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Cavitating Flows
by

Maria Giovanna Rodio

(ABSTRACT)

The accuracy of the numerical simulation in the prediction of cavita-
tion in cryogenic fluids is of critical importance for the efficient design and
performance of turbopumps in rocket propulsion systems. One of the main
challenges remains the efficiency in modeling the physics, handling the multi-
scale properties and developing robust numerical methodologies. Such flows
involve thermodynamic phase transition and cavitation bubbles smaller than
the global flow structure. Cryogenic fluids are thermo-sensible, then thermal
effects and strong variations in fluid properties can alter the cavity properties.

The aim of this work is to address the challenge of efficiently modeling
cavitating flows when using water and cryogenic fluids. Because of the com-
plexity of the phenomenon, we focus on improving accuracy of the numerical
simulation and on proposing some approaches for a strong coupling between
numerics and experiments.

We first discuss how to simulate cavitation by means of a mixture model.
We specifically address two challenges. The first one is associated with the
prediction of thermal effect during the phase transition, requiring the solution
of the energy conservation equation. The second challenge is associated to
the prediction of the number of bubbles, by considering a transport equations
for the bubble density. This study is applied to the numerical simulation
of a cavitating flow in a Venturi configuration. We observe an improved
estimation of temperature and pressure profiles by using the energy equation
and the nucleation model.

Secondly, we focus on bubble dynamics. Several forms of Rayleigh-Plesset
(RP) equations are solved in order to estimate the temperature and pressure
during the collapse of the bubble. We observe that, for high Mach number
flows, RP modified with a compressible term can predict the bubble behavior
more accurately than the classical form of RP. It is necessary to use a complex
equation of state for non-condensable gas (van der Waals) in order to have an
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accurate estimation of the bubble temperature during the collapse phase. We
first apply this approach to the water treatment with cavitation, by proposing
a model for the estimation of radicals developed during the collapse of the
bubble. Secondly, this equation is modified by adding a term of convective
heat transfer at the interface between liquid and bubble and it is coupled
with a bubbly flow model in order to assess the prediction of thermal effect.
We perform a parametric study by considering several values and models
for the convective heat transfer coefficient, hb, and we compare temperature
and pressure profiles with respect to the experimental data. We observe the
importance of the choice of hb for correctly predicting the temperature drop
in the cavitating region and we assess the most efficient models.

In addition, we perform an experimental study on nitrogen cavitating
flows in order to validate numerical prediction of thermal effect, and in order
to assess the fundamental characteristics of the nucleation and the transient
growth process of the bubble.
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Nomenclature

A cross section area [m2]
C mass concentration
c speed of sound [m/s]
cp specific heat capacity [J/(kg K)]
hb convective heat transfer coefficient [kg/(s3 K)]
Hb entalphie [J]
J nucleation rate [1/m3s)]
K(T ) equilibrium constant [m3/mol]
k politropic coefficient, Runge-Kutta method coefficient
L length of nozzle [m]
Lev latent heat [J/kg]
Mv,g vapor or gas molar mass
nb number of bubbles for mixture volume [1/m3]
p liquid pressure [Pa]
pc critical pressure [Pa]
pg non-condensable gas pressure [Pa]
pdw downstream pressure [Pa]
puw upstream pressure [Pa]
Pext upstream pressure [Pa]
p′turb turbulent fluctuations pressure [Pa]
R,Rb bubble radius [m]
Rc critical bubble radius [m]
r spherical coordinate
S surface tension [N/m]
T temperature [K]
t time [s]
u liquid velocity [m/s]
v bubble velocity [m/s]
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CONTENTS

Vch characteristic velocity [m/s]
x axial coordinate [m]
λ,K thermal conductivity [W/(m K)]
η bubble population per unit liquid volume [1/m3]
υ kinetic viscosity [m2/s]
µ dynamic viscosity [Pa s]
ρ density [kg/m3]
χ density [kg/m3]
σ density [kg/m3]
Subscripts
0 upstream condition
l liquid
v vapor
b bubble
∞ infinity - far from bubble
sat saturation
Dimensionless group
Ā A/A0 dimensionless cross-sectional area
R̄ R/R0 dimensionless bubble radius
t̄ tu0/R0 dimensionless time
ū u/u0 dimensionless liquid velocity
v̄ v/u0 dimensionless bubble velocity
x̄ x/R0 dimensionless x coordinate
η̄ η/R3

0 dimensionless bubble population per unit liquid volume
Cp pressure coefficient
CpMIN minimum fluid pressure coefficient
CD drag coefficient
L̄ L/R0 dimensionless length of the nozzle
M Mach number
nH2O vapor mol number
nOH radicals mol number
Nu Nusselt number
Pe Peclet number
Pr Prandt number
Re Reynolds number
α Weber number
Φ potential
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Chapter 1

Introduction

The present work is devoted to the analysis of cavitation in water and cryo-
genic flows. Cavitation is a phenomenon characterized by the formation of
vapor or gas bubbles in the liquid. It happens when the liquid pressure falls
below the vapor pressure inducing a phase transition (Fig.1.1). Cavitation
can assume several forms, see Franc et al. [8] for a detailed explanation,
depending on the flow configuration, on the geometry, the liquid properties,
the forces applied on the flow and so on. It is very difficult to give a com-
prehensive definition of a so complex phenomenon. Basically, it is possible
to distinguish between two types of cavitation: (i) Ultrasonic cavitation and
(ii) Hydrodynamic cavitation. In the first case i), gas bubbles in the liquid
are supposed to be in thermodynamic equilibrium and they are subjected to
an oscillating pressure that determines the bubble grow or collapse. In the
second case ii), cavitation is produced by a pressure drop due to the flow
configuration and geometry, such as for example in a convergent-divergent
nozzle. In this case, as explained by Brennen [9], bubbles of non-condensable
gas, which are present into the liquid bulk due to a homogeneous and hetero-
geneous nucleation process, could become the nuclei of cavitation. In the low
pressure region, during phase transition gas bubbles can become gas-vapor
bubbles and they can grow. Moreover, on some low-pressure points close
to the wall, vapor bubbles can develop and determine a blade cavitation or
pocket cavitation [9].

The study of cavitation is of great interest in several industrial appli-
cations, like as in fuel injection, hydraulic turbines, pumps, rocket engine
system and in all the applications where a drop of pressure could appear
[10]. If there is the formation of some bubbles, they can be transported
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Figure 1.1: Phase diagrams: (left) pressure-volume; (right) pressure-
temperature.

by liquid flow and collapse in higher pressure regions, creating the following
problems:

• Reduction of machine performances

• Noise emission

• Erosion (Fig.1.2).

However, in some fields cavitation is purposely induced [11]. For exam-
ple, the bubble collapse is often used in order to induce chemical reactions,
basing on the high pressure and temperature in the bubble.
Usually, the cavitation is considered as an isothermal phenomenon [9]. The
phase transition is described by the pressure reduction, following the isother-
mal line (green) in the phase diagrams (Fig.1.1). This assumption is valid
for example for water at room condition and is used usually in conditions
far from critical temperature. On the contrary, in some fluids, the vapor
production in cavitation extracts the latent heat of evaporation from the
surrounding liquid. This decreases the local temperature and hence the local
vapor pressure in the vicinity of cavity. This is known as thermal effect in
cavitation [9]. Thermal effect become more important for cryogenic fluids.
In this case, numerical and experimental studies have shown the necessity
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to consider thermal effect for a reliable prediction. A typical mixture consti-
tuted by a combination of liquid oxygen (LOX) and liquid hydrogen (LH2),
is currently used as rocket propellant.

Figure 1.2: Image of typical cavitation damage on the blade of a mixed flow
pump [9]

In the rocket engine, it is important to minimize the size and the weight of
all the components. This requires that turbopump works with high impeller
speeds. These high speeds generate a region of static pressures below the
vapor pressure causing the propellant to cavitate around the inducer blades
[10]. Then, these fluids are typically associated to a cavitation phenomenon,
because they are used at temperatures close to the critical point and at very
low pressure. In these conditions the vapor density is much greater than
far from the critical point [12]. Then, cryogenic fluids demand more heat to
cavitate and thermal effects can not be neglected.

A good estimation of the loads on the inducer blades is fundamental in
order to design efficiently the whole system. Because of the complexity of
the phenomenon, numerical and experimental studies show great deficiencies.
In this work, several numerical and experimental methodologies have been
proposed in order to reduce some of these deficiencies.
The present work is presented showing numerical developments in the first
part and the experimental results in the second one.
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Figure 1.3: Profiles of vapor density as function of temperature along the
saturation curve for nitrogen, hydrogen and oxygen liquid fluids.

In chapter 3, different cavitation models have been proposed in order to sim-
ulate cryogenic flows. Thermal and nucleation effects have been taking into
account, solving the transport equations for the bubble density and energy
conservation. The performances of these models have been compared with
the available experimental data. In chapter 4, bubble dynamics have been
studied by means of four differential equations, based on Rayleigh-Plesset
equation. This model links together the dynamic behavior to the global set
of forces (mechanical, thermal, etc.) applied on the bubble. This study is
then employed on the water treatment in cavitation. In chapter 5, thermal
effect has been examined by adding a term of convective heat transfer at the
interface between liquid and bubble in Rayleigh-Plesset equation. The aim
of this study has been to improve the prediction of thermal effect by a more
accurate estimation of convective heat transfer coefficient hb. This study has
been validated on an experimental test case, i.e. hydrodynamic cavitation
in cryogenic flows.
In the second part of this manuscript (Chapter 6) an experimental study has
been presented. In particular, nitrogen cavitating flows have been observed.
This work allowed i) clarifying the fundamental characteristics of the nucle-
ation and transient growth process bubbles, and ii) showing how the thermal
effect could influence the development of cavitation.

The state of art for cavitation and for each aspects studied in this work,
will be presented in the next chapter.
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Chapter 2

State Of Art

In this chapter the state of art concerning previous cavitation studies is
described. This section is divided in four paragraphs. The first one concerns
the numerical cavitation modeling, the second one the nucleation theory, the
third one describes the water treatment with cavitation and the fourth one,
the thermal effects.

2.1 Cavitation Modeling

Several numerical models have been proposed to reproduce a cavitating flow
(see for a detailed review [13, 14]). Two classes of models are available in
literature: i) interface models and ii) the two-phase models. In the first ap-
proach (i), two phases co-exist, with a clear and distinct interface between
the liquid and the vapor. Moreover the diffusion term in the equation is
neglected. These models avoid the numerical difficulties associated to the
diffusion term, but on the contrary the interface reconstruction and the re-
meshing is a difficult task and really expensive in terms of computational cost
[15, 14]. In the two phase models (ii), two known approaches exist depend-
ing on the mixture of the two phases. If this mixture is treated like as one,
one-fluid method is considered. Otherwise, if co-existence of both phases are
taken into account, bubbly flows and two-fluids methods are defined.
The one-fluid method, known also as HEM (Homogeneous EquilibriumModel),
is based on the hypothesis of kinematic and thermodynamic equilibrium be-
tween the two phases (initial local velocity, temperature and pressure are
the same for the two phases). Then, the governing equations are solved for
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2.2. NUCLEATION MODELING

the mixture and the exchange terms are not solved. Due to its simplicity,
this model is well used in the numerical simulation of cavitating flows. But,
it presents several limitations. The first difficulty is to choose an equation
of state (EOS) that allows reproducing all thermodynamic conditions of the
mixture. It can not reproduce thermodynamic and kinetic non-equilibrium
effects. Finally, the mixture EOS is valid only for flows constituted by the
liquid and its vapor only. On the contrary, in many situations, the liquid is
not a pure fluid and some non-condensable gases (air in water for example)
are present. In this case the mixture EOS no longer holds. Moreover the
vaporization or condensation processes are assumed be instantaneous.
Among the two phase models, two other models are the bubbly flows or
two-fluid model, obtained by considering the co-existence of both phases. In
bubbly flows model, a continuous model for the mean flow, compressible or
not is considered, with a microscopic model for the description of the bubble
dynamics based on the Rayleigh equation. The drawbacks of this type of
model consist in assuming that the gas phase must be present initially and
that the flow topology is fixed. Moreover, the choice of some tuning param-
eters, such as the initial vapor fraction or the initial bubble radius (when an
equation for the evolution of bubble radius is taken into account), is set up
in order to reproduce the experimental data. The two-fluid method allows
treating explicitly the mass, momentum and energy exchanges as transfer
terms, and so obtaining a correct estimation of temperatures in liquid and
vapor [16, 17]. However, these models are characterized by a difficulty to de-
fine the source term. In chapter 3, some of HEM models are used and coupled
with thermal model and nucleation model. This coupling allows estimating
whether thermal effects or a variable bubble number (cavitation nuclei) could
influence the cavitation prediction. In chapter 4, a bubbly flow model is used
in order to analyze thermal effects, in particular the importance of a correct
estimation of convective heat transfer coefficient.

2.2 Nucleation Modeling

In the nucleation model the existence of cavitation nuclei is supposed, that
in low pressure conditions could become vapor structures. Vapor bubbles
may be generated in liquid (homogeneous nucleation), on a surface or other
locations at the flow field boundaries (heterogeneous nucleation). In the first
case, the formation of temporary microscopic voids are the nuclei for the
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2.2. NUCLEATION MODELING

formation and growth of macroscopic vapor bubble. However, in engineering
systems, bubble formation usually occurs in the form of heterogeneous nucle-
ation, in which the bubble formation is induced by particular conditions at
the interface between the solid wall and the liquid or between the liquid and
the particles in the fluid. Becker and Doring [18] were the first to develop
the nucleation theory, known in literature as classical approach. It is based
on the hypothesis that the bubble formation is proportional to the minimum
molecular energy needed for the critical cluster to survive. In this theory,
the free energy of formation is given by:

MECL =
16πσ3

3∆P 2
, (2.1)

where δP = pl − pv is the pressure difference between the liquid and the
vapor pressure, σ is the surface tension of an equilibrium planar liquid-vapor
interface.
Moreover, the small portions of the new phase are treated as if they present
macroscopic regions of the space and, thus, the effects of droplet curvature
on the rate of nucleation are not taken into account. As observed in sev-
eral studies, the liquid cannot be cleaned of such impurities that catalyze
inevitably to heterogeneous nucleation, and thus the nucleation theory has
attracted a great deal of interest in several field of application, as boiling [19],
cavitation erosion [20], acoustic cavitation and recently in microelectronics
cooling or in MEMS application. In the case of cryogenic fluids, there are
few impurities in normal conditions, but they may include non-condensable
gas with an high probability to influence the bubble formation. For example,
the liquid oxygen used in liquid rocket may include non-condensable gas of
helium that is often used to compress liquid oxygen. In addition to the classi-
cal nucleation theory (CNT), others theories have been developed, where the
effects of droplet curvature on the rate of nucleation are taken into account.
Guilleumas and co-workers [21] studied the thermal cavitation of an iso-
tope of helium (He-3) using the square-gradient density-functional approach.
They observed a discrepancy of results when the liquid temperature is low.
Dupont-Roc et al. [22] and successively Oxtoby et al. [23, 24] proposed the
application of nonlocal density-functional approach to the study of He-3 and
they observed, as in Guilleumas, that the classical theory over-estimates the
nucleation rate by two orders of magnitude at high liquid temperature and
under-estimates at low temperature. As observed by Tsuda et al. [25], the
CNT could calculate the nucleation rate by starting from macroscopic physi-
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2.3. WATER TREATMENT WITH CAVITATION

cal values and it could describe qualitatively a change of nucleation rate even
with a discrete accuracy. Tsuda et al. [25] investigated the bubble nucleation
in liquid oxygen with dissolved impurities (nitrogen and helium molecules),
using the classical nucleation theory. They observed that the nucleation is
affected by the gas typology dissolved in the liquid. De Giorgi et al. [26]
underlined the necessity to implement a cavitating flow model taking into
account the nucleation, in particularly in the case of cryogenic flows. This
paper has been widely described in Chapter 3.

2.3 Water Treatment with Cavitation

Usually, the cavitation phenomenon is considered very dangerous for machine
performance. However, in several fields, cavitation is exploited as in the case
of sonoluminescence or liquid treatment, as shown also in this manuscript.
Due to complexity of phenomenon, several simplified hypothesis have been
considered in water treatment field. In 1998, simple models have been consid-
ered, supposing the uniformity of fluid properties in the bubble and neglecting
the chemical reactions and the transport phenomenon at the interface of bub-
ble [13, 27]. Kamath et al. [28] estimated the radical production only on the
base of temperature and pressure of bubble. In the 1995, Yasui [29] took into
account the thermal conduction effects in the description of evaporation and
condensation of water vapor. Successively, the same author pointed out the
importance of liquid temperature estimation for a good prediction of bubble
reaction due to sonoluminescence phenomenon. So, Yasui [30] coupled the
bubble dynamic model with chemical reaction. Successively, he considered
also the spatial variation of temperature close to interface. Finally, in the
2005, Yasui et al. [31] developed a model for the estimation of radical [OH]
by supposing an analytical approximation of the temperature at the inter-
face. Sochard et al. [32] considered the diffusion of gas in the bubble and the
vaporization and condensation through the bubble interface as Yasui [29],
but by supposing the thermal equilibrium for the reactions. Yuan et al.[4],
pointed out the importance of viscosity, thermal conductivity and superficial
tension at the interface and in particular of the equation of state (EOS) for
the estimation of temperature bubble at the center during the collapse. Lin
et al. [33] pointed out the uniformity of pressure in the bubble and proposed
the equation of Rayleigh-Plesset in order to model the bubble dynamics. Xu
et al [34] presented a complete model with all radial properties variation in
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2.4. THERMAL EFFECT MODELING

the bubble. Storey and Szeri [11, 35, 36] presented a model constituted by
the Navier-Stokes equations for the mixture (gas+vapor) and by chemical re-
action mechanisms. They pointed out that the vapor in the bubble induces
the sonoluminescence phenomenon. A model very complex has been devel-
oped by Hauke et al. [37], including the dynamics of bubble and of liquid
around, the radial properties variation, the chemical reactions and the mass
and heat exchange at the interface.

