
HAL Id: tel-00925271
https://theses.hal.science/tel-00925271

Submitted on 7 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial systems solving and elliptic curve
cryptography

Louise Huot

To cite this version:
Louise Huot. Polynomial systems solving and elliptic curve cryptography. Symbolic Computation
[cs.SC]. Université Pierre et Marie Curie - Paris VI, 2013. English. �NNT : �. �tel-00925271�

https://theses.hal.science/tel-00925271
https://hal.archives-ouvertes.fr

Université Pierre et Marie Curie

École doctorale Informatique,
Télécommunications et Électronique (Paris)

ED130

THÈSE DE DOCTORAT

Pour obtenir le grade de

DOCTEUR EN SCIENCES
de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité Informatique

Résolution de systèmes polynomiaux
et cryptologie sur les courbes elliptiques

Thèse dirigée par Jean-Charles Faugère, Pierrick Gaudry et Guénaël Renault
préparée au Laboratoire d’informatique de Paris 6 (LIP6).

Présentée et soutenue publiquement par

Louise Huot

le vendredi 13 décembre 2013

après avis des rapporteurs

M. Reynald Lercier Chercheur associé IRMAR, Ingénieur DGA MI
M. Éric Schost Associate Professor University of Western Ontario

devant le jury composé de

M. Jean-Charles Faugère Directeur de Recherche INRIA Paris-Rocquencourt
M. Pierrick Gaudry Directeur de Recherche CNRS
M. Antoine Joux Titulaire de la Chaire de Cryptologie de la fondation

partenariale de l’UPMC
M. Reynald Lercier Chercheur associé IRMAR, Ingénieur DGA MI
M. Guénaël Renault Maitre de Conférences UPMC
M. Mohab Safey El Din Professeur UPMC
M. Éric Schost Associate Professor University of Western Ontario
M. Benjamin Smith Chargé de Recherche INRIA Saclay-Île-de-France

Contents

1 Introduction 1

I Gröbner Bases and Polynomial Systems Solving 21

2 Gröbner bases 23
2.1 Preliminaries . 24

2.1.1 Ideals and varieties . 24
2.1.2 Gröbner bases: definition and general properties 26
2.1.3 Properties of degree reverse lexicographical Gröbner bases 31
2.1.4 Properties of lexicographical Gröbner bases 37
2.1.5 What means solving? . 41

2.2 Gröbner bases algorithms . 41
2.2.1 Lazard’s algorithm . 41
2.2.2 Efficient algorithms for Gröbner bases: F4 and F5 43

2.3 Change of ordering algorithms . 45
2.3.1 The FGLM algorithm . 45
2.3.2 Sparse change of ordering for Shape Position ideals: the probabilistic

algorithm . 48
2.3.3 Sparse change of ordering for Shape Position ideals: the deterministic

algorithm . 50
2.3.4 Computation of Tn . 53

2.4 Complexity . 53
2.4.1 Gröbner bases algorithms . 53
2.4.2 Change of ordering . 58
2.4.3 Polynomial systems solving . 61

3 Solving structured polynomial systems 65
3.1 Systems admitting a polynomial change of variables 67

3.1.1 An algorithm for solving polynomial systems admitting a polynomial
change of variables . 67

3.1.2 Complexity of F5 steps . 69
3.1.3 Complexity of change of ordering steps 71
3.1.4 Comparison with the usual algorithm . 72

3.2 Application to polynomial systems invariant under a linear group 72
3.2.1 Preliminaries on invariant theory . 73
3.2.2 Solving systems pointwise invariant under a pseudo-reflection group G . 74

iii

iv CONTENTS

3.2.3 Particular case: some examples of groups in semi-direct product with Sn 77

4 Change of ordering 79

4.1 Computing the LEX Gröbner basis given the multiplication matrices 83
4.1.1 Triangular set . 83
4.1.2 Shape Position case . 85

4.2 Computing the multiplication matrices using fast linear algebra 86
4.3 Polynomial equations with fixed degree: the tame case 88

4.3.1 General Complexity analysis . 89
4.3.2 Complexity for regular systems . 91

4.4 A worst case ultimately not so bad . 93
4.5 Polynomial equations with non-fixed degree: the wild case 94

4.5.1 Reading directly Tn from the Gröbner basis 94
4.5.2 Another algorithm for polynomial systems solving 96

4.6 Impact of Algorithm 16 on the practical solving of PoSSo in the worst case . . . 99

II Algebraic Cryptanalysis of the Elliptic Curves Discrete Logarithm 101

5 Elliptic curves 103

5.1 Definitions . 104
5.2 Elliptic curves representations . 106

5.2.1 Short Weierstrass form . 106
5.2.2 Twisted Jacobi intersection curves . 107
5.2.3 Twisted Edwards curves . 108
5.2.4 Universal Edwards model of elliptic curves 109

5.3 Discrete logarithm problem and generic algorithms 111
5.3.1 Pohlig Hellman reduction . 111
5.3.2 Baby step giant step . 112
5.3.3 Pollard ρ method . 113

5.4 Semaev summation polynomials . 114
5.4.1 Computing summation polynomials . 115
5.4.2 Twisted Jacobi intersection curves . 116
5.4.3 Twisted Edwards curves . 117
5.4.4 Universal Edwards model of elliptic curves 117

5.5 Gaudry’s index calculus attack for ECDLP solving 117
5.5.1 Presentation of the algorithm . 117
5.5.2 Complexity analysis . 121
5.5.3 Balancing relation search and linear algebra using the double large prime

variation . 122
5.5.4 Variant “n− 1” . 123
5.5.5 Diem’s variant of the index calculus attack 124

5.6 Using symmetries to improve the ECDLP solving 124
5.6.1 Solving the point decomposition problem 125
5.6.2 Computation of summation polynomials 127

CONTENTS v

6 Point decomposition problem in high characteristic 129
6.1 Impact of the elliptic curve representation on the PDP solving 132
6.2 Impact of a 2-torsion subgroup on the PDP solving 133

6.2.1 Action of the 2-torsion on the solutions of the PDP 133
6.2.2 Action of the 2-torsion on the polynomial systems modelling the PDP . 136

6.3 Action of the 4-torsion on the PDP . 139
6.3.1 Twisted Edwards curve . 139
6.3.2 Universal Edwards model of elliptic curves 139
6.3.3 Twisted Jacobi intersection curve . 139

6.4 Experimental results and security estimates . 141
6.4.1 Experiments with n = 4 . 141
6.4.2 Experiments for n = 5 and n = 6 . 143
6.4.3 Security level estimates . 145

7 Summation polynomials in characteristic 2 149
7.1 Compact representation of summation polynomials in characteristic two 153

7.1.1 Symmetries . 153
7.1.2 Density . 158

7.2 Compact summation polynomials by resultant and Gröbner bases 159
7.3 Outline of sparse multivariate polynomial interpolation algorithm 161

7.3.1 Description of Zippel’s sparse multivariate polynomial interpolation al-
gorithm . 161

7.3.2 Complexity and probability of success of Zippel’s algorithm 164
7.4 Summation polynomials by implicit sparse multivariate interpolation 165

7.4.1 Evaluation of summation polynomials using factorization and resultant
of univariate polynomials . 166

7.4.2 Sparing factorizations . 169
7.4.3 Degree of summation polynomials . 171
7.4.4 Computation of the eighth summation polynomial 172
7.4.5 Discussion about the computation of the ninth summation polynomial . 173

7.5 Application to the Discrete Logarithm Problem 175
7.5.1 Using symmetries to speed up the PDP solving in characteristic two . . 175
7.5.2 Benchmarks on the PDP solving . 176

List of Tables 179

List of Figures 181

List of Algorithms 183

Bibliography 185

Chapter 1

Introduction

La cryptologie a clé publique (ou asymétrique) repose sur l’existence de fonctions à sens
unique. Une fonction à sens unique est une fonction facile à évaluer mais dont l’application
inverse est difficile à évaluer. La première mise en pratique de la cryptologie asymétrique est
proposée par Diffie et Hellman dans [DH76] où ils introduisent un protocole d’échange de clés.
La sécurité de leur protocole, repose sur la difficulté de résoudre le problème du logarithme
discret dans le groupe F×

q formé par les éléments inversibles d’un corps fini à q éléments.

Problème du logarithme discret (DLP). Soit un groupe cyclique (G,⊕) d’ordre m fini
et de générateur g. Étant donné un élément h dans G, le problème du logarithme discret est
de trouver un entier x dans Z/mZ tel que

h = [x]g = g ⊕ · · · ⊕ g .

x fois

Il existe plusieurs autres problèmes mathématiques permettant de définir des fonctions
supposées à sens unique. Nous pouvons mentionner le calcul d’une racine n-ième modulo N
sur lequel repose le célèbre cryptosystème RSA [RSA78]. Sachant que ce problème peut être
résolu très efficacement lorsque la factorisation de N est connue, la sécurité des cryptosystèmes
correspondant est étroitement liée à la complexité de factoriser des entiers.

Plus tard, ont également été introduits des cryptosystèmes basés sur la difficulté de ré-
soudre des systèmes polynomiaux (e.g. HFE [Pat96]) ou sur la difficulté de résoudre le prob-
lème du plus court vecteur (e.g. NTRU [HPS98]).

Un groupe dans lequel il est intéressant d’instancier le DLP est le groupe formé par les
points rationnels d’une courbe elliptique définie sur un corps fini. Dans ce cas particulier, le
DLP est appelé le problème du logarithme discret sur les courbes elliptiques et est noté ECDLP.
De nos jours, la cryptologie sur les courbes est devenue une des thématiques principales de
la cryptologie à clé publique. En effet, contrairement au DLP dans les corps finis ou à la
factorisation il existe des instances du ECDLP pour lesquelles les meilleurs algorithmes connus
résolvant ce problème ont une complexité exponentielle en la taille du groupe. Dans certains
cas, les attaques algébriques sur le ECDLP sont plus efficaces que les attaques génériques.

En 1995, Patarin [Pat95] initie les attaques par résolution de systèmes polynomiaux en
proposant une attaque sur le cryptosystème de Matsumoto et Imai [MI88]. Ce type d’attaques
sera par la suite appelé la cryptanalyse algébrique. Depuis les années 2000, les attaques basées
sur la résolution de système polynomiaux ont connu de nombreux succès. Nous pouvons
mentionner par exemple [FJ03, BFP12] qui proposent des attaques contre HFE et certaines
de ces variantes.

1

2 Chapter 1. Introduction

La cryptanalyse algébrique se déroule en deux étapes. Dans un premier temps, nous devons
mettre en place une modélisation sous forme de systèmes polynomiaux du cryptosystème à
attaquer. Ensuite, la sécurité du cryptosystème est évaluée par la difficulté de résoudre les
systèmes polynomiaux obtenus.

Ce type d’attaques arrive naturellement pour la cryptanalyse des cryptosystèmes sur les
courbes. En effet, les courbes (hyper)-elliptiques étant des objets géométriques, elles admet-
tent donc une représentation algébrique. Notons que l’utilisation effective des courbes (hyper)-
elliptiques est rendue possible grâce à leur représentation algébrique qui induit une arithmé-
tique efficace dans le groupe correspondant. Ainsi la résolution des problèmes liés aux courbes
(hyper)-elliptiques est reliée à la résolution de systèmes polynomiaux. Par exemple, nous pou-
vons mentionner [GS12, FLR11] pour le comptage de points ou [Gau09, Die11b, Nag10, JV12]
pour la résolution du DLP.

Bien que l’existence d’une mise en équations des problèmes sur les courbes est naturelle,
trouver une bonne modélisation n’est pas toujours évident. L’efficacité de telles attaques repose
donc d’une part sur le choix de la modélisation, pour s’assurer que les systèmes peuvent être
efficacement construits et résolus. D’autre part sur l’efficacité des outils pour la résolution des
systèmes polynomiaux.

Cette thèse se situe à l’intersection de la résolution de systèmes polynomiaux et la cryp-
tologie sur les courbes elliptiques. Les enjeux principaux de cette thèse sont doubles. Dans un
premier temps, notre but est de fournir des outils efficaces pour la cryptanalyse algébrique ou
pour tout autre application de la résolution de systèmes polynomiaux. Puis, en tirant parti
des propriétés intrinsèques des courbes notre second objectif est d’établir des modélisations
des cryptosystèmes considérés les plus adaptées possible aux outils dont on dispose.

Cryptographie sur les courbes elliptiques

La cryptographie sur les courbes elliptiques a été introduite indépendemment par Miller [Mil86]
et Koblitz [Kob87]. L’avantage de ces cryptosystèmes comparés à ceux basés sur le DLP dans
les corps finis ou sur la factorisation est qu’ils fournissent de meilleurs niveaux de sécurité pour
des tailles de clés similaires. En effet, il existe des algorithmes de complexité sous-exponentielle
pour la factorisation d’entiers ou la résolution du DLP dans F×

q . Pour ces deux problèmes les
algorithmes permettant d’obtenir une telle complexité sont basés sur les méthodes de calcul
d’indice. On peut mentionner [BLP93, Cop93, CP05] pour la factorisation et [AD94, Jou13b]
pour le DLP. Dans le cas de la factorisation, il existe également des méthodes utilisant les
courbes elliptiques (ECM) [Len87, CP05].

Récemment, Barbulescu et al [BGJT13] ont amélioré la complexité du DLP dans les corps
finis de petite caractéristique en proposant un algorithme de complexité quasi-polynomiale.

Il existe de nombreuses instances du ECDLP telles que les meilleurs algorithmes de réso-
lution soient les algorithmes génériques. Ces algorithmes ne tirent parti d’aucune structure
du groupe dans lequel est instancié le DLP. Leur complexité est exponentielle et un résultat
de Shoup [Sho97] montre qu’en général, la meilleure complexité pour ces algorithmes est en
O(

√
m) opérations dans un groupe G d’ordre m. Parmi les algorithmes génériques, la méthode

ρ de Pollard [Pol78] est optimale.
En plus de la sécurité, une seconde problématique de la cryptologie est de fournir des

cryptosystèmes les plus efficaces possibles. Dans ce contexte, un des buts des cryptologues
est de fournir des représentations de courbes elliptiques procurant une arithmétique perfor-

3

mante. À titre d’exemple de représentations de courbes, nous pouvons mentionner les courbes
d’Edwards tordues [BL07, BBJ+08, Edw07] ou les courbes en intersections de Jacobi tordues
[CC86, FNW10]. L’impact des symétries particulières de ces courbes sur la résolution du DLP
sera étudié plus tard. Une liste détaillée des représentations de courbes elliptiques existantes
et de leur arithmétique respective est disponible dans [BL].

Quelques années après l’apparition de la cryptologie sur les courbes elliptiques, Koblitz
[Kob89] suggère l’utilisation des courbes hyper-elliptiques. La sécurité des cryptosystèmes
correspondants dépend donc de la difficulté de résoudre le problème du logarithme discret
dans le groupe des classes de diviseurs d’une courbe hyper-elliptique définie sur un corps
fini. Ce cas particulier du DLP est noté HCDLP pour « hyperelliptic curve discrete logarithm
problem ».

Pour estimer la sécurité des cryptosystèmes basés sur le HCDLP, la résolution de ce prob-
lème a été largement étudiée ces dernières années. En particulier, pour différentes familles de
courbes de genre grand, des méthodes par calcul d’indice ont été développées [ADH94, Cou01,
EG02, EG07, Hes04]. En utilisant la méthode des « double large prime » de Gaudry et al
[GTTD07], si la taille du corps fini est suffisamment grande et pour des courbes de genre fixé
supérieur à trois les méthodes par calcul d’indice sont alors plus rapides que la méthode ρ de
Pollard.

Dans le cas particulier de courbes non hyper-elliptiques de genre trois, Diem et Thomé
proposent une amélioration des algorithmes par calcul d’indice [Die06, DT08]. Cependant les
algorithmes par calcul d’indice pour la résolution du HCDLP ne s’appliquent pas aux genres
un et deux.

Depuis les dix dernières années, afin d’obtenir de meilleures complexités pour la résolution
du ECDLP, divers algorithmes par calcul d’indice ont été développés. Une des premières
tentatives d’algorithme par calcul d’indice pour la résolution du ECDLP a été proposée par
Semaev dans [Sem04]. Cependant son attaque ne s’applique réellement ni en pratique ni en
théorie.

En 2009, Gaudry [Gau09] introduit une méthode de résolution par calcul d’indice du
logarithme discret dans une variété abélienne de dimension n finie. Soit E une courbe elliptique
définie sur un corps fini Fqn avec n > 1. L’application d’une restriction de Weil permet de
transférer le DLP dans E(Fqn) au DLP dans une variété abélienne de dimension n sur Fq.
Ainsi en utilisant les travaux de Semaev et son algorithme de résolution du DLP dans les
variétés abéliennes, Gaudry propose [Gau09] un nouvel algorithme de résolution du ECDLP
par calcul d’indice. Plus tard, Diem [Die11b, Die11a] obtient des preuves rigoureuses que
pour certaines familles de courbes, le ECDLP peut être résolu en temps sous-exponentiel.
Cependant son attaque n’a pas d’impact en pratique sur la résolution du ECDLP.

Notons que Nagao [Nag10] a introduit une variante des algorithmes par calcul d’indice
adaptée aux courbes hyper-elliptiques. Cependant, dans le cas de courbes elliptiques, son
algorithme semble moins efficace que ceux mentionnés précédemment.

Depuis l’introduction des algorithmes par calcul d’indice pour la résolution du ECDLP,
la communauté leur porte un intérêt croissant. Par exemple, Joux et Vitse proposent une
nouvelle version [JV13] de l’algorithme de Gaudry. Dans le cas où q est de taille moyenne,
leur algorithme permet d’améliorer la complexité de l’attaque de Gaudry. Dans le cas de
corps de caractéristique deux, Faugère et al [FPPR12] présentent une version améliorée de
l’algorithme par calcul d’indice de Diem. Leur algorithme ne donne pas lieu à une attaque en
pratique mais diminue la complexité de l’algorithme de Diem pour les courbes binaires. Suite
à ces travaux, des hypothèses sur la complexité du ECDLP ont été proposées dans [PQ12].

4 Chapter 1. Introduction

Ces hypothèses sont à l’heure actuelle difficilement vérifiables en théorie et en pratique et font
l’objet d’une étude intensive [YJSPT13, ST13].

Si le degré n de l’extension du corps est un nombre composé, Joux et Vitse [JV12] in-
troduisent un nouvel algorithme de résolution du ECDLP. Leur algorithme combine l’attaque
GHS [GHS02] et une variante de l’attaque par décomposition de Nagao. Ils donnent de plus,
des applications pratiques de leur attaque. En particulier, ils résolvent le problème du loga-
rithme discret sur une courbe définie sur Fp6 avec p un nombre premier de 26 bits en environ
110 000 heures de calcul sur un coeur CPU.

