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1. 
The Hematopoietic system 

 
 

1.1 HEMATOPOIESIS AND HSCs 
 

The hematopoiesis is the process that leads to the formation of all blood cells. These 

cells are required for a multitude of tasks, such as protection from infections, removal of 

damaged tissues but also to transport vital molecules such as oxygen throughout the body and 

to prevent bleeding.  In a healthy adult person, approximately 1011–1012 new blood cells are 

produced every day in order to maintain steady state levels in the peripheral circulation. 

All cellular blood components derive from Hematopoietic Stem Cells (HSCs). HSCs 

are multipotent stem cells operationally defined by their capacity to reconstitute the entire 

blood system of a recipient and, at the same time, are capable of self-renewal. The self-

renewal is the cellular process by which a stem cell divides into one mother cell that is 

identical to the original undifferentiated stem cell and may be either symmetric or asymmetric 

in its nature. A symmetric self-renewing division refers to the process whereby both 

daughter cells retain mother cell characteristics. This type of cell division expands the stem 

cell pool and is therefore thought to be important after transplantation or after hematopoietic 

injury. In the asymmetric self-renewal division the 2 daughter cells adopt different cell fates, 

resulting in only one cell maintaining stem cell property and the other one can commit to any 

of the alternative differentiation pathways that lead to the production of one or more specific 

types of blood cell.  

Most of the mature blood cells have a limited life span, therefore HSCs are required 

throughout life to continuously replenish multilineage progenitors and precursors committed 

to individual hematopoietic lineages. 

The process of hematopoietic differentiation is a hierarchical process that starts from 

the most immature HSCs and schematically leads to the generation of 2 kinds of progenitors 

with restricted potential: the Common Lymphoid Progenitor (CLP) and the Common Myeloid 

Progenitor (CMP). Progenitor cells can divide only a limited number of times; they are 

pushed to differentiate in their precursor cells whose fate is even more restricted and they will 

give rise to mature blood cells, such as mature erythroid, megakaryocytic, myeloid 

(monocyte/macrophage, eosinophil and neutrophil), mast, dendritic or lymphoid cells. (Fig.1) 
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Figure 1: Hematopoiesis scheme. Hematopoietic Stem Cell (HSC) is capable of self-renew and generates all 
the blood cells. Population cell numbers rise with increasing maturity. This diagram omits for simplicity natural 
killer and dendritic cells. Abbreviations: CFU-s (colony-forming unit spleen), CLP (common lymphoid 
progenitor), CMP (common myeloid progenitor), MEP (megacaryocyte-erythroid progenitor cell), GMP 
(granulocyte-macrophage progenitor cell), BFU-E (burst-forming unit-erythroid), Meg-CFC (megacaryocyte 
colony-forming cell), Eo-CFC (eosinophil colony-forming cell), GM-CFC (granulocyte-macrophage colony-
forming cell), CFU-E (colony-forming unit-erythroid), G-CFC (granulocyte colony-forming cell), M-CFC 
(Monocyte-Macrophage colony-forming cell), Mast-CFC (Mast colony-forming cell). 
 
  

From (Metcalf 2007) 
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1.2 HEMATOPOIETIC DEVELOPMENT 
 

During mammal development there are different and sequential sites of hematopoiesis. 

Primitive hematopoiesis starts in the yolk sac and move later to the aorta-gonad mesonephros 

(AGM) region and to the fetal liver. Just before birth, cycling HSCs migrate from the liver to 

the developing bone marrow (BM), where they remain after birth. 

The properties of HSCs in each site differ, probably reflecting different niches that 

support HSC expansion and/or differentiation and intrinsic characteristics of HSCs at each 

stage. 

 

1.2.1 Embryonic hematopoiesis 

 

De novo generation of hematopoietic cells starts shortly after mesoderm formation and 

continue through gestation. Hematopoiesis in embryo occurs in several tissues that include the 

yolk sac, the AGM region, the placenta and the liver (Fig.2A-2B). Embryonic hematopoiesis 

consists of three different waves which lead to the generation of HSCs. 

 

- The first wave is called “primitive hematopoiesis” and it takes place in the yolk 

sac. This wave generates short-lived primitive nucleus bearing erythrocytes 

necessary to carry oxygen to the rapidly growing embryo. These cells co-

localize with blood vessels, forming the so called “blood islands”. HSCs and 

vascular cells are believed to originate by a precursor cell called 

hemangioblast (Palis and Yoder 2001). These cells may be capable of 

producing both hematopoietic and endothelial cells. The first wave of 

primitive hematopoietic cell generation begins at embryonic day (E)7.5 in the 

mouse system and is highly conserved across vertebrate species, including 

men, where it begins at 16-20 days of gestation (Tavian and Peault 2005) 

- The second wave of hematopoiesis is when the circulation starts and 

hematopoietic cells are detectable in the AGM region. These hematopoietic 

progenitors are functionally more complex than primitive progenitors; indeed 

they can produce erythroid, myeloid and lymphoid cells. At this development 

stage in AGM region, we can find the firsts definitive HSCs that are able to 

regenerate hematopoiesis in adult recipients (Medvinsky and Dzierzak 1996) 

and at this stage starts the so called “definitive hematopoiesis”.   
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- The third wave provides for the generation of fetal HSCs which are detectable in 

placenta, circulation and later in the fetal liver, which remains the main 

hematopoietic organ until birth.  

 

From fetal liver HSCs migrate and colonize bone marrow just prior to birth. At this 

moment there is a switch from fetal to adult hematopoiesis: the high proliferative fetal 

program switches to the adult program, where HSCs are quiescent and mainly in G0/G1 cell 

cycle.  

 

 

 

 

 

 

 

 

1.2.2 Adult hematopoiesis 

 

 

 

 
Figure 2: Hematopoietic stem cell development in mouse embryo. Depiction of a mouse embryo at E10.5, at 
the time when the firsts HSCs are generated in the aorta. A) Sites generating hematopoietic cells are shown: the 
extraembryonic yolk sac and placenta, the intraembryonic aorta and liver, and the umbilical and vitelline arteries 
that connect the placenta and the yolk sac to the aorta. The dotted line indicates the transverse section showed in 
the panel B. B) Depiction of a transverse section with the AGM region in the rectangle. The AGM region is 
flanked on the dorsal side by the neural tube and the somites and on the ventral side by the gut and the 
peritoneum. A hematopoietic cluster is indicated on the ventral wall of the aorta.  
 

 

Prior to birth, HSCs move to the BM where they engraft in small cavities of trabecular 

bone, close to the endosteal interface between bone and marrow. In adult humans, the major 

sites of hematopoiesis are the bones of axial skeleton (cranium, sternum, ribs and vertebrae) 

in addition to the ilium.  In children, hematopoiesis occurs in the marrow of the long bones 

such as the femur and tibia, then it ceases between 5 and 7 years of age and the red 

(hematopoietic active) BM is replaced by yellow (hematopoietic inactive)  adipose tissue. 

Moreover, in humans, contrary to mouse system, the spleen does not support hematopoiesis 

From (Kaimakis, Crisan and Dzierzak 2013) 
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after birth under steady-state conditions. However, extramedullary splenic hematopoiesis can 

occur in times of hematopoietic stress. 

In humans, by four weeks after birth, HSCs stop cycling and acquire largely a 

dormant phenotype, in order to prevent cell exhaustion. In response to blood cell loss HSCs 

are able to enter in cycle and to replenish the hematopoietic system.  

Adult hematopoietic hierarchy is the consequence of progressive HSC maturation 

culminating with the mature myeloid and white blood cells. Lineage specification largely 

takes place within the bone marrow as well; mature cells are then mainly found in blood 

circulation but also in thymus, spleen and lymph nodes.  

 

1.2.3 Regulators of HSC generation 

 

The hematopoietic fate is dictated by the microenvironment and by the intrinsic 

program of the cells. As it will be discussed later, there is a cross-talk between HSCs and the 

other cells that surround them, and they form together the microenvironment called “niche”. 

In the embryonic microenvironment, the underlying mesenchymal cells produce signaling 

molecules that impact directly or indirectly on emerging hematopoietic cells. These molecules 

regulate different signaling pathways in HSCs, such as BMP-TGF, JAK/STAT, Wnt and 

Notch pathways. The molecular mechanisms of these signaling pathways will be discussed 

below in the “Hematopoietic stem cell niche” paragraph. 

In addition to the microenvironment, HSCs possess an intrinsic molecular program 

that specifies their stemness properties. It consists in the activation/repression of specific 

genes and signaling cascades that dictates the choice of the hematopoietic cell fate. A lot of 

intrinsic regulators of HSC generation have been described and the very first discovered come 

from genetic deletion experiments in mice. These 3 transcription factors are Scl, Gata2 and 

Runx1 and to date, they are the best known factors involved in HSC generation. Germ line 

deletion of each single gene leads to mid-gestation, embryonic lethality and profound anemia. 

Interestingly, these factors seem to work in complexes to regulate gene expression during 

hematopoietic development. Below, you can find a more detailed description of these crucial 

and more studied factors. 

 

Scl/Tal 

Scl/Tal1 is a basic helix–loop–helix (bHLH) transcription factor. It can form 

heterodimer complexes with E-proteins and binds specific DNA motifs by its bHLH domain, 



26 INTRODUCTION – PART I 

in order to regulate gene expression. Scl is normally expressed in hematopoietic tissues of the 

developing embryo. Scl germ line deletion in mice show an early embryonic lethality at day E 

9.5, with a completely absence of blood formation (Robb et al. 1996, Shivdasani, Mayer and 

Orkin 1995). Thus, Scl is an essential factor during primitive hematopoiesis (first wave) of the 

embryonic development. 

 

Gata2 

The Gata2 transcription factor is a member of the Gata family of factors. There are 6 

evolutionarily conserved proteins, Gata1 to Gata6, and they have two highly conserved zinc 

finger (ZnF) domains. Only Gata1, 2 and 3 are relevant to the hematopoietic system: Gata1 

for the erythroid/megakaryocytic lineage and for mastocytes differentiation, Gata2 for 

hematopoietic stem and progenitor cells, and Gata3 for T-lymphocytes. 

Gata2 is highly expressed in hematopoietic cells of the AGM region, fetal liver and 

placenta. Gata2 knock-out (KO) mice exhibit embryonic lethality at day E10 and E10.5 

because of a profound anemia. Moreover, in Gata2 deficient mice, primitive hematopoietic 

progenitor numbers are decreased and no HSCs are produced (Ling et al. 2004, Tsai et al. 

1994).  

 

Runx1 

Runx1/AML1 belongs to the transcription factor family that includes also Runx2 and 

Runx3. It is often found in chromosomal rearrangement in acute myeloid leukemia (AML) 

cells. Runx1 binds to regulatory elements of several genes and provides for tissue specific 

gene expression of molecules known to be important in hematopoiesis. Among them, there 

are the genes that encode for GM-CSF, IL3 and CSF1 receptor. Deletion of Runx1 

transcription factor in mice leads to embryonic lethality at E12.5. Runx1 KO mice show 

normal morphogenesis and yolk-sac erythropoiesis, but they exhibit a block of HSCs 

generation in AGM region, a block of fetal liver hematopoiesis and a lack of all hematopoietic 

tissues (Wang et al. 1996, Okuda et al. 1996). These results suggest that Runx1 regulate 

specific genes which are essential for definitive hematopoiesis of all lineages. Moreover, 

Runx1 seems to act in concert with Gata2. Indeed, Runx1+/- and Gata2+/- single heterozygous 

mice are viable and present a normal hematopoietic blood profile, but Runx1+/-:Gata2+/- 

double heterozygous mice embryos die and fetal livers contain less hematopoietic progenitors 

than single heterozygous mice (Wilson et al. 2010). These findings show that Runx1 and 
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Gata2 have a crucial role in hematopoietic development and that they can form a protein 

complex that regulate expression of genes essential for HSCs generation 

 

Finally, the specific temporal and spatial sequence of extrinsic signals and the 

combination and/or the levels of intrinsic signals, play a role in the differential transcription 

factor expression and production of the distinct waves of hematopoietic cells in the 

developing embryo and steady as well as stress hematopoiesis in adults. 

 

 

1.3 BIOLOGY OF HSCs 
 

1.3.1 HSCs as quiescent cells: a protection mechanism that favors their 

resistance 

 

Hematopoiesis is the tightly regulated process of blood formation. Short-lived mature 

blood cells are replenished every day by HSCs through a large number of hematopoietic 

progenies, as multipotent hematopoietic progenitors and more restricted lineage-committed 

progenitors. HSCs are the first identified and best characterized adult stem cells, and they 

have served as model for other kind of adult stem cells.  

A common property of adult HSCs is quiescence in term of cell cycle. Quiescence and 

slow cell cycle progression are critical for sustaining self-renewing HSC compartment 

throughout life. Moreover, quiescence is responsible for the protection of HSC pool from 

various stress insults. Indeed, quiescent cells are protected from replication-associated 

mutation generation and they are also more resistant to radiation than other cells. This feature 

is due to expression of repair, anti-oxidant and anti-apoptotic machinery. Ito and colleagues 

demonstrated that the Ataxia Telangiectasia Mutated (ATM) gene, which maintains genomic 

stability in response to DNA damage, has an essential function in the reconstitutive capacity 

of HSCs, but is not as important for the proliferation or differentiation of progenitors. Atm-/- 

mice show progressive bone marrow failure resulting from a defect in HSC function that was 

associated with elevated reactive oxygen species (ROS). Treatment with anti-oxidative agents 

restored the reconstitutive capacity of Atm-/- HSCs, resulting in the prevention of bone 

marrow failure (Ito et al. 2004). These results show that the self-renewal capacity of HSCs 
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depends on inhibition of oxidative stress and its associated DNA damages which can alter 

genomic stability.  

In addition, HSCs present a different metabolic status compared to their progenitors: 

they show low oxidative phosphorylation and high glycolytic activity to synthesize ATP, 

meaning that HSCs favor anaerobic enzymatic pathways to synthesize ATP. These data 

demonstrate that HSCs are in hypoxic conditions and are metabolically different from their 

progenitor cells (Fig.3). This specific metabolic status permits to the more immature stem 

cells to be protected throughout life and is responsible for their resistance to anti-cancer drug 

treatments and to stress insults such as oxidative and genotoxic insults. 

 

 

 
 
 
Figure3: cycling HSPCs have increased ROS levels. HSCs are quiescent and may proliferate to generate short-
cycling HSCs that give rise to multipotent progenitors and differentiated cells. Most immature HSCs exhibit very 
low ROS levels and they are protected from oxidative insults.  On the other side, more proliferative cells, such as 
cycling HSCs and progenitors, present increased ROS levels compared to immature HSCs. Low ROS in 
quiescent cells prevent oxidative stress and favor their resistance and long-live capacity.  
 

1.3.2 Regulation of self-renewal and maintaining of HSCs 

 

Hematopoiesis must be rapidly and meticulously regulated, in order to face to a variety 

of situations, ranging from normal homeostasis to acute blood loss, infection and to avoid 

over-production of mature cells. A wide variety of factors critical for HSC regulation have 

been identified, including cytokines, growth factors, transcription factors, chromatine 

modifiers and cell cycle regulators.  All these factors have been long-time studied as they 

potentially represent a mean for maintaining HSCs in vitro, a feature that would have 



INTRODUCTION – PART I 29 

significant impact on the collection of HSCs for transplantation and on gene therapy 

strategies. Below, some examples of both intrinsic and extrinsic regulators that have been 

shown to be important in adult HSC maintaining and self-renewal are reported.  

 

1.3.2.1 Cell-intrinsic regulators of adult HSC maintaining 

 
Valuable knowledge about factors influencing self-renewal, has been gained from 

gene manipulation studies, which have identified multiple proteins that play important roles in 

the regulation of HSC self-renewal, including transcription factors, epigenetic modifiers, and 

cell cycle regulators. The most studied genes are reported below. 

 

Homeobox genes 

One of the first genes described involved in HSC self-renewal is HoxB4. The 

homeobox (Hox) genes encode transcription factors that regulate embryonic body patterning 

and organogenesis. Several members of the homeobox gene family are expressed during 

hematopoietic differentiation. Over-expression of HoxB4 by retroviral infection of murine 

bone marrow cells leads to expansion of HSCs in vivo and in vitro, therefore appearing to be a 

positive regulator of HSC self-renewal (Sauvageau et al. 1995, Krosl et al. 2003). 

Surprisingly, HoxB deficient mice do not exhibit any major defects in hematopoiesis, possibly 

because of the compensatory effects by HoxA and/or HoxC genes (Bijl et al. 2006). 

It is also interesting to note that the over-expression of the HoxB4 paralogue HoxC4 in 

primitive hematopoietic cells also enhances the proliferation of both HSCs and committed 

progenitors, although the HoxC4's effect may be weaker than HoxB4's (Daga et al. 2000, 

Auvray et al. 2012). HoxB4 is a potent enhancer of primitive hematopoietic cell growth and 

this action may be explained by its interaction with c-Myc gene and the cell cycle machinery 

(Antonchuk, Sauvageau and Humphries 2001). 

 

Ikaros 

The Ikaros gene product is a zinc-finger transcription factor. Ikaros proteins modulate 

transcription by recruiting co-repressor complex to the promoter of target genes.  Ikaros 

displays crucial functions in the hematopoietic system and mice homozygous for Ikaros 

dominant negative mutation (DNA-binding domain mutated) possess no measurable 

repopulating activity at all, conferring to Ikaros factors an essential role in the maintaining of 

the HSC pool (Nichogiannopoulou et al. 1999). 
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Tel/Etv6 

The transcription factor Tel (Translocation Ets leukemia; also known as Etv6 [Ets 

variant gene 6]), the product of a locus frequently involved in translocations in leukemia, is a 

selective regulator of HSC survival. Following inactivation of Tel/Etv6, HSCs are lost in the 

adult bone marrow. Intriguingly, its inactivation in hematopoietic lineages does not affect 

neither their proliferation nor their survival (Hock et al. 2004), meaning that it acts selectively 

on immature hematopoietic cells. 

 

Gfi1 

Gfi1 (Growth factor independence 1) is a Zinc-finger repressor. When Gfi1 is deleted 

in mice, HSC frequencies are significantly reduced and Gfi1-/- bone marrow cells are severely 

impaired in competitive long-term reconstituting abilities after transplantation. Gfi1 deficient 

bone marrow cells show a surprisingly high proportion of actively cycling HSCs, suggesting 

that Gfi1 restrains HSCs proliferation increasing their self-renewal ability (Zeng et al. 2004). 

 

The Polycomb group proteins (PcG) 

The Polycomb group proteins are a family of proteins that can remodel chromatin in 

order to epigenetically silencing gene expression. Members of the Polycomb repressor 

complex 1 (PRC1), especially Bmi1, have been implicated in HSCs self-renewal. Part of the 

mechanism by which PRC1 sustains HSC self-renewal is by repression of genes that promote 

lineage specification, cell death and cell cycle arrest (Park et al. 2003, Molofsky et al. 2003). 

