
HAL Id: tel-00924106
https://theses.hal.science/tel-00924106v1

Submitted on 6 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structural Ramsey theory with the
Kechris-Pestov-Todorcevic correspondence in mind

Lionel Nguyen van Thé

To cite this version:
Lionel Nguyen van Thé. Structural Ramsey theory with the Kechris-Pestov-Todorcevic correspondence
in mind. Combinatorics [math.CO]. Aix-Marseille Université, 2013. �tel-00924106�

https://theses.hal.science/tel-00924106v1
https://hal.archives-ouvertes.fr
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tâche d’être nommés rapporteurs de ce mémoire. Je les en remercie sincèrement, de
même que je remercie Damien Gaboriau, Alain Louveau, Jaroslav Nešetřil, Stevo
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0. Introduction

Le but de ce mémoire est d’effectuer un survol des articles [NVTS09], [NVTS10],
[NVTP10], [LNVTS10], [NVT10a], [NVT13a], [NVT13b], [LNVTPS11], [GNVT11],
[JLNVTW12] et [NVTT12]. Ces derniers constituent l’essentiel de mes travaux
depuis [NVT06] et sa version étendue [NVT10b]. Le sujet d’étude se situe à l’une
des intersections entre la combinatoire, la dynamique topologique et la logique via
le formalisme de ce qu’on appelle les structures ultrahomogènes et la théorie de
Fräıssé1. Ce domaine a récemment connu un essor considérable grâce à deux con-
tributions majeures : [KPT05] par Kechris, Pestov et Todorcevic, et [KR07] par
Kechris et Rosendal. Mon travail part de [KPT05]. Plus précisément, il concerne
l’interaction entre les propriétés de type Ramsey des structures combinatoires finies
et dénombrables, et la dynamique des groupes topologiques. La théorie de Ram-
sey peut être vue comme l’étude de certains objets combinatoires au sein desquels
un certain degré d’organisation apparâıt lorsque les objets en question deviennent
grands. Quant à la dynamique topologique, il s’agit surtout ici de l’étude des actions
continues des groupes topologiques sur des espaces topologiques compacts. Ces su-
jets sont traditionnellement rattachés à des régions mathématiques différentes, mais
on sait depuis un certain temps que théorie de Ramsey et dynamique peuvent être
fortement liés. La démonstration de Furstenberg du théorème de Szemerédi et ses
conséquences récentes en théorie additive des nombres constitue certainement l’un
des exemples les plus emblématiques dans cette direction, mais il en existe beaucoup
d’autres. Ce que l’article [KPT05] met en évidence est un lien nouveau entre théorie
de Ramsey et dynamique. Après avoir permis de mieux appréhender un invariant
topologique relatif à plusieurs groupes topologiques connus, cette connexion permet
d’aborder avec un regard nouveau l’étude de plusieurs phénomènes remarquables.
Par exemple, Gromov et Milman démontrèrent (cf [GM83]) que lorsqu’il agit con-
tinment sur un espace compact, le groupe unitaire de l’espace de Hilbert séparable
ℓ2 laisse toujours un point fixe. Grâce aux techniques développées dans [KPT05],
il est concevable que ce phénomène soit la manifestation d’un résultat de type
Ramsey purement combinatoire concernant les espaces métriques finis euclidiens.
A titre de deuxième exemple, Odell et Schlumprecht publièrent dans [OS94] une
solution au célèbre problème de la distorsion. Alors que la démonstration fait appel
à des techniques d’analyse fonctionnelle extrêmement élaborées, il a récemment été
démontré que dans certains contextes relativement proches, une approche purement
combinatoire peut être adoptée. Cela laisse donc l’espoir de découvrir un argument
direct et purement métrique. C’est entre autres pour ces raisons que mes travaux
de recherche sont concentrés autour des deux thèmes suivants : Théorie de Ramsey
structurale et dynamique topologique des groupes de transformation associés.

Remarque. Pour des raisons pratiques, seule l’introduction de ce mémoire a été
rédigée en français. J’espère que cela ne rebutera pas le lecteur intéressé. Con-
cernant les notations, j’ai, à quelques exceptions près, privilégié l’usage anglo-
saxon. En particulier, les intervalles réels ouverts sont notés (a, b), mais le symbole
d’inclusion est noté ⊂. Lorsque k est un nombre naturel, [k] désigne l’ensemble

1Pour la plupart des personnes qui ont travaillé sur les structures ultrahomogènes au cours

des trente dernières années, l’ultrahomogénéité est simplement l’homogénéité. Je n’ai pas con-
servé cette terminologie ici car en topologie, et en particulier lorsqu’il s’agit de groupes de
transformations, l’usage est de réserver le terme d’homogène pour les structures où le groupe
d’automorphismes agit transitivement sur les points.
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{0, 1, ..., k − 1}. Concernant les références, tous les résultats énoncés le sont, dans
la mesure du possible, avec des références exactes. Enfin, afin de différencier les
résultats présentés dans ce mémoire et ceux qui y sont extérieurs, deux systèmes
de numérotation ont été adoptés, à savoir chiffres arabes et chiffres romains.

0.1. Théorie de Ramsey structurale finie. Le résultat fondateur de théorie de
Ramsey remonte à 1930. Il a été démontré par Ramsey et peut être énoncé comme
suit. Pour un ensemble X et un entier l, on note [X]l l’ensemble des parties de X
à l éléments:

Théorème I (Ramsey [Ram30]). Pour tous l,m ∈ N, il existe p ∈ N tel que
pour tout ensemble X à p éléments, si [X]l est soumis à une partition en 2 classes
[X]l = R ∪B, alors il existe Y ⊂ X à m éléments tel que [Y ]l ⊂ R ou [Y ]l ⊂ B.

Ce n’est malgré tout qu’au début des années soixante-dix que les idées essen-
tielles de ce théorème furent reprises et développées pour donner naissance à la
théorie de Ramsey structurale. Le but est alors d’établir des résultats semblables
au théorème de Ramsey dans un contexte où plus de structure apparâıt. Par
exemple, si H est un graphe fini, alors il existe un graphe fini K possédant la pro-
priété suivante : Pour tout coloriage des arêtes de K avec deux couleurs, il existe
un sous-graphe induit de K et isomorphe à H où toutes les arêtes ont la même
couleur. De nombreux autres résultats de ce type existent pour une grande variété
de structures telles que les graphes, les hypergraphes et les systèmes d’ensembles
(Abramson-Harrington [AH78], Nešetřil-Rödl [NR77, NR83]), les espaces vecto-
riels (Graham-Leeb-Rothschild [GLR72, GLR73]), les algèbres de Boole (Graham-
Rothschild [GR71]), les arbres (Fouché [Fou99])...Toutes ces structures peuvent être
appréhendées dans le langage général de la théorie des modèles, et plus précisément
de la théorie de Fräıssé. Un premier pan de mes travaux de recherche est consacré
l’enrichissement de cette liste. Certains de mes travaux de thèse portèrent en partic-
ulier sur les classes d’espaces métriques. L’article [NVT13b] traite des graphes dont
le nombre chromatique est fixé, ou bien borné par une constante donnée à l’avance.
L’article [LNVTS10] présente des résultats portant sur une classe de graphes ori-
entés appelés tournois circulaires. Enfin, le travail en cours [JLNVTW12] porte sur
les classes de Fräıssé de graphes dirigés. Tous ces résultats sont exposés en Section
3.

0.2. Théorie de Ramsey structurale infinie. L’une des particularités du théorème
de Ramsey est d’admettre la version infinie suivante :

Théorème II (Ramsey [Ram30]). Pour tout l ∈ N, tout ensemble infini X et toute
partition de [X]l en 2 classes [X]l = R∪B, il existe une partie infinie Y ⊂ X telle
que [Y ]l ⊂ R ou [Y ]l ⊂ B.

Dans certains contextes, ce dernier théorème se transpose au cadre structural
mais peu de résultats de ce type sont connus (cf Devlin pour les propriétés de par-
titions des rationnels vus comme ordre total, cf Laflamme, Sauer et Vuksanovic pour
les propriétés de partitions du graphe aléatoire dénombrable). L’article [LNVTS10]
contient plusieurs résultats dans ce sens, notamment dans le cadre des graphes
orientés circulaires.

Pour donner une idée des difficultés auxquelles on se retrouve confronté, prenons
le cas où l = 1. Le théorème de Ramsey devient alors trivial : Pour toute par-
tition finie de N, on peut “plonger” N dans l’une des parties, et ainsi trouver
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dans l’une des parties une copie de N (N est ici supposé dénué de toute struc-
ture). Plaçons-nous désormais dans le cadre des espaces vectoriels. Fixons un
corps F , et considérons l’espace vectoriel VF de dimension dénombrable sur F .
Supposons que l’on partitionne VF en deux classes, VF = R ∪B. L’une des parties
contient-elle nécessairement un sous-ensemble isomorphe à VF ? Lorsque c’est le
cas quelle que soit la partition, on dit que VF est indivisible. Dans le cas présent,
la réponse dépend du corps, mais est négative en général. Néammoins, certains
autres phénomènes peuvent se produire suivant la taille du corps, c’est ce dont
traite l’article [LNVTPS11]. Les travaux [NVTS09] et [NVTS10] portent quant
à eux sur des problèmes similaires dans le contexte métrique. En ce sens, ils
étendent mes travaux de thèse où l’indivisibilité des espaces métriques est étudiée
de manière approfondie. L’article [NVTS09] propose notamment, lorsqu’on lui ad-
joint les résultats de [LANVT08], une solution positive pour un espace métrique
remarquable appelé la sphère d’Urysohn et noté ici S. Les techniques utilisées pour
démontrer ce résultat sont aussi appliquées dans [NVTS10], où elles permettent
d’atteindre des résultats de partitions similaires dans le cas de certains espaces
métriques non bornés.

Tous ces résultats sont présentés en Section 4. L’objectif initial de ces travaux
était de développer de nouveaux outils qui seraient par la suite utilisables pour
redémontrer de manière combinatoire le théorème d’Odell-Schlumprecht sur la dis-
tortion de ℓ2, mais les résultats obtenus ne permettent pour le moment pas de
réaliser ce projet.

0.3. Flots minimaux universels et moyennabilité extrême. L’une des avancées
majeures de l’article [KPT05] est d’établir un pont entre la théorie de Ramsey
structurale et la dynamique topologique. Pour un groupe topologique G, un G-flot
minimal compact est un espace topologique compact X muni d’une action continue
de G sur X pour laquelle l’orbite de tout point est dense. Un résultat général de dy-
namique affirme que tout groupe topologique G admet un G-flot minimal compact
M(G) universel (unique à isomorphisme près) dans le sens où il peut être envoyé via
un homomorphisme surjectif sur n’importe quel G-flot compact minimal. Lorsque
G est compact, M(G) n’est autre que G lui-même muni de l’action à gauche mais
lorsque G n’est pas compact, l’existence de M(G) est garantie par des procédés
hautement non constructifs. Néammoins, il est connu que l’emploi de méthodes
de type Ramsey conduit parfois à une description très explicite de M(G). Les
techniques développées dans [KPT05] rendent cette connexion explicite (on par-
lera par la suite de correspondance de Kechris-Pestov-Todorcevic) et fournissent
de nouveaux outils pour la détermination des flots minimaux compacts universels
des groupes polonais non-archimédiens. Elles mettent en particulier l’accent sur
le lien entre théorie de Ramsey et moyennabilité extrême (un groupe topologique
G est extrêmement moyennable lorsque M(G) est réduit à un point, c’est-à-dire
que toute action continue de G sur tout espace compact admet un point fixe). Ces
idées sont appliquées et généralisées dans [NVT13a] dans le contexte des expan-
sions précompactes, dont il semble qu’elles forment le bon cadre de généralisation.
Les expansions précompactes furent tout d’abord introduites pour calculer M(G)
lorsque G est le groupe des automorphismes d’un des graphes orientés dénombrables
S(2) ou S(3), mais une analyse plus détaillée semble indiquer qu’elles devraient en
fait permettre de capturer tous les graphes ultrahomogènes dénombrables, qu’ils
soient dirigés ou non. Ce résultat apparâıtra dans [JLNVTW12] et on verra qu’il
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suggère un nouveau point de vue sur la théorie de Ramsey structurale finie. Les
expansions précompactes sont également présentes dans [NVT13b], où l’étude de
l’universalité de certains flots conduit à la notion de moyennabilité extrême relative
(si H est un sous-groupe topologique de G, (G,H) est relativement extrêmement
moyennable lorsque toute action continue de G sur tout espace compact admet
un point fixé par H). L’article [GNVT11] est construit autour de cette dernière
notion et porte sur l’existence d’interpolants pour les couples (G,H) qui sont rel-
ativement extrêmement moyennables (un interpolant pour un tel couple est un
groupe topologique extrêmement moyennable K tel que H ⊂ K ⊂ G). Enfin, plus
récemment, l’ensemble de ces résultats a été mis en commun pour établir un lien
entre une propriété de type Ramsey d’un certain type, métrisabilité du flot mini-
mal universel, et existence d’un “gros” sous-groupe extrêmement moyennable. Cela
apparâıtra dans l’article [NVTT12]. Les résultats correspondants sont présentés en
Section 5.
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1. Introduction

The purpose of the present memoir is to present a survey of the papers [NVTS09],
[NVTS10], [NVTP10], [LNVTS10], [NVT10a], [NVT13a], [NVT13b], [LNVTPS11],
[GNVT11], [JLNVTW12] and [NVTT12]. Those constitute the essential part of my
work since [NVT06] and its expanded version [NVT10b]. The corresponding mate-
rial is located at one of the intersection points between combinatorics, topological
dynamics and logic via the framework of so-called ultrahomogeneous structures and
Fräıssé theory2. This area has recently known a considerable expansion thanks to
two major contributions: [KPT05] by Kechris, Pestov and Todorcevic, and [KR07]
by Kechris and Rosendal. My work elaborates on [KPT05]. More precisely, it
deals with an interaction between Ramsey-type properties of finite and countable
structures and dynamics of topological groups. Ramsey theory can be thought of
as the study of certain combinatorial objects where a some degree of organization
necessarily appears as the size of the objects increases. As for topological dynam-
ics, it mostly deals here with the study of continuous actions of topological groups
on compact spaces. Those fields traditionally belong to different parts of mathe-
matics, but it has now been known for a number of years that Ramsey theory and
dynamics can be very strongly tied. Furstenberg’s proof of Szemerédi’s theorem
and its consequences in recent additive number theory certainly represent some of
the most emblematic examples in that direction, but there are many more. What
[KPT05] does is to establish a new link between Ramsey theory and dynamics.
This connection provides a better grasp of an invariant related to several known
topological groups, as well as a new light on several remarkable known facts. For
example, Gromov and Milman showed (cf [GM83]) that when it acts continuously
on a compact space, the unitary group of the separable Hilbert space ℓ2 always
leaves a point fixed. The techniques developed in [KPT05] suggest that this phe-
nomenon could be the consequence of a purely combinatorial Ramsey-theoretic
result concerning finite Euclidean metric spaces. As a second example, Odell and
Schlumprecht published in [OS94] a solution to the so-called distortion problem. In
essence, this problem asks whether every uniformly continuous map defined on the

2For most of the people who have worked on ultrahomogeneous structures in the past thirty

years, ultrahomogeneity is simply called homogeneity. I have not kept this terminology here
because in topology, and in particular in the study of transformation groups, the common habit
is to call homogeneous a structure where the automorphism group acts transitively on points.
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sphere of ℓ2 with values in R can be made almost constant by passing to a closed
infinite dimensional subspace. While the proof of the Odell-Schlumprecht theorem
uses extremely sophisticated machinery from functional analysis, it has recently
been proved that in some relatively close context, a purely combinatorial approach
can be adopted. This leaves the hope for a direct and purely metric argument. It
is for reasons of that kind that my research concentrates on two themes: structural
Ramsey theory and topological dynamics of Polish transformation groups.

