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Chapter 1

Introduction

1.1 Nuclear power

1.1.1 A brief outlook about energy

Although energy is a subject of passionate debates, there is a wide consensus to

foresee a large increase of the global energy demand over the next decades. The

very possibility to fulfill this demand is much more disputed; more and more voices

call for active policies aiming at reducing the energy demand.

An undisputed point, though, is that the energy production will not keep its

present structure. Today, around 80% of the world energy is based on fossil fuels.

As fossil reserves are by definition limited, their production will necessarily decline

at some point, leading to ever-increasing prices and thus to critical problems for

the global economy. In addition, the use of fossil fuels results in an increase of the

greenhouse effect, which is becoming a major threat for the sustainability of the

world development. Carbon-free energy sources must therefore be developed.

The potential of hydro-electricity has largely been put in use. Solar and wind

energies offer nearly unlimited resources, and their prices are dropping steadily,

but they are still relatively expensive, especially when one has to account for their

intermittent character. The use of biomass for energy production competes with

human food supply. Thus, while the nuclear power accounts for only 6% of the

global energy consumption, it may have to play an increased role in the future.

1
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1.1.2 Nuclear reactors, past and present

The time lapse between the first clue of the fission phenomena and the first nuclear

reactor was remarkably short: the discovery of the neutron took place in 1932,

fission was described in 1938, and the world’s first "nuclear plant" was built at

the site of EBR-I, Iadho and produced 0.8 kW during a test on December 20th,

1951. Several types of reactors have been operated commercially since this date,

and various prototypes have been built to test a wider range of concepts.

Basically, all nuclear power plants are steam engines. The nuclear reactor produces

heat; this heat is used to vaporize water; and the resulting steam pressure drives a

turbine, which in turns drives an alternator, thus creating electricity. The singu-

larity of nuclear power plants lays in the method used for the heat production. It

is caused by the chain reaction that takes places in the core, where neutrons induce

fission which are accompanied by the emission of neutrons, which in turn trigger

new fission, and so on. Most of the fission energy is carried away as kinetic en-

ergy by the two fission fragments. These fragments quickly dissipate their kinetic

energy in the surrounding material, leading to an increase of its temperature.

Most presently-operated reactors are called thermal, by reference to the thermal-

ization of the neutrons (i.e. their slowing down to thermal kinetic energy, a process

called "moderation"). Thermal reactors are particularly suitable to take advantage

of the very large fission cross section of 235U with thermal neutrons. Pressurized

water reactor (PWR) are an example of thermal reactors. The core is filled with

water, with a high-enough pressure to keep it liquid. This water is force-circulated

and acts as both a very efficient neutron moderator and as a primary heat trans-

porter. This primary circuit vaporizes the water from a secondary water circuit

through a heat exchanger. By contrast, boiling water reactors (BWR) have a sim-

pler design: the steam generation takes place directly in the core. Both types of

reactors require an enrichment of the uranium in order to increase its 235U content

from 0,7% up to 3,5%. CANDU reactors are similar to PWR in their principle,

except that they can be operated with natural uranium thanks to the use of heavy

water (D2O) moderator, which absorbs less neutrons. However, they require a

much more frequent fuel replacement.

Another approach is to use unmoderated neutrons, called fast neutrons. A high

interest of fast breeder neutrons reactors (FBR) is their capability to convert fertile

nucleus 238U to the fissile nucleus 239Pu. The typical example is the conversion of
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238U to 239Pu:

238U + n→239 U (23min)
β−

−→
239

Np (2.3 d)(β−)
β−

−→
239

Pu (24000 yr) (1.1)

A similar cycle is possible using thorium:

232Th + n→233 Th (22min)
β−

−→
233

Pa (27 d)
β−

−→
233

U (160000 yr) (1.2)

The conversion rate can balance or even exceed the consumption rate of the fissile

material, leading to a breeding reactor. In both cases, the reactor needs to be

refilled only to replace the fraction of 238U (or 232Th) which has been converted

and underwent fission. Therefore the net consumption of resources is strongly

reduced in comparison to a thermal reactors burning 235U. A major difficulty,

though , is to avoid the neutron moderation in the core. This can be achieved by

using either a liquid metal or a gas as a primary coolant. Due to this technical

challenge, only a few prototypes of such fast neutrons reactors (FNR) have been

built for civil use up to now.

1.1.3 Toward a fourth generation of reactors and fuel cycles

The pressurized water reactors (PWR) operated in France were built in the 1970s

and 1980s, the major decades of the nuclear power development. Boiling water

reactors (BWR) have been commonly used in the United States. These two re-

actor types are the backbone of the so-called "Generation II" of nuclear reactors.

The first "Generation III" reactors are being built by now, in France, Finland and

China. These reactors can be seen as an upgrade of the presently-operated reac-

tors, and are expected to provide significant gains in terms of safety, electricity

production and waste generation.

All commercial nuclear reactors use uranium as fuel, and a large majority of them

are thermal reactors, in which the major part of the fission is due to the sole

isotope 235. This isotope accounts only for 0,7% of the natural Uranium : hence,

the consumption of uranium is much larger than in a system where all nuclei could

undergo fission. If the nuclear power across the world remains at the present level,

our reserves shall last for centuries. But if the use of nuclear power is to increase,
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these reserves may quickly become hampered. In this case, a better use of the

uranium nuclei, or even the use of another nuclei would be mandatory.

In order to address this question, but also to progress further in terms of safety,

waste reduction, and proliferation resistance, a strong effort of research has been

undertaken around the world on several very innovative reactor designs regrouped

under the "Generation IV" label. Most of these "Gen. IV" concepts are based on

fast neutrons, with different primary coolant:

• Lead-Alloy Cooled Fast Reactor (LFR)

• Sodium-Cooled Fast Reactor (SFR)

• Gas-Cooled Fast Reactor (GFR)

• Supercritical-Water-Cooled Reactor (SCWR)

But innovative concepts based on thermal spectrum are also studied :

• Very-High-Temperature Reactor (VHTR)

• Molten Salt Reactor System (MSR)

All these studies make extensive use of numerical simulations, which require precise

data on all nuclear reactions taking place in the reactor.

1.1.4 The question of the nuclear wastes and their inciner-

ation

As any industry, nuclear power generation produces wastes, many of them dan-

gerous. In this work, we will not discuss industrial processes and we will focus on
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the heart of the subject, the spent fuel, that we will simply call waste. Basically,

this waste can be classified in two groups: fission products, which are short- or

medium-lived (meaning that their activity is practically extinct after a few cen-

turies) and are β− emitters, and actinides, which are responsible for most of the

long-term radio-toxicity and are α emitters. During the reactor operation, the

fission reactions create hundreds of different fission products, and a variety of ac-

tinides (such as Np, Pu, Am...) are formed by successive capture of neutrons on

the actinides initially present in the fuel.

The toxicity of nuclear waste, due to their radioactivity, is a major issue of the

nuclear energy generation. A reduction of the nuclear wastes, especially the very

long-lived ones, has become an important topic among the prospects aiming at

developing nuclear energy. A reduction of the wastes can be achieved by using

new fuel cycle and/or by actively trying to destroy some of them.

Unfortunately, radioactivity is a spontaneous phenomenon over which science of-

fers no direct control - at least yet. A nuclear reaction is the sole way to alter

the course of the evolution of a nucleus by transforming it in one or several other

nuclei more stable or short-lived. Only three human devices can generate such

reactions: particle accelerators, nuclear reactor cores, and nuclear bombs. The

later are obviously not to be considered, the particle accelerators consume too

much energy to be used directly to destroy nuclear waste at an industrial scale

(although they might be used as part of a waste incineration system - see below).

Hence, only reactors may be helpful to reduce the nuisance of nuclear wastes.

The comparatively short half-life of the fission products and their isotopic mixing

between radioactive and stable product make them poor candidates for nuclear

transmutation. On the other hand, actinides are responsible for most of the long-

term radio-toxicity, and can fission (although most of the time only with the

action of fast neutrons), which in most cases will result in a drastic reduction of

their radio-toxicity. Two main approaches are considered: the insertion of some

actinides in the fuel of energy-producing reactors, either thermal or fast, or the

use of dedicated actinides burners.

Accelerator-driven system (ADS) have been considered since the mid-90’s as a

promising concept of radio-nuclei incinerators. They are fast reactors associating

a sub-critical assembly and a complementary neutron source consisting of a proton

beam impinging on a Pb/Bi target. Neutrons produced by the spallation reactions



Introduction 6

sustain the reaction rate in the assembly, while offering neutronics characteristics

compatible with a safe use of a fuel heavily loaded in minor actinides. The very

hard neutron spectrum from such a reactor would be most efficient to trigger

fission from non-fissile actinides; however, such a machine represents an unmatched

technical challenge. More conservative options, like the insertion of some actinides

in PWR or FBR, are therefore also studied.

1.2 Nuclear Data

Whether one talks about new reactor concepts, new fuel cycles, or the possibility

to incinerate a part of the nuclear wastes, a common constraint is the availability

of precise information about the nuclear reactions that would be involved. Such

information, usually called "nuclear data", are required for a much wider range of

nuclei and in a much larger energy range than what was necessary to design and

build the first generations of reactors. Furthermore, the required level of precision

has been dramatically increased. Hence, in the last two decades, the effort toward

providing nuclear data has been strongly increased.

Nuclear data encompass measured and evaluated data of various physical nuclear

interactions. They are used as input for numerical calculations in practically all

fields related to nuclear science, from nuclear reactor to nuclear modeling and as-

trophysics. A large number of physical quantities are included, especially reaction

and scattering cross sections (including differential cross sections with respect to

energy and/or angle) and nuclear structure and decay parameters. Nuclear data

are usually limited to particle- or light-nuclei-induced reactions (neutrons, pho-

tons, protons, α, etc) on materials that can be handled in a laboratory: they do

not include reactions between heavy ions or reactions with exotic nuclei.

1.2.1 Data libraries

Data libraries provide direct access to sets of measured data. They are sup-

posed to contain systematic and statistical errors. The most commonly used li-

brary is the one maintained by the International Atomic Energy Agency, EXFOR

(http://www-nds.iaea.org/exfor/exfor.htm). It contains the results of more than
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20000 experiments. Neutron-induced reactions are extensively covered. Charged-

particles and photon reactions are also largely surveyed.

1.2.2 Evaluated data

Multiple data set can co-exist for the same reaction while other reactions have

never been measured. In order to feed simulations without having to manage the

over-abundance as well as the holes in the data sets, a demand for standardized

data emerged early in the nuclear science history. Evaluated data are a response

to this requirement of the physics community. They are produced through calcu-

lations based on a mix of experimental data (when they exist) and theoretical and

empirical modeling.

Nuclear reaction databases contain evaluated cross sections, spectra, angular dis-

tributions, fission product yields, thermal neutron scattering, photo-atomic data,

etc. Like data libraries, they put an emphasis on neutron-induced reactions, and

also cover photon and charged particles reactions. Databases are considered as

a strategic resource, so all major global powers have developed their own li-

braries: JEFF in Europe, ENDF/B in the US, JENDL in Japan, CENDL in

China, BROND in Russia.

A large part of the evaluation activity consists of selecting and/or weighting the

experimental data sets which will be used, based on the quality of the experimental

work. During this process, some data may be re-analyzed in light of new experi-

mental evidences, error bars may be corrected, or data sets may be re-normalized.

Different types of data can also be usefully confronted: for example, differential

cross sections can be convoluted to a known neutron flux (most likely the flux from

a reactor), and compared to the fission yield actually measured in this flux.

A variant of these so-called integral measurements are criticality experiments.

They consist of determining the critical point of an assembly. Results can be

compared to a benchmark of the same assembly: if the nuclear data used for the

calculation are correct, the benchmark should result in the same criticality level

as the experiment. Such a comparison is part of this work, as we wanted to test

the 237Np fission cross section obtained at n_TOF, which is about 6% higher than

the previous measurements above 1 MeV. This particular study is the subject of

chapter 7.
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1.3 Motivations for the measurement of fission frag-

ments angular distributions

While it is overall correct to describe the fission as an isotropic phenomena, there

are cases in which some directions are strongly favored. As it will be explained in

chapter 2, this is especially the case around the thresholds of the first, second and

third chance fission. The measurement of these anisotropies has a direct interest

in terms of basic science, as it provides unique information about the physical

properties of the fissioning system. But fission anisotropies also have an impact

on the measurement of a key nuclear data: the fission cross sections.

In many cases, the required accuracy for fission cross sections falls down to a few

percents - even 2% for fission and capture cross sections on some key isotopes

like 239Pu or 235U. Reaching such accuracy in nuclear physics experiment is a

formidable challenge. And indeed, in most cases, the presently available data are

closer to 5 or 10%, and sometimes much more for nuclei difficult to produce and/or

measure.

In the case of fission cross sections, a potential source of experimental bias is the

variation of the detection efficiency. Fission fragment have a very short path in

solids, barely more than a few micrometers; so even the thinnest targets actually

have a non-negligible thickness compared to the fragments path. For a fission

taking place at a given depth in the target, the larger the angle of emission of the

fragments with respect to the normal to the target surface, the longer the distance

to travel in the target to get out of it and be detected. Therefore, at some point,

a growing part of the fragments will remain stuck in the target, resulting in a

decline of the actual detection efficiency of the system. As the anisotropies are

very different from one nucleus to another, and as they strongly depend on the

neutron energy, they must be known in order to correct the measurement for the

detection efficiency; otherwise, the obtained fission cross section will be flawed.

Figure 1.1 shows the available data on the anisotropy of 237Np. The anisotropy

is quantified as the ratio of the number of fission fragments emissions aligned

on the incident neutron direction, W (0◦), over the number of fission fragments

emissions taking place orthogonal to the neutrons direction, W (90◦). While this

is not the complete angular distribution, this quantity still gives a significant

information on the distribution behavior. The second figure represents the 232Th
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Figure 1.1: Existing measurements of the anisotropy of fission fragments for
237Np (left) and 232Th (right). For sake of clarity the uncertainty is not reported,

the dispersion of the points is an indication of the actual uncertainty.

data. 232Th (even-even nucleus) anisotropy is higher than in 237Np (odd nuclei)

in the energy range between 1 MeV and 20 MeV. The existing measurements are

in good agreement with one another up to 10 MeV, but large discrepancies are

visible at 14 MeV, even around 14 MeV which has been measured many times with

neutrons from D − T reactions.

These figures also illustrate the fact that data are extremely scarce beyond 20 MeV,

except for 232Th and 238U which were measured by Ryzhov and the Uppsala group

(see fig. 1.2). Fission cross section in this energy region (beyond 20 MeV) is

generally regarded as less important for reactors, because even FNR spectrum

extend only to a few MeV. However, in ADS, the energy spectrum may reach to

hundreds of MeV - as already mentioned, this is a net advantage as it significantly

increases the fission yield of many actinides.

Figure 1.2: Comparison of anisotropy for neutron- and proton-induced fission
for 232Th (left) and 238U (right) [1].
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Tutin[1] proposed a comparison of the 232Th and 238U data obtained with protons

and with neutrons (figure. 1.2). At intermediate energies if the incoming nucleon

is captured the fissioning system is different for the two systems 232Th+p and
232Th+n and a difference in the angular distributions is expected, and actually

observed. In the spallation regime though, the incident particle is not stopped

inside the target, so that the same fissioning pre-fragments are produced. Both

systems should therefore present a very similar behavior. However, data show the

persistence of significant discrepancies. If these discrepancies are confirmed by

new measurement, they may shed new lights on the reaction mechanisms. Beyond

the application level, this is an additional motivation to study the anisotropy of

the 232Th fission.

1.4 Overview of this document

In chaapter. 2, we will discuss the fission theory, especially the relation between the

angular distribution and the nuclear spin. In chapter 3 we will present the n_TOF

facility and the experimental set-up we used for fission cross section and angular

distribution measurements. In chapter 4 we will describe the analysis method

leading to the reconstruction of the fission directions. Chapter 5 addresses the

second part of the analysis: the extraction of the angular distribution from the

fission directions, taking int account the detector efficiency. The final result and

the interpretation of the data will be presented in chapter 6. In addition, we

will present a validation of fission cross section measured with our set-up with a

criticality experiment in chapter 7.
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Theory

2.1 Fission

Fission is the process by which a nucleus of an atom splits into two smaller frag-

ments either after a nuclear collision or even spontaneously. A fission process

produces two main fission fragments, free neutrons and releases a large amount of

energy, about 200 MeV. Although it is widely known to apply to the actinides, from

actinium (Z=89) to nobelium (Z=102) among which there are thorium, uranium,

neptunium, plutonium, it is a more general process acting on all heavy nuclei.

Fission is normally binary and sometimes ternary. In the latter case the third

nucleus is at 90% α, and sometimes a triton or a carbon. For the actinides,

fission is always exoenergetic. Its total released energy is around 200 MeV, which

165 MeV (around 75%) is for fission fragments kinetic energy, about 10% for

prompt neutrons, 4% for prompt γ and 8% for delayed neutrons.

In 1938, Fermi received a Nobel prize in physics for his demonstration of the

existence of new radioactive elements produced by neutron irradiation, and for his

related discovery of nuclear reactions brought about by slow neutrons.

After that, Meitner and Frisch gave a first explanation in the framework of the

charged liquid drop model (LDM). They supposed that a uranium nucleus vibrates

when collided by a neutron and then breaks up into two smaller fragments, hence

coining the name of "fission". Those fragments stop in the surrounding materials

and release an energy of about 200 MeV. Afterwards, in 1939, Bohr and Wheeler

11
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described a more detailed theory of fission based on the liquid drop model [11].

Subsequently, the theory has been proven in the same year by Frederic Joliot.

2.1.1 The liquid drop model

Figure 2.1: Sequence of shapes from a spherical nucleus to 2 well separated
fragments, similar to the break up of liquid drop. The penultimate drawing

corresponds to the scission point.

From the properties of the nuclear interaction and the systematics of binding

energies a semi-empirical formula for the binding energy of nuclei, called Bethe-

Weizsäcker’s formula, has been inferred and fitted. This equation has five terms

describing the attractive strong nuclear force: a volumetric term, a surface energy

term, an asymmetry term and a pairing term, and a fifth term for the electrostatic

mutual repulsion of the protons.

The volumetric term is proportional to the nucleus mass A. It reflects the in-

compressibility of nuclear matter in normal conditions and the saturation of the

nuclear force: each nucleon interacts with a constant number of nucleons due to

its short range.

The surface term is justified to correct the volume term since those nucleons on the

surface of the nucleus have fewer nearest neighbors thereby reducing their binding

energy.

The asymmetry term goes as the square of the proton or neutron excess and takes

into account the fermionic property of nucleons preventing them to go to lower

occupied states. It takes also into account the difference of the interaction of a

proton and a neutron in an asymmetric medium.

The pairing energy reflects the fact that pairs of nucleons have a lower energy

when they couple with opposite spins. An even number of particles is more stable

than an odd number.
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As described so far Bethe-Weizsäcker’s formula always predicts a lower energy for

spherical shapes due to the minimization of the surface energy. In fact true nuclei

have often a static deformation due to quantum effects. However we first examine

the case of a spherical nucleus and the form taken by the LDM formula of the

binding energy in this case.

Static spherical drop

The radius is denoted R0. The incompressibility of nuclear matter implies: R0 =

r0A
1/3 where r0 is a constant.

• Volume energy Ev = CvA

• Surface term Es = CsA
2/3 because the surface area goes as A2/3

The Coulomb repulsion between each pair of protons inside the nucleus is a long-

range force, contributing toward decreasing its binding energy.

• Coulomb term: Ec = Cc
Z2

A1/3 .

This results from the Coulomb energy of a uniformly charged drop proportional

to Z2/R0.

• Asymmetry term: Easym = Ca
(Z−A

2
)2

A
.

Eventually, an energy which is a correction term that arises from the tendency of

proton and neutron pairs to form. This is the principle of pairing.

• Pairing term: Ep = ±δ(Z) ± δ(N) that depends on the even-odd character

of proton and neutron numbers.

Thus the liquid drop energy for a spherical shape is:

ELDM = CvA− CsA
2/3 − Cc

Z2

A1/3
− Ca

(Z − A
2
)2

A
± δ(Z)± δ(N) (2.1)
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2.1.2 Nucleus deformation

To describe the fission process, Bohr considered a quadrupole deformation of a

liquid drop, the radius elongation is described as a function of polynomial:

R(θ) = R0 [a0 + a2 P2(cos θ)] . (2.2)

where a2 is a parameter quantifying the deformation (a2 = 0 for a sphere) and P2

is a Legendre second order polynomial P2. θ is the angle between symmetry axis

and ~OM . a0 is adjusted to conserve the volume. The advantage of this expansion

is that only a few terms are needed and the orthogonality of these polynomials

lightens the calculations. See Appendix A for their properties.

Then the deformation leads to two halves of the not-exactly-spheroidal drop found

at a larger distance apart, see in fig. 2.1.

Bohr looked at the variation of the LDM energy brought by this deformation.

Edef = ELDM(a2)− ELDM(0) (2.3)

where ELMD(0) is the LDM energy of the undistorted sphere. The volume energy

remains invariant with the deformation due to the low compressibility of nuclear

matter. Thus the deformation energy depends on surface and Coulomb terms:

the former increases with the deformation while the latter decreases, so that they

compete.

Edef (a2) = Es(0) + Ec(0)− Es(a2) + Ec(a2) (2.4)

Es(0) and Ec(0) are the surface and Coulomb energies of the undistorted sphere.

The surface and Coulomb energies for small distortions are given by Bohr and

Wheeler [11]:

Es(a2) = Es(0)(1 + 2/5a22); Ec(a2) = Ec(0)(1− 1/5a22) (2.5)

Consequently, the stability of a spherical nucleus is given by the fact that Ec(0) <

2Es(0). This leads to the definition of the fissility parameter.

x =
E0

c

2E0
s

∝ Z2

A
(2.6)
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The higher the fissility parameter, the more easily the nucleus will be deformed.

In general the quadrupole deformation is not accurate enough to describe the

shapes along the fission process, as depicted in figure 2.1. Other terms in the

Legendre polynomial expansion should be added. In case of axially symmetric

shapes:

R(θ) = R0

[
a0 +

∞∑

l=0

alPl(cos θ)

]
(2.7)

with R0 = r0A
1/3.

In this sum the dipole term (l = 1) is omitted because it corresponds to a shift

of the shape. Beyond the quadrupolar term (l = 2) the odd terms define the

mass asymmetry, in particular the octupole term (l = 3). The l = 4 term is

the hexadecapolar contribution. Again the monopole term a0 is tuned so as to

conserve the volume.

Fission barrier

When the nucleus starts to deform its surface energy increases faster than the

reduction of the electrostatic energy as illustrated in the upper left diagram of

figure 2.2. Therefore the nucleus is stable against this deformation at low ampli-

tude. But if the deformation increases the electrostatic energy drops quickly so

that the deformation energy starts to decrease. Therefore the deformation energy

reaches a maximum which is called the barrier (figure 2.2 upper left: curve labeled

"Net"). If the deformation corresponding to the barrier is reached the nucleus

evolves inexorably toward fission.

When the deformation is defined by an ensemble of parameters (the al for exam-

ple), the barrier is the minimal energy among all the possible paths in the space of

the parameters, leading to a splitting into 2 fragments. Generally it corresponds

to a maximum along one direction and a minimum in the other degrees of free-

dom, that’s why it is called "saddle point". This is illustrated in the upper right

diagram of figure 2.2 where the deformation is described with quadrupolar (β2)

and hexadecapolar (β4) terms and gets the shapes shown in the lower part of the

figure. The barrier corresponds to a maximal energy along the diagonal indicated

by the dashed line, whereas it’s a minimum in the other direction.

In order that fission takes place the excitation energy of the nucleus should be

higher or at least close to the barrier. In this case as a coupling exists between

the intrinsic states populated by thermal excitation and the vibrational states



Chapter 2. Theory 16

Figure 2.2: The fission barrier is a deformation energy of nucleus resulting
from the competition between surface energy and Coulomb energy. Illustration

with deformation described with quadrupolar and hexadecapolar terms [2].

which act on the deformation coordinates, part of the thermal excitation energy

is converted into deformation energy, and the elongation can reach the saddle

point and eventually the nucleus may fission. In case of spontaneous fission the

excitation energy is lower than the barrier, but the crossing of the barrier is possible

by tunneling, with a life time much longer than usual fission.

Although the liquid drop model offers a general framework which explains several

features of fission it fails to explain some of them. For example it always predicts

a symmetric splitting of the nucleus. This symmetric fission is indeed observed for
209Bi when it is heated at high excitation beyond its high barrier. But for most
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of the actinides at low excitation energy the splitting is asymmetric. It cannot

explain also the elongated shapes which are evidenced for some isomeric states of

the actinides.

Those features can receive an explanation only by taking into account the quantum

nature of the nucleus.

2.1.3 Nuclear shell Model

The basic quantum description of the nucleus started from the finding that the

interaction of one nucleon with the others is almost continuous due to the short

range of the force and to the Pauli principle which prevents many collisions between

nucleons. Therefore a mean field is a good representation of the interaction with

the other nucleons. This is the basis of the shell model where a nucleon moves

in an effective potential well created by the forces of all the other nucleons. This

leads to an energy quantization in a manner similar to the quantum harmonic

oscillator potentials.