 

1.3.2.2 Cell-extrinsic regulators of HSCs 

 

Adjacent cells and blood supply HSCs self-renewal and differentiation decision, 

bringing a number of cytokines, growth factors or hormones. Among these,  Stem Cell Factor  

(SCF), Thrombopoietin (TPO), Fms-related tyrosine kinase 3 ligand (Flt3-l), Interleukin-11 

(IL-11), Interleukin-3 (IL-3), Interleukin-6 (IL-6) ,Granulocyte Macrophage-colony 

stimulating factor (GM-CSF) and combination of these, have been used for in vitro HSC 

expansion. These cytokines allow short-term HSC maintenance for a few days but by 

themselves are not sufficient to sustain HSC self-renewal, leading to a progressive depletion 

of long-term repopulation capacity and differentiation of HSCs (Glimm and Eaves 1999, Le 

Goff, Le Hesran and Robert 1998). Detailed studies of purified murine HSCs have shown that 
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the receptors for TPO and SCF, c-mpl and c-kit respectively, are expressed on repopulating 

HSCs. Moreover, mice with genetic mutation in TPO or c-mpl genes have a dramatically 

reduction in HSCs, demonstrating a physiological role for TPO and its receptor in regulating 

HSC production and function (Solar et al. 1998, Kimura et al. 1998) . 

The cocktail of SCF, Flt3, and TPO (mouse and humans) or IL-11 (mouse) is defined 

as the best cytokine cocktail medium supporting short-term Hematopoietic Stem and 

Progenitor Cells (HSPCs) proliferation and survival in in vitro cultures. 

These cytokines are present in blood and are also synthesized by HSC surrounding 

cells within the niche. These cells also secrete other HSC regulators which lead to the 

activation of proper signaling pathways in HSCs. Among these, there are the Tie2-Ang1, 

BMP-TGF, Sdf1/CXCR4, Notch, Wnt and JAK/STAT signaling pathways. The role of the 

niche and of these crucial factors in HSC pool maintaining will be discussed below in the 

“Hematopoietic stem cell niche” paragraph. 

 

 

1.4 IDENTIFICATION AND ISOLATION OF HUMAN 
HSCs 
 

The stem cell population constitutes only a small percentage of the total number of 

hematopoietic cells in bone marrow and blood. Identifying HSCs will allow for 

comprehension of their biology. Moreover, the availability of stem cells is extremely useful 

for bone marrow transplantation and for gene therapy. Since few decades ago, world-wide 

efforts have been done in order to isolate, characterize and biologically analyze HSCs. 

  

1.4.1 The sources of human HSCs 

 

The known sources of human HSCs are the bone marrow (BM), the umbilical cord 

blood (CB) and the peripheral blood (PB). In the BM, HSCs are rare cells representing the 

0.01% (1 every 10.000 cells) of the all population. Even if the BM represents the source with 

the majority of HSCs, it has been known for decades that stem and progenitor cells circulate, 

in low percentage, also in the blood stream. Researchers have observed that HSCs can be 

mobilized to the blood stream upon granulocyte-colony stimulating factor (G-CSF) treatment, 

increasing their percentage in peripheral blood. Another source of HSCs recognized by 
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researchers since the late 1980s is the umbilical cord blood. This tissue is responsible for the 

support of the developing fetus during pregnancy, is delivered along with the baby and is 

usually discarded, so it is easier to be obtained compared to BM or PB. These features make 

the CB the most used sample as source of HSCs. 

 

1.4.2 Experimental systems to identify HSCs 

 

The characterization of human HSCs has been possible by making use of experimental 

systems that have permitted their identification on the basis of their biological properties. In 

vitro and in vivo approaches that permit the identification and isolation of human HSCs are 

summarized below. 

 

In vivo models 

The most stringent assay to identify cells with high stemness potential is by testing 

their blood system reconstitution capacity in irradiated mice. It consists in injecting stem and 

progenitor cells into recipient mice and evaluates their capacity to give rise to all blood 

lineages. However, it is important to underline that to study human hematopoiesis in in vivo 

models the host should not eliminate the xenograft via an immune reaction and, should 

provide a permissive microenvironment for engraftment and multilineage differentiation of 

donor cells. Immunodeficient mice present these criteria and have been modified to improve 

their model function. Early studies were done in SCID (Several Combined 

Immunodeficiency) mice that lack of T- and B-cell defect (McCune et al. 1988). However, 

these mice still possess macrophages and NK cells that can mediate rejection of xenografts. 

More recently, SCID mice were crossed to non-obese diabetic (NOD) mice that display 

partially deficient NK cell, antigen-presenting cell, and macrophage functions.  NOD-SCID 

mice are currently used in in vivo studies of hematopoiesis and they display a 10-20-times 

better engraftment capacity than the SCID mice. However, NOD-SCID mice engraftment can 

be monitored for about 6 months because of the limited life-span of these mice. More 

recently, the NOD/SCID/IL-2Rg null (NOG) strain was shown to exhibit significantly 

higher engraftment potential than other immunodeficient mouse strains (Shultz et al. 2005). 

 

In vitro assay 

In adults, the majority of primitive hematopoietic cells are located in the bone marrow, 

where they are in contact with a variety of cells and molecules that influence their quiescence, 
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self-renewal, and differentiation. The best and stringent in vitro assay of HSC activity is the 

long term culture-initiating cell (LTC-IC) assay and it was reported in 1989 by Sutherland 

and colleagues (Sutherland et al. 1989). This test has provided an approach for the 

investigation of the regulation and maintenance of HSCs under conditions that mimic the 

marrow microenvironment. LTC-IC approach provides proper evidence of HSC activity 

without recurring to in vivo models. In a first step, candidates HSCs are cultured on bone 

marrow-derived stromal cells, in a 30% serum medium for 5 weeks or longer. In a second 

step, cells are transferred in a semi-solid medium of methyl cellulose containing cytokines, for 

about 2 weeks. Each HSC will be able to give rise to multiple differentiated colonies. Finally, 

the total number of myeloid, erythroid and multilineage clonogenic progenitors is evaluated 

and used to provide a quantitative assessment of the number of LTC initiating cells originally 

added (Fig.4). This long-lasting test is now largely used and it is the most stringent assay to 

identify human most immature hematopoietic stem cells.  

 

 
 
Figure 4: The LTC-IC in vitro assay to identify primitive hematopoietic cells. In the LTC-IC assay, stem and 
progenitor cells are co-cultured with bone marrow stromal cells for at least 5 weeks. Then, they are transferred in 
a semi-solid medium of methyl cellulose containing cytokines for about 2 weeks. The number of clonogenic 
progenitors raised is evaluated and used to provide an assessment of the number of LTC initiating cells. 
 

1.4.3 Isolation of candidate human HSCs by their surface antigen markers 

 

In vivo and in vitro studies together permitted the identification of a population of 

HSCs that was consequently characterized by the presence of different antigen markers. 

Detecting the expression of these marker panels allows separation of specific HSC-enriched 

cell populations via techniques like fluorescence-activated cell sorting (FACS). 

Most of the studies on HSC characterization have been done in mice, but it is now 

clear that there are considerable differences in distribution of surface markers between human 

and mouse hematopoietic cells, which makes identification of human counterparts of mouse 

stem and progenitor cells more complicated. Importantly, mouse LongTerm (LT)-HSCs are 
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CD34-/low, CD38+  and CD90 (Thy1)low, whereas human HSCs are hCD34+, hCD38- and 

hCD90+.(Iwasaki and Akashi 2007)  

The major representative and most used marker for human hematopoietic stem and 

progenitor cells was the CD34 antigen. The role of CD34 in human HSPCs is poorly known;  

studies in mice in which human CD34 antigen was ectopically expressed on the cellular 

surface reveal a role for CD34 in adhesion to BM stromal cells, elucidating a possible role for 

CD34 in regulation and compartmentalization of stem cells (Healy et al. 1995). However, 

mutant mice do not exhibit any defect in peripheral blood counts and answer to hematopoietic 

stress as well as wild-type mice (Cheng et al. 1996). In conclusion, CD34 seems to not be 

essential for hematopoiesis mice. Moreover, the fact that mouse LT-HSCs in steady-state 

bone marrow do not express significant levels of mCD34 raised an important question of 

whether hCD34+ cells could mark all long-term self-renewing human HSCs. Human CD34+ 

cell population is a heterogeneous population made of stem cells but also of progenitor cells. 

Among the CD34+ cells, just the 1-10% does not present any marker of lineage differentiation 

(Lin-) as CD3, CD4, CD8, CD11b and CD14. Oppositely, the majority of CD34+ cells (90–

99%) co-express the CD38 antigen, and this subset contains most of the lineage-restricted 

progenitors. Indeed, CD34+CD38- cells and not CD34+CD38+ cells are highly enriched for 

LTC-IC (Petzer et al. 1996) and contain NOD-SCID- repopulating cells (Bhatia et al. 1997). 

However, although most human HSCs are described as CD34+, the existence of CD34- HSCs 

in human and rhesus monkey have been described (Goodell et al. 1997). Recently, Anjos-

Afonso and colleagues showed that in addition to CD34+ HSPC population, there is a rare 

CD34- population with severe combined immune-deficiency repopulating capacity. This CD34-

CD38-CD93hi population contains cells that not only function as HSCs, but that can also be 

placed above CD34+38- population in hematopoietic hierarchy (Anjos-Afonso et al. 2013). 

Thus, CD34-CD38-CD93hi population contain more bona fide HSCs than CD34+CD38- 

population and the CD34 marker might be used as a positive marker anymore, but rather as a 

negative marker of most immature HSCs in addition to CD38 negative and CD93 positive 

markers. 

Another well-established marker for HSCs enrichment is the CD90 (Thy-1) antigen, 

which is present in humans and not in mice (Baum et al. 1992). Other markers as the 

CD45RA negative marker was assumed to be specific for the most immature human HSC 

population (Majeti, Park and Weissman 2007).  

In conclusion, it was supposed that a purified human HSC LTC-IC capable to engraft 

immune-compromised mice and to generate all the blood lineages is mostly a Lin-
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CD34+CD38- cell. However, recent evidences seem to favor the hypothesis that most 

immature HSCs possess the CD34 negative marker and that CD34-CD38-CD93hi population 

can be placed at the top of hematopoietic hierarchy. 

 

 

1.5 HEMATOPOIETIC STEM CELL NICHE 
 

HSCs reside as rare cells in the bone marrow and depend on their microenvironment 

for regulation of self-renewal and differentiation. This microenvironment, which consists of 

hematopoietic and non-hematopoietic (stromal) cells, is a specific anatomic location called 

niche. A lot of efforts have been done to decipher the interplay between a hematopoietic cell 

and its niche. A historical perspective starting from the first concept of niche formulated in 

1971 until the notions we have nowadays on this complicated but intriguingly system is 

reported below. 

 

1.5.1 Historical perspective on the hematopoietic stem cell niche 

 

The first experiments evidencing the concept of niche were performed in 1968 in 

Trentin’s laboratory. They demonstrated that both bone marrow and spleen stromal cells have 

an active role in the regulation of differentiation of HSCs into all blood lineages type. 

Moreover, they demonstrated that marrow and spleen organ stroma are geographically 

segmented into microenvironments and that in spleen stroma the predominant 

microenvironment dictates erythroid differentiation, whereas in marrow stroma the 

predominant microenvironment dictates neutrophilic granuloid differentiation. The 

hematopoietic organ stroma were thereby termed hematopoietic inductive 

microenvironments (HIMs) (Trentin 1971). 

Trentin formulated the concept of HIMs as a differentiation inducing 

microenvironment. This observation was expanded by Schofield in 1978. Schofield observed 

that HSCs need to reside in the bone marrow to retain their infinite potential, whereas those 

homed to the spleen were more restricted to their capacity to sustain hematopoiesis. He 

proposed that, in addition to a differentiation microenvironment, there was also a specific 

hematopoietic microenvironment which fixed the stem cells in place and prevented their 

maturation, allowing the stem cells to proliferate and retain their stemness. Schoefield 
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formulated that “The stem cell is seen in association with other cells that determine its 

behavior” (Schofield 1978). The concept that stem cells fate is determined by surrounding 

cell structure is nowadays referred to as the stem cell microenvironment or the stem cell 

niche. 

In 2003, two reports published on Nature journal demonstrated by in vivo experiments 

in two different mouse models, that bone-forming osteoblasts were critical component of the 

niche, being capable of influencing HSC size and number (Calvi et al. 2003, Zhang et al. 

2003). However, few years later, Kiel and colleagues suggested the role of another 

hematopoietic stem cell niche, which was rather formed by the endothelial cells within the 

bone marrow (Kiel et al. 2005).  

Nowadays, it is clear that numerous elements of the BM intersect each other to 

appropriately regulate HSC fate choices and that it is inappropriate to say that HSCs are 

regulated just by osteoblast or by endothelial cells. Many other cells interplay with HSC and 

regulate their fate, as monocyte-macrophages, megakaryocytes and nervous system cells. 

Understanding how niche regulate HSCs is becoming more and more attractive for stem cell 

regenerative therapies, where  cell proliferation and differentiation must be controlled in vitro, 

so that sufficient quantity of the proper stem cells can be produced prior to being introduced 

back into the patients. 

 

1.5.2 Cell type forming HSC niche  

 

The stem cell niche is the functional and anatomical ‘node’ that allows integration of 

signals from the periphery into the appropriate stem cell behavior. Osteoblasts and endothelial 

cells of the bone marrow niche have been long time studied, as the two major components of 

the niche that support maintenance, proliferation and differentiation of HSCs. Two different 

niches were proposed: the endosteal niche, where HSCs are closed to osteoblasts, and the 

perivascular niche, where HSCs are closed to vascular endothelium in marrow sinuses. Much 

has been debated over the distinction of a single niche, yet, to this day, consensus has not 

been reached in determining either over the other. This is because the periosteal region of the 

BM is a sponge-like trabecular complex structure where dormant HSCs are influenced not 

only by osteoblasts and vasculature but also by other stromal structures in quite close 

proximity (Fig.5). To date, it is in fact known that in addition to osteoblasts and endothelial 

cells, there are also reticular stromal cells, macrophages, megakaryocytes, adipocytes, 

regulatory T-cells and nervous system cells as key component of the BM niche, regulating 
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HSCs. Therefore, the concept of the BM niche should be viewed as a conjoined influence of 

different cellular components. 

The most studied cell types present in the BM niche and how they are able to regulate 

HSC maintenance are discussed below. 

 

Osteoblasts and mesechymal stem cells (MSCs) 

Osteoblasts are mononucleated cells that are responsible for the bone formation. Bone 

tissue undergoes a constant process of remodeling and is constantly being reshaped by 

osteoblasts, which produce matrix and minerals, and osteoclasts, that are responsible for the 

resorption of the tissue. 

Different cells of the osteoblastic lineage are present in the bone marrow: 

mesenchymal stem cells (MSCs) (the multipotent stromal cells that give rise to osteogenic 

lineages), osteoprogenitor cells, osteoblast and osteocytes.  

Osteoblasts are usually found in layer along the endosteum (the connective tissue 

around the medullary cavity) and the periosteum (the membrane that lines the outer surface of 

the bone). In vitro results obtained in 1996 seem to favor the hypothesis that human osteoblast 

can support HSCs in ex vivo culture system (Taichman, Reilly and Emerson 1996). Based on 

these observations, Zhang and colleagues and Calvi and colleagues examined the osteoblast 

regulation of the niche by two different in vivo approaches. Zhang and colleagues made use of 

a mouse model in which the Bone Morphogenetic Protein Receptor1A (BMPR1A) was 

conditionally deleted. They found that in these mice there was an ectopic formation of a 

trabecular bone-like area (TBLA) and an increase of N-Cadherin-positive osteoblasts. The 

formation of the TBLA correlated with an increase of the number of HSCs and these HSCs 

were associated with osteoblast by N-Cadherin (Zhang et al. 2003). Calvi and colleagues 

examined the effects of the constitutively activated parathyroid hormone-related peptide 

receptor (PPR) under the control of a specific osteoblast-collagen promoter. They found that 

in PPR transgenic mice there was a size increase of the trabecular bone which correlated with 

an increased number of osteoblasts and an increased number of HSCs in conjunction with the 

trabecular bone. Moreover, they found that these HSCs had a more activated Notch1 pathway 

than HSCs of wild-type mice. (Calvi et al. 2003). 

However, studies in which osteoblast number is decreased do not show a reduction in 

HSCs. Vinjic and colleagues made use of a mouse model in which deletion of osteoblast was 

possible by the expression of thymidine kinase under the control of an osteoblast-specific 

promoter and the consecutive treatment with gancyclovir. In gancyclovir-treated mice there 



38 INTRODUCTION – PART I 

was a decreased of marrow size and a decreased number of HSCs in the bone marrow. 

However, they found an increased extramedullary hematopoiesis in spleen and in the liver, 

resulting in an increase in peripheral HSCs and active primary in vitro hematopoiesis (Visnjic 

et al. 2004). 

Recently, also mesenchymal stem cells (MSCs) have been shown to play a role in 

HSC regulation by secretion of specific factors. For instance they express, in association with 

osteoblasts,  the tissue inhibitor of metalloproteinase-3 (TIMP3), to influence not only HSC 

quiescence and fate determination, but also normal bone formation and maintenance (Shen et 

al. 2010, Nakajima et al. 2010). Moreover, agrin, a proteoglycan involved in neuromuscular 

junctions, is expressd by MSCs and differentiated osteoblasts, while its receptor, alpha-

dystroglycan, is expressed by HSCs. Agrin was shown to support the proliferation of 

hematopoietic progenitor cells and a microenvironment devoid of agrin results in progenitor 

cell apoptosis as well as reduced hematopoiesis (Mazzon et al. 2011).   

In conclusion, both MSCs and osteoblasts contribute to HSC regulation in the 

endosteal niche of the bone marrow. 

 

The endothelial cells  

In bone marrow, endothelial cells form a barrier between the marrow and the blood 

circulation. They are the site of entrance of all blood cells that leave the blood circulation to 

enter into bone marrow and the site of exit for cells that are ready to enter the blood stream.  

A decade ago it was shown that endothelial cells regulate proliferation of 

hematopoietic progenitor cells and long-term culture initiating cells by elaboration of lineage-

specific cytokines in in vitro system (Rafii et al. 1995). These results were then validated by 

the use of human brain endothelial cells (Chute et al. 2002) and heart, lung and liver 

endothelial cells (Li et al. 2004). Moreover, in vivo confocal imaging of bone marrow mice 

revealed that HSCs can localize to specific subset of the marrow microvasculature where cells 

persist or increase in number (Sipkins et al. 2005). Finally, another group found that the 

majority of HSCs are located in the sinusoidal endothelium  region and that only the 16% of 

these cells localize at the periendosteal region (Kiel and Morrison 2006). 

