C. Rodriguez-brito, B. Rayhawk, S. Kelley, S. Tran, T. Haynes et al., Biodiversity and biogeography of phages in modern stromatolites and thrombolites, Nature, vol.452, pp.340-343, 2008.

E. A. Dinsdale, R. A. Edwards, D. Hall, F. Angly, M. Breitbart et al., Functional metagenomic profiling of nine biomes, Nature, vol.32, issue.7187, pp.629-632, 2008.
DOI : 10.1038/nature06810

N. Fierer, M. Breitbart, J. Nulton, P. Salamon, C. Lozupone et al., Metagenomic and Small-Subunit rRNA Analyses Reveal the Genetic Diversity of Bacteria, Archaea, Fungi, and Viruses in Soil, Applied and Environmental Microbiology, vol.73, issue.21, 2007.
DOI : 10.1128/AEM.00358-07

T. Schoenfeld, M. Patterson, P. M. Richardson, K. E. Wommack, M. Young et al., Assembly of Viral Metagenomes from Yellowstone Hot Springs, Applied and Environmental Microbiology, vol.74, issue.13, pp.4164-4174, 2008.
DOI : 10.1128/AEM.02598-07

T. Kwan, J. Liu, M. Dubow, P. Gros, and J. Pelletier, The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages, Proc. Natl Acad. Sci. USA, pp.5174-5179, 2005.
DOI : 10.1073/pnas.0501140102

T. Kwan, J. Liu, M. Dubow, P. Gros, and J. Pelletier, Comparative Genomic Analysis of 18 Pseudomonas aeruginosa Bacteriophages, Journal of Bacteriology, vol.188, issue.3, pp.1184-1187, 2006.
DOI : 10.1128/JB.188.3.1184-1187.2006

URL : https://hal.archives-ouvertes.fr/hal-00069313

M. L. Pedulla, M. E. Ford, J. M. Houtz, T. Karthikeyan, C. Wadsworth et al., Origins of Highly Mosaic Mycobacteriophage Genomes, Cell, vol.113, issue.2, pp.171-182, 2003.
DOI : 10.1016/S0092-8674(03)00233-2

S. P. Brown, L. Chat, L. De-paepe, M. Taddei, and F. , Ecology of Microbial Invasions: Amplification Allows Virus Carriers to Invade More Rapidly When Rare, Current Biology, vol.16, issue.20, pp.2048-2052, 2006.
DOI : 10.1016/j.cub.2006.08.089

D. Lindell, J. D. Jaffe, M. L. Coleman, M. E. Futschik, I. M. Axmann et al., Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution, Nature, vol.14, issue.7158, pp.83-86, 2007.
DOI : 10.1038/nature06130

C. Pal, M. D. Macia, A. Oliver, I. Schachar, and A. Buckling, Coevolution with viruses drives the evolution of bacterial mutation rates, Nature, vol.20, issue.7172, pp.1079-1081, 2007.
DOI : 10.1038/nature06350

R. Leplae, A. Hebrant, S. J. Wodak, and A. Toussaint, ACLAME: A CLAssification of Mobile genetic Elements, Nucleic Acids Research, vol.32, issue.90001, pp.45-49, 2004.
DOI : 10.1093/nar/gkh084

R. Leplae, G. Lima-mendez, and A. Toussaint, ACLAME: A CLAssification of Mobile genetic Elements, update 2010, Nucleic Acids Research, vol.38, issue.Database, pp.57-61, 2010.
DOI : 10.1093/nar/gkp938

G. Lima-mendez, A. Toussaint, and R. Leplae, Analysis of the phage sequence space: The benefit of structured information, Virology, vol.365, issue.2, pp.241-249, 2007.
DOI : 10.1016/j.virol.2007.03.047

J. W. Drake, B. Charlesworth, D. Charlesworth, and J. F. Crow, Rates of spontaneous mutation, Genetics, vol.148, pp.1667-1686, 1998.

