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CHAPTER I

Introduction

1.1 Dissertation Objectives

Bladed disks are critical components in turbomachinery such as impeller pumps, com-

pressors, jet engines, and turbine generators. The nominal design for a bladed disk is typ-

ically assumed to have cyclic symmetry, which means it is a cyclic assembly of identical

substructures (or sectors) that are dynamically coupled in an identical manner. However,

there are always small, random variations in the sector properties due to manufacturing tol-

erances, material defects, and operational wear and damage. Much research has focused

on the investigation of the influence of blade-to-blade discrepancies, known as mistun-

ing, which can have a dramatic effect on bladed disk vibration. In particular, mistuning

can lead to concentrated vibration response in a small region of the bladed disk, a phe-

nomenon known as localization. Furthermore, the forced response vibration amplitudes

of particular blades can be significantly increased due to the spatial confinement of the

vibration energy, leading to high stresses, high-cycle fatigue (HCF), and failure.

In recent decades, while comprehensive analytical and computational studies of mis-

tuning have been performed, comparatively few experimental investigations have been

conducted. Comprehensive experimental work is critically needed in order to corroborate

physical phenomena due to mistuning, validate mistuning models and attendant reduced-

1
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order models, and examine the factors that influence the dynamics of mistuned bladed

disks in their jet-engine operational setting. Specifically, there are several phenomena of

potentially great importance to the mistuned blade response that have yet to be modeled.

For example, uncertainties in measurements, errors in finite element models (FEMs), and

the influence of adjacent bladed disk stages could all introduce significant variability into

the prediction of the mistuned forced response.

The primary objective of this research is to experimentally investigate the fundamen-

tal structural dynamics of mistuned bladed disks, and to achieve a further understanding

of mistuning effects by including the influence of important phenomena that have been

largely neglected in previous mistuning models, including variations in forcing levels de-

livered to the blades. In addition, blade mistuning identification methods that have recently

been developed for single-piece bladed disks, or blisks, will be further developed and ex-

tended to include system identification of both structural and forcing parameters. The

experiments carried out in this research work will serve to validate computational results

from recently developed modeling methods, to help develop and validate new techniques

for system identification and model updating, and to enrich mistuned bladed disk models.

In the short term, these higher-fidelity modeling, system identification, and testing

methods will yield improved response predictions, more comprehensive and accurate as-

sessments, and greater physical insight for actual bladed disk systems. In the long term,

this research will help enable the design of more robust rotors that will be significantly

less susceptible to HCF, and thus lead to safer and more cost-effective turbine engines.

The specific research objectives are summarized as follows:

• To further develop and validate an experimental approach for mistuning identifica-

tion and reduced-order model updating of blisks
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• To perform virtual mistuning experiments on blisks that mimic Monte Carlo simula-

tions for assessing the effects of random mistuning on increases in forced response

levels

• To develop new algorithms and testing methods for identifying external excitation

parameters, which will serve to accelerate calibration procedures and improve the

accuracy and capability of blisk vibration tests

1.2 Background

Mistuning phenomena have been studied by using analytical and numerical models

since 1950s. Tobias and Arnold [1] showed that the resonant peak of a tuned system splits

into “dual modes” because of inevitable mistuning. Whitehead [2] and Dye and Henry [3]

used simple models to show that random mistuning could increase forced response levels

dramatically compared to a tuned system.

Ewins [4] first evidenced mode localization in an experimental investigation of a de-

tuned bladed disk assembly. He then carried out a series of investigations on vibration

analysis of mistuned bladed disks [5–8], which were followed by experimental investiga-

tions by other researchers [9–12].

In general, finite element analysis is too computationally expensive for predicting mis-

tuned bladed disk response for two main reasons. First, an industrial finite element model

(FEM) of a bladed disk typically has hundreds of thousands or even millions of degrees

of freedom (DOF). Second, blade mistuning is random, and therefore Monte Carlo simu-

lations are used to predict the statistics of the forced response, requiring many numerical

evaluations of mistuned bladed disks. Therefore, many research efforts have been de-

voted to developing various reduced-order models (ROMs) to reduce computional time

and investigate the effects of mistuning on bladed disk vibration [13–18]. Castanier and
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Pierre [19] recently provided a thorough review into the major developments in mistuning

research over the decade.

Some physical insight into the localization phenomenon caused by mistuning may be

gained by envisioning the vibration energy of the system as a circumferentially traveling

wave. In a perfectly tuned system, the wave propagates through each blade in turn, causing

equal vibration amplitude. If even very small levels of mistuning are present, however,

the slight differences in properties between adjacent blades cause the traveling wave to be

partially reflected as it encounters each blade. For certain mistuning patterns, this results in

vibration energy becoming trapped in part of the bladed disk, and so certain blades vibrate

with much greater amplitude than others. In this manner, the mode shapes and forced

response shapes of a bladed disk with slightly mistuned blades can become qualitatively

different from those of the perfectly tuned system. The problem is quite complex in that the

blade or blades in which the energy becomes confined are not necessarily those with the

greatest mistuning. Furthermore, one mistuning pattern could produce a highly localized

mode at certain natural frequency but a nearly cyclic mode at a different natural frequency.

One prime application of ROMs is to identify mistuning in actual bladed disks [20, 21].

Mistuning identification is important as a means of monitoring the quality of the manufac-

turing process, and also in the maintenance checks of operational rotors. This is especially

true for blisks, because the blades cannot be separated from the rotor for individual modal

testing. Judge et al. [22, 23] presented and experimentally validated the very first method

of a mistuning identification technique for blisks by combining a ROM and the measure-

ments of system mode shapes and natural frequencies. The ROM employed in this case

was based on the Craig-Bampton method[24] of component mode synthesis (CMS) en-

hanced with a second modal analysis (SMA) procedure [25, 26]. The mistuning was con-

sidered as the deviation of modal stiffness for a blade in a tested blisk from that of a blade
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in a perfectly tuned system. Judge et al [27] also demonstrated experimentally the poten-

tial application of intentional mistuning[28] in preventing strong amplitude magnification

due to random mistuning.

Another important use of a reduced-order modeling technique is to generate models

that are sufficiently compact that Monte Carlo simulations can be performed to estimate the

statistics of the forced response for a population of mistuned rotors. In such Monte Carlo

simulations [13, 22, 29], mistuning patterns are assigned with a pseudo-random number

generator, and a certain physical or modal property of each blade (e.g., Young’s mod-

ulus or blade-alone natural frequency) is altered in the model according to its assigned

mistuning value. However, it is much more difficult to assess the effects of random mis-

tuning or validate numerical predictions using experimental methods. In particular, im-

posing specific mistuning patterns on a physical system is challenging. Although adding

mistuning masses is an effective means of controlling mistuning in bench tests, it can

be time-consuming and cumbersome to precisely manufacture and attach the individual

mistuning masses. As a result, relatively few mistuning patterns can be tested using this

approach [27, 30]. Other experimental statistical analyses were performed by Jones [31]

and Rossi et al [32]. These investigators encountered the same practical difficulties in

implementing the physical configuration changes that are required to carry out statisti-

cal mistuning studies in the laboratory. Therefore, developing an experimental analog of

Monte Carlo simulation has remained an elusive goal in previous work.

In bladed disk vibration tests, by running only a few forced response tests for the full

bladed disk, the individual blade mistuning values can be extracted, which are typically

expressed as deviations of blade-alone natural frequencies from the nominal value for a

specific mode. However, in general, the accuracy of bladed disk vibration tests depends

on the careful mounting of the test specimen as well as the calibration of the external
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excitation system. This is especially true for the case of engine order excitation. To gen-

erate true engine order excitation in a bench test environment, a sinusoidal forcing must

be delivered with the same amplitude at each blade, and the blade-to-blade phase lag must

also be consistent throughout the system by using speakers, horn drivers with vinyl tubing,

electromagnets, or specifically designed “Flywheel” [22, 31, 33, 34]. Despite the meticu-

lous calibrations required in order to gather sufficient information for precisely excitation

control, the uncertainties in the forcing are inevitable during the vibration test. Therefore,

accounting for these uncertainties may be crucial to improving the calibration as well as

the accuracy of bladed disk vibration tests.

1.3 Dissertation Outline

The remaining chapters of this dissertation are compiled from a collection of three

manuscripts for technical papers that have been prepared for submission to scientific jour-

nals. Because of this, some of the background material is repeated in various chapters.

The remaining chapters are summarized as follows.

In chapter II, the experimental approach to validate a new technique for mistuning

identification and model updating of mistuned blisks is proposed. The technique is based

on the component mistuning mode (CMM) ROM method, which was recently developed

by Lim et al [18]. In the experiment, system responses are obtained by taking measure-

ments at each blade and then combined with the resonant frequencies as the required infor-

mation for blade mistuning identification. If needed, model updating parameters referred

as “cyclic modeling error” can be identified simultaneously.

In chapter III, as an alternative approach for vibration testing of many mistuning pat-

terns, it is proposed that varying the external forcing function provided to the blades can

be used to mimic the influence of structural blade property mistuning on the vibration re-
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sponse. Because it is much easier and more efficient to vary the external excitation than to

physically alter the blades, this opens the possibility of running an experimental analog of

a Monte Carlo simulation. The feasibility of this approach, referred to as an experimental

Monte Carlo mistuning assessment, is explored. The modified forcing function required

to mimic a given blade mistuning pattern is derived based on the CMM method. Then

the probability density function (PDF) and cumulative distribution function (CDF) pre-

dicted by numerical Monte Carlo simulations are compared to those estimated from the

new experimental approach.

In chapter IV, the identification of and impact of uncertainties on the external excitation

are investigated in detail. The mistuning identification method described in chapter II is

extended to also identify the amplitude and phase values of the forcing applied to the

blades. It is shown that blade mistuning and forcing can be identified simultaneously or

sequentially by carrying out a small set of prescribed forced response experiments. The

accuracy and robustness of the forcing identification are examined both numerically and

experimentally.

Finally, in chapter V, the contributions of this research are summarized, and ideas for

future work are proposed.



CHAPTER II

Experimental Validation of A New Technique for

Mistuning Identification and Model Updating

The primary objective of this research is to validate, by experimental testing of realistic

bladed disk structures, a new method for the identification of blade mistuning, which is

based on the recently developed component mode mistuning (CMM) reduced-order mod-

eling technique for mistuned bladed disk vibration. The technique developed combines

experimental measurements with CMM reduced-order models of finite element models

of bladed disks. It produces not only the identification of blade mistuning parameters,

but also the updating of the parameters of the CMM reduced-order model, thus enabling

the accurate prediction of the vibratory response of industrial bladed disks. In this ap-

proach, forced response experimental data are used for the identification without requiring

the knowledge of the applied forces, and a least-squares fit procedure is employed to re-

duce the effect of measurement errors. The method is also applicable to the free vibration

mode shapes and natural frequencies. A sensitivity study is performed, which considers

the errors in modeling parameters and measured data, and it is observed that the identi-

fication results are most sensitive to errors in the tuned system eigenvalues. In order to

compensate for these errors, the “cyclic modeling error” is identified, which is the dif-

ference between the frequencies of the virtual tuned system of an actual mistuned bladed

8



9

disk and its tuned finite element model. Then, the CMM reduced-order model is updated

using both the cyclic modeling error and the identified mistuning pattern, thus producing

an accurate model of the tested bladed disk specimen. The method is validated experimen-

tally for both a “validation rotor” with controlled mistuning and for an advanced NASA

(National Aeronautics and Space Administration) compressor bladed disk.

2.1 Introduction

Bladed disks are generally assumed to be an assembly of identical substructures (or

sectors) that are dynamically coupled in an identical manner. However, there are always

small, random variations in the sector properties due to manufacturing tolerances, material

defects, and operational wear and damage. These blade-to-blade discrepancies, known as

mistuning, can have a dramatic effect on bladed disk dynamics. In particular, mistuning

can lead to vibration concentrated in small regions of the bladed disk, a phenomenon

known as localization. Furthermore, the forced response amplitudes of particular blades

can significantly increase due to the spatial confinement of the vibration energy. This may

lead to large stresses, high-cycle fatigue, and failure.

A number of analytical and computational studies of mistuning in bladed disks have

been performed since the late 1950s [1, 3]. Ewins [4] provided the first experimental ev-

idence of localized vibration in a blade assembly with mistuning, and the phenomenon of

mode localization was first elucidated by Wei and Pierre [35, 36]. Predicting the vibration

response of industrial bladed disks requires the use of large-scale finite element models

(FEMs) with several million degrees of freedom (DOF), and it carries a prohibitive com-

putational cost. Therefore, much research has focused on the development of reduced-

order models (ROMs) [13–18], which allow for parametric studies and statistical Monte

Carlo simulations of bladed disk free and forced vibration at a reasonable cost. The ROMs
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developed recently provide highly accurate estimates of forced response amplitudes for a

size that is only on the order of the number of blades [15, 18].

While much analytical and computational research has been performed on mistuning,

until recently there has been a lack of experimental investigations of mistuning. Kruse

et al [37, 38] presented an experimental investigation of vibration localization on a pair

of 12 bladed disk, one is tuned and the other is mistuned by varying the length of blades

randomly. Mignolet et al. [39, 40] estimated the dynamic properties of the turbomachine

blades from experimental results to provide more accurate prediction of forced response.

Judge et al. [23, 27, 41–43] were the first to carry out a series of systematic exper-

iments to corroborate the physical phenomena that are caused by mistuning (i.e., mode

localization and forced response amplitude magnification), validate reduced-order mod-

els of mistuned bladed disks, and develop the very first technique for the identification

of blade mistuning. Judge’s identification method allows one to extract, from measure-

ments of system modes of vibration or forced responses, the blade mistuning parameters

for use in the attendant ROM. Note that this mistuning identification method is especially

suited for integrally bladed disks, or blisks, in which the individual blades cannot be easily

isolated from the rest of the structure.

Yang and Griffin [15] used the tuned-system normal modes of a bladed disk to develop

a new ROM, called Subset of Nominal Modes (SNM). Their approach has the advantage

of eliminating the error associated with the sub-structuring in component mode synthe-

sis. Subsequently they applied the SNM technique to system identification within a higher

modal density range [44]. Feiner and Griffin [16, 17, 45] developed a totally experimen-

tal, system-based method for the identification of sector mistuning (as opposed to blade

mistuning) based on a Fundamental Mistuning Model (FMM), which does not require any

FEM or ROM analysis. Recently, Lim et al. [18] reported a new ROM technique for
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mistuned bladed disks, called Component Mode Mistuning (CMM). In this approach, the

blade motion is described in terms of tuned-system normal modes, and the blade mistuning

is projected onto these modes by using modal participation factors of cantilevered-blade

modes. Key features of the CMM method are that it is able to handle non-proportional as

well as large, “geometric” mistuning, and that it is applicable to closely-spaced groups of

blade-dominated modes.

The primary contribution of this ROM method is that it provides a computational so-

lution for an inverse problem, blade mistuning identification as Lim et al. [21] suggested

. Moreover, a model updating parameter defined as “cyclic modeling error”, which can

be used to compensate the difference between actual bladed disks and tuned FEM model,

was presented by the author after conducting a sensitivity study. Numerous research of

model updating [46–50] have been done in order to match the FEM model with its actual

manufactured structure and Sinha [51] presented a survey on the development of model

updating techniques. With this CMM method, only a few system responses taken at the

resonant frequencies are sufficient to apply mistuning identification and model updating

without knowing exactly what the external forcing is. It is extremely useful when the

modal density is high and not every single mode can be isolated from others. Another ma-

jor advantage of this algorithm is that no additional criteria is necessary to help selecting

which are the proper measurements for an accurate identification. A least quare method

is adopted to optimize the results and strikes out the error automatically. Therefore this

identification process is straightforward and efficient.

The chapter is organized as follows. In section 2.2, the CMM method is first intro-

duced with small mistuning assumption. Then the ROM is further reduced by focusing on

only one family modes where cantilever blade mode is dominant. And the identification

algorithm is presented with details. The experiment facilities are described in section 2.3
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as well as the test specimen used in validation. In section 2.4, the mistuning identification

and modal updating approach is validated experimentally while using two different bladed

disks. The conclusion is given in section 2.5.

