.. Echelle-cellulaire:-modèles-transmembranaires, 60 3.2.1 Modèle de Hodgkin-Huxley et de FitzHugh, p.63

J. Malmivuo and R. Plonsey, Bioelectromagnetism -Principles and Applications of Bioelectric and Biomagnetic Fields New York, 1995.

M. Courtemanche, R. J. Ramirez, and S. Nattel, Ionic mechanisms underlying human atrial action potential properties : insights from a mathematical model, American Journal of Physiology -Heart and Circulatory Physiology, vol.275, issue.1, pp.301-321, 1998.

S. Y. Ho, J. A. Cabrera, V. H. Tran, J. Farré, R. H. Anderson et al., Architecture of the pulmonary veins: relevance to radiofrequency ablation, Heart, vol.86, issue.3, pp.265-270, 2001.
DOI : 10.1136/heart.86.3.265

S. Ho, D. Sanchez-quintana, J. Cabrera, and R. Anderson, Anatomy of the left atrium : implications for radiofrequency ablation of atrial fibrillation, Journal of Cardiovascular Electrophysiology, vol.10, issue.11, pp.1525-1533, 1999.

S. Nattel, New ideas about atrial fibrillation 50 years on, Nature, vol.415, issue.6868, pp.219-226, 2002.
DOI : 10.1038/415219a

U. Schotten, S. Verheule, P. Kirchhof, and A. Goette, Pathophysiological Mechanisms of Atrial Fibrillation: A Translational Appraisal, Physiological Reviews, vol.91, issue.1, pp.265-325, 2011.
DOI : 10.1152/physrev.00031.2009

M. K. Stiles, B. John, C. X. Wong, P. Kuklik, A. G. Brooks et al., Paroxysmal Lone Atrial Fibrillation Is Associated With an Abnormal Atrial Substrate, Journal of the American College of Cardiology, vol.53, issue.14, pp.1182-1191, 2009.
DOI : 10.1016/j.jacc.2008.11.054

M. Haïssaguerre, P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini et al., Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins, New England Journal of Medicine, vol.339, issue.10, pp.659-666, 1998.
DOI : 10.1056/NEJM199809033391003

H. Calkins, J. Brugada, D. L. Packer, R. Cappato, S. A. Chen et al., HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: Recommendations for Personnel, Policy, Procedures and Follow-Up: A report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation Developed in partnership with the European Heart Rhythm Association (EHRA) and the European Cardiac Arrhythmia Society (ECAS); in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), and the Society of Thoracic Surgeons (STS). Endorsed and Approved by the governing bodies of the American College of Cardiology, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, and the Heart Rhythm Society., american heart association (aha), and the society of thoracic surgeons (sts). endorsed and approved by the governing bodies of the american college of cardiology, the american heart association, the european cardiac arrhythmia society, the european heart rhythm association, the society of thoracic surgeons, and the heart rhythm society, pp.335-379, 2007.
DOI : 10.1093/europace/eum120

M. Hocini, S. Y. Ho, T. Kawara, A. C. Linnenbank, M. Potse et al., Electrical Conduction in Canine Pulmonary Veins: Electrophysiological and Anatomic Correlation, Circulation, vol.105, issue.20, pp.2442-2448, 2002.
DOI : 10.1161/01.CIR.0000016062.80020.11

P. Jaïs, M. Hocini, L. Macle, K. J. Choi, I. Deisenhofer et al., Distinctive electrophysiological properties of pulmonary veins in patients with atrial fibrillation, ACC Current Journal Review, vol.12, issue.2, pp.2479-2485, 2002.
DOI : 10.1016/S1062-1458(03)00086-2

M. Haïssaguerre, P. Jaïs, D. C. Shah, S. Garrigue, A. Takahashi et al., Electrophysiological End Point for Catheter Ablation of Atrial Fibrillation Initiated From Multiple Pulmonary Venous Foci, Circulation, vol.101, issue.12, pp.1409-1417, 2000.
DOI : 10.1161/01.CIR.101.12.1409

M. Haïssaguerre, D. C. Shah, P. Jaïs, M. Hocini, T. Yamane et al., Electrophysiological Breakthroughs From the Left Atrium to the Pulmonary Veins, Circulation, vol.102, issue.20, pp.2463-2465, 2000.
DOI : 10.1161/01.CIR.102.20.2463

M. Haissaguerre, K. T. Lim, V. Jacquemet, M. Rotter, L. Dang et al., Atrial fibrillatory cycle length: computer simulation and potential clinical importance, Europace, vol.9, issue.Supplement 6, pp.64-70, 2007.
DOI : 10.1093/europace/eum208

URL : http://europace.oxfordjournals.org/cgi/content/short/9/suppl_6/vi64

O. Dössel, M. Krueger, F. Weber, M. Wilhelms, and G. Seemann, Computational modeling of the human atrial anatomy and electrophysiology, Medical & Biological Engineering & Computing, vol.20, issue.(Suppl 6, pp.773-799, 2012.
DOI : 10.1007/s11517-012-0924-6

S. Y. Ho, R. H. Anderson, and D. Sánchez-quintana, Atrial structure and fibres: morphologic bases of atrial conduction, Cardiovascular Research, vol.54, issue.2, pp.325-336, 2002.
DOI : 10.1016/S0008-6363(02)00226-2

F. J. Vetter, S. B. Simons, S. Mironov, C. J. Hyatt, and A. M. Pertsov, Epicardial Fiber Organization in Swine Right Ventricle and Its Impact on Propagation, Circulation Research, vol.96, issue.2, pp.244-251, 2005.
DOI : 10.1161/01.RES.0000153979.71859.e7

J. Eckstein, B. Maesen, D. Linz, S. Zeemering, A. Van-hunnik et al., Time course and mechanisms of endo-epicardial electrical dissociation during atrial fibrillation in the goat, Cardiovascular Research, vol.89, issue.4, pp.816-824, 2011.
DOI : 10.1093/cvr/cvq336

P. Hand and C. Peskin, Homogenization of an Electrophysiological Model for??a??Strand of Cardiac Myocytes with Gap-Junctional and??Electric-Field Coupling, Bulletin of Mathematical Biology, vol.21, issue.8, pp.1408-1424, 1007.
DOI : 10.1007/s11538-009-9499-2

J. Zhao, T. D. Butters, H. Zhang, A. J. Pullan, I. J. Legrice et al., An Image-Based Model of Atrial Muscular Architecture: Effects of Structural Anisotropy on Electrical Activation, Circulation: Arrhythmia and Electrophysiology, vol.5, issue.2, pp.361-370, 2012.
DOI : 10.1161/CIRCEP.111.967950

O. V. Aslanidi, M. A. Colman, M. Varela, J. Zhao, B. H. Smaill et al., Heterogeneous and anisotropic integrative model of pulmonary veins: computational study of arrhythmogenic substrate for atrial fibrillation, Interface Focus, vol.94, issue.1, 2013.
DOI : 10.1093/cvr/cvr357

C. W. Zemlin, B. G. Mitrea, and A. M. Pertsov, Spontaneous onset of atrial fibrillation, Nonlinear Waves in Excitable Media : Approaches to Cardiac Arrhythmias, International Workshop on Non-Linear Dynamics in Excitable Media, pp.11-12, 2009.
DOI : 10.1016/j.physd.2008.12.004

J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K. A. Mardal et al., Computing the Electrical Activity in the Heart, pp.10-1007, 2006.