 

Endosteal monocytes and macrophages 

Also monocytes and macrophages can importantly contribute to HSC regulation in the 

BM niche. In a study of G-CSF mobilization of HSCs from the BM, Winkler and colleagues 

found that there was a depletion of endosteal monocytes or macrophages. In vivo depletion of 
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macrophages, recapitulated the HSC mobilization into blood (Winkler et al. 2010). Reduced 

endosteal monocyte-macrophage populations coincide with reduced levels of HSPC-active 

factors, like CXCL12, in the niche, providing a potential mechanism of how these myeloid 

cells function in HSC regulation (Chow et al. 2011). Together, these results establish that 

bone marrow monocytes and macrophages are pivotal to maintain the endosteal HSC niche 

and that the loss of such monocytes/macrophages leads to the egress of HSCs into the blood. 

 

Cells of the nervous system 

In 2011 Yamazaki and colleagues proposed that also particular nervous system cells 

can play a role in niche regulation of HSCs. They found that non-myelinating Schwann glial 

cells in BM are TGF-beta-producing cells and express HSC niche factor genes. Moreover, 

they are in contact with a substantial proportion of HSCs. A nerve denervation reduces the 

number of these active TGF-beta-producing cells and leads to rapid loss of HSCs from BM. 

Thus, they propose that glial cells are components of  BM niche and maintain HSC 

quiescence by regulating activation of latent TGF-beta (Yamazaki et al. 2011). 

 

Reticular stromal cells 

CXCL12 abundant reticular (CAR) cells are a population of reticular cells, which 

express CXCL12 at high amounts, with several long processes and scattered throughout adult 

BM niche. Most cells expressing high amounts of CXCL12 are not in close proximity to the 

bone surface but rather they are scattered throughout the trabecular space of the BM cavity 

(Sugiyama et al. 2006).  When BM CXCL12-ecpressing cells are ablated in vivo, HSC 

number and size decrease, they are more quiescent and they express myeloid genes (Omatsu 

et al. 2010). Thus, CAR cells are required for proliferation of HSCs as well as maintenance of 

HSCs in an undifferentiated state thanks to their ability to express CXCL12 and consequently 

to retain HSCs in BM, preventing their mobilization to vasculature. 

 

Megakaryocytes 

Another mature cells type with key HSC regulatory roles are the megakaryocytes 

(MKs). TPO, through its receptor c-mpl, favors platelet productions from MKs as well as 

HSC self-renewal. MKs control the availability of TPO and in an environment where the 

number of MKs is increased, like in Myb or p300 mutated mice, TPO is less available and 

HSCs show an increase in cell cycle and a decrease in number (de Graaf et al. 2010). 
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In conclusion, the bone has a peculiar role in hematopoiesis regulation and it is 

composed of different kind of cells that create a cross-talk with HSCs and impact their 

residency and function. Research is evolving to better understand how these cells are 

anatomically and functionally organized, in a 3D structure, and how the BM architecture 

changes with disease. If the BM niche can be mimicked in vitro, this will not only allow for 

HSC expansion and differentiation in vitro, but will also increase understanding and ability to 

manipulate HSCs for more robust engraftment and mobilization. Although more research is 

required to ascertain how they interact with each other, MSCs, osteoblasts, nerves, reticular 

stromal cells and endothelial cells, as well as macrophages and megakaryocytes should all be 

considered key components of the HSC niche, playing a critical role in regulating HSC fate.  

 

1.5.3 Microenvironment-dependent signals which regulate hematopoiesis 

 

HSCs are normally quiescent cells that reside in the bone marrow. In response to 

hematopoietic stress, they are able to divide, to differentiate and to replenish the 

hematopoietic system. The different choices of a HSC are regulated by its microenvironment 

and this tight regulation involves different microenvironment-dependent signaling pathways. 

The most important are described below. 

 

Tie2-Ang1 signaling pathway and N-Cadherin 

Tie2-Angiopoietin1 (Ang-1) signaling pathway is required to maintain HSC quiescent 

at the endosteal surface. Indeed, HSCs that express the tyrosin kinase receptor Tie2 are 

quiescent and anti-apoptotic; the interaction of these cells with the Tie2-ligand, Ang-1, permit 

the maintaining of in vivo long-term repopulating activity of HSCs. Moreover, Ang1 enhances 

the ability of HSCs to remain quiescent and to adhere to the bone (Arai et al. 2004).  

One target of Tie2 signaling is N-Cadherin; this adhesion protein was shown to be 

implicated in niche-HSC interaction too. Over-expression of N-Cadherin in HSCs promotes 

quiescence and preserves HSC activity during serial bone marrow transplantation. Moreover, 

N-Cadherin knock-down inhibits the HSC localization to the endosteal surface of bone 

marrow and decreases long term engraftment. Oppositely, N-Cadherin knocked down cells in 

the spleen do not exhibit any activity defects, meaning that this adhesion molecule is essential 

for proper HSC regulation in bone marrow niche (Arai et al. 2012). 
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VEGF 

The vascular endothelial growth factor (VEGF) is a stimulator of angiogenesis and a 

key mediator of the interaction between osteoblasts and vascular endothelial cells. VEGFR2 is 

the main receptor expressed by the osteoblasts, osteoclasts as well as endothelial cells within 

the bone marrow. VEGF can couple osteogenesis and angiogenesis by stimulating survival 

and proliferation of endothelial cells and osteoblastic lineage commitment of osteoprogenitors 

(Maes et al. 2010). VEGF was also shown to be essential for HSC maintaining by an 

autocrine loop control (Gerber et al. 2002) and for the correct hematopoietic niche formation 

(Chan et al. 2009). 

 

BMP-TGF pathway 

Bone Morphogenetic Proteins (BMP) is a group of growth factors that interact with 

their receptors (BMPR) at the cellular surface and activate mobilization of the SMAD 

proteins. BMP4 is expressed in cells of the hematopoietic stem cell microenvironment, 

including osteoblasts, endothelial cells and megakaryocytes. BMP4 is implicated in stromal 

cell regulation of embryonic HSC in the AGM region (Durand et al. 2007) as well as adult 

HSC in vivo (Goldman et al. 2009). One receptor of BMP is BMPR1 and it is found to be 

highly expressed by osteoblasts. As described before, BMPR1 deficiency strongly decreases 

the number of HSCs capable of repopulating activity (Zhang et al. 2003). 

 

Sdf1/CXCL12 and CXCR4 

Stromal derived factor (Sdf1), also called C-X-C motif chemokine (CXCL12), is a 

chemotactic molecule produced by stromal cells and its receptor, CXCR4, is highly expressed 

on earliest HSCs.  

Sdf1 is capable to regulate the attachment of the HSCs to the niche and consequently 

to modify the number of HSCs in the blood circulation, by regulating soluble-kit release via 

the matrix metalloproteinase1 (MMP1) (Heissig et al. 2002). Moreover, Sdf1/CXCR4 

signaling is not only essential to confine HSCs to their proper niche, but also to maintain 

these cells in a quiescent status (Nie, Han and Zou 2008). 

 

Notch pathway 

The Notch receptor is a single-pass transmembrane receptor protein, composed of a 

large extracellular domain and a smaller intracellular domain. In mammalian, members of the 
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Delta-like (DLL1, DLL3, DLL4) and Jagged (JAG1, JAG2) families serve as ligands for 

Notch signaling receptors. 

In murine hematopoietic stem cells, LSK (Lin-, Sca1+, c-Kit+) cells, an over-

expression of the active intracellular Notch1 domain is responsible for self-renewal (Varnum-

Finney et al. 2000). Moreover, in vitro results obtained from cell line cultures, show that the 

interaction between Jagged1(JAG1) ligand and Notch1 sustains the long-term maintenance of 

hematopoietic progenitor cells and impairs differentiation, suggesting a role in cell fate 

decision for JAG1 and Notch signaling pathway (Li et al. 1998). These in vitro results were 

strengthened by in vivo data in which Notch activation was shown to have a role in lymphoid 

over myeloid lineage commitment (Stier et al. 2002). More recently, it has been shown that 

Notch1 is expressed on HSCs and Notch ligands as DLL1 and JAG1 are expressed by 

osteoblastic cells, meaning that Notch1 could be a crucial mediator of HSC-niche crosstalk 

(Nobta et al. 2005, Calvi et al. 2003). Notch signaling seems to be very important for niche 

dependent HSC regulation. 

 

Wnt pathway 

Wingless (Wnt) signaling pathway is activated by the binding of a Wnt-protein to 

a Frizzled family ligand. Two different Wnt downstream signaling pathways may exist: the β-

catenin-dependent canonical and non-canonical pathway. Both canonical and non-canonical 

pathway promotes self-renewal of HSCs in an intrinsically or extrinsically way, respectively 

(Luis et al. 2009, Murdoch et al. 2003). Moreover, blocking Wnt signaling in the niche, by the 

expression of a Wnt inhibitor under the control of a specific osteoblastic promoter, increases 

the number of proliferating HSCs and reduces their ability to reconstitute 

the hematopoietic system of irradiated recipient mice. This effect is microenvironment-

dependent because if these HSCs issue from transgenic mice are transplanted in wild type 

mice, they are completely capable to reconstitute hematopoiesis (Fleming et al. 2008). These 

findings show that Wnt/β-catenin activity is crucial for the cross-talk between HSC and their 

niche and the consequently maintain of HSCs. 

 

The JAK/STAT pathway 

Last but not least, another molecular pathway involved in HSC maintenance by the 

niche is the JAK/STAT (Janus family kinase–signal transducer and activator of transcription) 

pathway. It is a common downstream pathway of extracellular signaling (cytokine, growth 
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factors, hormones...) and plays critical role in transmitting a variety of biological functions by 

regulating transcription of target genes. 

This pathway will be discussed in greater detail in the last paragraph. 

 

 

 

Figure 5: Schematic picture of the HSC microenvironment. HSCs are located in a sponge-like trabecular 
structure and there is a conjoined influence of different cellular compartments. Among these there are 
osteoblasts, endothelial cells, mesenchymal stem cells (MSC), CXCL-12 abundant reticular cells (CAR), 
macrophages, megakaryocytes and adipocytes. Under steady state, they all interact with HSCs by secreting 
specific factors such as TGF-beta, CXCL-12 and Ang-1, and they promote the maintaining of their stemness 
properties. Once HSCs start cycling to produce new hematopoietic differentiated cells, they move to blood 
vessels, where they cross the endothelial barrier and reach the blood stream. 
 

 

1.5.4 Hypoxia and reactive oxygen species (ROS) 

 

As discussed before, the proper interaction between HSCs and bone marrow niche is 

crucial to prevent cell exhaustion from excessive proliferation. In addition, the niche protects 

HSCs from stress, like accumulation of reactive oxygen species (ROS) and DNA damages. 

Indeed, in the bone marrow niche there is an O2 gradient from below 1% in hypoxic niche to 
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6% in sinusoidal cavity.  In 2007, Parmar and colleagues showed, by making fractions of the 

bone marrow and using the hypoxic marker pimonidazole, that long-term repopulating cells 

are located predominantly at the lowest end of the O2 gradient (Parmar et al. 2007). This 

finding leads to the observation that the level of oxidative stress influences the HSC function. 

Indeed, mice which lack ATM activity, the crucial factor for maintaining of genomic stability, 

show progressive bone marrow failure resulting from an excessive accumulation of ROS – 

and DNA damages- in HSCs (Ito et al. 2004). 

The heterodimeric transcription factor hypoxia-inducible factor (HIF)-1 constitutes the 

major molecular response to hypoxia. It consists of two basic helix-loop-helix subunits: an 

oxygen-sensitive HIF-1 subunit and an oxygen-insensitive HIF-1β subunit. At normal 

oxygen levels, above 5%, hydroxylation of the proline residues 402 and 564 of HIF-1 by 

specific HIF-prolyl-hydroxylase (PHDs) enables binding of an E3 ubiquitin ligase which 

leads to degradation of HIF-1 by the proteosome. In contrast, in hypoxic conditions, at 

oxygen level below 5%, hydroxylation is inhibited, leading to stabilization of HIF-1. It 

seems that hypoxic conditions enhance ‘‘stemness’’ by HIF-1-mediated activation. In HIF-

1-deficient mice, HSCs lose their cell cycle quiescence and HSC number decrease during 

various stress settings including bone marrow transplantation, myelosuppression, or aging 

(Takubo et al. 2010). Stemness maintenance by HIF-1 involves regulation of genes involved 

in cell-cycle control as well as protection to harmful effects of mitochondrial ROS. HSCs 

have elevated HIF-1 expression corresponding to low mitochondrial activity, and increased 

glycolysis activity instead of mitochondrial oxidative phosphorylation (Simsek et al. 2010). 
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2. 
The Chronic Myeloid Leukemia (CML) 

 

 

2.1 WHAT IS CANCER? 
 

An adult human being has approximately 1014 living cells in the body. Normally, cells 

grow, divide and die in an orderly way. During the early years of a person life, cells grow and 

divide faster, in order to produce the new tissues of which an individual is composed. After 

the person becomes an adult, most of the cells continue to divide just to replace the damaged 

or dyed cells. Cancer develops when cells lose their capacity to control their proliferation. 

Instead of dying, cancer cells keep on growing and form other cancer cells. Moreover, cancer 

cells acquire the capacity to move and invade other tissues different from the tissue where 

they originated. Indeed, they are able to enter into blood or lymph vessels, to move 

throughout blood stream and finally colonize new parts of the body, in a process called 

metastasis. Thus, cancer cells differ from normal cells essentially for their capacity to 

proliferate out of control and to invade new tissues of the body.  

 

2.1.1 Leukemia 

 

Leukemia is a kind of cancer characterized by an uncontrolled proliferation and 

development of hematopoietic cells. There are different kinds of leukemia, depending on 

clinical and pathological characteristics.  

The first division is about its acute or chronic forms: 

- the acute leukemia is characterized by an increase proliferation of immature blood 

cells, which are blocked in their ability to mature the way they should. It 

leads to a rapid progression and accumulation of functionally defective 

leukemic cells and, without treatment, most patients live only few months. 

Acute leukemia is the most common leukemia in children.  

- the chronic leukemia is characterized by the progressive accumulation of more 

mature blood cells which exhibit some functionality. Normally, chronic 
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leukemia takes months and years to progress. It mostly occurred in aged 

people but can also occur in young people. 

The second division concerns which kind of blood cell is affected in the leukemic 

process:  

- if leukemic process takes place in a cell that expresses lymphoid markers, the 

leukemia is called “lymphocytic” or “lymphoblastic”, depending on its 

chronic or acute form, respectively. 

- if the transforming cell express myeloid markers it is called “myeloid” or 

“myelogenous”.  

 

As results of these subgroups there are 4 different major types of leukemia: acute 

myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphoblastic 

leukemia (ALL) and chronic lymphocytic leukemia (CLL). These 4 main groups of 

leukemia are further classified into subtypes based on specific features of cells.   

 

 

 2.2 THE CML DISEASE  
 

The “chronic myeloid leukemia”, is called by several other names, like “chronic 

myelogenous leukemia”, “chronic myelocytic leukemia” and “chronic granulocytic 

leukemia”. 

CML is a clonal myeloproliferative disorder of the primitive hematopoietic stem cell, 

characterized by the clonal expansion of terminally differentiated myeloid cells. The main 

observation in CML patients is a proliferation of mature granulocytes (neutrophils, 

eosinophils and basophils) and of their precursors.  

The hallmark of CML is the presence of the Philadelphia (Ph) chromosome (Fig.6). 

The Ph chromosome was first discovered and described in 1960 by Peter Nowell from the 

University of Pennsylvania and David Hungerford from the Fox Chase Cancer Center and 

was therefore named as the city where both the facilities are located. The Ph chromosome is 

generated from a reciprocal chromosome translocation between chromosome 9 and 

chromosome 22. The break on chromosome 9 (region q34) leads to a mutation of Abelson 

murine leukemia (ABL) gene, while the break on chromosome 22 (region q11) involves the 

Breakpoint Cluster Region (BCR) gene. This chromosome translocation is designated as 

t(9;22)(q34;q11). Therefore, the mutated ABL gene moves to chromosome 22 and fuses with 
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the remaining portion of the BCR gene, creating an elongated chromosome 9 and a truncated 

chromosome 22, which is the Ph chromosome (Rowley 1973).  The molecular consequence of 

this translocation is the leukemia-causing fusion oncogene BCR-ABL, which in turn translates 

into a BCR-ABL oncoprotein. 

 

 

 

 

Figure 6: the t(9;22) that generates the Philadelphia chromosome. (A) schematic representation of the 
t(9;22). First of all, there is a break of a part of the long arm of the chromosome 9 that includes the ABL gene, 
and another break of the long arm of the chromosome 22 at the level of BCR gene. After the chromosome break, 
there is a reciprocal translocation of the ABL gene-included region of the chromosome 9 on the chromosome 22, 
resulting in the Ph chromosome. (B) Karyotype of an individual with CML. A chromosome preparation of cells 
at the metaphase stage of mitosis was stained with GIEMSA that binds AT-base pairs. The Ph chromosome 
(right arrow) results smaller than its counterpart. Left arrow indicates portion of chromosome 22 translocated on 
chromosome 9. 
 

 

 

 2.3 THE BCR-ABL ONCOGENE 
 

More than 95% of patients with CML have BCR-ABL gene in their leukemic cells. 

Thus, BCR-ABL can be seen as the hallmark of CML. However, it is not exclusively to CML 

because it can be found in 10-20% of adults and 2-5% of children with acute lymphoblastic 

leukemia, as well as in occasional cases of acute myeloid leukemia, lymphoma, myeloma and 

chronic neutrophilic leukemia (CNL), which is a more benign variant of CML (Melo 1996). 

The precise location of breakpoint in BCR and in ABL, and thus the composition of the fusion 

BCR-ABL protein, determines the differences in the disease phenotype. 

A B
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2.3.1 Structure of the various BCR-ABL fusion genes 

 
The BCR-ABL oncogene is located on the shorter derivative 22 chromosome.  

Depending on the precise location of the fusion, the molecular weight of BCR-ABL protein 

varies between 190, 210 or 230 kDa. For this reason BCR-ABL protein is usually called 

p190, p210 or p230. 

In figure 7 there is a schematic representation of the different transcripts that can be 

generated depending on the different breakpoints.  

- ABL gene breakpoints: there are 3 potential breakpoints in ABL gene and they can 

occur in a >300kb region in the 5’ end of the gene, either upstream the first 

exon Ib, between exon Ib and Ia, or downstream of exon Ia.  

- BCR gene breakpoints:  in the vast majority of CML patients and in one third of 

ALLs, the breakpoint in BCR gene is found within a 5.8 kb region known as 

the major breakpoint cluster region (M-bcr). In the M-bcr region there are 5 

exons historically named b1 to b5, now known to be exons 12 to 16 of the 

BCR gene. The breakpoint can be found either in exon b2 or b3. In addition to 

these breakpoints which are found in the majority of CML cells, there are two 

other breakpoints: one in the first exon e1 within the minor breakpoint cluster 

region (m-bcr) and another in the exon e19 within the µ-bcr region. 

 

Regardless of the position of the breakpoint of ABL gene, four different transcripts of 

BCR-ABL gene can be found, depending on the breakpoint position of the BCR gene. These 

different transcripts are:  

- e1a2 transcript which encodes for a 190 kDa BCR-ABL protein (p190), found in 

very rare cases of CML and AML and in two thirds of ALLs.  

