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Abstract

Future service robots will need the ability to work in unpredicted human environments.

These robots should be able to learn autonomously without constant supervision in order

to adapt to the environment, different users, and changing circumstances. Exploration of

unstructured environments requires continuous detection of new objects and learning about

them, ideally like a child, through curiosity-driven interactive exploration.

Our research work is aimed to design a developmental approach that enables a hu-

manoid robot to perceive its close environment. We take inspiration from human perception

in terms of its functionalities and from infant development in terms of the way of learning,

and we propose an approach that enables a humanoid robot to explore its environment pro-

gressively, like a child through physical actions and social interaction. Following principles

of developmental robotics, we focus on incremental, continuous, and autonomous learning

that does not require a prior knowledge about the environment or the robot.

The perceptual system starts from segmentation of the visual space into proto-objects as

units of attention. The appearance of each proto-object is characterized by low-level features

based on color and texture that are considered as complementary features. These low-level

features are integrated into more complex features and then, into a multi-view model that

is learned incrementally and associated with one physical entity. Entities are then classi-

fied into three categories : parts of the robot’s body, human parts, and manipulable objects.

The categorization approach is based on mutual information between the sensory data and

proprioception, and also on motion behavior of physical entities. Once the robot is able to

categorize entities, it focuses on interactive object exploration. During interaction, the in-

formation acquired about an object’s appearance is integrated into its model. Thus, inter-

active learning enhances the knowledge about objects appearances and improves the infor-

mativeness of objects models. The implemented active perceptual system is evaluated on an

iCub humanoid robot, learning 20 objects through interaction with a human partner and the

robot’s own actions. Our system is able to recognize objects with 88.5% success and to create

coherent representation models that are further improved by interactive learning.
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Résumé

Les robots de service ou d’assistance doivent évoluer dans un environnent humain en

constant changement, souvent imprévisible. Ils doivent donc être capables de s’adapter à

ces changements, idéalement de manière autonome, afin de ne pas dépendre de la présence

constante d’une supervision. Une telle adaptation en environnements non structurés néces-

site notamment une détection et un apprentissage continu des nouveaux objets présents,

que l’on peut imaginer inspirés des enfants, basés sur l’interaction avec leur parents et la

manipulation motivée par la curiosité.

Notre travail vise donc à concevoir une approche développementale permettant à un

robot humanoïde de percevoir son environnement. Nous nous inspirons à la fois de la

perception humaine en termes de fonctionnalités et du développements cognitifs observé

chez les infants. Nous proposons une approche qui permet à un robot humanoïde d’ex-

plorer son environnement de manière progressive, comme un enfant, grâce à des interac-

tions physiques et sociales. Suivant les principes de la robotique développementale, nous

nous concentrons sur l’apprentissage progressif, continu et autonome qui ne nécessite pas

de connaissances a priori des objets.

Notre système de perception débute par la segmentation de l’espace visuel en proto-

objets, qui serviront d’unités d’attention. Chaque proto-objet est représenté par des carac-

téristiques bas-niveaux (la couleur et la texture) et sont eux-mêmes intégrés au sein de car-

actéristiques de plus haut niveau pour ensuite former un modèle multi-vues. Cet apprentis-

sage s’effectue de manière incrémentale et chaque proto-objet est associé à une ou plusieurs

entités physiques distinctes. Les entités physiques sont ensuite classés en trois catégories :

parties du robot, parties des humains et objets. La caractérisation est basée sur l’analyse

de mouvements des entités physiques provenant de la vision ainsi que sur l’information

mutuelle entre la vison et proprioception. Une fois que le robot est capable de catégoriser les

entités, il se concentre sur l’interaction active avec les objets permettant ainsi d’acquérir de

nouvelles informations sur leur apparence qui sont intégrés dans leurs modèles de représen-

tation. Ainsi, l’interaction améliore les connaissances sur les objets et augmente la quantité
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d’information dans leurs modèles.

Notre système de perception actif est évalué avec le robot humanoïde iCub en utilisant

une base expérimentale de 20 objets. Le robot apprend par interaction avec un partenaire

humain ainsi que par ses propres actions sur les objets. Notre système est capable de créer

de manière non supervisée des modèles cohérents des différentes entités et d’améliorer les

modèles des objets par apprentissage interactif et au final de reconnaître des objets avec

88.5% de réussite.
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CHAPITRE 1

Introduction

Nowadays, robots are coming into everyday life, not only as factory robots but also as

service robots helping people to increase the performance of their work and improve the

quality of life. There is no consensus on the definition of a service robot, although they are

considered to be semi- or fully autonomous and to perform services useful to well-being of

humans. Service robots assist humans, doing a job that is difficult, dull, or repetitive. We

imagine these robots working at homes, hospitals, hotels or other service sectors. From the

robots working in hospitals and helping elderly or ill people, we expect to fulfill needs of

people not just as a mechanical device but also as an attentive and mindful friend. From

domestic robots, we expect to perform household chores, like cleaning, cooking or enter-

tainment (Fig.1.1) and it would be advantageous, if these personal robots could adapt to

different environments, to different users, and their needs.

FIGURE 1.1 – Examples of personal robots : Anybots, Motoman, Meka, and Toyota Kaikan

If factory robots work in well-structured environments and perform precise tasks prede-

fined by sequences of processing steps, there is a big difference in the capabilities required

from service robots working in human environments that are rarely structured and mostly

unpredictable. The understanding of a human environment requires a certain level of intel-

ligence in order to accomplish various non-trivial tasks. We expect a service robot to learn

efficiently about its environment in order to understand its meaningful items, main events,
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and their actors. A service robot should not depend on constant human supervision, but

rather learn autonomously by continuously acquiring new data and synthesizing them with

a prior experience into coherent high-level knowledge based on inferences and own deci-

sions. Moreover, it is advantageous if a robot can adapt not only to its environments but

also to different users, their desires, behaviors, and characters ; this capabilities would allow

robots to turn from purely mechanical devices into intelligent friends of humans.

We consider, that human development is the best example of learning about the en-

vironment. Starting from acquisition of basic capabilities, infants progressively learn com-

plex skills and demonstrate understanding of the surrounding world and first intelligence

at young ages. Infants learn about the surrounding world through physical contact with

the environment and social communication. Infants’ experimental behavior, invention and

enthusiasm allow them to acquire knowledge that can be unknown to their teachers. The

originality of infant development has inspired a variety of research studies on autonomous

robots learning. The characteristics of infants learning process, such as being continuous,

incremental, and using multimodal exploration of the world, are reflected in different ap-

proaches investigating developmental mechanisms, architectures, and constraints. In con-

trast to traditional robotics, developmental approaches does not focus on a fast achievement

of predefined goals, but rather on open-ended learning process, where the performance im-

proves over time, the learning process is flexible and allows the robot to adapt to changing

circumstances. From our point of view, taking inspiration from infant perceptual develop-

ment, the way of acquisition of knowledge and skills, as well as following principles of

developmental robotics, is the most appropriate way to learn about the environment.

Perception and learning object

Personal robots working in a real-world human environment should be able to perceive

the space in order to identify meaningful elements of the surrounding environment and

its actors, like objects and humans. Real-world environments are often unstructured and

unpredictable, so, they require the visual segmentation into meaningful entities that can

be recognized or learned over time. In order to perceive the space efficiently, like humans

do while perceiving the world as organized 3D structures, vision and depth are efficient

perceptual modalities. A fast and easy acquisition of 3D data can be achieved using a RGB-

D sensor, that moreover, provides data with a high precision compared to stereo vision.

Numerical processing of visual data is investigated in the computer vision field aimed at

reproducing human vision capabilities in understanding images. Traditional computer vi-

sion approaches achieve reasonable performances for detecting specific objects of particular

classes, like human faces, skin, simple colored or textured objects. Most of these approaches

are based on a prior knowledge including algorithm choices or labeled samples, which corre-

spond to a visual input with its interpretation. Traditional computer vision approaches usu-
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ally require carefully created image databases, where each object is associated with images

or extracted visual characteristics and their labels. Other studies include an object learning

phase, for example, a turntable is used to rotate an object and to learn its appearance from

different viewing angles. Prior knowledge and supervision facilitate object detection, but

they are not easily applicable for autonomous robots working in unstructured real-world

environments. Traditional computer vision approaches limit robots’ adaptabilities, since it is

difficult to extend these approaches for non specialists or new objects. However, continuous

detection and learning new objects without constant human supervision are crucial capabil-

ities for service robots. These robots should recognize objects independently of categories,

properties, or viewing conditions. Therefore, object recognition should be based on general

high-level representations and learning methods that are adaptable to the environment.

Approach

We work on a perceptual approach that fulfills the nowadays requirements in the robotics

domain and allows a robot to learn about its environment continuously and autonomously.

We design our perceptual system taking inspiration from infant development and following

principles of developmental robotics.

Our approach requires limited prior knowledge, it needs neither a predefined environ-

ment, nor predefined objects. We use none of image databases and none of specified detec-

tors, such as markers or human face/skin/skeleton detectors. In our approach, the robot

incrementally explores its close environment through autonomous segmentation of the vi-

sual space into physical entities and learning them by continuously processing the visual

data and synthesizing the gathered information into high-level representations of physical

entities.

All information about the entities appearances and behavior is acquired in interactive

scenarios within the following contexts (Fig.1.2) :

– learning through observation, while a human partner interacts with the robot and

demonstrates different objects,

– learning through interaction, while the robot is free to move its hands, torso, and head,

to perform object-oriented interactive actions, and to explore objects manually.

The perception of the environment starts with the robot’s attention based on saliency

of the visual space, like in human vision. In our approach, the robot’s attention is attracted

mostly by motion. The visual space is segmented into proto-objects as units of attention de-

fined from coherent motion, appearance, and continuous 3D shape. The proto-object concept

is inspired from human vision, where a proto-object is considered as a unit of visual infor-

mation with closely localized features acquired during the pre-attentive stage and integrated

into a coherent object notion during the focused attention.

In our algorithm, the appearance of each proto-object is incrementally analyzed in order
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Learning through observation Learning through interaction

FIGURE 1.2 – Main contexts of our experiments

to learn or recognize it as a physical entity. The proto-object’s appearance is characterized

by complementary low-level features encoding color and texture. The low-level features are

grouped into mid-features integrating local geometry. The mid-features are used to encode a

view that characterizes an entity’s appearance from one perspective. The overall appearance

of the entity is represented as a multi-view model characterizing its different perspectives.

The entity’s representation model is learned while a corresponding object is manipulated

and tracked in the visual space. The identification of an entity is based either on tracking

across images, or on appearance-based recognition with a Bayesian filter.

Since our work is based on interaction with objects, objects often move together with a

human or a robot hand, and a grasped object composes a single proto-object with the hand.

In this case, in order to achieve robust recognition during manipulation, our perceptual sys-

tem recognizes each proto-object either as a single entity, or two connected entities.

Each physical entity is then classified into one of the following categories : a part of the

robot’s body, a human part or a manipulable object. The categorization approach is inde-

pendent on the robot’s appearance. The robot self-identification is achieved during motors

activity, while both sensory and proprioceptive data are acquired and used for estimation of

mutual information. The entities with high mutual information are identified as the robot’s

parts. Among the remaining entities, object are considered to be mostly static and indepen-

dent on the robot’s motors ; the object category is identified based on the statistics on entities

motion simultaneously with human and robot’s parts.

Once the robot is able to identify its own body and to categorize other entities, it focuses

on interactive exploration of objects. The robot performs simple interactive actions and com-

plex manipulations aimed to acquire maximum information about an object’s appearance.

The ability to categorize entities is used to distinguish between a view corresponding to the

object and a view corresponding to the hand manipulating it. Thus, during the interaction
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with the object, its representation model is updated with recognized non-robot views and

newly created views.

Overview of Contributions

Our main contribution is the integration of perception, self- and others- identification,

and interactive exploration of the environment into an active perceptual system. The follow-

ing robot’s capabilities have been implemented :

– a perceptual system that enables to detect physical entities based on visual attention

and to learn entities appearances incrementally by organizing the gathered knowledge

into multi-view representation models,

– active categorization that classifies all detected entities into parts of the robot’s body,

parts of human partners, and manipulable objects,

– active object exploration accomplished through interactive actions and manipulations

aimed to acquire maximum information about an overall appearance of the object and

to improve its multi-view representation model acquired through observation.

The important aspect of our approach is incremental, continuous, and autonomous learn-

ing by following principles of developmental robotics, without a need of a prior knowledge

about the environment, its objects, or the robot. The implemented system is inspired by hu-

man perception and development, and allows the robot to learn about its close environment,

like a child, through exploratory actions and social interaction.
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Thesis Organization

This thesis presents the development of a perceptual system for a humanoid robot learn-

ing about its close environment. Looking for the appropriate way to learn continuously and

autonomously, we take inspiration from infant development and follow principles of de-

velopmental robotics. In Chapter 2, we give an overview of functionalities of the human

perceptual system, and we describe the main stages of its development. We are interested

in infant perceptual development, the way of learning about the world, and its reflection in

developmental robotics. We give a short description of general concepts of developmental

robotics and its application to learning objects.

Our learning approach for a robot exploring its environment is presented in the two parts

of this thesis : learning through observation and learning through interaction. Each part

has a similar structure with an overview of the state of art, the description of the proposed

approach and its implementation, and the experimental evaluation.

Part I of this thesis is devoted to learning about the robot’s environment based on pure

observation. In Chapter 3, we review existing computer vision algorithms aimed at detect-

ing and learning objects. In Chapter 4, we present the proposed perceptual system and its

implementation including detection and segmentation of proto-objects, the choice of visual

features, the entity representation model, and the learning method. The experimental evalu-

ation of the implemented system is reported in Chapter 5, where we describe the organiza-

tion of experiments, the methodology of evaluation, and the achieved results.

Part II covers the active exploration of the environment, when the robot learns through

its interactive actions and observation of their effects. In Chapter 6, we review existing ap-

proaches on interactive perception focusing on the robot’s self-identification and the use of

interaction for learning objects. In Chapter 7, we present the proposed active perceptual sys-

tem and its implementation. We describe the categorization of physical entities into parts of

the robot’s body, parts of a human partner, and manipulable objects, and then the integra-

tion of categorization together with the perceptual approach proposed in Part I into interac-

tive object exploration method. The experimental evaluation of the implemented system is

reported in Chapter 8, where we report the organization of experiments, the evaluation of

categorization and interactive object learning. Finally, the results obtained during interactive

learning are compared to the results obtained during learning through observation.

Last Chapter 9 is devoted to conclusions and discussions about the importance of our

work, our achievements, and limitations of our approach that can be improved in future

work.
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CHAPITRE 2

Developmental approach

Humans provide a very good source of inspiration for the development of a system capa-

ble of continuous and efficient learning, since they learn progressively, and already from an

early age in life demonstrate an understanding of the surrounding environment, occurring

events, as well as involved actors.

Human vision displays a fast understanding of the scene and very strong ability to rec-

ognize and differentiate objects. However, vision and signal processing performed by the

human brain is quite complex, so we are not going to study and model them precisely, but

rather take inspiration from their main functionalities. In Section 2.1 we give an overview of

visual attention, perception of features, and their integration into high-level semantic rep-

resentations, such as proto-objects which are later recognized as objects. We focus on these

functionalities, since they are the ones we are going to adapt into our perceptual approach

designed for a humanoid robot.

In order to understand how the notion of an object appears within perception, in Section

2.2 we study the different stages of infant perceptual development. We describe the acqui-

sition of abilities used to perceive objects’ properties and to segregate objects in a scene. We

also discuss the infant’s exploration of own body and the exploration of the surrounding

world, including its objects, through physical and social interaction. Since infants develop-

ment is used as an inspiration for continuous and incremental learning within the devel-

opmental robotics field, in Section 2.3 we describe general principles of developmental ap-

proaches and their application to object learning. The overall architecture of our system and

its relation to human vision, infants development and developmental robotics are described

in Section 2.4.

2.1 Human perception

Human eyes are well tuned sensor elements that allow one to perceive the surrounded

world, understand the environment, gain knowledge, and to communicate thoughts
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through the visual expression [Paternoster, 2007]. The human vision system is a com-

plex mechanism with a complex structure and multiple layers of neural cells that pro-

cesses the acquired light and leads to identification of elements of the environment build-

ing up perception of the surrounding world. Human perception results in an image that

humans have in mind, but this image is far from actual representation of the observed

environment [Goldstein, 2010]. Due to the limited resolution of eye receptors, most of

seeing information is obtained not directly from the eyes, but through the processing

of that acquired data along the visual pathways among several cortex areas shown in

Fig.2.1 [Paternoster, 2007]. We give a brief description of the low-level processing that hap-

pens in human eyes, and focus on the higher-level processing that is important for percep-

tion of the environment.

FIGURE 2.1 – The areas of a human brain that participate in perception [Vyshedskiy, 2009]

2.1.1 Signal processing

The physical nature of perception includes three main components interacting between

each other : a light source, a surface, and a visual sensor. The light from the source re-

flects off the surface and incidents upon the visual sensor ; the light reflected off the sur-

face and acquired by the sensor integrates properties of both the surface and the light

source [Goldstein, 2010]. In human vision, the eyes play a role of a visual sensor, while in

robot vision, the visual sensor is an integrated or external camera.

The light entering a human eye is processed by the sensitive neurons called photorecep-

tors [Goldstein, 2010]. The photoreceptors that support daytime vision are responsible for

perception of luminance, contrast, and color, and they come in three spectral classes :

– cones mostly sensitive to nearly "red" colors,
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– cones mostly sensitive to nearly "green" colors,

– cones mostly sensitive to nearly "blue-violet" colors.

The information captured by photoreceptors is processed through multiple layers of

neuron cells. Most of these cells withdraw signals from several receptors and general-

ize them into a single output. They can have an excitatory response to some inputs and

an inhibitory response to others. For example, color opponent cells analyze the signals

from two types of photoreceptors and have excitatory response to wavelengths in one

part of the spectrum and an inhibitory response in other part of the spectrum (like red-

green opponent cells) [Goldstein, 2010]. The functionalities of these neuron cells process-

ing opponent colors, as well as cells processing oriented gradients are integrated in com-

puter vision algorithms aimed at detecting objects in biologically motivated architectures,

like [Siagian and Itti, 2007], [Orabona et al., 2005] and [Walther and Koch, 2006] described in

Section 4.1. In the primary visual cortex, among neurons that respond to oriented edges,

there are simple cells that are sensitive to different frequencies and orientations, and com-

plex cells that have a degree of spatial invariance [Hérault, 2010]. It is interesting to note that

both simple and complex cell behavior can be learned by Deep Learning approaches that

are able to capture invariance and discover non-local structure in data distribution, while

learning hierarchies of visual features in computer vision algorithms [Lee et al., 2009].

A great part of information processing leading to perception of objects is accomplished

by the primary visual cortex (V1) that transfers information to two primary visual path-

ways [Goldstein, 2010] :

– the dorsal stream called "Where Pathway", goes through V2 and the middle temporal

area (MT) and is associated with motion and object locations, responsible for sensori-

motor processing,

– the ventral stream called "What Pathway", goes through V2 and V4) and is associated

with a shape recognition, object representation and long-term memory responsible for

cognitive processing.

2.1.2 Visual attention

The most photoreceptors that are sensitive to the daylight are localized in a tiny part of a

central retina called fovea [Goldstein, 2010]. Thus, during perception of a scene, only a small

area of the scene around the focus can be perceived with a high resolution. The perception

of a whole scene is possible due to eye movements called saccades [Hérault, 2010]. Saccades

shift the gaze that allows to trace a scene and acquire its visual details. The selective visual

attention directs a human gaze towards regions of interest in the visual field. There are two

different aspects of human attention [Goldstein, 2010] :

– bottom-up processing also known as a stimulus-driven attention,

– top-down processing also known as a goal-driven attention.
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2.1.2.1 Bottom-up visual attention

During bottom-up processing, attention is driven by characteristics of the scene,

like color, contrast, orientation, etc. Among other factors, motion also attracts hu-

man attention in a pre-conscious way [Goldstein, 2010]. The visual property that turns

some areas of a scene to stand out from their neighborhood and to attract atten-

tion, is called visual saliency [Itti and Koch, 2001]. Visual saliency and bottom-up at-

tention mechanism inspire modeling of attention in computer vision (for example,

saliency concept [Itti and Koch, 2001]) that are further used for object detection, like

in [Siagian and Itti, 2007] and [Walther and Koch, 2006].

2.1.2.2 Gist of a scene and top-down attention

Selective visual attention, as well as a perception of "gist", provide people with an ability

to perceive the surrounding environment efficiently, even in case of limited cognitive re-

sources [Itti and Koch, 2001], [Fei-Fei et al., 2007]. The term gist is defined as the amount of

information about the scene gathered by a human within a single glance that lasts about 200

ms [Oliva and Torralba, 2006]. The captured gist provides a brief understanding of a scene

and its abstract meaning ; for example, a type of a scene [Rensink, 2000]. Fast gist percep-

tion is possible due to rapid acquisition of global image features that can be associated with

scenes types. Among global image features, the degree of naturalness, roughness, expansion,

and color are reported in [Oliva and Torralba, 2006].

Selective visual attention is influenced by the top-down attention mechanism af-

fected by the observer’s task, expectations, knowledge about the scene, past experience,

etc. [Goldstein, 2010]. Top-down attention is important for high-level behavior, but we will

not use it in our system.

2.1.3 Interpretation of sensory information into objects and proto-objects as
high-level semantic representations

The efficient perception of the environment is possible due to the organization of the

perceptual process, when at first, humans perceive an overall gist with a general de-

scription of a scene, and then the selective visual attention guides the gaze to visual de-

tails [Goldstein, 2010]. All information acquired by processing a sensory input by eyes

and the visual cortex is integrated into a coherent object identity over the following

stages [Treisman and Gormican, 1988] :

– during the pre-attentive stage, low-level processing including perception of general

visual features, like color and orientation, is performed in parallel across the visual

field,
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– during focused attention, humans perceive details of the scene, and isolated visual

features are combined into a coherent object identity.

According to the theory of feature integration shown in Fig.2.2, the attention links to-

gether visual features acquired at a close location into an integrated meaning of a whole that

combines both "what" and "where" streams of the visual cortex.

FIGURE 2.2 – A theory of integrating features [Treisman and Gormican, 1988]

According to [Rensink, 2000], among the visual features acquired during the pre-

attentive stage, features at a close location build up a local description of a scene that deter-

mines a proto-object. The term proto-object is defined as "a volatile unit of visual information

that can be bound into a coherent and stable object when accessed by focused attention". A

proto-object contains more information than a single visual feature, but it is not yet a phys-

ical object. As an example, a proto-object can be a visual area with certain characteristics at

one location in the visual space, but this area is not yet recognized as an object.

The temporal coherence of proto-objects is limited, since they are constantly regener-

ated, when new stimuli appear at the same location on a human eye retina. During fo-

cused attention, the information about all proto-objects from the visual scene is analyzed

and used for high-level decisions about coherent identities of possible objects, as shown in

Fig.2.3. After releasing the focused attention, the information processing is performed again

on the level of proto-objects [Rensink, 2000]. The proto-object concept is used in some com-
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puter vision studies aimed at detecting and learning objects, like [Walther and Koch, 2006],

[Orabona et al., 2005], [Zhou et al., 2011], and [Natale et al., 2005].

FIGURE 2.3 – The coherence field including proto-objects and links between them and a
nexus collecting low-level information for higher-level decisions [Rensink, 2000]

The human perceptual process is already complex, but it is just a part of cognition,

with its great ability to learn incrementally and to use the acquired experience continuously

throughout life [Mohan et al., 2013]. The acquisition of cognitive skills over different stages

of infant development is described in the following section.

2.2 Infants perceptual development

As the most appropriate way of learning about the environment, we consider human

development. Humans show an impressive ability of cumulative lifelong and open-ended

learning. From birth, infants continuously develop over time and experience by acquir-

ing various skills, gathering knowledge, and progressively improving them [Haith, 1968].

At early age of life, infants begin to show first signs of their intelligence, the first under-

standing of the surrounding environment, its own body, and its impact to the physical

world [Smith and Gasser, 2005]. The stages of the development of infant intelligence, incre-

mental acquisition, use, and synthesis of knowledge are analyzed in the Piaget’s theory of

cognitive development [Piaget, 1999]. We focus on specific infant capabilities and give a brief

overview of infant perceptual development, including the perception of objects and their

properties, sensorimotor development with exploration of own body and exploration of the

world through physical actions and social interaction (Fig.2.4).
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a) b) c) d)

FIGURE 2.4 – Infant development : a) perception of objects, b) own body control, c) learning
about objects through physical actions, d) learning through social interaction

2.2.1 Learning about visual properties

Prior to individuation of objects, infants acquire basic skills of perceiving object proper-

ties, such as color, shape, size, motion, etc. The perception of these properties and the ability

to make inferences about changes in these properties are needed to understand a general

and more complex concept of an object’s identity [Cohen and Cashon, 2003].

Some perceptual skills infants have from their birth ; the acquisition of other skills

is investigated by various experimental studies based on demonstration of a spe-

cific stimulus and analyzing the following reaction of children. The ability of an in-

fant to learn and recognize a stimulus is often evaluated based on the habituation

paradigm, like it is done in the research studies [Bornstein et al., 1976], [Slater et al., 1991],

and [Oakes and Baumgartner, 2012]. The recognition of a stimulus is determined based on

the duration of an infant’s gazing, and the inference about a novel stimulus is made based on

dishabituation, when a novel stimulus is gazed significantly longer than a known stimulus.

