
THESE

Présentée pour obtenir le titre de

DOCTEUR DE L’UNIVERSITE PARIS DIDEROT

Spécialté: Informatique
Par

Faten Nabli

Approches de programmation par contraintes pour

l’analyse des propriétés structurelles des réseaux de

Petri et application aux réseaux biochimiques

Présentée le 10 juillet 2013 devant le jury composé de :

Rapporteurs: Prof. Alexander Bockmayr - Freie Universität Berlin

Prof. Karsten Wolf - Universität Rostock

Superviseurs: Prof. François Fages - INRIA Paris-Rocquencourt

Dr. Sylvain Soliman - INRIA Paris-Rocquencourt

Président: Prof. Michel Habib - Université Paris Diderot- Paris7

Examinateurs: Prof. Hanna Klaudel - Université d’Evry

Dr. Sabine Peres - Université Paris-Sud

Invités : -

2

Contents

List of Figures vi

List of Tables vii

1 Petri Nets 9

1.1 Definitions . 10

1.2 Structural Properties . 13

1.2.1 Place/Transition invariants . 13

1.2.2 Siphons and Traps . 14

1.2.3 Known Time Complexity Of Minimal Siphon Extraction Prob-
lem . 18

1.3 New Time Complexity Result . 22

1.3.1 Polynomial time complexity theorem for Petri-nets with
bounded tree-width . 22

1.3.2 Linear Time Complexity Result 27

1.4 Petri Net Structures and CTL Properties 29

1.4.1 Infinite State Computation Tree Logic 29

1.4.2 Boolean Abstractions, Boundedness Conditions and Boolean
CTL Model-Checking . 34

2 Petri Nets for Biochemical Networks 41

2.1 Biological context . 42

2.1.1 Systems Biology . 42

2.1.2 Molecular Biology and Cellular Metabolism 42

2.1.3 Biochemical Networks . 43

2.2 Biochemical Networks modelling . 46

i

2.2.1 Boolean and Discrete modelling 46

2.2.2 Continuous and stochastic Modelling 46

2.2.3 Petri nets modelling of biochemical networks 47

2.3 Benchmark . 50

2.3.1 Biomodels.net . 50

2.3.2 Petriweb . 51

2.4 Petri net properties on the benchmark 52

2.4.1 P-invariants as mass conservation laws 52

2.4.2 T-invariants as flux conservation 52

2.4.3 Siphons/Traps . 53

3 Boolean Model for siphons/traps 55

3.1 Constraint Programming (CP) and Systems Biology 55

3.2 Boolean Model . 56

3.3 Boolean Algorithms . 58

3.3.1 Iterated SAT Algorithm . 58

3.3.2 Backtrack Replay CLP(B) Algorithm 60

3.4 Evaluation . 61

3.4.1 Results and Comparison . 61

3.4.2 Hard instances . 62

3.5 CLP model for the Siphon-Trap Property (STP) 66

4 Constraint Programming Approach to P/T invariants 69

4.1 P/T-invariants Computation . 70

4.1.1 The Fourier-Motzkin Algorithm for P/T-invariants 70

4.1.2 Finding P/T-invariants as a Constraint Solving Problem . . . 73

4.1.3 Symmetry detection and elimination 75

4.1.4 Experimental Results . 76

4.2 Steady-state solution of biochemical systems, beyond S-Systems via
T-invariants . 77

4.2.1 Biochemical Systems Theory 77

4.2.2 Method . 79

ii

4.2.3 Results . 84

4.2.4 Conclusions and Perspectives 90

A Appendix 1 95

General Conclusion 95

Bibliography 99

iii

iv

List of Figures

1.1 A Petri net with an arbitrary marking enabling t3 11

1.2 Petri net of Figure 1.1 after the firing of t3 11

1.3 Petri net graph of Example 5. 15

1.4 Petri net for reduction of 3-SAT problem of example 7: for i =
1, 2, 3, 4, ri and r̄i, si and s̄i, yi and ȳi correspond to literals, re-
spectively variables and their negation. for i = 1, 2, 3, ui correspond
to clauses. 19

1.5 Graph example (G) with 6 vertices 23

1.6 Cut-width of G for a numbering l . 23

1.7 Tree decomposition G . 24

1.8 Hyper-graph example H . 24

1.9 Primal graph of H . 24

1.10 Petri net depicting the enzymatic reaction 25

1.11 Hyper-graph of the Petri net depicted in Figure 1.10 25

1.12 Primal graph of the Petri net depicted in Figure 1.10 25

1.13 Primal graph of CSP(N) . 26

1.14 Reachability trees for AXp, EXp, AGp, and EGp. 30

1.15 An example of Kripke structure . 31

2.1 Information flow from genes to metabolites in cells 43

2.2 Map of yeast protein-protein interactions 44

2.3 Petri net modelling a part of the glycolysis and the pentose phosphate
pathway in erythrocytes . 45

2.4 Conceptual Framework. The Petri net formalism allows to switch
between different network classes to describe standard (qualitative)
Petri nets, stochastic (SPN) and continuous (CPN) information in a
cohesive Petri net model [47]. 48

v

2.5 Petri-net graph modelling the growth metabolism of the potato plant
[107]. 53

3.1 Search tree developed with the backtrack replay strategy for enumer-
ating the 64 minimal siphons of model 239 of biomodels.net (described
in Section 2.3). Each red end corresponds to a minimal siphon found.
Very few backtracks are necessary thanks to the constraint propaga-
tion and the strategy . 61

3.2 Computation time random 3-SAT . 63

3.3 Probability of random 3-SAT satisfiablity 64

3.4 Distribution of density of 3-SAT models derived from Biomodels.net.
Computed tree-widths are less or equal than 10. 65

3.5 Variation of tree-width as a function of size (places and transitions)
on Petri nets of Biomodels.net . 66

3.6 Petri net modelling the problem of 2 dining philosophers 68

4.1 A Petri net example for Fourier-Motzkin algorithm 71

4.2 A diagram describing the model 9 of the Biomodels.net repository. . . 86

vi

http://www.Biomodels.net.net

List of Tables

3.1 Computation time in milliseconds on the biomodels and Petriweb
benchmarks. 61

3.2 Computation time in milliseconds on the hardest instances of bio-
chemical networks. 62

3.3 Tree-width of the hardest instances of Biomodels.net database. 66

3.4 Siphon-Trap Property evaluation on k dining philosophers Petri nets . 68

vii

Abstract

Petri nets are a simple formalism for modelling concurrent computation. This for-
malism has been proposed as a promising tool to describe and analyse biochemical
networks. In this thesis, we explore the structural properties of Petri nets as a mean
to provide information about the biochemical system evolution and its dynamics,
especially when kinetic data are missing, making simulations impossible.

In particular, we consider the structural properties of siphons and traps. We
show that these structures entail a family of particular stability properties which
can be characterized by a fragment of CTL over infinite state structures. Mixed
integer linear programs have been proposed and a state-of-the-art algorithm from
the Petri net community has been described later to compute minimal sets of siphons
and traps in Petri nets. We present a simple boolean model capturing these notions
and compare SAT and CLP methods for enumerating the set of all minimal siphons
and traps of a Petri net. Our methods successfully apply to a practical benchmark
composed of the 404 models from the biomodels.net repository. We analyse why
these programs perform so well on even very large biological models although the
decision problem is NP-complete. We show that, in networks with bounded tree-
width, the existence of a minimal siphon containing a given set of places can be
decided in linear time, and the Siphon-Trap property as well.

Moreover, we consider two other Petri net structural properties: place and tran-
sition invariants. We present a simple method to extract minimal semi-positive
invariants of a Petri net as a constraint satisfaction problem on finite domains using
constraint programming with symmetry detection and breaking. This allows us to
generalize well-known results about the steady-state analysis of symbolic Ordinary
Differential Equations systems corresponding to biochemical reactions by taking into
account the structure of the reaction network. The study of the underlying Petri net,
initially introduced for metabolic flux analysis, provides classes of reaction systems
for which the symbolic computation of steady states is possible.

1

2

General Introduction

Systems Biology

The development of high-throughput data collecting techniques, for example, micro-
arrays, protein chips, yeast two-hybrid screens, etc., are used in systems biology to
create databases, interaction maps and detailed models of complex reaction sys-
tems at the cellular level. As examples of large models that emerged over the past
few decades, we can cite the biggest MOOSE (multi-scale) model [32] with about
7500 species and 10000 reactions; a large structural yeast model with 2153 species
(1168 metabolites, 832 genes, 888 proteins and 96 catalytic protein complexes) and
1857 reactions (1761 metabolic reactions and 96 complex formation reactions); the
RB/E2F map established by Curie Institute [10], with 530 reactions and 390 species,
and being currently merged with the EGFR map of the Systems Biology Institute
[82] with its 219 reactions and 322 species.

To facilitate exchange of such models, standard formats for encoding quanti-
tative information have been developed. As examples of such formats, we find
CellML (www.cellml.org) and NeuroML (www.neuroml.org), but the Systems Bi-
ology Markup Language (SBML) [54] has so far been the most successful standard
model exchange format in this field. It has been adopted by more than 180 software
systems ranging from simulators to model editors and databases.

It is also crucial to classify this enormous amount of models into databases
where models can be freely deposited and distributed in standardised for-
mats. New databases for systems biology appeared like the Reactome database
(www.reactome.org) that contains curated models of core pathways and reactions in
human biology. EcoCyc (www.ecocyc.org) and MetaCyc (wwww.metacyc.org) are
databases of non redundant, experimentally elucidated metabolic pathways. EcoCyc
contains data modelling metabolic pathways of the bacterium Escherichia coli K-12
MG1655. MetaCyc covers data from different organisms. It contains more than 1928
pathways from more than 2263 different organisms, and is curated from the scientific
experimental literature. Biomodels.net (www.biomodels.net) database has also be-
come a recognised reference repository for systems biology. It is a freely-accessible on
line resource for storing, viewing, retrieving, and analysing published, peer-reviewed
quantitative models of biochemical and cellular systems.

Simulation is currently the primary use of these models and the structure and

3

behaviour of each simulation model distributed by Biomodels.net database are thor-
oughly checked; in addition, model elements are annotated with terms from con-
trolled vocabularies as well as linked to relevant data resources. Models can be
examined on line or downloaded in various formats. Reaction network diagrams
generated from the models are also available in several formats. Biomodels.net
database also provides features such as on line simulation and the extraction of
components from large scale models into smaller sub-models. Finally, the system
provides a range of web services that external software systems can use to access
up-to-date data from the database.

Having biochemical models and filling them with experimental data was the first
challenge of biologists. With the increase of available information, the challenge
of efficient information processing is arising: especially when kinetic parameters
are lacking which make simulations not possible without guessing them. In some
cases, the model structure may however be detailed enough to provide some useful
information about the dynamics.

Petri nets

Petri nets are a simple formalism for modelling concurrent computation. Petri nets
provide a tool to model biochemical reaction networks and provide powerful qual-
itative and quantitative analysis techniques. The intuitive description of chemical
process coupled with the possibility to simulate and analyse token movement, repre-
senting substance or information flow in biochemical systems, facilitates the use of
Petri net in systems biology. The motivation for using Petri nets to model biochem-
ical networks comes mainly from the fact that biochemical systems exhibit many
concurrent reactions, similar to concurrent process in technical systems. In 1993,
Reddy et al. introduced a method of representation of metabolic pathways as Petri
nets, and illustrate some useful properties like liveness, reachability, reversibility
fairness and invariants [85]. Then in 1994, Hofestadt [50] described the metabolic
process depending on expressed genes as Petri nets. Moreover, Petri nets are also
suitable to model medical systems because of the lack of experimental data due
to experiments difficulties and ethical reasons. Since 1993, many applications have
been published and Petri nets have been applied to many biochemical examples such
as metabolic systems [50, 85, 107] gene regulatory networks [72, 73], signal trans-
duction networks [73, 89] the glycolysis and pentose phosphate pathway and the
carbon metabolism in Tuber. Different types of Petri nets extension have been used
to model and analyse biochemical networks, going from coloured Petri nets, hybrid
Petri nets [72, 73], continuous Petri nets[51] and stochastic Petri nets.

4

Thesis contribution

In this thesis, we focus on Petri nets structural properties and how they can be
computed using constraint programming techniques. The structural properties of
interest give us some information about the biochemical reaction network and its
dynamics, even when there is a lack in kinetic data making simulation impossible.
As application, we evaluate them on the Biomodels.net database.

We consider the Petri net concepts of siphons and traps. A siphon is a set of
places that, once it is unmarked, remains so. A trap is a set of places that, once
it is marked, can never loose all its tokens. Thus, siphons and traps have opposing
effects on the token distribution in a Petri net. These structural properties provide
sufficient conditions for reachability (whether the system can reach a given state)
and liveness (freedom of deadlocks) properties. It is proved that in order to be live,
it is necessary that each siphon remains marked. Otherwise (i.e. once it is empty),
transitions having their input places in a siphon can not be live. One way to keep
each siphon marked is to have a marked trap inside it. In fact, this condition is
necessary and sufficient for a free-choice net to be live [83]. Siphons can correspond
to a set of metabolites that are gradually reduced during starvation whereas traps can
correspond to accumulation of metabolites that are produced during the growth of
an organism. It has been shown that finding a minimal siphon of a given cardinality
or even containing a given set of places is NP-complete [101, 106]. Mixed integer
linear programs have been proposed in [78, 21] and a state-of-the-art algorithm from
the Petri net community has been described later in [23] to compute sets of minimal
siphons and traps in Petri nets. We present a simple Boolean model capturing these
notions and two methods for enumerating the set of all minimal siphons and traps of
a Petri net. The first method iterates the resolution of the Boolean model executed
with a SAT solver. The second method proceeds by backtracking with a CLP(B)
program. On a benchmark composed of the 80 Petri nets of Petriweb 1 [45] and the
404 curated biological models of the biomodels.net 2 repository [66], we show that
miniSAT and CLP(B) solvers are both faster by two orders of magnitude than the
dedicated algorithms and can in fact solve all instances.

Furthermore, we analyse why these programs perform so well even on very large
biological models. We show that in networks with bounded tree-width, the existence
of a minimal siphon containing a given set of places can be decided in linear time
[80]. We show also that deciding the Siphon-Trap property can be done in linear
time in networks with bounded tree-width.

Moreover, we show that siphons and traps entail a family of particular stability
properties which can be characterized by a fragment of CTL over infinite state
structures. Interestingly, we show that a well-founded Boolean abstraction of the
Petri net preserves a similar characterization of Boolean CTL properties as siphons
and traps. This fragment of boolean CTL formulas can thus be verified without
recourse to symbolic model-checking methods by a purely structural analysis of the

1http://www.petriweb.org/
2http://www.biomodels.net/

5

http://www.petriweb.org/
http://www.biomodels.net/

Petri net.

We also consider the Petri net structural properties of place and transition in-
variants. A P-invariant stands for a set of places over which the weighted some of
tokens is constant and independent of any firing. P-invariants correspond to conser-
vation law. On the other hand, a T-invariant has actually two interpretations in the
given biochemical network: first, the entries of a T-invariant represent a multi-set of
transitions, which reproduce a given marking by their partially ordered firing. That
means that they occur basically one after the other. The partial order sequence of
the firing events of the T-invariant’s transitions may contribute to a deeper under-
standing of the system behaviour. Second, the entries of a T-invariant may also be
read as the relative firing rates of transitions, all of them occurring permanently and
concurrently. This activity level corresponds to the steady state behaviour and min-
imal T-invariants correspond to elementary modes classically studied for metabolic
networks.

We present a simple method to extract minimal semi-positive invariants of a Petri
net modelling a biological reaction system, as a constraint satisfaction problem on
finite domains using constraint programming with symmetry detection and breaking.
An implementation based on GNU-Prolog’s FD solver of the method is incorporated
in the BIOCHAM modelling environment [9, 35]. Two prototypes for computing
minimal P-invariants and minimal T-invariants are evaluated on our benchmark of
interest. Moreover, we present a way to generalize well-known results about the
steady-state analysis of some symbolic Ordinary Differential Equations systems by
taking into account the structure of the reaction network. The structural study of
the underlying Petri net, usually used mostly for metabolic flux analysis, provides
classes where the computation of some steady states of the system is possible, even
though the original symbolic model did not form an S-system and was not solvable
by state-of-the-art symbolic computation software.

Roadmap

The manuscript is organized as follows. In the first chapter we focus on the Petri net
formalism. We define notions and notations that are necessary for the understanding
of the following work. We prove a new linear complexity result for the siphon
extraction problem in Petri nets of bounded tree-width. We develop links between
the structural properties of siphons and traps and their dynamical properties in
Computation Tree Logic.

In the second chapter, we present the biological background, here we recall the
concepts of molecular biology and we enlarge our definition of biochemical networks.

In the third chapter, we describe a boolean model for the problem of enumerating
all minimal siphons in a Petri net and we compare two boolean methods to a state-
of-the-art algorithm from the Petri net community [23].

In the last chapter, we introduce a new method based on Finite Domain con-

6

http://contraintes.inria.fr/BIOCHAM/

straint programming to efficiently compute place and transition invariants of a re-
action network. It includes symmetry detection and breaking and scales up well to
the biggest reaction networks found. We present also a new method to compute, in
a fully analytical way, steady states of biochemical systems defined by a system of
Ordinary Differential equations.

Finally, we conclude this manuscript with a summary and an outlook on future
work.

7

8

Chapter 1

Petri Nets

Contents
1.1 Definitions . 10

1.2 Structural Properties . 13

1.2.1 Place/Transition invariants 13

1.2.2 Siphons and Traps . 14

1.2.3 Known Time Complexity Of Minimal Siphon Extraction
Problem . 18

1.3 New Time Complexity Result 22

1.3.1 Polynomial time complexity theorem for Petri-nets with
bounded tree-width . 22

1.3.2 Linear Time Complexity Result 27

1.4 Petri Net Structures and CTL Properties 29

1.4.1 Infinite State Computation Tree Logic 29

1.4.2 Boolean Abstractions, Boundedness Conditions and
Boolean CTL Model-Checking 34

Introduction

Petri nets have been introduced in 1962 by Carl Adam Petri in his dissertation.
Petri nets are a mathematical modelling tool for describing and analysing systems
characterized as being concurrent, parallel, distributed and/or stochastic. Since
their early introduction, Petri nets and their concepts have been extended and de-
veloped, and applied in a variety of areas such as office automation, work-flows,
flexible manufacturing, protocols and networks, real-time systems, embedded sys-
tems, telecommunications, Internet, e-commerce, trading and biological systems.

9

1.1 Definitions

A Petri net or place/transition net is a directed bipartite graph, in which the nodes
represent transitions (i.e. events that may occur, graphically represented by rectan-
gles) and places (i.e. conditions, graphically represented by circles). The directed
arcs are allowed to connect only nodes from different classes. The dynamics of a
Petri net is obtained by moving the tokens in the places (graphically represented
by bullets inside places). A directed arc represents conditions to fire transitions.
Formal definitions and basic terminology is presented in this section.

Definition 1 (Petri net graph). A Petri net graph is a weighted bipartite directed
graph PN = (P, T,W), where P is a finite set of vertices called places, T is a finite
set of vertices (disjoint from P) called transitions and W : ((P ×T)∪ (T ×P)) → N

represents a weight function attached to the arcs.

The weight is represented by an integer located near the arc. If this integer is
missing, it is assumed that the weight of the arc is 1 (the weight zero represents the
absence of arc).

Definition 2 (Marking). A marking for a Petri net graph is a mapping m : P → N

which assigns a number of tokens to each place. We say that a place p is marked if
and only if m(p) > 0, otherwise, it is said to be unmarked.

Definition 3 (Petri net). A Petri net is a 4-tuple (P, T,W,m0) where (P, T,W) is
a Petri net graph and m0 is an initial marking.

Definition 4 (Predecessors/successors). The set of predecessors (resp. successors)
of a transition t ∈ T is the set of places •t = {p ∈ P | W (p, t) > 0} (resp. t• =
{p ∈ P | W (t, p) > 0}). Similarly, the set of predecessors (resp. successors) of a
place p ∈ P is the set of transitions •p = {t ∈ T | W (t, p) > 0} (resp. p• = {t ∈ T |
W (p, t) > 0}).

The set of predecessors (resp. successors) •S (resp. S•) of a set of places S is the
union of sets of predecessors (resp. successors) of each place p ∈ S: •S =

⋃

p∈S
•p

(resp. S• =
⋃

p∈S p
•).

The set of predecessors (resp. successors) •Q (resp. Q•) of a set of transitions
Q is the union of sets of predecessors (resp. successors) of each transition t ∈ Q:
•Q =

⋃

t∈Q
•t (resp. Q• =

⋃

t∈Q t
•).

Definition 5 (Transition enabling and firing). For every two markings m,m′ : P →

N and every transition t ∈ T , there is a transition step m
t
→ m′, if for all p ∈ P ,

m(p) ≥ W (p, t) and m′(p) = m(p) −W (p, t) +W (t, p). A transition t is enabled

at marking m, (m
t
→) if and only if ∀p ∈ •t : m(p) ≥ W (p, t). m

t
→ m′ means

that the transition t is enabled in m and its firing leads to m′. m′ is such that
∀p ∈ P,m′(p) = m(p) −W (p, t) +W (t, p). An enabled transition may or may not
fire (depending on whether or not the corresponding event actually takes place).

10

Definition 6 (Firing sequence). A finite sequence of transitions σ = (t0 . . . tn) is a fi-
nite firing sequence of the Petri net if there exists a sequence of markings m1, . . . ,mn

for which m
t0→ m1

t1→ . . .
tn−1

→ mn
tn→ m′. This is denoted as m

σ
→ m′.

p1 p2

p3

p4

t1 t2
2

4

t3

t4

2

2

Figure 1.1: A Petri net with an arbitrary marking enabling t3

Example 1. In the Petri net depicted in Figure 1.1 , starting from a marking with
3 tokens in p1 and 2 tokens in p4, one can remove two tokens from p1 to produce 4
tokens in p2 (firing of t2) and one can remove one token from p1 and 2 tokens of
p4 and produce one token in p3 (firing of t3). And then remove one token from p2
and one token from p3 to produce two tokens in p4 (firing of t4). From this initial
marking, firing just t3 leads to the Petri net of Figure 1.2. Petri nets can intuitively
model metabolic reactions by corresponding places to metabolites and transitions to
reactions. Tokens inside places represent the number of molecules or the level of
concentration of species. In the next chapter, we provide some examples of Petri
nets modelling biochemical networks.

p1 p2

p3

p4

t1 t2
2

4

t3

t4

2

2

Figure 1.2: Petri net of Figure 1.1 after the firing of t3

11

Definition 7 (Incidence Matrix). Let P = (p1, p2, ..., pn) (resp. T = (t1, t2, ..., tm))
be the set of places (resp. transitions) of a Petri net. The incidence matrix of this
Petri net is A = [aij], i = 1, ..., n; j = 1, ...m defined as follows:

aij = W (pi, tj)−W (tj, pi)

Example 2. The Petri net of figure 1.1 has the following incidence matrix:

t1 t2 t3 t4

p1 1 −2 −1 0
p2 0 4 0 −1
p3 0 0 1 −1
p4 0 0 −2 2

The second column of this matrix can be read as: the firing of t2 removes two tokens
from p1 and produces four tokens in p2.

Definition 8 (Firing count vector). A vector σ̄ is the firing count vector of σ if σ̄(t)
equals the number of times transition t occurs in the firing sequence σ.

Definition 9 (Behaviour properties). Let N = (P, T,W,m0) be a Petri net

• A place p is k-bounded if there is a positive integer number k such that the
number of tokens in p does never exceed k.

• A Petri net is k-bounded if all its places are k-bounded.

• A transition t is dead at marking m if it is not enabled in any marking m′

reachable from m.

• A transition t is live if it is not dead in any marking reachable from m0.

• A marking m is dead if there is no transition enabled in m.

• A Petri net is deadlock free (weakly live) if there is no reachable dead markings.

• A Petri net is live (strongly live) if each transition is live.

Definition 10 (Net Structures). Let N = (P, T,W) a Petri net graph. N is

• Homogeneous if ∀p ∈ P : t, t′ ∈ p• ⇒ W (p, t) = W (p, t′).

• Ordinary if ∀p ∈ P and ∀t ∈ T, W (p, t) ≤ 1 and W (t, p) ≤ 1.

• Extended simple (or asymmetric choice) if it is ordinary and

∀p, q ∈ P : p• ∪ q• = ∅ ∨ p• ⊆ q• ∨ q• ⊆ p•.

