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Abstract

Multicarrier (MC) Modulation attracts a lot of attention for high speed wireless transmis-
sions because of its capability to cope with frequency selective fading channels turning the
wideband transmission link into several narrowband subchannels whose equalization, in some
situations, can be performed independently and in a simple manner. Nowadays, orthogonal
frequency division multiplexing (OFDM) with the cyclic prefix (CP) insertion is the most
widespread modulation among all MC modulations, and this thanks to its simplicity and its
robustness against multipath fading using the cyclic prefix. Systems or standards such as
ADSL or IEEE802.11a have already implemented the CP-OFDM modulation. Other stan-
dards like IEEE802.11n combine CP-OFDM and multiple-input multiple-output (MIMO)
in order to increase the bit rate and to provide a better use of the channel spatial diver-
sity. Nevertheless, CP-OFDM technique causes a loss of spectral efficiency due to the CP
as it contains redundant information. Moreover, the rectangular prototype filter used in
CP-OFDM has a poor frequency localization. This poor frequency localization makes it
difficult for CP-OFDM systems to respect stringent specifications of spectrum masks.

To overcome these drawbacks, filter-bank multicarrier (FBMC) was proposed as an al-
ternative approach to CP-OFDM. Indeed, FBMC does not need any CP, and it furthermore
offers the possibility to use different time-frequency well-localized prototype filters which al-
low much better control of the out-of-band emission. In the literature we find several FBMC
systems based on different structures. In this thesis, we focus on the Saltzberg’s scheme
called OFDM/OQAM (or FBMC/OQAM). The orthogonality constraint for FBMC/OQAM
is relaxed being limited only to the real field while for OFDM it has to be satisfied in the
complex field. Consequently, one of the characteristics of FBMC/OQAM is that the demod-
ulated transmitted symbols are accompanied by interference terms caused by the neighboring
transmitted data in time-frequency domain. The presence of this interference is an issue
for some MIMO schemes and until today their combination with FBMC remains an open
problem.

The aim of this thesis is to study the combination between FBMC and MIMO tech-
niques, namely spatial multiplexing with ML detection. In the first part, we propose to
analyze different intersymbol interference (ISI) cancellation techniques that we adapt to the
FBMC/OQAM with MIMO context. We show that, in some cases, we can cope with the
presence of the inherent FBMC interference and overcome the difficulties of performing ML
detection in spatial multiplexing with FBMC/OQAM. After that, we propose a modification
in the conventional FBMC/OQAM modulation by transmitting complex QAM symbols in-
stead of OQAM ones. This proposal allows to reduce considerably the inherent interference
but at the expense of the orthogonality condition. Indeed, in the proposed FBMC/QAM,
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ii Abstract

the data symbol and the inherent interference term are both complex. Finally, we introduce
a novel FBMC scheme and a transmission strategy in order to avoid the inherent interference
terms. This proposed scheme (that we call FFT-FBMC) transforms the FBMC system into
an equivalent system formulated as OFDM regardless of some residual interference. Thus,
any OFDM transmission technique can be performed straightforwardly to the proposed
FBMC scheme with a corresponding complexity growth. We develop the FFT-FBMC in
the case of single-input single-output (SISO) configuration. Then, we extend its application
to SM-MIMO configuration with ML detection and Alamouti coding scheme.

Keywords: OFDM, FBMC, Filter Bank, Multicarrier, MIMO, Maximum Likelihood
detection, ML, Interference Cancellation, Alamouti.



Résumé

Grâce à leur capacité de faire face à la sélectivité fréquentielle des canaux de transmission,
les modulations multi-porteuses (MC) attirent de plus en plus d’attention. De nos jours,
la modulation OFDM avec le préfixe cyclique (CP) est la plus utilisée, et cela grâce à sa
simplicité et à sa robustesse. Cependant, la technique CP-OFDM présente une perte dans
l’efficacité spectrale à cause de l’introduction du CP puisqu’il contient des informations
redondantes. De plus, la réponse rectangulaire du filtre de mise en forme utilisé en OFDM
a une mauvaise localisation fréquentielle.

Afin de surmonter ces inconvénients, la modulation multi-porteuse à base des bancs
de filtres (FBMC) a été proposée en tant qu’une approche alternative à la modulation
OFDM. En effet, on n’a pas besoin d’insérer un intervalle de garde, tel que le CP, dans
la modulation FBMC. D’autre part, la bonne localisation fréquentielle de la réponse du
filtre de mise en forme permet un meilleur contrôle de la radiation hors-bande du système.
Dans la littérature, on trouve plusieurs types de la modulations FBMC basés sur différentes
structures. Dans cette thèse, nous ne nous intéressons que sur le schéma de Saltzberg
appelé OFDM/OQAM ou FBMC/OQAM. Dans ce schéma, les symboles envoyés sur chaque
sous-porteuse sont tirés d’une constellation PAM réelle, et les symboles réels sont envoyés
à une cadence de 2/T . La condition d’orthogonalité est réduite sur l’ensemble des réels
uniquement. En conséquence, le symbole démodulé et égalisé est infecté par un terme
d’interférence purement imaginaire. Ce terme d’interférence est une combinaison linaire des
symboles transmis dans le voisinage du symbole concerné. La présence de cette interférence
inhérente cause des difficultés de détection dans certains schéma multi-antennes (MIMO).

L’objectif de cette thèse est d’étudier l’association de la modulation FBMC aux tech-
niques MIMO, à savoir le multiplexage spatiale avec détection de maximum de vraisemblance
(ML). Dans un premier temps, nous proposons d’analyser différentes techniques d’annulation
d’interférence que nous adaptons au contexte de MIMO-FBMC. Nous montrons que, dans
certains cas, nous pouvons bien retirer l’interférence et appliquer la détection ML. Ensuite,
nous proposons d’apporter une légère modification dans la modulation FBMC en transmet-
tant des symbole QAM complexes. Evidement, cela brise la condition d’orthogonalité mais
nous montrons qu’ainsi la puissance d’interférence sera considérablement réduite. Enfin,
nous introduisons un nouveau schéma basé sur la modulation FBMC. Ce schéma, que nous
avons baptisé FFT-FBMC, transforme le modèle du système à un modèle équivalent à celui
de l’OFDM. Ainsi, n’importe quelle technique multi-antennes pourra être appliquée sans au-
cune difficulté. D’abord, nous développons le système FFT-FBMC dans un contexte SISO,
et puis nous évaluons ces performances dans le contexte MIMO.

iii



iv Résumé

Mots clès: OFDM, FBMC, Banc de filtres, Multi-porteuses, MIMO, Détection de
Maximum de Vraisemblance, ML, Annulation d’Interférence, Alamouti.
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Introduction

De nos jours, dans un monde de très grande mobilité, la vitesse et la capacité des systèmes
de transmissions sont des éléments essentiels afin de pouvoir maintenir les gens du monde
entier en communication. Les premiers systèmes de communications numériques était basés
sur la modulation mono-porteuse. En général, lorsque l’on veut augmenter le débit d’une
transmission, on doit déminuer la durée de symbole. Cependant, la présence d’un canal
multi-trajet a comme effet d’introduire de l’interférence inter-symboles (ISI), ce qui nécissite
à la réception une égalization complexe. Ainsi, les modulations multi-porteuses [1, 2] ont
été proposées en tant que des solutions alternatives afin de contrer les effets des canaux
multi-trajets. En effet, les données dans les modulations multi-porteuses sont transmises
sur plusieurs fréquences porteuses en divisant ainsi le canal large-bande sélectif en fréquence
en plusieurs sous-canaux non-sélectifs en fréquence.

La technique OFDM est la modulation multi-porteuse la plus répandue et elle est utilisée
dans nombreux systèmes de communications sans fil tel que WiFi IEEE 802.11, WiMax
IEEE 802.16 [2–4], LTE [2, 5], ... ect. La grande popularité de la modulation OFDM vient
principalement de:

• Sa grande efficacité spectrale dûe à l’espacement étroit entre ses sous-porteuses or-
thogonales.

• Sa robustesse aux effets du multi-trajet et sa capacité d’éviter les interférences inter-
symboles et inter-porteuses grâce à l’ajout de préfix cyclique (CP).

• Son implémentaient numérique facile et efficace en utilisant l’algorithme de la tranfor-
mée de Fourier rapide (FFT).

Néanmoins, malgré ces avantages, la modulation OFDM a quelques inconvénients. Tout
d’abord, l’ajout du préfixe cyclique cause une perte en efficacité spectrale car le préfixe
cyclique n’est qu’une copie de quelques symboles déjà transmis, ce qui réduit le débit effectif.
D’autre part, l’utilisation d’un filtre rectangulaire génère des lobes secondaires importantes,
cela veut dire que les signaux transmis sur les bords de la bande sont nuisibles aux autres
systèmes occupant les bandes adjacentes [6].

Ces inconvénients ont motivé les chercheurs à développer d’autres solutions alternatives
tels que les modulations multi-porteuses à base des bancs de filtres (FBMC) [7,8]. Dans ce
mémoire, nous ne nous intéresserons qu’au schéma de Saltzberg [9] appelé FBMC/OQAM
(aussi OFDM/OQAM ou SMT). En fait, la modulation FBMC/OQAM peut faire face à
la selectivité en fréquence du canal sans introduire aucun intervalle de garde. En outre,
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FBMC utilise un filtre de mise en forme bien localisé en fréquence, ce qui réduit consid-
érablement l’effet de débordement du spectre hors bande. Ainsi, un nombre plus important
de sous-porteuses peuvent être utilisées d’une bande allouée. En FBMC/OQAM, chaque
sous-porteuse est modulée avec la modulation OQAM, et la condition d’orthogonalité est
maintenue dans le domaine réel [10]. En effet, les données transmis sont portées par la partie
réelle des symboles reçus, et leurs partie imaginaire représente l’interférence intrinsèque de
la modulation FBMC/OQAM.

Ces dernières années, la modulation FBMC a attiré l’attention des chercheurs, et plusieurs
algorithmes d’égalisation et détection ont été développés. Il a été démontré dans [11] que
le multiplexage spatial peut être directement appliqué à la modulation FBMC lorsque l’on
utilise un égaliseur linéaire tel que MMSE ou ZF. Par contre, l’utilisation d’un détecteur
de maximum de vraisemblance (ML), ou bien l’application d’un codage spatio-temporel
d’Alamouti (STBC), avec la modulation FBMC reste encore un sujet ouvert [12]. En effet,
la présence de l’interférence intrinsèque de la modulation FBMC empêche l’application de
ces deux techniques MIMO aux systèmes à base du bancs de filtres.

Le principal objectif de cette dissertation est d’analyser et d’étudier l’association de la
modulation FBMC avec un système de multiplexage spatial basé sur la détection ML. Nous
analysons la possibilité d’annuler l’interférence avant l’application du ML. Ainsi, le plan de
la thèse est le suivant:

• Chapitre 2 est dédié à rappeler les notion de bases et donner l’état de l’art des diffèrents
concepts nécessaires pour la thèse. Nous commençons par introduire les bases des
systèmes multi-antennes. En suite, nous entamons les modulations multi-porteuses
OFDM et FBMC. Enfin, nous regarderons en détail le problème de l’association de la
modulation FBMC aux quelques systèmes MIMO.

• Dans le chapitre 3, nous proposons quelques schémas de récepteurs basés sur l’estimation
et l’annulation de l’interférence intrinsèque. Premièrement, nous proposons un schèma
appelé MMSE-ML où l’interférence est estimée via l’égaliseur MMSE. En suite, nous
proposons des solutions itératives où l’interférence est réestimée à chaque itération afin
d’affiner l’estimation. D’autres schémas seront également proposés qui sont basés sur
l’annulation partielle de l’interférence et sur l’utilisation d’un algorithme de Viterbi.

• Dans le chapitre 4, nous proposons d’apporter une modification à la modulation
FBMC/OQAM afin de réduire la puissance d’interférence. La modification consiste
à transmettre un symbole QAM complexe à chaque période T au lieu de transmettre
un symbole PAM réel à chaque demi période T/2. Premièrement, nous décrirons en
détail notre schéma proposé. En suite, nous adapterons les récepteurs étudiés dans le
chapitre précèdent à cette nouvelle approche.

• Dans le 5ième chapitre, nous introduisons un nouveau schéma pour la modulation
FBMC. Ce schéma , appelé FFT-FBMC, transforme le modèle de canal à un modèle
équivalent à celui de la modulation OFDM. Ainsi, n’importe quelle technique utilisée
en OFDM pourra être facilement appliquée au système FFT-FBMC. Dans un premier
temps, nous développons le schéma FFT-FBMC dans un contexte SISO; Puis, nous
étendrons son application aux système MIMO.
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Chapitre 2- Etat de l’art

L’idée principale des modulations multi-porteuses est de deviser le flux des données à trans-
mettre en plusieurs flux d’une cadence 1/T inférieure, et transmettre chacun des flux sur un
sous-canal diffèrent. Ainsi, chaque signal transmis occupera une bande relativement étroite
et subira un évanouissement moins important.

OFDM

La technique OFDM est une modulations multi-porteuse dont les sous-porteuses sont or-
thogonales malgré que les réponses fréquentielles des sous-canaux se chevauchent entre eux.
Supposons qu’un symbole sk,n est à envoyer sur la sous-porteuse k et à l’instant nT . Alors,
le signal transmis s’écrit en bande de base comme [13]:

s[m] =
1√
M

M−1∑

k=0

∑
n

sk,ng[m− nM ]ej2π km
M , (0.1)

où M est le nombre de sous-porteuses et la fonction g[m] est donnée par:

g[m] =





1 0 ≤ m < M

0 otherwise
(0.2)

Dans un canal parfait, la reconstruction des symboles transmis est assurée grâce à la condi-
tion d’orthogonalité:

∑
m

g[m− nM ]g[m− n′M ]ej2π km
M ej2π k′m

M = δk,k′δn,n′ (0.3)

L’expression de l’équation (0.1) peut être facilement et efficacement obtenue en utilisant
la transformée inverse rapide de Fourier (IFFT). Ainsi, l’algorithme IFFT est appliqué sur
chaque vecteur sn = [s0,n s1,n ... sM−1,n]T que l’on appelle un symbole OFDM.

Lorsque le signal est transmis à travers un canal sélectif en fréquence, on observera une
interférence entre les symboles du même bloc (symbole OFDM), mais aussi entre les symboles
issus de deux symboles OFDM (bloc) successifs. Afin d’éviter cette dernière interférence, un
intervalle de garde entre chaque deux symboles OFDM est nécessaire. Cet intervalle de garde
doit avoir une longueur supérieure à l’étalement du canal. De plus, il a été démontré [13]
qu’en mettant dans cet intervalle de garde une copie des derniers symboles d’un bloc, on
parvient à supprimer également l’interférence entre les symboles du même bloc. Ainsi, cet
intervalle de garde est baptisé "préfixe cyclique" (CP) [14, 15]. A la réception, le préfixe
cyclique est d’abord écarté, et puis l’opération FFT est appliquée sur les symboles restants.
En conséquence, le symbole reçu à la sortie du bloc FFT à l’instant n et à la sous-porteuse
k est exprimé:

rk,n = hksk,n + γk,n, (0.4)

où γk,n est le terme du bruit et hk est le kième coefficient de la DFT de la réponse impul-
sionnelle du canal.

Dans un système de multiplexage spatial avec Nt antennes d’émission et Nr antennes
de réception, chaque antenne transmet un symbole diffèrent s

(j)
k,n. A la réception, chaque
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antenne reçoit un mélange des tous les signaux transmis par les antennes d’émission, et
après la démodulation à la iième antenne de réception, nous obtenons:

r
(i)
k,n =

Nt∑

j=1

h
(ij)
k s

(j)
k,n + γ

(i)
k,n, (0.5)

où h
(ij)
k est le coefficient du canal entre l’antenne j d’émission et l’antenne i de réception.

Sous forme matricielle, nous pouvons écrire:



r
(1)
k,n
...

r
(Nr)
k,n


 =




h
(11)
k,n · · · h

(1Nt)
k,n

...
. . .

...
h

(Nr1)
k,n · · · h

(NrNt)
k,n




︸ ︷︷ ︸
Hk,n




s
(1)
k,n
...

s
(Nt)
k,n


 +




γ
(1)
k,n
...

γ
(Nr)
k,n


 . (0.6)

Il y a différentes façons d’égalisation permettant de récupérer les symboles transmis
{s(j)

k,n \ j = 1, ..., Nt} à partir des symboles reçus {r(i)
k,n \ i = 1, ..., Nr} en supposant la

connaissance des coefficients des canaux données par la matrice Hk,n. La plus basique
d’entre elles est l’inversion du canal connue sous l’appellation "Forçage à zéro" (ZF). La
matrice d’égalisation en ZF est donné par la matrice pseudo-inverse de Moore-Penrose [16]:

WH = (HHH)−1HH . (0.7)

Donc, les symboles égalisés sont obtenue par:

ŝ = WHr. (0.8)

L’inconvénient majeur de cette égalisation est que le bruit peut être amplifié lors de la
multiplication matricielle par WH . Afin d’éviter cette amplification, une autre matrice
d’égalisation est utilisée:

W =
(
HHH +

σ2

σ2
s

INr

)−1

H, (0.9)

où σ2 et σ2
s sont respectivement la puissance du bruit et du signal transmis. Cette matrice

d’égalisation est obtenue en minimisant l’erreur moyenne quadratique:

J(W) = E{‖s−WHr‖2}. (0.10)

D’où son appellation "erreur moyenne quadratique minimale" (MMSE). La figure 0.1 présente
les performances en BER des deux égaliseurs ZF et MMSE pour différente configurations
du SM.

Les deux égaliseurs ci-dessus sont dits linéaire et sont sous-optimales. Le détecteur de
maximum de vraisemblance (ML) est un détecteur optimale étant donné qu’il minimise
la probabilité d’erreur. Le détecteur ML effectue une recherche exhaustive sur toutes les
valeurs possibles que le vecteur sk,n des symboles émis peut prendre. Ensuite, il choisira le
vecteur qui maximise la probabilité de recevoir le vecteur reçu rk,n. Lorsque le bruit dans
les antennes de réception est Gaussien et indépendant d’une antenne à l’autre, ça revient au
même pour le détecteur ML de choisir le vecteur ŝk,n minimisant la distance Euclidienne:

ŝk,n = argmin
sk,n

{‖rk,n −Hk,nsk,n‖2}. (0.11)

Figure 0.2 montre les performance en BER du détecteur ML pour différentes configurations.
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Figure 0.1: Les performances en BER des égaliseurs ZF et MMSE pour différentes configu-
ration du SM en utilisant la constellation QPSK.
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Figure 0.2: Les performances en BER du détecteur ML pour différentes configurations du
SM en utilisant la constellation QPSK.
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FBMC

L’idée principale de la FBMC/OQAM est de transmettre des symboles offset-QAM (OQAM)
au lieu des symboles QAM (Quadrature Amplitude Modulation) conventionnels où un dé-
calage d’une demi-période symbole T/2 est introduit entre la partie réelle et la partie imag-
inaire d’un symbole QAM donné. La seconde spécificité est que le filtre d’émmission utilisé
est diffèrent de la fonction porte et s’étale sur plusieurs symboles multi-porteuse. Le signal
FBMC numérique en bande de base peut être écrit sous la forme suivante [10]:

s[m] =
M−1∑

k=0

+∞∑
n=−∞

ak,ng[m− nM/2]ej 2πk
M (m−D/2)ejφk,n , (0.12)

où D/2 est le terme de retard qui dépend de Lg la longueur du filtre prototype. Le terme
de phase φk,n garantie le respect de la condition d’orthogonalité réelle [17]. Les symboles
ak,n sont tirés d’une constellation PAM réelle. g[m] est la réponse impulsionnelle du filtre
prototype. Dans un canal parfait, le signal à la sortie du récepteur s’écrit comme suit:

rk,n =
M−1∑

k′=0

+∞∑

n′=−∞
ak′,n′

+∞∑
m=−∞

gk′,n′ [m]g∗k,n[m]. (0.13)

où

gk,n[m] = g[m− nM/2]ej 2πk
M (m−D/2)ejφk,n . (0.14)

Ainsi, la condition d’orthogonalité dans un système FBMC/OQAM est donnée par:

R

{
+∞∑

m=−∞
gk′,n′ [m]g∗k,n[m]

}
= δk,k′δn,n′ . (0.15)

En présence du canal multi-trajets, le signal reçu s’écrit alors:

r[m] =
Lh−1∑

l=0

h[l]s[m− l]

=
+∞∑

n=−∞

M−1∑

k=0

ak,nej 2πk
M (m−D/2)ejφk,n

Lh−1∑

l=0

h[l]g [m− l − nM/2] e−j2π kl
M

︸ ︷︷ ︸
Θ

, (0.16)

où h[l] est la réponse impulsionnelle du canal. En général, l’étalement du canal Lh est très
petit devant la longueur du filtre Lg qui est un multiple M (Lh ¿ Lg = KM). Cela nous
permet de poser l’hypothèse que g[m− l − nM/2] ≈ g[m− nM/2] pour l ∈ {0, ..., Lh − 1}.
Alors, Θ peut être approximé par:

Θ ≈ g[m− nM/2]
Lh−1∑

l=0

h[l]e−j2π kl
M . (0.17)

Donc nous pouvons écrire:

r[m] ≈
+∞∑

n=−∞

M−1∑

k=0

hk,nak,ngk,n[m] + γ[m], (0.18)
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où hk,n =
∑Lh−1

l=0 h[l]e−j2π kl
M et γ[m] est le terme du bruit à l’entrée du démodulateur. A

la sortie du démodulateur FBMC/OQAM, nous obtenons:

rk,n =
+∞∑

m=−∞
r[m]g∗k,n[m]

=
+∞∑

n′=−∞

M−1∑

k′=0

hk′,n′ak′,n′

+∞∑
m=−∞

gk′,n′ [m]g∗k,n[m]

︸ ︷︷ ︸
〈gk′,n′ ,gk,n〉

+
+∞∑

m=−∞
γ[m]g∗k,n[m]

︸ ︷︷ ︸
γk,n

. (0.19)

Donc, à partir de la condition d’orthogonalité (0.15), nous avons:

rk,n = hk,nak,n +
∑

(k′,n′) 6=(k,n)

hk′,n′ak′,n′〈gk′,n′ , gk,n〉
︸ ︷︷ ︸

Īk,n

+γk,n. (0.20)

Le filtre prototype est censé être bien localisé dans le domaine temps-fréquence. Alors, il
existe un ensemble Ωk,n tel que Ωk,n = {(k′, n′)/(k′, n′) /∈ Ωk,n ⇒ 〈gk′,n′ , gk,n〉 = 0}. En
supposons que le coefficient du canal est constant sur Ωk,n, nous avons alors:

Īk,n ≈ hk,n

∑

(k′,n′)∈Ω∗k,n

ak′,n′〈gk′,n′ , gk,n〉

≈ jhk,nuk,n,

où Ω∗k,n = Ωk,n − (k, n), et la dernière égalité est obtenue en tenant compte de (0.15); ce
qui implique que le terme d’interférence uk,n est purement réel. Enfin, nous pouvons donc
écrire:

rk,n ≈ hk,n(ak,n + juk,n) + γk,n. (0.21)

Si nous considérons un système de multiplexage spatial avec la modulation FBMC/OQAM,
les symboles démodulés sont écrits sous forme matricielle:




r
(1)
k,n
...

r
(Nr)
k,n




︸ ︷︷ ︸
rk,n

=




h
(11)
k,n · · · h

(1Nt)
k,n

...
. . .

...
h

(Nr1)
k,n · · · h

(NrNt)
k,n




︸ ︷︷ ︸
Hk,n




a
(1)
k,n + ju

(1)
k,n

...
a
(Nt)
k,n + ju

(Nt)
k,n




︸ ︷︷ ︸
ak,n+juk,n

+




γ
(1)
k,n
...

γ
(Nr)
k,n




︸ ︷︷ ︸
γk,n

. (0.22)

Donc pour appliquer un égaliseur ZF ou MMSE, nous multiplions d’abord le vecteur reçu
par la matrice d’égalisation correspondante, puis nous prenons sa partie réelle [11].

Par contre, à cause de la présence des termes d’interférence, l’application d’un détecteur
ML directement sur le vecteur reçu est impossible, car ces termes d’interférence dépendent
des symboles transmis dans le voisinage et leurs valeurs est aléatoires. Dans la suite de la
thèse, nous étudions la possibilité d’estimer et d’annuler cette interférence intrinsèque d’une
façon itérative.

Chapitre 3 - Annulation d’interférence et détection ML dans un système de
multiplexage spatial basé sur la modulation FBMC

Avant d’entamer les différentes techniques d’annulation d’interférence, nous essayons d’abord
d’étudier les performances que nous pouvons avoir si l’interférence instrinsèque est complète-
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ment retirée. Dans ce cas, le signal reçu après que l’interférence soit retirée peut s’écrire en
forme matricielle:

y = Ha + n, (0.23)

où le vecteur a est à valeurs réels bien évidement. Le vecteur a prend ses valeurs d’une
constellation PAM de taille √q. L’énergie de chaque symbole de a est de Es/2. Pour le
calcul du BER en fonction de SNR, nous pouvons utiliser la méthode décrite dans [18] où
nous aurons à calculer le paramètre α′ pour ce modèle. Nous avons:

α′ = q−
Nt
2

∑
m

∑

j

∑

i

a−Nr
sm,ij . (0.24)

Pour un système de multiplexage spatial en OFDM, nous obtenons:

α = q−Nt

∑
m

∑

j

∑

i

a−Nr
sm,ij . (0.25)

Ainsi, pour une même valeur de BER en FBMC et OFDM, nous aurons le rapport des SNR
(respectivement γc2 et γc1) suivant:

γc2

γc1

=
1
2

Nr

√
α

2α′
. (0.26)
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Figure 0.3: Illustation du gain potential en SNR d’un système FBMC sur l’OFDM dans un
schéma SM de 2× 2

Pour une modulation QPSK et un système MIMO 2× 2, nous avons α = 541
144 et α′ = 5

16 ,
donc G = 10 log10(

γc2
γc1

) ≈ 0.88 dB. Dans la figure 0.3, nous illustrons le gain en SNR que
peut avoir un système FBMC par rapport au l’OFDM.
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Détecteur MMSE-ML

Le premier détecteur proposé dans cette thèse est le MMSE-ML. L’idée de base de ce
schéma est d’estimer l’interférence est de soustraire sa contribution du signal reçu, et puis
d’appliquer le détecteur ML en supposant que le nouveau vecteur des symboles reçu est sans
interférence. Vu que l’égaliseur MMSE peut être adapté à la modulation FBMC/OQAM
sans dégrader les performances, nous avons opté à l’utiliser pour l’estimation d’interférence.
En effet, puisque le terme d’interférence est la partie imaginaire qui accompagne le symbole
égalisé, l’estimation se fait alors par l’extraction de la partie imaginaire des symboles à la
sortie de l’égaliseur MMSE. Une fois cette interférence est estimée, sa contribution est retirée
des signaux reçus. Nous obtenons alors le vecteur suivant:

yk,n = rk,n − jHk,nũk,n,

= Hk,n(ak,n + j(uk,n − ũk,n)) + nk,n,

= Hk,n(ak,n + jεk,n) + nk,n, (0.27)

où ũk,n est le vecteur des termes d’interférence estimé. En supposant que le vecteur d’erreur
d’estimation εk,n a une faible valeur, nous considérons que le vecteur yk,n est sans inter-
férence, et nous appliquons le détecteur ML. Evidement, cette hypothèse n’est pas tout
à fait exacte, car il y a toujours une probabilité d’erreur non nulle lors de l’égalisation
MMSE. Ainsi, nous noue attendons que les performances de ce récepteur MMSE-ML ne
soient optimales. La figure 0.4 montre les performances du récepteur MMSE-ML, MMSE
et celui du Genie-Aided (Supposant que l’interférence est parfaitement annulée) avec deux
configuration MIMO: 2× 2 et 4× 4.

Comme nous l’avons signaler auparavant, la solution MMSE-ML est sous optimale car
ces performances en BER sont encore loin de celles du Genie-Aided. Par contre, nous
remarquons qu’il y a une amélioration en performance par rapport à l’égaliseur MMSE.
Nous tenons à souligner que l’avantage de ce récepteur est qu’il n’introduise pas du retard
dans le traitement puisque l’interférence est immédiatement estimée à la sortie de l’égaliseur
MMSE.

Détecteur Rec-ML

Le récepteur Rec-ML que nous proposons dans cette section est basé sur le MMSE-ML.
En fait, nous avons vu que le MMSE-ML présente des performances sous optimales, mais
il améliore la probabilité d’erreur par rapport à l’égaliseur MMSE. Donc, l’idée principale
est de se servir des symboles décidés à la sortie de MMSE-ML afin de réestimer le terme
d’interférence sur chaque antenne de réception. En effet, puisque nous connaissons la réponse
impulsionnelle du transmultiplexeur du système FBMC/OQAM, nous pouvons alors estimer
l’interférence si nous avons une estimation sur les symboles transmis dans le voisinage du
point en considération. Le schéma en bloc du Rec-ML est donné dans la figure 0.5. Les
performances en BER obtenues avec le récepteur Rec-ML sont présentées dans la figure 0.6
avec un système de multiplexage spatial 2× 2.

Nous remarquons que là encore le récepteur est sous optimale et n’atteint pas les perfor-
mances du Genie-Aided. Nous tenons à préciser que l’opération peut être refaite plusieurs
fois afin d’améliorer les performances d’une façon itérative, mais les simulations montrent que
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Figure 0.4: Performances en BER du récepteur MMSE-ML comparé à MMSE et au Genie-
Aided dans un SM 2× 2 et SM 4× 4.
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Figure 0.5: Schéma de base du récepteur Rec-ML
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Figure 0.6: Performance en BER du Rec-ML comparé à MMSE, MMSE-ML et au Genie-
Aided dans un SM 2× 2.

le système souffre de la propagation d’erreur. Cet effet de la propagation d’erreur est causé
essentiellement du fait que la variance d’interférence est importante comparée à la variance
des données elles-mêmes; en FBMC/OQAM nous savons que la puissance d’interférence est
égale à celle des données.

L’écart en performance qui est entre le Genie-Aided et le Rec-ML peut être réduit si
nous considérons le codage des données. Dans la figure 0.7 et 0.8, nous présentons les
performances de Rec-ML, MMSE-ML et OFDM avec le codage convolutif (171,133) respec-
tivement dans un canal de modèle Ped-A et Veh-A.

Nous remarquons que lorsque nous utilisons le codage, le récepteur Rec-ML donne les
mêmes performances que celles données par l’OFDM.

Détecteur PaIC-Viterbi

En se basant sur la conclusion de la section précédente, nous cherchons à éviter la propaga-
tion d’erreur. Pour cela, il faut que l’interférence concernée par l’estimation et l’annulation
successive ait une puissance relativement petite par rapport à la puissance des données.
Ainsi, nous proposons dans cette section un récepteur effectuant une suppression partielle de
l’interférence et le reste d’interférence est traité par un algorithme de Viterbi. L’algorithme
de Viterbi est connu d’être un algorithme optimal mais avec une complexité qui augmente
exponentiellement avec le nombre de taps. Donc, nous sommes devant un dilemme: En
réduisant la taille de Viterbi nous diminuons le coût d’implémentation, mais la variance
d’interférence concernée par l’annulation ne sera pas suffisamment petite. D’autre part, si
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Figure 0.7: Comparaison des performances en BER entre le CP-OFDM et l’FBMC pour
MIMO 2× 2 avec Ped.-A
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Figure 0.8: Comparaison des performances en BER entre le CP-OFDM et l’FBMC pour
MIMO 2× 2 avec le canal Veh.-A
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nous augmentons la taille de Viterbi, le coût d’implémentation sera élevé. Pour cela, nous
devons choisir un Viterbi qui engloberai les coefficients d’interférence les plus importants.
Nous avons choisi alors 3 configuration selon le choix du Vterbi; les fonctions définissant
l’algorithme de Viterbi sont :

f
(1)
0 (ak,n) = ak,n, (0.28)

f
(2)
0 (ak,n, ak,n−1) = ak,n + Γ0,−1 × ak,n−1, (0.29)

et

f
(3)
0 (ak,n+1, ak,n, ak,n−1) = Γ0,1ak,n+1 + ak,n + Γ0,−1ak,n−1, (0.30)

où Γk,n sont les terme d’interférence. Les résultats de simulations sont présentés dans la
figure 0.9. Nous comparons les performances des 3 configurations choisies dans un système de
multiplexage spatial 2×2. Nous remarquons que la configuration qui donne des performances
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Figure 0.9: Performances de PaIC/Viterbi pour SM 2× 2

satisfaisantes est le PaIC/Viterbi-3 dont le Viterbi a une taille de 3. La complexité de
ce système peut être quand même réduite en optant à une variante du Viterbi tel que
l’algorithme de M.

Chapitre 4 - Annulation d’interférence dans la modulation FBMC/QAM

Nous avons vu dans le chapitre précédant que lorsque la variance d’interférence n’est pas
suffisamment petite, le récepteur itératif annulant l’interférence souffre de l’effet de la
propagation d’erreur. D’autre part, nous avons vu aussi qu’en FBMC/OQAM la puis-
sance d’interférence est la même que celle des données transmises. Donc, une annulation



xviii Résumé des travaux de thèse

d’interférence globale n’est pas possible. Dans ce chapitre, nous proposons une modification
dans la modulation FBMC afin de réduire l’interférence intrinsèque et espérer que sa vari-
ance sera ainsi suffisamment petite pour qu’il n’y ait pas une propagation d’erreur. Ainsi,
nous avons proposé d’abandonner la modulation OQAM qui nous garantissait l’orthogonalité
réelle, et de transmettre des symboles tirés de la constellation QAM. Evidement, cela im-
plique que nous perdrons la condition d’orthogonalité, mais de point de vu d’un détecteur
ML, cette condition n’est pas importante puisqu’il effectue une recherche exhaustive sur
toutes les possibilités.

Détecteur IIC-ML

L’utilisation des symboles QAM à la place des symboles OQAM dans un système FBMC
implique que les échantillons aux instants multiples impairs de T/2 sont à zéros. Cela veut
dire que les coefficients d’interférence dans les instants impairs sont annulés. Cela diminue
considérablement la puissance d’interférence [19]. Evidement, la réduction d’interférence est
selon le filtre prototype utilisé. Nous démontrons facilement que lorsque le filtre prototype
IOTA est utilisé, nous baisserons la variance d’interférence jusqu’à 40%, tandis que nous
allons jusqu’à 18% lorsque le filtre prototype de PHYDYAS est utilisé.

Le signal FBMC/QAM transmis sera donc:

s[m] =
M−1∑

k=0

∑

n∈Z
sk,ng[m− nM ]ej 2πk

M (m−D
2 )ejφk,2n , (0.31)

où les symboles sk,n sont QAM complexes. Le terme de phase φk,2n peut être abandonné
puisque dans cette modulation nous n’aurons plus besoin de l’orthogonalité. A la sortie
du démodulateur, le symbole complexe sk,n sera accompagné d’un terme d’interférence
complexe lui aussi. Ainsi, même si nous égaliserons le canal, la détection sera tout de même
erronée. Pour cela, il faut d’une manière itératif estimer l’interférence et l’annuler. Dans la
figure 0.10 nous montrons les performances du récepteur IIC pour chaque itération utilisant
le filtre prototype IOTA.

Nous observons que les performances sont mauvaises et qu’elles convergent vers une
courbe sous-optimale. Finalement, pour le filtre IOTA la variance d’interférence n’est pas
suffisamment réduite. Les performances relatives au filtre prototype PHYDYAS sont présen-
tées dans la figure 0.11. Cette fois ci, nous remarquons que les performances convergent vers
l’optimum. Nous déduisons de cela que la réduction de la variance d’interférence jusqu’à
18% est suffisante pour qu’il n’y ait plus de propagation d’erreurs.