J. T. Martinsohn, M. Radman, and M. A. Petit, The lambda red proteins promote efficient recombination between diverged sequences: implications for bacteriophage genome mosaicism, PLoS Genet, vol.4, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00496049

G. F. Hatfull, Bacteriophage genomics, Current Opinion in Microbiology, vol.11, issue.5, pp.447-453, 2008.
DOI : 10.1016/j.mib.2008.09.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706577

M. M. Stahl, L. Thomason, A. R. Poteete, T. Tarkowski, A. Kuzminov et al., Annealing vs. invasion in phage lambda recombination, Genetics, vol.147, pp.961-977, 1997.

A. C. Fenton and A. R. Poteete, Genetic analysis of the erf region of the bacteriophage P22 chromosome, Virology, vol.134, issue.1, pp.148-160, 1984.
DOI : 10.1016/0042-6822(84)90280-0

G. Mosig, J. Gewin, A. Luder, N. Colowick, and D. Vo, Two recombination-dependent DNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer, Proc. Natl Acad. Sci. USA, pp.8306-8311, 2001.
DOI : 10.1073/pnas.131007398

T. Hollis, J. M. Stattel, D. S. Walther, C. C. Richardson, and T. Ellenberger, Structure of the gene 2.5 protein, a single-stranded DNA binding protein encoded by bacteriophage T7, Proc. Natl Acad. Sci. USA, pp.9557-9562, 2001.
DOI : 10.1073/pnas.171317698

H. Araki and H. Ogawa, The participation of T7 DNA-binding protein in T7 genetic recombination, Virology, vol.111, issue.2, pp.509-515, 1981.
DOI : 10.1016/0042-6822(81)90353-6

D. Kong and C. C. Richardson, Single-stranded DNA binding protein and DNA helicase of bacteriophage T7 mediate homologous DNA strand exchange, EMBO J, vol.15, pp.2010-2019, 1996.

L. M. Iyer, E. V. Koonin, and L. Aravind, Classification and evolutionary history of the single-strand annealing proteins, BMC Genomics, vol.3, issue.8, 2002.

S. I. Passy, X. Yu, Z. Li, C. M. Radding, and E. H. Egelman, Rings and filaments of beta protein from bacteriophage lambda suggest a superfamily of recombination proteins, Proc. Natl Acad, 1999.

M. Ploquin, A. Bransi, E. R. Paquet, A. Z. Stasiak, A. Stasiak et al., Functional and Structural Basis for a Bacteriophage Homolog of Human RAD52, Current Biology, vol.18, issue.15, pp.1142-1146, 2008.
DOI : 10.1016/j.cub.2008.06.071

A. R. Poteete, R. T. Sauer, and R. W. Hendrix, Domain structure and quaternary organization of the bacteriophage P22 Erf protein, Journal of Molecular Biology, vol.171, issue.4, pp.401-418, 1983.
DOI : 10.1016/0022-2836(83)90037-2

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proceedings of the National Academy of Sciences, vol.97, issue.12, 2000.
DOI : 10.1073/pnas.120163297

J. P. Muyrers, Y. Zhang, G. Testa, and A. F. Stewart, Rapid modification of bacterial artificial chromosomes by ET- recombination, Nucleic Acids Research, vol.27, issue.6, pp.1555-1557, 1999.
DOI : 10.1093/nar/27.6.1555

D. Yu, H. M. Ellis, E. C. Lee, N. A. Jenkins, N. G. Copeland et al., An efficient recombination system for chromosome engineering in Escherichia coli, Proc. Natl Acad. Sci. USA, pp.5978-5983, 2000.
DOI : 10.1073/pnas.100127597

H. M. Ellis, D. Yu, T. Ditizio, and D. L. Court, High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides, Proc. Natl Acad. Sci. USA, 98, pp.6742-6746, 2001.
DOI : 10.1073/pnas.121164898

J. D. Bouchard and S. Moineau, Lactococcal Phage Genes Involved in Sensitivity to AbiK and Their Relation to Single-Strand Annealing Proteins, Journal of Bacteriology, vol.186, issue.11, pp.3649-3652, 2004.
DOI : 10.1128/JB.186.11.3649-3652.2004

