
THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

École doctorale Matisse

présentée par

Marko OBROVAC

préparée à l’unité de recherche INRIA / IRISA – UMR6074

Institut de Recherche en Informatique et Système

Aléatoires ISTIC

Chemical Comput-
ing for Distributed
Systems :
Algorithms and Im-
plementation

Thèse soutenue à Rennes
le 28 Mars, 2013
devant le jury composé de :

Jean-Pierre BANÂTRE
Professeur Emerite, Université de Rennes 1 /

Président

Pierre SENS
Professeur, Université Pierre et Marie Curie /
Rapporteur

Jean-Louis GIAVITTO
Directeur de Recherche, IRCAM / Rapporteur

Manish PARASHAR
Professor, Rutgers, New Jersey / Examinateur

Thierry PRIOL
Directeur de Recherche, INRIA Rennes /
Directeur de thèse

Cédric TEDESCHI
Maître de Conférences, Université de Rennes 1 /
Co-directeur de thèse

Abstract

With the emergence of highly heterogeneous, dynamic and large distributed platforms,
the need for a way to efficiently program and manage them has arisen. The concept of
autonomic computing proposes to create self-manageable systems — systems which are
aware of their components and their environment, and can configure, optimise, heal and
protect themselves. In the context of realisation of such systems, declarative program-
ming, whose goal is to ease the programmer’s task by separating the control from the
logic of a computation, has regained a lot of interest recently. In particular, rule-based
programming is regarded as a promising model in this quest for adequate programming
abstractions for these platforms. However, while these models are gaining a lot of atten-
tion, there is a demand for generic tools able to run such models at large scale.

The chemical programming model, which was designed following the chemical
metaphor, is a higher-order, rule-based programmingmodel, with a non-deterministic exe-
cution model, where rules are applied concurrently on a multiset of data. In this thesis, we
propose the design, development, and experimentation of a distributed chemical runtime
for generic, largely-distributed platforms.

The architecture proposed combines a peer-to-peer communication layer with an
adaptive protocol for atomically capturing objects on which rules should be applied, and
an efficient termination-detection scheme. We describe the software prototype imple-
menting this architecture. Based on its deployment over a real-world test-bed, we present
its performance results, which confirm analytically obtained complexities, and experimen-
tally show the sustainability of such a programming model.

Keywords :
distributed systems, structured peer-to-peer networks, chemical programming
model, distributed runtime

Résumé

Avec l’émergence de plates-formes distribuées très hétérogènes, dynamiques et à
large-échelle, la nécessité d’un moyen de les programmer efficacement et de les gérer
a surgi. Le concept de l’informatique autonomique propose de créer des systèmes auto-
gérables — des systèmes qui sont conscients de leurs composants et de leur environ-
nement, et peuvent se configurer, s’optimiser, se guérir et se protéger. Dans le cadre de la
réalisation de tels systèmes, la programmation déclarative, dont l’objectif est de faciliter
la tâche du programmeur en séparant le contrôle de la logique du calcul, a retrouvé beau-
coup d’intérêt ce dernier temps. En particulier, la programmation á base de des règles

est considérée comme un modèle prometteur dans cette quête pour des abstractions de
programmation adéquates pour ces plates-formes. Cependant, bien que cesmodèles gag-
nent beaucoup d’attention, ils créent une demande pour des outils génériques capables
de les exécuter à large échelle.

Le modèle de programmation chimique, qui a été conçu suite à la métaphore chimique,
est un modéle de programmation à bas de règles et d’ordre supérieur, avec une exécu-
tion non-déterministe modèle, où les règles sont appliquées simultanément sur un multi-
ensemble de données. Dans cette thèse, nous proposons la conception, le développement
et l’expérimentation d’un intergiciel distribué pour l’exécution de programmes chimique
sur des plates-formes à large échelle et génériques.

L’architecture proposée combine une couche de communication pair-à-pair avec un
protocole de capture atomique d’objets sur lesquels les règles doivent être appliquées, et
un système efficace de détection de terminaison. Nous décrivons le prototype d’intergiciel
mettant en oeuvre cette architecture. Basé sur son déploiement dans un banc d’essai réel,
nous présentons les résultats de performance, qui confirment les complexités analytiques
obtenues et montrons exérimentalement la viabilité d’un tel modèle de programmation.

Mots-clés :
systèmes répartis, réseaux pair-à-pair structurés, modèle de programmation
chimique

Mr. Frankle began to suffer from a very
serious disease — the computer disease.
The disease with computers is you play

with them.

– Richard P. Feynman

Contents

Introduction 1

I Preliminaries 17

1 Background 19
1.1 Chemical Programming Model . 20

1.1.1 GAMMA . 20
1.1.2 Higher-order Chemical Language . 22
1.1.3 Inertia Detection . 27

1.2 Distributed Hash Tables . 28
1.2.1 Overview . 29
1.2.2 Some DHTs . 30
1.2.3 Range Queries . 36

1.3 Mutual Exclusion . 39
1.3.1 Single-resource Mutual Exclusion . 40
1.3.2 Multiple-resource Mutual Exclusion . 41
1.3.3 k-out of-M-Mutual Exclusion . 43

2 Physical Parallelism 47
2.1 Single-processor Execution . 48
2.2 Message-passing Methods . 49

2.2.1 Centralised Controller . 50
2.2.2 Moving Values . 52
2.2.3 Odd-even Transposition . 53
2.2.4 Fold-over Operation . 54

2.3 Shared-memory Approach . 56
2.3.1 Parallel Implementation . 56

i

Contents Contents

2.3.2 Inertia Detection . 57
2.3.3 Experiments . 58

2.4 Conclusion . 58

II Distributed Chemical Computing 61

3 Feasibility Study 63
3.1 DSM-based Execution Platform . 64

3.1.1 DSM-inspired Architecture Overview . 65
3.1.2 Course of Execution . 66
3.1.3 Issues of the DSM-based Platform . 67

3.2 Hierarchical Execution Platform . 68
3.2.1 Physical Layer Abstraction . 69
3.2.2 Execution Flow . 69
3.2.3 Condition Checking and Inertia Detection 71
3.2.4 Tree Reorganisation . 77

3.3 Prototype . 80
3.4 Evaluation . 81

3.4.1 Test Programs . 81
3.4.2 Results . 82

3.5 Conclusion . 88

4 Atomic Capture of Multiple Molecules 91
4.1 System Model . 93
4.2 Protocol for the Atomic Capture . 94

4.2.1 Pessimistic Sub-protocol . 95
4.2.2 Optimistic Sub-protocol . 98
4.2.3 Sub-protocol Mixing . 98
4.2.4 Dormant Nodes . 100

4.3 Execution of Multiple Rules . 101
4.3.1 Multiple Success Rates . 102
4.3.2 Initial Rule Assignment . 102
4.3.3 Changing the Active Rule . 102
4.3.4 Discussion . 103

4.4 Proof of Correctness . 104
4.4.1 Proof of Safety . 104
4.4.2 Liveness Proof . 104
4.4.3 Convergence Time . 106

4.5 Evaluation Set-up . 106
4.6 Experiments Involving One Rule . 107

4.6.1 Execution Time . 107
4.6.2 Switch Threshold Impact . 108
4.6.3 Switch Behaviour . 109

ii

Contents Contents

4.6.4 Communication Costs . 111
4.7 Experiments with Multiple Rules . 113

4.7.1 Multiple-rule Test Programs . 113
4.7.2 Execution of the Independent-rules Program 114
4.7.3 Execution of the Dependent-rules Program 116
4.7.4 Execution of the Circular Program . 118
4.7.5 Execution of the Workflow Program . 118

4.8 Conclusion . 122

5 Decentralised Execution Platform 123
5.1 Platform Overview . 124

5.1.1 Initialisation . 125
5.1.2 Execution . 125
5.1.3 Termination . 127

5.2 Data Structures and Algorithms . 127
5.2.1 Double DHT Layer . 127
5.2.2 Random Meta-Molecule Fetch . 129
5.2.3 Search for Candidates . 130
5.2.4 Atomic Grab of Molecules . 130
5.2.5 Complexity Analysis . 131

5.3 Execution of Higher-order Programs . 132
5.3.1 Execution of Rules . 133
5.3.2 Correctness of Execution . 134
5.3.3 Inertia Detection . 136

5.4 Software Prototype . 137
5.4.1 Entities . 137
5.4.2 Execution Cycle . 138
5.4.3 Optimisations . 140

5.5 Evaluation . 140
5.5.1 Test Programs . 140
5.5.2 Experimental Results . 142

5.6 Conclusion . 149

III Conclusions And Addenda 151

Conclusion 153

Bibliography 168

List of Publications 169

iii

Contents Contents

A Résumé en Français 171
A.1 Préliminaires . 173

A.1.1 Modèle de programmation chimique . 173
A.1.2 Modèle du Système . 174

A.2 Protocole Pour la Capture Atomique de Molécules 175
A.2.1 Sous-protocole Pessimiste . 175
A.2.2 Sous-protocole Optimiste . 176
A.2.3 Cohabitation des Sous-protocoles . 179
A.2.4 Sureté et Vivacité du Système . 179

A.3 Evaluation . 181
A.4 Travaux Connexes . 183
A.5 Conclusion . 184

iv

Introduction

One of the initial reasons for the birth of distributed systems was the scientists’ need to
extend the computing power of existing parallel systems. At first, those were homoge-
neous, tightly-coupled systems confined to physical closeness, called clusters. As this
research field grew, scientists started interconnecting clusters over wide areas, bringing
about grids. On the other hand, the rapid increase in number and computing power of
commodity hardware enabled the emergence of so-called desktop grid systems: the gen-
eral public joined in on projects such as SETI@Home1 or Folding@Home2. The numerous
improvements made to both scientific and desktop grids, coupled with the rapid develop-
ments in the area of high-speed networking, paved the way to the widespread adoption
of distributed systems in the form of cloud computing. This model of distributed com-
puting offers elasticity to its users, since they do not have to own the system, hardware
nor software, they plan to utilise for their computations. This form of on-demand com-
puting, realised through a pay-as-you-go business model, enables one to use only the
resources actually needed for a given computation: on the hardware level (infrastructure-
as-a-service, IaaS), on the platform or middleware level (platform-as-a-service, PaaS), or
on the application level (software-as-a-service, SaaS).

At the same time, due to technological progress and advancements, a variety of mo-
bile devices able to connect to different network have come about, ranging from network
disks and printers to consumer mobile phones, television sets and other intelligent appli-
ances. Nowadays, a significant part of devices directly accessing Internet are small mobile
devices.

Intertwining these two worlds results in complex, heterogeneous systems of unprece-
dented scale, ever so more intertwined with our everyday lives. To grasp the impact these
systems can have, consider that, when in April 2011 user web servers and their sites
hosted at Amazon’s Elastic Compute Cloud (EC2) were unavailable during three days, they
impeded their customers to function, causing important losses [1]. While the failure was

1http://setiathome.ssl.berkeley.edu/
2http://folding.stanford.edu/

1

Introduction Introduction

physical, the user experience of the outage occurred as a direct consequence of relying
on centralised architectures: when a central entity fails, whole (sub-)systems become un-
available in spite of the fact that they are themselves operational.

Therefore, when faced with systems of such scale, decentralised architectures com-
prised of self-contained entities become a necessity, allowing participants to communi-
cate and exchange information and/or computation regardless of the state or actions of
others. Interestingly, the repercussions of adopting such a research direction might have
got reach well outside the domain of distributed systems, both in practical and theoretic
terms. On the practical side, consider that most electricity-distribution networks use a
centralised, hierarchical organisational scheme, which could potentially lead to massive
power outages [2]. In this case, proposing a decentralised distribution network might lo-
calise the consequences of hardware malfunction. As for the theoretical side, in recent
years a new research field has opened up, that of studying complex systems found in na-
ture [16]. Since nature represents the ultimate large-scale, heterogeneous andmost com-
plex decentralised system there is, research in the field of distributed systems can yield
constituents used in modelling biological systems. An example of this is the recently-
proposed first whole-cell computational model of a live organism [65]. Each of the 28
modules mimics one of the one-cell bacterium’s function, such as RNA to DNA transcrip-
tion, protein formation and photosynthesis. As each of them communicates only with a few
other modules throughout its functioning cycle, they are coordinated in a decentralised
way.

Adopting a decentralised, self-contained view of currently available distributed plat-
forms in order to leverage their capabilities calls for new ways to conceive, model and pro-
gramme them. Autonomic computing [66] is a paradigm consisting in building computing
systems that can “manage themselves in accordance with high-level guidance from hu-
mans” [96]. It has been proposed analogously to the autonomic nervous system which
takes care of unconscious reflexes in the human body, such as digestive functions, res-
piration or constriction of blood vessels. To fulfil the requirement of self-management,
an autonomic computing system must have, like its biological counterpart, a mechanism
whereby changes in its essential variables can trigger changes in the behaviour of the
system, using appropriate solutions based on current state, context and content and on
specified policies. Namely, to minimise (and later completely remove) human intervention,
an autonomic system must have the following properties [55], also referred to as self-*
properties :

• self-awareness : an autonomic system must have detailed knowledge of its compo-
nents, current status, ultimate capacity and all connections with other systems in
order to govern itself, i.e. it is able to “know itself” and is aware of its behaviours so
as to be able to manage itself via the self-* properties described below;

• self-configuration : an autonomic system configures itself according to high-level
goals which specify what is desired, but not necessarily how to accomplish it;

• self-optimisation : an autonomic system proactively optimises its use of resources in
order to improve performance and/or quality of service;

2

Introduction Introduction

• self-healing : an autonomic system detects, diagnoses and, to the extent possible,
fixes problems, both low-level, hardware and high-level, software ones;

• self-protection : an autonomic system protects itself from malicious attacks and
careless users, as well as tunes itself to achieve security, privacy and data protec-
tion in such a way as to, ideally, anticipate security breaches and prevent them from
occurring in the first place.

These properties define the behaviours and inner workings of an autonomic system which
allow it to satisfy the given constraints and goals. However, in order to accomplish them,
and consequently minimise human intervention, it must communicate with its environ-
ment and adapt to it accordingly. Hence, three more properties are imposed upon it:

• context awareness : an autonomic system is aware of its execution environment and
the context surrounding its activity and is able to react to changes in the environ-
ment through processes such as the tapping of available resources or the negotia-
tion of usage of its elements by other systems, and in this way changing both itself
and its environment;

• openness : an autonomic system implements and is built upon open standards, since
it must function in a heterogeneous world and be portable across multiple hardware
and software architectures;

• anticipation : an autonomic system is able to anticipate, to the extent possible, its
needs and actions and those of its context and manage itself proactively.

One of the areas where the strengths of autonomic computing could be fully lever-
aged is the emerging field of Internet of Services (IoS) [23]. A service can be defined as
a self-contained software utility that exposes a capability or information as a reusable
unit. Examples of these include currency exchange services, chat services, data storage
services, etc. . . Placing them in the context of Internet enables their reusability : multiple
users can use the same service for their own, different purposes. Consequently, an in-
creasing number of applications are created by composing and combining services in a
temporal manner, making these systems highly dynamic and loosely coupled. These ap-
plications, such as BLAST3, CardiacAnalysis4 or Montage5, can easily be shared amongst
people in different communities, as shows the example of themyExperiment6 platform.

Since a particular service implementation can be used in multiple applications,
strengthening it with self-management capabilities offered by autonomic computing ap-
pears to be a prerequisite for its reliable functioning. In this way, services would be able
to: (i) configure themselves, in case their environment changes due to a system-wide up-
date or relocation; (ii) optimise their computations based on the resources’ loads and on

3http://www.blastalgorithm.com/
4http://www.creatis.insa-lyon.fr/site/
5http://montage.ipac.caltech.edu
6http://www.myexperiment.org

3

Introduction Introduction

the level of current user demand —more users means more resource utilisation; (iii) pro-
tect themselves from malicious users and unwanted behaviours; and (iv) heal themselves
when, e.g., a computational error is encountered. Moreover, the connections between ser-
vices themselves could be made autonomic. Alternative routes from one service to the
other could be provided in case a connection drops and transfer of data might be opti-
mised to use faster or multiple routes, all the while protecting the connection from intru-
sions and keeping it secure. On top of such a robust architecture, applications would be
fairly easy to compose, allowing the user to focus only on application-specific aspects.

Motivation

In spite of the fact that the concept of autonomic computing has been around for a decade
now, its vision is far from being fulfilled [37]. Due to the scale, dynamics and heterogene-
ity of today’s emerging platforms, such as the aforementioned Internet of Services, fully
leveraging their computing power remains a widely open issue. In particular, abstracting
out the technical details of the low-level machinery of the platform appears to be a pre-
requisite to actually being able to efficiently compute over it. In other words, the logic of
the computation (which does not change, regardless of the underlying platform charac-
teristics) should be separated from its low-level implementation.

This situation advocates the use of declarative programming [76], whose goal is to sep-
arate the logic of a computation (“what we want to do”) from its control (“how to achieve
it”). More precisely, while the “what” is to be defined by the programmer, the “how” be-
comes for them implicit, hidden inside the system.

In particular, rule-based programming, where this logic is expressed as a set of high-
level rules allows to hide the intrinsic difficulties of the parallelism and distribution of the
runtime from the programmer. Rule-based programming provides a common framework
in which computation can be seen as a set of logical statements about how a system
operates. The majority of systems based on it use the so-called Event-Condition-Action
(ECA) type of rules, which was originally proposed as a formalism for active capabilities in
database management systems [84]. When using this formalism, the programmer spec-
ifies (i) a triggering event; (ii) a list of conditions which have to be checked; and (iii) the
action to perform. When an event corresponding to one of the rules’ definitions occurs in
the system, the rule is activated. Its list of conditions is checked and, in case all of the
listed conditions have been met, the action is performed. Additionally, the programmer
can specify an optional post-condition confirming the state change after the execution of
the action. Rules define the flow of the execution and its constraints, as well as control the
behaviour of the system by reacting to events. Composing multiple ECA rules allows one
to construct event-driven applications. There is no sequentiality in such application since
the execution is defined through the activation of rules, implying that there is no need to
order or schedule the execution. Furthermore, as the level of abstraction of these rules is
high, the programmer does not have to worry about the implementation’s details.

Recently, some work has gone into showing how to concretely apply rule-based pro-

4

Introduction Introduction

gramming to the specification of distributed systems. For instance, in [51], it has been
shown how communication protocols and peer-to-peer applications can be specified us-
ing a rule-based language. In [3], the same programming style is applied to web-based
data management. On the computing side, rule-based programming was also used as a
building block for workflow management systems [69, 124].

Example

Let us illustrate this declarative, rule-based programming style on a generic example of
a service-based platform, where users submit their workflows, i.e., temporal compositions
of services, to be executed within the platform.

Notation. Throughout the example we are going to use rules of the form:

rule rule_name = if condition then action

The rule rule_name is going to be triggered once the condition condition becomes true,
and the action action is going to be performed. Conditions are usually simple expressions
which test for the presence of a certain object, or a set thereof. Actions involve proce-
dure calls (of the form X(. . .)) and insertions or removals of objects (using the keywords
insert and remove, respectively). Note that, if there are multiple actions to be performed
(concatenated with the and keyword), they are going to be executed in parallel.

Workflows. A workflow is a set of tasks to be executed following an order defined by
some data and control flows. Consider the simple workflow pictured on the left side of
Figure 1. The workflow comprises four services, linked through some data dependencies.
Such a workflow can be expressed through the two rules on the right side of the figure,
where the expression Si (· · ·) denotes the call to the actual service Si , while Res j expresses
(the presence of) the result (or output) of service S j . The existence of this object triggers
the actual execution of the service and insertion of the result. The first rule expresses
the fork (production of the result of S1 triggers the execution of both S2 and S3) while the
second one expresses the join.

rule fork = if Res1 then S2(Res1) and S3(Res1)
rule join = if Res2 and Res3 then S4(Res2, Res3)

Figure 1: A simple workflow and its rule-based expression.

5

Introduction Introduction

Sometimes, due to some failures, some task may not be able to produce its expected
results. One way to tackle this problem at the workflow level is to be able to modify it on
the fly, upon the detection of the failure.

For the sake of illustration, let us consider a computation on a matrix decomposed
in blocks where each block is to be processed independently in parallel. Given an initial
task separating the matrix into blocks and triggering all of the corresponding tasks, the
workflow starts as pictured in Figure 2 (left). This fork pattern can be expressed by the
following rule, Res0 being a pointer table in which each task T1, · · · ,Tn is able to collect the
information about the block of the matrix assigned to it (assuming the matrix itself is not
transmitted, but stored elsewhere, e.g. in a memory space shared between the tasks):

rulematrix_fork = if Res0 then T1(Res0[1]) and T2(Res0[2]) and . . . and Tn(Res0[n])

Figure 2: Matrix processing workflow: initial state, failure, interpolation.

Let us now assume that the processing of some block encountered a failure, as il-
lustrated on Figure 2 (middle). One common technique for avoiding the recalculation of
the missing result is using the successfully computed results in the neighbourhood of the
problematic block to infer the missing result by interpolation. This leads to the modifica-
tion of the workflow itself : the deletion of the failed task, and the creation of a new task
performing the interpolation, pictured as a square in Figure 2 (right). Note that the inter-
polation creates new data dependencies within the workflow. It means that we need to be
able to change rules dynamically. Let us consider the new rule modelling the interpolation
task along with its data dependencies, parametrised with the index i of the task.

rule interpolatei = if Resi−1 and Resi+1 then Interpolation(Resi−1, Resi+1)

6

Introduction Introduction

This new rule has to be injected in the program dynamically to materialise the change
in the workflow, which can be achieved through the higher order. Higher-order program-
ming models regard functional parts of a program (here, rules) as regular objects. The
programmer is, thus, allowed to manipulate a rule through another rule, and in doing so
modifying the course of the execution on the fly. The injection of the interpolate rule is
done by the following (higher-order) rule.

rule inject_interpolationi = if Ti .status = Failed then insert interpolatei

When the task Ti fails, its status is set to “Failed”. This is detected by the in-
ject_interpolation rule, which introduces the interpolate rule, effectively triggering the in-
terpolation procedure. Upon completion, it delivers the result in the form of a Res i object,
just as the original task would, in this way allowing the computation to continue smoothly.
It is important to notice here that the inject_interpolationi rule is present from the begin-
ning of the execution, while interpolatei is dynamically inserted only after a failure has
been detected.

Services. Let us now concentrate on the building block of the workflow, namely, the task,
which was until now considered as a black box, the actual service called being abstracted
out. In other words, we only considered abstract workflows. In the following, we focus on
how every task taking part of the computation can be made autonomic — providing self-
optimisation and self-healing — through rule-based programming. A possible rule-based
specification of such a task is illustrated in Figure 3. The big circle is the context of the
autonomic element — a task —, and includes all of the data and rules needed. The two
rectangles represent two underlying processes injecting some information into the task’s
context. More specifically, the service discoverer gathers information about the currently
available services implementing this task and their performances and to inject it through
objects of the form Si = (free_cpui , net_tputi) including a list of criteria (here CPU and
network throughput) that could be arbitrarily extended. The failure detector is in charge of
detecting the failure of the currently bounded service, and injecting this failure detection
in the form of a specific object. Henceforth, we assume this object to be symbolised by the
string “failure_detected”.

As several implementations for a given task may coexist in the platform, the objective
behind self-healing is, upon detection of the failure of the currently bounded service (rep-
resented by the Binding object), to autonomously switch to another service, among those
injected into the rule-based engine by the service discoverer. This is achieved by the repair
rule:

rule repair = if “fai lure_detected ′′ then Binding = Sj and remove Si

The objective behind self-optimisation is to bind the service to the best one currently
available, according to some predefined metric. This objective is achieved by using the
optimise_cpu rule, which constantly tries to select the best implementation, according to
the CPU criterion:

7

Introduction Introduction

Figure 3: Rule-based specification of an autonomic service.

rule optimise_cpu = if Binding = Si and free_cpuj > free_cpui then Binding = Sj

Similarly, an optimise_net rule could consider a service’s network capabilities. Even
though the possibility of having different policies brings more flexibility to the adapta-
tion, it creates the need for dynamic switching from one to the other based on a cri-
terion, in our case meaning optimise_cpu might need to be put aside in favour of opti-
mise_net. This is again possible through the higher order and the criterion object, using
the switch_to_net_policy rule:

rule switch_to_net_policy = if criterion = “Net" then
insert optimise_net and remove optimise_cpu

Furthermore, as illustrated on Figure 3, other rules, for instance switch_to_cpu_policy,
can be similarly constructed and introduced in the context concurrently. These rules can
coexist smoothly, as the criterion can take only one value at a time, preventing concurrent
reactions of contradictory switching rules. Note that, even though all of the services use
the same rules to guide their executions, due to the isolation of each service, achieved
through the usage of different contexts, every one of them is able to bind services based
on different criteria and policies independently and autonomously.

Summary. The example presented is a two-tier architecture for enacting, executing and
dynamically managing workflows at run time. The user supplies exclusively the definition
of the workflow to execute — the “what to do” — and is freed from any consideration
of implementation. On the other side, the system is in charge of finding the appropriate
bindings for tasks, connecting them through the user-defined control and/or data depen-
dencies, and monitoring the execution itself in an autonomic fashion — the “how to do
it”.

It does so on two levels. On the lower, task level, each service binding behaves as a
managed autonomic element, i.e. each of them is handled independently from the others

8

Introduction Introduction

as a stand-alone sub-system; different services are monitored for performance accord-
ing to different metrics and individual service failures are handled locally. On the higher,
workflow level, the system manages a workflow in its entirety through the control of the
flow of the execution according to the data and control dependencies defined. Moreover, if
an individual task fails to complete, recovery procedures are introduced in order to ensure
the continuation of the computation.

Concurrency and Rule-based Programming: Chemical Programming
Model

As we have showed, a rule-based model is able to provide the appropriate abstractions
for both users and administrators of high-level systems, such as the one discussed in the
above example. Still, this example shows that the particular model chosen must possess
two crucial properties:

• Concurrency. Multiple rules coexist in a program and they can be activated and
applied concurrently. Therefore, the programmer must be able to express parallel
actions in an easy and intuitive way. On the other hand, the chosen model’s runtime
must be able to support such parallel executions.

• Higher order. Due to the dynamic nature of the underlying platform, changes and de-
viations in a program’s flow have to be considered as a regularity and thus commu-
nicated effortlessly by the programmer. As shown in the example above, altering the
execution’s flow is not only a desirable feature, but amuch-needed one in the context
of autonomic computing. Without it, the design and implementation of such a self-
managed system would require complex execution flows to be devised, increasing
the possibility of error. Hence, the programming model chosen has to be equipped
with higher-order capabilities. They allow one to regard, and use, functional parts of
a program as ordinary data (namely, variables), enabling the programmer to instruct
the runtime to change the flow of the execution in a clean and clear manner.

Consequently, in this thesis we focus on the chemical programmingmodel, which asso-
ciates rule-based programming with an implicitly-parallel runtime. It also integrates the
higher order, i.e. the ability to manipulate rules as ordinary objects, and thus to modify
the program dynamically at run time. Initially proposed as the GAMMA formalism [11],
the chemical metaphor envisions the execution of a program as a set of reactions be-
tween molecules moving and colliding autonomously according to Brownian motion7. On
collisions, and according to some pre-defined rules (constituting the chemical program),
molecules are consumed and new molecules (and concomitantly new information) are

7Brownianmotion is themacroscopic picture emerging from a particlemoving randomly in d-dimensional
space. On the microscopic level, at any time step, the particle receives a random displacement, caused by
other particles hitting it or by an external force. The movement of the particle can be, hence, modelled by a
random walk.

9

Introduction Introduction

created. Reactions take place in an implicitly-parallel and distributed fashion, and inde-
pendently from each other. Therefore, the model allows one to concentrate on the logic of
the computation at design time, and to write programs cleared of any artificial sequential-
ity, arbitrary scheduling or synchronisation brought by implementation’s considerations.

Throughout the years, the expressiveness of the chemical model has been leveraged
in different contexts, for instance to verify shared-memory coherence protocols [86], to
process large images [85], or to specify software architectures [57, 73]. The model has
recently been raised to the higher order, giving birth to the Higher-Order Chemical Lan-
guage (HOCL) [13] : in HOCL, everything is a molecule, including reaction rules, that can
themselves be consumed or produced upon a reaction. This feature makes the model
highly adequate in today’s emerging platforms, especially in the context of large-scale
coordination of entities [14, 41, 89, 34, 93].

Problem Statement

While the chemical programming model has been shown to have the suitable level of ab-
stractions needed to construct autonomic systems, the problematic of the actual execu-
tion of chemical programs has been mostly left aside in the literature. In order to fill the
existing gap between the existing conceptual works and their quite limited practical imple-
mentations, the following characteristics must be taken into account:

Heterogeneity. The programmer using the chemical specification should be concerned
only with the program’s logic; it is up to the runtime to ensure the program’s cor-
rect execution regardless of the underlying hardware’s and software’s specific con-
straints. Therefore, the chemical platform must run in diverse, heterogeneous envi-
ronments.

Scalability. Due to their size and the vast number of components and entities, the design
of large-scale systems should be thought through the paradigm of autonomic com-
puting, since it aims at alleviating humans from maintenance and management of
computing systems. The chemical platform must, thus, employ scalable protocols
and algorithms for the execution of programs in order to face the challenge of scale.

Decentralised Execution. The entities participating in an autonomic system are spread
around these large-scale and heterogeneous environments. Moreover, their com-
munication patterns and interactions are not known a priori. In such conditions, it is
crucial for the chemical platform to be able to execute programs in a decentralised
way as a centralised solution might easily encounter bottleneck problems.

The goal of this thesis is to provide a generic decentralised platform dedicated to the
execution of higher-order chemical programs. We envision a high number of nodes willing
to collaborate, with each collaborating node equipped with an engine executing rules with
the molecules available in the system, but not necessarily present on the node executing

10

Introduction Introduction

the rule. Keeping in mind the aforementioned requirements, the following four issues have
to be tackled in order to fulfil this objective:

1. Communication Abstraction. Each node has to be able to communicate with every
other node and it has to do so in an efficient way and over heterogeneous underlying
environments.

2. Molecule Discovery. Molecules are dispatched over the network, meaning suitable
reaction candidates have to be found efficiently in spite of the scale of the platform.

3. Atomic Capture. Once the appropriate molecules have been located, a node must
grab all of them atomically, as other nodes may try to fetch them as well at the
same time. In other words, situations where multiple nodes try to obtain the same
molecule have to be resolved in favour of only one of them, seeing that a molecule
can react at most once. Performing more than one reaction with the same molecule
could brake the logic of the program. Mutual exclusion, therefore, has to be enforced
during this process.

4. Detection of Termination. To secure the termination of a program, we need to en-
sure to detect the fact that no more reactions are possible. This detection, when
done in a centralised way, has a combinatorial complexity. This suggests that relying
on intelligent information retrieval techniques is mandatory in order to circumvent
the problem.

For the purpose of clarification, consider the following example. Let us suppose a net-
work of nodes (of unknown size) has to execute the following program, written using the
previously-described formalism:

rule sum = if x , y then insert x + y and remove x, y

on the following data set:

2,3, . . . ,1000

The rule sum is activated when two integers with different values are found. Their sum is
stored into the shared space, while the integers themselves are removed from it. Reapply-
ing this rule yields the sum of all of the integers in the set. Note that, while the concrete
problem presented here is easily soluble using only one mathematical formula computed
on a single machine, the purpose of the example is to show the different issues encoun-
tered when executing a rule-based (chemical) program in a large-scale environment.

As noted earlier, the number of nodes participating in the execution is not known. More-
over, the chemical processes running on these nodes might be executed in different en-
vironments. Therefore, the communication layer must allow nodes to communicate ef-
ficiently and over heterogeneous underlying environments (Point 1 above). Suppose the
integers are spread in the network, e.g. 2, 3 and 4 reside on node N1, 5 and 6 on node

11

Introduction Introduction

N2, and so on. Nodes have to be able to find them in an efficient manner. A node might
look the integers up locally, and then, if candidates cannot be found, it performs a search
in the network to locate integers satisfying the condition. In this example, any two inte-
gers from the data set can be paired up, but rules usually havemore restrictive conditions.
Thus, discovering potential candidates (Point 2 above) is essential to the progress of the
computation. The next step is to fetch the candidate objects found in an atomic fashion:
all of them have to be captured in order to ensure the rule is going to be applied. Sup-
pose node N1 decides to grab the integers 2 and 3, while node N2 wants to fetch 3 and
4. Both nodes would have to capture both of their candidates in order to apply the sum
rule. However if they both succeeded, the execution’s correctness would be compromised,
breaking the program’s logic: N1 would produce 5 and N2 7, which would be incorrect since
the sum of 2, 3 and 4 is 9 and not 12. Therefore, mutual exclusion must be enforced to
guarantee the correctness and consistency of the execution (Point 3 above). These steps
are repeated while there are candidates to apply the rule onto. In the example, each time
a node performs a sum of two integers, the size of the data set decreases until there is
only one integer left — the overall sum of the data —, signalling the end of the execution.
All of the nodes have to detect the program’s termination in an efficient manner in order
to minimise the execution time and network traffic generated (Point 4 above).

Contribution

Central to this thesis is the premise that the construction of a distributed chemical runtime
is an essential step towards the model’s adoption in the context of autonomic computing.
In that sense, we address throughout the thesis the requirements and issues mentioned
above both theoretically and practically to deliver a generic, decentralised runtime able
to execute chemical programs in large-scale, heterogeneous environments. More con-
cretely, the contribution of the thesis is fourfold: (i) the feasibility of such a runtime is ex-
plored; (ii) an adaptive and efficient protocol for the atomic capture of multiple molecules
is proposed; (iii) a complete, decentralised chemical platform is presented; and (iv) two
fully-functional prototypes have been implemented and tested on a real-world large-scale
platform, establishing the viability and benefits of the distributed chemical computing ap-
proach.

Feasibility Study

We argue that the few isolated attempts at distributing the execution of chemical pro-
grams had a limited impact, for they focused on particular types of programs and targeted
specific platforms. We therefore conducted a feasibility study of a large-scale runtime for
the chemical model by exploring different ways of constructing it. Firstly, an approach
to extend the existing centralised runtime, by leveraging the distributed shared memory
model, is considered. However, after a detailed examination of the limitations inherent to
shared-memory models, this approach is abandoned. A second framework is built relying
on a peer-to-peer communication layer, on top of which an execution tree structures the

12

Introduction Introduction

nodes in hierarchy. Each participant executes reactions only with molecules local to it, in
this way resolving the problems of molecule discovery and capture. The proposed algo-
rithms are formally shown to have an optimal distribution of termination detection : they
do not induce a computational overhead when compared to a centralised version in terms
of the number of tests performed.

Atomic Capture of Molecules

On the road towards a decentralised runtime, the most significant barrier to be lifted is
ensuring mutual exclusion, at large scale, during the capture of molecules needed by a
node in a reaction. Our contribution here is an adaptive and efficient distributed protocol
for the atomic capture of multiple molecules combining two sub-protocols inspired by pre-
vious works on distributed resource allocation, and adapted to the distributed runtime of
chemical programs. The first sub-protocol, referred to as the optimistic one, assumes that
the number of molecules satisfying some reaction’s pattern and condition is high, so only
few conflicts for molecules will arise, nodes being likely to be able to grab distinct sets of
molecules. While this protocol is simple, fast, and has a limited communication overhead,
it is not capable of ensuring liveness. The second one, called pessimistic, slower, andmore
costly in terms of communication, ensures liveness in the presence of an arbitrary number
of conflicts. Switching from one protocol to the other is achieved in a scalable, distributed
fashion and is based on local success histories in grabbing molecules. Furthermore, we
analyse chemical programs containing multiple rules and the possible input/output de-
pendencies they might have and propose a rule-changing mechanism instructing nodes
as to which rule to execute. A proof of the protocol’s correctness is given, while a set of
simulation results establishes its efficiency in terms of execution time and network over-
head.

Decentralised Chemical Runtime

Built on the lessons learned while conducting the feasibility study and based on the afore-
mentioned protocol for the atomic capture of molecules, a fully-decentralised platform
for the execution of chemical programs at large scale is presented. It uses a peer-to-peer
network overlay scheme, namely the distributed hash table, to organise the nodes in a
ring-like structure and spread the molecules uniformly. On top of this layer, a second is
positioned allowing participants to search for candidatemolecules in an efficient and scal-
able manner. The capture protocol is used to grab the reactants atomically. A program’s
termination is detected in a decentralised way thanks to a molecule classification mech-
anism separating molecules which have a reaction potential from those which do not. We
give special consideration to higher-order programs and their execution and incorporate
special algorithms to keep the consistency when such programs are dynamically altered.

13

Introduction Introduction

Proofs of Concept

To complete our theoretical work, two fully-functional prototypes were developed in Java.
The first is a prototype implementing the hierarchical, tree-based execution runtime de-
vised for the feasibility study. It improves on the conceptual model by including multiple
execution threads, in this way speeding up its performance. The second prototype de-
veloped is the practical realisation of the decentralised chemical runtime, enhanced with
some optimisations that take the locality of sought objects into account in order to reduce
the network traffic generated during a program’s execution. Both prototypes where run on
a real-world large-scale platform, making them, to the best of our knowledge, the first ac-
tual executions of chemical programs in large-scale environments. The experiments con-
ducted comprised up to 1000 nodes. They validate the discussed theoretical frameworks
and, thus, present a concrete, practical step towards the adoption of the chemical pro-
gramming model in specifying autonomic systems deployed in large-scale environments.

Organisation of the Thesis

The thesis is divided in two parts. In the first part, the preliminaries are described and
surveyed. More precisely, Chapter 1 delivers the essential ideas and notions the reader
should be familiar with in order to appreciate the remainder of the thesis. We describe the
chemical programming model focussing on its higher-order variant — HOCL. We briefly
overview its syntax and discuss the features related to its execution. As distributed hash
tables are on the bottom layer of our solution, we also survey the concepts behind them
and describe the different techniques used for object search built on top of them. The last
section of the chapter concentrates on works centred around mutual exclusion, particu-
larly its k-out of-M variant, since grabbing multiple molecules bears some similarities to
it. Chapter 2 discusses the previous attempts at distributing the execution of chemical
programs. First, the uniprocessor runtime is detailed, providing the basic execution algo-
rithm. Then, different existing execution distribution techniques are explained, both those
based on message-passing as well as those exploiting the shared-memory model.

Part II of the thesis represents this thesis’ contributions. The conducted feasibility
study is presented in Chapter 3. We firstly detail the architecture of a runtime based on
the distributed sharedmemorymodel. After discussing its limitations and drawbacks, both
conceptual and practical, we explore a second approach constructed onmessage-passing
techniques. Concretely, we use distributed hash tables for organising the participating
nodes in a hierarchical structure and distributing the data and execution. As a part of this
platform, we present a distributed algorithm for detecting the execution’s termination and
formally prove it to be optimal. The developed prototype is then described, laying out its
inner workings. The results of the experiments conducted in a large-scale environment
are reported. Chapter 4 details the devised adaptive protocol for the atomic capture of
multiple molecules. There is an in-depth explanation of the protocol, comprised of two
sub-protocols, together with the presentation of its adaptive component — the switch be-
tween the sub-protocols. We also discuss a rule-changing mechanism, i.e. the behaviour

14

Introduction Introduction

of the protocol when a programwithmultiple rules is executed. These concepts are proven
formally to be correct, which is further corroborated with simulation results. Finally, the
description of the decentralised execution runtime is presented in Chapter 5. We pro-
pose an architecture based on two layers — one which stores molecules, the other meta-
molecules. Not only does the double-layer structure enable an efficient and intelligent
search for molecules, but it also allows the nodes to detect a program’s termination in
a completely decentralised manner. The details of the prototype are given, after which
the experimental campaign conducted on the Grid’5000 test-bed validates the platform’s
viability and scalability.

15

Introduction Introduction

16

Part I

Preliminaries

17

Chapter1

Background

Contents
1.1 Chemical Programming Model . 20

1.1.1 GAMMA . 20

1.1.2 Higher-order Chemical Language . 22

1.1.3 Inertia Detection . 27

1.2 Distributed Hash Tables . 28

1.2.1 Overview . 29

1.2.2 Some DHTs . 30

1.2.3 Range Queries . 36

1.3 Mutual Exclusion . 39

1.3.1 Single-resource Mutual Exclusion . 40

1.3.2 Multiple-resource Mutual Exclusion 41

1.3.3 k-out of-M-Mutual Exclusion . 43

This chapter introduces the concepts, algorithms and technologies used throughout
this thesis. They represent the building blocks of our solution. Firstly, in Section 1.1, we
lay out the foundations of the chemical programming model and its variants for which we
have built a distributed execution environment. Here we also highlight the significance of
the problem of inertia detection. Next, Section 1.2 explains the idea behind distributed
hash tables (DHTs) — a technology we rely on for inter-node communication. Finally, Sec-
tion 1.3 introduces the problem of mutual exclusion of processes in a distributed systems
and gives an overview of the current state of the art in the field, with emphasis on the
k-out of-M-mutual exclusion problem.

19

1.1. Chemical Programming Model Chapter 1. Background

1.1 Chemical Programming Model

With the advent of massively-parallel machines [119], a paradigm able to efficiently ex-
ploit the benefits of such architectures was needed. The chemical programming model
aimed at filling this role. By being implicitly parallel, its paradigm allows the user to fo-
cus on solving their problem without having to deal with issues inherently related to the
parallelisation of the devised solution.

In the general description of the chemical metaphor, a chemical program can be
thought of as a chemical solution. Molecules, representing data, float in it according to
Brownian motion and collide and react according to some predefined reaction rules, con-
stituting the program. The reactions happen in an implicitly parallel, non-deterministic
and autonomous manner, in this way removing artificial sequentiality, arbitrary schedul-
ing and structuring from the program. During a reaction, molecules are consumed and
new ones are produced (creating new data). This process continues until no more reac-
tions are possible; the chemical solution has at that point reached a stable state known
as inertia.

1.1.1 GAMMA

The first model to use the chemical metaphor was GAMMA [11]. Following this pioneering
programmingmodel, a program is made up of one or more reactions which consume some
molecules and produce new ones. The solely data structure available to the programmer
is the multiset — an unordered set of molecules where each molecule may appear more
than once. Molecules can be of any predefined or user-defined type, such as boolean,
string, integer, real, etc . . . The main characteristic of the model is the È operator, defined
recursively as:

È(R,A) (M) =
if ∃x1, . . . ,xn ∈ M such that R(x1, . . . ,xn) then

È(R,A) [(M − {x1, . . . ,xn})∪A(x1, . . . ,xn)]
else

M

M is the multiset on which to operate. The operator R is referred to as the reaction condi-
tion ; it is a boolean function evaluating whether a set of molecules can react or not. The A
function describes the result of a reaction. In case the condition holds, the reactants are
consumed —removed from themultiset— and replaced by the outcome of the A function.
Reactions, i.e. the applications of the È operator, are performed until inertia is reached.

It is possible that a reaction condition holds for multiple, disjoint sets of molecules. In
that case, their reactions can be carried out simultaneously in an asynchronous manner.
Doing so brings the features of parallelism (reactions can be carried out simultaneously)
and non-determinism (there is no predetermined order of execution, since if multiple re-
actions are possible at the same time, they may or may not be executed as such) to the
model. Note that a molecule can be consumed in at most one reaction. If two sets of

20

Chapter 1. Background 1.1. Chemical Programming Model

molecules satisfying the reaction condition contain the same molecule, then only one of
the two sets is actually allowed to enter a reaction.

To illustrate the features of the model and the flow of execution, we are giving here an
example proposed in [11]. The program computes the sieve of Eratosthenes, the ancient
algorithm for finding prime numbers up to a limit. It can be represented in GAMMA as:

sieve(n) = È(R,A) (2, . . . ,n) where
R(x1,x2) =multiple(x1,x2)
A(x1,x2) = {x2}

Figure 1.1: Execution of sieve(9).

where multiple(x1,x2) is true if and only if x1 is
a multiple of x2. When a pair of molecules is se-
lected from the multiset, it is tested against the
reaction condition (R). If one integer is the mul-
tiple of the other, a reaction is initiated; the two
molecules are removed from the multiset and a
new one appears — the one holding the lower
value of the two. Hence, while in the original al-
gorithm multiples of a number are marked and
are not used again in the calculation [95], in the GAMMA version they are removed en-
tirely from the multiset. In this way, once inertia has been reached, the multiset is going to
contain only prime numbers up to n.

Figure 1.1 illustrates one of the possible paths the execution of sieve(9) might take.
We define an execution step to be a computation cycle in which one or more reactions are
carried out. In the first step, three reactions are executed in parallel: 4 and 8 producing
4, 3 and 9 producing 3, and 2 and 6 producing 2. Note that other reactions might have
been initiated instead of the ones presented: 2 could have reacted with 4 instead of 6,
while 3 could have been coupled with 6 instead of 9. Furthermore, these reactions do
not have to happen all at the same time — some might be executed at a later step. Due
to the model’s non-deterministic nature, the order of the succession of reactions is not
defined in advance; the scheduling is left entirely to the runtime executing the chemical
program. Finally, the autonomy of reactions provided by GAMMA allows the underlying
execution environment to choose the exact location of a reaction at will. That is to say,
the three concurrent reactions happening in the first step might all be executed on the
same processor (or machine), or they might each be carried out on a different one. The
paradigm is not infringed as long as the entity executing a reaction has got the reactants
which are not being used in another reaction on another entity at the same time. During
the second step the only possible reaction is initiated — 2 and 4 are consumed and 2 is
produced — leading the multiset into a stable state; inertia has been reached. The only
molecules left in the multiset are those representing prime numbers between 2 and 9, as
required.

21

1.1. Chemical Programming Model Chapter 1. Background

1.1.2 Higher-order Chemical Language

With its implicitly-parallel paradigm, non-determinism and autonomy of reactions,
GAMMA captured the essence of modelling algorithms and programs to be executed on
(massively-)parallel machines. In the meantime, however, a new branch of computer sci-
ence has developed — distributed systems —, bringing with it new problems and chal-
lenges. While in the beginning scientists were concerned with classical problems like syn-
chronisation, one of today’s challenges is dynamic adaptation: in distributed systems en-
tities appear and disappear constantly and different actors may behave differently during
their interactions.

The Higher-Order Chemical Language (HOCL) [99] has been created as a response to
these new challenges. Being a successor of GAMMA, HOCL retained its good properties,
while raising chemical programming to the higher order. Based on the Õ-calculus [12],
a higher-order, non-deterministic calculus model, HOCL introduces the notion of rule
molecules : reaction rules are not treated as special computational entities as they are
in GAMMA. Instead, they are regular molecules: they can be consumed and produced in
reactions just as regular data molecules can be. The introduction of higher order bears
two important consequences:

1. On-the-fly Program Modification. Because rules may now be removed or intro-
duced in a chemical solution at run time, the behaviour of the program being exe-
cuted is able to change over time. In this way, an HOCL program can be dynamically
adapted to virtually every aspect regarding its execution: to the environment, to the
entities participating in the execution, as well as actors interacting with the program.
Furthermore, the program is able to modify itself throughout its execution and thus
follow the changes happening in any of the listed participants.