Le point commun entre tous ces algorithmes de résolution du ECDLP par calcul d’indice
est qu’ils requièrent tous la résolution de systèmes polynomiaux.

Résolution de systèmes d’équations polynomiales

Résoudre des systèmes polynomiaux est un problème central en mathématiques. Ce n’est pas
seulement un problème important en lui-même mais il a aussi un large champ d’applications.
Ainsi, ce problème apparaît dans de nombreuses disciplines telles que la théorie des codes
[LY97, DBP11], la théorie des jeux [Dat03, Stu02], l’optimisation [GS11], etc ou évidemment
comme mentionné précédemment la cryptologie [BPW06, Jou13b, Nag10, Die11b, Gau09,
JV12].

La nature omniprésente de ce problème fait de l’étude de sa complexité un problème central
de l’informatique théorique. Par exemple, dans le contexte de la géométrie algébrique, Safey El
Din et Schost [SS11, BRSS12] ont proposé le premier algorithme pour résoudre le problème des
cartes routières améliorant la complexité de l’algorithme de Canny [Can93]. La complexité de
leur algorithme dépend de la complexité de résoudre efficacement des systèmes polynomiaux.
En cryptographie, la récente avancée majeure de Joux [Jou13b] pour la résolution du DLP
dans les corps finis repose fortement sur la même capacité.

Représentation des solutions

Selon le contexte, résoudre un système polynomial a différents sens. Si l’on considère des
systèmes à coefficients dans les corps finis, alors généralement résoudre signifie lister toutes les
solutions dans ce corps.

Afin, de répondre aux besoins des différentes applications, un algorithme de résolution
de systèmes polynomiaux doit fournir une sortie correcte ou utilisable dans tous les con-
textes. Nous avons donc besoin d’une représentation des solutions permettant de retrouver
ces dernières très efficacement.

Les bases de Gröbner sont aux systèmes polynomiaux ce que la forme échelonnée en ligne
est aux systèmes linéaires. Pour un ordre monomial fixé, étant donné un système d’équations
polynomiales, sa base de Gröbner associée par rapport à l’ordre monomial fixé est unique après
normalisation. Une bonne représentation, permettant en particulier de lister les solutions dans
le cas des corps finis, est donnée par la base de Gröbner pour l’ordre lexicographique (dénoté
l’ordre LEX). En effet, sous des hypothèses de généricité, le système à résoudre engendre un
idéal dit en Shape Position.

Idéaux en Shape Position. Soit I un idéal de K[x1, . . . , xn] avec un nombre fini de solutions
D dans une clôture algébrique de K et comptées avec multiplicité. L’idéal I est dit en Shape

5

Position si sa base de Gröbner lexicographique est de la forme




x1 − h1(xn)
...

xn−1 − hn−1(xn)
hn(xn)





où h1, . . . , hn ∈ K[xn], deg(hn) = D et deg(hi) < D pour i = 1, . . . , n− 1.

À partir de la base de Gröbner LEX d’un idéal en Shape Position, résoudre un système
polynomial se résume à la résolution du polynôme univarié hn. Les algorithmes pour le calcul
des racines de polynômes univariés ont leur complexité en fonction de D (le degré de hn) bien
maîtrisée. En général la résolution de hn est négligeable en comparaison du calcul de la base
LEX.

Par exemple, si K = Fq est un corps fini, lister les solutions de hn dans Fq peut se faire
en Õ(D) (voir [VZGG03]) opérations arithmétiques dans Fq où la notation Õ signifie que l’on
omet les facteurs logarithmiques en q et D.

Dans tous les cas, même si S n’est pas en Shape Position, la base de Gröbner lexi-
cographique donne une bonne représentation des solutions. En effet, à partir de cette base
de Gröbner, trouver les solutions de S est toujours réduit à la résolution d’un ou plusieurs
polynômes univariés. Par conséquence, tout au long de cette thèse nous définirons le problème
PoSSo comme suit.

Résolution de systèmes polynomiaux (PoSSo). Étant donné un système d’équations
polynomiales S de K[x1, . . . , xn], le problème PoSSo consiste à calculer la base de Gröbner
lexicographique de l’idéal engendré par S.

Complexité du problème PoSSo

Une contribution clé pour la résolution de PoSSo est le résultant multivarié introduit par
Macaulay [Mac94] au début de 20ième siècle. L’avancée majeure suivante apparut dans les
années 60 lorsque Buchberger introduit, dans sa thèse [Buc06, Buc65], le concept de base
de Gröbner et le premier algorithme pour les calculer. Depuis, les bases de Gröbner ont été
intensivement étudiées (voir par exemple [BS87a, CLO07, Stu02, LL91, Laz83, Fau02]) et sont
devenues un outil puissant pour la résolution de systèmes polynomiaux.

Un résultat de complexité majeur sur la résolution de PoSSo fut montré par Lakshman
et Lazard dans [LL91]. Ce résultat établit que le problème PoSSo, pour des systèmes ayant
un nombre fini de solutions, peut être résolu en un temps simplement exponentiel en le degré
maximum d des équations du système en entrée. C’est à dire, le problème PoSSo peut être
résolu en dO(n) opérations arithmétiques où n est le nombre de variables. Grâce à la borne
de Bézout, le nombre de solutions peut être borné par une quantité exponentielle en ce degré.
Ainsi ce résultat donne une première étape vers une complexité polynomiale en le nombre
de solutions pour la résolution de PoSSo. Dans notre contexte la borne de Bézout peut être
énoncée de la manière suivante.

Borne de Bézout. Soient f1, . . . , fn ∈ K[x1, . . . , xn] et d1, . . . , dn leur degré respectif. Si
S = {f1, . . . , fn} à un nombre de solutions fini D (dans la clôture algébrique de K et comptées
avec multiplicité) alors D ≤∏n

i=1 di.

6 Chapter 1. Introduction

Il existe certaines instances particulières du problème PoSSo pour lesquelles il peut être
résolu en une complexité sous-cubique en D. Par exemple, lorsque K = C si les racines réelles
sont en nombre O(log2(D)) alors on peut approcher toutes ces racines réelles en Õ(12nD2)
opérations arithmétiques dans K, voir [MP98]. Toujours pour la caractéristique zéro, si la
structure multiplicative de l’algèbre quotient est connue alors Bostan, Salvy et Schost [BSS03]

ont montré que l’on pouvait calculer une RUR en O
(
n2nD

5
2

)
opérations arithmétiques dans

K.

Tandis que pour ces cas particuliers il existe des algorithmes de complexité sous-cubique
en D, à notre connaissance lorsqu’aucune structure n’est supposée sur le système, la meilleure
complexité pour calculer une base de Gröbner lexicographique est en O(nD3) opérations arith-
métiques dans K.

D’un point de vu algorithmique les ordres monomiaux peuvent différer. Certains sont
intéressant pour leur efficacité (au sens calcul efficace de la base de Gröbner associée) tandis
que d’autres (e.g. LEX) permettent d’obtenir une bonne représentation des solutions. Par
exemple, les ordres du degré (pondéré) lexicographique inverse (DRL ou WDRL dans le cas
pondéré) sont usuellement plus efficaces pour le calcul de base de Gröbner. D’après ces
observations, la stratégie usuelle de résolution du problème PoSSo par calculs de base de
Gröbner est : dans un premier temps calculer une base de Gröbner pour l’ordre DRL ; ensuite
de cette base de Gröbner retrouver la base de Gröbner LEX. Cet algorithme est décrit en
Figure 1.1.

Système
Base de
Gröbner
DRL

Base de
Gröbner
LEX

Solutions

F5 FGLM
Résolution de

polynômes
univariés

Objet mathématique
Algorithme

Entrée
Sortie

Figure 1.1: Résolution de systèmes polynomiaux par bases de Gröbner.

Pour calculer la base de Gröbner DRL, on peut utiliser les algorithmes efficaces F4 ou F5

proposés par Faugère [Fau99, Fau02]. Étant donné cette base de Gröbner, le calcul de la base
LEX peut se faire un utilisant un algorithme de changement d’ordre tel que FGLM [FGLM93].
Plus récemment, des nouveaux algorithmes de changement d’ordre tirant parti du caractère
creux des matrices impliquées ont été introduits par Mou dans sa thèse [Mou13], voir aussi les
articles correspondant [FM11, FM13].

7

Résolution de systèmes structurés

Des publications récentes ont montré que la résolution de systèmes structurés pouvait se faire
de manière bien plus efficace que celle des systèmes génériques (sans structure particulière).
Par exemple Spaenlehauer a étudié dans sa thèse [Spa12] les systèmes bihomogènes [FSS11],
déterminantiels [FSS13] ou encore les systèmes booléens [BFSS13]. Il a en particulier montré
que des algorithmes dédiés pour de telles structures permettent de diminuer de manière sig-
nificative la complexité du problème PoSSo. Prenons l’exemple des systèmes bilinéaires dont
l’un des deux blocs de variables ne contient que deux variables. Les algorithmes dédiés à la
résolution des systèmes bilinéaires ont dans ce cas une complexité polynomiale en le nombre
total de variables du système. Cette complexité est à comparer avec celle obtenue en utilisant
les algorithmes usuels qui est elle exponentielle en le nombre de variables.

Dans le cas de systèmes admettant des symétries, la théorie des invariants [Kan01, CLO07,
Stu08] permet d’accélérer la résolution des systèmes. En effet, admettons que le système
soit invariant sous l’action d’un groupe linéaire G. Une réécriture de ce système permet
alors de diviser le nombre de solutions du système par le cardinal de G. Comme mentionné
précédemment, la complexité de résoudre un système ayant un lien étroit avec le nombre de
solutions, l’utilisation des symétries va donc permettre d’accélérer la résolution. Notons tout
de même que dans certains cas (selon le groupe G) les méthodes de la théorie des invariants ne
seront pas toujours efficaces. Dans ce cas, une autre solution est l’utilisation des bases SAGBI
[FR09] ou encore dans le cas de groupes abéliens l’utilisation d’un algorithme de calcul de
base de Gröbner dédié [FS13].

Nous verrons que les systèmes avec symétries sont étroitement liés aux systèmes quasi-
homogènes. Les systèmes quasi-homogènes ont été étudiés en particulier dans [FSV13]. Soit
S un système de K[x1, . . . , xn] quasi-homogène selon le système de poids (w1, . . . , wn). En
comparaison avec un système homogène dont les équations sont de même degré que les équa-
tions de S, les auteurs de [FSV13] montrent que tirer parti d’une telle structure permet de
gagner un facteur polynomial en

∏n
i=1wi sur la complexité totale de la résolution de systèmes

polynomiaux par base de Gröbner.
Récemment de telles structures ont été mises en évidence en cryptanalyse algébrique. En

particulier pour la résolution du DLP dans les corps finis ou sur les courbes. Dans les récentes
avancées algorithmiques sur la résolution du DLP sur F×

q [BGJT13, Jou13b, GGMZ13] la
première amélioration de la complexité fut obtenue grâce à la mise en évidence d’une structure
bilinéaire sur les systèmes polynomiaux à résoudre [Jou13b]. Dans le cas de la résolution du
DLP sur les courbes, la mise en oeuvre de l’attaque pratique dans [JV12] a été possible encore
grâce à l’exploitation d’une telle structure.

Énoncé des problématiques

Un des objectifs de cette thèse est l’étude des attaques par calcul d’indice pour la résolution
du ECDLP. Plus particulièrement, nous nous intéressons à l’attaque de Gaudry [Gau09] que
nous rappelons brièvement. Soit E une courbe elliptique définie sur un corps fini Fqn non
premier i.e. n > 1. Étant donné P (d’ordre m) et Q dans E(Fqn) tel qu’il existe un entier x
vérifiant Q = [x]P , l’algorithme de Gaudry, pour le calcul de x, se divise en trois étapes :

1. Calculer la base de facteurs F = {(x, y) ∈ E(Fqn) | x ∈ Fq} ;

8 Chapter 1. Introduction

2. Trouver au moins #F + 1 relations de la forme [ai]P ⊕ [bi]Q = P1 ⊕ · · · ⊕ Pn avec
P1, . . . , Pn ∈ F et ai, bi sont choisis aléatoirement dans Z/mZ ;

3. Finalement, le calcul de x se fait par algèbre linéaire.

Si n est considéré fixé, en utilisant la « double large prime variation » [GTTD07] cet algo-

rithme a une complexité en Õ
(
q2−

2
n

)
où la notation Õ signifie que l’on omet les facteurs

logarithmiques en q. Cependant cette complexité cache un facteur exponentiel en n. En effet
l’étape (2) de l’algorithme de Gaudry nécessite la résolution du problème suivant.

Problème de décomposition de points (PDP). Soit E une courbe elliptique définie sur
Fqn avec n > 1. Étant donné R dans E(Fqn) et F = {(x, y) ∈ E(Fqn) | x ∈ Fq} trouver
P1, . . . , Pn ∈ F tels que R = P1 ⊕ · · · ⊕ Pn.

Grâce à l’utilisation des polynômes de sommation de Semaev [Sem04] la résolution du
PDP se résume à la résolution d’un système d’équations polynomiales. Ces systèmes polyno-
miaux ayant un nombre de solutions exponentiel en n plus précisément D = 2n(n−1), l’étape
de changement d’ordre sera l’étape bloquante, en théorie et également en pratique, de la réso-
lution du PDP. La première problématique que l’on a rencontrée fut donc d’améliorer l’étape
de changement d’ordre dans la résolution du PDP. Pour ce faire, deux solutions s’offrent
à nous. Nous pouvons soit proposer de nouveaux algorithmes de changement d’ordre pour
base de Gröbner ayant une complexité plus faible. Sinon, nous pouvons trouver une nouvelle
modélisation du PDP permettant de diminuer le nombre de solutions des systèmes à résoudre.

Les courbes elliptiques sont des objets fortement structurés. En effet, les courbes elliptiques
possèdent des symétries particulières. Notons que selon la représentation choisie, les symétries
peuvent être plus ou moins présentes. Voir la Figure 1.2 pour différentes représentations
graphiques de courbes elliptiques définies sur les réels. Nous pouvons remarquer que les trois
représentations de courbes présentées en Figure 1.2 possèdent une symétrie axiale par rapport
à l’axe des abscisses. Par contre les courbes d’Edwards ou les intersection de Jacobi possèdent
des symétries supplémentaires. Par exemple, on observe une symétrie centrale par rapport à
l’origine.

(a) Courbe de Weierstrass. (b) Courbe d’Edwards. (c) Intersection de Jacobi.

Figure 1.2: Exemples de courbes elliptiques définies sur les réels.

Une problématique naturelle est donc de trouver une modélisation du PDP permettant
d’utiliser les symétries des courbes. C’est à dire de mettre en avant des groupes linéaires
agissant sur les systèmes modélisant le PDP et ainsi de diminuer leur nombre de solutions.

Cependant, cette stratégie n’est efficace que dans les cas où la théorie des invariants peut
être appliquée. C’est à dire lorsque la caractéristique du corps ne divise pas l’ordre du groupe

9

considéré (cas non modulaire). En particulier lorsque le corps est de caractéristique deux nous
ne pourrons pas utiliser la théorie des invariants. De plus, même dans le cas non modulaire,
la théorie des invariants nous permet de conclure seulement sur la complexité du changement
d’ordre qui dépend directement du nombre de solutions. En particulier, nous n’avons aucune
information sur le comportement des algorithmes de calcul de base de Gröbner tel que F5.

L’étude de la complexité de l’algorithme F5 dépend fortement d’une propriété de régularité.
Afin d’obtenir une analyse complète de l’impact de l’utilisation des symétries sur la résolution
du PDP, il est indispensable de disposer d’un algorithme de résolution de systèmes avec
symétries permettant de conserver cette propriété de régularité.

Outre la résolution du PDP, une deuxième étape bloquante dans l’algorithme de Gaudry
est la construction des systèmes à résoudre. En effet, nous avons vu que ces systèmes sont
obtenus à partir des polynômes de sommation. Or ces derniers sont de degré exponentiel
en n et la méthode de Semaev habituellement utilisée pour calculer ces polynômes requiert
l’utilisation de résultants multivariés. En pratique, les méthodes actuelles ne permettent de
calculer les polynômes de sommation que pour n ≤ 5.

Pour résumer certaines des problématiques liées aux attaques algébriques du DLP sur les
courbes elliptiques dans le contexte de l’algorithme de Gaudry sont les suivantes :

• Calculer efficacement une modélisation du PDP sous forme de systèmes polynomiaux.
De manière plus restrictive, comment calculer efficacement les polynômes de sommation ?

• Accélérer la phase de changement d’ordre dans la résolution du PDP.

– Existe-t-il des algorithmes de changement d’ordre avec une complexité sous-cubique
en le nombre de solutions ?

– Mettre en évidence des symétries sur les systèmes à résoudre pour en diminuer le
nombre de solutions.

• Étudier l’impact d’éventuelles symétries sur les algorithmes de calcul de base de Gröb-
ner. Existe-t-il un algorithme de résolution de systèmes polynomiaux tirant parti des
symétries et dont la complexité totale est maîtrisée ?

• Utilisation, pour la résolution du PDP, des symétries des courbes elliptiques définies sur
des corps de caractéristique deux.

Dans la section suivante, nous présentons les contributions apportées dans cette thèse
répondant en partie aux problématiques ci-dessus.

Contributions

Dans un premier temps, nous présenterons de nouveaux résultats de complexité pour la résolu-
tion du problème PoSSo. Nous nous intéresserons en particulier à la complexité de l’algorithme
présenté en Figure 1.1. Puis nous étudierons le cas des systèmes admettant des symétries.

Complexité du problème PoSSo

Étant donné un système d’équations polynomiales S = {f1, . . . , fn} ⊂ K[x1, . . . , xn] la com-
plexité du problème PoSSo dépend du coût du calcul de la base de Gröbner pour l’ordre

10 Chapter 1. Introduction

DRL et de la complexité des algorithmes de changement d’ordre (voir Figure 1.1 pour rap-
pel de l’algorithme de résolution de PoSSo). Les résultats de complexité de l’algorithme F5

[Bar04, BFS04, BFSY05] impliquent que le calcul de la base de Gröbner DRL peut se faire

en O
(
n
(
nd+1
n

)ω)
opérations arithmétique dans K où d est le degré maximal des équations en

entrée du système S et ω est l’exposant dans la complexité de la multiplication de deux ma-
trices denses. Ainsi, d’après [VW12] on a 2 ≤ ω < 2.3727. Cette complexité peut se réécrire
sous la forme O(neωndωn) lorsque n→ ∞ (que d tende vers l’infini ou non) et O(dωn) lorsque
d→ ∞ et n est fixé.

