~ωL.~I (2.16)

where ~ωL = −
gµN

~

~B is the Larmor frequency. g is the gyomagnetic factor. If the nuclei ensemble is oriented

(z-axis parallel to the magnetic field), the magnetic levels are found proportional to m: Em = −~ωLm

3.2 Nuclear Magnetic Resonance

The NMR (Nuclear Magnetic Resonance) technique consists in applying a radio frequency field to
spin-polarized nuclei ensemble, immersed in a static magnetic field. If the applied radio-frequency matches
the Larmor frequency (ωr f−applied = ωL), this can induce transitions (|∆m| = 1) between the Zeemann splitted
magnetic sub-states, causing a mixing or their populations, thus destroying the asymmetry of the angular
distribution. A complete demonstration of such observable when the applied radio-frequency matches the
Larmor frequency is described theoretically by Matthias et al. [237]. More informations can be found on the
original paper of the inventors of the technique: Purcell, Torque and Pound [238].

In our case, the NMR technique is used to destroy the polarization created by the tilted foils.

3.3 TFT + β-NMR

A scheme of a typical experimental setup is shown on the Fig. 2.5.

The beam passes through the tilted foils polarizer which can modify the polarization direction by turning
the foils around the beam axis. Afterwards, the beam is implanted in a sample host. The host is immersed
in an external magnetic field used to preserve the polarization direction (The spins precess around the
polarization direction). β-detectors are placed in the polarization direction to evaluate the asymmetry. RF
coils are placed perpendicular to the polarization direction in order to apply an RF field, used to destroy the
polarization.
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Figure 2.5: β-NMR and TFT setup.
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Chapter 3

Experimental Setup and Preliminary Re-
sults

1 Introduction

The present chapter describes the experimental setups used to polarize a 8Li radioactive beam at CERN
using the TFT. This first test is used as a commissioning to prove the reliability of the present setup. The 8Li
radioactive beam has been used by several different polarization techniques. It constitutes an appropriate
candidate to compare the potential of each existing technique. Further experiments for different (N,Z)
combinations and atomic configurations are already envisaged by the collaboration, see Ref. [239].
One proposed to evaluate the capacity of the tilted foils and β-NMR setups that we respectively installed and
developed at the CERN-ISOLDE facility. The β-NMR equipments have been donated by Pr. W.D. Zeitz
from the Hahn Meitner Institute of Berlin. The tilted foils setup and all the related electronics have been
entirely designed and developed by my colleague H. Törnqvist and myself.

2 Overview of the experiment

The experiment was designed to investigate the use of the tilted foils technique before post acceleration.
Before the development of sophisticated setups, commissioning experiments needed to be performed. We
would like to evaluate the degree of nuclear spin polarization created with the TFT by measuring the
asymmetry in the distribution of β particles.
A scheme of the different setups used to deliver and polarize the RIB is given on Fig. 3.1.

REX-ISOLDE
Tilted Foils

Polarized

8Li+2

deliver radioactive beam

Polarizer
Nuclear Spin

Implantation
Chamber

Sample300 keV/u
mylar carbon

from 300 keV to 200 keV

Rotating system

0°

180°

(Iron Shield)

b

~Bext

~Br f
b

β-NMR

Plastic detector

Magnet

RF Coils

Figure 3.1: Scheme of the experimental setups.

3 Production/Delivery of 8Li radioactive beam

The 8Li beam has been produced via the ISOL technique. After a mass separation with the HRS, the beam
has been purified and bunched in REX-TRAP. A charge breeding has been operated with the REX-EBIS.
The REX-LINAC was tuned to the lowest accessible energy of 300 keV/u.
The same device has been employed to provide the 8Li+2 radioactive beam than the Rb radioactive beams.
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The REX-ISOLDE setup has been already described in the Subsec. 2.6 on page 83.
After the REX-LINAC, the beam can be sent to several apparatus as, for example, MINIBALL. Our setup is
positioned at the second beam-line behind REX-ISOLDE, where many experiments are usually scheduled.
In order to perform all of them including ours, a large space between the bender and the tilted foils setup has
been added, see Fig. 3.2.

β-NMR Setup

REX-EBIS

REX-TRAP
Bender

MINIBALL

REX-LINAC

Figure 3.2: Overview of the experimental setups, including the second beam-line of REX-ISOLDE.

Before reaching the tilted foils polarizer, the phase space of the beam is controlled using different sets of
triplet and doublet magnets.

4 Tilted Foils Holder and Rotating System

Figure 3.3: Tilted Foils Holder (for a tilted angle of 75°) and Tilting device.

The foils holder can contain up to 20 foils, see Fig. 3.3. In our experiment, we used diamond-like carbon
foils of 4 µg/cm2(∼20 nm) manufactured by TU München. A set of three foils holders with different tilt
angles (65°, 70°, 75°) have been manufactured by the Weizmann Institute (Rehovot, Israel).
Similar foils than the carbon foils can be used to degrade the beam energy, such as mylar foils.

A stepper motor has been installed to turn at 180° the foils holder in order to flip the polarization direction.
The rotating part is turned using a gearing system constituted by a conical part (attached to the stepper motor)
in contact with a seal (used as a gear). The reliability of the rotation of the tilted foils holder is insured by a
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position detector. A part of the systematical error can be removed by reversing the polarization direction.

The foils chamber has a separate vacuum system in order to pump it independently.

In order to reduce the beam deviation caused by the β-NMR magnet, one decided to install a soft-iron
shield around the foils holder. Simulations using the Vector Field Opera software have been performed in
order to obtain a good compromise between the beam deviation (due to the β-NMR magnet), the thickness
of the soft-iron shield and the available space to mount the setup, see Fig. 3.4.
Several simulation cases are reported in the Tab. 3.1.

