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Résumé

Le but de l’adaptation de maillages est de générer le meilleur maillage pour un pro-
blème donné, i.e, celui qui permettra d’obtenir la meilleure solution possible avec un
nombre fixé de degrés de liberté. Pour cela, on met en place un processus itératif
où l’on fait converger en même temps le couple maillage adapté-solution. Autrement
dit, le processus d’adaptation de maillages consiste à changer localement la taille et
l’orientation du maillage en fonction du comportement de la solution physique étudiée.
Les méthodes d’adaptation de maillages ont prouvé qu’elles pouvaient être extrême-
ment efficaces en:

• réduisant significativement la taille des maillages pour une précision donnée (plu-
sieurs ordres de grandeur),

• en atteignant rapidement une convergence asymptotique d’ordre 2 pour des pro-
blèmes contenant des singularités (ondes de choc, discontinuités de contact, points
et lignes d’arrêt, ...) lorsqu’elles sont couplées à des méthodes numériques d’ordre
élevé (i.e., ordre 2).

Dans les techniques d’adaptation de maillages basées sur les métriques, deux ap-
proches ont été proposées: les méthodes multi-échelles basées sur un contrôle de l’erreur
d’interpolation en norme Lp et les méthodes ciblées à une fonctionnelle qui contrôle
l’erreur d’approximation sur une fonctionnelle d’intérêt via l’utilisation de l’état ad-
joint. Cependant, avec l’émergence de méthodes numériques d’ordre très élevé, i.e,
de schémas numériques d’ordre > 3 telles que la méthode de Galerkin discontinue ou
les schémas aux résidus distribués, il devient nécessaire de prendre en compte l’ordre
du schéma numérique dans le processus d’adaptation de maillages. En effet, pour un
solveur d’ordre 3, on désire aussi contrôler un modèle d’erreur d’ordre 3 et non plus un
modèle quadratique. Il est à noter que l’adaptation de maillages devient encore plus
cruciale pour de tels schémas car ils ne convergent qu’à l’ordre 1 dans les singularités
de l’écoulement. Par conséquent, le raffinement du maillage au niveau des singular-
ités de la solution doit être d’autant plus important que l’ordre de la méthode est élevé.

L’objectif de cette thèse sera d’étendre les résultats numériques et théoriques obtenus
dans le cas de l’adaptation pour des solutions linéaires par morceaux à l’adaptation
pour des solutions d’ordre élevé qui sont polynomiales par morceaux. Ces solutions
sont représentées sur le maillage par des éléments finis de Lagrange d’ordre k > 2
(isoparamétriques). A cette fin, cette thèse portera sur la modélisation de l’erreur
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d’interpolation locale d’ordre Pk+1 avec k > 2 dans le formalisme du maillage con-
tinu. En d’autres termes, on définit une erreur d’interpolation continue d’ordre Pk+1

sur un maillage continu. Dans le cas de l’erreur d’interpolation, le modèle d’erreur est
un polynôme homogène de degré k > 3. Or, les méthodes d’adaptation de maillages
basées sur les métriques nécessitent que le modèle d’erreur soit une forme quadratique,
laquelle fait apparaître intrinsèquement un espace métrique. Par conséquent, pour
pouvoir exhiber un tel espace, il est nécessaire de décomposer le polynôme homogène
et de l’approcher par une forme quadratique à la puissance k

2
. Cette modélisation per-

met ainsi de révéler un champ de métriques indispensable pour communiquer avec le
générateur de maillages. La méthode de décomposition utilisée est une extension de la
méthode de diagonalisation au cas des polynômes homogènes de degré élevé.

En deux dimensions, la décomposition de Sylvester nous permettra d’approcher
localement les variations de la fonction exacte d’erreur par un modèle d’erreur quadra-
tique à la puissance k

2
. Ensuite, ce modèle d’erreur local est utilisé pour contrôler

globalement l’erreur en norme Lp. Le maillage optimal est obtenu en minimisant cette
erreur. On définit ainsi la méthode d’adaptation multi-échelle d’ordre élevé. Le cas de
la dimension trois s’appuie sur la même méthodologie mais la modélisation de l’erreur
locale est basée sur des méthodes de décomposition de tenseurs symmétriques: le mo-
dèle PARAFAC et l’extension la méthode de Sylvester à des dimensions plus grandes,
en vue d’approcher les variations du modèle d’erreur.

Dans cette thèse, on s’attachera à démontrer la convergence à l’ordre k de la mé-
thode d’adaptation de maillages pour des fonctions analytiques et pour des simulations
numériques utilisant des solveurs d’ordre k > 3.



Introduction

In the context of scientific computing, there have been many efforts to extend the stan-
dard computational pipeline based on (linear) unstructured meshes to very high order
meshes and solution. The emergence of high order numerical schemes has motivated
the desire to develop appropriate mesh adaptation methods to fully benefit of the con-
tribution of high order in terms of accuracy. However, the complete achievement of
the higher-order computational pipeline is still a challenge as many problematics must
be addressed.
First, from a mesh generation point of view, it turns out that using high order curved
meshes to fit the geometry at hand is mandatory to reach the theoretical order of the
underlying scheme. However, this task is tedious and is an active field of research.
Then, it is necessary to extend the underlying numerical schemes to higher-order in-
terpolation, see for instance Discontinuous Galerkin methods.
Finally, the extension of mesh adaptation for a very high order method is only in 2D
and the extension to 3D is barely tractable.

0.1 STATE OF THE ART

The development of high order numerical schemes such as Discontinuous Galerkin
methods [8, 10, 81] or Residual distribution schemes [1] led to adaptation methods
essentially based on a posteriori estimates that didn’t allow to take into account the
error in an anisotropic manner. In the case of second-order schemes and a priori esti-
mates based on interpolation error, the TROPICS project and the GAMMA3 project
have made several important advances in Multi-scale and Goal-Oriented mesh adap-
tation [2, 13, 69]. In terms of higher-order estimates for anisotropic mesh adaptation,
there are few results but it is necessary to take them into account. However, the im-
provement of mesh adaptation to high order is limited to 2D [21, 22, 74, 54]. This
thesis is a contribution for the development of very high order anisotropic mesh
adaptation in 2D and 3D.

0.2 OUR APPROACH

We focus on the error estimate part and on the derivation of a proper metric field in
2D and 3D when a third order accurate interpolation is used. Our approach is based
on a priori estimates based on interpolation errors. The idea is to model the high
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order interpolation error in each point of the domain using the space of homogeneous
polynomials. From this local error model, we approximate local optimal metric that
will be used to generate the final optimal anisotropic mesh. To do so, we use symmetric
tensor decomposition in order to diagonalize the local error model and deduce the best
directions of the optimal metric. This is the same idea of what has been done in the
linear interpolation case where the diagonalization of Hessian matrix is the main key
of the method.

0.3 MY CONTRIBUTION

In this thesis, I focused on generating anisotropic adapted meshes using a priori esti-
mates based on high order interpolation errors in Lp-norm.
First, I used Sylvester method to diagonalize the local error model in 2D. I made some
changes in Sylvester algorithm proposed by Comon and Mourrain [33] to decompose
every homogeneous polynomial of degree 2 in two variables and treat every degenerated
case. I have implemented this algorithm in Metrix [5] for the construction of metric
fields.
Then, I used an extension of Sylvester method to decompose the local error model in
3D. I have implemented the symmetric tensor decomposition algorithm in Metrix for
the approximation of metrics fields. This algorithm has been partially modify to better
approximate the local optimal metrics.
Finally, I proceeded to multi-scale mesh adaptation based on high order error model
to analyze and validate our approach.

0.4 ORGANIZATION AND CONTENT OF THESIS

The present thesis is organized as follow:

• In Chapter 1, we recall differential geometry concepts that will be a key com-
ponent for the generation of adapted meshes. We begin by a review of metric
tensors, Riemannian metric spaces and we detail metric based mesh generation.
Then, operators on metric tensors, which are of main interest in mesh adaptation,
are presented. We end by a review of the continuous mesh framework that
has been proposed to mathematically model unstructured meshes.

• In Chapter 2, we present two decomposition algorithms of symmetric
tensors of any degree and any dimension as a sum of powers of linear terms: the
CP3alsls algorithm and Sylvester’s algorithms. These decompositions are the high
order counter-part of symmetric matrix diagonalization as used in Hessian-based
mesh adaptation. These decomposition methods will constitute the basic idea to
construct metrics from high order interpolation error on each node of the mesh
during the adaptive process.
The main difficulty will be to assess the robustness of these decompositions for
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numerically computed tensors. We start the chapter with a short review of mul-
tilinear algebra notions that will be used in the decomposition algorithms.

• In Chapter 3, we address the construction of local anisotropic metrics from
high order interpolation error in 2D and 3D for mesh adaptation. Starting from
high order local error model, the main idea is to approach locally the variations
of this error by the variations of a quadratic definite positive form. Optimality
conditions for the quadratic forms are derived and several algorithms based on
symmetric tensor decomposition of Chapter 2 are introduced.

• In Chapter 4, we extend the multi-scale mesh adaptation approach to high
order interpolation. This approach aims at controlling the accuracy of the solu-
tion in the whole domain by a minimization of the global interpolation error in
Lp-norm. This global optimization problem is based on the results of the local
optimization problem solved in Chapter 3.
We begin by a review of the global optimization problem that has to be solved
in the higher-order case. Then, the optimal mesh which minimizes the global
interpolation error in Lp-norm is exhibited. Afterwards, one of the classical re-
covery technique to find the third-order derivatives of the high order error model
in 2D and 3D is presented. We finally present analytical examples for which opti-
mal third-order anisotropic mesh adaptation, asymptotic convergence are reached
with a high level of anisotropy.

SCIENTIFIC COMMUNICATIONS

Proceedings, Conferences, Workshops and Seminars

• A priori-based mesh adaptation for higher-order accurate Euler simula-
tion, A. Carabias and E. Mbinky, European Workshop on High Order Nonlinear
Numerical Methods for Evolutionary PDEs (HONOM 2013), Bordeaux, France,
March 2013.

• Higher-order interpolation for mesh adaptation, E. Mbinky, seminar, IN-
RIA Sophia-Antipolis, France, February 2013 (Oral).

• Higher-order interpolation for mesh adaptation, E. Mbinky, F. Alauzet
and A. Loseille, 21th International Mesh Roundtable (IMR 2012), Springer, San
José, California (San Francisco Bay Area), October 2012 (Oral).

• 20th International Mesh Roundtable (IMR 2012), Paris, France, Octobre 2011.

• Multi-scale anisotropic mesh adaptation for a third-order accurate in-
terpolation, E. Mbinky, F. Alauzet, A. Loseille and A. Dervieux, European
Congress on Computional Methods in Applied Sciences ans Engineering (ECCO-
MAS 2012), Vienna, Austria, September 2012 (Oral).



6 INTRODUCTION

• Interpolations d’order élevé et adaptation de maillages, E. Mbinky, Con-
grés d’Analyse Numérique (CANUM 2012), Clermont-Ferrand, France, May 2012
(Poster).

• High order interpolation and mesh adaptation, E. Mbinky, junior seminar,
INRIA-Rocquencourt, France, May 2012 (Oral).



1
Metric-based mesh adaptation

Contents
1.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 A short history of metric-based mesh adaptation . . . . . . . 9

1.1.2 Current impact in scientific computing . . . . . . . . . . . . . 10

1.2 Basics of metric-based mesh adaptation . . . . . . . . . . . 10

1.2.1 Euclidian metric space . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Riemannian metric space . . . . . . . . . . . . . . . . . . . . 13

1.3 Metric-based mesh adaptation . . . . . . . . . . . . . . . . 14

1.3.1 Unit element and unit mesh . . . . . . . . . . . . . . . . . . . 14

1.3.2 Useful operations on metrics . . . . . . . . . . . . . . . . . . 15

1.4 Continuous mesh framework . . . . . . . . . . . . . . . . . . 19

1.4.1 The continuous element model . . . . . . . . . . . . . . . . . 19

1.4.2 The continuous mesh model . . . . . . . . . . . . . . . . . . . 21

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



8 Metric-based mesh adaptation



1.1 State of the art 9

1.1 STATE OF THE ART

1.1.1 A short history of metric-based mesh adaptation

The idea of adapting the mesh associated with a numerical solution is very old. Since
the 1960’s, a rather large number of papers have been published on the subject. For
instance, the query "Mesh Adaptation" on Google Scholar exhibits 7 130 000 results!
In most of these works, the adaptation is isotropic and done by successive refinements
of the elements according to predefined patterns. For instance, a square is split into
four squares or a triangle is split into four triangles. The seminal idea of anisotropic
mesh adaptation emerged later at the end of the 80’s with error estimate and mesh
generation concerns.

In 1987, Peraire et al. proposed a first attempt in 2D by providing error measures
involving directions [78]. They pointed out the directional properties of the interpo-
lation error and initiated the idea of generating elements with aspect ratios. They
considered a local mapping procedure to generate elongated elements. They coupled
this with an advancing front technique to generate slightly anisotropic meshes, i.e.,
elements having a 1 : 5 ratio.
Similar approaches were considered in [67] and [83]. The first attempts in 3D were pro-
posed in the early 1990’s in [68] and [77], but numerical results were almost isotropic
and the mesh anisotropy was not clearly visible. In 1994, Zienkiewicz gave a qualified
status on the subject [93]. Despite some great successes with this new approach, they
emphasized that: "Unfortunately the amount of elongation which can be used in a typ-
ical mesh generation by such mapping is small...".

Almost at the same time on the meshing side, Mavriplis [73] suggested to generate
stretched elements using a Delaunay approach in two dimensions in order to obtain
high-aspect ratio triangles in boundary layers and wake regions as required by aero-
nautic numerical simulations. According to him, the Delaunay triangulation had to
be performed in a locally stretched space: the idea of metric almost emerged. The
year after, George, Hecht and Vallet [46] introduced the use of Riemannian metric
tensor in a 2D Delaunay mesh generator to handle anisotropic adapted meshes. They
exhibited that the absolute value of the Hessian of a given scalar solution is a metric.
The edges length and elements volume inside the mesh generator were computed in
the Riemannian metric space defined by the given metric field. They proposed to gen-
erate a uniform mesh in the Riemannian metric space, this mesh being adapted and
anisotropic in the physical space.

The fruitful idea of metric was widely exploited for 2D anisotropic mesh adaptation
in the 90’s and even more today. For instance, among many others, see the works of
[42, 26, 55, 39, 20]. In 1997, Baker gave a state-of-art [11] and wrote: "Mesh generation
in three dimensions is a difficult enough task in the absence of mesh adaptation and it is
only recently that satisfactory three-dimensional mesh generators have become available
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[...]. Mesh alteration in three dimensions is therefore a rather perilous procedure that
should be undertaken with care". Indeed, 3D meshing is much more complicated as new
pathologies occur. The bare existence of such 3D meshes is not guaranteed. Doing 3D
anisotropic mesh adaptation is even more complicated.

These bottlenecks have been partly solved by the development of local re-meshing
techniques, which try to adapt the mesh by performing local modifications (inser-
tion/deletion of vertices, vertices displacements, connectivity changes). One great asset
of these techniques is to intrinsically get rid of the previous existence problem. At the
beginning of the 2000’s, first results with truly 3D anisotropic mesh adaptation were
published [89, 76, 15, 12, 44, 48, 66].
In the meantime, new more accurate anisotropic error estimates have been proposed:
a posteriori estimates [79, 40], a priori estimates [41, 6, 56] and goal-oriented estimates
for functional outputs [90, 58, 71].

1.1.2 Current impact in scientific computing

Thanks to its generality, metric-beased mesh adaptation has been applied to various
research fields and also used with a large panel of numerical methods. In all cases, it
has brought large improvement in terms of accuracy and CPU performances. Just to
give some 3D examples, it has been applied successfully to the the sonic boom sim-
ulation [4], multi-fluid flows [34, 49], blast problems [3], Stefan problems [12], metal
forming processes [19],... It has also been coupled among which the Finite Volume [4],
Finite Element [7], Stabilized Finite Element[19] and Discontinuous Galerkin Finite
Element [81] methods.

Nowadays, there are a lot of meshing softwares based on the metric concept. Let
us cite Bamg [52] and BL2D [64] in 2D, Yams [43] for discrete surface mesh adap-
tation and Feflo.a [72], Forge3d [36], Fun3d [58], Gamanic3d [47], MAdLib [35],
MeshAdap [66], Mmg3d [38], Mom3d [89], Tango [15] and LibAdaptivity [76]
in 3D. It is worth mentioning that all these softwares have arisen from different mesh
generation methods. The method used in [47, 52] is based on a global constrained De-
launay kernel. In [64], the Delaunay method and the frontal approaches are coupled.
[43, 72, 35, 38] are based on local mesh modifications and [36] is based on the minimal
volume principle.

Nowadays, metric-based mesh adaptation has become a mature field of research
which has now proved its relevance for steady and unsteady industrial problems.

1.2 BASICS OF METRIC-BASED MESH ADAPTATION

This section gives an overview of the most relevant concepts in differential geometry.
For metric based mesh adaptation, we recall some essential notions of metric spaces
which will be used in later chapters and will play a central role in the adaptation pro-
cess.
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For the sake of clarity, we recall the differential geometry notions that are used
in the sequel. In the sequel, we use the following notations: bold face symbols, as
a, b, u, v, x, e, ..., denote vectors or points of Rn. Vectors coordinates are denoted
by x = (xi)i=1,...,n. The natural dot product between two vectors u and v of Rn is :

u .v = (u,v)In
=

n
∑

i=1
ui vi, with In the identity matrix.

1.2.1 Euclidian metric space

Definition 1.1 An Euclidian metric space (Rn,M) is a vector space of finite
dimension where the dot product is defined by means of a Symmetric Definite Po-
sitive tensor M:

(. , .)M : Rn × Rn −→ R+

(u,v) 7−→ u .M v = (u,v)M = (u,Mv) = tuMv.

The matrix M is simply called a metric tensor or a metric.

The dot product defined byMmakes Rn becomes a normed vector space (Rn, ||.||M)
and a metric vector space (Rn, dM(. , .)) supplied by the following norm and distance
definitions:

|| . ||M : Rn −→ R+

u 7−→ ||u||M =
√

(u,Mv),

and

dM(. , .) : Rn −→ R+

(u,v) 7−→ dM(u,v) = ||u− v||M.

In these spaces, we define geometric quantities which are of main interest when
dealing with meshing:

• the length ℓM of an edge e = ab is given by:

ℓM(e) = dM(a,b),

• the angle between two non zero-vectors u and v is defined by the unique real
value θ ∈ [0, π] verifying:

cos(θ) =
(u,v)M
||u||M||v||M

,
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• the volume of element K computed with respect to a metric tensor M is:

|K|M =
√

detM|K|In
,

where |K|In
is the Euclidian volume of the element K.

Spectral decomposition. As metric tensor M is a symmetric definite positive
matrix, it is diagonalizable in a orthonormal basis:

M = RΛ tR,

• R is an orthonormal matrix composed of the eigenvectors (vi)i=1,...,n of M
verifying tRR = R tR = In.

• Λ = diag(λi) is the diagonal matrix composed of the eigenvalues ofM, denoted
(λi)i=1,...,n and which are strictly positive.

Geometric interpretation of a metric tensor. We will often refer to the
geometric interpretation of a metric tensor. In the vicinity of V(a) of a point a, the
set of points that are at distance ǫ, is given by:

ΦM(ǫ) = {x ∈ V(a) | t(x− a)M (x− a) = ǫ2}.

The above relation defines an ellipsoid centered at a with its axes aligned with the eigen

directions ofM. Sizes along these directions are given by hi = λ
− 1

2
i . In the sequel, the

set ΦM(1) is called the unit ball of M and we denote by BM. This ellipsoid in 2D
and 3D is depicted in Figure 1.1.

!v1

!v2

!v3

!v1

!v2
h1

=

1
√ λ1

h
2 =

1√
λ
2

h 3
=

1
√ λ 3

h
1 = 1√

λ
1

h2 =
1√
λ2

Figure 1.1: Unit balls associated with metric M = RΛ tR in 2D and 3D.

Natural Mapping. From the previous definition and the spectral decomposition

of M, we deduce that application Λ
1
2 R where Λ

1
2 = diag(λ

1
2
i ) defines the mapping
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from the physical space (Rn, In) , where In is the identity matrix, to the Euclidean
metric space (Rn,M):

Λ
1
2 R : (Rn, In) −→ (Rn,M)

x 7−→ (Λ
1
2 R) x.

And, we trivially recover: u .M v = t
(

(Λ
1
2 R) u

)

.
(

(Λ
1
2 R) v

)

= tuMv.

Notice that application Λ
1
2 R maps BM from physical space into the unit ball in

the metric space and, conversely, application tRΛ− 1
2 maps the unit ball into BM, see

Figure 1.2.

h1

h2

v2

v1

h1

h2

v2

v1

(

R2,M
)(

R2, I2
)

tRΛ−

1

2

Λ
1

2 R

Figure 1.2: Mappings between physical space (R2, In) and Euclidean metric space (R2,M).

1.2.2 Riemannian metric space

Definition 1.2 In differential geometry, a Riemannian manifold or Rieman-
nian space (M,M) is a smooth manifold M in which each tangent space is equipped
with a dot product defined by a metric tensorM, a Riemannian metric space, in man-
ner which varies smoothly from point to point. In other word, a Riemannian manifold
is a smooth manifold in which the tangent space TaM at each point a is a finite-
dimensional Euclidean metric space (TaM,M(a)).
We denote the Riemannian metric space by M = (M(x))x∈Ω, with Ω ⊂ Rn our
computational domain.

Even if no global definition of scalar product exists, in a Riemannian metric space,
we can define various geometric notions M that takes into account the spatial variations
of the metric:

• the length of edge e = ab in Riemannian metric space (M(x))x∈Ω is computed
using the straight line parametrization in Ω, γ(t) = a + t ab, where t ∈ [0, 1]:

ℓM(e) =
∫ 1

0
||γ′(t)||M dt =

∫ 1

0

√

tabM(a + t ab) dt ,
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• the angle between two non-zero vectors u and v of Ω in Riemannian metric space
(M(x))x∈Ω is the unique real value θ ∈ [0, π] verifying:

cos(θ) =
(u,v)M(.)

||u||M(.)||v||M(.)

,

• the volume of element K computed with respect to Riemannian metric space
(M(x))x∈Ω is:

|K|M =
∫

K

√

detM(x) dx. (1.1)

1.3 METRIC-BASED MESH ADAPTATION

Previously, Riemannian metric spaces have been introduced. Now, we illustrate how
metric fields can be used in the context of mesh adaptation. Indeed, to generate
anisotropic meshes, we have to prescribe at each point of the domain privileged sizes
and orientations for each element. The information will be transmitted to the mesher
which works in such spaces and changes locally the way of computing length, distances,
angles and volumes.

The main idea of metric-based mesh adaptation, that has been initially introduced
in [46], is to generate the unit mesh in the prescribed Riemannian metric space.

1.3.1 Unit element and unit mesh

Definition 1.3 (Unit element)
An element K, defined by its list of edges (ei), is unit with respect to a metric tensor
M if the length of all its edges is unit in metric M:

∀ ei, ℓM(ei) =
√

teiM ei = 1.

If K is composed only of unit edges, then it is regular, e.g, its volume |K|M in metric
M is constant equal to:

|K|M =















√
3

4
in 2D,

√
2

12
in 3D.

The notion of unit mesh is far more complicated than the notion of unit element
as the existence of a mesh composed only of unit elements with respect to a given
Riemannian metric space is not guaranteed. Consequently, this notion of unit mesh
has to be relaxed. First, we give the following definition of quasi-unit elements that
is also in practice used by mesh generators,
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Definition 1.4 (Quasi-unit elements)
An element K, defined by its list of edges (ei), is said to be quasi-unit for Riemannian
metric space (M(x))x∈Ω if the following bounds are enforced:

• the length of the edges is given by:

∀ ei, ∀ i ∈ [0,
n(n+ 1)

2
], ℓM(ei) ∈

[

1√
2
,
√

2

]

,

• the volume of the element is controlled via a quality function QM and a given
bound α > 0 by:

QM(K) =
12

3
1
2

|K|M
3
∑

i=1
ℓ2

M(ei)
∈ [α, 1] in 2D.

QM(K) =
36

3
1
3

|K|
2
3
M

6
∑

i=1
ℓ2

M(ei)
∈ [α, 1] in 3D,

QM(K) = 1 corresponds to a perfect regular element, whatever its edges length,
while QM(K) = 0 indicates a null or degenerated element. Hence, the mesh adaptation
software will try create elements with a quality near to 1.

We can now give the following definition of unit mesh.

Definition 1.5 (Unit mesh)
A discrete mesh H of a domain Ω ⊂ Rn is a unit mesh with respect to Riemannian
metric space (M(x))x∈Ω if all its elements are a quasi-unit.

Whatever the kind of desired mesh (uniform, adapted isotropic, adapted aniso-
tropic), the mesh generator will always generate a unit mesh in the prescribed Rie-
mannian metric space [46]. Consequently, the generated mesh is uniform and isotropic
in the Riemannian metric space while it is adapted and anisotropic in the Euclidian
space.

1.3.2 Useful operations on metrics

The main advantage when working with metric spaces is the well-posedness of op-
erations on metric tensors, among which the metric intersection and metric in-
terpolation. These operations have a straightforward geometric interpretation when
considering the ellipsoid associated with a metric.
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Metric intersection

When several metrics are specified at a point of the domain, all these metric tensors
must be reduced to a single one. The metric intersection consists in keeping the
most restrictive size constraint in all directions imposed by this set of metrics.

Formally speaking, let M1 and M2 be two metric tensors given at a point. The
metric tensor M1∩2 corresponding to the intersection of M1 and M2 is the one pre-
scribing the largest possible size under the constraint that the size in each direction
is always smaller than the sizes prescribed by M1 and M2. Let us give a geometric
interpretation of this operator. Metric tensors are geometrically represented by an el-
lipse in 2D and an ellipsoid in 3D. But the intersection between two metrics is not
directly the intersection between two ellipsoids as their geometric intersection is not
an ellipsoid. Therefore, we seek for the largest ellipsoid representingM1∩2 included in
the geometric intersection of the ellipsoids associated withM1 andM2. The ellipsoid
(metric) verifying this property is obtained by using the simultaneous reduction of two
metrics.