La complexité de l’étape de changement d’ordre pour le calcul de la base de Gröbner
LEX peut s’exprimer selon le nombre de solutions du système D et est donnée par O(nD3)
opérations arithmétiques dans K.

D’après la borne de Bézout on a D ≤ dn. La complexité de l’étape de changement d’ordre
domine donc la complexité du problème PoSSo qui devient O(nd3n) opérations arithmétiques
dans K quelque soit le paramètre qui tend vers l’infini. Lorsque toutes les équations en entrée
ont le même degré i.e. deg(fi) = d pour tout i ∈ {1, . . . , n} alors la borne de Bézout implique
que génériquement D = dn et la complexité du problème PoSSo peut s’exprimer en fonction
de D par O(nD3) opérations arithmétiques dans K.

Complexité sous-cubique pour la résolution de PoSSo.

Pour le cas particulier du changement d’ordre de l’ordre DRL vers l’ordre LEX, nous montrons
que la complexité de cette étape peut se ramener à la complexité de la multiplication de
matrices. Pour ce faire, nous proposons de nouveaux algorithmes de changement d’ordre pour
base de Gröbner.

Étant donné une base de Gröbner pour un ordre monomial >1 d’un ideal I de K[x1, . . . , xn]
et un second ordre monomial >2, les algorithmes de changement d’ordre retournent la base
de Gröbner de I par rapport à l’ordre >2.

Ces algorithmes se décomposent généralement en deux étapes. La première est le calcul de
la structure multiplicative de l’algèbre quotient K[x1, . . . , xn]/I. Pour tout ordre monomial,
l’algèbre quotient a une structure d’espace vectoriel de dimension D dont la base dépend
de l’ordre monomial choisi. Notons B>1 = {ǫD >1 · · · >1 ǫ1 = 1} la base de l’algèbre
quotient vu comme un K-espace vectoriel par rapport à l’ordre monomial >1. Notons que
ǫ1, . . . , ǫD sont des monômes de K[x1, . . . , xn]. Le calcul de la structure multiplicative de
l’algèbre quotient requiert de trouver un représentant de tous les monômes de la forme xiǫj
dans K[x1, . . . , xn]/I par rapport à la base B>1 . L’algorithme proposé dans [FGLM93] suggère
de parcourir les monômes xiǫj en nombre au plus nD dans l’ordre croissant pour >1. Ainsi,
chaque représentant peut être calculé grâce à un produit matrice-vecteur de taille (D,D) ×
(D, 1).

Calcul de la structure multiplicative de l’algèbre quotient par multiplication de
matrices. Nous proposons un premier algorithme pour le calcul de la structure multiplicative
de l’algèbre quotient permettant de calculer les représentants de tous les monômes de même
degré simultanément. Plus précisément, nous montrerons que ces représentants peuvent être
obtenus par mise sous forme échelon d’une matrice de Macaulay de taille (nD, (n+1)D). On
itère donc non plus sur les monômes mais sur les degrés en nombre nd soit log(D) lorsque le
degré d des équations en entrée est fixé (d ne tend pas vers l’infini) et lorsque >1 est l’ordre
DRL (éventuellement pondéré).

11

Une fois la structure multiplicative de l’algèbre quotient connue, la deuxième étape des al-
gorithmes de changement d’ordre consiste à calculer la base de K[x1, . . . , xn]/I vu comme un
K-espace vectoriel mais cette fois-ci par rapport au second ordre monomial >2. Simultané-
ment à la construction de cette base, la base de Gröbner par rapport à l’ordre monomial >2

est reconstruite. Comme démontré dans [FGLM93], la construction de la base de l’algèbre
quotient et de la base de Gröbner se ramène à des tests d’indépendance linéaire de vecteurs
représentants des monômes dans l’algèbre quotient par rapport à la base B>1 . Encore une
fois l’algorithme usuel construit monôme par monôme en nombre D la nouvelle base.

Dans [FM11, FM13], les auteurs proposent des algorithmes de changement d’ordre dédiés
au cas où >2 est l’ordre LEX. En supposant la structure de la base LEX connue (l’idéal est
en Shape Position) Faugère et Mou supposent la connaissance au préalable de la base B>lex

.
Ainsi seule la base de Gröbner LEX contenant n polynômes est à calculer. En utilisant la
structure de cette base de Gröbner, ils montrent que le calcul de chacun des polynômes se
réduit à la résolution d’un système linéaire de type Hankel de taille D. Ils obtiennent ainsi un
algorithme de changement d’ordre vers l’ordre LEX très efficace. Cependant la construction
de la matrice de Hankel nécessite le calcul des vecteurs T jr pour j = 0, . . . , 2D−1 où T est une
matrice carrée de taille D et r est un vecteur colonne de taille D. Les auteurs de [FM11, FM13]
considérant la matrice T creuse construisent ces vecteurs de manière itérative. Seulement, dans
le cas dense la complexité d’une telle construction est donc en O(D3) opérations arithmétiques
dans K.

Calcul de la base de Gröbner LEX par multiplication de matrices. Nous proposons
deux nouveaux algorithmes (un déterministe et un probabiliste) de changement d’ordre pour
le calcul d’une base de Gröbner LEX en Shape Position. Ces algorithmes calculent les n
polynômes de la base LEX de la même façon que dans [FM11, FM13]. C’est-à-dire par la
résolution de systèmes de Hankel. La différence principale réside dans la construction des
matrices de Hankel. Afin de calculer les vecteurs T jr pour j = 0, . . . , 2D − 1 nous utilisons
un algorithme de Keller-Gehrig [KG85]. Cet algorithme ramène le calcul de ces vecteurs aux
produits de O(log(D)) matrices de taille au plus (D,D).

De plus, nous proposons une généralisation de l’algorithme de Keller-Gehrig. Cet algo-
rithme nous permet de développer un algorithme de changement d’ordre dédié aux idéaux
admettant un ensemble triangulaire (forme plus générale que la Shape Position) pour base de
Gröbner LEX. Pour ces idéaux, nous adaptons directement l’algorithme FGLM. De manière
similaire aux idéaux en Shape Position nous tirons avantage de la forme connue de la base
LEX. En effet, ceci nous permet de prédire à l’avance les tests d’indépendance linéaire requis
et de les effectuer simultanément.

Une particularité des algorithmes de changement d’ordre dédiés aux idéaux en Shape Po-
sition est qu’ils ne nécessitent pas de connaître toute la structure multiplicative de l’algèbre
quotient. En effet, pour ces algorithmes seule la représentation matricielle de la multiplication
par xn dans l’algèbre quotient vue comme un K-espace vectoriel est requise. Notons Tn cette
matrice.

Nouvel algorithme de type Las Vegas pour la résolution de PoSSo. Nous proposons
un nouvel algorithme de résolution de systèmes polynomiaux par base de Gröbner. Cet al-
gorithme de type Las Vegas, permet de s’assurer que les idéaux considérés soient en Shape

12 Chapter 1. Introduction

Position dès lors qu’ils n’ont que des racines simples. De plus, le calcul de la matrice Tn
est complètement optimisé dans le cas où >1 est l’ordre DRL et ne nécessite pas le calcul de
la structure multiplicative complète de l’algèbre quotient. Soit I un idéal de K[x1, . . . , xn].
Notons g · I l’idéal I auquel on applique le changement linéaire de variables g ∈ GL (K, n).
Nous montrons qu’il existe un ouvert de Zariski U ⊂ GL (K, n) tel que pour tout g ∈ U la
matrice Tn peut être lue (i.e. sans opération arithmétique) à partir de la base de Gröbner
DRL de l’idéal g · I. Ainsi, le calcul de la matrice Tn peut se faire gratuitement et le degré
des équations n’intervient plus dans cette complexité.

L’analyse de complexité de ces différents algorithmes permet de montrer qu’étant donné
une base de Gröbner pour l’ordre DRL, calculer la base de Gröbner LEX peut se faire en
Õ(Dω) opérations arithmétiques dans K. La notation Õ signifie que l’on omet les facteurs
logarithmiques en D et polynomiaux en n. Nous obtenons donc le résultat suivant sur la
complexité de PoSSo.

Théorème 1.1. Soit S = {f1, . . . , fn} ⊂ K[x1, . . . , xn] tel que d ≥ deg(fi). Sous des hy-
pothèses de régularité résoudre le problème PoSSo peut se faire en

• temps déterministe si d est un entier fixé et S admet une base LEX en Shape Position ;

• temps probabiliste si S n’a que des racines simples.

Dans les deux cas le nombre d’opérations arithmétiques nécessaires à la résolution de PoSSo
est en Õ(eωndωn +Dω) si n→ ∞.

Lorsque n est fixé et d → ∞ dans le deuxième cas, résoudre le problème PoSSo peut se
faire en Õ(dωn +Dω) opérations arithmétiques dans K.

Sous des hypothèses de généricité, ces complexités s’expriment respectivement sous la forme
Õ(eωnDω) et Õ(Dω).

En Figure 1.3, nous résumons les différentes complexités liées à la résolution du problème
PoSSo. « Fast FGLM » désigne les algorithmes rapides de changement d’ordre mentionnés
dans le Théorème 1.1.

d

FGLM Õ
(
d3n

)

F5 Õ (dωneωn)

F5 Õ

((
nd+1

n

)ω)

Fast FGLM Õ (dωn)

Figure 1.3: Comparaison des complexités des deux étapes de la résolution du problème PoSSo
par base de Gröbner. Le nombre de variables est fixé à n = 20 et le degré des équations d
tend vers l’infini.

13

La complexité du problème PoSSo étant étroitement liée au nombre de solutions des sys-
tèmes à résoudre, nous nous sommes naturellement intéressé à la complexité de résoudre des
systèmes admettant des symétries.

Impact des symétries sur la complexité de PoSSo

Supposons que le système S = {f1, . . . , fn} soit invariant sous l’action d’un groupe linéaire G.
La théorie des invariants nous permet de conclure que l’utilisation de l’action de G divise par
(#G)3 (ou (#G)ω en utilisant les algorithmes du Théorème 1.1) la complexité de l’étape de
changement d’ordre. Par contre elle ne fournit pas d’information sur la complexité du calcul
de la base DRL.

Nous nous intéressons au cas plus général où le système admet un changement de variables
polynomial. C’est à dire qu’il existe ϑ1, . . . , ϑn ∈ K[x1, . . . , xn] et g1, . . . , gn ∈ K[x1, . . . , xn]
tels que gi(ϑ1, . . . , ϑn) = fi pour tout i ∈ {1, . . . , n}. Les systèmes invariants sous l’action
de groupes linéaires pseudo-réflectifs apparaîtront comme un cas particulier de ces systèmes.
Notons wi = deg(ϑi) et ϑ(h)i la partie homogène de plus haut degré de ϑi ∈ K[x1, . . . , xn].

La stratégie habituelle pour résoudre un tel système est dans un premier temps résoudre
le système S ′ = {g1, . . . , gn} ⊂ K[x1, . . . , xn] à l’aide des outils habituels comme par exemple
l’algorithme en Figure 1.1. Puis de résoudre plusieurs systèmes de la forme {ϑ1−α1, . . . , ϑn−
αn} où (α1, . . . , αn) est une solution de S ′.

Utilisation de la structure quasi-homogène pour la résolution de systèmes avec
symétries. L’algorithme que nous proposons pour la résolution de ces systèmes est très
proche de celui présenté ci-dessus. La différence principale réside dans la résolution du système
S ′. En effet, pour sa résolution nous proposons d’utiliser l’algorithme en Figure 1.1 à la
différence près que nous ne considérons pas l’ordre DRL pour la première base de Gröbner.
Nous chercherons donc à calculer en premier lieu une base de Gröbner pour l’ordre du degré
pondéré lexicographique inverse défini par le système de poids (deg(ϑ1), . . . , deg(ϑn)). En
effet, nous montrons que l’existence d’un tel changement de variables entraîne une structure
quasi-homogène. Plus précisément, nous obtenons le résultat suivant.

Proposition 1.1. Soit {f1, . . . , fn} ⊂ K[x1, . . . , xn] un système régulier. Soit ϑ1, . . . , ϑn ∈
K[x1, . . . , xn] tels que ϑ

(h)
1 , . . . , ϑ

(h)
n sont algébriquement indépendants. Si pour tout i dans

{1, . . . , n} il existe gi ∈ K[y1, . . . , yn] tel que fi = gi(ϑ1, . . . , ϑn), alors le système {g1, . . . , gn}
de K[y1, . . . , yn] équipé du degré pondéré donné par le système de poids (deg(ϑ1), . . . , deg(ϑn))
est régulier. De plus si wdeg dénote le degré pondéré mentionné précédemment, on a deg(fi) =
wdeg(gi).

Ainsi considérer ce système de poids permet de conserver la propriété de régularité et
la complexité totale de l’algorithme pourra être estimée. Plus précisément, nous montrons
qu’une telle structure permet de diviser la complexité totale de la résolution de PoSSo par un
facteur (

∏n
i=1wi)

α où selon les hypothèses α = ω ou 3.

Théorème 1.2. Soit un système S = {f1, . . . , fn} ⊂ K[x1, . . . , xn] admettant le change-
ment de variables donné par ϑ1, . . . , ϑn ∈ K[x1, . . . , xn] avec deg(ϑi) = wi. Supposons que

ϑ
(h)
1 , . . . , ϑ

(h)
n soient algébriquement indépendants et deg(fi) ≤ d pour tout i ∈ {1, . . . , n}.

Alors sous des hypothèses de régularité la complexité de résoudre S est en

14 Chapter 1. Introduction

• Õ

(
eωndωn

(
∏n

i=1 wi)
ω

)
opérations arithmétiques dans K si d est un entier fixé;

• Õ

(
d3n

(
∏n

i=1 wi)
3

)
opérations arithmétiques dans K sinon.

La notation Õ signifie que l’on omet les facteurs polynomiaux en n.

Dans le cas des systèmes invariants sous l’action d’un groupe linéaire pseudo-réflectif, nous
verrons que cette action de groupe permet de mettre en évidence un changement de variables
tel que

∏n
i=1wi = #G.

Muni de ces nouveaux outils, nous nous intéressons ensuite à la résolution du problème de
décomposition de points.

Modélisation et résolution du PDP

Les systèmes polynomiaux modélisant le PDP sont de la forme {f1, . . . , fn} ⊂ Fq[x1, . . . , xn]
avec deg(f1) = · · · = deg(fn) = 2n−1. La borne de Bézout implique donc que D, le nombre de
solutions de ces systèmes, est borné par 2n(n−1). En pratique, on observe que cette borne est
atteinte. Ainsi dans le contexte où Gaudry a présenté son algorithme de résolution du ECDLP
par calcul d’indice, la complexité de la résolution du PDP était en O

(
n23n(n−1)

)
opérations

arithmétiques dans Fq.

Utilisation des symétries pour la résolution du PDP. La mise en évidence de représen-
tations de courbes elliptiques possédant des symétries particulières ainsi que l’utilisation des
résultats précédents nous a permis d’établir les résultats suivants.

Théorème 1.3. Soit E une courbe elliptique définie sur Fqn avec n > 1 et q = pk tel que
p > n. Si E peut être mise en représentation d’Edwards tordue ou sous forme d’intersection
de Jacobi tordue ou encore respectant le modèle d’Edwards universel alors, sous des hypothèses
de régularité, la résolution du PDP dans E peut se faire en

• (complexité prouvée) O
(
n23(n−1)2

)
;

• (complexité heuristique) O
(
n2eωn2ω(n−1)2

)

opérations arithmétiques dans Fq.

Ainsi, si p > n pour certaines familles de courbes elliptiques, la complexité de la résolution
du PDP est divisée par 23(n−1). Dans le cas de la caractéristique deux, nous obtenons le
résultat suivant.

Théorème 1.4. Soit E une courbe elliptique définie sur F2nk avec n > 1 par l’équation
suivante :

E : y2 + xy = x3 + α

où α ∈ F2nk . Sous des hypothèses de régularité, la résolution du PDP dans E peut se faire en

• (complexité prouvée) O
(
n23(n−1)(n−2)

)
;

• (complexité heuristique) O
(
n2eωn2ω(n−1)(n−2)

)

15

opérations arithmétiques dans F2k .

La complexité du PDP en caractéristique deux est donc divisée par 26(n−1). La pre-
mière complexité des deux théorèmes précédents est obtenue en utilisant la complexité de
l’algorithme FGLM pour le changement d’ordre. La deuxième complexité est obtenue en
utilisant les résultats du Théorème 1.1. Cette dernière reste heuristique puisque nous avons
observé que les systèmes à résoudre vérifient bien les hypothèses nécessaires à l’application de
ce résultat.

Hormis la résolution des systèmes modélisant le PDP, une étape bloquante dans la résolution
du PDP et le calcul des systèmes à résoudre. En effet, la modélisation du PDP sous forme de
systèmes polynomiaux requiert le calcul des polynômes de sommation. L’algorithme proposé
par Semaev dans [Sem04] pour le calcul des polynômes de sommation requiert l’utilisation de
résultants multivariés. En effet, il montre que le n-ième polynôme de sommation est construit
récursivement par

Sn(x1, . . . , xn) = ResX (Sn−k+1(x1, . . . , xn−k, X), Sk+1(xn−k+1, . . . , xn, X)) (1.1)

pour tout k dans {2, . . . , n− 2}.
Pour avoir une représentation plus compacte des polynômes de sommation nous pouvons

utiliser les symétries des courbes. Cependant comme montré dans [JV13] le calcul de cette
représentation nécessite des calculs de base de Gröbner. Une des étapes bloquantes de cet
algorithme est que les calculs intermédiaires produisent des objets significativement plus gros
que l’entrée ou la sortie.

Polynômes de sommation par évaluation-interpolation implicite. Afin de pallier
ce problème, nous proposons un algorithme de calcul des polynômes de sommation ne faisant
intervenir que des objets dont la taille est bornée par celle de la sortie. De plus, nous montrons
que les polynômes de sommation en caractéristique deux admettent une représentation très
compacte. En effet, l’étude des symétries des courbes binaires nous permet d’obtenir le résultat
suivant.

Proposition 1.2. Soit E une courbe elliptique définie sur F2k par l’équation

E : y2 + xy = x3 + α

où α ∈ F2k . Le n-ième polynôme de sommation Sn ∈ K[x1, . . . , xn] de E admet le changement
de variables φ défini par

φ−1 : K[y1, . . . , yn] → K[x1, . . . , xn]
f 7→ f(e1(y), e2(Z), . . . , en−1(Z), en(z))

où y = (x21, . . . , x
2
n), z = (x21 + x1, . . . , x

2
n + xn) et Z = (x21 + x41, . . . , x

2
n + x4n).