2.4 Thermal Effect Modeling

A first quantification of thermal effects in cryogenic cavitation, has been
assessed through the dimensionless coefficient B-factor proposed by Stahl et
al. [38] and Stepanoff. [39]:

B =
∆T

∆T ∗
and ∆T ∗ =

ρvLev

ρlcpl
, (2.2)

where B represents a ratio between the temperature drop determined in a
cavitating flow and the theoretical temperature drop calculated by the liquid
properties at the operating liquid temperature. This constitutes a prediction
of the temperature drop in cavitating condition. Also other parameters for
the estimation of thermal effects have been proposed and fully explained by
Franc et al. [14]. When using cryogenic fluids, it seems necessary to include
the effect of heat transfer in the cavitation model for a correct prediction of
cavitation. As fully explained by Goncalves et al. [13] and Franc et al. [14],
several numerical models have been proposed to simulate a cavitating flow
and, also, to take into account the thermal effect. Two modeling approaches
are available in literature: i) interface models and ii) the two-phase mod-
els. In the first approach (i), two phases co-exist and a clear and distinct
interface between the liquid and the vapor is assumed. The difficulty of this
method is the systematic reconstruction of interface [15, 14]. Conversely, in
the two-phase models (ii), the liquid-vapor interface is not computed, but
the cavitating flow is treated as a liquid-vapor mixture. Main differences be-
tween models in this class (ii) mostly come from the hypothesis to consider
the mixture of the two phases behaving as one (one-fluid method) or to con-
sider the co-existence of both phases, governed by its own set of conservation
laws (two-fluids and hybrid methods). In order to take into account thermal
effect, in the case of one-fluid method, an equation of state (EOS) can be
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2.4. THERMAL EFFECT MODELING

used in order to define the thermodynamic behavior of the mixture [40, 41].
Goncalves et al. [13, 42] proposed an homogeneous equilibrium model with
different EOS in order to reproduce a freon R-114 and liquid hydrogen cav-
itating flows. Also Goel et al. [43] proposed a sensitivity analysis on the
empirical parameter of homogeneous cavitating model and on the uncertain-
ties of material properties. The study underlines that in cryogenic flows the
changes in model parameters influence the performances of cavitation model
more than the uncertainties in material properties. However, the assump-
tions of kinematic and thermodynamic equilibrium impose the same local
velocity, pressure and temperature of the two phases. In these studies and
in others [44, 45], a gradient of temperature is obtained, but it is equal for
both phases.
Considering the co-existence of both phases, allows treating explicitly the
mass, momentum and energy exchanges as transfer terms [16, 17]. However,
in these models there is a difficulty to define the term source and their tuning
parameters, as the initial vapor fraction or the initial bubble radius (when
an equation for the bubble growth is used), usually calibrated in order to
reproduce the experimental data. When a convective heat exchange is con-
sidered between the two phases, it is necessary to use the convective heat
coefficient hb that represents the crucial parameter in the energy transfer
term. Considering the importance of the convective heat transfer coefficient
hb, the aim of this study has been to investigate the influence of the convec-
tive heat transfer coefficient in the modeling of thermal effect in cavitating
cryogenic fluid. There are two possibilities: (i) to consider a constant value
of hb chosen on the base of empirical values; (ii) to include in the cavitation
model, a model for the estimation of hb coefficient. Franc and Pellone [14]
proposed a simple model to compare the convective approach and the con-
ductive approach in order to model the heat transfer at the bubble wall. In
both models tuning parameters appear that are the convective heat transfer
coefficient and the eddy thermal diffusivity, respectively, for convective and
conductive approach. Constant values have been imposed for the tuning pa-
rameters. Cavitating flows of Freon R114 in an inducer have been presented,
showing that both models predict a cavity length close to the experimental
data. However, these models presented some limitations due to simplifying
assumptions. Calibration with respect to experiments is mandatory in or-
der to use a correct value of hb. Otherwise, an incorrect value of hb could
invalidate the predictive character of the global approach. So the calibra-
tion of empirical laws in order to predict the hb coefficient is necessary. At
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2.4. THERMAL EFFECT MODELING

our knowledge, in literature, heat transfer in cavitating flows is object of
experimental and numerical studies in boiling flow [46, 47, 7] and ultrasonic
cavitation [48, 49, 50, 51], but values of convective heat transfer coefficient
when hydrodynamic cavitation in cryogenic flows at high Reynolds number
is taken into account, are not provided. Several models for the prediction of
convective heat transfer coefficient have been proposed, but usually formu-
lated for water and validated far from hydrodynamic cavitation conditions.
This is due to the high complexity of cryogenic flows experiments and then
to the difficulty to obtain a fitted model. For some aspects, the cryogenic
cavitating flow is similar to the boiling flow, because, as explained before, the
pressure decrease do not appear as an isothermal transformation, but it is
coupled to a temperature drop in the liquid bulk. For this reason the model
for the estimation of convective heat transfer coefficient have been studied
for the boiling applications. Qi et al. [46] studied the flow boiling of liquid
nitrogen in the micro-tubes. They tested four correlations for the estimation
of heat flux in cryogenic fluids, but the models did not give excellent results
in comparison to experimental data in micro-channel. Though some of these
correlations have been tested for cryogenic fluids, however they are difficult to
adapt for cavitating flow. Kim and Park [47] confirmed the importance of hb

parameter for the analysis of multi-phase flow. They performed experiments
in order to correlate the interfacial heat transfer coefficient at low pressure
in subcooled boiling flow. They obtained a new hb estimation model. The
Ranz and Marshall model [5] estimates the hb coefficient as function of the
bubble Reynolds number and Prandtl number.
Basing on the fact that cryogenic fluids are associated to a thermal effect,
we focused also on others models, in which liquid or vapor temperature ap-
pears. For the estimation of hb coefficient, Oresta et al. [6] proposed a model
in order to fit two previous models obtained for low and very large Péclet
number. This model has been tested in simulations to reproduce the phase
transitional the two-phase flow in natural convection problems. This model,
as in Ranz and Marshall model[5], is a function of Reynolds and Prandtl
number, but also depends on the Jacob number. Finally, Christopher et al.
[7] adopted a model for the estimation of hb coefficient that is a function of
bubble properties and conditions. Christopher [7] studied the bubble motion
in a Marangoni flow, where the flow is driven by the non-uniform temper-
ature distribution in the liquid inducing the well-known Marangoni effect.
Then, the model has been adopted in a case in which the temperature is
very high. This model has been also employed in our analysis.
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Chapter 3

Homogeneous Equilibrium
Model (HEM) and Nucleation
Theory

3.1 HEM Model

The multiphase nature of cavitating flow coupled with a complex physics
yields a system of highly coupled governing equations. Furthermore, inter-
facial dynamics, compressibility effects, and turbulence constitute necessary
ingredients for the numerical simulation of these physical phenomena. Three
cavitation models have been implemented as external subroutines in Fluent
commercial code (release 6.3):

• The classical thermal equilibrium cavitation model (called TE in the
following), based on a simplified Raylegh-Plesset equation [52].

• The mechanical equilibrium model (called ME) [53].

• The ”full cavitation model”(called SP), developed by Singhal [54].

These models have been tested in their original form, numerically simulat-
ing some experimental test cases [1]. Their performances have been examined
comparing the computed pressure and temperature profiles with the avail-
able experimental data. Then, a variable number density has been taken into
account and a nucleation transport equation have been coupled to mixture
models. As explained before, thermal effects are particularly significant in
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3.1. HEM MODEL

cryogenic fluids, then in the last part of work the energy equation has also
been taken into account with the others. Physically, cavitation is controlled
by the thermodynamics and kinetics of the phase change. The liquid-vapor
conversion associated with the cavitation process is modeled by means of two
terms, which represents, respectively, condensation and evaporation. The
particular form of these terms constitutes the base of the cavitation model.
In the TE model, the mass source is related to the increase of the vapor
bubbles radius, by considering the inertial effects induced by pressure dif-
ference between the bubble and the liquid. In the ME model, the enthalpy
available to create the vapor phase is considered as a limiting factor for the
bubbles growth, and the vapor mass source is evaluated by considering the
heat transfer between the liquid and vapor phases. For all the three cavita-
tion models, the vapor-liquid flow is treated as an homogeneous vapor-liquid
mixture. The overall flow-field has been described by the Navier-Stokes equa-
tions. The cavitation models used in this study have been implemented in
Fluent by a purposely-developed C routines. Considering, for the sake of
simplicity, a 1D flow, the continuity equation for the vapor phase can be
written as:

∂αvρv
∂t

+
∂αvρvu

∂x
= ṁv. (3.1)

The continuity equation for the liquid phase is:

∂(1− αv)ρl
∂t

+
∂(1− αv)ρlu

∂x
= −ṁv. (3.2)

The flow velocity u has been assumed to be the same for the two phases; ρl
and ρv are the densities of the liquid and of the vapor phases, respectively;
αv is the vapor volume fraction, and ṁv represents the mass exchange rate
between the liquid and the vapor phases. Assuming the liquid and the va-
por densities constant, and substituting Eq.(3.2) into Eq.(3.1), the following
equation can be written:

(ρl − ρv)

(

∂αv

∂t
+ u

∂αv

∂x

)

= −ρ
∂u

∂x
, (3.3)

where
ρ = αvρv + (1− αv)ρl. (3.4)

Then, the continuity equation for the mixture is:

∂ρ

∂t
+

∂ρu

∂x
= 0. (3.5)
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Combining Eq.(3.4) and Eq.(3.5), the following equation can be obtained:

(ρl − ρv)
Dαv

Dt
=

Dρ

∂t
. (3.6)

The vapor volume fraction can be related to the bubble radius Rb and to the
bubble number density nb, which is the nuclei concentration per unit volume
of mixture. Usually nb is taken as a constant. However, in the following
paragraphs other results will be shown where a variable coefficient has been
used. The vapor fraction has been computed as:

αv =
4

3
nbπR

3
b . (3.7)

The closure of the system of equations requires an appropriate cavitation
model. The classical thermal equilibrium cavitation model is based on a sim-
plified Rayleigh-Plesset approach [54]. The mass transfer is related to the
growth of the vapor bubbles radius. The liquid and the vapor phase are sup-
posed to be in thermal equilibrium, and then they are characterized by the
same temperature. The model neglects the energy requirements related to
the vapor formation (enthalpy difference between liquid and vapor phase).
The basic hypothesis of this model argues that the limiting factor for the
bubble growth is the mechanical energy necessary to displace the liquid in
order to permit the growth of the bubble. The enthalpy transfer from the
liquid to the vapor, that is necessary to provide the latent heat to the evap-
orating molecules, is not limiting the velocity of the vapor formation; the
phase exchange depends only on the pressure difference between liquid and
vapor in the surrounding of the bubble. The growth of the bubble radius,
Rb, given by the simplified Rayleigh equation, is expressed as:

DRb

Dt
=

|pb − p|
pb − p

(

2 |pb − p|
3ρl

)1/2

. (3.8)

In the above equation, p is the pressure at a large distance from the bubble,
in the liquid phase (the value of pressure used in the momentum equation); pb
is the pressure in the liquid at the bubble boundary, that is considered equal
to the vapor pressure in the bubble (neglecting the surface tension effects):

pb = pv(T ), (3.9)
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where T is the same temperature for the liquid and vapor phases (mixture
temperature, considered constant). A new approach with respect to the clas-
sical thermal model [54] has been used by taking into account the effect of
turbulence on cavitating flows. Singhal [54] developed a numerical model,
where a probability density function (PDF) approach has been used for con-
sidering the effects of turbulent pressure fluctuations. This approach required
the estimation of the local values of the turbulent pressure fluctuations and
the computations of the time-averaged phase-transition rates by integration
of instantaneous rates in conjunction with assumed PDF for pressure varia-
tion in time:

p
′

turb = 0.39ρk. (3.10)

The thermal cavitation model used in these calculations (called TE) accounts
for the turbulence-induced pressure fluctuations by simply correcting the
bubble pressure, pv, that drives the radius growth, with the following:

pv(T ) = pbp
′

turb/2. (3.11)

Using the simplified Rayleigh-Plesset equation of Eq.(3.8), and combining
Eq.(3.1) and Eq.(3.7), the following equation can be written

ṁv =

(

ρlρv
ρ

)

(4nbπ)
1/3(3αv)

2/3 |pb − p|
pb − p

(

2 |pb − p|
3ρl

)1/2

. (3.12)

The so-called full cavitation model (SP), used in this study, has been devel-
oped by Singhal [54]. The working fluid has been assumed to be a mixture of
liquid, vapor and non-condensable gases. The model is based on the simpli-
fied Rayleigh-Plesset approach, previously described; moreover, it accounts
for some other first-order effects, as surface tension on the bubble surface,
turbulent pressure fluctuations, and presence of non-condensable gases. The
mass fraction of non-condensable gases has been considered constant and
known in advance. Moreover, it has been expected the bubble collapse pro-
cess to be different from that of the bubble growth: bubbles formation (evap-
oration) and collapse (condensation) have been treated treated in a slight
different ways in the model. Eq.(3.10) could be further manipulated, consid-
ering the effects of the bubble surface tension and some physical limitations
to bubbles size. The following expressions for vapor generation/condensation
rates, ṁv, in terms of the vapor mass fraction χv, where (χv = αvρv/ρ), and
the non-condensable mass fraction χg, where (χg = αgρg/ρ), can be derived,
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considering the effects of turbulence-induced pressure fluctuations and non-
condensable gases:

ṁv = (CeρlρvVch/σsup)(1−χv −χg)
√

2(pb − p)/3ρl when p < pv, (3.13)

ṁv = (CcρlρvVch/σsup)(χv)
√

2(pb − p)/3ρl when p > pv, (3.14)

where pv is given by Eq.(3.10) and Eq.(3.11). In the above equation, σsup
is the surface tension of the liquid, Ce and Cc are two empirical coefficients
(the default values are Ce = 0.02 and Cc = 0.01) and Vch is a characteristic
velocity, which reflects the effect of the local relative velocity between liquid
and vapor. In most turbulent flows, the local turbulent velocity fluctuations
are also of this order. Therefore, as a first pragmatic approximation, Vch can
be expressed as the square root of local turbulent kinetic energy:

Vch =
√
k (3.15)

Themechanical equilibrium model (called ME), is based on the thermal trans-
port processes, where the bubbles growth is related to energy (heat) transfer
between the liquid and the vapor phases [19]. The mechanical energy re-
quirements, necessary to displace the liquid in order to permit the growth
of the vapor bubble, have been considered favorable for the bubble growth.
The mass transfer can be evaluated by means of the heat flux between the
liquid and the vapor bubble:

ṁv =
q̇v

△hlv

. (3.16)

The interphase mass transfer is due to the heat transfer between the bubble
and its surrounding liquid. If the liquid is overheated (Tl > Tsat), it has been
assumed that the heat transfer (from the liquid to the vapor) determines the
amount of the vaporized liquid phase. An useful assumption has been the
following:

q̇v = Abhb(Tl − Tb), (3.17)

where the vapor inside the bubbles is at the same pressure of the liquid
(neglecting inertial and surface tension effects), pb = p, and the saturation
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temperature Tsat correspond to the saturation temperature for the local static
pressure of the liquid, that is the so-called mechanical equilibrium hypothesis:

Tv = Tsat(p). (3.18)

Then, considering the mechanical equilibrium hypothesis, the bubble and the
liquid have been considered at the same pressure (neglecting the effects of
the surface tension). The interfacial area density (total bubbles surface for
unit volume of mixture) can be evaluated as:

Ab = 4nbπR
2
b , (3.19)

and hence,

q̇v = 3
αv

Rb

hb(Tl − Tb). (3.20)

The interphase heat transfer coefficient at the interphase of a spherical bubble
can be approximated by:

hb =
Nubλl

2Rb

=
λl

2Rb

(2 + 0.6Re1/2Pr1/3) (3.21)

where Re is the Reynolds number and Pr the Prandtl number. The source
term for the inter-phase mass transfer between the primary phase l (liquid)
and the secondary phase (vapor) v, can be evaluated as the following (ne-
glecting the slip velocity and the turbulent velocity fluctuations between the
two phases):

ṁv =
12λlαv

2R2
b△hlv

. (3.22)

At the beginning of calculations, the vapor volume is zero as well as the
interfacial area. When the liquid pressure falls below the vapor tension, a
liquid-vapor temperature difference appears, but no vapor can grow because
the interfacial area remains zero, as well as the heat transfer; then, only at the
incipient cavitation conditions, a potential interface area could be calculated
considering the critical (minimum) value of the bubbles radius:

R∗ =
2σ

pv(Tl)− p
. (3.23)

In all the three cavitation models in which the mass transfer is defined, the
bubble number density nb appears. It can be defined constant [26] or it can
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be modeled by a nucleation model [9]. Usually, the nucleation model is used
in different fields of study as boiling [19], but the objective of this part of
the study has been to verify whether the nucleation model, coupled with
cavitation model, could give a better prediction of cavitation phenomenon.
In the following section, the classical theory of nucleation has been analyzed.

3.2 Nucleation Theory

Ishii et al.[55] and Kocamustafaogullari [56] postulated that the number of
bubbles in a given control volume can be conserved. Then by using the
transport theorem, it follows that:

dnb

dt
=

∫

v

∂Nb

∂t
dv +

∫

S

Nb▽ · uds, (3.24)

where Nb is the number density of the bubbles, nb is the total number of
bubbles and u is the velocity field. Then, for an infinitesimal control volume:

∂Nb

∂t
+ divNbu = total change of nb. (3.25)

The change in Nb is induced from homogeneous nucleation in the bulk of the
liquid (JHOM , and heterogeneous nucleation on the surfaces (JHET . A term
involving bubble growth due to the disintegration of larger bubbles could also
be included but it should be negligible because of the size of the bubbles at
the initial phase of an expansion. The number density for one-dimensional
flow is then given by:

∂Nb

∂t
+ u

∂Nb

∂x
+Nb

∂u

∂x
= JHOM + JHET . (3.26)

3.2.1 Model of Nucleation

Considering a liquid at temperature T and at room pressure, if the tem-
perature of the liquid is well above the boiling point or the room pressure
is well below the saturation pressure pv at a given temperature T , the sys-
tem is metastable. Vapor bubbles may be generated in liquid (homoge-
neous nucleation), on a surface or at a corner (heterogeneous nucleation).
In practice homogeneous bubble nucleation could occur in boiling at con-
stant liquid pressure or in cavitation where the temperature of the liquid
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remains constant. In practical situations, bubble formation is facilitated by
the presence of an external surface which usually takes the form of dissolved
or suspended impurities or the walls containing the metastable liquid. This
is referred to as heterogeneous bubble nucleation. In the absence of such
heterogeneities, formation of the vapor phase must take place entirely within
the bulk metastable liquid, and this is called homogeneous bubble nucleation.
The classical nucleation theory [19] indicates that nucleation begins after the
”energy barrier” is overcome. Most theoretical treatments of nucleation have
focused on the thermodynamic calculation of the free-energy barrier height.
Thermodynamic and mechanical equilibrium on a curved vapor-liquid in-
terface requires a certain degree of superheat in order to maintain a given
curvature. In so-called classical nucleation theory which has historically pro-
vided the canonical description of nucleation phenomena, it is assumed that
pre-critical and critical bubbles are macroscopic and uniform objects possess
the properties of the thermodynamically stable phase. Within the classical
framework, the free-energy barrier height for homogeneous bubble nucleation
is given by

WCR =
16πσ3

3△p2c
, (3.27)

where

△pc =
2σ

Rc

, (3.28)

and Rc is the critical radius for the growth of a spherical bubble. It is equal
to:

Rc =
2σ

pb − pl
=

2σ

pv(T )− pl
, (3.29)

where pl denotes the pressure of the surrounding liquid. The number of
bubble per unit of volume is related exponentially to the minimum work
WCR required to form the bubble:

nb = Nexp

(−WCR

kT

)

=
ρl

MW
exp(−Gb), (3.30)

where N is the number density of liquid, MW is the molecular weight and
Gb is the Gibbs normalized activation energy. The homogeneous nucleation
rate (the rate of critical bubble formation) can be calculated by means of the
following equation:

36



3.2. NUCLEATION THEORY

JHOM =
ρl

MW

(

2σNa

BπMW

)

exp

(

− 3πσ3

3kT (pv(T )− pl)

)

, (3.31)

where B is a coefficient which takes into account chemical or mechanical
equilibrium. In this study B = 2/3 and NA is the Avogadro number. As
it is shown, in most situations the temperature has a value for which the
homogeneous nucleation rate can be negligible. This implies that bubble
nucleation does not occur in the bulk of liquid but mainly on the walls or
on impurities in the liquid (heterogeneous nucleation). In this case the only
contribution is the heterogeneous nucleation rate given by

JHET =
( ρl
MW

)2/3 1−m

2

(

2σNa

BπMW

)1/2

exp

(

− 16πσ3

3kT (pv(T )− pl)
Φ

)

,

(3.32)
where JHET is an heterogeneous factor which physically implies that the

molecular clusters formed on a rough surface or suspended particles need less
energy to survive.

Φ and m are linked by the following equation:

Φ =
2− 3m+m2

4
, (3.33)

where m is equal also to −cosθ where θ is the contact angle at the bubble
surface. Finally, the number of density is expressed by Eq.(3.26). This equa-
tion has been implemented in the numerical code by external user defined
sub routines. Comparisons of the predicted values for the Gibbs activation
energy (Fig.3.1) showed that the cryogenic fluid has a smaller value of the
Gibbs normalized activation energy, that means an higher tendency to nu-
cleate. This have been confirmed by the plot of the critical radius for the
two fluids in function of the reduced superheat temperature Tl/Tc, where it
is clear that the critical clusters have smallest critical radii in the case of
cryogenic fluid. Looking to Fig.3.2, it is possible to appreciate that the ho-
mogeneous nucleation in water is only possible when the reduced superheat
temperature Tl/Tc is higher than 0.86. Then, in most practical situations
this temperature is not reached and the bubble generation does not occur
in the bulk of the liquid but mainly on the walls. In fact the heterogeneous
nucleation rate is different from zero for smaller values of the reduced super-
heat temperature Tl/Tc. Comparisons with the hydrogen showed that the
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nucleation starts for low temperatures in particular for the case of the het-
erogeneous nucleation. The exponential terms of Eq.(3.31) vary slower with
temperature than the exponential. At room pressure (see Fig.3.2) homoge-
neous nucleation in water occurs at about 0.89Tc. At this temperature the
predicted rate of homogeneous nucleation is about 1010 bubbles m−3s−1 and
its value change of two order of magnitude per degree Celsius. At the same
pressure, homogeneous nucleation in hydrogen starts at 0.78Tc and the nucle-
ation rate is about 1013 bubbles m−3s−1. This value changes of ten orders of
magnitude per degree Celsius. The exponential term of heterogeneous nucle-
ation rate is lower than the exponent of the homogeneous nucleation rate for
the presence of the factor Φ, that is lower than 1. This means that bubbles
on a rough surface need less energy to survive. The heterogeneous nucleation
in hydrogen flow occurs also at very low temperature and for small pressure
difference between the saturated vapor and the superheated liquid.

