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Abstract

This work addresses the development of numerical methods for optimal wing

shape design based in compressible flow. It presents the development and

the validation of a discrete aero-structural adjoint method for sensitivity

analysis with respect to both planform and internal structural design pa-

rameters which affect the cost function, be it aerodynamic or structural.

The developments performed in this work are an extension from the aero-

elastic adjoint developments performed by Marcelet and are implemented in

the CFD code elsA. While the aero-elastic adjoint method assumes that the

wing stiffness is frozen, the here developed aero-structural adjoint method

allows to consider structural variations. This extension is performed via a

structural module, InAirSsi, developed during this work to model the wing

box structure. This module is linearized to supply the necessary terms

to the adjoint system. The structural module has been validated via the

gradient-based sizing of the structural wing box of an Airbus research con-

figuration.

The adjoint solver in the CFD code elsA covers now both planform vari-

ations and internal structural variations and allows the gradient computa-

tion of either an aerodynamic cost function or a structural cost function

The gradient computed by the aero-structural adjoint method are validated

systematically through a comparison with finite differences.



Résumé

Cette thèse a pour cadre le développement de méthodes numériques pour la

conception optimale de forme de voilure en aérodynamique compressible. Ce

travail a donné lieu au développement et à la validation d’un adjoint discret

aéro-structure pour l’analyse de sensibilité par rapport aux paramètres de

forme et de structure interne de l ’aile dont dépend la fonction d’intérêt, qu’

elle soit aérodynamique ou structurale. Les développements logiciels ont été

réalisés dans le code de simulation numérique de mécanique des fluides elsA

et font suite aux travaux de Marcelet portant sur l’adjoint aéro-élastique

et dont ils sont une extension. Alors que pour l’adjoint aéro-élastique, on

considère une aile flexible, de caractéristiques structurales constantes, pour

l’adjoint aéro-structure, leur variations sont prises en compte. Pour cela,

l’extension de la méthode adjointe s’ est accompagnée du développement d’

un module de modélisation de la structure interne de l’aile. Ce module est

linéarisé et vient donc alimenter le système adjoint. Il a été validé par le

dimensionnement de la structure primaire d’une configuration de recherche

fournie par l’ avionneur Airbus. Dans l’état actuel de développement de

la méthode adjointe dans le code elsA, on peut donc désormais calculer les

sensibilités d’une fonction aérodynamique ou d’une fonction structure par

rapport aux paramètres de forme aérodynamique ou de structure interne de

l’aile. Le calcul des gradients ainsi obtenus a été validé par des comparaisons

systématiques aux différences finies.
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dredi. En particulier, merci Meryem Marcelet d’avoir pris le temps de
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j’ai partagé et avec qui je continue de partager des moments fort agréables:
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Un pensée pour ceux qui m’ont accompagné, inspiré et rassuré, sans le
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Introduction

1.1 Context and Challenges

In 1997, Ilan Kroo writes with good reason (47): “When an aircraft designer hears that

a new program will use multidisciplinary optimization, the reaction is often less than

enthusiastic”. Fifteen years later, reactions are not altogether different.

The straightforward question that this statement raises is: why this lack of enthusiasm

for multidisciplinary optimization? Is it because numerical optimization is entrusted

to operate as a designer, or is it the complexity of managing multidisciplinary prob-

lems? One can wonder: is it because successful and complex multidisciplinary design

optimization (MDO) results, conducted in a research1 context, are not (easily?) trans-

ferable to an industrial context? Or is it simply an “cultural” problem due to the

interaction of numerous disciplines? An interaction where each discipline intrudes on

others and where the “degree of fidelity” that represents the discipline stands out as a

priority over the problem itself.

Yet it is multidisciplinarity that drove the evolution from the first2 commercial airliner

1A survey of Professor Holt Ashley (7) counts up between 1964 and 1980, 4550 papers on opti-

mal control, 2142 on aerodynamic optimization and 1381 on structural optimization but mentions no

industrial application.
2The concept of “first” depends on the definition we give to airliner: The first aircraft intended

initially for commercial service is the Sikorsky Ilya Muromets (1913), which became the first four-

engine bomber during the World War I and was able to carry 16 passenger. The Farman Goliath
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to the most recently designed airliners such as the A380 or the B787. This aircraft

evolution is the result of more than half a century of complex physical understanding

and analysis that extends from aerodynamics and structures to turbo-machinery and

includes acoustics, mathematics, etc.

In addition, this evolution is the result of innovative -yet mono-discipline- technologies

that were coordinated together aiming at an overall performance. Unfortunately, it

seems that this “multidisciplinary” harmony cannot be transposed easily to optimiza-

tion nor numerical design. Nevertheless the time is right, the aviation sector is on a

growing path, the time separating the development of two projects gets longer and the

expected performance gain of a new project over its predecessor becomes higher. The

design of a new aircraft may less and less rely solely on the experience acquired with

the previous one. The incorporation of numerical multidisciplinary tools into design

processes is a logical follow-up.

Despite this technological progress of aircraft, profitability of airline companies does not

increase. Before developing shortly the reasons, we may already say that this restricted

profitability certainly justifies the adoption of multidisciplinary numerical optimization

by the aviation industry. There are two main reasons for the profitability restriction:

(1) First, the last decade successful emergence of companies operating at very low costs.

(2) Secondly, the continuous increase of oil price.

designed in 1918 as a heavy bomber at the end of the World War I was “recycled” as an airliner with

a capacity of 14 passengers. The first all-metal airplane is the three-radial-engined Tin Goose, or the

Ford Trimotor, developed with a capacity of carrying up to 12 passengers. The Ford Trimotor operates

in the same time as The Fokker Trimotor, also an all-metal airplane, that dominated the American

market in the 20’s until the crash of 1931. After the crash, the Fokker Trimotor was banned from

commercial operations and two years later, the Boeing 247 had its first flight with 14 passengers. The

Boeing 247 is probably the first commercial airliner that was intentionally designed for commercial

transport and had an advanced design aiming at an aerodynamic performance, and also the first with

a semi-monocoque construction. Boeing refused to sell the 247 to any company until United’s order for

60 aircraft was assured. To match the concurrence of United’s, Transcontinental and Western Airline

(TWA) requested the development of the DC-2 from Douglas. The larger version of the DC-2, named

the DC-3, was constructed 2 years later to replace the sleeper Curtiss T-32 Condor II at the request

of Americans. The Douglas DC-3 remains the pre-war most popular airliner and cited as first.
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The second reason stands out with the actual economic context. This also becomes

increasingly meaningful in a time where environmental issues are entering the equation

as an implicit economical parameter. The logical outcome of this is the focus of airlines

and aircraft manufacturers on how to keep fuel consumption down without breaking the

performance rise. An even greater stress is placed on the importance of fuel-burn reduc-

tion3 (64). Fuel-burn reduction can be achieved through engine efficiency, aerodynamic

performance, lightweight materials, etc. But these solutions cannot be treated indi-

vidually. Indeed, because the flight physics of the aircraft generates strong coupling

between the different disciplines, designers are sooner or later faced with trade-offs:

manœuvrability vs stability, aerodynamics vs structural, nacelle drag vs bypass ratio,

etc., all impacting the fuel consumptions and the range4 but in different manners.

This work addresses one of the cited guiding trade-offs: aerodynamics vs structural5

performance. Aerodynamic performance is given in terms of drag and structural per-

formance, in terms of structural weight. The present equation is simple, less drag and a

lighter aircraft can be understood as less fuel consumption and a more efficient cruise,

so that the aircraft can operate over an extended range and carry more payload, but

the solution is not straightforward and even complex, because all parameters opened

to the designer have direct and conflicting impacts on both disciplines, requiring these

trade-offs. In addition, 10s of thousands of load cases must constrain the design of

viable wings. However, less drag and lighter structures does not imply the convergence

of the aero-structural problem; current aircraft developements with high aspect ratio

wings and lighter structures are subject to dynamic aero-elastic problems (flutter, di-

vergence, etc).

Multidisciplinary optimization can play a major role within the aircraft industry to

efficiently and robustly find better designs with a higher level of confidence than cur-

3The A320 equipped with sharklets reduced their consumption by 3.5% corresponding to an annual

CO2 reduction of 700 tones per aircraft
4Range=Aerodynamic efficiency×Propulsion efficiency×Structural efficiency
5For example: with an increased span, induced drag decreases, however the wing loading increases

resulting in a structural weight increases
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rently in-use conventions. This can be achieved by managing more efficiently -under

the design engineer control- the different trade-offs involved in the design process.

If we need to give a simple definition of optimization -within the engineering context-

then let us say that it is not a technique, which intends to offer a simple improvement,

but rather a notion of exploitation of the design possibilities and alternatives. Opti-

mization aims at making a design as good as possible and a solution as cost-effective as

possible. All the design possibilities, optimal, worst and non-attractive ones, are em-

bedded into a space (in the mathematical sense): the design space. What optimization

is about, is to find the optimal solution among all the possibilities offered in this design

space. There is a wide range of algorithms to explore the design space. However, the

“fast and accurate” that drives industrial contexts (research context also...) imposes

refinement over these methods.

MDO relies on efficient numerical analysis tools for each of the disciplines involved in

the considered design process. For aerodynamic analysis, the cost of a single CFD

(Computational Fluid Dynamics) evaluation is relatively affordable, but when it comes

to optimization and more specifically to gradient-based optimization the cost increases

6. However, CFD analysis is often concerned, several solutions exist to overcome the

simulation time limitation, such as grid coarsening, multi-grid acceleration, use of mas-

sive parallel computing, etc. An alternative to the direct use of high fidelity CFD

analysis can be the introduction of surrogate models. However this approach, which

has received much attention these last years, has a strong limitation in terms of number

of design parameters that can be allowed (The “curse of dimensionality”). Indeed, all

the response surfaces methods have an accuracy which depends highly on the dimen-

sion of the design space. This design space dimension is what defines the richness of

the possible solutions. As an illustration, a wing shape parametrized with only camber

parameters will offer much less variety than a wing represented by its camber, span,

twist, etc. The wider the design space, the more difficult it is for the algorithm to

6Interesting discussion on the limits of CFD optimization in terms of computer requirements is

conducted by Thevenin in Optimization and Computational Fluid Dynamics (81)
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converge toward an optimal solution.

The objective of this work is the development of a method used to compute the sensi-

tivities of functions, involved in the design process, with respect to (w.r.t.) the design

parameters, regardless of the design space dimension: The adjoint method. This means

that the phases in which the optimization algorithm requires the sensitivity analysis

will be noticeably shortened7. An attractive method in the context of large number

sets of design parameters, where gradient-based optimization techniques have an advan-

tage over other -global- optimization techniques, such as non-deterministic or surrogate

based optimization techniques.

The developments concern the introduction of multidisciplinarity -aerodynamic and

structure- into the computation of the adjoint-based gradients. As mentioned previ-

ously, a special care has to be given to the aero-structural trade-off. The gradients of

each single discipline cost function, computed with the adjoint method, have to take

into account the dependence on the state variables of the other competing disciplines.

In summary, the aero-structural adjoint method satisfies first, the need of incorporating

multidisciplinary analysis and optimization in design cycle. Secondly, the need to

converge in a short time toward a better aerodynamic and structural optimum.

1.2 Our Approach

Objectives

If the potential benefits from multidisciplinary optimization are clearly apparent, its

actual and practical incorporation into a design process is less evident. Conceptual

to preliminary design stages are ideal candidates for methods such the one developed

in this work. For these early stages, we aim at developing a technique that can be

incorporated into a MDO framework to permit the solution of aero-structural opti-

mization. The problem to solve can be, for example, the weighted composite function

of drag coefficient CD and structural weight W : CD + ωW . Solving this problem,

7The sensitivity of a function J with respect to n parameter, requires 2n evaluations of J when -2nd

order- Finite Difference are used while only one analysis and one adjoint state solution are required

with the adjoint method
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offers, the access to the evolution of the aero-structural trade-off via a higher -but not

expensive- representation of what is currently performed at these stages by the industry.

New contributions

What this work is about is:

(1) Development a fully parametric differentiable aero-structural analysis tool based

on the ONERA CFD code elsA (standing for ”ensemble logiciel de simulation en

Aérodynamique) ; this involves a differentiated structural module that requires only

few CPU seconds to build the structural model;

(2) Enabling analytical calculation gradients, of any function involving both disci-

plines (aerodynamics and structure) w.r.t an aero-structural design space, available

for gradient-based algorithms8.

(3) Demonstration of this ”gradient calculator” with representative problems.

Choice of the aero-structural models

This work builds on the adjoint CFD capability available in the software elsA. The

physical modelling of aerodynamics can be performed with the Navier-stokes equations

subset: Reynolds-averaged Navier-Stokes equation (RaNS) or Euler equations. We

model the slender wing of a civil aircraft by a beam governed by the Euler-Bernoulli

theory. Beam model proved to be suitable for aero-elastic wings (slender wings), thus

it is important to bear in mind the fundamental difference between analysis methods to

support the design opposed to analysis for design space investigation. The process of un-

derstanding and characterizing the behaviour of a well-defined configuration cannot be

performed in the same manner as the process meant to assist the design by rapidly eval-

uating the performance and providing answers to design questions that arise. Giunta

in (31) highlights: ≪One drawback to using high fidelity analyses is numerical noise

which occurs as a result of the incomplete convergence of iterative process[...] and the

discrete representation of continuous physical objects≫. This statement goes for both

8Both global and local optimization may require the information of the gradient
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aerodynamic and structural criteria. However, the prediction of non-linear aerodynam-

ics of transonic wings can not be performed without high-fidelity CFD, which is not a

problem because we can easily afford the analysis cost of the aerodynamic performance

that does not exceed one or two CPU hours (for “every-day” use cases). In addition,

with an efficient mesh deformation tool that does not require any computational cost

neither user interaction, both CFD analysis and aerodynamic sensitivity analysis are

highly affordable.

The choice of our structural model is guided by the need to access the sensitivities

of the wing aerodynamic and structural characteristics w.r.t planform and structural

parameters easily at each iteration where the optimization algorithm requests sensi-

tivity analysis. At early and intermediate design stages, the exact absolute structural

performance is not necessarily required, whereas its sensitivity are.

1.3 Organisation of the manuscript

The development of the aero-structural adjoint method for sensitivity analysis used by

gradient-based optimization algorithms denotes the need of predicting: (1) aerodynamic

and structural analysis (2) aerodynamic and structural adjoint sensitivity analysis.

The present manuscript describes the different steps of the development of the aero-

structural adjoint-based gradient calculation and is organised as follows:

Chapter 2

The first section of this chapter formulates the problem we aim at solving: improvement

of an aero-structural objective in an aero-structural solution space. The second section

reviews the categories of optimization methods, and motivates the choice of the adjoint-

based gradient technique. The principle of the adjoint method is presented in the third

section and the last one is dedicated to highlight the importance of optimization in

multidisciplinary design space through the parametrization.

7



Chapter 3

This chapter introduces the aero-structural adjoint method as an extension of the aero-

dynamic and the aero-elastic adjoints methods (90), (59), (56). The differences between

the aerodynamic, aero-elastic and aero-structural adjoints are introduced.

Chapter 4

The functionality of the structural module developed in this work is validated in this

chapter by a purely structural gradient-based sizing of the wing box of a selected wing-

body test case. The outputs of the structural module provide the structural analysis

and aero-structural sensitivity analysis used for the complete aero-structural gradient

gathering.

Chapter 5

The development of the aero-structural adjoint is detailed in this chapter. The equa-

tions giving the gradient of aerodynamic or structural functions with respect to wing

shape or internal structural design parameters are introduced. The different terms that

compose these equations are described and their actual implementation presented.

Chapter 6

Application of the developed aero-structural adjoint method to a generic wing body

configuration [Fig.1.1] is presented in this chapter. The comparison lays on the mod-

elisation of the structure: rigid sensitivities computed with the aerodynamic adjoint

method, then flexibility-free aero-elastic gradients performed by the aero-elastic adjoint

and finally gradients with full aero-structural modelisation.

8



Figure 1.1: Test-case configuration.
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Figure 1.2: Aero-elastic deformation on the wing of the Airbus A320

10



2

Aero-structural wing design

problem formulation

2.1 Preamble

A transport aircraft is designed for maximum performance at specific flight condition

points from its design envelope. These points are defined by the aircraft weight, the lift

coefficient and the altitude (which translates into a given Mach and Reynolds number

and a given angle of attack). At other flight conditions, the aircraft may loose its op-

timality. The benefit of multidisciplinary design optimisation (MDO) will come from

the fact that:

- Without MDO the design space is necessarily restrained; For example, pure aerody-

namic optimisation of planform parameters could be useless without consideration of

the impact on the structure and therefore on weight.

- MDO is sine qua non for solving multi-point fuel-efficiency design problems which re-

quires both global modifications (with an aero-structural impact) and the appropriate

operating condition in terms of weight and aerodynamic performance.

We define the cost function J of the target multidisciplinary and multipoint optimisation

associated to wing design problem as the linear aggregation of the drag coefficient1 at

1The drag coefficient can be estimated through a far-field or near-field approach using the drag
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the different cruise flight conditions and the structural weight:

J(α) =
∑nf

i=1 ωiCDi
+ ωCWbox , nf flight cases




α = αj16j6ngeom+nstruct

αj = (αgeom, αstruct) ∈ R
ngeom × R

nstruct

gi(α) 6 0
σk(α) 6 0 , k aero load case number

J is the weighted sum of drag coefficient CDi
at the different flight conditions i and

CWbox = W
W0

is the structural wing weight coefficient (wing box model), both aggre-

gated with a weighting coefficient ω. The set of parameters, represented by the vector

α, is necessarily aero-structural, and so the constraints (aerodynamic constraint gi such

as constraint on lift and pitching moment and structural constraints σk representing

reserve factor or stresses in materials).

The decrease of J and therefore of the aerodynamic drag and structural weight is con-

strained by the lift coefficient and by the allowable material stresses (stress analysis in

this work is detailed in chapter 4) p. 69).

The manner we formulate the aero-structural optimisation problem is a choice guided by

several reasons explained in this chapter. There exists other formulations of the aero-

structural optimisation problem such as the BLISS approach (75), the collaborative

optimisation (48), etc.

However, regardless of the method we adopt for the problem formulation, MDO consists

fundamentally in evaluating the cost function (and constraints) at different points of

the design space and methods for moving through the design space to improve the cost

function(s). These design space points, candidate for functional evaluation, are selected

by the search algorithm (optimisation algorithm).

Without an objective of addressing an exhaustive list of optimisation algorithms, section

2.2 p. 13 exemplifies some of the existing techniques, and evaluates -implicitly- the

potential of the use of adjoint-based techniques within optimisation frameworks.

Section 2.3 p. 21 presents the adjoint method for gradient computation via the duality

decomposition in FFD72 (22)
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concept and gives briefly a comparison of the existing types of the adjoint formulation.

The last section of this chapter highlights the importance of aero-structural trade-offs

via the parametrisation and the great benefits of incorporating aero-structural adjoint-

based techniques within design processes.

2.2 Design space exploration techniques

The problem presented in the previous section can be solved by different techniques.

These techniques consist in algorithms that explore the design space aiming at an

optimal improvement of the cost function, defined as:

J : Rn 7→ R
nJ

where R
n is the design space and R

nJ the solution space (nJ = 1 in our case). The

search algorithms that explore the design space are classified as global (c.f. section

2.2.1 p. 14) or local (c.f. section 2.2.2 p. 17) algorithms.

These categories can be sub-classified depending on the function that drives the transi-

tion between an initial state and a final state. If the transition function is bijective, i.e

to a state i corresponds a unique state i+ 1 then the algorithm is of a deterministic

nature. When, to a current state corresponds more than one possible next state the

algorithm is said to be non-deterministic. As it is mentioned by Liberti in (49),

non-deterministic is not a synonym of stochastic. Algorithms are running in computers

that are governed by deterministic processes and thus it can be shown that any non-

deterministic process can be simulated by a deterministic process. Stochastic methods

use randomness2 of the iterates.

Optimisation algorithms move through the design space via two different methods:

Direct or Gradient-based. The first category requires the evaluation of the function

only. Gradient-based methods require, and use, the gradient information to build a

2The random elements can be either approximated by an algorithm, for example the PRNG (Pseudo

random number generator) or generated based on physical methods which are based, essentially, on

random atomic physics.
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search direction and eventually to approximate the Hessian matrix used, for example,

in the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm.

2.2.1 Algorithms for global search

The possible non-convex nature of “real-life” functions -brought by industrial engineer-

ing problems- adds complexity to the exploration of design spaces. Global optimisation

comes as an answer to the presence of local-minima and to the challenges introduced

by non-convex programming.

Global optimisation can be nature-inspired, physics inspired or purely mathematical

methods. The mimic of the nature is recurring, through for example, The River For-

mation Dynamics that is inspired by the way waters forms rivers eroding the ground

and deposing sediments. The biological social system also inspired the global optimisa-

tion like the flock of birds that is copied by the Particle Swarm Algorithm, or the Ant

Colony optimisation that imitates an ant seeking food. Examples of the methods that

copy the physics, are The Rain Drop Method, The Simulated Annealing (c.f. table 2.1

p. 16) or Parallel Tempering. The remaining class consists in algorithms that do not

have any physical or nature link. One example is the pure Random Search which uses

a uniform probability distribution to sample the entire search space. This algorithm is

often used to seed another search technique such as the Iterated Local Search presented

in table 2.1 p. 16 with other examples of the mentioned three classes.

Table 2.1 p. 16 does not aim at scanning the historic of global optimisations -out of

the scope of this work- but rather exemplify the large number and variety of available

techniques that illustrate the large efforts conducted by the optimisation community.

Genetic algorithms (GA), that belongs to the evolutionary algorithms category, have

been increasingly applied to aerospace problem: an interesting survey conducted by

Anderson (2) reviews the trends of AIAA papers dedicated to GA based optimisations

between 1996 and 2001. This growth is largely attributed to the growth in computer

speed and, according to Anderson, because “they have shown themselves to be superior

to traditional design and analysis tools when complicated non-linear phenomena domi-

nate the optimisation space”.
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This is certainly true and in addition, these global algorithms lay on a direct approach

to scan the design space. This brings a significant simplification of the design frame-

work since only analysis tools are required. But on the other hand it is commonly

admitted that these methods have a prohibitive cost resulting from a slow convergence

during the search for the global optimum, and thus are very demanding in term of

number of functional evaluations which cannot be afforded in all contexts (industry...).

In addition, global convergence is not guaranteed unless the problem is convex or in

the case of solving nondegenerate problems via specific algorithms ??, or if we lsimply

perform a Brute-force search technique.

Statistical techniques are commonly used to mitigate this expensive cost, for example

Response Surface Modelling (RSM) methodologies combined with Design Of Experi-

ments (DOE) techniques are enjoying increasing popularity. However, these methods

depend highly on the discipline, the nature of the functional and its computation cost.

In addition, building these surrogate models is complicated and expensive for high

number of design parameters, which is likely the case in aero-structural optimisations.

Indeed, if the wing planform geometry can be represented by less than 10 parame-

ters -to simplify-, the detailed aerodynamic shape (airfoil geometry) and the structural

components are far more demanding in term of parametrization.

Other methods that arose recently are the hybridation techniques which intend to

gather both the efficiency and the robustness of direct global algorithms (providing the

starting point) to the gradient based methods which benefits from the local refinement

capabilities. At ONERA, the work of Wervaecke (88) exemplifies such formulation.

She developed a hybrid algorithm based on the non-deterministic algorithm Covari-

ance Matrix Adaptation Evolution Strategy (CMA-ES) (35) and the gradient-based

CONMIN algorithm developed by Vanderplaats (83) and applied it to the optimisation

of a 2D airfoil. The gradients for the local search part were computed by solving the

aerodynamic adjoint problem.
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Algorithm Deterministic Stochastic About...

Branch and

Bounds algo-

rithms

× The method “branches” the problem into sub-

problems on which it computes the upper and lower

bounds. The unpromising sub-problems can be elimi-

nated using the bounds.

Evolutionary

Computa-

tion (EC)a

× Defines all the algorithms that refine iteratively a set

of design candidates called population, defined ran-

domly, by evaluating their fitnessb.

Simulated

annealing

× A Monte-Carloc method that emulates heating and

cooling of materials guiding the atoms towards a con-

figuration with minimum internal energy.

Iterated lo-

cal search

× Applies local search to refine the broader neighbour-

hood of candidate solutions to their local minima.

Reactive

Tabu Search

× A short term memory of specific changes of recent

moves within the search space is kept and defined as

“tabu” areas (cycling is prevented). The algorithms

reacts to the occurrence of cycles by adapting the tabu

list size.

aEvolutionary Strategy (ES),Genetic algorithms

(GA)
bReproduction capacity of an individual
cThe method is named after the city where gambling

is very popular. It is a non deterministic method that

rely on repeated random sampling to compute an output

Table 2.1: Selection of global optimisation algorithms
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2.2.2 Algorithms for local search

A local search algorithm searches an optimal solution locally, in the neighbourhood

the initial point. If global algorithms allow both decrease and increase of an objective

function, local algorithms are favouring only its decreases (in the case of minimisation

problems), restricting their search to the closest local optimum.

As mentioned previously, local algorithms are declined into methods that do not require

any evaluation of the derivatives to explore the neighbourhood (Direct methods) and

methods that require the evaluation of the gradients (Gradient-based methods). Pat-

tern search methods is a family of direct algorithms fully exploitable on functions

that are not continuous or differentiable.

When the gradient is available, numerous possibilities are given depending on the na-

ture of the optimisation problem. For example, the Quasi-Newton method, that

requires the approximation of the Hessian based on the gradient information, is effec-

tive for non-constrained problems. Newton method requires explicit computation of

the Hessian matrix, which is not straightforward, and thus can be approximated from

the gradients. Other iterative methods require “only” the evaluation of the gradients.

The potential of these methods depends on the availability of the gradient informa-

tion. The gradient can be computed via the Finite Differences, complex-step method

or the adjoint method. This problematic, as an important part of this work, is further

discussed throughout the present manuscript.

2.2.3 Constrained optimisation

The algorithms presented above are not all designed to optimize constrained problems,

the extension has often to be performed latter. This section introduces the methods

by which constrained problems can be approached.

Let us consider the problem:

Minimize J(x) where x ∈ R
n

Subject to gi(x), i = 1, ....,m
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Algorithm Deterministic Stochastic About...

Steepest De-

scent

× Is the most popular of gradient-based methods.

the current step is taken in the direction of the

negative gradient at the previous step approach-

ing the minimum in a zig-zag manner.

Conjugate gra-

dient method

× The search is performed according to a direc-

tion which is a linear combination of the cur-

rent and the past steepest descent vectors i.e the

cost function is minimized within a hyperplane

composed of all the previous search directions

instead of following a unique line that points

down the gradient.

Steepest-

Ascent Hill

Climbing

× This method relies on the best neighbour ap-

proach

Stochastic Hill

Climbing

× A random selection is performed on the neigh-

bour candidate solutions. The candidate is ac-

cepted only if ∃ an improvement.

Table 2.2: Selection of local optimisation algorithms
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The problem is parametrized by n variables and constrained by m inequalities linear

or non linear. The methods for solving constrained optimisations problems -based on

the theory of NLP3- differ in terms of the dimension of space that the search algorithm

will explore.

The most intuitive way is to free the problem from the constrained formulation to

simplify the design space exploration. Such approach is called Penalty method. It re-

formulates in a single function both objectives and constraints by introducing a penalty

factor. It then solves the new unconstrained problem in n-dimensional space.

Lagrangian methods formulate the necessary conditions for optimality by introducing

the so called Lagrange multipliers for equality constraint. This approach is generalized

by the Karush–Kuhn–Tucker conditions (KKT), which can also take into account in-

equality constraints. It solves in a (n+m)-dimensional space.

The primal methods, or feasible direction methods solve the initial problem, in a (n−m)-

dimensional space, by searching directly inside the feasible region. The main advantage

is to converge towards a feasible point even if the optimality condition is not verified.

The dual formulation relaxes from the dimension of x and thus the algorithm works in

a m-dimensional space (adjoint method...).

The most successful and popular approach for constrained optimisation is Sequen-

tial Quadratic Programming (SQP). It solves successively a set of linearly constrained

quadratic approximation of the original non-linear problem. Each sub-problem opti-

mizes a quadratic model of the cost function (assuming it is twice continuously differ-

entiable). The explored points are not necessary feasible points. In this work, among

other algorithms, CFSQP (16) algorithms was often used. It is a modified version of

SQP that generates only feasible iterates.

2.2.4 Multi-objective based approaches

In this work, the aero-structural problem was formulated in a manner that the optimi-

sation algorithm searches the solution space aiming at improving only one objective,

that is actually the composition of aerodynamic and structural functions. There are

3Non Linear Programming
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other approaches in which the different objectives are explicitly handled by the opti-

misation process.

When it comes to solving optimisation problems with competing objectives, appears

the pareto optimality concept. A set of non-dominated design points that reveals the

trade-offs between the involved disciplines. The robustness of these methods is evalu-

ated according to their ability to reach this set, called the Pareto Front.

The method are themselves a Pareto set defined by the computation cost and the

speed of search convergence. The use of evolutionary strategies (NSGA-II (19), MO-

SHERPA) is widespread for Pareto front identification. If these methods show good

results -as mentioned in the section 2.2.1 p. 14 - they also present weaknesses through

their demanding computational resources associated to numerous design evaluations.

The robustness of GA algorithms can even be questioned when the objective function(s)

presents a noisy characteristic, or simply insufficiently converged CFD solutions for ex-

ample. This may lead the GA to an non-exploitable design space area. In addition, it

is not straightforward to specify a termination criterion, while a minima -local minima-

is certainly reached at the convergence of the algorithms.

A comparative study of various multi-objectives evolutionary algorithms conducted in

2000 by Deb et al. can be found in (20), and more recently -in 2011- a comparison of

these approaches is published by Zhou et al. in (109).

The work of Zerbinati and Désidéri (21) brings novelty to this topic by exploiting the

gradient information when heading -cooperatively- to the Pareto Front. They intro-

duced the Multiple Gradient Descent Algorithm (MGDA), that uses a clever combina-

tion of the gradients to find a descent direction common to all criteria.

Both global and local approaches -and their hybridation- present weaknesses well es-

tablished and accepted. Concerning gradient-based approaches, they present a failure

when the design space presents discontinuities, they are not able to deal with the non-

convexity of design space, however as it is highlighted by Zingg (110): “ in many

20



engineering context, this is unlikely to be an issue, since the highly constrained nature

of the design problem inhibits multi-modality ”.

2.3 The adjoint method in the context of wing shape de-

sign

The evaluation of aerodynamic quantities is performed via complex CFD tools -in use

in the industry- that are often developed without a vision to be differentiated. Chapter

3 p. 37 is about the development of the adjoint method (with or without MDO) and

its extension performed within the CFD software elsA (25).