For a spherical potential and including the strong spin-orbit coupling one obtains

the single particle states which exhibit, as experimentally observed, the magic

nucleon numbers 2, 8, 20, 28, 50, 82, 126 where the nucleus is more stable due to

shell closure with a large energy gap above the Fermi sea. As shown in figure 2.3

the nucleon states are quantized in a way similar to electrons in atoms, but in the

nucleus the j-j coupling is imposed by the strong spin-orbit term, and as a result

the magic numbers are different.

As a result of the representation with single particle states, the mean field depends

on the populated states, so that the nucleus may take a permanent deformation

which has to be accounted back to define the single particle states.

Nilsson and collaborators have conducted calculations to account for the not-

exactly-spheroidal shape. The mean field approach is again used but the potential

takes an ellipsoid form. The states having different projection values of the same j

are no longer degenerated and split according to this projection. This development

helped understand the spin and parity of many nuclei which appeared to have a

static deformation.
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Figure 2.3: Single particle states of a spherical field for a nucleus (left) and an
atom (right).

2.1.4 Strutinsky’s method

The single particle model, spherical or deformed, is well suited for describing the

properties of the nucleons close to the Fermi level, because the potential has been

fitted to describe the energy, spin and parity of the ground states and the first

excited states. However it is not able to reproduce some important quantities as

the total binding energy which involves nucleons deep inside the Fermi sea. On the
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contrary the LDM has this capability although it fails to predict the fluctuations

of this energy in a given area of the (N ,Z) map.

In 1967 Strutinsky got the idea [12] to associate both approaches: the general

trend of the energy is given by the LDM, and a shell correction is added, which is

computed with the deformed shell model.

For a given nucleus with a given deformation, the total energy is taken as:

E = Ē + Ẽ (2.8)

Ē is a smooth energy calculated by the LDM and Ẽ is a correction based on the

energies of the single particle states in the vicinity of the Fermi level µ:

Ẽ =

∫ µ

−∞

ǫg(ǫ)dǫ−
∫ µ̄

∞

ǫḡ(ǫ)dǫ (2.9)

g(ǫ) is the level density of single particle states as calculated with the given po-

tential ḡ(ǫ) is a smooth level density as averaged over many nuclei around.

Strutinsky calculated a smooth level density by convolution of g with a normalized

Gaussian. This method which combines the liquid drop model and the single

particle method is called the macroscopic-microscopic approach.

2.1.5 The double-humped fission barrier

This method has been applied to compute the deformation energy when a nucleus

deforms in its way to fission. Figure 2.4 represents such a deformation energy for a

typical actinide, as a function of the elongation in the case of shapes generated by

quadrupole and hexadecapole deformations. The LDM curve is shown as a dashed

line and the difference between the calculated solid line and the dashed line is the

shell correction as computed by the Strutinsky method. The shell correction split

the potential hill into 2 barriers separated by a well.

The first minimum is at the lowest energy and represents the actinide in its ground

state. The second minimum in the deformation potential of most actinide nuclei,

is due to the strong negative shell correction, and occurs at a deformation where

the LDM fission barrier is located. It offers a natural explanation for the fissioning
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Figure 2.4: The double-humped fission barrier.

isomers, which has been known as shape isomers and for structures in neutron-

induced fission cross section.

2.2 Nuclear reaction

When a neutron collides with a nucleus, different mechanisms can happen. E.

Weisskopf presented a simple conceptual picture [13] represented in figure 2.5. As

fission is a slow process, because it needs conversion of the intrinsinsic excitation

energy into collective vibrational degrees of freedom which are slow, it takes place

after all fast channels (direct and pre-equilibrium) and it is one of the decay modes

of the compound nucleus. The lifetime of the compound nucleus is large enough

so that it forgot how it has been formed. Therefore its decay depends only on

its conservative quantities as excitation energy E∗, spin J and parity Π. The

probability to decay by channel χ is written GCN
χ (E∗, J,Π). The channel χ we are

interested here is fission but it often competes with neutron and γ by emission as

sketched in figure 2.6.

Around 10 MeV the pre-equilibrium emission is low so that the whole energy

and angular momentum brought by the incoming neutron are deposited in the
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Figure 2.5: Conceptual view of a nuclear reaction

Figure 2.6: Neutron-induced reaction leading to compound-nucleus A+1X∗ [3]

excitation of the compound nucleus because the neutron is captured into the target

and forms the compound nucleus.

n(ǫ) +A X ⇒A+1 X∗

where A is the mass of the target nucleus.

In this case the excitation energy E∗ is the sum of the separation energy and the

neutron kinetic energy, and its spin J and parity Π result from the composition

of projectile and target spins and parity with those of the orbital motion.
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The cross section for going to the channel χ (in particular fission) is the product

of the cross section for forming the compound nucleus and its probability to decay

through χ. In the Hauser-Feschbach formalism accounting for spin and parity, it

reads:

σn,χ(En) =
∑

JΠ

σCN(E∗, J,Π)GCN
χ (E∗, J,Π) (2.10)

where :

σn,χ(En) is the neutron-induced reaction cross section for the reaction XA
N(n, χ).

JΠ is the spin and parity of the compound-nucleus.

σCN is the compound-nucleus A+1X∗ formation cross section in the E∗, J,Π state.

E∗ is the excitation energy of the compound-nucleus.

GCN
χ (E∗, J,Π) is the decay branching ratio of the compound state.

At high energy (beyond 100 MeV), i.e. the spallation domain, pre-equilibrium

emission becomes important. In this case the incoming light projectile (neutron

or proton) may escape with lower energy and knock out a few energetic nucleons.

Therefore the excitation energy has lower values than in the case of capture and

it spreads over a distribution. Nevertheless a compound nucleus is still formed

and fission is still one of the decay channels of this compound nucleus and its

probability is computed in the same way as before.

2.3 Fission fragment angular distribution (FFAD)

2.3.1 Rotating deformed nucleus

When a nucleus is deformed with an axial symmetry it can be demonstrated that

its total spin ~J has a good quantum number J for its modulus, its projection M

along an arbitrary fixed axis, but also its projection K along the moving symmetry

axis Oz′, so that the spin is defined by the triplet (J ,M ,K).

The projection ~K is due to the projection of the angular momentum of the nu-

cleons in the frame of the rotating deformed nucleus and the overal rotation of

the deformed nucleus is like a rigid body rotation with an angular momentum ~R
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Figure 2.7: Angular momentum components for a rotating deformed nu-
cleus [2].

orthogonal to the symmetry axis as illustrated in figure 2.7 Therefore:

~J = ~R + ~K (2.11)

with ~R orthogonal to ~K and Jz′ = K.

Now according to the rigid body rotation the deformed nucleus rotates around ~R.

But if there is a ~K component, as ~J must be constant in time (conservation of

the total angular momentum) ~R and ~K rotate around ~J . Therefore the deformed

nucleus rotates around a rotating axis.

In this picture when expressed with θ the angle between the nuclear symmetry

axis and the space-fixed axis, φ the azimuthal angle around it and χ the angle

around the symmetry axis, the angular wave function Ψ of the rotating deformed

nucleus obeys the equation as shown by Reiche and Rademacher, and by Kronig

and Rabi [14]:

~

2J⊥

[
1

sin θ
· ∂
∂θ

(sin θ · ∂Ψ
∂θ

) +
(cos θ ∂

∂χ
− ∂

∂φ
)2Ψ

sin2 θ

]
+

~
2

2J||
· ∂

2ψ

∂χ2
+E ·Ψ = 0 (2.12)

where J|| is the moment of inertia for the rotation around the symmetry axis, and

J⊥ the moment of inertia around a direction perpendicular to it. The solution of

the equation is:

Ψ =

√
2J + 1

8π2
· eiMφ · eiKχ · dJM,K(θ) (2.13)
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where dJM,K(θ) is the rotation matrix, independent of φ and χ and introduced by

Wigner [15],

dJM,K(θ) =
√

(J +M)!(J −M)!(J +K)!(J −K)!×
∑

n

(−1)n
[sin(θ/2)]M−K+2n [cos(θ/2)]2J+K−M−2n

(J −M − n)!(J +K − n)!(M −K + n)!n!

(2.14)

Therefore the distribution of orientations of the axis of the deformed nucleus is

given by:

W J
M,K(θ) =

2J + 1

2
|dJM,K(θ)|2; (2.15)

and the energies of the levels are deduced from the wave function:

Erot =
~
2

2J⊥
[J(J + 1)−K2] +

~
2

2J||
K2 (2.16)

which is a rotational energy of the fissioning system.

2.3.2 Application to fission

During the fission process the deformation of the nucleus increases and the formal-

ism described above is applicable. The direction of fission is the symmetry axis,

so that the probability of emission in a given direction is given by ( 2.15).

In this statement a hypothesis has been assumed: the K component which is the

projection ~J on the symmetry axis remains constant along the fission trajectory

from the saddle-point, where fission is decided, to the scission point where the

fragments separate. This is a condition which is true if the nucleons stay on their

individual orbits along deformation.

Several angular momenta are involved in the reaction. The quantities ~I0, ~s and ~S

are the target spin, projectile spin (=1/2 for a neutron or a proton) and channel

spin (total spin of compound nucleus) respectively. The channel spin ~S is defined

by the relation:

~S = ~I0 + ~s (2.17)

The total angular momentum ~J is given by the sum of the channel spin ~S and

nucleus orbital angular momentum ~l

~J = ~S +~l (2.18)
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Usually the fixed projection axis definingM is the direction of the incident neutron.

This is a simplification because the incoming orbital momentum has a 0-projection

along this axis.

Figure 2.8: Theoretical FFAD W (K, J) calculation of even-even target (I0 =
0. When K ≪ J the fission is forward-backward peaked, when K ≈ J FFAD is

sideward peaked [2].

2.3.3 Case of even-even targets

A specific simple situation is the case of even-even targets as 232Th, 234U,238U. In

this case I0 = 0, S = s = 1/2 and J = l± 1/2, and also M = ±1/2 with the same

probability for the 2 opposite values. The angular distribution for a given J and

K is:

WK,J(θ) =
2J + 1

4

(
|dJ−1/2,K(θ)|2 + |dJ1/2,K(θ)|2

)
; (2.19)
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Figure 2.8 shows the angular distributions for different values of the couple (K,J).

The quantum trends can be derived from classical arguments.

• If only s-waves (l = 0) are involved: J = K = 1/2 and the FFAD is flat.

This is a general property which holds also for I0 6= 0 because ~J is fully

de-oriented. This is the reason why at low incident energy (En < 10 keV)

the emission is only isotropic because s-waves dominate the cross section.

• By looking at figure 2.7 one sees that whenK ≪ J the emission is orthogonal

to ~J . Now the direction of J is very close to l (otherwise the above inequality

is impossible) which is orthogonal to the beam axis. For all reaction events

~J takes all directions in the plane orthogonal to the beam. When the frag-

ments are emitted orthogonally to ~J there is only one direction where all the

contributions from all directions of ~J ’s add up: the beam axis. Therefore

the FFAD is forward-backward peaked. The quantum computation is in ac-

cordance with this conclusion: see the curves W (1/2, 7/2) and W (1/2, 5/2)

in figure 2.8.

• When J ≈ K the fission axis is along ~J . As ~J is orthogonal to the beam

axis, so is the fission direction and the FFAD is sideward peaked. This is

verified for example for the case W (3/2, 3/2) in figure 2.8.

2.3.4 Case of odd nuclei

Typical examples are 235U and 237Np. In this case the target spin is not 0: Iπ0 =

7/2− for 235U, Iπ0 = 5/2+ for 237Np. The channel spin is S = 3 or S = 4 in the

former case, S = 2 or S = 3 for the latter. As this channel spin is unpolarized it

contributes significantly to the de-orientation of ~J (the only oriented contribution

comes from ~l). Therefore the FFAD is flatter than in the case of even-even nuclei,

and higher incoming partial waves have to be involved for the onset of anisotropy.

2.3.5 Low excitation energy fission

At low excitation energy, close to the fission barrier, fission occurs through tran-

sitional states (states defined with the collective degree of freedom corresponding

to elongation) lying in the second well (class II states) of definite J and K. The
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FFAD is directly obtained from equation ( 2.15) with a sum over M corresponding

to the equally probable projections of the spin channel, and a possible summation

of a few J and K in case of mixing.

This is typically the situation which is found for the vibrational resonance existing

at 1.6 MeV in neutron-induced fission of 232Th.

2.3.6 Statistical description at higher excitation energy

J is the quantity related to the entrance of the reaction, whereas K is an internal

quantity of the fissioning nucleus. Therefore the J population is defined by the

probability that a given J contribute to the formation of the compound nucleus

and this has been already expressed in equation ( 2.10).

At high excitation energy the distribution of K becomes statistical and the proba-

bility is proportional to the number of instrinsic single particle states contributing

to this K at the saddle-point. The thermal excitation energy at the saddle-point

is:

E∗ = E∗
0 − Bf − Erot (2.20)

where E∗
0 is the total excitation energy, Bf is the fission barrier and Erot is the

rotational energy defined by ( 2.16). The density of states goes as exp(E∗/T )

where T is the temperature defined as:

E∗ = afT
2 (2.21)

where af is the level density parameter at the saddle-point deformation. This

leads to the following expression of K probability (K < J):

P (K) ≈ exp−K2/2K2
0 (2.22)

which is a gaussian distribution of width:

K2
0 =

Jeff T

~2
(2.23)

with for the effective momentum of inertia:

Jeff = J⊥J||/(J⊥ − J||) (2.24)
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One notices that theK distribution extends to higher values when the temperature

increases, or when the mass increases because the moments of inertia increase

accordingly.

At high incident energy l increases more rapidly than K0 so that K is generally

lower than J , therefore, following the arguments developed above, the FFAD are

often forward-backward peaked.

When a new fission chance opens (fission occurring after a neutron has been evap-

orated) the total angular momentum J is only slightly affected whereas K0 drops

due the brutal decrease of the temperature after emission of the neutron. Therefore

the forward-backward peaking is enhanced.

The exact theoretical expression for angular distribution is:

W (θ) ∝
∞∑

J=0

+I0+s∑

M=−(I0+s)

{
∞∑

l=0

+I0+s∑

S=|I0−s|

+I0∑

µ=−I0

(2l + 1)Tl|CS,l,J
M,0,M |2|CI0,s,S

µ,M−µ,M |2
∑∞

l=0(2l + 1)Tl
}

×

J∑
K=−J

(2J + 1)|dJM,K(θ)|2 exp(−K2/2K2
0)

J∑
K=−J

exp(−K2/2K2
0)

(2.25)

The Tl’s represent the probability that a partial wave l leads to the compound

nucleus formation. This is an indispensable ingredient for computing the J popu-

lation of the compound nucleus and it is one of the ingredients in the computation

of σCN(E∗, J,Π) in equation ( 2.10). The C’s are Clebsch-Gordan coefficients cou-

pling the spins. The second one couples the spins of target and projectile to form

the channel spin S, and the first one couples this channel spin with the orbital

angular momentum l to form J .
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Description of the experiment

The experiment was performed at the CERN neutron beam n_TOF, but before

going into the details of the facility we will make a quick survey of the different

methods used to produce practical neutron beams.

3.1 Production of neutron beams

As free neutrons are not available due to their limited life time, neutrons have

to be produced by nuclear reactions: reactions with isotopes of hydrogen, charge

exchange reactions, photo-excitation of fissile nuclei, spallation of heavy nuclei,

neutrons created by fission in a reactor and eventually moderated.

3.1.1 Low energy reactions

The reaction involves deuterons and tritons. For example:

d+ d −→3 He + n

d+ t −→4 He + n

The projectile energy is low, a few tens or hundreds of keV, and the outgoing

neutrons are almost mono-energetic, 2.7 MeV in the first case and 14 MeV in

the second. This production mode has abundantly been used in the past but it is

29
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limited in the energy range. However this limitation can be overcome by increasing

the projectile kinetic energy by using a Van de Graaff, as at the CENBG (Bordeaux

France) for example, or a Tandem accelerator.

3.1.2 Charge exchange reactions

In this case a proton is first accelerated to an energy between 1 and 200 MeV and

directed to a light target of 7Li or 9Be. The knock out reactions are almost binary

and eject neutrons of a given energy depending on the outgoing angle. Usually

the forward direction is preferred, because the cross section is higher, and a quasi

mono-energetic beam is obtained after the primary proton beam has been swept

out with a magnetic field.

This method is used for example at TSL (Uppsala Sweden) for producing neutron

beams up to 196 MeV. Usually a rough time of flight is needed to reject the

low energy tails coming from other type of mechanisms, such as pre-equilibrium

reactions.

3.1.3 Inverse kinematic reaction

Recently, a new project (LICORNE) based on inverse kinematic reaction 7Li(p, n)

is being developed with Tandem at Orsay. The reaction is the same as above

(charge exchange) but instead of accelerating protons the 7Li is accelerated to

above 10 MeV and thrown onto a proton target. This method permits to generate

an intense quasi-mono-energetic beam into a conical solid angle and it has the high

advantage of minimizing the effect of neutrons scattering, which produces neutron

and γ background, due to the focusing in the cone.

3.1.4 Neutron beam from reactor

A nuclear reactor is a natural way of producing neutron beams of very high inten-

sity. On this respect no other method can compete with reactors. However the

energy spectrum is broad because it is the result of the spectrum characteristic of

fission and of the subsequent moderation process. For example The Institut Laue

Langevin (ILL at Grenoble) delivers a high neutron flux which is mainly thermal
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with an epithermal component depending on the location. With such beams only

integral measurements can be performed because the neutron energy cannot be

obtained by time of flight, being the production continuous. However a chopper

can be used to get a rough time of flight.

3.1.5 Photo-fission

Photo-fission based neutron source is another widely developed method in the

world. It uses a linear accelerator to accelerate electrons up to tens of MeV im-

pinging a heavy fissile target, like natural uranium. Electrons are slowed down

inside the target and produce photons by Bremsstrahlung when they collide with

the electrons of the target. The generated photons possess high enough energy

to electromagnetically excite the target nuclei which ultimately fissions or decays

by evaporation. In both cases, neutrons are emitted in all directions and a well

defined beam can be obtained by setting a collimating system. The energy spec-

trum is broad but the possibilty to pulse the electron beam allows to determine

the neutron energy by the measurement of its time of flight.

The nELBE facility at Helmholtz-Zentrum-Dresden-Rossendorf has a high-intensity

electron beam which allows producing a neutron beam with an energy spectrum

in the range 0.2 to 7 MeV and a flux close to 106 (s.cm2.E − decade)−1. Besides

nELBE, the Institute for Reference Materials and Measurements (IRMM) at Geel

Belgium and the Oak Ridge Electron Linear Accelerator Pulsed Neutron Source

(ORELA) are based on this method.

3.1.6 Spallation

Spallation consists of high energy proton-induced reactions (more than hundreds

of MeV) on a heavy target (Pb, Hg). Each collision ejects quickly some energetic

particles (n, p, d, µ, γ, π...) and leaves the residual target nucleus at high excitation

energy. The latter releases this energy by evaporating many particles, mostly

neutrons due to the Coulomb barrier experienced by the charged particles in the

heavy nucleus. This evaporation is the main source of neutrons in spallation.

The emitted fast particles propagate inside the target and induce other spallation

reactions. Therefore a high energy incident proton (1 GeV and above) induces



Chapter3. Description of the experiment 32

chain reactions on the target (ex: a lead target) until all energetic particles stopped

in the target, it may recover about around 25 neutrons per 1 GeV incident protons.

This numbers scales according to the incident energy.

The neutron energy spectrum by this spallation contains several components:

evaporated neutrons peaked at 1 MeV (the main component), higher-energy neu-

trons extending up to the proton incident energy, due to the particles ejected in

the first step of the reaction and low energy tails due to the moderation if a light

material has been installed close to the target.

One of the assets of spallation-based facility is their ability to cover the largest

possible energy range and to measure the time of flight.

LANSCE at Los Alamos, based on a 800 MeV proton LINAC, is one of the major

facilities. The n_TOF facility at CERN where we performed our experiment is

also based on spallation reactions.

3.2 The n_TOF facility

Figure 3.1: Sketch of the n_TOF facility at CERN with expanded views of
the spallation target area and the experimental area

As already mentioned the neutrons are generated by spallation reactions in a

massive target. The specificity of the n_TOF facility is that the energy of the

protons is very high (20 GeV instead of the order of 1 GeV for other facilities)
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and this allows to produce very intense neutron bunches well seperated in time.

This is a very interesting feature for minimizing the background when studying

reactions with radioactive targets.

3.2.1 The proton beam

The neutron time-of-flight facility (n_TOF) has been built at CERN, Geneva.

The main objectives of the facility were the study of neutron-induced radiative

capture and fission reactions. Applications include astrophysics, nuclear produc-

tion energy and more importantly nuclear waste treatment for actinides and minor

actinides [16].

At n_TOF, neutrons are produced by spallation reactions induced by the 20 GeV

protons accelerated by he CERN Proton Synchrotron (PS). The beam is directed

onto a thick lead target where a huge number of neutrons is generated by spallation

reactions on the lead nuclei. Those which go at 10◦ from the proton beam direction

are transported 185 m further where they induce the reactions under study, as

sketched in figure 3.1

The released neutrons cover a very broad energy spectrum, from thermal energy

to several GeV. As the protons bunches have 7 ns r.m.s, this gives a well defined

time for the production of neutrons and the measurement of their time of flight

over the 185 m path allows an accurate determination of their kinetic energy.

Each proton bunch contains 7 1012 protons for pulses dedicated to n_TOF, or half

this value in parasitic mode. This mode is favored for some experiments where the

high instantaneous counting rate is an issue. The intensity of each proton bunch

is probed with a Beam Current Transformer (BCT) which is an electromagnetic

loop sensing the beam current. The BCT delivers a fast signal which gives a

time reference of the bunch and whose amplitude is proportional to the number

of protons.

The proton bunches are separated in time by at least 1.2 s, when a bunch is spilled

all neutrons in the previous one have already arrived long before, so that no wrap

around background correction is needed.
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3.2.2 The spallation target

The spallation target consists of a cylindrical lead block 60 cm in diameter and 40

cm in length, surrounded and cooled by a 1 cm thick water flow. The water also

acts as an energy moderator for the neutrons produced in the spallation target,

while an additional 4 cm-thick moderator volume was installed and can be filled

with either water or borated water. The latter absorbs most thermal neutrons

in 10B(n,α) reactions and thus minimizes the 2.2 MeV γ rays produced in the

neutron radioactive capture of 1H. The neutron moderation in the water has to be

taken into account for neutron energy calculation. The neutron spectrum has been

simulated with Fluka [17] (fully integrated particle physics Monte Carlo simulation

up to very high energy), Geant4 [18] (toolkit for the simulation of the passage of

particles through matter in the whole energy range), and MCNPX [19] (a general-

purpose Monte Carlo radiation transport code for modeling the interaction of

radiation with everything).

3.2.3 The n_TOF tube

Figure 3.2: The 200 m neutron line

The neutrons emitted from the spallation target travel in a pipe kept under vacuum

(10−2 mbar) to avoid the scattering by N and O in air. The neutrons fly towards

the experimental area situated 185 m downstream from the target through two

collimators. The second one close to the experimental area defines the beam spot

in this area. In the case of fission where large targets are typically used the aperture

is 8 cm in diameter, whereas for capture measurements the diameter is reduced to

1.9 cm. The main purpose of the first collimator located 135 m downstream from

the spallation target is to reduce the number of neutrons reaching the second one

to reduce the γ background.
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In addition to neutrons many charged particles are produced in the spallation

process : p, µ, π, etc. . .. They are not desirable because they can trigger reactions

on the sample, increasing the background in neutron-induced ones. Therefore they

should be discarded and this is done by the sweeping magnet which divert most

of those charged particle from the pipe axis.

Several shielding walls have been installed in order to intercept particles traveling

out of the neutron pipe. In particular a 3 m concrete wall has been placed right

before the experimental area to minimize the neutron and γ background generated

in the second collimator. A 6 m iron wall has been placed after the sweeping mag-

net to absorb most of the µ− which can generate a neutron background following

muon capture in the walls of the experimental area.

Absorbing filters can be inserted in the line to measure the background in the

resonance region. They are made of thick materials having strong resonances: all

neutrons having an energy corresponding to the resonance are absorbed so that

those which are still seen at this energy come from a background or from neutrons

outside the expected time-energy dependence.

At the end, neutrons travel across the experimental area and reach the beam dump

in the neutron escape line where they are stopped into a block made of borated

parafin. Again a thick concrete wall between the experimental area and the escape

line prevents the back scattered neutrons to reach the experimental area.

The transversal size of the experimental area is rather small compared to halls in

other facilities where the walls, floor and ceiling are several meters apart to reduce

the effect of back scattered neutrons. Nevertheless at n_TOF the background

level is very low thanks to the very efficient collimating and shielding system.

3.2.4 The neutron flux

In the Phase I configuration the spallation target was cooled by pure light water

and a slab of 5 cm water was installed at the exit. The resulting flux is shown in

figure 3.3, as simulated with FLUKA [17] for the reactions with highly energetic

particles and MCNPX [19] at lower energies. The figure also shows the comparison

with the measurements with the PTB ionisation chamber based of fission of 235U
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and the radiative capture measurement on gold foils with C6D6 in the first reso-

nances. The flux is in fact a fluence normalized to a bunch of protons, dedicated

to n_TOF.