Dans un système de multiplexage spatial, nous aurons à la réception après la démodu-
lation, le vecteur suivant:




r
(1)
k,n
...

r
(Nr)
k,n




︸ ︷︷ ︸
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=




h
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k,n · · · h

(1Nt)
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. . .
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h

(Nr1)
k,n · · · h

(NrNt)
k,n




︸ ︷︷ ︸
Hk,n




s
(1)
k,n + I

(1)
k,n

...
s
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k,n
...

b
(Nr)
k,n




︸ ︷︷ ︸
bk,n

, (0.32)

où le terme d’interférence Ik,n est complexe comme ils le sont les symboles transmis. Cela
implique que les égaliseurs linéaires tel que le ZF et MMSE ne pourront plus être appliqués
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Figure 0.10: Performances de IIC de FBMC/QAM utilisant le filtre IOTA pour un système
SISO
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Figure 0.11: Performances de IIC de FBMC/QAM utilisant le filtre PHYDYAS pour un
système SISO
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directement. Donc, pour cette modulation FBMC/QAM nous proposons un récepteur IIC-
ML qui utilise dès la première itération un détecteur ML pour tenter estimer les symboles
envoyés. En se basant sue ces décisions, le récepteur estimera alors l’interférence et annule
sa contribution du vecteur reçu juste après le démodulateur FBMC/QAM. Cette opération
est refaite plusieurs fois jusqu’à la convergence. La figure 0.12 nous montre maintenant
les performances du récepteur IIC-ML pour chaque itération et celles de Rec-ML (pour
l’FBMC/OQAM) en utilisant le filtre PHYDYAS. Tous comme dans le cas SISO, les per-
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Figure 0.12: Comparaison de performances entre le Rec-ML de FBMC/OQAM et le IIC-ML
de FBMC/QAM utilisant le filtre PHYDYAS pour SM 2× 2

formances de IIC-ML convergents vers l’optimum. Nous pouvons voir aussi la différence
en performance entre le récepteur Rec-ML pour le FBCM/OQAM et le IIC-ML. Pour le
filtre IOTA, les performances sont présentées dans la figure 0.13. Pareil que le cas SISO, le
récepteur IIC-ML souffre de la propagation d’erreurs.

Détecteur PaIC-Viterbi

Comme dans la modulation FBMC/OQAM, nous allons tester l’algorithme PaIC/Viterbi
avec 3 différentes tailles de Viterbi. Donc, nous devons sélectionner les trois plus grands
coefficients pour les inclure dans le détecteur de Viterbi. Evidement, puisque les symboles
de données en FBMC/QAM sont envoyés chaque période T , la réponse impulsionnelle de
transmultiplexeur sera différentes. Il se trouve que pour les deux filtres prototypes IOTA
et PHYDYAS les trois plus grands coefficients sont allignés sur l’axe des fréquences con-
trairement au cas de la modulation FBMC/OQAM. Cela veut dire que l’algorithme de
Viterbi sera appliqué sur chaque symbole multi-poreuse séparément. De point de vue de
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Figure 0.13: Performances de IIC-ML avec FBMC/QAM utilisant le filtre IOTA pour SM
2× 2

la complexité d’implémentation, le PaIC/Viterbi est moins coûteux avec la modulation
FBMC/QAM qu’avec la modulation FBMC/OQAM. Dans la figure 0.14 nous montrons les
performances obtenues avec le PaIC/Viterbi-3 utilisant le filtre IOTA. Nous remarquons que
les performances convergent vite vers une courbe sous-optimale. La puissance d’interférence
résiduelles de ce schéma est de 0.0065, ce qui explique la rapidité de la convergence. Par
contre, la sous-optimalité de ce récepteur réside dans le fait que la séquence d’erreur ayant
la plus petite distance Euclidienne est celle qui contient 3 ou 4 erreurs. Nous notons une
perte en SNR de 1.5 dB environ. Quant au filtre PHYDYAS, nous pouvons voir dans la
figure 0.15 que les performances de PaIC/Viterbi-3 convergent rapidement vers l’optimum.
La puissance d’interférence résiduelle est de 0.0626.

Quant au récepteur PaIC/Viterbi-2, Les performances sont présentées dans la figure
0.16 pour le filtre IOTA, et dans la figure 0.17 pour le filtre PHYDYAS. Nous remarquons
encore que le récepteur PaIC/Viterbi-2 souffre de la propagation d’erreur lorsque le filtre
IOTA est utilisé. Cela est dû au fait que la puissance d’interférence résiduelle n’est pas
suffisamment petite (0.2 environ). Lorsque le filtre PHYDYAS est utilisé, la puissance
d’interférence résiduelle est de 0.12 environ, ce qui a permis au récepteur PaIC/Viterbi-2
d’annuler presque complètement l’interférence au bout de trois itérations.

Donc comme nous venons le remarquer, les performances des récepteurs et schémas
proposés sont fortement liées au choix du filtre prototype.
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Figure 0.14: Performances en BER du récepteur PaIC/Viterbi-3 utilisant la modulation
FBMC/QAM et le filtre IOTA.
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Figure 0.15: Performances en BER du récepteur PaIC/Viterbi-3 utilisant la modulation
FBMC/QAM et le filtre PHYDYAS.
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Figure 0.16: Performances en BER du récepteur PaIC/Viterbi-2 utilisant la modulation
FBMC/QAM et le filtre IOTA.
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Figure 0.17: Performances en BER du récepteur PaIC/Viterbi-2 utilisant la modulation
FBMC/QAM et le filtre PHYDYAS.
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Chapitre 5 - Un nouvelle modulation basée sur les bancs de filtres

Dans ce chapitre, nous allons proposé une nouvelle modulation multi-porteuses basée sur les
bancs de filtres. Ce schéma requiert une stratégie ou agencement spécial de transmission.
Supposons d’abord que la réponse impulsionnelle du transmultiplexeur est limitée à une
sous-porteuse de part et d’autre. Les symboles envoyés sur une même sous-porteuse sont
convulés avec la réponse centrale du multiplexeur. Ainsi, on peut considérer que le signal
reçu sur une sous-porteuse est la somme de trois signaux filtrés par 3 filtres diffèrents:

rk,n
∼=

∆∑

i=−∆

f
(k)
0 (i)ak,n−i

︸ ︷︷ ︸
tk

+
∆∑

i=−∆

f
(k−1)
1 (i)ak−1,n−i

︸ ︷︷ ︸
tk−1

+
∆∑

i=−∆

f
(k+1)
−1 (i)ak+1,n−i

︸ ︷︷ ︸
tk+1

, (0.33)

Donc, comme en OFDM, nous pouvons éviter l’interférence inter-symboles en utilisant
des IDFT/DFT de taille N et un préfixe cyclique. Si on suppose que le CP est suffisamment
grand, on peut écrire:

Yk,n
∼= F

(k)
0,ndk,n︸ ︷︷ ︸

Tk

+F
(k−1)
1,n dk−1,n︸ ︷︷ ︸

Tk−1

+F
(k+1)
−1,n dk+1,n︸ ︷︷ ︸

Tk+1

. (0.34)

où

Yk,n =
1√
N

N−1∑

n′=0

rk,n′e
−j2πnn′

N ,

dk,n =
1√
N

N−1∑

n′=0

ak,n′e
−j2πnn′

N ,

et

F
(k)
j,n =

N
2 −1∑

n′=−N
2

f
(k)
j (n′)e

−j2πnn′
N .

La figure 0.18 montre le schéma de base du système proposé. Nous l’avons appelé FFT-
FBMC. Donc, comme le montre l’équation (0.34), la seule interférence qui reste est l’interférence
inter-porteuses. Les données dk,n sont multipliées alors par le coefficient F

(k)
0,n . La figure

0.19 montre l’évaluation du coefficient F
(k)
0,n en fonction de n pour des valeurs de k paire et

impaire.
Nous remarquons donc que dans une moitié de l’intervalle, les données sont amplifiées,

et dans l’autre motié, elles sont amorties. Nous remarquons également que les intervalles ci-
dessus sont intervertis lorsque nous incrémentons ou décrémentons l’indice de sous-porteuse
k. D’où l’agencement que nous proposons: Sur une sous-porteuse donnée k, nous transmet-
tons les données sur l’intervalle amplifié et nous mettons des zéros sur l’intervalle amorti.
Donc sur la sous-porteuse k + 1, nous faisons la même chose et les données sont alors trans-
mis uniquement sur l’intervalle opposé par rapport à la sous-porteuse k. Afin de garantir
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Figure 0.18: Le schéma de base du FFT-FBMC.
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Figure 0.19: L’amplitude de F
(k)
0,n en fonction de n dans un bloc de données.



xxvi Résumé des travaux de thèse

Figure 0.20: L’agencement de la transmission d’un bloc de données dans la FFT-FBMC.

le même débit, les données envoyées doivent être complexes au lieu d’être réelles. La figure
0.20 explique l’agencement proposé. Ainsi, les données reçues sur une sous-porteuse k n’aura
pas d’interféreur, car à cet intervalle sur la sous-porteuse k − 1 ou k + 1, il n’y a que des
zéros. Finalement, nous pouvons écrire:

Yk,n
∼=





F
(k)
0,ndk,n n ∈ Ω(k)

F
(k1)
1,n dk−1,n + F

(k+1)
−1,n dk+1,n n /∈ Ω(k)

(0.35)

où Ω(k) est l’intervalle d’amplification. Dans la présence du canal, nous pouvons montré
que:

Yk,n
∼= hk,nF

(k)
0,ndk,n + Γk,n (0.36)

Les analyses théorique menées dans cette thèse montrent que le rapport signal à bruit
(SNR) à la sortie du démodulateur est presque le même que celui à l’entrée du modélateur.
Donc, le démodulateur n’introduit pas du perte en SNR. Nous avons montré aussi que ce
schéma offre un plus grand confinement spectral du signal transmis. Nous avons pu montré
facilement que le le spectre du signal transmis en bande de base s’écrit comme suit:

A(ν) =
σ2

d

N(N + L)

N
2 −1∑

l=0

sin
(

Xl(ν)(N+L)
2

)2

sin
(

Xl(ν)
2

)2 . (0.37)

La figure 0.21 donne la comparaison entre les spectres des signaux de FFT-FBMC et
celui de FBMC classique. Nous remarquons que le spectre du FFT-FBMC est plus confiné
que celui de FBMC.

Evidement, un des plus grand inconvénient de système est l’introduction d’un CP sur
chaque sous-porteuse. Nous avons montré que nous pouvons réduire cette intervalle de garde,
voir le retirer. Mais, bien sûr au détriment de la présence d’interférence. Nous avons montré
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Figure 0.21: Comparaison entre la DSP des signaux de FBMC et FFT-FBMC (N = 64,L =
4) utilisant le filtre PHYDYAS.

que dans les pire des cas (lorsque il n’y a pas de CP), le rapport de signal à interférence
(SIR) avoisine les 16 dB pour les deux filtres prototypes PHYDYAS et IOTA. Par contre,
dans les meilleurs cas, le SIR de FFT-FBMC avec PHYDYAS tend vers l’infinie, alors que
dans le cas du filtre IOTA, le SIR est saturé à 27 dB.

Finalement donc, nous avons pu rendre le système basé sur les bancs de filtres équivalent
à un système OFDM avec un seul tap. Cela implique que toutes les technique utilisées dans
OFDM peuvent être appliquées sans problème. Donc, pour un système de multiplexage
spatial, nous avons l’équation suivante:

Yk,n = F
(k)
0,nHk,ndk,n + Γk,n,

où les élement en gras de cette équation sont des vecteurs et sauf Hk,n qui est la matrice du
canal. Puisque le terme d’interférence ne parait plus dans cet équation, donc le détecteur
ML pourra être appliqué facilement. Pareil pour le schéma de codage Alamouti.

Résultats de simulations

Dans cette section, nous allons voir les performances obtenues avec le système FFT-FBMC
en terme de BER en fonction de SNR. Nous supposons que le récepteur a une parfaite
connaissance du canal. Le nombre de sous-porteuses pour les simulations est de M = 512.
La période d’échantillonnage est de Ts = 100 ns, et la fréquence porteuse est de fc = 2.5
GHz.

Pour le shcéma FFT-FBMC, nous avons considéré plusieurs configurations correspon-
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dantes à (N, L) ∈ {16, 32, 64} × {0, 2}. Quant au OFDM, la taille du CP est adapté au
modèle de canal. La perte en efficacité spectrale est définie par µ = L

N+L pour le FFT-
FBMC et par µ = LCP

M+LCP
pour l’OFDM.

Concernant le multiplexage spatial avec détection ML, nous testons la modulation FFT-
FBMC dans la configuration de MIMO 2 × 2. Dans les figures 0.22 et 0.23 nous montrons
les performances de FFT-FBMC avec un canal Ped-A et une constellation QPSK, respec-
tivement, en utilisant le filtre de PHYDYAS et IOTA. nous remarquons que lorsque L = 0,
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Figure 0.22: Performances de FFT-FBMC utilisant le filtre PHYDYAS avec spatial multi-
plexing (2×2) et QPSK dans le canal Ped-A.

les performances de FFT-FBMC sont mauvaises et souffrent de l’effet de palier de BER.
Tandis qu’avec L = 2, les performances sont meilleurs. Evidement aussi, les performances
s’améliorent avec l’augmentation de N . La différence qu’on peut constater entre le filtre
IOTA et PHYDYAS est que les performances pour IOTA et L = 2 ne changement pas en
fonction de N . Cela est expliqué par le fait que le SIR est saturé dans le cas de IOTA
lorsque en augmente L.

Dans la figure 0.24, nous montrons les performance de FFT-FBMC avec le filtre IOTA
dans le canal Veh-A, où nous trouvons que nous obtenue presque les performances que dans
le canal Ped-A.

Nous avons également tester le FFT-FBMC/PHYDYAS avec la modulation 16QAM. Les
performances obtenues dans le canal Ped-A et Veh-A sont présentées respectivement dans
la figure 0.25 et 0.26. Nous remarquons que dans ce cas l’effet du palier de BER est plus
accentué.

Concernant le codage Alamouti, nous présentons ses performances avec FFT-FBMC
dans un canal Ped-A avec le filtre IOTA et PHYDYAS respectivement dans les figures 0.27
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Figure 0.23: Performances de FFT-FBMC utilisant le filtre IOTA avec spatial multiplexing
(2×2) et QPSK dans le canal Ped-A.
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Figure 0.24: Performances de FFT-FBMC utilisant le filtre PHYDYAS avec le multiplexage
spatial (2×2) et la modulation QPSK dans le canal Veh-A.
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Figure 0.25: Performances de FFT-FBMC utilisant le filtre PHYDYAS avec le multiplexage
spatial (2×2) et la modulation 16-QAM dans le canal Ped-A.
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Figure 0.26: Performances de FFT-FBMC utilisant le filtre PHYDYAS avec le multiplexage
spatial (2×2) et la modulation 16-QAM dans le canal Veh-A.



Résumé des travaux de thèse xxxi

et 0.28. Nous constatons que presque dans tous les configurations, les performances sont
presque identiques à celle de l’OFDM sauf dans le cas du filtre IOTA avec (N, L) = (16, 0).
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Figure 0.27: Performances de FFT-FBMC utilisant le filtre IOTA avec Alamouti (2×1) et
la modulation QPSK dans le canal Ped-A.

Chapitre 6 - Conclusions

Nous avons abordé dans cette thèse le problème de l’association de la modulation FBMC
avec quelques techniques MIMO telle que le multiplexage spatial avec détection ML et le
codage spatio-temporelle de Alamouti. Nous avons vu que la modulation FBMC génère une
interférence intrinsèque qui empêche l’application de ces deux techniques évoquées supra.
Premièrement nous avons proposé d’estimer et d’annuler l’interférence, nous avons pro-
posé plusieurs schémas pour cela. Les plus importants sont le MMSE-ML et le Rec-ML.
Cependant, nous avons constaté que ces deux schémas sont sous-optimaux à cause de la
propagation d’erreur qui survient surtout lorsque la variance de l’interférence à supprimer
est relativement importante. Donc, nous avons cherché à trouvé une méthode pour la réduc-
tion de l’interférence. Ainsi, nous avons proposé de modifier la modulation FBMC/OQAM
en transmettant des symboles QAM au lieu des symboles OQAM (ou deux fois PAM). Nous
avons prouvé que cette modification permet de réduire l’interférence, et ainsi nous avons
testé les schéma développés précédemment avec la nouvelle modulation FBMC/QAM. Nous
avons vu que les schémas basés sur l’annulation itérative d’interférence offrent des meilleurs
performances et ne souffrent pas de la propagation d’erreurs. Finalement, nous avons aussi
proposé un tout autre schéma de modulation basé sur FBMC, à savoir le FFT-FBMC.
Cette technique effectue des DFT et IDFT sur les symboles de chaque sous-porteuse avant
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Figure 0.28: Performances de FFT-FBMC utilisant le filtre PHYDYAS avec Alamouti (2×1)
et la modulation QPSK dans le canal Ped-A.

de les moduler avec le FBMC. Un agencement de transmission est aussi proposé pour élim-
iner complètement l’interférence intrinsèque. Ainsi, le modèle équivalent de ce schéma est
celui de l’OFDM. Donc, n’importe quelle technique utilisée en OFDM pourra être appliquée
d’une façon simple en FFT-FBMC. Ainsi, nous avons tester cette nouvelle modulation avec
le multiplexage spatial avec la détection ML et avec le codage Alamouti. Nous avons vu que
globalement cette technique offre les même performances que celle obtenues en OFDM.
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Chapter 1

Introduction

Nowadays, in a world of high mobility, transmission system speed and capacity are essential
components to maintain communication among remote people all around the world. The
early digital communication systems were based on single carrier modulation. Generally, if
we want to increase the bit rate of a transmission system, we have to reduce the symbol
duration. However, the presence of a multipath channel introduces intersymbol interference
(ISI) which requires complex equalization. Multicarrier modulations [1, 2] have been then
introduced as a good alternative in order to counteract the multipath fading effects. Indeed,
in multicarrier communications the data is transmitted over many frequencies instead of a
single carrier, dividing the wideband frequency selective communication channel into several
subbands with mildly selective fading.

Orthogonal Frequency Division Multiplexing (OFDM) is the most widespread multicar-
rier modulation scheme and it has been considered as fundamental part in numerous wireless
communication systems such as WiFi based on the IEEE 802.11 standard, WiMax (World-
wide Interoperability for Microwave Access) [2], [3], [4] based on the IEEE 802.16 standard,
Long Term Evolution (LTE) [2], [5], LTE-advanced, ... etc. The large popularity of OFDM
mainly comes from a number of attractive features such as:

• Its high spectral efficiency using closely spaced orthogonal subcarriers.

• Its robustness to multipath fading effects and its ability to avoid both intersymbol
and intercarrier interference (ISI and ICI) by appending a cyclic prefix (CP) that
significantly reduces the complexity of the equalization to a single complex coefficient
per subcarrier equalizer. This holds as long as the CP covers the maximum delay
spread of the channel.

• The digital implementation of both OFDM modulator and demodulator can be effi-
ciently realized making use of fast Fourier transform (FFT).

Nevertheless, in spite of these advantages, OFDM has some shortcomings. First of all,

1
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Figure 1.1: Frequency responses of OFDM and FBMC

there is a loss in spectral efficiency due to the cyclic prefix insertion. Indeed, the cyclic prefix
is a copy of part of the transmitted OFDM symbol, and this redundancy reduces the effective
throughput. Secondly, OFDM is very sensitive to residual frequency and timing offsets
that can be generated by a defective synchronization as well as the Doppler effect [20, 21].
Moreover, the use of a rectangular impulse response in OFDM causes large sidelobes at each
subcarrier. Hence, the subchannels at the edge of the transmission bandwidth could be a
source of interference for other neighboring systems [6].

These drawbacks have motivated researchers to develop alternative solutions and propose
enhanced physical layers based on filter bank processing [22]. There are mainly three filter
bank multicarrier (FBMC) techniques that have been studied in the literature: Filtered
MultiTone (FMT) [23–25], Offset Quadrature Amplitude Modulation (OQAM) [9] (also
called Staggered MultiTone (SMT) [26]), and Cosine Modulated multiTone (CMT) [27,
28]. In this dissertation, we focus on the Saltzberg’s scheme [9] called FBMC/OQAM
(also called OFDM/OQAM or SMT). In fact, FBMC/OQAM technique can deal with the
channel frequency selectivity without any guard interval requirement. Furthermore, FBMC
uses a frequency well-localized pulse shaping which reduces significantly the out-of-band
leakage, thus a higher number of subcarriers can be used within the allocated frequency
band. Fig. 1.1 shows the frequency response comparison between OFDM and FBMC
system1. Saltzberg showed, in [9], that by introducing a shift of half the symbol period
between the in-phase and quadrature components of QAM symbols, it is possible to achieve
a baud-rate spacing between adjacent subcarrier channels and still recover the information

1The prototype filter used for FBMC for comparison is the one designed by Bellanger in [29].
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symbols free of intersymbol interference (ISI) and intercarrier interference (ICI). Thus, each
subcarrier is modulated with an offset QAM (OQAM) and the orthogonality conditions are
considered only in the real field [10]. Indeed, the data at the receiver side is carried only by
the real (or imaginary) components of the signal, and the imaginary (or real) parts appear
as interference terms. An efficient discrete Fourier transform (DFT) implementation of this
modulation method has been proposed by Hirosaki [30].

In recent years, FBMC has attracted a lot of interest and many equalization and syn-
chronization [31,32] methods have been developed for this modulation technique. However,
most of these works are related to single-input single-output (SISO) systems. To increase
data rate or performance, multi-antennas techniques are now implemented [33]. Indeed,
transmitting different data over different antennas (spatial multiplexing) can easily increase
the throughput. Thus it seems relevant to look at the combination between FBMC and
multiple-input multiple-output (MIMO) techniques. It has been shown in [11] that spatial
multiplexing (SM) could be directly applied to FBMC with minimum mean square error
(MMSE) equalizer. SM with maximum likelihood detection (SM-MLD) and the Alamouti
space time block coding (STBC) [34] are some of the classical techniques which constitute
a central ingredient in advanced wireless communication. Unfortunately, their combination
with FBMC does not work well and has remained an open problem [12]. Indeed, the pres-
ence of the inherent FBMC interference in the received signal prevents the application of
Alamouti scheme and SM-MLD in a straightforward manner. Regarding Alamouti coding,
some works have been carried out such as [35] where the authors showed that Alamouti
coding can be performed when it is combined with code division multiple access (CDMA).
A pseudo-Alamouti scheme was introduced in [36] but at the expense of the spectral effi-
ciency since it requires the appending of a CP to the FBMC signal. Another solution was
proposed by Renfors et al. in [12] where the Alamouti coding is performed in a block-wise
manner inserting gaps (zero-symbols and pilots) in order to isolate the blocks.

The main objective of this thesis is to analyze and study the combination of FBMC
technique with spatial multiplexing system using maximum likelihood detection. We an-
alyze the possibility to cancel the interference before applying ML detection. Indeed, the
interference cancellation approaches generally offer the possibility of removing interference
with low complexity increase and without enhancing the level of noise already present in
the received signal. The next paragraph gives the outline of the thesis.

• Chapter 2 is devoted to introduce the background and the state of the art related to
the different concepts to be used throughout this thesis. First, we start by giving the
basics of multi-antennas systems. Next, the OFDM system and its implementation
are described and its straightforward combination with MIMO is emphasized. After
that, we give the fundamental theory of FBMC technique, where the polyphase imple-
mentation of the filter bank transceiver and the prototype filter design are reviewed.
We finally discuss some issues about the combination between FBMC and MIMO
techniques in the last part of this chapter.

• In chapter 3, we propose some different receiver schemes based on inherent inter-
ference estimation and cancellation. First, we propose to estimate the interference by
making use of the MMSE equalizer. After that, we give a brief overview on interference
cancellation technique using tentative detection. Then, in light of this background, we
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derive conditions for optimal interference cancellation scheme using tentative detec-
tion in the FBMC-MIMO context. We present the performance results obtained by
simulation in both uncoded and coded cases. Next, we analyze another interference
cancellation approach based on Viterbi algorithm and partial interference cancellation.
Finally, we finish the chapter by a conclusion where the main results are summarized.

• In chapter 4, we propose a modification in the conventional FBMC/OQAM system
in order to reduce the inherent interference. Indeed, the proposal consists to transmit
QAM data symbols instead of OQAM ones. This allows to reduce the interference
power but at the expense of the orthogonality. First, we start by describing the
proposed system model and deriving some related equations and results. After that,
we adapt and analyze, in this FBMC/QAM context, the receiver schemes studied in
the chapter 3.

• In chapter 5, we introduce a novel FBMC scheme and transmission strategy in
order to get rid of the inherent interference terms. This proposed scheme (that we
call FFT-FBMC) transforms the FBMC system into an equivalent system formulated
as OFDM regardless of some residual interference. Thus, any OFDM transmission
technique can be performed straightforwardly to the proposed FBMC scheme with a
corresponding complexity growth compared to the classical FBMC. First, we develop
the FFT-FBMC in the case of single-input single-output (SISO) configuration. Then,
we extend its application to SM-MIMO configuration with MLD and Alamouti coding
scheme. An SNR evaluation at the output of the proposed demodulator is detailed,
and a brief computational complexity evaluation is included.

• Chapter 6 draws final conclusions of the thesis, briefly summarizes the main obtained
results, and highlights perspectives and possible future research directions.
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Chapter 2

State of the art

In this chapter, we give the background and the main state of the art that allow us to lead
our research studies during this Ph.D thesis. The first section aims to give the basics of
multi-antenna systems, then in the following section we describe CP-OFDM. In the third
section, we present the FBMC modulation (we specially focus on OFDM/OQAM) that
is an alternative to CP-OFDM, which permits to overcome some technical drawbacks of
CP-OFDM modulation.

2.1 Multi-antennas channel

The aim of this section is to present the usefulness of having several antennas at the trans-
mitter and/or at the receiver side. This concept, called Multiple-Input Multiple-Output
(MIMO) allows to increase the system throughput and/or to exploit the spatial diversity
leading the system to be more robust. The special case in which Nt = Nr = 1 is called a
Single-Input Single-Output (SISO) channel. A second special case is one in which Nt = 1
and Nr ≥ 2. The resulting system is called a Single-input Multiple-Output (SIMO) system.
Finally, a third special case is one in which Nt ≥ 2 and Nr = 1. The resulting system is
called a Multiple-Input Single-Output (MISO) channel [37]. The initial excitement about
MIMO was sparked by the pioneering work of Winters [38], Foschini [39], Gans [40], and
Telatar [41] predicting remarkable spectral efficiencies for wireless systems with multiple
transmit and receive antennas [13].

We consider the time-invariant MIMO channel model with Nt transmit antennas and
Nr receive antennas, subject to Additive White Gaussian Noise (AWGN). We denote the
equivalent lowpass channel impulse response between the jth transmit antenna and the ith
receive antenna as hij(τ), where τ is the delay variable. Thus, the channel is characterized

7
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by the Nr ×Nt matrix H(τ), defined as [37]:

H(τ) =




h11(τ) h12(τ) · · · h1Nt
(τ)

h21(τ) h22(τ) · · · h2Nt(τ)
...

...
...

hNr1(τ) hNr2(τ) · · · hNrNt(τ)




(2.1)

When the jth antenna transmits the complex signal sj(t), j = 1, 2, ..., Nt. Then the
received signal at the ith antenna in the presence of noise can be expressed as:

ri(t) =
Nt∑

j=1

∫ ∞

−∞
hij(τ)sj(t− τ)dτ + ni(t)

=
Nt∑

j=1

(hij ∗ sj)(t) + ni(t), i = 1, 2, ..., Nr (2.2)

where the asterisk (∗) denotes the convolution operator, and ni(t) denotes the AWGN with
variance σ2 at the ith antenna. In the matrix form, Equation (2.2) becomes:

r(t) = H(t) ∗ s(t) + n(t), (2.3)

where s(t) ∈ CNt×1 is the transmitted vector of complex symbols, the received vector
r(t) ∈ CNr×1, and the noise vector n(t) ∈ CNr×1.

For a frequency-nonselective channel, the channel matrix is simplified as:

H =




h11 h12 ... h1Nt

h21 h22 ... h2Nt

...

hNr1 hNr2 ... hNrNt




In this case, the received signal vector after match filtering is simply

r = Hs + n. (2.4)

In the general formulation of a MIMO system as described above, we observe that the
transmitted symbols on the Nt transmitting antennas completely overlap in both time and
frequency. As a consequence, there is interchannel interference between signals (ri, 1 ≤ i ≤
Nr) received from the spatial channel.

The time-invariant frequency-nonselective channel model embodied in (2.4) is the sim-
plest model for signal transmission in a MIMO channel. Furthermore, if we assume that each
signal from a transmitting antenna to a receiving antenna undergoes frequency-nonselective
Rayleigh fading, then the entries of H are zero-mean and independent, identically distributed
(i.i.d.) complex Gaussian, each with independent real and imaginary parts with variance
1
2 . In the following subsections, we employ this model and consider coherent detection by
assuming perfect knowledge of the channel coefficients at the receiver side. We will also
denote by peb the Bit Error Probability (BEP). The BEP will be computed for uncoded
bits and mainly for QPSK modulation with Gray mapping. The choice of these parameters
are done to illustrate the performance characteristics of MIMO systems. Let us look at
some features obtained with MIMO transmission. One of the first major benefit of having
multiple antennas is the spatial diversity gain.
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2.1.1 Spatial diversity

In presence of AWGN channel and for a SISO system, i.e. when r = s + n, the bit error
probability for QPSK modulation is given by peb = Q(

√
SNRt), where SNRt = σ2

s/σ2 is
the signal to noise ratio at the transmitter side, and Q represents the so-called Q-function
defined by [37]:

Q(x) =
1√
2π

∫ +∞

x

e−t2/2dt. (2.5)
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Figure 2.1: Q(x) as a function of x.

The Rayleigh frequency-nonselective channel model, i.e. r = hs + n, can be virtually
seen as the transmission of hs in presence of an AWGN channel, and therefore its peb is
given by:

peb = Q(
√
|h|2SNRt). (2.6)

The product |h|2SNRt is defined as the signal to noise ratio at the receiver side SNRr.
As Q(x) rapidly tends to zero when x increases, see Fig. 2.1, the peb decreases when
either the SNRt or |h| increases. The SNRt can not be increased as much as we want
since the regulation imposes limit to the transmitted power for healthy reasons and system
coexistence. h is random and mainly depends on the channel conditions. When |h| is close
to zero the peb is bad, this is generally referred to as deep fade. When the channel path is
in a deep fade, any communication scheme will likely suffer from errors. A natural solution
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to improve the performance is to ensure that the data symbols pass through multiple paths,
each of which fades independently, making sure that reliable communication is possible
as long as one of the path is strong enough. This technique is called diversity, and can
dramatically improve the performance over fading channels [42].

There are many ways to obtain diversity. Diversity over time can be obtained via coding
and interleaving: information is coded and the coded symbols are dispersed over time in
different coherence periods so that different parts of the codewords experience independent
fades. Analogously, one can also exploit diversity over frequency if the channel is frequency-
selective. In a channel with multiple transmit and/or receive antennas, diversity can be
obtained over space as well. Since diversity is such an important resource, a wireless system
typically uses several types of diversity.

Antenna diversity, or spatial diversity, can be obtained by placing multiple antennas,
sufficiently far apart, at the transmitter and/or the receiver. The channel gains between
different antenna pairs fade more or less independently, and independent paths are thus
created. The required antenna separation depends on the local scattering environment as
well as on the carrier frequency. Basically, in line of sight, i.e. when there is no dispersive
environment between the transmitter and the receiver, the separation is of 10’s of carrier
wavelengths. In presence of a multi-path channel, a separation of half to one wavelength is
sufficient. More explanations are given in [42].

We notice that peb given in (2.6) is random since the channel coefficient h is a random
variable. Hence, we define the average error probability as:

p̄eb =
∫ +∞

0

pebP|h|2(γ)dγ, (2.7)

where P|h|2(γ) is the probability density function (PDF) of the random variable |h|2. For
Rayleigh flat fading channel, we can easily show that P|h|2(γ) is an exponential distribution
given by:

P|h|2(γ) = e−γ . (2.8)

Integrating (2.6) over the distribution (2.8) yields the following average bit error proba-
bility [13]:

p̄eb ≈
∫ ∞

0

Q(
√

γSNRt)e−γdγ =
1
2

[
1−

√
SNRt

2 + SNRt

]
≈ 1

2SNRt
, (2.9)

where the last approximation is valid only in high SNR.
An analytical expression, given in [13], to calculate the diversity order is

d = − lim
SNRt→+∞

log(p̄eb)
log(SNRt)

, (2.10)

where the log can be in any base. Therefore, according to these two last expressions, we
conclude that the diversity order for a SISO Rayleigh channel is one.

Single-input Multiple-Output (SIMO) system

Let us assume that we have at the receiver side Nr antennas and a single transmit antenna.
This communication format is often described as Single-input Multiple-Output (SIMO). Fig.
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2.2 gives its representation. If we regroup the received samples from the different receive
antennas in a column vector, Equation (2.4) becomes:

r = hs + n, (2.11)

where h = [h11 h21 ... hNr1]T is an Nr × 1 vector.

Transmitter Receiver

1r

2r

rNr

s
11h

21h

1rNh

Figure 2.2: SIMO representation model.

As we are concerned about peb, which depends on SNRr, maximizing SNRr after de-
tection, leads to minimize the peb. It is well known that the maximum SNRr value after
detection is achieved thanks to the matched filter [37]:

ŝ =
hH

‖h‖2 r = s +
hH

‖h‖2 n. (2.12)

Then peb is given by:

peb = Q(
√
‖h‖2SNRt), (2.13)

where ‖h‖2 =
∑Nr

i=1 |hi1|2. Assuming that |hi1| are zero-mean i.i.d. Rayleigh random
variables with variances equal to one, the distribution of ‖h‖2 is chi-squared with 2Nr

degrees of freedom, expected value of Nr, and variance equals to 2Nr:

P‖h‖2(γ) =
γNr−1

(Nr − 1)!
e−γ ; γ ≥ 0. (2.14)

We can obtain a simple upper bound on the average error probability by applying the
Chernoff bound [13] Q(x) ≤ e−x2/2 to the Q-function. Integrating (2.13) over the chi-
squared distribution for ‖h‖2 yields [13]:

p̄eb ≤
(

1 +
1
2
SNRt

)−Nr

. (2.15)

Thus, the more the number of receive antennas increases, the more p̄eb decreases. Then,
when the channel coefficients are uncorrelated with each other, the probability to be in deep
fade decreases as Nr increases. Indeed, it is less likely that all the channel coefficients are
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in deep fade at the same time. This corresponds to the diversity order of the system which
is equal to Nr as we can show using (2.10):

d = − lim
SNRt→+∞

−Nr log(1 + SNRt

2 )
log(SNRt)

= Nr. (2.16)
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Figure 2.3: BER performance as a function of the SNR for SIMO model with QPSK mod-
ulation and different values of the receive antennas Nr.

In Fig. 2.3, we plot the Bit Error Rate (BER) as a function of the SNRt for different
SIMO configurations. The symbols are QPSK modulated, and the channel coefficients are
totally uncorrelated. As we can see, when Nr increases, the performance in terms of the
BER decreases more rapidly. The slopes of the curves illustrate the gain in diversity order.
The performance at SNRt = 0 dB is linked to the averaging of the noise over the receive
antennas [17].

Multiple-input Single-output (MISO) system

Let us consider Nt transmit antennas and a single receive antenna. This communication
format is often described as Multiple-Input Single-Output (MISO). Fig. 2.4 gives the cor-
responding representation. The received signal can be given by:

r = hs + n, (2.17)

where h = [h11 h11 ... h1Nt ] is a 1×Nt row vector.
In the SIMO channel, the sufficient statistic is the projection of the Nr × 1 received

signal vector on h (Matched filter). A natural reciprocal transmission strategy for the
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Figure 2.4: MISO representation model.

MISO channel would send information only in the direction of the channel vector h [42];
information sent in any orthogonal direction will be nulled out by the channel anyway.
Thus, the channel coefficients h1i must be known at the transmitter side. Therefore, the
transmitted vector s is obtained as:

s =
hH

‖hT ‖s. (2.18)

Thus, the average transmit power is equal to E
{∑Nt

i=1 |si|2
}

= σ2
s . The received signal r is

the sum of all the contributions coming from the different transmit antennas and affected
by the corresponding attenuation coefficients. Hence, the MISO channel is reduced to:

r =
Nt∑

i=1

|h1i|2
‖hT ‖ + n = ‖hT ‖s + n. (2.19)

Hence, the estimate of the transmitted symbol s is obtained by:

ŝ =
r

‖hT ‖ = s +
n

‖hT ‖ . (2.20)

Then the peb value is given by:

peb = Q

(√
‖hT ‖2SNRt

)
. (2.21)

We notice that we obtain the same expression of peb as (2.13) for the SIMO channel. In Fig.
2.5, we plot the BER as a function of the SNRt in dB with QPSK modulation. As with
the SIMO configuration, when Nt increases, the performance increases as well as the slope
of the curve. The slopes of the curves illustrate the gain in diversity which is equal to Nt.