2.2 Theory

2.2.1 Reduced Order Modeling Technique – Component Mode Mistuning

A component mode mistuning (CMM) method for reduced order model (ROM) was

recently developed by Lim et al. [18, 52]. This technique can be applied to any mistuned

system, no matter whether the mistuning is small or large, since there is no assumption

made with respect to the mistuning. In the CMM approach, a mistuned bladed disk is

treated as a combination of two components through a hybrid interface by employing

component mode synthesis (CMS): one component is tuned, referring to the perfectly

tuned blade disk system, and the other is a set of mistuned components representing blade

mistuning.

Tuned Bladed Disk

For the tuned bladed disk system, the reduced mass and stiffness matrices in modal

coordinates µS and κS , can be written as in Eq. 2.1. In which, MS and KS are the corre-

sponding reduced mass and stiffness matrices in physical coordinates; ΦS is a truncated

set of normal modes while ΨS is a complete set of attachment modes; Λ is a diagonal

matrix of the eigenvalues of the remained normal modes. Both x and p are system re-

sponse, i.e., displacement, while the former one in physical coordinates and the latter one

in modal coordinates. The superscript S denotes a tuned system, and the subscripts ∆ and

Γ denote the DOF of the disk and the blades, respectively. Another pair of subscripts Φ

and Ψ distinguish the generalized coordinates for the remained normal modes from the

interface modes.
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µS =




I ΦST

MSΨS

ΨST

MSΦS ΨST

MSΨS


 (2.1a)

κS =




ΛS ΦST

KSΨS

ΨST

KSΦS ΨS
Γ


 (2.1b)

xS =





xS
∆

xS
Γ





=



ΦS

∆
ΨS

∆

ΦS
Γ

ΨS
Γ








pS
Φ

pS
Ψ





(2.1c)

Mistuning Component

For the mistuning component, i.e. blade mistuning, the mass and stiffness matrix in

blade modal coordinates, referred as µδ and κδ, are the same as those in blade physical

coordinates, referred as Mδ and Kδ. Note that δ denotes the mistuning component. The

reason is that the constraint modes of the cantilevered blade alone are sufficient to describe

the motion of the mistuning components in this situation without involving any normal

modes. Therefore an identity matrix is the mode shape matrix because the constraint

modes are obtained by exciting a unit displacement at each interface DOF.

µδ = IT Mδ I = Mδ (2.2a)

κδ = IT Kδ I = Kδ (2.2b)

xδ = I pδ
Ψ

= pδ
Ψ

(2.2c)
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Mistuned Bladed Disk Synthesis

Note that the DOF of the mistuning components and those of hybrid interface are

identical. By satisfying displacement compatibility at the component interface, xS
Γ

= xδ,

the synthesized representation of a mistuned system is :

[
−ω2µsyn + (1 + jγ) κsyn

]
psyn =

[
ΦS ΨS

]
f (2.3a)

µsyn = µS +



ΦS

Γ

T
MδΦS

Γ
ΦS

Γ

T
MδΨS

Γ

ΨS
Γ

T
MδΦS

Γ
ΨS

Γ

T
MδΨS

Γ


 (2.3b)

κsyn = κS +



ΦS

Γ

T
KδΦS

Γ
ΦS

Γ

T
KδΨS

Γ

ΨS
Γ

T
KδΦS

Γ
ΨS

Γ

T
KδΨS

Γ


 (2.3c)

psyn =





pS
Φ

pS
Ψ





(2.3d)

where ω is the resonant frequency of the mistuned system, γ is the structural damping

factor, µsyn and κsyn are the reduced mass and stiffness matrices of the mistuned system,

and psyn is a vector of displacement in modal coordinates.

2.2.2 Modeling Assumptions for Performing Mistuning Identification

While there is no assumption made for creating a reduced-order model based on CMM

technique to represent a mistuned bladed disk system, several assumptions are considered

in the this section in order to perform the inverse process, mistuning identification.

Blade Stiffness Mistuning Only

Generally the mistuning component, includes the mass and stiffness variations from

the tuned system. However, through this thesis only the stiffness variations are considered
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while the mass matrix is assumed as an invariant.

µsyn = µS (2.4a)

κsyn = κS +



ΦS

Γ

T
KδΦS

Γ
ΦS

Γ

T
KδΨS

Γ

ΨS
Γ

T
KδΦS

Γ
ΨS

Γ

T
KδΨS

Γ


 (2.4b)

Small Mistuning

As for small mistuning cases, the main idea presented by Lim et al. [18, 52] for their

method is that, the mistuned normal modes can be expressed as a linear combination of

tuned normal modes since a slightly mistuned bladed disk features closely spaced modes

as a tuned bladed disk does in the same frequency range. This means that ΨS and the

corresponding displacement in modal coordinates, pS
Ψ

, can be ignored in Eq. 2.3, then the

synthesized representation becomes :

µsyn = I (2.5a)

κsyn =
[
ΛS + ΦS

Γ

T
KδΦS

Γ

]
(2.5b)

psyn =
{
pS

Φ

}
(2.5c)

Blade Mistuning Projection

Bladh et al. [14] suggested a method in CMS approach for mistuning projection, where

the stiffness mistuning matrices in physical coordinates are projected to the normal modes

of a tuned cantilevered blade. This method yields a diagonal matrix of modal stiffness de-

viations and it holds the assumption that the tuned and mistuned blade-alone mode shapes



16

are the same. Lim et al. [18, 52] inherited this approach with system mode basis instead

of sub-structuring the bladed disk system into blade and disk parts. And a new concept,

modal participation factors of of a tuned cantilevered blade Q, was introduced in order to

represent the blade portion of the tuned system normal modes ΦS
Γ

.

Furthermore, it is presumed that the displacements at the blade structural boundaries

in the tuned-system normal modes are so small that the contribution of the boundary

modes to the mistuning projection can be neglected. This assumption is especially true

for unshrouded rotors used in this research. Then, the dominant cantilevered-blade nor-

mal modes are sufficient to project mistuning without losing accuracy which leads to a

simplification as:

ΦS
Γ

T
KδΦS

Γ
≈ QT κδQ (2.6)

Therefore, Eq. 2.5 can be rewritten as follows:

[
−ω2I + (1 + jγ)(ΛS + QT κδQ)

]
pS = fS (2.7)

where ω is an excitation frequency, ΛS , pS , and fS are the modal stiffnesses, displace-

ments, and forces, respectively. Note that these parameters are tailored corresponding to

a truncated set of tuned-system normal modes, which might not cover all the frequency

range of the mistuned bladed disk. κδ is a mistuning projection matrix, which contains the

projection of blade stiffness mistuning to a truncated set of cantilevered-blade modes. Q

is the matrix of participation factors of the cantilevered-blade modes for the blade motion

in the tuned-system modes. γ is a structural damping factor.
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Blade Dominant Modes

As Lim et al. [18, 52] proposed, blade mistuning is usually represented by the vari-

ations of cantilevered-blade eigenvalues, i.e. natural frequencies, from the nominal val-

ues. These variations are obtained by projecting the blade stiffness mistuning to the

cantilevered-blade modes. In case of supposing very small displacements at the blade

root, the mistuning projection to cantilevered-blade constraint modes is neglected. Thus

Q is replaced by QCB which contains only the factors corresponding to the cantilevered-

blade normal modes. In addition, the off-diagonal coupling term of the mistuning pro-

jection matrix, κδ, can be ignored while assuming the motion of a blade in a bladed disk

is dominated by a single cantilevered-blade normal mode. Consequently, κδ is approxi-

mated by ΛCB, which is a diagonal matrix of the eigenvalue deviations of the remained

cantilevered-bladed normal modes.

Based on the four assumptions discussed above, the equation of steady-state forced

response can be expressed in tuned system modal coordinates as:

[
−ω2I + (1 + jγ)

(
ΛS + QCBT

δΛCBQCB
)]

p = fS (2.8)

where p is introduced to the equation instead of pS since p itself denotes the modal coor-

dinates.

2.2.3 Mistuning Identification and Model Updating Based on CMM

The advent of one-piece bladed disks, or blisks, in the turbine engine industry means

that mistuning in an industrial rotor cannot always be measured simply by removing and

testing individual blades. This has led to the development of several techniques for iden-

tifying mistuning experimentally based on the vibration response of the full blisk[16–

18, 22, 44]. By running only a few forced response tests for the full blisk, the individual
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blade mistuning values can be extracted, which are typically expressed as deviations of

blade-alone natural frequencies or eigenvalues from the nominal (tuned) value for a spe-

cific blade mode of interest.

In addition, the CMM method has recently been extended by the authors [18, 53]

to perform both mistuning identification and reduced-order model updating. This was

motivated by a sensitivity study that was performed to consider the influence of errors in

modeling parameters and measured data on the mistuning identification results [18]. 100

group of random perturbation with a uniform distribution, were added to each parameters

appeared in Eq. 2.8 such as tuned-system mode shape, tuned-system eigenvalues, modal

participation factors, measured data , etc. It was observed that the identification results are

most sensitive to errors in the tuned system eigenvalues. In order to compensate for these

errors, the “cyclic modeling error” terms, δΛS , were defined as the difference between the

tuned system eigenvalues of an actual bladed disk, which are deduced from the test data

assuming the mistuning has a mean value of zero, and the eigenvalues predicted from the

tuned finite element model (Lim et al. [21]). Incorporating these model updating terms

leads to the following equations of motion:

[
−ω2I + (1 + jγ)

(
ΛS + δΛS + QCBT

δΛCBQCB
)]

p = fS (2.9a)

x = ΦS
CBp (2.9b)

fS = ΦST

CBfCB (2.9c)

where ω is the excitation frequency, γ is the structural damping factor, p and x are the

modal and physical displacements vector respectively, and fS and fCB are the modal and

physical force vector. In addition, ΛS is the diagonal matrix of eigenvalues for the selected
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set of system modes used as a modeling basis and ΦS
CB is a full matrix of the blade por-

tion of tuned system mode shape. Individual blade mistuning is presented by a diagonal

matrix δΛCB containing the mistuning values for all of the blades in cantilevered blade

modal coordinates. In particular, a matrix of modal participation factors corresponding

to cantilevered-blade normal mode only, QCB, is generated, which defines the transfor-

mation of blade mistuning from cantilevered-blade modal coordinates to the generalized

coordinates of the reduced-order model.

While identifying the unknown blade mistuning and cyclic modeling error, the forcing

is eliminated by subtracting the equations at two different resonant frequencies, ωi and ωj ,

assuming the same external forcing at each excitation frequency. Applying this approach

to Eq. 2.9 leads to the following expression:

−
(
ω2

i pi − ω2

jpj

)
+ (1 + jγ)

[
ΛS + δΛS + QCBT

δΛCBQCB
]
(pi − pj) = 0 (2.10)

Otherwise, if the structural damping is small and individual system modes can be excited

near their natural frequencies, the forcing in Eq. 2.9 can be ignored by assuming a free

response case:

[
−ω2I + (1 + jγ)

(
ΛS + δΛS + QCBT

δΛCBQCB
)]

p = 0 (2.11)

2.2.4 Equation Reformatting in Computational Process

Although δΛS and δΛCB are the unknowns introduced in the Eq. 2.8, the actual vari-

ables identified from the algorithm, DS and DCB, are slightly different yet related to them

based on the following expressions:
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δΛS = ΛS · DS (2.12a)

δΛCB = λCB · DCB (2.12b)

where λCB is the tuned cantilevered blade eigenvalue for this investigated family, DS and

DCB are both diagonal matrix respectively in the same format as δΛS and δΛCB. Thus

Eq. 2.11 can be re-written as follows:

[
−ω2I + (1 + jγ)

(
ΛS(I + DS) + QCBT

(λCB · DCB)QCB

)]
p = 0 (2.13)

Since the unknowns in this case is only the diagonal terms of DS and DCB which

can be represented respectively by two vectors notated as dS and dCB, the algorithm for

mistuning identification and model updating can be reformatted and abbreviated as:

[
AS ACB

]




dS

dCB





= B (2.14)

where AS and ACB are the reframed coefficient matrices in order to arrange unknowns

from δΛS and δΛCB into dS and dCB.

dS =





dS
1

dS
2

· · ·

dS
M





, dCB =





dCB
1

dCB
2

· · ·

dCB
N





(2.15)

All of them are fully known once the blade responses p are obtained at desired excitation

frequencies ω. Generally there are more than one measurement required to identify the
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blade stiffness mistuning and cyclic modeling error, for example, p =
[
p1 p2 · · · pL

]

is a group of measurements in modal coordinates taken at a series of system resonant fre-

quencies, where L is the number of measurements. More detailed explanation of the

mistuning identification and model updating process in abbreviated matrix format are in-

troduced in the Appendix A. Note that As L increasing, there are more than necessary

rows added to the coefficient matrices AS and ACB. In other word, there are more equa-

tions than unknowns so that least squares method is adopted by applying pseudo inverse

(Matlab function “pinv”) on the entire coefficient matrix in the purpose of minimizing the

fitting errors.





dS

dCB





= pinv
([

AS ACB

])
· B (2.16)

2.3 Experimental Apparatus

2.3.1 Overview of Test Facilities

The experimental facility used to examine the effect of mistuning in a controlled en-

vironment, shown in Figure 2.1, includes a non-contacting, traveling-wave excitation sys-

tem, as well as a non-contacting measurement system featuring a Scanning Laser Doppler

Vibrometer (SLDV). The SPLV used for quantitative vibration measurements consists of

a Polytec OFV 2602 Vibrometer Controller and a Polytec OFV 353 Sensor Head. The

laser head is mounted on a two-dimensional linear traverse, which allows it to be moved

in a plane parallel to the surface of the specimen so that vibration can be measured at

various locations. The SLDV used for full-field measurement of vibration consists of a

Polytec OFV 3001S Vibrometer Controller and a Polytec OFV056 Scanning Head. In-

stead of being moved mechanically on the traverse, the scanning head changes its laser
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beam position optically by moving two inside mirrors in both x and y directions. The

measurement results obtained by SLDV can be either exported numerically or visualized

as 2-D or 3-D images. Both the excitation system and the measurement system are au-

tomatically controlled by a PC workstation though LabView. The experiment takes place

on a vibration-isolated workstation, which isolates the test specimen and measurement

system from vibration transmitted through the floor of the room.

2.3.2 Traveling Wave Excitation System

Figure 2.2 and 2.3 shows a close-up of the traveling-wave excitation system. Behind

each blade, there is a round speaker mounted in a parallel position with the surface of

the blade in order to apply an acoustic force. These speakers are driven by a series of

Hewlett-Packard 8904 Multifunction Synthesizers, each with two independent but phase-

synchronized channels. Before reaching to each speaker, the output signals from HP8904

were conditioned by being passed through variable gain amplifiers [30].

Moreover, the speakers are carefully calibrated using white noise excitation first. Then,

the speakers are mounted on the plastic fixtures, and a sinusoidal signal is sent to each

speaker, one at a time. A calibrated microphone is used to record the sound pressure level

at a fixed distance from the speaker, similar to the distance to the individual blade when it

is mounted on the fixture. The amplitude and phase of the excitation signal are adjusted

in order to achieve a flat frequency response of the sound pressure level produced by the

speaker. This process is digitally controlled and it is repeated, in turn, for each speaker on

the fixture. Both Single Blade Excitation (SBE) and Engine Order Excitation (EOE) can

be imposed on the bladed disk. For SBE, only a single speaker is active at a time. In case

of EOE, all the speakers are active simultaneously, delivering forces of same amplitude,

but with a certain phase lag corresponding to the selected EOE, between adjacent speakers.
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For example, the excitation of a particular blade can be written as:

fn = f0 cos (ωt + (n − 1) φ) (2.17a)

φ =
2πC

N
(2.17b)

where f0 is the force amplitude, ω the frequency of excitation, N the blade number, φ

the phase difference between adjacent blades, n the engine order of the excitation. Thus

any EOE can be obtained by simply changing the phase lag. The traveling-wave exci-

tation not only simulates the realistic operating system in which the rotating bladed disk

passes through a stationary excitation source, but also ensures the feasibility of the obser-

vation system (Judge et al. [23]). To achieve engine order excitation, all the speakers are

driven simultaneously to deliver forces of the same amplitude, but with a certain phase lag

between adjacent speakers.

2.4 Experimental Validation Results

2.4.1 Validation Rotor

Figure 2.4 shows a validation rotor with 24 blades of rectangular cross section and

Fig. 2.5 shows its finite element model. This rotor is used to experimentally validate

the new ROM approach and model updating method discussed above. It is designed and

manufactured to an extremely tight tolerance so as to minimize residual blade mistuning.

