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Résumé

Deux concepts trés importants dans mes travaux sont ceux de la diffusion (mouvement
aléatoire des particules) et de ceux de la transformée de Fourier. La diffusion des particules
peut étre décrite par ’équation de la diffusion, dont la solution fondamentale a un forme
beaucoup plus complexe que sa transformée de Fourier.

Tout d’abord, nous profitons de la forme spéciale de la transformée de Fourier (dans l'es-
pace) de la fonction de Green de ’équation de diffusion pour formuler des méthodes numériques
qui sont locales en temps pour la solution des équations avec mémoire.

L’idée principale est que la solution sera calculée dans le domaine de Fourier, pour éviter
d’évaluer les intégrales de convolution en temps portent la « mémoire ». Ce travail a été rendu
possible par le développement d’une quadrature adaptée de 'intégrale de Fourier oli un petit
nombre de points dans la variable de Fourier était suffisant pour une bonne résolution du
probléme dans 1’espace physique, sur un intervalle de temps important. En particulier, nous
avons développé une méthode numeérique pour simuler la diffusion dans des domaines non
bornés avec sources et "avons appliquée a la modélisation de la croissance des cristaux, a 1’aide
du modéle du champ de phase. Puis, afin d’étendre cette approche a des problémes aux limites,
nous avons abordé la question de I’évaluation des potentiels de simple couche et de double
couche sur le bord du domaine. Enfin, nous avons généralisé 'idée de remplacer les intégrales
de convolution en temps par une quadrature efficace dans le domaine de Fourier, aux intégrales
et aux dérivés d’ordres fractionnaires, et obtenu une borne rigoureuse de I’erreur de quadrature.
Nous avons aussi appliqué cette approche & une équation des ondes fractionnaire.

En 2010, j’ai commencé & appliquer les outils numériques et analytiques & 1’équation de
Bloch-Torrey, dans le domaine de 'imagerie par résonance magnétique de la diffusion (IRMd)
du cerveau. Ce travail a commencé dans le cadre d’une collaboration avec des physiciens d’IRM
de Neurospin. Nous avons essayé d’expliquer la relation entre la géométrie cellulaire, la per-
méabilité membranaire et le signal d’IRMd obtenu.

Certaines difficultés de la modélisation et de la simulation du signal d’IRMd au niveau de
I’échelle de temps et de 'espace viennent de la physique et de la biologie d’IRMd du cerveau.
Premiérement, pour des raisons biologiques et techniques, 'IRMd ne peut mesurer que des
temps de diffusion compris entre une et cent millisecondes, correspondant & une distance de
diffusion moyenne de 2,5 & 25 micromeétres. Cette distance est moyennée sur toutes les molécules
d’eau, et la distance de diffusion réelle peut étre différente selon que la localisation, au début
de la mesure, des molécules d’eau : dans les corps neuronaux, dans les neurites (dendrites
et axones) ou dans l'espace extra-cellulaire. Deuxiémement, certaines caractéristiques de la
matiére grise du cerveau rendent I’analyse et la simulation trés difficiles :

1. Les cellules sont géométriquement complexes. Les neurones ont un corps solide, mesurant
1 a 10 micrométres de diameétre auquel sont attachés de longues neurites (axones et
dendrites) qui mesurent de I'ordre d’un micrométre de diamétre et de plusieurs centaines
de micrométres de longueur.

2. Les cellules ont une répartition trés dense. Les corps neuronaux occupent 12% du volume
du cortex cérébral, les axones 34%, les dendrites 35%, 1'espace extracellulaire 6%, pour
une largeur moyenne de 10 & 30 nanomeétres.

3. L’organisation cellulaire est complexe. Les cellules du cortex sont organisées en couches,
avec des colonnes de cellules liant différentes couches.

4. Les cellules sont perméables. En général, 'eau peut se déplacer entre les cellules et
I’espace extracellulaire.

La résolution d’TRMd est de I'ordre de 1 mm?, ce qui signifie que chaque pixel de I'image

affiche les caractéristiques de diffusion moyennées dans un volume de tissu (voxel) de 1 mm?,

ce qui est trés grand devant les échelles spatiales cellulaires. Pour modéliser le signal de 'TMRd

dans un voxel, il faut simuler ’aimantation & l'intérieur de ce voxel et calculer son intégrale au



moment de I’écho. La distance de diffusion moyenne ne dépassant pas 25 micrométres, il suffit
de faire le calcul dans un domaine légérement plus grand qu’un voxel pour tenir compte de la
diffusion de toutes les molécules d’eau qui auront « vu » ce voxel durant le temps de diffusion.

De plus, si nous supposons que le voxel contient un environnement cellulaire qui ne varie
pas beaucoup & dans le voxel, nous utilisons un domaine de calcul plus petit, celui-ci devra
ne contenir qu'une « portion représentative » du tissu dans le voxel. Pour étudier le lien entre
I’atténuation du signal d’'TRMd et les propriétés géométriques du tissu, tels que le diameétre
moyen des cellules et la fraction volumique cellulaire, nous avons généré, dans un premier
temps, des domaines de calcul qui contiennent une configuration cellulaire & étudier. A terme,
nous envisageons des simulations sur beaucoup de configurations pour obtenir des résultats
statistiquement significatifs. Actuellement, nous construisons une seule configuration cellulaire
et résolvons le probléme forward et inverse associé.

Le signal d’imagerie par résonance magnétique de diffusion dans le tissu biologique peut étre
considéré comme une sorte de « transformée de Fourier » de la fonction de densité de probabilité
de déplacement de ’eau dans les milieux hétérogénes. L’aimantation des protons de 1’eau en
tissu biologique en présence d’impulsions du gradient de champ magnétique, peut étre modélisée
par une équation aux dérivées partielles (EDP), I’équation de Bloch-Torrey microscopique &
compartiments multiples. Cette EDP peut étre comprise comme 'attribution aux molécules
d’eau en milieu hétérogéne, d’une fréquence spatiale qui dépend de leurs positions. Le signal
d’IRMd est l'intégrale de la solution de cette EDP au moment de ’écho.

Nous avons résolu numériquement cette EDP en couplant une discrétisation spatiale carté-
sienne standard avec une discrétisation en temps adaptative (Runge-Kutta Chebyshev « RKC
») et nous avons étudié les caractéristiques de la diffusion d’un modéle de la matiére grise du
cerveau constitué de cellules cylindriques et sphériques dans 1’espace extracellulaire. Puis, par
homogénéisation, nous avons formulé un nouveau modéle macroscopique, sous forme d’un sys-
téme d’équations aux dérivées ordinaires (EDO), pour le signal d’IRMd. Ensuite, nous avons
montré par des simulations numériques que ce modéle I’EDO donne une bonne approximation
du signal du modéle d’EDP complet pour des temps de diffusion relativement longs.

Je mentionne aussi le travail de deux doctorants que je co-encadre actuellement. Dang
Van Nguyen (soutenu par le projet SIMUDMRI, ANR COSINUS 2010-2013) a couplé une
discrétisation d’éléments finis avec la méthode RKC pour obtenir une discrétisation plus précise
des surfaces cellulaires. Il travaille sur I'analyse du signal de 'IRMd des neurones isolés. Huan
Tuan Nguyen (soutenu par une bourse de I'Ecole Doctorale « Sciences et Technologies de
I'Information, des Télécommunications et des Systémes » ED STITS, 2010-2013) travaille sur
le probléme inverse du modéle d’EDO.

Enfin, j’envisage trois orientations futures de mes recherches dans 'TRMd.

1. En collaboration avec le centre Neurospin IRM, confronter les résultats numériques du
modéle I’EDP avec les données expérimentales IRMd des ganglions (réseaux neuronaux)
de I’Aplysie (limace de mer géante).

2. Prendre en compte ’écoulement sanguin dans les micro-vaisseaux du cerveau, via un
nouveau modele d’EDP.

3. Obtenir la formulation d’un nouveau modéle d’EDO valable aux temps de diffusion plus
courts ou en présence des cellules plus grandes.

Mots-clefs : Diffusion, imagerie par resonance magnetic de la diffusion, équations avec me-
moire, I’équation integral.



MODELING AND SIMULATION OF DIFFUSION
Abstract

The first part of this thesis concerns the formulation of numerical methods that are local
in time for the solution of equations with memory. The main idea is that the solution will
be updated in the Fourier domain in order to avoid evaluating time convolution integrals that
have memory. This work was made possible by the development of a good quadrature[31] of
the Fourier integral where a small number of points in the Fourier variable were sufficient for
a good resolution of the problem in the physical space over a large time interval.

First, we developed a numerical method to simulate diffusion in unbounded domains with
sources and applied it to the modeling of crystal growth using the phase field model. Then, in
order to extend this approach to boundary value problems, we addressed the issue of evaluating
the single and double layer potentials on the boundary. Finally, we generalized the idea of
replacing time convolution integrals by an efficient quadrature in the transform domain to
fractional integrals and derivatives for general fractional orders and obtained a rigorous bound
on the quadrature error. Then we applied this approach to a fractional wave equation.

The second part of the thesis concerns the specific application of diffusion magnetic reso-
nance imaging (dMRI) in the brain. The effect on the MRI signal of the water proton mag-
netization in biological tissue in the presence of magnetic field gradient pulses can be modeled
by a microscopic multiple compartment Bloch-Torrey partial differential equation (PDE). This
PDE can be best understood as imparting a spatially dependent frequency to diffusing particles
in a heterogeneous medium. The dMRI signal is the integral of the solution of this PDE at the
echo time.

First, we numerically solved this PDE by coupling a standard Cartesian spatial discretiza-
tion with an adaptive time discretization and studied the diffusion characteristics of a tissue
model of the brain gray matter made up of cylindrical and spherical cells embedded in the
extra-cellular space. Next we formulated a new macroscopic ODE model for the dMRI signal
by mathematical homogenization. Then we showed by numerical simulations that this ODE
model gives a good approximation of the dMRI signal of the full PDE model at relatively long
but still physically realistic diffusion times relevant to dMRI in the brain.

Finally, I will describe some future research directions in dMRI. The first is the experi-
mental validation of the PDE model by imaging the ganglia (neuronal network) of the Aplysia
(giant sea slug), to be conducted at the MRI center Neurospin. The second is the inclusion of
blood flow in the bran micro-vessels in a new PDE model. The third is the formulation of a
different ODE model valid at shorter diffusion times or in the presence of larger cells.

Keywords : Diffusion, diffusion magnetic resonance imaging, integral equation, equations
with memory.
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Introduction
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The two most important concepts in this thesis are that of diffusion (random motion
of particles) and that of the Fourier transform. First, we take advantage of the special
form of the Fourier transform (in space) of the Green’s function of the diffusion equation
to formulate efficient time stepping methods for equations with memory. Second, we
model and simulate the diffusion magnetic resonance imaging signal in biological tissue,
which can be thought of as a kind of “Fourier transform” of the probability density
function of water displacement in heterogeneous media.

The diffusion of a dilute solute in a solvent or the conduction of heat can be described
by :
J = —DVu(r,t),

where u(r,t) describes the concentration of the solute or the temperature at position r
and time ¢, J is the rate of transfer per unit area, and D is a proportionality constant
called the intrinsic diffusion coefficient that has the unit of (length)?/time. Over each
unit volume, we obtain the diffusion (or heat) equation :

% = VDVu(r,t).

The fundamental solution for the diffusion equation in R is :

o—Il12 /4Dt
G(r,Dt) == ———~, t>0. (1)
(4w Dt)z

Even though G is a complicated function in r and ¢, its Fourier transform is rather
simple :
G(s, Dt) = / e %G (x, Dt) dx — e~ WDt 2)

Ra

To get back G from G, we perform the inverse Fourier transform :

~—

G(x,Dt) = (2—711')d /e_is‘xé(s,Dt) ds. (3

Rd

The first part of this thesis concerns the formulation of an efficient time-stepping
method for the solution of the diffusion equation by moving into the Fourier domain
at each time step, to take advantage of the fact that the expression in (2) gives rise
to numerical methods that are local in time whereas the expression in (1) gives rise
to time convolution integrals that have memory. This work was made possible by the
development |31] of a good quadrature of the Fourier integral in (3) where a small
number of points in the Fourier variable s are sufficient for a good resolution of the
problem in the physical space over a large time interval.

First, we developed a numerical method to simulate diffusion in unbounded domains
with sources. Then we applied it to the modeling of crystal growth using the phase field
model. Next, in order to extend this approach to boundary value problems, we addressed
the issue of evaluating single and double layer potentials on the boundary. Finally, we
generalized the idea of replacing time convolution integrals by an efficient quadrature in
the transform domain to fractional integrals and derivatives for general fractional orders
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and obtained a rigorous bound on the quadrature error. Then we applied this approach
to a fractional wave equation.

The second part of the thesis concerns the specific application of diffusion magnetic
resonance imaging (dMRI) in the brain. This work comes out a collaboration I started
in 2010 with the researchers of the high field MRI facility Neurospin.

The principle of (water proton) magnetic resonance imaging (MRI) is the following.
Suppose 71, 79, r3 are the axes of a 3D coordinate system. Inside the MRI scanner, there
is a strong static magnetic field of magnitude B, applied along the positive r3-direction,
and the spins of the water protons inside the body become aligned to this magnetic
field, resulting in a net magnetization in the positive r3-direction. When a time-varying
magnetic field (much weaker than the static magnetic field) is applied for a short time
at the resonance frequency, wy = vBy, where v = 42.576 MHz /Tesla is the gyromagnetic
ratio, the net magnetization is tipped off the r3-axis. For simplicity, we assume the net
magnetization is tipped onto the r; —ry plane, then the oscillating magnetic field will be
called a 90 degree pulse. The spins then precess around the rs-axis, inducing a voltage
in a receive coil. The net magnetization in the r; — o (transverse plane to the direction
of the main magnetic field) can be measured as a signal.

