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Abstract

This thesis proposes an approach to integrate the use of time-related
stochastic properties in a continuous design process based on models at runtime.
Time-related specification of services are an important aspect of component-based
architectures, for instance in distributed, volatile networks of computer nodes.
The models at runtime approach eases the management of such architectures
by maintaining abstract models of architectures synchronized with the physical,
distributed execution platform. For self-adapting systems, prediction of delays
and throughput of a component assembly is of utmost importance to take
adaptation decision and accept evolutions that conform to the specifications.
To this aim we define a metamodel extension based on stochastic Petri nets
as an internal time model for prediction. We design a library of patterns to
ease the specification and prediction of common time properties of models at
runtime and make the synchronization of behaviors and structural changes easier.
Furthermore, we apply the approach of Aspect-Oriented Modeling to weave the
internal time models into timed behavior models of the component and the
system. Our prediction engine is fast enough to perform prediction at runtime in
a realistic setting and validate models at runtime.

Keywords: Model-Driven Engineering, Performance Prediction, Validation
at Runtime
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Résumé

Cette thèse propose une approche pour intégrer l’utilisation des propriétés
temporisées stochastiques dans un processus continu de design fondé sur des
modèles à l’exécution. La spécification temporelle de services est un aspect
important des architectures à base de composants, par exemple dans des réseaux
distribués volatiles de nœuds informatiques. L’approche models@runtime facilite
la gestion de ces architectures en maintenant des modèles abstraits des archi-
tectures synchronisés avec la structure physique de la plate-forme d’exécution
distribuée. Pour les systèmes auto-adaptatifs, la prédiction de délais et de
débit d’un assemblage de composants est primordial pour prendre la décision
d’adaptation et accepter les évolutions qui sont conformes aux spécifications
temporelles. Dans ce but, nous définissons une extension du métamodèle
fondée sur les réseaux de Petri stochastiques comme un modèle temporisé
interne pour la prédiction. Nous concevons une bibliothèque de patrons pour
faciliter la spécification et la prédiction des propriétés temporisées classiques
de modèles à l’exécution et rendre la synchronisation des comportements
et des changements structurels plus facile. D’autre part, nous appliquons
l’approche de la modélisation par aspects pour tisser les modèles temporisés
internes dans les modèles temporisés de comportement du composant et du
système. Notre moteur de prédiction est suffisament rapide pour effectuer la
prédiction à l’exécution dans un cadre réaliste et valider des modèles à l’exécution.

Mots clés: Ingénierie Dirigée par les Modèles, Prédiction de Performance,
Validation à l’exécution.
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Résumé en français

0.1 Introduction

La conception des logiciels à composants est aujourd’hui une approche bien établie
pour la construction de systèmes réutilisables et fiables. Dans ces systèmes, la
confiance repose sur les spécifications précises des interfaces des composants et sur
l’application des techniques de validation sur des implémentations de composants.
Les spécifications comprennent des propriétés de type, des comportements et des
propriétés quantitatives [19]. Un système temps réel souple souligne la perfor-
mance liée au temps comme une qualité essentielle. Les tâches de spécification
de ce genre de système classent le temps de réponse et le débit comme des at-
tributs les plus importants du comportement attendu du système. Les architectes
en logiciel s’appuient donc sur des techniques d’analyse quantitative pour valider
les implémentations par rapport aux spécifications. Cette tâche de validation
est principalement une activité faite au moment de la conception, et qui four-
nit une prédiction de propriétés quantitatives pour les besoins et les capacités
du système avant que ces systèmes soient déployés. Les concepteurs comptent
sur ces prédictions pour concevoir une architecture appropriée qui répond aux
spécifications, tant qu’un ensemble d’exigences correspondantes reste valable au
moment de l’exécution. Les systèmes dits à temps réel souple tels que les sys-
tèmes de l’internet des objets (par exemple les réseaux de capteurs intelligents
et assistants numériques personnels) sont une classe particulière de systèmes à
base de composants, car étant très flexible dans leur conception et configuration.
Dans cette thèse, nous nous concentrons sur cette catégorie de systèmes qui sup-
porte les changements architecturaux au moment de l’exécution, sans s’arrêter
pour se redéployer, mais en effectuant un redéploiement à chaud. Ce genre de
système est parfois nommé système éternel. Le changement architectural est une
conséquence de deux causes principales d’évolution : (1) les changements de la
définition de service du système ; (2) les changements de l’implémentation du sys-
tème. Les changements de la définition de service comprennent les changements
de spécification des systèmes du fait de changements des besoins des utilisateurs,
par exemple, la suppression ou l’addition de fonctionnalités, des changements
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de l’exigence de débit et de temps, les changements de préférences pour la ges-
tion d’énergie sur un appareil mobile, etc. Les changements de l’implémentation
de service comprennent des changements dans la disponibilité des ressources de
l’environnement de soutien du système, par exemple la fluctuation de la bande
passante du réseau ou l’addition de nouveaux nœuds de calcul, par exemple les
dispositifs mobiles équipés avec les capteurs. Les systèmes de l’internet des ob-
jets sont de grands ensembles de nœuds de calcul. Ces systèmes sont oppor-
tunistes par conception: pour une application donnée, sa plate-forme d’exécution
se compose d’un ensemble de nœuds de calcul en continuelle évolution, avec une
puissance de calcul et des capacités de communication très diverses. Par exem-
ple, un système social coopératif en temps réel peut connecter les utilisateurs qui
partagent des propriétés géographiques (par exemple le cyclisme dans la même
ville). Lorsque les utilisateurs se déplacent et changent d’activité leurs assistants
personnels numériques se connectent et se déconnectent fréquemment du réseau
social, tandis que leurs capacités de communication fluctuent rapidement [93].
Ce genre de système doit être en mesure de se reconfigurer à la volée, souvent
en temps réel et de manière autonome, sans nécessiter un redémarrage après la
reconfiguration. Ces systèmes ont des caractéristiques architecturales spécifiques,
et leurs techniques de conception sont un sujet de recherche actif [27]. Toutefois,
la flexibilité ne devrait pas être implémentée au détriment de la perte de fiabilité
dans la justesse de ces systèmes adaptatifs. Comme la conceptions de ces systèmes
évolue continuellement sans supervision ni intervention humaine, ils doivent aussi
mettre en œuvre une auto-validation sans intervention humaine. Par conséquent,
un sous-système autonome d’auto-validation doit être présent dans le système
auto-adaptatif. Dans cette thèse, nous introduisons un processus de conception
et de validation pour la prédiction à la volée des propriétés extra-fonctionnelles
liées au temps. Notre approche est triple :

1. Nous intégrons les réseaux de Pétri colorés stochastiques comme une ex-
tension du métamodèle pour spécifier les propriétés liées au temps sur les
composants.

2. Nous mettons en place une bibliothèque de patrons fréquemment utilisés
pour aider les concepteurs à superposer des descriptions de comportement
temporisé sur des modèles de services fonctionnels.

3. Nous fournissons une intégration des outils d’évaluation de temps dans
les modèles à l’exécution, avec un temps d’évaluation compatible avec des
changements rapides dans l’architecture.

0.2 Contributions

Notre approche s’appuie sur le paradigme des models@runtime qui emploient à
l’exécution des modèles architecturaux. Nous fournissons des extensions pour
gérer les propriétés stochastiques liées au temps (par exemple le délai moyen et
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le débit, et le pire cas de temps d’exécution). Plus précisément, nous nous ap-
puyons sur des modèles structurels à l’exécution [82] superposés avec des patrons
de conception de haut niveau fournissant des descriptions comportementales tem-
porisées. Les techniques d’adaptation reposant sur les principes surveiller, anal-
yser, planifier et exécuter (MAPE) fonctionnent au niveau de la plate-forme, tan-
dis que les modèles à l’exécution supporte des niveaux d’abstraction plus élevés.
Le MAPE et les modèles à l’exécution sont complémentaires : en utilisant notre
extension d’expression temporelle de propriétés, le MAPE peut utiliser des pro-
priétés liées au temps des modèles à l’exécution pour raisonner sur les modèles
avant leur déploiement. Réciproquement, les estimations calculées au niveau ab-
strait par des algorithmes de prédiction pour les modèles à l’exécution peuvent
être comparées aux valeurs réelles obtenues en surveillant la plate-forme après
l’exécution du plan de déploiement à chaud.

Cependant, la véritable puissance des modèles à l’exécution provient de
l’utilisation de la prédiction : quand l’architecture actuelle n’atteint pas l’objectif,
les alternatives architecturales doivent être produites et évaluées. Les algorithmes
de prédiction peuvent aider à évaluer les propriétés quantitatives de ces architec-
tures. Ces algorithmes sont souvent spécialisés et prennent des modèles spécifiques
partiels comme les entrées et les sorties, ce qui conduit à nouveau au problème
de la correspondance entre le modèle architectural et les modèles de prédiction
spécialisés qui sont utilisés par les outils. Notre processus de conception vise à
combiner des techniques spécifiques de prédiction quantitative avec des modèles
à l’exécution. Pour cela nous nous appuyons sur des extensions du métamod-
èle de composants Kevoree [1, 39]. Ces extensions supportent la description de
comportements temporels à l’aide de patrons de conception de réseaux de Petri
stochastiques colorés. L’extension pour augmenter modèles de composants avec
les réseaux de Petri colorés est représentée sur la Figure 3.6. Ces comportements
peuvent être associés aux ports de composants (pour des services requis ou four-
nis). Ils peuvent être liés aux opérations à partir de la même spécification de
composant, ou sur les opérations dans un assemblage d’instances de composants.

0.2.1 Les patrons et le modèle de performance des composants
Kevoree

Dans les sections précédentes, nous avons indiqué que la modélisation du com-
portement des composants logiciels et des systèmes logiciels en terme de réseaux
de Petri colorés s’est avéré être une bonne plate-forme pour capturer des infor-
mations critiques dans les systèmes temps réel, réactifs, concurrents et distribués.
Toutefois, dans le développement des logiciels modernes, il n’est pas évident que
les réseaux de Petri colorés soient familiers aux concepteurs. En conséquence,
nous avons défini un ensemble de patrons pour modéliser les réseaux de Petri
colorés, dans le but de faciliter le travail des développeurs. Une bibliothèque de
patrons peut être établie à partir des expériences acquises en matière de mod-
élisation. Les développeurs utilisent souvent des patrons dans la bibliothèque
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Figure 1 – Behavior model for Kevoree

pour construire leurs modèles de manière efficace, tout en évitant de réinventer
des solutions déjà existantes pour résoudre leurs problèmes. Dans [86], les au-
teurs ont proposé un ensemble de 34 modèles de conception empiriques pour la
modélisation de systèmes d’information fondés sur les processus et les protocoles
de communication pour des systèmes embarqués distribués. Ces modèles servent
à résoudre les problèmes qui apparaissent lors de la modélisation au moyen de
réseaux de Petri colorés, et ils ont été documentés dans un format qui permet
aux concepteurs de comprendre facilement et appliquent ces modèles dans leurs
propres problèmes. Les concepteurs doivent déterminer les propriétés recherchées
puis construire leurs modèles CPN en utilisant ces patrons.

Pour simplifier le travail des développeurs, nous proposons d’employer des
concepts d’interfaces et de paramètres de patrons. Les interfaces d’un patron sont
des transitions et des places qui peuvent être connectés avec des transitions et des
places externes. Les paramètres du patron sont des informations qui caractérisent
une instance du patron. Ces paramètres peuvent être des valeurs de jetons ou le
nom de la transition externe (le service requis). En conséquence, l’application
d’un patron donné n’est pas faite par copier-coller d’un modèle existant mais par
la mise en correspondance des interfaces des patrons avec les éléments existants et
la définition des valeurs des paramètres. Ce procédé est analogue aux techniques
de conception par aspects. En utilisant le langage de transformation de modèle
Kermeta, nous instancions les patrons utilisés à partir du modèle de comportement
du composant Kevoree. Dans cette thèse, nous montrons des exemples de patrons
pour modéliser les services synchronisés, les chaînes de diffusion de Kevoree.

0.2.2 Composition des modèles

Cette section explique comment composer les modèles de réseaux de Petri col-
orés des services de composants, en utilisant l’outil de transformation de modèles
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Kermeta. Le résultat de la transformation produit un modèle du système entier
qui peut être ensuite être simulé par l’outil CPNtools. Grâce à la similarité de
la sémantique de notre métamodèle et de l’outil CPNTools, nous n’avons besoin
de considérer que deux problèmes de composition des modèles : comment corre-
spondre nos patrons à la sémantique de l’outil CPNTools, et comment gérer les
éventuels conflits de la déclaration de variables dans les différent modèles réseaux
de Pétri. Une fois les modèles composés, une transformation modèle vers texte
est ensuite exécutée pour construire un fichier .cpn qui est conforme au fichier
DTD de l’outil CPNTools. La figure 3.27 illustre le processus de transformation
du modèle de composant Kevoree vers un modèle CPN du système entier prêt à
être simulé.

Comme indiqué dans les sections précédentes, lors d’une adaptation la re-
configuration ou la génération de nouveaux modèles des composants Kevoree du
système sont réalisées par le système d’analyse d’adaptation. Lors d’une adap-
tation un modèle est produit à l’exécution par les algorithme d’adaptation puis
évalué par notre système pour déterminer les propriétés quantitatives de ce mod-
èle. Le modèle produit doit être conforme métamodèle Kevoree étendu avec notre
extension fondée sur les réseaux de Petri. La deuxième étape (# 2) du procédé de
transformation est illustrée à la figure 3.27, qui est la transformation du modèle
CPN généré dans l’étape (#1) du système entier à un fichier XML qui est com-
préhensible par l’outil CPNTools. Ce fichier XML est conforme à la Document
Type Definition (DTD) de l’outil CPNTools. Dans cette étape de transformation
de modèle vers texte, nous pouvons appliquer d’autres tâches de post-traitement,
par exemple l’intégration d’un algorithme de mise en page pour redessiner les
éléments de réseaux de Petri.

Le processus de transformation contient deux types différents de transforma-
tions :

1. modèle-à-modèle : la transformation d’un modèle conforme à notre mé-
tamodèle d’extension vers un modèle global conforme au métamodèle de
réseaux de Pétri colorés compatible avec CPNtools ;

2. modèle-texte : la transformation du précédent modèle vers un fichier XML
valide que l’outil CPNtools comprend.

0.3 Conclusion

Cette thèse présente une solution pour rendre prévisible les caractéristiques de
performance d’architectures distribués adaptatives . Le travail de cette thèse est
fondé sur les principes suivants. Tout d’abord, l’approche proposée repose sur
une synthèse automatique des propriétés de performance du système à partir des
propriétés des composants correspondants. Deuxièmement, l’approche permet la
séparation des préoccupations de propriétés fonctionnelles et extra-fonctionnelles
des composants et du système. Troisièmement, elle permet une analyse des per-
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Figure 2 – Transformation process from the Kevoree component model to the system-level CPN model

formances efficace en termes de temps d’exécution. Notre cadriciel est complété
par un processus de développement et de validation qui guide le développeur de
composants et l’analyste de propriétés de qualité de service par un cycle itératif
de conception. Ce processus de développement prend en compte des propriétés
de performance.

Le cycle itératif comprend les phases suivantes. Une première phase con-
struit un certain nombre de modèles de composants en utilisant des bibliothèques
disponibles de composants Kevoree. Pour chaque alternative, une deuxième phase
compose les modèles de comportement de ces modèles de composants individu-
els pour produire un modèle de performance du système global. Une troisième
phase réalise l’analyse de ces modèles de performance par rapport aux exigences.
Une quatrième et dernière phase permet au moteur de raisonnement de choisir la
meilleure alternative à partir des résultats d’analyse et de réaliser la reconfigura-
tion à partir de ce choix.

L’approche proposée dans cette thèse offre les avantages suivants.

• Conformément aux principes de l’ingénierie des modèles, au moment de la
conception un architecte peut travailler sur les modèles de comportement
correspondantes des composants, définir le modèle de performance atten-
due du système et procéder à l’analyse de la performance, avec un niveau
d’abstraction égal à celui des propriétés fonctionnelles du système en cours
de conception.

• L’analyse des propriétés de performance d’un modèle s’opère dans un délai
compatible avec une adaptation continue du système ayant lieu plusieurs fois
par minute.



0.3 Conclusion xiii

• La bibliothèque de patron de conception contenant des descriptions types de
modèles de performance et de comportement accélère la phase de conception
et évite le recours à un expert en réseaux de Petri stochastiques.
.

• L’emploi de modèles paramétrés à aspect pour la description des patrons de
conception est compatible avec les pratiques de la conception par aspects.

• L’emploi de réseaux de Pétri colorés offre une grande puissance d’expression
pour la construction des modèles de performance des systèmes complexes.
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Chapter 1

Introduction

1.1 Introduction

Component-based software design is now a well established approach for building reusable
and trust-able systems. In these systems, trust relies on precise specifications of component
interfaces and on application of validation techniques on component implementations. Speci-
fications include typing properties, behaviors and quantitative properties [19]. Soft real-time
systems emphasize time related performance as a vital quality. Specifications for this kind
of system rank response time and throughput as first class attributes of the expected system
behavior. Designers therefore rely on quantitative analysis techniques to validate implemen-
tations against specifications. This validation task is mainly a design time activity, which
provides prediction of quantitative properties for the system’s needs and capabilities before
these systems are deployed. Designers rely on these predictions to engineer an appropriate
architecture that will meet the specifications, as long as a set of corresponding requirements
remains valid at run time. Soft real time systems such as Internet of Things systems (e.g.
networks of smart sensors and personal digital assistants) are a particular class of component
based systems, being highly flexible in their design and configuration. In this thesis we fo-
cus on this category of systems that must support major architectural changes at run-time,
without stopping but instead by hot-deploying. Such a kind of systems are sometimes named
eternal systems. Architectural changes are a consequence of two main evolution causes: (1)
changes of system’s service definition; (2) changes of system’s implementation. Changes of
service definition include changes of systems specification stemming from changes of user’s
needs, for instance addition or removal of functionality, changes in timing and throughput
requirements, changes of preferences for power management on a mobile device, etc. Changes
of service implementation include changes in resource availability from the supporting envi-
ronment of the system, for instance fluctuations of network bandwidth, or addition of new
computation nodes e.g. sensor equipped mobiles.
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Internet of Things systems are large sets of computation nodes. These systems are oppor-
tunistic by design: for a given application, its execution platform is made of a continuously
evolving set of computation nodes, with very diverse computing power and communication
capabilities. For example, a real time cooperative social system can connect users that share
geographical properties (e.g. cycling in the same city). As users move and switch activities,
their personal digital assistants frequently connect to and disconnect from the social network,
while their communication capabilities fluctuate rapidly [93]. Such systems must be able to
reconfigure on the fly, and even self reconfigurable in real time, without requiring a restart
after reconfiguration. These systems have specific architectural features, and their design
techniques are an active research topic [27]. However, flexibility should not be implemented
at the expense of loss of trust in the correctness of these adaptive systems. As these system’s
designs evolve continuously without human supervision and intervention, they must also im-
plement self validation without human intervention. Therefore an autonomous self-validation
subsystem must be present in the self-adapting system.

To address the challenging issues discussed above, we propose to apply a formal language
to the design and analysis of real-time adaptive systems. We also propose to use Model-
Driven Engineering (MDE)[55] for an automatic evaluation process. MDE enables the formal
specification of performance-relevant models of components; these models serve as an input
into an automatic composition engine that assembles sub-models into a performance-relevant
system-level model. Analyzing this system-level model will provide the reasoning engine with
predictions on system quality attributes, including performance.