When numerical optimisation was standardised, considerable efforts were made to ac-

cess to the -adjoint based- sensitivities of aerodynamic quantities through the same

code that performs the CFD analysis. We may cite the work of Jameson et al. at

Princeton (39), Brezillon & Dwight et al. at the DLR (11), Peter , Renac, Dumont

et al. at Onera (68)(72)(24), to name but a few. A well-written survey approach on

numerical sensitivity analysis for aerodynamic optimisation is given in (69) and goes

through the work of many research teams.

The benefits of the adjoint method for aerodynamic design through gradient-based al-

gorithms were clearly perceptible (78), actually the exploitation of the local information

during the design space search justified this enthusiasm. The local information given

by sensitivity analysis are used to get a direction of improvement of the function that

respects the constraint until the convergence is reached.

Of course, remains the question of whether or not using gradient-based or gradient-free

algorithms, however the use of the derivative information requires this information to

be available and at a reasonable expense. Genetic and evolutionary algorithms for ex-

ample are -when not hybrid- gradient free methods. These methods access the local

behaviour of the objective function by evaluating the cost function at different points

of the design space. It is then obvious how these methods are resource-demanding in
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high dimensional design spaces (see section 2.2.1 p. 14 and section 2.2.4 p. 19).

In the framework of aerodynamic shape optimisation, designers usually have a precon-

ceived idea of what their optimal design should be, and this constitutes the starting

point of the detailed design work. The efficiency of this method lays on the knowledge

and the experience of the designers and has been demonstrated through the evolution

of civil transport aircraft. The obtained aerodynamic shape is then an “extrapolation”,

to simplify, of the existing aerodynamic aircraft shapes of the previous configuration.

But what about the design of genuinely new configurations? What about the concep-

tual design, the design from scratch to analyse the feasibility of a project without past

experience.

Are we able to improve these knowledge-based methods? How can we help the

designer in exploring unknown region of the design space? Will the potential of the

design space increase if we increase its degrees of freedom? How can we explore reliably

a high dimensional design space, authorizing large evolutions of the design?

The optimisation of an existing configuration or the design of a new configura-

tion cannot be done with a limited number of design variables: transonic aerodynamic

performance requires a sufficient number of degrees of freedom to reach an optimum,

considering the complex non-linear nature of the physics.

The critical point that justifies the thirty years of research and considerable ef-

forts performed by the CFD community to widespread the utilization of adjoint-based

gradient algorithm in industrial contexts is the cost-efficient computation of accurate

gradients to allow the exploitation of the local information at a reasonable cost.

Sensitivity analysis cost and analysis accuracy

The derivatives of the objectives and constraints functions w.r.t. the design vari-

ables quantify the effect of each design parameter on the design and thus inform the
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algorithm on the changes that have to be performed to reach a desired performance.

Generally speaking, whatever the method used to calculate these sensitivities, the cost

of the sensitivity analysis depends tremendously on the number of design parameters

and/or on the number of objectives and constraints. In wing shape optimisation, the

number of design variable exceeds the number of functions to be optimized and con-

straint to be verified. Although the number of functions and constraints influences the

sensitivity analysis cost, there is no known method to reduce this impact, conversely,

the powerful aspect of duality exploited by the adjoint method (see section 2.3.1 p. 24)

relaxes sensitivity analysis of a cost function from the design space dimension.

The efficiency of any gradient-based methods depends on the computation -accuracy-

of the gradient. These methods must be supported by a tool to compute the gradients

of the objectives and constraints functions and quantify the sensitivities of the global

performance w.r.t. the degrees of freedom of the problem.

Finite Difference (FD) is a way to compute these sensitivities. However, despite the

increase of computational capabilities, this method requires at least a complete flow

calculation for each design variable, which remains computationally costly. In addi-

tion, arises the necessary choice of the FD step. Sometimes a full step-convergence for

each design variable -that are often not of the same order- is necessary. FD, besides be-

ing scientifically unchallenging, remains an unsatisfactory solution in terms of efficiency.

The adjoint method has a long history in optimal control theory and started with

the work of Lions in 1971 (50). Pironneau introduced the adjoint method into fluid

mechanics in 1984 (51), by applying it to flows governed by elliptic partial differential

equations. The next section introduces the concept of duality exploited by the adjoint

method.
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2.3.1 Duality and adjoint

The adjoint method exploits the duality to make the resolution of any linear system

fully independent of the dimension of the unknown.

Let us consider the known R
m × R

n matrix A and the known vectors b ∈ R
m and

c ∈ R
n. We would like to compute the vector product cTx:

compute cTx such as Ax = b

where x ∈ R
n is the unknown vector of the problem. The intuitive method is to solve

the linear system Ax = b for x and then substitute its value to compute the vector

product cTx.

Let us consider the same problem and introduce a vector λ ∈ R
m, such as:

λT b = cTx

The problem is reformulated as:

compute λT b such as ATλ = c

To go further

Both systems are equivalent, and this is shown by:

λT b = λTAx = (ATλ)Tx = cTx

Of course, this new linear system is not much easier to solve, the unknown of the first

linear system is of dimension R
n and the unknown of the second linear system is of

dimension R
m.

Imagine now that the known vector b is a matrix B ∈ R
m×R

p and the unknown vector

x is a matrix X ∈ R
n × R

p. This means, that if we chose to solve this linear system:

compute cTX such as AX = B

a matrix of size Rn×R
p must be computed. But if we chose to solve this linear system
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compute λTB such as ATλ = c

the dimension of the unknown remains R
m. In other words, when the vector λ is in-

troduced, the resolution of the linear system is independent of the dimension of the

unknown.

The advantage of the linear duality is clearly visible. The former problem, that can

be named as the primal problem, requires solving a linear system for the unknown

matrix X, while the solution of the latter linear system, named the dual problem is

independent on the nature and the dimension of the unknown and requires solving a

linear system only for a vector, no matter what the dimension of the matrix X is.

This is the powerful aspect of duality that is exploited to solve linear systems indepen-

dently of the dimension of the unknowns. The adjoint method is about exploiting the

property of duality to compute the sensitivity of an output function f(W ) of the state

variables W , by relaxing the resolution of the linear system from the computation of

expensive terms (dimension dependent terms).

2.3.2 Discrete and continuous adjoint formulation: a comparison

The adjoint method comes in two distinct approaches, namely the continuous and the

discrete. Both approaches result in a set of discrete adjoint equations and the way

this set of equations is derived starting from the state variables defines the difference

between the continuous and the discrete adjoint approaches.

The first step in the discrete adjoint is the discretization of the non-linear Partial

Differential Equation (PDE) followed by the differentiation of the discretized equation,

while the discretization is the last performed step in the continuous approach. One

starts with the differentiation and forms the adjoint equations. With the discrete for-

mulation, the adjoint solver is tightly linked to the direct state equations solver, since

it implements an exact linearisation of it. The same code is usually used to solve the

state equations and the discrete adjoint state equations.
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The continuous adjoint formulation gives a discrete approximation to the gradient

of an analytic function. While the discrete adjoint provides the exact gradient of the

discrete approximation of the analytic function. These values will not be equal, or

within the limit of infinitely fine discretization. The fact that the discrete approach

gives the exact gradient of the discrete function represents a solid basis for validation,

while the known inconsistency of the continuous approach makes difficult to know

whether or not a slight discrepancy is due to the inexact value of the gradient or to a

programming error. It has been shown that the accuracy of the continuous approach

relies upon:

• the discretization scheme;

• the grid quality and resolution. The differences between both adjoints reduce as

the mesh size increases;

• an appropriate check for the discretization scheme. The discrete formulation is

often consulted to choose an appropriate discretization scheme.

For a non-smooth problem, i.e. with discontinuities like shocks, the continuous ap-

proach requires a specific boundary condition treatment, as described next: For shocked

Euler flows, the continuous adjoint approach imposes to treat4 the discontinuities of the

shock such as the adjoint variables are continuous across the shock. The implementation

of boundary conditions must be imposed along the shock, and this of course implies,

besides the mathematical difficulties, to detect the location of the shock. Although

most of applications lays on CFD codes numerical dissipation to free from imposing

internal shock boundary conditions, several teams worked in introducing methodologies

to deal with nonsmooth flows in particular Giles and Pierce (28), Matsuzawa and Hafez

(54).

For a 1-D quasi-Euler case, Giles and Pierce show in 1998 (29) that both formula-

tions converge to the analytic solution, although no specific boundary conditions were

4Rankine-Hugoniot shock jump
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enforced at the shock location. In this 1-D case, it was explained by the effect of nu-

merical smoothing, on the assumption that the analytic solution is the only smooth

solution at the shock, but in 2D and 3D cases, there is no proof of second order accu-

racy of aerodynamic quantities.

An important advantage of the continuous adjoint version that worth to be mentioned

is that surface sensitivities can be available without the need to ever calculate the mesh

sensitivities, necessary for the discrete version of the adjoint.

The development of the discrete adjoint program is reported to be less complicated

than the continuous formulation, although more tedious when linearisation is performed

normally by hand. When the analysis software has a simple academic structure of is

architecturally complex but has been written in the perspective to be linearised, the

powerful Automatic Differentiation (AD) tool 5 can be used explicitly to generate the

adjoint code, totally or partially. Otherwise, the utilisation of AD become less straight-

forward and in this case the choice of AD may be revised. The interest of Automatic

Differentiation to produce the discrete adjoint has been proven throught the work of

several teams in particular Mader, Martins and Alonso (65) (65), Cusdin and Mueller

(17).

Both formulations have been advocated and preferred for their conceptual differences.

In 1988, Jameson presented the first application of the continuous adjoint formulation

to aerodynamic shape design through the inverse design of airfoils in transonic and

inviscid flow (42). The continuous adjoint approach using Navier-Stokes equations was

treated for the first time in (43). Giles, a firm advocate of the fully discrete formulation,

used with Suli the discrete adjoint to analyse numerical errors in integral function (lift,

drag...) (30). In the so-called “one shot” method that was first published in (80), the

flow, the adjoint equation and the shape optimality equations are solved simultaneously

in one shot. The adjoint method, in both formulations has been also applied to a wide

variety of design problems subjects, e.g. McNamara et all. used the adjoint method for

5A widely used tool for Automatic Differenciation is TAPENADE, developed by INRIA. TAPE-

NADE puts a particular emphasis on the adjoint differenciation
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controlling physics-based fluid simulations applied to 3-D graphics animation (108).

The adjoint based optimisation methods are powerful and efficient for the CFD commu-

nity. However we must still recognise that their application to design complex industrial

shapes, often associated to poor grid quality, still suffers from weaknesses. There are

still numerical ingredients besides numerical and physical assumptions that impact the

adjoint-based gradients, and do not facilitate their integration into industrial context:

• the dependency on the convergence of the state equations;

• the exact linearisation of all terms;

• the difficulty to solve the full RaNS adjoint system that requires the challenging

linearisation of turbulence models;

• the tedious efforts to produce complete adjoint optimisation system.

• the fact that the adjoint can not be used as a result of a push-button processes

and requires user expertise 6

The developments of the adjoint method in the CFD software elsA will be addressed

in chapter in chapter 3 p. 37.

2.4 Aerodynamic and structural trade-off via wing parametriza-

tion

Wing design takes part in the entire process of aircraft design. Figure 2.1 p.29 sum-

marizes the traditional industrial milestones model of complete aircraft design and

manufacturing process that go from M0 to M15. M0 corresponds to the conceptual

idea of the project and M15 is the final stage of the program.

6Of course, some commercial codes like ANSYS/FLUENT already have a working version of the

adjoint for their products, however this does not imply that the adjoint method will be used in a daily

basis in the environment where it is deployed
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Figure 2.1: Airbus milestones

Once feasibility studies prove the interest of a new aircraft, the design of the wing un-

dergoes two major phases: a preliminary and conceptual phase followed by a detailed

phase. Depending on the nature of the project, the experience and the creativity of the

engineers, the first phase (M0 to M5) converges to a design that represents the input

of the second detailed phase.

Of course, the cost of the development of the aircraft depends on other important fac-

tors, some of them completely far from technical considerations, but it is important

to keep, as much and as late as possible in the design process, the possibility for the

engineers and the designers to innovate. The more advanced is the aircraft program,

the more the innovation is “constrained”. The figure2.3 p.31 presented by Mavris et

al (62) confronts the actual and the target ease of design change evolution and system

knowledge during the aircraft development process. This clearly highlights the impor-

tance of incorporating more disciplines earlier in design to control its process.

The benefits from the early stages (including conceptual stages) of the design are well

established, the focus now is to enrich them with more physically relevant results based

on higher fidelity analysis, without loosing their important characteristic of being low

in cost.

In this purpose, using MDO at this early stages will decrease the total cost of the

production cycle and provide better design with more confidence. In fact, multidisci-

plinary interactions trades mater in the preliminary design stage, since all the taken

design decision will impact further stages.

Among the different disciplines impacting aircraft performance, aerodynamic and struc-

tures are of prime importance. Moreover, the wing is probably the aircraft component
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Figure 2.2: Elliptic vs. aero-structural optimum lift distribution Source: Martins J., A

coupled-adjoint Method for high-fidelity aero-structural optimization

which has the largest impact on this performance (wing weight ≃ 25% OEW7, most of

the lift, induced drag...) justifying the invested effort on wing aero-structural design

tools.

The aero-structural wing performance depends first on the aerodynamic shape design

that defines the aerodynamic envelope of the wing, and secondly on the structural sizing

of the internal structural elements of the wing, the material properties and possibly the

structural topology (or layout).

There are two major approaches to design a wing.

- A first approach that aims at finding a desired lift distribution by adapting the twist,

taper ratio, and airfoil thickness distributions to find a targeted lift distribution. This

approach is motivated by the importance of lift distribution in wing design since it

affects the drag coefficient, through the induced drag component, the structural weight

through the load distribution and thus the material constraints and finally the stalling

characteristics. But it assumes the a priori knowledge of an optimal wing loading

yielding to an optimal “aero-structural” trade-off [Fig. 2.2, p. 2.2] (57).

To illustrate the aero-structural trade-offs and stress the importance of incorporating

multidisciplinarity in design exploration, the next section summarizes the effects of

some global planform parameters on both disciplines.

7Operating Empty Weight
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Figure 2.3: Aircraft design process. Source: Mavris D.N., DeLaurentis D.

- In the second approach, one directly searches the planform, the internal structure

and the twist that improves aero-structural performances in terms of drag, structural

weight and maximum lift constraint.

The second approach, less dependant on a priori hypothesis, is often combined with

numerical optimization and can be used in both preliminary and latter stages of wing

design.

2.4.0.1 Wing design parameters impact on aero-structural trade-off

Span

From a purely aerodynamic point of view, the increase of span decreases the induced

drag. However in most cases of transport aircraft, the span modifications are mainly

constrained by aero-structural (flutter, etc) and fuel volume considerations. The are

other limitations of the span: it still has to meet the ground and airport facilities

constraints and the impact on the structural weight which increases due to a higher

bending moment to be carried out through the wing box.
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Wing area

The wing area is the surface of the projection of the wing planform onto a horizontal

plan. It is the area used to define all aerodynamic coefficients: CL, CD. If we think of

the wing area as being an important drag factor, it is important to define correctly the

area involved in the analysis, for example the total friction drag issued from the friction

forces applied by the air on the aircraft body is affected by its total wetted area, and

therefore by the wing area. Other characteristics that define the choice of the wing area

are the low speed, maximum lift coefficient, the fuel volume and the structural weight.

Having a large area to manage the stalling speed, comes at the expense of higher drag

and higher structural weight.

Sweep angle

Wing sweep is strongly correlated to the wing speed. The main desirable effect of

non-straight wing with a sweep angle Λ is a higher cruise Mach number that comes

with a slight drag compressible penalty. In fact swept wings permit transonic airfoils

-fixed thickness to chord ratio- to be used at higher Mach numbers, while the local

effective normal Mach number is reduced: Mlocal = M∞cos(Λ). Since the dependence

is in cosine, the same results are excepted from negative sweep angle as it can be seen

in memorable aircraft such as the Junkers Ju 287. Although this is not the scope of

this work, the fact that the unconventional forward swept wing has to deal with un-

conventional aero-elastic effect such as static divergence and other issues linked to yaw

and stall instability would introduce a direct interest of MDO in conceptual stage.

The effect of sweep are not strictly limited to the few lines above, additional impor-

tant effects induced by sweep angle (on pitching moment, on lift coefficient, on flow

streamlines, etc...) can be found in the book of Sadraey Aircraft Design: A Systems

Engineering Approach presented in an introductory and pedagogic manner.

What we want to stress out is the importance of multidisciplinary design and analysis

even in early stages of the design process, when it comes to make decisions on planform

parameters such as the sweep angle which has a direct impact on several disciplines.

To sum up, the sweep angle affects the transonic wave drag (through the local mach
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number effect) and the structural weight through the displacement of the center of

gravity of the wing and the elastic axis, and requires a multidisciplinary approach to

be explored during the wing design.

Twist

The most known effect of twist is first the spanwise redistribution of lift and thus a

possible positive effect on the induced drag. Secondly, it prevents the stalling of the

wing tip to occur before the wing root which would lead to a loss of aileron authority

to control the aircraft. Another effect of twist is the modification of bending moment

distribution in the wing and thus -via the skin- the stress level in the wing structural

elements (spars mainly) which directly impact the structural sizing.

We may distinguish between two types of twist: the geometric twist and the aerody-

namic twist. The twist is said to be geometric when the incidence angle varies along

the span from the root to the wing tip and it is defined as aerodynamic when different

airfoils sections are used along the span. For example, the Boeing 767 has a thickness-

to-chord ratio of 15.1% at the root and 10.3% at the tip generating an aerodynamic

twist. The Gulfstream IV has a wing incidence of +3.5◦ at the wing root and −2◦

at the tip, resulting in a −5.5◦ geometrical twist. Generally manufacturing difficulties

arises from the geometric twist use.

There is also the twist induced by the aero-elastic effects. This twist results from the

combination of torsion and bending deformations of the wing and is the direct response

of the structure to the aerodynamic loads. It depends on many parameters, some of

which are the wing structural material characteristics.

What must be retained from the previous lines is first the direct effect of twist on aero-

dynamics and its indirect effect -through the loads- on the structures. Another point

that justifies the need of multidisciplinary and multi-objective design processes.

Taper ratio

The taper, defined as the ratio between the chord at the wing root and the chord at wing

tip, can be used to tailor the spanwise lift distribution. Lowering the taper has positive
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impact on the structural weight since the wing center of pressure will move inboard

toward the center line of the fuselage and this results in a lower bending moment at

the wing root which is beneficial to wing weight.

2.5 Outcome

This chapter presents the context of this work through a global and summarised review

of different possible approaches to solve the aero-structural wing optimisation problem.

Concerning the characterisation of the search algorithm, the local information given

by the gradient is highly valuable and can be exploited in a global, local or hybrid

approach for design space exploration. More than that, we see in the availability of

sensitivity information a valuable input for the designer at all design stages. Not only

for optimisation processes, but also to evaluate the evolution of the sensitivity of tar-

geted performance w.r.t. the decision parameters between the pre-optimisation and

post-optimisation stages. In a traditional design approach, the global geometrical pa-

rameters that define the wing (sweep, span, area...) are first defined -then optimized-

by the designer, followed then by the optimisation of the aerodynamic local design

variables (camber, twist...) and by the structural fitting and sizing. All the interest

of our approach is about accessing -at stages where the first parameters category are

defined- the targeted performance sensitivity information w.r.t. to all these param-

eters that usually appear later in the design process. This implies the necessity of

introducing multidisciplinary and physical models to represent both global and local

(disciplinary) parameters. For gradient-based optimisations remains, of course, the

space convexity-dependence when making the route towards a minimum besides the

importance of the initial point. However, the industrial optimisation problem we are

aiming to solve remains a mathematical formulation that has to deal with topological

and dimensional restrictions, whatever the algorithms is, whatever its type is there are

always pros&cons. In this contexts, the adjoint method presents a strong advantage

which is the decrease of computational cost necessary for sensitivity analysis. In addi-

tion, this information can be exploitable by both local algorithms -mainly- and global
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algorithms, offering a better local knowledge of the design space without requiring a

high computational cost.

The adjoint developments within the software elsA are presented in the next chapter.
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3

From aerodynamic design to

aero-structural design using the

adjoint method

3.1 Preamble

As introduced in the previous chapter, the design process is often faced with the com-

promise on the number of decision parameters and, possibly, several disciplinary ob-

jectives. Needless to say that there is no certitude on the direct link between design

space dimension and design optimality. But the idea of exploring a design space, often

constrained, aiming to find better configurations or understand why others are worse

is challenging for both research and industry.

Some algorithms rely on the information of the gradient to solve the optimization

problem and drive their search toward a candidate optimal configuration. This ex-

plains directly the invested efforts aiming at the reduction of the sensibility analysis

cost. These sensitivities are of tremendous importance to the valuable information re-

quired in a design process.

The heart of this work is the aero-structural adjoint method and its attractive cost effi-

cient sensitivity analysis in multidisciplinary high dimensional design spaces. Gradient-

37



based algorithms use this sensitivity information to drive the search in the design space

toward an optimum in the objective/constraint space. There are two different ways to

compute the gradients, purely numerical methods which consider the analysis code as

a black box and more intrusive methods that differentiate the analysis code. The most

common and widespread purely numerical is finite difference scheme. The application

of this method is straightforward and this is a major attractive characteristic. However

it has two drawbacks: the computational cost directly depends to the number of design

variables and the necessity of choosing the right perturbation magnitude. Analytical

methods are subdivided into direct and adjoint approaches. In the direct approach, the

flow is linearised with respect to (w.r.t) each design parameter, which gives a direct

dependence of the cost of the gradient evolution to the number of design parameters.

This approach was initiated in early nineties by Sobieszcanski-Sobieski (78). In the

other approach, the dual problem is solved instead of the primary problem (i.e ”adjoin-

ing” the problem). This allows a cost-efficient evaluation of the functional sensitivities

w.r.t the design space.

With the adjoint method, the cost of the gradient computation is determined by the

number of objectives/constraints instead of the number of design variables. The choice

of the approach therefore depends on whether a high number of design parameters

is necessary to achieve optimal design or not. In many cases the answer is positive,

consequently the adjoint approach is to be preferred to the linearized approach, see

for example the work of Méheut et al (63), Brezillon et al (14). Brézillon and his co-

authors performed two optimizations on a 3-D configuration (DLR-F6) using a coarse

parametrisation and a fine parametrisation. Their conclusion is that, although the

results depend on the parametrization methods, the adjoint method seems to be es-

sential since there is a substantial advantage to large number of variables. The coarse

parametrisation did even deteriorate the objective while the fine parametrization pro-

vided an optimal design.

A good indicator for the degree of maturity of a subject is to evaluate its integration

in an industrial context. If the multidisciplinary analysis has reached a mature point
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and is used in a daily basis in the industry, considerable efforts are still being invested

for multidisciplinary numerical design processes development and integration.

A realistic design is a multidisciplinary design and corresponds to a high dimensional

design and. High dimensional because, as said previously, of the need for a rich de-

sign space. Multidisciplinary because numerous shape and planform modifications are

meaningful only if other important disciplines are taken into account to interact with

aerodynamics. In some case, sequential discipline optimization were unable to converge

to the true optimum of a coupled system.

The adjoint method is all the more justified in gradient-based multidisciplinary opti-

mization. In an optimization that considers the interactions of n disciplines, a gradient-

based optimization requires the gradient information of each cost function that repre-

sents the discipline i ∈ [1, n] w.r.t private design parameters and public design parame-

ters. The definition of public and private parameters was given by Masmoudi (60). He

defines a private parameter one that has a direct influence limited to the state equa-

tions of one discipline, and public parameter one that influences the state equation of

all the disciplines taken into account. Adjoint methods offer an attractive approach to

compute efficiently the sensitivities w.r.t all parameters, be it private or public.

In this work we extend the adjoint method (the aeroelastic version c.f. section 3.4) to

cover both planform (public) and structural (private) modifications aiming at aerody-

namics performance without structural penalization.

The remainder of this chapter summarizes the achievements performed at ONERA to

integrate the adjoint method, for sensitivity analysis, in the context of multidisciplinary

design. In section 3.2 we overview how we adjoint the aerodynamic flow equations.

Then we describe in section 3.4 the extension performed by Marcelet (59) to solve the

adjoint equations of aero-elastic structures -where the structural model is not alterable-

and we describe the approach used for fluid/structure coupling. The last section 3.5

introduces the heart of this work, the adjoint equations of an aero-structural system

that requires differentiated models for both aerodynamics and structures.
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3.2 Numerical method for solving the governing flow equa-

tions

In this section we present, in a summarized version, the governing flow equations and

their discretisation inside the ONERA CFD flow solver elsA (25). There is no new con-

tribution to this part in this work however the presentation of the numerical schemes

choices within the adjoint method context, is meant to present to the reader the discrete

residual associated to the flow equations that we consider, and for which differentiation

is necessary when computing the aerodynamic adjoint, the aero-elastic adjoint or the

aero-structural adjoint resolution.

3.2.1 Governing flow equations

Let us consider a compressible viscous flow around an aircraft embedded within a

sufficiently large fluid domain D bounded by the surface Γ of outward unit normal

n = (nx, ny, nz)
T . The integral form of the conservative flow equations is given by:

d

dt

∫

D

WdD+

∮

Γ
(Fc(W, n)− Fd(W,∇W, n)) dΓ = 0 (3.1)

where:

-W is the vector of the conservative variables: W = (ρ, ρu, ρv, ρw, ρE)T

-~V = (u, v, w)T is the flow velocity vector expressed in an absolute frame of reference

-Fc is the convective flux vector in the direction ~n:

Fc(W, ~n) =




ρ~V · ~n

ρu~V · ~n+ pnx
ρv~V · ~n+ pny
ρw~V · ~n+ pnz
ρE~V · ~n+ p~V · ~n




(3.2)

Fd is the diffusive flux vector in the direction ~n:
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Fd(W,∇W, ~n) =




0
τ~n

τ ~V · ~n− Φ · ~n


 (3.3)

where:

- τ is the viscous stress tensor, the fluid is considered newtonian under the hypothesis

of Stokes that is :

τ = −
2

3
µ(∇ · V )I + µ(∇V +∇V T ) (3.4)

where

- µ (kg.m−1.s−1) is the dynamic viscosity depending on the temperature of the fluid

by the Sutherland law.

- Φ is the heat flux vector ;

When considering the Reynolds average process leading to the RANS equations that

solve the mean flow quantities evolution, the process of averaging add two new contribu-

tions in the diffusive flux vector namely: the Reynolds stress tensor τR and a turbulent

heat flux vector ΦT . Because we have considered only inviscid computation we will not

present the details of the modelling of these terms that are central aspects of the field

of turbulence modelling. The reader may refer to the elsA theoretical manual for the

different models that are available within elsA (25). For an inviscid fluid, the diffusive

flux Fd vanishes and we end up with the Euler equation for the behaviour of the flow.

We will now present the discretization of the conservative equations considering the

finite volume method.

3.2.2 Finite Volume Discretization

Within the CFD code elsA, a finite-volume method on structured grids is used to solve

the conservative equations. This method consists in discretizing the computational

domain D into hexahedral cells where on each of them, we compute mass, momentum
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and energy fluxes balance considering the contribution of each face of the cell. Consid-

ering one cell Ω of volume V and surfaces Σi with i = [1, .., 6], the mean value WΩ of

the conservative variables computed from the fluxes balance is stored at the center of

the cell. The residual form of the finite-volume approach in structured meshes can be

written as:

RΩ =
d

dt
(V(Ω)WΩ) +

6∑

i=1

(Fnum
cΣi

− Fnum
dΣi

) (3.5)

RΩ, called the explicit residual, is a function of the numerical convective flux Fnum
cΣi

and

the diffusive flux Fnum
dΣi

, both of them evaluated at the interfaces Σi with i = [1, .., 6].

These fluxes are evaluated thanks to the metric and the value of the conservative

variables estimated on a given set of neighbouring cells which depends on the selected

scheme.

For RANS computation, depending on the chosen turbulence model, transport equa-

tions of quantities defining the caracteristics of turbulence (energy, dissipation, eddy

lenght...) are written in residual form and are solved separately from the mean flow.

For this quantities, convective, diffusive fluxes and source terms (introducing the pro-

duction and destruction phenomenon for turbulence) are defined. The two sytem, of

convervative variables for the mean flow and of transported turbulence quantities are

coupled via the turbulent eddy viscosity. In fact, this variable is in the mean time de-

fined from the field of turbulent quantities and appears in the definition of the Reynolds

stress tensor τR under the Boussinesq assumption.

3.2.3 Choice of scheme in space and time

The CFD software elsA implements a wide variety of available schemes for the evalu-

ation of the numerical fluxes (both convective and diffusive). As we have considered

most of the time the steady Euler equations during this thesis work, we present here

the spatial discretisation of the convective fluxes. It is worth mentioning that at the

start of this Ph.D the only linearised scheme for the convective fluxes compatible with

the adjoint solver was the Roe scheme extended to the order two with the MUSCL ap-

proach (33) using Van Albada limiting function (25). RANS computation can be run
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with the adjoint, but an appropriate scheme for the viscous fluxes, compatible with the

adjoint solver is required. An important difficulty arises with the differentiation of the

turbulence model. In the elsA CFD code, k-w, k-l, and Spalart-Allmaras models have

been linearised but they can be source of convergence difficulties for the adjoint system.

There are new ways however that have recently been explored to provide improvement

of the convergence of fully linearised RaNS adjoint equations. To alleviate convergence

difficulties RaNS adjoint system, there is also the option to make the approximation

of a “frozen” eddy viscosity. If this approximation improve convergence of the adjoint

system, the accuracy of gradients is most of the time deteriorated. The constraints here

were a short time of response for the aerodynamic flow solution and a good accuracy

of the gradient what make us decided to considered the Euler equations. However, one

must mentions that all the development made in this thesis work are compatible with

RaNS adjoint solver.

In a second part we will briefly present the integration in time.