Simultaneous reduction. The simultaneous reduction enables to find a common
basis (e1, e2, e3) such that M1 and M2 are congruent to a diagonal matrix in this
basis, and then to deduce the intersected metric. To do so, the matrix N =M−1

1 M2

is introduced. N is diagonalizable with real-eigenvalues. The normalized eigenvectors
of N denoted by e1, e2 and e3 constitute a common diagonalization basis forM1 and
M2. The entries of the diagonal matrices, that are associated with the metrics M1

and M2 in this basis, are obtained with the Rayleigh formula1:

λi = teiM1 ei and µi = teiM2 ei, for i = 1, ..., 3.

Let P = (e1 e2 e3) be the matrix the columns of which are the eigenvectors {ei}i=1,...,3

of N . P is invertible as (e1, e2, e3) is a basis of R3. We have:

M1 = P−t







λ1 0 0
0 λ2 0
0 0 λ3





P−1 and M2 = P−t







µ1 0 0
0 µ2 0
0 0 µ3





P−1.

Computing the metric intersection. The resulting intersected metric M1∩2 is
then analytically given by:

M1∩2 =M1 ∩ M2 = P−t







max(λ1, µ1) 0 0
0 max(λ2, µ2) 0
0 0 max(λ3, µ3)





P−1.

1λi and µi are not the eigenvalues of M1 and M2. They are spectral values associated with the
basis (e1, e2, e3)
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The ellipsoid associated withM1∩2 is the largest ellipsoid included in the geometric
intersection region of the ellipsoids associated with M1 and M2, the proof is given in
[2].

Numerically, to compute M1∩2, the real-eigenvalues of N are first evaluated with
a Newton algorithm. Then the eigenvectors of N , which define P , are computed using
the algebra notions of image and kernel spaces.

Remark 1.1 The intersection operation is not associative. Consequently, when more
than two metrics are intersected, the result depends on the order of intersection. In
this case, the resulting intersected metric is not anymore optimal. If, we seek for the
largest ellipsoid included in the geometric intersection region of several (> 2) metrics,
the John ellipsoid has to be found thanks to an optimization problem [69].

Metric interpolation

In practice, the metric field is only known discretely at mesh vertices. The definition
of an interpolation procedure on metrics is therefore mandatory to be able to compute
the metric at any point of the domain. For instance, the computation of the volume
of an element using quadrature formula with (1.1) requires the computation of some
interpolated metrics inside the considered element.
Several interpolation schemes have been proposed in [2] which are based on the simul-
taneous reduction. The main drawback of these approaches is that the interpolation
operation is not commutative. Hence, the result depends on the order in which the
operations are performed when more than two metrics are involved. Moreover, such
interpolation schemes do not satisfy useful properties such as the maximum principle.
Consequently, to design an interpolation scheme on these objects, one needs a con-
sistent operational framework. We suggest to consider the log-Euclidean framework
introduced in [9].

Log-Euclidean framework. We first define the notion of metric logarithm and metric
exponential.
The metric logarithm is defined on the set of metric tensors. For metric tensor
M = RΛ tR, it is given by:

ln(M) := R ln(Λ) tR,

where ln(Λ) = diag(ln(λi)). The matrix exponential is defined on the set of sym-
metric matrices. For any symmetric matrix S = QΞ tQ, it is given by:

exp(S) := Q exp(Ξ) tQ,
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where exp(Ξ) = diag(exp(ξi)). We can now define the logarithmic addition ⊕ and
the logarithmic scalar multiplication ⊙:

M1 ⊕M2 := exp(ln(M1) + ln(M2))

α⊙M := exp(α. ln(M)) =Mα.

The logarithmic addition is commutative and coincides with matrix multiplication
whenever the two tensors M1 and M2 commute in the matrix sense. The space of
metric tensors, supplied with the logarithmic addition ⊕ and the logarithmic scalar
multiplication ⊙ is a vector space.

Remark 1.2 This framework allows more general computations to be carried out on
metric tensors, such as statistical studying or the resolution of PDE’s on metric tensors.

Metric interpolation in the log-Euclidean framework. We propose to use the linear inter-
polation operator derived from the log-Euclidean framework. Let (xi)i=1...k be a set of
vertices and (M(xi))i=1...k their associated metrics. Then, for a point x of the domain
such that:

x =
k
∑

i=1

αi xi with
k
∑

i=1

αi = 1,

the interpolated metric is defined by:

M(x) =
k
⊕

i=1

αi ⊙M(xi) = exp

(

k
∑

i=1

αi ln(M(xi))

)

. (1.2)

This interpolation is commutative, but its bottleneck is to perform k diagonalizations
and to request the use of the logarithm and the exponential functions which are CPU
consuming. However, this procedure is essential to define continuously the metric map
on the entire domain. Moreover, it has been demonstrated in [9] that this interpolation
preserves the maximum principle, i.e., for an edge pq with endpoints metrics M(p)
andM(q) such that det(M(p)) < det(M(q)) then we have det(M(p)) < det(M(p +
tpq)) < det(M(q)) for all t ∈ [0, 1].

Remark 1.3 The interpolation formulation (1.2) reduces to

M(x) =
k
∏

i=1

M(xi)
αi , (1.3)

if all the metrics commute. Therefore, an arithmetic mean in the log-Euclidean frame-
work could be interpreted as a geometric mean in the space of metric tensors.
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Figure 1.3: Left, view illustrating the metric intersection procedure with the simultaneous

reduction in three dimensions. In red, the resulting metric of the intersection of the blue and

the green metrics. Right, metric interpolation along a segment where the endpoints metrics

are the blue and the purpe ones.

1.4 CONTINUOUS MESH FRAMEWORK

Previously, we have emphasized the role of metric tensor and Riemannian metric spaces
as useful mathematical tools to prescribed sizes and directions to adaptive meshers. As
a matter of fact, these differential geometry notions are really more than just a simple
tool for mesh generation.
In this section, we go further in this analysis and we demonstrate that there is a
comprehensive duality between discrete meshes and Riemannian metric spaces. More
precisely, Riemannian metric spaces can be seen as continuous models representing
meshes. This section summarizes works that have been done in [69].

To build the continuous framework, the study is first done locally for a single
element of a given mesh and then generalized to the whole computational domain Ω.
The notions of unit element and unit mesh with respect to a metric field play a central
role in this perspective.

1.4.1 The continuous element model

We have seen in the previous sections that an arbitrary element K of positive Euclidean
volume |K| > 0 defined by its list of edges (ei)i is unit with respect to a constant metric
tensorM if the lengths of all its edges are unit in metricM. In fact, the function unit
with respect to defines a classes of equivalence of discrete elements.

Proposition 1.1 (Equivalence classes)
Let M be a metric tensor, there exists a non-empty infinite set of unit elements with
respect to M. Conversely, given an element K such that |K| 6= 0, there is a unique
metric tensor M for which K is unit with respect to M.

All the discrete representatives of a given equivalence classM share some common
properties, which can be described using only metric tensor M. These properties
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Figure 1.4: Several unit elements with respect to a continuous element in 2D and 3D.

connect the geometric properties of unit elements to the linear algebra properties of
metric tensors. The following proposition gives some geometric invariants that hold
for all unit element with respect to metric tensor. Other geometric invariants can be
found in [69].

Proposition 1.2 (Geometric invariants)
Let M be a metric tensor and K be a unit element with respect to M. We denote
by (ei)16i6

n(n+1)
2

its edges list (n = 2 or 3) and |K| its Euclidean volume. Then the

following invariants hold:

• standard invariants:

∀(ei, ej),











ℓM(ei)
2 = teiM ei = 1

2 teiMej + 1 = 0 if i 6= j

• invariant related to the Euclidean volume |K|:

|K| =
√

3
4

det(M− 1
2 ) in 2D and |K| =

√
2

12
det(M− 1

2 ) in 3D.

• invariant related to the square length of the edges for all symmetric definite pos-
itive matrix H:

3
∑

i=1

ℓH(ei)
2 =

3
∑

i=1

tei H ei =
3

2
trace(M− 1

2 HM− 1
2 ) in 2D,

6
∑

i=1

ℓH(ei)
2 =

6
∑

i=1

tei H ei = 2 trace(M− 1
2 HM− 1

2 ) in 3D.
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Proposition 1.1 highlights a duality between discrete and continuous elements. Propo-
sition 1.2 illustrates a duality between geometric quantities. We thus introduce the
following terminology:

Definition 1.6 (Continuous element)
In the continuous mesh framework, a metric tensorM is called continuous element.
It is used to model all discrete elements that are unit for M.

1.4.2 The continuous mesh model

In this subsection, M = (M(x))x∈Ω represents a Riemannian metric space. As for the
local duality, we would like to define equivalence classes of meshes, each class being
represented by a single continuous object. But the main complexity is to take into
account the variations of function x 7→ M(x). To simplify the analysis, M is first
rewritten in order to distinguish local properties from global ones:

Proposition 1.3 A Riemannian metric space M = (M(x))x∈Ω locally writes:

∀x ∈ Ω, M(x) = d
2
n (x)R(x) diag

(

r
2
n
1 (x), ..., r

2
n
n (x)

)

tR(x),

where:

• density d is equal to: d =
(

n
∏

i=1
λi

)
1
2

=
(

n
∏

i=1
hi

)−1

, with λi the eigenvalues of M,

• anisotropic quotients ri are equal to: ri = hi

(

n
∏

k=1
hk

)− 1
n

,

• R is the eigenvectors matrix of M representing the orientation.

The density d controls only the local level of accuracy of M. Increasing or decreasing d
does not change the anisotropic properties or the orientation. The anisotropy is given
by the anisotropic quotients and the orientation by matrix R.

Remark 1.4 The set of initial parameters (h1, ..., hn) that define locally a metric is
replaced by the new set of parameters (d, r1, ..., rn−1).

We also define the complexity C of M:

C(M) =
∫

Ω
d(x) dx =

∫

Ω

√

det(M(x)) dx.

This real-value parameter is useful to quantify the global level of accuracy of (M(x))x∈Ω.
It can also be interpreted as the continuous counterpart of the number of vertices of a
discrete mesh.
This quantity also leads to the definition of a sequence of embedded Riemannian spaces:
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Embedded Riemannian spaces. Two Riemannian spaces, saying M = (M(x))x∈Ω

and N = (N (x))x∈Ω, are embedded if a constant c exists such that:

∀x ∈ Ω, N (x) = cM(x).

Conversely, from M = (M(x))x∈Ω, we can deduce N = (N (x))x∈Ω of complexity N

with the same anisotropic properties (anisotropic orientations and ratios) by consider-
ing:

N (x) =

(

N

C(M)

)
2
n

M(x).

In the context of error estimation, this notion enables to perform convergence order
studies with respect to an increasing complexity.

Proposition 1.3 underlines a duality between meshes and Riemannian metric
spaces. In particular, this duality is locally justified by strict analogy between discrete
and continuous notions: orientation vs. R, stretching vs. ri and size vs. d. For a
mesh, we point out the duality between the number of vertices and C(M). However,
as already explained in Subsection 1.3.1, the set of discrete meshes represented by M
is more complex to describe than the class of unit elements. The problem arises from
the impossibility to tesselate R3 uniquely with the regular elements. Consequently, the
notion of unit element does not extend as well to a mesh. In order to ensure existence,
the notion of quasi-unit element is devised, see Definition 1.4. This definition takes into
account the continuous mesh variations. We thus introduce the following terminology:

Definition 1.7 (Continuous mesh)
In the continuous mesh framework, a continuous mesh of a domain Ω is defined by
a collection of continuous elements M = (M(x))x∈Ω, i.e., a Riemannian metric space.
It is used to model all meshes that are unit for M.

1.5 CONCLUSION

In this chapter, we recalled a continuous framework to model elements and meshes.
This continuous mesh framework pushes further the duality between Riemannian met-
ric spaces and discrete meshes. This also demonstrated the well-foundedness of metric-
based mesh adaptation. The last chapters will emphasize the fertility of this new
concept in the context of error estimation and in the aim of seeking for the optimal
mesh for a given problem.
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2.1 INTRODUCTION

Multilinear algebra is the algebra of higher-order tensors. Higher-order tensors can
intuitively be imagined as the multidimensional equivalent of vector (first order) or
matrices (second order), i.e., as "blocks" of numbers, in three or more dimensions.
The entries of an N th-order tensor are defined with respect to the bases chosen in
N reference vector spaces. By looking for coordinate transformations that induce an
interesting representation of tensor, one can define several types of multilinear decom-
positions; similar questions can be raised for higher-order tensors.

Tensors are objects which appear in many contexts and different applications. They
have been widely used in Electrical Engineering since the nineties [88], and in partic-
ular in Antenna Array Processing [27] or Telecommunications [63, 85]. Even earlier in
the seventies, tensors have been used in Chemometrics [18] or Psychometrics [59].

Higher-order tensor decomposition has proven to be useful in a number of applica-
tion fields. For instance, in Arithmetic Complexity with the use of third-order tensors
to represent bilinear maps [60, 87]. Another important application field is Factor Analy-
sis. For instance, Independent Component Analysis, initially introduced for symmetric
tensors whose rank did not exceed the dimension [29]. Statisticians early identified
difficult problems, tackling the limits of linear algebra. The difficulty lies in the fact
that such arrays may have more factors than their dimensions. Next, data are often
arranged in many-way arrays and the reduction to two-way arrays sometimes results
in a loss of information. Lastly, the solution of some problems generally requires the
use of High-Order Statistics (HOS) which are intrinsically tensors objects (McCullagh
1987). Now, it has become possible to estimate more factors than the dimension [57].

In this chapter, we study the decomposition of symmetric tensors into a minimal
linear combination of rank-one terms. Higher-order tensors will play a central role for
higher-order interpolation in mesh adaptation as rank-2 tensors in the linear case.

The decomposition of a tensor was first introduced and studied by Frank L. Hitch-
cook in 1927, and then was discovered in 1970’s by psychometricians. Bergman [14]
and Harshman [51] were the first to notice that the concept of rank was difficult to
extend from matrices to higher-order tensors. Harshman [50] and Carrol [25] developed
the first Canonical Polyadic Decomposition algorithms of a third-order tensor and its
extension to higher-order, later referred to as (PARAFAC) model or CANDECOMP
model. Several years later, Kruskal [60] conducted a detailed analysis of uniqueness,
and related several definitions of rank.

Here, we consider two methods of decomposition of any symmetric tensor of any
degree and any dimension:

The first one is a rank determinant problem which extends the Singular Value De-
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composition (SVD) problem for symmetric matrices. It is based on Sylvester’s theorem
for the 2D case and its extension to higher dimensions. The symmetric tensor decom-
position algorithms have been developed by Comon, Mourrain et al. [17, 33] so that
any homogeneous polynomial of any variables and arbitrary degree associated with a
symmetric tensor of arbitrary order and dimension can be decomposed as a sum of
powers of linear terms. The number of powers in the linear form can be generic, i.e.,
it corresponds to the minimal number of terms that is required in general. As it can
be non-generic, i.e., the number of powers can be larger than in the generic case.

The second one is the Multi-way Parallel Factor (PARAFAC) model fitting by the
Alternating Least Square (ALS) algorithm, a canonical decomposition method based on
a functional minimization problem. The PARAFAC/ALS decomposition is an iterative
numerical method proposed to decompose third-order tensors (later extended to higher-
order tensors) in higher dimensions as a sum of rank-1 tensors. It has most often been
applied in psychometrics, chemometrics and the signal processing area [62, 84]. This
technique requests the rank to be much smaller than the generic one. But of course,
we can be confronted to tensors of rank much larger than the generic one. In this case,
this iterative numerical method encounters difficulties to compute the corresponding
tensor decomposition and suffers from a lack of a guarantee of global convergence.

2.2 INTRODUCTION TO MULTILINEAR ALGEBRA

This section contains the basic materials on multilinear algebra. We will start by giving
a proper definition of higher-order tensors. Our next concern is the development of
tools to work with higher-order tensors. We introduce some basic matrix and tensor
operations, we establish a convention to represent higher-order tensors in terms of ma-
trices; such a format is required to express tensor techniques in terms of matrix tools
and software. These tools will be useful to introduce homogeneous polynomials and
make the connexion with symmetric tensors. We also present a multilinear generaliza-
tion of Singular Value Decomposition (SVD). All these tools will be used in the next
section and chapter.

2.2.1 Higher-order tensors

Definition 2.1 Let (V(ℓ))16ℓ6N be N Euclidean vector spaces with finite dimensions
(Iℓ)16ℓ6N . An element of the tensor vector space V(1) ⊗ V(2) ⊗ ... ⊗ V(N), where ⊗
denotes the outer (tensor) product (see Definition 2.2 below), is called a Nth-order or
higher-order tensor.
Let us choose (e(ℓ)

iℓ
)16iℓ6Iℓ

a basis in each of the N vector spaces V(ℓ). Then any Nth-

order tensor X of that vector space of dimensions
N
∏

ℓ=1
Iℓ has coordinates Xi1i2...iN

and
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is defined by the relation:

X =
I1
∑

i1=1

I2
∑

i2=1

...
IN
∑

iN =1

Xi1i2...iN
e(1)

i1
⊗ e(2)

i2
⊗ ... ⊗ e(N)

iN
. (2.1)

For V(ℓ) = RIℓ, X is a real-valued (I1 × I2 × ... × IN)-tensor and for V(ℓ) = CIℓ, X is
a complex-valued (I1 × I2 × ...× IN)-tensor.

A tensor of order N is also called a N -way array; i.e., it enjoys the multi-linearity prop-
erty after a change of coordinate system. For instance, consider a third-order tensor
X with entries Xijk, and a change of coordinates defined by three square invertible
matrices, A, B and C. Then, in the new coordinates system, the tensor Xbis can be
written as a function of tensor X as:

Xbis
ijk =

∑

abc

Aia Bjb Ckc Xabc. (2.2)

2.2.2 Review of matrix and tensor standard operations

We define some vector and matrix products like the Outer product, the Kronecker
product and the Khatri-Rao product that will be used in the sequel of the chapter.

Definition 2.2 The Outer product of vectors a = (ai)i ∈ CI and b = (bj)j ∈ CJ is
denoted by a ⊗ b and its I × J result is a matrix defined by:

a ⊗ b = a tb =





















a1b1 a1b2 ... a1bJ

a2b1 a2b2 ... a2bJ

. . . .

. . . .

. . . .

aIb1 aIb2 ... aIbJ





















.

Definition 2.3 The Kronecker product of matrices A = (aij)i,j ∈ CI×J and B =
(bkℓ)k,ℓ ∈ CK×L is denoted by A⊗B and the IK × JL result is a matrix defined by:

A⊗B =





















a11B a12B ... a1JB
a21B a22B ... a2JB
. . . .

. . . .

. . . .

aI1B aI2B ... aIJB





















.

Note that the Kronecker product and the Outer product are denoted in a similar manner,
which might be confusing. In fact, this usual practice has some reasons: A⊗B is the
array of coordinates of the Outer product of the two associated linear operators, in some
canonical basis.
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Definition 2.4 The Khatri-Rao product of matrices A = (aik)i,k ∈ CI×K and B =
(bjk)j,k ∈ CJ×K is denoted by A⊙B and its IJ ×K result is a matrix defined by:

A⊙B =
(

a:1 ⊗ b:1 a:2 ⊗ b:2 ... a:K ⊗ b:K

)

.

The Khatri-Rao product is nothing else but the column-wise Kronecker product.

We now define the "matrix unfoldings" of a given tensor, i.e., the matrix represen-
tations of that tensor in which all the column (row, ...) vectors are stacked one after
the other. To avoid confusion, we will stick to one particular ordering of the column
(row, ...). An Nth-order tensor X admits N different matrix unfoldings. These matrix
unfoldings are also called "matrix flattenings", or equivalently "modes".

Definition 2.5 (Matrix unfolding)
Assume an Nth-order tensor X ∈ CI1×I2×...×IN . For a particular choice of N =
{1, 2, ..., N}, the matrix unfolding

XIP (1)IP (2)...I
P (N)

×I
P (N+1)

I
P (N+2)

...I
P (N)
∈ C

IP (1)IP (2) ... I
P (N)

×I
P (N+1)

I
P (N+2)

... IP (N)

of the tensor X, linked with a permutation P (1, 2, ..., N) of (1, 2, ..., N) contains the
element Xi1i2...iN

at the position with row index
(iP (1) − 1)IP (2)IP (3) ... IP (N) + (iP (2) − 1)IP (3)IP (4) ... IP (N) + ...+ iP (N)

and column index
(iP (N+1) − 1)IP (N+2)IP (N+3) ... IP (N) + (iP (N+2) − 1)IP (N+3)IP (N+4) ... IP (N) + ...+ iP (N).

Notice that the definitions of the matrix unfoldings involve the tensor dimensions
I1, I2, ..., IN in a cyclic way.

A standard matrix unfolding, corresponding to N = 1 and permuted indices (n, 1, ...,
n− 1, n+ 1, ..., N) will be briefly represented by X(n).

To show how it really works, let us take a I × J ×K third-order complex or real-
valued array X. For k fixed in the third mode, we have a I × J matrix that can be
denoted as X::k. The collection of these K such matrices can be arranged in a K × IJ
block matrix :

XK×IJ =

















X::1

:
X::k

:
X::K

















.

The three sections of the tensor X: Xi::, X:j: and X::k are respectively called horizontal,
lateral and frontal slices.
The three matrix representations or matrix unfoldings of X are:
- XI×JK : obtained by stacking all J ×K up-down slices of X one above each other;
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- XJ×KI : obtained by stacking all K × I left-right slices of X one above each other;
- XK×IJ : obtained by stacking all I×J front-bottom slices of X one above each other.

The concept of matrix unfolding will be easy to understand using an example.

Example 2.1

Let the frontal slices of X ∈ R3×3×2 be

X::1 =







1 4 7
2 5 8
3 6 9





 , X::2 =







10 13 16
11 14 17
12 15 18





 .

Then, the three unfolding matrices of X are:

X(1) = XI×JK =







1 4 7 10 13 16
2 5 8 11 14 17
3 6 9 12 15 18





 ,

X(2) = XJ×KI =







1 2 3 10 11 12
4 5 6 13 14 15
7 8 9 16 17 18





 ,

X(3) = XK×IJ =

[

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18

]

.

We now define the n-mode product, i.e., the multiplication of a higher-order tensor
by a matrix and the Frobenius norm.

Definition 2.6 The n-mode product of a tensor X ∈ CI1×I2×...×IN by a matrix A ∈
CJn×In, denoted by X×n A, is an (I1 × I2 × ...× In−1 × Jn× In+1 × ...× IN)-tensor of
which the entries are given by

(X×n A)i1i2...jn...iN
=

In
∑

in=1

Xi1i2...in...iN
ajnin

,

for all index values.

Definition 2.7 The Frobenius norm of a Nth-order tensor X = Xi1i2...iN
∈ CI1×I2×...×IN

is the square root of the sum of the squares of the absolute values of all its elements,
i.e.,

||X||F =

√

√

√

√

√

I1
∑

i1=1

I2
∑

i2=1

...
IN
∑

iN =1

|Xi1i2...iN
|2.
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The following part is devoted to the definition and properties of the rank of a
higher-order tensor. When rank properties are concerned, there are major differences
between matrices and higher-order tensors. As we will explain in subsection 2.2.3,
these differences directly affect the way in which tensorial decompositions differ from
matrix decomposition. We use the following definition:

Definition 2.8 An Nth-order tensor X has rank 1 when it equals the outer product of
N vectors U(1),U(2), ...,U(N) with U(ℓ) = (U

(ℓ)
iℓ

)iℓ
:

X = U(1) ⊗U(2) ⊗ ...⊗U(N), (2.3)

i.e.,

Xi1i2...iN
= U

(1)
i1
U

(2)
i2
... U

(N)
iN

.

Definition 2.9 The rank of an arbitrary Nth-order tensor X, represented by R =
rank(X), is the minimal number of rank-1 tensors such that the following equality
holds true:

X =
R
∑

p=1

U (1)
p ⊗ U (2)

p ⊗ ...⊗ U (N)
p . (2.4)

Tensor rank R always exists and is well defined.

Definition 2.10 The n-mode vectors of an Nth-order tensor X ∈ CI1×I2×...×IN are the
In-dimensional vectors obtained from X by varying the index in and keeping the other
indices fixed, i.e., they are the column vectors of the matrix unfolding X(n).

The n-rank of the tensor X, represented by Rn = rankn(X), is the dimension of
the vector space generated by the n-mode vectors of X and

rankn(X) = rank(X(n)).

This definition generalizes the notion of "column (row) vector" and "column (row) rank"
of matrices to Nth-order tensors.

2.2.3 Higher-Order Singular Value Decomposition

In this subsection, we present a multilinear generalization of the Singular Value Decom-
position (SVD) for N th order tensors, called Higher-Order Singular Value Decomposi-
tion (HOSVD). The HOSVD will play an important role in the next section. Indeed,
the HOSVD will be used for dimensionality reduction in the Multi-way Parallel Factor
(PARAFAC) model.
For convenience, we first repeat the model for matrices using a similar notation:
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Theorem 2.1 (Matrix SVD)
Every complex (I1 × I2)-matrix A can be written as the product

A = U(1) .S .V(2)H
= S×1 U(1) ×2 V(2)∗

= S×1 U(1) ×2 U(2),

in which:

• U(1) =
[

U
(1)
1 U

(1)
2 ... U

(1)
I1

]

is a unitary (I1 × I1)-matrix,

• U(2) =
[

U
(2)
1 U

(2)
2 ... U

(2)
I2

]

(= V(2)∗
) is a unitary (I2 × I2)-matrix,

• S is an (I1 × I2)-matrix with the properties of

- pseudodiagonality:

S = diag(σ1, σ2, ..., σmin (I1,I2)),

- ordering:

σ1 > σ2 > ... > σmin (I1,I2) > 0.

The σi are singular values of A and the vectors U
(1)
i and U

(2)
i are respectively an ith

left and an ith right singular vector. The symbol ∗ denotes the complex conjugation.