2. Sequentiality. Being regular molecules, rules are now placed inside solutions, en-
tailing their local reach: a rule can be applied only onto molecules residing in the
same (sub-)solution as the rule’s molecule. Moreover, as (sub-)solutions are them-
selves molecules, they can be used in reactions only after their contents is inert.
Thus, by putting different rules into different sub-solutions one can achieve the ef-
fect of sequentiality.

1.1.2.1 Syntax

The full syntax of HOCL is presented in Table 1.1. A brief overview of its specificities fol-
lows.

Reaction Rules. A reaction rule in HOCL is made up of three parts: the pattern of
molecules to consume (denoted by P), the product of the reaction (denoted by M) and
the reaction condition (denoted by C). The full syntax is:

replace P by M if C

22

Chapter 1. Background 1.1. Chemical Programming Model

Solutions
S := 〈M〉 ; solution

| 〈〉 ; empty solution

Molecules
M := x ; variable

| M1, M2 ; composition of molecules
| A ; atom

Atoms
A := x ; variable

| [name =]replace-one P by M if V ; one-shot rule
| [name =]replace P by M if V ; n-shot rule
| S ; solution
| V ; basic value
| A1:A2 ; tuples

Basic values
V := x | 0 | 1 | . . . | V1+V2 | −V1 | . . . ; standard types

| true | false | V1 ∧ V2 | . . .
| V1 = V2 | V1 ≤ V2 | . . .
| "string" | V1 @ V2 | . . .

Patterns
P := x :: T ; molecule with type T

| é ; any molecule
| name = x ; naming a reaction
| 〈P〉 ; inert solution
| (P1 : P2) ; pair
| P1,P2 ; composition of molecules

Types
T := B ; basic type

| T1 × T2 ; product type
| ⋆ ; universal type

Basic types
B := Int | Boolean | String

Table 1.1: HOCL syntax (taken from [99]).

23

1.1. Chemical Programming Model Chapter 1. Background

A reaction in HOCL involves a set of molecules N, which match the pattern P and satisfy
the reaction condition C . Thesemolecules are then consumed, and the set of moleculesM
is produced. These reaction rules are called n-shot rules because their molecules do not
disappear from the solution after the reaction. Since in many cases one needs to execute
a certain portion of the code only once, HOCL also provides so-called one-shot reaction
rules, which vanish once they are executed:

replace-one P by M if C

Reaction rules can also be named, and in this way matched as part of the pattern P
of (another) rule. This brings about the possibility of higher-order reaction rules — rules
which consume or produce rule molecules. Named rules can be n-shot as well as one-
shot. As an illustration, here is the example given in Section 1.1.1, but written in HOCL:

let sieve =
replace x1,x2
by x2
if (x1mod x2 == 0) in
〈 2,3,4,5,6,7,8,9,sieve 〉

Types. As shown in Table 1.1, expressions in HOCL are statically typed using standard
types. The language has been designed with flexibility in mind, and thus offers the possi-
bility to put molecules of different types in a solution (reaction rules, integers, etc.). Inte-
ger, boolean and string constants, along with their associated operations, are supported.
Compound molecules — combinations of molecules of different types —- are using the
universal type ⋆. More generally, any type is a subtype of ⋆ (∀T ,T � ⋆).

In complex programs, where there are molecules of multiple types and multiple rules
consuming molecules of different types, it is useful to explicitly use types in the pattern P
of a reaction rule, such as:

replace x :: String ,y :: Int by x

This reaction rule specifies that a string and an integer will be consumed, producing a new
molecule with the contents of the original string. Thus, if there is no such pair of molecules
in the solution, the reaction rule is not going to be triggered. When the type of a molecule
is not explicitly stated, it can be inferred from the reaction condition C and the reaction’s
result set M. An example is the following rule, where the type of x is deduced to be float
from the rule’s result set:

replace x by
√
x if x ≥ 1

Tuples. A tuple, denoted by A1 : A2 : . . . : An, represents a compound molecule made up
of n atoms. Hence, any valid molecule may become part of a tuple. Tuples are particu-
larly useful when used in conjunction with solutions, as in this way sub-solutions may be
isolated from one another.

24

Chapter 1. Background 1.1. Chemical Programming Model

Matching Any Molecule. Sometimes it is useful to match zero or more elements of
any type, for example in cases where the goal of a reaction is the removal of a specific
molecule or its extraction from an inert sub-solution. This can be achieved with the é-
notation. When specified in a reaction pattern, it matches every molecule in the solution
not explicitly specified in the pattern itself. Consider the following reaction rule:

eraser = replace x :: Int ,é by é

Figure 1.2: An HOCL-based autonomic service.

This simple rule effectively removes an in-
teger from the solution: x matches the in-
teger in question, while é matches all of
the other molecules present in the solu-
tion, if any are left. Thus, eraser can be
triggered as long as there are integers in
the solution. Note that omitting the type
of x might entail a very different execu-
tion. Because, in this particular case, the
type cannot be inferred from the condition
nor the result set, any molecule can be
matched as x, including the rule molecule
of eraser , meaning the reaction rule might remove its own molecule, in this way breaking
the (intended) program’s logic.

1.1.2.2 Illustrative Example

We now present a simple, straightforward example showing how HOCL can be used in
a dynamic setting which is in need of self-adaptive capabilities. Recall the motivational
example given in the previous chapter — the two-tier, autonomic workflow management
system. Here we will concentrate on the lower, service management tier.

Let us consider a simple task (or service) available on-line and continuously requested
by external clients. There exist several concrete implementations (or services) on the
platform, which can perform this task. In order to be able to handle clients and different
services, this component must have the following capabilities:

• service selection based on a predefined policy (or criterion), or a set thereof: since
there are multiple implementations, the service judged as the fittest (following the
predefined policy) has to be active and available to clients;

• dynamic policy alteration : due to the dynamic nature of the platform, criteria on
which implementations are chosen may change in time (connection issues, spikes in
CPU usage, etc.), and it is thus essential that the system responds to these changes;

• failure recovery : the currently running implementation may fail at any time, in which
case the system must be able to switch to another implementation.

25

1.1. Chemical Programming Model Chapter 1. Background

Figure 1.2 illustrates the HOCL-based implementation of this self-adaptive service. The
multiset (on the left-hand side of the figure) interfaces with two system components, the
descriptions of which follow.

• Service Discovery Unit. It discovers available service implementations and injects
them in the chemical solution as Si :< free_cpu i ,net_tput i > molecules. Each such
injected molecule represents a service able to perform the task asked by clients.
Apart from its identifier (Si), such amolecule contains a sub-solution indicating some
current performance indicators. Here, this sub-solution contains the amount of free
CPU (free_cpu i) and the current network load (net_tput i) of the resource the imple-
mentation is running on, but the list of indicators can be arbitrarily extended. These
information molecules on services are periodically refreshed.

• Failure Detector. This unit detects failures of the currently active service (denoted
by the Binding : Si molecule) and introduces a “failure_detected” molecule upon de-
tection.

The rules that drive the execution follow. First, the repair rule needs the presence of the
specific molecule indicating a failure. Once triggered, it binds the task to another service,
removing the previously-binded one:

let repair =
replace Binding : Si , Si :< éi >, S j :< éj >, “failure_detected"
by Binding : S j , S j :< éj >

Let us now review an optimising rule, named optimise_cpu :

let optimise_cpu =
replace Binding : Si , Si :< free_cpu i , net_tput i >, S j :< free_cpu j , net_tput j >
by Binding : S j , Si :< free_cpu i , net_tput i >, S j :< free_cpu j , net_tput j >
if (free_cpu j > free_cpu i)

A reaction following the optimise_cpu rule is triggered when a service molecule S j with a
better CPU availability is found in the multiset. This rule corresponds to the decision taken
by the system to select services based on their CPU availability. Similarly, an optimise_net
rule may consider a service’s network capabilities.

Having different policies brings more flexibility to the adaptation but creates the need
for dynamic switching from one to the other based on a criterion, in this case meaning
optimise_cpu might have to be put aside in favour of optimise_net . This is achieved
through the higher order, using the following rule, which replaces an optimising policy
by another one as soon as it detects the criterion has been altered:

let switch_to_net_policy =
replace optimise_cpu , criterion
by optimise_net , criterion
if (criterion = “Net")

26

Chapter 1. Background 1.1. Chemical Programming Model

Note that, as illustrated on Figure 1.2, other rules, for instance switch_to_cpu_policy ,
can be similarly constructed and introduced in the solution concurrently. They can coexist
smoothly in the solution, as the criterion can take only one value at a time, preventing
concurrent reactions of contradictory switching rules. Finally, note that for the sake of
simplicity, the example deals with only one service. However, it can be easily extended so
as to deal with many services distributed over the nodes of a large-scale platform, each
area of the platform having its own criteria and policies changing concurrently.

1.1.3 Inertia Detection

Even though, formally, inertia is simply one of the possible states of chemical programs,
in practice it is regarded as a program-termination phase: the execution of a program
finishes once inertia has been detected by the underlying runtime environment.

While the notion of detecting inertia is intuitively straightforward to understand, the
amount of computation that has to be done in order to achieve varies from program to
program as it depends on the rules used. Hankin et al. [53] identify five types of rules:
reducers, selectors, transmuters, optimisers and expanders. Although each type has its
own characteristics, when considering the complexity of inertia detection, they can be
grouped in two categories: rules which produce less molecules than they consume (re-
ducers and selectors) and those which produce a number of molecules equal to or greater
than the number of molecules they consume (transmuters, optimisers and expanders).
We now present a short analysis of inertia detection for reducer and optimiser rules, each
a representative of one of the two groups.

1.1.3.1 Reducer Rules

Inertia for reducers is straightforward to detect. Consider the example of a program which
finds the maximum integer in a multiset:

let getmax =
replace x, y
by x
if (x ≥ y)

in
〈 getmax , 8, 10, 5, 7, 6 〉

After every reaction the number of molecules in the solution decreases. Reactions are
performed until there is only one integer molecule left, at which point inertia can be de-
tected. Inertia is reached because there are simply not enough molecules present in the
solution to perform any more reactions. Hence, detecting inertia in this case is trivial for
the underlying execution environment, in the sense that the end of the execution has been
reached because there are no more steps which can be performed.

27

1.2. Distributed Hash Tables Chapter 1. Background

1.1.3.2 Optimiser Rules

When the number of molecules stays the same after each reaction, however, inertia de-
tection is not an easy task. Consider a program sorting an array of elements represented
by tuples of the form i : x, where i is the element’s index and x is its value:

let sort =
replace i : x, j : y
by i : y, j : x
if (i < j && x ≥ y)

in
〈 sort , 1 : 5, 2 : 10, 3 : 15, 4 : 20 〉

If the two elements are not sorted in ascending order, the sort rule consumes them and
produces two new molecules with the same indices, but swapped values, keeping in this
way the number of molecules in the solution constant, but optimising the sorting process.

The solution in the example is already inert; no element is out of place. Nevertheless,
to detect inertia, the underlying execution environment has to check every possible com-
bination of elements against the reaction condition.

Throughout this thesis we assume, for the sake of simplicity and without loss of gener-
ality, that the rules’ reaction conditions are commutative functions, i.e. that they maintain
the same output regardless of the arguments’ order (C(x,y) = C(y,x)). There is no loss of
generality since even if, for a given rule R1, its condition is not a commutative function,
another rule, R2, can be always constructed such that C1(x,y) = C2(y,x) holds. Under
these circumstances, the number of combinations to be checked is:

N =

(

m

r

)

=
m!

r!(m − r)! (1.1)

wherem denotes the number of molecules in the solution and r is the number of the rule’s
arguments. Given the number of combinations that has to be checked and given the fact
that all of the combinations have to be tried out in order for the runtime to decide inertia
has been reached, we are faced with an NP-complete problem equivalent to the well-known
Boolean satisfiability problem [47]. In spite of the detection’s complexity, the execution of
chemical programs appears feasible in practice since in most cases the number of a rule’s
arguments, r, is relatively small, which makes inertia detectable in a reasonable amount
of time (as the complexity of N lies in O(mr)).

1.2 Distributed Hash Tables

Due to the vast number of entities participating in its functioning, imposing a centralised
architecture on a large-scale application means incurring penalties such as degraded per-
formance, network bottlenecks and failures. Peer-to-peer (P2P) computing offers an alter-
native to the traditional client-server view in the form of distributed systems which do

28

Chapter 1. Background 1.2. Distributed Hash Tables

not have any hierarchical organisation or centralised control. By having symmetry in the
entities’ roles, where a client may also be a server and vice versa, and by building a fully-
distributed cooperative network design with peers forming a self-organising system, P2P
systems offer different features such as robust wide-area routing architecture, redundant
storage, massive scalability and fault tolerance [87, 77].

Going a step further, distributed hash tables (DHTs) [6] are structured P2P overlay net-
works which offer efficient, scalable, wide-area data retrieval as well as load-balancing
capabilities, enabling them to support the rapid development of a wide variety of Internet-
scale applications ranging from distributed file and naming services to application-layer
multicast.

1.2.1 Overview

A DHT overlay network is a logical network of participating peers, or nodes, constructed
atop an Internet Protocol (IP) network, the topology of which is tightly controlled and where
data is placed at a precisely specified location, determined by a mapping in the form of a
hash function. This mapping allows queries to be routed efficiently to the node providing
the desired content. Thus, they present a scalable solution for exact-match queries, i.e.
queries where the exact identifier of the requested data object is known.

1.2.1.1 Operating Principle

Nodes in a DHT overlay network are each assigned a node identifier (a node id) chosen
from a large set of identifiers. Each data object is referenced by a (key, value) pair, as in
a traditional hash table. The user provides the value, which is hashed using a uniform,
consistent hash function, such as SHA1 [39], to obtain the data’s key belonging to the
same space of identifiers as that of the nodes. This key is then used to store the data
object on a unique peer in the network. Every DHT provides solely two functionalities to
its users: one for storing a data object — put(key ,value) — and one for retrieving it —
get(key).

Each peer maintains a small routing table consisting of a number of known nodes,
stored as pairs of node identifiers and their IP addresses, allowing it to choose an appro-
priate peer to communicate with when resolving requests. Which entries will enter the
routing table of a particular DHT depends on its routing algorithm and routing geome-
try [52]. The routing algorithm represents the set of mechanisms determining a peer’s
neighbours (the entries of its routing table) and the next hop in routing a request. In this
way, the routing algorithm compels nodes to create an underlying graph with a predeter-
mined organisation — the routing geometry. Depending on a particular geometry, nodes
may have more or less flexibility in terms of choosing their neighbours and/or paths for
messages.

Hence, every DHT protocol provides a different logic for the lookup function— amech-
anism allowing nodes to retrieve the node responsible for storing a given key. In spite of
their differences, the principle of the mechanism is the same for all DHTs: lookup queries

29

1.2. Distributed Hash Tables Chapter 1. Background

are forwarded across overlay paths in a progressive manner to peers with node ids closer
to the key in the identifier space, where closeness may be defined differently for different
DHT protocols. The lookup function is used to satisfy user-issued get() and put() requests.

In order to preserve the overlay’s network topology and routing geometry, two more
functions are defined in DHTs, namely join and leave. When entering a network, a new
peer, N, contacts a bootstrap node, B —anode for which the new peer knows to be already
in the overlay — and asks it to route a special join message to node N. This message is
routed to node R — the node responsible for N’s node id, i.e. the node which answers
lookup requests for it. The joinmessage indicates to R there is a new node to be inserted.
It splits its own space with the newcomer N by handing it the part of the keys for which N
is going to be responsible from that moment on. N then starts building its routing table,
first by copying part of R’s routing table and then sending lookup messages on different
keys. When N decides to leave the network, it informs its closest neighbours using a leave
message and transfers them each a part of the keys it holds. The neighbours expand their
space by accepting the keys and adjust their routing tables accordingly.

1.2.1.2 Desirable Properties

Due to their design, DHTs exhibit several good properties.

• Decentralisation. By splitting the key space amongst nodes, none of which has a
global view of the system, DHTs present a natural platform for developing flat, fully-
decentralised applications where each node is able to change its role — server or
client — depending on the computational task at hand and/or on the messages it
has received from other participants.

• Dynamic Environment Support. DHTs are able to preserve their communication pat-
tern because of the join and leave procedures, and thus are able to support highly-
dynamic, volatile environments where participants enter and leave the network at
unpredictable moments and possibly do so frequently.

• Scalable Communication. Due to the DHTs’ routing algorithms and their usage of
routing tables, the number of logical hops needed for amessage to reach its destina-
tion grows logarithmically with the number of nodes; in theory, DHT-based systems
can guarantee that any data object can be located in at most O(n) hops, where n
denotes the number of peers in the system, since in the worst case, every node is
going to be contacted.

• Load Balancing. Since the key space in a typical DHT is large in size compared to the
number of nodes, they are sparse. However, the usage of uniform, random hashing
ensures, with high probability, the uniform distribution of keys amongst nodes, thus
balancing the network load during data storage and retrieval.

30

Chapter 1. Background 1.2. Distributed Hash Tables

1.2.2 Some DHTs

Wenow briefly describe someDHT protocols, each pioneering a different routing geometry.

1.2.2.1 CAN

Figure 1.3: Content-
Addressable Network (CAN),
when d = 2.

Geometry. The Content-Addressable Network (CAN) [101]
divides a virtual d-dimensional torus into n d-dimensional
Cartesian coordinate zones, with n denoting the number of
nodes in the system. Thus, each peer is assigned a par-
ticular zone, i.e. a range of d-dimensional Cartesian coor-
dinates. Keys are deterministically mapped onto a point P
in the coordinate space using a uniform hash function. A
two-dimensional CAN comprising five nodes is shown on Fig-
ure 1.3. Note that the CAN space shown on Figure 1.3 is not a
square, since coordinates wrap and the virtual space has no
borders. In the special case when d = logn, the geometry of
CAN becomes a hypercube.

Routing. The routing table of a node N in CAN comprises
only its neighbours — nodes which are responsible for zone
adjacent to the one held by N. Messages are routed in a greedy fashion by forwarding
them to the neighbour closest to the destination coordinates.

Join/Leave. CAN has an associated DNS domain name, where IP addresses of bootstrap
peers are kept. When a new node wants to join the system, the DNS provides it a boot-
strap node, which, in return, supplies a list of randomly chosen peers. The new node then
randomly chooses a point P and sends a join request to one of the previously returned
peers. The node responsible for the zone in which P lies splits its zone in two halves (in
each dimension), leaving one for itself, and assigning the other half to the newcomer by
transferring it the keys belonging to it. The new peer learns of the IP addresses of its
neighbour set from the previous peer in point P , and includes it as well.

When a peer leaves the network, an immediate takeover algorithm is triggered, ensur-
ing that one neighbour takes over the zone. It updates its neighbour set and then sends
soft-state updates to ensure that all of the neighbours learn about the change. These
updates are propagated through the network.

Complexity. For a d-dimensional space partitioned into n equal zones, the average rout-
ing path length is n

1/d ∗ d4 hops and individual peers maintain a list of 2 ∗d neighbours. The
neighbour set does not grow with the increase in the number of peers, while the average
path length grows proportionally to n

1/d . In the case of the hypercube, routing is reduced
to logn hops, and each node has got precisely logn neighbours, each differing in exactly

31

1.2. Distributed Hash Tables Chapter 1. Background

one bit. Still, a hypercube-shaped CAN is unlikely in practice since the number of nodes is
unknown at network creation time and varies throughout its existence.

1.2.2.2 Chord

Figure 1.4: Chord ring for m = 5.

Geometry. Nodes and keys in
Chord [118] are organised into a
logical ring in ascending order. Each
node keeps a pointer to the node
following it, giving rise to the notion of
successor. The node with the smallest
node id is the successor of the node
with the highest node id. For a key k,
successor(k) denotes the first node
in the ring whose node id is higher or
equal to k.

Node identifiers and keys are or-
dered on the identifier circle modulo
2m, wherem is the size, in bits, of iden-
tifiers. Chord uses consistent hash-
ing [64] for placing nodes and data
along the ring. A peer’s identifier is
chosen by hashing its IP address and

port number, while a key identifier is produced by hashing the data key.

Routing. A node in the Chord ring stores the information about other nodes in the so-
called finger table. The i th entry in the table of peer N contains the identity of the first
peer S that succeeds N by at least 2i−1, i.e. S = successor(N + 2i−1). A finger table entry
includes both the Chord identifier and the IP address, as exemplified in Figure 1.4.

Lookup queries involve the matching of a key and a node id. To route messages a node
consults its finger table and forwards the message to the node whose node id is closest
to, but less than or equal to, the key. The message is passed around the circle until a
pair of peers is encountered whose interval contains the key; the second node is then the
message’s final destination.

Join/Leave. The join and leave procedures closely resembles the one described in Sec-
tion 1.2.1.1, with the specificity that a neighbour in Chord is a successor. To reduce the
time needed to complete the join and leave procedures, each node keeps a pointer to its
direct predecessor — the node to which it is a successor. Since the routing heavily de-
pends on nodes’ finger tables, the Chord protocol uses a stabilisation protocol running
periodically in the background to update successor pointers and the finger table entries.

32

Chapter 1. Background 1.2. Distributed Hash Tables

Complexity. A finger table can have up to m entries, but it usually occupies log2 n mem-
ory locations on each node. Due to the usage of long range contacts, Chord ensures
messages are delivered in O(log2n) logical hops, with high probability1 (w.h.p.): at least
half of the remaining distance is traversed at each step.

1.2.2.3 Pastry

Geometry. Pastry’s [109] key and identifier space is a 128-bit one, and nodes and data
are circularly positioned in it, in the range [0,2128 − 1]. Node ids are assigned randomly
using a uniform hash function, typically SHA1 [39], in this way distributing the nodes uni-
formly across the space. The same hash function is used to create data keys. Both node
ids and keys are considered a sequence of digits in base B , where B = 2b (b is a configu-
ration parameter and is usually set to b = 4).

In spite of the circular identifier space, Pastry’s routing geometry is actually hybrid,
since a tree-like node organisation is used for routing, where each node constructs its
own tree of which it is the root and any node sharing its node id prefix with it is a candidate
for inclusion. More precisely, nodes placed on level i of the tree share all but the last i
digits with the root’s node id.

Routing. Pastry is a derivative of the prefix-based routing algorithm proposed by Plaxton,
Rajaraman and Richa [97]. Thus, messages are routed so that the node in the next hop
shares a bigger common prefix with the message’s key than the current node. The final
destination is the node the node id of which is numerically the closest to the key. Pastry
nodes divide their routing information in three parts: a routing table, a neighbourhood set
and a leaf set. An example of the contents of these structures is shown in Figure 1.5.

• Routing Table. The routing table basically contains the routing tree used by the node.
There are B − 1 entries per table row, where each entry is composed of a node id
and its IP address. Row i contains a node if its node id shares the current node’s
identifier’s first i digits, but its (n+1)th digit has one of the B−1 other possible values.

• Neighbourhood Set. In order to improve the routing performance, each node main-
tains a neighbourhood set, M, populated by |M | nodes closest in proximity to the
current node. The network proximity used in Pastry is based on a scalar proximity
metric such as the IP-routing geographic distance. The neighbourhood set denotes
a node’s physical neighbourhood.

• Leaf Set. The leaf set, L, is the set of nodes with identifiers close to the current
node’s. The set is split in two subsets: |L|2 nodes with smaller identifiers, and |L|2 nodes
with greater node ids. A node uses the leaf set to determine exactly which keys
belong to it and which belong to its neighbours. The leaf set represents a node’s
logical neighbourhood.

1An event occurs with high probability if, for any Ó ≥ 1, there is an appropriate choice of constants for
which the event occurs with probability at least 1−O(1/nÓ), where n denotes the number of nodes

33

1.2. Distributed Hash Tables Chapter 1. Background

Figure 1.5: Routing table, neighbourhood set and leaf set of a Pastry peer, with an example of
routing (taken from [77]).

34

Chapter 1. Background 1.2. Distributed Hash Tables

When a node receives a message, it first consults its leaf set. If the message’s key
falls inside the leaf set’s range, the final destination node is determined and the message
is sent to it; the node itself handles the message if it happens to be the node with the
numerically closest identifier to the key. Otherwise, the node refers to its routing table to
find the node with the longest common identifier prefix as the message’s key. If a node with
the same prefix length exists in the neighbourhood set, it is preferred over the one found
in the routing table.

Join/Leave. When joining the Pastry ring, node X contacts an a priori known node A
and asks it to route a join message with the key equal to X. The message is routed to
node Z which is responsible for the key X. Upon receiving the join request, nodes A, Z
and all others encountered on the path send their routing tables to node X. Using this
information, it initialises it structures and informs any nodes which need to be aware of its
arrival.

Pastry has got a dynamic fault-tolerance mechanism. Nodes periodically check the
state of nodes in their leaf set. When a node perceives one of them is not responding, it
contacts the live node with the largest index in the subset of the failed node and requests
its leaf set. The failed node is replaced by an alive node residing in the set L′ \ L, where
L′ denotes the received leaf set. In the same vein, the neighbourhood set is periodically
checked. If a node is not responding, the contacting node asks other members of the
set for their neighbourhood sets. It then finds the node closest to it, as per the proximity
metric, which is not already part of the neighbourhood set and replaces the failed node
with it.

Complexity. The routing table has an average of ⌈logB n⌉ rows with each holding B − 1
entries. The leaf and neighbourhood sets are of tunable sizes, but their typical sizes are
B and 2 ∗ B , respectively. Since the path length between two nodes is determined by the
sub-tree connecting them, Pastry needs at most logB n logical hops to route a message,
w.h.p. The routing algorithm’s efficiency is further enhanced with good locality properties,
since nodes will select as neighbours nodes closer to them as per the proximity metric.

1.2.2.4 Other DHTs

Viceroy. By enhancing Chord with carefully selected long range contacts, Viceroy [80]
maintains an architecture which is an approximation of the butterfly network [113], mak-
ing its geometry hybrid. A Viceroy network is comprised of three different types of struc-
tures: (i) a Chord-like ring; (ii) the butterfly, connecting nodes from the Chord-like ring
using an emulation of the butterfly network; and (iii) level rings, bringing together nodes
from the same butterfly level. Due to the simultaneous maintenance and usage during
routing of all of these structures, Viceroy exhibits a constant out-degree and logarithmic
diameter. Its diameter is better than CAN’s and its degree is significantly lower than that
of other ring-based DHTs (Chord, Tapestry, Pastry).

35

1.2. Distributed Hash Tables Chapter 1. Background

D2B. With a geometry based on a de Bruijn graph [33], D2B [43] is able to keep the
node degree constant, while at the same time offering lookup operations which com-
plete in O(logn) logical hops. The keys are uniformly distributed with an upper bound
of O(|K| logn/n) keys per node, where K denotes the set of keys. The basic version of D2B
uses a de Bruijn graph of dimension 2. However, it is also possible to construct a geometry
with an arbitrary dimension d while keeping the interesting properties. The drawback of
D2B stems from the fact that identifiers are statically assigned to nodes, limiting its usage
in real, dynamic settings.

eCAN. Expressways-CAN (eCAN) [126] is an extension to CAN which optimises path
lengths by creating shortcuts inside the CAN torus. The main idea is to divide the CAN
space into k subspaces and continue doing so for each subspace for as many levels as
wanted. For each division, a node creates a link to one node in each adjacent subspace.
By keeping such long range contacts, routing path lengths are shortened when amessage
passes a subspace barrier. This way, the routing process needs lnn hops to complete.

Tapestry. Tapestry [127] is in its essence very similar to Pastry. It is also inspired by
the prefix-based routing from Plaxton et al. [97], and has, thus, a complexity and perfor-
mance comparable to that of Pastry, despite the fact that Tapestry resolves digits in the
opposite order. However, nodes in Tapestry do not maintain a leaf set like in Pastry. Con-
sequently, its routing geometry is a pure tree. Another significant difference is the usage
of the neighbourhood set. Tapestry automatically puts closer nodes into the routing ta-
ble, and in doing so it limits the number of distinct routes a message can traverse to its
destination.

Kademlia. Like Chord, Kademlia [83] relies on the notion of distance between two iden-
tifiers, but instead of the Euclidean metric, it uses XOR. XOR is symmetric and it allows
nodes to receive lookup queries from precisely the same distribution of nodes contained
in their routing tables. Furthermore, XOR has the property of being unidirectional, which
makes sure all of the lookups for the same key converge along the same path. Like Pastry,
Kademlia exploits locality by routing messages towards one of the k peers closest to the
destination based on latency.

Koorde. Koorde [61] is a DHT that augments the basic Chord ring with a de Bruijn graph.
While sharing some similarities with D2B, most notably the network geometry and con-
stant out-degree, Koorde differs from D2B in that it uses Chord’s scheme for node id as-
signment and handling of multiple joins, while D2B forces nodes to adopt a particular iden-
tifier in order to construct a de Bruijn graph. Koorde achieves the following optimal results:
(i) for a O(1) node degree, the network’s diameter is O(logn) w.h.p.; and (ii) for a O(logn)
node degree, the diameter is O(logn/ loglogn).

36

Chapter 1. Background 1.2. Distributed Hash Tables

1.2.3 Range Queries

Because DHTs are data-centric systems, one of their major shortcomings is that they pri-
marily support exact-match, single-key queries. Indeed, the very feature that makes for
their good load-balancing properties — the usage of randomised hash functions — works
against range queries. Hence, additional mechanisms have to be employed to provide for
such a functionality.

Since resolving complex queries, and in particular range queries, is a feature needed in
every information-retrieval system, there are many proposals in the P2P community which
tackle it in different ways and by using different underlying structures [54, 9, 44, 19, 32,
122]. We here focus on solutions which build upon DHTs and give a short overview of the
most significant ones.

MAAN. The Multi-Attribute Addressable Network (MAAN) [21] was one of the first sys-
tems enabling range queries in DHTs. Based on Chord, MAAN provides the mechanisms
for multi-attribute range queries by essentially replacing SHA1 with a uniform locality-
preserving hash function. Objects are placed along the Chord ring so that their order is
preserved with regards to a specific attribute. For resolving a range query, a request is
sent to the node responsible for the range’s lower bound. It adds the objects matching
the criteria to a list and passes it on to its immediate successor. This process is repeated
until the query reaches the node responsible for the range’s upper bound, which sends the
result back to the originating node. Hence, MAAN needs O(n) messages in the worst case.
When multiple-attribute objects are stored in the DHT, a hash value is calculated for each
attribute value and the object is stored atmultiple locations. Resolving amultiple-attribute
query involves sending m sub-queries iteratively, where m is the number of attributes the
range query contains.

Figure 1.6: 2-d
Hilbert curve, sec-
ond refinement
level.

Inverse Space-filling Curve. By using the inverted Hilbert’s space-
filling curve [7], Andrzejak et Xu [5] map a single-attribute domain
onto CAN’s generalised d-dimensional Cartesian space (Figure 1.6).
They assume objects have a single, continuous attribute whose val-
ues fall in the range [0,1]. Since Hilbert’s algorithm translates a point
in the d-dimensional space into a value in the same range while pre-
serving data locality2, Andrzejak and Xu simply invert it to place an
object on the CAN torus. Resolving a range query involves sending
a request to the node responsible for the point in the middle of the
range, which then searches its surroundings along the curve to fulfil
the query. The authors propose three methods in the paper: (i) brute
force, which computes the smallest hypercube encompassing all of the zones intersecting
the range; (ii) controlled flooding, in which messages are sent to nodes that definitely in-
tersect the query; and (iii) direct controlled flooding, which floods the right and then the

2Data locality is preserved in the sense that data points which are close in the original d-dimensional
space will remain close after the translation.

37

1.2. Distributed Hash Tables Chapter 1. Background

left side of the curve in search for a match.

Figure 1.7: Range-query resolution us-
ing a PHT.

Prefix Hash Tree. The Prefix Hash Tree (PHT) [100]
is a trie-based distributed data structure built re-
lying exclusively on the lookup function, and can,
thus, run atop any DHT. Each node of the PHT is la-
belled with a recursively-defined prefix: given a node
with label l, its child nodes are labelled l0 and l1.
The PHT is mapped to the DHT by hashing each PHT
node’s prefix label and locating it on the node re-
sponsible for hash(l). A data object is found by per-
forming a DHT lookup on its prefix. Keys are stored
only on leaf nodes, which form a double-linked list,
used in the sequential traversal for answering range
queries—given the bounds of a query, [l,u], the PHT
locates leaf (l) and traverses the list until leaf (u).
The paper presents another, parallel, algorithm for
resolving range queries. Using the DHT, the node
whose prefix covers the whole range is located. It

then recursively forwards the query to those children which overlap with the specified
range. The two algorithms are illustrated in Figure 1.7. To store multi-attribute objects
and resolve queries over them, the PHT uses space-filling curves to map a d-dimensional
object onto a one-dimensional point and then references it during operation.

Range Search Tree. Like the PHT, the Range Search Tree (RST) [45] can operate on top
of any DHT. An RST is a complete and balanced binary tree with k leaf nodes and ⌈logk⌉+1
levels. An attribute’s domain is split in k sub-domains, one per leaf node, while the sub-
domain of a non-leaf node corresponds to the union of its children’s sub-domains. For each
sub-domain, the RST keeps a load-balancing matrix (LBM) — a set of nodes responsible
for the sub-domain. RST nodes are mapped onto DHT nodes by hashing the RST node’s
attribute, its sub-domain and the column and row indices in its LBM. A range query, with the
range length Rq , is decomposed into O(logRq) disjoint sub-queries, each corresponding
to a node in the RST. Each sub-query is then resolved by the matching node in a top-down
fashion.

Squid. Another system using Hilbert’s space-filling curve is Squid [111]. It was the first
range-query system which natively supported multi-attribute range queries. Squid sup-
ports keyword searches, including wildcards, partial keywords and ranges, and guaran-
tees that the information will be found if it exists in the system. Each data element that
is indexed is described using a set of keywords. All the possible keywords form a multi-
dimensional keyword space and each data element can be regarded as a point in this
space. Hilbert’s curve is then used to map this multi-dimensional keyword space to a one-
dimensional index space. It is DHT-independent as it does not require any modification

38

Chapter 1. Background 1.3. Mutual Exclusion

of the underlying DHT. The mapping between Squid indices and DHT nodes is straightfor-
ward, because the index space is chosen so as to match the DHT’s key space. To process a
range query, the keyword-based query is translated into one-dimensional-point segments
— clusters (contiguous ranges). While in a simple case, sub-queries matching these clus-
ters might be directly sent to the relevant nodes, the authors of the paper offer an opti-
mised, distributed querying procedure, in this way balancing the query-resolving load. The
query in question is refined by following Hilbert’s curve’s refinement process. At each re-
finement step, as the query gets divided, its sub-queries are sent to the nodes responsible
for the given region of the d-dimensional space. Effectively, a refinement tree is created
for each query. The authors show that, for a generic query matching p% of the data, the
number of nodes with matching data approaches p% of all nodes in the system.

1.3 Mutual Exclusion

One of the fundamental research topics in distributed systems has been mutual exclusion
of processes competing for shared resources. The access to such a shared resource must
be synchronised amongst processes (or nodes) to ensure that only one process is making
use of the resource at a given time. Each process must request permission to enter its crit-
ical section and must release it after it has completed its execution. Therefore, a mutual
exclusion algorithm must meet the following requirements [114]:

• safety : at most one process can execute its critical section at a given time;

• liveness : if no process is in its critical section, any process requesting to enter its
critical section must be allowed to do so in finite time;

• starvation : when competing processes concurrently request to enter their respec-
tive critical sections, the selection cannot be postponed indefinitely;

• fairness : a requesting process cannot be prevented by another one to enter its criti-
cal section within a finite delay.

Distributedmutual exclusion algorithms can be roughly divided in two categories [105]:

• Permission-based. In the permission-based group the right to enter a critical sec-
tion is formalised by receiving permission from a set of nodes in the system. A pro-
cess wishing to enter its critical section asks the others to give it their permission to
proceed; and then it waits until these permissions have arrived before entering the
critical section. Each process may grant its permission to only one process at a time.

• Token-based. In the token-based group the right to enter a critical section is ma-
terialised by a special object, a token, unique in the system. The singular existence
of the token implies the enforcement of mutual exclusion. Processes requesting to
enter their critical section are allowed to do so when they possess the token. After
a process has finished executing its critical section, it chooses the next token owner
and sends it the token.

39

1.3. Mutual Exclusion Chapter 1. Background

Regardless of whether a particular mutual exclusion algorithm is permission- or token-
based, it can tackle the problem of allocating only one resource to a process at a time, or
multiple ones. We here give a short overview of these two kinds of algorithms and then
concentrate on k-out of-M-mutual exclusion, a special kind of multiple-resource alloca-
tion problem. Note that throughout this section we use the terms “node” and “process”
interchangeably.

1.3.1 Single-resource Mutual Exclusion

1.3.1.1 Permission-based Algorithms

The first distributedmutual exclusion algorithm proposed uses timestamps —event coun-
ters accompanied by the identifier of the process generating it — to define the total order
in a set of processes competing for a resource [70]. A process entering a critical sec-
tion sends request messages to all of the other processes. When a process receives a
request message, the request is put into a priority queue and it sends a reply message
to the requesting process. The requesting process enters a critical section if it receives
reply messages from the other processes and its request is the highest among items in its
priority queue. To exit from a critical section, it sends a release message to the other pro-
cesses and deletes its request from its queue. This algorithm is based on the unanimous
consensus method and requires 3(n −1) messages per mutual exclusion cycle.

Ricart and Agrawala [106] improved it by removing the sending of messages when the
process exists a critical section, thus achieving a total cost of 2(n−1) messages per cycle.
Carvalho and Roucairol [25], in their turn, further improved the algorithm. The number of
messages with their approach varies from 0 to 2(n−1). The reduction in messages comes
from the simple observation that if node i grants its permission to node j , j does not have
to ask i ’s permission again at a later time, unless i wants to enter the critical section before
j does. By analysing the aforementioned algorithms, Sanders introduces the concept of
an information structure as their unifying principle and proposes a generalised mutual
exclusion algorithm based on it [110].

Thomas noticed that in order to enter its critical section, a process does not necessar-
ily have to obtain the permission of all of the others. He proposed the majority consensus
algorithm [121], where permission has to be granted by only (n +1)/2 processes, thus au-
tomatically cutting in half the number of messages. Mutual exclusion is still guaranteed:
any two sets of (n + 1)/2 processes each will have at least one process in common, and
since that process can give its permission to at most one process, no two processes can
enter their critical sections at the same time. Variations of this algorithm have also been
proposed, such as weighted voting [49] and multidimensional voting [30].

As a generalisation of majority and voting, Garcia-Molina and Barbara developed the
notion of a coterie [46] — a set of quorums, sets of nodes, where each pair of quorums
has got a non-empty intersection and no quorum is a subset of another. Using quorums
decreases the number of messages since a process wishing to enter a critical section
sends request messages only to processes in a quorum. Coteries can be constructed by
using finite projective planes [79], binary trees [4] or multilevel hierarchies [68]. Neilsen,

40

Chapter 1. Background 1.3. Mutual Exclusion

Mizuno and Raynal proposed a general way of constructing coteries, and they show how
to design complex coteries using simple ones [92].

1.3.1.2 Token-based Algorithms

Ricart and Agrawala were the first to propose a token-based algorithm [107]. Entrance to
the critical section is moderated by an incremental sequence counter. If a node wishes to
enter its critical section, it sends a token request to every other node and waits until one of
them sends it the token. By implementing a request array holding the sequence numbers
of the last requests by other nodes, after releasing the token, a node knows to which node
to send the token next. This algorithm requires either n messages, when a node requests
the token, or 0 messages, when a node currently holding the token wants to re-enter its
critical section. A similar approach was presented by Suzuki and Kasami [120], where a
queue is used instead of an array.

Their algorithm was the basis for the Mizuno-Neilsen-Rao algorithm [88], which incor-
porates quorum agreements to form groups of nodes inside the network. Another algo-
rithm based on sequence numbers and complete system states is the one proposed by
Singhal [115]. It uses heuristics based on states received from other nodes to reduce the
number of message exchanges; on average, (n + 1)/2 messages are sent, with an upper
bound of n messages. The Suzuki-Kasami algorithm is the basis of the algorithm devised
by Nishio, Li and Manning [94]. In their variant, the token is given to the nearest node re-
questing it. This allows them to impose time-outs on requests, in this way enabling fault
tolerance.

Neilsen and Mizuno [91] impose a static logical structure on the communication net-
work where nodes are arranged in a directed acyclic graph and communicate only with
their neighbours. A node does not have to maintain a queue of pending requests. This
queue is implicitly maintained by the state of each node in the system. The total number
of messages exchanged per critical section entry depends on the topology of the logical
structure, but has an upper bound equal to d +1, where d is the diameter of the network.
Similarly, Raymond proposed an algorithmwhere the nodes form a spanning tree and com-
municate only with their neighbours [103]. Since the token can travel only along the tree’s
edges, the algorithm requires typicallyO(logn) messages per cycle. Naimi and Trehel [90]
arrange the nodes dynamically in a rooted tree based on their requests: as a request from
node i travels along the path from node i to the root node, node i becomes the new parent
of each node on the path, except for itself. Thus, node i becomes the new root node of the
tree eventually.

1.3.2 Multiple-resource Mutual Exclusion

Sometimes processes can or have to access multiple resources at the same time, for ex-
ample when there are multiple instances of a resource or when a node needs multiple
resources in order to complete its task. Hence, different variants of the multiple-resource
mutual exclusion problem exist:

41

1.3. Mutual Exclusion Chapter 1. Background

• Dining philosophers. Originally addressed by Dijkstra [35], the dining philosophers
problem refers to situations where a process competes for a fixed set of resources
with an a priori known set of processes. The original proposition gives the analogy
of five philosophers at a round table, each competing with its two neighbours over
forks.

• Drinking philosophers. Chandy and Misra generalised the dining philosophers prob-
lem in the drinking philosophers problem [28]. Instead of forks, now the philosophers
compete for bottles. A philosopher is not limited at drinking only from the bottle
shared with his neighbour, but may choose any number of bottles. Moreover, he
might need different sets of bottles during different drinking sessions.

• Group mutual exclusion. In the group mutual exclusion problem, each process is as-
signed to a group. Processes may enter their critical sections simultaneously if and
only if they belong to the same group. Continuing the philosophers analogy, Joung
formulated the problem in terms of congenital talking philosophers [60]. There are
n philosophers and m forums, but only one meeting room. A philosopher interested
in a forummay enter the meeting room in two cases: if the meeting room is empty or
some philosophers interested participating in the same forum are already present in
the meeting room.

• k-mutual exclusion. First formulated by Fischer et al. [42], the k-mutual exclusion
problem, or k-mutex, addresses situations where k identical copies of a resource
exist simultaneously in the system. With the resources being identical, up to k pro-
cesses may be given permission to enter their critical sections.

• k-out of-M-mutual exclusion. A generalisation of k-mutex was given by Raynal in the
form of the k-out of-M problem [104]: on some occasions, a process may wish to
access k out of the M existing copies of a resource.

In the remainder of the section we will present works dealing with k-mutual exclusion,
while the next section formalises the k-out of-M-mutual exclusion problem and offers an
overview of works tackling it.

k-Mutual Exclusion

Raymond was the first to provide a solution to the k-mutex problem [102]. Her solution
is permission-based and is based on the algorithm provided by Ricart and Agrawala [106]
for the distributed mutual exclusion problem. As in the case of Ricart and Agrawala’s algo-
rithm, a node seeking access to its critical section sends a request message to all of the
remaining n − 1 nodes, but it enters the critical section as soon as n − k nodes reply. The
algorithm’s message complexity varies between 2n − k −1 and 2(n −1).

Srimani and Reddy [117] proposed a token-based solution. They introduce k tokens
into the system. A node seeking access to the critical section sends request messages to
all of the nodes and enters it only after obtaining a token. The existence of k tokens in

42

Chapter 1. Background 1.3. Mutual Exclusion

the system enables up to k processes to access their critical sections simultaneously. The
worst-case message complexity of the algorithm is n + k − 1. The algorithm is analogous
to that of Suzuki and Kasami [120] for the distributed mutual exclusion problem, in which
the system has a unique token. Special provision has been made in the algorithm to take
care of any possible starvation problems arising due to the presence of multiple tokens.

Kakugawa et al. [62] introduce the concept of a k-coterie on a non-empty set V as
being a collection C of non-empty, minimal subsets of V , called quorums, and chosen in
such a way that it is always possible to find, starting from any quorum of C, a group of
k mutually disjoint quorums in C, but never possible to find k + 1 mutually disjoint quo-
rums in C. In [63] they present a detailed distributed k-mutual exclusion algorithm based
on k-coteries, analogous to the one of Maekawa [79] used to solve 1-mutual exclusion.
However, unlike Maekawa’s algorithm in which quorums are determined statically, a node
seeking access to the critical section searches for a quorum dynamically until it succeeds
in obtaining permission from each and every node of some quorum of the k-coterie or until
the possibility of finding such a quorum is ruled out.

1.3.3 k-out of-M-Mutual Exclusion

Consider a set of M identical resources shared by n processes (or nodes). At any given
moment each of the n processes may wish to use k (1 ≤ k ≤ M) resources exclusively. It
has to obtain the right to use them at once and thus it remains blocked until it is granted
access to all of them. A conflict arises when a process tries to allocate more resources
than there are available ones. Hence, the k-out of-M problem lies in ensuring the correct
management of these M resources such that two properties are satisfied:

• safety : at any given moment, the number of resources allocated to the processes is
less than or equal to M;

• liveness : all requests have to be satisfied within a finite amount of time.

The problem is a generalisation of both the 1- and the k-mutex problem. Indeed, when
limiting the number of resources M to 1, the problem is reduced to the classic 1-mutual
exclusion one, while when fixing k to 1, the problem reflects k-mutex.

1.3.3.1 Raynal’s Algorithm

Raynal [104] formulated the problem and provided a simple solution. It is a permission-
based algorithm based on the one given by Ricart and Agrawala [106]. To satisfy the two
properties listed above, the algorithm uses timestamps, which are put on requests, and an
array holding the information about the quantity of resources used by each node.

Liveness is ensured by imposing a total order on the requests via timestamps and serv-
ing them according to this order. In order to ensure safety, each process is given a consis-
tent view of the number of resources used by all of the other processes. This information
is kept in an array denoted used . Safety is guaranteed by imposing the following invariant
condition on the array:

43

1.3. Mutual Exclusion Chapter 1. Background

¼

1≤j,i≤n
used [j] + k ≤ M

where i denotes the identifier of the process at which the condition is being checked. In
other words, consistency is achieved if and only if on every node the sum of the number of
resources used by all of the nodes is less than or equal to the total number of resources
(M).