The first flexural blade mode family (2110.0 — 2170.0 Hz, nodal diameters 6 — 12) is

investigated, which involves 13 system modes and for which the blade mode is dominant.
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Resonant Frequencies of Mistuned Rotor

Figure 2.8(a) and 2.8(b) present the identification results of blade stiffness mistuning

and cyclic modeling error combined the measurements and the tuned CMM model of the

validation rotor, where the blade stiffness mistuning is assumed to possess a zero mean.

The specific value of those identified parameters is shown in Table 2.1.

Figure 2.7 compares the experimentally determined natural frequencies of the valida-

tion rotor and those obtained from the CMM model updated using the identified blade stiff-

ness mistuning and the cyclic modeling error. As observed by other researchers [9, 54, 55]

in their previous work, the phenomena of peak slitting was demonstrated in table 2.2. Var-

ious sets of modal measurements are selected to calculate the model updating parameters.

Observe that when 13 measured modes are used, the experimental and estimated frequen-

cies agree nearly perfectly, but that the use of six modes, or even only of two modes, yields

errors that are quite acceptable. Thus an important advantage of the technique is that an

incomplete set of measurements can produce an accurate updated CMM model. This fea-

ture is especially useful for systems with high modal densities, such as bladed disks with

large numbers of blades or weak inter-blade coupling.

Mode Shapes of Mistuned Rotor

Figure 2.9(a) and 2.10(a) shows the excellent match between the experimental and

updated CMM model results, for the first and last vibration mode of the validation rotor

at 2114.3 Hz and 2158.3 Hz, respectively. The 3-D images of the same mode shapes are

depicted in Figure 2.9(b) and 2.10(b), which were obtained with the SLDV. (Note that

the variation in amplitude at the tip of each blade is not physical but results from optical

scattering at the edge of the vibrating blade). While mode 1 (Figure 2.9) is extended

throughout the rotor, other modes were found to be localized to a few blades. For example,
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strong localization occurs for mode 13 as shown in Figure 2.10, such that vibration energy

is confined to blades 1 — 3 and 22 — 24, while blades 9 — 14 feature minute motion.

Therefore, the mistuning problem is complicated by the fact that mistuning may produce

a highly localized mode at certain natural frequency yet an extended mode at a different

frequency. Also, the blade or blades with the greatest deviation in geometry or properties

are not necessarily those in which the energy becomes confined.

It is advantageous that an incomplete set of measurements can yield an accurately up-

dated CMM model, especially for a system with high modal density. Figure 2.18 shows

the accuracy of two updated CMM models, where either all 13 or only 3 measured modes

are used for the model updating. At 2114.3 Hz, the measured forced response due to

EOE 6 is compared to various forced responses and mode shapes predicted by the up-

dated CMM models. Due to the relatively small structural damping (0.00015) for the

validation rotor, both EOE and SBE primarily excite the mode shape at the corresponding

natural frequency. Thus the predicted mode shape and the SBE and EOE responses are

similar. Note that all the predicted mode shape, SBE, and EOE responses agree with ex-

perimental measurements within an acceptable level. However, as the number of involved

modes decreases from 13 to 3, this agreement deteriorates somewhat. In the case of single

blade excitation, SBE 4 is selected because the even-numbered blades feature a stronger

response for this mode shape, ensuring its successful observation. This advantage can be

further understood by considering the comparison of identified blade stiffness mistuning

and cyclic modeling error. As can be seen in the Fig. 2.12, apparent errors occur only

when only 2 measured data are used to apply the identification algorithm.
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Forced Responses and Sensitivity Study

The new mistuning identification and model updating techniques have also been vali-

dated for the forced response of mistuned rotors. Figure 2.13 shows the good agreement

between the measured frequency response and the estimated response of the updated CMM

model, for a case of harmonic single blade excitation (SBE). In this case, the blade on

which the measurement is performed is the blade being excited. For example, fig. 2.13(a)

shows the frequency sweep response of blade 2 while only speaker 2 was driven. Figure

2.14 is for another case of SBE, where blade 1 is excited and the responses of blade 4,5,19

and 24 are measured. Again, good agreement is observed, particularly for the resonant

frequencies, but there are some discrepancies in the relative amplitudes of the measured

and estimated peak amplitudes.

Next, 1000 sets of random perturbations were artificially added to the cyclic modeling

error in order to assess the sensitivity of the forced response to uncertainties in the cyclic

modeling error. Perturbations ranging from -4% to +4% of the identified cyclic modeling

error were considered. Figure 2.15 and 2.16 shows the envelopes of the maximum and

minimum responses for these 1000 random patterns (the amplitudes of blade 4 and 19 are

depicted for a SBE of that blade). Considerable variations in the resonant peak amplitudes

are observed, indicating that the forced response of the bladed disk is highly sensitive to the

cyclic modeling error. In particular, the discrepancies observed in Figure 2.13(b) are well

within the minimum and maximum envelopes of Figure 2.15; for example, consider the

lowest-frequency resonant peak of blade 4 for the experiment in Fig. 2.13(b), of amplitude

0.5, which is higher than the corresponding minimum value in Fig. 2.15.

Finally, the new identification and updating method is validated for various cases of

engine order excitation (EOE). Figure 2.17 shows good agreement between the measured

and estimated frequency responses of blade 9 for EOE 8 in Fig. 2.17(a), blade 3 for EOE 12
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in Fig. 2.17(b), and a comparative set of blade 2 and blade 4 for EOE 11 in Fig. 2.17(c) and

2.17(d). For a tuned bladed disk under EOE, only the free vibration mode with the same

interblade phase angle as the excitation is excited, producing a single resonance peak. For

a mistuned system all modes are excited. The results shown in Figure 2.17 indicate that

several modes in this frequency range, 2113.0 — 2165.0 Hz, are excited simultaneously

for all EOE considered. Since the identified mistuning of the validation rotor is quite small

(0.29%), one would expect the pair of mistuned modes that is a perturbation of the tuned

mode with the same number of nodal diameters as the excitation to feature the strongest

response, and this is seen in Fig. 2.17(a). However, the responses for EOE 11 and 12 are

different compared with those for EOE 8, where the pair of modes 8 is dominant. As

can be seen in Fig. 2.17(b), EOE 12 not only excites mode 12 strongly but also mode

11. Moreover the response of blade 3 by EOE 12 reveals an even stronger response at the

adjacent mode 11. The modal density of this frequency range (2150.0 — 2165.0 Hz) is

especially high, with 7 modes grouped within 10 Hz. Fig. 2.17(c) and 2.17(d) compare the

responses of different blades excited by the same EOE, which are not necessarily similar.

For example for blade 2, modes 10, 11 and 12 all respond strongly, while for blade 4,

mode 12 is relatively quiet. Note that the discrepancies between predicted and observed

responses are caused by the sensitivity of the forced response to uncertainties in the cyclic

modeling error.

Advantage of Model Updating

The most innovative aspect of the new method is the introduction of the cyclic mod-

eling error into the CMM model, along with the traditional blade mistuning terms. The

updated model thus reflects errors or uncertainties present in the eigenvalues of not only

the cantilevered blades but also the tuned bladed disk. Figure 2.18 compares, at 2150.6
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Hz, the measured EOE 10 response with various forced responses and mode shapes pre-

dicted by CMM models with and without updated cyclic modeling error. Observe that

updated CMM responses agree very well with the measured response in all cases. The

CMM model without updating does well at predicting the mode shape, but both SBE and

EOE responses are incorrectly estimated.

This observation is corroborated in Figure 2.5, where the measurements for blades 2

and 4 are as in Fig. 2.17(c) and 2.17(d). However, for these cases no model updating is

done, and only the blade mistuning is included into the CMM. The predicted frequency

responses of blade 2 and 4 at EOE 11 do not match with the experimental observations.

Both these results suggest that the cyclic modeling error plays a critical role in model

updating and that it cannot be neglected.

2.4.2 NASA Bladed Disk

As a further validation, the new identification and updating method is applied to an

advanced NASA bladed disk prototype with 26 blades, shown in Figure 2.20. A special

fixture was designed and manufactured to mount both the NASA bladed disk and speakers

on the vibration-isolated table. The proper installation steps (fig. 2.23) are described as

follows.

1. Install the NASA bladed disk to the flange and then attach the flange to the L-shape

fixture in the workshop(fig. 2.23(a)).

2. Bolt the plastic wedges as speaker’s holding fixture to the outside ring in the work-

shop(fig. 2.23(b)).

3. Move and mount the whole piece on the vibration-isolated table by crane and then

insert speakers with cable connected to the signal generators(fig. 2.23(c)).
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4. Cover the NASA bladed disk with white powder for a better reflection especially for

the holographic interferometry(fig. 2.23(d)).

Measured Resonant Frequencies and Mode Shapes

The finite element model (FEM) of the NASA bladed disk is depicted in Figure 2.21

and a computational mode shape at nodal diameter 2 is displayed as Figure 2.22. Com-

pared to the validation rotor, the designed configuration of NASA bladed disk is much

more complicated, especially at the blade part. The blades are twisted and the thickness

of the blade varies along the axis pointing from the root to the tip. Apparently the degree

of freedom (DOF) of the NASA bladed disk increases significantly to millions per sector,

which is only 265 for the validation rotor. Therefore the expensive computational time for

a mode shape shown in Figure 2.22 is expectable. And the CMM technique can be applied

to create a reduced order model on the order of blade number, i.e. 26, for the NASA bladed

disk.

This compressor stage features a high modal density, and the 26 modes of the first-

bending blade-dominated family are grouped within a range of 13 Hz. Figure 2.24(a) and

2.24(b) present the identification results of blade stiffness mistuning and cyclic modeling

error combined the measurements and the tuned CMM model of the NASA bladed disk.

The specific value of those identified parameters is shown in Table 2.3. Figure 2.26

compares the free vibration natural frequencies obtained from measurements with those

predicted by the updated CMM model. An incomplete set of natural frequencies (22 out

of 26) was found from testing, probably due to the high modal density and insufficient

frequency resolution (0.1 Hz).

However, since the identification and updating method only needs partial measure-

ments, the complete mistuning pattern and the cyclic modeling error can be extracted
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from just a few of the 22 measured shapes. Note in Figure 2.26 the very good match

for the 22 natural frequencies. Also, Figure 2.27(a) shows good agreement between the

predicted and measured mode shapes at 738.9 Hz, while Figure 2.27(b) shows a nearly

perfect match at 764.1 Hz. Figure 2.27(b) shows the severe localization of the mode shape

to blades 18 and 19, indicating the high sensitivity to residual mistuning in the specimen

tested. Note how well the updated CMM model is able to capture this localized behavior.

Identification of Intentional Mistuning

Mistuning was added to the NASA bladed disk by gluing small pieces of lead with

different weights to the blade tips, as sown in Figure 2.29. Five blades were mistuned

in this way: blades 11, 18, 19, 22 and 26. Since the masses of the lead shims were

known, this intentional mistuning was calculated (details in table 2.4) by expressing the

relationship between the mass change and the blade stiffness change. Judge [30] and

Lim [52] suggested that the mass change can be presented by introducing mistuning into

stiffness matrix only without disturbing the mass matrix instead. An experiment was then

performed to identify the added mistuning and update the CMM model. The excellent

agreement between the expected and the identified mistuning is shown in Figure 2.30.

2.5 Conclusions

A new component mode mistuning reduced-order modeling method has been vali-

dated. The approach permits both mistuning identification and updating of the reduced-

order model. The experimental validation has been carried out for both a validation rotor

and an industrial bladed disk. For the latter, the method has been further validated by

identifying mistuning that was intentionally added to several blades. The critical effects

of mistuning have been demonstrated experimentally, including the localization of mode

shapes, the increase in forced response amplitudes, and the increase in the range of nat-
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ural frequencies. One important feature of the method developed is that an incomplete

set of measured responses can be used to yield an accurate updated reduced-order model

and accurate mistuning parameters; this is especially important for bladed disks with high

modal densities, for which it is difficult to experimentally observe all modes. The cyclic

modeling error is a critical and unique feature of the new method, and it allows the updated

CMM model to predict force responses as well as natural modes of vibration that match

very well with the experimental measurements. However, one limitation of the present

method is that it can only be applied to a frequency range of blade-dominated modes, and

not to modes that are disk-dominated.
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Figure 2.1: Experimental set up of the non-contacting excitation and measurement system.
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Figure 2.2: Non-contacting acoustic excitation system consisting of speakers.

Figure 2.3: Bladed disk set up with blisk system installed.
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Figure 2.4: Picture of 24 blade validation rotor.

Figure 2.5: Finite element model of the validation bladed disk.
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(c) Response of blade 19 by SBE 19
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(d) Response of blade 22 by SBE 22

Figure 2.13: Comparison of frequency sweep responses, measured on the various blades

while exciting the same one by single blade excitation.
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(c) Response of blade 19
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(d) Response of blade 24

Figure 2.14: Comparison of frequency sweep responses, measured on the various blades

while exciting blade 1 in all cases.
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Figure 2.15: Sensitivity of the cyclic modeling error to forced response, blade 4 by single

blade excitation on blade 4.
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Figure 2.16: Sensitivity of the cyclic modeling error to forced response, blade 19 by single

blade excitation on blade 19.
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(a) Response of blade 9 by EOE 8 (b) Response of blade 3 by EOE
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(c) Response of blade 2 by EOE 11
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(d) Response of blade 4 by EOE 11

Figure 2.17: Comparison of frequency sweep responses measured on various blades by

different engine order excitation (EOE).



45

0 5 10 15 20 25
0

0.2

0.4

0 5 10 15 20 25
0

0.2

0.4
N

or
m

al
iz

ed
   

   
   

 A
m

pl
itu

de

0 5 10 15 20 25
0

0.2

0.4

0.6

Blade     Number
(a)

predicted EOE10
exp. EOE10 result

estimated SBE4
exp. EOE10 result

estimated mode shape
exp. EOE10 result

(a) Prediction by the CMM model with modal updat-

ing

0 5 10 15 20 25
0

0.2

0.4

0 5 10 15 20 25
0

0.2

0.4

0.6

N
or

m
al

iz
ed

   
   

   
 A

m
pl

itu
de

0 5 10 15 20 25
0

0.2

0.4

0.6

Blade   Number
(b)           

estimated EOE10
exp. EOE10 result

estimated SBE4
exp. EOE10 result

estimated mode shape
exp. EOE10 result
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Figure 2.18: Comparison of the experimental results with various estimated responses, at

2150.6 Hz for validation rotor.
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(a) Response of blade 2 by EOE 11
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(b) Response of blade 4 by EOE 11

Figure 2.19: Comparison of frequency sweep responses without modal updating on vari-

ous blades by engine order excitation (EOE) 11.
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Figure 2.20: The NASA bladed disk mounted with speakers.
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Figure 2.21: Finite element model of the NASA bladed disk.

Figure 2.22: Mode shape of the NASA bladed disk at nodal diameter 2.
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(a) Attach NASA bladed disk to fix-

ture flange in the workshop

(b) Install the holding fixture for

speakers in the workshop

(c) Mount speaker behind each blade

on the anti-vibration table, connected

to signal generator

(d) Set up single point laser vibrome-

ter and interferometry

Figure 2.23: The installation process of the NASA bladed disk.
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Figure 2.24: Identified parameters for modal updating of the NASA blade disk based on

the experiment results.
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Figure 2.25: Natural frequencies versus the number of nodal diameters for the tuned rotor

FEM of the NASA bladed disk.
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Figure 2.26: Measured natural frequencies of first flexible family for the NASA bladed

disk compared to the FEM predictions.
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(a) 740.2 Hz

(b) 763.3 Hz

Figure 2.27: Mode shape of NASA bladed disk, predicted by updated CMM model and

measured by SPLV (Single Point Laser Vibrometer).



53

Figure 2.28: Close-up of a blade of NASA bladed disk, showing the speaker behind the

blade.

Figure 2.29: The mass (lead) added to tip of a blade of the NASA bladed disk.
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Figure 2.30: Comparison of the intentional and the identified blade stiffness mistuning for

the NASA bladed disk, without considering cyclic modeling errors.
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Table 2.1: Identified blade stiffness mistuning and cyclic modeling error from the experi-

mental results based on the CMM model of the validation rotor.