Figure 3.3: Phase I n_TOF neutron fluence simulated and compared to mea-
surements behind a 1.1 cm collimator.

The bump around 1 MeV comes from the evaporation of the highly excited spal-

lation residues. It is the main contribution to the neutron production and it

is slightly moderated by collisions in the massive lead block. Below 100 keV

the plateau comes from the quasi-isolethargic moderation in the water slab, and

the moderation process completes when the thermal energy (25 meV) at 293K

is reached. This thermal point is an accumulation because it is the end point of

moderation, therefore it shows up as a high bump between 10 and 100 meV. Above

10 MeV the neutrons are produced by energetic reactions.

The dips in the energy spectrum are due to resonant absorption of 16O contained

in the moderating water, and of 27Al in the thick entrance window of the neutron

pipe.

Figure 3.4 shows the flux measured with the fission of 235U and the PPACs up to

1 GeV. The fission cross section used was the evaluation from JENDL-HE. The

measurements agrees with the simulation, taking into account that the factor 2

lower than the uncollimated simulated flux comes from the cutting effect of the

first collimator.
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Figure 3.4: Phase I n_TOF neutron fluence measured with 235U and PPACs
. The last collimator was 8 cm in diameter.

Figure 3.5: n_TOF beam flux in Phase II, the thermal and epithermal mod-
erated components are absorbed in the borated water.

Later, in the phase II configuration a borated water has been used. 10B absorbs

low energy neutrons as seen in figure 3.5. The advantage of this setting is that the

radiative capture of slow neutrons by the protons of water (with emission of a γ

of 2.2 MeV) is significantly reduced because the neutrons first react with 10B. The

2.2 MeV γ are very harmful for capture measurements because they travel in the

neutron pipe, are scattered by the capture target and induce in the γ detectors a

large background in the MeV region.
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3.3 PPAC experimental set-up

Fission fragment angular distributions (FFAD) have been measured with different

kind of detectors. Obviously all of them have to offer a localization capability to

obtain the fission direction by localizing the 2 fission fragments, or only one if the

target size is small enough.

Makrofol detector is one of the typical track detectors, frequently used for FFAD

measurements due to the advantages of low cost, good reproducibility and very

good spatial resolution. It is made of plastic foils of composition C6H14O3 and

density around 1.2 g/cm3. When penetrating the foil the fission fragment induces

a latent track which can be revealed by chemical attack. The FFAD and also the

fission cross section are obtained by visually counting the tracks under a micro-

scope.

The two main limitations of track detectors is that they are analyzed off-line

without any timestamp so that they allow only in fact integral measurements,

suitable for mono-energetic beams. In addition the visual counting limits the

numbers of tracks that can be accumulated and therefore the statistics is always

accordingly limited.

FFAD can be obtained with other detectors such as fission chambers mounted in

Bragg mode. The fissioning layer is deposited on the cathode. For each fission

reaction the fragment directed toward the cathode is lost whereas the other leaves

the layer and travels in the gas-filled ionization gap where it is stopped. The cosine

of the angle is deduced from the ratio of the amplitude of the signals collected on

the cathode and on the anode which is shielded by a Frisch grid [1].

3.3.1 Basic principle of the fission tracking

In our experimental set up we used Parallel Plate Avalanche Counters (PPAC) de-

signed and built at IPN Orsay (France) for fission cross section measurements [20].

Before going into the details of the set up, the basic principles behind them is ex-

plained.

The principle of the angle measurement is sketched in figure 3.6 where 2 PPACs

detect the 2 fission fragments. The PPACs are position sensitive in two dimensions
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Figure 3.6: Principle of measurement of the fission angle with 2 PPACs

so that they are able to localize the crossing point of a fission fragment in X and

Y . The main ideas leading to this schemes are the following:

• The detection system should be compact so that an array of targets/detectors

can be accommodated in a small volume. This leads to a short distance

between targets and detectors, requested also for covering a large solid angle.

• The target size is large (8 cm in diameter) to fully benefit from the large

neutron beam spot size and collect large statistics.

• The two above constraints require that the two fragments have to be detected

because the emission point is unknown over a large area.

• The previous constraint requests very thin backings so that the fission frag-

ment emitted in this direction could cross it and reach the PPAC.

When the two fission fragments reach the PPACs one obtains the 2 positions

(X1,Y1) and (X2,Y2). Then a back to back emission is assumed so that the fission
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direction is given by the straight line crossing the two localized impact points.

However, there are two effects spoiling the back to back hypothesis:

• During the fission process some particles, mainly neutrons, may be emitted

and the momentum conservation implies a misalignment of the fragment

directions. This effect is very small and it is always neglected.

• The back to back emission holds in the frame of the fissioning nucleus, but

this frame is not at rest in the laboratory due to the momentum brought by

the incoming neutron and fully or partially deposited in the fissioning nu-

cleus. We performed GEANT4 simulations of this effect and it turns out that

it can be also neglected [4]. This is due to the saturation of the deposited

linear moment when the incoming energy increases and pre-equilibrium re-

actions set on.

In conclusion the localization of the two fragments allows to define the fission

direction and as a consequence the emission point on the target is also determined

as the crossing point of the fission trajectory in the target plane.

3.3.2 Parallel Plate Avalanche Counters

A PPAC consists of 3 electrodes, 1 central anode surrounded by 2 cathodes with a

spacing distance of 3.2 mm. Each electrode is made of a thin mylar foil of 1.7 µm

made conductive by deposition of aluminium coating under vacuum. The foil is

glued on an epoxy frame which ensures the parallel spacing, the signal and voltage

connections, as well as holding the pre-amplifiers. The gaps are filled with a low

pressure gas which is ionized when a fission fragment goes through and produces a

track of primary ion pairs. The electrons and positive ions drift towards the anode

and the cathode, respectively. During this drift, electrons can collide with neutral

gas molecules, generating more ion pairs. The electrons liberated by this secondary

ionization process are also accelerated by the electric field and can collide again

with other neutral gas molecules, creating a swarm of electrons directed towards

the anode. The low gas pressure combined with the high electric field (540 V over

3.2 mm) create the conditions of a proportional regime (Townsend avalanche).

The frames are made of an epoxy resin, coated with a thin copper layer for shielding

against electromagnetic noise and gold-plated to prevent its oxidation. The overal
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dimensions of the frames are 30 × 30 cm2 and the active area, where the fission

fragments have only to cross the mylar foils and the gas is a square of 20×20 cm2.

For the anode the mylar foil is coated on each side with an aluminium layer of

30 nm (8 µg/cm2) to make it conductive on both sides for the two gaps. The cath-

odes are coated only on the side which is facing the gap with a 60 nm aluminium

layer. Whereas the aluminium layer on the anode is uniform, on the cathodes it

is divided into strips with a 2 mm pitch to allow a localization of the impact of

the fission fragment. This is obtained by depositing the aluminium under vacuum

with a mask made of wires of 0.1 mm in diameter every 2 mm.

A drop of aluminium is heated and melted by an electron beam. The evaporated

atoms travel along straight trajectories under vacuum and deposit on the mylar

foil. As the aluminium deposition deforms the foil this operation cannot be per-

formed after the foil has been glued and stretched on the electrode frame because

the foil becomes slack and cannot remain parallel to other electrodes when the

PPAC is assembled. Therefore for the aluminium deposition the mylar is stretched

on an special frame and transfered after the deposition onto an intermediate frame

which allows a final stretching of the foil without modification of the pitch of the

strips. Finally it is glued on the electrode frame.

Figure 3.7: Stripped cathode of PPAC

When the electrons drift toward the anode and create an avalanche cascade in the

anode plane, at the same time these negative charges induce a positive charge in

the cathode, with the position centred on the avalanche position. The velocity

of the free electrons is very fast, its collection times is around several ns. Each

strip acquires part of the induced charge, and provides accurate information about

the fission fragment position of the avalanche. The localization of the hit strip is
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Figure 3.8: Expanded view of the cathode frame showing the delay line, the
capacitors between strips, the connections with silver pastry, the charge pream-

plifier.

achieved by using a delay line, each strip being connected to an intermediate point

of this delay line. The time difference of the signals reaching the ends of the line

is used to determine the position.

When assembled in the PPAC the cathode planes are crossed so that the strips of

one cathode are orthogonal to those of the other. This arrangement makes possible

the X and Y localization, provided the fission fragment crossed the 2 detecting

gaps.

The delay line has also been designed and built at IPN Orsay. It is a plastic rod of

7 mm diameter supporting coils of length 1.4 mm every 2 mm. Each coil is made of

6 turns of 0.3 mm copper wire. The epoxy cathode frames supports the delay line

and additional capacitors: 6.8 pF between adjacent strips, and for each strip 10 pF

to ground. With this arrangement the characteristic impedance is about 300 Ω

and the propagation velocity along the line is 3.2 ns/strip. All aluminium strips

on the cathode are connected to the delay line with a silver loaded dough and both

sides of the line are connected to a charge pre-amplifier matched in impedance, as

illustrated in fig.3.7. Figure 3.7 is a picture of a cathode frame equiped with its

stripped mylar electrode and its delay line visible on the left side. Figure 3.8 is

an expanded view of the cathode showing the delay line plugged into the frame,

the silver connexions between the electrode strips and the copper pads, the 6.8 pF

capacitors between the strips and the charge pre-amplifier card plugged on the

electrode frame.

The C3F8 gas pressure inside the chamber is stabilized at 4 mbar with an exter-

nal regulator which injects a steady flow of fresh gas within the detecting gaps
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maintained at around 60 SCCM/gap.

3.3.3 Advantage of using PPAC for FFAD

When neutrons of high energy reach the targets and the detectors they can not

only induce fission reactions, but also other types of reactions on light elements,

such as the aluminium of target backings, the oxygen and carbon of the mylar

electrode foils. This produces recoiling nuclei (spallation residual nuclei) which

deliver signals similar to fission fragments although of lower amplitude. The main

characteristic of the PPAC set up is the coincidence method which requires the

presence of two fragments coincident in time. This request rejects most of the

reactions competing with fission. In addition the α particles coming from the

radioactive targets are also mostly rejected for the same reason. Only the random

coincidences remain at a very low level. This discrimination method relies on the

very accurate timing properties of PPAC with 9 ns FWHM for the anode signal

giving a time resolution close to 0.3 ns.

The PPAC electrodes are made of very thin foils so that the fission fragments

could cross them. This is very useful in case of neutron induced reactions where

the neutron beam has to traverse all detectors: the neutron scattering is reduced

to the lowest level and the related background too.

This thin material is also an asset respect to another crucial aspect, the so-called

γ-flash. It is the bunch of energetic particles which is produced when the protons

hits the spallation target. Those particles are essentially γ travelling in the neutron

pipe at the light speed. When they reach any material they eject electrons and

other particles by electromagnetic reactions. Those charge particles are seen by

the detectors. This is a general phenomenon occuring in all detectors, however

the consequences depend on the detectors type or set-up. In many of them (C6D6

and BaF2 scintillators close to the target, in-beam ionization chambers, etc. . .) the

sizeable amount of material inserted in the beam produces a huge γ-flash signal

blinding the detector for a long time. This puts a maximal energy of neutron

observable by the detector which can be of the order of a 50 MeV or even about

MeV’s for some of them. In the case of PPAC the amount of material is so tiny

and the time response so fast (a few ns) that the detector has recovered a normal

status 20 ns after the γ-flash and it becomes possible to look at reactions induced

by neutrons of energy about 1 GeV.
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In addition, unlike scintillators or semiconductor detectors, PPAC are not damaged

by radiation and high energy particles counting rates, which also makes them useful

for in-beam applications of neutron and proton-induced reactions.

Besides the advantages of PPAC performances, they are relatively easy and inex-

pensive to build with large sensitive areas. This makes them more convenient and

appropriate for our work at the n_TOF facility, where they are exposed to high-

intensity neutron flux with a γ background characteristic of spallation neutron

sources.

Figure 3.9: Fission fragment lost due to the the stopping of the fission fragment
at large angle

The main drawback of the set up based on the coincidence method is the limited

detection efficiency. In ionization chambers where the fissioning deposit is inside

the detecting gaps and where a single fragment is detected, the fragment has only

to escape from the layer made of fissile nuclei. This can be realized even for

grazing trajectories. Therefore the detection efficiency is about 95%. It’s so close

to 1 that even a significant error in the simulation to estimate the lost fraction has

a small impact on the overall efficiency. On the contary in the case of the PPAC

set up the target is out of the detectors, and the coincidence method requires

that one fragment has to cross the target backing. This is illustrated in figure 3.9

where the emitting layer is painted in red whereas the dead materials are pink

(aluminium target backing and mylar electrodes). To be fully detected the two

fission fragments have to reach the second gap. This is possible when the trajectory

is almost orthogonal to the detectors. But when the angle increases the energy loss

also increases (the thickness goes as 1/sin θ′) and one of the fragments is stopped
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before reaching the second gap, as illustrated on the left of figure 3.9. This results

in the limited detection angle which is of the order of 45-60◦ depending on the

backing thickness.

Figure 3.10: View of a 2 PPAC+target ensemble tilted by 45◦ against the
neutron beam direction.

Therefore in configuration where the PPAC and targets are orthogonal to the

neutron beam a significant fraction of the FFAD is unreachable because it lies

beyond this limit. To solve this problem we tilted the detectors and the target by

45◦ allowing to cover all the emitting angles. Figure 3.10 shows a drawing of this

configuration with the 2 PPACs surrounding the metallic target holder supporting

the epoxy frame on which the target is glued. The elliptic hole in the frame allows

to leave a free route to the circular beam spot, when tilted at 45 ◦.

Figure 3.11: Simulation of detection efficiency for the 2 geometrical configu-
rations: orthogonal to the beam and tilted by 45◦ [4]

Figure 3.11 shows a simulation of the detection efficiency, depending on the cosine

of the fission angle against the neutron beam, for the 2 geometrical configurations.

The simulation is done for the 235U target, taking the fission isotopic yield given

by ENDF/B-VII at thermal energy and using the Viola systematics for the kinetic

energies. The simulation is performed in Geant4 using its implementation of energy

loss. The fission event is recognized as detected if the fission fragments on each

side reach the 2 detecting gaps. The figure exhibits the limiting angle (cos θ ≈ 0.4)

in orthogonal configuration. In the tilted configuration all angles are covered, and
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this is compensated by the reduction of the efficiency at each angle due to the cut

in the angle φ around the beam again due to the stopping of the fragments in the

dead layers. The global efficiency (integral of the curve) is the same as expected.

3.3.4 PPAC ensemble

As described so far a minimal measuring system is made of a target surrounded

by 2 PPACs, as sketched in figure 3.10 representing a basic cell. However the

simultaneous measurement of several targets is highly desirable to optimize the

use of the neutron beam. The first natural idea to go in this direction would be

to multiply the number of such cells. We implemented a much more optimized

configuration by using a stack of 10 detectors interleaved with 9 targets. As a

fission fragment may cross 2 targets and detectors an ambiguity shows up on the

emitting target in this situation. This can be easily solved thanks to the property

of fast timing of the PPACs: as we will show later the comparison of coincidence

times between detectors delivers the information on the fission source.

Figure 3.12: Ensemble of 10 detectors and 9 targets tilted by 45◦ against the
neutron beam. The holding craddle is fastened on the closing dome mounted on

a chariot for transportation.

The 10 detectors and 9 targets are supported on an aluminium craddle as drawn

in figure 3.12 and shown really in picture 3.13. The craddle is also used as a gas

flow distributor to the PPAC and as a support for the cables and connectors. The

spacing between adjacent detectors is 5 cm along their normal, at 45◦ against the

beam. Figure 3.14 illustrates the look of the chamber when it is closed with the

stainless steel cylinder. The tightness of the chamber against the atmosphere or
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Figure 3.13: Real view of the detectors and targets on the craddle holding
also the cables and connectors.

the connected vacuum pipe is insured by 125 µm capton sheets mounted in the

entrance and the exit flanges. The neutron beam enters by the chamber dome, goes

through all detectors and targets, and escapes by the flat bottom of the cylinder.

Even though neutrons travel across several detectors and targets, the neutron flux

loss due to the neutron scattering remains very low (less than 1% even at the top

of intense resonances, due to the tiny amount of material.

Figure 3.14: PPAC chamber when it is closed
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3.3.5 Description of targets

The targets have been made by the radio-chemistry group at IPN Orsay. A total

of nine targets were used in each experiment with the PPAC chamber. Three

experiments have been done in 2010, 2011 and 2012 respectively. In the first and

second experiments six 232Th targets, one 237Np, one 235U and one 238U targets

were installed. In the third experiment three 234U targets, two 235U, three 238U

and one 237Np were used. 235U was used as a reference for cross section and FFAD

and 238U was also used as a reference cross section. In this work we only consider

the measurements done in 2010 and 2011.

The targets are made of a thin radioactive layer (between 0.2 and 0.3 mg/cm2) [21]

deposited as a 80 mm diameter disk over an aluminium foil. The thickness of the

aluminium foil is 0.75 µm for the 232Th targets and 2.5 µm for 235U, 238U and
237Np targets. The aluminium backing has been glued on a 1.6 mm thick epoxy

frame.

The fissioning materials came from several places: 232Th and 237Np from IPN

Orsay, 235U from CSNSM Orsay, 234U target from Geel. The deposited layer is

always in oxided form and hydrated to different levels.

The targets were measured by α-counting with a silicon detector in a well de-

fined geometrical configuration at IPN. The α spectroscopy was used to assess the

amount of contaminants as 241Am in 237Np targets, daughters in the 232Th chain

for 232Th targets. The 238U sample was of high purity due to its magnetic separa-

tion. The isotopic composition of the 235U sample has been carefully measured by

magnetic analysis. In number of atoms: 6.28% of 238U, 0.74% of 234U and 0.27%

of 236U were found.

3.4 Other experiments at n_TOF

As the principle motivations of the n_TOF facility are related to nuclear physics,

nuclear astrophysics and nuclear technology, neutron-based fission and radiative

capture are the main studied channels. Several detectors have been developed for

these works.
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3.4.1 Fission ionization chamber

Fission ionization chamber (FIC) permits to measure fission cross section [22]. The

fabrication of targets of this type of chamber are easier than for PPAC because

the backing may be thick and rigid as only one fission fragment is detected. We

have also used this type of detector to monitor the neutron beam with 235U and
238U targets.

3.4.2 Micromegas detector

Micro-megas detector is a double-stage parallel plate chamber [23], consisting of

a conversion gap and an amplification gap, separated by a micromesh. Charged

particles drift through the conversion gap, then transfer energy to the cathode

micromesh and are multiplied in the small gap (avalanche). The multiplied charges

are collected by the anode micro-strips. By using an additional induction plane

of strips a X and Y localisation can be achieved. Recently this detector has

been used for absolute flux measurement with 10B(n,α) which cross section is very

well-known at low energies, and also for mapping the neutron beam extension.

3.4.3 γ detectors

3.4.3.1 TAC

The Total Absorption alorimeter (TAC) [24] is a 4π segmented array made of

42 BaF2 crystals of two different shapes [24] (pentagonal and hexagonal) specially

built for detecting the γ-ray cascades emitted in neutron capture reactions.

The BaF2 crystals, encapsulated in 10B-loaded carbon fibre, form a spherical shell

of 15 cm thickness with an inner diameter of 20 cm. A 5 cm thick spherical shell

made of C12H20O
6
2Li2 is placed in the inner hole of the TAC for moderating and

partially absorbing neutrons that are scattered from the sample. The combination

of this moderator with the 10B-loaded carbon fiber capsules results in a neutron

sensitivity lower than 1% in the neutron energy range of interest.

The characteristics of the TAC provide the means for performing high quality

neutron capture measurements of small mass and/or radioactive samples. For
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instance, the high efficiency of the TAC and the high intensity of the n_TOF

neutron flux allow reducing the background caused by the intrinsic activity in

the case of radioactive samples. Furthermore, the high total absorption efficiency,

segmentation and energy resolution of the detector allow discriminating between

different reactions according to their γ-ray multiplicities.

3.4.3.2 C6D6

C6D6 scintillators consist of deuterated benzene coupled to a photo-multiplier [25].

The casing is made of aluminium and beryllium to minimize the neutron and

γ scattering. Its main asset is its very low neutron sensitivity. As its energy

resolution is very poor it’s not suited for any γ spectroscopy and the weighting

function method is applied to make the detection sensitive to the capture rate

independently of the details of the γ cascade. This is the way such detectors are

used to measure capture cross sections.
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Data analysis

4.1 Steps of the analysis

Every time a proton bunch is delivered to the n_TOF spallation target the Data

AcQuisition system (DAQ) acquires the 50 channels of the PPACs, 5 channels per

PPAC: 1 anode, 4 delay lines (top, bottom, right, left), during a few ms.

Figure 4.1 shows an example of the starting sequence for 2 recorded anode frames.

Peaks are clearly visible, they correspond most of the time to fission fragments.

The first peak in the sequence is the γ-flash which will be discussed later.

Some peaks coincide exactly in time in the 2 sequences corresponding to fission

fragments emitted by the target located between the detectors (235U in this case).

The first task of the analysis is to scan the frames, find all peaks in the signal

and list them with their time and amplitude. This process is done individually

on each channel, without looking at the correlation between channels. At the end

one gets for each channel a file containing the list of peaks. This file is called a

DST and it is a reduction of the initial file called RAW. This reduction process

needs some parameters which can be modified and the reduction can be replayed

to obtain new DST files. However this process is time consuming, thereby limiting

the number of such replays.

The second step consists of re-building the proton event by collecting all the lists

of peaks pertaining to the same proton bunch and all peaks are stored into a buffer

which is filled at each new proton bunch.

51
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Figure 4.1: Expanded view of the beginning of a frame recorded on anodes 0
and 1 surrounding the 235U target. Each frame is a series of amplitude measure-

ments every 2 ns

At the next step each buffer is treated to find the fission events, recognozed as

coincidences between anode peaks, find the position of each fission fragment and

re-build the fission trajectory. All fission events are tagged according to their

emitting targets and stored into ROOT TTRees.

The amount of RAW data recorded by the DAQ is about 8 TB/week. After

the peak recognition step stored in the DST’s, the amount is scaled down by a

factor 750 depending on the radioactivity level of the targets. After full recon-

struction of the fission events the amount is further scaled down by a factor of 30,

so that it is of the order of 0.4 GB per week of beam time.
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4.2 Peak recognition

This section describes the process applied to RAW files to obtain the DST’s as

mentioned in the previous section as the first task.

A simple glance at figure 4.1 is enough to understand that the peaks in the frames

cannot be inventoried by applying a threshold to the signal.This is due to the

strong oscillations of the baseline, specially close to the γ-flash.

Figure 4.2: Expanded view around a fission event of the 5 frames recorded on
detector 0 and the anode of detector 1, surrounding the 235U target. The anode
peaks coincide in time showing a coincidence of the fission fragments. The X0
and Y0 peaks are delayed due to the propagation in the delay line. The after-
pulses in X0 and Y0 frames are reflections in the delay line due to a mismatch

of the impedance of the delay line and the pre-amplifier.

A natural idea is to apply a derivative to the signal so as to remove the low

frequency variations of the baseline and leave intact the sharp peaks produced by

fission fragments. However a look at figure 4.2 shows that each signal is subjected
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to a very high frequency noise which is of low amplitude but which will be enhanced

by a pure derivative.

The solution is to filter the frames with a low-pass filter which reduces the noise

and to apply a derivative afterward. If s(t) is the frame and f(t) is the time

response of the filter (its Fourier transform F (ω) is a low-pass filter) one performs

their convolution product and apply a derivative:

s1(t) = (s(t)⊗ f(t))′ (4.1)

The properties of the convolution product lead to:

s1(t) = s(t)⊗ f ′(t) (4.2)

The best choice for the filter f(t) is the one which enhances the Fourier components

of the peaks and reduces the others. This is approximately achieved by taking f(t)

as the peak shape. The relevant parameter is not the details of the shape but its

time width which sets the frequency cut. We adopted the following filter:

f(t) =





ρ

[
1 + cos

(
π
t

w

)]
if − w < t < w

0 if t ≤ −w or t ≥ w

(4.3)

where ρ is a normalization factor and w is the FWHM of the peak. According to

equation 4.2 the frame should be convoluted with the function:

f ′(t) =





−ρ sin
(
π
t

w

)
if − w < t < w

0 if t ≤ −w or t ≥ w

(4.4)

and the result is the derivative of the frame after its passing through a low-pass

filter. This function is pre-computed and the discrete convolution product over

the basis of length 2w is computed for each frame. As shown in figure 4.2 the

width is different for anodes and cathodes due to the high frequency cut of the

delay line. The FWHM of the peaks are 9 ns for the anodes and 36 ns for the

cathodes. Those values have been applied to the respective w values.

Figure 4.3 illustrates the convolution process for an anode signal and for two signals

read from a delay line. Each negative peak in the original frame is converted into

a bipolar shape starting with a negative part followed by a positive one, with a



Chapter4. Data Analysis 55

Figure 4.3: Upper diagram: original frames after the γ-flash for detector 0,
anode and two Y delay line channels. Lower part: same signals after the convo-

lution with function ( 4.4)

0-crossing in between. The important point is that the waving of the base line

completely vanished through the derivative and that the noise remains at the same

level compared to the peaks.