The algorithm itself is pretty straightforward. To obtain resources, a node sends times-
tamped requests to all the others in the system. Because any of them may be using an
arbitrary number of resources, the node increases each of their values in the used array
by M, in this way enforcing the safety condition. As each reply includes the number of
free resources perceived by its sender, the node updates its used array by subtracting the
received number for each node from each array element. If the safety condition holds,
i.e. if the sum is less than or equal to M, the node proceeds to use the resources. When
a node receives a request from another node, it sends back a free(M) message if it does
not need the resources or if the received request has got a higher priority. Otherwise, it
replies with a free(M−k) message, k being the number of resources the node is interested
in, indicating to the requester that it can use at most M−k resources. At a later time, once
the node has finished using the resources, it will send another message to the requester,
free(k), notifying it the resources have been freed.

The algorithm assumes a fully-connected network, even though it can be adopted to
other topologies as well. Furthermore, communication channels are assumed to be re-
liable and the order of messages is preserved. The algorithm described uses between
2(n − 1) and 3(n − 1) messages for each entrance to the critical section. However, in the
same paper, Raynal proposes an optimisation which reduces the lower bound on the num-
ber of messages to 0. He observes that if an element of used is non-zero, there is no need
to query that node, so no request is sent to it.

Additionally, Raynal introduces the generalised AND-allocation problem. He considers
several types of resources, R1,R2, . . . ,Rp, and each resource type is represented by several
identical resources: there are MÓ instances of resource type RÓ. A node asks for all of the
resources it needs at once, regardless of their type, and it remains blocked until they are
allocated to it. In order to solve the problem, the k-out of-M algorithm has to be slightly
adapted, only to accommodate simultaneous requests for different resource types. As
nodes have distinct identities, giving a unique timestamp to each demand allows resolving
all of the conflicts in the favour of the same node whatever the resources concerned.

1.3.3.2 Quorum-based Algorithms

Even though simplistic, Raynal’s algorithm’s efficiency can be improved since a node has
got to obtain the permission of every other node in the system. The algorithms described
below in most part adopt Maekawa’s usage of quorums [79] and apply it to the k-out of-M
problem in order to minimise the number of permissions a node has to obtain before en-
tering its critical section, in this way reducing the number of messages. In each of them,

44

Chapter 1. Background 1.3. Mutual Exclusion

a node asks the permission of a quorum and executes its critical section only if it has re-
ceived positive replies from all of the nodes in that quorum. Upon releasing the resources,
the node notifies the members of the quorum. The algorithms differ in the structures used
as well as in the way quorums are constructed and in their size, directly influencing the
complexity in terms of number of messages.

Arbiter Sets. Based on Maekawa’s concept of an arbiter, Baldoni [10] introduces arbiter
sets (A), one per process, which are derived from quorums: a process, p, arbiters, i.e.
grants permissions to, requests from processes in its arbiter set, Ap — the set of pro-
cesses which have sent p a request. An arbiter set is split in two sets on each node: Sp, the
set of processes which are using some resources, and Qp, the set of processes waiting on
resources. When a request for k resources arrives from process r, p puts r in Sp and grants
it its permission if the processes in Sp are using less than or an equal number of resources
to M − k. Otherwise, r is put in Qp. r can proceed in using the k resources only once it
has received the permission of all of the processes in its quorum, i.e. those to which it pre-
viously sent the requests. Baldoni uses the combinatorial approach to calculate that the
minimum cardinality of a symmetric arbiter set lies in O(nM/(M+1)). Due to symmetry, that
is also the size of a quorum, and hence, the number of messages lies also in O(nM/(M+1)),
which represents only a slight improvement.

M-Arbiters. Following Baldoni’s work, Manabe et al. [81] formally define an M-arbiter as
a set of quorums where: (i) no quorum is a subset of another; and (ii) the intersection of
any M + 1 quorums is non-empty. The mutual exclusion algorithm given in the paper is
identical to Baldoni’s, but the authors provide examples of M-arbiters, such as singleton,
uniform, (k + 1)-cube and symmetric M-arbiters, which can be used to produce different
quorum sets. However, quorums in M-arbiters are much larger than their equivalents
used for 1-mutual exclusion, entailing that the algorithm consumes more messages than
needed.

(k,M)-Arbiters. Manabe and Tajima [82] pointed out that the M-arbiter algorithm uses
the same quorum regardless of the request. They observed that when a process requests
a small number of resources (close to 1), it has to be aware of the existence of a large
number of other requests in order to detect a conflict, but when it needs a high number of
resources (close to M), it can detect its request is blocked by knowing only a small number
of other requests. Hence, they introduce a (k,M)-arbiter, denoted Qk,M , which comprises
M quorum sets — one for each k, 1 ≤ k ≤ M. The authors show that the quorums in
each quorum set of a (k,M)-arbiter are not larger than those in a corresponding M-arbiter.
At the same time, they cannot be smaller than the quorums used in 1-mutual exclusion.
The algorithm proposed in the paper differs from Baldoni’s in two regards. Firstly, before
sending out requests, a process chooses a quorum based on the number of resources it
is about to demand. Secondly, apart from keeping a served and a waiting queue, each
process maintains a third set for requests which are being cancelled at the moment. A
process may be cancelled if, after it has been given permission to use the resources, a

45

1.3. Mutual Exclusion Chapter 1. Background

request with a higher priority arrives. Keeping this additional set allows them to further
reduce the number of messages.

46

Chapter2

Physical Parallelism of the Chemical Model

Contents
2.1 Single-processor Execution . 48

2.2 Message-passing Methods . 49

2.2.1 Centralised Controller . 50

2.2.2 Moving Values . 52

2.2.3 Odd-even Transposition . 53

2.2.4 Fold-over Operation . 54

2.3 Shared-memory Approach . 56

2.3.1 Parallel Implementation . 56

2.3.2 Inertia Detection . 57

2.3.3 Experiments . 58

2.4 Conclusion . 58

The chemical programmingmodel was first proposed in the context of parallel process-
ing as a way of naturally expressing parallel computations, encompassing both SIMD and
MIMD models. This natural expression of parallelism implies a shift in the way of thinking
of the programmer: while in ordinary languages instructions are executed sequentially
one after the other in the order laid down by the programmer, there is no need for specific
scheduling when executing programs written using the chemical paradigm— instructions
are simply executed whenever possible. Hence, it is inherently well suited for execution on
multi-processor architectures.

This chapter gives an overview of the research which focused on the execution of
chemical programs on such architectures. In order to offer a better understanding of

47

2.1. Single-processor Execution Chapter 2. Physical Parallelism

the methods proposed, we first detail an abstract implementation on a single processor
in Section 2.1, and then present the research dealing with executing chemical programs
on multiple processors via message-passing, in Section 2.2, and the works adopting the
shared-memory approach, in Section 2.3.

2.1 Single-processor Execution

Even though the paradigm of the chemical model is implicitly parallel and non-
deterministic, chemical programs have to be executed on real, existing hardware, which
is designed with sequential, ordered execution of deterministic steps in mind. The same
principle applies to most programming languages, making the mapping of instructions of
sequential programs onto machines an automatic and straightforward process, since a
sequential command issued in a programming language can be directly translated into
one or more processor instructions, rendering any additional scheduling mechanisms su-
perfluous. On the other hand, devising an execution scheme for chemical instructions re-
quires some effort: even though the model does not impose any specific scheduling order,
it still has to be defined in practice. Here we meet a second challenge: because the chem-
ical programming model offers a higher abstraction than most programming languages,
how can its parallel, high-abstraction programs be translated into executable, low-level
code? And how to execute this sequential code in parallel?

Algorithm 2.1: Execution of a chemical program.
input : a multiset M containing m molecules and a rule of arity r

output: the inert multiset M
1 while changed = true do
2 changed← false;
3 for x1← 1 to m do

4
...

5 for xr ← 1 to m do
6 if xr ∈ [x1, . . . ,xr−1] then continue;
7 if cond(M[x1], . . . ,M[xr]) = true then
8 action(M[x1], . . . ,M[xr]);
9 remove M[x1], . . . ,M[xr] from M;

10 append the products at the end of M;
11 changed← true;

We start by laying down the basic idea of executing chemical programs on a single
processor. The steps are illustrated in Algorithm 2.1. Given a program in the form of a so-
lution composed of a multiset, M, the algorithm computes the multiset’s inert counterpart
by sequentially applying the action defined in the rule on combinations of r molecules. For
the sake of simplicity, the algorithm assumes that only one rule is present in the solution;
extending it to handle multiple rules is straightforward: one more for− each loop per rule
would have to be added to the algorithm, either as the outermost, or as the innermost one.

48

Chapter 2. Physical Parallelism 2.2. Message-passing Methods

While in the chemical model there is no notion of structure or locality, the multiset is
here represented as a sequential array or list. Note that, however, there is no dependency
in the data ordering— two molecules being neighbours in the array does not imply a rela-
tionship between them. The algorithm iterates through all of the possible combinations of
r molecules (lines 3— 5) and tries to find those which satisfy the rule’s reaction condition.
When one such combination has been found (line 7), a reaction is carried out by apply-
ing the action specified in the rule’s definition (line 8). The reactants are removed from
the multiset since they have been consumed in the reaction (line 9), while the products
are appended at the end of the multiset (line 10), allowing the newcomers to react with
existing molecules in a later iteration of the algorithm.

Each time a reaction takes place, a flag, changed , is set, signalling that the computa-
tion has to continue because new elements have appeared in the multiset (line 11). There-
fore, the execution stops once the execution environment has iterated through all of the
combinations of molecules without performing a reaction; inertia has been reached and
detected by the environment. Thus, as explained in Section 1.1.3, line 7 has to be exe-
cuted and evaluated negatively m! times consecutively, depending on the type of the rule
present in the program.

To summarise, in order to follow the chemical model’s paradigm, the algorithm com-
bines four steps:

• searching for candidates : combinations of molecules conforming to the rule’s reac-
tion condition are found by permuting the elements of the multiset;

• atomically capturing reactants : the paradigm dictates that a molecule can be con-
sumed in at most one reaction, which is in this case implicitly guaranteed since there
is only one process executing the program;

• performing reactions : the fitting molecules are removed from the multiset, they are
consumed by means of the action function, and the products of the reaction are
inserted into the multiset;

• detecting inertia : by checking all of the possible combinations, the algorithmassures
that if inertia has been reached, it is going to be detected.

An execution environment for a single processor has been provided by Radenac [99].
Analysing how these steps can be decoupled and executed in a distributed manner rep-
resents the central theme of this thesis. The next sections detail the previous attempts
at executing the algorithm in parallel on multiple processors which communicate either
through message-passing or by means of a shared memory.

2.2 Message-passing Methods

The algorithms and the methods presented in this section target mostly specific parallel
machines, which mainly differ in the way their processors are interconnected. All of them

49

2.2. Message-passing Methods Chapter 2. Physical Parallelism

suppose the execution of a chemical program which contains a single binary rule, i.e. a
rule of arity 2. Moreover, they assume this rule to be a reducer rule. Finally, each solu-
tion allocates only one molecule per available processor. Thus, the size of the multiset
matches the number of processors on the machine. When taken together, these three as-
sumptions greatly limit the impact of the approaches presented below as they cannot be
extended into a generic runtime.

2.2.1 Centralised Controller

In [11], Banâtre et al. give a first idea on how to distribute the execution of a chemi-
cal program. They present a synchronous algorithm which uses a centralised controller
instructing the processors when to communicate with each other and swap and test val-
ues. The processors are connected through a bus in such a way that each processor can
communicate with all the others directly. At each step, the controller processor spreads
a signal through the network triggering the communications. Three signals are used to
guide the computation: S1, sent by the controller to trigger the communication; S2, sent
by a processor to the controller to signal the occurrence of a reaction; and S3, sent by a
processor to the controller when no reaction took place.

The idea consists in checking all of the possible pairs of molecules by coupling distinct
pairs of processors at each step. A processor Pi checks its value against that of processor
Pk, where k is initialised to (n− i)mod n and incremented (modulo n) after each step. After
each test, and possible reaction, the controller is informed of the outcome. If n − 1 con-
secutive steps without a reaction have passed, it declares inertia and stops the execution.

This synchronous process is shown in Algorithm 2.2. The controller (lines 1 — 9) uses
the internal variable t to count the number of steps without a reaction. It sends the signal
S1 to all of the processors to start the step and then waits for their signals. If at least one
of them returned S2 it resets its variable t, otherwise it increments it. This process goes
on until t equals n. The computing processors (lines 10— 33) continuously execute a loop
where they (i) wait on the controller’s signal S1; (ii) communicate with their counterpart
processors Pk and test the reaction condition; (iii) send the outcome of the test to the
controller; and (iv) increment their variables k. When Pi communicates with Pk whose index
k is less than Pi ’s index i (lines 14 — 17), it simply sends its value to Pk, waits for a return
value and sends the signal S3 to the controller as it has not performed a reaction. On the
other side, the processor receiving the value (lines 18 — 27) checks both combinations
of molecules — (vi ,vk) and (vk,vi) — against the reaction condition. If one of the two
conditions holds, it performs a reaction, sends one of the newly created molecules back
to Pk and S2 to the controller. Otherwise, S3 is sent to the controller.

By exploiting symmetry, the algorithm is able to detect inertia in a minimal number of
tests. At each step, n/2 processors do two tests each. Hence, after n − 1 steps, n(n − 1)
tests are done. However, this minimality is satisfied only for rules which produce exactly
two molecules; if a lesser number is produced, some processors will perform checks in
vain using dummy molecules due to symmetry.

50

Chapter 2. Physical Parallelism 2.2. Message-passing Methods

Algorithm 2.2: Centralised controller.
1 on controller
2 t← 0;
3 while t < n −1 do
4 send S1 to all processors Pi ;
5 wait for Si from all Pi ;
6 if ∃Si ,Si = S2 then
7 t← 0;
8 else
9 t ++;

10 on processor Pi
11 k← (n − i)mod n;
12 while true do
13 wait for S1 from controller;
14 if k < i then
15 send vi to Pk ;
16 wait on vi from Pk ;
17 send S3 to controller;
18 else if k > i then
19 wait on vk from Pk ;
20 if cond(vi ,vk) then
21 vi ,vk← action(vi ,vk);
22 send vk to Pk ;
23 send S2 to controller;
24 else if cond(vk ,vi) then
25 vi ,vk← action(vk ,vi);
26 send vk to Pk ;
27 send S2 to controller;
28 else
29 send vk to Pk ;
30 send S3 to controller;

31 else
32 send S3 to controller;

33 k← (k +1)mod n;

51

2.2. Message-passing Methods Chapter 2. Physical Parallelism

2.2.2 Moving Values

In the same paper [11], Banâtre et al. present a second, asynchronous algorithm where
no processor has a general view of the system and, thus, each processing element takes
local decisions concerning communication and termination. This solution offers a higher
level of parallelism and relies on a chain architecture.

Algorithm 2.3: Moving values.
1 on processor Pi
2 while n2i

< n −1 do
3 if d = true then
4 send (vi ,n1i

,n2i
) to Pi+1;

5 wait on (vi ,n1i
,n2i

) from Pi+1;
6 else
7 wait on (vi−1,n1i−1 ,n2i−1) from Pi−1;
8 if cond(vi ,vi−1) then
9 vi ,vi−1← action(vi ,vi−1);

10 n1i
,n2i

,n1i−1 ,n2i−1 ← 0,0,0,0;
11 else if cond(vi−1,vi) then
12 vi ,vi−1← action(vi−1,vi);
13 n1i

,n2i
,n1i−1 ,n2i−1 ← 0,0,0,0;

14 else
15 n1i

++, n1i−1 ++;
16 if n1i

,n1i−1 ≥ n −1 then
17 n2i

++, n2i−1 ++;
18 else
19 n2i

,n2i−1 ← 0,0;

20 send (vi ,n1i
,n2i

) to Pi−1;
21 vi ,n1i

,n2i
← vi−1,n1i−1 ,n2i−1 ;

22 if i < [1,n] then d ← not d ;

The solution consists in spreading the values over the processors, one per processor,
denoted Pi , i ∈ [1, . . . ,n]. The inner computing processors — P2, . . . ,Pn−1 — know only their
two neighbours, while the border processors— P1 and Pn —know only one. Each processor
is associated a direction, d , and the idea consists in moving each value from one end of
the chain to the other until it either reacts with another value or n−1 tests have beenmade
with it. The direction d is a boolean indicating to which neighbouring processor to move
the value: true hands it to Pi+1, while false moves it to Pi−1. Every inner processor chooses
its initial direction randomly and it changes it after each value movement. Since P1 and Pn
know only one neighbour each, their directions are fixed to true and false , respectively.

Each value vi travels with two associated indicators, n1i and n2i ; the former indicates
the number of exchanges undergone by value vi , while the latter is the number of con-
secutive tests done with other values vk, such that n1k ≥ n − 1. The exchange of values

52

Chapter 2. Physical Parallelism 2.2. Message-passing Methods

continues until each value’s indicator n2i equals to n −1.
The code executed by each processor is shown in Algorithm 2.3. When moving a value

forward to processor Pi+1 (lines 3 — 5), Pi sends it the triplet (vi ,n1i ,n2i), awaits it back
and stores it. The actual computation is done by the processor Pi whose d is set to true
(lines 6—21). After receiving the triplet from Pi−1, it checks the reaction condition for both
combinations. If one holds, a reaction is performed and all of the indicators of both vi and
vi−1 are set to 0. Otherwise, their n1 indicators are incremented and if both of them are
greater than n − 1 or equal to it, the n2 indicators are also incremented (lines 14 — 19).
This step ensures that every value is going to be tested in combination with every other
value in the multiset. The actual exchange then takes place, since Pi sends its triplet to
Pi−1 and stores Pi−1’s triplet as its own. Finally, all of the inner processors change their
directions (line 22) and start another loop iteration.

Inertia is detected in a distributed manner due to asynchronous communications and
exchanges of the values’ indicators. The algorithm has to do 2n(n − 1) tests in order to
detect it.

The idea behind this algorithm was implemented on an iPSC hypercube with 16 pro-
cessors — an asynchronous, massively-parallel machine. The algorithm was tested using
an implementation of the sieve of Eratosthenes, presented in Section 1.1.1. The authors
obtained considerable speed-ups: when executing the program on a single processor, 70
time units were spent, while only around 15 time units were needed to execute it on 16
processors. The highest decrease in time happened in the transition from one to two pro-
cessors: it took the machine 30 time units to complete the execution on two processors.

2.2.3 Odd-even Transposition

Creveuil [31] and Huang et al. [56] both proposed a synchronous algorithm exploiting the
idea behind odd-even transposition sorting [67]. In order to examine all of the possible
combinations, a processor Pk communicates and exchanges values with its neighbour Pk+1
depending on its identifier k: on odd-numbered steps, only processors with an odd identi-
fier test and swap combinations with their neighbours, while on even-numbered steps only
those with an odd identifier do so. In doing so, multiple comparisons and exchanges take
place simultaneously.

The steps taken by the executing machine are presented in Algorithm 2.4. The variable
i denotes the step number and j is the number of consecutive steps without a reaction.
These two variables are held and manipulated by the controller processor. Variables local
to a processor Pk are xk — the value it holds — and reactionk — the boolean variable
indicating whether a reaction was performed in the previous step.

Firstly, the controller initialises the global variables (line 1) and then instructs the other
processors to start a computation cycle (line 3). Each processor Pk executes then the
lines 4 — 12. A processor checks if it is its turn to do a computation cycle (line 5). If so,
it takes processor Pk’s value and it tests both combinations of values against the reaction
condition and performs a reaction if one can occur. Finally, it swaps the values xk and xk+1,
in this way concluding a step. The controller checks if at least one processor performed a

53

2.2. Message-passing Methods Chapter 2. Physical Parallelism

Algorithm 2.4: Odd-even transposition.
1 i ← 1, j ← 0;
2 while j < n do
3 for all k ∈ 1, . . . ,n do in parallel
4 reactionk← false;
5 if (k + i)mod 2 = 0 then
6 if cond(xk ,xk+1) = true then
7 xk ,xk+1← action(xk ,xk+1);
8 reactionk← true;
9 else if cond(xk+1,xk) = true then

10 xk ,xk+1← action(xk+1,xk);
11 reactionk← true;

12 swap xk and xk+1;

13 if ∃reactionk = true then
14 j ← 0;
15 else
16 j ++;

17 i ++;

reaction and updates the variable j accordingly (lines 13 — 16).
The algorithm needs n −1 steps to detect inertia. Due to the odd-even communication

pattern, after every two steps all of the processors will have tested two combinations each
and exchanged their values with their neighbours. Hence, inertia is detected after n(n−1)
comparisons. Creveuil [31] further offers an optimisation for the algorithm for cases in
which the rule produces less than two molecules. By applying a parallel data-compaction
algorithm, the total number of processors decreases with the size of the multiset, thus
eliminating unnecessary tests involving dummy elements.

Creveuil [31] implemented the algorithm on the CM-2 connection machine, while
Huang et al. [56] implemented it on MasPar MP1, a massively-parallel machine. Both pa-
pers report considerable speed-ups and linear scalability in terms of execution time when
increasing the number of molecules in the multiset.

2.2.4 Fold-over Operation

Apart from the odd-even transposition, Huang et al. [56] present another synchronous
algorithm which is based on the fold-over operation [29]. The idea consists in placing the
elements on a strip and then folding this strip over from left to right. At each step, the
elements residing in the upper segment of the strip are compared in parallel to those in
the lower segment. If a reaction happens, the reactants are replaced by dummy elements,
while the produced elements are stored in a temporary step and inserted at the right end of
the lower segment of the strip after each parallel comparison. The computation continues

54

Chapter 2. Physical Parallelism 2.2. Message-passing Methods

until there are no more elements in the lower segment.

Algorithm 2.5: Fold-over operation.
1 while is , ie do
2 proc[is +1].upper← proc[is].lower ;
3 is ++;
4 if is ≤ iproc and iproc ≤ ih then
5 if cond(upper , lower) then
6 temp← action(upper , lower);
7 upper , lower← ∅;
8 lower[max(ih, ie)+1]← temp ;
9 reset ie;

10 router[iproc +1].upper← upper ;

11 ih ++;
12 if is +1 ≤ iproc and iproc ≤ ih then
13 if cond(upper , lower) then
14 temp← action(upper , lower);
15 upper , lower← ∅;
16 lower[max(ih, ie)+1]← temp ;
17 reset ie;

18 router[iproc +1].upper← upper ;

19 ih ++;

20 collect the data from upper ;

Algorithm 2.5 shows the computation process. The variables upper and lower desig-
nate the two segments of the strip. Each processor holds one of the elements of the lower
strip segment. is and ie are the indices indicating the left and the right end of the strip,
respectively, while ih denotes the right end of the upper segment. iproc represents the
processor’s index in the processor array, and proc and router are global variables allow-
ing a processor to access other processors’ local memory.

The first step is to move the leftmost element from the lower segment to the upper one
(line 2). Based on its index, a processor then tests the combinations of its part of the lower
and upper segments and carries out the reaction, if possible, whose products are inserted
at the end of the lower segment (lines 5 — 9). Next, all of the elements in the upper
segment are moved one place to the right (line 10). Then, another round of parallel tests
and movements is performed (lines 12— 18). Finally, when there are no more elements in
the lower segment, i.e. when is = ie, the algorithm stops and the result is collected from
upper (line 20).

It takes n − 1 loop iterations to complete the algorithm for an inert multiset, since all
of the elements in the lower strip segment have to be transferred to the upper one. The
number of tests done per loop iteration varies from iteration to iteration and depends
on the number of elements in each segment. Concretely, there are 4min(|lower |, |upper |)

55

2.3. Shared-memory Approach Chapter 2. Physical Parallelism

comparisons made each step: 2min(|lower |, |upper |) before the first parallel movement of
elements and 2min(|lower |, |upper |) after it, wheremin(|lower |, |upper |) denotes the number
of elements in the shorter of the two strip segments. As this number increases at each loop
iteration from 1 to n/2 and then decreases back to 1, by summing up all of the comparisons
done, one can observe that inertia is detected after n(n −1) tests have been performed.

The authors implemented the algorithm on the MasPar MP1 massively-parallel ma-
chine. The experiments’ results show a linear augmentation of the execution time with the
problem’s size. Moreover, by comparing these results to those obtained for the odd-even
transposition, they show that using the fold-over operation completes the execution up to
five times faster. Even though both algorithms do the same number of comparisons, the
fold-over operation has got a higher level of parallelism.

2.3 Shared-memory Approach

We now present a shared-memory approach to the execution of chemical programs, pro-
posed in [50]. It targets parallel systems in which multiple processors execute their code
simultaneously while sharing (partially or completely) the memory space theymanipulate.
The work presents a more realistic solution compared to the ones described in Section 2.2
since it takes into account the fact that, in practice, there are more molecules in the mul-
tiset than there are available processors. Furthermore, the solution is not constrained to
the execution of specific types of rules. In the paper, the authors tackle the issues related
to the implementation of a chemical runtime on a shared-memory architecture, but also
try to reduce the complexity of detecting inertia.

2.3.1 Parallel Implementation

In the basic variant of the implementation, the authors use a straightforward, parallel
version of Algorithm 2.1 with a few modifications, presented in Algorithm 2.6. Only the
outermost loop is executed in parallel bymultiple processors (line 4), since the assumption
is that there are only a few processors in the system. All of the variables are shared and
accessed through spin locks. Molecules participating in reactions are locked in an atomic
fashion using a mutual exclusion algorithm explained below. Additionally, an auxiliary
multiset, M ′, is used, in which reaction products are put. It represents the collection of
next-generation molecules — the ones which are going to be used in the next iteration of
the algorithm. The parallel processes are synchronised using a barrier right before joining
the multiset M and its auxiliary counterpart M ′ (line 14).

In order to lock reaction candidates atomically (line 8), and in this way ensure a
molecule cannot be consumed in more than one reaction, the authors propose a vari-
ant of the two-phase locking mechanism with deadlock prevention by priorities [17]. Each
process can be coloured using three different colours, green, yellow and red, while each
molecule is assigned an owner and a pointer pointing to its owner’s colour, so that a
molecule’s colour changes as soon as its owner’s colour does.

56

Chapter 2. Physical Parallelism 2.3. Shared-memory Approach

Algorithm 2.6: Shared-memory implementation.
1 while changed = true do
2 changed← false;
3 M ′←∅;
4 for all x1← 1 to m do in parallel

5
...

6 for xr ← 1 to m do
7 if xr ∈ [x1, . . . ,xr−1] then continue;
8 if cond(M[x1], . . . ,M[xr]) = true then
9 if lock(M[x1], . . . ,M[xr]) = false then

10 continue;

11 M← M − {M[x1], . . . ,M[xr]};
12 M ′← M ′ ∪ action(M[x1], . . . ,M[xr]);
13 changed← true;

14 M← M ∪M ′ ;

Initially, a process’ colour is green. It changes its colour to yellow once it wants to
lock the molecules it needs and starts checking whether it can lock each of them. If a
molecule’s colour is green, i.e. it has no owner, the process colours it yellow. If a molecule
has got already an owner, then the process with a higher priority is entitled to lock it,
while the other waits until either the molecule has been consumed or released by the
higher-priority process. After the first locking phase, the process turns its colour to red and
checks whether it still owns all of the molecules. If so, it proceeds executing Algorithm 2.6.
Otherwise it tries to lock again the molecules which it has lost in the meantime, if they still
exist.

2.3.2 Inertia Detection

Clearly, it takesm! tests for the system to detect inertia in the general case, wherem is the
number of molecules. The authors present three improvements which address the choice
of molecules which to test with the aim of reducing the total number of tests carried out.

Element Selection. Assuming the reaction condition is a conjunction of literals,
cond (M[x1, . . . ,M[xr]]) = L1 ∧ . . . ∧ Ll , its test can be aborted as soon as one of the liter-
als Li is evaluated as false , since the reaction condition is surely going to be evaluated as
false . Hence, instead of checking the whole condition in the innermost loop, some literals
may be checked sooner, in this way avoiding unnecessary inner-loop iterations. Moreover,
due to the commutativity of conjunctions, the literals may be arranged in such a fashion
that they are checked as soon as possible. In doing so, certain branches of the search
tree may be cut in advance, speeding up the inertia detection process. As an example,
consider the simple conjunction f (x,y)∧ g(y). Here, y should be bounded before x is and

57

2.4. Conclusion Chapter 2. Physical Parallelism

g(y) should be evaluated before f (x,y), since: (i) y appears in both literals; and (ii) if g(y)
is evaluated as false, the result of f (x,y) is irrelevant.

Range Restriction. If the literals contain arithmetic and comparison operators, search
ranges can be restricted only to molecules satisfying it. Same as with element selection,
evaluating such arithmetic literals as soon as possible helps reducing the search space.
Moreover, combining these two improvements enables the creation of a constant inertia-
detection mechanism, since the number of tests does not depend anymore on the number
of molecules, but on their values.

Generation Improvement. Following Algorithm 2.6, a check of all of the combinations
has to be performed in order to declare inertia. However, since the system keeps track
of newly-produced molecules, the algorithm can be modified in a simple way to take into
account only these molecules. When starting a new iteration, the auxiliary multiset M ′ is
not emptied, but used in the inner loops. The combinations to be tested (either for literals
or for the whole condition) are picked in such a way so that they contain at least one
new molecule, i.e. at least one molecule present in M ′. This method further improves
the inertia-detection time since it guarantees that combinations which have already been
checked will not be checked unnecessarily again.

2.3.3 Experiments

Three programs were used to test the system: the knapsack problem, the shortest path
problem and the context-free-grammar parsing problem. Their chemical implementations
were run on a shared-memory machine comprised of six processors. The exact details of
the configuration have been left out of the paper.

The results suggest the impossibility of executing chemical programs on a shared-
memory architecture. Indeed, with the growth of the problem, the execution time dras-
tically rises. Moreover, for most runs the measurements could not be finished within a
reasonable amount of time. While this partly happens due to the combinatorial complexity
of detecting inertia, the inability to run chemical programs on such a platform also stems
from the high level of inter-process synchronisation needed in order to perform reactions.

The aforementioned improvements were also implemented and tested. They exhibit
visibly better performance results, as most of the runs were completed. Using the im-
provements leads to almost-linear speed-ups (about 5.5 for six processors). However, the
results also show that they benefit more a single-processor environment than they do a
multi-processor one (composed of six processors in this case).

2.4 Conclusion

This chapter introduces the issues to be tackled for executing chemical programs. First,
a sequential, single-processor execution algorithm is presented, which exposes the four

58

Chapter 2. Physical Parallelism 2.4. Conclusion

main issues a runtime has to tackle in order to provide support for the execution: (i) search
for reaction candidates; (ii) atomic capture of reactants; (iii) execution of reactions; and
(iv) inertia detection. As shown in Section 2.1, a single-processor implementation can
implicitly cover all of these steps.

Switching to a multi-processor execution environment brings certain challenges, since
both the data and the computation are distributed over multiple processors. To this re-
gard, this chapter discusses the message-passing and the shared-memory approaches
for dealing with these issues in Sections 2.2 and 2.3, respectively.

While they provide solutions related to the direct implementation of a runtime for
chemical programs, they are rather limited in several ways. Firstly, most of the presented
solutions target specific platforms. Even though the algorithms provided and the ideas
behind them are interesting, porting them to other architectures and/or systems is a chal-
lenge in itself. This is the case of solutions presented in Section 2.2. Furthermore, they are
limited to the execution of exclusively binary rules, i.e. rules consuming two molecules. In
spite of the fact that all of the papers cited in this chapter briefly discuss the possibility of
generalising their algorithms, extending them for the execution of general r-ary rules is
not an easy and obvious, or in some cases even possible, task. Finally, when applying their
solutions to the general case, inertia detection becomes highly inefficient. In Section 2.3
we discussed a shared-memory solution proposing to solve this issue through the analysis
of reaction conditions, by decomposing them into literals and testing these literals as soon
as possible. While the experimental results show this method as a promising solution, it is
not an automated method: the user has to do each individual decomposition for each rule
they want to execute. Moreover, when using the as-soon-as-possible execution approach,
the execution algorithm itself has to be changed from program to program. Consequently,
a direct generalisation of the technique is not feasible.

59

2.4. Conclusion Chapter 2. Physical Parallelism

60

Part II

Distributed Chemical Computing

61

Chapter3

Preliminary Feasibility Study Of Distributed Chemical
Platforms

Contents
3.1 DSM-based Execution Platform . 64

3.1.1 DSM-inspired Architecture Overview 65

3.1.2 Course of Execution . 66

3.1.3 Issues of the DSM-based Platform . 67

3.2 Hierarchical Execution Platform . 68

3.2.1 Physical Layer Abstraction . 69

3.2.2 Execution Flow . 69

3.2.3 Condition Checking and Inertia Detection 71

3.2.4 Tree Reorganisation . 77

3.3 Prototype . 80

3.4 Evaluation . 81

3.4.1 Test Programs . 81

3.4.2 Results . 82

3.5 Conclusion . 88

Chapter 2 explored the previous works dealing with the distribution of the execution
of chemical programs. While their results are encouraging, the impact of the solutions is
rather limited in that:

1. they target only specific platforms;

63

3.1. DSM-based Execution Platform Chapter 3. Feasibility Study

2. they are constrained to the execution of binary rules;

3. they use the chemical paradigm only for creating a model of the computation, which
is then translated into an imperative language and executed on the underlying plat-
form.

This chapter presents our first contribution — a preliminary, feasibility study of con-
structing a distributed platform for the execution of chemical programs on heterogeneous,
large-scale platforms. Our goal is to conceive a platform that can run any (chemical) pro-
gram anywhere. In order to meet it, genericness at two levels is required:

• platform level : the execution environment should be able to run chemical programs
on top of any platform;

• program level : the execution environment should be able to execute any chemical
program directly, regardless of its composition and without translation into another
language.

To that end, we have studied two approaches based on two commonly-used paradigms
in distributed computing: shared memory and message passing. In a first attempt, de-
tailed in Section 3.1, we explore a shared-memory approach in order to distribute the exe-
cution of reactions and the inertia detection procedure. However, its inefficiency is quickly
established due to the high level of locking needed to keep the consistency. This led us
to the investigation of alternative distribution models. The architecture of a hierarchi-
cal execution model built atop a peer-to-peer overlay network is thus presented in Sec-
tion 3.2, where the minimality of its inertia detection mechanism is formally established.
We, consequently, built a prototype, outlined in Section 3.3, and conducted experiments.
The results concerning the platform’s viability and scalability are detailed in Section 3.4.

Note that the work in this chapter concentrates on the distribution of the execution
process. Here we assume no knowledge about the program or the data: we consider the
chemical engines on nodes to be black boxes which simply report whether combinations
of molecules can react, and if so perform the reactions. The aim of this study is to con-
struct a runtime around this black box. Therefore, when we examine theminimality of the
number of checked combinations, we refer to the minimal number of such tests needed in
order to check all of the possible combinations of molecules. In other words, the runtime
discussed here is a blind one, since the diverse properties of the executed programs and
their molecules are not taken into account.

3.1 DSM-based Execution Platform

One important part when coming to implement an HOCL runtime is the scheduler. The
scheduler is the entity which decides which rule should be applied and when. It is responsi-
ble for the actual implementation of the non-deterministic execution model. One possible
strategy is round-robin : every rule is triggered once, each on its turn, until inertia. The

64

Chapter 3. Feasibility Study 3.1. DSM-based Execution Platform

centralised runtime of HOCL presented in [99] deals with this relying on several lists : one
containing all of the molecules of the solution, and one containing the rules. Thus, the
scheduler is greatly dependent on the management of these lists. We started our study
by trying to keep these original ideas while trying to distribute the process. About the
solution, this leads to two contradictory objectives :

1. keeping the multiset in an easy-to-access, shared location; and

2. distributing the multiset for the sake of load balancing and bottleneck avoidance

These two objectives seem natural : the first enables the system to quickly search for
reactants and access them. The second one is a performance requirement : a shared
memory has intrinsic drawbacks regarding performance, as a single memory controller is
accessed concurrently by a set of processors. These seemingly contradictory goals have
already been pursued together in Distributed Shared Memory (DSM) systems [98], in which
programs see a set of distributed memory slots as a single virtual entity to be accessed
uniformly.

In the remainder of the section, we are exploring the possibility of using the DSM
paradigm to build a distributed runtime for the chemical programming model. The
paradigm allows one to conceive a distributed platform while thinking sequentially, since
the DSM implicitly handles concurrency. In this sense, the DSM paradigm shares some
similarities with the chemical programming model, which itself relieves the programmer
of handling mutual exclusion, making DSM a natural model to start the study with.

3.1.1 DSM-inspired Architecture Overview

The DSM model provides a logical abstraction of the shared-memory model atop a
message-passing distributed system. It combines the best features of the centralised
and distributed worlds : each node is equipped with its own local memory, but all these
slots are virtually assembled to provide a unique global memory accessed uniformly by
programmers. Even though originally conceived for and oriented towards supercomput-
ers and homogeneous clusters of computers, the model has been adapted for various
types of systems and is considered nowadays for heterogeneous and large-scale plat-
forms [48, 72, 125]. Thus, using such a model enables one to abstract out the physical
network and to tackle the problem at hand— executing a chemical application using mul-
tiple processors.

The conceptual, logical view of a distributed runtime based on the DSMmodel is shown
in Figure 3.1. The external application represents any entity which requests the execution
of the chemical program it holds. It contacts a node in the DSM-enabled network and
transfers it the program to execute. The contacted node will, once the execution finishes,
transfer the resulting inert solution to the application.

Every node involved in the execution is equipped with a chemical engine able to apply
a reaction rule on a combination of molecules. Therefore, each node participates in the

65

3.1. DSM-based Execution Platform Chapter 3. Feasibility Study

Figure 3.1: Conceptual view of the DSM-based platform.

computation by selecting a combination of molecules, checking it against the rule’s reac-
tion condition, and, finally, performing the reaction if the condition is positively evaluated.
This process is repeated until inertia, which concludes the computation. However, a logi-
cal global space where to access the molecules is not enough to build a chemical runtime.
A scheduler is needed. We must ensure that each possible combination of molecules is
checked once (and only once) against the rules. As we detail in the following, this can
be achieved through a list of possible reactant combinations, shared between all nodes
involved in the computation.

3.1.2 Course of Execution

We now describe the runtime built around the chemical engines present on the partici-
pating nodes. Recall that the runtime devised in this chapter is blind with regards to the
program being executed: there is no control over molecules nor their properties.

The execution of a program involves four main elements described in the following.

Initialisation. After the transfer of the program to be executed has been completed, the
contacted node creates two objects in the DSM : a list containing the rules to be exe-
cuted and the list of molecules present in the program. As soon as other nodes detect
the presence of the list of rules in the system, they each copy it locally and start the ex-
ecution phase. For the sake of simplicity, let us assume that only one rule consuming two
molecules is present in the program. However, the algorithm described is also valid for
multiple rules, each with a possibly different number of arguments.

Combination List Filling. The nodes start off by filling the combination list — a list con-
taining combinations of molecules which yet have to be tested against the rule’s reaction
condition. We now briefly describe how the nodes can do it in a cooperative way : each
node sequentially picks a molecule, in a round-robin fashion, from the molecule list and
creates a sub-list of combinations involving the picked molecule and puts it in the com-
bination list. As an illustration, suppose a program contains five molecules, m1, . . . ,m5,
and is executed on a three-node system. Then, node 1 will put in the combination list
the set of combinations containing the molecule m1 (〈m1,m2〉; . . . ;〈m1,m5〉), node 2 will
put the combinations with the molecule m2 but will avoid the combination with m1 to

66

Chapter 3. Feasibility Study 3.1. DSM-based Execution Platform

avoid double insertions (〈m2,m3〉;〈m2,m4〉;〈m2,m5〉). In the same fashion, node 3 will add
(〈m3,m4〉;〈m3,m5〉) to the list.

Condition Checking and Inertia Detection. Once the combination list is in place, each
node accesses it, taking the next untested combination of molecules and checking it
against the rule’s reaction condition. If the molecules cannot react, their combination
is removed from the list. Otherwise, the node locks the molecule list and tries to take the
molecules from it. If not all of the molecules are available, the combination is deleted from
the list and the node simply moves on to the next one. This process is repeated until the
combination list has been emptied. When a node notices the list is empty, it repeats the
combination list filling process. Inertia has been reached once there are no more combi-
nations to check, i.e. when :

1. there are no more elements in the combination list; and

2. the molecule list has been exhausted— there are no more molecules for which com-
binations can be generated.

The execution is considered to be completed when the state of inertia has been reached.
At that point, the node initially contacted by the external application transfers it the inert
solution.

Reaction Execution. If, after locking the molecule list, the node is able to obtain all of
the molecules it needs to perform a reaction, it removes them from the molecule list and
consumes them in the reaction. Then, it removes all of the combinations containing either
of the consumed molecules from the combination list. The molecule list is then locked
once again. The node fills the combination list with combinations containing the newly
created molecules coupled with all of the molecules present in the molecule list, after
which the new molecules themselves are added to the molecule list.

3.1.3 Issues of the DSM-based Platform

While a DSM-based approach seems a natural way to implement a distributed chemical
platform, it suffers from several issues.

Lists Management. Primarily, the platform relies on the repeated usage of locks over
shared objects, not only the molecules, but also the lists used in the computation. The
more nodes there are in the system, the more time each of them is likely to spend in a
lock’s wait queue, thus increasing their idle times and reducing their work times. This is
due to the fact that concurrently manipulating a list while keeping its state consistent is
inherently a difficult task. Then, the two lists, or containers, are needed to coordinate the
nodes and keep the system in a consistent state ; locking the list of molecules prevents
two nodes from using the same molecule in concurrent reactions, while the list of combi-
nations serves as a reminder to nodes as to which combinations yet have to be checked, in

67

3.2. Hierarchical Execution Platform Chapter 3. Feasibility Study

this way preventing nodes to check already checked combinations. The use of lists stems
from the DSM model’s centralised access to memory — each node has to know a priori
the memory location (or the object id) it will manipulate. Moreover, each list resides in the
memory of one particular node, which entails network traffic penalties during locking, as
it has to be transferred from one node to the other.

DSMs in Practice. Finally, on the practical side, implementing such a system would not
be an easy task due to the fact that, in spite of the volume of research that has been
conducted in the DSM area, there exist only a few DSM implementations, which are tied to
specific platforms [24, 58, 74, 108].

In conclusion, while at first glance using a shared-memory approach seems a natural
track to be pursued, it suffers from severe drawbacks. Consequently, we shifted our focus
towards distributed-memory models. The next section describes a distributed runtime for
executing chemical programs with the minimal requirement of message-passing facilities.

3.2 Hierarchical Execution Platform

The proposed platform is illustrated in Figure 3.2. Much like in the proposal based on DSMs,
the platform can be seen as a service: the applications submit their chemical programs to
be executed and await their respective resulting inert solutions. Note that multiple appli-
cations can be processed concurrently by the service. Internally, the platform is composed
of three layers detailed in the remainder of the section: (i) the overlay network; (ii) the ex-
ecution engine; and (iii) the inertia detection mechanism. The overlay network connects
the participating nodes and allows the molecules to be spread around the system. The
execution engine takes them over and locally performs reactions until the inertia detec-
tion mechanism perceives the local solution has reached a stable state, where no more
molecules can react.

Figure 3.2: The hierarchical platform.

We first explain the role of the underlying overlay network. Next, the functioning of the
chemical engine is explained by detailing howmolecules are distributed and the computa-
tion initiated. Then we focus on the distributed mechanisms required to find reactants and
detect the inertia. We show, by providing a first brute-force algorithm, that sub-optimality
in terms of number of reaction tests can be easily encountered if the algorithm is not de-
signed properly. The optimal algorithmwe designed is then given. Its minimality is formally

68

Chapter 3. Feasibility Study 3.2. Hierarchical Execution Platform

and experimentally proven. At the end of the section we focus on how to inject load bal-
ancing within such an architecture, by presenting a scheme to reorganise the execution
flow.

3.2.1 Physical Layer Abstraction

The scale and the heterogeneity of targeted platforms should be abstracted out, before
going further in the design of a distributed chemical machine in order to run programs in
different environments. This requirement is addressed by relying on overlay networking,
which builds logical, virtually-homogeneous networks on top of heterogeneous platforms.
One good choice to build an overlay are distributed hash tables (DHTs) [109, 118] in the
sense that they partially solve the scalability issue as nodes are guaranteed to commu-
nicate efficiently regardless of their number. A DHT’s routing complexity typically grows
logarithmically with the number of nodes in the platform. Another advantage of DHTs is
load-balancing. In particular, the external application sending its program to the chem-
ical runtime platform can contact any of the DHT nodes acting as an entry point to the
platform. Then, natural load balancing is obtained as each application can choose a dif-
ferent contact node (through an out-of-band mechanism). The platform completes the
requirement by employing the locality principle: computation happens first where data is
located.

Any DHT could fill this role. In the following, we use the Pastry DHT [109]. As detailed in
Section 1.2.2.3, in Pastry nodes are given a unique identifier chosen uniformly at random
in a circular identifier space, organising nodes as a ring. Each node maintains a routing
table of shortcuts, allowing systematic routing from any node to any other node in a log-
arithmic number of hops in the logical network.

3.2.2 Execution Flow

The node contacted by the external application is referred to as the source in the remain-
der. The reception of data triggers the creation of an execution tree rooted at the source
for the execution requested by the application. The execution will also finish on the source,
which will finally deliver the inert solution, i.e., the result, to the requesting application. We
now detail the construction of the execution tree.

Once the source node receives the data of the chemical program, it scatters the
data molecules across the Pastry ring according to their hash values; the cryptographic
hash function of the underlying DHT guarantees uniform dispersion with high probabil-
ity (w.h.p.). Molecules are routed concurrently according to Pastry’s routing scheme, in
O(logn) hops [109], where n denotes the number of nodes in the platform. In the course
of the routing process, the path of each molecule is traced by intermediary nodes, called
forwarders, from the source node to amolecule’s destination node, referred to as aworker.
By passing on molecules, a forwarder maintains a local state (in addition to the Pastry’s
routing table) containing the set of nodes to which it forwarded molecules. This set of
nodes constitutes its child nodes in the execution tree. Note that forwarders, together

69

3.2. Hierarchical Execution Platform Chapter 3. Feasibility Study

with the source node, will be workers as well, w.h.p. Finally, the source node spreads down
the tree one final message, mc containing the rules to execute.

Upon the receipt ofmc on a node p from a node s, p completes its state with s, referring
to it as its parent (in themulticast tree being built). In case p has already receivedmc from
another node, it just drops it, but sends another specific message back to s, which, upon
receipt, deletes p from s’ local state. This ensures that, combined, the local states form a
tree. This tree, rooted at the source node, will be used later to make partial inert solutions
move backwards to the source node. The created tree presents some similarities with
the Scribe publish/subscribe system [26]. Note that the complexity of the local state is
logarithmic to the number of nodes in the system, as nodes referenced in the local state
of a node (except its parent) are necessarily inside Pastry’s routing table, itself logarithmic
in size.