The net magnetization will realign along the r3-direction, due to two relaxation
effects : the spin-lattice relaxation of the net magnetization along the r3-direction to
its original value, and the spin-spin relaxation of the decay of the net magnetization
in the r; — ro plane to zero. The rate constant of the first relaxation is called T} and
the rate constant of the second kind of relaxation is called T5. Both 17 and T3 vary
according to the tissue environment. Additionally, the spin density also varies with the
tissue environment.

Usually, in addition to T3 (spin-spin) relaxation, local inhomogeneities also contri-
bute to the signal decay. The latter can be cancelled by a refocusing 180 degree pulse,
applied at ¢t = TE/2 after the 90 degree pulse, producing an echo at T'FE, that gives
a measured signal that will have the correct contribution from 75. Such a sequence of
applied magnetic fields is called a spin echo sequence.

The spatial encoding of the signal is obtained by applying additional magnetic fields
in the r3 direction, called magnetic field gradients, that vary linearly in space : r- G (t),
where Gi,(t) will be called the imaging gradient. In the rotating frame at the frequency
wp, the complex transverse magnetization on the r; — ry plane, M(r,t) := M, (r,t) +
IM,,(r,t), I is the imaginary unit, obeys the Bloch Equation [8] :

OM(r, 1)
ot

M (r,t)

= —Iyr- Gim(t)M(r,t) — TR (4)

where Ty(r) is the local spin-spin relaxation rate. The solution of Eq. 4 is

]\4(1‘7 t) = p(r) e_t/T2(r) 6*11"(’7 fg Gim(9) ds)

?

where ¢ = 0 is the start of the 90 degree pulse and p(r) is the spin density.

Even though 3D imaging is possible, most often the MRI signal is acquired in 2D,
slice by slice. Suppose r3 € [(l — %) Ars, (l + %) Arg] are the limits of the slice of interest.
By choosing Gim(t) = (0,G3,0) for a time interval Aty and then choosing Gim(t) =
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(G1,0,0) for a time interval At;, then the magnetization at r at TE is
M(I‘,t) = p(r> e*TE/Tz(r) @7I(k1717+k2r2)

?

where k1 = vG1 Aty and ky = yGoAty. The MRI signal, acquired at echo time ¢t = TE,
is the integral of the magnetization in that slice :

[ (K, kg) = / i (ry, 7o) e~ Tkiritkara) gp gy (5)

where the contrast function is :

(H’%)AT:” _ TE
pi(re,ma) = /( p(ri,re,r3) e T2rr2ms) dry | . (6)

l*%)A’Fg

It is clear that the MRI signal in Eq. 5 is the 2D Fourier transform of the contrast
function in Eq. 6.

By the appropriate choice of Gy, G5, and At; and Aty the Fourier transform can
be obtained at a set of 2D Fourier points. Then the inverse Fourier transform can be
performed and then sampled at physical space points to obtain in each voxel, V; ;; where

o (2 (o D) e [ (- 2) v (542 )
[ )]

an average value of the contrast function :

fu(i, j) ~ / p(r1,72,73) 67#];:2*73) dry dry drs, (7)
Vi

i,3,1

that can be displayed in an image. In (7) we can see two widely used contrast mechanisms
in MRI, the spin density and the 75 relaxation.

Besides the spin density and the T, relaxation, the water diffusion characteristics
in the tissue can be another source of contrast. How this contrast is encoded is by the
application of more magnetic field gradients. This gradient will be denoted the diffusion-
encoding gradient Gge(t). One pulse of the gradient is applied in the direction g before
180 degree refocusing pulse and the same pulse after. The lack of complete refocussing
is due to water diffusion and gives the diffusion MRI contrast.

The mathematical description of the complex transverse magnetization including
effects of diffusion is called the Bloch-Torrey equation [106] :

OM(r,t) M (r,t)

S = I Gunlt) M)~

~ Iy g f(t) M(x, 1)+ V- (D(x)VM(x,1)),
(8)

where Gqr(t) = g f(t), f(t) containing the time profile information of the diffusion-
encoding gradient. The last term in the above equation concerns the diffusion (random

movement) of water molecules.

The magnetic field gradients are usually applied in “pulses”. The term “pulse” means
that the magnetic field gradient is turned on only for a certain duration in time. The
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usual notation is that the duration of the pulses is ¢ and the distance between the
start of adjacent pulses is A. For example, for the standard Pulsed-Gradient Spin Echo
(PGSE) [97] sequence, made of two rectangular pulses (duration 0, separated by a time
interval A — ¢, see Figure (1)) the profile f(¢) is :

1, #<t<t +0,
f)=<-1, t1+A<t<t;+A+9, (9)

0, elsewhere,

where t; is the starting time of the first pulse and %, the time of the application of the
180 degree refocussing pulse, is between ¢; + 0 and t; + A.

2%
1
- TE
=0 > ;
A
P _
‘ 3 ‘

FiG. 1 — A PGSE sequence for t; = 0.

Under the assumption that water molecules experience a homogeneous (or homo-
genized) isotropic diffusion environment characterized by the diffusion coefficient D™
inside the voxel V; ;;, the water molecules at position ry € V; ;; at t = ¢; diffuse according
to the probability density function :

¢~ llr=rol[?/4D"™ (t—t1)

u(rat) = d d= 37
(ArDhom(t — £,))4

where the support of u(r,¢) is much smaller than V; ;; because the diffusion distance in
a dMRI experiment is much smaller than the size of a voxel (we have neglected those
ro that are close to the boundary of V; ;).

Furthermore, under the assumption that § < A (the narrow pulse assumption),
the influence of the diffusion-encoding magnetic field gradient pulse on the complex
transverse magnetization due to water molecules starting at ry at ¢ = ¢; can be described
by a gain of the complex phase e~/7870 9 hetween ¢, and ¢; +J. Then, the magnetization
due to water molecules at position r at ¢; + A gain a complex phase e/787° between
t1 + A and t; + A + 6. Thus, the effect on the MRI signal, compared to having no
diffusion gradient g, due to water molecules at ro when t = t1, is an attenuation (loss)
of the signal :

€_Hr_rOH2/4D}L0'mA
/ elg(t—ro) s _ 6—7252\\g||2Dh0mA
d - )

I‘G‘/;;’j’l (47TDhomA)§

where we used the formula for the Fourier transform of the Green’s function of the heat
or diffusion equation.
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If 4 is not small compared to A, then in fact, the signal attenuation in the voxel V; ;;
is [106] :
S(b,TE)=¢e P,

where the b-value is a weighting factor as defined in [59] and it is
b(g, 0, A) = *||gl*6* (A — 6/3), (10)

for the PGSE sequence. The replacement of A by A — §/3 accounts for pulses that are
not narrow.

Including the effect of the diffusion-encoding gradient means that the image contrast
function in (6) becomes :

(l+§)AT3 hom
p(re,ma) = / c p(ry,re,r3) et /Te(rr2,ms) o = DR (rirara) b g, ) (11)
(l—%)Arg

The basis of diffusion weighted imaging is that the MRI signal is acquired with a diffusion
gradient g as well as with no diffusion gradient. The first image (after inverse Fourier
transform) is divided by the second image and the log of the ratio is divided by b get an
estimate of D"™(ry, 7y, 73) in each voxel. This estimated value is called the “Apparent
Diffusion Coefficient” (ADC), and serves as the contrast mechanism.

However, it was realized that when g is varied in magnitude or direction, the ADC
changes significantly. Similarly, different values of the ADC are obtained when A is
varied. In fact, by fixing the direction of g and A (as well as the pulse duration ¢) and
varying the amplitude ||g||, one can see clearly that the diffusion-induced MRI signal
attenuation is not a decaying exponential in b. The reason for this is that in biological
tissue, the diffusion environment seen by water molecules during the time period of A
(tens of milliseconds) is not homogeneous due to the presence of cells membranes and
other heterogeneities. It also cannot be described simply by a homogenized diffusion
coefficient (or tensor) because A is not long enough.

The research that I will describe in the second part of this thesis is about explaining
the relationship between the cellular geometry, cell membrane permeability, and the
obtained dMRI signal attenuation. In other words, I would like to obtain a more accurate
description of the image contrast function than (11). For simplicity, T will not, at this
time, consider the effect of 75 relaxation. And since I just want to understand the image
contrast function in the physical domain, I will also neglect the imaging gradients.

Now I will describe some aspects of the physics and the biology of dMRI of the
brain. DMRI is limited to a range of diffusion times it can measure due to biological
and technical reasons. In the brain, diffusion times in the range of 1ms-100ms can be
measured, associated to average diffusion distances of 2.5um-25pm. This distance is
averaged over all water molecules, and the actual diffusion distance can be different
depending on whether the water molecules started in the neuronal bodies, the neurites
(dendrites and axons) or the extra-cellular space. There are some features of the brain
gray matter that make analysis and simulation of diffusion in the brain gray matter very
difficult :

1. Individual cells are geometrically complex. Neurons have a solid cell body, measu-
ring 1 to 10 gm in diameter. Attached to the neuronal body are long protrusions
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called neurites (axons and branching dendrites) that measure, respectively, 0.5
and 0.9 um in average diameter, and can be several hundreds of pym in length. See
Figure 2(a).

2. The cells are densely packed. Neuronal bodies occupy 12% of the brain cortex

volume, axons, 34%, dendrites, 35%, and the extracellular space, 6% in volume
and 10-30 nm in width. See Figure 2(b)

3. The cellular organization is complex. The cells of the cortex are organized into
layers, with columns of cells linking the different layers.

4. The cells are permeable. Water can move between the cells and the extra-cellular
space, except across the myelin layer of the myelinated axons.

(a) GFP expressing pyramidal (b) Forest of synthetic pyramidal dendrites grown using Ca-
cell in mouse cortex. jal’s laws of neuronal branching

F1a. 2 — Left : a single neuron has a complex shape, with a solid body and many
long thin branching protrusions. Right : neurons are densely packed. Source : Wikipedia
Commons. (left) Dynamic Remodeling of Dendritic Arbors in GABAergic Interneurons
of Adult Visual Cortex Wei-Chung Allen Lee, Hayden Huang, Guoping Feng, Joshua R.
Sanes, Emery N. Brown, Peter T. So, Elly Nedivi PLoS Biology Vol. 4, No. 2, e29 DOI :
10.1371 /journal.pbio.0040029. (right) PLoS Computational Biology Issue Image, Vol.
6(8) August 2010. PLoS Comput Biol 6(8) : ev06.i08. doi :10.1371/image.pcbi.v06.i08

The resolution of dMRI is order of 1 mm?, meaning each pixel in the image displays
the averaged diffusion characteristics of a tissue volume (voxel) of 1 mm3. This is very
large compared to cell features, which vary from sub-micron (diameter of neurites) to
tens of microns (neuronal bodies and glial cells) in the brain.

To simulate the dMRI signal attenuation in a voxel V', one would have to simulate
the magnetization inside V' and compute its integral at echo time. At physically realistic
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dMRI diffusion times of tens of milliseconds, the average diffusion distance is no more
than 25 microns. Thus, it would suffice to simulate in a computational domain that that
is slightly larger than a voxel to account for the diffusion of all water molecules that will
“see” this voxel during the diffusion time.

Simpler yet, if we assume that the voxel contains a tissue environment that does not
vary drastically across this voxel, we can use an even smaller computational domain.
This computational domain will only need to contain a “representative” portion of the
tissue inside the voxel. Since we would like to study the link between the dMRI signal
attenuation and the microscopic scale tissue geometry, such as the cell diameters and
the cellular volume fraction, we just need to create computational domains that contain
a sample of the cellular configuration that we would like to study. Ideally, numerous
samples of the configuration should be simulated to get statistically significant results.

Usually, we constructed meshes of different cellular configurations in a computational
domain C' = [—L/2, L/2]? that is on the order of 100um x 100um x 100um. Then we
assumed the periodic extension of this computational domain to the whole voxel (and
beyond). Inside the computational domain C' we define the physical compartments.
In the most general case, each compartment corresponds to an individual cell, with an
additional compartment being the extra-cellular space (which can be contiguous or not).
We can also group all cells of a certain type into a single compartment. We denote the
compartments by Q! 1 = 1,2,3,---, C = JQ, and their associated intrinsic diffusion
coefficients by D!. If all the compartmental intrinsic diffusion coefficients are equal, then
we will refer unambiguously to the intrinsic diffusion coefficient, and denote it with a
superscript 0, as D°, where D° = D! [ = 1,2,--- The union of the compartments
U, ' comprises the tissue.

The model for the dMRI signal in the domain C that we will use is the multiple
compartment Bloch-Torrey PDE [106, 87]. In the following I will remove the dependence
of the MRI signal on the imaging gradients and the 75 relaxation to isolate the effect of
diffusion. The water proton magnetization M!(r,t|g) in each tissue compartment Q' is
subject to :

OM!(r,t|g)
ot

where the parameters are defined previously. When g = 0 this PDE is just a diffusion
equation and describes the Brownian motion of water molecules in each compartment.
When g # 0, between t and ¢t + At, the magnetic field gradient causes the complex
transverse magnetization due to water molecules at position r to gain a complex phase

:_]f<t)(7g'r) Ml(r,t|g)—|-v-(DZVMZ<I‘7t’g))7 l= L,2,--- (12)

e—Trgr [T f(s)ds, Thus, as long as the magnetic field gradient is turned on, the transverse
magnetization of water molecules gains a complex phase that is (linearly) related to their
spatial positions along their diffusion paths.