Blade stiffness mistuning vs. Blade number

1 -0.0003 9 0.0002 17 0.0027

2 -0.0007 10 -0.0006 18 0.0012

3 0.0003 11 -0.0002 19 0.0039

4 0.0025 12 -0.0027 20 -0.0036

5 -0.0016 13 -0.0020 21 -0.0002

6 0.0025 14 -0.0087 22 0.0017

7 0.0005 15 -0.0031 23 0.0058

8 -0.0030 16 0.0017 24 0.0038

Cyclic Modeling Error vs. Mode number

1 -0.0060 6 -0.0056 11 -0.0051

2 -0.0060 7 -0.0050 12 -0.0051

3 -0.0057 8 -0.0050 13 -0.0049

4 -0.0057 9 -0.0051

5 -0.0056 10 -0.0051
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Table 2.2: Comparison of the measured natural frequencies of the validation rotor to var-

ious predictions based on the updated CMM model by using a different set of

measured data.

Estimated Frequencies by Updated CMM Using Experiment Maximum

Different Number of Set of Experiment Results (Hz) Results (Hz) Error (%)

13 modes 7 modes 4 modes 3 modes 2 modes

2114.6 2114.4 2114.3 2114.3 2112.2 2114.3 0.099

2115.3 2115.7 2115.5 2114.6 2114.3 2115.3 0.047

2133.3 2133.2 2132.0 2135.4 2132.3 2133.2 0.103

2133.9 2133.5 2132.3 2137.4 2136.6 2134.0 0.159

2143.2 2143.2 2143.2 2143.6 2140.7 2143.2 0.117

2144.9 2145.1 2144.8 2144.6 2143.8 2144.9 0.042

2149.8 2149.9 2149.0 2150.1 2147.0 2150.1 0.144

2150.7 2150.7 2150.2 2151.5 2152.0 2150.6 0.065

2153.2 2153.2 2153.2 2153.7 2154.3 2153.2 0.051

2154.7 2154.8 2154.4 2156.1 2158.0 2154.7 0.153

2156.4 2156.3 2156.3 2157.1 2158.3 2156.3 0.093

2156.8 2156.8 2156.8 2158.3 2158.3 2156.9 0.065

2158.3 2158.3 2158.3 2158.5 2176.2 2158.3 0.824
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Table 2.3: Identified blade stiffness mistuning and cyclic modeling error from the experi-

mental results based on the CMM model of the NASA bladed disk.

Blade stiffness mistuning vs. Blade number

1 -0.0085 9 -0.0416 17 -0.0040 25 -0.0101

2 -0.0198 10 -0.0129 18 0.0385 26 0.0245

3 -0.0384 11 0.0268 19 0.0316

4 -0.0029 12 0.0133 20 -0.0172

5 -0.0003 13 -0.0292 21 0.0003

6 -0.0302 14 -0.0220 22 0.0457

7 0.0207 15 0.0163 23 0.0230

8 0.0081 16 0.0177 24 -0.0292

Cyclic Modeling Error vs. Mode number

1 -0.0412 9 -0.0228 17 -0.0225 25 -0.0227

2 -0.0067 10 -0.0221 18 -0.0223 26 -0.0228

3 -0.0067 11 -0.0221 19 -0.0223

4 -0.0311 12 -0.0221 20 -0.0225

5 -0.0311 13 -0.0221 21 -0.0225

6 0.0238 14 -0.0220 22 -0.0227

7 0.0238 15 -0.0220 23 -0.0227

8 -0.0228 16 -0.0225 24 -0.0227
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Table 2.4: Mass of the leads added to the tip of blade of NASA blisk and corresponding

intentional blade stiffness mistuning.

blade number lead mass (with estimated intentional mistuning

glue weight 0.005g)

11 0.418 -0.0160

18 0.475 -0.0184

19 0.467 -0.0181

22 0.415 -0.0159

26 0.315 -0.0135



CHAPTER III

Experimental Monte Carlo Mistuning Assessment of

Bladed Disk Vibration Using Forcing Variations

Vibration responses of bladed disks in turbine engine rotors has been proved, both an-

alytically and experimentally, to be extremely sensitive to small, random blade-to-blade

variations, or mistuning. Because blade mistuning is random, probabilistic analysis, such

as Monte Carlo simulation, plays a crucial role in forced responses prediction in order

to assess the reliability and safety of the bladed disk performance. However, it is cum-

bersome to assess the effects of random mistuning or validate numerical predictions for a

population of mistuned bladed disks using experimental methods. In this work, as an alter-

native approach for performing vibration testing of many physical mistuning patterns, it is

proposed that varying the external forcing function provided to the blades can be used to

mimic the influence of structural blade property mistuning on the vibration response. Be-

cause it is much easier and more efficient to vary the external excitation than to physically

alter the blades, this opens the possibility of running an experimental analog of a Monte

Carlo simulation. This approach, referred to as an experimental Monte Carlo mistuning

assessment, is explored and validated maby comparing simulations and test data for a 24-

bladed disk. The experimental Monte Carlo results are found to have excellent agreement

with numerical Monte Carlo simulation results for a case of small standard deviation of

59
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mistuning.

3.1 Introduction

It is well known that the vibration response of bladed disks found in turbine engine ro-

tors can be extremely sensitive to small, random blade-to-blade variations, or mistuning. In

particular, mistuning can lead to the vibration energy becoming localized in a few blades,

causing significant increases in maximum blade vibration amplitudes and stress levels [2–

4, 56–58]. Sinha [59, 60] and Mignolet [61–63] proposed various methods to perform

statistical analysis of the mistuned forced response using lumped-parameter model. In or-

der to predict the mistuned forced response in a computationally efficient manner, several

reduced-order modeling techniques have been developed [13, 15, 18, 64, 65]. These meth-

ods can be used to generate reduced-order models that are sufficiently compact that Monte

Carlo simulations, a conventional sample-based approach, can be performed to estimate

the statistics of the forced response for a population of mistuned rotors. In these Monte

Carlo simulations [22, 29, 66, 67], mistuning patterns are assigned with a pseudo-random

number generator, and a certain physical or modal property of each blade (e.g., Young’s

modulus or blade-alone natural frequency) is altered in the model according to its assigned

mistuning value.

However, it is much more difficult to assess the effects of random mistuning or validate

numerical predictions for a decent population using experimental methods. In particular,

imposing specific mistuning patterns on a physical system is challenging. Adding mass is

a usual approach in experimental investigation to apply intentional mistuning, for exam-

ple, Jones [31] attached aluminum bar stock with accelerometer wax to the blade tip in

order to implement a truncated infinite linear mistuning pattern, which reduced the maxi-

mum forced response level of a mistuned bladed disk. Judge [30] glued precisely cut and
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measured lead piece to the blade for experimental investigation on the effect of random

mistuning to forced responses. Although it is an effective means of controlling mistuning

in bench tests, it can be time-consuming and cumbersome to precisely manufacture and

attach the individual mistuning masses. As a result, relatively few mistuning patterns can

be tested using this approach [27, 68]. In an experimental validation of probabilistic anal-

ysis employing FMM model, Rossi et al. [32] generated a fleet of 10 mistuned bladed disk

by attaching mass to blade and obtained test data to compare with the predictions.

In this work, as an alternative approach for vibration testing of many mistuning pat-

terns, it is proposed that varying the external forcing function provided to the blades can

be used to mimic the influence of structural blade property mistuning on the vibration re-

sponse. Because it is much easier and more efficient to vary the external excitation than

to physically alter the blades, this opens the possibility of running an experimental ana-

log of a Monte Carlo simulation.In the following sections, the feasibility of this approach,

referred to as an experimental Monte Carlo mistuning assessment, is explored.

The chapter is organized as follows. In section 3.2, CMM method is once again used

to generate the equation of motion for a mistuned blade disk system. Then, the modified

forcing function is derived to meet the requirement of mimic a given blade mistuning pat-

tern followed by statistic analysis using Weilbull distribution. The excitation system used

in experiment for the forcing supply is specified in section 3.3. In section 3.4, compu-

tational Monte Carlo simulation is performed to narrow down the investigation range of

experiment. The probability density function (PDF) and cumulative distribution function

(CDF) predicted by numerical Monte Carlo simulations are compared to those estimated

from the new experimental approach in section 3.5. Finally the conclusion is given in

section 3.6.
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3.2 Theory

3.2.1 Mistuning identification and model updating based on the CMM method

In the CMM method [18], a selected set of system modes of the tuned bladed disk is

used as a modeling basis [15]. The diagonal matrix of eigenvalues for this set of tuned

system modes is ΛS . Individual blade mistuning is modeled as the deviation of mistuned

cantilevered-blade modal stiffness values from the tuned values. The diagonal matrix con-

taining the mistuning values for all of the blades in cantilevered-blade modal coordinates

is δΛCB. This individual blade mistuning is then projected to the reduced-order model of

the system by relating the cantilevered-blade (component) mode shapes to the blade part

of the system mode shapes. In particular, a matrix of modal participation factors, QCB,

is generated, which defines the transformation of blade mistuning from cantilevered-blade

modal coordinates to the generalized coordinates of the reduced-order model.

In addition, the CMM method has recently been extended by the authors to perform

both mistuning identification and reduced-order model updating [21, 52, 53]. A sensitiv-

ity study was performed to consider the influence of errors in modeling parameters and

measured data on the mistuning identification results. It was observed that the identifi-

cation results are most sensitive to errors in the tuned system eigenvalues. In order to

compensate for these errors, it was proposed that the “cyclic modeling error” could be

identified from the test data assuming the mistuning in the actual system has a mean value

of zero [21, 52]. The cyclic modeling error, δΛS , is defined as the difference between the

tuned system eigenvalues predicted from the finite element model and those identified for

the actual bladed disk. Thus, after identifying the blade mistuning and the cyclic modeling

error, the modal stiffness matrix of the updated model is:

KU = ΛS + δΛS + QCBT
δΛCBQCB (3.1)
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Then, the equations of motion can be expressed in tuned system modal coordinates as:

[
−ω2I + (1 + jγ)KU

]
p = f (3.2)

where ω is the excitation frequency, j =
√
−1, γ is the structural damping factor, p is the

response vector, and f is the forcing vector. Note that the size of the reduced-order model

is equal to the number of selected tuned system modes.

3.2.2 Formulation for modified forces to mimic the effects of structural blade mis-

tuning

In order to perform an experimental Monte Carlo mistuning assessment, the required

forcing variations are determined as follows. Suppose that a given mistuning pattern,

δΛCB
int , is intentionally imposed on a test specimen and a certain engine order excitation

vector, fE , is applied as the forcing function. The equations of motion are then:

[
−ω2I + (1 + jγ)

(
KU + QCBT

δΛCB
int Q

CB
)]

pm = fE (3.3)

where pm is the mistuned vibration response for the given engine order excitation. Now,

assume that the same response could be achieved by mistuning the forcing vector instead

of the structural system. The corresponding equations of motion are:

[
−ω2I + (1 + jγ)KU

]
pm = fm (3.4)

where fm is the modified (or mistuned) forcing vector. From Eq. 3.3, the mistuned response

can be expressed in terms of the given mistuning pattern and engine order excitation:

pm =
[
−ω2I + (1 + jγ)

(
KU + QCBT

δΛCB
int Q

CB
)]

−1

fE (3.5)

Substituting Eq. 3.5 into Eq. 3.4, the mistuned forcing vector is solved as:
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fm =
[
−ω2I + (1 + jγ)KU

][
−ω2I + (1 + jγ)

(
KU + QCBT

δΛCB
int Q

CB
)]

−1

fE (3.6)

Note that the mistuned forcing is frequency-dependent.

3.2.3 Estimation of the three-parameter Weibull distribution

For mistuned bladed disk vibration, the variable of interest is the maximum blade

response for any blade in the system. Therefore, the theory of the statistics of extremes [69,

70] can be used to accelerate the Monte Carlo simulations. In particular, the distribution

of the maximum blade response will tend toward a Weibull distribution. The PDF of a

three-parameter Weibull distribution for maximum values is:

PDF =
β

δ

(
λ − x

δ

)β−1

e−(λ−x
δ )

β

(3.7)

where δ, β and λ are the scale, shape, and location parameters, respectively, and x is the

variable of interest (i.e., the maximum blade response amplitude or magnification factor).

The location parameter represents the upper limit of the value x. In this paper, it is taken to

be the approximate maximum response magnification factor calculated by Whitehead [58],

which is

λ =
1

2

(
1 +

√
N

)
(3.8)

where N is the number of blades in the bladed disk. In a numerical simulation, by us-

ing this approximate value for the upper limit, the other two parameters of the Weibull

distribution can be estimated using data obtained from relatively few Monte Carlo realiza-

tions [29, 67]. In the case of an experimental Monte Carlo assessment, this corresponds to

running relatively few tests with mistuned excitation fields as specified in Eq. 3.6.
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3.3 Experimental Specimen and Excitation System

The experimental facility used to perform experimental Monte Carlo assessment in a

precisely controlled environment, shown in Figure 2.1, includes a non-contacting, traveling-

wave excitation system, as well as a non-contacting measurement system featuring a Scan-

ning Laser Doppler Vibrometer (SLDV). A 24-bladed disk was examined for this study,

and it is shown in Figs. 3.6 and 3.6. Figure 3.6 shows the finite element model and Fig. 3.6

shows the actual bladed disk, which was manufactured to extremely tight tolerances [30].

This bladed disk, which is referred to as the validation rotor, has been used to experimen-

tally validate the CMM approach and the reduced-order model updating method discussed

above [53]. In this study, the frequency range 2110.0 — 2170.0 Hz was considered, which

excites the first flexural bending family of blade-dominated system modes.

Acoustic excitation was provided to the blades by an array of speakers [22, 23, 41],

as seen in Fig. 3.6. Behind each blade, there is a round speaker mounted in a parallel

position with the surface of the blade in order to apply an acoustic force. These speakers

are driven by a series of Hewlett-Packard 8904 Multifunction Synthesizers, each with

two independent but phase-synchronized channels. The speakers were carefully calibrated

using white noise excitation first. Then, the speakers were mounted on the plastic fixtures,

and a sinusoidal signal was sent to each speaker, one at a time. A calibrated microphone

was used to record the sound pressure level at a fixed distance from the speaker, similar to

the distance to the individual blade when it is mounted on the fixture. The amplitude and

phase of the excitation signal were adjusted in order to achieve a flat frequency response

of the sound pressure level produced by the speaker. This process was digitally controlled

and it was repeated, in turn, for each speaker on the fixture.

To achieve engine order excitation, all the speakers are driven simultaneously to deliver
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forces of the same amplitude, but with a proscribed phase lag between adjacent speakers:

φ =
2πC

N
(3.9)

where C is the engine order of the excitation. Thus, the force for blade number n can be

written as:

fn = f0 cos (ωt + (n − 1) φ) (3.10)

where f0 is the force amplitude. Thus any engine order excitation can be obtained by

simply changing the phase lag. The traveling-wave excitation system not only simulates

the forcing experienced by a rotating bladed disk in an engine, but it also provides non-

contacting excitation [23, 30].

For the experimental system used in this investigation, the amplitude of the excitation

was controlled independently for each speaker. However, only 12 channels were available

for independent phase control. For the validation rotor with 24 blades, this was sufficient to

deliver engine order excitation. This is because, for any engine order, the phase of speaker

n + 12 is either 0 or 180 degrees behind the phase of speaker n. Therefore, specific phase

values were delivered to blades 1 to 12, and the same or inverted signals were delivered to

blades 13 to 24, respectively. However, when the “mistuned” excitation of Eq. 3.6 is used,

this phase relationship no longer holds, and individual phase control would be needed to

deliver the mistuned excitation field precisely. The lack of independent phase control for

all speakers thus introduced some experimental error. Shelley et al. [71] demonstrated

that a feedback control technique known as eigenvector scaling to modify the entire set

of system mode shape, however, it is extremely difficult to match every single pattern

with desired excitation even if feedback control is adopted in case of lacking independent

access to amplitude and phase respectively.
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3.4 Computational Monte Carlo Simulation

In order to perform computational Monte Carlo simulations, mistuning identification

and model updating techniques were first applied to the validation rotor experimentally to

obtain the updated CMM model for the first flexural bending family of blade-dominated

system modes. The standard deviation of identified blade stiffness mistuning was 0.29%.