• Extended free choice if it is ordinary and

∀p, q ∈ P : p• ∩ q• = ∅ ∨ p• = q•.

12

1.2 Structural Properties

Various dynamical properties of Petri nets can be verified by constructing the reach-
ability graph and analysing it. However, the reachability graph is generally infinite.
In fact, the reachability problem was shown to be EXPSPACE-hard [68] years be-
fore it was shown to be decidable [74]. Structural analysis makes it possible to prove
some properties without constructing the reachability graph. Structural properties
do not depend on any marking: they depend only on the topology of the Petri net
graph.

1.2.1 Place/Transition invariants

A place invariant is a set of places, whose weighted sum of tokens is constant inde-
pendently of the sequence of firing. A transition invariant is a potential firing set
without any net effect.

Definition 11 (P-invariant). A vector V = [v1, v2, ..., vn] with non-negative integer
components is a P-invariant if V 6= 0 and V A = 0, where A is the incidence matrix
of the Petri net with n places and m transitions.

Example 3. A P-invariant of the Petri net represented in figure 1.1 is such that:

[v1, v2, v3, v4]

1 −2 −1 0
0 4 0 −1
0 0 1 −1
0 0 −2 2

=

0
0
0
0

which leads to:

v1 = 0

−2v1 + 4v2 = 0

−v1 +v3 − 2v4 = 0

− v2 −v3 + 2v4 = 0

Thus any vector V = [0, 0, 2k, k], where k is a non-negative integer is a p-
invariant.

Proposition 1. [83] If V is a P-invariant and m0 is an initial marking of a Petri
net, V mt

0 = V mt for any m reachable from m0.

For instance, in the previous example, 2m(p3) +m(p4) is constant whatever m
is.

Definition 12 (T-invariant). A vector Y = [y1, ...ym] with non-negative integer
components is a T-invariant if AY t = 0, where A is the incidence matrix of the
Petri net with n places and m transitions.

13

Example 4. A t-invariant of a Petri net represented in figure 1 is such that:

1 −2 −1 0
0 4 0 −1
0 0 1 −1
0 0 −2 2

y1
y2
y3
y4

=

0
0
0
0

which leads to:

y1 − 2y2 −y3 = 0

4y2 − y4 = 0

y3 − y4 = 0

−2y3 + 2y4 = 0

Hence, any vector Y = [6k, k, 4k, 4k], where k is a non-negative integer is a t-
invariant.

Proposition 2. [83] Let σ be a firing sequence and Vσ be the counting vector of σ.
Let m be the marking reached by firing σ. If Vσ is a T-invariant, then m = m0.

Definition 13 (Support). The support of a P-invariant x or a T-invariant y is the
set of places or transitions respectively corresponding to the strictly positive compo-
nents of x and y, and are denoted by || x || and || y ||, i.e., || x ||= {p ∈ P | x(p) > 0}
and || y ||= {t ∈ T | y(t) > 0}.

Definition 14 (Minimal invariant). A P-invariant is minimal if no non-empty sub-
set of the support is the support of some other P-invariant, i.e., x is a minimal
P-invariant if there is no other P-invariant x′ such that x′(p) ≤ x(p) for all p, and
the greatest common divisor of all entries of x is 1.

A T-invariant is minimal if no non-empty subset of the support is the support
of some other T-invariant, i.e., y is a minimal T-invariant if there is no other T-
invariant y′ such that y′(t) ≤ y(t) for all t, and the greatest common divisor of all
entries of y is 1.

1.2.2 Siphons and Traps

A siphon is a set of places that once unmarked remains so whereas a trap is a set
of places that once marked remains so. We recall that a set of places S is marked if
at least one place p in S holds some tokens. Formal definitions are presented in the
following. Let PN = (P, T,W) be a Petri net graph.

Definition 15. A trap is a non-empty set of places P ′ ⊆ P whose successors are
also predecessors: P ′• ⊆ •P ′.

A siphon is a non-empty set of places P ′ ⊆ P whose predecessors are also suc-
cessors: •P ′ ⊆ P ′•.

14

A siphon (resp. trap) is proper if its predecessors set is strictly included in its
successors set,•P ′ (P ′•.

A siphon (resp. a trap) is minimal if it does not contain any other siphon
(resp. trap).

It is worth remarking that a siphon in a Petri net graph PN is a trap in the
dual Petri net graph, obtained by reversing the direction of all arcs in PN . Note
also that since predecessors and successors of an union are the union of predecessors
(resp. successors), the union of two siphons (resp. traps) is a siphon (resp. a trap).

Example 5. In the Petri net graph depicted in Figure 1.3, {A,B} is a minimal
proper siphon: •{A,B} = {r1, r2} ⊂ {A,B}• = {r1, r2, r3}. {C,D} is a minimal
proper trap: {C,D}• = {r4, r5} ⊂ •{C,D} = {r3, r4, r5}.

The following propositions show that traps and siphons provide a structural
characterization of some particular dynamical properties on markings.

Proposition 3. [83] For every subset P ′ ⊆ P of places, P ′ is a trap if and only
if for any marking m ∈ NP with mp ≥ 1 for some place p ∈ P ′, and any marking

m′ ∈ NP such that m
σ
→ m′ for some sequence σ of transitions, there exists a place

p′ ∈ P ′ such that m′
p′ ≥ 1.

Proposition 4. [83] For every subset P ′ ⊆ P of places, P ′ is a siphon if and only if
for any marking m ∈ NP with mp = 0 for all p ∈ P ′, and any marking m′ ∈ NP such

that m
σ
→ m′ for some sequence σ of transitions, we have m′

p′ = 0 for all p′ ∈ P ′.

A B C D

r1

r2

r3

r4

r5

Figure 1.3: Petri net graph of Example 5.

Although siphons and traps are stable by union, it is worth noting that minimal
siphons do not form a generating set of all siphons. A siphon is called a basis
siphon if it can not be represented as a union of other siphons [78]. Obviously, a
minimal siphon is also a basis siphon, however, not all basis siphons are minimal.
For instance, in Example 5, there are two basis siphons, {A,B} and {A,B,C,D},
but only the former is minimal, the latter cannot be obtained by union of minimal
siphons.

Minimal Siphons and strong connectedness

In this part, we show that the set of places forming a minimal siphon (in term of
inclusion) form a strongly connected subnet.

15

Definition 16 (Strongly connected Petri net). A Petri net is strongly connected
when for every pair of nodes (i.e., places and transitions) x and y, there exists a
path leading from x to y.

Definition 17 (Subnet). Let G=(P, T, F) be a Petri net. P̃ ⊆ P and T̃ ⊆ T .
Then G̃ = (P̃ , T̃ , F̃) is the subnet of G generated by P̃ ∪ T̃ iff F̃ (p, t) = F (p, t),
F̃ (t, p) = F (t, p) ∀p ∈ P̃ , ∀t ∈ T̃ .

Example 6. The Petri net G(P, T, F) is shown on figure on the left. The subnet
generated by {A,B,D} ∪ T is shown on figure on the right.

A B

C D

t1 t2

t3

t4

A B

D

t1 t2

t3

t4

Proposition 5. Let S be a minimal siphon in a Petri net N . The subnet NS

generated by S ∪ •S is strongly connected.

Proof. First we remark that every transition t of NS is a predecessor of some place
of NS by definition of NS and also a successor of some place of NS since S is a
siphon. Hence, for proving that NS is strongly connected, we need just to show that
for every two places x and y, there is a path between x and y in NS. Let y ∈ S and
let the set X = {z ∈ S | there is a path leading from z to y in NS}. It suffices to
show that X = S. For every transition t ∈ •y, there exists some y′ in S such that
t ∈ y′•. Hence there exists a path leading from y′ to y. and •t∩S ⊆ X and •X ⊆ X•

then X is a non empty siphon included in S. Since S is minimal then X = S.

Application to the Siphon-Trap property

The concepts of live Petri nets (no dead transition) and especially of deadlock free
Petri nets are important. A deadlock occurs if no transitions can be fired any longer.
This corresponds to a system which is either badly designed or badly modelled. One
reason to consider minimal siphons is that they provide a sufficient condition for
the non-existence of deadlocks. It has been shown indeed that in a deadlocked Petri
net (i.e. where no transition can fire), all unmarked places form a siphon [16]. The
siphon-based approach for deadlocks detection checks if the net contains a proper
siphon that can become unmarked by some firing sequence. A proper siphon does
not become unmarked if it contains an initially marked trap. If such a siphon
is identified, the initial marking is modified by the firing sequence and the check
continues for the remaining siphons until a deadlock is identified, or until no further

16

progress can be done. Considering only the set of minimal siphons is sufficient
because if any siphon becomes unmarked during the analysis, then at least one of
the minimal siphons must be unmarked. The relevance of siphons and traps for
other liveness properties are summarized in [47].

Definition 18 (Siphon-Trap Property (STP)). Given PN = (P, T,W,m0) a Petri
net. The STP holds when every siphon includes a marked trap.

Theorem 1. [47] The following properties hold.

1. An ordinary Petri net without siphons is live.

2. An ordinary Petri net in which the STP holds is deadlock free.

3. An Extended Simple Petri net in which the STP holds is live.

4. An Extended Free Choice Petri net is live iff the STP holds.

An additional interesting property is the monotonic liveness defined as follows:

Definition 19 (Monotonic liveness). [48] Let PN = (P, T,W,m0) a Petri net. PN
is called monotonically live, if being live for m0, it remains live for any m′ ≥ m0.

In [48], an interesting study of structural properties that preserve liveness is done.
Two cases are distinguished: ordinary and non-ordinary nets. For ordinary nets, the
following theorems are proved.

Definition 20. Mono-T-semiflow (MTS) Petri net[48]

Let N = (P, T,W) be a Petri net graph.

A net is conservative if every place belongs to the support of a P-invariant; a net
is consistent if every transition belongs to the support of a T-invariant. A mono-T-
semiflow (MTS) Petri net is a consistent and conservative net that has exactly one
minimal T-invariant.

Theorem 2. [48] Let PN be an ordinary Petri net graph. If (PN,m0) is monoton-
ically live then the STP holds.

Theorem 3. [48] Let PN be an ordinary mono-T-semiflow Petri net which for m0

fulfils the STP. Then the system (PN,m) is live for any m ≥ m0.

The second case concerns non-ordinary nets, a transformation from non-ordinary
to ordinary Petri nets that preservers monotonicity of liveness is used and the prop-
erty of liveness is studied on ordinary nets. Application of this property on cases
from biochemical networks is hold to demonstrate the helpfulness of the STP for bio-
chemical networks. The essential analysis results show that all biochemical models
hold the STP, they are consistent and live.

17

1.2.3 Known Time Complexity Of Minimal Siphon Extrac-
tion Problem

In this section, we review the time complexity results of minimal siphon extraction
problem in general Petri nets.

Definition 21 (isMinimal). The problem isMinimal is the following decision prob-
lem.

Input: a Petri net N and a subset S of places of N.

Output: is S a minimal siphon of N.

Theorem 4. [101] The decision problem isMinimal is polynomial.

Definition 22 (Minimal Siphon Extraction Problem (MSEP)). The problem MSEP
is the following problem.

Input: A Petri net N and a specified subset Q of places of N .

Output: Find a minimal siphon S containing Q.

Definition 23 (Rec-MSEP). Given a Petri net N and a subset of places Q, Rec-
MSEP is the following decision problem: "does there exist a minimal siphon of N
containing Q?".

Definition 24. (3-Satisfiability Problem (3-SAT))

Input: A set V of variables and a collection C of clauses (set of literals) over V
such that each clause c ∈ C has exactly 3 literals.

Output: Is there a satisfying truth assignment for C?

Theorem 5. [106] Rec-MSEP is NP-complete.

Proof. Rec-MSEP is NP-hard by polynomial reduction from 3-SAT [106] and NP-
complete since IsMinimal is polynomial [101].

In [106], the NP-hardness of Rec-MSEP is proved by a polynomial reduction
from 3-SAT. It is worthwhile resuming the proof for general Petri nets. For that,
the following definitions are needed.

Definition 25 (Q-hitting-siphon). Given a Petri net N and a siphon S of N , S is
called a Q-hitting-siphon if and only if any siphon S ′ ⊆ S of N includes Q.

Proposition 6. [106] There exists a minimal siphon containing Q if and only if
there exists a Q-hitting-siphon.

Definition 26 (Q-Hitting Siphon Extraction Problem (Q-HSE)). The Q-HSE is the
following problem.

Input: A Petri Net N and a specified subset of places Q.

Output: Find a Q-hitting-siphon.

18

Definition 27 (Rec-Q-HSE). Rec-Q-HSE is the following decision problem:“given
a Petri net graph N = (P, T,W) and a subset of places Q ⊆ P , does there exist a
Q-hitting siphon in N?”.

Proposition 7. [106] The 3-SAT problem can be polynomially reduced to Rec-Q-
HSE. There exists a satisfying truth assignment for the clauses if and only if N has
a Q-hitting siphon.

Proof. The 3-SAT Reduction is illustrated in the following example.

Example 7. Let V = {v1, v2, v3, v4} and C = {c1, c2, c3} where

c1 = (v1, v2, v3)

c2 = (v̄1, v3, v4)

c3 = (v̄2, v̄3, v̄4)

The corresponding Petri net N = (P, T, E) is depicted in Figure 1.4 where Q =
{q0}.

q0

s1

s̄1

s2

s̄2

s3

s̄3

s4

s̄4

r1

r̄1

r2

r̄2

r3

r̄3

r4

r̄4

u1

u2

u3

y1

ȳ1

y2

ȳ2

y3

ȳ3

ȳ4

ȳ4

t0

Figure 1.4: Petri net for reduction of 3-SAT problem of example 7: for i = 1, 2, 3, 4,
ri and r̄i, si and s̄i, yi and ȳi correspond to literals, respectively variables and their
negation. for i = 1, 2, 3, ui correspond to clauses.

More generally, given any instance of 3-SAT: V = {v1, v2, ..., vn}, V̄ =
{v̄1, v̄2, ..., v̄n} (n ≥ 2) and C = {c1, c2, ...cm} (m ≥ 2), we construct an instance
N = (P, T, E) and Q ⊆ P of Q-HSE such that:

P = Q ∪R ∪ S

where:
Q = {q0}

R = {ri | vi ∈ V, 1 ≤ i ≤ n} ∪ {r̄i | v̄i ∈ V̄ , 1 ≤ i ≤ n}

19

S = {si | vi ∈ V, 1 ≤ i ≤ n} ∪ {s̄i | v̄i ∈ V̄ , 1 ≤ i ≤ n}

and T = T0 ∪ Y ∪ U where

T0 = {t0}

Y = {yi | vi ∈ V, 1 ≤ i ≤ n} ∪ {ȳi | v̄i ∈ V̄ , 1 ≤ i ≤ n}

U = {uj | cj ∈ C, 1 ≤ j ≤ m}

• Let Ψ : V ∪ V̄ → S be a bijection such that:

Ψ(li) = si if li ∈ V

Ψ(li) = s̄i if li ∈ V̄

(li denotes vi or v̄i)

E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6

E1 = {(t0, ri), (t0, r̄i) | 1 ≤ i ≤ n}

E2 = {(ri, yi), (r̄i, ȳi) | 1 ≤ i ≤ n}

E3 = {(yi, si), (ȳi, s̄i), (si, ȳi), (s̄i, yi) | 1 ≤ i ≤ n}

E4 = {(Ψ(li), uj) | li ∈ cj, 1 ≤ i ≤ n, 1 ≤ j ≤ m}

E5 = {(uj, q0) | 1 ≤ j ≤ m}

E6 = {(q0, t0)}

Lemma 1. [106] Rec-Q-HSE for a general Petri-Net is NP-hard.

Proof. There exists a satisfying truth assignment for C if and only if N has a Q-
hitting-siphon. In deed, let D ⊆ P be a Q-hitting-siphon of N and let us prove that
there exists a satisfying truth assignment for C. We have q0 ∈ D, then, either si or s̄i
in D (for i = 1, ..., n, {si, s̄i} is a minimal siphon included in D and not containing q0,
which is in contradiction with the fact thatD is a Q-hitting-siphon). We have q0 ∈ D
then, for j = 1, ...,m, D ∩ •uj 6= ∅. Define a mapping τ : V ∪ V̄ → {true, false}
such that:

τ(vi) =

true ifsi ∈ D,
false if s̄i ∈ D,
true if{si, s̄i} ∩D = ∅.

20

It is clear that τ is a satisfying truth assignment for C.

Conversely, suppose that there exists a satisfying truth assignment τ : V →
{true, false} for C, let us prove that there exists a Q-hitting-siphon of N . A Q-
hitting-siphon is D = S ′ ∪R′ ∪ {q0} such that: S ′ = {si ∈ S | τ(vi) = true} ∪ {s̄i ∈
S | τ(vi) = false} and R′ = R ∩ •(•S ′). It is easy to see that D is a siphon: for
each k ∈ {1, ..,m}, there is at least one s′j ∈ S ′ such that |•uk ∩ {sj, s̄j}| = 1. Then
•q0 ⊂ D•. For each s′j ∈ S ′ then •s′j ∈ D• (•s′j = {y′j} and r′j ∈ D). For each r′i ∈ R′,
•r′i = {t0} and {t0} = q•0. Hence, •D ⊆ D•. Let D′ be any minimal siphon included
in D, D′ includes either sj or s′j for j = 1, ..., n then D ∩R′ 6= ∅ and q0 ∈ D′. Then,
D is a Q-hitting-siphon.

We consider the problem of existence of a siphon, not necessary minimal, of a
given cardinality.

Definition 28 (k-Siphon problem). The k-Siphon problem is the following decision
problem.

Input: A Petri-net N and a positive integer k.

Output: Does there exist a siphon of cardinality k.

Definition 29 (k-set-covering). The k-set-covering is the following decision problem.

Input:

• U a finite set (the universe)

• S a subset of P(U)

• an integer k

Output: Does there exist S ⊆ S of cardinality k such that U =
⋃

S

Theorem 6. The k-Set-Covering decision problem is NP-complete. The optimiza-
tion problem, consisting in finding the minimal k such that k-Set-Covering holds, is
thus NP-hard.

Proposition 8. There is a polynomial reduction from k-Set-Covering to k-Siphon.

Proof. Here, we provide a reduction from set-covering to k-Siphon problem:

Let N=(P, T, W) be the Petri-net such that

• Places are S

• Transitions are U

• ∀t ∈ U , t• = P and •t = {s ∈ S | t ∈ s}

21

Then, for every subset S of places •S ⊆ S• ⇐⇒ U =
⋃

S. In deed, let S a subset
of places, we have •S = U . •S ⊆ S• if and only if for any transition u ∈ U , there
exists s ∈ S such that u ∈ s.

Theorem 7. k-Siphon is:

• NP-hard (polynomially be reduced to the set-covering problem).

• NP-complete since verifying that a given set of places is a siphon of size k is
linear.

The related optimization problem, consisting in finding a minimal siphon of
minimum cardinality, is thus NP-hard.

1.3 New Time Complexity Result

In this section, we present two complexity results which came from the analysis of the
surprising good evaluation results of the third chapter. We show that the decision
problem Rec-MSEP can be decided in polynomial time for Petri nets with bounded
cut-width. This complexity result can be improved thanks to the application of
Courcelle’s theorem: we show that, given a parameter k > 0, Rec-MSEP can be
decided in linear time for Petri nets with tree-width bounded by k. We prove also
that given a parameter k > 0, deciding the Siphon Trap Property can be done in
linear time for Petri nets with tree-width bounded by k. This complexity result was
proved by Thierry Martinez [80].

1.3.1 Polynomial time complexity theorem for Petri-nets
with bounded tree-width

We start by introducing the notions of cut-width and tree-width.

Definition 30. (Cut-width)[62] Given a non-oriented graph G = (V,E), |V | = n,
a numbering of G is a one-to-one mapping LG : V → {0, . . . , n− 1}. The cut-width
of a numbering LG is

max
0≤p<n

|{{u, v} ∈ E : LG(u) ≤ p < LG(v)}|

The cut-width c(G) of G is the minimum cut-width over all the numberings.

Example 8. Figure 1.6 shows a numbering of the graph depicted in Figure 1.5.
The numbering l corresponds to the ordering (C, A, D, E, B, F). In Figure 1.6,
vertices are arranged in a line with the order of the numbering: C is located in
the first position followed by vertex A and so on. The cut-width of each vertex is

22

represented as a dashed line with its corresponding value. For example, the cut-width
of vertex C is cl(C) = 1, because only the edge (C,B) has an endpoint in C labelled
with 1 and the other endpoint in a vertex labelled with a value larger than 1. In
a similar way, the cut-width of A equals 4, by counting the appropriate number of
edges ((C,B), (A,B), (A,E), and (A,D)). Then, since the cut-width of the graph G,
cl(G), is the maximum of the cut-width of its vertices, in this particular example we
obtain cl(G) = cl(D) = 5.

A B

CDE

F

Figure 1.5: Graph example (G) with
6 vertices

C A D E B F

Figure 1.6: Cut-width of G for a num-
bering l

Definition 31. (Tree decomposition)[86] A tree decomposition of a non-oriented
graph G = (V,E) is a pair (X, T) where T = (I, A) is a tree, and X = {Xi : i ∈ I}
is a family of subsets of V , such that

1.
⋃

i∈I Xi = V ,

2. Every edge of G has both its ends in some Xi (i ∈ I),

3. For all i, j, k ∈ I, if j lies on the path from i to k in T , then Xi ∩Xk ⊆ Xj.

The tree-width of a tree decomposition is maxi∈I |Xi| − 1. The tree-width tw(G) of
G is the minimum tree-width taken over all possible tree decompositions of G.

Example 9. A tree decomposition of the graph shown in figure 1.5 is depicted in
figure 1.7. The graph is decomposed onto a tree with 5 nodes. Each graph edge
connects two vertices that belongs to some tree node. Graph vertices are adjacent
only when the corresponding sub-trees intersect. Each tree node lists at most three
vertices, hence the width of this decomposition is two.

Theorem 8 ([7]). For all graph G, tw(G) ≤ c(G).

Definition 32 ([44]). The primal graph of a hyper-graph H = (V,H) is the graph
G = (V,E) such that E = {{X, Y } ⊆ V | ∃h ∈ H, {X, Y } ⊆ h}.

Example 10. Figure 1.8 shows an example of a hyper-graph
with X = {v1, v2, v3, v4, v5, v6} and H = {h1, h2, h3, h4} =
{{v1, v2, v3}, {v2, v3}, {v3, v5, v6}, {v4}}. The primal graph of H is shown in
figure 1.9.

23

A B E

A D E F B C

D F E F

Figure 1.7: Tree decomposition G

v1 v2 v3

v4 v5v6

h1
h2

h3

h4

Figure 1.8: Hyper-graph example H

v1

v2 v3

v4 v5

v6

Figure 1.9: Primal graph of H

Definition 33. (Cut-width and tree-width of a hyper-graph)[44] The cut-width and
the tree-width of a hyper-graph are the cut-width and the tree-width respectively of
its primal graph plus one.

Definition 34. (Constraint Satisfaction Problem (CSP)) A CSP instance is a triple
(V,D,C) where:

• V is an ordered set of n variables (vi is the ith element of v).

• D is a mapping from V to a set of domains {d(v1), d(v2), .., d(vn)}. For each
variable vi ∈ V , d(vi) is the finite domain of its possible values.

• C = {c1, c2, .., cm} is a set of m constraints. Each constraint ci ∈ C is defined
as a pair (vars(ci), rel(ci)), where:

– vars(ci) = (vi1, .., vik) is an ordered subset of V called the constraint scope.

– rel(ci) is a subset of the Cartesian product d(vi1)∗..∗d(vik) and it specifies
the allowed combinations of values for the variables in vars(ci).

Definition 35. (Cut-width and tree-width of a constraint satisfaction problem)[44]
The cut-width and the tree-width of a constraint satisfaction problem are the cut-
width and the tree-width respectively of its constraint hyper-graph.

Theorem 9. [44] Given a constraint satisfaction problem P and a tree decomposition

D of P , P can be solved in O(|P |tw(D)+1 · log |P |).

Definition 36. (Cut-width and tree-width of a Petri net) The cut-width and
the tree-width of a Petri-net N = (P, T, w) are the cut-width and the tree-
width respectively of its underlying hyper-graph HN = (P,H) with H =
{{p ∈ P | w(p, t) 6= 0 or w(t, p) 6= 0} | t ∈ T}.