AXq Beam energy Bext Deviation
[kev/u] [T] [mm]

8Li3+ 300 0.1 +1.5
8Li2+ 300 0.1 -0.05

27Na7+ 300 0.1 -0.07

Table 3.1: Results of Opera Simulations for different RIB cases. Bext corresponds to the holding filed applied
by the β-NMR magnet. "Deviation" is the beam deviation at the sample position without steering magnet.
For all the deviation values presented, the β-NMR magnet has been shifted of 3 mm from the beamline
alignment (in the same direction than the deviation).

Figure 3.4: Example of opera simulation realized with a 8Li3+ beam, an holding field of 0.1 T and a beam
energy of 300 keV/u.

In order to compensate the resulting deviation, the magnet can be slightly moved in all the directions.
Moreover, a steering magnet has been installed just before the foils chamber.

5 β-NMR setup

A global picture of the TFT and β-NMR setups is shown on the Fig. 3.5.
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Figure 3.5: β-NMR + TFT setups.

5.1 β-NMR magnet

The β-NMR magnet is used to hold the nuclear spin in a preferential direction. It creates a low external
magnetic field sometimes qualified as "holding" field.

5.2 Implantation Chamber

Technical drawings of the implantation chamber are shown on the Fig. 3.6. In order to be sure that
the beam is properly implanted in the sample host, several beam diagnostic devices have been introduced:
Faraday Cups, collimators for beam and β particles, and an additional detector have been placed on the
sample place during the beam transport tests. Each diagnostic elements have been designed in order to fit
inside the small space offered by the implantation chamber.

Figure 3.6: Implantation chamber.

A motion feed-through holds and positions the catcher in the center of the chamber corresponding to the
center of the detection setups, and also the center of the RF coils, see Fig 3.7.

The RF frequency used to destroy the polarization is applied by RF coils which is controlled by a RF
generator and a RF amplifier.
The coils positioned perpendicularly to the polarization direction in a way that the RF field is applied
perpendicular to the applied external magnetic field from the β-NMR magnet.
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Figure 3.7: RF Coils, feed-through and sample.

In order to reduce the background, the solid angles of the β-detectors have been reduced by adding thick
copper collimators. To allow the β-particles to reach the scintillator detectors and insure to keep the vacuum,
two opening windows are placed in front of the scintillators in the polarization direction. They are both
covered with thin niobium foils to seal the implantation chamber without stopping the β-particles.

5.3 Scintillators

The implantation chamber under vacuum let pass β particle through two niobium foil windows placed in
opposite direction respect to the sample. In front of each of them, a pair of ∆E-E detectors (with respective
thickness of 2 mm and 10 mm) is used to detect the β particles. The ∆E detector is used to avoid possible
γ-ray background and determine more precisely the true coincidence. The implantation chamber is inserted
inside a part containing the scintillators (∆E-E detectors). From this part, light guides have been installed to
collect the resulting signal from the detectors. The signal is sent to photo-multipliers, see Fig. 3.8.

Figure 3.8: Scintillators, light guides and opening windows to detect β-particles.

6 The commissioning experiment

As mentioned above, an experiment using a well known nucleus in β-NMR was requested to validate the
reliability of the developed setup. Without this commissioning test, no further investigation is possible.

A radioactive beam of 8Li2+ has been used. The properties of the 8Li are summarized in the Tab. 3.2.
The beam intensities obtained at the entrance of the foil chamber were found around ∼ 4.105 pps.
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T1/2 Qe Asym. par.: A A/q
0.810 ms 13 MeV -1/3 4

Table 3.2: Physics properties of the 8Li. A: Asymmetry parameter, A/q: mass/charge ratio.

In order to investigate the hypothesis of higher polarization for lower beam energies, the REX-LINAC
was set to the lowest accessible beam energy of 300 keV/u. One used mylar foils for slowing down more
the beam before the carbon foils. The introduction of the mylar foils reduces the beam energy down to an
average energy of 200 keV/u at the entrance of the stack of 10 carbon foils. The foils holder with a tilt angle
of 70° has been employed in the latest tests.

Passing through the mylar and carbon foils, the beam is submitted to charge exchange and at the exit of
the foils an equilibrium charge state is found. Calculations have been performed to determine the equilibrium
charge state at the exit of the foils stack using the LISE++ software package [181], see Ref. [240]. One
founds, in our specific case, that the main charge state after the stack of foils would be identical to the
incoming beam (8Li2+). It is important to mention that the predictions of the equilibrium charge states for
low beam energies are generally not well reproduced by the existing models.

After its polarization, the radioactive beam is implanted into a sample host, chosen with a long spin-lattice
relaxation time compared to the decay time of the studied nucleus.
We opted for an implantation crystal of Pt, thanks to its cubic structure and its spin-lattice relaxation time of
around ∼4.3 s at T=295 K, see Ref. [241] (which is much longer than the lifetime of 8Li nucleus).
In order to preserve the polarization, a holding magnetic field of 0.05 T has been applied by the β-NMR
magnet. Moreover, a RF field is applied via Helmholtz coils in order to destroy the polarization and observe
the amplitude of the polarization. The corresponding NMR resonance of the 8Li should be found at a
frequency of around fLarmor=315 kHz.
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7 Preliminary results

7.1 Assymetry and Ratio

The standard parameter to measure the non isotropic emission of non-parity conservation radiation is the
asymmetry (ǫ) between 0°and 180°, i.e. between the left and right detectors:

A =
L − R

L + R
=

1 − R
L

1 + R
L

=
1 − ρ
1 + ρ

with ρ =
R

L
(3.1)

where L and R are respectively the number of β particle detected at the left or at the right detectors.