Soit S′
n ∈ K[y1, . . . , yn] le n-ième polynôme de sommation exprimé selon le changement

de variables φ i.e. S′
n = φ(Sn). La représentation considérée entraîne que les polynômes de

sommation sont très creux. Ainsi, pour tirer parti de cette représentation, nous proposons un
algorithme de calcul des polynômes de sommation par interpolation de polynômes multivariés
creux. La difficulté dans l’élaboration d’un tel algorithme est l’évaluation du polynôme S′

n.

16 Chapter 1. Introduction

En effet, étant donné un point ỹ = (ỹ1, . . . , ỹn) de Kn évaluer S′
n en ce point requiert de

trouver le point d’évaluation correspondant du résultant en équation (1.1). Trouver le point
d’évaluation du résultant, revient donc à inverser le changement de variables φ i.e. à résoudre
le système suivant

S =





e1(f(x1), . . . , f(xn))− ỹ1
e2(g(x1), . . . , g(xn))− ỹ2

...
en−1(g(x1), . . . , g(xn))− ỹn−1

en(h(x1), . . . , h(xn))− ỹn





où f(x) = x2, g(x) = x4 + x2 et h(x) = x2 + x. Notons que le système S est donné par des
compositions de polynômes symétriques élémentaires. En utilisant la structure de S et les
propriétés des corps finis de caractéristique deux, nous montrons que la résolution de S peut
se faire à l’aide uniquement de factorisations de polynômes univariés.

De plus, nous ne chercherons pas à calculer le résultant en équation (1.1). Puisque nous
cherchons uniquement son évaluation, nous évaluerons directement les polynômes Sn−k+1 et
Sk+1. L’évaluation de S′

n sera alors donnée par le calcul d’un résultant univarié.
Finalement, notre algorithme de calcul des polynômes de sommation ne requiert que des

opérations sur les polynômes univariés (factorisation et résultant). Ainsi nous évitons les
calculs coûteux de bases de Gröbner et de résultants multivariés.

Impacts en pratique

Les algorithmes proposés ont permis de résoudre en pratique des instances encore jamais
résolu du PDP, de PoSSo et pour la première fois de calculer au delà du cinquième polynôme
de sommation.

• Avant ces travaux, la résolution en pratique du PDP n’était possible que jusqu’à n = 4.

En caractéristique p > n, pour n = 4 nous notons une accélération significative de
la résolution. En effet nous obtenons un facteur 400 sur la résolution totale du PDP.
Nous sommes de plus maintenant capables de résoudre les instances pour n = 5. À
titre d’exemple lorsque q = 65521, la résolution du PDP (en utilisant FGb [Fau10]) peut
s’achever en environ 45 minutes. Une interpolation du nombre total d’opérations requises
pour résoudre le ECDLP permet de nous comparer aux attaques génériques. Pour
n = 5 si q est de l’ordre de 64 bits les attaques génériques requièrent de l’ordre de 2160

opérations dans E(Fq5). Notre attaque améliorée ne nécessite que 2130 multiplications
de mots de 32 bits.

En caractéristique p = 2, pour n = 4 et q de l’ordre de 32 bits, nous notons une
accélération de la résolution du PDP d’un facteur environ 5500. Pour ces instances, la
méthode dans [Gau09] requiert plus de 10 minutes pour résoudre le PDP. Nos travaux
permettent de réduire cette résolution à moins d’une seconde. Pour n = 5, le PDP peut
maintenant être résolu en utilisant Magma [BCP97]. Pour q de l’ordre de 16 bits cette
résolution peut se faire en environ 5 minutes.

• Avant ces travaux, nous pouvions calculer au plus le cinquième (respectivement sixième)
polynôme de sommation si p 6= 2 (resp. p = 2).

17

En caractéristique p = 2, la Proposition 1.2 nous donne une représentation très com-
pacte des polynômes de sommation. Cette représentation permet de calculer avec les
méthodes usuelles le septième polynôme de sommation en environ 6 minutes. De plus
l’algorithme par évaluation-interpolation que nous avons proposé permet le calcul du
huitième polynôme de sommation contenant 470369 termes. Par exemple, si q est de
l’ordre de 32 bits, il peut se calculer avec Magma en environ 6 heures en utilisant huit
coeurs CPU.

• Nous avons également observé que l’algorithme que l’on propose pour la résolution de
PoSSo permet des gains notables sur des instances « pire cas » pour cet algorithme. Ces
instances sont de la forme n équations de degré deux en n variables. Supposons que les
systèmes sont à coefficients dans F65521. Pour n = 11, notre algorithme est 1500 fois
plus rapide que l’algorithme classique en Figure 1.1. De plus n = 11 sont les dernières
instances pour lesquels l’algorithme classique permet la résolution. Notre algorithme
permet quant à lui de résoudre les instances jusqu’à n = 16. Pour n = 16 la résolution
de ces systèmes peut maintenant se faire en environ 15 heures en utilisant FGb.

Perspectives

À l’issue de cette thèse, certaines questions restent à traiter et certains résultats pourraient
être améliorés. Nous donnons ci-dessous quelques suggestions.

Changement d’ordre pour bases de Gröbner. Les algorithmes de changement d’ordre
pour bases de Gröbner ont une complexité polynomiale en le nombre de solutions. Nous avons
montré que l’exposant dans cette complexité peut être réduit de trois à ω. Les n matrices de
multiplication impliquées dans ces algorithmes ne sont pas dénuées de structure. En particulier
elles commutent deux à deux. Ainsi pouvons nous tirer parti de la structure de ces matrices
pour obtenir des algorithmes plus efficace ?

Changement d’ordre rapide et systèmes avec symétries. Soit un système dont les
équations ont un degré fixé (c’est à dire ne dépend pas d’un paramètre). La version détermin-
iste du changement d’ordre rapide s’applique également au cas où la première base de Gröbner
est donnée pour l’ordre du degré pondéré lexicographique inverse. Ainsi, cet algorithme de
changement d’ordre peut être utilisé dans l’algorithme de résolution de systèmes admettant
des symétries.

Lorsque les équations du système en entré ont un degré non fixé (c’est à dire le degré
peut dépendre d’un paramètre tel que le nombre de variables) alors l’algorithme détermin-
iste peut s’appliquer mais sa complexité n’est plus polynomiale en D avec exposant ω. La
version probabiliste du changement d’ordre rapide, permet de traiter le cas de tels systèmes.
Cependant en général, elle nécessite l’application d’un changement de variables linéaire. Ce
changement de variables a pour effet de casser la structure quasi-homogène induite par les
symétries. Ainsi dans le cas d’équations ayant un degré non fixé, les algorithmes de change-
ment d’ordre rapides ne peuvent pas toujours être utilisés dans l’algorithme de résolution des
systèmes admettant des symétries. Peut on mettre en place des algorithmes de changement
d’ordre rapide applicable dans ce contexte ?

18 Chapter 1. Introduction

Attaque algébrique du logarithme discret sur les courbes. Nous avons mis en év-
idence des familles de courbes elliptiques ayant une structure particulière. Ces structures
induisent des symétries dans la résolution des systèmes polynomiaux sous-jacents à l’attaque
par calcul d’indice du ECDLP de Gaudry [Gau09]. Elles ont donc permis d’en accélérer la
résolution en théorie et en pratique.

Comme mentionné en début d’introduction, la version de l’attaque par calcul d’indice de
Diem [Die11a, Die11b] a permis de mettre en évidence des familles de courbes dans lesquelles
le ECDLP peut être résolu en temps sous-exponentiel. Une question naturelle est donc de
déterminer si l’utilisation des symétries peut s’appliquer dans cette attaque ? De plus il serait
intéressant d’étendre ce type de résultats aux cas des courbes hyper-elliptiques de genre 2.
Par exemple, l’utilisation des symétries peut-elle être mise en oeuvre dans l’attaque de Nagao
[Nag10] ?

Comptage de points. Un autre problème fondamentale de la cryptologie sur les courbes est
le comptage de points dans la jacobienne des courbes hyper-elliptiques. En 1985 Schoof [Sch85]
a introduit le premier algorithme en temps polynomial de comptage de points d’une courbe
elliptique définie sur un corps fini. Plus tard, cet algorithme fut étendu pour diverses variétés
abéliennes définies sur des corps finis [AH96, GS12, HI98, Pil90]. Une des étapes principales de
ces algorithmes consiste à trouver une représentation la plus compacte possible de la ℓ-torsion
de la courbe. La représentation considérée est en réalité un système d’équations polynomiales
dont les solutions sont l’ensemble des éléments de la ℓ-torsion. L’algorithme de comptage de
points se ramène alors à des opérations dans l’algèbre quotient. Les symétries des courbes
peuvent-elles être utilisées pour optimiser ces algorithmes ? En particulier permettent-elles de
trouver des représentations plus compactes de la ℓ-torsion et d’accélérer l’arithmétique dans
l’algèbre quotient correspondante ?

Organisation du manuscrit

Ce manuscrit se divise en deux parties. La première portant sur la résolution de systèmes
polynomiaux par base de Gröbner est constituée de trois chapitres.

Chapitre 2 : Ce chapitre introduit la notion de base de Gröbner et certaines de leurs
propriétés. Nous présentons également dans ce chapitre les algorithmes existants et leur
complexité pour le calcul de base de Gröbner, le changement d’ordre et la résolution de PoSSo
par base de Gröbner.

Chapitre 3 : Dans ce chapitre nous présentons l’algorithme pour la résolution de sys-
tèmes polynomiaux admettant un changement de variables polynomial. En particulier, nous
obtiendrons la Proposition 1.1 et le Théorème 1.2. Nous rappelons quelques définitions et
résultats de la théorie des invariants nécessaires à l’appréhension de la résolution des systèmes
avec symétries. Nous présenterons également comment appliquer les résultats précédemment
obtenus dans le chapitre aux systèmes possédant des symétries.

Les résultats présentés dans ce chapitre sont un travail en commun avec Jean-Charles
Faugère, Pierrick Gaudry et Guénaël Renault. Un cas particulier de ces résultats à été publié
dans [FGHR13b].

19

Chapitre 4 : Ce chapitre présente de nouveaux algorithmes de changement d’ordre pour
base de Gröbner ainsi qu’un nouvel algorithme de résolution de PoSSo par base de Gröbner.
En particulier, nous obtiendrons le Théorème 1.1.

Les résultats présentés dans ce chapitre sont un travail en commun avec Jean-Charles
Faugère, Pierrick Gaudry et Guénaël Renault. Une version préliminaire de ces travaux a
été publiée dans [FGHR12b] et présentée sous forme de poster à la conférence ISSAC 2012
[FGHR12a] et a reçu le prix du meilleur poster. L’ensemble de ces résultats a fait l’objet d’une
pré-publication [FGHR13a].

La deuxième partie du manuscrit porte sur la cryptographie sur les courbes elliptiques.
Cette partie est également divisée en trois chapitres.

Chapitre 5 : Dans ce chapitre nous donnons une définition des courbes elliptiques ainsi que
différentes représentations de courbes. Nous rappelons quelques attaques génériques pour la
résolution du DLP. Nous introduisons ensuite les polynômes de sommation de Semaev. Puis,
nous présentons également l’attaque par calcul d’indice de Gaudry pour la résolution du DLP
sur les courbes.

Chapitre 6 : Dans ce chapitre nous mettons en évidence des familles de courbes elliptiques
possédant des symétries particulières. Nous montrerons comment ces symétries impactent la
résolution du PDP. En particulier, nous obtiendrons le Théorème 1.3.

Les résultats présentés dans ce chapitre sont un travail en commun avec Jean-Charles
Faugère, Pierrick Gaudry et Guénaël Renault. Une version préliminaire de ces travaux à été
publiée dans [FGHR12b]. L’ensemble des résultats a fait l’objet d’une deuxième publication
[FGHR13b].

Chapitre 7 : Dans ce dernier chapitre, nous présentons comment les symétries des courbes
en caractéristique deux permettent d’obtenir une représentation compacte des polynômes de
sommation. Nous présentons également dans ce chapitre un algorithme pour le calcul de ces
polynômes par évaluation-interpolation. À titre d’application nous donnons une description
détaillée du calcul du huitième polynôme de sommation. Nous présenterons également com-
ment les symétries des courbes en caractéristique deux permettent d’améliorer la résolution
du PDP. En particulier, nous obtiendrons la Proposition 1.2 et le Théorème 1.4.

Les résultats présentés dans ce chapitre sont un travail (toujours en cours) en commun
avec Jean-Charles Faugère, Antoine Joux, Guénaël Renault et Vanessa Vitse.

Part I

Gröbner Bases and Polynomial

Systems Solving

21

Chapter 2

Gröbner bases

Contents
2.1 Preliminaries . 24

2.1.1 Ideals and varieties . 24

2.1.2 Gröbner bases: definition and general properties 26

2.1.3 Properties of degree reverse lexicographical Gröbner bases 31

2.1.4 Properties of lexicographical Gröbner bases 37

2.1.5 What means solving? . 41

2.2 Gröbner bases algorithms . 41

2.2.1 Lazard’s algorithm . 41

2.2.2 Efficient algorithms for Gröbner bases: F4 and F5 43

2.3 Change of ordering algorithms . 45

2.3.1 The FGLM algorithm . 45

2.3.2 Sparse change of ordering for Shape Position ideals: the probabilistic
algorithm . 48

2.3.3 Sparse change of ordering for Shape Position ideals: the deterministic
algorithm . 50

2.3.4 Computation of Tn . 53

2.4 Complexity . 53

2.4.1 Gröbner bases algorithms . 53

2.4.2 Change of ordering . 58

2.4.3 Polynomial systems solving . 61

In this chapter we present all the general theoretical and algorithmic backgrounds about
Gröbner bases required in this thesis. First, we give general definitions and results about
Gröbner bases. Then, two sections are devoted to algorithms to compute Gröbner bases or to
change their monomial ordering. Finally, the complexity of these algorithms and polynomial
systems solving using Gröbner bases are studied in the last section of this chapter.

In the whole thesis, ω denotes the exponent in the complexity of multiplying two dense
matrices. In particular from [VW12] we have 2 ≤ ω < 2.3727. Moreover, unless specified
the notation Õ(f(n)) always means that we neglect logarithm factors in n i.e. factors of the
form log(n)k. Hence, in the case where n = dm this notation means that we neglect logarithm
factors in n and d and polynomial factors in m.

23

24 Chapter 2. Gröbner bases

2.1 Preliminaries

In this section, we recall general definitions and results required in this thesis about ideals and
Gröbner bases. For a more thorough reading on the subject see [CLO07] for an introduction
on computational commutative algebra. From now on, K denotes a field.

2.1.1 Ideals and varieties

To avoid ambiguities we first recall what we call monomials and terms. A monomial in
the indeterminates x1, . . . , xn is a product of the form xα1

1 xα2
2 · · ·xαn

n , denoted xα, where
α = (α1, . . . , αn) ∈ Nn. A polynomial f in the indeterminates x1, . . . , xn with coefficients in
K is a finite linear combination of monomials in x1, . . . , xn with coefficients in K i.e. f =∑

α∈Nn cαx
α where cα ∈ K and the cardinality of {α | cα 6= 0} is finite. The set of all

polynomials in x1, . . . , xn with coefficients in K is a polynomial ring denoted K[x1, . . . , xn]. A
term of K[x1, . . . , xn] is a product of a coefficients in K and a monomial in K[x1, . . . , xn].

Definition 2.1 (Degree). Let m = xα be a monomial in K[x1, . . . , xn]. The degree of m is
defined by

deg(m) = |α| =
n∑

i=1

αi .

The degree of m in the variable xi is defined by degxi
(m) = αi. Let f =

∑
α∈Nn cαx

α be a
non-zero polynomial in K[x1, . . . , xn], the degree of f is defined by

deg(f) = max {|α| | cα 6= 0}

and its degree in the variable xi is defined by

degxi
(f) = max {αi | cα 6= 0} .

By convention, deg(0) = −1.

In this thesis, we consider only polynomial ideals of which the definition is given below.

Definition 2.2 (Polynomial ideal). A subset I of the polynomial ring K[x1, . . . , xn] is an ideal
if it satisfies the following conditions:

1. 0 ∈ I;

2. if f, g ∈ I then f + g ∈ I;

3. if f ∈ I then for all h ∈ K[x1, . . . , xn], hf ∈ I.

Actually, polynomial ideals are defined thanks to a set of polynomials. More precisely, a
set of polynomials {f1, . . . , fs} of K[x1, . . . , xn] defines the ideal

〈f1, . . . , fs〉 =
{

s∑

i=1

hifi | for all h1, . . . , hs ∈ K[x1, . . . , xn]

}

of K[x1, . . . , xn]. Thus, assuming we want to solve a polynomial system we are then interested
in the set of the zeroes of the ideal it generates that we call variety.

2.1. Preliminaries 25

Definition 2.3 (Affine variety). Let f1, . . . , fs ∈ K[x1, . . . , xn], we define the L-affine variety
associated to f1, . . . , fs to be the set

VL (f1, . . . , fs) = {(a1, . . . , an) ∈ Ln | fi(a1, . . . , an) = 0 for i = 1, . . . , s} ⊂ Ln

where L is an extension of K. When L = K the set VK (f1, . . . , fs) is called the affine variety.
Similarly, the L-affine variety of an ideal I of K[x1, . . . , xn] is the set

VL (I) = {(a1, . . . , an) ∈ Ln | f(a1, . . . , an) = 0 for all f ∈ I} ⊂ Ln .

When L = K we denote VK (f1, . . . , fs) (respectively VK (I)) by V (f1, . . . , fs) (respectively
V (I)).

The property that VL (I) is an affine variety is due to the Hilbert basis Theorem.

Theorem 2.4 (Hilbert basis Theorem). Any ideal I of K[x1, . . . , xn] has a finite generating
set {f1, . . . , fs} ⊂ K[x1, . . . , xn]. That is to say I = 〈f1, . . . , fs〉.

By consequence, if f1, . . . , fs is a basis of I we have VL (I) = VL (f1, . . . , fs) which defines
VL (I) as an affine variety. For more details see [CLO07, p. 75-80]. Conversely, we can define
the ideal associated to an affine variety.

Definition 2.5. Let V ⊂ Kn be an affine variety. The ideal of V is defined as

I(V) = {f ∈ K[x1, . . . , xn] | f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V} .

Let I = 〈f1, . . . , fn〉 be an ideal of K[x1, . . . , xn], it is straightforward to see that I ⊂
I(V(I)). However, the equality may not occur.

Example 2.6. Let I =
〈
x21, x

2
2

〉
be an ideal of K[x1, x2]. The affine variety of I is given by

VK (I) = {(0, 0)}. Hence, the ideal I(VK (I)) = 〈x1, x2〉 ⊃ I.