Figure 3.1: Variations of the normalized Gibbs activation energy Gb and the
critical radius with respect to the reduced superheat temperature Tl/Tc for
water and for cryogenic fluid (H2)

3.3 Test Cases

Numerical simulations have been performed by using the commercial code
FLUENT. The numerical model uses an implicit finite volume scheme, based
on a Pressure-Velocity Coupling algorithm, associated with multiphase and
cavitation model. The code solves the Navier Stokes equations, for the con-
servation of mass and momentum, and other scalars, such as turbulence, and
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Figure 3.2: Variations of the homogeneous and heterogeneous nucleation rate
J with respect to the reduced superheat temperature Tl/Tc for water and for
cryogenic fluid (H2) at room pressure

Figure 3.3: Variations of the heterogeneous nucleation rate J with respect
to the pressure ratio pl/pv for water at T = 500.8K and for cryogenic fluid
(H2) at T = 22.69K and 22.49K.
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CASES T0(K) V0(m/s) P0(N/cm2) Pv(N/cm2

125 A 22.69 32.5 24.11 19.44
132 A 22.49 57.2 38.40 18.50

Table 3.1: Operating conditions for case 125A and 132A

bubble density. In particular, in these calculations turbulence effects were
considered using the Standard k− ǫ turbulence model. The numerical study
have been concentrated on the simulations of some experiments (called 125A
and 132A), performed by Hord [1], in a Ventury geometry (Fig.3.4). The
operating conditions for the analyzed test cases have been shown in Tab.3.1
and the working fluid is hydrogen at two different temperatures. Several
simulations have been performed to analyze the influence of the different
modeling choices Tab.3.2. The grid is axial symmetric and has about 110000
cells. This grid is composed of a fine mesh close to the wall, in order to get an
accurate description of the cavity formation and of the turbulence variables.
The inlet and the outlet boundary conditions are set as pressure boundary
condition, in particular the total and the static pressures have been set up
at the inlet, and the static pressure as set at the outlet because the use of
a pressure outlet boundary condition instead of an outflow condition results
in a better rate of convergence when backflow occurs during iteration. The
upper boundaries are no-slip walls.

Figure 3.4: Ventury geometry
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SIMULATION CAVITATION
MODEL

NUCLEATION ENERGY

1(125A)-15(132A) ME NO nucle-
ation → nb =
1× 1009[1/m3]

NO energy equa-
tion

2(125A)-16(132A) ME YES → Bub-
ble transport
equation(Eq.(3.26)

NO energy equa-
tion

3(125A)-17(132A) ME Eq.(3.26) ENERGY
4(125A)-18(132A) TE NO nucle-

ation → nb =
1× 1009[1/m3]

NO energy equa-
tion

5(125A)-19(132A) TE YES → Bubble
transport equa-
tion Eq.(3.26)

NO energy equa-
tion

9(125A)-20(132A) SP (Ce =
0.01;Cc = 0.02)

NO nucle-
ation → nb =
1× 1009[1/m3]

NO energy equa-
tion

Table 3.2: Simulations for the cases 125A and 132A
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3.4 Results

Pressure profiles, obtained by means of numerical simulations, have been
compared with experimental data [1]. As De Giorgi et al. [53] showed, the
Singhal model [54], with the empirical coefficients validated for water fluid,
gives an over-estimation of the vapor cavity length in the case of hydro-
gen flow. In [54], it has been supposed that this over-estimation could be
due to the choice of the empirical coefficients. The two coefficients Ce and
Cc of the Singhal model have been set to Ce = 0.01 and Cc = 0.02 after
a preliminary sensitivity analysis. In Fig.3.5 the different cavitation mod-
els (mechanical equilibrium model, thermal equilibrium model and Singhal
model) have been used to simulate the two test cases. The numerical re-
sults have been compared with the experimental data; the simulations have
been performed without taking into account additional effects as thermal
effects (energy equation) and nucleation (nuclei transport equation). It is
clear that the mechanical equilibrium model seems to give better perfor-
mances (Fig.3.5). The thermal equilibrium model (TE) neglects the energy
requirements related to the vapor formation (enthalpy difference between
liquid and vapor phase). The basic hypothesis of the model considers, as
a limiting factor for the bubble growth, the mechanical energy necessary to
displace the liquid in order to permit the growth of the bubble. The enthalpy
transfer from the liquid to the vapor, necessary to provide the latent heat
to the evaporating molecules, is not considered as a limiting factor for the
vapor formation; the phase exchange depends only on the pressure differ-
ence between liquid and vapor in the surrounding of the bubble. For a given
cavitation model it is interesting to see the influence of the nucleation and
of the heat transfer near the vapor region. In Fig.3.6, previous results have
been compared with the ones obtained considering the nucleation effects by
implementing in the code the Eq.(3.26). The mechanical equilibrium model
still gives the best accordance with experimental data, then the use of the
transport nucleation equation improves the predictions. However there is an
over-estimation of the minimum pressure in the cavitation region. For all
these simulations the pressure correction equation has been used to limit the
low pressure to the vapor pressure. Then, for these simulations, where the
flow has been assumed as isothermal, the minimum pressure level is equal
to the vapor pressure corresponding to the inlet flow temperature. However
in cryogenic cavitation the thermal effects of cavitation become more pro-
nounced than in conventional fluids, such as water at room temperature, that
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typically disregard thermal effects, in particular at liquid temperature close to
critical temperature. At these temperatures, evaporative cooling effects are
pronounced, due also to the low ratio of liquid to vapor density, consequently
more liquid mass should vaporize to sustain a cavity. The ME model is based
on the thermal transport processes, where the bubbles growth is related to
energy (enthalpy) transfer between the liquid and the vapor phases. It is
assumed that the mechanical energy requirements do not limit the bubble
growth. Therefore, for this model the implementation of the energy equa-
tion has a great impact on the vapor mass transfer rate. This is evident
in Fig.3.7, where the mechanical equilibrium cavitation model ME has been
used with three different approaches, without energy and nucleation effects
(simulation1 and simulation15), with the nucleation transport equation and
without energy equation (simulation2 and simulation16) and with both the
nucleation transport equation and energy equation (simulation3 and simu-
lation17). Results show that the performances of the ME model have been
improved by considering both nucleation and thermal effects. Comparing
the predicted cavity length in Fig.3.8, it is clear that the thermal equilib-
rium model (simulation19) and the Singhal model (simulation17), also based
on a thermal equilibrium hypothesis, show a higher cavitation region than
the ME model (simulation3 and simulation17). The temperature decrease
in cryogenic vapor cavity (see Fig.3.9) reduces the extension of the cavita-
tion and has also strong dependence on fluid thermodynamics properties that
influence the cavitation phenomena (i.e. vapor pressure, density).

3.5 Conclusions

This part of the manuscript concerns the modeling of cavitating cryogenic
flows, usually used in liquid rocket engine. The main objective has been to
adapt the well-known cavitation models in order to study cryogenic flows.
Numerical simulations of cavitation in liquid hydrogen in a Venturi geome-
try have been presented, representing a broader class of problems where the
fluid is operating close to its critical temperature and thermal effects of cav-
itation and nucleation are important. A multiphase formulation accounting
for the energy balance, variable thermodynamic properties of the fluid and
nucleation transport equation, has been described. Several cavitation models
have been compared. Then the importance of the nucleation modeling and of
the thermal effects for the simulation of two phase flow cryogenic flows, has
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Figure 3.5: Comparison between pressure profiles of three cavitation model
for the two test cases. Simulation 1 and simulation 15, ME mechanical
equilibrium model. Simulation 4 and simulation 18, TE thermal equilibrium
model. Simulation 9 and simulation 20, SP full cavitation model.

Figure 3.6: Comparison between pressure profiles obtained by using thermal
equilibrium model (TE) and the mechanical equilibrium (ME) model with
and without nucleation effects. Simulation 1 and 15, ME. Simulation 4 and
18, TE. Simulation 2 and 16, ME with nucleation. Simulation 5 and 19, TE
with nucleation.
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Figure 3.7: Comparison between pressure profiles obtained by using ME
model for the two test cases with and without nucleation and energy ef-
fects. Simulation 1 and 15, ME. Simulation 2 and 16, ME with nucleation.
Simulation 3 and 17, ME with nucleation and energy.

Figure 3.8: Comparison between vapor fraction profiles for the test case
125A. Simulation 3, ME whit nucleation and energy. Simulation 5, TE with
nucleation. Simulation 9, SP. Experimental cavity length equal to 0.0191 m
[1].
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Figure 3.9: Comparison between numerical and experimental temperature
profiles for the test case 125A. Simulation 3, ME whit nucleation and energy.

been assessed. Results show the importance of the choice of the cavitation
model for the performance of the numerical simulations, in particular the
best predictions have been given by the mechanical equilibrium cavitation
model, based on the thermal transport processes, where the bubbles growth
is related to energy (enthalpy) transfer between the liquid and the vapor
phases. Performances of the ME model have been improved by considering
both nucleation and thermal effects.
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Chapter 4

Bubble Dynamics and Water
Treatment with Cavitation

4.1 Introduction

To understand the physical mechanism of the bubble collapse, the numerical
simulation of the acoustic cavitation has been performed and will be pre-
sented in this section. Let us suppose that a bubble (non-condensable gas
+ vapor), that is in an initial thermodynamic equilibrium in the water, is
subjected to an oscillating pressure, that induces its growth (if the pressure
is positive) or its collapse (when the pressure is negative). This work has
been divided in two parts:

• Study of Rayleigh-Plesset (RP) equation

– Discretization and numerical scheme

– Influence of the equation of state (EOS) on bubble behavior

– Compressible effect.

• Study of the production of hydroxyl radicals due to dissociation of
water molecules present in the bubble, during the collapse

A Rayleigh-Plesset equation and three slightly modified equations (RP1,
RP2, RP3) in order to consider the liquid compressible effects, have been
implemented and solved by using in an in-house code (C language). Results
have been compared with the numerical and experimental data of Yuan et
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al. [4] and Lofstedt [3]. For the modeling of the gas in the bubble, two EOS
has been used:

• Perfect gas equation

• Van der Waals equation

The evolution of bubble radius allows giving a first estimation of bubble
temperature. In the following paragraphs, numerical details will be given. In
the last paragraph, the production of radicals has been computed.

4.2 Rayleigh-Plesset Equation

4.2.1 Classical Rayleigh-Plesset Equation

The Rayleigh-Plesset equation describes the behavior of a bubble with an
initial radiusR0 that is in equilibrium with the liquid phase and it is subjected
to a known variation of pressure. Considering the Navier Stokes equation for
the liquid phase (see Appendix A) and by making the hypothesis of zero
viscosity and irrotational field, a potentional solution can be obtained (see
for more details Appendix A):

φ = φ∞ − 1

r
F (t− r/c) ≈ φ∞ − 1

r
F (t) +

Ḟ (t)

c
, (4.1)

where F (t) is F (t) = R2 ∂R
∂t

= R2Ṙ, φ∞ is the potential law of the bubble
(non-perturbed liquid field), c is the speed of sound. Supposing a negligible
radiation effect induced by the bubble (then the liquid is incompressible),
the classical equation of Rayleigh-Plesset is defined as (see Appendix A):

ρ

[

RR̈ +
3

2
Ṙ2

]

= Pg − P0 − Pext(t)−
2σ

R
− 4µṘ

R
. (4.2)

4.2.2 Rayleigh-Plesset Equation with Compressible Term

If the liquid should be considered compressible, by replacing the Eq.(4.1) in
the Navier-Stokes equation (see Appendix B) it is possible to obtain different
versions of RP. The first equation is named RP1 and it has been obtained
by Rayleigh, Plesset, Noltingk et Prostsky and then modified by Keller et
Kolodner[57]:
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RR̈ +
3

2
Ṙ2 =

1

ρl∞

(

Pg(R, t)− P0 − Pext(t)−
2σ

R
− 4µṘ

R

)

+

+
tR
ρl∞

d

dt
[Pg(R, t)− Pext(t)] (4.3)

where tR = R/cl∞ ,cl∞ is the speed of sound at room condition. The
second equation, RP2, comes from the formulation of Keller-Miksis [58]:

(1−M)RR̈ +
3

2

(

1− M

3

)

Ṙ2 =
1

ρl∞
(1 +M) [P (R(t))− P0 − Pext(t+ tR)] +

+
tR
ρl∞

dP (R(t))

dt
,(4.4)

where M = R̈/cl∞. The equation RP3 [28] is :

(1−M)RR̈+
3

2

(

1− M

3

)

Ṙ2 = (1+M)

[

Hb −
1

ρl
P (t+ tR)

]

+tR
dHb

dt
, (4.5)

where ρl, Hb are, respectively, the density and the enthalpy of liquid phase
defined by Tait law (See Appendix B).

4.3 Bubble Collapse Phenomenon

When the bubble collapses, the gas in the bubble is compressed. The tem-
perature in the bubble increases compared to liquid around and, from the
bubble to the liquid phase, a thermal flow develops, making cold the bub-
ble. A temperature gradient due to thermal flux appears from the interface
in the two phases. Conversely, if the thermal effect in the liquid phase is
neglected, the temperature at the interface is supposed to be the liquid tem-
perature far from the bubble T∞. For the mass diffusion and particularly for
vapor formation, a similar mechanism develops. Considering the perfect gas
equation:

pvV =
mv

Mv

RT (4.6)
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it is possible to obtain the vapor mass concentration in the mixture of the
bubble:

C =
mv

mv +mg

=
pvMv

pvMv + pvMg

, (4.7)

where pv and pg are, respectively, the pressure partial of vapor and gas,
Mv Mg are the molecular mass of vapor and gas. At the interface, the vapor
partial pressure is equal to vapor pressure of saturation corresponding to
interface temperature pv(Ti). At the initial instant when the radius bubble
is greatest and the implosion phase starts, the pressure of water vapor is
supposed uniform in the bubble and equal to pv(Ti). The gas mass in the
bubble is supposed as a constant. If the vapor mass is constant (in absence
of condensation) the Eq.(4.7) shows that the concentration of vapor remains
constant during the bubble implosion. However the concentration of vapor
at the interface tends to decrease, because the non-condensable gas pressure
pg increase due to volume reduction:

C =
pv(Ti)Mv

pv(Ti)Mv + pvMg

. (4.8)

If the vapor diffusion through the non-condensable gas develops with-
out resistance, the vapor spreads every moment until the pressure becomes
uniform in the bubble at the value pv(Ti). In the thermal diffusion, the
temperature at the interface can be considered constant until the bubble
temperature increases due to compression. On the contrary, in the case of
mass diffusion, the mass concentration of vapor is constant at the center of
the bubble (the two partial pressure increase together), but it decreases at
the interface because the partial pressure is computed on the base of ther-
modynamic equilibrium. It remains constant while the gas partial pressure
tends to increase due to decrease of the volume. In these conditions, it is
assumed that the behaviors of water vapor and non-condensable gas in the
bubble are similar, because the characteristic implosion time is shorter than
diffusion time during the collapse phase.

4.4 Rayleigh-Plesset Equation Discretization

Two Runge-Kutta methods have been used for the temporal discretization
of RP equation:
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• An adaptive step size Runge-Kutta method proposed by Felhberg [59].
It is a four-stage scheme, but it computes the error with a five-stage
scheme.

• A three-stage Runge-Kutta with TVD (Total Variation Diminishing)
scheme [60].

The two methods have been compared in terms of cost of simulation
with a classical Rayleigh-Plesset Eq.(4.2). In the following paragraph, the
two methods have been described. Then, the results obtained with the two
methods, simulating the test-case of Yuan [4], have been shown. Simulations
reproduce the temporal evolution of a bubble at initial thermodynamic equi-
librium with the liquid phase. The bubble has an initial radius R0 and it is
subject to an oscillating pressure. The operating condition are summarized
in Tab.4.1.

4.4.1 The Runge-Kutta Fehlberg method

This method is based on an adaptive temporal step size. In each iteration,
the solution of two different approximations is computed, the first of four-
stage scheme and the second of five-stage scheme. If the difference between
the two solutions, is higher than tolerance value, the temporal step size h
is reduced, by multiplying it with a coefficient that is proportional to the
tolerance and to the error. The solution of four-stage scheme is :

yj+1 = yj +
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5. (4.9)

The solution of five-stage scheme is:

zj+1 = zj +
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

2

55
k5. (4.10)
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For each iteration the following coefficients have been computed [59]:

































k1 = hf(tj, yj)

k2 = hf
(

tj +
1
4
h, yj +

1
4
k1
)

k3 = hf
(

tj +
3
8
h, yj +

3
32
k1 +

9
32
k2
)

k4 = hf
(

tj +
12
13
h, yj +

1932
2197

k1 − 7200
2197

k2 +
7296
2197

k3
)

k5 = hf
(

tj + h, yj +
439
216

k1 − 8k2 +
3680
513

k3 − 845
4104

k4
)

k6 = hf
(

tj +
1
2
h, yj − 8

27
k1 + 2k2 − 3544

2565
k3 +

1859
4104

k4 − 11
40
k5
)

































The method is called ”adaptive”, because, if the absolute difference be-
tween the two solutions is more elevated than the tolerance, the solution at
four stage is not accepted and the step size h is reduced. The next step size
is calculated multiplying h by s:

s =

(

ǫh

2|zj+1 − yj+1|

)1/4

= 0.840896

(

ǫh

|zj+1 − yj+1|

)1/4

, (4.11)

where ǫ is the tolerance. The Rayleigh-Plesset is an equation of 2th order
that can be simplified in two differential equations of 1th order:

{

f1 =
dR
dt

= Ṙ

f2 = −3
2
Ṙ2

R
+ 1

ρR

[

Pg − P0− Pext− 2S
R

− 4µṘ
R

]

+ Compressible term.

To obtain the radius evolution, it is necessary to apply the R-K method
to the two functions f1 and f2 :

{
y1 = R

y2 =
dR
dt

In the numerical code, the tolerance for the function y2 is equal to ǫ =
0.05. The function z and also the error have been estimated for function y2.
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The first step size has been fixed to h = 1×10−09sec and it is used during the
iterations in which the error is lower than tolerance. If the error exceeds the
tolerance, the time step is decreased. The time step cannot be higher than
h = 1 × 10−09sec, but it can be very short by increasing the computational
cost of the simulation.

4.4.2 The Runge-Kutta method with TVD

The general form of Runge-Kutta method is:

ui =
∑i−1

k=0

(

αiku
k +△tβikL(u

k)
)

i = 1, ...,m

u0 = un

um = un+1

where, △t must respect the TV D properties:

△t ≤ c△t1 (4.12)

where c is the coefficient CFL defined as :

c = min
i,k

=
αik

|βik|
(4.13)

The RK TVD proposed by Gottlieb et Shu [60] has been used :

u1 = un +△tL(u(1))

u2 = 3
4
un + 1

4
u1 + 1

4
△tL(u(1))

un+1 = 1
3
un + 2

3
u2 + 2

3
△tL(u(2))

As for RK-Fehlberg, this method is applied to bubble radius and its
derivative. On the contrary, the time step size is not adaptive, but it is the
minimum value between 1 × 10−09sec and the characteristic times obtained
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by dimensionless form of Rayleigh-Plesset equation:

T =
R2

0

4υ

T 2 = 4υT
2σ

T 2 =
ρlR

2

0

P0

Tcompressible =
ρlcl∞R
3γPg0

R
(

R
R0

)3γ

.
where T(compressible) is the time obtained for the compressible term.