After receiving the multicast, nodes start locally the computation. Every possible com-
bination of molecules residing on a node is checked on this node against the rules, and, if
possible, reactions take place. The combinations’ cardinality is determined by the number
of molecules local to the node and the number of a rule’s arguments. When the part of the
solution received by a node is inert, it must associate itself with other nodes to continue
the computation.

Each of them sends its inert local solution to its parent. Parents then add them to their
own and continue the computation. Only when a parent has received all of its children’s
solutions and when its local solution is inert, the process continues with the parent trans-
ferring its local solution to its parent, and so forth until all of the inert local solutions reach
the source node, which delivers the global solution after executing it until inertia.

Figure 3.3: Execution example: (a) the original ring; (b) molecule dissemination and tree creation;
(c) the execution tree.

Execution Example. Consider the sixteen-node Pastry ring shown on Figure 3.3a. Follow-
ing Pastry’s routing scheme, let node 0’s routing table contain nodes 1, 2, 4 and 8, node
1’s routing table nodes 2, 3, 5 and 9, and so forth. Furthermore, let node 0 be the source
node for a chemical program composed of 16 molecules with IDs 0 through F . Node 0
holds on to molecule 0, while sending molecules 1 and 2 to their respective nodes since
they are located in its routing table. In doing so, node 0 puts them into its children list in
its local state. Molecule 3 is sent to node 2, which forwards it to node 3 and puts it in its

70

Chapter 3. Feasibility Study 3.2. Hierarchical Execution Platform

own children list. Next, node 0 sends molecules 4 through 7 to node 4. It keeps molecule 4
and forwards the others to nodes 5 and 6, putting them in its children list. The process of
disseminating molecules and creating parent-child relations for the first eight molecules
is depicted in Figure 3.3b. Once all of the molecules have reached their destinations, the
complete execution tree is in place (Figure 3.3c). It is then used to spread the program’s
rules and signal the beginning of the execution. In the final phase, local inert solutions
travel in the opposite direction — from node F to node E , then to node C , etc. Once their
local solutions are inert, the nodes will send them upwards to their parents — node F will
send its solution to node E , node 7 to node 6, etc. After receiving the inert local solutions
from nodes 1, 2, 4 and 8, node 0 starts the last execution cycle and delivers the final result
to the requesting application.

Fault Tolerance. While failures can affect our scheme (failures or disconnections of
nodes can lead to (i) routing problems, and (ii) loss of molecules), it is not our primary
concern here. However, we give a few hints for its reliability. The sub-tree formerly rooted
at a crashed node becomes unable to forward its results up the tree. Inspired by the work
in [26], a simple detection and reconnection protocol can be defined: when initiating the
last multicast message, the source can include its ID. Then, when a node is unable to reach
its parent, it can dynamically find a new path to the root by launching a reconnection re-
quest in the DHT on the source ID, and thus rebuild the tree. For dealing with the loss of
molecules one can rely on state machine replication [78, 112], because each chemical
engine operates as a deterministic state machine — it deterministically searches for re-
actants and performs reactions accordingly. It is thus possible for a node to replicate its
state — the molecules currently residing in its local solution — to k neighbouring nodes
and periodically send them updates on the progress of its computation. If, after a cer-
tain time-out, these neighbours stop receiving updates, the closest one (depending on
the topology of the network) includes in its own local solution the molecules it has last re-
ceived from the failed node. This prevents the loss ofmolecules, at the same time assuring
the continuation of the execution.

3.2.3 Condition Checking and Inertia Detection

Thus far, the focus of this section was on distributing the data and execution of the reac-
tions — the more simultaneous reactions at a time the faster the convergence and thus,
the termination.

We now discuss mechanisms enabling (i) reaction condition checking and (ii) inertia
detection. The former can be thought of as being part of the actual execution process —
in order to perform a reaction, the runtime has to make sure the reaction condition holds.
The latter, on the other hand, is a termination detection mechanism the task of which
is to detect the fact that no new reaction can be performed, signalling the execution’s
completion. Because the execution effectively stands idle while this step is performed, it
must be performed as efficiently as possible.

71

3.2. Hierarchical Execution Platform Chapter 3. Feasibility Study

For the sake of discussion, and for an accurate study of the issue, we present two al-
gorithms distributing the task of trying every possible combination of molecules. The first
one, based on a repeated brute-force mechanism, is intuitive but sub-optimal, highlighting
the fact that, if one is careless, many unnecessary tests can be done, increasing the com-
plexity of an already hard task. The second one, referred to as BucketSolver, is shown to
detect inertia in a minimal number of steps in terms of the number of combination tests
done.

3.2.3.1 Brute-force Algorithm

The approach which seems the most intuitive is that, upon the receipt of molecules
from one of its children, a node starts a computation cycle, during which every possible
molecule combination of the local solution is tested, possible reactions performed, and
thus local inertia reached. If a parent has got g children, there are exactly g + 1 such cy-
cles. Note that, even though two or more children’s results might come at the same time
they will not be merged with the node’s local solution simultaneously, and will therefore
not reduce the number of computation cycles.

Thus, as will the analysis establish later, the total number of tests performed by this
algorithm depends on the number of nodes in the tree, the tree’s structure and the number
of molecules involved in the process. Moreover, this number is higher than the minimal
number of combination tests, which limits the system’s scalability vis-à-vis the number of
molecules and the number of participating nodes.

3.2.3.2 BucketSolver Algorithm

As the reader may have noticed, the sub-optimality of the brute-force algorithm comes
from its reaction condition checking routine: once a node receives or generates new
molecules, it puts them in its unique local solution without keeping track of already
checked combinations, leading to future unnecessary tests.

When a node transfers its local solution to its parent, the parent is sure that all of the
combinations in the node’s local solution have already been tried. The parent does not
really need to know exactly which combinations have been checked, as long as it knows
the set of molecules they derive from. Thus, in this second algorithm, we create buckets
into which we put sets of molecules the combinations of which have already been tried.

When a node originally receives molecules from the source, it puts them each in its
own bucket. A computation cycle comprises checking only inter-bucket combinations —
those whose elements belong to different buckets. For the sake of clarity, let us consider
two buckets. Formally, when checking a combination of r arguments, j , 0 < j < r, elements
are picked from bucket a, while r − j elements are picked from bucket b. If the combination
is evaluated positively, the elements are removed from their respective buckets and once
the reaction has been carried out, each resulting molecule is placed in a new, separate
bucket.

Once two initial buckets’ intersection combinations have been checked, they are fused
— the molecules from one bucket are put into the other and the now empty bucket is

72

Chapter 3. Feasibility Study 3.2. Hierarchical Execution Platform

deleted. As shown later, the act of fusion guarantees all of the intra- and inter-bucket
combinations have been examined. Following this logic, the solution, be it local or global,
is declared to be inert once there is only one bucket left on the node or in the system,
respectively.

Figure 3.4: (I) Buckets to
check, (II) buckets being
checked, (III) combined
buckets.

Consider the example illustrated in Figure 3.4. Imagine
a node checked two molecules, a1 and a2, which now reside
in bucket a. The node then receives an inert local solution
from one of its children and creates a new bucket, bucket b
(Figure 3.4(I)). Now, it checks all of the combinations except
those of elements residing in the same bucket. In this ex-
ample, the node checks the following combinations: (a1,b1),
(a1,b2), (a2,b1) and (a2,b2) (Figure 3.4(II)). Note that the com-
binations (a1,a2) and (b1,b2) are not checked, for they have
been previously examined. Finally, presuming no reaction
took place, the two buckets are combined into one containing all of the elements (Fig-
ure 3.4(III)).

This algorithm is valid for an arbitrary number of reactants to find, i.e. for an arbitrary
size of the left part of rules, since at least one element per bucket must be picked. In pres-
ence of one-argument rules the algorithm is adapted as follows. In the case of a reaction
rule needing only one molecule to be triggered, then condition checks only need to be
performed on the molecules received at the time of the initial dissemination. The ones
transmitted from children are only forwarded to parents, as they were already checked
against the reaction condition by their initial worker, located in the sub-tree. Thus, every
molecule is checked once and only once.

The BucketSolver algorithm provides inertia detection (all of the combinations will
be examined by the reaction condition) while being optimal (every combination will be
checked only once). These assertions are proved in Section 3.2.3.3 and corroborated with
experimental results in Section 3.4.

3.2.3.3 Inertia Detection Complexity Analysis

In the study of the feasibility of a distributed chemical execution platform, one of the im-
portant issues being raised is inertia detection. Here we present the analysis of both algo-
rithms with respect to the total number of combinations examined to detect inertia.

Assumptions and Notation. The number of nodes is denoted by n. The program consid-
ered contains m molecules. Thus, after the initial dissemination detailed in Section 3.2.2,
every node holds approximately m/n molecules. As discussed in Section 1.1.3, we assume,
for the sake of simplicity, and without loss of generality, that the program considered now
is composed of one commutative rule with r arguments. In other words, unordered combi-
nations of r molecules are checked against the condition of this rule. Under these circum-

73

3.2. Hierarchical Execution Platform Chapter 3. Feasibility Study

stances, we define the optimal number of combinations to be checked as:

Nmin =

(

m

r

)

=
m!

r!(m − r)! (3.1)

which is the number of tests done by a centralised inertia detection mechanism. Recall,
from the discussion in Section 1.1.3, that inertia detection of chemical programs is an
NP-complete problem.

In order to analyse and compare the algorithms more easily, we suppose the solution
to be already inert, i.e. no more reactions can take place. An analysis of an unstable so-
lution is not feasible since the number of reactions, as well as the quantity of deleted and
createdmolecules heavily depends on the rules being executed and themolecules present
in the solution. Furthermore, in order to quantitatively compare the two approaches, we
assume the execution tree to be a full g-ary tree, where g ≥ 2. This allows us to anal-
yse and differentiate the approaches more clearly by taking advantage of the symmetry
and recursion of full trees. Nevertheless, we prove that the proposed algorithm keeps its
efficiency when applied to any type of tree, be it full or not.

Theorem 1. The number of combinations examined by the brute-force algorithm amounts
to:

N = f (m,n, r,g,d) =

(

m

r

)

+ n

(

m
n

r

)

+
d−1
¼

i=0

g i+1

(

mci

r

)

+ g i
g−1
¼

j=1

(

jmci +
m
n

r

)

(3.2)

Proof. On a given depth i , 0 ≤ i ≤ d , the total number of combinations checked by one
node is:

Ni1 =

(

m
n

r

)

+
g

¼

k=1

(

kmci +
m
n

r

)

=
g

¼

k=0

(

kmci +
m
n

r

)

(3.3)

where r is the number of arguments needed for one rule and mci is the number of
molecules received from the child at depth i +1 and is defined as:

mci =
m

n
∗ 1
g −1

(

gd−i −1
)

Summing by depth all of the checks made, we get the total number of condition checks
done by the system N:

N =
d

¼

i=0

g i ∗Ni1 (3.4)

After introducing Equation 3.3 and rearranging the terms, Equation 3.4 yields Equation
3.2.

Following is the quantitative static analysis of the proposed BucketSolver algorithm.

74

Chapter 3. Feasibility Study 3.2. Hierarchical Execution Platform

Lemma 1. When fusing two buckets, a and b, the number of checked combinations totals
to:

Nab =

(

ma +mb

r

)

where ma andmb represent the number ofmolecules contained in each of the two buckets.

Proof. Given that each of the buckets’ combinations have already been checked, we have
to prove their intersection is checked also, i.e.

Na∩b =

(

ma +mb

r

)

−
(

ma

r

)

−
(

mb

r

)

The combinations expressed in the above equation are found by picking r elements
from the set a∪ b where j elements come from bucket a and r − j elements from bucket b
(0 < j < r). When summing the number of combinations, we get the following:

r−1
¼

j=1

[(

ma

j

)

∗
(

mb

r − j

)]

=

(

ma +mb

r

)

−
(

ma

r

)

−
(

mb

r

)

for r ≥ 2, which matches Na∩b .

Corollary 1. The necessary and sufficient condition that all of the combinations have been
checked is having exactly one bucket left.

Proof. If there is only one bucket left, there are no inter-bucket combinations to be exam-
ined, which, by definition, means all of the possible combinations in the present solution
have been checked.

Lemma 2. The number of combinations checked by BucketSolver in a full g-ary tree
amounts to:

N =

(

m

r

)

Proof. In the first computational cycle, every combination will be checked:

Ni1 =

(

m
n

r

)

Each time a node receives a result from one of its children, it checks Na∩b combina-
tions, where bucket a represents the molecules already present on the node and bucket
b represents the incoming result of a child. A node does so g times, and the number of
combinations on it totals to:

Ni1 =

(

m
n

r

)

+
g−1
¼

k=0

[(

(k +1)mci +
m
n

r

)

−
(

kmci +
m
n

r

)

−
(

mci

r

)]

=

(

gmci +
m
n

r

)

− g
(

mci

r

)

75

3.2. Hierarchical Execution Platform Chapter 3. Feasibility Study

Knowing that there are g i nodes on depth i , the total number of checks done can be
calculated using Equation 3.4:

N =
d

¼

i=0

g iNi1 =

(

m

r

)

for g ≥ 2 and r ≥ 2.

Lemma 3. The number of combinations examined by the modified one-argument-rule
BucketSolver algorithm is:

N =

(

m

1

)

=m

Proof. In the modified algorithm, there is only one computation cycle, which takes place
upon the initial molecules dissemination. The number of combinations processed by each
node is:

N =

(

m
n

1

)

=
m

n

After this computation cycle, nomore computation cycles happen – all of themolecules
are being forwarded to the source node. Since there are n nodes participating in the cal-
culation, the number of combinations checked totals to m.

Corollary 2. BucketSolver checks every combination only once.

Proof. It suffices to observe that the number of examined combinations stated in Lemma
2 and Lemma 3 match Equation 3.1.

Theorem 2. Lemmas 2 and 3 hold true also for non-regular trees.

Proof. In the case of a non-regular tree, the number of combinations checked by a node i
is:

Ni=

(

m
n

r

)

+
gi−1
¼

k=0

[(

m
n +

´k+1
j=1 mj

r

)

−
(

m
n +

´k
j=1mj

r

)

−
(

mk+1

r

)]

=

(

mi

r

)

−
gi
¼

j=1

(

mj

r

)

where gi is the number of node i ’s children, mj is the number of molecules forwarded to it
by its child j and mi is the final number of molecules which node i will send to its parent:

mi =
m

n
+

gi
¼

j=1

mj

76

Chapter 3. Feasibility Study 3.2. Hierarchical Execution Platform

mi will, naturally, become one of node i ’s parent’smj , which means they will cancel out
one another. Consequently, the total number of combinations checked by the algorithm
is:

N =
n

¼

i=1

Ni =

(

m

r

)

This analysis shows that both presented algorithms insure the detection of inertia. This
means that, no matter which one of the algorithms is used in the platform, if a stable state
exists, it will be reached.

However, this analysis also shows that the proposed algorithm, BucketSolver, checks
every combination only once, and is, thus, optimal. Consequently, it is more efficient than
its brute-force counterpart. This indicates its superiority in terms of execution time. Sec-
tion 3.4 experimentally confirms this statement.

3.2.4 Tree Reorganisation

As explained in Section 3.2.2, the creation of the execution tree heavily depends on the
underlying overlay network’s properties: its topology (the term neighbour having different
meanings in different network organisation schemes), its routing algorithm (which directly
influences the choice of a node’s children in its local state) and also the hash function
used in the process (which determines a molecule’s final destination). Moreover, given
the tree-shaped execution flow, the root node may, depending on the type of problems
being solved, face a growing probability of overload, in particular in problems where the
number of molecules does not decrease over time. This aspect will be discussed in the
evaluation section. Thus, the charge of the tree may be poorly balanced, which could
lead to performance degradation and render the algorithms from section 3.2.3 prone to
communication and computation bottlenecks with the augmentation of the total number
of nodes. To avoid these problems, we are proposing a tree reorganisation scheme, where
each group of child nodes is organised into a new sub-tree having the original parent as
its root.

3.2.4.1 Reorganisation Scheme

The aim of the reorganisation scheme is to modify the tree’s structure in a controlled way
in order to minimise congestions and increase the overall performance of the system. The
basic idea consists in completely modifying a node’s local state, both its children entries
as well as its parent entry, which results in a redirection of the node’s local inert solution—
instead of sending it to the parent chosen by the underlying DHT, it will be sent to the par-
ent chosen by the reorganisation scheme. This reorganisation scales gracefully with the
system because changes are propagated top-down from the source node and are applied

77

3.2. Hierarchical Execution Platform Chapter 3. Feasibility Study

locally to nodes. Moreover, it is a cost-effective scheme in the sense that no extra mes-
sages are needed for said propagation. Rather, the changes are disseminated together
with the rules to be executed contained inmc, which is expanded to carry additional infor-
mation concerning the reorganisation scheme: the maximum number of children allowed
per node, denoted gr , and the list of nodes which will be assigned as children to the re-
ceiver of mc. gr , 2 ≤ gr < g, is the reorganisation scheme’s input parameter and is set by
the platform’s user.

The process starts at the source node. The children in its local state are sorted based
on their indices and are then split in gr groups. In each group, the child with the highest
index is elected as a group leader and remains the source node’s child. The rest of the
group is removed from the local state and is put into a new mc message, which will be
sent to the group leader. Once it receives mc, the group leader will add the list of nodes
present in mc to its local state and proceed with the grouping process, and so forth until
the changes reach the bottom of the tree. When a node receives an mc message, it also
completes its local state by indicating that the node which sent it mc is its parent. The re-
organisation stops once there are nomore nodes which need to be reassigned, i.e. once all
of the nodes have received an mc message, which marks the beginning of the execution.
The inert solutions will then follow the new paths created while reorganising the execution
tree.

Figure 3.5: Tree reorganisation example: (a) initial state, (b) first level established, (c) tree com-
pletely reorganised

Example. Let us demonstrate the reorganisation process on a simple example. Fig-
ure 3.5a depicts the execution tree built after disseminating molecules with ids 0 through
8 in a 9-node system. Let node 0 be the source node and let gr = 2. Before sending the
message containing the rules, mc, node 0 splits its children list in two groups. It keeps
node 4 from the first group (1-4) and node 8 from the second (5-8). It then sends one mc
message including the list of nodes erased from the first group, i.e. the list 1,2,3, to their
group leader — node 4. Anothermc, one containing the list 5,6,7, is sent to node 8. Node
0 now starts its execution. The receivers of these messages, nodes 4 and 8, update their
local states by setting parent_id = 0 and copying the lists to their respective children lists
(Figure 3.5b). Node 4 now splits its children list into two groups (< 1,2 > and < 3 >) and

78

Chapter 3. Feasibility Study 3.2. Hierarchical Execution Platform

elects the leaders (2 and 3). Twomcmessages are then constructed; the first one contain-
ing only 1 in its list is sent to node 2, while the other is sent to node 3 without a list. Node
4 now starts the execution. Nodes 2 and 3 set the parent to 4. Node 3 begins executing its
local solution, while node 2 sends an mc message to node 1 prior to executing the rules.
Node 1 now sets its parent and starts the execution. The exact same effect is achieved on
the right side of tree: node 8 splits its children list into two groups, sending 5 to node 6 in
one mc and no list to node 7 in the other (Figure 3.5c). After the reorganisation, instead
of all the nodes sending their solutions directly to node 0, node 1 will contact node 2 and
node 5 node 6; nodes 2 and 3 will contact node 4 and nodes 6 and 7 node 8. Finally, nodes
4 and 8 will deliver their local solutions to node 0.

3.2.4.2 Analysis

We are now presenting a short analysis of the benefits of workload balancing the reorgan-
isation scheme brings into the system. They are summarised in the following property:

Property 1. The proposed reorganisation scheme shifts part of the workload from parent
nodes to their direct children if the system employs the BucketSolver algorithm.

Proof. There are two types of workload: the execution of chemical reactions and combi-
nation checking, i.e. inertia detection. It suffices to prove the correctness of this property
only for the latter, since a reaction will happen there where its input combination is first
checked. Let us consider an inert solution awaiting inertia detection in a full g-ary tree.
On depth d − 1, the last depth but one, a parent collects the molecules of its g children,
each having m/n molecules. Following the proof of Lemma 2, the parent will check

Npg =

(

(g +1)mn
r

)

− g
(

m
n

r

)

combinations in total. If, on the other hand, the reorganisation scheme is activated, the
same parent will now have only gr direct children, and will, thus, check

Npr =

(

(g +1)mn
r

)

− gr
(g
gr

m
n

r

)

combinations of molecules. The comparison of the two expressions yields:

g > gr ⇒ g

(

m
n

r

)

< gr

(g
gr

m
n

r

)

⇒ Npg > Npr

Once the g children finish their execution they are no longer part of the tree, so the same
principle recursively applies to their parents. Finally, using the logic from Theorem 2, the
proof for non-regular trees is trivial.

It is worth noting here that Property 1 does not entirely hold for the brute-force algo-
rithm. Due to the different formation of local inert solutions induced by the reorganisation
scheme, part of the workload of executing chemical reactions will be shifted from parents

79

3.3. Prototype Chapter 3. Feasibility Study

to children. However, the amount of checked combinations will not be reduced due to
its brute-force search for reactants. On the contrary, the number of checks done by the
child nodes elected as group leaders during the reorganisation will increase, effectively
increasing the overall number of tested combinations.

3.3 Prototype

To better capture the viability of the platform designed, and thus go further in the feasi-
bility study, a software prototype of our architecture including the algorithms presented
before was developed. The sources are available in the branches/devel-distrib direc-
tory of the svn repository located at http://gforge.inria.fr/scm/?group_id=2125. Its
logical concept is depicted in Figure 3.6.

The prototype exploits FreePastry1, an implementation developed by the original au-
thors of Pastry, as its overlay network. Its facilities are used by the two units directly
above it — the central and the flow unit. These two units represent the implementation
of the architecture laid out in Section 3.2.2, while the solver unit implements the reaction
condition checking and inertia detection mechanisms from Section 3.2.3.

Figure 3.6:
Logical con-
cept of the
prototype.

Central Unit. The central unit is in charge of accepting and taking
over the requests originating from external applications. It hashes the
molecules and dispatches them to the underlying overlay network to be
routed to the appropriate nodes. It is also in charge of initiating multicasts
(such as the one delivering rules to nodes), which it forwards to the flow
unit to be sent. When global inertia has been achieved, it delivers the re-
sulting solution to the requesting application.

Flow Unit. Meanwhile, each flow unit monitors the overlay traffic and
builds its own local state, i.e., the localised view of the execution tree. This
localised view is based on routing decisions taken by the overlay network;

if a flow unit spots a molecule, coming from node a, being forwarded to node b by the
unit’s node, it will add node b to the list of its children. Once the dissemination process
has been completed, the flow unit holds the list of its direct tree descendants and the par-
ent’s identity. This list is used at execution time as a synchronisation barrier: the flow unit
forbids sending the local inert solution to the parent until all of its children’s results have
been received.

Since this unit is the only one directly manipulating a node’s local state, it is also in
charge of reorganising its part of the tree during the dissemination of multicasts. As de-
scribed in Section 3.2.4, it elects the group leaders, removes the rest from its children list
and passes their identities on to the new group leaders.

1http://www.freepastry.org

80

Chapter 3. Feasibility Study 3.4. Evaluation

Solver Unit. The key role in the execution is played by the solver unit, which is the imple-
mentation of the algorithms proposed in Section 3.2.3. The unit has two different imple-
mentations, one for each of the two condition checking methods. After the dissemination
process, the central unit triggers its execution of the local solution. Once inert, the solu-
tion is transferred to the flow unit. On the other side, when a result from a child is received,
the flow unit hands it over to the solver unit, triggering a new execution cycle.

The implementation of the brute-force execution algorithm reflects precisely its de-
scription in Section 3.2.3.1, while the proposed algorithm’s implementation, outlined in
Section 3.2.3.2, carries a slight refinement. The solver unit implements a multi-threaded
execution scheme with a minimum amount of synchronisation; the well-defined bucket
boundaries imply that two disjoint groups of buckets, each containing more than one
bucket, can be executed independently from one another. As a result, the solver unit im-
plements a thread pool which schedules the execution of groups of buckets on free threads
in the pool as long as the local solution is not inert, i.e., as long as there are at least two
buckets left to fuse. This entails very few synchronisation barriers; a synchronisation point
is needed only when (i) all of the threads are busy; or (ii) there’s only one bucket available
while there are busy threads.

On the other hand, a similar mechanism cannot be applied to the brute-force algorithm
due to the high level of synchronisation required. Indeed, the algorithm has no recollection
of the combinations it has checked. Instead, it checks sequentially all of the possibilities.
As a consequence, access to the combination list ought to be synchronised, which in prac-
tice means that most of the threads would waste most of the execution time waiting in the
queue. Additionally, access to themolecules themselves has to be synchronised, since two
threads might pick combinations containing the same molecule, which hardly constitutes
an efficient and scalable solution.

3.4 Evaluation

This section presents an evaluation of the hierarchical platform proposed in Section 3.2.
The prototype was tested on two simple chemical programs outlined in Section 3.4.1 after
which the results of the experiments are presented.

3.4.1 Test Programs

The evaluation of the proposed architecture and algorithms was conducted using two pro-
grams. We consider two families of programs having a different complexity regarding
inertia detection. While the expression of programs chosen is quite simple (due to the ex-
pressiveness and uncluttered style of the chemical model), their runtime’s complexity is
similar to many other chemical programs with far more complex logic. Put simply, what
matters is the number of test and reactions to be performed over time. The first class of
applications has an amount of data that decreases over time, resulting in a decreasing
complexity of the combination checking process. The second exhibits a complexity that
does not variate during execution.

81

3.4. Evaluation Chapter 3. Feasibility Study

Programs with Decreasing Complexity. A large collection of real-world applications
solve problems the complexity of which gradually decreases as computation progresses.
In our experiments we chose to represent this class of applications with the getmax pro-
gram :

let getmax =
replace x, y
by x
if (x ≥ y)

The rule requires two input arguments— two integers—, consumes them, and creates
a new molecule which holds the higher value of the two. As noted in Section 1.1.3, this is
a so-called reducer rule since each reaction it activates decreases the total number of
molecules, and thus, the program’s complexity. This is a typical scenario for virtually all
data-processing applications where the amount of data to be processed diminishes over
time. In order to simulate data processing, we introduced a pause of one second after
each reaction. In the experiments we performed for this program, a solution containing
50,000 molecules was used.

Non-decreasing Complexity Programs. The second is a chemical program containing
one multiset comprised of 5000 molecules, each composed of two integer numbers — an
index and a value associated with it —, and a single rule, sort , operating on them:

let sort =
replace i : x, j : y
by i : y, j : x
if (i < j && x ≥ y)

The rule consumes two molecules if they are not already sorted in ascending order.
Two new molecules are then created, holding the same indices as the original ones, but
with swapped values. Although remarkably simple, this program exhibits an important
property — it keeps the number of molecules in the solution, as well as the complexity
of the program, constant over time, which means that, at the end of the computation,
the multiset to be processed by the source node is still large in size, exposing a potential
scalability limit of the approach.

Secondly, the rule guarantees the multiset to eventually become inert, allowing us to
measure the performance of the algorithms’ inertia detection capabilities. This also allows
us to compare the two algorithms more precisely.

3.4.2 Results

Experiments were carried out on the prototype described in Section 3.3 with the programs
presented above. Their goal is fourfold. We want to: (i) examine the feasibility of the

82

Chapter 3. Feasibility Study 3.4. Evaluation

architecture; (ii) compare the algorithms from Section 3.2.3; (iii) look at the network traffic
generated; and (iv) test the tree reorganisation scheme laid out in Section 3.2.4.

The experiments were conducted on the French nation-wide Grid’50002 [20] computa-
tion grid, where the nodes, varying in number from 100 to 1000, were scattered randomly
across nine geographically distant sites. The results represent values averaged over 6
runs. The configuration of the logical (DHT) network was changed upon each run.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 100 200 300 400 500 600 700 800 900 1000

S
p

e
e

d
-u

p

Number of nodes

Brute-force
BucketSolver

Figure 3.7: Speed-up in execution time for the getmax program.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100 200 300 400 500 600 700 800 900 1000

S
p

e
e

d
-u

p

Number of nodes

Brute-force
BucketSolver

Figure 3.8: Speed-up in execution time for the sort program.

Experiment 1 (Execution Time). Firstly, we examine the viability of the framework de-
fined. Figures 3.7 and 3.8 show the speed-up in execution time achieved by the runtime
when compared to the execution time of a single runtime instance. This experiment con-
firms that chemical programs can be directly executed over such a distributed platform,
and allows to capture better the architecture’s effectiveness, discussed below.

2http://www.grid5000.fr

83

3.4. Evaluation Chapter 3. Feasibility Study

When considering the execution time of programs with a decreasing complexity, de-
picted in Figure 3.7, we observe that using either of the two algorithms results in consid-
erable speed-ups, which linearly grow when increasing the number of nodes. However,
there are significant differences in performance between the two algorithms; while with
the brute-force approach a maximum speed-up of 150 is achieved, BucketSolver is able
to reduce the execution time by a factor of up to 900. Although both algorithms perform
the same number of reactions, when using BucketSolver, the runtime benefits from the
implementation’s optimisation of multi-threading, and thus performs multiple reactions at
a time.

On the other hand, Figure 3.8 shows that in the case of the sort test program distribu-
tion of the execution does not induce a significant speed-up. Concretely, the brute-force
algorithm is not even able to match a single instance’s execution time regardless of the
number of nodes, while BucketSolver achieves speed-ups in the range [5,7]. Note that,
due to the non-determinism of the execution and the randomness involved in network
construction, the result obtained for 600 nodes, where a speed-up of 8 has been obtained,
is in fact an artefact. Still, it is visible that, overall, a global, coherent speed-up is achieved.
In contrast to getmax where parents in the tree have got less work to do than their child
nodes after receiving the results, during the execution of sort parents receive the same
amount of molecules they initially forwarded to their children. Thus, even though the total
number of molecules in the system is constant, the complexity of the program increases
over time for each of the participating nodes. As a consequence, parents have got to wait
longer on their children’s responses, ultimately prolonging the entire execution. Finally,
BucketSolver performs better due to its optimality and ability to exploit multi-threading.
However, its performance is limited by the fact that the number of nodes involved in the
computation is negligible compared to the total number of checks and reactions done
during execution, discussed in the next experiment.

 20

 40

 60

 80

 100

 120

 140

 160

 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
 (

s)

Number of nodes

Brute-force
BucketSolver

Figure 3.9: Execution time on an inert solution (sort program).

84

Chapter 3. Feasibility Study 3.4. Evaluation

 12

 12.5

 13

 13.5

 14

 14.5

 15

 15.5

 16

 16.5

 17

 17.5

 100 200 300 400 500 600 700 800 900 1000

N
u

m
b

e
r

o
f

c
o

m
b

in
a

ti
o

n
s

(x
1
0

6
)

Number of nodes

Brute-force
BucketSolver

Figure 3.10: Number of checks done on an inert solution (sort program).

Experiment 2 (Inertia Detection). Next, we investigate the overhead of distributed iner-
tia detection, depicted on Figures 3.9 and 3.10. The tests were conducted using the sort
program on an inert solution. The total execution time, depicted in Figure 3.9, shows the
brute-force algorithm’s inability to efficiently detect inertia in a distributed fashion. More-
over, the fluctuation in execution time reveals its dependence on the structure of the tree
built during execution. On the other hand, BucketSolver decreases the inertia detection
time four to five times. However, its performance is not improved with the increase in
the number of nodes, suggesting that nodes spend a considerable part of their time wait-
ing on results from other nodes. The total number of combinations checked, shown on
Figure 3.10, confirms BucketSolver’s optimality: the total amount of combinations tested
matches that of a single instance regardless of the number of nodes involved in inertia
detection. As predicted, this optimality does not hold for the brute-force algorithm, where
the number of combinations checked fluctuates wildly.

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 100 200 300 400 500 600 700 800 900 1000

B
y
te

s
se

n
t

p
e

r
m

o
le

c
u

le

Number of nodes

Sort
GetMax

Figure 3.11: Communication costs per molecule for both test programs.

85

3.4. Evaluation Chapter 3. Feasibility Study

Experiment 3 (Communication Overhead). In this experiment we analyse the scalabil-
ity related to communication. Depicted in Figure 3.11 is the total number of bytes sent
during execution, normalised per molecule. As expected, the overhead of adding new
nodes is smaller for getmax than for sort , since its complexity (and number of molecules)
decreases over time. Although steeper, the curve for sort shows that distributing the exe-
cution has a rather limited impact on network traffic. Moreover, the trend of this overhead
is inversely proportional to the growth of the number of nodes: 5 bytes/molecule/node for
100 nodes and 1.1 bytes/molecule/node for 1000 participating nodes. Thus, we can con-
clude that increasing the number of nodes does not introduce network bottleneck prob-
lems.

 0

 500

 1000

 1500

 2000

 2500

 3000

 2000 3000 4000 5000 6000 7000 8000

Ti
m

e
 (

s)

Number of molecules

No reorganisation
With reorganisation

Figure 3.12: Execution time for the sort program with and without reorganisation, n = 600

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 10 20 30 40 50 60 70 80 90 100

Ti
m

e
 (

s)

Number of molecules (x 1000)

No reorganisation
With reorganisation

Figure 3.13: Execution time for the getmax program with and without reorganisation, n = 600

Experiment 4 (Reorganisation Scheme Speed-up). The aim of this experiment is to
examine the benefits of tree reorganisation in terms of execution time speed-up. Two sets

86

Chapter 3. Feasibility Study 3.4. Evaluation

of experiments were conducted using the two test programs described in Section 3.4.1.
The number of participating nodes was fixed to 600, while varying the size of the problem,
i.e. the number of molecules. The obtained results are illustrated in Figures 3.12 and
3.13, and show that reorganising the execution tree does not impact much the execution
time of the programs. In the case of sort (Figure 3.12) there is only a slight variation in
execution time, while this difference is greater for getmax (Figure 3.13). In both cases
there are two factors limiting the execution speed-up of the reorganisation. First, due to
the reorganisation, molecules need more time to reach the source node, as their travel
paths are longer. The second, and more important, factor is the use of multi-threading. In
spite of the fact that, as we show in Section 3.2.4, nodes residing at the same tree depth
do less work, this advantage is outperformed by employing multiple threads checking the
combinations and executing the reactions.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25

R
e

a
c

ti
o

n
s

(%
)

Depth level

No reorganisation
With reorganisation

Figure 3.14: Distribution of reactions done per depth for the sort program, n = 600

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 2000 3000 4000 5000 6000 7000 8000

R
e

a
c

ti
o

n
s

(%
)

Number of molecules

No reorganisation
With reorganisation

Figure 3.15: Percentage of reactions done by the source node for the sort program, n = 400

87

3.5. Conclusion Chapter 3. Feasibility Study

Experiment 5 (Load Balancing). Finally, the theoretical analysis of the reorganisation
scheme is put to the test and evaluated using the sort program on a varying number
of molecules. The results for a 600-node ring are depicted in Figures 3.14 and 3.15 and
clearly show that the program exhibits congestion problems on the source node. As shown
on these figures, one single node, the source node, can do up to 60%of all of the reactions.
Reorganising the tree cuts the percentage by more than a half and augments the height
of the tree from 5 to 22 levels, at the same time redistributing the workload down the tree
(Figure 3.14). Furthermore, Figure 3.15 reveals that this behaviour persists when changing
the size of the problem— in the original version of the algorithm the source node performs
from 60% to 65% of reactions, while its counterpart equipped with reorganisation reduces
the percentage to 20%–25%. Even though the reorganisation does not have an impact on
a program’s execution time, it facilitates the load-balancing of the system, which becomes
crucial when executing multiple programs simultaneously on a large-scale platform.

3.5 Conclusion

Since previous works considered only limited runtime environments for specific architec-
tures, we started a study of the feasibility of a generic runtime able to execute chemical
programs in heterogeneous large-scale systems. We aimed at devising a platform that:
(a) can automatically distribute and execute any chemical program in the same fashion;
and (b) is platform-independent both in terms of hardware and software. In this chapter,
we discuss two approaches for meeting these criteria : a runtime based on the distributed
shared memory model, and a hierarchic one based on peer-to-peer communication.

Our first attempt at a distributed chemical runtime environment exploits the distributed
sharedmemory model. The sharedmemory space is used to store molecules and rules, as
well as a list of combinations of molecules which have to be checked by the nodes against
the rules. The management of this list leads to several issues, all of the nodes having to
access it continuously in order to progress in the computation, which leads to long wait
periods over locks.

For this reason we studied the feasibility of a hierarchical architecture based on mes-
sage passing in a peer-to-peer network. The design of a tree-structured framework based
on distributed hash tables is discussed, and algorithms needed to build a chemical run-
time are given, in particular dealing with the crucial inertia detection problem for which an
optimal distributed mechanism is provided. The algorithms are formally analysed and the
software prototype built and the experimental campaign conducted establish the viability
of the concepts presented.

In spite of its viability, performance and low network overhead, the platform suffers
from a computation bottleneck on the execution tree’s root node. Therefore, we formu-
lated a tree-reorganisation scheme in order to facilitate load balancing and transfer a
part of the work deeper in the tree. Even though the results obtained are encouraging, the
root node still performs the majority of the work when compared to other nodes, which is
a direct consequence of the runtime’s hierarchical structuring.

88

Chapter 3. Feasibility Study 3.5. Conclusion

Moreover, the approach developed in this chapter considers the chemical engines to
be black boxes which are consulted when a combination of molecules is obtained and
needs to be checked against a reaction condition. In other words, the runtime is blind
with regards to the actual rules being executed and to the molecules being tested and
their properties. In this way, many unnecessary, and in some cases impossible, tests are
performed, which prolong the execution.

Taking these circumstances into consideration, the rest of this thesis focuses on: (i)
fully decentralising the execution process in order to alleviate the problem of the root
node’s computation bottleneck; and (ii) examining the rule’s molecule pattern, its reaction
condition and themolecules’ properties so as to reduce the complexity of the combination-
checking routine by eliminating as many unnecessary tests as possible.

89

3.5. Conclusion Chapter 3. Feasibility Study

90

Chapter4

Atomic Capture of Multiple Molecules

Contents
4.1 SystemModel . 93

4.2 Protocol for the Atomic Capture . 94

4.2.1 Pessimistic Sub-protocol . 95

4.2.2 Optimistic Sub-protocol . 98

4.2.3 Sub-protocol Mixing . 98

4.2.4 Dormant Nodes . 100

4.3 Execution of Multiple Rules . 101

4.3.1 Multiple Success Rates . 102

4.3.2 Initial Rule Assignment . 102

4.3.3 Changing the Active Rule . 102

4.3.4 Discussion . 103

4.4 Proof of Correctness . 104

4.4.1 Proof of Safety . 104

4.4.2 Liveness Proof . 104

4.4.3 Convergence Time . 106

4.5 Evaluation Set-up . 106

4.6 Experiments Involving One Rule . 107

4.6.1 Execution Time . 107

4.6.2 Switch Threshold Impact . 108

4.6.3 Switch Behaviour . 109

91

Chapter 4. Atomic Capture of Multiple Molecules

4.6.4 Communication Costs . 111

4.7 Experiments with Multiple Rules . 113

4.7.1 Multiple-rule Test Programs . 113

4.7.2 Execution of the Independent-rules Program 114

4.7.3 Execution of the Dependent-rules Program 116

4.7.4 Execution of the Circular Program 118

4.7.5 Execution of the Workflow Program 118

4.8 Conclusion . 122

While the study presented in Chapter 3 shows the viability of a large-scale execution
runtime for chemical programs, the hierarchical model proposed is exposed to possible
overhead and bottleneck problems on the root node. Since traditional, centralised server-
client schemes suffer from similar problems, it is necessary to conceive a decentralised
execution runtime for large-scale environments, bringing about new research challenges.
One of the most significant is inherent to concurrent rewriting and deals with the atomic
capture of the different molecules satisfying a reaction. At run time, a molecule can po-
tentially participate in several concurrent reactions. However, it should be ensured that it
will participate in at most one. Otherwise, the logic of the program could be broken.

Let us slightly refine the problem envisioned : we consider a chemical program made
of a multiset of objects (molecules), and a set of rules to be applied concurrently on them.
Both the objects and the rules are distributed over a set of nodes on which the program
runs. Each node periodically tries to fetch molecules needed for the reactions it is trying
to perform. As several molecules can satisfy the pattern and conditions of several re-
actions performed concurrently by different nodes, the same molecule can be requested
by several nodes at the same time, inevitably leading to conflicts. Mutual exclusion on
the molecules is thus mandatory. Although our problem resembles the classic resource
allocation problem [70], it differs from it in several aspects. Firstly, the molecules are in-
terchangeable to some extent. The requested molecules must match a pattern defined
in the reaction rule a node wants to perform; if two molecules, A and B , both match the
rule’s pattern, any of the two may be used in the actual reaction. Then, we differentiate
two processes which are :

1. finding molecules matching a pattern (achieved by a discovery protocol);

2. obtaining them to perform reactions (achieved by a capture protocol).

Consequently, if one node cannot manage to grab some specific molecules, it will
switch to another set of molecules. We are not so much interested in avoiding one node’s
starvation as in the liveness of the system itself : some node should be able to perform
one reaction in a finite amount of time in order to move the computation forward.

Secondly — and following the previous point — the platform envisioned is at large
scale, and the resources dispatched over the nodes are dynamic : molecules are deleted

92

Chapter 4. Atomic Capture of Multiple Molecules 4.1. System Model

when they react, and new ones are created. This specific property of the chemical pro-
gramming model entails that there are no updates : a molecule can only be created or
deleted, but never updated. Likewise, the number of resources/molecules (and of possible
reactions) will fluctuate over time, influencing the design of the capture protocol. Bear in
mind that once the holder of a matching molecule is located, the scale of the network is
of less importance, since only the nodes requesting the molecules and their holders are
involved in the capture protocol.

This chapter proposes an adaptive and efficient distributed protocol for the atomic cap-
ture of molecules in large-scale environments. Firstly, in Section 4.1 we describe the
system model considered. Then, Section 4.2 details our protocol combining two sub-
protocols inspired by previous works on distributed resource allocation but adapted to
the distributed runtime of chemical programs. The first sub-protocol, referred to as the
optimistic one, assumes that the number of molecules satisfying some reaction’s pattern
and condition is high, so only few conflicts for molecules will arise, nodes being likely to
be able to grab distinct sets of molecules. While this protocol is simple, fast, and has a
limited communication overhead, it does not ensure liveness when the number of conflicts
increases. The second one, called pessimistic, slower, andmore costly in terms of both ex-
ecution time and communication, ensures liveness in the presence of an arbitrary number
of conflicts. Switching from one protocol to the other is achieved in a scalable, distributed
fashion and is based on local success histories in grabbing molecules. Furthermore, we
analyse chemical programs containing multiple rules and the possible input/output de-
pendencies they might have and propose in Section 4.3 a rule-changing mechanism in-
structing nodes as to which rule to execute. A proof of the protocol’s correctness is given
in Section 4.4. The description of the evaluations conducted is laid out in Section 4.5,
while Sections 4.6 and 4.7 discuss the protocol’s characteristics through a set of simula-
tion results when one and multiple rules are present in the program, respectively.

4.1 System Model

Different systems require different algorithms for performing atomic operations varying in
complexity. We now describe the system model on top of which the protocol is built.

We consider a distributed system �� consisting of n machines which communicate
via message passing. They are interconnected in such a way that a message sent from a
node can be delivered, in finite time, to any other node in �� . Moreover, we suppose that a
communication channel between any two given nodes is a FIFO queue — a message sent
at time t is always delivered strictly before a message sent at time t + ×. As we showed
in Chapter 3, at large scale such a fully-connected network can be built by relying on P2P
systems, more specifically ones employing distributed hash table (DHT) communication
protocols [109, 118]. They allow us to focus on the atomic capture of molecules without
worrying about the underlying communications’ details.

93

4.2. Protocol for the Atomic Capture Chapter 4. Atomic Capture of Multiple Molecules

Data and Rules Dissemination. In this chapter, we assume data and rules have already
been dispatched to the nodes. In case the data and rules are initially held by a single
external application, a dissemination protocol similar to the one described in Chapter 3
can be employed. The external application can contact a node in the DHT and transfer
it the chemical solution to be executed. The node which received the data scatters the
molecules across the overlay according to the DHT’s hash function. Molecules are routed
concurrently according to the DHT’s routing scheme. The dissemination of rules can fol-
low a similar pattern, or can be broadcast in the network. The only difference is that rules
can be replicated on several nodes to satisfy an increased level of parallelism. Through-
out this chapter, we simply assume every rule of the program is present on all of the nodes
in the system.

Discovery Protocol. In order for the reaction to happen, a suitable combination of
molecules has to be found. While the details of this aspect are also abstracted out in
the remainder of the chapter, they deserve to be preliminarily discussed. The basic lookup
mechanism offered by DHTs allows the retrieval of an object according to its (unique) iden-
tifier. Unlike the exact match functionality provided by DHTs, we require nodes to be able
to find some molecule satisfying a pattern (e.g., one integer) and condition (e.g., greater
than 3). This can be achieved by the support of range queries on top of the overlay net-
work, i.e. mechanisms to find some (at least one) molecules falling within a range, pro-
vided the molecules can be totally ordered on a (possibly complex, multi-dimensional)
criterion, as for instance provided in [111]. This mechanism can be easily extended to
support patterns and conditions involving several molecules. For instance, when trying to
capture two molecules ordered in a specific way, a rule translator constructs the range
query to be sent over the DHT based on the given rule and the first molecule obtained. If
matching molecules are found on a given node, this node will trigger the capture protocol.

Fault Tolerance. DHT systems inherently provide fault-tolerance mechanisms. If nodes
crash, leave or join, the properties of the communication pattern will be preserved. On top
of that, we assume that there exists a higher-level resilience mechanism which prevents
the loss of molecules, such as statemachine replication [78, 112]. Each node replicates its
complete state — the molecules and its current actions — across k neighbouring nodes,
where the definition of a neighbour depends on the actual DHT scheme used. Thus, in
case of its failure, one of its neighbours is able to assume its responsibilities and continue
the computation.

4.2 Protocol for the Atomic Capture

Here, the protocol in charge of the atomic capture of molecules is discussed. The pro-
tocol can run in two modes, based on two different sub-protocols: an optimistic and a
pessimistic one. The former is a simplified sub-protocol which is employed while the num-
ber of possible reactions is high enough to render the possibility of conflicts negligible.

94

Chapter 4. Atomic Capture of Multiple Molecules 4.2. Protocol for the Atomic Capture

When the ratio between actual and possible reactions drops below a given threshold, the
pessimistic sub-protocol is activated. While being the heavier of the two in terms of net-
work traffic, this sub-protocol ensures the liveness of the system, even when an elevated
number of nodes in it compete for the same subset of molecules.