Now we state the following theorem:

Theorem 2.2 (Nth-order SVD)
Every complex (I1 × I2 × ...× IN)-tensor X can be written as the product

X = S×1 U(1) ×2 U(2) ... ×N U(N), (2.5)

in which:

• U(n) =
[

U
(n)
1 U

(n)
2 ... U

(n)
In

]

is a unitary (In × In)-matrix,

• S is a complex (I1× I2× ... × IN)-tensor of which the subtensors Sin=α, obtained
by fixing the nth index to α, have the properties of

- all-orthogonality: two subtensors Sin=α and Sin=β are orthogonal for all possible
values of n, α and β subject to α 6= β:

(Sin=α,Sin=β) = 0 when α 6= β,

- ordering:

‖Sin=1‖F > ‖Sin=2‖F > ... > ‖Sin=In
‖F > 0
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for all possible values of n.

The number (X,Y) denotes the tensor scalar product of two tensors X and Y. It
is just the extension of the classical scalar product of two vectors. The Frobenius-norm
‖Sin=i‖F , symbolized by σ

(n)
i , are n-mode singular values of X and the vector U

(n)
i is

an ith n-mode singular vector.

2.2.4 Symmetric tensors and homogeneous polynomials

For the sake of simplicity and to avoid confusion, in the sequel, the order of a tensor
will be denoted by k and the dimension of a tensor will be denoted by n.

Definition 2.11 According to Definition 2.1, a tensor X of dimension n and order
k is an object defined in a n-dimensional coordinate system by a table with k indices,
{Xi1i2...ik

}16iℓ6n, that follows a particular transformation formula if the coordinate sys-
tem is changed.
Then, a kth-order tensor X of dimension n is symmetric if σ(X) = X, i.e., Xσ(i1i2...ik) =
Xi1i2...ik

for all permutation σ.

Definition 2.12 Let X be a kth-order tensor of dimension n. A homogeneous poly-
nomial of degree k in n variables can be associated to X by the following expression:

p(xi1 , xi2 , ..., xik
) =

n
∑

i1=1

n
∑

i2=1

...
n
∑

ik=1

Xi1i2...ik
xi1xi2 ...xik

. (2.6)

In Expression (2.6), it is clear that because of the symmetry of X, some terms appears
several times. There is another way of writing polynomials by resorting a standard
compact notation, widely used in invariant theory.

Let i ∈ Nn be a vector of n indices. The length of i is defined as |i| =
n
∑

ℓ=1
iℓ. By

convention, if x ∈ Cn, xi denoted the product
n
∏

ℓ=1
xiℓ

ℓ and (i)! =
n
∏

ℓ=1
(iℓ!). Lastly, c(i)

denotes the multinomial coefficient, namely c(i) = |i|!
(i)!

.

With this notation, any homogeneous polynomial can be written as:

p(x) =
∑

|i|=k

c(i) ci xi, (2.7)

ci are the coefficients characterizing polynomial p(.) and each one are associated with
one entry of the corresponding symmetric tensor X.

An algebraic form or simply form is another name for a homogeneous polynomial.
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Example 2.2

A homogeneous polynomial of degree k in two variables is called a binary form and is
defined by:

p(x, y) =
k
∑

i=0

(

k

i

)

ci x
iyk−i,

where
(

k
i

)

= k!
i!(k−i)!

is the binomial coefficient.

We present the polarization of algebraic forms. It is a technique for expressing a ho-
mogeneous polynomial or algebraic form in a simpler fashion adjoining more variables.
It produces a multilinear form from which the original polynomial can be recovered
by evaluating along a certain diagonal. From this multilinear form, we deduce the
corresponding symmetric tensor.

Definition 2.13 Let f(x) be a polynomial in n variables x = (x1, x2, ..., xn). Suppose
that f is homogeneous of degree k. Let x(1), x(2), ... , x(k) be a collection of indeter-
minates with x(i) = (x

(i)
1 , x

(i)
2 , ..., x

(i)
n ).

The polar form of f is a polynomial F(x(1),x(2), ...,x(k)) which is linear in each in-
determinate x(i) (i.e., F is multilinear), symmetric in x(i) and such that F(x,x, ...,x) =
f(x). It is given by the following construction:

F(x(1),x(2), ...,x(k)) =
1

k!

∂

∂λ1

...
∂

∂λk

f(λ1x
(1) + ...+ λkx(k))|λi=0

. (2.8)

Example 2.3

A quadratic form. Let f(x, y) = x2 +3xy+2y2. The polarization of f is the function

in x(1) = (x(1), y(1)) (rows) and x(2) = (x(2), y(2)) (columns) given by:

F(x(1),x(2)) = x(1)x(2) +
3

2
y(1)x(2) +

3

2
x(1)y(2) + 2 y(1)y(2).

Using a matrix form, we can rewrite F as follow:

F =

[

1 3
2

3
2

2

]

.

A cubic form. Let f(x, y) = x3 + 2xy2. The polarization of f is the function in
x(1) = (x(1), y(1)) (rows), x(2) = (x(2), y(2)) (columns) and x(3) = (x(3), y(3)) (slices)
given by:

F(x(1),x(2),x(3)) = x(1)x(2)x(3) +
2

3
x(1)y(2)y(3) +

2

3
y(1)y(2)x(3) +

2

3
y(1)x(2)y(3).

F is a third-order symmetric tensor that we can rewrite using one of his matrix repre-
sentations or matrix unfolding (see Definition 2.5):

F(1) =

[

1 0 0 2
3

0 2
3

2
3

0

]

.
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We give the general formula of the polarization of a homogeneous polynomial of degree
3 in two and three variables, respectively.

• Two-dimensional case.
Consider the following homogeneous polynomial of degree 3 in two variables:

f(x, y) = a1x
3 + a2x

2y + a3xy
2 + a4y

3.

The polarization of f is the function in x(1) = (x(1), y(1)), x(2) = (x(2), y(2)) and x(3) =
(x(3), y(3)) given by:

F(x(1),x(2),x(3)) = a1 x
(1)x(2)x(3) +

a2

3
y(1)x(2)x(3) +

a2

3
x(1)x(2)y(3) +

a2

3
x(1)y(2)x(3)

+
a3

3
x(1)y(2)y(3) +

a3

3
y(1)y(2)x(3) +

a3

3
y(1)x(2)y(3) + a4 y

(1)y(2)y(3).

Thus, we can rewrite F using the first matrix unfolding of f given by:

F(1) =
1

6

[

6a1 2a2 2a2 2a3

2a2 2a3 2a3 6a4

]

.

• Three-dimensional case.
Consider the following homogeneous polynomial of degree 3 in three variables:

f(x, y, z) = a1x
3 + a2x

2y + a3xy
2 + a4y

3 + a5x
2z + a6xz

2 + a7z
3

+ a8y
2z + a9yz

2 + a10xyz.

Using the same approach as the two-dimensional case, we first give the polarization
F(x(1),x(2),x(3)) of f , with x(i) = (x(i), y(i), z(i)), i = 1, 2, 3. Then, we rewrite it under
a matrix form. To simplify the calculations, we directly give the result.

The first matrix unfolding of f is given by:

F(1) =
1

6







6a1 2a2 2a5 2a2 2a3 a10 2a5 a10 2a6

2a2 2a3 a10 2a3 6a4 2a8 a10 2a8 2a9

2a5 a10 2a6 a10 2a8 2a9 2a6 2a9 6a7





 .

2.3 SYMMETRIC TENSOR DECOMPOSITION ALGORITHMS

In this section, we present two methods of Canonical Polyadic Decomposition: the
algorithm of Sylvester and the Multi-way PARAFAC model to decompose symmetric
tensors of arbitrary dimension and order into a sum of rank-1 terms. Many authors
adopted the "CP" acronym, which stands for "Canonical Polyadic", or the "CANDE-
COMP".
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2.3.1 Sylvester’s algorithm: the binary form decomposition

As already pointed out earlier, a rank-1 tensor is associated with a linear form raised
to kth powers. In terms of polynomials, the CP decomposition can thus be rephrased:
how can one decompose a quantic into a sum of kth powers of linear forms [33]? It
is this topic that addresses Sylvester’s theorem, restricted however to the binary case
(i.e., two variables).

We first recall one important definition.

Definition 2.14 Given a homogeneous polynomial p of degree k in n variables, the
width (also called tensor rank) of p refers to the minimal number of forms, r, neces-
sary to write p as a sum of kth powers of linear forms. For a generic homogeneous
polynomial, the width is denoted by g(n, k).
A generic rank refers to the minimal number of forms needed for a dense set of sym-
metric tensors with arbitrary dimension and order.

Generic case. It has recently been shown by Reznick [82] that for all homogeneous
polynomial p in n variables of degree k,

g(n, k) = r 6

(

n+ k − 2

k − 1

)

. (2.9)

But there is no general expression that gives the exact value of g(n, k). To be accurate,
it is necessary to study each case separately.
The following table summarizes known values of g(n, k) in the generic case. As we can
notice in Table 2.1, the rank can exceed the dimension, which is not true for matrices.

k\n 2 3 4 5 6 7

2 2 3 4 5 6 7

3 2 4 5 8 10 12
4 3 6 10 15 22 30

Table 2.1: Generic rank r of symmetric tensors (homogeneous polynomials) as a function
of the dimension n and the order k.

Non-generic case. Contrary to matrices (i.e., second-order tensor), the generic rank
is not always maximal. In other word, the rank can exceed the generic value. Un-
fortunately, the maximal achievable rank is not known for all pairs (P, n) with P the
number of sources in the decomposition and n the dimension. We illustrate this fact.
For instance, for n = 2 and k = 3, the maximal rank is 3. The polynomial x2y can be
written as:

6x2y = (x+ y)3 + (−x+ y)3 − 2y3.
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As we can see, the rank exceeds its generic value 2 (indeed, refer to Table 2.1, k = 3
and n = 2, thus rank = 2) but the Reznick bound (2.9) is reached rmax = 3.

Now, we recall Sylvester’s theorem before presenting the resulting algorithm.

Theorem 2.3 Sylvester (1886)

A binary quantic p(x, y) =
k
∑

i=0
(k

i ) ci x
iyk−i can be written as a sum of kth powers of r

distinct linear forms in C:

p(x, y) =
r
∑

j=1

λj (αj x+ βj y)k, (2.10)

if and only if

• there exists a vector q ∈ Cr+1, with components qℓ, such that :

M.q = 0, (2.11)

with

M =





















c0 c1 ... cr

c1 c2 ... cr+1

. . . .

. . . .

. . . .

ck−r ck−r+1 ... ck





















,

a catalecticant or hankel matrix (see Appendix A.4) which elements are the
coefficients ci of the binary quantic p.

• the polynomial q(x, y) =
r
∑

ℓ=0
qℓ x

ℓ yr−ℓ admits r distincts roots, i.e., it can be

written as:

q(x) =
r
∏

j=1

(β∗
j x− α∗

j y),

where r is the decomposition rank, i.e., the minimal number of linear terms such
that Equality (2.10) holds true.

The proof of this theorem is constructive [31, 33] and yields to Sylvester’s algorithm
[17, 33]. This theorem not only proves the existence of the r forms, but also gives a
mean to compute them.
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Algorithm 1: BINARY FORM DECOMPOSITION

Input: A binary form p(x, y) =
k
∑

i=0
(k

i ) ci x
iyk−i of degree k.

Output: A decomposition of p as p(x, y) =
r
∑

j=1
λj ℓj(x, y)k with r minimal.

(1) Initialize r = 0.
(2) Increment r ← r + 1.
(3) If the column rank of H[r] is full, then go to step (2)
(4) Else compute a basis {ℓ1, ..., ℓi} of the right kernel of H[r].
(5) Specialization:

• Take a generic vector q in the kernel, e.g. q =
∑

i
µi ℓi.

• Compute the roots of the associated polynomial q(x, y) =
r
∑

i=0
qi x

i yr−i.

• If the roots are not distinct in C2, try another specialization. If distinct
roots cannot be obtained, go to step (2).

• Else if q(x, y) admits r distinct roots (αj, βj) then compute coefficients λj,
1 6 j 6 r, by solving the linear system below, where ai denotes (k

i ) ci





















αk
1 ... αk

r

αk−1
1 β1 ... αk−1

r βr

. . .

. . .

. . .

βk
1 ... βk

r





















λ =





















a0

a1

.

.

.

ak





















.

(6) The decomposition is p(x, y) =
r
∑

j=1
λj (αj x+ βj y)k.

The associated Matlab code of Algorithm 1 developed by Comon and Mourrain
is given in Appendix B.1.

We give two examples to illustrate the previous algorithm and show how it really
works.

Example 2.4

We apply Sylvester’s algorithm to the third-order polynomial:

p(x, y) = 39x3 + 102x2y + 48xy2 + 24y3.
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For r = 1, we have the following Hankel matrix:

M =







c0 c1

c1 c2

c2 c3





 =







39 34
34 16
16 24





 .

This matrix is full column rank, i.e., each of the columns of the matrix are linearly
independent (for a square or non-square matrix). Therefore, we build the Hankel
matrix for r = 2:

M =

[

c0 c1 c2

c1 c2 c3

]

=

[

39 34 16
34 16 24

]

.

This matrix is not full column rank. Its rank is equal to 2, therefore we compute a
basis of the kernel. To do so, we use the singular value decomposition and we get the
following decomposition of the matrix:

M = UΣV ∗,

where rank(Σ) = 2 and we know that Ker(M) is the third column of V : v =
[−0.6465, 0.4526,−0.6142].
We compute the roots of the univariate polynomial of degree 2, g(x) = v0x

2 + v1x+ v2.

We find x = (1.3856,−0.6856). Then, the roots of q(x, y) =
2
∑

i=0
vi x

iy2−i are (α1, β1) =

(1.3856, 1) and (α2, β2) = (−0.6856, 1). Lastly, we compute λ1 and λ2 by equating
coefficients in the same monomials and we get the following final decomposition:

p(x, y) = 15.6693(1.3856x+ y)3 + 8.3307(−0.6856x+ y)3.

Example 2.5

Consider the following fourth-order polynomial:

p(x, y) = 17x4 + 48x3y + 120x2y2 + 264xy3 + 257y4.

For r = 1, we have the following Hankel matrix:

M =











c0 c1

c1 c2

c2 c3

c3 c4











=











17 12
12 20
20 66
66 257











.

This matrix is full column rank. Therefore, we build the Hankel matrix for r = 2:

M =







c0 c1 c2

c1 c2 c3

c2 c3 c4





 =







17 12 20
12 20 66
20 66 257





 .
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This matrix is not full column rank, i.e., det(M) = 0 (for a square matrix). Its rank
is equal to 2, therefore we compute a basis of the kernel using the singular value
decomposition M = UΣV ∗, where rank(Σ) = 2. Ker(M) is the third column of V :
v = [−0.3980, 0.8955,−0.1990].
We compute the roots of the univariate polynomial of degree 2, g(x) = v0x

2 + v1x+ v2.

We find x = (2, 0.25). Then, the roots of q(x, y) =
2
∑

i=0
vi x

iy2−i are (α1, β1) = (2, 1) and

(α2, β2) = (0.25, 1). Lastly, we compute λ1 and λ2 by equating coefficients in the same
monomials and we get the following final decomposition:

p(x, y) = (2x+ y)4 + 256(0.25x+ y)4.

Remark 2.1 Degenerated cases
Let p(x, y) be a homogeneous polynomial of degree 3 in two variables. If the length of
the column vector v is equal to ℓ = 3, we define the univariate polynomial of degree 2
associated to v: g(x) = v0 x

2 + v1 x+ v2.
Using Sylvester’s algorithm, we have the following results according to the nature of
the coefficients bi = vi:
- if ∀i = 1, 2, 3, bi 6= 0 then the polynomial g(x) admits two real or complex roots. The
rank is equal to 2.
- if v0 6= 0, v1 6= 0 and v2 = 0 then the polynomial g(x) admits two roots but one of
them is null. The rank is equal to 2.
- if v0 6= 0, v2 6= 0 and v1 = 0 then the polynomial g(x) admits two real or complex
roots. The rank is equal to 2.
- if v1 6= 0, v2 6= 0 and v0 = 0 then g(x) is a monomial and admits one real root. The
rank is equal to 1.
- if v0 = 0, v2 = 0 and v1 6= 0 then g(x) is a monomial and admits one null root. The
rank is equal to 1.
- if v1 = 0, v2 = 0 and v0 6= 0 then g(x) is a monomial and admits two null roots. The
rank is equal to 2.
- if v0 = 0, v1 = 0 and v2 6= 0 then g(x) is a constant and has no root. No rank found.

In Remark 2.1, we discuss the different cases that we can be confronted with when
we use Sylvester’s algorithm to decompose a homogeneous polynomial of degree 3 in
two variables. When the rank given by the decomposition algorithm is smaller than
the generic rank, this can mean that the rank of this decomposition is in fact greater
than the generic one.
For those homogeneous polynomial which decomposition rank is greater than the
generic one, we can try to decompose them "by hand". Otherwise, to achieve the
desired generic rank r = 2 for a homogeneous polynomial p of degree 3 in two vari-
ables, we can use a "noise effect" on p, i.e., we add at each coefficient of p a small value
ǫi ≈ 0. That will not change the nature of the initial homogeneous polynomial but will
help to avoid parse matrices in the singular value decomposition of the Hankel matrix
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M . This idea allows to deal with all the generic and non generic cases that we have
encountered in the binary case. We use the same reasoning for higher-degree, (k > 4).

We give an example to illustrate this remark.

Example 2.6

Consider the following third-order polynomial:

p(x, y) = x3 + y3.

For r = 1, we have the following Hankel matrix:

M =







c0 c1

c1 c2

c2 c3





 =







1 0
0 0
0 1





 .

This matrix is full column rank. Therefore, we build the Hankel matrix for r = 2:

M =

[

c0 c1 c2

c1 c2 c3

]

=

[

1 0 0
0 0 1

]

.

This matrix is not full column rank. Its rank is equal to 2, therefore we compute a
basis of the kernel. We use the singular value decomposition and we get the following
decomposition of the matrix:

M = UΣV ∗,

with

U =

[

1 0
0 1

]

, Σ =

[

1 0 0
0 1 0

]

, V =







1 0 0
0 0 −1
0 1 0





 .

Ker(M) is the third column of V : v = [0,−1, 0]. Then, we compute the roots of

q(x, y) =
2
∑

i=0
vi x

iy2−i. q(x, y) admits one root. (α1, β1) = (0, 1). We get one term

instead of two terms for the decomposition. The decomposition of p that we get is
not a good decomposition. We can not access to the value of (α2) numerically. But
manually, we find (α2, β2) = (1, 0).
A solution is to use a "noise effect". We propose to add a small value ǫ = 10−4 to the
coefficients of p(x, y). Then, we have the following polynomial:

pmod(x, y) = 1.0001x3 + 0.0001x2y + 0.0001xy2 + 1.0001 y3.

For r = 1, we have the following Hankel matrix:

M =







c0 c1

c1 c2

c2 c3





 =







1.000100 0.000033
0.000033 0.000033
0.000033 1.000100





 .
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This matrix is full column rank. Therefore, we build the Hankel matrix for r = 2:

M =

[

c0 c1 c2

c1 c2 c3

]

=

[

1.000100 0.000033 0.000033
0.000033 0.000033 1.000100

]

.

This matrix is not full column rank. Its rank is equal to 2, therefore we compute a
basis of the kernel. We use the singular value decomposition and we get the following
decomposition of the matrix:

M = UΣV ∗,

with

U =

[

−0.7071067 −0.707106
−0.7071067 0.707106

]

, Σ =

[

1.000133 0
0 1.000066

]

,

V =







−0.707106 −0.707106 0.000033
−0.000047 0.000000 −0.999999
−0.707106 0.707106 0.000033





 .

The third column of V is: Ker(M) = v = [0.000033,−0.999999, 0.000033]. The

roots of q(x, y) =
2
∑

i=0
vi x

iy2−i are (α1, β1) = (30003.99, 1) and (α2, β2) = (0.000033, 1).

Lastly, we compute λ1 and λ2 by equating coefficients in the same monomials and we
get the following final decomposition:

p(x, y) ∼ pmod(x, y) = 3.7e−14(30003.99x+ y)3 + 1.0000999(0.000033x+ y)3.

Remark 2.2 The disappointing fact is that Sylvester’s theorem cannot be extended to
dimensions higher than 2. In fact, a key step in the proof [33] is that for any polynomial
p of degree k, and any monomial m of degree k− r, there exists polynomial q of degree
r such that qm is orthogonal to p. Equation (2.11) expresses that orthogonality in
terms of polynomial coefficients. It is clear that this holds true only when k > r, which
is unfortunately satisfied only in the binary case, according to Table 2.1 [30].

2.3.2 Extension of Sylvester’s approach to higher dimensions

In this section, we describe a new algorithm able to decompose a homogeneous poly-
nomial of arbitrary degree and dimension as a sum of powers of linear forms. It has
been proposed by Brachat et al. [17]. It generalizes the algorithm of Sylvester and
extends the principle of Sylvester’s theorem to higher dimensions. In the binary case,
the decomposition problem is solved directly by computing ranks of catalecticant or
hankel matrix. In higher dimensions, this is not so simple. An extension step is re-
quired to find the decomposition. This leads to the resolution of a polynomial system of
small degree, from which we deduce the decomposition by solving a simple eigenvalue
problem, thanks to linear algebra manipulations.
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Algorithm 2: SYMMETRIC TENSOR DECOMPOSITION

Input: A homogeneous polynomial f(x) =
k
∑

i=0

k−i
∑

j=0
cijx

iyjzk−i−j of degree k.

Output: A decomposition of f as f(x) =
r
∑

i=1
λi ℓi(x)k with r minimal.

(1) Compute the coefficients of the dual f ∗ : cα = aα

(

k
α

)−1
, for |α| 6 k.

(2) Initialize r = 0.
(3) Increment r ← r + 1.
(4) Specialization:

• Take any basis B of monomials of degree 6 k connected to (1) with |B| 6 r.

• Build the matrix HB+

f∗(h) with the coefficients cα.

• If there exist a non-zero minor of order r+ 1 in HB+

f∗(h), without coefficients
depending on h, restart the loop with r := r + 1; i.e., go to step (3) and try
another specialization.

• Else if any minors of order r+1 in HB+

f∗(h), without coefficients depending on

h, vanish, compute h such that det(HB
f∗(h)) 6= 0 and the formal multiplication

operators Mi = HB
xif∗(h)(H

B
f∗(h))

−1 commute.
If there is no solution, restart the loop with r := r + 1; i.e., go to step (3)

• Else compute the n × r eigenvalues ζi,j and the eigenvectors vj such that
Mivj = ζi,jvj, with i = 1, ..., n and j = 1, ..., r;
until the eigenvalues vj are simple.

(5) Solve the linear system in (λj)j=1,...,r: f(x) =
r
∑

j=1
λj ℓj(x)k. The coefficients

of ℓj are the eigenvectors vj found in step (4).

A partial Matlab code has been proposed in Appendix B.2 to decompose third-
order symmetric tensors in three variables into a sum of three linear terms. We will
see in the sequel and in the next chapter the reason why we impose three linear terms
instead of four linear terms.
For more details about algebraic tools used in this algorithm, see Appendix A.

We briefly explain Algorithm 2 before giving some examples to show how it works.

Consider a homogeneous polynomial f(x) of degree k and dimension n:

f(x) =
∑

j0+...+jn=k

aj0,...,jn
x

j0
0 ...x

jn

n
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that we want to decompose. We may assume without loss of generality, that for at least
one variable, say x0, all its coefficients in the decomposition are non-zero coefficients,
i.e ℓi,0 6= 0, 1 6 i 6 r. We dehomogenize f with respect to this variable and we denote
this polynomial by fa := f(1, x1, ..., xn). We want to decompose fa or equivalently, its
corresponding dual element f ∗ as a sum of powers of linear forms, i.e.,

f ∗(x) =
r
∑

i=1

λi (1 + ℓi,1x1 + ...+ ℓi,nxn)k =
r
∑

i=1

λi ℓi(x)k,

where ℓi(x) = 1 + ℓi,1x1 + ...+ ℓi,nxn.
Assume that we know the value of r. In this case, knowing the value of f ∗ on polyno-
mials of degree high enough allows us to compute the table of multiplications modulo
the kernel of Hf∗ . By solving the generalized eigenvalue problem (Hxif∗ −λHf∗)v = 0,
we will recover the points of evaluation ℓj. By solving a linear system, we will then
deduce the value of λ1, ..., λr. Thus the goal of this algorithm is to extend f ∗ on a large
enough set of polynomials, in order to be able to run the eigenvalue problem.

Example 2.7

Consider a symmetric tensor of dimension 3 and order 3, which corresponds to the
following homogeneous polynomial:

f(x, y, z) = 4x3 + 9x2y + 39xy2 + 9y3 − 3x2z + 93xz2 − 19z3 − 39y2z

+111yz2 − 78xyz.

- We compute the coefficients (ci0,i1,...,in
) of the dual element f ∗ in the dual basis

B+ from the coefficients (ai0,i1,...,in
) of the polynomial f in the monomial basis B:

cj0,j1,...,jn
:= aj0,j1,...,jn

.

(

k

j0, ..., jn

)−1

, n = 3, k = 3.

- We form a
(

n+k−1
k

)

×
(

n+k−1
k

)

matrix, the rows and the columns of which corre-

spond to the coefficients of the polynomial f ∗ in the dual basis. This matrix HB+

f∗(h)

is the formal Hankel matrix associated to f ∗ and is called quasi-Hankel or Catalecticant.

Taking a connected basis with r = 1 and r = 2 elements, we find non-zero minors
of degree 2 and 3 respectively, in HB+

f∗(h). Hence, f has no rank equal to 1 or 2.

For B = {1, y, z}, then B+ = {1, y, z, y2, yz, z2}. We show only the 6× 6 principal
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minor of the matrix HB+

f∗(h):































1 y z y2 yz z2

1 4 3 −1 13 −13 31
y 3 13 −13 9 −13 37
z −1 −13 31 −13 37 −19
y2 13 9 −13 h040 h031 h022

yz −13 −13 37 h031 h022 h013

z2 31 37 −19 h022 h013 h044































,

where hi are unknown parameters.