The problem of performance prediction of component-based assembly is a challenging
task. Predictable Assembly (PA) [101] allows assembling at early design time a system out
of individual independent-developed arbitrary components with predictable functional and
extra-functional properties. Once the assembly is realized, and the attributes of individual
components are available, the quality of the attributes of the assembly could be reasoned. In
general, the process of performance prediction of component-based systems at design time
requires the following tasks:

1. Modeling the functional behavior tailored with performance properties of individual
components

2. Identifying the assembly structure and mapping scheme on hardware platforms

3. Analyzing and reasoning about the performance properties of the assembly.

A number of Component-based Software Engineering (CBSE) performance prediction
methods have emerged during the last decades, such as PALLADIO [12], KLAPER [44]. A
detailed analysis and comparison of these approaches is presented in section 2.3. However,
most of them do not tackle the problem of performance evaluation at run-time, which is
needed to support the continuous reconfiguration of modern adaptive distributed systems.
Based on that analysis, we identify the following aspects that are important for supporting
runtime performance evaluation:

• Modeling semantics for specifications of various performance properties of individual
components. A third-party software component could be deployed in different environ-
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ments. The need to consider its potential execution environments and incorporate them
into the system performance modeling makes the problem more difficult. Additionally,
modeling of complex systems needs a powerful formalism , for instance, the ability of
concurrency, synchronization, and mutual exclusion of shared resource modeling, etc.

• Well-defined semantics and rules for assembling the performance-related models of in-
dividual components in an automatic way. The performance specification of software
components and assemblies is a basic problem that must be solved to enable system
assembly out of individual components. The description of performance aspects of the
system-level mode should be derived from that of individual components, so that the
system-level model could be available for analysis and the performance aspects of the
whole system will be measured.

• Reasoning framework allowing to extract and analyze the performance analysis results.
The performance results should be reasoned in a perfect time to adapt to the continuous
changes of highly adaptive systems.

• Time-effect performance analysis for performance evaluation of alternative configura-
tions. Using models-at-runtime more than one configurations must be evaluated, lead-
ing to more computation time for evaluation.

1.2 Research questions
Based on the above discussion, we consider a number of research questions that need to be
addressed in this thesis:

Research Question 1 How should the functional and performance properties of individual
independent-developed components be specified in order to enable automated compo-
sition of these properties and to capture all environment aspects which may influence
the performance of the components?

Research Question 2 How to evaluate performance properties of combined system archi-
tectures at run time in an automatic way?

Research Question 3 How can the reasoning engine compare architectural alternatives and
select an optimized one with respect to multiple quality attributes?

Research Question 4 Can this approach proposed in this thesis be applied to others sys-
tems, such as embedded real-time systems ones?

Research Question 5 How can other extra-functional properties like security, availability,
etc be expressed and evaluated?

1.3 Thesis outline
Our approach is three-fold:
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Figure 1.1 – Overview of the thesis structure

• We integrate stochastic colored Petri nets as a metamodel extension for specifying
time-related component properties (Section 3.2).

• We set up a library of frequently used patterns to help designers to superimpose timed
behavior descriptions on functional models (Section 3.3). These patterns also map
timing evaluation results back into higher level system models.

• We provide an integration of timing evaluation tools in the models at runtime paradigm
(Chapter 3), with an evaluation time compatible with rapid changes in the architecture.

Figure 1.1 gives an overview of the thesis structure. Figure 1.1 gives the contents of my
thesis and the relations between different parts in my thesis. The light grey elements present
the background and State-of-the-Art parts of the thesis. The white elements represent the
description of methodology, framework, and ours contributions.

The remainder of the thesis is organized as follows:

• Chapter 2 presents the background in dynamic component-based software development
and performance prediction approaches. Chapter 2 consists of three subsections. The
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first subsection 2.1 (the Dynamic CBSE element in the top left-hand side of Figure 1.1)
introduces fundamentals of component-based software engineering and provides back-
ground information on Model-driven software development and Models@Runtime. The
second subsection 2.2 introduces different methods of performance analysis. Finally, the
third subsection 2.3 (the Performance Prediction Approaches element in the top right-
hand side) gives a survey on approaches for performance predictions of component-based
systems.

• Chapter 3 first formulates the performance-oriented development process in the Kevoree
framework. We then discuss in detail the extension of the Kevoree framework for
performance prediction.

• Chapter 4 describes the validation part of the thesis. In this chapter, the approach is
validated through a case study that is implemented based on our proposed framework.

• Chapter 5 concludes the thesis and presents perspectives. In this chapter, we discuss
the advantages and drawbacks of the approach and then we list some open issues and
we propose future work to response the research question #3.
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Chapter 2

State of the art

This chapter presents the background and concepts that are needed to understand the rest
of the thesis, and then discusses some related approaches. This chapter consists of three
subsections.

The first section 2.1 introduces basics in the areas of component-based software en-
gineering and background information on Model-driven software development and Mod-
els@Runtime. This section also defines the different types of extra-functional properties
of component-based technologies. At the end of this section, an overview of the Kevoree
framework is presented.

In the second section 2.2), we introduce different methods of performance analysis. This
section also clarifies the difference between quantitative and qualitative analysis. At the end
of the section, we introduce the concepts pertaining to coloured Petri nets, the CPNtools and
Access/CPN software. We define a metamodel extension based on stochastic Petri nets as
an internal time model for prediction.

The third section 2.3 gives a survey on approaches for performance predictions of
component-based systems. Through this section, the drawbacks and advantages of each
approach are also analyzed.

2.1 Dynamic component-based software engineering

2.1.1 Component-based approach

There are several proven advantages of the component-based approach. A major advantage
of the component-based approach is that it allows for the rapid construction of qualified
applications with reusable components, the facility of maintainability and the dynamic of
applications [112] [43] [30] [51]. A deeper explanation of concepts such as component, com-
ponent assembly, and component framework will be presented in the next sections. Benefits
of the component-based approach can be summarized as follows:
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Extendability Legacy software systems are difficult to extend. Due to the development
of legacy software systems as monolithic systems, new functionalities must be inserted
directly into the source code, and the whole program must be then rebuilt, whereas
component-based systems can be updated and extended easily by adding new compo-
nents or updating existing ones.

Reduced time-to-market The component developers can focus only on the construction
of the functionality of the component, without taking into account system resource
allocation, because a component framework provides other runtime services commonly
needed by components.

Predictability All design rules and patterns of the whole system are defined by the compo-
nent model, which is then enforced for each component. For that reason, it is unlikely
to make a mistake in the design of a whole system.

2.1.2 Reusable components

The definitions of components vary and there has not been a unique general definition of what
a component is so far. First, we refer to one of the precise definitions of components [102]:
A software component is a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed independently
and is subject to composition by third parties. Another definition of the components in [8]
states that the component is an opaque implementation of functionality, subject to third-
party composition and conforming to a component model. There exist different types of the
components depending on the design purposes. We distinguish three types of component:
Black-box, White-box and Grey-box.

Black-box is generally a part of a program which provides a functionality, in which users
know only inputs and outputs. The users call the functions with inputs and expect outputs.
The inner implementation of the functionality remains hidden. In contrast, White-box allows
the users to have access to the inner architecture or source code, it makes called white-box.
White-box makes generally the replacement of an old program by new one [102] more prob-
lematic. From the white-box point of view, users of components may study the source code
of the program, so that users may adjust programs. For example, users change a sequence of
calls, modify somehow input and output values to obtain a better performance of the program.
Components designed as black-boxes are more convenient for future replacement. Since the
components’ primary goal is to be replaceable, it even more highlights the need for black-
box components. One point worth noting here is that there exist several component-based
approaches where components designed as grey-box that aim at improving the predictability
of extra-functional properties [15]. For instance, the Palladio component designs [12] include
Service Effect Specification (SEFF) to model performance-relevant information together with
behavior model of the component. Users have access to the SEFF models of the components
but not to the source code of the component, so that the component assembler may select
convenient components for their design goals, for example, to obtain a component assembly
that satisfies some performance requirements of the final system. The selection of components
is based on interfaces of components and information from SEFF models.
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2.1.3 Component model

The component-based approach consists in designing and developing systems by assembling
reusable components. It is composed of an assembly of prefabricated, preconceived, pretested
components and interconnected by contracts, and required and provided interfaces. To con-
struct a component-based system, the developers rely on reusable components instead of
creating new ones from scratch. The component model gives a uniformity to components
and their composition. Its use is to define how a component should look like, how com-
ponents communicate between each other, and which resources they use. The component
model ensures that the components are compatible in terms of deployment, communication.
It determines the rules that components must follow to be able to cooperate and its min-
imal misunderstood assumptions. Another goal of usage of the component model is the
predictability. The component model may define typical software requirements, for example,
to avoid deadlock, manages race-conditions, synchronization. The component model may
also support extra-functional properties such as performance-relevant properties, memory
consumption. Paper [8] claims that the component model should provide:

A component type expressed by interfaces that the component implements. When the
component implements more interfaces its type is made of the types of all implemented
interfaces. In other words the component is polymorphic with respect to all imple-
mented interfaces. A component type is basically a factory for building component
instances. The identification and design of the component type are performed by the
business experts and the architects of the system following classical software engineering
techniques.

An interaction mechanism used by the component model to specify how components are
located, which communication protocols are used; it may also define which level of
quality of services is achieved.

A resource binding description describing how each deployed component is bound to
some resources. A resource is provided by a framework, in which the component is
deployed, or by other components. The component model describes which components
are available and how the components bind to them. Consequently, the component
model drives the life cycle of components and manages resource assignment.

2.1.4 Extra-functional properties modeling of component-based technolo-
gies

The main objective of this section is to present the notion of extra-functional properties of
software systems. Even when a particular functional requirement of a component is satisfied,
the functionality of the component in the target environment may not be guaranteed unless
all extra-functional requirements are fulfilled. From the users’ point of view, there are two
disjunctive parts to be considered:

1. functions, for which the component has been developed for;

2. a set of extra-functional properties of the component.
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The correctly working function developed in the component may not be enough in the target
environment. It is useful to allow users to take into account extra-functional requirements of
the component to fulfill users’ needs. For that reason, it is important to express relevant extra-
functional properties of the components. While the specification of functional properties is
well understood in current industrial models and frameworks, most of them lack the support
of extra-functional properties. A functionality of published components does not depend on
whether they are able to guarantee their function with regard to specific extra-functional
requirements. Let us point out that the term extra-functional properties lacks a standardized
definition.

The work in [19] does not define precisely extra-functional properties, but the authors
define a general model software contract. The extra-functional properties are derived from
extra-functional aspects, by specifying constraints over the values of extra-functional aspects.
They divide contracts into four levels of increasingly negotiable properties:

Syntactic level This first level of contract is required simply to make the system work. In
this level, the designers specify functions that their components can perform.

Behavior level . This second level improves the level of confidence in sequential context by
defining the requirements and outcome of operations. For instance, the Eiffel language
[77] allows for the definition of pre-conditions and post-conditions to capture conditions
that must hold to ensure a result of the computation. The other example is the assert
command in the Java language. This construct is used to check the validity of input
parameters of methods. Behavioral contracts can also be expressed by means of the
contract expressed using UML and OCL (Object Contraint Language) [107] formalism.

Synchronization level The third level improves confidence in distributed or concurrency
contexts. This level of contract concerns all aspects connected with multi-threaded
computation.

Quality of service level The fourth level quantifies quality of service. Quality of service
includes attributes such as maximum response time, delay, average response time, mem-
ory usage. They are mainly relevant in resolving whether the whole component system
will meet extra-functional requirements when executed on a given platform.

This classification does not cover all kinds of quality requirements. Extra-functional
requirement includes all expected quality characteristics from a user’s point of view. extra-
functional requirement could be divided into different sets such as quality of service, behavior,
synchronization, etc. Generally, we can describe the association of these sets as below:

Behavior + synchronization + QoS requirements ⊂ extra-functional requirement.
It is useful to precisely and formally describe all relevant extra-functional properties of

components since it allows checking whether a component matches extra-functional require-
ments. An active research activity has been devoted to formal definitions of extra-functional
properties such as HQML (Hierarchical QoS Markup Language) [47], TADL (Architecture
Description Language for Trustworthy Component-Based systems) [79], QML [41], CQML [2].
When component compatibility checks are improved by extra-functional properties, it leads
to more precise decisions on whether one component is suitable as a replacement for the other
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one. Chapter 4 will present approaches and their underlying analysis methods that support
extra-functional properties expression and prediction.

In short, extra-functional requirements are the requirements that specify criteria that can
be used to analyze the operation of a system, rather than a specific behavior. Typical extra-
functional requirements are reliability, scalability, and cost. Extra-functional requirements are
also known as constraints, quality attributes, and time constrained responses and availability
of required service. Temporal properties are considered as hypothesis on the behavior of the
system. Figure 2.1 is an example of a quality model presented in [38] to define the quality
of software systems. The quality model is explained with the help of six main factors and
several subfactors:

Functionality is defined as a set of attributes that deal with the existence of a set of
functions and their specified properties. The functions are those that satisfy stated or
implied needs.

Reliability is defined as a set of attributes that deal with the capability of software to
maintain its level of performance under stated conditions for stated period of time.

Efficiency is a set of attributes that deal with the relationship between the level of perfor-
mance of software and the amount of resources used, under stated conditions.

Usability is a set of attributes that deal with the effort needed for use, and on the individual
assessment of such use, by a stated or implied set of users.

Maintainability is a set of attributes that deal with the effort needed to make specified
modifications.

Portability is a set of attributes that deal with the ability of software to be transferred to
from one environment to another.

There exist several other quality models such as [22] or [73].

2.1.5 Model-driven engineering

MDE is a software development methodology that focuses on abstracting some aspects of
reality for a given purpose by creating and exploiting domain models for this purpose. Figure
2.2 shows the Meta Object Facility (MOF) pyramid-shaped structure [103]. The metamodel
describes the concepts and relationships of a given domain. Each model in Figure 2.2 conforms
to the well-defined metamodel. The first level model in the pyramid-shaped structure is the
meta-metamodel that conforms to MOF, which is self-described. The metamodel is the most
important part of a Domain-Specific Modeling Language (DSML). It defines concepts in
the domain. For the purpose of designing metamodels, there exists EMF (Eclipse Modeling
Framework) [5], which is a de-facto standard modeling framework.

From a model specification described in XMI, EMF provides tools and runtime support
to produce a set of Java classes for the model, a set of adapter classes that enable viewing
and command-based editing of the model, and a basic editor. We can also use EMFText
[10] to create the textual syntax of a DSML or the GMF (Graphical Modeling Framework)
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Figure 2.1 – Non-functional properties of software systems

Figure 2.2 – A model transformation

[11] to construct a graphical syntax. Tools and frameworks such as Kermeta [55] provide
static and dynamic semantic of metamodel. Kermeta provides OCL-like syntax to specify
static semantics, such as the constraints the models must obey. Kermeta allows designing
invariants and pre/post-conditions. The conventional modeling framework like EMF does not
allow the definition of behavior in operations integrated into a metamodel. Kermeta allows
aspect-oriented modeling, which helps design pre/post-conditions, variants and behaviors of
a metamodel.

MDE provides a variety of software processes to allow the creation of modeling domains
and the transformation of its models. The Model-driven Architecture (MDA™) marketed by
the Object Management Group (OMG) presents a model-driven approach to system develop-
ment. The MDA defines two principle model levels, Platform Independent Model (PIM) and
Platform Specific Model (PSM). The former specifies an application independent of the plat-
form technologies, but only the specification of business layer of the application. The latter
specifies an application in a specific modeling domain. The platform independent models are
incrementally transformed and refined into lower-level platform specific models. The PSMs
are then transformed into implementation artifacts such as implementation code. This ap-
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proach of automatic construction of systems from high-level models is based on the principle
of model transformation.

The Model transformation is another important aspect of MDE. A model transformation
takes input models conforming to an input metamodel MM1 and produces output models
conforming the output metamodel MM0 as illustrated in Figure 2.2. A transformation is
basically an ensemble of rules to implement a mapping between elements in source model
and elements in target model. The model transformation may transform models within the
same modeling domain (endogenous transformations) or between different modeling domains
(exogenous transformations). There exists a number of model transformation languages such
as Kermeta [85], rule-based ATL [56] [57], graph grammar based AToM [105]. Different
types of model transformation can be created using model transformation languages. Such
types of transformation are Model-to-Model transformation and Model-to-Text transforma-
tion. Model-to-Model transformation is a transformation mechanism that transforms a source
model into a target model. The source and target models conform to their respective meta-
model. Model-to-text transformation transforms a model into text, which is normally the
source code. The next section presents the models@runtime approach, which is based on the
model-driven engineering.

2.1.6 Models at runtime

Adaptive systems are often expected to adapt to the changes in their execution environment.
Hence, self-adaptive systems require to adapt their behavior and their structure at runtime
with little or no human intervention. Models@runtime [81] [21] has emerged as a promising
approach to develop adaptive systems. An advantage of using models@runtime is to develop
adaptation mechanisms that leverage software models to manage complexity in runtime envi-
ronments. The basic idea of models@runtime is to apply the model-driven engineering (MDE)
approaches to the runtime environment. At a first glance, models@runtime may be considered
as a reflection concept. The reflection deals with causally connected, self-representations of
an underlying system. The models should mirror the system, its current state and behavior.
If the system changes, the models should change and vice versa. However, in the reflection
research domain, models are often related to the computation model and hence tend to be
based on the implementation space and rather low level. In models@runtime, models are on
a much higher level of abstraction, and they are causally connected models related to the
problem space. Another key point of models@runtime approach is that models should be
intrinsically tied to the models produced from the MDE process. The work in [21] defines
the models@runtime concept: a models@runtime is a causally connected self-representation
of the associated system that emphasizes the structure, behavior or goals of the system
from a problem space perspective. Runtime models provide abstractions of runtime phe-
nomena. There are several benefits of runtime models such as dynamic state monitoring,
control of systems during execution, dynamic observation of the runtime behavior to under-
stand a behavioral phenomenon. Now that we have introduced the model-driven engineering
and the models@runtime approaches, the next section presents the Kevoree framework that
is dedicated to a technique based on models at runtime that enables dynamic adaptation
for distributed component-based systems. The metamodel extension proposed in Chapter
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4 based on stochastic Petri nets is integrated into Kevoree metamodel as an internal time
model for prediction.

2.1.7 Kevoree framework

The Kevoree framework [1] is dedicated to a technique based on models@runtime that enables
dynamic adaptation for distributed component-based systems. This framework supports ho-
mogeneous continuous design of dynamic distributed component-based software architecture
and an intelligent reflection layer that allows evaluating new configurations without stop-
ping the current running system. The Kevoree project was inspired by the EUT-ICT DiVA
project (Dynamic Variability in complex, Adaptive systems; www.ict-diva.eu), which is a first
attempt to enhance reflection with models@runtime. The rest of this section discusses the
kernel of the framework-dynamic adaptation mechanism, and the Kevoree component model
that provides concepts to describe the underlying infrastructure of distributed component-
based systems.

2.1.7.1 Dynamic adaptation modeling

The approach uses software models at runtime as well as at design time to cope with two
main difficulties related to adaptation management and evolution management. The first
difficulty is coping with the variability that can lead to explosion of several adaptive artifacts.
The set of possible configurations of an adaptive system is specified by identifying variation
points, which represents points in the software where variability may occur. The number
of configurations explodes in a combinatorial way w.r.t the number of variants, and the
number of possible configuration transitions is quadratic w.r.t the number of configurations.
The second difficulty is the evolution of the adaptive system. Evolving an adaptive system
means dynamically changing the adaptation state machine (adding and removing states and
transitions). The modifications to the adaptation state machine leads to the redeployment
and restart of the new configuration. The DiVA project uses an adaptation metamodel
to assist in modeling the DSPL (dynamic software product line) at design time [83] [36].
Models conforming to adaptation metamodel are the main data manipulated by the runtime
infrastructure responsible for dynamically adapting component-based applications at runtime.
These models provide a high-level basis for reasoning about relevant aspects of the system and
its environment and offer enough details to fully automate the dynamic adaptation process.
It is possible to make the design specifications evolve at any time, before initial deployment
or while the system is already running. Figure 2.3 presents the concepts of the approach,
which includes the architecture of the system in the right hand side and the adaptation layer
managing the dynamic variability in the left hand side.