The optimal time step size is chosen with the following steps: 1) a CFL is
chosen, 2) some simulations are performed, 3) if the code presents a problem
of robustness, CFL is reduced and loop restarts from step 2).

4.4.3 Comparison of Two Discretization Methods

The two previous methods have been compared, reproducing the test cases
presented by Yuan [4]. The operating condition are summarized in Tab.4.1.
In Fig.4.1, the temporal variation of radius have been presented. The profiles
are very similar, but when t > 26µs, the four-stage RK method gives a
maximal radius higher than RK TVD (see Fig.4.2). A maximal difference of
2.77% corresponding to t = 37µs have been obtained. On the contrary, the
collapse times and the minimum value of bubble radius, obtained with the
two methods, are equal (see Fig.4.4). Only a difference of 0.8% have been
determined in the last collapse. The bubble temperature have been presented
in Fig.4.3. The results of the two methods are comparable and they present
a maximal difference of 4.3% after t = 30µs Finally, these conclusions should
be done:

• The Runge-Kutta Fehlberg method has an higher accuracy order, but
also an higher computational cost (3 hours on a Linux 64bit, 2GB ram).

• Results obtained with the two methods are nearly the same (The max-
imum difference is of 4.3% on the temperature), but the RK TVD has
a computational cost of 1 minute (Linux 64bit, 2GB ram).

The three-stage Runge Kutta TVD method has been chosen for all the fol-
lowing simulations.
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Figure 4.1: Comparison of temporal bubble radius profiles, obtained by the
resolution of classical RP (Eq.(4.2)), using three stage Runge-Kutta TVD
and four stage Runge-Kutta Fehlberg 4-5. Bubble at a constant temperature
during growth phase (γ = 1). Adiabatic compression if the bubble radius
lower than R0.
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Figure 4.2: Zoom of last four rebounds of Fig.4.1
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Figure 4.3: Comparison of temporal temperature variation, obtained by the
resolution of classical RP (Eq.(4.2)), using three stage Runge-Kutta TVD
and four stage Runge-Kutta Fehlberg 4-5. Bubble at a constant temperature
during growth phase (γ = 1). Adiabatic compression if the bubble radius
lower than R0.
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Figure 4.4: Zoom of last five collapses of Fig.4.1
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4.5 Results

4.5.1 Validation

In the numerical code, the classical Rayleigh-Plesset equation and RP1,
RP2 and RP3 equations (see respectively Eq.(4.2), Eq.(4.3), Eq.(4.4) and
Eq.(4.5)) have been implemented. The validation of in-house code has been
done by reproducing the test case of Leighton [2] obtained with the classical
Rayleigh-Plesset equation and the test case of Lofstedt et al. [3] with RP1,
RP2 , RP3 equations. In the first case, the air bubble is supposed in thermo-
dynamic equilibrium with the liquid phase and it is subject to a oscillation
pressure Pext = Pasin(̟t). The gas in the bubble is subject to an adiabatic
transformation. The operating conditions are summarized in Tab.4.1. The
numerical results of Leighton [2] have been compared with the results ob-
tained with the in-house code (Fig.4.5). There is a good accord between the
profiles of the bubble radius, the derivative of radius (or interface velocity),
the bubble pressure and the internal temperature. For the validation of the
other RP equations (RP1, RP2 and RP3), the test case of Lofstedt et al. [3]
has been used. In this test case, the simulation of a bubble in equilibrium
subject to an oscillating pressure have been considered. The initial condi-
tion are summarized in Tab.4.1. In this case, experimental data and the
numerical results obtained by Lofstedt et al. [3] (obtained by resolving a
Rayleigh-Plesset equation modified to consider the compressible effects), are
available:

(1− 2M)RR̈ +
3

2

(

1− 4M

3

)

Ṙ2 =
1

ρl
[P (R(t))− P0 − Pext(R = 0, t)] +

+tR
d [R(t))− Pext(R, t)]

dt
,(4.14)

where M is the Mach number defined as M ≡ Ṙ/cl∞, the function
P (R(t)) is defined by Eq.(A.10) of Appendix A, P0 is the equilibrium pres-
sure at the instant t = 0, Pext is the solicitation pressure of bubble . It can be
observed a good accordance between bubble radius profiles obtained by the
in-house code with the three equations and the experimental and numerical
results of Lofstedt et al. [3]. More evident differences can be observed in
23µs < t < 33µs, where an higher bubble growth than experimental and nu-
merical results of Lofstedt is obtained. However, the maximum error is low
and equal to 2.55%. The first time collapse is well estimated with all equa-
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Test Case P0

(atm)
T0(K) R0

(µm)

̟
(2π)

[kHz]

σ
[kg/s2]

ρ
[kg/m3]

µ
[kg/(m·
s]

Pa

[atm]
cl∞
[m/s]

R0

b

Yuan 1 300 4.5 26.4 0.0725 1000 0.001 1.275 1481 8.54

Lofstedt 1 300 4.5 26.5 0.03 1000 0.003 1.35 1481 8.54

Leighton 1 293.5 2000 10.0 0.0727 1000 0.001 2.665 - -

Table 4.1: Test-Case of Validation

tions Fig.4.6, but the critical radius of bubble estimated with in-house code
are not much lower than experimental value (Fig.4.7). Observing the differ-
ence between profiles obtained with RP1, RP2 et RP3 (Fig. 4.7), RP1 gives
best prediction of experimental data. The critical radius of first collapse,
obtained with RP1, has been compared with the other numerical profiles
(Fig.(4.7)). It is evident that at the collapse, derivatives dR/dt = 0, because
in the point of minimum radius, the tangent is parallel to x axis (Fig.(4.7)).
However the minimal value and the profiles shapes are different.

4.5.2 Influence of Equation of State

In this work, the bubble of gas in equation RP1, RP2 and RP3 (see respec-
tively Eq.(4.3), Eq.(4.4) and Eq.(4.5) is governed by:

• Van der Waals (VDW)

• Perfect gas (PFG).

In a first analysis the equation of state Van der Waals should be more ap-
propriated because when the fluid conditions are closed to saturation curve,
the hypothesis of perfect gas is not verified. However the results obtained
with two approaches have been compared for each equation RP1, RP2 and
RP3 simulating the test-case of Yuan et al. [4]. The two thermodynamic
approaches give similar results (see Fig.(4.9-a), Fig.(4.10-a) and Fig.(4.11-
a)). The radius have almost the same profiles, the maximal values of radius
obtained with PFG is higher than values obtained with VDW (see Fig.(4.9-
b), Fig.(4.10-b) and Fig.(4.11-b)), but the difference is lower than 1%. On
the contrary, the two approaches give different predictions for the minimal
radius during the first collapse and in the temperature estimation. In all the
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Figure 4.5: Behavior of an air bubble with initial radius R0 = 2mm in the
water at standard condition (T = 20C;P0 = 1atm). Pressure wave with
frequency f = 10kHz and amplitude Pa = 2.7bar. Comparison between the
profiles obtained by Leighton [2] and by in-house code, solving a classical RP
equation
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Figure 4.6: Comparison of temporal radius evolution obtained with the in-
house code (RP1, RP2 and RP3) and numerical and experimental profiles.
In this case R0 = 4.5µm, f = 26.5kHz, σ = 0.03kg/s2, cl∞ = 1481m/s,
µ = 0.003kg/m and Pa = 1.35atm. The bubble is supposed at constant
temperature (γ = 1) and the properties are uniform in the bubble.
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Figure 4.7: Zoom of first collapse of Fig.(4.6). Comparison of profiles ob-
tained by RP1, RP2 and RP3 and by Lofstedt [3] with Eq.(4.14)

Figure 4.8: a) Zoom of first collapse of Fig.4.6. b) Comparison of profiles
obtained by RP1 and by Lofstedt [3] with Eq.(4.14)
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simulations (see Fig.(4.9-c), Fig.(4.10-c) and Fig.(4.11-c)) the estimation of
critical radius is different. When PFG is used, the minimal radius is lower
than the value estimated with VDW. This difference has a strong influence
on the temperature estimation that shows a difference of 103K between the
solutions obtained with the two EOS. The most elevated temperature is ob-
tained with RP3 ((see Fig.(4.9-d), Fig.(4.10-d) and Fig.(4.11-d))).

Figure 4.9: (a) Comparison of radius profiles obtained by RP1 with the
hypothesis of PFG and VDW EOS. (b) Zoom of 2th, 3th and 4th maximum
radius. (c) Zoom of first collapse of (a). (d) Temperature profiles.
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Figure 4.10: (a) Comparison of radius profiles obtained by RP2 with the
hypothesis of PFG and VDW EOS. (b) Zoom of 2th, 3th and 4th maximum
radius. (c) Zoom of first collapse of (a). (d) Temperature profiles.
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Figure 4.11: (a) Comparison of radius profiles obtained by RP3 with the
hypothesis of PFG and VDW EOS. (b) Zoom of 2th, 3th and 4th maximum
radius. (c) Zoom of first collapse of (a). (d) Temperature profiles.
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4.5.3 Compressible Effect Evaluation

As explained before (see Appendix A for more details), the compressible ef-
fect has been taken into account. The classical Rayleigh-Plesset equations
and the others (RP1, RP2 et RP3) are different because of a different esti-
mation of compressible term ρ

c
d2

dt2
(R2Ṙ). In this part of work, the influence

of compressible effect on evaluation of bubble behavior has been considered.
At our knowledge, in literature there are not comparisons between classical
Rayleigh-Plesset and a version in which the compressible effect is consid-
ered. The test cases, chosen for this comparison (Yuan [4] and Lofstedt [3]),
present important compressible effects, because the estimated minimal radius
is very low, closed to zero. In test case of Yuan [4], the gas transformation
is supposed as isothermal when the bubble radius is higher than the initial
radius R0, while it is supposed adiabatic when R < R0. On the contrary,
in the test case of Lofstedt [3], the gas transformation is always supposed
as isothermal (γ = 1). It is evident, in both test cases, that the compress-
ible effects influence the frequency of rebounds (Fig.(4.12)), Fig.(4.11-d))).
In fact, comparing the collapse times, results obtained without compressible
effect are nearly three times more elevated than the collapse time obtained
with the equation considering the compressible effect. This consideration
does not concern the first collapse that is not influenced by compressible
effect.

4.5.4 Radicals estimation

During collapse phase, the volume of bubble decreases and then an increase
of temperature is induced. This effect allows the water dissociation in the
bubble, in the form of vapor. The water develops radicals that are hydroxyl
radicals OH, following the equation H20 ⇌ H + OH. Yasui [30] gave the
formula to compute speed of dissociation reaction and association for the
reaction:

vr =
d[H2O]

dt
= −d[H]

dt
=

d[OH]

dt
= ArT

Bre−
Cr
T [H][OH], (4.15)

vd =
d[H]

dt
=

d[OH]

dt
=

d[OH]

dt
= AdT

Bde−
Cc
T [H2O], (4.16)

where r and d indicate, respectively, the association and the dissociation
phase. The constant value are indicated in [30]:
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Figure 4.12: Comparison between radius evolution profiles obtained by clas-
sical RP and by RP1 (with liquid compressibile effect) in the case described
by Yuan [4]
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Figure 4.13: Comparison between radius evolution profiles obtained by classic
RP and by RP1 (with liquid compressible effect) in the case described by
Lofstedt [3]
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{
Ar = 2.25× 1010 m3mol−1s−1

βr = −2
Cr = 0

{
Ad = 1.96× 1016 m3mol−1s−1

βd = −1.62
Cd = 59700K

.
It is possible to suppose a thermodynamic equilibrium, because the chem-

ical reaction times are several orders of magnitude lower than collapse times.
At the equilibrium, the two phases are the same:

[H][OH]

[H2O]
=

kd
kr

=
Ad

Ar

T βd−βre
Cd−Cf

T = K(T ). (4.17)

This allows obtaining the equilibrium constant K(T ), that is exclusively
function of temperature. Replacing the Eq.(4.5.4) in Eq.(4.17) :

K(T ) = 8.711× 105T 0.38e−
59700

T . (4.18)

The Eq.(4.17) allows estimating the OH or H radical concentration as a
function of temperature:

nOH =
√

K(T )nH2OV , (4.19)

where V is the bubble volume and T is the temperature. The number of
water moles that are in the bubble nH2O have been calculated on the base
of EOS and bubble radius. An hypothesis has been made, that the water
vapor is very short compared to the gas in the bubble. This hypothesis is
perfectly respected in the simulated test cases because the vapor saturation
pressure is 2330Pa that is lower than the initial gas pressure, i.e. nearly
1.35Pa. Finally it is possible to compute the number of vapor moles on the
base of EOS. In the case of perfect gas the moles are:

nH2O =
Pv

[

4
3
πR3

]

ℜT [mol of vapor], (4.20)

where ℜ is the gas perfect constant 8.914J/(mol ∗K). The radicals have
been computed in the case described by Yuan [4]. Results have been obtained
by the three equations RP1, RP2 et RP3 with perfect gas EOS and Van der
Waals EOS. In all the simulations the RP equation with the resolution of
Van der Waals gives a production of OH radicals more elevated than when
the perfect gas is used (Fig.4.12).
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Figure 4.14: Comparison of OH radicals estimations obtained by RP1 with
van der Waals EOS and with perfect gas EOS in the test case described by
Yuan[4].
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Figure 4.15: Comparison of OH radicals estimations obtained by RP2 with
van der Waals EOS and with perfect gas EOS in the test case described by
Yuan[4].
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Figure 4.16: Comparison of OH radicals estimations obtained by RP3 with
van der Waals EOS and with perfect gas EOS in the test case described by
Yuan[4].
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4.6 Conclusions

It is known that the degradation of contaminant in the water is enormously
influenced by temperature at the center of the bubble during the collapse
phase. Then, it is very important to have numerical models allowing to es-
timate the temperature evolution of the gas bubble. My contribution takes
into account the modeling aspect. It has been supposed that pressure and
temperature in the bubble are uniform and cavitating bubble behavior has
been predicted on the base of several forms of Rayleigh-Plesset equations.
These equations have been used in order to reproduce the ultrasonic cavita-
tion and in particular the radius evolution of a bubble subject to an oscillating
pressure. This part of work could be resumed in several parts:

• In an in-house code in C language, the classical equation of Rayleigh-
Plesset and three others equations (RP1, RP2, RP3), based on Rayleigh-
Plesset have been considered

• A first study about the discretization method has been presented. The
Runge-Kutta Fehlberg 4-5 and three stages Runge-Kutta TVD have
been implemented. The two methods gave nearly the same results, but
the Runge-Kutta Fehlberg 4-5 method have a computational cost more
elevated, even if it presents a more accurate error estimation. Then,
for all the remaining simulations, three stages Runge-Kutta TVD has
been retained.

• The in-house code has been validated, simulating the cavitating condi-
tion of Leighton [2] for the classical Rayleigh-Plesset equation and the
test-case of Lofstedt et al. [3] for the validation of RP1, RP2 and RP3
equations. The numerical profiles obtained are very similar to numeri-
cal and experimental profiles given by Leighton [2] and Lofstedt et al.
[3].

• The importance of the equation of state for the thermodynamic of the
bubble gas has been observed, adopting the Van der Waals equation
and the perfect gas equation of state. In all the simulations in which
the Van der Waals EOS is used, the temperature has been estimated
higher than that one obtained with the perfect gas equation.

• The influence of compressible effect have been estimated. The test
cases, [2] and [3], have been simulated, using the classical Rayleigh-

74



4.6. CONCLUSIONS

Plesset and the RP1 equation. The profiles have been compared and it
could be observed that the compressibility effect influence the bubble
rebounds, except for the first collapse.

• Finally the OH radicals have been computed, using the RP1, RP2 and
RP3 equations with both van der Waals and perfect gas. In all the
simulations the estimation of radicals is higher when a Van der Waals
equation is used.
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Chapter 5

Thermal Effects

5.1 Governing Equations

In this paragraph, the in-house model and the Fluent model are shown.
More attention has been devoted to the description of model that has been
proposed and used in the in-house code. On the contrary for more details
concerning Fluent model, see Fluent theory-guide [61].

5.1.1 Quasi-1D Model

A quasi-one dimensional steady flow in a converging-diverging nozzle has
been simulated. The continuity and momentum equations have been solved
for the continuous phase coupled with three other equations in order to de-
scribe the secondary phase that are a volume fraction equation, the Rayleigh-
Plesset equation for the evolution of bubble radius and finally a bubble mo-
mentum equation for the estimation of bubble velocity. No equations for the
turbulence terms have been considered.

Physical conditions and assumptions

The present study has been based on the following assumptions:

• Liquid and bubbles are in initial dynamic and thermal equilibrium.

• The bubbles contain only vapor and non-condensable gas.
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• There is not friction and heat transfer between the flow and the nozzle
walls.

• There is not source terms for condensation and evaporation.

• In all simulations, the vapor fraction is shorter than liquid fraction,
then it is neglected in continuity and momentum equations.

• The bubbles have a uniform size at any nozzle cross-section.

• Neither coalescence nor fragmentation are considered.

• The flow is incompressible and liquid and vapor density, ρl and ρv, are
constant.

• The temperature and pressure within the bubble are always uniform.

Bubbly flow equations

Let us suppose that the flow develops in only x direction along channel axis,
so the normal velocity components can be neglected. Then, in the duct,
the vapor fraction is always lower than liquid fraction. The continuity and
momentum equations of bubbly flow have been widely studied by Wang and
Brennen [62, 63] and they take the following forms:

∂(1− α)A

∂t
+

∂(1− α)Au

∂x
= 0, (5.1)

∂u

∂t
+ u

∂u

∂x
= − 1

2(1− α)

∂Cp

∂x
, (5.2)

where Cp(x, t) = (p(x, t) − p0)/(0.5ρlu
2
0) is the fluid pressure coefficient,

p(x, t) is the fluid pressure, p0 is the upstream fluid pressure, u0 is the up-
stream liquid velocity, A(x) is the cross-section area. The definition of bubbly
void fraction α(x, t) = 4/3πηR(x, t)3/[1 + 4/3πηR(x, t)3ss] introduces a new
unknown in the system that is the radius of the bubble R(x, t).
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Bubble Equations

As explained in the previous paragraph, it is necessary an equation in order
to take into account the evolution of bubble radius R(x, t) in the Ventury
tube. Introducing a classical Rayleigh-Plesset equation [9], a relation be-
tween the pressure field and the bubble radius is solved. In this work, the
Rayleigh-Plesset equation (RP) includes the viscosity term (second last left
term in Eq.(5.3), the surface tension term (last left term in Eq. (5.3)), the
term of incondensable gas (first right term in Eq.(5.3)), the pressure term
(second right term in Eq.(5.3)) and the thermal effect term (last right term
in Eq.(5.3)):

R
D2R

Dt2
+

3

2

(

DR

Dt

)2

+
4υlDR

RDt
+

2S

ρlR
=

pg0
ρl

(

R0

R

)3k

+

+
Pv(T∞)− p(x, t)

ρl
+

Pv(Tb)− Pv(T∞)

ρl
, (5.3)

where D/Dt is a Lagrangian derivative,υl is the liquid viscosity, S is su-
perficial tension, ρl is the liquid density, Tb is bubble temperature and T∞,
is the flow temperature far from the bubbles, corresponding to the upstream
liquid temperature, pg0 is the incondensable gas pressure and k = 1.4 is
the coefficient of the polytropic law. The RP equation permits to intro-
duce in the system a term for the estimation of the thermal effects. As
explained by Brennen [9] and successively by Franc [14], in the term (d) of
Eq.(5.3),Pv(Tb) and Pv(T∞) are the vapor pressures corresponding, respec-
tively, to bubble temperature and liquid temperature far from the bubble.
In the case of isothermal hypothesis, the two vapor pressures are equal be-
cause Tb = T∞, otherwise, this term takes into account the difference of
temperature between the upstream liquid and the bubble, because of the
phase transition after the apparition of cavitation. Then the vapor pressure
corresponding to the bubble temperature is lower than the upstream or liq-
uid temperature far from cavitating zone. If the difference of temperature
is small, as in the simulated cases, the Taylor expansion can be computed
as Pv(Tb) − Pv(T∞) = (dPv/dT )(Tb − T∞) where the temperature difference
is calculated by balancing the latent heat associated with evaporation or
(condensation) with the heat exchanged between the liquid and the bubble
[14, 64]:
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D

Dt

(

4

3
πR3ρv

)

Lev = 4πR2hb(T∞ − Tb), (5.4)

where Lev is the liquid latent heat and hb is the bubble convective heat
transfer coefficient. Finally substituting the Eq.(5.4) in Eq.(5.3) and consid-
ering the Taylor expansion, the RP equation becomes:

R
D2R

Dt2
+

3

2

(

DR

Dt

)2

+
4υlDR

RDt
+

2S

ρlR
=

pg0
ρl

(

R0

R

)3k

+

+
Pv(T∞)− p(x, t)

ρl
+

dPv

dT

Levρv
ρlhb

DR

Dt
(5.5)

By means of the heat balance equation (Eq.(5.4)) between the liquid and
the bubble, the convective heat transfer coefficient hb is introduced in the
model and it represents a crucial parameter that it is difficult to estimate.