J. Keener and J. Sneyd, Mathematical Physiology. I : Cellular Physiology, 2009.

J. Keener and J. Sneyd, Mathematical Physiology. II : Systems Physiology, 2009.

S. Y. Ho and A. E. Becker, Anatomy of electrophysiology. the Heart, Hurst's 12th edition pp, pp.898-912, 2008.

K. Wang, S. Y. Ho, D. G. Gibson, and R. H. Anderson, Architecture of atrial musculature in humans., Heart, vol.73, issue.6, pp.559-565, 1995.
DOI : 10.1136/hrt.73.6.559

J. A. Cabrera, S. Y. Ho, V. Climent, and D. Sánchez-quintana, The architecture of the left lateral atrial wall: a particular anatomic region with implications for ablation of atrial fibrillation, European Heart Journal, vol.29, issue.3, pp.356-362, 2008.
DOI : 10.1093/eurheartj/ehm606

T. Saito, K. Waki, and A. E. Becker, Left Atrial Myocardial Extension onto Pulmonary Veins in Humans:., Journal of Cardiovascular Electrophysiology, vol.94, issue.8, pp.888-894, 2000.
DOI : 10.1002/jemt.1070300607

P. G. Platonov, L. B. Mitrofanova, V. Orshanskaya, and S. Y. Ho, Structural Abnormalities in Atrial Walls Are Associated With Presence and Persistency of Atrial Fibrillation But Not With Age, Journal of the American College of Cardiology, vol.58, issue.21, pp.2225-2232, 2011.
DOI : 10.1016/j.jacc.2011.05.061

S. Labarthe, Y. Coudière, J. Henry, and H. Cochet, A semi-automatic method to construct atrial fibre structures : a tool for atrial simulations, CinC 2012 -Computing in Cardiology, pp.881-884, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00759191

M. Krueger, G. Seemann, K. Rhode, D. U. Keller, C. Schilling et al., Personalization of Atrial Anatomy and Electrophysiology as a Basis for Clinical Modeling of Radio-Frequency Ablation of Atrial Fibrillation, IEEE Transactions on Medical Imaging, vol.32, issue.1, pp.73-84, 2013.
DOI : 10.1109/TMI.2012.2201948

P. S. Jouk, A. Mourad, V. Milisic, G. Michalowicz, A. Raoult et al., Analysis of the fiber architecture of the heart by quantitative polarized light microscopy. Accuracy, limitations and contribution to the study of the fiber architecture of the ventricles during fetal and neonatal life???, European Journal of Cardio-Thoracic Surgery, vol.31, issue.5, pp.915-921, 2007.
DOI : 10.1016/j.ejcts.2006.12.040

URL : https://hal.archives-ouvertes.fr/hal-00188892

N. Toussaint, M. Sermesant, C. Stoeck, S. Kozerke, and P. Batchelor, In vivo Human 3D Cardiac Fibre Architecture: Reconstruction Using Curvilinear Interpolation of Diffusion Tensor Images, Medical Image Computing and Computer-Assisted Intervention ? MICCAI 2010, pp.418-425, 2010.
DOI : 10.1007/978-3-642-15705-9_51

URL : https://hal.archives-ouvertes.fr/inria-00616159

P. C. Franzone, L. Guerri, M. Pennacchio, and B. Taccardi, Spread of excitation in 3-D models of the anisotropic cardiac tissue. II. Effects of fiber architecture and ventricular geometry, Mathematical Biosciences, vol.147, issue.2, pp.131-171, 1998.
DOI : 10.1016/S0025-5564(97)00093-X

S. , S. I. Nitta, T. Ishii, Y. Miyagi, Y. Ohmori et al., Interatrial electrical connections : The precise location and preferential conduction, Journal of Cardiovascular Electrophysiology, vol.16, issue.10, pp.1077-1086, 2005.

A. Y. Tan, H. Li, S. Wachsmann-hogiu, L. S. Chen, P. S. Chen et al., Autonomic Innervation and Segmental Muscular Disconnections at the Human Pulmonary Vein-Atrial Junction, Journal of the American College of Cardiology, vol.48, issue.1, pp.132-143, 2006.
DOI : 10.1016/j.jacc.2006.02.054

S. Verheule, E. E. Wilson, R. Arora, S. K. Engle, L. R. Scott et al., Tissue structure and connexin expression of canine pulmonary veins, Cardiovascular Research, vol.55, issue.4, pp.727-738, 2002.
DOI : 10.1016/S0008-6363(02)00490-X

J. P. Boineau, T. E. Canavan, R. B. Schuessler, M. E. Cain, P. B. Corr et al., Demonstration of a widely distributed atrial pacemaker complex in the human heart, Circulation, vol.77, issue.6, pp.1221-1258, 1988.
DOI : 10.1161/01.CIR.77.6.1221

T. E. Canavan, R. B. Schuessler, J. P. Boineau, P. B. Corr, M. E. Cain et al., Computerized Global Electrophysiological Mapping of the Atrium in Patients with Wolft-Parkinson-White Syndrome, The Annals of Thoracic Surgery, vol.46, issue.2, pp.223-231, 1988.
DOI : 10.1016/S0003-4975(10)65903-6

V. Markides, R. J. Schilling, Y. Ho, S. Chow, A. W. Davies et al., Characterization of Left Atrial Activation in the Intact Human Heart, Circulation, vol.107, issue.5, pp.733-739, 2003.
DOI : 10.1161/01.CIR.0000048140.31785.02