- b2a2 transcript which encodes for a 210 kDa BCR-ABL protein (p210), found in 

more than 95% of CML and in one third of ALLs. 

- b3a2 transcript which encodes for a 210 kDa BCR-ABL protein (p210), found in 

more than 95% of CML and in one third of ALLs. 

- e19a2 transcript which encodes for a 230 kDa BCR-ABL protein (p230), found 

in CNL cells. 
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Figure 7: Schematic representation of the BCR and ABL genes disrupted in the t(9;22) . Exons are 
represented by boxes and introns by connecting lines. The 3 potential breakpoints in ABL gene are indicated 
with arrows and are located either upstream exon Ib, between exons Ib and Ia, or downstream exon Ia. The BCR 
gene contains 25 exons and two putative alternative exons (e1’ and e2’). The breakpoints in BCR usually occur 
within one of three breakpoint cluster regions (bcr), the location and probable extents of each are shown by the 
three double-headed horizontal arrows. In exceptional cases the BCR breakpoints fall between m-bcr and M-bcr, 
within the region indicated by the double-headed dashed-line arrow. The lower half of the figure shows the 
structure of the various BCR-ABL mRNA transcripts which are formed in accordance with the position of the 
breakpoint in BCR. 
 

 

2.3.2 BCR-ABL fusion proteins 

 

BCR-ABL oncoprotein is not only a cancer marker, but also the causative lesion of 

CML. This indispensable role of BCR-ABL was demonstrated for the first time in 1990 by 

Daley and colleagues. They infected murine bone marrow cells with a retrovirus encoding 

p210 BCR-ABL followed by transplantation of infected cells into irradiated mice. Recipients 

developed several hematologic malignancies and, among them, there was a myeloproliferative 

syndrome closely resembling the initial chronic phase of the CML (Daley, Van Etten and 

Baltimore 1990). 

From (Melo 1996) 



50 INTRODUCTION – PART I 

BCR-ABL fusion protein is formed, as described above, by a head-to-tail fusion of the 

BCR and ABL genes. BCR-ABL proteins contain the N-terminal 927 or 426 amino acids for 

BCR in CML (p210) or Ph+ ALL (p190), respectively.  

The human BCR protein contains 1.271 amino acids and multiple domains, including 

the oligomerization domain (OLI), the serine/threonine kinase domain (S/TK), the domain 

homologous to the human Dbl and yeastCdc24 proteins (DH) and the domain with the Rac 

GTPase-activating protein (RacGAP). The ABL protein belongs to the non receptor family of 

tyrosine kinase and contains 1.097 amino acids. ABL protein includes: the Src-homology 

domain 3/2 (SH3/SH2), which bind to phosphotyrosine residues or proline-riche sequences, 

respectively, the tyrosine kinase (TK) domain, the nuclear translocalization signal (NTS), the 

DNA binding domain (DBD) and the actin binding (AB) motif (Fig. 8). The two domains 

essential for transforming activity are the OLI from BCR and the TK from ABL. 

 

 

 

Figure 8: Structural and functional domains of BCR, ABL and BCR-ABL. The two domains essential for 
transforming activity-OLI from BCR and TK from ABL- are illustrated in green and red, respectively. 
Depending on the site of the breakpoint in the BCR gene, the fusion protein can vary in size, from 190 to 230 
kDa. Each fusion protein contains the same portion of ABL protein but differs in the length of BCR portion. The 
breakpoints in BCR that give rise to CLL or ALL are indicated by arrowheads.  
 

 

Oligomerization of BCR-ABL is essential for oncogenicity and this involves the N-

terminal oligomerization domain. This domain presents a coiled-coil segment and two BCR-

ABL monomers can dimerize by swapping their N-terminal helices. Followed by 

oligodimerization, two dimers stack onto each other to form an active tetramer that exhibit 

transforming activity (Zhao et al. 2002, McWhirter, Galasso and Wang 1993). 

BCR-ABL fusion protein results in a constitutively active tyrosine kinase. Fusion to 

BCR unmasks the domain of actin binding at the C-terminal region of ABL, resulting in a 

massive localization of BCR-ABL in the cytoplasm.  

   

From. (Zhao et al. 2002) 
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2.3.3 Signaling pathways regulated in BCR-ABL cells  

 

A crucial feature for BCR-ABL activity is oligomerization by their N-terminal coiled 

coil domains and auto-phosphorylation on its Tyr 177. This Tyr phopshorylation leads to 

maximal BCR-ABL kinase activity and is responsible for CML progenitor expansion, 

proliferation and survival. Blocking BCR-ABL-Tyr 177 mediated signaling enhances the 

effect of Imatinib, a BCR-ABL inhibitor, on progenitor survival. (Chu et al. 2007). The most 

relevant signaling pathways are represented in figure 9.  

 

- RAS pathway: upon ligand binding and dimerization, activated Receptor 

Tyrosine Kinases (RTKs) recruit SH2 and SH3 containing adaptor molecules 

like Grb-2 into signaling complexes with Rat sarcoma (RAS) exchange 

factors at the cell membrane. These complexes trigger the accumulation of 

the active GTP-bound form of RAS. Similar to RTKs, BCR-ABL also 

activates RAS. The mechanism for BCR-ABL-dependent RAS activation 

involves at least 3 different adaptor proteins: Grb-2, Gab-2 and CRKL. Each 

of these 3 factors can form a complex with BCR-ABL and can link BCR-

ABL to RAS. Dominant mutants of Grb-2 can reverse the BCR-ABL 

transformed phenotype (Gishizky, Cortez and Pendergast 1995). Gab-2 

adaptor also plays a role in BCR-ABL transforming activity and murine bone 

marrow Gab-2 knock-down cells are resistant to transformation by BCR-ABL 

(Sattler et al. 2002). Finally, CRKL adaptor seems to have a non-overlapping 

function with Grb-2 and it is the most prominent phosphor-protein in clinical 

CML cells and it is sufficient to recapitulate much of the activity of BCR-

ABL (Nichols et al. 1994). 

 

- MAPK pathways: a primary signaling event following RAS activation is 

activation of mitogen activated protein kinase (MAPK) signaling pathways. 

Three MAPK cascades have been well characterized: the extracellular 

regulated kinase (ERK), the stress activated protein kinase (SAPK) and the 

jun kinase (JNK) pathways. All of the 3 signaling pathways are activated in 

BCR-ABL expressing cells (Raitano et al. 1995). 

   



52 INTRODUCTION – PART I 

- PI3-kinase: Phosphoinositide 3-kinase (PI3K) is a member of the 

phopshoinositide kinase superfamily that functions in the regulation of 

phopshoinositide lipid metabolism and generation of lipid second messengers 

involved in signal transduction. PI3K is a heterodimeric protein composed of 

a p85 regulatory subunit and a p110 catalytic subunit that is capable to 

phopshorylate both lipids and proteins. The p85 subunit is phopshorylated in 

BCR-ABL expressing cells (Gotoh et al. 1994) and form complexes with 

BCR-ABL through interaction with CBL and CRKL (Sattler et al. 1996). 

PI3K activation results in phopshorylation of AKT, which functions in: 

suppression of the activity of Forkhead box protein O (FOXO) transcription 

factors (Naka et al. 2010), proteosomal degradation of p27 through 

upregulation of SKP2 (Agarwal et al. 2008) and activation of mammalian 

target of rapamycine (mTOR) which leads to enhanced protein translation 

and proliferation (Markova et al. 2010). All these molecule regulations 

participate to in increased survival and proliferation of BCR-ABL cells. 

 

- JAK/STAT pathway: BCR-ABL is able to activate JAK/STAT pathway in 

hematopoietic cells. In CML cells, it has been shown that among the STAT 

factors, STAT5 and STAT3 are constitutively activated by BCR-ABL 

(Klejman et al. 2002). STAT5 is not only a BCR-ABL target factor, but also a 

pivotal protein for CML cell maintaining. Both STAT3 and 5, enhance Bcl-

xL expression by direct binding on its promoter. (Dumon et al. 1999, Fujio et 

al. 1997). B-cell lymphoma extra Large (Bcl-xL) is a transmembrane 

molecule in the mitochondria. It is a member of the Bcl-2 family proteins and 

it acts as a pro-survival anti-apoptotic factor by preventing the release of 

mitochondrial contents such as cytochrome C which would lead to caspase 

activation and apoptosis. Bcl-xL anti-apoptotic network is not essential for 

development and maintenance of CML, but is required for disease 

progression in patients undergoing blastic transformation (Harb et al. 2013). 

The implication of STAT5 factor in CML development will be discussed in 

detail in the next chapter. 

 

- Molecules involved in cell adhesion: CML cells migrate and adhere abnormally. 

This feature is due to the BCR-ABL down-regulation of some genes, 
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including the focal adhesion protein Paxillin (Salgia et al. 1995), β1-integrin 

(Lundell et al. 1996), L-selectin, intercellular adhesion molecule-1 (ICAM-

1), and the chemokine receptor CCR7. CCR7 impairments are associated 

with impaired chemotaxis toward its ligands CCL19 and CCL21 (Jongen-

Lavrencic et al. 2005). 

 
- Wnt/β-catenin signaling: Wnt/β-catenin activity is crucial for the cross-talk 

between HSC and their niche and the consequently maintain of HSCs. 

Aberrant Wnt/β-catenin signaling pathway is implicated in the genesis of 

various cancers. It has been reported that genetic inactivation of the β-catenin 

gene in mice impairs the development of BCR-ABL induced CML (Hu et al. 

2009, Zhao et al. 2007). More recently, Heidel and colleagues showed that β-

catenin is activated and required for CML stem cell maintenance in mice 

(Heidel et al. 2012). These findings suggest that this is another crucial 

signaling pathway which plays a role in BCR-ABL cell maintaining. 

 

   

Figure 9: The BCR-ABL 
signalling network. 
Dimerization of BCR-ABL 
triggers autophosphorylation 
events that activate the kinase 
and generate docking sites for 
intermediary adapter proteins 
(purple) such as Grb-2. BCR-
ABL–dependent signalling 
facilitates activation of multiple 
downstream pathways that 
enforce enhanced survival, 
inhibition of apoptosis, and 
perturbation of cell adhesion and 
migration. A subset of these 
pathways and their constituent 
transcription factors (blue), 
serine/threonine-specific kinases 
(green), and apoptosis-related 
proteins (red) are shown. A few 
pathways that were more recently 
implicated in CML stem cell 
maintenance and BCR-ABL–
mediated disease transformation 
are shown (orange). Of note, this 
is a simplified diagram and many 
more associations between BCR-
ABL and signalling proteins have 
been reported.  

Adapted from (O'Hare et al. 2011) 
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2.3.4 BCR-ABL and promotion of DNA mutations 

 

DNA damage involves DNA break(s) or mutation(s).  When it is not correctly 

repaired, DNA lesions and mutations lead to alteration in the genome and, when 

overrepresented, to genomic instability. The clonal evolution and the accumulation of genetic 

aberrations is a feature of CML cells for the transition from chronic phase to blast phase and 

accelerated phase. In early 1990s, biologists hypothesized that BCR-ABL can be involved in 

genomic instability. Laneuville and colleagues showed, by  infecting  myeloblastic cell line 

32D with a retroviral vector expressing BCR-ABL p210,  that BCR-ABL is directly 

responsible for the accumulation of genetic instability and promotes the emergence of clones 

with a proliferative advantage (Laneuville et al. 1992). Several groups confirmed Launeville 

observations in murine CML models and primary CML cells (Salloukh and Laneuville 2000, 

Koptyra et al. 2008, Skorski 2008). The alteration induced by BCR-ABL appear to be random 

than specific, consistent with a general “mutator phenotype”. 

One of the causes of DNA damages is the production of Reactive oxygen species 

(ROS) which can enter to the nucleus and generate DNA lesions. BCR-ABL is able to induce 

chromosomal instability by generating ROS which in turn cause oxidative damages and 

mutations (Kim et al. 2005, Sattler et al. 2000). In addition, DNA damage can occur also 

because of the over-proliferation of CML cells, as polymerases themselves can generate 

some errors during DNA replication.    

Single nucleotide alterations are repaired by mismatch repair (MMR) or by nucleotide 

excision repair (NER). Strand breaks are repaired either by high-fidelity homologous 

recombination (HRR) when a sister chromatid is available as a template (during the S or G2 

phase of the cell cycle) or by non-homologous end joining (NEHJ) repair. Homologous 

recombination is a more fidelity reparation machinery compared to the NEHJ. 

 

- BCR-ABL and MMR: BCR-ABL, in both murine and primary CML cells, 

decreases MMR activity. This action is BCR-ABL dependent, as Imatinib 

treatment revert MMR activity to control level (Stoklosa et al. 2008). 

 

- BCR-ABL and NER: the activity of BCR-ABL on NER activity is controversial 

and it seems to depend on cellular context. Indeed, BCR-ABL decreases NER 

activity in BaF3, MO7E and 4Q2+ cells and sensitize the cells to ultraviolet 

(UV)-induced damages (Canitrot et al. 2003, Laurent et al. 2003). However, 
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in all other cell lines tested, the presence of BCR-ABL increases NER 

activity. In all cases, IM restores NER activity to control level, indicating that 

is strikingly BCR-ABL dependent (Sliwinski et al. 2008). 

 

- BCR-ABL and HHR: cells expressing BCR-ABL show enhanced HRR 

efficiency, but the repair is unfaithful (Slupianek et al. 2006, Nowicki et al. 

2004). Indeed, the number of repair events in BCR-ABL cells is the same 

compared to control cells, but there is a 100-fold increase of mutations in 

BCR-ABL expressing cells. Among the proteins involved in HRR, there is 

RAD51. RAD51 was found to be increased in BCR-ABL cells after 

irradiation. In addition, BCR-ABL was found to associate with RAD51 and 

phosphorylate it on its Tyr residue, stimulating the formation of 

RAD51/RAD52 complexes (Chen et al. 1999). 

 

- BCR-ABL and NEHJ:  in both CML cell lines and primary cells, it has been 

shown that BCR-ABL increases NEHJ activity but the fidelity of repair is 

compromised (Gaymes, Mufti and Rassool 2002). They also demonstrated the 

implication of Ku70 and Ku80 protein in this repair. 

 

In conclusion, BCR-ABL expressing cells are subjected to accumulation of mutated 

DNA. BCR-ABL enhances genomic instability by producing ROS and by interacting with 

some reparation machineries which favor mutation-proned DNA reparation and cause 

accumulation of DNA damages. 

 

 

 2.4 MANIFESTATION, DIAGNOSES AND STAGING 
OF CML 
 

Usually, the CML disease is asymptomatic and it is initially found on routine physical 

examination or blood tests. Common signs of CML in chronic phase result in anemia and 

splenomegaly. Patients can show weight loss, fatigue and easy satiety. Patient’s peripheral 

blood presents a high level of white cell count, in particular of granulocytes, and a decreased 

level of red blood cells. Platelet count can be decreased or increased, depending on the 

severity of the pathology. Once identified the blood cell count aberration,  the diagnosis of 
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CML relies on of the detection of the Ph chromosome by fluorescent in situ hybridization 

(FISH) or on the detection of BCR-ABL mRNA by Reverse Tanscriptase-Polymerase Chain 

Reaction (RT-PCR).  

 

2.4.1 The phases of CML 

 

CML can be classified into 3 different disease phases: chronic phase (CP), 

accelerated phase (AP) and blastic phase (BP). Most often, CML is diagnosed in CP. The 

progression from CP, to AP or BP results from additional genetic alterations in leukemic 

cells.  

- CP: approximately 85% of patients are in CP at the time of diagnosis (BCR-ABL 

gene or transcript detection). The duration of CP is variable and depends on 

how early the disease was diagnosed as well as the therapy used. In the 

absence of treatment, the disease progresses to AP. 

 

- AP: most patients evolve into AP before BP. In AP, patients may present 

worsening anemia, splenomegaly and increased white blood cell count. The 

blast count in the blood and bone marrow usually starts augmenting (10-19% 

of blasts in blood or bone marrow) and is further elevated in BP. In this phase 

there is usually an accumulation of chromosome aberration, in addition to Ph 

chromosome. Patients may lose their sense of well-being and other 

complications may follow. Drug treatment usually becomes less effective in 

this stage. 

 

- BP: this is the final phase in the evolution of CML, with rapid progression and 

short survival. BP presents as an acute leukemia, the number of blasts 

dramatically increases in marrow and blood and there is a loss of terminal 

differentiation capacity, resulting in red cell, platelet and neutrophil number 

very low. Patients can experience episode of bleeding and infections. 
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2.4.2 Incidence of CML pathology 

 

Most of the cases of CML occur in adults and it is a rare disease among adult 

leukemias, with a median age at the diagnosis of 65 years old. The frequency of CML 

increases with age, from about less than 1 in 100,000 people until about 40 years, to about 2 

in 100,000 people at 55 years, to about 9 in 100,000 people at 80 years and older. A small 

number of children can also develop CML (www.seer.cancer.gov) 

 

 

2.5 TREATMENT FOR CML AND CLINICAL 
RESISTANCES 
 

2.5.1 Imatinib, the first generation TKI 

 

Until the early 1980s, CML therapy was based on busulfan, cytarabine or 

hydroxyurea, which had a negligible effect on the natural course of the disease. In 1983 

Talpaz and colleagues started the first studies on human interpheron-alpha (IFN) for the 

management of CML and they showed that IFN induced cytogenetic response and that it 

was more durable and reproducible than those induced by chemotherapy (Talpaz et al. 1983, 

Talpaz et al. 1987). By 1990, it was discovered that BCR-ABL tyrosine kinase activity is 

crucial for transforming properties of BCR-ABL cells, thus many studies have been 

performed in order to block BCR-ABL activity and to limit the disease. In 1996, the first 

tyrosine kinase inhibitor (TKI) was developed, the Imatinib mesylate (IM) (Gleevec, 

Novartis PharmaceuticalCorporation, NJ, USA) and few years later, in 2001, its safety and 

efficacy in CML patients was shown, leading to the use of IM as first-line therapy for CML 

treatment (Druker et al. 1996) (Druker et al. 2001). IM has revolutionarily changed the 

outcome for CML patients, with much higher rate of survival.  

IM acts via competitive inhibition at the ATP-binding site of BCR-ABL protein, 

which results in loss of phosphorylation of downstream signaling proteins involved in BCR-

ABL signal transduction (Fig.10). IM efficiently inhibits BCR-ABL but is not specific, indeed 

it blocks also the platelet-derived growth factor receptor (PDGFR) and the c-kit tyrosine 

kinase activity (Druker and Lydon 2000). Still, 75% of IM-treated patients presented a 

complete cytogenetic response (CCyR), with Ph chromosome undetectable in bone marrow 
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and blood cells by cytogenetic tests. However, as soon as IM-treatment is stopped, CML 

comes out, resulting in molecular relapse of BCR-ABL in 50% of patients (Rousselot et al. 

2007). The clinical relapse of patients followed by IM discontinuation  was later explained by 

the presence of BCR-ABL mRNA in the most immature stem/progenitor cell population, 

which is refractory to IM treatment and is responsible for the residual disease (Chomel et al. 