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-3402, 1997.
DOI : 10.1093/nar/25.17.3389

J. Soding, Protein homology detection by HMM-HMM comparison, Bioinformatics, vol.21, issue.7, pp.951-960, 2005.
DOI : 10.1093/bioinformatics/bti125

A. Sali and T. L. Blundell, Comparative Protein Modelling by Satisfaction of Spatial Restraints, Journal of Molecular Biology, vol.234, issue.3, pp.779-815, 1993.
DOI : 10.1006/jmbi.1993.1626

R. Luthy, J. U. Bowie, and D. Eisenberg, Assessment of protein models with three-dimensional profiles, Nature, vol.356, issue.6364, pp.83-85, 1992.
DOI : 10.1038/356083a0

M. J. Sippl, Recognition of errors in three-dimensional structures of proteins, Proteins: Structure, Function, and Genetics, vol.177, issue.4, pp.355-362, 1993.
DOI : 10.1002/prot.340170404

M. Clamp, J. Cuff, S. M. Searle, and G. J. Barton, The Jalview Java alignment editor, Bioinformatics, vol.20, issue.3, pp.426-427, 2004.
DOI : 10.1093/bioinformatics/btg430

W. L. Delano, The PyMOL Molecular Graphics System, 2002.

T. Pupko, R. E. Bell, I. Mayrose, F. Glaser, and N. Ben-tal, Rate4Site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues, Bioinformatics, vol.18, issue.Suppl 1, pp.18-71, 2002.
DOI : 10.1093/bioinformatics/18.suppl_1.S71

E. Wolff, M. Kim, K. Hu, H. Yang, and J. H. Miller, Polymerases Leave Fingerprints: Analysis of the Mutational Spectrum in Escherichia coli rpoB To Assess the Role of Polymerase IV in Spontaneous Mutation, Journal of Bacteriology, vol.186, issue.9, pp.2900-2905, 2004.
DOI : 10.1128/JB.186.9.2900-2905.2004

W. Kagawa, H. Kurumizaka, R. Ishitani, S. Fukai, O. Nureki et al., Crystal Structure of the Homologous-Pairing Domain from the Human Rad52 Recombinase in the Undecameric Form, Molecular Cell, vol.10, issue.2, pp.359-371, 2002.
DOI : 10.1016/S1097-2765(02)00587-7

M. R. Singleton, L. M. Wentzell, Y. Liu, S. C. West, and D. B. Wigley, Structure of the single-strand annealing domain of human RAD52 protein, Proc. Natl Acad. Sci. USA, pp.13492-13497, 2002.
DOI : 10.1073/pnas.212449899

A. Z. Stasiak, E. Larquet, A. Stasiak, S. Muller, A. Engel et al., The human Rad52 protein exists as a heptameric ring, Current Biology, vol.10, issue.6, pp.337-340, 2000.
DOI : 10.1016/S0960-9822(00)00385-7

T. Akiba, N. Ishii, N. Rashid, M. Morikawa, T. Imanaka et al., Structure of RadB recombinase from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1: an implication for the formation of a near-7-fold helical assembly, Nucleic Acids Research, vol.33, issue.10, pp.3412-3423, 2005.
DOI : 10.1093/nar/gki662

N. Liu, J. E. Lamerdin, R. S. Tebbs, D. Schild, J. D. Tucker et al., XRCC2 and XRCC3, New Human Rad51-Family Members, Promote Chromosome Stability and Protect against DNA Cross-Links and Other Damages, Molecular Cell, vol.1, issue.6, pp.783-793, 1998.
DOI : 10.1016/S1097-2765(00)80078-7

A. V. Mazin and S. C. Kowalczykowski, The function of the secondary DNA-binding site of RecA protein during DNA strand exchange, The EMBO Journal, vol.17, issue.4, pp.1161-1168, 1998.
DOI : 10.1093/emboj/17.4.1161

L. F. Rezende, S. Willcox, J. D. Griffith, and C. C. Richardson, A Single-stranded DNA-binding Protein of Bacteriophage T7 Defective in DNA Annealing, Journal of Biological Chemistry, vol.278, issue.31, pp.29098-29105, 2003.
DOI : 10.1074/jbc.M303374200