4.2.1 Pessimistic Sub-protocol

To some extent similar to the three-phase commit protocol [116], this sub-protocol en-
sures that at least one node wanting to execute a reaction will succeed. The three-phase
commit protocol was originally proposed as a crash recovery protocol for distributed
database systems. Its authors study the two-phase protocol and add to it a third, the
so-called prepare commit phase, thanks to which they are able to obtain a system which
is able to abort database transactions in any moment. Although in its essence similar to
the three-phase commit protocol, the goal of the pessimistic sub-protocol proposed in this
thesis is to secure the liveness of the system by ensuring that at least one node will be
able to complete its reaction in a situation where multiple requesters are in conflict over
different molecules, as explained below.

Molecule fetching is done in three phases— the query, commitment, and fetch phases
— and involves at least two nodes— the node requesting the molecules, called requester,
and at least one node holding the molecules, called holder(s). Algorithms 4.1 and 4.2
represent the code run on these two entities, respectively, and Figure 4.1 delivers the time
diagram of molecule fetching. Note that a node acts at times as a requester (when it
executes rules), while at others it behaves as a holder (when it holds a molecule requested
by another node).

When molecules suitable for a reaction have been found using the discovery pro-
tocol (line 1 in Algorithm 4.1), the query phase begins (line 10). The requester sends
QUERY messages asynchronously to all of the holders to inform them it is interested in
the molecule. Depending on their local states, each of the holders evaluates separately
the received message (lines 1—13 in Algorithm 4.2) and replies with one of the following
messages:

• RESP_OK : the requested molecule is available;

• RESP_REMOVED : the requested molecule no longer exists;

• RESP_TAKEN : the molecule has already been promised to another node.

Unless it received only RESP_OK messages, the requester aborts the fetch and sends
GIVE_UP messages to holders, informing them it no longer intends to fetch their molecules
(line 14 in Algorithm 4.1). Each time a node aborts a grab, it proceeds on to find a new
combination of molecules, regardless of the sub-protocol employed or the phase it is in.

Following the query phase is the commitment phase, when the requester tries to se-
cure its position by asking the guarantee from the holders that it will be able to fetch the
molecules (line 19 in Algorithm 4.1). It does so using COMMITMENT messages. Upon its
receipt, each holder sorts all of the requests received during the query phase (line 14 in

95

4.2. Protocol for the Atomic Capture Chapter 4. Atomic Capture of Multiple Molecules

Algorithm 4.2) according to the conflict resolution policy (described below). Holders reply,
once again, with RESP_OK, RESP_REMOVED or RESP_TAKEN messages. A RESP_OK re-
sponse represents a holder’s commitment to deliver its molecule in the last phase. Thus,
subsequent QUERY and COMMITMENT requests from other nodes will be resolved with a
RESP_TAKEN message. Naturally, if a requester does not receive only RESP_OK responses
to its COMMITMENT requests, it aborts the fetch with GIVE_UP messages. The holder then
removes the requester from the list, in this way allowing others to fetch the molecule.

Finally, in the fetch phase, the requester issues FETCH messages, upon which holders
transmit it the requested molecules using RESP_MOLECULE messages. From this point on,
holders issue RESP_REMOVED messages to nodes requesting the molecule.

Conflict Resolution. Each of the holders individually decides to which requester a
molecule will be given. Since we want at least one requester to be able to complete its
combination of molecules, all holders apply the same conflict resolution scheme, based
on the total order of requesters (lines 20—27 in Algorithm 4.2). Any total-order scheme
could be applied. We here detail a dynamic scheme based on load-balancing: each of the
messages sent by requesters contains two fields— the requester’s identifier and the num-
ber of reactions it has completed thus far. When two or more requesters are competing
for the same molecule, holders give priority to the requester with the lowest number of
reactions. In case of a dispute, the requester with a lower node identifier (ensured to be
unique by the DHT’s hash function) gets the molecule. Such a conflict resolution scheme
promotes fairness while at the same time balancing the workload amongst nodes, seeing
that the less reactions a node has done the greater the chances are for it to capture the
molecules it needs for a reaction.

Discussion. Note that having two phases instead of three is sufficient to ensure the live-
ness of the system, provided total ordering of nodes is preserved. However, adding a third,
fetch, phaseminimises network traffic. Indeed, with only two phases, this sub-protocol can
guarantee liveness is going to be achieved eventually since there might be cases where
the node which comes first as per the total order does not fetch its molecules immediately,
but only after a certain amount of rounds. Consequently, during this period, superfluous
network traffic arises since nodes have to return the molecules they have obtained thus
far. Consider a simple example of two nodes, NA and NB , trying to fetch two molecules,
m1 and m2, where the priority of NA is higher than that of NB . If NA’s QUERY request
reached the holder of m1 after NB ’s COMMITMENT request did, and NA’s QUERY request
reached the holder of m2 before NB ’s COMMITMENT, then each node would obtain only
one molecule. Hence, they would be obliged to return these molecules to their respective
holders, as neither of the two nodes could complete a reaction, in this way inducing ad-
ditional network traffic. On the other hand, the three-phase sub-protocol presented here
avoids such traffic, since, in the worst case, even if NA is not able to complete the needed
combination, no molecules are sent back and forth, only light messages (GIVE_UP in this
case).

96

Chapter 4. Atomic Capture of Multiple Molecules 4.2. Protocol for the Atomic Capture

Algorithm 4.1: Pessimistic Sub-protocol
— Requester.
1 on event combination found
2 QueryPhase(combination);

3 on event response received
4 if phase = query then
5 QueryPhaseResp(resp_mol);
6 else if phase = commitment then
7 CommitmentPhaseResp(resp_mol);
8 else if phase = fetch then
9 FetchPhaseResp(resp_mol);

10 begin QueryPhase(combination)
11 phase⇐ query;
12 foreachmolecule in combination do
13 dispatch QUERY(molecule);

14 begin QueryPhaseResp(resp_mol)
15 if resp_mol , RESP_OK then
16 Abandon(combination);
17 else if all responses have arrived then
18 CommitmentPhase(combination);

19 begin CommitmentPhase(combination)
20 phase⇐ commitment;
21 foreachmolecule in combination do
22 dispatch COMMITMENT(molecule);

23 begin CommitmentPhaseResp(resp_mol)
24 if resp_mol , RESP_OK then
25 Abandon(combination);
26 else if all responses have arrived then
27 FetchPhase(combination);

28 begin FetchPhase(combination)
29 phase⇐ fetch;
30 foreachmolecule in combination do
31 dispatch FETCH(molecule);

32 begin FetchPhaseResp(resp_mol)
33 add resp_mol to reaction_args;
34 if all responses have arrived then
35 Reaction(reaction_args);

36 begin Abandon(combination)
37 phase⇐ none;
38 foreachmolecule in combination do
39 dispatch GIVE_UP(molecule);

Algorithm 4.2: Pessimistic Sub-
protocol — Holder.
1 on eventmessage received
2 ifmessage = GIVE_UP then
3 remove sender from

molecule.list;
4 else ifmessage.molecule does not

exist then
5 reply with RESP_REMOVED;
6 else ifmessage = FETCH then
7 clear molecule.list;
8 reply with molecule;
9 else ifmolecule has a commitment

then
10 reply with RESP_TAKEN;
11 else ifmessage = QUERY then
12 add sender to molecule.list;
13 reply with RESP_OK;
14 else ifmessage = COMMITMENT

then
15 SortRequesters(molecule);
16 ifmolecule.locker = sender then
17 reply with RESP_OK;
18 else
19 reply with RESP_TAKEN;

20 begin SortRequesters(molecule)
21 foreach pair of requesters in

molecule.list do
22 if req_j.no_r < req_i.no_r then
23 put req_j before req_i;
24 continue;

25 if req_j.id < req_i.id then
26 put req_j before req_i;

27 molecule.locker⇐molecule.list (0);

97

4.2. Protocol for the Atomic Capture Chapter 4. Atomic Capture of Multiple Molecules

4.2.2 Optimistic Sub-protocol

When the probability of successful multiple concurrent reactions is high, the atomic fetch
procedure can be relaxed and simplified by adopting a more optimistic approach. The op-
timistic sub-protocol requires only two phases — the fetch and the notification phases.
Algorithm 4.3 describes the sub-protocol on the requesters’ side, while Algorithm 4.4 de-
scribes it on the holders’ side. The time diagram of the process of obtaining molecules is
depicted in Figure 4.2.

Once a node acquires information about suitable candidates, it immediately starts
the fetch phase (line 1 in Algorithm 4.3). It dispatches FETCH messages to the appro-
priate holders. As with the pessimistic sub-protocol, the holder can respond using one
of the three previously described types of messages (RESP_MOLECULE, RESP_TAKEN and
RESP_REMOVED) as shown in Algorithm 4.4. A holder that replied with a RESP_MOLECULE
message, replies with RESP_TAKEN messages to subsequent requests until the requester
either returns the molecule or notifies it a reaction took place.

If the requester acquires all of the molecules, the reaction is subsequently performed,
and the requester sends out REACTION messages to holders to notify them the molecules
are being consumed. This causes holders to reply with RESP_REMOVED messages to sub-
sequent requests from other requesters. In case the requester received a RESP_REMOVED
or a RESP_TAKEN message, it aborts the reaction and returns the obtained molecules by
enclosing them in GIVE_UP messages, which allows holders to give them to others.

Conflict Resolution. Given the fact that the optimistic sub-protocol is designed to be
executed by nodes in a highly reactive stage, there is no need for a strict conflict resolution
policy. Instead, the node the request of which first reaches a holder obtains the desired
molecule. Consequently, the optimistic sub-protocol is not able to ensure that a reaction
will be performed in case of a conflict. In the worst case, all attempts at fetchingmolecules
might be aborted.

4.2.3 Sub-protocol Mixing

During its execution, a program typically passes through two different stages. The first
one is the highly reactive stage, which is characterised by a high volume of possible con-
current reactions. In such a scenario, the use of the pessimistic sub-protocol would lead
to superfluous network traffic, since the probability of a reaction’s success is rather high.
Thus, the optimistic approach is enough to deal with concurrent accesses to molecules.
The second stage is the quiet stage, when there is a relatively small number of possi-
ble reactions. Since this entails highly probable conflicts between nodes, the pessimistic
sub-protocol has to be employed in order to ensure the liveness of the system. Thus,
the execution environment has to be able to adapt to changes and switch to the desired
protocol accordingly. Moreover, these protocols have to be able to coexist in the same
environment, as different nodes may act according to different modalities at the same
time.

98

Chapter 4. Atomic Capture of Multiple Molecules 4.2. Protocol for the Atomic Capture

Algorithm 4.3: Optimistic Sub-
protocol — Requester.
1 on event combination found
2 foreachmolecule in combination do
3 dispatch FETCH(molecule);

4 on event response received
5 if response , RESP_MOLECULE then
6 Abandon(combination);
7 return;

8 add response.molecule to
reaction_args;

9 if all responses have arrived then
10 NotifyHolders(combination);
11 Reaction(reaction_args);

12 begin NotifyHolders(combination)
13 foreachmolecule in combination do
14 dispatch REACTION(molecule);

15 begin Abandon(combination)
16 foreachmolecule in combination do
17 dispatch GIVE_UP(molecule);

Algorithm 4.4: Optimistic Sub-protocol
— Holder.
1 on eventmessage received
2 ifmessage = GIVE_UP then
3 molecule.state⇐ f ree;
4 else ifmessage = REACTION then
5 remove molecule;
6 else ifmessage.molecule does not

exist then
7 reply with RESP_REMOVED;
8 else ifmolecule.state = taken then
9 reply with RESP_TAKEN;

10 else
11 molecule.state⇐ taken;
12 reply with RESP_MOLECULE;

Figure 4.1: Pessimistic exchanges. Figure 4.2: Optimistic exchanges.

99

4.2. Protocol for the Atomic Capture Chapter 4. Atomic Capture of Multiple Molecules

4.2.3.1 Switching

Ideally, the execution environment should be perceived as a whole in which the switch hap-
pens unanimously and simultaneously. Obviously, a global view of the reaction potential
cannot be maintained in a large-scale system. Instead, each node independently decides
which sub-protocol to employ for each reaction. The decision is first based on a node’s lo-
cal success rate, denoted ãlocal , computed on the basis of the success history of the last
queries the node issued. In order not to base the decision only on its local observations,
a node also keeps track of local success rates of other nodes; each time a node receives
a request or a reply message, the sender supplies it with its own current history-based
success rate, stored into a list (of tunable size). We denote ã the overall success rate,
computed as the weighted arithmetic mean of a node’s local success rate and the ones
collected from other nodes. Finally, the decision as to which protocol to employ depends
on the rule a node wishes to execute. More specifically, it is determined by the number of
the rule’s arguments, since the more molecules the rule needs, the harder it is to assure
they will all be obtained. To grab r molecules, a node employs the optimistic sub-protocol
if and only if ãr ≥ s, where r is the number of arguments the chosen rule has and s is a pre-
defined threshold value. If the inequality is not satisfied, the node employs the pessimistic
sub-protocol. We show the influence of the switch threshold value on the protocol’s per-
formance in Section 4.6.

4.2.3.2 Coexistence

Due to the locality of the switch between sub-protocols, not all participants in the system
will perform it in the exact same moment. Nodes may try to grab the same molecules
using different sub-protocols. In order to distinguish between optimistic and pessimistic
requests, each requester incorporates a request type field into messages. Based on this
field, the node holding the conflicting molecule gives priority to nodes employing the more
conservative, pessimistic algorithm.

Although this decision discourages optimistic nodes and sets them back temporar-
ily, it ensures that a node will be able to grab the molecules it needs eventually, since
pessimism is favoured over optimism. When pessimistic nodes compete for molecules,
one of them is surely going to perform its reaction as per the total order. On the other
hand, when solely optimistic nodes compete for molecules, all of their reactions might be
aborted since the optimistic sub-protocol does not guarantee the system’s liveness. Con-
sequently, pessimistic requests have a higher chance of being concluded by a reaction.

4.2.4 Dormant Nodes

While having more nodes usually yields better performance, this might not be so when ex-
ecuting chemical programs. For instance, during the quiet stage, the system might reach
a point where n ≫ m (recall that n denotes the number of nodes in the system, while m
represents the number of molecules). In this extreme scenario, having more nodes repre-
sents a burden for the system, as most of the requests sent for molecules will ultimately

100

Chapter 4. Atomic Capture of Multiple Molecules 4.3. Execution of Multiple Rules

be rejected, elevating the network traffic without speeding up the progression of the com-
putation. Thus we introduce the notion of dormant pessimistic nodes — nodes which are
using the pessimistic sub-protocol to capture molecules, but do so less often than usual.
When a node switches to the pessimistic sub-protocol, it starts counting the number of
consecutively aborted reactions. Once this number reaches a threshold a, it puts itself to
sleep for a predefined amount of time Ö — it becomes a dormant node. It then wakes up
and tries to capture another combination of molecules. In case it succeeds, it becomes an
active pessimistic node again. Otherwise, it returns to the dormant state for a Ö amount
of time, and so forth. In order to avoidmassive awakenings of nodes, i.e. the simultaneous
resumption of activities of a large number of dormant nodes, we allow the actual amount
of time a node spends as dormant to vary by a constant ×Ö from Ö: before putting itself
to sleep, a node randomly chooses the amount of time it is going to sleep for from the
interval [Ö − ×Ö,Ö + ×Ö]. Note that dormant nodes do not put their entire execution on hold
— they are still active in the system as molecule holders.

4.3 Execution of Multiple Rules

Thus far we focused on the protocol and its various aspects carrying the assumption that
there is only one rule in the program. However, in practice, a small fraction of chemical
programs contains only one rule to be used in reactions, as one-rule programs appear
rather limited when addressing more complex problems. As every node tries to carry out
reactions, whenmultiple rules are present, each of them has to decide which of the rules it
is going to employ in a given cycle. In the remainder of the section, we assume the number
of nodes executing the program is greater than the number of rules, i.e. n > nr . We refer
to the rule being executed by a node at a given moment as its active rule.

In order for the computation to be done as smoothly and efficiently as possible, certain
constraints of the programming model have to be taken into account. Firstly, a node’s de-
cision to switch from one sub-protocol to the other should take into account only the grabs
it has tried to do for the rule it is using at the moment. Secondly, due to the paradigm’s
non-determinism and lack of sequentiality, a rule might be triggered at any given point in
time : if a rule is used at time T , but not at time T +ÉT1, there is no guarantee that it will
not be used again at time T +ÉT1 +ÉT2. Finally, the interdependency of rules influences
the flow of the execution. Two rules can be:

• independent : they can be concurrently executed;

• dependent : the product of one rule can be used as input by the other; and

• circularly dependent : the product of one rule can be used as input by the other and
vice versa.

101

4.3. Execution of Multiple Rules Chapter 4. Atomic Capture of Multiple Molecules

4.3.1 Multiple Success Rates

When deciding which of the sub-protocols to employ to grab molecules, a node should
take into account exclusively the capture attempts made while executing the currently
active rule, seeing that the execution of a rule does not depend upon the execution of
another. Thus, the calculation of the success rate is adapted as follows. Now, each node
manages a separate local success grab history list for each rule. Analogously, a separate
list of observed remote successes is maintained per rule on each node. Consequently,
a node is able to calculate multiple success rates (ãi), one per rule i , and base its switch
decision solely on information relevant to the active rule. Finally, the exchangedmessages
are expanded with one more field : the identifier of the rule for which the success rate is
contained in the message. This way, nodes are able to differentiate success rates for
distinct rules and place them in the correct lists. Note that, while the threshold value is
set globally for all rules, its interpretation depends on the rule for which the local switch
decision is being taken, since a node bases its sub-protocol switch decision only for its
currently active rule.

4.3.2 Initial Rule Assignment

To ensure every rule is executed, nr nodes are each permanently assigned a rule. These
nodes are called rule keepers and they are selected based on the hash identifiers assigned
to the rules : a node N is the rule keeper for a rule R if its node identifier is numerically the
closest to the rule’s hash identifier. Note that, in case a node, according to the hash func-
tion, should be the rule keeper for more than one rule, it may delegate the responsibility
for all but one of them to other randomly-selected nodes. Rule keepers try to execute their
assigned rules all throughout the computation — they behave as if only one rule (the one
they execute) is present in the system. The rest of the nodes (n−nr of them) pick randomly
one of the rules in the program with which to start the execution.

4.3.3 Changing the Active Rule

Even though rule keepers ensure the execution of every rule, the reaction potential of
a rule varies throughout the computation; depending on the state of the program at a
given moment, more reactants may be present for one rule than another. Thus, nodes
ought to be able to change their active rules during the execution based on the reaction
potential of the rules. While a node is trying to obtain molecules using the optimistic sub-
protocol, a change of the active rule is not being considered, as using this sub-protocol is
an indicator of the active rule’s high reaction potential. Hence, a change may occur when
and only when a node is employing the pessimistic sub-protocol. Given the facts that a
rule’s reaction potential can be derived from a node’s success rate and that every node
keeps track of success rates for all of the rules, every node has got a good estimation of
the reaction potential of each rule.

A node changes its active rule if the following conditions are met:

102

Chapter 4. Atomic Capture of Multiple Molecules 4.3. Execution of Multiple Rules

1. the node is currently using the pessimistic sub-protocol;

2. the node did not succeed to perform a reaction in the previous cycle; and

3. the success rate for the active rule observed by the node is the smallest success rate
when compared to all of the other rules’ success rates.

If the above conditions are fulfilled, the node changes its active rule to the one with
the highest success rate known to it. If the current ã value of the newly selected active
rule permits the node to employ the optimistic protocol, it resets its grab history and sets
its ã to 1, since it means that its reaction potential is high, entailing that a fair amount
of reactions will be done switching to this rule. Otherwise, it means that the new active
rule’s reaction potential is also low. In this case the node will, for reasons described in
Section 4.2.4, become a dormant node immediately after changing its active rule. Doing
so, when it wakes up, it will start trying to apply the new active rule.

4.3.4 Discussion

The reader might have noticed that the presented rule-changing algorithm is a greedy one
with respect to both time — when to change to another rule — and space — which rule
to change to. Indeed, by adopting a policy of late rule changing, whereby a node changes
rules only if its success rate is the worst it knows of, the subset of nodes executing a given
rule consumes most of the rule’s input molecules. The greediness with respect to space is
manifested in the policy to switch to the rule with the highest success rate known to the
node about to change rules. While switching to any rule with a value of ã higher than the
active rule’s would improve the execution, picking the highest one ensures the execution’s
optimality, in the sense that the node choosing it is guaranteed to encounter the least
number of conflicts.

Combined, these two levels of greediness assure that:

1. all of the reactions which can be done for a rule will be done, in the sense that if
molecules capable of reactivating a rule appear, it is going to be chosen for execu-
tion, i.e. no reaction is going to be forgotten as a consequence of rule switching; and
that

2. nodes avoid conflicts as much as possible, seeing that the rule with the highest
known value of ã is chosen.

It is worth pointing out that, due to the fact that there is no global view of the system as
nodes build up their knowledge based on the communication with other nodes and that
they choose a rule at random during initialisation, nodes will decide to execute different
rules at distinct times. Moreover, they will not uniformly choose the same rule.

103

4.4. Proof of Correctness Chapter 4. Atomic Capture of Multiple Molecules

4.4 Proof of Correctness

To be correct, this protocol must guarantee two properties:

• safety : amolecule is used in atmost one reaction (as we consider that every reaction
consumes all of the molecules entering it); and

• liveness : if there are molecules able to produce reactions in the system, reactions
are going to be carried out.

4.4.1 Proof of Safety

Even though multiple servers (molecules holders) and multiple clients (molecule re-
questers) are involved in the process, safety is straightforward to prove, because both
sub-protocols are synchronised by molecule requesters.

Theorem 3. A molecule is consumed in at most one reaction.

Proof. As visible in Algorithms 4.1 and 4.3, before performing reactions requesters wait for
the responses of all concerned molecule holders. A reaction is carried out if and only if all
of the molecules are present on the requester. Does it not receive a molecule, a requester
renounces performing the reaction by executing the Abandon routine, giving back all of the
molecules it has captured. Additionally, when employing the pessimistic sub-protocol, a
requester has to pass through three synchronisation barriers, one after each phase.

On the other side, each holder locally enforces conflict resolution. Because both sub-
protocols have conflict resolution policies which ensure that a molecule can be given to
only one requester, a molecule will be consumed in at most one reaction. This is ob-
servable in Algorithms 4.2 and 4.4, where a molecule’s state changes based on the ar-
rived request. Once it has been promised or given to a requester, others receive either a
RESP_TAKEN or a RESP_REMOVED message even if the molecule can be given back later
to the holder due to a requester’s call to the Abandon routine.

Finally, there are two cases of conflict between the two protocols. When an optimistic
request arrives before a pessimistic one, the pessimistic request is aborted because the
molecule has already been reserved by the optimistic requester. On the other hand, if
a pessimistic request arrives first, the optimistic request is aborted in favour of the pes-
simistic one.

4.4.2 Liveness Proof

To prove the liveness property, we show that:

• the protocol is deadlock-free;

• if no successful reaction happens in the system, nodes eventually switch to the pes-
simistic protocol;

104

Chapter 4. Atomic Capture of Multiple Molecules 4.4. Proof of Correctness

• if several pessimistic requesters are in conflict, at least one reaction is not aborted;

In addition, we show that a node cannot see its reactions infinitely aborted, i.e. that the
protocol is starvation-free.

Lemma 4. A node’s execution cannot be blocked infinitely.

Proof. Although requesters compete against each other for molecules, ultimately the de-
cision is taken unilaterally by the holders on which the molecules reside. This decision
is communicated as a response to each request. Due to the usage of reliable FIFO chan-
nels, a requester will always get a response for each sent request. Based on the received
responses, it will either perform the reaction or abort it and continue its execution.

Lemma 5. If an optimistic node sees its reactions continuously aborted, it eventually
switches to the pessimistic sub-protocol.

Proof. When a request of a node is aborted, the node decreases its value of ã (see Sec-
tion 4.2.3). With eachmessage sent, a node includes the information about its local ã, and
collects the values received from other nodes. If there are many conflicts during a certain
period of time, all the more so if there is no successful reaction, the local values of ã of all
of the nodes decrease. This effect leads to a situation where the computed value of ãr for
all new reactions is lower than the threshold s, which forces nodes to use the pessimistic
protocol upon the initiation of new requests.

Lemma 6. Eventually, at least one node will succeed in performing a reaction.

Proof. Initially, and hopefully most of the time, nodes use the optimistic sub-protocol for
their requests. Nevertheless, in case of a conflict between two optimistic requesters, both
requests can easily be aborted. Consider the example where two concurrent requesters
try to capture two molecules, A and B . If the first requester succeeds in grabbing A while
the second captures B , then the two requests will be aborted. If such scenarios persist, as
per Lemma 5, nodes will switch to the pessimistic sub-protocol.

For the pessimistic sub-protocol, we define a total order based on the number of suc-
cessfully completed reactions by a node and its unique id. In case of a conflict, all of
the reactions might be aborted except for one — the reaction initiated by the node which
comes first as per the total order. Since that node has got the highest priority system-wide,
all of the holders it contacts will decide in its favour.

Following Lemmas 4—6 we have:

Theorem 4. The protocol assures the system’s liveness property holds.

For the sake of completeness, we now prove that the protocol is starvation-free.

Lemma 7. A node cannot see its reactions infinitely aborted.

105

4.5. Evaluation Set-up Chapter 4. Atomic Capture of Multiple Molecules

Proof. There are two possible outcome scenarios when a node enters in a conflict over
molecules: (i) the molecules exist long enough for a node to capture them; and (ii)
the molecules are taken by another node. Following Lemma 5, a node trying to obtain
molecules will eventually switch to the pessimistic sub-protocol.

Because the total order is based on the number of successful reactions, if the node,
in case of an abort, tries again infinitely to request molecules for its reaction, eventually,
provided the requested molecules are still available, the reaction will take place, given the
fact that its position moves up the total order when other nodes succeed in executing their
reactions.

If, however, the node does not have the highest priority amongst the nodes in con-
flict for the molecules, another node will grab them, in this way raising other nodes’ po-
sitions up the total order. The original node will then try to grab another combination of
molecules. It will change the combination until it becomes the node with the least number
of reactions performed, at which point it will have the highest priority in the total order.

4.4.3 Convergence Time

When presenting algorithms for atomic capture, it is customary to study their convergence
times. However, any discussion about convergence when dealing with the chemical pro-
gramming model is not feasible, as convergence itself, and thus the convergence time, is
an application-specific property. However, in the remainder of the chapter we present an
evaluation of the proposed algorithm, which sheds some light on the subject.

4.5 Evaluation Set-up

Our protocol was simulated in order to better capture its performance. We developed a
Python-based, discrete-time simulator, including a DHT layer performing the random dis-
semination of a set of molecules over the nodes, on top of which the layer containing the
capture protocol itself was built. At this layer, any message issued at step t will be re-
ceived and processed by the destination node at time t+1. Moreover, each time a capture
attempt either led to a reaction or to an abort, the node tries to fetch another set of r
randomly chosen molecules, where r depends on the program being simulated atop the
protocol.

Unless otherwise noted, all presented experiments simulate a system of 250 nodes
trying to execute a chemical program containing a solution with 15000 molecules. The
reactions’ durations are assumed negligible, as this allows us to concentrate exclusively
on evaluating the capture protocol itself, without having to deal with application-specific
problems. For all of the simulations, we used the following constants:

• a = 10 (number of consecutive aborts)

• Ö = 20 (sleep interval)

• ×Ö = 4 (sleep interval deviation)

106

Chapter 4. Atomic Capture of Multiple Molecules 4.6. Experiments Involving One Rule

• s = 0.7 (switch threshold)

Each simulation was run 50 times and the figures presented below show the values ob-
tained by averaging result data from these runs. As the deviation for each simulation is
negligible, we here present only the averaged values.

There are two sets of experiments. In the first one we extensively tested the protocol’s
behaviour, its performance and the network traffic generated by a simple program with a
single rule. The second set of experiments examines the system’s behaviour when faced
with the execution of programs with multiple rules.

For the purpose of evaluating the protocol and its characteristics we simulated five
different programs on top of the protocol itself. Note that the programs do not represent
concrete implementations of applications since the actual reactions and their results are
not taken into account. Rather, they were conceived in such a way as to examine the
protocol from different perspectives. The programs are designed to ensure inertia will
be reached in a finite number of steps. The problem of distributed inertia detection is
currently left aside, but it is going to be addressed in Chapter 5. These five programs
cover all of the rule-dependency patterns described in Section 4.3, and thus provide a
complete insight into the protocol’s characteristics. The next section presents the results
obtained by simulating the single-rule program, while Section 4.7 describes the multiple-
rule programs and the outcomes of their experimentations.

4.6 Experiments Involving One Rule

The first program simulated is a simple one consisting only of a straightforward rule which
simply consumes two molecules without producing new ones. Having only one rule in the
solution allows us to concentrate and analyse solely the protocol, its sub-protocols and
the switch between them.

4.6.1 Execution Time

Firstly we evaluate separately the performance characteristics of both sub-protocols. Fig-
ure 4.3 shows the averaged number of reactions left to execute at each step, until inertia,
using only the optimistic mode, only the pessimistic mode, and the complete protocol with
switches between sub-protocols with and without the optimisation of dormant nodes, re-
spectively. The theoretic optimum curve represents the amount of steps needed to com-
plete the execution in a centralised system, as it represents a system in which the highest
possible parallelism degree is possible with regards to the protocol’s execution and no
conflicts arise during the whole computation. Considering that we need at least two steps
to fetch molecules (one to request them and one to receive them), such a centralised sys-
tem needs 2 ∗ mnr steps to conclude the computation. This represents a lower bound on the
number of steps, regardless of the model of computation, be it chemical or other. Note
that a logarithmic scale is used for the number of reactions left. The figure shows that,
when using only the optimistic sub-protocol, there is a strong decline in the number of

107

4.6. Experiments Involving One Rule Chapter 4. Atomic Capture of Multiple Molecules

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300 350 400 450 500

R
e

a
c

ti
o

n
s

le
ft

Time (in steps)

Dormant
Mixed

Pessimist
Optimist

Theoretic Optimum

Figure 4.3: Performance comparison of the protocol’s variants.

reactions left at the beginning of the computation, i.e. when a lot of reactions are possi-
ble, and that, thus, there are only few conflicts in the requests. However, it gets harder
for nodes to grab molecules when this number declines. In fact, the system is not even
able, for most of the runs, to finish the execution, as the few reactions left are never exe-
cuted, constantly generating conflicts at fetch time. When the nodes are all pessimistic,
there is a steady, linear decrease in the number of reactions left, and the system is able to
reach inertia in a reasonable amount of time, thanks to the liveness ensured in this mode.
For most steps, the mixed curve traces the exact same path as the optimistic one, which
means that during this period the nodes employ the optimistic sub-protocol. However, at
the end, the system is able to quickly finish the execution as an aftermath of switching
to the pessimistic sub-protocol. After the switch, it diverges from the optimistic one to
mimic the pessimistic curve, exhibiting a 42% performance boost compared to the perfor-
mance of the pessimistic sub-protocol. Comparing the theoretic optimum to our protocol,
we notice an increase of 166% in the number of steps needed to reach inertia. This is
understandable, because there is usually a coordinator in centralised systems with which
conflict situations can be circumvented, but it opens the door to serious defaults, such as
single-point-of-failure or bottleneck problems. Finally, as far as performance is concerned,
including dormant nodes leads to similar results.

4.6.2 Switch Threshold Impact

Next, we want to assess the impact of s (the switch threshold) on the overall performance
of the system. Figure 4.4 depicts, in the same logarithmic scale, the number of reactions
left after each step for different threshold values, varying from 0.1 to 0.9. As suspected,
the curves overlap during most steps, most nodes employing the optimistic sub-protocol.
The first curve to diverge is the one where the switch threshold is set very high, to s = 0.9.

108

Chapter 4. Atomic Capture of Multiple Molecules 4.6. Experiments Involving One Rule

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160 180 200

R
e

a
c

ti
o

n
s

le
ft

Time (in steps)

s = 0.1
s = 0.3
s = 0.5
s = 0.7
s = 0.9

Figure 4.4: Execution time for different switch thresholds.

Because the system depicted by that curve did not fully exploit the optimistic sub-protocol,
it is the last to finish the execution. Although slightly, the other curves start diverging at
different moments, and, thus, complete the execution after a different number of steps.
Figure 4.4 shows that, out of the five values tested for the switch threshold, s = 0.7 yields
the best performance results in this particular scenario. Looking at completion times for
different switch threshold values brings us to the conclusion that the switch threshold
can have a significant impact on performance; in this case the execution time can be de-
creased by up to 20%. Since the performance depends not only on the switch threshold
but also on the application being executed, finding an optimal value for s in the general
case falls out of the scope of this thesis.

4.6.3 Switch Behaviour

Here we examine the properties of the process of switching from one sub-protocol to the
other, represented in Figures 4.5 and 4.6. Figure 4.5 depicts the evolution of the number
of nodes in each mode during the execution. We can see that, at the beginning of the
execution, all of the nodes start grabbing molecules by using the optimistic sub-protocol.
The switch happens about half way through the execution. Around that time, optimistic
nodes start aborting more and more reactions, and thus can no longer efficiently capture
molecules, so they switch to the pessimistic sub-protocol. We observe that, thanks to the
systematic exchanges of local ã values, nodes in the system reach a global consensus
rather quickly — for a system with 250 nodes, at most 15 steps are needed for all of the
nodes to switch to the pessimistic sub-protocol. In other words, the complete transition
from using the optimistic sub-protocol to using the pessimistic one constitutes at most
10% of the execution time. For the following 15 steps all of the nodes are active – and
pessimistic – and try to capture molecules. However, as the concentration of molecules

109

4.6. Experiments Involving One Rule Chapter 4. Atomic Capture of Multiple Molecules

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160

N
u

m
b

e
r

o
f

n
o

d
e

s

Time (in steps)

Optimists
Pessimists
Dormant

Figure 4.5: Nodes employing optimistic and pessimistic sub-protocols and dormant nodes per step.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1 2 3 4 5 6 7 8 9 10

S
w

it
c

h
e

s
p

e
r

st
e

p

Number of nodes (x1000)

Switch speed

Figure 4.6: Switch speed expressed as number of switches per step (for a constant number of
molecules).

110

Chapter 4. Atomic Capture of Multiple Molecules 4.6. Experiments Involving One Rule

further drops, the number of dormant nodes increases, in this way reducing network traffic
and allowing the still active nodes to capture the wanted molecules with more ease. Note
that, while the overall number of dormant nodes increases, nodes wake up after a certain
period and become pessimistic again. Still, one can observe that, overall, there are more
nodes asleep than pessimistic ones.

Figure 4.6 illustrates the number of nodes that switch from the optimistic to the pes-
simistic sub-protocol on each step during the transition period. One can observe that the
more nodes in the system, the greater the number of nodes that switch per step. This
behaviour comes from the fact that an increase in the number of nodes implies a greater
accuracy of the system’s state estimation ã as each node communicates with a wider
spectre of nodes. As a consequence of this increased accuracy, the number of switches
per steps grows quicker and quicker. This shows that the system, regardless of its size,
can react quickly to changes, even though there is no global view of the situation.

As discussed in Section 4.2.3, pessimistic requests are favoured over optimistic ones.
However, we also conducted simulations when the inverse is true, i.e. when optimistic
requests are favoured, in order to verify that this design choice does not impact negatively
the protocol’s performance. The results obtained are similar to those shown in Figure 4.5:
there is no difference in the total execution time nor in the switch speed. The figure is,
therefore, omitted. The similarities stem from (i) the quick propagation of local ã values;
and (ii) the pessimistic requests’ higher chance of completing a capture cycle. Indeed,
even though optimistic requests are favoured, as the concentration of available molecules
in the system drops, it gets harder for nodes employing the optimistic sub-protocol to
capture all of the molecules needed for their reactions.

Figure 4.7: Generated messages when only the
optimistic sub-protocol is active.

Figure 4.8: Generated messages when only the
pessimistic sub-protocol is active.

4.6.4 Communication Costs

Next, we investigate the communication costs involved in the process. Figures 4.7, 4.8,
4.9 and 4.10 depict the number of messages sent per cycle in a system of 250 nodes. One

111

4.6. Experiments Involving One Rule Chapter 4. Atomic Capture of Multiple Molecules

Figure 4.9: Messages generated by the pro-
posed protocol (without the dormant state).

Figure 4.10: Messages generated by the pro-
posed protocol when pessimistic nodes can be-
come dormant.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10

N
u

m
b

e
r

o
f

m
e

ss
a

a
g

e
s

(x
1

0
6
)

Number of nodes (x1000)

Proposed Protocol
Proposed Protocol w/ Dormant Nodes

Figure 4.11: Total number of messages sent when varying the number of nodes in the system.

112

Chapter 4. Atomic Capture of Multiple Molecules 4.7. Experiments with Multiple Rules

cycle comprises 12 simulation steps, as it is the lowest common multiple of 4 and 6; at
most 4 steps are needed for the optimistic sub-protocol to complete, and at most 6 steps
for the pessimistic sub-protocol. The messages are classified into two categories: use-
ful messages (ones which led to a reaction, in blue) and useless messages (those which
did not induce a reaction, in grey). When looking at the communication costs of the opti-
mistic sub-protocol (Figure 4.7), one can observe that a high volume of reactions is done
in the beginning of the execution with a small percentage of conflicts, and thus a small
amount of useless messages. However, as the execution progresses, the percentage of
useful messages drops rapidly, while the total number of messages is kept high. Figure 4.8
shows that the pessimistic sub-protocol consumes less messages, with the percentage of
useful messages dropping steadily and slowly. At the same time, as there are less and
less molecules in the system, the total number of messages slowly grows before peaking
at 8000 messages per cycle and then rapidly decreasing towards the end of the execu-
tion. When comparing Figure 4.9 to the previous two, we note that the protocol takes over
the best properties of both of its sub-protocols. Firstly, it takes over the elevated num-
ber of useful messages of the optimistic sub-protocol. After the switch, the pessimistic
sub-protocol kicks in, bringing with it a decrease in the total number of messages. Con-
sequently, using a simplistic and lightweight sub-protocol when possible and then falling
back on a heavier one reduces network traffic and improves scalability — a decrease of
30% in the number of messages can be observed when compared to the pessimistic sub-
protocol alone. In addition, Figure 4.10 reveals that using the policy of dormant nodes
further improves the scalability of the protocol, as it significantly reduces the total num-
ber of messages towards the end of the execution where there is the highest number of
conflicts. Finally, Figure 4.11 shows the number of messages sent when the system’s size
varies from 50 to up to 10000 nodes and confirms the protocol’s scalability : the number
of messages linearly grows with the system’s size. Moreover, the scalability greatly im-
proves by using dormant nodes — the slope is gentler, rapidly widening the gap between
the two curves.

4.7 Experiments with Multiple Rules

Now we are shifting our focus onto the rule-changingmechanism described in Section 4.3.
We want to examine its decision-making policy as well as look at the behaviour of the pro-
tocol during the execution of programs comprised of multiple rules. There are four exper-
iments in this set, each evaluating one of four multiple-rule programs, the descriptions of
which follow.

4.7.1 Multiple-rule Test Programs

Independent-rules Program. A natural extension of the single-rule program, this one
contains three rules — R0, R1, R2— which are independent, i.e. no two rules consume or
produce the same type of molecules. Thus, reactions using these rules can be done fully

113

4.7. Experiments with Multiple Rules Chapter 4. Atomic Capture of Multiple Molecules

concurrently, without any interference, mutual exclusion or synchronisation. The rules
consume two molecules of type T0, T1 and T2, respectively. They produce no output.

Figure 4.12: Input/output
links between rules for the
dependent-rules program.

Figure 4.13: Input/output
links between rules for the
circular program.

Figure 4.14: Input/output
links between rules for the
workflow program.

Dependent-rules Program. Developing the previous program further we come to the
next one. In this new program, the three rules are now dependent — the molecules pro-
duced by one rule are consumed by another. These input/output links are illustrated in
Figure 4.12. Each rule still consumes two molecules of its own type. However, to create
the dependencies between them, in this program R0 produces two molecules of type T1
(used as input by R1), while R1 produces two molecules of type T2 (consumed by R2). R2
produces no output.

Circular Program. This program exploits the circular-dependency pattern, as shown on
Figure 4.13. Its characteristics are the same as those of the dependent-rules program,
except that another input/output link has been established between the rules R2 and R0
in order to create the circular flow diagram: R2 now produces a single molecule of type
T0. Note that the fact that R2 produces less molecules (only one) than it consumes (two)
ensures inertia will be reached; outputting two would cause an infinite execution loop.

Workflow Program. The last program is somewhatmore complex than the others, as it is
a small split/merge workflow of rules comprising both dependent and independent rules.
The links between rules are depicted in Figure 4.14. It consists of four rules: R0, R1, R2
and R3. The rule R0 consumes twomolecules of type T0 and produces twomolecules: one
of type T1, the other of type T2. These are used as input by R1 and R2, respectively. These
rules can, thus, be run concurrently and independently of each other. R1 produces one
molecule of type T3, while R2 produces one of type T4. Finally, their outputs are merged
by the rule R3, which consumes one molecule per type — T3 and T4 — and produces no
output.

4.7.2 Execution of the Independent-rules Program

The first program containing multiple rules we examined was the simplest one —
independent-rules. Figure 4.15 depicts the flow of its execution : the number of nodes

114

Chapter 4. Atomic Capture of Multiple Molecules 4.7. Experiments with Multiple Rules

 50

 100

 150

 200

 250

 300

N
u

m
b

e
r

o
f

n
o

d
e

s

R0
R1
R2

 50

 100

 150

 200

 250

N
u

m
b

e
r

o
f

n
o

d
e

s

Optimists
Pessimists
Dormant

1

10

100

1k

 10k

0 20 40 60 80 100 120 140 160

N
u

m
b

e
r

o
f

m
o

le
c

u
le

s

Time (in steps)

T0
T1
T2

Figure 4.15: Number of nodes executing each rule (top), the number of pessimistic vs optimistic
nodes (middle) and the number of molecules of each type in the solution (bottom, in logarithmic
scale) during the execution of the independent program.

115

4.7. Experiments with Multiple Rules Chapter 4. Atomic Capture of Multiple Molecules

executing each rule is shown in the top of the figure, in the middle the number of nodes
employing each sub-protocol is depicted, while the bottom illustrates, in logarithmic scale,
the number of molecules of each type present in the solution. It reveals that an equal
number of nodes execute each rule, which is to be expected since all of the rules are exe-
cutable in parallel and are not in conflict (no two rules share their input molecule types).
All the while, all of the nodes employ the optimistic sub-protocol as the concentration of
molecules is high enough for nodes to avoid conflicts. As soon the number of optimists
starts to decline (around step 75), the nodes start to change rules, causing the fluctua-
tions observed in the upper part of the figure. From that point on we can see a constant
decrease in the number of optimists since more and more nodes enter into conflict over
molecules, which start to become rarer and rarer. At the same time, there is an increase
in the number of pessimistic (and then dormant) nodes, suggesting that most nodes keep
employing the pessimistic sub-protocol even after changing rules.

Due to the almost-perfectly equal distribution of nodes over rules they use for reac-
tions we conclude that the rule-changing mechanism correctly decides which rule a node
should execute. Moreover, as a result of changing rules, there are nodes employing the
optimistic sub-protocol all throughout the execution, in this way speeding up the compu-
tation.

4.7.3 Execution of the Dependent-rules Program

Figure 4.16 illustrates the course of the execution of the dependent-rules program. At the
beginning of the execution, all of the nodes but R1’s and R2’s rule keepers are applying
the rule R0 since there are only molecules of type T0 present in the system. Indeed, the
discovery protocol is not able to discover molecules of other types, prompting the nodes
to change their active rule to R0 immediately. Then, as the computation progresses, it
becomes harder for nodes to grab T0-molecules and they start turning pessimistic. As
T1-molecules appear, some nodes opt to change their active rule. More specifically, as
there are more T1-molecules around step 75, most of the nodes choose to execute the
rule R1, while a minority changes for R2 since the rule keeper of R1 managed to produce
a few T2-molecules. Due to this change of rules, all of the nodes become optimistic again.
Then, as they successfully perform reactions, the number of T1-molecules rapidly drops,
inducing another cycle of mass rule changing. This time, R2 is favoured due to the high
concentration of T2-molecules. This change prompts nodes to become optimistic again.
Because there are some T1-molecules left around step 250, half of the nodes change
back to R1 to complete its execution, causing a sudden drop in the number of optimists
and the oscillation between being optimistic and pessimistic. At the same time, the num-
ber of dormant nodes increases, meaning that nodes increasingly perceive both rules as
pessimistic. This is in accordance with the state of the solution — there are very few
molecules left in the system. In spite of the pessimism, towards the end of the execution
all of the nodes gradually switch back to R2, finishing the execution either as pessimists
or dormant nodes.

The conclusion drawn from the experiment is that the local decisions taken by the rule-

116

Chapter 4. Atomic Capture of Multiple Molecules 4.7. Experiments with Multiple Rules

 50

 100

 150

 200

 250

 300

N
u

m
b

e
r

o
f

n
o

d
e

s

R0
R1
R2

 50

 100

 150

 200

 250

N
u

m
b

e
r

o
f

n
o

d
e

s

Optimists
Pessimists
Dormant

1

10

100

1k

 10k

0 50 100 150 200 250 300 350

N
u

m
b

e
r

o
f

m
o

le
c

u
le

s

Time (in steps)

T0
T1
T2

Figure 4.16: Number of nodes executing each rule (top), number of pessimistic vs optimistic nodes
(middle) and number of molecules of each type in the solution (bottom, in logarithmic scale) during
the execution of the dependent program.

117

4.7. Experiments with Multiple Rules Chapter 4. Atomic Capture of Multiple Molecules

changing mechanism follow the flow of dependency between rules and are, thus, correctly
taken in the case of multiple-rule dependency. In addition, changing rules causes the
nodes to become optimistic again, which allows the system to progress faster.

4.7.4 Execution of the Circular Program

Next, we simulated the circular program using two distinct initial configurations, for which
the results are shown in Figures 4.17 and 4.18. In the first case the initial solution con-
tained exclusively T0-molecules, while in the second all three types of molecules were
equally represented.

When examining Figure 4.17, one can see that at the beginning of the execution all
of the nodes use the rule R0, which is consistent with the fact that there are only T0-
molecules in the solution. However, the concentration of T1-molecules rapidly grows,
causing the nodes to pass to the execution of R1 once they have become pessimistic.
In the same vein, around step 150 they opt for R2, after which we can see the R0–R1–
R2 execution pattern appear again. As at about step 200 the overall concentration of
molecules is rather low, dormant nodes begin to appear, while the number of optimists
quickly drops to zero. By the end of the execution, there are only a few molecules left
and most of the nodes are thus dormant, while only a small minority completes the few
remaining reactions.