Then, for a given value of standard deviation of mistuning, 1000 random mistuning pat-

terns generated from a uniform distribution were added to the updated CMM model. For

each simulated mistuned system, a frequency sweep was performed, and the highest peak

response value of any blade in the mistuned system was determined. This value was di-

vided by the peak response value of the tuned system to yield a magnification factor. Then

the Weibull distribution of the magnification factor was estimated from the data. This

process was performed for engine orders 6 to 12.

The Monte Carlo simulation results for engine orders 6 to 12 are depicted in Figs. 3.6

and 3.6. It is seen that the magnification factor can be very sensitive to the mistuning level

for small values of standard deviation. However, the case of engine order 8 excitation

shows smoother slope than engine order 12 for small mistuning levels. This was also

found to be true while comparing to engine orders 6, 7, and 9 to 11. Therefore, engine

order 8 excitation was chosen for conducting the experimental Monte Carlo assessments.

As mentioned above, the experimental setup had entirely independent control over the

amplitudes of external forces but not the phases. Therefore, it was desired to keep the

mistuned part of the force used in the experiment sufficiently small so that no dramatic

effect on the phase relative to engine order 8 excitation was required. For this reason, a

mistuning standard deviation of 0.1% was chosen.

Focusing on a mistuning level of 0.1%, 200 random mistuning patterns were added to
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the updated CMM model, and the maximum blade response amplitudes were calculated

for engine order 8 in the range 2145–2160 Hz. The histogram of maximum mistuned

blade response amplitudes is shown in Fig. 3.6, and the resonant frequency distribution is

depicted in Fig. 3.6. Based on these results, the investigated frequency range was selected

as 2147.2 — 2152.5 Hz for the experimental work, in order to reduce the required testing

time.

3.5 Experimental Monte Carlo Mistuning Assessment

In all of the following experiments, the tuned force needed on the right-hand side of

Eq. 3.6 was chosen as engine order 8 excitation, and the investigated frequency range was

2147.2 — 2152.5 Hz with a step size of 0.1 Hz. The raw measured results obtained with

a Scanning Laser Doppler Vibrometer were the displacements at the tips of the blades ex-

cited by mistuned forces, and the maximum blade response amplitude was found for each

mistuning pattern. These values were later divided by the maximum blade response of the

rotor subject to engine order 8 excitation (the “tuned” case) to obtain the magnification

factors as the input data for the Weibull distribution. Using the three-parameter Weibull

distribution given in equation 3.7, the PDF and CDF were calculated from the experi-

mental data. The test results were then compared to numerical predictions by applying the

same group of mistuning patterns to the updated CMM model.

3.5.1 Experimental Trial 1

The first experimental trial was run for a set of 80 mistuning patterns. Figure 3.6

shows the PDF and CDF results for the first 20 mistuning patterns tested, which match

fairly well with the predictions. For example, the CDF from the Monte Carlo simulation

indicates that 99.9% of the magnification factors are expected to be lower than 1.6, which

is corroborated by the experimental results. The capability of forecasting such a high-
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percentile response is especially useful in assessing the durability and reliability of bladed

disks. Figure 3.6 shows the PDF and CDF results for the first 40 mistuning patterns tested.

There is excellent agreement between the numerical and experimental results.

However, as the number of mistuning patterns was increased to 60 and then to 80,

the experimental Monte Carlo results started to deviate from the numerical simulation

results, as seen in Figs. 3.6 and 3.6. It is believed that this was due to a breakdown of

the temperature control in the experimental laboratory, which led to inconsistent room

temperatures for the last 40 patterns of this first trial. The room temperature should be

kept consistent, since the blade displacements being measured are on the micron level.

Nevertheless, note that there is still good agreement for the high-percentile values (e.g.,

99.9th percentile) of the magnification factors. This indicates that the experimental Monte

Carlo assessment shows great promise in terms of providing a robust prediction of the

worst-case mistuning effects.

3.5.2 Experimental Trial 2

For a second experimental trial, another 80 random mistuning patterns were analyzed

for the validation rotor. This time, the experimental environment was kept consistent

throughout the testing. The PDF and CDF results from trial 2 are depicted in Figs. 3.6–3.6.

It can be seen that both the PDF and CDF results match well with the predictions, espe-

cially when all 80 mistuning patterns are considered. Regarding the discrepancies seen in

Figs. 3.6 and 3.6, the main source of error is most likely the lack of precise phase con-

trol for all speakers. However, unlike the results of trial 1, these results seem to indicate

that the experimental and computational results are starting to converge after 80 mistuning

patterns, and it is expected that the agreement would improve with more patterns.
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3.6 Conclusions

An innovative method for experimental Monte Carlo assessment of mistuned bladed

disks has been established. The blade mistuning was recast in the equations of motion as

modified external forces. This implies that various mistuning patterns can be imposed in a

test environment by varying the external excitation rather than making structural changes.

This approach was then validated with a series of tests performed on a 24-blade valida-

tion rotor. For a case with 0.1% standard deviation of the implemented mistuning, the

experimental results matched the numerical predictions quite well. The match was espe-

cially good for high-percentile response values, which indicates that this approach might

be useful for assessing the safety and reliability of a bladed disk.

The main limitation for the application of the technique in this initial study was the

lack of individual phase control over each speaker that provides external excitation to each

blade. As a result, only mistuning patterns generated from a distribution with a small stan-

dard deviation could be investigated in this work. However, if one had independent phase

and amplitude control for each speaker in the acoustic excitation system, this restriction to

small mistuning levels would be alleviated. Moreover, compared to previous experimen-

tal mistuning methods such as attaching masses to the blades, this new approach is more

flexible and efficient.
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Figure 3.1: Finite element model of the bladed disk.
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Figure 3.2: Actual bladed disk used in the experiment, shown with the acoustic excitation

system.
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(a) EOE 6

(b) EOE 7

Figure 3.3: Monte Carlo simulation of originally mistuned system by engine order excita-

tion (EOE) 6 – 7, 1000 random mistuning.
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(a) EOE 8

(b) EOE 9

Figure 3.4: Monte Carlo simulation of originally mistuned system by engine order excita-

tion (EOE) 8 – 9, 1000 random mistuning.
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(a) EOE 10

(b) EOE 11

Figure 3.5: Monte Carlo simulation of originally mistuned system by engine order excita-

tion (EOE) 10 – 11, 1000 random mistuning.
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Figure 3.6: Monte Carlo simulation of originally mistuned system by engine order excita-

tion (EOE) 12, 1000 random mistuning.
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Figure 3.7: Histogram of the maximum blade response amplitude obtained by Monte

Carlo simulation, based on 200 mistuning patterns generated from a uniform

distribution with standard deviation = 0.1%.
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curred, based on 200 mistuning patterns generated from a uniform distribution

with standard deviation = 0.1%.
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Figure 3.9: Trial 1, 20 mistuning patterns generated from a uniform distribution with stan-

dard deviation = 0.1%. Comparison of the probability density function (PDF)

and cumulative distribution function (CDF) between the experimental results

and the predictions based on the updated CMM model.
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Figure 3.10: Trial 1, 40 mistuning patterns generated from a uniform distribution with

standard deviation = 0.1%. Comparison of the probability density function

(PDF) and cumulative distribution function (CDF) between the experimental

results and the predictions based on the updated CMM model.
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Figure 3.11: Trial 1, 60 mistuning patterns generated from a uniform distribution with

standard deviation = 0.1%. Comparison of the probability density function

(PDF) and cumulative distribution function (CDF) between the experimental

results and the predictions based on the updated CMM model.
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Figure 3.12: Trial 1, 80 mistuning patterns generated from a uniform distribution with

standard deviation = 0.1%. Comparison of the probability density function

(PDF) and cumulative distribution function (CDF) between the experimental

results and the predictions based on the updated CMM model.
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Figure 3.13: Trial 2, 20 mistuning patterns generated from a uniform distribution with

standard deviation = 0.1%. Comparison of the probability density function

(PDF) and cumulative distribution function (CDF) between the experimental

results and the predictions based on the updated CMM model.
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Figure 3.14: Trial 2, 40 mistuning patterns generated from a uniform distribution with

standard deviation = 0.1%. Comparison of the probability density function

(PDF) and cumulative distribution function (CDF) between the experimental

results and the predictions based on the updated CMM model.
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Figure 3.15: Trial 2, 60 mistuning patterns generated from a uniform distribution with

standard deviation = 0.1%. Comparison of the probability density function

(PDF) and cumulative distribution function (CDF) between the experimental

results and the predictions based on the updated CMM model.
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Figure 3.16: Trial 2, 80 mistuning patterns generated from a uniform distribution with

standard deviation = 0.1%. Comparison of the probability density function

(PDF) and cumulative distribution function (CDF) between the experimental

results and the predictions based on the updated CMM model.



CHAPTER IV

Identification of Blade Excitation Parameters in Mistuned

Blisk Vibration Tests

It is well known that the vibration response of bladed disks found in turbine engine

rotors can be extremely sensitive to small, random blade-to-blade variations, or mistun-

ing. In particular, mistuning can lead to the vibration energy becoming localized in a few

blades, causing significant increases in maximum blade amplitude and stress levels. In or-

der to predict the mistuned forced response in a computationally efficient manner, several

reduced-order modeling techniques have been developed. Some of these methods have

been used as a basis for developing an experimental mistuning identification method for

one-piece bladed disks, or blisks. By running only a few forced response tests for the full

blisk, the individual blade mistuning values can be extracted. However, the accuracy of a

blisk vibration test often depends on the careful positioning and calibration of the external

excitation system. For example, to generate engine order excitation in a bench test envi-

ronment, a sinusoidal forcing must be delivered with the same amplitude at each blade,

and the blade-to-blade phase lag must also be consistent throughout the system. In very

recent work by the investigators, it has been found that variations in the actual forcing

pattern from perfect engine order excitation can have a similar effect as structural blade

mistuning on the system response. Thus, accounting for the uncertainties in the forcing

87
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may be crucial to improving the calibration and accuracy of blisk vibration tests. In this

paper, a mistuning identification method is extended to also identify the forcing ampli-

tude and phase parameters for the excited blades. It is shown that blade mistuning and

excitation parameters can be identified either simultaneously or sequentially using data

obtained from a small set of prescribed forced response tests. This new technique is val-

idated using both numerical simulations and experiments for a blisk with 24 blades. It is

seen that this approach shows promise as a powerful tool for controlling excitation levels

and accelerating calibration procedures.

4.1 Introduction

Bladed disks such as those in turbine engines are ideally assumed to be an assembly

of identical substructures (or sectors) that are dynamically coupled in an identical manner.

However, there are always small, random deviations in the sector properties due to manu-

facturing tolerances, material defects, operational wear, etc. It has long been known that

these small, random blade-to-blade discrepancies, known as mistuning, can have a drastic

effect on the vibration response of a bladed disk [2–4]. In particular, mistuning can lead

to the vibration energy becoming localized in a few blades, causing significant increases

in maximum blade vibration amplitudes and stress levels. In order to predict the mistuned

forced response in a computationally efficient manner, several reduced-order modeling

techniques have been developed using component-modes-based methods [13, 14, 72, 73]

or system-mode-based methods [15–18, 64].

The development of these reduced-order modeling techniques has led to increased re-

search activity in vibration testing of bladed disks. Many of these efforts have focused on

one-piece bladed disks, or blisks, in part because their vibration response can be examined

in a stationary bench test environment, which is simpler than having to test the system in
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a spin rig. Nevertheless, the accuracy of blisk vibration tests still depends on the careful

positioning of the test specimen as well as the calibration of the external excitation sys-

tem. This is especially true for the case of engine order excitation. To generate true engine

order excitation in a bench test environment, a sinusoidal forcing must be delivered with

the same amplitude at each blade, and the blade-to-blade phase lag must also be consis-

tent throughout the system. Such engine order or traveling wave excitation systems have

employed speakers, horn drivers with vinyl tubing, electromagnets, or a specifically de-

signed flywheel to excite the blades [22, 31, 33, 34]. Regardless of the excitation method,

time-consuming calibration procedures are required in order to obtain the specific relations

between any two of the three key elements—frequency, amplitude and phase—so that the

desired output signals are guaranteed. Moreover, for those excitation systems without

precisely controlled positioning, it may be necessary to account for another factor in the

calibration process, which is the distance between the excitation system and the blade.

Even when meticulous calibrations of the speakers or other excitation devices are per-

formed beforehand, uncertainties in forcing are inevitable during vibration tests. For ex-

ample, in a traveling wave excitation system employing speakers [23, 30, 53, 74], uncer-

tainties in forcing could be caused by random noise in the signal conditioning circuits,

gradual wear of the speakers, positioning variance due to rearranging the speaker config-

uration, etc. Moreover, it has been found that variations in the actual forcing pattern from

perfect engine order excitation can have a similar effect as structural blade mistuning on

the system response [74]. Shah et al. [75] conducted a numerical probabilistic analysis

on a mistuned turbine rotor and reported significant effect of uncertainties in the excita-

tion frequency to mistuning leading to larger magnification factors. Thus, accounting for

the uncertainties in the forcing may be crucial to improve the calibration and accuracy

of bladed disk vibration tests, which is especially true in realistic engine operation en-
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vironment considering the complexity of controlling the forcing in the engine exactly as

designed.

In this chapter, the identification and impact of uncertainties in the external excita-

tion are investigated in detail. The primary contribution is that a mistuning identification

method is extended to also identify the amplitude and phase of the forcing applied to each

excited blade. It is shown that blade mistuning and forcing parameters can be identified

simultaneously or sequentially by carrying out a small set of prescribed forced response

experiments. This new technique is validated using both numerical simulations and exper-

iments. It is shown that this approach shows promise as a powerful tool for accelerating

the calibration process.

This chapter is organized as follows. The simultaneous and sequential methods for

mistuning and external forcing identification are derived in section 4.2. In section 4.3,

several different examples are employed to numerically validate the proposed algorithm.

In section 4.4, experimental results for a 24-blade blisk are presented. Conclusions from

this study are given in section 4.5.

4.2 External Forcing Identification

4.2.1 Background–CMM Modeling for Mistuned Bladed Disks

In this section, the component mode mistuning (CMM) method for reduced-order mod-

eling of mistuned bladed disks, and a CMM-based mistuning identification technique, are

briefly reviewed. These methods were originally presented in refereces [18, 21, 52]. In the

case of small mistuning, the author suggested that the blade-alone mistuning in the ROM

can be projected from cantilevered blade normal mode coordinates to the tuned system

modal coordinates, by representing the blade motion with its modal participation factors.

Here, it is assumed that the blade mass matrix is tuned and that mistuning only occurs in
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the stiffness matrix. In addition, for convenience, it is assumed that only one mode or mode

pair per harmonic (nodal diameter) is kept in the reduced-order model, and that these are

mostly blade-dominated modes corresponding to a single cantilevered blade mode. These

assumptions are not required, but they simplify the derivation. In particular, only one

mistuning parameter must be identified for each blade, and the number of reduced-order

model degrees of freedom (DOF) is equal to the number of blades.

Following the above ideas and assumptions, the equations of motion can be expressed

in tuned system modal coordinates as:

[
−ω2I + (1 + jγ)

(
ΛS + δΛS + QCBT

δΛCBQCB
)]

p = fS (4.1)

where ω is the excitation frequency, γ is the structural damping factor, and p and fS

are both vectors in tuned-system modal coordinates containing blade displacement and

applied force respectively. In addition, ΛS is the diagonal matrix of eigenvalues for the

selected set of system modes used as a modeling basis. Individual blade mistuning is mod-

eled as the deviation of mistuned cantilevered blade eigenvalues from the tuned values.

The diagonal matrix containing the mistuning values for all of the blades in cantilevered

blade modal coordinates is δΛCB. The off-diagonal terms which representing the cou-

pling between cantilevered blade modes due to mistuning are neglected. This individual

blade mistuning is then projected to the reduced-order model of the system by relating the

cantilevered-blade (component) mode shapes to the blade part of the system mode shapes.

In particular, a matrix of modal participation factors, QCB, is generated, which defines

the transformation of blade mistuning from cantilevered-blade modal coordinates to the

generalized coordinates of the reduced-order model. Moreover, the “cyclic modeling er-

ror” terms, δΛS , are defined as the difference between the tuned system eigenvalues of an

actual bladed disk and the eigenvalues predicted from the tuned finite element model [21].
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Because there is no tuned system in reality, the tuned eigenvalues of the actual system

are deduced from the test data by assuming the mistuning has a mean value of zero. The

concept of cyclic modeling error was originally motivated by a sensitivity study that was

performed to consider the influence of errors in modeling parameters and measured data

on the mistuning identification results [18]. It was observed that the identification results

were most sensitive to errors in the tuned system eigenvalues.