S. Datta, N. Costantino, X. Zhou, and D. L. Court, Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages, Proceedings of the National Academy of Sciences, vol.105, issue.5, 2008.
DOI : 10.1073/pnas.0709089105

G. Nagaraju, A. Hartlerode, A. Kwok, G. Chandramouly, and R. Scully, XRCC2 and XRCC3 Regulate the Balance between Short- and Long-Tract Gene Conversions between Sister Chromatids, Molecular and Cellular Biology, vol.29, issue.15, pp.4283-4294, 2009.
DOI : 10.1128/MCB.01406-08

A. M. Comeau, C. Bertrand, A. Letarov, F. Tetart, and H. M. Krisch, Modular architecture of the T4 phage superfamily: A conserved core genome and a plastic periphery, Virology, vol.362, issue.2, pp.384-396, 2007.
DOI : 10.1016/j.virol.2006.12.031

URL : https://hal.archives-ouvertes.fr/hal-00211349

B. J. Breitkreutz, C. Stark, and M. Tyers, Osprey: a network visualization system, Genome Biol, vol.3, p.22, 2002.

A. Chopin, A. Bolotin, A. Sorokin, S. Ehrlich, and M. Chopin, Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations, Nucleic Acids Research, vol.29, issue.3, pp.644-651, 2001.
DOI : 10.1093/nar/29.3.644

S. Labrie and S. Moineau, Complete Genomic Sequence of Bacteriophage ul36: Demonstration of Phage Heterogeneity within the P335 Quasi-Species of Lactococcal Phages, Virology, vol.296, issue.2, pp.308-320, 2002.
DOI : 10.1006/viro.2002.1401

C. Lévesque, M. Duplessis, J. Labonté, S. Labrie, C. Fremaux et al., Genomic Organization and Molecular Analysis of Virulent Bacteriophage 2972 Infecting an Exopolysaccharide-Producing Streptococcus thermophilus Strain, Applied and Environmental Microbiology, vol.71, issue.7, pp.4057-4068, 2005.
DOI : 10.1128/AEM.71.7.4057-4068.2005

Z. Lu, E. Altermann, F. Breidt, P. Predki, H. Fleming et al., Sequence analysis of the Lactobacillus plantarum bacteriophage ??JL-1, Gene, vol.348, pp.45-54, 2005.
DOI : 10.1016/j.gene.2004.12.052

N. Segev and G. Cohen, Control of circularization of bacteriophage P1 DNA in Escherichia coli, Virology, vol.114, issue.2, pp.333-342, 1981.
DOI : 10.1016/0042-6822(81)90215-4

A. Tuohimaa, K. Riipinen, K. Brandt, and T. Alatossava, The genome of the virulent phage Lc-Nu of probiotic Lactobacillus rhamnosus, and comparative genomics with Lactobacillus casei phages, Archives of Virology, vol.17, issue.5, pp.947-965, 2006.
DOI : 10.1007/s00705-005-0672-0

H. T. Bibliographie-beernink and S. W. Morrical, RMPs: recombination/replication mediator proteins, 1999.

D. Botstein and M. J. Matz, A recombination function essential to the growth of bacteriophageP22, 1970.

K. Brooks and A. J. , Behavioroflambdabacteriophageinarecombination deficienct strainofEscherichiacoli, 1967.

Z. Chen, H. Yang, and N. P. Pavletich, Mechanism of homologous recombination from the RecAssDNA/dsDNAstructures, 2008.

A. J. Clark, W. Inwood, T. Cloutier, and T. S. Dhillon, Nucleotide sequence of coliphage HK620andtheevolutionoflambdoidphages, 2001.

A. J. Clark and A. D. Margulies, Isolation and Characterization of RecombinationDeficient MutantsofEscherichiaColiK12, 1965.

M. A. Conkling, D. , and J. W. , Thermal rescue of UVirradiated bacteriophage T4 and biphasicmodeofactionoftheWXYsystem, 1984.