We supplement the PDE in (12) with interface conditions where ' and Q" come in
contact. We denote the interface between Q! and Q" by I'"”. One interface condition is
the continuity of flux :

D' (VM'(a,t|g) -n'(a)) = —D" (VM"(a,t|g) -n"(a)),a € ['", (13)

where n'(a) and n"(a) are the outward-point normals to Q! and Q" at a, so in fact
n!(a) = —n"(a). This ensures the conservation of the magnetization. The second inter-
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face condition is :
D' (VM(a,tg) - n'(a)) = w" (M'(a,t]g) - M"(a,tg)) ,a €T, (14)

This incorporates a permeability coefficient s across I'™ which models the ease with
which water cross the interface. The larger the ™, the easier the passage of water. Now
we add the initial condition :

M(r,0lg) =p,r e, forl=1,2,---, (15)

where p' is the water density in Q'. Then, same as [112], we assume the computational
domain C' = [—L/2,L/2]? is extended by periodic copies of itself. According to [112],
the boundary conditions on 0C' are :

M(r b)), gy = M(r,0)], _pppe’™, k=123, (16)
8M<r7t) _ aM(rat) efek(t), ke — 1’2’3’ (17)
LT P I =y

for each of the faces perpendicular to the three coordinate axes, where r = (rq,79,73)
and g = (g1, g2, 93), and

@m:v%L/ﬂ@w.

Thus, the complete mathematical problem of the multiple compartment Bloch-Torrey
PDE for a representative geometry contained in the computational box C' consists of the
PDE (12), the interface conditions (13,14), the initial condition (15), and the boundary
conditions (16,17).

The dMRI signal attenuation is the integral of the magnetization at echo time TE,
summed over all the compartments in C. In fact, we can define the integral of the
magnetization for t < T'E as well :

S(b,1) = m zl: [ Mg (18)

where the b-value b is given in (10).

In biological tissue, the signal attenuation is not a simple decaying exponential in b,
and the slope of the log S(b, TE) at b = 0 is not simply related to the intrinsic diffusion
coefficients of the physical compartments. After S(b, T'F) is obtained at several different
values of b, the slope of the log S, TE(b) at b = 0 is computed and called the “Apparent
Diffusion Coefficient”. This is the most commonly used contrast in a dMRI picture. In
addition, a second derivative of the log S(b) at b = 0 can also be computed and gives
rise to a different contrast, called the Apparent Kurtosis[13, 45]. These two quantities
are computed for each voxel :

1
ADC} := —¥(o, TE), (19)

9?log S dlog S

AK, ::BW(O,TE)< o (O,TE)) : (20)
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where we denoted the quantities by ADCy and AKj, respectively, to emphasize that the
analytical derivatives of log S(b,TF) are taken at b = 0. The ADCj and the AK| are
interesting because the ADC| gives an indication of the mean squared distance traveled
by water molecules, averaged over all starting positions, and AK, gives an indication of
the deviation from Gaussian diffusion. Showing the ADCj in each voxel in grayscale is
called diffusion-weighted imaging and showing the AKj is called Kurtosis imaging.

In this thesis, I will briefly mention our work on the numerical solution of the multiple
compartment Bloch-Torrey PDE by coupling a standard Cartesian spatial discretization
with an adaptive time discretization using the explicit Runge-Kutta-Chebyshev method,
which is more efficient than the Forward Euler time discretization for diffusive-type
problems. We used this approach to simulate the diffusion MRI signal arising from the
extra-cylindrical compartment in a tissue model of the brain gray matter consisting of
cylindrical and spherical cells and illustrate the effect of cell membrane permeability.

I will also describe the macroscopic ODE model that we formulated by homogeni-
zation for the integral of the solution of the Bloch-Torrey PDE (12, 13, 14,15, 16,17).
We showed by numerical simulations that this ODE model gives a good approximation
of the signal of the full PDE model for TE in the range of tens of milliseconds, which
are physically realistic times obtainable by dMRI in the brain. (The formulation of the
ODE model is described in a preprint. An article containing the numerical simulations
is also available as a preprint).

Then T mention the work of two PhD students that T am currently co-advising. Dang
Van Nguyen works on the improved numerical solution of the Bloch-Torrey PDE by
coupling a finite elements discretization to the RKC method as well as the simulation
and analysis of diffusion in neurons. He is funded by an ANR grant (project SIMUDMRI,
ANR/COSINUS 2010, Nov 2010-Jan 2014). Hang Tuan Nguyen works on the inversion
of the ODE model for the purpose of brain tissue parameters estimation. He is funded
by a PhD scholarship from STITS Orsay (Oct 2010-Sept 2013).

I will also describe some future research directions in dMRI. The first is the experi-
mental validation of the PDE model by imaging the ganglia (neuronal network) of the
Aplysia (giant sea slug), to be conducted at the MRI center Neurospin. The second is
the inclusion of blood flow in the brain micro-vessels in a new PDE model, which is
the subject of an ANR grant (project CIACM, US-France Collaboration in Computa-
tional Neuroscience, Sept 2013-Feb 2017), with funding for a PhD student. The third
is the formulation of a different ODE model valid at shorter diffusion times or in the
presence of larger cells. This involves using higher order asymptotics than was done for
the current ODE model.

In the last part of the thesis, I included some results on the time integration and the
construction of artificial boundary conditions for the wave equation.
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1 Development of the techniques for the diffusion
equation

Results reported in

1. On the numerical solution of the heat equation I : fast solvers in free space,
J.-R. Li, L. Greengard, Journal of Computational Physics, Vol. 226-2, 1 Oct. 2007.

2. Fast and accurate computation of layer heat potentials,
J.-R. Li, L.Greengard, STAM Journal on Scientific Computing, Vol 31, 2009. pp.
3847-3860.

The solution of the diffusion (heat) equation in unbounded regions arises as a mo-
deling task in a variety of engineering, scientific, and financial applications. While the
most commonly used approaches are based on finite difference (FD) and finite element
(FE) methods, these must be coupled to artificial (non-reflecting) boundary conditions
imposed on a finite computational domain in order to simulate the effect of diffu-
sion into an infinite medium. These boundary conditions are discussed, for example,
in |34, 36, 26, 37, 38]. Here, we describe a mathematically much more straightforward
approach, which we will refer to as the Fast Recursive Marching (FRM) method. Tt is
based on evaluating the exact solution of the governing equation, using convolution in
space and time with the free-space Green’s function. One advantage of this approach is
that essentially no convergence theory is required. The error in the solution is simply
the quadrature error in evaluating the solution.

We illustrate for the case of the isotropic inhomogeneous heat equation in R? :

ou
ot

in the absence of physical boundaries, subject to the initial condition

(x,t) — V2U(x,t) = f(x,t), t>0, (21)

U(x,0) = Up(x), xeR< (22)

The functions f(x,t) and Uy(x) are assumed to be compactly supported in the box
B = [—-R/2,R/2]%, centered at the origin. We also assume that f(x,t) and Uy(x) are
k-times differentiable : f(x,t) € C*(B x [0,T]) and Uy(x) € C*(B).

From standard potential theory [33, 85|, the solution can be written as

U(x,t):/G(x—a,t)Ug(a)da + /t/G(x—a,t—T)f(a,T)dadT, (23)

R4
where G is the fundamental solution in (1).

We will refer to the first integral in (23) as an initial potential and the second integral
as a volume potential. There is a substantial literature on Green’s function methods for
problems of diffusion (see, for example, [10]). However, straightforward discretization of
the above integrals leads to an enormously expensive numerical scheme - the solution is
dependent on the full space-time history of the diffusion process. With N points in the
discretization of the domain and M time steps, it is easy to see that O(N?M + N2M?)
work is required. Thus, the obvious advantages of the approach (stability, robustness,
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and the correctness of the far-field behavior) appear to be overwhelmed by the problems
of cost.

While (23) describes the solution to the heat equation (21) and (22), significant
advantage can be obtained by considering its Fourier transform. For this, we let

U(s,t) = / XU (x,t)dx, U(x,t) = (zi)d / e~ (s, 1) ds. (24)

R4 R4

It is obvious from (21,22), and well-known, that U(s, t) satisfies the ordinary differential
equation

Ws.t) = 820 (s.1) + fls. 1), (25)

where

f(s,t) = / 5% f(x, 1) dx.

R4
An elementary calculation shows that
Us, t) = e IBIPA0 (s, t — At) + B(s, t, Ab), (26)
where
t
(s, t, At) = / e ISP f(s. 1) dr . (27)
t—At

Thus, in the Fourier domain, history dependence is no longer an issue ; U (s,t) is simply
damped and updated at each time step, as indicated in (26). While this is not a new
observation, it is worth introducing some notation ; we will refer to ®(s, ¢, At) in (27) as
the update integral.

Why, then, is this not the standard procedure for computing U ? The answer is that
we need a quadrature rule for (27), we need to compute f(s, t) from f(x,t), and we need
to compute the inverse transform to obtain U(x,t) from U(s,t). The first task is easy,
the second is a matter of finding a suitable “fast algorithm", and the third is somewhat
subtle. We will address these issues in order.

The update integral (27) can be computed to high order accuracy using a standard
product integration approach [19], that is to say, polynomial approximation of f (s, t)
as a function of time, followed by analytic integration. Linear approximation of f (s,t)
yields second order accuracy and the rule [32]

~ ~

O(s, t, At) = Wy(s, At) f(s,t) + Wi(s, At) f(s,t — At), (28)
Wos. At = © TP 2N was A = L0 T F Ay (29)
z y4

where z = ||s||*At.

Given the quadrature rule (28), we still need to compute f(s, t) from the data f(x,1).
The same transform, of course, is also required at t = 0 to compute U(s, 0) from U(x, 0).
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Since we have assumed that the data is supported in the box B = [—~R/2, R/2]%, the
Fourier transform is simply
R/2 R/2
F(s.1) / % f(x 1) dx, (30)
R/2 R/2

where x = (21, ...,24), 8 = (81, .., 84)-

While we have not, as yet, determined where f(s, t) is to be computed, let us recall
that the source f(x,t) € C¥(B). Thus, f(s,t) = O(||s|7*) for large s. A straightforward
calculation shows that if € is the error tolerance then evaluation of (30) needs to be
done only for ||s| < P, where P = O(1/e)%. We will refer to P as the high-frequency
cutoff. This bounds the oscillatory behavior of the term e in the integrand of (30).
Together with the fact that f(x,t) is smooth, it follows that the trapezoidal rule applied
to (30) with N points will yield O(N~*) accuracy [19]. The error will begin decaying
rapidly once N is of the order O(PR), meaning that the integrand is well-resolved. The
same reasoning holds for the initial values U(s,0). If f(x,t) is given on a uniform mesh
with N points in each dimension, the trapezoidal rule yields

i, 1) ~ ( ) S 3 e ), (31)

Tlll ndl

where x, = (— R/2+ni(R/N),...,—R/2+ ny(R/N)).

It remains only to determine the actual nodes in the Fourier domain s; where we
wish to obtain f(s;,t) and, therefore, Uf(s;,1).

In order to compute the solution in physical space, we need to evaluate the inverse
Fourier transform

Ulx, 1) = (er)d / = X{7(s, ) ds . (32)

R4
Thus, we need to devise a quadrature for (32).

As discussed above, since the data are smooth, we are justified in truncating the
domain of integration in the Fourier domain at ||s|| = P = O(1/e)%, with an error e.
(If the data were band-limited at frequency P, of course, then this truncation would
introduce no error.) The real difficulty lies in developing an efficient rule for the finite
Fourier integral :

U(x,t) ~ L / e X (s, 1) ds. (33)

(27)4
Isii<P

The problem of discretizing (33) was addressed in [31], where it was shown (in
one dimension) that a mesh which clustered toward the origin in s-space on dyadic
intervals was capable of resolving the integrand for all time to any desired precision e.
Intuitively, the reason for this exponential clustering at the origin can be understood

from considering the Fourier transform of the free space Green’s function e(H H)/M itself,
Amt) 2

namely the function e lIsl’t, For large t, this function is sharply peaked near s = 0 and
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the accurate resolution of this function is what ensures that the lowest frequency terms
diffuse into the infinite region correctly.

A slight modification of Theorem 2.1 in [31] yields

Theorem 1 (adapted from [31]) Let [a,b] be a dyadic interval of the form [27, 27T, let
€ > 0 be the desired precision and let {si,...,s,} and {wy,...,w,} be the nodes and
weights for the n-point Gauss-Legendre quadrature scaled to [a,b]. Then,

b n
/ e U(s,t)ds — Z ek U (s, 1) wy,
@ k=1

(b—a)
<V2r T

2n n

R(b—a) N 10g(1/e)] L 0 (34)

for |x| < R.

Note that, in the estimate (34), both terms in square brackets must be small for the
quadrature to be accurate. For the first term to be small, the number of nodes must
scale like the length of the interval in s-space. The second term is more interesting. It
requires that there be at least a constant number of nodes on each interval, no matter
how small. 1t is this requirement that forces the exponential clustering of nodes toward
the origin.

Corollary 1 (adapted from [31]) Let € > 0 be the desired precision, let Ly, =
—log(1/€) and let Lya. = [log P, where P is the high-frequency cutoff. Further, let
{85058} and {w; 1, ..., win)} be the nodes and weights for the n(j)-point Gauss-
Legendre quadrature on the interval [27,2971], where n(j) = max(R 27732 8log(1/¢)).
Then, in one space dimension,

Lnta:c n(j)
/ e—is-:va(S7 t)dS . Z Z <€i8j,kx + e—isg',kiﬁ> U<5j,k7 t) Wi k
Is|<P J=lmin k=1
= O(e) (35)
for |z| < R.