Discretization of convective fluxes using the Roe scheme

Let us consider an interface Σ, of vector surface S = (Sx, Sy, Sz)
T between the adjacent

cells Ωi and Ωi+1. Wi and Wi+1 are, respectively, the numerical value of conservative

variables evaluated at the center of the cells Ωi and Ωi+1. The expression for the

evalution of the convective flux Fc with a Roe scheme is given by :

FRoe
cΣ

(Wi,Wi+1) =
Fc(Wi, S) + Fc(Wi+1, S)

2
−

1

2
|ARoe(Q̂, S)|Wi+1 −Wi) (3.6)

where ARoe(Q̂, S) is the Jacobian of the convective flux with respect to the conservative

variables estimated in a specific average of Wi and Wi+1 defined by Roe. This average

is estimated for the set of variables ρ, u, v, w and h = e+ p/ρ in bijection with the con-

servative variables. The characteristics of the matrix ARoe(Q̂, S) and its computation

within elsA is detailed in (24).
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The Roe scheme is extended to a second order scheme in space using the piecewise

linear rebuilding of the approximate solution introduced by Van Leer and known as the

MUSCL approach. This approach extrapolates the so called primitive variables given

by P = (ρ, u, v, w, p). The vector P is obtained owing to a bijective transformtation of

conservative variables W. This bijective transformation can be found in (24). For the

interface
∑

i+ 1

2
,j,k of the cell (i, j, k) of the structured grid. The left and right states

(the direction left to right is associated with an increase of topological index i in this

case) at this interface are defined as:





Pleft

i+ 1

2
,j,k

= Pi,j,k +
1
2 ∗ Slopei(i, j, k)

Pright

i+ 1

2
,j,k

= Pi+1,j,k −
1
2 ∗ Slopei(i+ 1, j, k)

(3.7)

where Slopei(i, j, k) indicates the variation of primitive variable in the direction of the

grid index i computed at cell (i, j, k). It is given by

Slopei(i, j, k) = ψ(Pi,j,k −Pi−1,j,k,Pi+1,j,k −Pi,j,k) (3.8)

Where ψ is the limiting function. It has been chosen in our case as the function proposed

by Van Albada [ADDRE] and whose expression is given by:

ψ(a, b) =
(b2 + ǫ)a+ (a2 + ǫ)b

a2 + b2 + ǫ
(3.9)

where ǫ is a very small number to avoid the denominator to become null.

One can notice that thanks to its differentiable expression, this limiting function is

compatible with the resolution of the adjoint system implemented in elsA.

For diffusive fluxes because velocity gradients and temperature gradients need to be

evaluated. One need to choose a discretization scheme to evaluate these gradients.

Their are several possibilities in elsA ((24),(25)).
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Time integration

The stedy state computation introduced a pseudo time integration to make as low as

possible the residual presented in (3.5). To realize this process of convergence, the

Backward-Euler time integration scheme proposed initialy by Beam and Warming is

used (24). It is based on a Taylor development keeping only the one order term of the

evaluation of the residual at time step n + 1. The expression of the Backaward-Euler

scheme is given by:
(
I

∆t
+

1

V

dR

dW(app)

)
(W(n+1) −W(n)) = −

1

V
R(W(n)) (3.10)

where dR
dW

(app)
is an approximate jacobian of the residual w.r.t. to the conservative

variable and W(n+1) is the evaluation of the cnservative variable at time step n+ 1.

The system defined above is rewritten on the form of bloc matrix with lower (L), upper

(U), and diagonal (U) blocs.

(L+D + U)∆W = rhs (3.11)

For each time step, this system is solved using a relaxation technic:





∆W0 = 0
(L+D)∆W1 = rhs
(U +D)∆W2 = rhs− L∆W1

(L+D)∆W3 = rhs− U∆W2

...

(3.12)

Most of the time only two step of relaxation are used. (one with the matrix (L +D),

and the other with tha matrix (U +D))

As we are looking for a steady state solution, we defined for each cell a local time

step from the relation:

∆tref = min

(
dist

(|V |+ c)

)
(3.13)

where dist is a caracteristic lenght of the hexahedral cell defined by:

dist =
∆x∆y∆z√

∆x2∆y2 +∆x2∆z2 +∆y2∆z2
(3.14)
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with ∆x, ∆y et ∆z are the lenght of the hexahedra in x, y, z directions and dist
(|V |+c)

is the fasted wave speed encoutered in the cell (this is the highest eigenvalue of the

jacobian dR/dW) where |V | is the norm of the fluid velocity and c is the sound speed

velocity defined with the state of the flow in the cell.

Usually, for steady state computations the time step imposed in every cell is the product

of the local ∆tref define above and the CFL number.

This numerical scheme is coupled with a mlultigrid method to accelerate the conver-

gence. It is not possible to give a brief description of this method here but the reader

may refer to (24) for a detailed presentation.

3.3 Sensitivity analysis using the discrete aerodynamic

adjoint method

In this section we present, synthetically, how the pure aerodynamic adjoint equations

are derived and solved under the hypothesis of a rigid structure. These equations are

the starting point from which the extension to aero-elasticity and aero-structure is

developed.

We consider the CFD volume mesh X as a C1-differentiable function of the design

parameters α∗
geom (aerodynamic planform parameters). We assume that the residual

Rf , of the equations governing the flow, is C1-differentiable and that to a unique given

geometry corresponds a unique flow field. Be X∗ the CFD mesh that corresponds to a

design vector α∗
geom and W∗ the flow field computed on the CFD mesh. The residual

form of the finite volume discretization of the flow equation is given by:

Rf (W
∗,X∗) = 0 (3.15)

if the jacobian of Rf is invertible, then

det
[∂Rf

∂W

(
W ∗,X∗

)]
6= 0 (3.16)
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The implicit function theorem states that one can solve Rf (W,X) = 0 for X in a

neighbourhood1 of X∗. X is a continuous and a regular function of αgeom thus, the

flow field W is defined as a C1 function of αgeom in the neighbourhood of αgeom∗ .

Rf (W,X) = 0 can be solved for αgeom in the neighbourhood of αgeom∗ . We extend the

validity of this statement to all design space points, thus:

Rf (W (αgeom),X(αgeom)) = 0 (3.17)

From(3.17) one can state that:

dRf

dαgeom
=
∂Rf

∂X

dX

dαgeom
+
∂Rf

∂W

dW

dαgeom
= 0 (3.18)

This zero quantity can be multiplied by any non-zero vector λf of dimension 5 ∗ nncell

-or 7 ∗ nncell for RaNS equations with two equations turbulence models- and added to

the gradient of a functional wrt to αgeom. Let us consider Jaero(W,X) a function of

interest such as drag, lift, or many other scalar functions. The sensitivity of Jaero w.r.t.

αgeom can be expressed as:

(
dJaero
dαgeom

)

rigid

=

(
∂Jaero
∂X

+ λTf
∂Rf

∂X

)
dX

dαgeom
+

(
∂Jaero
∂W

+ λTf
∂Rf

∂W

)
dW

dαgeom
(3.19)

An appropriate choice of the vector λf frees the computation of

(
dJaero
dαgeom

)

rigid

from the

expensive computation of the flow sensitivity wrt αgeom, dW
dαgeom

. Then the following

system, called aerodynamic adjoint system, is solved for λf

λTf
∂Rf

∂W
= −

(
∂Jaero
∂W

)
(3.20)

The computation of the final gradient requires the resolution of a linear system, for

this purpose equation (3.20) is expressed in an incremental iterative form, very similar

to the iterative used to solve the flow equations. Thus the expensive matrix inversion

necessary to access the Jacobian
∂Rf

∂W is avoided. The set of linear equations is solved

by an implicit method also identical to the one uses to solve the flow equations.

1 p ∈ E, E is a topological space, the neighbourhood of p is a set N, which includes an open set O

containing p, p ∈ O ⊂ N
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Computation of the term
∂Rf

∂X
dX

dαgeom
:

Once the adjoint vector λf is computed, the gradient of the functional is available at a

cost equivalent to the estimation of the geometrical sensitivity of the explicit residual:
∂Rf

∂X
dX

dαgeom
. In the CFD software this term is linearised and used with aerodynamic

adjoint formulation. It can also be computed via second order finite differences:

∂Rf

∂X

dX

dαgeom
=
Rf (X,X+ dX

dαgeom
δαgeom)−Rf (X,X− dX

dαgeom
δαgeom)

2δαgeom
(3.21)

For discrete adjoint formulation, there is another way much more elegant introduced

by Nielsen and Park (67) to eliminate the metric sensitivity dX
dαgeom

using the adjoint

method of the mesh deformation equations. Thus the computation of nαgeom metric

sensitivities is eliminated. This design-dimension free gradient procedure was used by

Mavriplis in (61) when he formulates the adjoint of the entire optimization process, flow

equations and mesh motion equations. He successfully applied it to the optimization

of the DLR-F6 wing body. The time saving benefit from the adjoint formulation for

the mesh linearization was shown by Nielsen and Park in (67) on several large-scale

configurations, resulting in some cases in a time saving equivalent to tenth of flowfield

solutions time.

In the current work, when the design parameter is a planform parameter, the mesh

sensitivity calculation is performed analytically by the fully linearised code SeAnDef

for mesh deformation, with a derisory computation cost of these sensitivities.

3.3.1 Accuracy of the gradients

In the following parts the assumptions linked to the resolution of the adjoint system are

briefly summarized, since these assumptions affect the solution of the adjoint system,

regardless of the nature of the adjoint (aerodynamic, aero-elastic or aero-structural),

so that the obtained gradient may be incorrect, approximated or exact. The natural

question raised by Dwight and Peter in(69), is how accurate must gradients be for the

application under consideration? They illustrated the robustness of steepest-descent

algorithms and conjugate-gradient algorithms even with a poor quality gradient. In
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fact the objective function will be improved as long as the search direction makes a

negative inner product with the gradient. The use of algorithms that approximate the

Hessian matrix with a poor quality gradient will hardly converge to the optimal solu-

tion found with accurate gradients.

The main source of inexactitude of the gradients comes from the evaluation of the dis-

crete Jacobian
∂Rf

∂W . Although the residualRf is an explicit function of the flow variables

W, its linearisation depends on the complexity of the CFD code and on the operators

involved in its computation. The most common approximation in the computation of

the Jacobian is to maintain the turbulent eddy viscosity constant and independent on

the state variables W . This assumption is quite common in industrial application of

aerodynamic adjoint, however many teams have invested significant efforts in turbu-

lence models linearisation. Nielsen and Anderson presented in (2) the one-equation

turbulence model of Spalart-Allmaras fully differentiated and coupled into the solution

of the adjoint equation. They have examined the accuracy of the gradients computed

with several assumptions. It is important to note that in the validations they have

presented (on the ONERA M6 wing), when the parameter is associated with vertical

changes, the obtained derivative can even show an opposite sign if the complete lin-

earisation is not performed. Obviously such a behaviour may mislead the optimization

algorithm. At ONERA, Renac et al. linearised the two-equation transport models

k− ǫ (72) and Pham linearized the algebraic Michel model (52) and both applied it to

the context of turbo-machinery. An exhaustive list of the successful turbulence models

linearisations can be found in (69).

Despite those consequent efforts, it is still the norm to linearise only the mean-flow

equations and keep the frozen eddy viscosity hypothesis. However the use of linearised

models has not been widely applied. Dwight and Brezillon in (12) affiliate this lack of

application to complex configuration to the ill-conditioned character of the resulting

linear system of the adjoint equations including the turbulence models linearisation.

With a focus on the aero-structural adjoint problem formulation, in this work the

aerodynamic terms depend on the former developments in the field, and with the aim

of computational time saving and simplification, the flow is modelled with the Euler
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equations and when the RANS equations are considered to solve the coupled problem,

the frozen eddy viscosity hypothesis is maintained.

3.4 Adjoint equations of the aero-elastic problem

The aero-elastic adjoint equations presented in this section, developed by Marcelet

(59), is the starting point toward the aero-structural adjoint developed in this work

and introduced in section 3.5 and detailed in section 5.2.

The aero-elastic adjoint method, extension of the aerodynamic adjoint, computes the

sensitivities of any aerodynamic function such as aerodynamic coefficients, considering

an elastic wing structure of frozen mechanical characteristics (stiffness), with respect

to a set of decision parameters. The adjoint state is solved at the convergence of the

static aero-elastic coupling process used to solve the aeroelastic equilibrium equtions.

During the aero-elastic coupling, the structure is assumed not to store any kinetic

energy. Such as, an equilibirum position is reached after a number of iterations where

the fluid and the structure exchange aerodynamic loads and structural displacements.

Precisely, this is the information of this position, under the flexibility effects, which is

taken into account in the process of aero-elastic gradient computation. A beam of an

Euler Bernoulli type models the wing structural behaviour. The choice of this model

is discussed in Chapter 4.1 and the assumption of linear elasticity finds its justification

in the small deformation approximation at cruise condition.

We first explain the fluid/structure interaction process as it is used with the aero-elastic

adjoint.

3.4.1 Flexibility matrix approach

According to the principle of superposition (8) which states that, if several loads are

applied to a linearly elastic structure, the displacement at given point of the discretized

geometry of the structure equals the sum of the displacements induced at this point by

the loads applied individually at any point. Thus, when a discrete number of forces and
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moments acts on the structure (in opposition with distributed loads), the displacement

can be expressed as a linear function of the forces:

Di =
n∑

j=1

FijLj (3.22)

where Di is the displacement of the ith discrete node 2. The displacement Di due to

the forces Lj1≤j≤n
applied at the n load nodes.

The coefficients Fij that describe the behaviour of the structure under the aerodynamic

loading L, are organised in a matrix called the flexibility matrix. Thus this set of linear

equations can be expressed as a linear matrix system:

D = FL (3.23)

where L is the vector of applied aerodynamic forces and F , the global flexibility matrix

of the structure. F transforms aerodynamic forces and moments acting on the sur-

face mesh into deflection and twist of these elements. These deformations will be then

propagated in the volume mesh used to solve the flow equations. F is reciprocal to

the stiffness matrix K for which L = KD (when the structure is subject to distributed

loads, the equivalent of the flexibility matrix is called influence function). Equation 3.23

means that the work done by the external force during application is transformed com-

pletely into strain energy in the structure (U = 1
2D.L). The fluid structure interactions

are exposed in the next section.

3.4.2 Numerical method for fluid and structure coupling

The aero-elastic problem is solved by an aero-elastic module of the CFD software elsA

nammed elsA BAG (Beam Aero-elastic Gradient). As the acronym BAG indicates, it

is based on the Euler-Bernoulli beam equation and has been developed and oriented for

gradient computation with the adjoint method. This module is independent on the flow

modelling, it can be used whether the flow is described by Euler equations or by the

Reynolds Averaged Navier-Stokes equations (RANS). The process of the aero-elastic

2Displacement nodes are not necessarily coincident with load nodes
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equilibrium computation, presented in this section, still stands for the aero-structural

adjoint methods (introduced in section 3.5).

In our work, the initial configuration to which is applied the iterative aero-elastic pro-

cess is called the jig-shape. The jig-shape is the shape of the wing in absence of any

kind of loads. For example, the original geometry of our test-case is given at the cruise

point. It includes already twist deformation under aerodynamic loads, then a twist

correction of the opposite magnitude corresponding to the design point is performed.

The obtained CFD mesh is the one corresponding to the jig-shape. Working with the

jig-shape presents the advantage of working with a unique reference geometry in multi-

points optimization processes in which a different aeroelastically deformed geometry is

defined for each flight condition.

To perform a static aero-elastic analysis, a number of coupling iterations is defined

during which the fluid and the structure exchange information. At each iteration step

of the coupling process, the aerodynamic loads are extracted and applied on the beam

model at the beam load nodes.

A beam deformation calculation is performed and the structural displacement field is

transferred to the fluid domain. For static coupling this is done through mesh motion.

We call X the CFD mesh used during the current aero-elastic coupling process. The

mesh X is dependent on the initial jig-shape mesh Xrig, the structural mesh Xb and

the beam deformation. These dependencies operate in the differentiation process of

the aero-structural adjoint method detailed in section 5.2 while the dependency to

Xb is neglected for the aero-elastic adjoint formulation. Due to small deformation

approximation, Xb remains constant during the coupling process, and correspond to

the jig-shape.

3.4.2.1 Aerodynamic load transfer to the structural mesh

The generic, global coordinates system of the airplane are denoted (x,y,z).
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At each coupling step of the aero-elastic computation, the aerodynamic loads are ex-

tracted from the CFD mesh and transferred to the beam node nbi , 1 6 i 6 nb of the

structural mesh. This procedure has been proven to be consistant i.e. force and mo-

ment resultants are conserved. This section summarizes this process.
−→
Fi and

−→
Mi denote, respectively, the aerodynamic force and the moment at the beam

-load- point nbi , they are given by:





−→
Fi =

nI
surf∑
l=1

Si
l (pl − p∞)−→nl + Si

lµl
∂Vl

t

∂nl

−→
tl

−→
Mi =

nI
surf∑
l=1

−−−−−−−→
nbiGinflnbi

∧ (Si
l (pl − p∞)−→nl + Si

lµl
∂Vl

t

∂nl

−→
tl )

where nIsurf is the number of surface mesh cells within the influence zone inflnbi
of the

beam point nbi [Fig.3.1]. Si
l is the intersection of the area of a cell and the influence

zone.

The viscous part Si
lµl

∂Vl
t

∂nl

−→
tl is omitted when the fluid is modelled by the Euler equations.

The computation of
−→
Fi and

−→
Mi considers surface mesh points that belongs to the area

Snbi
of the influence zone, such as:

Snbi
= Xsurf ∩ inflnbi

= ∪nI
f
Si
l

3.4.2.2 Structural displacement transfer to the CFD volume mesh

Under the Euler-Bernoulli hypothesis, we denote the bending displacement field d =

(dx, dy, dz) and the angular twist displacement θ = (θx, θy, θz).

Once the aerodynamic forces are integrated at the aerodynamic surface mesh, they

are transferred to the points of the structural mesh, called the load nodes. To each

displacement node of the structural mesh, is associated a vertical movement dz and

a spanwise rotational movement θy. These quantities are computed by the structural

solver Beam (cf A). The z-deflection and θy rotation are both expressed in the global
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Figure 3.1: Load transfer at beam nodes.
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coordinate system associated to the aircraft. To transfer this displacement to the rest

of the fluid domain, solid mechanics analogy is used. We introduce

• Xrigj a point of the mesh corresponding to the jig-shape

• Xj is the position of this point at an iteration of the aero-elastic coupling

• X
′

bj
is the projection of Xj on the structural mesh Xb

Xj = Xrigj + d(X
′

bj
)~z +

−−−−−→
XrigjX

′

bj
∧ θ(X

′

bj
)~y (3.24)

The elastic motion field is available at structural displacement mesh nodes. The pro-

jection X
′

bi
is unlikely to coincide with a structural mesh node, thus the structural

deformation, at this point, is linearly interpolated from the computed value at the

neighbouring structural mesh points.

Our interest is on high aspect-ratio aircraft wings, therefore this method may not be

applicable for low aspect-ratio wings (supersonic wing for example).

3.4.3 Flexibility matrix computation for aero-elastic analysis

The displacement of structure is defined through the flexibility matrix approach defined

as:

F =



F zz F zθy F zθx

F θyz F θyθy F θyθx

F θxz F θxθy F θxθx


 (3.25)

The nine blocks of F , introduced above, are matrices of size nb ∗ nb, thus F is of

dimension 3nb ∗ 3nb. For 1 ≤ i, j ≤ nb:

• the coefficient Fij
zz is the linear vertical deflection dz at the displacement point

Pi due to unit vertical force fz applied at the load node Pj

• the coefficient Fij
zθy is the linear vertical deflection dz at the displacement point

Pi due to unit moment My applied at the load node Pj
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Figure 3.2: Deflection and twist allocation to the CFD volume mesh points
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• the coefficient Fij
zθx is the linear vertical deflection dz at the displacement point

Pi due to unit moment Mx applied at the load node Pj

• the coefficient Fij
θyz is the angular deflection θy at the displacement point Pi due

to unit vertical force fz applied at the load node Pj

• the coefficient Fij
θyθy is the angular deflection θy at the displacement point Pi

due to unit moment My applied at the load node Pj

• the coefficient Fij
θyθx is the angular deflection θy the displacement point at Pi

due to unit moment Mx applied at the load node Pj

• the coefficient Fij
θxz is the angular deflection θx at the displacement point Pi due

to unit vertical force fz applied at the load node Pj

• the coefficient Fij
θxθy is the angular deflection θx at the displacement point Pi

due to unit moment My applied at the load node Pj

• the coefficient Fij
θxθx is the angular deflection θx at the displacement point Pi

due to unit moment Mx applied at the load node Pj

The kinematics of the structure, which we assume linear elastic, is modelled by an Euler

Bernoulli beam. There is no possible lead and lag motions according to the x-axis and

lengthening movement according to the y-axis.

The structure of the wing takes up flexural loads fz and Mx and torsional loads My,

but it does transfer to the fluid domain, through the fluid-structure interface, only

the bending displacement dz and the twist θy. Because there is no transfer of angular

deflection θx to the fluid domain (according to (3.24)), the dimension of the flexibility

matrix is reduced to 2nb ∗ 3nb:

F =



[F zz](1≤i,j≤nb) [F zθy ](1≤i,j≤nb) [F zθx ](1≤i,j≤nb)

[F θyz](1≤i,j≤nb) [F θyθy ](1≤i,j≤nb) [F θyθx ](1≤i,j≤nb)


 (3.26)
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The strain energy conservation in a body implies the symmetry of the complete

9nb × 9nb flexibility matrix (a complete proof can be found in (8))

[F θd](1≤i,j≤nb) = [F dθ](1≤i,j≤nb)

The direct simplifications resulting from the property of symmetry of F are that only

the computation of the upper side of F zz and F θyθy is needed and either F θyz or F zθy

is computed. The coefficients F zθx and F θyθx are fully computed.

The computation of the flexibility matrix coefficients, when the wing beam model is

available, meaning that both the elastic axis geometry and the spanwise stiffness dis-

tribution are known, was performed by Marcelet for the purpose of aero-elastic adjoint

development. It is detailed in (59) for simplified wings (rectilinear) and for wings like

the configuration used in this work, with a positive sweep angle and positive dihedral

angle that cannot be assimilated to a rectilinear beam and must be treated as piecewise

linear.

The following section lays out the flexibility matrix coefficients in a summarized form.

Their computation for a discretized beam model, of nb points, is either identifies from

a structural finite element model of the wing or computed by the structural module

developed in this work and presented in chapter 4.1. These coefficients are linearised

for the resolution of the aero-structural adjoint problem, their differentiation w.r.t.

aero-structural design parameters is presented in Section 5.2.

At these stage, the bending stiffness EI and the torsion stiffness GJ spanwise distribu-

tion are supposed to be known and constants and provided with the extracted model.

Such as, the resolution of the aero-elastic adjoint problem for the computation of the

gradient of an aerodynamic cost function, do not take into account the sensitivities

wrt EI and GJ . In an optimization process this means that these coefficients remain

constant during the entire optimization process: The internal wing structure is frozen

and do not evolve with the planform parameter changes.
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We define the beam section Pi−1Pi in the local coordinate system (Xi, Yi, Zi), we assume

that the beam deformation is known at displacement node Pi−1 and we compute the

induced deformation of the section Pi−1Pi. The loads at the beam point Pj , expressed

in the global coordinate system(x, y, z), are:




0 Mxj

0 Myj

fzj 0




(x,y,z)

(3.27)

Where Mxj
, Myj and fzj are , respectively, the flexural moment, the torsion moment

and the vertical force per unit span. The moment induced at Pi by the loading at Pj ,

expressed in the global coordinate system, is:

(
−→
M(Pi))x,y,z =

−→
M(Pj) +

−−→
PiPj × fzj

−→z (3.28)

= Mx
−→x +My

−→y +
−−→
PiPj × fzj

−→z (3.29)

We project (
−→
M(Pi))x,y,z in the local coordinate system associated to the beam section

Pi−1Pi:

−→
M(Pi) =MXi

−→
Xi +MYi

−→
Yi +MZi

−→
Zi (3.30)

With the assumption of the Euler-Bernoulli Beam model, only flexural moments MXi

and torsional moments MYi
at the beam point Pi are considered for the deformation

calculation. The structural deformation, expressed in the local coordinate system is

the combination of dZi
the linear deflection according to the axis Zi, θXi

the angular

deflection according to the axis Xi and θYi
the angular deflection according to the axis

Yi.

We denote:

• (θXi
)i, respectively (θXi

)i−1, is the angular deflection according to the local beam

axis Xi at Pi, respectively Pi−1

• (MXi
)i, respectively (MXi

)i−1, is the flexural moment according to the local beam

axis Xi, at Pi, is respectively Pi−1
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• (MYi
)i, respectively (MYi

)i−1, is the flexural moment according to the local beam

axis Yi, at Pi, respectively Pi−1

• Ji, respectively Ji−1, is the torsional stiffness of the wing section at Pi, respectively

Pi−1

• Ii and Ii−1, respectively, is the bending stiffness of the wing section at Pi, respec-

tively Pi−1

If the loaded point Pj is located beyond the point Pi, meaning at a spanwise location

closer to the wing tip, the deformation induced by the loads at Pi:

(θXi
)i = (θXi

)i−1 +
1

2

(
(MXi

)i
EIi

+
(MXi

)i
EIi

)
‖Pi−1Pi‖ (3.31)

(θYi
)i = (θYi

)i−1 +
1

2

(
(MYi

)i
GJi

+
(MYi

)i−1

GJi−1

)
‖Pi−1Pi‖ (3.32)

(dZi
)i = (dZi

)i−1 +
1

2

(
(θXi

)i + (θXi
)i−1

)
‖Pi−1Pi‖ (3.33)

If the loaded point Pj is located before the point Pi:

(θXi
)i = (θXi

)j (3.34)

(θYi
)i = (θYi

)j (3.35)

(dZi
)i = (dZi

)i − (θXi
)j‖Pi−1Pi‖ (3.36)
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To go further

The previous deformations are the dis-
crete formulation of the integral form of
the classical formulation for beam deflec-
tions. Let d and θ denote the deflection
and the elastic twist. The bending curva-
ture is related to a unitary bending mo-
ment M through the relation

d2d

dz2
=
M

EI
(3.37)

And St. Venant theory states for a unitary
twist moment T

dθ

dy
=

T

GJ
(3.38)

Then (θXi
)i, (θYi

)i and (dZi
)i are projected in the global coordinate system of the

aircraft (x,y,z):


(θxi

)i
(θyi)i
(dzi)i


 = Pglobal/local



(θXi

)i
(θYi

)i
(dZi

)i




(x,y,z)

(3.39)

where Pglobal/local is the transfer matrix from the local coordinate system of the beam

structural node to the global coordinate system of the aircraft.

The loading computed according to relation 3.27 is a generalisation case of the admit-

ted loads on the point Pj . For example to compute the flexibility matrix coefficients

[F zθx ](1≤i,j≤nb) that represent the deflection dz along the axis z induced by the unit

moment aligned with the x-axis, then only the flexural moment Mx is considered:

τ =



0 Mxj

0 0
0 0




(x,y,z)

(3.40)

Once the flexibility matrix is fully computed, the structural deformation it is multi-

plied by the aerodynamic loads according to the relation (3.22). The corresponding
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deflection dz according to the z-axis and the angular deflection (θy) according to the

y-axis are propagated to the fluid domain, yielding a deformed CFD mesh in which a

new iteration of the aero-elastic coupled simulation can be started.

To sum up, the aero-elastic equilibrium -a prerequisite for aero-structural and aero-

elastic adjoints- is performed through a consistent and conservative load/structure it-

erative procedure, including the following sequence of actions:

• Loads transfer from aerodynamic mesh to the structural mesh;

• Compute displacements with the beam model;

• Transfer aero-elastic displacements from the beam mesh into the CFD mesh;

• Move the CFD volume mesh;

• Solve steady flow equations in the new mesh;

• Evaluate aerodynamic loads;

The number of the aero-elastic cycles depends on the treated configuration and on the

initial point (jig-shape or not). For the studied configuration ?? the equilibrium is

reached for five iteration of aero-elastic coupling.

3.4.4 Sensitivity analysis using the discrete aero-elastic adjoint method

The gradient computed via the aero-elastic adjoint concerns aerodynamic cost function.

Let Jaero denotes the aerodynamic objective -or constraint- function. Jaero is taken to

be :

Jaero = J(Sv, Dp), function of interest

where
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Sv =

(
Svf
Svs

)
=

(
W
D

)
, the state variables vector

Dp =

(
Dpf

Dps

)
=


X

(
Xrig, D

)
,W b(W,X)

0


, the dependencies of Jaero

where W , respectively W b is the aerodynamic conservative variables field on the CFD

mesh X, respectively on the CFD surface mesh Xsurf , and D the displacement field of

the structural mesh Xb nodes.

Dpf and Dps are respectively the aerodynamic and the structural dependencies of the

cost function taken into account by the differentiation process. In the case of the

aero-elastic adjoint, the hypothesis of a constant structural model, the dependency

of the function to the structural characteristics and to the structural mesh Xb is not

considered in the sensitivity analysis. The aero-elastic system is described, at the aero-

elastic equilibrium, by the following state equation, expressed under residual form

R =

(
Rf (Svf , Dpf )

Rs(Svs, Dpf )

)
=

(
0
0

)
; governing equations

Rf and Rs are respectively the aerodynamic and the structural residual form of the

state equations. The adjoint of the aero-elastic problem, in opposition to the adjoint

of the aero-structural problem, assumes an unchanged structure for the calculation of

the gradient. In other words material and structural properties of the structure remain

constant. The displacement D = FL of the structure depends only on the transferred

loads, so that differentiating the state equations w.r.t. αgeom gives:

[ ∂Rf

∂Dpf
0

∂Rs

∂Dpf
0

][
dDpf

dαgeom

0

]
+

[
∂Rf

∂Svf

∂Rf

∂Svs

∂Rs

∂Svf

∂Rs

∂Svf

][
dSvf

dαgeom

dSvs

dαgeom

]
=

(
0

0

)
(3.41)

With the assumption of a constant structural model, are accessible only gradients of

aerodynamic function with respect to aerodynamic shape parameters:

dJaero

dαgeom

=

[
∂Jaero
∂Dpf

0

]T [ dDpf

dαgeom

0

]
+

[
∂Jaero
∂Svf

∂Jaero
∂Svs

]T [ dSvf

dαgeom
dSvf

dαgeom

]
(3.42)
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As for the pure aerodynamic adjoint formulation, two arbitrary vectors which multiply

the derivatives of the state equations are introduced to factorize out the expensive

terms one wants to avoid calculation:

dJaero

dαgeom

=

[
∂Jaero
∂Dpf

0

]T [ dDpf

dαgeom

0

]
+

[
∂Jaero
∂Svf

∂Jaero
∂Svs

]T [ dSvf

dαgeom

dSvs

dαgeom

]

+

[
λT
f

λT
s

]T [ ∂Rf

∂Dpf
0

∂Rs

∂Dpf
0

][
dDpf

dαgeom

0

]
+

[
λT
f

λT
s

]T [ ∂Rf

∂Svf

∂Rf

∂Svs

∂Rs

∂Svf

∂Rs

∂Svs

][
dSvf

dαgeom

dSvs

dαgeom

]

=

[
∂Jaero
∂Dpf

0

]T [ dDpf

dαgeom

0

]
+

[
λT
f

λT
s

]T [ ∂Rf

∂Dpf
0

∂Rs

∂Dpf
0

][
dDpf

dαgeom

0

]

+

([
λT
f

λT
s

]T [ ∂Rf

∂Svf

∂Rf

∂Svs

∂Rs

∂Svf

∂Rs

∂Svs

]
+

[
∂Jaero
∂Svf

∂Jaero
∂Svs

]T )[ dSvf

dαgeom

dSvs

dαgeom

]

(3.43)

Then the following system is solved for λ = (λTf , λ
T
s ) using an iterative fixed-point like

scheme
[

∂Rf

∂Svf

∂Rf

∂Svs

∂Rs

∂Svf

∂Rs

∂Svs

]T [
λT
f

λT
s

]
= −

[
∂Jaero
∂Svf

∂Jaero
∂Svs

]
(3.44)

When a converged solution is reached for the system (3.44), the sensitivity of Jaero
dαgeom

is assembled according to:

dJaero

dαgeom

=

([
∂Jaero
∂Dpf

0

]T
+

[
λT
f

λT
s

]T [ ∂Rf

∂Dpf
0

∂Rs

∂Dpf
0

])[
dDpf

dαgeom

0

]
(3.45)
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3.5 Extension of the aeroelastic adjoint method to an

aerostructural adjoint method

In the previous section we presented the adjoint of the state equations for aeroelas-

tic structures. The computations of the sensitivities with the aeroelastic adjoint are

performed under the hypothesis of objective functions independent of the structural

properties. In this case the structure is parametrized with wisely selected aerodynamic

shape parameters and both objectives and constraints are aerodynamic functions.