N. Costantino and D. L. Court, Enhanced levels of lambda Redmediated recombinants in mismatchrepairmutants, 2003.

S. Datta, N. Costantino, X. Zhou, and D. L. Court, Identification and analysis of recombineering functions from Gramnegative and Grampositive bacteria and their phages, 2008.

M. S. Dillingham and S. C. Kowalczykowski, RecBCD enzyme and the repair of double strandedDNAbreaks, 2008.

J. W. Drake, B. Charlesworth, D. Charlesworth, and J. F. Crow, Rates of spontaneous mutation, 1998.

M. Dutreix, P. L. Moreau, A. Bailone, F. Galibert, J. R. Battista et al., NewrecAmutationsthatdissociatethevariousRecAproteinactivitiesinEscherichiacoli provide evidence for an additional role for RecA protein in UV mutagenesis, J Bacteriol, vol.171, p.24152423, 1989.

H. Echols, R. Gingery, M. , and L. , Integrative recombination function of bacteriophage lambda:evidenceforasitespecificrecombinationenzyme, 1968.

A. L. Eggler, S. L. Lusetti, and M. M. , TheCterminusoftheEscherichiacoliRecAprotein modulatestheDNAbindingcompetitionwithsinglestrandedDNAbindingprotein, 2003.

N. C. Franklin, Deletions and functions of the center of the phi80 lambda phage genome, 1967.

J. R. Gillen, A. E. Karu, H. Nagaishi, and A. J. , Characterizationofthedeoxyribonuclease determinedbylambdareverseasexonucleaseVIIIofEscherichiacoli, 1977.

M. M. Gottesman, M. E. Gottesman, S. Gottesman, and M. Gellert, Characterization of bacteriophagelambdareverseasanEscherichiacoliphagecarryingauniquesetofhostderived recombinationfunctions, 1974.

S. D. Hall, M. F. Kane, and R. D. Kolodner, Identification and characterization of the EscherichiacoliRecTprotein,aproteinencodedbytherecEregionthatpromotesrenaturation ofhomologoussinglestrandedDNA, 1993.

S. D. Hall and R. D. Kolodner, Homologous pairing and strand exchange promoted by the EscherichiacoliRecTprotein, 1994.

P. Howardflanders and R. P. Boyce, DNA repair and genetic recombination: studies on mutantsofEscherichiacolidefectiveintheseprocesses, p.156, 1966.

L. M. Iyer, E. V. Koonin, and L. , Classificationandevolutionaryhistoryofthesingle strandannealingproteins, 2002.

N. Kantake, M. V. Madiraju, T. Sugiyama, and S. C. , Escherichia coliRecO protein anneals ssDNA complexed with its cognate ssDNAbinding protein: A common step in geneticrecombination, 2002.

A. E. Karu, Y. Sakaki, H. Echols, and S. , Thegammaproteinspecifiedbybacteriophage gamma. StructureandinhibitoryactivityfortherecBCenzyme ofEscherichiacoli, JBiol Chem, vol.250, p.73777387, 1975.

E. Kmiec and W. K. , Betaproteinofbacteriophagelambdapromotesrenaturation ofDNA, 1981.

S. K. Kulkarni and F. W. , InteractionbetweenthesbcCgeneofEscherichiacoliandthe gamgeneofphagelambda, 1989.

S. R. Kushner, H. Nagaishi, and A. J. , IndirectsuppressionofrecBandrecCmutationsby exonucleaseIdeficiency, 1972.

A. Kuzminov, Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda, 1999.

R. Leplae, A. Hebrant, S. J. Wodak, and A. Toussaint, ACLAME: a CLAssification of Mobile geneticElements, 2004.

R. Leplae, G. Limamendez, and A. Toussaint, ACLAME: A CLAssification of Mobile genetic Elements, Nucleic Acids Research, vol.32, issue.90001, 2010.
DOI : 10.1093/nar/gkh084

J. Liu and S. W. Morrical, Assembly and dynamics of the bacteriophage T4 homologous recombinationmachinery, 2011.

A. Lopes, J. Amarirbouhram, G. Faure, M. A. Petit, and R. Guerois, Detection of novel recombinases in bacteriophage genomes unveils Rad52, p.39523962, 2010.