2011) . Moreover, some patients fail or are intolerant to IM treatment and primary resistance 

to IM can occur in 15% of patients (Druker et al. 2001). For all these reasons, there was the 

need to develop second generation TKIs, like Dasatinib and Nilotinib. 

 

 

 

Figure 10: Mechanism of action of Imatinib. The active site of BCR-ABL has an ATP binding site which 
permits the transfer of the terminal phosphate from ATP to tyrosine residues on target proteins. Imatinib works 
by competitive binding to the ATP binding site, locking it in an inhibited conformation and therefore inhibiting 
BCR-ABL activity.   
 

 

2.5.2 Mechanisms of resistance to IM 

 

The apparition of IM in 2001 has revolutionized the prognosis of CML. However, 

some patients experience a lack of response to treatment at the beginning of therapy or a 

treatment failure after an initial response. Studies of relapsed patients after IM treatment 

showed that BCR-ABL signaling is often reactivated at the time of resistance (Gorre et al. 

2001). Therapeutic resistance to TKIs can be classified as primary or secondary, depending on 

whether an initial decline in disease levels are observed or not. 
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In primary resistance (also referred to as “refractoriness”), patients exhibit a lack of 

efficacy to TKI treatment from the start of therapy. The causes of primary resistances are 

listed below. 

 

- IM plasma levels 

IM-resistance can be caused by a low concentration of the drug in the cells. This 

low concentration can be due to an accumulation of IM in the plasma because of the 

binding to the plasma protein alpha1-acid glycoprotein-1 (AGP1), which is a reactant that 

binds drug molecules at a 1:1 molar ratio. These binding results in a lower concentration 

in the plasma of the active drug decreased IM available to enter into the cells and 

consequently limited therapeutic activity (Gambacorti-Passerini et al. 2000) 

 

- Intracellular uptake of IM 

The amount of IM that enters the target cell is a direct function of the balance 

between influx and efflux transport. The adenosine triphosphate-binding cassette (ABC) 

transporter ABCB1 (also called multi-drug resistance 1 (MDR1)) is a transmembrane 

protein that mediates multidrug resistance in multiple neoplasia through regulation of the 

efflux of chemotherapeutic agents. Interestingly, MDR1 is over-expressed in cells of 

patients in BP-CML and has been linked to the development of IM resistance (Mahon et 

al. 2000). Moreover, in a study of patients who failed to attain MCR, it was shown that 

they over-express ABCB1 (Galimberti et al. 2005). 

In addition to drug efflux regulation, IM resistance can be also linked to the 

knock-down of IM-influx transporter expression. The human organic transporter1 

(hOCT1), is a crucial regulator of IM availability. Even if a correlation between hOCT1 

expression and disease progression or resistance has not been established, there is a 2 

times down-regulation of hOCT1  expression in patients after IM-treatment and this 

could explain another mechanism of resistance (Crossman et al. 2005). 

 

- CML stem cell quiescence 

As discussed before, CML differentiated cells are sensitive to IM treatment and 

readily die under IM. However, CML stem cells are not affected by IM exposure and are 

therefore responsible for residual disease that causes CML persistence. These cells are 

insensitive to IM despite inhibition of BCR-ABL activity because they do not depend on 

BCR-ABL for their survival and therefore they are not eliminated after IM exposure 
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(Corbin et al. 2011). This suggests that CML stem cell survival depends on other signals 

which derive from their microenvironment niche, like cytokines or other extracellular 

signals. 

 

- Clonal evolution 

In CML disease, like in other cancers, there is a clonal evolution, or rather an 

accumulation of genetic events like new DNA mutations or translocation. The most 

frequent are trisomy 8, isochromosome 17, which consists of an abnormal chromosome 

17 with two identical long arms due to duplication of the long arm and loss of the short 

arm, loss of  chromosome 17p region and BCR-ABL mutation (which will be discussed 

below). Other genetic aberrancies are trisomy 21, trisomy 17, trisomy 19, and deletion 7 

(Johansson, Fioretos and Mitelman 2002). 

 

- Intracellular signaling pathways alteration 

Among the mechanisms of resistance to TKIs which involve the deregulation of 

BCR-ABL down-stream signaling pathways there is the up-regulation of SRC family 

kinases expression. The SRC family encompasses 9 cytoplasmic non receptor kinases: 

SRC, FYN, YES, BLK, YRK, FGR, HCK, LCK and LYN. BCR-ABL activates LYN, 

HCK and FGR in B-lymphoblastic leukemia (Hu et al. 2004). In particular, LYN was 

found over-expressed in TKI resistant cell lines and primary cells (Mahon et al. 2008).  

More recently, 2 additional tyrosine kinases were found to be over-activated in resistant 

CML cells: the spleen tyrosine kinase Syk and the receptor tyrosine kinase Axl; they 

form a complex with LYN kinase and with the participation of the adaptor CDCP-1 

(Gioia et al. 2011). Axl belongs to the TAM receptor family, which includes also Mer 

and Tyro3 receptors. Axl was originally cloned from DNA of two patients with CML 

(O'Bryan et al. 1991) and is over-expressed in many human cancers and its increased 

expression correlates with advanced tumor stage and chemoresistance (Linger et al. 

2010).  

 

 

Secondary resistance (also referred to as “acquired resistance”), results after the 

initial achievement of response to TKI lasting for a period of time of variable length.  

  



INTRODUCTION – PART I 61 

- BCR-ABL point mutations 

The most common mechanism of resistance in CML patients (50%-90%) is due to 

point mutations on BCR-ABL kinase domain which is the target of IM binding and 

activity. More than 100 point mutations encoding for single amino acids substitutions that 

confer resistance to IM have been described. Among them, the most frequent are the 

T315I (discussed before), Gly250, Tyr253, Glu255, Thr315, Met351, and Phe359, which 

account for 60% to 70% of all mutations. 

 

- BCR-ABL over-expression 

Another mechanisms of resistance BCR-ABL dependent that accounts for 10% of 

CML resistance, consists of the amplification of BCR-ABL proteins associated with the 

amplification of the fusion gene. 

Resistance can be further classified into hematologic (lack of normalization of 

peripheral blood counts), cytogenetic (persistence of Ph chromosome), and molecular 

(persistence of BCR-ABL transcript by RT-PCR). 

 

2.5.3 Nilotinib and Dasatinib, the second generation TKIs 

 
After the discovery that IM treatment may lead to clinical resistance, second 

generation TKIs were developed. Second generation drugs are intended to have decreased 

resistance and intolerance than Imatinib.  

 

- Dasatinib (Sprycel, Bristol-Myers Squibb): is a second generation TKI that was 

initially approved in 2007 by Food and Drug Administration (FDA). In 2010 

it was also approved as first line therapy of CML. Dasatinib inhibits BCR-

ABL and also Src tyrosine kinase activity. Its BCR-ABL inhibitory action is 

350 times more potent than IM in vitro. Moreover, it is efficient also in IM-

resistant CML cells (Lombardo et al. 2004, Tokarski et al. 2006, O'Hare et al. 

2005). To test the efficiency of Dasatinib, the DASISION international trial 

evaluated the effects of IM vs Dasatinib in random newly diagnosed patients 

with CML-CP for an 18 months-follow up. They found that a higher 

percentage of Dasatinib-treated patients present CCyR (77% with Dasatinib 

vs 66% with IM) after a 12 months-follow up.  Moreover, Dasatinib was able 

to induce more major molecular response (MMR), defined as no detectable 
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BCR-ABL transcript by RT-PCR compared to IM group (Kantarjian et al. 

2010). 

 

- Nilotinib (Tasigna, Novartis Pharmaceutical Corporation, NJ, USA): it was 

approved with Dasatinib as first-line CML therapy in 2010 by FDA. Nilotinib 

is a structural analog of IM and its BCR-ABL-affinity in vitro is 50 time 

stronger than IM (Weisberg et al. 2005). In ENESTnd international trial on 

random patients with CML-CP treated either with Nilotinib or IM, it was 

found that Nilotinib decreases the percentage of patients that progress to AP 

or BP and that in a follow up of 12 months, the percentage of Nilotinib-

treated patients with MMR was higher than the percentage of IM-treated 

patients (43% vs 22%) (Saglio et al. 2010). 

 

To date, current guidelines recommend the 3 TKIs as first-line therapy for treatment of 

newly diagnosed CML and, given the excellent outcome and long-term survival with these 

TKIs, the use of chemotherapy agents is no longer recommended.  

CML is definitely the first and true model of the success of targeted therapies and the 

recommendation is to continue TKI treatment permanently. However, there are emerging 

problems concerning the long-term tolerability of TKIs, especially for young patients and 

there is an increase of drug resistance due to the widespread of TKIs. Moreover, there is an 

economic burden of these expensive drugs. These observations together, raise the need to 

discontinue TKI treatment and CML continues to be more than ever a model for cancer 

therapy. 

 

2.5.4 New therapeutic agents 

 

There are specific BCR-ABL mutations that confer resistance to TKIs treatment. One 

of the most frequent is T315I, which results in the substitution at the position 315 from a 

threonine (T) to an isoleucine (I). Therefore, new agents have been developed and are 

presently in course of study. Among them, there is the Ponatinib which has been shown to 

inhibit BCR-ABL, including T315I mutant, as well as other tyrosine kinases, including FLT3, 

PDGFR, VEGF and c-kit (O'Hare et al. 2009).  

Other novel agents include DCC-2036 which binds the area responsible for the change 

between inactive and active BCR-ABL protein (Chan et al. 2011), or the Bosutinib, a dual 
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Src/ABL kinase inhibitor (Cortes et al. 2011), or HG-7-85-01 which uses a modified 

nilotinib-dasatinib hybrid structure to avoid gatekeeper mutations, and GNF-2, an allosteric 

ABL inhibitor that has been shown to be effective in combination with ATP-competitive ABL 

inhibitors (O'Hare et al. 2011). 

 

2.5.5 Targeting CML stem cells 

 

In the majority of patients on IM treatment, residual disease is detectable and only a 

few achieve a complete molecular response, defined as no detectable BCR-ABL transcript by 

RT-PCR, and even fewer maintain this molecular response upon discontinuation of treatment 

(Rousselot et al. 2007). The inability of IM to eliminate all leukemia cells allows disease 

persistence or residual disease. Persistence is due to the presence of CML stem cells that are 

not fully addicted to BCR-ABL kinase activity. Indeed, BCR-ABL transcript remains 

detectable in the most immature CML stem cell population (Chomel et al. 2011). This 

limitation of BCR-ABL inhibitors demands for alternative ways eliminate the leukemic stem 

cell clone. Targeting cell energy providers such as mitochondria metabolism, genome wide 

regulators, or BCR-ABL downstream signaling pathways have been new options.  These 

include Wnt-β-catenin pathway (Zhang et al. 2013), Hedgehog pathway (Dierks et al. 2008)  

or STAT5 factors (Hoelbl et al. 2010), histone deacetylase inhibitors (Zhang et al. 2010) or 

the use of BMS-214662, a farnesyl transferase inhibitor, that induces mitochondrial apoptosis 

of CML stem cells, without affecting normal HSCs survival (Pellicano et al. 2009). 

 

2.5.6 Allogenic hematopoietic stem cell transplantation (Allo-HSCT) 

 

Briefly, the Allo-HSCT is the transplantation of multipotent hematopoietic stem cells, 

usually derived from bone marrow or cord blood of a healthy individual that have a human 

leukocyte antigen (HLA) that matches with those of the CML patient. The number of patients 

undergoing to Allo-HSCT has dramatically decreased after the advent of IM and second 

generation TKIs. However, it has an important role for primary resistant patients, for patients 

that evolve to BP and for patient harboring secondary BCR-ABL mutations that are resistant 

to first and second generation TKIs. 
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2.6 MODELS TO STUDY CML 
 

2.6.1 In vitro models: CML cell lines and primary cells 

 

The first CML-derived leukemia cell line was K562. It was established in 1970 from 

the pleural effusion of a 53-year-old woman with CML in blast crisis (Lozzio and Lozzio 

1975). Few years later, in 1975, the NALM-1 cell line was established from the peripheral 

blood of a 3-years-old girl in lymphoid blast crisis(Minowada et al. 1977). Since these first 

cell lines, more than 40 Ph+ CML cell lines have been reported. Among these, there are the 

LAMA84, MEG01 and KU812. Different cell lines model the different types of CML 

leukemias that carry different BCR-ABL fusions as well as different chromosomal 

rearrangements in addition to the Ph chromosome. Specifically, LAMA84 cell line was 

established from the peripheral blood of a 29-year-old woman with CML one month after 

onset of myeloid-megakaryocytic blast crisis; MEG01 cell line was established from the bone 

marrow of a 55-year-old man with CML in megakaryoblastic crisis. 

 

In addition to CML cell lines, also primary cells from CML patients may be used. 

Primary CML stem cells are normally purified from peripheral blood of patients at the 

moment of diagnosis. Nearly all CD34+CD38- HSC-enriched cells present in patient 

bloodstream are BCR-ABL expressing stem cells  

 

2.6.2 In vivo models: a new CML mouse models 

 

To more easily study CML stem cells, a mouse model was developed and it was used 

until few years ago. Murine cells were transduced with retroviral vectors that express BCR-

ABL (p210) and followed by transplantation into irradiated mice (Li et al. 1999, Pear et al. 

1998). BCR-ABL-expressing cells trigger a myeloproliferative disorder, but leukemia is quite 

fulminant, associated with pulmonary hemorrhage and death within 4 weeks. This model may 

be more representative of AP-CML than a CP-CML. Even if the disease development of these 

mice does not represent exactly the disease progression in humans, this model has been the 

standard to study molecular mechanisms involved in CML disease until 2005. In 2005, 

Koschmieder and colleagues proposed a transgenic mouse model of BCR-ABL 

leukemogenesis in which BCR-ABL gene is expressed under the control of a Tetracycline-
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regulated 3’ enhancer of the murine stem cell leukemia (SCL) gene allowing targeted BCR-

ABL expression in stem and progenitor cells (Koschmieder et al. 2005). SCL gene encodes a 

helix-loop helix transcription factors which is expressed in the very immature HSC in 

addition to erythroid cells, mast cells, megakaryocytes and multipotent progenitor cells. Thus, 

in SCL-tTA/BCR-ABL mice, tetracycline exposure enhances BCR-ABL expression in stem 

and progenitor cells. Expression of BCR-ABL results in a chronic myeloproliferative disorder 

with chronic neutrophilia and leukocytosis, splenomegaly, extramedullary hematopoiesis and 

invasion of non-hematopoietic organs by myeloid cells. Mice have an overall median survival 

of almost 50 days, with few mice dying after 100 days upon BCR-ABL induction. Moreover, 

reversion of BCR-ABL expression rescues the leukemia phenotype. These features closely 

resemble the natural course of human CML without treatment and this mouse model allows 

for the study of CML development and maintenance in vivo. 

 

 

2.7 MICROENVIRONMENTAL REGULATION OF 
CML CELLS 
 

CML stem cells, as well as normal HSCs, reside in specific functional niche within the 

bone marrow. This microenvironment provides critical signals to regulate HSC numbers and 

quiescence and support HSC preservation. In 1995, Bhatia and colleagues raised the 

hypothesis that abnormal stromal functions in CML may in part sustain the hematopoietic 

abnormalities observed in CML. They made use of marrow stromal macrophages from 

patients with CML, which are derived from the BCR-ABL positive clone. They showed that 

CML marrow stroma has a reduced ability to support growth of normal progenitors whereas 

growth of CML progenitors is not impaired (Bhatia et al. 1995).  

Using CML cell lines, it was shown that BM stromal cells or extracellular matrix may 

sustain growth or protect leukemic cells from the effect of chemotherapy and small molecule-

targeted therapies (Matsunaga et al. 2003, van der Kuip et al. 2001, Zhang, Groffen and 

Heisterkamp 2007a). Jin and colleagues showed that IM treatment increases CXCR4-

mediated migration of CML cell lines to BM MSCs and results in increased cell cycle arrest 

and survival of quiescent cells (Jin et al. 2008).  

The new CML mouse model reported above, the SCL-tTA/BCR-ABL mouse, has 

allowed to better investigate the role of BM microenvironment on CML stem cells in vivo. 

Recent reports, in which authors made use of this mouse model, have shown that 
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hematopoietic niche has a protective role on CML stem cells from TKI mediated cell 

death and depletion. Last year, Zhang and colleagues, found that in BCR-ABL mice there is 

a reduction of leukemic stem cells in the BM and an increased egress of these cells to the 

spleen, with an enhanced proliferation in the spleen. They showed a reduction in BM 

CXCL12 levels as a mechanism underlying impaired leukemic stem cells homing and 

retention in CML BM.  Indeed, CXCL12 expression was reduced not only in BM of BCR-

ABL mice but also in CML patients. Moreover, they showed that altered CML BM 

microenvironmental function contributes to suppression of normal HSCs and provides a 

selective advantage to leukemic stem cells. The expression of several other cytokines was 

increased in BM of BCR-ABL mice, like IL-1 and β and TNF- as supporting reduced 

proliferation and growth of normal compared to CML stem cells. Moreover, although  IM 

treatment corrects several abnormalities in cytokine and chemiokyne expression in CML 

cells, it does not completely restore CXCL12 levels in the BM of BCR-ABL mice, indicating 

that it does not completely reverse leukemia-associated changes in the microenvironment 

(Zhang et al. 2012a).  

More recently, the same team showed that BM-derived MSCs protect CML stem and 

progenitor cells from TKI-mediated cell death and depletion and that this protection involves 

the N-Cadherin-mediated adhesion pathway. N-Cadherin is expressed by human stem and 

progenitor cells, but in a lower level in CML cells compared to normal cells. Moreover, N-

Cadherin expression is increased when they adhere to MSCs, corresponding to an increased 

association of N-Cadherin and activation of Wnt-β-catenin signaling, which is the highest in 

IM-treated cells (Zhang et al. 2013). 

These results together indicate that CML BM microenvironment plays an active role in 

the maintaining of CML cells and in resistance to TKI treatment. Novel molecular 

mechanisms proposed, as the Wnt-β-catenin signaling pathway, permit to find new 

therapeutic treatment which target the microenvironment where CML stem cells reside, rather 

than CML cells themselves.  However, when I started my PhD project in 2010, few notions 

were known about niche-dependent regulation of CML cells. 
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3. 
The JAK/STAT signaling pathway and 

STAT5 factors 
 
 

The Janus Kinase/Signal Transducers and Activator of Transduction (JAK/STAT) 

pathway is a signaling cascade used in animals, from humans to flies. In mammals, the 

JAK/STAT pathway is one of the principal signaling mechanisms for a wide variety of 

cytokines and growth factors. JAK activation regulates cell proliferation, differentiation, 

migration, apoptosis and many other cellular processes. These cellular events are critical to a 

variety of biological functions like hematopoiesis, immune development, mammary gland 

development and lactation, adipogenesis, sexually dimorphic growth and many others.  

In mammals, 4 JAK and 7 STAT proteins have been identified: JAK1, JAK2, JAK3, 

TYK2 and STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6. 