The recognition of the peaks is performed on the convoluted frames by searching

the bipolar shapes. A negative and a positive thresholds are set slightly above the

noise, and a pattern is searched for a first crossing down of the negative threshold,

its crossing back, the crossing up of the positive threshold, and its crossing back.

Once such a pattern is found and the negative and positive parts are similar in

amplitude the peak is validated, its time stamp is given by the 0-crossing of the

bipolar shape and its amplitude by the minimum-maximum vertical distance.

Although the sampling time is 2 ns (500 MHz FADC’s) the time accuracy of peaks

is much better due to the interpolation of the 0-crossing, it is of the order of 0.5 ns.



Chapter4. Data Analysis 56

4.3 The γ-flash

A magnet located in the neutron line deflects the charged particles, but not the γ

rays and relativistic muons which are produced in the target and reach the exper-

imental area. The origin of this γ-flash is not fully clear, but some information is

given by signals delivered by the PPACs. Figure 4.3 shows that the γ-flash starts

with a sharp peak slightly wider (≈ 15 ns) than fission signals with a comparable

height, followed by a large bump lasting about 1.5 µs. Contrary to fission sig-

nals the sharp peak doesn’t show up in the delay line frames. This proves that

the number of electrons in the gas of PPACS is comparable to the case of fission

fragments but they are not deposited in a given position (contrary to fission frag-

ments) but spread over the detector area, so that at the end of the delay line they

are serialized in time and don’t produce a peak.

When a material is inserted in the neutron line (flange or window) the amplitude

of the γ-flash increases, showing that it comes from the conversion of incoming

particles. As most of the charged particles are deflected out the sharp peak,

visible on the anode signals, probably comes from neutral particles converted into

charged particles in the vicinity of the experimental area. But the neutral particles

are hardly massive (neutrons for example) because they would be produced with

a broad velocity spectrum and instead of a sharp peak one would get a step with

a long tail. The sharp peak is likely coming from the flash of γ’s produced when

the proton bunch hits the spallation target, this is consistent with its time width.

The photons propagate in the neutron pipe at speed of light, and emit electrons by

Compton scattering when they pass through materials as aluminized mylar foils,

target backings, etc. . . and the electrons are detected by the PPACs.

Most of the detectors (ionization chambers, C6D6) are blind for several µs due to

this γ-flash. The PPAC is ready after 20 ns thanks to the very thin materials

inserted in the beam drastically limiting the Compton scattering of photons. The

sharp signal on the anodes can be used as a time reference: it corresponds to

photons travelling with speed of light, immediately after the protons entered the

spallation target.

If tgf is the time stamp in the frame of the γ-flash and Lgeom is the geometrical

flight path (Lgeom ≈185 m), the time stamp for the spilling of the protons in the
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spallation target is:

t0 = tgf −
Lgeom

c
(4.5)

where c is the speed of light. This t0 is the start time for the measurement of the

time of flight which is computed as the difference of any fission time and t0. With

Lgeom ≈ 185 m one gets for the photons contained in the γ-flash a time of flight

of 617 ns.

4.4 Time-energy correlation

The measurement of the time of flight is the basis of the determination of the

energy of the incoming neutron. This section describes how it is practically per-

formed.

We denote TOF as the true time of a neutron travelling from the spallation target

(water surface) to the experimental area. Again Lgeom is the length of this flight

path, about 185 m. The velocity is:

β =
Lgeom

c TOF

(4.6)

The kinetic energy is derived with the relativistic formula with the usual notation

γ = 1/
√
1− β2:

En = (γ − 1)mnc
2 =

γ2 − 1

γ + 1
mnc

2 =
β2γ2

γ + 1
mnc

2 (4.7)

where the last form is very useful because it is not subject to rounding errors for

low energy neutrons.

When the protons are spilled in the spallation target the neutrons are immediately

released through spallation reactions and they start to propagate in the massive

lead block where they moderate. They can be moderated further in the water

before entering the neutron line as illustrated in figure 4.4.

The measured time of flight Tmes is the difference between the detecting time and

the t0 defined by equation 4.5. It is the sum of the moderation tmod and the true

time of flight TOF :

TOF = Tmes − tmod (4.8)
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Figure 4.4: Time sequence from proton spilling to fission detection

After substitution of this relation into 4.6 one gets:

β =
Lgeom

c Tmes

Tmes

TOF

=
Lgeom

c Tmes

(
1 +

tmod

TOF

)
=
Lgeom + λ

c Tmes

(4.9)

with λ naming the moderation distance defined as:

λ = v tmod = β c tmod (4.10)

where v is the neutron velocity.

As the moderation time, the moderation distance is a fluctuating quantity which

cannot be known on an event basis. Although the moderation time is spread over a

very broad spectrum (from ns to several µs) the moderation distance lies always in

the same range, a few cm in our case, reflecting the dimensions of the moderating

material.

The moderation distance is a stochastic quantity which has a probability density

depending on the neutron energy. This probability density has been simulated

using FLUKA including the transmission through the collimators defining the

neutron beam. It has an asymmetric bell shape with a peak corresponding to the

most probable distance and a tail. For the calculation of β by relation 4.9 we used

the most probable value λm of the simulated moderation distance. Its dependence

with the neutron energy is plotted in figure 4.5 together with the mean value and

the dispersion. Above 10 keV the shift between these 2 values indicate the strong

skewness of the distribution.
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Figure 4.5: Most probable and average moderation distance versus the neutron
energy. The hatched area indicates the spread of the distribution: < λ > ±σ.

As a matter of fact the length of the flight path Lgeom is not known with accuracy

and we used the low energy resonances of 235U to determine it with precision.

In a first step a guess value is used for Lgeom, close to 185 m, and the fission

cross section of 235U is plotted with this value and compared with the evaluated

ENDF/B-VII.0 cross section (figure 4.6, upper part). Then Lgeom is tuned to get

a good matching as shown in the lower part of figure 4.6.

4.5 Energy Resolution

The energy resolution of incoming neutrons is directly related to the velocity res-

olution through the flight path and time of flight. From the relation:

dγ

γ − 1
= γ(γ + 1)

dβ

β
(4.11)
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Figure 4.6: Comparison of resonant fission cross section of 235U with ENDF/B-
VII.0. Upper diagram: a first gess of Lgeom has been used. Lower diagram:

Lgeom has been tuned to match the ENDF/B-VII.0 cross section.

one gets for the energy resolution:

∆E

E
= γ(γ + 1)

√(
∆L

L

)2

+

(
∆T

T

)2

(4.12)

where ∆ is for the standard-deviation. In case of non-relativistic neutrons, as in

the resonance region, we get the simplification: γ(γ+1) = 2. In the above formula

∆L is due to the fluctuation on the moderation distance:

∆L

L
=

∆λ

Lgeom

(4.13)

and the fluctuation ∆T is that associated with the proton bunch width: ∆T=9 ns,

because the PPAC time pick off is much shorter, of the order of 0.3 ns.

Obviously the longer the flight path, the better the resolution. In the resonance

region the time contribution is negligible and the length dispersion dominates

the resolution which is about 0.01%. At high energy, above 10 MeV, the timing

resolution dominates and the energy resolution is about 1.4% at 100 MeV.
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4.6 Counting rate

The instantaneous counting rate can be an issue at high energy due the contraction

in time although PPAC have a very fast response. In addition above tens of

MeV other reactions than fission take place on light elements of the backings and

electrodes. Although they are in principle rejected by the coincidence method they

may generate a high counting rate of single fragments which may coincide in time

randomly. Therefore it’s worth estimating the instantaneous counting rate.

The reaction rate is:

Nr = nt σ(E) Φ (4.14)

where σ(E) is the reaction cross section, nt is the number of target atoms in the

beam spot, and Φ is the neutron flux (neutrons/cm2/second). This is the definition

of the cross section.

The mean time between 2 reactions is therefore :

∆T =
1

Nr

=
1

nt σ(E) Φ
(4.15)

Now we should relate the instantaneous flux Φ with the more well known lethargic

flux : φ(E) = dN/d logE expressed in neutron/cm2/decade/burst.

We consider a kinetic energy interval [E,E + dE] for 1 burst.

By using equation ( 4.11) one gets for relation between the time and energy incre-

ments (relativistic formula):

d logE

log(e)
=
dE

E
=

dγ

γ − 1
= γ(1 + γ)

dβ

β
(4.16)

= γ(1 + γ)
dt

t
(4.17)

=
c

L
βγ(1 + γ) dt (4.18)

(4.19)

with L for the path length. Substituting with:

β =

√
γ2 − 1

γ
(4.20)
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we get:

d logE

log(e)
=
c

L

√
γ2 − 1(1 + γ) dt (4.21)

=
c

L

√
(γ − 1)(1 + γ)3 dt (4.22)

=
c

L

√
E

mnc2

(
2 +

E

mnc2

)3

dt (4.23)

(4.24)

This gives for the instantaneous flux:

Φ =
dN

dt
=

dN

d logE

d logE

dt
(4.25)

= log(e)
c

L
φ(E)

√
E

mnc2

(
2 +

E

mnc2

)3

(4.26)

(4.27)

Figure 4.7: Reaction rate as a function of the neutron energy for a cross section
of 1 barn and a number of target atoms of 1020.
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After replacement of this expresion into relation 4.15 one gets the average time

between reactions:

∆T =
1

log(e) c
L
nt σ(E)φ(E)

√
E

mnc2

(
2 + E

mnc2

)3
(4.28)

We see that in the epithermal region, where the cross section goes as 1/v and

where φ(E) is approximately constant, the average time is constant and so is the

counting rate. But at high energy, in particular above hundreds MeV, the counting

rate increases steeply. This is illustrated in figure 4.7 which shows the reaction

rate for a constant cross section of 1 barn and 1020 target atoms, when using the

neutron flux shown in chapter 3. Our actinide targets have 0.4 1020 atoms with a

fission cross section of 2 barn at high energy and a detection efficiency of 0.6 so

that the counting rate is half the plotted one.

It’s interesting to estimate the contribution of reactions on light elements of back-

ings (Al) and electrodes (C, O). At high energy one can assume that the cross

section is geometrical and one gets for the backing of 1 target (235U, 238U, 237Np)

and for the electrodes of 1 PPAC:

Z σ (barn) nt (1020atoms) σ × nt

235U 2.0 0.4 0.8

Al 0.47 6. 3.

O 0.33 4.5 1.5

C 0.28 11 3.0

We see that at high energy the contribution to the reaction rate on the light ele-

ments of dead layers can be much higher that fission of the actinides. Fortunately

the detection efficiency for those parasitic reactions is much lower due to the light

nuclei which are produced and the coincidence method helps reject most of them,

but we will see that they are still present in the data.

4.7 Fission event recognition by coincidences

From a buffer containing for every proton bunch the list of all peaks of all signals

(anode, top, bottom, right, left) of the 10 detectors, the reconstruction of the

fission events needs the following steps performed in order:
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• Find the coincidences between adjacent detectors. This is done by using only

the very sharp anode signals. From this inventory of coincident detectors we

determine which target the fission came from.

• Find the localization signals associated to each selected anode peak of the

coincidence sequence.

• Determine the X and Y localizations for all detectors of the coincidence

sequence by the delay between the delay line peaks and the related anode

peak.

• Reconstruct the angles of the fission trajectory and find the emitting point

on the target by the crossing of the trajectory with the target plane.

We look now at the details of each of these operations.

4.7.1 Anode signal coincidences

The recognition of a fission trajectory is based on the fact that every time a

fission fragment crosses a detecting gap of a PPAC, between anode and cathode,

it is seen as a peak in the anode signal, and also in the two delay line signals

associated to this gap. In other words the detection efficiency of the PPAC is

always 1 provided the fission fragment crosses the gap. Therefore the real PPAC

efficiency is only limited by the fact that some fission fragments do not reach the

gap because they have been stopped in the dead layers as backings and mylar

electrodes. This happens when the thickness of crossed materials is high as it is

the case for trajectories strongly tilted against the orthogonal to detectors.

Figures 4.1 and 4.2 show examples of coincident signals on the anodes of adjacent

detectors. This coincidence is very accurate in time but one has to take into

account the possibility for a fragment for crossing several detectors.

If only two adjacent detectors are coincident the emitting target is obviously the

one between the two detectors. This happens in most of the cases (≈ 2/3 of

the fission events. But as already noticed some fission fragments may cross two

detectors, in this case 3 detectors appear to be coincident and there is an ambiguity

on the emitting target. This is the price we paid for minimizing all material

thicknesses and overall for the detector spare resulting from their possibility to
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look at two targets simultaneously, one on each side. But we show now how the

accurate timing property of PPACs solves cleanly this problem.

4.7.2 Identification of the emitting target

Figure 4.8: Correlation between amplitude on detector 1 with the time dif-
ference between detectors 2 and 1. The 238U is between detectors 1 and 2, the

235U target is upstream and a 232Th is downstream.

The basic idea relies on the fact that when a fission comes from the target between

two detectors, the fission fragments reach each detector almost at the same time

because they have to travel the same distance between target and detector which

is 2.5 cm along the perpendicular. This synchronization is not perfect because the

velocity of the 2 fission fragments is not the same due to the asymmetry of mass

division, and the length may be more than 2.5 cm due to the angle of the trajectory

(it can be up to 7 cm). Nevertheless the coincidence holds approximately. Now

when a fission fragment crosses one detector and reaches the next one, the time for

the latter is delayed by the traveling time between the two detectors, distant by

5 cm. Therefore looking at the time differences between adjacent detectors should

allow to disentangle the emitting target.
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Figure 4.9: Different possibilities in case several detectors are coinicident. The
blue point indicates the emission point on the target and the blue arrowed lines
the trajectories of fission fragments. The secheme is a top view of detectors
and targets at a given geometrical scale, the target layers are in red and their

backings in black.

Starting from an anode peak of one detector (detector 1 for example) a time

window of 20 ns is opened to search for coincidences in the anode of adjacent

detectors. This window is large enough to contain the signals from the comple-

mentary fragments crossing a first and a second detector. When a sequence of

coincident detectors is found, if the number is greater than 2 the emitting target

has to be identified.

Let’s take the case of the detectors 1 and 2 surrounding the 238U target and let’s

consider the case where detectors 1 and 2 are coincident and that they coincide

with another adjacent detector (0 or 3). Figure 4.8 shows the 2D-plot of amplitude

of anode 1 versus the difference in time between detectors 2 and 1.

The central spot at ∆t ≈ 0 corresponds to fission fragments emitted by the 238U

target, as indicated by trajectory 1 in figure 4.9. Two bumps show up in this

spot because of the asymmetric fission. The left hand bump is for the case where

detector 1 is hit by the heavy fragment and detector 2 by the lighter one. The

right hand bump is for the reverse case. The heavier fragments releases less energy

in the gas than the lighter although it doesn’stop inside the gas, due to the fact

that for energy loss the incident energy is lower than the Bragg peak.

The strong bump at about 10 ns is due to fragments coming from the 235U target

as indicated by trajectory 2 in figure 4.9. The longer delay of 10 ns is due to the

travelling time to detector 2 after slowing down in target 1 and detector 1. Here
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Figure 4.10: Same as figure 4.8 but for detectors surrounding a 232Th, with
the 237Np target downstream.

2 bumps are visible too, due to the asymmetric fission of 235U. The left hand bump

is the faster with the higher amplitude and corresponds to the lighter fragment

crossing detectors 1 and 2. The other case where the heavier fragment goes toward

detectors 1 and 2 is less populated because it’s more probable for this fragment to

be stopped in the dead layers at large angles.

The events coming from target 2 (232Th), as sketched by trajectory 3 in figure 4.9,

are visible on the other side of the central spot in figure 4.8 at about -10 ns. They

are much less populated due to the low fission cross section of 232Th. The effect

can be better seen in figure 4.10 for 2 detectors surrounding a 232Th with a 237Np

downstream producing the tails on the left starting at -4 ns. The amplitude is

low because the fragment had to pass through an additional target and detector

to reach detector 1.

In all cases the events coming from the target between 2 detectors can be clearly

selected by a contour as illustrated in figures 4.8 and 4.10, and in case of a series of

coincident detectors, the target is seeked by looping over the couples of detectors

and searching the inclusion in the related contour. In the case of only 2 detectors



Chapter4. Data Analysis 68

Figure 4.11: Same as figure 4.8 but for the case of only detectors 1 and 2
(around 238U target) in coincidence.

found in coincidence the situation is simpler and the emitting target is the one

between the 2 detectors. It can be checked that this is consistent with the timings

seen in figures 4.8 and 4.10. Figure 4.11 shows the time correlation of detectors 1

and 2 around the 238U when they are not in coincidence with other detectors. The

central spot is again clearly visible but it is more spread in time and amplitude

compared to the multiple coincidence case. This is due to the fact that coinci-

dences restricted to 2 detectors allow to look at trajectories more tilted against the

perpendicular to the detectors, which are stopped in dead layers before reaching

additional detectors. Those trajectories have longer paths for the fragments and

the time dispersion increases.

It can be seen in figure 4.11 that no track is visible coming from the neighboring

target 235U, validating the assumption that all fissions come from the 238U. Never-

theless a a wider contour can be applied in this case too to reduce the contribution

of random coincidences.

At this point the emitting target has been identified and we keep track of the

information available on the 2 detectors (named 1 and 2) surrounding the target:
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Figure 4.12: Correlation between anode amplitudes in detectors around the
237Np target.

timings, localization signals.

4.7.3 Low amplitude background

So far we didn’t mention the low amplitude background visible in figures 4.8, 4.10,

4.11. We discuss it now.

By using the information of the 2 detectors around the emitting target one can

plot the correlation between the 2 anode amplitudes. It is shown in figure 4.12 for

the 237Np target. The 2 bumps of the asymmetric fission are clearly visible. The

spread in amplitude is not only due to the mass division spectrum but also to the

fission angle: for grazing angles both amplitudes drop due to the slowing down

in the electrodes and the target backing. The amplitude A2 is lower than A1 in

average because the fragment has to cross the target backing to reach detector 2.

The low A1 events are seen in the corner, they clearly correspond to low amplitudes

in both detectors. From this picture it turns out that the sum of both amplitudes

is better discriminating true fission events from this background.
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Figure 4.13: Distribution of the sum of anode amplitudes in detectors around
the 237Np target, as a function of the neutron energy.

Figure 4.13 represents the distribution of the sum of anode amplitudes versus the

neutron energy for the 237Np target. The below-threshold fission resonances are

visible from the lowest energy of 10 eV up to 1 keV. The low amplitude background

is mainly present at high energy, specially above 10 MeV. A small contribution at

low energy is also present and comes from the α-radioactivity as suggested by the

fact it’s not present for the other targets.

The origin of the high energy background can be inferred from its characteristics.

Above 10 MeV reactions on low Z elements of dead layers (C, O of mylar, Al

of backings and electrode coating) set on. They produce several light particles

and recoiling light spallation residuals. Most of them have been rejected by the

requirement of the coincidence. But the counting rate due to these spallation

reactions is very high, as already mentioned in the "Counting rate" section, and it

produces random coincidences between them as demonstrated by the continuous

time spectrum seen in figures 4.8, 4.10, 4.11. The application of a short coincidence

time of the order of 10 ns allows to discard most of those parasitic events but a

fraction of them still remains in the data and it can be removed by applying a

threshold to the sum of the anode amplitudes.
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Figure 4.14: Energy spectrum of counts for the 235U target and its 238U
neighbor. The red vertical lines are located at 0.5 MeV and indicate the limit of

integration of counts indicated in red too.

4.7.4 Efficiency of the target identification

In our setup a fissile target 235U is neighboring a less fissile 238U. It provides a

simple means to test how accurate is the target tagging of the fission events. Below

0.5 MeV the 238U target doesn’t fission and the counts seen below this limit are

likely coming from fissions of the neighboring 235U. For both targets the number

of counts is plotted versus the energy in figure 4.14. The 17 counts recorded for

the 238U below 0.5 MeV are a contamination of the 870184 counts recorded in
235U in the same energy range. It means that the discrimination level for target

assignment is better than 5 104.

4.8 Reconstruction of fission trajectory

The previous section showed how the fissions are recognized with the coincidence

method and disentangled from other possible reaction channels thanks to the ex-

cellent time resolution of PPACs. In this section, we are going to discuss how the
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fission fragments are localized in each detector so that the fission trajectory can

be reconstructed.

Figure 4.15: Picture of a cathode showing the strips, 20 cm long and 2 mm
wide, connected to the delay line having a 320 ns propagation time over the

20 cm active area.

4.8.1 Principles of the localization method

As mentioned in chapter 3, each PPAC detector has two segmented cathodes with

strips oriented in perpendicular directions. The strips are connected to a delay line

where the signal is propagated and read at both ends by a preamplifier. The total

length of the active area is 20 cm covered with 100 strips and the total propagation

time is 320 ns (see fig. 4.15). The localization on the cathode is obtained from

the propagation time on each side of the delay line. This determines the position

perpendicular to the strips. For the other direction the cathode located on the

other side of the anode is used.

Fig. 4.16 shows an example of the 5 recorded frames corresponding to a detector.

The black curve represents the anode channel and the others are those collected

at the ends of the delay lines: the green one is for the signal left (SL) the red

one is the signal right (SR), blue for the signal top (ST) and yellow ror the signal

bottom (SB).

The first strong peak in the anode signal is the γ-flash and the second strong

one is a fission in coincidence with an anode peak of an adjacent detector. The
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Figure 4.16: Signals from the 5 channels of a detector, anode (black), left SL
(green), right SR (red), top ST (blue), bottom SB (yellow). The strong peak
around 5400 ns in the anode signal is fission a fragment and the corresponding
delay line peaks follow around 5500 ns. The time on the horizontal axis starts

whith the triggering of the DAQ.

delays between the delay line peaks showing up around 5500 ns and the anode

peak are due to the propagation time in the delay lines. Other peaks in SR and

SL are visible around 6600 ns, related to another fission event in the anode signal

at 6500 ns. The bipolar peaks appearing in SL and SR at 5800 ns and 6200 ns are

reflections of the signal due to a mismatch between the impedances of the delay

line and the pre-amplifiers.

It can be noticed that the peaks in signals of the same delay line (SL and SR for

example) are of almost equal amplitude. This is due to the fact that they originate

from the same signal (induced current on a strip) and that the attenuation of the

delay line is low. But signals from different delay lines may be very different

in amplitude even for the same fission fragment because they come from different

detecting gaps where the energy release differs due to slowing down of the fragment

through the anode foil. In particular the signals from one delay line may be absent

if the fragment is stopped in this foil. The anode peak corresponds to the sum of
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the charges released in both gaps.

Figure 4.17: Signal propagation along a delay line of length L from a point x

referred to the center.

We define the propagation times as:

tX = tSX − tanode (4.29)

where X is one of the 4 cathode symbols (L, R, T or B). These delays are deter-

mined by the length the signal propagates as sketched in figure 4.17. The relations

determining the peaking times in the localization signals and the positions are:

tSL = tanode + δt+
1

v
(
L

2
+ x)

tSR = tamode + δt+
1

v
(
L

2
− x)

x =
v

2
(tSL − tSR)

y =
v

2
(tSB − tST )

(4.30)

where v is the propagation velocity (∼ 2 mm/3.20 ns), L is the total length of the

delay line over the active area, and δt is an additional delay taking into account of

the fact that the delay line is slightly longer than the active area (symmetrically)

and that electronics are slower for localization signals because charge sensitive pre-

amplifiers are used instead of fast current pre-amplifier on the anode, and because

of the limiting bandwidth of the delay line.

The interesting feature is that according to the last 2 equations the position can be

extracted by using only the cathode signals without including the anode signal and

this is illustrated in figure 4.18 which shows how the delay between the ends of the

delay line bears the position information. In addition this brings a simplification

for the calibration: if all cables have the same length (it is the case) the center of

the spectrum is exactly the center of the detector.
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Figure 4.18: Scheme of the delay between SL and SR signals according the
injection horizontal position in the delay line.

The delay between cathode and anode peaks is however absolutely needed to

perform the right correspondance between localization signals and anode signals

which define the fission event through the coincidence. This is the object of the

next subsection.

4.8.2 Correspondance between cathode and anode signals

By looking at the frames of figures 4.3 and 4.16 one can see that the density of

peaks may be high and due to the propagation delay it is not obvious to associate

the peaks on each side of a delay line and to associate them with the correct anode

signal. We can define two criteria which help perform those associations safely:

the test of the sum of delays and the comparison of amplitudes.

4.8.2.1 Sum of delays on a delay line

From equations 4.30 and 4.29 one can write the following relations between the

delays from the anode:

tL + tR = (tSL − tanode) + (tSR − tanode) = 2δt+
L

v

tB + tT = (tSB − tanode) + (tST − tanode) = 2δt+
L

v

(4.31)
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which shows that the sum of delays is independent of the position and it is related

to the total propagation time in the delay line. These relations should hold for

any event in any detector.

Figure 4.19: Plot of all combinations of delays (TL,TR) respect to the anode
peak for many anode peaks of detector 0 without coincidence requirement. The

time units are 0.1 ns.

We can check how this constraint acts really on the data by applying the following

algorithm. Each time an anode signal is found by scanning the anode frame, we

open a window on the SL frame (left) starting at the anode peak time and lasting

400 ns which is more than the total propagation time in the delay line. We record

all the peaks found inside this window. We do the same on the SR frame (right).