The scenery drastically changes when all types of molecules are present in the initial
solution, as shown on Figure 4.18. The course of the execution bears a strong resem-
blance to that of the independent-rules program (Figure 4.15): since all types of molecules
are constantly being consumed and produced, the nodes are able to behave as if there
were no dependencies between the rules. There are slight differences in the two programs,
though. Unlike in the independent-rules program, here one can notice the cyclic change
of the rules’ dominance from Figure 4.17 (although on a smaller scale). Furthermore, the
number of optimists drops much faster here towards the end of the execution because
a decrease in concentration of molecules of one type implies an immediate decrease in
concentration of all the others’.

This experiment shows that, while the dependency between rules plays an important
role in the course of the execution, so do the data contained in the initial solution when
it comes to cyclic dependences between rules. However, both the algorithm and the rule-
changing mechanism are able to properly detect the reaction potential of rules in each
case, and thus follow the dependency flow brought about by the program.

4.7.5 Execution of the Workflow Program

In the last experiment, we observed the behaviour of the system during the execution of
the workflow program. The results, depicted in Figure 4.19, show a substantial similarity
to those of the dependent-rules program (Figure 4.16). This behaviour is to be expected,
since this program is a variant of the dependent-rules program, whereby instead of one
middle rule there are two parallel ones independent of each other.

118

Chapter 4. Atomic Capture of Multiple Molecules 4.7. Experiments with Multiple Rules

 50

 100

 150

 200

 250

 300

N
u

m
b

e
r

o
f

n
o

d
e

s

R0
R1
R2

 50

 100

 150

 200

 250

N
u

m
b

e
r

o
f

n
o

d
e

s

Optimists
Pessimists
Dormant

1

10

100

1k

 10k

0 50 100 150 200 250 300 350 400

N
u

m
b

e
r

o
f

m
o

le
c

u
le

s

Time (in steps)

T0
T1
T2

Figure 4.17: Number of nodes executing each rule (top), number of pessimistic vs optimistic nodes
(middle) and number of molecules of each type in the solution (bottom, in logarithmic scale) during
the execution of the circular program.

119

4.7. Experiments with Multiple Rules Chapter 4. Atomic Capture of Multiple Molecules

 50

 100

 150

 200

 250

 300

N
u

m
b

e
r

o
f

n
o

d
e

s

R0
R1
R2

 50

 100

 150

 200

 250

N
u

m
b

e
r

o
f

n
o

d
e

s

Optimists
Pessimists
Dormant

1

10

100

1k

 10k

0 50 100 150 200 250 300 350

N
u

m
b

e
r

o
f

m
o

le
c

u
le

s

Time (in steps)

T0
T1
T2

Figure 4.18: Number of nodes executing each rule (top), number of pessimistic vs optimistic nodes
(middle) and number of molecules of each type in the solution (bottom, in logarithmic scale) during
the execution of the circular program with different initial conditions.

120

Chapter 4. Atomic Capture of Multiple Molecules 4.7. Experiments with Multiple Rules

 50

 100

 150

 200

 250

 300

N
u

m
b

e
r

o
f

n
o

d
e

s

R0
R1
R2
R3

 50

 100

 150

 200

 250

N
u

m
b

e
r

o
f

n
o

d
e

s

Optimists
Pessimists
Dormant

1

10

100

1k

 10k

0 50 100 150 200 250 300

N
u

m
b

e
r

o
f

m
o

le
c

u
le

s

Time (in steps)

T0
T1
T2
T3
T4

Figure 4.19: Number of nodes executing each rule (top) and the number of pessimistic vs optimistic
nodes (middle) and the number of molecules of each type in the solution (bottom, in logarithmic
scale) during the execution of the workflow program.

121

4.8. Conclusion Chapter 4. Atomic Capture of Multiple Molecules

The rule-changing pattern reveals that the nodes first massively execute R0 until the
concentration of T0-molecules drops below those of T1- and T2-molecules. The nodes
then distribute themselves over the rules in such a way as to consume mostly these
molecules — around 100 nodes per rule for R1 and R2. As they produce T3- and T4-
molecules, about 50 nodes start executing the last rule, R3. As T1- and T2-molecules
are consumed at a faster pace, nodes start abandoning R1 and R2 and pick R3. All the
while, most of the nodes are employing the optimistic sub-protocol. Then, in between steps
200 and 250 about half of the nodes change back to R1 and R2 in order to consume the
remaining T1- and T2-molecules, respectively, causing a decrease in the number of op-
timists, due to the globally-low concentration of molecules. At the end of the execution
almost all of the nodes use R3, with most of them dormant. Indeed, as there are only a
few reactions left at that point, it is impossible for most of the nodes to perform reactions
in spite the fact that they have correctly picked the rule to execute.

This experiment confirms that the rule-changing mechanism is able to follow more
complex dependency patterns. Moreover, we can see that during most of the execution
the majority of nodes uses the optimistic sub-protocol, confirming that the protocol is able
to adapt itself to the current situation in the system.

4.8 Conclusion

In this chapter, we have described a protocol to capture several molecules atomically in
an evolving multiset of objects distributed on top of a large-scale platform. The protocol
consists in the association of two sub-protocols intended to face different levels of density
of potential reactions in the multiset. By dynamically switching from one sub-protocol to
the other, our protocol fully exploits their good properties (the low communication over-
head and speed of the optimistic protocol, when the density of reactants is high, and the
liveness guarantee of the pessimistic protocol, when this density drops), without suffer-
ing from their drawbacks. We also propose a communication-reduction scheme which is
activated during the low-density period. Furthermore, we provide a rule-changing mech-
anism able to guide the nodes’ computation when a program with multiple rules is being
executed. A formal proof of the protocol’s correctness is provided and its different aspects
have been experimented with through simulation.

Another interest of this work lies in the fact that it revisits classical problems in dis-
tributed systems, but with the specificities of the chemical model in mind. In this way, it
tackles the mutual exclusion with the liveness property as a system property while, more
traditionally, liveness is a process’ property.

122

Chapter5

Decentralised Execution Platform

Contents
5.1 Platform Overview . 124

5.1.1 Initialisation . 125

5.1.2 Execution . 125

5.1.3 Termination . 127

5.2 Data Structures and Algorithms . 127

5.2.1 Double DHT Layer . 127

5.2.2 Random Meta-Molecule Fetch . 129

5.2.3 Search for Candidates . 130

5.2.4 Atomic Grab of Molecules . 130

5.2.5 Complexity Analysis . 131

5.3 Execution of Higher-order Programs . 132

5.3.1 Execution of Rules . 133

5.3.2 Correctness of Execution . 134

5.3.3 Inertia Detection . 136

5.4 Software Prototype . 137

5.4.1 Entities . 137

5.4.2 Execution Cycle . 138

5.4.3 Optimisations . 140

5.5 Evaluation . 140

5.5.1 Test Programs . 140

123

5.1. Platform Overview Chapter 5. Decentralised Execution Platform

5.5.2 Experimental Results . 142

5.6 Conclusion . 149

With the proposition of an efficient and adaptive protocol for the atomic capture of
multiple molecules, the previous chapter opened the doors to the realisation of a decen-
tralised runtime for the execution of chemical programs in large-scale environments. This
chapter proposes one such execution runtime. More specifically, here we tackle the fol-
lowing problems:

• Molecule discovery: molecules are dispatched over the network, meaning suitable
reaction candidates have to be found efficiently in spite of the scale of the platform.

• Decentralised inertia detection: to secure the termination of a program, we need to
ensure to detect the fact that no more reactions are possible, and do so in a decen-
tralised manner.

• Higher-order capabilities: the study conducted in Chapter 3 covers only the execu-
tion of first-order chemical programs, i.e. those in which rules are not considered as
being regular molecules. However, in order to leverage the full power of the chemical
programming model, the runtime should be able to execute higher-order programs
as well, in this way allowing them to bemodified on the fly during their execution.

This chapter presents the design, development, and experimentation of a generic run-
time for higher-order chemical programs. As in Chapter 3, we rely on a DHT to distribute
the molecules and rules. We also exploit the DHT’s efficient communication protocol as
part of a mechanism for discovering molecules. Furthermore, the platform integrates the
protocol for the atomic capture of molecules presented in Chapter 4. Finally, the inertia
detection is solved through an efficient scheme leveraging a second information retrieval
layer built on top of the DHT. For all of the aspects mentioned, the design proposed takes
the higher order into account. The viability of the concepts exposed is showed through a
complexity analysis. The platform is then put into practice through a software prototype
and its experimental validation.

5.1 Platform Overview

Figure 5.1: The platform.

The external view of the platform (Figure 5.1)
resembles that of the hierarchical one de-
scribed in Chapter 3: the external application
hands the chemical program to a node partic-
ipating in the platform — the source node —
and then, using the DHT communication proto-
col, the nodes of the platform execute the pro-
gram. Naturally, the platform can execute mul-

tiple programs concurrently. For the sake of parallelism and load balancing, each of them
can have a different entry point in the system.

124

Chapter 5. Decentralised Execution Platform 5.1. Platform Overview

5.1.1 Initialisation

During the initialisation process, molecules — the data — are dispersed in the network
andmeta-molecules — the meta-data — are created. The details of this step now follow.

5.1.1.1 Data Distribution

After receiving the data, the source node scatters the data molecules across the system
uniformly at random according to the DHT’s hash function and broadcasts the program’s
rules. By tracing the molecules’ paths, a tree, rooted at the source node, is created. Once
all of the molecules have been routed, the source node uses this multicast tree to diffuse
the rules contained in the program. In this way, each node holds a subset of the program’s
data molecules with high probability if the number of molecules is high enough, and all of
the rules, enabling a high level of parallelism and concurrency in performing reactions.

5.1.1.2 Meta-data Creation

Since molecules are spread throughout the system, nodes must be able to find suitable
candidates for reactions. In order to efficiently detect inertia, and consequently increase
the platform’s scalability, with regard to both the number of nodes as well as the number
of molecules, we use a second DHT layer. It contains meta-molecules, which are placed
around the key space in an order-preserving manner, allowing participants to search for
the existence of a particular molecule, or a set thereof, during the execution phase.

Each node produces meta-molecules based on its local molecules and routes them
according to their order-preserving identifier. Each molecule is associated a state in its
meta-molecule. Initially a meta-molecule’s state is set to free, indicating that nodes can
freely take the molecule it describes and combine it with other molecules to perform re-
actions. At a later stage, during execution, a meta-molecule’s state may be set to inert,
which denotes that a suitable combination for its molecule has not been found thus far.

After it dispatches all of the meta-molecules and receives the rules from the source
node, a node is ready to enter its execution phase.

5.1.2 Execution

The distributed platform presented here adopts a reactant searching scheme , in which
the system is explored for molecules with specific properties matching a rule’s pattern and
condition, such as an integer greater than 3, allowing it to detect inertia more efficiently.

The main execution loop, executed by every node, is described in Algorithm 5.1. For
the sake of clarity, the algorithm is presented in a simplified form, in which only one rule
involving a pair of molecules is considered. Nevertheless, it is easily expandable to multi-
ple rules and multiple molecules per rule. This section gives an overview of the execution,
the details of the concrete routines used are provided throughout Section 5.2, while Sec-
tion 5.3 focuses on the implementation of the higher order. The execution consists of

125

5.1. Platform Overview Chapter 5. Decentralised Execution Platform

three steps: (i) getting a random meta-molecule and testing inertia (lines 2—4), (ii) find-
ing a candidate molecule it can react with (lines 5—9) and (iii) atomically grabbing the
corresponding molecules and performing the reaction (lines 10—14).

During the first step, a node tries to obtain a randommeta-molecule, the state of which
is free. random_mol guarantees a free meta-molecule will be returned, in case one exists.
If, on the other hand, no meta-molecule can be found, it means that, previously, another
node could not find any candidate to react with the currently present molecules, implying
their states were set to inert. This signals to the requesting node that inertia has been
reached. It then stops executing the main loop (line 4).

Obtaining a free meta-molecule triggers the second execution step (lines 5—9). The
node now asks the system to find it a suitable meta-molecule by supplying the meta-
molecule found in step one and the rule which needs to be applied on the molecules to
the find_candidate routine (line 5). This routine systematically searches for a meta-
molecule matching the provided rule’s pattern and reaction condition. It is important to
note that, in this routine, both free and inert molecules are checked. If no suitable can-
didate has been found, then the state of the first meta-molecule obtained is changed to
inert and stored back in the second DHT layer.

Algorithm 5.1: Main execution loop.
1 while not inert do
2 meta_mol1 = random_mol(state = free);
3 ifmeta_mol1 = null then
4 break;

5 meta_mol2 = find_candidate(meta_mol1, rule);
6 ifmeta_mol2 = null then
7 meta_mol1.state = inert;
8 store(meta_mol1);
9 continue;

10 if grab_molecules(meta_mol1,meta_mol2) then
11 execute_reaction(rule, mol1, mol2);
12 store(new_mol1, new_mol2);
13 store_ack(meta_new_mol1, meta_new_mol2);
14 remove(meta_mol1, meta_mol2);

Step three (lines 10—14)
concludes an execution loop
iteration. The node tries to
grab atomically the molecules
described by the previously
obtained meta-molecules.
If the grab_molecules rou-
tine succeeds, it ensures no
other node will obtain these
molecules, making it possible
to trigger the actual execution
of the reaction, after which the
meta-molecules describing the
newly created molecules are
produced. The new molecules
are then sent to their respec-
tive nodes based on their hash
identifiers. It is important to

note that, to store the meta-molecules, the store_ack procedure is used, which blocks
the execution until the node receives the confirmation of their arrival at their respective
destinations. Only then the old meta-molecules are removed in order to ensure inertia is
not falsely detected by another node.

Algorithm 5.1 outlines the steps only for one rule and two molecules. However, in its
full form, the rule-changing mechanism described in Section 4.3 is used to select which of
the rules received from the source node is going to be used. Additionally, if the active rule
takes more than two arguments, the instructions of the second step (lines 5—9) are iter-

126

Chapter 5. Decentralised Execution Platform 5.2. Data Structures and Algorithms

atively repeated until the right amount of candidate meta-molecules has been obtained.
In case suitable candidates cannot be found, the rules are sorted in a descending order
based on their perceived reaction potential and step two is repeated for all the rules in the
list before marking the meta-molecule found in step one as inert.

5.1.3 Termination

Inertia has been detected once random_mol (Algorithm 5.1, line 2) can no longer find a
free meta-molecule in the system. This marks the end of execution and the beginning of
the termination phase. On inertia detection, each node sends its molecules back up the
multicast tree, after which the source node transfers the now inert solution to the external
application.

Theorem 5. If a node detects inertia, global inertia has been reached.

Proof. The global property of inertia arises from the distribution of molecules and meta-
molecules: if one node cannot find free meta-molecules, and consequently molecules, to
work with, others will not be able to find them either. However, we need to prove that a node
cannot declare the state of inertia while another node performs a reaction, i.e. that there
are no false positives in inertia detection. The proof is visible in Algorithm 5.1. Assume a
node n is executing the lines 10—14 and has been able to obtain both molecules needed
for a reaction, while another node n′ is beginning a new loop iteration. Further, assume
either meta_mol1 or meta_mol2 or both are the only free meta-molecules present in the
system. Then, node n will be executing the reaction and storing its products. Meanwhile,
node n′ will obtain either meta_mol1 or meta_mol2 from random_mol and will be able to
find a candidate for it (the other meta-molecule) although their molecules do not exist
any more. This happens due to node n’s call to the blocking store_ack routine before
removing the old meta-molecules. Thus, while at least one node is executing a reaction,
others will not be able to declare the state of inertia.

5.2 Data Structures and Algorithms

This section presents in detail the data structures used and algorithms employed by the
platform in order for the nodes to be able to execute a chemical program as outlined in
Section 5.1. The underlying data structures are first described, and are followed by an
in-depth explanation of each of the central routines in Algorithm 5.1.

5.2.1 Double DHT Layer

Due to the versatility of molecules, their sizes can vary considerably, potentially provok-
ing network overhead if moved frequently. As introduced in Section 5.1, in order to re-
duce superfluous network traffic, on top of the Pastry ring (the uniform layer) we place
a second one containing meta-molecules positioned in an order-preserving manner (the

127

5.2. Data Structures and Algorithms Chapter 5. Decentralised Execution Platform

order-preserving layer). The logical placement of the two layers is visible on Figure 5.2.
Since both layers share the same key space, each node is in charge of both molecules and
meta-molecules residing within its responsibility area.

5.2.1.1 Uniform Layer

Figure 5.2: Double layer: the key space
of the uniform layer coincides with that
of the order-preserving layer. The al-
ternating grey and white regions des-
ignate responsibility areas of different
nodes.

The first of the two layers uses a cryptographic
hash function, such as SHA-1, to spread the original
molecules uniformly around the system. The source
node initially scatters the datamolecules across the
system according to their hash values. Molecules
are routed concurrently according to Pastry’s rout-
ing scheme, in O(logn) hops, where n denotes the
number of nodes. In the course of the routing pro-
cess, the path of each molecule is traced by inter-
mediary nodes, in this way creating amulticast tree
rooted at the source node. As soon as all of the
molecules are scattered, the source node uses this
tree to diffuse the rules contained in the solution
to every node. Note that, due to the uniform dis-
persion of molecules (w.h.p.), every node will receive
the rules and will be able to execute them later on.
This multicast tree is conserved and used later dur-
ing the termination phase to deliver all the remain-
ing molecules residing in the uniform layer to the
source node, which hands it over to the external ap-

plication.
The only other time this layer is utilised in the execution phase is during step three:

once a combination of molecules able to react with a rule has been found, the molecules
are moved from their original nodes to the one which will execute the reaction, i.e. the
molecules are effectively removed from the layer. At the end of the reaction, the newly
created molecules are hashed with the uniform hash function and also put into this layer.

5.2.1.2 Order-Preserving Layer

The placement of the second DHT layer coincides with that of the first one: both use the
same key space and nodes keep their identifiers as well as their routing tables. Still, it is
used for storing meta-molecules — objects which describe the actual molecules present
in the system. Each of them carries four pieces of information:

• the hash identifier of the original molecule in the first layer;

• its type;

• its cardinal position in the molecule’s type’s total order; and

128

Chapter 5. Decentralised Execution Platform 5.2. Data Structures and Algorithms

• its state — free or inert.

In order to quickly and efficiently locate free meta-molecules, the key space is split in
two parts: one containing only free meta-molecules, within the range [0, ks2 − 1], and the
other consisting of only inert meta-molecules, within the range [ks2 ,ks−1], where ks is the
size of the key space. Both halves of the key space are organised in the same way: the
position of a meta-molecule is based on the total ordering of values of a specific molecule
type.

A meta-molecule’s identifier in the second layer is calculated as:

id =

{ cv
|V | ∗

ks
2 −1 , for state = f ree

ks
2 ∗ (1 + cv

|V |)−1 , for state = inert

Figure 5.3: Order-preserving layer: as a meta-
molecule’s state changes, it repositions itself in
the second layer.

where cv is the molecule’s value’s cardi-
nal position in the total order and V is
the set of all possible values the molecule
can have. As a consequence, when a
meta-molecule’s state changes, its iden-
tifier is recalculated, relocating it to the
other half of the key space, as illustrated
by Figure 5.3. Note that multiple types of
molecules reside in the key space — it is
not divided amongst them. Thus, different
meta-molecules may have the same iden-
tifier, but they can be distinguished by their
molecule types.

Organising the layer in this manner lets nodes search exactly for the reactants they
need for completing reactions. They do so by performing range queries [22, 111] on the
second layer.

5.2.2 Random Meta-Molecule Fetch

The starting point of the execution phase is obtaining a meta-molecule by means of the
random_mol routine (Algorithm 5.1, line 2). In order to avoid multiple nodes attempting
to fetch the same meta-molecule, each node tries fetching a randomly chosen meta-
molecule, which in turn improves load-balancing and reduces the risk of bottlenecks. To
that end, random_mol chooses a random identifier within the range [0, ks2 − 1] since the
node is looking for a free meta-molecule. The requesting node sends a METAMOL_REQ
message request, comprising the chosen identifier, the node’s identifier and the range it
wishes to search — the whole half key space —, to the corresponding node. The receiver
of the request checks its local meta-molecules and returns it the one with the closest
identifier. The method is exemplified in Figure 5.4.

129

5.2. Data Structures and Algorithms Chapter 5. Decentralised Execution Platform

Figure 5.4: Meta-molecule fetch example: n6
asks n2 for a random meta-molecule which then
forwards the request to n1 and n4. The process
is repeated until a free meta-molecule is found.

In case the receiver of the request
does not hold any free meta-molecules,
it splits the search range into two
parts: [range_beginning,min_id − 1]
and [max_id + 1, range_end], where
[min_id ,max_id] denotes receiver’s re-
sponsibility area. It then generates one
random identifier for each range and sends
two METAMOL_REQ message requests.
This process continues until a meta-
molecule has been found or until the whole
half key space has been searched with no
result. In the latter case, a NO_METAMOLS

message is sent to the original requester, after which the termination phase is triggered
on both the original requester and the original receiver of the request.

5.2.3 Search for Candidates

With the order-preserving layer in place, finding a suitable candidate for a reaction be-
comes a matter of successfully interpreting the rule to be triggered and associating it the
previously retrieved random meta-molecule. The rule, of the form replace P by M if V ,
is analysed and the type of the candidate is first extracted from the pattern P . Next, the
random meta-molecule is introduced in the reaction condition V ; the cardinal position of
the value replaces its symbol. Such a modified rule is then tested to establish the values
which would satisfy the reaction condition. These values are aggregated into ranges of
values and enclosed each in a METAMOL_REQ message along with the desired type.

The process of finding a matching meta-molecule in the system conforms to the pre-
viously described method of locating random meta-molecules, only this time the ranges
cover the whole key space. Thus, at least two METAMOL_REQ messages are sent: one
targeting free meta-molecules and the other inert ones. If neither of the requests returns
a meta-molecule, the requester sets the initial randommeta-molecule’s state to inert and
stores it in the second half of the key space.

Note that, in case a range is fragmented, each part is enclosed in a different META-
MOL_REQ message. Thus, the requester may receive more than one meta-molecule suit-
able for a reaction. The node then chooses randomly one of the arrived meta-molecules,
discarding the rest.

5.2.4 Atomic Grab of Molecules

Finally, the last step of the execution phase consists in obtaining the actual molecules
discovered and consequently performing the reaction. Given the fact that a molecule can
be consumed only once, i.e. it can be used in at most one reaction during its lifetime, it is
imperative that nodes grab all of the molecules in an atomic fashion, as several nodes can

130

Chapter 5. Decentralised Execution Platform 5.2. Data Structures and Algorithms

discover the same molecules concurrently. For this task, we rely on the protocol described
in Chapter 4. It is implemented in the grab_molecules routine (Algorithm 5.1, line 10) and
its outcome determines whether a reaction will take place or not.

Once the reaction has been performed, new meta-molecules are created based on the
newly produced molecules. The new molecules are then hashed and stored in the first
layer, while the new meta-molecules are stored in the second layer using the blocking
store_ack routine. In case the reaction did not take place, the node simply discards the
meta-molecules and molecules it has obtained and starts a new execution cycle.

5.2.5 Complexity Analysis

We now provide a complexity analysis of the time and network costs of running a chemical
program on top of the proposed platform. Due to the versatility of the chemical paradigm
and the volatility of the execution (asynchronism, conflicts during molecule captures), a
precise analysis of the general case is not feasible. For this reason, in the following, we
restrict our analysis to the execution of a chemical program containing only reaction rules
reducing the number of molecules. While this may appear as a limitation, note that this
behaviour mimics most data-processing applications and services, where multiple input
values are processed to produce one output value. We assume the presence of a single
rule with r arguments acting uponm molecules in a system comprising n nodes uniformly
arranged across the key space, with m ≫ n ≫ r. The rule produces a single molecule as
its output.

5.2.5.1 Execution Time Analysis

The costs of the initial dissemination and the termination phases can be easily calcu-
lated. The former depends on the number of molecules to be disseminated, thus running
for O(m) time. The latter is conditioned by the number of nodes having to return their
molecules, putting its cost to O(n).

The number of loops of Algorithm 5.1 each node will do is proportionate to m
r . However,

because m ≫ n, at the beginning of the execution every node will be able to capture an
exclusive set of r molecules. As the computation progresses, more and more conflicts
will arise, linearly decreasing the number of nodes able to complete a reaction as the
number of available molecules linearly decreases with each reaction, until there are only
r molecules left for which all of the nodes will compete. Consequently, on average n

2 nodes
perform a reaction in each iteration, while the rest aborts theirs. Thus, each node will loop
through Algorithm 5.1 é = 2m

rn times, consuming O(mn) units of time.

5.2.5.2 Network Traffic Analysis

The initial dissemination generates 2m lognmessages— formmolecules and their meta-
molecules and the dissemination of rules —, i.e. its network cost is O(m logn). The termi-
nation phase needs 2n messages, putting its cost to O(n).

131

5.3. Execution of Higher-order Programs Chapter 5. Decentralised Execution Platform

In the worst-case scenario, which happens towards the end of the execution phase
when there are only a few free meta-molecules left, random_mol and find_candidate gen-
erate at most 2logn + n + logn messages each. 2logn messages are needed for sending
the request and receiving the response; n messages are spent to search the entire key
space and logn messages are used for returning a molecule to the first node in the key
space contacted by a requester.

In the final step of the execution loop iteration, we consider only the heavier of the two
sub-protocols for grabbing molecules, since it generates more network traffic. The pes-
simistic sub-protocol needs 6r logn messages to complete its three phases (2logn mes-
sages per phase per molecule). As explained above, n

2 nodes perform reactions, complet-
ing all the three phases of the sub-protocol. This situation produces 10r n2 logn messages
in total. The nodes which have grabbed the r molecules generate further (3 + r)n2 logn
messages. n

2 logn messages are used to disseminate the new molecules, 2n
2 logn mes-

sages are needed for storing the new meta-molecules and their acknowledge receipts,
while r n2 logn messages are spent to remove the old meta-molecules. Since the number
of such cycles needed to reach inertia equals to é, the cost of the execution phase is
O(mn logn).

Understandably, the execution phase generates the highest number of messages when
compared to the other phases. Consequently, we approximate the cost of a complete pro-
gram execution in terms of network cost to be O(mn logn). Bearing in mind the factorial
complexity of the traditional centralised method, this analysis shows the plausibility of
executing chemical programs on the proposed platform with a network traffic overhead
proportional to the program’s size and to the number of nodes, establishing the benefits
of such a platform.

5.2.5.3 Concluding Remarks

Seeing that the platform may be used for coordination purposes as well, the number of
molecules in the system might be considerably lower, i.e. m ≈ n. In such a scenario, the
number of loops done by each node is é ≈ n

r , i.e. the execution time is O(n). Further-
more, only one node is able to complete a reaction in one loop pass and thus generating
(4n2 +3n) logn messages, elevating the network cost to O(n2 logn). However, because in
such a regime m is rather low, the execution lasts for a reasonably small amount of time,
presenting only short-term spikes in network load.

5.3 Execution of Higher-order Programs

Higher-order programs contain rules which manipulate rules as if they were ordinary
molecules — rule molecules can be consumed as well as produced in reactions. Still,
there exist differences between rule molecules and ordinary ones. Namely, the former are
n-shot while the latter are one-shot. Once a regular molecule is captured and consumed,
it disappears from the multiset. On the other hand, when a rule is being executed, its

132

Chapter 5. Decentralised Execution Platform 5.3. Execution of Higher-order Programs

molecule only has to be present in the solution but it is not consumed in the process, so it
can be applied in parallel by multiple nodes.

This section details the extensions incorporated into the decentralised runtime pre-
sented in Section 5.1 to allow it to execute higher-order programs. Namely, we address
here two crucial issues:

1. the discovery of present rules and their execution; and

2. handling potential inconsistencies arising when rule molecules are removed from
the multiset.

5.3.1 Execution of Rules

As rules can be manipulated (and thus consumed) by other rules, they can appear in
and/or disappear from the multiset. Hence, even though each node knows all of the rules
the programmay contain— they are defined statically by the programmer—, they cannot
be simply executed due to the volatility of the rules’ molecules — they might or might not
be present in the solution at the time of execution. Therefore, a node has to check whether
the rule it is about to execute exists or not.

5.3.1.1 Tracking Rules’ Existence

When a node receives the initial program at the beginning of the computation, it labels
every rule defined in it as non-existent since it does not know which of their molecules
actually exist in the solution. Each rule in the non-existent list is assigned a recheck time
— a timestamp stating when should a node recheck whether the rule’s molecule has ap-
peared in the solution. At the beginning of each execution cycle, before searching for a
randommeta-molecule, a node goes through this list and singles out the rules which have
to be rechecked for existence. To do so, for each rule, the node sends an ALIVE message
to the holder of the rule’s molecule. If the response is negative, a new recheck time is
assigned to the rule, leaving it in the non-existent list. In case the holder replies with a
positive message, the rule is transferred to the existent list, which keeps track of rules
the molecules of which are present in the solution. The execution cycle then resumes by
selecting a random meta-molecule.

Furthermore, if the node is a holder of inert meta-molecules, it checks whether there
are local meta-molecules which could satisfy the pattern of the rules recently added to the
existent list. Those meta-molecules are then redeclared as free, i.e. their state is changed
and they are stored in the free half of the order-preserving layer, in this way allowing all of
the reactions with the newly-existent rule to be performed.

5.3.1.2 Rule Existence Confirmation

The rule to execute is chosen from the list of existent rules according to the policy specified
in Section 4.3. If candidate meta-molecules can be found for it, the matching molecules

133

5.3. Execution of Higher-order Programs Chapter 5. Decentralised Execution Platform

are grabbed. Between the time the node last checked for a rule’s molecule’s existence
and the time the molecules have been captured, the rule’s molecule might have been con-
sumed by another rule on another node. Thus, before actually performing the reaction
the node inquires the holder of the rule’s molecule’s presence in the solution. The reaction
is carried out if the response is positive. Otherwise, the rule is placed in the non-existent
list and assigned a new recheck time, while the captured molecules are returned to their
respective holders.

5.3.1.3 Treatment of Rule Molecules

While they are still molecules, rule molecules are handled a bit differently than regular,
data ones, since they represent the functional part of the program. The time diagram
of the execution of a higher-order rule, one which consumes a rule molecule, is shown
in Figure 5.5. R1 is an ordinary rule consuming ordinary molecules, and R2 is a higher-
order rule, as it consumes the molecule of R1 as part of its reaction. In Figure 5.5, c(R1)
denotes the node about to execute the rule R2, h(R1) represents the node holding R1’s
molecule, while h(R2) is the node holding the molecule of R2. First, c(R1) captures the
molecule of R1 and then checks for the existence of R2 by sending an ALIVE R2 message
to h(R2). After it has received the confirmation, c(R1) is sure that a reaction is going to be
performed. Thus, it informs the holder of R1 that a reaction is about to be performed with
a DONE message, and then carries out the reaction.

Figure 5.5: Time diagram for
higher-order rules.

This last step is done only when a rule molecule is con-
sumed in a reaction. It is needed in order to confirm to the
holder that the rule molecule does not exist any more. In
between the time it gives the rule molecule to a node and
the time it receives the DONE message, a holder contin-
ues to reply positively to ALIVE requests, since it cannot be
sure whether the reaction consuming the rule molecule it has
given away has been performed or not; the mere fact of cap-
turing a molecule does not ensure a reaction will take place.
While this step may introduce inconsistencies during execu-
tion, it is needed in order to guarantee the proper detection
of inertia. We show below why these inconsistencies do not
disrupt the computation’s correctness and how does the plat-
form ensure the correct detection of inertia.

5.3.2 Correctness of Execution

The chemical programmingmodel enforcesmutual exclusion
ofmolecules—amolecule cannot be used inmore than one reaction. The same, naturally,
applies to rule molecules — once it has been consumed in a reaction, the rule cannot be
used for execution. Because the execution platform proposed here is an asynchronous
and a decentralised one, there may be situations in which exactly the opposite happens,

134

Chapter 5. Decentralised Execution Platform 5.3. Execution of Higher-order Programs

i.e. where a rule is used to perform a reaction after its molecule has been consumed. By
using the characteristics of the communication pattern in the runtime and the properties
of the chemical programming model, we show that the execution provided by the platform
complies with the executionmodel of the chemical paradigm in spite of the inconsistencies
which might arise during execution.

Theorem 6. The execution provided by the decentralised runtime conforms to the specifi-
cations and requirements of the chemical programming model.

Proof. Consider a network with three nodes — N1, N2 and N3 — executing a program
containing two rules — R1 and R2. Let us assume R1 consumes an ordinary molecule of
an arbitrary type and amolecule of type R2, i.e. R2’s molecule if it is present in themultiset,
while R2 consumes two ordinary molecules:

let R1 = replace x :: gen ,y :: R2 by x
let R2 = replace x :: gen ,y :: gen by x

where gen denotes a generic type excluding rule molecule types. Let us assume, further-
more, that N1 wants to carry out a reaction using R1, N2 holds R2’s molecule and N3 is
about to perform a reaction using R2. Both N1 and N3 will go through the same process:
first, they are going to capture the molecules needed for their respective reactions and
then inquire about the existence of the molecule of the rule each of them is about to exe-
cute. Thus, both nodes will, at some point, contact N2; N1 will try to obtain R2’s molecule
to consume it, while N3 will check for its existence. This leads to the following possible
scenarios:

1. N3’s check request reaches N2 before N1’s capture request. This is a simple case:
N2 simply replies positively to N3 and then hands the molecule to N1. Consequently,
both nodes are able to carry out their reactions.

2. N3’s check request reaches N2 after N1’s capture request, but before N1 reports
whether it has performed the reaction or not to N2. As noted earlier, after it has
given the molecule to N1, N2 is still going to reply positively to N3’s check request,
and it will, thus, carry out its reaction. There are two possible sub-scenarios:

• N1 has aborted its reaction. It gives R2’s molecule back to N2, in this waymaking
it available again. Hence, no inconsistencies have arisen as a result of N2’s
positive reply to N3.

• N1 has been able to perform its reaction. Thus, an inconsistency might arise if,
in the sequential order of events, N1 carried out its reaction before N3 did, since
that would mean N3 executed a reaction of a non-existent rule. We will address
this case in the next paragraph.

3. N3’s check request reaches N2 after N1 has informed N2 of the outcome. This is a
clear case, as N2 at this point knows for certain whether R2’s molecule exists and it
replies accordingly to N3.

135

5.3. Execution of Higher-order Programs Chapter 5. Decentralised Execution Platform

While R2 could be executed after the consumption of its molecule, strong consistency
is not needed for the execution of chemical programs. Indeed, the execution model pro-
vided by the chemical paradigm is implicitly parallel and non-deterministic. Therefore,
there is no order of execution imposed on the execution runtime. Consequently, the suc-
cession of reactions can be reordered in an arbitrary manner. Seeing that N3 has already
captured the molecules it needs in the reaction and it has received a positive response to
the existence of R2’s molecule, the execution can be regarded as one in which the order
of N1’s and N3’s reactions has been inverted since in the chemical programming model,
due to its non-determinism, the inversion does not influence the outcome of neither of the
two reactions, and is thus considered correct. Note that cases with more nodes would
naturally lead to the same conclusion.

5.3.3 Inertia Detection

With rules being treated as usual, volatile molecules as well, another way of reaching
inertia arises— one where there are nomore rule molecules present in the solution. Thus,
when a node commences a new execution cycle, its list of existent rules may be empty.
In such a case, the node forces a recheck of all of the rules regardless of their recheck
times, in order to be certain there are no more rule molecules present. If that is the case,
it forces the recheck onemore time before declaring inertia and terminating the execution,
since a rule molecule might have appeared in the meantime. Naturally, if one or more rule
molecules are found, the execution cycle continues.

Theorem 7. When a node detects no more reactions can be performed, global inertia has
been reached.

Proof. As nodes do not collaboratively detect inertia, but individually, we have to prove
there are no false positive detections. Consider the same network of nodes — N1, N2,
N3 — and program — R1 and R2 — as laid out in the proof of Theorem 6. Next, suppose
N1 does not perform a reaction, giving R2’s molecule back to N2, Ét units of time after it
has taken it. If during this period of time N2 were not to send positive responses to check
requests, N3 would get a negative response to its check request. If, furthermore, R2 were
the only present rule N3 knows of, it would falsely declare inertia, providedÉt were greater
than the time it takes N2 to recheck twice all of the rules. However, because it receives a
positive response, N3 continues the computation.

Another scenario where inertia might be detected falsely is when nodes try to deter-
mine whether there are still rule molecules present in the system. Let us assume there are
three rules defined in the program: R1, which consumes only data molecules; R2, which
creates an R1 molecule; and R3 which consumes two molecules: R2 and R3:

let R1 = replace x :: gen ,y :: gen by x
let R2 = replace é by é,x :: R1
let R3 = replace x :: R2,y :: R3,é by é

136

Chapter 5. Decentralised Execution Platform 5.4. Software Prototype

Consider an execution environment composed of three nodes, N1, N2 and N3, in the mo-
ment of execution where rule molecules of R2 and R3 are present in the solution, but not
that of R1. N1 is about to determine whether inertia has been reached, N2 is going to ex-
ecute R2, while N3 is executing R3. Suppose N3 manages to complete its reaction during
the period of time that N1 is checking for R1’s existence. N1 is going to get negative re-
sponses for all of the rules’ molecules: for R1 because it did not exist at the time, and for
R2 and R3 because they were consumed in the meantime. Thus, as far as N1 is concerned,
inertia has been reached as it appears that there are no rule molecules left in the solution.
However, while N1 was checking for inertia, N2 produced an R1 molecule by executing R2.
N1 is not going to declare inertia right away. Instead, it is going to do another rule-check
round. It is going to discover the presence of R1 in the solution, and is, consequently, not
going to declare inertia.

Finally, nodes might falsely detect inertia because all of the rules are not available
all of the time. Consider that two rules, R1 and R2, are defined in the program for which
molecules for potential reactions exist. Let us suppose R1 is available at the beginning of
the execution, while R2 appears dynamically after a period Ét. If the interval Ét is long
enough for the system to declare all of the meta-molecules of R2’s reaction candidates as
inert, then nodes could falsely detect inertia once R1’s candidates have been consumed.
This, however cannot happen because the nodes in the inert part of the order-preserving
layer are going to change the states of R2’ candidates’ meta-molecules as soon as they
detect the appearance of R2’s molecule in the system, in this way allowing its reactions’
executions.

Given the fact that inconsistencies may arise only when rule molecules appear or are
removed from the multiset, all of the possible cases of false inertia detection induced by
them are covered above. Other, “normal”, cases of inertia detection have already been
discussed in Theorem 5.

5.4 Software Prototype

Following the descriptions of the platform, laid out in Sections 5.1 and 5.2, and its adapta-
tion for accommodating the execution of higher-order programs, detailed in Section 5.3, a
fully-functional prototype was developed in Java. Figure 5.6 shows its logical view.

5.4.1 Entities

It is composed of five entities:

Overlay Network. The abstraction from the underlying physical network is handled by
this entity. Its main component is FreePastry, to which we added multi-threading
support as each entity runs in its own thread.

Molecule Holder. This entity is the implementation of the uniform DHT layer and as such
it serves as a container for molecules held by the node. In order to store, index and

137

5.4. Software Prototype Chapter 5. Decentralised Execution Platform

retrieve molecules more easily, they are grouped by their molecule types and sorted
based on their hash identifiers. The molecule holder is contacted during the atomic
capture step and is in charge of deciding whether and to which node a molecule it
holds is going to be given.

Meta-molecule Holder. Analogously, this entity represents the implementation of the
order-preserving DHT layer and is, thus, a repository of meta-molecules. It manages
the insertion, retrieval and deletion of meta-molecules requested by other nodes.
Note that when a retrieval request is received, the meta-molecule is not removed.
Instead, its copy is returned to the requesting node. Moreover, it handles random
meta-molecule fetches and candidate requests. If it cannot satisfy the request, it
communicates with meta-molecule holders on other nodes to complete it.

Tree Manager. The multicast tree created during the initialisation phase is constructed
by this entity. It maintains the node’s local state (consisting of its parent and chil-
dren) and uses it to spread the rules down the tree and to send its and its children’s
remaining molecules to its parent.

Central Unit. This is the main entity in the prototype. It communicates with the applica-
tion (taking the program to execute from it and returning the inert result to it) and
executes the main execution loop (Algorithm 5.1). Furthermore, it is in charge of
managing the existent and non-existent lists, i.e. it tracks the rules’ existence.

Each of the entities cooperates with the entities directly above and below it portrayed
in Figure 5.6.

5.4.2 Execution Cycle

5.4.2.1 Initialisation

Figure 5.6: Logical view of the entities form-
ing the prototype.

A first step is for the application to transfer the
program to execute to the central unit. It then
hashes the molecules and dispatches them to
the overlay network, which spreads them in the
uniform layer. During this period, the tree man-
ager monitors the overlay network traffic and
when it stumbles upon a molecule, it adds the
destination node to its local state. Once the
molecules have been disseminated, the central
unit hands the definition of the rules over to the
tree manager, which sends them to its children
in the local state.

On the receiving end, when a node receives a molecule, it stores it in the molecule
holder. This entity creates a meta-molecule for each held molecule and routes it in the
order-preserving layer through the overlay network. The node then receives the rules to

138

Chapter 5. Decentralised Execution Platform 5.4. Software Prototype

execute, upon which the tree manager completes its local state by assigning the node’s
parent in the tree (the node which has sent it the rules). Now the nodes are ready to start
the execution.

5.4.2.2 Execution

At this point, the central unit on each node starts the main execution loop by first looking
whether there are rules in the non-existent list which have to be checked for existence,
after which the active rule for the current execution cycle is selected. It then asks the
meta-molecule holder to find it a random meta-molecule in the network. The type of one
of the active rule’s reactants is extracted. The meta-molecule holder then sends out re-
quests in the free half of the order-preserving layer to find such a meta-molecule. This
process is repeated for each rule until a meta-molecule has been returned. Then, the cen-
tral unit translates the pair (rule,meta− molecule) into a range query request by injecting
the meta-molecule’s identifier in the rule. The request is, again, handed over to the meta-
molecule holder which tries to find a candidate meta-molecule satisfying the range query
in the order-preserving layer. The process of searching for a candidate is repeated for as
many reactants the rule needs, each time introducing the newly acquired meta-molecule
into the rule and constructing a new range query for the next candidate to be located. If
the candidates cannot be found, the random meta-molecule’s state is changed to inert
(changing its identifier) and stored in the second DHT layer.

The final step of the execution phase consists in grabbing atomically themolecules and
performing the reaction. For capturing the molecules the previously-described protocol is
used, in which the central unit plays the role of the molecule requester. It extracts the
identifiers of the molecules to grab and sends the fetch requests to the corresponding
nodes. Their molecule holders then evaluate each its own request and decide whether to
send back the molecules. Only in case all of the molecules have been received the node
rechecks for the existence of the active rule. If the active rule is a higher-order one, i.e.
if one or more rule molecules have been captured, the node sends a DONE message to
the rule molecules’ holders. Then, the reaction is performed and, as per Algorithm 5.1,
the products of the reaction and their meta-molecules are stored in the DHT (each in their
respective layer) and delete requests for the consumed molecules’ meta-molecules are
sent.

5.4.2.3 Termination

Once there are no more free meta-molecules in the order-preserving layer, the nodes en-
ter the final, termination step of the execution. A node starts this phase when its meta-
molecule holder is not able to find a random meta-molecule. At that point, the tree man-
ager awaits the node’s children’s molecules. These are then combined with the molecules
held by the molecule holder and sent to the parent up the tree. Finally, the central unit of
the source node delivers the inert solution to the requesting application.

139

5.5. Evaluation Chapter 5. Decentralised Execution Platform

5.4.3 Optimisations

Even though the prototype follows the description of the system model discussed in ear-
lier sections, it carries two slight improvements dealing with local meta-molecule search
and meta-molecule retrieval. Both of the enhancements are implemented in the meta-
molecule holder.

The first optimisation exploits the principle of locality : whenever the central unit re-
quests for a meta-molecule, the meta-molecule holder first checks whether it can satisfy
the request right away without querying other nodes. This method is applied to both ran-
dom meta-molecule and candidate search requests. At the beginning of the execution,
nodes which are located in the free half of the key space will be able to benefit directly
from it, seeing that during that time most of the meta-molecules’ states are set to free,
enabling nodes to pick a random meta-molecule from their local meta-molecule holder.
Towards the end of the execution, on the other hand, nodes located in the other half of
the key space can benefit from the principle during the candidate search step, since most
meta-molecules will be labelled as inert at that point.

The second improvement is introducing a small decision-making mechanism into the
meta-molecule holder. Whenever it receives a retrieval request, it tries to return themeta-
molecule closest to the requested identifier. It is thus possible for the samemeta-molecule
to be sent to more than one node. Even though the capture protocol assures a molecule
is going to be consumed in only one reaction, giving the same meta-molecule to differ-
ent nodes generates superfluous network traffic as some grab requests will eventually be
aborted. Therefore, the meta-molecule holder keeps track of the number of times each
meta-molecule has been handed out to nodes. Doing so, it is able to return the meta-
molecule which satisfies the request criteria but has been handed out less times than
other meta-molecules. Such a slight refinement ultimately minimises the number of con-
flicts between nodes over molecules and consequently the network overhead due to cap-
ture aborts.

5.5 Evaluation

In order to evaluate our proposal, we tested the prototype described above on a real-world
test-bed. The next section explains the test programs used in the evaluation, and Sec-
tion 5.5.2 delivers the results of the conducted experiments.

5.5.1 Test Programs

We now describe three distinct classes of programs we used to evaluate the proposed
architecture: highly-parallel, producer/consumer and higher-order ones.

140

Chapter 5. Decentralised Execution Platform 5.5. Evaluation

5.5.1.1 Highly-parallel Programs

In such applications, the same operation is applied to the whole of the input data. It is thus
interesting to investigate the behaviour of a decentralised execution environment when
faced with such programs. We chose to represent them with GetMax, the program also
used in the evaluation of the hierarchical prototype, described in Section 3.4.1.

5.5.1.2 Producer/Consumer Programs

The second category of applications is the producer/consumer one. The interest in this
class stands in that these programs impose a certain degree of sequentiality of events —
a producer has to produce the input for the consumer— on an implicitly parallel paradigm
executing in a decentralised environment. While highly-parallel programs designate data-
processing applications, producer/consumer ones can be interpreted as their temporal
compositions — workflows.

