N. Cazier, X. Checoury, L. Haret, and P. Boucaud, High-frequency self-induced oscillations in a silicon nanocavity, Optics Express, vol.21, issue.11, pp.13626-13638, 2013.
DOI : 10.1364/OE.21.013626

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki et al., A micrometre-scale Raman silicon laser with a microwatt threshold, Nature, vol.14, issue.7455, pp.470-474, 2013.
DOI : 10.1038/nature12237

B. S. Song, S. Noda, and T. Asano, Photonic Devices Based on In-Plane Hetero Photonic Crystals, Science, vol.300, issue.5625, pp.1537-1537, 2003.
DOI : 10.1126/science.1083066

H. Takano, B. S. Song, T. Asano, and S. Noda, Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal, Optics Express, vol.14, issue.8, pp.3491-3496, 2006.
DOI : 10.1364/OE.14.003491

S. Noda, APPLIED PHYSICS: Seeking the Ultimate Nanolaser, Science, vol.314, issue.5797, pp.260-261, 2006.
DOI : 10.1126/science.1131322

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata et al., Room temperature continuous-wave lasing in photonic crystal nanocavity, Optics Express, vol.14, issue.13, pp.6308-6315, 2006.
DOI : 10.1364/OE.14.006308

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O-'brien et al., Two-Dimensional Photonic Band-Gap Defect Mode Laser, Science, vol.284, issue.5421, pp.1819-1821, 1999.
DOI : 10.1126/science.284.5421.1819

S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato et al., Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers, Physical Review Letters, vol.96, issue.12, 2006.
DOI : 10.1103/PhysRevLett.96.127404

Y. Akahane, T. Asano, B. S. Song, and S. Noda, High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature, vol.425, issue.6961, pp.944-947, 2003.
DOI : 10.1038/nature02063

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Ultra-high-Q photonic double-heterostructure nanocavity, Nature Materials, vol.10, issue.3, pp.207-210, 2005.
DOI : 10.1103/PhysRevLett.92.083901

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato et al., Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration, Optics Express, vol.17, issue.20, pp.18093-18102, 2009.
DOI : 10.1364/OE.17.018093

M. Solja?i´solja?i´c and J. D. Joannopoulos, Enhancement of nonlinear effects using photonic crystals, Nature Materials, vol.3, issue.4, pp.211-219, 2004.
DOI : 10.1038/nmat1097

P. Barclay, K. Srinivasan, and O. Painter, Nonlinear response of silicon photonic crystal micresonators excited via an integrated waveguide and fiber taper, Optics Express, vol.13, issue.3, pp.801-820, 2005.
DOI : 10.1364/OPEX.13.000801

C. Monat, B. Corcoran, M. Ebnali-heidari, C. Grillet, B. J. Eggleton et al., Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides, Optics Express, vol.17, issue.4, pp.2944-2953, 2009.
DOI : 10.1364/OE.17.002944

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip, Optics Letters, vol.30, issue.19, pp.2575-2577, 2005.
DOI : 10.1364/OL.30.002575

J. F. Mcmillan, M. B. Yu, D. L. Kwong, and C. W. Wong, Observation of four-wave mixing in slow-light silicon photonic crystal waveguides, Optics Express, vol.18, issue.15, pp.15484-15497, 2010.
DOI : 10.1364/OE.18.015484

E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Physical Review Letters, vol.58, issue.20, pp.2059-2062, 1987.
DOI : 10.1103/PhysRevLett.58.2059

S. John, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters, vol.58, issue.23, pp.2486-2489, 1987.
DOI : 10.1103/PhysRevLett.58.2486

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, K. M. Biswas et al., A three-dimensional photonic crystal operating at infraredwavelengths, Nature, vol.394, issue.6690, pp.251-253, 1998.
DOI : 10.1038/28343

Z. Han, Vers le laser Raman à cristal photonique en filière silicium, 2010.

T. Baba, Slow light in photonic crystals, Nature Photonics, vol.14, issue.8, pp.465-473, 2008.
DOI : 10.1038/nphoton.2008.146