24

Definition 37. Given a Petri net N = (P, T, w) such that P = {p0, . . . , pn−1},
n ≥ 2, the constraint satisfaction problem CSP(N) = (V ,D, C) for finding a siphon
of a parametric size K in N has the following constraints C on the variables V =
{X0, S0, . . . , Xn−1, Sn−1, K}.

• for all 0 ≤ i < n, Xi = 1 ⇒
∧

t∈•pi

∨

pj∈•tXj = 1,

• S0 = X0 +X1 and for 1 ≤ i < n− 1, Si = Si−1 +Xi+1,

• Sn−1 = K

Given a Petri net N , definition 37 provides an encoding of the problem of finding
a siphon of size K in such a manner that we are able to bound the cut-width of

CSP(N) by the cut-width of N , we decompose the constraint
n−1
∑

i=0

Xi = K into n

binaries constraints as illustrated in Example 11.

Example 11. Consider Petri net N depicted in Figure 1.10. The corresponding
hyper and primal graphs are shown respectively in Figure 1.11 and Figure 1.12.

S P

E

ES
t1

t−1

t2

Figure 1.10: Petri net depicting the enzymatic reaction

E S ES

P

h1

h2

Figure 1.11: Hyper-graph of the
Petri net depicted in Figure 1.10

E

S ES P

Figure 1.12: Primal graph of the Petri
net depicted in Figure 1.10

Boolean variables X0, X1, X2 and X3 are associated respectively to E, S, ES and
P . The following CSP = (V ,D, C) encodes the problem of finding a siphon of N of
size K:

25

V = {X0, S0, X1, S1, X2, S2, X3, S3, K}

The siphon constraints are:

X0 = 1 ⇒ X2 = 1

X1 = 1 ⇒ X2 = 1

X2 = 1 ⇒ X0 = 1 ∨X1 = 1

X3 = 1 ⇒ X2 = 1

Binary constraints encoding the sum are:

S0 = X0 +X1

S1 = S0 +X2

S2 = S1 +X3

S3 = K

Lemma 2. For all Petri net N , c(CSP(N)) ≤ c(N) + 2.

Proof. Suppose that P = {p0, . . . , pn−1} is enumerated such that LN : pi 7→ i is a
numbering of the primal graph of the underlying hyper-graph of N with c(LN) =
c(N). Then the numbering LCSP(N) such that for all 0 ≤ i < n, LCSP(N)(Xi) = 2 · i,
LCSP(N)(Si) = 2 ·i+1 and LCSP(N)(K) = 2 ·n is such that c(LCSP(N)) = c(N)+2.

Example 12. Consider again the Petri net N of Figure 1.10 and the numbering LN

corresponding to the ordering (E, S,ES, P),we have cLN
(N) = 3. The primal graph

P corresponding to CSP(N) as defined in 37 is depicted in Figure1.13. On P , consid-
ering the numbering LCSP(N)(Xi) = 2·i, LCSP(N)(Si) = 3·i+1 and LCSP(N)(K) = 2·n.
This numbering corresponds the the ordering (X0, S0, X1, S1, X2, S2, X3, S3, K). We
have c(LCSP(N))(P) = 5 .

X0

X1

X2 X3

S0

S1 S2S3 K

Figure 1.13: Primal graph of CSP(N)

Theorem 10. Given a Petri-net N with n places with a numbering LN and an
integer K, there exists an algorithm to find a siphon of size K if such a siphon
exists in N in O(|N |c(LN)+3 · log |N |).

26

Proof. By lemma 2, c(CSP(LN)) = c(LN)+2 Therefore, tw(CSP(LN)) ≤ c(LN)+2
by lemma 8. Moreover, |N | = O(|P |). Theorem 9 concludes.

Theorem 11. Given a Petri net N with n places with a numbering LN , and a subset
of places Q, there exists an algorithm to find a minimal siphon containing Q in N
in O(|N |c(LN)+5 · (log |N |)2).

Proof. The constraint satisfaction problem CSP′ obtained from CSP(N) by adding
the constraints Xi = 1 for all pi ∈ Q has the same cut-width as CSP(N). Therefore,
a siphon S containing Q with minimal cardinality can be found by iterating the
resolution of CSP′ by a dichotomic search among the values of K between 1 and
n. If S is minimal (which can be checked polynomially in O(|N |2)), then this is a
minimal siphon containing Q in N . If S is not minimal, then there is no minimal
siphon containing Q in N .

Proposition 9. The count of minimal siphons in Petri nets is not polynomially
bounded by cut-width.

Proof. Given an integer n ≥ 2, consider the Petri-net N depicted below, which has
2n minimal siphons.

A0 A1 A2 An−1

T0 T1 . . . Tn−1

B0 B1 B2 Bn−1

The cut-width of N is 5. Indeed, the primal graph of the underlying hyper-graph
of N is G = (V,E) such that V = {Ai, Bi : 0 ≤ i < n} and E =

⋃

0≤i<n {Ai, Bi} ×
{Ai+1modn, Bi+1modn}. G is the non-oriented underlying graph. We have c(G) ≤ 6.
Indeed, the numbering LG such that for all 0 ≤ i < n, LG(Ai) = 2·i, LG(Bi) = 2·i+1
is such that c(LG) = 4.

1.3.2 Linear Time Complexity Result

We show that, given a parameter k > 0, Rec-MESP can be decided in linear time
for Petri nets with tree-width bounded by k. We prove also that given a parameter
k > 0, deciding the Siphon Trap Property can be done in linear time for Petri nets
with tree-width bounded by k. These results follow from Courcelle’s theorem which
states that every graph property definable in monadic second-order logic can be
decided in linear time on graphs of bounded tree-width. The monadic second-order
logic is the extension of the first-order logic that allows quantification over monadic
unary predicates (i.e.: sets). Thus, non-unary predicates, as well as functions, may

27

appear in monadic second-order languages, but they may not be quantified over.
Hence, monadic Second Order logics formulas are built up from atomic formulas
using the usual boolean connectives (∨ ; ∧; ¬ ; → ; ↔), quantification over individual
variables and quantification over set variables. It is shown that monadic second-
order logic, where quantifications over sets of vertices and sets of edges are used, is
a reasonably powerful logical language for which one can obtain decidability results.

Our main theorem states the linear time complexity of the Rec-MESP in Petri
nets with bounded tree-width.

Theorem 12. For k > 0, there exists an algorithm to find a minimal siphon con-
taining a subset of places Q in linear time for Petri nets of tree-width bounded by
k.

Proof. Our theorems are corollaries of the Courcelle’s theorem that declares the
following:

Theorem 13. (Courcelle’s theorem)[24] If a class C of graphs is definable in
monadic second-order logic (MSO) then for any fixed k > 0, given a k-width tree
decomposition of a graph G, there exists a linear-time algorithm which recognizes if
G ∈ C.

Given a Petri-net with n places and m transitions, the incidence between vertices
(places and transitions) and edges is represented by a binary relation edge. To
separate places from transitions, we introduce the unary predicate place. A siphon
is a set of places whose predecessors are also successors.

The fact that a set of places S is a siphon can be written as the following logical
expression:

siphon(S) : ∀v(v ∈ S ⇒ place(v)) ∧ ∃v(v ∈ S)∧

∀t(∃v(v ∈ S ∧ edge(t, v)) ⇒ ∃v(v ∈ S ∧ edge(v, t)))

S is minimal when Min-Siphon(S) holds where:

Min-Siphon(S) : siphon(S) ∧ ∀S ′(siphon(S’)∧

∀v(v ∈ S ′ ⇒ v ∈ S) ⇒ ∀v(v ∈ S ⇒ v ∈ S ′))

S contains the given set of places Q is trivially written as:

∀v(v ∈ Q⇒ v ∈ S)

Hence, the existence of a minimal siphon S containing a given set of places Q is
represented by the following monadic second order logic expression:

Min-Siphon-containing(Q) : ∃S(siphon(S) ∧ ∀S ′(siphon(S’)∧

∀v(v ∈ S ′ ⇒ v ∈ S) ⇒ ∀v(v ∈ S ⇒ v ∈ S ′)) ∧ ∀v(v ∈ Q⇒ v ∈ S))

28

Theorem 14. For k > 0, the Siphon Trap Property (STP) can be decided in linear
time for Petri nets of tree-width bounded by k.

Proof. We define a unary predicate marked over the set of places. The STP holds
when every siphon contains a marked trap which can be written formally by the
following expression:

STP : ∀S(siphon(S) ⇒ ∃S ′(∀v(v ∈ S ′ ⇒ v ∈ S)∧

trap(S’) ∧ ∃v(v ∈ S ′ ∧marked(v))))

A trap is the dual notion of siphon (a set of places whose successors are also prede-
cessors). The unary predicate corresponding to a trap is:

trap(S) : ∀v(v ∈ S ⇒ place(S)) ∧ ∃v(v ∈ S)∧

∀t(∃v(v ∈ S ∧ edge(v, t)) ⇒ ∃v(v ∈ S ∧ edge(t, v)))

1.4 Petri Net Structures and CTL Properties

1.4.1 Infinite State Computation Tree Logic

Temporal logics have been introduced by Amir Pnueli in [84] as a mean to reason
about the dynamic of concurrent programs. Temporal logics may differ according to
how they handle branching in the underlying computation tree. In a linear temporal
logic, operators are provided for describing events along a single computation path.
In a branching-time logic the temporal operators quantify over the paths that are
possible from a given state.

The computation tree logic CTL∗ combines both branching-time and linear-time
operators. In this logic a path quantifier can prefix an assertion composed of arbi-
trary combinations of the usual linear-time operators. The temporal operators are
the following where p and q are atomic propositions.

1. Path quantifier:

• A for every path

• E there exists a path

2. Linear-time operators:

• Xp p holds next time.

• Fp p holds sometime in the future

• Gp p holds globally in the future

29

AXp EXp

AGp EGp

Figure 1.14: Reachability trees for AXp, EXp, AGp, and EGp.

• pUq p holds until q holds

CTL [18] is a restricted subset of CTL∗ [18] where each of the linear-time operators
X, F, G and U must be immediately preceded by a path quantifier (e.g. AG(EFp)).
Figure 1.14 shows a graphical interpretation of some temporal operators of CTL,
namely the operator AX, EX, AG, and EG that deal with properties of interest in
the following. The root of the computation tree is the initial state of the reachability
graph. States represented by white nodes are such that the formula p does not hold
whereas p holds in states represented by black nodes.

In the following, we present the syntax and the semantics of CTL∗.

Definition 38. (Syntax of CTL∗) Let p be an atomic proposition. Formulas in
CTL∗ are either state-formulas or path-formulas which satisfy the following rules:

1. p is a state-formula

2. If Φ is a state-formula, then ¬Φ is a state-formula

3. If Φ and Ψ are state-formulas, then Φ ∨Ψ is a state-formula

4. If ϕ is a path-formula, then Eϕ and Aϕ are state-formulas

5. Anything else is not a state-formula.

Path-formulas satisfy the following rules:

1. If Φ is a state-formula, then XΦ is a path-formula

2. If Φ and Ψ are state-formulas, then ΦUΨ is a path-formula

3. Anything else is not a path-formula.

30

Intuitively, a state-formula express a property of a state, while a path-formula
express a property of a path, i.e., an infinite sequence of states.

The interpretation of CTL∗ is defined in terms of a Kripke structure. We recall
the following definition and notations:

Definition 39. (Kripke structure) A Kripke structure S is a tuple S = (S,→, L, I)
where

• S is a set of states.

• →⊆ S × S is a total relation (i.e. for any state s ∈ S, there exists a state s′

such that s→ s′).

• L : S → 2AP is a labelling function over the set of atomic propositions AP . It
associates to each state, the set of atomic propositions true in that state.

• I is the set of initial states.

Example 13. Let AP = {p, q} be the set of atomic propositions. p and q can model
arbitrary boolean properties of the system that the Kripke structure is modelling. The
figure 1.15 illustrates a Kripke structure M = (S,→, L, I), where

• S = {s1, s2, s3}.

• →= {(s1, s2), (s2, s1)(s2, s3), (s3, s3)}.

• L = {(s1, p, q), (s2, q), (s3, p)}.

• I = {s1}.

s1
{p,q}

s2
{q}

s3
{p}

Figure 1.15: An example of Kripke structure

It is worth noticing that we do not restrict S to be finite in the definition. Indeed,
we consider infinite Kripke structures in this section, and the next section defines
an abstraction framework for reducing the infinite sets of states into finite sets while
preserving the properties presented in this section.

31

Definition 40. (Path) A path in Kripke structure M = (S,→, L, I) is an infinite
sequence of states s0s1s2... such that (si, si+1) ∈→ for all i > 0.

A path is thus an infinite sequence of states such that between successive states
transitions do exist. For path σ = s0s1s2... and integer i > 0 we use σ[i] to denote
the (i + 1)th state of σ , i.e., σ[i] = si. The set of paths that start in state s is
denoted Paths(s). As each state in a Kripke structure is required to have at least
one successor, it follows Paths(s) 6= ∅ for any state s.

For any Kripke structure M = (S,→, L, I) and state s ∈ S there is an infinite
computation tree with root labelled s such that (si, sj) is an arc in the tree if and
only if (si, sj) ∈→. This tree is obtained by unfolding the Kripke structure at state
s.

Definition 41. (Semantics of CTL∗) Let p ∈ AP be an atomic proposition, M =
(S,R, L, I) be a Kripke structure, s ∈ S, Φ, Ψ be CTL∗ state-formulas, and ϕ be a
CTL∗ path-formula. The satisfaction relation |= is defined for state-formulas by:

• s |= p iff p ∈ L(s)

• s |= ¬Φ iff ¬(s |= Φ)

• s |= Φ ∨Ψ iff (s |= Φ) ∨ (s |= Ψ)

• s |= Eϕ iff ∃σ ∈ Paths(s). σ |= ϕ

• s |= Aϕ iff ∀σ ∈ Paths(s). σ |= ϕ

For path σ the satisfaction relation |= for path-formulas is defined by:

• σ |= XΦ iff σ[1] |= Φ

• σ |= ΦUΨ iff ∃j ≥ 0.(σ[j] |= Ψ ∧ (∀0 ≥ k < j.σ[k] |= Φ))

Since Petri nets may have unbounded markings however, the set of states is
infinite and standard model-checking techniques can not be directly applied. In this
section we study the theoretical links between CTL and siphons and traps in Petri
nets, and in the next section we study a boolean abstraction which makes these links
effective to speed up the verification of some CTL properties.

Infinite Kripke Structures for Petri Nets

In the following definition, we associate an infinite Kripke structure to a general
Petri net. We describe a total transition relation by adding loops around deadlock
markings (i.e. markings from which no transition can be fired).

32

Definition 42. For any Petri net PN = (P, T,W,m0), the infinite Kripke structure
induced by PN is the structure SPN = (NP ,→, L, {m0}) where for all m,m′ ∈ NP ,

m → m′ if either there exists a transition t ∈ T such that m
t
→ m′, or m = m′ and

there doesn’t exist any transition t ∈ T and marking m′′ ∈ NP such that m
t
→ m′′.

Note that there are other available choices of the completion of the transition
relation such as adding loops around all markings, or the introduction of fresh states
⊥S for every S ⊆ AP , etc.

Traps, siphons and CTL

Given a Kripke structure associated to a Petri net, we provide the relationship
between structural properties of Petri nets, traps and siphons, and their characteri-
sation in CTL.

Definition 43. A subset of markings M ⊆ NP is invariant with respect to a Petri
net PN if for all m ∈ M , for all transition t and marking m′ ∈ NP such that

m
t
→ m′, we have m′ ∈M .

Theorem 15. Let φ be a CTL formula and Mφ = {m ∈ Np | (SPN ,m) |= φ}. Mφ is
invariant with respect to PN if and only if for all m ∈ NP , (SPN ,m) |= φ⇒ AXφ

Proof. Suppose that Mφ is invariant with respect to PN . Then, for all m ∈ NP , we
show that (SPN ,m) |= φ⇒ AXφ: indeed, if (SPN ,m) |= φ, thenm ∈Mφ, therefore,

for all m′ ∈ NP such that m → m′, there exists a transition t such that m
t
→ m′,

therefore, since Mφ is invariant with respect to PN , m′ ∈ Mφ, thus (SPN ,m′) |= φ
and then (SPN ,m) |= AXφ.

Conversely, suppose that for all m ∈ NP , (SPN ,m) |= φ ⇒ AXφ. Then, for
all m ∈ NP , if m ∈ Mφ, we show that for all m′ ∈ NP such that there exists a

transition t such that m
t
→ m′, we have m′ ∈ Mφ. Indeed, since m ∈ Mφ, we have

(SPN ,m) |= φ, therefore (SPN ,m) |= AXφ. Since there exists a transition t such

that m
t
→ m′, we have m→ m′, therefore (SPN ,m′) |= φ, thus m′ ∈Mφ.

It is worth noticing that φ⇒ AXφ is logically equivalent to φ⇒ AGφ.

For any subset P ′ ⊆ P of places, let φP ′ =
∨

p∈P ′ mp ≥ 1

Corollary 1. The set P ′ ⊆ P is a trap in PN if and only if for all s ∈ NP ,
(SPN , s) |= φP ′ ⇒ AGφP ′.

Proof. According to proposition 3, P ′ is a trap if and only if MφP ′
is invariant with

respect to PN .

Corollary 2. The set P ′ ⊆ P is a siphon in PN if and only if for all s ∈ NP ,
(SPN , s) |= ¬φP ′ ⇒ AG¬φP ′.

Proof. According to proposition 4, P ′ is a siphon if and only if M¬φP ′
is invariant

with respect to PN .

33

1.4.2 Boolean Abstractions, Boundedness Conditions and
Boolean CTL Model-Checking

Model-checking methods [18] are powerful techniques for verifying temporal logic
properties of systems modelled by finite state machines. Although the set of states
has to be finite by hypothesis, the number of states can be very large and one main
challenge of model-checking methods is to deal with the state space explosion prob-
lem. State-of-the-art symbolic model-checkers based on binary decision diagrams,
such as for instance NuSMV [11] for proving Boolean CTL properties, have shown
their capability to verify extremely large systems in circuit design and program veri-
fication. This is also the case in biochemical networks where Boolean CTL formulas
allow us to express a broad spectrum of biological properties such as accessibility,
fixed points, stability or oscillations, and verify them by symbolic model-checking
[14]. Key to the application of these methods is the reduction of an infinite state
machine such as a Petri net to a finite state machine. In this section, we formalize
the reduction of Petri nets by quotients and the boolean abstraction of a Petri net,
and study the CTL properties preserved by these reductions.

Quotient Kripke Structures

Let S = (S,→, L, I) be a (potentially infinite) Kripke structure, the definition of
quotient Kripke structure is natural as it is done in [3]. Here, ≡ is an arbitrary
equivalence relation over S. States of S are written s, s′, Equivalence classes of
S/≡ are written c, c′, The equivalence class of a state s ∈ S is written [s].

Definition 44. The quotient Kripke structure of S by ≡ is

(S/≡) = (S/≡,→≡, [L], [I])

where

• →≡ ∈ S/≡× S/≡ is the relation such that c→≡ c
′ when there exist s ∈ c and

s′ ∈ c′ with s→ s′,

• [L] : c ∈ S/≡ 7→
⋃

s∈c L(s),

• [I] = {c ∈ S/≡ | ∃s ∈ I, s ∈ c}

This quotient Kripke structure is similar to the quotient transition system in-
troduced by Alur and al. in [3] to find classes of infinite transition systems whose
analysis can be performed on equivalent but finite transition systems. The difference
between the two quotients is that Alur and al. restrict the equivalence relation to be
proposition-preserving (an equivalent relation is said to be proposition-preserving if
for all states p, q ∈ Q and all propositions π, if p ≡ q and p |= π then q |= π) while
we consider any equivalence relation.

Proposition 10. S/≡ is a Kripke structure.

34

Proof. It amounts to show that →≡ is total: for all c ∈ S/≡, there exists at least
one s ∈ c, moreover → is total, therefore there exists s′ ∈ S such that s → s′, thus
c→≡ [s′].

A common usage of quotients is the thresholding of states that allows us to reduce
an infinite number of states to a finite number with some fixed maximum value.

Definition 45. For any Petri net PN and for all k ∈ N, the thresholding Kripke
structure SPN

≤k is SPN
≤k = SPN/ ≡≤k where ≡≤k is such that s ≡≤k s

′ if and only if
for all p with sp 6= s′p, we have sp ≥ k and s′p ≥ k.

≡≤k can also be written as s ≡≤k s′ if and only if for all p, min(sp, k) =
min(s′p, k). SPN

≤k is a finite Kripke structure which faithfully captures transitions
between markings with at most k tokens in each place, and collapses all markings
which differ only on places with more than k tokens.

Preservation of Boolean CTL Properties

We are interested in CTL properties which are preserved by quotient of the Kripke
structure.

Definition 46. A formula φ ∈ CTL is strongly preserved by ≡ if for all s ∈ S,
(S, s) |= φ if and only if (S/≡, [s]) |= φ.

It is already known that bisimulation preserves CTL properties, a bisimilation is
a special equivalence relation with the following property.

Definition 47. (Bisimulation) Let T = (Q,→, L, I) be a Kripke structure. A
proposition-preserving equivalence relation ∼B on Q is a bisimulation of T if for
all states p, q ∈ Q, if p ∼B q, then for all states p′ ∈ Q, if p→ p′ then there exists a
state q′ ∈ Q such that q → q′ and p′ ∼B q’.

Theorem 16. [8] Let T be a Kripke structure and let ∼B be a bisimulation of T.
Then T satisfies the CTL formula φ if and only if the bisimulation quotient T/∼B

satisfies φ.

However, our thresholding equivalence relation is not a bisimulation. An intuitive
example is the following.

Example 14. Consider the following Petri net:

p1 p2

t

Let m = (2, 0), m ≡≤1 m
′ = (1, 0). We have m

t
→ m1 = (1, 1) and there does not ex-

ist any marking m2 such that m′ → m2 and m1 ≡≤1 m2: the only reachable marking
from m′ is (0, 1) and we have (0, 1) 6≡≤1 (1, 1). Hence ≡≤1 is not a bisimulation.

35

We are not interested in relations preserving all CTL properties but, on the con-
trary, in characterizing a family of CTL properties preserved by a a given equivalence
relation.

Definition 48. A formula φ ∈ CTL is weakly preserved by ≡ if (for all s ∈ S,
(S, s) |= φ) if and only if (for all c ∈ S/≡, (S/≡, c) |= φ)).

The second form of preservation is not common, it is a special form of preservation
that states that a formulas is verified by all states s ∈ S when it is verified by all
classes c ∈ S/≡. We introduce this latter form of preservation to deal with quantifier
operators as it is shown in Theorem 18. Obviously, strong preservation subsumes
weak preservation.

Proposition 11. For the equivalence relation ≡≤k, the atomic propositions mp ≤ n
and mp = n are strongly preserved when n < k, and the atomic propositions mp ≥ n
are strongly preserved when n ≤ k.

Proof. ≡≤k can also be written as s ≡≤k s
′ if and only if min(s, k) = min(s′, k). We

want to prove that: ∀k, ∀n, n < k ⇔ ∀m, (m ≤ n ⇔ ∀m′s.t.m′ ≡≤k m,m
′ ≤ n).

n < k and m ≤ n, then min(m′, k) = m′ = m and thus m′ ≤ n. Now, n < k and
m′ ≤ n, then min(m, k) = m′ = m and thus m ≤ n. Conversely, we have for all
m, m ≤ n is equivalent to for all m′ such that min(m, k) = min(m′, k), we have
m′ ≤ n. Supposing that k ≤ n will give us contradiction with m = n + 1, hence
n < k. Similarly, for all n and k, n < k if and only if for all m, m = n is equivalent
to min(m, k) = n. Finally, for all n and k, n ≤ k if and only if for all m, m ≥ n is
equivalent to for all m′ such that min(m, k) = min(m′, k), we have m′ ≥ n.

In general, the preserved formulas highly depend on ≡: if ≡ is the identity
relation, then all formulas are preserved, and if ≡ collapses all states to a single
equivalence class, only tautologies and self-contradictions are preserved.

Theorem 17. The class of strongly preserved formulas is closed by the Boolean
connectives, i.e., for all Kripke structures S and equivalence relation ≡, if φ and ψ
are formulas strongly preserved by ≡, then φ∧ψ, φ∨ψ and ¬φ are strongly preserved
by ≡.

