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Introduction

Optimality conditions for nonsmooth optimization have become one of the

most important topics in the study of optimization-related problems. Various

notions of generalized derivatives have been introduced to establish optimality

conditions. Besides establishing optimality conditions, generalized derivatives

also is an important tool for studying the local uniqueness of solutions. During

the last three decades, these topics have been being developed, generalized and

applied to many fields of mathematics by many authors all over the world.

The purpose of this thesis is to investigate the above topics. It consists of

five chapters. In Chapter 1, we develop elements of calculus of variational

sets for set-valued mappings, which were recently introduced in Khanh and

Tuan (2008). Most of the usual calculus rules, from chain and sum rules to

rules for unions, intersections, products. and other operations on mappings,

are established. As applications we provide a direct employment of sum rules

to establishing an explicit formula for a variational set of the solution map to

a parametrized variational inequality in terms of variational sets of the data.

Furthermore, chain rules and sum or product rules are also used to prove opti-

mality conditions for weak solutions of some vector optimization problems. In

Chapter 2, we propose notions of higher-order outer and inner radial derivatives

of set-valued maps and obtain main calculus rules. Some direct applications of

these rules in proving optimality conditions for particular optimization prob-

lems are provided. Then, we establish higher-order optimality necessary con-

ditions and sufficient ones for a general set-valued vector optimization problem

with inequality constraints. Chapter 3 is devoted to using first and second-

order approximations, which were introduced by Jourani and Thibault (1993)

and Allali and Amaroq (1997), as generalized derivatives, to establish both

necessary and sufficient optimality conditions for various kinds of solutions to

nonsmooth vector equilibrium problems with functional constraints. Our first-

order conditions are shown to be applicable in many cases, where existing ones

cannot be applied. The second-order conditions are new. In Chapter 4, we

consider nonsmooth multiobjective fractional programming on normed spaces.

Using first and second-order approximations as generalized derivatives, first and

second-order optimality conditions are established. For sufficient conditions no

convexity is needed. Our results can be applied even in infinite dimensional

cases involving infinitely discontinuous maps. In Chapter 5, we establish suffi-

cient conditions for the local uniqueness of solutions to nonsmooth strong and

weak vector equilibrium problems. Also by using approximations, our results

are valid even in cases where the maps involved in the problems suffer infinite

discontinuity at the considered point.
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Chapter 1. Variational sets: calculus and applications to
nonsmooth vector optimization

1.1. Introduction

In this chapter, we establish elements of calculus for variational sets to ensure

that they can be used in practice. Most of the usual rules, from the sum

and chain rules to various operations in analysis, are investigated. It turns

out that the variational sets possess many fundamental and comprehensive

calculus rules. Although this construction is not comparable with objects in

the dual approach like Mordukhovich’s coderivatives in enjoying rich calculus,

it may be better in dealing with higher-order properties. We pay attentions

also on relations between the established calculus rules and applications of

some rules to get others. (Of course, significant applications should be those in

other topics of nonlinear analysis and optimization.) As such applications we

provide a direct employment of sum rules to establishing an explicit formula for

a variational set of the solution map to a parametrized variational inequality

in terms of variational sets of the data. Furthermore, chain rules and sum and

product rules are also used to prove optimality conditions for weak solutions

of some vector optimization problems.

Let X and Y be real normed spaces, C ⊆ Y a pointed closed convex cone

with nonempty interior and F : X → 2Y . For A ⊆ X, intA, clA (or Ā), bdA

denote its interior, closure and boundary, respectively. X∗ is the dual space of

X and BX stands for the closed unit ball in X. For x0 ∈ X, U(x0) is used for

the set of all neighborhoods of x0 ∈ X. Rk+ is the nonnegative orthant of the

k-dimensional space. We often use the following cones, for A ⊆ X, C above

and u ∈ X,

coneA = {λa | λ ≥ 0, a ∈ A}, cone+A = {λa | λ > 0, a ∈ A},

A(u) = cone(A+ u), C∗ = {y∗ ∈ Y ∗ | 〈y∗, c〉 ≥ 0, ∀c ∈ C} (polar cone).

A subset S of a linear space is called star-shaped at x0 ∈ S if, for all x ∈ S
and α ∈ [0, 1], (1−α)x0 +αx ∈ S. A set-valued mapping H : X → 2Y between

two linear spaces is said to be star-shaped at x0 ∈ S on the star-shaped at x0

subset S ⊆ domH if, for all x ∈ S and α ∈ [0, 1],

(1− α)H(x0) + αH(x) ⊆ H((1− α)x0 + αx).

If C ⊆ Y is a cone (not necessarily convex) and we have, for all x ∈ S and

α ∈ [0, 1],

(1− α)H(x0) + αH(x) ⊆ H((1− α)x0 + αx) + C,
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we say that H is C-star-shaped at x0. When X and Y are normed, F : X → 2Y

is called pseudo-convex at (x0, y0) ∈ grF if epiF ⊆ (x0, y0) + TepiF (x0, y0).

1.2. Variational sets

Definition 1.2.1. (Khanh and Tuan 2008) The variational sets of type 1 are

defined as follows:

V 1(F, x0, y0) = Limsup
x

F→x0, t→0+

1

t
(F (x)− y0), ...,

V m(F, x0, y0, v1, · · · , vm−1) = Limsup
x

F→x0, t→0+

1

tm
(F (x)− y0 − tv1 − · · · tm−1vm−1).

Definition 1.2.2. (Khanh and Tuan 2008) The variational sets of type 2

are defined as follows:

W 1(F, x0, y0) = Limsup
x

F→x0

cone+(F (x)− y0), ...,

Wm(F, x0, y0, v1, · · · , vm−1) = Limsup
x

F→x0 t→0+

1

tm−1
(cone+(F (x)−y0)−v1−· · ·−tm−2vm−1).

By using equivalent formulations for the Painlevé-Kuratowski sequential

upper limit we obtain some formulae of the two types of variational sets in

Propositions 1.2.1 and 1.2.2.

1.3. Calculus of variational sets

In this section, we develop algebraic and set operations rules and compositions

rules of variational sets for set-valued mappings.

Proposition 1.3.1 (Union Rule). Let Fi : X → 2Y , i = 1, ..., k, (x0, y0) ∈
k⋃
i=1

grFi, and I(x0, y0) = {i | (x0, y0) ∈ grFi}. Then,

(i) V m(

k⋃
i=1

Fi, x0, y0, v1, ..., vm−1) =
⋃

i∈I(x0,y0)

V m(Fi, x0, y0, v1, ..., vm−1);

(ii) Wm(

k⋃
i=1

Fi, x0, y0, v1, ..., vm−1) =
⋃

i∈I(x0,y0)

Wm(Fi, x0, y0, v1, ..., vm−1).

Proposition 1.3.2 (Intersection Rule). Let Fi : X → 2Y , i = 1, ..., n, and

(x0, y0) ∈
n⋂
i=1

grFi. Then,
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(i) V m(

n⋂
i=1

Fi, x0, y0, v1, ..., vm−1) ⊆
n⋂
i=1

V m(Fi, x0, y0, v1, ..., vm−1);

(i) Wm(

n⋂
i=1

Fi, x0, y0, v1, ..., vm−1) ⊆
n⋂
i=1

Wm(Fi, x0, y0, v1, ..., vm−1).