Nevertheless, thanks to the Hilbert’s Nullstellensatz we can characterize the ideals such
that the equality holds.

Theorem 2.7 (Hilbert’s Nullstellensatz). Let K be an algebraically closed field and let I =
〈f1, . . . , fn〉 be an ideal of K[x1, . . . , xn]. For all f ∈ I(V (I)), there exists m ∈ N such that
fm ∈ I.

Consequently, the ideals satisfying I = I(V (I)) are radical ideals whose the definition is
given below.

Definition 2.8 (Radical ideal). Let I be an ideal of K[x1, . . . , xn]; I is said to be radical if
for all f ∈ K[x1, . . . , xn], if there exists an integer m ≥ 1 such that fm ∈ I then f ∈ I.

Since I ⊂ I(V (I)) the Hilbert’s Nullstellensatz implies that if I is a radical ideal then
I = I(V (I)). The Strong Hilbert’s Nullstellensatz even shows that I(V (I)) is the radical of
I.

Definition 2.9 (Radical of an ideal). Let I ⊂ K[x1, . . . , xn] be an ideal. The radical of I
denoted

√
I is the set

√
I = {f | fm ∈ I for some m ≥ 1}.

26 Chapter 2. Gröbner bases

The following proposition characterizes the sets of polynomials that have the same affine
variety.

Proposition 2.10. Let f1, . . . , fs and g1, . . . , gr be polynomials in K[x1, . . . , xn]. If the
two ideals 〈f1, . . . , fs〉 and 〈g1, . . . , gr〉 are equal then for any extension L of K we have
VL (f1, . . . , fs) = VL (g1, . . . , gr).

Proof. Let a ∈ VL (f1, . . . , fs) by definition we have fi(a) = 0 for i = 1, . . . , s. By hypothesis
gj ∈ 〈f1, . . . , fs〉 for j = 1, . . . , r. Hence, for any j ∈ {1, . . . , r} we have gj =

∑s
i=1 hifi for some

h1, . . . , hs ∈ K[x1, . . . , xn]. By consequence, gj(a) =
∑s

i=1 hi(a)fi(a) = 0 for j = 1, . . . , r.
Then, a ∈ VL (g1, . . . , gr) and VL (f1, . . . , fs) ⊂ VL (g1, . . . , gr). In the same way, we can
show that VL (g1, . . . , gr) ⊂ VL (f1, . . . , fs) which finishes the proof.

This result will be useful for polynomial systems solving. Indeed, to solve a polynomial
system of equations the usual strategy is to find a new set of polynomials having same zeroes
or equivalently generating the same ideal from which the solutions are much easier to find.

In this thesis, we focus on ideals of dimension zero of which the definition is given below.

Definition 2.11 (Zero-dimensional ideal). Let I be an ideal of K[x1, . . . , xn]. The ideal I is of
dimension zero if the affine variety VK (I) is of dimension zero, that is to say #VK (I) <∞.

2.1.2 Gröbner bases: definition and general properties

A Gröbner basis is defined with respect to a monomial ordering. We will see that depending
on the monomial ordering Gröbner bases can have different properties. We first recall the
definition of monomial ordering.

Definition 2.12 (Total order). A total order, denoted ≺, on some set X is a binary relation
on the elements of X which is

• transitive: for all a, b, c ∈ X if a ≺ b and b ≺ c then a ≺ c;

• antisymmetric: for all a, b ∈ X if a ≺ b and b ≺ a then a = b;

• total: for all a, b ∈ X a ≺ b or b ≺ a.

Definition 2.13 (Monomial ordering). A monomial ordering > on K[x1, . . . , xn] is a total
order on the set of monomials of K[x1, . . . , xn] (or equivalently on Nn) which satisfies the
following conditions:

1. If xα > xβ then for any γ ∈ Nn we have xα+γ > xβ+γ;

2. > is a well-ordering on Nn i.e. every nonempty subset of Nn has a smallest element
w.r.t. >.

We now define the two most commonly used monomial orderings for Gröbner bases com-
putations which are also the only ones used in this thesis.

Definition 2.14 (Lexicographical ordering). Let xα, xβ ∈ K[x1, . . . , xn] be two monomials.
The lexicographical ordering, denoted >lex, is defined by x1 >lex · · · >lex xn and xα >lex x

β if
and only if there exists i ∈ {1, . . . , n} such that αj = βj for j = 1, . . . , i− 1 and αi > βi.

2.1. Preliminaries 27

The next monomial ordering is a graded ordering. By consequence, we need to fix a grading
for K[x1, . . . , xn].

Definition 2.15 (Graded ring). The ring R is graded if there exists a grading Γ : R → N
such that

R =
⊕

n∈N

Rn = R0 ⊕R1 ⊕R2 ⊕ · · ·

where Rn = {e ∈ R | Γ(e) = n} is an additive subgroup of R and RiRj ⊂ Ri+j.

Polynomial rings are graded rings and the two commonly used gradings and the only ones
in this thesis are the usual degree, see Definition 2.1, or the weighted degree. That is to say
if R = K[x1, . . . , xn], Rd is the K-vector space generated by all monomials of R of (weighted)
degree d.

Definition 2.16 (Homogeneous/affine ideal). Once a grading is fixed, we say that a polynomial
is homogeneous if all its monomials are of same graduation. Otherwise, the polynomial is
called an affine polynomial. A homogeneous ideal is an ideal such that there exists a basis of
it consisting of homogeneous polynomials. Otherwise, it is called an affine ideal.

In the literature, a polynomial which is homogeneous for a weighted degree is usually said
quasi-homogeneous but we do not use this terminology here. It is important to note that the
homogeneity of a polynomial depends on the grading.

Definition 2.17 (Weighted degree). Let m = xα be a monomial in K[x1, . . . , xn]. Given a
weights system (w1, . . . , wn) the weighted degree of m is defined by

wdeg(m) = |α|w =
n∑

i=1

wiαi .

Let f =
∑

α∈Nn cαx
α be a non-zero polynomial in K[x1, . . . , xn], the weighted degree of f is

defined by
wdeg(f) = max {|α|w | cα 6= 0} .

Definition 2.18 (Graded reverse lexicographical ordering). Let xα and xβ be two monomials
of K[x1, . . . , xn]. Given a grading Γ on K[x1, . . . , xn], the graded reverse lexicographical order-
ing, denoted >grl, is defined by x1 >grl · · · >grl xn and xα >grl x

β if and only if Γ(xα) > Γ(xβ)
or Γ(xα) = Γ(xβ) and there exists i ∈ [[1;n]] such that αj = βj for j = i+1, . . . , n and αi < βi.

When the grading Γ is the usual degree we denote the corresponding monomial ordering
>drl for degree reverse lexicographical ordering, DRL for short. Whereas, when the grading
Γ is the weighted degree we denote the corresponding monomial ordering >wdrl for weighted
degree reverse lexicographical ordering, WDRL for short.

Definition 2.19 (Leading term). Let f =
∑

α∈Nn cαx
α ∈ K[x1, . . . , xn] be a non-zero poly-

nomial. The leading term of f w.r.t. the monomial ordering > denoted LT> (f) is defined by
LT> (f) = cαx

α such that cα 6= 0 and for all β ∈ Nn such that cβ 6= 0 we have xα > xβ.

From the leading term of polynomials one can construct a monomial ideal as in the fol-
lowing definition.

28 Chapter 2. Gröbner bases

Definition 2.20 (Initial ideal). Let I be and ideal of K[x1, . . . , xn]. Given a monomial or-
dering >, we denote by in> (I) the initial ideal of I defined by

in> (I) = {LT> (f) | f ∈ I} .
Proposition 2.21 ([CLO07] page 76). Let I be an ideal in K[x1, . . . , xn] and > a monomial
ordering. There exist g1 . . . , gs ∈ I such that in> (I) = 〈LT> (g1) , . . . ,LT> (gs)〉.

Gröbner bases are to polynomials what row echelon form is to linear algebra. Once a
monomial ordering is fixed, the corresponding reduced Gröbner basis is unique and allows to
obtain the canonical basis of an ideal

Definition 2.22 (Gröbner basis). Given an ideal I of K[x1, . . . , xn] and a monomial ordering
>, a finite subset G> = {g1, . . . , gs} of I is a Gröbner basis w.r.t. > of I if in> (I) =
〈LT> (g1) , . . . ,LT> (gs)〉. The Gröbner basis G> is the unique reduced Gröbner basis of I if
g1, . . . , gs are monic polynomials and for any gi ∈ G> all the terms in gi are not divisible by a
leading term of gj for all gj ∈ G> such that j 6= i.

From now on, unless indicated otherwise we consider only reduced Gröbner bases so we
omit the term reduced. Following Definition 2.22, Proposition 2.21 implies the following result.

Corollary 2.23 ([CLO07] page 77). Let > be a monomial ordering. Every nonzero ideal
I ⊂ K[x1, . . . , xn] has a Gröbner basis w.r.t. >. Moreover, any Gröbner basis of I is a basis
of I.

The property that once the monomial ordering is fixed, any ideal of K[x1, . . . , xn] has a
unique reduced Gröbner basis is shown in [CLO07, p. 92].

From the previous corollary, any Gröbner basis of an ideal I is a basis of I. Hence, from
Proposition 2.10 the affine variety of I and the affine variety of its Gröbner basis are the
same. Moreover, we will see that there exist efficient algorithms to compute Gröbner bases
and finding the affine variety of a Gröbner basis can be much easier than finding the variety
of an arbitrary basis of I. This is why Gröbner bases are a fundamental tool for polynomial
systems solving.

We now introduced some general properties of Gröbner bases. We mean by general that
these properties are true for any monomial ordering. Specific properties of Gröbner bases for
particular orderings are given in the two next sections.

Proposition 2.24 ([CLO07] page 82). Let I be an ideal of K[x1, . . . , xn]. Let G> be a Gröbner
basis of I w.r.t. the monomial ordering >. Let f be a polynomial of K[x1, . . . , xn] there exists
a unique polynomial r such that

• there exists h ∈ I such that f = h+ r;

• no term of r is divisible by LT> (g) for any g ∈ G>.

The polynomial r is called the normal form of f and is denoted NF> (f).

Note that the normal form map is a linear map. Indeed, let f1 and f2 in K[x1, . . . , xn] we
have fi = hi +NF> (fi) with hi ∈ I for i = 1, 2. It is clear that NF> (f1) +NF> (f2) satisfies
the two conditions of Proposition 2.24 for the polynomial f1 + f2. Hence, NF> (f1 + f2) =
NF> (f1)+NF> (f2). Moreover, for any c ∈ K and any f ∈ K[x1, . . . , xn] we have NF> (cf) =
c ·NF> (f).

Given a Gröbner basis of an ideal I, the normal form of a polynomial allows to decide if
this polynomial is in I or not. Indeed, we have the following result.

2.1. Preliminaries 29

Corollary 2.25 ([CLO07] page 82). Let I be an ideal of K[x1, . . . , xn] and let f be a polynomial
in K[x1, . . . , xn]. Then, f ∈ I if and only if NF> (I) = 0 for any monomial ordering >.

The division algorithm in [CLO07, p.61-67] gives a way to compute the normal form of
a polynomial given the corresponding Gröbner basis. In the case of ideals of dimension zero
computing normal forms can be done by using linear algebra techniques.

First, we need to define the quotient of the polynomial ring K[x1, . . . , xn] by one of its
ideal I. For this purpose, we need an equivalence relation on the ring K[x1, . . . , xn].

Definition 2.26 (Congruence modulo an ideal). Let I be an ideal of K[x1, . . . , xn] and let
f, g be two polynomials in K[x1, . . . , xn]. We say that f and g are congruent modulo I denoted
f ≡ g mod I if f − g ∈ I.

The congruence modulo I is an equivalence relation on K[x1, . . . , xn] (see for instance
[CLO07, page 221]). Hence, it allows to construct the quotient of a polynomial ring w.r.t. one
of its ideal.

Definition 2.27 (Quotient ring). The quotient of K[x1, . . . , xn] modulo one of its ideal I,
denoted K[x1, . . . , xn]/I, is the set of equivalence classes of the congruence modulo I. That is
to say

K[x1, . . . , xn]/I = {[f] : f ∈ K[x1, . . . , xn]}
where [f] denotes the class of f defined by the set of polynomials g ∈ K[x1, . . . , xn] such that
f ≡ g mod I.

A fundamental result states that the quotient ring associated to an ideal I is a K-vector
space of known basis. More precisely, we have the following result.

Proposition 2.28 ([CLO07] page 232). Let I ⊂ K[x1, . . . , xn] be an ideal and let > be a
monomial ordering. The quotient ring K[x1, . . . , xn]/I is isomorphic as a K-vector space to
Span (xα | xα /∈ in> (I)).

Notation 2.29. We denote by B = {xα | xα /∈ in> (I)} the canonical basis w.r.t. > of
K[x1, . . . , xn]/I seen as a K-vector space.

When the ideal I is of dimension zero the quotient ring K[x1, . . . , xn]/I seen as a K-vector
space is of finite dimension DI . In that case, we denote by V> (I) the representation of
K[x1, . . . , xn]/I as a subset of KDI .

Definition 2.30 (Degree of an ideal). Let I be an ideal of dimension zero of K[x1, . . . , xn].
We call the dimension of K[x1, . . . , xn]/I the degree of I and we denote it DI .

The degree of an ideal is related to its number of zeroes by the following result.

Proposition 2.31 ([CLO07] p. 234-236). Let I be an ideal of dimension zero. We have
#VK (I) ≤ DI . The equality holds if the ideal is radical on K. More generally, the degree of
I is the number of solutions of I in an algebraic closure of K counted with multiplicities.

By consequence, the canonical basis B is of finite cardinality DI and we denote its element
in increasing order i.e. B = {ǫDI

> · · · > ǫ1 = 1}. From now on, we consider only ideals of
dimension zero.

30 Chapter 2. Gröbner bases

We recall that xα denotes a monomial of K[x1, . . . , xn] with α ∈ Nn. The isomorphism
between K[x1, . . . , xn]/I and V> (I) is constructed from the normal form map. Indeed, it is
easy to see that for any monomial ordering >, g ∈ [f] if and only if NF> (g) = NF> (f); in
particular NF> (f) ∈ [f]. Moreover, from its definition, the normal form of a polynomial f
w.r.t. the monomial ordering contains only monomials in B i.e. for any f ∈ K[x1, . . . , xn],
NF> (f) =

∑DI
i=1 ciǫi with ci ∈ K. Hence, the isomorphism Φ is then defined by

Φ : K[x1, . . . , xn]/I → V> (I)
[f] 7→ (c1, . . . , cDI

) with NF> (f) =
∑DI

i=1 ciǫi
. (2.1)

By abusing the notation, in the following it may be that we apply Φ directly on K[x1, . . . , xn]
instead on K[x1, . . . , xn]/I. In that case, for any m ∈ K[x1, . . . , xn], Φ(m) denotes Φ([m]) and
Φ−1(v) denotes the unique normal form of the polynomials in the class Φ−1(v) i.e. Φ−1(v)

may denote
∑DI

i=1 viǫi instead of
[∑DI

i=1 viǫi

]
with v = (v1, . . . , vDI

).

Let λi be the linear map corresponding to the multiplication by xi in K[x1, . . . , xn]/I i.e.

λi : K[x1, . . . , xn]/I → K[x1, . . . , xn]/I[∑DI
j=1 cjǫj

]
7→

[
NF>

(
xi
∑DI

j=1 cjǫj

)] .

Hence, if Λi is the linear map corresponding to the multiplication by xi in V> (I) then Λi is
given by

Λi : V> (I) → V> (I)
(c1, . . . , cDI

) 7→ Φ
(
xi
∑DI

j=1 cjǫj

) .

If the ideal is of dimension zero, we can represent the linear map Λi as a (DI ×DI) matrix.

Definition 2.32 (Multiplication matrices). The matrix representation of the linear map Λi is
called the multiplication matrix by xi and we denote it Ti. Thus, the jth column of the matrix
Ti contains Λi(ǫj) that is to say a vector representation of NF> (xiǫj).

Example 2.33. Let I = 〈f1, f2〉 ⊂ F53[x1, x2] with

f1 = 5x21 + 46x1x2 + 3x22 + 30x1 + 5x2 + 27
f2 = 2x21 + 52x1x2 + 47x22 + 9x1 + 4x2 + 5

.

The DRL Gröbner basis of I with x1 >drl x2 is given by

G>drl
=





x32 + 20x22 + 42x1 + 43x2 + 31
x21 + 48x22 + 39x1 + 32x2 + 48
x1x2 + 49x22 + 16x1 + 7x2 + 38





thus in>drl
(I) =

〈
x21, x1x2, x

3
2

〉
. Consequently, the canonical basis w.r.t. the DRL ordering of

F53[x1, x2]/I seen as a F53-vector space is given by B = {xα | xα /∈ in>drl
(I)} = {x22 >drl

x1 >drl x2 >drl 1}. Moreover, the normal form w.r.t. the DRL ordering of x1ǫi are given by

NF>drl
(x11) = x1

NF>drl
(x1x2) = −49x22 − 16x1 − 7x2 − 38 = 4x22 − 16x1 − 7x2 + 15

NF>drl
(x1x1) = −48x22 − 39x1 − 32x2 − 48 = 5x22 + 14x1 + 21x2 + 5

NF>drl

(
x1x

2
2

)
= 8x22 + 35x1 + 8x2 + 7

.

2.1. Preliminaries 31

By consequence the multiplication matrix T1 is given by

T1 =




0 15 5 7
0 −7 21 8
1 −16 14 35
0 4 5 8


 .

Once the multiplication matrices by all the variables are known, computing the normal
form of a polynomial f =

∑
α cαx

α can be done by using linear algebra computations, see
Algorithm 1.

Algorithm 1: Computing normal forms by linear algebra.
Input : An ideal I, its multiplication matrices T1, . . . , Tn w.r.t. the monomial

ordering > and a polynomial f =
∑

α∈Nn cαx
α ∈ K[x1, . . . , xn].

Output: The normal form of f w.r.t. I and the monomial ordering >.
Let 1 = (1, 0, . . . , 0)t = Φ(1)t;1

Return
∑

α∈Nn cαT
α1
1 · · ·Tαn

n 1;2

This vector representation of the quotient ring and operations in this vector space are the
basic tools of change of ordering algorithms in Section 2.3 and Chapter 4.

2.1.3 Properties of degree reverse lexicographical Gröbner bases

In this section we present some properties of DRL Gröbner bases with x1 >drl · · · >drl xn,
more precisely of in>drl

(I). These properties will be used in Chapter 4 to show that when
using DRL ordering the multiplication matrix by the smallest variable i.e. Tn can be computed
very efficiently. First, we investigate generic ideals.