We will denote by N; = Nj(e, R, P) the total number of nodes required in one
dimension. Using a tensor product of this one-dimensional rule, O(N®) = O((log(1/€) +
RP)?) nodes are required in d dimensions. If the trapezoidal rule were employed for

(33), then O (%)d nodes would be required in order to be accurate for all time ¢ > 0.

We have described the Fast Recursive Marching (FRM) method, a simple Fourier-
based method for the solution of the heat equation in free space with smooth initial data
and a smooth source term. It allows for efficient and accurate long-time simulations wi-
thout the need for artificial boundary conditions on a finite computational domain. The
convergence theory can be stated trivially - the error in the solution is the quadrature
error in computing the space-time integral (23). The CPU time of the method is nearly
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optimal, requiring O(N?M log N) work for M time steps, with N? points in the spatial
discretization.

To extend the FRM method to boundary value problems with a non-stationary
domain €27 with boundary I'r :

%—Z(x, t) — V2U(x,t) = f(x,t), (x,t) €Qr = HQ(T), (36)
U(x,0) = Up(x), x € Q(0), (37)
alU(x,t) + B%U()@ t)=yg(x,t), (xt)elr= H I'(7), (38)

that is, at each time ¢, f(x,t) is specified in Q(t), the boundary condition (38) is imposed
on I'(t), and U(x,t) is defined for x € §(t), classical potential theory [85, 33| suggests
seeking a solution of the form :

U(x,t) = / G(x—a,t)Uy(a da+// Gx—a,t—71)f(a,7)dadr +

// Gx—at—r71)o aTdsadT+// (x —a,t —7)u(a, 7)dsa dr (39)
r'(r) I'(r) ‘%a

where n, is the unit outward normal to I'(¢) at a, % denotes the derivative in the
normal direction, ds, is an element of arc length along the boundary, and o and u are
unknown surface densities defined on I'y. We will refer to the first integral in (39) as an
initial potential, denoted by G[Uy], to the second integral as a volume potential, denoted
by V[f], to the third integral as a single layer potential, denoted by S[o], and to the
fourth integral as a double layer potential, denoted by D[u]. From the basic properties of
the Green’s function, the representation (39) clearly satisfies (36) and (37). It remains
only to satisfy the boundary condition (38), for which we have allowed two unknown
functions (the surface densities o and p). To avoid non-uniqueness issues, we make the
simple choice of using the double layer potential alone for Dirichlet problems (3 = 0),
and the single layer potential alone for Neumann or Robin problems (5 # 0). Other
methods, based on Green’s identities, yield different formulations |10, 17, 18, 44].

Defining the double layer potential :

(x°,1) / / ana —a,t —7) p(a, ) ds, dr, (40)

0 T'(r)

the single layer potential,

o](x°, ) = j / G(x° —a,t — 1) o(a, ) dsa dr, (41)

I(r)

and

K*(0)(x°t) := / 87? - (x° —a,t —7)o(a,1) ds, dr, (42)
0 I(7)
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for x° € I'(t), the boundary conditions lead to integral equations on the layer densities.
For the Dirichlet problem (a = 1 and 5 = 0 in (38)), taking the limit as a point x € (t)
approaches a point x° € I'(t), we obtain the integral equation

S0+ DUl 1) = g 1) — UK 1) () €Tr. (43)

For the Neumann/Robin problem (3 # 0 in (38)), we obtain

v] 0

aS[o]|(x°,t) + §J(X°, t)+ BK*[o](x°,t) = g(x°,t) — aG[Up|(x°, t) — ﬁanxo

G[Uo] (XO, t) .

(44)
The integral equations in (43) and (44) are well-conditioned Volterra equations of the
second kind and well suited to iterative solution. If we assume that some discretization
rule in time is used with a time step of At, there is an obvious need for the efficient
evaluation of S[o| and D[u] on I'(t) at t = nAt, n = 1,2,3,---, N. Since the Green’s
function is non-local in both space and time, it is straightforward to see that naive
evaluation would require O(N2M?) work, where M is the number of points in the spatial
discretization of the boundary. The initial potential would require O(N M?) work.

Following the approach of [31, 32|, the first step in the development of these methods
is the decomposition of layer potentials into a local part (the most recent contributions
in time) and a history part (the most distant contributions in time) :

Slo](x°,t) := Si|o, 0)(x°,t) + Sglo, §](x°, 1) (45)
where .
Splo,0](x,t) == / / G(x—a,t—7)o(a, 1) ds, dr, (46)
t=0 (1)
and

t—5
Sylo, d](x,1) : //Gx—at—T) o(a,T) ds, dr. (47)

0 T'(r)

D*[pu)( = Djlo,0](x,t) + Dylo, d](x,1)
K*[o, d]( = Kjlo,dl(x,t) + Kjlo,0](x,t).

9

The decompositions for D*[u|, K*[u] are defined in the analogous manner,
X, )
X, t)

The fast algorithm is based essentially on three observations : 1) the heat kernel
has an analytic expression as a Fourier integral, 2) for a fixed §, the decay of the high
frequency components is very rapid, so that the integral can be computed over a finite
range in the Fourier domain for any precision €, and 3) for each given frequency in that
range, the Fourier transform satisfies a simple recursion in time, eliminating the explicit
history dependence of the “physical space" representation. More precisely, if we define
the Fourier transform in space of Sg|o,d](x,t) by SH[J d](s,t), then a straightforward
calculation [31, 32] shows that each Fourier mode can be updated in time from the
formula :

Sulo,8)(s,t) = e PG, [0, 6](s,t — At) + B(s, 1, AL, ),
t—3
O(s,t,At,0) = / eSHQ(tT)/eis'aa(a,T) dsa dT .

t—d—At I'(r)
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Likewise for the double layer potential.

While the algorithm is somewhat intricate, the end result is that the history part can
be evaluated accurately with only O(N M log M) work. Thus, to complete the evaluation
of heat potentials, it remains only to evaluate the local parts Sy [0, §](x°, ) and

D7 [u, 0](x%,t) = / / aiaG(xo —a,t —7) p(a, ) ds,dr, (x°t) ey (48)

t—46T(T)

for (x°,t) € I'r. This calculation turns out to be surprisingly difficult.

Kj o, d](x,t) can be treated in the same manner as its adjoint operator Dj [o, §](x, ),
and will not be considered separately.

Remark 1 Alternative methods for the rapid evaluation of layer heat potentials have
been proposed, for example in [70, 69, 99, 104]. In [70, 69], the authors work with
the Laplace transform in time of the heat kernel. In [99, 104], the authors develops a
hierarchical space-time approximation scheme. While the treatment of the “history part”
differs in each case, the local quadrature issues discussed here arise in essentially the
same form and need to be addressed by all.

Suppose first that the boundary is stationary - that is, I'(¢) = I'(0). The essential
idea is to expand the density, say o, in the form :

0(X,7) = 0o(X)+(t—T) 0y (X)+%(t—7)2 o2 (X)++ -+ (t—7) " oy (%) +O((t—7)")

1
(k—1)!
and to change the order of integration.

The single layer potential Sp then takes the form

Splo,6](x,t) = i [/F Go(x — a)og(a) dsa + /FGI(X _a)oy(a)dsa + . . (19)
+ ﬁ /r Gr_1(x —a)ox_1(a) dsa} +O((t — T)k+1/2’

with the kernels G(x) given by

t
Grl(x) = / A ), (50)
t_

A straightforward calculation shows that

. r2 o
El(1724—5), k = 0,
_r2 2
Gk(x) _ 40e” 448 722}31(1,5)7 k= 1’ (51)

52 e s o 4stil n2
166%™ 45 —4r?de” 45 +r*0Ei(1, T5)
32 ’
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where Ei(1, z) is the exponential integral function :

00 efzvt
Ei(1, x) :/ dt .
1

t

Moving boundaries are a bit more complicated. The trick is to use the spatial domain
at time t for the entire interval [t — §,t]. We carry this out explicitly for the double layer
potential :

lx—a(n)|I? amu? _
D[, / [ |- ) o | el ) oy . 32)
t—8T(7) )
t ”’Z ta<t>n2 _
— / / T 5 | h(a, 7‘)} dr doa), (53)
I(t)t—6 )
where
_lla@-amIl? _ 2(x—a(t)-(at)—a(r)) doq(r)
ha,7):=e 17 e i@ (x —a(7)) - nagm)] palr), (54)

dUa(t) '
It is this function that is expanded as a Taylor series in time :

h(a, ) = ho(a)+(t—7) hy (a)—i—%(zﬁ—T)z ho(a)+- - .+ﬁ<t_7)k—l hi_1(2)+O((t—7)")

Changing the order of integration yields

Dilp, d0)(x,t) = 8i7r {/F G_1(x —a)ho(a) dsa + /FGo(X —a)hi(a)dsa + ... (55)
+ ﬁ /1“ Gr—2(x —a)hy_1(a) dsa} +O((t — 7)1,

Note that the double layer involves the kernel G_1, which can be computed explicitly
from (50) :

Gax) =< (56)

2

It remains only to consider the nature of the spatial singularities in the evaluation of
(55). The apparent T% singularity in G_; does not cause problems because it is canceled
by the term (x — a(7)) - na¢r) in ho(a). More precisely,

(x —a(7)) - Nair) ~ —2702(x, 1) r?

where vp2(x, t) is the curvature at (x,1).

The spatial singularity that remains to be dealt with is the logarithmic singularity
in the exponential integral function :

2

Ei(l,2) = =y —In(z) + z — ZZ +0(2%).
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This is easily handled using a variety of quadratures [4, 49, 72|, all of which are capable
of high-order accuracy for integrands of the form

f(@)In(l2]) + g(x),

assuming only that f(z) and g(z) are smooth. Unfortunately, each of the integrals in
(49) or (55) involves a different kernel, so that a suitable fast algorithm is required for
each. Finally, note that this approach is suitable for target points off the boundary with
no essential change (as mentioned above).

The numerical evaluation of single and double layer heat potentials in two dimen-
sions is a surprisingly complicated task. We have shown that neither asymptotics nor
partial product integration schemes are robust - both being highly sensitive to geome-
tric features (not described here, see Paper 2 listed in the beginning of this section for
details). We have investigated this loss of the expected order of convergence analytically
and refer to it as “geometrically-induced stiffness," since it forces the time step At to
be proportional to Az? under certain conditions. This is a slight misnomer, since in the
integral equation context it manifests itself as a form of inaccuracy rather than a loss
of stability. As expected, full product integration of the heat kernel results in robust
schemes since the error comes only from the approximations made in representing the
geometry and the single or double layer densities themselves. We have used a Taylor
series formalism here, which works best for orders of accuracy up to six or so.

In order to construct optimal time algorithms, fast algorithms are needed to compute
the spatial convolution integrals that arise in (49) and (55). This can be accomplished, for
example, by generalized fast multipole methods [29, 113|. Finally, the local quadrature
schemes developed here need to be combined with previously developed fast algorithms
for the evolution of the “history part" of layer potentials.

2 Applications and extensions

Results reported in

1. Efficient thermal field computation in phase field models,
J.-R. Li, D. Calhoun, L. Brush. Journal of Computational Physics, Volume 228,
Issue 24, 20 December 2009, Pages 8945-8957.

2. A fast time stepping method for evaluating fractional integrals,
J.-R. Li, SIAM Journal on Scientific Computing, Vol 31, 2010. pp. 4696-4714.

3. Efficient solution of a wave equation with fractional order dissipative terms,
H. Haddar, J.-R. Li, D. Matignon. Journal of Computational and Applied Mathe-
matics, Volume 234, Issue 6, 15 July 2010, Pages 2003-2010.

2.1 Phase-field model

Freely growing single crystals exhibit a wide range of crystal-melt interface morpho-
logies, including faceted and dendritic structures, and as a result, have been of great
interest to the engineering, scientific, and mathematical communities for decades. Re-
searchers have attempted to understand, predict, and control solidification morphologies
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which ultimately impact material properties and performance [55]. Crystal growth mor-
phologies have also been a subject of interest to researchers studying nonlinear dynamical
systems because freely growing crystals are examples of rich, pattern-forming systems
[57, 20].

We consider the solidification of a pure material. The model we use are the phase-field
equations, which consist of a coupled system of two diffusion-type equations governing a
dimensionless temperature u(x,y,t) (the thermal field) and the phase variable ¢(x,y, t).
We use the following formulation of the model equations :

w = VP = s (h9)), (57)
2, o(1 — ¢?) T0 S 22 . Wo oo
mal0fe - |55 - D5 w1 -+ P VR0)0). (55)

for x = (x,y) € R? t > 0, along with the choice of parameters,
h(¢) = ¢, a2 = 0.6267, 1o = 1, wy = 1.
The thermal and the phase variables are subject to initial conditions :

u(z,y,0) = uo(z,y), x=(r,y) € R? (59)
o(z,y,0) = ¢o(z,y), x= (z,y) € R (60)

The normalized temperature is u = (T — Tyy)/AT, where T is the equilibrium mel-
ting temperature at a planar interface and AT is the melt under-cooling (the difference
between the melting temperature and the initial temperature in the bulk liquid). Interfa-
cial properties such as the crystal-melt interface energy and the local atomic attachment
coeflicient depend on interfacial orientation, i.e. they are anisotropic. In (57-60) the ani-
sotropy of the material properties is included through the anisotropic Laplacian, which
depends on the angle § (for example, the angle that the normal to the iso-¢ contours
makes with the z-axis) :

0

Vi) = ~ (a(&)a’(&)a%) + (% (a(&)a’(e)(%) + V- (a*(0)V), (61)

with € computed by the formula

0 = tan™! (gyj;) . (62)

The anisotropy is typically modeled by
a(@) =1+ escoswb, (63)

where ¢, is the strength of the anisotropy and w is the crystalline symmetry (e.g., w = 4
for four-fold symmetry).