Proposition 1.3.3 (Sum Rule for V m). Let Fi : X → 2Y ,

x0 ∈ domF1

⋂
int

k⋂
i=2

domFi, yi ∈ Fi(x0), and vi,1, ..., vi,m−1 ∈ Y, for i =

1, ..., k. If Fi, i = 2, ...k have proto-variational sets V m(Fi, x0, y0, vi,1, ..., vi,m−1),

respectively, then,

k∑
i=1

V m(Fi, x0, yi, vi,1, ..., vi,m−1) ⊆ V m(

k∑
i=1

Fi, x0,

k∑
i=1

yi,

k∑
i=1

vi,1, ...,

k∑
i=1

vi,m−1).

Proposition 1.3.4 (Sum Rule for W 1). Let Fi : X → 2Y , (x0, yi) ∈ grFi, and

Fi be compact at x0 for i = 1, ..., k. Then,

k∑
i=1

W 1(Fi, x0, yi) ⊇W 1(

k∑
i=1

Fi, x0,

k∑
i=1

yi).

Proposition 1.3.7 (Chain Rule for V m). Let F : X → 2Y , G : Y →
2Z , (x0, y0) ∈ grF, (y0, z0) ∈ grG and imF ⊆ domG.

(i) If G is Lipschitz around y0 then, for

u1 ∈ V 1(F, x0, y0), ..., um−1 ∈ V m−1(F, x0, y0, u1, ..., um−2) and

v1 ∈ DbG(y0, z0)(u1), ..., vm−1 ∈ Db(m−1)G(y0, z0, v1, ..., vm−2)(um−1),

we have

DbmG(y0, z0, u1, v1, ..., um−1, vm−1)(V m(F, x0, y0, u1, ..., um−1))

⊆ V m(G ◦ F, x0, z0, v1, ..., vm−1).

(ii) If additionally F has a proto-variational set of order m of type 1 at

(x0, y0), then

DmG(y0, z0, u1, v1, ..., um−1, vm−1)(V m(F, x0, y0, u1, ..., um−1))

⊆ V m(G ◦ F, x0, z0, v1, ..., vm−1).

(iii) If F is l.s.c. at (x0, y0), then

V m(G�F, x0, z0, v1, ..., vm−1) ⊆ V m(G, y0, z0, v1, ..., vm−1).
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Proposition 1.3.8 (Chain Rule for Wm). Let F : X → 2Y , G : Y →
2Z , (x0, y0) ∈ grF, (y0, z0) ∈ grG, and imF ⊆ domG.

(i) If F is star-shaped at x0, and G is Lipschitz around y0, then

DbG(y0, z0)[W 1(F, x0, y0)] ⊆ DG(y0, z0)[W 1(F, x0, y0)] ⊆ V 1(G◦F, x0.z0).

(ii) If F is l.s.c. at (x0, y0), then

Wm(G�F, x0, z0, v1, ..., vm−1) ⊆Wm(G, y0, z0, v1, ..., vm−1).

(iii) If F−1 is l.s.c. at (y0, x0), then

W 1(G, y0, z0) ⊆W 1(G ◦ F, x0, z0).

The calculus rules are also established for other operators as composition

with differentiable map, composition with linear continuous map, inner prod-

uct, outer product, quotient, maximum and minimum. Many examples are

given to illustrate properties of the above calculus rules. Example 1.3.1 explains

that equality may fail for the intersection rule while Example 1.3.2 shows a case

where equality holds for the intersection rule. Example 1.3.3 ensures that the

condition x0 ∈ domF1

⋂
int

k⋂
i=2

domFi cannot be reduced to x0 ∈
k⋂
i=1

domFi in

the sum rule.

Since general chain rules may often encompass sum rules as special cases,

we investigate the sum M + N of two multifunctions M,N : X → 2Y . To

express M +N as a composition, define F : X → 2X×Y and G : X × Y → 2Y

by, for I being the identity map on X and (x, y) ∈ X × Y ,

F = I ×M and G(x, y) = y +N(x).

Then, clearly M +N = G ◦ F . Now we present some definitions.

Definition 1.3.3. Let ((x, z), y) ∈ grC, u1, ..., um−1 ∈ Y and w,w1, ..., wm−1 ∈
Z.

(i) The mth-order y-variational set of the multimap G ◦ F at (x, z) is the

set

V m(G ◦y F, x, z, w1, ..., wm−1) := {w ∈ Z : ∃tn → 0+,∃(xn, yn, wn)→ (x, y, w),

∀n ∈ N, yn ∈ C(xn, z + tnw1 + ...+ tm−1
n wm−1 + tmn wn)}.
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(ii) The mth-order quasi-variational set of the multimap C at (x, z) with

w ∈ Z is the set

V̂ m(C, (x, z[w]), y, w1, ..., wm−1) := {y ∈ Y : ∃tn → 0+,∃(xn, yn, wn)→

(x, y, w), y + tnyn ∈ C(xn, z + tnw1 + ...+ tm−1
n wm−1 + tmn wn)}.

Definition 1.3.4. Given ((x, z), y) ∈ cl(grS) and v1, ..., vm−1 ∈ Y , the mth-

order y-variational set of M +N at (x, z) is the set

V m(M+yN, x, z, v1, ..., vm−1) := {w ∈ Y : ∃tn → 0+,∃(xn, yn, wn)→ (x, y, w),

yn ∈ S(xn, z + tnv1 + ...+ tm−1
n vm−1 + tmn wn}.

Observe that

V m(M +y N, x, z, v1, ..., vm−1) = V m(G ◦y F, x, z, v1, ..., vm−1).

Using the above definitions, we obtain the composition rules for G and F in

Propositions 1.3.14 and 3.15. Then, we apply the preceding composition rules

to establish sum rules for M,N : X → 2Y in Propositions 1.3.18 and 1.3.19.

1.4. Applications

We apply calculus rules to compute variational sets of solution maps to varia-

tional inequalities.

Let F : W × X → 2Z and N : X → 2Z be multimaps between normed

spaces and K be a subset of X. Let

M(w, z) := {x ∈ K : z ∈ F (w, x) +N(x)}

where F : W × X → 2Z and N : X → 2Z are multimaps between normed

spaces and K is a subset of X. When K is convex, N(x) is the normal cone

to K at x and w is a parameter, M is the solution map of a parametrized

variational inequality.

Let NK : W × X → 2Z be the multimap given by NK(w, x) := N(x) for

(w, x) ∈W ×K, NK(w, x) := ∅ for (w, x) ∈W × (X \K). Then, M is related

to the sum map Q := F +NK by

x ∈M(w, z)⇐⇒ z ∈ Q(w, x).

Thus, x′ ∈ V̂ (M, (w, z[z′]), x) if and only if z′ ∈ V̂ (Q, (w, x[x′]), z) for any

(x′, z′) ∈ X × Z. Let S : W ×X × Z → 2Z be defined by

S(w, x, z) := F (w, x) ∩ (z −NK(w, x)).
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Lemma 1.4.1. Let Z be finite dimensional and ((w, z), x) ∈ grM . If for

z′ 6= 0Z ,

V̂ (M, (w, z[0]), x) = {0X} , {0X} /∈ V̂ (M, (w, z[z′]), x), (∗)

then, for every v ∈ V (M, (w, z), x), there exists z′ ∈ Z such that

v ∈ V̂ (M, (w, z[z′]), x).