Intuitively, the transmission strategy maximizes the received SNR as the received signals
from the various transmit antennas add up in-phase (coherently) and the transmit antenna
with the better gain has more allocated power. This strategy, "aligning the transmit signal
in the direction of the transmit antenna array pattern", is called transmit beamforming [42].
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Figure 2.5: BER performance as a function of the SNR for MISO model with QPSK mod-
ulation and different values of the transmit antennas Nt.

Space Time Block Coding (STBC)

Let us now consider the MIMO system illustrated in Fig. 2.6. A space-time block code
(STBC) is defined by a generator matrix G, having L rows and Nt columns, of the form [37]:

G =




g11 g12 ... g1Nt

g21 g22 ... g2Nt

...

gL1 gL2 ... gLNt


 (2.22)

in which the elements {gij} are signal symbols. By employing Nt transmit antennas, each
row of G consisting of Nt symbols is transmitted on the Nt antennas in a time slot. Thus,
the first row of Nt symbols is transmitted on the Nt antennas in the first time slot, the
second row of Nt symbols is transmitted on the Nt antennas in the second time slot, and so
on. Therefore, L time slots are used to transmit the symbols in the L rows of the generator
matrix G.

In the design of the generating matrix of an STBC, it is desirable to focus on two principal
objectives: (1) achieving the optimal tradeoff between diversity order and spatial rate, and
(2) minimizing the complexity of the decoder.

Alamouti [34], in 1998, devised a STBC for Nt = 2 transmit antennas and Nr = 1
receive antennas. The Alamouti code is widely used and proposed for practical systems



2.1 Multi-antennas channel 15

Space- Space-

Nt transmit 
antennas

Nr receive
antennas

Space-
time 
block
code

Space-
time 
block

decoder
Channels

Figure 2.6: Space-time block coded MIMO system.

such as DVB-T2 [43]. The generator matrix for the Alamouti code is given as:

G =
1√
2

[
s1 s2

−s∗2 s∗1

]
(2.23)

where s1 and s2 are two data symbols. In the first time slot, s1√
2
is transmitted on the

first antenna whereas the second one transmits s2√
2
. Then at the second time slot, the first

antenna transmits −s∗2√
2
, and the second one transmits s∗1√

2
. The factor 1√

2
is used to ensure

that the total transmitted power from both antennas is equal to σ2
s . Thus, two symbols,

s1√
2
and s2√

2
, are transmitted in two time slots. Consequently, the spatial code rate Rs = 1

for the Alamouti code. This is the highest possible rate for an orthogonal STBC [37]. We
observe that the column vectors v1 = [s1,−s∗2]

T and v2 = [s2, s
∗
1]

T are orthogonal; i.e.
vH

1 v2 = 0 and

GHG =
(|s1|2 + |s2|2)

2
I2, (2.24)

where I2 is a 2× 2 identity matrix.
The MISO channel matrix for the Nt = 2, Nr = 1 channel, based on a frequency-

nonselective model, is:

H =
[
h11 h12

]
. (2.25)

In the decoding of the STBC, we assume that H is constant over the two time slots. Con-
sequently, the signal at the receiver in the two time slots is:





r1 = 1√
2
(h11s1 + h12s2) + n1

r2 = 1√
2
(−h11s

∗
2 + h12s

∗
1) + n2

(2.26)

where n1 and n2 are zero-mean, circularly symmetric complex-valued uncorrelated Gaussian
noise with variance σ2. This leads to the matrix equation:

[
r1

r∗2

]
=

1√
2

[
h11 h12

h∗12 −h∗11

]

︸ ︷︷ ︸
H

[
s1

s2

]
+

[
n1

n∗2

]
(2.27)
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where H in an orthogonal matrix with HHH = (|h11|2+|h12|2)I2. Thus, using the Maximum
Ratio Combining (MRC), the estimates ŝ1 and ŝ2 are obtained by:

[
ŝ1

ŝ2

]
=

√
2

|h11|2 + |h12|2
[
h∗11 h12

h∗12 −h11

][
r1

r∗2

]

=

[
s1

s2

]
+

[
ń1

ń2

]
(2.28)

with
[
ń1

ń2

]
=

√
2

|h11|2 + |h12|2
[
h∗11 h12

h∗12 −h11

][
n1

n∗2

]
. (2.29)

As the noise components n1 and n2 are uncorrelated, we have E{|ń1|2} = E{|ń1|2} =
2σ2

|h11|2+|h12|2 . Thus according to (2.28), the peb value is given by:

peb = Q

(√
|h11|2 + |h12|2

2
SNRt

)
. (2.30)

Therefore, if the two channel coefficients are sufficiently uncorrelated, we have a diversity
gain of two. Indeed, the sum |h11|2 + |h12|2 follows the chi-squared distribution with 4
degrees of freedom, expected value of 2, and variance equals to 4. Hence, using the Chernoff
bound, the average probability of error for the Alamouti scheme can be given by:

p̄eb ≤
(

1 +
1
4
SNRt

)−2

. (2.31)

Thus, the Alamouti scheme achieves full diversity and maximum spatial code rate (Rs = 1)
with low decoding complexity. Fig. 2.7 depicts the BER as a function of the SNRt in dB

for the Alamouti (Nt = 2, Nr = 1) scheme with channel coefficients totally uncorrelated,
and the symbols are QPSK modulated. When comparing with the SISO model, we see that
both curves start at approximatively the same point (SNRt = 0 dB), however the slope of
Alamouti is steeper than the SISO one.

The Alamouti scheme described above can be extended to the case with multiple receive
antennas (Nr ≥ 2). In this case, the Nr × 2 channel matrix is:

H =
[
h1 h2

]
=




h11 h12

h21 h22

...
...

hNr1 hNr2




(2.32)

Using the same generator matrix G, the received signal, in the first time slot, is:

r1 =
1√
2
H

[
s1

s2

]
+ n1, (2.33)

and in the second time slot, the received signal is

r2 =
1√
2
H

[
−s∗2
s∗1

]
+ n2, (2.34)
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Figure 2.7: BER performance comparison between the Alamouti (2× 1) and SISO schemes
with QPSK modulation.

where n1 and n2 are the noise Nr×1 vectors, respectively, at the first and second time slot.
Using the time invariance of the channels and combining these equations, as in the case of
the MISO Alamouti, we obtain:

[
r1

r∗2

]
=

1√
2

[
h1 h2

h∗2 −h∗1

]

︸ ︷︷ ︸
H

[
s1

s2

]
+

[
n1

n∗2

]
(2.35)

where h1 and h2 are the column vectors of the channel matrix given in (2.32). We note that
the matrix H is orthogonal and we have HHH = (‖h1‖2 + ‖h2‖2)I2. Thus, using the MRC
equalization, the estimates ŝ1 and ŝ2 are obtained by:

[
ŝ1

ŝ2

]
=

√
2

‖h1‖2 + ‖h2‖2
[
hH

1 hT
2

hH
2 −hT

1

]

︸ ︷︷ ︸
HH

[
r1

r∗2

]
=

[
s1

s2

]
+

[
ń1

ń2

]
(2.36)

with
[
ń1

ń2

]
=

√
2

‖h1‖2 + ‖h2‖2 HH

[
n1

n∗2

]
. (2.37)

Thus, since the noise components of n1 and n2 are uncorrelated, we have E{|ń1|2} =
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E{|ń2|2} = 2σ2

‖h1‖2+‖h2‖2 . Therefore, the peb is given by:

peb = Q

(√
‖h1‖2 + ‖h2‖2

2
SNRt

)
= Q




√√√√1
2

2∑

j=1

Nr∑

i=1

|hij |2SNRt


 . (2.38)
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Figure 2.8: BER performance of Alamouti (2× 1) and (2× 2) schemes with QPSK modu-
lation.

We conclude that the Alamouti code achieves the full diversity of 2Nr available in the
MIMO system with Nt = 2 transmit and Nr receive antennas. Fig. 2.8 shows the Alamouti
(Nt = 2, Nr = 2) and (Nt = 2, Nr = 1) BER performance with QPSK modulation. We see
that by adding an additional antenna at the receiver side we improve the performance.

Tarokh et al. [44] constructed orthogonal space-time block codes for real and complex
alphabets for arbitrary number of antennas. In particular, Tarokh et al. constructed real
orthogonal space-time block codes with rate-one for any number of transmit antennas and
complex orthogonal space-time block codes with rate 3/4 for three and four antennas, and
with rate 1/2 for more than four antennas. Orthogonal space-time codes for three and four
transmit antennas [45] are given by:

G =




s1 0 −s∗2
0 s1 −s3

s2 s∗3 s∗1
−s3 s∗2 0


 , and G =




s1 0 −s∗2 s∗3
0 s1 −s3 −s2

s2 s∗3 s∗1 0
−s3 s∗2 0 s∗1


 . (2.39)

The construction of maximal rate complex orthogonal space-time block codes was studied
by Liang in [46]. The maximal rate of a complex orthogonal space-time block code with M
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transmit antennas is given by [46]:

Rs =
dM/2e+ 1
2 dM/2e . (2.40)

As can be seen from this formula, the code rate tend to 1/2 as the number of antennas
increases. This drawback is one of the reasons that provided the motivation to construct
other STBC schemes such as diagonal algebraic space-time (DAST) block codes. DAST
block codes are a family of linear space-time codes constructed by the use of rotated con-
stellations [47, 48]. The word algebraic in the description of DAST codes comes from the
fact that rotation matrices used in DAST codes were constructed using algebraic number
field theory [49]. The word diagonal refers to the structure of the code matrix, wherein the
rotated information symbols are spread over the diagonal of the square code matrix. The
DAST block codes not only achieve full diversity order for arbitrary number of transmit
antennas, but they also achieve a transmission rate of one symbol per channel use.

Several other nonorthogonal STBC schemes can be found in the literature, we cite, for
example, Quasiorthogonal Space-Time Block Codes [50–54], and Semi-Orthogonal Space-
Time (SAST) Block Codes [55].

2.1.2 Spatial multiplexing

The implementation of multi-antenna system at the transmitter and receiver side can be
used to increase the data rate (throughput). This scenario is called Spatial Multiplexing
(SM). The symbols to be transmitted are grouped by block of Nt different symbols to form
the vector

s =
[
s1 s2 · · · sNt

]T

. (2.41)

Then the Nt symbols are simultaneously transmitted, each by a single transmit antenna.
Therefore, we have the following equation:

r =




r1

r2

...
rNr




=




h11 h12 ... h1Nt

h21 h22 ... h2Nt

...

hNr1 hNr2 ... hNrNt







s1

s2

...
sNt




+




n1

n2

...
nNr




(2.42)

To recover the vector s without ambiguity from the received vector r, we need at least
Nt independent observations since s has Nt unknown symbols. This implies that Nr ≥ Nt.
Many techniques have been proposed to derive an estimate vector ŝ of s. We consider only
three different detectors for recovering the transmitted data symbols and evaluate their
performance. Throughout this development, we assume that the detector perfectly knows
the elements of the channel matrix H. In practice, the elements of H are estimated by using
channel probe signals [37].

Zero Forcing (ZF) detector

The Zero Forcing (ZF) detector combines linearly the received signals {ri, 1 ≤ i ≤ Nr} to
form an estimate of the transmitted symbols {sj , 1 ≤ j ≤ Nt}. The linear combining is
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represented in matrix form as:

ŝ = WHr, (2.43)

where W is an Nr ×Nt weighting matrix. ZF performs the detection by using the Moore-
Penrose pseudo-inverse matrix of H [16]:

WH = (HHH)−1HH . (2.44)

The weighting matrix W verifies the condition: WHH = INt
, where INt

is the identity
matrix of size Nt ×Nt. Then, ŝ is obtained by computing:

ŝ = WHr

= s + WHn. (2.45)

Each element of the estimate ŝ is then quantized to the closest transmitted symbol value.
We note that the ZF detector estimate ŝ is not corrupted by interchannel interference.
However, the major problem with this technique is that the noise term can be enhanced
while multiplying by WH . To avoid this noise enhancement, the MMSE method is often
used.

Minimum Mean-Square-Error (MMSE) detector

The MMSE detector also forms an estimate of s by linearly combining the received signals
{ri, 1 ≤ i ≤ Nr}. In this case, the weighting matrix W is selected to minimize the mean
square error:

J(W) = E{‖s−WHr‖2}. (2.46)

Minimization of J(W) leads to the solution for the optimum weight vectors w1, w2, ..., wNt

as [37]

wi = R−1
rr E{s∗i r}, i = 1, 2, ..., Nt (2.47)

where Rrr is the Nr×Nr autocorrelation matrix of the received signal vector and given by:

Rrr = E{rrH}
= HRssHH + σ2INr

, (2.48)

where Rss = E{ssH}, and E{nnH} = σ2INr . Since the signal vector s has uncorrelated
zero-mean components, Rss is a diagonal matrix Rss = σ2

sINt
where σ2

s is the signal variance
on each transmit antenna. Furthermore, we have:

E{s∗i r} = E{s∗i Hs}+ E{s∗i n}

= E{s∗i
Nt∑

j=1

hjsj}

= σ2
shi, (2.49)
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where hi is the ith vector (or column) of the channel matrix H. Then, according to (2.48)
and (2.49), Equation (2.47) becomes

wi = σ2
s(σ2

sHHH + σ2INr
)−1hi, i = 1, 2, ..., Nt (2.50)

Therefore, the weighting matrix W for the MMSE detector is given by

W =
(
HHH +

σ2

σ2
s

INr

)−1

H. (2.51)

Finally, the estimated vector of s is obtained by ŝ = WHr. Then, each component of
the estimate ŝ is quantized to the closest transmitted value.
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Figure 2.9: BER performance as a function of the SNR for different SM schemes with QPSK
modulation and both ZF and MMSE equalizers.

In general, with spatial multiplexing, the linear detectors such as ZF and MMSE achieve
a diversity order of Nr −Nt + 1, for any Nr ≥ Nt. Indeed, with Nt antennas transmitting
independent data streams and Nr receiving antennas, a linear detector has Nr degrees of
freedom. In detecting any one data stream, in the presence of Nt−1 interfering signals from
the other transmitting antennas, the linear detectors utilize Nt − 1 degrees of freedom to
cancel out the Nt − 1 interfering signals [37]. Therefore, the effective order of diversity for
the linear detectors is Nr − (Nt − 1) = Nr −Nt + 1. A thorough performance study of the
ZF and MMSE detectors can be found in [56]. Fig. 2.9 gives a comparison between ZF and
MMSE performance, for different configurations, in terms of BER as a function of SNR,
with QPSK modulation. We note that MMSE detector outperforms the ZF one, although
both achieve the same diversity order.
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Maximum Likelihood (ML) detection

The Maximum Likelihood (ML) detector is the optimum one in the sense that it mini-
mizes the probability of error [57]. In ML decoding, the estimate ŝ is the vector among
all possible transmitted vector s, which minimizes the error probability subject to the Nr

observations. Since the additive noise at the Nr receiving antennas are statically indepen-
dent and identically distributed zero-mean Gaussian, the joint conditional PDF p(r/s) is
also Gaussian. Therefore, the ML detector selects the symbol vector ŝ that minimizes the
Euclidean distance metric:

d(s) =
Nr∑

i=1

∣∣∣∣∣∣
ri −

Nt∑

j=1

hijsj

∣∣∣∣∣∣

2

(2.52)

Therefore, the estimate ŝ in ML detection is obtained by:

ŝ = argmax
s

{p(r/s)}

= argmin
s

{d(s)}

= argmin
s

{‖r−Hs‖2}. (2.53)

The ML decoder leads to the best performance in term of error probability per symbol
but its complexity increases exponentially with Nt and polynomially with Nr. To reduce
this complexity, Sphere Decoding algorithms have been proposed in [58,59].
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Figure 2.10: BER performance as a function of the SNR for different SM schemes with ML
detection and QPSK modulation.
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Several works [60–62] have focused on the performance assessing of the MIMO ML
detection in terms of BER as a function of the SNR. An asymptotic union bound of the
BER peb for Rayleigh MIMO channel with MLD is given in [60], and can be written as:

peb = αSNR−Nr, (2.54)

where α is a parameter depending on the modulation type and the number of the transmit
and receive antennas, and does not depend on the SNR. Hence, this implies that the diversity
order of MLD is equal to the number of receive antennas Nr, independent of the number
of transmit antennas Nt. Of course, there is an SNR penalty due to the increased number
of transmit antennas Nt, because the parameter α grows with the increase of Nt [60]. Fig.
2.10 depicts the performance of MLD, in terms of the BER as a function of the SNR, with
QPSK modulation and for different MIMO configurations. We can see that the curve slopes
increase only with the growth of Nr. But, we also remark an SNR loss when the number of
transmit antennas is increased.

2.1.3 Diversity-Multiplexing tradeoff

The previous sections highlight two methods for using multiple antennas to improve the
performance of wireless systems. The first one exploits the different channel gains in order to
obtain a very robust channel with high diversity gain. The second uses the different channels
to increase the data rate by multiplexing different data streams onto these channels. This
capacity gain is also referred to as a multiplexing gain. However, it is not necessary to use the
antennas purely for diversity or multiplexing. Some of the space-time dimensions can be used
for diversity gain, and the remaining dimensions used for multiplexing gain [13]. For finite
space-time block lengths, it is not possible to achieve full diversity and full multiplexing gain
simultaneously, in which case there is a tradeoff between these gains. The tradeoff between
data rate and probability of error has been extensively studied in the literature [63–66]. A
transmission scheme is said to achieve multiplexing gain r and diversity gain d if the data
rate per unit Hertz R(SNR) and the probability of error Pe(SNR) as functions of SNR
satisfy [64]:

lim
SNR→+∞

R(SNR)
log2(SNR)

= r, (2.55)

lim
SNR→+∞

log(Pe(SNR))
log(SNR)

= −d. (2.56)

For each r, we can define the optimal diversity gain dopt(r) as the maximum diversity
order that we can achieve using any transmission scheme. The authors in [64] show that if
the fading block length is larger than the total number of the transmit and receive antennas,
then we have:

dopt(r) = (Nt − r)(Nr − r), 0 ≤ r ≤ min(Nt, Nr). (2.57)

Therefore, we can adapt the diversity and multiplexing gains relative to channel conditions.
Specifically, in poor channel states more antennas can be used for diversity gain, whereas in
good states more antennas can be used for multiplexing [13].
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2.2 Orthogonal frequency division multiplexing (OFDM)

The Orthogonal Frequency Division Multiplexing (OFDM) [67, 68] is the most widespread
modulation among all the multicarrier modulations. In general, the idea of multicarrier
modulation is to divide the transmitted bit stream into different substreams and send them,
after mapping, over different orthogonal subchannels centered at different subcarrier fre-
quencies fk, with k = 0, 1, ..., M − 1. The number M of substreams is chosen sufficiently
large to insure that each subchannel has a bandwidth less than the coherence bandwidth
of the channel. Equivalently, it makes the symbol time T on each substream much greater
than the delay spread TL of the channel. Hence, the substreams experience relatively flat
fading. Thus, the ISI on each subchannel is small [13]. Fig. 2.11 illustrates a multicarrier
transmitter.
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Figure 2.11: Multicarrier transmitter.

2.2.1 OFDM principle

In OFDM, the frequencies fk are spaced by ∆f = 1
T , so fk = fc + k

T where fc is the carrier
frequency. Let us assume sk,n is the data symbol to transmit on the kth subcarrier at instant
nT . Then, the transmitted baseband signal can be written as [13]:

s(t) =
1√
M

M−1∑

k=0

∑
n

sk,ng(t− nT )ej2π kt
T , (2.58)

where the factor 1√
M

is introduced for power normalization, and g(t) is , in general, the
rectangular window function:

g(t) =





1 0 ≤ t < T

0 otherwise
(2.59)
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Assuming a distortion-free channel, perfect reconstruction of complex symbols is obtained
thanks to the following complex orthogonality condition:

∫

R
g(t− nT )g(t− n′T )ej2π kt

T ej2π k′t
T dt = δk,k′δn,n′ (2.60)

where δk,k′ = 1 if k = k′ and δk,k′ = 0 if k 6= k′.
In practice, s(t) is the analog signal obtained from the discrete time samples s[m] =

s(mTs) using the Nyquist sampling theorem [37,42], where Ts = T
M is the sampling period.

Hence, the discrete time transmitted signal can be expressed as follows:

s[m] =
1√
M

M−1∑

k=0

∑
n

sk,ng[m− nM ]ej2π km
M . (2.61)

The expression above is efficiently implemented using the Inverse Discrete Fourier Trans-
form (IDFT). Let x[m], 0 ≤ m < M , denote a discrete time sequence. The M-point DFT
of x[m] is defined as [69]:

X[k] =
1√
M

M−1∑
m=0

x[m]e−j2π mk
M , 0 ≤ k < M. (2.62)

The DFT is the discrete-time equivalent to the continuous-time Fourier transform. Both the
continuous-time Fourier transform and the DFT are based on the fact that complex expo-
nentials are eigenfunctions for any linear system [13]. The sequence x[m] can be recovered
from its DFT using the IDFT:

x[m] =
1√
M

M−1∑

k=0

X[k]ej2π km
M , 0 ≤ m < M. (2.63)

The DFT and its inverse are typically performed in hardware using the fast Fourier transform
(FFT) algorithm [70].

For a given time index n = n0, the expression of the transmitted signal s[m], given by
(2.61), becomes:

sn0 [m] =
1√
M

M−1∑

k=0

sk,n0e
j2π km

M , n0M ≤ m < (n0 + 1)M. (2.64)

Substituting m by m + n0M , it yields:

sn0 [m] =
1√
M

M−1∑

k=0

sk,n0e
j2π km

M , 0 ≤ m < M. (2.65)

According to the definition of the IDFT given by (2.63), we conclude that the n0th transmit-
ted sequence block sn0 [m] is the IDFT of the data sequence sk,n0 , 0 ≤ k < M . Therefore,
the whole transmitted signal s[m], given in (2.61), can be seen as a succession of blocks
obtained by performing the IDFT on data blocks {sk,n, 0 ≤ k < M}. Fig. 2.12 depicts
the basic transmitter architecture of OFDM.

It is also straightforward to show that the OFDM transmitter can be represented by
a simple matrix multiplication. Let sn = [s0,n s1,n ... sM−1,n]T be a vector whose
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Figure 2.12: Basic OFDM transmitter architecture

elements are the data symbols in the nth block, and s̄n = [sn[0] sn[1] ... sn[M − 1]]T

be the M-point IDFT of the vector sn. Then, we can write in the matrix form [13]:

s̄n = WHsn (2.66)

where W is the M ×M DFT matrix given by:

W =
1√
M




1 1 1 · · · 1
1 wM w2

M · · · wM−1
M

...
...

...
. . .

...

1 wM−1
M w

2(M−1)
M · · · w

(M−1)2

M




, (2.67)

with wM = e−j 2π
M . It is worth noticing that W is a unit matrix, so WHW = IM where IM

is the M ×M identity matrix.
When the time-invariant channel is flat fading, i.e. it is represented by a single complex

tap h[0], the received discrete baseband signal is written as:

y[m] = h[0]s[m] =
h[0]√

M

∑
n

M−1∑

k=0

sk,ng[m− nM ]ej2π km
M + γ[m], (2.68)

where γ[m] denotes a complex AWGN term with variance σ2. Assuming coherent demod-
ulation and perfect synchronization, the signal at the demodulator output can be given
by:

rk,n =
1√
M

+∞∑
m=−∞

y[m]g[m− nM ]e−j2π km
M (2.69)

=
1√
M

(n+1)M−1∑

m=nM

y[m]e−j2π km
M (2.70)

=
1√
M

M−1∑
m=0

y[m + nM ]e−j2π km
M (2.71)
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According to the definition given in (2.62), the last expression corresponds to the DFT
operation on the nth received M-point block starting from m = nM and ending at m =
(n + 1)M − 1. Now, substituting (2.68) into (2.71), we obtain:

rk,n =
h[0]
M

M−1∑
m=0

∑

n′

M−1∑

k′=0

sk′,n′g[m− (n′ − n)M ]ej2π
(k′−k)m

M + γ́k,n (2.72)

=
h[0]
M

M−1∑

k′=0

sk′,n

M−1∑
m=0

ej2π
(k′−k)m

M + γ́k,n (2.73)

= h[0]sk,n + bk,n (2.74)

where γ́k,n = 1√
M

∑M−1
m=0 γ[m+nM ]e−j2π km

M which is also an AWGN with the same variance
σ2. Thus, the data symbol can be recovered as ŝk,n = rk,n/h[0]. From a matrix point of
view, since the demodulation can be obtained by using the DFT, as shown in (2.71), we can
write the nth demodulated vector as:

rn =




r0,n

r1,n

...
rM−1,n




= W




y[nM ]
y[nM + 1]

...
y[(n + 1)M − 1]




(2.75)

= h[0]Ws̄n + bn = h[0]WWHsn + bn

= h[0]sn + bn (2.76)

where bn =
[
b0,n b1,n ... b(n+1)M−1,n

]T is the AWGN vector at the demodulator output.
Again, the estimated transmitted vector ŝn can be obtained as ŝn = rn/h[0].

2.2.2 OFDM in frequency selective channel

In the case where the time-invariant channel is frequency-selective, the channel is represented
by its finite impulse response (FIR) h[m], 0 ≤ m < L. The received discrete-time baseband
signal at the demodulator input is given by:

y[m] = h[m] ∗ s[m] =
L−1∑

l=0

h[m]s[m− l] + n[m]. (2.77)

As aforementioned, the transmitted signal s[m] can be seen as a sequence of contiguous and
disjoint signal blocks. However, these signal blocks are overlapped due to the multipath
effect of the channel. As long as we assume that M > L, only each two consecutive blocks
interfere with each other. Any output sequence of a FIR filter can be represented in a
matrix form. Let us arrange the nth block of the channel output sequence in an M × 1
vector as yn = [y[nM ] y[nM + 1] ... y[(n + 1)M − 1]]T . Then, we can rewrite (2.77) in
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the matrix form as:

yn =




h[L− 1] h[L− 2] · · · h[0] 0 · · · 0

0 h[L− 1] h[L− 2] · · · h[0]
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 h[L− 1] h[L− 2] · · · h[0]







s[nM − L + 1]
s[nM − L + 2]

...
s[nM − 1]

s[nM ]
...

s[(n + 1)M − 1]




+ nn

(2.78)

where nn = [n[nM ] n[nM + 1] ... n[(n + 1)M − 1]]T is the noise vector. We notice
that the elements s[nM −L + 1], s[nM −L + 2], ..., s[nM − 1] belong to the previous data
block {s[(n− 1)M ], ..., s[nM − 1]}. Therefore, the elements in yn are linear combinations of
elements in s̄n and s̄n−1. Thus, as there is inter-bock interference in yn, the detection of sn

will require a complex equalization. To avoid inter-block interference, it has been proposed
to add a guard interval, sufficiently large, in order to separate the data blocks. This could
be done by adding zeros at the beginning of each vector s̄n, which leads to the so-called
Zero-Padding OFDM (ZP-OFDM) [71]. One tap equalization per subcarrier is ensured by
adding a Cyclic Prefix (CP) [14,15] to each vector s̄n leading to what is called CP-OFDM.
In CP-OFDM, we add to s̄n given in (2.66) a duplication of its L′ ≥ L− 1 last elements at
its beginning, leading to the vector:

s̃n =




s[(n + 1)M − L′]
s[(n + 1)M − L′ + 1]

...

...
s[(n + 1)M − 1]

s[nM ]
s[nM + 1]

...
s[(n + 1)M − 1]








The L′ elements of the CP

(2.79)

Hence, it is worth noticing that the transmitted blocks contain now M + L′ elements
instead of M . Therefore, To take into account this change, the expression of s[m] in (2.61)
is slightly modified as:

s[m] =
1√
M

M−1∑

k=0

∑
n

sk,nǵ[m− n(M + L′)]ej2π km
M . (2.80)

where ǵ[m] is now given by:

ǵ[m] =





1 −L′ ≤ m < M

0 otherwise
(2.81)

Since the cyclic prefix is introduced to absorb the multipath channel effect and separate
the data blocks, the cyclic prefix is discarded at the receiver side. Then, the M × 1 vector
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yn used for demodulation is now given by

yn =
[
y[n(M + L′)] y[n(M + L′) + 1] ... y[n(M + L′) + M − 1]

]T

(2.82)

and is expressed as:

yn =




L′ elements︷ ︸︸ ︷
0 · · · 0 h[L− 1] h[L− 2] · · · h[0]
0 · · · · · · 0 h[L− 1] h[L− 2] · · ·
...

...
...

...
. . . . . . . . .

0 · · · · · · 0 · · · 0 h[L− 1]

0 · · · 0

h[0]
. . .

...
. . . 0

h[L− 2] · · · h[0]




M×(M+L′)

×




s[(n + 1)M − L′]
s[(n + 1)M − L′ + 1]

...
s[(n + 1)M − 1]

s[nM ]
s[nM + 1]

...
s[(n + 1)M − 1]




+




γ[n(M + L′)]
γ[n(M + L′) + 1]

...
γ[n(M + L′) + M − 1]




︸ ︷︷ ︸
γn

(2.83)

First, we simplify this equation by omitting the first L′ − L null columns in the channel
matrix and their L′ −L corresponding elements in the vector s̃n. This simplification proofs
that it is sufficient to choose L′ = L. Then, we obtain:

yn =




h[L− 1] h[L− 2] · · · h[0] 0 · · · 0

0 h[L− 1] h[L− 2] · · · h[0]
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 h[L− 1] h[L− 2] · · · h[0]







s[(n + 1)M − L]
s[(n + 1)M − L + 1]

...
s[(n + 1)M − 1]

s[nM ]
s[nM + 1]

...
s[(n + 1)M − 1]




+ γn

(2.84)
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The expression above can be rewritten based on the vector s̄n as:

yn =




h[0] 0 · · · 0 h[L− 1] · · · h[1]

h[1]
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . h[L− 1]
h[L− 1] · · · h[1] h[0] 0 · · · 0

0
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . 0
0 · · · 0 h[L− 1] · · · h[1] h[0]




︸ ︷︷ ︸
H




s[nM ]
s[nM + 1]

...
s[(n + 1)M − 1]




︸ ︷︷ ︸
s̄n

+γn.

(2.85)

Hence, thanks to the cyclic prefix, H is an M ×M circulant matrix, i.e. the rows are cyclic
shifts of each other. Therefore, the matrix H has a singular value decomposition in the
Fourier basis, i.e. there is a diagonal matrix H̄ such that H̄ = WHWH , whose diagonal
entries are given by:

H̄k,k = hk =
M−1∑

l=0

h[l]e−2π kl
M . (2.86)

Therefore, the vector yn can be expressed as:

yn = WHH̄Ws̄n + γn

= WHH̄sn + γn (2.87)

Then, the demodulated received vector is:

rn = Wyn = H̄sn + Wγn︸ ︷︷ ︸
γ′n

. (2.88)

As W is a unit matrix, the statistics of γn and γ́n are the same. Thus, the kth element of
vector rn, denoted by rk,n, is written as:

rk,n = hksk,n + γ́k,n, (2.89)

where sk,n and γ́k,n are respectively the kth elements of sn and γ́n. The integer k is generally
referred as the subcarrier index. Then, each transmitted symbol sn,k undergos an equivalent
flat fading channel, and a simple one-tap equalization per subcarrier is sufficient to recover
the transmitted data.

We can also verify the expression (2.89) using (2.80), (2.77) and the fact that the de-
modulation is given by:

rk,n =
1√
M

+∞∑
m=−∞

y[m]g(m− n(M + L′))e−j2π mk
M (2.90)

=
1
M

L−1∑

l=0

h[l]
M−1∑

k′=0

e−j2π k′l
M

∑

n′
sk′,n′Ck,k′,l,n,n′

= +
1√
M

+∞∑
m=−∞

γ[m]g(m− n(M + L′))e−j2π mk
M , (2.91)
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where Ck,k′,l,n,n′ =
∑+∞

m=−∞ ǵ[m− l− n′(M + L′)]g[m− n(M + L′)]ej2π
(k′−k)m

M . According
to the definitions of g[m] and ǵ[m] given respectively in (2.59) and (2.81), Ck,k′,l,n,n′ can be
simplified by:

Ck,k′,l,n,n′ = δn′,n

n(M+L′)+M−1∑

m=n(M+L′)

ej2π
(k′−k)m

M

= Mδn′,nδk′,k (2.92)

Hence, Equation (2.91) becomes:

rk,n =
L−1∑

l=0

h[l]e−j2π kl
M × sk,n +

1√
M

n(M+L′)+M−1∑

m=n(M+L′)

γ[m]e−j2π mk
M

︸ ︷︷ ︸
γ́k,n

= hksk,n + γ́k,n, (2.93)

where hk =
∑L−1

l=0 h[l]e−j2π kl
M =

∑M−1
l=0 h[l]e−j2π kl

M since L < M . Hence, we obtain the
same expression as (2.89).

The possibility of a one-tap equalization is undoubtedly an important advantage of CP-
OFDM. The fact that the DFT demodulation (Resp. the IDFT modulation) can take
advantage of the Fast Fourier Transform (FFT) algorithms (Resp. IFFT) is another rec-
ognized interest for CP-OFDM. However, there is a loss of spectral efficiency as the CP
only contains redundant information. Another drawback is related to the rectangular pulse
shaping which leads to a poor frequency localization [17]. Therefore, it is fair to say that
OFDM can only achieve a symbol density of less than one, and the symbol density one can
only be thought as an unachievable upper limit.

2.2.3 OFDM with MIMO systems

We have seen that when the cyclic prefix (CP) is longer than the delay of the channel
impulse response, the OFDM system model is equivalent to a flat fading one as obtained in
(2.89). Therefore, MIMO systems can be perfectly associated to OFDM modulation. Let
s
(j)
k,n, j = 1, ..., Nt, be the data symbols to be transmitted at the jth antenna. After IDFT
operation and CP insertion, each antenna ”j” transmits a signal sj [m] according to (2.80).
Each transmitted signal si[m] passes through a different multipath channel hij [m] from the
transmit antenna ”j” to the ith receive antenna. Then, at the receiver side, each antenna
”i” collects the following signal:

ri[m] =
Nt∑

j=1

hij [m] ∗ sj [m] + wi[m], (2.94)

where wi[m] is the noise term at the ”i”th antenna. Assuming that the CP size is longer
than the channel delays, the expression of the signals after OFDM demodulation at each
receive antenna ”i” is given by:

r
(i)
k,n =

Nt∑

j=1

h
(ij)
k,n s

(j)
k,n + γ

(i)
k,n, (2.95)
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where γ
(i)
k,n is the noise term at the demodulator output, and h

(ij)
k,n =

∑L−1
l=0 hij [l]e−j2π kl

M . We
should note that the expression above is true because OFDM modulation and demodulation
are linear operations. Finally, we can rewrite the latter equation in a matrix form as:




r
(1)
k,n
...

r
(Nr)
k,n


 =




h
(11)
k,n · · · h

(1Nt)
k,n

...
. . .

...
h

(Nr1)
k,n · · · h

(NrNt)
k,n




︸ ︷︷ ︸
Hk,n




s
(1)
k,n
...

s
(Nt)
k,n


 +




γ
(1)
k,n
...

γ
(Nr)
k,n


 . (2.96)

2.3 FBMC/OQAM modulation

To overcome some CP-OFDM shortcoming such as the poor spectrum localization, we have
to use a finite pulse shape filter (or prototype filter) g[m] different from the rectangular
one with smooth edges [72]. This leads to the filtered OFDM [73] and the filter-bank
multicarrier (FBMC) systems [9,23,27]. On the other hand, any guard interval use leads to
a spectral efficiency loss (i.e. symbol density ρ < 1), like in OFDM due to the CP. Hence,
to avoid this drawback, we have to choose a multicarrier scheme with symbol density of one
(ρ = 1). However, it is theoretically proven with the Balian Low theorem, see [74], that it
is not possible to get a prototype function being well-localized in time and frequency, and
satisfying in the meantime the orthogonality condition and a symbol density of one (ρ = 1).

Therefore, in order to meet these objectives, we must relax the orthogonality condition
and restrict it to the real field. Then, to be able to recover the data at the receiver side, the
transmitted data must be real-valued (or purely imaginary) chosen from a PAM constellation
instead of a QAM one. But to maintain the same desired data rate, we should choose a
symbol density of two real-valued symbols (to be equivalent to the one complex-valued
symbol) per area unit of the time-frequency plane [72].