For the architecture model, designers can use existing modeling languages, such as the
Unified Modeling Language (UML) or Service Component Definition Language from the Ser-
vice Component Architecture (SCA), or any architecture description language, to describe
the architecture. The approach uses Aspect-oriented modeling (AOM) technique to represent
the variability in the architecture model; leaf features of the DSPL model are modeled as
aspects, which can be woven or not in the application. The adaptation model captures the
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Figure 2.3 – Art dynamic adaptation model

dynamic variability information, i.e. which functionality should be used depending on the
context. The adaptation model includes four different aspects: variants, adaptation rules,
dependencies, and context. The variant aspects and constraints (requires, excludes) among
variants are modeled using feature models. The context aspects specify the system’s environ-
ment. A set of variables specifies those aspects of the environment relevant to adaptation. At
runtime, the variable values are provided by context sensors, and these may trigger a system
reconfiguration. The adaptation rules part of the reasoning model describes selection of the
variability features according to context. The approach investigates two different formalisms
to capture the adaptation rules, which are event-condition-action (ECA) [33] [59] rules and
goal-based optimization rules [48].

2.1.7.2 Models at runtime

Kevoree uses models@runtime to enable intelligent reflection for distributed component-based
systems. As discussed in previous sections, models@runtime relies on model-driven ap-
proaches to cope with the complexity of dynamic adaptation. The conventional reflection
approaches often offer reflection APIs to support the introspection of the system and dy-
namic adaptation (by applying CRUD operations on elements of the system). In a nutshell,
models@runtime is a reflection model that is uncoupled with runtime system and modeled
at a higher-level abstraction. This model allows validation of new configurations, checks
when changes appear, without modifying the running system. The new configurations are
compared with the current configuration, which is a mirror that reflects the running system.
The adaptation model represents a set of commands to transform the current configura-
tion into the new configuration. The adaptation engine implements these commands at the
platform level. If a concrete action execution fails than the adaptation engine rollbacks the
configuration to its previous state. Figure 2.4 shows the adaptation mechanism of Kevoree.

2.1.7.3 Kevoree metamodel

The Kevoree metamodel [32] supports many features to allow models@runtime on top of a
distributed component platforms:

1. Coupled and uncoupled modes: the coupled mode is like in conventional reflection
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Figure 2.4 – Model at runtime

approaches that synchronize operations on reflection model and runtime. Contrarily,
uncoupled mode allows working on reflection models without modifying the running
systems.

2. Type and instance separation.

3. Closed isolation of components: closed isolation of components means that for each
couple of components binding together, they can not execute the code of each other.
This property is to ensure the capacity of halting a component without influences on
other processes.

4. Dynamic provisioning: capacity to dynamically integrate executable code to a running
system.

5. Distributed topology model.

6. Channel type: to describe complex semantics of component bindings.

This subsection presents a subset of the elements of the Kevoree metamodel.
Node, NodeType: Figure 2.5 shows a part of Kevoree metamodel related to distributed

topology model. The Node element describes a logical node in distributed systems. A Node
can be a container of component instances, channels and other nodes. This allows a hierar-
chical modeling in Kevoree, whereas the parent node is responsible for starting and stopping
its child nodes.

Type definitions, Instances: Figure 2.6 shows elements related to type definitions. A
TypeDefinition element contains third party dependencies (DeployUnit). DictionaryType
defines the parameters of the component type. Each instance refers to its type definition.
Component instances are bounded together through bindings and channels. Component and
Channel elements capture the complex binding semantics.
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Figure 2.5 – Kevoree topology model

Figure 2.6 – Kevoree type definition
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2.2 Methods for performance evaluation of software systems

2.2.1 Analysis and validation of software models

This section discusses validation or analysis of the system model. There are two aspects to
consider when analyzing a system model: the qualitative aspects and quantitative aspects.
The analysis of the whole system aims at providing qualitative and quantitative information
of the system behavior [3] [46] [74] [50] [62] [61]:

• qualitative analysis aims at ensuring that the properties of the system correspond to
the expected properties, for instance the absence of bottleneck, the reachability of a
specific state;

• quantitative analysis and performance evaluation aims at quantifying the performance
of the system w.r.t the objectives of the system. The performance aspects may be the
response time of the users requests, the average delay of the message transmission in a
communication network, the bandwidth of transactions in data based systems, etc.

In recent years, verification techniques and performance evaluation are used increasingly
in industry to analyze a variety of systems such as real-time systems, embedded systems,
adaptive systems. These techniques have proved their efficiency. For the purpose of verifi-
cation of extra-functional properties, including performance-related of a system, the analysis
methodology can be initially subdivided into two approaches: measurement-based and model-
based approaches. The former comprises three distinct fields: measurements, benchmarks,
prototypes. This technique requires the availability of either the system to be suited or its
approximation, so that it can be observed. During the design process, before the imple-
mentation phase, measurements on real systems are obviously not applicable, and prototype
implementations are very difficult because of the necessity of specifying many details that are
far from being decided. The state-of-the-art review in this thesis concentrates on the latter
one, which can be partitioned into two types: simulation models and analytical models. This
technique can be applied during the early system design phase. In the case of analytical
models, the description is given in mathematical terms, whereas in the case of simulation
models the description is given by means of a computer program. The simulation will almost
always deliver results that are less accurate than the ones that can be obtained by using ana-
lytical models, and model complexity of very large systems may cause considerable negative
impact on simulation time [98]. The advantage of simulation over analytic modeling is that
very detailed system behaviors can be captured. The analytic modeling requires much more
constraints in modeling. In other words, simulation allows the development of more detailed
models, whereas analytically models are normally more abstract. Additionally, models can
be either deterministic or probabilistic. It may be simpler and more realistic to model the
systems by means of probabilistic assumptions due to the fact that the details are often not
known, and even when they are, their inclusion may lead to very complex models. Fur-
thermore, the probabilistic approach may be advantageous because it may provide sufficient
accuracy, while yielding more general results.
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2.2.2 Qualitative analysis

Quantitative analysis and verification aims at analyzing the qualified properties of the systems
[13] [114] We distinguish three classes of verification techniques: model checking, proving, and
test.

Properties to verify: there are several types of property that can be verified [30]. The
properties listed below are some examples:

• Reachability: to verify that in some conditions, whether a state of the system can
be reached or not, for example, whether an initial state may be attained, a state of
availability of resources, etc.

• Liveness: the properties that cannot be checked on finite executions (they need to be
checked on infinite executions).

• Safety: the properties that can be checked on finite executions. For example, it can-
not happen that both processes are in their critical sections simultaneously (mutual
exclusion).

• Deadlock free: it ensures that the system never reach a blocked state where it cannot
quit.

2.2.2.1 Model checking

The verification or model checking [71] relies on the construction of a finite model of the
system, which is then used to check whether a specified property is correct in this model
or not. This method is considerably automatic and rapid. In general, the way to perform
this verification is to verify that a property expressed in terms of temporal logic is correct
in the system. The model checker always proceeds by exploring the state space, whatever
the formalism used to model the system. In most cases, the model checkers give the positive
response if the property is guaranteed for all the behaviors of the system, and a negative
response completed with a counterexample in case of violation of the property.

2.2.2.2 Theorem proving

Theorem proving consists in expressing the system and their properties in terms of a mathe-
matical logic and then researching a proof of these properties. This approach is precise, but it
requires user intervention. The theorem proving can be applied to all phases of development
of the system [49] [91].

2.2.3 Quantitative analysis

Quantitative analysis aims at computing quantitative performance-relevant parameters. The
methods of performance evaluation are based on mathematical fundamentals, more precisely
theory of probability and Markovian stochastic processes. The performance evaluation con-
sists of the following steps:



20 Chapter 2

1. describe the static and dynamic aspects of the system under study by using formal
models;

2. analyze the system by generating the state space. The state space is computed as a
stochastic process, for example, a Markov chain;

3. resolve the obtained chain to compute the probability of each state in the chain;

4. compute the performance aspects based on probabilities obtained.

2.2.3.1 Performance aspects

The Markovian methods in [29, 25, 60] allow different kinds of analysis: transitory and
stationary analysis. The calculated performance aspects give information of efficiency and
productivity of the system. On the contrary, transitory and stationary analysis answer to
questions such as: in a long period, what is the usage of the server (the percentage of time the
server is busy). For these two kinds of analysis, there are frequently a set of the calculated
performance aspects: the throughput (the number of request per time unit), the average
of response time (the average time to execute a user request of the system), the average of
waiting time (the average of time the request has to wait in a queue), resource usage (the
percentage of time in average the resource is busy), the frequency of the executions of a task,
etc.

2.2.3.2 Performance models

Markovian process:
Markovian processes [29, 25] represent a class of stochastic processes. A stochastic process

is a family of random variables {x(t), t ∈ T} defined on a given probability space, indexed by
the time variable t, where t varies over an index set T .

There are two types of stochastic processes: discrete value and continuous value, and
discrete time and continuous time. If each random variable X(t) for different values of t is
a discrete random variable, then the stochastic process is a discrete value. If the process is
defined only for discrete time instants, then it is a discrete time stochastic process. For a
discrete time process, a random sequence Xn is an ordered sequence of random variables Xo,
X1,. . . Essentially a random sequence is a discrete-time stochastic process.

A Markov chain or Markov process is a process in which the probability of the system being
in a particular state at a given observation period depends only on its state at the immediately
preceding observation period. A random process whose future probabilities are determined
by its most recent values. A stochastic process x(t) is called a Markov process if for every n
and t1 < t2... < tn, we have P (x(tn) <= xn|x(t(n−1)), ..., x(t1)) = P (x(tn) <= xn|x(t(n−1))).

This is equivalent to P (x(tn) <= xn|x(t)forallt <= t(n−1)) = P (x(tn) <= xn|x(t(n−1)))
Queueing network
Queuing networks [25] have been used widely for performance evaluation discrete-event

systems such as information systems, communication network, etc. A queuing system simply
consists of a waiting queue (or a buffer), with one or many servers. Queuing theory answers
question like: mean waiting time in the queue, mean system response time (waiting time in



2.2 Methods for performance evaluation of software systems 21

the queue and service time), mean utilization of the servers, distribution of the number of
customers in queue, distribution of the number of customer in system, probability that the
queue is full or empty. A basic queuing model consists of (a) customer population, (b) nth

customer arrives at time τn (c) inter-arrival time between two customers: tn := τn - τn−1,
where tn is an independent and identically distributed random variable (d) service time xn is
independent and identically distributed random variable. A queuing model is characterized
by:

• Input process: the sequence of request for service, often specified in terms of inter-arrival
time;

• Number of servers;

• Queue discipline: the disposition of blocked customers. We distinguish different kinds
of blocked customer: (a) blocked customers cleared who leave the system immediately
(b) blocked customers delayed who wait for service in a queue like FIFO, LIFO, etc.
(c) blocked customers held who wait for service in queue (the sojourn time of a customer
in queue);

• Distribution of service time;

• Service discipline (random, priority, round robin, ...).

From the informal point of view, a waiting queue is defined in three steps. The first step
aims at defining the servers, the number of servers, the customer and the topology applied.
The second step consists in defining the parameters of the model, such as inter-arrival time,
distribution of service time, the number of clients. Finally, the third step of evaluation allows
to obtain quantitative analysis results of the system by measuring the performance aspects.
This latter step is similar to the Markov chain by analyzing the system behavior in a short
term (transient solutions) or long term (steady state solutions). Steady state is a state where
the system has run for a long time and tends to reach a stable state, e.g. distribution of
customers in the system does not change.

As a drawback, the capacity of modeling in queuing network for the representation of
concurrent and synchronized systems is much limited. In order to extend the capacity of
modeling of queuing networks, the scientific community has developed several generalized
models to cope with the complexity of concurrent and synchronized systems: stochastic
process algebra, stochastic Petri nets, stochastic automata, etc. Recently, several extension
models of conventional queuing networks have been proposed to remedy their inconveniences,
such as:

• Extended Queuing Network [67, 7, 6] that allow description of the interesting charac-
teristics of real systems, such as constraints of synchronization, concurrence and the
finite capacity of waiting queue.

• Layered Queuing Network (LQN) [25] that allows modeling of the client-server commu-
nication pattern of distributed systems. LQN allow capturing the impact of multiple
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layers of servers. A LQN is expressed by a set of tasks. Each task provides services rep-
resented by the input ports. The input ports of a task invoke the input ports of others
at lower layers. The tasks are executed on processors. The modeling of sequential and
parallel executions are expressed by activities. The activities can send the requests to
output ports or accept the requests from other input ports.

We can list some examples of tools for performance evaluation for QN, LQN, EQN:
RESQ/IBM [97], QNAP2 [106], LQN tool [25].

Stochastic Petri nets
Stochastic Petri nets (SPN) [9, 80, 37] are extensions of conventional Petri Nets [87].

The ordinary Petri nets allow only qualitative analysis. Stochastic Petri nets have been used
widely for modeling and analysis of information systems.

A SPN is a six-tuple GSPN = (P, T, I−,I+, Mo, W)

where

• PN = (P,T,I−,I+,Mo)
is the marked untimed PN underlying the SPN

• I− is a set of input arcs

• I+ is a set of output arcs

• T1 ∈ T is a set of timed transitions, T1 6= ∅

• T2 ∈ T is mentioned as the set of immediate transitions, T1 ∩ T2 = ∅, T = T1 ∪ T2

• W = (w1,...,w|T |) is a set of real values w1 ∈ R+ where wi is:

– is a rate of a negative exponential distribution specifying the firing delay, when
transition ti is a timed transition (ti ∈ T1) or

– is a firing weight, when transition ti is an immediate transition (ti ∈ T2).

A firing delay is associated with each transition. It specifies the time elapsed before the
transition can fire. This firing delay is a random variable with a negative exponential as its
probability distribution function (pdf). The analysis of an SPN model is usually aimed at
the computation of more aggregate performance indices than the probabilities of individual
markings. The work in [80] quotes some of the most commonly performance indices that
are obtained from the steady-state distribution over reachable markings. Such performance
indices are:



2.3 Performance prediction approaches for component-based systems 23

1. the probability of an event defined through place markings can be computed by adding
the probabilities of all markings in which the condition corresponding to the event
definition holds true;

2. the pdf of the number of tokens in a place, can be calculated by computing the individual
probabilities in the probability mass function (pmf) as probabilities of the event place
pi contains k tokens;

3. the average number of tokens in a place, can be computed from the pmf of tokens in
that place;

4. the frequency of firing of a transition, i.e., the average number of times the transition
fires in unit time;

5. the average delay of a token in traversing a subnet in steady-state conditions.

2.3 Performance prediction approaches for component-based
systems

2.3.1 Performance prediction methods

In this section we present short summaries of the existing approaches of performance evalu-
ation methods for component-based software systems as illustrated in Figure 2.7. We dis-
tinguish between UML-based approaches, proprietary meta-models based approaches, and
measurement-based approaches, as illustrated in Figure 2.7. Each approach brings benefits
and drawbacks in predicting performance of component-based software systems. The sur-
veyed approaches here focus mainly on domain of embedded real-time systems or distributed
systems. For embedded real-time systems, it is necessary to predict the violation of hard
real-time deadlines. For example, PECT [52] [65] [101] and ROBOCOP [66] [24] are relevant
approaches. For the domain of distributed systems, the violation of performance-relevant
agreements normally is not as critical as violating the deadlines of real-time systems. Thus,
the approaches that provide a probabilistic answer whether a given design can be expected to
fulfill certain service level agreements, give more realistic performance prediction methods.
Additionally, the behavioral models of software components in distributed systems can be
considerably large, therefore it is not easy to describe them and suitable abstractions has to
be made to construct an analyzable model. Palladio [15], and our approach are appropriate
for distributed systems.

In general, the performance evaluation methods use model transformations to generate
performance models from the component system models. To our knowledge, only our ap-
proach and KLAPER [45] use a standardized model transformation framework, such as QVT
[89] and Kermeta [55].

Most of the summarized methods use queueing networks as the performance model with
analytical analysis or simulation. The analytical methods for Queueing Networks require
that users carefully satisfy many of constraints on modeling, because QNs are based on
assumptions such as exponentially distributed execution times. However, the simulation
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Figure 2.7 – Overview of prediction methods

tools normally require a high amount of execution time, which depends on the precision
of prediction results and on the degree of statistical significance desired [53]. From the
point of view of dynamic reconfiguration, to our knowledge none of the approaches support
feedback of the prediction results into reasoning mechanisms as proposed in our framework.
Among surveyed approaches only ROBOCOP offers automated support for prediction results
feedback into the design model that help software architect to improve their design based
on these feedbacks. ROBOCOP gives ability of evaluating a set of new design alternative
configurations and perform a Pareto analysis that compares costs for each alternative with
the expected performance [23]. The reasoning mechanism based on comparing performance-
relevant feedbacks is out of scope of this thesis but it is a future evolution of our work. One
important point is the use of distribution functions to specify resource demands. From the
discussion below, several methods allow this ability of resource demands specification. This is
considerably important for large software components, and even more for distributed systems,
where it is difficult to describe the detailed resource demand as a constant value. The usage of
distribution functions for specifying resource demands and extra-functional contracts is more
realistic than deterministic contracts and detailed resource demands. For example, Palladio
[15] [14] approach allows exponential distribution functions to specify resource demands.

2.3.1.1 Prediction approaches based on UML

The key point for a successful application of quantitative validation of performance prop-
erties during component-based software development is the existence of languages allowing
performance specification when designing a component-based system both at component and
at assembly level. Several studies deal with the use of UML to express extra-functional prop-
erties [16] [113, 31, 95]. The main benefit of UML-based approaches is their compliance to
OMG standards [62]. These UML-based approaches allow developers to design models by
using UML. The developers usually are not familiar with performance models that rely on
complex mathematical solution techniques. The use of model transformations can help to
hide the complexity of the performance models.
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CB-SPE Bertolino and Mirandola [17] introduced a compositional methodology for
component-based software performance engineering, the CB-SPE framework. Their approach
supports the extra-functional properties modeling such as reliability and performance, which
are important properties of realistic components. These properties is captured by the quality
of service level of component contracts. CB-SPE is based on the concepts and steps of the
SPE technology to propose a component-based architecture, performance validation and us-
ing OMG’s SPT profile [110] as design model and queuing networks as analysis model. The
proposed process is decomposed into components level and application level, one dedicated
to the parametric performance evaluation of the components in isolation, and one for the
predicting the performance of the assembled components on the actual platform. However,
the parameterization of component model does not involve service input or output parame-
ters nor explicit required service calls. The CB-SPE framework includes available modeling
tools (ArgoUML) and performance solvers (RAQS) and also includes a transformation tool
to map the UML model to queueing networks for analytical analysis.

MARTE UML supports modeling component behavior with sequence, activity, and col-
laboration diagrams. Component allocation can be described with deployment diagrams.
However, UML only supports functional specifications, it would be useful to have extension
mechanisms (profile, consisting of stereotypes, constraints, and tagged values) to allow mod-
eling performance attributes and also other extra-functional characteristics. MARTE is a
UML profile for Modeling and Analysis of Real-Time and Embedded system (MARTE) [70],
supporting extra-functional properties annotation. The MARTE profile is not an extension
to the UML meta model, but a set of domain profiles for UML. MARTE aims at supporting
temporal verification of UML-based models. More precisely, it focuses on schedulability and
performance analysis for real-time systems. The background for MARTE comes from two ex-
isting profiles, SPT and QoS & FT [88] profiles. The SPT has been proposed as a response to
the requirements of introducing in UML diagrams quantifiable notions of time and resources
usage, and QoS & FT profile has a broader scope that includes all kinds of QoS properties.

It points out the adoption of some useful structural concepts and qualifiers from UML
profile for QoS & FT, as well as it imports annotations in the UML models, which describe the
characteristics relative to the target domain viewpoint (performance, real-time, schedulability,
and concurrency) for defining domain-specific extra-functional properties, and the analysis
techniques can usefully exploit the provided features.