N. Shibata, S. Inada, K. Mitsui, H. Honjo, M. Yamamoto et al., Pacemaker Shift in the Rabbit Sinoatrial Node in Response to Vagal Nerve Stimulation, Experimental Physiology, vol.86, issue.2, pp.177-184, 2001.
DOI : 10.1113/eph8602100

H. Dobrzynski, J. Li, J. Tellez, I. Greener, V. Nikolski et al., Computer Three-Dimensional Reconstruction of the Sinoatrial Node, Circulation, vol.111, issue.7, pp.846-854, 2005.
DOI : 10.1161/01.CIR.0000152100.04087.DB

V. V. Fedorov, R. B. Schuessler, M. Hemphill, C. M. Ambrosi, R. Chang et al., Structural and Functional Evidence for Discrete Exit Pathways That Connect the Canine Sinoatrial Node and Atria, Circulation Research, vol.104, issue.7, pp.915-923, 2009.
DOI : 10.1161/CIRCRESAHA.108.193193

O. Aslanidi, T. Butters, C. Ren, G. Ryecroft, and H. Zhang, Electrophysiological models for the heterogeneous canine atria: Computational platform for studying rapid atrial arrhythmias, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.1693-1696, 2011.
DOI : 10.1109/IEMBS.2011.6090486

D. Li, L. Zhang, J. Kneller, and S. Nattel, Potential Ionic Mechanism for Repolarization Differences Between Canine Right and Left Atrium, Circulation Research, vol.88, issue.11, pp.1168-1175, 2001.
DOI : 10.1161/hh1101.091266

J. Feng, L. Yue, Z. Wang, and S. Nattel, Ionic Mechanisms of Regional Action Potential Heterogeneity in the Canine Right Atrium, Circulation Research, vol.83, issue.5, pp.541-551, 1998.
DOI : 10.1161/01.RES.83.5.541

R. J. Ramirez, S. Nattel, and M. Courtemanche, Mathematical analysis of canine atrial action potentials : rate, regional factors, and electrical remodeling, American Journal of Physiology -Heart and Circulatory Physiology, vol.279, issue.4, pp.1767-1785, 2000.

A. Hansson, M. Holm, P. Blomström, R. Johansson, C. Lührs et al., Right atrial free wall conduction velocity and degree of anisotropy in patients with stable sinus rhythm studied during open heart surgery, European Heart Journal, vol.19, issue.2, pp.293-3000742, 1997.
DOI : 10.1053/euhj.1997.0742

K. Derakhchan, D. Li, M. Courtemanche, . Smith, J. Brouillette et al., Method for Simultaneous Epicardial and Endocardial Mapping of In Vivo Canine Heart: Application to Atrial Conduction Properties and Arrhythmia Mechanisms, Journal of Cardiovascular Electrophysiology, vol.12, issue.5, pp.548-555, 2001.
DOI : 10.1046/j.1540-8167.2001.00548.x

Y. Michowitz, S. Nakahara, T. Bourke, E. Buch, M. Vaseghi et al., Electrophysiological Differences between the Epicardium and the Endocardium of the Left Atrium, Pacing and Clinical Electrophysiology, vol.20, issue.1, pp.37-46, 2011.
DOI : 10.1111/j.1540-8159.2010.02892.x

M. Yamazaki, S. Mironov, C. Taravant, J. Brec, L. M. Vaquero et al., Heterogeneous atrial wall thickness and stretch promote scroll waves anchoring during atrial fibrillation, Cardiovascular Research, vol.94, issue.1, pp.48-57, 2012.
DOI : 10.1093/cvr/cvr357

J. R. Ehrlich, T. J. Cha, L. Zhang, D. Chartier, P. Melnyk et al., Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties, The Journal of Physiology, vol.551, issue.3, pp.801-813, 2003.
DOI : 10.1113/jphysiol.2003.046417

S. S. Po, Y. Li, D. Tang, H. Liu, N. Geng et al., Rapid and Stable Re-Entry Within the Pulmonary Vein as a Mechanism Initiating Paroxysmal Atrial Fibrillation, Journal of the American College of Cardiology, vol.45, issue.11, pp.1871-1877, 2005.
DOI : 10.1016/j.jacc.2005.02.070

R. Arora, S. Verheule, L. Scott, A. Navarrete, V. Katari et al., Arrhythmogenic Substrate of the Pulmonary Veins Assessed by High-Resolution Optical Mapping, Circulation, vol.107, issue.13, pp.1816-1821, 2003.
DOI : 10.1161/01.CIR.0000058461.86339.7E

P. Melnyk, J. R. Ehrlich, M. Pourrier, L. Villeneuve, T. J. Cha et al., Comparison of ion channel distribution and expression in cardiomyocytes of canine pulmonary veins versus left atrium, Cardiovascular Research, vol.65, issue.1, pp.104-116, 2005.
DOI : 10.1016/j.cardiores.2004.08.014

K. Kumagai, M. Ogawa, H. Noguchi, T. Yasuda, H. Nakashima et al., Electrophysiologic properties of pulmonary veins assessed using a multielectrode basket catheter, Journal of the American College of Cardiology, vol.43, issue.12, pp.2281-2289, 2004.
DOI : 10.1016/j.jacc.2004.01.051

S. A. Chen, M. H. Hsieh, C. T. Tai, C. F. Tsai, V. S. Prakash et al., Initiation of Atrial Fibrillation by Ectopic Beats Originating From the Pulmonary Veins : Electrophysiological Characteristics, Pharmacological Responses, and Effects of Radiofrequency Ablation, Circulation, vol.100, issue.18, pp.1879-1886, 1999.
DOI : 10.1161/01.CIR.100.18.1879

A. V. Panfilov, Is heart size a factor in ventricular fibrillation? Or how close are rabbit and human hearts?, Heart Rhythm, vol.3, issue.7, pp.862-864, 2006.
DOI : 10.1016/j.hrthm.2005.12.022

S. M. Narayan, D. Kazi, D. E. Krummen, and W. J. Rappel, Repolarization and Activation Restitution Near Human Pulmonary Veins and Atrial Fibrillation Initiation, Journal of the American College of Cardiology, vol.52, issue.15, pp.1222-1230, 2008.
DOI : 10.1016/j.jacc.2008.07.012

URL : http://doi.org/10.1016/j.jacc.2008.07.012

M. Hirose and K. R. Laurita, Calcium-mediated triggered activity is an underlying cellular mechanism of ectopy originating from the pulmonary vein in dogs, AJP: Heart and Circulatory Physiology, vol.292, issue.4, pp.1861-1867, 2006.
DOI : 10.1152/ajpheart.00826.2006