For all the combinations made of one peak in SL and one peak in SR we plot the

(TL,TR) couple in a bidimensional plot as shown in figure 4.19 for the first detector

close to the 235U target.

A strongly populated diagonal shows up corresponding to relations 4.31. Those

correlated points lie above a flat background with some structures due to after

pulses and signals peaks coming from reflections in the delay line. The background
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is due to the high counting rate at high neutron energy: for high energy, anode

peak many localization signals are present in the 400 ns windows even if they are

note related to this anode event.

The correlation provides an obvious way of selecting the correct signal peaks as-

sociated with an anode peak: the delays of the localization peaks should correlate

to lie in the diagonal. This selection criterion is illustrated by the contour drawn

in figure 4.19. The same selection applies to the vertical delay line and for all

detectors.

Athough this selection discards most of the wrong associations between localiza-

tion peaks of a delay line, at high energy the density of peaks is so high that

sometimes an ambiguity remains: more than one combination may lie inside the

limits defining the diagonal and the correct one has to be selected. In this case we

look at the amplitudes of localization peaks.

4.8.2.2 Amplitudes of localization peaks

As already mentioned the amplitudes of peaks on each side of the delay line should

be the same if they come from the same event, because they originate from the

same signal injected on the delay line, and because the attenuation of the delay

line is low. This provides a means to determine if one peak in the SL signal can

be associated to a peak in the SR one for example.

Figure 4.20 shows the distribution of the ratio of the amplitudes of peaks in the

right and left sides, for events lying in the diagonal shown in figure 4.19. Clearly

the ratio is close to 1 most of the time, and it accumulates along a line with a low

slope revealing the attenuation of the delay line when the propagation distance

increases. The line waves toward the ends due to edge effects in the delay line.

In addition to this accumulation the ratio can extend to much lower or higher

values producing a kind of background. This background is not present at low

energies (below 1 MeV) and it shows up strongly at high energy. It is due to the

pile up of peaks at high counting rate which deforms the peaks and changes their

apparent amplitude. Therefore the condition on the amplitudes should not be too

strict at the risk of loosing true events.
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Figure 4.20: Distribution of amplitude ratio between peaks in SR and SL for
events lying inside the diagonal contoured in figure 4.19. The horizontal axis is
the difference time, in units of 0.1 ns, between SL and SR peaks, related to the

position.

4.8.2.3 Criteria for association of localization peaks

From the above considerations we adopted the following algorithm to associate the

peaks from the delay line signals to a fission peak on the anode. The description

applies to the SL and SR signals (horizontal delay line) but it is the same for the

SB and ST signals.

• For each anode peak we open a window on the SL frame (left) starting at the

anode peak time and lasting 400 ns. We record all the peaks found inside

this window. We do the same on the SR frame (right).

• For all the combinations made of one peak in SL and one peak in SR we

retain those which fall inside the contour around the diagonal, as illustrated

in figure 4.19 and we discard the others.
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• If no combination is retained no position information is present and the event

is discarded. If one combination is registered it is the right combination.

If more than one combination is possible we select a single one with the

following step.

• For each combination we compute its distance to the diagonal line in the

(TL,TR) plane. We also compute its distance to the accumulation line in

the (TSL − TSR,AR/AL) plane as shown in figure 4.20. We compute a global

deviation distance by weighing the 2 distances according to the dispersions

in each plane. The combination having the smallest deviation is retained as

the right one.

• Once a single combination of peaks in SL and SR is found the difference

TSL − TSR is kept for the position information of the event showing up in

the anode signal.

4.8.3 Calibration

The purpose of the calibration is to obtain the absolute coordinates in mm from

the time differences TSL − TSR and TSB − TST .

The center of the detector is obtained when those differences are equal 0, that’s

to say when the peaks in SL and SR, or in SB and ST, coincide in time. This is

a consequence of the homogeneity of electronics: all the delay line preamplifiers

are identical and the cables lengths too. The FADC’s are clocked at a frequency

accurate to 10−6 and in addition the 2 signals of a delay line are plugged to the

same FADC module. As a result the dispersion of the center cannot exceed 2 ns,

corresponding to a center dispersion of at most 0.5 mm, negligible respect to other

geometrical errors.

Therefore the only parameter in the calibration is the propagation velocity ac-

cording to equations 4.30. We measured this velocity before the experiment by

injecting a fast signal from an electronic pulser at different points of the delay line

and measuring the delay between the signals at the ends of the delay line. We

did it for all detectors and we found that the inverse of the velocity is in average

3.20 ns/pitch (pitch of 2 mm) with a dispersion lower than 1% over all detectors,

and we adopted this value with an uncertainty of 1 mm on the calibration. The

uncertainty associated to each localization event is larger due to the resolution
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Figure 4.21: Spectra of time differences TSB−TST (left) and TSL−TSR (right)
representing the Y and X localization in detector 0 of figure 4.9.

and it is of the order of 2 mm. According to those values one expects the spectra

in TSL − TSR and TSB − TST extend at maximum to ±320 ns.

Figure 4.21 shows their spectra for detector 0 of figure 4.9. We see that the vertical

distribution is symmetrical as expected. It is slightly upward shifted which is well

understood because the 235U target is shifted up by 3 mm in agreement with the

observed spectrum shift.

Figure 4.22: Spectrum of time difference TSL − TSR (horizontal localization)
on detector 1 for fission coming from the 235U target.

The horizontal spectrum is similar but it is shifted to the right. This is expected

because the position is referred to the center of the detector whereas the counts

reflect the target position with respect to the detector center. As can be seen from

figure 4.9 the 235U appears shifted on the right by its distance (2.5 cm) to the

detector. Its fingerprint on detector 1 on the other side should be shifted to the

left by the same offset and it is checked in figure 4.22.
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Figure 4.23: Spectrum of vertical position on detector 0 similar to the left
part of figure 4.21 but cutting out the low amplitude peaks.

In all cases the spectrum drops steeply at ±320 ns in accordance with the measured

propagation velocity. However some events are present beyond those limits. They

show up only for energies above 10 MeV and they have very small amplitudes.

They correspond to fake localization peaks of small amplitude which were accepted

by the above described filters and they are rejected as they lie outside the expected

range. Such random events might be also present inside the normal range but their

fraction is very low thanks to the efficient filtering procedure.

An interesting feature of the time difference spectra is that they can be self-

calibrated. This is illustrated with figure 4.23 which shows the the TSB − TST

spectrum of detector 0 when a threshold has been applied to the amplitudes of the

peaks. The overall shape is similar to that without threshold but it exhibits a reg-

ular structure which is an image of the strips: 2 neighboring dips are 2 mm apart.

By counting 54 strips between -161.5 ns and 189.1 ns one can derive the inverse of

the propagation velocity: (189.1+161.5)/54/2=3.24 ns/strip in accordance with

the adopted value of 3.20 ns within 1%.
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Figure 4.24: Top view of the 2 PPACs surrounding the emitting target. The
X coordinate is defined in each plane by the green arrows the 0 is the geometric
center of the detectors and the target. The Y axis points out upward from the

plane and is common to the 2 detectors and the target.

4.9 Trajectory reconstruction

The fission trajectory is recontructed from the X and Y positions obtained on

each detector surrounding the emitting target. It may happen that one position is

missing and the event is discarded. This case happens when one fission fragment is

stopped in the anode foil of one detector and this is always for trajectories strongly

tilted against the perpendicular to the detectors because the fragments have to

cross a large amount of material. Therefore the missing position information

reduces the reconstruction efficiency at large angles, and it is the object of the

next chapter to handle this problem. In this section we explain how the trajectory

is reconstructed when all the position informations are available.

We first define the reference frames as shown in figure 4.24 which is a topview of the

pair of detectors surrounding the emitting target. The X axes in the 3 planes are

horizontal, parallel to each other and the origin is always the geometrical center of

the detector or the target. The detectors are always centered on the beam axis. It

is not necessarily the case for the targets due to the delicate operation of mounting

them in their frames. Therefore the target center is not necessarily located at the

absissa 0 in the target plane. The Y axis is vertical pointing upward and it is

common for all detectors and targets. Again the PPACs are always centered in

vertical position whereas the targets may be shifted for the same reason.

We define the Z ′ axis perpendicular to the detector and target planes oriented at

45◦ from the beam direction. We define the polar angle θ′ of the trajectory against

this axis and φ′ the azimuthal angle around the axis. θ′ and φ′ are not the physical

angles of interest, which are referred to the beam axis but they are very important
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for reasons we will detail later. Let say for the moment that the physical angles

can be deduced easily from θ′ and φ′.

The objective of the reconstruction is to obtain from X1, Y1, X2, Y2 the angles θ′

and φ′ of the trajectory and the coordinates X, Y of the emission point. The Xi

and Yi are directly obtained as the localizations in the detectors.

We denote the coordinate system relative to the detectors as (
−→
X ′,

−→
Y ′,

−→
Z ′) with the

origin located at the geometrical center of the target, with
−→
X ′ horizontal and par-

allel to X1 and X2,
−→
Y ′ vertical pointing up, and

−→
Z ′ perpendicular to the detectors

oriented in the forward direction.

The system is not fully symmetric because for each detector the X electrode is

upstream and the Y one is downstream, therefore the gap thickness e is included

in the formulas, in addition to the detector-target distance d. The coordinates of

the hitting points are :

P1X

∣∣∣∣∣∣∣∣

X ′
1 = X1 + d+ e

?

Z ′
1X = −(d+ e)

P1Y

∣∣∣∣∣∣∣∣

?

Y ′
1 = Y1 + d− e

Z ′
1Y = −(d− e)

(4.32)

P2X

∣∣∣∣∣∣∣∣

X ′
2 = X2 − (d− e)

?

Z ′
2X = d− e

P2Y

∣∣∣∣∣∣∣∣

?

Y ′
2 = Y2 − (d+ e)

Z ′
2Y = d+ e

(4.33)

If we define:
X ′ = X ′

2 −X ′
1 = X2 −X1 − 2d

Y ′ = Y ′
2 − Y ′

1 = Y2 − Y1

Z ′ = Z ′
2 − Z ′

1 = 2d

(4.34)

the cosine of the fission angle cos θ′ relative to the
−→
Z ′ direction is:

cos θ′ =
Z ′

√
X ′2 + Y ′2 + Z ′2

(4.35)

This angle is essential as it determines the detector efficiency that we are going to

discuss in the next chapter, and for the azimuthal angle around the perpendicular

to detectors and targets: tanφ′ =
−→
Y ′

−→
X′
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The coordinates of the emitting point in the target is the crossing on the target

of the straight line passing by the hitting points:

X =
X′

2
(d+e)+X′

1
(d−e)

2d
= 1

2
(X2 +X1) +

e
2d
(X2 −X1)

Y =
Y ′

2
(d−e)+Y ′

1
(d+e)

2d
= 1

2
(Y1 + Y2) +

e
2d
(Y1 − Y2)

(4.36)

From the cos θ′ and φ′ angles, the physical angles cos θ and φ related to the beam

axis can be obtained from a rotational transformation:

cos θ =
1√
2
(− sin θ′ cosφ′ + cos θ′)

φ = arctan

(√
2

sin θ′ sinφ′

sin θ′ cosφ′ + cos θ′

) (4.37)

and the reciprocal:

cos θ′ =
1√
2
(sin θ cosφ+ cos θ)

φ′ = arctan

(√
2

sin θ sinφ

sin θ cosφ− cos θ

) (4.38)

The quality of the trajectory reconstruction can be checked by looking at the

distribution of emitting points on the target. For example figure 4.25 shows the

distribution of hitting points on the two detectors surrounding the 235U target.

On each detector a circular spot shows up, which is an image of the circular

Figure 4.25: Distribution of hitting points on the detectors surrounding the
235U target, the upstream detector is on the left side and the downstream one
on the right side. The X axis is horizontal and oriented to the left hand side

when travelling along the beam.



Chapter4. Data Analysis 85

neighboring target. The image is however blurry due to the 2.5 cm distance

between detector and target. In addition it is shifted due to the alignment of

detectors and targets along the beam axis and the 45◦ tilting angle, as can be

checked from figure 4.24. Due to the limited active area the distribution is slightly

cut on one side and we will see in the next chapter how this effect is taken into

account in the efficiency.

The distribution of emitting points in the target is obtained from equations 4.36,

and it is plotted in figure 4.26 for 235U and 232Th. The distribution is again circular

Figure 4.26: Distribution of emitting points on the 235U target (left) and one
of the 232Th targets (right).

but it is now sharp-edged at the border of the circular actinide layer. The diameter

of the disk is 8.0 cm as expected from the manufacturing of the targets.

In figure 4.26 we see that some counts lie beyond the limits of the fissioning layer

(radius greater than 40 mm). They are due to erroneous localizations when the

instantaneous counting rate is high, mainly above 20 MeV and to a lesser extent

around 1 MeV

At the end every fission event is stored in a Tree with ROOT [26] that can be

plotted with histogram for physics analysis. Each tree stores the following infor-

mation:

• target number

• neutron energy

• X1
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• Y1

• X2

• Y2

• X

• Y

• cos θ′

• φ′

• cos θ

• φ

Some additional parameters are also stored like the signal amplitudes, the coinci-

dence time, for possible further checks.



Chapter 5

Angular distributions

We showed in the previous chapter how for each fission event the geometric param-

eters of the trajectory, in particular its angles (cos θ,φ) or (cos θ′,φ′), are obtained

from the signals delivered by the detector. To get the angular distribution a step

further is needed because the detection efficiency is lower than 1 and it depends

on the angles.

Figure 5.1: Distribution of cos θ′ for 235U and En < 3 keV. As the emission is
isotropic a full efficiency would lead to a constant number of counts as depicted

by the horizontal dashed line.

87
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This is illustrated by figure 5.1 which shows the cos θ′ spectrum obtained with

the 235U target for neutrons of energy lower than 3 keV. In this case only s-waves

contribute significantly to the fission cross section, and even if a small contribution

of p-waves is present its angular distribution is washed out by the unpolarized

target (I0 = 7/2) and neutron (s = 1/2). Therefore the fission emission is isotropic

and a constant number of counts is expected versus cos θ′ in case of full efficiency.

The spectrum clearly exhibits a drop at low cos θ′ showing that the efficiency drops

at large angles. This is well understood by the stopping of fission fragments which

have to travel across thicker distances in matter at large angles.

Therefore a procedure has to be found to get the efficiency and to correct for it.

Figure 5.2: Distribution in angles (cos θ,φ) of isotropic events emitted by the
235U target for neutron energies En < 3 keV.

We see in figure 5.1 that the efficiency is highly dependent on cos θ′ respect to the

perpendicular to detectors and targets. One can look at its effect in the (cos θ,φ)

plane which is more linked with physics of fission. This is displayed in figure 5.2

again for events emitted by 235U for energies below 3 keV where the emission is

isotropic. A constant full efficiency (ǫ = 1) would populate uniformly the plane

which is not the case.
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Figure 5.3: Example of case where the fragment detected in the forward de-
tector has a backward direction respect to the beam axis.

One can notice that negative cos θ are present. This is due to the way the fission

direction is defined. We choosed the direction of the fragment crossing the forward

detector as the fission direction. This assures that cos θ′ is always positive. But if

the fission trajectory is at cos θ′ > 45◦ this fragment may go backward although

it is detected in the downstream detector, as depicted in figure 5.3. In this case

we should have selected the other fragment as bearing the fission direction. This

is easily done by taking | cos θ| instead of cos θ, as the angular distributions are

symmetrical around cos θ=0. For the final results we will add the data recorded

at cos θ negative with the data at the corresponding positive value. But in some

pictures we will leave the representation with negative cos θ for sake of clarity.

Coming back to figure 5.2 we see that at φ = 0 the cos θ distribution is flat

reflecting the fact that the efficiency remains equal to 1 for θ′ < 45◦. The horizontal

projection gives the cos θ spectrum displayed in figure 5.4. As the emission is

isotropic it is representative of the cos θ dependence of the efficiency, which is very

strong.

Obviously the construction of the angular distributions requires a safe determina-

tion of this dependence. One could imagine to merely use the spectrum shown

in figure 5.4 as it is proportional to this efficiency. But it is only applicable to
235U at low energy, it may differ at high energy according to the mass division
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Figure 5.4: cos θ spectrum for 235U and En < 3 keV, proportional to the
detection efficiency

evolution, and over all it depends on the target mainly because of the different

backing thicknesses.

Two methods are possible and have been used. The first one relies on simulations of

the efficency by simulating the penetration of fission fragments in the matter layers.

Those simulations provide an estimate of the ratio of efficiency between targets

and this ratio is used as a correcting factor for the experimental efficiency based

on the 235U isotropic emission at low energy. This method has been developed by

Diego Tarrío [4] and has been used successfully for some cases, but it suffers from

some flaws. In particular it doesn’t take into account some parameters different

between detectors (thresholds for examples), and it assumes that the physical

structure of the emitting actinide layer (flat or with some roughness) is the same

for all targets.

We developed another method we name "self-calibrated method" because it en-

tirely relies on the data and doesn’t need any simulation. Before going into its de-

scription we explain in the next section the main details of the simulation method.
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5.1 Efficiency based on simulations

This method has been developed by Tarrío [4] in the framework of his thesis in

analysing the data in parallel with us.

The main principle of Diego’s method is the use of the low energy isotropic emission

in 235U (displayed in figure 5.4) as a reference efficiency for this target. Then

simulations are developed to calculate this efficiency and check that it is close

to the measured one. The same simulations are run for other targets having a

different backing thickness. The ratio of the simulated efficiencies for the 2 targets

is used as a correcting factor applied to the 235U efficiency to get the efficiency

of the other target. This is a kind of perturbation method assuming that the

difference between targets is small and it is well described by simulations.

ǫtargetX(cos θ) = ǫ235U(cos θ)×
ǫtargetX/simul(cos θ)

ǫ235U/simul(cos θ)
(5.1)

W235U(cos θ) is the 235U cos θ spectrum measured at low energy and taken as the

reference efficiency.

ǫ235U/simul(cos θ) is the simulated 235U efficiency.

ǫtargetX/simul(cos θ) is the simulated target X efficiency with a different backing

thickness.

Let’s recall that the backing thickness is 2.5 µm of Al for 235U, 238U, 237Np and

0.7 µm for 232Th.

The simulations have been performed under Geant4 [18]. The principle of the

process is to create the fission fragments sources from the target randomly in cos θ

and φ, and take into account those fragment characteristics (charges, mass, ki-

netic energy, mass distribution, etc). The target is placed between both adjacent

PPAC detectors 20cm× 20cm and tilted by 45◦. The fragment distributions were

extracted from the ENDF/B-VII.1 library [27]. The fragment scatterings, slow-

ing down or stopping in the materials were taken into account. The number of

fragments reaching the detecting gaps are recorded and the efficiency is obtained

from their scoring. The result is shown in figure 5.5, compared to the measured

spectrum where the negative cos θ are added to the positive ones.
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Figure 5.5: Detection efficiency for 235U and En < 3 keV (isotropic) versus
angle between fission fragment and the beam direction. Comparison between

experiment and simulation [4].

The agreement is good and gives an idea of the precision of the simulation. It

validates its use for other targets where no efficiency measurement is possible due

to the lack of isotropic emission.

Figure 5.6: 232Th angular distribution around 7 MeV

Figure. 5.6 shows a 232Th FFAD around 7 MeV after division of the cos θ spectrum

by the efficiency obtained by the above procedure. The black points represent the

measurement and the other curves are fits with Lengendre polynomials. The
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distribution is forward-backward peaked with a high anisotropy at this energy

where second chance fission just opened.

5.2 New method: self-determination of efficiency

The detection efficiency is only dependent on the thickness of material to cross

before reaching the detecting gap. From the emitting point in the upstream di-

rection the fragment has to go through a part of the actinide oxide, the mylar of

the Y cathode foil and the mylar of the anode. The gas pressure is so low that

its slowing down contribution can be neglected. In the downstream direction the

fragment has to travel in the rest of the actinide layer, the backing, the X cathode

foil and the anode foil. All the thicknesses of these materials are constant over

the active area. But the real thickness seen by the traveling fragment increases

with the angle θ′ relative to the perpendicular to detectors. More precisely any

sheet of thickness e is seen by the fragment as having the thickness e/ cos θ′. For

a given thickness to be crossed the fraction of fission which is seen corresponds

to particular mass and charge divisions and this number of acceptable divisions

drops when the thickness increases beyond a critical value.

From these considerations it can be stated that the efficiency only depends on cos θ′

which defines the amount of matter to be crossed. The main idea of the method

is that due to the 45◦ tilting of the detectors and targets the same cos θ relative to

the beam can be reached by different cos θ′ values (with different φ and φ′ values).

As the angular distribution only depends on cos θ all the above combinations

contribute according to their efficiency and give a means of calibration of this

efficiency versus cos θ′.

5.2.1 Principles of the method

Let’s first look at the case where the detectors and targets are orthogonal to the

beam, as in the 2003 set up. In this case the axes Oz and Oz′ coincide and

the angles θ and θ′ are equal. Any variation in the counting rate with cos θ is a

combined effect of angular distribution and efficiency without any possibility of

disentanglement.
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In the tilted geometry several cos θ′ can lead to the same cos θ and the variation

of counts reflects only the variation of the efficiency with cos θ′. When cos θ′=1

the efficiency is 1 and step by step a calibration of the efficiency with cos θ′ can

be obtained. In other words the tilting not only allows to span the entire range of

the angular distribution, it has the virtue of decoupling the variations due to the

physics of fission (angular distribution) and the detection efficiency, because each

depends on a different angle.

Figure 5.7: Geometrical area accessible in the (cos θ,cos θ′) plane

Any fission direction can be defined by the couples (cos θ′,φ′) or (cos θ,φ). It may

alternatively be defined in a hybrid way, and the interesting couple is (cos θ,cos θ′)

from which φ and φ′ can be deduced from the relations 4.37 and 4.38 given in the

previous chapter, that we paste below for convenience:

cos θ =
1√
2
(− sin θ′ cosφ′ + cos θ′)

φ = arctan

(√
2

sin θ′ sinφ′

sin θ′ cosφ′ + cos θ′

) (5.2)

and the reciprocal:

cos θ′ =
1√
2
(sin θ cosφ+ cos θ)

φ′ = arctan

(√
2

sin θ sinφ

sin θ cosφ− cos θ

) (5.3)

From the latter equation it can be seen that for a given cos θ the range of possible

cos θ′ is covered by varying φ between −π and π. Introducing cosφ = ±1 in 5.3
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gives the limits of the cos θ′ range:

cos θ′ =
1√
2
(± sin θ + cos θ) (5.4)

which becomes:

cos2 θ + cos2 θ′ −
√
2 cos θ cos θ′ − 1

2
= 0 (5.5)

This is an ellipse tilted at 45◦ in the (cos θ,cos θ′) plane as shown in figure 5.7.

The hatched zone indicates the area acceptable from the geometry viewpoint.

The interesting features in this representation are the followings:

• Any horizontal slice of height ∆cos θ′ corresponds to a constant solid angle

∆Ω = 4π∆cos θ′ because it is associated with a range φ′ ∈ [−π, π] and

symmetrical values of φ′ are counted.

• For the same reason any vertical slice of width ∆cos θ corresponds to a

constant solid angle of ∆Ω = 4π∆cos θ

• Along a horizontal slice the efficiency is constant and the spectrum of counts

in cos θ, for a given solid angle, is the true angular distribution.

• Along a vertical band cos θ is constant and the spectrum of counts in cos θ′

reflects the variation of the efficiency.

Those statements can be translated into the following equations. The number of

fissions detected in any direction is:

dN = W (cos θ) ǫ(cos θ′) dΩ

= W (cos θ) ǫ(cos θ′) d(cos θ) dφ

= W (cos θ) ǫ(cos θ′) d(cos θ′) dφ′

(5.6)

W (cos θ) is the angular distribution, the physical quantity we are interested in.

ǫ(cos θ′) is the detection efficiency depending only on cos θ′.

dΩ is the differential of solid angle.

In a plot with the representation of figure 5.7 the counts are scored in cells

(dcos θ,dcos θ′) of constant width and height having different solid angles. For

each cell we get:

dN = W (cos θ) ǫ(cos θ′)
dΩ

d(cos θ) d(cos θ′)
d(cos θ) d(cos θ′) (5.7)
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Figure 5.8: Distribution of counts in the (cos θ,cos θ′) plane for the 235U target
and En < 100 keV.

Figure 5.8 shows the distribution of counts in the plane (cos θ,cos θ′) for the 235U

target and En < 100 keV where fission is isotropic. One can recognize easily the

elliptic shape sketched in figure 5.7. We notice that the counts accumulate close

to the elliptic contour. As we will see below this is due to the large solid angle for

the peripheral cells.

We are mostly interested in the product W (cos θ) ǫ(cos θ′) which is obtained by

dividing the counts in each cell by its solid angle size proportional to dΩ
d(cos θ) d(cos θ′)

.

For each cell this factor is obtained by numerical integration using a Gauss-

Legendre method. Several points are taken in cos θ′ and for each of them the

limits in φ′ are computed for the horizontal limits in cos θ by using 5.2. This gives

for each cos θ′ an interval ∆φ′ which is integrated over cos θ′. Figure 5.9 represents
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Figure 5.9: Solid angle of (cos θ,cos θ′) cells for cells of width ∆cos θ = 0.01
and height ∆cos θ′ = 0.04. The numbers over the curves label the central value

of cos θ′ of the horizontal band.

how the solid angle varies with the cell position inside several horizontal bands.