Proposition 1.4.2. Let Z be finite dimensional and ((w, z), x) ∈ gr(M). If S

is directionally semi-compact at (w, x, z), (∗) holds at ((w, z), x) and

V̂ (S, (w, x[0], y[0]), y) = {0}

holds for every z ∈ clS(w, x, z), then, for x′ ∈ X,

V (M, (w, z), x) ⊆

{x′ ∈ X :
⋃

z∈clS(w,x,z)

(V̂ (F, (w, x[x′]), z) + V̂ (NK , (w, x[x′]), z − z)) 6= ∅}. (1)

If, additionally,

V̂ (F, (w, x[x′]), y) ∩ [y′ − V̂ (N, (w, x[x′]), y − y)] ⊆ V̂ (S, (w, x[x′], y[y′]), y)

holds for every z ∈ clS(w, x, z), then (1) becomes an equality.

In the rest of this section, we employ calculus rules to necessary conditions

for weak solutions of several particular optimization problems. Let X and Y

be normed spaces, Y is partially ordered by a pointed closed cone C with

nonempty interior, F : X → 2Y and G : X → 2X . Consider

(P1) minF (x′) subject to x ∈ X and x′ ∈ G(x).

This problem can be restated as the following unconstrained problem: min(F ◦
G)(x).

Proposition 1.4.3. Assume for (P1) that domF ⊆ ImG and G−1 is l.s.c.

at (z0, x0). If (x0, y0) is a local weakly efficient pair of (P1), then

W 1(F+, z0, y0) ∩ −intC = ∅.

To illustrate sum rules we consider the following problem

(P2) minF (x) subject to g(x) ≤ 0,

where X, Y are as for problem (P1), F : X → 2Y and g : X → Y . Denote

S = {x ∈ X | g(x) ≤ 0Y }. Define G : X → Y by

G(x) =

{
0, if x ∈ S,
g(x), otherwise.
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Consider the following unconstrained set-valued optimization problem, for an

arbitrary positive s,

(PC) min(F + sG)(x).

In a particular case, when Y = R and F is single-valued, (PC) is used to

approximate (P2) in penalty methods (see Rockafellar and Wets 1997).

Proposition 1.4.4. Let x0 ∈ S, y0 ∈ F (x0), and F+ or G+ have a proto-

variational set. If (x0, y0) is a local weak efficient pair of (PC) then

(V 1(F+, x0, y0) + sV 1(G+, x0, 0)) ∩ −intC = ∅.

Examples 1.4.1 and 1.4.2 indicate that Propositions 1.4.3 and 1.4.4 can

be applied while calculus rules of contingent epiderivatives in Jahn and Khan

(2002) cannot be in use.

Chapter 2. Higher-order radial derivatives and optimality
conditions in nonsmooth vector optimization

2.1. Introduction

For a subset A of a normed space X, the contingent cone of A at x̄ ∈ clA is

TA(x̄) = {u ∈ X : ∃tn → 0+,∃un → u,∀n, x̄+ tnun ∈ A}.

However, they capture only the local nature of sets and mappings and are

suitable mainly for convex problems. The (closed) radial cone of A at x̄ ∈ clA

is defined by

RA(x̄) = cone(A− x̄) = {u ∈ X : ∃tn > 0,∃un → u,∀n, x̄+ tnun ∈ A}

and carries global information about A. We have TA(x̄) ⊆ RA(x̄) and this

becomes equality if A is convex (in fact, we need A being only star-shape at

x̄). Hence, the corresponding radial derivative, first proposed in Taa (1997), is

proved to be applicable to nonconvex problems and global optimal solutions.

The radial epiderivatives were introduced by Flores-Bazan (2001), taking some

advantages of other kinds of epiderivatives. In this chapter, we propose notions

of higher-order outer and inner radial derivatives of set-valued maps and obtain

main calculus rules and their application.

2.2. Higher-order radial derivatives and their calculus rules

Definition 2.2.1. Let F : X → 2Y be a set-valued map and u ∈ X.

(i) The mth-order outer radial derivative of F at (x0, y0) ∈ grF is

D
m

RF (x0, y0)(u) = {v ∈ Y : ∃tn > 0 , ∃(un, vn) → (u, v), ∀n, y0 +

tmn vn ∈ F (x0 + tnun)}.

8



(ii) The mth-order inner radial derivative of F at (x0, y0) ∈ grF is

Dm
RF (x0, y0)(u) = {v ∈ Y : ∀tn > 0 , ∀un → u,∃vn → v, ∀n, y0 +

tmn vn ∈ F (x0 + tnun)}.

Example 2.2.1 highlights detailed differences between 2th-order outer radial

derivatives and second-order contingent derivatives.

Definition 2.2.2. Let F : X → 2Y , (x0, y0) ∈ grF . If D
m

RF (x0, y0)(u) =

Dm
RF (x0, y0)(u) for any u ∈ dom[D

m

RF (x0, y0)], then we call D
m

RF (x0, y0) a

mth-order proto-radial derivative of F at (x0, y0).

We obtain some main calculus rules of the mth-order radial derivative.

Proposition 2.2.2. Let F1, F2 : X → 2Y , x0 ∈ int(domF1) ∩ domF2, and

yi ∈ Fi(x0) for i = 1,2. Suppose that F1 has a mth-order proto-radial derivative

at (x0, y1). Then, for any u ∈ X,

D
m

RF1(x0, y1)(u) +D
m

RF2(x0, y2)(u) ⊆ Dm

R (F1 + F2)(x0, y1 + y2)(u).

Proposition 2.2.3. Let F : X → 2Y , G : Y → 2Z with ImF ⊆ domG,

(x0, y0) ∈ grF and (y0, z0) ∈ grG.

(i) Suppose that G has a mth-order proto-radial derivative at (y0, z0). Then,

for any u ∈ X,

D
m

RG(y0, z0)(D
1

RF (x0, y0)(u)) ⊆ Dm

R (G ◦ F )(x0, z0)(u).

(ii) Suppose that G has a proto-radial derivative of order 1 at (y0, z0). Then,

for any u ∈ X,

D
1

RG(y0, z0)(D
m

RF (x0, y0)(u)) ⊆ Dm

R (G ◦ F )(x0, z0)(u).

We also get some sum rules in Propositions 2.2.5 - 2.2.7 by using the obser-

vation that chain rules may often encompass sum rules as special cases.

Examples 2.2.2 - 2.2.4 show that the assumption about the proto-radial

derivative cannot be dispensed in Propositions 2.2.2 and 2.2.3.

Applying the above calculus rules, we get some optimality conditions. Let

X and Y be normed spaces, Y being partially ordered by a pointed closed con-

vex cone C with nonempty interior, F : X → 2Y and G : X → 2X . Consider

the problem

9



(P1) minF (x′) subject to x ∈ X and x′ ∈ G(x).

Proposition 2.2.9. Let ImG ⊆ domF , (x0, z0) ∈ grG, and (z0, y0) ∈ grF .

Assume that (x0, y0) is a Q-minimal solution of (P1).

(i) If F has a mth-order proto-radial derivative at (z0, y0), then, for any

u ∈ X,

D
m

RF (z0, y0)(D
1

RG(x0, z0)(u)) ∩ (−Q) = ∅.

(ii) If F has a proto-radial derivative of order 1 at (z0, y0), then, for any u ∈ X,

D
1

RF (z0, y0)(D
m

RG(x0, z0)(u)) ∩ (−Q) = ∅.