Shape understanding is studied in terms of infants’ reaction to the different spatial orga-

nization of object features. The early evidences of the shape constancy and size constancy are

found within the perception of newborns. If the dishabituation to different line orientations

(see Fig.2.5) is found among newborns, the dishabituation to different angle amplitudes is

found among infants at the age of two months [Slater et al., 1991].

At the same age about two-three months, infants show the ability to discriminate be-

tween some colors produced by different wavelengths [Kellman and Arterberry, 2000]. At

the age of four months infants show the ability to organize different colors into color cate-

gories that are similar to color categories perceived by adults [Bornstein et al., 1976].

2.2.2 Learning about objects

The visual saliency plays an important role in infants’ understanding of ob-

jects. As one factor of saliency, motion attracts infants attention from the age of

two months [Volkmann and Dobson, 1976], and it helps to understand the object

unity [Johnson and Náñez Sr, 1995]. Under the object unity, we consider the perception of
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a) b) c)

FIGURE 2.5 – Form perception at birth : a)first familiarization trial with six stimuli with the
same angle but different orientations, b)second familiarization trial with six stimuli with the
same angle but different orientations, c)two test trials, where A and B are pairs of stimuli of
same orientation but different angles [Slater et al., 1991]

object parts as integrated into a single whole. Infants’ understanding of object unity is based

on the motion behavior of an object’s parts, and the simultaneously moving parts are per-

ceived as an integral object [Kellman and Arterberry, 2000].

Object individuation is the process of determining how many distinct objects are in-

volved in a given scene or an event [Van de Walle et al., 2000]. Studies on object individua-

tion usually concern the infant’s ability to segregate objects as isolated units and to discrim-

inate different objects. Under the object segregation, we consider detection of boundaries

between adjacent objects. There are several opinions about the way in which infants acquire

the ability to segregate objects. From one point of view, this ability is trained up during

an infant’s development. Early experiments with infants at the age of three months show,

that they interpret all touching surfaces as a single object [Kestenbaum et al., 1987] ; in the

following development, infants show to parse surfaces into units based on boundaries and

visual characteristics of surfaces [Needham and Baillargeon, 1998]. There is another point of

view, which asserts that the ability to segregate objects comes from a prior experience, like

an exposure of an infant to so-called "key events", including perception of isolated objects

or relative object motion. In experiments performed with infants at the age of 4.5 months, a

prior experience takes a form of a test display showing one object as isolated, and the use of

this prior experience for the object segregation task is analyzed based on the duration of the

infant’s gazing. The experiments have shown, that motion of several objects as a single unit

was unexpected for infants, and that separate motion of objects was expected. This results

in the inference that infants use a prior experience for object segregation [Baillargeon, 1999].

2.2.3 Sensorimotor development

Infant sensorimotor development starts from birth and takes about two years based on

the Piaget’s theory of cognitive development [Piaget, 1999]. The sensorimotor stage can be
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divided into the following sub-stages characterizing the development of different skills :

– reflexes (0-1 month), when the understanding of the environment is limited by inborn

reflexes,

– primary circular reactions (1-4 months) including continuously repeated actions pro-

duced by accident,

– secondary circular reactions (4-8 months) including repeated object-oriented actions

that are aimed to initiate a response in the environment,

– coordination of reactions (8-12 months) including intentional actions and early goal

orientation, like planning and combining actions in order to achieve a desired effect,

– tertiary circular reactions (12-18 months) including experimentation with new behav-

ior, when a child discovers different ways of achieving goals,

– early representational thought (18-24 months), when a child begins to develop primi-

tive symbols representing objects or events and starts to understand the world through

mental representations.

We are mostly interested in the infant capacities that appear before 8-12 months, and we

concentrate on the perception part leaving out high-level planning capabilities. However,

we also participate in experiments on action selection using curiosity that is related to coor-

dination of reactions.

2.2.4 Infant self-recognition and control

Self-awareness of body, the ability to localize oneself with respect to the surrounding

physical world and to control own movements are important for the understanding of the

environment and for interacting with it. The ability to sense and control one’s body is grad-

ually acquired by infants during several first months of their life, over several stages of the

Piaget’s theory [Piaget, 1999]. From one point of view, the actions of newborns are accident

and self-centered [Mahler, 2000], that fits with the infant’s inability to differentiate them-

selves within the environment due to the lack of knowledge, although, at early stages of their

development, infants already show a precursor of self-understanding in terms of sensorimo-

tor capabilities and the ability to impact to the environment [Hart and Scassellati, 2010].

The model of an infant’s body and its relation with the environment comes from coordi-

nation between the senses determined as the "ecological self" [Rochat and Rochat, 2009]. The

existence of this inter-sensory model at birth has been proven by experiments. For example,

infants show to open their mouth while receiving their fist, rather than placing their fist in

the mouth occasionally. According to the Piaget’s primary circular reactions, infants produce

simple accidental movements and then repeat them for a pleasure, that eventually develops

an early sensation of their body.

In the following stage of development including the Piaget’s secondary circular reactions,

infants begin interaction with the environment through simple repetitive object-oriented ac-
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tions. The infant’s knowledge about his own capability to create an affect upon the envi-

ronment is determined as "self-efficacy" including the relation between his own actions and

body, and objects in the environment [Rochat and Rochat, 2009]. Experiments show, that in-

fants learn a link between their own actions and the consequences of those actions, and they

understand it from few months into their life. Over a course of time, while developing the

sense of self, infants acquire new capabilities through actions, continuous observation of

their own actions, and their related impacts to the environment.

As a criteria for infants’ self-recognition, several characteristic behaviors emerge within

different stages of their development, for example observation of own movements in a mir-

ror, or the ability to detect a red spot on their own noise [Bertenthal and Fischer, 1978].

2.2.5 Learning through interaction

Perception is only one of the sources by which information is gathered about the

surrounding world. The efficiency of infant learning grows significantly through mul-

timodal exploration, when different kinds of sensations, like visual, haptic, sound, etc,

are available at the same time [Rohlfing et al., 2006]. Infants are born as active explor-

ers of the environment, they "combine perception and action oriented to sounds they

hear" [Rochat and Rochat, 2009]. At early stages of development, infants acquire basic

knowledge about the surrounding world through physical interaction with objects, but at

the same time and especially at later stages, infants learn in a social world through social

interaction and guidance of adults [Asada et al., 2009].

2.2.5.1 Physical interaction

Babies develop through "interactions and experiences in the physical world", and their

intelligence come out within the interaction with an environment and sensorimotor activ-

ity [Smith and Gasser, 2005]. If at the age of two months, an infant’s exploration of an object

is limited to bringing the object into the field of view and placing it into his mouths, later,

infants start to explore objects manually [Rochat and Rochat, 2009]. The infant’s ability to

reach an objects that he see is acquired at the age of four months ; infants start to use their

hands to support an object, while exploring it visually [Rochat and Rochat, 2009]. Among

manual actions, infants show to transfer an object from one hand to another or to hold an

object by one hand and to finger it with another hand. The fingering action is performed un-

der visual control, and it is related to the development of coordination between visual and

manual actions.

Infants continue further exploration of the world through self-initiated actions directed

to elements of the environment and through observation of their own actions and the ef-

fects of those actions. The experience of action allows an infant to discover affordances
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or the variety of actions that can be performed with a given object in the given environ-

ment [Gibson, 1988].

The process of infant development results in changing the visual interpretation and their

sensitivity to different visual cues [Fitzpatrick et al., 2008]. The development of manipula-

tion skills results in changing saliency of object features [Oakes and Baumgartner, 2012] ;

for example, the experience of grasping a mug would result in increasing saliency of

a handle. While training manipulation skills, infants learn to control their attention and

to estimate dimensions of objects, including not only manipulating objects, but also ob-

jects that are not reachable. The interaction with one object helps them to make infer-

ences about other objects, that finally, allows infants "to learn how to learn about ob-

jects" [Oakes and Baumgartner, 2012].

Knowledge explored about an object depends on the amount and the type of man-

ual exploration performed by a child [Oakes and Baumgartner, 2012]. The amount of phys-

ical contact with objects is related to the infants’ sensitivity to objects’ appearance fea-

tures, and infants who are more sophisticated in holding objects, are more sophisticated

in learning object properties [Oakes and Baumgartner, 2012]. The variety of exploratory

hand movements performed during learning about different object properties are studied

in [Lederman and Klatzky, 1987], and it is reported that learning about each object property

can be associated with a certain exploratory procedure.

2.2.5.2 Social interaction

Infants develop in a social world where social partners often guide them and help them

to learn [Smith and Gasser, 2005]. The behavior of an adult interacting with an infant is dif-

ferent from the behavior of an adult interacting with another adult. Infant-directed speech

usually has a high pitch and simple grammar. Adults provide a lot of supervision during

infants development, for example, they repetitively name objects and properties. However,

this supervision is not that direct and detailed compared to supervision used in machine

learning approaches.

During their interaction with infants, the movements of adults have some motionese that

attracts infants’ attention and helps to identify the structure of actions and meaningful units.

Comparing an infant-directed action (IDA) and an adult-directed action (ADA), the actions

of adults change over a variety of characteristics, like proximity, interactiveness, enthusiasm,

range of motion, repetition, and simplification [Brand et al., 2002].

2.3 Developmental robotics

Future robot will need to learn autonomously by continuously gathering new informa-

tion and synthesizing it with prior experience into coherent knowledge. This continuous
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lifelong and open-ended learning, acquisition of knowledge and development of skills is

investigated in the field of developmental robotics [Weng et al., 2001].

Traditional research limits robots capabilities in unknown uncontrolled environments.

In contrast to traditional robotics, developmental approaches take inspiration from humans

that are "autonomous throughout its lifelong mental development" [Weng et al., 2001]. De-

velopmental approaches are focused on the learning process, but not on the final perfor-

mance, however, the final performance can be continuously improved during learning.

Learning is expected to be incremental, the development starts from acquisition of basic ca-

pabilities and progress continuously by acquiring more complex capabilities, like in human

children, through exploration, interaction with the environment, and social interaction.

The developmental approaches take inspiration from human development, formalize its

theories, and adapt them to robots. The learning approaches inspired from infant develop-

ment require understanding of how infants learn about the world, how infants acquire and

synthesize their information into coherent knowledge, and how infants integrate their expe-

rience.

2.3.1 General approach

The "flexible and inventive intelligence" can be developed by learning, like a child, and

following the six principles from developmental psychology [Smith and Gasser, 2005] :

– multimodal learning, since babies learn most efficiently, when different kinds of sen-

sory data, like vision, touch, and sound are available at the same time,

– incremental development, since children acquire intelligence over time and through-

out their development, while choosing at each stage "what to learn and in which or-

der",

– learning through physical interaction, since babies develop through "interactions and

experiences in the physical world",

– exploratory behavior, since babies explore the environment not in a goal-oriented way,

but rather by playing and discovering new problems and new solutions,

– social interaction, since children develop in a society, where parents often help to learn

about the world,

– symbolic communicative system, since babies use a language grounded on perception,

sensorimotor and social processes.

Taking inspiration from children in choosing constraints and a priori for learning, like

what to learn and in which order, autonomous learning in robots can be based on ar-

tificial curiosity [Oudeyer et al., 2007]. In psychology, curiosity is defined as spontaneous

attraction toward different activities for pleasure or "a need, thirst or desire for knowl-

edge" [Edelman, 1997], and curiosity is considered as "a motivational prerequisite for ex-

ploratory behavior" [Berlyne, 1960]. In robotics, the curiosity-driven exploration is used to
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improve the learning performance with a certain notion of interest [Oudeyer et al., 2007].

The progressive development based on exploratory behavior and continuous interaction

with the physical world is a promising way to design autonomous robots actively learning

about its environment.

2.3.2 Application to object learning

In robotics, various research studies on autonomous object learning are inspired by dif-

ferent stages of infants cognitive development.

In computer vision, object perception often starts from visual features that are grouped

together into objects based on common characteristics or motion, that is similar to object

perception in infants at early ages, when they individuate objects based on relative motion.

Some computer vision approaches aimed at segmenting objects take inspiration from

object segregation performed by infants. For example, object segmentation based on key-

events, as the robot’s prior experience, is described in [Fitzpatrick et al., 2008]. Key-event can

be determined in different ways. Key-events can be based on object observation at a close

scale [Natale et al., 2005], that is similar to infants using previously perceived isolated objects

as key-events for future objects segregation. Another example of a key-event is a hitting an

object by a robot hand, that is similar to an infant using previously perceived relative object

motion as key-events for future objects segregation [Fitzpatrick and Metta, 2003].

Interactive object exploration performed by robots is often inspired by infants learning

through continuous interaction with the physical world. The manual object exploration, like

children do, is widely used in robotics society to learn about objects, their appearance, and

other properties [Modayil and Kuipers, 2008], [Kraft et al., 2010], and [Rudinac et al., 2012].

Furthermore, in some research studies robots learn about objects using artificial curiosity-

driven behavior [Chandrashekhariah et al., 2013] and [Nguyen et al., 2013], that is similar to

intrinsic motivation of infants continuously looking for new information. Sometimes, this

curiosity-driven behavior is used in combination with social guidance [Nguyen et al., 2013].

Interactive exploration of the environment enables a robot to learn not only about objects,

but also about its own body. Developmental approaches aimed at learning about the robot’s

body, like [Natale et al., 2005], [Saegusa et al., 2012], take inspiration from infants sensori-

motor development and self-recognition. Some studies go further to learn actions and affor-

dances (like [Kraft et al., 2010] and [Natale et al., 2005]) through interaction with objects in

the surrounding environment, like infants do.

2.4 Overall architecture of our work

Taking inspiration from the work presented in the previous sections, we present a de-

velopmental approach that enables a humanoid robot to learn about its close environment
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by detecting and learning its meaningful elements, that we call physical entities. A physical

entity can be an object, a part of the robot’s body or a human part.

2.4.1 General principles

The perceptual system of the robot is designed by analogy with the human vision in

terms of selective visual attention and integration of visual features into high-level visual

representations building the concept of an object or in our case, a physical entity. Au-

tonomous and incremental learning as basic principles of developmental robotics, enables

the robot to continuously synthesize all newly acquired information into the coherent knowl-

edge about physical entities, as described in Part I of this thesis. Infants learning about the

world through a physical contact and a social interaction inspires active exploration of ob-

jects through interaction with them, as described in Part II of this thesis.

2.4.2 Learning through observation

In Part I of this thesis, we present the implemented perceptual approach that enables the

robot to learn about its environment through observation, while a human partner interacts

with a robot, like with a child. The perceptual system of the robot is designed by analogy

with human perception, though we do not try to precisely reproduce human vision or inner

brain functioning. Rather, we take its basic concepts described in Section 2.1 as an inspi-

ration. We do not focus on low-level signal processing over human visual pathways, and

we move further to higher-level representation, such as objects and preceding them proto-

objects described in Section 2.1.3. Our perceptual approach starts from segmentation of the

robot’s visual space into proto-objects as units of visual attention, and we assume that the vi-

sual attention of the robot is attracted by motion that is one of components of human visual

attention as described in Section 2.1.2. The segmentation of proto-objects is based on coher-

ent motion similar to the object unity concept used by infants as described in Section 2.2.2.

In our algorithm, each proto-object indicates a possibility of a presence of a physical entity.

Therefore, the visual appearance of proto-objects is analyzed in order to learn or recognize

physical entities. All information about the entities appearance is acquired incrementally by

extracting low-level features, like colors, textures, and their spatial relations and synthesiz-

ing them into higher-level visual representations.

2.4.3 Learning through interaction

In Part II of this thesis, the robot is free to move its hands and to perform various inter-

active actions. The robot learns to identify parts of its own body in the visual space through

motor activity, similar to self-recognition in infants as described in Section 2.2.4. The imple-

mented self-identification algorithm is based on the mutual information between sensory
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data and proprioception, and it does not require the pre-defined appearance of the robot’s

body. The ability to identify parts of its own body and to discriminate objects from human

parts allows the robot to focus on learning objects through interaction. The interactive object

learning is accomplished through manual exploration that is typical for children as discussed

in Section 2.2.5. The learning algorithm incrementally acquires new information about an

object appearance while it is manipulated, and this information is continuously synthesized

within the already acquired object representation.
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Première partie

Exploration of the robot’s environment
based on observation
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CHAPITRE 3

State of the art : object learning

Our approach is designed for a humanoid robot that explores its close environment us-

ing mainly vision. Artificial perception based on processing of visual data has been studied

for a long time in the computer vision field. There is a great number of computer vision

approaches aimed at detecting and learning object in order to understand images. A short

and partial review of existing object detection and segmentation algorithms is presented in

Section 3.1. Objects’ appearances are often analyzed using feature detection and description

algorithms. The visual features that are widely used in computer vision, are described in Sec-

tion 3.2. The integration of visual features into objects representations, such as appearance-

based, part-based, or combined models, are presented in Section 3.3. Object learning can

be performed using different methods, like generative and discriminative, described in Sec-

tion 3.4. The discussion about advantages and limitations of reviewed algorithms, and the

reasoning leading to our system’s design choices are provided in Section 3.5.

3.1 Detection and localization of objects and proto-objects

The perception of the environment begins from localization of meaningful elements in

the visual space and their segmentation from the background. Most traditional object detec-

tion approaches are based on a prior knowledge or narrow-purpose algorithms providing

robust detection of specific objects of particular categories, like human faces, skin, skele-

ton. More generic approaches segment a scene into coherent image regions based on con-

sistency of visual characteristics, and further group these regions into integral objects based

on motion behavior or other properties. Unsupervised approaches are aimed to detect not

a concrete object, but an evidence of an object existence or a proto-object, such as a region

of a scene that represents a possible object or its part. Biologically motivated approaches

take inspiration from human vision and detect objects or proto-objects using mechanisms of

selective attention based on visual saliency.
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3.1.1 Specialized detectors

Fast and robust real-time object detection can be achieved based on artificial markers

used to estimate the object position relative to a camera. Methods, like the ARTag system

presented in [Fiala, 2005], allow to create markers and to detect them in the environment.

However, these systems require objects tagging.

Numerous narrow-purpose detectors provide efficient identification of specific object

categories, like human faces, skin, hands, or skeletons. Detection of human faces based on

low-level Haar-like features is proposed in [Viola and Jones, 2004]. Human skin is detected

based on its color [Zhu et al., 2000], [Fritsch et al., 2002]. Detection of human skin is used to

improve object segmentation, for example in [Wersing et al., 2007], objects are detected in

the peripersonal space while subtracting image regions with human hands holding objects.

An efficient object detection can be achieved by using predefined object positions, for

example, when objects are localized in the center of images, like in [Browatzki et al., 2012], or

when the objects positions are provided by users through dedicated interfaces, like proposed

in [Rouanet et al., 2009]. Other approaches take advantage of localizing objects on a plane,

like a ground, a floor, or a table. In these cases, the object detection consists of estimation

of a plane and using it to localize an object in a position sticking out from the plane, like

performed in [Zhou et al., 2011].

3.1.2 Saliency

Unsupervised object detection is based on coherence of visual properties. For example,

an object can be detected based on homogeneity of visual information, like consistency

of color, texture, or 3D shape. Using these visual properties, an object can be segmented

from the background, like in [Southey and Little, 2006]. In case of dynamic scenarios, an ob-

ject can be detected using motion information, like in [Prest, 2012], [Beale et al., 2011], and

[Katz et al., 2010].

Biologically motivated object detection is based on visual saliency that guides attention

and allows to detect objects without supervision. Salient image regions differ from their

neighborhood by their physical properties, like color, intensity, texture, spatial orientation,

or shape. In addition, saliency also proceeds from dynamic properties, such as motion, tra-

jectory, speed, changing size or appearance [Goldstein, 2010]. A widely used saliency-based

attention model proposed in [Itti and Koch, 2001] is shown in Fig.3.1. This saliency map is

obtained through combination of several image properties, and the locations with the high-

est saliency values are defined by a winner-take-all (WTA) algorithm. This saliency model

is adapted in many research works, like [Walther and Koch, 2006], [Siagian and Itti, 2007],

[Rudinac et al., 2012], and [Chandrashekhariah et al., 2013].

Object detection method proposed in [Siagian and Itti, 2007] takes inspiration from a

human visual attention mechanism providing a brief understanding of a scene in a short
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FIGURE 3.1 – Visual attention modeling [Itti and Koch, 2001]

time [Goldstein, 2010]. As discussed in Section 2.1.2, while looking at a scene, humans in-

stantly capture "gist" of the scene that contains the most important information about the

scene. The gist concept can be used for object detection, like in [Siagian and Itti, 2007], where

gist is estimated from the spatial competition of early-visual features throughout the visual

field. As the early-visual features, the algorithm uses the orientation estimated by the Gabor

filter, color, and intensity.

The object detection approach inspired by signal processing in human vision is proposed

in [Rudinac et al., 2012]. In this work, saliency guides attention in a way that allows to de-

tect objects in unstructured environments. During the saliency computation, the visual data

are processed similar to signals treated by color-opponent cells in a human eye. The spectral

residuals are computed in three color channels : red-green, blue-yellow, and illumination,

and they are used to estimate, how much each pixel stands out from its background. The

MSER blob detector [Matas et al., 2002] is applied to the saliency map in order to precise

salient regions. Then, the salient regions are clustered into visual areas corresponding to

objects based on the Parzen-window density estimation [Tax, 2001] and mean-shift cluster-

ing [Comaniciu and Meer, 2002].
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3.1.3 Detecting proto-objects

Research studies aimed at biologically plausible modeling of visual attention often

use the concept of proto-objects, like in [Orabona et al., 2005], [Natale et al., 2005], and

[Walther and Koch, 2006]. The proto-object concept is inspired by the human vision mecha-

nism that performs perceptual grouping of information about the viewing scene into "pre-

attentive" objects, as discussed in Section 2.1.3. Each proto-objects is defined as a unit of

visual information, that can be bound into a coherent object, when accessed by focused at-

tention [Rensink, 2000]. A proto-objects can be also described as a region of the visual space

with "objecthood" characteristics [Pylyshyn, 2001], and this region can be segmented similar

to perceptual grouping in human vision.

In [Orabona et al., 2005], images are processed in three color-opponent channels, like in

human vision, as described in Section 2.1.1. Then, each color channel is used to extract edges,

and a watershed transform on the edge map is used to generate proto-objects.

The attention model presented in [Walther and Koch, 2006] is based on the saliency

map [Itti and Koch, 2001] described in Section 3.1.2. The regions around salient locations (see

Fig.3.2) are processed as units of visual information or proto-objects that will be validated as

actual objects.

FIGURE 3.2 – Proto-objects accessed by visual attention [Walther and Koch, 2006]

The proto-object idea is used in research studies aimed at learning and recognizing
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objects. In these studies, a proto-object is viewed either as a possible object, or a group

of features that corresponds to an object or its part. For example, in [Natale et al., 2005],

proto-objects correspond to clusters of image points grouped together based on their vi-

sual characteristics, and these proto-objects with their spatial relations are used to construct

objects models. In [Walther and Koch, 2006], proto-objects are analyzed as possible objects,

and attention modeling to salient proto-objects is used to recognize multiple objects in a

biologically-inspired way.

3.2 Visual features

Once an object is detected, its appearance is analyzed by processing the visual data. Since

the visual data are high dimensional and often contain redundant information, the visual

content is characterized by more compact descriptors that allow to process the data faster

and more efficiently than operating by image pixels. Each descriptor summarizes the infor-

mation in a vector encoding the visual content into a significantly smaller amount of data.

The descriptor computation usually implies a measure of statistical, geometric, algebraic,

differential, or spatial properties of the visual data [Benois-Pineau et al., 2012].

The variety of existing descriptors characterizes not only general content information,

like color, texture, shape, and motion, but also local image features representing fine visual

details [Burger and Burge, 2008]. The local feature extraction has often a high computational

cost, and it consists of extraction of image patches and their description. Image patches can

be determined in terms of regular sampling or salient image positions. The salient positions

can be localized by feature detection algorithms abstracting the image into a subset of iso-

lated keypoints, curves, or regions. However, the density of extracted image patches should

be reasonable relative to the distribution of information in the image. Images can be also

characterized regularly, by analyzing them on the level of segmented regions grouping sim-

ilar adjacent pixels to relatively homogeneous areas.

A good visual feature should be balanced between robustness, sparseness, speed, and

completeness as the ability to preserve information. Visual features should allow to dis-

criminate different objects and to accommodate the intra-object variation. Moreover, im-

age matching and recognition tasks require feature detectors and descriptors that are re-

peatable and invariant to viewing conditions, like lighting, viewing point and orienta-

tion [Csurka et al., 2004].

3.2.1 Local descriptors

Most of local feature detectors have an associated feature descrip-

tors [Dickscheid et al., 2011]. Local descriptors can characterize image details in a neighbor-

hood of extracted blobs, like scale-invariant SIFT [Lowe, 2004] and SURF [Bay et al., 2008],
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edges, like straight edge segment EDGE [Förstner, 1994], junctions and corners, like scale-

invariant SFOP [Förstner et al., 2009] (shown in Fig.3.3). Due to the variety of existing

feature detectors, we will only focus on these few that are representative and relevant for

our work.

FIGURE 3.3 – Examples of feature detectors : a)the original image, b)SIFT, c)EDGE, d)SFOP
junctions [Dickscheid et al., 2011]

3.2.1.1 SIFT

SIFT is one of the most popular feature detectors based on key-points used for object

recognition and image matching. SIFT keypoint detection is based on the Difference of Gaus-

sians (DoG) blob detector that is an approximation of the Laplacian operator. It achieves the

scale space representation by computing the difference between two Gaussian smoothed

images :

∇2
normL(u, v; σ) ≈

σ

∆σ
(L(u, v; σ + ∆σ)− L(u, v; σ− ∆σ)). (3.1)

SIFT descriptors are histograms of gradient locations and orientations obtained through

the following stages : scale-space extrema detection, keypoint localization, orientation as-

signment, and descriptor generation [Lowe, 2004]. During the first stage, the interest points

invariant to scale and orientation are localized using DoG filters at different scales. Then, in-

terest points with low contrast are removed, and the responses along edges are eliminated.