1.1. Conventions. All notations are standard, except maybe ⊂ for the inclusion
symbol and [k] for the set {0, 1, ..., k − 1} when k is a natural number.

Concerning results, I tried to provide exact references whenever possible. In
order to differenciate those results that are presented in this memoir from those
that do not belong to it, I chose to use two indexing systems: Arabic and Roman
numerals.

1.2. Finite structural Ramsey theory. The foundational result of Ramsey the-
ory appeared in 1930. It was proved by Ramsey and can be stated as follows. For
a set X and a positive integer l, [X]l denotes the set all of subsets of X with l
elements:

Theorem I (Ramsey [Ram30]). For every l,m ∈ N, there exists p ∈ N such that
for every set X with p elements, if [X]l is partitioned into two classes [X]l = R∪B,
then there exists Y ⊂ X with m elements such that [Y ]l ⊂ R ou [Y ]l ⊂ B.

However, it is only at the beginning of the seventies that the essential ideas
behind this theorem crystalized and expanded to structural Ramsey theory. The
goal was then to obtain results similar to Ramsey’s theorem in a setting where
more structure appears. For example, if H is a finite graph, there exists a finite
graph K with the following property: for every coloring of the edges of K in two
colors, there exists a finite induced subgraph of K isomorphic to H where all edges
receive the same color. Many other results of the same kind exist for a wide va-
riety of finite structures such as graphs, hypergraphs and set systems (Abramson-
Harrington [AH78], Nešetřil-Rödl [NR77, NR83]), vector spaces (Graham-Leeb-
Rothschild [GLR72, GLR73]), Boolean algebras (Graham-Rothschild [GR71]), trees
(Fouché [Fou99])...The publication of [KPT05] has considerably revived the global
interest towards results that enrich that list, and a part of my work follows that
trend. During my PhD studies, I focused on classes of metric spaces. The article
[NVT13b] deals with graphs whose chromatic number is fixed or bounded in ad-
vance. The paper [LNVTS10] presents results concerning a class of directed graphs
called circular tournaments. Finally, the work in progress [JLNVTW12] deals with
all the other Fräıssé classes of directed graphs. All those results are presented in
Section 3.

1.3. Infinite structural Ramsey theory. One of the particularities of Ramsey’s
theorem is to admit the following infinite version:

Theorem II (Ramsey [Ram30]). For every l ∈ N, every infinite set X and every
partition of [X]l into two classes [X]l = R∪B, there exists an infinite subset Y ⊂ X
so that [Y ]l ⊂ R or [Y ]l ⊂ B.

Analogs of this theorem when more structure is present are much more difficult
to prove. In fact, only a very small number of results are known. The major ones
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are due to Devlin for partition properties of the rationals seen as a total order, and
to Laflamme, Sauer and Vuksanovic for partition relations of the countable random
graph. The paper [LNVTS10] contains several results in that direction for some
enriched versions of the rationals and for circular directed graphs.

In order to give a flavor of the difficulties that have to be faced, consider the
case l = 1. Ramsey’s theorem then becomes trivial: for every partition of N
into finitely many parts, one can of course “embed” N into one of the parts and
so find a “copy” of N inside one of the parts (N is here considered without any
structure). Let us now consider the case of vector spaces. Let F be a field and
consider the vector space VF of countable dimension over F . Assume that VF

is partitioned into two classes VF = R ∪ B. Does one of the parts necessarily
contain a subset isomorphic to VF ? When the answer is positive for every partition,
we say that VF is indivisible. In the present case, the answer depends on the
field, but is negative in general. Nevertheless, other partition phenomena appear
depending on the size of the field. Those are studied in the paper [LNVTPS11]. As
for the articles [NVTS09] and [NVTS10], they cover similar problems in a metric
context. In that sense, they represent a continuation of my thesis work [NVT06]
where indivisiblity was extensively studied for metric spaces. In particular, when
combined with the results of [LANVT08] (which was included in [NVT06]), the
paper [NVTS09] contains a positive solution for a remarkable metric space called
the Urysohn sphere and denoted by S. The techniques that are used in [NVTS09]
are also applied in [NVTS10], where they allow to reach similar partition results
for certain unbounded metric spaces.

All those results are presented in Section 4. I should say at that point that a
common feature of all those projects was to develop new tools that could be used
in order to obtain a combinatorial proof of the Odell-Schlumprecht theorem on the
distortion of ℓ2. Unfortunately, neither the techniques nor the results that were
obtained so far allow to achieve that goal.

1.4. Universal minimal flows and extreme amenability. One of the major
achievements of [KPT05] is to create a bridge between structural Ramsey theory
and topological dynamics. For a topological group G, a compact minimal G-flow is a
compact topological space X equipped with a continuous action of G on X for which
every orbit is dense. A general result in topological dynamics states that every
topological group G admits a (unique up to isomorphism) compact minimal G-flow
M(G) which is also universal in the sense that it can be mapped homomorphically
onto any other compact minimal G-flow. When G is compact, M(G) is simply
G acting on itself by left translations but when G is not compact, the existence
of M(G) is only guaranteed by highly non-constructive methods. Nevertheless, it
has been known for some time that Ramsey-theoretic methods sometimes lead to a
very explicit description of M(G). The techniques developed in [KPT05] make this
connection explicit (this is the Kechris-Pestov-Todorcevic correspondence to which
the title of this memoir refers), and provide new tools for the study of universal
minimal flows of non-Archimedean Polish groups. In particular, they exhibit a
strong link between Ramsey theory and extreme amenability (a topological group
is extremely amenable when M(G) is reduced to a single point, or equivalently
when every continuous action of G on a compact space admits a fixed point).
Those ideas are applied and generalized in [NVT13a] in the context of precompact
expansions, which seem to be the right framework. Precompact expansions were
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first introduced in order to compute M(G) when G is the automorphism group of
the countable oriented graphs S(2) and S(3), but a further analysis has indicated
that they should actually capture all countable undirected and directed graphs.
This result will appear in [JLNVTW12] and we will see that it offers a new point of
view on structural finite Ramsey theory. Precompact expansions are also present
in [NVT13b] where the study of universality for certain flows leads to the notion of
relative extreme amenability (if H is a topological subgroup of a topological group
G, the pair (G,H) is relatively extremely amenable when every continuous action
of G on a compact space admits a point that is fixed by H). The paper [GNVT11]
is built around this latter notion and deals with the existence of interpolants for
relatively extremely amenable pairs (G,H) (an interpolant for such a pair is an
extremely amenable K such that H ⊂ K ⊂ G). Finally, more recently, all those
results have been put together in order to establish an equivalence between a certain
Ramsey-type property, metrizability of the universal minimal flow and existence of
a large extremely amenable subgroup. This will appear in [NVTT12]. All the
corresponding results are presented in Section 5.

2. Ultrahomogeneous structures and Fräıssé theory

The purpose of this section is to present ultrahomogeneous structures and Fräıssé
theory. Section 2.1 will introduce ultrahomogeneous structures informally and pro-
vide several natural examples coming from various areas. In Section 2.2, we will
go on with the formal definition and will present Fräıssé theory. Finally, Section
2.3 will introduce the notion of expansion as well as the more specific notion of
precompact expansion.

2.1. Ultrahomogeneous structures. Ultrahomogeneous structures will be ubiq-
uitous in this memoir but are not so commonly known. They will be defined pre-
cisely using the rigorous model-theoretic framework in Section 2.2, but for the
moment, let us simply pretend that a structure A (which may be combinatorial,
metric, algebraic,...) is ultrahomogeneous when every isomorphism between two of
its finitely generated substructures can be extended to an automorphism of A. In
terms of groups, it implies that the automorphism group acts as transitively as
possible on the set of all finite substructures. Therefore, when all points of A sup-
port substructures that are isomorphic, ultrahomogeneity can really be thought as
a strengthening of the usual notion of point-homogeneity, where the automorphism
group acts transitively on points. The set N without any structure is ultrahomo-
geneous: two finite isomorphic substructures are simply two finite sets of the same
size, and every bijection between those extends to a bijection of N. So is Q seen as a
linear ordering. In a more algebraic setting, any vector space is ultrahomogeneous:
finitely generated structures are finite dimensional spaces, and any isomorphism
between two such objects can be extended to an isomorphism of the whole space.

There are two objects naturally attached to a given ultrahomogeneous structure:
the class of its finitely generated structures and its automorphism group. While
the former relates to combinatorics and the latter to transformation group theory,
both can be thought as two sides of the same object, and passing from one to the
other is sometimes extremely fruitful. This is typically what happens in [KPT05]
but this aspect is also at the heart of several other recent developments including
[KR07] and [AKL12].



12

In this memoir, we will mostly deal with two kinds of structures: graphs (directed
or undirected) and metric spaces. Non-trivial ultrahomogeneous graphs are not
that easy to visualize, but one of them is by now quite famous in combinatorics:
it is the countable random graph, also called the Rado graph or the Erdős-Rényi
graph. It is the object that appears almost surely when one equips N with an edge
relation provided all edge appear independently with probability 0 < p < 1 (more

precisely, consider the Bernoulli measure on the space [2]N
2

). It has been studied
under various angles and many of its properties are now well understood (see for
example [Cam97]). As for metric spaces, the most natural examples witnessing
ultrahomogeneity are probably the real Hilbert vector spaces. Among those, we
will see that the separable Hilbert space ℓ2 and its unit sphere S∞ are particularly
interesting in view of the material we will cover.

A special attention will also be devoted to another remarkable space, namely
the Urysohn space U. This space, which appeared relatively early in the history
of metric geometry (the definition of metric space is given in the thesis of Maurice
Fréchet in 1906, [Fré06]), was constructed by Paul Urysohn in 1925. Up to isometry,
it is the unique complete separable ultrahomogeneous metric space into which every
finite metric space embeds. As a consequence, it can be proved that U is universal
not only for the class of all finite metric spaces, but also for the class of all separable
metric spaces. This latter universality property is essential and is precisely the
reason for which Urysohn constructed U: before it appeared, it was unknown
whether a separable metric space could be universal for the class of all separable
metric spaces. However, U virtually disappeared after Banach and Mazur showed
that C([0, 1]) was also universal and it is only quite recently that it was brought back
on the research scene, thanks in particular to the work of Katětov [Kat88] which
was quickly followed by several results by Uspenskij [Usp90], [Usp04] and later
supported by various contributions by Vershik [Ver04], [Ver08], Gromov [Gro07],
Pestov [Pes02] and Bogatyi [Bog00], [Bog02]. Lately, the study of the space U
has been a subject of active research and has being carried out by many different
authors under many different lights, see [LPR+08]. For example, Holmes proved in
[Hol92] that U generates a unique Banach space in the following sense: there is a
Banach space 〈U〉 such that for every isometry i : U −→ Y of the Urysohn space
U into a Banach space Y such that 0Y is in the range of i, there is an isometric
isomorphism between 〈U〉 and the closed linear span of i(U) in Y. We will come
back to this space in a moment.

Universality is an important aspect of infinite ultrahomogeneous structures, as it
can often be shown that if a structure embeds all finite structures of a certain kind,
then it also embeds all countable structures of the same kind. For example, every
finite linear order embeds in Q and this can be used to show that every countable
linear order also does. The same happens for graphs in the random graph: every
finite graph embeds in it, and so does every countable graph. Among the aforemen-
tioned contributions concerning the Urysohn space, Uspenskij’s one was essential to
isolate another important aspect of ultrahomogeneous structures, namely that their
automorphism groups also satisfy some kind of universality property. In the case
of the Urysohn space, this is particularly spectacular: every Polish group embeds
into the isometry group iso(U) of the Urysohn space equipped with the pointwise
convergence topology. In [NVTP10], it was realized that the construction that was
used to prove the previous result could also be used to prove:
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Theorem 1 (NVT-Pestov [NVTP10]). For a separable topological group G, the
following conditions are equivalent:

(1) Every continuous affine action of G on any Banach space by isometries has
a fixed point.

(2) Every continuous affine action of G on the Holmes space 〈U〉 by isometries
has a fixed point.

Looking at this result, one could think that there is an interesting fixed-point
property of groups to be studied here (that was actually the main motivation for the
paper). Unfortunately, there is a third item to the theorem. It states that the above
properties are equivalent to precompactness of the group...A not so interesting
property.

Back to ultrahomogeneous structures, another aspect that makes them appear
naturally is their connection to randomness and to genericity (to be understood as
randomness in the Baire category sense). For example, every countable ultraho-
mogeneous structure is generic in a very precise sense (see [PR96]). On the other
hand, modulo a simple combinatorial requirement, quite a number of them can be
thought as random (see [AFP12] for a recent contribution). We will not touch this
subject here, but the field is certainly full of beautiful problems in that direction.