Convective Heat Transfer Coefficient Modeling

For a better estimation of the temperature decrease, it is necessary to give
an accurate prediction of this coefficient. In the first part of this study, the
hb coefficient has been considered as a constant. It has been varied in a
range between 1× 1003 and 1× 10+10 in order to know the influence of this
parameter on the prediction obtained by cavitation model. All the results
have been compared with experimental data allowing to find the best range
of hb permitting to reproduce the experimental results. On the contrary, in
the second part of this work, several hb models have been tested in cryogenic
flows and they have been compared with respect to experimental data. A
significant issue in cryogenic flows is to find the operative range of convec-
tive heat transfer coefficient for different cryogenic fluids. Before presenting
results of sensitivity analysis, let us explain the physical meaning of hb coef-
ficient and its correlation to cavitation model. The heat transfer coefficient
hb is the ratio between the heat flux, q, per unit area, q/A, transferred by
convection or phase transition, and the difference of temperature △T , in
cavitating flow, between the bubbles and the surrounding liquid:

hb =
q

A△T
. (5.6)

Then, the liquid phase gives (or absorbs) heat in order to evaporate (or to
condensate) and this exchange produces a reduction (or increase) of liquid

79



5.1. GOVERNING EQUATIONS

temperature. Then, initial liquid evaporation depends on the liquid capacity
to exchange heat. Then, it is possible to observe a very elevated temperature
drop, corresponding to a short vapor production (or vice-versa). If heat
exchange in cavitating flows should be estimated, it is evident the importance
of convective heat transfer coefficient hb. Let us suppose evaporation of a
liquid and that a wrong value of hb is considered:

• If hb is over-estimated, this means that a temperature difference inferior
to the real difference in the liquid is supposed. Let us consider the last
term of Eq.(5.3), representing thermal effects. More hb increases, more
this term approaches to zero. In this case, i.e. for the last term of
Eq.(5.3) close to zero, the Eq.(5.3) becomes a classical Rayleigh-Plesset
equation for isothermal flows. Then, a value of hb very high generates
a bubble radius forty or fifty time bigger than initial radius, and thus
an elevated vapor fraction [44, 62, 63].

• On the contrary, if hb is under-estimated, this means that a temperature
difference superior to the real difference is supposed. Then, the bubble
growth or its collapse is dominated by the thermal effect. In fact, the
last term of Eq.(5.3) is greater than other terms, then a value of hb

very low determines a reduction of cavity and a small vapor fraction
[65, 12, 26, 66].

In this work, three models have been analyzed in order to estimate the bubble
convective heat transfer coefficient:

• Ranz and Marshall [5] studied the evaporation of droplets in connection
with spray drying and presented an equation for molecular transfer rate
during evaporation along the flight path of the droplet. They propose
the following correlation for the bubble Nusselt number:

Nub = 2 + 0.6Re
1/2
b Pr1/3andhb =

Nubλl

2R
. (5.7)

Although this model has been proposed for the evaporation of the
droplets, this model has been used also in other fields of application.
Deligiannis et al. [19] used this model in order to study the depressur-
ization of a subcooled or saturated liquid (water or Freon 21). It has
been already used in cryogenic flow by Li et al. [67], investigating the
boiling flow. Finally, the Ranz and Marshall model [5] is implemented
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also in the commercial code Fluent and CFX, then for this reason this
model has been considered in this study. The model is a function only
of the bubble Reynolds number and Prandtl number.

• Recently, Oresta et al. [6] combined two asymptotic forms of Nusselt
number obtained for high or low bubble Péclet number, obtaining the
following correlation for Nub :

Nub = Nub,0

[

1 +

(

Peb
Pec

)n/2
]1/n

andhb =
Nubλl

2R
, (5.8)

where n is a fitting of other results [6] and it is assumed equal to
2.65. An analysis of sensitivity of n has been taken into account,
but the bubble temperature profiles, obtained at different values of
n, present only slightly differences. Nub,0 = 2+(6Ja/π)1/3+(12Ja/π)
is the Nusselt number defined for low bubble Péclet number, with Ja =
ρlcpl(T∞ − Tsat)/ρvLev. Also Pec = πNu2

b,0/4 is the crossover Péclet
number and the bubble Péclet is defined Peb = RebPr = 2R |v − u| /κ,
with κ is the liquid thermal diffusivity. This model has been tested
exclusively in conditions of natural convection of water flows. How-
ever, this model is a function of bubble Reynolds number and Prandtl
number through the Péclet number and then it is also a function of
temperature by means of the Jacob number appearing in the bubble
Nusselt number. The dependence from the temperature gives the pos-
sibility to estimate its influence in the prediction of hb coefficient and
also of the temperature drop. This model has been used in condition
of natural convection of water.

• The last approach has been used by Christopher et al. [7] in order to
study the Marangoni effect on a bubble that moves on a heated wire:

hb =
2σ̂

2− σ̂

ρvL
2
ev

Tv

(

M̄

2πR̄Tv

)1/2 [

1− Pv(Tb)

2Levρv

]

(5.9)

where ˆsigma is the accommodation coefficient equal to 0.03 for water
flow, M̄ is the vapor molecular weight, R̄ is the universal gas con-
stant and Tv is the vapor temperature equal to bubble temperature
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for the pressure inside the bubble, obtained by Laplace and Clausius-
Clapeyron equation: Tv = Tsat + [2σTsat/(LevρvR)], with Tsat is the
saturation temperature at the upstream pressure p0. This last model
presents very different characteristics compared to the first two models,
because it is a function exclusively of bubble conditions. Also in our
previous study [68], we estimated the validity of this model in the sim-
ulation of cryogenic cavitating flow and for the estimation of thermal
effects. Then, we have compared this model to the others.

Bubble Velocity

In the definition of Reb, used in the Ranz and Marshall and Oresta models,
the relative motion between the phases occurs and so the bubble velocity
equation is solved. The bubble momentum equation has been used in a
cavitating simulation by Albagli [69]. It neglects the term of history forces
and the material transport term:

ρvv
Dv

Dt
+

1

2
ρl

(

Dv

Dt
− Du

Dt

)

= −∂p(x, t)

∂x
− 3

8
ρlCD

(v − u)|v − u|
R

, (5.10)

where v(x, t) is the bubble velocity and the CD is the drag coefficient
equal to 0.444 (see [69]). Numerical Methods

Numerical Methods

All terms of Eq.(2.2)-(5.10) have been transformed in their dimensionless
form, using the upstream value, obtained considering the following dimen-
sionless variables ū = u/u0, x̄ = x/R0 , R̄ = R/R0 , η̄ = ηR0, L̄ = L/R0 , t̄ =
tu0/R0 where the upstream condition are denoted by subscript ”0”, the vari-
ables dimensional value is denoted by superscript ”-”, t is the time, u is the
velocity of flow. R is the bubble radius and η is bubble population for unit of
liquid volume, obtained by considering the relation (1−α0) = 1/(1+4/3πη̄),
and L is the length of the nozzle. This gives the possibility to introduce
in the equations, the dimensionless Reynolds number Re = ρlu0R0/µl, the
dimensionless Weber number, We = ρlu

2
0R0/S and the cavitation number

σ = (p0 − Pv(T∞))/(0.5ρlu
2
0). Only steady 1D flows are considered in this

work, so the final equation system is:

(1− α)ūĀ = (1− α0) = constant (5.11)
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ū
dū

dx̄
= − 1

2(1− α)

dCp

dx̄
(5.12)

α(x, t) =
4
3
πηR̄

[

1 + 4
3
πηR̄

] (5.13)

R̄

(

ū2d
2R̄

dx̄2
+ ū

dū

dx̄

dR̄

dx̄

)

+
3ū2

2

(

dR̄

dx̄

)2

+
4ū

ReR̄

dR̄

dx̄
+

2

We

(

1

R̄
− 1

R̄3k

)

=

−Cp

2
− σ

2

(

1− 1

R̄3k

)

+
dPv

dT̄

Levρv
ρlhbu0

ū
dR̄

dx̄
(5.14)

hb = f(Re, Pr) or hb = f(Re, Pr, Ja) or hb = f(bubble conditions) (5.15)

(

ρv +
1

2
ρl

)

v̄
dv̄

dx̄
+

1

2
ρlu

2
0

dū

dx̄
= −p

x̄
− 3

8
ρlCDu

2
0

(v̄ − ū)|v̄ − ū|
R̄

(5.16)

The governing equations (Eq.(5.11)-(5.16)) are integrated in space using
a four stage Runge-Kutta scheme [70]. This scheme has been widely used
in previous studies for the resolution of Rayleigh-Plesset equations. Finally,
this model presents two tuning parameters, i.e. the initial bubble radius and
the initial vapor fraction. In all the simulations we assume that R0 = 0.0001
([62, 71]). On the contrary, the value of α0 has been has been calibrated in
order to obtain the experimental results.

5.1.2 Ansys-Fluent Model

The numerical simulations have been performed by using the commercial
code FLUENT (release 12.1), using the multiphase cavitation modeling ap-
proach. It consists in the use of standard viscous flow equations governing
the transport of phases (Eulerian multiphase), a k − ε turbulent model and
a model to estimate the liquid-vapor mass transfer due to cavitation phe-
nomenon. The numerical model uses an implicit finite volume scheme, based
on the SIMPLE Pressure-Based Algorithm. A second order differentiating
scheme is used, except for vapor fraction for which a QUICK schemes have
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been used. Continuity and momentum equations are solved for each phase
[61].

∂αqρq
∂t

+▽ · (αqρq ~vq) =
2
∑

p=1

(ṁpq − ṁqp) , (5.17)

∂αqρq ~vq
∂t

+ ▽ · (αqρq ~vq ~vq) = −αq▽p+ ▽ · ¯̄τ + αqρq~g +

+
2
∑

p=1

(

~Rpq + ṁpq ~vpq − ṁqp ~vqp

)

+ (~Fq + ~Flift,q + ~Fvm,q), (5.18)

where the subscript q characterizes the phase, αq is the vapor fraction
of phase, ρq is the physical density, ~vq is the velocity and ṁ characterizes
the mass transfer between the two phases, p is the average pressure, ¯̄τ is
the phase stress-strain tensor, ~Rpq is the interaction force between phases,

~vqp is the interphase velocity and finally ~Fq, ~Flift,q, ~Fvm,q are respectively
the external body force, the lift force and the virtual mass force. In the
k − ε turbulent model, the near-wall region has been modeled by a wall
function that bridge the viscosity-affected region between the wall and the
fully-turbulent region. A named standard wall function has been used basing
on the work of Launder and Spalding [72]. As explained before, it is necessary
a model for the estimation of mass transfer between the two phases, governed
by the vapor transport equation:

∂αvρv
∂t

+ div · (αvρv ~vv) =
ρvρl
ρ

Dα

Dt
= ṁ, (5.19)

where the subscript v indicate the vapor phase. The mass transfer be-
tween the two phases ṁ is modeled by Schnerr and Sauer model[73] supposing
the same mass for evaporation and the condensation. This model, imple-
mented in Fluent, supposes, also, the presence of a large number of spherical
bubbles and it proposes a relation between the vapor volume fraction and
radius of bubble:

α =
4
3
πnbR

[

1 + 4
3
πnbR

] , (5.20)

where R is the bubble radius and nb is the nuclei concentration per unit
of pure liquid volume. In this case nb is constant, because it is assumed that
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no bubbles are created or destroyed. A simplified Rayleigh-Plesset equation
is introduced in the system of equations in order to model the bubble radius
R:

Dα

Dt
=

√

2

3

Pb − P

ρl
, (5.21)

where D/Dt is the material derivative, Pb is the bubble pressure, P is
the pressure far from the bubble. Coupling the Eq.(5.19), Eq.(5.20) and
Eq.(5.21) it is possible to obtain a final expression of ṁ as follows:

ṁ =
ρvρl
ρ

Dα

Dt
=

ρvρl
ρ

α(1− α)
3

R

√

2

3

Pb − P

ρl
. (5.22)

To estimate the thermal effects, it is necessary to introduce two separate
enthalpy equations for each phase:

∂

∂t
(αqρqhq) + div · (αqρqhq ~vq) = −αq

∂

∂t
p+

2
∑

p=1

(Qpq + ṁpq~vpq − ṁqp~vqp) ,

(5.23)
where Qpq is the heat exchange between phases and it is a function of

the difference of temperature between the two phase and the convective heat
exchange coefficient hb:

Qpq = hb(Tp − Tq). (5.24)

Also in Fluent, the hb coefficient in Eq.(5.12), should be modeled by an
evaluation model. In the code, the Ranz and Marshall model[5] (see Eq.(5.7))
is already implemented. In order to obtain the last objective of this work, i.e
to confirm the conclusion obtained in the first part of the work, it has been
necessary to implement in Fluent, the Christopher model [7] (see Eq.(5.9))
by a purposely-developed C external routine.

5.2 Test Cases

In this work, we deal with numerical simulation of a cavitating hydrogen
flow in a Venturi orifice. This configuration has been widely studied exper-
imentally by Hord [1], where 32 cases at different operating conditions and
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for each case have been presented, and the temperature and pressure experi-
mental profiles have been given. Numerical domain considered in this study
is shown in Fig. 5.1. It is constituted by an axial-symmetric geometry that
gives the possibility to reproduce the cavitating flow by means of a quasi-one
dimensional model.

Figure 5.1: Partial view of experimental apparatus reproduced in this study.

The Ventury dimensionless area is given by:

Ā(x) =









(r+c−
√

2rR0x̄−R̄2

0
x̄2)2

(r+c)2
0 < x̄ < r

c2

(r+c)2
r < x̄ < d

(tg(2◦,15)R0(x̄−x0)−c)2

(r+c)2
d < x̄ < L̄,









where r = 0.0033m, c = 0.01238250m, d = 0.016764m and x0 = 0.016764m.
For each case, B-factor of Stepanoff has been computed, considering the ra-
tio between the real temperature drop △T and the theoretical temperature
drop △T ∗. In particular, △T represents the difference between the inlet
temperature T0 and the lowest experimental temperature observed in cavi-
tating region. The computed B-factor has been called BEXP . Most of values
of BEXP are between 1.5 and 3 (Fig.5.2) and this shows that the temper-
ature drop is more elevated than the theoretical temperature drop. It is
interesting the growing trend of BEXP compared with cavitation number σ
(Fig.5.2). More elevated values appear in the cases with σ > 1.8 (Fig.5.2)
and inlet temperature T0 < 0.63K (in Fig.5.2). These cases are characterized
by a tax of cavitation shorter or corresponding to inception of cavitation. It
is not possible to obtain a trend of BEXP with respect to Reynolds number
(Fig.5.2).
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Figure 5.2: BEXP compared with (a) cavitation number σ, (b) inlet tem-
perature T0, (c) Reynolds number Re and (d) theoretical temperature drop
△T ∗
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5.3 Grid Convergence for 1D CFD code

The grid convergence study has been performed simulating the cavitating
flow obtained with velocity inlet v0 = 32.3m/s, pressure inlet p0 = 0.230MPa
and hydrogen temperature inlet T0 = 22.77, corresponding to 121B test-
case [1]. The flow-field has been computed on uniform grids of increasing
density: the finer grid is of 480 × 106 of points and the coarser one is of
30× 106 of points. The scheme’s order of convergence is estimated following
the Roache’s method [74] based on Richardson extrapolation. The computed
order of convergence is based on the liquid velocity u (Fig.5.4), the velocity of
bubble interface dR/dx and bubble radius R (Fig.5.3). In order to identify
the grid that assures a good trade-off between the solution accuracy and
the computational cost, the grid convergence index (GCI) on the grid of 60
millions of points has been computed, which represents an estimate of how
far the numerical solution is from its asymptotic value. GCIs of 0.61%, 0.46%
and 2.5e-04% have been found for dR/dx, R and u, respectively, indicating
that the solution is well within the asymptotic range. Considering the errors
lower than 1%, the grid of 60 millions of points has been used for all the
other simulations. As it can be seen in the next figure, solution obtained
with 60 millions of points is well converged.

5.4 Results and Discussion

The objectives of this work are the following:

• A sensitivity analysis of the convective heat transfer coefficient in hy-
drodynamic cavitation at high Reynolds number and in cryogenic en-
vironment, using an in-house code. The aim is to identify:

- The influence of the parameter hb on cavitation prediction in cryo-
genic fluids.

- A characteristic range of hb for hydrogen cavitation.

They are presented in paragraph 5.4.1.

• Analysis of three models for convective heat transfer coefficients pre-
diction, proposed by Ranz and Marshall [5], Oresta et al. [6] and
Christopher et al. [7]. They have been coupled to mixture mass and
momentum conservative equations. The aim is :
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Figure 5.3: Profiles of bubble radius R in 121B case [1] obtained by using
four different grids.
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Figure 5.4: Profiles of liquid velocity in 121B case [1] obtained by using four
different grids.
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- To re-examine the validity of these models in the framework of
cryogenic fluids.

They are presented in paragraph 5.4.2.

• Two-dimensional simulation of a test case [1] by means of FLUENT
code. The aim is :

- To confirm the conclusions obtained by the analysis with the
quasi-1D code.

- To implement in the CFD code a new model for a better estimation
of temperature decrease in cryogenic cavitating flow.

They are presented in paragraph 5.4.3.

As already said, in the first part of the work, a 1D model has been used,
even if the simplified model does not allow predicting accurately the cavi-
tation phenomenon, because it is based on assumptions that neglect some
complex characteristics of the phenomenon. On the other hand, our aim is
not to develop a new cavitation model, but to investigate the thermal effect in
cryogenic cavitation through the study on the convective heat transfer coef-
ficient. For the simulation in Fluent, a 2D steady Euler model has been used
[61]. The interactions between the two phases due to cavitation are modeled
with Schnerr and Sauer model [73] implemented in the code, coupled with
two of the models for hb estimation, used before.

5.4.1 Constant Convective Heat Transfer Coefficient
hb

A sensitivity analysis of hb has been performed in order to obtain a reason-
able order of magnitude of this parameter in cavitating flows for hydrogen
(H2). The analysis has been carried out by varying hb coefficient between
1× 1010 and 1× 1003 and varying, for each hb, the upstream vapor fraction
between 1 × 10−10 and 1 × 10−03. Then, a set of 576 simulations has been
performed for 26 cases simulated [1]. Numerical solutions have been com-
pared to experimental data in terms of temperature and pressure [1]. To
understand the influence of convective heat transfer coefficient hb, for the
case 121B [1] the temperature and vapor profiles obtained with the highest
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hb = 1 × 1010 and a very low hb = 1 × 1005, have been shown. The simula-
tion have been obtained varying the inlet vapor fraction α0, that represents
our tuning parameter. Usually, in isothermal case, when α0 grows, the ini-
tial bubble number in the Ventury is supposed greater and then the vapor
fraction increases [62]. Supposing a flows with thermal effect, also the value
of hb influences the profiles of vapor fraction and temperature. In the first
case, i.e. with a hb = 1 × 1010, when the inlet vapor fraction α0 increases,
the vapor fraction increases in the Ventury as far as the creation of flashing
phenomenon (see [62] with α0 ≥ 1 × 1006 (Fig.5.6). However, the temper-
ature profiles are close to the initial liquid temperature T0 (Fig.5.5). This
means that: (i) the value of hb is very high and it resets the thermal term
in Rayleigh-Plesset equation (last term of Eq.(5.3)). Then, the cavitation
phenomenon is controlled exclusively by the pressure term (second last term
of Eq.(5.3)) as it is possible to observe in Fig.5.7, where the absolute value
of thermal effect and the pressure effect are compared; (ii) the value of hb

is wrong because the temperature profiles presents a very high error com-
pared to the experimental temperature drop. Anyway, when hb = 1e + 05,
the growth of vapor is controlled by the thermal term (Fig.5.10). Then, the
numerical temperature drop gives a good estimation of experimental tem-
perature drop (Fig.5.8). The value of hb is wrong again in this case, because
the experimental cavity length is greater than the numerical one.