While an inverse process for identifying the blade mistuning cyclic modeling error is

pursued, the forcing is eliminated by subtracting the equations at two different resonant

frequencies, ωi and ωj , assuming the same external forcing at each excitation frequency.

Applying this approach to Eq. 4.1 leads to the following expression:

−
(
ω2

i pi − ω2

jpj

)
+ (1 + jγ)

[
ΛS + δΛS + QCBT

δΛCBQCB
]
(pi − pj) = 0 (4.2)

Otherwise, if the structural damping is small and individual system modes can be excited

near their natural frequencies, the forcing in Eq. 4.1 can be ignored by assuming a free

response case:

[
−ω2I + (1 + jγ)

(
ΛS + δΛS + QCBT

δΛCBQCB
)]

p = 0 (4.3)

Although δΛS and δΛCB are the unknowns introduced in the Eq. 4.1, the actual vari-

ables identified from the algorithm, DS and DCB, are slightly different yet related to them

based on the following expressions:

δΛS = ΛS · DS (4.4a)

δΛCB = λCB · DCB (4.4b)
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where λCB is the tuned cantilevered blade eigenvalue for this investigated family, DS and

DCB are diagonal matrix respectively in the same format as δΛS and δΛCB. Therefore

the Eq. 4.3 can be re-written as follows:

[
−ω2I + (1 + jγ)

(
ΛS(I + DS) + QCBT

(λCB · DCB)QCB

)]
p = 0 (4.5)

Since the unknowns in this case are only the diagonal terms of DS and DCB, which can

be represented respectively by two vectors notated as dS and dCB, the algorithm for mis-

tuning identification and model updating can be cast into the following form:

[
AS ACB

]




dS

dCB





= B (4.6)

where AS and ACB are the reframed coefficient matrices in order to arrange unknowns

from δΛS and δΛCB into dS and dCB. All of them are fully known once the blade re-

sponses p are obtained at desired excitation frequencies ω. A more detailed formulation

of the mistuning identification and model updating equations, including the matrix refor-

matting process, is provided in Appendix A.

4.2.2 Simultaneous System and Forcing Identification

As discussed above, in previous research on mistuning identification, the external forc-

ing was either ignored (free response) or eliminated by subtracting equations at different

frequencies based on the assumption of consistent forcing within the investigated fre-

quency range. However, the recent investigation covered in the preceding chapter has

shown that variations in the actual forcing pattern from perfect engine order excitation can

have a similar effect as structural blade mistuning on the system response. Such “mis-

tuned forcing” cases will inevitably occur in vibration tests, due to calibration errors, sig-
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nal conditioning errors in amplifier circuits, etc. Moreover, it is highly time-consuming

and cumbersome to delicately calibrate the external forcing in order to keep it consistent.

Therefore, it is of practical importance to assess the mistuning of external forces—that is,

to identify the actual forcing that the blades receive.

For forcing identification, the suggested approach is straightforward. It is assumed

that an external force is applied at a certain point on each blade. A node in the blade finite

element model is selected to approximately match to the position of the actual forcing

given in the vibration testing. According to Eq. 4.1, assuming the external forcing vector

is expressed in physical coordinates and has one DOF per blade, the equations of motion

can be reframed as:

[
−ω2I + (1 + jγ) (ΛS + δΛS + QCBT

δΛCBQCB)
]
p = ΦST

CBfCB (4.7)

Compared to Eq. 4.3, there is one more unknown variable introduced into the equation,

external forcing fCB. And ΦS
CB is the matrix of the blade part of tuned-system mode

shapes, which defines the transformation of physical forcing on each blade to the forcing

in modal coordinates. It is convenient to expand the brief format of Eq. 4.6 as:

[
AS ACB Af

]





dS

dCB

fCB





= B (4.8a)

Af = −ΦST

CB
(4.8b)

where AS and ACB are the same as described in the section above, and Af is the co-

efficient matrix of the new unknown, external forcing fCB. In the algorithm of mistun-
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ing identification and model updating shown as Eq. 4.6, the least squares method is em-

ployed to optimize the solution results (minimize the residual) for the typical case in which

the coefficient matrix is non-square, i.e., there are more equations than unknowns due to

the amount of collected test data. Nevertheless, in forcing identification, the coefficient

matrix associated with unknown forcing implicates no relation with the measurements

x(p = ΦS
CBx), the least squares method will not provide more accurate results. It is ap-

parent that the size of matrices AS and ACB grow with the increasing number of measure-

ments because of the involvement of x, however, the Af is simply expanded by repeating

ΦST

CB. It is the redundancy of matrix Af that introduces variations from the expected values

of forcing.

4.2.3 Sequential System and Forcing Identification

Considering the random testing error and the advantage of the least squares method,

an alternative approach is presented as sequential system and forcing identification which

consists of two steps. At first the blade mistuning and cyclic modeling error are identified

while the external forcing is neglected as shown in Eq. 4.6. After using the identification

results to construct a reduced-order model of the mistuned bladed disk, the external forcing

can be calculated according to Eq. 4.1. By this mean, it is a repeat use of the same group

of information without demanding additional measurements. And more important, the

sequential process can benefit from the least squares method when the testing error is

inevitable.

fCB = ΦST

CB

−1
[
−ω2I + (1 + jγ)KU

]
p (4.9a)

KU = ΛS + δΛS + QCBT

δΛCBQCB (4.9b)
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For example, a frequency sweep is performed within the interested frequency range of

50Hz while the step size is set as 0.1Hz. There are 20 mistuned system modes involved

so that the blade responses p =
[
p1 p2 · · · p20

]
are selected at those 20 resonant

peaks since they meet the two particular assumptions for applying Eq. 4.6. Then the CMM

model of the mistuned bladed disk is updated to provide a known base for calculating the

500 different external forcing at each measured frequencies (50Hz/0.1Hz= 500). One

application is to document these 500 forces as a calibration file for excitation in the 50Hz

range.

4.3 Numerical Validation

4.3.1 Simultaneous Identification Method — Industrial Blisk

A 29-blade compressor stage from an industrial gas turbine was first used to numer-

ically validate the simultaneous system and forcing identification approach. Figure 4.1

shows the finite element model (FEM) of this industrial blisk and Fig. 4.2 shows the sys-

tem natural frequencies versus nodal diameters. The abbreviations on the plot identify the

corresponding blade mode family. For example, 1F stands for the first flexural (F) bending

mode family. The other mode types are torsion (T), stripe (S) or chordwise bending, and

edgewise (E) bending.

The general procedure for numerical validation is described as follows. First, a tuned

CMM model of this industrial blisk was generated from using model data and results from

the parent FEM, e.g., tuned-system eigenvalues ΛS . Then it was mistuned by a given

blade stiffness mistuning pattern, δΛCB, and a given set of cyclic modeling error values,

δΛS . Next, either single-blade excitation (SBE) or multi-blade excitation (MBE), with

forcing vector fCB, was applied to the mistuned CMM model, and the mistuned response

x was obtained at all resonant frequencies. Finally, the response vectors x and resonant
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frequencies ω were used as “test” data for the identification algorithm Eq. 4.8 to calculate

both mistuning and external forcing parameters.

First Flexural (1F) Bending Mode Family

For the first flexural bending mode family around 2300 Hz, there were three different

cases investigated: SBE(3), MBE(3,17), and MBE(3,17,20). The numbers in parentheses

denote the blades on which forcing is applied, and the forcing values used for all three

cases are listed in Table 4.1. For example, for SBE(3), all the elements of the forcing

vector were zero except the one corresponding to blade 3:

fCB = [f1 f2 f3 · · · f28 f29] (4.10a)

f3 = 8.665 − j4.237; fi = 0, i 6= 3 (4.10b)

The real and imaginary parts of f3 were selected arbitrarily. Note that the identification

process was performed using a compact CMM model with the number of DOF equal to

the number of blades.

Figure 4.4 presents the identification results for SBE(3). The horizontal axis, labeled

“System Mode Used”, represents the mode number (corresponding to one specific reso-

nant frequency) for which the measurement is taken. Note that all the identification results

were obtained by only including one measurement in Eq. 4.8, which means that x is a sin-

gle column vector. More specifically, for Eq. 4.8, there were 29 unknown blade mistuning

values, 15 unknown cyclic modeling errors (one each for nodal diameters 0–14), plus 2

more unknown forcing terms (the real and imaginary parts of f3). However, one x yields

58 equations, counting both the real and imaginary parts. Therefore, only one measure-

ment is sufficient to identify the force as well as the mistuning. It can be seen in the left
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column of Fig. 4.4 that fairly good agreement is observed between most of the predictions

(circles) and identification results (stars). In the right column, the errors of simultaneous

forcing identification for amplitude and phase are depicted. Most of the errors are less

than 3% except those identification results obtained by using measurements at mode 28

and 29, which probably drift apart from the expected value line due to the redundancy of

the coefficient matrix Af .

Figures 4.5 and 4.7 show the errors of the identification results for MBE(3,17) and

MBE(3,17,20), respectively. The match is generally good, with errors less than 3%. Fig-

ure 4.3 compares the simultaneous results of mistuning identification to the known mis-

tuning patterns for all three forcing cases. For these examples, the accuracy of mistuning

identification was not adversely affected by identifying external forcing at the same time.

The maximum errors appear when the assigned mistuning values are close to zero, such

that any small deviation leads to high relative error values.

Mixed 2F/2T Mode Family

A higher frequency range around 15 kHz, which is the mixed second flexural bending

and second torsion mode family, was also considered to examine the capability of the si-

multaneous identification algorithm. The SBE(3) case was used for the forcing, and only

one measurement at one resonant frequency was substituted into Eq. 4.8 for the simulta-

neous identification process. The identification results are displayed in Fig. 4.9. These

results consistently match with the assigned forcing values, indicating that the approach

works well for this higher frequency range for the industrial blisk. However, it is noted

that, because the validation is numerical, no errors exist in the input data to the identifica-

tion equations.
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4.3.2 Simultaneous Identification Method — NASA Blisk

For an additional example system for numerical validation, the identification algorithm

was applied to a 26-blade NASA compressor rotor. Figure 4.10 shows the finite element

model of this NASA blisk. Note that this system features a more complex blade geometry

than the other examples. The basic procedure was repeated as described in section of

Industrial Blisk above. Since the FEM of the NASA blisk is much larger in terms of DOF

than the previous example, and the finite element analysis runs required for validation

purposes are computationally expensive, only single-blade excitation (applied to blade 4)

was considered in this study.

Figures 4.12 and 4.13 present the identification results for the external forcing and

mistuning, respectively. Each result was obtained using only a single resonant response

measurement vector, with the system mode corresponding to the resonance shown as the

x axis. In general, these identification results match well with the known values. For

a few modes, however, there is significant error in the results, especially for mode 12.

One approach to making the results more robust would be to discard the outliers and

average the remaining values. A more rigorous strategy would be to use the model and/or

test data to determine which resonant response measurements will work best for accurate

identification. However, this is beyond the scope of the present study and is left for future

work.

4.3.3 Comparison of Simultaneous and Sequential Identification Methods — Vali-

dation Blisk

Figure 4.14 shows the finite element model of a 24-blade blisk that was designed at

the University of Michigan specifically for validation purposes. This is referred to as the

validation blisk, and it has a structural damping factor of 0.00015.

First, the simultaneous identification method was examined with this example system.
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The MBE(2,9,17) case was applied to the validation blisk around 2100 Hz, the first flex-

ural bending (1F) family, and the blade responses were collected to identify the external

forcing as suggested in the section above. Figure 4.16 shows very scattered identifica-

tion results with generally poor agreement with the known values. This inaccuracy might

be caused the low levels of both structural damping and mistuning for this blisk, which

lead to the mode shapes and forced response shapes being almost identical. According to

Eq. 4.1, if p is substituted by mode shape then the f on the right side should be set as 0.

However, in forcing identification, the same equation is used assuming there is nonzero

external forcing, which causes the deviation.

An alternative approach, sequential system and forcing identification, is applied to

assess the performance of the sequential method in this challenging case. The unknown

system properties (blade stiffness mistuning and cyclic modeling error parameters) were

obtained first using the previously developed identification process. Then, based on the

updated reduced-order model and test results (numerically generated or experimentally

measured) for blade response, the external forcing can be calculated directly from the

equations of motion.

This sequential approach has some clear advantages over the simultaneous approach.

First, because the system identification process remains unchanged, its accuracy cannot

be adversely affected by performing forcing identification. Second, because the forcing

identification is treated as a separate, optional process, it is simpler to implement in analy-

sis software and experimental procedures. Third, because the least squares optimization is

applied sequentially to two smaller problems, this may improve the accuracy of the forcing

identification process.

The numerical results for the sequential identification method are presented in Fig. 4.17.

Note that there is excellent agreement with the known values, in stark contrast to the poor
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results from the simultaneous method. This illustrates the advantages of the sequential

approach described above. Figure 4.18 shows the errors of sequential forcing identifica-

tion for blade 2 compared to simultaneous forcing identification. Clearly, the sequential

method is much more accurate for this case, with the maximum error less than 3% com-

pared to an error of more than 140% for the simultaneous approach.

Moreover, in vibration tests, it is sufficiently difficult to identify the modal parameters

considering testing errors, environment noise, etc., without enlarging the scope of the

problem to identify more parameters. Therefore, the sequential approach is recommended

for identifying the external forcing.

4.4 Experimental Validation

4.4.1 Experimental Specimen and Excitation System

The 24-blade validation blisk introduced in previous section was also employed for

the purpose of experimental validation. The actual blisk, which was manufactured to ex-

tremely tight tolerances[30], is shown in Fig. 4.21. This blisk has previously been used to

experimentally validate the CMM approach and the reduced-order model updating method

discussed above [53].

Acoustic excitation was provided to the blades by an array of speakers[22, 23], as seen

in Fig. 4.21. Behind each blade, a round speaker was mounted parallel to the surface

of the blade in order to apply an acoustic force. These speakers were driven by a se-

ries of Hewlett-Packard 8904 Multifunction Synthesizers, each with two independent but

phase-synchronized channels. The speakers were carefully calibrated using white noise

excitation first. Then, the speakers were mounted on the plastic fixtures, and a sinusoidal

signal was sent to each speaker, one at a time. A calibrated microphone was used to record

the sound pressure level at a fixed distance from the speaker, similar to the distance to
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the individual blade when it is mounted on the fixture. The amplitude and phase of the

excitation signal were both documented as reference.

4.4.2 Single-Blade Excitation

Because it was so carefully designed and manufactured, the original validation blisk

was nearly tuned. Therefore, mistuning was added intentionally by attaching a group of

small lead masses (details in table 4.2) to the tips of selected blades. By this means, a

new baseline system was created, as shown in figure 4.22, in order to observe localized

responses that are more typical of an actual blisk. Therefore, the contribution of external

forcing to the blade responses can be more readily evidenced. The resonant frequencies for

part of the first flexural bending (1F) family of the intentionally mistuned rotor, including

only blade-dominated system modes, was found within the range of 2100.0—2160.0 Hz

as predicted.

As for the benchmark test, the external forcing of SBE was set as fi = 1×sin(ωt+45),

where i can be any one of the 24 speakers. The forcing was later changed into fi =

0.5 × sin(ωt + 225). Thus, the difference between the two applied forcing cases should

appear as a 180-degree increase in phase and a 50% decrease in magnitude. First, SBE(17)

was applied, followed by SBE(24). In both cases, the blade responses x at resonant fre-

quencies within 2100–2160 Hz were measured and then placed into Eq. 4.6, while the

forcing terms were neglected. Figure 4.22 shows the mistuning pattern identified from

experimental measurements for SBE(17). Note the excellent agreement between known

and identified mistuning patterns. The results for SBE(24) were nearly identical, so they

are not shown. Using these results, the CMM model was updated to represent the mis-

tuned system. Figure 4.23 and 4.24 show the results of forcing identification based on the

updated CMM model according to Eq. 4.7, using the same group of measurements. It is
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seen that the shifts in magnitude and phase are captured accurately. This approach is very

efficient because the whole system, not only the reduced-order model of the rotor itself

but also the external excitation system, is identified and updated consecutively using same

group of measurements, and no previous calibration is required.