C. Luisideluca, A. J. Clark, and R. D. , AnalysisoftherecElocusofEscherichiacoli K12byuseofpolyclonalantibodiestoexonucleaseVIII, 1988.

C. Luisideluca and R. Kolodner, Purification and characterization of the Escherichia coli RecOprotein.RenaturationofcomplementarysinglestrandedDNAmoleculescatalyzedbythe RecOprotein, 1994.

J. T. Martinsohn, M. Radman, and M. A. Petit, The lambda red proteins promote efficient recombinationbetweendivergedsequences:implicationsforbacteriophagegenomemosaicism, 2008.

I. Matic, A. Babic, and M. Radman, 2aminopurine allows interspecies recombination by a reversible inactivation of the Escherichia coli mismatch repair system, J Bacteriol, vol.185, 2003.

I. Matic, M. Radman, and C. Rayssiguier, Structure of recombinants from conjugational crossesbetweenEscherichiacolidonorandmismatchrepairdeficientSalmonellatyphimurium recipients, 1726.

A. V. Mazin and S. C. Kowalczykowski, The function of the secondary DNAbinding site of RecAproteinduringDNAstrandexchange, 1998.

K. Morimatsu and S. C. Kowalczykowski, RecFOR proteins load RecA protein onto gapped DNAtoaccelerateDNAstrandexchange:auniversalstepofrecombinationalrepair, 2003.

U. H. Mortensen, C. Bendixen, I. Sunjevaric, and R. And-rothstein, DNA strand annealing is promotedbytheyeastRad52protein, 1996.

G. Mosig, J. Gewin, A. Luder, N. Colowick, and D. , TworecombinationdependentDNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer, p.83068311, 2001.

K. C. Murphy, Use of bacteriophage lambda recombination functions to promote gene replacementinEscherichiacoli, 1998.

J. P. Muyrers, Y. Zhang, F. Buchholz, and A. F. Stewart, RecE/RecT and Redalpha/Redbeta initiate doublestranded break repair by specifically interacting with their respective partners, GenesDev14, 2000.

P. Noirot, R. C. Gupta, C. M. Radding, and R. D. Kolodner, Hallmarks of homology recognition by RecAlike recombinases are exhibited by the unrelated Escherichia coli RecT protein, 2003.

P. Noirot and R. D. Kolodner, DNA Strand Invasion Promoted by Escherichia coli RecT Protein, Journal of Biological Chemistry, vol.273, issue.20, 1998.
DOI : 10.1074/jbc.273.20.12274

URL : http://prodinra.inra.fr/ft/044EA570-2B15-4AC6-87E6-368D43F8DD64

N. S. Persky and S. T. Lovett, Mechanisms of recombination: lessons from E. coli. Crit Rev BiochemMolBiol43, 2008.

P. Pitsikas, J. M. Patapas, C. , and C. G. , Mechanism of 2aminopurinestimulated mutagenesisinEscherichiacoli, 2004.

M. Ploquin, A. Bransi, E. R. Paquet, A. Z. Stasiak, A. Stasiak et al., Functional and structural basis for a bacteriophage homologofhumanRAD52, 2008.

A. R. Poteete, Involvement of DNA replication in phage lambda Redmediated homologous recombination, 2008.

A. R. Poteete and A. C. , Geneticrequirementsofphagelambdaredmediatedgene replacementinEscherichiacoliK12, 2000.

A. R. Poteete, A. C. Fenton, and K. C. , ModulationofEscherichiacoliRecBCDactivity bythebacteriophagelambdaGamandP22Abcfunctions, 1988.

M. Radman, SOS Repair Hypothesis: Phenomenology of an Inducible DNA Repair Which is Accompanied by Mutagenesis, 1975.
DOI : 10.1007/978-1-4684-2895-7_48

A. J. Rattray and L. S. , Useofachromosomalinvertedrepeattodemonstratethat the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination, Genetics138, p.587595, 1994.