- We extract from HB+

f∗(h) a principal minor of full rank (i.e., determinant 6= 0 for a
square matrix). We should re-arrange the rows and the column of the matrix so that
there is a principal minor of full rank. We call this minor ∆0. To do so, we try to put
the matrix in row echelon form, using elementary row and column operations.
In our example, the 3 × 3 principal minor is of full rank, so there is no need for re-
arranging the matrix:

∆0 = HB
f∗ =







4 3 −1
3 13 −13
−1 −13 31





 , det(∆0) 6= 0.

- We compute the matrices ∆1 = y∆0 and ∆2 = z∆0. The columns of ∆1 and
∆2 correspond to the monomials {y, y2, yz} and {z, yz, z2} respectively. They are just
the corresponding monomials of the columns of ∆0, i.e., {1, y, z} multiplied by y and
{1, y, z} multiplied by z respectively.

∆1 = HB
yf∗ =







3 13 −13
13 9 −13
−13 −13 37





 ,

∆2 = HB
zf∗ =







−1 −13 31
−13 −13 37
31 37 −19





 .

We need that the multiplication operators Mi = HB
xif∗(h)(H

B
f∗(h))

−1 commute. That is

MB
y M

B
z = MB

z M
B
y . We have:

MB
y = HB

yf∗(h)(H
B
f∗(h))

−1 =







0 3.6842 −4.1053
1 −0.7895 1.7368
0 −0.6316 1.7895





 ,

MB
z = HB

zf∗(h)(H
B
f∗(h))

−1 =







0 −4.1053 6.6316
0 1.7368 1.5789
1 1.7895 0.2632





 .
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Thus we have:

MB
y M

B
z = MB

z M
B
y =







−4.1053 −0.9474 4.7368
1.7368 −2.3684 5.8421
1.7895 2.1053 −0.5263





 .

It holds that the multiplication operators commute. It should be noted that in this step
the algorithm has to compute the parameters h such that the multiplication operators
commute but in this case all our entries are known.

- Now, we solve the generalized eigenvalue problem (∆1−λ∆0)v = 0. We normalized
the elements of the eigenvectors so that the first element is equal to 1. Then, we get
the following generalized eigenvectors:







1
−2
2





 ,







1
2
−3





 ,







1
1
3





 .

The coordinates of the eigenvectors correspond to the elements {1, y, z}. Thus we can
recover the coefficients of y and z in the decomposition from these coordinates.

- It remains to compute the coefficients λi of the decomposition:

f(x, y, z) = λ0(x− 2y + 2z)3 + λ1(x+ 2y + 3z)3 + λ2(x+ y + 3z)3.

We do this easily by solving a linear system which has a solution, since the decompo-
sition exists. Doing that, we deduce λ0 = 1, λ1 = 2 and λ2 = 1.

-Finally, the homogeneous polynomial f admits the following decomposition:

f(x, y, z) = (x− 2y + 2z)3 + 2(x+ 2y + 3z)3 + (x+ y + 3z)3.

Remark 2.3 In this example, all the elements of the matrices ∆0 and ∆1 are known.
If this is not the case, we can compute the unknown entries hi of the matrix using
either necessary and sufficient conditions of commutation MiMj −MjMi = 0 for any
i, j ∈ {1, ..., n}, with Mi = HB

xif∗(h)(H
B
f∗(h))

−1 = ∆i∆
−1
0 . This leads to the resolution

of polynomial equations of small degree in non-generic cases. We give an example to
illustrate this remark. But for more details, see [16, 17].

The following example has been proposed and studied in [16, 17].

Example 2.8

- Consider a symmetric tensor of dimension 3 and order 4, that corresponds to the
following homogeneous polynomial

f(x, y, z) = 79xy3 + 56x2z2 + 49y2z2 + 4xyz2 + 57x3y.
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According to the Table 2.1 of generic ranks, the rank of this function is 6.

- As previously, we have to compute the formal Hankel matrix associated to the
formal linear form f ∗(h). We show only the 10 × 10 principal minor of the matrix
HB+

f∗(h):



















































1 y z y2 yz z2 y3 y2z yz2 z3

1 0 57
4

0 0 0 28
3

79
4

0 1
3

0
y 57

4
0 0 79

4
0 1

3
0 0 49

6
0

z 0 0 28
3

0 1
3

0 0 49
6

0 0
y2 0 79

4
0 0 0 49

6
h500 h410 h320 h230

yz 0 0 1
3

0 49
6

0 h410 h320 h230 h140

z2 28
3

1
3

0 49
6

0 0 h320 h230 h140 h050

y3 79
4

0 0 h500 h410 h320 h600 h510 h420 h330

y2z 0 0 49
6

h410 h320 h230 h510 h420 h330 h240

yz2 1
3

49
6

0 h320 h230 h140 h420 h330 h240 h150

z3 0 0 0 h230 h140 h050 h330 h240 h150 h060



















































,

where hi are unknown parameters.

- For B+ = {1, y, z, y2, yz, z2}, the 6 × 6 principal minor is of full rank. Then the
matrix ∆0 is:

∆0 =





















0 57
4

0 0 0 28
3

57
4

0 0 79
4

0 1
3

0 0 28
3

0 1
3

0
0 79

4
0 0 0 49

6

0 0 1
3

0 49
6

0
28
3

1
3

0 49
6

0 0





















.

- We compute the matrices ∆1 = y∆0 and ∆2 = z∆0 whose the columns correspond
to the monomial {y, y2, yz, y3, y2z, yz2} and {z, yz, z2, y2z, yz2, z3} respectively.

∆1 = HB
yf∗ =





















57
4

0 0 79
4

0 1
3

0 79
4

0 0 0 49
6

0 0 1
3

0 49
6

0
79
4

0 0 h500 h410 h320

0 0 49
6

h410 h320 h230
1
3

49
6

0 h320 h230 h140





















,

∆2 = HB
zf∗ =





















0 0 28
3

0 1
3

0
0 0 1

3
0 49

6
0

28
3

1
3

0 49
6

0 0
0 0 49

6
h410 h320 h230

1
3

49
6

0 h320 h230 h140

0 0 0 h230 h140 h050





















.
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We have to determine the unknown variables hi. To do so, we consider the following
method. We form all the possible matrix equations MiM

B
j −MB

j M
B
i = 0. There are

(

n
2

)

equations and we equate their elements to zero. Since the dimension of the matrices is
r × r, this leads to at most

(

n
2

)

r2 or O(n2r2) equations. Note that the equations are,
at most of degree 2.

Then, the matrices ∆1 and ∆2 have to satisfy the matrix equation MB
y M

B
z −

MB
z M

B
y = 0, for any x,y, i.e., the matrices of multiplication commute.

MB
y M

B
z −MB

z M
B
y = ∆1∆

−1
0 ∆2∆

−1
0 −∆2∆

−1
0 ∆1∆

−1
0 = 0.

This matrix relation involves polynomial equations of degree 2. Many of the resulting
equations are trivial. After discarding them, we have 6 unknowns {h500, h410, h320, h230,

h140, h050}. One solution of this system of equations is:

{h500 = 1, h410 = 2, h320 = 3, h230 = 1.506, h140 = 4.96, h050 = 0.056}.
We substitute these values to ∆1 and we continue the algorithm as in the previous
example.

- We solve the generalized eigenvalue problem (∆1 − λ∆0)v = 0. Then, we get the
following normalized eigenvectors:





















1
−0.830 + 1.593i
−0.326− 0.0501
−1.849− 2.645i
0.350− 0.478i
0.103 + 0.0327i





















,





















1
−0.830− 1.593i
−0.326 + 0.0501
−1.849 + 2.645i
0.350 + 0.478i
0.103− 0.0327i





















,





















1
1.142
0.836
1.305
0.955
0.699





















,





















1
10.956
−0.713
0.914
−0.682
0.509





















,





















1
−0.838 + 0.130i
0.060 + 0.736i
0.686− 0.219i
−0.147− 0.610i
−0.539 + 0.089i





















,





















1
−0.838− 0.130i
0.060− 0.736i
0.686 + 0.219i
−0.147 + 0.610i
−0.539− 0.089i





















.

The coordinates of the eigenvectors correspond to the elements {1, y, z, y2, yz, z2} and
we can recover the coefficients of y and z in the decomposition.

After solving the over-constrained linear system for the coefficients of the linear
form, we deduce the following decomposition of f :

f(x, y, z) = (0.517 + 0.044i)(x− (0.830− 1.593i)y − (0.326 + 0.0501)z)4

+ (0.517− 0.044i)(x− (0.830 + 1.593i)y − (0.326− 0.0501)z)4

+ 2.958(x+ 1.142y + 0.836z)4 + 4.583(x+ 0.956y − 0.713z)4

− (4.288 + 1.119i)(x− (0.838− 0.13i)y + (0.060 + 0.736i)z)4

− (4.288− 1.119i)(x− (0.838 + 0.13i)y + (0.060− 0.736i)z)4.
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Remark 2.4 Example 2.8 is an example of tensor decomposition where we have a
system of equations with a large number of unknowns. This kind of systems of equations
doesn’t admit a unique solution, we can have an infinity of solutions. But more than
the non-uniqueness, it is not so easy to solve these systems. For the moment, the only
results found in the theory and the practice are given by "maple", the formal calculation
software. As we can see, we are very limited in terms of numerical applications.
However, concerning third-order tensor decomposition, we proposed a solution to get
an approximation of the desired decomposition in 3D. This solution will be exposed in
the next chapter and will lead to good numerical results.

2.3.3 The multi-way CANDECOMP/PARAFAC ("CP") model

In the previous two sections, we work with homogeneous polynomials. But we can
also work with symmetric tensors of arbitrary order and dimension. In this section,
we present one among the various SVD-based algorithms to compute Canonical De-
composition of kth-order tensors in higher dimensions. This algorithm is the Multi-way
Parallel Factor (PARAFAC) model.

In order to fix the ideas, we take a third-order symmetric tensor X = (Xijk)i,j,k of
any dimension. Once the three bases are chosen in each of the three vector spaces, the
tensor is defined by a 3-way array. Its "CP" decomposition takes the following linear
form:

X ≈ (A,B,C).Λ, (2.12)

Xijk ≈
R
∑

ℓ=1

λℓ Aiℓ Bjℓ Ckℓ, (2.13)

with R the tensor rank, i.e., the minimal number of rank-1 terms such that Equality
(2.12) holds true.

The previous model (2.12) can be written in a compact form using the Khatri-Rao
product ⊙ (column-wise Kronecker product) as, possibly up to an error term,

XI×JK ≈ A(C⊙B)T , (2.14)

where A, B and C are called loading matrices of X of size I × R, J × R, and K × R
and XI×JK is the matrix of size I × JK obtained by unfolding the array array X of
size I × J ×K.
There exists several algorithms that fit the "CP" model. We focus on the most widely
used among all: the Alternating Least squares (ALS) algorithm.

The first step consists in reducing the dimensions of the problem, and at the same
time reducing the rank of X, by truncating the Singular Value Decomposition of un-
folding matrices.
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The second step (the ALS part) consists in estimating one of the three matrices
at each step by minimizing in the least squares sense and in an alternating way the
following cost function:

ϕ = ||XI×JK −A(C⊙B)T ||2F , (2.15)

where || • ||F is the Frobenius norm.
In an "Alternating way" means that, at each iteration, we minimize ϕ with respect to
A, given B and C fixed, then update B, given A and C fixed and finally update C,
given A and B fixed. For more details, see [18, 85, 86].

With B and C fixed to initial values, the estimate of A in the least squares sense
is given by:

AT = (B⊙C)† XI×JK .

Similarly for B and C, we write:

BT = (C⊙A)† XJ×KI ,

CT = (A⊙B)† XK×IJ ,

where M† is the pseudo-inverse of M, i.e., M† = (MT M)−1MT . In Figure 2.1 below,
we note +, the pseudo-inverse of a matrix. This figure is from the article [80].

It has been pointed out the important fact that, when the convergence of the ALS
algorithm is slow (very large number of iterations are needed to reach the final solution
of a given cycle), we need to speed up the "CP" model. To do so, the unknowns can be
linearly interpolated at each iteration and the interpolated matrices are used as inputs
of the current ALS update. This is the Line Search (LS) method. Several line Search
techniques are possible, see [32, 75, 80]. One of the proposed modifications of the ALS
algorithm we use here is the Enhanced Line Search (ELS) [75, 80].

As previously stated, the idea of the Line Search method consists in predicting the
value of the loading factor a certain number of iterations ahead by computing a sort
of linear regression:

Anew = Ait−2 +RLS Git
a ,

Ait−1 is the estimation of matrix A obtained in the ALS iteration it− 1, and Anew is
the matrix that will be used in the itth iteration of Ait−1. Git

a = Ait−1 −Ait−2 defines
the direction of the cycle. Matrices Bnew and Cnew are obtained in an equivalent way
using the same relaxation factor RLS.

The Enhanced Line Search is performed at the beginning of the ALS algorithm and
consists in seeking the optimal relaxation factor RLS that leads to the final solution
of a given cycle in only one step. So, for iteration it, we look for the optimal triplet
(Ra, Rb, Rc) that minimizes:

γELS = ||XI×JK − (Ait−2 + Ra Git
a )((Bit−2 + Rb Git

b )⊙ (Cit−2 + Rc Git
c ))||2F . (2.16)
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Estimate A(it), B(it) and C(it) using expression (2) and A(new), B(new), and C(new) :

A
(it) = X

(I×JK)(Z+
a ) with Za = C

(new)
! B

(new)

B
(it) = X

(J×IK)(Z+
b
) with Zb = A

(it)
! C

(new)

C
(it) = X

(K×IJ)(Z+
c ) with Zc = B

(it)
! A

(it)

Update A
(it−1) = A

(new)

B
(it−1) = B

(new)

C
(it−1) = C

(new)

Compute the new error 
γ
(it) =

∥

∥

∥
X

(I×JK)
−A

(it)(C(it)
"B

(it))τ
∥

∥

∥

2

F   :

• If γ(it)
− γ

(it−1) <= threshold, stop

• If γ(it)
− γ

(it−1) > threshold, go back to step 1 with : it ← it+ 1

ComputeA(new), B(new) and C(new) using the linear regression of expression (3)

A
(new) = A

(it−2) +RaG
(it)
a

B
(new) = B

(it−2) +RbG
(it)
b

C
(new) = C

(it−2) +RcG
(it)
c

Line Search Steps

STEP 2 : 

Find optimal (Ra, Rb, Rc) that minimizes : 

Initial Values

A
(it−2),G

(it)
a B

(it−2),G
(it)
b

C
(it−2),G

(it)
c

STEP 1' :

Enhanced Line Search

STEP 3 :

STEP 4 :

STEP 1 :

γELS =
∥

∥

∥
X

(I×JK)
− (A(it−2) +RaG

(it)
a )

(

(C(it−2) +RcG
it
c )" (B(it−2) +RbG

(it)
b

)
)τ∥

∥

∥

2

F

Figure 2.1: Steps of the Alternating Least Squares algorithm with Enhanced Line
Search [80].

The optimal solution is obtained when we jointly minimize γELS with respect to three
different factors (Ra, Rb, Rc). In this case, the problem consists in solving a system of
three polynomials in three unknowns, which leads to a higher numerical complexity.
To reduce this complexity, we choose to work with the same factors for all modes
Ra = Rb = Rc = RLS. It involves a polynomial in a single unknown R of degree 6:

γELS(R) =
∑

ijk

(Xijk −
R
∑

f=1

(Aif + RLS Ga,if )(Bjf + RLS Gb,jf )(Ckf + RLS Gc,kf ))2

γELS(R) =
6
∑

d=0

pd Rd
LS . (2.17)
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where pd are functions of observed values stored array X and coefficients of loading
matrices of iterations it− 1 and it− 2. To find the optimal R, we determine the roots
of polynomial γ′

ELS(R), which provides five possible values of R. We feed those values
into Expression (2.17).

Once the three matrices A, B and C are found, we can rewrite the previous decom-
position of X in polynomial form, i.e., into a sum of third powers of r distinct linear
forms in C.

Remark 2.5 In the ALS algorithm, a given number of initializations are tested.
(a) - If the dimensions of the tensor allow it, namely if X has two dimensions

higher than the rank R, say I > R and J > R, the first initialization is built by
exploiting the tensor itself. Indeed, the third dimension K, is first reduced to 2 by
a singular value decomposition, after which a Generalized Eigenvalue Decomposition
called DTLD (Direct Trilinear Decomposition [65]) is applied on the two I × J slices
of the matrix pencil. The other initializations are all random.

(b) - Otherwise, all the initializations are random.
(c) - If A and/or B and/or C are provided as input arguments to enforce the use

of this (these) matrix(ces) as starting point(s), thus, the number of initializations is
set to 1 and is the only one used.

In the sequel, we explain how we get the polynomial form of the tensor decompo-
sition from the three matrices A, B and C in 2D and 3D.

• Two-dimensional case
X is a third-order symmetric tensor X = (Xijk)i,j,k ∈ C2×2×2 of dimension 2. We have
found three matrices A, B and C ∈ C2×2 such that:

Xijk ≈
R
∑

ℓ=1

λℓ Aiℓ Bjℓ Ckℓ,

with R = 2 the tensor rank.

We use the Khatri-Rao product ⊙ to write the symmetric tensor X as a sum of 2
symmetric tensors:

XI×JK = X1 + X2,

with Xi = A(:, i). (C(:, i) ⊙ B(:, i))T , for i = 1, 2. A(:, i), C(:, i), B(:, i) are the ith

column vectors of matrices A, B and C respectively.
As each Xi is a symmetric tensor, each of them can be written as a homogeneous
polynomial form pi of degree 3 in two variables and then as a third power of a linear
form. These linear forms are distinct in C. So,

pi = µi(αix+ βiy)3,
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with

µi = Xi(I, JK),

αi = sign

(

Xi(1, 1)

µi

)

∣

∣

∣

∣

∣

∣

Xi(1, 1)

µi

∣

∣

∣

∣

∣

∣

, βi = 1,

with i = 1, 2 and I = J = K = 2 the dimensions of the tensor X. Xi(1, 1) is the
element of the first line and first column of the matrix unfolding Xi.
Then we get the following polynomial form of X in 2D:

pX = p1 + p2,

pX = µ1(α1x+ y)3 + µ2(α2x+ y)3.

• Three-dimensional case
The reasoning is the same as the two-dimensional case. X is a third-order symmetric
tensor X = (Xijk)i,j,k ∈ C3×3×3 of dimension 3. We have found three matrices A, B
and C ∈ C3×3 that satisfies:

Xijk ≈
R
∑

ℓ=1

λℓ Aiℓ Bjℓ Ckℓ,

with R = 3 the tensor rank.

Using the Khatri-Rao product ⊙, we write the symmetric tensor X as a sum of
three symmetric tensors:

XI×JK = X1 + X2 + X3,

with Xi = A(:, i). (C(:, i) ⊙ B(:, i))T , for i = 1, 2, 3. A(:, i), C(:, i), B(:, i) are the ith

column vectors of matrices A, B and C respectively.
As each Xi is a symmetric tensor, each of them can be written as a homogeneous
polynomial form pi of degree 3 in three variables and then as a third power of a linear
form. These linear forms are distinct in C. Then,

pi = µi(αix+ βiy + γiz)
3,

with

µi = Xi(I, JK),

αi = sign

(

Xi(1, 1)

µi

)

∣

∣

∣

∣

∣

∣

Xi(1, 1)

µi

∣

∣

∣

∣

∣

∣

, βi = sign

(

Xi(2, 5)

µi

)

∣

∣

∣

∣

∣

∣

Xi(2, 5)

µi

∣

∣

∣

∣

∣

∣

,

γi = 1.



2.4 Conclusion 53

with i = 1, 2, 3 and I = J = K = 3 the dimensions of the tensor X. Xi(2, 5) is the
element of the second line and fifth column of the matrix unfolding Xi.
Then we get the following polynomial form of X in 3D:

pX = p1 + p2 + p3,

pX = µ1(α1x+ β1y + z)3 + µ2(α2x+ β2y + z)3 + µ3(α3x+ β3y + z)3.

2.4 CONCLUSION

In this chapter, two algorithms have been presented:

• Sylvester’s algorithm and its extension to higher dimensions to decompose homo-
geneous polynomials in any variables and arbitrary degree into a sum of powers
of linear forms,

• the CANDECOMP/PARAFAC ("CP") model to decompose symmetric tensors
of arbitrary order and dimension as a sum of rank-1 symmetric tensors. In the
sequel, we use the CP3alsls (third-order CANDECOMP/PARAFAC) decomposi-
tion algorithm developed by Nion and Lathauwer [75]. For more details, you can
visit Nion’s website (http://perso-etis.ensea.fr/∼nion/ ).

Sylvester’s algorithm extended to higher dimensions has two important impacts.
First, it permits an efficient computation of the decomposition of any tensor of sub-
generic rank, as opposed to widely used iterative algorithms with unproved global
convergence like Alternating Least Squares fitting the "CP" model. Second, it gives
tools for understanding uniqueness conditions and for detecting the rank. Symmet-
ric tensor decompositions are going to play an important role in higher-order mesh
adaptation.
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3.1 Introduction to higher-order interpolations 57

3.1 INTRODUCTION TO HIGHER-ORDER INTERPOLATIONS

3.1.1 Motivations

The importance of unstructured anisotropic mesh adaptation has been proved in many
studies [4, 44, 48]. Indeed, some physical phenomena have strong anisotropic proper-
ties. To capture them, we need to generate a mesh which converges simultaneously
with the desired solution. Hessian-based methods and in particular multi-scale ones,
i.e., relying on Lp error norm, have shown to be a powerful tool for building anisotropic
meshes allowing a faster convergence to continuous solutions. In particular, the nu-
merical convergence is close to second order in the linear case, even for coarse meshes.
Theoretical investigations tend to show that these favorable properties will also hold at
a higher order, as far as a higher-order scheme and a higher-order analysis are employed.

In the context of anisotropic mesh adaptation, there are few results, both theoretical
and practical for higher-order interpolations. This can be explained by the number of
possible interpolations and their complexity. Thus, it is difficult to be entirely generic.
Another complexity is due to the difficulty of generating curved meshes in order to fully
use the benefits of very high order numerical schemes. However, adaptation is possible
by maintaining the classical framework for anisotropic simplex mesh adaptation [70].
This will be the basis of the present work.

The main motivation comes from the application side with the emergence of natural
high order numerical methods such as the discontinuous Galerkin method [10], the
residual distribution schemes [1], the CENO2 scheme [23]. Theoretically, these methods
allow to increase the order easily. So, having an adaptation method which corresponds
to the resolution order seems to be necessary in order to better distribute the degrees
of freedom [8].

3.1.2 State of the art

For a general theoretical study, Huang [56] defines generic estimates to control inter-
polation order. These works are derived from the theory of interpolation in Finite
Elements. However, such an approach is quite difficult to implement in practice. In-
deed, the metric used to approximate a k-linear form is based on a term to term control
of the Hessian of each partial derivative. Thus, for each partial derivative, a metric is
derived and the final metric is the intersection of all these metrics. This idea is similar
to the one introduced by Hecht [53] for second-order Lagrangian interpolations whose
aim is to control the error according to each partial derivative. According to the proce-
dure of metric intersection used, the uniqueness of the solution is not guaranteed. And
even worse, in the case of intersections based on the simultaneous reduction, the re-
sulting metric tends to become an isotropic metric, losing all the interest of anisotropic
estimates.
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The approach proposed by Cao is based on an analytical development of the error
in 2D. Cao generalizes the study developed in the linear interpolation case [21] to
higher-order case [22]. However, the set of parameterizations introduced are hardly
possible in 3D. We can cite the work of Mirebeau whose idea is similar to the one of
Cao but with improving results on higher-order interpolations [74]. But once again, the
parameterizations developed in 2D haven’t been extended to 3D yet. We can also cite
the work of Yano and Dermofal from MIT who proposed higher order mesh adaptation
applied to a high order discontinuous Galerkin finite element method [91, 92]. Their
work is brilliant but realizes only in 2D. So what about the 3D? We can Recently,
Hecht and Kuate [54] proposed a new approach to approximate anisotropic metrics
from third-order interpolation error in 2D. This approach consists in solving a non
linear optimization problem based on the discretization of the isoline 1 of the error
function. But, by analyzing this method, we deduced that extending it to 3D and using
a simple resolution algorithm will lead to a high complexity. Thus, a reformulation of
this problem will be necessary to solve it.

3.1.3 Proposed approach

This chapter addresses the generalization of the results introduced in the linear inter-
polation case [69] to higher-order interpolations. We start our study by extending the
geometric interpretation of mesh adaptation for the linear case as done in [69].
Our approach is based on a generic error model which is a homogeneous polynomial
of degree k in any dimension. Then, we seek for a quadratic definite positive form
approaching the variations of the initial error model. To do so, we study two methods
with respect to geometric principles deduced from the linear case. The first one is
based on a min-max optimization problem and the second one uses the diagonaliza-
tion of symmetric tensors or of homogeneous polynomials presented in Chapter 2.
We compare these methods to validate our approach and to state the best possible
approach to work with higher-order interpolations.

3.2 GEOMETRIC PRINCIPLES FOR METRIC-BASED ADAPTA-

TION

3.2.1 Local error model

The main difficulty in the case of higher-order adaptation is the multiplication of the
number of possible interpolations. To overcome this difficulty, it is necessary to find
a generic error model that will factorize a large number of interpolations: Lagrangian
interpolation, Hermitian interpolation, ... Our approach is based on the space of ho-
mogeneous polynomials of degree k > 2.
We focus on the 3D case (the reasoning is the same in the 2D case). In a vicinity of a
point a = (a1, a2, a3) ∈ R3, we assume that the error is well represented by a homoge-
neous polynomial He of degree k > 2 in three variables if the interpolation used is of
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degree k − 1. The polynomial He has:

Nk =

(

k + n− 1

n− 1

)

coefficients. We can write it under the following form:

He(a, x, y, z) =
k
∑

i=0

k−i
∑

j=0

cij(x− a1)
i(y − a2)

j(z − a3)
k−i−j.

For the sake of simplicity and without loss of generality, we assume that the point a is
the origin of our coordinate system, i.e., a = (0, 0, 0).
The function He allows us to estimate the error along an edge ax issued from a. If
ax = (x, y, z), then this error is simply given by the function ΦHe

:

ΦHe
(x) = |He(a;x, y, z)|.