In order to get rid of the detection efficiencies associated to the left and right detectors, a double ratio can
be used. In the tilted foils technique one can easily change the polarization direction by turning the foils
holder along the beam line axis. Theoretically, the polarization corresponding to a foil at an angle +180° and
a foil at -0° would have the same amplitude but opposite signs. Taking into account such consideration one
can cancel out the efficiency from the two detectors (in our case, one considers the coincidences occurring in
a ∆E − E pair). The asymmetry is found to be:

A′ =
1 − ρ′
1 + ρ′

, with ρ′ =

√

R(+180°)L(−0°)
L(+180°)R(−0°)

(3.2)

It is important to note that if the beam is not well aligned , the symmetric configuration is broken. In this
condition, the double ratio method can introduce unknown systematic errors.

7.2 Results and Discussion

The iron shield was introduced to reduce the beam deviation created by the external magnetic field of the
β-NMR magnet. However, after a certain time without observing some significant asymmetry, one decided
to remove it. After removing it, one could find the NMR resonance in a short time. One can reasonably
expect that the presence of the iron shield perturbed the preservation of polarization during the flight of the
ions between the tilted foils and the implantation host, probably due to the field inhomogeneity.

A scan with a large frequency modulation has been applied around the expected value of the Larmor
frequency. An clear asymmetry is observed at around 315 kHz with an amplitude of around ∼1 %, see
Fig. 3.9. One could expect that the polarization would increase with few more foils compared to the only 10
we used for this test.

One can express the β-decay angular distribution as:

W(θ) = 1 + APβe cos θ with P =
Iz

I
(3.3)

where: A is the asymmetry parameter, βe =
ve

c
, θ the angle between the polarization and the β-particle.

The convolution of the spin relaxation time (4.3 s) and the half-life (840 ms) reduces the experimentally
observed asymmetry of around ∼15%.

One calculated the double ratio using fixed foil orientation, without taking into account the geometrical
factor and ignoring the backscattering of β-particles 1, we obtained the lower limit of polarization at around
3.56 ± 0.29% and −2.77 ± 0.27% for the respective angle −70°and +70°, see Fig. 3.9. It is important to note
that the degree of polarization is relatively important for such intermediate beam energy.

1. The geometrical factor and the backscattering of β-particles reduces the experimental observed asymmetry.
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Figure 3.9: Asymmetry vs RF frequency.

JAEA-ISOL experiment In the meantime, Hirayama et al. [234] performed a polarization measurement
using a 8Li RIB at JAEA-ISOL. The primary targets of 13C or boron nitride were bombarded by a 64
MeV 7Li beam from the TRIAC Tandem. They used an annealed Pt catcher at room temperature, an ex-
ternal magnetic field of Bext=0.05 T. On Contrary to us, they used thin polystyrene foils of around 4.2 µg/cm2.

Figure 3.10: Nuclear polarization PI of the 8Li beam as a function of the number of polystyrene foils
measured for incident beam energies of 141.5, 176.4 and 241.3 keV/u. The solid lines are fits with the
Eq. 2.12 for nuclear polarization PI to the data. The dotted lines beside the solid lines indicates the fitting
errors. From Ref. [234]

The technique has been used at lower beam energies of 141.5 keV.u, 176.4 keV/u, and 241.3 keV/u.
From the dependence of the degree of nuclear spin polarization on the number of foils, see Fig. 3.10, they
observed a deviation from the theoretical model. They interpreted it as coming from the possibility to induce
atomic polarization from different atomic states.
Indeed, the theoretical models does not take into account the energy dependence of the induced atomic
polarization, which assumes that only one atomic state generates the nuclear polarization. Moreover, at the
exit of the target, one obtain an equilibrium charge state which depends on the beam energy. In case of highly
mixed charge states different atomic states could be dominant and it would contribute to deviate from the
model.

They also investigated beam energy and charge state dependence using only one polystyrene foil, see
Fig. 3.11. As seen on the Fig. 2.4, the half integer atomic spin value of J=1/2 would favor the polarization.
However, the 8Li1+ does not have a half integer atomic spin value of J=1/2 and it seems to be the main
contribution of the production of nuclear polarization.
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Figure 3.11: (a) Nuclear polarization with
a single foil measured as a function of the
beam energy at the exit of the foil. energies
EI of 23.8 and 85.3 keV/u were obtained by
degrading the initial beam energy of 176.4
keV/u using mylar foils of 3.4 and 1.7 µm,
respectively. The energies were measured
by SSD (Solid State Detector), except for
the data point of lowest energy, which was
calculated by the SRIM2008 code. The hor-
izontal error bars show the beam energy
spread, which was considered to be the ef-
fect of multiple scattering in the foil.
(b) Charge state distribution of Li ions as a
function of the beam energy for 8Li0,+1,+2,+3

ions.
(c) Estimated atomic polarization PJ from
Eq. 2.12 for atomic spin J=1/2 and number
of foils N=1. the solid line shows the in-
terpolation of the energy dependence of the
atomic polarization. From Ref. [234]

Furthermore, in the case of multiple tilted foils, taking into account the energy loss at each foils and the
energy-dependence of the atomic polarization as in the Fig. 3.11, the atomic states with J=1 2 should be
responsible of the atomic polarization and thus nuclear polarization, see Fig. 3.12.

Figure 3.12: Estimation of nuclear polarization considering the energy dependent atomic polarization with
the atomic spin values of (a) J=1/2 and (b) J=1. From Ref. [234]

Further studies would be necessary to confirm such feature inducing atomic polarization.

