. Mckinsey-global-institute, Disruptive Technologies: Advances that will transform life, business and the global economy, 2013.

A. Yoshino, K. Sanechika, T. B. Nakajima, and . Japonais, (7) Canis, B. Congressional Research Service Battery Manufacturing for Hybrid and Electric Vehicles: Policy Issues, 2013. (8) Energy Storage Research and Development, p.5, 1985.

M. Gaberscek, M. Küzma, and . Jamnik, cathodes: separation of wiring effects from solid state diffusion, Phys. Chem. Chem. Phys., vol.152, issue.15, pp.1815-1820, 2007.
DOI : 10.1039/B618822B

A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, Journal of The Electrochemical Society, vol.144, issue.4, pp.1188-1194, 1997.
DOI : 10.1149/1.1837571

C. Masquelier and L. Croguennec, Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries, Chemical Reviews, vol.113, issue.8, pp.6552-6591, 2013.
DOI : 10.1021/cr3001862

URL : https://hal.archives-ouvertes.fr/hal-00834789

A. S. Andersson, B. Kalska, L. Häggström, and J. Thomas, Solid State Ion, pp.41-52, 2000.

C. A. Fisher, V. M. Hart-prieto, and M. S. Islam, = Mn, Fe, Co, and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior, Chemistry of Materials, vol.20, issue.18, pp.5907-5915, 2003.
DOI : 10.1021/cm801262x

A. Yamada, H. Koizumi, N. Sonoyama, and R. Kanno, Phase Change in Li[sub x]FePO[sub 4], Electrochemical and Solid-State Letters, vol.8, issue.8, pp.409-413, 2005.
DOI : 10.1149/1.1945373

S. Chung and J. Bloking, Electronically conductive phospho-olivines as lithium storage electrodes, Nature Materials, vol.1, issue.2, pp.123-128, 2002.
DOI : 10.1038/nmat732

S. Chung, C. Delacourt, L. Laffont, R. Bouchet, and C. Wurm, Microscale Measurements of the Electrical Conductivity of Doped LiFePO[sub 4], Electrochemical and Solid-State Letters, vol.6, issue.12, pp.278-281, 2003.
DOI : 10.1149/1.1621289

A. Mauger, K. Zaghib, F. Gendron, and C. M. Julien, Small magnetic polaron effect in lithium iron phosphates, Ionics, vol.62, issue.3, pp.209-214, 2008.
DOI : 10.1007/s11581-007-0182-z

URL : https://hal.archives-ouvertes.fr/hal-00340576

D. Morgan, A. V. Ven, and G. Ceder, Li Conductivity in Li[sub x]MPO[sub 4] (M???=???Mn,???Fe,???Co,???Ni) Olivine Materials, Electrochemical and Solid-State Letters, vol.7, issue.2, pp.30-32, 2004.
DOI : 10.1149/1.1633511

M. S. Islam, D. J. Driscoll, C. A. Fisher, P. R. Slater, S. Nishimura et al., Olivine-Type Battery Material, Chemistry of Materials, vol.17, issue.20, pp.5085-5092, 2005.
DOI : 10.1021/cm050999v

J. Yang, J. S. Tse, N. Ravet, Y. Chouinard, J. F. Magnan et al., : An ab Initio Molecular Dynamics Study, The Journal of Physical Chemistry A, vol.115, issue.45, pp.13045-13049, 2001.
DOI : 10.1021/jp205057d

H. Huang, S. Yin, and L. F. Nazar, Approaching Theoretical Capacity of LiFePO[sub 4] at Room Temperature at High Rates, Electrochemical and Solid-State Letters, vol.4, issue.10, pp.170-172, 2001.
DOI : 10.1149/1.1396695

S. Yang, P. Y. Zavalij, and M. Stanley-whittingham, Hydrothermal synthesis of lithium iron phosphate cathodes, Electrochemistry Communications, vol.3, issue.9, pp.505-508, 2001.
DOI : 10.1016/S1388-2481(01)00200-4

S. Franger, C. Bourbon, and F. L. Cras, Optimized Lithium Iron Phosphate for High-Rate Electrochemical Applications, Journal of The Electrochemical Society, vol.151, issue.7, pp.1024-1027, 2004.
DOI : 10.1149/1.1758721