2.2. Fundamentals of Fräıssé theory. In this section, we introduce formally the
material needed in order to study ultrahomogeneous structures. A special attention
will be devoted to the countable case (Fräıssé theory), where the link between a
given ultrahomogeneous structure F, the class of its finitely generated substructures
Age(F) and its automorphism group Aut(F) is particularly elegant. We follow
[KPT05] but a more detailed approach can be found in [Fra00] or [Hod93].

2.2.1. Relational structures. Let L = {Ri : i ∈ I} ∪ {fj : j ∈ J} be a fixed
language, that is to say a list of symbols to be interpreted later as relations and
functions, each symbol having a corresponding integer called its arity. The arity
of the relation symbol Ri is a positive integer α(i) and the arity of each function
symbol fj is a non-negative integer β(j). Let A and B be two L-structures (that

is, non empty sets A, B equipped with relations RA
i ⊂ Aα(i) and RB

i ⊂ Bα(i) for
each i ∈ I and functions fA

j : Aβ(i) −→ A and fB
j : Bβ(i) −→ B for each j ∈ J).

An embedding from A to B is an injective map π : A −→ B such that for every
i ∈ I, x1, . . . , xα(i) ∈ A:

(x1, . . . , xα) ∈ RA

i iff (π(x1), . . . , π(xα(i))) ∈ RB

i ,

and every j ∈ J , x1, . . . , xβ(j) ∈ A:

π(fA

j (x1, . . . , xβ(j)) = fB

j (π(x1), . . . , π(xβ(j))).

An isomorphism from A to B is a surjective embedding while an automorphism
of A is an isomorphism from A onto itself. Of course, A and B are isomorphic
when there is an isomorphism from A to B. This is written A ∼= B. Finally, the
set

(
B

A

)
is defined as: (

B

A

)
= {Ã ⊂ B : Ã ∼= A}.

Later on, we will refer to that set as the set of copies of A in B. Above, we

used the notation Ã ⊂ B to mean that Ã is a substructure of B, meaning that the
underlying set of A was contained in the underlying set of B, and that all relations
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and functions on Ã were induced by those of B. Note however that a subset of B
may not support a substructure of B, but that it always generates a substructure
of B in an obvious way.

2.2.2. Fräıssé theory. A structure F is ultrahomogeneous when every isomorphism
between finite substructures of F can be extended to an automorphism of F. When
in addition F is countable and every finite subset of F generates a finite substructure
of F (we say in that case that F is locally finite), it is a Fräıssé structure.

Let F be an L-structure. The age of F, denoted Age(F), is the collection of
all finitely generated L-structures that can be embedded into F. Observe also
that if F is countable, then Age(F) contains only countably many isomorphism
types. Abusing language, we will say that Age(F) is countable. Similarly, a class
K of L-structures will be said to be countable if it contains only countably many
isomorphism types.

If F is a Fräıssé L-structure, then observe that Age(F):

(1) is countable,
(2) is hereditary : for every L-structure A and every B ∈ Age(F), if A embeds

in B, then A ∈ Age(F).
(3) satisfies the joint embedding property : for every A,B ∈ Age(F), there is

C ∈ Age(F) such that A and B embed in C.
(4) satisfies the amalgamation property (or is an amalgamation class): for every

A, B0, B1 ∈ Age(F) and embeddings f0 : A −→ B0 and f1 : A −→ B1,
there is C ∈ Age(F) and embeddings g0 : B0 −→ C, g1 : B1 −→ C such
that g0 ◦ f0 = g1 ◦ f1.

(5) contains structures of arbitrarily high finite size.

Any class of finitely generated structures satisfying those five items is called a
Fräıssé class. The following theorem, due to Fräıssé, establishes that every Fräıssé
class is actually the age of a Fräıssé structure.

Theorem III (Fräıssé [Fra54]). Let L be a relational signature and let K be a
Fräıssé class of L-structures. Then there is, up to isomorphism, a unique Fräıssé
L-structure F such that Age(F) = K. The structure F is called the Fräıssé limit of
K and denoted Flim(K).

2.2.3. Examples of Fräıssé classes and Fräıssé limits. Consider the class of all finite
linear orders LO. The language consists of one relational symbol <, which is binary
(has arity 2). An element of LO is of the form A = (A,<A), i.e. a set together
with a linear order. The class LO is a Fräıssé class, and its Fräıssé limit is nothing
else than the usual linear order (Q, <Q).

As a second example, fix a finite field F and consider the class VF of all finite
vector spaces over F . The relevant language consists of one binary function symbol
+ and finitely many unary function symbols Mλ (λ ∈ F ). In a structure A, + is
interpreted as a group operation on A, Mλ as the scalar multiplication by λ for
each λ ∈ F , and all the usual axioms of vector spaces are satisfied. The class VF is
a Fräıssé class, and its limit is the vector space VF of countable dimension over F .

As mentioned already, we will in this memoir mostly deal with graphs and metric
spaces. All graphs will be simple and loopless. In the undirected case (which is the
case we will refer to when we mention graphs without any further indication), the
language is made of one binary relation symbol E. In a structure, E is interpreted
as an irreflexive, symmetric relation. There are several Fräıssé classes of such
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objects, but all of them have been classified by Lachlan and Woodrow in [LW80].
An example of such a class is the class G of all finite graphs. The Fräıssé limit of
G is the countable random graph alluded to in Section 2.1. For directed graphs,
the language is made of one binary relation symbol ← which is interpreted as an
irreflexive, antisymmetric binary relation. Fräıssé classes of finite directed graphs
have also been classified, but only much later than graphs. This classification is
due to Cherlin in [Che98]. Both [LW80] and [Che98] are known to be remarkable
achievements.

For metric spaces, the study of Fräıssé classes is still a very young subject. The
language is made of binary symbols ds, where s ranges over a set S of non-negative
reals including zero. In a given structure A, the relations (ds)s∈S encode a distance,
and dAs (x, y) means that the distance between x and y is less than s. There are at
the moment very few classification results for Fräıssé classes of finite metric spaces,
and they deal with extremely simple combinatorial situations. For example, the
paper [DLPS07] isolates the four-value condition, which holds for a subset S ⊂ R+

exactly when the class MS of all finite metric spaces is an amalgamation class.
When S is countable, the metric space that arises as the Fräıssé limit is sometimes
called the Urysohn space attached to MS , and is denoted US . Various examples
also appear in [NVT06] and [NVT10b]. In what follows, we will state several results
involving UQ (the rational Urysohn space), SQ := UQ∩[0,1] (the rational Urysohn
sphere), UN and Um := U{0,1,...,m}. All of them are closely related to the original
Urysohn space U (which is not a Fräıssé limit, but can be thought as such in the
more general setting of metric Fräıssé theory, see Section 6).

2.2.4. Non-Archimedean Polish groups. Another remarkable feature of Fräıssé struc-
tures is provided by their automorphism groups. Let F be a Fräıssé structure. Be-
cause its underlying set is countable, we may assume that this set is actually N and
the group Aut(F) may be thought of as a subgroup of the permutation group of
N. Moreover, if g is a permutation of N failing to be an automorphism of F, then
there is a finite subset of N on which this failure is witnessed. Therefore, Aut(F) is
a closed subgroup of S∞, the permutation group of N equipped with the pointwise
convergence topology. It turns out that every closed subgroup of S∞ arises that
way. The class of all closed subgroups of S∞ can also be defined abstractly in sev-
eral ways: it coincides with the class of all Polish groups that admit a basis at the
identity consisting of open subgroups, but also with the class of all Polish groups
that admit a compatible left-invariant ultrametric [BK96]. Recently, it has been
referred to as the class of non-Archimedean Polish groups (see [Kec12]). It includes
all countable discrete groups as well as all profinite groups, but in the sequel, we
will mostly concentrate on non locally-compact groups.

2.3. Precompact relational expansions. Throughout this section, L is some at
most countable language L and L∗ is an at most countable language containing L
such that L∗ r L = {Ri : i ∈ I} consists only of relation symbols.

Definition. Let A be an L-structure. An L∗-structure A
∗ is an expansion of A

in L∗ when it is of the form A
∗ = (A, (RA

i )i∈I) (also written (A, ~RA)). In that
case, A is the reduct of A∗ to L and is denoted by A

∗ ↾ L.

Intuitively, A is simply obtained from A∗ by forgetting all the relations coming
from L∗ rL. Note that it is also customary to use the restriction symbol ↾ to refer
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to substructures as opposed to reducts. Because the context almost always prevents
the confusion between those two notations, we will use freely both of them, without
any further indication.

Definition. Let A be an L-structure. An L∗-structure A
∗ is a precompact ex-

pansion of A in L∗ when every element of Age(A) has finitely many expansions in
Age(A∗).

Definition. Let K be a class of L-structures. An expansion of K in L∗ is a class
K∗ of L∗-structures whose class of reducts to L is K.

Definition. Let K be a class of L-structures, and let K be an expansion of K in
L∗. The class K∗ is a precompact expansion of K in L∗ when every element of K
has finitely many expansions in K∗.

Precompact expansions were introduced in [NVT13a]. The justification for the
terminology and for their use will be given later on, in Section 5.2. Special cases of
precompact expansions are provided by expansions for which the difference L∗rL is
finite. It is known after [KPT05] that of particular interest are what we will call here
pure order expansions of Fräıssé classes. Those are obtained when L∗ = L ∪ {<},
where < is a binary relation symbol that is not in L, and where all elements of K∗

are of the form A∗ = (A, <A), where A ∈ K and <A is a linear ordering on the
universe A of A. In the sequel, relational expansions will play an important rôle,
especially when the following property is satisfied:

Definition. Let K be a Fräıssé class in L and let K∗ be a relational expansion of
K. The class K∗ has the expansion property relative to K when for every A ∈ K,
there exists B ∈ K such that

∀A∗,B∗ ∈ K∗ (A∗ ↾ L = A ∧ B
∗ ↾ L = B)⇒ A

∗ ≤ B
∗.

In the case of pure order expansions, the expansion property is usually known
as the ordering property.

3. Finite Ramsey theory

The purpose of this section is to present the part of my work that deals with finite
Ramsey theory. In Section 3.1, an overview on finite structural Ramsey theory is
given. It is followed in Section 3.2 by a presentation of the notion of Ramsey degree.
Several examples involving graphs and directed graphs are then provided. Finally,
Section 3.3 contains a discussion concerning the existence of Ramsey precompact
expansions in a quite general context.

3.1. The Ramsey property. Throughout this section, L is a fixed language. Let
k ∈ N, and A,B,C be L-structures. Recall that the set of all copies of A in B is
the set (

B

A

)
= {Ã ⊂ B : Ã ∼= A}.

The standard arrow partition symbol

C −→ (B)
A

k

is used to mean that for every map c :
(
C

A

)
−→ [k], thought as a k-coloring of the

copies of A in C, there is B̃ ∈
(
C

B

)
such that c is constant on

(
B̃

A

)
.
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Definition. A class K of L-structures has the Ramsey property, or is a Ramsey
class, when

∀k ∈ N ∀A,B ∈ K ∃C ∈ K C −→ (B)
A

k .

When K = Age(F), where F is a Fräıssé structure, this is equivalent, via a
compactness argument, to:

∀k ∈ N ∀A,B ∈ K F −→ (B)
A

k .

In other words, every finite coloring of the copies of A in F must be constant
on arbitrarily large finite sets. The first example of a Ramsey class is provided
by Ramsey’s theorem, which states that the class of all finite sets (i.e. struc-
tures in the empty language) forms a Ramsey class. As indicated previously,
the search for Ramsey classes generated a considerable activity in the seventies
and in the early eighties. The most significant examples of Ramsey classes which
appeared during that period are provided by finite Boolean algebras (Graham-
Rothschild, [GR71]) and by finite vector spaces over a fixed finite field (Graham-
Leeb-Rothschild, [GLR72, GLR73]). However, being Ramsey turns out to be very
restrictive, and many natural classes of finite structures do not have the Ram-
sey property, for example finite equivalence relations, finite graphs, finite relational
structures in a fixed language, finite Kn-free graphs, finite posets, etc...Nevertheless,
it appears that those classes are in fact not so far from being Ramsey. In particular,
they can be expanded into Ramsey classes simply by adding linear orderings. More
precisely, the following classes are Ramsey: finite equivalence relations ordered by a
linear ordering leaving the classes convex (Rado, [Rad54]), finite ordered graphs and
more generally, finite ordered relational structures in a fixed language L (Abramson-
Harrington [AH78] and Nešetřil-Rödl [NR77, NR83] independently), finite ordered
Kn-free graphs (Nešetřil-Rödl [NR77, NR83]), finite posets ordered by a linear ex-
tension (announced by and attributed to Nešetřil-Rödl but the corresponding paper
was never published, see Paoli-Trotter-Walker [PTW85] for the first proof in print).

The importance of linear orderings, and more generally of rigidity, in relation
to the Ramsey property was realized pretty early. A structure is rigid when it
admits no non-trivial automorphism. Essentially, all Ramsey classes must be made
of rigid structures. Sets, Boolean algebras and vector spaces do not fall into that
category, but those being Ramsey is equivalent to some closely related classes of
rigid structures being Ramsey. To use the common jargon, rigidity prevents the
appearance of Sierpiński type colorings, which do not stabilize on large sets.

Another restriction imposed by the Ramsey property appears in the following
result.

Proposition IV (Nešetřil-Rödl [NR77], p.294, Lemma 1). Let K be a class of
finite L-structures consisting of rigid elements. Assume that K has the hereditarity
property, the joint embedding property, and the Ramsey property. Then K has the
amalgamation property.

This result explains why structural Ramsey theory and Fräıssé theory are so
closely related: when a class of finite structures satisfies very common properties,
it has to be Fräıssé whenever it is Ramsey. Amalgamation itself is a very restric-
tive feature, and was at the center of a very active area of research in the eight-
ies. In particular, it led to spectacular classification results, the most significant
ones being probably those we already mentioned concerning finite graphs (Lachlan-
Woodrow, [LW80]), finite tournaments (Lachlan [Lac84], based on the work of



18

Woodrow [Woo76]) and more recently finite directed graphs (Cherlin, [Che98]). As
indicated previously, any of those results represents a remarkable piece of work.