In this section the objective function represents aerodynamics or structural perfor-

mances, and likewise the constraint(s). The design parameters concern both disciplines

so that the gradient computed allows the optimizer to shape both the aerodynamic

envelop and the internal structure. The objective function -objective or constraint- is

taken to be:

J = J(Sv, Dp), function of interest

where

Sv =

(
Svf
Svs

)
=

(
W
D

)
, state variables vector

Dp =

(
Dpf

Dps

)

Dpf and Dps are the dependencies of the functional J -be it aerodynamic or structural-

unlike the case of the aero-structural adjoint, these dependencies are coupled via W b,

the conservative variables at the fluid/structure interface, and via the structural mesh

Xb. The latter is a an explicite structural dependencyDps and an implicite aerodynamic

dependency Dpf , via the aero-elastic CFD mesh. All these terms are detailed in chapter

5.2.

The aeroelastic system is described by:

R =

(
Rf (Svf , Dpf )

Rs(Svs, Dps)

)
=

(
0
0

)
; governing equations
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Rf and Rs are the discrete residual form of the RANS or the Euler equations and the

structural equilibrium equation. Gradient based optimization requires the information

of the sensitivity of the objective function with respect to the design variables:

dJ

dα
=




∂J
∂Dpf

∂J
∂Dps



T [

dDpf

dα
dDps

dα

]
+

[
∂J
∂Svf

∂J
∂Svs

]T [dSvf

dα
dSvs

dα

]
(3.46)

To compute the total variation of J with this formula, dSv

dα would be necessary for

each α. The increase of computation cost with the increase of design space dimension

is obvious. Because the variation of the residuals is zero, the variation of the cost

function with respect to the design variable can be expressed again:

dJ

dα
=

[
∂J

∂Dpf

∂J
∂Dps

]T [dDpf

dα
dDps

dα

]
+

[
∂J

∂Svf

∂J
∂Svs

]T [dSvf

dα
dSvs

dα

]

+

[
λT
f

λT
s

]T [ ∂Rf

∂Dpf

∂Rf

∂Dps

∂Rs

∂Dpf

∂Rs

∂Dps

][
dDpf

dα
dDps

dα

]
+

[
λT
f

λT
s

]T [ ∂Rf

∂Svf

∂Rf

∂Svs

∂Rs

∂Svf

∂Rs

∂Svs

][
dSvf

dα
dSvs

dα

] (3.47)

where λs and λf are two arbitrary vectors called the adjoint vectors and

• ∂J
∂Dpf

dDpf

dα : the change in the cost function due to design variable perturbation

through the aerodynamic dependencies: the metric X and the conservative vari-

able Wb at the fluid/structure interface.

• ∂J
∂Dps

dDps

dα : the change in the cost function due to design variable perturbation

through the explicite structural dependencies: Xb, F (Xb, I, J)

•
∂Rf

∂Dpf

dDpf

dα : the sensitivity of the flow equations residual w.r.t design variable

changes through the aerodynamic dependencies: the metric X and the conserva-

tive variable Wb at the fluid/structure interface.
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•
∂Rf

∂Dps

dDps

dα : the -implicite- sensitivity of the flow equations residual w.r.t the struc-

tural dependencies (effect of structural mesh changes on the aero-elastic mesh,

and thus on Rf ).

• ∂Rs

∂Dpf

dDpf

dα : the sensitivity of structural equations residual w.r.t design variable

changes through the aerodynamic dependencies. In other words, this term quan-

tifies the effect of design space perturbation on the loads L and on the flexibility

matrix F through Dpf .

• ∂Rs

∂Dps

dDps

dα : the sensitivity of structural equations residual w.r.t design variable

changes through wing box geometry and flexibility modifications. It represents

the effect of design variables perturbation on aerodynamic loads and on the flexi-

bility matrix F through Xb, the conservative variable W
b at the interface and the

structural characteristics I and J .

In equation 3.48 below, the total variation of the cost function is reorganized, the first

term represents the dependencies of J and the second term is the dependence on the

state variables:

dJ

dα
=

([
∂J

∂Dpf
∂J

∂Dps

]T
+

[
λTf
λTs

]T



∂Rf

∂Dpf

∂Rf

∂Dps
∂Rs

∂Dpf

∂Rs

∂Dps



)[

dDpf

dα
dDps

dα

]

+

([
∂J

∂Svf
∂J

∂Svs

]T
+

[
λTf
λTs

]T [ ∂Rf

∂Svf

∂Rf

∂Svs
∂Rs

∂Svf

∂Rs

∂Svs

])[
dSvf

dα
dSvs

dα

] (3.48)

Similarly to the aerodynamic adjoint, to eliminate the dependency of the total variation

of the cost function on the state variables sensitivities, we solve for λs and λf :

[
∂Rf

∂Svf

∂Rf

∂Svs
∂Rs

∂Svf

∂Rs

∂Svs

]T [
λTf
λTs

]
= −

[
∂J

∂Svf
∂J

∂Svs

]
(3.49)

The aero-structural adjoint system, is solved using an iterative fixed-point like scheme

by the software elsA (25). Once the adjoint vectors are computed, they are injected in
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the expression of the final aero-structural gradient given by:

dJ

dα
=

([
∂J

∂Dpf
∂J

∂Dps

]T
+

[
λTf
λTs

]T



∂Rf

∂Dpf

∂Rf

∂Dps
∂Rs

∂Dpf

∂Rs

∂Dps



)[

dDpf

dα
dDps

dα

]
(3.50)

The gathering of the final aero-structural gradient requires the computation of the terms

appearing in (3.48) and (3.50). These terms involve the sensitivities of the structural

residuals or the sensitivities through the structural dependencies. These sensitivities

are supplied by a structural solver developed in this work. The same module supplies

the structural model for the aero-elastic computation step. The structural module

InAirSsi, is presented chapter 4.1.

3.6 Outcome

In this chapter, we reviewed the aerodynamic adjoint equations , then the aero-elastic

adjoint equations and finally introduced its extension: the aero-structural adjoint

method. The aero-structural adjoint development relaxes the problem from the frozen

flexibility hypothesis assumed for the development of the aero-elastic adjoint. This

aims at accessing to the adjoint-based sensitivity analysis of the drag and structural

weight, in order to solve a design problem: CD + ωW .

For the aero-structural adjoint resolution and gradient gathering, it is necessary to

provide some sensitivities (partial or total) of the structural model w.r.t material char-

acteristics, planform parameters αgeom and internal structure parameters αstruct. The

aero-structural adjoint method has been introduced in section 3.5, it will be detailed

in section 5.2, but before this, we present in section 4.1, the differentiated analytical

structural model.
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4

Development of an

adjoint-compatible structural

model of the wing

4.1 Preamble

In Chapter 3 we presented the extension of the adjoint method toward the consideration

of the structure as an additional degree of freedom of the wing optimization problem.

Our work is motivated by the search of the best compromise between aerodynamics and

structures for optimal performance. For that we need the capability, for a given wing

planform, to size the different structural components (for example spars...) in a way

that minimizes the wing structural weight. The formulation of such a problem defines

an aero-structural optimization framework. It requires the consideration of fluid and

structure interactions and evolution not only of the wing shape parameters but also of

the so called internal structural parameters. The structural decision parameters shape

the geometry and/or topology of the internal wing. Aerodynamic loads are transferred

to the rest of the aircraft via these components.

A gradient-based MDO process requires sensitivity information of the different func-

tions involved in the multidisciplinary design problem. In the bi-disciplinary context

69



of this work, the sensitivities are those of aerodynamic and structural cost functions

w.r.t. aero-structural design parameters. The aero-structural adjoint provides these

sensitivities independently of the number of decision parameters. However, calculating

these sensitivities requires the use of a parametric structural model which provides an-

alytical derivatives of its internal routines. Indeed, the adjoint solver module and the

final gradient gathering module of the CFD software elsA, must be supplied with the

structural sensitivities appearing in the gradient expression (Sections 3.5, 5.2).

This chapter presents the linearised structural module that has been developed in this

work: InAirSsi (Internal Aircraft Structural sizing) for structural and sensitivity anal-

ysis.

Powerful, commercial off-the-shelf tools for structural analysis, with fully featured

finite elements models, exist and can be coupled to the ONERA CFD software elsA, but

at the cost of high complexity in the preprocessing (data preparation) and actual use.

Our approach derives from the idea that a tool used in conceptual and/or preliminary

design needs to converge in a short time to a feasible solution and to be easy to use.

We expect the methods, tools and solvers developed in research context for optimization

purposes to be used by industry. In this context, if multidisciplinary tools are nested

with a varying degree of fidelity, it is first because of the attractive ease of use linked

to the current model complexity. Secondly, because the necessity of multidisciplinary

interactions in preliminary design stage implies an elaborate convergence process to-

ward a solution. The last point is all the more applicable when each of the intervening

disciplines is modelled with the highest degree of fidelity. In addition, when the opti-

mization does not lie simply on black box strategy to evaluate the performance of each

discipline, the proposed methods for design space investigation, such as the adjoint

method, should allow an effective adaptability, regardless of the studied configuration.

It is not desirable to have complex set-up processes in early design phases where the

reduction of time/cost is a target.
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For the previous given reasons, we chose to model the wing structure behaviour by

an Euler-Bernoulli beam 1.

An important distinction between design processes and analysis processes must be done,

understood and highlighted. At an early stage, when the objective is to explore the de-

sign space, the modelling of the physics can be, legitimately, kept simple. All the more

since in a multidisciplinary context, the adjoint approach cannot be build upon black

box software components, since its development is intrusive and requires full control on

the entire process.

Beam models provide a valuable insight into slender structures. They are reliable and

simple -yet physically meaningful- tools to take into account the aero-elasticity interac-

tions that cannot be neglected even in a pre-design or optimization process. However,

one must remember that a critical evaluation of the results is as important as the anal-

ysis itself. The beam model is and remains a low fidelity model with a high number of

assumptions.

At ONERA, numerous works cover the high-fidelity structural modelling for optimiza-

tion (25). The last example, to date, of high-fidelity modelling in a MDO context, is

the work of Blondeau et al. (9). The authors computed aerodynamic and structural

response using a CFD/CSM simulation with the elsA and MSC NASTRAN software to

solve an aero-structural optimization problem implemented using the BLISS (Bi-level

Integrated System Synthesis) (75) MDO formulation.

The work presented here is intended to extend the purely aerodynamic adjoint-based

capability towards aero-structural design with simplified structural modelling. The

developed aero-structural adjoint solver constitutes a step forward compared to the

aero-elastic adjoint method. As said previously, the need to compute the objectives

of both disciplines as well as their gradients drove us to develop a tool for structural

modelling compatible with adjoint-based sensitivity analysis.

1The Euler beam theory was established around 1750 by Leonard Euler, Daniel Bernoulli and Jacob

Bernoulli

71



The first step for the adjoint formulation of an aero-structural problem is to perform an

analysis at the aero-elastic equilibrium. This is performed via a coupled fluid/structure

simulation, with the structural model computed by InAirSsi. The second step is the

resolution of the dual problem for the gradient computation which requires the compu-

tation of derivatives w.r.t the dependencies of both disciplines. The resulting structural

module, InAirSsi, is an input-output system [Fig 4.1] that interacts with the other pre-

processing, analysis and post-processing modules composing the design process. The

capabilities of the structural module InAirSsi can be summarised as:

• Structural modelling capability

• Weight computation capability

• Load application capability

• Material stress computation capability

• Sensitivity analysis capability

• Gradient-based optimization compatibility
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Figure 4.1: Input-Output system of the structural module InAirSsi

4.2 Structural model extraction

The wing is modelled as a cantilevered Euler Bernoulli beam with linear coupled bend-

ing and twist motions.

The equivalent beam model could be derived from a structural finite element model.

During an optimization process, this would mean the generation of a CSM model for

each configuration, but then the complexity and cost of such approach is debatable.

The alternative is an identical structural model during the entire optimization process.

This implies a design space restricted to parameters that do not affect both the me-

chanical properties of the wing and the structural weight. However, such a restricted

design for an elastic wing would not benefit from the adjoint method capacity to over-
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come the dimension of the design space.

The coupling of the aerodynamics and the structure passes through the nodes of the

discretized beam model. These nodes can be either displacement nodes or load nodes.

These nodes are the points where the aerodynamic forces are extracted and transferred

to the structure, and where the structural displacement is transferred back into the

aerodynamic mesh during the aero-elastic coupling.

The consideration of an Euler-Bernoulli beam as a wing model is driven by the im-

portance of sections deformations under the efforts that the internal structure of the

wing takes up. The internal structure of the wing (Fig 4.2) is assumed to be composed

of elements of a closed section that do not warp under loads. Two key assumptions

are implied with the Euler-Bernoulli beam model: the material is elastic according

to Hook’s law and the cross-section remains planar and perpendicular to the neutral

axis during bending. The latter is known as Navier’s hypothesis. Timoshenko’s beam

theory relaxes the Navier’s hypothesis and allows shear deformation. This type of de-

formations, in the context of fluid/structure coupling, requires special care for mesh

deformation, since at the fluid/structure interface a sheared cell will be propagated

into the volume. In fact, the no-shear hypothesis is an additional virtual rigidity to the

structure that we accept to take into account in the context of aero-structural adjoint

method development.
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Figure 4.2: The structural model of the wing

4.2.1 Primary structure elements

Airworthiness requirements classify structures as load-bearing and non load-bearing

structures. The former are called primary structures and are those that will endanger

the aircraft upon failure. The latter are called secondary structures and are those that

do not cause immediate danger upon failure.

The primary structure of the wing consists of spars, stringers and ribs. The secondary

structure gathers the leading edge part and the trailing edge part and represents the

main place for high lift devices. Both structures are embedded in the aerodynamic

envelope of the wing.

In this work we have made the choice to model only the primary structure of the wing,

since it is the part of the internal wing with the highest influence on the structural

performances and the most sensitive to the external aerodynamic loads. The spars are

major structural elements of the wing and the most heavily loaded structure of an air-
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craft. Spars consist in a simple beam with usually an I-shaped cross section composed

of a vertical part, the web and a horizontal part, the cap. The role of the spar caps is

to increase the torsion resistance and to resist mostly bending loads and axial loads.

The skin, as part of the torsion box, takes up the torsion loads. It links the caps of

the front spar to the one of the rear spar and serves to resist bending. In addition,

the skin of the upper wing and the lower wing resist shearing loads, and transmit the

aerodynamic loads to the longitudinal part of the structure (spars) and the transverse

part of the structure (ribs). The applied loads are then transferred to the rest of the

structure via the spar elements. Finally, the skin operates with the spar caps to resist

applied bending loads.

InAirSsi assumes a wing structure composed of two spars which are joined by a strength-

ened skin, forming the so-called torsion box. We assume that the longitudinal elements

(skin and spar caps) are lumped into a single effective longitudinal element, forming a

unique body. The spanwise wing box sections are assumed to remain rigid within their

own plane [Fig.4.3].

Figure 4.3: Primary structure ele-

ments in a wing cross section

The components of the wing box elements are defined by the following geometrical

properties, which form the structural parameters αstruct:

• tfs: Thickness of the front spar web

• trs: Thickness of the rear spar web

• pfs: Position of the front spar web

76



• prs: Position of the rear spar web

• tclow : Thickness of the lower surface spar cap

• tcupp : Thickness of the upper surface spar cap

• tslow : Thickness of the lower surface skin

• tsupp : Thickness of the upper surface skin

4.2.2 Elastic axis of the structural model

For k spanwise control sections, we define k ∗ 8 -where 8 is the number of structural

parameters defined above- structural degrees of freedom to shape and size the wing

box, and represented by the vector αstruct. InAirSsi takes as input αstruct and the

aerodynamic wing envelope defined by αgeom. At each control section, each of the eight

input values actually represents a percentage of the local airfoil thickness (for the upper

and lower wing thicknesses) or a percentage of the local chord (for the front and rear

thicknesses).

This geometrical characteristics are interpolated in the spanwise direction at the beam

discretization nodes. This interpolation is performed considering the distribution of

the thickness-to-chord ratio [Fig. 4.4].

The elastic axis [Fig.4.3] is located at the centroid of the cross-sections. To determine

the centroid XbiG of a cross-section i, the wing box section is split into j common

geometric shapes of centroid XjG and area Aj . The beam node, in the discrete form,

is given by:

XbiG =

∑
XjGAj∑
Aj

The beam axis, piecewise linear, is oriented towards the wing tip and is noted y-axis.

The x-axis is aligned with the fuselage axis and is oriented towards the empennage.

The z-axis completes the system of axes [Fig.4.7].
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Figure 4.4: Maximal thickness to chord ratio distribution on the AIRBUS XRF1 con-

figuration

During the structural sizing process or during the aero-structural optimization process,

the wing box elements thickness, represented by αstruct, are controlled so that the

weight or the aero-structural objective function is minimized while the stresses in the

different elements material never exceed the elastic limit. The wing-box candidate, to

sizing or MDO, must withstand maximum force of both stress components, the normal

and the shearing stress. The response of the wing structure to the aerodynamic loads,

depends on the mechanical properties of the wing. The computation of these properties

via InAirSsi is presented in the next section.

4.3 Wing box mechanical properties

The flexibility matrix, presented in Section 3.4.3, transforms a loading field on the

structure into a displacement field of the structure. The wing undergoes distributed
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pressure forces which can be decomposed and represented through two spanwise distri-

bution of integrated loads, namely a bending (or flexion, or flexural) load and a torsion

(or twist, or torsional) loads. The intensity of the structural response is a function of

the flexibility matrix coefficients, which depend on the structural, material and geomet-

rical characteristics. The wing bending and twist resistance are measured, respectively,

by the so called bending stiffness EI and torsion stiffness GJ along the beam axis. The

key factor for flexion is the EI factor, the flexural stiffness that is simply the product

of the young’s modulus E that reflects the material properties and the I factor, named

the second moment of area. E has the dimension of a force per square length, EI is

thus expressed in term of force times squared length (N.m2). The torsional response is

controlled by the GJ factor. G is the shear modulus of elasticity and J the torsional

constant of the cross -section

As explained previously, the aero-structural adjoint is developed to take into account

flexibility changes. These changes are direct results of geometrical modifications (plan-

form and geometrical). The need is then to evaluate EI and GJ as well as their

sensitivities.

Bending stiffness

When a slender object of finite thickness is placed under bending loads, a part of this

object is stretched and the other is compressed. The plane in between that is neither

under tension nor compression is called the neutral plan. The amount of bending is

controlled by EI. The bending stiffness of a section can be efficiently increased by

placing the material away from the neutral plan (i.e., increasing the moment of inertia

I). For the same amount of material, a full rectangle section is less stiff than an I-

beam. At first this informs us on how the components considered to model the primary

structure of the wing behave under bending loads. Secondly, it tells that the upper and

lower longitudinal components of the wing structure drive the sizing of the wing box in

flexion. As it is the case for metallic material (steel, aluminium...) the wing material

is considered to be isotropic, this means that all the planes that pass through the wing
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components are planes of elastic symmetry and thus Exx = Eyy = Ezz = E.

To go further

Let S be a wing cross-section perpendicular to the beam
axis oriented from the wing root toward the wing tip. The
moment of inertia about the x-axis Ixx, the moment of in-
ertia about the z-axis Izz and the product of inertia Ixz, are
defined as

Ixx =
∫∫

sectionz
2 dA Izz =

∫∫
sectionx

2 dA

Ixz =
∫∫

sectionxz dA

The structural elements are decomposed into symmetric elements about the x-axis or

the z-axis, then we have Ixz = 0. The general bending equation is then given by

σyy =
Mx

Ixx
z +

Mz

Izz
x

where σyy is the normal stress (defined in section 4.4.2). Mx and Mz are, respectively,

the bending moments according to the x-axis and z-axis. The only bending moment

that the wing box structure is subject to is the one according to the x-axis (see section

3.4.2). Thus only the moment of inertia about the x axis is computed.

The moment of inertia Ixx of the sections located at beam node discretization number

j, 1 ≤ j ≤ nb, is formulated in a discretized form:

Ixxj
=

6∑

i=1

surf i(ZGi
− Zbj )

2 +
witi

3

12
(4.1)

where

- surf i is the area of the wing box ith element 1 ≤ i ≤ 6 (6 thicknesses: upper

wing=spar caps+skin , lower wing=spar caps+skin , front spar web, rear spar web)

- ZGi
is the z-coordinate of the centroid of the ith element

- Zbj is the z coordinate of the displacement node at the jth section 1 ≤ j ≤ nb

- wi is the width of the ith element
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- ti is the thickness of the ith element

To validate the second moment of area calculation, we consider a wing box geometry

represented by a set of random αstruct (without sizing), based on the aerodynamic

envelope of a reference wing geometry. Then we compare the second moment of inertia

extracted from the commercial CAD software CATIA to the one computed by the

structural module InAirSsi:

Figure 4.5: CATIA vs InAirSsi for Ixx of the

XRF1 constructed primary structure

Figure 4.6: CATIA vs InAirSsi for Ixx of the

full geometrical section of the XRF1 aerody-

namic envelope

Torsional Stiffness

GJ , called the torsional stiffness, is the analogous variable to EI for torsional stiffness.

G, the shear modulus, represents the resistance of the material to shearing, and is

equal to the Young’s modulus with a correction for Poisson ratio, G = E
(2(1+ν)) . J , the

torsional constant, should not be confused with the polar moment of inertia that is also

described by the same variable J and defined as the sum of the main axis moments of

Inertia. The only case where these two entities are numerically equal is for a circular

member.
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In our case, when we consider a linear elastic material, G is constant. For an isotropic

material of centroidal axes x and z, Gzx = Gyx = Gyz = G.

To go further

Shear flow in an element of thickness t subject to shear stress
τ is τf = τt. Bredt-Bahto formula defines the torsion T of
closed section beams with a constant shear flow:

T = 2Aτf

where A is the area enclosed by the cross section. The rate
of twist for a constant shear flow is given by

2A
dθ

dy
=

∮
τf (s)

Gt
ds = τf

∮
ds

Gt

s being the distance along the cross-section. The torsion
moment resisted by the cross-section is:

T = GJ
dθ

dy

From the previous formulas we approach J by the so-called
Bredt formula, given by:

J =
4A2

∮
s
ds
t

(4.2)

The structural module InAirSsi uses the discretized form of formula 4.2:

J =
4A2

∑6
i=1

wi

ti

(4.3)

The mechanical properties of the wing box, I and J , are presented as they are imple-

mented in the structural module InAirSsi. They quantify the response of the loaded

structure and the next section presents the method used to calculate the inner stress

in each structural element for a given load case.
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4.4 Primary structure elements stress analysis

The object of the present section is to present the computation of the stresses under-

gone by the wing structural elements.

During flight, any manoeuvre that causes accelerations or deceleration increases the

forces and the stresses on the wing and fuselage. The stress, defined as load per area,

quantifies the force intensity at any point in the structure and produces deformations

in the material that are called strain. The integrity of the airplane depends on how

the structure is loaded and how the resulting stresses are distributed in the structural

elements. Thus, the role of the structural sizing is to keep the stress below a threshold

level to prevent critical deformation that imperil the structural integrity of the air-

plane. The design process of the wing must provide a saving in structural weight while

satisfying a minimum strength. This loss of strength is quantified by computing the

maximum stress induced by the selected sizing load cases for each set of design param-

eters of the design space describing the aerodynamic shape and the geometry of the

primary structure. The loading condition used to size the wing structure are defined

by airworthiness FAR or JAR regulations ( c.f. appendix C ).

The stress field acting on the wing box is determined from the loading case given as

input to the structural module InAirSsi. The structure resists to these solicitations and

its response is given as a function of the mechanical characteristics of the beam model.

4.4.1 Load type on the wing box

The role of the primary structure of the wing is to carry and transmit all aerodynamic

loads through the parts of the airplane: loads are taken up first by the wing skin, then

transmitted to the ribs and finally to the spars.

There exist two distinct types of stress, normal and shear stress. The normal stress

is associated with a relative change in length and the stress component associated

to relative changes in angles is called shear stress. The normal stress component is

induced by axial (y-axis) and bending moments The shear stress component is induced

by torsional moments and shear forces.
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As stated previously, the wing aero-elastic behaviour is considered in this work as a

linear system, the response of the structure to aerodynamic loads is calculated using

the relation 3.22.

With the assumption of an Euler-Bernoulli beam-like structural behaviour, the wing

box takes up the following loads:

• Vertical force Fz (bending action)

• Flexural moment Mx (bending action)

• Torsional moment My (twist action)

The wing is assumed to behave as a perfectly elastic material -i.e. the structure regains

its initial form when external forces are removed-.

Figure 4.7: Bending and twist actions

on primary wing box structure

Figure 4.8: Stress solicitation on pri-

mary wing box structure

The force Fz is normal to the elastic axis. The torque moment My induces torsional

shearing stress σyz and the bending moment Mx causes normal stress σyy. The stresses

are related to the force resultant through the following relations

Fz =

∫

section
σyzdS (4.4)
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Mx =

∫

section
zσyydS (4.5)

My =

∫

section
xσyzdS (4.6)

4.4.2 Bending normal stress on wing box elements

The x and z axes are the principal axes of the wing box cross-section. Thus, the product

moment of inertia of cross-section Izx =
∫
section zxdS is zero. In the case where no axial

force Fy is acting on the structure and the bending occurs only along the centroidal

x-axis, the general expression of the normal stress1 reduces to the strength of material

equation:

σyyi (y) =
Mxi

(zi − zbi)

Ixxi

(4.7)

Where Ixxi
is the moment of inertia about the y-axis (section 4.3) of the cross-section

i and (zi− zbi) the distance of a point of vertical coordinate zi to the neutral axis. Mxi

is the integrated bending moment of all aerodynamic forces acting on the wing, from

the tip to the current beam node i:

Mxi
=

i∑

k=nb

(Mxk
+
−−→
PiPk ∧

−→
F )

where
−→
F =




0
0
fzj




(x,y,z)

.

The flexural loads are principally carried by the spar caps. For positive lift, bending

moments produce compressive stresses on the upper part and tensile stresses on the

lower part. The maximum compressive and the maximum tensile stress are located at

the upper wing and lower wing interface, given by

{
σumax =

Mx(zupp−zb)
Ix

σlmax = Mx(zlow−zb)
Ix

1 See reference (70) for detailed proof
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The normal stress under sizing loads is computed by the structural module and must

be kept below the elastic limit of the material in tension and compression.

4.4.3 Torsional shear stress on wing box elements

When the wing is aerodynamically loaded, the structural response induces a certain

amount of twist. This angular-deflection is caused by a torsional action that induces

shearing stress on the wing box. For thin-walled 2 closed cross-sections we assume that

the torsional response can be determined without warping consideration. In fact, the

warping is minimized because the relative displacement along the longitudinal line is

minimized for closed-sections. By neglecting warping, the cross-section remains plane

and torsion is resisted by torsional shear stresses. The level of torsional shear stress at

the section i is given by:

τ =
Myi

2Ait
(4.8)

where t is the thickness of the bounding element and where Myi is the integrated

torsional moment of all aerodynamic forces acting on the wing from the tip to the

current beam node i:

Myi =
i∑

k=nb

Myk +
−−→
PiPk ∧

−→
F

4.4.4 Shear stress in Euler-Bernoulli beam

The integral of lift forces from the wing tip to current cross section i, introduced as

the vertical force Fz is mainly taken up by the spar webs. Fz produces bending normal

stress, presented above, and transverse shear stress. Shear stress component in Euler-

Bernoulli beam are equal to zero if the beam is under pure bending moment. If the

cross-section is subject to both shear force (Fzi) and bending moment (Mxi
) we cannot

assume zero shear stress component. Under these conditions, Navier’s hypothesis is

still assumed to be valid and the level of shear stress3 at each component of the wing

2A cross-section of thickness t and width w is considered thin walled when 10 ≤
w
t

3The shear stress is established via the Saint-Venant assumption and the equations of equilibrium
∂σyy

∂y
+

∂σxy

∂x
+

∂σzy

∂z
= 0
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box of thickness t is given by

τi =
Fzi

∫
area zdAi

Ixxi
t

(4.9)

Unlike the maximum stress, σyymax induced by bending action that is located at the

edges of the section (skin), the maximum shearing stress, τmax is located at the neutral

axis of the cross section. The computed shearing stress under sizing loads must be kept

below the elastic limit of the material in shear solicitation.

4.5 Analytical wing structural weight estimation

An optimal configuration has, among other characteristics, a low structural weight.

From an overall point of view, we can say that the structural weight control implies

the control of both payload, fuel-burn and range, three key indicators for airliners and

aircraft manufacturers. Having said this, it is recalled that our work is to be used in an

early design stage, and therefore it does not aim at developing a structural performance

predicting tool providing a high level of accuracy of the absolute wing weight value, but

rather a tool which predicts the sensitivity of this weight with respect to the different

parameters involved in the present aero-structural design context.

Indeed, the aero-structural adjoint method which is the approach selected in this re-

search to perform efficient design space exploration requires the calculation of wing

weight sensitivity. What is considered as fundamental in this work, is not so much the

high fidelity weight estimation as the evaluation of trade-off variations between aero-

dynamic and structures via a simple, but representative model. This section reviews

briefly the state of the art in wing weight estimation and then presents its computation

approach in InAirSsi.