Definition 2.34 (Generic ideals). A generic ideal is an ideal generated by a generic sequence
of polynomials. A generic sequence of polynomials (f1, . . . , fs) is a sequence of polynomials
whose coefficients are indeterminates i.e. fi =

∑
α ci,αx

α ∈ K[x1, . . . , xn] with K = k({ci,α})
and k is a field.

During his PdD, Moreno-Socías [MS91] precisely studied the shape of the stair of generic
ideals for the particular case of DRL ordering.

Definition 2.35 (Stair). Given a monomial ordering >, the stair of an ideal I is a minimal
set of generators of in> (I). Note that if the reduced Gröbner basis w.r.t. >, denoted G>, of
I is known then the stair of I is given by the set of leading terms of polynomials in G> and is
denoted E> (I).

A common tool of commutative algebra to study the stair of an ideal I is the Hilbert series
of the quotient ring K[x1, . . . , xn]/I.

Indeed, for homogeneous (respectively affine) ideals, the coefficient of the terms of degree d
in the Hilbert series counts the number of monomials of degree exactly d (respectively less than
or equal to d) that are not in in> (I). Note that this number and thus the Hilbert series does
not depend on the monomial ordering. For more details about Hilbert series see Section 2.4.1.
Using known results about Hilbert series associated to generic ideals and properties of the
DRL ordering Moreno-Socías gives a complete description of the stair of generic ideals. More

32 Chapter 2. Gröbner bases

precisely, using the compatibility with sections of the DRL ordering and regularity of generic
algebra, he studies the Hilbert series of the sections w.r.t. the smallest variable of the quotient

ring K[x1, . . . , xn]/I. Let denote R the quotient ring K[x1, . . . , xn]/I. We call xdiR/
〈
xd+1
i

〉

the section of R by xdi that is to say the section of the basis of R seen as a subspace of Nn by
the hyperplane xi = d.

Definition 2.36. Let I and J be two ideals of K[x1, . . . , xn]. The product of I and J is the
ideal defined as

IJ = {fg | f ∈ I, g ∈ J } .
Similarly, the ideal Ik is defined by

Ik =

{
k∏

i=1

fi | fi ∈ I
}
.

Lemma 2.37 (Compatibility with sections [MS91, MS03]). Let denote by o the valuation

order of the (xn)-adic filtration i.e. o(f) = max
{
i | f ∈ 〈xn〉i

}
where f is a polynomial of

K[x1, . . . , xn]. That is to say o(f) is the maximal power of xn that divides f . If G>drl
=

{g1, . . . , gs} is a Gröbner basis w.r.t. the DRL ordering of an ideal I then {gj | o(gj) < i} ∪
{xin} is a Gröbner basis w.r.t. the DRL ordering of I + 〈xn〉i.

For instance, in case of generic ideals this allow him for any d to count exactly the number
of monomials in the canonical basis w.r.t. DRL ordering of K[x1, . . . , xn]/I that are of degree
d in the smallest variable. More precisely, he shows that the intersection of the section of
R by xd1i1 , . . . , x

dn−2

in−2
has steps of depth two and height one for any d1, . . . , dn−2 ≥ 0 and

i1, . . . , in−2 ≤ n− 1 all pairwise distinct. We illustrate this result on Figure 2.1.

plateauxi

xn0

LT>drl
(g) for some g ∈ G>drl

Element of B
depth 2

height 1

Figure 2.1: Intersection of sections of the quotient ring R = K[x1, . . . , xn]/I by xd11 , . . . , x
di−1

i−1 ,

xdii+1, . . . , x
dn−2

n−1 with I a generic ideal.

The shape of the stair in Figure 2.1 is formally stated in the following theorem.

Theorem 2.38 (Moreno-Socías [MS91, MS03]). Let I = 〈h1, . . . , hn〉 ⊂ K[x1, . . . , xn] be a
generic ideal with K a field of characteristic zero or n = 2. Let B be the canonical basis
of K[x1, . . . , xn]/I and B̃i = {m = xα1

1 · · ·xαn−1

n−1 | mxin ∈ B}. Let δ =
∑n

i=1(deg(hi) − 1),
δ∗ =

∑n−1
i=1 (deg(hi)− 1) and σ = min

(
δ∗, ⌊ δ2⌋

)
. Let µ = δ − 2σ, then

a. B̃0 = · · · = B̃µ (plateau) and B̃i = B̃i+1 for µ < i < δ and i 6≡ δ mod 2 (depth two);

2.1. Preliminaries 33

b. The leading term of polynomials in G>drl
of degree 0 in xn have degree at most σ + 1 = σ̄;

c. The leading term of polynomials in G>drl
of degree α in xn with µ < α ≤ δ + 1 with α 6≡ δ

mod 2 are all of total degree d + α where d = max(deg(m) | m ∈ B̃α−1). Moreover, all
these leading terms are exactly given by t = mxαn for all m ∈ B̃α−1 of degree d (height one);

d. There is no leading term of polynomials in G>drl
of degree 1, . . . , µ in xn (plateau) or of

degree α in xn with α > δ + 1 or µ ≤ α ≤ δ and α ≡ δ mod 2 (depth two).

This precise description of the stair of generic ideals w.r.t. the DRL ordering will allow us
to show in Chapter 4 that Tn the multiplication matrix by xn can be computed very efficiently.
Moreover, Moreno-Socías extends his result by proposing the following conjecture.

Definition 2.39 (Weakly reverse lexicographical ideal). Let I ⊂ K[x1, . . . , xn] be a monomial
ideal i.e. I is generated by monomials. Let E = {m1, . . . ,ms} be a minimal basis of I. We
say that I is a weakly reverse lexicographical ideal if for any t ∈ E and for any monomial
m >drl t such that deg(m) = deg(t) we have m ∈ I.

Conjecture 2.40 (Moreno-Socías [MS91, MS03]). Let K be an infinite field and I be a generic
ideal of K[x1, . . . , xn]. The initial ideal of I w.r.t. the DRL ordering is a weakly reverse
lexicographical ideal.

To extend this result to non generic ideals and any fields we will use results about the
generic initial ideal of Galligo [Gal73, Gal], Bayer and Stillman [BS87b] and Pardue [Par94].
These results are summarized in [Eis95, p. 351-358]. Indeed, they show that applying a
generic linear change of variables allows to obtain a new ideal whose “generic” initial ideal has
a known structure.

Definition 2.41 (Linear change of variables). Let g ∈ GL (K, n) the ideal g · I is defined as
follows g · I = {f(g ·X) | f ∈ I} where X is the vector [x1, . . . , xn].

Theorem 2.42 ([Eis95] pages 351-358). Let K be an infinite field and I be a homogeneous
ideal of K[x1, . . . , xn]. There exists a Zariski open set U ⊂ GL (K, n) and a monomial ideal
J such that in>drl

(g · I) = J for all g ∈ U .

Definition 2.43 (Generic initial ideal). With I and J as in Theorem 2.42, the generic initial
ideal of I is denoted Gin (I) and is defined by J .

In order to state the proof of Theorem 2.42 we need to introduce some definitions and
notations about multilinear algebra. Fore more details about multilinear algebra see [Eis95,
Appendix 2].

The polynomial ring K[x1, . . . , xn] is denoted R. It is a graded ring for the usual degree and
we consider DRL ordering. Hence, Rd denotes the K-vector space generated by monomials of
R of degree d. If V ⊂ Rd is a t dimensional space of polynomials of degree d then multilinear
algebra allows to represent it as a one dimensional subspace L = ∧tV ⊂ ∧tRd where L is
spanned by f = g1 ∧ · · · ∧ gt with g1, . . . , gt a basis of V .

A monomial of ∧tRd is an element of the form m = m1 ∧ · · · ∧ mt with m1, . . . ,mt are
monomials in Rd. A term c · m of ∧tRd is the product of a monomial m in ∧tRd and an
element c of K. An element f ∈ ∧tRd is a finite linear combination of monomials in ∧tRd

or equivalently a finite sum of terms in ∧tRd. If the mi’s are not pairwise distinct then

34 Chapter 2. Gröbner bases

m = 0. Moreover, for any permutation σ, m1 ∧ · · · ∧mt = sign(σ) ·mσ(1) ∧ · · · ∧mσ(t) where
sign(σ) denotes the signature of σ. Thus, the normal expression of m is m1 ∧ · · · ∧mt with
m1 >drl · · · >drl mt and the set ∧tRd is the K-vector space of dimension δ =

(
r
t

)
with basis

{κi1 ∧ · · · ∧ κit | 1 ≤ i1 < · · · < it ≤ r} = {ε1, . . . , εδ}

where r = dimK (Rd) and {κ1 >drl · · · >drl κr} is the basis of Rd. In the following, we always
consider normal expressions of monomials in ∧tRd.

The monomials of ∧tRd are ordered lexicographically as described in the following defini-
tion.

Definition 2.44. Let m = m1 ∧ · · · ∧mt and v = v1 ∧ · · · ∧ vt be two monomials of ∧tRd then
m ≻ v if and only if there exists i ∈ {1, . . . , t} such that mi >drl vi and mj = vj for any j < i.
The leading term of f ∈ ∧tRd is the greatest term in f w.r.t. ≻.

Let f1, . . . , ft be polynomials in Rd and let M be a matrix representation of these polyno-
mials i.e.

κ1 · · · κδ
⋆ · · · ⋆ f1

M = (Mi,j) =
...

. . .
...

...
⋆ · · · ⋆ ft

(2.2)

where Mi,j is the coefficient of κj in fi. The element f of ∧tRd associated to f1, . . . , ft is given
by

f = f1 ∧ · · · ∧ ft =
δ∑

i=1

ciεi

where ci is the determinant of the t × t sub-matrix of M constructed by keeping only the
columns corresponding to the monomials defining εi.

Let I be a homogeneous ideal of R. The degree−d part of I is defined by Id = I ∩Rd. It
is a K-vector space of dimension td.

Proof of Theorem 2.42. Let f1, . . . , ftd be a basis of Id. Let g = (gi,j) be a matrix of indeter-
minates of size n×n. We have g · (f1∧· · ·∧ftd) = g ·f1∧· · ·∧g ·ftd is a linear combination of
monomials in ∧tdRd whose coefficients are polynomials in the gi,j ’s. Let pd(g1,1, . . . ,gn,n) ·m
be the leading term of g · f1 ∧ · · · ∧ g · ftd with m = m1 ∧ · · · ∧ mtd . We define Ud the
subset of GL (K, n) as Ud = {g = (gi,j) | pd(g1,1, . . . , gn,n) 6= 0}. Hence, the degree−d part of
in>drl

(g · I) is generated by (m1, . . . ,mtd) if and only if g ∈ Ud. We define Jd as the subset
of Rd spanned by m1, . . . ,mtd .

We now show that J =
⊕

d∈N Jd is an ideal. To this aim we show that for all d ∈ N one has
R1Jd ⊂ Jd+1. Since Ud and Ud+1 are open and dense then Ud ∩ Ud+1 6= ∅. Thus, there exists
g ∈ Ud ∩ Ud+1 ⊂ GL (K, n) such that Jd (resp. Jd+1) is the degree−d (resp. degree−(d+ 1))
part of in>drl

(g · I). By consequence, for any d ∈ N, R1Jd ⊂ Jd+1 and J is an ideal.
It remains to prove that U =

⋂
d∈N Ud is a Zariski dense open subset of GL (K, n). To this

aim, it suffices to show that U is actually equal to a finite intersections of the Ud. Assume
that J is generated by monomials of degree less than or equal to e. Let g ∈ ⋂e

d=0 Ud for
d = 0, . . . , e we have Jd is the degree−d part of in>drl

(g · I) denoted in>drl
(g · I)d. Since

J is generated by monomials of degree less than or equal to e we have
⊕e

d=0RJd = J and
since in>drl

(g · I) is an ideal we have J =
⊕e

d=0RJd =
⊕e

d=0R in>drl
(g · I)d ⊂ in>drl

(g · I).

2.1. Preliminaries 35

x1

x20

d
=

6

⋄

d
=

7

⋄

⋄

d
=

8

⋄

⋄

⋄

⋄

◦

◦

⋄

⋄

d
=

9

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

d
=

1
0

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

height 2

x1

x20

d
=

6

⋄

d
=

7

⋄

⋄

⋄ d
=

8

⋄

⋄

⋄

⋄

⋄

⋄

d
=

9

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

d
=

1
0

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

d
=

1
1

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

d
=

1
2

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

m ∈ E>drl
(I)

B: Basis of K[x1, . . . , xn]/I

in>drl
(I)

⋄ Generator of in>drl
(I)

d

◦ m ∈ B s.t. deg(m) = deg(⋄) and m >drl ⋄

×
x1

x2

Figure 2.2: Steps of height one and generators of in>drl
(I)d.

Moreover, for any d we have dimK (Jd) = dimK (Id) = dimK (in>drl
(g · I)d). By consequence,

in>drl
(g · I) = J .

The structure of generic initial ideals was first studied by Galligo in [Gal, Gal73] in the
case of fields of characteristic zero. In particular, he shows that if K is a field of characteristic
zero, then the generic initial ideal is Borel fixed.

Definition 2.45. The Borel subgroup of GL (K, n) is the set of invertible upper triangular
matrices and is denotes B.

Later, Bayer and Stillman extend this result in [BS87b] to infinite field of any characteristic.
These results are summarized in the following theorem.

Theorem 2.46 ([Gal73, Gal, BS87b]). If I ⊂ K[x1, . . . , xn] is a homogeneous ideal and K an
infinite field, then Gin (I) is Borel fixed. That is to say for all g ∈ B, g ·Gin (I) = Gin (I).

In [Gal73, Gal] it is also shown that generic initial ideals satisfy the following property.

Property 2.47. Let I be a homogeneous ideal of K[x1, . . . , xn] with K a field of characteristic
zero. Let m ∈ Gin (I) then for all n ≥ j > i ≥ 1 such that xj divides m we have xi

xj
m ∈

Gin (I).

The idea in [Gal73, Gal] was to follow step by step the computation of the DRL Gröbner
basis of g · I by assuming that g is generic enough to ensure that the leading terms of the
polynomials in the DRL Gröbner basis (i.e. the stair of g · I) are the greatest as possible. It
is important to note that, for fields of characteristic zero, it is exactly how the generic initial
ideal is constructed in proof of Theorem 2.42.

36 Chapter 2. Gröbner bases

Indeed, since the field is of characteristic zero, for each integer d the matrix M as in
equation (2.2) associated to g · f1, . . . ,g · ftd has only non zero entries. Hence, the Zariski
open subset U ⊂ GL (K, n) such that for any g ∈ U , in>drl

(g · I) = Gin (I) is constructed
to ensure that the degree−d part of Gin (I) is generated by the td largest possible (w.r.t.
DRL ordering) monomials of degree d. This implies that all the intersections of sections of
RG = K[x1, . . . , xn]/Gin (I) by xd1i1 , . . . , x

dn−2

in−2
have steps of height one (with xj on the x-

axis); where {i1, . . . , in−2} = {1, . . . , n} \ {i, j}, d1, . . . , dn−2 ≥ 0 and 1 ≤ j < i ≤ n. This
is exactly what means Property 2.47. In Figure 2.2 in the case of two variables, we describe
the link between steps of height one and generators of degree-d part of monomials ideals.
Keeping in mind that all the monomials of same degree are on a same diagonal (red line in
Figure 2.2). Moreover, for the DRL ordering, if m1 and m2 are two monomials of same degree
then m1 >drl m2 if and only if m1 is closer than m2 to the axis corresponding to the greatest
variable (here x1).

If the field K is of positive characteristic then some entries of the matrix M as in equa-
tion (2.2) associated to g·f1, . . . ,g·ftd can be zero. Thus, some expected (for the characteristic
zero case) non-zero minors of size td×td may become identically null. In that case, the generic
initial ideal might not satisfy Property 2.47.

Example 2.48. Let us consider the ideal I =
〈
x21, x

2
2

〉
⊂ K[x1, x2] and the matrix

g =

(
g1,1 g1,2
g2,1 g2,2

)
.

Whatever the field K, the degree−2 part of I is of dimension 2 and is generated by f1 = x21
and f2 = x22. To construct the generic initial ideal of I, one looks for the leading term of
g · f1 ∧ g · f2. Hence, we study the minors of size 2× 2 of the matrix representation of g · f1
and g · f2. Let M be such a matrix and p be the characteristic of K one has

M =

g2
1,1 2g1,1g1,2 g2

1,2

x21>drl x1x2 >drl x22

g · f1

g2
2,1 2g2,1g2,2 g2

2,2 g · f2

if p = 0 or p > 2.
Hence, the leading term of g · f1 ∧ g · f2 is
2g1,1g2,1(g1,1g2,2 − g2,1g1,2) · x21 ∧ x1x2.
The degree−2 part of the generic initial
ideal of I is then generated by x21 and x1x2
the two greatest monomials w.r.t. the DRL
ordering of degree 2.
The generic initial ideal of I satisfies

Property 2.47, see its stair below.

x1

x20

M =

g2
1,1 0 g2

1,2

x21>drl x1x2 >drl x22

g · f1

g2
2,1 0 g2

2,2 g · f2

if p = 2.
Hence, the leading term of g · f1 ∧ g · f2 is
(g2

1,1g
2
2,2 + g2

2,1g
2
1,2) · x21 ∧ x22.

The degree−2 part of the generic initial
ideal of I is then generated by x21 and x22.

The generic initial ideal of I does not

satisfy Property 2.47, see its stair below.

◦

x1

x20

2.1. Preliminaries 37

The study of the structure of generic initial ideals in any characteristic has been done by
Pardue in [Par94]. This is summarized in Theorem 2.49. In order to state his result, we need
to introduce a partial order on the integer. The partial order ≺p on the natural numbers is
defined as follows: for any a, b ∈ N, a ≺p b if

(
b
a

)
6≡ 0 mod p. When p = 0 then ≺0 is the

usual total order ≤.

Theorem 2.49 ([Par94]). Let I be a monomial ideal of K[x1, . . . , xn] with K an infinite field
of characteristic p ≥ 0. The monomial ideal I is Borel fixed if and only if for all generators
m of I and for all 1 ≤ i < j ≤ n such that xtj is the largest power of xj dividing m then(

xi

xj

)s
·m ∈ I for all s ≺p t.

Since 1 ≺p t if t 6≡ 0 mod p, from Theorem 2.46 and 2.49 we get the following corollary.

Corollary 2.50. Let I be a homogeneous ideal of K[x1, . . . , xn] with K an infinite field of
characteristic p ≥ 0. Let m ∈ Gin (I) then for all n ≥ j > i ≥ 1 such that xj divides m we
have xi

xj
m ∈ Gin (I) if p = 0 or p > 0 and t 6≡ 0 mod p with xtj is the maximal power of xj

dividing m.