2.3.1 FBMC/OQAM principle

The main idea in FBMC/OQAM is to transmit offset QAM symbols instead of conventional
QAM ones. Indeed, at the transmitter side each complex data symbol sk,n, k = 0, 1, ..., M−
1, carried at rate F = 1/T by the kth substream, is divided into its in-phase (real part)
sI

k,n and quadrature (imaginary part) sQ
k,n components. These may be thought of as the

elements of a pair of PAM sequences that are then transmitted with a time offset T/2. Any
pair of adjacent PAM symbols, along the time and frequency axes, are transmitted with a
phase shift of ±π/2.

Let us now denote by ak,n the transmitted PAM symbol, at the kth subcarrier and
nT/2 time instant, which is either the in-phase or the quadrature component of a QAM
(complex) symbol. Also, let g[m] be a causal prototype filter with length Lg = KM , where
K is referred by the overlapping factor [29] and M is the total subcarriers number. The
discrete-time baseband transmitted signal in FBMC/OQAM can be written as [10]:

s[m] =
M−1∑

k=0

+∞∑
n=−∞

ak,ng[m− nM/2]ej 2πk
M (m−D/2)ejφk,n , (2.97)

where D/2 is a delay term that depends on Lg the length of the prototype filter. We have
D = Lg − 1 = KM − 1. The phase term φk,n is to insure the phase shift of ±π/2 between
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adjacent transmitted PAM symbols along the time and frequency axes, and can be given
by [17]:

φk,n =
π

2
(n + k) + επkn (2.98)

where ε can take one of the values in {−1, 0, 1}. In this thesis, we take ε = −1 as in [10].
The expression above can thus be written in a simpler manner as:

s[m] =
M−1∑

k=0

∑
n

ak,ngk,n[m], (2.99)

where g[m] is defined by

gk,n[m] = g[m− nM/2]ej 2πk
M (m−D/2)ejφk,n . (2.100)

Assuming a noiseless and distortion-free channel, the demodulated symbol over the kth
subcarrier and the nth instant can be determined using the inner product of s[m] and
gk,n[m]:

rk,n = 〈s, gk,n〉 =
+∞∑

m=−∞
s[m]g∗k,n[m]

=
M−1∑

k′=0

+∞∑

n′=−∞
ak′,n′

+∞∑
m=−∞

gk′,n′ [m]g∗k,n[m]. (2.101)

If we assume that only a unit impulse is transmitted in a frequency-time position (k0, n0),
we then obtain from the equation above the expression of the transmultiplexer impulse
response:

rk,n =
+∞∑

m=−∞
gk0,n0 [m]g∗k,n[m]

=
+∞∑

m=−∞
g[m]g[m−∆nM/2]ej 2π

M ∆k( D
2 −m)ejπ(∆k+k0)∆ne−j π

2 (∆k+∆n), (2.102)

where ∆k = k−k0 and ∆n = n−n0. Then, the transmultiplexer impulse response depends
strongly on the used prototype filter g[m]. The prototype filter must be designed such that
it satisfies the orthogonality condition restricted to the real field:

R

{
+∞∑

m=−∞
gk′,n′ [m]g∗k,n[m]

}
= δk,k′δn,n′ . (2.103)

Consequently, we can rewrite (2.101) as

rk,n = ak,n +
∑

(k′,n′) 6=(k,n)

ak′,n′

+∞∑
m=−∞

gk′,n′ [m]g∗k,n[m]

︸ ︷︷ ︸
Ik,n

(2.104)

where Ik,n represents the inherent intersymbol interference of an FBMC/OQAM system.
Since all the transmitted symbols ak′,n′ are PAM symbols (real-valued symbols) and ow-
ing the real orthogonality condition (2.103), then the ISI term Ik,n is a purely imaginary
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quantity, i.e. Ik,n = juk,n with uk,n is real-valued. Therefore, equation (2.104) is rewritten
as:

rk,n = ak,n + juk,n, (2.105)

and the transmitted PAM symbol ak,n is recovered just by retrieving the real part of the
received demodulated signal rk,n:

âk,n = R {rk,n} = ak,n. (2.106)

2.3.2 FBMC/OQAM in multipath channel

For transmission over a realistic channel, the orthogonality property in (2.103) would be lost.
As FBMC/OQAM does not introduce any guard interval, successive transmitted symbols
will overlap due to the multipath channel effect.

For derivation simplicity, we assume that the channel is time-invariant. It is also as-
sumed, as in the case of CP-OFDM, that the number of subcarriers M is sufficiently large,
i.e. Lh ¿ M where Lh is the length of the discrete channel response, so that the channel is
seen as a flat fading at each subchannel. After passing through the multipath channel, the
baseband version of the received signal, noise taken apart, can be written in discrete time
as follows:

r[m] = (h ∗ s)[m]

=
Lh−1∑

l=0

h[l]s[m− l]

=
+∞∑

n=−∞

M−1∑

k=0

ak,n

Lh−1∑

l=0

h[l]gk,n[m− l]

=
+∞∑

n=−∞

M−1∑

k=0

ak,nej 2πk
M (m−D/2)ejφk,n

Lh−1∑

l=0

h[l]g [m− l − nM/2] e−j2π kl
M

︸ ︷︷ ︸
Θ

(2.107)

Looking at the last term Θ, we notice that the exponential term e−j2π kl
M has fast variations

for l ∈ {0, ..., Lh − 1} and cannot be considered as being constant over this set (or interval
[0, Lh[). However, g[m − l − nM/2] may have only relatively slow variations when l ∈
{0, ..., Lh− 1}. Indeed, compared to the coherence bandwidth, the filter bandwidth is small
(Lh ¿ Lg = KM), which also means that time variations of g are necessarily very limited
[17]. Therefore, we can assume that g[m− l−nM/2] ≈ g[m−nM/2] for l ∈ {0, ..., Lh− 1}.
Then, Θ can be approximated by:

Θ ≈ g[m− nM/2]
Lh−1∑

l=0

h[l]e−j2π kl
M . (2.108)

Setting

hk,n =
Lh−1∑

l=0

h[l]e−j2π kl
M , (2.109)
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where hk,n is the channel frequency response at subcarrier k and at time index n, and taking
into account the presence of an AWGN term, we can simplify (2.107) as:

r[m] ≈
+∞∑

n=−∞

M−1∑

k=0

hk,nak,ng[m− nM/2]ej 2πk
M (m−D/2)ejφk,n + γ[m]

≈
+∞∑

n=−∞

M−1∑

k=0

hk,nak,ngk,n[m] + γ[m] (2.110)

where γ[m] is the AWGN term with variance σ2.
The demodulation of the received signal at time-frequency position (k, n) provides a

complex symbol denoted by rk,n and given by:

rk,n =
+∞∑

m=−∞
r[m]g∗k,n[m]

=
+∞∑

n′=−∞

M−1∑

k′=0

hk′,n′ak′,n′

+∞∑
m=−∞

gk′,n′ [m]g∗k,n[m]

︸ ︷︷ ︸
〈gk′,n′ ,gk,n〉

+
+∞∑

m=−∞
γ[m]g∗k,n[m]

︸ ︷︷ ︸
γk,n

, (2.111)

where γk,n is a noise term at the demodulator output. According to the real orthogonality
condition (2.103), then we can write:

rk,n = hk,nak,n +
∑

(k′,n′) 6=(k,n)

hk′,n′ak′,n′〈gk′,n′ , gk,n〉
︸ ︷︷ ︸

Īk,n

+γk,n, (2.112)

where Īk,n is now a complex interference term as hk′,n′ are complex coefficients. The pro-
totype filter g[m] is supposed to be well-localized in time-frequency domain, which means
that it exists a finite set Ωk,n of neighboring positions around the considered one which
can be defined as Ωk,n = {(k′, n′)/(k′, n′) /∈ Ωk,n ⇒ 〈gk′,n′ , gk,n〉 = 0}. Then, we notice
that the size of Ωk,n depends only on how the prototype filter g[m] is designed. Setting
Ω∗k,n = Ωk,n − (k, n), we can rewrite the complex interference term Īk,n as:

Īk,n =
∑

(k′,n′)∈Ω∗k,n

hk′,n′ak′,n′〈gk′,n′ , gk,n〉. (2.113)

Then, The objective is to design a filter so conveniently well-localized that we can consider
the channel coefficients hk,n as constant within Ωk,n. That is, (k′, n′) ∈ Ωk,n ⇒ hk′,n′ ≈
hk,n. In this case, we can write:

Īk,n ≈ hk,n

∑

(k′,n′)∈Ω∗k,n

ak′,n′〈gk′,n′ , gk,n〉

≈ jhk,nuk,n,

where the last equality is obtained according to (2.103), and uk,n is a real-valued interference
term. Finally, substituting this last expression into (2.112), we obtain the demodulated
signal expressed as:

rk,n ≈ hk,n(ak,n + juk,n) + γk,n. (2.114)
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2.3.3 Efficient digital implementation

Efficient digital implementation of the FBMC/OQAM system through polyphase structures
and DFT was first introduced by Bellanger [75] and later studied by Hirosaki [30].

Efficient digital implementation of the transmitter

The transmitted signal s[m] in (2.97) can be split into two signals as:

s[m] = ṡ[m] + s̈[m−M/2]

=
∑

n

M−1∑

k=0

ak,2ng[m− nM ]ej 2πk
M (m−D/2)ejφk,2n

= +
∑

n

M−1∑

k=0

ak,2n+1g[m− nM −M/2]ej 2πk
M (m−M+D

2 )ejπkejφk,2n+1

=
∑

n

M−1∑

k=0

ȧk,ng[m− nM ]ej 2πk
M (m−D/2)ejφ̇k,n

= +
∑

n

M−1∑

k=0

äk,ng[m−M/2− nM ]ej 2πk
M (m−M+D

2 )ejφ̈k,n (2.115)

where φ̇k,n = πn + π
2 k and φ̈k,n = πn + π

2 k + π
2 , according to (2.98). ȧk,n and äk,n are, for

a fixed k, two interleaved sequences, each one transmitted with a rate of T = MTs. From
the last term of the equation above, we can conclude the expression of s̈[m] as:

s̈[m] =
∑

n

M−1∑

k=0

äk,ng[m− nM ]ej 2πk
M (m−D/2)ejφ̈k,n (2.116)

which has the same expression form as ṡ[m]. Now, setting m = k′+pM with k′ ∈ {0, ..., M}
and p ∈ Z, we can write the first signal term ṡ[m] as:

ṡ[k′ + pM ] =
∑

n

M−1∑

k=0

ȧk,nejφ̇k,ne−j πDk
M ej 2πkk′

M

︸ ︷︷ ︸
ḃk′ [n]

g[k′ + (p− n)M ]

=
∑

n

ḃk′ [n]g[k′ + (p− n)M ] (2.117)

where ḃk′ [n], k′ ∈ {0, ..., M −1}, can be seen as the outputs of an M-IDFT blocks whose the
inputs are ȧk,nej(φ̇k,n−πDk

M ), k ∈ {0, ..., M − 1}. In the same way, we can write the signal
s̈[m] as:

s̈[k′ + pM ] =
∑

n

b̈k′ [n]g [k′ + (p− n)M ] (2.118)

where b̈k′ [n], k′ ∈ {0, ..., M − 1}, are the outputs of an M-IDFT blocks whose the inputs are
äk,nej(φ̈k,n−πDk

M ), k ∈ {0, ..., M − 1}.
Therefore, considering the the polyphase components gk′ [p], which operates at a rate of

1/(MTs), of the prototype filter g[m] as:

gk′ [p] = g[k′ + pM ], k′ ∈ {0, ..., M − 1}, (2.119)
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we obtain:





ṡ[k′ + pM ] =
∑

n ḃk′ [n]gk′ [p− n]

s̈[k′ + pM ] =
∑

n b̈k′ [n]gk′ [p− n]
(2.120)

It follows that each sample of the signals ṡ[m] or s̈[m] can be obtained by convolving each
kth IDFT output signal with the kth polyphase component gk[n], and then multiplexing
all the resulting sequences of the M branches into one sequence by using a parallel-to-
serial converter (P/S). Fig. 2.13 depicts the implementation scheme of the IDFT and the
polyphase network generating ṡ[m], where Gk(z) is the Z transform of gk[n]. Hence, because
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Figure 2.13: Implementation scheme of the IDFT and the polyphase network for a single
chain

the transmitted signal is s[m] = ṡ[m]+ s̈[m−M/2], the direct implementation of IDFT-PPN
approach for the transmitter requires two chains, or a single IDFT running at rate 2/(MTs)
and two identical PPN devices as shown in Fig. 2.14 [76].

Nevertheless, Both PPN devices can be grouped into a single PPN as follows. The P/S
converter of size M is equivalent to a system in which the signal in each branch is first
oversampled by M, then each kth branch is delayed by k samples (z−k) and all the resulting
signals are summed. Fig. 2.15 depicts the equivalent scheme of a P/S converter. Hence,
denoting by Ḃk′(z) and B̈k′(z) the Z-transforms, respectively, of ḃk′ [n] and b̈k′ [n], we can
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Figure 2.14: Implementation scheme of the FBMC/OQAM transmitter using one IDFT and
two polyphase networks
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Figure 2.15: Equivalent scheme of a Parallel-to-Serial converter

write the Z-transform of s[m] as:

S(z) =
M−1∑

k′=0

z−k′Gk′(zM )Ḃk′(zM ) + z−
M
2

M−1∑

k′=0

z−k′Gk′(zM )B̈k′(zM )

=
M−1∑

k′=0

z−k′Gk′(zM )
(
Ḃk′(zM ) + z−

M
2 B̈k′(zM )

)

=
M−1∑

k′=0

z−k′Yk′(z
M
2 ), (2.121)

where

Yk′(z) = Gk′(z2)
(
Ḃk′(z2) + z−1B̈k′(z2)

)
.

Since ḃk′ [n] and b̈k′ [n] are the IDFT outputs according to their definitions in (2.117) and
(2.118), we can write Yk′(z) as:

Yk′(z) = Gk′(z2)

(
M−1∑

k=0

Ȧk(z2)ej2π kk′
M + z−1

M−1∑

k=0

Äk(z2)ej2π kk′
M

)

= Gk′(z2)
M−1∑

k=0

(
Ȧk(z2) + z−1Äk(z2)

)
ej2π kk′

M . (2.122)

where Äk(z) and Ȧk(z) are the Z-transform of the data sequences (including the phase
terms) at the IDFT input. This last expression shows that both data chains (odd and even)
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can share a single IDFT-PPN device to generate the transmitted signal s[m]. Consequently,
The Z-transform of the signal at the unique IDFT input is given by Ȧk(z2) + z−1Äk(z2).
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Figure 2.16: the implementation scheme of the IDFT input, for a given k value, and its
simplified equivalent implementation

Fig. 2.16 illustrates the implementation scheme of the IDFT input, for a given k value,
and its simplified equivalent implementation. Indeed, we can write the signal at the input
IDFT for a given value of k, as:

ǎk[n] = e−j πDk
M





ȧk, n
2
e
jφ̇k, n

2 n even

äk, n−1
2

e
jφ̈

k, n−1
2 n odd

= ej( π
2 (k+n)−πDk

M )





ȧk, n
2

n even

äk, n−1
2

n odd

= ak,nej( π
2 (k+n)−πDk

M ) (2.123)

Then, we can set θk,n = π
2 (k + n) − πDk

M . The complete implementation scheme of the
transmitter is shown in Fig. 2.17.

Efficient digital implementation of the receiver

Similarly, an efficient realization of the demodulator can be designed using the polyphase
components of the prototype filter. We have seen that if r[m] denotes the input of the
demodulator, the output signal on the kth subband is given by:

rk,n =
∞∑

m=−∞
r[m]g[m− nM/2]e−j 2πk

M (m−D
2 )e−jφk,n .

Using the fact that g[m] = g[KM −m], we can rewrite the output signal as:

rk,n =
∞∑

m=−∞
r[m]g[KM −m + nM/2]e−j 2πk

M (m−D
2 )e−jφk,n . (2.124)

In order to illustrate the analogy with the transmitter, this equation can be rewritten,
making a reconstruction delay appear, as:

rk,n−2(K−1) =
∞∑

m=−∞
r[m]g[nM/2−m + M ]e−j 2πk

M (m−D
2 )e−jφk,n−2(K−1) . (2.125)
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Figure 2.17: Implementation scheme of the transmitter in FBMC/OQAM system

For notation simplicity, let us set r′k,n = rk,n−2(K−1) and φk,n−2(K−1) = φ′k,n. Then, setting
m = k′ + pM with p ∈ Z and k′ ∈ {0, 1, ..., M − 1}, the even demodulated signals r′k,2n are
obtained as:

r′k,2n =
M−1∑

k′=0

∑
p

r[k′ + pM ]g[(1 + n− p)M − k′]e−j 2πkk′
M e−jφ′k,2nej πkD

M

= e−jφ′k,2nej πkD
M ×

M−1∑

k′=0

(∑
p

rk′ [p]g̃k′ [n− p]

)
e−j 2πkk′

M , (2.126)

where rk′ [p] = r[k′ + Mp] is the k′th output sequence of an S/P converter, and g̃k′ [p] is
a FIR filter obtained by g̃k′ [p] = g[(p + 1)M − k′]. According to the equation obtained
above, the M signals rk′ [p] are filtered in parallel by M FIR filters g̃k′ [p], and then the
obtained signals are applied to an M-FFT block. After that, the samples r′k,2n are obtained
by multiplying the M-FFT outputs by the phase terms ej( πkD

M −φ′k,2n). Fig. 2.18 depicts the
polyphase implementation of the even demodulator.

As for the odd demodulator, we consider the delayed signal ṙ[m] = r[m−M/2]. There-
fore, we can rewrite equation (2.125) as:

r′k,n =
∞∑

m=−∞
ṙ[m]g[nM/2−m + M + M/2]e−j 2πk

M (m−D
2 )e−jφ′k,nejπk. (2.127)

Hence, the odd samples r′k,2n−1 are given by:

r′k,2n−1 =
∞∑

m=−∞
ṙ[m]g[nM −m + M ]e−j 2πk

M (m−D
2 )e−jφ′k,2n−1ejπk. (2.128)
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Figure 2.18: Implementation scheme of the DFT and the polyphase network of the even
demodulator.

Setting m = k′ + pM with p ∈ Z and k′ ∈ {0, 1, ..., M − 1}, we obtain:

r′k,2n−1 =
M−1∑

k′=0

∑
p

ṙ[k′ + pM ]g[(1 + n− p)M − k′]e−j 2πkk′
M e−jφ′k,2n−1ej πkD

M ejπk

= e−jφ′k,2n−1ej πkD
M ejπk ×

M−1∑

k′=0

(∑
p

ṙk′ [p]g̃k′ [n− p]

)
e−j 2πkk′

M . (2.129)

Hence, we remark that the same operations as in the even chain are applied in the odd even
on the delayed signal ṙ[m] = r[m−M/2], except for the additional phase term ejπk.

2.3.4 Prototype filters

In the literature, various prototype filters g[m] are designed for their corresponding ap-
plications. The study of prototype functions and filters is of a particular interest for
FBMC/OQAM because it represents an important degree of freedom with respect to what
is possible with OFDM [17]. Furthermore, these prototypes can be built to satisfy some
target objective, e.g. frequency selectivity or time-frequency localization. Let us look at
some examples of prototype filters.
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Rectangular window

The time-discrete rectangular window function can be defined as:

g[m] =





1 m ∈ {0, 1, ..., M − 1}
0 otherwise

(2.130)

This prototype filter is the same as the one used in OFDM. its time and frequency repre-
sentations are given respectively in Fig. 2.19 and Fig. 2.20.
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Figure 2.19: Time representation of the rectangular window and the SRRC filter response
with r = 1 and r = 0.5.

The square root raised cosine (SRRC) filter

The square root raised cosine (SRRC) filter is a well known reference filter in digital com-
munication. For a transmission rate of F = 1/T , the SRRC filter is defined in the frequency
domain by [77]:

G(f) =





√
T |f | ≤ (1− r) 1

2T√
T cos

(
π
2r

(
T |f | − 1−r

2

))
(1− r) 1

2T < |f | ≤ (1 + r) 1
2T

0 (1 + r) 1
2T < |f |

(2.131)

where r is the roll-off parameter (0 ≤ r ≤ 1). Then, this filter has a frequency response
more interesting since it is limited in frequency. The impulse response of the SRRC filter in
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Figure 2.20: Frequency representation of the rectangular window and the SRRC filter re-
sponse with r = 1 and r = 0.5.

continuous time is given by [72,77]:

g(t) =
sin

(
(1− r)πt

T

)
+ 4rt

T cos
(
(1 + r)πt

T

)

πt
T

(
1− (

4rt
T

)2
) . (2.132)

The discrete-time impulse response of the SRRC filter is obtained by truncation and
sampling the continuous-time function g(t). However, discretization can lead to a discrete
prototype filter being only nearly orthogonal [10]. Fig. 2.19 and Fig. 2.20 give the SRRC
representation with roll-off r = 1/2 and r = 1, in time and frequency, respectively. We
observe that the SRRC prototype presents a significant improvement compared to the rect-
angular window prototype in terms of frequency selectivity.

Isotropic orthogonal transform algorithm (IOTA) prototype filter

According to the Heisenberg-Gabor uncertainty principle [78], the most well-localized pulse
shape in the time-frequency domain is the Gaussian pulse f(t) = e−πt2 , which has an
interesting property as it is invariant through the Fourier transform. However, it does
not satisfy the real orthogonality condition. Therefore, an algorithm was introduced by
Alard in [79, 80] converting the Gaussian pulse to an orthogonalized pulse. This obtained
orthogonalized pulse shape is called IOTA (Isotropic Orthogonal Transform Algorithm)
prototype function.

IOTA prototype function is also considered as a special case of the Extended Gaussian
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Functions (EGF) defined in time domain by [81]:

zα,ν,τ (t) =
1
2

+∞∑

k=0

dk,α,ν

[
fα

(
t +

k

ν

)
+ fα

(
t− k

ν

)] +∞∑

l=0

dl,1/α,τ cos
(

2π
lt

τ

)
, (2.133)

where α is a real-valued number, dk,α,ν are some real-valued coefficients which can be com-
puted via the rules described in [81], and fα is the Gaussian function gα(t) = (2α)

1
4 e−παt2 .

Then, IOTA prototype function is obtained by setting g(t) = z1, 1√
2
, 1√

2
(t). Note that the

IOTA prototype function is identical to its Fourier transform [80]. So IOTA is equally lo-
calized in time and frequency. Its excellent time localization implies that it is less sensitive
than the SRRC to time truncation [10]. Fig. 2.21 and Fig. 2.22 give the IOTA prototype
filter representations in the time and frequency domains, respectively.
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Figure 2.21: Time representation of the IOTA and PHYDYAS prototype filter compared to
the rectangular window.

Since we have the expression of the prototype filter, we can calculate the coefficients of the
transmultiplexer impulse response from (2.102) for IOTA prototype filter. The coefficients
are depicted in Table 2.1.

PHYDYAS prototype filter

The PHYDYAS prototype filter is the one adopted in the physical layer for dynamic spec-
trum access and cognitive radio (PHYDYAS) European project [82]. This prototype filter
was introduced by Bellanger in [29]. The prototype filter is designed using the frequency
sampling technique [83]. The idea of this technique is first to determine the continuous
frequency response G(f) via the interpolation formula of the desired frequency response
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Figure 2.22: Frequency representation of the IOTA and PHYDYAS prototype filter com-
pared to the rectangular window.

samples Gk, that are uniformly spaced at the frequency points fk = k
KT where K is the

overlapping factor and T is the symbol period. That is:

G(f) =
∑

k

Gk
sin (π(KTf − k))

π(KTf − k)
(2.134)

Then, the continuous impulse response of the prototype filter is obtained by the inverse
Fourier transform of G(f), which is:

g(t) =
∑

k

Gkej2π kt
KT for |t| ≤ KT. (2.135)

For the PHYDYAS prototype filter, the overlapping factor is chosen to be K = 4, and the
frequency coefficients Gk are chosen according to the Nyquist theory and are optimized to
offer the maximum frequency selectivity and minimize the total interference that originates
from the filter bank structure [84]. Thus, the frequency coefficients Gk chosen for the
PHYDYAS filter are given by [29]:





G0 = 1, G1 = 0.971960, G2 = 1√
2
, G3 =

√
1−G2

1 = 0.235147

Gk = 0 for k > 3

Gk = G−k for k < 0 (To obtain a real-valued filter)

(2.136)

Therefore, the time-continuous impulse response of the PHYDYAS prototype filter is given
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Table 2.1: Transmultiplexer impulse response using IOTA filter

n0 − 3 n0 − 2 n0 − 1 n0 n0 + 1 n0 + 2 n0 + 3
k0 − 2 −0.0016j 0 −0.0381j 0 0.0381j 0 0.0016j

k0 − 1 0.0103j 0.0381j 0.228j 0.4411j 0.228j 0.0381j 0.0103j

k0 −0.0182j 0 −0.4411j 1 0.4411j 0 0.0182j

k0 + 1 +0.0103j −0.0381j 0.228j −0.4411j 0.228j −0.0381j 0.0103j

k0 + 2 −0.0016j 0 −0.0381j 0 0.0381j 0 0.0016j

by:

g(t) = 1 + 2
3∑

k=1

Gk cos
(

π
kt

2T

)
for |t| ≤ 4T. (2.137)

where Gk, k ∈ {1, 2, 3}, are given in (2.136). Finally, Fig. 2.21 and Fig. 2.22 give the
PHYDYAS prototype filter representations in time and frequency domains, respectively.
As for the transmultiplexer impulse response of PHYDYAS filter, its main coefficients are
calculated by using (2.102) and are depicted in Table 2.2.

Table 2.2: Transmultiplexer impulse response (main part) using PHYDYAS filter

n− 3 n− 2 n− 1 n n + 1 n + 2 n + 3
k − 1 0.043j 0.125j 0.206j 0.239j 0.206j 0.125j 0.043j

k −0.067j 0 −0.564j 1 0.564j 0 0.067j

k + 1 0.043j −0.125j 0.206j −0.239j 0.206j −0.125j 0.043j

2.3.5 FBMC/OQAM with MIMO systems

In this section, we try to apply different well-known multi-antennas architectures to FBMC,
while comparing them with those used in CP-OFDM. Both MIMO spatial multiplexing and
Space Time Block Coding (STBC) Alamouti schemes are considered when combined with
FBMC/OQAM. In section 2.3.2, we have shown for FBMC/OQAM systems that in the
case of a SISO transmission between an antenna j and a received antenna i, if a

(j)
k,n is the

transmitted real data at time n and at frequency k then the demodulated signal r
(i)
k,n is given

by:

r
(i)
k,n ≈ h

(ij)
k,n (a(j)

k,n + ju
(j)
k,n) + γ

(i)
k,n, (2.138)

where h
(ij)
k,n is the channel coefficient from the transmit antenna j to the receive antenna i

at frequency k and time instant n. γ
(i)
k,n is the noise component at antenna i and at time-

frequency (n,m). u
(j)
k,n is the interference term as given in (2.104). Therefore, In the MIMO
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context, when Nt antennas are used to transmit Nt real data symbols and Nr antennas are
used to collect the transmitted signals, the FBMC demodulated signal at the jth receive
antenna and at a given time-frequency position (k, n) is expressed by:

r
(j)
k,n =

Nt∑

i=1

h
(ji)
k,n (a(i)

k,n + ju
(i)
k,n) + γ

(j)
k,n, (2.139)

Finally, the matrix formulation of the system can be expressed as:



r
(1)
k,n
...

r
(Nr)
k,n




︸ ︷︷ ︸
rk,n

=




h
(11)
k,n · · · h

(1Nt)
k,n

...
. . .

...
h

(Nr1)
k,n · · · h

(NrNt)
k,n




︸ ︷︷ ︸
Hk,n




a
(1)
k,n + ju

(1)
k,n

...
a
(Nt)
k,n + ju

(Nt)
k,n




︸ ︷︷ ︸
ak,n+juk,n

+




γ
(1)
k,n
...

γ
(Nr)
k,n




︸ ︷︷ ︸
γk,n

, (2.140)

which yields:
rk,n = Hk,n(ak,n + juk,n) + γk,n, (2.141)

where Hk,n is an (Nr ×Nt) channel matrix.

ZF and MMSE equalizers

Linear equalization as ZF and MMSE in SM system in FBMC/OQAM context can be
performed as described in [11] where a virtually transmitted vector ck,n is considered instead
of the effective one and defined as:

ck,n = ak,n + juk,n. (2.142)

The vector rk,n represents the input of the equalizer having as output the equalized virtually
transmitted vector c̃k,n:

c̃k,n = GH
k,nrk,n, (2.143)

where Gk,n is the equalization matrix based on the ZF or MMSE criterion as presented
in section 2.1.2. Then, the real part retrieval of c̃k,n yields the real equalized data vector
ãk,n [11].

Alamouti scheme

The application of Alamouti coding in a straightforward manner to the FBMC makes an
inherent interference appear, and it cannot be easily removed [17]. The difficulty to apply
Alamouti scheme with FBMC can be conceptually explained by the fact that the Alam-
outi scheme relies on a complex orthogonality whereas FBMC technique has only a real
orthogonality that cannot lead to the same type of equations [17]. To tackle this drawback,
some works have been carried out on this topic such as [35] where the authors show that
Alamouti coding can be performed when it is combined with code division multiple access
(CDMA) [85]. Indeed the authors in [35] showed that it is possible to have a complex orthog-
onality with FBMC thanks to CDMA WH (Walsh-Hadamard) codes. Another work was
carried out in [36] where a pseudo-Alamouti scheme was proposed. But this last solution
requires the appending of the cyclic prefix (CP) to the FBMC signal as introduced in [86].
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Renfors et al. in [12] have proposed a solution to combine the Alamouti scheme with
FBMC, where the Alamouti coding is performed in a block-wise manner inserting gaps (zero-
symbols and pilots) in order to isolate the blocks. This solution is feasible when the FBMC
transmultiplexer impulse response (let us denote it by T) is conjugate symmetric along the
time axis. Indeed, this corresponds to the FBMC model considering the phase term φ = πkn

in (2.98) and the data signal ak,n is alternatively purely imaginary and purely real. Let a1

and a2 be two data symbol blocks in the time-frequency domain simultaneously transmitted
from antenna 1 and antenna 2, respectively. After that, the first antenna transmits −←−a2

∗

whereas the second one transmits ←−a1
∗. The left arrow on top of a variable denotes the

time-reversal version of the corresponding sequence [12,87]. Assuming that the channels h1

and h2 are invariant during the transmission of both symbol blocks, the first signal block
collected at the receive antenna can be written as:

r1 = h1T⊗ a1 + h2T⊗ a2 + n1, (2.144)

where ⊗ operation stands for the 2D convolution, and n1 is a block of the noise terms. The
second received signal block is:

r2 = h2T⊗←−a1
∗ − h1T⊗←−a2

∗ + n2. (2.145)

Then, we have:

←−r2∗ = h∗2
←−
T∗ ⊗ a1 − h∗1

←−
T∗ ⊗ a2 +←−n2

∗

= h∗2T⊗ a1 − h∗1T⊗ a2 +←−n2
∗. (2.146)

The last equality stands thanks to the fact that T is conjugate symmetric along the time
axis (

←−
T∗ = T). Therefore, applying the Alamouti decoding [34] we have:

y1 =
h∗1r1 + h2

←−r2∗
|h1|2 + |h2|2 = T⊗ a1 +

h∗1n1 + h2
←−n2

∗

|h1|2 + |h2|2 , (2.147)

and

y2 =
h∗2r1 − h1

←−r2∗
|h1|2 + |h2|2 = T⊗ a2 +

h∗2n1 − h1
←−n2

∗

|h1|2 + |h2|2 . (2.148)

The term T ⊗ a contains the transmitted data symbols and also the inherent interference.
We can write it as in [87]:

T⊗ a = a + u, (2.149)

where u is the block of the interference terms. When a data symbol in a is purely real,
its corresponding interference term in u is purely imaginary and vice versa. Then, the
transmitted data symbols are easily estimated by a simple real or imaginary part retrieval.

Maximum likelihood detection in spatial multiplexing

To the best of our knowledge, there is no work until now addressing the association of the
FBMC modulation to the spatial multiplexing with Maximum Likelihood (ML) detection.
Indeed, the presence of the interference vector term uk,n in (2.141) prevents the application
of ML separately at each time-frequency position (k, n). This is because the interference
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terms take their values in a large set and depend on the transmitted data symbols in the
neighborhood around the considered position (k, n).

The global ML decoder is the one that considers all the transmitted data symbols within
a frame. Let us consider a data frame a with L multicarrier symbols. Then, a contains
(M × L) elements (M is the subcarrier number) and each element ak,n is a (Nt × 1) real
vector. At the receiver side, we also obtain a (M × L) frame r whose elements rk,n are
(Nr × 1) complex vectors. The global ML method consists in finding the frame a among
all the possible ones that maximizes the probability of receiving frame r assuming that a is
transmitted [13], we can write:

â = argmax
a

{
P (r/a)

}
. (2.150)

Obviously, a such receiver implementation is by far impractical due to its huge complexity.
If we consider BPSK modulation, then we have 2Nt×M×L possible and different data frame
a.

The received FBMC signal can be seen as a 2D convolution of the transmitted data frame
a with the transmultiplexer impulse response weighted by the channel matrix. Therefore, a
2D-Viterbi algorithm deserves to be considered. Many works were carried out on 2D-Viterbi
algorithm in different study fields such as in optical and magnetic data storage [88, 89].
Commonly, a 2D Viterbi detector performs joint symbol detection on all the subcarriers
[90, 91]. To reduce the complexity of a full-fledged 2D Viterbi detector (VD), the VD is
divided into smaller processing units (called stripe VD). Each stripe VD covers a limited
number of subcarriers. This detection configuration is called a stripe-wise Viterbi detector
(SWVD) [91,92]. Some other techniques, such as decision feedback equalization VD (DFE-
VD) [93] and fixed delay tree search with decision feedback VD (FDTS/DF-VD) [94], have
been reported in the literature to further reduce the complexity of 2D VD. In the next
chapter, we address the problem of performing ML detection in spatial multiplexing with
FBMC modulation. We propose to examine solutions based on interference estimation and
cancellation.
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Chapter 3

Interference cancelation and ML
detection in spatial multiplexing
with FBMC

We have seen in the previous chapter that the presence of the inherent interference in
FBMC causes problems to apply the ML detector in the MIMO spatial multiplexing scheme.
By using Viterbi algorithm [95], full maximum likelihood receivers, in principle, offer the
best possible performance but require an impractically high complexity when the impulse
response is long. Moreover, the intrinsic interference in FBMC is two-dimensional which
further complicates the detection task in maximum likelihood sense. In this chapter, we
analyze the possibility to cancel the interference before applying ML detection. Indeed, the
interference cancellation approaches generally offer the possibility of removing interference
with low complexity increase and without enhancing the level of noise already present in
the received signal. This chapter is organized as follows. First, we give a brief overview
on interference cancellation technique. In light of this background, we derive conditions
for optimal interference cancellation scheme in the FBMC context. Then, we present the
performance results obtained by simulation in both uncoded and coded cases. After that, we
analyze another cancellation approach based on partially interference cancellation. Finally,
we finish the chapter by a conclusion where the main results are summarized.

3.1 Motivation of the interference cancellation

In this section, we will highlight the potential SNR gain over OFDM that FBMC could offer
in spatial multiplexing if the interference were completely removed. This potential gain
motivates us to study in depth the interference cancellation methods.