To estimate the wing weight, three clusters of methods are commonly used. The first

method relies on empirical regression, the second method on analytical equations and

finally the third on accurate detailed multidisciplinary structural analysis.
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4.5.1 Empirical methods

Empirical methods are the simplest methods to estimate the wing weight. They are

based on the extrapolation of the structural data computed on existing and similar

aircraft. It is obvious that the accuracy of such methods depends on the quality and

quantity of available data. When innovative technologies are integrated or new concept

evaluated, the physics-based methods are more suitable. E. Roux give in (73) a detailed

and analysed selection of the existing statistical-based methods.

4.5.2 Analytical methods

In analytical methods, the weight evaluation is based on fundamental structural princi-

ples. Analytical methods are the intermediate approach between the empirical methods

and the detailed, but time-consuming, FEM-based methods. The most widely cited

model is developed by Ardema et al. (6), where “the ideal weight of the carrythrough

structure is computed from a summation of the bending shear and torsion material”:

W =Wbend +Wshear +Wtorsion

each of these terms is calculated from analytical formulae.

4.5.3 Physics based methods

In physics-based methods for wing weight estimation, the physics is modelled according

to the phase of the design considered and the acceptable computation cost. The highest

available degree of modelling is the finite element method. The structure is discretized

into ”finite” elements that have physical and geometrical properties, connected to the

adjacent elements at nodal or displacement points. Beam and shell-elements are com-

mon physical-based methods in aeronautical structure representation. Dorbath et al.

made in (23) a comparative study between the analysis with a beam model and the

analysis with a shell theory in preliminary aircraft design. They show that the bending

computation with a beam model presents a difference of ±5% in comparison with the

deflection obtained with the shell theory. This difference is assimilated to the neglected
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shear effects induced by the beam theory hypothesis. Torsion effects differ for configura-

tions with quasi-rectangular wing boxes, where the shear center cannot be assimilated

to the beam axis. They also conclude that beam approaches tend to underestimate

the structural weight, due to the manner of computing the element thicknesses under

the maximum stress value at each spanwise strip. Because the local effects are better

represented in the shell computation, the highest stress level per section is higher in

the shell computation, leading to a difference up to 19% for high swept wings.

Sometimes the simplicity of the purely analytical methods and the exactitude of physics-

based methods can be combined for their respective profitable aspects of speed and fi-

delity. The wing can for example be divided into regions where the weight is estimated

based on statistics and physically modelled regions. These methods are integrated to

be used in frameworks which gather all mandatory steps to converge toward a correct

mass estimation. Hürlimann presents rigorously in (37) a selection of the most popu-

lar existing tools and frameworks for mass estimation in use in the European aircraft

industry. The tool Fame-W (Fast and Advanced Mass Estimation-Wing) developed by

Airbus Germany (85), uses the effects of static aero-elasticity to size analytically the

wing box modelled by a beam model. A key indicator for these tools is the way they

are managing the complexity at all the steps. MDCAD is another mass estimation

tool, developed by QinetiQ, which is based on CAD to generate the FEM for structural

modelling and the CFD mesh for aerodynamic analysis.

This works aims at developing a tool compatible with the use of an adjoint solver which

can be integrated in the preliminary design stage to form a physics based tool enabling

multidisciplinary optimizations including structural sizing. In the framework of aero-

structural adjoint method development, both methods (analytical and empirical) are

not suitable. Empirical methods, besides the fact that they are not applicable to

unconventional wings, are not suited to model the impact of structural characteristics

of the model on the overall performance, and therefore are not suitable in the present

context of aero-structural adjoint design. Finite element based-methods would present

higher computational cost, and require much larger efforts to prepare the structural
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model and data in an iterative optimization process. It is more suitable for detailed

design and could represents an extension of this work.

4.5.4 Wing weight estimation with InAirSsi

As introduced in this chapter, each control section is defined by 6 thicknesses (see

section 4.2.1. These thicknesses are then linearly interpolated in the spanwise direction

. We first compute the structural weight of each element (skin, spar caps,etc...). Let us

call Wi the structural weight of the element i, the total structural weight of the wing

box is given by:

Wwbox
=

6∑

i=1

Wi (4.10)

Let us exemplify the computation of Wi when the element i is the upper wing spar:

Wcupp = 2ρcupp

∫ span

0
hcupp lcuppdy (4.11)

where

ρcupp is the material density of the upper wing spar cap elements,

hcupp and lcupp are the spar cap element dimensions,

As explained in section 4.2, all the decision variables computed in InairSsi are given

as a function of the local chord for longitudinal elements or as a function of the local

thickness for transverse elements. The spar caps thickness is a function of the local

chord, then:

Wcupp = 2ρcupp

∫ span

0
InterpcuppδC(y)(αrsC(y)− αfsC(y))dy (4.12)

where

C(y) is the local chord at the span location y,

δ is the factor such as hcupp = δ(y)C(y),

αfs and αrs are, respectively, the front spar location and the rear spar location adi-

mensioned by the local chord,
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Interpcupp(y) is the interpolating function between two control sections Csi and Csi+1

of upper wing thickness, respectively, tcuppi and tcuppi+1, then for yCsi ≤ y ≤ yCsi+1
:

Interpcupp(y) = y

(
tcuppi+1 − tcuppi

yCsi+1
− yCsi

)
+
tcuppiyCsi+1

− tcuppi+1yCsi

yCsi+1
− yCsi

(4.13)

The local chord is expressed as a piecewise linear function, assuming a double-trapezoidal

wing planform:

{
if y ≤ ycrank C(y) = f(yroot, ycrank) + g(yroot, ycrank)y
if ycrank ≤ y C(y) = f(ytip, ycrank) + g(ytip, ycrank)y

where

f(yroot, ycrank) and g(yroot, ycrank) are the interpolation coefficients for the inner wing

chord distribution function

f(ytip, ycrank) and g(ytip, ycrank) are the interpolation coefficients for the outer wing

chord distribution function

We deduce the total weight of the spar caps distributed spanwise from 4.12,4.13,:

Wcupp = 2ρcuppδ
∑

i=root,tip

(
y4i ×

f(yi, ycrank)
2α

4
+

y3i ×
2αf(yi, ycrank)g(yi, ycrank) + βg(yi, ycrank)

2

+

y2i ×
2βf(yi, ycrank)g(yi, ycrank) + αf(yi, ycrank)

2

3
+

yi × g(yi, ycrank)
2β

)

(4.14)

The structural computed weight Wcupp is unsized. The next step is then to provide to

the sizing process the necessary constraints to converge toward a wing box structure

that does not fail under the selected load cases.

InAirSsi takes the design load cases as inputs. These loads are given in the discrete

form at the beam nodes. The structural module InAirSsi can take as many load cases

as the user can provide. However, in the context of gradient computation with the

aero-structural adjoint method, we choose to simplify the sizing loads computation:
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the validation of the aero-structural gradients does not depend on the fidelity of sizing

loads computation nor on the number of design load cases.

We select the 2.5g manœuvre as the wing sizing load and we simply extrapolate the

aerodynamic data at 2.5g from data measured for steady flow condition at the de-

sign point for simplicity reasons and for the present work validation pruposes. The

corresponding bending moment Mx, torsion moment My and vertical effort Fz are ex-

tracted for the purpose of stress analysis (section 4.4). Each primary structure element

is sized for both flexural and torsional loads. In more complex structural modelling,

the choice can be done to size an element only according to the load that it trans-

fers to the rest of the structure. This results in a reduction of both analysis cost and

number of structural constraints for the optimization. In our case the stress analysis,

performed analytically, is straightforward and the structural constraints are managed

by the analytical composite KS function, presented in the next section.

4.5.4.1 Constrained sizing for wing weight computation

There are different approaches to manage the large number of constraints when solv-

ing a structural optimization. These constraints -in an optimization perspective- are

imposed to the structure, enabling it to support the sizing loads. The material con-

straints -that are the constraints of the optimization problem- can be all considered

individually, or one can consider only the maximum of these constraints. The first

approach may be seen as robust, but if we are not able to support it with a robust

algorithm that will manage a fast convergence enabling a daily-use possibility, then it is

judicious to explore other approaches. In the second approach the problem is solved by

satisfying the most urgent constraint, useful when solving an aerodynamic optimisation

problem without structural deterioration but not the most efficient for aero-structural

optimization. These methods were compared by Poon and Martins in (71) with another

approach based on constraints aggregation. This approach is the one used in this work

and, as a numerical method, has also its pros & cons.
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The Kreisselmeier-Steinhauser function was first introduced by G. Kreisselmeier and

R. Steinhauser (106). It is an elegant manner to define a composite function for con-

straint aggregation: the constraints are aggregated into one or few composite functions

reducing a multi-constraints problem into a single-constrained one.

The adjoint formulation is a direct answer to optimization problems with high number

of design parameters and few objective functions. But there is no known method to

compute the sensitivity of a high number of functions with respect to high number of

design parameters at a low cost.

Structural weight minimisation problems are highly constrained problems, each stressed

element of the structure being designed to withstand critical loads. When adjoint-based

sensitivity is combined with gradient-based algorithms -local or global- to explore the

solution space of such problem, the KS function presents a full potential by relaxing

the optimization problem from the number of constraints.

The KS function was initially applied to the aggregation into a single composite

function of both objective and constraint functions. It is defined as:

KS(gi(α)i∈[1,ng ]) =
1

ρ
ln[

ng∑

i

eρgi(α)] (4.15)

Where gi(α)i∈[1,ng ] is a set of ng constraints. An alternate formulation, that allows to

avoid the computation of high exponential values and thus offers a better numerical

behaviour is:

KS(gi(α)i∈[1,ng ]) = gmax(α) +
1

ρ
ln[

ng∑

i

e(ρ(gi(α)−gmax(α)))] (4.16)

The parabolic KS function is the envelope surface of all the local stresses computed on

the structural wing box. These stresses are the constraints of the structural sizing. The

KS function, which is continuously differentiable, is defined as the maximum of local

stresses. The KS function also allows to have less discontinuities at the constraints

“intersections” in an optimisation problem. This induces a smooth transition from one
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constraint surface to another.

However, the KS function presents drawbacks that must be understood, criticized and

analysed in order to fully benefit from the great advantages that it offers in a adjoint-

based optimization framework.

The KS function approaches the maximum of the constraints set. The parameter ρ

controls the distance from the envelope surface to the surface of maximum constraint

||gi(α)||∞. A high value of ρ draws the KS bound closer to the maximum constraint. A

straightforward remark concerns the influence of this parameter in highly non-convex

spaces. It follows that the efficiency of the KS function depends on the parameter ρ

and the convergence may become more difficult when numerous constraints are active

at an optimum. Martins et al. analysed in (94) the effect impacting the optimality of

the KS function and proposed an alternative to the classical formulation which relies

on the constraint sensitivity to update the value of the parameter ρ.

The constraint aggregation is implemented in the structural module InAirSsi. It comes

with different options and formulations with a numerical interest, and thus will not be

exposed in this manuscript.

The next section presents, as a validation, the sizing of 4 configurations followed by a

comparative analysis of the parameters ρ.

4.6 Validation of InAirSsi

Let us recall that InAirSsi is a structural module developed, in the context of adjoint

based optimization, InAirSsi computes analytically all the structural variables, as well

as their sensitivities (see 5.2) w.r.t. αgeom and αstruct.

As a validation of InAirSsi, we present in section 4.6.2 the structural sizing of 4 configu-

rations. These test cases are based on one original configuration modified by application

of deformation of the spanwise thickness-to-chord distribution aiming at impacting the

structural weight and analysing the behaviour of InAirSsi.
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In section 4.6.3 is analysed the effect of the aggregation parameter on the convergence

of the structural optimization.

4.6.1 Computation with InAirSsi of the derivatives required for the

adjoint formulation

Any variable or function computed by InAirSsi is derived with respect to αgeom and

αstruct.

Let us recall the main outputs of InAirSsi:

- Wwbox, the structural weight;

- The material stresses (c.f. section 4.4) and their composite function KS;

- Xb the structural mesh (beam);

- I(y) and J(y) material characteristic distribution along the y-axis.

The derivatives of these outputs w.r.t the design variables are available besides the

sensitivities of some of these outputs w.r.t the others. For example the sensitivities of

I(y) and J(y) wrt to Xb or the sensitivity of KS w.r.t to I(y) and J(y).

The gradient computed via the adjoint requires both explicit and implicit derivatives

as introduced in section 3.5 and as it will be detailed in chapter 5.2.

The sensitivities -total and partial- of the flexibility matrix, assembled by the Beam

class of the elsA-BAG solver (cf Appendix A) are also computed by InAirSsi.

Structural weight and KS function sensitivity validation

For sensitivity analysis -global and thus partial- validation purpose, we consider the

aerodynamic envelope of our test case [Fig. 4.2]. The wing box is defined by an initial

design vector αstruct. Before the sizing process, we compute the sensitivities of the

initial structural weight, and the sensitivities of the KS function w.r.t to a selection of

parameters. The validation of the KS sensitivities validates at the same time those

of the material constraints, the material properties I(y) and J(y) and all the internal

function of the module InAirSsi.
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We control the geometry of the internal structure by using 42 variables driving the

thicknesses of structural elements located at seven spanwise control sections (six pa-

rameters by section). Each section is then fully defined by 6 thicknesses. The validation

is performed w.r.t the following variables, selected randomly among the total 42 vari-

ables:

- tslow1
: the thickness of the lower skin surface defined at the control section located at

16.6% of span

- tsupp2 : the thickness of the upper skin surface defined at the control section located

at 20.9% of span

- tcupp3 : the thickness of the lower spar cap defined at the control section located at

28.22% of span

- tclow4
: the thickness of the upper spar cap defined at the control section located at

34.72% of span

- tfs5 : the thickness of the front spar web defined at the control section located at

52.15% of span

- trs6 : the thickness of the rear spar web defined at the control section located at 75.2%

of span

Figures 4.9 and 4.10 presents the exact match between the sensitivities computed an-

alytically with InAirSsi and those computed by FD. These validations are the least

that we can ask a derived code, the high valued interest is the -low cost- sensitivity

analysis that in little CPU time we access rich informations corresponding to stress

distribution over the structural elements [Fig 4.11]. An exploitable information for

the aero-structural optimization, that can even be used to select a starting point for

the gradient-based search algorithm by helping the user to know when and how the

constraint is activated.

In Appendix B are presented additional sensitivity comparisons (differentiation with

InAirSsi vs FD). These sensitivities are those of the internal functions and outputs of

InAirSsi w.r.t to the design parameters αgeom et αstruct. These terms appear in the

adjoint-based gradient formulation, detailed in the next chapter.
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Figure 4.9: Finite difference vs differentiation

with InAirSsi for KS function

Figure 4.10: Finite difference vs differentia-

tion with InAirSsi for the structural weight

Figure 4.11: Spanwise sensitivity of KS at the initial design point function with respect

to the 42 ticknesses
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4.6.2 Comparative sizing of four XRF1-based configurations coupling

InAirSsi with gradient-based algorithm

One of the most weight-impacting planform parameter is the thickness to chord ratio.

This section presents, in the framework of validation, the structural sizing of 4 config-

urations. All derived from the initial test case by introducing thickness-to-chord and

twist modifications.

We aim at evaluating, through gradient-based optimization, how the beam model im-

plemented in the module InAirSsi behaves when an important parameter such as the

thickness varies. The introduction of high fidelity analysis, may sometimes introduce

numerical noise that makes the analysis difficult. Of course one may say that this noise

is introduced because of complex phenomena. However, with an identical physical

modelling, we should be able to predict behaviour such as an increase of the structural

weight when the wing thickness is decreased (at constant loading). If not we should be

able to provide a physical explanation.

The optimization problem is described as follows for a given aerodynamic loading:

minimize: Wwb(αstruct)

w.r.t. αstruct ∈ R
n

subject to KS(gi(αstruct)i∈[1,ng ]) ≤ 0

where gi(αstruct) =
σi

σyield
− 1, σi is the material stress (bending normal stress,torsional

shear stress, shear stress for Euler-Bernoulli beam) and σyield the yield stress of each

type of stress. The wing box is parametrized by six thicknesses at seven control sections

distributed spanwise (=42 parameters).

(a) Geometries

Tables 4.1 and 4.2 compare the parameters of the four configurations which dif-

fer in the spanwise wing airfoils thickness-to-chord ratio distribution and in the twist

distribution.
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conf 10/10 conf 8/8 conf 4/4 conf 4/0

Wing root TTC ratio +5% +4% +2% +2%

Wing Crank TTC ratio +10% +8% +4% +4%

Wing tip TTC ratio +10% +8% +4% 0%

Table 4.1: Thickness distribution of the candidate configurations expressed as variations

w.r.t. to the reference wing (0%)

conf 10/10 conf 8/8 conf 4/4 conf 4/0

Wing root section twist 0.38◦ 0.38◦ 0.36◦ 0.24◦

Wing tip section twist 4◦ 4◦ 3.8◦ ◦ 2.86◦

Table 4.2: Twist distribution of the candidate configurations

(b) Load cases calculation

When each of the four configurations reaches the aero-elastic equilibrium, as presented

in section 3.4, the aerodynamic forces are extracted on the load nodes. The flexural

force represented by the vertical effort Fz and the moment Mx as well as the torsional

moment My are integrated from the wing tip to the wing root (Fig. 4.12) and extrap-

olated to generate the sizing load corresponding to a manoeuvre of 2.5g.

To extrapolate the aero-loads at 2.5g manœuver condition from the results of a calcu-

lation near design condition (1g), we apply to the integrated loads a factor of = 1.25
CL

,

1.25 being the lift coefficient of the test case configuration under a load factor of 2.5g.

In this case, after extrapolation, the four configurations have the same total integrated

lift as presented in Fig.4.13.

(c) Structural sizing

The initial wing box is defined by a random set of structural parameters αstruct. This

set of parameters corresponds to a light structural weight with a positive KS function,
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Figure 4.12: Integrated aerodynamic load distributions on the four configurations (cal-

culation at forced angle of attack corresponding to the cruise condition)
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Figure 4.13: Cumulated Fz effort from the

wing tip to the root at each spanwise position

Figure 4.14: CumulatedMx moment from the

wing tip to the root at each spanwise position

Figure 4.15: CumulatedMy moment from the

wing tip to the root at each spanwise position
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which means that the structure is over-stressed under the imposed sizing loads. Table

4.3 lists the initial structural performance of the four configurations

conf 10/10 conf 8/8 conf 4/4 conf 4/0

Wwb(Kg) 19,221 19,214 19,215 19,222

KS 1.83 1.90 2.00 1.891

Table 4.3: Initial structural weight and structural constraints aggregation

For a constant aerodynamic envelope we optimize the structural wing box to obtain

a minimum structural weight while satisfying that the stress in the material does not

exceed the limits of stress (through the aggregated stress constraint). Three algo-

rithms were tested to solve this problem: CONMIN, DOT and CFSQP. The results

with CFSQP (16) a sequential quadratic programming based algorithm were the most

efficient in reaching the constraint although the convergence speed is relatively low [Fig.

4.16,4.17,4.18,4.19].

Table 4.4 summarizes the obtained structural performances at the convergence of the

optimization. The configurations conf 10/10, conf 8/8 and conf 4/4 present the ex-

pected increase of structural weight of the wing box with the decrease of thickness

to chord ratio. The last configuration conf 4/0 that approaches the initial test case

presents however a lighter wing box than the configuration conf 4/4. This is explained

through the cumulated loads Fz and the integrated moments Mx of this case, which

are lower than the loads acting on the other configurations and thus producing lower

material stresses.

A complementary test has been performed by sizing the four configurations under the

same loading. In this case the configuration conf 4/0 has the heaviest wing box and

the conf 10/10 the lightest wing box as expected.

There is also the fact that the aero-elastic computation, to produce the sizing loads,

was performed with the initial wing box -unsized- geometry used for the optimization.

This choice is probably not optimal and would require a loopback: the sizing of the

optimal wing box under the sizing loads computed with the optimal parameter set.

102



However, the goal of this section is not to perform structural sizing but rather validate

the derivation of the module InAirSsi, which has been successfully done.

conf 10/10 conf 8/8 conf 4/4 conf 4/0

Wwb(Kg) 24.702 25.197 25.826 25.302

KS -9.17E-04 -9.05E-04 -9.05E-04 -9.03E-04

Table 4.4: Structural weight and structural constraints aggregation at optimization

convergence

Actually, these four configurations were issued from a MDO work using the BLISS

method conducted by Blondeau, Dumont and Salah el Din in (9). There is no aim at

comparing the results of this work with those of the BLISS approach based on finite

elements structural modelling with NASTRAN. The topology and the structural char-

acteristics used in InAirSsi differ from the ones used in the BLISS process (metallic

vs composite). The sizing loads, for the FE model, were computed by Doublet Lat-

tice Method (DLM) of NASTRAN, while InAirSsi computes the sizing loads obtained

by extrapolating the discrete loads from the elsA-BAG (c.f Appendix A) aero-elastic

computation at the design points. In addition, the high-fidelity FE-based procedure

sizes the composite component of the wing box in terms of structural deformation while

InAirSsi performs sizing by stress analysis. The expectation of this analysis is therefore

not to obtain a perfect match of the two structural procedures, but rather to see how

InAirSsi is able to predict the structural weight variation when basic parameters like

wing thickness vary.

4.6.3 Analysis of the effect of the parameter ρ for constraint aggre-

gation

The aggregation parameter ρ influences the behaviour of the algorithm by modifying

the lower bound envelope of the constraints. The effect of this parameter is tested on a

configuration that has more span and sweep angle than the original configuration. Of
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Figure 4.16: Structural weight opti-

mization history for the case conf 10/10

Figure 4.17: Structural weight opti-

mization history for the case conf 8/8

Figure 4.18: Structural weight opti-

mization history for the case conf 4/4

Figure 4.19: Structural weight opti-

mization history for the case conf 4/0
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course, this choice does not seek any particular effect, it is simply a demonstration of

the capabilities of InAirSsi and the inhouse mesh deformation tools.

We solve the following problem with different aggregation factors:

minimize: Wwb(αstruct)

w.r.t. αstruct ∈ R
n

subject to KS(gi(αstruct)i∈[1,ng ]) ≤ 0

where gi(αstruct) =
σi

σyield
− 1, σi is the material stress and σyield the yield stress.

Identical parametrisation to the sizing of the four previous wing boxes is used, i.e. 42

parameters (6 thicknesses at 7 control sections). The material stresses are computed

at the section corresponding to the y-coordinate of the beam node elements.

For 23 beam elements, the structural sizing is constrained by 184 material constraints.

Each section being constrained by 8 stress components (4 of bending type, 2 of torsion

type and 2 of shear type).

According to its formulation, when the parameter ρ increases, the KS function ap-

proaches the maximum constraint. Wrenn shows in (89) that for the minimization

problem of a one-dimensional case with two constraints, larger values of ρ results in

a smaller optimum objective function. This cannot be generalized. In our case, the

optimum improves with smaller values of ρ. In fact as it is shown in table 4.5 the

lightest configuration is obtained for ρ = 50.

ρ Initial wing box Wing box after sizing

50 KS=0.139 & W=4.38e+04 KS=-0.0007 & W=3.02e+04

100 KS=0.121 & W=4.38e+04 KS=-0.0009 & W=3.08e+04

200 KS=0.115 & W=4.38e+04 KS=-0.0004 & W=3.22e+04

Table 4.5: Redesign results with different values of KS function parameter ρ

The weight breakdown, detailed in table 4.6, shows that the increase of the parameter ρ

comes with a decrease of the structural weight of the elements sized mainly in bending
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(the longitudinal elements), and with an increase of the structural weight of the vertical

elements (spar webs).

Initial WB Opt. ρ = 50 Opt. ρ = 100 Opt.ρ = 200

Upper wing skin (kg) 3,611 3,924 3,602 3,441

Lower wing skin (kg) 4,352 4,001 3,691 3,518

Upper wing caps (kg) 11,559 7,587 7,497.47 7,449

Lower wing caps (kg) 10,574 7,652 7,511.13 7,457

Front spar web (kg) 6,903 3,543 4,359.39 5,240

Rear spar web (kg) 6,802 3,522 4,164.96 5,159

Table 4.6: Redesign results with different values of the aggregation parameter ρ

To understand this behaviour, we now plot the spanwise distribution of:

- the normal bending stress distribution acting on the set {tcupp + tsupp};

- the torsion stress distribution acting on the set = {tcupp};

- the torsion stress distribution acting on the set = {tslow};

- the torsion stress distribution acting on the set = {tfs};

in both initial and optimal configurations for 3 values of the aggregation parameter:

ρ = 50, 100 and 200.

The left side of the figures represents the spanwise stress distribution at the start

of the optimization. The right side the stress distribution at the convergence of the

optimization.

Let us first focus on the bending stress distribution in the longitudinal elements: The

value of σi tends toward σyield when ρ increases [set of Figures 4.20,4.21, 4.22, 4.23,

4.24 & 4.25].

The stress augmentation concerns the sections located before 70% of the span. Beyond,

the elements are not more stressed because the lower bounds -defined as input for the

optimization- of the design variables were reached.

It is important also to note that the initial stress distribution is homogeneous. The

yield bending stress is not reached in any section. While we remark that the initial

torsion stress distribution in the front spar webs is not uniform [Fig. 4.38,4.40 and 4.42]
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Figure 4.20: ρ = 50: Initial span

distribution of the ratio of the bending

stress in {tcupp
+ tsupp

} to σyield.

Figure 4.21: ρ = 50: Optimized

span distribution of the ratio of the

bending stress in {tcupp
+ tsupp

} to

σyield.

Figure 4.22: ρ = 100: Initial span

distribution of the ratio of the bending

stress in {tcupp
+ tsupp

} to σyield.

Figure 4.23: ρ = 100: Optimized

span distribution of the ratio of the

bending stress in {tcupp
+ tsupp

} to

σyield.
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Figure 4.24: ρ = 200: Initial span

distribution of the ratio of the bending

stress in {tcupp
+ tsupp

} to σyield.

Figure 4.25: ρ = 200: Optimized

span distribution of the ratio of the

bending stress in {tcupp
+ tsupp

} to

σyield.

Figure 4.26: ρ = 50: Initial span

distribution of the ratio of the torsion

stress in tcupp
to τyield.

Figure 4.27: ρ = 50: Optimized

span distribution of the ratio of the

torsion stress in tcupp
to τyield.
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Figure 4.28: ρ = 100: Initial span

distribution of the ratio of the torsion

stress in tcupp
to τyield.

Figure 4.29: ρ = 100: Optimized

span distribution of the ratio of the

torsion stress in tcupp
to τyield.

Figure 4.30: ρ = 200: Initial span

distribution of the ratio of the torsion

stress in tcupp
to τyield.

Figure 4.31: ρ = 200: Optimized

span distribution of the ratio of the

torsion stress in tcupp
to τyield.
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Figure 4.32: ρ = 50: Initial span

distribution of the ratio of the torsion

stress in tslow to τyield.

Figure 4.33: ρ = 50: Optimized

span distribution of the ratio of the

torsion stress in tslow to τyield.

Figure 4.34: ρ = 100: Initial span

distribution of the ratio of the torsion

stress in tslow to τyield.

Figure 4.35: ρ = 100: Optimized

span distribution of the ratio of the

torsion stress in tslow to τyield.
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Figure 4.36: ρ = 200: Initial span

distribution of the ratio of the torsion

stress in tslow to τyield.

Figure 4.37: ρ = 200: Optimized

span distribution of the ratio of the

torsion stress in tslow to τyield.

Figure 4.38: ρ = 50: Initial span

distribution of the ratio of the torsion

stress in tfs to τyield.

Figure 4.39: ρ = 50: Optimized

span distribution of the ratio of the

torsion stress in tfs to τyield.
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Figure 4.40: ρ = 100: Initial span

distribution of the ratio of the torsion

stress in tfs to τyield.

Figure 4.41: ρ = 100: Optimized

span distribution of the ratio of the

torsion stress in tfs to τyield.

Figure 4.42: ρ = 200: Initial span

distribution of the ratio of the torsion

stress in tfs to τyield.

Figure 4.43: ρ = 200: Optimized

span distribution of the ratio of the

torsion stress in tfs to τyield.
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. The analysis of optimal stress distribution in the front spar [Fig. 4.39,4.41 and 4.43]

show that with the chosen initial geometry the maximal stress value is reached in the

wing portion located between the crank and 40% of the span (τyield ≤ τ). If we analyse

what are the regions most affected by the modifications of the aggregation parameter

ρ, then it appears that it is particularly these regions, initially severely stressed. They

drive mostly the sizing, unbalancing the sizing of the vertical element located before

the crank and after 40% of the span. One can make the hypothesis that the aggregation

parameter plays the role of a weighting parameter for the most violated constraints.

The smallest the aggregation parameter the more the aggregated functions are treated

equally.

The torsion stress, as expected, do not drive the sizing of spar caps elements. The

optimal span distribution of the torsional stress [Fig. 4.27,4.29 and 4.31] is almost

unaffected by the value of the aggregation parameter indicating a hierarchy of the dif-

ferent aggregated constraints. The torsion stress distribution on the lower skin is also

not uniformly distributed along the span [Fig. 4.32,4.34 and 4.36], however the sizing

for these elements is mainly driven by the bending stress.

The important points that this section meant to highlight, beside being a validation of

the structural module, is that special care has to be taken when numerous constraint

functions are lumped into one aiming at capitalising the full potential of the adjoint

method.

The different nature of the stress components acting on the structure makes this func-

tion composition non-physical. In addition, the aggregation parameter is problem-

dependant or constraint-dependant, and requires a pre-analysis. This is specifically

where the low-cost sensitivity analysis of the structural module InAirSsi presents a full

potential. Another remark concerns the decomposition of theKS function. The wing is

far from being uniformly stressed, and thus lumping high and low stress values may lead

to a suboptimal results. One can then introduce two or three KS functions by separat-

ing the outer and the inner regions, or by introducing an upper and a lower lumping.
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In other words, a compromise has to be found between the number of constraints and

the efficiency of the design exploration.

4.7 Outcome

This chapter details the development of the adjoint-oriented structural module In-

AirSsi.

This module enables aero-elastic computations by providing a model (geometry and

flexibility) of the wing structure straightforwardly, without any effort by the designer.

But the most important thing concerning the structural approach used by InAirSsi is

that it enables the sensitivity analysis used for the design space exploration in a pre-

liminary design phase. The required information at these stages of the design is not

necessary complex or high-fidelity based, but still requires efficient physical modelling

and mathematical tools, since the exploration of a design space of dimension higher

than 100, cannot be done neither by hand, nor by empirical methods.

Dedicating a considerable effort to evaluate an exact structural weight, knowing that

the structure is subject to changes and modifications is not the strategy for optimisa-

tion at early design stages, but rather for latter detailed analysis stages. But having

the sensitivities, w.r.t. planform changes, of both aerodynamic and structural perfor-

mances is a valuable information.