H. Benisty, J. M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, Recent Advances Toward Optical Devices in Semiconductor-Based Photonic Crystals, Proceedings of the IEEE, vol.94, issue.5, pp.997-1023, 2006.
DOI : 10.1109/JPROC.2006.873441

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama et al., Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode, Applied Physics Letters, vol.91, issue.2, p.21110, 2007.
DOI : 10.1063/1.2757099

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million, Optics Express, vol.19, issue.12, pp.11916-11921, 2011.
DOI : 10.1364/OE.19.011916

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe et al., Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect, Applied Physics Letters, vol.88, issue.4, 2006.
DOI : 10.1063/1.2167801

Z. Han, X. Checoury, D. Néel, S. David, M. Kurdi et al., Optimized design for 2??106 ultra-high Q silicon photonic crystal cavities, Optics Communications, vol.283, issue.21, pp.4387-4391, 2010.
DOI : 10.1016/j.optcom.2010.06.005

K. M. Leung and Y. F. Liu, Photon band structures: The plane-wave method, Physical Review B, vol.41, issue.14, pp.10188-10190, 1990.
DOI : 10.1103/PhysRevB.41.10188

S. G. Johnson and J. D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis, Optics Express, vol.8, issue.3, pp.173-190, 2001.
DOI : 10.1364/OE.8.000173

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals, Physical Review B, vol.64, issue.15, p.155113, 2001.
DOI : 10.1103/PhysRevB.64.155113

J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, issue.2, pp.185-200, 1994.
DOI : 10.1006/jcph.1994.1159

R. F. Pease, Electron beam lithography, Contemporary Physics, vol.15, issue.3, pp.265-290, 1981.
DOI : 10.1080/00107518108231531

J. G. Goodberlet, J. T. Hastings, and H. I. Smith, Performance of the Raith 150 electron-beam lithography system, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.19, issue.6, pp.2499-2503, 2001.
DOI : 10.1116/1.1414018

A. M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston et al., Recent advances in silicon etching for MEMS using the ASE??? process, Sensors and Actuators A: Physical, vol.74, issue.1-3, pp.13-17, 1999.
DOI : 10.1016/S0924-4247(98)00326-4

G. I. Font, W. L. Morgan, and G. Mennenga, Cross-section set and chemistry model for the simulation of c-C4F8 plasma discharges, Journal of Applied Physics, vol.91, issue.6, pp.3530-3538, 2002.
DOI : 10.1063/1.1448894

L. Haret, Détecteur en silicium sur cristal photonique par absorption linéaire à deux photons, 2012.

X. D. Yang and C. W. Wong, Coupled-mode theory for stimulated Raman scattering in high-Q/V_m silicon photonic band gap defect cavity lasers, Optics Express, vol.15, issue.8, pp.4763-4780, 2007.
DOI : 10.1364/OE.15.004763

A. Yariv, Optical Electronics in Modern Communications, 1997.

P. J. Petersan and S. M. Anlage, Measurement of resonant frequency and quality factor of microwave resonators: Comparison of methods, Journal of Applied Physics, vol.84, issue.6, pp.3392-3402, 1998.
DOI : 10.1063/1.368498

Q. Lin, O. J. Painter, and G. P. , Nonlinear optical phenomena in silicon waveguides: modeling and applications, Optics Express, vol.15, issue.25, pp.16604-16644, 2007.
DOI : 10.1364/OE.15.016604

URL : http://authors.library.caltech.edu/9442/1/LINoe07.pdf

H. H. Li, Refractive index of silicon and germanium and its wavelength and temperature derivatives, Journal of Physical and Chemical Reference Data, vol.9, issue.3, p.98, 1980.
DOI : 10.1063/1.555624

M. Dinu, F. Quochi, and H. Garcia, Third-order nonlinearities in silicon at telecom wavelengths, Applied Physics Letters, vol.82, issue.18, pp.2954-2956, 2003.
DOI : 10.1063/1.1571665

T. Uesugi, B. S. Song, T. Asano, and S. Noda, Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab, Optics Express, vol.14, issue.1, pp.377-386, 2006.
DOI : 10.1364/OPEX.14.000377

L. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié et al., All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength, Optics Express, vol.18, issue.23, pp.23965-23972, 2010.
DOI : 10.1364/OE.18.023965