Consider the following unconstrained set-valued optimization problem, for

an arbitrary positive s,

(PC) min(F + sG)(x).

Proposition 2.2.10. Let domF ⊆ domG, x0 ∈ S, y0 ∈ F (x0) and either F

or G has a mth-order proto-radial derivative at (x0, y0) or (x0, 0), respectively.

If (x0, y0) is a Q-minimal solution of (PC), then, for any u ∈ X,

(D
m

RF (x0, y0)(u) + sD
m

RG(x0, 0)(u)) ∩ −Q = ∅.

Examples 2.2.6 and 2.2.7 show cases where Propositions 2.2.9 and 2.2.10 can

be applied while calculus rules of contingent epiderivatives of Jahn and Khan

(2002) do not work.

2.3. Optimality conditions

Let X and Y be normed spaces partially ordered by pointed closed convex

cones C and D, respectively, with nonempty interior. Let S ⊆ X,F : X →
2Y and G : X → 2Z . In this section, we discuss optimality conditions for

the following general set-valued vector optimization problem with inequality

constraints

(P ) minF (x), subject to x ∈ S, G(x) ∩ (−D) 6= ∅.

Let A := {x ∈ S : G(x) ∩ (−D) 6= ∅} and F (A) :=
⋃
x∈A

F (x). We assume that

F (x) 6= ∅ for all x ∈ X.

Definition 2.3.1 (Ha 2010). Let x0 ∈ A, y0 ∈ F (x0), and Q ⊆ Y be an

arbitrary nonempty open cone, different from Y . We say that (x0, y0) is a

Q-minimal solution for (P ) if, for all x ∈ A,

(F (x)− y0) ∩ (−Q) = ∅.
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Various kinds of efficient solutions of (P) are in fact Q- minimal solutions

with Q being appropriately chosen cones. Hence, the optimality conditions for

Q-minimal solutions can imply those for various kinds of efficient solutions of

(P).

Proposition 2.3.1. Let domF ∪ domG ⊆ S and (x0, y0) be a Q-minimal

solution for (P ). Then, for any z0 ∈ G(x0) ∩ (−D) and x ∈ X,

D
m

R (F,G)(x0, y0)(x) ∩ (−Q×−intD) = ∅.

Proposition 2.3.3. Let domF ∪ domG ⊆ S, x0 ∈ A, y0 ∈ F (x0) and z0 ∈
G(x0) ∩ (−D). Then (x0, y0) is a Q-minimal solution of (P ) if the following

condition holds

D
m

R (F,G)(x0, y0)(A− x0) ∩ −(Q×D(z0)) = ∅.

Example 2.3.1. Let X = Y = R, C = R+ and F be defined by

F (x) =


{0}, if x = 0,

{|x|}, if x = − 1

n
, n = 1, 2, ...,

{−1}, if x = 1
n , n = 1, 2, ...,

∅, otherwise.

Let (x0, y0) = (0, 0) and u = 0. Then

D
1

RF (x0, y0)(u) = {0}, D2

RF (x0, y0)(u) = R.

Because D
2

RF (x0, y0)(u)∩(−intC) 6= ∅, (x0, y0) is not a weak efficient solution.

(But D
1

RF (x0, y0) cannot be used here.)

Example 2.3.3 shows that we cannot replace D by D(z0) in the necessary

condition given by Proposition 2.3.1 to obtain a smaller gap with the sufficient

one, expressed by Proposition 2.3.3. Some advantages of sufficient conditions

by using mth-order radial derivative instead of variational sets or contingent

epiderivatives are illustrated in Example 2.3.4.

Chapter 3. First and second-order optimality conditions
using approximations for vector equilibrium problems with
constraints
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3.1. Introduction

Beginning with Blum and Oettli (1994), who stated equilibrium problems as

a direct generalization of variational inequalities and optimization problems,

these general problems have been intensively developed. However, the efforts

have been focused on the solution existence, stability and sensitivity, well-

posedness, properties of solution sets and numerical methods. Very few contri-

butions to optimality conditions for these models can be found in the literature.

Although some similarity can be recognized between minimization and equilib-

rium problems, detailed investigations of optimality conditions for equilibrium

problems seem to be different and interesting. By using first and second-order

approximations as generalized derivatives we establish both necessary and suf-

ficient optimality conditions. Our first-order conditions are shown to be appli-

cable in many cases, where existing ones cannot be applied. The second-order

conditions are new.

3.2. Preliminaries

Definition 3.2.1. Let X be real normed space, x0, v ∈ X and S ⊆ X.

(i) The cone of weak feasible directions to S at x0 is

Wf (S, x0) = {u ∈ X | ∃tn → 0+, ∀n, x0 + tnu ∈ S}.

(ii) The second-order contingent set of S at (x0, v) is

T 2(S, x0, v) = {w ∈ X | ∃tn → 0+, ∃wn → w,∀n ∈ N, x0+tnv+
1

2
t2nwn ∈ S}.

(iii) The asymptotic second-order tangent cone (Penot 1998) of S at (x0, v) is

T ′′(S, x0, v) = {w ∈ X | ∃(tn, rn)→ (0+, 0+) : tnrn → 0, ∃wn → w,

∀n ∈ N, x0 + tnv + 1
2 tnrnwn ∈ S}.

The recession cone of S is defined by

S∞ = {lim tnan | an ∈ S, tn > 0 and lim
n→∞

tn = 0}.

A subset A ⊆ L(X,Y ) (B ⊆ L(X,X, Y )) is called asymptotically pointwise

compact (shortly asymptotically p-compact) if

(a) each bounded net {fα} ⊆ A (⊆ B, respectively) has a subnet {fβ} and

f ∈ L(X,Y ) (f ∈ L(X,X, Y )) such that f = p− lim fβ ;

(b) for each net {fα} ⊆ A (⊆ B, respectively) with lim ‖fα‖ = ∞, the net

{fα/‖fα‖} has a subnet which pointwise converges to some f ∈ L(X,Y ) \ {0}
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(f ∈ L(X,X, Y ) \ {0}).
Definition 3.2.4. (i) A set Af (x0) ⊆ L(X,Y ) is said to be a first-order

approximation (Jourani and Thibault 1993)of f : X → Y at x0 ∈ X if there

exists a neighborhood U of x0 such that, for all x ∈ U ,

f(x)− f(x0) ∈ Af (x0)(x− x0) + o(‖x− x0‖).

(ii) A set (Af (x0), Bf (x0)) ⊆ L(X,Y ) × L(X,X, Y ) is called a second-order

approximation (Allali and Amaroq 1998) of f : X → Y at x0 ∈ X if

(a) Af (x0) is a first-order approximation of f at x0;

(b) f(x)− f(x0) ∈ Af (x0)(x− x0) +Bf (x0)(x− x0, x− x0) + o(‖x− x0‖2).

Let X,Y and Z be normed spaces, S ⊆ X be nonempty and F : X×X → Y, g :

X → Z be mappings. Let C ⊆ Y and K ⊆ Z be pointed closed convex cones.

Denote Ω = {x ∈ S : g(x) ∈ −K} (the feasible set), F (x,Ω) =
⋃
y∈Ω

F (x, y).

Define Fx0
: X → Y by Fx0

(y) = F (x0, y) for y ∈ X and assume that Fx0
(x0) =

0 (which is without loss of generality). The vector equilibrium problem (EP)

with constraints under our consideration is described depending on kinds of

solutions as follows.