4.4.3 Multi-Blade Excitation

For the MBE(17,24) case, blades 17 and 24 were excited simultaneously in the exact

same manner as described above for the SBE(17) and SBE(24) cases. The identified forc-

ing parameters for blades 17 and 24 are depicted in Fig. 4.25. The shifts in phase and

magnitude are well captured for the MBE(17,24) case. The errors in identified magni-

tude and phase values are displayed in Fig. 4.26. For the phase, there was a system error

of about 8 degrees due to the phase delay between input signal and speaker response. It

is encouraging that the accuracy of forcing identification was robust with respect to this

experimental error. These results again suggest that the sequential approach for forcing

identification shows great promise for implementation as a practical calibration tool in the

laboratory.

4.4.4 Perturbed Engine Order Excitation

To achieve engine order excitation, all the speakers were driven simultaneously to

deliver forces of the same amplitude, but with a specified phase lag between adjacent

speakers:

φ =
2πC

N
(4.11)

where C is the engine order of the excitation. Thus, the force for blade number n can be

written as:

fn = f0 cos (ωt + (n − 1) φ) (4.12)
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where f0 is the force amplitude. Thus any engine order excitation can be obtained by

simply changing the phase lag. The traveling-wave excitation system not only simulates

the forcing experienced by a rotating bladed disk in an engine, but it also provides non-

contacting excitation [23, 30].

In order to further validate the sequential method, a random perturbation was added to

the pure engine order excitation. Figure 4.27 compares the pure engine order 8 excitation

generated by calibrating all the speakers carefully and the perturbed engine order 8 exci-

tation that results from introducing errors into the phase lags between adjacent speakers.

All the forcing terms were calculated as follows: 1) a frequency sweep was conducted

within 2110–2160 Hz; 2) mistuning identification and model updating were performed

using selected blade responses at resonant frequencies by neglecting the forcing according

to Eq. 4.6; 3) external forcing was identified based on the same set of blade responses as

showed in Eq. 4.9, with no extra tests performed; 4) finally, the identified forcing term was

substituted into Eq. 4.1 to calculate the expected blisk response to the actual forcing.

In Fig. 4.28 and 4.29, the experimental results of frequency sweep on blade 2 and

blade 9 are compared to the predictions for the pure and perturbed engine order 8 excita-

tion cases. Apparently, the identified forcing captures the small perturbations added to the

pure engine excitation, and therefore it yields great agreement between expected and mea-

sured response values. Therefore, this sequential approach is useful not only for initial

calibration purposes, but also for flagging and quantifying the deviations from intended

excitation patterns in subsequent forced response tests.

4.5 Conclusions

In this chapter, the identification and impact of uncertainties in the external excitation

for blisk vibration tests were investigated in detail. The mistuning identification method
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was extended to also identify the forcing applied to the blades. It was shown that blade

mistuning and forcing parameters can be identified either simultaneously or sequentially

by carrying out a small set of prescribed forced response experiments. A numerical valida-

tion study was carried out with several example models of blisks to examine the accuracy

and robustness of the new methods. It was seen that the simultaneous method generally

yielded good results, but also led to poor results for some cases. When applied to the

same case, the sequential method was much more robust and accurate. The sequential

method was also validated experimentally with a 24-blade blisk. This approach shows

great promise as a powerful tool for accelerating the calibration process, and also for sup-

porting subsequent forced response tests.
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Figure 4.1: Finite element model of the industrial blisk.
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Figure 4.10: Finite element model of the NASA blisk.
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Figure 4.11: Natural frequencies versus the number of nodal diameters for the tuned FEM

of the NASA blisk.
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Figure 4.14: Finite element model of the validation blisk.
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MBE(2,9,17) case.
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Figure 4.19: Actual 24-blade validation blisk used in the experiment.

Figure 4.20: Validation blisk shown with the acoustic excitation system.



125

Figure 4.21: Detail of a blade with an attached mistuning mass. The selected measurement

location is marked by a dot.
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Figure 4.23: Forcing identification results and errors for the SBE(17) case for the valida-

tion blisk.
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Figure 4.24: Forcing identification results and errors for the SBE(24) case for the valida-

tion blisk.
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Figure 4.25: Forcing identification results for the MBE(17,24) case for the validation

blisk.
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Figure 4.26: Forcing identification errors for the MBE(17,24) case for the validation blisk.
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Figure 4.27: Comparison of pure and perturbed engine order 8 excitation, both calculated

based on the experimental responses of the validation blisk.
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Figure 4.28: Comparison of frequency response results for blade 2 of the validation blisk

subject to pure and perturbed engine order 8 excitation.
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Figure 4.29: Comparison of frequency response results for blade 9 of the validation blisk

subject to pure and perturbed engine order 8 excitation.
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Table 4.1: External forcing values for the single-blade and multi-blade excitation cases.

External Blade Number

Forcing 3 17 20

SBE(3) 8.665-j4.237

MBE(3,17) 8.665-j4.237 3.529+j3.529

MBE(3,17,20) 8.665-j4.237 3.529+j3.529 -2.368+j6.194
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Table 4.2: Mass of the leads added to the tip of blade of validation blisk and corresponding

intentional blade stiffness mistuning.

blade number lead mass (with estimated intentional mistuning

glue weight 0.005g)

4 0.575 -0.0247

6 0.595 -0.0255

17 0.783 -0.0327

19 0.843 -0.0350

23 0.869 -0.0360

24 1.089 -0.0442



CHAPTER V

Conclusions

5.1 Dissertation Contributions

The main contributions of this dissertation are summarized as follows:

• In chapter II, a systematic experimental approach was presented to validate a new

reduced-order modeling technique for mistuned bladed disks, as well as a new mis-

tuning identification and model updating algorithm for blisks. It was shown that

only a few system response measurements taken at resonant frequencies were re-

quired to identify the blade stiffness mistuning parameters and, if needed, the model

updating parameters referred as “cyclic modeling error.” By identifying both cyclic

modeling error and blade mistuning, the accuracy of the identification results were

significantly improved. That is, by incorporating a model updating procedure, the

identification method was made more robust with respect to errors in the tuned finite

element model.

• In chapter III, an alternative approach for vibration testing of many mistuning pat-

terns was developed and demonstrated. In particular, varying the external forcing

function provided to the blades was used to mimic the influence of structural blade

property mistuning on the vibration response. This innovative approach was re-

136
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ferred to as experimental Monte Carlo mistuning assessment. The feasibility of this

method was validated by repeatable experiments. Since it is much easier and more

efficient to vary the external excitation than to physically alter the blades, this work

has opened the possibility of running an experimental analog of a Monte Carlo sim-

ulation.

• In chapter IV, the mistuning identification method described in chapter II was ex-

tended to account for the effects of uncertainties in the forcing applied to the blades.

It is shown that blade mistuning and forcing uncertainties can be identified simulta-

neously by carrying out a small set of prescribed forced response experiments. This

approach shows promise as a powerful tool for accelerating the calibration process.

Furthermore, this work demonstrated that the impact of forcing uncertainties on the

application of system identification and reduced-order modeling techniques to actual

bladed disks should not be neglected.

5.2 Future Research

Based on the work reported in this dissertation, some ideas for future research may be

considered:

• The new technique of mistuning identification and model updating presented in

Chapter II was validated both numerically and experimentally for only a single

blade-dominated mode family. However, there is no assumption made to exclude

a general case where more than one family mode can interact due to mistuning. The

algorithm can be expanded to more general applications. For example:

1. If only mistuning identification is required, this approach can be used for either

blade-dominant or disk-dominant modes, since the results are optimized with
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a least squares method. However, the accuracy of “cyclic modeling error” is

only ensured while blade-dominant modes are considered. Developing mode

selection criteria would improve not only the CMM modeling process but also

the updating results.

2. For those cases in which more than one mode family is excited, the approach

itself could be improved by allowing the identification of mistuning parame-

ters for multiple blade modes. This would require introducing the Kronecker

product into the algorithm. In this way, the mistuning identification and model

updating procedure would have more general applicability.

3. This approach can be accelerated and systemized by adopting an efficient test

procedure. In the previous research work, more test results than was necessary

were obtained without consideration for the time that the experiments required.

In future work, a method should be developed for determining the minimum

set of data that is required for obtaining system identification results within a

specified accuracy or convergence tolerance.

• The experimental Monte Carlo assessment described in Chapter III is limited by the

current test facilities. A new signal conditioning system is needed to realize the en-

tirely independent control over amplitude and phase of the external forcing. With

this improvement, more mistuning patterns with a wider range of standard devia-

tions could be applied to the blisk by manipulating the excitation system. Other

kinds of mistuning besides the traditional blade stiffness mistuning could be taken

into consideration. Also, an advanced uncertainty study could be conducted based

on the new test system. Another suggestion is to build a separate controlling station

with GPIB (General Purpose Interface Bus), DAQ (Data Acquisition) board, address
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selection chip, etc. Furthermore, thinking beyond the laboratory environment, it is

important to note that perfect engine order excitation will never occur in an engine.

Therefore, future research should address the level of “forcing mistuning” present

in an engine, the effective increase in blade mistuning level due to this forcing mis-

tuning, and the implications for durability and reliability of rotors.

• In Chapter IV, a forcing identification technique was presented, but the amount of

time required to perform the necessary tests in order to develop a standard calibra-

tion procedure was not addressed. Basic experimental strategies and specific test

procedures still need to be developed for performing the forcing identification and

calibration in an efficient manner. In addition, it is noted that identifying the ex-

citation parameters is only the first step towards calibration. More information is

required, such as the relationship between the amplitude of input signal and phase

of output signal within the frequency range of interest. The forcing identification

method could be combined with an experimental investigation of other uncertainties

to develop a more sophisticated testing and analysis framework.
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APPENDIX A

Equation Reformatting in Computational Process for

Mistuning Identification and Model Updating

The component mode mistuning (CMM) method for reduced-order modeling of mis-

tuned bladed disks, and a CMM-based mistuning identification technique were originally

presented in Refs. [18, 21, 52]. In this research work, it is always assumed that the mis-

tuning only occurs in the blade stiffness matrix and the mass matrix is invariant(tuned);

besides, for each harmonic (i.e., per nodal diameter), there is only one mode, or one pair

of modes selected as CMM model basis. Thus the equation of motion can be expressed in

tuned system modal coordinates as:

[
−ω2I + (1 + jγ)

(
ΛS + δΛS + QCBT

δΛCBQCB
)]

p = fS (A.1a)

x = ΦS
CBp (A.1b)

f = ΦST

CBfCB (A.1c)

All the variables listed in Eq. A.1 are explained as follows:

• ω: excitation frequency

• γ: structural damping factor
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• p and x: modal and physical displacement vector

• fS and fCB: modal and physical force vector

• ΛS: tuned-system eigenvalues

• δΛS: cyclic modeling error

• QCB: modal participation factors

• δΛCB: cantilevered-blade stiffness mistuning

• ΦS
CB: blade portion of tuned-system mode shape

To identify both blade stiffness mistuning and cyclic modeling error correctly, only

blade-dominant system modes are selected to create the modeling basis of CMM. For

example, in case of an N -bladed disk is being examined, there are generally M modes,

M ≤ N , are blade-dominant and therefore kept. In the vibration test, assume that the

steady state vibration is measured for only one degree of freedom (DOF) on each blade,

at approximately the same location for each blade. Consequently, for any measured fre-

quency, the dimensions of the matrices and vectors in Eq. A.1 are summarized as follows:

• ΛS and δΛS: M × M diagonal matrices

• δΛCB: N × N diagonal matrix

• QCB and ΦS
CB: N × M full matrix

• x and fCB: N × 1 vector

• p and fS: M × 1 vector
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Ideally, a measurement taken at one resonant frequency, a single M × 1 vector x, would

be sufficient to solve the identification problem. The reason is that this measurement x,

including vibration amplitude and phase at one DOF for each blade, yields 2×N equations

when listing real and imaginary part separately which exceeds the number of unknowns

N + M . In the identification process, it is assumed that the cyclic modeling error is the

same for the 2 modes at the same harmonic which reduces the number of unknowns further

to N + M/2 (if M is odd, the number of unknowns is N + (M + 1)/2). However, more

than one measurement are always required for experimental validation because of random

testing errors.

Although δΛS and δΛCB are the unknowns introduced in the Eq. A.1, the actual vari-

ables identified from the algorithm, DS and DCB, are slightly different yet related to them

based on the following expressions:

δΛS = ΛS · DS (A.2a)

δΛCB = λCB · DCB (A.2b)

where λCB is the tuned cantilevered blade eigenvalue for this investigated family, DS and

DCB are M × M and N × N diagonal matrix respectively as same format as δΛS and

δΛCB:

DS =




dS
1

0 · · · 0

0 dS
2

· · · 0

...
...

. . .
...

0 0 · · · dS
M




, DCB =




dCB
1

0 · · · 0

0 dCB
2

· · · 0

...
...

. . .
...

0 0 · · · dCB
N




(A.3)



144

Then the Eq. A.1 can be re-written if p is treated as free-response:

[
−ω2I + (1 + jγ)

(
ΛS(I + DS) + QCBT

(λCB · DCB)QCB

)]
p = 0 (A.4a)

(1 + jγ)ΛSDSp + λCBQCBT
DCBQCBp =

[
ω2I − (1 + jγ)ΛS

]
p (A.4b)

Since the unknowns in this case is only the diagonal terms of DS and DCB which can be

represented respectively by two vectors notated as dS and dCB, where

dS =





dS
1

dS
2

· · ·

dS
M





, dCB =





dCB
1

dCB
2

· · ·

dCB
N





(A.5)

And the abbreviation of Eq. A.4 can be written as:

[
ÃS ÃCB

]
·
[

dS

dCB

]
= B̃ (A.6)

where ÃS and ÃCB are the reframed coefficient matrices in order to arrange unknowns

from DS and DCB into dS and dCB, and B̃ =
[
ω2I−(1 + jγ)ΛS

]
p. All of them are fully

known once the blade responses in modal coordinates p are obtained at desired excitation

frequencies ω. Here p is one measurement (M × 1 vector) at one frequency ω.
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ÃS(:, i) = Ui · p, Ui = (1 + jγ) · ΛS(i, i) · Ĩ (A.7a)

ÃCB(:, k) = Tk · p, Tk = (1 + jγ) · QCB(k, :)T · QCB(k, :) (A.7b)

B̃ = V · p, V = ω2I − (1 + jγ)ΛS (A.7c)

i = 1, 2, . . . M ; k = 1, 2, . . . N

The dimensions of the matrices and vectors in Eq. A.7 are summarized as follows:

• ÃS: M × M full matrices

• ÃCB: M × N full matrix

• B̃: M × 1 vector

• dS: M × 1 vector

• dCB: N × 1 vector

Generally more than one measurement are substituted into Eq. A.7, for example, a group

of measurements p̃ =
[
p1 p2 · · · pL

]
which are taken at the resonant frequencies

ω̃ =
[
ω1 ω2 · · · ωL

]
correspondingly, where L is the number of measurements. For

each pα and ωα (α = 1, 2, . . . L), the coefficient generating process described in Eq. A.7 is

repeated for each Ãα
S , Ãα

CB and B̃α and larger coefficient matrices (with more rows) can

be obtained as follow:
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AS(:, i) =




Ui · p1

Ui · p2

· · ·

Ui · pL




, ACB(:,k) =




Tk · p1

Tk · p2

· · ·

Tk · pL




(A.8a)

B =




V1 · p1

V2 · p2

· · ·

VL · pL




, Vα = ωα
2I − (1 + jγ)ΛS (A.8b)

As L increasing, there are more than necessary rows added to the coefficient matrices AS

and ACB. In other word, there are more equations than unknowns so that least squares

method is adopted by applying pseudo inverse on the entire coefficient matrix in the pur-

pose of minimizing the fitting errors.

[
dS

dCB

]
= pinv

([
AS ACB

])
· B (A.9)
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APPENDIX B

Optimization of Identification – Least Squares Method

In chapter II, section 2.2.3, the abbreviated expression of the algorithm for mistuning

identification and model updating is derived as follows:

[
AS ACB

]
·
[

dS

dCB

]
= B (B.1)

where AS and ACB are the reframed coefficient matrices in order to arrange unknowns

from δΛS (cyclic modeling error) and δΛCB (blade stiffness mistuning) into dS and dCB,

and B is a vector. All of them are fully known once the blade responses p are obtained at

desired excitation frequencies ω.