In CP-OFDM, when the CP length is large enough, the system is equivalent to the

51
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narrowband single carrier configuration regardless of the efficiency loss due to the CP. In
MIMO context, the system is modeled as:

y = Hs + n, (3.1)

where sk ∈ A is the transmitted symbol at the kth antenna with average symbol energy Es

and A is the square M-QAM constellation set with size M . H is an Nr ×Nt channel gain
matrix, whose elements are independent zero-mean complex Gaussian random variables with
unit variance, and the Nr elements of vector n are samples of independent complex white
Gaussian noise with single-side power spectral density N0. Performance analysis of ML
detection in this context was treated in [18] and a union bound expression was developed.
Let {s} denote the set of all MNt possible transmitted symbol vectors. We define {sj} with
size MNt−1 as a subset of {s} in which vectors have sm as their first element. We also
define {si} as the set of vectors that differ in their first element from {sj} so that there
are a total of (MNt − MNt−1) such vectors. Assuming Gray coding and perfect Channel
State Information (CSI) at the receiver side, an asymptotical expression of the BER is given
by [18]:

P (γc) =
α

b

(
1

2γc

)Nr
(

2Nr − 1
Nr − 1

)
, (3.2)

where α = M−Nt
∑

m

∑
j

∑
i a−Nr

sm,ij and asm,ij = ‖di − dj‖2/2Es. b = log2(M) is the
number of bits per symbol and γc = Es/N0 denotes the average symbol SNR per diversity
branch. The relationship between Eb/N0 and γc is given by [18,96]:

Eb/N0 =
NrEs

bN0
=

Nr

b
γc. (3.3)

Let us consider now the FBMC system model. Assuming perfect interference cancella-
tion, we can rewrite equation (2.141) as:

y = Ha + n. (3.4)

We recall that the symbol a is real-valued and a ∈ Ar which is the orthogonal projection of
A on the real axis. Therefore, the energy of each transmitted symbol a is E{a2} = Es/2,
and the number of bits per symbol a is b′ = log2(

√
M) = b/2. According to the above

equations, we can derive in this context the asymptotical BER expression as:

P ′(γc) =
2α′

b

(
1

2γ′c

)Nr
(

2Nr − 1
Nr − 1

)
, (3.5)

with α′ = M−Nt
2

∑
m

∑
j

∑
i a−Nr

sm,ij and γ′c = E{a2}
N0

= γc/2. The signal-to-noise ratio per
bit expression in this context is similar to equation (3.3) because we have:

Eb/N0 =
Nr(Es

2 )
( b
2 )N0

=
Nr

b
γc.

In order to determine the SNR gap in the performance between both systems, let us
resolve the equation P ′(γc1) = P (γc2). Starting from (3.2) and (3.5) we have:

2α′

b

(
1

γc1

)Nr

=
α

b

(
1

2γc2

)Nr

, (3.6)
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which yields the following expression:

γc2

γc1

=
1
2

Nr

√
α

2α′
. (3.7)
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Figure 3.1: Illustation of the potential SNR gain of the FBMC over OFDM in 2 × 2 SM
system

For QPSK modulation and Nr = Nt = 2, we have α = 541
144 and α′ = 5

16 , so the
performance gain between both systems is G = 10 log10(

γc2
γc1

) ≈ 0.88 dB. Fig. 3.1 depicts the
BER performance obtained by simulation of OFDM and FBMC with perfect ISI cancellation
in a 2 × 2 SM. We observe clearly that FBMC provides an SNR gain of about 1 dB over
OFDM when the FBMC interference is perfectly removed. The theoretical curves plotted
in the figure are obtained using the method described in [62]. In the rest of this chapter, we
will propose some different solutions to cope with the FBMC interference.

3.2 FBMC interference estimation by using linear equal-
izer

We have seen in Section 2.3.5 that the MIMO linear equalizers such as ZF and MMSE
equalizers are straightforwardly applicable to the FBMC spatial multiplexing systems. To
be able to apply ML detection, we propose in this section a receiver proceeding by interfer-
ence estimation and cancellation where the interference is estimated using a MIMO linear
equalizer. The proposed receiver scheme is depicted in Fig. 3.2. We have used only the
MMSE equalizer as it outperforms the ZF one with almost the same computational complex-
ity. We refer to this receiver as MMSE-ML receiver since we combine MMSE equalizer and
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ML detector. As we have seen, the MMSE equalizer provides an estimation of the virtual
transmitted symbol vector ck,n = ak,n + juk,n. Therefore, an evaluation of the interference
terms are available by taking only the imaginary part of c̃k,n. This estimation is used to
cancel the interference contribution from the received vector rk,n. Hence, we obtain a vector
yk,n expressed as:

yk,n = rk,n − jHk,nũk,n,

= Hk,n(ak,n + j(uk,n − ũk,n)) + nk,n,

= Hk,n(ak,n + jεk,n) + nk,n, (3.8)

where ũk,n is the estimated interference vector given by ũk,n = Im{c̃k,n}. The interference
estimation error εk,n is considered as an additional noise term. Its statistical parameters
depend especially on the channel matrix Hk,n, since the reliability of ũk,n depends on the
MMSE equalization matrix.
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Figure 3.2: Basic scheme of the MMSE-ML receiver

Assuming almost perfect interference estimation, that is εk,n ≈ 0, we consider that
the vector yk,n at the output of the interference canceller is free of interference. Thus,
ignoring the presence of εk,n term, we perform a simple conventional ML detector. One
of the advantages of this receiver is the fact that it does not introduce any processing
delay in the system; the interference is estimated from the current received vector and
is immediately removed. However, this receiver is based on the assumption that yk,n is
free of interference. But unfortunately, the error term in equation (3.8) is obviously non-
zero (εk,n 6= 0). Consequently, it is clear that we cannot reach the optimal bit-error-rate
performance as if there is no interference.

Fig. 3.3 shows the BER performance of the proposed MMSE-ML receiver in 2 × 2 and
4×4 SM configurations, which is compared to the MMSE equalizer and to the Genie-Aided
optimal performance. The number of subcarriers is M = 512, and the data symbols are
QPSK modulated (i.e, twice BPSK for FBMC). The sampling frequency is fs = 10 MHz.
We assume perfect channel knowledge at the receiver side. The different channels between
the antennas are spatially uncorrelated, and the channel model used for simulation is the
Pedestrian-A (Ped-A) channel model [97] where the parameters are given by:

• Delays = [0 110 190 410] ns,
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Figure 3.3: BER performance of the MMSE-ML receiver compared to MMSE equalizer and
to the Genie-Aided in a 2× 2 SM system

• Powers = [0 -9.7 -19.2 -22.8] dB.

Solid curves represent the performance in a 2 × 2 SM, whereas 4 × 4 SM configuration is
depicted by dash curves. We notice that MMSE-ML receiver outperforms the MMSE equal-
izer in both SM configurations. We can note almost the same SNR gain of about 2 dB at
BER = 10−2. However, the performance of the MMSE-ML receiver is still far from the op-
timum one. This performance limitation is explained by the fact that the interference is not
perfectly canceled. Further, we observe that the SNR gap between MMSE-ML performance
and Genie-Aided one is more important in the case of 4× 4 SM configuration. This is due
to the diversity limitation of the MMSE equalizer compared to the ML detector. Indeed,
the ML detector provides a diversity order of 2 in the case of 2×2 SM, and a diversity order
of 4 in the case of 4× 4 SM, whereas the MMSE equalizer has a diversity order of 1 in both
cases.

3.3 Intersymbol interference cancellation

3.3.1 Background on ISI cancellation

ISI cancellation scheme is essentially based on using preliminary decisions to estimate and
cancel the interference. The idea of using preliminary decisions to generate an intermediate
estimate of the transmitted data signal was independently proposed by various investigators.
Proakis, in [98], proposed the cancellation scheme where the canceller attempts to remove the
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ISI directly from the received signal. This approach does not achieve improved performance
over linear equalization if there is a phase distortion [99]. Then, Gersho and Lim described,
in [99], a linear canceller structure where the received signal is first filtered by a transversal
filter W before attempting to remove the ISI estimated by using a canceller filter C. Fig.
3.4 shows the basic scheme of the ISI canceller as described in [99].
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Figure 3.4: Basic scheme of an interference cancellation receiver

Let us consider rk as the baseband equivalent received signal xk corrupted by a linear
dispersive channel hk and additive gaussian noise nk. That is:

rk =
∑

l

hlxk−l + nk. (3.9)

Suppose a separate linear equalizer operating on the received signal rk. If optimally
designed, it will have a modest error rate, and we can use its decisions x̂k as preliminary or
tentative decisions for the purpose of constructing an estimate of the total ISI. On the other
hand, the received signal is also fed to the filter W . Whereas, the input of the canceller
filter C is the preliminary decision sequence, and its output sequence is subtracted form the
output of the filter W . This difference, producing yk, may be viewed as a linear estimator
of the data symbol xk [99]. Hence, the output yk of the receiver is described by the equation

yk =
∑

j

wjrk−j −
∑

j 6=0

cj x̂k−j , (3.10)

where x̂k are preliminary decisions. We make the constraint that the center tap of the
cancellation filter is zero c0 = 0, this restricts the role of the canceller to removing ISI and
prevents the canceller from making use of the current data symbol which must be estimated
by the output signal from the filter W [99].

To determine the optimal pair of filters W and C for the cancellation scheme, we make the
simplifying assumption that the preliminary decisions x̂k available from the linear equalizer
are correct [99]. Then, we consider the structure shown in Fig. 3.5 where the canceller C is
fed directly by the true transmitted data symbols since the tentative decisions are assumed
to be correct. Therefore, the goal is to determine the filters W and C that minimize the
mean square error:

Ek = E{|εk|2}, (3.11)
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Figure 3.5: Model of a linear canceller

where εk = yk − xk.
Gersho and Lim showed that the optimal coefficients of the filters W and C, based on

the mean square error criterion, assuming that the noise samples are not correlated and the
mean square value of data symbols is equal to 1, are given by:

wk =
1

Eh + σ2
h∗(−k), ∀k

ck =
1

Eh + σ2
Rh(k), ∀k 6= 0

(3.12)

where Eh is the energy of the channel impulse response and Rh(k) is its autocorrelation
function. σ2 is the variance of the additive noise. Whereas, in the case where the noise is
correlated, the optimal filter coefficients are given by their Fourier transforms:

W (ω) =
H(−ω)

(1 + ξ)Sn(−ω)
,

C(ω) =
|H(−ω)|2

(1 + ξ)Sn(−ω)
, (3.13)

with

ξ =
T

4π

∫ 2π
T

−2π
T

|H(−ω)|2
Sn(−ω)

dω (3.14)

where H(ω) is the Fourier transform of the channel-sampled impulse response, Sn(ω) is the
sampled noise spectrum, and T is the sampling period.

3.3.2 Interference cancellation in FBMC

In this section, we propose to design an interference cancellation receiver for the FBMC
system based on the principle presented in Section 3.3.1. The goal is to obtain signal
samples as if the data symbols were transmitted in isolation. That is, the first stage of the
receiver does not equalize the channel but attempts only to cancel the FBMC interference.
Then, in the context of the spatial multiplexing system, the ML detector is applied after
the ISI cancellation. Because of the nature of the FBMC interference, the filters W and
C should be two-dimensional. Moreover, we have to take into account the fact that the
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transmultiplexer impulse response depends on the subcarrier index k as aforementioned in
the previous chapter.

According to (2.101) and (2.102), we can write the received signal, in the case of an
AWGN channel, as:

r(k, n) =
P∑

p=−P

Q∑

q=−Q

a(k − p, n− q)f(p, q)(−1)q(k−p) + γ(k, n), (3.15)

where a(k, n) is the real-valued transmitted data symbols, γ(k, n) is the noise term at the
demodulator output, and f(p, q) is given by:

f(p, q) =
+∞∑

m=−∞
g[m]g[m− qM/2]ej 2π

M p( D
2 −m)e−j π

2 (p+q)ejπpq. (3.16)

The noise term γ(k, n) in (3.15) is a colored noise and given by

γ(k, n) =
+∞∑

m=−∞
b[m]g[m− n

M

2
]ej 2π

M k( D
2 −m)e−jφk,n , (3.17)

where b[m] is the AWGN with variance σ2. We show in Appendix A.1 that the noise
autocorrelation is given by

E{γ∗(k′, n′)γ(k, n)} = σ2f(k − k′, n− n′)(−1)(n−n′)k′ . (3.18)

When the spatial multiplexing configuration is considered, the received signal at the
demodulator output of the ith receive antenna is written as:

r(i)(k, n) =
Nt∑

j=1

P∑

p=−P

Q∑

q=−Q

h
(ij)
k,n a(j)(k − p, n− q)f(p, q)(−1)q(k−p) + γ(i)(k, n). (3.19)

where h
(ij)
k,n is the Rayleigh channel coefficient between the jth transmit antenna and the

ith received one. Hence, one can rewrite:

r(i)(k, n) =
P∑

p=−P

Q∑

q=−Q




Nt∑

j=1

h
(ij)
k,n a(j)(k − p, n− q)


 f(p, q)(−1)q(k−p) + γ(i)(k, n). (3.20)

The quantity in brackets can be seen as a virtual transmitted symbol. Therefore, the
same ISI cancellation scheme is applied on each receive antenna branch. Thus, the output of
the whole ISI canceller is assumed to be free of interference and considered as the output of a
conventional spatial multiplexing channel. Fig. 3.6 depicts the basic scheme of the proposed
receiver. We should note that the outputs of the preliminary estimator block in Fig. 3.6 are
estimations of the quantity in brackets in equation (3.20). That is, the Nr-vector fed to the
canceller filter C is:

r̂k,n = Hk,nãk,n, (3.21)

where the Nt-vector ãk,n is a preliminary decision of the transmitted data vector ak,n. Since
the same cancellation scheme is applied on each receive antenna branch, we can make use
of equation (3.15) to derive the optimum coefficients of the filters W and C.
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Figure 3.6: Basic scheme of interference cancellation MIMO receiver

Derivation of the coefficients of the filters W and C

To determine the optimal pair of filters W and C in the mean-square sense, we make as
in [99] the simplifying assumption that the preliminary decisions are correct. Let U(k, n)
and V(k, n) denote the output sequences of the filters W and C respectively. Then, we can
write

U(k, n) =
Y∑

y=−Y

Z∑

z=−Z

W (y, z)r(k − y, n− z) (3.22)

V(k, n) =
U∑

u=−U

V∑

v=−V

C(u, v)a(k − u, n− v) (3.23)

Notice that the true data sequence a(k, n) is involved in this last equation as we have
assumed the tentative decisions are correct. Then, the estimation of the symbol a(k, n) is
obtained by subtracting V(k, n) from U(k, n). The goal is to determine the filters W and C

that minimize the mean-square error (MSE):

E(k, n) = E{|ε(k, n)|2}, (3.24)

where ε(k, n) = U(k, n)−V(k, n)− a(k, n).

To do this, we differentiate E(k, n) with respect to the complex tap weights {C(u, v)}
and {W (y, z)} and set the derivatives to zero. Using (3.23) and (3.22), we obtain:

∂|ε(k, n)|2
∂W (y, z)

= ε∗(k, n)
∂ε(k, n)
∂W (y, z)

= ε∗(k, n)
∂U(k, n)
∂W (y, z)

= ε∗(k, n)
Y∑

y′=−Y

Z∑

z′=−Z

∂W (y′, z′)
∂W (y, z)

r(k − y′, n− z′)

= ε∗(k, n)r(k − y, n− z) (3.25)
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and

∂|ε(k, n)|2
∂C(u, v)

= ε∗(k, n)
∂ε(k, n)
∂C(u, v)

= −ε∗(k, n)
∂V(k, n)
∂C(u, v)

= −ε∗(k, n)
U∑

u′=−U
u′ 6=0

V∑
v′=−V

v′ 6=0

∂C(u′, v′)
∂C(u, v)

a(k − u′, n− v′)

= −ε∗(k, n)a(k − u, n− v) (u, v) 6= (0, 0) (3.26)

Hence, setting the derivatives of E(k, n) to zero yields the following expressions:

E{ε∗(k, n)a(k − u, n− v)} = 0 (u, v) 6= (0, 0), (3.27)

E{ε∗(k, n)r(k − y, n− z)} = 0 ∀(y, z). (3.28)

Thus, these optimality conditions require that the error signal ε(k, n) is orthogonal to the
observable inputs of the C and W filters, namely, a(k, n) and r(k, n) [99].

In Appendix A.2, we develop the conditions (3.27) and (3.28), and we obtain that equa-
tion (3.27) yields:

C∗(u, v) =
Y∑

y=−Y

Z∑

z=−Z

W ∗(y, z)f∗(u− y, v − z)(−1)(v−z)(k−u), ∀(u, v) 6= (0, 0) (3.29)

and equation (3.28) gives:

σ2
a

Z∑

z′=−Z

Y∑

y′=−Y

W ∗(y′, z′)
P∑

p=−P

Q∑

q=−Q

f∗(p, q)f(p + y′ − y, q + z − z′)(−1)(z
′−z)(k−y′−p)

+
Z∑

z′=−Z

Y∑

y′=−Y

W ∗(y′, z′)E{γ∗(k − y′, n− z′)γ(k − y, n− z)} (3.30)

= σ2
af(−y,−z)(−1)−zk + σ2

a

U∑

u=−U

V∑

v=−V

C∗(u, v)f(u− y, v − z)(−1)(v−z)(k−u)

where σ2
a = E{|a(k, n)|2} is variance of the signal a(k, n).

Hence, we obtained two equations with two unknowns C(u, v) and W (y, z). By substi-
tuting (3.29) into (3.31), we attempt to retrieve W (y, z), then we have:

σ2
a

Z∑

z′=−Z

Y∑

y′=−Y

W ∗(y′, z′)
P∑

p=−P

Q∑

q=−Q

f∗(p, q)f(p + y′ − y, q + z − z′)(−1)(z
′−z)(k−y′−p)

+
Z∑

z′=−Z

Y∑

y′=−Y

W ∗(y′, z′)E{γ∗(k − y′, n− z′)γ(k − y, n− z)} = σ2
af(−y,−z)(−1)−zk

+σ2
a

Z∑

z′=−Z

Y∑

y′=−Y

W ∗(y′, z′)
U∑

u=−U
u 6=0

V∑
v=−V

v 6=0

f∗(u− y′, v − z′)f(u− y, v − z)(−1)(z+z′)(u−k).

(3.31)
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Then, we can rewrite

Z∑

z′=−Z

Y∑

y′=−Y

W ∗(y′, z′)T (k)
y,y′,z,z′ +

1
σ2

a

Z∑

z′=−Z

Y∑

y′=−Y

W ∗(y′, z′)E{γ∗(k − y′, n− z′)γ(k − y, n− z)}

= f(−y,−z)(−1)−zk −
Z∑

z′=−Z

Y∑

y′=−Y

W ∗(y′, z′)f∗(−y′,−z′)f(−y,−z)(−1)−k(z+z′), (3.32)

where

T
(k)
y,y′,z,z′ =

P∑

p=−P

Q∑

q=−Q

f∗(p, q)f(p + y′ − y, q + z − z′)(−1)(z
′−z)(k−y′−p)

−
U∑

u=−U

V∑

v=−V

f∗(u− y′, v − z′)f(u− y, v − z)(−1)(z+z′)(u−k). (3.33)

In the following, we show that the term T
(k)
y,y′,z,z′ is zero. Let us substitute u by p + y′ and

v by q + z′, Hence we obtain

T
(k)
y,y′,z,z′ =

P∑

p=−P

Q∑

q=−Q

f∗(p, q)f(p + y′ − y, q + z − z′)(−1)(z
′−z)(k−y′−p)

−
U−y′∑

p=−U−y′

V−z′∑

q=−V−z′
f∗(p, q)f(p + y′ − y, q + z′ − z)(−1)(z+z′)(k−p−y′). (3.34)

We know that f∗(p, q) = 0 when (p, q) /∈ {−P, ..., P}×{−Q, ..., Q}. Then, we set |U−y′| ≥ P

and |V − z′| ≥ Q for all (y′, z′) ∈ {−Y, ..., Y } × {−Z, ..., Z}. That means that we have to
set U ≥ P + Y + 1 and V ≥ Q + Z + 1. Therefore, we can write

T
(k)
y,y′,z,z′ =

P∑

p=−P

Q∑

q=−Q

f∗(p, q)f(p + y′ − y, q + z − z′)
(
(−1)(z

′−z)(k−y′−p) − (−1)(z+z′)(k−y′−p)
)

= 0. (3.35)

Consequently, (3.32) is simplified as

1
σ2

a

Z∑

z′=−Z

Y∑

y′=−Y

W ∗(y′, z′)E{γ∗(k − y′, n− z′)γ(k − y, n− z)}

=
(

1−
Z∑

z′=−Z

Y∑

y′=−Y

W ∗(y′, z′)f∗(−y′,−z′)(−1)−kz′

︸ ︷︷ ︸
βk

)
f(−y,−z)(−1)−kz, (3.36)

where βk is a constant depending only on the parity of k. It is worth noticing that the
solution of this equation depends significantly on the autocorrelation of the noise γ(k, n). If
the noise were uncorrelated, the solution of (3.36) would be trivial. Unfortunately, the noise
term γ(k, n) is correlated and its autocorrelation function is given by (3.18). Therefore,
equation (3.36) becomes:

σ2

σ2
a

Z∑

z′=−Z

Y∑

y′=−Y

W ∗(y′, z′)f(y′ − y, z′ − z)(−1)(z−z′)y′+kz′ = (1− βk)f(−y,−z). (3.37)



62Chapter 3 Interference cancelation and ML detection in spatial multiplexing with FBMC

This equation above represents a system of linear equations. To be able to resolve it, we
rewrite (3.37) in a matrix form.

Let f and w be (2Z+1)(2Y +1)×1 vectors and Fk be a (2Z+1)(2Y +1)×(2Z+1)(2Y +1)
matrix such that:

f(p + (2Y + 1)q) = f(Y − p, Z − q), (3.38)

w(p + (2Y + 1)q) = W ∗(p− Y, q − Z), (3.39)

and

Fk(p + (2Y + 1)q, p′ + (2Y + 1)q′) = f(p′ − p, q′ − q)(−1)(p
′−Y )(q−q′)(−1)k(q′−Z), (3.40)

with (p, p′) ∈ {0, ..., 2Y }2 and (q, q′) ∈ {0, ..., 2Z}2. Therefore, we can express (3.37) in a
matrix form as

Fkw =
σ2

a

σ2
(1− βk)f . (3.41)

We notice that the column of index Y +Z(2Y +1) (the central one) of the matrix Fk equals
the vector f . Hence, the trivial solution of (3.41) is

w =
σ2

a

σ2
(1− βk)el, (3.42)

where the vector el has the same size as w, and contains zeros except the position l =
Y + Z(2Y + 1) that is set to 1. Then, according to (3.39), all the coefficients W ∗(y, z) are
zeros except for W ∗(0, 0) = σ2

a

σ2 (1− βk). Thus, we can write

W ∗(y, z) =
σ2

a

σ2
(1− βk)δ(y, z), (3.43)

where δ(y, z) is the kronecker delta function. Now, to determine βk we make use of its
definition given in (3.36), thus we obtain:

βk =
σ2

a

σ2
(1− βk)f∗(0, 0) (3.44)

which yields

βk =
σ2

af∗(0, 0)
σ2 + σ2

af∗(0, 0)
. (3.45)

Finally, plugging (3.45) into (3.43) we obtain

W (y, z) =
σ2

a

σ2 + σ2
af(0, 0)

δ(y, z). (3.46)

Whatever the used prototype filter, we have f(0, 0) = 1. Hence, we can simplify the last
equation as:

W (y, z) =
σ2

a

σ2 + σ2
a

δ(y, z). (3.47)

Now, we substitute (3.47) into (3.29), we obtain:

C(u, v) =
σ2

a

σ2 + σ2
a

f(u, v)(−1)v(k−u), ∀(u, v) 6= (0, 0). (3.48)
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Application and simulation results

According to the results obtained in the previous subsection, the filter W is just a one tap
coefficient σ2

a

σ2+σ2
a
, and the canceller filter C has the same impulse response as the FBMC

transmultiplexer scaled by σ2
a

σ2+σ2
a
except for the center tap which is zero. One can check

this latter by comparing equations (3.48) and (3.15). Hence, if the interference cancellation
is perfect, the input vector to the ML detector is:

r̃k,n =
σ2

a

σ2 + σ2
a

rk,n. (3.49)

The ML detector applied on vector r̃k,n has to take into account the scaling factor
σ2

a

σ2+σ2
a
. Therefore, the ML detector selects the data vector âk,n that minimizes the Euclidean

distance as follows:

âk,n = argmin
ak,n

{∥∥∥∥r̃k,n − σ2
a

σ2 + σ2
a

Hk,nak,n

∥∥∥∥
2
}

, (3.50)

where Hk,n is the MIMO-SM channel matrix. We notice that this metric minimization is
absolutely equivalent to the following one:

âk,n = argmin
ak,n

{
‖rk,n −Hk,nak,n‖2

}
. (3.51)

Hence, for the sake of the receiver simplicity, we can set the filters W and C as:

W (y, z) = δ(y, z), (3.52)

C(u, v) =





f(u, v)(−1)v(k−u), ∀(u, v) 6= (0, 0)

0 (u, v) = (0, 0)
(3.53)

and the ML detector makes use of the metric given in (3.51). Since the interference is
estimated by involving the preliminary decisions of some postcursor symbols, a processing
delay is then introduced in the system.

As for the tentative equalizer providing preliminary decisions ãk,n, we can use the simple
MMSE equalizer. According to (3.21) the input signal of the canceller filter C in the receive
antenna branch i is:

r̂
(i)
k,n =

Nt∑

j=1

h
(ij)
k,n ã

(j)
k,n. (3.54)

Therefore, the MMSE equalizer has to be followed by a reconstruction operation of vector
r̂k,n by using the channel matrix Hk,n. The basic scheme of the whole proposed receiver
is depicted in fig. 3.7. We call this receiver IC-ML. It is worth noticing that the difference
between the IC-ML receiver and the MMSE-ML one lies in the interference estimation
method; in MMSE-ML the interference is estimated directly by taking the imaginary part
of the MMSE outputs, whereas in IC-ML the interference is calculated through the MMSE
decided symbols around the considered symbol. In the latter, a processing delay is then
introduced.

We have tested this receiver in a 2 × 2 SM system with the Ped-A channel model [97].
The number of subcarrier is M = 512, and the frequency sampling is fs = 10 MHz. Fig.
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Figure 3.7: Basic scheme of the MIMO IC-ML receiver
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Figure 3.8: BER performance comparison of IC-ML receiver with MMSE-ML and the Genie-
Aided one in a 2× 2 SM system
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3.8 shows the BER performance of the proposed IC-ML receiver, which is compared to the
optimal detection and to the MMSE-ML one presented in section 3.2. We remark that we
obtain better BER performance than the MMSE-ML one; we note an SNR gain of about
1 dB with respect to MMSE-ML. But the performance of IC-ML still remains far from the
optimum one. This performance limitation is certainly due to the reliability level of the
MMSE equalizer. In order to improve the BER performance, we can exploit the outputs
of the ML detector, and use them as tentative decisions to estimate again the interference.
However, the drawback of this last receiver proposal is that the processing delay is doubled.
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Figure 3.9: Basic scheme of the Rec-ML receiver

In order to improve the interference cancellation scheme without increasing the process-
ing delay, we propose to replace the tentative MMSE equalizer by the MMSE-ML detector
presented in 3.2. We call this receiver Rec-ML (Recursive ML). Fig 3.9 depicts the basic
scheme of the Rec-ML receiver. The advantage of this receiver is that the tentative decisions
are now more reliable. The BER performance of the Rec-ML receiver is depicted in Fig.
3.10, where it is compared to the MMSE-ML and the Genie-Aided performance (assuming
perfect ISI cancellation). The size of the SM matrix channel is 2 × 2, and we used Ped-A
channel model for simulation. We observe that Rec-ML receiver improves the BER perfor-
mance compared to MMSE-ML. At BER = 10−3 we have an SNR gain of about 3.5 dB

with respect to MMSE-ML receiver. However, there is still a gap with respect to optimal
detection, which stems from the decision and estimation errors on the data symbols involved
in the calculation of the interference term. This gap can be reduced if error correction is
introduced in the system. It is worth noting that exploiting the Rec-ML outputs to estimate
again the interference does not improve the BER-performance. Indeed, we obtained by sim-
ulation the same performance as the Rec-ML one. This fact is due to the error propagation
as we will see in section 3.4.

Reducing the processing delay

We have seen that the proposed Rec-ML receiver introduces a processing delay since some
postcursor symbol decisions are involved in the interference cancellation. This processing



66Chapter 3 Interference cancelation and ML detection in spatial multiplexing with FBMC

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 
Genie−Aided performance
FBMC Rec−ML
FBMC MMSE−ML
FBMC MMSE

Figure 3.10: BER performance of the Rec-ML receiver compared to MMSE, MMSE-ML
equalizers and to the Genie-Aided in a 2× 2 SM system

delay depends in fact on the overlapping factor K of the FBMC system. Indeed, since
two successive multicarrier symbols in FBMC are transmitted with an offset of M

2 samples,
the last multicarrier symbol interfering with the current one is offset with respect to the
latter by (K − 1

2 )M samples. Therefore, the processing delay introduced in the system is
of K − 1

2 multicarrier symbols. In our case K = 4, then Rec-ML has a processing delay of
3.5 multicarrier symbols. The delay might be critical and, in order to limit its value, it is
interesting to use a small set of coefficients of the system impulse response. Of course, if an
incomplete impulse response is used, a residual interference term remains, which introduces
a floor in the BER versus received SNR curve. Three neighborhoods to the central unity
term are considered, with 8, 12 and 18 coefficients respectively. For each one, the value of
the residual interference power σ2

RI is calculated. The results are given in Table 3.1, and
the corresponding delays are indicated.

Table 3.1: residual interference power calculated with 3 sets of coefficients using PHYDYAS
filter

Neighborhood σ2
RI (dB) Delay

1 −11.03 1/2
2 −17.85 1
3 −38.70 3/2
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Clearly, neighborhood 1 is likely to produce a high bit error rate, while neighborhood
3 is close to optimum, except for high SNR values. The BER performance is assessed by
simulation in each of the 3 cases. That leads to results shown in Fig. 3.11.
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Figure 3.11: BER performance of the Rec-ML receiver using the 3 different neighborhoods
in a 2× 2 SM system

As expected, neighborhood 1 (8 coefficients) produces a high BER floor due to the high
value of the residual interference. There is virtually no difference between neighborhoods 2
and 3 as long as the SNR at the receiver output does not exceed 20 dB. This means that the
contribution of the residual interference is negligible, compared to the noise level. Further,
with neighborhood 3, we obtain the same performance as the whole Rec-ML depicted in
Fig. 3.10. Therefore, neighboring 3 or 2 are satisfactory compromises between performance
and delay.

3.3.3 Interference cancellation in coded FBMC

We have seen in the previous sections that the interference cancellation in the proposed
receiver schemes is not very effective due to the presence of erroneous tentative decisions.
Indeed, it was shown by simulations that there is a BER-performance gap between the
proposed receivers and the Genie-Aided performance obtained by perfect interference re-
moving. Since the performance limitation is due to the tentative decision errors, error
correction coding may significantly improve the interference cancellation. In this section,
we test the proposed receivers in the context of encoded data.

At the transmitter side, the binary information enters a convolutional encoder to pro-
duce an encoded binary sequence which is bit-interleaved by a random interleaver. Then,
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Figure 3.12: MMSE receiver for FBMC in Nt ×Nr Spatial Data Multiplexing

the interleaved bits are mapped by a memoryless modulator into symbols belonging to a
PAM constellation set A with cardinality of 2

q
2 , where q

2 is the bit number in the PAM
symbol. After that, the PAM symbols are demultiplexed onto Nt branches (corresponding
to Nt antennas). Over each branch the data are sent to the FBMC modulator and then
transmitted through the radio channel. At the receiver side, the Nt transmitted signals
are collected by Nr receive antennas. The signal in each receive antenna branch is FBMC
demodulated, forming thus demodulated vectors rk,n = [r(1)

k,n, ..., r
(Nr)
k,n ]T , where r

(i)
k,n are the

FBMC demodulator outputs at the ith receive antenna.

MMSE equalization

The implementation of the MMSE equalization in the considered context has been described
in [11]. The demodulated vector rk,n is fed to the MMSE equalizer having as output the
equalized virtually transmitted vector:

c̃k,n = GH
k,nrk,n, (3.55)

where Gk,n is the MMSE equalization matrix. Then, a real part retrieval of c̃k,n yields
the real equalized data vector ãk,n. Inverting exactly the transmission operations, these
symbols are multiplexed one by one, soft demapped and deinterleaved before being decoded
to recover the transmitted data bits. This scheme is the non iterative MMSE receiver as
referred in [11] and depicted on Fig. 3.12.

The soft demapping consists in calculating the bit reliability information in the form of
Log-Likelihood Ratio (LLR). The LLRs are calculated separately for each layer. We can
write each component of vector c̃k,n as [100]:

c̃k,n(i) = gH
k,n(i)rk,n

= βk,n(i)ck,n(i) + ωk,n(i), i = 1, ..., Nt (3.56)

with βk,n(i) is a bias term given by:

βk,n(i) = gH
k,n(i)hk,n(i), (3.57)

where hk,n(i) and gk,n(i) are, respectively, the ith column of matrices Hk,n and Gk,n.
ωk,n(i) in (3.56) is an interference-plus-noise term approximated as a zero-mean complex
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Gaussian variable with variance given by [100,101]:

σ2
ωi

= 2Ea(βk,n(i)− βk,n(i)2), (3.58)

where Ea = E{|ak,n(i)|2} = E{|ck,n(i)|2}/2. Since βk,n(i) ∈]0, 1[ is real-valued [100], the
real MMSE-equalized symbol expression is:

ãk,n(i) = βk,n(i)ak,n(i) + Re{ωk,n(i)}. (3.59)

According to this expression, the LLR value corresponding to the lth bit bl
i, l ∈ {1, ..., q

2},
in ak,n(i) is obtained as:

L(bl
i) = log




∑
a(i)∈A+

l
e
− 1

σ2
ωi

(ã(i)−β(i)a(i))2

∑
a(i)∈A−l e

− 1
σ2

ωi

(ã(i)−β(i)a(i))2


 , (3.60)

where A+
l and A+

l denote the constellation subset whose lth bit equals +1 and −1, respec-
tively. Using the Log-Sum approximation, the above expression becomes:

L(bl
i) ≈

1
σ2

ωi

min
a(i)∈A−l

(ã(i)− β(i)a(i))2

− 1
σ2

ωi

min
a(i)∈A+

l

(ã(i)− β(i)a(i))2 , l ∈ {1, ...,
q

2
} (3.61)

It is worth pointing out that in case of QPSK modulation (q = 2, ak,n(i) = ±1√
2
), we can

show that L(b1
i ) is proportional to the quantity ãk,n(i)

1−βk,n(i) , and as a consequence we can drop
out the soft demapping bloc and consider this quantity as the soft input of the decoder in
order to simplify the receiver.

Fig. 3.13 shows the BER performance comparison of MMSE equalizer between FBMC
and OFDM in a 2 × 2 SM system. The performance comparison is done for two different
channel models, namely, Ped-A and Vehicular-A (Veh-A) channel model [97]. We assumed
perfect Channel State Information (CSI) at the receiver side. The simulation parameters
for FBMC and OFDM are summarized in Table 3.2.

Table 3.2: Simulation parameters

Pedestrian-A Vehicular-A
Complex modulation QPSK QPSK
FFT size (M) 1024 1024
CP size for OFDM (∆) 8 32
Convolutional code (171, 133) (171, 133)
Sampling frequency 10 MHz 10 MHz

Since the CP duration affects OFDM performance and in order to compare FBMC to
the best OFDM configuration, we have chosen in table 3.2 the smallest possible CP size for
each channel model. The system performance is assessed in terms of BER as function of
the signal-to-noise ratio per bit (Eb/N0). For CP-OFDM, we define Eb/N0 by:

Eb/N0 =
M + ∆

M
× Nr

qRsRc
SNR, (3.62)
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Figure 3.13: BER performance comparison between CP-OFDM and FBMC in 2× 2 MIMO
case over Ped. A and Veh. A channels with MMSE receiver

where M is the subcarrier number (FFT size), ∆ is the cyclic prefix size, Rc is the channel
coding rate, Rs is the space-time coding rate, q is the bit number in a complex QAM symbol
(q = 2 for QPSK), and SNR is the Signal-to-Noise ratio. As for FBMC, the expression of
Eb/N0 is obtained by nulling the CP duration ∆, so we can write:

Eb/N0 =
Nr

qRsRc
SNR. (3.63)

As we can observe in Fig. 3.13, there is pratically no difference between FBMC and
OFDM from BER performance point of view when using MMSE equalizer. The perfor-
mance gain obtained in Veh-A channel model over the Ped-A one is due to the difference
in the frequency diversity order that each channel model offers. This frequency diversity is
exploited thanks to coding and bit interleaving.

MMSE-ML and Recursive-ML (Rec-ML) receivers

In MMSE-ML receiver which is presented in section 3.2, the MMSE equalizer is used to
estimate the interference terms which are obtained by taking the imaginary parts of the
MMSE outputs. Once the contribution of these interference terms are removed from the
received signal vector rk,n, the resulting signal vector yk,n is fed to a soft ML detector
giving soft outputs in the form of LLR values. Then, these soft values are multiplexed,
deinterleaved, and decoded to provide decision bits. Fig. 3.14 shows the basic scheme of
the MMSE-ML receiver.