The phase variable varies from ¢ = —1 (liquid) to ¢ = 1 (solid), corresponding to
the liquid and solid phases, respectively. The value of ¢ varies smoothly but sharply
from —1 to 1 in a narrow diffuse interface region. The Stefan number, or dimensionless

undercooling, is given by
cAT

g —
L )

(64)
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where c is the specific heat per unit volume and L is the latent heat per unit volume.
Typical simulations reported in the literature assume S to be in the range 0.05 ~ 1.
However, experimental results often report values of S in the range 0.001 ~ 0.1 [56].

Regimes of theoretical and experimental importance most easily accessible by nume-
rical computations are those for which the temperature of the liquid melt is relatively
far from the equilibrium melting temperature. In such regimes, the non-dimensional
undercooling parameter, the Stefan number, is large (typically O(1)) and crystals grow
fast relative to the expansion of the thermal field. One can observe interesting results
before the extent of the thermal field exceeds the computational domain and adequate
resolution of the solid-liquid interface can be achieved at modest computational expense.
Many of the early dendritic growth calculations reported in the literature were computed
in this regime [109, 105, 9, 81, 51, 111, 80].

By contrast, obtaining accurate numerical solutions in the regime of low undercoo-
lings still proves to be computationally challenging. For low Stefan numbers (see Eqn.
(64)) crystals grow very slowly relative to the rate of expansion of the thermal front and
the extent of the thermal field in the liquid can quickly exceed by several orders of ma-
gnitude the size of the growing crystal. Typically, in numerical simulations using finite
difference or finite elements methods, the computational domain is taken to be large
enough to contain the entire thermal field. This is due to the fact that in order to match
experiments, numerical simulations must not exhibit any spurious artifacts introduced
by the presence of an artificial computational boundary. The boundary conditions that
are almost universally applied because they are easy to implement are purely Neumann
conditions (see [81, 9, 90]). This choice of artificial boundary conditions will result in a
distorted thermal field at long times and hence an incorrect solution to the free space
crystal growth problem.

The field of interest in the phase-field equations is represented by the phase variable.
The thermal field is of interest near the dendritic tips but is of only secondary interest
away from the crystal interface. For this reason, one would ideally like to use a compu-
tational domain for v which is the same size as needed for ¢ even at low undercoolings.
We want the thermal field to diffuse out through the computational boundary as if the
boundary were not there.

We used the Fast Recursive Marching (FRM) method described in the previous
section to compute the thermal field. Using this approach, we eliminate the need for
artificial boundary conditions for the thermal field because we use a form of the solu-
tion that automatically satisfies the correct boundary conditions on the computational
domain. In other words, these conditions do not need to be artificially imposed. For the
second equation of the phase field model, the phase equation, we will use the Runge-
Kutta-Chebyshev (RKC) method [95] (specially formulated for the time integration of
parabolic PDEs discretized by the method of lines). The RKC method is an explicit
method that computes the solution of moderately stiff problems with a small of number
of stages and function evaluations while ensuring stability. Although the equation for ¢
also appears to be a diffusion-type equation, in fact, it is not a true diffusion equation.
This can be seen by writing the term V,(0)V¢ in tensor notation as VL(#)V¢ and
noting that the resulting anisotropic tensor L(0) is skew symmetric, with complex ei-
genvalues, and so does not behave as a true diffusion tensor [109]. As a consequence, the
field for ¢ does not extend beyond the interface and is constant outside of this region.
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The adaptive computational domain will be denoted Qf, which contains the support of
¢. It is clear from (57) that this means that Q' will always contain the source for u.

Snapshots of the crystal at various time points for the low undercooling case, S =
0.025 and D = 400, are plotted in Figure 3. The crystal and the thermal field are shown
inside the computational domain Q! at each time point. The computational domain f
enlarges from [—10,10] x [—10,10] at ¢t = 0 to [—256, 256] x [—256, 256] at ¢ = 600000.
In contrast to finite difference/elements methods where one must enlarge Q' as soon as
the support of u(,-,t) approaches 99, in our approach, we do not have to enlarge Q'
until the support of ¢(-, -, t) approaches 99, a great advantage at low undercoolings. In
Figure 4 we show the support of the thermal field at ¢ = 300000 which is much larger
than the computational domain we used ([—174, 174] x [—174,174] at ¢t = 300000).

FRM(2)/RKC, S =0.025, time =0 FRM(2)/RKC, S = 0.025, time = 5000
250 3 0 250F 0
200 1 2001
150 4 -0.2 1501 -0.2
100 1 100}
50 1 -0.4 501 -0.4
0 | o .
-50 1 -06  -50° 06
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250 ‘ —— u: colorbar. ¢ contours at {0 0)% ‘ 50l ‘ —— u: colorbar. @: contours at {0 0)1. ‘
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(a) t =0,0! = {-10,10}2 (b) t=5000
FRM(2)/RKC, S = 0.025, time = 100000 FRM(2)/RKC, S = 0.025, time = 600000
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Fi1G. 3 — The thermal field and phase plotted on the adaptive computational domain
Q. The thermal field is computed via the FRM method. The phase is computed via the
RKC method. When the thermal field is computed with the FRM method heat diffuses
out of Q' correctly and simulation can continue until the solidification front reaches 9Q*.

While we have demonstrated our solver on the phase-field equations, it can also
be incorporated into solvers for the sharp interface model. This would involve solving
an initial boundary value heat equation instead of the free space heat equation with a
source term.



32 APPLICATIONS AND EXTENSIONS
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(a)  Computational domain of (b) Thermal field.

FRM/RKC method.

F1c. 4 — The computational domain required by the FRM/RKC method can be much
smaller than the thermal field. Competing finite difference or finite elements methods
require a computational domain that contains the entire thermal field.

2.2 Fractional integrals

In recent years models have come from physical applications that involve fractional
(non-integer) order integrals and derivatives |67, 21, 12, 84|. Numerical methods for the
evaluation of fractional order integrals and the solution of fractional order differential
equations can be found in numerous papers (an early work is in [68], a recent survey can
be found in [22]). In the iterative solution of fractional order differential equations, one
is led to the repeated evaluation of fractional order integrals, which will be the focus of
this work.

We seek to evaluate the fractional integral of order «,

1 t
IY[f](¢) == —/ (t—7)*"f(r)dr, O0<a<l, (65)
I'(a) Jo
at time steps t = At,2At, - - -, for smooth and nonsmooth f. We have in mind that this
is a part of the simulation process of a dynamical model. One may want to simulate this
model for very long times, and the final time of simulation may not be fixed a priori.

The principle difficulty in evaluating (65) for long times is that the convolution kernel
t*~1 decays slowly for large t. Hence, to compute I*[f](¢) the contribution due to f(7)
for 7 far away from ¢t cannot be neglected. This is the reason that systems which contain
terms like 7¢[f](¢) are said to have memory. Hence, a naive discretization of (65)

I°[f](nAt) ~ Z cai f(GAL),

gives rise to an algorithmic complexity which is quadratic in the number of time steps,
because the coefficients ¢,; changes with the time step n, reflecting the fact that (¢—7)**
depends on t.

An additional complication comes from the fact that the input function f may have
an integrable end point singularity : in the solution of fractional order differential equa-
tions, the input function will be the solution obtained up to the current time step, and



2.2 - Fractional integrals 33

it will be a sum of terms of the form :
{tﬂuﬁzj—i_laa ]7l€{071727}} (66)

In a classical approach ([68] and later works) the fractional integral in (65) is ap-
proximated as the sum of a discrete convolution and a few correction terms :

nAt
! a- @ - : o : .
o) /(nAt—T) Lf(r)dr ~ At an—jf(jAt)—FAt anjf(]At)7 n=1,2,---N.
0 Jj=0 j=0
(67)
The convolution weights w;, j = 0,--- , N, are obtained as the Taylor expansion coef-

ficients of the generating function, taken to the power «, of a linear multistep method
for first order ODEs (for example, Euler, BDF). For a fixed N, they can be computed
via the Fast Fourier Transform. The weights of the correction terms wy;, n =1,--- | N,
j = 1,--- s are the solution of a generalized Vandermonde linear system, obtained
by requiring that s functions with the lowest powers in the set described by (66) sa-
tisfy (67) exactly. This system is ill-conditioned and it must be solved at each time
step n (see [24] for further details). Suppose the weights w;, 7 = 0,--- , N, and w,;,
n=1,---,N,j=1,--+,s, have been thus obtained. The sum in (67) can be computed
forn=1,---,N,in O(N(log N)?) complexity with O(N) storage, by properly ordering
the computations on the triangle {(¢,7) : 0 < 7 <t < T} and using the Fast Fourier
Transform [35].

In another group of works the model containing the fractional integral is reformu-
lated as a system of differential equations by taking advantage of a particular integral
representation of the convolution kernel t*~! :

1 o0
= ——— T e 68
o et (68)
This or a similar representation was used for the purpose of analysis in |96, 77, 75, 78] and
for the purpose of numerical simulation in [114, 15, 78, 41]. The numerical algorithms
suggested by [114] and [15], which are very similar, were used in [107, 114, 67| and
analyzed and criticized in [93, 67, 23].

The numerical algorithms formulated in [114, 15, 78, 41] all required a good discreti-
zation of (68), i.e., an efficient and accurate quadrature for the function e=5¢~® on the
half line [0, 00). The principle difficulty with this problem lies in the fact that e &=
depends on ¢ but the quadrature, ideally, should not depend on t. In [78, 41| a quadrature
involving logarithmically spaced nodes was proposed. In [114] and other papers that use
the method proposed there, generalized Gaussian type quadratures (Gauss-Laguerre for
the weight function e™, Gauss-Jacobi for a weight function containing fractional order
end point singularities) were suggested.

We believe the major default of these previous works is that the authors attempted
to find a quadrature that is accurate for all ¢ € [0,00) or for all ¢t € [0, T},4.), which
is an impossible task, given that the integral does not converge at ¢t = 0. This can be
clearly seen in the singularity of t*~! at ¢ = 0. Hence, in our work, we limit the use of
the integral representation in (68) to ¢ which is at least At away from 0. We present
a quadrature which is efficient and accurate to within a given error tolerance for all
t € [At, 00).
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The idea that an integral representation should only be used for t > At is included
in another set of works |71, 92, 66]. But these works use a substantially different integral
representation, in fact, a complex contour integral. For the case of the kernel t*~! this
representation is .

a—1 __ o Ete—a

1 =T(a) 5 /A e temge, (69)
where A is a contour in the complex plane in the region of analycity. Those authors
were not able to find one unique quadrature set for (69) that is accurate for all ¢t €
[0, Thnaz] so they divided [0, T,q.] into geometrically growing and overlapping intervals
U,[B"tAt, B At] for some B > 1, and a different quadrature (on a different contour)
is used for each interval [B'"1At, B"1At]. This leads to a complicated time stepping
strategy because all quadrature nodes must be advanced at every time step. Clearly, it is
also necessary to selectively store and delete of the 'past’ values of f to keep the storage
requirement down. However, because the quadrature sets depend ¢, if one decides during
the course of simulation to continue past 7,,,., additional quadrature sets for further
time intervals must be advanced from the beginning. If the values of the input function
f for the earlier times were not stored, then they need to be recomputed. The advantage
of this approach is that it can be used for a more general class of kernels, but for the
particular case of 7!, we believe the method we propose is superior.

We will formulate one quadrature set that is accurate to a tolerance € for the en-
tire interval [At,00), there is no limitation on 7)., so simulation can continue as
long as needed. We show that the number of points in the quadrature set, @, is

O (( — log e — log At)Q). The complexity of our algorithm is then O(N Q), where N

is the number of time steps, and the storage is O(Q). Because @) does not depend on N,
the number of time steps do not need to be fixed a priori to achieve linear algorithmic
complexity.

This work is motivated by the approach taken in [31] where a quadrature set is
generated for the heat kernel (o = 3) which is valid for [At,c0). Here we compute
quadratures valid for other values of a and give a complete analysis of the quadrature
error and a different bound on ). We show explicitly how these quantities depend on
a. In addition, we treat the case of input functions f which may have an end point
singularity at ¢ = 0.

We proved the following theorem concerning our proposed quadrature.

Theorem 2.1 The quadrature with nodes {n*,--- ,n°} and weights : {v', -+ v?} sa-
tisfies the following error bound

Q
; ~ —{te—a _ 1 —(m*)t k
r(1—a)/0 e de F(l—@)(l—@)ze T

k=1

<e€ Vte[At, ),

with the number of quadrature nodes () satisfying the asymptotic bound

B (—loge — logAt)2
=0 < 2log (pmam<7>> ) ’

where

s
, W = tan —.

v = 2

1 17w? + 1 + 4/ 18w? + 2w?
7pmaac(’7> =

11—« w2 +1
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The proof of the theorem can be found in Paper 2 listed at the beginning of this section.