The experiments were conducted with StringManip — a program comprised of two
rules manipulating string molecules. The logic of StringManip consists in splitting and
packing together string molecules in such a way that the resulting string molecules have
a predefined length, denoted Ý. The first rule, SplitStr , consumes one molecule whose
string’s length is greater than Ý and produces two molecules; one is composed of the first
Ý characters of the original molecule’s string, while the other contains its remainder. The
second rule, ConcatStr , takes two molecules whose strings are shorter than Ý charac-
ters as input and outputs one which is their concatenation. Thus, SplitStr produces the
molecules which are going to be consumed by ConcatStr .

The course of the execution of StringManip, as well its outcome, is non-deterministic.
While it is known that at the end of the execution the molecules’ strings are going to have
a length of Ý, their contents depend on the succession of reactions performed by the sys-
tem, which is influenced by the asynchronous nature of the platform. In other words, the
outcome is conditioned by the reactions performed by each node, their input molecules,
and the order in which they actually take place. Hence, the number of reactions done
throughout the execution varies from run to run. Furthermore, the two rules are circu-
larly dependent on each other — ConcatStr might produce molecules which are going to
be consumed by SplitStr —, in this way bringing a partial circular sequentiality into the
program.

5.5.1.3 Higher-order Programs

This type of programs contains higher-order rules, which are used by the program to reg-
ulate itself due to changes arising in its external environment. To assess the proposed
platform’s responsiveness to changes in the program’s structure (its rules) induced by
the dynamic addition and removal of rules, we use a simple program which first calcu-
lates the sum of some integers and then switches its computation to string concatenation
based on integers currently present in the solution. The initial solution contains only inte-
ger molecules along with the sum rule, which takes two integers and produces their sum.

141

5.5. Evaluation Chapter 5. Decentralised Execution Platform

Then, at a random point in time, a new rule molecule is introduced — that of switcher , a
rule erasing sum’s rule molecule — effectively ending the sum epoch. switcher produces
two rule molecules: int_to_str , which turns integers into their string representations; and
str_concat , which concatenates two string molecules.

5.5.2 Experimental Results

For conducting the experiments we were guided by three goals: (i) capturing the behaviour
of the decentralised platform in terms of execution time and network traffic and comparing
them to the results obtained analytically; (ii) assessing the overhead in execution time and
network traffic created by the higher-order execution mechanisms from Section 5.3; and
(iii) the platform’s responsiveness when faced with dynamic changes in the program.

The experiments were conducted on Grid5000 [20], the French national test-bed. For
each run, the nodes were spread randomly over nine geographically-distant sites con-
nected via the RENATER network1, which offers a 10 GBit/s communication channel be-
tween the sites. Each experiment was run 10 times and the figures given here represent
the average values obtained during the experimentations.

 160

 180

 200

 220

 240

 260

 280

 300

 320

 100 200 300 400 500 600 700 800 900 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
s)

Number of nodes

GetMax

Figure 5.7: Execution time of GetMax containing 50,000 molecules.

5.5.2.1 Execution Time

Firstly, we evaluated the viability of the platform by executing the first two programs while
varying the number of nodes participating in the execution. Figures 5.7 and 5.8 show the
execution times obtained for GetMax and StringManip, respectively.

1http://www.renater.fr

142

Chapter 5. Decentralised Execution Platform 5.5. Evaluation

 110

 120

 130

 140

 150

 160

 170

 180

 190

 100 200 300 400 500 600 700 800 900 1000

E
xe

c
u

ti
o

n
 t

im
e

 (
s)

Number of nodes

StringManip

Figure 5.8: Execution time of StringManip with 20,000 molecules.

In both cases there is a decrease in execution time when increasing the number of
nodes carrying out the computation, which is in compliance with the results of the com-
plexity analysis from Section 5.2.5. However, one can notice that the speed-up obtained
for GetMax is greater than that for StringManip. This is due to the difference of the pro-
grams’ characteristics. On the one hand, the number of molecules in the system strictly
decreases after each reaction when executing the GetMax program, while the trend is not
known for StringManip — it may stay constant, decrease or increase. On the other, the
execution time of StringManip depends on the sequentiality of events: certain reactions
cannot be carried out before others are. In contrast, GetMax is a highly-parallel program
where the maximum possible number of reactions can be performed at any given point
in time. Finally, the execution takes more time to complete for 1000 nodes than for 750
when executing StringManip. This is the result of the program’s sequentiality: more nodes
are in conflict over a subset of molecules since not all available molecules can be used
straight away, in this way prolonging the execution.

5.5.2.2 Network Traffic

During the execution of the programs we also monitored the generated network traffic.
Figures 5.9 and 5.10 depict the total number of messages sent. Note that the number
of messages in the case of GetMax is higher than that of StringManip due to the fact
that there are more molecules in the initial solution of GetMax. Both of them show a linear
augmentation in the number of messages, which conforms to the findings of the presented
complexity analysis. We can see, however, that the curve for GetMax is steeper than that
of StringManip. This is due to the fact that, because of the constant number of reactions,
when there are more nodes involved in the computation there are more conflicts over
molecules during the capture phase. In spite of this effect, one can notice that the actual

143

5.5. Evaluation Chapter 5. Decentralised Execution Platform

 2

 4

 6

 8

 10

 12

 14

 16

 18

 100 200 300 400 500 600 700 800 900 1000

N
u

m
b

e
r

o
f

m
e

ss
a

g
e

s
(x

1
0

6
)

Number of nodes

GetMax

Figure 5.9: Number of messages sent during the execution of GetMax.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 100 200 300 400 500 600 700 800 900 1000

N
u

m
b

e
r

o
f

m
e

ss
a

g
e

s
(x

1
0

6
)

Number of nodes

StringManip

Figure 5.10: Number of messages sent during the execution of StringManip.

144

Chapter 5. Decentralised Execution Platform 5.5. Evaluation

number of messages per node declines with the growth of the network, which leads to the
conclusion that the platform is scalable in terms of network load. We can thus conclude
that the platform scales well.

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 10 20 30 40 50 60 70 80 90 100

E
x
e

c
u

ti
o

n
 t

im
e

 (
s)

Number of molecules (x1000)

GetMax

Figure 5.11: Execution time of GetMax on 500 nodes.

 2

 4

 6

 8

 10

 12

 14

 16

 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

m
e

ss
a

g
e

s
(x

1
0

6
)

Number of molecules (x1000)

GetMax

Figure 5.12: Number of messages sent during the execution of GetMax.

5.5.2.3 Problem Size Variation

In this experiment we fixed the number of nodes to 500 while varying the number of
molecules contained in the GetMax program. Figure 5.11 shows that the execution time

145

5.5. Evaluation Chapter 5. Decentralised Execution Platform

 140

 160

 180

 200

 220

 240

 260

 280

 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

m
e

ss
a

g
e

s
p

e
r

re
a

c
ti
o

n

Number of molecules (x1000)

GetMax

Figure 5.13: Number of messages sent per reaction during the execution of GetMax.

linearly grows with the increase of the size of the problem. The same effect can be ob-
served when looking at the network traffic, depicted in Figure 5.12. Both figures confirm
the analysis’ findings: the number of messages linearly grows when increasing the size
of the problem to be solved, i.e. the number of molecules. It is interesting to note that
the number of messages needed to perform one reaction, illustrated in Figure 5.13, de-
creases. Indeed, when the number of molecules increases while keeping the number of
nodes constant, there are less conflicts between nodes over molecules, and thus less
communication is needed to carry out a reaction.

5.5.2.4 Higher Order Overhead

We now turn to the experiments concerning the higher-order mechanisms. We firstly in-
vestigated the overhead induced by the higher-ordermechanisms by executing the GetMax
program in a network of 250 nodes while varying the size of the problem, i.e. the number
of molecules contained in the initial solution. The duration and the network traffic are
shown on Figures 5.14 and 5.15, respectively. One can firstly note the linear behaviour
of the curves, confirming that the platform keeps the property of linearity even with the
higher-order mechanisms activated.

When comparing the behaviour of the system with and without higher-order mecha-
nisms in place, we can observe that when the size of the problem is relatively small, the
difference in both execution time and network traffic is negligible. However, the gap widens
with the augmentation of the problem’s size. This trend is to be expected, since the higher-
order mechanism inserts the rule-check procedure between the molecule capture and re-
action execution steps, in this way both prolonging the execution and creating additional
network traffic. In spite of this penalty, the platform is still able to follow the linear trend of
the growth in size.

146

Chapter 5. Decentralised Execution Platform 5.5. Evaluation

 50

 100

 150

 200

 250

 300

 350

 10 20 30 40 50 60 70 80 90 100

E
x
e

c
u

ti
o

n
 t

im
e

 (
s)

Number of molecules (x1000)

W/o HO
W/ HO

Figure 5.14: Execution time of GetMax when varying the number of molecules, with and without
activating the higher-order mechanism.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

m
e

ss
a

g
e

s
(x

1
0

6
)

Number of molecules (x1000)

W/o HO
W/ HO

Figure 5.15: Number of messages exchanged by nodes during the execution of GetMax when vary-
ing the number of molecules, with and without activating the higher-order mechanism.

147

5.5. Evaluation Chapter 5. Decentralised Execution Platform

 0

 5

 10

 15

 20

 25

 30

0-0.5 0.5-1 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5

N
u

m
b

e
r

o
f

ru
n

s

Time intervals (s)

Figure 5.16: Responsiveness of the platform with regards to the time it takes to detect the disap-
pearance of a rule.

 0

 5

 10

 15

 20

 25

 30

0-5 5-10 10-15 15-20 20-25 25-30 30-35

N
u

m
b

e
r

o
f

ru
n

s

Intervals of number of reactions (x10)

Figure 5.17: Responsiveness of the platform in terms of number of reactions done with a non-
existing rule.

148

Chapter 5. Decentralised Execution Platform 5.6. Conclusion

5.5.2.5 Responsiveness to Dynamics

In the last experiment we used the higher-order program described above in order to as-
sess the platform’s responsiveness to dynamic changes in the program’s execution flow.
We executed the program 100 times on a network of 250 nodes, changing the network
configuration each time by randomly choosing the site, the cluster and the port number of
each node. We measured the time it took to all of the nodes to realise that the sum rule’s
molecule is not present in the solution any more. At the beginning of each run all of the
nodes’ internal clocks were synchronised through the NTP service provided by Grid5000
in order to obtain precise measurements. Figure 5.16 shows the number of runs in which
the nodes stopped executing the rule after its disappearance from the solution, divided
in half-second intervals. Likewise, Figure 5.17 shows the number of reactions carried out
during that period.

As explained in Section 5.3, this delaymanifests itself because sum’s molecule’s holder
replies positively to rule check requests until it has received the confirmation of its con-
sumption, and it, thus, depends on the underlying network’s topology. Based on Fig-
ure 5.16, we observe that in 81% of runs the nodes stop executing the rule at most two
seconds after its disappearance, while the highest delay is 3.5 seconds, observed in only
3% of runs. Even though this might seem as a long period of time, the two-second delay
represents only 1% of the overall execution time for the given scenario. In the same vein,
Figure 5.17 suggests that in 79% of runs nodes do at most 200 reactions during the de-
lay, which represents 1% of the total number of reactions done during the execution and
less than one reaction per node. We can, thus, conclude that the platform reacts quickly
to changes, both in terms of time it takes it to detect the change and in terms of number
of reactions which should have taken place before the change in a sequential ordering of
events.

5.6 Conclusion

Continuing the work started in Chapter 4, this chapter presents a fully-decentralised run-
time for the execution of chemical programs in large-scale environments.

While ensuring the atomic capture of reactants is essential to a decentralised sys-
tem, the chemical programming model introduces further challenges. By relying on a
double DHT layer, the presented platform is able both to secure scalable inter-node com-
munication and to provide an efficient inertia detection mechanism. Molecules are spread
uniformly around the original DHT ring, in this way balancing access to them. The plat-
form maintains a second DHT layer where meta-molecules —molecule descriptors — are
placed. By ordering this layer in an order-preserving manner, the system can use range
queries to locate specific molecules matching a pattern, in this way providing advanced
reactant search capabilities. Once located through their meta-molecules, molecules are
fetched in an atomic fashion using the adaptive capture protocol described in the previous
chapter. Finally, the platform has the ability to execute higher-order programs: it period-
ically checks for the existence of the defined rules’ molecules to insure consistency and

149

5.6. Conclusion Chapter 5. Decentralised Execution Platform

a correct execution. The properties of these concepts are theoretically analysed, while
inertia detection and execution correctness are formally proven.

This chapter also introduces the prototype built, constituting a first step towards the
generic execution of chemical programs in large-scale environments. Apart from being
modelled on the theoretical work described, it also incorporates a couple of optimisations,
which improve its scalability as they exploit thelocality of meta-molecules. The prototype
has been used to conduct experiments on a real-world large-scale test-bed. The results
corroborate the theoretical findings and show the platform’s viability and scalability.

150

Part III

Conclusions And Addenda

151

Conclusion

In the context of distributed systems, autonomic computing envisions self-manageable
systems, i.e. systems which are able to organise, configure, heal and protect themselves.
However, one of the difficulties of today’s distributed systems stands in finding the right
abstractions to program them. Due to their complexity in terms of scale, dynamics and
heterogeneity, leveraging their power remains an open issue. In particular, separating the
logic of a computation (“what we want to do”) from the low-level, technical implemen-
tation (“how to do it”) appears to be a prerequisite for being able to compute on such
systems in an efficient manner. Rule-based programming seems a likely candidate for this
separation as in such a paradigm, the logic is expressed as a set of high-level rules, hiding
the intrinsic difficulties of parallelism and distribution inherent to real platforms.

In this thesis, we focus on a higher-order rule-based model, namely the chemical pro-
gramming model. It associates rule-based programming with an implicitly-parallel run-
time. It also integrates the higher-order, i.e. the ability to manipulate rules as ordinary
objects, and thus to modify the program dynamically at run time. As the paradigm has
been shown to have the right abstractions for the specification of autonomic systems, the
large-scale execution of chemical programs has to be tackled in order to put the attractive
characteristics of rule-based programming into practice over large-scale platforms. This
thesis fills this gap by proposing a generic framework to solve this issue over a largely-
distributed platform. By devising an adaptive and efficient protocol for atomically cap-
turing molecules and designing an efficient inertia detection mechanism, we modelled a
decentralised chemical runtime able to run over large-scale platforms.

The thesis is composed of two parts: the first reviews the preliminaries needed to un-
derstand our contribution, while the second describes it in detail. In Chapter 1 we ex-
plained the chemical programming model, concentrating on its execution properties, such
as non-determinism, implicit parallelism and inertia detection. There is also a detailed
description of the principles behind distributed hash tables and the way more complex
queries, such as range queries, may efficiently be resolved over them, since we used
them as the basis for the inter-node communication and searchmechanisms, respectively.

153

Conclusion Conclusion

The last section gave a brief overview of the mutual exclusion algorithms, as they were
needed in order to formulate our own capture protocol. Chapter 2 highlighted the need
for a generic runtime by analysing different existing proposals of distributing the execu-
tion of chemical programs, both based onmessage-passing as well as those exploiting the
shared-memory model.

Due to the lack of an appropriate distributed execution framework, in Chapter 3 we
described a study conducted about the feasibility of a generic runtime able to run any
chemical program on any platform. To that end, we explored two approaches: one based
on the shared-memory model, and the other on message passing. The former exploits the
concept of distributed shared memories to create a collective virtual space from which
each node picks combinations of molecules to perform reactions. After a careful analysis
of the drawbacks and inherent limitations of the approach, we abandoned it and turned to
message passing as the underlying type of communication. Using the Pastry distributed
hash table as the underlying communication layer, we managed to build a runtime able
to run chemical programs in large-scale environments. Here we were primarily concerned
with the distribution of the execution process and the mechanism allowing the runtime to
detect inertia in a distributed manner, and proposed a hierarchical, tree-based execution
scheme within which operates a minimal, distributed inertia-detection algorithm. Due to
the hierarchical structuring of the model, we examined its load-balancing properties and
formulated a tree-reorganisation scheme transferring part of the execution from parent
to child nodes. A fully-functional prototype was developed based the execution-tree ap-
proach and tested on a real-world, large-scale platform. The results of the experiments
confirmed the viability and scalability of such a platform and corroborated the minimality
of the inertia-detection algorithm obtained through formal analysis.

On the road towards a decentralised chemical runtime, in Chapter 4 we tackled the
problem of mutual exclusion in the context of molecule capture. The contribution here is
an adaptive, efficient and scalable protocol for the atomic capture of molecules in large-
scale systems. It works in two regimes — optimistic and pessimistic — with an efficient
switch mechanism based on local capture histories. The activation of each mode follows
the concentration of molecules, and thus the reaction potential, in the system. When an
elevated number of molecules is present, nodes use the optimistic sub-protocol to grab
molecules. While it is the faster and lighter of the two sub-protocols in terms of communi-
cation costs, it is not able to ensure liveness when the number of conflicts over molecules
is high. Therefore, when the number of molecules in the system drops, nodes switch to
the pessimistic sub-protocol, which, even though heavier and costlier, is able to guarantee
liveness is preserved. To complete the protocol, we also proposed in this chapter a rule-
changing mechanism which instructs the nodes as to which rule to execute in a multi-rule
program. The formal proof of the protocol is also provided, and the conducted simulations
revealed the protocol’s efficiency, low overhead and ability to quickly react to changes,
both with regard to the switch between the two sub-protocols as well as to picking the rule
to execute.

Finally, in Chapter 5 we explained the characteristics of our decentralised runtime for
the execution of chemical programs at large scale, built around the aforementioned cap-

154

Conclusion Conclusion

ture protocol. Constructed atop the Pastry DHT, the runtime features two DHT layers —
one uniform, the other order-preserving — bringing intelligent search capabilities into the
picture. Unlike the hierarchical runtime, where all of the molecule combinations must be
examined, in this runtime nodes are able to search for precisely the molecules they need
in order to perform reactions. If found, the sought molecules are then grabbed using the
capture protocol. Inertia is detected in an efficient and fully-decentralised way due to the
molecule classification scheme built into the double layer. The runtime is also able to ex-
ecute higher-order programs, in this way allowing the programs to dynamically change
throughout their execution. In the chapter we also presented the prototype built. Apart
from following the laid-out model of the runtime, it features some optimisations based on
the principle of locality, which improve the framework’s execution time and decrease the
network traffic. The tests performed in a large-scale test-bed with up to 1000 nodes on
highly-parallel and sequential chemical programs showed the runtime’s viability and scal-
ability, as well as its ability to quickly detect changes when higher-order programs were
run.

Future Work

Even though this thesis gives a complete solution for running chemical programs over
large-scale platforms in a fully-decentralised manner, there is room for improvement in
several directions. The work to be undertaken can be divided in two categories : engineer-
ing and research.

Engineering Challenges

The prototype for the decentralised chemical runtime developed during the thesis is
fully functional in the sense that it can be used to test programs following the chemi-
cal paradigm in large-scale environments. Nevertheless, it is still only a prototype. More
engineering effort has to be put into it in order to turn it into a real chemical middleware.
Some of the most significant improvements needed follow.

Compiler Integration. In its current state, the prototype is only able to execute programs
following the chemical paradigm, but cannot execute HOCL code directly. In order
words, the user has to translate their program manually to execute it over a large-
scale platform. Therefore, the first step towards a real middleware must be the in-
tegration of the HOCL compiler into the prototype. This process should be straight-
forward because the object model used in the prototype was carefully chosen to
resemble as much as possible that of the existing HOCL compiler.

Rule Translator. As outlined in Chapter 5, the intelligent search for candidates is based
on the rule translator — an entity which modifies the reaction condition by insert-
ing the found meta-molecules in order to establish the range of values where the
next reaction candidate can be found. In the current version of the prototype, the

155

Conclusion Conclusion

rule translator is regarded as a black box; its functionality is provided by the user
through some additional methods supplied with the definition of a rule. The realisa-
tion of an automated rule translation ought to be easy to accomplish after the in-
tegration of the compiler since: (i) the automation of the process requires an HOCL
parser, which is an integral part of the compiler; and (ii) the range querymechanisms
and the order-preserving layer are, in a sense, independent from other prototype’s
functionalities, allowing the easy modification of the rule translator.

Range Query Optimisation. Range queries are performed in order to locate potential re-
action candidates. However, it being a proof of concept, the prototype uses a ba-
sic, MAAN-like mechanism for carrying them out. There is, thus, room for improving
the performance of this step, both in terms of time and network traffic. As, again,
these range querymechanisms are isolated from other parts of the prototype, imple-
menting a different, optimised version, such as Squid or inverted space-filling curves,
should be a fairly straightforward task.

Load Balance. Currently, all of the nodes participate equally in all of the aspects of the
execution; all of them try to carry out reactions, search for candidates, as well as
storemolecules andmeta-molecules. In a heterogeneous environment, however, not
all of the nodes might be able to perform all of the functions. As an example, if one
of the participating nodes is run on a mobile phone, it should be assigned a reduced
workload. To take this heterogeneity into account, different profiles and configura-
tions dependent of the underlying resources could be developed. This would benefit
both the platform (as it would not overstress weaker nodes) and its users (as they
could continue working without interruptions).

Research Directions

Fault Tolerance. One of the most important aspects lacking in the design of the de-
centralised runtime is resilience to crashes. Since it is meant to be used in large-scale
platforms, where faults do not represent the exception but the rule, the runtime must be
able to handle these cases gracefully and ensure the continuation of the computation in
spite of the possible problems arising in the underlying platform. On the lower level, the
usage of distributed hash tables provides rudimentary fault tolerance in the sense that in
case of crashes, the communication pattern of the runtime is going to be unaffected. How-
ever, a higher-level mechanism is needed in order to ensure that no disruption in execution
will occur. While the order of the succession of reactions is chosen non-deterministically,
the execution steps of each node are performed in a deterministic and a priori known or-
der. Therefore, they can be described as finite-state automata, for which resilience can
be provided in the form of state-machine replication [78, 112]. Each node could replicate
its whole state onto a number of its neighbours. In this way, in case it crashes, another
node may simply overtake its part of the computation, increasing the robustness of the
runtime. Apart from complete, fail-stop crashes, the system is also susceptible to other
types of failures, namely transient (where a node stops working for a short period of time)

156

Conclusion Conclusion

and Byzantine ones (where malicious nodes try to destabilise the system). In the case of
transient faults, self-stabilisation techniques [38] are worth exploring, as they can guide
the system towards a correct and coherent state during the faulty period. In a more gen-
eral sense, however, given the specificities of the chemical paradigm’s execution model, it
would be interesting to determine the weakest failure detectionmodel [27] able to support,
primarily, the loss of molecules.

Security. Another research direction tightly connected to large-scale environments is
security. It is clear that any system aspiring to be used in the real world must guarantee
a secure environment to its users. Currently, our runtime does not deal with such issues,
as it assumes the collaborating nodes and their users to be benign. In order to provide a
safe and healthy environment in which users can freely run their chemical applications,
the runtime must provide security on three levels:

• Environment Level. Each node must be certified prior to joining the runtime for the
first time. The certification could be done by a platform administrator explicitly
allowing each of them to participate in the execution or by handing out runtime-
specific certificates.

• User Level. If a user wants to execute a chemical application, they should be allowed
to do so only if they have been granted a priori permission, precluding malicious
users from abusing the runtime. Likewise, known users could be monitored in order
to ensure a fair usage of the execution environment.

• Application Level. Even though users are trusted, applications which they submit
could, voluntarily or not, contain malicious code. Since the runtime executes directly
HOCL code and not its pre-compiled version, it could incorporate code-verification
schemes able to check if the application could perform unauthorised actions. How-
ever, due to the dynamic, higher-order nature of chemical programs, this might be
hard to achieve; not only does the higher order allow programs to change their ex-
ecution flow dynamically, but it also enables them to alter the code being executed.
In this sense, an attractive research direction seems to be on-line code verification:
first, the code could be entirely checked prior to its execution, and then, when a dy-
namic change is detected, another verification cycle could be initiated. Alternatively,
applications could be sandboxed, i.e. they might be executed on the participating
nodes in an untrusted environment. In case a security breach occurs, the applica-
tion’s processes on the nodes could be simply terminated.

Applications. Finally, the modelled runtime should be tested not only in real-world con-
ditions but also with real-world applications, preferably autonomic systems running on top
of real-world large-scale platforms, in order to fully assess the benefits and drawbacks of
the proposed runtime. As suggested in the introduction of this thesis, one of the envi-
sioned directions is workflow management and execution. Some work has already been

157

Conclusion Conclusion

done in that regard [40]. While it gives a complete specification for the decentralised en-
actment, execution and management of scientific workflows using the chemical program-
ming paradigm, the work presented in [40] provides only a partially-distributed execution
environment which was used for testing purposes only. Taking into account this chemical
specification, we have adapted our runtime for the decentralised scheduling of multiple
workflows [TR-7925]. The conducted simulations show the adaptation to be promising.
However, due to the lack of time, we haven’t had the chance yet to perform experiments in
a real-world setting.

Alternative Approaches. In this thesis, we focused on developing a decentralised run-
time atop structured peer-to-peer networks, namely distributed hash tables. Yet, other
network-organisation schemes might be equally suitable for supporting the generic exe-
cution of chemical programs. Due to the scale of the platforms targeted, an alternative
approach could be modelling a runtime using population protocols [8]. There, interac-
tions happen on a one-to-one basis between nodes and their formal model secures all
pairs of nodes will eventually communicate, in this way ensuring the convergence of the
calculation. The randomised nature of node interactions represents some similarity with
the non-determinism witnessed in the chemical programming paradigm, and can be, thus,
used to naturally model molecule encounters which produce reactions. However, due to
the one-to-one communication used in population protocols, alternative molecule discov-
ery algorithms would have to be devised. In other words, the following question ought to
be answered: how to perform intelligent searches for candidates in a structureless net-
work in which the basis of communication are one-to-one interactions? Analogously, an
auxiliary inertia detection mechanism would have to be formulated. On the practical side,
an implementation of such a runtime could be based on gossip protocols [59] because of
their similarity with population protocols [18].

In a wider context, the work presented in this thesis is part of an ambitious plan to use
the chemical programming paradigm to model self-manageable, large-scale platforms.
The paradigm inherently equips the user with self-adaptation capabilities, and previous
works, such as [40] and [99], provide them with the concepts needed to ensure properties
such as self-coordination. This thesis fills the gap between the conception and actual
execution of chemical programs, which represents a step required in the way towards next-
generation middleware.

158

Bibliography

[1] Amazon’s outage in third day: debate over cloud comput-
ing’s future begins. http://venturebeat.com/2011/04/23/

amazons-outage-in-third-day-debate-over-cloud-computings-future-begins/.
Retrieved online on Dec 10, 2012. 1

[2] Risk of mass electricity blackouts may still be rising. http://venturebeat.com/

2011/04/23/amazons-outage-in-third-day-debate-over-cloud-computings-future-begins/

Retrieved online on Dec 10, 2012. 2

[3] S. Abiteboul, M. Bienvenu, A. Galland, and E. Antoine. A Rule-based Language
for Web Data Management. In Proceedings of the thirtieth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of database systems (PODS’11), pages 293–304,
Athens, Greece, 2011. 5, 171

[4] D. Agrawal and A. El Abbadi. Efficient solution to the distributed mutual exclusion
problem. In Proceedings of the eighth annual ACM Symposium on Principles of dis-
tributed computing, pages 193–200. ACM, 1989. 40

[5] A. Andrzejak and Z. Xu. Scalable, efficient range queries for grid information ser-
vices. In Second International Conference on Peer-to-Peer Computing, pages 33–40.
IEEE, 2002. 37

[6] F. Araújo and L. Rodrigues. Survey on distributed hash tables. 2006. 29

[7] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer. Space-filling curves and
their use in the design of geometric data structures. Theoretical Computer Science,
181(1):3–15, 1997. 37

[8] J. Aspnes and E. Ruppert. An introduction to population protocols. Bulletin of the
European Association for Theoretical Computer Science, 93:98–117, 2007. 158

159

http://venturebeat.com/2011/04/23/amazons-outage-in-third-day-debate-over-cloud-computings-future-begins/
http://venturebeat.com/2011/04/23/amazons-outage-in-third-day-debate-over-cloud-computings-future-begins/
http://venturebeat.com/2011/04/23/amazons-outage-in-third-day-debate-over-cloud-computings-future-begins/
http://venturebeat.com/2011/04/23/amazons-outage-in-third-day-debate-over-cloud-computings-future-begins/

Bibliography Bibliography

[9] J. Aspnes and G. Shah. Skip graphs. ACM Transactions on Algorithms (TALG),
3(4):37, 2007. 37

[10] R. Baldoni. An o(nM/(M+1)) distributed algorithm for the k-out of-m resources allo-
cation problem. In Distributed Computing Systems, 1994., Proceedings of the 14th
International Conference on, pages 81–88. IEEE, 1994. 45

[11] J.-P. Banâtre, A. Coutant, and D. Le Métayer. A parallel machine for multiset trans-
formation and its programming style. Future Gener. Comput. Syst., 4:133–144,
September 1988. 9, 20, 21, 50, 52, 171, 173, 183

[12] J.-P. Banâtre, P. Fradet, and Y. Radenac. Higher-order chemical programming style.
Proceedings of the Workshop on Unconventional Programming, 3566:84–95, 2005.
22

[13] J.-P. Banâtre, P. Fradet, and Y. Radenac. Generalised Multisets for Chemical Pro-
gramming. Mathematical Structures in Computer Science, 16, 2006. 10, 174

[14] J.-P. Banâtre, P. Fradet, and Y. Radenac. Towards Chemical Coordination for Grids.
In SAC, 2006. 10

[15] J.-P. Banâtre and T. Priol. Chemical Programming of Future Service-oriented Archi-
tectures. Journal of Software, 4, 2009. 171, 174

[16] Y. Bar-Yam. Dynamics of Complex Systems. Studies in Nonlinearity. Westview Press,
July 2003. 2

[17] P. A. Bernstein and N. Goodman. Concurrency control in distributed database sys-
tems. ACM Computing Surveys (CSUR), 13(2):185–221, 1981. 56

[18] M. Bertier, Y. Busnel, and A.-M. Kermarrec. On gossip and populations. Structural
Information and Communication Complexity, pages 72–86, 2010. 158

[19] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: supporting scalable multi-
attribute range queries. In ACM SIGCOMM Computer Communication Review, vol-
ume 34, pages 353–366. ACM, 2004. 37

[20] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou, S. Lanteri,
J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet, B. Quetier, O. Richard, E.-G. Talbi,
and I. Touche. Grid’5000: A large scale and highly reconfigurable experimental
grid testbed. International Journal of High Performance Computing Applications,
20(4):481–494, Winter 2006. 83, 142, 184

[21] M. Cai, M. Frank, J. Chen, and P. Szekely. Maan: A multi-attribute addressable net-
work for grid information services. Journal of Grid Computing, 2(1):3–14, 2004. 37

160

Bibliography Bibliography

[22] K. S. Candan, J. Tatemura, D. Agrawal, and D. Cavendish. On Overlay Schemes
to Support Point-in-range Queries for Scalable Grid Resource Discovery. Fifth IEEE
International Conference on Peer-to-Peer Computing (P2P’05), 2005. 129

[23] J. Cardoso, A. Barros, N. May, and U. Kylau. Towards a unified service description
language for the internet of services: Requirements and first developments. In IEEE
International Conference on Services Computing (SCC), pages 602–609. IEEE, 2010.
3

[24] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and Performance
of Munin. In Proceedings of the thirteenth ACM symposium on Operating systems
principles, page 164. ACM, 1991. 68

[25] O. S. F. Carvalho and G. Roucairol. Onmutual exclusion in computer networks. Com-
munications of the ACM, 26(2):146–147, 1983. 40

[26] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. Scribe: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected
Areas in Communication (JSAC), 20(8), October 2002. 70, 71

[27] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving
consensus. Journal of the ACM (JACM), 43(4):685–722, 1996. 157

[28] K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions
on Programming Languages and Systems (TOPLAS), 6(4):632–646, 1984. 42, 183

[29] B. Chazelle. Computational geometry on a systolic chip. IEEE Transactions on Com-
puters, 100(9):774–785, 1984. 54

[30] S. Y. Cheung, M. Ahamad, and M. H. Ammar. Multidimensional voting: A general
method for implementing synchronization in distributed systems. In 10th Interna-
tional Conference on Distributed Computing Systems, pages 362–369. IEEE, 1990.
40

[31] C. Creveuil. Implementation of gamma on the connection machine. Reasearch Di-
rections in High-Level Parallel Programming Languages, pages 219–230, 1992. 53,
54

[32] A. Datta, M. Hauswirth, R. John, R. Schmidt, and K. Aberer. Range queries in trie-
structured overlays. In Fifth IEEE International Conference on Peer-to-Peer Comput-
ing, pages 57–66. IEEE, 2005. 37

[33] N. G. de Bruijn and P. Erdos. A combinatorial problem. Koninklijke Netherlands:
Academe Van Wetenschappen, 49:758–764, 1946. 35

[34] C. Di Napoli, M. Giordano, J.-L. Pazat, and C. Wang. A Chemical Based Middleware
for Workflow Instantiation and Execution. In ServiceWave, pages 100–111, 2010.
10, 171

161

Bibliography Bibliography

[35] E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta informatica,
1(2):115–138, 1971. 41

[36] P. Dittrich, J. Ziegler, and W. Banzhaf. Artificial chemistries – a Review. Artificial Life,
7:225–275, June 2001. 171

[37] S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey. Fulfilling the vision of autonomic
computing. Computer, 43(1):35–41, 2010. 4

[38] S. Dolev. Self-stabilization. MIT press, 2000. 157

[39] D. Eastlake and P. Jones. Us secure hash algorithm 1 (sha1), 2001. 29, 33

[40] H. Fernández. Flexible Coordination through the Chemical Metaphor for Service In-
frastructures. PhD thesis, Université de Rennes 1, 2012. 158

[41] H. Fernández, T. Priol, and C. Tedeschi. Decentralized Approach for Execution of
Composite Web Services Using the Chemical Paradigm. In IEEE ICWS, 2010. 10,
171, 184

[42] M. J. Fischer, N. A. Lynch, J. E. Burns, and A. Borodin. Resource allocation with
immunity to limited process failure. In 20th Annual Symposium on Foundations of
Computer Science, pages 234–254. IEEE, 1979. 42

[43] P. Fraigniaud and P. Gauron. D2b: A de bruijn based content-addressable network.
Theoretical Computer Science, 355(1):65–79, 2006. 35

[44] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online balancing of range-partitioned
data with applications to peer-to-peer systems. In Proceedings of the Thirtieth in-
ternational conference on Very large data bases, volume 30, pages 444–455. VLDB
Endowment, 2004. 37

[45] J. Gao and P. Steenkiste. An adaptive protocol for efficient support of range queries
in dht-based systems. In 12th IEEE International Conference on Network Protocols,
pages 239–250. IEEE, 2004. 38

[46] H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system. Jour-
nal of the ACM (JACM), 32(4):841–860, 1985. 40

[47] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory
of np-completeness. W. H Freeman Press: USA, 1979. 28

[48] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, andW.W. Hwu. An asymmetric
distributed shared memory model for heterogeneous parallel systems. SIGPLAN
Not., 45(3):347–358, March 2010. 65

[49] D. K. Gifford. Weighted voting for replicated data. In Proceedings of the seventh
ACM symposium on Operating systems principles, pages 150–162. ACM, 1979. 40

162

Bibliography Bibliography

[50] K. Gladitz and H. Kuchen. Sharedmemory implementation of the gamma-operation.
Journal of Symbolic Computation, 21(4):577–591, 1996. 56

[51] S. Grumbach and F. Wang. Netlog, a Rule-Based Language for Distributed Program-
ming. In 12th International Symposium on Practical Aspects of Declarative Lan-
guages, pages 88–103, 2010. 5, 171

[52] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The
impact of dht routing geometry on resilience and proximity. In Proceedings of the
2003 conference on Applications, technologies, architectures, and protocols for
computer communications, pages 381–394. ACM, 2003. 29

[53] C. Hankin, D. Le Métayer, and D. Sands. A parallel programming style and its algebra
of programs. In Arndt Bode, Mike Reeve, and Gottfried Wolf, editors, Parallel Archi-
tectures and Languages Europe (PARLE), volume 694 of Lecture Notes in Computer
Science, pages 367–378. Springer Berlin / Heidelberg, 1993. 27

[54] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A
scalable overlay network with practical locality properties. In Proceedings of the
4th conference on USENIX Symposium on Internet Technologies and Systems, vol-
ume 4, pages 9–9, 2003. 37

[55] P. Horn. Autonomic computing: Ibm’s perspective on the state of information tech-
nology. 2001. 2

[56] L. Huang, W. Tong, W. N. Kam, and Y. Sun. Implementation of gamma on a mas-
sively parallel computer. Journal of Computer Science and Technology, 12(1):29–
39, 1997. 53, 54, 183

[57] P. Inverardi and A. L. Wolf. Formal specification and analysis of software architec-
tures using the chemical abstract machine model. IEEE Transactions on Software
Engineering, 21(4), 1995. 10

[58] Y. Jégou. Dynamic Memory Management on Mome DSM. Cluster Computing, 2006.
68

[59] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. Van Steen. Gossip-
based peer sampling. ACM Transactions on Computer Systems (TOCS), 25(3):8,
2007. 158

[60] Y. J. Joung. Asynchronous group mutual exclusion. Distributed Computing,
13(4):189–206, 2000. 42

[61] M. Kaashoek and D. Karger. Koorde: A simple degree-optimal distributed hash table.
Peer-to-Peer Systems II, pages 98–107, 2003. 36

[62] H. Kakugawa, S. Fujita, M. Yamashita, and T. Ae. Availability of k-coterie. IEEE Trans-
actions on Computers, 42(5):553–558, 1993. 43

163

Bibliography Bibliography

[63] H. Kakugawa, S. Fujita, M. Yamashita, and T. Ae. A distributed k-mutual exclusion
algorithm using k-coterie. Information Processing Letters, 49(4):213–218, 1994. 43

[64] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin. Consistent
hashing and random trees: Distributed caching protocols for relieving hot spots on
the world wide web. In Proceedings of the twenty-ninth annual ACM symposium on
Theory of computing, pages 654–663. ACM, 1997. 32

[65] J.R. Karr, J.C. Sanghvi, D.N. Macklin, M.V. Gutschow, J.M. Jacobs, B. Bolival, N. Assad-
Garcia, J.I. Glass, and M.W. Covert. A whole-cell computational model predicts phe-
notype from genotype. Cell, 150(2):389–401, 2012. 2

[66] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003. 2

[67] D. E. Knuth. The art of computer programming. addison-Wesley, 2006. 53

[68] A. Kumar. Hierarchical quorum consensus: A new algorithm for managing repli-
cated data. IEEE Transactions on Computers, 40(9):996–1004, 1991. 40

[69] Z. Laliwala, R. Khosla, P. Majumdar, and S. Chaudhary. Semantic and Rules Based
Event-Driven Dynamic Web Services Composition for Automation of Business Pro-
cesses. In Services Computing Workshops (SCW ’06), pages 175–182, 2006. 5

[70] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 21(7):558–565, 1978. 40, 92, 172

[71] B. Lampson and H. Sturgis. Crash recovery in a distributed data storage system.
Xerox Palo Alto Research Center, 1979. 179

[72] P. Langendoerfer, K. Piotrowski, M. Diaz, and B. Rubio. Distributed shared memory
as an approach for integrating wsns and cloud computing. In 5th International Con-
ference on New Technologies, Mobility and Security, pages 1 –6, may 2012. 65

[73] D. Le Métayer. Describing software architecture styles using graph grammars. IEEE
Transactions on Software Engineering, 24(7), 1998. 10

[74] A. Lèbre, R. Lottiaux, E. Focht, and C. Morin. Reducing kernel development complexity
in distributed environments. In Euro-Par 2008, volume 5168 of Lecture Notes in
Computer Science, pages 576–586. 2008. 68

[75] H. Lin, J. Kemp, and P. Gilbert. Computing Gamma Calculus on Computer Cluster.
International Journal of Technology Diffusion (IJTD), 1(4):42–52, 2010. 183

[76] J.W. Lloyd. Practical Advtanages of Declarative Programming. In Joint Conference
on Declarative Programming (GULP-PRODE’94), pages 18–30, 1994. 4, 171

164

Bibliography Bibliography

[77] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and comparison of
peer-to-peer overlay network schemes. IEEE Communications Surveys & Tutorials,
pages 72–93, 2005. 29, 34

[78] N. Lynch, D. Malkhi, and D. Ratajczak. Atomic data access in distributed hash tables.
pages 295–305, 2002. 71, 94, 156

[79] M. Maekawa. An sqrt(n) algorithm for mutual exclusion in decentralized systems.
ACM Transactions on Computer Systems (TOCS), 3(2):145–159, 1985. 40, 43, 44

[80] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic emulation of
the butterfly. In Proceedings of the twenty-first annual symposium on Principles of
distributed computing, pages 183–192. ACM, 2002. 35

[81] Y. Manabe, R. Baldoni, M. Raynal, and S. Aoyagi. k-arbiter: A safe and general
scheme for h-out of-k mutual exclusion. Theoretical Computer Science, 193(1):97–
112, 1998. 45

[82] Y. Manabe and N. Tajima. (h,k)-arbiters for h-out-of-k mutual exclusion problem.
Theoretical computer science, 310(1):379–392, 2004. 45

[83] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system
based on the xor metric. Peer-to-Peer Systems, pages 53–65, 2002. 36

[84] D. McCarthy and U. Dayal. The architecture of an active database management
system. ACM Sigmod Record, 18(2):215–224, 1989. 4

[85] H. McEvoy. Gamma, chromatic typing and vegetation. Imperial College Press, 1996.
10

[86] D. Mentré, D. Le Métayer, and T. Priol. Formalization and verification of coherence
protocols with the gamma framework. In PDSE, 2000. 10

[87] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins,
and Z. Xu. Peer-to-peer computing, 2002. 29

[88] M. Mizuno, M. L. Neilsen, and R. Rao. A token based distributed mutual exclusion
algorithm based on quorum agreements. In 11th International Conference on Dis-
tributed Computing Systems, pages 361–368. IEEE, 1991. 41

[89] A. Mostéfaoui. Towards a Computing Model for Open Distributed Systems. In 9th
International Conference on Parallel Computing Technologies (PaCT), pages 74–79,
2007. 10, 171

[90] M. Naimi and M. Trehel. How to detect a failure and regenerate the token in the
log (n) distributed algorithm for mutual exclusion. Distributed Algorithms, pages
155–166, 1988. 41

165

Bibliography Bibliography

[91] M. L. Neilsen and M. Mizuno. A dag-based algorithm for distributed mutual exclu-
sion. In 11th International Conference on Distributed Computing Systems, pages
354–360. IEEE, 1991. 41

[92] M. L. Neilsen, M. Mizuno, and M. Raynal. A general method to define quorums. In
12th International Conference on Distributed Computing Systems, pages 657–664.
IEEE, 1992. 41

[93] Z. Németh, C. Pérez, and T. Priol. Distributed workflow coordination: molecules and
reactions. In IPDPS, 2006. 10

[94] S. Nishio, K. F. Li, and E. G. Manning. A resilient mutual exclusion algorithm for com-
puter networks. Parallel and Distributed Systems, IEEE Transactions on, 1(3):344–
355, 1990. 41

[95] M. E. O’Neill. The genuine sieve of eratosthenes. Journal of Functional Program-
ming, 19(1):95, 2009. 21

[96] M. Parashar and S. Hariri. Autonomic computing: An overview. Unconventional
Programming Paradigms, pages 97–97, 2005. 2, 171

[97] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated
objects in a distributed environment. Theory of Computing Systems, 32(3):241–280,
1999. 33, 36

[98] J. Protic, M. Tomasevic, and V. Milutinovic. Distributed shared memory: concepts
and systems. Parallel Distributed Technology: Systems Applications, IEEE, 4(2):63
–71, summer 1996. 65

[99] Y. Radenac. Programmation “chimique” d’ordre supérieur. PhD thesis, Université de
Rennes 1, 2007. 22, 23, 49, 65, 158

[100] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and S. Shenker. Prefix hash tree:
An indexing data structure over distributed hash tables. In Proceedings of the 23rd
ACM Symposium on Principles of Distributed Computing, 2004. 37

[101] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proceedings of the 2001 conference on Applications, tech-
nologies, architectures, and protocols for computer communications, pages 161–
172. ACM, 2001. 31

[102] K. Raymond. A distributed algorithm for multiple entries to a critical section. Infor-
mation Processing Letters, 30(4):189–193, 1989. 42

[103] K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Trans-
actions on Computer Systems (TOCS), 7(1):61–77, 1989. 41

166

Bibliography Bibliography

[104] M. Raynal. A distributed solution to the k-out of-m resources allocation problem.
Advances in Computing and Information–ICCI’91, pages 599–609, 1991. 42, 43,
183

[105] M. Raynal. A simple taxonomy for distributed mutual exclusion algorithms. ACM
SIGOPS Operating Systems Review, 25(2):47–50, 1991. 39

[106] G. Ricart and A. K. Agrawala. An optimal algorithm for mutual exclusion in computer
networks. Communications of the ACM, 24(1):9–17, 1981. 40, 42, 43

[107] G. Ricart and A. K. Agrawala. Authors’ response to "on mutual exclusion in com-
puter networks" by carvalho and roucairol. Commun. ACM, 26(2):147–148, February
1983. 41

[108] L. Rilling and C. Morin. A practical transparent data sharing service for the grid. In
IEEE International Symposium on Cluster Computing and the Grid, volume 2, pages
897–904. IEEE, 2005. 68

[109] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In Middleware 2001, pages 329–350.
Springer, 2001. 33, 69, 93, 174

[110] B. A. Sanders. The information structure of distributedmutual exclusion algorithms.
ACM Transactions on Computer Systems (TOCS), 5(3):284–299, 1987. 40, 183

[111] C. Schmidt and M. Parashar. Squid: Enabling search in dht-based systems. Journal
of Parallel and Distributed Computing, 68(7):962–975, 2008. 38, 94, 129, 174

[112] F. B. Schneider. Implementing fault-tolerant services using the state machine ap-
proach: a tutorial. ACM Comput. Surv., 22, 1990. 71, 94, 156

[113] H. J. Siegel. Interconnection networks for simd machines. Computer, 12(6):57–65,
1979. 35

[114] A. Silberschatz, P. B. Galvin, G. Gagne, and A. Silberschatz. Operating system con-
cepts, volume 4. Addison-Wesley, 1998. 39

[115] M. Singhal. A heuristically-aided algorithm for mutual exclusion in distributed sys-
tems. IEEE Transactions on Computers, 38(5):651–662, 1989. 41

[116] D. Skeen and M. Stonebraker. A Formal Model of Crash Recovery in a Distributed
System. IEEE Transactions on Software Engineering, SE-9(3), 1983. 95, 175, 179,
184

[117] P. K. Srimani and R. L. N. Reddy. Another distributed algorithm for multiple entries to
a critical section. Information Processing Letters, 41(1):51–57, 1992. 42

167

Bibliography Bibliography

[118] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup service for internet applications. ACM SIGCOMMComputer
Communication Review, 31(4):149–160, 2001. 32, 69, 93, 174

[119] H. Sullivan and T. R. Bashkow. A large scale, homogeneous, fully distributed parallel
machine. ACM SIGARCH Computer Architecture News, pages 105–117, 1977. 20

[120] I. Suzuki and T. Kasami. A distributedmutual exclusion algorithm. ACM Transactions
on Computer Systems (TOCS), 3(4):344–349, 1985. 41, 43

[121] R. H. Thomas. A majority consensus approach to concurrency control for multiple
copy databases. ACM Transactions on Database Systems (TODS), 4(2):180–209,
1979. 40

[122] M. Tsangou, S. Ndiaye, M. Seck, and W. Litwin. Range queries to scalable distributed
data structure rp*. In Proc. Fifth Workshop on Distributed Data and Structures,
WDAS, 2003. 37

[123] M. Viroli and F. Zambonelli. A Biochemical Approach to Adaptive Service Ecosystems.
Information Sciences, 2009. 171

[124] Y. Wang, M. Li, J. Cao, F. Tang, L. Chen, and L. Cao. An ECA-Rule-Based Workflow
Management Approach for Web Services Composition. In 4th International Con-
ference on Grid and Cooperative Computing (GCC 2005), pages 143–148, Beijing,
China, 2005. 5

[125] K.-L. A. Wong. Jasmine: A shared-object multi-locking distributed shared memory
system for heterogeneous computers. PhD thesis, University of Queensland Aus-
tralia, 2004. 65

[126] Z. Xu and Z. Zhang. Building low-maintenance expressways for p2p systems.
Hewlett-Packard Labs, Palo Alto, CA, Tech. Rep. HPL-2002-41, 2002. 36

[127] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz.
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications, 22(1):41–53, 2004. 36

168

List of Publications

International Journals

[BOT13] Marin Bertier, Marko Obrovac and Cédric Tedeschi, “Adaptive Atomic Capture of
Multiple Molecules”, Journal of Parallel and Distributed Computing (JPDC), 2013. To
appear.