The Hessian matrix is used to compute the principal curvatures and to eliminate some of

keypoints based on a ratio between the principal curvatures. Around each keypoint, a de-

scriptor is computed as a set of orientation histograms on 4x4 pixel neighborhoods. Each

histogram contains 8 bins, quantizing gradient angles into 8 orientations and resulting in a

128-dimensional descriptor. SIFT algorithm is reasonably invariant to changes in illumina-

tion, rotation, scaling, and small changes in a viewpoint, but it has a hight computational

cost that limits its use in real-time processing.

3.2.1.2 SURF

SURF is similar but several times faster than SIFT, since SURF relies on integral im-

ages that reduce the processing time and allow fast computation of approximate LoG im-

ages [Bay et al., 2008]. SURF feature detection is based on a scale-normalized determinant of
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the Hessian (DoH) blob detector :

det HL(u, v; σ) = σ2(LuuLvv − L2
uv). (3.2)

SURF descriptor characterizes 4x4 sub-regions centered around interest points by a dis-

tribution of Haar wavelet responses stored in 2x2 subdivisions. The final 64-dimensional

vector results in scale- and rotation-invariant SURF descriptor.

3.2.1.3 EDGE and SFOP

As an example of a feature detector based not only on keypoints, the EDGE detector char-

acterizes images locally by measuring the average squared gradient and the regularity of the

intensity function with respect to junctions and circular symmetric features [Förstner, 1994].

This detector is based on a matrix related to the auto-correlation function computed by av-

eraging derivatives around the image pixels in a window W :

A(u, v) =

[

∑W Iu(uk, vk)
2 ∑W Iu(uk, vk)Iv(uk, vk)

∑W Iu(uk, vk)Iv(uk, vk) ∑W Iv(uk, vk)
2

]

, (3.3)

where (u, v) is the coordinates of the pixel, I is the input image, and (uk, vk) are the coordi-

nates of image points in the window W.

The auto-correlation matrix determines the similarity of a patch with its neighborhood.

In the case of a matrix of rank zero, a homogeneous region is detected ; in the case of a

matrix of rank one, an edge is detected ; in the case of a matrix of rank two, an interest point

is detected and classified into junctions or circles based on the local gradient field.

Scale-invariant SFOP detector integrates the detector [Förstner, 1994] with the spiral fea-

ture model [Bigün, 1990] that allows to obtain features, like corners, junctions, and circles.

3.2.2 Color

The color is another important characteristic of visual data. The image color content can

be described by a dominant color or a distribution of colors. The computation of Color His-

tograms (HC) includes the quantization of a color space into bins with discrete ranges. Each

bin of the histogram accumulates the number of image pixels that belong to a particular color

range. HC is robust to small object deformation and scale variation, especially when the ap-

pearances of the object and the background are relatively stable [Han et al., 2011]. Although,

HC does not assume color spatial distribution.

In contrast to HC, Color Autocorrelogram describes the spatial correlation of col-

ors, and Color Layout characterizes the spatial distribution of representative col-

ors [Benois-Pineau et al., 2012]. The color distribution can be computed based on image pix-
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els or image regions.

Color descriptors can be based on different color spaces (examples are shown in Fig.3.4),

like RGB used in digital devices (cameras and displays), HSV with dimensions that are sim-

ilar to human color interpretation, or CIELab where Euclidean distances between colors co-

ordinates correspond to perceived differences between colors [Burger and Burge, 2008]. The

choice of a color space depends on the application and needed properties.

FIGURE 3.4 – Color spaces : a)RGB, b)HSV, and c)CIELab

Since color descriptors can not work well, if objects have similar colors between each

other or the background [Han et al., 2011], color invariant features, like texture and contours,

are widely used in the characterization of an object appearance.

3.2.3 Texture descriptors

Texture descriptors characterize the homogeneity of the visual information. Texture rep-

resentation can be obtained using different approaches, such as simple means and vari-

ances of a filter bank output, wavelet coefficients, wave-packets, or model-based meth-

ods [Benois-Pineau et al., 2012].

Another interesting approach for describing the image content is the Histogram of

oriented gradients (HoG) that captures edge structures characterizing local contours and

shapes. However, this method is sensitive to orientation, and it can not describe well an ob-

ject with large smooth areas [Han et al., 2011]. Therefore, it is well adapted to detect pedestri-

ans that have constant orientations, but less adapted to detect objects that can have arbitrary

orientations.

3.2.4 Regular image characterization

In order to describe well images with homogeneous regions, a regular image charac-

terization is needed. A regular image characterization can be performed by segmenting an

image into elementary regions and characterizing these regions.
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An efficient graph-based image segmentation algorithm is proposed

in [Felzenszwalb and Huttenlocher, 2004]. In this algorithm, an image is represented

as a graph of elements and edges between them, where each element is a pixel, and a weight

of an edge is measured based on the dissimilarity between two pixels connected by the

edge. Authors define a predicate for measuring the evidence for a boundary between pairs

of regions. This predicate is based on the dissimilarity between pixels along the region’s

boundary compared to the dissimilarity among neighboring pixels within the region.

The pixel dissimilarity can be based on difference of intensity, color, motion, location or

other local attributes. Being very fast, this method is often used to over-segment images in

superpixels, i.e. small uniform regions, that are used as the basis for further processing.

Image segmentation based on superpixels becomes widely used in computer vision. An

algorithm that segments images into high quality, compact, nearly uniform superpixels, is

proposed in [Achanta et al., 2010] and known as Simple linear iterative clustering (SLIC).

The algorithm performs a local clustering of pixels in a combined 5D space defined by color

(L, a, b values of the CIELAB color space) and pixel coordinates (x, y).

An example of image characterization based on superpixels is presented

in [Micusik and Kosecka, 2009]. In this algorithm, images are segmented into a set of

superpixels that correspond to semantically meaningful objects or scene parts. These

elementary regions are computed by watershed segmentation on LoG interest points as

seeds. At the centers of segmented superpixels, SIFT descriptors are computed and used as

appearance features characterizing image regions.

3.2.5 Feature combination

The study on features combination [Dickscheid et al., 2011] aimed at achieving maxi-

mally efficient object learning, shows, that several different descriptors provide better recog-

nition than any descriptor used alone. The study proposes a scheme analyzing complemen-

tary features, as a minimum set of features that allows to characterize well different kinds of

visual data and to avoid redundancy. Feature combination is widely used in image process-

ing. For example, the object tracking algorithm [Han et al., 2011] is based on HC and HoG ;

the object learning method [Rudinac et al., 2012] uses HC and HoG with a texture descrip-

tor ; the image classification approach [Carbonetto et al., 2008] integrates the visual cues, like

interest regions and low-level segmentation into superpixels. The concepts of several de-

scriptors can be also integrated to construct a new descriptor that is more efficient, like In-

tegral Color descriptor [Aldavert et al., 2010] integrating color information with a gradient-

based local descriptor.

Taking inspiration from human vision, the information from several features can be in-

tegrated within an intermediate layer between low-level features and high-level visual enti-

ties, like objects. Indeed, feature extraction is a low-level image processing, that can be associ-
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ated with the Early Vision stage in human vision, where the scene description is derived from

simple primitives captured across the visual field [Treisman and Gormican, 1988]. However,

the object concept appears in the Cognitive Vision stage. An intermediate layer that con-

nects the Early vision and the Cognitive vision is proposed in [Krüger et al., 2010] and called

Early Cognitive Vision (ECV). ECV concept allows to improve low-level processing using the

assumptions from high-level reasoning. Since ECV operates contextually embedded repre-

sentations of the visual information, whose level is higher than features, but lower than the

object concept, we consider it as a variety of a feature combination or a features structure.

The transformation of low-level descriptors into mid-level features with richer represen-

tations and intermediate complexity can be achieved in different ways. For example, this

transformation can be achieved based on coding and pooling, like in [Boureau et al., 2010].

During the coding stage, descriptors are transformed into better representations adapted to

the task. Then, during the pooling stage, coded features are summarized over larger neigh-

borhoods. The study performs the cross-evaluation of the coding methods, such as vector

quantization and sparse coding, with the pooling techniques, such as taking the average

(average pooling) or the maximum (max pooling).

3.3 Representation of an object appearance

Based on features and descriptors extracted from a segmented object region, an efficient

representation of visual information should be able to characterize the significant content in

a short description. We describe several ways of representing visual data, like appearance-

based methods and part-based models that combine both appearance and geometry infor-

mation. Among the variety of representation approaches, we also distinguish the Hierarchi-

cal feature model as a separate topic due to its importance in this research study.

3.3.1 Bag of Words

The representation of visual data can be performed on a local or a global level. The local

representation is based on extraction of local patches (for example, by pooling techniques)

or patterns of patches with a spatial order. Since matching patch-based representations can

be difficult due to their spatial constraints, local patches or other extracted features can be

encoded and used in global representations, like a Bag of Words (BoW).

BoW is one of widely-used methods of representing visual information. It is inspired by

the approach originally invented for text processing. In text retrieval, a document is repre-

sented as an orderless collection of words. Since the occurrence of words is sparse across

documents, an index maps words between documents and a dictionary, so that each doc-

ument is encoded by the frequencies of its words associated with the dictionary entries. In

computer vision, BoW represents images as collections of unordered features, and each im-
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age is encoded by the frequencies of the corresponding visual words from the dictionary.

The BoW algorithm consists of the following steps : feature extraction, feature quantiza-

tion into dictionaries of visual words (also called codebooks), and training a classifier on

visual words. The recognition procedure consists of extraction of features, searching the

corresponding visual words in dictionaries, and applying the classifier on a set of visual

words [Sivic and Zisserman, 2003].

Visual features can be obtained by any method presented in Section 3.2.1, for

example, using keypoints [Sivic and Zisserman, 2003], [Filliat, 2007] (see Fig.3.5), edges

[Kokkinos and Yuille, 2006], regions [Russell et al., 2006], [Borenstein and Ullman, 2002],

based on image patches [Csurka et al., 2004], [Shotton et al., 2008] or based on a pixel-

level [Aldavert et al., 2010]. Image patches can be obtained by applying detectors, like

Harris affine detector used in [Csurka et al., 2004], or based on regular sampling used

in [Shotton et al., 2008]. The image patches can be characterized based on different

descriptors, like SIFT used in [Csurka et al., 2004], or even without descriptors, like

in [Shotton et al., 2008] by using semantic texton forests. The approach using BoW on a pixel-

level [Aldavert et al., 2010] is based on the Integral Color descriptor described in Section

3.2.5, and the main advantage of this approach is the simplicity of parallelization, since the

BoW is applied locally.

FIGURE 3.5 – The illustration of the Bag of visual Words approach

Extracted features are quantized into dictionaries of visual words, in order to reduce

data dimensionality. The quantization can be achieved by iterative square-error partition-

ing or hierarchical techniques. The hierarchical techniques organize data into a hierar-

chy of clusters, like a dendrogram or a tree. These quantization techniques are not fre-

quently used, because they require some heuristics to form clusters [Csurka et al., 2004].

The quantization based on square-error partitioning, like a K-Means algorithm, seeks for

a partition minimizing the intra-cluster scatter or maximizing the inter-cluster scatter. Meth-

ods based on recursively applied K-Means algorithm are known as Hierarchical K-Means

(HKM) [Nister and Stewenius, 2006]. The weakness of K-Means quantization is related to

misclassification errors occurred, when a descriptor lying on a border between several clus-

ters is assigned to a wrong visual word. This mis-clustering problem can be compensated by

the Vector of Locally Aggregated Descriptors (VLAD) [Jégou et al., 2010], that accumulates
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the difference between a descriptor and the corresponding visual word instead of direct de-

scriptor quantization. The VLAD method increases the amount of information stored in a

codebook compared to the HKM method, since it accumulates not only the amount of visual

words but also the distribution of descriptors with respect to centers of visual words. How-

ever, both VLAD and HKM perform a hard assignment without considering visual words

uncertainty and plausibility. In contrast, the spherical soft assignment [Ai et al., 2012] adap-

tively associates features with close visual words defined by a hyper-sphere with a radius

denoted as the distance between the word and the feature.

Instead of using just a list of visual words, the importance of each visual word can be

characterized using Term Frequency-Inverse document frequency (TF-IDF) approach. This

approach was initially used in text retrieval, where each document is described by a set of

words from a dictionary and the frequencies of these words [Sivic and Zisserman, 2003]. In

image recognition, it is often used to represent an image by a set of visual words from the

dictionary and the frequencies of these words. TF-IDF approach is aimed to evaluate the

importance of words with respect to images and to give higher weights to distinctive visual

words. The inverted index allows to quickly compare an image with all memorized objects.

3.3.2 Part-based models

The main weakness of BoW approaches is the absence of a spatial relation be-

tween visual words inside images. This limitation is resolved by variations of BoW, like

part-based models, Constellation models, k-fans models, etc. Part-based models combine

appearance-based and geometrical models. An early example of a part-based model pro-

posed in [Fischler and Elschlager, 1973] is shown in Fig.3.6a. Each part represents local visual

properties, and the spatial configuration between parts is characterized by a statistical model

or spring-connections representing "deformable" relative locations between parts. Constella-

tion models are based on learning the geometrical relations between image parts or features,

for example, local features used in [Fergus et al., 2003] or edges used in [Fergus et al., 2005]

and [Shotton et al., 2005].

A family of spatial priors for part-based recognition is provided by graphical models de-

fined by a class of graphs called k-fans and proposed in [Crandall and Huttenlocher, 2006].

The method learns both local parts appearances and a model of spatial relations between

the parts. The parameter k controls the dependence between the locations of object’s parts.

If k = 0, there is no dependence between parts ; if k = 1, the structure corresponds to a star

graph, if k = n − 1 (where n is the number of parts), there are dependencies between all

pairs of parts. The family of k-fans models (shown in Fig.3.6b) allows to investigate how the

number of spatial constraints influences the recognition performance and the computational

cost. The results show, that the recognition performance depends on a particular object class.

The computation of spatial features, like in Constellation models, requires a long process-
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a) b)

FIGURE 3.6 – Examples of part-based models : a) a part-based model representing a
face as a collection of individual parts [Fischler and Elschlager, 1973] ; b) k-fans mod-
els (1-fan, 2-fan, and 3-fan models) based on 6 parts with the reference part shown in
black [Crandall and Huttenlocher, 2006]

ing time. In contrast, a method extracting spatial features without exhaustive computation

is proposed in [Yang et al., 2008]. The higher-order spatial features are obtained from lower-

order features based on an additive feature selection algorithm, like boosting.

3.3.3 Hierarchical feature models

In order to construct an object representation that is more comprehensive than a

collection of its features, the features are grouped into hierarchical models, like it is

done in [Bouchard and Triggs, 2005] and [Kokkinos and Yuille, 2011]. A hierarchical feature

model presented in [Bouchard and Triggs, 2005] accumulates both object’s appearance and

geometry. This model outperforms constellation models in its ability to handle many redun-

dant features by grouping them into parts and representing an object by a hierarchy of parts,

like shown in Fig.3.7. The approach evaluates the hierarchical representation build on SIFT

features. However, hierarchical object representations can be based on different features, for

example edges, like it is done in [Kokkinos and Yuille, 2011].

FIGURE 3.7 – Object hierarchical representation [Bouchard and Triggs, 2005]
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3.3.4 View-based models

Since in the real world most of objects are 3-dimensional, they result in a variety of 2D

projections in images [Ullman, 1998]. In order to overcome this issue, an overall object ap-

pearance can be characterized by a view-based model accumulating the object’s appearance

from different viewpoints. For example, a view-based model considering spatial relations

between views is presented in [Paletta and Pinz, 2000]. However, in this approach, object’s

viewpoints are learned in a supervised way using a controlled turn-table that rotates the

object each time on 30◦.

On the other hand, views can be similar between objects and significantly different for a

single object depending on a viewing angle, distance from the object, and lightning condi-

tions. A computational approach using combinations of views in order to deal with a varying

viewing position and illumination direction, is presented in [Ullman, 1998]. In this approach,

a 3D object is represented by a linear or non-linear combination of 2D views.

3.4 Learning methods

As soon as available visual data are characterized by visual features or higher level rep-

resentations, one of learning methods can be used to associate each representation with an

object label. Among machine learning algorithms, we give a short description of two major

philosophies : generative and discriminative. Also we describe incremental learning meth-

ods, which provide an ability of online learning for autonomous robots.

3.4.1 Generative methods

Generative approaches describe data by structured probabilistic models or estimate the

joint probability distribution over observations and labels, where the observations are ran-

dom variables, whose distributions depend on the model’s parameters. In the field of object

learning, generative approaches are used to estimate the distribution of data samples which

belong to each data class. Generative models include three main stages : evaluation of the

probability of an observation, estimation of the model’s parameters from the observed data,

and running the model forward to generate new data.

Naive Bayes (used in [Csurka et al., 2004]) is a generative probabilistic classifier based

on the assumption, that observed variables have own distributions, and these distributions

are significantly different between data classes. In the context of object learning, it means,

that visual representations, like a collection of features, are significantly different between

objects. The graphical model of this approach is shown in Fig.3.8a. During training, the clas-

sifier learns the distribution of visual representations from objects samples. The recogni-

tion is achieved by applying the Bayes’ theorem with strong independence assumptions and
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choosing a maximum posteriori decision :

c∗ = arg max
c

p(c)
N

∏
j=1

p(wj|c)
n(wj), (3.4)

where c is the object label, wj is a visual representation of the object (can be a collection of

features), and n(wj) is the number of times the visual representation was seen.

Among Hierarchical Bayesian models applied to unsupervised object categorization is

the Probabilistic Latent Semantic Analysis (pLSA) (used in [Sivic et al., 2005]). pLSA is a

two-level generative model originally developed for the statistical text literature, where each

document corresponds to a mixture of topics, and each topic has its own distribution of

words. The graphical model of this approach is shown in Fig.3.8b.

a) b)

FIGURE 3.8 – The graphical models : a) the Naive Bayes classifier, where c is an object label,
w is a visual object representation among N representations ; b)Probabilistic Latent Semantic
Analysis (pLSA), where d is an object label, z is topic, and w is a visual representation

3.4.2 Discriminative methods

Discriminative methods are aimed at learning the differences between several data

classes based on a decision rule called a classifier, that associates each data sample with

one of the possible classes. In object learning, the classification is performed on data sam-

ples that correspond to collections of visual features or higher level representations. In this

case, the classifier associates an available representation mapped as a point to some space,

like a feature space, with one of objects. Decision rule divides the input space into regions

separated by decision boundaries.

Nearest Neighbor Classifier (used in [Lowe, 2004]) is one of discriminative methods, that

assigns a label of the nearest data sample from the training set to each test sample. K-Nearest

Neighbors method searches the k closest data samples from the training set, which vote to

classify a new data sample. The method works well in the case of many data samples and

an appropriate distance function. Among the distance functions widely-used for compari-

son of feature histograms are heuristic distances, like Minkowski-norm distance (ℓp norm),

nonparametric statistics testing the hypothesis that two empirical distributions have been

generated from the same true distribution, like χ2 distance, or ground distance measure, like

41



Earth Movers Distance [Burger and Burge, 2008].

Support Vector Machine or SVM (used in [Csurka et al., 2004], [Yang et al., 2008],

and [Ude et al., 2008]) is an example of discriminative non-probabilistic classifiers. This clas-

sifier is used to distinguish between two classes of data or between positive and negative

samples of a particular data class. During training, SVM searches a hyperplane separating

data classes with a maximal margin between positive and negative samples and maximiz-

ing the distance between the hyperplane and the closest data sample. The recognition of a

data sample mapped to the feature space is based on its position relative to the hyperplane.

Since not all data classes are linearly separable, several modifications can be introduced to

the model : misclassified samples can be penalized proportionally to their distance to the

decision boundary, or the visual representations can be mapped from the original space to

another space that can have a higher dimensionality [Csurka et al., 2004]. Multi-class prob-

lems can be solved by training several SVM classifiers.

Considering the concept of discriminative models aimed at learning differences between

classes, these models are especially useful, when data classes are similar. Though, generative

models performs better, when data samples are rare. The comparison of SVM and Naive

Bayes classifies applied to image classification reports the superiority of SVM results over

the results obtained with a Naive Bayes classifier [Csurka et al., 2004].

3.4.3 Incremental learning

In general, it is easy to update a generative method with a new example, since we just

need to update the class statistics. It is also possible to learn incrementally using discrim-

inative methods [Cauwenberghs and Poggio, 2001] or using gradient descent as in Neural

Networks. A voting method, like the one proposed in [Filliat, 2007], is also easy to use in-

crementally. The algorithm computes the statistics of visual words seen among images, and

this statistic is used during recognition. Updating statistics during learning is very fast, as

it simply entails adding counts to the numbers of features viewed for each object. While in-

cremental learning is an active research area, we will rely on this simple method that is well

adapted to the representation of objects using the Bag of Words approaches.

3.5 Conclusion

There is a variety of computer vision approaches aimed at detecting objects in images

and learning their visual appearances. Our work is focused on a perceptual approach that

requires a minimum prior knowledge and minimum supervision. We are interested in a

generic method that works in an unstructured environment and allows to detect different

types of objects without predefined objects appearances.

Among object detection algorithms, we find interesting the proto-object concept used
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often in biologically-motivated architectures. In our approach, we are going to detect proto-

objects based on saliency in the visual space.

The studies on complementary features inspire us to choose a set of features that would

maximize the encoded information while characterizing different types of objects. We choose

SURF and colored superpixels as complementary features that should characterize well both

simple homogeneous objects and complex textured objects. In order to incorporate local ob-

ject geometry, we analyze relative features positions and group them into more complex

features.

As an object representation, we are going to use Bag of Words with TF-IDF. However,

each object will be characterized not by a collection of features, but rather by a multi-view

model, where each view, encoded by its features, describes the object’s appearance from one

perspective. As a recognition/learning approach, we will use voting that is fast and well

adapted to incremental learning.
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CHAPITRE 4

Perceptual system implementation

In this chapter, we describe the proposed perceptual approach that allows the robot to

learn about its close environment through observation, while a human partner interacts with

the robot and demonstrates different objects. The robot’s perception starts from segmenta-

tion of the visual space into proto-objects defined as salient units of attention. The procedure

of proto-object detection and segmentation is presented in Section 4.1. The visual appear-

ances of each proto-object is analyzed as described in Section 4.2, and it is learned or recog-

nized as one of physical entities that can be an object, a part of a human partner or a part

of the robot’s body. The appearance of each entity is characterized by a multi-view repre-

sentation model, where each view describes the entity’s appearance from one perspective.

The learning and recognition procedures are detailed in Section 4.3. The main modules of

the implemented perceptual system are shown in Fig.4.1.

Our approach is based on online incremental learning, and it does not require image

databases or specialized face/skin/skeleton detectors. All knowledges are iteratively gath-

ered by analyzing the visual input and integrating extracted low-level information into hi-

erarchical representation models of physical entities. The visual input is acquired from a

RGB-D sensor (Kinect) using the OpenNI 1 library. The RGB-D sensor is chosen as a source

of visual information due to its efficiency and precision of 3D data in comparison with stereo

vision based on the robot’s cameras.

4.1 Detection and segmentation of physical entities as proto-objects

In this part of the thesis, the exploration of the robot’s environment is performed through

pure observation, so we analyze the robot’s environment within its visual space. The visual

space covers a part of the surrounding environment that falls into the field of view of the

visual sensor. Given our setup, the position of the visual sensor allows to observe the inter-

action area (shown in Fig.4.2b) including the table placed in front of the robot, some parts of

1. http ://openni.org
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Detection of 
proto-objects

Learning 
appearances 

of entities

E2 model
...

E1 model

Visual 
memory

EN model

FIGURE 4.1 – The main modules of the perceptual system developed for a robot learning
about its environment through observation, where E1, E2, ..., EN are the physical entities
detected in the visual space, learned, and stored in the memory

a) b)

FIGURE 4.2 – The visual space of the robot : a)the position of the robot relative to its interac-
tion area, b)the visual field
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a human partner, and some parts of the robot’s body.

The visual space is segmented into proto-objects as units of visual attention that can be

later identified as possible physical entities. The main steps towards segmentation of the

visual space into proto-objects and the intermediate results of image processing are shown

in Fig.4.3.

Depth contours

Tracking and clusteringMotion detection

Depth variation 

Segmented 
proto-objects

p
1

p
2

p
3

RGB-D sensor 

de
pt

h

RG
B

FIGURE 4.3 – The main stages of segmentation of the visual space into the proto-objects (p0,
p1, p2) and the corresponding image processing results

4.1.1 Motion processing

The proto-object detection begins with visual attention. Taking inspiration from human

perception described in Section 2.2, we use an attention mechanism based on saliency in

the visual space. In human perception, among various factors of saliency, motion carries

a significant part of information about events happening in the environment and their ac-

tors [Goldstein, 2010]. In the case of our scenario, regions moving in the visual space often

represent parts of a human partner, parts of the robot’s body, or manipulated objects, that

exactly correspond to entities we need to detect in the visual space. Therefore, motion is

chosen as the main source of attention. Moreover, a human partner can attract the robot’s

attention by simply interacting with an object that produces observed motion encouraging

the robot to focus on the object.