C. M. Julien, K. Zaghib, A. Mauger, M. Massot, A. Ait-salah et al., Characterization of the carbon coating onto LiFePO4 particles used in lithium batteries, Journal of Applied Physics, vol.100, issue.6, pp.63511-063511, 2006.
DOI : 10.1063/1.2337556

URL : https://hal.archives-ouvertes.fr/hal-00135419

L. Laffont, C. Delacourt, P. Gibot, M. Y. Wu, P. Kooyman et al., Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy, Chemistry of Materials, vol.18, issue.23, pp.5520-5529, 2006.
DOI : 10.1021/cm0617182

K. Zaghib, P. Charest, M. Dontigny, A. Guerfi, M. Lagacé et al., LiFePO4: From molten ingot to nanoparticles with high-rate performance in Li-ion batteries, Journal of Power Sources, vol.195, issue.24, pp.8280-8288, 2010.
DOI : 10.1016/j.jpowsour.2010.07.010

URL : https://hal.archives-ouvertes.fr/hal-00555476

W. Zhang, Comparison of the Rate Capacities of LiFePO[sub 4] Cathode Materials, Journal of The Electrochemical Society, vol.157, issue.10, pp.1040-1046, 2010.
DOI : 10.1149/1.3460840

N. Ravet, A. Abouimrane, and M. Armand, From our readers: On the electronic conductivity of phospho-olivines as lithium storage electrodes, Nature Materials, vol.2, issue.11, pp.702-702, 2003.
DOI : 10.1038/nmat1009a

N. Meethong, Y. Kao, S. A. Speakman, and . Chiang, Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties, Advanced Functional Materials, vol.34, issue.7, pp.1060-1070, 2009.
DOI : 10.1002/adfm.200801617

A. S. Andersson, J. O. Thomas, B. Kalska, and L. Häggström, Thermal Stability of LiFePO[sub 4]-Based Cathodes, Electrochemical and Solid-State Letters, vol.3, issue.2, pp.66-68, 2000.
DOI : 10.1149/1.1390960

C. Delacourt, P. Poizot, J. Tarascon, C. Masquelier, . Nat et al., (57) Delacourt, C.; Rodríguez-Carvajal, Masquelier, C. Solid State Sci, pp.254-260, 2005.

J. L. Dodd, R. Yazami, B. Fultz, R. Stevens, J. L. Dodd et al., Phase Diagram of Li[sub x]FePO[sub 4], Electrochemical and Solid-State Letters, vol.9, issue.3, pp.151-155, 2006.
DOI : 10.1149/1.2164548

A. Yamada, H. Koizumi, S. Nishimura, N. Sonoyama, R. Kanno et al., Room-temperature miscibility gap in LixFePO4, Nature Materials, vol.18, issue.3, pp.357-360, 2006.
DOI : 10.1038/nmat1634

G. Kobayashi, S. Nishimura, M. Park, R. Kanno, M. Yashima et al., at Room Temperature, Advanced Functional Materials, vol.972, issue.3, pp.395-403, 2009.
DOI : 10.1002/adfm.200801522

N. Meethong, H. S. Huang, and W. Carter, Size-Dependent Lithium Miscibility Gap in Nanoscale Li[sub 1???x]FePO[sub 4], Electrochemical and Solid-State Letters, vol.10, issue.5, pp.134-138, 2007.
DOI : 10.1149/1.2710960

V. Srinivasan, J. Newman, A. Andersson, and J. Thomas, Existence of Path-Dependence in the LiFePO[sub 4] Electrode, Electrochemical and Solid-State Letters, vol.9, issue.3, pp.110-114, 2001.
DOI : 10.1149/1.2159299

G. Chen, X. Song, and T. J. Richardson, Electron Microscopy Study of the LiFePO[sub 4] to FePO[sub 4] Phase Transition, Electrochemical and Solid-State Letters, vol.9, issue.6, pp.295-298, 2006.
DOI : 10.1149/1.2192695