2. The atomic sates with J=1 are 1s2p(1P1) → 1s2(1S 0) with τ = 0.04 ns, 1s2p(3P1) → 1s2(1S 0) with τ = 55.6 µs and
1s2p(3P1)→ 1s2s(3S 1) with τ = 44 ns.
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Summary and Outlooks

The commissioning experiment proved that the present setup at ISOLDE is ready to perform further
investigation using the tilted foils technique. A systematic study of the following parameters would be of
great importance to understand the underlying process involved in the creation of polarization: the tilt angle,
the incident beam energy, the closing of the atomic shell after polarization, the number of foils, the iron
shield, the foil degradation, the different atomic state populations.

Further studies by Hirayama et al. demonstrated again that lower beam energy and high number of foils
a favorable to reach a high degree of atomic polarization and thus by hyperfine interaction higher nuclear
polarization.
They also highlighted the possibility of the main contribution in the polarization of the J=1 atomic states,
instead of the J=1/2 atomic states.

A next step consisting to post-accelerate nuclear spin-polarized ion beams at ISOLDE would start maybe
with the HIE-ISOLDE project. The people in charge of this project envisaged to use a stack of foils earlier in
the LINAC in order to obtain polarized radioactive beams.

In a near future, other nuclei would be investigated with the present TFT setup. A proposal to study
magnetic moments of isotopes of indium has already been accepted by the CERN Research Board [224].
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General Conclusions

The manuscript is arranged in two parts corresponding to two different studies. However, it was envisaged
to make them interacting polarizing the Rb beams using the tilted foils technique.

The first part concerned the study of the onset of deformation around A=100, N=60. By adding just one
nucleon a sudden development of deformation appears.
The Coulomb excitations of 93,95,97,99Rb isotopes have been realized mainly in order to identify the Nilsson
orbital responsible of the development of deformation at N=60 for the Rb isotopic chain. It constitutes
complementary experiments from which we obtain new insight on the neutron and proton side. It was the
first time, one populated the excited nuclear structure of the 97Rb and 99Rb isotopes. The Coulomb excitation
allows a "direct" measurement of the matrix elements. From the experimental yields, one calculated the
matrix elements using the GOSIA2 code. One deduced the transition strengths related to those matrix
elements.
By comparing the experimental results extracted from the present set of data one concludes that the π3/2+[431]
corresponds to the orbital on which the rotational band of the 97Rb g.s is built.
The observation of similar structures in the 97,99Rb is an implicit proof that the 99Rb rotational band is based
on the same π3/2+[431] orbital.
The Coulomb excitation of the 99Sr nucleus has also been performed due to the beam composition and its
half-life. One proposes to enlarge the rotational band structure with one additional states. The corresponding
state is in agreement with the rotational and inertia feature observed in the rest of the rotational g.s. band.

The second part is dedicated to the investigation of the tilted foils technique for future use nuclear spin
polarized radioactive ion beams. A TFT and a β-NMR setups have been installed at CERN in order to
evaluate such possibility a ISOLDE.
The design and the related electronic systems have been performed in order to fit the specific requirement of
such setup.
A commissioning experiment realized with 8Li beam gave promising results, and confirmed the reliability of
the experimental setup that we developed at CERN-ISOLDE.
In the meantime, studies have been performed by Hirayama et al. which highlighted notably the energy-
dependence of the atomic polarization and the possible of role of atomic states with different spins in the
induction of atomic polarization. In the case of the polarization of 8Li nuclei at low energy (50-150 keV/u),
they notably establish the strong possibility of the J=1 atomic states in the polarization to the detriment of
the J=1/2 atomic states. Further studies are requested to confirm such behavior.
The collaboration envisaged to use the present TFT setup in the study of the magnetic moments of the
neutron-rich odd-even In isotopes at the future HIE-ISOLDE facility.
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Appendix A

Formalism and Models

Some additional information concerning the "Anisotropic Modified Harmonic Oscillator" and "Wood-
Saxon + BCS" models are provided in the present appendix in order to introduce their related formalism
sometimes sometimes used in the cited publications.

1 Anisotropic Modified Harmonic Oscillator and Nilsson Model

Based on the spherical modified oscillator, the anisotropic modified harmonic oscillator introduced the
concept of deformed nuclei via the elongation parameter δ, see Ref. [89]. The elongation along the z-axis,
x-axis and y-axis can be different. The corresponding single-particle Hamiltonian takes the form:

HAMHO = −
~

2

2M
∆ +

1
2

M
[

ω2
x1

x2
1 + ω

2
y1

y2
1 + ω

2
z1

z2
1

]

︸                                             ︷︷                                             ︸

H0
AMHO

−C~l · ~s − D~l2 (A.1)

where, (x1,y1,z1) are the particle coordinates in the body fixed coordinate system. The three different rota-
tional frequencies ω2

x, ω2
y , ω2

z describe the nuclear deformation. C and D has mentioned above are constant,
but they depends on the universal parametrization of κ and µ.

1.1 δ-parametrization

Considering the axially symmetric nuclei, the nuclear shape is represented as an ellipsoid. The axial
symmetric nuclei have been described by Nilsson [20], introducing of an elongation parameter δ.






ω2
z = ω2

0(δ)

(

1 − 4
3
δ

)

ω2
⊥ = ω2

0(δ)

(

1 +
2
3
δ

) (A.2)

The volume conservation imposes: ωx1ωy1ωz1 = C ste, thus ω0 = ω̊0

(

1 − 4
3

2

− 16
27
δ3

)− 1
6

with ω̊0 = 41A−
1
3

MeV (ω0(δ = 0)).