The development of InAirSsi was oriented according to this strategy: enabling a cost-

effective access to the adjoint-based gradients of an aero-structural system by providing

all the sensitivities that appear in the adjoint formulation that are detailed in the next

chapter.
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5

From aero-elastic to

aero-structural adjoint-based

gradients: Detailed description

5.1 Preamble

In chapter 3 we introduced the extension of the aero-structural adjoint formulation from

the aero-elastic adjoint formulation, itself extended from the aerodynamic adjoint. This

extension requires a derived structural model that supplies the adjoint solver with:

-sensitivities related to the evolution of the structural model and its mechanical char-

acteristics;

-sensitivities linked to the impact that structural geometry modifications has on the

aero-elastic equilibrium.

The module implementing this structural and its functionalities were presented in the

chapter 4 p. 69.

The aim of this chapter is to detail the formulation of the aero-structural adjoint and

highlight the origin and the physical meaning of each term it introduces.
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5.2 Mathematical formulation

As explained in Section 3.4.2 p. 51, the aero-elastic equilibrium is found by iteratively

updating the fluid grid according to the displacements prescribed by the beam solver.

The aerodynamic load is transferred to the beam through the pairing of each beam

node with a part of the wetted wing surface. Conversely, the displacement of each

CFD node is deduced from the displacement of its orthogonal projection on the beam

aero-elastic axis. The coupled sensitivity calculation is performed in a similar iterative

coupled fashion.

Let Rf be is the residual of the equations governing the flow field W in a domain

discretised by the mesh sX. Rs the residual of the beam equations providing the

displacement field D of the structure represented by the mesh Xb. At the aero-elastic

equilibrium W and D satisfy:

{
Rf (W,X) = 0
Rs(D(−→α ), F, L) = D − FL = 0

where −→α = (−→α geom,
−→α struct) ∈ Ddesign ⊂ R

nα is the design variable vector and F the

flexibility matrix.

These equations represent a set of na non-linear discrete equations governing the fluid

and 2 ∗ nXb
linear discrete equations governing the structure, where

• na = 5 ∗ ncell for Euler equations

• na = 7 ∗ ncell for RANS equations with two equations turbulence models)

• nXb
= number of displacement nodes

The elastic equilibrium is expressed as:

∀−→α ∈ Ddesign

{
Rf (W (−→α ),X(−→α )) = 0
Rs(D(−→α ),Xb,W

b,X, F ) = D(−→α )− F (I(−→α ), J(−→α ))L = 0
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5.2.1 Gradient of an aerodynamic cost function w.r.t. αgeom:

An aerodynamic function Jaero (drag, lift,etc) is a function of the CFD volume mesh

at the aero-elastic equilibrium, and the flow state at the interface fluid-structure (W b)

and in the volume (W )

Jaero = Jaero

(
X,W b,W

)

Thus the gradient of Jaero with respect to a shape design parameter αgeom can then be

expressed as:

dJaero

dαgeom

=
∂Jaero

∂X

dX

dαgeom

+
∂Jaero

∂W b

dW b

dαgeom

+
∂J

∂W

dW

dαgeom

(5.1)
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The first term ∂Jaero
∂X

dX
dαgeom

is the partial derivative of Jaero
w.r.t. αgeom through the influence of the design parame-
ters on the CFD mesh X. X is the CFD mesh obtained
from the initial mesh Xrig on which we apply the struc-
tural deformations D computed at the load nodes of Xb,
X = X(Xrig,Xb, D) thus

dX

dαgeom
=

∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom
+
∂X

∂D

dD

dαgeom

(5.2)
where

Xsurf = Xsurf

(
Xrig

(
αgeom

))
is the surface mesh of the wing

skin in the CFD mesh of the jig-shape

The influence of the shape parameters on the flow field W b

at the fluid-structure interface is shown in the 2nd term. W b

depends on the flow field in the volume and the volume CFD
mesh X, thus:

dW b

dαgeom
=
∂W b

∂W

dW

dαgeom
+
∂W b

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom
+
∂X

∂D

dD

dαgeom

)

(5.3)
The third part of (5.1) is the more tedious and computa-
tionally expensive contribution due to the sensitivity of the
volume flow field with respect to the design variables.

The completely developed expression of the gradient of an aerodynamic function with

respect to a design parameter that controls the planform shape can therefore be written

as:

dJaero
dαgeom

=
∂Jaero
∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom
+
∂X

∂D

dD

dαgeom

)

+
∂Jaero
∂W b

(
∂W b

∂W

dW

dαgeom
+
∂W b

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom
+
∂X

∂D

dD

dαgeom

))

+
∂J

∂W

dW

dαgeom

(5.4)
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5.2.2 Gradient of an aerodynamic cost function w.r.t. αstruct:

The gradient of Jaero with respect to a structural parameter αstruct that controls the

design of the wing box is expressed as

dJaero
dαstruct

=
∂Jaero
∂X

dX

dαstruct
+
∂Jaero
∂W b

dW b

dαstruct
+

∂J

∂W

dW

dαstruct
(5.5)

The mesh of the configuration under the aero-elastic equilib-
rium depends on the structural variables through the elastic
deformation. The first term translates this dependency.

dX

dαstruct
=

∂X

∂Xb

dXb

dαstruct
+
∂X

∂D

dD

dαstruct
(5.6)

The influence of the structural parameters on the flow field
W b at the fluid-structure interface is shown in the 2nd term.
W b depends on the flow field in the volume and the volume
CFD mesh, thus

dW b

dαstruct
=
∂W b

∂W

dW

dαstruct
+
∂W b

∂X

(
∂X

∂Xb

dXb

dαstruct
+
∂X

∂D

dD

dαstruct

)

(5.7)
The third part of (5.5) is the computationally expensive
contribution of the sensitivity of the volume flow field with
respect to the design variables.

The explicit expression of the gradient of an aerodynamic function w.r.t. a design

parameter that controls the internal wing structure is finally:

dJaero
dαstruct

=
∂Jaero
∂X

(
∂X

∂Xb

dXb

dαstruct
+
∂X

∂D

dD

dαstruct

)

+
∂Jaero
∂W b

(
∂W b

∂W

dW

dαstruct
+
∂W b

∂X

(
∂X

∂Xb

dXb

dαstruct
+
∂X

∂D

dD

dαstruct

))

+
∂J

∂W

dW

dαstruct

(5.8)
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5.2.3 Gradient of a structural cost function w.r.t. αgeom:

The dependency of a structural function Jstruct (structural weight, structural con-

straint,etc.) is expressed as:

Jstruct = Jstruct(Xsurf ,Xb, D, αstruct)

The gradient of Jstruct wr.t. shape parameter αgeom is

dJstruct
dαgeom

=
∂Jstruct
∂Xsurf

dXsurf

dαgeom
+
∂Jstruct
∂Xb

dXb

dαgeom
+
∂Jstruct
∂D

dD

dαgeom
(5.9)

The sensitivity of a structural function to a wing aerody-
namic shape change is expressed through the mesh before
the aero-elastic coupling and the surface mesh. A structural
function can only be influenced by the surfacic mesh that
defines the aerodynamic envelope.

dXsurf

dαgeom
=
∂Xsurf

∂Xrig

dXrig

dαgeom
(5.10)

αgeom shapes the aerodynamic envelope of the jig shape and
influences the elastic axis, this is shown through

dXb

dαgeom
=

∂Xb

∂Xsurfrig

dXsurfrig

dαgeom
(5.11)

The third part of (5.9) is the computationally expensive
contribution of the sensitivity of the displacement field with
respect to the planform design variables.

5.2.4 Gradient of a structural cost function w.r.t. αstruct:

The gradient of Jstruct with respect to a structural parameter αstruct is

dJstruct
dαstruct

=
∂Jstruct
∂Xb

dXb

dαstruct
+
∂Jstruct
∂D

dD

dαstruct
+

Jstruct

∂αstruct
(5.12)
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The first term is the direct dependency of the elastic axis
to the design of the wing box. The second term is the com-
putationally expensive contribution of the sensitivity of the
displacement field with respect to the wing box design vari-
ables.

The last term is the direct dependence of Jstruct (for instance
the weight) to αstruct.

5.3 Implementation of the aero-structural adjoint method

In the previous section we detailed the sensitivities of the functions, involved in the

aero-structural optimization problem, according to their nature and according to the

nature of the design parameter. The purpose of the current section is to establish the

equation of the aero-structural adjoint system to be solved to calculate the previous

sensitivities without having to evaluate the derivatives of the state variables W and D

w.r.t. the design parameters.

In the scenario of static fluid and structure interactions, when the aero-elastic equi-

libirum of the wing is reached, the residual form of the state equations Rf = 0 and

Rs = 0 are satisfied over the CFD grid nodes and the structural beam nodes for all

values of the design parameters −→α . Thus, according to eq (3.16), the residual is equal

to zero and so is its variation:

{
dRf (W,X)

dα = 0
dRs(D(α),Xb,W

b,X,I,J)
dα = 0

Therefore, one can write, ∀(λTf , λ
T
s ) ∈ (Rna ,R2∗np):

dJ

dα
=
dJ

dα
+ λTf

dRf (W,X)

dα
+ λTs

dRs(D(α),Xb,W
b,X, I, J)

dα
(5.13)

λTf and λTs are at this time two arbitrary vectors. The following equations are the

developed expression of (5.13) when J describes either structural or aerodynamic per-

formance and α either the wing aerodynamic shape parameters αgeom or the wing
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box parameters αstruct. The next paragraphs present in a condensed and in detailed

manner the step toward the establishment of the adjoint equations for the different

combinations between function type and design parameter type.

5.3.1 Gradient of an aerodynamic cost function w.r.t. αgeom:

dJaero
dαgeom

=
∂Jaero
∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom
+
∂X

∂D

dD

dαgeom

)

+
∂Jaero
∂W b

(
∂W b

∂W

dW

dαgeom
+
∂W b

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom
+
∂X

∂D

dD

dαgeom

))

+
∂Jaero
∂W

dW

dαgeom

+ λTf
dRf

dαgeom

+ λTs
dRs

dαgeom

(5.14)

The terms appearing in the sensitivity of state equations residuals for both disciplines,

dRs

dαgeom
= d(D−FL)

dαgeom
and in

dRf

dαgeom
, are detailed in the next paragraphs:

5.3.1.1 Sensitivity of Rf w.r.t. αgeom

The residual of the flow equations is linearised through the field of conservative flow

variables W and the CFD mesh X

dRf

dαgeom
=
∂Rf

∂W

dW

dαgeom
+
∂Rf

∂X

dX

dαgeom
(5.15)

where

dX

dαgeom
=

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom
+
∂X

∂D

dD

dαgeom

)
(5.16)
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5.3.1.2 Sensitivity of Rs w.r.t. αgeom

The aero-structural adjoint takes into account the changes of both loads and structural

characteristics with the changes in design:

dRs

dαgeom
=
d(D − FL)

dαgeom
=

(
dD

dαgeom
− F

dL

dαgeom
−

dF

dαgeom
L

)
(5.17)

Aerodynamic loads extracted on the current mesh X depend on the structural mesh

and the conservative variables at the fluid/structure interface:

F
dL

dαgeom
= F

(
∂L

∂X

dX

dαgeom
+

∂L

∂Xb

dXb

dαgeom
+

∂L

∂W b

dW b

dαgeom

)
(5.18)

where:

∂L

∂X

dX

dαgeom
=
∂L

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom
+
∂X

∂D

dD

dαgeom

)
(5.19)

∂L

∂Xb

dXb

dαgeom
=

∂L

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom
(5.20)

∂L

∂W b

dW b

dαgeom
=

∂L

∂W b

(
∂W b

∂W

dW

dαgeom
+
∂W b

∂X

dX

dαgeom

)
(5.21)

We linearise the flexibility matrix F w.r.t. the structural beam stiffness distribution

vectors I(y) and J(y) as well as the structural mesh Xb

dF

dαgeom
L =

(
∂F

∂I

dI

dαgeom
+
∂F

∂J

dJ

dαgeom
+
∂F

∂Xb

dXb

dαgeom

)
L (5.22)

αgeom influences the structural parameters through the CFD surface mesh Xsurf from

which the structural mesh is extracted:

∂F

∂I

dI

dαgeom
=
∂F

∂I

(
∂I

∂Xb

∂Xb

Xsurf
+

∂I

∂Xsurf

)
dXsurf

dαgeom
(5.23)

∂F

∂J

dJ

dαgeom
=
∂F

∂J

(
∂J

∂Xb

∂Xb

Xsurf
+

∂J

∂Xsurf

)
dXsurf

dαgeom
(5.24)
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The coefficients of the flexibility matrix correspond to vertical and angular deflections

due to unit vertical force and moment at the different points of the structural mesh Xb,

thus F is linearised with respect to the coordinates of the structural mesh according

to:
∂F

∂Xb

dXb

dαgeom
=

∂F

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom
(5.25)

5.3.2 Gradient of an aerodynamic cost function w.r.t. αstruct:

dJaero
dαstruct

=
∂Jaero
∂X

(
∂X

∂Xb

dXb

dαstruct
+
∂X

∂D

dD

dαstruct

)

+
∂Jaero
∂W b

(
∂W b

∂W

dW

dαstruct
+
∂W b

∂X

(
∂X

∂Xb

dXb

dαstruct
+
∂X

∂D

dD

dαstruct

))

+
∂Jaero
∂W

dW

dαstruct

+ λTf
dRf

dαstruct

+ λTs
dRs

dαstruct

(5.26)

5.3.2.1 Sensitivity of Rf w.r.t. αstruct

dRf

dαstruct
=

(
∂Rf

∂W

dW

dαstruct
+
∂Rf

∂X

dX

dαstruct

)
(5.27)

we recall that when the design parameter is a structural parameter, there is no inter-

vention of the CFD volume mesh of the jig shape:

dX

dαstruct
=

(
∂X

∂Xb

dXb

dαstruct
+
∂X

∂D

dD

dαstruct

)
(5.28)

5.3.2.2 Sensitivity of Rs w.r.t. αstruct

dRs

dαgeom
=
d(D − FL)

dαgeom
=

(
dD

dαgeom
− F

dL

dαgeom
−

dF

dαgeom
L

)
(5.29)

where

F
dL

dαstruct
= F

(
∂L

∂X

dX

dαstruct
+

∂L

∂Xb

dXb

dαstruct
+

∂L

∂W b

dW b

dαstruct

)
(5.30)
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The full expression of the sensitivity of the flow field at the interface fluid/structure

dW b

dαstruct
is given in (5.7).

The structural model is computed starting from the surface mesh jig shape and so

are the sensitivities of the structural properties. Thus, for a parameter that has no

influence on the aerodynamic envelope:

dF

dαstruct
L =

(
∂F

∂I

dI

dαstruct
+
∂F

∂I

dJ

dαstruct
+
∂F

∂Xb

dXb

dαstruct

)
L (5.31)

∂F

∂I

dI

dαstruct
=
∂F

∂I

(
∂I

∂Xb

dXb

dαstruct
+

dI

dαstruct

)
(5.32)

∂F

∂J

dJ

dαstruct
=
∂F

∂J

(
∂J

∂Xb

dXb

dαstruct
+

dJ

dαstruct

)
(5.33)

∂I
∂Xb

and ∂I
∂Xb

express the dependence of the stiffness coefficient expression to the position

of the elastic axis in the formula of the first and second order moment of inertia of the

wing box sections.

dI
dαgeom

and dJ
dαgeom

come from the dependence of the moment of inertia of wing box

cross sections to structural thicknesses.

5.3.3 Gradient of a structural cost function w.r.t. αgeom:

dJstruct
dαgeom

=
∂Jstruct
∂Xsurf

∂Xsurf

∂Xrig

dXrig

dαgeom
+
∂Jstruct
∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom
+
∂Jstruct
∂D

dD

dαgeom

+ λTf

(
∂Rf

∂W

dW

dαgeom
+
∂Rf

∂X

dX

dαgeom

)

+ λTs

(
dD

dαgeom
−

dF

dαgeom
L− F

dL

dαgeom

)
(5.34)

The sensitivity of the residuals (5th and 6th terms) are identical to those computed in

the set of equations from(5.15) to (5.25)

125



5.3.4 Gradient of a structural cost function w.r.t. αstruct:

dJstruct
dαstruct

=
∂Jstruct
∂Xb

dXb

dαstruct
+
∂Jstruct
∂D

dD

dαstruct +
∂Jstruct
∂αstruct

+ λTf

(
∂Rf

∂W

dW

dαstruct
+
∂Rf

∂X

dX

dαstruct

)

+ λTs
d(D − FL)

dαstruct

(5.35)

The sensitivity of the residuals (5th and 6th terms) are identical to those computed in

the set of equations from(5.27) to (5.33)

5.3.5 Introduction of adjoint equations

Now that we established the detailed expression of the objective function gradients

and the gradients of the residuals of the governing equations of fluid and structure, we

can rearrange the complete gradient expression to factorize the terms:: dW
dαgeom

, dW
dαstruct

,

dD
dαgeom

and dD
dαstruct

. These factorisations introduce the aero-structural adjoint systems

that must be solved for the unknowns λTs and λTf in order to avoid the expensive

resolution of the primal problem that could provide dW
dα and dD

dα . λ
T
s and λTf are the so-

called adjoint vectors, respectively the aerodynamic and the structural adjoint vectors,

solution of the dual problem. After rearranging the different terms and factorizing dW
dα
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and dD
dα , we obtain:

dJaero
dαgeom

=
∂Jaero
∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

)

+
∂Jaero
∂W b

∂W b

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

)

+ λTf
∂Rf

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

)

+ λTs

(
− F

(
∂L

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

)

+
∂L

∂Xb

dXb

dαgeom
+

∂L

∂W b

∂W b

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

))
−

dF

dαgeom
L

)

+

[
∂Jaero
∂X

∂X

∂D
+
∂Jaero
∂W b

∂W b

∂X

∂X

dD

+ λTf
∂Rf

∂X

∂X

∂D
+ λTs

(
Id − F

(
∂L

∂X

∂X

∂D
+

∂L

∂W b

∂W b

∂X

∂X

∂D

))]
dD

dαgeom

+

[
∂Jaero
∂W b

∂W b

∂W
+
∂Jaero
∂W

+ λTf
∂Rf

∂W
− λTs F

∂L

∂W b

∂W b

∂W

]
dW

dαgeom

(5.36)

127



dJaero
dαstruct

=
∂Jaero
∂X

∂X

∂Xb

dXb

dαstruct

+
∂Jaero
∂W b

∂W b

∂X

∂X

∂Xb

dXb

dαstruct
+ λf

∂Rf

∂X

∂X

∂Xb

dXb

dαstruct

+ λTs

(
− F

(
∂L

∂X

∂X

∂Xb

dXb

dαstruct
+

∂L

∂Xb

dXb

dαstruct
+

∂L

∂W b

∂W b

∂X

∂X

∂Xb

dXb

dαstruct

)
−

dF

dαstruct
L

)

+

[
∂Jaero
∂X

∂X

∂D
+
∂Jaero
∂W b

∂W b

∂X

∂X

dD
+ λTf

∂Rf

∂X

∂X

∂D

+ λTs

(
Id − F

(
∂L

∂X

∂X

∂D
+

∂L

∂W b

∂W b

∂X

∂X

∂D

))]
dD

dαstruct

+

[
∂Jaero
∂W b

∂W b

∂W
+
∂Jaero
∂W

+ λTf
∂Rf

∂W
− λTs F

∂L

∂W b

∂W b

∂W

]
dW

dαstruct

(5.37)

dJstruct
dαgeom

=
∂Jstruct
∂Xsurf

∂Xsurf

∂Xrig

dXrig

dαgeom
+
∂Jstruct
∂Xb

∂Xb

∂Xrig

dXrig

dαgeom

+ λTf
∂Rf

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

)

+ λTs

(
− F

(
∂L

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

)

+
∂L

∂Xb

dXb

dαgeom
+

∂L

∂W b

∂W b

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

))
−

dF

dαgeom
L

)

+

[
∂Jstruct
∂D

+ λTf
∂Rf

∂X

∂X

∂D
+ λTs

(
Id − F

(
∂L

∂X

∂X

∂D
+

∂L

∂W b

∂W b

∂X

∂X

∂D

))]
dD

dαgeom

+

[
λTf
∂Rf

∂W
− λTs F

∂L

∂W b

∂W b

∂W

]
dW

dαgeom

(5.38)
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dJstruct
dαstruct

=
∂Jstruct
∂Xb

dXb

dαstruct
+
∂Jstruct
∂αstruct

+ λTf
∂Rf

∂X

∂X

∂Xb

dXb

dαstruct

+ λTs

(
− F

(
∂L

∂X

∂X

∂Xb

dXb

dαstruct
+

∂L

∂Xb

dXb

dαstruct
+

∂L

∂W b

∂W b

∂X

∂X

∂Xb

dXb

dαstruct

)
−

dF

dαstruct
L

)

+

[
∂Jstruct
∂D

+ λTf
∂Rf

∂X

∂X

∂D
+ λTs

(
Id − F

(
∂L

∂X

∂X

∂D
+

∂L

∂W b

∂W b

∂X

∂X

∂D

))]
dD

dαstruct

+

[
λTf
∂Rf

∂W
− λTs F

∂L

∂W b

∂W b

∂W

]
dW

dαstruct

(5.39)

In equations (5.36), (5.37), (5.38) and (5.39) appear term-factors of the sensitivities

of the displacement field and the conservative variables. For a type of an objective

function, these term-factors do not depend on the nature of the design variable. These

systems describing the dual problem are called the aero-structural adjoint systems.

They are solved iteratively to find the adjoint vectors λTs and λTf . For an aerodynamic

function Jaero (e.g. drag, pitching moment, etc.) the aero-structural adjoint system to

be solved is:

∂Jaero
∂X

∂X

∂D
+
∂Jaero
∂W b

∂W b

∂X

∂X

dD
+ λTf

∂Rf

∂X

∂X

∂D
+ λTs

(
Id − F

(
∂L

∂X

∂X

∂D
+

∂L

∂W b

∂W b

∂X

∂X

∂D

))
= 0

∂Jaero
∂W b

∂W b

∂W
+

∂J

∂W
+ λTf

∂Rf

∂W
− λTs F

∂L

∂W b

∂W b

∂W
= 0

(5.40)

and for a structural function Jstruct (e.g. material stress), the aero-structural adjoint

to be solved is:

∂Jstruct
∂D

+ λTf
∂Rf

∂X

∂X

∂D
+ λTs

(
Id − F

(
∂L

∂X

∂X

∂D
+

∂L

∂W b

∂W b

∂X

∂X

∂D

))
= 0 (5.41)

λTf
∂Rf

∂W
− λTs F

∂L

∂W b

∂W b

∂W
= 0 (5.42)
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Once the vector λf and λs are computed they are reintroduced in the final expression

of the gradients, yielding the following expressions for the different gradients:

dJaero
dαgeom

=
∂Jaero
∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

)

+
∂Jaero
∂W b

(
∂W b

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

))

+ λTf
∂Rf

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

)

+ λTs

(
− F

(
∂L

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

)

+
∂L

∂Xb

dXb

dαgeom
+

∂L

∂W b

∂W b

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

))
−

dF

dαgeom
L

)

(5.43)

dJaero
dαstruct

=
∂Jaero
∂X

∂X

∂Xb

dXb

dαstruct

+
∂Jaero
∂W b

(
∂W b

∂W
+
∂W b

∂X

(
∂X

∂Xb

dXb

dαstruct
+
∂X

∂D

))
+ λTf

∂Rf

∂X

∂X

∂Xb

dXb

dαstruct

+ λTs

(
− F

(
∂L

∂X

∂X

∂Xb

dXb

dαstruct
+

∂L

∂Xb

dXb

dαstruct
+

∂L

∂W b

dW b

dαstruct

)
−

dF

dαstruct
L

)

(5.44)

dJstruct
dαgeom

=
∂Jstruct
∂Xsurf

∂Xsurf

∂Xrig

dXrig

dαgeom
+
∂Jstruct
∂Xb

∂Xb

∂Xrig

dXrig

dαgeom

+ λTf
∂Rf

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

)

+ λTs

(
− F

(
∂L

∂X

dX

dαgeom
+

∂L

∂Xb

dXb

dαgeom
+

∂L

∂W b

dW b

dαgeom

)
−

dF

dαgeom
L

)
(5.45)
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dJstruct
dαstruct

=
∂Jstruct
∂Xb

dXb

dαstruct
+
∂Jstruct
∂αstruct

+ λTf
∂Rf

∂X

∂X

∂Xb

dXb

dαstruct

+ λTs

(
− F

(
∂L

∂X

dX

dαstruct
+

∂L

∂Xb

dXb

dαstruct
+

∂L

∂W b

∂W b

∂X

∂X

∂Xb

dXb

dαstruct

)

−
dF

dαstruct
L

)
(5.46)

5.4 Implementation of the derivatives appearing in the

gradient of an aerodynamic cost function Jaero and or

structural cost function Jstruct

To solve the aero-structural adjoint system and assemble the final gradient of a function,

5 software components are involved:

• the CFD software elsA and its associated adjoint solver elsA/Opt and beam aero-

elastic module elsA/Bag ;

• the linearised structural module InAirSsi;

• the post-processing code for drag extraction & breakdown ffd72 ;

• the python implementation of the beam equation solber Beam;

• the mesh deformation tool SeAnDef.

The following table summarises the physical meaning of each term, the computing

software by which it is computed and the size of the matrix-term.

131



5.4.1 Terms appearing only in structural functions gradient

Term Meaning Computing pro-
gram and Size

∂Jstruct
∂Xsurf

Sensitivity of a structural function w.r.t. the rigid
CFD surface mesh

InAirSsi

3nXsurf

∂Jstruct
∂Xb

Sensitivity of a structural function w.r.t. the struc-
tural mesh

InAirSsi

3nXb

5.4.2 Terms appearing only in aerodynamic functions gradient

Term Meaning Computing pro-
gram and Size

∂Jaero
∂X

Sensitivity of aerodynamic function w.r.t. the current
CFD mesh

ffd72

3nX
∂Jaero
∂W b

Sensitivity of the aerodynamic function w.r.t. the
state variables at the fluid structure interface

ffd72

5ncell
I or 7ncell

I

∂Jaero
∂W

Sensitivity of the aerodynamic function w.r.t. the
state variables

ffd72

5ncell or 7ncell
∂W b

∂W
Sensitivity of the state variables at the interface IFS

w.r.t. the flow field in the computational domain
elsA

5ncell
I ∗ 5ncell or

7ncell
I ∗ 7ncell

∂W b

∂X
Sensitivity of the state variables at the interface IFS

w.r.t. the current mesh
elsA

5ncell
I ∗ 3nX or

7ncell
I ∗ 3nX
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5.4.3 Terms appearing in the gradient formulation independently on

the nature of the cost function

5.4.3.1 Sensitivities of X, Xrig, Xsurf , Xb:

Term Meaning Computing pro-
gram and Size

∂X

∂Xrig
Sensitivity of the aero-elastic CFD mesh w.r.t. the
rigid mesh (mesh before aero-elastic effects)

elsA

3nX ∗ 3nX
dXrig

dαgeom
Sensitivity of the rigid mesh w.r.t. to aerodynamic
shape parameters

SeanDef

3nX ∗ nαgeom

∂X

∂Xb
Sensitivity of the aero-elastic CFD mesh w.r.t. beam
mesh nodes

elsA

3nX ∗ 3nXb

∂Xb

∂Xsurf
Sensitivity of beam mesh nodes w.r.t. the surface CFD
mesh

InAirSsi

3nXb
∗ 3nsurf

∂Xsurf

∂Xrig
Sensitivity of the surface CFD mesh w.r.t. rigid mesh InAirSsi

3nsurf ∗ 3nX
∂X

∂D
Sensitivity of the aero-elastic CFD mesh w.r.t. struc-
tural displacements

elsA

3nX ∗ 2nXb

dXb

dαstruct
Sensitivity of the beam mesh w.r.t. the structural de-
sign parameters

InAirSsi

3nXb
∗ nαstruct
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5.4.3.2 Sensitivities of aerodynamic loads L:

Term Meaning Computing pro-
gram and Size

∂L

∂X
Sensitivity of the wing aerodynamic loads w.r.t. the
current mesh

elsA

3nXb
∗ 3nX

∂L

∂Xb
Sensitivity of the wing aerodynamic loads w.r.t. the
current mesh

elsA

3nXb
∗ 3nXb

∂L

∂W b
Sensitivity of the wing aerodynamic loads w.r.t. the
state variable at the fluid/structure interface

elsA

3nXb
∗ 5ncell or

nXb
∗ 7ncell

Example of differentiation: ∂L
∂Xb

At each step of the aero-elastic computation, the aerodynamic loads extracted from

the CFD mesh and transferred to the beam nodes Bi, 1 6 i 6 nXb
of the structural grid

are:




−→
Fi =

nI
f∑

l=1

Si
l (pl − p∞)−→nl

−→
Mi =

nI
f∑

l=1

−−−→
BiGl ∧ S

i
l (pl − p∞)−→nl

Where Si
l is the intersection between the influence area Vi of the node Bi and the

interface Il of the surface mesh. For a fixed span configuration, the influence area

Vi of each node Bi of the beam axis Xbeam remains constant and so does Si
l . The

partial derivative of the static pressure pl with respect to the beam axis position is

zero. Hence the dependence of the aerodynamic loads to the beam axis is expressed

through the sensitivity of the lever arm
−−−→
BiGl to the x and z coordinates of the Xbeam.
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The integrated load transferred to the structure depends on the elastic axis position

which with αgeom and αstruct. Under the Euler-Bernoulli assumptions, only flexural and

torsional loads
−→
Fi.

−→z ,
−→
Mi.

−→x and
−→
Mi.