In Chapter 4, we will show that this particular structure of Generic initial ideals allows
to significantly speed up one step in the polynomial systems solving process using Gröbner
bases.

2.1.4 Properties of lexicographical Gröbner bases

Among the many properties of Gröbner bases, one of the most useful property for polyno-
mial systems solving is the particular shape of lexicographical Gröbner bases induces by The
Elimination Theorem.

Definition 2.51 (Elimination order). A monomial ordering on K[x1, . . . , xn], is called an
elimination order w.r.t. the variables {xk, . . . , xn} and denoted >k, if for all f ∈ K[x1, . . . , xn],
LT>k

(f) ∈ K[xk, . . . , xn] implies that f ∈ K[xk, . . . , xn].

Example 2.52. • The lexicographical ordering is an elimination order w.r.t. any set of
variables {xk, . . . , xn} with k = 1, . . . , n.

• A block ordering, >drl,drl w.r.t. the two sets of variables {x1, . . . , xk−1} and {xk, . . . , xn}
defined as follows: xα >drl,drl x

β if x(α1,...,αk−1,0,...,0) >drl x
(β1,...,βk−1,0,...,0) or αi = βi for

i = 1, . . . , k − 1 and x(0,...,0,αk,...,αn) >drl x
(0,...,0,βk,...,βn); is an elimination order w.r.t.

the variables {xk, . . . , xn}.

Theorem 2.53 (The Elimination Theorem [CLO07] page 116). Let I ⊂ K[x1, . . . , xn] be an
ideal and let >k be an elimination order w.r.t. the set of variables {xk, . . . , xn}. Let G>k

be

the Gröbner basis of I w.r.t. >k. Then, G(k)
>k

= G>k
∩K[xk, . . . , xn] is a Gröbner basis of the

k-th elimination ideal I(k) = I ∩K[xk, . . . , xn].

In [CLO07], The Elimination Theorem is stated for the particular case of the LEX ordering.
However, the proof works mutatis mutandis with any elimination order.

A first consequence of The Elimination Theorem is that computing a Gröbner basis w.r.t.
an elimination order allows to perform a polynomial change of variables. Indeed, let f ∈

38 Chapter 2. Gröbner bases

K[x1, . . . , xn]. Assume that there exist h ∈ K[y1, . . . , yn] and g1, . . . , gn ∈ K[x1, . . . , xn] such
that f = h(g1, . . . , gn). Let >n+1 be an elimination order w.r.t. {y1, . . . , yn} of the polynomial
ring K[x1, . . . , xn, y1, . . . , yn]. Let G>n+1 be the Gröbner basis w.r.t. >n+1 of the ideal

I = 〈f, y1 − g1, . . . , yn − gn〉 ⊂ K[x1, . . . , xn, y1, . . . , yn] .

Since, {h} is a basis of I(n+1) we have {h} = G>n+1 ∩ K[y1, . . . , yn]. This procedure is
summarized in Algorithm 2.

Algorithm 2: Applying a polynomial change of variables (1).

Input : g1, . . . , gn ∈ K[x1, . . . , xn] and f ∈ K[x1, . . . , xn] such that there exists
h ∈ K[y1, . . . , yn] satisfying f = h(g1, . . . , gn).

Output: h ∈ K[y1, . . . , yn] such that f = h(g1, . . . , gn).
I := 〈f, y1 − g1, . . . , yn − gn〉 ⊂ K[x1, . . . , xn, y1, . . . , yn];1

Compute G>n+1 be the Gröbner basis of I w.r.t. an elimination order >n+1 w.r.t.2

{y1, . . . , yn};
{h} := G>n+1 ∩K[y1, . . . , yn];3

return h;4

Another similar way to perform polynomial change of variables is to compute G′
>n+1

the
Gröbner basis w.r.t. >n+1 of the ideal 〈y1 − g1, . . . , yn − gn〉 ⊂ K[x1, . . . , xn, y1, . . . , yn]. Then,
h is computed as the remainder of f w.r.t. G′

>n+1
i.e. h = NF>n+1 (f). For more details see

[CLO07, page 341]. This strategy is summarized in Algorithm 3.

Algorithm 3: Applying a polynomial change of variables (2).

Input : g1, . . . , gn ∈ K[x1, . . . , xn] and f ∈ K[x1, . . . , xn].
Output: h ∈ K[y1, . . . , yn] – if it exists – such that f = h(g1, . . . , gn) or fail otherwise.
I := 〈y1 − g1, . . . , yn − gn〉 ⊂ K[x1, . . . , xn, y1, . . . , yn];1

Compute G>n+1 be the Gröbner basis of I w.r.t. an elimination order >n+1 w.r.t.2

{y1, . . . , yn};
h := normal form of f w.r.t. I and the monomial ordering >n+1;3

if h ∈ K[y1, . . . , yn] then Return h;4

else Return fail ;5

The lexicographical ordering is quite specific among the elimination orders. Indeed, the
property to be an elimination order for any set of variables implies that the Gröbner basis
w.r.t. this ordering is very particular.

Proposition 2.54. Let I be an ideal of dimension zero i.e. |VK (I) | <∞. The lexicographical
Gröbner basis of I has the following shape:

Glex =





g1,1(x1, . . . , xn), . . . , g1,s1(x1, . . . , xn)
...

gn−1,1(xn−1, xn), . . . , gn−1,sn−1(xn−1, xn)
gn(xn)





(2.3)

with si > 0 for i = 1, . . . , n− 1.

2.1. Preliminaries 39

Proof. This result is obtained by applying The Elimination Theorem. Indeed, G(n)
lex = Glex ∩

K[xn] is the lexicographical Gröbner basis of the n-th elimination ideal I(n) = I∩K[xn]. Since
I(n) is a principal ideal it is generated by a unique polynomial gn(xn). Moreover, since I is

zero-dimensional gn 6= 0 and G(n)
lex = {gn}. Now, for i = k, . . . , n− 1 assume that

G(i)
lex = {gi,1, . . . , gi,si , . . . , gn−1,1, . . . , gn−1,sn−1 , gn}

with sj > 0 and gj,1, . . . , gj,sj in K[xj , . . . , xn] but not in K[xj+1, . . . , xn] for j = i, . . . , n −
1. We have G(k−1)

lex = Glex ∩ K[xk−1, . . . , xn] = G(k)
lex ∪ {gk−1,1, . . . , gk−1,sk−1

} with gk−1,j ∈
K[xk−1, . . . , xn] for j = 1, . . . , sk−1. Moreover, since I is zero-dimensional we have sk−1 >
0.

Since from Corollary 2.23 the LEX Gröbner basis, G>lex
= {g1, . . . , gr}, of an ideal I =

〈f1, . . . , fs〉 is a basis of I, Proposition 2.10 implies that the solutions of the polynomial
system {f1 = 0, . . . , fs = 0} are exactly the same as the solutions of the polynomial system
{g1 = 0, . . . , gr = 0}. Hence, given the LEX Gröbner basis of 〈f1, . . . , fs〉, solving the system
{f1 = 0, . . . , fs = 0} can be done by solving the system {g1 = 0, . . . , gr = 0}. This can
be done by solving some sequence of univariate polynomials. However, since s1, . . . , sn−1 in
equation (2.3) can be greater than one, the choice of the sequence of univariate polynomials
to solve may be not unique. Some lexicographical Gröbner bases can have a more particular
structure avoiding this ambiguity.

Definition 2.55 (Triangular set). Consider polynomial systems in K[x1, . . . , xn] with x1 >
· · · > xn. The main variable of a polynomial f in K[x1, . . . , xn] is the greatest variable ap-
pearing in f . A set S of n polynomials in K[x1, . . . , xn] is a triangular set if for i ∈ {1, . . . , n}
the main variable of the ith polynomial is xi and if this polynomial seen as a polynomial in xi
is monic. That is to say S has the following shape





xd11 + h1(x1, . . . , xn)
...

x
dn−1

n−1 + hn−1(xn−1, xn)
xdnn + hn(xn)





where degxi
(hi) < di for i = 1, . . . , n where degxi

(f) denotes the degree of f seen as a uni-
variate polynomial in xi.

When the lexicographical Gröbner basis of an ideal I is also a triangular set then there is
a unique sequence of length at most (n− 1)DI + 1 of univariate polynomials to solve to find
the solutions of the system. We recall that DI denotes the degree of I. Otherwise, when the
lexicographical Gröbner basis is not a triangular set then one can use LexTriangular algorithm
of Lazard [Laz92] which given a LEX Gröbner basis computes a set of triangular sets of which
the union of the solutions are the solutions of the input system.

Among the LEX Gröbner basis, some of them are particular triangular sets from which
finding the solutions of the system can be done by solving a unique univariate polynomial.
This particular shape of LEX Gröbner bases is called Shape Position and is defined below.

40 Chapter 2. Gröbner bases

Definition 2.56 (Shape Position). A zero-dimensional ideal I of K[x1, . . . , xn] is said to be
in Shape Position if its LEX Gröbner basis is of the form





x1 − h1(xn)
...

xn−1 − hn−1(xn)
hn(xn)





with deg(hn) = DI and deg(hi) < DI for i = 1, . . . , n− 1 where DI is the number of solutions
of I counted with multiplicities in K, the algebraic closure of K i.e. the degree of I.

From such a LEX Gröbner basis, one can notice that solving a polynomial system can
be done by solving one univariate polynomial and evaluating n− 1 univariate polynomials in
DI points. By consequence, from such a LEX Gröbner basis recovering the solutions of the
system does not require the LexTriangular algorithm and can be done very efficiently. Even
if this shape of LEX Gröbner bases is very particular it is not less common. Indeed, in most
applications the Shape Position is the expected shape of LEX Gröbner bases. Moreover, for
radical ideals the Shape Position property is a generic one.

Lemma 2.57 (Shape Lemma [GM89, Lak90]). Let I ⊂ K[x1, . . . , xn] be a radical ideal of
dimension zero where K is a field of characteristic zero. There exists a Zariski open subset
U ⊂ GL (K, n) such that for all g ∈ U the ideal g · I is in Shape Position.

Proof. Here we only detail the construction of U . For a complete proof of the Shape Lemma
see [GM89, Lak90]. Since I is radical, all its solutions are of multiplicity one. Thus, the
set of solutions of I: {ai = (ai,1, . . . , ai,n) ∈ K

n | fj(a1, . . . , an) = 0, j = 1, . . . , n} is of
cardinality DI . Let g be a given matrix in GL (K, n). We denote by vi = (vi,1, . . . , vi,n) the
point obtained after transformation of ai by g, i.e vi = g · ati. To ensure that g · I admits
a LEX Gröbner basis in Shape Position, g should be such that vi,n 6= vj,n for all couples of
integers (i, j) verifying 1 ≤ j < i ≤ DI . Hence, let g = (gi,j) be a (n×n) matrix of unknowns,
the polynomial PU defining the Zariski open subset U is then given as the determinant of the
Vandermonde matrix associated to vi,n for i = 1, . . . ,DI where vi = (vi,1, . . . ,vi,n) = g · ati.
Therefore, we know exactly the degree of PU which is DI(DI−1)

2 .

Note that a zero-dimensional ideal which is not radical can have a LEX Gröbner basis
in Shape Position and also up to a linear change of coordinates, almost all zero-dimensional
ideals have a LEX Gröbner basis in Shape Position.

Remark 2.58. Any ideal can be represented thanks to a finite basis i.e. a finite sequence
of polynomials. Moreover, the set of sequences of s polynomials of degree d1, . . . , ds can be
viewed as an affine space whose coordinates are given by the coefficients of the polynomials.
Consequently, any ideals can be seen as an element of an affine space. Hence, in case of fields
of characteristic zero we mean by almost all that there exists a Zariski open subset of ideals
satisfying this property.

The characterization of zero-dimensional ideals having a LEX Gröbner basis in Shape
Position after a linear change of coordinates have been done by Becker et al in [BMMT94].
In order to give this characterization we need to introduce some technical definitions not used
elsewhere in this thesis. By consequence, we refer the interested reader to [BMMT94].

2.2. Gröbner bases algorithms 41

2.1.5 What means solving?

Depending on the context, solving a polynomial system has different meanings. We saw
that from a LEX Gröbner basis solving a polynomial system is reduced to solve univariate
polynomials. Hence, the LEX Gröbner basis gives a symbolic representation of the solutions
of a polynomial system from which it is easy to deduce the solutions of the system. Indeed,
extracting the solutions (or an approximation of them) of an univariate polynomial can be
efficiently done. The algorithms to compute such roots have their complexities well handled
and in general they are negligible in comparison to the cost of computing a LEX Gröbner
basis. For more details about solving univariate polynomials in finite fields see [VZGG03]. In
the characteristic zero case, see [Pan02] to find an approximation of all the real roots.

Consequently, in the whole of this thesis, solving a polynomial system means computing the
lexicographical Gröbner basis of the ideal that the system generates. In the 1960s Buchberger
introduced, in his PhD thesis [Buc06, Buc65], the concept of Gröbner bases and the first
algorithm to compute them. Then, in the 1980s the link between linear algebra and Gröbner
bases is highlighted by Lazard in [Laz83] where he proposed the first algorithm using linear
algebra to compute Gröbner bases. Following the work of Lazard, new efficient algorithms
to compute Gröbner bases based on linear algebra have been proposed around the 2000s by
Faugère in [Fau99, Fau02]. The next section is devoted to present the outline of the algorithms
based on linear algebra.

2.2 Gröbner bases algorithms

We first present the algorithm introduced by Lazard in [Laz83] reducing Gröbner bases to
linear algebra. Then, we briefly introduced the improvements by Faugère. Throughout, this
section we equip the ring K[x1, . . . , xn] with the grading Γ.

2.2.1 Lazard’s algorithm

Let 〈f1, . . . , fs〉 = I ⊂ K[x1, . . . , xn] be homogeneous polynomials with di = Γ(fi) for i =
1, . . . , s. The idea of Lazard is to note that the polynomials mfi for all monomials m of
graduation d− di generates the K-vector space Id = I ∩K[x1, . . . , xn]d. Then, from a matrix
representation of these polynomials one can compute a linear basis of Id by computing the
reduced row echelon form of the matrix. Finally, from the linear bases of Ij for j = 0, . . . , d
one can construct a d-Gröbner basis of I as defined below.

Definition 2.59 (d-Gröbner bases). A subset {f1, . . . , fs} of an ideal I ⊂ K[x1, . . . , xn] is a
d-Gröbner basis of I w.r.t. the monomial ordering > if for any f ∈ I with Γ(f) ≤ d we have

LT> (f) ∈ 〈LT> (f1) , . . . ,LT> (fs)〉 .

Proposition 2.60. Let I be a homogeneous ideal and > a monomial ordering. There exists
an integer d0 such that for any d ≥ d0 every d-Gröbner basis of I w.r.t. > is actually a
Gröbner basis of I w.r.t. >.

Hence, the algorithm of Lazard computing d-Gröbner bases allows to compute also Gröbner
bases. In order to present this algorithm we introduce the notion of Macaulay matrix which
is a matrix representation of the polynomials mfi aforementioned.

42 Chapter 2. Gröbner bases

Definition 2.61 (Macaulay matrix). Let F = (f1, . . . , fs) be a sequence of homogeneous
polynomials of K[x1, . . . , xn] with di = Γ(fi). Let > be a monomial ordering on K[x1, . . . , xn].
The Macaulay matrix in graduation d associated to F , denoted Mac>,d (F), is the matrix
with columns are indexed with monomials in K[x1, . . . , xn] of graduation d and arranged in
decreasing order w.r.t. >. A signature (m) is attached to each column with m being the
corresponding monomial of graduation d. The rows of Mac>,d (F) contains all the polynomials
mfi for i = 1, . . . , s and for all monomials m of K[x1, . . . , xn] of graduation d − di. The
signature (m, i) is attached to the row of Mac>,d (F) containing the polynomial mfi. More
precisely, the coefficient of the row (m, i) and column (m′) is the coefficient of the monomial
m′ in the polynomial mfi. The row are arranged in decreasing order as follows

(m, i) ≻ (m′, j) ⇔ i < j or (i = j and m > m′) .

The construction of the Macaulay matrix is depicted in Figure 2.3.

Mac>,d (F) =

mδ > · · · > mj > · · · > m1

f1tδ1,1...
f1t1,1

...
fitδi,k...
fstδs,s...
fst1,s

Coefficient of mj in fitδi,k

m1, . . . ,mδ : monomials of graduation d

t1,i, . . . , tδi,i
: monomials of graduation d − di

Figure 2.3: Macaulay matrix of (f1, . . . , fs) in graduation d w.r.t. >.

We can now describe the algorithm of Lazard (Algorithm 4). We denote by M̃ the reduced
row echelon form of the matrixM . For a proof of completeness (termination is straightforward)
see [Laz83].

Algorithm 4: Computing Gröbner bases by linear algebra: Lazard’s algorithm.
Input : A sequence of homogeneous polynomial (f1, . . . , fs) of K[x1, . . . , xn], an

integer d and a monomial ordering >.
Output: The reduced d-Gröbner basis of 〈f1, . . . , fs〉 w.r.t. >.
G := {};1

for i := min{Γ(f1), . . . ,Γ(fs)} to d do2

M := Mac>,i (f1, . . . , fs);3

mi := column vector of size
(
n+i−1

i

)
containing all the monomials of graduation i in4

K[x1, . . . , xn] arranged in decreasing order w.r.t. >;
Ii := M̃ ·mi;5

G := G∪{h ∈ Ii | for all g ∈ G∪ Ii s.t. g 6= h, LT> (g) does not divide LT> (h)};6

return G;7

When the ideal I is of dimension zero then Algorithm 4 does not need the parameter d to
ensure the termination. Indeed, for zero-dimensional ideals there exists an integer δ such that

2.2. Gröbner bases algorithms 43

all the monomials of graduation d ≥ δ are in in> (I). Hence, at each step i one can check if
all the monomials of degree i are in 〈LT> (g1) , . . . ,LT> (gr)〉 with G = {g1, . . . , gr} to ensure
that G is a Gröbner basis.

Definition 2.62 (Homogenization). Let (w1, . . . , wn) be the weights associated to the grading
Γ. Let f be an affine polynomial of K[x1, . . . , xn]. The homogenization f̄ of f is the polynomial
of K[x1, . . . , xn, x0] equipped with the grading given by the weights system (w1, . . . , wn, 1) with

x1 > · · · > xn > x0 defined by f̄ = xγ0f
(
x1
x0
, . . . , xn

x0

)
where γ = Γ(f).