Among all possible approaches of motion detection in image processing, we use the Run-

ning average 2 based on image differencing. The Running average of an image sequence is

computed as a weighted sum of the current image and the accumulator :

acc(u, v)← (1− α) · acc(u, v) + α · image(u, v) (4.1)

where acc(u, v) is a pixel of the accumulator at the position (u, v) ; image(u, v) is a pixel of

2. implemented in the function AccumulateWeighted of the OpenCV library http ://opencv.org
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the input image at the position (u, v), and α is the speed of updating previous images with a

new image, α = 0.2 is used in our algorithm.

The computed running average is subtracted from the current input image, and the ob-

tained image is thresholded into a binary image whose pixels are either white (foreground)

or black (background). The choice of the threshold value is grounded on depicting moving

areas by white pixels while filtering out noisy pixels. The obtained binary masks correspond-

ing to moving areas of the visual field are shown in Fig.4.4b.

a)

b)

c)

d)

FIGURE 4.4 – Motion detection in the sequence of four images : a)input images, b)moving
regions detected by the Running average method, c)the effect of the dilation operation on the
moving regions (closing holes), d)the effect of the erosion operation on the moving regions
(shrinking regions and erasing noise)

Noisy pixels among the detected moving regions are removed by erosion and dilation

operators defined in mathematical morphology [Shih, 2009]. The dilation operation is used

to expand image regions (regions of white pixels in case of a binary image), and it consists
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of convolution of the current image with a specified kernel (or a structuring element), which

determines the shape of the analyzing pixel neighborhood. A structuring element usually

has a shape of a square or a cross with a varying size, like shown in Fig.4.5.

FIGURE 4.5 – Structuring elements : a)3x3 squared structuring element (considers 8-
connectedness), b)3x3 cross-shaped structuring element (considers 4-connectedness) ; both
structuring elements have the origin (or the anchor) at the element’s center ; foreground re-
gions are encoded as one, and background regions are encoded as zero

The dilation operation consists of replacing each image pixel by the maximum value of

its neighborhood defined by the structuring element :

image(u, v) = max
(u′,v′): element(u′,v′) 6=0

image(u + u′, v + v′), (4.2)

where image(u, v) is a computed pixel of the output image at the position (u, v) ;

element(u′, v′) is a pixel of the structuring element at the position (u′, v′), and image(u +

u′, v + v′) is a pixel of the input image at the position (u + u′, v + v′) that lies in the neigh-

borhood of the computed pixel (u, v).

In case of 3x3 squared structuring element (considering 8-connectedness), the dilation

operation on a binary image replaces each black pixel by a white pixel, if it has at least

one adjacent white pixel. The dilation operation closes holes in foreground regions (white

pixels, in our case), but also it enlarges foreground regions, thus, we further apply an erosion

operation in order to shrink foreground regions.

The erosion operation shrinks foreground regions and filters out noisy regions with a size

smaller than the size of the structuring element. The erosion operation consists of replacing

each image pixel by the minimum value of its neighborhood defined by the structuring ele-

ment :

image(u, v) = min
(u′,v′): element(u′,v′) 6=0

image(u + u′, v + v′). (4.3)

Both dilation and erosion operations can be applied several times in order to augment

their effects. In our algorithm, we perform ten iterations of each dilation and erosion opera-

tions with a 3x3 squared structuring element. The dilation operation is used to close holes in

the moving regions detected by the Running average method, then the erosion operation is

used to filter out noise allowing to improve the coherency of the moving regions (as shown

in Fig.4.4).

The motion processing is extremely important in our approach, since it generates a large
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amount of information about the surrounding environment. In our setup, the RGB-D sensor

is fixed and does not move during the robot’s movement. Thus, the moving areas of the

scene include only real motion from external sources (like the robot or its human partner).

If the visual input is taken from the robot’s cameras, the robot’s movement influences the

visual scene, and the moving areas include both real motion and camera motion. In this

case, the camera motion can be subtracted by analyzing the optical flow and filtering out all

background pixels that move with the same speed.

Furthermore, all moving regions are filtered based on the constraints of the robot’s work-

ing area, and the visual regions that are unreachable for the robot are ignored. The working

area depends on the length of the robot’s arm, the pose of the torso, and the height of the

table. For the iCub robot, the reachable working space is considered to be an area of 45 cm

in radius centered on the robot’s base (as shown in Fig.4.6), since the robot was able to reach

objects localized in this area, during our experiments.

FIGURE 4.6 – The approximate reachable area for the right hand is shown by white curve

4.1.2 Isolation and tracking of proto-objects

The final moving areas of the visual field are analyzed as probable locations

of proto-objects. Inside each moving region, we extract Good Features to Track

(GFT) [Shi and Tomasi, 1994], since these features are especially developed for the tracking

purpose. The feature detector estimates the corner quality measure at each image pixel by

computing the local intensity variation matrix (auto-correlation matrix given in equation

(3.3)) averaging derivatives in the 3x3 pixel neighborhood, as described in Section 3.2.1.3.

Among the image patches with a high variation of intensity in both horizontal and vertical

directions, the GFT is detected in the case of significant eigenvalues of the auto-correlation

matrix. In our algorithm, we extract 80 GFT points in each image while preserving at least

15 pixels between the points in order to impose their distribution in space.

50



GFT points are tracked between consecutive images using the Lucas-Kanade

method [Bouguet, 2001], that is chosen thanks to its small processing cost, accuracy, and ro-

bustness. The Lucas-Kanade tracking method is based on computation of an sparse optical

flow for a set of chosen features. The robustness of the tracker, like its sensitivity to motion,

depends on the size of the search window and the number of analyzed image scales. In or-

der to achieve the balance between the tracking accuracy and its processing cost, we set the

size of the search window to the minimum distance between GFT points, and we choose a

suitable number of iterations. Examples of extracted and tracked points are shown in Fig.4.7.

FIGURE 4.7 – Examples of extracted and tracked GFT points in the sequence of four images :
all extracted points are shown by big yellow circles, and tracked points are marked by small
black circles inside yellow circles

The motion behavior of tracked points is analyzed, and the presence of uniform motion

allows to isolate proto-objects inside moving areas of the visual space. Tracked points are

grouped into clusters using the agglomerative clustering approach based on position and

velocity as we described below. Initially, each tracked point composes its own cluster ; then,

each iteration, we merge two clusters with a smallest distance measure given in equation

(4.4), and we recompute the distance measures. The clustering process is repeated (as shown

in Fig.4.8) until reaching a specified threshold on the minimal distance measure. The exam-

ples of obtained clusters are illustrated in Fig.4.9.

FIGURE 4.8 – Agglomerative clustering : GFT points are shown by colored circles with their
direction of motion with respect to the previous image, the clusters obtained after each iter-
ation are shown by big white ovals, a point’s color indicates its final cluster

Each cluster of GFT points could be characterized by an average position of its points,

and in this case, clusters can be compared based on their relative position computed as the

Euclidean distance. However, this measure based on relative position of clusters is not per-

fect, since it does not consider the direction of motion. In order to incorporate the direction of
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motion, we compare clusters based on their relative velocity. However, this measure based

on relative velocity results in a single cluster, if all points are static. Thus, the final distance

measure between each pair of clusters is based on their relative position and velocity :

d(ci, cj) = ratio ∗ ∆velocity(ci, cj) + (1− ratio) ∗ ∆position(ci, cj); (4.4)

where d(ci, cj) is the distance measure between two clusters ci and cj, ∆position(ci, cj) is the

Euclidean distance between the clusters’ positions, ∆velocity(ci, cj) is the difference in the

clusters’ velocities, and the ratio is the priority to one of characteristics, that is velocity in

our case.

a)

b)

c)

FIGURE 4.9 – Examples of clustering based on different distance measures (GFT points of the
same cluster are shown by the same color) : a)clustering based on relative position of points,
b)clustering based on velocity of points, c)clustering based on position and velocity of points

Once the GFT points are clustered, each cluster identifies a possible proto-object. A proto-

object is considered as tracked from the previous image, if more than a half of its points is

tracked, otherwise, it is considered as not tracked. In our algorithm, GFT points are extracted

only in moving image regions that are not always aligned with real objects’ boundaries,

and thus, not always can be tracked. Since the proto-object segmentation can vary between

images, the probability of tracking points localized closer to the proto-object’s center should

be higher compared to points localized on borders. Therefore, we choose several GFT points
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closest to a proto-object’s center as reference points, and our tracking decision is based on

these reference points.

4.1.3 Extraction of proto-objects contours

Each group of coherent GFT points is analyzed as a proto-object. Using vision only, each

proto-object can be segmented from the background based on a convex hull of its tracked

GFT points. However, a convex hull does not always correspond to the real object’s bound-

ary. If a convex hull is based on few GFT points, it often cuts the proto-object or captures

the background and surrounding items, as shown in Fig.4.10. In order to improve the proto-

object segmentation, the results of tracking performed on RGB images are consolidated with

processing of the depth data, and the depth variation in the visual field is analyzed to obtain

more precise proto-object’s boundaries. If convex hulls of GFT points could group together

several static objects localized near to each other, then the depth processing allows to isolate

the corresponding proto-objects inside a single convex hull.

a)

b)

c)

FIGURE 4.10 – The proto-object segmentation based on convex hulls of the GFT points
a)input images, b)convex hulls of proto-objects’ GFT points, c)resulted proto-object segmen-
tation based on convex hulls of the GFT points. In all images, some parts of proto-objects are
cut ; in images with a human hand, the proto-object’s region captures partly the table near
the hand

At first, the Median blur filter is applied to smooth pixels values in order to reduce the
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noise in the input depth data. Then, the Sobel operator based on the first derivative is used

to detect horizontal and vertical edges allowing to reveal the depth variation in the visual

field. Noisy and non-significant edges are filtered out by thresholding and normalizing the

obtained results as shown in Fig.4.11.

a)

b)

c)

FIGURE 4.11 – Edge detection based on the Sobel operator : a)input depth data visualized in
shadows of gray, b)detected horizontal and vertical edges, c)thresholded edges

The obtained edges are not always continuous, thus, the dilation and erosion operations

with the 3x3 squared structuring element are used to close broken contours. The obtained

continuous contours are transformed into binary masks, as shown in Fig.4.12a. Since the

contour detection method is based on the depth data, the contours passing through regions

with small depth variations often stay open. It happens in case of long contours and contours

crossing image borders, and these contours usually correspond either to parts of the robot

or its human partner, or the table’s boundaries. Therefore, we filter out possible boundaries

of the table, and we perform closing of other contours. If a contour crosses an image border,

we connect each pair of its closest points lying on the image border, and we repeat this

procedure until the contour is closed. Among other open contours, we close only the longest

one considering it as the most meaningful. We traverse the contour, and we close all gaps

through interpolation of the contour’s nearest points. The final closed continuous contours

define proto-objects boundaries, and these contours are used as binary masks in order to
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segment proto-objects, like shown in Fig.4.12.

a)

b)

c)

FIGURE 4.12 – The segmentation of proto-objects based on depth contours : a)detected con-
tours transformed into binary masks, b)binary masks resulted after closing the longest con-
tours, c)proto-object segmentation based on depth contours used as binary masks

The motion artifacts, like blur, changing pixels intensities and colors, make it difficult

to extract continuous contours and to match GFT points needed for tracking. Therefore, we

process only images that contain enough of meaningful information, i.e. images with a spec-

ified minimum of GFT points needed as a reference for one proto-object (as discussed in

Section 4.1.2), and with at least one closed contour extracted inside a moving area of the

visual field.

4.2 Entity representation

The appearance of each segmented proto-object is characterized by low-level features,

as described in Section 4.2.1. The low-level features are integrated into more complex fea-

tures that encode a view characterizing the entity’s appearance from one of its perspectives,

as described in Section 4.2.2. The overall entity appearance is represented as a multi-view

representation model described in Section 4.2.3.
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4.2.1 Visual feature extraction

The robot should be able to deal with various kinds of objects, ranging from simple ho-

mogeneous objects with few features, to complex textured objects, like shown in Fig.4.13.

A single descriptor can not provide a good representation of various visual characteristics,

as discussed in Section 3.2, since a general descriptor usually analyzes one type of the vi-

sual properties, like color or texture ; in contrast, a local descriptor analyzes only an im-

age area around a key-point. By analyzing the complementarity of different features, we

choose a combination of features that describe different visual characteristics and maximize

the amount of encoded information.

FIGURE 4.13 – Examples of objects

As a local descriptor based on key-points, SURF shows an efficient and accurate charac-

terization of isolated image areas, thus providing a good description of objects with many

details. SURF algorithm can be used to detect key-points and encode their neighborhoods

with a 64-dimensional vector, as described in the Section 3.2. However, the detected key-

points are isolated and sparse, as shown Fig.4.14. Thus, SURF descriptor used alone does

not allow to characterize well homogeneous object regions.

In order to deal with both homogeneous and textured objects, visual information should

be analyzed not only around isolated key-points but also with some regularity. The regular

image characterization can be achieved by describing the visual content around regularly ex-

tracted key-points or segmented image regions. In our experiments reported in Section 5.2,

we analyzed the dense-SURF descriptor as a SURF descriptor applied on regularly extracted

key-points. According to our results, the dense-SURF descriptor do not perform better than

the standard SURF in our application. Therefore, we develop an additional descriptor oper-

ating on the level of regularly segmented image regions.

The superpixels algorithm [Micusik and Kosecka, 2009] is used to segment images into

relatively homogeneous regions by grouping similar adjacent pixels using watershed seg-

mentation on LoG (Laplacian of Gaussian described in Section 3.2) with regularly spaced

seeds. Each obtained superpixel is characterized by the average color of its pixels, as shown

in Fig.4.15. The color is encoded in the HSV space (hue, saturation and value) described in
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FIGURE 4.14 – Examples of extracted SURF points
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Section 3.2. The HSV color space is chosen due to its dimensions that are conceptualized

in terms of perceptual attributes in human vision. Moreover, the hue dimension does not

change with variation of the light intensity (as happens with RGB values) [Smith, 1978], that

makes our superpixel-color feature robust to small changes in illumination.

4.2.2 View representation

The extracted low-level image features are organized into hierarchical representations

characterizing the appearances of views of physical entities, as shown in Fig.4.16. Each view

characterizes an entity appearance observed from one of perspectives. The view representa-

tion is based on the incremental BoW (Bag of Words) approach [Filliat, 2007] extended by an

additional feature layer incorporating local visual geometry.

The extracted low-level features are incrementally quantized into dictionaries of visual

words based on dissimilarity of features. If the dissimilarity between a feature and each

dictionary entry exceeds a specified threshold, a new visual word is added to the dictionary ;

otherwise, the feature is assigned to the most similar visual word. The dissimilarity measure

between two SURF features is estimated as a histogram difference of their descriptors :

∆SURF(sur f1, sur f2) = ∑
d

(sur f1d − sur f2d), (4.5)

where sur f1 and sur f2 are two compared SURF descriptors, sur f1d and sur f2d are the values

from their vectors.

The dissimilarity measure between two superpixel-color features is based on the Eu-

clidean distance between colors in the HSV space :

∆HSV(hsv1, hsv2) =
√

(h1 − h2)2 + (s1 − s2)2 + (v1 − v2)2, (4.6)

where hsv1 and hsv2 are two compared superpixel-color features, h1, s1, and v1 are the values

of the hsv1 descriptor, and h2, s2, and v2 are the values of the hsv2 descriptor.

The quantization procedure provides the SURF and color dictionaries, where each vi-

sual word w f can be represented in the associated feature space as a sphere with a radius

equal to the quantization threshold. A fast search procedure [Filliat, 2007] is based on a tree

construction using k-means incrementally.

From our experiments which will be reported in Chapter 5, the size of the color dic-

tionary remains relatively stable after processing several objects, since colors repeat among

different objects quite often. However, the SURF dictionary grows continuously with the

number of objects. In order to avoid rapid growth of the SURF dictionary, we introduce a

short- and a long-term memory. The short-term stack contains all extracted SURF features.

The features from the short-term stack are filtered according to their co-occurrences over
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FIGURE 4.15 – Examples of segmented superpixels and their colors
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FIGURE 4.16 – View encoding and construction of a hierarchical object model

consecutive frames, and the features seen over several consecutive frames are considered

as relevant. The relevant features are stored in the long-term dictionary, that is used in the

following processing as a ground level for the entity hierarchical representation.

The low-level features are grouped into a more complex layer of features called mid-

features that incorporate local visual geometry. This feature layer allows not only to charac-

terize views by a set of features, like isolated colors or SURF points, but also to synthesize

information about features allowing more robust discrimination of objects with same col-

ors or same SURF features. In our algorithm, each low-level feature forms four mid-features

with its neighbors that are closest in terms of the Euclidean distance in the image space (see

Fig.4.17). Examples of mid-features constructed for different objects are shown in Fig.4.18,

4.19, and 4.20. Thus, each mid-feature mk combines several low-level features incorporat-

ing spatial relation between them. SURF mid-features incorporate relative position of SURF

points by grouping closest SURF points into pairs :

mk = (wa, wb), (4.7)

where mk is a SURF pair, wa is one SURF point, and wb is a neighboring SURF point that is

closest to wa in terms of the Euclidean distance in the image space.
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Superpixel-color mid-features incorporate relative position of colors by grouping closest

superpixels into pairs and triples :

mk = (wa, wb), (4.8)

where mk is a color pair, wa is one superpixel, wb is a neighboring superpixel that is closest

to wa in terms of the Euclidean distance in the image space.

mk = (wa, wb, wc), (4.9)

where mk is a color triple, wa is one superpixel, wb and wc are two neighboring superpixels

that are closest to wa in terms of the Euclidean distance in the image space.

SURF pair color pair color triple

FIGURE 4.17 – Examples of mid-features constructed from low-level features (mid-features
are shown by the blue color)

Mid-features are incrementally quantized into dictionaries, where each entry corre-

sponds to a pair or a triple of identification numbers (ids) of visual words from the low-level

feature dictionaries. The construction of a mid-feature dictionary follows the same concept

that was used for quantization of low-level features. If the dissimilarity between a mid-

feature and each dictionary entry exceeds a specified threshold, a new mid-feature is added

to the dictionary ; otherwise, the mid-feature is assigned to the most similar dictionary en-

try. The dissimilarity measure between two SURF pairs is estimated as the minimum of two

possible pairwise histogram differences of their descriptors :

∆(m1, m2) = min







∆SURF(sur fa1 , sur fa2) + ∆SURF(sur fb1 , sur fb2),

∆SURF(sur fa1 , sur fb2) + ∆SURF(sur fb1 , sur fa2),
(4.10)

where m1 and m2 are two compared SURF pairs, each pair has two features sur fa and sur fb ;

∆SURF is the dissimilarity between two SURF features (in this case, one feature from the

first pair and one feature from the second pair) determined in (4.5).

The dissimilarity measure between two superpixel-color pairs is based on the minimal
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FIGURE 4.18 – Examples of constructed SURF pairs

62



FIGURE 4.19 – Examples of constructed color pairs
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FIGURE 4.20 – Examples of constructed color triples
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of two possible pairwise comparison of their descriptors :

∆(m1, m2) = min







∆HSV(hsva1 , hsva2) + ∆HSV(hsvb1 , hsvb2),

∆HSV(hsva1 , hsvb2) + ∆HSV(hsvb1 , hsva2),
(4.11)

where m1 and m2 are two compared color pairs, each pair has two features hsva and hsvb ;

∆HSV is the dissimilarity between two superpixel-color features (one feature from the first

pair and one feature from the second pair) determined in (4.6).

The dissimilarity measure between two color triples is based on the pairwise comparison

of their descriptors in a similar way, like in (4.11).

The quantization procedure provides a SURF-pairs, superpixel-color-pairs, and

superpixel-color-triples dictionaries. In order to increase the search speed in these dictio-

naries, the dictionary entries are sorted by the id of the first visual word in each mid-feature.

According to our representation model, all constructed mid-features are used to charac-

terize views, and each view is encoded by the occurrence frequencies of its mid-features :

vj = {mk}, (4.12)

where mk is a mid-feature.

4.2.3 Multi-view representation model

The appearance of a 3D object often varies from different perspectives. In image cap-

tured by a visual sensor, a 3D object is perceived as its 2D projection to the scene that was

observed from the current position and viewing angle of the sensor, as shown in Fig.4.21.

Thus, 2D projections of the same object can be significantly different depending on the ob-

ject itself (its appearance and shape) and viewing conditions [Hérault, 2010]. There is no

direct relation between the degree of the viewing angle and changes in the perceived objec-

t’s appearance. The change of the viewing angle can result into observation of a completely

different appearance (a perspective) or into slightly different appearance, when new details

become visible and other details become hidden. In addition, small changes in the perceived

object appearance are caused by illumination ; the reflected light sometimes produces shad-

ows and saturations that can make invisible some parts of an object [Goldstein, 2010].

In our approach, the overall appearance of each physical entity is characterized by a

multi-view representation model (see Fig.4.22) that covers possible changes in the entity’s

appearance emerging from different viewing angles and varying illumination. A multi-view

representation model is constructed, as described in Section 4.3, and stored in the visual

memory of the robot. Each entity is encoded as a collection of views, where each view char-
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FIGURE 4.21 – The projection of the 3D object into the visible scene

acterizes the appearance of one of entity’s representative perspectives :

Ei = {vj}, (4.13)

where vj is one of observed views.

E1 model

v1 v2 v3

E2 model

v4 v5 v7v6

EN model

v8 v9 v10

FIGURE 4.22 – Multi-view representation models of three different entities

4.3 Entity learning and recognition

In our study, objects’ overall appearances are explored, while the objects are manipu-

lated. In this part of the thesis, the robot learns about objects through observation, while a

human partner demonstrates the objects by manipulating them. The robot’s perceptual sys-

tem detect proto-objects in the visual space and characterizes each of them by a set of visual

features (as described in Section 4.2), that is learned as a new view or recognized as one of

already known views. Then, each identified view is associated with one of physical entities.

Since our scenario is based on object manipulation, objects often move together with hands

as single proto-objects, thus, we recognize each proto-object either as a single entity or two

connected entities.
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4.3.1 Learning and recognizing view

Each proto-object detected in the visual space is characterized by extracted low-level

features and constructed mid-features. The set of mid-features is associated with one of the

views in the robot’s visual memory either by recognizing a known view, or by creating a

new view. The implemented recognition algorithm is based on a voting method that is used

to estimate the likelihood of a mid-feature set (extracted from the segmented proto-object

area) being one of the views and on a Bayesian filter that is used to estimates a posteriori

probability of each view. The main steps of the recognition and learning procedures are

shown in Fig.4.23. The advantage of this approach with respect to supervised algorithms,

like SVN or boosting, is the ability to learn new views incrementally, without knowing the

number of views in advance and without re-processing all the data while adding a new view.

Voting
Bayesiand

filtering
{mk}

{L(vj)} P(vj)

P(vj)>thv.r

stored

adnewdview

recognize

thedviewdvjd

recognize

anddupdate

thedviewdvj

P(vj)>thv.u

+

+

-

-

Tracking

identified

view

FIGURE 4.23 – The main steps of learning and recognition of views

4.3.1.1 TF-IDF approach

The voting method based on TF-IDF (Term-Frequency - Inverse-Document Frequency)

approach was initially used in text retrieval, as described in Section 3.3.1. In image recogni-

tion, TF-IDF approach is aimed to evaluate the importance of words with respect to images

and to give higher weights to distinctive words. It is often used to represent an image by a

set of visual words from a dictionary and the frequencies of these words. In our algorithm,

this approach is used to learn and recognize views, where each view is encoded as a vector

of mid-features from the dictionary and the frequencies of these mid-features. The statistical

measure evaluates the importance of mid-features with respect to known views, and TF-IDF

weighting technique gives the priority to distinctive mid-features. The likelihood of a set

of mid-features being one of the views is computed as a sum of products of mid-features

frequencies and the inverse view frequency :

L(vj) = ∑
mk∈vj

t f (mk)id f (mk), (4.14)
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where t f (mk) is the frequency of the mid-feature mk, and id f (mk) is the inverse view fre-

quency for the mid-feature mk.

The t f (mk) accumulates the occurrence of the mid-feature in the view, and it is computed

as :

t f (mk) =
nmkvj

nvj

, (4.15)

where nmkvj is the number of occurrences of the mid-feature mk in the view vj, and nvj is the

total number of mid-features in the view vj.

The inverse view frequency id f (mk) is related to the occurrence of a mid-feature among

all seen views ; it is used to decrease the weight of mid-features, which are often present in

different views, and it is computed as :

id f (mk) = log
Nv

nmk

, (4.16)

where nmk is the number of views with the mid-feature mk, and Nv is the total number of

seen views.

4.3.1.2 Voting procedure

During the learning procedure, while the robot observes different objects, we estimate the

statistics of mid-features occurrences among views, and the weights of mid-features relevant

for each view grow proportionally to the number of occurrences. This estimated statistic is

used during the recognition procedure.

For each segmented proto-object, based on the set of its mid-features mk, we compute

the likelihood of recognizing a known view. This likelihood (equation 4.14) of recognizing a

known view is computed based on the voting method shown in Fig.4.24. Each mid-feature

votes for views where it has been seen before with its t f − id f score. The result of the vote

is the likelihood of each view. The voting method is fast, since it uses the inverted index

that allows to consider only the views that have at least one common mid-feature with the

mid-features of the analyzed proto-object.