−→y are transferred to the beam axis. The vertical

component
−→
Fi depends only on the slice on which aerodynamic loads are integrated. If

the latter remains constant, the sensitivity of
−→
Fi with respect to the coordinate of the

load node(s) framed in the slice is zero. The lever arm of the bending moment and

the torsion moment applied to the structure are the terms affected by the beam axis

position:





∂Fiz

∂x
= 0 ;

∂Fiz

∂y
= 0;

∂Fiz

∂z
= 0

∂Mix

∂x
= 0 ;

∂Mix

∂y
= 0;

∂Mix

∂z
= Fiy

∂Miy

∂x
= Fiz ;

∂Miy

∂y
= 0;

∂Miy

∂z
= −Fix

The computation of the term
∂L

∂Xb
is implemented in the module BAG of the CFD code

elsA. This linearisation is independent on the equations that model the fluid behaviour

since the only term that is influenced by the beam axis position is the lever arm of the

torsion and flexural moment.
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(a) Partial derivatives of flexion Mx and torsion My moments with respect to x-

coordinate of the beam axis position

(b) Partial derivatives of flexion Mx and torsion My moments with respect to z-

coordinate of the beam axis position

Figure 5.1: Evaluation of
∂L

∂Xb

by finite differences VS linearization
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5.4.3.3 Sensitivities of the flexibility matrix:

Term Meaning Computing pro-
gram and Size

∂F

∂I
Sensitivity of the flexibility matrix w.r.t. the second
moment of area I(y)

Beam

3nXb
∗ 3nXb

∗ nXb

∂F

∂J
Sensitivity of the flexibility matrix w.r.t. the torsion
constant J(y)

Beam

3nXb
∗ 3nXb

∗ nXb

∂F

∂Xb
Sensitivity of the flexibility matrix w.r.t. the struc-
tural mess Xb

Beam

3nXb
∗ 3nXb

∗ 3nXb
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5.4.3.4 Sensitivities of the structural properties I and J :

Term Meaning Computing pro-
gram and Size

∂I

∂Xb
Sensitivity of the bending constant w.r.t. the struc-
tural mess Xb

InAirSsi

3nXb
∗ 3nXb

∗ 3nXb

∂J

∂Xb
Sensitivity of the torsion constant w.r.t. the structural
mess Xb

InAirSsi

9nXb
∗ 9nXb

∗ 3nXb

∂I

∂αgeom
Sensitivity of the second moment of area w.r.t. aero-
dynamic shape parameters Xb

InAirSsi

nXb
nαgeom

∂J

∂αgeom
Sensitivity of the torsion constant w.r.t. aerodynamic
shape parameters Xb

InAirSsi

nXb
∗ nαgeom

∂I

∂αstruct
Sensitivity of the second moment of area w.r.t. struc-
tural parameters parameters Xb

InAirSsi

nXb
∗ nαstruct

∂J

∂αstruct
Sensitivity of the torsion constant w.r.t. structural
parameters Xb

InAirSsi

nXb
∗ nαstruct

5.5 Outcome

The aero-structural adjoint development has been detailed in this chapter. The mean-

ing and the computation of the new terms appearing with this extension have been

explained.

The aero-structural adjoint is now implemented and available in elsA/BAG and can
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be used in combination of the linearised structural module InAirSsi. The validation of

the aero-structural adjoint is presented in the next chapter.
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6

Aerodynamic, aero-elastic and

aero-structural adjoint-based

gradients: results and comparison

6.1 Preamble

Now that the development of the aero-structural adjoint has been presented and the

derived structural module validated, this chapter is intended to validate the aero-

structural adjoint method.

The aim of this work is to access the aero-structural sensitivities, however much work

has been done to prepare the stage for this extension and validate the common part

to the aerodynamic, aero-elastic and aero-structural adjoints. This work is presented

in this chapter through the gradient validation -adjoint vs finite Difference(FD)- of the

three adjoint methods, all available now in the ONERA CFD software elsA-BAG.

6.2 Test case description

The gradient computation and validation as well as the structural optimization exercises

presented in chapter 4 p. 69 and in what follows are performed for the wing of the
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AIRBUS configuration XRF11 6.1 p. 143.

The Euler grid has 1.378.895 points and 1.189.584 cells and it is composed of 143

structured blocks.

The CFD mesh corresponding to the jig-shape, used for aero-elastic computation, has

first been constructed from the available CFD mesh of the cruise flight condition shape

by applying the inverse of the aero-elastics deformations induced by aerodynamic loads

at the design point. All calculations presented in this section have been performed

for the cruise conditions defined as CL = 0.5, Mach = 0.83, Altitude = 35000ft. The

structural members used for the purpose of aero-structural adjoint validation are issued

from an initial sizing according to the methodology presented in section 4.6.2.

6.3 Problem parametrization

For the aerodynamic shape parametrisation, the in-house analytical tool for mesh de-

formation SeAnDef (Sequential Analytical Deformation) is used. SeAnDef is coded in

C++ and can perform nine deformation modes are available:

• chord deformation;

• twist deformation;

• sweep deformation;

• span modification (according to the y-axis);

• dihedral modification (according to the z-axis);

• thickness deformation;

• camber deformation;

• airfoils shape by chordwise B-spline based deformation;

1eXternal Research Forum: comprising Airbus, DLR, ONERA, QinetiQ (then EADS/IW from

2009)
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Figure 6.1: Euler grid of the Airbus XRF1 wing-fuselage configuration
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Figure 6.2: Zoom on the Euler grid of the Airbus XRF1 wing-fuselage configuration
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• geometrical angle of attack.

It is possible to access the combination of these deformation modes to realise complex

deformation modes. For example the sweep angle or the span with a constant reference

area. In this case an automatic adjustment of the chord at the wing root, the crank

and the wing tip is performed.

The deformation laws are defined using control sections along the span, at which de-

formations parameters are defined by the user or by the optimiser and interpolated in

between the framed sections. The geometrical angle of attack actually corresponds to

a rigid rotation of the complete CFD grid around the span axis. The interpolation be-

tween two control sections can be performed using different laws. Linear interpolation

and cubic spline are defined as direct laws, since in this case the parameter controlling

the law correspond exactly to the deformation induced in the mesh. For the second

category that gather Bezier curves, B-spline curves and Nurbs, the input values are

not the parameters that directly shape the aerodynamic envelop of the wing but the

control points of the parametric deformation law.

The deformations can be damped far away from the body. A control volume is defined

such as the deformation is fully applied in this volume, and progressively damped to

become null far away. It is interesting to mention that, the same deformation method is

used to introduce the aero-elastic deformations in the CFD mesh during the aero-elastic

coupling. Let us recall that the authorised aero-elastic deformations, under the Euler

Bernoulli hypothesis, are wing vertical deflection and twist.

The different variables which can be used in the three different wing design problems:

aerodynamic, aero-elastic and aero-structural are given in table 6.1 p. 146. Obviously

the structural parameters (handled with InAirSsi) are only meaningful in the case of

an aero-structural design optimisation. Moreover, wing planform and wing thickness

parameters can only be reasonably treated in the case of an aero-structural design,

since these parameters have a strong impact on the structure behaviour and on the

structural weight.
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Aerodynamic adjoint Aero-elastic adjoint Aero-structural

adjoint

αgeom

Twist possible possible possible

Camber possible possible possible

Profil control point possible possible possible

AOA possible possible possible

Thickness possible but no phys-

ical meaning

possible but no phys-

ical meaning

possible

Chord possible but no phys-

ical meaning

possible but no phys-

ical meaning

possible

Span possible but no phys-

ical meaning

possible but no phys-

ical meaning

possible

αstruct

Front spar web impossible impossible possible

Rear spar web impossible impossible possible

Lower surface spar

cap

impossible impossible possible

Upper surface spar

cap

impossible impossible possible

Lower surface skin impossible impossible possible

Upper surface skin impossible impossible possible

Table 6.1: Parametrisation dependency on the design problem: aerodynamic, aero-elastic

or aero-structure
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6.4 Aerodynamic functions evaluation, decomposition and

partial sensitivities of these functions with ffd72

One important component of the adjoint is the software ff72 for drag decomposition

and breakdown. It is based on the near-field and far-field drag balance carried out by

van der Vooren and Destarac (22) (36) (82). This theory ensures the balance between

the sum of pressure and friction drag (near-field) and the sum of viscous, wave and

induced drag.

This means that the effect of geometrical modifications can be analysed over any drag

component. In addition, ff72 provides the partial derivatives of all aerodynamic func-

tion (including the lift coefficient and the pitching moment) with respect to the metric

and the flow variables, as detailed in chapter 5.2 p. 116 and needed for alla djoint

computations.

6.5 Aerodynamic adjoint-based optimisations

The aerodynamic adjoint method is introduced in section 3.2. This work does not make

further contribution to this part, however it is the common part to the three types of

adjoint formulations and thus serves as a comparison baseline to the introduction of

flexibility effects.

6.5.1 Gradient validation

As a validation of the aerodynamic gradients calculated by the adjoint method, we

compare in Table 6.2 the gradient of the lift coefficient CL and pressure drag CDp , cal-

culated with teh adjoint method and by FD (2nd order), w.r.t. to five twist parameters

defined at five control sections along the span.
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αgeom Aerodynamic adjoint Finite Differences Relative error

dCL

dαi

dCDp

dαi

dCL

dαi

dCDp

dαi

dCL

dαi

dCDp

dαi

αtwist1 2.185e-02 2.04e-03 2.202e-02 2.014e-03 0.7% 1.2%

αtwist2 3.653e-02 3.829e-03 3.728e-02 3.94e-03 2% 2.8%

αtwist3 3.806e-02 4.862e-03 3.888e-02 5.066e-03 2.1% 4%

αtwist4 2.010e-02 3.387e-03 2.038e-02 3.493e-03 1.3% 3%

αtwist5 5.687e-03 9.891e-04 5.713e-03 1.005e-04 0.45% 8.8%

AoA 1.559e-01 1.416e-02 1.577e-01 1.855e-02 0.01% 23.6%

Table 6.2: CL and CDp
gradient computation: aerodynamic adjoint and FD

6.5.2 Application of the aerodynamic adjoint method to the optimi-

sation of the test-case wing

To initiate the application of the aerodynamic adjoint solver, we employ an inviscid

design strategy. The optimisation process, performed at Mach=0.83, is constrained by

the lift coefficient. The constraint is reached by adjusting the angle of attack.

The inviscid redesign at cruise condition for transonic wings is common and our choice

to solve the flow via the Euler equations concerns first the need of fast access to results

during validation steps. Secondly because in a validation step the gradients must be

unruffled by the modelling hypothesis. The RaNS computations although very fast

are still subject to some inconsistencies due to the non-exact linearisation of viscosity

terms. Of course, inviscid computation are unable to predict flow separation, but the

Cp distribution constitutes a reliable indicator by analysing the gradient in the trailing

edge region, where the flow is suppose to decelerate. A steeper gradient in this region

may count as a flow separation indicator. No need also to expand on the valuable

low cost aspect of the Euler computations that remains desirable in both preliminary

design and detailed design. The development of the aero-structural adjoint method is

not intrinsic and remains valid regardless of the flow modelling .

This section presents, by mean of gradient-based algorithms, the purely aerodynamic

optimisation of the wing of the selected test case. Before going further, let us say already

that this configuration is twist-optimized configuration. Four optimisation scenarios are
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presented aiming at exploring the rigid design space. The pressure drag is used as the

objective function which is constrained by the lift coefficient. The optimum is analysed

in terms of drag components but also in terms of spanwise lift distribution2.

6.5.2.1 Optimisation with first wing parametrisation: 5 twist control sec-

tion + angle of attack

The results presented in this section are selected from a set of several optimisation,

performed with three algorithms CONMIN (83), DOT-MMFD (84) and CFSQP (16).

The effects of both the optimisation algorithm and the starting point were investigated:

far or close from the lift constraint, yielding with active or non-active constraint at the

starting point. Needless to say that for an objective such as the pressure drag with

a complex behaviour producing a non-convex, possibly multi-modal design space, the

variety of results goes with the creativity of the algorithm... It is important then

to remember that the optimisation results may depends on the gradient optimisation

algorithm as well as the starting point.

The strategy of the optimizer rises some questions. In fact, the algorithm chose to

twist negatively all the sections and increase the angle of attack. The initial fuselage

incidence +1.9◦ is increased to +2.7◦ while the one of the wing is combined with a

dominant negative twist. Actually the final value of the angle of attack is the upper

bound of this variable given to the optimizer. On may wonder if this result is dependant

on the gradient order of magnitude since the angle of attack gradient is dominant -at

least at the optimisation start- or simply on the starting point. Tables 6.3 and 6.4

compare the initial and the optimized designs in terms of aerodynamic performance

and design parameters. The most important drag reduction concerns the wave drag

2 Both lift distribution and load distribution (the distribution of the lift coefficient times the

sectional chord) are key indicator for the optimality analysis. In the 30’s, the common vision was

that to obtain an elliptical load distribution, the planform must be elliptical...Mythical aircraft were

constructed under this assumptions, the Hawker Sea Fury is on of these extraordinary planes. Since

the 50’s, wings look far from elliptical. In fact, load distribution depends explicitly on the relative

importance of drag and weight. And Elliptical load distribution is fist of all a target for aerodynamic

design.
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Reference config-

uration

Optimized conf.

with quadratic

programming

(CFSQP)

Optimized conf.

with Method of

Feasible direc-

tions (CONMIN,

DOT)

CDp (Drag

Counts)

100 % 95.39 % 96.36%

CDw (DC) 10.42% 6.45 11.21%

CDi
(DC) 63.28 % 62.56% 62.36 %

CDsp (DC) 26.27% 17.78% 38.94%

CL 0.5 0.5 0.5

Table 6.3: Drag extraction and decomposition for both initial and optimised -in terms

of CDp
- configurations, αgeom ∈ R

6 (first wing parametrization)

αgeom Reference configuration Sequential algorithms

CFSQP

αtwist1 0 −2.4◦

αtwist2 0 −2.11◦

αtwist3 0 −1.62◦

αtwist4 0 −3.51◦

αtwist5 0 −2.36◦

αAoA +1.9◦ +2.7◦

Table 6.4: Design parameters for the Initial point and optimized configuration by the

CFSQP algorithm using the first parametrisation (αgeom ∈ R
6)
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Figure 6.3: Pressure distribution of the rigid configuration optimized for the CDp
with

CFDSQP algorithm. Parametrization with 5 twist control sections and the angle of attack
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Reference config-

uration

Optimised con.

with 5 twist sec-

tions (CFSQP)

Optimised con.

with 10 twist sec-

tions (CFSQP)

CDp (DC) 100% 95.39% 95.22%

CDw (DC) 10.42% 6.45% 6.38%

CDi
(DC) 63.28% 62.56% 62.45%

CDsp (DC) 26.27% 26.37% 26.38%

CL (DC) 0.5 0.5 0.5

Table 6.5: Design parameters for the Initial point and optimized configuration by the

CFSQP algorithm using the first parametrisation (αgeom ∈ R
11)

(second parametrisation)

component. Actually, the induced drag cannot be significantly improved because of the

already nearly optimal lift distribution of the initial design. Can this results obtained

with only 5 twist control sections and the angle of attack be significantly improved if

we further enrich the design space by adding more twist control sections?

6.5.2.2 Optimisation with the second wing parametrisation: 10 twist con-

trol section + angle of attack

Five additional control sections are introduced to the design space and optimisation

were conducted with this new parametrisation. The results are listed in table 6.5 and

compared to the results obtained with previous parametrisation. The drag reduction

is still mostly achieved through the reduction of the wave drag component, however

this does not result in a significantly better design than the results of the previous

optimization with the coarser optimization. The algorithm (CFSQP) indeed converges

to a point close to the one found when αgeom ∈ R
6. Enriching the design space with

more twist control section did not significantly improve the results found with coarser

parametrisation, indicating that the twist control with few control sections is physically

pertinent.
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Figure 6.4: Pressure distribution of the rigid configuration optimized for the CDp
with

CFDSQP algorithm. Parametrization with 10 twist control sections and the angle of attack
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αgeom Reference configuration Sequential algorithms

CFSQP

αtwist1 0 -1.130

αtwist2 0 -2.262

αtwist3 0 -2.150

αtwist4 0 -1.858

αtwist5 0 -1.472

αtwist6 0 -2.944

αtwist7 0 -3.227

αtwist8 0 -3.099

αtwist9 0 -2.758

αtwist10 0 -2.268

αAoA 1.9 +2.7

Table 6.6: Design parameters for the initial point and the optimized configuration by

the CFSQP αgeom ∈ R
11

(second parametrisation)

154



6.5.2.3 Optimization with the third wing parametrisation: 5 twist control

section + 25 airfoil control points + angle of attack

Aiming at evaluating the effect of parametrisation enrichment, we introduce another

type of parameters: local airfoil control points of B-splines curves. Twenty five points

are distributed over the twist control sections to introduce local smooth bumps over

the airfoil. Then, two optimisation scenarios are tested:

- first scenario with a starting point almost satisfying the lift constraint (NC), CL =

0.534;

- second scenario with a starting point far from the lift coefficient constraint (FC),

CL = 0.664s;.

DOT-MMFD algorithm is selected to perform the optimisation of the drag coefficient

under lift constraint which is controlled via the adjustment of the the angle of attack.

The optimisation of scenario FC did not converge. There is two possible reasons: the

most likely hypothesis can be linked to gradient inaccuracy for high lift coefficients. If

the gradient can be validated at the start of the optimization, this does not warranty

that during the optimisation process the gradients remain accurate. The second hy-

pothesis concerns the multi-modality of the design space and the potential existence of

a local minima.

The case where the starting point has a lift coefficient closer to the design point (sce-

nario (NC)) converged without difficulty. The aerodynamic performance is summarised

in Table 6.7 p. 156: drag coefficient breakdown and lift coefficient for the starting point

and the optimal point.

This parametrisation gives identical results in comparison with the results presented

in subsections 6.5.2.1 and 6.5.2.2 in terms of drag breakdown. The wave drag remains

the only improvable far field drag component. However it worth mentioning the dif-

ference in lift distribution between twist parametrisation (Fig.6.4) and control point

parametrisation (Fig.6.5).

The direct conclusion is that the increase of design space dimension is not correlated

with the convergence of the optimization. However the parametrisation (type and

dimension) drive the physical behaviour of the configuration (lift distribution). The
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XRF1 Initial con-

figuration

DOT-MMFD NC

CDp (DC) 100% 96.5%

CDw (DC) 10.42% 7.06%

CDi
(DC) 63.28 % 62.80%

CDsp (DC) 26.27% 26.64%

CL (DC) 0.5 0.5

Table 6.7: Drag extraction and decomposition: initial configuration, optimised NC

(optimal in terms of CDp
), αgeom ∈ R

31

(third parametrisation)

XRF1 configuration could not be more optimised than the obtained results. One can

surmise on the high design quality of the initial configuration or on the parametrisation

choice and initialization or on the multi-modality of the design space.

Several parametrisations and problem definition were tested including modification of

the starting point, scaling of the design variables and normalization of the objective

functions/constraints. But no noticeable difference were obtained to justify the pre-

sentation of these test in the manuscript. The convergence of the optimisation process

was verified via KKT conditions -using a graphical interpretation- but of course these

are not sufficient conditions since we do not have any certainty about the convexity of

the objective functions.

156



Figure 6.5: Pressure distribution of the rigid configuration optimized for the CDp
with

CFDSQP algorithm. Parametrization with 5 twist control sections, 25 airfoil control points

and the angle of attack
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αgeom Reference configuration Sequential algorithms

CFSQP

αtwist1 -8.633e-02 -1.438e-03

αtwist2 -1.372e-01 -2.601e-03

αtwist3 -2.130e-01 -3.152e-03

αtwist4 -2.352e-01 -2.125e-03

αtwist5 -6.915e-02 -5.428e-04

αprofil6 1.941e-03 1.115e-02

αprofil7 3.330e-02 6.329e-02

αprofil8 -1.422e-03 1.348e-02

αprofil9 5.550e-02 8.330e-02

αprofil10 6.369e-03 1.436e-02

αprofil11 9.134e-02 9.349e-02

αprofil12 -6.562e-03 7.285e-03

αprofil13 6.364e-02 6.914e-02

αprofil14 -1.289e-02 -2.677e-03

αprofil15 6.907e-03 1.540e-02

αprofil16 -1.951e-02 -5.612e-02

αprofil17 -1.303e-01 -9.256e-02

αprofil18 -4.888e-02 -9.246e-02

αprofil19 -9.693e-02 -1.151e-01

αprofil20 -1.829e-01 -7.800e-02

αprofil21 -7.056e-02 -1.003e-01

αprofil22 -1.920e-01 -1.150e-01

αprofil23 -2.667e-01 -4.831e-02

αprofil24 -1.025e-01 -9.004e-02

αprofil25 -2.291e-01 -8.400e-02

αprofil26 -8.526e-02 1.462e-03

αprofil27 3.839e-02 -2.620e-02

αprofil28 -4.467e-02 -2.725e-02

αprofil29 6.161e-02 1.200e-02

αprofil30 3.582e-02 -1.177e-04

αprofil31 1.102e+00 1.578e+00

Table 6.8: Design parameters for the initial point and the optimized configuration by

the CFSQP αgeom ∈ R
31

(third parametrisation)158



6.6 Aero-elastic adjoint-based optimizations

The aero-elastic adjoint, presented in chapter 3 gives the sensitivities of aerodynamic

functions w.r.t aerodynamic shape parameters of a flexible wing. It is a baseline to be

compared with the aero-structural adjoint gradient. A comparison available, of course,

only when the parameter is an aerodynamic shape parameter.

6.6.1 Aero-elastic gradient validation

The convergence of the aero-elastic adjoint equations depends highly on several nu-

merical ingredients: first on the convergence of the direct aero-elastic equations. The

adjoint system is solved for the shape at the aero-elastic equilibrium. Secondly, because

the aero-elastic adjoint is based on the existing aerodynamic adjoint. It is subject to

the same difficulties in solving the aerodynamic part of the coupled aero-elastic ad-

jont system, which sometimes requires the use of artificial dissipation to stabilise the

iterative scheme used to solve the adjoint system.

As we did for the aerodynamic adjoint, we present in table 6.9 p. 160 the gradients of

aerodynamic functions w.r.t. some aerodynamic shape parameters: five twist control

sections. Of course, the FD-based gradients are obtained after a full step convergence.

However one may notice that some gradients obtained with FD are still inconsistent

with the adjont-based value. In fact, it is inevitable that each aerodynamic function

sensitivity requires a FD convergence step. It is intuitive that the impact of twist

changes will not affect the drag coefficient and the lift coefficient in the same manner.

Thus, when performing a drag optimization constrained by lift , a unique step to eval-

uate the gradient of both function will not be appropriate. This is another point that

must not be forgotten when using FD for evaluating gradient along local optimization.

6.6.2 Application of the aero-elastic adjoint method to the elastic

optimization of the test case wing

In this section, we use the aero-elastic adjoint to perform the elastic optimization of

the test case wing and we compare the results to the aerodynamic -rigid- optimization.
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αgeom Aero-elastic adjoint Finite Differences Relative error
dCLp

dαi

dCdp
dαi

dCLp

dαi

dCdp
dαi

dCLp

dαi

dCdp
dαi

αtwist1 2.259e-02 1.476e-03 2.262e-02 1.373e-03 0.1% 7.5%

αtwist2 3.712e-02 2.369e-03 3.716e-02 2.152e-03 0.1% 10%

αtwist3 3.656e-02 2.401e-03 3.660e-02 2.088e-03 0.1% 14.9%

αtwist4 1.532e-02 1.149e-03 1.528e-02 8.641e-04 0.2 % 32.97%

αtwist5 2.341e-03 1.703e-04 2.278e-03 7.258e-05 2.7% >100%

AoA 1.426e-01 4.947e-03 1.423e-01 8.218e-03 0.2% 39.8%

Table 6.9: CLp
and CDp

gradient computation: aero-elastic adjoint and FD

As explained above, when a frozen structural model is used all along the optimization

process and when the flexibility effect modifications are neglected, then the parametri-

sation choices have to be restricted. We aim at ameliorating the aerodynamic drag, at

the design point (CL = 0.5) via the control of five twist sections, distributed along the

span, and 5 camber points located at the mid chord of each twist section. A degree of

freedom is given to the angle of attack to reach the lift constraint.

The design exploration for both aerodynamic and aero-elastic adjoint start from a point

that has a lift coefficient higher that the design point.

The optimization process is supervised by DOT algorithm. Each step of the gradient-

based algorithm necessitates the computation of the aerodynamic flow on the elastic

wing configuration and the resolution of the aero-elastic adjoint system for each func-

tion when the gradient is required.

The aero-elastic equilibrium of the wing is reached for 5 fluid/structure coupling iter-

ations.

Of course, both rigid and elastic optimisation have the same degrees of freedom to

control the aerodynamic wing shape. Table 6.10 list, at CL = 0.5, CDp for the initial

and the optimised configuration. The design space is not large, but enough to high-

light the difference of design space exploration of a rigid or elastic wing. In fact, the

pressure drag of the optimal elastic configuration has 7.09% less drag then the baseline
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Table 6.10: Drag extraction and decomposition for initial, rigid and elastic optimal -in

terms of CDp
- configurations, αgeom ∈ R

11

Baseline Aerodynamic Aero-elastic

CDp (Drag Counts) 100 % 96.01% 92.91%

CDw (Drag Counts) 10.43 % 6.94% 4.52%

CDi
(Drag Counts) 63.29 % 62.76% 62.14%

CDsp (Drag Counts) 26.27 % 26.27% 26.27%

configuration, while the rigid optimal configuration has 3.98% less drag count. Thus a

difference of 3.1% of total drag reduction is resulting from the consideration of elastic

effects. The straight forward conclusion to this, is that if we do increase the design

space dimension it can be expectable that more differences between the rigid and elas-

tic optimization process rise. This does not mean that elastic considerations warranty

optimality for any case, but this will certainly give more physical meaning to the results.

The drag breakdown shows that for both scenarios, the total drag decrease is due to

the wave drag component. In fact, the flow is modelled by the Euler-Bernoulli flow

equations, thus the only expected component to be modified with a twist and camber

p[parametrisation is either the wave drag or the induced drag. The analysis of the load

distribution on for both scenarios (Figures. 6.8 164 and 6.9 165) and the optimal set of

design parameters presents an elastic optimised wing with a negative twist for the five

control sections and a negative camber at the exception of the mid-span section. The

elastic optimum design shows a optimised configuration slightly loaded in the region

between 50% to 72% of the span. The loading decrease in the regio and unloaded

between the wing and the wing crank.
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Figure 6.6: Twist angle on the control sections of the optimal elastic configuration
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Figure 6.7: Mid-chord camber of control sections of the optimal elastic configuration
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Figure 6.8: Summary of CDp
aerodynamic optimization, performed with DOT algorithm.

Parametrization with 5 control twist section, 5 camber sections and the angle of attack
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Figure 6.9: Summary of CDp
aero-elastic optimization, performed with DOT algorithm.

Parametrization with 5 control twist section, 5 camber sections and the angle of attack
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6.7 Aero-structural adjoint gradients

The computation of the aero-structural adjoint-based gradient requires the interven-

tion of several software components. All these elements are embedded into a python

framework (Fig 6.10, 167). The steps performed to obtain the final gradient may be

summarized as follows:

• produce the jig-shape CFD mesh of the configuration;

• compute, on the jig-shape, the sensitivities of the metric w.r.t. the design vari-

ables;

• compute the structural model of the wing and its characteristics (this stage may

require a sizing step if no aero-structural optimization process is performed);

• solve the coupled flow equations and compute the aero-elastic equilibrium;

• supply the adjoint solver of elsA with the necessary terms computed by InAirSsi;

• solve the aero-structural adjoint problem at the aero-elastic equilibrium of the

wing.

6.7.1 Aero-structural gradient validation

This section validates the gradients computed by the aero-structural via a comparison

with finite differences gradient. The adjoint method is of course independent of the

number of parameters and one may access to hundreds of gradient componenets, how-

ever we present the validation only on a selection of parameters: seven aerodynamic

shape parameters (αgeom) and 10 structural parameters (αstruct). The only reason to

this restriction is the, often, necessary step convergence of finite differences. In partic-

ular, the FD step is dependant not only on the nature of the parameter but also on the

nature and the behaviour of the function as we will present in table 6.11.

6.7.2 Remarks on difficulties linked to finite difference step conver-

gence

During the validation of the gradient, it was necessary to perform a step convergence

for each of the parameter and at least for one of the two evaluated function (Clp , CDp).
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Figure 6.10: aero-structural adjoint-based gradient computation process
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Figure 6.11: Convergence of the norm L2 of the residual of first

equation of the system 3.44 p. 64 (aero-elastic adjoint)

Figure 6.12: Convergence of the norm L2 of the residual of first

equation of the system 5.40 p. 129 (aero-structural adjoint)
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αgeom Aero-structural adjoint Finite Differences Relative error

dClp
dαi

dCdp
dαi

dClp
dαi

dCdp
dαi

dClp
dαi

dCdp
dαi

αtwist1 2.21e-02 1.17e-03 2.21e-02 1.12e-03 0.0% 4.0%

αtwist2 3.49e-02 1.80e-03 3.52e-02 1.69e-03 0.8% 6.5%

αtwist3 3.99e-02 2.05e-03 4.02e-02 1.71e-03 0.7% 19%

αthickness1 7.76e-02 4.20e-03 7.76e-02 4.77e-03 0.0% 11%

αthickness2 2.05e-01 8.77e-03 2.06e-01 1.12e-02 0.4% 21%

αthickness3 2.60e-01 1.23e-02 2.59e-01 1.37e-02 0.3% 10%

tslow at

16.6% span

7.12e-02 -7.28e-05 6.89e-02 requires a

step con-

vergence

(r.s.c)

3.3% -

tclow at

16.6% span

7.13e-02 -8.00e-05 6.89e-02 r.s.c 3.4% -

tsupp at

20.9% span

6.12e-02 -1.71e-04 6.05e-02 r.s.c 1.1% -

tfs at 20.9%

span

-4.671e-02 -3.39e-03 -4.00e-02 r.s.c 16% -

tcupp at

28.1% span

1.20e-01 1.63e-04 1.18e-01 1.87e-04 0.1% 12%

tsupp at

34.7% span

3.12e-01 1.52e-03 3.04e-01 r.s.c 2.6% -

trs at 52.1%

span

1.07e-01 2.24e-03 6.0e-02 r.s.c 78% -

tsupp at

75.2% span

1.88e-01 3.18e-03 1.67e-01 r.s.c 12.5% -

tcupp at

75.2% span

1.19e-01 6.60e-04 1.6e-01 r.s.c 25% -

tfs at 98%

span

5.9e-02 -8.61e-04 1.00e-01 r.s.c 41% -

Table 6.11: Clp and CDp
gradient computation: aero-structural adjoint and FD
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dClp
dαi

: Aes adjoint dClp
dαi

: FD

Step - 1.e-05 5.e-05 1.e-06 1.e-07 1.e-08 1.e-09

tcupp28.1% 1.20e-01 1.18e-01 1.16e-01 1.25e-01 1.00e-01 0 0

Table 6.12: FD step convergence for dClp
dαi

computation

dCdp
dαi

: Aes adjoint
dCDp

dαi
: FD

Step - 5.e-05 1.e-06 1.e-07 1.e-08 5.e-09 1.e-09

tcupp28.1% 1.63e-04 4.50e-03 4.77e-03 3.03e-04 2.39e-04 1.87e-04 1.14e-04

Table 6.13: FD step convergence for
dCDp

dαi
computation

We present in tables 6.13 p. 170 and 6.12 p. 170 the convergence step of the sensitivity

to the perturbations of the upper cap thickness located at 28.1% of the span. While

the step giving the lift coefficient sensitivity with good accuracy is rapidly evaluated,

the one for the pressure drag evaluation is not straightforward.