UML profile for CQML Paper [2] introduces a UML profile covering the expressive of
CQML [2], that is a language usable for description of extra-functional properties. The
authors define a set of stereotypes that correspond to CQML keywords (including QoSState-
ment, QoSCharacteristics, QoSProfile, QoSQuality as represented below). These stereotypes
allow to model extra-functional properties the same way as they are written in the CQM’s
language. CQML defines basic constructs concerning extra-functional properties:

QoS Characteristics represents an extra-functional property. It contains a unique name
and a data type, and additional information if necessary, such as a restrictive intervals
for values, measuring unit, etc. It may define invariants for values of the property;
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QoS Statement assigns constraints to QoS characteristics by using logical rules. Each
statement is enhanced by a name and encapsulates a set of constraints for a set of QoS.
A set of QoS with their constraints is then referred to by this name;

QoS profile it aggregates a set of QoS statements into one record with a unique name. A
component binds to a profile to attach QoS to itself. Other components can reuse these
QoS profile definitions.

2.3.1.2 Prediction approaches based on specific metamodels or formal defini-
tions

The main benefit of these approaches is to allow researchers to create new abstractions of
component-based systems, which might capture the performance-relevant properties and also
other extra-functional properties more accurately than a UML model. The semantics of the
models are often defined more formally than for UML.

ROBOCOP The ROBOCOP component system model [66] [24] allows different layered
component models such as specifications, models, and executable code within the compo-
nent distribution package. The approach adds a performance prediction framework on top
of ROBOCOP component system model by combining static analysis and simulation on the
executable system model provided by the development framework and the execution frame-
work. ROBOCOP components have provided and required interfaces with multiple service
signatures. Additionally, ROBOCOP components consist of a set of models including a re-
source model, a simulation model (behavioral specification), as well as an executable model.
Extra-functional properties are contained in the resource model. ROBOCOP does not sup-
port composite components. ROBOCOP components only support specification of processor
and limited resource demands for semaphores and memory on operations, with best, mean,
worst cases distinguished. It does not allow probabilistic attributes (e.g. random variables) in
the specification. The component specification allows only simple control flow (i.e. sequence
and loop).

PECT Papers [52, 65, 101] propose a reasoning framework for performance evaluation of
component-based software architectures. They aim at integrating component technology
(i.e., component composition language) with analysis models. Thus, they allow the definition
of an analytic interface, that consists of an analysis theory (i.e., rate monotonic analysis
for predicting schedulability of real-time tasks) to support predictions about quantitative
properties of the system. The approach allows synchronous and asynchronous communication
with required services. It also supports the specification of resource demands with distribution
functions by annotating components. For the purpose of performance analysis, the component
architecture models are transformed into a so-called intermediate constructive model, and
then from this intermediate model the MAST tool generates models for rate monotonic
analysis (RMA) or simulation.
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PALLADIO Palladio [14] [15] targets whole development process in component-based de-
velopment. It includes roles of a component developer, a system architect, a system developer
and a domain expert. A system in Palladio is modeled by a set of models where each model
covers a different role. A component developer annotates each provided service of a compo-
nent with an additional specification called Resource Demanding Service Effect Specification
(RDSEFF). RDSEFF describe a simplified control flow of the service, and they can express
the service’s dependencies on input parameters and resource demands on abstract resource
types stored in the global resource repository. Service Effect Specifications (SEFF) in [15]
describe how a provided service of a component calls its required services at some level of
abstraction. In [14], the resource demanding SEFFs (RDSEFFs) have been introduced for
performance prediction. The RDSEFFs describe dependencies between required and pro-
vided services of a component. As Finite State Machines (FSM) are insufficient for quality
of service analysis, they can be extended with stochastic information and QoS characteris-
tics (such as execution time) to make them analyzable for QoS properties. Palladio focus
only on performance-relevant extra-functional properties, for whose specification it provides
random variables to specify extra-functional properties. Additionally, Palladio takes into ac-
count usage profiles. The so-called PCM-Bench tool allows independent graphical modeling
for all four developer roles. Model transformations map the whole model into performance
models (Queueing Networks, Layered Queueing Networks) which are solved by simulation or
analytical analysis.

QML/CS The extra-functional properties of a component or of application are as impor-
tant as its functional ones. There exists a volume of literature regarding the formal and
precise specification of extra-functional properties. Service-level agreements (SLAs) [99] are
used in a large domain to formally describe the extra-functional properties. However, SLAs
focus only on the specification of the properties required of a service as a whole. In [114] the
authors proposed a new specification language QML/CS that can be used to model extra-
functional product properties of components and component-based software systems. The
formalism of QML/CS is based on extended temporal logic of actions (TLA+) [64]. In this
formal semantic framework for the specification of extra-functional properties of component-
based systems, they propose formal specification of extra-functional properties for different
parts of the component-based systems such as components, resources and containers. They
also give formal definition for container strategies and the formal definition of intrinsic and
extrinsic extra-functional properties based on intrinsic and extrinsic measurements by using
context models. There are two kinds of context model: Service defines a service operation
and will be used to define the response-time measurement, and Component defines a com-
ponent operation and will be the basis for defining the execution-time measurement. The
context models are defined in TLA+ and applied for defining measurements. There are three
kinds of measurements defined in the framework: execution time is an intrinsic measurement
based on the component context model, response time is an extrinsic measurement based on
service context model, and inter-request time is an extrinsic measurement based on service
context model.



28 Chapter 2

Thot In [96], the authors apply TCTL (Timed Computation Tree Logic) to describe the
QoS (Quality of Service) contract of components. They propose timed patterns to ease
the addition of time constraints to behavior, such as, response time, delay, execution time,
period of service call, duration. The behavior is defined by a process algebra with In and
Out Automaton model[68]. The timed contracts are described by using TCTL semantics and
verified by the Kronos tool [4].

However, in this approach and in the QML/CS approach discussed above, there is no
support for expressing the time information using probability distributions. In the previous
section, we have represented the measurement model to independently construct the monitors
for measuring performance aspects of interest. In the following we discuss the expression of
extra-functional properties monitoring that are monitoring of constraints on measurement
models. We can describe the QoS contracts in terms of probability distributions or statistical
nature.

Service Level Agreements (SLAs) [20], or contracts, define the obligations and rights
between the client and the provider, with respect to the function and the Quality of Service
(QoS). Classically, contracts are formulated as hard bounds on some QoS parameters (like
in approaches discussed above). For instance, response times are required to be less than a
certain fixed value. When composing hard contracts, the simple composition rules are used
such as addition or maximum. In many cases this approach based on hard bounds does not
fit the reality well. In fact, users would find it more natural to soften contracts, for instance
the average value of a response time is less than T milliseconds, or a response time is less
than T milliseconds for 95% of the cases, or accept a throughput not larger than N queries
per second for 90% of a time period of M hours, etc. For example, WSLA [58] [75] [100] are
examples to specifying contracts of web services. In our work, the use of CPN allows us to
construct a simulation monitoring of these soft contracts based on measurement models.

Grassi2006 [46] presents an approach for the prediction of extra-functional properties of
component-based systems. The approach uses UML stereotypes to label component connec-
tors, for example, to realize a static or dynamic synchronous client/server interaction. From
the model-driven point of view, the approach supports the connector refinement transfor-
mation from high-level UML 2.0 architecture models into the KLAPER modeling language
[45]. The KLAPER language enables transformation from a variety of design specification
types into models for different types of performance and reliability analysis. The construc-
tion of a model that supports some specific analysis methodology such as Markov chains and
queueing networks for performance analysis is seen as the result of a sequence of refinement
steps starting from KLAPER models. The authors propose a library of parametric connector
behaviors models in KLAPER for each of the stereotypes. These parameterized behavior
models replace the component connectors of the KLAPER model of the whole architecture.
KLAPER allows modeling of heterogeneous multi-processor platforms, and provides tools for
transformation of the UML-based component and assembly specifications into the models
for various types of analysis. In addition, KLAPER supports multiple types of performance
analysis techniques and both synchronous and asynchronous communication styles. However,
KLAPER has the following limitations:
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• The software tools for modeling and computations are not available.

• All the service requests are modeled using a FIFO policy. There are no other available
scheduling policy.

• The reconfiguration of bindings is forbidden.

2.3.2 Prediction approaches based on measurement

The main benefit of measurement based approaches is that they can offer accurate mea-
surement results for running systems and give more realistic results. For example, these
approaches can help developers to find performance bottlenecks in a given system or to
identify implemented performance anti-patterns. An anti-pattern is a solution to a problem
that leads to negative consequence. Performance anti-patterns provide a way to detect and
correct performance problems as well as building performance intuition in developers. The
occurrence of a performance anti-pattern in a model may induce performance problems. An
anti-pattern includes bad practice specifications and actions to take to solve performance
problems. Based on measurements, each potential anti-pattern can be investigated in detail
to detect anti-patterns that have well-known solutions. However, these methods can not be
used during system design time but are only applicable after the system implementation and
deployment phases.

Paper [26] proposes a performance predicting approach for J2EE systems. The authors
take middleware details into account and consider J2EE applications with EJB containers. In
the first step, performance measures are collected empirically by creating a product-specific
performance profile that describes how components of the middleware product affect perfor-
mance. Then the results obtained are elaborated to extend their validity to a generic manner
that is not related to any particular application requirements. Using the profile collected, it
is possible to use a set of generic mathematical models to predict generic behavior of applica-
tions. The approach proposed includes a reasoning framework for understanding architectural
trade-offs and their relationships to specific technology features. The performance of server
side is characterized by inputting into the generic performance models the parameter settings
concerning client loads, business logic complexity, database requirements, etc.

Paper [84] proposes a component performance assurance solutions framework for perfor-
mance monitoring for J2EE systems with EJB components. In the first step proxy compo-
nents are added for each EJB to send time stamps for EJB life-cycle events (such as startup
or invocation) to a central dispatcher. Using proxy components performance measures of the
running application can be collected. Based on the performance measures, in a second step
the approach allows generation of UML models with SPT annotations. Users then specify
different workloads in the models to assess various scenarios. Finally, users get performance
predictions of the modeled scenarios by using existing simulation techniques.
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2.3.3 Colored Petri nets and CPNtools

2.3.3.1 Colored Petri nets

An ordinary Petri net has no types and no modules but only one kind of token and the net
is flat. On the contrary, Coloured Petri Nets (CP-nets) allow hierarchical modeling, data
types, and complex data manipulation. Each token has a data value attached, called the
token color. The token color can be modified by the occurring transitions.

A Coloured Petri Net is a tuple CPN = (Σ, P, T, A, N, C, G, E, I) satisfying the following
requirements:

• Σ is a finite set of non-empty types, called color sets

• P is a finite set of places

• T is a finite set of transitions

• A is a finite set of arcs such that: P ∩ T = P ∩A = T ∩A = emptyset

• N is a node function, which is defined from A into P x T ∪ T x P

• C is color function, which is defined from P into Σ.

• G is a guard function, which is defined from T into expressions such that:
∀ t ∈ T: [ Type(G(t)) = Bool wedge Type(Var(G(t))) ⊂ Σ].

• E is an arc expression function, which is defined from A into expressions such that:
∀ a ∈ A : [ Type(E(a)) = C(p(a))MS ∧ Type(Var(E(a))) ⊂ Σ] where p(a) is the place
of N(a).

• I is an initialization function, which is defined from P into closed expressions such that:
∀ p ∈ P : [Type(I(p)) = C(p)MS]

2.3.3.2 Stochastic Petri nets for component-based system design

Recent research results have shown that queueing networks, stochastic process algebra,
stochastic Petri nets are the best quantitative models for performance modeling and analysis
used for Component Based Software Performance Engineering (CBSPE) [18]. In this thesis,
we apply colored Petri nets to manage time-related performance modeling and analysis.
More precisely, our analysis approach relies on stochastic colored Petri nets such as the
ones supported by the CPNTools software [54]. Colored Petri Nets (CPN for short) is a
discrete-event modeling language that extends classical Petri nets by allowing definition of
actions with the Standard ML functional programming language. By combining classical
Petri nets and Standard ML language, the CPN language gives much more power of mod-
eling. Classical Petri nets allow modeling of concurrency, communication, synchronization
and conflict. Standard ML aims at defining data types, describing data manipulation, and
creating compact, parameterizable models. CPNTools is an open source tool for constructing
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and analyzing CPN models.

Petri nets are systems that are inherently concurrent, and they make composition of
concurrent systems easier compared with automata composition. Stochastic Petri nets add
the possibility to describe alternative behaviors such as failure and recovery behaviors, with
a quantitative notion of probability of occurrence of these behaviors.

Hierarchical Modeling: Colored Petri nets allow of hierarchical modeling thanks to
substitution transitions. A substitution transition is a transition that can be refined into a
subnet, therefore providing multiple levels of abstraction.

As usual, designers can use hierarchical nets to construct systems with either bottom-up
or top-down approaches. In a bottom-up approach, designers create the most detailed parts
of the net first. Later, these parts created will be replaced by substitution transitions to
abstract their details and provide a higher level of abstraction. Gradually, we can eventually
construct the top-level net that gives a broad overview of the system. Models for component
based design have a hierarchical nature very similar to hierarchical Petri nets. Below is a
simple example well-suited to briefly introduce component/CPN mappings. This example
describes a simple architecture made of two senders sending packets periodically to a server.

Figure 2.8 – The most abstract model

Figure 2.8 represents the most abstract model of the system. This overview tells us that
the system includes two senders: a network and a server. In other words, the two senders
periodically send packets that the network broadcasts to the server. To support hierarchical
structures, CPN Tools relies on hierarchical tags: these tags are associated with places and
transitions in the hierarchical CPNs. There are three kinds of hierarchical tags: subpage
tags, port type tags, and fusion set tags. Subpage tags denote substitution transitions, which
in turn can be interpreted as sub models when they are detailed in sub pages. The superpage
concept can denote a model at higher level of abstraction and it contains subpages. Figure
2.8 shows the superpage, in which there are three substitution transitions named Sender1,
Sender2, Network and Server. Port type tags are associated with port places on subpages (or
submodels). Subpages and superpages are connected by two places that contain the same kind
of colored tokens and anything that happens to each of these two places also happens to the
other. Otherwise, these two places are essentially the same. A place is called a port place if it
is on a subpage, and a place is called socket place if it is on a superpage. In Figure 2.9, places
A, B and C are socket ports, and the places A, B, C in the subpages (e.g places A and B on the
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subpage in Figure 2.9 is the subpage associated with the substitution transition Network) are
port places respectively. There are three kinds of port type tags: in tags, out tags, and inout
tags. Figure 2.9 sketches the network part, which has a transition that can transmit packets
to the server, the transmission time being specified by an exponential distribution. The main
idea is that we use Petri nets as the abstraction of control flow through the component. Petri
nets therefore play the same role than Service Effect Specifications (SEFFs) in [15]: they
describe how a required service of a component calls its provided services at some level of
abstraction.

Figure 2.9 – Network

2.3.3.3 Time analysis

CPN-nets can be extended with a time concept. This means that the same language can
be used to investigate the logical correctness (obtain the desired functionality, absence of
deadlocks, etc) and the performance prediction (for instance, predict mean waiting times and
average throughput). In a timed CPN-net each token carries a color (data value) and a time
stamp (telling when it can be used). Time stamps are specified by expressions:

• time stamps can depend on color values;

• time stamps can be specified by probability distributions. CPNtools supports several
types of probability distributions. Users can specify fixed delays, interval delays and
exponential delays.

2.3.3.4 Access/CPN

CPNTools is written in an academic language called Beta that is no longer supported to-
day, and the simulator back-end is written in Standard ML, making integration of CPN
models into external applications rather difficult. CPNTools has gone open source and an
Access/CPN framework has been developed. Access/CPN consists of an interface written in
Java, which provides an object-oriented representation of CPN models. Designers can load
models created using CPNTools, with an interface to use the simulator (Access/CPN does
not currently support monitoring functionality, but this can hopefully change in near future).
Figure 2.10 shows that the architecture of Access/CPN consists of a Java interface (middle)
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that provides an object-oriented representation of CPN models, a loader to import models
created using CPNTools, and furthermore it also provides ability of performing simulation.
The CPN metamodel is split in four different packages: a declaration package, a cpntype
package, a graphics package, and a model package. The implementation of the CPN meta-
model relies on the Eclipse Modeling Framework (EMF). Figure 2.10 shows the CPN model
package. In a nutshell, a CPN model contains a Petri net comprising one or more pages. As
mentioned earlier, pages show detailed views of a substitution transition. Pages can contain
any number of Arcs, Places, Transitions, each containing appropriate Labels, such as name,
place type, or arc inscription). Pages also contain instances, which are substitution tran-
sitions. ParameterAssignements correspond to port/socket assignments. Furthermore, the
cpntype package holds all the data types supported by CPN tools.

Figure 2.10 – Access/CPN tools

2.4 State-of-the-Art summary

In this chapter we have presented the terminologies in the domain of dynamic component
based software and the different performance prediction approaches for component-based
systems. The performance prediction approaches presented in this chapter enable design-
time property prediction for systems designed from a set of compliant components. Here, we
have focused mainly on their working principles, benefits and limitations. However, none of
them focused on the performance prediction process for models at runtime. There are only
some of them use the Model-Driven Engineering (MDE) for an automatic evaluation process,
such as Palladio[15] KLAPPER [44]. In addition, most of these approaches propose the
UML-based language or the proprietary metamodel, which lack the concurrency semantics
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and the formal techniques. The combination of these aspects are essential to design of the
dynamic distributed systems. Apart from the above, the motivation is the framework should
be suitable for modeling the distributed systems with a powerful expression language and
support the formal techniques. Also, the framework should enable a reasonable time-effect
analysis to support the adaptation at runtime.

Consequently, the limitations mentioned above led us to the design of a new framework
that features the following properties:

• Modeling semantics for specifications of various performance properties of individual
components. A third-party software component could be deployed in different environ-
ments. The need to consider its potential execution environments and incorporate them
into the system performance modeling makes the problem more difficult. Additionally,
modeling of complex systems needs a powerful formalism for modeling, with for instance
the capacity to describe concurrency, synchronization, and mutual exclusion of shared
resource modeling, etc.

• Well-defined semantics and rules for assembling the performance-related models of in-
dividual components in an automatic way. The performance specification of software
components and assemblies is a basic problem that must be solved to enable system
assembly out of individual components. The description of performance aspects of the
system-level mode should be derived from the description of performance aspects of
individual components, so that the system-level model could be available for analysis
and the performance aspects of the whole system will be measured.

• Reasoning framework allowing extraction and computation on the performance analysis
results. The performance results should be used within an appropriate delay to adapt
to the continuous changes of highly adaptive systems.

• Time-related performance analysis for evaluation of alternative configurations. Using
models-at-runtime, more than one possible configurations must be evaluated before
deciding which one should be deployed. This requires to more computation time for
evaluation.

The next chapter explains our proposal: an extension metamodel for Kevoree, based on
stochastic Petri nets as an internal time model for prediction.
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Performance prediction model for
Kevoree

Our approach builds on the models at runtime one, as we provide extension means to manage
time related stochastic properties (e.g. average delay and throughput, worst case execution
time). More precisely, we rely on structural models at runtime [82] superimposed with high
level design patterns of timed behavioral descriptions. The monitor, analyze, plan and exe-
cute adaptation techniques (MAPE) operate at the platform level, while models at runtime
support higher abstraction levels. MAPE and timed models at runtime are complementary:
using our time extension, MAPE can use models at runtime time related properties to reason
on models before deployment. Reciprocally, estimates computed at abstract level by pre-
diction algorithms for models at runtime can be checked against real life values gathered by
monitoring the platform after execution of the hot deployment plan. However, the true power
of models at runtime comes from the use of prediction: when the current architecture does
not fill its goals, alternative architectures have to be generated and evaluated. Prediction
algorithms can help to evaluate the quantitative properties of these architectures. These al-
gorithms are often specialized and take specific partial models as inputs and outputs, leading
again to the problem of mapping between the architecture model and the specialized predic-
tion models used by the tools. Our design process aims at combining specific quantitative
prediction techniques with models at runtime. To this aim we rely on metamodel extensions
to the Kevoree component metamodel [39] [1]. These extensions support description of timed
behaviors using design patterns of colored stochastic Petri nets. The extension to augment
component models with colored stochastic colored Petri nets in shown on Figure 3.1. These
behaviors can be bound to component ports (required or provided), they can be bound to
operations from the same component specification, or on operations in an assembly of com-
ponent instances. Our evaluation tool chain is managed as a virtual platform: using model
at runtime we generate a configuration for this virtual platform, which operates with a sim-
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ulated time scale. In a few seconds we can get performance results that would require long
executions on a real platform. The use of a virtual platform improves the evaluation process
by easing its integration into the global models at runtime architecture.