Proof. Let φ and ψ be strongly preserved formulas. For all state s, (S, s) |= φ∧ψ, if
and only if (S, s) |= φ and (S, s) |= ψ, if and only if (S/≡, [s]) |= φ and (S/≡, [s]) |=
ψ, if and only if (S/≡, [s]) |= φ ∧ ψ. Similarly, for all state s, (S, s) |= φ ∨ ψ, if and
only if (S, s) |= φ or (S, s) |= ψ, if and only if (S/≡, [s]) |= φ or (S/≡, [s]) |= ψ, if
and only if (S/≡, [s]) |= φ ∨ ψ, Finally, for all state s, (S, s) |= ¬φ, if and only if
(S, s) 6|= φ, if and only if (S/≡, [s]) 6|= φ, if and only if (S/≡, [s]) |= ¬φ.

In general, the class of strongly preserved formulas is not closed by temporal
logic operators. For example, consider the structure S = ({0, 1, 2, 3}, {0 → 1, 1 →
1, 2 → 3, 3 → 3}, (0, 1, 2 7→ ∅; 3 7→ {a})), {0} and the equivalence relation ≡ induced
by the equation system {0 ≡ 2}. The formula φ = a is strongly preserved by ≡, but
not AXφ.

36

Theorem 18. The class of weakly preserved formulas is closed by conjunction and
disjunction, i.e., for all Kripke structures S and equivalence relation ≡, if φ and ψ
are formulas weakly preserved by ≡, then φ ∧ ψ and φ ∨ ψ are weakly preserved by
≡. Moreover, if φ is a strongly preserved formula, then AXφ is a weakly preserved
formula.

Proof. Let φ and ψ be weakly preserved formulas. For all state s, (S, s) |= φ ∧ ψ, if
and only if for all state s, (S, s) |= φ and (S, s) |= ψ, if and only if for all state s,
(S/≡, [s]) |= φ and (S/≡, [s]) |= ψ, if and only if for all state s, (S/≡, [s]) |= φ ∧ ψ.
Similarly, for all state s, (S, s) |= φ ∨ ψ, if and only if (S, s) |= φ or (S, s) |= ψ, if
and only if (S/≡, [s]) |= φ or (S/≡, [s]) |= ψ, if and only if (S/≡, [s]) |= φ ∨ ψ.

Let φ be a strongly preserved formula. Suppose that for all s ∈ S, (S, s) |= AXφ.
For all c ∈ S/≡, we show that (S/≡, c) |= AXφ, which amounts to proving that, for
all c′ ∈ S/≡ such that c →≡ c′, we have (S/≡, c′) |= φ. Since c →≡ c′, then there
exists s ∈ c and s′ ∈ c′ such that s → s′. Since (S, s) |= AXφ and s → s′, we have
(S, s′) |= φ, then (S, [s′]) |= φ, that is to say (S/≡, c′) |= φ. Conversely, suppose
that for all c ∈ S/≡, (S/≡, c) |= AXφ. For all s ∈ S, we show that (S, s) |= AXφ,
which amounts to proving that, for all s′ ∈ S such that s→ s′, we have (S, s′) |= φ.
Since s →≡ s′, then [s] →≡ [s′]. Since (S/≡, [s]) |= AXφ and [s] →≡ [s′], we have
(S/≡, [s′]) |= φ, then (S/≡, s′) |= φ.

Corollary 3. The set P ′ ⊆ P is a trap in PN if and only if for all [s] ∈ {{0},N≥1}
P ,

(SPN
≤1 , [s]) |= φP ′ ⇒ AGφP ′.

Proof. From theorem 17 and proposition 11, it follows that φP ′ is strongly preserved
by ≡≤k. Then, according to theorem 18, φP ′ ⇒ AGφP ′ is weakly preserved, and is
a characterization of traps according to corollary 1.

Corollary 4. The set P ′ ⊆ P is a siphon in PN if and only if for all [s] ∈
{{0},N≥1}

P , (SPN
≤1 , [s]) |= ¬φP ′ ⇒ AG¬φP ′.

Proof. Similarly, ¬φP ′ ⇒ AG¬φP ′ is weakly preserved, and is a characterization of
siphons according to corollary 2.

Evaluation

Evaluation is carried on in the Biochemical Abstract Machine (Biocham)1 [9] which
is a modelling environment for systems biology, with some unique features for static
analysis or for inferring unknown model parameters from temporal logic constraints.
Biocham is mainly composed of :

• a rule-based language for modelling biochemical systems (compatible with
SBML),

1http://contraintes.inria.fr/Biocham/

37

http://contraintes.inria.fr/Biocham/

• several simulators (boolean, differential, stochastic),

• a temporal logic based language to formalize the temporal properties of a
biological system and validate models with respect to such specifications,

• unique features for developing/correcting/completing/coupling models, includ-
ing the inference of kinetic parameters in high dimension from temporal logic
constraints.

A Biocham model is a set of reaction rules given with an initial state. The formal
semantics of a Biocham model is a Kripke structure, that is a triple formed of a set
of states, a transition relation between states and a labelling function associating to
each state the set of atomic propositions true in that state. One can associate to
a Biocham model a Kripke structure, where the set of states S is the set of all tu-
ples of boolean values denoting the presence or absence of the different biochemical
compounds (molecules, genes and abstract processes), the transition relation R is
the union (i.e. disjunction) of the relations associated to the reaction rules, and the
labelling function L simply associates to a given state the set of biochemical com-
pounds which are present in the state. Reaction rules in Biocham are asynchronous
in the sense that one reaction rule is fired at a time (interleaving semantics), hence
the transition relation is the union of the relations associated to the reaction rules.

In section 1.4.2, we assigned to a Petri net underlying a biochemical reaction
network a Kripke structure, and we have developed links between the structural
properties of siphons and traps in Petri nets and their dynamical properties in Com-
putation Tree Logic. For this, we have formally defined the infinite Kripke structure
associated to a Petri net, and their quotients by equivalence relations which consti-
tute formal abstractions in the sense of Galois connections. Since Biocham is devel-
oped in the context of Kripke structure, it is convenient to carry out the evaluation
of our approach in the context of Biocham. To evaluate how much can be gained,
a simple program based on GNU-Prolog solver was implemented to check whether
a set of places is a siphon or a trap and a comparison between its performance and
the state-of-the-art symbolic model-checker NuSMV [11] used in Biocham is hold on
some examples from systems biology.

Example 15. Let us first consider the small model of the bacteriophage T7 [2] which
consists of 6 simple reactions:

gen => tem .
tem => _.
tem => tem + gen .
gen + s t r u c => v i r u s .
tem => tem + s t r u c .
s t r u c => _.

38

The system has one minimal siphon: {gen, tem}. The corresponding CTL queries
are the following2:

check_ctl (Ai ((! (gen) & ! (tem)) −> AX((! (gen) & ! (tem))))) .

The state-of-the-art symbolic model-checker NuSMV [11] used in Biocham [9] re-
turns a positive answer in less than five milliseconds.

For some models however, especially with those models containing many parallel
pathways, symbolic model-checkers may fail to verify simple CTL formulae in rea-
sonable time. This is the case, for instance, of Schoeberl’s model of the MAP kinase
cascade activated by surface and internalized EGF receptors [92], numbered model
19 in the Biomodels.net repository 3. This model contains 100 places and 242 tran-
sitions. Using our constraint satisfaction algorithm, the sets of 13 minimal siphons
and 15 minimal traps are computed in less than one second (almost 20 milliseconds)
4. In this model, {EGFRideg} is a trap. Intuitively, this means that, if {EGFRideg}
is present at a certain state, it will never become absent. Veryfing if {EGFRideg} is
a trap using our program is very fast and can be done in less than five milliseconds.
In contrast, NuSMV fails to verify the corresponding CTL formulae in a reasonable
time: NuSMV does not provide any result within a timeout of ten minutes. This
property can be written, using Biocham notation, as:

check_ctl (Ai (EGFRideg −> AX(EGFRideg))) .

In the same manner, species phosphatase3, ERK−PP−P’ase3, ERK−P−P’ase3,
ERKi−PP−P’ase3, ERKi−P−P’ase3, identified respectively by x60, x61, x62, x84
and x85, form a siphon and a trap in the same time.

This ascertainment is intuitively reasonable since these species correspond to
different forms of the phosphatase. So their sum remains constant. The siphon
corresponds to the following CTL formula:

check_ctl (Ai ((! (x60)&!(x61)&!(x62)&!(x84)&!(x85))
−> AX((! (x60)&!(x61))&! (x62)&!(x84)&!(x85))))

Here again NuSMV does not provide any result in less than ten minutes, whereas
checking if {x60,x61,x62,x84,x85} is a siphon is instantaneous and is done in less than
five milliseconds.

It is not surprising that simple structural Petri net properties are faster to check
directly than using a symbolic model checker whose limiting factor is the state space
computation step, which is performed by NuSMV via an ordinary Breath First
Search (BFS) strategy. There are more advanced techniques such as saturation
which may outperform BFS and which is supported by, e.g., the symbolic CTL
model checking tools SMART and MARCIE.

2we use BIOCHAM syntax for CTL formulae and thus include the Ai operator which expresses
that the formula must be checked for all initial states.

3dated January 2011
4computation time on a PC with an intel Core2 Quad processor 2.8GHz and 8Go of memory.

39

http://www.Biomodels.net/

A boolean model computing all minimal siphons (in term of inclusion) is pre-
sented in chapter 3. The program is tested on a benchmark of 403 models from
Biomodels.net database. It is very efficient and scales up well even on large models.

40

Chapter 2

Petri Nets for Biochemical Networks

Contents
2.1 Biological context . 42

2.1.1 Systems Biology . 42

2.1.2 Molecular Biology and Cellular Metabolism 42

2.1.3 Biochemical Networks . 43

2.2 Biochemical Networks modelling 46

2.2.1 Boolean and Discrete modelling 46

2.2.2 Continuous and stochastic Modelling 46

2.2.3 Petri nets modelling of biochemical networks 47

2.3 Benchmark . 50

2.3.1 Biomodels.net . 50

2.3.2 Petriweb . 51

2.4 Petri net properties on the benchmark 52

2.4.1 P-invariants as mass conservation laws 52

2.4.2 T-invariants as flux conservation 52

2.4.3 Siphons/Traps . 53

Introduction

Biochemical reaction systems are naturally bipartite (species and interactions), con-
current (interactions can occur independently and in parallel) and stochastic (the
timing behaviour of the interactions is governed by stochastic laws).

Petri nets encompass the three characteristics aspects that distinguish biochem-
ical networks: stochastic Petri nets have exactly these three characteristics.

41

However, dealing with stochastic models is difficult, the qualitative and the con-
tinuous abstractions are more popular.

2.1 Biological context

2.1.1 Systems Biology

Systems Biology can be defined as the study of all the elements in a biological system
(genes, mRNAs, proteins, etc) and their relationships one to another in response to
perturbations.

Systems biology involves:

• Collection of experimental data,

• Design of models,

• Testing and validation of these models.

An overview of Systems Biology is presented by Kitano, one of the pioneers in
Systems Biology in [59]. Further references are available in [100, 37].

Models are built to answer specific questions about a biochemical system. They
serve as an unambiguous representation of the acquired information and help to
design new experiments to clarify our understanding.

2.1.2 Molecular Biology and Cellular Metabolism

A classical reference for some fundamental biological notions is the book Molecular
biology of the cell [1]. Transcription and translation are the two steps required in the
protein synthesis process. Proteins are molecules that work as a structural material,
as enzymes, as antibodies, as transporters (hemoglobin), or as regulators of gene
expression. The desoxyribonucleic acid (DNA) is a macro molecule present in all
cells, it contains the genetic information about an organism. DNA forms a double
helix in which two strands of DNA spiral about one other. There are four nucleotide
in DNA: Adenine (A), Cytosine (C), Guanine (G), and Thymine (T). The nucleotide
A pairs only with T, whereas C pairs only with G. A gene is a portion of a continuous
strand of DNA, from which a complex molecular machinery can read information
and create a particular protein. The process of information transmission from DNA
to proteins is called gene expression as shown in Figure 2.1.

Cellular metabolism includes complex sequences of controlled biochemical reac-
tions. These processes permit organisms to grow and reproduce, maintain their
structures and respond to environmental changes. The chemical reactions of

42

metabolism are organized into metabolic pathways, in which one chemical is trans-
formed into another by a sequence of chemical reactions catalysed by enzymes. En-
zymes are chemicals that speed up the rate of reaction between substances without
themselves being consumed. The cell metabolism is then the sum of all chemical
changes that take place in a cell through which energy and basic components are
provided for vital processes, including the synthesis of new molecules and removal
of others.

Figure 2.1: Information flow from genes to metabolites in cells

2.1.3 Biochemical Networks

Biochemical networks such as metabolic, regulatory, signalling or protein interaction
networks can be viewed as interconnected processes forming a complex network
of functional and physical interactions between chemical species. Modelling these
networks is a way to have a global view of all the involved chemical reactions and can
serve to suggest new interpretations or questions for experiment. Moreover, it can
be the unique solution to analyse and extract information about cell metabolism
specially when much substances are involved. Analysing these networks remains
however a challenging problem in systems biology and in bioinformatics. In fact,
biochemical networks have been under study for many decades. But the efforts were
until recently limited to the determination of the components of the networks, rather
than addressing structure of the interaction network.

To a better understanding of biochemical networks, we propose a brief introduc-
tion to the principal ones involved in cell metabolism in the following part.

• Gene regulatory networks

A gene regulatory network is a set of genes, proteins, small molecules, and their
mutual regulatory interactions. Two genes are connected if the expression of
one gene modulates expression of another one by either activation or inhibition.
Interactions between genes are not easy to model using Petri nets. In [98],

43

authors propose an approach to derive a standard Petri net model from a
boolean regulatory network (where genes are ON or OFF). A case study is the
Petri net modelling and analysis of the genetic regulatory network underlying
nutritional stress.

• Signal transduction networks

In biology, cell communication or signal transduction is the means by which
cells respond to signals coming from outside. Signal transduction networks
can be understood as gene regulation networks extended by signalling chains
that contain different kinds of vertices and edges such as protein–protein in-
teraction and phosphorylation. Processes referred to as signal transduction
often engage a sequence of biochemical reactions inside the cell, which are car-
ried out by enzymes and linked through second messengers. Such processes
take place in a short time as a millisecond or as long as a few seconds. A
signal transduction network can be graphically represented by a graph where
nodes correspond to proteins and molecules whereas edges are reactions and
processes (e.g. ligand/receptor binding protein conformational changes).

• Protein interaction networks

Protein-protein interactions (PPI) are one of the most important components
of biological networks. It is important to understand the structure and dynam-
ics of PPIs in order to understand how the evolution of biological networks has
contributed to diversification of the living organisms. They play a key role in
determining the outcome of most cellular processes. These networks are mod-
elled by graphs where vertices represent proteins and edges represent physical
interactions between proteins. Figure 2.2 depicts a protein interaction net-
work elaborated by Hawoong Jeong where red nodes correspond to essential
protein yellow nodes correspond to growth- affecting protein and green nodes
correspond to non-essential protein.

Figure 2.2: Map of yeast protein-protein interactions

44

• Metabolic networks A metabolic network is the biochemical modifica-
tion of chemical compounds in living organisms and cells. This includes
the biosynthesis of complex organic molecules (anabolism) and their break-
down (catabolism). A metabolic pathway is a connected sub-network of the
metabolic network either representing specific processes or defined by func-
tional boundaries. A metabolic pathway is a hyper-graph: the nodes represent
the substances and the hyper-edges represent the reactions. A hyper-edge con-
nects all substances of a reaction, and is directed from reactants to products
and is labelled with the enzymes that catalyse the reaction. Hyper-graphs can
be represented by bipartite graphs: Additionally to the nodes representing
substances, the reactions are nodes and edges are binary relations connecting
the substances of a reaction with the corresponding reaction node. This is a
common modelling of metabolic pathways, e.g., for their simulation using Petri
nets. Figure 2.3 illustrates the Petri net modelling of a part of the glycolysis
and the pentose phosphate pathway in erythrocytes.

Gluc

ATP

ADP

G6P

F6P

NADP+ NADPH

GSSG GSH

Ru5P

generate-Gluc

Hexokinase

phosphoglucose-isomerase

remove-F6P

G6P-dehydrogenase

2

2

Glutathione-reductase

2

Glutathione-reductase

2

remove-Ru5P

Figure 2.3: Petri net modelling a part of the glycolysis and the pentose phosphate
pathway in erythrocytes

45

2.2 Biochemical Networks modelling

Biochemical networks can be interpreted as complex graphs modelled to understand
the relationship between genes, proteins and metabolites in the cell. Modelling
frameworks can be categorised based on what sort of information they include:
continuous and/or discrete variables, static or dynamic model (taking time into
account) and spatial features (consider the physical location molecules in the cell).
The choice of framework depends on the purpose of our model (e.g. explanation of
observed behaviour, prediction).

Reaction rule-based languages such as Biocham [9] provide several formal seman-
tics for diagrams of biochemical interactions at different levels of abstraction:

• the stochastic semantics, in which the reaction rules are interpreted by a con-
tinuous time Markov chain.

• the discrete semantics, in which the rules are interpreted by a Petri net;

• the Boolean semantics, in which the rules are interpreted by a concurrent
asynchronous transition system, allowing reasoning on the presence or absence
of molecules;

• the differential semantics, in which the rules are interpreted by a system of
ordinary differential equations.

It has been shown in [34], using the theory of abstract interpretation [25], how
the different semantics of biochemical reaction rules, with the noticeable exception
of the differential semantics, can be formally related by simple Galois connections,
i.e. by formal abstraction relationships. These theoretical results allow us to state,
for instance, that if a behaviour is not possible in the boolean semantics it is not
possible in the stochastic semantics for any kinetic expressions and kinetic parameter
values.

2.2.1 Boolean and Discrete modelling

Boolean networks have been widely used in modelling gene regulation networks.
The state of genes is described by binary (ON/OFF) variables, and the dynamic
behaviour of each variable, that is, whether it will be ON or OFF at next moment, is
governed by a Boolean function. It is the case of systems like Kohn’s map modelling
the mammalian cell cycle regulation [61], with about 500 nodes and the mammalian
Pathway Logic of [33].

2.2.2 Continuous and stochastic Modelling

Quantitative models are essentially based on systems of Ordinary Differential Equa-
tions (ODEs) and aim to representing the system in a detailed way producing quan-

46

titative results. They require kinetic data such as equilibrium constants and reaction
rates, which are often lacking. Let us consider a biochemical system formed by m
chemical reactions and a set of chemical species {A1, A2, .., An} that take part in the
reactions (set of reactants union the set of products). The jth chemical reaction of
the biochemical network is denoted as follows:

Rj:
n

∑

i=1

SijAi ⇒
n

∑

i=1

S ′
ijAi

where Sij and S ′
ij are positive integers called the stoichiometry coefficients. The

right arrow means that the transformation of reactants into products only happens
in the direction of the arrow. The compounds before this arrow are the reactants,
and the ones after are the products. If the reaction is reversible, then we need to list
its inverse in the chemical reaction network as a separate reaction. Each chemical
reaction takes place continuously in time with its own rate which is a function of
the concentration of the species taking part in it. More precisely, we define the
vector A = [[A1], [A2], .., [An]] of species concentrations and, as a function of it, we
consider the vector of reaction rates e(A) = [e1, e2, .., em]. As an example, we cite
the Mass-Action (MA) kinetics:

ej = kj ×
∏

i

[Ai]
Sij

Where kj is the equilibrium constant of the reaction j.Then, the concentration
of the compound Ai varies as follow:

d[Ai]

dt
=

m
∑

j=1

(S ′
ij − Sij)ej

2.2.3 Petri nets modelling of biochemical networks

Petri nets have already been applied to biological case studies like the regulation of
the lac operon [89], Duchenne muscular dystrophy [46], the response of S. cerevisiae
to copulatory hormones [31] and the yeast cycle [77]. Two examples where they
have been used for metabolic networks case studies, we find the sucrose breakdown
pathway in the potato tuber [60] and the iron homoeostasis process in human body
[88].

Standard Petri nets

The correspondence place/substance and transition/reaction or enzyme is apparent.
In graphical representations of Petri nets, circles are used for places, while rectangles
stand for transitions. The stoichiometric coefficients indicating how many molecules
of a substance have to react to produce how many molecules of product correspond

47

Figure 2.4: Conceptual Framework. The Petri net formalism allows to switch be-
tween different network classes to describe standard (qualitative) Petri nets, stochas-
tic (SPN) and continuous (CPN) information in a cohesive Petri net model [47].

in Petri net formalism to arc weights. Thus, the stoichiometry matrix containing
these coefficients corresponds to the incidence matrix of a Petri net. In our case, the
number of tokens in a place stands for the number of molecules of that metabolite
existing at a given moment. Thus, tokens may correspond to any predefined unit
measuring the amount of substance, such as mole, millimole etc.

Example 16. For instance the enzymatic reaction written (in BIOCHAM-like syn-
tax), A + E <=> A-E => B + E corresponds to the following Petri net :

A
B

E

A-E

t1

t−1

t2

Stochastic Petri nets

Stochastic Petri nets (SPNs) emerged as a modelling formalism for performance
analysis in the early 1980s. Analogous to the extension from classical process alge-
bras to stochastic process algebras, stochastic Petri nets associate an exponentially
distributed delay with the firing of each transition. The delay occurs between when

48

the transition becomes enabled (i.e. sufficient tokens arrive on its predecessors) and
when it fires: the instantaneous firing will only occur if the transition has remained
enabled throughout the delay period. As with standard Petri nets, stochastic Petri
nets maintain a discrete number of tokens on places. But contrary to the time-free
case, a firing rate (waiting time) is associated with each transition t, which are ran-
dom variables Xt ∈ [0,∞), defined by probability distributions. Each transition gets
its own local timer. When a particular transition becomes enabled , then the local
timer is set to an initial value, which is computed at this time point by means of
the corresponding probability distribution. In general, this value will be different for
each simulation run. The local timer is then decremented at a constant speed, and
the transition will fire when the timer reaches zero. If there is more than one enabled
transition, a race for the next firing will take place. They have been applied to a
gene regulatory network modelling since 1998 with Goss and Peccoud [43]. More
recent applications of SPNs to biochemical networks are discussed in [97, 71].

A formal definition is the following:

Definition 49 (Stochastic Petri nets (SPN)). [41] An SPN is tuple SPNBio =
(P, T, f, v,m0), where:

• P , T are finite, non empty, disjoint sets. P is the set of places. T is the set
of transitions.

• f : ((P × T) ∪ (T × P)) → N0 defines the set of directed arcs, weighted by
non-negative integer values.

• v : T → H is a function, which assigns a stochastic hazard function ht to
each transition t, whereby H :=

⋃

t∈T{ht | ht : N
|•t|
0 → R+} is the set of all

stochastic hazard functions, and v(t) = ht for all transitions t ∈ T .

• m0 : P → N0 gives the initial marking.

Colored Petri nets were first proposed by Jensen [55]. In colored Petri nets, tokens
are distinguished by the ”color”, rather than having only the ”black” one. Besides,
arc expressions, an extended version of arc weights, specify which tokens can flow
over the arcs, and guards that are in fact Boolean expressions define additional
constraints on the enabling of the transitions [56]. Formally, colored Petri net are
as the following:

Definition 50 (Colored Petri nets). [69] A colored Petri net is a tuple
(P, T, F,

∑

, C, g, f,m0), where:

• P is a finite, non-empty set of places.

• T is a finite, non-empty set of transitions.

• F is a finite set of directed arcs, such that F ⊆ (P × T) ∪ (T × P).

•
∑

is a finite, non-empty set of types, also called color sets.

49

• C : P →
∑

is a color function that assigns to each place p ∈ P a color set
C(p) ∈

∑

.

• g : T → EXP is a guard function that assigns to each transition t ∈ T a guard
expression that has the Boolean type.

Continuous Petri nets

An other extension is the continuous case, in a continuous Petri net the marking of
a place is no longer an integer, but a positive real number, called token value, which
we are going to interpret as the concentration of the species modelled by the place.
The instantaneous ring of a transition is carried out like a continuous flow.

Definition 51 (Continuous Petri nets (CPN)). [41] A CPN is tuple CPNBio =
(P, T, f, v,m0), where:

• P , T are finite, non empty, disjoint sets. P is the set of continuous places. T
is the set of continuous transitions.

• f : ((P × T) ∪ (T × P)) → R+
0 defines the set of directed arcs, weighted by

non-negative real values

• v : T → H is a function, which assigns a firing rate function ht to each
transition t, whereby H :=

⋃

t∈T{ht | ht : R
|•t| → R+} is the set of all firing

rate functions, and v(t) = ht for all transitions t ∈ T .