3.2. Ramsey degrees. It was already indicated that having the Ramsey property
is extremely restrictive for a class of finite structures. For that reason, weaker
partition properties were introduced. One of the most common ones is obtained
by imposing that colorings should only take a small number of values on a large
set, as opposed to being constant. This is captured by the following notion: for
k, l ∈ Nr {0} and L-structures A,B,C, write

C −→ (B)
A

k,l

when for any c :
(
C

A

)
−→ [k] there is B̃ ∈

(
C

B

)
such c takes at most l-many values

on
(
B̃

A

)
. Note that when l = 1, this is simply the partition property C −→ (B)

A

k

introduced previously.

Definition. Let K be a class of L-structures. An element A ∈ K has a finite
Ramsey degree in K when there exists l ∈ N such that for any B ∈ K, and any
k ∈ Nr {0}, there exists C ∈ K such that:

C −→ (B)
A

k,l.

The least such number l is denoted tK(A) and is the Ramsey degree of A in K.

Equivalently, if K is Fräıssé and F denotes its limit, A has a finite Ramsey degree
in K when there is l ∈ N such that for any B ∈ K, and any k ∈ Nr {0},

F −→ (B)
A

k,l.

The Ramsey degree is then equal to the least such number l. Note that it
depends only on A and K. Finite Ramsey degrees can be seen in two different
ways. They reflect the failure of the Ramsey property within a given class K, but
also reflect that arbitrary finite colorings can always be reasonably controlled. A
powerful method to compute them is to look for a precompact expansion K∗ of K
satisfying the Ramsey property and the expansion property relative to K:

Proposition V. Let K be a class of finite L-structures and let K∗ be an expansion
of K in L∗. Assume that both K and K∗ have elements of arbitrarily high cardinality
and satisfy the hereditary and the joint embedding property. Assume that K∗ has
the Ramsey property as well as the expansion property relative to K. Then every
element of K has a finite Ramsey degree in K equal to the number of non-isomorphic
expansions it has in K∗.

This fact already appears in [KPT05] in the context of pure order expansions,
but may have been known before. In fact, finding a precompact expansion K∗ with
both the Ramsey and the expansion property gives more than the Ramsey degrees,
it also gives access to the most complicated colorings within K. Let us detail in
which sense. For simplicity, we will assume that K∗ is of the form Age(F∗) for some

Fräıssé structure F∗ which is of the form F∗ = (F, ~R∗), where F is also a Fräıssé
structure. Let A ∈ K. Every copy of A in F supports a substructure of F∗, which
turns out to be an expansion of A in K∗. Therefore, there is a natural coloring of
the copies of A in F, which assigns to every copy of A the isomorphism type of
the structure it supports in F∗. The Ramsey property for K∗ makes sure that for
every B ∈ K and every finite coloring c of

(
F

A

)
, there is a copy of B in F where
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two copies of A receive the same c-color whenever they are isomorphic in F∗. On
the other hand, the expansion property makes sure that there is some B for which
all isomorphism types of A will always appear in every copy of B in F. For this
structure B, there is consequently a copy where the color of any copy of A depends
only on its isomorphism type as a substructure of F∗. The coloring of copies of A
using the isomorphism type in F∗ is therefore the most complicated possible, and
this is really what is behind the previous proposition.

To see on a concrete example how the previous proposition can be applied,
consider the class G of finite graphs. It is not Ramsey, but the class G< of finite
ordered graphs does have the Ramsey property as well as the ordering property
relative to G. Therefore, every A ∈ G has a finite Ramsey degree, which is equal to
the number of non-isomorphic expansions of A in G<, i.e.

tG(A) = |A|!/|Aut(A)|.

The expansion that satisfied the Ramsey and the expansion property in the pre-
vious example was a pure order expansion. There are many similar cases, but the
following examples show that there are also some others, where general precompact
expansions are necessary. This observation is not particularly deep, but it is ap-
parently the first one referring to an interesting phenomemon, namely that many
interesting classes of finite structures may actually have a precompact expansion
with the Ramsey and the expansion property. See Section 3.3 for more details.

3.2.1. n-chromatic graphs. Our first example is taken from [NVT10a]. Consider
the class χn of n-chromatic graphs, where n is a fixed integer (this class is not
a Fräıssé class, as amalgamation does not hold). Write M<

n for the class of all
finite ordered monotone colored graphs with colors in [n]. Those are finite ordered
graphs (A,EA, <A) together with a map λA that colors the vertices with colors in
[n] = {0, . . . , n− 1} in such a way that λA is increasing (when seen as a map from
(A,<A) to [n]) and so that no two adjacent vertices receive the same color.

Proposition 1 (NVT [NVT10a]). No pure order expansion of χn has the Ramsey
property.

Proposition 2 (NVT [NVT10a]). The classM<
n has the Ramsey property as well

as the expansion property relative to χn.

Corollary 1. Every element A of χn has a finite Ramsey degree in χn equal to
the number of non isomorphic expansions of A inM<

n .

What is interesting about those results is that their proof uses one of the very
standard theorems in structural Ramsey theory (namely, Nešetřil-Rödl theorem on
forbidden configurations), but that nobody seems to have noticed previously that
it could be used to derive the aforementioned partition result for such natural a
class as the class χn.

3.2.2. Circular directed graphs. Another example, involving Fräıssé classes, was iso-
lated in [LNVTS10]. The tournament S(2), called the dense local order, is defined
as follows: let T denote the unit circle in the complex plane. Define an oriented
graph structure on T by declaring that there is an arc from x to y (in symbols,

y
T
←− x) iff 0 < arg(y/x) < π. Call

−→
T the resulting oriented graph. The dense

local order is then the substructure S(2) of
−→
T whose vertices are those points of T

with rational argument. It is represented in the picture below.
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Figure 1. The tournament S(2)

This structure is one of the only three countable ultrahomogeneous tournaments
(a tournament is a directed graph where every pair of distinct points supports
exactly one arc), the two other ones being the rationals (Q, <), seen as a directed

graph where x
Q
←− y iff x < y, and the so-called random tournament. It is therefore

a Fräıssé structure in the language L = {←} consisting of one binary relation. More
information about this object can be found in [Woo76], [Lac84] or [Che98].

Proposition 3 (NVT [NVT13a]). No pure order expansion of S(2) has an age
with the Ramsey property.

However, S(2) does allow a precompact relational expansion S(2)∗ whose age has
the Ramsey property and the expansion property. Such an expansion essentially
appears in [LNVTS10], where the finite and the infinite Ramsey properties of S(2)
were analyzed. The appropriate language is

L∗ = L ∪ {Pj : j ∈ [2]},

every symbol Pj being unary. We expand S(2) as (S(2), P ∗
0 , P

∗
1 ) in L∗, where P ∗

0 (x)
holds iff x is in the right half plane, and P ∗

1 (x) iff it is in the left half plane. Quite
clearly, S(2)∗ is a precompact relational expansion of S(2).

Proposition 4 (Laflamme-NVT-Sauer [LNVTS10]). The class Age(S(2)∗) has the
Ramsey property and the expansion property relative to Age(S(2)).

Corollary 2. Every element A of Age(S(2)) has a finite Ramsey degree in Age(S(2))
equal to

2|A|/|Aut(A)|.

The same technique also applies in the case of another directed graph, called S(3).
The corresponding results appear in [NVT13a], but are really based on techniques
from [LNVTS10]. The notation suggests that S(3) is a modified version of S(2),

and it is indeed the case. Call
−→
D = (T,

D
←−) the directed graph defined on T by

declaring that there is an arc from x to y iff 0 < arg(y/x) < 2π/3. The directed

graph S(3) is then the substructure of
−→
D whose vertices are those points of T with

rational argument. It is represented in Figure 2.

✫✪
✬✩r

rr �
�✠❍❍❍❥

Figure 2. The directed graph S(3)

Like S(2), S(3) is a Fräıssé structure in the language L = {←} consisting of one
binary relation. The main obvious difference with S(2) is that it is not a tournament
(some pairs of points do not support any arc). For more information about this
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object, we refer to [Che98]. For the same reason as in the case of S(2), no pure
order expansion of S(3) has an age with the Ramsey and the expansion property,
but there is a precompact expansion S(3)∗ which does. The corresponding structure
is described in Figure 3. The appropriate language is

L∗ = L ∪ {Pj : j ∈ [3]},

with every symbol Pi unary, and S(3)∗ is defined by S(3)∗ = (S(3), P ∗
0 , P

∗
1 , P

∗
2 ),

where

P ∗
j (x)⇔

(
2jπ

3
< arg(x) +

π

6
<

2(j + 1)π

3

)

✫✪
✬✩

❧
❧❧

✱
✱✱

P ∗
1 P ∗

0

P ∗
2

Figure 3. The expansion S(3)∗

Proposition 5 (NVT [NVT13a]). The class Age(S(3)∗) has the Ramsey property
and the expansion property relative to Age(S(3)).

Corollary 3. Every element A of Age(S(3)) has a finite Ramsey degree in Age(S(3))
equal to

3|A|/|Aut(A)|.

For S(2) as well as for S(3), the proof of the previous results is based on a coding
of the structures involving a particular kind of precompact expansions of the linear
ordering Q. Those are the structures that we will denote Qn. Given a natural n,
the expansion Qn is made by adding n many unary relation symbols (Pi)i∈[n] that

are interpreted as a partition (PQn

i )i∈[n] of Q with dense parts.
To see how S(2) relates to Q2, think of the ordering of Q2 as a directed graph

relation where x←− y when x < y. Then, observe that the structure Q2 is simply
obtained from S(2)∗ by reversing all the arcs whose extremities do not belong to the
same part of the partition. The simple reason behind that fact is that if x, y ∈ S(2)

are such that P ∗
0 (x) and P ∗

1 (y), then x
T
←− y iff (−y)

T
←− x, where (−y) denotes

the opposite of y. So one way to realize the transformation from S(2)∗ to Q2 is to
consider S(2)∗, to keep the partition relation, but to replace the arc relation by the
relation obtained by symmetrizing all the elements in the left half. Quite clearly,
the new arc relation defines a total order, which is dense in itself and without
extremity point, and where both parts of the partition are dense. Therefore, the
resulting structure is Q2. Similarly, applying the same transformation to Q2 gives
raise to S(2)∗. Formally, S(2)∗ and Q2 are said to be first-order simply bi-definable.

Very similarly, S(3)∗ is first order simply bi-definable with Q3.
Once those connections are established, the Ramsey properties of the ages of

S(2)∗ and S(3)∗ are a direct consequence of those of the ages of the structures Qn,
which are in turn detailed in [KPT05], p.158.
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3.3. Are Ramsey classes so rare? We saw above that for a class of finite struc-
tures, being Ramsey is extremely restrictive. Even among Fräıssé classes, a com-
mon point of view after the knowledge accumulated in the eighties is that Ramsey
classes are quite exceptional objects. When analyzing how the most famous results
of the field were obtained, it seems that two categories emerge. The first one cor-
responds to those “natural” classes where the Ramsey property holds: finite sets,
finite Boolean algebras, finite vector spaces over a finite field. The second one corre-
sponds to those classes where the Ramsey property fails but where this failure can
be fixed by adjoining a linear ordering: finite graphs, finite Kn-free graphs, finite
hypergraphs, finite partial orders, finite topological spaces, finite metric spaces...
As for those classes where more than a linear ordering is necessary, besides the ones
that appear in [KPT05] (finite equivalence relations with classes of size bounded by
n, or equivalence relations with at most n classes) or those that were found more
recently (namely, substructures of S(2) and S(3), posets that are unions of at most
n many chains or that are obtained as a totally ordered set of antichains of size at
most n [Sok12b], and boron tree structures [Jas13]), not so many cases are known,
but it would be extremely surprising that nobody encountered such instances be-
fore. Quite likely, the corresponding results were not considered as true structural
Ramsey results, and were therefore overlooked. However, precompact expansions
seem to offer a reasonable general context. For example, it was realized recently
that they allow to compute the Ramsey degrees in the case of all Fräıssé classes
of graphs, posets, and tournaments. Those results naturally led to a more general
study of Fräıssé classes of directed graphs. For those, a preliminary analysis has
indicated that all of them seem to admit a precompact Ramsey expansion. The
corresponding results will appear in [JLNVTW12]. In practice, it also appears that
there is some sort of a standard scheme that can be applied in order to construct
precompact Ramsey expansions whenever those exist. This motivates the following
conjecture:

Conjecture 1. Let K be a Fräıssé class where there are only finitely many non-
isomorphic structures in every cardinality (equivalently, K is the age of a countable
ultrahomogeneous ω-categorical structure). Then K admits a Ramsey precompact
expansion.

Contrary to the common opinion expressed at the top of the present paragraph,
a positive answer would imply that after all, Ramsey classes are not so rare. We will
come back to that conjecture later on, and see that there is indeed a characterization
of those Fräıssé classes that admit a precompact Ramsey expansion. It is in terms
of topological dynamics, and leaves open the possibility of a solution via techniques
from dynamics and functional analysis. It also motivates the hypothesis made on
K, and shows that the conjecture is false when no restriction is placed on K.

Note also that under some more restrictive conditions on K, it is possible to
prove that a given precompact expansion is Ramsey:

Proposition 6 (NVT [NVT13a], based on [KPT05], proof of Theorem 10.7). Let
K be a Fräıssé class in L such that every A ∈ K has a finite Ramsey degree in K.
Let K∗ be a precompact expansion of K in L∗ satisfying the hereditarity property,
the joint embedding property, the expansion property relative to K, and such that
every A ∈ K has a finite Ramsey degree in K whose value is at most the number of
non-isomorphic expansions of A in K∗. Then K∗ has the Ramsey property.
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4. Infinite Ramsey theory

Recall that a Fräıssé class K of L-structures with limit F has the Ramsey prop-
erty when for any A,B ∈ K, and any k ∈ Nr {0}:

F −→ (B)
A

k .

Equivalently, for every A ∈ K, every finite coloring of the copies of A in F must
be constant on arbitrarily large finite sets. When that happens, it is of course
tempting to ask whether this conclusion can be replaced by the stronger following
property: for every A ∈ K and every k ∈ Nr {0},

F −→ (F)
A

k .