We defined several parameters, useful in order to analyze qualitatively
the results:

• hbMAX , such that for every hb > hbMAX , growth is governed exclusively
by mechanical forces, represented in Eq.(5.3) by c term in Eq.(5.3)(see
Brennen [9]).

• hbOPT that represents the range of values permitting to obtain the best
profiles of temperature and pressure by comparison with experimental
data.

• hbMIN , such that for every hb < hbMIN , growth is governed exclusively
by thermal effects, represented in Eq.(5.3) by d term in Eq.(5.3) (see
Brennen [9]).

Basing on previous remarks, hbMAX is the value for which the simulation
can provide a prediction for the difference of temperature between the in-
let temperature T0 and the lowest temperature in the throat △(T )NUM =
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Figure 5.5: Comparison of temperature profiles for the case 121B [1] with
hb = 1 × 10+10 at different upstream vapor fraction α0 and initial radius
R0 = 1× 10−04m. The experimental temperature error is of ±0.1K.
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Figure 5.6: Comparison of vapor fraction profiles for the case 121B [1] with
hb = 1 × 10+10 at different upstream vapor fraction α0 and initial radius
R0 = 1× 10−04m.
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Figure 5.7: Comparison of absolute value of thermal (T-E) and pressure (P-
E) effects for a hb = 1 × 10+10 at different upstream vapor fraction α0 and
initial radius R0 = 1× 10−04m.
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Figure 5.8: Comparison of temperature profiles for the case 121B [1] with
hb = 1 × 10+05 at different upstream vapor fraction α0 and initial radius
R0 = 1× 10−04m. The experimental temperature error is of ±0.1K .
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Figure 5.9: Comparison of vapor fraction profiles for the case 121B [1] with
hb = 1 × 10+05 at different upstream vapor fraction α0 and initial radius
R0 = 1× 10−04m.
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0.3△TEXP = (T0 − TEXP ) and the temperature profiles obtained at differ-
ent inlet vapor fraction α0 that are constant (Fig.(5.3)). This threshold has
been arbitrarily chosen in order to identify the region in which the growth
is controlled exclusively by mechanical force. Conversely, hbMIN is the value
permitting to obtain or over-estimate, the experimental temperature drop,
but the difference between the profiles of temperature, pressure and vapor
fraction obtained at different initial vapor fraction α0 are negligible. This
threshold has been again arbitrarily chosen. For each case, comparisons of
the numerical profiles of temperature and pressure, obtained with a constant
value of hb, with experimental data [1] have been performed. It can be ob-
served, that: (i) in several cases, there is not a value of hb that allows to
obtain a perfect fit between numerical and experimental results; (ii) however
there is a range of value, that we called hbOPT , for which it is possible to ob-
tain the temperature and pressure profiles presenting a short error compared
with experimental data (Fig. 5.11 and Fig. 5.12).
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Figure 5.11: Comparison between numerical bubble temperature Tb and ex-
perimental temperature for the case 134[1], withRe = 9.9×10+06, T0 = 20.69,
σ = 2.01 and α0 = 1×10−03.The experimental temperature error is of ±0.1K.
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Figure 5.12: Comparison between numerical liquid pressure Pl and experi-
mental liquid pressure for the case 134[1], with Re = 9.9×10+06, T0 = 20.69,
σ = 2.01 and α0 = 1× 10−03.The experimental pressure error is of ±6900Pa.

For each case, the hbMAX , hbOPT and hbMIN have been computed and rep-
resented in Fig.(5.13)-Fig.(5.16) with respect to B-factor, cavitation number
σ, Reynolds number Re and T0/Tc (with critical temperature Tc = 33.145K),
respectively. The hbOPT is marked with a bar representing the range of value
of hb for which a solution is considered as acceptable. This value is closed to
hbMIN value, confirming that in hydrogen cavitating flow the growth of bub-
bles is more controlled by thermal effect than mechanical force (Fig.(5.14)).
Even if all cases present very similar operative conditions and it is difficult
to observe clear trends of hbOPT , however, slight differences can be observed.
A parametric study on three variables (inlet temperature T0, the number of
cavitation σ and the Reynolds number Re) have been performed by varying
one variable each time. Results show that:

• If Re is almost constant and 19.87 < T0 < 20.34, the hb coefficient do
not change, because also the σ remains almost constant. Conversely
when the inlet temperature is 22.69 < T0 < 22.98 the hb coefficient
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increases with the increase of σ (Fig.(5.14)).

• If Re and σ are almost constant, increasing the inlet temperature in-
duces an increase of hb with the exception of cases with an inlet temper-
ature T0 > 22.69 for which the hb coefficient do not vary consistently.

• By varying Reynolds number, there are not clear trends of hb coefficient.

From this analysis, it is possible to observe an high influence of cavitation
number on trends of hb, more than inlet temperature. In fact, for the same σ,
hb increases with the increase of inlet temperature, even if the conditions ap-
proach critical conditions (critical temperature of hydrogen is Tc = 33.145).
However, the cases with a more elevated inlet temperature present, also, a
cavitation number σ < 1.6 for which a ”developed” cavitation regime ex-
ists and the vapor fraction appears more elevated. Only values for hb more
elevated allow obtaining a more elevated vapor fraction, because a bubble
mechanical growth is supposed.
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Figure 5.13: hbMAX , hbOPT and hbMIN obtained for each case, with respect
to B-factor.
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Figure 5.14: hbMAX , hbOPT and hbMIN obtained for each case, with respect
to cavitation number σ.
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Figure 5.15: hbMAX , hbOPT and hbMIN obtained for each case, with respect
to Reynolds number.
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Figure 5.16: hbMAX , hbOPT and hbMIN obtained for each case, with respect
to T0/Tc (with critical temperature Tc = 33.145K)
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5.4.2 Theoretical Models for the Estimation of Con-
vective Heat Transfer Coefficient hb(x)

The previous sensitivity analysis pointed out two important remarks: (i)
there is an optimal range for hydrogen cavitating flow that is about 1×1005 <
hb < 1× 1006, then it is necessary to adopt a model for the estimation of hb

coefficient; (ii) the optimal value of hb is more influenced by inlet temperature
T0 and by σ, than Reynolds number. Basing on this consideration, beyond
the classical Ranz and Marshall model [5], largely used in previous studies
and implemented in commercial CFD code, we focus on models that, in their
formulations, present a dependence on some factors permitting to improve
the prediction of hb in cryogenic flows. However, at our knowledge, only Ranz
and Marshal model[5] has been used with cryogenic fluid. For all the cases,
the profiles obtained with the three models have been compared with exper-
imental data and, in particular, three cases have been shown, 125A, 120B
and 123B (see [1]), because they present, respectively, an experimental tem-
perature drops of 0.2K, 1.2K and 2.7K (Fig.(5.17)-(5.19)). It is evident that
the Ranz and Marshal model[5] gives always an over-estimation of temper-
ature drop (Fig.(5.17)-(5.19)), that becomes very evident when the thermal
effects are short as in the case 125A (Fig.(5.17)). The Ranz and Marshal
model[5] gives always a value of hb coefficient lower than the optimal range
estimated with the sensitivity analysis at constant hb, that in Fig.(5.26)-
(5.28) is represented by a grey rectangle. A lower hb value determines also a
low estimation of radius growth (Fig.(5.23)-(5.25)) as in non-cavitating flow.
Conversely, the other two models are in good agreement with experimental
data of pressure (Fig.(5.20)-(5.22)) and temperature (Fig.(5.17)-(5.19)), ex-
cept for the case 125A, that presents an experimental temperature drop of
0.2K, while Christopher [7] and Oresta model [6] determine, respectively, a
temperature drop of 0.4 and 0.8K (Fig.(5.17)). By observing the formula-
tion of the three models, the Ranz and Marshall model [5] and the Oresta
model [6] are dependent on bubble Prandt number and on bubble Reynolds
number (Eq.(5.7)-(5.8)). Unlike Ranz and Marshall model, Oresta model
presents also the dependency on bubble temperature, by means of the Jacob
number. In the last model, the hb coefficient is dependent on the bubble
pressure corresponding at bubble temperature, and there is not a relation
with the bubble Reynolds number (Eq.(5.7)). Probably, in condition of cav-
itating cryogenic flow, the bubble Reynolds number represents a limit factor
for the models that, however, have been tested mainly in natural convection,
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where there is not a temperature drop and a difference of velocity high as in
cavitating flows.
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Figure 5.17: Comparison between bubble temperature Tb, obtained with the
Ranz& Marshall [5], Oresta et al. [6], Christopher et al. [7] model, and
experimental temperature for the case 125A, with Re = 6.2×10+06, σ = 1.3,
Pr = 1.1917, T0 = 22.69 and α0 = 5× 10−04

5.4.3 Ansys-Fluent Results

The case 121B [1] has been simulated by means of Fluent in order to verify
the results and remarks obtained in the previous analysis. A 2D mesh has
been used and complex Eulerian model (with respect to 1D code) has been
considered. Also in 2D results, the temperature profiles obtained with the
Ranz and Marshall model [5] gives an over-estimation of temperature drop in
the throat as in the case 1D, while the Christopher model [7] gives a perfect
estimation of temperature compared to experimental data (Fig.(5.29)). The
profiles estimated with the 2D code have a better prediction of physical
phenomenon, however they have the same behavior in the throat observed
in 1D results. In fact also the value of hb estimated in 2D simulations are
comparable to the values founded in 1D case (Fig.(5.30)). Then in order to
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Figure 5.18: Comparison between bubble temperature Tb, obtained with the
Ranz&Marshall [5], Oresta et al. [6], Christopher et al. [7] model, and
experimental temperature for the case 120B, with Re = 7.6×10+06, σ = 1.3,
Pr = 1.2541, T0 = 20.36 and α0 = 2× 10−04

108



5.4. RESULTS AND DISCUSSION

x axis [m]

T
em

pe
ra

tu
re

[K
]

0 0.02 0.04 0.06 0.08

20

20.5

21

21.5

22

22.5

23
EXP_TEMP
Ranz&Marshall
Oresta et al.
Christopher et al.

Figure 5.19: Comparison between bubble temperature Tb, obtained with the
Ranz&Marshall [5], Oresta et al. [6], Christopher et al. [7] model, and
experimental temperature for the case 123B, with Re = 6.2×10+06, σ = 1.3,
Pr = 1.1917, T0 = 22.69 and α0 = 4× 10−05
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Figure 5.20: Comparison between liquid pressure Pl, obtained with the
Ranz&Marshall [5], Oresta et al. [6], Christopher et al. [7] model, and
experimental temperature for the case 125A, with Re = 6.2×10+06, σ = 1.3,
Pr = 1.1917, T0 = 22.69 and α0 = 5× 10−04
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Figure 5.21: Comparison between liquid pressure Pl, obtained with the
Ranz&Marshall [5], Oresta et al. [6], Christopher et al. [7] model, and
experimental temperature for the case 120B, with Re = 7.6×10+06, σ = 1.3,
Pr = 1.2541, T0 = 20.36 and α0 = 2× 10−04
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Figure 5.22: Comparison between liquid pressure Pl, obtained with the
Ranz&Marshall [5], Oresta et al. [6], Christopher et al. [7] model, and
experimental temperature for the case 123B, with Re = 6.2×10+06, σ = 1.3,
Pr = 1.1917, T0 = 22.69 and α0 = 4× 10−05
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Figure 5.23: Comparison between bubble radius, obtained with the
Ranz&Marshall [5], Oresta et al. [6], Christopher et al. [7] model, and
experimental temperature for the case 125A, with Re = 6.2×10+06, σ = 1.3,
Pr = 1.1917, T0 = 22.69 and α0 = 5× 10−04
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Figure 5.24: Comparison between bubble radius, obtained with the
Ranz&Marshall [5], Oresta et al. [6], Christopher et al. [7] model, and
experimental temperature for the case 120B, with Re = 7.6×10+06, σ = 1.3,
Pr = 1.2541, T0 = 20.36 and α0 = 2× 10−04
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Figure 5.25: Comparison between bubble radius, obtained with the
Ranz&Marshall [5], Oresta et al. [6], Christopher et al. [7] model, and
experimental temperature for the case 123B, with Re = 6.2×10+06, σ = 1.3,
Pr = 1.1917, T0 = 22.69 and α0 = 4× 10−05
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Figure 5.26: Comparison between convective heat transfer coefficient hb,
obtained with the Ranz&Marshall [5], Oresta et al. [6], Christopher et
al. [7] model, and experimental temperature for the case 125A, with
Re = 6.2× 10+06, σ = 1.3, Pr = 1.1917, T0 = 22.69 and α0 = 5× 10−04
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Figure 5.27: Comparison between convective heat transfer coefficient hb,
obtained with the Ranz&Marshall [5], Oresta et al. [6], Christopher et
al. [7] model, and experimental temperature for the case 120B, with
Re = 7.6× 10+06, σ = 1.3, Pr = 1.2541, T0 = 20.36 and α0 = 2× 10−04
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Figure 5.28: Comparison between convective heat transfer coefficient hb,
obtained with the Ranz&Marshall [5], Oresta et al. [6], Christopher et
al. [7] model, and experimental temperature for the case 123B, with
Re = 6.2× 10+06, σ = 1.3, Pr = 1.1917, T0 = 22.69 and α0 = 4× 10−05

118



5.4. RESULTS AND DISCUSSION

obtain a good prediction of temperature drop, it is necessary an estimation
of hb > 4 × 1005 as founded in the sensitivity analysis at constant hb (grey
rectangular in Fig.(5.30)) It is possible to observe that, for x > 0.06m, the
two temperature profiles, obtained with 2D code, give the same levels of
temperature as well as the hb profiles becomes constant. Analyzing the mass
transfer contour (Fig.(5.31)), in the region where x > 0.06m, it is possible
to observe the phase of condensation of the bubble (Fig.(5.31)). Then, the
importance of convective heat transfer coefficient estimation is more evident
in the phase of evaporation, while it is negligible when the bubble collapse.
Finally, as observed in the 1D simulation, by estimating an hb more elevated,
the Christopher model [7] is able to predict a vapor fraction more elevated
than the Ranz and Marshall model [5]; however the difference is less evident
than in 1D simulation (Fig.(5.32)).
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Figure 5.29: Comparison between temperature profiles, obtained with the
Ranz&Marshall [5] and Christopher et al. [7] model and with 1D and 2D code
for the case 121B [1] with α0 = 1×10−04 and initial radius R0 = 1×10−04m.
The experimental temperature error is of ±0.1K.
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Figure 5.30: Comparison between convective heat transfer coefficient, ob-
tained with the Ranz&Marshall [5] and Christopher et al. [7] model and
with 1D and 2D code for the case 121B [1] with α0 = 1 × 10−04 and initial
radius R0 = 1× 10−04m. The experimental temperature error is of ±0.1K.
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Figure 5.31: Comparison between the contour of mass transfer, obtained
with the Ranz&Marshall [5] and Christopher et al. [7] model in 2D code for
the case 121B [1] with α0 = 1 × 10−04 and initial radius R0 = 1 × 10−04m.
The experimental temperature error is of ±0.1K.
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Figure 5.32: Comparison of vapor contour, obtained with the Ranz&Marshall
[5] and Christopher et al. [7] model in 2D code for the case 121B [1] with
α0 = 1 × 10−04 and initial radius R0 = 1 × 10−04m. The experimental
temperature error is of ±0.1K.
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5.5 Conclusions

The present section has the objective to analyze the thermal effects in a
cryogenic cavitating flow, through the study of convective heat transfer co-
efficient hb. The work is divided in two parts consisting in a first analysis of
sensitivity at constant hb, followed by an analysis about several models for a
more correct estimation of hb, both performed by a 1D code. In the second
part, a comparison between the 1D results and the 2D results obtained with
the commercial code Fluent has been performed. For the 1D code, the cav-
itating flow is modeled by steady-state mixture model that reproduces the
operating conditions of experimental cases in a Venturi tube[1]. It consists
in conservative equations of continuity and momentum equations of the bub-
bly flow, coupled with a Rayleigh-Plesset equation in order to predict the
cavitation development and with a bubble momentum equation to predict
the bubble velocity. The thermal effects are taken into account considering
a term in Rayleigh-Plesset in which the vapor pressure is computed at the
bubble temperature, which is different from the liquid temperature far from
the bubble. In this term, the convective heat transfer coefficient hb appears.
In literature there is not a complete study permitting to estimate the value
to consider for this parameter in cryogenic cavitating fluids. A wrong value
can generate a bad estimation of thermal effects. For the 2D code, numerical
simulations have been performed using the multiphase cavitation modeling
approach. It consists in the use of standard viscous flow equations governing
the transport of phases (Eulerian multiphase), a k − ε turbulent model and
a model to estimate the liquid-vapor mass transfer due to cavitation phe-
nomenon. Continuity, momentum and energy equations are solved for each
phase. The mass transfer term is modeled by Schnerr and Sauer model [73].
A sensitivity analysis of the convective heat transfer coefficient, in cryogenic
cavitation, has been performed in order to identify the mechanisms that gov-
ern the bubble growth. For all tested cases the coefficient hb varied between
1× 1010 and 1× 1003 and for each hb, the upstream vapor fraction α0 varied
between 1 × 10−10 and 1 × 10−03. In order to analyze qualitatively the re-
sults, for each case, three parameters have been identified, hbMAX , hbOPT and
hbMIN , that represent respectively the minimal value for which the growth
is governed exclusively by mechanical forces, the range of values permitting
to obtain the best profiles of temperature and pressure with respect to ex-
perimental data and the maximum value for which the growth is governed
exclusively by thermal effects. Then three models for convective heat trans-
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fer coefficients prediction have been analyzed, the Ranz and Marshall model
[5], Oresta model [6] and Christopher model [7]. Finally, in order to validate
the results obtained with the in-house code, 121B case [1] have been simu-
lated also with Fluent. The main conclusions of the present section are the
following:

• An over-estimation of hb determines that the bubble growth is governed
by mechanical forces producing an increase of vapor fraction and a
negligible temperature drop in the throat. On the contrary, an under-
estimation determines that the bubble growth is governed by thermal
force producing a good estimation of temperature drop, even if the
vapor fraction increases not sufficiently

• In all the simulated cases hb is close to hbMIN value, confirming that in
hydrogen cavitating flow the growth of bubbles is more controlled by
the thermal effect than the mechanical force

• There is an optimal range for hydrogen cavitating flow that is about
1 × 1005 < hb < 1 × 1006, then it is better to use a model for the
estimation of hb coefficient

• The optimal value of hb is more influenced by inlet temperature T0 and
by σ, than Reynolds number

• By comparing the three models, it can be observed that the Oresta and
Christopher model give a good estimation of temperature drop. The
Ranz and Marshall model gives an error more elevated compared to
the other two model in terms of temperature drop in the throat

• By comparing Fluent results with the others, it can be observed that
it is very important a good estimation of hb and that the choice of the
model is more evident in the phase of evaporation, while it is negligi-
ble when the bubble collapse, because the two models give the same
temperature results.
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Chapter 6

Experimental Study on
Two-Phase Cryogenic Flow

6.1 Experimental Nucleation in Cavitating Flow

For cryogenic flows, cavitation phenomenon is similar to boiling. Generally,
these two processes can be distinguished by the fact that cavitation is the
process of nucleation in a liquid when the pressure falls below the saturated
vapor pressure, while the boiling is the process of nucleation that occurs
when the temperature is raised above the saturated vapor temperature. In
cryogenic flows, there is a lack of experimental investigations in literature. In
aerospace field, cryogenic fluids are usually used as rocket propellant obtained
as mixture of liquid oxygen (LOx) and liquid hydrogen (LH2). These fluids
can be employed under particular conditions as low temperature, micrograv-
ity and the environmental space, but they can be associated to cavitation
phenomena, because a slight difference of temperature could induce a tran-
sition of phase. The aim of this work is to examine the results of a flow
visualization study on two-phase cryogenic flows passing through an internal
nozzle. The transient growth process of the cloud cavitation induced by flow
through the throat is observed using high-speed video images and analyzed
by pressure and accelerometer signal.