Using a dimensionless set of coordinates (x0,y0,z0) the Hamiltonian is separated in a spherical and
deformed part:

x0 =
√

mω0x1, y0 =
√

mω0y1, z0 =
√

mω0z1 (A.3)

and,

H0
AMHO = H̊0 + Hde f , with






H̊0 =
ω0

2

(

−∆ + r2
)

Hde f = ω0δ
4
3

√

π

5
r2Y20

(A.4)

In this representation, H̊0,l2,lz and sz are diagonal. Moreover the operator jz = lz + sz commutes with
HAMHO. The corresponding quantum numbers necessary to define the nuclear states are N (total quanta of
the oscillator), l, Λ, Σ, with K = Λ + Σ and the related parity, see Fig. A.1. The spherical Hamiltonian is
found to be:

H̊0 = |NlΛΣ >=

(

N +
3
2

)

ω0|NlΛΣ > (A.5)
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Figure A.1: Coupling of the angular moment ~j = ~l + ~s of the valence nucleons. Ω, Λ and Σ are the respective
projections of ~j, ~l and ~s.

1.2 ǫ-parametrization

The deformation can be expressed in a different manner with the deformation operator ǫ with its frequency
ω(ǫ):






ωz = ω0(ǫ)

(

1 − 2
3
ǫ

)

ω⊥ = ω0(ǫ)

(

1 +
1
3
ǫ

) (A.6)

The elongation parameter ǫ is defined by:





ǫ = δ +
1
6
δ2 + O(δ3)

ω0(ǫ) = ω̊0

(

1 +
1
9
ǫ2 + O(ǫ3)

) (A.7)

The Hamiltonian H0
AMHO can be diagonalized in a set of coordinates (x2,y2,z3) transforming the ellipsoid

shape to a sphere:

H0
AMHO = H̊0 + Hde f , with
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(A.8)
with: x2 = x1

√
mωx1 , y2 = y1

√
mωy1 , z2 = z1

√
mωz1

1.3 Introduction of κ and µ

The introduction of the dimensionless quantities κ and µ are used to emphazise the diagonalization of ~l~s
and ~l2. They are defined as:

κ =
C

2ω0
, µ =

2D

C
(A.9)

A new deformation parameter ξ is associated:

ξ = −δ
κ
ω̂0(δ) = −δ

κ

(

1 − 4
3
δ2 − 16

27
δ3

)−
1
6 (A.10)

with: ω̂0 =
ω0(δ)
ω̊0

and the deformation Hamiltonian is related to δ such as:

Hde f ,δ = δω0

(

4
3

) √

π

5
r2Y20 = κω̊0ξ

(

4
3

√

π

5

)

(A.11)

thus,
HAMHO − Ĥ0 = −κω̊0M (A.12)
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with:M = ξ
(

−4
3

√

π

5

)

r2Y20 − 2~l~s − µ~l2

The matrix is diagonalized for different values of the deformation ξ. For low deformation, the set of
quantum numbers: K, π, l, j can describe entirely the shape. For high deformation, the set of quantum

numbers K, π, N, nz1 , Λ (Λ = K ± 1
2

). For intermediate deformation, the situation is more complicated and

for example K is not a good quantum number 1.

Neglecting the ~l~s coupling and ~l2 terms, the energy level of the anisotropic harmonic oscillator is found
as:

E0 = ω0(ǫ)

[(

N +
3
2

)

+ ǫ
nx2 + ny2 − 2nz2

3

]

(A.13)

The single particle is described via the set of quantum numbers Kπ and the asymptotic quantum numbers
[

Nnz1Λ
]

.
A additional correction of the anisotropic harmonic oscillator Hamiltonian has been introduced to

reproduce in a better way the experimental energy levels 2:

HAMHO = H0
AMHO −C~l~s − D

(

~l2− < ~l2 >N

)

(A.14)

with: < ~l2 >N=
N(N + 3)

2
, the average value of < ~l2 > taken over each N-shell.

The latter term reproduces the Woods-Saxon radial shape, but the < ~l2 >N value is subtracted to avoid a
global energy compression of the orbits.

2 Wood Saxon + BCS model

The mean field notion allows to treat approximately the nucleus. To reproduce in a better way the behavior
and the properties of the nucleus, it is necessary to take into account the pairing correlation ingredient in the
problem.
The nucleon are immersed in an anisotropic modified harmonic oscillator potential (similar to Woods-Saxon
potential), see Sec.1. With such potential the orbitals ordering reproducing the experimental data are usually
roughly reproduced.
The residual nuclear interaction of the pairing strength needs to be taken into account, it allows to couple the
nucleons by pairs. In the 1960s, Barden, Cooper and Shrieffer (BCS)[242] introduced a specific formalism
in order to describe the supraconductivity phenomenon. To describe the pairing governing the residual
interaction, this formalism has been transposed to the nucleus case in order to study its superfluid properties.
The corresponding wave function is more sophisticated than for the "AMHO", and the previous single
particle states are described with single quasi-particles. A single quasi-particle state is the linear combination
of the particle and hole. The Cooper pairs coupling two fermions of the same nature constitute bosons and
should respect the Bose-Einstein distribution. Moreover, their bosonic nature confers them a symmetric
character.

The BCS wave function describing the nuclear quasi-particle state is found as:

| ψBCS >=
∏

k>0

P+k | 0 > (A.15)

where, | 0 > represents the new "vacuum" (vacuum of the coupled particles),P+
k
= uk + vka+

k
a+

k̄
, vk represents

the probability to occupy the pair (k, k̄) and uk the probability of its none occupation. a+
k

is the creation
operator of a particle in a nuclear state k and a+

k̄
the creation operator of a particle in the nuclear state k̄. The

statistics imposes the following relation:
v2

k + u2
k = 1 (A.16)

The energy of a "BCS" nuclear state is of the form:

E = EWood Saxon + EPair(∆) (A.17)

1. K is the superposition of spherical states with different l-values
2. It reduced the amount of (κ,µ) pairs needed to reproduces the experimental results.
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In the BCS formalism only the average number of particles is conserved :

N =
∑

k

v2
k (A.18)

The use of this formalism requests the restoration of the nucleons number.