• m0 : P → R+
0 gives the initial marking.

2.3 Benchmark

Our main benchmark corresponds to the curated biological models of the biomod-
els.net[66] database. However, to compare to work from the Petri net community,
we were led to consider also non biological models. We consider the 80 Petri nets
from the Petriweb[45] database describing general industrial processes.

2.3.1 Biomodels.net

For computational modelling to become more widely used in biological research,
researchers must be able to exchange and share their results. The development
and broad acceptance of common model representation formats such as SBML is a
crucial step in that direction, allowing researchers to exchange and build upon each
other’s work with greater ease and accuracy.

The biomodels.net[66] project is another step to:

50

http://www.biomodels.net/
http://www.biomodels.net/
http://www.petriweb.org/
http://www.biomodels.net/

1. define agreed-upon standards for model curation;

2. define agreed-upon vocabularies for annotating models with connections to
biological data resources;

3. provide a free, centralized, publicly-accessible database of annotated, compu-
tational models in SBML and other structured formats.

Biomodels.net Database is a repository of peer-reviewed, published, computa-
tional models. These mathematical models are primarily from the field of systems
biology, but more generally are those of biological interest. This resource allows
biologists to store, search and retrieve published mathematical models. In addition,
models in the database can be used to generate sub-models, can be simulated on
line, and can be converted between different representational formats. This resource
also features programmatic access via Web Services.

All unmodified models in the database are available freely for use and distri-
bution, to all users. In addition, we consider the following complex biochemical
models:

• Schoeberl’s model of the MAP kinase cascade activated by surface and inter-
nalized EGF receptors [92] contains 100 places and 242 transitions.

• Calzone et al. E2F/Rb [10] has 408 places and 534 transitions.

• Kohn’s map of the mammalian cell cycle control [61, 15], a model of 509 species
and 775 reactions.

2.3.2 Petriweb

The Petriweb[45] database includes a set of Petri nets modelling industrial processes.
The repository can be browsed with a web browser, and individual nets can be
retrieved and uploaded in PNML, an emerging standard format supported by many
tools.

The repository contains 80 Petri nets with associated properties. Properties are
defined by the repository administrator. A property can be defined to be computed
automatically from the net’s PNML source through an external software program.

Petriweb is still in the prototype phase. It supports a restricted form of PNML,
including flat, uncoloured nets, plus limited support for hierarchy. The database
only contains a handful of examples.

51

http://www.petriweb.org/

2.4 Petri net properties on the benchmark

2.4.1 P-invariants as mass conservation laws

A Petri net’s incidence matrix corresponds to the stoichiometric matrix in a
metabolic network. The incidence matrix comprises the change in token amount
for each place when a single transition of the whole network is fired as it is shown
is Example 2. A P-invariant is a non-zero and non-negative integer place vector
such that V A = 0, where A is the incidence matrix. In the biological interpretation,
P-invariants correspond to substance conservation that holds whatever the kinetics
of the different reactions.

Example 17. In the net depicted in Figure 2.3,

m(ATP) +m(ADP) = 1 (2.1)

m(NADP+) +m(NADPH) = 2 (2.2)

2m(GSSG) +m(GSH) = 2 (2.3)

2.4.2 T-invariants as flux conservation

T-invariants are solutions of AV = 0. A T-invariant has two interpretations in the
given biochemical network.

1. The entries of a T-invariant represent a multiset of transitions, which reproduce
a given marking by their partially ordered firing. That means that they occur
basically one after the other. The partial order sequence of the firing events of
the T-invariant’s transitions may contribute to a deeper understanding of the
system behaviour.

2. The entries of a T-invariant may also be read as the relative firing rates of
transitions, all of them occurring permanently and concurrently. This activity
level corresponds to the steady state behaviour.

The non-empty solution space of AV = 0 is infinite and so only minimal non-
negative integer solutions are considered. A T-invariant is minimal if its support
is not included in the support of an other T-invariant, and the greatest common
divisor of all entries of the invariant vector is equal to 1. The support of a T-
invariant contains the set of transitions with a positive entry. T-invariants have
been studied a lot for the flux analysis of metabolic systems. Minimal T-invariants
correspond to elementary modes. We use T-invariants in a different way for steady
state analysis. Indeed, if a T-invariant defines a steady flux, it also provides an
equation such that if one finds a state where all kinetics are those of this flux, it is a
steady state. Noticing that it is not necessary to know the precise kinetics to solve
such an equation, but only to make some hypotheses like “this is a Mass Action Law
(MAL) kinetics”or “that is a Michaelis Menten (MM) kinetics”.

52

2.4.3 Siphons/Traps

One example of the relevance of traps and siphons in biology was given in [107]
for the analysis of the potato plant that produces starch and accumulates it in the
potato tubers during growth, while starch is consumed after the tubers are deposited
after the harvest. The starch and several of its precursors then form traps in the
reaction net during growth, while starch and possible intermediates of degradation
form siphons after the harvest.

The underlying Petri net is shown in Figure 2.5, where G1 stands for glucose-1-
phosphate, Gu is UDP-glucose, S is the starch and I for intermediary species [99]. In
this model, either the branch producing starch (t3 and t4) or the branch consuming
it (t5 and t6) is operative. P1 and P2 represent external metabolites.

It can be easily observed that the set {Gu, S} is a trap when t3 and t4 are
operative: once a token arrives in S, no transition can be fired and the token remains
there independently of the evolution of the system. Dually, {S, I} is a siphon when
t5 and t6 are operative: once the last token is consumed from S and I, no transition
can generate a new token in these places, so they remain empty.

In most cells containing starch, starch and specific predecessors form traps,
whereas starch and specific successors form siphons. This provides a very simple
explanation for the fact that either the branch producing starch or the branch de-
grading it is operative. This is realized by complete inhibition of the appropriate
enzymes by the gene regulatory network.

G1P1 P2

Gu

S

I

t1 t2

t3

t4t5

t6

Figure 2.5: Petri-net graph modelling the growth metabolism of the potato plant
[107].

Another interesting example, also from [107], deals with the analysis of the role
of the triosephosphate isomerase (TPI) in Trypanosoma brucei metabolism by de-
tecting solely siphons and traps. At the beginning, Helfert et al. [49] supposed that
glycolysis could proceed without TPI. But unexpected results where all system fluxes
(Pyruvate, Glycerol) decrease were found so that the authors built a kinetic model
for explaining that phenomenon. Then a purely structural explanation for the nec-
essary presence of TPI in glycolysis and glycerol production was provided in [107]
by simply considering the presence of siphons and traps in the model.

53

54

Chapter 3

Boolean Model for siphons/traps

Contents
3.1 Constraint Programming (CP) and Systems Biology . . 55

3.2 Boolean Model . 56

3.3 Boolean Algorithms . 58

3.3.1 Iterated SAT Algorithm 58

3.3.2 Backtrack Replay CLP(B) Algorithm 60

3.4 Evaluation . 61

3.4.1 Results and Comparison 61

3.4.2 Hard instances . 62

3.5 CLP model for the Siphon-Trap Property (STP) 66

Introduction

A constraint satisfaction problem (CSP) consists of a set of variables, for each vari-
able, a finite set of possible values (its domain) and a set of constraints restricting
the values that the variables can simultaneously take. A solution to a CSP is an
assignment of a value from its domain to every variable, in such a way that every
constraint is satisfied.

3.1 Constraint Programming (CP) and Systems Bi-

ology

Constraint modelling [4] offers efficient tools to model real problems. It has been
applied to many fields [104] like planning, resource allocation, computer networks,

55

bioinformatics and even bin packing.

In a constraint program, the user specifies a number of constraints. Each con-
straint defines a relation between the variables that describe the state of the studied
system. The constraint programming tool provides constraint solving algorithms
which infer new constraints from given ones and which compute solutions, i.e., val-
uations of the variables satisfying all the constraints.

Constraint Logic Programming is a successful merge between logic programming
(LP) and constraint solving. Logic programming is based on predicates, unification,
backtracking and depth-first search. Constraints can be seen as predicates describing
relations between variables and constraint solving can be seen as a general form of
unification which makes them compatible with logic programming.

In some cases, one can have powerful heuristics for solving a CSP, the heuristic
can become less effective when we change the model. There is a large set of bio-
chemical problems that we can prove they are intractable (NP-complete or worse)
even with simplifications.

There are many motivations for using CSP in solving problems from biology,
mainly, the fact that models are rarely stable and may change quickly and modifying
a CSP model is not difficult. Constraint programming methods have been already
applied to discover efficiently the steady-state of large gene regulation networks [28].
Fanchon and al. use constraints to infer ranges of parameter values from observa-
tions [38] and for analysing discrete genetic regulatory networks [20]. Chabrier and
Fages [13] describe a model-checking approach with linear arithmetic constraints to
check properties of qualitative or quantitative systems expressed in Computation
Tree Logic. Bockmayr and Courtois [6] use Hybrid Concurrent Constraint to model
a variety of biological phenomena, such as reaching thresholds, kinetics, gene in-
teraction or biological pathways. In [63], Larhlimi and Bockmayr introduce a new
approach to metabolic pathway analysis, characterizing a metabolic network by its
minimal metabolic behaviours and the reversible metabolic space. Their method
uses an outer description of the steady-state flux cone, based on sets of irreversible
reactions. This is different from existing approaches, such as elementary flux modes
or extreme pathways, which use an inner description, based on sets of generating
vectors. The resulting description of the flux cone is minimal, unique, and satisfies
a simplicity condition similar to the one that holds for elementary flux modes.

3.2 Boolean Model

In the literature, many algorithms have been proposed to compute minimal siphons
and traps of Petri-nets. Since a siphon in a Petri-net N is a trap of the dual net N ′, it
is enough to focus on siphons, the traps are obtained by duality. Some algorithms are
based on linear programming [78, 21], Horn clause satisfaction [58, 75] or algebraic
approaches [64]. More recent state-of-the-art methods are presented in [22, 23].

Here we present two Boolean methods for enumerating minimal siphons. First,

56

siphons can be straightforwardly characterized with a Boolean model representing
the belonging or not of each place to the siphon. For a Petri-net with n places and
m transitions, a siphon S is a set of places whose predecessors are also successors. S
can be represented with a vector ~V of {0, 1}n such that for all i ∈ {1, 2, .., n}, Vi = 1
if and only if pi ∈ S. The siphon constraint can then be formulated as:

∀i, Vi = 1 ⇒ •pi ⊆ (
⋃

Vj=1

{pj})
•

This constraint is equivalent to:

∀i, Vi = 1 ⇒ (∀t ∈ T, t ∈ •pi ⇒ t ∈ (
⋃

Vj=1

{pj})
•)

is equivalent to:

∀i, Vi = 1 ⇒ (∀t ∈ T, t ∈ •pi ⇒ ∃pj ∈
•t, Vj = 1)

which can be rewritten again in clausal form as:

∀i, Vi = 1 ⇒
∧

t∈•pi

(
∨

pj∈•t

Vj = 1)

To exclude the case of the empty set, the following constraint is added:

∨

i

Vi = 1

.

These clauses are Horn-dual clauses. They are trivially satisfied by taking all
variables true.

Second, the enumeration of all minimal siphons (w.r.t. set inclusion) can be
ensured by a search strategy and the addition of new Boolean constraints during
search. One strategy is to find siphons in set inclusion order, and to add a new
constraint

∨

pi∈S

Vi = 0

each time a siphon S is found to disallow any superset of this siphon to be found
in the continuation of the search. It is worth remarking that this clause is not the
dual of a Horn clause. The whole clauses are thus now non-Horn.

In a previous approach based on Constraint Logic Programming [79], the enu-
meration by set inclusion order was ensured by labelling a cardinality variable in

57

increasing order. Labelling directly on the Boolean variables, with increasing value
selection (first 0, then 1), reveals however much more efficient and in fact easier to
enforce. The following proposition shows that this strategy correctly finds siphons
in set inclusion order.

Proposition 12. Given a binary tree such that, in each node instantiating a variable
X, the left sub-edge posts the constraint X = 0 and the right sub-edge posts the
constraint X = 1, then for all distinct leaves A and B, leaf A is on the left of leaf
B only if the set represented by B is not included in the set represented by A (that
is to say, there exists a variable X such that XB > XA, where XA and XB denote
the values instantiated to X in the paths leading to A and B respectively).

Proof. A and B have a least common ancestor node instantiating a variable X. If
leaf A is on the left of leaf B, the sub-edge leading to A is the left one, with the
constraint X = 0 and the sub-edge leading to B is the right one, with the constraint
X = 1, therefore XB > XA.

In a post-processing phase, the computed set of minimal siphons can be filtered
for only keeping the minimal siphons that contain a given set of places, and hence
solve the above mentioned NP-complete decision problem of existence of minimal
siphon containing a given set of places (Rec-MSEP). It is worth remarking that
posting the inclusion of the selected places first would not ensure that the siphons
found are indeed minimal w.r.t. set inclusion.

3.3 Boolean Algorithms

This section describes two implementations of the above model and search strat-
egy, one using an iterated SAT procedure and the other based on Constraint Logic
Programming with Boolean constraints.

3.3.1 Iterated SAT Algorithm

The Boolean model can be directly interpreted using a SAT solver to check the
existence of a siphon or trap. We use sat4j1, an efficient library of SAT solvers in
Java for Boolean satisfaction and optimization. It includes an implementation of
the MiniSAT algorithm in Java. Like many SAT solvers, MiniSAT requires that
its input be in conjunctive normal form (CNF). Given a siphon S, for each place p
belonging to it, the predecessors of p is a subset of the set of successors of S. For
each transition in the set of predecessors of p, a clause C is added to the satisfiability
problem. C is formed by a negated Boolean variable associated to p and Boolean
variables in the set of predecessors of t. These terms are connected with or operator.

1http://www.sat4j.org/

58

http://www.sat4j.org/

To avoid the the trivial case of empty siphon, we add a quite simple clause formed
by the n Boolean variables in their negated form. To find the whole set of minimal
siphons, we iterate on the resolution of this problem adding a clause of minimality
at each iteration: this clause avoids finding the already found siphon and all siphons
containing it. This means we add a clause formed by Boolean variables present in
the found siphon under their negated form. That means that at least one of these
variables is equal to zero.

The example of the enzymatic reaction of example 16 is encoded as follows:

Let us consider again the figure of the example 16:

A
B

E

A-E

t1

t−1

t2

The Boolean variables x1, x2, x3 and x4 correspond respectively to E, A, AE
and B. In the first iteration, the problem amounts to solve the following encoding
of Horn-dual clauses:
¬x2 ∨ x3
¬x3 ∨ x1 ∨ x2
¬x1 ∨ x3
¬x1 ∨ x3
¬x4 ∨ x3
The problem is satisfied with the values: x1 = x4 = 0 and x2 = x3 = 1, which means
that {A,AE} is a minimal siphon.

To ensure minimality, the (non Horn-dual) clause x2 = 0 ∨ x3 = 0 is added and
the program iterates an other time. The problem is satisfied with x2 = x4 = 0 and
x1 = x3 = 1 meaning that {E,AE} is also a minimal siphon. A new clause is added
stating that either E or AE does not belong to the siphon and no more variable
assignment can satisfy the problem.

Therefore, this model contains 2 minimal siphons: {A,AE} and {E,AE}. The
enzyme E is a catalyst protein for the transformation of the substrate E in a product
B. Such a catalyst increases the rate of the reaction but is conserved in the reaction.

59

3.3.2 Backtrack Replay CLP(B) Algorithm

The search for siphons can also be implemented with a Constraint Logic Program
with Boolean constraints (CLP(B)). We use GNU-Prolog2 [29], for its efficient low-
level implementation of Boolean constraint propagators.

The enumeration strategy is a variation of branch-and-bound, where the search is
restarted to find a non-superset siphon each time a new siphon is found. We tried two
variants of the branch-and-bound: with restart from scratch and by backtracking.

In the branch-and-bound with restart method, it is essential to choose a variable
selection strategy which ensures diversity. Indeed, an enumeration method with a
fixed variable order accumulates failures by always trying to enumerate the same sets
first and these failures are only lately pruned by the non-superset constraints. As a
consequence, the search tree developed gets more and more dense after each iteration
since the previous forbidden sets are repeatedly tried again. This phenomenon does
not exist in SAT solvers thanks to no-good recording. In CLP, this problem can be
compensated for however, by using a random selection strategy for variables. This
provides a good diversity and performs much better than any uniform heuristics.

However, branch-and-bound by backtracking gives better performance when care
is taken for posting the non-superset constraint only once, since reposting it at each
backtrack step proved to be inefficient. Our backtrack replay strategy is implemented
as follows:

1. each time a siphon is found, the path leading to this solution is memorized,

2. then the search is fully backtracked in order to add to the model the new
non-superset constraint,

3. and then the memorized path is rolled back to continue the search at the point
it was stopped.

Figure 3.1, generated with CLPGUI3 [36], depicts the search tree that is devel-
oped for enumerating the 64 minimal siphons of a biological model of 51 species and
72 reactions. Each sub-tree immediately connected to the root corresponds to the
replay of the path with a minimality constraint added. It is remarkable that with
the backtrack replay strategy, very few backtracking steps are necessary to search
for all solutions.

2http://www.gprolog.org/
3 http://contraintes.inria.fr/∼fages/CLPGUI

60

http://www.gprolog.org/
http://contraintes.inria.fr/~fages/CLPGUI

Figure 3.1: Search tree developed with the backtrack replay strategy for enumerating
the 64 minimal siphons of model 239 of biomodels.net (described in Section 2.3).
Each red end corresponds to a minimal siphon found. Very few backtracks are
necessary thanks to the constraint propagation and the strategy

3.4 Evaluation

3.4.1 Results and Comparison

Our evaluation is carried out on the benchmark presented in 2.3. In this section, we
compare the two Boolean methods described in the previous section with the state-
of-the-art dedicated algorithm of [23]. Pseudo-code of the state-of -the-art algorithm
is presented in appendix A. This algorithm uses a recursive problem partitioning
procedure to reduce the original search problem to multiple simpler search sub-
problems. Each sub-problem has specific additional place constraints with respect to
the original problem. This algorithm can be applied to enumerate minimal siphons,
place-minimal siphons, or even siphons that are minimal with respect to a given
subset of places.

Database # # siphons siphons size total time (ms)
model min-max (avg.) min-max (avg.) dedicated SAT GNU

algorithm Prolog
Biomodels.net 403 0-64 (4.21) 1-413 (3.10) 19734 611 195

Petriweb 80 0-11 (2.85) 0-7 (2.03) 2325 156 6

Table 3.1: Computation time in milliseconds on the biomodels and Petriweb bench-
marks.

Table 3.1 presents the CPU times in milliseconds for enumerating all minimal
siphons of the Petri nets in Petriweb and biomodels.net. All times are in milliseconds

61

and have been obtained on a PC with an intel Core processor 2.20 GHz and 8
GB of memory. For each benchmark, we provide the total number of models, the
minimal, maximal and average numbers of siphons and the total computation time
in milliseconds for enumerating all of them.

Surprisingly, but happily, on all these practical instances, except one instance
detailed below, the SAT and CLP(B) programs solve the minimal siphon enumera-
tion problem, in less than one millisecond in average, with a better performance for
the CLP(B) program over the SAT solver, and by two orders of magnitude over the
dedicated algorithm.

model # # # dedicated sat GNU
siphons places transitions algorithm Prolog

Kohn’s map of cell cycle 81 509 775 28 1 221
BIOMD000000175 3042 118 194 ∞ 137000 ∞
BIOMD000000205 32 194 313 21 1 34
BIOMD000000239 64 51 72 2980 1 22

Table 3.2: Computation time in milliseconds on the hardest instances of biochemical
networks.

However, one particular model, number 175 in biomodels.net, was excluded from
this table because its computational time is very high. Table 3.2 presents the per-
formance figures obtained on this model and on the three other hardest instances
for which we also provide the number of places and transitions. On these hard in-
stances, the SAT solver is faster than the CLP(B) program by one to two orders
of magnitude, and is the only algorithm to solve the problem for model 175, in 137
seconds.

That model 175 represents a quantitative model that relates EGF and HRG
stimulation of the ErbB receptors to ERK and AKt activation in MCF-7 breast
cancer cells [5]. This is the first model to take into account all four ErbB receptors,
simultaneous stimulation with two ligands, and both the ERK and AKt pathways.
Previous models of ErbB (e.g. the model developed in [92]) were limited to a single
ErbB because of combinatorial complexity. It is well known that the ErbB signaling
network is highly connected and indeed the underlying Petri-net contains the highest
number of arcs of the biomodels.net repository.

3.4.2 Hard instances

MiniSAT and CLP(B) outperform the specialized algorithm by at least one order of
magnitude and the computation time is extremely short on our practical examples.
Even if the model is quite large, e.g. for Kohn’s map of the cell cycle control with
509 species and 775 reactions, the computation time for enumerating its 81 minimal
siphons is astonishingly short: one millesecond only. However, this enumeration
of all minimal siphons solves the Rec-MSEP problem which has been proved NP-

62

Figure 3.2: Computation time random 3-SAT

complete by reduction of 3-SAT in [106], and the question is: why are the CSP-
based algorithms for enumerating siphons so efficient on the existing benchmarks
from systems biology?

We can provide some hint of explanation by considering the well-known phase
transition phenomenon in 3-SAT. The probability that a random 3-SAT problem is
satisfiable has been shown to undergo a sharp phase transition as the ratio α of the
number of clauses over the number of variables crosses the critical value of about
4.26 [76, 26] as it is shown in Figure 3.2 , going from satisfiability to unsatisfiability
with probability one when the number of variables grows to infinity as it is shown
in Figure 3.3.

Our first hint of explanation is by looking if the density of 3-SAT instances
derived from general SAT instances of Biomodels.net are greater than the critical
value of 4.26. If it is the case, we can estimate that if the density is above the critical
value, instances are easy because there is a small number of solutions. On the other
hand, if the density is below the threshold value of 4.26, that is for small values of α,
computation time is long because clauses are satisfiable with an exponential number
of valuations.

Density of a SAT instance is:

density = α =
#clauses

#variables

Considering our problem of enumerating minimal siphons of a general Petri net

PN = (P, T,W) on our | P | Boolean variable, initially we have
∑

t∈T

| t• | clauses

63

Figure 3.3: Probability of random 3-SAT satisfiablity

plus one clause of non-empty siphon:

density =

∑

t∈T

| t• | +1

| P |

To transform a general SAT instance to a 3-SAT instance, we add a number of
clauses and a number of variables:

density3-SAT =

∑

t∈T

| t• | +1 + µ

| P | +µ

where

µ =
∑

t∈T

max(0, | •t | −2)

The density distribution of Biomodels.net are illustrated in the histogram of
figure 3.4.

This histogram shows that, contrary to our expectation, density is below the
critical value for the majority of models. It is growing with enumeration (by adding
minimality clauses), with possibility to reach the critical region of α. The 3-SAT
density of our hardest model number 175 equals 2.39. Hence the density is not a

64

Figure 3.4: Distribution of density of 3-SAT models derived from Biomodels.net.
Computed tree-widths are less or equal than 10.

sufficient measure to explain why we are so efficient in enumerating all solutions of
an NP-complete problem.

Another insight of explanation recalls the linear time complexity result proved
in section 1.3 for Petri nets with bounded tree-width: Rec-MSEP can be solved
in linear time for Petri with bounded tree-width and biochemical models, despite
of their large size, their corresponding Petri nets seem to have a small tree-width.
We use the QuikBB algorithm to compute tree-width, this algorithm is available
at http://graphmod.ics.uci.edu/group/quickbb. When given enough time, it yields
the exact tree-width of the graph, when stopped before termination, it yields an
upper bound on the tree-width. We applied QuickBB on the 432 models from
the repository Biomodels.net version February 2013. Among these 432 models, 59
models do not hold any transitions. For 31 models, the exact tree-width could not
be computed in a time-out of one hour, but we are sure that the upper bound is 23.
For the remaining 342 models, the exact tree-width is computed and it is at most
10 as shown in Figure 3.5. We remark that tree-width remains less than 10 even
for Petri nets of large size. For our 3 hard instances, tree-width are represented in
Table 3.3, we could determine an upper bound equal to 15. Biomodels.net represent
an easy benchmark for the enumeration of minimal siphons containing a given set of
places. Our experimental results lead us to expect that our approach can be applied
to models of tree-width less than 10. Hence, when the tree-width is less than 10, we
expect no performance issues.