In words, must any finite coloring of copies of A be constant on a copy of F?
This question leads to interesting problems already in the simple case |A| = 1,
which are called indivisiblity problems, and are detailed in Section 4.1. The case
|A| ≥ 2 concentrates on the study of big Ramsey degrees, which are analogs of
Ramsey degrees in the infinite setting. Those are presented in Section 4.2.

4.1. Indivisibility and variations.

Definition. A structure F is indivisible when F embeds in R or B whenever F =
R ∪B.

Notice that for a structure to have a chance to be indivisible, all one-point
substructures of F must be isomorphic. If F is ultrahomogeneous, this happens
exactly when the language L does not contain any unary relation. There is no
uniformity in the behavior of ultrahomogeneous structures relative to indivisibility,
and there is no uniformity either in the range of difficulty that the corresponding
problems cover. For example, proving indivisiblity for the Rado graph is very easy,
but is much more difficult for Henson graphs or for countable Urysohn spaces.
Furthermore, because quite a number of natural structures are divisible (i.e. not
indivisible), a spectrum of related notions has been developed in order to capture
weaker partition relations.

Definition. A structure F is weakly indivisible when, for every finite substructure
A of F and every partition F = R ∪B (red and blue), either A embeds in R or F

embeds in B.

Weak indivisiblity is often compared to the following notion of age-indivisiblity.

Definition. A structure F is age-indivisible when A embeds either in R or in B
for every finite substructure A of F and every partition F = R ∪B.

Age-indivisiblity is formally weaker than weak indivisibility but it is only recently
(cf [LNVTPS11]) that the first examples of age-indivisible, not weakly indivisible,
structures were found. In fact, when the language is finite, there is still no known
example of a structure F which is age-indivisible without being weakly indivisible.
This is quite surprising, as age-indivisiblity is a purely finite Ramsey theoretic
notion (it is equivalent to a statement involving only finite structures via a standard
compactness argument) while weak indivisiblity is definitely an infinite one. It is
therefore expected that even in the case of finite languages, age-indivisiblity should
be weaker than weak indivisiblity (see [Sau02] for a survey about this problem).
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The aforementioned notions of indivisibility have been studied for many classical
ultrahomogeneous relational structures including graphs, tournaments and most of
the directed graphs. The results presented in Section 4.1.2 and 4.1.3 extend that
list with a detailed analysis for vector spaces and metric spaces.

The reason for which I became interested in these structures is not a coincidence,
and is strongly related to the so-called distortion problem from Banach space theory.

4.1.1. The distortion problem. Let S∞ denote the unit sphere of the Hilbert space
ℓ2. Is it true that if ε > 0 and f : S∞ −→ R is uniformly continuous, then there is
a closed infinite-dimensional subspace V of ℓ2 such that

sup{|f(x)− f(y)| : x, y ∈ V ∩ S∞} < ε?

Equivalently, for a metric space X = (X, dX), a subset Y ⊂ X and ε > 0, let

(Y )ε = {x ∈ X : ∃y ∈ Y dX(x, y) 6 ε}.

The distortion problem for ℓ2 asks: given a finite partition γ of S∞, is there
always Γ ∈ γ such that (Γ)ε includes V ∩ S∞ for some closed infinite-dimensional
subspace V of ℓ2? That problem appeared in the early seventies when Milman’s
work led to the following property, which is at the heart of Dvoretzky’s theorem:

Theorem VI (Milman [Mil71]). Let γ be a finite partition of S∞. Then for every
ε > 0 and every N ∈ N, there is Γ ∈ γ and an N -dimensional subspace V of ℓ2
such that V ∩ S∞ ⊂ (Γ)ε.

In that context, the distortion problem for ℓ2 really asks whether this result has
an infinite dimensional analog. It is only a long time after Milman’s theorem was
established that the distortion problem for ℓ2 was solved by Odell and Schlumprecht:

Theorem VII (Odell-Schlumprecht [OS94]). There is a partition S∞ = B∪R and
ε > 0 such that neither S∞ ∩ V 6⊂ (B)ε nor S∞ ∩ V 6⊂ (R)ε holds for any closed
infinite dimensional vector subspace V of ℓ2.

The result and its proof bring forward two natural questions. The first one
asks whether Odell-Schlumprecht’s partition can be strengthened so that for some
N ∈ N, S∞ ∩ V 6⊂ (B)ε for any N -dimensional vector subspace V of ℓ2. Using
the terminology we introduced previously, the problem under consideration here is
about weak indivisibility properties of the vector space ℓ2. Even though we are far
from a solution, this is one of the reasons for which I studied indivisibility properties
in vector spaces. The corresponding results are presented in Section 4.1.2.

The second question originating from the distortion problem comes from the fact
that even though its original formulation refers to the vector space structure of ℓ2,
it is also possible to state it in purely metric terms. For ε > 0, call a metric space

X ε-indivisible when for every finite partition γ of X, there is Γ ∈ γ and X̃ ⊂ X
isometric to X such that

X̃ ⊂ (Γ)ε.

Then, say that X is approximately indivisible when X is ε-indivisible for every
ε > 0. Note that X is indivisible exactly when X is 0-indivisible. Using this
terminology, the theorem of Odell and Schlumprecht states that the sphere S∞

is not approximately indivisible. However, because the proof is not based on the
intrinsic geometry of ℓ2, the impression somehow persists that something is still
missing in our understanding of the metric structure of S∞. That fact was one
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of the motivations for [LANVT08] as well as for [NVTS09]: our hope was that
understanding indivisibility properties of another remarkable space, namely the
Urysohn sphere S, would help to reach a better grasp of S∞. The final answer is
that it does not, but that some non-trivial theorems are nevertheless on the way.
Those are presented in Section 4.1.3.

4.1.2. Vector spaces. For a field F , recall that VF refers to the countable infinite
dimensional vector space over F . To my knowledge, indivisibility of such structures
per se only appeared in [Bau75], but it is clear that questions of the same flavor were
already considered before the publication of [LNVTPS11], especially after Gowers’
work [Gow92] and its influence in Banach space theory. However, the first related
result is much older. It is a reformulation of a theorem due to Hindman, originally
stated in terms of partitions of the integers and finite sums:

Theorem VIII (Hindman [Hin74]). The space VF2
is indivisible.

Of course, considering the hypothesis F = F2, it is natural to ask whether some
similar phenomenon holds for other fields. The answer is negative:

Theorem IX (Folklore). Let F be a finite field not equal to F2. Then VF is
divisible.

The first proof seems to appear in print in [LNVTPS11], but the result was
already known by some specialists in Ramsey theory. What was not known was
whether some meaningful partition result could be found when F 6= F2. The answer
crucially depends on the field:

Theorem X (Baumgartner [Bau75]). Let F be an infinite field. Then VF is not
weakly indivisible. In fact, VF can be divided into two parts so that neither part
contains an affine line.

Baumgartner’s paper [Bau75] really only takes care of F = Q, but already
contains the important ideas of the slightly more general form above. On the
other hand, when F is finite, there is a positive result:

Theorem 2 (Laflamme-NVT-Pouzet-Sauer [LNVTPS11]). Let F be a finite field.
Then VF is weakly indivisible.

4.1.3. Metric spaces. Most of the results that appear in the present section relate
to the Urysohn sphere S, i.e. the sphere of unit diameter in the Urysohn space U.
Apart from the fact that both S∞ and S are complete, separable and ultrahomoge-
neous, it was for some time believed that the study of indivisiblity properties of S
would be relevant for the distortion problem for ℓ2 because, from a finite Ramsey-
theoretic point of view, the spaces S∞ and S behave in a very similar way. For
example, the following analog of Milman’s theorem holds for S:

Theorem XI (Pestov [Pes02]). Let γ be a finite partition of S. Then for every

ε > 0 and every compact K ⊂ S, there is Γ ∈ γ and an isometric copy K̃ of K in

S such that K̃ ⊂ (Γ)ε.

In fact, this analogy is only the most elementary form of a much more general
Ramsey-theoretic theorem. More precisely, up to some small error, the classes of
finite metric spaces of S∞ and of S have the Ramsey property. It is also known
that this latter result has a very elegant reformulation at the level of the surjective
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isometry groups iso(S∞) and iso(S) (seen as topological groups when equipped
with the pointwise convergence topology). We will study this connection in detail
in Section 5, but let us mention here that on the group side, the common behavior
of S∞ and S we are refering to is contained in and reflected by the following two
theorems. Recall that a topological group G is extremely amenable when every
continuous action of G on a compact space admits a fixed point. Then on the one
hand:

Theorem XII (Gromov-Milman [GM83]). The group iso(S∞) is extremely amenable.

While on the other hand:

Theorem XIII (Pestov [Pes02]). The group iso(S) is extremely amenable.

Note that actually, even more is known as both iso(S∞) and iso(S) are known
to satisfy the so-called Lévy property (cf Gromov-Milman [GM83] for iso(S∞) and
Pestov [Pes07] for iso(S)), a property known to be stronger than extreme amenabil-
ity.

Back to indivisiblity, the problem for S was solved in two combinatorial steps.
The first one is a discretization procedure carried out in [LANVT08] and largely
inspired from the proof by Gowers of the stabilization theorem for the unit sphere
Sc0 of c0 and its positive part S+c0 (c0 is the space of all real sequences converging to
0 equipped with the ‖·‖∞ norm, and S+c0 is the set of all those elements of Sc0 taking
only positive values). Gowers’ proof involves a family of approximation spaces called
(FINk)k≥1. Ours uses the family (Um)m>1 of countable Urysohn metric spaces.
For m > 1, the space Um is defined as follows: up to isometry it is the unique
countable ultrahomogeneous metric space with distances in {1, . . . ,m} into which
every countable metric space with distances in {1, . . . ,m} embeds isometrically.
In other words, it is the Fräıssé limit of the class of all finite metric spaces with
distances in {1, . . . ,m}.

Theorem XIV (Lopez-Abad - NVT [LANVT08]). The following are equivalent:

(1) The space S is approximately indivisible.
(2) The space SQ is approximately indivisible.
(3) For every strictly positive m ∈ N, Um is indivisible.

Note that this result already appears in my doctoral dissertation. The second
step is a proof of item (3). The starting point is a technique initiated by El-Zahar
and Sauer in [EZS93] and refined later on in the series of papers [EZS94], [EZS05],
[Sau02], [Sau03]. All those papers deal with graphs, hypergraphs and directed
graphs. However, because metric spaces introduce different kinds of constraints,
several new ideas were necessary in order to solve the problem.

Theorem 3 (NVT-Sauer [NVTS09]). Let m ∈ N, m > 1. Then Um is indivisible.

As a corollary:

Corollary 4. The Urysohn sphere S is approximately indivisible.

This result answers a question mentioned by Kechris, Pestov and Todorcevic in
[KPT05], Hjorth in [Hjo08] and Pestov in [Pes98], and highlights a deep topological
difference which, for the reasons mentioned previously, was not at all apparent
until [NVTS09]. It also yields interesting consequences. First, observe that it is
equivalent to approximate indivisiblity for every separable metric space X with
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finite diameter δ into which every separable metric space with diameter at most δ
embeds isometrically. Next, recall that every separable metric space with diameter
less or equal to 2 embeds isometrically into the unit sphere SC([0,1]) of the Banach
space C([0, 1]). It follows that:

Corollary 5. The unit sphere of C([0, 1]) is approximately indivisible.

Observe also that instead of C([0, 1]), we could have used the Holmes space 〈U〉
introduced in Section 2.1. Very little is known about the space 〈U〉, but it is
easy to see that its unit sphere embeds isometrically every separable metric space
with diameter less or equal to 2. Much less trivial is the fact that every separable
Banach space embeds in 〈U〉 via a linear isometry. The only known proof relies
on the general result of Godefroy and Kalton (see [GK03]) according to which the
following holds: if a separable Banach space embeds isometrically into another one,
then it also embeds in it via a linear isometry. Observe also that the previous
partition results for spheres do not say that for X = C([0, 1]) or 〈U〉, every finite
partition γ of the unit sphere SX of X and every ε > 0, there is Γ ∈ γ and a closed
infinite dimensional subspace Y of X such that SX ∩Y ⊂ (Γ)ε: according to the
classical results about oscillation stability in Banach spaces, this latter fact is false
for those Banach spaces into which every separable Banach space embeds linearly,
and both C([0, 1]) and 〈U〉 have that property.

The techniques used in [LANVT08] and [NVTS09] were subsequently used in
two different projects. The first one is based on the fact that the Urysohn sphere is
only a particular case of Urysohn-like space. Can anything be said in general about
indivisibility and approximate indivisibility of Urysohn spaces? In particular, what
about Urysohn spaces of the form US , where S is a subset (0,+∞)? Some partial
answers can be found in [NVT10b] and can be derived directly via the techniques
developed in [NVTS09], but the most satisfactory solutions were brought by Sauer
in the sequence [Sau12b], [Sau13], [Sau12a]:

Theorem XV (Sauer [Sau12b]). Let S be a finite subset of (0,+∞). Assume that
there is a Urysohn space US with distance set S. Then US is indivisible.

Theorem XVI (Sauer, [Sau12a]). Every uncountable, complete, separable, bounded,
ultrahomogeneous, universal metric space is approximately indivisible.

The second project was completed when it was realized that the techniques from
[NVTS09] could be applied to derive weak indivisibility type results for the spaces
UN, UQ and U. All were known to be age-indivisible but being unbounded, they
had no chance to be indivisible. Still:

Theorem 4 (NVT-Sauer [NVTS10]). The space UN is weakly indivisible.

Theorem 5 (NVT-Sauer [NVTS10]). Let UQ = B ∪ R and ε > 0. Assume that
there is a finite metric subspace Y of UQ that does not embed in B. Then UQ

embeds in (R)ε.

Theorem 6 (NVT-Sauer [NVTS10]). Let U = B ∪ R and ε > 0. Assume that
there is a compact metric subspace K of U that does not embed in (B)ε. Then U

embeds in (R)ε.

Note that for UQ, weak indivisibility is still open. It is not even clear whether
UQ embeds in R when UQ = B ∪ R and B does not contain two points that are
distance one apart.
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4.2. Big Ramsey degrees. When |A| ≥ 2, the property F −→ (F)
A

k almost
always fails (this was made formal by Hjorth in [Hjo08]), and we are naturally
forced to consider weakenings. It would make sense to consider analogs of weak
indivisibility, but for some reason, it is a direction which has remained almost
completely unexplored so far. Much more common is the study of the analog of the
Ramsey degrees. Recall that A ∈ K has a finite Ramsey degree in K when there is
l ∈ N such that for any B ∈ K, and any k ∈ Nr {0},

F −→ (B)
A

k,l.