Definition 3.2.5.

(i) If intC 6= ∅, a vector x0 ∈ Ω is said to be a local weak solution of problem

(EP), if there exists a neighborhood U of x0 such that

F (x0, U ∩ Ω) 6⊆ −intC.

(ii) A vector x0 ∈ Ω is termed a local Henig-proper solution to (EP) if there

exists a neighborhood U of x0 and a pointed convex cone H ⊆ Y with

C \ {0} ⊆ intH such that

F (x0, U ∩ Ω) ∩ (−H \ {0}) = ∅.

(iii) A vector x0 ∈ Ω is determined as a local Benson-proper solution to (EP)

if there exists a neighborhood U of x0 such that

clcone(F (x0, U ∩ Ω) + C) ∩ (−C) = {0}.

(iv) For m ≥ 1, a vector x0 ∈ Ω is said to be a local firm (known also as

strict/isolated) solution of order m of (EP) if there exists a neighborhood

U of x0 and γ > 0 such that, for all x ∈ U ∩ Ω \ {x0},

(F (x0, x) + C) ∩BY (0, γ‖x− x0‖m) = ∅.

13



3.3. First-order optimality conditions

Now, we establish first order necessary conditions for local weak solution of

(EP) and first order sufficient conditions for local Henig, Benson and firm

solutions of (EP).

Theorem 3.3.2. Assume that C and K have nonempty interior and AFx0
(x0)

and Ag(x0) are asymptotically p-compact first-order approximations of Fx0
and

g, respectively, at x0. If x0 is a local weak solution of (EP), then, ∀u ∈ X,∃P ∈
p−AFx0

(x0),∃Q ∈ Ag(x0),∃(c∗, d∗) ∈ C∗ ×D∗ \ {(0, 0)} such that

〈c∗, P (u)〉+ 〈d∗, Q(u)〉 ≥ 0, 〈d∗, g(x0)〉 = 0.

Furthermore, for u satisfying 0 ∈ int(Q(u) + g(x0) + K) for all Q ∈ Ag(x0),

we have c∗ 6= 0.

Theorem 3.3.4. Let AFx0
(x0) and Ag(x0) be asymptotically p-compact first-

order approximations of Fx0
and g, respectively, at x0 ∈ Ω. Assume that there

exists a pointed cone H ⊆ Y with C \ {0} ⊆ intH. Then, x0 is a local Henig-

proper solution (relative to H) of (EP) if either of the following conditions

holds.

(i) (Fx0 , g) : X → Y × Z is C ×K-arcwise-connected at x0; for all x ∈ Ω

and (P,Q) ∈ p−A(Fx0
,g)(x0)∞ \ {0} one has (P,Q)(L′x0,x(0+)) 6∈ −(C × K)

and, for some (c∗, d∗) ∈ H∗ ×K∗ \ {(0, 0)},

〈c∗, y〉+ 〈d∗, z〉 > 0, 〈d∗, g(x0)〉 = 0, ∀(y, z) ∈ p− clA(Fx0 ,g)
(x0)(L′x0,x(0+)).

(ii) (Fx0
, g) is pseudoconvex at x0; for all x ∈ Ω and (P,Q) ∈ p−A(Fx0

,g)(x0)∞\
{0} one has (P,Q)(x − x0) 6∈ −(C × K) and, for some (c∗, d∗) ∈ H∗ × K∗ \
{(0, 0)},

〈c∗, y〉+ 〈d∗, z〉 > 0, 〈d∗, g(x0)〉 = 0, ∀(y, z) ∈ p− clA(Fx0
,g)(x0)(x− x0).

Theorem 3.3.5. If x0 ∈ Ω and AFx0
(x0) and Ag(x0) are asymptotically p-

compact first-order approximations of Fx0
(.) and g(.), respectively, at x0, then

x0 is a Benson-proper solution of (EP) whenever either of the following condi-

tions holds.

(i) (Fx0
, g) : X → Y ×Z is C×K-arcwise-connected at x0 on Ω; for all x ∈ Ω

and (P,Q) ∈ p−A(Fx0 ,g)
(x0)∞ \ {0} one has (P,Q)(L′x0,x) 6∈ −(C ×K)

and, for some (c∗, d∗) ∈ C∗i ×K∗ \ {(0, 0)},

〈c∗, y〉+〈d∗, z〉 ≥ 0 〈d∗, g(x0)〉 = 0, ∀(y, z) ∈ p− clA(Fx0 ,g)
(x0)(L′x0,x(0+)).
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(ii) (Fx0
, g) is pseudoconvex at x0; for all x ∈ Ω and (P,Q) ∈ p−A(Fx0

,g)(x0)∞\
{0} one has (P,Q)(x − x0) 6∈ −(C ×K) and, for (c∗, d∗) ∈ C∗i ×K∗ \
{(0, 0)},

〈c∗, y〉+ 〈d∗, z〉 ≥ 0, 〈d∗, g(x0)〉 = 0, ∀(y, z) ∈ p− clA(Fx0
,g)(x0)(x− x0).

Theorem 3.3.6. Assume that X is finite dimensional, x0 ∈ Ω and AFx0
(x0)

and Ag(x0) are asymptotically p-compact first-order approximations of Fx0
and

g, respectively, at x0. Suppose that, for all u ∈ T (Ω, x0) with norm one, all P ∈
p− clAFx0

(x0) ∪ (p−AFx0
(x0)∞ \ {0}) and Q ∈ p− clAg(x0) ∪ (p−Ag(x0)∞ \

{0}), there exists (c∗, d∗) ∈ C∗ ×K∗ \ {(0, 0)} such that

〈c∗, Pu〉+ 〈d∗, Qu〉 > 0, 〈d∗, g(x0)〉 = 0.

Then, x0 is a local firm solution of order 1 of (EP).

Examples 3.3.1-3.3.3 indicate that our results can be applied in some cases

when others previous results are out of use.

3.4. Second-order optimality conditions

In this section, we establish second-order necessary and sufficient conditions

for weak and firm solutions of (EP) in both cases : Fx0 and g are or are not

first-order Fréchet differentiable at x0.

Theorem 3.4.1. Let C be polyhedral, x0 ∈ Ω and d∗ ∈ K∗ with 〈d∗, g(x0)〉 =

0. Assume that (F ′x0
(x0), BFx0

(x0)) and (g′(x0), Bg(x0)) are asymptotically

p-compact second-order approximations of Fx0
and g, respectively, at x0 with

Bg(x0) being norm-bounded.

If x0 is a local weak solution of (EP) then, for any v ∈ T (G(d∗), x0), there

exists c∗ ∈ B, where B is finite and cone(coB) = C∗, such that 〈c∗, F ′x0
(x0)v〉+

〈d∗, g′(x0)v〉 ≥ 0. If, furthermore, c∗ ◦ F ′x0
(x0) + d∗ ◦ g′(x0) = 0, then either,

for some M ∈ p− clBFx0
(x0) and N ∈ p− clBg(x0),

〈c∗,M(v, v)〉+ 〈d∗, N(v, v)〉 ≥ 0

or, for some M ∈ p−BFx0
(x0)∞ \ {0},

〈c∗,M(v, v)〉 ≥ 0.