Figure 3.1 – Behavior model specification.

The models for the virtual platform use a specific platform metamodel that eases the
transformation from timed component models to simulation models for the CPNtools software
[54]. This virtual platform provides estimates, for predicting time properties and checking
them against specifications, and it is also able to generate abstract monitors that can be
injected into the running system at the platform level.

3.1 Development and validation process model

In the past decade, self-adaptive software system has emerged as one of the most promising
approaches to deal with the increasingly complexity of modern software systems and uncer-
tainty of their environments. The system should react to the dynamic changes in order to
adapt to the changes in their environments. Such changes includes dynamic changes in avail-
ability of memory, network bandwidth, or connectivity and location in mobile systems, and
dynamic structural changes, such as hardware, software upgrades. Drastic dynamic changes
may impact the performance of the system profoundly. Performance itself is a pervasive
property, and is one of the most important property of such evolving systems. Every system
aspect can affect the performance, such as resource availability, system’s workload, etc. Thus,
the designers at design time and the adaptation mechanism need to validate the system model
before implementing the assembly model. This task aims at ensuring the correctness and the
performance objectives of the assembly models or the configuration generated that attain
the design goals. This section discusses about the validation or the analysis of the generated
system model. We will give an overview of our approach of continuous design validation,
which integrates into the adaptation at runtime process of Kevoree. This approach of the
continuous validation aims at helping the reasoning mechanism filtering configurations and
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finding the most appropriate one using performance-related analysis results, as illustrated in
Figure 3.2.

Figure 3.2 – Validation at runtime process

Recently, several approaches have been proposed for the performance analysis of
component-based software architectures. However, most of these approaches did not con-
sider the integration into the development process. The work in [63] extended an existing
component-based development process model by Cheesman and Daniels to explicitly include
early, model-based QoS analyses. In our work we extend the component-based develop-
ment process proposed in [63] for adaptive distributed component-based systems. Figure 3.3
sketches the main process of our approach. Each box represents a workflow. The thick arrows
between boxes represent the change of activity, while the thin arrows point out the flow of
artifacts between the workflows. The model allows backward steps into former workflow. We
have inherited the requirements, specification, provisioning, assembly, and deployment work-
flows from the original development process model by Cheesman and Daniels, and the QoS
analysis workflow from [63]. To adapt the development process model to the self-adaptive
systems from Kevoree, we added the Adaptation specification, Reasoning workflows. The
Assembly/Reasoning workflow consists of the assembly at design time by system architect
and the automatically generation of new configuration by reasoning engine at runtime. At
design time, the QoS analysis workflow is the same as the one in [63]. Component specifica-
tion, architecture, and use case models are inputs for the QoS analysis workflow. Outputs of
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the QoS analysis can be used during the specification to adjust the architecture. The pro-
cess in Figure 3.3 also includes our extensions to the Adaptation specification and Reasoning
workflows that allows to describe the adaptation mechanism at runtime, based on the QoS
analysis. In this thesis we mainly focus on performance evaluation, but other QoS properties
can also be exploited. The extensions for others QoS properties are out of the scope of this
thesis. The detailed description of the adaptation specification workflow has been described
in Section 2.1.7. The adaptation specification and reasoning workflows have been described
in Chapter 3. Figure 2.3 and 2.4 illustrated the adaptation process.

Figure 3.3 – Self-adaptive component-based development process model with QoS analysis

In the following, we will only describe the QoS analysis workflow. The work in [63]
specified different roles in the development process, such as component developer, system
architecture, system deployer. The workflows of each these roles influence each other. Due to
the fact that we mainly focus on the self-adaptive systems, we do not distinguish clearly the
roles in development process. Some workflows can be charged by either the system architect
or the reasoning engine. Figure 3.4 describes the workflow concerned in QoS analysis devel-
opment. During the QoS analysis, the software architecture is refined with information on the
usage model, the internal structure of components, the deployment context. In offline design
process, the QoS analysis model can be constructed by combining the architecture model, the
usage model, and the measurement models defined by the system architect. The measure-
ment models aim at defining the QoS metrics of interest. Section 3.3 will detail the concept
of measurement model and the aspect-oriented modeling. At runtime, the QoS models can be
generated by combining the component models (or new configurations that are generated by
reasoning engine) and the usage models (the workload models). The model transformation
workflow generates the system-level QoS model (we use CPN-nets as QoS evaluation model).
The QoS analysis results can be obtained from simulation on these generated QoS models.
Finally, the reasoning engine will select the most convenient and effective configuration w.r.t
the QoS objectives.
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Figure 3.4 – QoS analysis workflow

3.2 Behavior model for Kevoree components

3.2.1 Behavioral CPN meta-model

This section introduces Kevoree Component Model extensions that give developers the ability
of modeling component behavior.

The developers will use not only the existing Kevoree Component Model but also the ex-
tended behavior model to specify their components including the description of the behavior.
This kind of grey box component that was presented in Section 2.1.2 allows developers to
specify the contract between components. We will examine thoroughly the specification of our
contract meta-model in the following. For the purpose of outfitting the Kevoree meta-model
for the contract meta-model, we added the PortTypeBehavior class in Kevoree meta-model,
as shown in Figure 3.6. Components can describe abstract behaviors through this Port-
TypeBehavior class, which binds to ports. The ComponentType meta-class specializes the
TypeDefinition class, which contains PortTypeBehavior.

In the following, we present the proposed formal semantics based on Colored Petri nets
to design contracts of Kevoree components. Colored Petri nets are well suited to modeling of
concurrent, distributed systems, and moreover they make formal verification more amenable.
In the Kevoree component model, direct binding between components is forbidden. Instead,
Kevoree provides channel types to describe complex semantics of component bindings espe-
cially for N to M bindings in term of multi-cast or distributed FIFO queue. Basically, our
contract meta-model must take the following considerations into account:

• timing specification including means for statistical functions such as mean and standard
deviation;

• stochastic behavior with several probability distributions;
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Figure 3.5 – Integration of behavior modeling into Kevoree

Figure 3.6 – Behavior model for Kevoree
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• compatibility with Kevoree channel types, which can involve more than two ports,
leading to multiple shareholders in contract definition;

• ease of translation into a CPN tools compatible model.

We now present our formal behavioral notation of Kevoree components. The behavior
models may contain start and end places. Each behavior model can contain at most one
start place and one end place. Simply speaking, the start and end places can be consid-
ered interfaces of behavior models. The behavior models connect to channels through their
interfaces. However, from the point of view of developers, their behavior model does not
use channels, as they use directly the external call element to refer to the required services.
However the behavior models connect to channels through their interfaces to implement the
communication between provided and required services. Figure 3.6 and 3.5 represents the
specification of a behavior model of services.

We can assume that the PortTypeBehavior element is equivalent to the ResourceDemand-
ingSEFF element of the Palladio Component Model [12] [14]. PortTypeBehavioral is the root
element of the behavioral meta-model, this behavioral meta-model bears all the modeling
capabilities of the CPN language [54, 109]. Our meta-model contains a part for describing
types and declarations, as showed in Figure 3.8 and 3.9, and a part for describing the
monitor in CPN as showed in Figure 3.7.

Figure 3.7 – Monitor of CPN nets for capturing QoS measures of the simulation

These parts of meta-model are inherited from the Access/CPN meta-model [108]. A Petri
net with a start place and an end place has been considered and defined in several works to
model a workflow, such as in [104, 35].

3.2.2 Color type declaration of interface places

The point worth noting here is that there are rules for what constitutes legal interface places
(output/input places) of a behavior model. Beyond what is legal, though, we have created
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Figure 3.8 – Types used to modeling the CPN behavior models

Figure 3.9 – Declarations of color sets and variables defined in the model

conventions for defining interface places. In OOP (Object oriented programming) or CBSE
(Component-based Software Engineering) the interfaces are used as a contract of what a class
or a component can do, without saying anything about how the class or component will do
it, and the interconnected required and provided ports must refer to the same interface. Sim-
ilarly, the interfaces of the required and provided services in Kevoree behavior models should
satisfy conventions for defining interface places. This section provides these conventions for
defining interface places.

The definition of interface places is identical to the definition of their color types. The
color type declaration varies from designing phase to phase. The interface’s color types
of components are first declared by third-party developers, and then these declarations of
color types may be automatically changed to adapt to the composition of components. The
following will represent the rules for declaring color types of interfaces during the compo-
nent development phase. The model transformation phase is responsible for changing the
interface’s color types of individual components to make CPN models compatible. We will
introduce this model transformation in the next section. In the development phase, the color
type of an interface place is defined as a product type of three fields: (a) the source field is the
address of the sending service, (b) the data field is described in the format of a record type,
which contains the message data and the identity of the message, and (c) the target field
is the address of the receiving service. The conventional declaration of the interface place
is thus: colset MESSAGE = product ADDRESS * DATA * ADDRESS timed;. The DATA
type is a record type that includes an id field providing the identification of the message
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and different fields of the message content. The ADDRESS field, which is of String type,
specifies the address of the source and target services. To explain these naming conventions,
we consider an example of a service as illustrated in Figure 3.10.

Figure 3.10 – An example of color type declaring convention

The example in Figure 3.10 illustrates how to declare the color type of interface places.
New requests arrive periodically in the service implemented in the context of a server that
contains a thread pool. If the server is idle when a request arrives then the request is processed
immediately by the server. When the server finishes processing a request, it becomes idle.
The developer of this service has designed the interface place of type Data as follows: colset
Data = record parameter: STRING * AT : INT * id:INT timed;. As stated in the declaration
rules, the color type is a record containing a functional field named parameter as an input
parameter of the service, and an extra-functional field named AT that could be necessary for
evaluating the time related aspects of the system (such as response time). The developers
can design many different parameters, and also many extra-functional fields, depending on
the information that is necessary to evaluate extra-functional properties of the system. These
extra-functional properties are provided by the service, e.g. the execution time of transitions,
or by security related properties attached to transitions. In the example in Figure 3.10, the
developer only provides information about execution time, which could be useful to evaluate
the time-related properties of the whole system. Moreover, in this case the developer has
declared and used a color named proctime. This variable proctime is used to evaluate the
processing time of the server. The developer can create monitors to evaluate this extra-
functional properties of processing time, independently of other elements in the potential
composite context. The AT variable declared in the interface color type is used to evaluate
time-concerned properties, and the monitors used to measure these properties are called
global monitors. We will present the local monitors and global monitors in detail in the next
sections.

3.2.3 Performance indicators injection

Our goal here is to automate the injection of performance indicators, since the simulation
is likely to be applied in a model at runtime technique, where performance evaluation is
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done on the changing models. This section represents the concept of the monitor, which
consists of two types: global monitor and local monitor. The next section explains how
to use the defined measurement model and the aspect-oriented modeling to construct the
monitors independently of the behavior model.

Definition of monitors: The component developers must describe their component
together with a precise description of their extra-functional properties and the description
of monitors that will be used by CPN tools to estimate the different measurements of the
system. The component developers can not make assumptions on the context in which their
components will be used. Hence, the component designers can not define the monitors for
measuring the performance metrics that need to observe not only the places and transitions
modeled in their component, but also other nodes from other components. In order to tackle
this problem, the component developers should first identify and determine all the extra-
functional dimensions of interest that can be associated in the component modeling and then
provide the monitors for these extra-functional dimensions. Secondly, before modeling the
monitors to observe these measurements, the component developers should identify whether
the extra-functional dimension is global or local.

To define the monitors for measuring the global extra-functional properties during the
modeling of a service specification of a component, the component developer need to take
into account the required and provided services of this service. However, the component
developer has no knowledge of the definition of these global functional properties and the
execution of the required and provided services. Hence, to make these monitors compatible
with the CPN net after composing all the components, it is necessary to apply a mapping
of these extra-functional properties used in different components. The compositor (or the
composition engine) is responsible for this task.

By contrast, to define the monitors for measuring the local extra-functional properties
during the modeling of a service specification of a component, the component developer does
not need to take care about the required and provided services of this service. Therefore, the
composition engine simply adds the color set of these local extra-functional properties into
the extra-functional color set.

1. Monitor for estimating the measurements: A monitor is a mechanism in CPN tools
that is used to observe, to inspect, and modify a simulation of a CPN net in order to
periodically extract information from the markings, binding elements when simulating,
and to use this information for different purposes ( performance measuring for example).
There are several types of monitors:

(a) Breaking point monitors: used to stop a simulation;

(b) Data collector monitors: used to extract numerical data from net;

(c) Write-in-file monitors : used to update files during simulations;

(d) User-defined monitors: generic monitors used for any purpose.

For each of the first three monitor kinds, it is possible to save the numerical data
extracted from a net during a simulation in a log file. It is also possible to save the
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statistics (such as average, max, and so on) that are calculated during a simulation.
This kind of performance report is saved as HTML files.
To avoid wasting time to analyze the HTML files, we only use the user-defined monitors
to obtain the simulation results directly. We use the Access/CPN Eclipse plug-ins
to communicate with the CPN tools simulation. The idea is that instead of using
performance report in HTLM format files, we use the user-defined monitors tailored
with the modules for communicating with external java processes through the Java
sockets, and therefore the monitor will transfer the statistical results after the simulation
to the Java processes. All the statistical information will then be transferred to Kevoree
reasoners.

2. Global monitor
A global monitor aims at measuring the global extra-functional dimensions of the sys-
tem, based on observing and calculating the value of the tokens whose color sets are
declared for these global extra-functional dimensions. The global extra-functional prop-
erties of a service may be influenced by the execution of their required and provided
services. In addition, due to the fact that the components are developed by indepen-
dent third-party developers, it is worthwhile to apply a mechanism to build a mapping
between the different color sets of the same global extra-functional property as defined
by different developers. As mentioned before, the composition engine is responsible for
carrying out this mapping.
In the considered use case, we focus on some kinds of extra-functional aspects such
as response time, reliability, security, etc. We use the values attached on tokens to
specify and evaluate different extra-functional aspects. These extra-functional aspects
are represented as numerical attached values on extra-functional token and their values
can be calculated cumulatively during execution of the CPN (or simulation of CPN
net). For measuring the extra-functional properties, each property should be declared
as a field of the extra-functional color set record of the CPN net, so that the value of
this property could be calculated during the execution of the CPN net. In doing so, the
extra-functional color set is composed of all the extra-functional properties of interest
and flow throughout the CPN net of the system assembled after the composition phase.
As an example, Figure 3.11 visualizes a system model assembled by two components A
and B. Once the component assembly (or a configuration) has been made, the reasoner
should decide which global extra-functional properties need to be measured before gen-
eration of the CPN net of the system derived from component model. In this example,
the reasoner needs the measure of the time elapsed between place P0 and P2 to answer
the question about the end-to-end response time. Thus, the extra-functional color set
is a record that contains a field named AT, which represents the arrival time of the
user request. Automatically, the composition engine generate a monitor that is used
to measure the time elapsed between P1 and P2. This monitor is associated with the
T2 transition; when the T2 transition occurs, the response time can be calculated by
subtracting the value of the AT field for the request from current model time.

3. Local monitor
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Figure 3.11 – Assembly of A and B components

The monitors of local extra-functional properties of a component service can be mod-
eled in an independent way, during the component implementation. The component
developers might predict the necessary of some local performance-relevant properties
in the component modeling, they therefore will model their service behavior in a way
that includes the monitors to measure these extra-functional properties. The reasoner
may decide whether or not to use these local monitors.

3.3 Parameterized templates and aspect-oriented modeling

The preceding sections have illustrated how to use colored Petri nets for creating component
performance models. However, constructing performance models of complex systems using
colored Petri nets is often not an easy task. Hence, it is necessary to have mechanisms for
facilitating performance modeling. We propose to use parameterized templates and aspect-
oriented modeling in the development process as presented in the following sections.

3.3.1 Aspect-oriented modeling

Constructing component performance models using colored Petri nets and SML language is
not a simple task, specially for complex systems. Adding extra-functional concerns during
a design time phase may result in unreadable and complicated Petri nets. It would be
useful if colored Petri nets could support the separation of concerns. We propose hereafter
a designing technique that relies on the aspect-oriented modeling and the dedicated model
transformations supported by the Kermeta tool to improve the component performance model
development process. Figure 3.13 and Figure 3.14 represent the aspect-oriented modeling
process. Figure 3.12 illustrates the different roles in the development process that based on
parameterized templates and aspect-oriented modeling.
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Figure 3.12 – Different roles in QoS-driven development process

Figure 3.13 – Component performance modeling process based on aspect-oriented modeling
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Figure 3.14 – Model composition and validation process on active nodes at runtime

This section discusses the concepts of measurement model and the application of aspect-
oriented modeling. A designing model captures both the functional specification and extra-
functional specification of the system, by using different conceptual tools. The functional
specification is modeled in Kevoree-CPN, and the extra-functional specification is modeled
using using parameterised templates. The quantitative measurement models can be specified
in and imported from the templates, or they can be created directly in the base model to
measure extra-functional aspects.

A measurement model aims at expressing an extra-functional characteristic. It may deal
with some functional characterisation of the system such as elements, structures, and behav-
iors on which the extra-functional characteristic relies on. In [114] the authors use context
models to specify measurements independently of their usage in concrete application, the
authors defined a context model as a higher level of abstraction of the application model, on
which the extra-functional measurement relies. Analogously, we define a specific measure-
ment as an advice model, which is then weaved into the base model. We apply aspect-oriented
modeling to allow the separation of concerns and the reusability in Petri nets. In [94] the
author applied the aspect-oriented modeling in Petri nets based on the MDA (Model Driven
Architecture) [92] approach. The author distinguishes models at CIM (Computational In-
dependent Model), PIM (Platform Independent Model) and PSM (Platform Specific Model)
levels by defining base models, advice models and some kinds of join operations that deter-
mine the join points to add advice models into base models. In [111] the authors introduce
an aspect-oriented approach to model the vulnerabilities by exploring explicit behaviors of
security threats as the mediator between security goals and application of security features.
They define three different models: (a) base Petri net models, which present the behavior
model that contains the intended functions of the system, (b) security threat Petri net models,
which explore potential attacks that violate the security goals of system’s intended functions,
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and (c) threat mitigations of a security design, which are modeled as Petri net-based as-
pects due to the incremental and crosscutting nature of security features. This approach
facilitates verifying correctness of security threats against intended functions and verifying
absence of security threats from integrated functions and threat mitigation. In this thesis,
we apply aspect-oriented modeling to the continuous QoS evaluation process. We distinguish
the base performance-relevant modeling by means of coloured Petri nets, which can use pa-
rameterized templates, and the measurement advice models to measure the extra-functional
characteristics of the system.

Figure 3.15 – The components of the QoS evaluation model

Figure 3.15 illustrated the relation between the component performance model, the pa-
rameterized templates, and the measurement model. One point worth noting here is that
instead of defining monitors to capture the performance-relevant information in the simu-
lation, the component developers define the measurement model by themselves or use the
templates in the library. By using measurement models, the developers can facilitate the de-
velopment of their performance model. It would be useful to define measurement models as
advice models to be weaved into base models, because the developers can define measurement
models independently of the base model and may use these measurement models many times,
for different contexts. By simply defining the pointcut, the developers can apply predefined
measurement models anytime and anywhere into their base model, without needing to re-
define these measurement models. Additionally, the measurement models add the elements,
variables, structures needed to capture the quantitative properties, so that the developers
do not have to take the definition of monitors that capture the quantitative properties into
account when developing their abstract model of its behavior, including timing properties.