P. P. Prosini, Modeling the Voltage Profile for LiFePO[sub 4], Journal of The Electrochemical Society, vol.152, issue.10, pp.1925-1929, 2005.
DOI : 10.1149/1.2006607

R. Malik, A. Abdellahi, G. Ceder, A. V. Ven, K. Garikipati et al., A Critical Review of the Li Insertion Mechanisms in LiFePO4 Electrodes, Journal of the Electrochemical Society, vol.160, issue.5, pp.3179-3197, 2009.
DOI : 10.1149/2.029305jes

K. T. Lee, W. H. Kan, and L. F. Nazar, Electrodes (M = Fe, Mn), Journal of the American Chemical Society, vol.131, issue.17, pp.6044-6045, 2009.
DOI : 10.1021/ja8090559

T. Sasaki, Y. Ukyo, and P. Novák, Memory effect in a lithium-ion battery, Nature Materials, vol.174, issue.98, pp.569-575, 2013.
DOI : 10.1038/nmat3623

N. Meethong, Y. Kao, M. Tang, H. Huang, and W. Carter, (M = Fe, Mn), Chemistry of Materials, vol.20, issue.19, pp.6189-6198, 2008.
DOI : 10.1021/cm801722f

J. B. Leriche, S. Hamelet, J. Shu, M. Morcrette, C. Masquelier et al., An Electrochemical Cell for Operando Study of Lithium Batteries Using Synchrotron Radiation, Journal of The Electrochemical Society, vol.157, issue.5, pp.606-610, 2010.
DOI : 10.1149/1.3355977

URL : https://hal.archives-ouvertes.fr/hal-00477327

G. Ouvrard, M. Zerrouki, P. Soudan, B. Lestriez, C. Masquelier et al., Heterogeneous behaviour of the lithium battery composite electrode LiFePO4, Journal of Power Sources, vol.229, pp.16-21, 2013.
DOI : 10.1016/j.jpowsour.2012.11.057

URL : https://hal.archives-ouvertes.fr/hal-00973920

H. C. Shin, K. Y. Chung, W. S. Min, D. J. Byun, H. Jang et al., Asymmetry between charge and discharge during high rate cycling in LiFePO4 ??? In Situ X-ray diffraction study, Electrochemistry Communications, vol.10, issue.4, pp.536-540, 2008.
DOI : 10.1016/j.elecom.2008.02.002

H. Chang, C. Chang, H. Wu, M. Yang, H. Sheu et al., Study on dynamics of structural transformation during charge/discharge of LiFePO4 cathode, Electrochemistry Communications, vol.10, issue.2, pp.335-339, 2008.
DOI : 10.1016/j.elecom.2007.12.024

J. Liu, M. Kunz, K. Chen, N. Tamura, and T. Richardson, Visualization of Charge Distribution in a Lithium Battery Electrode, The Journal of Physical Chemistry Letters, vol.1, issue.14, pp.2120-2123, 2010.
DOI : 10.1021/jz100634n

P. A. Johns, M. R. Roberts, Y. Wakizaka, J. H. Sanders, and . Owen, How the electrolyte limits fast discharge in nanostructured batteries and supercapacitors, Electrochemistry Communications, vol.11, issue.11, pp.2089-2092, 2009.
DOI : 10.1016/j.elecom.2009.09.001

Y. Orikasa, T. Maeda, Y. Koyama, H. Murayama, K. Fukuda et al., under Electrochemical Phase Transition, Journal of the American Chemical Society, vol.135, issue.15, pp.5497-5500, 2013.
DOI : 10.1021/ja312527x

Y. Orikasa, T. Maeda, Y. Koyama, H. Murayama, K. Fukuda et al., under Battery Operation, Chemistry of Materials, vol.25, issue.7, pp.1032-1039, 2013.
DOI : 10.1021/cm303411t

V. Schnering, H. G. Nesper, R. Curda, J. Tebbe, and K. , Li12Si7, a Compound Having a Trigonal Planar Si4 Cluster and Planar Si5 Rings, Angewandte Chemie International Edition in English, vol.19, issue.12, pp.1033-1034, 1980.
DOI : 10.1002/anie.198010331