4.3.1.3 Bayesian filtering

Views of different real objects can be similar, since one object observed from a certain

perspective can resemble another object. The recognition becomes even more difficult, if an

object is occluded that often happens during manipulations. In order to deal with these situ-

ations, the perceptual system should recognize temporally consistent views, assuming that

an object can not change too frequently between two consecutive images. In our approach,

the consistency of recognition is achieved by applying a Bayesian filter that improves tem-

poral consistency of view recognition between consecutive images and reduces the potential
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FIGURE 4.24 – The voting method : each mid-feature extracted from the segmented proto-
object votes for views where it has been seen before

confusion between entities in a short time scale. Based on tracking, we estimate the prob-

ability of recognizing the view from the previous image. The final a posteriori probability

of recognizing a view is estimated recursively using its likelihood, its a priori probability

computed in the previous image, and the probability of being tracked from the previous

image :

pt(vj) = ηL(vj)∑
l

p(vj|vl)pt−1(vl), (4.17)

where L(vj) is the likelihood of recognizing the view vj, pt−1(vl) is a priori probability of the

view vl computed in the previous image, p(vj|vl) is the probability of tracking the view vj

from the view vl of the previous image, and η is the normalization term.

The probability p(vj|vl) is estimated based on the tracking statistics. All views tracked

from the previous image have equal probabilities p(vj|vl) among them, and this probability

is higher than the probability p(vj|vl) of a non-tracked view :

p(vj|vl) =







β, if the view vj is tracked from the view vl seen in the previous image;

1− β, otherwise.
(4.18)

where β is a coefficient, which we set as 0.8, in order to have also a small probability of

recognizing a non-tracked view.

The highest a posteriori probability obtained among all views is compared with several

thresholds that are chosen in a way that allows to perform only stable updates among all

recognized views and to create new views only in assured cases. Thus, the view with the

highest a posteriori probability is
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– recognized and updated with a current set of mid-features, if its probability is higher

than a threshold thv.u.,

– recognized, but not updated, if its probability is higher than a threshold thv.r. with

thv.r. < thv.u.,

– not recognized, otherwise ; thus, a new view with a current set of mid-features is stored

in the visual memory of the robot.

4.3.2 Learning and recognizing entities

The overall appearance of each physical entity is characterized by a multi-view represen-

tation model, where views characterize the appearance of representative perspectives. This

multi-view model is constructed by tracking the entity between images and accumulating

all identified views.

As described in Section 4.1.2, all proto-objects detected in the visual space are tracked

between images, and the tracking record stores the associated to them physical entities labels

from the visual memory of the robot. If the observed entity is tracked from the previous

image, the entity is considered to be the same, and it takes the label of the tracked entity.

If the entity is not tracked from the previous image, its label is identified (as illustrated in

Fig.4.25) based on a maximum likelihood approach computed using a voting method similar

to the one that is used for recognizing views. In this case, each entity is encoded as a vector of

views and the frequencies of their occurrence, and the statistics of the occurrences of views

among entities is estimated. The statistical measure evaluates the importance of views with

respect to known entities, and TF-IDF weighting technique gives the priority to distinctive

views. The likelihood of the current view being one of already known entities is computed

as :

L(Ei) = ∑
vj∈Ei

t f (vj)id f (vj), (4.19)

where t f (vj) is the frequency of the view vj in the entity model, and id f (vj) is the inverse

entity frequency for the view vj.

The t f (vj) accumulates the occurrence of the view in the entity model ; it is computed

as :

t f (vj) =
nvjEi

nEi

, (4.20)

where nvjEi is the number of occurrences of the view vj in the entity model Ei, and nEi is the

number of views in the entity model Ei.

The inverse entity frequency is related to the occurrence of the view among all seen enti-

ties ; it is used to decrease the weight of views, which are present often in models of different

entities :

id f (vj) = log
NE

nvj

, (4.21)
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where nvj is the number of entities with the view vj, and NE is the total number of seen

entities.

Votingvi
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FIGURE 4.25 – The main steps of learning and recognition of entities

The recognition decision is based on the maximal likelihood among all entities ; this like-

lihood is compared with several thresholds (similar to recognition of views) that are chosen

in a way that allows perform only stable updates among all recognized entities and to create

new entities only in assured cases. Thus, the entity with the maximal likelihood is

– recognized and updated with a current view, if its likelihood is higher than a threshold

the.u.,

– recognized, but not updated, if its likelihood is higher than a threshold the.r. with

the.r. < the.u.,

– not recognized, otherwise ; thus, a new entity with a current view is stored in the visual

memory of the robot.

By identifying physical entities and tracking them in the visual space, their multi-view

representation models (like shown in Fig.4.22) are constructed and updated with the views

observed while the entity is tracked between images, like shown in Fig.4.26.

FIGURE 4.26 – The construction of the multi-view representation model : each image shows
the tracked entity and its observed view added to the the entity’s representation model
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4.3.3 Connected entities recognition

In our scenario, objects are explored through manipulation. In this part of the thesis,

manipulations are performed only by a human partner, in the following part the robot also

manipulates objects. As we have observed during our experiments, any kind of manipu-

lation of objects introduces additional difficulties in processing of the visual data. During

manipulations with objects, the human partner’s hand or the robot’s hand moves simulta-

neously with the grasped object, and both the object and the hand holding it are detected

as a single moving proto-object, like shown in Fig.4.27. Moreover, a hand holding the ob-

ject produces multiple occlusions and sometimes divides the grasped object into parts. This

problem requires an object segregation, as it is called in psychology and described in Sec-

tion 2.1. Following this idea, our approach segregates connected entities based on the prior

experience in terms of the knowledge about already seen entities. Once the robot has seen

a human hand or a robot hand moving alone in the visual space, then, the hand can be

recognized as one of the connected entities moving simultaneously.

In order to identify connected entities inside a single proto-objects, we use a double-check

recognition procedure (summarized in Fig.4.28). The intermediate results obtained during

this procedure are demonstrated in Fig.4.29. In the first stage, the most probable view is rec-

ognized based on the highest a posteriori probability among already known views, exactly

as described in Section 4.3.1. During the second stage, the mid-features that do not belong

to the most probable view are used for recognition of another possible view. The connected

view is recognized in case of a high recognition probability (P(vj2) > thv.c.) and the sufficient

number of recognized mid-features. Thus, each segmented proto-object is recognized either

as a single view or as two connected views. Each view is associated with one of physical en-

tities base on the recognition algorithm described in Section 4.3.2. Finally, if both the human

hand and the manipulated object have been seen already, and the corresponding entities ex-

ist in the visual memory of the robot, they can be recognized as connected entities, when the

object is grasped.

The ability to recognize connected entities is really important during manipulation of

objects. It helps to prevent erroneous updates of views and entities models, while an object

is grasped. Since both an object and a hand can be identified as connected entities, the ob-

ject views are not updated with mid-features of the hand views. Moreover, the information

about connected entities is used during the entity categorization presented in Section 7.2 and

during the interactive object learning presented in Section 7.3.
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a)

b)

c)

d)

FIGURE 4.27 – Examples of connected entities : a)input images with objects occluded by a
human hand on 10%, 25%, 50%, and 75% (from left to right) ; b)detected proto-objects with
a human hand and a grasped object moving simultaneously ; c)proto-objects recognized as
connected entities ; d)mid-features (in this case, color pairs) of connected entities (the mid-
features of the first recognized entity are shown by the magenta color, and mid-features of
the connected entity are shown by the blue color

recognize 
a view

(see Fig. 4.23)
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FIGURE 4.28 – The main steps of connected entities recognition
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a) b) c) d)

FIGURE 4.29 – Recognition of connected views : a)all extracted mid-features (in this case,
color pairs) ; b)the mid-features of the first recognized view, c)the mid-features of the second
recognized view, d)the proto-object recognized as connected views (v1 + v3) and associated
entities (E1 + E3)

4.4 Conclusion

The implemented perceptual system presented in this chapter allows the robot to seg-

ment its visual space into regions of interest and to learn or recognized physical entities that

can correspond to objects, human hands, or parts of the robot’s own body. Without the use

of image databases, nor specialized face/skin detectors, the perceptual system acquires all

information about the visual scene by continuously extracting low-level features and syn-

thesizing them into hierarchical representation of entities.

The perceptual system uses the concept of proto-objects as units of visual attention signi-

fying about possible physical entities. The appearances of proto-objects are analyzed using

complementary features that are chosen to consider maximal information about different

visual properties and to characterize well different real-world objects, from simple homoge-

neous objects to more complex textured objects. The chosen complementary features (SURF

and colored superpixels) allow the system to be robust to object texture level, orientation,

scale variations, and illumination. The feature vocabularies are constructed incrementally

by adding new information when it is available. Another advantage of our approach with

respect to simpler Bag of Words approaches is the integration of local visual geometry. Proto-

objects are characterized not only as a collection of low-level features, but also by spatial

relations between low-level features integrated into mid-level features and further used to

encode views. Each view characterizes an entity appearance from one perspective, and an

overall entity appearance is characterized by a multi-view representation model incorporat-

ing possible appearance changes emerging from different viewing angles, scales, and vary-

ing lightning conditions.

The implemented system is based on incremental learning, where new entities and their

views are acquired over time and easily added to the visual memory of the robot as soon as

they are available. The advantage of the chosen learning method with respect to supervised

algorithms (like SVN or boosting) is the ability to learn new entities, without knowing the

number of entities in advance and without re-processing all data while adding new data.
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Another distinctive property of our system is the ability to distinguish between simulta-

neously moving connected entities, that is important in the case of manipulation of objects.

Moreover the recognition of connected entities is used during the interactive object learning,

that will be explored in the second part of this thesis.
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CHAPITRE 5

Experimental evaluation of the
perceptual approach based on

observation of the environment

The implemented perceptual approach is evaluated on the iCub humanoid robot. In this

part of the thesis, the robot learns about its close environment through observation, while a

human partner interacts with the robot and demonstrates different objects. The experimental

setup, the scenario, and the overview of the robotics platform, including its hardware and

software architecture, are described in Section 5.1.

Preliminary evaluation of the perceptual system’s design choices is presented in Section

5.2, where we compare several object detection methods and several object representation

models based on different visual features.

The evaluation of the robot’s learning performance is presented in Section 5.3 including

the evaluation of the robot’s ability to detect physical entities in the visual space and to learn

their visual appearances.

5.1 Experimental setup

In our setup, the iCub robot is placed in front of a table, and the visual input is taken

from a RGB-D sensor mounted at a distance of 75 cm above the robot’s base, like shown

in Fig.5.1a. The RGB-D sensor is used instead of the stereo-vision from the robot cameras,

since it provides a fastest way to acquire reasonably accurate depth data. However, from a

functional point of view, all the experiments could be performed with the embedded stereo-

vision.

The chosen position of the sensor allows to see the interactive area in front of the robot.

The visual field captures objects localized on the table, some parts of the robot body, and

some parts of human partners interacting with the robot. The position of the sensor should
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not be closer to the robot, since the sensor’s minimum viewing distance (needed for acquisi-

tion of depth data) is limited to about 0.45 m, and some robot’s actions result in approaching

the robot hands closer to the sensor.

FIGURE 5.1 – The experimental setup and the robot

5.1.1 Description of the robot

The iCub 1 is a humanoid robot developed during the RobotCub 2 European project. The

robot is about one meter high with dimensions similar to a child at the age of 3.5 years. The

robot is used mainly for research in the domain of developmental robotics, cognition, and

artificial intelligence.

5.1.1.1 Hardware

The robot has stereo-vision sensors, sound sensors, and an on-board controller which

communicates with sensors and actuators. 53 actuated degrees of freedom allow to move

the robot’s head, arms, torso, and legs. The robot’s motor joints can be controlled through

an interface or through communicating commands sent through robot ports described in the

following section. The robot’s motor joints are organized into the following control groups

(see Fig.5.1b) :

– head with 6 main joints,

– two arms with 7 arm joints and 9 finger joints,

– torso with 3 joints,

– two legs with 6 joints per leg.

1. http ://www.icub.org
2. http ://www.robotcub.org
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5.1.1.2 YARP middle-ware

The iCub robot is controlled through the YARP 3 platform, which provides the possibility

to communicate with the robot and to manage the robotic hardware. YARP allows to build

a robot control system as a set of modules communicating between each other and with

hardware devices [Metta et al., 2006].

The communication with the robot is achieved by sending commands though robot

ports. The acquisition of the robot state is accomplished by reading data from robot ports.

Each group of robot motors is controlled through the following ports :

– /robotName/part/state : o used to acquire the information about motors states,

– /robotName/part/rpc : i used for commands that require replies,

– /robotName/part/command : i used for streaming commands.

In our experiments, the robot is controlled through a multi-module architecture devel-

oped for curiosity-driven exploration of the environment and described in Section 8.1.3. The

implemented perceptual system forms one module of this architecture called vision. How-

ever in this part of the thesis, the perceptual system can work separately from the robot,

since it processes only the visual data that can be acquired from any external sensor or from

the robot cameras using the following ports :

– /robotName/cam/le f t connected to our port /vision/input_eyeLe f t : i,

– /robotName/cam/right connected to our port /vision/input_eyeRight : i.

5.1.2 Scenario

In our general scenario, a human partner interacts with the robot in a way similar to an

adult interacting with a child. A human partner demonstrates various objects to the robot,

like shown in Fig.1.2. Each object is demonstrated through manipulation that allows to ob-

serve its different perspectives. In average, each demonstration lasts about one minute and

contains 500 images per object. During object demonstration, neither vocal commands, nor

other kind of supervision are given to the robot, so the perceptual system decides wherever

it observes a new or a known object and associates each real object with as many physical en-

tities and views as needed. The whole set of objects used in our experiments is demonstrated

in Fig.5.2.

We design several interactive scenarios, where objects can be demonstrated one by one

or several objects at the same time ; objects can be demonstrated by placing them on the table

or by holding them in a hand, like shown in Fig.5.3.

3. http ://eris.liralab.it/yarp
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toys bottles tools

FIGURE 5.2 – The objects used in our experiments

a) b) c)

FIGURE 5.3 – Examples of scenarios : a) demonstration of a single object, b) demonstration
of several objects, c) demonstration of an object by holding it in a hand

5.1.3 Evaluation methodology

Our research investigates the exploration of the robot’s close environment including its

entities that can be objects, human parts, or parts of the robot’s body. If in this part of the

thesis, the robot learns through observation, in the next part, the robot learns through in-

teraction, that makes difficult to evaluate the learning performance using existing image

databases. Indeed, as learning is incremental and iterative, it is difficult to have a precise

evaluation of the robot’s performance at a given time. Thus, the robot’s performance is eval-

uated at several stages of the incremental learning process, for example, after each experi-

ment or each image sequence (as shown in Fig.5.4).

Evaluation of unsupervised object learning is a difficult problem. We evaluate our system

at two levels :

– detection and tracking rate are estimated based on labeled images,

– recognition rate is estimated by processing a separate image database.

The evaluation database contains 50 images for each object, and each object is shown

from different perspectives (example of images are shown in Fig.5.5). While processing im-

ages from the database, the outcome from the perceptual system is analyzed in order to

estimate the object recognition rate, the number of physical entities and views associated
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FIGURE 5.4 – The evaluation of the incremental learning process : the system’s ability to rec-
ognize objects is estimated at several stages of the learning process or after each experiment
that can include several blocks, like demonstrations of several objects

with each object.

FIGURE 5.5 – Examples of images from the evaluation database

An object is considered to be detected by the perceptual system, when it is segmented

as a proto-object at a given position. The object detection rate is computed as a percentage of

images with properly segmented proto-objects, with respect to the total number of images

with the object. The tracking rate is estimated as a percentage of tracked proto-objects with

respect to the total number of proto-objects.

In order to evaluate the learning performance of the perceptual system, we analyze

the accuracy of recognition of previously seen objects. While processing images from the

database, we compute the amount of physical entities and views associated with each real

object. The recognition of each real object is analyzed based on the following parameters :

– a major label as the id of the physical entity most frequently associated with the object,

– pure labels as the ids of entities associated with this object, but never with other objects,

– noisy labels as the ids of entities associated with several objects.
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The object recognition rate is computed as a ratio of the number of images with the object

recognized as one of its major/pure labels, with respect to the total number of images with

the object. The recognition rate is estimate for each object based on two types of labels :

– recognition rate based on a major label, as a percentage of an object’s instances as-

signed to its major label,

– recognition rate based on pure labels, as a percentage of an object’s instances assigned

to its pure labels.

5.2 Preliminary evaluation of the system’s design choices

Different issues on computer vision, such as detecting or learning objects, can be resolved

by a variety of image processing methods. During the design of our perceptual system, we

search for the best suitable method for each processing stage, and we compare the efficiency

of alternative methods. In this section, we compare possible ways of object detection and

characterization of object appearance.

Object detection and characterization methods are evaluated based on the experiment,

where a human partner demonstrates 12 objects (shown in Fig.5.6) by manipulating each

object one by one. In total, the experiment lasts about 12 minutes and contains about 6000

images.

FIGURE 5.6 – The set of 12 objects

5.2.1 Evaluation of object detection methods

In our approach, the detection of proto-objects includes several stages, such as mo-

tion processing, isolation of proto-objects based on tracking, and extraction of proto-object

boundaries based on depth contours, as described in Section 4.1. As an outcome, each stage

provides areas of possible proto-objects, and each area can be used as a mask for proto-object

segmentation. Each of the stages produces very different segmentation of proto-objects, and

it effects the object learning performance. We compare the final object recognition and track-

ing rates (shown in Table 5.1) obtained with the following methods of proto-object segmen-

tation :

– segmentation based on moving regions,
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– segmentation based on convex hulls around tracked points,

– segmentation based on depth contours.

TABLE 5.1 – The recognition and tracking rates obtained with different proto-objects segmen-
tation methods

Proto-object
segmentation method

Recognition rate,%
based on pure labels

Recognition rate,%
based on a major label

Tracking
rate,%

Motion-based 86.5 52.2 46.2
Tracked points-based 82.3 51.5 36.8
Depth contours-based 98.2 55.7 75.8

From our experiment, the best results are obtained, when proto-objects are segmented

based on depth contours. Proto-object segmentation based on both moving regions and

tracked points results in a smaller recognition and tracking rates, and produces much more

entities that correspond to parts of the background. Proto-object boundaries based on mov-

ing regions are often shifted from real object boundaries, especially, in case of fast object

motion. However, boundaries based on moving regions provide better results than bound-

aries based on tracked points, since the convex hulls around tracked points often cut parts

of objects and include parts of the background. The proto-object segmentation based on

depth contours outperforms other segmentation methods. The difference in results between

methods are not very large, however, in case of a more complex background, depth-based

segmentation should further outperform other segmentation methods, because they would

include more noisy features from the background.

5.2.2 Evaluation of object representation model

In our approach, objects appearances are characterized by multi-view representation

models. As the basis of each representation model, we use low-level features. While choos-

ing a set of complementary low-level features, we search for features that consider different

visual characteristics, as described in Section 4.2.1. Eventually, we use SURF points, which

are adapted to textured objects, and colored superpixels, which are adapted to homogeneous

objects.

In order to incorporate local visual geometry, low-level features are grouped into mid-

features, as described in Section 4.2.2. Mid-features can be constructed in different ways.

The number of low-level features grouped into one mid-feature effects the informativeness

of mid-features. Since mid-features are used to encode view representations, they also effect

the object learning performance. We evaluate our system with view representations based on

mid-features constructed as pairs and triples of closest low-level features, and the obtained

average object recognition rate is reported in Table 5.2.
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TABLE 5.2 – The recognition rate obtained with different mid-features

Features used in a view representation
Recognition rate,%
based on pure labels

Recognition rate,%
based on a major label

SURF and HSV (low-level) 84.3 40.7
SURF pairs and HSV pairs 97.8 48.5
SURF pairs and HSV triples 88.5 46.8
SURF pairs, HSV pairs, and HSV triples 98.2 55.7

From our experiments, the best recognition rate is obtained, when the view representa-

tion is based on three types of mid-features, such as SURF pairs, HSV pairs, and HSV triples.

Thus, we keep this set of mid-features as a basis for representation of entities views.

According to our algorithm, each low-level feature forms n mid-features with its neigh-

bors. We evaluate our system with several n values, since this parameter effects the size of

a feature set characterizing each view and thus, it effects the informativeness of the view

representation and finally, the object learning performance. The average object recognition

rate obtained with n equal to 2, 3, and 4 mid-features, is shown in Table 5.3.

TABLE 5.3 – The recognition rate obtained with different view representations

Features used in a view representation
Recognition rate,%
based on pure labels

Recognition rate,%
based on a major label

4 SURF pairs and 2 HSV pairs 96.7 48.8
4 SURF pairs and 3 HSV pairs 97.5 53.2
4 SURF pairs and 4 HSV pairs 97.8 55.3
4 SURF pairs and 2 HSV triples 84.8 45.7
4 SURF pairs and 3 HSV triples 89.8 48.0
4 SURF pairs and 4 HSV triples 87.7 50.2
4 SURF pairs, 4 HSV pairs, 4 HSV triples 98.2 55.7

From our experiments, the best recognition rate is obtained, when each color feature

forms 4 mid-features, both pairs and triples. Thus, we keep this configuration for all fea-

tures and construct 4 mid-features for each low-level feature. However, as the results are

quite close, depending on the set of objects and the quality of images, this choice could be

reconsidered in future work.

5.2.3 Recognition of connected objects

In all our experiments, the robot learns objects, while a human partner demonstrates

objects by manipulating them. In this scenario, each object is often grasped by a human
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partner and compose a single moving proto-object with a hand ; this proto-object is identified

by the perceptual system as connected entities, as described in Section 4.3.3.

Various manipulations with objects results in a different amount of an object occlusion

by a human hand. We evaluate the system’s ability to recognize objects occluded by a hand

on 10, 25, 50, and 75%. The evaluation is based on the pre-recorded sequence of images,

where a human partner manipulates 10 objects (shown in Fig.5.7). In this experiment, we

use a smaller set of objects, and we estimate the recognition and the detection rates based on

labeled images. The obtained detection and recognition rate is reported in Table 5.4.

FIGURE 5.7 – The set of 10 objects

TABLE 5.4 – The impact of occlusion on the object detection and recognition rates

Amount of
occlusion, %

Detection rate, %
connected[+single]
entities

Recognition rate, %
connected[+single]
entities

Total
detection/recognition
rate,%

10 54 [+25] 38 [+2] 79/40
25 63 [+7] 32 70/32
50 47 [+6] 18 53/18
75 38 0 38/0

The system is able to recognize objects occluded by a human hand up to 75%. The in-

creasing amount of occlusion decreases the recognition rate, but it is not problematic for

us, since our goal is not a recognition of objects in each single image, but rather continuous

learning of coherent object models using the available information about connected entities.

5.3 The performance of object learning

After having evaluated several parameters with a restricted set of objects, we now turn to

the evaluation of the complete system with the chosen parameters on a larger set of objects.

In this experiment, the robot learns about its close environment through observation, while

a human partner interacts with the robot and demonstrates up to 20 objects shown in Fig.5.8.

In average, the experiment lasts about 20 minutes and contains about 10000 images.

The implemented perceptual system is evaluated over the following characteristics : the

85



FIGURE 5.8 – The set of 20 objects

ability to detect objects in the visual space and the ability to learn their appearances in order

to recognize them later.

5.3.1 Evaluation of objects detection

Detection of objects is evaluated on a pre-recorded sequence of images, where a human

partner demonstrates 20 objects (shown in Fig. 5.8) by manipulating each object one by one.

The detection and tracking rates have been estimated based on labeled images. The percep-

tual system shows an average detection rate of 98% and a tracking rate of 77%.

The detection rate is influenced by each of the stages of proto-object detection, such

as motion processing, isolation of proto-objects based on tracked points, and extraction of

depth contours, described in Section 4.1. Here, we analyze the percentage of proto-objects

isolated based on tracking points with respect to the percentage of proto-objects isolated by

processing depth contours. The isolation of proto-objects based on tracking points, described

in Section 4.1.2, has allowed to detect about 97.8% of proto-objects. The other 0.2% of proto-

objects have not been isolated based on tracking that can occur, when several proto-objects

are static and localized near to each other ; however, these proto-objects have been isolated

properly based on depth contours. Thus, the processing of depth contours allows not only to

precise boundaries of moving proto-objects but also to isolate static proto-objects localized

near to each other.

5.3.2 Evaluation of objects learning

The robot’s learning performance is evaluated on the pre-recorded sequence of im-

ages with a human partner demonstrating 20 objects, as in the previous section. Using the

database (as described in Section 5.1.3, but with 20 objects), we estimate the robot’s ability to

recognize already seen objects. The recognition rate is computed for each object based on its

major and pure labels and reported in the Table 5.5.

The average recognition rate based on pure labels is about 80%-90%, and it differs be-
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TABLE 5.5 – The results obtained by learning through observation : the recognition rate, and
the number of pure entities and views associated with each object

Object
Recognition
rate based on
pure labels,%

Recognition
rate based on
a major label,%

Number
of associated
pure entities

Number
of views in a
major label

Number
of associated
pure views

O1 96 33 6 2 9
O2 90 78 3 3 6
O3 96 40 6 1 6
O4 60 44 3 2 4
O5 41 41 1 2 2
O6 63 40 7 1 7
O7 60 52 2 1 2
O8 100 50 4 1 4
O9 96 32 8 1 9
O10 80 22 8 1 8
O11 84 23 6 1 6
O12 87 47 4 1 4
O13 100 97 2 2 2
O14 87 38 7 1 7
O15 90 25 5 1 5
O16 100 100 1 1 1
O17 100 80 2 2 2
O18 100 99 2 1 2
O19 100 99 1 2 2
O20 83 76 4 1 4
Mean 85.7 55.8 4.1 1.4 4.6
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tween objects. The percentage of objects recognized by major labels with respect to objects

recognized by pure labels is shown in Fig.5.9. Intuitively, objects with different shapes and

colors have been recognized better than objects that are similar between each other from

some of perspectives. From the confusion matrix shown in Fig.5.10, the maximal confusion

has occurred for the object lego-car O11, that was confused with the objects lego-toy O6 and

red bear O2. These three objects have similar colors, and O11 has similar SURF points with the

object O6 (these points are localized on lego blocks with identical features). However, two

identical objects octopus O1 and O3 that differ only by color, have been distinguished rather

well between each other.
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FIGURE 5.9 – The object recognition rate based on major labels (shown by the blue color)
with respect to the recognition rate based on pure labels (shown by the yellow color)
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FIGURE 5.10 – The confusion matrix, where objects are shown in lines, and the associated
physical entities shown in columns ; the color range (from blue to red) represents the per-
centage of objects instances associated with each entity, where the blue color corresponds to
0%, and the red color corresponds to 100%

Examples of created representation models that correspond to major objects labels are

shown in Fig.5.11. At this stage, when the object learning is based on observation only, the

representation models contain just few views ; however, we expect increasing of the number

of views, if objects would be manipulated for a longer time.