If this latter result remains valid when B is replaced by F, we say, following
[KPT05], that A has a big Ramsey degree in K. Its value TK(A) is the least l ∈ N
such that for every k ∈ N,

F −→ (F)
A

k,l.

There is only a small number of structures for which a full analysis of big Ramsey
degrees can be provided. The most significant result of that kind is due to Devlin
in [Dev79], and covers the case F = (Q, <).

Theorem XVII (Devlin, [Dev79]). Every A ∈ Age(Q, <) has a big Ramsey degree
in Age(Q, < ) equal to tan(2|A|−1)(0) (the value at 0 of the (2|A| − 1)th derivative
of the usual trigonometric tangent function).

A result of the same kind is due to Laflamme, Sauer and Vuksanovic [LSV06],
and shows that the value of the big Ramsey degree for a finite substructure A of
the countable random graph and of the countable random tournament can be inter-
preted as the number of representations of A into a well identified finite structure.
Therefore, there is an algorithm for the computation of the value of the Ramsey
degree, but there is no direct expression for it. One of the goals when the project
carried out in [LNVTS10] started was to produce more results of that kind. They
are presented in the two following sections. It is worth noting that all those re-
sults make heavy use of a representation involving finitely branching trees, together
with a Ramsey theorem for such trees called Milliken’s theorem. In fact, to our
knowledge, there is only one result about big Ramsey degrees that does not use
that technique: edges have a big Ramsey degree equal to 2 in the class of finite
triangle-free graphs (Sauer, [Sau98]). So far, the lack of tools to represent ultraho-
mogeneous structures is the major obstacle towards a better understanding of their
infinite partition properties.

4.2.1. Big Ramsey degrees in Age(Qn), Age(S(2)) and Age(S(3)). The computa-
tion of big Ramsey degrees in Age(S(2)) is carried out in [LNVTS10]. The same
technique also gives access to big Ramsey degrees in Age(S(3)). The first step
consists of a computation of the big Ramsey degrees for the structures Qn, n ≥ 1.
Quite surprisingly, the values does not depend on n, and are not larger than Devlin’s
bounds, as one could have expected.

Theorem 7 (Laflamme-NVT-Sauer [LNVTS10]). Let n be a positive natural. Then
every element A of Age(Qn) has a big Ramsey degree in Age(Qn) equal to

tan(2|A|−1)(0) .

As in Section 3.2.2, the cases n = 2, 3 allow then to compute big Ramsey degrees
in Age(S(2)) and in Age(S(3)).
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Theorem 8 (Laflamme-NVT-Sauer [LNVTS10]). Every element A of Age(S(2))
has a big Ramsey degree in Age(S(2)) equal to

(2|A|/|Aut(A)|) tan(2|A|−1)(0) .

Theorem 9 (essentially Laflamme-NVT-Sauer [LNVTS10]). Every element A of
Age(S(3)) has a big Ramsey degree in Age(S(3)) equal to

(3|A|/|Aut(A)|) tan(2|A|−1)(0) .

More concretely, for every natural k > 0 and every coloring c : S(2) −→ [k],
there is an isomorphic copy of S(2) inside S(2) on which c takes only 2 colors, and
2 is the best possible bound. When coloring the arcs, this bound is 8. It is 32 for
the circular triangles and 96 for the transitive ones.

4.2.2. A colored version of Milliken’s theorem. The previous results are proved
thanks to a variant of a theorem of Milliken. Because of its independent interest, we
detail briefely its content in the present section. Consider a finitely branching tree
(in the set-theoretic sense) T of infinite height, a number m, and a subset S ⊂ T . If
S satisfies certain properties listed below, we say that S is a strong subtree of T of
height m. Milliken’s theorem states that if we partition the set of strong subtrees
of height m into finitely many parts, then there exists a strong subtree of infinite
height such that all strong subtrees of height m are contained in the same part. In
the version we need in order to prove Theorem 7, each level of the tree is assigned
a color (out of a finite set unrelated to the partition that is applied to the tree).
We then consider only strong subtrees of height m with some given level-coloring
structure and we look for a strong subtree of infinite height with a level-coloring
structure similar to that of the original tree.

More precisely: a tree is a partially ordered set (T,≤) such that given any element
t ∈ T , the set {s ∈ T : s ≤ t} is finite and linearly ordered by ≤. The number of
predecessors of t ∈ T , ht(t) = |{s ∈ T : s < t}| is the height of t ∈ T . The m-th
level of T is T (m) = {t ∈ T : ht(t) = m}. The height of T is the least m such that
T (m) = ∅ if such an m exists. When no such m exists, we say that T has infinite
height. When |T (0)| = 1, we say that T is rooted and we denote the root of T by
root(T ). T is finitely branching when every element of T has only finitely many
immediate successors. When T is a tree, the tree structure on T induces a tree
structure on every subset S ⊂ T . S is then called a subtree of T . Here, all the trees
we will consider will be rooted subtrees of the tree N<∞ of all finite sequences of
naturals ordered by initial segment. Fix now a downwards closed finitely branching
subtree T of N<∞ with infinite height. Say that a subtree S of T is strong when

(1) S has a smallest element.
(2) Every level of S is included in a level of T .
(3) For every s ∈ S not maximal in S and every immediate successor t of s in

T there is exactly one immediate successor of s in S extending t.

An example of strong subtree in provided in Figure 4.2.2. For a natural m > 0,
denote by Sm(T ) the set of all strong subtrees of T of height m. Denote also by
S∞(T ) the set of all strong subtrees of T of infinite height.

Theorem XVIII (Milliken [Mil79]). Let T be a nonempty downward closed finitely
branching subtree of N<∞ with infinite height. Let k,m > 0 be naturals. Then for
every map c : Sm(T ) −→ [k], there is S ∈ S∞(T ) such that c is constant on Sm(S).
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Figure 4. A strong subtree

In order to compute big Ramsey degrees in Age(Qn), what is needed is a strength-
ening of Milliken’s theorem relative to n-colored trees. Let α ∈ N∪ {∞} and n > 0
be a natural. An n-colored tree of height α is a tree T of height α together with
an n-coloring sequence τ assigning an element of [n] (thought of as a color) to each
of the levels of T (τ(i) then corresponds to the color of T (i), the level i of T ). If
S is a strong subtree of T , τ induces an n-coloring sequence of S provided by a
subsequence of τ . For β ≤ α and σ a sequence of length β with values in [n], let
Sσ(T ) denote the set of all strong subtrees of T such that the coloring sequence
induced by τ is equal to σ.

Theorem 10 (Laflamme-NVT-Sauer [LNVTS10]). Let T be a nonempty downward
closed finitely branching subtree of N<∞ with infinite height. Let n > 0 be a natural
and Σ an n-coloring sequence of T taking each value i ∈ [n] infinitely many times.
Let k > 0 be a natural and σ an n-coloring sequence with finite length. Then for
every map c : Sσ(T ) −→ [k], there is S ∈ SΣ(T ) such that c is constant on Sσ(S).

Trees are combinatorial objects that deserve attention in their own right, but
the strength of Milliken’s theorem also comes from their coding power. This latter
aspect was indicated previously, but was also largely used in my thesis [NVT06]
in order to deal with indivisiblity problems. It is also central for a very closely
related result about partitions of trees, namely the Halpern-Laüchli theorem, which
has been at the center of several remarkable recent advances (see the sequence
[DKT12d], [DKT12a], [DKT12b], [DKT12e], [DKT12c]).

5. The Kechris-Pestov-Todorcevic correspondence

It was mentioned in the introduction that my work combined Ramsey theory
and topological dynamics. The Kechris-Pestov-Todorcevic correspondence is what
makes the connection possible. In particular, we will see how the results of Section
3 translate in dynamical terms. The present section is structured as follows: we
start in 5.1 with an overview of the Kechris-Pestov-Todorcevic correspondence as
it appears in [KPT05]. All basic notions from topological dynamics are introduced
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there. We then elaborate on this correspondence in the more general setting of
precompact expansions. Those were already introduced, but we come back to
them in 5.2. Subsection 5.3 deals with minimality and the expansion property.
Subsection 5.4 deals with universality, relative extreme amenability and relative
Ramsey property for embeddings. Subsection 5.5 covers universal minimal flows
and the relative Ramsey property for structures. It also provides the example
of an explicit computation based on results on circular directed graphs obtained
in previous sections. Subsection 5.6 deals with relative extreme amenability and
its relation to interpolation. Finally, the relation between Ramsey precompact
expansions and metrizability of the universal minimal flow is presented in 5.7.

5.1. The Kechris-Pestov-Todorcevic correspondence. Let G be a topological
group. A G-flow is a continuous action of G on a topological space X. We will
often use the notation G y X. The flow G y X is compact when the space X is.
It is minimal when every x ∈ X has dense orbit in X:

∀x ∈ X G · x = X

Finally, it is universal when every compact minimal G y Y is a factor of G y X,
which means that there exists π : X −→ Y continuous and onto, so that

∀g ∈ G ∀x ∈ X π(g · x) = g · π(x).

It turns out that when G is Hausdorff, there is, up to isomorphism of G-flows, a
unique G-flow that is both minimal and universal. This flow is called the universal
minimal flow of G, and is denoted G y M(G). When the space M(G) is reduced
to a singleton, the group G is said to be extremely amenable. Equivalently, every
compact G-flow G y X admits a fixed point, ie an element x ∈ X so that g ·x = x
for every g ∈ G. We refer to [KPT05] or [Pes06] for a detailed account on those
topics. Let us simply mention that, concerning extreme amenability, it took a
long time before even proving that such groups exist, but that several non-locally
compact transformation groups are now known to be extremely amenable (the
most remarkable ones being probably the isometry groups of the separable infinite
dimensional Hilbert space (Gromov-Milman [GM83]), and of the Urysohn space
(Pestov [Pes02])). As for universal minimal flows, prior to [KPT05], only a few cases
were known to be both metrizable and non-trivial, the most important examples
being provided by the orientation-preserving homeomorphisms of the torus (Pestov
[Pes98]), S∞ (Glasner-Weiss [GW02]), and the homeomorphism group of the Cantor
space (Glasner-Weiss [GW03]). In that context, the paper [KPT05] established a
link between Ramsey property and extreme amenability. For an L-structure A,
we denote by Aut(A) the corresponding automorphism group. When this group is
trivial, we say that A is rigid.

Theorem XIX (Kechris-Pestov-Todorcevic [KPT05], essentially Theorem 4.8).
Let F be a Fräıssé structure, and let G = Aut(F). The following are equivalent:

i) The group G is extremely amenable.
ii) The class Age(F) has the Ramsey property and consists of rigid elements.

Because closed subgroups of S∞ are all of the form Aut(F), where F is a Fräıssé
structure, the previous theorem actually completely characterizes those closed sub-
groups of S∞ that are extremely amenable. It also allows the description of many
universal minimal flows via combinatorial methods. Indeed, when F∗ = (F, <∗) is
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an order expansion of F, one can consider the space LO(F) of all linear orderings on
F, seen as a subspace of [2]F×F. In this notation, the factor [2]F×F is thought as the
set of all binary relations on F. This latter space is compact, and G continuously
acts on it: if S ∈ [2]F×F and g ∈ G, then g · S is defined by

∀x, y ∈ F g · S(x, y)⇔ S(g−1(x), g−1(y)).

It can easily be seen that LO(F) and X∗ := G· <∗ are closed G-invariant sub-
spaces.

Theorem XX (Kechris-Pestov-Todorcevic [KPT05], Theorem 7.4). Let F be a
Fräıssé structure, and F

∗ a Fräıssé order expansion of F. The following are equiv-
alent:

i) The flow G y X∗ is minimal.
ii) Age(F∗) has the ordering property relative to Age(F).

The following result, which builds on the two preceding theorems, is then ob-
tained:

Theorem XXI (Kechris-Pestov-Todorcevic [KPT05], Theorem 10.8). Let F be a
Fräıssé structure, and F

∗ be a Fräıssé order expansion of F. The following are
equivalent:

i) The flow G y X∗ is the universal minimal flow of G.
ii) The class Age(F∗) has the Ramsey property as well as the ordering property

relative to Age(F).

A direct application of those results allowed to find a wealth of extremely amenable
groups and of universal minimal flows, see ([KPT05], Sections 6 and 8), but also
[Neš07], [NVT06], [Sok12a], [Sok12b] and [Jas13]. However, some cases, which are
very close to those described above, cannot be captured directly by those theo-
rems. This is because, as already mentioned several times, some Fräıssé classes do
not have an order expansion with the Ramsey and the ordering property, but do
so when the language is enriched with additional symbols. Some examples already
appear in [KPT05] (e.g. Theorem 8.4 dealing with equivalence relations with the
number of classes bounded by a fixed number). It is also the case for equivalence
relations whose classes have a size bounded by a fixed number, for the subtour-
naments of the dense local order (see [LNVTS10], or Section 3.2.2 of the present
memoir), as well as for several classes of finite posets (see [Sok12b]). More recently,
Jasiński showed that boron tree structures have the same property, see [Jas13]. For
all those cases, a slight modification of the original framework, dealing with pre-
compact relational expansions instead of order expansions, does allow to describe
the universal minimal flow. The purpose of the following subsections is to explain
where precompact expansions are coming from, and how they can be used in order
to elaborate on the Kechris-Pestov-Todorcevic correspondence.

5.2. What is precompact in precompact expansions. The terminology “pre-
compact expansions” is justified by the following construction. Consider Fräıssé
structures F and F∗ in L and L∗ respectively. As before, L is some at most
countable language, L∗ is an at most countable language containing L such that
L∗ rL = {Ri : i ∈ I} consists only of relation symbols, and F is an expansion of F
in L∗. For i ∈ I, the arity of the symbol Ri is denoted α(i). We also assume that
F and F∗ are based on the set N of natural numbers.
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The corresponding automorphism groups are denoted G and G∗ respectively.
The group G∗ will be thought as a subgroup of G, and both are closed subgroups
of S∞, the permutation group of N equipped with the topology generated by sets
of the form

Ug,F = {h ∈ G : h ↾ F = g ↾ F},

where g runs over G and F runs over all finite subsets of N. This topology admits
two natural uniform structures, a left-invariant one, UL, whose basic entourages are
of the form

UL
F = {(g, h) : g−1h ∈ Ue,F }, F ⊂ N finite,

and a right-invariant one, UR, whose basic entourages are of the form

UR
F = {(g, h) : (g−1, h−1) ∈ UL

F }, F ⊂ N finite.