The full QoS model of the component could be automatically derived by weaving advice
models into the base model of the component and by applying the parameterized templates.
The following subsection discusses the fundamental concepts of the semantic framework and
the application of the aspect-oriented modeling and the parameterized templates.

3.3.2 Measurement model

A measurement model aims at injecting performance indicators into the base model, by pro-
viding an additional model, which is defined by means of a coloured Petri net. Measurement
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models are constructed independently of the base behavior model and for the definition of a
performance indicator to capture a specific extra-functional characteristic C. The measure-
ment model only contains elements that are necessary to explore C. Measurement models
define the concept of a component, a service, an attribute that are relevant to the extra-
functional characteristic. They are more generic and do not model specific components,
services, or attributes. Measurement models are defined as advice models and can be weaved
into the behavior models by defining pointcuts.

Figure 3.16 – An example of a measurement model defining the response time aspect

Example of Measurement model Figure 3.16 shows an example of a context model defining
the response time measurement between two transitions. This model only gives elements that
regard response time measurement: there is no reference to any concrete functionality. The
context model in this example aims at expressing the response time measurement between
two transitions named Start and End. The place Arrival Time stores the arrival time of the
incoming tokens that trigger the transition Start. As soon as a request with an identity id
arrives at the place Request Arrives, the transition Start is fired and a token of type INPUT
that stores the arrival time of the id request will be moved into Arrive Time place. The place
RT contains the elapsed time of the requests between two transitions Start and End. The
function intTime() returns the current time of the simulation:

fun intTime() = IntInf.toInt (time());

(All code used in a CPN model is written in SML language.) The id1 variable is the identity
of the requests that were transmitted between Start and End transitions. When the request
has been handled completely, the id token of the request arrives to the place Request Depart.
The condition of the End transition is to get the arrival time of the request in the place
Request Depart, and the time elapsed of this request between two transitions can be counted
by subtraction of current time to the arrival time of the request:
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(intTime() - t)

This example of modeling response time measurement presents just one possible way of
modeling this aspect of response time measurement. The developers can design the response
time measurement model in their own way. Additionally, depending on the goals of QoS
evaluation, other extra-functional measurement models may be needed. These measurement
models can then be used to measure the quantity properties of the components (local extra-
functional properties) and of the components assembly (global extra-functional properties).

Figure 3.17 – The monitor for capturing the response time measure

Figure 3.18 – The declarations used for the monitor of response time

Measurement models have also an associated monitor that captures the measures of inter-
est during the simulation. The main objective of the measurement model is to define indepen-
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dently the monitor that captures the measures of interest during the simulation, and also to
increase the reusability and maintainability. Figure 3.18 and Figure 3.17 show the declaration
used to define the Response Time monitor of the measurement model and the definition of
the monitor. The global variable connected determines the status of the connection between
the monitor and the external Java process. The function send_to_monitor(text)sends the
text to the external process through the connection named Conn.

As explained in the previous section, we only use the user defined monitors of CPN Tools
to capture the measures of interest and to communicate with an external process (i.e. the
reasoner of Kevoree systems). In this example of response time measurement, the monitor
is associated with the End transition. The monitor is used to measure the amount of time
elapsed between Start and End transitions. The request is represented by a variable named
id, which represents the unique identity of the request. When the Start transition occurs,
the request token in the Request Arrival place is moved to the Arrive Time place. The token
type INPUT of the Arrive Time place is a Product type: product INT * INT that expresses
the token’s identity and the current time of firing Start transition by the token, respectively.
When the End transition occurs, the response time for the request can be calculated by
subtracting the value of the t field of the INPUT token from the current model time. This
monitor can be used to calculate several interesting statistics, such as the average and the
maximum time delays.

Predicate function : the predication function for the monitor is invoked each time the
transition End occurs, and it will return true when the transition occurs.

fun pred (bindelem) =
let

fun predBindElem (ResponseTime’End (1, {id,id1,t})) = true
| predBindElem _ = false

in
predBindElem bindelem

end

Observation function: this observation function is invoked every time the above pred-
icate function returns true, in other words it will be invoked every time the End transition
occurs.

fun obs (bindelem) =
let

fun obsBindElem (ResponseTime’End (1, {id,id1,t})) =
INT.mkstr(intTime() - t)

| obsBindElem _ = ""
in

obsBindElem bindelem
end

The expression (intTime() - t) calculates the time delay for the request that is bound to
the variable id1 when the End transition occurs. The observation returns integer values in
the format of strings because the parameter of the function
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send_to_monitor(text)

Action function: this action function is invoked every time the above observation func-
tion returns a string. It will send the value returned by the observation function through the
connection named Conn with the port 9000.

fun action (s1) =
(if not(!connected) then

(ConnManagementLayer.acceptConnection("Conn",9000);
connected:=true)

else ();
send_t_monitor(s1))

Stop function: This function is invoked to close the connection named Conn when the
simulation has already finished.

fun stop () =
if !connected = true then

(ConnManagementLayer.closeConnection("Conn");
connected := false)

else ()

As explained above, the measurement models define the concepts of component, service,
and attribute that are relevant to the extra-functional characteristic of interest. In the exam-
ple above in Figure 3.16, the elements in brown are the abstract concepts that are relevant to
the extra-functional properties of interest. The transitions Start and End are the elements
for which we want to measure the time elapsed between them. The Request Arrival, Request
Depart places, the Start, End transitions and the variable id are used to determine joint
points in the behavior models. The id element defines the id of the token that is transmitted
from Request Arrival place to the Start transition. The other elements of the measurement
model are additional elements used to define the monitor of interest. Developers can apply
the measurement models into their behavior model by mapping the abstract elements to el-
ements of a concrete context in their behavior model. In the next sections, we introduce the
approach of aspect-oriented modeling to define the measurement models as advice models
and to apply the measurement models by defining the pointcuts.

3.4 Parameterized CPN templates for Kevoree
While stochastic colored Petri nets are a powerful means of timed behavior specification, they
are too fine grained to be used directly by designers of component based systems. Timing
concerns are design concerns that can be managed more easily using patterns, to promote
separation of timing concerns and ease reuse of timing specification. In [86] the authors have
proposed a set of empirical design patterns for modeling process-aware information systems,
communication protocols, embedded systems, distributed systems, etc. We have applied this
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notion to prepare a set of frequent timed behavior specifications in the form of templates for
Kevoree component types and channel types. A template is a CPN abstracted as a single
transition with parameters. Just like the well-known design pattern concept, each of CPN
pattern addresses a specific timed behavior need.

In the previous sections, we have shown that behavioral modeling of software component
and software systems in term of colored Petri nets has proved to be a good platform for
capturing critical information in real-time, reactive, concurrent, and distributed systems.
However, in today’s software development, not everyone is familiar with the colored Petri
nets. Therefore, in this section we undertake the challenge of usage of a set of patterns
in colored Petri nets in the pattern format. The patterns aim at making life easier for
developers. Developers and experts working in the same domain experience similar difficulties
while solving the same kind of problems. A library of patterns can be collected from the
existing experiences. Developers often use patterns in the library to build their models
efficiently, while avoiding reinventing already existing solutions to problems. In [86], the
authors have proposed a set of 34 empirical design patterns for modeling of process-aware
information systems, communication protocols, embedded systems, distributed systems, etc.
These patterns serve to resolve problems appearing during modeling by means of CPN, and
they have been documented in a format that helps developers to easily understand and
apply these patterns into their own problems. The developers have to understand and then
reconstruct the CPN models by applying these patterns. However, reconstructing these
patterns is not a simple task, particularly for the developers who are not familiar with the
CPN language. For the purpose of simplifying the developers’ work, we propose a library
of CPN patterns whereas the patterns have interfaces and parameters. The interfaces of
patterns are transitions and places of the patterns that can be connected with external
transitions and places. And the parameters of patterns are information that characterizes
the instance of patterns. These parameters can be values of tokens, name of external calls
(called services), etc. As a result, the developers do not have to reconstruct the whole pattern,
they only connect with interfaces of the patterns and modify parameters of patterns to obtain
an instance of the pattern that adapt to their goal. Furthermore, the pattern instances may
be generated at runtime in some cases. For instance, in the case of the broadcast channel
pattern that we will represent in the next parts, the instances of this pattern are derived from
the component model, and it depends on nodes connected to the channel.

In the following, we identify a set of design patterns used to correctly model the timed
behavior of basic Kevoree components, and furthermore a set of patterns that are useful
for developers in modeling their components with the underlying CPN model. Each of the
design patterns has a corresponding template that is a CPN segment. Inspired from the
Façade design pattern, as mentioned above, the design patterns are represented as black
boxes. They represent an abstraction away from the implementation details of the CPN
template that may be complicated for ones not familiar with CPN language. Besides, each
pattern contains a set of interfaces, which are the transitions or places used to connect with
the usage context. Furthermore, in case of necessity to modify some details designed inside
the pattern, developers can adjust the pattern template to reach their goal of modeling.

Using the Kermeta model transformation language we instantiate the used patterns from
the Kevoree model. To allow such transformation we have extended the Kevoree metamodel
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Figure 3.19 – Application of CPN template in Kevoree

with a specific metamodel extension that provides support for pattern definition and reference
in component models, as illustrated in Figure 3.19.

3.4.1 Introduction of parameterized templates

In order to facilitate the usage of patterns, each design pattern lies in a template, which
represents the generic pattern in using a set of parameters. This means that each template
is generic, and independent of any application-specific information. Developers can thus use
design patterns template by supplying values for the parameters of the pattern templates.
Each pattern template is constructed and stored in a library, an instance of a template will
be loaded whenever a developer use the pattern and input the parameters for this pattern.
The following section describes a subset of timed behavior templates and how to apply these
templates to model timed behavior specification of Kevoree components.

In [69] three kinds of parameterisation were identified: type, expression, and net pa-
rameterisation, together with a formal definition of parameterised CPN. In this section we
introduce a metamodel extension to create the parameterised CPN contained measurement
models, and a subset of templates (or instances of the metamodel) for modeling timed be-
havior specification. In addition, beyond the three kinds of parameterisation in [69], we
identify also some other kinds of parameters, the implementation of these parameters can be
realised by transformation tools. The familiarity with Coloured Petri Nets [54] and SML [78]
is necessary to describing behavior specification of components, and also the parameterised
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templates.
Before going into details of a subset of timed behavior templates, we introduce the con-

cepts of parameters, and the metamodel for patterns with parameters and measurement
models. In the following, we will give the ideas of parameterised CPN via a synchronous ser-
vice call example, and we also provide the metamodel for the parameterised CPN associated
with measurement models. Figure 3.19 represents the metamodel for modeling CPN patterns.
The pattern instance is implemented by a Kermeta code segment that has parameters of the
pattern and a base CPN net as inputs of the transformation, the transformation returns a
CPN instance of the pattern. In the following we consider some examples of template used
in Kevoree to clarify the concept of parameterized template.

As discussed above, Kevoree defines two different port types: service port type and mes-
sage port type. The former is a kind of synchronous service, and the latter is a kind of
asynchronous service. In the next section we will represent the timed behavior design pat-
terns for synchronous port type.

3.4.2 Synchronous service call template

Objective To allow the transportation of messages between a required service to a provided
service, ensuring that the required service which posted a request is blocked until it
does not receive the response. This design pattern would be useful while modeling the
call to a service that bounds to a service port. Assume that there are two service ports.
Required service A needs response messages produced by provided service B (as shown
in Figure 3.20). Service A calls service B by sending a requested message, and then the
service A should be blocked until it receives the response message from service B. The
template could also contain the monitor to measure the response time of the service B.

Solution In order to model the synchronous transportation between two service ports, use
two placeholders, which temporally store requested and response messages. The tem-
plate of this design pattern is given in Figure 3.20. First, the identity token presented
in the Token place aimed at ensuring that the recent request can be sent to the ser-
vice B only after receiving the response for the predecessor request. As interfaces of the
pattern, In and Out places in blue, are marked with interface annotation. The Send
transition consumes both a token representing the external input in the In place as well
as the identity token in the Token place. The message will arrive to the Wait place,
and also will be sent to the provided service (that is marked with the Target label).
The required service will be blocked until a token arrives to Response place, and the
Receive transition will be fired. The response message is then put out to the Out place.

Moreover, we furnished the template with a measurement model to measure the re-
sponse time of the required service.

Measurement model and parameterised pointcut In this synchronous service call
template, we also apply the response time measurement model presented in preced-
ing section to measure the response time of the required service. The measurement
model is described above in Figure 3.16.
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Pointcut = (Request Arrival:In, Request Depart:Wait,
Start:Send, End:Receive, id:\# id data, id1:\# id data)

Request Arrival and Request Depart places in the measurement model are assigned to
the In and Wait places of the template, respectively.

Start and End transitions in the measurement model are assigned to the Send and
Receive transitions of the template, respectively.

id and id1 are assigned to id field of the data variable of DATA type.

In Figure 3.21, the left-hand side graph represents the Synchronous Service Call tem-
plate, and the right-hand side graph represents the Response Time measurement asso-
ciated with this template to measure the response time of the called service.

Name parameters This kind of name parameter aims at specifying the name of called
service. In other words, the name parameter describes the name property of the Exter-
nalCall element of the metamodel which abstracts the required service of the behavior
specification. For example, in Figure 3.22 and 3.23, the name parameter requiredSer-
vice are assigned to C, which implies that the required service is a service named C.
The expression declarations in the right corner of Figure 3.22 describe the properties
required of the synchronous template.

Measurement Modeling parameters The measurement models associated with the tem-
plate may be also a parameterised model. In this case the developers have to provide
values for parameters of measurement models. In this example, the measurement model
of the template has two parameters, id and id1 of type int; these parameters are used
to specify the pointcut of the measurement model, as illustrated in Figure 3.21.

Figure 3.24 shows the Synchronous Service Call template used in this example, derived
and transformed by the transformation tool, based on the parameters assignment.

3.4.3 Broadcast channel pattern

As mentioned in the previous sections, the Channel entity is responsible for encapsulating
inter-component communication semantics. Binding component ports directly is forbidden,
as port can be interconnected with channels only. The channel semantics are very diverse, for
instance a channel semantics can be broadcast diffusion or distributed transaction, etc. The
following part presents some patterns dealing with channel semantics. These patterns include
the FIFO queues of channel instances implemented in nodes, and also the communication
semantics between nodes. The channel instances will be generated automatically by the
model transformation. This transformation will be presented in the next section followed by
the introduction of the broadcast channel pattern, and some other kinds of channel.

Pattern name Broadcast Channel Pattern.
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Figure 3.20 – Synchronous service call template

Figure 3.21 – The Response Time measurement associated with the Synchronous Service Call template

Figure 3.22 – The application of the Synchronous Service Call template

Objectives • To allow broadcasting of messages from single node to multiple targets.
In some applications, there is a service hosted on a node, which needs to send a
message to other services on the same node or on the other nodes. In this case, we
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Figure 3.23 – The model after applying Synchronous Service Call template

Figure 3.24 – The final result after applying Synchronous Service Call template and associated Response Time
measurement

need to use channels that encapsulate the broadcast communication semantics.
• To provide specification of the latency property of the channel.
• To provide monitor specification to measure the throughput of the channel.

Solution The number of channel instance models generated depends on how many nodes
connected to the channel. A channel instance will be generated for each node connected
to this channel. Figure 3.25 presents an instance of the broadcast channel pattern. In
this instance model, we have four interfaces for which nodes are drawn in blue. In fact,
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this instance model is implemented on the node named host1. Similarly, there should be
also two other instances of the pattern implemented on two nodes host2 and host3. Let
us assume that this channel connects a required service named serviceA implemented
on host1 and some other required services implemented on two nodes host2 and host3.
All provided services that connect to the channel will send messages into host1 place.
Because the instance in Figure 3.25 are implemented on node host1, messages will first
be sent to services in host1 that are required services connected to the channel. Hence,
the priority of the serviceA transition is higher (expressed by the P_HIGH annotation
of the serviceA transition). Then, the messages will be sent to other nodes. The host2
and host3 places are the input interfaces of channel instances implemented on host2
and host3 respectively. The type of interface places of the channel instance is colset
MESSAGExPORT = product STRING * MESSAGE * STRING timed;, which describes
the message contents together with the addresses of the required services and provided
services. This product type is a triple (source node, message, target port type), the
first field of the MESSAGExPORT is a string that describes the source node of the
message, the second field is the message content, and the last field is the port type of
the received ports. A service receives and processes a message only if its port type is
compatible with the port type of the received message.
The instances of the channel pattern will be generated using the aspect programming
capabilities of the Kermeta language, and derived from the component model. The
details of the transformation will be represented in the next section. Let us explain
more detail the instance model of the pattern in this example. The host1 place is a
FIFO (First In First Out) place. The host1 place will provide messages to the router
placeholder, and targets will take the message from this place for transfer. The router
place contains the messages that need to be sent and the targets information. The
router provides messages to targets through the arcs from the router to targets. The
messages are returned back to the router, so that all the targets can get the same
information.
The check function is responsible for checking the inclusion in the list of nodes infor-
mation as follows:

var host, h: HOST;

fun check(host, []) = false | check(host, h::l) =
if (host = h) then

true
else
check(host, h);

The transition guard

[not(check(\"host1\", l))]
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of the target transitions checks if the message was not yet received by a target. If a
target is an element in the targets’s list, then this target did not receive this message
yet. The transition del_message ensures that every target will receive a message once.
The total number of targets is derived from the component model. In this example, the
number of targets is three. The len function returns the length of a list:

fun len nil = 0 | len(h::t) = 1 + len t;

Parameters • Latency of the channel: the latency of the network channel is specified by
the timed annotation of the Send transition, as illustrated in Figure 3.25. This
expression parameter can be assigned to a value of a primitive type or a function,
for example, in Figure 3.25, the execution time of the Send transition is assigned
to expTime(30), which is an exponential distribution function with a mean rate
of 30.

• An array of connected services: this array specifies the list of nodes and services
that directly connect to the channel. These parameters of the broadcast channel
pattern are derived automatically from the component model. In the example
above, the array contains services implemented on nodes host1, host2 and host3
together with these nodes.

• A monitor to measure the throughput of the channel: Figure 3.26 represents the
monitor to measure the throughput of the channel instance. In Figure 3.26 the
socket port os the connection is assigned to 9000 (the connection between the
simulation and the external java process, in this case, the simulation connects to
the reasoning engine to send the simulation results to the reasoning engine). The
monitor is associated with the Send transition. The monitor is used to measure the
throughput of the Send transition. This amount of time the Send transition fired
the total duration time of the simulation will then be sent to the external process
through the port 9000, so that the external process can measure the throughput
of the channel instance.

Init function: the Init function for the monitor is invoked at the starting of the simulation,
it checks the status of the connection named Conn.

fun init () =
if !connected = true then
(ConnManagementLayer.closeConnection("Conn");
connected := false)

else ()

Observer function: this observation function invoked every time the above predicate func-
tion returns true, i.e. it will be invoked every time the Send transition occurs. Each
time the Start transition occurs the observation function will return a string of "1".
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fun obs (bindelem) =
let

fun obsBindElem (Broadcast’send (1, {m})) = "1"
| obsBindElem _ = ""

in
obsBindElem bindelem

end

Action function: this function is invoked each time the above Observer function returns
a value. Each time the Observer function returns a string "1", the Action function
will check the status of the connection and then send the value to the external process
through the socket port, in this example the socket port is 9000.

fun action (s1) =
(if not(!connected) then

(ConnManagementLayer.acceptConnection("Conn",9000);
connected:=true)

else ();
send_to_monitor(s1))

Stop function: this function is invoked to close the connection named Conn when the sim-
ulation has finished.

fun stop () =
if !connected = true then

(ConnManagementLayer.closeConnection("Conn");
send_to_monitor(INT.mkstr(intTime()));
connected := false)

else ()

3.5 Model composition and mapping from CPN-Kevoree
model to Access/CPN model

This section presents how to compose component services by means of CPN-Kevoree models
using the Kermeta transformation tool in order to achieve a system-level model that can be
simulated with CPNtools.