V. Maupoil, C. Bronquard, J. L. Freslon, P. Cosnay, and I. Findlay, -adrenoceptors, British Journal of Pharmacology, vol.64, issue.7, pp.899-905, 2007.
DOI : 10.1038/sj.bjp.0707177

URL : https://hal.archives-ouvertes.fr/hal-01406808

N. Doisne, V. Maupoil, P. Cosnay, and I. Findlay, Catecholaminergic automatic activity in the rat pulmonary vein: electrophysiological differences between cardiac muscle in the left atrium and pulmonary vein, AJP: Heart and Circulatory Physiology, vol.297, issue.1, pp.102-108, 2009.
DOI : 10.1152/ajpheart.00256.2009

URL : https://hal.archives-ouvertes.fr/hal-01077138

C. , J. A. Sánchez-quintana, D. Farré, J. Rubio, J. M. Ho et al., The inferior right atrial isthmus : Further architectural insights for current and coming ablation technologies, Journal of Cardiovascular Electrophysiology, vol.16, issue.4, pp.402-408, 2005.

F. H. Wittkampf, M. F. Van-oosterhout, P. Loh, R. Derksen, E. J. Vonken et al., Where to draw the mitral isthmus line in catheter ablation of atrial fibrillation: histological analysis, European Heart Journal, vol.26, issue.7, pp.689-695, 2005.
DOI : 10.1093/eurheartj/ehi095

M. A. Allessie, P. A. Boyden, A. J. Camm, A. G. Kléber, M. J. Lab et al., Pathophysiology and Prevention of Atrial Fibrillation, Circulation, vol.103, issue.5, pp.769-777, 2001.
DOI : 10.1161/01.CIR.103.5.769

J. Eckstein and U. Schotten, Rotors and breakthroughs as three-dimensional perpetuators of atrial fibrillation, Cardiovascular Research, vol.94, issue.1, 2012.
DOI : 10.1093/cvr/cvs093

D. Corradi, S. Callegari, S. Benussi, R. Maestri, P. Pastori et al., Myocyte changes and their left atrial distribution in patients with chronic atrial fibrillation related to mitral valve disease, Human Pathology, vol.36, issue.10, pp.1080-1089, 2005.
DOI : 10.1016/j.humpath.2005.07.018

S. Kostin, G. Klein, Z. Szalay, S. Hein, E. P. Bauer et al., Structural correlate of atrial fibrillation in human patients, Cardiovascular Research, vol.54, issue.2, pp.361-379, 2002.
DOI : 10.1016/S0008-6363(02)00273-0

M. Courtemanche, R. J. Ramirez, and S. Nattel, Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: insights from a mathematical model, Cardiovascular Research, vol.42, issue.2, pp.477-489, 1999.
DOI : 10.1016/S0008-6363(99)00034-6

D. Noble, The development of mathematical models of the heart DOI http, Chaos, Solitons & Fractals, vol.534, pp.321-333, 1995.

D. Noble, Modelling the heart: insights, failures and progress, BioEssays, vol.7, issue.12, pp.1155-1163, 2002.
DOI : 10.1002/bies.10186

R. Wilders, Computer modelling of the sinoatrial node, Medical & Biological Engineering & Computing, vol.279, issue.2, pp.189-207, 2007.
DOI : 10.1007/s11517-006-0127-0

C. M. Lloyd, J. R. Lawson, P. J. Hunter, and P. F. Nielsen, The CellML Model Repository, Bioinformatics, vol.24, issue.18, pp.2122-2123, 2008.
DOI : 10.1093/bioinformatics/btn390

G. W. Beeler and H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres, The Journal of Physiology, vol.268, issue.1, pp.177-210, 1977.
DOI : 10.1113/jphysiol.1977.sp011853

C. Luo and Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction, Circulation Research, vol.68, issue.6, pp.1501-1526, 1991.
DOI : 10.1161/01.RES.68.6.1501

C. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circulation Research, vol.74, issue.6, pp.1071-1096, 1994.
DOI : 10.1161/01.RES.74.6.1071

K. H. Ten-tusscher, D. Noble, P. J. Noble, and A. V. Panfilov, A model for human ventricular tissue, AJP: Heart and Circulatory Physiology, vol.286, issue.4, pp.1573-1589, 2003.
DOI : 10.1152/ajpheart.00794.2003

J. Rogers and A. D. Mcculloch, A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE Transactions on Biomedical Engineering, vol.41, issue.8, pp.743-757, 1994.
DOI : 10.1109/10.310090

A. Nygren, C. Fiset, L. Firek, J. W. Clark, D. S. Lindblad et al., Mathematical Model of an Adult Human Atrial Cell : The Role of K+ Currents in Repolarization, Circulation Research, vol.82, issue.1, pp.63-81, 1998.
DOI : 10.1161/01.RES.82.1.63

H. Zhang, A. V. Holden, I. Kodama, H. Honjo, M. Lei et al., Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node, American Journal of Physiology -Heart and Circulatory Physiology, vol.279, issue.1, pp.397-421, 2000.

D. Noble and S. J. Noble, A Model of Sino-Atrial Node Electrical Activity Based on a Modification of the DiFrancesco--Noble (1984) Equations, Proceedings of the Royal Society of London. Series B, pp.295-304, 1228.
DOI : 10.1098/rspb.1984.0065

S. S. Demir, J. W. Clark, C. R. Murphey, and W. R. Giles, A mathematical model of a rabbit sinoatrial node cell, American Journal of Physiology -Cell Physiology, vol.266, issue.3, pp.832-852, 1994.

R. Fitzhugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophysical Journal, vol.1, issue.6, pp.445-466, 1961.
DOI : 10.1016/S0006-3495(61)86902-6

J. Nagumo, S. Arimoto, and S. Yoshizawa, An Active Pulse Transmission Line Simulating Nerve Axon, Proceedings of the IRE, pp.2061-2070, 1962.
DOI : 10.1109/JRPROC.1962.288235

R. Aliev and E. V. Panfilov, A simple two-variable model of cardiac excitation, Chaos, Solitons & Fractals, vol.7, issue.3, 1996.
DOI : 10.1016/0960-0779(95)00089-5

C. C. Mitchell and D. G. Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin of Mathematical Biology, vol.65, issue.5, pp.767-793, 1016.
DOI : 10.1016/S0092-8240(03)00041-7

M. Rioux, Numerical computations of action potentials for the heart-torso coupling problem, 2012.

K. Djabella, Modelisation de l'activite electrique du coeur et de sa regulation par le systeme nerveux autonome, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00335673

O. Bernus, R. Wilders, C. W. Zemlin, H. Verschelde, and A. V. Panfilov, A computationally efficient electrophysiological model of human ventricular cells, American Journal of Physiology - Heart and Circulatory Physiology, vol.282, issue.6, pp.2296-2308, 2001.
DOI : 10.1152/ajpheart.00731.2001

E. M. Cherry and S. J. Evans, Properties of two human atrial cell models in tissue: Restitution, memory, propagation, and reentry, Journal of Theoretical Biology, vol.254, issue.3, pp.674-690, 2008.
DOI : 10.1016/j.jtbi.2008.06.030

M. Wilhelms, H. Hettmann, M. M. Maleckar, J. T. Koivumäki, O. Dössel et al., Benchmarking electrophysiological models of human atrial myocytes, Frontiers in Physiology, vol.3, issue.487, 2013.
DOI : 10.3389/fphys.2012.00487

V. Jacquemet, Steady-state solutions in mathematical models of atrial cell electrophysiology and their stability, Mathematical Biosciences, vol.208, issue.1, pp.241-269, 2007.
DOI : 10.1016/j.mbs.2006.10.007

M. M. Maleckar, J. L. Greenstein, N. A. Trayanova, and W. R. Giles, Mathematical simulations of ligand-gated and cell-type specific effects on the action potential of human atrium, Progress in Biophysics and Molecular Biology, vol.98, issue.2-3, pp.161-170, 2008.
DOI : 10.1016/j.pbiomolbio.2009.01.010

J. T. Koivumäki, T. Korhonen, and P. Tavi, Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study, e1001, p.67, 2011.
DOI : 10.1371/journal.pcbi.1001067.s008

E. Grandi, S. V. Pandit, N. Voigt, A. J. Workman, D. Dobrev et al., Human Atrial Action Potential and Ca2+ Model: Sinus Rhythm and Chronic Atrial Fibrillation, Circulation Research, vol.109, issue.9, pp.1055-1066, 2011.
DOI : 10.1161/CIRCRESAHA.111.253955

L. Tung, A bi-domain model for describing ischemic myocardial d-c potentials, p.MIT, 1978.

W. Krassowska and J. Neu, Homogenization of syncytial tissues, CRC Crit. Rev. Biomed. Eng, vol.21, issue.2, pp.137-199, 1993.

F. Jauberteau and C. Pierre, Modélisation et simulation de l'activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis, 2005.

P. Hand, B. Griffith, and C. Peskin, Deriving Macroscopic Myocardial Conductivities by??Homogenization of Microscopic Models, Bulletin of Mathematical Biology, vol.93, issue.3, pp.1707-1726, 1007.
DOI : 10.1007/s11538-009-9421-y

M. Pennacchio, G. Savaré, and P. Franzone, Multiscale Modeling for the Bioelectric Activity of the Heart, SIAM Journal on Mathematical Analysis, vol.37, issue.4, pp.1333-1370, 2005.
DOI : 10.1137/040615249

A. , M. Andreucci, D. Gianni, R. Bisegna, and P. , Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues DOI 10, Mathematical Models and Methods in Applied Sciences, vol.14, issue.09, pp.1261-1295, 1142.

P. C. Franzone and G. Savare, Degenerate Evolution Systems Modeling the Cardiac Electric Field at Micro- and Macroscopic Level
DOI : 10.1007/978-3-0348-8221-7_4

M. Potse, B. Dube, J. Richer, A. Vinet, and R. Gulrajani, A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart, IEEE Transactions on Biomedical Engineering, vol.53, issue.12, pp.2425-2435880875, 2006.
DOI : 10.1109/TBME.2006.880875

J. C. Clements, J. Nenonen, P. K. Li, and B. M. Horacek, Activation Dynamics in Anisotropic Cardiac Tissue via Decoupling, Annals of Biomedical Engineering, vol.32, issue.7, pp.984-990, 2004.
DOI : 10.1023/B:ABME.0000032461.80932.eb

P. C. Franzone, L. F. Pavarino, and B. Taccardi, Monodomain Simulations of Excitation and Recovery in Cardiac Blocks with Intramural Heterogeneity, Lecture Notes in Computer Science, vol.3504, issue.10, pp.267-27711494621, 1007.
DOI : 10.1007/11494621_27

N. Zemzemi, S. Labarthe, R. Dubois, and Y. Coudiere, From body surface potential to activation maps on the atria : A machine learning technique, In : Computing in CardiologyCinC), pp.125-128, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00759210

M. Chhay, Y. Coudière, and R. Turpault, How to compute the extracellular potential in electrocardiology from an extended monodomain model, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00683386

Y. Coudière and M. Rioux, Virtual electrodes mechanisms predictions with a current-lifted monodomain model, Computing in Cardiology IHU Liryc : Investissements d'Avenir, pp.837-840, 2012.

C. W. Zemlin and A. V. Panfilov, Spiral waves in excitable media with negative restitution, Physical Review E, vol.63, issue.4, p.912, 2001.
DOI : 10.1103/PhysRevE.63.041912

M. Krueger, W. Schulze, K. Rhode, R. Razavi, G. Seemann et al., Towards personalized clinical in-silico modeling of atrial anatomy and electrophysiology, Medical & Biological Engineering & Computing, vol.5, issue.7, pp.1-10, 2012.
DOI : 10.1007/s11517-012-0970-0

C. Franzone, P. Guerri, L. Rovida, and S. , Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations, Journal of Mathematical Biology, vol.25, issue.4, pp.121-176, 1007.
DOI : 10.1007/BF00163143

J. P. Keener, An eikonal-curvature equation for action potential propagation in myocardium, Journal of Mathematical Biology, vol.30, issue.7, pp.629-651, 1007.
DOI : 10.1007/BF00163916

K. Tomlinson, P. Hunter, and A. Pullan, The eikonal equation approach to modelling excitation wavefront propagation

M. Bendahmane and K. H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Networks and Heterogeneous Media, vol.1, issue.1, pp.185-218, 2006.
DOI : 10.3934/nhm.2006.1.185

M. Boulakia, M. Á. Fernández, J. F. Gerbeau, and N. Zemzemi, A coupled system of pdes and odes arising in electrocardiograms modelling, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00701786

Y. Bourgault, Y. Coudière, and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Analysis: Real World Applications, vol.10, issue.1, pp.458-482, 2009.
DOI : 10.1016/j.nonrwa.2007.10.007

URL : https://hal.archives-ouvertes.fr/hal-00101458

G. T. Lines, P. Grottum, and A. Tveito, Modeling the electrical activity of the heart: A Bidomain Model of the ventricles embedded in a torso, Computing and Visualization in Science, vol.5, issue.4, pp.195-213, 2003.
DOI : 10.1007/s00791-003-0100-5

E. Vigmond, R. W. Dos-santos, A. Prassl, M. Deo, and G. Plank, Solvers for the cardiac bidomain equations, Progress in Biophysics and Molecular Biology, vol.96, issue.1-3, pp.1-3, 2008.
DOI : 10.1016/j.pbiomolbio.2007.07.012

R. Turpault, Modélisation, analyse numérique et simulations de phénomènes complexes pour des systèmes hyperboliques de lois de conservation avec termes sources raides et en électrocardiologie. Mémoire d'habilitation à diriger des recherches de l, 2012.