6.1.1 Experimental Set-Up

A schematic illustration of the experimental set-up, used to investigate the
internal nozzle flow, is shown in Fig.(6.1) and Fig.(6.2). The liquid nitrogen
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has been chosen as the cryogenic working fluid. The set-up consists of a
nitrogen supply tank, at a temperature of 77 K, two on-off valves and a flow
visualization test section. A global view of the entire test section (bulk flow)
is given in Fig.(6.12). The test section is an assembly of a central internal
nozzle, in which the fluid flows; two vacuum chambers, for the thermal iso-
lation and two flanges. In order to perform the continuous monitoring of
cavitation phenomenon, 4 quartz glass are fitted between the assembly com-
ponents. The supply tank is connected to the visualization chamber by a 2m
long pipe. Geometrical details of the flow channel are shown in Fig.(6.4).
The test section is a 15mmlong rectangular orifice nozzle with a throat cross
section 2mm by 8mm. After the visualization chamber, the nitrogen liquid
is ejected in atmosphere as gas. The line is filled with pressurized cryogenic
liquid at a pressure of 2 bar and flow immediately occurred when the first
on-off valve after the nitrogen pressure tank is opened. The cavitation phe-
nomenon can be observed within the flow, at a certain flow rate, in the throat
section. If the pressure is below the vapor pressure at the flow temperature,
cavitation occurs. The acquisition and data elaboration system is based on:

• Two KISTLER 701A piezoresistive pressure sensors, with a sensitivity
of−80pC/bar and a temperature range of−190/200C. They are placed
according to Fig.(6.4).

• A KISTLER piezoresistive amplifier, used for pressure signals

• ANI-DAQCard-6024E acquisition board at 200KS/s, used for the pres-
sure signals.

• A KISTLER 8702B100 accelerometer.

• A NI-DAQCard-6020E acquisition board up to 1.25Ms/s, used for ac-
celerometer signal.

• A high speed camera CCD Kodak Motion Corder Analyzer FASTCAM-
Super 10k.

The images have been acquired at 125fps and then have been downloaded
and stored on a PC to be subsequently processed digitally. For the different
test-cases, the pressure and accelerometer signals have been acquired at a
maximum frequency of 100kHz and 105 samples, for a total data period of
1s. Then the signals have been amplified, filtered and collected into the two
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boards. The voltage working range, for our test-cases, was between −2V
and 2V ; it has been possible to obtain a gain in order to acquire also a
minimum voltage variation of 2.44mV . The acquisition programs have been
developed in-situ using the software Labview and the signal processing code
has been developed using MATLAB software. Part of the uncertainty is
inherent to the flow conditions: the flow velocity, the pressure in the test
section, the cavitation number. The uncertainty on the pressure is about
3%. The resulting cavitation number variability is estimated to be ±0.05.
For the pressure transducers calibration, the deviation toward linearity was
about 250Pa ∼ 0.25% of the measurement range. The test conditions are
summarized in Tab.6.1.

Figure 6.1: Experimental Set-Up

6.1.2 Results

The aim of these experiments is to characterize the cavitating cryogenic flow
in term of time occurrence, space, and intensity for various hydrodynamic
conditions. The experimental methods used in the study are:

• Accelerometer measurements

• Upstream and downstream pressure measurements

• Optical observations (CCD)
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Figure 6.2: Sketch of the Experimental Set-up

Figure 6.3: Visualization flow test section.

Figure 6.4: Test section particular.
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Test Case Upload
Pressure
[bar]

Download
Pressure
[bar]

Q[m3/s] σ

1 1.08 1.0015 0.0011 1.364

2 1.49 1.0226 0.0008 1.104

3 1.77 1.0234 0.0006 1.066

4 2.04 1.0223 0.0003 1.047

5 2.05 1.0236 0.0002 1.034

6 0.95 0.9320 0.0011 0.990

7 1.06 0.9275 0.0010 0.986

8 1.35 0.9216 0.0008 0.980

9 1.80 0.9177 0.0005 0.977

10 2.01 0.9167 0.0004 0.976

Table 6.1: Operating conditions of experimental case

A number of experiments have been carried out in order to determine the
characteristics of the cavity length at different cavitation numbers defined
as:

σ = [(pup − pv)/(pup − pdw)] (6.1)

where pup and pdw are, respectively, the upstream and the downstream pres-
sure. The pv is the vapor pressure at the flow temperature, that, for the
test-cases, is considered as the Dewar temperature, then T = 77K, and con-
sequently pv = 0.9744bar. The acquired signals have been studied in time
domain and frequency domain, in order to obtain information correlated to
the cavitation phenomena. It is well known that cavitation inception in a
liquid is due to the explosive growth of microscopic bubbles or nuclei ini-
tially present in the liquid; the inception of cavitation happens when the
local pressure drop below a critical low pressure. The determination of the
number of these nuclei is important to control the phenomena and to val-
idate the numerical modeling. The vapor bubbles contain non-condensable
gas and vapor, then it is assumed that both sides of the bubble interface is
in thermodynamic equilibrium [75]:

pg + pv = p∞ + (2S/R) (6.2)
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where pg and p∞ are, respectively, the pressure of non condensable gas
and the liquid pressure, while S is the surface tension and R is the bubble
radius. Considering that the pg can be re-written in function of bubble
radius and a K factor, that is proportional to the mass of non condensable
gas, an equilibrium curve can be defined, characterized by a minimum point
denominated ”critical point” with the following values of pressure and radius:

Rc =

√

3K

2S
(6.3)

pc = pv −
4S

3Rc

(6.4)

If the nuclei undergoes a pressure drop below the minimum pc, it also
grows indefinitely without reaching a new equilibrium and form a cavitation
bubble. When these bubbles travel across a high pressure zone, they implode
with a correspondent local maximum in the pressure signal. For this reason
from temporal analysis, it has been possible to count the concentration of
nuclei Fig.(6.5), during their transit through the nozzle, at different cavita-
tion number. It is possible to observe a higher density of nuclei for lower
cavitation number, because the liquid pressure is low, that allows the bubble
growing and collapsing. Also the standard deviation of the downstream pres-
sure signal (Fig.(6.6)) shows a higher oscillation for lower number cavitation,
less than 1. It seems that the cavitation number σ = 0.99 is a critical value,
below that value the cavitation increases, showing an high number of acti-
vated nuclei and then an higher standard deviations. The pressure signals,
measured upstream and downstream of the contraction area in the orifice,
and the accelerometer signal, have been processed to calculate the charac-
teristic frequency content of the aforementioned signals. The formation of
cavitation bubbles and their collapse generate observable pressure fluctua-
tions. The Fast Fourier Transform of the measured signals was carried out
considering the pressure fluctuations components around the time integrated
mean value. In Fig.(6.7), Fig.(6.8) and Fig.(6.9) the amplitude spectrum of
Fourier Transform of upstream and downstream pressure and of accelerom-
eter are shown at different flow conditions (different cavitation number, σ ).
The complete development of cavitation phenomenon can be related to fluc-
tuations measured before and after the throat. It is noticeable that for the
upstream flow the main frequency content is in the range of low frequencies,
up to 500Hz, especially for low cavitation number, related to the impacts
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due to the vapor bubbles implosion. The frequency spectrum of the down-
stream pressure signals can be related to the characteristic behavior of the
different cavitating regimes. In fact, the spectra show different characteristic
frequencies with the variation of the cavitation number. At higher cavitation
numbers, the spectra reveal relatively high dominant frequencies distributed
in broad ranges of few hundred Hertz width. At lower cavitation numbers,
less than 1, the spectra show sharp dominant spectral peaks also at higher
frequencies. The increase of some typical frequency component amplitudes,
at small cavitation number is related to a sharp increase in the length of
the cavitating zone, as evident also by the flow visualization by the CCD
(Tab.(6.2)).

Figure 6.5: Distribution of density of activated nuclei density for different
cavitation numbers.

In particular, a characteristic frequency is found at values close to 400Hz;
peaks at this frequency are present only in the downstream pressure signals
and not at the upstream section. The amplitude peaks at this frequency has
an increasing behavior at low cavitation numbers, as shown in Fig.(6.10). For
the accelerometer signal, it is not possible to locate a range of frequencies,
probably due to the high implosion intensity. Starting from the amplitude
spectrum of Fourier Transform, it is interesting to calculate the function
S(f1 − f2):

S(f1, f2) =

∫ f2

f1

s(f)df. (6.5)
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Figure 6.6: Standard deviation of downstream pressure signals for different
cavitation numbers

This equation represents the area between the spectrum and the frequency
axis and between the f1 and f2 frequencies. Then it is possible to confirm
the FFT spectrum results. In fact, the Fig.(6.11) shows the S(0 − 10kHz)
function for the downstream pressure signal at different cavitation numbers;
it is evident that an increase of areas corresponds to a decrease of cavitation
number.

6.1.3 Conclusions

Some experimental results on the cavitation of cryogenic fluids have been
presented. In particular, a flow visualization and pressure measurements
on two-phase cryogenic flow passing through an orifice nozzle installed in
a horizontal pipe has been carried out in order to clarify the fundamental
characteristics of the cavitating structures. Pressure signals have been an-
alyzed both in time domain and in frequency domain, to characterize the
cavitating cryogenic flow in terms of time occurrence, space, and intensity
for various hydrodynamic conditions. The concentration of activated bubbles
nuclei has been obtained, this could be useful for modeling validations. An
increase of nuclei due to a decrease of cavitation number has been observed.
Then the standard deviation of the pressure signals, recorded downstream
the restricted nozzle area has been studied in order to obtain an evaluation
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Figure 6.7: FFT Amplitude Spectrum of the upstream pressure for different
cavitation numbers

Figure 6.8: FFT Amplitude Spectrum of the downstream pressure for differ-
ent cavitation numbers.
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Figure 6.9: FFT Amplitude Spectrum of accelerometer for different cavita-
tion numbers.

Figure 6.10: Maximal Amplitude obtained at 400Hz of downstream pressure
signal at different cavitation numbers.
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Test Case V aporProduction σ

1 1.364

2 1.104

3 1.066

4 1.047

5 1.034

6 0.990

7 0.986

8 0.980

9 0.977

10 0.976

Table 6.2: Flow visualizations at different cavitation numbers σ.
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Figure 6.11: S(0 − 10kHz) function for the downstream pressure signal at
different cavitation numbers.

about the oscillation of pressure signals due the development of cavitation.
By means of the Fourier Transform, it has been possible to locate a range
of characteristic frequencies for the upstream pressure and downstream pres-
sures.

6.2 Experimental Thermal Effect in Water

and Cryogenic Cavitating Flow

Here, an experimental study has been presented that focused on the forma-
tion of cavitation in cold and hot water and in cryogenic fluid, character-
ized by strong variations in fluid properties caused by a change in tempera-
ture. Cavitation phenomenon is investigated in water and nitrogen flows in a
convergent-divergent nozzle through pressure measurements and the optical
visualization method. High-speed photographic recordings have been made,
the cavitation phenomena evolution and the related frequency content are
investigated by means of pixel intensity time series data. In the case of
cryogenic fluid frequency peaks are shifted towards lower frequencies, with
respect to cold water and the magnitude of the signal increases, in particular
at low frequencies, for nitrogen and hot water. This can be due to thermal
effects that contribute also to the low frequencies in the case of cryogenic
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fluid. To verify the validity of this assumption, a simple model based on the
resolution of Rayleigh equation is used.

6.2.1 Experimental Set-Up

The cavitating flow in nitrogen and in water has been investigated in the
same convergent-divergent nozzle. The experimental set-up for the two flu-
ids is different, due to the methods of storage and usage of the fluids. The
test section is an assembly of a central internal nozzle in which the fluid flows,
two vacuum chambers, for the thermal isolation and two flanges. In order
to perform the continuous monitoring of cavitation phenomena, plexiglas
windows are fitted between the assembly components. Geometric details of
the flow channel are shown in Fig.(6.12). The experimental set-up is shown
in Fig.(6.13) and Fig.(6.14). In the water facility, the flow is driven by a
1.10kW centrifugal pump (model CR 4-50 A-A-A BUBE) , 2900rpm, with
five impellers, capable of a maximum flow rate of 1.67 × 10−3m3/s, located
1m below the test section, in order to prevent cavitation occurrence in the
pump. Two Kistler 4045A piezoresistive pressure sensors have been placed.
The uncertainty in the pressure measurements is ± − 3kPa. Another pres-
sure sensor, the KISTLER 701A, is instead put at the throat of the section,
where a KISTLER 8702B100 accelerometer is also installed. The pressure
sensors have been coupled to a NI-4472 Dynamic Signal Acquisition Device
for PCI (up to 102.4ks/s with two pole anti-alias low-pass filter for each in-
put channel) to which the pressure sensors are connected through a Kistler
type 4643 piezoresistive amplifier, accuracy 0.5%. The analogue signals are
acquired at a sampling rate of 102kHz, for each channel. The mass flow
rate through the test section, and then the pressure upstream of the test
section, has been varied by means of two calibrated control valves (control
valve 1 and 2 in Fig.(6.13)). In particular, a variable portion of the water
flow is by-passed from the test section directly to the intake of the pump by
means of control valve 1; control valve 2 is used to modify the upstream pres-
sure. The set-up of nitrogen facility consists of a nitrogen supply tank, at a
temperature of −193C and two on-off valves. The supply tank is connected
to the test section by a 2m long pipe. The line is filled with pressurized
cryogenic liquid at a pressure of 2bar and flow immediately occurs when the
first on-off valve after the nitrogen pressure tank is opened. The upstream
and downstream pressure, in the test section, is measured with KULITE
CT-375M cryogenic miniature ruggedized pressure transducers. Instead, the
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throat pressure is measured with a KULITE CT-190-100A cryogenic minia-
ture ruggedized pressure transducer.

Figure 6.12: Test section for water and nitrogen cavitation experimental
analysis. The lengths are in mm and the nozzle depth is 10mm.

6.2.2 Mathematical Model

The in-house CFD model(see Eq.(5.11)-(5.16)), introduced in the chapter 5,
has been used for the simulation of same test-case, obtained experimentally,
through the convergent-divergent nozzle (Fig. (6.12). The dimensionless
cross-section has been determined to have the minimum value of pressure
coefficient, denoted as CpMIN , located at L/2 (L is the length of the nozzle)
and to result in a sinusoidal pressure distribution:

Ā(x) =







[

1− 1
2
CpMIN

[

1− cos
(

2πx
L̄

)]]1/2
0 ≤ x ≤ L

1 x < 0, x > L

The model Ranz and Marshall [5] for the estimation of convective heat
transfer coefficient has been used (see Eq.(5.7)).

6.2.3 Results

For the experimental study, two fluids have been considered: liquid nitrogen
at a temperature of T = 82K ; water at T = 293K and T = 348K for
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Figure 6.13: Experimental set-up for water cavitation.

Figure 6.14: Experimental set-up for nitrogen cavitation.
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different cavitation number. The test section has a well-defined shape, given
by Eq.(6.2.2) with a minimum pressure coefficient CpMIN = 10, character-
ized by a throat of 3mm and an initial section A0 = 100mm2 , determining
an area ratio Athroat/A0 = 3. Water cavitation has been analyzed at two
different temperatures to observe the thermal effects, that are negligible in
room condition. The cavitation numbers obtained for water experiments are
higher than in nitrogen experiments, but inception cavitation has been ob-
served for both fluids. A reason for this difference is due to thermal effects,
because, as Kikuta et al.[65] studied, the temperature liquid nitrogen, that
in this case is of 82K, is near the critical point (TcN ITROGEN = 126.192K,
TcWATER = 647.096K), and then the correspondent vapor density is more
elevated that far from the critical point. The consequence is that liquid nitro-
gen needs more heat to cavitate and so, at the same cavitation number, the
water develops a more elevated cavity length [12, 76, 65]. Fig.(6.15) shows the
Fourier transformation (FFT) amplitude spectrum of the upstream pressure
signals for the nitrogen fluid at T = 82K, at different cavitation numbers
σ. According to the FFT values, the interesting frequency range for nitro-
gen experiments spans to no more than 100Hz for all the cavitation regime.
Fig.(6.16) shows a comparison of frequency spectra obtained from pressure
signals for nitrogen (T = 82K and σ = 1.55) and water at different temper-
atures (T = 293K and σ = 8.0; T = 348K and σ = 8.0). It is evident how
frequency peaks are shifted towards higher frequencies in the case of water,
as well as the fact that the magnitude of the signal rises, in particular at
the low frequencies, with increasing water temperature. This can be due to
thermal effects that contribute to the low frequencies in the case of cryo-
genic fluid. This is confirmed also by the frequency spectrum obtained by
the visualizations. Images obtained from visualization are treated using cus-
tomized software programmed in Matlab. Four series of images, obtained by
visualization method, settings for brightness and contrast were constant and
equal for all points during the experiment. Although the exact relationship
between the size of cavitation and image brightness is not known, certainly
the void fraction and thus cavitation size are proportional to the measured
pixel brightness. The brightness of each image was calculated by averaging
the brightness of the pixels in the image. From brightness values, time se-
ries were formed for spectrum analysis. Time series were transformed using
fast Fourier transformation (FFT) algorithm into discrete Fourier transform
(DFT) so that frequency spectra were obtained. The analysis of figures
confirms the trends of frequency spectra obtained from pressures signals, as
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it is possible to observe in Fig.(6.17) for the nitrogen and in Fig.(6.18) and
Fig.(6.19), respectively, for the water at T = 293K and T = 348K. However,
there is a difference in the amplitude of FFT analysis, in fact in the case of
pressure (Fig.(6.15) and Fig.(6.16)), the peaks of FFT amplitude of nitrogen
is compared with the picks of water. In the case of FFT images (Fig.(6.17)-
(6.19)), visualization spectra show still greater changes in FFT magnitude
between nitrogen and water, in particular the picks of nitrogen are even more
evident than in the case of water, in fact there is a difference of three orders
of magnitude. With the numerical model described before, the experimental
cases of nitrogen and water have been simulated. The aim of this comparison
is to explain the trend in frequency spectra obtained experimentally. The op-
erating conditions of the different test cases are summarized in the Tab.(6.3).
Fig.(6.20) shows bubble size distribution in the converging-diverging nozzle,
experimentally analyzed. The bubble starts to grow just before the throat
of the orifice. Then it reaches the maximal size before starting to oscil-
late in the downstream portion. According to Fig.(6.20) the thermal effects
are very low in the present orifice, experimentally tested, characterized by
CpMIN = −10, and the bubble growth is similar at the different tempera-
ture. This is confirmed at the different cavitation regimes (see Fig.(6.21)).
However, assuming CpMIN = −1, the bubble expands larger in the case of
cold water, as shown in Fig.(6.22). Besides, the frequency of bubble oscilla-
tion are influenced by the operating conditions. In Fig.(6.21) the frequency
appears to be influenced by the different cavitating regimes, rather than by
temperature difference. However at highest CpMIN , the bubble frequency is
very influenced also by thermal effects as shown in Fig.(6.22). In particular,
in the case of cold water the maximum bubble radius is larger than the case
of hot water so bubble requires more time to grow and shrink. The modeling
of the thermal effects becomes important in the modeling of nitrogen, as can
be seen in the comparison of Fig.(6.23) and Fig.(6.24). Fig.(6.23) shows that
the bubble radius distribution of the simulations, assuming that the bubble
temperature is equal to the liquid temperature Tc = T∞, has a completely
different trend from the results obtained estimating the thermal effects. In
particular the simulations where the temperature depression near the bub-
ble is neglected, give a larger predicted radius. The temperature drops by
some degrees in the region of bubble growth, then the temperature increases
by a few degrees during the collapse, as shown in Fig.(6.25). Observing the
predicted cavity extension, this is qualitatively in agreement with the experi-
mental visualizations (see Tab.(6.4)), and in particular with the experimental
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vapor profile (Fig.(6.26)). The experimental vapor profiles are obtained by
the normalized values of the image brightness, subtracting from the bright-
ness value of each pixel, the value of the pixel in absence of cavitation, and
normalized in respect to the maximum, corresponding to vapor. Comparing
the position of the bubble collapse for water and nitrogen at the operating
conditions during experiments, it is clear that the collapse for the nitrogen
bubble is downstream with respect to water, so it could explain the lower
frequency for nitrogen experiments. Then after the first collapsing process, it
is clear that bubble starts to oscillate in the downstream portion in the case
of water, but in the case of nitrogen, it seems there is no oscillation effect.