In fact, those two uniform structures are respectively generated by the two fol-
lowing metrics: dL, defined as

dL(g, h) =
1

2m
, m = min{n ∈ N : g(n) 6= h(n)},

and dR, given by

dR(g, h) = dL(g−1, h−1).

In what follows, we will be interested in the set of all expansions of F in L∗,
which we think of as the product

P :=
∏

i∈I

[2]F
α(i)

.

In this notation, the factor [2]F
α(i)

= {0, 1}F
α(i)

is thought of as the set of all

α(i)-ary relations on F. Each factor [2]F
α(i)

is equipped with an ultrametric di,
defined by

di(S, T ) =
1

2m
, m = min{n ∈ N : S ↾ [n] 6= T ↾ [n]}

where Si ↾ [m] (resp. Ti ↾ [m]) stands for Si ∩ [m]α(i) (resp. Ti ∩ [m]α(i)). So
Si ↾ [m] = Ti ↾ [m] means that

∀y1 . . . yα(i) ∈ [m] Si(y1 . . . yα(i))⇔ Ti(y1 . . . yα(i)).

The group G acts continuously on each factor as follows: if i ∈ I, Si ∈ [2]F
α(i)

and g ∈ G, then g · Si is defined by

∀y1 . . . yα(i) ∈ F g · Si(y1 . . . yα(i))⇔ Si(g
−1(y1) . . . g−1(yα(i))).

This allows to define an action of G on the product P , where g·~S is simply defined

as (g ·Si)i∈I whenever ~S = (Si)i∈I ∈ P and g ∈ G. This action is continuous when
P is equipped with the product topology (it is then usually referred to as the logic
action), but also when it is endowed with the supremum distance dP of all the
distances di. The corresponding topology is finer than the product topology if I
is infinite, but it is the one we will be interested in in the sequel because of its
connection to the quotient G/G∗.

As a set, G/G∗ can be thought as G · ~R∗, the orbit of ~R∗ in P , by identifying [g],

the equivalence class of g, with g · ~R∗ (recall that ~R∗ is defined as F∗ = (F, ~R∗)).
Both uniform structures on G project onto uniform structures on G/G∗, but we
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will pay a particular attention to the projection of UR, whose basic entourages are
of the form

VF = {([g], [h]) : g−1 ↾ F = h−1 ↾ F}, F ⊂ N finite.

Proposition 7 (NVT [NVT13a]). The projection of UR on G/G∗ ∼= G· ~R∗ coincides

with the uniform structure induced by the restriction of dP on G · ~R∗.

Therefore, in the sequel, we can really think of the uniform space G/G∗ as the

metric subspace G · ~R∗ of P . Recall that a metric space X is precompact when
its completion is compact. Equivalently, it can be covered by finitely many balls
of arbitrary small diameter. When the space is only uniform as opposed to metric,
this means that for every basic entourage V , there are finitely many x1, . . . , xn so
that the family of sets ({x ∈ X : (x, xi) ∈ V })i≤n covers X. Here is what motivates
the terminology “precompact expansions”.

Proposition 8 (NVT [NVT13a]). The space G/G∗ ∼= G · ~R∗ is precompact iff
Age(F∗) is a precompact expansion of Age(F). In that case, we denote by X∗ the
corresponding completion, ie

X∗ = Ĝ/G∗ = G · ~R∗ (where the closure in taken in P ).

We should emphasize at that point that the realization of spaces of relations as
quotients of groups turned out to be an essential feature of all the constructions we
are about to present.

5.3. Minimality and the expansion property. In [KPT05], minimality of the
flow X∗ associated to a pure order expansion appears to be related to the ordering
property. The following results states that the link is preserved when passing to an
arbitrary precompact expansion:

Theorem 11 (NVT [NVT13a]). Let F be a Fräıssé structure, and F
∗ a Fräıssé

precompact relational expansion of F. The following are equivalent:

i) The flow G y X∗ is minimal.
ii) The class Age(F∗) has the expansion property relative to Age(F).

We will illustrate in Section 5.5 how this result can be applied in practice.

5.4. Universality and the relative Ramsey property. The study of univer-
sality of X∗ by itself is not treated in [KPT05], but the question of whether it is
equivalent to the Ramsey property is explicitly asked (see p.174). The following
notions were introduced in [NVT13b] as an attempt for an answer:

Definition. Let H ≤ G be topological groups. Say that the pair (G,H) is relatively
extremely amenable when every continuous action of G on every compact space
admits an H-fixed point.

When A,B ∈ Age(F), the set of all embedings from A into B is denoted
(

B

A

)

Emb

Let B∗ an expansion of B in Age(F∗), and a ∈
(
B

A

)
Emb

. The substructure of B∗

supported by a(A) is an expansion of A in Age(F∗). Using a, we can then define
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an expansion of A in Age(F∗) as follows: for i ∈ I, call α(i) the arity of Ri. Then,
set

∀i ∈ I∗ Ra
i (x1, . . . , xα(i))⇔ RB

∗

i (a(x1), . . . , a(xα(i))).

We will refer to (a(A), ~Ra) as the canonical expansion induced by a on A. If

a′ ∈
(
B

A

)
Emb

, write a ∼=B∗ a′ when the canonical expansions on A induced by a and

a′ are equal (not only isomorphic).

Definition. Let K be a class of finite L-structures, and K∗ an expansion of K in
L∗. Say that the pair (K,K∗) has the relative Ramsey property for embeddings
when for every k ∈ N, A ∈ K, B∗ ∈ K∗, there exists C ∈ K such that for every
coloring c :

(
C

A

)
Emb
−→ [k], there exists b ∈

(
C

B

)
Emb

such that:

∀a0, a1 ∈

(
B

A

)

Emb

a0 ∼=B∗ a1 ⇒ c(ba0) = c(ba1).

Theorem 12 (NVT [NVT13b]). Let F be a Fräıssé structure in L, and F
∗ a Fräıssé

precompact relational expansion of F in L∗. Then the following are equivalent:

i) The flow G y X∗ is universal.
ii) The pair (G,G∗) is relatively extremely amenable.
iii) The elements of Age(F∗) are rigid and the pair (Age(F),Age(F∗)) has the

relative Ramsey property for embeddings.

As a consequence, universality of G y X∗ is not equivalent to the Ramsey
property for Age(F∗) in full generality. For classes of rigid structures, the Ram-
sey property implies extreme amenability of G∗ by the Kechris-Pestov-Todorcevic
theorem, hence universality of G y X∗ because the pair (G,G∗) is then relatively
extremely amenable. However, the converse may not hold. For example, consider
the class U<

S of finite ordered ultrametric spaces with distances in S, where S is
a finite subset of R. The corresponding Fräıssé limit is a countable ordered ul-
trametric space, denoted by (Uult

S , <). As a linear ordering, it is isomorphic to

(Q, <). Hence, (Uult
S , <) can be thought as a precompact relational expansion of

(Q, <), and the group Aut(Uult
S , <) can be thought of as a closed subgroup of

Aut(Q, <). Because this latter group is extremely amenable (see [Pes02]), the pair

(Aut(Q, <),Aut(Uult
S , <)) is relatively extremely amenable and the corresponding

flow is universal. However, it is known that U<
S does not have the Ramsey property,

see [NVT06]. A similar situation occurs with finite posets, considering (Q, <) and
the Fräıssé limit (P, <) of the class of all finite ordered posets. This class does
not have the Ramsey property (cf [Sok10], [Sok12a]), but the corresponding flow is
universal.

However, quite surprisingly, it is still unclear whether universality of G y X∗

implies Ramsey property of Age(F∗) when F∗ is a pure order Fräıssé expansion
of F. I believe that the answer should be negative, but was not able to construct
any counterexample so far. In fact, results of Sokić (see [Sok10], [Sok11]) provide
a positive answer in a number of cases.

5.5. Universal minimal flows. In this section, we put together results of the
previous sections in order to derive the Kechris-Pestov-Todorcevic theorem on uni-
versal minimal flows for precompact expansions.

Definition. Let K be a class of finite L-structures, and K∗ an expansion of K in
L∗. Say that the pair (K,K∗) has the relative Ramsey property for structures when
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for every k ∈ N, A ∈ K and B
∗ ∈ K∗, there exists C ∈ K such that for every

coloring c :
(
C

A

)
−→ [k], there exists b ∈

(
C

B

)
Emb

such that:

∀Ã0, Ã1 ∈

(
B

A

) (
Ã0
∼=B∗ Ã1 ⇒ c(b(Ã0)) = c(b(Ã1))

)
.

Above, Ã0
∼=B∗ Ã1 means that B∗ ↾ Ã0

∼= B
∗ ↾ Ã1.

Note that this property is formally weaker than the relative Ramsey property
for embeddings, and is therefore, a priori, not sufficient in order to guarantee uni-
versality of the flow G y X∗. However, it is sufficient when combined with the
expansion property:

Proposition 9 (NVT [NVT13b]). Let F be a Fräıssé structure in L, and F
∗ a

Fräıssé precompact expansion of F in L∗ whose age consists of rigid structures.
Assume that the pair (Age(F),Age(F∗)) has the relative Ramsey property for struc-
tures, and that Age(F∗) has the expansion property relative to Age(F). Then
Age(F∗) has the Ramsey property.

This result is useful in practice as from the existence of a precompact expansion
with the relative Ramsey property for structures, it allows to construct a further
precompact expansion with both the Ramsey and the expansion property. This is
done by showing that going to a subclass, it is possible to satisfy the expansion
property. Keeping in mind that the expansion property reflects minimality in some
dynamical system, the result is maybe not so suprising, but more surprising is that
there is currently no purely dynamical proof of that fact. Combining Theorem 11,
Theorem 12 and Proposition 9, we obtain:

Theorem 13 (NVT [NVT13a]). Let F be a Fräıssé structure, and F
∗ be a Fräıssé

precompact relational expansion of F. Assume that Age(F∗) consists of rigid ele-
ments. The following are equivalent:

i) The flow G y X∗ is the universal minimal flow of G.
ii) The class Age(F∗) has the Ramsey property as well as the expansion prop-

erty relative to Age(F).

Let us illustrate the previous result with the dense local order. Considering
G = Aut(S(2)) and G∗ = Aut(S(2)∗), the universal minimal flow of G is, in virtue of

Proposition 4 and Theorem 13, the action G y X∗, where X∗ := G · (P ∗
0 , P

∗
1 ), the

closure of G·(P ∗
0 , P

∗
1 ) in [2]S(2)×[2]S(2). Moreover, it is possible to provide a concrete

description of that action. In the unit circle T, consider the set S supporting S(2),
the set (−S) of all its opposite points, and the set C = T r (S ∪ (−S)). Consider

T̂ = C ∪ ((S ∪ (−S))× [2]) .

Intuitively, it is obtained from the unit circle T by doubling the points in S∪(−S).

Next, for t ∈ T̂, define p(t) as the natural projection of t on T, and for α, β in

S ∪ (−S) so that α
T
←− β, define [α, β] by:

[α, β] := {(α, 0)} ∪ {t ∈ T̂ : α
T
←− p(t)

T
←− β} ∪ {(β, 1)}.

This set is represented in Figure 5 (as the right part of the circle, together with
the two black dots).

It turns out that sets of the form [α, β] form a basis of open sets for a topology

on T̂, and the corresponding space is homeomorphic to X∗. This representation has
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Figure 5. The set [α, β]

at least two advantages. First, it is clear that X∗ is homeomorphic to the Cantor
space. Second, it allows to visualize pretty well the action of G on X∗, which is not
so common when dealing with universal minimal flows. Using the same technique,
a very similar result can be obtained for S(3).

Another remarkable instance where that happens is due to Pestov in [Pes98].
It deals with the orientation preserving homeomorphisms of T, equipped with the
pointwise convergence topology. That example provided the first known example of
a metrizable, non-trivial, universal minimal flow, which is, in that case, the natural
action on the circle by homeomorphisms.

It is worth noting that the cases of S(2) and S(3) are precisely the ones that mo-
tivated the introduction of precompact expansions. The purpose was to formulate a
general framework for the Kechris-Pestov-Todorcevic correspondence to take place.
As mentioned already when dealing with finite Ramsey-theoretic properties, it has
then been gradually realized that after all, Fräıssé classes admitting a precompact
Ramsey expansion may not be so rare. In view of Conjecture 1, recall that it is still
unknown whether all Fräıssé classes in a finite language admit such an expansion.
More generally, it is unknown whether every Fräıssé class where there are only
finitely many nonisomorphic structures in every cardinality admits a precompact
Ramsey expansion (Conjecture 1 reflects my view that it should be true).

5.6. Interpolation of relatively extremely amenable pairs. In this section,
we come back to the notion of relative extreme amenability. In Section 5.4, we
exhibited several examples of relatively extremely amenable pairs of groups (G,H)
without H being extremely amenable. What made each pair relatively extremely
amenable was the extreme amenability of G, but the same could have been achieved
with any extreme amenable group sandwiched between H and G. This observation
motivated the following definition:

Definition. Let G be a topological group and H ⊂ G a subgroup. An extremely
amenable group E is an extremely amenable interpolant for the pair (G,H) if
H ⊂ E ⊂ G.

The question asking whether every relatively extremely amenable pair of groups
admits such an interpolant is at the center of the paper [GNVT11]. Theorem 14
below will show that the answer is negative. This result is really due to Gutman.
It is based on the following simple but crucial observation, which actually initiated
the paper [GNVT11].

Proposition 10 (Gutman-NVT [GNVT11]). Let G be a topological group and
H ⊂ G, a subgroup. Then the following are equivalent:

i) The pair (G,H) is relatively extremely amenable.
ii) M(G) has an H-fixed point.
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A simple argument then leads to:

Theorem 14 (Gutman-NVT [GNVT11]). There exists a relatively extremely amenable
pair (G,H) which which does not admit an extremely amenable interpolant, namely
(S∞,Aut(Z, <)) (where we identify S∞ with the permutation group of Z).