This function ΦHe
generalizes the computation of lengths in He. If He is a definite pos-

itive quadratic form, then ΦHe
is the square length of edge ax. Using the homogeneity

of He, we can deduce the error anywhere from the error defined on the unit ball of any
given norm ||.||. Indeed, for any point x = (x, y, z) 6= a, as x0 = x

||x|| belongs to the

unit ball of the norm ||.||, we have:

He(a;
x

||x|| ,
y

||x|| ,
z

||x||) =
1

||x||kHe(a;x, y, z) =⇒ ΦHe
(x) = ||x||kΦHe

(x0).

Example 3.1

We give some examples of errors that can be written as homogeneous polynomials.

• Given a regular function u, we can derive a truncation error estimate using a kth

order Taylor development of u. In this case, we get an error that is written as a
homogeneous polynomial. Its coefficients cij are given by:

cij =
1

k!

∂ku

∂xi∂yj∂zℓ
(a), with ℓ = k − i− j.

• For less regular functions, the error can be also written as a homogeneous poly-
nomial [41]. The coefficients are often integrated on an element K.

||u− Πhu||Wm,q(K) 6 |K|
1
q

− 1
p

∑

α1+α2+α3=ℓ−m

hα1
1 hα2

2 hα3
3

∣

∣

∣

∣

∣

∣

∂ℓ−mu

∂xα1∂yα2∂zα3

∣

∣

∣

∣

∣

∣

Wm,q(K)

,

with Πh an interpolation operator, |K| the volume of K, h1, h2 and h3 the sizes
along directions given by the technique of the reference element. These inequali-
ties generally depend on some hypothesis on the powers of Sobolev spaces Wm,q,
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Wm,p and geometric characteristics of K. We can notice that the right-hand side
of this inequality is a homogeneous polynomial of degree ℓ−m in three variables
(hi)i=1,2,3, with its coefficients given by:

cij =

∣

∣

∣

∣

∣

∣

∂ku

∂xi∂yi∂zℓ

∣

∣

∣

∣

∣

∣

Wm,q(K)

, with ℓ = k − i− j.

• The last example comes from the approximation of surfaces [45]. In this case,
the approximation error of the surface is written as a homogeneous polynomial
of degree 2.

3.2.2 Geometric principles for higher-order interpolation error es-
timates

In this section, we extend the geometric principles deduced from the study of the linear
interpolation error [69] to higher-order interpolation errors in 2D and also in 3D. In the
linear case, the error model is a quadratic form. Thus, to generalize the method used
in the linear case to the higher-order case, we seek for approximating locally the
variations of |He| by a quadratic definite positive form Q(He) or Q(d(k)(He))
(it refers to the quadratic form associated to the third-order derivatives of He) taken
at power k

2
,

|He(x)| 6 (txQ(He)(x) x)
k
2 . (3.1)

Otherwise, we seek for the optimal local metric Q(He) whose unit ball is the maximum
area ellipse (resp. maximum volume ellipsoid) included in the isoline 1 (resp. the
isosurface 1).

To do so, we first recall the geometric principles for the linear interpolation. And
then, we propose a generalization of these principles for the higher-order case.

Geometric principles for the linear case

A fully geometric vision of the linear interpolation error is proposed in [69]. It has
been shown that the local optimal metric is the one whose unit ball is included in the
isoline 1 of the quadratic form txH(u) x, with H(u) the Hessian of the solution u.
To guarantee the uniqueness in the linear case, this optimal metric must satisfy the
following geometric principles:

1. Consistency : this principle ensures that the quadratic model Q(He) is an upper
bound of the absolute value of the homogeneous polynomial.

2. Maximize the volume : this principle is related to the order of mesh conver-
gence. Indeed, to minimize the error threshold, we have to minimize the number
of elements. Locally, it is equivalent to maximize the volume of the unit ball of
the metric.
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Figure 3.1: (Top, left) Representation of the isolines of He(x, y) and the optimal local
metric Q(He) (white) included in the isoline 1. (Top, right) Representation of the isolines of

the approximate error (tx Q(He) x)
3
2 and the optimal local metric Q(He) (white). (Bottom)

Superposition of the isolines of He(x, y) and (tx Q(He) x)
3
2 with the optimal local metric

3. Maximize the smallest size : this principle avoids getting aligned with infinite
branches

From linear to higher-order interpolation

We propose a geometric study of higher-order interpolation errors based on the geo-
metric principles set out in the linear case. For a homogeneous polynomial He of degree
k, we approach the variations of He by the quadratic variations given by a quadratic
form Q. To compare these variations of degree 2 and k, we have to normalize them.
In this case, we define distance functions:

• ΦQ is the distance function issued from the metric defined by Q and given by:

ΦQ(x) =
√

txQx.

• ΦHe
(x) is the distance function associated with the homogeneous polynomial He

and given by:
ΦHe

(x) = |He(a; x)| 1k .
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In the sequel, we state the geometric principles proposed to approach ΦHe
by ΦQ.

Principle 1. Consistency

Given an error threshold ǫ > 0, a metric M is a consistent model with respect to
the initial error model He if its distance function satisfies:

{x ∈ V(a)|ΦM(x) 6 ǫ} ⊂ {x ∈ V(a)|ΦHe
(x) 6 ǫ}. (3.2)

Using the homogeneity property of He and M, if this condition is satisfied for ǫ = 1
then this condition is satisfied everywhere. We have to notice that when we directly
work with the error He and not with ΦHe

, then the previous inclusion becomes:

{x ∈ V(a)| txM(a) x 6 ǫ2} ⊂ {x ∈ V(a) : |He(a; x)| 6 ǫk}.

From a geometrical point of view, the inclusion above requires that the unit ball ofM
is included in the isoline 1 of He. Indeed, the relation (3.2) implies:

∀x ∈ V(a) such that txMx 6 1 then |He(a; x)| 1k 6 (txMx)
1
2 .

This inequality is essential to certify that locally (i.e in the vicinity V(a) of a), the
quadratic error model

∀x ∈ V(a) : x 7→ txMx,

is an upper bound of the error model He.
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Figure 3.2: Representation of the isolines of a polynomial He(a; x, y) of degree 3. The
isoline 1 is depicted by 1 . On the left, we depict the unit ball of a metric that satisfies the
first principle and on the right, the unit ball of a metric that doesn’t satisfy the first principle.

Figure 3.2 gives a geometric illustration of a consistent and an inconsistent metric
for a given polynomial of degree 3. For the unit ball of the right metric, ∃x such that
xMx = 1 and He(a,x) > 1. Thus, the quadratic model is not an upper bound of the
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error He.

Principle 2. Optimality

The first principle gives an infinity of possible solutions. Indeed, if M0 is a metric
which satisfies the first geometric principle, then the set of metrics αM0 parametrized
by α > 1 satisfies this principle too. So, we have to propose an optimality criterion
such that we minimize the number of elements of the mesh for a given error threshold.
LetM be a metric satisfying (3.2). We know that the area or volume of elements unit
with respect to a metric M is related to the volume of the unit ball of M. It has
been proved in Chapter 2 of [69] that the optimal continuous interpolation error in
Lp-norm depends of the complexity C(M) of the continuous mesh and is given under
the following form:

Ep(M) =
Cte

C(M)
k
n

.

The complexity of the mesh is given by C(M) =
∫

Ω

√

detM(x) dx, with detM(x)

the volume of the unit ball M at point x. To minimize the previous estimate, we can
maximize the complexity C(M), which locally is equivalent to maximize the volume
of M. To conclude, the second principle consists in seeking for the maximum volume
ellipsoid included in the isoline 1 of He. Then, given two metrics M1 and M2 which
satisfy the first principle, M1 is a better model than M2 if:

M1 >M2 ⇐⇒ det(M2) 6 det(M1). (3.3)

Principle 3. Choice of main directions

This constraint is induced by the fact that the error He is not a norm, i.e., the set
{x|He(x) = 0} is not equal to {0}. In 2D and the linear case, i.e., k = 2, we can
consider the hyperbolic example He(x, y) = x2 − y2. We seek for approaching He by a
quadratic definite positive form. For a r ∈ R∗, we have the following relations:

|x2 − y2| 6 x2 + y2

|x2 − y2| 6
r

2
(x− y)2 +

2

r
(x+ y)2, ∀ r > 0

|x2 − y2| 6
r

2
(x+ y)2 +

2

r
(x− y)2, ∀ r > 0

These inequalities correspond to a set of metrics (Q(r))r>0 that satisfy the Principles
1 and 2. The only difference between this set of metrics is the choice of the main
directions. In this case, we have to find a new principle such that associated to the
previous two principles, we get the best model between all the possible one. Indeed, a
part of these metrics is aligned with the directions of high gradient of He and the other
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part is aligned with a direction of null error.

In order to have a unique solution, we propose to consider as best model the
quadratic definite positive form Q(r) whose smallest size is maximum. The "maxi-
mum smallest size" principle is as follow:
M1 is a better model than M2 if

M1 >
l M2 ⇐⇒ (h11, h12, h13) >

l (h21, h22, h23). (3.4)

where >l is the lexical order.
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Figure 3.3: (Left) Representation of the isolines of the hyperbolic error He defined by its
two direction of null error. (Middle, right) Choices of both possible alignments. Both metrics
have the same volume and verify the first principle.

However, although this principle is a general and simple extension of Principle 3
proposed for the linear case to higher-order cases, it has to be validated. In the next
section, we will show that (3.4) is too restrictive to find the maximum volume ellipse
included in the isoline 1 of He with respect to (3.2) and (3.3).

Problematic

We seek for approximating the local optimal metric included in the isoline 1 of
He. To do so, we consider a local optimization problem that consists in solving the
following continuous system:











Min det(M)
M > 0

ΦM(x) > |ΦHe
(x)|, ∀x ∈ Rn.

(3.5)

This problem is a nonlinear problem with nonlinear constraints. In the 2D case, this
problem is replaced by a simpler optimization problem in R2 by discretizing the con-
straints [54].
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Consider the metric:

M =

(

a c
2

c
2

b

)

, a > 0, b > 0, 4 ab− c2 > 0.

Consider a discretization of the isoline 1 with n points of position (xi, yi), set Xi =
(

xi

yi

)

.

The nonlinear problem (3.5) can be reformulate as follow:
Find three reals a, b and c that minimize 4 ab− c2 under the following constraints:











a > 0, b > 0,
a x2

i + b y2
i + c xi yi > 1, 0 6 i 6 n− 1,

4 ab > c2,

A naive resolution algorithm of this problem will be of O(n3) complexity, which can
be an expensive part of a mesh adaptation process.
In the 3D case, this worst complexity lies between O(n3) and O(n6). And contrary
to the 2D case, a lot of discrete points needs to be used to discretize the isosurface in
comparison with the 2D. Thus, a direct resolution is not possible.

In the sequel, we propose to solve an approximate problem of (3.5) to construct the
optimal local metric Q(He) in 2D and 3D with a reduced complexity.

3.3 CONSTRUCTION OF OPTIMAL LOCAL METRICS IN 2D

This section addresses the construction of optimal local metrics from higher-order in-
terpolation error for mesh adaptation in 2D.
Based on the error model, we seek for the optimal sizes and directions of the unit ball of
the optimal metric Q(He) that satisfies the pre-cited geometric principles and Relation
(3.1). To achieve this goal, several approaches have been proposed during this thesis.
We expose these methods in the sequel.

3.3.1 Naive decomposition: Min-Max optimization problem

Our first approach consists in solving a sequence of optimization problems to find the
quadratic definite positive form Q(He) of maximum volume and included in the isoline
1 of He. This is based on Principles (3.2), (3.3) and (3.4).
First, we seek for the best isotropic model. Geometrically, it means that we seek for
the maximum volume sphere included in the isoline 1 of the error function defined
by the homogeneous polynomial He. Equivalently, this problem consists in solving a
unconstrained global optimization problem of lower dimension (i.e., dimension 1 in 2D
and dimension 2 in 3D).

In this case, we change the standard cartesian coordinates to polar coordinates.
This allows us to parametrize the isoline or isosurface 1. We have the following change
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of variables:

{

x = ρ cos(θ)
y = ρ sin(θ)

⇐⇒
{

ρ =
√
x2 + y2

θ = arctan( y
x
)
, x 6= 0.

The error is given by:
He(θ) = ρk P (θ),

k is the order or degree of He and P a homogeneous polynomial depending on cos(θ)
and sin(θ). Then, the equation of the isoline 1 is given by:

ρ = |P (θ)|− 1
k .

Therefore, the unit ball BM of a metric in dimension 2 is defined by:
(

x

y

)

=

(

h1 cos(θ)
h2 sin(θ)

)

, θ ∈ [0, 2π].

We give a 2D example to illustrate the sequence of problems solved to find the
optimal local metric. We consider the following error model of degree k = 3:

He(x, y) = 5(x3 + 2x2y + x y2 − 2 y3).

In the polar system, we have:

P (θ) = 5(cos(θ)3 + 2 cos(θ)2sin(θ) + cos(θ) sin(θ)2 − 2 sin(θ)3).

To find the maximum error direction, we seek for the maximum on the isoline 1. We
consider the polynomial P (θ)

1
k . However, thanks to the homogeneity property of the

polynomial, we simply consider P (θ) and seek for the value of θ that maximizes P .
Numerically, we obtain the maximum error direction θmax = 4.8133. This direction
corresponds to an error level given by ρmax = |P (θmax)|− 1

k .
Then, the maximum volume isotropic metric included in the isoline 1 is given by:

Miso = R(θmax)

(

λmax

λmax

)

tR(θmax),

with:

R =

(

cos(θmax) −sin(θmax)
cos(θmax) sin(θmax)

)

, λmax =
1

ρ2
max

.

We derive an anisotropic error estimate from the isotropic metric by "inflating"
it in the orthogonal direction perpendicular to θmax. Equivalently, this problem con-
sists in solving a Min-Max optimization problem. Indeed, we consider the following
parametrized metric M(α), α 6 1:

M(α) = R(θmax)

(

λmax

αλmax

)

tR(θmax).
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Figure 3.4: Graphical representation of the univariate function P in terms of the variable
θ. The blue points are the local and global maxima and minima of P

This Min-Max optimization problem considers the values of the error on the unit ball
of M. There exists an optimum value αopt of α such that the maximum value of the
error is equal to 1. The orthogonal direction is given by θopt

max = θmax+ π
2
. This direction

corresponds to an error level given by ρopt
max = |P (θopt

max)|− 1
k . Then, the value of α is

given by:

αopt =
1

λmax (ρopt
max)2

.

Newton’s method or Newton-Raphson method has been used to find successively better
approximations of the roots of the function P (θ).

Figure 3.5: Representation of the isolines of the error model He(x, y). Representation
of the isotropic metric Miso (green ellipse), the anisotropic metric Maniso (red ellipse) and
Corrected optimal metric Q(He) (white ellipse) for the error model He.
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Figure 3.5 gives an overview of the different steps to get the optimal local metric
Q(He) included in the isoline 1 of the error model He. First, we get the green optimal
isotropic metricMiso. Then, we inflate this isotropic metric in the orthogonal direction
and this gives the red local anisotropic metric Maniso. We evaluate the error on this
metric:
if ∀x ∈Maniso, He(x) 6 1, this metric is the desired optimal metric.
But if ∃x0 (white point on the red ellipse) such that He(x0) = max

x∈Maniso

He(x) > 1, we

project orthogonally this point on the isoline 1 (red point on the white ellipse). Then,
we get the optimal local metric centered at a = 0 and passing through the corrected
point xcor

0 .

Remark 3.1 With this optimization problem, Principles (3.2) and (3.4) are satisfied.
However, we will prove in the sequel that Principle (3.3) is not simultaneously satisfied
with Principles (3.2) and (3.4). Indeed, we will show that maximizing the smallest size
of the optimal metric sought, doesn’t lead to the maximum volume anisotropic metric.
More precisely, the maximum volume ellipsoid that we are seeking for is not the one
that maximize the smallest size or direction. In that case, the optimal directions are
not obtained.

3.3.2 Construction based on tensor decompositions

In Chapter 2, we exposed two symmetric tensor decomposition methods: the CP3alsls

decomposition and Sylvester’s decomposition. As we saw in this chapter, the main idea
of these methods is to decompose any symmetric tensor of arbitrary degree and dimen-
sion as a sum of rank-one tensors. These methods are the extension of Singular Value
Decomposition problem or diagonalization for symmetric matrices to higher-order ten-
sors.
In this section, we show how we get the optimal local metric Q(He) that satisfies In-
equality (3.1) from the tensor decomposition of the error model He in 2D.

The first step consists in decomposing the homogeneous polynomial of degree 3 in
two variables

He(x, y) =
3
∑

i=0

(

3

i

)

ci x
i y3−i

as a sum of third powers of linear terms

He(x, y) = µ1(α1x+ y)3 + µ2(α2x+ y)3, (3.6)

To do so, we use one of the symmetric tensor decomposition: the CP3alsls decomposi-
tion or Sylvester’s decomposition.

The next step consists in solving an optimization problem to get the optimal local
metric Mopt from Decomposition (3.6). To do so, starting from Decomposition (3.6),
we use a change of basis tP S P = D to find a symmetric definite positive matrix
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S = tBDB.

We have the new basis:

P = B−1 =

(

α1 1
α2 1

)−1

=

(

u1 v1

u2 v2

)

,

D =

(

ξ1 0
0 ξ2

)

,

with ξ1 = |He(u1, u2)|
2
3 = 1

h2
1

and ξ2 = |He(v1, v2)|
2
3 = 1

h2
2
.

u = [u1, u2] and v = [v1, v2] are respectively the first and the second column vector of
B−1, the inverse matrix of B. The values of hi are obtained by imposing the constraint
t3 He(u) 6 1 and t3 He(v) 6 1, ∀ t > 0.

Thus, in the new basis B−1, we have:

S = t

(

α1 1
α2 1

) (

ξ1 0
0 ξ2

) (

α1 1
α2 1

)

.

For all ξi ∈ R+, αi ∈ C, i=1,2, S is a real symmetric matrix.

-Indeed, if ξi ∈ R+, αi ∈ R, ∀ i = 1, 2, then:

S = t

(

α1 1
α2 1

) (

ξ1 0
0 ξ2

) (

α1 1
α2 1

)

,

=

(

ξ1 α
2
1 + ξ2 α

2
2 ξ1 α1 + ξ2 α2

ξ1 α1 + ξ2 α2 ξ1 + ξ2

)

.

-If ξi ∈ R+, αi ∈ C\R, ∀ i = 1, 2, as we have tB = tB̄ the complex transpose of B then:

S = t

(

ᾱ1 1
ᾱ2 1

) (

ξ1 0
0 ξ2

) (

α1 1
α2 1

)

.

We recall that if c = Re(c) + i Im(c) is a complex number, then the conjugate of c is
c̄ = Re(c)− i Im(c).

As He is a homogeneous polynomial with real coefficients, if the coefficients µi, αi of
Decomposition 3.6 are complex, then they are complex conjugates, i.e.,

µ2 = µ̄1, α2 = ᾱ1.

Then,
v = ū =⇒ h1 = h2, i.e., ξ1 = ξ2.
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In this case, S is written as:

S = t

(

ᾱ1 1
α1 1

) (

ξ1 0
0 ξ1

) (

α1 1
ᾱ1 1

)

,

=

(

ξ1(α
2
1 + ᾱ1

2) ξ1(α1 + ᾱ1)
ξ1(α1 + ᾱ1) 2 ξ1

)

,

S =

(

2 ξ1 (Re(α1)
2 − Im(α1)

2) 2 ξ1 Re(α1)
2 ξ1 Re(α1) 2 ξ1

)

,

where Re(α1) and Im(α1) are respectively the real and the complex part of the com-
plex number α1.

As S is a real symmetric matrix, it is diagonalizable with positive eigenvalues
(λi)i=1,2 and orthogonal eigenvectors R. S corresponds to an ellipse whose directions

are given by the eigenvectors (vi)i=1,2 of R and whose sizes are given by hi = λ
− 1

2
i .

This ellipse is included in the isoline 1 of the error function He(x, y) (according to
Sylvester’s decompostion).

From S, we seek for the symmetric definite positive matrix Q(He) whose unit ball
BQ(He) is the maximum area ellipse included in the isoline 1 of He(x, y). To do so, we
seek for a positive constant 0 < cm 6 1 (because we seek for increasing the volume of
the ellipse and being included in the isoline 1) such that:

Q(He) = cm S = tB

(

cm ξ1 0
0 cm ξ2

)

B,

and

Area(BQ(He)) = A(cm) =
1

√

| det(Q(He))|
,

is maximum.

According to the nature of the coefficients αi (real or complex), we have the following
results:

• Real case : αi are real coefficients
If αi are real coefficients, cm = 1. Then, the optimal local metric Q(He) of maximum
area included in the isoline 1 of He(x, y) is given by:

Q(He) = tB

(

ξ1 0
0 ξ2

)

B, with B =

(

α1 1
α2 1

)

.

• Complex case : αi are complex coefficients
If αi are complex coefficients, cm = 2− 1

3 . Then, the optimal local metric Q(He) of
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maximum area included in the isoline 1 of He(x, y) is given by:

Q(He) = 2− 1
3

tB̄

(

ξ1 0
0 ξ1

)

B, with B =

(

α1 1
ᾱ1 1

)

.

The Matlab function used to compute the optimal metric Q(He) is given in Ap-
pendix B.3.

Remark 3.2 The values of the constant cm in the real and the complex case have been
obtained using an iterative process. Indeed, using a Matlab function that computes
the local metric S, a numerical proof shows that a variation of cm between 0 and 1
with Q(He) = cmS is such that:
• in the real case, if 0 < cm < 1, the metric cmS is included in the isoline 1 of He but is
not the maximum area ellipse sought. If cm = 1, cmS is the desired maximum volume
ellipse.
• in the complex case, if 0 < cm < 2− 1

3 , the metric cmS is included in the isoline 1 of
He but is not the maximum area ellipse sought. However, if 2− 1

3 < cm 6 1, the metric
cmS is not included in the isoline 1 of He. The optimal local metric is obtained with
cm = 2− 1

3 .

3.3.3 Two-dimensional examples

In this section, we give 2D examples of construction of optimal local metrics based
on the previous methods. In these examples, we compare Sylvester’s decomposition
method (Sylvester), the CP3alsls decomposition method and the Min-Max optimization
method. We study their effectiveness for the construction of optimal local metrics
Q(He) by comparing the area A(Q(He)) and the anisotropic ratio r(Q(He)) = max(hi)

min(hi)
,

with (hi)i=1,2 the directional sizes of the unit ball of Q(He) obtained.

Example 3.2

We consider the homogeneous polynomial of degree 3 in two variables:

He(x, y) = 6x3 − 25.782x2y − 20.94xy2 − 10 y3.

We have the following results:

Min-Max CP3alsls Sylvester

r(Q(He)) 1.2233 1.5950 1.5950

A(Q(He)) 0.1695 0.1778 0.1778
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Figure 3.6: Representation of the isolines of He(x, y) = 6 x3−25.782 x2y−20.94 xy2−10 y3

and the optimal local ellipse (white) included in the isoline 1 obtained with the Min-Max
optimization method (top left), the CP3alsls decomposition method (top right) and Sylvester’s
decomposition method (bottom).
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Example 3.3

We consider the homogeneous polynomial of degree 3 in two variables:

He(x, y) = 2x3 + 18xy2.

We have the following results:

Min-Max CP3alsls Sylvester

r(Q(He)) 1.0002 1.7321 1.7321

A(Q(He)) 0.2646 0.2887 0.2887

Figure 3.7: Representation of the isolines of He(x, y) = 2 x3 + 18 xy2 and the optimal local
ellipse (white) included in the isoline 1 obtained with the Min-Max optimization method (top
left), the CP3alsls decomposition method (top right) and Sylvester’s decomposition method
(bottom).
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Example 3.4

We consider the homogeneous polynomial of degree 3 in two variables:

He(x, y) = x3 + 1.5x2y + 1.5xy2 + 0.5 y3.

We have the following results:

Min-Max CP3alsls Sylvester

r(Q(He)) 2.0927 2.6180 2.6180

A(Q(He)) 1.5122 1.5874 1.5874

Figure 3.8: Representation of the isolines of He(x, y) = x3 + 1.5 x2y + 1.5 xy2 + 0.5 y3

and the optimal local ellipse (white) included in the isoline 1 obtained with the Min-Max
optimization method (top left), the CP3alsls decomposition method (top right) and Sylvester’s
decomposition method (bottom).
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Example 3.5

We consider the homogeneous polynomial of degree 3 in two variables:

He(x, y) = 50x3 − 360x2y − 3000xy2 − y3.

We have the following results:

Min-Max CP3alsls Sylvester

r(Q(He)) 1.0686 4.0710 4.0710

A(Q(He)) 0.0092 0.0159 0.0159

Figure 3.9: Representation of the isolines of He(x, y) = 50 x3 − 360 x2y − 3000 xy2 − y3

and the optimal local ellipse (white) included in the isoline 1 obtained with the Min-Max
optimization method (top left), the CP3alsls decomposition method (top right) and Sylvester’s
decomposition method (bottom).

In view of tables and results obtained in Examples 3.2, 3.3, 3.4 and 3.5, we can say
that the Min-Max optimization method is far from being an optimum method. Indeed,
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as you can see, comparing the anisotropic ratio r(Q(He)) and the area A(Q(He)) of the
final metric, the optimal directions and sizes of the metric Q(He) are found with the
CP3alsls decomposition and Sylvester’s decomposition. Example 3.5 perfectly shows
the ineffectiveness and non-optimality of the first method to catch the anisotropy of
the error model He.

To summarize, maximizing the smallest size in order to catch the anisotropic prop-
erties of higher-order error models is a bad idea. On the contrary, using a tensor
decomposition method seems to be the best solution. These methods that consist in
diagonalizing the error model allow to deduce the best directions from this error model
and find the optimal local metric. Note that this is the strict analogy of what is done
in the linear case. Indeed, in the linear case, the diagonalization of Hessian matrix
is at the core of the method while symmetric tensor diagonalization is involved for
higher-order interpolation error.