Thanks to the similarity of the semantics of our metamodel and the one of the CPNTools,
we only need to focus on the following two problems: how to map our templates onto the
CPNTools language structures, and how to manage the possible variable declaration conflicts.
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Figure 3.25 – Broadcast Channel Pattern.

The model-to-text transformation is then executed to construct a cpn file that conforms to
the DTD file of the CPNTools.

Figure 3.27 shows the transformation process from the Kevoree component model to
the system-level CPN net that is ready to be simulated. As discussed in previous sections,
the reconfiguration or the generation of new Kevoree component models of the system are
realised by the reasoner, based on the DSL model and the reasoning mechanism of the system.
Figure 3.28 illustrated the automatic composition of the individual component models and
also the generation of the system-level CPN model. This process of generation of the system-
level CPN model is equivalent to the first step of the transformation process showed in
Figure 3.27. The Kevoree component model generated at runtime by the reasoner conforms to
the proposed Kevoree extension metamodel, which strengthens the Kevoree metamodel with
the behavioral semantic of the component model by means of our modified CPN language.
The modified CPN language has been presented in previous sections. The target CPN model
conforms to the Access/CPN metamodel [108]. The Access/CPN [108] metamodel can be
found in Chapter 4. The second step (#2) of the transformation process is illustrated in
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Figure 3.26 – Definition of a monitor to measure the bandwidth of the channel instance

Figure 3.27, which is the transformation from the system-level CPN net generated in step
(#1) to a XML file that is comprehensive by CPNTools. This XML file that CPNtools
understands conforms to the Document Type Definition (DTD) of the CPN tools. In this
step of model-to-text transformation, we can apply other tasks of post-processing, for example
the inclusion of an algorithm of layout (redraw) on the elements of the Petri nets.

The transformation process contains two different types of transformation:

1. model-to-model: The transformation from our proposed metamodel to Access/CPN
domain.

2. model-to-text: The transformation to a valid XML that CPNtools understands.
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Figure 3.27 – Transformation process from the Kevoree component model to the system-level CPN model

Figure 3.28 – CPN model composition derived from component model

First, we detail the first step of the transformation process. We have defined transfor-
mation rules to convert the source domain to the destination domain. Table 3.5 shows the
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simplified correspondences between source domain and target domain. The mapping between
the Kevoree extension metamodel and the Access/CPN metamodel:

Kevoree extension Access/CPN
ContainerRoot PetriNet

PortTypeBehavior Page
Pattern Page

ExternalCall RefTrans
InternalCall Transition
Transition TransitionNode

We have implemented these two transformations (model-to-model and model-to-text) with
Kermeta [55]. Kermeta is a language built as an extension of EMOF [90] for meta-modeling.
Kermeta is an object/model oriented language, allows aspect oriented programming to enrich
the model by adding functionality, and also allows design-by-contract [76]. Using Kermeta
we have applied the Visitor design pattern [40] to implement our transformation. The code
segment below represents the simplified design for the Kevoree-to-Access/CPN model trans-
formation.

/*
* Transformation from Kevoree model to Access/CPN model
*/

package transformation {

abstract class KevoreeTransformation {
operation transform(input: VisitableKevoreeElement): Object is abstract
}

abstract class KevoreeVisitor {
operation visitContainerRoot(k: ContainerRoot): Void is abstract
operation visitPortTypeBehavior(k: PortTypeBehavior): Void is abstract
operation visitPattern(k: Pattern): Void is abstract
operation visitExternalCall(k: ExternalCall): Void is abstract
operation visitInternalCall(k: InternalCall): Void is abstract
operation visitComponentType(k: ComponentType): Void is abstract
operation visitPlace(k: Place): Void is abstract
operation visitChannel(k: Channel): Void is abstract
operation visitArc(k: Arc): Void is abstract

//visit operations for other elements of the metamodel
}
}
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abstract class VisitableKevoreeElement {
operation accept(v: KevoreeVisitor): Void is abstract
}

aspect class ContainerRoot inherits VisitableKevoreeElement{
method accept(v: KevoreeVisitor): Void is do
v.visitContainerRoot(self)
end
}

Due to limited space, we only sketch some elements of the Kevoree metamodel as example,
the other elements could be designed in the same way. We weave the accept method on all
the elements that belong to the behavioral extension part of the Kevoree metamodel, an
abstract class VisitableKevoreeElement describing visitors of the kevoree behavior model, an
abstract class KevoreeTransformation representing the transformation from Kevoree model
to Access/CPN model. Again, due to the limited space, the code segment above only shows
the transformation functions of some elements of the Kevoree metamodel. The code segment
below shows the simplified transformation code of the Kevoree2CPN class.

/*
* Transformation implementation from Kevoree model to Access/CPN model
*/

aspect class ContainerRoot{
attribute generated: PetriNet

operation getBehaviors(): Sequence<ComponentType> is do
var e: Sequence<TypeDefinition> init self.typeDefinitions.select{e | true}
var res: Sequence<ComponentType> init Sequence<ComponentType>.new
e.each{ type | if type.isInstanceOf(ComponentType) then

res.add(type.asType(ComponentType))
end

}
result := res
end
}

package transformation{
class Kevoree2CPN inherits KevoreeTransformation{
method transform(input: VisitableKevoreeElement): kermeta::standard::Object is do
var builder: KevoreeVisitorImpl init KevoreeVisitorImpl.new
input.asType(ContainerRoot).accept(builder)

var linker: LinkerVisitorImpl init LinkerVisitorImpl.new
//input.astype(ContainerRoot).accept(linker)
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result := input.asType(ContainerRoot).generated
end
}

As can be seen from the code segment above, the Visitor of Kevoree metamodel is im-
plemented by two specific classes: KevoreeVisitorImpl that will generate the elements of
the target Access/CPN model and LinkerVisitorImpl that aims to generate links between
elements of the target Access/CPN model.

The code segment below shows the simplified transformation code from the PortTypeBe-
havior element to the Page element of the Access/CPN model.

/*
* Module for generating the Page element from the PortTypeBehavior element
*/

class KevoreeVisitorImpl inherits KevoreeVisitor{
attribute cr: ContainerRoot

method visitContainerRoot(c: ContainerRoot): Void is do
cr := c
c.generated := PetriNet.new
c.typeDefinitions.each{e | if (e.isInstanceOf(ComponentType)) then
e.asType(ComponentType).behavior.each{f | f.accept(self)}

end
}
end

method visitPortTypeBehavior(ct: kevoree::PortTypeBehavior): Void is do
ct.generated := Page.new
ct.generated.name.text := ct.name
ct.arcs.each{a | a.accept(self)}
ct.nodes.each{n | if (n.isInstanceOf(kevoree::Place)) then
n.asType(kevoree::Place).accept(self)
else if (n.isInstanceOf(InternalCall)) then
n.asType(InternalCall).accept(self)
else if (n.isInstanceOf(ExternalCall)) then
n.asType(ExternalCall).accept(self)
end
end
end
}
ct.pattern.each{p | p.accept(self)}
end
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There are two problems when transforming the PortTypeBehaviorElement to Page ele-
ment: (a) composing the required and provided services (these are designed by the External-
Call element) and (b) transforming a Pattern element into a Page element. Firstly, for the
services composition, the required service connects to the provided service through the chan-
nels. To do so, when transforming an ExternallCall to a Page, for each place that connects
to or go out from the ExternalCall transition, we will add an immediate transition between
this place and the start place of the channel instance model that the required service connect
to, as showed in the code segment below:

/*
* Module for generating the place element
*/

method visitPlace(p: kevoree::Place): Void is do
var isFusionGroup:Boolean init false
p.out.each{a | if (a.target.isInstanceOf(ExternalCall)) then
isFusionGroup := true
end

}
p.in.each{a | if (a.source.isInstanceOf(ExternalCall)) then
end

}
p.out.each{a | if (a.target.isInstanceOf(Pattern)) then
isFusionGroup := true
end

}
p.in.each{a | if (a.source.isInstanceOf(Pattern)) then
isFusionGroup := true
end

}
if (isFusionGroup) then
p.generated := FusionGroup.new.asType(model::Place)
p.generated.name.text := p.name
//other properties of places, like initial marking, color type, etc.
else
p.generated := model::Place.new
p.generated.name.text := p.name
//other properties of places, like initial marking, color type, etc.
end
end

The code segment above illustrates the generation of the corresponding Place element in
the target Access/CPN model, this place connects to the start place of the channel instance
through a new added transition.
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Secondly, to transform the Pattern element to a Page element, the places that connect
to the used pattern will be translated into fusion places (FusionGroup element) in the page
generated corresponding to this pattern element, as showed in the code segment above that
aimed to generate the fusion place element. If a place connects to a ExternalCall instance,
it will be translated to a FusionGroup.

The second step of the transformation process, as shown in Figure 3.27, could be imple-
mented in the same way. Figure 3.29 represents a simplified view to realise this transformation
step to generate the valid XML that the CPNtools understands.

Figure 3.29 – Module for generating the XML code that the CPNtools unerstands

The second step in the transformation process of the framework is the model-to-text
transformation, specifically the transformation from Access/CPN model to the XML format
that conforms to the DTD of the CPNtools. We can apply an algorithm to redraw (or
layout) the generated XML code, but in the scope of our work we only use the default values
to layout the generated XML, as showed in the code segment below, which is an example of
the transformation from the Place element of the Access/CPN model to a valid part XML.

class Cpnvisitor inherits Visitor{
attribute res: StringBuffer

method visitPlace(p:Place):void is do
res:= StringBuffer.new
res.append("<place id=\"\" + Utilities_.random() + "\">")
res.append("posattr x=\"0\" y=\"0\"/> \n")
res.append("<fillattr colour=\"White\" pattern=\"\" filled=\"false\"/> \n")
res.append("<lineattr colour=\"Black\" thick=\"1\" type=\"Solid\"/> \n")
res.append("<texattr colour=\"Black\" bold=\"false\"/> \n")
res.append("<text>" + p.name + "</text>")
res.append("<eclipse w=\"0.00000\" h=\"0.00000\"/> \n")
res.append("<token x=\"0.00000\" y=\"0.00000\"/> \n")
res.append("<marking x=\"0.00000\" y=\"0.00000\" hidden=\"false\"/> \n")
res.append("snap snap_id=\"0\" anchor.horizontal=\"0\" anchor.vertical=\"0\"/> \n")
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res.append("<type id=\"\" + Utilities_.random() + "\">")
res.append("posattr x=\"0\" y=\"0\"/> \n")
res.append("<fillattr colour=\"White\" pattern=\"\" filled=\"false\"/> \n")
res.append("<lineattr colour=\"Black\" thick=\"1\" type=\"Solid\"/> \n")
res.append("<texattr colour=\"Black\" bold=\"false\"/> \n")
res.append("<text tool=\"CPNtools\" version=\"3.5.1\">MESSAGE</text>" \n")
res.append("</type> \n")

res.append("<initmark id=\"\" + Utilities_.random() + "\">")
res.append("posattr x=\"0\" y=\"0\"/> \n")
res.append("<fillattr colour=\"White\" pattern=\"\" filled=\"false\"/> \n")
res.append("<lineattr colour=\"Black\" thick=\"1\" type=\"Solid\"/> \n")
res.append("<texattr colour=\"Black\" bold=\"false\"/> \n")
res.append("<text tool=\"CPNtools\" version=\"3.5.1\">MESSAGE</text>" \n")
res.append("</initmark> \n")
res.append("</place> \n")
end
}
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Chapter 4

Experiment and validation

4.1 Component model of the application

In this section we present a simplified example based on our ongoing experimental platform,
the temperature monitoring part of the firefighters application. We will use this example as a
running example to demonstrate the usage of our metamodel by means of the coloured Petri
nets language in modeling timed behavior model of components and channels in Kevoree, as
well as the performance prediction of timed behavior model of the system as a whole after
composing individual behavioral models of components and channels.

This example describes a network of sensors that monitors temperatures outside and in-
side of the firefighters personal protective equipment. Periodically, sensors send data to the
remote server through XBee, Ethernet or 3G networks, which are modeled as a channel in
Figure 4.1. In this example, we focus on the following quantitative properties: data trans-
mission time between sensors and server, packet loss rate, throughput of incoming data that
comes into the server node. Let us assume that the reasoner has to consider a configuration
as illustrated in Figure 4.1 among other different configurations, based on evaluating some
performance aspects and verifying the correctness of the behavioral model of the configu-
ration. Periodically the sensors send information on the latest temperature readings to the
server, in particular, the Notifier component, and then the Notifier will extract the abnormal
information and forward it to the Processor component, which will proceed to react against
these abnormal situations. To be more specific, the Notifier will verify whether the temper-
ature is in the safety interval. If the value is out of bounds and some situation dependent
conditions are met then the Notifier will transfer this information to Processor component
, which monitors abnormal conditions for the firefighters team. Such abnormal information,
for instance, is when the external temperature is greater than 100 or the internal temperature
greater then 40 and the firefighter did not move for more than 20 seconds. Figure 4.2 shows
the class diagram of the application.
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The CPN net of the whole system should be derived from the component model of the
system. The Kevoree component model in Figure 4.1 tells us that the system includes three
sensors, a network, and an emergency management server. Each sensor contains a cap-
tureTemperature functionality to capture the internal and external temperatures and also
the movement of the firefighter. The Channel 1 models the communication semantics be-
tween sensors and Notifier component, it also provides the network information, for example,
the data rate. The Notifier component provides the notify service that verifies the abnor-
mal information and send it to the Processor component. The message channel Channel 2
encapsulates the communication semantics between the Notifier and Processor components.

Figure 4.1 – Kevoree component model of the temperature’s firefighters application.

Figure 4.2 – The class diagram of the temperature’s firefighters application.

4.2 Behavior models of individual components and of the
whole system

Figure 4.3 defines the system-level behavioral model of the application, which is derived
from the component model. In the following we will describe in more details the behavioral
modeling of services of the application. Firstly, we will represent the description of the
behavior model of the alarm service of the alarm component to understand how we can use
the template in modeling. Then we will represent the behavior model of the notify service of
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the Notifier component, and then the workload modeling. For clarity’s sake, from now on we
represent the modeling of timed behavioral semantics by means of two different languages,
the first one conforming to our meta-model and constructed by developers, and the second
one conforming to the CPN language, generated from the component model.

Before we go into details, let us take a look again at the convention in naming the
declaration during modeling the behavior models of services. As mentioned above, the main
coloured type is the MESSAGE product color type:

colset MESSAGE = product ADDRESS * DATA * ADDRESS timed;

The ADDRESS color type is used to describe the source and the target of the token. The
DATA color is defined by means of record color type, provided by developers in their model,
for example, the DATA color defined in sensor components in this case study :

colset DATA = record externalT:INT * internalT:INT * moved:BOOL * ID timed;

The first field in DATA record, the externalT is the external temperature captured by the
sensor, the internalT field is the internal temperature of the firefighter, and the moved field
is of boolean type, true if there was a move. The ID field provides a unique identity for
the token. In any case, the start place and end place of behavioral models are of main type
MESSAGE.

Figure 4.3 – The CPN model at top-level generated by Kermeta and derived from the Kevoree component model
of the system.

Behavior model of the alarm service port
As shown in Figure 4.4, the behavior model of the alarm service port makes use of the

synchronous service template to model the synchronous call to the notify service. The lower
part in Figure 4.4 shows the properties and parameters of the template. It resembles a
class import in Java, and declares and instantiates a java class. The base property of the
synchronous template indicates the path of the parameterized template CPN associated with
the Kermeta transformation code segment, which will be used to translate the template
instance to the CPN language. The interfaces property determines the interface nodes of
the template instance. In this example, the Synchronous pattern instance has two interface
places named In and Out. The In place herein is also the Start place of the alarm service.
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Figure 4.4 – The timed behavior model of the alarm service of the alarm component, developed by third parties.

The name property defines the name of the called service. Here, the alarm service calls the
notify service to get the recent abnormal information received from the sensors. Hence, the
name property is assigned to notify, which is the name of the called service. Finally, the
params properties list the values of the parameters of the template. For instance, in this
example, there is a parameter named requiredService, which is n̈otifÿ.

Figure 4.5 shows the CPN of the behavior model of the alarm service. This CPN of the
alarm service is derived from the behavior model in Figure 4.4, by the model transformation.

Timed Behavior of the broacast channel
Kevoree does not allow the direct binding between ports. Instead, the channel instances

carry the binding semantics. Channel instances are developed by fragments, one fragment
on each node that connects to the channel using the FIFO semantic. This means that one
ChannelFragment communicates with local ports, and other ChannelFragment of remote
ports. In Figure 4.3 we have seen that there are four instances of the Channel 1 implemented
on each sensor node and on server node, because all three sensors and the server node contain
components that connect to the channel. In the Kevoree framework, the channel instances
are responsible for binding ports. The channel instances are deployed by fragments on each
node that has connection with the channel. The channel fragments communicate with local
ports and remote ports. The Channel 1 is a broadcast channel, therefore, as we can see in
Figure 4.6, the CPN model of the Channel 1 instance on the Node 1 is derived from the
component model using the Broadcast Channel Pattern that was mentioned in Chapter 3.
The behavior model of the Channel 1 instances are generated automatically at runtime from
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Figure 4.5 – The CPN model of the alarm service derived after the transformation step.

the component model using the Broadcast Channel Pattern. The architect provides the time
delay of the channel only, in this example, the time delay is provided as a distribution function
expTime(20). The translator will generate the behavior models of the channel instances.
Figure 4.6 shows an instance of the Channel 1 on the emphNode 1, other channel instances
models on emphNode 2, emphNode 3 should be generated in the same way. We can see
that this instance of the Channel 1 has only one target node, which is the centre_node place
because the channel instance on Node 1 has only one required port on the server that connects
to the channel. The transmission delay between Node 1 and centre_node is expressed by the
distribution function: expTime(20) marked on the send transition.

Behavior model of the notify service port
We now represent the behavior model of the notify port. Figure 4.7 is the CPN model

of the notify port, derived from the component model. This behavior model has a start
place and an end place, which are Channel1toServer and Channel2 places in Figure 4.3,
respectively. Let us consider in more detail the semantic of this CPN model. Note that the
notify service is responsible for verifying the abnormal information and sending this abnormal
information to the Alarm component by calling the alarm service. Firstly, we should look
again the declarations of this model:

colset MESSAGE = product ADDRESS * DATA * ADDRESS timed;

colset COUNT= product ADDRESS * INT;

colset COUNTS = list COUNT;

colset DATA = record externalT:INT * internalT:INT * moved:BOOL * id : INT timed;

var sr, tg : ADDRESS;

var i : INT;
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Figure 4.6 – The CPN model after the transformation of the Channel 1 instance implemented in node 1.