R. Nesper and H. G. Schnering, (94) Van der Marel, (95) Okamoto, H. Bull. Alloy Phase Diagr, pp.48-57, 1985.

R. A. Sharma, R. N. Seefurth, and R. A. Huggins, Thermodynamic Properties of the Lithium-Silicon System, Journal of The Electrochemical Society, vol.123, issue.12, pp.1763-1768, 1976.
DOI : 10.1149/1.2132692

B. Gao, S. Sinha, L. Fleming, and O. Zhou, Alloy Formation in Nanostructured Silicon, Advanced Materials, vol.13, issue.11, pp.816-819, 2001.
DOI : 10.1002/1521-4095(200106)13:11<816::AID-ADMA816>3.0.CO;2-P

H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, vol.7, issue.5, pp.414-429, 2012.
DOI : 10.1016/j.nantod.2012.08.004

P. Limthongkul, Y. Jang, and N. J. Dudney, Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage, Acta Materialia, vol.51, issue.4, pp.1103-1113, 2003.
DOI : 10.1016/S1359-6454(02)00514-1

J. Li, J. R. Dahn, S. Misra, N. Liu, and J. Nelson, An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si, Journal of The Electrochemical Society, vol.154, issue.3, pp.156-5465, 2007.
DOI : 10.1149/1.2409862

B. Key, M. Morcrette, J. Tarascon, and C. P. Grey, Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)lithiation Mechanisms, Journal of the American Chemical Society, vol.133, issue.3, pp.503-512, 2011.
DOI : 10.1021/ja108085d

S. W. Lee, M. T. Mcdowell, J. W. Choi, and Y. Cui, Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation, Nano Letters, vol.11, issue.7, pp.3034-3039, 2011.
DOI : 10.1021/nl201787r

J. L. Goldman, B. R. Long, A. A. Gewirth, and R. G. Nuzzo, Strain Anisotropies and Self-Limiting Capacities in Single-Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium-Ion Battery Anodes, Advanced Functional Materials, vol.129, issue.82, pp.2412-2422, 2011.
DOI : 10.1002/adfm.201002487

X. H. Liu, J. W. Wang, S. Huang, F. Fan, X. Huang et al., In situ atomic-scale imaging of electrochemical lithiation in silicon, Nature Nanotechnology, vol.109, issue.11, pp.749-756, 2012.
DOI : 10.1016/j.jpowsour.2010.11.155

H. Yang, S. Huang, X. Huang, F. Fan, W. Liang et al., Orientation-Dependent Interfacial Mobility Governs the Anisotropic Swelling in Lithiated Silicon Nanowires, Nano Letters, vol.12, issue.4, pp.1953-1958, 2012.
DOI : 10.1021/nl204437t

J. Saint, M. Morcrette, D. Larcher, L. Laffont, S. Beattie et al., Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon???Carbon Composites, Advanced Functional Materials, vol.73, issue.82, pp.1765-1774, 2007.
DOI : 10.1002/adfm.200600937

URL : https://hal.archives-ouvertes.fr/hal-00169730

Y. M. Lee, J. Y. Lee, H. Shim, J. K. Lee, and J. Park, SEI Layer Formation on Amorphous Si Thin Electrode during Precycling, Journal of The Electrochemical Society, vol.154, issue.6, pp.515-519, 2007.
DOI : 10.1149/1.2719644

B. Guo, J. Shu, Z. Wang, H. Yang, L. Shi et al., Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries, Electrochemistry Communications, vol.10, issue.12, pp.1876-1878, 2008.
DOI : 10.1016/j.elecom.2008.09.032

B. Philippe, R. Dedryvère, J. Allouche, F. Lindgren, M. Gorgoi et al., Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy, Chemistry of Materials, vol.24, issue.6, pp.1107-1115, 2012.
DOI : 10.1021/cm2034195

B. Philippe, R. Dedryvère, M. Gorgoi, H. Rensmo, D. Gonbeau et al., Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries ??? A Photoelectron Spectroscopy Study, Chemistry of Materials, vol.25, issue.3, pp.394-404, 2013.
DOI : 10.1021/cm303399v