3.4 CONSTRUCTION OF OPTIMAL LOCAL METRICS IN 3D

As we saw in the previous section, the CP3alsls decomposition and Sylvester’s decompo-
sition are good methods to construct optimal local metrics from homogeneous models
of order 3 in 2D. Therefore, we can legitimately wonder if using their extension in
3D, these methods will be strong enough to construct optimal local metric from error
models.

3.4.1 Construction based on tensor decompositions

This section addresses the construction of optimal local metrics from higher-order in-
terpolation error for mesh adaptation in 3D. Based on the error model, we seek for the
optimal sizes and directions of the ellipsoid that satisfies the geometric principles cited
in Section 3.2. To do so, we use the extension of the tensor decomposition methods
exposed in the previous section to 3D: the CP3alsls decomposition method and the
symmetric tensor decomposition method.

The reasoning is the same as in the 2D case. We consider the error model He of
degree k = 3 in three variables x, y, z:

He(x, y, z) =
3
∑

i=0

3−i
∑

j=0

(

3

i, j

)

aij x
i yj z3−i−j.

The first step consists in decomposing He(x, y, z) as a sum of third powers of linear
terms

He(x, y, z) =
r
∑

i=1

µi(αix+ βiy + γiz)
3,

using the CP3alsls decomposition or the 3D symmetric tensor decomposition.
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But as we saw in Table 2.1 in Chapter 2, a third-order homogeneous polynomial
of three variables admits a generic rank equal to 4. In this case, we are expecting to
get a decomposition rank r = 4 in general. However, getting such a decomposition
that will be our basis to construct the optimal local metric included in the isoline 1 of
the homogeneous error model, is neither easy nor stable.

To overcome this issue, we impose the generic rank r = 3 so that the dimensions
(I, J,K) are equal to r as in the 2D case.

Thus, assume that the decomposition rank of any symmetric tensor He(x, y, z) of
degree 3 in three variables is equal to 3. In this case, we have:

He(x, y, z) =
3
∑

i=1

µi(αix+ βiy + z)3. (3.7)

The next step consists in solving an optimization problem to get the optimal local
metric Mopt from the decomposition (3.7). To do so, we are going to expose both
decomposition methods separately to show the strong and weak points of each of them
and try to choose the one that can be used in 3D to approximate the optimal local
metric.

The CP3alsls decomposition in 3D

In the case of an exact symmetric tensor, i.e., the exact decomposition rank of a given
third order symmetric tensor is R = 3, the CP3alsls decomposition algorithm converges
to an exact solution.
On the contrary, if the symmetric tensor is non-exact, no dimension of the input tensor
He are greater than or equal to the decomposition rank R = 4. In this case, all the
initializations of the optimization algorithm are random. Then, the CP3alsls decom-
postion method gives a non-optimal decomposition of He and this decomposition is not
unique. Thus, it leads to different metrics with different sizes and orientations.

But, since we assume the rank decomposition is equal to 3, a Direct Trilinear De-
composition will be used to give one good initialization and thanks to the minimization
process, the optimization algorithm will "try" to find the best decomposition of the sym-
metric tensor. Then, we associate the corresponding polynomial form (3.7) to the final
tensor decomposition. Unfortunately, the convergence of the algorithm is not always
guaranteed because of the random initializations on which depends the minimization
process.

Once we got the relation (3.7), a change of basis as in the 2D case, leads to an
approximate construction of the maximum volume ellipsoid Q(He) included in the
isoline 1 of He. We will show in the next section the theoretical calculations to get the
metric Q(He) since they will be the same as we use the CP3alsls decomposition or the
symmetric tensor decomposition in 3D.
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Symmetric tensor decomposition in 3D

We present Sylvester’s algorithm applied to symmetric tensors of order 3 in 3D with
R = 3.

We consider the following general homogeneous polynomial:

He(x, y, z) = a300 x
3 + 3 a210 x

2y + 3 a120 xy
2 + a030 y

3 + 3 a201x
2z + 3 a102 xz

2

+ a003 z
3 + 3 a021 y

2z + 3 a012 yz
2 + 6 a111 xyz.

We recall the different steps of the symmetric tensor decomposition algorithm below
(cf. Chapter 2, Algorithm 2).

-Step 1: We compute the coefficients of the dual element H∗
e in the dual basis from

the coefficients of the polynomial He in the monomial basis.

-Step 2: We form the formal Hankel matrix associated to H∗
e , the rows and columns

of which correspond to the coefficients of the polynomial H∗
e in the dual basis.

-Step 3: We extract from the formal Hankel matrix a principal minor ∆0 of full
rank ∆0 6= 0. Assume that, in our example, the 3 × 3 principal minor is of full rank.
We have:

∆0 =







a300 a210 a201

a210 a120 a111

a201 a111 a102





 .

-Step 4: We compute ∆1 = y
x

∆0 and ∆2 = z
x

∆0, the corresponding monomials of
the columns of ∆0.

∆1 =







a210 a120 a111

a120 a030 a021

a111 a021 a012





 ,

∆2 =







a201 a111 a102

a111 a021 a012

a102 a012 a003





 .

If the multiplication operators ∆1∆
−1
0 and ∆2∆

−1
0 commute, we go to the next

step, i.e we solve the generalized eigenvalue problem (∆1 − λ∆0)v = 0. We get the
normalized eigenvectors that corresponds to the coefficients of the linear terms of the
decomposition. Then, solving a linear system obtained by equating the initial polyno-
mial and its decomposition, we determine the last unknowns of our problem.

However, if the multiplication operators ∆1∆
−1
0 and ∆2∆

−1
0 don’t commute during

Step 4, then, the decomposition rank is greater than 3. We go back to Step 3 and
extract a new minor from the formal Hankel matrix. Thus, the principal minor ∆0 is
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given by:

∆0 =











a300 a210 a201 a120

a210 a120 a111 a030

a201 a111 a102 a021

a120 a030 a021 h040











,

under the constraint ∆0 6= 0. h040 is an unknown.

In this case, the corresponding monomials of the columns of ∆0, ∆1 = y
x

∆0 and
∆2 = z

x
∆0 are:

∆1 =











a210 a120 a111 a030

a120 a030 a021 h040

a111 a021 a012 h031

a030 h040 h031 h050











,

∆2 =











a201 a111 a102 a021

a111 a021 a012 h031

a102 a012 a003 h022

a030 h031 h022 h041











.

We have to determine the 5 unknown parameters h040, h031, h050, h022 and h041

under the constraint:

∆1∆
−1
0 ∆2∆

−1
0 −∆2∆

−1
0 ∆1∆

−1
0 = 0. (3.8)

The matrix relation (3.8) involves 16 polynomial equations of degree 2. Four of
them are trivial. After discarding them, we finally have to solve a non-linear system of
12 polynomial equations in 5 variables {h040, h031, h050, h022, h041}. Solving this system
of equations is not so easy and involves the solution is not unique.
Indeed, we notice that when we use Maple software to solve this system of equations
using random values for the coefficients aijk of the polynomial He, it leads to an infinite
number of solutions. Thus, we have an infinite number of possible metrics. But all
these metrics didn’t have the desired sizes and orientations.
For an exact third-order polynomial, the solution is unique and all the parameters
h040, h031, h050, h022 and h041 are all equal to zero. Thus, from this solution, we get the
optimal local metric.

However, since we assume that the decomposition rank is equal to 3, no param-
eter hijk has to be calculated, the solution of the generalized eigenvalue problem is
unique even if it is generally quasi-optimal. Thus, the algorithm generally leads to a
quasi-optimal tensor decomposition since the last term of the decomposition has been
omitted (generic rank = 4, thus four terms in general).
In the sequel, we will show how the rank = 4 case is treated to approximate local
optimal metrics.
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The Matlab code used to decompose any third-order symmetric tensor of three
variables is given in Appendix B.2.

Once we get the decomposition (3.7), the next step will consist in solving an opti-
mization problem to get the optimal local metric Mopt. To do so, we use a change of
basis tP S P = D to find a symmetric definite positive matrix S = tQDQ.

We have the new basis:

P = Q−1 =







α1 β1 1
α2 β2 1
α3 β3 1







−1

=







u1 v1 w1

u2 v2 w2

u3 v3 w3





 ,

D =







ξ1 0 0
0 ξ2 0
0 0 ξ3





 ,

with ξ1 = |He(u1, u2, u3)|
2
3 = 1

h2
1
, ξ2 = |He(v1, v2, v3)|

2
3 = 1

h2
2

and ξ3 = |He(w1, w2, w3)|
2
3 =

1
h2

3
.

u = [u1, u2, u3], v = [v1, v2, v3] and w = [w1, w2, w3] are respectively the first, the second
and the third column vector of Q−1, the inverse matrix of Q. The values of (hi)i=1,2,3

are obtained by imposing the constraint t3 He(u) 6 1, t3 He(v) 6 1 and t3 He(w) 6 1,
∀ t > 0.

Thus, in the new basis Q−1, we have:

S = t







α1 β1 1
α2 β2 1
α3 β3 1













ξ1 0 0
0 ξ2 0
0 0 ξ3













α1 β1 1
α2 β2 1
α3 β3 1





 .

For all (ξi)i=1,2,3 ∈ R+, (αi)i=1,2,3, (βi)i=1,2,3 ∈ C, S is a real symmetric matrix.

- Indeed, if ξi ∈ R+, αi, βi ∈ R, ∀ i = 1, 2, 3, then:

S = t







α1 β1 1
α2 β2 1
α3 β3 1













ξ1 0 0
0 ξ2 0
0 0 ξ3













α1 β1 1
α2 β2 1
α3 β3 1





 ,

S =







S(1, 1) S(1, 2) S(1, 3)
S(2, 2) S(2, 2) S(2, 3)
S(3, 1) S(3, 2) S(3, 3)





 ,

with
S(1, 1) = α2

1 ξ1 + α2
2 ξ2 + α2

3 ξ3, S(2, 2) = β2
1 ξ1 + β2

2 ξ2 + β2
3 ξ3,
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S(1, 2) = S(2, 1) = α1 ξ1 β1 + α2 ξ2 β2 + α3 ξ3 β3,

S(1, 3) = S(3, 1) = α1 ξ1 + α2 ξ2 + α3 ξ3,

S(2, 3) = S(3, 2) = β1 ξ1 + β2 ξ2 + β3 ξ3,

S(3, 3) = ξ1 + ξ2 + ξ3.

-If ξi ∈ R+ and ∃ (αi, βi) ∈ R2, (αj 6=i, βj 6=i), (αk 6=i, βk 6=i) ∈ C2\R2: αk = ᾱj, βk = β̄j,
{i, j, k} ∈ {1, 2, 3}.

We assume that α1, β1 ∈ R and α2, β2, α3, β3 ∈ C with α3 = ᾱ2 and β3 = β̄2.
In that case, S = tQ̄DQ becomes:

S = t







α1 β1 1

ᾱ2 β̄2 1

ᾱ3 β̄3 1













ξ1 0 0
0 ξ2 0
0 0 ξ3













α1 β1 1
α2 β2 1
α3 β3 1





 ,

= t







α1 β1 1

ᾱ2 β̄2 1
α2 β2 1













ξ1 0 0
0 ξ2 0
0 0 ξ3













α1 β1 1
α2 β2 1

ᾱ2 β̄2 1





 ,

Since Q =







α1 β1 1
α2 β2 1

ᾱ2 β̄2 1





 , then, Q−1 =







u1 v1 v̄1

u2 v2 v̄2

u3 v3 v̄3





 .

Thereby, w = v̄. So, ξ2 = |He(v1, v2, v3)|
2
3 = |He(w1, w2, w3)|

2
3 = ξ3.

Therefore, we have:

S = t







α1 β1 1

ᾱ2 β̄2 1
α2 β2 1













ξ1 0 0
0 ξ2 0
0 0 ξ2













α1 β1 1
α2 β2 1

ᾱ2 β̄2 1





 ,

S =







S(1, 1) S(1, 2) S(1, 3)
S(2, 2) S(2, 2) S(2, 3)
S(3, 1) S(3, 2) S(3, 3)





 ,

with

S(1, 1) = α2
1 ξ1 + 2 ξ2 |α2|2, S(2, 2) = β2

1 ξ1 + 2 ξ2 |β2|2,

S(1, 2) = S(2, 1) = α1 ξ1 β1 + ᾱ2 ξ2 β2 + β̄2 ξ2 α2 = α1 ξ1 β1 + 2Re(ᾱ2 β2) ξ2,
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S(1, 3) = S(3, 1) = α1 ξ1 + ᾱ2 ξ2 + α2 ξ2 = α1 ξ1 + 2Re(α2) ξ2,

S(2, 3) = S(3, 2) = β1 ξ1 + β̄2 ξ2 + β2 ξ2 = β1 ξ1 + 2Re(β2) ξ2,

S(3, 3) = ξ1 + 2 ξ2.

As S is a real symmetric matrix, it is diagonalizable with positive eigenvalues
(λi)i=1,2,3 and orthogonal eigenvectors R. S corresponds to an ellipsoid whose direc-

tions are given by the eigenvectors (vi)i=1,2,3 ofR and whose sizes are given by hi = λ
− 1

2
i ,

i = 1, 2, 3. This ellipsoid is included in the isosurface 1 of the error function He(x, y, z).

From S, we seek for the symmetric definite positive matrix Q(He) whose unit ball
BQ(He) is the maximum area ellipsoid included in the isosurface 1 of He(x, y, z). To do
so, we seek for a positive constant cm > 0 such that:

Q(He) = cm S = tQ







cm ξ1 0 0
0 cm ξ2 0
0 0 cm ξ3





 Q,

and

Area(BQ(He)) = A(cm) =
1

√

| det(Q(He))|
,

is maximum.

Concerning the 3D case, since we take into account three linear terms in the decom-
position of the error model He instead of the four terms needed, we decided to assume
that for the real case as for the complex case, the constant 0 < cm 6 1 we are seeking
for, is equal to 1. With this assumption, the "a priori" optimal local metric sought is
given

• in the real case by:

Q(He) = cm
tQ







ξ1 0 0
0 ξ2 0
0 0 ξ3





 Q,

• in the complex case by:

Q(He) = cm
tQ̄







ξ1 0 0
0 ξ2 0
0 0 ξ3





 Q.



3.4 Construction of optimal local metrics in 3D 83

Remark 3.3 In the 3D case, the decomposition of the model error has been truncated.
Indeed, the last linear term has been omitted so that we get three terms and avoid the
infinite number of solutions that we generally obtained in the high order case. Then,
contrary to the 2D case for third-order polynomials, we can notice that the coefficient
cm will not be easy to find because of the metric S that is not necessary locally optimal
and has not necessary the good directions and sizes sought.

With this estimate of the optimal local metric, we can now present 3D examples
of approximation of optimal local metric of maximum volume based on the CP3alsls

decomposition and the 3D symmetric tensor decomposition. With these examples,
we will show that the solution we proposed to reach our goal is good enough and by
comparing both methods, we will prove that 3D symmetric tensor decomposition seems
to be better than the CP3alsls for the construction of the desired optimal metrics.

3.4.2 Three-dimensional examples

In this section, 3D examples of construction of optimal local metrics from third-order
homogeneous polynomials are proposed. These approximations have been obtained
using as basis the CP3alsls decomposition or the 3D symmetric tensor decomposition.
We compare the area A(Q(He)) and the anisotropic ratios rij(Q(He)) = max(hi,hj)

min(hi,hj)
, with

(hi)i=1,2,3 the directional sizes of the ellipsoid Q(He). Many comments will be done to
show the weak and the strong points of these two methods. This will help to know if
both methods can be used or if one of them is preferable to the other one.
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Example 3.6

We consider the homogeneous polynomial of degree 3 in three variables:

He(x, y, z) = 4x3 + 9x2y+ 39xy2 + 9y3−3x2z+ 93xz2−19z3−39y2z−111yz2−78xyz.

We have the following results:

CP3alsls

A(Q(He)) r12(Q(He)) r13(Q(He)) r23(Q(He))

0.0417 1.7296 3.6621 2.1172

Figure 3.10: Error model He(x, y, z). (Top left) Representation of its isosurface 1 (red
color) and the corresponding maximum volume ellipsoid included. (Top right, bottom) Cross-
sections along the three symmetric planes (v1, v2), (v2, v3), (v3, v1) of the optimal metric.
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Symmetric tensor decomposition
A(Q(He)) r12(Q(He)) r13(Q(He)) r23(Q(He))

0.0417 1.7296 3.6621 2.1172

Figure 3.11: Error model He(x, y, z). (Top left) Representation of its isosurface 1 (red
color) and the corresponding maximum volume ellipsoid included. (Top right, bottom) Cross-
sections along the three symmetric planes (v1, v2), (v2, v3), (v3, v1) of the optimal metric.

The function He(x, y, z) of Example 3.6 is a homogeneous polynomial whose de-
composition involves real terms and the decomposition rank is equal to 3. In that case,
the solution obtained from the CP3alsls decomposition algorithm or the 3D symmetric
tensor decomposition algorithm is exact and unique. We show the inclusion of the
maximum volume ellipsoid in the isosurface 1. We get the same results with both
methods and the algorithm needs one call (it = 1) of the exact line search function to
find a good initialization.
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Example 3.7

We consider the homogeneous polynomial of degree 3 in three variables:

He(x, y, z) = 2.7452x3 − 1.1871x2y − 0.0460xy2 + 2.3475 y3 + 1.2465x2z

+ 2.3065xz2 + 3.0474 z3 − 5.5903 y2z − 11.2928 yz2 − 12.8406xyz.

We have the following results:

CP3alsls

A(Q(He)) r12(Q(He)) r13(Q(He)) r23(Q(He))

0.2568 2.5124 1.7831 1.4090

Figure 3.12: (Top left) Representation of its isosurface 1 (red color) and the corresponding
maximum volume ellipsoid included. (Top right, bottom) Cross-sections along the three
eigenvector-based planes (v1, v2), (v2, v3), (v3, v1) of the optimal metric.
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Symmetric tensor decomposition
A(Q(He)) r12(Q(He)) r13(Q(He)) r23(Q(He))

0.2559 1.9170 2.9454 1.5364

Figure 3.13: (Top left) Representation of its isosurface 1 (red color) and the corresponding
maximum volume ellipsoid included. (Top right, bottom) Cross-sections along the three
eigenvector-based planes (v1, v2), (v2, v3), (v3, v1) of the optimal metric.

The function He(x, y, z) of Example 3.7 is a homogeneous polynomial whose decom-
position involves complex terms and the decomposition rank is equal to 4. Therefore,
using the proposed idea to approximate the maximum volume ellipsoid included in
the isosurface 1 of the function He, we get the results above. The CP3alsls decompo-
sition algorithm gives a better solution than the 3D symmetric tensor decomposition
(good directions and sizes of the metric, better volume) but it needs a high number of
iterations (it = 66) to find a good initialization.
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Example 3.8

We consider the homogeneous polynomial of degree 3 in three variables:

He(x, y, z) = 5.9536x3 + 0.0830x2y − 1.8183xy2 + 2.9305 y3 + 1.1994x2z

− 1.3740xz2 + 5.8176 z3 + 0.5618 y2z − 1.0777 yz2 + 0.3101xyz.

We have the following results:

CP3alsls

A(Q(He)) r12(Q(He)) r13(Q(He)) r23(Q(He))

0.2126 1.3028 1.3613 1.0448

Figure 3.14: (Top left) Representation of its isosurface 1 (red color) and the corresponding
maximum volume ellipsoid included. (Top right, bottom) Cross-sections along the three
eigenvector-based planes (v1, v2), (v2, v3), (v3, v1) of the optimal metric.
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Symmetric tensor decomposition
A(Q(He)) r12(Q(He)) r13(Q(He)) r23(Q(He))

0.2127 1.3039 1.3521 1.0369

Figure 3.15: (Top left) Representation of its isosurface 1 (red color) and the corresponding
maximum volume ellipsoid included. (Top right, bottom) Cross-sections along the three
eigenvector-based planes (v1, v2), (v2, v3), (v3, v1) of the optimal metric.

The function He(x, y, z) of Example 3.8 is a homogeneous polynomial whose decom-
position involves reals coefficients and the decomposition rank is equal to 4. Contrary
to the previous example, the 3D symmetric tensor decomposition is better than the
CP3alsls decomposition. It leads to the best maximum volume ellipsoid included in the
isosurface 1.
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Example 3.9

We consider the homogeneous polynomial of degree 3 in three variables:

He(x, y, z) = 2.5197x3 + 0.8041x2y + 4.0012xy2 + 2.8799 y3 − 17.9290x2z

− 3.1526xz2 + 2.8379 z3 + 2.0450 y2z − 10.7623 yz2 − 6.9838xyz.

We have the following results:

CP3alsls

A(Q(He)) r12(Q(He)) r13(Q(He)) r23(Q(He))

0.1850 2.1591 2.3419 1.0846

Figure 3.16: (Top left) Representation of its isosurface 1 (red color) and the corresponding
maximum volume ellipsoid included. (Top right, bottom) Cross-sections along the three
eigenvector-based planes (v1, v2), (v2, v3), (v3, v1) of the optimal metric.
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Symmetric tensor decomposition
A(Q(He)) r12(Q(He)) r13(Q(He)) r23(Q(He))

0.1513 1.8747 2.5574 1.3641

Figure 3.17: (Top left) Representation of its isosurface 1 (red color) and the corresponding
maximum volume ellipsoid included. (Top right, bottom) Cross-sections along the three
eigenvector-based planes (v1, v2), (v2, v3), (v3, v1) of the optimal metric.

The function He(x, y, z) of Example 3.9 is a homogeneous polynomial whose de-
composition involves complex coefficients and the decomposition rank is equal to 4. As
we can see in Figure 3.16, the final metric obtained from the CP3alsls decomposition
algorithm is not verifying the first criterion i.e., the ellipse is not included in the isoline
1 of He. Its directions are not good, then the metric is out of the isosurface 1. The
algorithm needs 32 iterations of the exact line search to find an initialization but it
didn’t converge to a good decomposition. On the contrary, the 3D symmetric tensor
decomposition is better and leads to a better approximation of the desired optimal
metric.
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Example 3.10

We consider the homogeneous polynomial of degree 3 in three variables:

He(x, y, z) = 2x3 + 0.015x2y + 18xy2 + y3 + 1.08x2z + 2.7xz2 + z3 + 3 y2z

+ 30 yz2 + 18xyz.

We have the following results:

CP3alsls

A(Q(He)) r12(Q(He)) r13(Q(He)) r23(Q(He))

0.0683 8.7394 2.4857 3.5157

Figure 3.18: (Top left) Representation of its isosurface 1 (red color) and the corresponding
maximum volume ellipsoid included. (Top right, bottom) Cross-sections along the three
eigenvector-based planes (v1, v2), (v2, v3), (v3, v1) of the optimal metric.
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Symmetric tensor decomposition
A(Q(He)) r12(Q(He)) r13(Q(He)) r23(Q(He))

0.1201 2.8434 2.2834 1.2452

Figure 3.19: (Top left) Representation of its isosurface 1 (red color) and the corresponding
maximum volume ellipsoid included. (Top right, bottom) Cross-sections along the three
eigenvector-based planes (v1, v2), (v2, v3), (v3, v1) of the optimal metric.

Example 3.10 is a good example to show which of two methods seems to be bet-
ter than the other to lead a good approximation of the desired optimal local metric.
He(x, y, z) of Example 3.10 is a homogeneous polynomial whose decomposition in-
volves complex coefficients and the decomposition rank is equal to 4. When we use the
CP3alsls decomposition, at the end of the given number of iterations, the algorithm is
not able to give a good initialization of the loading matrices. Then, as you can see it
in Figure 3.18, the algorithm didn’t converge to a correct solution. The resulting nu-
meric ellipsoid violates the isoline criterion. On the contrary, as we can see in Figure
3.19, the 3D symmetric tensor decomposition gives a better solution even if the metric
is not totally included in the isosurface 1 of the function.
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3.5 CONCLUSION

In this chapter, we exposed three methods to find the optimal local metric of maximum
volume included in the isoline 1 (resp. the isosurface 1) of an interpolation error model
belonging to the set of homogeneous polynomial of order 3 in two variables (resp. three
variables). We deduce the following remarks:

• The Min-Max optimization problem is not a good way to approximate the desired
optimal metric from the error model. Indeed, maximizing the smallest size of the
ellipsoid doesn’t mean maximizing its volume.

• Tensor decomposition seems to be a good basis to construct optimal local met-
rics included in isoline or isosurface 1. However, the study of two methods: the
CP3alsls decomposition and Sylvester’s decomposition and its extension to higher
dimensions shows that one of them is more stable than the other one and quasi-
optimal.
Indeed, the CP3alsls decomposition algorithm needs good initializations of the
loading matrices to converge to good solutions. But this iterative process can be
very long (high number of iterations) and the use of random initializations may
lead to a non-convergence of the algorithm.
On the contrary, Sylvester’s decomposition and the 3D symmetric tensor de-
composition have shown to be good methods to reach our goal in 2D and 3D
respectively. However, even if in the 3D case particularly, the symmetric decom-
position method presents some insufficiencies that lead to the construction of
local metrics not enough optimal, this can be corrected.

Thereby, in view of the analysis made in this chapter, 2D and 3D analytical examples
of mesh adaptation that are presented in the next chapter will be based on the binary
decomposition algorithm and the 3D symmetric tensor decomposition respectively.
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4.1 INTRODUCTION

In its more general form, the problem of mesh adaptation consists in finding the mesh
H of a domain Ω that minimizes a given error for a given function u. Mesh adaptation
to control the linear interpolation error u−Πhu in Lp-norm has been studied in many
"pioneering" and recent works. This problem is stated in an a priori way:

Find Hopt having N nodes such that E(Hopt) = min
H
||u−Πhu||Lp(Ωh). (P1)

(P1) is a global combinatorial problem that is purely intractable practically. Indeed,
this would require the simultaneous optimization of both the mesh topology and the
vertices location, a problem which cannot be considered. Moreover, the problem is
ill-posed as several optimal meshes can be found for a single function u. Consequently,
simpler problems are considered to approximate the solution. A common simplifica-
tion is to perform a local analysis of the error instead of considering the global prob-
lem. A first set of methods consists in deriving a local bound of the optimal element
shape [21, 37]. A second set consists in deriving a local bound of the interpolation
error. This bound is then transformed into a metric-based estimate [41, 56, 79]. Direct
minimization of the error can also be considered by using directly the interpolation er-
ror as a cost function in the mesh generator [61]. All these strategies have in common
the resolution of a local problem as they act in the vicinity of an element. Conse-
quently, such error minimizations are equivalent to a steepest descent algorithm that
converges only to a local minimum with poor convergence properties. This drawback
arises because a minimization on a discrete mesh is directly considered.
The resolution of (P1) in a continuous setting has been proposed in [69]. Thus, (P1) is
recast as a continuous optimization problem where the discrete interpolation error is
replaced by the continuous one:

Find Mopt having a complexity N such that Ep(Mopt) = min
M
||u− πMu||Lp(Ω).