We presented a method of evaluating fractional integrals by using an efficient qua-
drature of the integral representation of the convolution kernel t*~1. This quadrature is
to be used as a part of a fast time stepping method. The new method has algorithmic
complexity O(NQ) and storage requirement O(Q), where N is the number of time steps
and () is the number of nodes in the quadrature. We have shown that () is independent

of N and grows as O (( — loge — log At)2>, where ¢ is the quadrature error tolerance

and At is the size of the time step. The possible end point singularity of the input
function is taken into account by this algorithm.

2.3 Fractional wave equation

The dissipative model that describes acoustic waves traveling in a duct with visco-
thermal losses at the lateral walls is a wave equation with spatially-varying coefficients
that involves fractional-order integrals and derivatives. The main goal of this work is to
propose an efficient numerical discretization of the coupled model that, in particular,
would avoid storing the solution from all the past time steps, because that would be too
computationally penalizing in long time simulations.

Our approach is based on the so-called diffusive representations of the fractional
integral where, roughly speaking, the fractional-order time kernel in the integral is re-
presented by its Laplace transform. This allows for efficient time domain discretization
because the value of the integral at each time step can be updated from the value at the
previous time step by operations which are local in time (contrary to a naive discreti-
zation of the fractional integral where global-in-time operations are required). However,
these representations require the evaluation of an integral over the Laplace variable do-
main. We propose a numerical method that provides uniform control of the accuracy
with respect to the simulation time. The idea of this approach is inspired by the work
in [31] and follows the detailed development in [64] : the convolution integral is split
into a local part and a historical part, where for the latter one can exploit the exponen-
tial decay of the Laplace kernels to choose quadrature rules that provide uniform error
bounds in time. Essentially, the number of quadrature points in the Laplace domain is
O(—log(At)) where At denotes the time step. Thus, if M is the number of time steps,
the numerical scheme we propose requires O(M log(M)) work and O(log(M)) memory,
compared to O(M?) work and O(M) memory of a naive discretization.

We focus on the one-dimensional Webster-Lokshin model in a simplified form

P + (=)0 w + b(=) 0w — %@(ﬁ(z)@zw) o, (70)

for t > 0 and z € [0,1], where 5 € (0,1), r,a,b € L*°([0,1]; R"); the radius of the duct
satisfies r > ry > 0. The Riemann-Liouville fractional integral operator 0, B is defined
by

_ Lot f(n)
O (1) = F(ﬁ)/o T dr (71)
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Working with (p, v) := (Qyw, —r?(2) d,w) leads to the first order system :

Op=—r"20.0—bp—ad; ’Op), (72)
o = —1r*0,p , (73)

which we supplement with the boundary conditions :

po(t) :==p(z =0, 1) = u(t), (74)
n(t) = v(z =1, 1) = 0. (75)

We assume initial values and are interested in the relation between input u(t) = p(z =
0, t) and output y(t) = p(z = 1, t). More general models allow for a ¢(z) 8} " w term in
(70), as well as boundary conditions of the impedance type instead of (74-75), both at

z =0 and z = 1. The additional term can be treated in a similar manner as 83_510.

The main idea is the representation of the convolution kernel as an integral of a
family of decaying exponentials with respect to a positive measure. In other words, we
utilize the following identity :

1 1 *
=G / e ¢ m¢P ge, (76)
NN R
where G = F(ﬁ)Fl(l— 5 = Sinf“, which in essence states that the convolution kernel in

(71) is the inverse Laplace transform of Gz &=".

One can easily check that the dynamical system with input f € L*([0,T]) and output
0V(f) € L*([0,T)) -

DuplE.t) = —€(6,1) + f(1), VE € RY, (77)
A0 =Gy [ plene ds (79)

given (€,0) = 0, provides a (diffusive) realization of the fractional integral d;”: in
other words, (77-78) realizes the input-output relation 019(f) = a;ﬁ f. It is clear that
the state ¢ is such that E, := % I e €75 de < oc.

We designed a numerical scheme which avoids the storage of the entire history of
past data and that provides uniform control of the accuracy. We observed numerically
that it is stable under the standard CFL condition, however, no discrete energy balance
has been yet found for it. Details of this method can be found in Paper 3 listed at the
beginning of this section.
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3 Scientific context of diffusion magnetic resonance
imaging

A major application of diffusion magnetic resonance imaging has been in acute ce-
rebral ischemia (stroke) [79, 110]. DMRI has been used to detect and differentiate a
wide range of physiological and pathological conditions, including, in the brain, tumors
[101, 108, 74|, myelination abnormalities (for a review, see [60]), as well as in the study
of brain connectivity (for a review, see [58]) and in functional imaging [61].

Algorithms that attempt to quantify tissue microstructure from the measured dMRI
signals developed alongside the clinical applications, and impressive progress has been
made in quantifying white matter fibers (see[58] for a review). This is because white
matter is made of bundles of myelinated axons (myelin is an insulating layer surrounding
the axon of a neuron) that, at the level of the spatial resolution of dMRI, are (mostly)
aligned in some predominate direction. These axons can be modeled by cylinders with
impermeable membranes. The models of the dMRI signal in the white matter[94, 5]
thus rely on adding up the contributions of the signals from water inside the cylinders
and water outside the cylinders, with no water exchange between the cylinders and
the space outside. This is a mathematical tractable problem because diffusion solutions
inside impermeable cylinders can be obtained analytically and added over a distribution
of spatial orientations. The diffusion in the space outside the cylinders can be assumed
to be Gaussian, with a possibly anisotropic effective diffusion tensor.

In the brain gray matter, analogous models have not been as successful because the
cell dimensions are much smaller : the imaging voxel contains neurons and not just the
axons. At the level of the spatial resolution of dMRI, the signal is averaged over many
neurons, consisting of round neuronal bodies attached to long protrusions called neurites
(axons and branching dendrites). Very importantly, the cells (neurons and glial cells)
are permeable to water, including the axons that are mostly unmyelinated. For example,
when impermeable cylindrical sticks were used to model neurons for AMRI in[46] it was
found that such a model allows an accurate estimation of myelinated axon density in the
gray matter, but not the dendrite density. This result is not surprising because water
exchange through cell membranes in the gray matter is important and should not be
neglected.

If water passes very slowly between the cells and the extra-cellular space compa-
red to the measured diffusion time, then the cell membranes can be approximated
as impermeable to water passage. In this case, various analytical or semi-analytical
expressions have been obtained for the dMRI signal arising from inside the cells
|98, 11, 83, 87, 102, 30]. In general, however, cell membranes are permeable to water,
and it is important to study the effect of membrane permeability on dMRI signals. If the
cell membranes are permeable, analytical solutions are not known even for these simple
geometries. One needs thus to resort to numerical simulation as well as to macroscopic
models.
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4 Numerical solution of a microscopic PDE model

Results reported in

1. Numerical simulation of diffusion MRI signals using an adaptive time-stepping
method,
J.-R. Li, D. Calhoun, C. Poupon, D. Le Bihan. Accepted. Physics in Medicine and
Biology, 2013.

We solved the multiple compartment Bloch-Torrey PDE by coupling a standard
Cartesian spatial discretization with an adaptive time discretization using the explicit
Runge-Kutta-Chebyshev (RKC) method, which is more efficient than the the Forward
Euler time discretization used previously for AMRI simulations [43, 48, 112, 40, 91].

In the brain gray matter, neurons, consisting of a large neuronal body and long
extensions (axons and dendrites), are densely packed. There are also glial cells which
do not have these long extensions. The extra-cellular space accounts for only a small
fraction of the total volume, less than 20 percent. In [47], a simplified model of the dMRI
signal was proposed :

S(b) = (1 —v°) e PP 4 1°8%(b), (79)

where v¢ is the volume fraction of all the diffusion compartments exhibiting cylindrical
symmetry and everything outside of these cylindrical compartments is assumed to un-
dergo Gaussian diffusion with an effective diffusion coefficient D¢, where the superscript
“ec” stands for “extra-cylindrical”. The term S¢(b) is the signal due to the cylindrical
compartments under the assumption that they are impermeable with respect to the
extra-cylindrical compartment. In the gray matter, where there is no a-priori orienta-
tion preference for the neurites (axons and dendrites), the cylindrical compartments
consist of the neurites themselves. We are interested in simulating the dMRI signal
from regions of the brain where the neurites can be thought of as oriented more or less
randomly.

First we studied the dMRI signal arising from the compartment consisting of the
extra-cellular space and the spherical cells (modeling glial cells). We begin by construc-
ting a geometry consisting of generally oriented cylinders and spheres. In the compu-
tational box C' = [—12.5um,12.5um]3, we placed N¢ = 250 randomly-placed points
(uniformly distributed in C). At each point, we extended an infinite cylinder of radius
R° oriented in a random direction (drawn uniformly from the unit sphere) and cut the
cylinder off at the boundaries of C. The size of C' is chosen for the simulation of the
extra-cylindrical space, where we observed that the effective diffusion coefficient was no
more than 10~3mm? /s, meaning a diffusion distance of 15um in 40ms. This size ensures
that most molecules see C' no more than twice during 40ms. The cylindrical volume
fraction will be denoted v¢. We also distribute N* = 10 randomly-placed spheres of ra-
dius R* in C' and denote the spherical cells volume fraction by v°. The volume fraction
of the extra-cellular space will be denoted v = 1 — v° —v®. See Fig 5(a) for a rendering
of the geometry with R = 1.25um, R®* = 4um, v® = 0.15 and v® = 0.15. We discretized
C' by a regular mesh with spatial spacing h. See Fig 5(b) for a cross section view of the
discretized mesh at h = 0.125um.

At the start of the simulation, we placed water molecules uniformly in the spherical
cells and the extra-cellular space and placed no water molecules inside the cylinders. We
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(a) Geometry (b) Cross section of mesh

F1G. 5 — Left : a rendering of the simulation geometry consisting of 250 randomly placed
and oriented cylinders and 10 randomly placed spheres (zoomed-in view). Right : a cross
section view of the discretized mesh of the geometry with h = 0.125um (zoomed-in
view).

made the cylindrical cells impermeable so that the water molecules are blocked from ente-
ring the cylinders during the simulation. We varied the spherical cell permeability : k°* =
Om/s(impermeable), 107°m /s, 10~*m/s, co(infinitely permeable), and we computed the
ADCy and AKj from b-values : 0,250, 500, 750, 1000, 1250, 1500, 1750, 2000s /mm?. The
RKC tolerance was set to tol = 1074, after doing a preliminary simulation for free diffu-
sion where we saw that the relative signal error was less than 0.005 at b = 2000s/mm?,
which is sufficient accuracy for the dMRI application where there is significant experi-
mental noise in the measured signal.

We chose a constant intrinsic diffusion coefficient D = 3 x 1073mm?/s in the cells
and the extra-cellular space. The diffusion-encoding gradient sequence simulated was
PGSE, § = 2.5ms and we varied A = 10ms, 20ms, 30ms, 40ms. We simulated the
dMRI signal on two meshes with A = 0.25pum and h = 0.125um.

We examine the results for the mesh with A = 0.125um (marked by stars). In Fig. 6,
we see that at x* = 0m/s (solid line) and k* = 10~°m/s (dash-dots), the ADCj decreases
from 0.4 x 10~*mm?/s to 0.2 x 107*mm?/s as the diffusion time is increased from 10ms
to 40ms, while the AKj goes from 1.8 to 2.7 for k* = 10~°m/s and from 2 to 3.5 for
k® = 0m/s. At k® = 107*m/s (dashes), the ADCj decreases from 0.55 x 1073mm?/s to
0.45 x 1073mm? /s, while the AKj stays around 1.2. At x* = com/s (dots), the ADC
decreases from 1.05x 10™3mm?/s to 0.85 x 10~3mm? /s, while the AK| stays around 0.6.
Thus we see that the AK| is quite high between 10ms and 40ms for the different values
of the spherical cells permeability. Because the AK| is so high at finite permeability, this
set of simulations put to question the assumption that the extra-cellular space and the
spherical cells can be considered as one physical compartment experiencing Gaussian
diffusion at the above diffusion times when the b-values are as high as 2000s/mm? .

From the same figure, we also see that when we use a coarser mesh with h = 0.25um
(marked by circles), the values of ADCy and AK are slightly shifted, with the ADCj
being lower at the coarser discretization, which is easily explained by the cylinders having
more ’jagged’ surfaces. However, the behavior of the ADC, and AK, as a function of
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k® and diffusion time is consistent with the results from the finer mesh.
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F1G. 6 — In the extra~cylindrical compartment comprising of the spherical cells (v* =
0.15) and the extra-cellular space (v¢ = 0.15) and where the water molecules are stopped
from entering the cylindrical cells, the ADCy and the AK, are computed for the signal
arising only from this compartment. Four values of spherical cell permeability : x° =
0Om/s (solid line), k = 1 x 107m/s (dash-dots), k = 1 x 107m/s (dashes), k = com/s
(dots), were simulated on two meshes with spatial discretization h = 0.25um (circles)
and h = 0.125um (stars).

Details of the numerical method and other simulations can be found in the Preprint
listed at the beginning of this section.

5 Formulation of a macroscopic ODE model

Results reported in

1. A new macroscopic model including membrane exchange for diffusion MRI,
J. Coatléven, H. Haddard, J.-R. Li. Preprint.

2. Numerical study of a macroscopic ODE model of the diffusion MRI signal,
J-R. Li; H. T. Nguyen; D. V. Nguyen; H. Haddar; J. Coatleven; D. Le Bihan.
Preprint.