Some objects have been associated with several physical entities (examples of major and
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FIGURE 5.11 – Examples of representation models of the major entities that correspond to
the objects O1, O2, O4, O5, and O0 (each model with its views is illustrated in one line)

m m p p p p p p p
O1

m m m p p p
O2

m m p p
O4

FIGURE 5.12 – Examples of major and pure views of the objects O1, O2, and O4 (major views
are indicated by m letter, and pure views are indicated by p letter)
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pure views are shown in Fig.5.12), that occur, when a human partner hides an object out of

the view of the visual sensor and demonstrates another object perspective that makes im-

possible to track the object and therefore, impossible to learn it as a single physical entity.

Multiple physical entities created for a single real object are not ideal, but are already an in-

teresting stage, since in this case, the object learning is based only on observation that is just

one of aspects of object learning in humans. For example, if an object can not be recognized

from a given perspective, humans usually turn the object in order to see one of its repre-

sentative perspective that allows to recognize the object. Exploration of objects in infants

is performed through continuous physical interaction and communication, as discussed in

Chapter 2, and as will be implemented in Part II of this thesis.

5.3.2.1 The influence of the number of learning objects

In our scenario, the total number of learning objects is not fixed. Since the learning is

incremental, new objects can be added continuously. We analyze the effect of increasing the

number of learning objects and its influence to the system’s ability to recognize already seen

objects. In this experiment, we show 20 objects one by one to the robot, and we evaluate the

system’s recognition rate after showing each new object. The obtained average recognition

rate based on both labels is shown in Fig.5.13.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

10

20

30

40

50

60

70

80

90

100

Major label Pure label

Number of learned objects

R
e
c
o
g
n
it
io

n
 r

a
te

, 
%

FIGURE 5.13 – The influence of the number of objects to the average recognition rate

Surprisingly, the recognition rate based on both labels grows, when the number of learn-

ing objects increases, and after learning approximately 8 objects, the recognition rate based

on pure label remains nearly stable. This effect can be explained by the confusion of objects

with the human hand. Since in our experiments, all objects are manipulated by the human,

each object is often seen together with the human hand, and thus, objects are confused not

only between each other but also with the human hand. However, continuous manipula-
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tion of different objects increases the dissimilarity of the human hand from the objects, that

finally leads to the improvement of the average recognition rate.

5.3.2.2 Simultaneous processing of several objects

We also analyze the system’s ability to process multiple objects presented at the same

time in the visual field. The system has been tested with up to 10 objects presented at the

same time in the visual field, like shown the Fig. 5.14, and all of objects has been detected

and recognized.

a) b)

FIGURE 5.14 – Simultaneous processing of several objects : a) 10 objects presented in the
visual field, b) the corresponding segmentation of the visual space

5.3.2.3 Dictionaries growth

While learning objects, all gathered information about their appearances is stored in dic-

tionaries in the visual memory. Thus, the dictionaries grow with the increasing number of

observed objects. The growth of dictionaries over time is shown in Fig.5.15. Once the fea-

ture dictionaries have reached a certain amount of data, they grow slower, since the visual

features can repeat between objects.

In order to enable longer term experiments, dictionaries should be cleaned over time to

suppress insignificant data and to keep only meaningful data that are used often. In this

work, we clean the dictionaries of views and entities during active learning, as will be de-

scribed in Section 7.3. In future work, we plan to clean all dictionaries over time with the

goal of eventually stabilizing their size and the associated computation time.

5.3.2.4 Processing time

We analyze the processing cost of the proposed perceptual system and its main stages,

while the robot learns 20 objects. During incremental learning, the average processing time
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FIGURE 5.15 – The growth of the dictionaries : a) SURF and SURF pairs, b) HSV colors, HSV
pairs, and HSV triples

was about 0.13 sec for images with one detected object. The presence of several objects in

the visual field tends to increase computation time. The distribution of the processing cost

between different stages of the proposed perceptual system is shown in Fig.5.16. The highest

computation cost belongs to the recognition/learning of views, in particularly to the search

of features in dictionaries. The evolution of processing time over time is shown in Fig.5.17.

In addition to the total processing time, we also show the evolution of its most expensive

component with respect to all other processing stages.

Motion processing 
and tracking

Depth processing

Proto-object 
segmentation

Feature extraction

View learning

Entity learning

Categorization

FIGURE 5.16 – The distribution of the processing time between the main stages of the per-
ceptual system

From our experiments, the time required to process an object varies significantly between

objects depending on their complexity or the number of their features. Moreover, the cost of

view recognition/learning increases with the dictionaries growth. Other processing stages,

like proto-object detection, segmentation, tracking, feature extraction, and categorization,

take all together about 0.06 sec per image, and their processing cost stays relatively stable

over time.
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FIGURE 5.17 – The evolution of processing time, where each value corresponds to the time
(in seconds) took to process one image with at least one object : the total processing time
is shown by the yellow color, the time taken by view recognition/learning is shown by the
blue color, and the time taken by other processing stages except view recognition/learning
is shown by the orange color

5.4 Conclusion

In this chapter, we have grounded the design of the proposed perceptual system on ex-

perimental evaluation of possible ways of object detection and characterization. Further, we

have evaluated the system’s learning performance. The system has shown an appropriate

entity detection and recognition rate, while learning 20 objects from demonstration of a hu-

man partner. The system was able to detect and recognize not only objects presented alone,

but also objects manipulated by a human partner. Objects occluded up to 75% and moved

together with a human hand have been recognized as connected entities. The recognition of

connected entities enables the system to be robust to occlusion, and it prevents erroneous

updates of objects models with views of connected entities.

The perceptual system was able to learn different types of objects from simple objects

with few colors to more complex textured objects. The system has shown to be invariant to

object rotation, viewing angle, and small illumination changes. Various manipulations with

objects show, that the system is robust to motion artifacts, and the experiments with complex

background show that the system performs well in case of a visual clutter.
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Deuxième partie

Development of active perception
approach
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CHAPITRE 6

State of the art : interactive perception

Interactive perception is a integral approach towards autonomous learning about the en-

vironment. Interactive perception integrates multiple capabilities, like perception, control,

learning, and planning. Interactive exploration is one of the most informative ways of learn-

ing about the environment, as we have learned from the infants development in Section 2.2.

In interactive exploration of the environment, the knowledge about own body provides

a great capacity. For example, infants start to learn about the world from the development

of a sense of own body, and only later perform interactive actions directed to exploration of

the environment, as discusses in Section 2.2. Self-identification enables to acquire the spatial

understanding of the surrounding environment with respect to the position of own body.

This spatial perception is one of high-level cognitive functions, that allows to achieve needed

effects of own actions and to perform complex actions requiring planning. Different concepts

of self-identification are studied in Section 6.1.

The identification of the robot’s own body in the visual space allows to enhance interac-

tive perception and to improve the efficiently of interactive exploration of the environment.

The robot’s interactive actions are used to learn about objects, their appearance, and other

properties, and also to understand the objecthood, like if an object is graspable or not. The

overview of research studies on interactive perception is presented in Section 6.2, where we

describe approaches aimed on object detection, segmentation, and learning object properties.

The discussion about advantages and limitations of reviewed approaches that led to our

choice of the self-identification method and to design of interactive perceptual approach, are

provided in Section 6.3.

6.1 Robot self-discovery

Among the variety of robot self-discovery methods, most algorithms are based on a prior

knowledge or local approaches. Some strategies exploit a predefined pattern of robot’s mo-

tion, a predefined appearance of the robot body, or body kinematics, such as joint-link struc-
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ture. For example, [Hulse et al., 2009] detects the position of a robot hand holding an object

of a known appearance, and the detection of the hand is based on tracking an object but

not a robot hand. The identification of a robot hand wearing a colored glove is performed

in [Nagi et al., 2011]. Both these techniques simplify the robot self-identification, but impose

some limitations. Since these algorithms are not independent of the appearance of the robot

and its behavior, they cannot be easily adapted to changing appearance of the robot’s body,

nor motion patterns. The independence on a priori knowledge would enable to general-

ize the self-identification over new end-effectors, like a robot part extended by a grasped

tool. The ability to perform actions using a tool, for example, in order to enlarge the robot’s

workspace while reaching a distant object, is already a step towards the development of

high-level cognitive functions.

An early prototype of a biologically inspired self-recognition approach is developed by

W. Grey Walter in 1949 based on robots called Tortoises. These robots had a lamp attached

to their head, and the interpretation of its light in a mirror can be considered as a kind

of self-recognition. This example suggests that self-identification can be achieved through

perception of changes in the environment resulted from own actions [Holland, 1997].

6.1.1 Sensorimotor studies

The sensorimotor studies in robotics take inspiration from both developmental psychol-

ogy discussed in Chapter 2 and neuroscientific aspects. From a neuroscientific perspective,

studies on own body perception indicate about neurons in a monkey cortex that respond

to both visual stimuli with own hand incorporating its extension [Iriki et al., 1996]. From

developmental psychology, humans and animals show the ability to acquire own body rep-

resentation during their development [Rochat and Rochat, 2009].

The early work on detection of a robot hand based on its motion is presented

in [Marjanovic et al., 1996]. The limitation of this approach is its assumption of a sin-

gle moving region in a visual scene. However, in real environments, the visual motion

can be produced by different sources of motion that can be a robot, a human, or other

actors, or even elements of the environment that are influenced by these actors. Con-

sidering the visual motion as a consequence of an action performed by a physical ac-

tor, the visual motion should be almost immediate with the performed action. Following

this idea, the localization of robot hands in the visual space can be based on the time-

correlation between the robot’s action and visual motion, like it is done in the research stud-

ies [Metta and Fitzpatrick, 2003], [Michel et al., 2004], and [Gold and Scassellati, 2005].

The time delay between the initiation of the robot’s movement and the emergence of the

robot parts in the scene is learned in order to identify a robot hand in [Michel et al., 2004].

The robot hand is identified as the first moving entity appearing in the visual field within

the learned time window after the initiation of the robot’s action. This algorithm is able to
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detect both the robot’s motion and its reflection in a mirror, but it is limited to one active

source of motion at a time.

The localization of the robot parts based on the correlation between the ve-

locity of the robot’s movements and the optical flow in images, is proposed

in [Metta and Fitzpatrick, 2003]. This approach allows to localize the robot arm in images

without a prior information about the robot’s visual appearance and also in case of several

sources of motion.

The integration of multimodal sensorimotor experiences gathered during interaction

with the environment and self-observation, is used for acquisition of the robot’s body

schema in [Grzyb and del Pobil, 2008]. The basic body schema is acquired by analogy with

infants development at the stage of the Piaget’s primary circular reactions. This developmen-

tal stage is reproduced in a robot based on simple movements repeated, according to their

model, for a pleasure as a variable that increases, when a certain tension discharges. During

these robot’s movements, the correlation between motor commands and motion in the vi-

sual field is analyzed similar to [Metta and Fitzpatrick, 2003] and used to acquire the robot’s

body silhouette. The basic body schema including both kinematics (length of body parts

and their relative positions) and dynamics (weight, inertia) is constructed by analyzing the

robot’s motion pattern and end-states through proprioception. The following development

of the body schema is accomplished through interaction with the environment by analogy

with the Piaget’s secondary circular reactions, when the robot learns about its own body

through simple actions with objects.

A developmental approach that enables a humanoid robot to define its body based on vi-

suomotor correlation, is proposed in [Saegusa et al., 2012]. The visuomotor correlation is es-

timated using the proprioceptive and sensory information explored during head-arm move-

ments. During the learning stage, the robot performs movements generated by stochastic

motor babbling and senses the visual and proprioceptive feedback in terms of the speed

of visual motion and the speed of a group of robot’s joints. In case of high correlation, the

robot identifies the moving object as its body part and memorizes the visuomotor infor-

mation by accumulating the body posture and visual features in the visuomotor memory.

This method enables the robot to anticipate visual images of its own body and it is adapt-

able to extended body parts. The robot can detect its arms also in occlusion and can pre-

dict the appearance and location of its arms. Continuing this work, the identification of the

robot’s own body is used for learning actions, such as fixation, reaching and grasping ob-

jects [Saegusa et al., 2013].

6.1.2 Identification of self and others

An approach aimed at learning about the robot’s actions and actions of other physi-

cal actors through contingency, is proposed in [Gold and Scassellati, 2005]. In this method,
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self-recognition is achieved by analyzing the time delay between the robot’s action and the

changes in the environment. The generic method of understanding a dynamic environment

is based on actions and perception of responses of these actions :

– responses followed almost immediately after actions are considered as sensing the

robot’s own effectors ;

– responses delayed from actions or responses continued a bit longer after finished ac-

tions are considered as sensing the effects of own actions on the environment ;

– responses further delayed from actions are considered as sensing of actions of other

physical actors.

The autonomous discovering of the robot hand during a natural interaction with a hu-

man is proposed in [Kemp and Edsinger, 2006]. The system uses a spherical camera in the

body’s reference frame and analyzes the visual input and proprioceptive sensing. Mutual

information is used to identify which salient region of the visual space and which visual fea-

tures are influenced by the robot hand. Since the visual system seeks to detect human and

robot parts, it focuses on regions that are close to the camera or move with a high speed.

6.2 Interactive perception

The observation of an environment provides some information about its objects, but of-

ten this information is not sufficient, if we need to perform tasks with objects. In order to

obtain a comprehensive information about an object and to build its useful representation,

the object should be explored through interaction. Interactive learning allows to learn an

overall object appearance and to discover object properties [Kyrki and Kragic, 2008]. The

robot’s ability to actively explore its environment and objects is also known as active vi-

sion [Kootstra et al., 2007].

The active exploration of the environment can be performed through displacement of a

robot or by executing robot actions aimed to interact with its environment. In case of learning

through robots actions, the identification of parts of the robot body is really useful. The

robot self-identification provides a better motor control and more powerful processing of the

visual information during and after interaction. Self-identification helps to analyze changes

in the visual scene resulted from interactive actions.

The interactive exploration of the robot’s environment and objects is investigated in

many research studies ; we focus on

– detection and segmentation of objects from the background, performed

in [Metta and Fitzpatrick, 2003], [van Hoof et al., 2012], [Kootstra et al., 2007],

– object learning and recognition, performed in [Ude et al., 2008], [Natale et al., 2005],

and [Browatzki et al., 2012].
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6.2.1 Detection and segmentation of objects

Active object detection and segmentation can be performed by executing robot actions

aimed at interacting with its environment, like in [Beale et al., 2011], [Kootstra et al., 2007],

[Katz et al., 2010], [van Hoof et al., 2012], and [van Hoof et al., 2012].

The early work on interactive object segmentation [Metta and Fitzpatrick, 2003] proposes

to segment objects using simple interactive actions, like poking. The work shows that simple

actions, without any complex manipulations, already facilitate segmentation of objects. Once

the robot’s arm is localized, the boundaries of contacted objects can be identified.

Interaction-based object identification based on push and grasp actions is performed

in [Beale et al., 2011]. The visual information available during interaction, is processed with

an assumption that pixels within objects move together, that is called "what-moves-together-

belong-together" technique [Kootstra et al., 2007]. In the motion-based object segmentation

approach [Katz et al., 2010], the robot induces an object motion and segments it based on the

assumption that parts of a single rigid body have similar spatial, temporal, and appearance

characteristics.

Another motion-based object segmentation method [van Hoof et al., 2012] is focused on

selection of maximally informative actions to decompose a scene into objects. The changes

in the visual field resulted from robot actions are analyzed not for single image pixels but

rather on region-based level, where regions are composed from pixels that are close in the

Euclidean and color spaces. Then, image regions are grouped into objects assuming that the

regions of the same object should move together, when one of them is pushed. By this way,

objects are represented as graphs of connected segments.

6.2.2 Learning object appearance

Active object learning can be accomplished either, when the robot moves around an

object, or the robot interacts with the object. In the first case, the displacement of the

robot or a camera around an object is used to observe and to learn the object appear-

ance from several viewpoints, like in [Kootstra et al., 2007] and [Paletta and Pinz, 2000]. In

the second case, manual object exploration is used to learn an object appearance from

several perspectives during manipulations, like in [Ude et al., 2008], [Natale et al., 2005],

and [Browatzki et al., 2012].

In some research works on manual object exploration, the robot detects and grasps an ob-

ject by itself, in other scenarios, a human partner provides an object to the robot. For example,

in [Ude et al., 2008], a user places a new object directly into the robot hand, that simplifies the

system, since it does not need object detection and grasp planning. In this work, at first, the

robot moves an object away from the camera and learns the background model. Then, the

robot moves the object closer to the camera, places it in the center of the visual field, and ac-

quires object views by subtracting already learned background. The robot rotates the object
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and generates its representation model from snapshots acquired from different viewpoints.

Another object learning approach that starts with an object already localized in the robot

hand, is proposed in [Browatzki et al., 2012]. In their algorithm, the object segmentation is

accomplished by cropping a central part of the acquired image and by removing an already

learned background. The representations of an object or an object class is generated from

a collection of object views acquired from various viewpoints. The general idea is similar

to [Ude et al., 2008] with the difference, that an object representation is based only on repre-

sentative views acquired by estimating the object orientation adding maximum new infor-

mation. This approach also includes interactive object recognition, as described below.

In [Natale et al., 2005], interaction object learning starts, when the object is also placed

in the robot hand and detected by tactile sensors of the palm. During manual exploration,

the robot approaches the object closer to the camera in four different positions and orienta-

tions. Fixation on the object is accomplished by tracking the robot hand. The object model is

trained using few images acquired at each object position. Learned objects models are used

to modulate the robot’s attention in a top-down way, while searching for objects in the vi-

sual scene. When an object is recognized in the visual field, the robot estimates the object’s

orientation and plans a grasp. Reaching and grasping the object are controlled by using a

previously acquired robot’s body-schema.

Perception and action can be integrated into autonomous learning, when a robot de-

tects and grasps objects by itself and learns objects through interaction without a help of

humans. Furthermore, several research studies are aimed at selecting and planning actions

that would provide a certain effect, like a successful grasp or turning an object into a rep-

resentative viewpoint [Katz et al., 2010], [Natale et al., 2005]. The generation of grasping hy-

potheses that allow to accumulate objects features is performed in [Katz et al., 2010]. In this

work, perception and interaction are integrated for autonomous acquisition of kinematic

structures of rigid articulated objects. The executability of each generated grasp is verified

in order to gather object-specific grasping knowledge.

Active perception is used not only to learn about objects, but also to recognize ob-

jects, like in [Kootstra et al., 2007], [Paletta and Pinz, 2000], and [Browatzki et al., 2012]. Ob-

ject recognition can be based on a robot’s interactive actions executed in ambiguous sit-

uations, when more evidences are needed for recognition. For example, object recogni-

tion based on reinforcing robot actions to turn the object into a discriminative view-

point, is performed in [Paletta and Pinz, 2000]. The perception-driven recognition ap-

proach [Browatzki et al., 2012] distinguishes between similar objects by turning an object

into a representative perspective that allows to recognize it ; likewise, objects are recognized

through rejection of views of other probable objects.

Other research studies on interactive learning are aimed at selecting an object to explore.

Object learning can be based on artificial curiosity [Guerin, 2011], [Oudeyer et al., 2007],
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where an object and an action are chosen based on a certain notion of interest, and the robot

focuses on less explored objects, while monitoring the learning progress.

6.3 Conclusion

Interactive perception provides a powerful capability to explore the robot’s environment

and to learn objects autonomously and efficiently. We are going to use interaction with ob-

jects in order to improve the knowledge about objects and to learn their overall appearances.

Meanwhile, we are interested to identify parts of the robot’s body in the visual space. We fo-

cus on a generic algorithm that is independent on the robot’s appearance and on motion

pattern. We are going to analyze the mutual information between the visual and propri-

oceptive data, similar to [Kemp and Edsinger, 2006], but without constraints on the object

speed and its positions from the camera. Our approach has also some similarities with the

self-identification concept proposed in [Saegusa et al., 2013]. The apparent distinction of our

algorithm consists of analyzing not the speed but rather the localization of motion in the

visual field and at the same moment, estimating a robot’s arm-torso configuration based on

the robot motors states.

The prediction of a robot arm location and action learning are outside of our goal, we

rather focus on interactive object learning using advantage of identification of robot parts in

the visual space. We are going to improve object models through manipulations. However,

during manipulations, an object is grasped by the robot and often overlapped by a robot

hand. Therefore, we use the ability to discriminate robot parts from the object in order to

correctly update object models. Finally, we take advantage of our approach to measure the

quality of objects models that is used to select objects and actions based on curiosity.
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CHAPITRE 7

Active perceptual system
implementation

In this chapter, we describe the proposed perceptual approach that enables the robot

to learn about its close environment through interaction. If learning through observation

(presented in Part I of this thesis) allows to detect physical entities in the visual space and to

acquire some information about their visual appearance, the major part of information about

the environment, its elements, their visual appearances and other properties, can be explored

only through interaction. Therefore, we enhance the perceptual system implemented in Part

I by integrating the possibility of interactive object learning.

In order to interact with physical entities detected in the environment, at first these en-

tities should be localized with respect to the robot. Therefore, we calibrate the visual sensor

relative to the robot, and we estimate the position, orientation and dimensions of each entity

in the operational space of the robot, as described in Section 7.1.

During the robot’s motor activity, the perceptual system analyzes both sensory infor-

mation and proprioceptive data, and based on mutual information between these senses,

the system identifies the parts of the robot’s body among detected physical entities. Among

other physical entities, human parts are discriminated from manipulable objects based on

their motion behavior, as described in Section 7.2.

Once the robot is able to categorize physical entities, it starts to interact with objects. Both

simple interactive actions and manual object exploration are used to improve the knowledge

about objects’ appearances, as described in Section 7.3, and to enhance their representation

models acquired by observation.

The main modules of the proposed active perceptual system are shown in Fig.7.1.
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FIGURE 7.1 – The main modules of the proposed active perceptual system : in addition to
the modules implemented in Chapter 4 (see Fig.4.1), new categorization module classifies
physical entities into parts of the robot’s body, parts of a human partner, or manipulable
objects, and the learning module is enhanced by the possibility of interactive learning

7.1 Entity localization

Interactions with objects require their localization in the operational space of the robot.

In our scenario, the visual input is acquired from the external sensor, thus, the localization

of physical entities provides their position in the reference of the sensor. The localization of

entities with respect to the robot requires to change the reference between the sensor and the

robot. Once the visual sensor is calibrated with respect to the robot, the 3D position of each

entity can be estimated in a the robot’s space. Further, we estimate the entity’s orientation

and its real dimensions that will be used later to plan interactive actions.

7.1.1 Localization of entities with respect to the sensor

At first, the 3D position of each entity is estimated with respect to the sensor (as shown in

Fig.7.2) by retrieving the depth data from the RGB-D sensor and processing them as a point

cloud. The depth data are acquired from the sensor as a depth-map matrix, where each value

is a distance (in meters) between a point in space and the sensor. We compute the coordinates

of each point of the cloud using the formula :

x = xp
z
d

, (7.1)

where xp is a coordinate of a pixel in the depth-map (shown in Fig.7.2), z is the distance be-

tween the sensor and an object, and d is the distance from the sensor to the image projection
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of the object.

In order to estimate d, we use an imaginary point on the focal plane, with coordinates

(xp, yp, d). Given that tan(α) = x
z , we have x = tan(α)z, so xp = tan(α)d. Moreover,

i f xp =
xres

2
, α =

f ovH

2
(7.2)

xres
2

= d tan(
f ovH

2
), (7.3)

d =
xres

2 tan( f ovH
2 )

(7.4)

With this value d, we compute the coordinates of the points :

x = 2z tan(
f ovH

2
)

xp

xres
, (7.5)

y = 2z tan(
f ovV

2
)

yp

yres
, (7.6)

where xp and yp are the coordinates of a pixel in the depth-map, xres and yres are the sizes

of the depth-map, f ovH and f ovV are the horizontal and vertical field of view of the RGB-D

sensor (in radians).

The obtained point cloud represents the scene observed by the sensor with dimensions

of the real scene.

FIGURE 7.2 – The position of the entity with respect to the sensor
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7.1.2 Changing the reference frame between the sensor and the robot

Since the robot performs actions in its operational space, we calibrate the sensor relative

to the robot’s base. The change of the reference frame between the sensor and the robot re-

quires a transformation matrix that can be obtained using a calibration pattern, like a chess-

board, since OpenCV library allows to automatically compute the position of the sensor

relative to a chessboard.

In order to compute the transformation matrix, we need both the position of the chess-

board and its orientation. The orientation of the chessboard is supposed to be known, since

we place the chessboard with a certain orientation. The position of the chessboard with re-

spect to the robot is estimated based on the position of the robot hand placed above the

chessboard, since the robot can communicate the position of its hand. Therefore, we move

one robot hand to the origin of the chessboard (as shown in Fig.7.3) and acquire its position

in the operational space of the robot.