Contrary to discrete-based studies, the continuous formulation succeeds in solving glob-
ally the optimal interpolation error problem by using powerful mathematical tools such
as calculus of variations.

In this chapter, we study the extension of this continuous concept to higher-order
case. Thus, we consider the problem of finding the optimal mesh that globally min-
imizes the Lp-norm of the higher-order interpolation error of a continuous function.
This problem is stated in the following a priori way:

Find Hopt having N nodes such that Ep(Hopt) = min
H
||u−Πk

hu||Lp(Ωh). (Pk)

where Πk
h is the kth-order discrete interpolate of u, i.e., it is piecewise kth-order repre-

sentation of u on a mesh. It is equal to u on each node of the mesh and of order k
inside each element.
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As in the linear case, (Pk) is also intractable practically. Thanks to the success of
the continuous mesh framework in the linear case, we propose to address the resolution
of Pk in a continuous setting. In this case, (Pk) is recast as a continuous optimization
problem where the discrete error eh = |u−Πk

hu| is replaced by the continuous one eM.
The mesh H is replaced by its continuous representation M as introduced in Chap-
ter 1.

The higher-order error model eM depends on the higher-order derivative matrix
d(k)(u) of the numerical solution u on each node of the mesh, contrary to the linear
case where the interpolation error depends on the local Hessian matrix. Thus, the
resolution of the global continuous problem for a higher-order error model eM is based
on the local optimization problem we solved in Chapter 2.

In the quadratic case, the well-posed global optimization problem of finding the
optimal continuous mesh minimizing the third-order continuous interpolation error eM
in Lp-norm is:

Find Mopt = min
M

Ep(M) =
(∫

Ω
|eM(x)|p dx

)
1
p

, (4.1)

with

eM = d(3)(u)(M− 1
2 x).

Thanks to the quadratic model of the third-order derivatives of u, Q(d(3)(u)), the
previous equation simplifies to:

Ep(M) =

(

∫

Ω
trace

(

M− 1
2 Q(d(3)(u))(x)M− 1

2

)
3p

2 dx

)
1
p

,

under the constraint C(M) =
∫

Ω
d(x) dx.

We start this chapter with the resolution of the third-order global optimization
problem (4.1). Then, we present a classical technique used to recover the third-order
derivatives of u on each node of the mesh. We end by analytical examples based on
multi-scale third-order interpolation error.

4.2 MULTI-SCALE MESH ADAPTATION

In this section, we address the resolution of the global optimization problem (4.1).
We prove the uniqueness of the optimal solution and estimate the order of conver-
gence. This section summarizes and extends the results of multi-scale mesh adaptation
obtained in [69].
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4.2.1 Global generic optimization problem

We first address the resolution of a generic metric-based error problem. We will specif-
ically consider the quadratic interpolate case later in the sequel.

For a given function u defined in Rn, we consider the following generic local error
model on a continuous mesh M:

eM = cn

(

n
∑

i=1

h
β
i γi

)α

, (4.2)

where α > 0 and β > 0 are parameters, γi > 0 depends on the error estimate, thus on
the quadratic form Q and on the orientations of M.

The problem (4.1) is reformulated as follow:

Find Mopt = min
M

Ep(M) =
(∫

Ω
e

p
M

)
1
p

=

(

∫

Ω

(

n
∑

i=1

h
β
i γi

)αp) 1
p

, (4.3)

under the constraint
C(M) =

∫

Ω
d = N.

The constraint on the complexity is added to avoid the trivial solution where all
(hi)i=1,...,n are zero which provides a null error. We use a calculus of variations to
globally solve (4.3).

4.2.2 Global optimality principle

Optimization problem (4.3) is solved for the subset of continuous meshes having the
same fixed (γi)i=1,...,n, i.e, we seek for the optimal sizes (hi)i=1,...,n, solutions of (4.3), the
(γi)i=1,...,n being fixed. The resolution is based on a change of variables which involves
the density d and the anisotropic quotients (ri)i=1,...,n of the metric. The change of
variables is then given by:

hi = d− 1
n ri for i = 1, ..., n− 1 and hn = d− 1

nP−1,

where

ri = hi

(

n
∏

j=1
hj

)− 1
n

and P =
(

n−1
∏

i=1
ri

)

.

With this new set of unknowns, the function eM locally writes:

eM = d− αβ

n

(

n−1
∑

i=1

r
β
i γi + P−βγn

)α

.

Thus, we have to solve:

min
(ri)i,d

∫

Ω
d

−αβp

n

(

n−1
∑

i=1

r
β
i γi + P−βγn

)αp

,
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under the linear constraint: ∫

Ω
d = N. (4.4)

One main consequence of considering d as an unknown is to have now a linear con-
straint, so that Problem (4.3) becomes convex. This change of variables also leads to
an uncoupled problem: the optimal anisotropic quotients (ri)i=1,...,n are first exhibited
and the optimal density is derived in a second step.

The classical Euler-Lagrange necessary condition states that the variation of Ep at
pointM in the direction δM is proportional to the variation of the constraint C in the
neighborhood of a critical point. As we use a formal approach, the variation of Ep is
approximated by:

δEp(M; δM) = lim
ǫ→0

1

ǫ

(∫

Ω
e

p
M+ǫ δM −

∫

Ω
e

p
M

)

≈
∫

Ω

∂e
p
M

∂M δM.

As we have an equality constraint, the variation of C is null, so that the necessary
Euler-Lagrange condition simplifies to δEp(M; δM) = 0 and δC(M; δM) = 0 for all
δM. For the variation δM = ((δri)i=1,...,n−1, δd), it comes:

∀δri, ∀δd with
∫

δd = 0, we have
n−1
∑

i=1

δEp(M; δri) + δEp(M; δd) = 0.

If (Γ) stands for
(

n−1
∑

i=1
r

β
i γi + P−βγn

)

, the previous equality leads to:

δEp(M; δri) =
∫

Ω
αβp d− αβp

n (Γ)αp−1

(

r
β−1
i γi −

P−β

ri

γn

)

δri = 0, (4.5)

with the legal choice of δd = 0. As for all i, functions d, ri, γi, P , α, β and p are
supposed to be strictly positive, a particular condition to ensure (4.5) is given by:

r
β−1
i γi −

P−β

ri

γn = 0, for i ∈ [1, n− 1].

Thus, the anisotropic quotients depend on P and are given by:

ri =

(

γn

γi

)
1
β

P−1, for i ∈ [1, n− 1]. (4.6)

Multiplying the n− 1 previous equalities and using the definition of P , we get:

(

n−1
∏

i=1

ri

)

=

(

γn

γi

)
n−1

β

P−n+1,

i.e. P = γ
n−1

β
n

(

n−1
∏

i=1

γi

)− 1
β

P−n+1.
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Then,

P = γ
1
β
n

(

n−1
∏

i=1

γi

)− 1
nβ

.

Replacing the new expression of P in Equation (4.6), we get the final expression of the
anisotropic ratios:

ri = γ
− 1

β

i





n
∏

j=1

γj





1
nβ

, for i ∈ [1, n− 1]. (4.7)

For the legal choices δri = 0 for i = 1, ..., n− 1, the necessary condition leads to:

δEp(M; δd) =
∫

Ω
−αβp

n
d− αβp+n

n

(

n−1
∑

i=1

r
β
i γi + P−βγn

)αp

δd = 0, with
∫

Ω
δd = 0. (4.8)

A condition to ensure (4.8) is given by:

d− αβp+n

n

(

n−1
∑

i=1

r
β
i γi + P−βγn

)αp

= K, (4.9)

with K a real constant. From (4.7), we deduce that:

P =

(

n−1
∏

i=1

ri

)

,

=
n−1
∏

i=1





γ
− 1

β

i





n
∏

j=1

γj





1
nβ





 ,

=

(

n−1
∏

i=1

γi

)− 1
β





n
∏

j=1

γj





n−1
nβ

,

= γ
1
β
n





n
∏

j=1

γj





− 1
β

− n−1
nβ

,

= γ
1
β
n





n
∏

j=1

γj





− 1
nβ

.
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Thus,

n−1
∑

i=1

r
β
i γi + P−βγn =

n−1
∑

i=1





γ
− 1

β

i





n
∏

j=1

γj





1
nβ







β

γi + P−βγn,

=
n−1
∑

i=1





γ−1
i





n
∏

j=1

γj





1
n





 γi +





γ
1
β
n





n
∏

j=1

γj





− 1
nβ







−β

γn,

= (n− 1)





n
∏

j=1

γj





1
n

+





n
∏

j=1

γj





1
n

,

= n





n
∏

j=1

γj





1
n

.

Therefore, Equation (4.9) is rewritten:

d− αβp+n

n





n





n
∏

j=1

γj





1
n







αp

= K.

Thus,

d− αβp+n

n = Kn−αp





n
∏

j=1

γj





− αp

n

.

Then,

d = K̃





n
∏

j=1

γj





αp

αβp+n

, with K̃ a constant. (4.10)

Using the constraint on the complexity defined by (4.4), we get:

∫

Ω
d = K̃

∫

Ω





n
∏

j=1

γj





αp

αβp+n

,

=⇒ K̃ = N







∫

Ω





n
∏

j=1

γj





αp

αβp+n







−1

.

Thus, the final expression of the optimal density is:

dopt = N





∫

Ω

(

n
∏

i=1

γj

)
αp

αβp+n





−1 



n
∏

j=1

γj





αp

αβp+n

.

Finally, the optimal eigenvalues of the optimal continuous meshMopt solution of Prob-
lem (4.3) with the (γi)i=1,...,n fixed, are given by:

λ
opt
i = (hopt

i )−2 = N
2
n





∫

Ω

(

n
∏

i=1

γj

)
αp

αβp+n





− 2
n




n
∏

j=1

γj





− 2
β(αβp+n)

γ
2
β

i . (4.11)
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4.2.3 Uniqueness and properties of the optimal metric

Order of convergence

Using solution (4.11), we rewrite the error model (4.2):

eMopt
=

(

n
∑

i=1

h
β
i γi

)α

,

eMopt
= nαN− αβ

n





∫

Ω

(

n
∏

i=1

γj

)
αp

αβp+n





αβ

n




n
∏

j=1

γj





α
αβp+n

.

The Lp-norm of the optimal error is deduced:

||eMopt
(x)||Lp =

(∫

Ω
e

p
M

)
1
p

= nαN− αβ

n





∫

Ω

(

n
∏

i=1

γj

)
αp

αβp+n





αβp+n

np

.

Consequently, from the previous optimal error, we get the asymptotic order of conver-
gence:

||eMopt
(x)||Lp 6

Cst

N
αβ

n

. (4.12)

From this inequality, we deduce that the order of convergence is αβ.

Uniqueness

We now prove that the optimal continuous mesh defined by (4.11) is the unique solution
of Problem (4.3) verifying Ep(Mopt)

p 6 Ep(M)p, for all M having the same fixed
(γi)i=1,...,n. To do so, we consider a continuous mesh M of complexity N defined by
its (n − 1) anisotropic ratios ri, with i ∈ [1, n − 1] and its density d. To take into
account the constraint on the density, the density is rewritten as: d = N (

∫

Ω f)−1
f .

The functions ri, with i ∈ [1, n− 1], f and d are strictly positive. From (4.3), the error
committed with M is:

Ep(M)p = N− αp

n

(∫

Ω
f

)− αβp

n
∫

Ω
f− αβp

n

(

n−1
∑

i=1

r
β
i γi + γn

n−1
∏

i=1

r
−β
i

)αp

.

The error committed with the optimal solution Mopt is:

Ep(Mopt)
p = nαpN− αβp

n





∫

Ω

(

n
∏

i=1

γi

)
αp

αβp+n





− αβp+n

n

.
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To prove Ep(Mopt)
p 6 Ep(M)p, we use the generalized arithmetic-geometric inequality

which comes from the concavity of the logarithm function ln:

ln

(

1

n

n
∑

i=1

r
β
i γi

)

>
1

n

n
∑

i=1

ln
(

r
β
i γi

)

,

>

n
∑

i=1

ln
(

r
β

n

i γ
1
n

i

)

,

> ln

(

n
∏

i=1

r
β

n

i

n
∏

i=1

γ
1
n

i

)

= ln

(

n
∏

i=1

γ
1
n

i

)

,

as
n
∏

i=1
ri = 1. Substituting the value of rn in the previous inequality, it comes:

n−1
∑

i=1

r
β
i γi + γn

n−1
∏

i=1

r
−β
i > n ln

(

n
∏

i=1

γ
1
n

i

)

.

Finally, if we denote

g =

(

n
∏

i=1

γi

)
αp

αβp+n

,

we have



























Ep(Mopt)
n

αβp+n = n
αβpn

αβp+nN
− αβp

αβp+n

∫

Ω
g,

Ep(M)
n

αβp+n > n
αβpn

αβp+nN
− αβp

αβp+n

(∫

Ω
f

)
αβp

αβp+n
(∫

Ω
f− αβp

n g
αβp+n

n

)
n

αβp+n

.

Using the Hölder inequality, it comes:





∫

Ω
f

αβp

αβp+n





g

f
αβp

αβp+n







 6

(∫

Ω
f

)
αβp

αβp+n
(∫

Ω
f− αβp

n g
αβp+n

n

)
n

αβp+n

, (4.13)

as










































1 + n
αβp

> 1,

1 + αβp
n

> 1,

1

1 + n
αβp

+
1

1 + αβp
n

= 1.

Moreover, Relation (4.13) implies Ep(Mopt) 6 Ep(M), for allM having the same fixed
(γi)i=1,..,n. As Problem (4.3) is strictly convex, the optimal solution isMopt is unique.
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4.3 THE QUADRATIC INTERPOLATION CASE

In the quadratic interpolation case, the local error model on a continuous mesh M
defined by its sizes (hi)i=1,n and its eigenvectors (vi)i=1,n is given by α = 3

2
and β = 2.

In the previous section, we solved a local optimization problem based on tensor
decomposition to find the optimal local metric Mloc

opt(u) = Q(d(3)(u)) included in the
isoline or the isosurface 1 of the error function u in 2D and 3D. Let us assume the
dimension of the space is n.

The local error model on M is given by:

eM(x) = d(3)(u)(M− 1
2 x) = trace

(

M− 1
2 Q(d(3)(u))(x)M− 1

2

)
3
2
.

Consequently, in the quadratic case, the optimal global metric Mopt = (Mopt(x))x∈Rn

is the solution of the following variational calculus problem:

Mopt = min
M

Ep(M), (4.14)

with

Ep(M) =
(∫

Ω
|eM(x)|p dx

)
1
p

,

=
(∫

Ω

(∣

∣

∣d(3)(u)(M− 1
2 x)

∣

∣

∣

)p
dx
)

1
p

,

=

(

∫

Ω
trace

(

M− 1
2 Mloc

opt(u)(x)M− 1
2

)
3p

2 dx

)
1
p

,

under the constraint C(M) = N =
∫

Ω

√

det(M(x)) dx.

Using the general resolution process of the previous section, we deduce the solution
of Problem (4.14):

Mopt(x) = N

( ∫

Ω
det(Mloc

opt(u)(x))
3p

2(3p+n)

)−1

det(Mloc
opt(u)(x))− 1

3p+n Mloc
opt(x).

(4.15)
The optimal value of the density:

dopt(x) = N

( ∫

Ω
det(Mloc

opt(u)(x))
3p

2(3p+n)

)−1

det(Mloc
opt(u)(x))

3p

2(3p+n) ,

and the optimal value of the error is:

Ep(Mopt)
p = n

3
2 N− 3

n

( ∫

Ω
det(Mloc

opt(u)(x))
3p

2(3p+n)

)
3p+n

np

.
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4.3.1 Optimal sizes and orientations

For a complexity N , the optimal local metric Mloc
opt(u) = Q(d(3)(u)) admits a spectral

decomposition given by:

Mloc
opt = Rloc

opt Λloc
opt

tRloc
opt,

= Rloc
opt diag(λ

loc
i ) tRloc

opt.

The orientation of Mloc
opt is given by the basis Rloc

opt = (vloc
opt,i)i=1,...,n. The directional

sizes are given by hloc
i = 1√

λloc
i

, ∀ i = 1, ..., n.

Thus, the multi-scale continuous meshMLp is given by the following decomposition:

MLp = Rloc
opt Λ tRloc

opt,

= DLp det
(

Mloc
opt(u)

)− 1
3p+n Rloc

opt Λloc
opt

tRloc
opt,

with DLp a global normalization coefficient given by:

DLp = N

(

∫

Ω
det

(

Mloc
opt(u)(x)

)
3p

2(3p+n)

)−1

.

The multi-scale optimal metric in terms of orientations and elongations is given by:

MLp = DLp det
(∣

∣

∣Q(d(3)(u))
∣

∣

∣

)− 1
3p+n

∣

∣

∣d(3)(u)
∣

∣

∣,

with DLp a global normalization coefficient given by:

DLp = N

(

∫

Ω
det

(∣

∣

∣Q(d(3)(u))
∣

∣

∣

)
3p

2(3p+n)

)−1

.

4.3.2 Mesh convergence

The order of convergence for a sequel of continuous meshes (MN
Lp)N verifies:

||eMN
Lp
||Lp(Ω) 6

C

N
3
n

. (4.16)

Relation (4.16) points out a global third-order of mesh convergence for the mesh adap-
tation process. Indeed, in 3D, as N = O(h−3), relation (4.16) simplifies to:

||eMN
Lp
||Lp(Ω) 6 C h3.

4.4 APPLICATION

This section presents a double L2-projection method, a classical recovery technique to
find the third-order derivatives ai of uh on each point of in 2D and 3D. But, we first
recall how estimates are applied on discrete solution uh.
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4.4.1 Application to solution given by numerical approximation

Let V̄ k
h be the space of piecewise polynomials of degree k and V k

h be the space of
continuous piecewise polynomials of degree k associated with a given meshH of domain
Ωh. Let uh ∈ V k

h . We denote by Πk
h the k-order interpolate of the numerical solution

uh and by Rh a reconstruction operator applied to the numerical approximation uh.
We assume that the reconstruction Rhuh is better than uh for a given norm ‖.‖ in the
sense that:

‖u−Rhuh‖ ≤ α‖u− uh‖ where 0 ≤ α < 1 .

From the triangle inequality we deduce:

‖u− uh‖ ≤
1

1− α‖Rhuh − uh‖ .

If the reconstruction operator Rh has the property:

Πk
hRhφh = φh , ∀φh ∈ V k

h , (4.17)

we can then bound the approximation error of the solution by the interpolation error
of the reconstructed function Rhuh:

‖u− uh‖ ≤
1

1− α‖Rhuh − Πk
hRhuh‖ . (4.18)

We can exhibit the following upper bound of the approximation error:

‖u− uh‖ ≤
6N− 2

3

1− α
(∫

Ω
det (|HRhuh

|)
p

2p+3

)
2p+3

3p

.

In the general case, it is important to note that MLp applied to Rhuh does not allow
us to generate an optimal adapted mesh to control the approximation error ‖u− uh‖.
The approximation error is only controlled when all previous assumptions are verified.

4.4.2 Third-order derivatives recovery technique

Let K be a element of a mesh H and [p1,p2, ...,pn] its list of vertices (n=2,3). We
consider the continuous local interpolation error eM associated with the discrete local
interpolation error eh = |u − Π2

hu|. If x ∈ K, the quadratic interpolate Π2
hu of the

numerical solution uh on K is given by:

∀x ∈ Ω, Π2
hu(x) =

ni
∑

i=1

uh(pi)ϕi(x),

where ni = (n+2)!
2! n!

is the number of nodes of the element K and ϕi(.) is the ith P2

Lagrange shape function defined by:
{

ϕi(x) = ψi(x)(2ψi(x)− 1), 1 6 i 6 n (vertices)
ϕi(x) = 4ψ[i](x)ψ[i+1](x), n+ 1 6 i 6 ni (midpoints of edges)
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and ψi is the ith P1 Lagrange shape function defined by :

ψi(pj) = δij, pj ∈ H.

As we saw in the previous chapter, the continuous error eM is modeled by a homoge-
neous polynomial of degree 3 in n variables on each vertex of the mesh:























Pe(x) =
3
∑

i=0
(3

i ) ai x
i y3−i, in 2D

Pe(x) =
3
∑

i=0

3−i
∑

j=0

(

3

i, j

)

aij x
i yj z3−i−j, in 3D

We seek for recovering the coefficients ai (respectively aij) by the pre-cited technique.
To do so, we consider the piecewise constant Hessian Huh(x) given by:

Huh(x) =
ni
∑

i=1

uh(pi)Hϕi(x).

As Huh is not defined at mesh vertices, the nodal Hessians are recovered from the
piecewise constant Hessian representation Huh(x) using the L2-projection operator
based on the Clément interpolation operator [28].
The stencil Si = {Kj}j of shape function ϕi is the topological ball of a vertex pi. We
introduce the following approximation spaces:

V 0
h =

{

v ∈ L2(Ω) | v|K ∈ P0, ∀K ∈ H
}

,

V 1
h =

{

v ∈ C0(Ω) | v|K ∈ P1, ∀K ∈ H
}

.

The Clément interpolation operator Πc : V 0
h → V 1

h is defined by:

∀ v ∈ V 0
h , Πcv =

n
∑

i=0

Π0v(pi)ϕi,

where Π0v ∈ V 0
h is defined by:

for v ∈ L2, forSi ⊂ H,
{

Π0v|Si
∈ P0

∫

Si
(Π0v − v)w = 0, ∀w ∈ P0.

For each pi, we thus have the following Hessian reconstruction:

HRuh(pi) =

∑

Kj∈Si
|Kj|Huh

|Kj

|Si|
,

where Huh
|Kj

is the constant Hessian on element Kj ∈ Si. |Si| and |Kj| denote the

volume of stencil Si and element Kj, respectively.
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The recovery procedure provides us with Hessian nodal values and thus we get a
piecewise linear representation of the Hessian on H.

To recover the third-order derivatives ai = [D
(3)
R ]i (respectively aij = [D

(3)
R ]ij) from

uh, we apply a gradient reconstruction procedure to each component of the gradient of
the recovered Hessian HRuh:

D
(3)
R uh(pi) =

∑

Kj∈Si
|Kj| ∇(HRuh)|Kj

|Si|
. (4.19)

4.5 ANALYTICAL EXAMPLES

In this section, we propose to validate our approach in 2D and 3D analytical examples
where a mesh adaptation based on L1-norm is applied. To do so, we compare an adap-
tation based on the third-order optimal metric (with third-order derivative recovery)
with an adaptation only based on the Hessian of the solution u. In other words, we
compare a P1-driven adaptation with a P2-driven adaptation.
For both strategies, the interpolation error level is computed by means of 5th order
Gauss interpolation to estimate ‖u−Π2

hu‖L1(Ω) and ‖u−Π2
hu‖L2(Ω). For both case, we

use a P2-Lagrange element (triangle or tetrahedron) to represent the function.
In 2D, we use Yams [43] to adapt the mesh and we use Feflo.a [72] in 3D. All the
strategies have been implemented in Metrix [5]. We refer interested authors to ap-
pendix B for all the relative functions in Matlab.

4.5.1 Mesh adaptation algorithm

We present the mesh adaptation algorithm for analytic functions.

Algorithm 3: Mesh Adaptation Loop for Analytic Functions

Initial mesh H0 and targeted complexity N

For i = 1, nadap

1. {fi−1, Hfi−1
} = Evaluate f and its Hessian Hf on mesh Hi−1;

2. (MLp,i−1) = Compute metric MLp according to Relation (4.15);

3. Hi = Generate a new mesh from pair (Hi−1,MLp,i−1);

End For
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4.5.2 Two-dimensional examples

Example 4.1

We consider the function f1(x, y) defined on [−1, 1]× [−1, 1]:

f1(x, y) = x3 + y3.

Figure 4.1: P1-driven adapted mesh (top left) and P2-driven adapted mesh (top right) to
f1. Each mesh contains around 32 000 degrees of freedom. Adapted meshes and iso-values of
f1 for a P1-driven adaptation (bottom left) and a P2-driven adaptation (bottom right).

Comments. The f1 function is an isotropic function which behaves in the same manner
in the x and y directions, cf. Figure 4.1. For a fixed complexity N = 6400, we see that
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Figure 4.2: Closer view of the adapted meshes and the iso-values of f1 for a P1-driven
adaptation (top left) and a P2-driven adaptation (top right). Convergence curves: L1-norm
of the error versus the number of degrees of freedom (bottom left) and L2-norm of the error
versus the number of degrees of freedom (bottom right). Both meshes contains around 32 000
degrees of freedom.

the P2-driven adaptation leads to a quasi-uniform mesh as d(3)(f1) is constant for all
point of the computational domain. The representation of the function is P2-exact for a
P2-driven adaptation unlike the P1-driven adaptation. The spatial convergence curves,
depicted in Figure 4.2 on the bottom, show an asymptotic third-order of convergence
for L1 and L2-norms for a sequence of P2-driven adapted mesh. On the contrary, a
sequence of P1-driven adapted mesh leads to a loss of this third-order of convergence.
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Example 4.2

We consider the Gaussian function f2(x, y) defined on [−1, 1]× [−1, 1]:

f2(x, y) = e−10(x2+y2).

Figure 4.3: P1-driven adapted mesh (top left) and P2-driven adapted mesh (top right) to
f2. Each mesh contains around 32 000 degrees of freedom. Adapted meshes and iso-values of
f2 for a P1-driven adaptation (bottom left) and a P2-driven adaptation (bottom right).