Theorem 3.4.2. Assume that X is finite dimensional, x0 ∈ Ω and

(F ′x0
(x0), BFx0

(x0)) and (g′(x0), Bg(x0)) are asymptotically p-compact second-

order approximations of Fx0
and g, respectively, at x0 with norm-bounded

Bg(x0). Impose further the existence of (c∗, d∗) ∈ C∗0 × K∗0 such that, for

all v ∈ T (Ω, x0) with ‖v‖ = 1 and 〈c∗, F ′x0
(x0)v〉 = 〈d∗, g′(x0)v〉 = 0,
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(i) for all M ∈ p− clBFx0
(x0) and N ∈ p− clBg(x0), one has

〈c∗,M(v, v)〉+ 〈d∗, N(v, v)〉 > 0;

(ii) for all M ∈ p−BFx0
(x0)∞ \ {0}, one has

〈c∗,M(v, v)〉 > 0.

Then, x0 is a local firm solution of order 2 to (EP).

When Fx0
and g are not first-order Fréchet differentiable at x0, using first-

order approximations of Fx0
and g instead of F ′x0

and g′(x0), we obtain second-

order optimality conditions for the nondifferentiable case in Theorems 3.4.3

and 3.4.4. Applications of second-order optimality conditions for (EP) are

illustrated in examples 3.4.1-3.4.4.

Chapter 4. First and second-order optimality conditions
for multiobjective fractional programming

4.1. Introduction

Fractional programming has been an intensively developed topic in optimiza-

tion. Along with numerous contributions to vector optimization, a very impor-

tant area with significant practical applications due to the presence of many

criteria in models met in science, economics and engineering, multiple objective

fractional programming has also become attractive to many researchers. In-

creasing efforts of dealing with nonsmooth problems, relying on various general-

ized derivatives, can be recognized in the literature for fractional programming.

Severe convexity requirements, especially in sufficient optimality conditions,

have been gradually reduced, using relaxed convexity notions. We observe that

almost no contributions to problems in infinite dimensional spaces and very few

contributions for second-order optimality conditions. Convexity assumptions

have not been completely removed so far. Inspired by these observations, we

consider in the present paper a nonsmooth multiobjective fractional program-

ming problem in normed spaces. To avoid completely convexity restrictions we

employ first and second-order approximations as generalized derivatives.

4.2. Preliminaries

LetX,Y be normed spaces, K ⊆ Y and C ⊆ Rm be pointed closed convex cones

with nonempty interior. We consider the following multi-objective fractional

programming problem

(P ) minϕ(x) =

(
f1(x)

g1(x)
, ...,

fm(x)

gm(x)

)
s.t. h(x) ∈ −K,
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with fi, gi : X → R, i = 1, 2, ...,m, h : X → Y and all gi being continuous.

For m ∈ N, f : X → Y is said to be m−calm at x0 if there exists L > 0

and neighborhood U of x0 such that, for all x ∈ U ,

‖f(x)− f(x0)‖ ≤ L‖x− x0‖m.

Then, L is called the coefficient of calmness of f . (1-calmness is called simply

as calmness.)

Proposition 4.2.1. Let f : X → Y .

(i) Suppose that (Af (x0), Bf (x0)) is a second-order approximation of f at

x0 with Af (x0) = {0} and Bf (x0) is bounded. Then, f is 2-calm at x0.

(ii) Let Y = R. If the Fréchet derivative f ′ exists in a convex neighborhood

U of x0, is calm at x0 with coefficient L and f ′(x0) = 0, then f is 2-calm

at x0 with the same coefficient L.

(iii) If f is 2-calm at x0, then f ′(x0) = 0.

4.3. Properties and calculus rules of approximations

In the following propositions some calculus rules, needed in establishing opti-

mality conditions for problem (P), are developed.

Proposition 4.3.1. Let fi : X → Y and λi ∈ R, for i = 1, 2, ..., k. Let Afi(x0)

be first-order approximations of fi at x0, respectively. Then, the following

assertions hold.

(i)
k∑
i=1

λiAfi(x0) is a first-order approximation of
k∑
i=1

λifi at x0.

(ii) Let Yi be normed spaces, fi : X → Yi, i = 1, ...k, f = (f1, f2, ..., fk)

and Af1(x0), ..., Afk(x0) be first-order approximations of f1, ..., fk, respec-

tively, at x0. Then, Af1(x0)× . . . Afk(x0) is a first-order approximation

of f at that point.

(iii) Let Y be a Hilbert space and f, g : X → Y , 〈f, g〉(x) = 〈f(x), g(x)〉.
If Af (x0), Ag(x0) are first-order approximations of f and g at x0 and

f, g are calm at x0, then 〈g(x0), Af (x0)〉+ 〈f(x0), Ag(x0)〉 is a first-order

approximation of 〈f, g〉 at x0.

(iv) Let f : X → Y and g : Y → Z. If f is calm at x0, then Ag(f(x0))◦Af (x0)

is a first-order approximation of f ◦ g at x0.
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Proposition 4.3.2. Let f, g : X → R. Let Af (x0), Ag(x0) be first-order

approximations of f and g, respectively, at x0. Then, the following assertions

hold.

(i) If f or g is calm at, x0 and at least one of f(x0) and g(x0) is nonzero

whenever both Ag(x0) and Af (x0) are unbounded, then g(x0)Af (x0) +

f(x0)Ag(x0) is a first-order approximation of f.g at x0.

(ii) If g is calm at x0 and g(x0) 6= 0, then

g(x0)Af (x0)− f(x0)Ag(x0)

g2(x0)

is a first-order approximation of f/g at x0. When X is finite dimensional,

the calmness can be reduced to continuity.

With similar assumptions and notations, we obtain sum rule, Descartes

product rule and inner product rule for second-order approximations as follows.

Proposition 4.3.4. Let f, g : X → R, g be 2-calm at x0 and (Af (x0), Bf (x0)),

(0, Bg(x0)) be second-order approximations of f and g, respectively, at x0.

Then,

(i) (g(x0)Af (x0), g(x0)Bf (x0) + f(x0)Bg(x0)) is a second-order approxima-

tion of f.g at x0;

(ii) if g(x0) 6= 0, then

(Af (x0)

g(x0)
,
g(x0)Bf (x0)− f(x0)Bg(x0)

g2(x0)

)
is a second-order approximation of f/g at x0.

The assumed 2-calmness of g in Proposition 4.3.4 is restrictive. But, in Ex-

ample 4.3.1, we show that this cannot be replaced by the calmness assumption.

Proposition 4.3.5.

(i) Let λ1, λ2 ∈ R, λ1 6= 0. If A1, A2 ∈ L(X,Y ) are asymptotically p-

compact sets with A2 ∈ L(X,Y ) being bounded then λ1A1 + λ2A2 is an

asymptotically p-compact set.

(ii) For asymptotically p-compact sets Ai ∈ L(X,Y ), i = 1, ..., k,
k∏
i=1

Ai is also

asymptotically p-compact.
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4.4. First order optimality conditions

Proposition 4.4.1 (Necessary condition). For problem (P), let gi(x0) 6= 0

and Afi(x0), Agi(x0), Ah(x0) be asymptotically p-compact first-order approx-

imations of fi, gi and h, respectively, at x0, with Agi(x0) being bounded, for

i = 1, ...m. Denote

Aϕ(x0) :=

m∏
i=1

gi(x0)Afi(x0)− fi(x0)Agi(x0)

g2
i (x0)

.