Then, the transformation matrix is computed in the following way :

Tsensor→robot = Tsensor→chessboard × Tchessboard→robot. (7.7)

a) b)

FIGURE 7.3 – The calibration of extrinsic parameters of the sensor with respect to the robot :
a)the acquisition of the position of the calibration pattern in the operational space of the
robot ; b)the reference frames of the sensor, the robot, and the calibration pattern

7.1.3 Localization of entities with respect to the robot

Once the camera is calibrated, the position of entities can be estimated in a new reference

frame. The position of an entity is computed as an average position of its points.
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The orientation of entity’s axes is estimated from eigenvectors and eigenvalues of the

covariance matrix of all entities points. The eigenvectors corresponds to three orthogonal

vectors oriented in the direction maximizing the variance of entity points along their axis.

These eigenvectors are used as a reference frame of the entity.

The quaternion is chosen as a representation of entities’ orientations, since this represen-

tation is compact, fast, and stable [Gaël and Benoît, 2010]. The reference frame of the robot

and the reference frame of the entity are represented using vector triplets. In order to change

the entity’s orientation from one coordinate system to another, we search a quaternion that

allows to align at first the x axis (as shown in Fig.7.4a), and when the x axis is aligned, we

align two other axes (as shown in Fig.7.4b). Each quaternion is obtained from a vector prod-

uct ~Qaxis and a scalar product Qangle giving the axis-angle information :

~Qaxis = ~xe ∧ ~xr, (7.8)

where xe comes from the reference frame of the entity and xr comes from the reference frame

of the robot.

Qangle = arccos(~xe · ~xr), (7.9)

Q =





cos(
Qangle

2 )

~Qaxis × sin(
Qangle

2 )



× K, (7.10)

where K is such that |Q| = 1.

a) b)

FIGURE 7.4 – Changing the reference frame : a)the first rotation aimed at aligning x axes,
b)the second rotation aimed at aligning other axes
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The final entity rotation is obtained using the Eigen3 1 library taking a product of two

rotations :

Q f inal = Q2 ×Q1, (7.11)

where Q1 is the rotation aimed at aligning the x axis of an entity with the x axis of the robot

(shown in Fig.7.4a), Q2 is the rotation aimed at aligning other axes (shown in Fig.7.4b).

7.2 Entity categorization

The categorization procedure is aimed to identify the nature of physical entities detected

in the visual space during natural interaction of the robot with a human partner while ex-

ploring the surrounding environment and learning objects. Each physical entity is classified

into one of the following categories : a part of the robot’s body cr, a part of a human partner

ch, an object co, an object grasped by the robot co+r, or an object grasped by a human partner

co+h. Before identification of the robot’s body, all entities are temporally associated to the

unknown category cu, and their correct categories will be identified in next images.

During the categorization procedure, at first, the parts of the robot’s body are discrimi-

nated among all physical entities, and then, the rest of single entities are distinguished either

as a human part, or a manipulable object category, as shown in Fig.7.5. The connected en-

tities are distinguished either as an object grasped by the robot, or an object grasped by a

human partner category.

7.2.1 Implementation of the robot self-identification algorithm

The self-identification algorithm is aimed to identify the hands of the robot among all

physical entities detected in the visual space, during interaction of the robot with a human

partner.

The implemented algorithm requires minimum prior knowledge, it does not need the

predefined appearance of the robot, the robot’s joint-link structure, or the predefined pat-

tern of the robot’s motion. The independence on the robot’s appearance allows to achieve

robust recognition of the robot hands in case of changing appearance, in case of occlusion,

while holding various objects, and in case of extension of robot’s parts by grasped tools.

The independence on the robot’s behavior enables to perform a variety of interactive actions

with objects in order to learn their appearance. The actions used in our work will be detailed

in Section 8.1.

Taking inspiration from the child sensorimotor development described in Chapter2, we

design a self-identification algorithm that enables the robot to learn about its own body

1. http ://eigen.tuxfamily.org
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FIGURE 7.5 – The main steps of the categorization algorithm : mutual information (MI) esti-
mated from the visual and proprioceptive data is used to identify parts of the robot’s body
among all entities, as described in Section 7.2.1 ; computed mutual information is stored in
the statistics on categorization in the visual memory ; both the statistics on categorization
and the statistics on entities motion are used to discriminate an object category and parts of
a human partner, as described in Section 7.2.2 ; as output from the categorization module,
each physical entity is assigned to one of following categories : a part of the robot’s body cr, a
human part ch, or an object co in case of a single (not connected) entity, and an object grasped
by the robot co+r or an object grasped by a human partner co+h in case of a connected entity
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following a developmental approach. The robot learns to identify its hands, like a child, by

freely moving its hands in the visual space.

During the robot’s motor activity, the visual information is gathered and analyzed to-

gether with the proprioceptive data :

– as visual information, the motion of physical entities is analyzed in terms of their po-

sition in the visual space,

– as proprioceptive information, the states the robot’s arms and torso motors are ana-

lyzed in terms of values of the following joints :

– arm joints, such as shoulder joints (pitch, roll, and yaw), elbow, wrist joints (prono-

supination, pitch, and yaw), as shown in Fig.7.6.

– torso joints, such as pitch, roll, and yaw.

FIGURE 7.6 – The parts of the iCub body, where the head is shown by the yellow color, the
torso motor group is shown by the green color, and the arm motor groups are shown by the
blue and cyan colors

The states of all mentioned motors are acquired as a set of joint values without consid-

ering the functionality of each motor, nor the character of its impact on the displacement

of the robot hands. The analyzed joints are chosen due to their influence on the position of

the robot hands. The robot’s head motor group is not analyzed, since it does not effect on

the position of hands. Finger joints are not considered, since their motion do not produce a

significant visual displacement of the robot hands.

Each time a new image is acquired from the visual sensor, the joint values of the ana-

lyzed motors are acquired through the corresponding arm and torso ports of the robot (as

described in Section 8.2). Both visual and proprioceptive data are quantized in order to re-

duce the dimensionality. The visual space is analyzed at the level of visual clusters obtained

by applying a grid (12x10) producing 120 rectangular regions in the image. The position

of each physical entity is quantized into the closest visual cluster. The set of joint values is

incrementally quantized into a dictionary of arm-torso configurations, where each entry is

encoded by a vector of joints angles. In general, we get about 37 arm-torso configurations.

The quantization is incremental, and it is based on the distance measure between the current

set of joint angles and dictionary entries. If the maximal distance exceeds a specified thresh-

old, a new configuration is added to the vocabulary ; otherwise, the vector of current joint
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angles is assigned to the dictionary entry with the minimal distance. The distance measure

between two sets of joint angles is computed as a L2 distance :

d(a1, a2) = ∑
j
(a1j − a2j), (7.12)

where a1j and a2j are the joint angles of the compared arm-torso configurations a1 and a2.

The correlation between the available visual and proprioceptive data is based on mutual

information, similar to[Kemp and Edsinger, 2006]. Although, in our algorithm, the mutual

information is used to evaluate the dependency of occurrences of the robot’s arm-torso con-

figuration A together with the physical entity Ei localized in the visual cluster L :

MI(LEi ; Aarmk) = H(LEi)− Hc(LEi |Aarmk), (7.13)

where LEi is the position of the entity Ei quantized into the visual cluster L, Aarmk is the

configutaion of the robot’s arm armk quantized into the cluster A, H(LEi) is the marginal

entropy, and Hc(LEi |Aarmk) is the conditional entropy computed in the following way :

H(LEi) = −∑
l

p(lEi)log(p(lEi)), (7.14)

Hc(LEi |Aarmk) = − ∑
aarmk

p(aarmk)∑
lEi

p(lEi |aarmk)log(p(lEi |aarmk)), (7.15)

where p(lEi) is the probability of the physical entity localization lEi ; p(aarmk) is the probability

of the arm-torso configuration aarmk , and p(lEi |aarmk) is the probability of the physical entity

localization lEi , given the arm-torso configuration aarmk .

Since we change the appearance of the robot hands during our experiments presented

in Chapter 8, different entities can characterize different hands’ appearances (for example,

hands with and without gloves, like shown in Fig.7.7). Each physical entity accumulates

several views characterizing small changes in a hand’s appearance resulted for example,

by different hand’s postures. Thus, MI(LEi ; Aarmk) is estimated for each robot’s arm armk

and for each physical entity Ei from the visual memory. Thereby, the robot category cr can be

associated with several entities that corresponds to different appearances of the robot hands.

According to our scenario, the robot’s self-identification is accomplished, while the robot

moves its hands in the visual space that results in growing mutual information for a corre-

sponding physical entity. The entity is identified as the robot category cr, when its probabil-

ity, obtained by normalizing the mutual information to the maximum value for both arms

and for all entities, exceeds a specified threshold thr. On the contrary, the human and object

categories have small mutual information due to their independence from the robot’s mo-

tors. The threshold for identifying the robot category thr is selected though empirical obser-

vation of the distribution of mutual information (shown in Fig.7.8) obtained for the robot’s

113



FIGURE 7.7 – The representation models of three different entities that correspond to the
robot hands

and non-robot’s entities on a small labeled database. Thereby, the physical entity is identi-

fied as the robot category cr, if its probability of being a part of the robot’s body is higher

than thr = 40%, and otherwise, the physical entity is considered as one of the non-robot

categories described in the next Subsection.
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FIGURE 7.8 – The distribution of the normalized mutual information obtained for robot’s
and non-robot’s entities on a small labeled database

7.2.2 Discrimination between the object and human categories

Most objects, like objects used in our experiments, are static most of time, and they are

displaced only by external forces provided by the robot or its human partner. Some objects

can move under the inertia, when they continue motion after interacting with them (for ex-

ample, after pushing). In case of our scenario and performed interactive actions, the motion

of objects under inertia occurs rarely, and among categories analyzed in our work, only the

robot and the human categories can move alone (not connected to other entities). Thus, the

object category can be discriminated from other categories based on the statistics on entities’

motion (see Fig.7.5) as a static entity that moves only connected to other entities.

The statistics on entities’ motion is gathered by the perceptual system while detecting

physical entities in the visual space and identifying them either as single entities moving

alone, or connected entities moving together. This statistics on entities’ motion is analyzed

together with output from the self-identification algorithm described in previous Section
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(that identifies each entities as the robot or non-robot category), and the following statistics

for each entity is accumulated :

– NcEi
as the number of times when the entity Ei moves alone,

– NcEi
6=cr as the number of times when the entity Ei moves alone and is identified as a

non-robot’s entity,

– NcEi
,cEi2

as the number of times when the entity Ei moves together with a connected

entity Ei2,

– NcEi
,cEi2

=cr as the number of times when the entity Ei moves together with a connected

entity Ei2 identified as a robot’s entity.

The gathered statistics on motion is analyzed separately for single and connected entities

based on the following occurrence frequencies :

– fs =
NcEi

6=cr

NcEi

as the occurrence frequency of moving alone as a non-robot’s entity,

– fc =
NcEi

,cEi2
=cr

NcEi
,cEi2

as the occurrence frequency of moving together with a connected entity

Ei2 identified as a robot’s entity.

Analyzing the statistics on motion of single entities, the occurrence frequency fs of mov-

ing alone as a non-robot’s entity should be low for the object category, since object’s entities

usually do not move alone, as discussed earlier.

Analyzing the statistics on motion of connected entities, the occurrence frequency fc of

moving together with a connected robot’s entity should be high for the object category, since

object’s entities often move together with robot’s entities, for example when the robot manip-

ulates objects, and humans’ entities often move together with non-robot’s connected entities,

for example when the human partner manipulates objects.

The discrimination between the object category co and the human category ch is based

on two chosen thresholds tho.s. and tho.c. evaluating the motion of single and connected

entities. Thereby, each single non-robot physical entity is categorized as :

– the object category co, if its occurrence frequencies fc > tho.c. and fs < tho.s. ;

– the human category ch, otherwise.

According to our scenario, the discrimination between the object and human categories

is accomplished, while real objects are manipulated that results in gathering the statistics

on entities’ motion together with the robot and human hands. When a sufficient amount

of statistics is accumulated, the robot is able to classify each single entity into one of the

following categories : co, ch, or cr as shown in Fig.7.9.

If case of connected entities detected in the visual space, the category of each entity is re-

trieved from the statistics on categorization from the visual memory. The connected entities

are categorized as :

– the object grasped by a robot category co+r, if the retrieved category of one connected

entity is the robot category and another is the object category,

– the object grasped by a human category co+h, if the retrieved category of one connected
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entity is the human category and another is the object object category,

– the unknown category cu, otherwise, if none of mentioned conditions is satisfied, for

example, the retrieved categories are the robot category and the human category.

a) b) c) d)

FIGURE 7.9 – Examples of categorized entities : a) the human hand is categorized as the
human category cr ; b) the robot hand is categorized as the robot category co, and the object
is categorized as the object category co after interaction ; c) the object grasped by the robot
are categorized as co+r ; d) the object grasped by the human hand are categorized as co+h

7.3 Interactive object learning

Interactions with environment allows to significantly enhance its exploration. If pure

observation of the environment enables to detect objects in the visual space and to acquire

some information about their appearance, as described in Chapter 4, interaction with objects

allows to improve the knowledge about objects. In our study, interactive actions with objects

are aimed to acquire maximum information about overall objects appearances from different

viewing angles and at different scales.

7.3.1 Improving object models

Once the perceptual system is able to categorize physical entities detected in the visual

space, object entities are explored through interaction with them. The robot performs object-

oriented actions presented in Section 8.1. The information about overall objects appearance

is gathered mostly through manual object exploration including grasping an object, turning

around, and rotating in various directions that allow to observe the grasped object from dif-

ferent perspectives. The appearance at different scales is acquired by approaching an object

to the visual sensor. During manipulations, all acquired information is synthesized with the

previous knowledge gathered through observation, and used to improve an object represen-

tation model by updating it with recognized or newly created views.

Before the robot starts interaction with an object, the perceptual system identifies this

object as one of physical entities. In case of a successful grasp, the system remembers the

grasped entity as Eg, and the model of this entity will be updated during the manipulation

process. This is a kind of self-supervision, where the object is supposed to be the same during
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the manipulation. While interacting with the object, the categorization algorithm is able to

discriminate the object entity from the robot entity, when they move separately or together,

when the object is grasped.
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FIGURE 7.10 – Improving the object representation model during manual exploration

According to our algorithm, the perceptual system continuously detects entities in the

visual space and categorizes them. In the context of interaction with an object, the learn-

ing procedure is summarized in Fig.7.10. If the perceptual system detects connected entities

with one entity identified as the robot category, these entities are carefully analyzed. At this

point, the object can be identified as an object category or one of non-robot categories, if it

was never manipulated before. The categorization of entities has been described in Section

7.2, and here we verify the category of each connected view, in order to prevent erroneous

recognition and to perform learning only in assured cases. Each connected view is associated

with a set of physical entities {Ei} that have this view in their models. The category cEi of

each entity from the analyzed set is retrieved from the statistics stored in the visual memory,

and a view is identified as :

– a robot view, if at least one corresponding entity is identified as the robot category

(∃i, cEi = cr) ;

– a non-robot view, if none of corresponding entities is identified as the robot category

(∀i, cEi 6= cr).

If connected views are identified as a robot’s view and a non-robot view (see Fig.7.11), the
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manipulated entity’s model is updated with a non-robot view.

FIGURE 7.11 – Examples of connected views with their mid-features (HSV pairs) : the red
mid-features correspond to one connected view (in this case, the robot hand), and the blue
mid-features correspond to another connected view (in this case, an object)

If during the manipulation procedure, the perceptual system detects an entity identified

as the robot category with a significant part of features that do not correspond to the entity,

then a new view with the set of these features is stored in the Visual memory. If a newly cre-

ated view will be identified in next images, it can be added to the model of the manipulated

entity.

At the end of the manipulation procedure, the robot releases its hand, and the grasped

object falls on the table and appeared from an unpredicted perspective, that can be still in

the visual space of the robot. In this case, if the perceptual system detects single entities

identified as the robot and the object category, and the object is tracked from the previous

image, we consider, that we observe an effect of the interactive action, and the model of the

manipulated entity is updated with the current object view. Thereby, the robot can explore

the object appearance by grasping it, throwing, and updating its model with the observed

view. As a summery, the active perceptual system is capable to learn objects appearances

during manual exploration and in between interactive actions.

7.3.2 Cleaning visual memory

After manipulations, the perceptual system performs a check of the visual memory and

cleans the dictionaries of entities and views. The dictionary of entities is filtered by suppress-

ing noisy entities that have no proper views associated only with this entity. The dictionary

of views is filtered by suppressing views that have no associated entities ; such views could

be created during learning but never adding to entities models. The filtering of both dic-

tionaries makes the robot’s knowledge about physical entities more coherent, and it should

improve the object recognition.
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7.4 Curiosity-driven object exploration

The active perceptual system implemented within the scope of this thesis composes a

part of the research performed within the MACSi project 2. The goal of the MACSi project

is to provide a humanoid robot with developmental capabilities that enables the curiosity-

driven exploration of the environment.

The curiosity-driven learning takes inspiration from spontaneous attraction of humans

toward different activities known as Intrinsic Motivation [Edelman, 1997]. In robotics, the

curiosity-driven learning is based on monitoring the evolution of learning progress. In case

of object exploration, curiosity-driven mechanisms measure the learning performance while

exploring one object, and switch the attention to another object, when a certain learning

progress is achieved. The curiosity-driven exploration of objects is aimed at focusing on a

less explored object until gathering a certain quality of knowledge about this object.

In this work, the curiosity-driven exploration of objects integrates interactive object

learning with intrinsic motivation within a multi-module Cognitive Architecture described

in Section 8.1.3. Among the modules of this architecture, the implemented perceptual sys-

tem constitutes one module, the curiosity mechanism is incorporated to another mod-

ule. The Curiosity module uses the intrinsic curiosity mechanism based on the Socially

Guided Intrinsic Motivation with Active Choice of Teacher and Strategy (SGIM-ACTS) al-

gorithm [Nguyen and Oudeyer, 2013]. The implemented perceptual system detects physical

entities in the visual space and communicates the information about them to the Curiosity

module that estimates the learning progress. Since the perceptual system characterizes each

detected entities by its multi-view representation model, as described in Section 7.3, the qual-

ity of this model is used to estimate the learning progress. Therefore, the perceptual system

transmits the following information about each detected entity to the curiosity-driven mod-

ule :

– 3D position,

– orientation,

– the id of the physical entity and the id of its currently observed view,

– the probability of recognizing the physical entity,

– the probability of recognizing the view,

– the total number of views in the representation model of the physical entity.

The learning progress is evaluated using the recognition performance and the quality

of representation models estimated based on the number of views in the model, the recog-

nition performance, and the recognition rate of each view. The precise description of the

SGIM-ACTS algorithm is outside the scope of this manuscript, but details can be found

in [Nguyen and Oudeyer, 2013]. As a general behavior, this algorithm choose actions that

may lead to the highest learning progress using the intrinsic motivation mechanism. The

2. http ://macsi.isir.upmc.fr
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intrinsic motivation is combined with a social guidance in the following ways :

– social cheering is used to encourage the robot to pursue some of sensorimotor activities

and to abandon others,

– stimulus enhancement is used to attract the robot’s attention to one of objects, which

is then learned by the robot on its own.

The balance between the autonomous curiosity-driven exploration and social guidance al-

lows to achieve continuous and efficient learning.

7.5 Conclusion

In this chapter, we have described an extension of the perceptual system described in

Chapter 5 to interactive scenario, where the robot explores the environment though interac-

tive actions. Physical entities detected in the visual space are categorized into parts of the

robot’s body, human parts, and manipulable objects. The categorization algorithm requires

minimum prior knowledge, it does not need predefined appearance of the robot, its joint-

link structure, or predefined pattern of motion.

The categorization of entities is used to enhance the interactive object learning aimed to

gather the information about an object appearance and to integrate it in its representation

model. During interactions with an object, the categorization procedure enables to distin-

guish the robot hands (its entities and views) from an object, even if an objects is grasped.

Thus, a representation model of the manipulated object can be updated with non-robot

views preventing erroneous updates and improving the knowledge about the object.
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CHAPITRE 8

Experimental evaluation of the active
perceptual approach

The performance of the implemented active perceptual system is evaluated on the iCub

humanoid robot exploring its environment in an interactive scenario. The experimental

setup, the scenario, and the robot’s actions performed during our experiments are described

in Section 8.1.

During the experiments, the robot is free to move its hands, head, and torso. The robot’s

actions are aimed at first at categorizing entities by identifying parts of the robot’s own body

in the visual space and discriminating manipulable objects from other detected entities. The

evaluation of the categorization performance is presented in Section 8.2.

Once the robot is able to categorize entities localized in the visual space, it interacts with

objects in order to improve the knowledge about their appearances. The evaluation of in-

teractive object learning is presented in Section 8.3. The results obtained during interactive

learning are compared with the results obtained during learning through observation pre-

sented in Part I of this thesis.

8.1 Experiment setup

The experimental setup is similar to the one already described in Chapter 5 with the

main difference, that the robot can interact with its environment through actions directed to

entities detected in the visual space. Thus, the visual sensor is calibrated with respect to the

robot, and all physical entities detected in the visual space are localized in the operational

space of the robot, as described in Section 7.1. The robot learns about the environment and

its entities through interactive actions and observation of these actions and resulted changes

in the visual space.
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8.1.1 Reference frame

All robot’s actions performed in our experiments are based on the robot’s root reference

frame located in the middle of the torso, like shown in Fig.8.1. The axes of this reference

frame are :

– z axis pointing upwards parallel to gravity,

– x axis pointing behind the robot,

– y axis pointing laterally as the right hand.

FIGURE 8.1 – The root reference frame of the iCub robot

8.1.2 Description of the robot’s actions

The robot’s interactive actions are aimed at achieving the following goals :

– identification of parts of the robot’s body that can be accomplished through free hand

motion or random repetitive actions, like infants do while exploring their own body,

– discrimination of manipulable objects from other physical entities that can be accom-

plished through actions directed to entities detected in the visual space and observa-

tion of effects of performed actions,

– learning objects appearances that can be accomplished through object manipulation

and certain object-oriented interactive actions.

The robot’s actions require the control of motor joints that can be accomplished by send-

ing commands to the robot. Among the control commands, we use both simple action prim-

itives, like reach, push, take, and complex manipulations designed in [Ivaldi et al., 2012a].

These actions have been implemented by our partners in ISIR in the frame of the MACSi

project. The simple action primitives used during experiments lead to execution of com-

mands :

– reach action primitive leads to moving a robot hand to the position above an object,

while keeping fingers open,
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– push action primitive consists of reaching an object from a side and pushing it by one

robot hand in the direction of the other hand,

– take action primitive leads to a three-finger pinch grasp from the top of an object.

The complex manipulations are aimed to explore an object appearance in a most infor-

mative way, and they are designed as a sequence of action primitives :

– TakeLiftFall manipulation consists of reaching an object, taking it, lifting, and releasing

that allows to see a random object perspective, when the object falls on the table,

– TakeObserve manipulation consists of reaching an object, taking it, turning, approach-

ing to the camera, and returning to the table, that allows to observe different object

perspectives and appearance details at a close scale during manipulation.

After each action the robot returns its hand to the initial position that is outside the field

of view of the sensor. In order to ensure compliance during actions, the impedance control is

activated at the main joints of the torso and arms. The estimate of joint torques and external

forces is based on proximal force/torque sensors located in the middle of arms, and it is

performed using an iDyn library for inverse dynamics [Ivaldi et al., 2011].

8.1.3 Software architecture

The robot is controlled through a multi-module Cognitive Architecture (CA) combining

perception, action, and curiosity-driven behavior [Ivaldi et al., 2012b]. This architecture is

especially designed for learning in the context of developmental robotics. The work is per-

formed within the MACSi project 1, and it based on the development of the following robot’s

skills needed to learn about the surrounding environment :

– perceptual skills are developed within the scope of this thesis and include the capabili-

ties of the implemented perceptual system,

– motor skills including adaptation and extension of robot control techniques used

to perform actions and to learn generic affordances during interaction with ob-

jects [Ivaldi et al., 2012a],

– exploration of sensorimotor spaces in changing body and environment including adaptation

of intrinsic motivation systems [Nguyen et al., 2013].

All skills developed for the iCub robot are integrated into the Cognitive architecture

(shown in Fig.8.2), where each module provides certain functionalities implemented by one

of the partners : ENSTA ParisTech 2, GOSTAI 3, INRIA 4 and ISIR 5. The communication be-

tween modules and the robot is accomplished through the YARP middle-ware providing an

interface to the robotic hardware and devices, as described in Section 5.1.1.

1. http ://macsi.isir.upmc.fr
2. http ://cogrob.ensta-paristech.fr
3. http ://gostai.com
4. http ://flowers.inria.fr
5. http ://isir.upmc.fr
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The perceptual system implemented within the scope of this thesis is embedded in the

CA as a Vision module that communicates with the Decision Making module and acquires

some data directly from the robot. As the outcome, the Vision module send the information

about detected physical entities to the Decision Making module (as described in Section

7.4) through the output port /vision/objIn f o : o. As input data, the Vision module receives

the information about the currently performed action from the Decision Making module

through the input port /vision/actionIn f o : i. Furthermore, the Vision module required the

states of the robot arms and torso needed for the entity categorization algorithm ; these data

are acquired from the robot using the following YARP ports :

– /iCub/le f t_arm/state : o connected to our port /vision/part_armLe f t : i,

– /iCub/right_arm/state : o connected to our port /vision/part_armRight : i,

– /iCub/torso/state : o connected to our port /vision/part_torso : i.

8.1.4 Scenario

In our scenario, a human partner interacts with the robot, like it is described in Section

5.1, and the robot interacts with its surrounding environment in order to explore it efficiently.