65

http://graphmod.ics.uci.edu/group/quickbb

Figure 3.5: Variation of tree-width as a function of size (places and transitions) on
Petri nets of Biomodels.net

model # # tree-width
places transitions

BIOMD000000175 118 194 ≤ 15
BIOMD000000205 194 313 ≤ 10
BIOMD000000239 51 72 ≤ 10

Table 3.3: Tree-width of the hardest instances of Biomodels.net database.

3.5 CLP model for the Siphon-Trap Property (STP)

In [81], authors propose a reduction of STP to a SAT problem. STP holds when
there is no siphon containing an unmarked trap. Authors aim at a formula that is
satisfiable when there is a siphon which does not contain a marked trap. The starting
point is the following formula whose satisfying assignments corresponds exactly to
non empty siphons of a net:

∨

s∈S

s ∧
∧

t∈T

∧

s∈t•

(s⇒
∨

s′∈•t

s′).

If a siphon contains a marked trap, then its maximal included trap is necessary
marked. Given a siphonD, its maximal included trap can be computed by a repeated
removal of places s from D: s is removed when some of its successors are not
predecessors of the so far remaining set. Let n the number of places of N . Authors
represent the repetition of the procedure by introducing (n+1) variables s(0), ..., s(n)

for each place s. The variables s(0) represent a non empty siphon. The variables

66

s(i) represent intermediate stages Di of the procedure for generating the maximal
included trap. Di+1 is obtained fromDi by removing all places whose some successors
are not predecessors of Di. Since there are only n places, the procedure converges
after at most n iterations: Dn is either empty or the maximal trap included on D.
The relation between Di and Di+1 can be expressed as follows:

s(i+1) ⇔ (s(i) ∧
∧

t∈T

∧

s∈•t

∨

s′∈t•

s′(i)).

And the formula is satisfied when the maximal trap is empty or unmarked. Hence
the following formula is added:

∧

s∈S:m0>0

¬s(n+1)

From the above considerations the following theorem holds.

Theorem 19. [81] In a given net N with n places, there exists a siphon which does
not contain a marked trap if and only if the following formula is satisfiable:

φ ::=
∨

s∈S

s ∧
∧

t∈T

∧

s∈t•

(s⇒
∨

s′∈•t

s′)

∧
n
∧

i=0

∧

s∈S

(s(i+1) ⇔ (s(i) ∧
∧

t∈T

∧

s∈•t

∨

s′∈t•

s′(i)))

∧
∧

s∈S:m0>0

¬s(n+1)

If there is no satisfying assignment for φ then, all siphons contain a marked trap
and the STP holds. In [81], experimental results done on k dining philosophers
show that MiniSat performs much better than the Petri net dedicated tool INA[87]
that exploses since 50 philosophers [81]. An example of 2 philosophers is depicted in
figure 3.6. The two philosophers alternatively think and eat. p0 , p1 are chopsticks.
p2, p3 are philosophers thinking and p4, p5 are philosophers eating.

We encode the problem of Siphon-Trap property with a SAT and a CLP(FD)
solver, we use respectively MiniSAT and GNU-prolog solver. The time needed by
both solvers to decide about the existence of a minimal siphon containing an un-
marked trap is shown in table 3.5. This experimental evaluation shows the high
performance of Minisat solver: it solves each of the instances in less than one sec-
ond. GNU-prolog solver outperforms MiniSAT on small instances (about 10 and 20
philosophers) but does not perform well on big instances. The high performance
of the SAT solver is due to solving techniques like unit propagation, clause learn-
ing, conflict-directed backtracking, automated labelling heuristics and randomized
restart. On the other hand CLP(FD) becomes less effective when the search space
become big, it relies on propagation and search to solve a problem and the system
does not learn from failures during search.

67

http://www2.informatik.hu-berlin.de/~starke/ina.html

p0

p1 p2

p3

p4 p5t0t1 t2 t3

Figure 3.6: Petri net modelling the problem of 2 dining philosophers

model nb places nb transitions nb acrs CPU time (sec)
SAT GNU Prolog

phils10 30 20 80 0.03 0.01
phils20 60 40 160 0.07 0.03
phils50 150 100 400 0.2 0.62
phils100 300 200 800 0.29 4
phils150 450 300 1200 0.46 14
phils200 600 400 1600 0.65 31

Table 3.4: Siphon-Trap Property evaluation on k dining philosophers Petri nets

68

Chapter 4

Constraint Programming Approach
to P/T invariants

Contents
4.1 P/T-invariants Computation 70

4.1.1 The Fourier-Motzkin Algorithm for P/T-invariants 70

4.1.2 Finding P/T-invariants as a Constraint Solving Problem . 73

4.1.3 Symmetry detection and elimination 75

4.1.4 Experimental Results . 76

4.2 Steady-state solution of biochemical systems, beyond
S-Systems via T-invariants 77

4.2.1 Biochemical Systems Theory 77

4.2.2 Method . 79

4.2.3 Results . 84

4.2.4 Conclusions and Perspectives 90

Introduction

In this chapter, we present a simple method due to Sylvain Soliman to extract
minimal semi-positive invariants of a Petri net modelling a biological reaction system,
as a constraint satisfaction problem on finite domains using constraint programming
with symmetry detection and breaking. We evaluate the computation of minimal
T-invariants and minimal P-invariants on our benchmark, already presented in the
section 2.3. An implementation based on GNU-Prolog’s FD solver of the method is
incorporated in Biocham and in the Nicotine tool [94], a Constraint-Programming-
based T and P-invariant Extractor. This tool1 allows us import and export of several

1http://contraintes.inria.fr/~soliman/nicotine

69

http://contraintes.inria.fr/~soliman/nicotine

formats (APNN, PNML, SBML, BIOCHAM, etc.).

In the second part of this chapter, we present a way to generalize well-known
results about the steady-state analysis of some symbolic Ordinary Differential Equa-
tion systems by taking into account the structure of the reaction network. The struc-
tural study of the underlying Petri net will provide classes where the computation
of some steady states of the system is possible, even though the original symbolic
model did not form an S-system and was not solvable by state-of-the-art symbolic
computation software. This new method is then illustrated on some models of the
Biomodels.net repository. The method is implemented in the Nicotine tool.

4.1 P/T-invariants Computation

We recall the definitions of P and T-invariants as follows:

• A vector V = [v1, v2, ..., vn] with non-negative integer components is a P-
invariant if V A = 0, where A is the incidence matrix of the Petri net with n
places and m transitions.

• A vector Y = [y1, ...ym] with non-negative integer components is a T-invariant
if AY t = 0.

4.1.1 The Fourier-Motzkin Algorithm for P/T-invariants

The Fourier-Motzkin method is well known for computing a set of invariants in-
cluding all minimal invariants [70, 19]. The Fourier-Motzkin algorithm to compute
P-invariants is the following:

Algorithm 1 Fourier Motzkin Elimination

1: Initialise B = [A : In]
2: for j = 1,..., m do
3: Append to B all rows resulting from positive linear combinations of pairs of

rows in B that eliminate column j.
4: Remove from B all rows with non-zero jth element.
5: end for
6: B = [0 : D], where the rows of D are P-invariants.

This method has critical deficiencies such that, even if invariants exist, none of
them may be computed because of a huge number of candidate vectors forcing the
program to terminate before any invariant is generated. Moreover, even when a
number of invariants are computed, many non minimal invariants may be included
as it is shown in example 18 of the Petri net depicted in figure 4.1.

70

p1

p2

p3

p4

p5

p6

p7

t1

t2

t3

t4

t5

t6

Figure 4.1: A Petri net example for Fourier-Motzkin algorithm

Example 18. The incidence matrix of the Petri net depicted in Figure 4.1 is as
follows:

I =

1 −1 0 0 0 0
−1 1 1 −1 0 0
1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 −1 1
0 0 0 0 1 −1
−1 0 0 0 0 1

Applying the Fourier-Motzkin elimination to compute p-invariants leads to the fol-
lowing transformation on the matrix B.

B =

1 −1 0 0 0 0 1 0 0 0 0 0 0
−1 1 1 −1 0 0 0 1 0 0 0 0 0
1 0 0 0 −1 0 0 0 1 0 0 0 0
0 1 0 0 0 −1 0 0 0 1 0 0 0
0 0 −1 1 −1 1 0 0 0 0 1 0 0
0 0 0 0 1 −1 0 0 0 0 0 1 0
−1 0 0 0 0 1 0 0 0 0 0 0 1

71

B =

1 −1 0 0 0 0 1 0 0 0 0 0 0
−1 1 1 −1 0 0 0 1 0 0 0 0 0
1 0 0 0 −1 0 0 0 1 0 0 0 0
0 1 0 0 0 −1 0 0 0 1 0 0 0
0 0 −1 1 −1 1 0 0 0 0 1 0 0
0 0 0 0 1 −1 0 0 0 0 0 1 0
−1 0 0 0 0 1 0 0 0 0 0 0 1

0 0 1 −1 0 0 1 1 0 0 0 0 0
0 −1 0 0 0 1 1 0 0 0 0 0 1
0 1 1 −1 −1 0 0 1 1 0 0 0 0
0 0 0 0 −1 1 0 0 1 0 0 0 1

B =

0 0 −1 1 −1 1 0 0 0 0 1 0 0
0 0 0 0 1 −1 0 0 0 0 0 1 0
0 0 1 −1 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 1
0 0 1 −1 −1 1 1 1 1 0 0 0 1

0 0 0 0 −1 1 1 1 0 0 1 0 0
0 0 0 0 −2 2 1 1 1 0 1 0 1

B =

0 0 0 0 1 −1 0 0 0 0 0 1 0
0 0 0 0 −1 1 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 −1 1 1 1 0 0 1 0 0
0 0 0 0 −2 2 1 1 1 0 1 0 1
0 0 0 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 1 1 1 0 1 2 1

B =

0 0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 1 1 1 0 1 2 1

P-invariants are:

• x1 = [1, 0, 0, 1, 0, 0, 1]

• x2 = [0, 0, 1, 0, 0, 1, 1]

• x3 = [1, 1, 0, 0, 1, 1, 0]

72

• x4 = [1, 1, 1, 0, 1, 2, 1]

It is obvious that x4 is equal to the linear combination of x2 and x3 and is not a
minimal P-invariant.

Its worst case complexity is exponential due to a possible exponential growth in
the number of matrix rows generated in the solution process. An implementation of
the Fourier-Motzkin elimination procedure due to Peter Kemper is included in the
Bio-PEPA tool suite in the Bio-PEPA Eclipse Plug-in.

Many other algorithms based on Fourier-Motzkin elimination have been intro-
duced aiming to decrease the number of candidate vectors by, for example, restricting
computation of invariants to place sets that are siphons and traps at the same time
[105].

Another way to extract the minimal semi-positive invariants of a model is to
use one of the software tools that provide this computation for biological systems,
generally as “conservation law”computation such as METATOOL [103] and COPASI
[52] tools.

4.1.2 Finding P/T-invariants as a Constraint Solving Prob-
lem

This method is introduced in [93, 95], we illustrate the method for computing
the invariants with the case of P-invariants. For a Petri net with p places and
t transitions (Li → Ri), a P-invariant is a vector V ∈ Np s.t. V · I = 0, i.e.
∀1 ≤ i ≤ t V · Li = V · Ri. Since those vectors all live in Np, it is quite natural to
see this as a Constraint Solving Problem (CSP) with t (linear) equality constraints
on p Finite Domains variables.

Example 19. Let us consider again the figure of Example 16:

A
B

E

A-E

t1

t−1

t2

A + E => A−E
A−E => A + E
A−E => B + E

73

http://homepages.inf.ed.ac.uk/s9552712/bio-pepa/about.html

This results in the following equations:

A+ E = AE (4.1)

AE = A+ E (4.2)

AE = B + E (4.3)

where obviously equation (2) is redundant.

The task is actually to find non trivial p-invariants with minimal support. To
avoid the trivial case, the following constraint is added:

V · 1 > 0.

Example 20. In our running example we thus add A+ E + AE +B > 0.

To ensure minimality, the author proceeds with the same branch and bound
technique used for siphons and traps: the labelling is invoked from small to big
values and a branch and bound procedure is wrapped around it, maintaining a
partial set S of P-invariant vectors and adding the constraint that a new vector V
is solution if:

∀S ∈ S
∏

Si 6=0

Vi = 0

which means that its support is not bigger than that of any vector already stored.

Unfortunately, even with the last constraint, no search heuristic was found that
makes removing subsumed P-invariants unnecessary. Thus, if a new vector is added
to B, previously found vectors with a bigger support must be removed. The algo-
rithm can be summarized as follows:

Algorithm 2 Minimal P-invariants computation

1: post the CSP for invariant V: ∀1 ≤ i ≤ t V · Li = V ·Ri and V · 1 > 0
2: repeat
3: find a solution, enumerating from low to high
4: add the solution to the basis
5: remove non-minimal invariants from the basis if there are any
6: post the new constraint ∀B ∈ B

∏

Bi 6=0 Vi = 0
7: until no solution found

This algorithm was implemented directly into Biocham [9], which is programmed
in GNU-Prolog.

Example 21. In our running example we find two minimal semi-positive P-
invariants:

• E = AE = 1 and A = B = 0

• A = B = AE = 1 and E = 0

74

http://contraintes.inria.fr/Biocham/
http://gprolog.inria.fr/

4.1.3 Symmetry detection and elimination

Complexity

The problem of computing all minimal semi-positive p-invariants is EXPSPACE-
hard since there can be an exponential number of such structures. This is the case
in the model given in Example 22 has 2n minimal semi-positive P-invariants (each
one with either Ai or Bi equal to 1 and the other equal to 0).

Example 22.

A1 + B1 => A2 + B2
A2 + B2 => A3 + B3
. . .
An + Bn => A1 + B1

A1

B1

A2

B2

A3

B3

An

Bn

t1 t2 . . . tn

Variable Symmetry detection and breaking

Equality classes optimization [65] for the standard Fourier-Motzkin algorithm corre-
sponds to global and local variable symmetry detection and elimination for ordinary
nets. In Example 22, there is a variable symmetry [40] between all the pairs (Ai, Bi)
of variables corresponding to places. This symmetry is easy to detect: variables
corresponding to parallel places (places with the same set of predecessors and the
same set of successors) are symmetric and can be eliminated through the usual or-
dering of variables, by adding the constraints Ai ≤ Bi. In our prototype, we consider
only global symmetry, that is, symmetry of the initial problem (i.e. the problem at
the root of the search tree). In the method presented in [65], classes of equivalent
variables are detected and eliminated also during the search which corresponds to
local symmetry (symmetries that appear at each node of the search tree) and was
not implemented in our prototype.

Moreover, in [65], equality class elimination is done through replacement of the
symmetric places by a representative place. The full method reportedly improves
by a factor two the computation speed. Even if in the context of the original article
this is done only for ordinary Petri nets, we can see that it can be even more efficient
to use this replacement technique in our case in order to become exponential as late
as possible as it is shown in the following example:

Example 23.

. . .
A + B => 4∗C
. . .

75

Instead of simply adding A ≤ B to our constraints, which will lead to 3 solutions
when C = 1 before symmetry expansion: (A,B) ∈ {(0, 4), (1, 3), (2, 2)}, replacing A
and B by D will reduce to a single solution D = 4 before expansion of the sub-problem
A+B = D.

This partial detection of independent sub-problems, which can be seen as a com-
plex form of symmetry identification, can once again be done syntactically at the
initial phase, and can be stated as follows: replace

∑

i ki∗Ai by a single variable A if
all the Ai occur only in the context of this sum i.e. in our Petri net all predecessors
of Ai are connected to Ai with ki edges and to all other Aj with kj edges and same
for successors.

4.1.4 Experimental Results

In this section, we evaluate the two programs for enumerating minimal T-invariants
and minimal P-invariants on all Biomodels.net and all Petriweb repositories already
presented in the section 2.3.

Minimal T-invariants enumeration

On the 404 models of Biomodels.net:

• 6 models include non-integer stoichiometry and are not concerned by our ap-
proach,

• 22 models are difficult and no answer is given in a reasonable time of 10
minutes,

• 376 models: all minimal T-invariants of each model are enumerated in less
than 10 seconds.

On the 80 models of Petriweb: for each model, the set of minimal T-invariants
is computed in less than 1 second

Minimal P-invariants enumeration

On the 404 models of Biomodels.net, none required more than 1 second to compute
all its minimal P-invariants.

The 80 models of Petriweb were also tested and none of them required more than
one second to compute all its minimal P-invariants.

These computational results show that the CSP(FD) algorithm is very efficient
for minimal P-invariants enumeration and less efficient for minimal T-invariants
enumeration. We expect that this is due to the large number of minimal T-invariants

76

compared to the number of minimal P-invariants. It would be worthwhile to evaluate
minimal T-invariants enumeration using other approaches and in particular Fourier-
Motzkin based-methods. It would be interesting to see if our hard models remain
so using Fourier-Motzkin algorithm. Moreover, if the number of invariants is the
problem, the presented CSP approach can be easily accommodated for a partial
enumeration [27].

4.2 Steady-state solution of biochemical systems,

beyond S-Systems via T-invariants

4.2.1 Biochemical Systems Theory

Let us consider a biochemical system formed by a set of chemical reactions R =
R1, R2, ..., Rm and a set of chemical species X = {X1, X2, .., Xn} that take part in
the reactions (set of reactants union the set of products). The jth chemical reaction
of the biochemical network is denoted as follows:

Rj:
n

∑

i=1

SijXi ⇒
n

∑

i=1

S ′
ijXi

where Sij and S ′
ij are real numbers.

In the late 1960s, Savageau introduced the Biochemical System Theory (BST)
[90, 91] as a framework for modeling biochemical systems with ODEs.

The major advantage of this formalism is that it enables the modeller to describe
the dynamics of a biochemical system knowing only the identity of reactants and
their interconnections [102].

These ODEs have a canonical form using a power-law representation based on
the General Mass Action (GMA) hypothesis. In the GMA form, rate functions are
formulated as:

ej = kj ×
∏

i

X
Sij

i

where Xi is the concentration of the ith species and kj is the kinetic rate constant of
the jth reaction. This corresponds to the well-known and quite standard Mass Action
kinetics derived from the Chemical Master Equation and representing intuitively the
fact that reactions have a rate proportional to the amount of their reactants.

The change in the quantity of Xi is thus:

dXi

dt
=

n
∑

j=1

(S ′
ij − Sij)ej

=
n

∑

j=1

S ′
ijkj

∏

i

X
Sij

i −
n

∑

j=1

Sijkj
∏

i

X
Sij

i

77

i.e., variation of a species per time is a difference between two sums of power-law
functions, one associated to its production and the other to its consumption.

One special case of GMA is when every species is produced by at most one
reaction and consumed through at most one reaction or when reactions producing
each species are dependent and reactions consuming each species are dependent so
that it becomes possible to combine the sum of power laws referring to the production
term into a unique power law and combine the sum referring to the consumption
term into one single power law.

Even when direct combination is not possible, aggregation through an approx-
imation can be done, for instance close to some steady states. In that case the
exponents in the power law become real numbers. Note that the applicability of
such an approximation for highly non-linear systems when the steady states are yet
to be determined is not always clear, which is one of the motivations for this method.

Systems under this form are called S-systems where S refers to synergistic nature
of this non-linear form. In S-systems, the time rate of change of a species is written
as:

dXi

dt
= k+i

n
∏

i=1

Xαi

i − k−i

n
∏

i=1

Xβi

i

where k+i and k−i are positive rate constants. The exponential parameters αi and
βi are real.

One of the main properties of S-systems is that they can be analytically solved
for steady states. Indeed being at steady state amounts to the fact that:

∀i
dXi

dt
= 0 (4.4)

which is equivalent to

∀i k+i

n
∏

i=1

Xαi

i = k−i

n
∏

i=1

Xβi

i (4.5)

The system constituted of all equations (4.5) can be linearized by applying the
logarithm function [91] and we obtain:

∀i
n

∑

i=1

(αi − βi)log(Xi) = log(
k−i
k+i

) (4.6)

The system (4.6) can then be solved via standard Gaussian elimination.

This symbolic solution for steady states distinguishes S-systems from other non-
linear ODE systems for which there is, in general, no simple solution.

In Section 4.2.2 we will explain how to generalize this search for steady-state
solution using T-invariants and apply it to Biomodels.net in section 4.2.3.

Let I the incidence matrix of the Petri net. We denote by T the (infinite) set of
T-invariants. Incidence matrix and T-invariant are defined in Section 1.1.

78

It is important to note that T-invariants are of course already related to stea-
dyness. However, the cone of T defines the steady fluxes of the system, but does
not relate to states, as defined by concentrations of compounds. Depending on the
kinetic laws, some fluxes might be generated by some state while some others might
not. For instance, if a T-invariant requires reaction 1 to fire twice as much as reac-
tion 2 and both have the same kinetic expression, the flux does not correspond to
any state. We focus on steady states, as is classical in dynamical systems theory,
and hence need to go one step further than T-invariants.

4.2.2 Method

Let us consider again a biochemical system formed by R = {R1, R2, ..., Rm} chemical
reactions and a set of chemical species X = {X1, X2, .., Xn} that take part in the
reactions. The jth chemical reaction of the biochemical network is denoted as follows:

Rj:
n

∑

i=1

SijXi ⇒
n

∑

i=1

S ′
ijXi

where Sij and S ′
ij are positive integers.

Given a chemical reaction Rj, we denote the set of reactant species and set of
product species by LHS(Rj) := {Xi ∈ X | Sij > 0} and RHS(Rj) := {Xi ∈
X | S ′

ij > 0}, respectively. The stoichiometric matrix N is such that N = (nij) =
(S ′

ij − Sij).

Definition 52 (multiplicative rate laws). A rate law ej of the reaction Rj is multi-
plicative when ej(X) = 0 ⇔ ∃i, Sij > 0, Xi = 0.

Multiplicative rate laws is not very restrictive condition: GMA systems verify it
but also Michaelian or Hill kinetics. In this method, it is required in order to reason
structurally on the fluxes of the system. It is quite common for structural or symbolic
analyses (see for instance [39, 34, 57]).Note that it is strictly more general than GMA,
which is often already a requirement for any stochastic simulation/analysis.

Definition 53 (steady state). Given a biochemical system with multiplicative rate
laws ej. Finding a steady state amounts to solving:

∀i
dXi

dt
=

m
∑

j=1

(S ′
ij − Sij)ej = 0

The system defined in 53 is — in general — non-linear and cannot be analyti-
cally solved. Nevertheless, it is possible to try and solve systems corresponding to
restricted cases using T-invariants, which will result in a correct but not complete
method to obtain steady states:

79

Proposition 13. Given a biochemical system with n species and m reactions. Let
X = (X1, X2, ..., Xn) and E(X) = (e1, e2, ..., em) be the vectors of species concentra-
tions and rate laws respectively. X defines a steady state (i.e. for all i ∈ {1, .., n},
dXi

dt
= 0) when E(X) is a T-invariant.

Proof. Considering the incidence matrix I of the Petri net corresponding to the
biochemical model, the system defining a steady state is equivalent to:

I · E(X) = 0

where E is the vector (e1, . . . , em). As mentioned in Section 1.1, T-invariants are
mathematically defined as positive vectors which are solutions of the equation I ·
V = 0. Therefore, each steady state X defines an E(X) which is a T-invariant.
Conversely we have:

E(X) ∈ T ⇒
dX

dt
= 0

Finding the X solutions of the above equation is still intractable if one looks for
any T-invariant, however one can state this sufficient condition in a different way:

Let V be a given T-invariant. Then solving the system E(X) = V will lead to
steady states of the original system.

Minimal T-invariants

Let us first consider a restricted case where:

1. V = αV ′, V ′ ∈ Tmin, α ∈ R+
0 , i.e., V is proportional to a minimal T-invariant;

2. V (equivalently V ′) has a GMA support, i.e.

∀j ∈ support(V) ej = kj

n
∏

i=1

X
Sij

i

Note that we only consider reaction networks with multiplicative kinetics, and that
here we add the restriction that the kinetic laws of reactions in the support of
the chosen T-invariant are in GMA form, thereby excluding Michaelian or other
multiplicative kinetics from appearing in the support of V .

Solving E(X) = V now amounts to solving (for X and α):
{

(a) kj
∏n

i=1X
Sij

i = αV ′
j j ∈ support(V ′)

(b) ∃i, Sij > 0, Xi = 0 j 6∈ support(V ′)
(4.7)

Part (a) of system (4.7) is a direct consequence of our restricted setting, part (b) is
a consequence of the multiplicative nature of the kinetics.