S. R. Kuo and N. A. Trayanova, Action potential morphology heterogeneity in the atrium and its effect on atrial reentry: a two-dimensional and quasi-three-dimensional study, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.92, issue.10, pp.1349-1366, 1843.
DOI : 10.1046/j.1460-9592.2002.00132.x

A. V. Panfilov, R. H. Keldermann, and M. P. Nash, Drift and breakup of spiral waves in reaction diffusion mechanics systems, Proceedings of the National Academy of Sciences, vol.104, issue.19, pp.7922-7926, 2007.
DOI : 10.1073/pnas.0701895104

T. J. Wu, M. Yashima, F. Xie, C. A. Athill, Y. H. Kim et al., Role of Pectinate Muscle Bundles in the Generation and Maintenance of Intra-atrial Reentry : Potential Implications for the Mechanism of Conversion Between Atrial Fibrillation and Atrial Flutter, Circulation Research, vol.83, issue.4, pp.448-462, 1998.
DOI : 10.1161/01.RES.83.4.448

V. Jacquemet, A. Van-oosterom, J. Vesin, and L. Kappenberger, Analysis of electrocardiograms during atrial fibrillation, IEEE Engineering in Medicine and Biology Magazine, vol.25, issue.6, pp.79-88, 2006.
DOI : 10.1109/EMB-M.2006.250511

J. Zhao, Y. Jin, L. Ma, and R. M. Corless, A highly efficient and accurate algorithm for solving the partial differential equation in cardiac tissue models, WSEAS Transactions on Biology and Biomedicine, vol.3, issue.2, p.63, 2006.

M. Bendahmane and K. H. Karlsen, Convergence of a finite volume scheme for the bidomain model of cardiac tissue, title>Second Chilean Workshop on Numerical Analysis of Partial Differential Equations, pp.2266-2284, 2007.
DOI : 10.1016/j.apnum.2008.12.016

Y. Coudière and C. Pierre, Stability and convergence of a finite volume method for two systems of reaction-diffusion equations in electro-cardiology, Nonlinear Analysis: Real World Applications, vol.7, issue.4, pp.916-935, 2006.
DOI : 10.1016/j.nonrwa.2005.02.006

M. Bendahmane, R. Bürger, and R. Ruiz-baier, A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology, Numerical Methods for Partial Differential Equations, vol.21, issue.6, pp.1377-1404, 2010.
DOI : 10.1002/num.20495

M. Ethier and Y. Bourgault, Semi-Implicit Time-Discretization Schemes for the Bidomain Model, SIAM Journal on Numerical Analysis, vol.46, issue.5, pp.2443-2468, 2008.
DOI : 10.1137/070680503

M. Boulakia, S. Cazeau, M. Fernández, J. F. Gerbeau, and N. Zemzemi, Mathematical Modeling of Electrocardiograms: A Numerical Study, Annals of Biomedical Engineering, vol.98, issue.1???3, pp.1071-1097, 2010.
DOI : 10.1007/s10439-009-9873-0

URL : https://hal.archives-ouvertes.fr/inria-00400490

N. Zemzemi, Étude théorique et numérique de l'activité électrique du coeur : Applications aux électrocardiogrammes, 2009.

S. Rush and H. Larsen, A Practical Algorithm for Solving Dynamic Membrane Equations, IEEE Transactions on Biomedical Engineering, vol.25, issue.4, pp.389-392326270, 1978.
DOI : 10.1109/TBME.1978.326270

M. Perego and A. Veneziani, An efficient generalization of the rush?larsen method for solving electro-physiology membrane equations, ETNA. Electronic Transactions on Numerical Analysis, vol.35, pp.234-256, 2009.

M. Hanslien, J. Sundnes, and A. Tveito, An unconditionally stable numerical method for the Luo???Rudy 1 model used in simulations of defibrillation, Mathematical Biosciences, vol.208, issue.2, pp.375-392, 2007.
DOI : 10.1016/j.mbs.2006.09.006

G. Plank, M. Liebmann, R. W. Dos-santos, E. Vigmond, and G. Haase, Algebraic Multigrid Preconditioner for the Cardiac Bidomain Model, IEEE Transactions on Biomedical Engineering, vol.54, issue.4, pp.585-596889181, 2006.
DOI : 10.1109/TBME.2006.889181

L. Gerardo-giorda, L. Mirabella, F. Nobile, M. Perego, and A. Veneziani, A model-based block-triangular preconditioner for the Bidomain system in electrocardiology, Journal of Computational Physics, vol.228, issue.10, pp.3625-3639, 2009.
DOI : 10.1016/j.jcp.2009.01.034

C. Pierre, Preconditioning the bidomain model with almost linear complexity, Journal of Computational Physics, vol.231, issue.1, pp.82-97, 2012.
DOI : 10.1016/j.jcp.2011.08.025

URL : https://hal.archives-ouvertes.fr/hal-00525976

Z. Qu, F. Xie, A. Garfinkel, and J. Weiss, Origins of Spiral Wave Meander and Breakup in a Two-Dimensional Cardiac Tissue Model, Annals of Biomedical Engineering, vol.28, issue.7, pp.755-771, 2000.
DOI : 10.1114/1.1289474

K. H. Ten-tusscher and A. V. Panfilov, Alternans and spiral breakup in a human ventricular tissue model, AJP: Heart and Circulatory Physiology, vol.291, issue.3, pp.1088-1100, 2006.
DOI : 10.1152/ajpheart.00109.2006

V. N. Biktashev, I. V. Biktasheva, and N. A. Sarvazyan, Evolution of Spiral and Scroll Waves of Excitation in a Mathematical Model of Ischaemic Border Zone, PLoS ONE, vol.21, issue.9, p.388, 2011.
DOI : 10.1371/journal.pone.0024388.s003

Z. , J. Trew, M. L. Legrice, I. J. Smaill, B. H. Pullan et al., A tissue-specific model of reentry in the right atrial appendage, Journal of Cardiovascular Electrophysiology, vol.20, issue.6, pp.675-684, 2009.