C. Rayssiguier, D. S. Thaler, and M. Radman, The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatchrepair mutants, Nature, vol.342396401, 1989.

A. I. Roca and M. M. , RecAprotein:structure,function,androleinrecombinationalDNA repair, 1997.

E. P. Rocha, E. Cornet, and B. , Comparativeandevolutionaryanalysisofthebacterial homologousrecombinationsystems, 2005.

N. Rybalchenko, E. I. Golub, B. Bi, R. , and C. M. , Strand invasion promoted by recombinationproteinbetaofcoliphagelambda, 2004.

Y. Sakaki, A. E. Karu, S. Linn, and H. Echols, Purification and properties of the gamma protein specified by bacteriophage lambda: an inhibitor of the host RecBC recombination enzyme, 1973.

J. A. Sawitzke, N. Costantino, X. T. Li, L. C. Thomason, M. Bubunenko et al., Probingcellularprocesseswitholigomediatedrecombinationandusingtheknowledge gainedtooptimizerecombineering, 2011.

E. Scaltriti, S. Moineau, H. Launay, J. Y. Masson, C. Rivetti et al., Deciphering the function of lactococcal phage ul36 Sak domains, Journal of Structural Biology, vol.170, issue.3, 2010.
DOI : 10.1016/j.jsb.2009.12.021

E. R. Signer and J. Weil, Recombination in bacteriophage lambda. I. Mutants deficient in generalrecombination, 1968.

S. Sommer, F. Boudsocq, R. Devoret, and A. Bailone, Specific RecA amino acid changes affectRecAUmuD'Cinteraction, 1998.
DOI : 10.1046/j.1365-2958.1998.00803.x

K. Subramanian, W. Rutvisuttinunt, W. Scott, and R. S. Myers, The enzymatic basis of processivityinlambdaexonuclease, 2003.

R. C. Unger, C. , and A. J. , Interaction of the recombination pathways of bacteriophage lambdaanditshostEscherichiacoliK12:effectsonexonucleaseVactivity.JMolBiol70, p.548, 1972.

T. Vanderheijden, M. Modesti, S. Hage, R. Kanaar, C. Wyman et al., Homologous recombinationinrealtime, 2008.

J. Wang, R. Chen, and D. A. , AsinglenucleaseactivesiteoftheEscherichiacoliRecBCD enzymecatalyzessinglestrandedDNAdegradationinbothdirections, 2000.

S. Weaver and M. Levine, Recombinational circularization of Salmonella phage P22 DNA, Virology, vol.76, issue.1, 1977.
DOI : 10.1016/0042-6822(77)90278-1

G. M. Weinstock, K. Mcentee, and I. R. Lehman, ATPdependent renaturation of DNA catalyzedbytherecAproteinofEscherichiacoli, 1979.

S. C. West, ABC PROTEINS, Annual Review of Genetics, vol.31, issue.1, 1997.
DOI : 10.1146/annurev.genet.31.1.213

E. Wolff, M. Kim, K. Hu, H. Yang, and J. H. , Polymerasesleavefingerprints:analysisof the mutational spectrum in Escherichia coli rpoB to assess the role of polymerase IV in spontaneousmutation, 2004.

D. Yu, H. M. Ellis, E. C. Lee, N. A. Jenkins, N. G. Copeland et al., An efficient recombinationsystemforchromosomeengineeringinEscherichiacoli, ProcNatlAcadSciUSA 97, p.59785983, 2000.

Y. Zhang, F. Buchholz, J. P. Muyrers, A. F. Stewart, V. Libante et al., A new logic for DNA engineering usingrecombinationinEscherichiacoli.NatGenet20,123128 Homologous recombination at the border: insertion-deletions and the trapping of foreign DNA in Streptococcus pneumoniae, Proc Natl Acad Sci, vol.99, pp.2100-2105, 1998.