80

We will explain in the next section how to solve the second part, but let us first
concentrate on the first part.

Even if we did not restrict ourselves to S-systems, it is now possible to log-
linearize this subsystem:

n
∑

i=1

Sijlog(Xi)− log(α) = log(
Vj
kj

) j ∈ support(V ′) (4.8)

We obtain |support(V ′)| linear equations over at most n+ 1 unknowns and can
then apply Gaussian elimination or any other equivalent method to obtain a (log-
)vector space of steady states. Remark that it is almost immediate to deduce the
matrix corresponding to system (4.8) from I− the reactant part of the incidence
matrix.

Solving part (b) of system (4.7)

Solving part (b) of system (4.7) is actually a simple matter of enumeration: one tries
to nullify some reactions’ rate by nullifying some concentrations. However one must
also verify that all Xi involved in part (a) are strictly positive (otherwise there is no
solution).

We implemented this as a simple enumerative search in Prolog. Even for the
biggest systems we tried the search for all solutions is under ten milliseconds. The
only computationally expensive part being the search for T-invariants.

Remark that one could relax the restriction to multiplicative kinetics if one pro-
vides a generic way to solve (b) while ensuring the feasibility of (a). For instance
one could consider that if a reaction has kinetic expression e = k ∗ (A+B) ∗C then
e = 0 ⇔ C = 0 ∨ A = B = 0. This kind of condition would be easy to incorporate
into our scheme but needs to be formulated in a general way.

Example 24. Let us consider again the bacteriophage T7 model of Example 15, all
reactions follow the Mass Action law:

MA(c1) f o r gen => tem .
MA(c2) f o r tem => _.
MA(c3) f o r tem => tem + gen .
MA(c4) f o r gen + s t r u c => v i r u s .
MA(c5) f o r tem => tem + s t r u c .
MA(c6) f o r s t r u c => _.

The system has 2 semi-positive minimal T-invariants: [t1, t2, t3], [t5, t6],
but solving for zeroes immediately leads to the fact that the only steady state is
gen = tem = struc = 0.

81

Other T-invariants

The first version described above already works reasonably well at finding some
steady states, however one of its shortcomings is that it only examines minimal T-
invariants one by one, i.e., it restricts its search to the edges of the cone of steady
fluxes.

The idea is to generalize the method while ensuring, when possible, that (4.7)
remains solvable quite easily.

Disjoint support

Let us suppose that different minimal T-invariants V ′
1 , . . . , V

′
k have disjoint GMA

supports. One can now obtain a more general version of the method introduced in
Section 4.2.2:

1. V =
∑

αiV
′
i , V

′
i ∈ Tmin, α ∈ R+

0 ;

2. ∀i 6= j support(V ′
i) ∩ support(V

′
j) = ∅;

3. ∀j ∈ support(V) ej = kj
∏n

i=1X
Sij

i

Solving E(X) = V now amounts to solving (for X and α):

{

(a) kj
∏n

i=1X
Sij

i = αj0V
′
j0

j ∈ support(Vj0)

(b) ∃i, Sij > 0, Xi = 0 j 6∈ support(V)
(4.9)

Since the supports are disjoint, there exists one and only one j0 in part (a) of the
system (4.7).

Now, the new system is also log-linear and can thus be solved as before.

Closed support

It is possible to obtain an even more generalized version where more combinations
of T-invariants are tested by trying to solve systems like (4.9) for some arbitrary
minimal T-invariant combinations.

In the general case, the (a) part will become intractable (there is a sum at the
right of the “=” sign); however it can sometimes be simplified, for instance when the
obtained equation is actually linear (the Sij on the left are equal to 0 or 1).

Since the computational cost of trying to solve the system (and stop if the sym-
bolic computation fails) is very low compared to T-invariant computation, many
combinations can easily be tried. Trying all combinations remains however def-
initely impossible and to guide the search an idea is to notice that, in order to
solve part (b) of the system while maintaining the solvability of (a), we look for a

82

T-invariant combination that is closed, in the sense of the Chemical Organization
Theory (COT) [30].

Given a set of chemical species A ⊆ X, its set of reaction rules is RA = {ρ ∈
R | LHS(ρ) ⊆ A}, and the corresponding stoichiometric matrix is NA. A is an
organisation if it is closed and self-maintaining. we say that A is closed if for all
reaction rules ρ ∈ RA, RHS(ρ) ∈ A. Thus, A is closed if there is no reaction with
educts from A producing a species not in A. A is self-maintaining if there exists a
strictly positive flux vector v′ ∈ R

|RA|
>0 such that all species in A are produced at a

non-negative rate, that is, NA.v
′ ≥ 0 [30].

Note, nevertheless, that it is not enough to look for T-invariant combinations
whose support is a minimal organization, as in [12]: we should try all organizations,
and might even prefer the biggest ones. Indeed, as is the case for T-invariants,
restricting the search to minimal organizations will only lead to small subproblems
when the complete system might be solvable. The objective should thus be to look
for T-invariant combinations such that the combined support is an organization, is
as big as possible, but such that the (a) part remains solvable.

The search procedure is thus specified in the following algorithm:

Algorithm 3 Steady state computation
Look for minimal T-invariants;
For minimal T-invariant combinations (starting with 0 or 1 invariant), try to solve
the system 4.7
if (b) is not possible then

add another minimal T-invariant such that it might close the support.
else

try to add all other minimal T-invariants and stop if (a) is impossible
end if

Example 25. Consider again the bacteriophage T7 model of Example 15 but now
let us forget about the virus, which will otherwise always increase; one obtains:

MA(c1) f o r gen => tem .
MA(c2) f o r tem => _.
MA(c3) f o r tem => tem + gen .
MA(c4) f o r gen + s t r u c => _.
MA(c5) f o r tem => tem + s t r u c .
MA(c6) f o r s t r u c => _.

rule 4 no longer includes the virus

Now the system gets a third minimal T-invariant: [t1, t2, t3], [t3, t4, t5], [t5,
t6], but most importantly another steady state is found (it is the only non-trivial one
actually), using a combination of all the minimal invariants (even if the supports

83

are not disjoint):

tem =
c1 ∗ c6 ∗ (c2− c3)

c2 ∗ c4 ∗ (c3− c2− c5)

struc =
c1 ∗ (c3− c2)

c2 ∗ c4

gen =
c6 ∗ (c2− c3)

c4 ∗ (c3− c2− c5)

We remark that other combinations of T-invariants, like MCT-sets [89], might
be used, however they will still need to allow to solve (a) and (b), and thus to have
as support an organization, hence the choice to remain at that level for now.

4.2.3 Results

In this section, we apply the proposed method to the models of the Biomodels.net
repository2. Among the 241 curated models, 14 do not include any continuous part
(ODEs) and are thus not targeted by our method, for the other ones the structure
and kinetic laws were extracted from the SBML by our tool, ignoring any other
information (like events).

Using the Nicotine tool implementing the techniques described above, some
steady states were found for 94 models out of the remaining 227, with a time-out of
two minutes. Among the remaining 133 models, for which Nicotine could not find
any solution, only 31 hit the time-out of two minutes. In most of the cases, the tested
combinations of T-invariants do not lead to any steady state computation because
of the strict conditions on the applicability of this method (namely multiplicative
kinetics and GMA support, as explained in Section 4.2.2). As we will show below it
is often possible to restructure an SBML model such that these conditions are met.

This problem reflects the fact that modellers often tend to combine several
separate reactions into one, leading to a wrong structure (and non-multiplicative
kinetics). For instance, in model 149 of ERK crosstalk, the “Axin synthesis” re-
action R14 is given as a single reaction X11 + X14 => X11 + X14 + X12, i.e.,
a synthesis of X12 with two modifiers, X11 and X14 and a single rate law:
v14 = k14 + k21 ∗ (X11 + X14).

Splitting that reaction into:

MA(k14) f o r _ => X12 .
MA(k21) f o r _ =[X11]=> X12 .
MA(k21) f o r _ =[X14]=> X12 .

would have allowed a multiplicative kinetics with the same ODEs but a differently
structured model.

2dated January 2010

84

It is worth notifying that trying to solve analytically all the mod-
els, even with state-of-the-art symbolic computation software like
Maple 13, does not solve all problems either. Indeed, of the 227 curated
SBML models with an ODE part, 105 models do not provide any solution when
imported into Maple for steady-state search, with a time-out of two minutes.

Interestingly, Nicotine finds some steady states for 31 models of the 105 Maple
failures to give any steady-state solution even though there are ODEs.

Consider for instance model 46, describing the mechanism of protection of per-
oxidase activity by oscillatory dynamics It contains 16 places (chemical species) and
15 transitions (chemical reactions). All kinetics laws are multiplicative, the method
of Section 4.2.2 thus applies and we obtain some steady states in 28ms3, even if
Maple did not provide any result.

The minimal T-invariant [v131, v132] gives four families of steady states repre-
sented in the following table, and corresponding to the different ways to solve for
zeroes:

species family1 family2 family3 family4
NADH 0 0 0 0
O2 ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
H2O2 * * 0 0
per3 0 0 * *
coI * 0 * 0
ArH 0 * 0 *
coII * 0 * 0
Ar * * * *
NADrad 0 0 0 0
super 0 0 0 0
coIII * * * *
per2 0 0 0 0
NAD2 * * * *
NAD * * * *
O2g ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
NADHres 0 0 0 0

In this table the symbol (*) denotes that any concentration value (positive or
null) is acceptable. It shows that, to the considered minimal T-invariant corresponds
an infinity of steady states where some elements may have non zero concentration
values.

For the non-null values, Gaussian elimination solves the system of linear equa-
tions. In this example, an equilibrium is established between O2 and O2g:

O2

O2g
=
k13f

k13b

3computation time on a PC with an intel Core2 Quad processor 2.8GHz and 8Go of memory.
We used the same PC for the whole procedure, including T-invariant computation

85

http://www.maplesoft.com/Products/Maple/

Figure 4.2: A diagram describing the model 9 of the Biomodels.net repository.

where k13f and k13b are respectively the rate constants of reactions v131 and v132.

Some steady states can be extracted even from the trivial T-invariant: 8 families
of concentrations are computed, in all of them the concentrations of O2, NADrad,
super, O2g and NADres is null and the concentration of coIII, NAD2 and NAD have
positive or null values.

Some more complex steady states can also be found as is the case for model
number 9 of the Biomodels.net database, describing the classical Huang and Ferrell
model of the MAPK cascade [53] (see Figure 4.2). Note that since the structure of
this model was used as a basis for [67], it has already been studied in detail in [41].

The figure 4.2 corresponds to Figure 1 of [53]. Note that in the SBML model and
thus in our results, the names are changed from “MAPK-P” to “P_K” (i.e., drop
“MAP” and put phosphorylations first).

This model contains 25 places and 30 transitions; steady states computation is
fulfilled in 220 ms and reveals 15 minimal T-invariants.

The family of T-invariants [[r1a, r1arev], [r2a, r2arev], [r2a, r2b, r1a, r1b]], which
denotes a linear combination of the three minimal T-invariants [r1a, r1arev], [r2a,
r2arev] and [r2a,r2b,r1a,r1b], gives four families of steady states represented in the
following table:

86

http://www.Biomodels.net.net
http://www.Biomodels.net

species family1 family2 family3 family4
E1 ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
E2 ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KKK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
P_KKK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KK 0 0 0 0
P_KK 0 0 0 0
PP_KK 0 0 * *
K * * 0 0
P_K 0 * 0 0
PP_K 0 * 0 *
KPase * 0 * 0
KKPase * * 0 0
E1_KKK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
E2_P_KKK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
P_KKK_KK 0 0 0 0
P_KKK_P_KK 0 0 0 0
PP_KK_K 0 0 0 0
PP_KK_P_K 0 0 0 0
KKPase_PP_KK 0 0 0 0
KKPase_P_KK 0 0 0 0
KPase_PP_K 0 0 0 0
KPase_P_K 0 0 0 0
K_PP_norm * * * *
KK_PP_norm * * * *
KKK_P_norm * * * *

For each of these families, we obtain a steady state when the non null values in
the table, E1, E2, KKK, P_KKK, E1_KKK and E2_P_KKK satisfy the following
equations:

E1 ∗ KKK

E1_KKK
=

k2 + d1

a1
E1_KKK = E2_P_KKK

E2 ∗ P_KKK

E2_P_KKK
=

d2 + k2

a2

where k2, d1, a1 and a2 are the rate constants of r1b (and r2b), r1arev, r1a and r2a
respectively.

This can be summed up by stating that if most of the complexes involved in the
cascade are absent, most notably those involving phosphatases and the second-level
kinase, there exists a steady state where the first and third level maintain some
equilibrium.

A second set of steady states results from the T-invariant combination [[r3a,
r3arev], [r4a, r4arev], [r4a, r4b, r3a, r3b], [r5a, r5arev], [r6a, r6arev], [r6a, r6b, r5a,
r5b]] and defines again four families of steady states as follows:

87

species family1 family2 family3 family4
E1 * * 0 0
E2 0 0 0 0
KKK 0 0 * *
P_KKK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
P_KK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
PP_KK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
K 0 0 0 0
P_K 0 0 0 0
PP_K 0 * 0 *
KPase * 0 * 0
KKPase ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
E1_KKK 0 0 0 0
E2_P_KKK 0 0 0 0
P_KKK_KK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
P_KKK_P_KK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
PP_KK_K 0 0 0 0
PP_KK_P_K 0 0 0 0
KKPase_PP_KK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KKPase_P_KK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KPase_PP_K 0 0 0 0
KPase_P_K 0 0 0 0
K_PP_norm * * * *
KK_PP_norm * * * *
KKK_P_norm * * * *

The additional equations are:

KK ∗ P_KKK

P_KKK_KK
=

k3 + d3

a3
KKPase ∗ P_KK

KKPase_P_KK
=

d4 + k4

a4
KKPase_PP_KK

P_KK ∗ P_KKK
=

a5 ∗ k5

k6 ∗ (d5 + k5)

KKPase_P_KK

P_KKK_KK
=

k3

k4
P_KK ∗ P_KKK

P_KKK_P_KK
=

k5 + d5

a5

PP_KK ∗ P_KKK_KK

P_KK2 ∗ P_KKK
=

a5 ∗ k5 ∗ (d6 + k6) ∗ a4 ∗ k4

k3 ∗ k6 ∗ (d4 + k4) ∗ a6 ∗ (k5 + d5)

This complex equilibrium (dimension 9, ignoring the variables completely free in
the above table) describes a steady state where the last level is off (K = 0) but the
first two are actually active, especially the intermediary level.

88

In the same way, steady states are found for the T-invariant combination [[r10a,
r10arev], [r10a, r10b, r9a, r9b], [r7a, r7arev], [r8a, r8arev], [r8a, r8b, r7a, r7b], [r9a,
r9arev]]:

species family1 family2 family3 family4
E1 * * 0 0
E2 * 0 * 0
KKK 0 0 * *
P_KKK 0 * 0 *
KK * 0 * 0
P_KK * 0 * 0
PP_KK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
K ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
P_K ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
PP_K ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KPase ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KKPase 0 0 0 0
E1_KKK 0 0 0 0
E2_P_KKK 0 0 0 0
P_KKK_KK 0 0 0 0
P_KKK_P_KK 0 0 0 0
PP_KK_K ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
PP_KK_P_K ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KKPase_PP_KK 0 0 0 0
KKPase_P_KK 0 0 0 0
KPase_PP_K ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KPase_P_K ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
K_PP_norm * * * *
KK_PP_norm * * * *
KKK_P_norm * * * *

and some complex equilibrium between PP_KK, K, P_K, PP_K, KPase,
PP_KK_K , PP_KK_P_K, KPase_PP_K, and KPase_P_K is defined by the
following equations:

K ∗ PP_KK

PP_KK_K
=

k7 + d7

a7
KPase ∗ P_K

KPase_P_K
=

d8 + k8

a8
KPase_PP_K

PP_KK_P_K
=

k9

k10
KPase_P_K

PP_KK_K
=

k7

k8

PP_K ∗ PP_KK_K

PP_KK_P_K ∗ P_K
=

k8 ∗ k9 ∗ a8 ∗ (k10 + d10)

k7 ∗ k10 ∗ (d8 + k8) ∗ a10

PP_KK ∗ P_K

PP_KK_P_K
=

d9 + k9

a9

89

This shows that the two last levels can also remain in a complex equilibrium.

Finally, we remark that for this model too the trivial T-invariant leads to some
steady states.

4.2.4 Conclusions and Perspectives

The first step of our method relies on the computation of the T-invariants of the
model’s Petri net. This, however introduces two limitations:

1. actually, most of the computation time is spent on this first stage. Indeed,
T-invariant computation is a hard problem (actually quite harder in practice
than P-invariant computation on biochemical systems, though they have the
same theoretical complexity. This seems related to the fact that in biochemical
reaction networks the degree of the transitions is usually quite smaller than
that of the places).

2. the T-invariants, and even the following step of solving system (4.9) suppose
that the structure of the PN is coherent with the kinetics. Namely we require
multiplicative kinetics for the whole model (and GMA for the support of some
T-invariants).

Even if T-invariant computation gets more and more efficient (see for instance
[17] for some recent work using decision diagrams), it is quite crucial to note that
when T-invariant computation reveals time consuming, the proposed technique can
work as soon as some (minimal, or even just candidates-minimal) T-invariants are
found. Two examples that come to mind are thus the use of Nicotine [94] to compute
T-invariants with an increasing bound on the integer domain, or to use [27] to com-
pute the K-shortest minimal T-invariants, before (or while) proceeding to invariant
composition and solving.

Addressing the other limitation is actually a much more general question. In-
deed more and more formal techniques extract qualitative information from the
structure of biochemical models, however the current status of hand-written mod-
els in web-based repositories is that the structure might be quite different from
what the original modellers had in mind (or on diagram), even if the models are
“curated”. This issue applies to model-checking, abstract interpretation from the
structure [34], stochastic simulation à la Gillespie [42], Chemical Reaction Network
Theory [39, 96], etc. Some authors have already proposed solutions to check if the
kinetics and the structure were at least coherent in some sense, notably [57] in order
to use COT. Proposals allowing to obtain a properly structured model, as was done
in the beginning of Section 4.2.3 are also under way (an article has recently been
submitted about this topic by the second author). If everything else fails, it remains
possible, as outlined in Section 4.2.2, to provide constraints corresponding to the
non-multiplicative kinetics of the model and allowing to reason on the nullity of the
kinetic expression.

90

Another noteworthy remark about the proposed method is that it is in gen-
eral incomplete, since combinations involving many T-invariants usually result in a
non-log-linearizable system. However, the method can be complete under certain
conditions. For instance, for both versions of Example 15, the steady states that are
found are the only ones, and the method can certify this fact. In this specific case
the proof is quite simple: all combinations of minimal T-invariants are tried and
either lead to no solution (when solving for zeroes) or are solvable. Finding more
general conditions under which the described technique ensures that all possible
steady states were found is one of our current perspectives.

91

92

General Conclusion

In this thesis, we argue that constraint programming over finite domains can be
successfully applied to structural problems like invariants of places and transitions
siphons/traps. These structural properties can give us some dynamical informa-
tion about biochemical reaction network. Their computation can benefit from the
know-how developed for finite domain constraint programming solving, like symme-
try breaking, search heuristics, flexibility, etc. We used constraint programming for
three topical issues: enumerating minimal siphons and traps of a Petri net, enumer-
ating minimal invariants of a Petri net and to compute, in a fully analytical way,
steady states of biochemical systems defined by a system of ODEs. In the following,
we summarize the thesis content.

• In the first chapter we have defined basic notions and notations of the Petri
net formalism. We have presented a new complexity result of minimal siphons
extraction problem in Petri nets with bounded tree-width. We have also de-
veloped formal links between the structural properties of siphons and traps in
Petri nets and their dynamical properties in Computation Tree Logic: we have
shown that siphons and traps entail a family of particular stability properties
that can be characterized by a fragment of Computation Tree Logic.

• In the second chapter, we have shown the use of Petri nets for the description
and the analysis of biochemical reaction nets by focusing on basic structural
properties regarding the dynamics of a biochemical reactions model.

• In the third chapter, we have described a boolean model for the problem of
enumerating all minimal siphons in a Petri net and have compared two Boolean
methods to a state-of-the-art algorithm from the Petri net community. The
miniSAT solver and the CLP(B) program based on GNU-Prolog solver both
solve our large benchmark of real-size problems and outperform the dedicated
algorithm by two orders of magnitude. We provide benchmark from biology
composed of 403 biological models in biomodels.net, and a general benchmark
from Petriweb repository. The Boolean method for enumerating all minimal
siphons using miniSAT is very efficient. It also scales very well in the size of
the net. The surprising efficiency of the miniSAT and CLP(B) methods for
solving the practical instances of this NP-complete problem has been analysed
in connection to the well-known phase transition phenomenon in 3-SAT. In
addition, we show that in networks with bounded tree-width, the existence of
a minimal siphon containing a given set of places can be decided in linear time.

93

The tree-width of Petri-nets associated to even very large biochemical models,
composed of several hundreds of biochemical species and reactions, remains
limited to small values in practice.

These results militate for the analysis of biochemical networks with Petri net
concepts and Constraint Programming tools.

• In the fourth chapter, we dealt with the problem of invariants computation
and we have proposed a simple implementation based on GNU-Prolog’s finite
domain solver, and including symmetry detection and breaking, was incorpo-
rated into the Biocham modelling environment and in the independent tool
Nicotine. We have also presented a new method to compute, in a fully analyt-
ical way, steady states of biochemical systems defined by a system of ODEs.

For each one on the three issues we dealt with, the use of constraint programming
approaches turned out to be beneficial. In general, constraints allow one to easily
model problems. Once a constraint model is defined, a variety of constraint solver
with high performance is available. The search for solutions exploits the defined
constraints to prune the solution space. The search can be improved by new prop-
erties that can be formalized as constraints that can be added to model to further
reduce the solution space. As a further work, we intend to generalize our approach
to other problems of this category.

To conclude, the result of this work is twofold: on the one hand, it confirms the
conviction that structural properties are a key to master the complexity of biochem-
ical reaction networks; on the other hand, it shows that Petri nets provide a unified
formalism to link systems biology to different domains such as model-Checking, Con-
straint Programming, structural analysis, dynamical systems’ steady-state analysis,
S-Systems and Chemical Reaction Network Theory, abstract Interpretation, Ordi-
nary Differential Equations, etc. These latter points confirm that formal techniques
from Computer Science are promising to challenges in the analysis of biochemical
reaction networks.

94

Appendix A

Appendix 1

In this appendix chapter, we provide the pseudo-code of the state-of-the-art algo-
rithm considered for enumerating minimal siphons [23].

function ΣΠ = SolveList(Λ)

ΣΠ = ∅
while Λ 6= () do
Π = pop(Λ)
(S,Π) = FindSiphon(Π)
if S 6= ∅ then

if S 6= Pin then
S = FindMinimalSiphon(Π)

end if
ΣΠ = ΣΠ ∪ {S}
Λ = ((Π),Λ)
Λ = Partition(Λ, S)

end if
end while

function (S,Π′) = FindSiphon(Π)

Π′ = Π
isReducible = true
while isReducible do

if Pin ∩ Pout 6= ∅ then
S = ∅
return

else
if •Pin ∪ P

•
in = P then

S = Pin

else
S = ∅

end if
return

95

end if
if Pout 6= ∅ then
G = red(G,P − Pout)
Π′ = (G,Pin, ∅)

end if
(isReducible,Π′) = Reduce(Π′)

end while
S = P

function (isReducible,Π′) = Reduce(Π)

Π′ = Π
isReducilbe = true
T̄ = {t ∈ T , such that •t = ∅}, P̄ = T̄ •

T̂ = {t ∈ •Pin − P •
in, such that |•t| = 1}, P̂ = •T̂ ∩ (P − Pin)

if P̄ = ∅ and P̂ = ∅ then
isReducible = false

else
Π′ = (G,Pin ∪ P̂ , Pout ∪ P̄)

end if

function S = FindMinimalSiphon(Π)

S = P , P̃ = S − Pin

while P̃ 6= ∅ do
p = Get(P̃)
if {p} ⊂ (•t ∩ S) or t• ∩ S = ∅, ∀t ∈ p• then
S = S − {p}

end if
P̃ = P̃ − {p}

end while
P̃ = S − Pin, P̃in = Pin

while P̃ 6= ∅ do
p = Get(P̃), G̃ = red(G,S − {p}), Π̃ = (G̃, P̃in, ∅)
(S̃, Π̃) = FindSiphon(Π̃)

if (̃S) 6= ∅ then
S = S̃, P̃ = S − P̃in, G = G̃

else
P̃ = P̃ − {p}, P̃in = Pin ∪ {p}

end if
end while

function Λ̃ = Partition(Λ, S)

Λ̃ = ()
Π = pop(Λ)
P̃ = S − Pin

while P̃ 6= ∅ and Pout ∩ Pin = ∅ do
p = Get(P̃)

96

Π = (G,Pin, Pout ∪ {P})
Λ̃ = (Λ̃, (Π))
P̃ = P̃ − {p}, Pin = Pin ∪ {p}

end whileΛ̃ = (Λ̃, (Λ))

Algorithm 1 and 2 differ only by partition function:

function Λ̃ = Partition(Λ, S)

Λ̃ = ()
while Λ 6= ∅ do
Π = pop(Λ)
P̃ = S − Pin

while P̃ 6= ∅ and Pout ∩ Pin = ∅ do
p = Get(P̃)
Π = (G,Pin, Pout ∪ {P})
(S̃,Π) = FindSiphon(Π)
if S̃ 6= ∅ then
Λ̃ = (Λ̃, (Π))

end if
P̃ = P̃ − {p}, Pin = Pin ∪ {p}

end while
end while

97

98

Bibliography

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molec-
ular Biology of the Cell, fourth edition. Garland Science, 2002.