A. Collin, J. F. Gerbeau, M. Hocini, M. Haïssaguerre, and D. Chapelle, Surface-Based Electrophysiology Modeling and Assessment of Physiological Simulations in Atria, FIMH -7th International Conference on Functional Imaging and Modeling of the Heart, pp.352-359978, 2013.
DOI : 10.1007/978-3-642-38899-6_42

URL : https://hal.archives-ouvertes.fr/hal-00815974

T. Krogh-madsen, G. W. Abbott, and D. J. Christini, Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study, e1002, p.390, 2012.
DOI : 10.1371/journal.pcbi.1002390.s006

M. W. Krueger, V. Schmidt, C. Tobón, F. M. Weber, C. Lorenz et al., Modeling Atrial Fiber Orientation in Patient-Specific Geometries: A Semi-automatic Rule-Based Approach, pp.223-232, 2011.
DOI : 10.1053/euhj.1997.0742

G. Seemann, C. Höper, F. B. Sachse, O. Dössel, A. V. Holden et al., Heterogeneous three-dimensional anatomical and electrophysiological model of human atria, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.66, issue.3, pp.1465-14811781, 1843.
DOI : 10.1016/j.cardiores.2005.01.020

D. M. Harrild and C. S. Henriquez, A computer model of normal conduction in the human atria, Circ Res, vol.87, issue.7, pp.25-36, 2000.

V. Jacquemet and C. S. Henriquez, Genesis of complex fractionated atrial electrograms in zones of slow conduction: A computer model of microfibrosis, Heart Rhythm, vol.6, issue.6, 2009.
DOI : 10.1016/j.hrthm.2009.02.026

C. M. Costa, F. O. Campos, A. J. Prassl, R. W. Dos-santos, D. Sanchez-quintana et al., A finite element approach for modeling micro-structural discontinuities in the heart, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.437-440, 2011.
DOI : 10.1109/IEMBS.2011.6090059

K. S. Mcdowell, F. Vadakkumpadan, R. Blake, J. Blauer, G. Plank et al., Methodology for patient-specific modeling of atrial fibrosis as a substrate for atrial fibrillation, Journal of Electrocardiology, vol.45, issue.6, pp.640-645, 2012.
DOI : 10.1016/j.jelectrocard.2012.08.005

L. Wieser, H. Richter, G. Plank, B. Pfeifer, B. Tilg et al., A Finite Element Formulation for Atrial Tissue Monolayer, Methods of Information in Medicine, vol.47, pp.131-139, 2008.
DOI : 10.3414/ME0414

C. Tobon, C. Ruiz, J. Saiz, E. Heidenreich, and F. Hornero, Reentrant mechanisms trigerred by ectopic activity in a three dimensional realistic model of human atrium. a computer study, Computers in Cardiology, vol.35, pp.629-632, 2008.

D. Chapelle, A. Collin, and J. F. Gerbeau, A SURFACE-BASED ELECTROPHYSIOLOGY MODEL RELYING ON ASYMPTOTIC ANALYSIS AND MOTIVATED BY CARDIAC ATRIA MODELING, Mathematical Models and Methods in Applied Sciences, vol.23, issue.14, 2013.
DOI : 10.1142/S0218202513500450

URL : https://hal.archives-ouvertes.fr/hal-00723691

R. , M. Dang, L. Jacquemet, V. Virag, N. Kappenberger et al., Impact of varying ablation patterns in a simulation model of persistent atrial fibrillation, Pacing and Clinical Electrophysiology, vol.30, issue.3, pp.314-321, 2007.

L. Dang, N. Virag, Z. Ihara, V. Jacquemet, J. M. Vesin et al., Evaluation of Ablation Patterns Using a Biophysical Model of Atrial Fibrillation, Annals of Biomedical Engineering, vol.50, issue.3, pp.465-474, 2005.
DOI : 10.1007/s10439-005-2502-7

J. Relan, P. Chinchapatnam, M. Sermesant, R. Kawal, S. Ginks et al., Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia, Interface Focus, vol.48, issue.12, pp.396-407, 2011.
DOI : 10.1016/j.jacc.2006.07.062

URL : https://hal.archives-ouvertes.fr/inria-00616188

J. Relan, M. Pop, H. Delingette, G. Wright, N. Ayache et al., Personalization of a Cardiac Electrophysiology Model Using Optical Mapping and MRI for Prediction of Changes With Pacing, IEEE Transactions on Biomedical Engineering, vol.58, issue.12, pp.3339-3349, 2011.
DOI : 10.1109/TBME.2011.2107513

URL : https://hal.archives-ouvertes.fr/inria-00616184

V. Jacquemet, N. Virag, and L. Kappenberger, Wavelength and vulnerability to atrial fibrillation: Insights from a computer model of human atria, Europace, vol.7, issue.s2, pp.83-92, 2005.
DOI : 10.1016/j.eupc.2005.03.017

M. Lemay, Y. Prudat, V. Jacquemet, and J. Vesin, Phase-Rectified Signal Averaging Used to Estimate the Dominant Frequencies in ECG Signals During Atrial Fibrillation, IEEE Transactions on Biomedical Engineering, vol.55, issue.11, pp.2538-2547, 2008.
DOI : 10.1109/TBME.2008.2001296

Z. Ihara, A. Van-oosterom, V. Jacquemet, and R. Hoekema, Adaptation of the standard 12-lead electrocardiogram system dedicated to the analysis of atrial fibrillation, Journal of Electrocardiology, vol.40, issue.1, pp.1-68, 2007.
DOI : 10.1016/j.jelectrocard.2006.04.006

A. Van-oosterom, Z. Ihara, V. Jacquemet, and R. Hoekema, Vectorcardiographic lead systems for the characterization of atrial fibrillation, Journal of Electrocardiology, vol.40, issue.4, pp.1-343, 2007.
DOI : 10.1016/j.jelectrocard.2006.08.002

V. , E. J. Ruckdeschel, R. Trayanova, and N. , Reentry in a morphologically realistic atrial model, Journal of Cardiovascular Electrophysiology, vol.12, issue.9, pp.1046-1054, 2001.