The received vector rk,n is an observation of Nt transmitted PAM symbols a
(j)
k,n, j ∈

{1, ..., Nt}. Hence, there are q
2Nt bits dl involved in the received vector rk,n. The soft ML
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Figure 3.14: MMSE-ML scheme for FBMC in Nt ×Nr Spatial Data Multiplexing

detector calculates the LLRs of the a posteriori probability (APP) of the encoded bits dl

being +1 or −1. The LLR values for the ML detector are defined as:

LAPP (dl|yk,n) = log
(

P (dl = +1|yk,n)
P (dl = −1|yk,n)

)
, l = 1, ...,

q

2
Nt (3.64)

where q
2 is the number of bits that constitute the real symbol ak,n. Then, in each subcarrier

and half period T/2, we have q
2Nt soft bits at the soft MLD output. By employing Bayes’

theorem and assuming statistical independence and equiprobability among the bits dl, the
LLR can be written as [102,103]:

LAPP (dl|yk,n) = log

(∑
d∈D+

k
p(yk,n|d)

∑
d∈D−k p(yk,n|d)

)
, (3.65)

where the vector d contains all the bits corresponding to the transmitted symbols ak,n over
all the antennas, and the set D+

l (or D−l ) contains the vectors d having dl = +1 (or dl = −1).
The likelihood density p(yk,n|d) is given by:

p(yk,n|d) =
exp

(− 1
2σ2 ‖rk,n −Hk,nak,n(d)‖2)

(2πσ2)Nr
, (3.66)

where ak,n(d) is the transmitted real vector corresponding to the bit-vector d. Substituting
equation (3.66) in (3.65) and applying the Max-Log approximation, the LLR calculation is
simplified by:

LAPP (dl|yk,n) =
1

2σ2
min
d∈D−k

‖rk,n −Hk,nak,n(d)‖2

− 1
2σ2

min
d∈D+

k

‖rk,n −Hk,nak,n(d)‖2, l ∈ {1, ...,
q

2
Nt} (3.67)

The obtained soft information at the ML output should be multiplexed, deinterleaved and
fed into the soft-input decoder to recover the transmitted information source bits.

As for the Rec-ML receiver, we use the outputs of the MMSE-ML receiver to perform
a second interference estimation. This time, the intrinsic interference is estimated by using
the decided data bits (available at the MMSE-ML output) which are involved in the symbols
ak′,n′ within the neighborhood of the considered frequency-time position (k, n). For this,
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Figure 3.15: Recursive ML scheme for FBMC in Nt ×Nr Spatial Data Multiplexing

the decided data bits are encoded with the same convolutional code used at the transmitter,
interleaved, mapped and demultiplexed repeating exactly the same transmission operations
to provide an estimation of the transmitted symbols âk,n which will serve to calculate an
interference estimate. Thus, the interference estimation is improved since the information
bits are encoded and some errors would be corrected. Once this interference is estimated,
its contribution is canceled again from the received vector rk,n, and then, we perform once
more the soft ML detection. The complete receiver scheme is depicted in Fig. 3.15.

In the following, we show the simulation results for MMSE-ML and Rec-ML receivers
and compare their performance to OFDM. We consider a 2×2 spatial multiplexing scheme.
Our objective is to test the proposed receiver schemes over a low and high frequency selective
channels. For that purpose, we have chosen the Ped-A and the Veh-A channel models [97].
We should note that for both chosen channels, we have not considered the time selectivity.
The simulation parameters are the same as the ones used for MMSE equalizer and are
summarized in Table 3.2. We also assume perfect channel knowledge at the receiver side,
and the performance is assessed in terms of BER as function of Eb/N0 which is defined by
(3.63) and (3.62) for OFDM and FBMC, respectively.

As in the uncoded case, we define the Genie-Aided performance as the fictional one
obtained when the symbols serving to estimate the interference are identical to the trans-
mitted ones (perfect interference estimation). We have shown in section 3.1 that even by
neglecting the efficiency loss due to CP, the Genie-Aided receiver outperforms CP-OFDM
by about 1 dB in a 2 × 2 SM with QPSK modulation. Hence, it is interesting to compare
its performance to the OFDM and the proposed receivers when using convolutional coding.

Fig. 3.16 captures the performance of CP-OFDM with ML and that of FBMC with all
the proposed receivers (including MMSE) over the Ped-A channel. The curves show that the
MMSE-ML scheme outperforms the MMSE equalizer, but the performance is still far from
the CP-OFDM with ML. The gain obtained by MMSE-ML with respect to MMSE equalizer
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Figure 3.16: BER performance comparison between CP-OFDM and FBMC receivers in 2×2
MIMO case over Ped.-A channel

is about 2.5 dB at BER = 10−4, whereas OFDM-ML provides a 5 dB SNR gain compared
to MMSE. However, Rec-ML receiver exhibits almost the same performance as OFDM-ML.
It is worth recalling that CP-OFDM performance is obtained with the smallest possible
CP size (∆ = 8). Increasing ∆ yields a performance degradation for CP-OFDM, and thus,
FBMC with Rec-ML receiver will outperform CP-OFDM. For example, as in IEEE 802.16e
standard [104], if we set ∆ = T

8 = 128, we obtain a degradation of about 0.48 dB.

Regarding the Veh-A channel, Fig. 3.17 shows the performance of the different receivers
in this propagation channel. First, as in the Pedestrian-A channel case, we remark that a
considerable SNR gain is obtained by MMSE-ML receiver compared to MMSE equalizer,
we have a gain of about 2 dB at BER = 10−4. Secondly, we can clearly observe that the
obtained Rec-ML performance is slightly better than that obtained with CP-OFDM from
Eb/N0 = 6 dB, and tends to reach the Genie-Aided performance in high Eb/N0 regime.

We notice that the potential SNR gain of FBMC over OFDM is not yet completely
exploited, and that the interference is not fully removed even in the encoded case [105].
Therefore, further investigations on interference estimation are needed to improve the per-
formance.
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Figure 3.17: BER performance comparison between CP-OFDM and FBMC receivers in 2×2
MIMO case over Veh.-A channel

3.4 Viterbi detection and partial interference cancella-
tion

We have seen in the previous sections that the proposed interference cancellation schemes
are not totally effective due to the error propagation. In this section, we propose to study
a receiver scheme based on partial ISI cancellation followed by a Viterbi detector instead
of an ML detector. The tentative detector is first used to only partially cancel the intrinsic
interference.

In order to counteract the error propagation and make the cancellation scheme effective,
we were inspired by reference [106] where the authors have established the conditions under
which the cancellation scheme is effective. We will show that satisfying these conditions
allows our proposed iterative scheme to converge to OFDM performance.

We start in section 3.4.1 by giving a background on the use of tentative decisions to
cancel the ISI, and we show how we apply it in the FBMC context.

3.4.1 Partial interference cancellation with Viterbi detection

In reference [106], the authors have considered the channel model depicted in Fig. 3.18,
where f0(ak, ak−1, ..., ak−δ+1) is a function of δ data symbols and represents the target
response expected by the receiver. f1(ak+γ , ak+γ−1, ..., ak−λ+1) is a function of γ + λ data
symbols and represents a small channel perturbation.

It should be noted that, in general, both f0 and f1 may be nonlinear functions. The
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Figure 3.18: Channel model

samples of the signal at the input of the receiver are:

rk =f0(ak, ak−1, ..., ak−δ+1)

+ f1(ak+γ , ak+γ−1, ..., ak−λ+1) + wk, (3.68)

where wk is the noise contribution. The receiver is composed by a tentative detector pro-
ducing tentative decisions, and a main viterbi detector which assumes that the channel is
described only by f0. Before performing the main Viterbi detector, the tentative decisions
are used only to cancel the remaining ISI (RISI) represented by f1. The receiver scheme is
depicted in Fig. 3.19.

Figure 3.19: Receiver scheme with ISI cancellation using tentative decisions

Given the correct data sequence ak, and a sequence a
(ε)
k for a given error event ε, let us

define:

∆(ε)
k =f0(a

(ε)
k , a

(ε)
k−1, ..., a

(ε)
k−δ+1)

− f0(ak, ak−1, ..., ak−δ+1), (3.69)
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Φ(ε) = [∆(ε)
0 ,∆(ε)

1 , ...,∆(ε)
K−1]

T , (3.70)

where K is assumed to be the total number of transmitted symbols. The authors in [106]
classified the error events in terms of their distance d0(ε) in the absence of RISI (f1 = 0),
which is given, in the presence of correlated noise, by:

d0(ε) =
‖Φ(ε)‖2√

ΦH(ε)RΦ(ε)
, (3.71)

where R is the normalized noise autocovariance matrix. The events whose distance d0(ε) is
minimum are called "first-order" error events. Similarly, events whose distance is the second
smallest are called "second-order" error events, and so on [106].

The conditions for which RISI cancellation is satisfying are summarized as follows [106]:

1. Errors affecting the main (Viterbi detector) and the tentative detector must be stati-
cally independent.

2. The RISI (described by f1) must be small enough to guarantee that the main Viterbi
detector can make relatively reliable decisions even when the tentative detector makes
a decision error, and such that the tentative detector also makes relatively reliable
decisions in spite of the ISI.

3. The distance of second-order and higher-order error events that could cause error
propagation must be significantly larger than that of first-order error events.

Now that the conditions for effective RISI cancellation are summarized, we will attempt
to apply them to FBMC. Hence, the problem is, essentially, how to select the functions
f0 and f1 such as these conditions are fulfilled. The intrinsic interference in FBMC is
seen as a two-dimensional intersymbol interference (2D-ISI). An extension of the works of
Agazzi and Seshadri [106] to 2D-ISI channels was treated in [90] assuming that the noise is
uncorrelated (which is not the case in FBMC). Hence in general, the target response f0 may
also represent a 2D-ISI channel. Then, a 2D-Viterbi detector is required to match with f0.
Designing a 2D-Viterbi is quite challenging. Therefore, for simplicity reasons, we opted to
set the additional constraint that the target response f0 must be one-dimensional and that
f1 covers the rest of 2D-ISI.

Obviously the receiver complexity depends essentially on the complexity of the Viterbi
detector. Therefore, we have to choose a configuration with the least complex Viterbi
detector that meets the conditions for effective RISI cancellation. We will select three con-
figurations with different sizes of the target response f0. According to the second condition,
f0 must contain the largest coefficients (Γδk,δn) in each configuration. Hence, from Table
2.2, the selected target responses are [107]:

f
(1)
0 (ak,n) = ak,n, (3.72)

f
(2)
0 (ak,n, ak,n−1) = ak,n + Γ0,−1 × ak,n−1, (3.73)

and

f
(3)
0 (ak,n+1, ak,n, ak,n−1) = Γ0,1ak,n+1 + ak,n + Γ0,−1ak,n−1. (3.74)
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The first configuration (f (1)
0 ) corresponds to the whole ISI cancellation which has been

studied in the previous section. Since, in FBMC, we have
∑

p,q |Γp,q|2 = 2 [108], it is easy
to calculate the power of the RISI (represented by f1) for each configuration.

Regarding the first condition, it is easily satisfied when the tentative detector is different
from the main one (Viterbi) [106]. We recall that we consider the case of spatial multiplexing
system. Then, we chose the MMSE equalizer as the tentative detector.

The third condition concerns the spectrum distances d0(ε) defined by (3.71). Hence,
for each configuration (f (i)

0 , i ∈ {1, 2, 3}), we compare the non-minimum distances to the
minimum one. Then, according to (3.71), we have to determine the matrix R. Since we
consider that the target responses are one-dimensional and Viterbi algorithm is performed
on each subcarrier ”k”, the matrix R is composed only by the coefficients Γ0,q, q ∈ Z (see
equations (3.18) and (3.15)) and is given by:

R =




1 Γ0,1 Γ0,2 · · ·
Γ0,−1 1 Γ0,1 · · ·
Γ0,−2 Γ0,−1 1 · · ·

...
...

...
. . .




K×K

(3.75)

In Table 3.3, we summarize the values of the first, second, and third order distances
obtained by using (3.71), and also the power of the RISI for the three considered configura-
tions. We remark that the difference between the second-order and the first-order distances
is almost the same for all the configurations (0.8 ± 0.03), so we consider (as considered
in [106]) that the higher-order distances are sufficiently larger than the minimum distance
for each configuration. Hence, condition 3) is fulfilled for the three configurations.

Table 3.3: Spectrum distances and RISI power

First Second Third
Configuration (f (1)

0 ) Configuration (f (2)
0 ) Configuration (f (3)

0 )
First-order distance 2 1.8857 1.9189
Second-order distance 2

√
2 2.6668 2.7137

Third-order distance 2
√

3 3.4596 3.2728
Power of the RISI 1 0.6819 0.3638

Now, we have only to determine the configuration(s) for which the second condition is
satisfied. Unfortunately, the determination of the RISI power for which the cancellation
starts to be effective (or equivalently, error propagation ceases) is not trivial and depends
also on the noise variance σ2 [106]. We will show in the following (by simulations) that only
the third configuration (f (3)

0 ) allows to obtain effective RISI cancellation.
As for the receiver complexity, it strongly depends on that of the Viterbi detector. When

we consider a spatial multiplexing system with Nt transmit antennas, the Viterbi detector
has to compute qi×Nt branch metrics, where q is the number of all possible symbols ak,n

(constellation size) and i ∈ {1, 2, 3} is the number of the taps in f
(i)
0 . In order to reduce the

receiver complexity, we can replace the Viterbi detection algorithm by the M-Algorithm [109]
which keeps only a fixed number (J) of inner states instead of all the inner states (q(i−1)×Nt).
Hence, the M-algorithm has to compute only J × qNt branch metrics.
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3.4.2 Simulation results

In the following, we provide the simulation results concerning the three configurations
treated above. Since the motivation of this work is to address the problem of optimum
detection in spatial multiplexing with FBMC, we have considered the simple 2 × 2 spatial
multiplexing scheme. We assume perfect channel knowledge at the receiver side, and the
four Rayleigh sub-channels are spatially non-correlated. The complex data symbols are
QPSK modulated (q = 2). The system performance is assessed in terms of BER as function
of SNR and is compared to that of the conventional OFDM with ML detector.
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Figure 3.20: Performance of PaIC/Viterbi receivers for 2× 2 spatial multiplexing

We call the proposed receivers "PaIC/Viterbi" (for Partial Interference Cancellation with
Viterbi detector) followed by an index indicating the considered configuration. Fig. 3.20
depicts the performance of the MMSE equalizer (which is our tentative detector) and of the
PaIC/Viterbi for the three considered configurations. We clearly notice that PaIC/Viterbi-3
exhibits almost the same performance as OFDM, and that the RISI cancellation is effective.
Hence, the value of the RISI power given in Table 3.3 for the third configuration is sufficiently
small so that condition 2) is satisfied. However, a slight degradation of the PaIC/Viterbi-3
performance compared to OFDM is observed beyond 22 dB. Indeed, as we have mentioned
at the end of the previous section, the threshold of the RISI power from which the error
propagation begins (ineffectiveness of the RISI cancellation) depends on the noise variance
σ2. As shown -for a specific example- in [106], the threshold lowers with the SNR increase.
As for the first and second configurations, the performance degradation compared to OFDM
begins from about 12 dB. This relatively high degradation is due to the high values of the
corresponding RISI powers causing error propagation.
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Figure 3.21: Performance of PaIC/M-Algo receiver for 2× 2 spatial multiplexing

Now we consider only the third configuration (f (3)
0 ) since the RISI cancellation is effec-

tive, and we assess the BER performance when using M-Algorithm instead of the Viterbi
one in order to reduce the complexity. In Fig. 3.21, we show the obtained performance of
the M-Algorithm with two different values of J (J = 2, and J = 4). We notice that with
J = 2 we have an SNR loss of about 2.5 dB compared to PaIC/Viterbi-3. This SNR loss
is due to the suboptimality of the M-Algorithm when J is small. Moreover, PaIC/M-Algo
with J = 2 provides a performance worse than the one provided by the tentative detector
(MMSE) as long as the SNR is less than 12 dB. However, with J = 4, we can observe
that PaIC/M-Algo exhibits almost the same performance as PaIC/Viterbi-3 but with much
lower algorithm complexity (4 inner states instead of 16).

To conclude, the intrinsic interference in FBMC is a 2D-ISI in the time-frequency plan.
In order to avoid a full 2D-Viterbi detector, a receiver based on ISI cancellation is proposed.
However, the ISI cancellation is effective only under some strict conditions. One of these
conditions is that the ISI must be sufficiently small. Unfortunately, the intrinsic interference,
in FBMC, has the same power as the desired symbol. Hence, we have proposed a trade-off
between a whole ISI cancellation (Rec-ML) and a full 2D-Viterbi detection. The proposed
receiver is composed by a tentative detector giving decisions which serve to partially cancel
the interference, followed by a Viterbi detector matching to the non-canceled ISI. Three
configurations were treated. The first one is called PaIC/Viterbi-1 (or Rec-ML) and corre-
spond to the whole ISI cancellation. The second one is PaIC/Viterbi-2, where the Viterbi
detector matches with the two largest coefficients of the transmultiplexer impulse response.
The third one is PaIC/Viterbi-3 and the Viterbi detector matches with the three largest
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coefficients. We have shown, by simulations, that only the PaIC/Viterbi-3 receiver gives the
same performance as OFDM. The two other configurations suffer from error propagation
because their RISI are not sufficiently small. We have also proposed to replace the Viterbi
detector by another based on M-Algorithm in order to reduce the receiver complexity. In-
deed, we have shown that using the M-Algorithm with J = 4, we obtain exactly the same
BER performance as PaIC/Viterbi-3 with much lower complexity.

3.5 Conclusion

We have addressed in this chapter the problem of the ML detection in spatial multiplexing
system using FBMC/OQAM modulation. In the first part of this chapter, we proposed
different receivers based on interference estimation and cancellation. We have seen that the
proposed MMSE-ML receiver which estimates the interference terms using the MMSE equal-
ization provides a slight performance improvement compared to the MMSE performance.
An advantage of the MMSE-ML receiver is the fact that the interference is estimated and
canceled immediately from the received signals and does not introduce any processing delay
in the system. The second proposed receiver is the Rec-ML receiver which makes use of the
MMSE-ML as the tentative detector. Then, the whole interference is estimated by using the
decided symbols within the neighboring positions in the time-frequency domain around the
considered position. The drawback of this receiver is the introduced additional processing
delay. A performance improvement is obtained with Rec-ML receiver compared to MMSE-
ML one, but there is still a performance gap with respect to the OFDM and Genie-Aided
performance. We have also seen that the performance gap with respect to OFDM can be
removed when error correcting codes are used.

In the second part of the chapter, we have proposed receivers schemes based on Viterbi
algorithm and partial interference cancellation that we have called PaIC-Viterbi receivers.
This technique allows to reduce the interference power concerned by the interference can-
cellation, and thus, it reduces the error propagation effect. We have shown by simulation
that when the three largest coefficients of the transmultiplexer response are involved in
the Viterbi algorithm, the interference cancellation is effective and PaIC-Viterbi-3 receiver
exhibits almost similar BER performance as OFDM-ML.



Chapter 4

Interference cancellation in
FBMC/QAM

The transmitted data symbols in conventional FBMC are OQAM (Offset QAM) modulated,
and the received data symbols are corrupted by inherent interference terms which compli-
cate the detection in a maximum likelihood (ML) sense in the spatial multiplexing scheme.
We have seen in the previous chapter that detection schemes with ISI estimation and can-
cellation are not always effective due to the error propagation. Therefore, the challenge in
ISI estimation and cancellation is mitigating the error propagation through iterations.

We have also seen that in order to counteract the error propagation and make the
cancellation scheme effective, the authors in [106] showed that a necessary condition to
avoid the error propagation is to hold the interference power under a certain threshold, i.e.
the interference cancellation technique is effective only when the ISI power is small enough
and less than a certain amount. Unfortunately, this threshold is depending on the SNR and
it is not trivial to obtain a closed form of the ISI power threshold [106]. Nevertheless, the
authors showed -in a specific example- that the threshold lowers with the SNR increase. In
other words, removing completely the ISI effects becomes more difficult in high SNR.

On the other hand, the interference in FBMC is inherent, thus it does not depend on
the noise variance or SNR. Hence, the ISI power in FBMC is constant whatever the value
of SNR. Consequently, the error propagation will appear from a certain amount of SNR
(denoted by SNR0) when the ISI power threshold falls below the inherent interference
power. Therefore, the interference cancellation is effective only when the SNR is less than
SNR0 for which the ISI power threshold is equal to the FBMC inherent interference. Fig.
4.1 depicts in qualitative manner the curves of the ISI power threshold and the inherent
FBMC interference as function of the SNR. Therefore, if we decrease the inherent FBMC
interference, then the value of SNR0 increases.

In this chapter, we propose to modify the conventional FBMC system by transmitting

81
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Figure 4.1: Qualitative representation of the curves of the ISI power threshold and the
FBMC inherent interference.

QAM data symbols instead of OQAM ones in order to reduce the inherent interference [19].
Then, we apply a receiver based on ISI estimation and cancellation where a simple tentative
detector is first used to attempt to cancel the ISI before applying the ML detection. We
will show that using QAM modulated symbols instead of OQAM allows us to reduce the
inherent interference power and allows -in some cases- our proposed iterative scheme to
converge to OFDM performance.

4.1 FBMC/QAM proposal

We propose an FBMC configuration where QAM symbols are transmitted at each one period
T instead of transmitting OQAM (real-valued) symbols at each half a period T/2. We note
that in this proposed scheme the orthogonality condition (2.103) is lost. The expression of
the transmitted signal s[m] given in (2.97) becomes

s[m] =
M−1∑

k=0

∑

n∈Z
sk,ng[m− nM ]ej 2πk

M (m−D
2 )ejφk,2n , (4.1)

where sk,n are now complex QAM symbols. We note that the phase term φk,2n can also be
aborted, as we dropped the real orthogonality condition.

The transmultiplexer impulse response of the proposed FBMC/QAM system can be
derived from the impulse response given in Table 2.2 or Table 2.1 by decimation by a factor
of 2 in time axis. That yields the coefficients depicted in Table 4.1 and Table 4.2 for
PHYDYAS and IOTA filter respectively.
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Table 4.1: Transmultiplexer impulse response of the FBMC/QAM using PHYDYAS filter

n− 1 n n + 1
k − 1 0.125j 0.239j 0.125j

k 0 1 0
k + 1 −0.125j −0.239j −0.125j

Table 4.2: Transmultiplexer impulse response of the FBMC/QAM using IOTA filter

n− 1 n n + 1
k − 1 0.0381j 0.4411j 0.0381j

k 0 1 0
k + 1 −0.0381j −0.4411j −0.0381j

When we consider the MIMO spatial multiplexing system, the matrix equation (2.140)
becomes in FBMC/QAM as:




r
(1)
k,n
...

r
(Nr)
k,n




︸ ︷︷ ︸
rk,n

=




h
(11)
k,n · · · h

(1Nt)
k,n

...
. . .

...
h

(Nr1)
k,n · · · h

(NrNt)
k,n




︸ ︷︷ ︸
Hk,n




s
(1)
k,n + I

(1)
k,n

...
s
(Nt)
k,n + I

(Nt)
k,n




︸ ︷︷ ︸
sk,n+Ik,n

+




b
(1)
k,n
...

b
(Nr)
k,n




︸ ︷︷ ︸
bk,n

, (4.2)

where the entries of the interference vector Ik,n are complex-valued because the transmitted
data sk,n are now complex. The expression of Ik,n is given by:

Ik,n =
∑

(k′,n′)∈Ω∗k,n

Γ́δk,δnsk′,n′ , (4.3)

where Γ́k′,n′ are the coefficients given in Table 4.1 or Table 4.2, δk = k′−k, and δn = n′−n.
It is shown in [108] that, in FBMC/OQAM, we have

∑
p,q |Γp,q|2 = 2 where Γp,q are the

coefficients given in Table 2.2 (or Table 2.1). Hence, the ISI variance in conventional FBMC
(FBMC/OQAM) for both prototype filters is

σ́2
ISI =

∑

(p,q) 6=(0,0)

|Γp,q|2

=
∑
p,q

|Γp,q|2 − |Γ0,0|2 = 1. (4.4)

Therefore, in FBMC/OQAM, the power of ISI has the same value as the transmitted data
variance. Whereas, the ISI variance in the proposed FBMC/QAM system, using PHYDYAS
filter, is given by

σ2
ISI =

∑

(p,q) 6=(0,0)

|Γp,2q|2

=
∑
p,q

|Γp,2q|2 − 1 = 0.1771. (4.5)
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Hence, thanks to the proposed scheme we have reduced the ISI power to 17.7%. If the
IOTA filter is used, we can show that the inherent interference variance in FBMC/QAM
is σ2

ISI = 0.3956. We remark that the variance of the interference when using IOTA filter
is more than twice the interference variance when using PHYDYAS filter. Therefore, it is
natural to expect smaller values of SNR0 in the case of IOTA compared to the PHYDYAS
case. Consequently, the error propagation effect begins to occur in the IOTA case before it
appears in the case where PHYDYAS filter is used.

4.2 Iterative interference cancelation in FBMC/QAM

In FBMC/QAM case, we opted to use MMSE equalizer as the tentative detector, and the
main detector is a simple ML one. Hence, MMSE equalizer provides tentative estimations
of the data vectors sk,n. Then, basing on these tentative estimates, the interference canceler
calculates an estimation of the the whole interference vector that should be removed from
the received vector rk,n. It is worth pointing out that the performance of MMSE equalizer
in the case of FBMC/QAM is significantly depending on the interference variance because
both useful and interference signals (sk,n and Ik,n) are complex-valued. We nominate this
receiver by IIC-ML (Iterative Interference Cancelation). Fig. 4.2 depicts the principal blocks
of the proposed IIC-ML receiver.
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Figure 4.2: Block scheme of the IIC-ML receiver

In the following, we provide simulation results of the proposed FBMC/QAM scheme
compared to OFDM and also to FBMC/OQAM. The number of subcarriers is set to
M = 512. According to the IEEE 802.16e standard [104], the CP duration for OFDM
is set to ∆ = M

8 = 64. We assume perfect channel knowledge at the receiver side, and we
use the Veh-A channel model [97] to generate the channels. The complex data symbols are
QPSK modulated for OFDM and the proposed FBMC/QAM. However, since the conven-
tional FBMC uses OQAM modulation, each transmitted symbol, on each T/2, is 2-PAM
modulated. The system performance is assessed in terms of BER as function of the SNR.
For FBMC/OQAM and FBMC/QAM, we define the SNR as

SNR =
Ntσ

2
s

σ2
,

where σ2
s is the signal variance on each transmit antenna, and σ2 is the noise variance on

each receive antenna. However, for OFDM, the expression of the SNR is defined so that it
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takes into account the SNR loss due to the CP:

SNR =
M + ∆

M

Ntσ
2
s

σ2
.

Before considering MIMO systems, we will first test the proposed receiver in the SISO
case. The tentative detector in this case is the simple one tap ZF equalizer. Since ZF
and ML have the same BER performance, it is also worth replacing the ML detector by
the linear ZF equalizer. In Fig. 4.3 we present the BER performance of the IIC receiver
with IOTA filter for different numbers of iterations. For comparison we also depict the
performance of ZF and the Genie-Aided one. The "Genie-Aided" performance is defined
as the performance obtained by assuming a perfect interference estimation, i.e the exact
transmitted symbols are involved to estimate the interference. According to the simulation
results presented in the figure, the performance of IIC receivers with 3, 4 and 5 iterations
provide the same BER performance. Hence, the IIC performance converges from the third
iteration, but the interference is not successfully removed. We notice that the IIC receiver
does not reach the Genie-Aided performance; we can observe an SNR gap of about 5 dB

at BER = 10−2. Therefore, we conclude that the interference cancellation is not effective
in SISO-FBMC/QAM using IOTA filter, and the proposed IIC receiver suffers considerably
from the error propagation. This is explained by the relatively high interference variance
σ2

ISI = 0.3956 in IOTA case.
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Figure 4.3: Performance of IC receiver with FBMC/QAM system using IOTA filter in SISO
system

Fig. 4.4 concerns the case where PHYDYAS filter is used. In this case, we notice that
the performance of IIC receiver converges at the second iteration since IIC receivers with
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2 and 3 iterations exhibit the same BER performance. Moreover, we remark that with one
iteration we obtain almost the same performance as obtained with 2 or 3 iterations. That
means that we can be satisfied with only one iteration in order to limit the computational
complexity. Further, we notice that the SNR gap between the IIC performance and the
Genie-Aided one is small enough. We observe an SNR gap of about 0.5 dB in the whole
considered SNR region. It is also worth pointing out the impact of the prototype filter
choice on the BER performance of the ZF equalizer in FBMC/QAM; according to fig. 4.3
and Fig. 4.4 we remark that the ZF performance with IOTA filter is worse than the one
obtained with PHYDYAS. This is due to the difference of in interference variance values for
each case (namely σ2

ISI ≈ 0.18 for PHYDYAS, σ2
ISI ≈ 0.40 for IOTA).
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Figure 4.4: Performance of IC receiver in FBMC/QAM system using PHYDYAS filter in
SISO system

Regarding MIMO, we have considered the 2 × 2 spatial multiplexing scheme. The
Rayleigh spatial sub-channels are spatially non-correlated. Fig. 4.5 depicts the obtained
BER performance of the proposed FBMC/QAM using PHYDYAS filter with MMSE equal-
izer, which is now our tentative detector. We also show in this figure the performance
obtained using IIC-ML for different values of iterations and compare them to the optimum
performance obtained with the Genie-Aided. We notice that increasing the number of it-
erations of IIC-ML improves the BER performance and almost converges to the optimum
one after 5 iterations, i.e. there is practically no improvement beyond 5 iterations. Hence,
IIC-ML receiver performs correctly with 5 iterations. However, as in the SISO case, we
observe a slight SNR loss less than 0.5 dB compared to the Genie-Aided performance.

In Fig. 4.6 we compare the performance of IIC-ML in FBMC/QAM with the Rec-ML
one in FBMC/OQAM using -for both of them- the PHYDYAS filter. We also show the
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Figure 4.5: Performance of IIC-ML receiver in FBMC/QAM system using PHYDYAS filter
for 2× 2 spatial multiplexing
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Figure 4.6: Performance comparison between Rec-ML in FBMC/OQAM and IIC-ML in
FBMC/QAM using PHYDYAS filter in 2× 2 SM
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BER performance of the OFDM using ML detector. For FBMC/QAM, we present only the
performance of the MMSE equalizer (tentative detector) and the performance of the IIC-
ML after 5 iterations. As for classical FBMC, we show the performance of MMSE and the
performance of Rec-ML. First of all, one can notice that MMSE equalizer for FBMC/QAM
exhibits worse BER performance compared to FBMC/OQAM. This is explained by the fact
that the inherent ISI term in FBMC/QAM is complex as the transmitted data symbols,
whereas in FBMC the interference terms are pure imaginary and the data symbols are real-
valued (real orthogonality). However, the situation is different with IIC-ML and Rec-ML
receivers, we clearly notice that Rec-ML with conventional FBMC suffers from the error
propagation effect and the BER performance converges to a suboptimal one, whereas the
ISI cancellation is effective with IIC-ML in FBMC/QAM system, where we obtain almost
the same performance as OFDM-ML.
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Figure 4.7: Performance of IIC-ML receiver with FBMC/QAM system using IOTA filter
for 2× 2 spatial multiplexing

When IOTA filter is used, we notice in Fig 4.7 that the BER performance of the IIC-
ML receiver does not converge to the optimum performance. That is, the interference
cancellation is not effective and the receiver suffers from error propagations. This is due
to the high value of the interference variance which is equal to σ2

ISI = 0.3956. We observe
that the IIC-ML performance converges starting from the fifth iteration. IIC-ML receivers
with 5 to 8 iterations exhibit the same BER performance. We can note an SNR loss for
the IIC-ML performance with respect to the optimum one of about 7 dB at BER = 10−2.
Therefore, the proposed IIC-ML receiver can not be performed in FBMC/QAM using IOTA
prototype filter.
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4.3 PaIC/Viterbi receivers in FBMC/QAM

Regarding PaIC/Viterbi receivers, only a part of the interference is concerned by the cancel-
lation and the main detector uses the Viterbi algorithm. The main principle of the receiver
remains the same as for conventional FBMC presented in Section 3.4. However, the config-
uration of the PaIC/Viterbi receiver has to be adapted to the new FBMC/QAM context.
Indeed, we have seen that the function f0 that matches the Viterbi detector must contain
the largest coefficients Γ́p,q. According to the transmultiplexer impulse responses depicted
in Table 4.1 and Table 4.2, the three largest coefficients ({1,±0.239j} for PHYDYAS, and
{1,±0.4411j} for IOTA) in each table are aligned with the direction of the frequency axis.
Therefore, we can select the following three functions f

(i)
0 , i = 1, 2, 3 that determine the

Viterbi target responses:

f
(1)
0 (sk,n) = sk,n, (4.6)

f
(2)
0 (sk,n, sk−1,n) = sk−1,n + Γ́−1,0 × sk,n−1, (4.7)

and

f
(3)
0 (sk+1,n, sk,n, sk−1,n) = Γ́1,0sk+1,n + sk,n + Γ́−1,0sk−1,n, (4.8)

where f
(1)
0 obviously corresponds to the IIC-ML receiver where the whole interference can-

cellation is performed. Hence, the advantage for PaIC/Viterbi receivers in FBMC/QAM
lies in the fact that the Viterbi algorithms are performed in the frequency axis direction.
Whereas in FBMC/OQAM they are performed in the time axis direction. Consequently,
from an implementation point of view, the PaIC/Viterbi receivers are less complicated
for implementation in FBMC/QAM than in the conventional FBMC, because only one
Viterbi algorithm has to be performed for each one received multicarrier symbol, whereas in
FBMC/OQAM we need to perform a Viterbi detector simultaneously for each subcarrier.

We have seen in section 3.4 that the performance of PaIC/Viterbi receivers depend on
the power of the residual ISI which is concerned by the interference cancellation, and also
depend on the values of the spectrum distances d0(ε) given by (3.71). To calculate the values
of d0(ε), we need first to determine the normalized autocovariance matrix of the noise R.
Since the Viterbi algorithm is performed in the direction of the frequency axis, the matrix
R is given this time by:

R =




1 Γ́1,0 Γ́2,0 · · · Γ́M−1,0

Γ́−1,0 1 Γ́1,0 · · · Γ́M−2,0

Γ́−2,0 Γ́−1,0 1 · · · Γ́M−3,0

...
...

...
. . .

...
Γ́1−M,0 Γ́2−M,0 Γ́3−M,0 · · · 1




M×M

(4.9)

where M is the number of subcarrier. Then, the values of d0(ε) can be calculated for each
single error event ε and for each one of the chosen receiver configurations (according to
f

(i)
0 , i = 1, 2, 3). We remind that the error events are classified according to their spectrum
distance d0(ε). The error events corresponding to the smallest d0(ε) are called first-order
error events, and those corresponding to the second smallest d0(ε) are called second-order
error events. Let us denote by ε1 and ε2 the first and second order error events, respectively.
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We also define w(ε) as the number of error positions in the error event ε. Table 4.3 and
Table 4.4 give the different values of d0(ε) of the first and second order error events for each
receiver configuration, respectively for PHYDYAS and IOTA filter. We also show in the
tables the corresponding power of the residual interference (σ2

RISI) and the number of error
positions (w(ε)) within the first and second error events.

Table 4.3: Spectrum distances and RISI power using PHYDYAS filter

First Second Third
Configuration (f (1)

0 ) Configuration (f (2)
0 ) Configuration (f (3)

0 )
First-order distance 2 1.9534 1.9231
Second-order distance 2.5407 2.6974 2.3526

w(ε1) 1 1 1
w(ε2) 2 2 2

Power of the RISI 0.1771 0.1198 0.0626

Table 4.4: Spectrum distances and RISI power using IOTA filter

First Second Third
Configuration (f (1)

0 ) Configuration (f (2)
0 ) Configuration (f (3)

0 )
First-order distance 2 1.8985 1.7833
Second-order distance 2.3561 2.5395 1.7892

w(ε1) 1 1 3
w(ε2) 2 2 4

Power of the RISI 0.3956 0.2010 0.0065

First, we notice that, in the third configuration using IOTA filter, the values of the
two smallest distances are practically the same. Moreover, the first and second order error
events contain respectively 3 and 4 error positions (w(ε1) = 3 and w(ε2) = 4 ), whereas
in the other cases they only contain 1 and 2 errors respectively. Consequently, even if the
residual interference is perfectly removed, the BER performance would be poor because the
most likely error events are those that contain 3 or 4 errors. We can observe in Fig. 4.8 that
PaIC/Viterbi-3 receiver with IOTA filter suffers from an SNR loss of about 1.2 dB with
respect to OFDM-ML. This SNR loss is due to the errors caused by the Viterbi algorithm
it-self. The effect of erroneous tentative decisions are practically negligible because the
variance of the residual interference is very small (σ2

RISI ≈ 0.007). This is why the BER
performance of PaIC/Viterbi-3 converges almost from the first iteration. In fact, in this
situation the tentative detector (MMSE equalizer) is not useful and can be withdrawn.