We see that the solid angle increases quickly close to the lower and upper limits in

cos θ, that’s to say close to the elliptic contour in the (cos θ,cos θ′) contour. This

is the reason of the accumulation of counts along this elliptic line in figure 5.8.

Figure 5.10 illustrates, again in the case of 235U at energies below 100 keV where

the emission is isotropic, the main features of the method. On the left is plotted

the number of counts divided by the solid angle, named normalized counts N ′,

representing the product W (cos θ) ǫ(cos θ′). A horizontal slice has a constant effi-

ciency and its projection onto the cos θ axis, shown in the right part, is the angular

distribution which is flat in this case as expected.

Looking back at figure 5.10 one can imagine that just by taking the cos θ projection

of a horizontal band we would get the desired angular distribution, as illustrated

on the right part of the figure.
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Figure 5.10: Left: distribution of counts divided by the solid angle for the 235U
target and En < 100 keV. Right: projection on cos θ of the band of constant

efficiency (constant cos θ′), drawn on the left size.

This is true but the main drawback of this procedure is that only a fraction of

the recorded data are used (those located inside the band). It’s not a problem

for 235U at low energy because the cross section is high and the number of counts

too, as seen in figure 5.8. However for other isotopes having a lower fission cross

section or if the energy intervals are narrow the number of counts are low and all

of them should be used. Therefore the efficiciency on the full range of cos θ′ has

to be determined.

Two horizontal slices of same height correspond to the same solid angle(∆Ω =

4π∆cos θ′). Therefore the ratio of their normalized counts is exactly the ratio of

the efficiencies for these two slices. The uppermost slice is that with an upper

bound cos θ′=1. For this slice the efficiency is 1 because all trajectories are almost

orthogonal to the material layers and the effective thickness is minimal. This slice

can be used as an efficiency reference and the number of normalized counts of slice

n divided by the normalized counts in the upper slice is the efficiency ǫn of slice n.

Now when the cos θ′ dependence of the efficiency is known over a broad energy

range, we can see how the angular distribution can be re-constructed for any energy

interval where those efficiencies are applicable. By partitioning the (cos θ,cos θ′)

plane into horizontal slices of same height, one can get as described above the

efficiency ǫi of each slice. Once this set of efficiencies has been obtained it can be

applied to extract the angular distribution for any energy interval where this set
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is applicable, as detailed below. We divide the (cos θ,cos θ′) into a matrix of cells,

with lines corresponding to the horizontal slices, and columns corresponding to

the points of the angular distribution, as illustrated in figure 5.11.

Figure 5.11: Partitioning of the (cos θ,cos θ′) plane into a matrix of cells. Along
horizontal lines the cells have the same efficiency. The columns correspond to
the cos θ′ values where the angular distribution has to be obtained. The lines
are numbered with i, starting from the top, and the columns are numbered with

j starting from the right.

If Nij is the number of counts in the cell in line i and column j (for the considered

energy interval), ∆Ωij the solid angle of this cell and ǫi the efficiency of the cells of

this line, one can obtain the angular distribution by summing up over the columns:

W (cos θj) = K

∑
i

Nij

∑
i

ǫi ∆Ωij

(5.8)

where K is a global normalisation factor fixing the normalisation of the W (cos θ)

function.

This way of estimating the angular distribution minimizes the impact of the sta-

tistical fluctuations of the Nij

We will give the details of the procedure extended to targets where no isotropic

emission is available to extract the efficiencies, but we first have to introduce

another efficiency reduction due to the cutting effect of the edges of the detector

active area.
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5.2.2 Correction for geometrical cut

So far we assumed that the only phenomenon limiting the efficiency is the stopping

of fragments at large angles. Another effect contributes to reducing the efficiency

in some regions of (cos θ′,φ′): the geometrical cut due to the limited size of the

active area of detectors. This is already visible in figures 4.25, 4.21 and 4.22.

Figure 5.12: Top view of 2 detectors and target showing that at smal cos θ′

trajectories emitted from the edge of the target may fall outside the active area.
δ is the horizontal shift of the target, R its radius, L the half length of the active

area and d0 the separation distance.

This happens for emission points at the edge of the target in the horizontal plane

and for emission angles θ′ relative to the perpendicular to the detectors which

exceeds a threshold. This situation is depicted in figure 5.12 where the green

arrows represent fission directions which are at the limit where this effect starts

to show up.

The figure is a top view of a pair of detectors represented by the black thick

horizontal lines, and the red thick line represents the target. The filled circles

indicate the centers of PPACs (black) on the beam axis and the center of the

target (red) which may be shifted by δ. L if the half length of the rectangular

active area (= 10 cm), R is the radius of the circular target (=4 cm), d0 is the

target-detector distance (=2.5 cm). θ′m1 and θ′m2 are the minimal angles for which

the fission trajectories may miss the active detecting area.

The efficiency associated with this geometrical limitation can be interpreted as

a reduction of the visible target area for some angles (cos θ′,φ′) and it can be

computed analytically.
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Any trajectory is defined by its solid angle (cos θ′,φ′). For a given solid angle the

geometrical cut is equivalent to limiting the visible area of the target as sketched

on figure 5.13 The colored area is the available target area for a given fission

Figure 5.13: For a given emission direction (cos θ′,φ′) limitation of the possible
emission points on the target due to to limited detection area of the detectctors.

direction, the efficiency is the ratio of this area to the total area of the circle. The

distances R1 and R2 depend on the fission direction and the geometrical quantities

L, R, d0 and δ.

We will first compute the colored area and its fraction to the total area denoted

as: F (x1, x2) where x1 = R1/R and x2 = R2/R. A simple integration gives :

F (x1, x2) =
g(x1) + g(x2)

pi
(5.9)

and

g(x) =




arcsin(x) + x

√
1− x2, if x < 1

π/2, if x ≥ 1
(5.10)

From figure 5.12 it can be seen that:

tan θ′m1 =
L− d0 −R− δ

d0
(5.11)

tan θ′m2 =
L− d0 −R + δ

d0
(5.12)
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and for a given fission direction (cos θ′,φ′) we have :

x1 =
L− d0 − δ − d0 tan θ

′ cosφ′

R
(5.13)

x2 =
L− d0 + δ − d0 tan θ

′ cosφ′

R
(5.14)

The efficiency can be computed by combining the equations 5.14 and 5.10. This

correction factor is computed at the same time as the solid angle of each cell in

the (cos θ,cos θ′) plane, so that the calculation returns the effective solid angle

∆Ω′ = ∆Ω× F for each cell.

5.2.3 Construction of the angular distributions : the general

case

In section 5.2.1 we showed how the cos θ′ dependence of the efficiency is obtained

by taking horizontal slices in the (cos θ,cos θ′) plane. However this method relied

on the availability of an isotropic emission. In the case of anisotropic emission the

ratio of 2 horizontal slices doesn’t only depend on the efficiency, but also on the

angular distribution because different parts of this distribution are sensed in the

2 slices.

In most of the cases we don’t have available isotropic emissions either because we

don’t have low energy fission available (for 232Th or 238U) or even because we want

to estimate the efficiency for energies where fission is anisotropic. Therefore we

have to extend the method although we retain the same spirit. The method is

based on the fact that from one horizontal slice to another one the same angu-

lar distribution is seen although in a more restricted or extended angular range.

Therefore the comparison of the two bands should deliver the ratio of the efficien-

cies.

We start with equation 5.6 that we rewrite as:

Nij = W (cos θi) ǫi ∆Ωij Fij (5.15)

Where the Nij are the counts recorded in cell (i,j) for a broad energy range where

we assume that the efficiency is constant, δΩij is the solid angle and Fij is the

cutting factor (≤ 1) of the active area of detectors. Now the angular distribution
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W (cos θ) is no more constant. As counts cover a broad energy range the angular

distribution is rather smooth and can be well approximated by a polynomial in

cos θ with even terms up to order 4 (we did an a posteriori check), so that we can

set:

W (cos θ) = α0(1 + α2 cos θ + α4 cos
2 θ) (5.16)

We have to define the coefficients α0, α2, α4 and the efficiencies ǫi to reproduce as

closely as possible the numbers of counts Nij in the cells. This is achieved by a

fit, which from equations 5.15 and 5.16, is a minimisation of the quantity:

χ2 =
∑

i,j

[α0(1 + α2 cos θj + α4 cos
2 θj) ǫi ∆Ωij Fij −Nij]

2

Nij

(5.17)

with ǫ0 = 1.

Figure 5.14: Detection efficiency as a function of cos θ′ for 235U (top-left),
238U (top-right), 237Np (bottom-left), 232Th (bottom-right) for different energy
intervals. Horizontal slices of height ∆cos θ′ = 0.05 have been used, and the

labels refer to energy intervals defined with their limits in log (E eV).
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The results for the 4 samples are shown in figure 5.14. In the case of 232Th the

6 targets have been summed up to get significant statistics. We observe that

the angular dependence is not very sensitive to the energy. except perhaps above

100 MeV but it could be due to a mis-recognition of the localization signals at high

counting rate. In all further treatments we will discard events having cos θ′ < 0.5

therefore the energy dependence of the efficiency will remain small. We see that
235U and 238U are very similar which is expected: same backing and same chemistry

to make the target. The 237Np seems to have a better efficiency although the

backing is the same and the amount of actinide atoms is the same too. This

could be due to an oxide layer of better quality or a fission mass distribution more

favorable because less asymmetric. The 232Th targets have the best behavior with

a long plateau at full efficiency due to their thin backing (0.7 µm).

Those efficiencies are used for reconstruction of the angular distribution. Instead of

using the directly extracted values we use fits to smooth the statistical fluctuations.

For this purpose we used a Fermi-like functional of the type:

ǫ(cos θ′) =
1

[1 + exp (a11− a2 cos θ′)]a0
(5.18)

with the 3 parameters a0, a1, a2 to be fitted. This functional form is able to

reproduce accurately all the distributions displayed in figure 5.14 even the front

and the low efficiency tail at all energies, as illustrated in figure 5.15.

Figure 5.15: Comparison of the efficiency with its fit with a fermi-like func-
tional according to 5.18 for 235U (left part) and 232Th (right part).
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In the case of 235U at low energy (En < 100 keV ) the fit of the sum 5.17 provides

the values α2 = 0.075 and α4 = −0.089 for (W (cos θ) showing that the angular

distribution is almost flat, as expected because it is isotropic in this energy range.

Figure 5.16: Comparison of the efficiency obtained from the self-calibration
method and the efficiency resulting from a Geant4 simulation.

Figure 5.16 compares the cos θ dependence of the efficiency for 235U resulting from

the Geant4 simulation described in section 5.1 with that from the self calibration

method using relation 5.18. The agreement is good except close to forward angles

and in the region around cos θ=0.2.

Once the efficiency has been determined, it is used to extract the angular distri-

bution for any energy interval, by following the same procedure as that leading to

equation 5.8 in section 5.2.1. We again use the map of counts in the (cos θ,cos θ′)

plane which is partitioned in cells according to figure 5.11.

For a selected column j a first sum is performed over the counts contained in all

cells above a threshold cos θ′=0.5:

S1j =
∑

i , cos θ′>0.5

Nij (5.19)
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A second summation is performed on the same cells but with the product of solid

angle, cutting factor and efficiency:

S2j =
∑

i , cos θ′>0.5

∆Ωij × Fij × ǫi (5.20)

As already mentioned, for ǫi we don’t take the value given by the minimisation

of 5.17 but that given by the Fermi-like function 5.18 fitted on the efficiencies

delivered by the minimisation of 5.17.

The point corresponding to this column in the angular distribution is:

W (cos θj) = K
S1j

S2j

(5.21)

where again K is a global normalizing factor depending on the definition of

W (cos θ) because W may represent different quantities each other proportional.

For example W can be normalized so as to represent the differential fission cross

section: W = dσf/dΩ. Alternatively it can be normalized so that its integral

is equal to 1 (W is a probability in this case) or the total solid angle (4π). We

selected another option: we normalize W so that W (0) = 1 (W = 1 at 90◦), which

is convenient to obtain the anisotropy A: A = W (1), and K is defined to follow

this requirement.

It can be demonstrated that this procedure described by equations 5.19 to 5.21 is

the one which minimizes the statistical fluctuations and all events considered as

safe because they are above the threshold cos θ′=0.5 contribute to the final value

with a weight related to its statistical uncertainty.

The statistical uncertainty on each point is computed as:

σWj
= K

√ ∑
i , cos θ′>0.5

Nij

S2j

(5.22)

It assumes that the statistical uncertainty on the efficiency is negligible compared

to that on the sum S1j. This is justified because the efficiency is obtained on broad

energy ranges involving large countings and in addition it is further smoothed

through the fit 5.18.



Chapter5. Angular distributions 107

Figure 5.17: Left: angular distribution for 232Th for a narrow energy interval
about the 1.6 MeV resonance where fission is sideward peaked. Right: same for
235U at low energy where the emission is isotropic, represented with the same
scale. The points represent the data with the statistical error bars whereas the

red curve is the Legendre polynomial fit with P2 and P4.

Figure 5.17 illustrates the result of this procedure for 2 selected cases: 232Th in an

energy range close to 1.6 MeV where the emission is sideward favored, and 235U

at low energy where it is isotropic.

A more extensive landscape of the angular distributions is given in appendix B.

The resulting angular distributions can be parametrized by a sum of Legendre

polynomials PL(cos θ):

W (θ) =
Lmax∑

Leven

ALPL(cosθ) (5.23)

or equivalently with polynomials of cos2n θ, with A0 = 1.

The anisotropy parameter is a global means of representing by how much the

angular distribution departs from an isotropic one. It is defined as:

A =
W (0◦)

W (90◦)
(5.24)

When the emission is isotropic A is equal to 1. But the distribution may be

anisotropic even if A is close to 1, however is is always anisotropic if A is above or

under 1.

A is taken from the polynomial fit of the angular distribution. Its statistical un-

certainty is derived from the error covariance matrix on the 2 parameters adjusted
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by the fit (on P2 and P4), and this matrix derives in its turn from the statistical

uncertainty on the data points.



Chapter 6

Results and discussions

6.1 Reminder

We will use in this chapter the same notation conventions as discussed in chap-

ter. 2.
−→
l : Orbital angular momentum.
−→
S : Sum of target and projectile spin.
−→
J : Angular momentum:

−→
J =

−→
l +

−→
S

−→
M : Projection of

−→
J and

−→
S on the neutron beam direction.

−→
K : Projection of

−→
J on the fissioning symmetric axis.

• The angular distribution W (J,K,M) ≈ |dJK,M |2

• If K ≪ J −→: angular distribution is forward-backward peaked.

K ≈ J −→: angular distribution is sideward peaked.

• If many
−→
K or many

−→
M between 0 and

−→
J : angular distribution is isotropic.

• When a number of nuclear states are present at energy U:

W J
M,U(θ) ≈

∑K=J
K=−J |dJM,K |2 exp(−K2/2K2

0(U))

U is the nucleus thermal energy: U = E∗ − Bf = afT
2.

K0:
−→
K distribution standard deviation.

if K2
0 is high: angular distribution is isotropic.

if K2
0 is low: angular distribution is forward-backward peaked.

109
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• if
−→
l = 0 −→ −→

M =
−→
Ms: angular distribution is isotropic due to the summa-

tion over Ms (de-orientation).

• Wneutron(θ) ≫ Wproton(θ)?

Bf ∝ 1

Z2/A
−→ U ∝ Z2/A (6.1)

where the symbol ∝ means "varies in the same direction as",

Pf ≈ exp(−[Bf (Z
2/A)− Bn]/T ) (6.2)

where Bf and Bn are the fission barrier and the neutron binding energy.

K0 ∝ Z2/A −→ W (0o)/W (90o) ∝ 1
Z2/A

and for the anistropies: n+A X > p+A X

6.2 Fission fragment angular distributions in 232Th

6.2.1 Experimental results

Figure 6.1 (upper graph) presents the n_TOF 232Th anisotropy measurement

(W (0◦)/W (90◦)) obtained as described in the previous chapter. The results from

this work are plotted in black. The high energy data plotted in purple were

obtained using the method from Tarrío [4]. We also plotted previous existing

data [28–38], extracted from the EXFOR library [39]. The complete angular

distribution data for different energy bins are presented in Appendix B. Thanks

to a fair statistics, we can keep a detailed binning across the whole energy range.

Only around 1 MeV we have larger error bars: this is due to the lack of statistics

below the fission threshold around 800 keV.

This work provides the first continuous coverage from the fission threshold up to

hundreds of MeV. With the exception of the measurement of Hankel in the 10-20

MeV region, our data are in overall good agreement with previous measurements

up to 20 MeV, including the well-explored 14 MeV region. Moving on toward the

spallation region, from 20 MeV to hundreds of MeV, our data start to differ slightly

from the results of Tarrío analysis. We have no clear explanation for this; however,

the two sets of result remain compatible within their error bars. The discrepancies

are more significant with the results obtained at Uppsala by Ryzhov [5], which
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Figure 6.1: Upper part: 232Th anisotropy, the n_TOF data are the black
points and previous measurements. The lower part represents the 232Th fission

cross section and the successive fission chance openings.

were up to now the only ones existing for 232Th FFAD in the high energy range.

We will address the questions of this discrepancy and the comparison between

neutron-induced and proton-induced fission below.
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6.2.2 Anisotropy, fission chances and vibrational resonances

The comparison of the anisotropy with the cross section clearly illustrates the

strong correlation between the value of the anisotropy and the opening of a fission

chance. Each multiple-chance fission (Fig. 6.1:lower graph) corresponds to the

emission of neutrons before the excited nucleus undergoes fission. For example,

the second chance fission corresponds to the emission of one neutron, third chance

fission, two neutrons, and so on. Each emitted neutron costs excitation energy,

hence the nuclei temperature T is decreased by each emission, and K0 becomes

narrow. This explains why the anisotropy suddenly increases at the opening of

each fission chance. This phenomenon is particularly visible for the second chance

and at the threshold.

On the other hand, the anisotropy exhibits a sudden dip around 1.6 MeV. This

small energy range corresponds to the vibrational resonances of the 232Th fission

cross section. They are related to the nuclear state transition from the first well

of potential to the second, as previously discussed. This effect is also visible in the
232Th fission cross section (figure 6.1, lower graph). In this region, only one or two

high K-states are populated with K ≈ J and the FFAD tends to peak sideward.

6.2.3 FFAD in the spallation region : influence of pre-equilibrium

and statistical neutrons

A first obvious comment is that the anisotropy remains significantly larger than

1 over a broad energy range up to 100 MeV. As discussed in chapter 2, this is an

expected behavior, especially for an even-even nucleus. Although K0 rises with the

temperature it remains low compared to J due to the contribution of l which gets

larger when the energy increases, hence the FFAD is forward-backward peaked.

As already pointed out, our results exhibit a moderate, but constant difference

with the measurement by Ryzhov et al. However, Ryzhov also made a signifi-

cant theoretical effort by calculating 232Th and 238U angular distributions with

SSPSM, a standard saddle-point statistical model combined with pre-equilibrium

and Hauser-Feshbach calculations of partial fission cross sections. Being a statisti-

cal model, it is well-suited to situations in which the density of transition states is

large, i.e. moderate or large excitation energies. Conversely, it is not expected to
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describe correctly the behavior of compound nucleus with excitation energy just

above a fission barrier or in the vibrational resonances region.

An important ingredient of this calculation is the accounting for the pre-equilibrium

emission of nucleons. Each emitted neutron carry away a significant amount of

energy and tends to "wash out" the final anisotropy due to its random emission

direction. The estimation of the role of the pre-equilibrium stage remains difficult

as the emitted particles can be responsible for significant changes of J ,M , and U .

The calculation of the angular distribution for a fissioning nucleus of given quan-

tum numbers J , M , Z, A and excitation energy at the saddle point U is given

by:

W J
M, U(θ, Z,A) ∼

2J + 1

2

K=J∑

K=−J

∣∣dJM,K(θ)
∣∣2 exp

(
K2/2K2

0(U,Z,A)
)

(6.3)

The final angular distribution is obtained by summation over the individual W J
M, U

fissioning contributors, weighted by their probability to be formed and to end up

with fission. In this procedure the statistical emission of neutrons prior to fission is

properly taken into account. For the formation of the fissioning nuclei, in addition

to the compound nucleus formation the preequilibrium channels (n,n′), (n,2n),

(n,p) and (n,np) are explicitely included.

As it can be seen in figure 6.2, the pre-equilibrium neutron emission (n, n′) does

not play an important role at low energy, but in the tens MeV region and beyond,

it becomes decisive. Note that this figure displays the results of a calculation on
238U.

The anisotropy have been calculated using the simplified expression:

W (0o)

W (90o)
− 1 =

< J2 >

4K2
0

(6.4)

with K2
0 given by 2.23.

Following the pre-equilibrium phase, an evaporation stage may also take place

before the fission occurs. In this case, a variable number of neutrons are emitted

(protons may also be emitted in the case of a very energetic collision), each carrying

away 7-8 MeV. An important difference with respect to pre-equilibrium neutrons

is that they mostly carry 0.5~, resulting in a very limited change of J and M . The



Chapter 6. Results and discussion 114

Figure 6.2: 238U anisotropy calculations with and without the inclusion of a
pre-equilibrium model [5].

Figure 6.3: Comparison of 232Th FFAD (points) and SSPSM model (solid
line) and within the effect of 30% reduction of K2

0 (dashed line), from [5].

resulting cooling of the prefragment leads to a decrease of K2
0 , hence increasing

the forward anisotropy.

As can be seen in figure 6.3, which compares Ryzhov’s measurement on 232Th and

the SSPSM calculation (continuous line), accounting for both the pre-equilibrium



Chapter 6. Results and discussion 115

and equilibrium phases does not lead to a satisfactory reproduction of the exper-

imental results. A possible way to reach a better agreement consists of reducing

arbitrarily K0 in the case of neutron-deficient isotopes. Around 30% reduction

tested by Ryzhov leads in the right direction (dashed line in figure 6.3), but still

the calculation underestimates the anisotropy.

It is however worth pointing out that, as our data are significantly below Ryzhov’s,

this theoretical calculation is reasonably consistent with our data, within its sys-

tematic error. This is illustrated by fig 6.4.

Figure 6.4: Comparison between n_TOF data, Ryzhov data and Ryzhov
SSPSM calculation (without reduction of K2

0 ).

6.2.4 Comparison with proton-induced 232Th fission

Proton-induced fission is another way to compare FFAD at high energies. Tutin [1]

compared neutron- and proton-induced FFAD in order to evaluate the reliability

of the Ryzhov data. At high energy (GeV region), the incoming nucleon can’t be

stopped and captured in the target, after having deposited some of its energy in

the nucleus it escapes quickly. This phenomenon explains the saturation of the

linear momentum transfer. After this quick step the excited nucleus undergoes

fission. In other words, the fission should be independent of the incident nucleon.

Nevertheless, the lower limit of the energy range where this process is dominant

is not well known. Fig.6.5 shows the difference between Ryzhov neutron data

and Smirnov proton data [6], which are well representative of the trend of proton

measurements from [40–42]. The proton anisotropy is always lower than neutron-

related one below 100 MeV, as already noticed by Tutin [1]. Such a difference leads
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to consider that the fissioning nuclei in the case of proton- and neutron-induced

fission are still different and the incoming nucleon has a large probability to be

captured even in the intermediate energy domain, although some preequilibrium

emission is present.

Figure 6.5: Comparison between neutron-induced anisotropy from [5] and
proton-induced anisotropy [6].

Previously, Eismont [7] had proposed a similar comparison in the intermediate

energy range (tens of MeV) for actinide and subactinide nuclei. Indeed, Eismont

pointed out that in this energy regime the fission ansisotropy depends mainly on

the fissility parameter Z2/A of the compound system, regardless of the type of

incoming nucleon (proton or neutron).

This notion can be understood according to the formulas given at the beginning

of this chapter. If the fissility of the fissioning nucleus increases its fission barrier

decreases. As a consequence the available thermal energy U at the saddle point

increases, and the temperature too (equation 2.21). Due to the temperature de-

pendence of K2
0 given by 2.23, K2

0 increases and the anisotropy fades out. If one

assumes that the incoming nucleon is captured by the target to form a compound

nucleus the fissility of the system p+XA is higher than that of n+XA therefore

one expects a higher anisotropy in the latter case.

The fissility systematics of the anisotropy from different projectile-target combi-

nations is displayed in figure 6.6 taken from [7], showing the expected fissility

dependence. The differences showing up for projectiles of different masses can be

explained by an incoming angular momentum which rises with the projectile mass.
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Figure 6.6: The dependence of anisotropy coefficient for fission induced by p,
d and α-particles with different targets. The curves are fits of the experimental

data, from Eismont et al. [7].

Figure 6.7: 232Th anisotropy with Ryzhov data, n_TOF data and proton-
induced data from Smirnov [6].

From the above statements, it has been proposed that the anisotropy of actinides

in neutron-induced fission could be directly compared to results of proton-induced

reactions, providing a correction accounting for the different values of the Z2/A of

the compound nucleus is applied. In particular for a given target, the anisotropy

of neutron-induced fission is expected to be systematically higher than for proton-

induced fission.