In vitro and in vivo studies using knock-out mice, have indicated that in hematopoietic 

cells JAK/STAT pathway is activated by different cytokines such as IL-2 and IL-7 which act 

on lymphoid cells, IL-3, IL-5, GM-CSF and G-CSF on myeloid cells, EPO for erythroid cells, 

FLT3 ligand, stem cell factor and TPO which act on the most immature hematopoietic stem 

compartment as well as on selective progenitors. 

 

 

3.1 JAK AND STAT PROTEIN STRUCTURES 
 

3.1.1 The JAK kinases 

 

JAK proteins are a family of intracellular, non receptor tyrosine kinase and they are 

structurally conserved. JAKs range from 120 to 140 kDa and have seven defined regions of 

homology called Janus Homology domains 1 to 7 (JH1-JH7) (Fig.11).  

 

- JH1 domain is situated at the C-terminal region of JAKs. It is the kinase domain 

which is essential for the enzymatic activity of JAKs. This region contains 

conserved tyrosine (Y) necessary for JAK activation (e.g. Y1038/Y1039 in 

JAK1, Y1007/Y1008 in JAK2, Y980/Y981 in JAK3, and Y1054/Y1055 in 
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Tyk2). Once JAK is phosphorylated on one of its Tyr residues, it changes its 

conformation in order to facilitate kinase activity and substrate binding. 

 

- JH2 is a “pseudokinase domain”. This domain is quite structurally similar to the 

kinase domain, but lacks many of the characteristics essential to conventional 

kinase activity. JH2 is involved in the regulation of the activity of the JH1 

domain.  

 

- JH3 domain and a part of JH4 domain share some homology with the Src-

homology2 (SH2) domain that allows docking to phosphorylated Tyr 

residues.  

 

- The N-terminal region is composed of the JH4, JH5, JH6 and JH7 domains. This 

region is called the FERM (four-point-one, ezrin, radixin, moesin) 

domain, which is a widespread protein module involved in localizing protein 

to the plasma membranes. In JAK factors, this domain is implicated in JAKs 

association with cytokine receptors. 

 

 

 

 

 

Figure 11: The structure of JAKs. JAK proteins present 7 Janus Homology domains (JH1-JH7). The JH1 is 
the kinase domain, the JH2 is the pseudokinase domain which seems to regulate the kinase domain, the JH3 and 
a part of the JH4 are part of the Src Homology 2 (SH2) domain and the JH4, JH5, JH6 and JH7 domains at the 
N-terminal region form the FERM (four-point-one, ezrin, radixin, moesin) domain which is involved in 
association with other JAKs, cytokine receptors and other kinases  
  

Adapted from  (Haan et al. 2006)  
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3.1.2 The STAT factors 

 

STAT proteins are transcriptional factors that are present in both cytoplasmic and 

nuclear cell compartments. They have a mass of approximately 80-100 kDa and are 

structurally conserved and essential for carrying out multiple cellular functions in response to 

extracellular cytokines and growth factors signals. STATs are usually activated by JAK 

kinases. They present 6 domains (Fig.12). 

 

- at the N-terminal region there is the N-ter-dimerization domain (ND) which is 

the less conserved domain among the STATs and it is responsible for some 

STAT dimer-dimer interactions and protein partnerships. 

 

-  the coiled-coil domain (CC) is responsible for many protein-protein interactions. 

 

-  the DNA binding domain (DBD), which is situated between the amino acids 350 

and 500. It is responsible for the binding to DNA. Most STAT dimers 

recognize an 8– to 10–base pair inverted repeat DNA element with a 

consensus sequence of 5’-TTCN2–4GAA-3’. Differential binding affinity of a 

particular activated STAT dimer for a single target DNA sequence is 

determined by the number of nucleotides between TTC and GAA (Ehret et al. 

2001) (Table 1). 

 

- the linker domain (LD) (aa 500-600) connects the DBD to the C-terminal region. 

 

- the SH2 domain (aa 600-690) which targets the proteins to specific tyrosine-

phosphorylated peptide sequences within their binding partners, thereby 

regulating a wide range of intracellular signaling events. 

 

- the transactivation domain (TA) at the C-terminal region. This domain contains 

a crucial Tyr residue that is essential to STAT DNA-binding and 

transcriptional activation. It also includes other residues that can be 

phosphorylated upon stimuli and regulate STAT biological activities. The TA 

domain varies greatly among the STATs, with the highest homology found 

between STAT1, STAT3 and STAT4. 
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Figure 12: Conserved domains of STATs. STAT proteins share a common domain structure with an N-
terminal domain followed by a coiled-coil domain, a DNA-binding domain, a linker domain, an SH2 domain and 
finally a C-terminal transactivation domain. The tyrosine residue that becomes phosphorylated upon activation is 
located between the SH2 and the trans-activation domain.  
 
 

 
Table 1: Preferential STAT responsive elements described in the literature. The sequence specificity of 
different STAT proteins is very similar but not identical. STAT6 differs from the other STATs in its reference 
for sites in which the two palindromic halves are separated by 4 rather than 3 nucleotides. STAT1 can bind N2 
and N3 sites. STAT5 can bind N4 sites but that its affinity for N3 sites is much higher. 

  

Adapted from (Mohr et al. 2012)  
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3.2 CANONICAL AND NON-CANONICAL JAK/STAT 
SIGNALLING 
 

Canonical JAK/STAT signaling, as formulated in early 1990s (Darnell, Kerr and Stark 

1994), describes the basic features of this signaling pathway but recent works reported the 

existence of others non-canonical pathways (Fig.13). 

 

3.2.1 Canonical JAK/STAT signaling 

 

STAT factors are initially present in inactive forms in the cytoplasm, while JAK 

kinases are constitutively associated with the cytoplasmic membrane-proximal regions of 

various receptors. Upon ligand binding on the receptors, JAK kinases trans-phosphorylate 

each other on their Tyr residues and, at the same time, they phosphorylate Tyr residues in the 

cytoplasmic domain of the receptor. This phosphorylation leads to the recruitment of STAT 

monomers via recognition of the receptor phospho-tyrosines by the STAT SH2 domains. 

Once they are bound to the receptors, STAT factors are phosphorylated by receptor-bound 

JAKs. Thereafter, phosphorylated STATs are detached from the receptor and become 

homodimerized or heterodimerized through reciprocal intermolecular SH2 domain 

interactions. The phospho-STAT dimers are then able to translocate to the nucleus, to bind the 

GAS responsive element on DNA and to activate or repress gene transcription (Fig.13A). 

Cessation of signaling involves dephopshorylation of DNA-bound STAT dimers within the 

nucleus and export back to the cytoplasm.  
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Figure 13: The canonical and non-canonical JAK/STAT signalling pathway. (A) The main features of 
canonical JAK/STAT signaling are dimerization or multimerization of receptors after ligand-binding. Then 
STAT monomers dimerize upon phosphorylation by receptor-bound JAKs and they enter to the nucleus (when 
phosphorylated). (B) Non-canonical JAK/STAT signalling includes preformed dimers of receptors as well as 
STAT monomers. Unphosphorylated STATs in the nucleus may contribute to the regulation of gene expression 
and may also have role without the nucleus.  
  

From  (Mohr et al. 2012) 
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3.2.2 Non-canonical JAK/STAT signaling 

 

Despite the prevalence of the canonical model, it has now been firmly established that 

non-canonical JAK/STAT signaling may exist (Fig.13B). One of the very first evidence for 

non-canonical pathways came from the observations that Tyr kinases different from the JAKs, 

such as SRC kinases, can activate STAT factors through canonical Tyr-phosphorylation 

(Levy and Darnell 2002). In addition, non-phosphorylated STATs have been shown to exhibit 

biological activities.  

First, cytokine receptor might dimerize in absence of ligands, or ligands could just 

stabilize a pre-formed receptor dimer. As proposed for the receptors, there are strong 

evidences for STAT dimers in absence of canonical tyrosine phosphorylation (Braunstein et 

al. 2003, Novak et al. 1998, Stancato et al. 1996).  

Second, while in canonical JAK/STAT signaling STAT dimers enter to the nucleus in 

response to activation by Tyr-phopshorylation, in the non-canonical model a fraction of latent 

STATs is consistently located in the nucleus without being phopshorylated on Tyr, as a result 

of a steady state of a constant nuclear import and export, as it was shown for STAT1 

(Chattterjee-Kishore, 2000) , STAT3 (Yang, Liao, G&D 2007), STAT5B (Zeng et al. 2002), 

for STAT5A (Iyer and Reich 2008) and for STAT6 (Chen and Reich 2010) and STAT2 

(Frahm, Hauser and Koster 2006). These non-phosphorylated STAT factors may also 

contribute to gene regulation. Stark and colleagues have pioneered the demonstration that 

non-phosphorylated STAT1 and STAT3 have transcriptional effects in the nucleus through 

complexes formed with IRF1, NFkB or other transcription factors (Chatterjee-Kishore et al. 

2000, Yang et al. 2005, Yang et al. 2007).The steady state distribution, as well as the shuttling 

dynamics, differs between individual STATs.  

Third, nuclear non-phosphorylated STATs were shown to associate with and regulate 

heterochromatin stability. This role in heterochromatin was described for the STAT ortholog 

STAT92E in D. Melanogaster. Non-phosphorylated STAT92E is localized on 

heterochromatin in association with Heterochromatin Protein 1 (HP1), and is required for 

stabilizing HP1 localization and histone H3 Lys 9 methylation (H3mK9). However, activation 

by phosphorylation reduces heterochromatin-associated STAT92E, causing HP1 displacement 

and heterochromatin destabilization (Shi et al. 2008). Similar activities have been recently 

reported for STAT5A in human cells (Hu et al. 2013) 

Fourth, despite the best documented function of STATs is gene transcription control, 

in the non-canonical model some STATs exert other non-canonical functions outside of the 
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nucleus. Some of these non-canonical functions, which are independent of Tyr-

phosphorylation, have been well described for STAT3. Indeed, STAT3 has been described as 

a regulator of oxidative phosphorylation within mitochondria, where it interacts with complex 

I and II of the respiratory chain. The absence of STAT3 in mitochondria compromises the 

function of the respiratory chain. For this mitochondrial function of STAT3, instead of the 

canonical Tyr phosphorylation, the serine 727 phosphorylation is required. (Wegrzyn et al. 

2009, Gough et al. 2009).  Another example of non-canonical functions of STATs has been 

described for STAT5A in CML. In this disease STAT5A is massively localized in the 

cytoplasm of CML cells where it associate with the p85 subunit of the PI3K (Harir et al. 

2007) or the Src family kinases (Chatain et al. 2013). In addition, non-phosphorylated 

STAT5A, and to a lesser extent STAT5B, has been shown to be associated with the Golgi 

apparatus and the rough endoplasmic reticulum in vascular cells, where it preserves the 

structure and function of these organelles (Lee et al., 2012).  

These non-canonical functions are described in figure 14 and open a wide field for 

future research on JAK/STAT pathway and underline the difficulty of describing in few 

words a simple molecular mechanism for this pathway. 
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Figure 14: The non-canonical JAK/STAT signalling pathway. STAT factors can exert cellular functions even 
in the absence of classical phosphorylation on Tyr or Ser residues. Moreover, in addition to their role as 
transcription factors, they can have different roles in the cytoplasm,  as it has been shown for STAT3 in the 
mitochondria and for STAT5A in the Golgi apparatus and in endoplasmic reticulum. STAT factors can be found 
also in the nucleus in absence of Tyr phosphorylation and have a role in heterochromatin stability and in gene 
transcription. 
 
 

3.3 NEGATIVE REGULATORS OF JAK/STAT 
PATHWAY 
 

There are three major classes of JAK/STAT pathway-negative regulators: the 

suppressors of cytokine signaling (SOCS), the protein inhibitors of activated STATs (PIAS) 

and the protein tyrosine phosphatase (PTPs) (Greenhalgh and Hilton 2001). 

 

- the PTPs reverse the activity of JAKs through dephopshorylation. Among the 

PTPs, the best characterized is the Src homology region 2 domain-

containing phosphatase-1 (SHP-1). SHP-1 contains two SH2 domains and 

can bind either to phosphorylated JAKs or to phosphorylated receptors to 

facilitate dephosphorylation of these activated signaling molecules. Other 

tyrosine phosphatases, such as the hematopoietic transmembrane phosphatase 
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CD45, have a role in regulating JAK/STAT signaling cascade through a 

subset of receptors. 

 

- SOCS proteins are a family of 8 members (SOCS1-SOCS7 and CISH) 

containing an SH2 domain and a SOCS box at the C-terminus. In addition, a 

small kinase inhibitory region located N-terminal to the SH2 domain, has 

been identified for SOCS1 and SOCS3. The SOCS factors are responsible for 

the end of JAK/STAT signaling: activated STATs stimulate transcription of 

SOCS genes and the resulting SOCS proteins bind phosphorylated JAKs and 

the receptors to turn off the pathway. SOCS factors can affect their negative 

regulation by 3 different mechanisms: 1) by binding phosphotyrosine on the 

receptors they block recruitment of signal transducers to the receptors, 2) by 

binding directly to JAKs or to the receptors to inhibit specifically the JAK 

kinase activity, 3) by interacting with the elongin BC complex and cullin2 

and facilitating the ubiquitination of JAKs. 

 

- the third class of negative regulators is the PIAS family proteins, composed of 

PIAS1, PIAS3, PIASx and PIASy. These proteins have a Zn-binding RING-

finger domain in the central portion, a well-conserved SAP (SAF-

A/Acinus/PIAS) domain at the N-terminal region and a less-well-conserved 

carboxyl domain. PIAS proteins bind to activated STAT and prevent them 

from binding DNA. PIAS proteins seem to act by sumoylating STAT factors 

and leading them to degradation.  

 
 

3.4 STAT TARGET GENES 
 

Many target genes of STATs have been identified. These genes change depending on 

cellular context and on STAT factors. However, there are some genes which are shared by 

multiple STAT transcription factors and which are mostly involved in negative regulation of 

JAK/STAT signaling, such as the SOCS and the PTP factors, in order to avoid the 

continuously activation of the signal cascade. Some other identified target genes are involved 

in cell proliferation and survival (for STAT3-6). Among the genes involved in the cell 

proliferation there are: Cyclin D1, Cyclin D2, Cyclin D3, Cyclin E1, cyclin-dependent kinase 
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inhibitor 1A (Cdkn1A or p21) and the transcription factor c-myc. For the genes involved in 

survival there are the anti-apoptotic factors Bcl-xl, survivin and myeloid cell leukemia-1 (mcl-

1), the apoptotic factors Bcl-2 and Fas receptor, and the oncogenes Pim-1 and Pim-2. 

 

3.5 STAT5 FACTORS 
 

STAT5 was discovered in 1994 as a transcription factor regulating milk protein 

expression. It was initially called Mammary Gland Factor (MGF) (Schmitt-Ney et al. 1992). 

However, based on its similarity to the family of STAT factors, it was renamed appropriately 

STAT5. In 1995, three groups independently cloned the mouse homolog, now named 

STAT5A, and a closely related protein, called STAT5B (Azam et al. 1995, Liu et al. 1995, 

Mui et al. 1995). Later, it turned out that both STAT5A and STAT5B are rather ubiquitously 

expressed and activated by a plethora of cytokines and growth factors, including prolactin 

(PRL), GH, EPO, TPO and several interleukins.  

 

3.5.1 STAT5 molecular structures 

 

STAT5A and STAT5B present a high similarity, of 96%, at the protein level. They are 

encoded by two juxtaposed genes which have two different promoters and the transcriptional 

start sites are within 11kb of each other. STAT5A and STAT5B are located on chromosome 11 

(in mouse) and chromosome 17 (in humans), in a locus that also contains the STAT3 gene. 

The identity and the chromosomal localization suggest that the two genes result from recent 

gene duplication. In humans, the STAT5A gene is composed of 20 exons, while STAT5B is 

composed of 19 exons. The ATG codon is located in exon 3 for STAT5A and in exon 2 for 

STAT5B, while the stop codon is in exon 20 for STAT5A and in exon 19 for STAT5B. 

Moreover, STAT5A presents a single start site, situated at -642 bp from ATG, whereas 

STAT5B presents 2 alternative first exons (E), the E1a and the E1b. The STAT5B E1a is 

ubiquitously expressed, whereas the E1b is expressed only in some tissues, such as placenta, 

spleen and brain (Ambrosio et al., 2002) (Fig.15A). 

STAT5A and STAT5B proteins contain respectively 794 and 787 amino acids and the 

highest degree of divergence is found in the C-terminal trans-activation domain. Serine and 

Tyrosine target of phosphorylation are localized at the C-terminal region, nearby the trans-

activation domain and are (Fig. 15B): 
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- Tyr 694, Ser 725 and Ser 779 for STAT5A (Friedbichler et al. 2010); 

- Tyr 699, Ser 731 and Ser 193 for STAT5B (Mitra et al. 2012). 

STAT5A and STAT5B homodimers share similar core TTCN3GAA GAS motifs.  

However, STAT5A differs from STAT5B for tetramer formation and STAT5A tetramers can 

bind to tandemly linked GAS motifs not retaining a consensus TTCN3GAA motif  (Soldaini 

et al. 2000). Stable tetramer formation of STAT5A  is mediated thorough  the N-terminal 

domain of STAT5A which allows dimers oligomerization. Tetramerization-deficient 

STAT5A proteins have a more limited set of binding sites than tetramerization-competent 

STAT5s, indicating an essential role for the N-terminal domain (John et al. 1999). 

 
 
 
 
 

 
 
 

 
 
Figure 15: Human STAT5 factors. A) STAT5A and STAT5B genes are located on chromosome 17 in humans 
and they are encoded by two different genes which present two different promoters. B) Functional domains of 
human STAT5A and STAT5B factors: N: N-terminal domain, CC: coiled-coil domain, DBD: DNA binding 
domain, SH2: Src homology-domain for the dimerization, TA: transactivation domain. The tyrosine (Y) and 
Serine (S) marked represent the targets of phopshorylation. 
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3.5.2 Known roles for STAT5A and STAT5B 

 

Although STAT5A and STAT5B gene promoters might share certain regulatory 

elements, cell-preferential transcriptional patterns have emerged (Liu et al. 1995). While 

STAT5A is prevalent in mammary tissue, STAT5B is predominant in muscle and liver. Other 

tissues, such as heart and salivary gland, have an equivalent distribution of STAT5A and 

STAT5B. The differentia roles for STAT5A and STAT5B described in the literature are 

summarized in Table 2. 

 

Lessons from mice 

 

In 1997, mice with disabling mutations in the genes encoding STAT5A or STAT5B 

were described. Mice lacking the individual genes were viable and displayed different defects. 

It was shown that STAT5B deletion leads to a loss of sexually differentiated responses 

associated with the sexually dimorphic pattern of GH secretion. Sexual dimorphism was 

lost with male characteristic body growth rate and male-specific liver gene expression 

decreasing to wild type female levels in STAT5B-/- males (Udy et al. 1997). On the other 

hand, STAT5A KO showed that it is the principal and obligate mediator of mammary 

gland development and differentiation during pregnancy, whereas STAT5B KO did not 

affect gland mammary (Liu et al. 1997). Moreover, STAT5A-/- showed decreased levels of T 

cells whereas STAT5B-/- had decreased levels of Natural Killer (NK) cells.  