In the case where PHYDYAS filter is used, we notice, in Fig. 4.9, that the PaIC/Viterbi-3
performance rapidly converges to the OFDM performance. Only two iterations are needed
to reach acceptable BER-performance. This is true because the conditions of effective
interference cancellation are fulfilled, namely the RISI power is sufficiently small, and the
first-order error events are separated enough from the other error events by their spectrum
distance.
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Figure 4.8: BER performance of the PaIC/Viterbi-3 receiver using FBMC/QAMmodulation
and IOTA filter.
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Figure 4.9: BER performance of the PaIC/Viterbi-3 receiver using FBMC/QAMmodulation
and PHYDYAS filter.



92 Chapter 4 Interference cancellation in FBMC/QAM

6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

MMSE
PaIC/Viterbi−2 iter=1
PaIC/Viterbi−2 iter=2
PaIC/Viterbi−2 iter=3
PaIC/Viterbi−2 iter=4
OFDM−ML (L

CP
 = 64)

Figure 4.10: BER performance of the PaIC/Viterbi-2 receiver using FBMC/QAM modula-
tion and IOTA filter.

As for the PaIC/Viterbi-2 receiver, we can notice in Fig. 4.10 that with IOTA filter
the BER performance does not reach the OFDM one. After 4 iterations we obtain an SNR
loss with respect to OFDM of about 2.25 dB at BER = 10−2. Hence, PaIC/Viterbi-2 with
IOTA filter suffers from error propagation and the interference cancellation is not effective.
This performance limitation is explained by the fact that the residual interference variance is
not sufficiently small; according to Table 4.4 we have σ2

RISI ≈ 0.2. While in the case where
PHYDYAS filter is used, the variance of the residual interference is smaller as shown in
Table 4.3; we have σ2

RISI ≈ 0.12. According to the simulation results presented in Fig. 4.11
where PaIC/Viterbi-2 with PHYDYAS filter is considered, the RISI power is small enough
that the interference is almost completely removed. We can consider that with 3 iterations,
we obtain acceptable BER-performance. We can also observe the effect of the RISI by
comparing the BER-performance of the MMSE equalizer in both cases where PHYDYAS or
IOTA filter is used. We notice in Fig. 4.10 that the MMSE equalizer reaches the BER value
of 10−1 at SNR = 15.5 dB, whereas in Fig. 4.11 we have BER = 10−1 at SNR = 9.5 dB.
This is due to the fact that the BER floor in the IOTA case is much higher than the BER
floor in the case where PHYDYAS filter is used.

4.4 Conclusion

In this chapter, we have proposed a modification in the FBMC modulator/demodulator
in order to reduce the variance of the intrinsic interference. Indeed, we opted to transmit
QAM (complex-valued) symbols on each single period (FBMC/QAM) instead of transmit-
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Figure 4.11: BER performance of the PaIC/Viterbi-2 receiver using FBMC/QAM modula-
tion and PHYDYAS filter.

ting OQAM (real-valued) symbols on each half period. Thus, the inherent interference is
reduced, but the real orthogonality condition is no longer satisfied. Therefore, an inter-
ference cancellation procedure is still required. we have seen that the ISI cancellation is
effective only under some strict conditions. One of them is that the ISI power must be
sufficiently small and less than a certain threshold. Thanks to the proposed FBMC/QAM,
the intrinsic interference power is reduced to 18% when PHYDYAS filter is used, and to
40% when IOTA filter is considered. We have shown by simulations that the performance
of the IIC-ML receiver using PHYDYAS filter converges to within 0.5dB to the "Genie-
Aided" performance after 5 iterations. However, when using IOTA filter, the interference
cancellation is not effective due to the relatively high interference variance (σ2

ISI = 0.3956),
and IIC-ML performance is far from the optimum. We obtain an SNR loss of about 7 dB

at BER = 10−2 in a 2 × 2 SM system. We have also analyzed and tested PaIC/Viterbi
receivers in FBMC/QAM. We pointed out the advantage of performing the PaIC/Viterbi in
FBMC/QAM compared to its application in FBMC/OQAM. Indeed, from an implementa-
tion complexity point of view, performing the Viterbi algorithm over the frequency axis is
less complicated than over the time axis. As for the BER performance, simulation results
showed that poor performance is obtained when IOTA filter is used, whereas with PHY-
DYAS filter the interference cancellation is effective and the BER-performance practically
reaches the same OFDM performance.
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Chapter 5

A novel filter-bank multicarrier
proposal

We have seen that when combining FBMC with MIMO techniques such as STBC or SM-
MLD, the presence of the interference term uk,n (which can be seen as a 2D-ISI) causes
problems and makes the detection process from rk,n very hard if not impossible. In this
chapter, we shall propose a new FBMC scheme and transmission strategy in order to get
rid of the inherent interference term. This proposed scheme (called FFT-FBMC [110,111])
transforms the FBMC system into an equivalent system formulated as OFDM regardless of
some residual interference. Thus, any OFDM transmission technique can straightforwardly
be performed to the proposed FBMC scheme with a corresponding complexity growth com-
pared to the classical FBMC. First, we will develop the FFT-FBMC in the case of single-
input single-output (SISO) configuration. Then, we extend its application to SM-MIMO
configuration with MLD and Alamouti coding scheme. Simulation results show that FFT-
FBMC can almost reach the OFDM performance, but it remains slightly outperformed by
OFDM.

5.1 The proposed FFT-FBMC scheme

5.1.1 System model

The transmultiplexer impulse response is derived from the received signal assuming null
data except at one time-frequency position (k0, n0) where a unit impulse is applied. Then,

95
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we have:

rk′,n′ =
+∞∑

m=−∞
gk0,n0 [m]g∗k′,n′ [m]

=
+∞∑

m=−∞
g[m]g[m−∆nM/2]ej 2π

M ∆k( D
2 −m) × ejπ(∆k+k0)∆ne−j π

2 (∆k+∆n), (5.1)

where ∆n = n′ − n0 and ∆k = k′ − k0. We notice that the impulse response of the
transmultiplexer depends on k0. Indeed, the sign of some impulse response coefficients
depends on the parity of k0. In this chapter, we essentially exploit this property.

Let us denote the transmultiplexer impulse response obtained in equation (5.1) by
f

(k0)
∆k (∆n). The prototype filters are designed in a way that they provide a well-localized
spectrum and spread over only a few adjacent subcarriers. The most important interference
comes form the same considered subcarrier and immediate neighboring ones. Without loss
of generality and for the sake of simplicity, we consider only the interference coming from
adjacent subcarriers. Hence, we can split (5.1) into three terms and write

rk,n
∼=

∆∑

i=−∆

f
(k)
0 (i)ak,n−i

︸ ︷︷ ︸
tk

+
∆∑

i=−∆

f
(k−1)
1 (i)ak−1,n−i

︸ ︷︷ ︸
tk−1

+
∆∑

i=−∆

f
(k+1)
−1 (i)ak+1,n−i

︸ ︷︷ ︸
tk+1

, (5.2)

where ak,n are the inputs of the FBMC modulator on the kth subcarrier and the nth
time instant, f

(k)
j (i) are the coefficients of the transmultiplexer impulse response when the

impulse is applied on the kth subcarrier, ∆ = 2K − 1 is the one side maximum response
spread in time domain. Hence, i /∈ [−∆,∆] ⇒ f

(k)
j (i) = 0.

Now, we consider each term ti in (5.2) as a point-to-point multipath channel. So, as
in conventional OFDM, we can overcome ISI by performing an IDFT on blocks of length
N ≥ 2∆ at the transmitter side, and inserting a CP of sufficient length L ≥ 2∆. That
is, ak,n′ is now considered as the IDFT outputs. The data symbols applied to IDFT input
are denoted by dk,n. Therefore, unlike in the conventional FBMC, the symbols ak,n′ , which
are the FBMC inputs, are no longer real since they are the IDFT output samples. At the
receiver side, the first L samples of each symbol block are discarded. Taking the DFT of
the remaining block, one can write

Yk,n
∼= F

(k)
0,ndk,n︸ ︷︷ ︸

Tk

+F
(k−1)
1,n dk−1,n︸ ︷︷ ︸

Tk−1

+F
(k+1)
−1,n dk+1,n︸ ︷︷ ︸

Tk+1

. (5.3)

where

Yk,n =
1√
N

N−1∑

n′=0

rk,n′e
−j2πnn′

N ,

dk,n =
1√
N

N−1∑

n′=0

ak,n′e
−j2πnn′

N ,
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and

F
(k)
j,n =

N
2 −1∑

n′=−N
2

f
(k)
j (n′)e

−j2πnn′
N .

The sum for F is going from−N/2 to N/2−1 because, according to (5.2), the function f
(k)
j (i)

is considered as an acausal FIR filter. Indeed, if we consider, for example, only the first term
tk of (5.2), we have Yk,n = 1√

N

∑N−1
n′=0 rk,n′e

−j 2πnn′
N , where rk,n′ =

∑∆
i=−∆ f

(k)
0 (i)ak,n′−i.

Hence,

Yk,n =
1√
N

∆∑

i=−∆

f
(k)
0 (i)

N−1∑

n′=0

ak,n′−ie
−j 2πnn′

N . (5.4)

Since ak,n are the IDFT outputs of dk,n, we have ak,n = 1√
N

∑N−1
n′′=0 dk,n′′e

j 2πnn′′
N . Therefore,

we can write

Yk,n =
1
N

∆∑

i=−∆

f
(k)
0 (i)

N−1∑

n′=0

N−1∑

n′′=0

dk,n′′e
j

2π(n′−i)n′′
N e−j 2πnn′

N

=
1
N

∆∑

i=−∆

f
(k)
0 (i)

N−1∑

n′′=0

dk,n′′e
−j 2πin′′

N

N−1∑

n′=0

ej
2π(n′′−n)n′

N . (5.5)

We have
∑N−1

n′=0 ej
2π(n′′−n)n′

N = Nδn,n′′ . Then,

Yk,n =
∆∑

i=−∆

f
(k)
0 (i)e−j 2πin

N

︸ ︷︷ ︸
=F

(k)
0,n

dk,n. (5.6)

Since N
2 > ∆ and f

(k)
0 (i) = 0 for i /∈ [−∆,∆], then we can finally write:

F
(k)
0,n =

N
2 −1∑

i=−N
2

f
(k)
0 (i)e−j 2πin

N . (5.7)

Fig. 5.1 depicts the proposed FFT-FBMC scheme. After applying the IDFT and DFT
on each subcarrier, respectively, at the transmitter and receiver sides, the interference com-
ing from the same considered subcarrier is transformed (assuming that the CP length L is
sufficiently large) into a single coefficient F

(k)
0,n which is multiplied by the data symbol dk,n.

Also, the interference coming from both adjacent subcarriers is transformed into two coef-
ficients F

(k−1)
1,n and F

(k+1)
−1,n which are, respectively, multiplied by dk−1,n and dk+1,n. Hence,

the 2-D intersymbol interference in the time-frequency domain is transformed into a 1-D in-
tercarrier interference. That is, the data symbol dk,n interferes only with dk−1,n and dk+1,n

(see equation (5.3)).

5.1.2 Transmission strategy

Nevertheless, there is still intercarrier interference. Further, each received data symbol dk,n

is multiplied by a coefficient F
(k)
0,n which deserves to be analyzed. According to (5.1), we
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Figure 5.1: The proposed FFT-FBMC scheme.

have

f
(k)
0 (∆n) =

+∞∑
m=−∞

g[m]g[m−∆nM/2]e−j π
2 ∆nejπk∆n. (5.8)

As a consequence of the orthogonality condition (equation (2.103)), the coefficients f
(k)
0 (∆n)

are zeros when ∆n is a nonzero even integer. Moreover, one can notice from (5.8) that
f

(k)
0 (−∆n) = f

(k)
0 (∆n)∗. Hence, we can easily show that F

(k)
0,n can be written, for n =

0, ..., N − 1, as

F
(k)
0,n = 1− 2j

N
4 −1∑

n′=0

f
(k)
0 (2n′ + 1) sin

(
2πn

N
(2n′ + 1)

)
. (5.9)

Therefore, we can derive that

F
(k)
0,n − 1 = 1− F

(k)
0,|n+N/2|N , n = 0, ..., N − 1, (5.10)

where |.|N stands for modulo operation by N . That is, one half of the symbols in each sub-
carrier are amplified (when |F (k)

0,n | > 1), but the rest are deeply faded (when |F (k)
0,n | < 1); and

this yields a severe performance degradation. The solution that we propose is to transmit
no data on the faded positions and double the modulation order, by transmitting complex
symbols instead of real ones, on the remaining positions to keep the same throughput.

As aforementioned, f
(k)
0 (∆n) depends on the parity of the subcarrier index k. Let us

consider two adjacent subcarriers k and k + 1, we have

f
(k+1)
0 (∆n) =

∑
m

g[m]g[m−∆nM/2]e−j π
2 ∆nejπk∆nejπ∆n

= f
(k)
0 (∆n)ejπ∆n. (5.11)

Taking the DFT of both members of this equation, we find that

F
(k+1)
0,n = F

(k)
0,|n+N/2|N .

Therefore, F
(k+1)
0,n is the circularly shifted version of F

(k)
0,n by N

2 samples. Substituting the
latter into (5.10), we obtain

F
(k)
0,n − 1 = 1− F

(k+1)
0,n .
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Hence, F
(k+1)
0,n is also the reflection of F

(k)
0,n in the horizontal axis F

(k)
0,n = 1. This means that

when |F (k)
0,n | > 1, we have |F (k+1)

0,n | < 1 and |F (k−1)
0,n | < 1. Fig. 5.2 depicts the curve of F

(k)
0,n

in both cases of even and odd values of k, where the block length is set to N = 32, and the
used prototype filter is the PHYDYAS filter.
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Figure 5.2: The magnitude of F
(k)
0,n as a function of the time index n within a data block,

for even and odd values of k, using PHYDYAS filter.

Hence, when |F (k)
0,n | > 1, we transmit a complex data symbol dk,n in position (k, n) and

we set the positions (k ± 1, n) to zero because |F (k±1)
0,n | < 1, and vice versa. Thus, thanks

to this transmission strategy, illustrated in Fig. 5.3, we also remove the interference terms
Tk−1 and Tk+1 in (5.3) since dk±1,n = 0 when dk,n is nonzero. Then, we can write

Yk,n
∼=





F
(k)
0,ndk,n n ∈ Ω(k)

F
(k−1)
1,n dk−1,n + F

(k+1)
−1,n dk+1,n n /∈ Ω(k)

(5.12)

where Ω(k) denotes the set of time indices where we transmit useful data. Hence, Ω(k) =
{0, 1, ...N

2 − 1} when k is odd, and Ω(k) = {N
2 , ...N − 1} when k is even.

Therefore, at the receiver side, we consider only the positions where n ∈ Ω(k) to recover
the transmitted symbol dk,n. Thus, the equalization becomes easier since the received
symbols are now free of ISI.

In the presence of the radio channel, we assume that the channel is invariant during N

multicarrier symbols, and we can rewrite (5.12), for n ∈ Ω(k), as

Yk,n
∼= hk,nF

(k)
0,ndk,n + Γk,n (5.13)

where Γk,n is the noise term at the output of the demodulator, and hk,n is the channel
coefficient.
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Figure 5.3: Data transmission strategy within a data block

In fact, the block-length N can be adapted to the channel variation. When the channel
is fast fading, we have to choose N small enough to respect the assumption. We can define
Nc = Tc/(M

2 Ts) as the coherence number of multicarrier symbols -by analogy with the
coherence time Tc- where Ts is the sampling period. When N ¿ Nc, we can consider that the
channel is invariant during N FBMC symbols. For example, if M = 512, the velocity v = 60
km/h, the carrier frequency fc = 2.5 GHz, and Ts = 100 ns, then Tc ≈ c/(2fcv) ≈ 3.6
ms i.e. Nc ≈ 140. Hence, it is clear that the channel cannot be invariant during N = 128
FBMC symbols, but we can consider it invariant if N = 16. For pedestrian channels (v ≈ 3
km/h), N can be large up to 128 since Nc ≈ 2800.

5.2 SNR analysis at the demodulator output

According to (5.13), the average SNR at the output of the demodulator can be written as

SNRk,n =
E{|hk,n|2}|F (k)

0,n |2σ2
d

σ2
sE{|Γk,n|2} . (5.14)

where σ2
d denotes the data power, E{.} is the expected value, hk,n is the channel gain and is

assumed to be a complex Gaussian random variable with zero mean and unit variance. σ2
s is

the average signal power at the modulator output used to normalize the transmitted power
to unity. Indeed, the FFT-FBMC modulator affects the transmitted power and σ2

s 6= σ2
d.

First of all, let us evaluate σ2
s .
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5.2.1 Evaluation of the average transmitted power (σ2
s)

From the expression of the transmitted FBMC signal (2.97), we have

σ2
s [m] = E{s[m]s∗[m]}

=
∑

n,n′

M−1∑

k,k′=0

E{ak,na∗k′,n′}g[m− n
M

2
]g[m− n′

M

2
]ejΦ (5.15)

with Φ is a phase term given by

Φ =
2πδk

M
(m− D

2
) +

π

2
(δk + δn)− π(kn− k′n′),

where δk = k − k′ and δn = n − n′. It is obvious that if k′ 6= k, then ak,n and ak′,n′ are
statically independent. That is, E{ak,na∗k′,n′} = 0 for k′ 6= k. Hence, we can simplify (5.15)
as

σ2
s [m] =

M−1∑

k=0

∑

n,n′
E{ak,na∗k,n′}g[m− n

M

2
]g[m− n′

M

2
]ejπ( 1

2−k)δn. (5.16)

Now, let us determine the analytic expression of E{ak,na∗k,n′}. According to the afore-
mentioned transmission strategy, we have

ak,n =





1√
N

∑N
2 −1

l=0 dk,l,pe
j2π nl

N for k odd
1√
N

∑N−1
l= N

2
dk,l,pe

j2π nl
N for k even

∀n ∈ Bp,

where dk,l,p denotes the data dk,l transmitted in the pth block of length N , and Bp is
the indices set of symbols ak,n belonging to the pth block of length N + L, that is, Bp =
{(p− 1)(N + L), ..., p(N + L)− 1} . In a closed form and without loss of generality, we
rewrite the latter expression as

ak,n =
1√
N

N
2 −1∑

l=0

dk,l,pe
j2π nl

N ejπn(k+1), ∀n ∈ Bp.

Hence, we obtain

E{ak,na∗k,n′} =
1
N

N
2 −1∑

l=0

N
2 −1∑

l′=0

E{dk,l,pd
∗
k,l′,p′}ej

2π(nl−n′l′)
N ejπ(k+1)δn, (n, n′) ∈ Bp ×Bp′ .

Since the data symbols dk,l,p are assumed to be statically independent, we have

E{dk,l,pd
∗
k,l′,p′} = σ2

dδl,l′δp,p′ .

Therefore,

E{ak,na∗k,n′} =





σ2
d

N

∑N
2 −1

l=0 ej 2πlδn
N ejπ(k+1)δn, (n, n′) ∈ B2

p

0, elsewhere
(5.17)

Substituting this last expression into (5.16), one can obtain the following equation:

σ2
s [m] = σ2

d

M

N

∑
p

∑

(n,n′)∈B2
p

ej 3π
2 δng[m− n

M

2
]g[m− n′

M

2
]

N
2 −1∑

l=0

ej 2πlδn
N

︸ ︷︷ ︸
A(m,N,L)

. (5.18)



102 Chapter 5 A novel filter-bank multicarrier proposal

We notice that σ2
s [m] depends on m, i.e. the variance σ2

s [m] of the transmitted signal is
time varying. Hence, one may wonder if the advantage of an efficient PSD of the conventional
FBMC/OQAM system is still preserved with this new modulation scheme. Indeed, we will
study the spectrum of the transmitted signal in Section 5.3.

We show in the following that σ2
s [m] is a periodic function with a period of M

2 (N + L).
Therefore, let m′ = m + M

2 (N + L). According to (5.18), we have the following expression:

σ2
s [m′] = σ2

d

M

N

∑
p

∑

(n,n′)∈B2
p

ej 3π
2 δng[m− (n−N − L)

M

2
]g[m− (n′ −N − L)

M

2
]

N
2 −1∑

l=0

ej 2πlδn
N

(5.19)

Let n1 = n−N−L, and n′1 = n′−N−L. When n ∈ Bp = {(p− 1)(N + L), ..., p(N + L)− 1},
then n1 ∈ Bp−1. Since the difference n′1 − n1 also equals δn, then substituting p by p + 1,
σ2

s [m′] can be written as:

σ2
s [m′] = σ2

d

M

N

∑
p

∑

(n1,n′1)∈B2
p

ej 3π
2 δng[m− n1

M

2
]g[m− n′1

M

2
]

N
2 −1∑

l=0

ej 2πlδn
N (5.20)

Hence,

∀m, σ2
s [m +

M

2
(N + L)] = σ2

s [m].

That is, σ2
s [m] is periodic with a period of M

2 (N + L). Fig. 5.4 depicts the curves of
σ2

s [m] obtained analytically using (5.18), and the curves of the signal variance obtained by
simulations for some different values of N and L. We remark that the theoretical curves
match well with the numerical ones, which validates the resulting expression (5.18).

Since the signal variance σ2
s [m] is periodic, then we consider the average output signal

power σ2
s as the mean of σ2

s [m] over one period and write

σ2
s = A(N, L)σ2

d, (5.21)

where A(N, L) is the mean of A(m,N,L) over one period. In Appendix B.1, we show that
σ2

s does not depend on the subcarrier number M . Table 5.1 depicts the values of σ2
s as a

function of N and L for both prototype filters IOTA and PHYDYAS, where σ2
d = 1.

5.2.2 Evaluation of the SNR at the receiver output

We remind the reader that the goal in this section is to evaluate the SNR at the FFT-FBMC
demodulator given by (5.14). Now, let us evaluate |F (k)

0,n |2 and E{|Γk,n|2}. According to
(5.8), we have

F
(k)
0,n =

+∞∑
m=−∞

g[m]

N
2 −1∑

n′=−N
2

g[m− n′
M

2
]ejπn′(k− 1

2 )e−j 2π
N nn′

︸ ︷︷ ︸
G

(k)
m,n

=
+∞∑

m=−∞
g[m]G(k)

m,n. (5.22)
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Figure 5.4: Theoretical and numerical variance curves of the modulator output signal using
PHYDYAS filter

Now, let b[m] be the noise term at the receiver input. Hence, according to (2.111) we
have

γk,n =
+∞∑

m=−∞
b[m]g[m− nM/2]ej 2π

M k( D
2 −m)e−jφk,n .

The noise term Γk,n obtained after performing the FFT operation at the receiver is given
by

Γk,n =
1√
N

N−1∑

n′=0

γk,n′e
−j 2π

N nn′ ,

which yields

Γk,n =
ej πkD

M√
N

+∞∑
m=−∞

b[m]e−j 2π
M kmǴ(k)

m,n,

where

Ǵ(k)
m,n =

N−1∑

n′=0

g[m− n′
M

2
]e−jφk,n′ e−j 2π

N nn′ .

After processing, we can easily find that

Ǵ(k)
m,n = G(k)

m,nej π
2 (Nk−2n−k−N

2 ).

where G
(k)
m,n is defined in Equation (5.22).
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Table 5.1: The values of the average output signal power σ2
s depending on the block length

N and the guard interval L for both used prototype filters IOTA and PHYDYAS.

PHYDYAS IOTA
`````````````̀Values of N

Values of L 0 2 4 0 2 4

16 1.6856 1.6911 1.6955 1.5253 1.5293 1.5325
32 1.7194 1.7208 1.7221 1.5492 1.5503 1.5512
64 1.7342 1.7346 1.7350 1.5598 1.5601 1.5603
128 1.7411 1.7412 1.7413 1.5647 1.5648 1.5649

Now, let us evaluate the variance of the noise term Γk,n, one can write

E{|Γk,n|2} =
1
N

E

{∣∣∣∣
+∞∑

m=−∞
b[m]Ǵ(k)

m,ne−j 2π
M km

∣∣∣∣
2
}

=
1
N

+∞∑
m=−∞

|Ǵ(k)
m,n|2E{|b[m]|2}

=
σ2

0

N

+∞∑
m=−∞

|G(k)
m,n|2, (5.23)

where σ2
0 denotes the noise power at the demodulator input. Finally, according to (5.21),

(5.22) and (5.23), one can rewrite (5.14) as

SNRk,n =
N

A(N, L)
×

∣∣ ∑+∞
m=−∞ g[m]G(k)

m,n

∣∣2
∑+∞

m=−∞ |G(k)
m,n|2

SNR0, (5.24)

with SNR0 = σ2
d/σ2

0 is the average SNR at the receiver input before the power normaliza-
tion.

5.2.3 Equivalent average SNR

Since the SNR depends on the time index n, then the symbol-error rate (SER) also depends
on the time index n. Let us denote by Pn, the SER at time index n, with n ∈ Ω(k). Hence,
the overall symbol-error rate Pe is

Pe =
2
N

∑

n∈Ω(k)

Pn. (5.25)

In Rayleigh fading channel, the relationship between Pn and SNRk,n depends on the
symbol modulation type and is approximated in the limit of high SNR by [13]

Pn ≈ α

2β × SNRk,n
, (5.26)

where α and β are constants that depend on the modulation type. Then, we define an
equivalent SNR SNReq that provides, according to (5.26), the same SER as the overall Pe.
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Therefore, from equations (5.26) and (5.25), one can write

α

2β × SNReq
≈ 2

N

∑

n∈Ω(k)

α

2β × SNRk,n
,

which yields

SNReq ≈ N

2

( ∑

n∈Ω(k)

1
SNRk,n

)−1

. (5.27)

Substituting SNRk,n by its expression given in (5.24), the equation above becomes

SNReq ≈ N2

2A(N, L)

( ∑

n∈Ω(k)

∑+∞
m=−∞ |G(k)

m,n|2∣∣ ∑+∞
m=−∞ g[m]G(k)

m,n

∣∣2
)−1

SNR0. (5.28)

Numerical calculations lead us to draw up Table 5.2, where the values of SNReq

SNR0
are depicted

as a function of N and L for both IOTA and PHYDYAS prototype filters. According to
this table, we notice that there is practically no SNR loss (at worst 0.13 dB). Then, we can
expect that FFT-FBMC exhibits the same performance as OFDM.

Table 5.2: The values of the average SNR gains SNReq

SNR0
for various block lengths N and

guard interval lengths L for both used prototype filters IOTA and PHYDYAS.

PHYDYAS IOTA
`````````````̀Values of N

Values of L 0 2 4 0 2 4

16 1.0040 1.0008 0.9982 1.0051 1.0024 1.0003
32 0.9880 0.9871 0.9864 0.9891 0.9884 0.9878
64 0.9770 0.9768 0.9766 0.9796 0.9794 0.9793
128 0.9709 0.9708 0.9708 0.9745 0.9745 0.9745

5.3 Power spectral density of the transmitted FFT-FBMC
signal

The main advantage of the filter bank techniques is the well-localization of the spectrum
of the transmitted signal. Since and as we have seen, the transmitted signal variance in
FFT-FBMC is not stationary, one may wonder if the spectrum well-localization property is
still preserved. In this section, we will analyze the spectrum of the transmitted signal and
compare it to the conventional FBMC.

Let us consider that only one subcarrier k is activated, then the transmitted signal is:

sk[m] =
∑

n

ak,ngk,n[m]

= ej 2πk
M (m−D/2)

∑
n

ak,nejφk,n

︸ ︷︷ ︸
bk,n

g[m− nM/2] (5.29)
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The Power Spectral Density (PSD) of the signal s[m], disregarding the frequency shift term
ej 2πk

M (m−D/2), is given by [112]:

S(f) ∼ |G(f)|2A
(

M

2
f

)
, (5.30)

where A
(
ν = M

2 f
)
is the PSD of bk,n, G(f) is the Fourier transform of the prototype filter

g[m], and f is the normalized frequency with respect to the sampling frequency fs. Since
bk,n is a discrete random process, its PSD is derived by calculating the Fourier transform of
its autocorrelation function. Making use of (5.17), the autocorrelation of bk,n is:

E{bk,nb∗k,n−δn} = E{ak,na∗k,n−δn}ejφk,n−jφk,n−δn

=





σ2
d

N

∑N
2 −1

l=0 ej 2πlδn
N ej 3π

2 δn (n, n− δn) ∈ B2
p

0 otherwise
(5.31)

We recall that Bp = {(p− 1)(N + L), ..., p(N + L)− 1}, with p ∈ Z. Therefore, bk,n is a
non-stationary process as it depends on the time index ”n”. Then, we define the time-
varying spectrum of bk,n as [113]:

An(ν) =
+∞∑

δn=−∞
E{bk,nb∗k,n−δn}e−j2πνδn. (5.32)

According to the expression of E{bk,nb∗k,n−δn} in (5.31), we can write:

An(ν) =
n−(p−1)(N+L)∑

δn=n+1−p(N+L)

σ2
d

N

N
2 −1∑

l=0

ej 2πlδn
N ej 3π

2 δne−j2πνδn, n ∈ Bp

=
σ2

d

N

N
2 −1∑

l=0

n−(p−1)(N+L)∑

δn=n+1−p(N+L)

ej( 2πl
N + 3π

2 −2πν)δn (5.33)

We can easily show that An(ν) is periodic with respect to n with a period of N + L. Then,
the PSD A(ν) is calculated by averaging An(ν) with respect to n over one single period [113]:

A(ν) =
1

N + L

∑

n∈B1

An(ν) =
1

N + L

N+L−1∑
n=0

An(ν). (5.34)

For the sake of writing simplicity, let us denote by Xl(ν) = 2πl
N + 3π

2 − 2πν. We have:

n−(p−1)(N+L)∑

δn=n+1−p(N+L)

ejXl(ν)δn =





1−ejXl(ν)(N+L)

1−ejXl(ν) ejXl(ν)(n+1−p(N+L)) Xl(ν)
2π /∈ Z

N + L Xl(ν)
2π ∈ Z

(5.35)

Therefore, we can distinguish two cases for the expressions of An(ν) and A(ν) according to
the frequency values ν:

• Xl(ν)
2π /∈ Z, ∀l ∈ {0, ..., N

2 − 1}: in this case, we have:

An(ν) =
σ2

d

N

N
2 −1∑

l=0

1− ejXl(ν)(N+L)

1− ejXl(ν)
ejXl(ν)(n+1−p(N+L)). (5.36)
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Then,

A(ν) =
σ2

d

N(N + L)

N
2 −1∑

l=0

1− ejXl(ν)(N+L)

1− ejXl(ν)

N+L−1∑
n=0

ejXl(ν)(n+1−N−L)

=
σ2

d

N(N + L)

N
2 −1∑

l=0

(
1− ejXl(ν)(N+L)

1− ejXl(ν)

)2

ejXl(ν)(1−N−L)

=
σ2

d

N(N + L)

N
2 −1∑

l=0

sin
(

Xl(ν)(N+L)
2

)2

sin
(

Xl(ν)
2

)2 . (5.37)

• ∃l′ ∈ {0, ..., N
2 −1}, Xl′ (ν)

2π ∈ Z: this second case yields that ν = l′
N + 3

4 + q with q ∈ Z.
As l′ ∈ {0, ..., N

2 − 1}, then there is at most one single pair (l′, q) that satisfies this
condition for a given value of ν. Therefore, in this case, we can write:

An(ν) =
(N + L)σ2

d

N
+

σ2
d

N

N
2 −1∑
l=0
l 6=l′

1− ejXl(ν)(N+L)

1− ejXl(ν)
ejXl(ν)(n+1−p(N+L)). (5.38)

Then, we obtain:

A(ν) =
(N + L)σ2

d

N
+

σ2
d

N(N + L)

N
2 −1∑
l=0
l 6=l′

sin
(

Xl(ν)(N+L)
2

)2

sin
(

Xl(ν)
2

)2 . (5.39)

Therefore, according to the values of ν, the PSD of bk,n is given by either (5.37) or (5.39).
From these both expressions, we can conclude that A(ν) is periodic with a period of 1, which
fits well with the sampling theory. Fig. 5.5 depicts the curve of A(ν).

As for the PSD of the FFT-FBMC transmitted data, we show in Fig. 5.6 the spectrum
-given by (5.30)- occupied by one subcarrier, and compare it to the spectrum of the conven-
tional FBMC given by |G(f)|2. In this figure, we have considered the PHYDYAS prototype
filter. We observe that the FFT-FBMC spectrum is more selective than the FBMC one,
especially in the adjacent subbands. Indeed, the spectrum of FBMC and FFT-FBMC sig-
nals have almost the same curves in the even subbands because of the periodicity of A(ν).
In FBMC, we consider that a given subcarrier interfere only the two direct adjacent ones.
Whereas in FFT-FBMC the interference in adjacent subbands is considerably reduced. In
Fig. 5.7 we depict the FFT-FBMC spectrum for two adjacent subcarriers. We have about
98.83% of the FFT-FBMC transmitted energy in the considered subband, whereas, in con-
ventional FBMC, we have 87.38% of the signal energy in the considered subband. We give
in Table 5.3 the interference power in the first three adjacent subcarriers for FBMC and
FFT-FBMC signals. The values of the interference power for the FFT-FBMC system in
this table are obtained with N = 64 and L = 4.

5.4 Guard interval reduction

The main drawback of the proposed scheme is the insertion of the CP in each subcarrier.
Despite that the FBMC impulse response is spread over 2∆ = 4K − 2 time periods, we



108 Chapter 5 A novel filter-bank multicarrier proposal

−0.5 0 0.5
−25

−20

−15

−10

−5

0

5

ν

A
(ν

) 
(d

B
)

Figure 5.5: PSD curve A(ν) with N = 64 and L = 4.
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using PHYDYAS filter.
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Table 5.3: Values of the interference power

FFT-FBMC FBMC
k = 1 1% −20 dB 6.31% −12 dB

k = 2 3.56e-5% −64.48 dB 3.14e-5% −65 dB

k = 3 1.46e-8% −98.37 dB 9.33e-7% −80.30 dB
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Figure 5.7: FFT-FBMC PSD curves for two adjacent subcarriers.
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can reduce the CP in order to decrease the spectral efficiency loss but at the expense of
performance degradation. In fact, reducing the CP causes ISI and interblock interference.
The performance clearly depends on the ratio between the signal and the interference power
(SIR).

Since the values of f
(k)
0 (∆n) are known (they depend only on the prototype filter), we

can evaluate the SIR for each value of n ∈ Ω(k) and for the different values of L. Equation
(5.3) shows that the received signal can be considered as the sum of three terms. First,
let us consider only the first term Tk. The same developments can be applied to the other
terms.

Let us denote by ak = [ak,0, ..., ak,N−1]T the N-point IFFT output at the kth subcarrier
which is expressed by

ak = WHdk,

where dk = [dk,0, ..., dk,N−1]T , and WH is the N-point IFFT matrix. According to the
transmission strategy, the data vector dk contains zero elements in either its first or second
half depending on the parity of k. When the CP length is shorter than the maximum spread
(2∆), interference terms are added to the term Tk. Let us consider a received block, after
CP removal, at the kth subcarrier yk = [yk,0, ..., yk,N−1]T , we can write [114]

yk = F0,kak + r1 + r2 + r3, (5.40)

where r1 = −Aak, r2 = B1a+
k and r3 = B2a−k , where a+

k and a−k are respectively the blocks
transmitted previously and subsequently at the same kth subcarrier. F0,k is an N × N

circulant matrix with entries given by

F0,k(p, q) = f
(k)
0

(∣∣∣∣p− q +
N

2

∣∣∣∣
N

− N

2

)
,

for (p, q) ∈ {0, ..., N − 1}2.
B1 = TuPL and B2 = TlP−L, where the upper triangular matrix Tu is given by

Tu(p, q) = f
(k)
0 (p− q + N + L),

with 0 ≤ p ≤ N − 1, p ≤ q ≤ N − 1, and the lower triangular matrix Tl is given by

Tl(p, q) = f
(k)
0 (p− q −N − L),

with 0 ≤ q ≤ N − 1, q ≤ p ≤ N − 1. Matrix A is given by

A = TuP−L + TlPL,

where PL is a permutation matrix that circularly shifts the columns to the left by L positions.
All of B1, B2 and A are sparse matrices, and when L ≥ 2∆, these matrices are zero.