E. Radvanyi, E. D. Vito, W. Porcher, J. Danet, P. Desbois et al., Study of lithiation mechanisms in silicon electrodes by Auger Electron Spectroscopy, Journal of Materials Chemistry A, vol.21, issue.16, pp.4956-4965, 2013.
DOI : 10.1039/c3ta10212b

J. Danet, T. Brousse, K. Rasim, D. Guyomard, and P. Moreau, Valence electron energy-loss spectroscopy of silicon negative electrodes for lithium batteries, Phys. Chem. Chem. Phys., vol.131, issue.121, pp.220-226, 2009.
DOI : 10.1039/B915245H

URL : https://hal.archives-ouvertes.fr/hal-00468429

M. Gauthier, J. Danet, B. Lestriez, L. Roué, D. Guyomard et al., Nanoscale compositional changes during first delithiation of Si negative electrodes, Journal of Power Sources, vol.227, pp.237-242, 2013.
DOI : 10.1016/j.jpowsour.2012.11.047

URL : https://hal.archives-ouvertes.fr/hal-00980297

J. Li, A. K. Dozier, Y. Li, F. Yang, and Y. Cheng, Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes, Journal of The Electrochemical Society, vol.158, issue.6, pp.689-694, 2011.
DOI : 10.1149/1.3574027

J. P. Maranchi, A. F. Hepp, A. G. Evans, N. T. Nuhfer, and P. N. Kumta, Interfacial Properties of the a-Si???Cu:Active???Inactive Thin-Film Anode System for Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.153, issue.6, pp.1246-1253, 2006.
DOI : 10.1149/1.2184753

T. Takamura, S. Ohara, M. Uehara, J. Suzuki, and K. Sekine, A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life, Journal of Power Sources, vol.129, issue.1, pp.96-100, 2004.
DOI : 10.1016/j.jpowsour.2003.11.014

K. Rhodes, N. Dudney, E. Lara-curzio, and C. Daniel, Understanding the Degradation of Silicon Electrodes for Lithium-Ion Batteries Using Acoustic Emission, Journal of The Electrochemical Society, vol.157, issue.12, pp.1354-1360, 2010.
DOI : 10.1149/1.3489374

S. Kalnaus, K. Rhodes, and C. Daniel, A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery, Proc. Natl. Acad. Sci. 2012, pp.8116-8124, 2011.
DOI : 10.1016/j.jpowsour.2011.05.049

H. Li, L. Shi, W. Lu, X. Huang, and L. Chen, Studies on Capacity Loss and Capacity Fading of Nanosized SnSb Alloy Anode for Li-Ion Batteries, Journal of The Electrochemical Society, vol.148, issue.8, pp.915-922, 2001.
DOI : 10.1149/1.1383070

H. Li, L. Shi, Q. Wang, L. Chen, and X. Huang, Solid State Ion, Electrochem. Solid-State Lett, vol.148, issue.12, pp.247-258, 2002.

V. G. Pol and M. M. Thackeray, Spherical carbon particles and carbon nanotubes prepared by autogenic reactions: Evaluation as anodes in lithium electrochemical cells, Energy Environ. Sci., vol.8, issue.3, pp.1904-1912, 2011.
DOI : 10.1039/C0EE00256A

C. Masarapu, V. Subramanian, H. Zhu, B. Wei, Y. Liu et al., Long-Cycle Electrochemical Behavior of Multiwall Carbon Nanotubes Synthesized on Stainless Steel in Li Ion Batteries, Advanced Functional Materials, vol.202, issue.7, pp.1008-1014, 2009.
DOI : 10.1002/adfm.200801242

J. W. Wang, X. H. Liu, K. Zhao, A. Palmer, E. Patten et al., Sandwich-Lithiation and Longitudinal Crack in Amorphous Silicon Coated on Carbon Nanofibers, ACS Nano, vol.6, issue.10, pp.9158-9167, 2012.
DOI : 10.1021/nn3034343

Y. Oumellal, N. Delpuech, D. Mazouzi, N. Dupré, J. Gaubicher et al., The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries, 149) Chen, pp.6201-919, 2003.
DOI : 10.1039/c1jm10213c