At first, a human partner demonstrates objects to the robot, and each demonstration lasts

about one minute and contains in average 500 images per object. Then, the robot explores

its environment through interaction. The robot performs simple repetitive actions aimed at

exploring the visual space and identifying its own hands ; these actions last about 8 min-

utes and contain about 3000 images. Further, the robot interacts with its close environment

through object-oriented actions. In average, a simple action, like push, lasts about 0,5 minute

and contains about 250 images ; a complex manipulation, like TakeObserve, lasts about 1,5

minutes and contains about 750 images.

8.2 Evaluation of entity categorization

The robot’s ability to categorize detected physical entities into parts of own body, hu-

man parts, and manipulable objects is evaluated in the interactive scenario while both the

robot and its human partner perform actions aimed at exploration of the surrounding en-

vironment. The categorization rate is computed as a percentage of successfully categorized

physical entities with respect to the total number of images with these entities.

8.2.1 Evaluation of self-identification

The robot’s self-identification is evaluated on several pre-recorded image sequences and

pre-recorded data from robot joints. In one sequence, the robot performs free hand motion

and interactive actions described in Section 8.1.2 (see Fig.8.3) ; in total, these actions last

about 12 minutes and contain about 4900 images. In the other sequence, both the robot and
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its human partner move their hands in the visual space (see Fig.8.4) ; in total, this sequence

lasts about 10 minutes and contains about 3800 images.

FIGURE 8.3 – Examples of images, where the robot performs free hand motion and simple
repetitive actions

FIGURE 8.4 – Examples of images, where both the robot and its human partner move their
hands in the visual space

The perceptual system continuously analyzes the sensory and proprioceptive data in

order to discriminate parts of the robot’s body from other physical entities detected in the

visual space. As a ground truth, we use the expected position of the robot hand estimated

though the forward kinematics model and acquired through the YARP ports. Therefore, if

the perceptual system detects an entity categorized as a robot part at its expected position,

we consider that categorization is correct.

The categorization procedure has shown to identify the robot’s hands within the first 8

seconds of their motion in the visual field. In average, the self-identification rate was about

98.2% during the robot’s motor activity.

The implemented self-identification algorithm was tested with several appearances of

the robot hands. The appearance of the robot hand was changed by wearing colored gloves,

as demonstrated in Fig.8.5. All actions performed with the initial appearance of the robot

hands were repeated, while wearing each type of gloves. The obtained self-identification

rate with each appearance of the robot hand is reported in Table 8.1. From our experiments,

the system has shown to be independent on the robot hand appearance :
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– in case of wearing the blue gloves, the average self-identification rate was about 98.1%,

– in case of wearing the pink gloves, the average self-identification rate was about 98.0%.

FIGURE 8.5 – Changing the appearances of iCub hands : a) initial appearance, b) wearing the
blue glove, c) wearing the pink glove.

TABLE 8.1 – Average self-identification rate

Robot hand appearance Self-identification rate,%

Initial appearance of robot hands 98.2
Robot hands with the blue glove 98.1
Robot hands with the pink glove 98.0

The obtained self-identification rate slightly varies between different appearances of the

robot hand, that can be explained by the size of the worn gloves and the similarity of their

appearances with appearances of other non-robot entities. Slightly lower self-identification

rate obtained in case of the pink glove can be caused by a large size of the glove that reduces

the visibility of a hand motion. Moreover, both types of gloves simplify the appearance of the

robot hand with respect to its initial appearance that has a lot of visual features near finger

joints. The simplification of the robot hand appearance can result in increasing similarity to

other non-robot entities appearances, that decreases the accuracy of entities recognition and

thus, decreases the self-identification rate.

8.2.2 Evaluation of categorization of objects and human parts

Once the robot’s body is identified, the robot starts to explore its close environment

though interactive actions directed to physical entities localized in the visual space at a

reachable distance. Among interactive actions, the robot performs simple actions, like push,

or manipulations, like TakeLiftFall and TakeObserve described in Section 8.1.1. In this experi-

ment, both the robot and its human partner interact with objects. Interactive actions of the

robot are aimed to move or grasp an entity and to verify its displacement in the visual field.

Further, in case of a successful grasp, manipulation is used to explore an object appearance,

that will be analyzed in the following section. During interaction with entities, the percep-

tual system continuously gathers the statistics on visual motion of entities and categorize
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them. The robot’s ability to distinguish between manipulable objects and human parts is

evaluated a posteriori by labeling entities with their correct categories.

We have evaluated the robot’s ability to categorize human parts and 20 objects on a se-

quence of about 30000 images recorded during one hour. In this experiment, manipulations

of all objects by the human partner last about 20 minutes, and the robot’s actions and ma-

nipulations of objects last about 40 minutes. Each object has been successfully identified as

an object category during the first 5-10 seconds of interaction with it, as shown in Fig.8.6.

Human parts have been categorized correctly in 89% of images.

FIGURE 8.6 – Categorization of five objects based on the probability p(cEi = co) of being an
object category co ; each object appears in the timeline as an unknown category cu, and once
it is categorized, its category is marked in the timeline (in this case, the category co)

8.3 Evaluation of interactive object learning

Once the robot is able to categorize physical entities detected in the visual space, the robot

starts to explore objects by interacting with them. The ability to categorize entities allows to

discriminate the robot hands from objects, when they are seen alone or moving together as a

single proto-object. Moreover, entity categorization allows to identify object views inside the

robot hands, while the object is grasped and thus, allows to learn the object through manual

exploration.

In case of a successful grasp of an object entity, the robot explores it based on one of ma-

nipulations, like TakeLiftFall or TakeObserve, described in Section 8.1.1. Examples of images

with the manipulation TakeObserve are shown in Fig.8.7. In total, the manual exploration of

20 objects lasts about 30 minutes for each type of manipulation and contains about 15000

images. Manual object exploration is aimed at gathering maximum information about an

object’s appearance in order to improve its representation model acquired during observa-

tion.

After the manual exploration of all objects, the learning performance is evaluated based

on the database described in Section 5.1.3. The recognition rate based on major and pure
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FIGURE 8.7 – Examples of images, where an object is explored based on TakeObserve manip-
ulation : the object is grasped, lifted, rotated, approached at a closer distance, turned around
to observe its different perspectives, and posed back to the table

labels, the number of pure entities and views associated with each object, are reported in

Table 8.2, where all obtained values are presented in pairs comparing the results of learn-

ing though interaction (and cleaning dictionaries described in Section 7.3.2) with the results

obtained during learning through observation presented in Section 5.3.

For most of objects, the interactive learning results in increasing of the recognition rate

based on a major label with respect to the results of learning through observation, and this

improvement is shown in Fig.8.8 with respect to the final recognition rate based on pure

labels. The recognition rate based on pure labels remains nearly stable, as we have obtained

during learning through observation. The changes of recognition rate based on both labels

can be explained by the concept of the interactive learning procedure. In our algorithm,

interactive learning is aimed at updating the model of a grasped entity that improves the

informativeness of the grasped entity model. Thus, interactive learning can improve the

major entity label, while leaving other pure labels without significant changes.

Learning through interaction enhances the objects models, since the number of views

inside models increases. For objects whose appearances significantly vary between perspec-

tives, the manual exploration is especially useful. While manipulating an object, the percep-

tual system integrates all recognized views into the representation model of the grasped en-

tity, that enhances the model and makes it more complete. Moreover, the system creates new

views that correspond to previously unknown object perspectives. From our experiments,

the learning through interaction results in enhancement of the models that correspond to

major labels of the following objects O1, O2, O3, O8, O9, and O11. The improvements of sev-

eral models (in particularly, views added to these models) are shown in Fig.8.9.

As we discussed in Section 5.3.2, learning through observation results in association of a

single real object with several physical entities. However, interactive learning allows to con-
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TABLE 8.2 – The results obtained by learning through interaction : all values are presented in
pairs comparing results of learning through interaction / with respect to learning through
observation

Object
Recognition
rate based on
pure labels,%

Recognition
rate based on
a major label,%

Number
of associated
pure entities

Number
of views in a
major label

Number
of associated
pure views

O1 96/96 45/33 4/6 3/2 9/9
O2 100/90 92/78 3/3 4/3 8/6
O3 98/96 82/40 3/6 3/1 5/6
O4 58/60 44/44 1/3 2/2 2/4
O5 91/41 52/41 3/1 2/2 3/2
O6 63/63 40/40 4/7 1/1 4/7
O7 60/60 60/52 1/2 1/1 1/2
O8 100/100 86/50 3/4 2/1 4/4
O9 89/96 33/32 4/8 2/1 5/9
O10 80/80 23/22 5/8 1/1 5/8
O11 84/84 35/23 5/6 2/1 6/6
O12 87/87 63/47 2/4 1/1 2/4
O13 100/100 100/97 1/2 2/2 2/2
O14 87/87 51/38 4/7 1/1 4/7
O15 94/90 41/25 3/5 1/1 3/5
O16 100/100 100/100 1/1 1/1 1/1
O17 100/100 100/80 1/2 2/2 2/2
O18 100/100 100/99 1/2 1/1 1/2
O19 100/100 100/99 1/1 2/2 2/2
O20 83/83 76/76 2/4 1/1 2/4
Mean 88.5/85.7 66.2/55.8 2.6/4.1 1.8/1.4 3.6/4.6
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FIGURE 8.8 – Improvement of the object recognition rate : the recognition rate (based on
major labels) obtained through observation is shown by the blue color, the improvement of
this recognition rate during interactive learning is shown by the orange color, and the final
recognition rate (based on pure labels) is shown by yellow color
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FIGURE 8.9 – The representation models of the major entities that correspond to the objects
O1, O2, and O3 (each model with its views is illustrated in one line), where the views added
to the models during interactive learning are shown after the + sign
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solidate the knowledge about the objects within major entities and to decrease the number of

entities associated with objects. The total number of entities and views decreases mostly due

to cleaning dictionaries described in Section 7.3, that is performed after manipulations with

objects. The number of entities obtained during learning through observation, during learn-

ing though interaction, and after cleaning dictionaries is reported in Table 8.3. The number

of entities grows a bit during interaction and then, it significantly decreases after cleaning

dictionaries.

TABLE 8.3 – The comparison of results obtained during learning though observation and
during interactive learning with and without cleaning dictionaries

Recognition
rate based on
pure labels,%

Recognition
rate based on
a major label,%

Total number
of pure entities

Learning through observation 85.7 55.8 81
Learning through interaction
without cleaning dictionaries

88.4 54.2 85

Learning through interaction
with cleaning dictionaries

88.5 66.2 52

We also compare the average recognition rate based on both labels during learning

through observation, during learning though interaction, and after cleaning dictionaries.

From our results, the interactive learning with cleaning dictionaries not only makes the

robot’s knowledge more coherent and removes noisy entities but also leads to significant

improvement of object recognition rate based on major labels.

8.4 Evaluation of curiosity-driven object exploration

Active object exploration is integrated with the social guidance and the robot’s curiosity,

as described in the curiosity-driven exploration approach described in Section 7.4. The per-

formance of the curiosity-driven object exploration was evaluated in [Nguyen et al., 2013].

In our experiment, the robot actively explores 5 objects (shown in Fig.8.10) for about one

hour. During the learning process, the curiosity mechanism monitors the learning progress

and notifies decisions. The decisions are determined by a triple [object, action, actor], where

the robot communicates

– the object needed to be explored,

– the action needed to be performed,

– the actor who performs the action.

As an actor, the robot can ask a human partner to perform an action with an object, or the

robot performs the action by itself. If an actor is the robot, the repertoire of possible actions
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is described in Section 8.1. If the robot asks a human partner to perform an action, the action

is either the presentation of a new object, or manipulation of the object that can provide a

view unpredictable for the robot.

FIGURE 8.10 – Objects used for curiosity-driven exploration

The efficiency of social guidance strongly depends on a human partner. A human partner

demonstrating objects properly, showing each time one of previously unseen object perspec-

tives, is considered as "unbiased" teacher. In contrast, a human partner demonstrating objects

each time from the same perspective, is considered as "biased" teacher. The curiosity-driven

exploration of objects is evaluated with both types of teachers, and the results are compared

with a random exploration strategy based on random choice of objects and actions. The

average object recognition rate (based on major labels) estimated during the learning pro-

cess is shown in Fig.8.11a. The curiosity-driven object exploration has shown a higher learn-

ing progress compared to the random exploration strategy. Thus, we consider the curiosity-

driven behavior as advantageous for efficient and continuous exploration of the robot’s en-

vironment.

We also analyze how well the robot distinguishes each object based on f-measure esti-

mated as the harmonic mean of precision and recall. The f-measure and the objects manipu-

lated at each timestamp are shown in Fig.8.11b.

From our experiments, the robot manipulates the object cube more often than other ob-

jects, and especially when the learning progress increases. Among all objects, the cube is most

complex object, since its views vary significantly (see Fig.8.12). The frontal view of the cube

consists of four small components, while lateral views consist of two small components with

different colors that change depending on the object’s side. Moreover, some views of the cube

are rather similar to views of other objects, like the object bus.

Manipulation of complex objects provides more information than manipulation of sim-

ple objects, since the appearance of a complex object can change significantly depending on

the viewing angle resulted from the performed action. Our experiment has shown that more

complex object are requested more often. For example, the robot has spent 54% of its time

by exploring the cube. Also it shows, that our perceptual system adapts correctly to the ob-

jects complexities and represents objects by the reasonable number of views that allows to

efficiently recognize each object. Moreover, the system is able to provide a good measure of

the quality (described in Section 7.4) of objects representation models.
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FIGURE 8.11 – Curiosity-driven object learning : a) the average recognition rate obtained at
different stages of the learning process for with two different ; the results are computed for
both "biased" and "unbiased" teachers using the curiosity-driven exploration strategy and
random exploration strategy ; b) f-measure with respect to time. At the bottom of the plot,
the manipulated object is shown at each timestamp [Nguyen et al., 2013]

FIGURE 8.12 – Views of the object cube
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8.5 Conclusion

In this chapter, we have evaluated the performance of the interactive perceptual system.

The system has shown a good categorization performance while identifying parts of the

robot’s own body, human parts, and manipulable objects. The robot’s hand was correctly

categorized within the first 8 seconds of its motion in the visual field. The self-identification

algorithm has shown to be independent on the robot’s appearance and on behavior of the

robot’s motion. Each object was correctly categorized during the first 5-10 seconds of inter-

action with it.

While learning object through interaction, we have achieved a higher learning perfor-

mance compared to simple observation of objects evaluated in Chapter 5. Manual explo-

ration was especially useful for objects, whose appearances significantly vary between per-

spectives. Interactive object learning has shown to improve the knowledge about objects

appearances and the informativeness of their representation models previously gathered

during learning through observation. From our experiment, models of manipulated objects

have been updated with both recognized view and newly created views that correspond to

previously unknown object perspectives.

Our system is also able to provide a good assessment of the quality of object models, that

has been successfully used to guide the choice of action toward more complex objects for

improving knowledge, during the curiosity-driven exploration.

135



136



CHAPITRE 9

Conclusion and discussions

In this work we have developed a perceptual approach that enables a humanoid robot

to explore its close environment in an interactive scenario, following the context of devel-

opmental learning. Taking inspiration from infants development, the robot learns through

interaction with a human partner and its own interactive actions. The perceptual system is

able to detect physical entities in the visual space, to synthesize the acquired information

about their appearances into hierarchical representation models, and to categorize entities

into parts of the robot’s body, human parts, and manipulated objects. Based on these cate-

gories, the robot focuses on manual object exploration aimed at acquiring maximum knowl-

edge about overall appearances of objects and improving their representation models.

9.1 Summary of the approach

The implemented algorithm does not require image databases, predefined objects ap-

pearance, or specialized detectors, such as face/skin/skeleton detectors. The proposed ap-

proach is based on online incremental and continuous learning. The perceptual system au-

tonomously detects physical entities based on the concept of proto-objects and visual at-

tention. The proto-objects appearances are characterized not as a simple collection of low-

level features but rather integrating low-level features and their relative locations into more

complex mid-features and further, into multi-view representation models of entities appear-

ances. The multi-view model allows to overcome possible changes of the object’s appearance

emerging from different viewing angles, scales, and varying lightning conditions. Incremen-

tal learning allows to learn new entities and their views over time without knowing the

number of entities in advance. As soon as new data are available, they are easily added to

the visual memory without re-processing all known data. The entity recognition is based

either on tracking, or on its appearance. Entities can be recognized in both cases : when

they are isolated and when several entities move together as a single proto-object, that often

occurs during an object manipulation.
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Physical entities are categorized into parts of the robot’s body, human parts, and manip-

ulated objects based on motion behavior and mutual information between the sensory and

proprioceptive data. The categorization algorithm does not require predefined appearance

of the robot, or predefined pattern of motion. The robot self-identification algorithm is inde-

pendent on the robot hand’s appearance, that was tested by changing the initial appearance

of the hand by wearing colored gloves. The system is able to visually identify the robot’s

hand within few seconds of its motion, and manipulable objects are distinguished within

few seconds of interaction with them. The recognition and categorization of entities enable

to discriminate the robot’s hands from objects, when they present alone or move together as

a single proto-object. Moreover, entity categorization allows to identify object’s views inside

the robot hand, while the object is grasped and thus, allows to learn the object’s appearance

during manipulations.

Interactive object exploration allows to significantly improve the knowledge about ob-

jects appearances. In our algorithm, the information about an object is acquired in between

interactive actions and also during manipulations, while the object is grasped. All informa-

tion acquired about the object’s appearance, such as recognized views and newly created

views, are integrated into the representation model of the object. According to our experi-

ments, the interactive learning improves informativeness and quality of representation mod-

els due to the increasing number of views and suppression of noisy entities. The ability to

recognize and categorize connected entities prevents noisy updates of manipulated objects’

models. Thus, the average recognition accuracy increases after learning through interaction.

9.2 Discussion and current limitations

Based on experimental evaluation of the proposed perceptual system, we reveal several

issues limiting the capacity of the system, and thus, we describe how these issues can be

resolved.

9.2.1 Dependence on RGB-D sensor

The perception begins from input data acquisition from a visual sensor. In our system,

the visual input is taken from an external RGB-D sensor. The system can also process the

input from an embedded robot camera or any web-camera, however, in this case, objects

are segmented without using depth data, and their boundaries are less accurate in case of

complex scenes and backgrounds. The input from two robot cameras can be processed as

stereo vision, though it increases the processing time. The limitation of an external RGB-D

sensor is the absence of its control ; it does not move together with the robot’s body, and

it does not allow to control the robot’s gaze in order to focus on a particular area of the

environment. The possible solution would be to fix the RGB-D sensor above the robot’s head
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and to adapt the system to changing visual and depth data during the camera motion, that

should not take a lot of work, as discussed below.

9.2.2 Dependence on a static platform

In case of adaptation of the proposed perceptual system to a moving platform, we would

need to deal with a great optical flow all the time. When the robot moves, the whole scene is

moving. From one point, it requires an enhanced processing, but from another point, it gives

an additional cue for proto-object detection. Since all points of the background move with a

nearly same speed, a proto-object can be detected based on the difference between the speed

of its points compared to the speed of background points. Once proto-objects are detected,

the system processes only segmented regions, like in our work.

9.2.3 Motion-based object detection

Our proto-object detection algorithm is based on a bottom-up saliency mechanism taking

into account visual motion. Thus, our algorithm allows to detect a proto-object, when it

moves. Once a proto-object is detected, it can be tracked even, when it is static. However,

the system can not make a hypothesis about the existence of a proto-object in initially static

areas. In order to resolve this issue, we need a mechanism that re-projects a saliency in a top-

down way. For example, already known objects can be found based on their appearances.

An existence of unknown objects can be revealed from other saliency aspects in addition

to motion, by modeling more precisely selective attention mechanism of human vision. An

existence of unknown objects can be also revealed by moving a camera or the robot in order

to detect proto-objects based on optical flow, as discussed in the previous paragraph.

9.2.4 Growth of processing time

Our system learns objects continuously, that makes it subjected to continuous growth

of dictionaries. We already clean the dictionaries of entities and views, and we see its pos-

itive effect and improvement of object recognition. It would be advantageous to clean also

the feature dictionaries by filtering out less representative features, while keeping features

that repeat often. This procedure will stabilize the dictionaries growth and moreover, objects

models based on only representative features could result in improving final object recogni-

tion.

The experiments reported in this thesis are based on 20 objects. The increasing number

of learning objects or images augments the system’s processing time. The processing time

grows mostly because of dictionaries growth. The issue can be resolved by stabilizing the

growth of dictionaries or using static dictionaries. Smaller dictionaries should improve the
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processing time, since the search will be faster. Moreover, in case of less visual features, ob-

jects models will be smaller, thus, the learning and recognition procedures should be faster.

As reported in Section 5.2.2, we could also remove mid-features based on color triples, that

would allow to gain some processing time without significant loss of the object recognition

performance. Furthermore, the processing time can be improved by optimizing the code or

some algorithms. If images can be processed faster, we can process more images per sec-

ond that should improve tracking, help to filter frequently repeated information, and finally

improve learning performance.

9.2.5 Limitations linked to the sensor resolution

Further, if we need to process much more objects in open-ended scenarios, we think

about improving the resolution of the visual sensor. Indeed, in the current experiments, the

utility of the SURF features is already limited by the apparent size of the objects in images,

which reduces the number of detectable features. For learning and recognizing objects that

are farther away, the current resolution would not be sufficient. We could also enhance some

processing steps in our system. For example, feature extraction can be replaced by deep

learning, that would adapt the features to the sensor and to the environment, and could

improve performances.

9.2.6 Limitations of the learning approach

In the performed experiments, our learning approach performed rather well, but if more

objects have to be learned, we could add a discriminative approach to improve the learning

performance. We could imagine an offline consolidation phase inspired by the role of human

dreams that consolidate knowledge into a long-term memory, and the views gathered by our

approach could be used as a database to train a discriminative algorithm.

9.2.7 Limitations to 2D appearance

In real world surrounding us, most of physical objects are 3-dimensional, although, we

work with 2D objects appearances learning them as views and collecting them into multi-

view entities models. In case of using a RGB-D sensor, the acquired depth data can be used

for estimation a 3D shape information and integration it into an entity model. This 3D shape

information could improve the recognition performance and also give a ground for learning

affordances and categories based on an object’s utility and behavior during interaction.

9.2.8 Multiple entities associated to the same object

Our perceptual system relies on unsupervised learning that results in associating some

objects with several physical entities instead of just one. This is quite common for unsu-
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pervised systems, as no ultimate supervision enforces the unity of the model. In order to

overcome this issue, we could add a supervised learning layer that would allow to associate

several entities to a knowledge. It can be performed during natural interaction with a hu-

man partner, similar to children development, when they learn through social interaction.

For example, in ambiguous situations, the robot could ask questions to its human partner, or

the partner could provide a feedback during the learning process. The human partner could

also pronounce the object name, while showing it to the robot, that would help to associate

the visual information with the object’s identity.

9.2.9 Learning objects instances

Our work is aimed at learning object instances, though a lot of behaviors are linked to

categories characterizing objects in terms of their purposes (like bottles, cans, cups, ham-

mers) or in terms of their properties (like red objects, spherical objects, rollable objects). Our

work could be extended to learn object categories based on extracted features. Objects with

similar appearances could be classified into categories based on similarity of their visual

features or representation models. Objects could be also grouped based on their behavior

during interaction with them. Another possible solution consists of initial learning of objects

classes but not objects instances, when all acquired data are directly integrated into models

of objects classes.

9.3 Future work

The implemented system and the achieved results open a lot of possibilities for future

work. In this section, we suggest some directions for future research towards open-ended

learning for service robots.

9.3.1 Feedback of the knowledge on low-level processing

An interesting extension of this work would be the further integration of the robot’s ex-

perience gathered through interaction with the environment into its ability of knowledge

acquisition. In infants, the development of capabilities to manipulate objects effects on in-

fants perception, especially visual saliency, and attention. It would be advantageous to adapt

this influence of interaction on the robot’s perception. Once the robot has explored an object

manually at a close scale, it has acquired more knowledge about the importance of its visual

features, like the importance for interaction, for example a successful grasp, or the impor-

tance for correct recognition of the same object from a far distance. This experience gathered

through interaction could provide a feedback to perceptual system, for example by changing

its attention model, notion of saliency, or extracted visual features.
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9.3.2 Integration of audio information

It would be interesting to extend the aspect of social interaction by integrating the audio

information in our system. While seeking the multi-modality of learning and taking inspi-

ration from infant-directed interaction, when an adult names an object while showing it to

an infant, we could learn about objects not only from visual data but also from audio infor-

mation. Audio could help grouping together entities that have been associated to the same

name, and in the reverse direction, having a recognized object could help to segment its

name in the audio stream. This can be viewed as a step towards the development of com-

mon language between the robot and its human partner, where the robot is able to learn

objects associated with any names that its user would like to use, and it will help to improve

object recognition in more complex interactive scenarios.

9.3.3 Adaptation to a mobile platform

Finally, we imagine an extension of our approach to a robot moving around au-

tonomously and discovering its environment on its way and while interacting with peo-

ple. Our general concept should be robust in case of this application due to multiple filter-

ing of the visual information and synthesizing it throughout different stages. The system

should not be overloaded thanks to focusing on meaningful information, like proto-objects

that can be continuously detected based on saliency, similar to the way human vision do.

The proto-objects appearances could be characterized by more representative set of features,

for example using deep learning. Learning about proto-objects should be improved taking

advantage from possible sensors, like visual, audio, tactile, if available. Exploring the envi-

ronment would be a crucial problem in such system, and therefore, it should rely strongly

on a curiosity-driven behavior and social guidance in order to learn useful objects.
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