Demodulating yk by taking the N-point FFT, we obtain the output vector

Yk = Wyk.

Replacing B1, B2 and A by their expressions, we obtain

Yk =WF0,kWHdk −WTuP−LWHdk −WTlPLWHdk

+ WTuPLWHd+
k + WTlP−LWHd−k .
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Since the matrix F0,k and the permutation matrices PL and P−L are circulant matrices,
we can write

F0,k = WHF0,kW

and

PL = WHELW,

such that EL and F0,k are diagonal matrices. Hence, the last equation becomes

Yk =F0,kdk −
(
TuE−L + TlEL

)
dk

+ TuELd+
k + TlE−Ld−k , (5.41)

where Tu = WTuWH and Tl = WTlWH . The diagonal elements of F0,k are given by

F0,k(n, n) =

N
2 −1∑

p=−N
2

f
(k)
0 (p)e−j2π np

N ,

and those of EL are given by

EL(n, n) = ej2π nL
N .

Let us denote by D the diagonal matrix which contains the diagonal elements of the term
TuE−L + TlEL in (5.41), and let T = TuE−L + TlEL −D. This last matrix represents
the ISI in the same data vector dk. Thus, we can rewrite (5.41) as

Yk = (F0,k −D)dk −Tdk + TuELd+
k + TlE−Ld−k . (5.42)

The elements of the matrices Tl = WTlWH and Tu = WTuWH are respectively given
by

Tl(m,n) =
1
N

N−1∑
q=0

N−1−q∑
p=0

f
(k)
0 (p− L0)e−j2π mp

N ej2π
(n−m)q

N , (5.43)

Tu(m,n) =
1
N

N−1∑
q=0

q∑
p=0

f
(k)
0 (L0 − p)ej2π mp

N ej2π
(n−m)q

N , (5.44)

where L0 = N + L. According to (5.8), we have f
(k)
0 (p) =

(
f

(k)
0 (−p)

)∗
, ∀p ∈ Z. Hence, we

can easily show that the entries of matrix T can be expressed as

T(m,n) =





2e−jπ n−m
N Re

{
G(m,n)ejπ n−m

N

}
, n 6= m

0, n = m
(5.45)

where

G(m,n) =
1
N

N−1∑
q=0

q∑
p=0

f
(k)
0 (L0 − p)ej2π mp

N ej2π
(n−m)q

N e−j2π nL
N .
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Also, we can show that the diagonal matrix D has as elements

D(n, n) = 2Re {G(n, n)}

=
2
N

Re





L+N∑

p=L+1

(p− L)f (k)
0 (p)e−j2π np

N



 . (5.46)

Until now, we have only considered the first term Tk in (5.3). Regarding the other
terms, we can proceed in the same way. Moreover, let us relax the assumption made in
Section 5.1.1 that considerer only the interference coming from the immediate neighboring
subcarriers. Therefore, we consider all the possible terms Tk+l with |l| = 0, ...,∆′, where ∆′

is the maximum spectrum spread over the subcarriers. Hence, we can finally write Yk as

Yk = (F0,k −D)dk +
∆′∑

l=−∆′
Ql,k, (5.47)

where Ql,k = −T(l)dk+l + Tu
(l)

ELd+
k+l + Tl

(l)
E−Ld−k+l, with

Tl
(l)

(m,n) =
1
N

N−1∑
q=0

N−1−q∑
p=0

f
(k+l)
l (p− L0)e−j2π mp

N ej2π
(n−m)q

N ,

Tu
(l)

(m,n) =
1
N

N−1∑
q=0

q∑
p=0

f
(k+l)
l (L0 − p)ej2π mp

N ej2π
(n−m)q

N ,

and

T(l) =





Tu
(0)

E−L + Tl
(0)

EL −D, l = 0

Tu
(l)

E−L + Tl
(l)

EL − Fl,k, l 6= 0,
(5.48)

Fl,k is a diagonal matrix with entries given by

Fl,k(n, n) =

N
2 −1∑

p=−N
2

f
(k+l)
l (p)e−j2π np

N .

Finally, for uncorrelated zero-mean modulation symbols with equal variance, the SIRk,n

at the kth subcarrier and at time index n is given by

SIRk,n =

∣∣F0,k(n, n)−D(n, n)
∣∣2

σ2
I (k, n)

, for n ∈ Ω(k), (5.49)

where

σ2
I (k, n) =

∆′∑

l=−∆′

∑

r∈Ω(k+l)

|T(l)(n, r)|2 + |Tu
(l)

(n, r)|2 + |Tl
(l)

(n, r)|2.

By the analogy with the definition of SNReq in (5.27), we consider the equivalent SIR
(SIReq) that provides the same SER floor as the one caused by all the considered SIRk,n.
That is, we have:

SIReq ≈ N

2

( ∑

n∈Ω(k)

1
SIRk,n

)−1

. (5.50)
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Table 5.4: Values of the equivalent SIR (dB) depending on N and L

PHYDYAS IOTA
`````````````̀Values of N

Values of L 0 2 4 0 2 4

16 15.57 26.11 34 16.41 26.52 26.96
32 18.68 29.18 37.05 19.09 26.76 27
64 21.73 32.30 40 21.47 26.89 27
128 24.76 35.22 43.06 23.42 26.96 27

The values of SIReq for some combinations of L and N are depicted in Table 5.4 for
PHYDYAS and IOTA filters.

We remark in Table 5.4 for the IOTA filter that the SIR does not exceed the value of
27 dB. Indeed, since the IOTA filter provides a spectrum spread beyond the immediate
adjacent subcarriers, the proposed transmission strategy does not completely eliminate the
inherent interference even when L > 2∆ = 16. In fact, there is still interference between
subcarriers k ± 2 and k, because Ω(k±1) = Ω(k). Whereas for PHYDYAS filter, the SIR
increases with the increase of L, and SIReq = +∞ when L > 2∆ = 16. This is because the
PHYDYAS filter spectrum is confined only in the immediate adjacent subcarriers.

We also notice, in Table 5.4 for PHYDYAS filter, that for each L, the SIR is incremented
by about +3 dB when N is doubled. This is explained by the fact that the power of the
interference within a block caused by an insufficient CP remains almost the same whatever
the value of N > 2∆. However, after applying the FFT at the receiver, this interference is
scattered over the whole block of length of N . Hence, when we double N , the distribution
of the interference power is halved, and thus, the SIR is also doubled (+3 dB). However,
for IOTA filter, the situation is different because the SIR is limited by the ICI caused by
the subcarriers k ± 2 as we have explained previously.

5.5 Computational complexity issue

Clearly, the added complexity compared to FBMC lies in the extra M IFFTs and FFTs of
size N in the transmitter and the receiver, respectively. Since N/2 samples in each subcarrier
are zeros at the transmitter, and also only N/2 samples are needed in each subcarrier at
the receiver, we can use the pruned IFFT/FFT algorithms to reduce the added complexity.
According to Skinner’s algorithm [115], a pruning input sample with length N/2 of an N-
point IFFT requires 2N log2(

N
2 ) real multiplications and 3N log2(

N
2 ) + N real additions.

While Markel’s algorithm [116] shows that a pruning output samples with length N/2 of
an N-point FFT requires 2N log2(

N
4 ) real multiplications and 3N log2(

N
2 ) real additions.

Therefore, the added complexity in FFT-FBMC compared to FBMC system, in terms of
number of elementary operations per block of N FBMC symbols, is 5NM log2(

N
2 ) + NM

for the transmitter, and 5NM log2(
M
2 )− 2NM for the receiver.



114 Chapter 5 A novel filter-bank multicarrier proposal

5.6 Application to MIMO systems

The motivation of this work is to propose an FBMC system which can easily be combined
with MIMO techniques such as SM-MLD and STBC. In this section, we will show how the
proposed scheme is straightforwardly applied to SM-MLD and STBC.

5.6.1 Spatial multiplexing with ML detection

In the case of (Nr ×Nt) spatial multiplexing, we transmit complex symbols d
(i)
k,n at the ith

transmit antenna and at a given time-frequency position (k, n) such that n ∈ Ω(k). The
signal at the jth receive antenna, after demodulation, is given by

Y
(j)
k,n = F

(k)
0,n

Nt∑

i=1

h
(ji)
k,n d

(i)
k,n + Γ(j)

k,n,

where h
(ji)
k,n is the channel coefficient between transmit antenna ”i” and receive antenna

”j”. The MIMO channels can be spatially correlated or uncorrelated. Finally, the matrix
formulation of the system can be expressed as

Yk,n = F
(k)
0,nHk,ndk,n + Γk,n,

where Yk,n = [Y (1)
k,n , ..., Y

(Nr)
k,n ]T , dk,n = [d(1)

k,n, ..., d
(Nt)
k,n ]T , Γk,n = [Γ(1)

k,n, ...,Γ(Nr)
k,n ]T , and Hk,n

is an (Nr ×Nt) matrix with entries Hk,n(j, i) = h
(ji)
k,n .

Now since we got rid of the interference terms caused by the FBMC modulation, we can
apply the MLD in a straightforward manner. This consists just in searching the data vector
d̂k,n that minimizes the Euclidean distance

d̂k,n = argmin
dk,n

{∥∥∥F
(k)
0,nHk,ndk,n −Yk,n

∥∥∥
2
}

.

The sphere decoding can also be applied instead of the basic MLD in order to reduce the
complexity especially when large number of antennas or high modulations are used.

5.6.2 Alamouti space time code

As for Alamouti coding [34], we consider the basic scheme with two transmit antennas and
one receive antenna. On each subcarrier k, a complex symbol d

(1)
k,n is transmitted at time

instant n ∈ Ω(k) from the first antenna whereas the second antenna transmits a second
symbol d

(2)
k,n. Then, at time instant n + 1 ∈ Ω(k), the first antenna transmits (−d

(2)
k,n)∗

whereas the second one transmits (d(1)
k,n)∗. We note by hk,1 and hk,2 the complex and

gaussian channel gains at the kth subcarrier from, respectively, the first and the second
antenna to the receive one. According to (5.13) and since the coefficient F

(k)
0,n depends on

the time instant n, we can write in a matrix form:



Yk,n

F
(k)
0,n

(
Yk,n+1

F
(k)
0,n+1

)∗


 =

[
hk,1 hk,2

h∗k,2 −h∗k,1

]

︸ ︷︷ ︸
Hk




d
(1)
k,n

d
(2)
k,n


 +




Γk,n

F
(k)
0,n

(
Γk,n+1

F
(k)
0,n+1

)∗


 , (n, n + 1) ∈ Ω(k) × Ω(k).

(5.51)
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Note that Hk is an orthogonal matrix and

HH
k Hk = (|hk,1|2 + |hk,2|2)I2,

where I2 is the identity matrix of size 2. Hence, Alamouti coding could be performed,
and the data estimates d̂

(1)
k,n and d̂

(2)
k,n are obtained by using the maximum ratio combining

(MRC) equalization [34].

5.7 Simulation results

The performance analysis is based on the bit-error rate (BER) assessment as a function of
the SNR. For all the simulations, we assume a perfect channel state information (CSI) at
the receiver. The sampling period is Ts = 100 ns, and the carrier frequency is fc = 2.5
GHz. The number of subcarriers is M = 512.

For the FFT-FBMC, we consider different configurations corresponding to (N, L) ∈
{16, 32, 64} × {0, 2}. As for OFDM, the CP size (Lcp) is adapted to the channel spread
length. We define the spectral efficiency loss by µ = L

N+L for the FFT-FBMC system,
whereas for OFDM µ = Lcp

M+Lcp
. We assume pedestrian scenario where the velocity is v ≈ 3

km/h. For this application target, the coherence time is Tc ≈ c/(2fcv) ≈ 72 ms. We define
Nc = Tc/(M

2 Ts) as the coherence number of multicarrier symbols, thus, Nc ≈ 2800. Since
N ¿ Nc, we can pretend that the channel is invariant within an N-block. We test the
FFT-FBMC and compare it to OFDM in both MIMO contexts presented in Section 5.6,
namely: Spatial Multiplexing with ML detection and Alamouti coding scheme.

Regarding SM-MLD, we considered a basic configuration with two spatially uncorrelated
antennas at both transmitter and receiver. First, we consider the Pedestrian-A channel [97]
where the parameters are given by:

• Delays = [0 110 190 410] ns,

• Powers = [0 -9.7 -19.2 -22.8] dB.

Hence, for OFDM, we set Lcp = 5 (µ ≈ 0.97%). The data are QPSK modulated. Fig. 5.8
and Fig. 5.9 show the performance of the FFT-FBMC, respectively, for PHYDYAS and
IOTA filters and give a comparison with OFDM and the conventional FBMC using the
Rec-ML receiver [117] based on interference estimation and cancelation.

For both IOTA and PHYDYAS filters, we clearly observe that the BER degradation
strongly depends on L due to the BER floor effect caused by the insufficiency of the CP. We
notice that the BER floor is much higher when there is no CP inserted (L = 0). We also
notice that the BER floors lower by increasing N . This is explained by the fact that the
power of the interference within a block caused by an insufficient CP remains almost the
same whatever the value of N > 2∆. However, after applying the FFT at the receiver, this
interference is scattered over the whole block. Hence, when we double N , the distribution of
the interference power is halved, and thus, the SIR is also doubled (+3 dB). This matches
well with the values in Table 5.4; we notice, for PHYDYAS filter, that for each L, the SIR
is incremented by about +3 dB when N is doubled. As for IOTA filter, the situation is
different because the SIR is limited by the ICI caused by the subcarriers k ± 2. The SIR
values corresponding to the BER limits match well with Table 5.4. One can check this by
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Figure 5.8: Performance of FFT-FBMC using PHYDYAS prototype filter with MIMO (2×2)
spatial multiplexing and QPSK modulation in Ped-A channel.
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Figure 5.9: Performance of FFT-FBMC using IOTA prototype filter with MIMO (2×2)
spatial multiplexing and QPSK modulation in Ped-A channel.
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projecting the BER floor values on the OFDM curve and taking the corresponding SNR
values.

Since the SIR values are relatively high when L = 2, the BER floor would be observed
beyond 30 dB. Hence, as long as the SNR is less than 30 dB, we can consider that the FFT-
FBMC with L = 2 exhibits almost no degradation compared to OFDM and outperforms the
FBMC system. We notice that the curves of the FFT-FBMC/IOTA with L = 2 are almost
independent of N . This matches well with Table 5.4 which shows that FFT-FBMC/IOTA
has a SIR limit at 27 dB.
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Figure 5.10: Performance of FFT-FBMC using PHYDYAS prototype filter with MIMO
(2×2) spatial multiplexing and QPSK modulation in Veh-A channel without mobility.

Now, we test the FFT-FBMC/PHYDYAS with a more frequency selective channel and
QPSK modulation, we chose the same channel parameters as the Vehicular-A model (with-
out considering the velocity), that is:

• Delays = [0 300 700 1100 1700 2500] ns,

• Powers = [0 -1 -9 -10 -15 -20] dB.

Then, Lcp = 25 (µ ≈ 4.66%). Fig. 5.10 shows that we obtain, for all the configurations,
almost the same BER performance as in the case of the Pedestrian-A channel model.

Fig. 5.11 and Fig. 5.12 depict the BER performance of FFT-FBMC/PHYDYAS scheme
with 16-QAMmodulated data, respectively, in the Ped-A and Veh-A channel model. Clearly,
the BER floor effects are more significant. Indeed, FFT-FBMC with L = 0 has a very high
BER limits. However, we can obtain acceptable performance with L = 2.
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Figure 5.11: Performance of FFT-FBMC using PHYDYAS prototype filter with MIMO
(2×2) spatial multiplexing and 16-QAM modulation in Ped-A channel.
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Figure 5.12: Performance of FFT-FBMC using PHYDYAS prototype filter with MIMO
(2×2) spatial multiplexing and 16-QAM modulation in Veh-A channel without mobility.
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Figure 5.13: Performance of FFT-FBMC using IOTA prototype filter with (2×1) Alamouti
coding scheme and QPSK modulation in Ped-A channel.
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Figure 5.14: Performance of FFT-FBMC using PHYDYAS prototype filter with (2×1)
Alamouti coding scheme and QPSK modulation in Ped-A channel.
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As for the Alamouti scheme, we provide the performance results for PHYDYAS and
IOTA filters, respectively, in Fig. 5.13 and Fig. 5.14. We notice that with IOTA filter, we
obtain almost the same performance as OFDM for both values of L = 0 and L = 2. A
very slight degradation with respect to OFDM can be pointed out in the high SNR regime.
Unlike the SM case, the non-use of the CP has not resulted in considerable degradations.
One can notice, at worst, about 1 dB of SNR loss at BER = 10−4.

Regarding PHYDYAS filter, we obtain also almost no degradation compared to OFDM,
except the case when N = 16 and L = 0 where we have about a 2.75 dB SNR loss with
respect to OFDM at BER = 10−4, and less than 1 dB at BER = 10−2. In all BER figures,
one can notice that OFDM outperforms the FFT-FBMC system in the whole considered
SNR region. This is due to the ISI caused by the insufficient CP considered in the system
and the neglected ISI in (5.2). Further, the values of the SNReq/SNR0 depicted in table
5.2 show (except when N = 16) that SNReq is slightly smaller than SNR0.

5.8 Conclusion

In this chapter, we have proposed a new FBMC scheme (called FFT-FBMC) in order to get
rid of the intrinsic interference which is an issue when we combine the FBMC with some
MIMO techniques such as SM-MLD and Alamouti coding. The FFT-FBMC scheme consists
in performing an IDFT and DFT on each subcarrier, respectively, at the transmitter and
receiver sides inserting also a CP as in the conventional OFDM. This makes FFT-FBMC
more computationally complex than FBMC. The transmission strategy depicted in Fig. 5.3
is applied in order to isolate the adjacent subcarriers. In this way, the equivalent system
became formulated as OFDM, and all MIMO techniques can be applied in a straightforward
manner. We have proposed to reduce the CP and evaluate the corresponding performance
degradation. We tested the proposed scheme with two MIMO techniques: (2 × 2) SM-
MLD and (2 × 1) Alamouti coding, and also with two values of the CP L = 2 and L = 0.
Simulation results showed that we can almost obtain the same performance as OFDM
in some configurations. However, FFT-FBMC remains slightly outperformed by OFDM
because of the residual interference.



Chapter 6

Conclusions and Perspectives

6.1 Conclusions

This thesis has mainly considered the study of the association of filter-bank multicarrier
(FBMC) systems to the spatial multiplexing (SM) scheme. The issue of applying a maximum
likelihood (ML) detection in SM-FBMC system, caused by the presence of the inherent
FBMC interference, was the essence and the main motivation of this dissertation.

After reviewing the state of the art, presented in chapter 2, about MIMO, OFDM and
FBMC, we have addressed in chapter 3 the interference cancellation technique. We have
mainly proposed three receiver structures dealing with the presence of interference. Those
three schemes are: MMSE-ML where the interference is directly estimated via the MMSE
equalizer, IC-ML and Rec-ML receivers where the whole interference is estimated via the
previous tentative decisions, and the third one is PaIC/Viterbi receiver where only a part of
the interference is estimated and canceled out. The remaining interference part is treated
by a Viterbi detector. The difference between IC-ML and Rec-ML receivers lies in the
manner how the tentative decisions are obtained; IC-ML makes use of the MMSE equalizer
to get tentative decisions, whereas Rec-ML uses MMSE-ML as tentative detector. The
proposed MMSE-ML receiver is the least complicated one among the receivers that we
have proposed. However, it turned out that its BER performance is still far from the
desired performance curve even though it outperforms MMSE equalizer. Regarding IC-
ML performance, we have shown that it is slightly better than MMSE-ML performance
but at the price of introducing some processing delay. Rec-ML receiver, which is in fact
a combination of IC-ML with MMSE-ML, considerably improves the BER-performance.
Nevertheless, Rec-ML performance does not yet reach the OFDM-ML one. However, we
have shown that the performance gap between Rec-ML and OFDM-ML is removed when a
simple convolutional coding is introduced. Finally, the third proposed scheme in chapter 3
is PaIC/Viterbi. The idea behind this proposal is to reduce the variance of the interference
concerned by the cancellation. We have shown that to be able to remove the interference and
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obtain the required performance, Viterbi detector has to match at least to the three largest
coefficients of the transmultiplexer impulse response. Thus, it turned out that the Viterbi
algorithm has to be performed over the frequency axis, i.e. on each subcarrier separately.

It followed from chapter 3 that one of the conditions to make the interference cancellation
effective is that the interference variance must be small. In chapter 4, we have then proposed
to modify the FBMC modulator by transmitting complex QAM symbols instead of OQAM
ones. We have shown that in this manner we reduce the interference variance down to
18% when PHYDYAS filter is used, and to 40% when IOTA filter is used. Since this
approach drops the orthogonality condition, we have first proposed an iterative interference
cancellation (IIC) receiver for the SISO system. We have shown that when PHYDYAS filter
is used, IIC performance converges to the optimum one with only 2 iterations. Whereas
when IOTA filter is used, IIC suffers from the error propagation effect. This is due to the
difference of the interference variance values of each filter. Regarding MIMO configuration,
we have seen that the situation is the same as in SISO; IIC-ML receiver suffers from error
propagation when IOTA filter is used, and converges to the optimum performance when
PHYDYAS filter is used. As for PaIC/Viterbi receivers, we have pointed out the advantage
of performing the Viterbi Algorithm over the frequency axis, which means that the Viterbi
algorithm is performed once for each one multicarrier symbol. Further, we observed again
that PaIC/Viterbi performs well with PHYDYAS filter, but it is not the case with IOTA
filter even though the interference variance is very small in the case of PaIC/Viterbi-3.
Indeed, in this specific case, the poor BER performance is due to the minimum spectrum
distance that corresponds to error events with 3 or 4 error positions. Hence, in summary,
the proposed receivers in FBMC/QAM do not perform well with IOTA filter, whereas
they exhibit satisfactory performance with PHYDYAS filter. Therefore, the choice of the
prototype filter is primordial for the proposed receivers in FBMC/QAM.

Finally, in chapter 5, we have introduced a novel FBMC scheme and a transmission
strategy in order to avoid the inherent interference terms. At the transmitter, an IFFT is
applied on the data of each subcarrier before being fed to the FBMC modulator. Then, at
the receiver side, FFTs are applied at the FBMC demodulator output on each subcarrier.
This proposed scheme, that we have called FFT-FBMC, transforms the FBMC system
into an equivalent system formulated as OFDM regardless of some residual interference.
These extra FFTs/IFFTs operations make the proposed FFT-FBMC more computationally
complex than FBMC. But on the other hand, we have shown that any OFDM transmission
technique can be straightforwardly performed to FFT-FBMC. Hence, we have tested this
scheme with SM-ML system and Alamouti coding. We have seen that we can obtain almost
the same performance as OFDM in some configurations. Finally, we have also pointed
out the interesting spectral property of the FFT-FBMC signal, which is the fact that the
out-of-band radiation is considerably limited compared to the classical FBMC.

6.2 Perspectives and future works

This thesis has addressed the issue of the association of FBMC modulation to spatial mul-
tiplexing systems. A number of interesting topics, based on the research issues studied in
this thesis, could also be addressed. We hereunder provide perspectives and some possible
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extensions to the work that have not been addressed in the thesis, and that could be studied
as future works:

• Throughout this thesis, we have tried to cancel and get rid of the FBMC inherent in-
terference. However, a full 2D-Viterbi algorithm in FBMC/OQAM and FBMC/QAM
deserves to be investigated despite its high computational complexity. The works
carried out in [88–91] can be considered as a starting point. However, besides the con-
sidered MIMO context, the receiver has to take into account the fact that the noise
at the FBMC demodulator output is colored.

• All the proposed methods and receiver schemes make the simplifying assumption that
CSI is fully known at the receiver. It would be of interest to study the influence of
channel estimation errors on the performance of the proposed receivers, and adapt
them to more realistic conditions.

• Moreover, throughout this dissertation, we have assumed that the channel is not highly
frequency selective and invariant over some multicarrier symbols such that the FBMC
channel equalization can be done with only one coefficient tap per subcarrier and al-
most preserve the real orthogonality condition. In case where the channel is highly fre-
quency selective, more complex equalization methods, as the multi-tap per subcarrier
equalization [118], have to be performed. Hence, it is wise to extend the developpement
of the proposed receivers to the case of high frequency selective channel.

• We have shown in chapter 3 that there is a potential SNR gain for the FBMC/OQAM
compared to OFDM in spatial multiplexing with ML detection. However, this perfor-
mance is achievable only if the interference is perfectly removed. We have seen that
when we introduce convolutional coding in the proposed receiver, we can obtain the
same BER performance as OFDM. However, we have still a performance gap with
respect to the Genie-Aided receiver. Hence, one can expect some BER performance
improvements if more sophisticated coding techniques such as turbo-codes are intro-
duced in the system.

• Although some works have been carried out on the combination of Alamouti coding
with FBMC, this topic still remains an open issue. In this thesis, we have tested Alam-
outi scheme only in the proposed FFT-FBMC system. Since the issue is the presence
of the inherent interference, Alamouti decoders based on interference estimation and
cancellation techniques deserve to be studied and investigated.
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Appendix A

Relative Appendices in Chapter 3

A.1 Autocovariance expression of the noise in FBMC

According to (3.17), we have

E{γ∗(k′, n′)γ(k, n)} =

E





∑

m,m′
b∗[m]b[m]g[m− n′

M

2
]g[m′ − n

M

2
]ej 2π

M (k( D
2 −m′)−k′( D

2 −m))ej(φk′,n′−φk,n)



 .

(A.1)

Since the noise b[m] is uncorrelated, then we can write

E{γ∗(k′, n′)γ(k, n)} = σ2
∑
m

g[m− n′
M

2
]g[m− n

M

2
]ej 2π

M (k−k′)( D
2 −m)ej(φk′,n′−φk,n). (A.2)

Substituting m by m + n′M2 , we obtain

E{γ∗(k′, n′)γ(k, n)} = σ2
∑
m

g[m]g[m− (n− n′)
M

2
]ej 2π

M (k−k′)( D
2 −m)e−jπn′(k−k′)ej(φk′,n′−φk,n).

Now using (2.98), we have φk′,n′ − φk,n = π
2 (k′ − k + n′ − n) + π(kn− k′n′). Hence

E{γ∗(k′, n′)γ(k, n)} = σ2
∑
m

g[m]g[m− (n− n′)
M

2
]ej 2π

M (k−k′)( D
2 −m)e−j π

2 (k−k′+n−n′)

︸ ︷︷ ︸
=f(k−k′,n−n′)e−jπ(n−n′)(k−k′)

ejπ(n−n′)k.

Finally, according to (3.16) we can write

E{γ∗(k′, n′)γ(k, n)} = σ2f(k − k′, n− n′)ejπ(n−n′)k′ .
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A.2 Derivation of the expressions of the filters W and C

In this appendix, we derive the expressions of the filters W and C satisfying both conditions
(3.27) and (3.28).

Let us first develop the condition (3.27). Replacing ε(k, n) by its expression, we obtain
for (u, v) 6= (0, 0)

E{U∗(k, n)a(k − u, n− v)−V∗(k, n)a(k − u, n− v)− a∗(k, n)a(k − u, n− v)} = 0. (A.3)

The samples a(k, n) are assumed to be independent. Hence, when (u, v) 6= (0, 0) we have
E{a∗(k, n)a(k − u, n− v)} = 0. Therefore, we can simplify the latter as:

E{U∗(k, n)a(k − u, n− v)} = E{V∗(k, n)a(k − u, n− v)}. ∀(u, v) 6= (0, 0) (A.4)

According to (3.22) and (3.15), the left hand side term of (A.4) becomes

E{U∗(k, n)a(k − u, n− v)} = E





Y∑

y=−Y

Z∑

z=−Z

W ∗(y, z)r∗(k − y, n− z)a(k − u, n− v)





= E





Y∑

y=−Y

Z∑

z=−Z

W ∗(y, z)
P∑

p=−P

Q∑

q=−Q

a∗(k − y − p, n− z − q)a(k − u, n− v)f∗(p, q)(−1)q(k−y−p)



 .

(A.5)

Since a(k, n) are statically independent, hence E{a∗(k− y− p, n− z− q)a(k−u, n− v)} = 0
when (p, q) 6= (u− y, v − z). Then,

E{U∗(k, n)a(k − u, n− v)} = σ2
a

Y∑

y=−Y

Z∑

z=−Z

W ∗(y, z)f∗(u− y, v − z)(−1)(v−z)(k−u), (A.6)

where σ2
a = E{|a(k, n)|2} is the variance of the transmitted symbols.

Similarly, according to (3.23), the right hand side term of (A.4) is written

E{V∗(k, n)a(k − u, n− v)} = E

{
U∑

u′=−U

V∑

v′=−V

C∗(u′, v′)a∗(k − u′, n− v′)a(k − u, n− v)

}

= σ2
aC∗(u, v). (A.7)

Therefore, from (A.6) and (A.7), we can express the first condition (A.4) as

C∗(u, v) =
Y∑

y=−Y

Z∑

z=−Z

W ∗(y, z)f∗(u− y, v − z)(−1)(v−z)(k−u), ∀(u, v) 6= (0, 0). (A.8)

Regarding the second condition (3.28), we also replace ε(k, n) by its expression and we
obtain

E{U∗(k, n)r(k − y, n− z)−V∗(k, n)r(k − y, n− z)− a∗(k, n)r(k − y, n− z)} = 0. (A.9)

Using (3.22), the first term is written

E{U∗(k, n)r(k − y, n− z)} =
Z∑

z′=−Z

Y∑

y′=−Y

W ∗(y′, z′)E {r∗(k − y′, n− z′)r(k − y, n− z)} .

(A.10)
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According to (3.15), we have

E{r∗(k − y′, n− z′)r(k − y, n− z)} = E{γ∗(k − y′, n− z′)γ(k − y, n− z)}

+
P∑

p=−P

Q∑

q=−Q

P∑

p′=−P

Q∑

q′=−Q

E{a∗(k − y′ − p, n− z′ − q)a(k − y − p′, n− z − q′)}

× f∗(p, q)f(p′, q′)(−1)q(k−y′−p)(−1)q′(k−y−p′). (A.11)

Since a(k, n) are statically independent, we can write

E{r∗(k − y′, n− z′)r(k − y, n− z)} =σ2
a

P∑

p=−P

Q∑

q=−Q

f∗(p, q)f(p + y′ − y, q + z′ − z)(−1)(z−z′)(k−y′−p)

+ E{γ∗(k − y′, n− z′)γ(k − y, n− z)}. (A.12)

Then, we replace this expression in (A.10) and it yields

E{U∗(k, n)r(k − y, n− z)} =
Z∑

z′=−Z

Y∑

y′=−Y

W ∗(y′, z′)E{γ∗(k − y′, n− z′)γ(k − y, n− z)}

+ σ2
a

Z∑

z′=−Z

Y∑

y′=−Y
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P∑

p=−P

Q∑

q=−Q

f∗(p, q)f(p + y′ − y, q + z − z′)(−1)(z
′−z)(k−y′−p)

(A.13)

Regarding the second term of (A.9), we have

E{V∗(k, n)r(k − y, n− z)} =
U∑

u=−U

V∑

v=−V

C∗(u, v)E{a∗(k − u, n− v)r(k − y, n− z)}.

(A.14)

According to (3.15) we have

E{a∗(k − u, n− v)r(k − y, n− z)} = E{a∗(k − u, n− v)γ(k, n)}

+
P∑

p=−P

Q∑

q=−Q

E{a∗(k − u, n− v)a(k − y − p, n− z − q)}f(p, q)(−1)q(k−y−p). (A.15)

Since a(k, n) and γ(k, n) are statically independent and a(k, n) samples are uncorrelated,
we can write

E{a∗(k − u, n− v)r(k − y, n− z)} = σ2
af(u− y, v − z)(−1)(v−z)(k−u). (A.16)

Then, equation (A.14) becomes

E{V∗(k, n)r(k − y, n− z)} = σ2
a

U∑

u=−U

V∑

v=−V

C∗(u, v)f(u− y, v − z)(−1)(v−z)(k−u). (A.17)

The third term of (A.9) can be obtained from (A.16) and setting (u, v) = (0, 0), hence

E{a∗(k, n)r(k − y, n− z)} = σ2
af(−y,−z)(−1)−zk. (A.18)
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Therefore, according to (A.13), (A.17) and (A.18), we can rewrite (A.9) as

σ2
a
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+ σ2
a

U∑

u=−U

V∑

v=−V

C∗(u, v)f(u− y, v − z)(−1)(v−z)(k−u). (A.19)
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Relative Appendices in Chapter 5

B.1 Independence of σ2
s on M

Let us calculate the mean of A(m,N,L) over one period, thus we obtain:

A(N, L) =
2

N(N + L)

∑
p

∑

(n,n′)∈B2
p

ej 3π
2 δn

N
2 −1∑

l=0

ej 2πlδn
N

M
2 (N+L)−1∑

m=0

g[m− n
M

2
]g[m− n′

M

2
]
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In,n′

(B.1)

The term In,n′ is certainly zero when

g[m− n
M

2
]g[m− n′

M

2
] = 0

between m = 0 and m = M
2 (N + L)− 1.

Since g[m] = 0 for m /∈ {1, ..., KM − 1}, then In,n′ = 0 when (n, n′) /∈ Ψ = {1 −
2K, ..., N + L− 1}2.

Ψ overlaps only with B0 and B1, and the intersection is C1 ∪ B2
1 , where C1 = {1 −

2K, ...,−1}2. Let C3 = {N + L − 2K + 1, ..., N + L − 1}2 be a subset of B2
1 , and C2 be

the relative complement of C3 in B2
1 , that is, C2 = B2

1\C3 = ({1, ..., N + L− 2K} ×B1) ∪
(B1 × {1, ..., N + L− 2K}).

When (n, n′) ∈ C2, it means that n ∈ {1, ..., N + L − 2K} or n′ ∈ {1, ..., N + L −
2K}. As a consequence, the term g[m− nM

2 ]g[m− n′M2 ] is zero beyond the summation set
{0, ..., M

2 (N +L)− 1}. Hence, In,n equals the FBMC coefficient f
(k)
0 (∆n) to within a phase

rotation. Then, In,n is a constant independent from M when (n, n′) ∈ C2.
When (n, n′) ∈ C1, we can show that the term

c1 =
∑

(n,n′)∈C1

ej 3π
2 δn

N
2 −1∑

l=0

ej 2πlδn
N In,n′
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is independent from M . Let n1 = −2K − n′ and n′1 = −2K − n. We have (n, n′) ∈ C1 ⇐⇒
(n1, n

′
1) ∈ C1. Because of the prototype filter symmetry (g[m] = g[KM −m− 1]), In1,n′1 is

written as

In1,n′1 =

M
2 (N+L)−1∑

m=0

g[m + n
M

2
+ KM ]g[m + n′

M

2
+ KM ]

=

M
2 (N+L)−1∑

m=0

g[−m− n
M

2
− 1]g[−m− n′

M

2
− 1]

=
−1∑

m=−M
2 (N+L)

g[m− n
M

2
]g[m− n′

M

2
].

Hence,

In,n′ + In1,n′1 =

M
2 (N+L)−1∑

m=−M
2 (N+L)

g[m− n
M

2
]g[m− n′

M

2
],

and it is independent from M because g[m− nM
2 ]g[m− n′M2 ] = 0 for all |m| ≥ M

2 (N + L)
when (n, n′) ∈ C1.

Now, since δn1 = n′1 − n1 = n′ − n = δn, we can write

c1 =
∑

(n,n′)∈C1

ej 3π
2 δn

N
2 −1∑

l=0

ej 2πlδn
N In,n′

=
1
2

∑

(n,n′)∈C1

ej 3π
2 δn

N
2 −1∑

l=0

ej 2πlδn
N (In,n′ + In1,n′1).

Therefore, c1 is independent from M .
As for the last term

c3 =
∑

(n,n′)∈C3

ej 3π
2 δn

N
2 −1∑

l=0

ej 2πlδn
N In,n′ ,

we proceed in the same manner by considering n2 = 2(N + L −K) − n′ and n′2 = 2(N +
L−K)− n. We will also find that In,n′ + In2,n′2 is independent from M when (n, n′) ∈ C3.

Finally, we have shown that all the three terms corresponding to the summation sets C1,
C2, and C3 are independent from M . Then, A(N, L) is also independent from M .
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