Figure 4.7 – The CPN model of the notify service port.

var lc : COUNTS;

var data : DATA;

The MESSAGE and DATA color sets are the same as the ones defined in previous elements
that we have presented above. sr, tg are the variables of ADDRESS type, data is a variable of
DATA type. The COUNT and COUNTS are counting the number of firefighter movements.
The following will explain in more detail this CPN net. First, the notify service receives
messages in Channel1toServer place, and then the process transition transfers the message
to the checkin place to be than checked and determine the message whether the value is
abnormal or not. The address information of the source and the movement (sr, #moved)
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contained in the message is sent to the COUNT place, then the number of movement is
updated and this information is saved in COUNTS place. The checkinfunction checks if the
source token (or the sensor address) is already in the COUNTS place:

fun checkin ad nil = false |
checkin ad ((a,b)::l) = if ad=a
then true else checkin ad l;

Then, if the source is already in the COUNTS place, the function updates below will
update the movement number corresponding to this source, otherwise the movement number
of this source will be initialized to 0.

fun updates ad c ((a,b)::l) = if ad = a
then (a,b*c+1)::l else (a,b)::updates ad c l;}

Finally, the transition notify will be fired if the condition of abnormal messages is fulfilled.
More precisely, if one of the conditions hereafter is fulfilled: the external temperature is
greater than 100, or the external temperature is greater than 70 and the firefighter has not
moved during the last 20 seconds, or the internal temperature is greater than 40 and the
firefighter has not moved during the last 20 seconds. The notified function is responsible for
verifying abnormal messages, this function used as the condition mark of the notify transition.
The code snippet below represents this function:

fun notified sr (data:DATA) l =
if (noMove sr l)

andalso ((#internalT data) > = 40) then true
else if (noMove sr l)
andalso ((#externalT data) > = 70) then true
else if ((#externalT data) > = 100) then true
else false;

The noMove function checks whether or not there is a sensor that has not moved for more
than 20 seconds in COUNTS place.

fun noMove source nil = false |
noMove source ((a,b)::l) = if (source=a)
andalso (b >= 20) then true else noMove source l;

When the notify transition fires, it sends the abnormal messages to channel 2 and then
it begins to transfer to the alarm service port. This alarm service will then react to the
abnormal messages received.

Behavior model of the capture service port
Figure 4.8 describes the timed behavior model of the capture service port of the sensor

component, the behavioral models of other sensors are modeled similarly. In this model, the
developer models the arbitrarily generation of the temperature by means of an exponential
distribution that is defined as a ML function:



80 Chapter 4

Figure 4.8 – The timed behavior model of the capture service port.

fun expTime (mean: int) =
let

val realMean = Real.fromInt mean
val rv = exponential((1.0/realMean))

in
floor (rv+0.5)

end;}

The left hand side of Figure 4.8, comprising the generate transition and the Next and Send
places, models the arbitrarily generation of the temperature. The mean value, or the rate
of the exponential distribution function is described as expTime(10), which is the period to
capture the temperatures and movement of the firefighter and then sent to the server. The
second parameter is the name of the host in which the sensor component is implemented,
this parameter will be adjusted in the transformation step, the host’ s name is derived from
the component name in the component model. Finally, the developer has also to describe
the function named newData to generate data values. The function below is an example,
the distribution of the internal temperature, external temperature, and the movement being
37, 70 and hasMove(2), respectively.

fun newDATA() = {externalT = expTime(40) ,
internalT = expTime(70), moved = hasMove(expTime(5)), id = ran()}}

thus function

hasMove(s : INT, r : Ten) = (s > = r)

colset Ten : int with 1..10}
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Figure 4.8 is the CPN model of the capture service that is generated from the component
model, the mean time between two continuous capturing is 10 and this time obeys exponential
distribution expTime(10). The name of the node that carries this sensor is host1. sr, tg are
variables of type ADDRESS, data is variable of type DATA.

4.3 Measuring performance aspects

4.3.1 Notification delay time monitor

As mentioned earlier, for the purpose of measuring performance aspects of the behavior model,
developers should define monitors to collect data from simulation, so that the statistic results
can be calculated. In the previous section, we have mentioned that there are different kinds of
monitors, but the User defined monitor is the most convenient, because it fits our need for a
mechanism to communicate with external processes to allow for the computation of statistic
results by the external reasoner. The following describes the monitor that measures the delay
from the moment that sensors send messages until the moment that the notify transition fires
to transfer the abnormal messages. As explained earlier, a User defined monitor has different
parts:

Type User defined

Nodes ordered by pages This part should be generated by model transformation from
the component model. In the firefighter example, the pages of the monitor are only:
Notifier page, which is notify service, and the transition related to this page is notify
transition. The developer only has to indicate the transitions and places that relate to
the monitor in their behavior model.

Init the Init function is instantiated before the simulation start. In the firefighter example,
we want to check if the connection between the simulation and the external process for
this monitor is already established.

fun init () =
if !connected = true then
(ConnManagementLayer.closeConnection("Conn");
connected := false)

else ()

Predicate This function is the precondition of the monitor. In this example, the predicate
function for the monitor is invoked each time the transition notify occurs, it returns
true if the transition occurs.

fun pred (bindelem) =
let

fun predBindElem (Notifier’Notify (1, {data,lc,sr,tg})) =
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true
| predBindElem _ = false

in
predBindElem bindelem

end

Observer This function is invoked every time the Predicate function returns true; in the
firefighter example, the Observer function is invoked each time that transition notify
occurs.

fun obs (bindelem) =
let
fun obsBindElem (Notifier’Notify (1, {data,lc,sr,tg})) =
INT.mkstr((intTime() - (#AT data)))
| obsBindElem _ = ""
in

obsBindElem bindelem
end}

In this function, note that we want to count the time elapsed between capturing of ab-
normal messages by sensors and notifying abnormal messages by Notifier. The function
intTime() returns the actual simulation time, and the field AT of the DATA record is
the time of capturing information.

Action This Action function is invoked every time the Observer function returns a value.
In the firefighter example, the Action function is responsible for transferring the value
returned by Observer function to the external process through the Connection Conn
and the port 9000.

fun action (s1) =
(if not(!connected)
then (ConnManagementLayer.acceptConnection("Conn",9000);

connected:=true)
else ();
send_to_monitor(s1))

In the code snippet above, s1 is the data returned by Observer function. The function
send_to_monitor(s1) transfers s1 to the external process.

fun send_to_monitor(text) =
ConnManagementLayer.send("Conn",text,stringEncode);
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4.3.2 Conclusion

For the configuration described above, we have launched a simulation of 10000 steps to
measure two performance aspects. The first one is the amount of time elapsed between
the apparition of abnormal information and the notification of these abnormal information,
this measurement is executed by the notification delay time monitor presented in previous
section. And the second one is the queue delay on the server side, it measures the amount
of time that messages have to wait in the queue of the server (or centre_node).

Name Count Avrg Min Max
Queue_Delay 712 124.991573 1 386

Notification_Time 33 130.818182 10 352
The launching of simulations executed with help of the Access/CPN tool [108], and the

Comms/CPN library makes it possible for CPN Tools to communicate based on TCP/IP with
external application and processes [42]. Our tools take Access/CPN as dependencies to realize
the simulations and collect the statistical results from the simulations through socket commu-
nication. However, when launching simulations, we should pay attention to the confidence
intervals of the results, furthermore the independent and identically distributed estimates
of performance measures must be collected from independent and terminating simulations.
CPN Tools provides support for performance analysis using Simulation replications of inde-
pendent and terminating simulations. Therefore, we can consider the simulation replications
configuration in case that the accuracy of the confidence interval of the average values mea-
sured could be considered as an importance aspect. We have used the our process to design
and predict the different performance aspects of the Kevoree component model. However,
our current toolchain lacks the optimization algorithms to select the best configuration, based
on the performance measurements.

As mentioned above, in order to validate the presented Kevoree extension framework
and the process development, we have performed design and analysis case study on a fire-
fighter application. Besides the validation of the performance prediction technique, we have
additionally applied the patterns in component behavior modeling and the aspect-oriented
modeling for defining the measurement models. The case study proved the suitability of our
process for models at runtime. Our process has been designed to offer a balance of power
of prediction and prediction computation time. The tool chain consists in a set of Kermeta
compiled transformations, the CPNTools external analysis software (packaged as an Eclipse
plugin), a set of generated monitors created from the patterns instantiated in the Kevoree
model and Kevoree wrapper components that interface with the models et runtime engine.
Running the tool chain on a Kevoree model of dozen components produces useful timing
predictions in less than 10 seconds, the longest computation step being the parsing of the
CPNTools model by the external CPN/Access plugin [108]. Running the tool chain on an
ARM based node with one GB of memory is possible. In our current pervasive system con-
figuration, we use this kind of node as support nodes that performs this kind of models at
runtime computation.

We also consider the effort that is involved performing the architecture analysis, we have
measured this effort calculating the time periods for the architecture analysis activity. The
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architecture analysis process consists of component implementation, component behavior
modeling, and simulation. In the case study, we have used the Broadcast channel pattern
to model the communication semantic of the channels. In addition, we have applied the
measurement models to define the monitors for measuring the performance aspects in the
application, such aspects are the notification time and the queueing delay. The usage of the
library of patterns and measurement models lead time efforts reduction in modeling behavior
models.
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Conclusion

Performance is often a central and challenging issue in design, development and configuration.
In the context of soft real time systems, time-related performance properties are vital and
most challenging properties to predict, enforce and measure. In this thesis we focused on
the adaptive component-based distributed systems that must support major architectural
changes at run-time, without stopping but instead by hot-deploying. An example of such
kind of system is a car-to-car scenario, two cars approaching the same intersection should be
able to synchronize in a reasonably short delay to share information about their own context
and configuration, then take distributed decisions, e.g. on the precedence order to cross the
intersection. In such kind of systems, performance failures may cause serious consequences. In
order to avoid these failures, the performance properties should be predicted and analyzed at
early design phases and at the run-time reconfiguration to making a choice between alternative
configurations. In component-based systems, the functional and extra-functional properties
of individual components are used to reason about those functional and extra-functional
properties of component composition. In fact, a solution for performance-centric predictable
assembly of adaptive distributed systems should satisfy the following characteristics. First, it
enables an automated synthesis of system performance properties from the related component
properties; second, it requires the separation of concerns in modeling of functional and extra-
functional properties of the components and the system; third, it provides a time-effect
performance analysis.

This thesis presents a framework that features three aforementioned characteristics. The
framework defines a development and validation process which guides a component developer
and a QoS analyst through an iterative design cycle, while focusing on performance proper-
ties. The iterative cycle contains the following phases. Firstly, construction of a number of
alternative component models from the available libraries of Kevoree components. Secondly,
for each alternative, assembling the behavior models of these individual component models
into a system-wide performance-related model. Thirdly, analyzing these performance models
with respect to the requirements. The latter phase helps the reasoning engine in selecting a
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performance optimization of the promising alternative. Fourthly and finally, the adaptation
mechanism of the system selects the best architecture alternative for implementation.

The Kevoree framework is dedicated to design based on models at runtime that enables
dynamic adaptation for distributed component-based systems. At runtime, the system’s en-
vironment fluctuation provided by context sensors, and may trigger a system configuration.
The adaptation rules part or reasoning model describes selection of the variability features
according to context. The existing Kevoree infrastructure investigates two different formalism
to capture the adaptation rules, which are event-condition-action (ECA) rules and goal-based
optimization rules. The work in this thesis focuses on a technique based on the continuous
performance-related validation that supports the reasoning engine to select a performance
optimization architecture. The behavior models of individual components are specified at
the component-development time and are shipped in a component library. At design time,
the models of the constituent components are automatically synthesized into an executable
system model. Designers rely on quantitative analysis techniques to validate implementation
against specifications. This validation task is mainly a design time activity, which provides
prediction of quantitative properties for the system’s needs and capabilities before these sys-
tems are deployed. Designers rely on these predictions to engineer an appropriate architecture
that will meet the specifications, as long as a set of corresponding requirements remains at
run time. Simulation of the system architectural model provides performance measures.

From a development and validation process point of view, the framework features the
following principal benefits.

• At design time, an architect needs to obtain only the corresponding behavior models
of the components, design system-wide performance-related models and conduct the
performance analysis. The design and analysis can be performed prior to the purchase
or implementation of the components. At runtime, multiple system models that are
generated by the reasoning engine could be analyzed to select the best architecture
model. There is no system implementation needed within the iteration cycle.

• The performance analysis can be carried out for systems constructed from a set of third-
party components. Multiple architecture models generated by the reasoning engine can
be analyzed for performance in a reasonable time to select the best configuration. An
assumption is that each individual component has to be accompanied with predefined
behavior models specifying the internal properties of that component. Synthesis of
component models allows to characterize system behavior in a consistent and automated
way.

• Rapid component prototyping with help of a library of design pattern. Instead of using
pure CPN language for the development of component behavior model, the parameter-
ized templates and aspect-oriented modeling facilitate the construction of performance-
related behavior models.

• The method provides a powerful language that based on Colored Petri Net for perfor-
mance modeling of complex systems.
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However, the proposed approach has a number of limitations. The method requires that
designers have some experience in modeling performance-related component behavior with
colored Petri nets. Developers must follow the convention (as mentioned in Section 3.2)
in modeling of interface places. Otherwise this could affect the capacity of the modeling
language. The automatic synthesis of individual CPN models of third-party components
implicit the incorrectness of the composed system-wide model. The method assumes that
the workload models are available for every simulation.

In Chapter 3, we have proposed a library of design patterns that provides parameterized
templates to facilitate the modeling of distributed systems, process-aware information sys-
tems, communication protocols, etc. Due to the space limitation, we only proposed some com-
monly used patterns in Kevoree systems, such as broadcast channel template, synchronous
service call template. The application of the aspect-oriented modeling approach augmented
the re-usability and separation of concerns in modeling with our proposed CPN language
for Kevoree. In our opinion, the proposed CPN language can be applied to a broad set of
systems for performance validation and expression.

In order to validate the presented Kevoree framework and the continuous validation
method, we have performed a case study on a firefighter application. The case study con-
tains all development and validation process, starting from components development phase
and ending with the profiling of the selected system model on the actual infrastructure.

5.1 Discussion on Research Questions

This section aims at reviewing the four research questions that we selected in Chapter 1 of
this thesis. The main goal of this is to describe how we address these research questions.

RQ1: How should the functional and performance properties of individual independent-
developed components be specified in order to enable automated composition of these prop-
erties and to capture all environment aspects that may influence the performance of the
components?

The behavioral properties of components can be expressed by behavior models, and the
performance properties can be specified directly by using timed transitions or a resource
component model. Instead of specifying the processor in terms of the number of instruction
cycles that an operation requires from a processor to be executed, in the scope of this thesis the
number of instruction cycles are mapped directly into the execution time metric. Time stamps
can be specified by probability distributions. The CPN language supports several types of
probability distribution. The component resource model that specifies other software and
hardware claims (e.g. thread pool, semaphore) for each operation provided by a component
can be expressed by means of an aspect model (as mentioned in Section 3.3). The behavior
component models introduced (as mentioned in Section 3.2) describe a component behavior
by specifying actions that the provided operations of the component are performing upon
their invocation. These actions specify the sequence of ExternalCall operations called by
interfaces of neighboring components. At design time these neighboring components are not
known. However, a component developer does not need to have this information, because it is
sufficient to know the signatures of provided interfaces. At the time of creating a component
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assembly, when the component model is known, the behavior and performance properties of
individual components can be combined into system-wide properties.

RQ2: How to evaluate performance properties of combined system architectures at run-
time in an automatic way?

At runtime, the environment context may trigger a system reconfiguration. The reasoning
engine generates a set of configurations based on adaptation rules. The results lead to a list
of synthesized component models, with detailed behavioral and performance characteristics
of individual components. The architectural component models and behavior models of
involved components are input for the synthesis of the performance system-wide models.
The component model contains the specification of the composition of the service instances,
the involved component instances, the channel instances, and behavior models of involved
components. The model transformation done using Kermeta [55] tool in Chapter 3 results in
the constructed performance system model, which can be simulated to obtain the predictions
of various performance properties of the system.

RQ3: How can the reasoning engine compare architectural alternatives and select an
optimized with respect to multiple quality attributes?

To construct a system that fulfills all its performance-related requirements is a challenging
task. As a consequence, the reasoning engine has to consider several generated architectural
alternatives and identify a solution that satisfies most quality objectives, and where the op-
timal balance between different quality attributes is achieved. The reasoning algorithms for
this optimization problem is out of scope of this thesis, we consider this issue as a future
work. The selection of an optimized configuration may contain different steps, such as gen-
eration of a set of appropriate architectural alternatives, simulation to obtain multiple of
performance properties values of these alternatives, a trade-off analysis of the alternatives
with respect to multiple performance properties (e.g. response time, resource usage), and
finally, identification of an optimal alternative to be instantiated in nodes of the system.

RQ4: Can this approach proposed in this thesis be applied to other systems, such as
embedded real-time systems?

The Colored Petri Nets used in the framework is a discrete-event modeling language that
extends classical Petri nets by allowing definitions of actions with the Standard ML functional
programming language. By combining classical Petri nets and Standard ML language, the
CPN language has proved its powerful capacity of modeling. Therefore, the CPN language
in general and the refined CPN language of our framework are suitable for modeling most
of the complex systems, such as distributed systems, or embedded systems. For instance,
to model and evaluate performance properties of embedded systems, we address behavioral
properties and the performance properties of passive and active components. These aspects
can be modeled by the behavior metamodel and the aspect modeling proposed in this thesis.

RQ5: How can other extra-functional properties like security, availability, etc be ex-
pressed and evaluated?

The other extra-functional concerns such as security, availability can be expressed by using
the aspect modeling proposed in this thesis. Each extra-functional concern can be constructed
by an aspect model and then be weaved into the behavior component model by defining the
joint points in the behavior component model. The aspect modeling allows the separation of
concerns and re-usability in extra-properties-related behavior modeling.Moreover, there are
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several advantages of using a formal method like coloured Petri nets in system design such as
simulation, verification of properties. We have shown the approach of validation, performance
analysis to support the reconfiguration of the reasoning mechanism. However, performance
evaluation based on simulation can not used to prove correctness of structure composition.
It could be useful to apply formal model checking techniques to verify all relevant properties
of components and systems. A promising approach would be to use a branching-time logic
ASK-CTL [28], which is integrated into CPNtools, to evaluate other system properties such
as safety, liveness and precedence properties. It is as important as performance evaluation to
verify these system properties. The solution proposed here is to use a state-space formal model
checking technique to verify if the generated CP-net satisfy the properties given as ASK-CTL
statements. Figure 5.1 gives an overview of the state-space formal model checking process to
verify the generated CP-net. The ASK-CTL toolkit is provided with CPNtools to analyze
state spaces by means of a CTL-like temporal logic. ASK-CTL allows to formulate queries
about states, and queries about state changes (e.g., the occurrence of certain transitions).

Figure 5.1 – The state-space formal model checking to verify the generated configuration

5.2 Open Issues and Future Work

At present, the reasoning engine of the Kevoree framework has not yet investigated a
performance-based goal algorithm to resolve the optimization problem that we mentioned
above in the research question #3. In order to provide the Kevoree framework with reason-
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ing algorithms that allow resolving the optimization problem, we aim at introducing extra-
properties goal-based adaptation rules part of the reasoning model. The method should also
provide a trade-off analysis of the alternatives with respect to multiple performance proper-
ties (e.g. response time, resource usage). Pareto-based trade-off analysis [72] is a promising
approach to be considered.

In addition to the performance properties expression and evaluation, the analysis of other
extra-properties would be useful to select the best configuration. The expression of the other
extra-functional properties ca be achieved by using aspect modeling. Each extra-functional
concern can be modeled by an aspect model, and then these models can be weaved into the
base model. Moreover, as mentioned above in the research question #5, the branching-time
logic ASK-CTL [28] is integrated into CPNtools to evaluate other system properties such as,
safety, liveness and precedence properties. However, as an obvious drawback, the modeling
of aspect models would require substantial effort for modeling by means of CPN language.

In addition, we focus on the enhancements of modeling expression facilities. Instead of
using directly CPN language, it would be useful to use design-oriented models, the translation
from these design-oriented models to analysis-oriented model (our CPN language) with help
of the model transformation methodology. The point worth noting here is the usage of a
specific design metamodel for each domain. For instance, the MARTE profile [70] can be
used to model components of embedded systems. Model driven approaches and technologies
can help to connect the design world and the analysis world by building transformation rules
between them.

Finally, it would be interesting to take into account the process mining approach [34].
Process mining aims at automatically generating process models from event logs. The real-life
event logs captured at run time by a Kevoree system can be used to form an executable model
that reflects the real system. The model discovered can be used as feedback mechanism to
check if the prescribed models (the behavior model of the system) fit the executed ones. This
feedback mechanism allows to refine and improve the behavior models of involved components
in the system. Another objective is to automatically construct the behavior models for new
developed components.
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