For a mistuned bladed disk system with N blades, in case of only one family of modes

being investigated (one pair per harmonic), there are N mistuned system modes involved in

the CMM model. Thus 2N unknowns are introduced into the Eq. B.1, which are N blade

stiffness mistuning and N “cyclic modeling error”. Therefore, only one measurement fea-

turing 1 DOF per blade is sufficient in theory to yield an accurate solution since the each

system response is treated as a complex vector which leads to 2N equations. However,

in the vibration test, no single one measurement is perfect enough for acceptable identi-

fication and more data than necessary are used as input information to the identification

algorithm. At this point, the least squares method is employed to optimize the test results.
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Eq. B.1 can be written in a more general format as:

Kx = B (B.2)

where K = [AS ACB] is the coefficient matrix and x = [dS dCB]T is the vector of

unknowns. When the number of equations exceeds the number of unknowns, Eq. B.2 is

reformatted as follows:

Kx − B = λ (B.3)

where λ is the discrepancy between actual and exact solution for equation. The purpose

of optimization is to minimize the discrepancy λ, which is expressed as:

G = λT · λ (B.4a)

min(G) ⇒ ∂G

∂x
= 0 ⇒ KT · K · x − KT · B = 0 (B.4b)

⇒ x =
(
KT · K

)
−1 · KT · B (B.4c)

Thus the solution of x provided by the calculation above is the optimized results in

case the imperfect experiment data is used to apply the identification algorithm.

In Matlab, a embedded function referred as pseudo-inverse “pinv” is programmed to

deal with the inverse solution for a non-square matrix denoted as K to match with the

previous coefficient matrix mention in Eq. B.2– B.4.
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K · pinv(K) = I (B.5a)

⇒KT · K · pinv(K) = KT · I = KT (B.5b)

⇒pinv(K) =
(
KT · K

)
−1 · KT (B.5c)

Considering the advantage of this pseudo-inverse function “pinv” in Matlab, the iden-

tification algorithm is optimized by adopting it then the actual solution of x is written

as:

x = pinv(K) · B (B.6)

Similarly the solution of Eq. B.1 is derived as follows:

[
dS

dCB

]
= pinv

([
AS ACB

])
· B (B.7)
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APPENDIX C

CMM Modeling Assumptions and Applying Limitations

As presented in Chapter II, this new technique of mistuning identification and model

updating relies on certain assumptions such as which modes should be associated with

CMM in order to obtain the most accurate modeling. Creating a CMM model with ma-

jority of blade-dominant modes is one of these assumptions to ensure a successful iden-

tification. Figure C.2 shows the frequency map verses nodal diameter for the validation

rotor, whose FEM model is depicted in fig. C.1. In a single mode family, there are two

types of modes: blade-dominant and disk dominant. As can be seen in figure C.2, the 17

modes circled within a green box are blade-dominant modes and the other 7 modes added

into the mauve box are disk-dominant. This criteria is a qualitative judgement based on

previous frequency analysis of substructure such as cantilevered blade and disk part alone.

Note that there is no strict dividing line between blade-dominant and disk-dominant modes

according to this criteria. However, it can be improved by adopting strain energy factor to

distinguish those two kinds of modes quantitatively.

Because of the assumptions made in CMM modeling process, there are different lim-

itations in case of applying the algorithm of mistuning identification and model updating

to a single mode family. All the results followed were obtained from numerical simulation

for the validation rotor.
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C.1 Blade Stiffness Mistuning Identification Only

In case of only blade stiffness mistuning is required to be identified, any mode includ-

ing disk-dominant mode within the single mode family can be involved while creating a

CMM model for the bladed disk. Nevertheless, it is mandatory to keep blade-dominant

modes as majority otherwise the identification results is unacceptable.

• The CMM model associated with either 17 blade-dominant modes or 24, including

7 additional disk-dominant modes, could provide satisfied identification as shown in

figure C.4 and C.5. However, the results with different modes involved varies case

by case considering the specific model of bladed disk. For the validation rotor, the

accuracy keeps untacked. More information feeded in to the optimization of least

squares method might be one main reason.

• A possible cause of wrong identification is more measured data at resonant frequen-

cies than system modes involved in the CMM model. As depicted in figure C.6,

24 measurements are substituted into a CMM model created with 17 system modes

which provide wrong identification for blade stiffness mistuning. On the contrary, if

the CMM model is associated with 24 system modes, an incomplete set of measure-

ments at 17 resonant frequencies could yield accurate identification.

• There is an example of failed mode selection where the disk-dominant modes are

majority as indicated in figure C.3. Figure C.7 compares the identified blade stiff-

ness mistuning when this collection is in use to the expected values. It is clearly a

disagreement.

Therefore the conclusion is that when identifying the blade stiffness mistuning only,

minority disk-dominant modes can be included in the CMM model and there is no need
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to distinct them from blade-dominant modes. The identified results might still keep the

accuracy or be disturbed slightly.

C.2 Mistuning identification and model updating

In case of both blade stiffness mistuning and cyclic modeling error are required to be

identified, all previous observations for blade stiffness mistuning are expectable with any

CMM modeling process. However, only cyclic modeling error with respect to the modes

which are blade-dominant can be identified correctly even if the CMM modeling only

involves minority disk-dominant modes.

While creating a CMM model for the mistuned bladed disk system, the blade mistuning

is projected into the tuned system modal coordinates based on the assumption that only

blade-dominant modes are qualified. Figure C.2 compare the identification results of blade

stiffness mistuning and cyclic modeling error to the expected values and the agreement is

fairly well. In this case a CMM model with 17 blade-dominant modes only (as shown in

green box in fig. C.2 was created.

By definition, the cyclic modeling errors are identified as the difference between the

eigenvalues of tuned system and actual ones therefore they are directly related to each sys-

tem modes. While disk-dominant modes is involved the identification is incorrect since

the reduced order model itself lose accuracy when these modes are involved. For blade

stiffness mistuning, the error of including disk-dominant modes can be compelled to the

minimum by least squares method since the mistuning is assigned to each blade, not each

system mode. More information related to non-qualified modes may attack the identifica-

tion slightly.

An example is shown in figure C.9 and it is clear that the identified results are wrong

related to the disk dominant modes while the others related to the blade-dominant modes
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are accurate. These wrong identification results should be excluded when updating the

CMM model. It is suggested as follows:

• Exclude disk-dominant modes while creating the CMM model.

• Skip the mode selection step and exclude the identification results for cyclic mod-

eling error related to the disk-dominant modes. No model updating is allowed for

those modes as well.
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Figure C.1: Finite element model of the validation bladed disk.
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Figure C.2: Modes Selection for CMM modeling of the validation rotor, blade-dominant

mode is majority.

Figure C.3: Modes Selection for CMM modeling of the validation rotor, disk-dominant

mode is majority.
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Figure C.4: Identification results of blade stiffness mistuning based on a CMM model with

17 blade-dominant modes.
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Figure C.5: Identification results of blade stiffness mistuning based on a CMM model with

17 blade-dominant modes and 7 disk-dominant modes.
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Figure C.6: Wrong identification results of blade stiffness mistuning based on a CMM

model with 17 blade-dominant modes, using 24 measured data at resonant

frequencies.
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Figure C.7: Identification results of blade stiffness mistuning based on different CMM

models.
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Figure C.8: Identification results of blade stiffness mistuning and cyclic modeling error

based on a CMM model with 17 blade-dominant modes.
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Figure C.9: Identification results of blade stiffness mistuning and cyclic modeling error

based on a CMM model with 17 blade-dominant modes and 7 disk-dominant

modes.
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APPENDIX D

Automatic Vibration Test System

The experimental facility used to examine the effect of mistuning in a controlled envi-

ronment, shown in Figure D.1, includes a non-contacting, traveling-wave excitation sys-

tem, as well as a non-contacting measurement system featuring a Scanning Laser Doppler

Vibrometer (SLDV). In an automatic vibration test, the excitation system, measurement

system as well as the data analysis system are integrated together through software con-

trolling to execute each commend given by computer.

D.1 Scanning Laser Vibrometer

At the beginning stage of vibration test, for example, the experimental validation of the

new developed mistuning identification technique discussed in chapter 2, the measurement

system consisted of a single point laser vibrometer (SPLV) and a electronic speckle pat-

tern interferometry (ESPI). The SPLV is used to take quantitative measurement including

amplitude and phase information and these data can be used as input to the identification

algorithm. And the ESPI captures qualitative system response and it visualizes the mea-

surement. This non-contacting measurement system is updated later featuring a scanning

laser doppler vibromter (SLDV) which meets both quantitative and qualitative require-

ment.
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D.1.1 PSV–Software Environment for SLDV

The SLDV mentioned above is manufactured by Polytec and a well-functional inte-

grated software named Polytec Scanning Vibrometer (PSV) serves as the interface. There

are two basic modes, Acquisition and Presentation, designed and framed to take the mea-

surement and display the results. Previously a single Labview code was used to control

the SPLV automatically and it is challenging to inherit the set up directly for SLDV since

there are more communication channel and knowledge necessary for sending commend to

the inside mirrors and video card, etc. However, the PSV software is equipped with Macro

through “VBEng”, it provides a standard protocol for calling any other external softwares

or codes, such as Labview and Matlab.

D.1.2 PSV Acquisition Set Up

As can be seen in the Macro source code, a setup file (e.g., “24PointsSetting”) is first

loaded before running the PSV to scan the bladed disk. In PSV, all setup-including acqui-

sition setup, camera setup, and window layout-can be saved or loaded by clicking “Setting

Manager” in the menu. A typical setup procedure is described as follows:

⇒ Set Up Camera (get a good picture of the bladed disk)

⇒ Set Up Acquisition Mode (such as channels, filters, triggers, etc)

⇒ Define Scanning Points

⇒ Choose Window Layout

In this section there is an example of acquisition mode setup for a 24-point scanning

process used in vibration tests for the 24-blade validation rotor in the UM lab. After

scanning the bladed disk with this setting, a file named FrequencySweep.svd is saved.

There is another, similar setting file for only 1 scanning point. Except for the number of

defined scanning points, the other settings-including acquisition setup, camera setup, and
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window layout-are the same as above. After scanning the bladed disk with this particular

setting, a file named ScanTestDump.svd is saved. This setup of 1 scanning point is used

to run a dummy scanning to release the “FrequencySweep.svd” saved in the previous step,

so that the Matlab code can access this file.

A typical step-by-step acquisition setup is shown as Fig. D.3– D.10.

D.2 Excitation System

In the non-contacting excitation system for vibration test of bladed disks, there is a

round speaker mounted behind each blade in a parallel position with the surface of the

blade in order to apply an acoustic force. These speakers are driven by a series of Hewlett-

Packard 8904 Multifunction Synthesizers, which is controlled and synchronized by Lab-

view code through the General Purpose Interface Bus (GPIB)to generate sinusoidal wave

for speakers. These signals are first conditioned by calibration factors and initial phases of

each speaker respectively in order to achieve desired excitation manner, i.e. engine order

excitation, single blade excitation or unique shape excitation. Nevertheless, the Labview

code has to be re-designed specifically regarding to the calling requirement from PSV. In

other word, for those Labview codes that can be called from the PSV Macro, for instance,

the number of the inputs created on the connector panel shown in Fig. D.2 must match with

the size of the variable named “paramVals” in PSV Macro. And the name of those inputs

must match exactly with those assigned to another variable named “paramNames” in the

PSV Macro literally. There is no certain order for these inputs. However, it is necessary to

pair up the “paramNames” and “paramVals” in the PSV Macro. It is necessary to design

a time delay in the Labview code for the excitation system to ensure that the bladed disk

vibration can reach its steady state. The current Labview code included for PSV Macro,

such as “SetSpeaker5.vi” and “Speaker Control For Macro.vi”, are all written with respect
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to the current TWE system with speakers at the UM Turbomachinery Vibration Labora-

tory. If the hardware configuration changes, the corresponding Labview code has to be

modified for the purpose of successful communication.

D.3 Data Process System

As described in section D.1.1, the measurement can be display directly with PSV Pre-

sentation Mode. However, since the mistuning identification is written with Matlab, the

measured data is expected to be exported from PSV and can be suited into Matlab code.

The official format specifically for a scanning result taken by SLDV is “∗.svd”and can not

be read into Matlab. Thus another Matlab code provided by Polytec is used to extract both

the amplitude and phase information in order to create input files for mistuning identifi-

cation algorithm. Thanks to the VBEng, it is possible for PSV Macro to call Matlab after

performing measurement to export the data in a certain order. Note that the order is ran-

domly made by PSV scanning function and might be different as the order when scanning

point is defined. As it can be seen, an accompany Matlab code is employed to adjust the

data order so that the displaying in PSV Presentation Mode agrees with any figure shown

in Matlab.

D.4 Automatic Test Control Code

A control code written with Visual Basic and ran as Macro in PSV is the connection

between Labview and Matlab. Note that the mandatory requirements are listed as follows:

• Polytec File Access is available, which provides the communication channel be-

tween PSV and Matlab so that the Matlab code can be called to extract the measured

data which are saved in PSV format.
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• VBEng is in position so that Macro function in PSV can be used to call other soft-

ware.

• In the current Macro code, the desired measurement frequencies are input manually

and directly at the beginning of the Macro code. A possible automatic approach is to

read in those frequencies from an Excel file (which could be the result of former test)

and there is an example BAS code for I/O between PSV and Excel in the program

folder of Polytec software -PSV.

• Make sure there is a stetting up for another round of “dummy” scanning, otherwise

the results for the “desired” scanning is held by PSV itself and it’s impossible for

Matlab code to get access to those measured data.
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Figure D.1: Experimental set up of the non-contacting excitation and measurement sys-

tem.
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Figure D.2: Front panel of a Labview code with 4 inputs, “Speaker Control.vi”.
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Figure D.3: PSV acquisition modes set up: step 1 General.

Figure D.4: PSV acquisition modes set up: step 2 Channel.

Figure D.5: PSV acquisition modes set up: step 3 Filters.
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Figure D.6: PSV acquisition modes set up: step 4 Frequency.

Figure D.7: PSV acquisition modes set up: step 5 Window.

Figure D.8: PSV acquisition modes set up: step 6 Triggers.
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Figure D.9: PSV acquisition modes set up: step 7 SE.

Figure D.10: PSV acquisition modes set up: step 8 Vibrometer.
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ABSTRACT

EXPERIMENTAL INVESTIGATION ON MISTUNED

BLADED DISK SYSTEM VIBRATION

by

Jia Li

Co-Chairs: Christophe Pierre and Steven L. Ceccio

Bladed disks are critical structural components in jet engines and other turbomachin-

ery. The nominal design for a bladed disk is typically assumed to have identical blades.

However, there are always small, random variations in the blade properties due to manu-

facturing tolerances, material defects, and operational wear. These blade-to-blade discrep-

ancies, called mistuning, can have a dramatic effect on bladed disk vibration. In particular,

mistuning can cause localization of the response in a small region of the bladed disk, lead-

ing to higher blade stress and high-cycle fatigue concerns. While comprehensive analytical

and computational studies of mistuning have been performed, relatively few experimental

investigations have been conducted. The primary objective of this research is to experi-

mentally investigate the fundamental structural dynamics of mistuned bladed disks, and to

achieve a physical understanding of mistuning effects by accounting for the influence of

important phenomena that have been largely neglected in previous mistuning models and

system identification algorithms.



First, a systematic experimental approach is presented to validate a new mistuning

identification and model updating algorithm for single-piece bladed disks, or blisks. It

is shown that only a few system response measurements taken at resonant frequencies

are required to identify the blade stiffness mistuning parameters and the model updat-

ing parameters referred to as cyclic modeling error. By incorporating a model updating

procedure, the accuracy of the mistuning identification results are significantly improved.

Second, an alternative approach for vibration testing of many mistuning patterns is pro-

posed and validated. In particular, varying the external forcing function provided to the

blades is used to mimic the influence of structural blade property mistuning on the vibra-

tion response. Since it is much easier and more efficient to vary the external excitation

than to physically alter the blades, this work opens the possibility of running an experi-

mental analog of a Monte Carlo simulation. Finally, the mistuning identification method

is extended to also identify the forcing amplitude and phase applied to each blade. This

approach shows promise as a powerful tool for accelerating calibration procedures, as well

as for improving the accuracy and capability of experimental methods for bladed disks.