J. De-vries and W. Wackernagel, Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination, Proceedings of the National Academy of Sciences, vol.99, issue.4, pp.2094-2099, 2002.
DOI : 10.1073/pnas.042263399

P. Meier and W. Wackernagel, Mechanisms of homology-facilitated illegitimate recombination for foreign DNA acquisition in transformable Pseudomonas stutzeri, Molecular Microbiology, vol.27, issue.4, pp.1107-1118, 2003.
DOI : 10.1046/j.1365-2958.2003.03498.x

K. Harms, V. Schon, E. Kickstein, and W. Wackernagel, The RecJ DNase strongly suppresses genomic integration of short but not long foreign DNA fragments by homology-facilitated illegitimate recombination during transformation of Acinetobacter baylyi, Molecular Microbiology, vol.4, issue.3, pp.691-702, 2007.
DOI : 10.1093/nar/29.22.4617

S. Lovett and R. Kolodner, Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli., Proceedings of the National Academy of Sciences, vol.86, issue.8, pp.2627-2631, 1989.
DOI : 10.1073/pnas.86.8.2627

S. Lovett and R. Kolodner, Nucleotide sequence of the Escherichia coli recJ chromosomal region and construction of recJ-overexpression plasmids., Journal of Bacteriology, vol.173, issue.1, pp.353-364, 1991.
DOI : 10.1128/jb.173.1.353-364.1991

F. Touzain, E. Denamur, C. Medigue, V. Barbe, E. Karoui et al., Small variable segments constitute a major type of diversity of bacterial genomes at the species level, Genome Biology, vol.11, issue.4, p.45, 2010.
DOI : 10.1186/gb-2010-11-4-r45

URL : https://hal.archives-ouvertes.fr/inserm-00622573

G. Demarre, A. Guerout, C. Matsumoto-mashimo, D. Rowe-magnus, and P. Marliere, A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncP??) conjugative machineries and their cognate Escherichia coli host strains, Research in Microbiology, vol.156, issue.2, pp.245-255, 2005.
DOI : 10.1016/j.resmic.2004.09.007

L. Ferrieres, G. Hemery, T. Nham, A. Guerout, and D. Mazel, Silent Mischief: Bacteriophage Mu Insertions Contaminate Products of Escherichia coli Random Mutagenesis Performed Using Suicidal Transposon Delivery Plasmids Mobilized by Broad-Host-Range RP4 Conjugative Machinery, Journal of Bacteriology, vol.192, issue.24, pp.6418-6427, 2010.
DOI : 10.1128/JB.00621-10

URL : https://hal.archives-ouvertes.fr/pasteur-01372302

W. Loenen, Tracking EcoKI and DNA fifty years on: a golden story full of surprises, Nucleic Acids Research, vol.31, issue.24, pp.7059-7069, 2003.
DOI : 10.1093/nar/gkg944

X. Veaute, S. Delmas, M. Selva, J. Jeusset, L. Cam et al., UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli, The EMBO Journal, vol.134, issue.1, pp.180-189, 2005.
DOI : 10.1016/0378-1119(86)90286-6

L. Roman, A. Eggleston, and S. Kowalczykowski, Processivity of the DNA helicase activity of Escherichia coli recBCD enzyme, J Biol Chem, vol.267, pp.4207-4214, 1992.

M. Flores, N. Sanchez, and B. Michel, A fork-clearing role for UvrD, Molecular Microbiology, vol.73, issue.6, pp.1664-1675, 2005.
DOI : 10.1111/j.1365-2958.2005.04753.x

R. Lestini and B. Michel, UvrD controls the access of recombination proteins to blocked replication forks, The EMBO Journal, vol.134, issue.16, pp.3804-3814, 2007.
DOI : 10.1038/sj.emboj.7601804

S. Lovett, R. Hurley, V. Sutera, J. Aubuchon, R. Lebedeva et al., Crossing over between regions of limited homology in Escherichia coli. RecAdependent and RecA-independent pathways, Genetics, vol.160, pp.851-859, 2002.

Z. Baharoglu, M. Petranovic, M. Flores, and B. Michel, RuvAB is essential for replication forks reversal in certain replication mutants, The EMBO Journal, vol.94, issue.3, pp.596-604, 2006.
DOI : 10.1038/sj.emboj.7600941

URL : https://hal.archives-ouvertes.fr/hal-00130946