O. Aslanidi, M. Boyett, and H. Zhang, Left to Right Atrial Electrophysiological Differences: Substrate for a Dominant Reentrant Source during Atrial Fibrillation, Functional Imaging and Modeling of the Heart, pp.154-161, 1007.
DOI : 10.1098/rsta.2006.1781

V. Jacquemet and C. S. Henriquez, Modelling cardiac fibroblasts: interactions with myocytes and their impact on impulse propagation, Europace, vol.9, issue.Supplement 6, pp.29-37, 2007.
DOI : 10.1093/europace/eum207

F. Sachse, A. Moreno, G. Seemann, and J. Abildskov, A Model of Electrical Conduction in Cardiac Tissue Including Fibroblasts, Annals of Biomedical Engineering, vol.30, issue.1, pp.874-889, 2009.
DOI : 10.1007/s10439-009-9667-4

V. Jacquemet, Pacemaker activity resulting from the coupling with nonexcitable cells, Physical Review E, vol.74, issue.1, p.908, 2006.
DOI : 10.1103/PhysRevE.74.011908

V. Jacquemet and C. S. Henriquez, Loading effect of fibroblast-myocyte coupling on resting potential, impulse propagation, and repolarization: insights from a microstructure model, AJP: Heart and Circulatory Physiology, vol.294, issue.5, pp.2040-2052, 2007.
DOI : 10.1152/ajpheart.01298.2007

O. V. Aslanidi, M. R. Boyett, H. Dobrzynski, J. Li, and H. Zhang, Mechanisms of Transition from Normal to Reentrant Electrical Activity in a Model of Rabbit Atrial Tissue: Interaction of Tissue Heterogeneity and Anisotropy, Biophysical Journal, vol.96, issue.3, pp.798-817, 2009.
DOI : 10.1016/j.bpj.2008.09.057

C. Tobon, C. Ruiz, J. Saiz, E. Heidenreich, and F. Hornero, Influence of atrial dilatation in the generation of re-entries caused by ectopic activity in the left atrium, Computers in Cardiology, vol.36, pp.457-460, 2009.

N. Kuijpers, H. Ten-eikelder, S. Verheule, A. Van-oosterom, and V. Jacquemet, Atrial Anatomy Influences Onset and Termination of Atrial Fibrillation: A Computer Model Study, Lecture Notes in Computer Science Physica D, vol.54, issue.suppl. 10, pp.285-29411, 2009.
DOI : 10.1016/S0008-6363(01)00532-6

O. Aslanidi, M. Colman, J. Zhao, B. Smaill, S. Gilbert et al., Arrhythmogenic substrate for atrial fibrillation: Insights from an integrative computational model of pulmonary veins, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.203-206, 2012.
DOI : 10.1109/EMBC.2012.6345906

E. Cherry, J. Ehrlich, S. Nattel, and F. Fenton, Pulmonary vein reentry???Properties and size matter: Insights from a computational analysis, Heart Rhythm, vol.4, issue.12, pp.1553-1562, 2007.
DOI : 10.1016/j.hrthm.2007.08.017

F. Fenton, E. Cherry, J. Ehrlich, S. Nattel, and S. Evans, A simulation study of atrial fibrillation initiation : Differences in resting membrane potential can produce spontaneous activations at the pulmonary vein-left atrial junction

L. Wieser, G. Fischer, F. Hintringer, S. Ho, and B. Tilg, Reentry Anchoring at a Pair of Pulmonary Vein Ostia, Lecture Notes in Computer Science, vol.3504, pp.183-194, 1007.
DOI : 10.1007/11494621_19

V. Jacquemet, A biophysical model of atrial fibrillation and electrograms : formulation, validation and applications, p.EPFL, 2004.

W. Dos-santos and F. Dickstein, On the Influence of a Volume Conductor on the Orientation of Currents in a Thin Cardiac issue, Functional Imaging and Modeling of the Heart, pp.1009-1009, 2003.
DOI : 10.1007/3-540-44883-7_12

A. Gharaviri, S. Verheule, J. Eckstein, M. Potse, N. H. Kuijpers et al., A computer model of endo-epicardial electrical dissociation and transmural conduction during atrial fibrillation, Europace, vol.14, issue.suppl 5, pp.10-16, 2012.
DOI : 10.1093/europace/eus270

L. Clerc, Directional differences of impulse spread in trabecular muscle from mammalian heart., The Journal of Physiology, vol.255, issue.2, pp.335-346, 1976.
DOI : 10.1113/jphysiol.1976.sp011283

S. Labarthe, E. Vigmond, Y. Coudière, J. Henry, H. Cochet et al., A Computational Bilayer Surface Model of Human Atria, FIMH 2013 -7th International Conference on Fonctional Imaging and Modeling of the Heart, 2013.
DOI : 10.1007/978-3-642-38899-6_4

URL : https://hal.archives-ouvertes.fr/hal-00802104

T. Desplantez, D. Halliday, E. Dupont, and R. Weingart, Cardiac connexins Cx43 and Cx45: formation of diverse gap junction channels with diverse electrical properties, Pfl???gers Archiv - European Journal of Physiology, vol.448, issue.4, pp.363-375, 2004.
DOI : 10.1007/s00424-004-1250-0

O. Rousseau, Geometrical modeling of the heart, -Carleton Institute for Graduate Studies and Research in Mathematics and Statistics, 2009.

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-2680167, 1992.
DOI : 10.1016/0167-2789(92)90242-F

E. Vigmond, S. Labarthe, H. Cochet, Y. Coudière, J. Henry et al., A Bilayer Representation of the Human Atria Pre-print, 2013.

C. Geuzaine and J. F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, vol.69, issue.4, pp.1309-1331, 2009.
DOI : 10.1002/nme.2579

E. J. Vigmond, M. Hughes, G. Plank, and L. Leon, Computational tools for modeling electrical activity in cardiac tissue, Journal of Electrocardiology, vol.36, issue.0, pp.69-74, 2003.
DOI : 10.1016/j.jelectrocard.2003.09.017

C. Tobón, C. Ruiz, J. Rodriguez, F. Hornero, J. Ferrero et al., Vulnerability for reentry in a three dimensional model of human atria: a simulation study, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp.224-227, 2010.
DOI : 10.1109/IEMBS.2010.5627810

S. Durrleman, Modèles statistiques de courants pour mesurer la variabilité anatomique de courbes, de surfaces et de leur évolution, 2010.