For pairs (G,G∗) of closed subgroups of S∞ for which the quotient is precompact,
the situation remains unclear, but the following result suggests that an interpolant
may exist.

Theorem 15. Let G,G∗ be closed subgroups of S∞, with G∗ a closed subgroup
of G. Assume that the quotient G/G∗ is precompact, and that the pair (G,G∗) is
relatively extremely amenable. Then G admits an extremely amenable subgroup G∗∗

so that G/G∗∗ is precompact.

So far, the only proof of this result shares many common features with the proof
of Theorem 10.7 from [KPT05]. The proofs of those results crucially make use
of the same combinatorial argument, which heavily lies on the fact that G and
G∗ are closed subgroups of S∞. However, it could still be that this hypothesis is
unnecessary, and that the result actually holds for all Polish groups. There are
two approaches to attack this problem. The first one would consist in removing
the combinatorial content of the present proof via some use of dynamics. The
other one would be to make use of continuous logic and metric Fräıssé structures,
an approach that has already been adopted successfully by Melleray and Tsankov
[MT11] in order to generalize the Kechris-Pestov-Todorcevic correspondence to all
Polish groups (some recent work in collaboration with Melleray suggests that this
latter approach should be successful).

5.7. Metrizability of M(G) and Ramsey precompact expansions. In this
section, I will present an unpublished result that indicates why precompact expan-
sions should be the right framework to deal with the Kechris-Pestov-Todorcevic
correspondence and with Conjecture 1. The question from where it originates is
the following one. The Kechris-Pestov-Todorcevic theorem provides a character-
ization of Fräıssé classes K consisting of rigid elements and having the Ramsey
property: they coincide with those whose group G = Aut(Flim(K)) is extremely
amenable, that is, for which the underlying space of the universal minimal flow
M(G) is as small as possible (a single point). Is there a similar characterization
for those Fräıssé classes K almost having the Ramsey property, in the sense that
they admit a Ramsey precompact expansion? Can such a property be translated
in terms of smallness of the universal minimal flow? Theorem 13 already provides
one part of the answer: if K admits a Ramsey precompact expansion consisting of
rigid elements which also has the expansion property relative to K∗, then M(G) is
metrizable (as the space X∗ is metrizable). Being metrizable for a compact space
is indeed a smallness condition (it is equivalent to being second-countable), and
therefore appeared as a good candidate for the condition that we were looking for.
In parallel, it also allowed to make the connection with another question, connected
to metrizability of universal minimal flows. We mentioned already that the first
example of a non-trivial, metrizable universal minimal flow was obtained in [Pes98].
Since then, several other examples were found, but all of them actually followed
the same scheme: inside the group G under consideration, find a large extremely
amenable closed subgroup H, where large means with precompact quotient G/H.



39

It was therefore quite reasonable to ask whether this is the only way to achieve
metrizability of the universal minimal flow. The following result shows that metriz-
ability does capture Ramsey precompact expansions, and that it indeed implies the
existence of a large extremely amenable subgroup.

Theorem 16 (NVT-Tsankov [NVTT12]). Let F be a Fräıssé structure, and let
G = Aut(F). The following are equivalent:

i) The structure F admits a Fräıssé precompact expansion F
∗ whose age has

the Ramsey property and consists of rigid elements.
ii) The flow G y M(G) is metrizable and has a generic orbit.
iii) The group G admits an extremely amenable closed subgroup G∗ such that

the quotient G/G∗ is precompact.

Theorem 16 is the reason for which Conjecture 1 is only made for Fräıssé classes
where there are only finitely many non isomorphic structures in every cardinality.
Indeed, there are many known closed subgroups of S∞ whose universal minimal
flow is not metrizable (e.g. the countable discrete ones). Starting from those, the
previous result produces some Fräıssé classes that do not have any precompact
Ramsey expansion. For example, consider the structure (Z, dZ, <Z) where dZ and
<Z are the standard distance and ordering on Z. Its automorphism group is Z.
Therefore, the corresponding age does not have any precompact Ramsey expansion
(a fact which is actually easy to see directly).

Theorem 16 also allows to translate Conjecture 1 into purely dynamical terms.
Call a closed subgroup of S∞ oligomorphic when for every n ∈ N, it induces only
finitely many orbits on Nn. Those groups are exactly the ones that appear as auto-
morphism groups of Fräıssé structures whose age only has finitely many elements in
every cardinality. Conjecture 1 then states that every closed oligomorphic subgroup
of S∞ should have a metrizable universal minimal flow with a generic orbit. At the
moment, it is even possible that this should be true for a larger class of groups,
called Roelcke precompact. A topological group is such when it is precompact with
respect to the greatest lower bound of the left and right uniformities. For a closed
subgroup of S∞, being Roelcke precompact is equivalent to being an inverse limit
of oligomorphic groups (see [Tsa12]), and it turns out that so far, all universal min-
imal flows coming from Roelcke precompact groups are metrizable with a generic
orbit.

6. Open questions and perspectives

We close this memoir with a selection of open questions and perspectives related
to the topics covered previously.

6.1. Finite Ramsey theory. Concerning finite Ramsey theory, the first main
open question is Conjecture 1 stating that every Fräıssé class where there are only
finitely many nonisomorphic structures in every cardinality should have a precom-
pact Ramsey expansion. It is an interesting one because of the change of point of
view it would force on Ramsey classes (see discussion in Section 3.3). If one tries
to tackle the problem in its full generality, the following, formally easier, question
is also of interest:

Conjecture 2. Let K be a Fräıssé class where there are only finitely many non-
isomorphic structures in every cardinality. Then every element of K has a finite
Ramsey degree.
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Conjecture 1 and Conjecture 2 are also attractive because it is possible to test
them on a variety of classes of finite structures. Any new result, even if it only
concerns a seemingly small class of objects, is potentially informative. In recent
times, several contributions have been made in that direction, for example: [Jas13]
by Jasiński, [Neš07] by Nešetřil, [Sok10], [Sok12a], [Sok12b] by Sokić and [DGMR11]
by Dorais et al. Particular open problems about the Ramsey property include finite
metric spaces with distances in some set S, Euclidean metric spaces (this problem
appears in [KPT05]), projective Fräıssé classes (those are developed in [IS06] and
are connected to Fräıssé classes of finite Boolean algebras) and equidistributed
Boolean algebras (this problem appears in [KST12]). In view of those problems,
some attention must be paid to the recent work [Sol10], [Sol12b] and [Sol12a] by
Solecki. The papers [Sol10], [Sol12b] reprove and generalize some of the classical
results from structural Ramsey theory, and [Sol12a] derives the main basic results
from Ramsey theory (classical Ramsey, Graham-Rothschild, Hales-Jewett) thanks
to a unified abstract framework.

Another question has to do with a conjecture of Thomas and was asked in the
recent work of Bodirsky and Pinsker [BP11]. Following [BP11], let us say that a
reduct of a relational structure A is a relational structure with the same domain
as A all of whose relations can be defined by a first-order formula in A. Thomas
conjectured in [Tho91] that every Fräıssé relational structure F in a finite language
only has finitely many reducts up to first-order interdefinability. Can anything be
said if Age(F) consists of rigid elements and has the Ramsey property?

6.2. Infinite Ramsey theory. Concerning indivisibility, despite the various re-
sults (and in particular Sauer’s results) that were mentioned in Section 4.1, there is
still a lot to understand. In my opinion, metric spaces already provide a large class
of structures on which many interesting problems can be studied. Of course, the
Hilbert space still stands out in that program, but the search should by no means
be restricted to it. Still, I would like to explicitly mention the following possible
strengthening of Odell-Schlumprecht’s theorem which appears in Section 4.1:

Question 1. Let N ∈ N. Is there a partition S∞ = B ∪ R and ε > 0 such that
S∞∩V 6⊂ (B)ε for every N -dimensional vector subspace V of ℓ2 and S∞∩W 6⊂ (R)ε
for every infinite dimensional closed vector subspace W of ℓ2? Equivalently, given
a finite metric subspace A of S∞, is there a partition S∞ = B ∪R and ε > 0 such
that A does not embed (isometrically) in (B)ε, and S∞ does not embed in (R)ε?

Concerning colorings of structures that are more complicated than points, even
less is known and some very basic questions are still wide open.

Question 2. Let F be a countable ultrahomogeneous (directed or undirected) graph.
Does every element of Age(F) have a big Ramsey degree in Age(F)? What about
analogues of weak indivisiblity?

In particular, what can be said when F is the Kn-free graph for some n ≥ 3 or
the countable generic poset?

6.3. Dynamics. The paper [KPT05] has recently been related to quite a number
of promising developments. Several of them are directly coming from the Kechris-
Pestov-Todorcevic correspondence. Those include the aforementioned works of
Jasiński [Jas13], Nešetřil [Neš07], Sokić [Sok10], [Sok12a], [Sok12b] and Dorais et
al. [DGMR11]. Some others take the correspondence to different contexts. It is
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the case for [Bar11] by Bartošová on structures that are not necessarily countable.
It is also the case for the paper [MT11] by Melleray-Tsankov who show how it
can be transferred to the so-called metric Fräıssé structures. What is interesting
here is that the equivalence between Ramsey property and extreme amenability of
non-Archimedean Polish groups becomes an equivalence between an approximate
version of the Ramsey property and extreme amenability of all Polish groups. This
equivalence actually captures some prior result obtained by Pestov in [Pes02], but
because of the lack of technique to prove the approximate Ramsey property, it has
not led to any practical result so far. Still, the parallel between classical and metric
Fräıssé theory seems worth investigating.

More generally, the combinatorial translation of dynamical facts performed in
[KPT05] opens a variety of perspectives connected to combinatorics and dynam-
ics. For example, the usual notion of amenability can actually be studied via two
different approaches. The first one has to do with universal minimal flows, since a
topological group is amenable if and only if its universal minimal flow admits an
invariant Borel probability measure. As a direct consequence, S∞, the automor-
phism group of the countable random graph or the isometry group of the rational
Urysohn space are amenable, but the automorphism groups of the countable atom-
less Boolean algebra or of the countable generic poset are not (see [KS12] by Kechris
and Sokić). The second approach relative to amenability consists in expressing it
directly in combinatorial terms using a “convex” version of the Ramsey property.
This was done recently and independently by Moore in [Moo11] and by Tsankov
(private communication). This approach did not lead to any concrete result so far,
probably because nobody has really tried to develop techniques in direction of the
convex Ramsey property.

Amenability is also connected to another combinatorial condition called the
Hrushovski poperty. A Fräıssé class K of finite structures satisfies the Hrushovski
property when for every A ∈ K, there exists B ∈ K containing A so that every
isomorphism between finite substructures of A extends to an automorphism of B.
It is proved by Kechris and Rosendal in [KR07] that the Hrushovski property trans-
lates nicely at the level of automorphism groups. Namely, it is equivalent to the
fact that there is an increasing sequence of compact groups whose union is dense
in Aut(F), where F = Flim(K). Therefore, the Hrushovski property for K implies
the amenability of Aut(F). It is also central in the study of other properties of
Polish groups like the small index property, the automatic continuity property, and
the existence of ample generics (see for example [KR07], [Sol05] or more recently
[Kec12]). Nevertheless, there are still very natural classes of structures for which the
Hrushovski property is not known to hold (e.g. the class of all finite tournaments)
and those provide good, potentially difficult, combinatorial problems.

Still in connection with amenability, the paper [AKL12] has recently pointed out
an intriguing fact: every known case of non-Archimedean Polish group G which
is amenable and has a metrizable universal minimal flow turns out to be uniquely
ergodic, in the sense that every compact minimal G-flow has a unique invariant Borel
probablity measure (which is then necessarily ergodic). The question of knowing
whether this always holds is open. Unique ergodicity also appears to be connected
to new combinatorial phenomena, such as the uniqueness of so-called consistent
random orderings or a quantitative version of the expansion property.
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Last, it seems that a number of classical dynamical notions can be studied in
the context of non-Archimedean Polish groups. For example, consider the class
of proximal flows. For those flows, there is a natural notion of fixed point prop-
erty, called strong amenability, which implies amenability (see for example Glasner
[Gla76]). It turns out that some closed subgroups of S∞ have that property. For
example, the group Aut(Q, B) is such, where B is the betweenness relation asso-
ciated to (Q, <). As a result, the strongly proximal universal minimal flow of S∞

is the natural action of S∞ on the compact space of all betweenness relations on
N. Therefore, it makes sense to study whether an strategy similar to [KPT05] can
be applied in the context of proximal flows. More generally, topological dynamics
is full of many other natural classes of compact flows admitting universal minimal
objects (e.g. equicontinuous flows, distal flows, almost periodic flows,...see [dV93]).
Each of them is a potential candidate for an analog of [KPT05], with potential new
combinatorial and dynamical phenomena.
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[Bar11] D. Bartošová, Universal minimal flows of groups of automorphisms of uncountable

structures, preprint, 2011.
[Bau75] J. E. Baumgartner, Partitioning vector spaces, J. Combin. Theory Ser. A 18 (1975),

231–233.
[BK96] H. Becker and A. S. Kechris, The descriptive set theory of Polish group actions,

London Math. Society lecture notes series, vol. 232, London Math. Society, 1996.
[Bog00] S. A. Bogatyi, Universal homogeneous ultrametric on the space of irrational num-

bers., Mosc. Univ. Math. Bull. 55 (2000), no. 6, 20–24.
[Bog02] , Metrically homogeneous spaces., Russ. Math. Surv. 57 (2002), no. 2, 221–

240.
[BP11] M. Bodirsky and M. Pinsker, Reducts of Ramsey structures, Model theoretic meth-

ods in finite combinatorics (AMS, ed.), AMS Contemporary Mathematics, vol. 558,
2011, p. 31.

[Cam97] P. J. Cameron, The random graph, The mathematics of Paul Erdős, II, Algorithms
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[NR77] J. Nešetřil and V. Rödl, Partitions of finite relational and set systems, J. Combi-
natorial Theory Ser. A 22 (1977), no. 3, 289–312.

[NR83] , Ramsey classes of set systems, J. Combin. Theory Ser. A 34 (1983), no. 2,
183–201.
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