If x0 is a local weak solution of (P), then, ∀u ∈ X, ∃P ∈ p− clAϕ(x0) ∪
(p−Aϕ(x0)∞ \ {0}), ∃Q ∈ clAh(x0), ∃(c∗, d∗) ∈ C∗ ×D∗ \ {(0, 0)},

〈c∗, Pu〉+ 〈d∗, Qu〉 ≥ 0, 〈d∗, h(x0)〉 = 0.

Furthermore, for u satisfying 0 ∈ int(Q(u) + h(x0) + K), for all Q ∈ Ah(x0),

we have c∗ 6= 0.

Proposition 4.4.2 (Sufficient condition). Let X = Rn, x0 ∈ h−1(−K).

Assume that, for i = 1, ...,m, Afi(x0), Agi(x0), Ah(x0) are asymptotically p-

compact first-order approximations of fi, gi and h at x0, with all Agi(x0) being

bounded. Denote Aϕ(x0) =

m∏
i=1

gi(x0)Afi(x0)− fi(x0)Agi(x0)

g2
i (x0)

. Impose further

that, for all u ∈ T (h−1(K), x0) with norm one, all P ∈ clAϕ(x0)∪ (Aϕ(x0)∞ \
{0}) and all Q ∈ p− clAh(x0) ∪ (p−Ah(x0)∞ \ {0}), there exists (y∗, z∗) ∈
C∗ ×K∗ \ {(0, 0)} such that

〈y∗, Pu〉+ 〈z∗, Qu〉 > 0, 〈z∗, h(x0)〉 = 0.

Then, x0 is a local firm solution of order 1 of (P).

Note that in most of the known optimality conditions for fractional prob-

lems, X is assumed to be finite dimensional. Furthermore, when applied to

the finite dimensional case, Theorem 4.4.1 is also advantageous, since f is not

required to be continuous.

Example 4.4.1. Let X = R,m = 1, Y = R, C = K = R+, x0 = 0,

f(x) =

{
− 1
x , if x > 0,

−x, if x ≤ 0,

g(x) = x2 + 1, and h(x) = − 3
√
x+ x2. We can take approximations Ag(x0) =

{0} and Ah(x0) = (−∞, β) with β < 0 being arbitrary and fixed. Since f is

(infinitely) discontinuous at x0 = 0, the mentioned known results are not in

use. Since g(x0) = 1, f(x0) = 0 and, for −1 < α < 0, Af (x0) = (−∞, α), one

has Aϕ(x0) = Af (x0), clAϕ(x0) = (−∞, α], Aϕ(x0)∞ = (−∞, 0]. For u = 1,
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we see that, ∀P ∈ clAϕ(x0) ∪ (Aϕ(x0)∞ \ {0}), ∀Q ∈ clAh(x0) , ∀(c∗, d∗) ∈
C∗ ×K∗ \ {(0, 0)} = R2

+ \ {(0, 0)} with 〈d∗, h(x0)〉 = 0,

〈c∗, Pu〉+ 〈d∗Q, u〉 = c∗P + βd∗ < 0.

According to Theorem 4.4.1, x0 is not a local weak solution of (P).

4.5. Second order optimality conditions

Proposition 4.5.1. Assume that C is polyhedral, gi(x0) 6= 0, gi is 2-calm

at x0, for i = 1, ...,m, and z∗ ∈ K∗ with 〈z∗, g(x0)〉 = 0. Impose further

that (f ′i(x0), Bfi(x0)), (0, Bgi(x0)) and (h′(x0), Bh(x0)) are asymptotically p-

compact second-order approximations of fi, gi and h, respectively, at x0 with

Bgi(x0) and Bh(x0) being bounded, for i = 1, ...,m. Set

Aϕ(x0) =

m∏
i=1

f ′i(x0)

gi(x0)
, Bϕ(x0) =

m∏
i=1

gi(x0)Bfi(x0)− fi(x0)Bgi(x0)

g2
i (x0)

.

If x0 is a local weak solution of (P), then, for any v ∈ T (H(z∗), x0), there

exists y∗ ∈ B, where B is finite and cone(coB) = C∗, such that 〈y∗, Aϕ(x0)v〉+
〈z∗, h′(x0)v〉 ≥ 0. If, furthermore, y∗ ◦Aϕ(x0) + z∗ ◦h′(x0) = 0, we have either

M ∈ p− clBϕ(x0) and N ∈ p− clBh(x0) such that

〈y∗,M(v, v)〉+ 〈z∗, N(v, v)〉 ≥ 0,

or M ∈ p−Bϕ(x0)∞ \ {0} such that

〈y∗,M(v, v)〉 ≥ 0.

Proposition 4.5.2. Assume that X is finite dimensional, (x0) ∈ h−1(−K),

gi(x0) 6= 0, gi 2-calm at x0 and (f ′i(x0), Bfi(x0)), (0, Bgi(x0)) and (h′(x0), Bh(x0))

are asymptotically p-compact second-order approximations of fi, gi and h, re-

spectively, at x0, with Bh(x0) being bounded, for i = 1, ...,m . Set Aϕ(x0) and

Bϕ(x0) as in Theorem 4.5.1 and

C∗0×K∗0 = {(y∗, z∗) ∈ C∗×K∗\{(0, 0)} | y∗◦A1(x0)+z∗◦h′(x0) = 0, 〈z∗, h(x0)〉 = 0}.

Impose further the existence of (y∗, z∗) ∈ C∗0 ×K∗0 such that, for all

v ∈ T (h−1(−K), x0) with ‖v‖ = 1 and 〈y∗, Aϕ(x0)v〉 = 〈z∗, h′(x0)〉 = 0, one

has

(i) for each M ∈ clBϕ(x0) and N ∈ p− clBh(x0),

〈y∗,M(v, v)〉+ 〈z∗, N(v, v)〉 > 0;
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(ii) for each M ∈ p−Bϕ(x0)∞ \ {0},

〈y∗,M(v, v)〉 > 0.

Then, x0 is a local firm solution of order 2.

We present second-order optimality conditions for the nondifferentiable case in

Theorems 4.5.3 and 4.5.4. Example 4.5.2 illustrates that Proposition 4.5.1 can

be employed in infinite dimensional spaces while Theorem 4.1 of Reedy and

Mukherjee (2002) cannot.

Chapter 5. Local uniqueness of solutions to vector equi-
librium problems using approximations

5.1 Introduction

As known from Chapter 3, for equilibrium problems, main efforts have been

focussed on the solution existence, stability, well-posedness, algorithms, duality

and optimality conditions. Although the uniqueness of solutions is an impor-

tant theoretical topic, we observe that it was investigated mainly for mathemat-

ical programming and variational inequalities, particular cases of equilibrium

problems, see Tawid (2002), Luc (2002), Luc and Noor (2003), and for a scalar

equilibrium problem only in Khanh et al. (2006). This motivates our con-

sideration of vector equilibrium problems. Furthermore, we will employ the

approximation as a generalized derivative. Results based on this derivative

may be not only more general but also under weaker assumptions than those

using other generalized derivatives. The results in [5] is included in this chap-

ter.

5.2. Preliminaries

Let H ⊆ Rn be nonempty, K ⊆ Rn nonempty closed convex and C ⊆ Rl be

a pointed closed convex cone with nonempty interior. Let f : Rn → Rm, g :

Rn → Rn and ϕ : Rm×Rn → Rl with the components (ϕ1(y, x), ϕ2(y, x), ..., ϕl).