Annihilation ηk and creation η+
k

operators for the quasi-particles can also be defined. The Bogoliubov-
Valatin transformation allows to create the quasi-particle operators such as :

ηk | ψBCS >= 0 (A.19)

with: ηk = ukak − vkak̄+

The transformation is canonical and linear, thus the quasi-particle are also fermions, see Ref. [89].

2.1 Pairing correlation

In the Fig.1.6, an oscillation of the odd and even masses is observed in the relative mass 3. The residual
interaction coupling nucleons together is generally treated with a two bodies potential. Usually a seniority
force is employed such as:

−Gi j =< iī | V | j j̄ > (A.20)

with: ī is the reversed time state compared to the state i, Gi j is constant, and V = V0δ(~ri − ~r j). For more
information, the "Theory of complex nuclei" written by V.G. Soloviev [89].

2.2 Average number of nucleons

To determine the occupation probability for each nuclear state, the number of nucleons is used to constrain
the solutions. The minimization of the following expression is the transcription of this constraint:

< HWood−S axon + VPair − λN(N − N̄) − λZ(Z − Z̄) > (A.21)

with: λN and λZ the Lagrange parameters, called chemical potential 4. The variational principle is found as:

δ < ψBCS | HWood−S axon + VPair − λN(N − N̄) − λZ(Z − Z̄) | ψBCS >= 0 (A.22)

which leads to:
2
(

E
s.p.

k
− λukvk − ∆k

(

u2
k + v2

k

))

= 0 (A.23)

where, the pairing tensor ∆k is found to be :

∆k =
1
2

∑

l

Glk∆l
√
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E
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l
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)2
+ ∆l

(A.24)

The BCS energy minimization respecting the normalization condition, see Eq.A.16 on the previous page,
leads to the occupation probabilities:
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(A.25)

In the "Wood-Saxon" treatment with no pairing, the vk = 1 for Ek < λ and all the states lower than the
Fermi energy are occupied, the others are completely empty. In the paring case, the occupation probabilities
(vk, uk) are not null at the Fermi level. The Fermi surface is diffused which corresponds to the fact that a pair
can be diffused at E

s.p.

k
± ∆. If all the nucleons are coupled in pairs, only the pairs close to the Fermi level

play a role in the pairing effect.

3. Of course the same behavior is present in the S p, S n. It explains the fact that usually nuclear spectroscopists use the S 2n and S 2p,
because the pairing is more or less annihilated

4. They are also called Fermi energies
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Figure A.2: Variation of the occupation probability v2
k

in the no pairing case (∆ = 0) and paring case (∆ , 0)
along the single particle energy. The red curve corresponds to a pure "Wood-Saxon" and the blue curve to a
"Wood-Saxon + pairing" treatment.

2.3 Shape constraint

The study of deformation gradient can be operated introducing the quadrupole moments Q20 (axial
deformation) and Q22 (triaxial deformation) in the minimization process. For example, the potential energy
surface of the nucleus can be obtain via the minimization expression:

δ < ψBCS | HWood−S axon + Vpair − λN(N − N̄) − λZ(Z − Z̄) − c
(

Q0 − Q̄0

)2
| ψBCS >= 0 (A.26)

with, the quadrupole operators :






Q20 =

√

16π
5

∑A
i=1 r2

i
Y20 (θi, φi)

Q22 =

√

4π
5

∑A
i=1 r2

i
(Y22 (θi, φi) + Y2−2 (θi, φi))

(A.27)

On contrary, the introduction of the quadrupole moments will constrain the minimization.

2.4 Lipkin-Nogami Method

The Wood Saxon formalism conserves only the average number of nucleons, thus it is necessary to
restore the particle number. In order to improve the pairing corrections and restore the particle number the
Lipkin-Nogami method can be used. As the BCS formalism, initially present in the solid state physics, the
method proposed by H.J. Lipkin, see Ref. [243], has been applied for nuclear physics in 1964 by Y. Nogami
et al. [244].
Developing to an higher order the minimization expression, see Eq. A.27, the particle number is recovered:

δ < ψBCS | HWood−S axon+Vpair−λN,1(N−N̄)−λZ,1(Z−Z̄)−λN,2(N2−N̄2)−λZ,2(Z2−Z̄2)−c
(

Q0 − Q̄0

)2
| ψBCS = 0

(A.28)
The deformation can be constraint, for example in a pure rigid rotor hypothesis, via the constraint parameter
c. In such way the total energy of the nucleus can be expressed as a function of the quadrupole moment
parameter.
And, the quasi-particle and the single particle energies can be obtained by projection.

2.5 Iterative process

The whole minimization process is an iterative process, and, after the determination of the quasi-particle
and single particle energies, a new minimization with the obtained parameters is operated.
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Appendix B

Experimental details

1 Chemical Properties of Rubidium

Electrochemical Equivalent 3.1888 g/amp-hr
Electron Work Function 2.16 eV

Electronegativity 0.82 (Pauling); 0.89 (Allrod Rochow)
Heat of Fusion 2.192 kJ/mol

Ionization Potential First 4.177 eV
Ionization Second 27.28 eV
Ionization Third 40 eV

Valence Electron Potential (-eV) 9.47
Electron affinity 0.485916(20)

Table B.1: Chemical properties of the rubidium. The different chemical properties have an important impact
on production cross sections of the ISOL techniques.
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2 MINIBALL angles of the Coulomb excitations