[2] A. Alfonsi, E. Cancès, G. Turinici, B. di Ventura, and W. Huisinga. Adap-
tive simulation of hybrid stochastic and deterministic models for biochemical
systems. ESAIM: Proc., 14:1–13, Sept. 2005.

[3] R. Alur, T. A.Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstrac-
tions of hybrid systems. Proceedings of the IEEE, 88(7):971–984, 2000.

[4] K. R. Apt. Principles of Constraint Programming. Cambridge University
Press, New York, NY, USA, 2003.

[5] M. R. Birtwistle, M. Hatakeyama, N. Yumoto, B. A. Ogunnaike, J. B. Hoek,
and B. N. Kholodenko. Ligand-dependent responses of the ErbB signaling
network: experimental and modeling analysis. Molecular Systems Biology,
3(144), Sept. 2007.

[6] A. Bockmayr and A. Courtois. Using hybrid concurrent constraint program-
ming to model dynamic biological systems. In Springer-Verlag, editor, Pro-
ceedings of ICLP’02, International Conference on Logic Programming, volume
2401 of Lecture Notes in Computer Science, pages 85–99, Copenhagen, 2002.

[7] H. Bodlaender. Classes of graphs with bounded tree-width. Bulletin of EATCS,
pages 116–128, 1988.

[8] M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite kripke
structures in propositional temporal logic. Theoretical Computer Science,
59:115–131, 1988.

[9] L. Calzone, F. Fages, and S. Soliman. BIOCHAM: An environment for model-
ing biological systems and formalizing experimental knowledge. Bioinformat-
ics, 22(14):1805–1807, 2006.

[10] L. Calzone, A. Gelay, A. Zinovyev, F. Radvanyi, and E. Barillot. A compre-
hensive modular map of molecular interactions in RB/E2F pathway. Molecular
Systems Biology, 4(173), 2008.

99

[11] R. Cavada, A. Cimatti, E. Olivetti, M. Pistore, and M. Roveri. NuSMV 2.1
User Manual. CMU and ITC-irst, IRST - Via Sommarive 18, 38055 Povo
(Trento) - Italy, 1998–2002.

[12] F. Centler, C. Kaleta, P. S. di Fenizio, and P. Dittrich. Computing chemical
organizations in biological networks. Bioinformatics, 24(14):1611–1618, May
2008.

[13] N. Chabrier and F. Fages. Symbolic model checking of biological systems.
In Poster proceedings of European Conference on Computational Biology
ECCB’02, Saarbrück, Sept. 2002.

[14] N. Chabrier and F. Fages. Symbolic model checking of biochemical networks.
In C. Priami, editor, CMSB’03: Proceedings of the first workshop on Computa-
tional Methods in Systems Biology, volume 2602 of Lecture Notes in Computer
Science, pages 149–162, Rovereto, Italy, Mar. 2003. Springer-Verlag.

[15] N. Chabrier-Rivier, M. Chiaverini, V. Danos, F. Fages, and V. Schächter.
Modeling and querying biochemical interaction networks. Theoretical Com-
puter Science, 325(1):25–44, Sept. 2004.

[16] F. Chu and X.-L. Xie. Deadlock analysis of petri nets using siphons and
mathematical programming. IEEE Transactions on Robotics and Automation,
13(6):793–804, 1997.

[17] G. Ciardo, G. Mecham, E. Paviot-Adet, and M. Wan. P-semiflow computation
with decision diagrams. In PETRI NETS ’09: Proceedings of the 30th Inter-
national Conference on Applications and Theory of Petri Nets, pages 143–162,
Berlin, Heidelberg, 2009. Springer-Verlag.

[18] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
1999.

[19] J. M. Colom and M. Silva. Convex geometry and semiflows in P/T nets. a
comparative study of algorithms for computation of minimal p-semiflows. In
Proceedings of the 10th International Conference on Application and Theory
of Petri Nets, pages 74–95, Bonn, Germany, 1989.

[20] F. Corblin, S. Tripodi, E. Fanchon, D. Ropers, and L. Trilling. A declarative
constraint-based method for analyzing discrete genetic regulatory networks.
Biosystems, 98(2):91–104, 2009.

[21] R. Cordone, L. Ferrarini, and L. Piroddi. Characterization of minimal and
basis siphons with predicate logic and binary programming. In Proceedings of
IEEE International Symposium on Computer-Aided Control System Design,
pages 193–198, 2002.

[22] R. Cordone, L. Ferrarini, and L. Piroddi. Some results on the computation of
minimal siphons in petri nets. In Proceedings of the 42nd IEEE Conference
on Decision and Control, Maui, Hawaii USA, dec 2003.

100

[23] R. Cordone, L. Ferrarini, and L. Piroddi. Enumeration algorithms for minimal
siphons in petri nets based on place constraints. IEEE transactions on systems,
man and cybernetics. Part A, Systems and humans, 35(6):844–854, 2005.

[24] B. Courcelle. The monadic second-order logic of graphs i. recognizable sets of
finite graphs. Information and Computation, pages 12–75, 1990.

[25] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
POPL’77: Proceedings of the 6th ACM Symposium on Principles of Program-
ming Languages, pages 238–252, New York, 1977. ACM Press. Los Angeles.

[26] J. M. Crawford and L. D. Auton. Experimental results on the crossover point
in satisfiability problems. In Proceedings of the 11th National Conference on
Artificial Intelligence, pages 21–27. AAAI press, 1993.

[27] L. F. de Figueiredo, A. Podhorski, A. Rubio, C. Kaleta, J. E. Beasley, S. Schus-
ter, and F. J. Planes. Computing the shortest elementary flux modes in
genome-scale metabolic networks. Bioinformatics, 25(23):3158–3165, Dec.
2009.

[28] V. Devloo, P. Hansen, and M. Labbe. Identification of all steady states in
large biological systems by logical analysis. Bulletin of Mathematical Biology,
65:1025–1051, 2003.

[29] D. Diaz and P. Codognet. Design and implementation of the GNU Prolog
system. Journal of Functional and Logic Programming, 6, Oct. 2001.

[30] P. Dittrich and P. di Fenizio. Chemical organisation theory. Bulletin of Math-
ematical Biology, 69(4):1199–1231, Apr. 2007.

[31] A. Doi, S. Fujita, H. Matsuno, M. Nagasaki, and S. Miyano. Construction
biological pathway models with hybrid functional petri nets. In Silico Biology,
4:271–291, 2004.

[32] N. Dudani, S. Ray, S. George, and U. Bhalla. Multiscale modeling and inter-
operability in MOOSE. BMC Neuroscience, 10(Suppl 1):P54, 2009.

[33] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, and M. K. Sönmez.
Pathway logic: Symbolic analysis of biological signaling. In Proceedings of the
seventh Pacific Symposium on Biocomputing, pages 400–412, Jan. 2002.

[34] F. Fages and S. Soliman. Abstract interpretation and types for systems biology.
Theoretical Computer Science, 403(1):52–70, 2008.

[35] F. Fages, S. Soliman, and N. Chabrier-Rivier. Modelling and querying inter-
action networks in the biochemical abstract machine BIOCHAM. Journal of
Biological Physics and Chemistry, 4(2):64–73, Oct. 2004.

101

[36] F. Fages, S. Soliman, and R. Coolen. CLPGUI: a generic graphical user inter-
face for constraint logic programming. Journal of Constraints, Special Issue
on User-Interaction in Constraint Satisfaction, 9(4):241–262, Oct. 2004.

[37] C. Fall, E. Marland, J. Wagner, and J. Tyson. Computational Cell Biology.
Springer, 2002.

[38] E. Fanchon, F. Corblin, L. Trilling, B. Hermant, , and D. Gulino. Modeling
the molecular network controlling adhesion between human endothelial cells:
Inference and simulation using constraint logic programming. In CMSB’04:
Proceedings of the 20 international conference on Computational Methods in
Systems Biology, pages 104–118. Springer-Verlag, 2004.

[39] M. Feinberg. Mathematical aspects of mass action kinetics. In L. Lapidus and
N. R. Amundson, editors, Chemical Reactor Theory: A Review, chapter 1,
pages 1–78. Prentice-Hall, 1977.

[40] E. C. Freuder. Eliminating interchangeable values in constraint satisfaction
problems. In Proceedings of AAAI’91, pages 227–233. MIT Press, 1991.

[41] D. Gilbert, M. Heiner, and S. Lehrack. A unifying framework for modelling and
analysing biochemical pathways using petri nets. In M. Calder and S. Gilmore,
editors, CMSB’07: Proceedings of the fifth international conference on Com-
putational Methods in Systems Biology, volume 4695 of Lecture Notes in Com-
puter Science, Edinburgh, Scotland, Sept. 2007. Springer-Verlag.

[42] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[43] P. Goss and J.Peccoud. Quantitative modeling of stochastic systems in molecu-
lar biology by using stochastic petri nets. Proceedings of the National Academy
of the United States of America, 95(12):6750–6755, June 1998.

[44] G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural csp de-
composition methods. Artificial Intelligence, 124:2000, 2000.

[45] R. Goud, K. van Hee, R. Post, and J. van der Werf. Petriweb: A repository
for petri nets. In S. Donatelli and P. Thiagarajan, editors, Petri Nets and
Other Models of Concurrency - ICATPN 2006, volume 4024 of Lecture Notes
in Computer Science, pages 411–420. Springer-Verlag, 2006.

[46] S. Grunwalda, A. Speera, J. Ackermanna, and I. Kocha. Petri net modelling of
gene regulation of the duchenne muscular dystrophy. Biosystems, 92(2):189–
205, May 2008.

[47] M. Heiner, D. Gilbert, and R. Donaldson. Petri nets for systems and syn-
thetic biology. In M. Bernardo, P. Degano, and G. Zavattaro, editors, 8th
Int. School on Formal Methods for the Design of Computer, Communication
and Software Systems: Computational Systems Biology SFM’08, volume 5016
of Lecture Notes in Computer Science, pages 215–264, Bertinoro, Italy, Feb.
2008. Springer-Verlag.

102

[48] M. Heiner, C. Mahulea, and M. Silva. On the importance of the deadlock trap
property for monotonic liveness. In Int. Workshop on Biological Processes and
Petri Nets (BioPPN), A satellite event of Petri Nets 2010, 2010.

[49] S. Helfert, A. Estevez, B. Bakker, P. Michels, and C. Clayton. Roles of
triosephosphate isomerase and aerobic metabolism in trypanosoma brucei.
Biochem. J., 357:117–125, 2001.

[50] R. Hofestädt. A petri net application to model metabolic processes. Systems
Analysis Modelling Simulation, 16:113–122, Oct. 1994.

[51] R. Hofestädt and S. Thelen. Quantitative modeling of biochemical networks.
In In Silico Biology, volume 1, pages 39–53. IOS Press, 1998.

[52] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu,
P. Mendes, and U. Kummer. Copasi – a complex pathway simulator. Bioin-
formatics, 22(24):3067–3074, 2006.

[53] C.-Y. Huang and J. E. Ferrell, Jr. Ultrasensitivity in the mitogen-activated
protein kinase cascade. PNAS, 93(19):10078–10083, Sept. 1996.

[54] M. Hucka et al. The systems biology markup language (SBML): A medium for
representation and exchange of biochemical network models. Bioinformatics,
19(4):524–531, 2003.

[55] K. Jensen. Coloured petri nets and the invariant-method. Theoretical Com-
puter Science, 14:317–336, 1981.

[56] K. Jensen, L. M. Kristensen, and L. Wells. Coloured petri nets and cpn tools
for modelling and validation of concurrent systems. International Journal on
Software Tools for Technology Transfer, 9:213–254, 2007.

[57] C. Kaleta, S. Richter, and P. Dittrich. Using chemical organization theory for
model checking. Bioinformatics, 25(15):1915–1922, 2009.

[58] M. Kinuyama and T. Murata. Generating siphons and traps by petri net
representation of logic equations. In Proceedings of 2th Conference of the Net
Theory SIG-IECE, pages 93–100, 1986.

[59] H. Kitano. Systems biology: A brief overview. Science, 295(5560):1662–1664,
Mar. 2002.

[60] I. Koch, B. Junker, and M. Heiner. Application of petri net theory for mod-
elling and validation of the sucrose breakdown pathway in the potato tuber.
Bioinformatics, 21:1219–1226, Apr. 2005.

[61] K. W. Kohn. Molecular interaction map of the mammalian cell cycle control
and DNA repair systems. Molecular Biology of the Cell, 10(8):2703–2734, Aug.
1999.

103

[62] E. Korach and N. Solel. Tree-width, path-width, and cutwidth. Discrete
Applied Mathematics, 43(1):97–101, May 1993.

[63] A. Larhlimi and A. Bockmayr. A new constraint-based description of the
steady-state flux cone of metabolic networks. Discrete Applied Mathematics,
157(10):2257–2266, 2009. Networks in Computational Biology.

[64] K. Lautenbach. Linear algebraic calculation of deadlocks and traps. In G. Voss
and Rozenberg, editors, Concurrency and Nets Advances in Petri Nets, pages
315–336, New York, 1987. Springer-Verlag.

[65] C. F. Law, B. H. Gwee, and J. Chang. Fast and memory-efficient invariant
computation of ordinary petri nets. IEE Proceedings: Computers and Digital
Techniques, 1(5):612–624, 2007.

[66] N. le Novère, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli, H. Dharuri,
L. Li, H. Sauro, M. Schilstra, B. Shapiro, J. L. Snoep, and M. Hucka. BioMod-
els Database: a free, centralized database of curated, published, quantitative
kinetic models of biochemical and cellular systems. Nucleic Acid Research,
1(34):D689–D691, Jan. 2006.

[67] A. Levchenko, J. Bruck, and P. W. Sternberg. Scaffold proteins may biphasi-
cally affect the levels of mitogen-activated protein kinase signaling and reduce
its threshold properties. PNAS, 97(11):5818–5823, May 2000.

[68] R. J. Lipton. The reachability problem requires exponential space. Technical
report 62, Yale University, 1976.

[69] F. Liu and M. Heiner. Colored petri nets to model and simulate biological
systems. In ACSD/Petri Nets Workshops 2010, pages 71–85, 2010.

[70] J. Martinez and M. Silva. A simple and fast algorithm to obtain all invariants
of a generalized petri net. In Selected Papers from the First and the Second
European Workshop on Application and Theory of Petri Nets, pages 301–310,
London, UK, UK, 1982. Springer-Verlag.

[71] W. Marwan, A. Sujatha, and C.Starostzik. Reconstructing the regulatory
network controling commitment and sporulation in physarum polycephalum
based on hierarchical petri net modeling and simulation. Journal of Theoretical
Biology, 236:349–365, 2005.

[72] H. Matsuno, A. Doi, M. Nagasaki, and S. Miyano. Hybrid petri net represen-
tation of gene regulatory network. In Proceedings of the 5th Pacific Symposium
on Biocomputing, pages 338–349, 2000.

[73] H. Matsuno, Y. Tanaka, H. Aoshima, A. Doi, M. Matsui, and S. Miyano.
Biopathways representation and simulation on hybrid functional petri net. In
Silico Biology, 3:32, 2003.

[74] E. W. Mayr. An algorithm for the general petri net reachability problem.
SIAM Journal of Computing, 13, 1984.

104

[75] M. Minoux and K. Barkaoui. Deadlocks and traps in petri nets as horn-
satisfiability solutions and some related polynomially solvable problems. Dis-
crete Applied Mathematics, 29:195–210, 1990.

[76] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of
sat problems. In Proceedings of the 10th National Conference on Artificial
Intelligence, pages 459–465. AAAI press, 1992.

[77] I. Mura and A. Csiksz-Nasy. Stochastic petri net extension of a yeast cell cycle
model. Journal of Theoretical Biology, 254::850–860, 2008.

[78] T. Murata. Petri nets: properties, analysis and applications. Proceedings of
the IEEE, 77(4):541–579, Apr. 1989.

[79] F. Nabli. Finding minimal siphons as a csp. In CP’11: The Seventeenth Inter-
national Conference on Principles and Practice of Constraint Programming,
Doctoral Program, pages 67–72, Sept. 2011.

[80] F. Nabli, T. Martinez, F. Fages, and S. Soliman. Finding siphons in petri-nets:
Complexity and algorithms (in preparation). Constraints, 2013.

[81] O. Oanea, H. Wimmel, and K. Wolf. New algorithms for deciding the siphon-
trap property. In PETRI NETS’10 Proceedings of the 31st international con-
ference on Applications and Theory of Petri Nets, pages 267–286. Springer-
Verlag, 2010.

[82] K. Oda, Y. Matsuoka, A. Funahashi, and H. Kitano. A comprehensive pathway
map of epidermal growth factor receptor signaling. Molecular Systems Biology,
1, May 2005.

[83] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall,
New Jersey, 1981.

[84] A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977.

[85] V. N. Reddy, M. L. Mavrovouniotis, and M. N. Liebman. Petri net represen-
tations in metabolic pathways. In L. Hunter, D. B. Searls, and J. W. Shavlik,
editors, Proceedings of the 1st International Conference on Intelligent Systems
for Molecular Biology (ISMB), pages 328–336. AAAI Press, 1993.

[86] N. Robertson and P. Seymour. Graph minors. II. Algorithmic aspects of tree-
width. Journal of Algorithms, 7(3):309–322, 1986.

[87] S. Roch and P. P. H. Starke. INA Integrated Net Analyzer Version 2.2 Manual.
Humboldt-Universitat zu Berlin, Institut fur Informatik, 2000.

[88] A. Sackmann, D. Formanowicz, P. Formanowicz, I. Koch, and J. Blazewicz.
An analysis of the petri net based model of the human body iron homeostasis
process. Computational Biology and Chemistry, 31(1):1–10, 2007.

105

[89] A. Sackmann, M. Heiner, and I. Koch. Application of petri net based analysis
techniques to signal transduction pathways. BMC Bioinformatics, 7(482),
Nov. 2006.

[90] M. A. Savageau. Biochemical systems analysis i some mathematical properties
of the rate law for the component enzymatic reactions. Journal of Theoretical
Biology, 25(3):365–369, 1969.

[91] M. A. Savageau. Biochemical systems analysis ii the steady-state solutions
for an n-pool system using a power-law approximation. Journal of Theoretical
Biology, 25(3):370–379, 1969.

[92] B. Schoeberl, C. Eichler-Jonsson, E. Gilles, and G. Muller. Computational
modeling of the dynamics of the map kinase cascade activated by surface and
internalized egf receptors. Nature Biotechnology, 20(4):370–375, 2002.

[93] S. Soliman. Finding minimal P/T-invariants as a CSP. In Proceedings of the
fourth Workshop on Constraint Based Methods for Bioinformatics WCB’08,
associated to CPAIOR’08, May 2008.

[94] S. Soliman. Modelling biochemical reaction networks with biocham extracting
qualitative and quantitative information from the structure. In Proceedings of
the 6th Vienna Conference on Mathematical Modelling MATHMOD’09, vol-
ume 35, pages 2304–2312. ARGESIM, Feb. 2009.

[95] S. Soliman. Invariants and other structural properties of biochemical models
as a constraint satisfaction problem. Algorithms for Molecular Biology, 7(15),
May 2012.

[96] N. Soranzo and C. Altafini. ERNEST: a toolbox for chemical reaction network
theory. Bioinformatics, 25(21):2853–2854, 2009.

[97] R. Srivastava, M. Peterson, and W. Bentley. Stochastic kinetic analysis of the
escherichia coli stress circuit using σ32-targeted antisense. Biotechnology and
Bioengineering, 75:120–129, 2001.

[98] L. J. Steggles, R. Banks, and A. Wipat. Modelling and analysing genetic
networks: From boolean networks to petri nets. In CMSB06, LNCS 4210,
pages 127–141. Springer, 2006.

[99] L. Stryer. Biochemistry. Freeman, New York, 1995.

[100] Z. Szallasi, J. Stelling, and V. Periwal, editors. System Modeling in Cellular
Biology: From Concepts to Nuts and Bolts. MIT Press, 2006.

[101] S. Tanimoto, M. Yamauchi, and T. Watanabe. Finding minimal siphons in
general petri nets. IEICE Trans. on Fundamentals in Electronics, Communi-
cations and Computer Science, pages 1817–1824, 1996.

106

[102] E. O. Voit. Computational Analysis of Biochemical Systems. A Practical Guide
for Biochemists and Molecular Biologists. Cambridge University Press, Cam-
bridge, U.K., 2000.

[103] A. von Kamp and S. Schuster. Metatool 5.0: fast and flexible elementary
modes analysis. Bioinformatics, 22(15):1930–1931, 2006.

[104] M. Wallace. Practical applications of constraint programming. Constraints,
1(1/2):139–168, 1996.

[105] M. Yamauchi, M. Wakuda, S. Taoka, and T. Watanabe. A fast and space-
saving algorithm for computing invariants of petri nets. In Proceedings of
the IEEE International Conference on Systems, Man, and Cybernetics, 1999.
IEEE SMC ’99, volume 1, pages 866–871, 1999.

[106] M. Yamauchi and T. Watanabe. Time complexity analysis of the minimal
siphon extraction problem of petri nets. EICE Trans. on Fundamentals of
Electronics, Communications and Computer Sciences, pages 2558–2565, 1999.

[107] I. Zevedei-Oancea and S. Schuster. Topological analysis of metabolic networks
based on petri net theory. In Silico Biology, 3(29), 2003.

107

108

	List of Figures
	List of Tables
	Petri Nets
	Definitions
	Structural Properties
	Place/Transition invariants
	Siphons and Traps
	Known Time Complexity Of Minimal Siphon Extraction Problem

	New Time Complexity Result
	Polynomial time complexity theorem for Petri-nets with bounded tree-width
	Linear Time Complexity Result

	Petri Net Structures and CTL Properties
	Infinite State Computation Tree Logic
	Boolean Abstractions, Boundedness Conditions and Boolean CTL Model-Checking

	Petri Nets for Biochemical Networks
	Biological context
	Systems Biology
	Molecular Biology and Cellular Metabolism
	Biochemical Networks

	Biochemical Networks modelling
	Boolean and Discrete modelling
	Continuous and stochastic Modelling
	Petri nets modelling of biochemical networks

	Benchmark
	Biomodels.net
	Petriweb

	Petri net properties on the benchmark
	P-invariants as mass conservation laws
	T-invariants as flux conservation
	Siphons/Traps

	Boolean Model for siphons/traps
	Constraint Programming (CP) and Systems Biology
	Boolean Model
	Boolean Algorithms
	Iterated SAT Algorithm
	Backtrack Replay CLP(B) Algorithm

	Evaluation
	Results and Comparison
	Hard instances

	CLP model for the Siphon-Trap Property (STP)

	Constraint Programming Approach to P/T invariants
	P/T-invariants Computation
	The Fourier-Motzkin Algorithm for P/T-invariants
	Finding P/T-invariants as a Constraint Solving Problem
	Symmetry detection and elimination
	Experimental Results

	Steady-state solution of biochemical systems, beyond S-Systems via T-invariants
	Biochemical Systems Theory
	Method
	Results
	Conclusions and Perspectives

	General Conclusion
	Appendix 1
	Bibliography