The first double STAT5A/5Bnull/null mice displayed immunological defects but not as 

severe as anticipated from mutation in the various cytokine receptors that signal through the 

JAK2/STAT5 pathway. Indeed, these mice expressed STAT5A/5B factors truncated at the N-

terminal level, which were still able to form active dimers but not tetramers; these mice were 

therefore renamed STAT5A/5BΔN/ΔN. Almost all STAT5A/5B truly doubly deficient mice, 

STAT5A/5B null/null, dye perinatally; the few surviving STAT5A/5Bnull/null mice exhibit 

severe combined immunodeficiency, they failed to develop T, B and NK cells, they 

present anemia and leukopenia (Yao et al. 2006, Hoelbl et al. 2006). Furthermore, it was 

shown that these mice exhibit depleted long-term HSC pool (Wang et al. 2009). 

 

An artificial mutant STAT5A-1*6 was generated by PCR-driven random mutagenesis. 

It presents two amino acids substitutions: one is located upstream of the putative DNA 

binding domain (H299R) and the other is located in the trans-activation domain (S711F). The 
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mutant STAT5A-1*6 was constitutively –although weakly- phosphorylated on tyrosine 

residues, localized in the nucleus, and was transcriptional active (Onishi et al. 1998). 

Introduction of active STAT5A-1*6 in embryonic stem cells facilitates hematopoietic 

differentiation generating ES-derived HSCs. These HSCs display long-term self-renewal 

characteristics in vitro and contribute to hematopoietic reconstitution in vivo (Schuringa et al. 

2004). 

 

Lessons from humans 

 

Disabling mutations in the STAT5B gene were identified in six patients with 

severe growth retardation (Kofoed et al. 2003), indicating a central role for STAT5B in 

GH-mediated post-natal growth. In contrast to mice, 5 of the 6 patients with reduced size 

were females, suggesting that in humans STAT5B activity is not restricted to sexual 

dimorphism. In addition, these patients showed immunological defects.   

In cervical cancers associated with human papilloma virus (HPV) infections, 

STAT5B is over-expressed, whereas STAT5A expression is down-regulated. Moreover, 

STAT5B expression pattern is associated with the severity of the disease (Sobti et al. 2010). 

In cells that express the NPM1-ALK oncogenic tyrosine kinase, STAT5A is 

methylated at its promoter level and so its transcription is inhibited; when STAT5A 

expression is restored by a DNA methyltransferase inhibitor, it can bind NPM1-ALK and 

enhance its inhibition. This suggests a tumour suppressor key role for STAT5A and not for 

STAT5B in these cells (Zhang et al. 2007b). 

Moreover, in humans, STAT5A and STAT5B have been shown to interact with 

different and specific co-factors. For instance, in human breast cancer cells, c-Myb 

interacts with STAT5A and not with STAT5B; here c-Myb potentiates STAT5A-driven 

gene expression, possibly acting as a STAT5A co-activator (Fang, Rycyzyn and Clevenger 

2009). 

In 2004, Schuringa and colleagues introduced the artificial constitutive active 

STAT5A-1*6 mutant (presented before) into human stem and progenitors cells derived from 

umbilical cord blood. They demonstrated that such exogenous expression of an activated 

STAT5A in CD34+ cells results in enhanced self-renewal. Furthermore, it drives the 

expression of a number of proto-oncogenes and cytokines, as well as a number of erythroid 

specific genes, favoring erythroid over myeloid differentiation and providing a long-term 

proliferative advantage for erythroid progenitors. In contrast, STAT5A/5B down-
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regulation promotes megakaryocytes expansion from CD34+ cells and impairs the 

development of erythroid progenitors (Olthof et al. 2008). 

 
In conclusion, mounting evidence in mouse and in humans seems to favor the 

hypothesis of a different role for STAT5A and for STAT5B, which depends on the cellular 

context and on patho-physiological states. 

 

Table 2: STAT5A and STAT5B differential roles described in the literature for humans and mice. 

 
 

3.5.3 STAT5 in pathophisiology  

 

STAT5 is activated by a plethora of cytokines, growth factors, hormones and some 

other cytoplasmic kinases. The interest of STAT5 in cancer studies comes from the initial 

observations of its activation in many human cancers. Mutations in signaling pathways acting 

upstream of STAT5 proteins and consequently aberrant phosphorylation of STAT5 on 

tyrosine and serine residues, is the best-documented mechanism of STAT5 activation in 

human cancers, especially in hematopoietic diseases. In addition to these aberrations, some 

other defects causing the over-activation of STAT5 can involve the negative regulatory 

control of STAT5 activation mediated by tyrosine phosphatases, such as SOCS, PIAS and 

PTPs.  
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3.5.3.1 Hematopoietic neoplasms 

 

In 1996, Van Etten and colleagues reported that STAT5 is constitutively activated in 

BCR-ABL-induced CML cells. Other studies similarly observed over-activation of STAT5 in 

acute leukemia patient samples (Ilaria and Van Etten 1996, Van Etten 2007, Gouilleux-Gruart 

et al. 1997). Over-activation of STAT5 was also linked to the presence of oncogenic over-

active tyrosine kinases, such as  mutated aberrant kinase FLT3-internal tandem duplication 

(called FLT3-ITD) or the Kit (D816V) mutant, TEL/PDGFβR or Tel/Jak2 fusion proteins, 

and shown to participate to leukemic cell growth. In addition, 40% of patients with severe 

congenital neutropenia (SCN) carry mutations in the gene encoding the G-CSF receptor that 

truncate part of the cytoplasmic domain of the receptor, resulting in constitutive activation of 

STAT5 and development of AML (Germeshausen, Ballmaier and Welte 2007). Among the 

hematopoietic malignancies, there is also the PolycythemiaVera (PV) myeloproliferative 

disease, which presents a mutation on JAK2 (the V617F mutation) that has been associated 

with constitutive activation of STAT5 (Wernig et al. 2006). 

In contrast to STAT5 oncogenic role, STAT5A was reported to act as tumor 

suppressor in a subset of T-cell lymphoma where STAT5A, but not STAT5B, is 

epigenetically silenced by the NPM1-ALK tyrosine kinase. In this cellular context, when 

STAT5A expression is restore leads to inhibition of NPM1-ALK expression (Zhang et al. 

2007b). 

Finally, STAT5A exhibits selective tetramerization potential and a unique Serine 

residue, Ser-779, which is absent in STAT5B. Both STAT5A characteristics have been linked 

to leukemic transformation (Friedbichler et al. 2011, Moriggl et al. 2005, Soldaini et al. 

2000). 

3.5.3.2 Solid cancers 

 
STAT5 proteins are important not only for the development of hematopoietic diseases, 

but also of several solid cancers. For instance, STAT5 was suggested to have a dual role in 

breast cancer cells. On one hand STAT5 promotes malignant transformation in mammary 

epithelial cells and is important for cancer initiation (Vafaizadeh et al. 2010). On the other 

hand, STAT5 activity correlates with a better prognosis for patient survival since it indicates 

mammary epithelial cell differentiation and delays metastatic progression (Wagner and Rui 

2008). 
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Persistent STAT5 activity, often in association with GH and Prolactin expression, is 

found also in the majority of hormone refractory prostate cancers. Moreover, studies in cell 

line models show that over-phosphorylation of STAT5 on Tyr residues, is responsible for the 

maintaining of the malignant phenotype (Tan et al. 2008). JAK/STAT pathway is frequently 

activated in lung and head and neck cancers and STAT5 contributes to the growth and 

formation of malignant cells and to resistance to EGFR inhibitors (Koppikar et al. 2008). In 

liver cancer, there is activation of STAT5B factor and in patient samples STAT5B activation 

was found to be correlated with the stage of tumor. STAT5B promotes aggressiveness of liver 

cancer cells through induction of epithelial-mesenchymal transition and promotion of tumor 

metastasis (Lee et al. 2006). STAT5 activation was also found in several patient with 

melanoma and its activation contributes to resistance to interferons therapy and cell survival 

(Wellbrock et al. 2005). Furthermore, activated STAT5 was found in intraductal papillary 

mucinos neoplasms (Kataoka et al. 2007), glioblastoma (Liang et al. 2009), colon 

carcinoma (Xiong et al. 2009), ovarian carcinoma (Chen et al. 2004) and, just STAT5B but 

not STAT5A, in cervical cancers after HPV infection (Sobti et al. 2010). 
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4. 
STAT5 factors in CML development and 

maintaining 
 

 

4.1 STAT5 AS A CRUCIAL FACTOR FOR CML: A 
HISTORICAL PERSPECTIVE 
 

4.1.1 First results obtained in in vitro models 

 

Van Etten and colleagues provided the first evidence of STAT5 implication in CML 

disease.  They made use of BaF3 (lymphoid) and FDCP1 (myeloid) cell lines transformed by 

the isoform p210 of BCR-ABL and showed that STAT5 phosphorylation was dependent of 

BCR-ABL. However, they did not find STAT5 to immunoprecipitate with BCR-ABL, 

suggesting that STAT5 activation by BCR-ABL was an indirect activation and raising the 

question of how STAT5 was phosphorylated (Ilaria and Van Etten 1996). 

In 1999, Nieborowska-Skorska and colleagues found that STAT5-BCR-ABL induced 

phosphorylation and activation was mediated by a mechanism that requires the BCR-ABL 

SRC homology (SH2) domain and the proline-rich binding site of the SH3 domain (Fig.8). 

BCR-ABL mutants deleted in both SH3 and SH2 domains completely abolished the ability to 

activate STAT5. Moreover, they found that STAT5 is required for leukemogenesis using a 

dominant active mutant of STAT5B. They assessed that STAT5B has a role in protection 

from apoptosis and induction of growth factor-independent proliferation in a BCR-ABL 

dependent manner (Nieborowska-Skorska et al. 1999). 

STAT5 activation was linked with cell cycle progression and inhibition of apoptosis. 

Among the genes which play a pivotal role I these processes and which are regulated by 

STAT5 in CML there are Cyclin D1, Bcl-xl, myc (de Groot et al. 2000). Moreover, it was 

shown that STAT5 cooperates with p85 subunit of PI3K and Ras protein to promote its 

oncogenic activity (Santos et al. 2001). 
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4.1.2 First results obtained in in vivo models 

 

The first experiment to prove the crucial role for STAT5 in in vivo mice was 

performed by Ye and colleagues in 2006. They expressed p210 BCR-ABL in primary murine 

cells deficient for STAT5 and they found that these cells were defective in inducing CML-like 

illness in recipient mice. Importantly, reconstitution of wild-type mice with BM cells co-

expressing BCR-ABL and dominant negative STAT5 profoundly reduced the incidence of 

CML. These findings indicated that STAT5 plays an important role for the pathogenesis of 

the CML-like illness also in vivo models (Ye et al. 2006). Then, Hoelbl and colleagues 

confirmed and expanded these in vivo results. By using a tumor-specific gene-deletion 

approach, they dissected the role of STAT5, and also of STAT3, in BCR-ABL-induced 

leukemia maintenance. They found that both are required for the initial transformation by 

BCR-ABL, but, once established, only STAT5 is crucial for viability and proliferation of 

leukemic myeloid cells. Furthermore, the deletion of STAT5 in leukemic cells resulted, as it 

was already shown in vitro, in G0/G1 cell cycle arrest followed by apoptosis. The mere 

expression of a single STAT5 target gene, such as c-myc, Bcl-xl or Cyclin F1, cannot replace 

STAT5 expression (Hoelbl et al. 2010). 

 

In conclusion, BCR-ABL cells are addicted to STAT5 for initiation and maintaining in 

the leukemia state and, since its discovery, STAT5 has drawn the attention of a lot of 

biologists and physicians as a potential drug target. 

 

4.1.3 STAT5 as a new therapeutic target: the use of Pimozide 

 

Targeting STAT5 has become an attractive approach to overcome TKI resistances. In 

2011, Nelson and colleagues performed a high throughput screen based on STAT5 

transcriptional activity and found a chemical compound known to be safe in humans and to 

inhibit the activity of STAT5, the Pimozide. Pimozide is a FDA-approved drug in the United 

States for the treatment of Tourette syndrome and appears to work by blocking a dopamine 

receptor. Pimozide inhibits STAT5 expression and phosphorylation on Tyr, by a mechanism 

that results unknown. However, treatment of CML cell lines, such as KU812 and K562, and 

CML primary cells from BM with Pimozide induces apoptosis and cell cycle arrest in 48 

hours.  Furthermore, Pimozide synergizes with Imatinib and Nilotinib to decrease STAT5 

phosphorylation and induce apoptosis also of TKI-resistant CML cells (Nelson et al. 2011). 
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Thus, Pimozide is a potent STAT5 inhibitor that is effective in models of CML. The efficacy 

of Pimozide against resistant CML mutants and its synergic effects in combination of 

Imatinib and Nilotinib, suggest that STAT5 inhibition might have beneficial effects in the 

treatment of CML. 

 

 

4.2 STAT5 PHOSPHORYLATION IN CML: WHAT’S 
NEW 
 

Using murine CML models combined with inducible ablation of JAK2, Hantschel and 

colleagues showed that initial myeloid transformation and leukemia maintenance is 

independent of JAK2. In BCR-ABL positive cells there is an uncoupling of the canonical 

JAK2/STAT5 signaling. Thus, pharmacological targets need to focus on STAT5 itself and not 

on JAK2 (Hantschel et al. 2012). However, how STAT5 is phosphorylated in CML cells is a 

central unresolved question. Some data suggest that JAK2-independent phosphorylation of 

STAT5 could be mediated by SRC kinases. In 32D cell line, a reduced expression of SRC is 

responsible for the decreased phosphorylation of STAT5. These results were obtained in cell 

lines, but they were never reproduced in other in vitro or in vivo models.  

Understanding of STAT5 activation remains crucial to find new possible therapeutic 

targets for those patients resistant or intolerant to TKI treatment. 

 

 

4.3 STAT5 AND TKIs RESISTANCE 
 

STAT5 implication in TKIs resistance emerged from a study of Wang and colleagues. 

They found that IM- and Nilotinib-resistant cell lines and primary cells exhibit an elevated 

mRNA and protein levels of GM-CSF. GM-CSF autocrine secretion mediated resistance to 

IM and Nilotinib by activating JAK2/STAT5 pathway activation and consequently 

circumventing the need for BCR-ABL signaling to maintain survival (Wang et al. 2007). 

They were the first to reveal a correlation between elevated STAT5 phosphorylation and TKIs 

resistance. In 2010, as the time I started my PhD research, nothing more was known about 

STAT5 implications in TKIs resistance and their roles and molecular mechanisms, as well as 

their expression in TKI resistance, has become more and more attractive. 
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4.4 STAT5 AND CELLULAR LOCALIZATION IN CML 
CELLS 
 

The evidence of a cytoplasmic localization of STAT5 factors emerged in CML cells, 

where STAT5 factors were found to be localized in specific cytoplasmic structures called 

podosome. Podosomes are structures involved in cell adhesion and migration. This specific 

STAT5 localization in CML cells was found to be mediated by the Src kinase HCK, which is 

activated by BCR-ABL (Poincloux et al. 2007). These findings were confirmed and expanded 

by Harir and colleagues. Using primary cells, they found that persistent STAT5 

phosphorylation is detected mainly in the cytoplasm of patients with CML and AML. 

Moreover, they showed that oncogenic activation of STAT5 triggers its association with PI3K 

and the scaffolding protein Gab2, and that activation of this pathway may be involved in the 

leukemic potential of constitutive active STAT5 molecules (Harir et al. 2007).  
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5. 
Objectives 

 

 

 

Figure 16: STAT5 activation and questions arisen on STAT5A and STAT5B mode of actions 

 

 

STAT5 activation can be mediated by JAK kinases which are associated to cytokine or 

growth factor receptors and by some non-receptor tyrosine kinases, such as SRC and BCR-

ABL. STAT5 activation is a crucial feature of BCR-ABL expressing cells, however there has 

been no clear data studying a differential effect that might be induced by STAT5A or 

STAT5B in either the normal HSC context or in CML. Moreover, the molecular mechanisms 

of STAT5s, outside their implication in CML cell survival and consequently their regulation 

of proliferative and anti-apoptotic target genes, remain poorly known.  

For these reasons, at the beginning of my PhD project, I focused on the differential 

roles of STAT5A and STAT5B factors in normal and CML cell. 
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Differential contributions of STAT5A and STAT5B to stress 
protection and tyrosine kinase inhibitor resistance of chronic 

myeloid leukemia stem/progenitor cells. 
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EXPERIMENTAL DESIGN 
 
 

To differentiate STAT5A and STAT5B activities in human HSCs, we identified small 

hairpin RNAs (shRNAs) that differentially knock-down the two STAT5s. We chose to 

perform an RNAinterference based strategy because over-expression of STAT5A in CML 

cells resulted to be toxic and to lead to cell apoptosis, complicating this study. Moreover, we 

used a shRNA approach because it provides specific and long-lasting gene silencing, without 

clonal selection. 

The shSTAT5 RNA sequences were found by the Ambion software. These shRNAs 

were then introduced in lentiviral vectors expressing the Green Fluorescent Protein (GFP) or 

the truncated CD4 receptor reporter genes to transduce cord blood CD34+, CML CD34+ and 

CML cell lines (K562, LAMA84 and MEG01). As control, we used an empty lentiviral vector 

or a vector expressing a shRNA directed against the luciferase RNA. To assess shRNA 

efficiency we disposed of specific antibodies which selectively recognize STAT5A, STAT5B 

or both STAT5A/5B. STAT5A and STAT5B protein levels were always checked by 

Immunoblot; 10% SDS-polyacrilamide gels allowed for a differential migration of STAT5A 

and STAT5B. Immunoblot analyses showed that one shRNA, hereafter called shSTAT5A 

(shS5A), strongly decreased STAT5A protein levels without affecting STAT5B, as compared 

to not-transduced cells or control shRNA expressing cells. Another shRNA, renamed 

shSTAT5B (shS5B), strongly inhibited STAT5B protein expression, but also weakly inhibited 

STAT5A. A third shRNA, shSTAT5A/5B, knocked-down both STAT5A and STAT5B 

proteins. shRNAs neither change STAT1, STAT3 or STAT6 expression, nor STAT1/3 

phosphorylation on Tyr (Fig.17). Furthermore, we always checked specific shRNA activities 

by rescue experiments. We restored STAT5s expression in STAT5s KD cells by introducing 

murine STAT5s cDNA which are not recognized by our shSTAT5s. We were always able to 

prove that the specific shSTAT5s activities we found was due to proper inhibition of STAT5 

and that they were not an shRNA side effect.  
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Figure 17: shRNA lentiviral vectors and worklow. shRNA expressing vectors encoding for the GFP or CD4 
reporter genes were transduced in hematopoietic cells (cord blood CD34+, CML CD34+ and CML cell lines). 
Transduction efficiency was assessed by Fluorescent Activated Cell Sorting (FACS) and cells were sorted when 
required. shRNA proper inhibition was assessed by Immunoblot experiments. 
 