Elem. θ φ Clus. Crys.
core 1.94781 2.36069 0 0

seg. 1 1.82999 2.4867 0 0
seg. 2 1.98574 2.54765 0 0
seg. 3 1.79411 2.32027 0 0
seg. 4 1.901 2.18879 0 0
seg. 5 2.1171 2.41168 0 0
seg. 6 2.06524 2.21509 0 0

Elem. θ φ Clus. Crys.
core 2.26538 2.83439 0 1

seg. 1 2.40748 2.9588 0 1
seg. 2 2.41782 2.70969 0 1
seg. 3 2.25242 3.03898 0 1
seg. 4 2.11493 2.92609 0 1
seg. 5 2.2555 2.6073 0 1
seg. 6 2.10953 2.21509 0 1

Elem. θ φ Clus. Crys.
core 2.43079 2.14331 0 2

seg. 1 2.34453 1.93242 0 2
seg. 2 2.255 2.12019 0 2
seg. 3 2.50991 1.92196 0 2
seg. 4 2.59757 2.17625 0 2
seg. 5 2.3204 2.34037 0 2
seg. 6 2.49296 2.40692 0 2

Elem. θ φ Clus. Crys.
core 0.978496 0.872915 1 0

seg. 1 1.12744 0.935178 1 0
seg. 2 1.11336 0.761571 1 0
seg. 3 1.79411 1.04949 1 0
seg. 4 0.855891 0.99956 1 0
seg. 5 0.964254 0.674157 1 0
seg. 6 0.825131 0.792863 1 0

Elem. θ φ Clus. Crys.
core 1.21734 0.401228 1 1

seg. 1 1.2368 0.2342 1 1
seg. 2 1.08786 0.288023 1 1
seg. 3 1.35587 0.339691 1 1
seg. 4 1.34473 0.499605 1 1
seg. 5 1.06746 0.476237 1 1
seg. 6 1.20679 0.577814 1 1

Elem. θ φ Clus. Crys.
core 0.741844 0.313285 1 2

seg. 1 0.594662 0.408442 1 2
seg. 2 0.721676 0.559725 1 2
seg. 3 0.634975 0.145771 1 2
seg. 4 0.78775 0.0939703 1 2
seg. 5 0.871085 0.455 1 2
seg. 6 0.899181 0.242157 1 2

Table B.2: MINIBALL Ge detector angles.
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Elem. θ φ Clus. Crys.
core 1.09574 2.68945 2 0

seg. 1 1.24664 2.649 2 0
seg. 2 1.15035 2.51993 2 0
seg. 3 1.20011 2.80465 2 0
seg. 4 1.05492 2.85999 2 0
seg. 5 0.988927 2.54938 2 0
seg. 6 0.939075 2.73904 2 0

Elem. θ φ Clus. Crys.
core 1.05327 2.15476 2 1

seg. 1 0.987147 1.9896 2 1
seg. 2 0.891547 2.13934 2 1
seg. 3 1.13858 2.01865 2 1
seg. 4 1.20829 2.16706 2 1
seg. 5 0.97036 2.31807 2 1
seg. 6 1.13378 2.31342 2 1

Elem. θ φ Clus. Crys.
core 0.650103 2.48598 2 2

seg. 1 0.608116 2.74087 2 2
seg. 2 0.756589 2.67582 2 2
seg. 3 0.503711 2.52642 2 2
seg. 4 0.569093 2.2535 2 2
seg. 5 0.810188 2.45665 2 2
seg. 6 0.72306 2.25684 2 2

Elem. θ φ Clus. Crys.
core 2.19156 0.843981 3 0

seg. 1 2.31142 0.964259 3 0
seg. 2 2.33624 0.76057 3 0
seg. 3 2.16739 1.01833 3 0
seg. 4 2.05013 0.909051 3 0
seg. 5 2.20105 0.650168 3 0
seg. 6 2.06064 0.739293 3 0

Elem. θ φ Clus. Crys.
core 2.40585 0.293622 3 1

seg. 1 2.35831 0.0838349 3 1
seg. 2 2.25428 0.230884 3 1
seg. 3 2.50577 0.127221 3 1
seg. 4 2.5488 0.37729 3 1
seg. 5 2.28518 0.435268 3 1
seg. 6 2.42991 0.53009 3 1

Elem. θ φ Clus. Crys.
core 1.95389 0.393171 3 2

seg. 1 1.8337 0.491171 3 2
seg. 2 1.96779 0.563589 3 2
seg. 3 1.81917 0.336738 3 2
seg. 4 1.93122 0.23195 3 2
seg. 5 2.09866 0.461848 3 2
seg. 6 2.07517 0.280562 3 2

Table B.3: MINIBALL Ge detector angles.

Elem. θ φ Clus. Crys.
core 2.4948 4.26473 4 0

seg. 1 2.56055 3.99571 4 0
seg. 2 2.39633 4.03538 4 0
seg. 3 2.65326 4.26635 4 0
seg. 4 2.55901 4.53457 4 0
seg. 5 2.31949 4.26359 4 0
seg. 6 2.39502 4.49253 4 0

Elem. θ φ Clus. Crys.
core 2.02968 3.97557 4 1

seg. 1 1.86394 4.00431 4 1
seg. 2 1.95545 4.15126 4 1
seg. 3 1.92791 3.84315 4 1
seg. 4 2.08816 3.79731 4 1
seg. 5 2.13322 4.13792 4 1
seg. 6 2.20358 3.93971 4 1

Elem. θ φ Clus. Crys.
core 2.02805 4.54898 4 2

seg. 1 2.08557 4.72744 4 2
seg. 2 2.20174 4.58612 4 2
seg. 3 1.92556 4.68063 4 2
seg. 4 1.86247 4.51919 4 2
seg. 5 2.1325 4.3875 4 2
seg. 6 1.95481 4.37288 4 2