The Karger model [50] is a system of ordinary differential equations (ODEs) that
approximates the dMRI signal and takes into account membrane exchange. It was ori-
ginally developed for diffusion in zeolites, which are microporous crystalline solids, and
the crystal structure can be reasonably thought of as extending infinitely in space. In
[87] the relation between the Karger model and the multiple compartment Bloch-Torrey
PDE was explored analytically. For dMRI in biological tissue, the Karger model was
compared in certain parameter regimes with Monte Carlo simulations |76, 82, 27]. A li-
mitation of the Karger model is that it assumes that the width of the diffusion-encoding
pulse is short compared to the diffusion time § < A. In addition, the parameters of the
Karger model are the effective diffusion coefficients of the different compartments, and
the exchange time between them, but these quantities are described physically, rather
than mathematically.
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We formulated a system of ODEs governing the time evolution of the integrals of
the magnetization in the different physical compartments by an asymptotic analysis on
the cell membrane permeability for the multiple compartment Bloch-Torrey PDE. The
sum of these integrals at echo time gives the dMRI signal. First the analysis was done
for geometries containing compact cells (meaning that the sizes of the cells are small
compared to the diffusion distance) and we formulated a new ODE model that does
not have a restriction on the width of the gradient pulse. All the parameters of the new
ODE model are clearly defined from the geometry and the cell membrane permeability.

In some very recent work (an article describing these results is still under prepara-
tion), we generalized the ODE model to geometries containing compact cells as well as
long cylindrical cells. We simulated the dMRI signals in complex geometries containing
spheres of various sizes and long cylinders of various orientations by solving the mul-
tiple compartment Bloch-Torrey PDE in such geometries. Then we computed the dMRI
signal predicted by the ODE model and show that it is close to the simulated dMRI
signal from the full PDE model. We also simulated the Karger model and showed that
when the gradient duration is not short compared to the time between pulses the ODE
model offers a much better approximation of the full PDE dMRI signal than the Karger
model.

5.1 Heuristic model used by MR physicists

Suppose the concentration of water in each compartment [ is u!, [ = 1,--- , P, then
the governing equations for diffusion and exchange between them can be written as :

Out(r,t) o 1 ul(r,t) ul(r, t)
o = VD'Vl (r ) - — 5 +l:;P pura
. (80)
ouf’ (r,t) P p uf’(r, 1) ul(r,t)
g\t _wp _w\nt )
Py VD" "Vu' (r,t) P +l: z:Pl o

where r € R3, 7/™ is the exchange time between the compartment [ and m, and D'
is the effective diffusion coefficient of compartment /. What is implied by (80) is that
all compartments cover all of R, The assumption is acceptable to describe diffusion
in zeolites, which are microporous crystalline solids, where the crystal structure can be
reasonably thought of as extending infinitely in space. For biological cells whose size is
not long compared to diffusion distance, this assumption must be examined.

From the mass conservation, if we assume that the water density is the same in all

the compartments, w',--- ,w’, must satisfy :
P
1 1 v
W:_m Z —ml’ mzla“'7P7 (81)
=1, l#m

where v! is the volume fraction of compartment [. The system of PDEs in (80) are
subject to initial conditions :

ul(ra()) = Ulg(r>7 l = L 7P7 (82)
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the §(r) being the Dirac delta distribution at r = 0. We used the notation 4 to distinguish
it from the width of the diffusion-encoding gradient pulse 6.

In the Karger model, a partial signal S'(g,t), arising from compartment [, was defi-
ned, and under the narrow pulse approximation, assumed to have the following form :

Sl(g,t) ~ / 8Tyl (v, t)dr. (83)
reR3

We note that the region of integration is R®. Taking the time derivative of S’ in (83)
and using Green’s identity, the Karger model can be obtained :

ds™(g,t m 1 oy " 1
el _ (D Pl S L sig e S LS, m=1,-
v T T
=1, l#m =1, l#m
(84)
It is a system of coupled ODEs, subject to the initial conditions :
S'(g,0) =7, 1=1,--- P (85)

In the case where the number of compartments P = 2,3 is small, the analytical
solution of (84) can be obtained by finding the eigen-decomposition of a P x P matrix.

In the original Karger model, the dMRI signal is the sum of the signal from all the
compartments at t = A :

S(g.A)=> S'(g,A).

We found that the Karger model can be made somewhat more accurate when we evaluate
the signal at t = A — §/3, thus, we will use

S(g. A—5/3) =) S'(g.A—5/3), (86)

when comparing the Karger model with the new ODE model to be described next.

5.2 New ODE model

Even though the Karger model has been used in biological tissue dMRI, there is a
question of the exact meaning of (80), given that biological cells are limited in physical
size.

We redefined the partial signal S'(g,t) as the integral of the solution of the multiple
compartments Bloch-Torrey PDE in ' :

Sl(g,t) = M'(r,t|,g) dr,l=1,--- P, (87)
reQ!
We note that in the definition of (87), the range of r is in Q! and not in all of R3
like in (83). This is a more physically reasonable definition for biological cells and it is
mathematically rigorous.
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By doing an asymptotic analysis on x, the permeability coefficient, we obtained a
homogenized model for the multiple compartment Bloch-Torrey PDE (12, 13, 14,15, 16,
17). We then showed that the partial signals satisfy a system of coupled ODEs :

dt

=1, l#m =1, l#m

(88)
where we proved that 7, the coefficient in row m and column [ of the ODE system,
is :

1 le
e 89
7—ml k Vm ) ( )
'™ being the surface between Q™ and Q', and V™ is the volume of Q™.

The mathematical derivation of the function ¢(¢) from the full multiple compartment
Bloch-Torrey PDE can be found in our preprint. Here we use a more intuitive derivation,
by looking at the ODE satisfied by the integral of the solution of the Bloch-Torrey PDE
in a homogeneous medium. In |52] it was shown for the general gradient time profile
f(s), by the use the Laplace transform, the integral of the magnetization satisfies, for
any point in time ¢ :

Shom (g, t) = / m(r, t|g)dr = e~ D 1el” i du(f5 7)o
R3

We note that the above equation is valid for any ¢t > 0, not just at echo time T E. Then

we define c(t) as :
8Sh°m 98" (g,t)
D=5 |!gH25h"m (/ e ) )

for any profile f(s). For the PGSE sequence,

2, 0<t<§é,
c(t) = < 62, b <t<A, (91)
(t—A—=0)?  A<t<A+6.

In the narrow pulse regime, 6 < A, we can see that (91) becomes one interval and on
that interval we obtain the coefficient §2 as in the Karger model (84).

In the Karger paper, the precise definitions of the effective diffusion coefficients were
not discussed. In our preprint, we showed that if the size of 2™ is small compared to
the diffusion distance, then its effective diffusion tensor is 0 :

-—m

D" =0. (92)

For the extra-cellular space, we showed how to compute D' if we assume the periodic
extension of C' = [—L/2, L/2]3 to all of RY. Tt is :

—m 1 ,
Djy = o / D(r)VM;(r) -epdr, j k=1, .d, (93)

dSm g,t —m 1 P Ul m P 1
# = — (C(t)’}/2gTD g+ U_m Z m) S (g,t)+ Z mSl(g,t), m = 17"'
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where e;, is the unit vector in the k" direction, and we have to solve d steady-state
Laplace equations over C' for the unknown function M; :

V- (D(r)VM;(r)) =0, reQ™, (94)
subject to impermeable boundary condition on 0Q™ :
VM;(a) -n(a) =0, aecoQ™, (95)

and periodic boundary conditions on 9C' :

Mj(r)l, =y = Mj(r)l,, _p o — wikl, k=1,--- .4, (96)
B 0
— M;(r - —~ M;(r k=1, ,d, 97
e ;(r) S = 5(r) - (97)

where w;y = 11if k = j, and w;j, = 0 otherwise. We note that if the extra-cellular space
Q™ is not a periodically extension of C, then the definition of D" would change, but
the form of the ODE system would not change.

In some recent work, for which a preprint is still under preparation, we generalized
the ODE model to allow for long cylindrical cells. If 2™ is a long cylinder, then we set
its effective diffusion tensor to :

D" =q"' D', (98)

where q is the normalized (||q|| = 1) vector parallel to the axis of the cylinder. The
derivation of this is not difficult.

Finally, we note that if there is no exchange (x = 0) between any of the compartments
the dMRI signal is

P ——m
NOEX (p\ _ m _gTD g
S (b) = Z v™ exp b|. (99)
m=1

If the exchange between the compartments (k = oo) are infinitely fast, then the dMRI

signal is :
P T—m
D
SNOEX () — exp (- < vmg||g”2g> b) . (100)
m=1

The Karger model and the new ODE model are formulated to explain the intermediate
exchange regime that falls between the two extremes in (99) and (100).

We note that the expressions in (89,92) have been used in previous works (for
example, in [27]) for the Karger model. The derivation of our ODE model contains
the mathematical justification for these choices. In addition, it is important to have the
rigorous mathematical definition of D" in the extra-cellular space shown in (93). Other-
wise, it would be too easy to mask the difference between the full PDE dMRI signal and
the ODE model approximation by fitting different D" for different pulse sequences. In
the following, we compute D" by solving the steady-state problems in (93) for a given
geometry, and we will use the same value for all pulse sequences on that geometry.
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We end with a numerical example. We solved the Bloch-Torrey PDE in a geometry
of 5 layers of cylindrical cells and 4 layers of spherical cells all embedded in the extra-
cellular space, see Fig 7(a). The five layers of cylindrical cells contain parallel cylinders
that are oriented 0, 26.5, 45, 63.5 and 90 degrees, respectively, from the z-axis (cylinder
radius 0.8um). The 4 layers of spherical cells (sphere radius 1.1um) are inserted between
the 5 layers of cylindrical cells, The cellular permeability for both cylinders and spheres
is set to x = 107°m/s. The computed effective extra-cellular diffusion tensor is :

2.29 0.00 0.11
D= | 0.00 2.05 0.00 | x 10 *mm?/s.
0.11 0.00 2.29

We computed the new ODE model signal and the Karger model signal and compared
them to the full PDE signal, for the PGSE sequence § = A = 40ms. We see in Fig 7(b)
that the ODE and the PDE signals are almost indistinguishable. The Karger model, on
the other hand, is far from the PDE signal, because the narrow pulse assumption does
not hold, since 6 = A = 40ms. Also we see that the PDE signal falls between the no
exchange and the fast exchange limits.

- PDE
< 0.60 ODE
ks KAR
B NO EX
% HFAST EX
P
E
= 0.20}
w

0 500 1000 1500 2000 2500 3000 3500 4000
b-value(s/mmz)

(a) Variably-oriented cylindrical cells and (b) DMRI signal attenuation
spherical cells.

Fia. 7 — Left : mesh of the geometry in the computational domain C'. The cell membrane
permeability is k = 107°m/s. Right : the simulated dMRI signal from the Bloch-Torrey
PDE is labeled "PDE’, the signal from the new ODE model is labeled "ODE’, the signal
from the Karger model is labeled 'KAR’, the theoretical signal without exchange is labe-
led '"NO EX’, and theoretical signal with fast exchange "FAST’. The gradient direction
is ¢ = (1,0,0), the pulse sequence is PGSE, with pulse width 6 = 40ms and the delay
between two pulses is A = 40ms.
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6 Current PhD supervision

Results reported in

1. A finite elements method to solve the Bloch-Torrey equation applied to diffusion
magnetic resonance imaging,
D. V. Nguyen, J.-R. Li, D. Grebenkov. Preprint.

6.1 PDE model : finite elements discretization and mesh gene-
ration

I am one of the co-advisors of the PhD student Dang Van Nguyen. He is working on
the improved numerical solution of the Bloch-Torrey PDE by coupling a finite elements
discretization to the RKC method, so that cell geometries can be better approximated
than the Cartesian discretization we have used previously. In this case, mesh generation
for complicated cellular geometries must be considered. In addition, he works on the
simulation and analysis of diffusion inside neurons, by distinguishing contributions to
the dMRI signal from the neuronal bodies compared to that from the axons and the
dendrites. He is funded by an ANR grant (“SIMUDMRI”, Nov 2010- Jan 2014, ANR
Program COSINUS).

6.2 ODE model : inverse problem

I also co-advise the PhD student Hang Tuan Nguyen who is working on the inversion
of the new ODE model for the purpose of brain tissue parameters estimation. He is
funded by a PhD scholarship STITS Orsay (Oct 2010-Sept 2013).

7 Research plan

7.1 Experimental validation of PDE model in the Aplysia gan-
glia neuronal network

We propose to validate the microscopic multiple compartment Bloch-Torrey PDE
model on a neuronal network where the individual neurons are much larger than the
neurons in mammals. This animal model is the Aplysia. Performing diffusion experi-
ments on intact isolated ganglia from Aplysia should provide insights to mammalian
neuronal networks. The advantage of using the Aplysia ganglia in experimental vali-
dation is that it is possible to image the entire ganglia with a spatial resolution that
will resolve single cells, because the Aplysia neurons are large (neuronal body diameter
on the order of hundreds of microns) compared to mammalian neurons (neuronal body
diameter on the order of tens of microns). Because the Aplysia neurons have a high
tolerance to non-ideal conditions and are viable for relatively long times without the
need for chemical fixation, they can be imaged ex-vivo while still providing insights to
the water diffusion in-vivo.
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We will create a mesh of the ganglia neuronal network and solve the Bloch-Torrey
PDE under a variety of geometrical configurations, while varying the cell membrane
permeability. Imaging of the Aplysia ganglia will be performed by Luisa Ciobanu of
Neurospin under different experimental conditions. The simulation and the imaging
will occur concurrently. Because the Aplysia neurons are large and can be resolved
individually on the images, it provides of a way of verifying the estimated cell sizes from
the PDE model with the true cell sizes obtained by counting pixels on the images.