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip, Applied Physics Letters, vol.96, issue.10, p.101103, 2010.
DOI : 10.1063/1.3357427

T. J. Johnson, M. Borselli, and O. Painter, Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator, Optics Express, vol.14, issue.2, pp.817-831, 2006.
DOI : 10.1364/OPEX.14.000817

T. Johnson, Silicon Microdisk Resonators for Nonlinear Optics and Dynamics, 2009.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, Raman-based silicon photonics, IEEE Journal of Selected Topics in Quantum Electronics, vol.12, issue.3, pp.412-421, 2006.
DOI : 10.1109/JSTQE.2006.872708

R. W. Hellwarth, Theory of Stimulated Raman Scattering, Physical Review, vol.130, issue.5, pp.1850-1852, 1963.
DOI : 10.1103/PhysRev.130.1850

P. A. Temple and C. E. Hathaway, Multiphonon Raman Spectrum of Silicon, Physical Review B, vol.7, issue.8, p.3685, 1973.
DOI : 10.1103/PhysRevB.7.3685

F. Kroeger, A. Ryasnyanskiy, A. Baron, N. Dubreuil, P. Delaye et al., Saturation of the Raman amplification by self-phase modulation in silicon nanowaveguides, Applied Physics Letters, vol.96, issue.24, p.241102, 2010.
DOI : 10.1063/1.3451466

URL : https://hal.archives-ouvertes.fr/hal-00486249

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, Observation of Raman emission in silicon waveguides at 154 ??m, Optics Express, vol.10, issue.22, pp.1305-1313, 2002.
DOI : 10.1364/OE.10.001305

O. Boyraz and B. Jalali, Demonstration of a silicon Raman laser, Optics Express, vol.12, issue.21, pp.5269-5273, 2004.
DOI : 10.1364/OPEX.12.005269

O. Boyraz and B. Jalali, Demonstration of directly modulated silicon Raman laser, Optics Express, vol.13, issue.3, pp.796-800, 2005.
DOI : 10.1364/OPEX.13.000796

H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak et al., A continuous-wave Raman silicon laser, Nature, vol.8, issue.7027, pp.725-728, 2005.
DOI : 10.1364/OL.29.001224

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen et al., Low-threshold continuous-wave Raman silicon laser, Nature Photonics, vol.42, issue.4, pp.232-237, 2007.
DOI : 10.1038/nphoton.2007.29

H. S. Rong, S. B. Xu, O. Cohen, O. Raday, M. Lee et al., A cascaded silicon Raman laser, Nature Photonics, vol.12, issue.3, pp.170-174, 2008.
DOI : 10.1038/nphoton.2008.4

S. Malaguti, G. Bellanca, A. De-rossi, S. Combrie, and S. Trillo, Self-pulsing driven by two-photon absorption in semiconductor nanocavities, Physical Review A, vol.83, issue.5, p.51802, 2011.
DOI : 10.1103/PhysRevA.83.051802

M. Soltani, S. Yegnanarayanan, Q. Li, A. A. Eftekhar, and A. Adibi, photonic microresonators, Physical Review A, vol.85, issue.5, p.53819, 2012.
DOI : 10.1103/PhysRevA.85.053819

J. Capmany and D. Novak, Microwave photonics combines two worlds, Nature Photonics, vol.24, issue.6, pp.319-330, 2007.
DOI : 10.1038/nphoton.2007.89

K. Ikeda and O. Akimoto, Instability Leading to Periodic and Chaotic Self-Pulsations in a Bistable Optical Cavity, Physical Review Letters, vol.48, issue.9, pp.617-620, 1982.
DOI : 10.1103/PhysRevLett.48.617

Y. F. Shaowu-chen, L. Zhang, and T. Cao, Bistability and self-pulsation phenomena in silicon microring resonators based on nonlinear optical effects, Optics Express, vol.20, issue.7, pp.7454-7468, 2012.
DOI : 10.1364/OE.20.007454

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot et al., Excitability and self-pulsing in a photonic crystal nanocavity, Physical Review A, vol.85, issue.3, p.31803, 2012.
DOI : 10.1103/PhysRevA.85.031803

Z. Han, X. Checoury, L. Haret, and P. Boucaud, High quality factor in a two-dimensional photonic crystal cavity on silicon-on-insulator, Optics Letters, vol.36, issue.10, pp.1749-1751, 2011.
DOI : 10.1364/OL.36.001749

T. J. Johnson and O. Painter, Passive modification of free carrier lifetime in highq silicon-on-insulator optics, Conference On Lasers and Electro-optics and Quantum Electronics and Laser Science Conference, pp.72-73, 2009.