In the case of 232Th reactions, the fissility parameter is 35.54 for proton-induced
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reaction and 34.76 for neutrons. Using figure 6.6 for nucleons at 40 MeV one can

evaluate the impact of this change of the fissibility parameter on the anisotropy.

The two red points on the figure correspond to p+Th and n+Th fissility param-

eters. As a conclusion the systematics gives the respective anisotropies: 1.21 and

1.37.

Now we can carry those predicted values at 40 MeV in the plot of the measured

anisotropies. This is done in figure 6.7. We see that they match the proton data as

expected because the systematics is partially built on those data. They match also

the n_TOF neutron data whereas the Ryzhov data lie at much higher values. The

deviation between Ryzhov and the proton data is almost 0.4, twice the expected

value. The difference between this work and proton data is 0.2, in very good

agreement with the prediction of the systematics.

This bears a strong implication on the reaction mechanism: this agreement is

based on the fact the fissioning nuclei are different in proton- and neutron-induced

fission. It means that at 40 MeV most of the time the incoming nucleon is captured

by the target so that its nature is retained by the compound nucleus. This doesn’t

rule out any preequilibrium processe but this says that these processes should be

small or at least very similar in both cases. Such an outcome is consistent with

the fact that the linear momentum transfer in nuclon-induced reactions starts to

depart from the full deposit only at about 30-40 MeV.

Beyond 100 MeV the difference between protons and neutrons vanishes progres-

sively. Indeed, with higher energies, the hypothesis of projectile stopping is less

and less valid and the pre-fragments resulting from this fast reaction, including

preequilibrium emission, are the same for incoming proton and neutron. Hence

the anisotropy factor is less and less dependent on the fissibility parameter of the

target+particle system. In addition the anistropy converges to 1 (isotropy) be-

cause of the increase of K2
0 through the temperature whereas J stays constant due

to to the leveling off with energy of the transferred angular momentum.

6.3 FFAD of other actinides

Although with much less statistics, we have also obtained FFAD for other ac-

tinides: 238U, 235U and 237Np. In spite of the poor statistics, we can still observe

some interesting behavior in these data.
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Figure 6.8: 238U anisotropy with the old measurements, n_TOF data and
proton induced data

Data for 238U are presented in figure 6.8. They are in good agreement with previous

measurements [1, 5, 32–35, 37, 43–55]. On this figure, one can clearly identify the

large anisotropy due to the second and third chance fission. For this nucleus the

agreement is also good with the Ryzhov data, except for a point near 50 MeV, but

it may be due to the statistical error.

It is worth pointing out that Ryzhov also calculated 238U FFAD with the SSPSM

code. The calculation predicts a smoothly decreasing anisotropy in the high energy

range, in good agreement with the measurements, as shown in fig. 6.9. Just as in

the case of 232Th, our data and Ryzhov’s and the proton-induced anistropy con-

verge in the high energy range, confirming the vanishing of the fissility dependence

above 100 MeV.

Results for 235U are presented in figure 6.10, along with previous measurements [32,

33, 33, 35, 37, 49, 56–60]. FFAD from 235U are completely isotropic below 1 MeV,

as shown in appendix B. Above this energy, as l increases, the forward-backward

direction is favored, so the anisotropy increases as illustrated in fig. 6.10. Never-

theless, the intrinsic spin of 235U is large (7/2), so there are many M contributing
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Figure 6.9: 238U anisotropy calculated with SSPSM by Ryzhov.

Figure 6.10: 235U anisotropy with the old measurements

by the spin (unpolarized target). Hence the anisotropy is much more lower than

in the case of an even-even nucleus.

The same remark applies to the 237Np data [32, 33, 35–37, 47, 61] shown in

fig. 6.11. It is not easy to to draw conclusions from the data as the error bars are

particularly large. Still the signature of the second and third chance fission are



Chapter 6. Results and discussion 121

Figure 6.11: 237Np anisotropy compared to the existing data

clearly visible in figure. 6.11. A remarkable result is that the anisotropies for the

second and third chance fission have very similar values. A more general remark is

related to the even or odd mass targets. For the even-even targets, the anisotropy

at the second opening chance fission is always higher than at the third opening

chance corresponding anisotropy. For the odd-mass targets, both anisotropies, in

second and third opening chances, are very similar. This is the first time that this

phenomenon has been observed and opens interesting perspectives for the study

of the 237Np structure. However this has to be confirmed as the statistical error

bars are large.
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Criticality experiment

Fission cross sections have been measured in the recent past in the n_TOF col-

laboration, with ionization chambers and also by the coincidence method with

PPACs, by using the fission of 235U as a reference cross section. In the latter case

for several isotopes as 238U, 233U, 234U a good agreement with older measurements

was obtained. However in the case of 237Np a significant mismatch showed up and

we attempted to find a means to test or validate the fission cross section of this

isotope.

One possible way to do it is to use a critical experiment involving a large amount

of 237Np so that the criticality depends on its fission cross section. The other

possibility is to analyze experiments where a 237Np sample is subjected to a known

or well simulated neutron flux. The measured fission rate is directly linked to the

fission cross section.

It is the purpose of this chapter to describe such integral experiments involving
237Np samples and to analyze their results when different cross section sets are

used as input in the simulation of the experiments.

7.1 Status of 237Np fission cross section

237Np is a highly studied isotope in the field of nuclear data mainly because it is

abundantly produced in nuclear power plants and for its long half-life of 2.1 My.

Its production quantities depends on many parameters: neutron spectrum, type

122
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of fuels, burn-up, etc...
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Figure 7.1: Comparison of different 237Np fission cross sections measured rel-
ative to 235U.

Several experiments based on the time-of-flight technique were dedicated to the

measurement of 237Np cross section. Several mono-energetic measurements also

exist, specially close to 14 MeV, but we list below those which cover a larger

neutron energy range. Meadows [62] measured 237Np (n,f) from 1 to 10 MeV in

Argonne Fast Neutron Generator (FNG) laboratory. Later, Lisowski [63] mea-

sured the cross section in Los Alamos Meson Physics Facility (LAMPF) covering

a broad neutron energy range from 1 to 400 MeV. Then Shcherbakov [64] per-

formed another measurement at the Gneiss neutron source in Gatchina. More

recently, Tovesson measured this cross section at Los Alamos Neutron Science

Center, covering both subthreshold [65] and above threshold fission from 100 keV

to 200 MeV [66]. A comparison of the results from the above-mentioned experi-

ments is displayed in Fig. 7.1 as a ratio to the fission cross section of 235U. Within

the experimental uncertainties, all these data are consistent with each other, ex-

cept the Behrens measurement [67].

237Np fission cross section has recently been measured by Paradela with PPACs at

the n_TOF facility at CERN [68]. In fact, Paradela 237Np measurement showed,

contrary to the previous data, a significant discrepancy on his 237Np(n,f) cross

section when compared to some older data sets.

The n_TOF data exhibit values higher by about 5-7% above 1 MeV (Fig. 7.1)
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against data sets which are consistent within the estimated uncertainty, and the

mismatch is well beyond the uncertainty on the evaluated cross section, about

3-4%.

7.1.1 Remarks on the experimental status

The majority of 237Np fission cross section measurements are based on ionization

chambers whereas the n_TOF experiment is based on the coincidence method

with PPACs.

In the range of a few MeV ionization chambers are very well suited because the

fission process dominates and the only source of background is the α radioactivity.

In the case of 237Np it’s moderate and can be removed by amplitude discrimination.

The main advantage of such detectors is their high efficiency close to 96% so that

the efficiency correction is highly reliable.

As already explained in previous chapters the PPAC setup has a high capability of

selecting fission reactions, but on the other hand the efficiency is close to 50% so

that a careful correction should be applied, depending on the backing thickness.

The 237Np experiment used the previous set-up (we called it Phase I), slightly

different from the set-up for FFAD (Phase II) measurements. The PPAC detec-

tors in both set-up are the same and have been already described in the previous

chapters, put the detectors and targets’ position are different. The Phase I PPAC

stacked perpendicularly to the neutron beam direction and differ from the Phase

II chamber where PPACs were titled by 45◦ against the beam direction. Beside

this geometrical modification, the gas circulation system and electronics are the

same.

The n_TOF Phase-I PPAC set-up, contains four 237Np targets, three made with

a CEA sample and one with material provided by Geel. Both contain a tiny

contaminant of 241Am but at a different level.

Targets have been well characterized in chemical composition by RBS, in total

amount by α-counting, in homogeneity by α-scanning and the aluminium backing

thickness has been probed by the energy loss of the α’s emitted by the radioactive

layer.
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This seemingly singular behavior of the n_TOF measurement might shed some

doubt on its validity. However two arguments indicate that it’s not really the case:

• In the n_TOF measurement 4 237Np targets were in place with 2 different

origin and levels of purity. The 4 targets deliver the same fission cross section

within 2%.

• One should be aware that several of the previous results are not indepen-

dent because they have been re-normalized to older ones at some energy

as the number of atoms in the targets was unknown (we recall that in the

PPAC case the targets are fully characterized). For example in Tovesson’s

measurement the cross section has been normalized to the ENDF/B-VI.8

nuclear data at 14.8 MeV. This evaluated data file is based on Lisowski’s

measurement which was normalized to Meadows’ data over the 1 to 10 MeV

energy range. Therefore the consistency of several experimental data sets,

and of the derived evaluated libraries, is in the first place a consequence

of these normalizations. And it is worth noting that most of the existing

results around 14 MeV, obtained in mono-energetic beam experiments, are

not consistent with the ENDF/B-VI.8 value [69].

The above findings show that the status of the 237Np fission cross section is unclear

and dedicated integral experiments would help lift the veil. We start with a critical

experiment with a 237Np ball involving neutrons with a mean energy around 1 MeV

well suited to probe the observed discrepancy between the fission cross sections.

7.2 The critical 237Np benchmark

The principle of the experiment is to assemble a sufficient quantity of fissile ma-

terial so that criticality is reached. The exact geometrical configuration where

this point is attained depends on the cross sections. A comparaison of the real

situation with a simulation involving the supposedly known cross sections gives

information on the accuracy of those cross sections.

The experiment has been performed at Los Alamos and it is fully described in

all detail [70]. It consisted of a spherical-like assembly made of a 237Np sphere

surrounded by a spherical shell of Highly Enriched Uranium (HEU) in which the
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neutron multiplication factor keff is measured with an accuracy of 0.36%. Actu-

ally keff is an integral quantity depending on many neutron reaction parameters;

however many of them are accurately known, and its sensitivity to the 237Np fis-

sion cross section is large enough (150pcm/%) to get a relevant test.

Thus the fission cross section check is based on the comparison of keff calculated

by simulation by using the MCNP code which permits to have a very precise keff

and the experimental one that will be shown in next section. Even if the criticality

experiment cannot be considered as a definitive test, due to its integral nature, it

is a good indicator of the reliability of the 237Np(n,f) cross section.

7.2.1 MCNP code

MCNP (Monte Carlo N Particles) is a particle probabilistic transport code, for

neutrons, electrons and photons. It has been developed at LANL (Los Alamos

National Laboratory) [71]. For all isotopes, the neutron energy extends from

10−11 MeV to 20 MeV in the code library. All tri-dimensional configurations can

be implemented to simulate realistic geometries. MCNP is a static transport

code, it means that no evolution of the materials by nuclear reactions during the

transport process is taken into account. In addition the interactions between the

transported particles are neglected.

MCNP permits to calculate the reaction rate and flux at every position and also

the global multiplication coefficient keff . We firstly build the input file and provide

the input information (geometry, energy, cross sections and neutron number) and

a file ("xsdir" ) which contains the evaluated cross section data in all needed

materials. With the given neutron generations and cycles, MCNP transports the

neutrons and follows them with calculation of different tallies requested by the

user until the end of all the cycles.

A code MURE which has been developed by IPN Orsay and LPSC Grenoble [72]

can solve the problem of inventory evolution. We did not use MURE for this

evolution capability but only because it offers a user-friendly way to describe the

geometry which is then translated to the final MCNP geometry description.
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7.2.1.1 Principle of the Monte Carlo simulation

The particles followed by the simulation are supposed to be representative of the

real particles, but as their number is much lower they limit the statistical uncer-

tainty of the method.

The simulation starts with a given number of initial neutrons which are followed

individually until their disappearance through nuclear reactions. The neutrons

produced in those reactions, called second generation neutrons, are followed in

turn until they disappear too. The neutrons of the third generation are then

followed and so on. The calculation stops when all neutrons died or when the

maximal number of cycles has been reached. One cycle corresponds to all the

neutrons being followed until their disappearance in each generation.

In the case of a critical medium this algorithm has to be modified because the

number of neutrons increases exponentially with the cycle number and the execu-

tion time grows accordingly, so that the number of cycles remains limited. This is

a drawback because a large number of cycles is needed to probe all the locations

of the critical medium. This problem is solved by following the same number of

neutrons at each cycle. If the number of neutrons produced at the end of a genera-

tion exceeds that fixed number, some neutrons are dropped randomly. Conversely

if it’s lower some neutrons are cloned randomly. The scaling factors are recorded

as they allow to calculate keff . This mode is called Kcode, by contrast with the

normal mode called Ksource, and it is well suited for critical systems. We used the

Kcode mode to compute the critical assembly with 237Np. Several inactive cycles

are used at the beginning, without recording any quantity, in order that neutrons

be produced proportianally to the eigenmodes: the neutrons have to explore the

full multiplicating medium to be representative of the real system. After those

starting inactive cycles the cycles become active and the physical quantities are

scored with the tallies.

When a neutron is followed inside a medium several tests are done in order:

• If the neutron interact with the material.

• Which material the particle interact with.

• With what type of reaction.
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• What are the secondary emitted particles.

At a given energy, the particle mean free path λ(E) is calculated as:

λ(E) =
1∑tot(E)

(7.1)

where
∑tot(E) is particle-material macroscopic total cross section expressed by:

tot∑
(E) =

∑

nucleusi

Niσ
tot
i (E) (7.2)

Ni is the density (number of atoms i per cm3). The interaction distance l(E) is

taken as:

l(E) = −λ(E)ln(1− p)

p ∈ [0; 1[is an uniform random number. When a collision takes place the type of

reaction occuring is obtained by random drawing over the cross sections of the

different processes (fission, scattering, capture, (n,2n), etc...).

7.2.1.2 Geometry

The MCNP geometry is defined with three main parts: surface, material and cell.

• Different surfaces are available: infinite planar surface, cylinder surface,

sphere surface or cone surface...

• We can define all compositions which data cross section exist in libraries.

(JEFF, ENDF, JENDL, etc...)

• At the end, we define each cell as a volume delimited by surfaces and con-

taining materials.

7.2.1.3 MCNP tally

A tally is an indication given to the code to score a physical quantity inside a cell,

over a surface or globally: neutron flux, reaction rate, number of neutrons crossing



Chapter 7. Criticality experiment 129

a surface, effective cross section, etc. . . All quantities are normalized to 1 neutron

source.

Flux

When following individual neutrons the flux in a given volume V is scored from

the length travelled by the neutrons in the volume. If L(E) is this travelled length

for a neutron of energy E, its contribution to the flux at energy E is:

Φ(E) =
L(E)

V
(7.3)

This contribution is expressed as neutron/cm2 as there is no time coordinate in

MCNP.

When summing over all the simulated neutrons the flux is normalized to the num-

ber of initial source neutrons NS. While k is the number of the neutrons travelling

at energy Ek, the total flux in the volume is:

ΦC(Ek) =
1

NS

∑
k L(Ek)

V
(7.4)

The flux is expressed in neutron/cm2/source neutron.

Reaction Rate

Reaction rates could be in principle estimated from the simulated interactions but

it’s not a good method because if the cross section is low the number of simulated

interaction going to the corresponding channel is low and the estimation is spoiled

by a large statistic uncertainty. A much better method consists of computing the

reaction probabiliy along the neutron trajectory and sum up all the contributions.

The probability for a neutron to trigger the reaction type i on a nucleus of type j

when travelling the length L in the cell of volume V is:

< P j
i >= Lσj

i Nj (7.5)

Therefore the reaction rate normalized to 1 neutron source and 1 target atom

reduces to:

< σΦ >i,j
c =

1

NS

∑
k σ

j
i (Ek)l(Ek)

V
(7.6)

Mean cross section

The mean cross section is also always used for cross section validation and it is
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defined as the average of the reaction rate over the energy, and it can be considered

as an effective cross section independent of the energy. By definition:

< σ >j
i=

∫
< σΦ >i,j

c dE∫
Φc dE

(7.7)

7.2.2 The composite critical experiment

Figure 7.2: Overall scheme of the composite (237Np and HEU) assembly in
compact configuration.

A critical experiment with a composite assembly associating neptunium and HEU

has been conducted at Los Alamos with the aim of better defining the critical

mass of 237Np [73]. This experiment is based on a 237Np sphere surrounded by

nested hemispherical shells of HEU, as sketched in Fig. 7.2, so as to reach critical-

ity in compact configuration of the system. The neptunium sphere was 8.29 cm

in diameter and weighed 6070.4 g. To reduce the radiation exposure to the ex-

perimenters, the 237Np sphere was cladded with a thick layer of tungsten and two

layers of nickel and it weighed 8026.9 g. To accurately determine the HEU mass

to reach criticality at the beginning they were added layer by layer and the ap-

proach to criticality was controled by measuring the number of neutrons coming

out of the assembly with four BF3 detectors. Those neutrons were the result of

the multiplication of neutrons emitted by an internal source (spontaneous fission
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Figure 7.3: Determination of the critical mass by extrapolation of the inverse
of number of detected neutrons.

of 240Pu impurity in neptunium). If keff is the average multiplication factor at

every generation the number M of detected neutrons is:

M = ǫ(1 + keff + k2eff + k3eff + ...) =
ǫ

1− keff
=⇒ 1

M
=

1− keff
ǫ

(7.8)

where ǫ is the efficiency of neutron detectors. From the above equation it’s easy

to see that 1/M crosses the 0-axis (M = ∞) at criticality. This indicates the

way to approach criticality: after each added layer of HEU the neutron number

is measured and 1/M is plotted against the total added mass as illustrated in

figure 7.3. The mass for criticality is obtained by extrapolating the line to the

horizontal axis and it amounts to 62.555 kg of HEU [73].

237Np is less fissile than 235U due to its threshold, so that only fast neutrons of

energy higher than 0.6 MeV can trigger fission. Furthermore 235U contributes to

85% of the fissile mass. Yet 13% of the fission occur in the neptunium because

the neutron flux is higher in the central part. Therefore the keff is significantly

sensitive to the 237Np cross sections, especially to the fission one since fission is

the dominant process for multiplying neutrons.

Finally, when all components are in contact, criticality was determined to be

keff=1.0026±0.0034, that is 360 pcm uncertainty (1 pcm=0.001%). The different

contributions to this uncertainty [70, 74] are listed in figure 7.4.
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Figure 7.4: Summary of uncertainties for the 237Np critical experiment.

7.2.3 The critical neptunium benchmark

To promote this experiment as a benchmark much easier to simulate in the ICS-

BEP Handbook [70, 75], applied some simplifications to the geometry by homog-

enizing some parts with the actual small gaps and by approximating the outer

structural materials. As the benchmark is very close to the real experiment, the

variation of keff which is expected from the simplifications can be quantified by

simulation [74, 75] and the criticality that would be found if they would be really

applied would be keff=1.0019 ± 0.0036. This is the reference benchmark value

that should be found by simulations based on correct cross sections when using

the simplified geometry and composition. This benchmark geometry is represented

in Fig. 7.5 and we used it in all the simulations.

We computed the benchmark with MCNP5 (Monte Carlo code for neutron trans-

port) [71] driven by MURE (MCNP Utility for Reactor Evolution) [72]. The

default cross sections were those from the evaluated library ENDF/B-VII.0 [76].
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Figure 7.5: Neptunium’s benchmark geometry. The right-hand side rectangle
is an expanded view of a part of the spherical-like assembly.

We used 5750000 active neutrons distributed over 1200 generations of 5000 neu-

trons and the 50 first generations were discarded, so that the starting generation

was representative of the average distribution.

In such conditions the computed criticality is keff=0.99418 ± 0.00006, very close

to the value computed by the Los Alamos group [77] (keff=0.995± 0.00006). The

deviation from the benchmark value is -770 pcm, more than twice the experimental

uncertainty. This arouses suspicions about the 237Np cross sections.

It is worth pointing out that the 237Np fission cross section in ENDF/B-VII.0

is essentially based on Tovesson’s measurement. As the n_TOF cross section is

higher by about 6% above 1 MeV it could help to increase the keff and bring it

closer to the benchmark value. To check this hypothesis we replaced the ENDF/B-

VII.0 237Np fission cross section by the tabulated n_TOF data. All the other cross

sections were left unchanged, therefore the total reaction cross section was scaled

to accommodate the variation of the fission cross section.

After this substitution we obtained keff=1.00435±0.00006. Although this slightly

exceeds the benchmark value, the deviation is significantly reduced to 250 pcm,

0.7 times the experimental uncertainty. As keff is sensitive to other parameters,

this finding cannot be taken as definitely conclusive on the better fission cross

section set. it indicates that the hypothesis of a 237Np fission cross section higher

than expected before should be considered seriously.
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7.2.4 Role of inelastic cross section of 235U

The disagreement between the experimental criticality and its simulated value

when using the ENDF/B-VII.0 library, even more so when using ENDF/B-VI.8,

has already been noticed [74, 76, 77]. The authors ascribed this effect to a possible

deficiency of the inelastic cross section in 235U. This hypothesis was also formulated

following the under-prediction of fission rate ratios 237Np/235U at the center of

several critical experiments [76].

We first study how this cross section affects the keff in the benchmark configura-

tion, and then we examine how the variation required to match the experimental

value compares with measurements of the inelastic cross section.

7.2.4.1 Impact of the 235U inelastic cross section
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Figure 7.6: Effect of a distortion of the inelastic cross section on the neutron
flux and fission cross sections of 237Np and 235U.

The (n,n’) reaction is treated as a set of individual cross sections, one for each

excited level in the target nucleus. These levels are populated at the expense of

the incident neutron energy. Changes in the set of inelastic cross sections alter

the neutron spectrum. For example, if the cross section for the highest levels is

decreased while it is increased for the lowest ones, outgoing neutrons are expected
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to have a higher average energy : the neutron spectrum is harder (it is shifted to

the higher energies). This is illustrated in Fig. 7.6 where the bell-shaped curves

represent the energy spectrum of the neutron flux in the 237Np sphere. The dashed

curve, labeled reduced inelastic, results from a modification of the inelastic cross

sections as described above. As expected, the flux is shifted toward higher energies.

The 237Np and 235U fission cross sections are also displayed in order to emphasize

the different sensitivity of these nuclei to the change of the neutron spectrum. The

fission cross section of 235U is overall flat, so its fission rate is weakly sensitive to

shift in the flux. Conversely, 237Np has a fission threshold, hence a harder neutron

flux increases the fission rate (dashed curve).

In order to evaluate if modifications of the 235U inelastic cross sections may recon-

cile the criticality predicted by the simulation with the 237Np benchmark value, we

have performed calculations using various sets of 235U inelastic cross sections. All

other cross-sections were left untouched (as in ENDF/B-VII.0, so the total cross

section was affected by the variation of the inelastic cross section.

As already noted, the inelastic channel (n,n’) involves many cross sections. In

MCNP, forty levels are described (MT=51 to 90, starting with the first excited

level) ; they sit on top of the continuum (MT=91) where the energy of the outgoing

neutron is smoothly distributed. It is worth noting that in MT=91, a large number

of excited levels are included, mainly located at high excitation energy, and those

missed by the recording of the discrete levels as well. Therefore we adopted a

random procedure to vary these cross sections. First, we draw randomly the

number of affected levels, which are then selected randomly too, and finally for

each of these levels the cross section is multiplied by a random factor ranging from

0 to 2.

All the sets generated in this way are not acceptable because the inelastic cross

section of 235U also affects its critical mass which is well known. In other words

the modification of the inelastic cross section should not change the computed

criticality of a HEU sphere. We checked this feature by running a MCNP calcu-

lation with each of the proposed cross section sets over the GODIVA benchmark

(HEU-MET-FAST-001) describing a bare HEU sphere reaching criticality [78]. If

the resulting keff deviated by more than 50 pcm from the unperturbed calculation

(keff=1.0000) the cross section set was rejected and another was generated ran-

domly. Among 8000 sets generated, only 551 were validated using the GODIVA

benchmark, and were then used for the computation of the 237Np benchmark.
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Figure 7.7: Spectrum of keff for the 237Np benchmark computed with ac-
ceptable random variations of the inelastic cross section of 235U. The red arrow
indicates the benchmark value and the red hatched area the associated uncer-

tainty.

Fig. 7.7 displays the keff obtained in these 551 computations. As expected it peaks

at the unperturbed value for the 237Np benchmark and spreads rather narrowly

around its average. Nevertheless, a few values reach the experimental range. This

means that some specific modifications of the inelastic cross section comply with

the conservation of the 235U critical mass and have a good agreement with the

measured criticality for the 237Np benchmark.