[OT13] Marko Obrovac and Cédric Tedeschi, “Experimental Evaluation of a Hierarchical
Chemical Computing Platform”, International Journal of Networking and Computing
(IJNC), 2013. Special issue on APDCM 2012. To appear.

[OT12] Marko Obrovac and Cédric Tedeschi, “Distributed Chemical Computing: A Feasi-
bility Study”, International Journal of Unconventional Computing (IJUC), 2012. To
appear.

International Conferences

[FOT13] Héctor Fernández, Marko Obrovac and Cédric Tedeschi, “Towards Decentralised
Workflow Scheduling via a Rule-driven Shared Space”, 13th International IFIP Con-
ference on Distributed Applications and Interoperable Systems (DAIS). Short paper.
Florence, Italy, 2013. To appear.

[OT13a] Marko Obrovac and Cédric Tedeschi, “Deployment and Evaluation of a Decen-
tralised Runtime for Concurrent Rule-based Programming Models”, 14th Interna-
tional Conference on Distributed Computing and Networking (ICDCN), Mumbai, India,
2013.

[BOT12] Marin Bertier,Marko Obrovac and Cédric Tedeschi, “A Protocol for the Atomic Cap-
ture of Multiple Molecules on Large Scale Platforms”, 13th International Conference
on Distributed Computing and Networking (ICDCN), Hong Kong, China, 2012.

169

List of Publications List of Publications

International Workshops

[OT12a] Marko Obrovac and Cédric Tedeschi, “On the Feasibility of a Distributed Runtime
for the Chemical Programming Model”, 14th International Workshop on Advances
in Parallel and Distributed Computational Models (APDCM), Shanghai, China, 2012,
held in conjunction with IEEE IPDPS 2012.

[OT12b] Marko Obrovac and Cédric Tedeschi, “When Distributed Hash Tables Meet Chemi-
cal Programming for Autonomic Computing”, 15th International Workshop on Nature
Inspired Distributed Computing (NIDisC), Shanghai, China, 2012, held in conjunction
with IEEE IPDPS 2012.

National Conferences

[BOT13a] Marin Bertier, Marko Obrovac and Cédric Tedeschi, “Un protocole pour la capture
atomique de molécule”, Conférence Française en Système d’Exploitation, Grenoble,
France, 2013.

Technical Reports

[TR-8145] Marko Obrovac and Cédric Tedeschi, “Deployment and Evaluation of a Decen-
tralised Runtime for Concurrent Rule-based Programming Models”, Technical report
No RR-8145, 2012.

[TR-7925] Héctor Fernández, Marko Obrovac and Cédric Tedeschi, “Decentralised Multiple
Workflow Scheduling via a Chemically-coordinated Shared Space”, Technical report
No RR-7925, 2012.

[TR-7661]Marko Obrovac and Cédric Tedeschi, “On Distributing the Runtime of the Chemical
Programming Model”, Technical report No RR-7661, 2011.

170

AppendixA

Résumé en Français

Avec l’adoption croissante des architectures orientées service (SOA), les plates-formes à
large échelle ont récemment subi une nouvelle mutation dans leur forme et leur utilisa-
tion. Dans ces plates-formes, l’entité de base est un service, c’est à dire, l’encapsulation
d’un certain calcul, d’une facilité de stockage ou d’un capteur, lequel peut être utilisé par
des utilisateurs, éventuellement en combinaison avec d’autres services. La composition
de ces services doit se faire au-dessus d’un environnement qui est hautement distribué et
dynamique. Dans ce contexte, où la présence d’un orchestrateur centralisé est difficile à
assurer, l’informatique autonome [96], dont l’objectif est de construire des systèmes dis-
tribués de calcul affichant des propriétés tels que l’auto-réparation, l’auto-adaptation ou
l’auto-optimisation semble un chemin prometteur. Comme il est argumenté dans [96], il
est en particulier nécessaire de proposer des nouvelles abstractions de programmation
pour exprimer cette autonomie. Les langages déclaratifs [76], et en particulier les lan-
gages à base de règles répondent à cette problématique, comme il a été indiqué récem-
ment dans les articles [3, 51].

Les chimies artificielles [36], qui sont des modèles de programmation à base de rè-
gles, et dont le modèle d’exécution, simple, est inspirés par l’observation des processus
chimiqies, ont bénéficié d’un intérêt nouveau dans ce contexte, et sont désormais util-
isés pour modéliser cet écosystème de services [123]. Plus concrètement, le modèle de
programmation chimique, initialement développé pour écrire des programmes hautement
parallèles, a été identifié comme un paradigme qui fournit un bon niveau d’abstraction
pour ce contexte. Des exemples concrets montrant cette adéquation peuvent être trouvés
dans [15, 41, 89, 34].

Dans la version de base du modèle de programmation chimique [11], un programme
est envisagé comme une solution chimique dans laquelle des molécules de données flot-
tent et réagissent conformément à certaines règles de réaction précisant les actions du
programme, afin de produire de nouvelles données (les produits des réactions). Lors de

171

Appendix A. Résumé en Français

l’exécution, les réactions surviennent de façon autonome et parallèle, et donc dans un
ordre non déterministe. Une fois qu’il ne reste plus de réactions réalisables, la solution
contient le résultat du calcul.

Alors que le paradigme chimique facilite l’expression des systèmes autonomes,
l’exécution de programmes chimiques sur des plates-formes distribuées est encore un
problème largement ouvert. Parmi les obstacles fondamentaux, il y a la capture atomique
des molécules satisfaisant une réaction. Lors de l’exécution, une molécule peut poten-
tiellement participer à plusieurs réactions possibles. Toutefois, elle peut, au final, n’être
consommée qu’une unique fois. Dans le cas contraire, la logique du programme serait
rompue. Ce problème est illustré dans la section A.1.

Raffinons légèrement le problème : nous considérons un programme chimique consti-
tué d’un multi-ensemble de données et d’un ensemble de règles qui agissent simultané-
ment sur ce multi-ensemble. Les données et les règles sont réparties sur un ensemble de
nœuds sur lequel le programme s’exécute. Chaque nœud tente régulièrement d’obtenir les
molécules (données) nécessaires pour appliquer une règle. Vu que plusieurs molécules
peuvent satisfaire le modèle de molécule souhaité et les conditions de plusieurs réac-
tions pouvant être effectuées simultanément par des nœuds distincts, la même molécule
peut être demandée par plusieurs nœuds en même temps, ce qui mène inévitablement
à des conflits. Il est donc nécessaire de rendre atomique l’obtention de l’ensemble des
molécules de données nécessaire à l’application de la règle, problème aussi appelé cap-
ture atomique dans la littérature chimique.

Bien que notre problème ressemble au problème classique d’allocation des
ressources [70], il s’en différencie par plusieurs aspects. Premièrement, les molécules
sont interchangeables dans une certaine mesure. Les molécules demandées doivent cor-
respondre à un modèle défini dans la règle de réaction qu’un nœud souhaite exécuter.
Autrement dit, on distingue deux processus qui sont 1) trouver des molécules correspon-
dant à un modèle (une tâche réalisée par un protocole de découverte), et 2) les obtenir
pour effectuer des réactions (une tâche réalisée par un protocole de capture).

Deuxièmement, et suivant le point précédent, la plate-forme envisagée est à large
échelle, et les molécules sont supprimées après avoir réagies, et de nouvelles sont créées.
Ainsi, le protocole de découverte desmolécules doit être extensible et dynamique. De plus,
le nombre de ressources / molécules (et de réactions possibles) fluctue au fil du temps, ce
qui va influencer la conception du protocole de capture. Il faut tenir compte du fait qu’une
fois que le détenteur d’une molécule a été trouvé, l’échelle du réseau devient de moindre
importance, puisque seuls le demandeur et le détenteur de la molécule sont impliqués
dans le protocole de capture.

Enfin, et pour résumer, notre objectif est de définir un protocole pour la capture atom-
ique de molécules multiples, lequel s’adapte à la densité des réactions potentielles dans
le système de manière dynamique et efficace.

Contribution. Notre contribution est un protocole distribué combinant deux sous-
protocoles inspirés de travaux précédents sur l’allocation de ressources distribuées, et
adapté à l’exécution distribuée de programmes chimiques. Le premier sous-protocole,

172

Appendix A. Résumé en Français A.1. Préliminaires

appelé optimiste, suppose que le nombre de molécules couramment disponibles et corre-
spondant aumodèle et à la condition d’une réaction est élevé, de sorte que peu de conflits
pour l’obtention des molécules surviendra, les nœuds ayant de fortes chances d’être en
mesure de capturer des ensembles distincts de molécules. Bien que ce protocole est sim-
ple et rapide, et a un impact limité en termes de communication, il ne garantit pas la vi-
vacité du système lorsque le nombre de conflits augmente. Le second, appelé pessimiste,
plus lent et plus coûteux en termes de communication, assure la vivacité en présence d’un
nombre arbitraire de conflits. Le passage d’un sous-protocole à l’autre est distribué, et se
fonde sur les historiques locaux de capture des molécules. Une preuve de la sûreté et
de la vivacité de notre protocole est donnée, et son efficacité est discutée à travers un
ensemble de résultats de simulation. Soulignons que ces travaux, à notre connaissance,
sont les premiers à s’attaquer à l’exécution distribuée des programmes chimiques.

Organisation du Résumé. La section suivante présente le paradigme de programma-
tion chimique de façon plus détaillée, et souligne la nécessité de la capture atomique. De
plus, elle décrit le modèle du système utilisé. La section A.2 détaille les sous-protocoles,
leur coexistence, et le passage de l’un à l’autre. Les preuves de la sûreté, de la vivacité et
de l’équité sont également données pour le protocole dans son ensemble. La section A.3
présente les résultats de la simulation et analyse l’efficacité et le coût du protocole. Les
travaux connexes sont présentés dans la section A.4. La section A.5 conclut.

A.1 Préliminaires

Différents systèmes nécessitent des algorithmes différents pour assurer l’atomicité des
opérations qui varient en complexité. Cette section décrit le modèle de programmation
chimique plus en détail, ainsi que le modèle de système utilisé pour notre algorithme.

A.1.1 Modèle de programmation chimique

Le modèle chimique a été initialement proposé pour l’expression naturelle de traitements
parallèles, en retirant toute structuration ou sérialisation artificielle, en se concentrant
uniquement sur la logique du problème traité par le programme. Suivant l’analogie chim-
ique, les données sont des molécules flottant dans une solution. Elles sont consommées
conformément à un ensemble de règles de réaction qui constituent le programme, et qui
produisent de nouvelles molécules, c’est à dire des données qui en résultent. Ces réac-
tions ont lieu de manière implicitement parallèle et autonome, jusqu’à ce qu’il n’y ait plus
de réactions possibles, un état appelé inertie. Ce modèle a été initialement formalisé par
GAMMA [11], dans lequel la solution est un multi-ensemble de molécules, et les réac-
tions sont des règles de réécriture sur ce multi-ensemble. La consommation est le seul
changement d’état possible d’une molécule: une fois qu’elle a été consommée, elle dis-
paraît du multi-ensemble complètement, ce qui signifie que les molécules ne peuvent être
que créées ou supprimées, jamais mises à jour ni recréées. En guise d’illustration, con-

173

A.1. Préliminaires Appendix A. Résumé en Français

sidérons le programme chimique suivant, constitué d’une règle appliquée sur un multi-
ensemble d’entiers, et qui en extrait la plus grande valeur:

let getmax = replace x,y by x if x >= y in 〈 9,4,6,8,1 〉
La règle getmax consomme deux molécules entières et en produit une ayant la valeur

la plus élevée des deux. Bien que le résultat du calcul soit déterministe, l’ordre de son exé-
cution ne l’est pas. Il n’y a que l’exclusion mutuelle des réactions par la capture atomique
des réactifs qui est implicitement assurée dans le modèle. Ainsi, l’une des d’exécutions
possibles est la suivante: d’abord, 1 et 9 réagissent ensemble en même temps que 6 et 8.
Ces deux réactions produisent 9 et 8, respectivement. Ensuite, 8 réagit avec 4, et enfin, 9
et 8 réagissent, après quoi l’inertie est atteinte.

Dans la version élevée à l’ordre supérieur du modèle de programmation chimique [13],
toute entité prenant part au calcul est représentée par une molécule (y compris les rè-
gles), ce qui déclenche une très haute expressivité, capable de traiter naturellement une
grande variété de problèmes de coordination rencontrés dans les plates-formes à large
échelle [15].

A.1.2 Modèle du Système

Nous considérons un système distribué �� composé de n machines qui communiquent
par passage de messages. Ces machines sont interconnectées par des mécanismes P2P,
par exemple une table de hachage distribuée (DHT) [109, 118], permettant de nous ab-
straire de la communication bas-niveau pour se concentrer sur la capture atomique des
molécules.
Diffusion des données et des règles. Ici nous supposons que les données et les rè-
gles du programme à exécuter ont déjà été envoyées aux nœuds. Notons que n’importe
quelle DHT peut être utilisé à cette fin. Même si les données et les règles sont initialement
détenues par une application externe, elle peut les communiquer à un nœud dans la DHT.
Le nœud qui a reçu le programme disperse les molécules à travers le réseau. Par la suite,
nous supposons que chacun règle du programme est présente sur au moins un nœud du
système.
Protocole de Découverte. Pour que la réaction se produise, une combinaison appropriée
de molécules doit être trouvée. Bien que les détails de cet aspect soient également omis,
ils méritent d’être préalablement discutés. Le mécanisme de recherche de base offert
par les DHTs permet uniquement la récupération d’un objet en fonction de son identifi-
ant (unique). Toutefois, dans le cas des règles de réactions, cette correspondance exacte
fournie par la DHT peut se révéler insuffisante. Il est en effet nécessaire de retrouver une
molécule satisfaisant un motif (par exemple, de type entier) et une condition (par exem-
ple, supérieur à 3), comme indiqué dans la section A.1.1. Ceci peut être réalisé grâce
à des requêtes sur des intervalles, c’est-à-dire des mécanismes pour trouver certaines
(au moins une) molécules appartenant à un intervalle donné de valeurs, à condition que
les molécules puissent être totalement ordonnées sur certains critères (éventuellement
complexes ou multidimensionnels) [111]. Ce type de mécanismes peut être facilement

174

Appendix A. Résumé en Français A.2. Protocole Pour la Capture Atomique de Molécules

étendu pour supporter les motifs et conditions comportant plusieurs molécules. Par ex-
emple, lorsque l’on essaye de capturer deux molécules ordonnées de façon spécifique, un
traducteur de règles — un programme capable de construire la requête —, en se basant
sur la règle donnée et la première molécule obtenue, construit la requête à envoyer au
service de découverte de molécules. Si des molécules correspondantes sont trouvées, le
protocole de capture sera déclenché.

A.2 Protocole Pour la Capture Atomique de Molécules

Le protocole chargé de la capture atomique des molécules est présenté et discuté dans
cette section. Le protocole peut être exécuté selon deux modes, chaque mode utilisant
un sous-protocole spécifique, optimiste, ou pessimiste. Le premier sous-protocole, léger
et donc plus efficace, est employé tant que le ratio entre le nombre de réactions possibles
et le nombre de captures simultanées est grand. Quand ce ratio passe en dessous d’un
certain palier, le sous-protocole pessimiste est activé. Le sous-protocole pessimiste est
plus lourd en termes de communications, mais il assure la vivacité du système, même
lorsqu’un grand nombre de nœuds cherchent à capturer les mêmes molécules.

A.2.1 Sous-protocole Pessimiste

Fondé sur le protocole de validation à trois phases [116], le sous-protocole pessimiste
assure qu’au moins un nœud cherchant à exécuter une réaction la réalisera effective-
ment. L’obtention d’une molécule s’effectue en trois phases, à savoir (1) la demande, (2)
la validation et (3) l’obtention. Elle implique au moins deux nœuds: le nœud demandant
la molécule, appelé demandeur, et le nœud détenant la molécule, appelé détenteur. Les
algorithmes A.1 et A.2 présentent le code exécuté sur ces deux entités. La Figure A.1
fournit le diagramme temporel de l’obtention d’une molécule. Lorsque des molécules sat-
isfaisant les conditions d’une réaction ont été trouvées (algorithme A.1, ligne 1), la phase
de demande peut commencer (ligne 10).

Le demandeur envoie des messages du type QUERY de façon asynchrone à tous les
détenteurs pour les informer de son intention de capturer ces molécules. Selon leur
état local, chaque détenteur évalue indépendamment le message reçu (lignes 1—13,
algorithme A.2) et répond avec l’un des messages suivants: RESP_OK (si la molécule
demandée est disponible), RESP_REMOVED (si la molécule demandée n’existe plus) et
RESP_TAKEN (si la molécule demandée a été promise à un autre nœud). A moins de re-
cevoir uniquement des messages RESP_OK, le demandeur abandonne et envoie le mes-
sage GIVE_UP à tous les détenteurs contactés, les informant ainsi qu’il n’a plus l’intention
de capturer leur molécule (ligne 14, algorithme A.1).

La phase de validation suit la phase de demande. Lors de cette phase, les demandeurs
envoient des messages COMMITMENT aux détenteurs des molécules pour lesquels ils ont
obtenu la confirmation de leur disponibilité. Chaque détenteur trie les demandes reçues
(ligne 14, algorithme A.2) selon une politique de résolution des conflits (décrite plus loin).
L’envoi d’un message RESP_OK par un détenteur représente l’engagement de ce dernier

175

A.2. Protocole Pour la Capture Atomique de Molécules Appendix A. Résumé en Français

à délivrer sa molécule lors de la troisième phase. Aussi, les messages QUERY et COM-
MITMENT reçu par la suite pour cette même molécule (et provenant d’autres nœuds) don-
neront lieu à l’envoi d’une réponse RESP_TAKEN. Si un demandeur ne reçoit pas unique-
ment des messages RESP_OK à ses messages COMMITMENT, il abandonne l’obtention
des molécules.

Enfin, dans la phase d’obtention, le demandeur envoie des messages FETCH, à la
réception desquels les détenteurs transmettent la molécule promise, dans un mes-
sage RESP_MOLECULE. A partir de ce moment, les détenteurs envoient des messages
RESP_REMOVED aux nœuds demandant la molécule.
Résolution des conflits. Chaque détenteur décide individuellement à quel demandeur
il envoie une molécule. Puisqu’au moins un demandeur doit être capable d’obtenir ses
molécules au complet, chaque détenteur applique la même politique de résolution de con-
flit (lignes 20—27, algorithme A.2). Lorsqu’au moins deux demandeurs sont en conflits
pour l’obtention d’une molécule, les détenteurs donnent la priorité au demandeur avec le
nombre de réactions réalisées jusque là (information transmise par les demandeurs dans
leur messageQUERY) le plus bas. En cas d’égalité, le demandeur avec l’identifiant le plus
petit obtient la molécule.

A.2.2 Sous-protocole Optimiste

Lorsque la densité de réactions possibles est suffisamment grande, et donc que la prob-
abilité d’un conflit est faible, la procédure de capture atomique peut être simplifiée en
une approche plus optimiste. Le sous-protocole optimiste ne requiert que deux phases, à
savoir l’obtention, et la notification. L’algorithme A.3 décrit ce sous-protocole du point de
vue du demandeur, et l’algorithme A.4 le décrit du point de vue du détenteur. La figure A.2
est un diagramme temporel du sous-protocole optimiste.

Les demandeurs demandent les molécules en parallèle. Une fois qu’un nœud a eu la
connaissance de molécules adéquates, il peut lancer la phase d’obtention (ligne 1, algo-
rithme A.3) en utilisant des messages FETCH, qui seront évalués du côté du détenteur
selon le code de l’algorithme A.4.

Si le demandeur acquiert toutes les molécules, la réaction est lancée, et le demandeur
envoie des messages REACTION à tous les détenteurs des molécules impliquées pour les
notifier de leur consommation. Par la suite, tous ces détenteurs enverront un message
RESP_REMOVED aux demandes pour ces mêmes molécules. Si un demandeur reçoit ce
message, il abandonne la réaction, et en informe les détenteurs des autres molécules
qu’il cherche à capturer en leur envoyant un message GIVE_UP, ce qui permet alors aux
détenteurs de donner les molécules concernés à d’autres demandeurs.

Enfin, lorsque la réponse reçue d’un détenteur est RESP_TAKEN, le demandeur attend
un temps prédéfini et réessaye de récupérer la molécule. Au bout d’un certain nombre
d’échecs, le demandeur abandonne cette réaction.
Résolution des conflits. Etant donné que le protocole optimiste sera employé dans des
phases hautement réactives de l’exécution du programme, il n’y a pas besoin d’une poli-
tique stricte pour la résolution des conflits. Le protocole favorise naturellement le deman-

176

Appendix A. Résumé en Français A.2. Protocole Pour la Capture Atomique de Molécules

Algorithm A.1: Sous-protocole pes-
simiste — demandeur.
1 on event combination found
2 QueryPhase(combination);

3 on event response received
4 if phase = query then
5 QueryPhaseResp(resp_mol);

6 else if phase = commitment then
7 CommitmentPhaseResp(resp_mol);

8 else if phase = fetch then
9 FetchPhaseResp(resp_mol);

10 begin QueryPhase(combination)
11 phase⇐ query;
12 foreachmolecule in combination do
13 dispatch QUERY(molecule);

14 begin QueryPhaseResp(resp_mol)
15 if resp_mol , RESP_OK then
16 Abandon(combination);

17 else if all responses have arrived then
18 CommitmentPhase(combination);

19 begin CommitmentPhase(combination)
20 phase⇐ commitment;
21 foreachmolecule in combination do
22 dispatch COMMITMENT(molecule);

23 begin CommitmentPhaseResp(resp_mol)
24 if resp_mol , RESP_OK then
25 Abandon(combination);

26 else if all responses have arrived then
27 FetchPhase(combination);

28 begin FetchPhase(combination)
29 phase⇐ fetch;
30 foreachmolecule in combination do
31 dispatch FETCH(molecule);

32 begin FetchPhaseResp(resp_mol)
33 add resp_mol to reaction_args;
34 if all responses have arrived then
35 Reaction(reaction_args);

36 begin Abandon(combination)
37 phase⇐ none;
38 foreachmolecule in combination do
39 dispatch GIVE_UP(molecule);

Algorithm A.2: Sous-protocole pes-
simiste — détenteur.
1 on eventmessage received
2 ifmessage = GIVE_UP then
3 remove sender from

molecule.list;

4 else ifmessage.molecule does not

exist then
5 reply with RESP_REMOVED;

6 else ifmessage = FETCH then
7 clear molecule.list;
8 reply with molecule;

9 else ifmolecule has a commitment

then
10 reply with RESP_TAKEN;

11 else ifmessage = QUERY then
12 add sender to molecule.list;
13 reply with RESP_OK;

14 else ifmessage = COMMITMENT
then

15 SortRequesters(molecule);
16 ifmolecule.locker = sender then
17 reply with RESP_OK;

18 else
19 reply with RESP_TAKEN;

20 begin SortRequesters(molecule)
21 foreach pair of requesters in

molecule.list do
22 if req_j.no_r < req_i.no_r then
23 put req_j before req_i;
24 continue;

25 if req_j.id < req_i.id then
26 put req_j before req_i;

27 molecule.locker⇐molecule.list (0);

177

A.2. Protocole Pour la Capture Atomique de Molécules Appendix A. Résumé en Français

deur qui contacte un détenteur en premier. Toutefois, le protocole optimise n’assure pas
qu’une réaction aura lieu dans le cas d’un conflit.

Algorithm A.3: Sous-protocole opti-
miste — demandeur.
1 on event combination found
2 foreachmolecule in combination do
3 dispatch FETCH(molecule);

4 on event response received
5 if response , RESP_MOLECULE then
6 Abandon(combination);
7 return;

8 add response.molecule to
reaction_args;

9 if all responses have arrived then
10 NotifyHolders(combination);
11 Reaction(reaction_args);

12 begin NotifyHolders(combination)
13 foreachmolecule in combination do
14 dispatch REACTION(molecule);

15 begin Abandon(combination)
16 foreachmolecule in combination do
17 dispatch GIVE_UP(molecule);

Algorithm A.4: Sous-protocole opti-
miste — détenteur.
1 on eventmessage received
2 ifmessage = GIVE_UP then
3 molecule.state⇐ f ree;

4 else ifmessage = REACTION then
5 remove molecule;

6 else ifmessage.molecule does not

exist then
7 reply with RESP_REMOVED;

8 else ifmolecule.state = taken then
9 reply with RESP_TAKEN;

10 else
11 molecule.state⇐ taken;
12 reply with RESP_MOLECULE;

Figure A.1: Échanges pessimistes. Figure A.2: Échanges optimistes.

178

Appendix A. Résumé en Français A.2. Protocole Pour la Capture Atomique de Molécules

A.2.3 Cohabitation des Sous-protocoles

Durant son exécution, un programme passe typiquement par deux stades. Le premier
stade est hautement réactif, caractérisé par une grande quantité de réactions possibles.
Dans un tel scénario, l’approche optimiste est suffisante pour faire face au faible niveau de
concurrence. Le second stade est un stade silencieux, avec un nombre de réactions pos-
sibles relativement faible. Parce que cela accroit considérablement la probabilité des con-
flits entre les nœuds, le sous-protocole pessimiste doit alors être employé, pour assurer
la vivacité du système. Ainsi, l’environnement d’exécution doit être capable de s’adapter
aux changements de stades, et de passer d’un protocole à l’autre en corrélation avec ces
changements. De plus, ces protocoles doivent être capable de coexister dans le même
environnement, différents nœuds pouvant adopter l’un ou à l’autre de ces protocoles au
même moment.
Changement de protocole. Chaque nœud décide indépendamment quel protocole utiliser
pour chaque réaction qu’il essaye de réaliser. La décision est d’abord fondée sur le taux
de succès local d’un nœud, noté ãlocal , calculé à partir de l’historique de succès des
dernières captures effectuées par le nœud. Un nœud garde aussi la trace des taux de suc-
cès d’autres nœuds. Chaque fois qu’un message est envoyé, son expéditeur inclue dans le
message son propre taux de succès. On notera ã l’estimation par un nœud du taux de suc-
cès global, calculé comme la moyenne arithmétique pondérée du taux de succès local et
des taux de succès reçus d’autres nœuds. Enfin, la décision quant au protocole à utiliser
dépend de la règle qu’un nœud cherche à exécuter. En effet, ce choix doit dépendre du
nombre d’arguments de la règle: plus le nombre de molécules à capturer est grand, plus
il sera difficile de les obtenir. Pour capturer r molécules, un nœud utilise le sous-protocole
optimiste si et seulement si ãr ≥ s, où s est une valeur palier prédéfinie. Si cette inégalité
n’est pas satisfaite, le nœud utilisera le sous-protocole pessimiste.
Coexistence. De par la localité de la décision de changer de sous-protocole, les différents
nœuds du système ne changeront pas à l’exact même moment, entraînant éventuelle-
ment des situations où des nœuds essaient d’obtenir les mêmes molécules en utilisant
des sous-protocoles différents. Afin de distinguer les demandes optimistes des demandes
pessimistes, chaque demandeur inclue un champ type de demande dans chaque mes-
sage envoyé. Sur la base de la valeur de ce champ, le détenteur d’une molécule con-
flictuelle donnera la priorité aux nœuds utilisant l’algorithme le plus prudent, à savoir
le pessimiste. Le système assure ainsi qu’un nœud sera capable, finalement, d’obtenir
toutes les molécules dont il a besoin, puisque le pessimisme est favorisé par rapport à
l’optimisme.

A.2.4 Sureté et Vivacité du Système

Le protocole proposé est une combinaison d’extensions de deux protocoles existants,
présentés respectivement dans [71] et [116]. Ces deux protocoles ont été initialement
introduits pour garantir des transactions sur des ressources qui ont un seul détenteur.
Dans notre contexte, un demandeur peut demander plusieurs molécules détenu par dif-
férents nœuds.

179

A.2. Protocole Pour la Capture Atomique de Molécules Appendix A. Résumé en Français

Ces protocoles doivent garantir deux propriétés.

• Sûreté: Chaque molécule utilisée le sera dans une et une seule réaction (en consid-
érant que toutes les réactions consomment toutes les molécules y prenant part).

• Vivacité: Si un nœud envoie une demande infiniment souvent, il finira par réussir à
capturer les molécules, si ces molécules sont disponibles suffisamment longtemps.

A.2.4.1 Sûreté

Les deux protocoles sur lesquels nous nous appuyons ont cette propriété indépendam-
ment, assurant la sûreté lorsque les sous-protocoles sont utilisés unanimement. Il y a
deux cas possibles lorsque les deux sous-protocoles sont utilisés de façon concurrente.
Lorsqu’une demande optimiste arrive avant une demande pessimiste, la demande pes-
simiste est rejetée parce que la molécule a déjà été réservée par le demandeur optimiste.
Dans l’autre cas, si une demande pessimiste arrive d’abord, la demande optimiste est re-
jetée à la faveur de la demande pessimiste.

A.2.4.2 Vivacité

Pour établir la vivacité, nous montrons:

1. que s’il n’y a pas de réaction qui se produit, les nœuds changent de sous-protocole
pour le sous-protocole pessimiste;

2. que si plusieurs demandeurs pessimistes sont en conflit, au moins une réaction n’est
pas abandonnée;

3. un nœud ne peut pas voir sa réaction infiniment abandonnée.

Dans le cas d’un conflit entre deux demandeurs optimistes, les deux demandes peu-
vent facilement être abandonnées. Considérons par exemple deux demandeurs concur-
rents cherchant à capturer deux molécules, A et B . Si le premier demandeur réussit à
obtenir A alors que le second réussit à obtenir B , alors les deux demandent vont être
abandonnées. Lorsqu’une demande d’un nœud est abandonné, le nœud baisse la valeur
de son ã (selon la méthode décrite dans la section A.2.3). S’il y a beaucoup de conflits
pendant un certain temps, et d’autant plus s’il n’y a aucune réaction réussie, les valeurs
des ã locaux vont décroître pour tous les nœuds, entraînant une situation où les valeurs
de ãr pour les prochaines réactions vont être inférieures au palier s, ce qui va forcer tous
les nœuds à utiliser le sous-protocole pessimiste pour lancer de nouvelles demandes.

Pour le sous-protocole pessimiste, nous définissons un ordre total fondé sur le nombre
de réactions réussies par un nœud et son identifiant. Dans le cas d’un conflit, toutes les
réactions peuvent échouer sauf une— la réaction initiée par le nœud classé premier selon
cet ordre total. Parce que l’ordre total est fonction du nombre de réactions réussies, si un
nœud, dans le cas d’échecs successifs, essaient infiniment d’obtenir les molécules pour sa

180

Appendix A. Résumé en Français A.3. Evaluation

réaction, il réussira finalement, si lesmolécules sont disponibles suffisamment longtemps,
vu qu’il monte dans cet ordre total lorsque d’autres nœuds réussissent à effectuer leurs
réactions.

A.3 Evaluation

Nous avons simulé le déroulement de notre protocole afin de mettre en évidence ses per-
formances en fonction de différents scénarios. Le simulateur contruit est à temps discret
et a été codé en Python. Il inclut une DHT qui permet la distribution des molécules entre
les nœuds du système. Notre algorithme de capture s’appuie sur cette DHT.

Toutes nos expériences reposent sur un réseau de 250 nœuds exécutant un pro-
gramme chimique contenant 15 000 molécules. Ce programme est basé sur une règle
simple qui consomme deux molécules et n’en produit aucune nouvelle. Ce programme
simple nous permet de nous concentrer sur l’évaluation du protocole de capture de
molécules. Chaque expérience est exécutée 50 fois et les courbes ci-dessous affichent
des valeurs obtenues en moyennant les résultats des 50 exécutions.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300 350 400 450 500

N
b

 d
e

 r
e

a
c

ti
o

n
s

re
st

a
n

te
s

Temps (en etapes)

Mixte
Pessimiste
Optimiste

Optimum Theorique

Figure A.3: Comparaison des performances
des protocoles.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160 180 200

N
b

 d
e

 r
e

a
c

ti
o

n
s

re
st

a
n

te
s

Temps (en etapes)

s = 0.1
s = 0.3
s = 0.5
s = 0.7
s = 0.9

Figure A.4: Temps d’exécution en fonction de
la borne.

Expérience 1. Dans un premier temps, nous évaluons séparément les deux sous-
protocoles. La figures A.3 montre le nombre de réactions qui restent à exécuter à chaque
étape jusqu’à inertie pour trois scénarios :

• l’utilisation exclusive du sous-protocole optimiste,

• l’utilisation exclusive du sous-protocole pessimiste,

• notre protocole complet qui change de mode (avec ã = 0.7).

Il est important de noter que l’échelle est logarithmique. Cette figure montre qu’en util-
isant exclusivement le sous-protocole optimiste, le nombre de réactions réalisées est très
important au début des expériences, c’est-à-dire, quand beaucoup de molécules sont

181

A.3. Evaluation Appendix A. Résumé en Français

disponibles, et donc que les risques de conflits sont faibles. La situation devient plus
critique quand il reste peu de réactions à exécuter. En effet, les quelques réactions qui
restent à exécuter ne sont jamais réalisées car des conflits se produisent inexorablement,
empùłchant leur capture. Quand les nœuds sont tous pessimistes, le nombre de réactions
qui ont lieu à chaque étape est relativement constant dans le temps. L’inertie est donc
atteinte en un temps raisonnable, grùćce à la vivacité qui est garantie dans ce mode de
fonctionnement. Dans la plupart des étapes (jusqu’à l’étape 115 environ) le nombre de
réactions réalisées dans le protocole mixte est le mùłme que pour le protocole optimiste,
ce qui signifie que les nœuds utilisent majoritairement le protocole optimiste. Cependant,
à la fin de l’exécution, le système parvient à atteindre rapidement l’inertie en utilisant le
protocole pessimiste. Après le changement de protocole, la courbe de notre protocole
mixte diverge de la courbe du protocole optimiste pour ressembler à celle du protocole
pessimiste en affichant un gain de performance de 42%.

Finalement, la courbe optimum théorique représente le nombre d’étapes nécessaires
pour effectuer l’ensemble des réactions dans un système distribué idéal, c’est-à-dire avec
aucun conflit et avec un parallélisme optimal, chaque nœud utilisant systématiquement
le protocole optimiste. En comparaison, le protocole mixte nécessite 166% plus d’étapes
à cause des conflits qui se produisent.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160

N
o

m
b

re
 d

e
 n

o
e

u
d

s

Temps (en etapes)

Optimistes
Pessimistes

Figure A.5: Nombre de nœuds utilisant les pro-
tocoles optimistes et pessimiste.

Figure A.6: Nombre de messages échangés
par cycle.

Expérience 2. Nous désirons maintenant évaluer l’impact de la borne s (qui décide du
moment oùź les nœuds changent de protocole) sur les performances du système. La fig-
ure A.4 montre, avec une échelle logarithmique, le nombre de réactions qui reste à exé-
cuter dans le système pour différentes valeurs pour la borne s allant de 0.1 à 0.9. De façon
attendue les courbes sont similaires au début de l’exécution car tous les nœuds utilisent
le protocole optimiste. La première courbe à diverger est celle oùź la borne vaut 0.9, car
les nœuds changent de protocole tùťt, et ne profitent pas suffisamment des performances
du protocole optimiste. Elle est, donc, la dernière à atteindre l’inertie. Ensuite, les autres
courbes divergent à différents moment et donc complètent leur exécution à différents mo-
ments. La figure A.4 nous pousse à conclure que, des cinq valeurs testées pour la borne

182

Appendix A. Résumé en Français A.4. Travaux Connexes

s, la valeur 0.7 présente les meilleures performances. L’objectif de cette thèse n’est pas
d’affiner la valeur de la borne s, mais juste de montrer son influence.

Expérience 3. Ici, nous examinons la façon dont les nœuds passent d’un protocole à
l’autre. La figure A.5 montre qu’au début de l’exécution, tous les nœuds commencent à
collecter des molécules en utilisant le protocole optimiste. Le changement de protocole
arrive environ à la moitié de l’exécution. A cet instant, les nœuds n’arrivent plus à capturer
efficacement des molécules avec le protocole optimiste, et, en conséquence, changent de
sous-protocole pour le pessimiste. Nous observons que, grùćce à l’échange des valeurs ã
entre les nœuds, les nœuds changent de sous-protocole rapidement: pour un système de
250 nœuds, seulement 15 étapes sont nécessaires pour que tous les nœuds changent de
protocole, ce qui représente 10% du temps d’exécution.

Expérience 4. Finalement, nous étudions les coùżts en termes de communication entre
les nœuds du système. La figure A.6 montre le nombre de messages échangés à chaque
cycle (chaque cycle correspond à 12 étapes de simulation), répartis en deux catégories :
messages utiles (ceux qui permettent de parvenir à la réaction, en noir) et messages inu-
tiles (ceux qui correspondent à des réactions annulées à cause des conflits, en gris). Nous
remarquons que le protocolemixte permet de prendre les avantages des deux protocoles.
Premièrement, il profite du haut pourcentage de messages utiles du protocole optimiste.
Ensuite, le changement de protocole permet de diminuer le nombre total de messages.
Quand nous comparons le coùżt de communication des deux sous-protocoles (optimiste
et pessimiste), affiché sur le cùťté droit de la figure A.6, nous voyons que le changement
de protocole réduit le trafic réseau et facilite le passage à l’échelle.

A.4 Travaux Connexes

Le paradigme chimique a été à l’origine conçu pour les programmes qui doivent être exé-
cutés sur des machines parallèles. Le travail pionnier de Banâtre et al. [11] propose deux
approches conceptuelles de la mise en oeuvre, dans lesquelles chaque processeur d’une
machine parallèle détient une molécule et la compare avec les molécules de tous les
autres processeurs. Une approche légèrement différente a été proposée dans le travail de
Linpeng et al. [56], où un programme est exécuté en plaçant les molécules sur une bande
et en les pliant après chaque comparaison verticale. Récemment, Lin et al. ont développé
un analyseur de programmes GAMMA pour les exécuter sur un cluster exploitant la puis-
sance de calcul des GPUs [75]. Tous les travaux mentionnés présentent d’importantes
caractéristiques d’accélération d’exécution, mais les plates-formes utilisées sont plutôt
limitées.

L’exclusion mutuelle et les algorithmes d’allocation des ressources ont été largement
étudiés. Néanmoins, la plupart des travaux se concentre sur le partage d’une ressource
spécifique, ou une section critique, parmi de nombreux processus [110, 28]. Une solu-
tion de base du problème k-parmi-M a été donnée par Raynal [104]. Ce premier travail

183

est un algorithme statique à base de permission dans lequel seul le numéro d’un ensem-
ble prédéfini de ressources varie du nœud au nœud. En outre, la solution suppose une
connaissance globale du système. Par contre, un environnement d’exécution pour les
programmes chimiques est un système dynamique dans lequel les nœuds doivent obtenir
des molécules distinctes, qui peuvent être considérées comme des ressources.

Le protocole de validation à trois phases a été proposé comme mécanisme de recou-
vrement de fautes pour les systèmes de bases de données distribuées [116]. Bien que,
dans son essence similaire au protocole de validation, l’objectif du sous-protocole opti-
miste proposé ici est d’assurer la vivacité du système en assurant que au moins un nœud
sera en mesure d’achever sa réaction.

A.5 Conclusion

Alors que la métaphore chimique gagne de l’attention dans la modélisation de la coordi-
nation autonomes de services, le déploiement effectif des programmes suivant le modèle
de programmation chimique sur les plates-formes distribuées reste un problème très ou-
vert. Dans cette thèse, nous avons décrit un nouveau protocole pour capturer plusieurs
molécules de façon atomique dans un multi-ensemble évolutif d’objets distribués au-
dessus d’une plate-forme à large échelle. En passant dynamiquement d’un sous-protocole
à l’autre, notre protocole exploite pleinement leurs bonnes propriétés (impact limité sur le
réseau et rapidité du sous-protocole optimiste lorsque la densité des réactifs est élevée,
et garantie de la vivacité du sous-protocole pessimiste une fois que cette densité chute),
sans souffrir de leurs inconvénients. Ces caractéristiques sont illustrées à travers un en-
semble de simulations.

Ce protocole s’inscrit dans le cadre d’un travail ambitieux qui vise à la construction
d’une plate-forme distribuée autonome offrant toutes les fonctionnalités nécessaires pour
exécuter des programmes chimiques. Ce travail a aussi l’intérêt de revisiter des problèmes
classiques des systèmes distribués, en gardant les exigences de passage à l’échelle et
les spécificités du modèle chimique à l’esprit. En suivant cette idée, cet article aborde
l’exclusion mutuelle. Dans notre contexte, la propriété de vivacité est d’abord une pro-
priété du système—aumoins une réaction doit avoir lieu en un temps fini. Nousmontrons
aussi l’absence de famine: si des molécules existent suffisamment longtemps, un nœud
essayant infiniment souvent de les capturer y parviendra en un temps fini.

Dans le cadre de cette thèse, nous avons élargi ce protocole en proposant un sys-
tème complet pour l’exécution de programmes chimiques sur des plates-formes à large
échelle. Plus spécifiquement, cette thèse décrit un modèle d’exécution entièrement dé-
centralisé qui permet d’exécuter des programmes chimiques dans des systèmes haute-
ment dynamiques et hétérogènes en s’appuyant sur le protocole de capture décrit. Ainsi,
un prototype a été conçu prouvant la viabilité d’un tel systéme. En outre, il a été testé sur
Grid5000 [20], et les expériences conduites affirment ses bonnes propriétés, notamment
la faisabilité et la scalabilité. Nous avons l’intention d’utiliser la plate-forme pour exploiter
l’expressivité du paradigme chimique et en particulier développer un système de gestion

de workflows tel qu’il a été défini dans [41],

VU:

Le Directeur de Thèse

Thierry PRIOL

VU:

Le Responsable de l’École
Doctorale

_____ ______

VU pour autorisation de soutenance

Rennes, le

Le Président de l’Université de Rennes 1

Guy CATHELINEAU

VU après soutenance pour autorisation de publication:

Le Président du jury,

Jean-Pierre BANÂTRE

	Contents
	Introduction
	I Preliminaries
	Background
	Chemical Programming Model
	GAMMA
	Higher-order Chemical Language
	Inertia Detection

	Distributed Hash Tables
	Overview
	Some DHTs
	Range Queries

	Mutual Exclusion
	Single-resource Mutual Exclusion
	Multiple-resource Mutual Exclusion
	k-out of-M-Mutual Exclusion

	Physical Parallelism
	Single-processor Execution
	Message-passing Methods
	Centralised Controller
	Moving Values
	Odd-even Transposition
	Fold-over Operation

	Shared-memory Approach
	Parallel Implementation
	Inertia Detection
	Experiments

	Conclusion

	II Distributed Chemical Computing
	Feasibility Study
	DSM-based Execution Platform
	DSM-inspired Architecture Overview
	Course of Execution
	Issues of the DSM-based Platform

	Hierarchical Execution Platform
	Physical Layer Abstraction
	Execution Flow
	Condition Checking and Inertia Detection
	Tree Reorganisation

	Prototype
	Evaluation
	Test Programs
	Results

	Conclusion

	Atomic Capture of Multiple Molecules
	System Model
	Protocol for the Atomic Capture
	Pessimistic Sub-protocol
	Optimistic Sub-protocol
	Sub-protocol Mixing
	Dormant Nodes

	Execution of Multiple Rules
	Multiple Success Rates
	Initial Rule Assignment
	Changing the Active Rule
	Discussion

	Proof of Correctness
	Proof of Safety
	Liveness Proof
	Convergence Time

	Evaluation Set-up
	Experiments Involving One Rule
	Execution Time
	Switch Threshold Impact
	Switch Behaviour
	Communication Costs

	Experiments with Multiple Rules
	Multiple-rule Test Programs
	Execution of the Independent-rules Program
	Execution of the Dependent-rules Program
	Execution of the Circular Program
	Execution of the Workflow Program

	Conclusion

	Decentralised Execution Platform
	Platform Overview
	Initialisation
	Execution
	Termination

	Data Structures and Algorithms
	Double DHT Layer
	Random Meta-Molecule Fetch
	Search for Candidates
	Atomic Grab of Molecules
	Complexity Analysis

	Execution of Higher-order Programs
	Execution of Rules
	Correctness of Execution
	Inertia Detection

	Software Prototype
	Entities
	Execution Cycle
	Optimisations

	Evaluation
	Test Programs
	Experimental Results

	Conclusion

	III Conclusions And Addenda
	Conclusion
	Bibliography
	List of Publications
	Résumé en Français
	Préliminaires
	Modèle de programmation chimique
	Modèle du Système

	Protocole Pour la Capture Atomique de Molécules
	Sous-protocole Pessimiste
	Sous-protocole Optimiste
	Cohabitation des Sous-protocoles
	Sureté et Vivacité du Système

	Evaluation
	Travaux Connexes
	Conclusion