T. Tanabe, H. Taniyama, and M. Notomi, Carrier Diffusion and Recombination in Photonic Crystal Nanocavity Optical Switches, Journal of Lightwave Technology, vol.26, issue.11, pp.1396-1403, 2008.
DOI : 10.1109/JLT.2008.923638

S. Kaka, M. R. Pufall, W. H. Rippard, T. J. Silva, S. E. Russek et al., Mutual phase-locking of microwave spin torque nano-oscillators, Nature, vol.437, issue.7057, pp.389-392, 2005.
DOI : 10.1038/nature04035

A. C. Turner-foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem et al., Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides, Optics Express, vol.18, issue.4, pp.3582-3591, 2010.
DOI : 10.1364/OE.18.003582

B. Jalali, Silicon Lasers, APS NEWS, vol.15, 2006.
DOI : 10.1002/9780470994535.ch5

M. E. Fujita-]-j, X. D. Mcmillan, N. C. Yang, R. M. Panoiu, C. W. Osgood et al., Silicon photonics: Nanocavity brightens silicon, Nature Photonics, vol.27, issue.4, pp.264-265, 2006.
DOI : 10.1038/nphoton.2013.65

J. F. Mcmillan, M. B. Yu, D. L. Kwong, and C. W. Wong, Observation of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides, Applied Physics Letters, vol.93, issue.25, p.251105, 2008.
DOI : 10.1063/1.3050457

X. Checoury, M. Kurdi, Z. Han, and P. Boucaud, Enhanced spontaneous Raman scattering in silicon photonic crystal waveguides on insulator, Optics Express, vol.17, issue.5, pp.3500-3507, 2009.
DOI : 10.1364/OE.17.003500

X. Checoury, Z. Han, and P. Boucaud, Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation, Physical Review B, vol.82, issue.4, p.2010
DOI : 10.1103/PhysRevB.82.041308

X. D. Yang and C. W. Wong, Design of photonic band gap nanocavities for stimulated Raman amplification and lasing in monolithic silicon, Optics Express, vol.13, issue.12, pp.4723-4730, 2005.
DOI : 10.1364/OPEX.13.004723

X. D. Yang and C. W. Wong, Stimulated Raman amplification and lasing in silicon photonic band gap nanocavities, Sensors and Actuators A: Physical, vol.133, issue.2, pp.278-282, 2007.
DOI : 10.1016/j.sna.2006.06.039

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, 1995.
DOI : 10.1002/9781118148167

K. Inoue, H. Oda, A. Yamanaka, N. Ikeda, H. Kawashima et al., Dramatic density-of-state enhancement of Raman scattering at the band edge in a one-dimensional photonic-crystal waveguide, Physical Review A, vol.78, issue.1, p.11805, 2008.
DOI : 10.1103/PhysRevA.78.011805

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto et al., Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal linedefect waveguides, Applied Physics Letters, vol.93, issue.5, 2008.

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, Nanocavity-based self-frequency conversion laser, Optics Express, vol.21, issue.17, pp.19778-19789, 2013.
DOI : 10.1364/OE.21.019778

X. Checoury, Z. Han, M. Kurdi, and P. Boucaud, Deterministic measurement of the Purcell factor in microcavities through Raman emission, Physical Review A, vol.81, issue.3, p.33832, 2010.
DOI : 10.1103/PhysRevA.81.033832

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein et al., Photon Statistics of Semiconductor Microcavity Lasers, Physical Review Letters, vol.98, issue.4, p.43906, 2007.
DOI : 10.1103/PhysRevLett.98.043906

A. S. Liu, H. S. Rong, and M. Paniccia, Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering, Optics Express, vol.12, issue.18, pp.4261-4268, 2004.
DOI : 10.1364/OPEX.12.004261