6.7.3 Aero-structural gradient vs aero-elastic gradient

In this section we present a comparison of the gradient computed with the aero-elastic

adjoint method and the aero-structural adjoint method. This comparison can only be

meaningful on aerodynamic shape parameters, since without a structural model, the

aero-elastic adjoint cannot compute the sensitivity of a cost function to the modifica-

tions of internal structural thicknesses.

For this comparison, we select two types of parameters: three twist control sections

and three airfoil thickness control sections. The control sections are located at 19.09%,

26.16% and 52.43% of the span.

As said previously the gradients of the lift coefficient is rapidly aligned with the value

given by the 2nd order finite differences. For example, the perturbation applied to obtain

the gradient with respect to thickness is 1% of the local thickness. This value was ideal

to give a perfect match for the lift gradient while it results in a relative error up to

21% in the pressure drag gradient. In fact the post-processing of the computation used
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αgeom Aero-structural adjoint Aero-elastic adjoint

s dCL

dαi

dCdp
dαi

dClp
dαi

dCdp
dαi

αtwist1 2.21e-02 1.17e-03 2.45e-02 1.15e-03

αtwist2 3.49e-02 1.80e-03 3.95e-02 1.75e-03

αtwist3 3.99e-02 2.05e-03 5.23e-02 1.95e-03

αthickness1 7.76e-02 4.20e-03 6.31e-02 4.26e-03

αthickness2 2.05e-01 8.77e-03 1.36e-01 8.66e-03

αthickness3 2.60e-01 1.23e-02 1.93e-01 1.19e-02

Table 6.14: Comparison of aero-elastic adjoint-based gradient and aero-structural adjoint-

based gradient

αgeom Aero-elastic adjoint Finite Differences Relative error

dClp
dαi

dCdp
dαi

dClp
dαi

dCdp
dαi

dClp
dαi

dCdp
dαi

αtwist1 2.45e-02 1.15e-03 2.21e-02 1.11e-03 10% 3.06 %

αtwist2 3.95e-02 1.75e-03 3.52e-02 1.70e-03 12% 2.9%

αtwist3 5.23e-02 1.95e-03 4.08e-02 1.73e-03 28% 12%

αthickness1 6.31e-02 4.26e-03 5.50e-02 3.92e-03 15% 8.6%

αthickness2 1.36e-01 8.66e-03 1.13e-01 7.91e-03 20% 9.4%

αthickness3 1.93e-01 1.19e-02 1.15e-01 9.40e-03 67% 26%

Table 6.15: Comparison of aero-elastic adjoint-based gradient and finite difference with

a fixed structural model (to match the aero-elastic hypothesis
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for FD, shows that a perturbation of 1% of the local thickness is enough to produce

an increase of 3 d.c. which is too large to give accurate FD gradients. Indeed, the

thickness increase at a control section is propagated toward the tip and the wing root

where it is dumped and even if this value is small, it is enough to increase both wave

and induced drag. A new step convergence study would then be mandatory to evaluate

the gradient of the pressure drag. For these reasons, it has been decided to concentrate

on dCL

dαi
. We performed two 2nd order finite differences computations. The first one

to be compared with the aero-structural adjoint-based gradient and the other one to

be compared with the aero-elastic adjoint-based gradient. For the first one, a different

structural model is generated for the different values of thickness perturbation and for

the second the same structural mesh and characteristics are used. Each type of FD is

then consistent with the hypothesis of the adjoint method to be compared with.

Table 6.14 confronts the aero-elastic and the aero-structural gradients. The parameter

for which the aero-structural adjoint presents the larger differences (justifying the aero-

structural adjoint) on the aero-elastic adjoint concerns the parameters that impact the

most the structural behaviour, i.e. airfoil thickness. If the aero-structural adjoint-based

lift sensitivity w.r.t. thickness presents a perfect match with the FD (less than 0.4)%

, aero-elastic FD gradients (with identical step) present differences from 15% to 67%.

In addition, the impact of thickness modification on lift coefficient is underestimated

when aero-elastic adjoint method is used.

6.8 Outcome

This section presented a sensitivity analysis on the 3D test case XRF1 with the three

adjoint formulations available in the CFD software elsA:

the aerodynamic adjoint;

the aero-elastic adjoint;

and the aero-structural adjoint;

The contributions of this work is the development of the aero-structural adjoint ap-

proach which introduces flexibility effects through sensitivity analysis. The terms that
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reflect those effects are, mainly, computed via the structural module presented in chap-

ter 4 p. 69. The aero-structural adjoint-based gradients are compared to those obtained

by finite difference. We say compared and not validated, because it turned out that

sometimes establishing a reference value of the gradient by FD is hardly possible and

a step convergence was necessary depending on the nature of the parameters and the

cost function. All that indicating in certain cases the gradient computed by the aero-

structural adjoint method as a reference point...!

In the first section of this chapter, the aerodynamic adjoint and the aero-elastic adjoint

were validated on the test case XRF1, and an application to aerodynamic design of

both rigid wing and elastic wing were presented and compared. The common design

space for these optimisations was of dimension 11, and thus of course did not exploit

the full potential of the dual formulation from which the adjoint is derived and which

relaxes the dependency on the design space dimension. But, it is well known that

the optimisation do not depend only on the way the function or their gradient are

computed but also on the way the exploration algorithm deals with high dimensional

design spaces. Gradient algorithms represent by themselves a separate subject in the

optimization (if not the most important...). However, this parametrisation is enough to

show that a significant difference can be achieved when flexibility effect are included.

What we want to highlight with this difference is not much the obtained results in

terms of drag reduction, because having a good gradient does not meant obtaining a

zero-drag flying configuration but converging toward the correct physical interpretation

and thus providing explanations whether or not drag performances are increased.

The confrontation of rigid (flight shape) and elastic wing optimizations proved that the

same parametrisation (twist + airfoil shapes) leads to different results, because the cost

function(s) and/or the constraint function(s) do not have the same sensitivity response

with or without flexibility effects. From this point we see that the introduction of aero-

structural effects will bring even more physical interpretation to the gradients and to

the optimisation process. This was shown, for example, through the gradient compu-

tation of the thickness parameter with the aero-elastic adjoint and the aero-structural

adjoint. The latter understates the impact on the aerodynamic functions, and if in
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preliminary design stages we are not aiming at evaluating the absolute performance,

the sensitivity analysis necessary for a preliminary design stage must be as physically-

accurate as possible.

Finally the validated aero-structural gradient set the stage for near future aero-structural

optimisation or structural sizing with flexible load cases.
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7

Conclusion and perspectives

Through this work, the aero-elastic adjoint, available in the ONERA CFD software

elsA, was extended to an aero-structural adjoint method.

The aero-elastic adjoint was developed, at ONERA, by Marcelet (59). Her work has

enabled the access to the sensitivities of aerodynamic functions with respect to (w.r.t.)

aerodynamic shape parameter, for the wing in aero-elastic equilibrium with a frozen

structural model. Marcelet forecasts that [...it can be interesting to take into account

the effect of planform parameter modifications on structural characteristics...] and that

[...structural functions gradients could be considered...].

These perspectives are part of the capabilities of the aero-structural adjoint. Indeed, it

is now possible through the developments achieved in this work to access the sensitivity

of both aerodynamic and structural functions w.r.t. changes of the aerodynamic shape

or w.r.t. a change of the internal structural geometry.

To achieve these targets the first step was to enable the calculation of structural char-

acteristics and their sensitivities to evaluate their impact on cost functions of the aero-

structural optimization problem. For that, a dedicated wing structural model InAirSsi

has been developed. It allows the computation of structural functions: structural weight

and material constraints. Indeed, via the development of the aero-structural adjoint,

the target is to perform aero-structural optimizations.

The modelling of the aero-elastic behaviour of the wing, as it was already available at
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the beginning of this work, lays on a Euler-Bernoulli beam theory for the structural

modelling. The displacements of the structural model nodes are then computed by

considering the aerodynamic flexural and torsional loads under the hypothesis dictated

by the beam type as it is explained in chaper 4 p. 69. The structural mesh has to

be available to perform the aero-elastic coupling and the aero-elastic adjoint solution.

Without the availability of a structural model, this process requires the call of high-

fidelity tools to derive the equivalent beam model mesh on which the aerodynamic loads

are extracted and structural displacements computed. The first step of this work has

been to develop a fully linearised structural module. This module (InAirSsi) constructs

the structural model of the wing by fitting into the aerodynamic envelope, extracted

from the surface CFD mesh, the wing primary structure built upon 4 structural com-

ponents (2 spars, upper and lower skin) and 8 degrees of freedom (6 for thicknesses and

2 for positions cf. 4 p. 69). The first type of InAirSsi outputs are those necessary to

compute the aero-elastic equilibrium, namely the structural mesh and the spanwise dis-

tribution of bending and torsion stiffnesses. These stiffnesses are necessary to calculate

the flexibility matrix that explicitly relates the aerodynamic loads and the structural

displacements. The second type of InAirSsi outputs are the sensitivity terms developed

in section 5.2 p. 116. These terms depends on both the nature of the cost function

(aerodynamic or structural) and on the nature of the design parameters (aerodynamic

shape parameters of internal structural parameters).

Based on the structural outputs of this module InAirSsi and on the developments made

in the elsA code, the gradients can be computed via the aero-structural adjoint. These

gradients have been compared with Finite Differences-based gradients. It is also im-

portant to note that these developments do not depend on the flow equations used in

the flow solver. The aero-structural adjoint extension remains valid for both inviscid

and viscous flows, although it has been validated and applied only to inviscid flow for

the sake of simplicity in this work.

This work aims at adding more physical meaning into the computation of the cost

function gradients, however when it comes to modelling the physics, thinking of en-

hancement and improvement is self-evident. This is what we name degree of fidelity.
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Yet, it is still important to define the framework of application and analyse how the

hypothesis may affect the results and the interpretation or help in reducing the cost

of analysis. The real focus of this work being on proposing methods to deal with the

intrinsically multidisciplinary nature of wing design, the modelling of each discipline

could be improved to be applied in more advanced design stages -one day, when nu-

merical optimization will be applied in early design stages- thus one may think that the

structural behaviour must be upgraded and elevated to the state of the art fidelity avail-

able for the analysis through: structural degrees of freedom, diversification of material

and thus of structural behaviour, sizing criteria, etc...For the aerodynamic modelling,

the most important challenge -ongoing at ONERA- is related to the improvement of

the RaNS adjoint system solution.

The adjoint formulation has presented challenges since almost 40 years now. More than

four decades have passed since the first adjoint formulation for aerodynamic problems

and still difficulties to penetrate “real world”. If numerous teams, in the optimization

community still work actively on this subject, it is because of the unquestionable po-

tential such technique presents.

The applicability of high-fidelity optimization in the industrial conceptual design pro-

cess is of course linked to its computational cost. However if we note that today a full

aircraft configuration can be analysed in a matter of minutes -using approximately 128

cores- we will be able to do this in seconds 10 years from now. But this gain will only

be beneficial to aircraft design innovation if the increase of computational capability is

accompanied by development within aero-structural optimization framework and con-

ceptual design tools.

When numerical optimization techniques will penetrate intensively the industrial world

(one day!) then, the high potential of the adjoint is that it can be exploited by partisans

of both local and global algorithms. For the unconverted -to numerical optimization-

it presents a cost-effective and information-valuable sensitivity analysis (yet multidis-

cipinary).
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Appendix A

For the users of elsA BAG:

module modifications

This appendix describes the modification incorporated into the module Bag (Beam

Aeroelastic gradient) created to manage the fluid/structure interactions through a beam

model.

The module Bag computes the aerodynamic loads that will be transferred to the struc-

ture, it is also in charge of the CFD volume mesh deformation according to structural

displacements. elsA/Bag contains three directories : Descp, Deform and Sio

elsA/Bag/Deform

The deformation of the CFD volumic mesh is piloted by two C++ classes defined in

this directory: -DeformationAxis -BlkTwistbendDeformator -MeshDeform

The structural discplacements computed by the external python class ”Beam” are

transfered to the object decribed by the C++ class DeformationAxis.

The C++ class BlkTwistbendDeformator supervises the deformation process. The

C++ class interferes when
dRf

dX is computed by finite difference.

elsA/Bag/Sio

This directory contains the class SioBeamLoads in charge of aerodynamic load transfer
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elsA/Bag/Descp

This directory make possible the access to the C++ classes of elsA/Bag/Deform and

elsA/Bag/Sio directly through the python script that drive the aeroelastic computation.

It contains the descriptor objects of the C++ classes contained in elsA/Bag/Deform

and elsA/Bag/Sio:

-DesDeformationAxis, descriptor of DeformationAxis

-DesBlkTwistbendDeformator, descriptor of BlkTwistbendDeformator

-DesSioBeamLoads, descriptor of SioBeamLoads

# ***********************************************************

# ***********************************************************

# ***********************************************************

#--------

#InAirSsi

#--------

inairssi.readInputFile("InAirSsi.in","./INAIRSSI/" )

inairssi.BuildWingBox(0,"linear","./ADJCOMPUTATION/","./MAIL-JIG/" )

# 0 => Beam nodes are different from control section

inairssi.ComputeBeam("WBox") #full=WB+LE+TE , WBox

inairssi.ComputeStructParam("WBox") #full=WB+LE+TE , WBox

inairssi.ComputeSensStructParam("WBox") #full=WB+LE+TE , WBox

inairssi.WriteModel()

if couplingType=="aerostructural":

dIdgeom=inairssi.ComputedXbdXsurfdalpha()[0]

dJdgeom=inairssi.ComputedXbdXsurfdalpha()[1]

dIdstruct=inairssi.ComputedXbdXsurfdalpha()[2]

dJdstruct=inairssi.ComputedXbdXsurfdalpha()[3]

# Initialisation du DesShapeOpt:

# ---------------
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eqadj.submit()

# initialisation:

# ---------------

beam.setNbFunctions(3)

beam.setNbAlphas(4,2) # Nbgeom , Nbstruct

beam.initLambdaS()

beamloads.initFlexMatTransposLambdaS(3)

deform.createTwistAndBendRhs(3)

if couplingType=="aeroelastic":

beamloads.initdEdXrigdAlpha(0,0) #Nbgeom , Nbstruct

if couplingType=="aerostructural":

beamloads.initdEdXrigdAlpha(4,2)

beamloads.initdEdXbdAlpha(4,2) #Nbgeom , Nbstruct

deform.setBeamInfoToOpt()

beam.computedDefAxisdBeam(defaxis)

loads = beamloads.extract_Fld(0)

beam.applyLoading(loads)

# Boucle de resolution du systeme lineaire:

# -----------------------------------------

nCIter =5

for iii in (range(nCIter)):

print "******************************************************************
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print "Iterative Resolution of the Coupled Adjoint Discrete Equations"

print " ------ iteration number " + repr(iii+1)

print"*******************************************************************

if (iii==0):

eqadj.compute_Aeroelast(1,0) # isFirstIteration, isLastIteration

deform.computeRhsToBeam(1) # isFirstIteration

elif (iii==nCIter-1):

eqadj.compute_Aeroelast(0,1) # isFirstIteration, isLastIteration

#Pb.extract()

else:

eqadj.compute_Aeroelast(0,0) # isFirstIteration, isLastIteration

deform.computeRhsToBeam(0) # isFirstIteration

if (iii != nCIter-1):

twistRHS = deform.returnTwistRhs()

bendRHS = deform.returnBendRhs()

beam.applydDefAxisTransposRHS(twistRHS, bendRHS, defaxis)

dRdTwist = deform.computedRdTwistLambdaA()

dRdBend = deform.computedRdBendLambdaA()

beam.applydRdDefAxisTransposLambdaA(dRdTwist,dRdBend,defaxis)

beam.computeLambdaS(defaxis)

beam.computeFlexMatTransposLambdaS(beamloads)

beamloads.createAndSetListdEdFTransposRhs(0)

# choixMaillage (0=flexible, 1=rigide)

beamloads.createAndSetListdEdXTransposRhs(0)

# choixMaillage (0=flexible, 1=rigide)
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# assemblage du gradient:

if (iii==nCIter-2):

if couplingType=="aeroelastic":

deform.computeAndsetdnewMeshdXrigdAlpha(4)

beamloads.computedEdXrigdAlpha(0)

dFzdXrigda = beamloads.returndFflexiondXrigdAlpha()

dMxdXrigda = beamloads.returndMflexiondXrigdAlpha()

dMydXrigda = beamloads.returndMtorsiondXrigdAlpha()

loadPts = beamloads.returnLoadPts()

beam.applydEdXrigdAlpha(loadPts, dFzdXrigda, dMxdXrigda, dMydXrigda)

eqadj.createBeamGradFunc()

beam.computeAndSetBeamGradFunc(eqadj ,0)

# 0=aeroelastic 1=aerostructural

elif couplingType=="aerostructural":

deform.computeAndsetdXdAlpha(4,2,23)

#alphageom, alphastruct, discretization

beamloads.computedEdXrigdXbdAlpha(0)

# choice of Mesh (0=flexible, 1=jig)

beamloads.computedEdXbeamdAlpha(0)

# choice of Mesh (0=flexible, 1=jig)

dFzdXdXbda = beamloads.returndFflexiondXrigdXbdAlpha()

dMxdXdXbda = beamloads.returndMflexiondXrigdXbdAlpha()

dMydXdXbda = beamloads.returndMtorsiondXrigdXbdAlpha()

dFzdXbda = beamloads.returndFflexiondXbdAlpha()

dMxdXbda = beamloads.returndMflexiondXbdAlpha()

dMydXbda = beamloads.returndMtorsiondXbdAlpha()
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loadPts = beamloads.returnLoadPts()

beam.applydEdXrigdXbdAlpha(loadPts,dFzdXdXbda,dMxdXdXbda,dMydXdXbda)

beam.applydEdXbdAlpha(loadPts, dFzdXbda, dMxdXbda, dMydXbda)

eqadj.createBeamGradFunc()

beam.computedFlexdIJdIJdalpha(dIdgeom,dJdgeom,dIdstruct,dJdstruct)

beam.computeAndSetBeamGradFunc(eqadj ,1)

# 0=aeroelastic 1=aerostructural

# *************************************************************************

# *************************************************************************

# *************************************************************************

computeAndsetdXdAlpha

Replace computeAndsetdnewMeshdXrigdAlpha when the aerostructural adjoint is called.

This routine is defined in the class BlkTwistBendDeformator (elsA/Bag/Deform/ ) and

it is accessible via the descriptor Desdeformator (elsA/Bag/Descp/ ).

The computed term depends on the nature of the design variable, the first argument

is the number of aerodynamic design varaibles, the second one is the number of the

structural design parameters and the last argument is the number of displacement

nodes.

When the design variable ∈ αgeom, the returned value is

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

)

When the design variable is ∈ αstruct, the returned value is

∂X

∂Xb

dXb

dαstruct
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computedEdXrigdXbdAlpha

This routine is accessible via the descriptor Desdeformator (elsA/Bag/Descp/ ) and it

is defined in BlkTwistBendDeformator (elsA/Bag/Deform/ ), it supervises the compu-

tation of

∂L

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

)
+
∂L

∂W b

∂W b

∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

)

The first term is calculated by the routine computedEdFdXrigdAlpha and the sec-

ond term is computed by computedFdXdXrigdAlpha. The difference between the

aeroelastic adjoint and the stuctural adjoint lays on the attribut of the C++ class

elsA/Blk/ComposeBlkBaseBlock : dNewMeshdXrigdAlpha.

This term is divided into three parts related to the type of loading transferred to

the structure, the force of flexion Fz, the moment of flexion Mx and the moment of

torsion My, these three part are stored as attributes of the SioBeamLoads C++ class

(elsA/Bag/Sio/ )

• dFflexiondXrigdXbdAlpha

• dMflexiondXrigdXbdAlpha

• dMtorsiondXrigdXbdAlpha

This terms are accessible from the elsA script via the three routines of the descriptor

object elsA/Bag/Descp/DesSioBeamLoads:

• returndFflexiondXrigdXbdAlpha

• returndMflexiondXrigdXbdAlpha

• returndMtorsiondXrigdXbdAlpha
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computedEdXbeamdAlpha

This routine is accessible via the descriptor Desdeformator (elsA/Bag/Descp/ ) and it is

defined in BlkTwistBendDeformator (elsA/Bag/Deform/ ). It computes the sensitivity

of the aerodynamic loads wrt to the design variable (αgeom or αstruct) through the

coordinates of the structural mesh:

∂L

∂Xb

∂Xb

∂Xsurf

dXsurf

dαgeom

This term is also divided into three part, each one is of dimension nb x nα:

• dFflexiondXbdAlpha

• dMflexiondXbdAlpha

• dMtorsiondXbdAlpha

This terms are accessible from the elsA script via the three routines of the descriptor

object elsA/Bag/Descp/DesSioBeamLoads:

• returndFflexiondXbdAlpha

• returndMflexiondXbdAlpha

• returndMtorsiondXbdAlpha

applydEdXrigdXbdAlpha

This routine, contained in the python class Beam, transfers to the Beam object the

returned attributes of computedEdXrigdXbdAlpha :

• dFflexiondXrigdXbdAlpha

• dMflexiondXrigdXbdAlpha

• dMtorsiondXrigdXbdAlpha
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applydEdXbdAlpha

The role of this python class Beam routine is to transfers to the Beam object the

returned attributes of computedEdXbeamdAlpha:

• dFflexiondXbdAlpha

• dMflexiondXbdAlpha

• dMtorsiondXbdAlpha

computedFlexdIJdIJdalpha(dIdgeom,dJdgeom,dIdstruct,dJdstruct)

This routine returns to the python class Beam the sensitivity of the structural param-

eters I and J with respect to the design variables αstruct and αgeom computed value of

the python class inairssi

−L

(
∂F

∂I

(
∂I

∂Xb

∂Xb

Xsurf
+

∂I

∂Xsurf

)
dXsurf

dαgeom
+
∂F

∂J

(
∂J

∂Xb

∂Xb

∂Xsurf
+

∂J

∂Xsurf

)
dXsurf

dαgeom

)

computeAndSetBeamGradFunc

This routine of the Beam python class assembles:

λTs

(
−

dF

dαgeom
L− F

dL

dαgeom

)

And transferred directly to the elsA object of description elsA/Bag/Descp/DesShapeOpt
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Appendix B

Structural sensivity with

INAIRSSI

B.0.1 Calculation and validation of dChordlaw
dαgeom

Definition:
dChordlaw

dalpha is the sensitivity of the law chord distribution with respect to αgeom.

The chord law depends on three main parameters, the leading edge, the trailing edge

and the local thickness to chord ratio. All these parameters are influenced by the

parameters that defines the aerodynamic shape and do change if only the structural

parameters are modified. This term drives the interpolation the primary structure

element thickness between two control section.

At a constant y-span position, the local chord is defined by two x-coordinates. These

coordinates are modified when the wing planform is modified (via the
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Figure B.1: Sensitivity of chord law with respect to twist

Figure B.2: Sensitivity of the x-coordinates defining the chord law w.r.t twist
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Figure B.3: Sensitivity of the front spar web thickness with respect to twist

Figure B.4: Sensitivity of lower wing thickness distribution with respect to twist
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Figure B.5: Sensitivity of first spar x-coordinate with respect to twist

Figure B.6: Sensitivity of second spar x-coordinate with respect to twist
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Figure B.7: Sensitivity the leading edge mesh points with respect to twist

Figure B.8: Sensitivity of the trailing edge mesh points with respect to twist
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Figure B.9: Sensitivity of thickness to chord ratio with respect to twist twist

Figure B.10: Sensitivity beam node mesh with respect to twist
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Figure B.11: Sensitivity bending constant w.r.t twist parameter
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Figure B.12: Gradient of bending stiffness with resepect to skin thickness
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dJaero
dαgeom

=
∂Jaero
∂X

(
∂X

∂Xrig

dXrig

dαgeom
+
∂X

∂Xb

∂Xb

∂Xsurf

dXsurf
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∂W b
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(B.1)
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Appendix C

Wing design

The design loads are imposed to the structure to predict its behavior to preserve the

integrity and the efficiency of the aircraft during the mission. Far25 specifies two kind

of design loads:

• Limit loads, are the maximum loads that a structure can withstand and remains

in an elastic domain. i.e no permanent deformation of the structure at limit loads

(FAR sec 25.301)

• Ultimate loads, are the limits loads multiplied by a safety factor prescribed by

the FAR25 (1.5 for civil aircraft and 1.20 for military aircraft). The structure

must be able to support ultimate loads without failure for at least 3 seconds

• Limit maneuvering load factor for any speed up to Vne (never exceed speed) must

not be less than 2.5 g and need not be greater than 3.8 g (FAR sec 25.337.b)
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[73] Roux E.,Modèle de Masse Voilure, PhD thesis, ONERA Ecole doctoral de SupAero

2006 21, 49

[74] Salah El Din I., Carrier G., Mouton S., Discrete Adjoint Method in elsA (part

2):Application to Aerodynamic Design Optimisation., 7th ONERA DLR Aerospace

Symposium, ODAS 2006 88

210



[75] Sobieszczanski Sobieski J., Bi Level Integrated System Synthesis, 7th

AIAA,USAF,NASA,ISSMO Symposium on multidisciplinary analysis and optimiza-

tion, St Louis, September 2 4 1998

[76] Sobieszczanski Sobieski J., Structural shape optimization in multidisciplinary sys-

tem synthesis, NASA Technical Memorandum 100538, 1988 12, 71

[77] Sobieszczanski Sobieski J., Sensitivity analysis and multidisciplinary optimization

for aircraft design: Recent advances and result, NASA Technical Memorandum

100630, 1988

[78] Sobieszczanski Sobieski J., Sensitivity of complex, internally coupled systems,

AIAA paper 88 2378

[79] Sobieszczanski Sobieski J., Overcoming the Bellman’s ”Curse of Dimensionality”

in large optimization problems, NASA Technica Memorandum 102662, April 1990

21, 38

[80] Taasan, S., Kuruvila, G., Salas, M.D., Aerodynamic design and optimization in

one shot, AIAA Paper 91 005, 1992

[81] Thevenin D., Janiga G., Optimization and Computational Fluid Dynamics, 2008

Springer Verlag Berlin Heidelberg 27

[82] Van der Vooren, J., and Destarac, D., Drag,Thrust Analysis of Jet Propelled

Transonic Transport Aircraft; Definition of Physical Drag Components, Aerospace

Science and Technology, Vol. 8, No. 6,Sept. 2004, pp. 545–556. doi:10.1016

j.ast.2004.03.004 4

[83] Vanderplaats G.N., Sugimoto H., A general purpose optimization program for en-

gineering design, Computer & Structures, vol.24, 1986 147

[84] Vanderplaats G.N., DOT Users Manual, Version, Vanderplaats Research and De-

velopment, Inc., Colorado Springs, CO, 1995.4.20 15, 149

211



[85] Van der Velden A., Kelm R., Kokan D., Mertens J., Application of MDO to a large

subsonic transport aircraft, AIAA 2000 0844, 200 149

[86] Response Surface Methods for High Dimensional Structural Design Problems, PhD

thesis, University of Florida, 2000 89

[87] Wiart L., Carrier G., Accounting for wing flexibility in the aerodynamic calcula-

tion of transport aircraft using equivalent beam model, AIAA paper 2010 9135,13th

AIAA,ISSMO, 2010

[88] Wervaecke, C., Hybrid stochastic gradient based method for aerodynamic shape

optimization, ONERA Technical Report, RT 2,16642 DAAP, August 2012

[89] G. A. Wrenn, An Indirect Method for Numerical Optmization Using the Kreis-

seilmeir Steinhauser Function, Technical report CR 4220, NASA, 1989 15

[90] Marcelet M., Peter J., Carrier G., Sensitivity analysis of a coupled aero structural

system using direct differentiation and adjoint method, ECCOMAS CFD 2006. 105

[91] Bompard M., Renac F., Peter J., Desideri J. A., Dumont A. Two Dimensional

Aerodynamic Optimization Using the Discrete Adjoint Method with and without

Parameterization, AIAA paper to appear in 2011 8

[92] Brezillon J., Dwight R.P., Wild J., Numerical aerodynamic optimization of 3D

high lift configurations, 26th ICAS Congress

[93] Destarac D., Reneaux J., Transport aircraft aerodynamic improvement by numer-

ical optimization, ICAS Congress, Septembre 9-14, 1990

[94] Martins J. R. R., Poon N.K. On Structural Optimization using Constraint Aggre-

gation, 6th World Congress on Structural and Multidisciplinary Optimization, May

June, Brazil

[95] Herencia1 J.E., Weaver P.M., Friswel M.I., Morphing wing design via aeroelastic

tailoring, AIAA paper 2007 2214,48th AIAA,ISSMO, 2007 94

212



[96] Guo S., Aeroelastic optimization of an aerobatic aircraft wing structure, Aerospace

Science and Technology 11 (2007) 396 404

[97] Maute K., Nikbay M., Farhat C., Sensitivity analaysis and design optimization

of three dimensional non linear aeroelastic system by the adjoint method, Int. J.

Numer. Meth. Engng 2003; 56:911 933

[98] Jansen P.W., Perez R.E., Martins J.A., Aerostructural optimization of nonplanar

lifting surfaces, Journal of Aircraft, Vol. 47, No.5, September October 2010

[99] Carrese R., Winarto H., Watmuff J., Wickramasinghe K., Benefits of Incorporating

Designer Preferences within a multiobjective Airfoil Design Framework, Journal of

Aircraft, Vol. 48, No.3, May June 2011

[100] Wunderlich T. F., Multidisciplinary Wing Design and optimization for transport

aircraft, DLR, September 22, 2008

[101] Schuhmacher G., Murra I., Wang L., Laxander A., Leary O., Herold M., Mul-

tidisciplinary Design Optimization of a Regional Aircraft Wing Box, AIAA paper

2002 5406,9th AIAA,ISSMO, 2002

[102] Nagel B., Kintscher M., Streit T.,Active and passive structural measures for aeroe-

lastic winglet design, 26th International congress of the aeronautical sciences 2008.

[103] Kriz R., A Sailplane Wing Constructed of Foam Core and Polyester fiberGlass

Skin, AIAA paper 74 258,10th AIAA, 1974

[104] Petermeier J., Radtke G., Stohr M., Woodland Aaron, Talahashi T. T., Donovan

S., Shubert M., Emhanced conceptual wing weight estimation through structural

optimization and simulation, AIAA paper 2010 9075,13th AIAA,ISSMO, 2010

[105] Falco S. A., Rocha de Faria A., Optimization of a simple aircraft wing, Worldwide

Aerospace Conference and Technology Showcase,April 8-10 2002

[106] G. A. Wrenn, An indirect method for numerical optmization using the kreis-

seilmeir Steinhauser function, Technical report CR 4220, NASA, 1989

213



[107] Verstraete T., Introduction to optimization and multidisciplinary Design, VKI,

lecture Series 2010 07 93
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