Setting Ω = {x ∈ H with g(x) ∈ K}, the vector strong equilibrium problem

(SEP) (weak equilibrium problem (WEP)) under our consideration is:

find x0 ∈ Ω such that, for every x ∈ Ω,

ϕ(f(x0), g(x))− ϕ(f(x0), g(x0)) ∈ C

(ϕ(f(x0), g(x))− ϕ(f(x0), g(x0)) 6∈ −intC, respectively).
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Notice that if l = 1, C = R+, n = m,H = K, f = g ≡ I and if ϕ(x, x) = 0

for all x ∈ K, the the above problems collapse to the classical equilibrium

problem: find x0 ∈ K such that, for every x ∈ K,

ϕ(x0, x) ≥ 0.

Let h : Rn → Rm be continuous. A closed subset ∂h(x0) ⊆ L(Rn,Rm) is

called (Jeyakumar and Luc 1998) a pseudo Jacobian (known also as approxi-

mate Jacobian) of h at x0 ∈ Rn if, for each v ∈ Rm and u ∈ Rn,

(vh)+(x0, u) ≤ sup
M∈∂h(x0)

〈v,Mu〉,

where (g)+ denotes the upper Dini directional derivative of a scalar function

g, i.e.,

(vh)+(x0, u) := lim sup
t↓0

〈v, h(x0 + tu)− h(x0)〉
t

.

A pseudo Jacobian ∂h(x0) is termed a Fréchet pseudo Jacobian of h at x0 if

there is a neighborhood U of x0 such that, for each x ∈ U,

h(x)− h(x0) ∈ ∂h(x0)(x− x0) + o(‖x− x0‖).

5.3. Sufficient conditions for the local uniqueness of solutions

We establish now a sufficient condition for the local uniqueness of solutions of

a strong equilibrium problem (SEP). By f̂ we denote the restriction of f to Ω.

Theorem 5.3.1. Let x0 ∈ Ω, f̂ be continuous at x0 and Af̂ (x0) and Aĝ(x0)

be approximations of f̂ and ĝ, respectively, where Aĝ(x0) is bounded. Assume

that g(H) ⊇ K and the following conditions hold.

(i) For y in a neighborhood of f(x0), ϕ(y, .) has first and second Fréchet

derivatives, denoted by ϕ′2 and ϕ′′22, which are jointly continuous (in

both variables) at (f(x0), g(x0)).

(ii) ϕ′2(., g(x0)) and ϕ′′22(., g(x0)) have approximations at f(x0), denoted by

(Aϕ)1[ϕ′2(f(x0), g(x0))] and (Aϕ)1[ϕ′′22(f(x0), g(x0))], respectively, where

(Aϕ)1[ϕ′′22(f(x0), g(x0))] is bounded.

If x0 is a solution of (SEP), then each of the following conditions is sufficient

for its local uniqueness
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(a) for every M ∈ clAf̂ (x0) ∪ (Af̂ (x0)∞ \ {0}), G ∈ clAĝ(x0) and N ∈
cl(Aϕ)1[ϕ′2(f(x0), g(x0))] ∪ ((Aϕ)1[ϕ′2(f(x0), g(x0))]∞ \ {0}) one has

[N(M(v))]G(v) 6∈ −C

for all v ∈ T (H,x0) \ {0} with G(v) ∈ Cϕ(K, g(x0));

(b) K is polyhedral and condition (a) is satisfied for all v ∈ T (H,x0) \ {0}
with G(v) ∈ Cϕ(K, g(x0)) and

ϕ′2(f(x0), x0) +N(M(v))

∈ [T (K, g(x0))]∗C ∪ ([T (K, g(x0))]∗C − ϕ′′22(f(x0), g(y0))G(v)).

By a similar proof with some changes, we obtain sufficient conditions for the

local uniqueness of solutions of weak equilibrium problem in Theorem 5.3.2.

5.4. Special cases and examples

As equilibrium problems encompass many optimization-related problems, we

can derive for them consequences from the results obtained in several important

particular cases.

If l = 1, C = R+ and ϕ(y, x) = 〈y, x〉, our two problems (SVP) and (WEP)

come down to the (scalar) generalized variational inequality of

(GVI): finding x0 ∈ Ω such that, for every x ∈ Ω,

〈f(x0), g(x)− g(x0)〉 ≥ 0.

More specifically, when g is the identity, (GVI) becomes the classical (Stam-

pacchia) variational inequality, denoted by (VI).

Corollary 5.4.1. Let x0 ∈ Ω, f̂ be continuous at x0, g(H) ⊇ K and Af̂ (x0)

and Aĝ(x0) be approximations of f̂ and ĝ, respectively, where Aĝ(x0) is bounded.

If x0 is a solution of (GVI), then each of the following conditions is sufficient

for the local uniqueness of x0:

(a) for every M ∈ clAf̂ (x0) ∪ (Af̂ (x0)∞ \ {0}), G ∈ clAĝ(x0) one has

〈M(v), G(v)〉 > 0

for all v ∈ T (H,x0)\{0} with G(v) ∈ C(f,g)(K, g(x0)) = {u ∈ T (K, g(x0)) :

〈f(x0), u〉 = 0};
(b) K is polyhedral and condition (a) is satisfied for all v ∈ T (H,x0) \ {0}

with G(v) ∈ C(f,g)(K, g(x0)) such that

f(x0) +M(v) ∈ [T (K, g(x0))]∗.
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Turning now to a result for weak problems as example, we have the fol-

lowing immediate consequence of Theorem 5.3.2 for the classical weak vector

equilibrium problem, i.e., the case with n = m, H = K, f = g being the

identity and ϕ(x, x) = 0, for all x ∈ Rn.

Corollary 5.4.2. Consider the classical weak vector equilibrium problem. Let

the following assumptions be fulfilled.

(i) For each y in a neighborhood of x0, the map ϕ(y, .) has first and second

Fréchet derivatives, denoted by ϕ′2 and ϕ′′22, which are jointly continuous

(in both variables) at (x0, x0).

(ii) ϕ′2(., x0) and ϕ′′22(., x0) have approximations at x0, denoted by (Aϕ)1[ϕ′2(x0, x0)]

and (Aϕ)1[ϕ′′22(x0, x0)], respectively, with the latter being bounded.

If x0 is a solution, then each of the following conditions is sufficient for its local

uniqueness

(a) for every N ∈ cl(Aϕ)1(ϕ′2(x0, x0)) ∪ ((Aϕ)1(ϕ′2(x0, x0))∞ \ {0}, one has

[N(v)](v) ∈ intC,

for all v ∈ Cϕ1 (K,x0) \ {0};

(b) K is polyhedral and, for every N ∈ cl(Aϕ)1(ϕ′2(x0, x0))∪((Aϕ)1(ϕ′2(x0, x0))∞\
{0}, one has

[N(v)](v) ∈ intC,

for all v ∈ Cϕ1 (K,x0) \ {0} with

ϕ′2(x0, x0) +N(v) ∈ [T (K,x0)]]C ∪ ([T (K,x0)]]C − ϕ
′′
22(x0, x0)).

Examples 5.5.1-5.5.3 show that Theorem 5.3.1 and its corollaries can be

applied while previous results cannot.
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