Fic. 8 — Left : Aplysia Californica. Right. A. Schematic of the ventral side of the
buccal ganglia. B, C. MR images obtained at 17.2 T (25 um isotropic resolution). Left
column : T1 weighted images obtained using Mn2-+ as a contrast agent. The hyperintense
regions are cells containing Mn2+-. Right column : T2w images. The cells bodies appear
hypointense. As indicated by the numbers on the figure, specific neurons have been
identified on both T1 and T2 weighted images. Provided by Luisa Ciobanu.

7.2 Inclusion of blood flow in brain micro-vessels in PDE model

In Sept 2013, I will begin a research project “Computational Imaging of the Aging
Cerebral Microvasculature”, to be funded by the ANR in the Program “US-French Col-
laboration”, Sept 2013- Sept 2016. The goal of the full project is to extract intrinsic
micro-vascular parameters in the normal aging brain using MRI and quantify the micro-
circulation in the brain which would enable new research in the future examining the
variation of the metabolic support of brain neurons and glial cells in aging or disease.

My part in the project focuses on modeling the physics underlying the MRI signal
arising from the blood circulation in the micro-vessels in the brain gray matter by
PDEs and formulating a reduced model of the MRI signal so that some bio-physical
quantities such as the “tortuosity” of the micro-vessels can be robustly obtained from
the experimentally obtained MRI signals. The full PDE and the reduce models will
both be validated against experimental data in the rat brain to be obtained by the MR
physicists at Neurospin. The ANR funding includes the financial support for a PhD
student, still to be hired, to be advised jointly by me and Luisa Ciobanu of Neurospin.
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F1G. 9 — Image of micro-vessels in the brain. The vessels are small and can be conside-
red “randomly” oriented. Source : High-Resolution In-Vivo Analysis of Normal Brain
Response to Cranial Irradiation. Burrell K, Hill R, Zadeh G (2012). PLOS ONE.
DOI :10.1371 /journal.pone. 0038366

7.3 Macroscopic ODE model at shorter diffusion times

The macroscopic ODE model described previously works well at long diffusion times,
or equivalently, when the average cell size is small. We would like to use higher order
asymptotics than was done for the current ODE model to allow a better approximation
at shorter diffusion times or in the presence of larger cells.
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8 Time integration for complex geometry on embed-
ded Cartesian mesh

Results reported in

1. High order marching schemes for the wave equation in complex geometry,
J.-R. Li, L. Greengard, Journal of Computational Physics, Volume 198-1, 20 July
2004.

2. Strongly consistent marching schemes for the wave equation
J.-R. Li, L. Greengard, Journal of Computational Physics, Volume 188-1, 10 June
2003.

Many problems in electromagnetics, optics, and acoustics require the solution of
the time-dependent wave equation in complex geometry. We are particularly interested
in designing numerical marching schemes that are applicable on Cartesian grids with
embedded boundaries as discussed, for example, in |2, 1]. These have a number of ad-
vantages over body fitted grids in terms of efficiency, memory consumption, automation,
mesh refinement, and convergence analysis. In complicated domains, however, small cells
are created wherever the irregular boundary intersects the Cartesian grid. Classical sta-
bility analysis [89, 100] suggests that the size of the time step is dependent on the size of
the smallest cell in the spatial discretization, rendering such schemes impractical unless
some additional techniques are introduced to overcome this restriction. More precisely,
we would like to allow time steps on the order of the size of the uniform cells in the grid
away from the domain boundary.

Existing approaches to this “small cell" problem include cell merging (see, e.g. [16,
88]), large time step generalizations of Godunov’s method [63], and the rotated grid h-
box method [7]. In cell merging, one removes small cells near the boundary, which tends
to result in a loss of accuracy there. In the generalized Godunov and h-box methods, one
keeps the small cells, enlarging the numerical domain of dependence near the small cells
in some way. These schemes have not been carried out to high order accuracy. Recent
work on Maxwell’s equations [25] has demonstrated the feasibility of obtaining second
order accuracy using ideas that are somewhat related to those discussed here. Even more
closely related is the second order accurate method for the scalar wave equation found
in [53]. Nevertheless, for large scale wave propagation problems, high precision is critical
to avoid numerical dispersion errors. Hence, there is room for significant improvement
in the performance of numerical methods in terms of the order of accuracy.

The schemes we propose follow the work of |3, 65], which introduced a new approach
to marching in time that appears to be remarkably insensitive to the presence of small
cells. These are three time level schemes, based on an exact evolution formula for wave
propagation.

It was shown in [3] that if u(x,?) is a solution to the homogeneous wave equation
0*u
ot?

in R?, then there exists a kernel G4(r, 7) such that

= V?u (101)

u(x,t+ 1) = 2u(x,t) —u(x,t —7) + / Ga(|x — &|,7) V2u(€, t) d€, (102)

B (x)
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where B, (x) = {€, |€ — x| < 7} denotes the closed ball in R? of radius 7 centered at x.
Moreover,

Gi(r,7) = 77—, (103)
Golr7) = In(7 + @) — lnr’ (104)
Gs(r,7) = L (105)

omr’

We will use the exact formula (102) to construct a class of explicit three time level
schemes to solve (101). In particular we modify (102) to solve (101) in a bounded domain
D subject to either Dirichlet conditions

u(x,t) = g(x,1) (106)
or Neumann conditions 5
U
— = h(x,t 1
5, = 1) (107)

on the boundary 0D, where v is the unit outward normal. We begin by restricting the
region of integration in the formula (102) to define a(x, ¢+ 7) :

w(x,t+7) = 2u(x,t) —u(x,t — 1) + / Ga(|x — €|, 7) V2u(€,t)dg.  (108)

B:(x)\D
It is easy to verify that u satisfies the wave equation for 7 > 0. As a result, the function
S given by
Sx,t+7) =uxt+71)—uxt+71), xeD
also satisfies the wave equation and takes on zero initial data. Suppose now that one
wants to impose the boundary condition given by (106). Then we must have

S(x,t+71)=g(x,t+7)—u(x,t+7), x € 0D. (109)
Similarly, if the boundary condition (107) is to be satisfied, we must have

oS ot

—(x,t+7)=h(x,t+7) — —

81/( ™) ( ™) ov
In either case, the wave equation for S can be solved using hyperbolic potential theory
|33]. For short times 7, this involves a local boundary integral equation for which the cost
is negligible.

(x,t+71), x € 0D. (110)

With the boundary conditions given by (106), we represent the solution as a double-
layer potential :

Stctn) = D) = [ Skl ! (111)

for x € D, where G(r, 7) is the free-space Green’s function

if r >,

Grr) ="
’T pr—
’ 1/V12—r?2 ifr<m,
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~ is some parametrization of 9D, v(7) is the unit outward normal at &(vy), and p(y,7’)
is the unknown double-layer density. Taking the limit as x approaches a point £(7') on
the boundary, a standard computation [33] yields the relation

S0t =g+ [ G 601t i
(112)

Thus, the density p is obtained by solving the following integral equation on the boun-
dary :

—%u(v’, 7) + Do[u](v',7) = g(€(7), t + 1) — u(&(v), t + 7), (113)

where the compact boundary integral operator is

/ L ! 0 n o S— - -
Dot )= [ ] G ~ €l = Pl s (1

If the boundary conditions are given by (107), we represent the solution in the form of
a single-layer potential :

S(x,t+ 1) = Slo](x,7) = /O /g( Gl &) 7 ol 7y, (119

for x € D, where o(~,7’) is an unknown single-layer density. Taking the appropriate
limits, the density o must solve the following integral equation on the boundary :

5007 + Kolol(,m) = BG4 7) — SLEW )t HT), (10

where the compact boundary integral operator is

/ L i 0 no_ r—No - -
Kloltmy= [ S CUIEn) — 60l = et

Our numerical approach to solving the wave equation (101) in the presence of a
boundary is straightforward. At every time step, we discretize (108), march u forward
in time, and add the boundary correction S(x,t + 7), and we showed experimentally
that high order schemes in complex geometry are feasible in two space dimensions.

The details can be found in the paper listed at the beginning of this section.

9 Artificial boundary conditions for periodic wave-
guides containing a local perturbation

Results reported in

1. Exact boundary conditions for periodic waveguides containing a local perturbation,
P.Joly, J.-R. Li, S.Fliss, Commun. Comput. Phys., 1 (2006), pp. 945-973.

Periodic media play a major role in applications, in particular in optics for micro
and nano-technology. From the point of view of applications, one of the main interesting
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features is the possibility offered by such media of selecting ranges of frequencies for
which waves can or cannot propagate. Mathematically, this property is linked to the
gap structure of the spectrum of the underlying differential operator appearing in the
model.

There is a need for efficient numerical methods for computing the propagation of
waves inside such structures. In real applications, the media are not perfectly periodic
but differ from periodic media only in bounded regions (which are small with respect
to the total size of the propagation domain). In this case, a natural idea is to reduce
the pure numerical computations to these regions and to try to take advantage of the
periodic structure of the problem outside : this is particularly of interest when the
periodic regions contain a large number of periodicity cells.

Here we contribute to the construction of such methods in a particular situation.
We are interested in propagation media that are a local perturbation of an infinite (or
very large) periodic waveguide, namely an infinite structure which is periodic in one
privileged direction (the propagation direction) and bounded in the other transverse
variables (one says that one has a closed waveguide, as opposed to open waveguides
as considered in [103], for instance). Physically the perturbation may be a defect or
simply a junction. We investigate the question of finding artificial (but exact) boundary
conditions to reduce the numerical computation to a neighborhood of this perturbation.

In the case of “classical” waveguides, which are invariant in the propagation direc-
tion, (in some sense, periodic with any period), the usual approach consists in applying
Dirichlet to Neumann conditions [39, 62] : using the separation of variables, the solu-
tion in the semi-infinite waveguide can be written as the superposition of guided modes,
that are exponentially varying along the waveguide direction. As a consequence, one can
write explicitly a diagonal form of the DtN map in an appropriate (orthonormal) basis.
An alternative approach has been proposed recently which uses the method of Perfectly
Match Layer (see [6] for the application to waveguides), that does not easily extend to
periodic waveguides.

We investigated the generalization of the DtN approach to periodic waveguides,
which is complicated by the fact that separation of variables can no longer be used.
However, the notion of guided modes has a natural extension : the notion of Floquet
modes. By revisiting the Floquet-Bloch theory [54], we propose a method for construc-
ting DtN operators by solving local problems on a single periodicity cell. This is closely
connected to operator-valued Riccati equations (here, of a stationary nature), a topic
that is already present in many problems concerning artificial boundary conditions (see,
for instance, [42, 14]). Tt appears also that our method is similar to the matrix transfer
approach developed for ordinary equations with periodic coefficients [73]. However, ex-
cept in the 1D case (|86, 28|), this theory cannot be applied directly to our problem due
to the fact that the Cauchy problem for the Helmholtz equation is ill-posed in higher
dimensions.

The model problem that we consider is that of a 2D periodic waveguide, which allows
us to consider a scalar model, but the treatment of the 3D case (where the periodicity is
in one direction and the domain bounded in the other two directions) would be similar,
in principle. We assume that the geometry as well as the material properties of the
waveguide are z-periodic except in a bounded region (see Figure 10). The propagation
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L] 5+u_

X

F1G. 10 — Outside the bounded region Q°, the geometry as well as the material properties
of the waveguide are periodic to the left and to the right. The cells over one period are
denoted C'~ and C™, respectively.

model is a simple 2D (x = (z,y)) scalar model :

, 2U(x,1)

n(x) oz AU(x,t) = F(x,1).

This model holds in electromagnetism when the 2D model is seen as the cross section of a
3D one, invariant in the z direction. In the case of the transverse electric polarization, U
represents the z-component of the electric field and n(x) € L™ is the index of refraction
of the medium. Moreover, we suppose that :

0 < n_ = inf n(x) < n; =supn(x) < +oo.
x€ x€Q

—%! s time-harmonic with frequency

—wt where u satisfies

We assume that the source term F(x,t) = f(x) e
w > 0, and look for the time-harmonic solution U(x,t) = u(x) e
the Helmholtz equation :

—Au(x) — n(x)? w? u(x) = f(x). (117)

The domain of propagation €2 is bounded in the y direction, infinite in the x direction,
and periodic outside a bounded region Q° = QN {a” <z < a™} that also contains the
support of f. The two infinite periodic sub-domains QF = QN {4 z > + a*} are of the

form :
o0

af = J{c* £ (jr*,0)},

J=0

where the unit periodicity cells are
C*=Qn{+ad* <42 <+a* 40}
The function n(x) is “z-periodic” as well :
n(z,y) = n(z £ h* y), (z,y) € QF.
The boundary condition on 92 (which we suppose to be piecewise C' and Lipschitz
continuous) can be Dirichlet (this would be consistent with the perfectly conducting

boundary condition in electromagnetism), Neumann, or any combination, but they need
to be compatible with the periodicity of equation (117) in Q= and Q7.



ARTIFICIAL BOUNDARY CONDITIONS FOR PERIODIC WAVEGUIDES CONTAINING A LOCAL
56 PERTURBATION

We characterized the restriction of u to Q0 as the solution of (117) in Q° that satisfies
the boundary conditions on the “Q%part” of 92, and in addition, satisfies boundary

conditions of the form p
U
+— + ATy =0 118
5 TATU=0, (118)

on the two “vertical” boundaries I'* = QN {z = a®*}. We characterized the operator A*
to construct the transparent boundary conditions in (118). The details are given in the
paper listed at the beginning of this section.
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