URL : https://hal.archives-ouvertes.fr/hal-00849719

J. Li, R. B. Lewis, J. R. Dahn, and J. Electrochem-bridel, by Hydrothermal Reaction, Chemistry of Materials, vol.10, issue.1, pp.17-20, 2007.
DOI : 10.1021/cm970557m

D. Munao, J. W. Van-erven, M. Valvo, E. Garcia-tamayo, and E. M. Kelder, Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries, Journal of Power Sources, vol.196, issue.16, pp.6695-6702, 2011.
DOI : 10.1016/j.jpowsour.2010.11.072

B. Lestriez, S. Bahri, I. Sandu, L. Roué, and D. Guyomard, On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries, Electrochemistry Communications, vol.9, issue.12, pp.2801-2806, 2007.
DOI : 10.1016/j.elecom.2007.10.001

URL : https://hal.archives-ouvertes.fr/hal-00392064

N. S. Hochgatterer, M. R. Schweiger, S. Koller, P. R. Raimann, T. Wöhrle et al., Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability, Electrochemical and Solid-State Letters, vol.11, issue.5, pp.76-80, 2008.
DOI : 10.1149/1.2888173

D. Mazouzi, B. Lestriez, L. Roue, and D. Guyomard, Silicon Composite Electrode with High Capacity and Long Cycle Life, Electrochemical and Solid-State Letters, vol.12, issue.11, pp.215-218, 2009.
DOI : 10.1149/1.3212894

URL : https://hal.archives-ouvertes.fr/hal-00432831

A. N. Dey, The Electrochemical Society Meeting, Atlantic City, issue.15662, 1970.

E. Peled, E. Peled, D. Golodnttsky, G. Ardel, and C. Menachem, The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems???The Solid Electrolyte Interphase Model, Eshkenazy, V. MRS Online Proc. Libr, pp.2047-2051, 1979.
DOI : 10.1149/1.2128859

E. Peled, D. Golodnitsky, and G. Ardel, Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes, Journal of The Electrochemical Society, vol.144, issue.8, pp.208-210, 1997.
DOI : 10.1149/1.1837858

A. Funabiki, M. Inaba, T. Abe, and Z. Ogumi, Stage Transformation of Lithium-Graphite Intercalation Compounds Caused by Electrochemical Lithium Intercalation, Journal of The Electrochemical Society, vol.146, issue.7, pp.2443-2448, 1999.
DOI : 10.1149/1.1391953

C. K. Chan, R. Ruffo, S. S. Hong, Y. Cui, J. Bridel et al., Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes, Journal of Power Sources, vol.189, issue.2, pp.1132-1140, 2009.
DOI : 10.1016/j.jpowsour.2009.01.007

J. P. Maranchi, A. F. Hepp, and P. N. Kumta, High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries, Electrochemical and Solid-State Letters, vol.6, issue.9, pp.198-201, 2003.
DOI : 10.1149/1.1596918

M. T. Mcdowell, S. Woo-lee, C. Wang, and Y. Cui, The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation, Nano Energy, vol.1, issue.3, pp.401-410, 2012.
DOI : 10.1016/j.nanoen.2012.03.004

H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao et al., Stable cycling of double-walled silicon nanotube battery anodes through solid???electrolyte interphase control, Nature Nanotechnology, vol.16, issue.5, pp.310-315, 2012.
DOI : 10.1038/nnano.2012.35

K. Zhao, M. Pharr, L. Hartle, J. J. Vlassak, Z. Suo et al., Fracture and debonding in lithium-ion batteries with electrodes of hollow core???shell nanostructures, 170) Ulldemolins, M.; Le Cras, pp.6-14, 2012.
DOI : 10.1016/j.jpowsour.2012.06.074

A. Winkelmann, A. D. Bhattacharyya, and . Microsc, Springer Science Business Media, 181) Steinmetz, pp.21-33, 1998.

R. R. Keller, R. H. Geiss, R. F. Microsc-egerton, . Williams, and . Carter, Transmission Electron Microscopy, maps and other rarities. Electron Backscatter Diffraction in Materials Science, pp.245-251, 2006.