 

To investigate STAT5A and STAT5B activities, we made use of primary CD34+ cells 

from healthy cord blood, peripheral blood and bone marrow and CD34+ cells from CML 

patients at diagnosis or after acquired resistance to IM. To study their molecular mechanisms, 

we made use of 3 different CML cell lines, K562, LAMA84 and MEG01.  

STAT5A and STAT5B activities were first evaluated by analyzing growth properties 

of shSTAT5 expressing normal and leukemic cells. We could immediately ascertain that the 2 

factors had different incidences on maintaining of normal and leukemic cell survival under 

standard condition, resulting in STAT5B have a crucial role. The shSTAT5A did not affect 

cell survival and this allowed the study of STAT5A inhibition in other contexts outside 

survival. 

Second, we subjected shSTAT5A cells to exogenous oxidative stress and investigated 

their ability to respond to this kind of insult. These experiments shed new light on the activity 

and molecular mechanisms of STAT5 factors in normal and leukemic cells, resulting in 

STAT5A had novel role as anti-oxidant factor. 
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Third, given the importance of STAT5A to face oxidative stress, we wondered if it 

could play a role also in the protection to drug insult. We analyzed the effects of STAT5 KD 

in a context of IM-resistance and we evidenced another new role for STAT5A as important 

mediator of drug resistance. 

These results together, allowed in April 2013 the publication of my first PhD paper on 

Cancer Research journal. A more detailed summary of the paper is on the next page. 
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SUMMARY ARTICLE I 
 

 

The CML is a clonal hematopoietic stem cell disorder characterized by the t(9:22) 

genetic translocation and expression of the oncogenic tyrosine kinase BCR-ABL . A first 

BCR-ABL Tyrosine Kinase Inhibitor (TKI), Imatinib (IM, Novartis), was identified that 

inhibits proliferation of BCR-ABL expressing hematopoietic cells and leads to disease 

remission. However, BCR-ABL mRNA remains detectable in the most immature HSCs 

(Chomel et al. 2011) and discontinuation of IM results in clinical relapse (Rousselot et al. 

2007).  

More than ten years ago it was shown that STAT5 transcription factors play a crucial 

role in the CML pathogenesis reporting that STAT5 is constitutively activated in human 

primary CML cells (Ilaria and Van Etten 1996). The pivotal role of STAT5 in CML was 

confirmed in STAT5 KO mice few years ago. In this study authors demonstrated that STAT5 

is not only required for disease initiation but also for leukemia maintenance (Hoelbl et al. 

2010). However, the specific contributions of the two related STAT5 genes, STAT5A and 

STAT5B, were unknown. 

We used an RNA interference based strategy to analyze STAT5A or STAT5B 

expression in normal and CML cells.  

We showed that STAT5A/5B double knock-down triggers normal and CML cell 

apoptosis and suppresses long-term clonogenic potential of immature HSCs which are known 

to be resistant to TKI treatment and responsible for residual disease. STAT5A and STAT5B 

exhibited similar pro-survival activity, but STAT5A loss alone was ineffective at impairing 

growth of both normal and CML CD34+ cells under standard conditions. In contrast, STAT5A 

loss was sufficient to enhance Reactive Oxygen Species (ROS) in presence -and also in 

absence- of H2O2 stimuli. Moreover, we found that basal ROS enhancement in shS5A-cells is 

in part generated by NADPH oxidases. ROS augmentation is mostly correlated with enhanced 

DNA damages. Indeed, shS5A cells present an increased number of H2AX and RAD51 foci 

in the nucleus, which are involved in DNA double strand breaks reparation.  We looked for 

STAT5A target genes in CML cells and found that the cellular oxygen sensor Prolyl-

Hydroxylase 3 (PHD3), which regulates the degradation of Hypoxia Induced Factors (HIF), is 

negatively regulated by STAT5A but not by STAT5B. STAT5A-dependent PHD3 regulation 

does not require the trans-activator domain of STAT5A, suggesting that STAT5A contributes 
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to stress resistance through unconventional mechanisms, in a non-transcriptional-dependent 

manner. This observation fits with STAT5A massive cytoplasmic localization in CML cells 

found by our group and others (Chatain et al. 2013). 

We further investigated the expression of STAT5A and STAT5B in primary WT and 

CML cells and we found that STAT5A/STAT5B expression ratio increases with the 

progression of the pathology. This suggested that STAT5A may play a role in the resistance 

to therapeutic treatment. Therefore, we selected for IM-resistant stem/progenitor cells that did 

not present over-expression or over-activation of BCR-ABL. In contrast to primary cells at 

diagnosis, IM-resistant cells showed enhanced STAT5A dependence, by being sensitive to 

STAT5A single knock-down. 

Collectively, our findings highlight the pro-survival, stress protection and drug 

resistance roles of STAT5 factors, providing new understanding for medical treatment of 

CML patients.  STAT5A specific inhibition could limit CML resistance to TKIs treatment 

without affecting normal hematopoietic cells. 
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My PhD work contributed to the knowledge of CML oncogenic processes and the role 

of STAT5 factors in these processes. By using an RNA interference based strategy in both 

normal and leukemic cells, we could demonstrate that: 

 

 STAT5 factors are required to maintain CML stem and progenitor cells, which are 

known to be independent of BCR-ABL signaling and responsible for residual 

disease. 

 STAT5A exhibits a new role in CML physiopathology as an anti-oxidant factor. 

STAT5A inhibits the expression of the cellular oxygen sensor PHD3 and this 

regulation does not depend on STAT5A transcriptional-activator domain. 

 STAT5A contributes to TKI secondary resistance, with resistant cells becoming 

addicted to STAT5A for their survival.  

 STAT5A regulates 2 new target genes in CML cells: the receptor tyrosine kinase 

Axl and its ligand, Gas6. 

 Axl contributes to oxidative stress regulation, and favors IM-resistance of CML 

cells, thus mimicking STAT5A activities. 

 BCR-ABL-activated STAT5A triggers a strong Gas6 down-regulation, which is 

not observed in healthy cells. Gas6 dysregulation may contribute to CML 

leukemic properties.  

 

 

STAT5 factors and CML stem and progenitor cell maintenance. The presence of 

BCR-ABL has made CML disease a model for targeted therapies. Few decades ago, patients 

were treated with interferon-, then the identification of the first BCR-ABL inhibitor, 

Imatinib, has completely revolutionized the outcome for CML patients. However, Imatinib 

does not cure CML disease and patients must be life-long treated. Moreover, some patients 

can exhibit primary or develop secondary resistances to Imatinib. Thus, second generation 

tyrosine kinase inhibitors (TKIs) have been developed, such as Nilotinib and Dasatinib, which 

are much more efficient than Imatinib and can overcome some Imatinib (primary and 

secondary) resistances. However, none of the three TKIs is able to completely destroy the 

most immature BCR-ABL expressing cells. Indeed, the most immature CML cell population 

does not depend on BCR-ABL signaling for its survival (Corbin et al. 2011, Hamilton et al. 

2012) and BCR-ABL mRNA remains detectable in these TKI-refractory leukemic stem cells 

(Chomel et al. 2011). CML stem cells reside in the bone marrow niche and this 
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microenvironment provides critical signals that sustain HSC survival and support CML stem 

cell preservation (Bhatia et al. 1995, Zhang et al. 2013). In the literature, STAT5 activity and 

contribution in CML was analyzed in different models, such as CML cell lines, cell lines 

supplied with an exogenous BCR-ABL and mouse models where BCR-ABL was introduced 

into hematopoietic progenitors that were engrafted. These models allowed the characterization 

of STAT5 factor activities in CML cells, however very few studies have used patient 

progenitors. Our data has made STAT5 one central mediator of niche-dependent pro-survival 

messages that sustain both normal and leukemic primary stem cells (Figure 24). During our 

studies, two separate groups showed, in in vitro systems, that blocking JAK-mediated 

extrinsic survival signals in primary CML, in the context of the BM microenvironment, 

restore sensitivity of CML cells to TKIs (Nair et al. 2012, Traer et al. 2012), suggesting that 

niche-mediated signals activate STAT5 in primary CML independently of BCR-ABL activity. 

Targeting CML stem cells to eradicate disease persistence is a new field of interest and some 

other pathway have been proposed as potential therapeutic targets, such as the Wnt-β-catenin 

pathway (Zhang et al. 2013) and the Hedgehog pathway (Dierks et al. 2008). Whether STAT5 

and these other signaling pathways work separately, or converge on common intracellular 

transducer(s) that integrate niche-dependent information remains to be studied.  

 

 

Figure 24: activation of 
STAT5 by the niche is 
responsible for CML stem cell 
survival. The bone marrow 
niche, where normal and 
leukemic hematopoietic stem 
cells reside, activates STAT5 
signaling. This results in a 
constitutive activation of 
STAT5 by niche-dependent 
signals. When cells are treated 
with Imatinib, the mature CML 
progeny, which depends only on 
BCR-ABL activity, is lost. 
However, the most immature 
BCR-ABL population, which 
presents a basal activation of 
STAT5, can still survive and 
give rise to CML progeny again. 
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A new role for STAT5A as anti-oxidant factor. Previously, STAT5 activation was 

linked with cell cycle progression and inhibition of apoptosis in CML cells and other cancer 

cells. These are well established features of STAT5 factors. We now show that, in addition to 

well-known anti-apoptotic and proliferative effects, STAT5 has another major role as 

negative regulator of oxidative stress in normal HSCs and in CML cells. Although STAT5 is 

ubiquitous and involved in many oncogenic processes, its anti-oxidant activity was similarly 

recently proposed in human leukemic pre-B cell lines (Cholez et al. 2012). In these cells, anti-

oxidative property of STAT5 was linked to DJ-1, GSH synthetase and transaldolase activities. 

We did not observe any STAT5-dependent regulation of these factors in healthy or in CML 

primary stem progenitor cells, but instead we show that STAT5A decreases NADPH-oxidase 

(NOX) ROS-generated levels (Figure 25). Such discrepancy may be linked to the leukemic 

cell models used. Another group, in line with our data, showed a link between STAT5 activity 

and NOX generated ROS in AML cells that present the FLT3-ITD mutation; in these cells, 

FLT3 driven H2O2 production is mediated by p22phox, a component of the NOX complex, 

and is critical for STAT5 signaling (Woolley et al. 2012). Oxygen is a critical component in 

stem cell biology; hypoxia protects HSCs from ROS-mediated DNA damages and premature 

senescence, sustaining HSC long life (Ito et al. 2004, Mohyeldin, Garzon-Muvdi and 

Quinones-Hinojosa 2010). Cancer cells are permanently proliferating and show increased 

ROS levels, thus recent studies suggest that this biochemical property of cancer cells can be 

exploited for therapeutic benefits (Trachootham et al. 2009). In line with this observation, 

recently Kluza and colleagues have shown that TKI-resistant CML cells present a 

mitochondrial dysfunction responsible for a higher generation of ROS compared to TKI-

sensitive cells; thus, mitochondria dysfunction may be exploited for selective therapeutic 

intervention (Kluza et al. 2011). Our observations of STAT5A down-regulation of cell 

oxidative stress, suggest that this action may limit DNA and protein damages generated by the 

high toxic ROS levels present in leukemic cells, thus protecting these cells. This observation 

complements the pro-survival activity of STAT5 factors previously reported and highlights 

the pleiotropic oncogenic role of STAT5 in CML cells. This makes STAT5 factors ideal tools 

to eradicate CML stem cells. However, last year Warsch and colleagues reported, as opposite 

to our data, that STAT5 factors actually enhance oxidative stress in CML cells. They inhibited 

or over-expressed both STAT5A and STAT5B in different murine cell lines transfected with 

an exogenous BCR-ABL or used also in K562 cells. They showed that, in all these cells, 

when STAT5s are over-expressed there is an accumulation of ROS and, on the other hand, 

when they are lost ROS levels decrease (Warsch et al. 2012). This STAT5 pro-oxidant action 



124 GENERAL DISCUSSIONS AND PERSPECTIVES 

may be the consequence of the well-described STAT5 KD-induced cell death already shown 

by our group and others. (Nieborowska-Skorska et al. 1999, de Groot et al. 2000). Moreover, 

exogenous oncogene over-expression triggers abnormally strong intracellular signaling 

pathways and cell over-proliferation; such an increased proliferate rate clearly generates 

overwhelming levels of ROS which may all change STAT5 overall activities. These 

observations could reconcile our data with their. 

 

 

 

Figure 25: STAT5A negatively control NOX generated ROS levels. NADPH-oxidase (NOX) complexes are 
located at the cell membrane and generate superoxide anions by transferring electrons from NADPH inside the 
cells to oxygen. Cytoplasmic STAT5A decreases NOX-generated ROS levels and consequently the number of 
DNA damage breaks, leading to a decreased formation of H2Ax and RAD51 reparation foci. 

 

 

STAT5A dependent stress control is mediated by a non-canonical transcription 

domain-independent signaling. We have also shined light on molecular mechanisms by 

which STAT5A regulates oxidative stress. The best known STAT5 signaling pathway 

involves its phosphorylation on Tyr residues which leads to dimers or tetramers formation and 

consequently to their translocation to the nucleus, followed by their direct binding to DNA 

motifs (GAS elements) and the transcriptional regulation of target gene expression. We now 
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report evidence that STAT5A regulates the cellular oxygen sensor PHD3 mRNA even in 

absence of its trans-activator domain, in a possible transcription-independent way. This 

observation completely fits with a recent finding reported this year by Chatain and colleagues. 

They identified for the first time different localization for STAT5A and STAT5B in CML 

cells, resulting in STAT5A being massively cytoplasmic and STAT5B being massively a 

nuclear factor (Chatain et al. 2013). Very few STAT5A quantities were detected in the 

nucleus of CML cells, suggesting a new non-nuclear role for STAT5A -different from gene 

transcription- in these cells. This different distribution, and our data, suggests that STAT5A 

may work as a cytoplasmic regulator of oxidative-stress. Notably, mounting evidence favors 

the hypothesis of additional non-nuclear STATs roles, as it was shown for STAT3 within the 

mitochondria (Wegrzyn et al. 2009, Gough et al. 2009) or for STAT5 in rough endoplasmic 

reticulum (ER) and Golgi apparatus (Lee et al. 2012). STAT5 localization in rough ER or 

Golgi apparatus could explain our observation of STAT5A-dependent non-transcriptional 

PHD3 mRNA regulation: STAT5A could affect PHD3 mRNA stability by increasing 

transcript degradation and reducing its lifetime. However, the small amount of STAT5A in 

the nucleus may still be sufficient to regulate PHD3 at the transcriptional level. The PHD3 

promoter contains 4 STAT binding sites (GAS): one in the proximal promoter region (-760), 

while the others are located more distant from the transcription start site (-4678, -5840 and -

8076). The presence of GAS elements at the promoter level suggests that PHD3 expression 

may be transcriptionally regulated by few nuclear STAT5A in a direct way; it can maybe 

form dimers with STAT5B and use the trans-activator domain of STAT5B to regulate PHD3 

gene expression. However, STAT5A could also cooperate with other transcription factors and 

regulate PHD3 in an indirect way, without directly binding to GAS sites, as it was shown for 

Oct-1 (Magne et al. 2003) . Further experiments are needed to clarify whether oxidative stress 

down-regulation involves STAT5A nuclear or cytoplasmic activity and whether it goes 

through canonical STAT5 Tyr-phosphorylation. To this purpose we are developing two 

mutant murine STAT5A expressing lentiviral vectors: one which presents an amino acid 

substitution on the canonical target Tyr responsible for STAT5A activation (Tyr694Phe) 

which is normally required for STAT5 nuclear localization, and another which presents two 

amino acid substitutions in the DNA binding domain (Glu437Ala, Glu438Ala) that prevent 

STAT5A binding to DNA. These tools will allow us to determine if STAT5A-dependent gene 

transcription is necessary for its role as negative regulator of PHD3 expression or not. 
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STAT5A supplies CML cells with growth advantage to resist not only to oxidative 

stress but also to drug treatment. During my PhD work, different groups showed a 

correlation between TKI resistance and STAT5 phosphorylation levels in CML cell lines and 

primary cells. Increased levels of STAT5 activation was reported to counteract TKI therapy. 

Warsch and colleagues showed that this can happen by two different mechanisms: the high 

STAT5 protein levels observed in human patients after prolonged disease may shield cells 

from TKI-dependent cell death, but also in the meantime may favor BCR-ABL mutations, 

genomic instability and generation of resistant clones (Wang et al. 2007, Warsch et al. 2011, 

Warsch et al. 2012). Moreover, inhibiting STAT5 factors by treating TKI-resistant cell lines 

with Pimozide, strongly decreases their survival (Nelson et al. 2011). However, the way 

pimozide is working and whether it only inhibits STAT5 remains to be established. Few years 

ago, Zhang and colleagues performed a transcriptomic study in which they identified 

STAT5A, and not STAT5B, as one of four predictors of secondary IM resistance compared to 

primary resistance in CML cells from patients (Zhang et al. 2009). In line with all these data, 

our findings now indicate that human STAT5A plays a crucial role in favoring development 

of irreversible long-term resistance to drug treatment of immature CML stem cells which may 

be linked to its anti-oxidant properties. 

 

Collectively, these findings highlight the central role of ubiquitously expressed STAT5s as 

multipotent oncogenic mediators of potential clinical importance in the treatment of CML and 

its recurrence. Each of these activities may also participate to the maintenance/development of 

other known STAT5-dependent leukemia and tumor process. We showed that STAT5A may 

exhibit non-nuclear activities (see also STAT5A cellular distribution) which are not shared by 

STAT5B. This differential role may be explained by different possible post-translational 

modifications of STAT5 factors. Indeed, even if STAT5A and STAT5B exhibit high 

similarity at the protein level (96%), they present different target of phosphorylation, such as 

Serine 779 for STAT5A and Serine 193 for STAT5B. In the literature, differential post-

translational modifications of STAT5A and STAT5B are poorly described; in mammary 

gland of Hirosaki Hairless Rat, STAT5A is massively nuclear, whereas STAT5B is 

cytoplasmic and this differential distribution is due to an O-linked N-acetylglucosamination of 

STAT5A which leads to its translocation to the nucleus (Nanashima et al. 2005). Thus, 

STAT5A and STAT5B post-translational modifications could explain the functional diversity 

of these two factors and therefore their different interaction with protein partners. To this 

purpose, we also decided to look for STAT5A mechanism of action by searching STAT5A 
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partners. We are presently analyzing, by Stable Isotope Labeling with Amino acid in Cell 

culture (SILAC) proteomic approach, the different STAT5A and STAT5B partners present in 

STAT5A or STAT5B immunoprecipitates using quantitative mass spectrometry following 

immunoprecipitation experiments. This kind of approach will allow the identification of new 

possible partners and mechanisms that lead to the different roles of STAT5A and STAT5B 

that we found in normal and CML cells. 
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