Comments. The f2 function is an isotropic function which behaves in the same man-
ner in the x and y directions like the f1 function, cf. Figure 4.3. For a fixed com-
plexity N = 6400, the adaptation driven by an optimal third-order metric shows a
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Figure 4.4: Closer view of the adapted meshes and the iso-values of f2 for a P1-driven
adaptation (top left) and a P2-driven adaptation (top right). Convergence curves: L1-norm
of the error versus the number of degrees of freedom (bottom left) and L2-norm of the error
versus the number of degrees of freedom (bottom right). Both meshes contains around 32 000
degrees of freedom.

non-uniform mesh with d(3)(f2) not constant on all the computational domain. Sim-
ilarly, the P1-driven adaptation is not uniform as it is the case on the Hessian of the
Gaussian function. However, the spatial convergence curves, depicted in Figure 4.4
on the bottom, show an asymptotic third-order of convergence for L1 and L2-norms
for a sequence of P2-driven adapted mesh. On the contrary, a sequence of P1-driven
adapted mesh based on the Hessian of f2 leads to a loss of the asymptotic third-order
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of convergence.

Example 4.3

We consider the smooth function f3(x, y) defined on [−1, 1]× [−1, 1]:

f3(x, y) =











0.01 sin( 50xy) if xy 6 − π
50

sin( 50xy) if − π
50
< xy 6

2π
50

0.01 sin( 50xy) if xy > 2π
50

Figure 4.5: P1-driven adapted mesh (top left) and P2-driven adapted mesh (top right) to
f3. Each mesh contains around 42 000 degrees of freedom. Adapted meshes and iso-values of
f3 for a P1-driven adaptation (bottom left) and a P2-driven adaptation (bottom right).
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Figure 4.6: Closer view of the adapted meshes and the iso-values of f3 for a P1-driven
adaptation (top left) and a P2-driven adaptation (top right). Convergence curves: L1-norm
of the error versus the number of degrees of freedom (bottom left) and L2-norm of the error
versus the number of degrees of freedom (bottom right). Both meshes contains around 42 000
degrees of freedom.

Comments. The f3 function is an anisotropic function which is composed of small
and large scale variations with an amplitude of 0.01 and 1, cf. Figure 4.5. As f3

is a smooth function and as we use a P2-Lagrange approximation, we have to find an
asymptotic order of convergence of order three even for a uniform mesh. But that will
be achieved once the small fluctuations will be captured. Looking at the convergence
curves, depicted in Figure 4.6 on the bottom, we have an asymptotic third-order of
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convergence for L1 and L2-norms for a sequence of P2-driven adapted mesh once the
small variations of the function have been captured. With the sequence of P1-driven
adapted mesh, the asymptotic convergence order is reached but has been achieved later.

4.5.3 Three-dimensional example

Example 4.4

We consider the function f(x, y, z) defined on [−5.5,−4.5]× [−0.5, 0.5]× [−0.5, 0.5]:

f4(x, y, z) = cos(π xyz).

Figure 4.7: P1-driven adapted mesh (left) and P2-driven adapted mesh (right) to f4. Each
mesh contains around 344 000 degrees of freedom.
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Figure 4.8: Sections showing the anisotropy of P1-driven adapted mesh (top left) and P2-
driven adapted mesh (top right) to f4. Each mesh contains around 344 000 degrees of freedom.
Iso-values of f4 for a P1-driven adaptation (bottom left) and a P2-driven adaptation (bottom
right).
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Figure 4.9: Closer view of the adapted meshes and the iso-values of f4 for a P1-driven
adaptation (top left) and a P2-driven adaptation (top right). Both meshes contains around
344 000 degrees of freedom. Convergence curves: L1-norm of the error versus the number of
degrees of freedom (bottom left) and L2-norm of the error versus the number of degrees of
freedom (bottom right)
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Ratios et quotients d’anisotropie : P1-driven adaptation

Number of vertices Number of tetrahedra Min ratio Max ratio Average ratio

48062 231649 1.7175 1408.4613 37.7755

1 < rat < 2 2 0.00 %
2 < rat < 3 89 0.04 %
3 < rat < 4 616 0.27 %
4 < rat < 5 1720 0.74 %
5 < rat < 10 27753 11.98 %
10 < rat < 50 151256 65.30 %
50 < rat < 1e+02 38373 16.57 %
1e+02 < rat < 1e+03 11835 5.11 %
1e+03 < rat < 1e+04 5 0.00 %

Min quotient Max quotient Average quotient

2.7393 519791.3262 323.6046

1 < quo < 2 0 0.00 %
2 < quo < 3 5 0.00 %
3 < quo < 4 94 0.04 %
4 < quo < 5 295 0.13 %
5 < quo < 10 8795 3.80 %
10 < quo < 50 99834 43.10 %
50 < quo < 1e+02 50354 21.74 %
1e+02 < quo < 1e+03 63974 27.62 %
1e+03 < quo < 1e+04 7210 3.11 %
1e+04 < quo < 1e+05 1056 0.46 %
1e+05 < quo < 1e+06 32 0.01 %
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Ratios et quotients d’anisotropie: P2-driven adaptation

Number of vertices Number of tetrahedra Min ratio Max ratio Average ratio

38375 179963 2.7329 4758.6071 66.3541

1 < rat < 2 0 0.00 %
2 < rat < 3 1 0.00 %
3 < rat < 4 25 0.01 %
4 < rat < 5 109 0.06 %
5 < rat < 10 5438 3.02 %
10 < rat < 50 116732 64.86 %
50 < rat < 1e+02 30184 16.77 %
1e+02 < rat < 1e+03 26984 14.99 %
1e+03 < rat < 1e+04 490 0.27 %

Min quotient Max quotient Average quotient

4.0572 14124773.7689 4205.8381

1 < quo < 2 0 0.00 %
2 < quo < 3 0 0.00 %
3 < quo < 4 0 0.00 %
4 < quo < 5 4 0.00 %
5 < quo < 10 304 0.17 %
10 < quo < 50 51634 28.69 %
50 < quo < 1e+02 39600 22.00 %
1e+02 < quo < 1e+03 63131 35.08 %
1e+03 < quo < 1e+04 21295 11.83 %
1e+04 < quo < 1e+05 3105 1.73 %
1e+05 < quo < 1e+06 758 0.42 %
1e+06 < quo 132 0.07 %

Comments. The domain of the f4 function is shifted in the x direction in order to have
strong third-order derivatives. This example shows that we reach an optimal third-
order of convergence with the third-order metric. Stronger anisotropy is generated
with the third-order metric as reported in the previous table and Figure 4.8.
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4.6 CONCLUSION

In this chapter, we have proposed an optimal multi-scale mesh adaptation in Lp-norm
for quadratic interpolation error. We have compared two mesh adaptations based
respectively on P1 and P2-interpolations on P2-Lagrange representation of analytic
functions. The optimal continuous mesh has been obtained from optimal local metrics,
solutions of the local optimization problem solved in Chapter 2 and based on tensor
decompositions. Theoretical order of convergence has been observed on 2D and 3D
numerical examples. In each case, the optimal third-order metric has a lower error
bound than considering second-order derivatives and early asymptotic convergence.
Thereby, to summarize:

• Multi-scale mesh adaptation in 2D and 3D have been successfully extended to
quadratic interpolation using symmetric tensor decomposition algorithms to ap-
proximate optimal local metrics.

• P2-driven mesh adaptation based on third order derivative-based model, realized
on analytic functions, shows an asymptotic convergence order close to the third
order that tends to be lost using P1-driven mesh adaptation based on the Hessian
of the solution. The variations of analytic functions on P2-Lagrange meshes are
also captured with quadratic interpolation.

• Thus, increasing the interpolation order of the solution on a given mesh requires
increasing the order of the numerical methods to approximate the optimal global
and local metrics for higher-order mesh adaptation.
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Conclusion and perpectives

The goal of this thesis was to extend anisotropic mesh adaptation to higher-order in-
terpolations based on theoretical and numerical results obtained in the linear case. To
reach this goal, different steps have been followed:

• Symmetric tensor decompositions
Our approach consisted in modeling the higher-order interpolation error by an ho-
mogeneous polynomial or a symmetric tensor of degree k > 3 on each node of the
computational domain. Then, we proceeded to a diagonalization of this initial error
model using symmetric tensor decomposition algorithms. Two tensor decomposition
algorithms have been studied: the CP3alsls algorithm and Sylvester’s algorithms. How-
ever, we noted that Sylvester’s algorithms were the best method among both to get
a diagonalization of the homogeneous error model. Indeed, it has been shown that
the CP3alsls method was not stable and didn’t always converge to the desired solution
in three dimensions. On the contrary, Sylvester’s method, although it showed some
insufficiencies in the decomposition process, is less expensive taking into account CPU
time. It can also be corrected to approach the desired solution.

• Construction of optimal third-order metrics
Using the diagonalization of the error model obtained with tensor decomposition al-
gorithms, we solved a local optimization problem to approximate the optimal local
metric. This quadratic definite positive form approaches at best the variations of the
initial error on each node on the computational domain. This idea is close to the one
used in the linear case. These optimal local metrics are such that the criteria of: -
consistency, - optimality and - choice of main directions are verified.

• Extension of multi-scale metric based mesh adaptation to higher-order
interpolations
The solution of the local optimization problem allowed to solve the global optimiza-
tion problem of finding the optimal metric field or continuous mesh minimizing the
higher-order continuous interpolation error in Lp-norm. It has been proved on va-
rious two-dimensional analytical examples that multi-scale mesh adaptation based on
third-order interpolation error builds a sequence of anisotropic meshes whose numeri-
cal convergence is close to third-order. Thereby, the extension of Hessian-based mesh
adaptation have been successfully extended to higher-order interpolations in 2D. How-
ever, concerning the 3D case, analytical example has proved that multi-scale mesh
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adaptation could successfully be realized on simple analytical functions using symmet-
ric tensor decomposition. But, when we use more complex analytical functions, the
approximation of local metrics from symmetric tensor decomposition is not correct.
Thus, adapted meshes are fake and then, the numerical convergence is far from the
desired third-order.

4.7 ADVANTAGES AND DISADVANTAGES OF OUR APPROACH

Sylvester method seemed to be a good idea to approximate local optimal metrics and
to get the final metric field. Indeed, in the case of mesh adaption based on linear
interpolation, the diagonalization of Hessian matrix was at the core of the method.
Therefore, it was quite natural to use a diagonalization process for the high order case.
This decomposition method allowed to find the best directions of the local optimal
metrics in 2D.
However, the extension of Sylvester method to 3D has been partially successful to
generate adapted meshes and reached the desired convergence order because of the
non uniqueness of the solution of the algorithm. Indeed, it has been proved that the
decomposition rank of a binary polynomial of degree 2 is equal to 2, i.e, we have
two linear terms, thus two possible directions in 2D. On the contrary, for a generic
homogeneous polynomial of degree 3 (and more) in three variables, the decomposition
rank is equal to 4 (and more) and the solution is not unique, cf. Table 2.1. In this case,
it is very difficult to find precisely the directions of the desired local optimal metrics
in 3D from the homogeneous error model, because of the lack of selection criteria that
will help to choose the best decomposition among the proposed solutions.

4.8 PERSPECTIVES

To summarize, the goal of this thesis was to extend the "Hessian-based" classical ap-
proach to very high order interpolations in two and three dimensions. The extension
to very high order interpolations or to other kind (like Uniform B-spline, NURBS, ...)
requires taking into account the Jacobian of the element for the reconstruction of local
derivatives and the normalization of metrics. However, the algorithms presented in
this thesis for the quadratic approximation of a symmetric tensor remains valid.

Future work on this subject will mostly consist in:

-Validating our approach using higher-order numerical schemes. Indeed, two- and
three-dimensional examples proposed in Chapter 4 are analytical examples. Numeri-
cal applications will be realized by coupling our approach to high order computational
fluid dynamics (CFD) codes like the CENO2 scheme [24] or the residual distribution
schemes [1].

-Extending the proposed approach to higher-order mesh adaptation on curved
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isoparametric elements. Indeed, all numerical tests realized in this thesis has been
done on meshes with straight elements (triangles in 2D or tetrahedra in 3D). The main
problem that we may be encountered in this case concerns the generation of curvilinear
meshes rather than the error estimate.



126 Higher-order mesh adaptation



A
Algebraic tools

In this appendix, we recall the algebraic tools we will need to describe and analyze
Algorithms 1 and 2, cf. Chapter 2. These elements are presented in a simple
manner without going into details. However, for more details about these algebraic
tools, see [16, 17].

A.1 NOTATIONS

Let K be an algebraically closed field (e.g. K = C the field of complex numbers). If

α = (α1, ..., αn) is a vector in Nn, then |α| =
n
∑

i=1
αi. We denote by xα the monomial

xα1
1 ... xαn

n .
Let R be the ring of polynomials K[x1, ..., xn] = K[x], while Rk will denote the ring
the polynomials of (total) degree at most k. The set {x}α

|α|6k = {xα1
1 ... xαn

n }α1+...+αn6k

represents the elements of the monomial basis of the vector space Rk and contains
(

n+k
k

)

elements.

We denote by S the ring of polynomials K[x0, ..., xn] = K[x] and Sk the vector space
of homogeneous polynomial in n+ 1 variables x0, ..., xn. This is also the symmetric kth

power Sk(E) where E =
〈

x0, ..., xn

〉

, a vector space.

A.2 DEHOMOGENIZATION

The dehomogenization of a polynomial f ∈ Sk with respect to the variable x0 is denoted
fa := f(1, x1, ..., xn) ∈ R.
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A.3 DUALITY

For a K-vector space E, its dual E∗ = HomK(E,K) is the set of K-linear forms from
E to K.
A basis of the dual space R∗

k, is the set of linear forms that compute the coefficients of
a polynomial in the primal basis. It is denoted by {dα}|α|6k.
We may identify R∗ with the (vector) space of formal power series, i.e., K[[d]] =
K[[d1, ..., dn]]. Any element Λ ∈ R∗ can be decomposed as Λ =

∑

a

Λ(xa)da.

A.4 HANKEL OPERATORS

For any Λ ∈ R∗, we define the bilinear form QΛ, such that:

QΛ : R×R −→ K

(a, b) 7−→ Λ(ab).

The matrix QΛ in the monomial basis of R is QΛ = (Λ(xα+β))α,β, where α, β ∈ Nn.

For any Λ ∈ R∗, we define the Hankel operator HΛ from R to R∗ as

HΛ : R −→ R∗

p 7−→ p ⋆ Λ,

with

p ⋆ Λ : R −→ K

q 7−→ Λ(pq).

The matrix of the linear operator HΛ in the monomial basis, and in the dual basis,
{dα}, is HΛ = (Λ(xα+β))α,β, where α, β ∈ Nn.

Definition A.1 Given two sets B = {b1, ..., br}, B′ = {b′
1, ..., b

′
r′} ⊂ R and

〈

B
〉

,
〈

B′
〉

their corresponding vector space. We define

H
B,B′

Λ :
〈

B
〉

−→
〈

B′
〉

,

as the restriction of HΛ to the vector space
〈

B
〉

and inclusion of R∗ in
〈

B′
〉∗

. Let

H
B,B′

Λ = (Λ(bi b
′
j))16i6r,16j6r′ the matrix of HB,B′

Λ . If B′ = B, we also use the notation
HB

λ and HB
Λ .

Definition A.2 Given a symmetric tensor f ∈ Sk and a natural number 0 6 r 6 k,
we define

Cr
f : Sr −→ S∗

k−r

p 7−→ p ⋆ f ∗,



A.4 Hankel operators 129

where f ∗ ∈ S∗
k is the dual form of f , i.e., if f =

∑

|α|=k

cα

(

k

α

)

xα, then f is mapped to

the linear form f ∗ =
∑

|α|=k

cα dα.

A catalecticant matrix or Hankel matrix of order r, we note Cr
f , is the matrix of Cr

f in
the monomial basis of Sr and in the dual basis of the monomial basis of S∗

k−r.

Remark A.1 A Hankel operator on a Hilbert space is one whose matrix with respect
to an orthonormal basis is a (possibly infinite) Hankel matrix.
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B
Matlab codes of tensor decomposition

algorithms

This appendix gathers Matlab functions used to validate the different methods to ap-
proximate the variations of a homogeneous polynomial by the variations of a quadratic
function.

B.1 BINARY FORM DECOMPOSITION

This is the Matlab code of Algorithm 1 (cf. Chapter 2, Section 2.3.1) proposed
to decompose a binary form.

function [mu,Q] = binarydec2(p)
% Decomposition of a generic binary polynomial p
% into the sum of Nth powers of linear polynomial p
% mu : vector of N coefficients
% Q : N by 2 matrices whose rows are the sought forms

s = 1; r = 0; d = length(p)-1; eta = 1.e-4;
fd = facto(d);
c = ones(1,d+1); p0 = p; p = p./c; v = [ ];

for i = 1:d-1
c(i+1) = fd/(facto(i)*facto(d-1));

end

while s > eta & r < d-r+2
r = r+1;
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M = hankel(p(1:d-r+1),p(d-r+1:d+1));
[U,S,V] = svd(M);
J = find(diag(S) < eta);
if length(J) > 0
s = S(J,J);
J = J(1);

elseif r+1> d-r+1;
s = 0;
J = r+1;

end
end

v = V(:,J);
q = roots(v);
Q = [q,ones(length(q),1)];
mu = convd(Q,d)’ \ p0’;
sol = mu’*convd(Q,q);
W = diag(ones(1,d+1)./c);
% Output of the reconstruction error
err = sqrt((sol-p0)*W*(sol-p0)’);

Matlab functions: facto and convd

function m = facto(n)
%m = n! (n factorielle)
if n == 0

m = 1;
elseif n == 1

m = 1;
elseif n == 2

m = 2;
elseif (floor(n)-abs(n)) == 0

m = n*facto(n-1);
else

error(’n must be a positive integer’);
end

function P = convd(q,d)
%Raising of a polynomial q to the dth power
[a, b] = size(q);
P=[ ];

for i = 1:a
pd = q(i,:);
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for t = 1:d-1
pd = conv(pd,q(i,:));

end
P = [P;pd];

end

B.2 SYMMETRIC TENSOR DECOMPOSITION

This is the partial Matlab code of Algorithm 2 (cf. Chapter 2, Section 2.3.2) we
proposed to decompose any third-order homogeneous polynomials in three variables as
a sum of third power of three linear terms.

%Decompose of third-order homogeneous polynomials in three variables
deg = 3;

% p = Homogeneous polynomial written as a row vector
p = [p(1) , 3*p(2) , 3*p(3) , p(4) , 3*p(5) , 3*p(6) , p(7) , 3*p(8) , 3*p(9) , 6*p(10)];

% p1 = homogeneous polynomial without the binomial coefficients
p1 = [p(1) p(2) p(3) p(4) p(5) p(6) p(7) p(8) p(9) p(10)];

% Normalization of the homogeneous polynomial
if (p(1) = 0)

a = abs(p(1));
else

a = max(abs(p1));
end

pmod = (1/a)*pol1;

a300 = pmod(1); a210 = pmod(2);
a120 = pmod(3); a030 = pmod(4);
a201 = pmod(5); a102 = pmod(6);
a003 = pmod(7); a021 = pmod(8);
a012 = pmod(9); a111 = pmod(10);

% Fix the rank equal to 3 % Basis: x*x xy xz;
Delta0 = [a300, a210, a201; a210, a120, a111; a201, a111, a102];
% Multiplied Delta0 by y/x
Delta1 = [a210, a120, a111; a120, a030, a021; a111, a021, a012];
% Multiplied Delta0 by z/x
Delta2 = [a201, a111, a102; a111, a021, a012; a102, a012, a003];
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% Rank of the minor Delta0
k = rank(Delta0);

% Check if Delta is invertible
res = det(Delta0);

% Check if (res == 0)
Delta0 = Delta0+Delta1;
Somme = Delta1+Delta2;

else
Delta0 = Delta0;
Somme = Delta1;

end

A = Somme*inv(Delta0);

% Check the commutativity
My = inv(Delta0)*Delta1;
Mz = inv(Delta0)*Delta2;

MyMz = My*Mz;
MzMy = Mz*My;

% Solve the generalized eigenvalue problem
[v, vp] = eig(A);

% Normalize the generalized eigenvectors
mat = [v(:,1)/v(3,1), v(:,2)/v(3,2), v(:,3)/v(3,3)];

% Q matrix of normalized eigenvectors
Q = mat’;
mu = a*diag(inv(mat)*Delta0*inv(mat)’);

B.3 APPROXIMATION OF OPTIMAL LOCAL METRICS

B.3.1 Optimal local metrics in 2D

The following Matlab function shows how we numerically compute the optimal local
metric from binary form decomposition.

function [met,U,V] = metopt2D(deg,p,Q)
% met = optimal local metric
% U, V= axis of metric met
% deg = order of the homogeneous polynomial
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% p = homogeneous polynomial

iQ = inv(Q); % inverse of Q
u = iQ(:,1);
v = iQ(:,2);
Eu1 = abs(evalPoly2D(deg,p,u(1),u(2)));
Eu2 = abs(evalPoly2D(deg,p,v(1),v(2)));

h1 = (1/Eu1)(1/deg);
h2 = (1/Eu2)(1/deg);

U = h1*[u(1); v(2)];
V = h2*[v(1); v(2)];

met = Q’*diag([(1/(h1*h1) , 1/(h2*h2)])*Q;

% For PARAFAC model, to avoid imaginary part
met = real(met);

if (isreal(Qbis) == 0)
met = (1/2)1/3*real(met);

end

Matlab function: evalPoly2D

function e = evalPoly2D(deg,p,x,y)
% e = homogeneous polynomial written as a polynomial function
% e = p(1) x3 + p(2) x2y + p(3) xy2 + p(4) y3

% deg = order of the homogeneous polynomial
% p = homogeneous polynomial written as a row vector
% x, y = variables of the homogeneous polynomial

e = zeros(size(x));
for k = 0:deg

e = e + p(k+1)*x.deg−k.*y.k;
end

B.3.2 Optimal local metrics in 3D

The following Matlab function shows how we numerically compute the optimal local
metric from Sylvester’s algorithm extended to 3D.
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function [met,U,V,W] = metopt3D(deg,p,Q)
% met = optimal local metric
% U, V, W = axis of metric met
% deg = order of the homogeneous polynomial
% p = homogeneous polynomial

iQ = inv(Q); % inverse of Q
u = iQ(:,1);
v = iQ(:,2);
w = iQ(:,3);
Eu1 = abs(evalPoly3D(deg,p,u(1),u(2),u(3)));
Eu2 = abs(evalPoly3D(deg,p,v(1),v(2),v(3)));
Eu3 = abs(evalPoly3D(deg,p,w(1),w(2),w(3)));

h1 = (1/Eu1)(1/deg);
h2 = (1/Eu2)(1/deg);
h3 = (1/Eu3)(1/deg);

U = h1*[u(1); v(2): u(3)];
V = h2*[v(1); v(2); v(3)];
W = h2*[w(1); w(2); w(3)];

met = Q’*diag([(1/(h1*h1) , 1/(h2*h2), 1/(h3*h3)])*Q;

% For PARAFAC model, to avoid imaginary part
met = real(met);

Matlab function: evalPoly3D

function e = evalPoly3D(deg,p,x,y,z)
% e = homogeneous polynomial written as a polynomial function
% e = p(1) x3 + p(2) x2y + p(3) xy2 + p(4) y3 + p(5) x2z + p(6) xz2

% + p(7) z3 + p(8) y2z + p(9) yz2 + p(10) xyz
% deg = order of the homogeneous polynomial
% p = homogeneous polynomial written as a row vector
% x, y, z = variables of the homogeneous polynomial

u = zeros(size(x));
for k = 0:deg

u = u + p(k+1)*x.(deg−k).*y.k;
end

v = zeros(size(x));
for k = 1:deg
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v = v + p(deg+1+k)*x.(deg−k).*z.k;
end

w = zeros(size(x));
for k = 1:deg-1

w = w + p(2*deg+k+1)*y.(deg−k).*z.k;
end

e = u + v + w + p(3*deg+1).*x.*y.*z;
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Mesh adaptation for very high order numerical
schemes

Abstract: Mesh adaptation is an iterative process which consists in changing locally the
size and orientation of the mesh according the behavior of the studied physical solution. It
generates the best mesh for a given problem and a fix number of degrees of freedom. Mesh
adaptation methods have proven to be extremely effective in reducing significantly the mesh
size for a given precision and reaching quickly an second-order asymptotic convergence for
problems containing singularities when they are coupled to high order numerical methods.
In metric-based mesh adaptation, two approaches have been proposed: Multi-scale methods
based on a control of the interpolation error in Lp-norm and Goal oriented methods that
control the approximation error of a functional through the use of the adjoint state. However,
with the emergence of very high order numerical methods such as the discontinuous Galerkin
method, it becomes necessary to take into account the order of the numerical scheme in mesh
adaptation process. Mesh adaptation is even more crucial for such schemes as they converge
to first-order in flow singularities. Therefore, the mesh refinement at the singularities of the
solution must be as important as the order of the method is high.
This thesis deals with the extension of the theoretical and numerical results getting in the
case of mesh adaptation for piecewise linear solutions to high order piecewise polynomial
solutions. These solutions are represented using kth-order Lagrangian finite elements (k > 2).
This thesis will focus on modeling the local interpolation error of order Pk+1 (k > 2) on a
continuous mesh. However, for metric-based mesh adaptation methods, the error model must
be a quadratic form, which shows an intrinsic metric space. Therefore, to be able to produce
such an area, it is necessary to decompose the homogeneous polynomial and to approximate
it by a quadratic form taken at power k

2 . This modeling allows us to define a metric field
necessary to communicate with the mesh generator. The decomposition method will be an
extension of the diagonalization method to high order homogeneous polynomials. Indeed, in
2D and 3D, symmetric tensor decomposition methods such as Sylvester decomposition and
its extension to high dimensions will allow us to decompose locally the error function, then,
to deduce the quadratic error model. Then, this local error model is used to control the
overall error in Lp-norm and the optimal mesh is obtained by minimizing this error.
In this thesis, we seek to demonstrate the kth-order convergence of high order mesh adaptation
method for analytic functions and numerical simulations using kth-order solvers (k > 3).

Keywords: Unstructured mesh adaptation, a priori error estimates, high order interpolation
error, high order multi-scale adaptation, symmetric tensor decomposition, computation fluid
dynamics simulations.
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