V. Mauchamp, P. Moreau, G. Ouvrard, and F. Boucher, and LiF, Physical Review B, vol.77, issue.4, pp.45117-6774, 1997.
DOI : 10.1103/PhysRevB.77.045117

URL : https://hal.archives-ouvertes.fr/hal-00396500

D. Ugarte, C. Colliex, and P. Trebbia, Surface- and interface-plasmon modes on small semiconducting spheres, Physical Review B, vol.45, issue.8, pp.4332-4343, 1992.
DOI : 10.1103/PhysRevB.45.4332

F. Wang, J. Graetz, M. S. Moreno, C. Ma, L. Wu et al., Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy, ACS Nano, vol.5, issue.2, pp.1190-1197, 2011.
DOI : 10.1021/nn1028168

K. W. Schroder, H. Celio, L. J. Webb, and K. Stevenson, Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions, The Journal of Physical Chemistry C, vol.116, issue.37, pp.19737-19747, 2012.
DOI : 10.1021/jp307372m

D. E. Arreaga-salas, A. K. Sra, K. Roodenko, Y. J. Chabal, and C. L. Hinkle, Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries, The Journal of Physical Chemistry C, vol.116, issue.16, pp.9072-9077, 2012.
DOI : 10.1021/jp300787p

Q. Chen and K. Sieradzki, 2013, advance online publication, Nat. Mater. J. g. J. Mater. Res, vol.10, issue.206, pp.139-148, 1995.

B. Guo, J. Shu, Z. Wang, H. Yang, L. Shi et al., Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries, Electrochemistry Communications, vol.10, issue.12, pp.1876-1878, 2008.
DOI : 10.1016/j.elecom.2008.09.032

M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau et al., A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries, Energy & Environmental Science, vol.2, issue.42, pp.2145-2155
DOI : 10.1039/c3ee41318g

URL : https://hal.archives-ouvertes.fr/hal-00950567

P. Tang, N. A. Holzwarth, P. Moreau, V. Mauchamp, F. Pailloux et al., and related materials, Physical Review B, vol.68, issue.16, pp.165107-215, 2003.
DOI : 10.1103/PhysRevB.68.165107

W. Sigle, R. Amin, K. Weichert, P. A. Aken, and J. Van-;-maier, Delithiation Study of LiFePO[sub 4] Crystals Using Electron Energy-Loss Spectroscopy, Electrochemical and Solid-State Letters, vol.12, issue.8, pp.151-154, 2009.
DOI : 10.1149/1.3131726

M. F. Lin, K. W. Shung, C. V. Ramana, A. Mauger, F. Gendron et al., Plasmons and optical properties of carbon nanotubes, Physical Review B, vol.50, issue.23, pp.17744-17747, 1994.
DOI : 10.1103/PhysRevB.50.17744

W. C. Chueh, F. Gabaly, J. D. Sugar, N. C. Bartelt, A. H. Mcdaniel et al., Electrode Revealed by Nanoscale State-of-Charge Mapping, Nano Letters, vol.13, issue.3, pp.866-872, 2013.
DOI : 10.1021/nl3031899

D. Aurbach, E. Zinigrad, and Y. Cohen, Teller, H. Solid State Ion, pp.405-416, 2002.

L. Castro, R. Dedryvère, J. Ledeuil, J. Bréger, C. Tessier et al., Aging Mechanisms of LiFePO4 ?????? Graphite Cells Studied by XPS: Redox Reaction and Electrode???Electrolyte Interfaces, Journal of The Electrochemical Society, vol.159, issue.4, pp.357-363, 2012.
DOI : 10.1149/2.024204jes

L. O. Valøen, J. N. Reimers, A. P. Stephens, and D. B. Williams, Transport Properties of LiPF[sub 6]-Based Li-Ion Battery Electrolytes, Thèse de l'université de Cambridge, pp.882-891, 1976.
DOI : 10.1149/1.1872737

H. M. Chan, D. B. Williams, D. B. Williams, and J. W. Edington, Quantitative analysis of lithium in Al-Li alloys by ionization energy loss spectroscopy, Philosophical Magazine Part B, vol.9, issue.5, pp.1019-1032, 1976.
DOI : 10.1080/01418638508241891