Elem. θ φ Clus. Crys.
core 1.15791 4.19636 5 0

seg. 1 1.31293 4.13265 5 0
seg. 2 1.1954 4.01153 5 0
seg. 3 1.28147 4.29981 5 0
seg. 4 1.1342 4.37701 5 0
seg. 5 1.02666 4.0684 5 0
seg. 6 0.996902 4.27342 5 0

Elem. θ φ Clus. Crys.
core 1.04668 3.63959 5 1

seg. 1 0.957529 3.47287 5 1
seg. 2 0.872229 3.65051 5 1
seg. 3 1.12126 3.48303 5 1
seg. 4 1.21275 3.63109 5 1
seg. 5 0.977809 3.8275 5 1
seg. 6 1.15192 3.79624 5 1

Elem. θ φ Clus. Crys.
core 0.657955 4.08365 5 2

seg. 1 0.646788 4.35744 5 2
seg. 2 0.794698 4.24803 5 2
seg. 3 0.511434 4.18718 5 2
seg. 4 0.544707 3.86737 5 2
seg. 5 0.82373 4.00754 5 2
seg. 6 0.706518 3.81692 5 2

Table B.4: MINIBALL Ge detector angles.
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Elem. θ φ Clus. Crys.
core 1.8958 5.39667 6 0

seg. 1 1.75099 5.44752 6 0
seg. 2 1.85708 5.55884 6 0
seg. 3 1.78555 5.29746 6 0
seg. 4 1.92532 5.23748 6 0
seg. 5 2.01189 5.51312 6 0
seg. 6 2.04581 5.33806 6 0

Elem. θ φ Clus. Crys.
core 1.99536 5.88293 6 1

seg. 1 2.08354 6.0231 6 1
seg. 2 2.15405 5.8658 6 1
seg. 3 1.93242 6.02548 6 1
seg. 4 1.84301 5.89719 6 1
seg. 5 2.05456 5.71925 6 1
seg. 6 1.89627 5.74867 6 1

Elem. θ φ Clus. Crys.
core 2.34767 5.51442 6 2

seg. 1 2.3698 5.29964 6 2
seg. 2 2.22855 5.37355 6 2
seg. 3 2.48656 5.44675 6 2
seg. 4 2.45033 5.68251 6 2
seg. 5 2.19485 5.56956 6 2
seg. 6 2.30148 5.72391 6 2

Elem. θ φ Clus. Crys.
core 1.08885 5.84073 7 0

seg. 1 1.24235 5.83038 7 0
seg. 2 1.16927 5.68716 7 0
seg. 3 1.17182 5.97447 7 0
seg. 4 1.02153 5.99977 7 0
seg. 5 1.00776 5.68218 7 0
seg. 6 0.928841 5.85347 7 0

Elem. θ φ Clus. Crys.
core 1.12963 5.32179 7 1

seg. 1 1.08655 5.15674 7 1
seg. 2 0.974068 5.27682 7 1
seg. 3 1.23127 5.20743 7 1
seg. 4 1.27945 5.35905 7 1
seg. 5 1.02547 5.45899 7 1
seg. 6 1.18522 5.48612 7 1

Elem. θ φ Clus. Crys.
core 0.691007 5.52327 7 2

seg. 1 0.610754 5.74044 7 2
seg. 2 0.763154 5.7392 7 2
seg. 3 0.545766 5.4883 7 2
seg. 4 0.646796 5.28527 7 2
seg. 5 0.849411 5.54954 7 2
seg. 6 0.794609 5.34178 7 2

Table B.5: MINIBALL Ge detector angles.

3 CD Detector Calibration

(12C at 2.83 MeV/u) (16O at 2.83 MeV/u) (20Ne at 2.83 MeV/u) (40Ar at 2.83 MeV/u)
Strip E[MeV/u] Etot Strip E[MeV/u] Etot Strip E[MeV/u] Etot Strip E[MeV/u] Etot

15 2.61 32.52 15 2.54 40.64 15 2.49 49.8 15 2.4 96
14 2.59 31.08 14 2.53 40.48 14 2.48 49.6 14 2.37 94.8
13 2.58 30.96 13 2.52 40.32 13 2.46 49.2 13 2.34 93.6
12 2.57 30.84 12 2.5 40 12 2.44 48.8 12 2.31 92.4
11 2.55 30.6 11 2.48 39.68 11 2.43 48.6 11 2.28 91.2
10 2.54 30.48 10 2.47 39.52 10 2.41 48.2 10 2.25 90
9 2.53 30.36 9 2.45 39.2 9 2.39 47.8 9 2.21 88.4
8 2.51 30.12 8 2.44 39.04 8 2.37 47.4 8 2.18 87.2
7 2.5 30 7 2.42 38.72 7 2.35 47 7 2.15 86
6 2.49 29.88 6 2.4 38.4 6 2.32 46.4 6 2.11 84.4
5 2.47 29.64 5 2.38 38.08 5 2.3 46 5 2.08 83.2
4 2.46 29.52 4 2.37 37.92 4 2.28 45.6 4 2.05 82
3 2.45 29.4 3 2.35 37.6 3 2.27 45.4 3 2.02 80.8
2 2.44 29.28 2 2.34 37.44 2 2.25 45 2 1.99 79.6
1 2.42 29.04 1 2.32 37.12 1 2.23 44.6 1 1.96 78.4
0 2.41 28.92 0 2.3 36.8 0 2.21 44.2 0 1.93 77.2

Table B.6: Calibration: Energies vs θ for the CD annular strips for the scattering on 196Pt.
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