Figure 6.15: Fourier transformation (FFT) amplitude spectrum of the up-
stream pressure signals for the nitrogen fluid at T = 82K at different cavi-
tation numbers σ.

6.2.4 Conclusions

The present work reports the results of a cavitating converging-diverging noz-
zle, performed for water and nitrogen, in order to analyze thermodynamic
effects encountered in cryogenic fluids. The comparison of results in nitrogen
and in cold water, without thermal effects, shows differences in the frequency
behavior given by FFT of pressure signals and images. In the case of cryo-
genic fluid, frequency peaks are shifted towards lower frequencies, with re-
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Figure 6.16: Fourier transformation (FFT) amplitude spectrum of the up-
stream pressure signals for the nitrogen fluid at T = 82K and σ = 1.55,
and for water at σ = 8 and at two different temperatures, T = 293K and
T = 348K.

Figure 6.17: Amplitude spectrum of the image brightness for the nitrogen
fluid at T = 82K at different cavitation numbers.
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Figure 6.18: Comparison between the FFT image brightness and the FFT
of pressure signals for water at T = 293K and at σ = 8.0.

Figure 6.19: Comparison between the FFT image brightness and the FFT
of pressure signals for water at T = 348K and at σ = 8.0.
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NITROGEN

Case Inlet Pres-
sure [bar]

Outlet
Pressure
[bar]

Vapor Pressure
[bar]

T [K] Re σ

1 1.66 1.57 1.53 82 2423.68 1.9

2 1.89 1.80 1.53 82 4375.03 1.2

3 1.95 1.80 1.53 82 6554.84 0.8

WATER

1 4.41 3.85 0.02338 293 1000 8.0

2 5.19 4.62 0.39 348 1000 8.0

Table 6.3: Test case conditions.

Figure 6.20: Bubble radius distributions in tested converging-diverging nozzle
(CpMIN = −10), obtained respectively by assuming Tc = T∞ and Tc 6= T∞,
for water at T = 348K ( Re = 1000, σ = 8, α0 = 5× 10−7, R0 = 0.0001).
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6.2. EXPERIMENTAL THERMAL EFFECT IN WATER AND

CRYOGENIC CAVITATING FLOW

Figure 6.21: Bubble radius distributions in experimentally tested converging-
diverging nozzle (CpMIN = −10), for water at T = 348K and T = 293K, by
the isothermal calculations ( α0 = 5× 10−8, R0 = 0.0001).

Test Case V aporProduction σ

1 1.9

2 1.2

3 0.8

Table 6.4: Experimental visualization of nitrogen cavitation length.
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6.2. EXPERIMENTAL THERMAL EFFECT IN WATER AND

CRYOGENIC CAVITATING FLOW

Figure 6.22: Bubble radius distributions in the nozzle (CpMIN = −1), for
water at different temperatures (Re = 1000, α0 = 2.5 × 10−6, σ = 0.8,
R0 = 0.0001 and CpMIN = −1).

spect to cold water. Then the magnitude of the signal increases, in particular
at low frequencies, for nitrogen and hot water. This can be due to thermal
effects that also contribute to the low frequencies in the case of cryogenic
fluid. To verify this assumption, a simple model based on the resolution of
Rayleigh equation is used in order to analyze thermal effects in cavitation.
The analytical study confirms the presence of different cavitation structure
dimensions, in particular smaller bubbles for nitrogen compared to water,
especially at room temperature, that are attributed to a thermodynamic ef-
fect. In the case of cold water the maximum bubble radius is larger than in
hot water then bubble requires more time to grow and shrink. Comparing
the position of the bubble collapse for water and nitrogen at the operating
conditions during experiments, it is clear that the collapse for the nitrogen
bubble is downstream with respect to water, so it could explain the lower
frequency for nitrogen experiments. Then after the first collapsing process,
it is clear that bubble starts to oscillate in the diverging part of the nozzle in
the case of water, but in the case of nitrogen, it seems there is no oscillation
effect.
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6.2. EXPERIMENTAL THERMAL EFFECT IN WATER AND

CRYOGENIC CAVITATING FLOW

Figure 6.23: Bubble radius distributions in converging-diverging nozzle
(CpMIN = −10), obtained respectively by assuming Tc = T∞ and Tc 6= T∞,
for nitrogen at T = 82K, α0 = 5× 10−7, R0 = 0.0001.
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6.2. EXPERIMENTAL THERMAL EFFECT IN WATER AND

CRYOGENIC CAVITATING FLOW

Figure 6.24: Nitrogen Bubble radius distributions in nozzle (CpMIN = −10),
obtained by assuming Tc 6= T∞ (T = 82K, α0 = 5 × 10−6, R0 = 0.0001,
hb = 5× 10+05).
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6.2. EXPERIMENTAL THERMAL EFFECT IN WATER AND

CRYOGENIC CAVITATING FLOW

Figure 6.25: Nitrogen bubble radius and temperature distributions (CpMIN =
−10 obtained by assuming Tc 6= T∞, (T = 82K, α0 = 5× 10−6, R0 = 0.0001,
hb = 5× 10+05, σ = 1.9).
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6.2. EXPERIMENTAL THERMAL EFFECT IN WATER AND

CRYOGENIC CAVITATING FLOW

Figure 6.26: Experimental normalized image brightness, for the axial center-
line, for the nitrogen fluid at T = 82K at different cavitation numbers.
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Chapter 7

Conclusions

This work is devoted to a better understanding of the cavitation phenomenon.
More attention has been devoted to the cryogenic flows, making a compari-
son, when possible, with experimental data. Results presented in this work
represent significant advancements with respect to previous literature. Sev-
eral studies, both numerical and experimental, have been performed, permit-
ting to achieve a set of contributions. From the numerical point of view, first,
three cavitation models (the thermal equilibrium model [52], the mechanical
equilibrium model [53] and the full cavitation model [54]) have been analyzed.
The predictive character of these models have been already demonstrated in
previous works for the water. The originality of this study consisted in cou-
pling the cavitation model with the nucleation model (see Chapter 3) and
to remove the hypothesis of isothermal phenomenon to consider the thermal
effect and in order to improve the estimation of cavitation phenomenon in
cryogenic flows. Accuracy of these models have been checked by a detailed
comparison with experimental data [1]. Results display the importance of
the choice of the cavitation model on the accuracy of the numerical simula-
tions. In particular, the best predictions have been given by the mechanical
equilibrium model (ME). Performances of the ME model have been improved
by considering both nucleation and thermal effects.

Secondly, the dynamic behavior of a bubble under an oscillating pres-
sure has been studied. The temperature during bubble collapse has been
estimated and successively it has been used for the estimation of radicals
production in the case of water treatment. The bubble behavior has been
modeled by several forms of Rayleigh-Plesset equations, that have been im-
plemented in an in-house numerical C code. Concerning this study, the
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following contributions have been performed :

• Comparison of RP equations performance for high value of Mach num-
ber, in terms of comparison of the numerical results with experimental
data.

• Study of the influence of the equation of state (Van der Waals EOS
and Perfect gas EOS) of the gas in the bubble on bubble behavior.

• Proposition of a simple model for the reproduction of water treatment.

When van der Waals EOS has been used, the temperature has been esti-
mated higher than that one obtained with the perfect gas equation. It has
been observed that the compressibility hypothesis influence the bubble re-
bounds, except for the first collapse. Finally, the OH− radicals have been
computed using several forms of RP equations. When a van der Waals equa-
tion has been used, the computed number of radicals has been higher.

Thirdly, the thermal effect in a cryogenic cavitating flow, has been taken
into account by means of the study of convective heat transfer coefficient hb

. The originality of this study consisted in the full analysis on hb that allows
understanding a physical aspect of cavitation phenomenon and determining
the best model for the estimation of hb in hydrogen cavitating flows. A
sensitivity analysis of the convective heat transfer coefficient, in cryogenic
flows, has been performed in order to identify the mechanisms governing the
bubble growth. For all tested cases the coefficient hb has been varied between
1 × 1010 and 1 × 1003 and for each hb, the upstream vapor fraction α0 has
been varied between 1×10−10 and 1×10−03. In order to analyze qualitatively
the results, for each case, several parameters, i.e. hbMAX , hbOPT and hbMIN ,
have been identified, representing, respectively, the minimal value, for which,
the growth is governed exclusively by mechanical forces, the range of values
permitting to obtain the best comparison with respect to experimental data
and the maximum value, for which the growth is governed exclusively by
thermal effects (obviously hbMIN < hbMAX). Then, three models, i.e. Ranz
and Marshall model [5], Oresta model [6] and Christopher model [7], for the
convective heat transfer coefficient have been analyzed. These models have
been implemented in a commercial CFD code and validated by comparing
with the experimental case described in [1]. The most important conclusions
of the present work are the following:
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• An over-estimation of hb could motivate that the bubble growth is
governed by mechanical forces producing an increase of vapor frac-
tion and a negligible temperature drop in the throat. Conversely an
under-estimation could motivate that the bubble growth is governed by
thermal force producing a good estimation of temperature drop even
with a bad estimation of vapor fraction.

• There is an optimal range for hydrogen cavitating flow that is about
1 × 1005 < hb < 1 × 1006, then it is better to adopt a model for the
estimation of hb coefficient.

• In all cases the optimal hb is closed to hbMIN , assessing that in hydrogen
cavitating flow the growth of bubbles is more controlled by thermal
effect than mechanical force.

• The optimal value of hb is more influenced by inlet temperature T0 and
by cavitation number σ, than Reynolds number.

• From comparison between the three models, Oresta and Christopher
model give a good estimation of temperature drop. The Ranz and
Marshall model gives an error more elevated compared to the other
two models in terms of estimation of temperature drop in the throat
and liquid pressure in the Venturi.

• When these models have been used in the commercial code, the impor-
tance of a good choice of convective heat transfer coefficient showed to
be more evident during the evaporation, while it is negligible during the
collapse, because the two models give the same temperature results.

From the experimental point of view, an experimental apparatus has been
set up in the laboratory of University of Salento in order to investigate the
cavitating flows in nitrogen and in water and in order to study experimentally
the nucleation in cryogenic flows and the influence of thermal effect. The
experimental set-up allows a visualization of the phenomenon by means of
a CCD camera and a constant monitoring of pressure by means of pressure
sensors. Pressure signals have been analyzed both in time domain and in
frequency domain, in order to characterize the cavitating cryogenic flows
in terms of time occurrence, space, and intensity for various hydrodynamic
conditions. Several configurations of convergent-divergent nozzle have been
designed and tested in the apparatus. The concentration of activated bubbles
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nuclei has been obtained. An increase of nuclei due to a decrease of cavitation
number has been observed. Then the standard deviation of the pressure
signals, recorded downstream the restricted nozzle area has been studied in
order to obtain an evaluation about the oscillation of pressure signals due the
development of cavitation. By means of the Fourier Transform, it has been
possible to locate a range of characteristic frequencies for the upstream and
downstream pressures. In the case of cryogenic flows, it has been observed
that the frequency peaks are shifted towards lower frequencies, with respect
to cold water. Then the magnitude of the signal increases, in particular at
low frequencies, for nitrogen and hot water. This can be due to thermal
effects that also contribute to the low frequencies in the case of cryogenic
fluid. To verify this assumption, some cases has been numerically simulated
with the cavitation models studied in this work.
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Appendix A

Classical Equation of
Rayleigh-Plesset

A bubble with initial radius R0 is in equilibrium with a liquid at constant
temperature T∞. Neglecting the liquid energy equation, because the liquid
is at constant temperature, the liquid mass and momentum conservative
equations are:

ρ
[

∂u
∂t

+ u · ▽u
]

= −▽p+ µ▽2u+ ς▽▽ · u
∂rho
∂t

+ ▽ · (ρu) = 0

where u is the liquid velocity, ρ the liquid density, p the liquid pressure,
mu the molecular viscosity and ς is volume viscosity. Let us suppose that:

• the viscosity is negligible → µ▽2u = 0

• the field of fluid velocity is only radial, the velocity has only one com-
ponent on r → u(r, θ, ϕ) = u(r, 0, 0), that allows computing the second
term in the left part of Eq.(A) as following :

(u · ▽)u =

[

ur
∂ur

∂r
+ uθ

∂uθ

∂θ
+ uϕ

∂uϕ

∂ϕ

]

= ur
∂ur

∂r
=

1

2

∂u2
r

∂r
(A.1)
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The velocity can be represented by a potential u = ▽φ = ∂φ
∂r

where the
flux is irrotational → ▽▽ · u = 0. The Eq.(A) becomes:

ρ

[

∂

∂r

(

∂φ

∂t

)

+
1

2

∂

∂r

(

∂φ

∂r

)2
]

= −∂p

∂r

∂ρ

∂t
+ ▽φ▽ρ+ ρ▽ · (▽φ) = 0 (A.2)

that can be written as:

ρ
[

(

∂φ
∂t

)

+ 1
2

(

∂φ
∂r

)2
]

= −p
∂ρ
∂t

+ ∂φ
∂r

∂ρ
∂r

+ ρ▽2φ = 0

Introducing the enthalpy in the conservative equations (Eq.(A)) dH =
dp/ρ = (dp/dρ)(dρ/ρ) = c2dρ/ρ:

▽
2φ =

[

u

c2

(

∂u

∂t
− ∂H

∂r

)]

+
1

c2
∂2φ

∂t
(A.3)

Close to the bubble, the Laplace operator could be applied to the potential
(▽2φ = 0) and the term (1/c2)∂2

t φ is negligible. The solution that satisfies
the bubble interface condition ∂rφ(r = R) = Ṙ is :

φ = φ∞(t)− 1

r
F (t− r/c) ≈ φ∞(t)− 1

r
F (t) +

Ḟ

c
(A.4)

where the function F (t) = R2(∂R/∂t) = R2Ṙ, φ∞(t) is the bubble po-
tential law, c is the speed of sound and the last term is:

Ḟ

c
=

(

2RṘ2 +R2R̈

c

)

=

(

2RṘ2 +R2R̈

υλ

)

(A.5)

Supposing the bubble radius is lower than sound wavelength (R << λ),
the last term of Eq.(A.4) is negligible (see Eq.(A.5)) and the Eq.(A.4) be-
comes :

φ =
R2Ṙ

r
+ φ∞(t) (A.6)

This condition is applied if the radial sound effect of bubble is neglected, on
the contrary in the absence of this hypothesis, the potential is :

φ = −R2Ṙ

r
+ φ∞(t) +

d(R2Ṙ)

dt
(A.7)
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Replacing the Eq.(A.7) in Eq.(A.3) and supposing the pressure close to the
bubble is p = −ρ∂tφ∞ = P0+Pext(t) with Pext(t) = −Pasin(̟t), the Eq.(A.3)
becomes:

∂

∂t

[

−R2Ṙ

r
+ φ∞(t)

]

+
1

2

∂

∂r

[

−R2Ṙ

r
+ φ∞(t)

]2

= −p[R(t)]

ρ
(A.8)

where p[R(t)] is the bubble interface pressure in the liquid side. Develop-
ing the derivatives in Eq.(A.7) the following equation is obtained:

−R2R̈

r
− Ṙ

r
(2RṘ)− 1

ρ
[P0 + Pext(t)] +

1

2

R4Ṙ2

r4
= −p[R(t)] (A.9)

On the interface r = R the Eq.(A.9) becomes :

R2R̈ +
3

2
Ṙ2 =

1

ρ
[−P0 − Pext + p[R(t)]] (A.10)

The pressure p[R(t)] can be defined by the force balance at the interface
that satisfies the general form of Laplace law: At the interface r = R the
Eq.(A.9) becomes :

pg(t)+
∑

rr

[r = R(t)] = pg(t)−p[R(t)]+2µ
∂u

∂r
(r = R) = pg(t)−p[R(t)]+4µ

Ṙ

R
= 2

σ

R

(A.11)
where

∑

rr is the radial component of stress tensor in the liquid, σ is the
surface tension of liquid-gas interface and pg is the gas pressure. Then, the
Eq.(A.11) becomes :

rho

[

R2R̈ +
3

2
Ṙ2

]

= Pg − P0 − Pext −
2σ

R
− 4µṘ

R
] (A.12)
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Appendix B

Rayleigh-Plesset equation with
compressible effect

The equation A14 has been obtained with the hypothesis that the radial
sound effect of bubble can be neglected. When this hypothesis is not true,
the potential is expressed by Eq.(A.7) that substituted in Eq.(A.3) becomes:

∂

∂t

[

−R2Ṙ

r
+ φ∞(t) +

1

c

d(R2Ṙ)

dt

]

+
1

2

∂

∂r

[

−R2Ṙ

r
+ φ∞(t)

1

c

d(R2Ṙ)

dt

]2

= −p[R(t)]

ρ
.

(B.1)
Developing the derivatives, the Eq.(B.1) becomes :

−R2Ṙ

r
+

Ṙ

r
(2RṘ)− 1

ρ
[P0 + Pext] +

1

c

d(R2Ṙ)

dt
+

1

2

R4Ṙ2

r4
=

p[R(t)]

ρ
. (B.2)

If r = R replacing the Eq.(A.10), the Eq.(B.2) becomes:

ρ

[

R2Ṙ +
3

2
Ṙ2

]

= Pg − P0 − Pext(t)−
2σ

R
− 4µṘ

R
+

ρ

c

d2

dt2
(R2Ṙ). (B.3)

It is possible to evaluate the importance of compressible effect, comparing
the magnitude order of the last term on the right and of the inertial term
on the left. It is possible to introduce the ratio between these two terms
presenting an order of Ṙ/c, that is similar to Mach number. This term
is negligible when the interface velocity (dR/dt = Ṙ) is lower than speed
of sound. By using the compressible term, the Rayleigh-Plesset equation
becomes a three-order equation, though the initial condition are expressed
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only for R and for Ṙ. This happens because the term R̈ is chosen to remove
the unstable solution of Eq.(B.3). A method is to compute the last term of
Eq.(B.3) using always the Rayleigh-Plesset equation. Yuan et al.[16] gives
a good explanation of all the system of equations that can be obtained and
that are used in this work. The first equation is called RP1 and it has been
obtained by Rayleigh, Plesset, Noltingk et Prostsky and then modified by
Keller et Kolodner[57]:

RR̈+
3

2
Ṙ2 =

1

ρl∞

(

Pg(R, t)− P0 − Pext(t)−
2σ

R
− 4µṘ

R

)

+
tR
ρl∞

d

dt
[Pg(R, t)−Pext(t)],

(B.4)
with tR = R/cl∞ ,cl∞ is the speed of sound at room condition. The second
equation, RP2, comes from the formulation of Keller-Miksis [58]:

(1−M)RR̈+
3

2

(

1− M

3

)

Ṙ2 =
1

ρl∞
(1+M) [P (R(t))− P0 − Pext(t+ tR)]+

tR
ρl∞

dP (R(t))

dt
(B.5)

where M = R̈/cl∞. The equation RP3 [28] is :

(1−M)RR̈+
3

2

(

1− M

3

)

Ṙ2 = (1+M)

[

Hb −
1

ρl
P (t+ tR)

]

+tR
dHb

dt
(B.6)

where ρl , Hb are, respectively the density and the enthalpy of liquid phase
that are defined:

c2l ≡
dP

dρl
and Hb ≡

∫ P

P∞

dP

ρl
(B.7)

For water, the Tait EOS gives an expression of ρl and Hb :

P + B

P∞ + B
≡
(

ρl
ρl∞

)n

(B.8)

where B=3049.13 and n=7.15, for water at 105bar. Replacing the Eq.(B.8)in
Eq.(B.7), this one becomes :

c2l =
n(P + B)

ρl
and Hb =

n

n− 1

(

(P + B)

ρl
− (P∞ + B)

ρl∞

)

. (B.9)
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