However, the examination of these particular sets reveals that they are always

generated by highly depressing the continuum contribution (MT=91). As already

noted, the continuum part contains a large number of continuous excited levels,

mainly located at high excitation energy, and is a significant part of the inelastic

cross section. Therefore the required shift of the energy spectrum can only be

obtained by reducing strongly its contribution in favor of lower lying levels. This

is illustrated in Fig. 7.8, similar to Fig. 7.7, but where the histograms show the

keff distributions associated to a reduction of the continuum part by 0, 10, 25

and 40%. The statistics drop steeply when the level of reduction is enhanced

because it becomes more difficult to find cross section configurations conserving

the criticality of 235U.
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Figure 7.8: Same as Fig. 7.7 but the histograms are associated to different
levels of reduction of the continuum part of the inelastic cross section. The

reduction factor is indicated by labels on the histograms.

As expected, the more depressed the continuum fraction, the larger the increase

in keff . However a reduction of at least 40% is needed to reach values compatible

with the experimental benchmark. This is a large reduction : therefore, in the

following, we intend to check the consistency of such an outcome with existing

measurements.

7.2.4.2 Comparison to previous inelastic measurements

Knitter used a Van de Graaff accelerator to produce mono-energetic neutron beams

of 1.5, 1.9 and 2.3 MeV [8] in order to measure the inelastic scattering cross section

of 235U. The kinetic energy loss of neutrons was integrated over 200 keV-wide bands

from 0.4 MeV to the incident energy minus 0.5 MeV. The results are displayed in

table. 7.1 in the Exp columns.

For MCNP5 with ENDF/B-VII.0 we retrieved the energy spectrum of the inelas-

tically scattered neutrons by considering an infinite slab of 235U of 1 cm thickness

and 10 g/cm3 density hit by neutrons with a kinetic energy of 1.5, 1.9 or 2.3 MeV.

All cross sections have been disabled except MT=51 to 91, representative of the

inelastic channels. Therefore the total cross section (MT=1) contained only these
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Figure 7.9: Energy spectrum of the outgoing inelastic scattered neutron as
simulated for 235U using ENDF/B-VII.0 inelastic cross sections (MT=51 to 91),

for an incident energy of 2.3 MeV (reaction probability).

inelastic cross sections. The scattered neutrons were counted on each side of the

slab using a F1 tally which scores the number of neutrons crossing a surface.

Fig. 7.9 shows the inelastic scattering energy spectrum for an incident neutron

of 2.3 MeV. The peaks, widened by the recoil kinematics, are produced by popu-

lating discrete excited levels of the remaining 235U (MT=51 to 90), whereas the

smooth spectrum represents the continuous part (MT=91) ending at an energy

corresponding to the minimum excitation energy of ≈0.5 MeV.

The spectra were then integrated over bands of 200 keV to allow a direct compar-

ison with Knitter’s data. The numbers are reported in table 7.1 in the column

labeled ENDF/B-VII.0. Fig. 7.10 shows the comparison for the 2.3 MeV inci-

dent energy. The ENDF/B-VII.0 evaluation is close to Knitter’s measurement,

although a systematic overestimation shows up beyond 0.8 MeV. Measurements

from Batchelor [79], interpolated between 2 and 3 MeV incident energy and inte-

grated over bands of 200 keV for direct comparison, are also plotted. The agree-

ment with ENDF/B-VII.0 is generally even better than in the case of Knitter’s

data, although a significant discrepancy appears between 0.6 and 1 MeV.

We plotted also in Fig. 7.10 the spectrum generated by a cross section configu-

ration with 40% reduction of the continuum contribution. We checked that the
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Figure 7.10: Comparison of inelastic neutron scattering cross sections of 235U
(barn) for energy bands of 200 keV for the outgoing neutron and for an incoming
energy of 2.3 MeV. Solid line: Knitter’s values with the error bars represented
by the hatched rectangles. Dashed line: ENDF/B-VII.0. Dotted-dashed line:
measurements from Batchelor. Dotted line: cross section modified with a 40%

reduction of the continuum contribution.

pattern doesn’t vary significantly among the configurations randomly generated.

As expected, the low energy part of the spectrum is depleted and compensated

by a strengthening of the part leading to low lying states, hence to high scattered

neutrons energy : this will lead to the desired increase of keff in the 237Np bench-

mark as some of the low energy neutrons are put beyond the fission threshold.

Although such a cross section set seems to be in better agreement with Knitter’s

measurement above 0.8 MeV, it fails strongly below this energy.

To sort things out, one must stress that one of the main difficulties of such mea-

surements is the subtraction of fission neutrons from the neutron spectra as shown

in figure 7.11 for Knitter’s experiment. The lower the energy of the scattered

neutrons, the lower the fission contribution : in other terms, we consider the low-

energy part results more reliable than the high energy part, an assumption which

is corroborated by the consistency of the two measurements, which gets better as

one looks at lower scattered neutrons energy. The -40% configuration is strongly

discrepant with experimental data in the more reliable region, while it gets closer

to Knitter, but further from Batchelor, in the more disputable region.

From this study of the impact of the inelastic cross section we conclude that to

reconcile the measurement of the keff of the 237Np benchmark with simulation only
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Figure 7.11: Knitter experiment: measurement of the outgoing neutrons and
subtraction of the fission contribution to get the scattering component.[8]

by modifying the inelastic cross section of 235U, one has to reduce the continuum

part by about 40% and this is hardly consistent with measurements.

7.2.5 Influence of 237Np neutron multiplication factor ν

A criticality experiment is in fact an integral measurement and keff is sensitive to

other parameters, beside cross sections. The average number of emitted neutrons

per fission ν is also an important parameter for the criticality and a little variation

of ν could highly affect keff . As the 235U ν is well constrained by HEU critical

experiments we only apply variations to the 237Np ν.

The simulation shows that a 3% increase on 237Np ν (prompt+delayed) produces

a keff shift of 766pcm. Although only 13% of fissions occur in the neptunium

sphere their contribution in keff is higher than the 235U fission due to the lower

escape probability of the emitted neutrons. Therefore an increase of about 3%

of ν is needed to make keff reach the experimental value. Fig. 7.12 shows the ν

energy dependence for several experimental sets normalized to the ENDF/B-VII.0

values. For sake of clarity the error bars are not reported in the figure but they lie

mostly between 0.5 and 1.5%. Although νtot is the relevant parameter in critical

experiments we plotted in Fig. 7.12 the ratios of νprompt as the contribution of

delayed neutrons is negligible in those ratios. Most of the experimental values are

lower than the evaluated ones, except Veeser’s data set around 7 MeV, which is well

above the mean energy of neutrons in the critical device. No experimental value
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Figure 7.12: For fission of 237Np ratio of measured prompt ν to its value given
in ENDF/B-VII.0.

reaches the target value 1.03. This comparison doesn’t support the plausibility of

an underestimation of the total ν that would explain the mismatch between the

simulated and the measured criticality.

7.3 Fission rate experiments

Fission rate measurements consist of recording the number of fission, with fission

track detectors or inside an ionization chamber, when a sample is subject to a

neutron field of known spectrum. The rate is directly related to the fission cross

section as it is the folding product over energy of the cross section by the energy

spectrum. One can define the averaged cross section as:

< σ >=

∫
W (E)σ(E) dE∫
W (E) dE

(7.9)

where W (E) is the neutron energy spectrum. And the fission rate ratio, or spectral

index, as the ratios of averaged cross sections:

Rf =
< σ >Np237

< σ >U235

(7.10)
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ENDF/B-VII.0 and ENDF/B-VII.1 [27] libraries have been tested with different

fission rate experiments [80]. Unfortunately for several of them the description

of the experimental details and the method used to calibrate the fission rate is

missing. Therefore we discuss only two of the test cases presented in [80], and

we add two other examples, with a 252Cf neutron source, where the experimental

details are available.

7.3.1 GODIVA

The first situation we consider is the case of fission rates measured at the center

of a GODIVA assembly. It is an enriched 235U sphere [78] and the ratio of fission

rates is obtained with 237Np and 235U samples by dividing the former rate by the

latter. Table 7.2 (first line) shows the comparison between this measured ratio,

its simulated value when using the ENDF/B-VII.0 library, and the computed

value when the n_TOF 237Np fission cross section is used. The ENDF/B-VII.0

underestimates the result by 2.4% whereas the n_TOF data is higher by 3.5%.

7.3.2 COSMO

The MASURCA reactor is an experimental nuclear assembly that can be config-

ured as critical or subcritical by loading a different number of fuel tubes. The

core is based on uranium/plutonium MOX fuel. Several configurations have been

explored for different investigations. We looked only at the COSMO bench-

mark which is the first and well defined critical configuration of MASURCA

(180cm × 180cm × 164.2cm) well described in a NEA report [9]. The COSMO

configuration is made of 3 parts, which compositions are homogenized: MOX core,

reflector and shielding, shown in fig.7.13. The fission rates of 237Np and 235U have

been measured at several points with an ionizing chamber inside the core but we

refer here to the central measurement where the flux has a maximum.

Again table 7.2 shows the experimental ratio 237Np/235U and the results of the

computations with equations.7.9 and 7.10. From this comparison it turns out that

the n_TOF cross section is too high by 5% whereas the ENDF/B-VII.0 is very

close to the experimental value.
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Figure 7.13: The upper schemes show the COSMO reactor core geometry
which composition is homogenised. The lower part shows the experimental fis-
sion ratio 237Np/235U the latter being measured at the center. The experimental

ratio at the center is Rf=0.285[9].

7.3.3 252Cf experiment

The last situation we will discuss is the case of a neutron field generated by the

spontaneous fission of a 252Cf source. The fission rates from 237Np and 235U

deposits in ionization chambers are recorded when they are placed at different

distances from a stainless steel spherical shell containing a 252Cf source, as de-

scribed in the FUND-NIST-CF-MULT-FISS-001 benchmark [10] and depicted in

figure 7.14 The manufacturing of ionization chambers and the fissile deposits is de-

scribed in [81] and their absolute calibration has been obtained by α-spectroscopy

and α-counting. The spherical shell can be filled with water but we just consider

the dry case when the sphere is empty. In such conditions the neutrons are only

slightly scattered and moderated by the shell and other mechanical pieces as hold-

ers and cases, as emphasized in [10]. Instead of carrying a full simulation of the

experiment we just performed a simple calculation of the fission averaged fission
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Figure 7.14: Neutrons from a 252Cf source inside a spherical stainless steel
vessel and two ionization chambers beside containing 235U and 237Np [10].

cross section by assuming a pure Watt spectrum:

W (a, b, E ′) = Ce−aE′

sinh(
√
bE ′) (7.11)

where C =
√
π b

4a
e

b
4a

a
. In the case of spontaneous fission of 252Cf we take a =

0.84746 MeV−1 and b = 1.03419 MeV−1 [82], which is also the parametrization

adopted in ENDF/B-VII.

.

We applied a correction for the tiny moderation of the neutrons. This correction

has been estimated from the difference of the unperturbated and moderated fluxes

as computed in [10] and shown in figure 7.15. The correction amounts to 1.2%.

7.3.4 Comparison

The comparison between the measured averaged fission cross section of 237Np and

the simulation using the ENDF/B-VII.0 237Np cross section and the n_TOF data

is shown in the third line of table 7.2. The latter gives a value much closer to the
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Figure 7.15: Difference between original 252Cf neutron spectrum and spectrum
at the sample due to the slight moderation [10].

experimental one. It’s interesting to note that when using ENDF/B-V the agree-

ment was very good [82] and ENDF/B-VII does worse because the parametriza-

tion of Watt’s spectrum for 252Cf has been changed between ENDF/B-V and

ENDF/B-VI. Nevertheless the combination of the ENDF/B-VII.0 252Cf neutron

energy spectrum with the n_TOF fission cross section of 237Np allows to recover

a very good agreement.

Another absolute fission cross section, under the neutron flux generated by a 252Cf

source, has been measured by Adamov et al. [83]. The comparison with the sim-

ulation displayed on the last line of table 7.2 shows again a good agreement with

the n_TOF data.

This comparison of fission rates seems to be puzzling because it leads to contra-

dictory conclusions according to the different experiments. However we would like

to stress that some of them are not calibrated in absolute value. As an example,

it is the case of the COSMO experiment where the amount of fissile deposit has

not been calibrated in absolute value by α-counting, but from fission rates in a
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reference neutron flux. Therefore the calibration depends on the fission cross sec-

tion itself, and the agreement obtained in other neutrons fields like the COSMO

measurement merely indicates that the cross section has the right energy depen-

dence but doesn’t say anything on its absolute value. In that respect the shown

COSMO comparison is not really significant as the cross section data set used for

the calibration and the reactor measurement is not the same.

In the GODIVA case we don’t have any information on the calibration procedure

of the samples which have been used, but in the case of FUND-NIST-CF-MULT-

FISS-001 we know that the samples have been absolutely calibrated either by α

counting or by weighing. Overall the fission rates experiment are not contradictory

with an increase of the fission cross section of 237Np by 4-5%.

7.3.5 237Np(n,f) cross section conclusion

We used the 237Np critical benchmark to test the validity of the 237Np fission cross

section measured at n_TOF, which appeared to be larger than previous mea-

surements. The keff predicted using the n_TOF cross section, although slightly

exceeding the experimental value, is much closer to the benchmark value and falls

inside the uncertainty range whereas this was not the case for older 237Np fission

cross sections. As some authors invoked a possible deficiency of the (n,n’) cross

section in 235U to explain the mismatch we investigated this hypothesis. It turns

out that the experimental range can be reached only by depressing the continuum

contribution of the inelastic cross section by at least 40%. Such a modification is

hardly consistent with existing measurements of the 235U inelastic cross section.

Beside, we showed that the discrepancy can’t be ascribed to the 237Np ν. Although

other effects and uncertainties can affect the criticality, our prediction of the crit-

icality of the 237Np benchmark may indicate that the 237Np fission cross section

is higher than expected from previous measurements. When testing the 237Np

fission cross section with fission rate experiments the outcomes are not univoque,

but we showed that the calibration procedure of the targets (number of atoms)

is of crucial importance and its description is often lacking. In two cases where

all the information is available and the targets have been calibrated in absolute

value, the n_TOF cross section gives a much better agreement with the measured

value. Although this can’t be considered as definitely conclusive, it indicates that
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a global increase of the 237Np fission cross section by 4-5%, against the data li-

braries and more peculiarly ENDF/B-VII.0, would reconcile all the comparisons

we have shown.
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En-En′ En=1.5 MeV En=1.9 MeV En=2.3 MeV
(MeV) Exp ENDF/B-VII.0 Exp ENDF/B-VII.0 Exp ENDF/B-VII.0

σinel ±∆σinel σinel ±∆σinel σinel ±∆σinel
0.5 - 0.7 0.117±0.022 0.154 0.046±0.022 0.087 0.008±0.022 0.048
0.7 - 0.9 0.196±0.022 0.257 0.113±0.022 0.147 0.024±0.022 0.078
0.9 - 1.1 0.334±0.022 0.321 0.213±0.022 0.205 0.052±0.022 0.115
1.1 - 1.3 0.294±0.022 0.290 0.086±0.022 0.178
1.3 - 1.5 0.267±0.022 0.320 0.155±0.022 0.207
1.5 - 1.7 0.277±0.022 0.264
1.7 - 1.9 0.322±0.022 0.319

Table 7.1: Comparison between Knitter’s inelastic cross section measured for235U and ENDF/B-VII.0 for energy bands of 200 keV of
the outgoing neutron.



C
h
ap

ter
7.

C
ritica

lity
experim

en
t

149

Observable Set-up Exp. Calc. (ENDF/B-VII.0) Calc. (n_TOF)

Rf GODIVA(HMF001-002) 0.8516 (12) 0.83 0.88
MASURCA(COSMO) 0.285 0.284 0.299

< σ >237Np (barn) FUND-NIST-CF-MULT-FISS-001 1.420 (25) 1.34 1.41
Adamov et al. 1.442 (23) 1.364 1.431

Table 7.2: Comparison of experimental and simulated fission rates and averaged fission cross section
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Conclusion

This thesis work is made of two parts related to two research topics. The first

part is a study of the neutron-induced fission fragment angular distribution of

actinides with the n_TOF facility at CERN, using a fast Parallel Plate Avalanche

Counters (PPACs) setup. This facility can provide a very high resolution energy

from thermal to 1 GeV due to the long flight path of 185 m. This PPAC setup

provides a very high time resolution, reduces significantly the background and

discriminates light particles and spallation reactions from fission fragments with

the coincidence method. PPACs detectors are insensitive to the γ-flash and present

an excellent capability to measure the fission fragment angular distribution in a

wide energy range from eV up to GeV. The stripped cathodes give an excellent

spatial position of the fission fragment hits in the detectors, so that the emission

angle of the fission fragments can be measured and the emission point on the target

can be lovalized too.

The new aspect of this experiment is the geometrical arrangement of the 9 targets

and 10 detectors tilted by 45◦ with respect to the neutron beam direction. This

configuration allows to cover the full angular range with a good efficiency.

We developed a method of self-determination of the efficiency which is based on

the decoupling of the angular distribution and the efficiency depending on two

different angles: the fission fragment emission depends on the angle relative to the

neutron beam direction whereas the efficiency depends on the angle relative to the

axis perpendicular to the detector surface. The two angles give and independent

information on FFAD and detector efficiency which permits to obtain an absolute

FFAD estimation. This procedure can be applied to restricted energy ranges

150
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and to individual targets, without any need of a reference target. This is very

important because the surface state of the fissioning layer, its roughness, has a

significant impact on the detection efficiency and is not well controled. The self-

determination of the efficiency solves this difficulty by extracting the efficiency on

a per-target basis. In addition this method opens the perspective of improving

the measurements of fission cross sections by an accurate determination of the

efficiency. This has not been used in this work, which remained centered on the

angular distributions, but cross section checks can be performed, in particular for
232Th and 237Np.

Our 232Th results are well consistent with the previous data up to 20 MeV. We

provide accurate results for the anisotropy in the region around second-chance and

third-chance fission.

In the intermediate energy range, between 20 and 200 MeV, n_TOF is not con-

sistent with Ryzhov data which were the only existing before our measurement.

Ryzhov 232Th data were hardly explained in the framework of the model he devel-

oped and artificial parametrizations had to be applied to get the model closer to

his data, like the arbitrary K2
0 reduction. Our n_TOF data are well reproduced

by the model without arbitrary modification.

We also compared our measured 232Th anisotropy with that coming from proton-

induced fission, in particular with Smirnov data. The two data sets differ sig-

nificantly in this intermediate energy range. At 40 MeV this difference is well

explained within the fissility systematics of fission anisotropy. It can be noticed

that Ryzhov’s data were falling well outside the fissility systematics. This de-

pendence on the fissility of the compound system implies that at this energy the

incoming nucleon is captured most of the time. In the case of 238U, in spite of the

low statistics of our measurement, we can see that it is in agreement with Ryzhov’s

data, contrary to the 232Th case.

We also measured also the angular distributions for 235U and 237Np targets, al-

though with low statistics due to the number of targets and the reduced exposure

time. The seemingly high value of the anisotropy at the opening of the third chance

fission might be a feature of odd mass nuclei. This would be worth confirmed in

future experiments for 237Np. For 235U and 238U the 2012 campaign should already

bring answers because the number of targets were respectively 2 and 3 and the
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number of protons dedicated to the n_TOF experiment was significantly higher

than in 2010 and 2011.

The second part of this work is focused on the use of integral benchmarks to val-

idate the fission cross section of 237Np which was found higher by 6% in n_TOF

compared to existing data. This is essentially a simulation study for the propaga-

tion of neutrons.

We first simulated a critical assembly containing a significant amount of 237Np

and showed that the n_TOF data gives a better agreement with the experimen-

tal criticality. We investigated other possible causes of the criticality mismatch

between the experiment and the simulation with library cross sections: inelastic

cross section, neutron multiplicity. We showed that the modifications required to

reduce the criticality mismatch are not consistent with the related measurements.

In a second step we confronted the n_TOF data in situations where the neutron

flux and its spectral shape are well known, in particular at the center of a critical

assembly (GODIVA) and with a 252Cf source. The conclusion is not univoque

because the measurements in such conditions are not all consistent, and the in-

formation on the calibration procedure, in particular the quantity of atoms in the

targets, is often missing. At least in two cases where this information is avail-

able, and corresponding for one of them to a full documented benchmark, a better

agreement is obtained with the n_TOF data set.

Overall a global increase of the 237Np fission cross section by 4-5%, against the data

libraries and more peculiarly ENDF/B-VII.0, would reconcile all the comparisons

we have shown. This study can’t lead to a definite conclusion on this respect

due to the sensitivity of integral experiments to other not considered parameters.

Nevertheless it shows that an increase of the 237Np fission cross section is plausible

and should be really checked with experiments where the number of atoms is

targets is calibrated in absolute value.

As in our case the targets are well characterized by α-counting an accurate kn-

woledge of the detection efficiency, as delivered by the self-calibrating method,

should allow us an additional check for the 237Np case. this will be done in the

near future.
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Legendre polynomials

Legendre polynomials is one of the varieties of special functions which are encoun-

tered in the solution of many physical problems. For example in the separation of

variables of the Schrodinger wave equation:

− ~
2

2µ
∇2ψ + V (r, s)ψi = Eψ (A.1)

We are interested in the angular dependence part in spherical polar coordinates,

which obey the equation:

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2

]
= −l(l + 1)Y (A.2)

The wavefunctions of the Schrodinger equation need to be normalized, so the list

of functions below will include the normalization factor:

Nlm =

[
(2l + 1)(l −m)!

4π(l +m)!

]1/2
(A.3)

Thus this angular equation are the spherical harmonics Y (θ, φ), that have the

form:

Y m
l (θ, φ) = (−1)mNlmeimφPm

l (cos θ) (A.4)

The particular case where there is no dependence on the azimuthal angle φ, m = 0

and the Pm
l (cos θ) are reduced to the Pl(cos θ), which are named Legendre poly-

nomials, and they can be obtained from:

Pn(cos θ) =
1

2nn!

dn

d(cos θ)n
[
(cos2 θ − 1)n

]
(A.5)
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The Pl(cos θ) make a set of orthogonal polynomials:

1∫

−1

PkPl d(cos θ) =
2

2l + 1
δkl (A.6)

The first few polyomials are shown below:

n Legendre polynomial

0 1

1 cos θ

2 1
2
(3 cos2 θ − 1)

3 1
2
(5 cos3 θ − 3 cos θ)

4 1
8
(35 cos4 θ − 30 cos2 θ + 3)

5 1
8
(63 cos5 θ − 70 cos3 θ + 15 cos θ)

6 1
16
(231 cos6 θ − 315 cos4 θ + 105 cos2 θ − 5)

7 1
16
(429 cos7 θ − 693 cos5 θ + 315 cos3 θ − 35 cos θ)

l and m are integers. In A.4 the functions Pm
l (cos θ) are the associated Legendre

polynomials of order m that can be derived from Pl(cos θ):

Pm
l (cos θ) = (1−cos2 θ)m/2 dm

d cos θm
Pl(cos θ) =

(1− cos2 θ)m/2

2ll!

dl+m

d cos θl+m
(cos2 θ−1)l

(A.7)
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Angular distributions

This appendix displays the angular distributions obtained over narrow energy in-

tervals. The black dots are for the data with the error bars representing the

statistical uncertainty determined as explained in chapter 5. The red curve repre-

sents a Legendre polynomial fit including terms with P2 and P4. The anisotropies

are derived from this fit. For each graph the related energy interval is written,

with the value of the reduced χ2 of the fit and the cos θ polynomial resulting from

the fit (equation of the red curve).

B.1 232Th angular distributions

The plots represent the data for the accumulation of the 6 targets and the cam-

paigns performed in 2010 and 2011. In 2010 1.47 1018 protons were sent to n_TOF

to produce neutrons, whereas in 2011 only 0.37 1018 protons were received.

B.2 235U angular distributions

The conditions are the same as for 232Th, except that a single target is placed in

the set-up (instead of 6).

155



Appendix B. Angular distributions 156

B.3 238U angular distributions

A single target is present, as for 235U, but in addition the data are only those taken

in 2011 because in 2010 a localization signal was missing for a detector looking at

this target. This explains the larger error bars for this target.

B.4 237Np angular distributions

Same conditions as for 238U: a single target and the data are only those taken in

2011 because in 2010 a localization signal was missing too, leading to large error

bars for this target.
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Figure B.1: 232Th angular distributions for En < 1.91 MeV
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Figure B.2: 232Th angular distributions for 1.91 < En < 3.79 MeV
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Figure B.3: 232Th angular distributions for 3.79 < En < 7.59 MeV
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Figure B.4: 232Th angular distributions for 7.59 < En < 26.3 MeV
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Figure B.5: 232Th angular distributions for 26.3 < En < 1047 MeV
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Figure B.6: 235U angular distributions for En < 4.47 MeV
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Figure B.7: 235U angular distributions for 4.47 < En < 31.6 MeV
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Figure B.8: 235U angular distributions for 31.6 < En < 1000 MeV
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Figure B.9: 238U angular distributions for En < 5.00 MeV
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Figure B.10: 238U angular distributions for 5.00 < En < 39.8 MeV
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Figure B.11: 238U angular distributions for 39.8 < En < 1000 MeV
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Figure B.12: 237Np angular distributions for En < 5.00 MeV
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Figure B.13: 237Np angular distributions for 5.00 < En < 39.8 MeV
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Figure B.14: 237Np angular distributions for 39.8 < En < 1000 MeV
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