Remark 2.63. Note that if f1, . . . , fs are affine polynomials one can compute a Gröbner basis
of 〈f1, . . . , fs〉 by using Algorithm 4. Indeed, it suffices to compute a Gröbner basis Ḡ> of〈
f̄1, . . . , f̄s

〉
⊂ K[x1, . . . , xn, x0] then a (possibly non reduced) Gröbner basis G> of 〈f1, . . . , fs〉

is given by evaluating the variable x0 to one in the polynomials in Ḡ>.

In Lazard’s algorithm or Buchberger’s algorithm most of the time is spent to useless
computations i.e. polynomials that are not added to G or rows identically null in the row
echelon form of the matrix in Lazard’s algorithm or equivalently polynomials which are reduced
to zero in Buchberger’s algorithm. The aim of the efficient algorithms to compute Gröbner
bases is to avoid these useless computations.

2.2.2 Efficient algorithms for Gröbner bases: F4 and F5

The principle of F4 algorithm of Faugère is a clever mix between Buchberger’s algorithm and
Lazard’s algorithm. The idea is to follow Buchberger’s algorithm using critical pairs but re-
ducing all the polynomials of same degree at the same time using linear algebra, as in Lazard’s
algorithm. The matrices involved in F4 algorithm are much smaller than in Lazard’s algo-
rithm. Indeed, they are constructed as sub-matrices of the Macaulay matrix by using the
computation at the previous degree to remove useless rows. Moreover, even for ideals of posi-
tive dimension the algorithm F4 does not need in input the parameter d to terminate. Indeed,
as Buchberger’s algorithm it terminates when the set of critical pairs is empty. Although F4

algorithm is more efficient than Lazard’s or Buchberger’s algorithm it does not improve the
complexity in the worst case of computing a Gröbner basis. Since F4 algorithm follows the
principle of Buchberger’s algorithm the Buchberger criterion [Buc06, Buc65, CLO07] allows to
decrease the number of useless computation in comparison to Lazard’s algorithm. However,
useless computations are still the most time consuming step of F4 algorithm. There exists a
powerful theoretical criterion (F5 criterion) to avoid useless computations but it is too costly
to take it into account in F4 algorithm. This criterion allows to determine some useless rows
in the Macaulay matrix. More precisely, it determines some rows that are linear combinations
of the greater rows (w.r.t. the order on the signature of the rows of the Macaulay matrix).
The aim of F5 algorithm is to provide an algorithm computing Gröbner bases with an efficient
implementation of this criterion. More precisely, the aim of F5 algorithm is to construct only
matrices with full rank.

Theorem 2.64 (F5 criterion [Fau02]). Let F = (f1, . . . , fs) be a sequence of homogeneous
polynomials. Let (m, i) be the signature of a row of Mac>,d (F). If m ∈ in> (〈f1, . . . , fi−1〉)
then the row (m, i) is a linear combination of the greater rows i.e. rows with greater signature.

Here, we give only an outline of Matrix F5 algorithm [Fau02, Bar04] which is a variant
of F5 algorithm more convenient for complexity analysis. However, the F5 algorithm is more
efficient.

44 Chapter 2. Gröbner bases

The idea in Matrix F5 algorithm is to add a level of iteration. Indeed, this algorithm still
proceeds degree by degree but to compute the d-Gröbner basis it actually computes all the
d-Gröbner bases of the ideals 〈f1, f2〉 , 〈f1, f2, f3〉 , . . . , 〈f1, . . . , fs〉. The principle is that at
step i we know the linear triangular bases of 〈f1, . . . , fi−1〉∩K[x1, . . . , xn]j for all j = 1, . . . , d.
Hence, using these bases and F5 criterion we can construct a sub-matrix of the Macaulay
matrix in graduation d associated to f1, . . . , fi whose rows also generate the K-vector space
〈f1, . . . , fi〉 ∩K[x1, . . . , xn]d. The particularity of this matrix is that for almost all polynomial
systems it will be of full rank and then we avoid useless computations. We make this statement
more explicit in Theorem 2.67. We give in Algorithm 5 a description of Matrix F5 algorithm.
Note that here the notation M̃ denotes the reduced row echelon form of the matrix M without
permutations of the rows. Moreover, if (f, s) is a couple of polynomial and signature, M cat
(f, s) means the matrix M on which we add (by the bottom) the polynomial f with signature
s. The notation sign(f) denotes the signature of the polynomial f .

Algorithm 5: Computing Gröbner bases by linear algebra: Matrix F5 algorithm.
Input : A sequence of homogeneous polynomials (f1, . . . , fs) of K[x1, . . . , xn] with

di = Γ(fi) and d1 ≤ · · · ≤ ds, an integer d and a monomial ordering >.
Output: A d-Gröbner basis of 〈f1, . . . , fs〉 w.r.t. >.
G := {f1, . . . , fs};1

for j := 1 to d do2

M̃j,0 := empty matrix;3

for i := 1 to n do4

Mj,i := M̃j,i−1;5

if di = j then Mj,i := Mj,i cat (fi, (1, i));6

if j > di then7

for f ∈ M̃j−1,i do8

(m, k) := signature of f ;9

xλ := main variable of m (see Definition 2.55);10

for ℓ := λ to n do11

if xℓm is not a leading monomial of a row of M̃j−di,i−1 then12

Mj,i := Mj,i cat (xℓf, (xℓm, i));13

G := G∪{f ∈ M̃j,i | ∄g ∈ Mj,i s.t. LT> (f) = LT> (g) and sign(f) = sign(g)};14

return G;15

For a proof of completeness or more details about (Matrix) F5 algorithm, see [Fau02,
Bar04].

Definition 2.65 (Regular sequence of polynomials). Let F = (f1, . . . , fs) be a sequence of
non-zero homogeneous polynomials of K[x1, . . . , xn] and s ≤ n. The sequence F is said to be
regular if for all i ∈ {1, . . . , s− 1}, the polynomial fi+1 does not divide 0 in the quotient ring
K[x1, . . . , xn]/〈f1, . . . , fi〉.

From Theorem 2.75 if a sequence of polynomials is regular then any permutation of this
sequence forms a regular sequence of polynomials. Thus, we define a regular polynomial
system as follows.

2.3. Change of ordering algorithms 45

Definition 2.66 (Regular systems). A homogeneous polynomial system {f1, . . . , fs} is said
to be regular if the sequence (f1, . . . , fs) is regular.

Theorem 2.67 ([Fau02]). If the sequence (f1, . . . , fs) is a regular sequence of homogeneous
polynomials then (Matrix) F5 algorithm generates only full rank matrices i.e. there is no
reduction to zero.

Let d0 be the integer such that every d-Gröbner basis of I for d ≥ d0 is a Gröbner
basis of I. The F4 and F5 algorithms have been design for monomial orderings implying
that d0 is not too large. These algorithms are then particularly efficient for graded reverse
lexicographical orderings but they are not efficient to compute lexicographical Gröbner bases
since it may contain a polynomial whose degree is the degree of the ideal. However, we have
seen in Section 2.1.4 that the Gröbner basis interesting for polynomial system solving is the
LEX Gröbner basis. This issue motivates the usefulness of change of ordering algorithms.
These algorithms take as input a Gröbner basis w.r.t. a first monomial ordering and compute
a Gröbner basis of the same ideal w.r.t. a second monomial ordering. For instance, from
the (W)DRL Gröbner basis (that we can compute with F5 algorithm) change of ordering
algorithms allow to compute the LEX Gröbner basis which is more suitable for polynomial
systems solving.

2.3 Change of ordering algorithms

In this section we give a precise description of different change of ordering algorithms. This
section contains the algorithmic tools on which the results of Chapter 4 are based. In 1993,
Faugère et al. showed in [FGLM93] that change of ordering for zero dimensional ideals is
closely related to linear algebra. The next section is devoted to present their algorithm called
FGLM in the literature.

All the ideals considered in this section are of dimension zero and D denotes the degree of
the ideal i.e. the number of solutions counted with multiplicities in an algebraic closure of K.

2.3.1 The FGLM algorithm

This algorithm proceeds in two stages. Let G>1 be the given reduced Gröbner basis w.r.t. the
order >1 of an ideal I in K[x1, . . . , xn]. First, we need to compute the multiplicative structure
of the quotient ring K[x1, . . . , xn]/I seen as the K-vector space V>1 (I), see Proposition 2.28.
That is to say the multiplication matrices T1, . . . , Tn which are a matrix representation of
the linear map Λi of V>1 (I) corresponding to the multiplication by xi in K[x1, . . . , xn]/I.
Once all the multiplication matrices are computed, the second Gröbner basis w.r.t. the new
monomial ordering >2 is recovered by testing linear dependency of well chosen vectors.

Multiplication matrices

We denote by B1 = {ǫD >1 · · · >1 ǫ1 = 1} the canonical basis w.r.t. >1 of K[x1, . . . , xn]/I.
Hence, B1 is constructed as the monomials of K[x1, . . . , xn] that are not divisible by a leading
term of a polynomial in G>1 . To compute the multiplication matrices, we need to compute
the normal forms of all monomials ǫixj where 1 ≤ i ≤ D and 1 ≤ j ≤ n.

46 Chapter 2. Gröbner bases

Proposition 2.68 ([FGLM93]). Let F = {xjǫi | 1 ≤ i ≤ D and 1 ≤ j ≤ n} \ B1 be the
frontier. Let t = ǫixj with i ∈ {1, . . . , D} and j ∈ {1, . . . , n}. We have the following three
cases

I. either t ∈ B1 and NF>1 (t) = t;

II. or t = LT>1 (g) for some g ∈ G>1 hence, NF>1 (t) = t− g;

III. or t = xk t
′ with t′ ∈ F and deg(t′) < deg(t). Hence, if NF>1 (t

′) =
∑s

l=1 αlǫl with
t′ >1 ǫs, NF>1 (t) = NF>1 (xk NF>1 (t

′)) =
∑s

l=1 αl NF>1 (ǫlxk).

From this proposition, it is not difficult to see that the normal form of all the monomials
ǫixj can be easily computed if we consider them in increasing order. Indeed, let t = ǫixj
for some i ∈ {1, . . . , D} and j ∈ {1, . . . , n}. Assume that we have already computed the
normal form of all monomials less than t and of the form ǫi′xj′ . If t is in B1 or is a leading
term of a polynomial in G>1 then its normal form is trivially known. If t is of type (III)
of Proposition 2.68 then t = xkt

′ with t >1 t
′ hence NF>1 (t

′) =
∑s

i=l αlǫl is known. Fi-
nally, NF>1 (t) =

∑s
l=1 αl NF>1 (xkǫl) with xkt

′ = t >1 xkǫl for all l = 1, . . . , s. Thus, the
normal forms of xkǫl are known for all l = 1, . . . , s. This yields the algorithm proposed in
[FGLM93] that we summarize in Algorithm 6. We recall that Φ denotes the isomorphism from
K[x1, . . . , xn]/I to V>1 (I), see equation (2.1). Let M be a matrix, M [∗, i] denotes the ith
column of M .

Algorithm 6: Computing the multiplication matrices: the original algorithm.
Input : A reduced Gröbner basis G>1 w.r.t. the monomial ordering >1 of a zero

dimensional ideal I ⊂ K[x1, . . . , xn].
Output: The multiplication matrices T1, . . . , Tn of V>1 (I).
Compute B1 = {ǫ1, . . . , ǫD} and F = {xiǫj | 1 ≤ i ≤ n and 1 ≤ j ≤ D} \B1;1

F := Sort>1(F) = {t1, . . . , tN};2

T1, . . . , Tn := Null matrix of size D ×D;3

NF := [];4

for i := 1 to D do T1, . . . , Tn := UPDATE(T1, . . . , Tn, ǫi, ǫi);5

for i := 1 to N do6

if there exist g ∈ G>1 such that LT>1 (g) = ti then7

T1, . . . , Tn := UPDATE(T1, . . . , Tn, ti, ti − g);8

NF[ti] := ti − g;9

else10

Find k and tj with j < i such that ti = xktj ;11

v = Φ(NF[tj]); NF[ti] := Φ−1(Tk · v);12

T1, . . . , Tn := UPDATE(T1, . . . , Tn, ti,NF[ti]);13

return T1, . . . , Tn;14

Computing the new basis

The idea in [FGLM93], to compute the new basis is to note that if f =
∑

α cαx
α is a polynomial

in G>2 ⊂ I then its normal form w.r.t. the first ordering is zero. Hence, NF>1 (f) = 0 implies

2.3. Change of ordering algorithms 47

Algorithm 7: UPDATE(T1, . . . , Tn, t, nf)

Input : The multiplication matrices T1, . . . , Tn of V>1 (I) under construction, a
monomial t = xiǫj and its normal form nf.

Output: The multiplication matrices T1, . . . , Tn of V>1 (I) updated with t.
for k = 1 to n do1

if there exists j such that t = xkǫj then Tk[∗, j] := Φ(nf);2

return T1, . . . , Tn;3

that
∑

α cαT
α1
1 · · ·Tαn

n 1 = 0 where 0 is the column vector (0, . . . , 0) and 1 is the column vector
(1, 0, . . . , 0). That is to say there is a linear dependency between the vectors vα = Tα1

1 · · ·Tαn
n 1

such that cα 6= 0. By consequence, the principle of the algorithm is to enumerate the monomial
in increasing order w.r.t. >2 and to compute the corresponding vector in V>1 (I). If there is
a linear combination between these vectors then we can deduce a polynomial in G>2 otherwise
we found an element in the canonical basis w.r.t. >2 of K[x1, . . . , xn]/I.

We now describe more precisely the outline of the algorithm. We denote by B2 the canon-
ical basis w.r.t. >2 of K[x1, . . . , xn]/I. Since I is zero dimensional, D = #B2 ≥ 1 and then
the monomial 1 is certainly the first element of B2. Hence, initially B2 = {ε1 = 1}. We
denote by vm the vector representing the monomial m in V>1 (I) i.e. the coordinates vector
of m w.r.t. B1. The vector v1 (corresponding to the monomial 1) is trivially known and is
(1, 0, . . . , 0). A subset of monomials that are not in B2 is denoted LT and is initially empty
and the Gröbner basis G>2 too.

Then the current monomial to consider is constructed as the minimal monomial w.r.t.
>2 which is on the frontier of the current basis B2 i.e. m = min>2{xiεj | 1 ≤ i ≤ n, εj ∈
B2 s.t. xiεj /∈ B2 ∪ LT}. Following Proposition 2.68, the monomial m can be of three types

1. m has to be inserted in B2;

2. m is a leading monomial of a polynomial g which has to be inserted in G>2 ;

3. m is a strict multiple of a monomial in LT.

Checking the third case is easy since it suffices to check if a monomial in LT divides m. If it
is not the case then to decide if m is of type 1 or 2 it suffices to check the linear dependency
of the vectors vm and vε for all ε ∈ B2. If these vectors are linearly independent then we add
m to B2 otherwise using the linear dependency we construct a polynomial g in I that we add
to G>2 and we add m to LT. FGLM algorithm is summarize in Algorithm 8.

Recently, Faugère and Mou have proposed in [FM11, FM13, Mou13] new change of order-
ing algorithms taking advantage of the sparsity of the multiplication matrices. They proposed
two kinds of algorithms. The first is dedicated to change of ordering from any monomial
ordering to LEX ordering and more precisely to ideals having a LEX Gröbner basis in Shape
Position. As previously mentioned, most ideals (up to a linear change of variables) have a
LEX Gröbner basis in Shape Position. Hence, these algorithms are very useful for polynomial
systems solving. Indeed, since the shape of the expected Gröbner basis is known they design
particularly efficient algorithms. The second kind of algorithm that they proposed is a gen-
eral algorithm for change of ordering for Gröbner bases. Although, their algorithm can be
more efficient in practice than FGLM the total complexity of their algorithm in terms of the
degree of the ideal and the number of variables is not better than the complexity of FGLM.

48 Chapter 2. Gröbner bases

Algorithm 8: A change of ordering algorithm for Gröbner bases: FGLM.
Input : The Gröbner basis G>1 w.r.t. >1 of I ⊂ K[x1, . . . , xn] a zero dimensional

ideal and a monomial ordering >2.
Output: The Gröbner basis G>2 w.r.t. >2 of I.
Compute the multiplication matrices T1, . . . , Tn using Algorithm 6;1

B2 := {ε1 = 1}; v[1] := (1, 0, . . . , 0); LT := ∅; G>2 := ∅;2

L := {xiεj | 1 ≤ i ≤ n, εj ∈ B2 s.t. xiεj /∈ B2 ∪ LT};3

while #L > 0 do4

m := minimum of L w.r.t. the monomial ordering >2;5

if there exists m′ in LT such that m′ divides m then LT := LT∪{m};6

else7

Find xi and εj ∈ B2 such that m = xiεj ;8

v[m] := Ti · v[εj];9

if v[m] and v[εk] for k = 1, . . . ,#B2 are linearly independent then10

B2 := B2 ∪ {m = ε#B2+1};11

else12

LT := LT∪{m};13

Let c0, . . . , c#B2 ∈ K such that c0vm +
∑#B2

k=1 ckv[εk] = (0, . . . , 0);14

G>2 := G>2 ∪ {m+
∑#B2

k=1
ck
c0
εk};15

L := {xiεj | 1 ≤ i ≤ n, εj ∈ B2 s.t. xiεj /∈ B2 ∪ LT};16

return G>2 ;17

Consequently, we do not present this algorithm here but we refer the interested reader to
[FM13, Mou13]. On the other side we give a detailed description of their change of ordering
algorithms dedicated to Shape Position ideals.

In [FM11], Faugère and Mou propose a probabilistic algorithm which given the reduced
Gröbner basis w.r.t. a monomial ordering >1 of an ideal I ⊂ K[x1, . . . , xn] computes the
LEX Gröbner basis – if it is in Shape Position – of I. Later, in [FM13] they proposed a
deterministic version of their algorithm. We now describe these two algorithms. As a first
step, we suppose that the multiplication matrix Tn is known.

2.3.2 Sparse change of ordering for Shape Position ideals: the probabilistic
algorithm

Let G>lex
= {hn(xn), xn−1−hn−1(xn), . . . , x1−h1(xn)} be the LEX Gröbner basis of an ideal

I in Shape Position. Given the multiplication matrices T1, . . . , Tn, an algorithm to compute
the LEX Gröbner basis of I has to find the n univariate polynomials h1, . . . , hn. For this
purpose, we can proceed in two steps. First, the polynomial hn is computed. Then, by using
linear algebra techniques, one computes the other univariate polynomials h1, . . . , hn−1.

Computation of hn

To compute hn one has to compute the minimal polynomial of Tn. To this end, we use the
first part of the Wiedemann probabilistic algorithm which succeeds with good probability if

2.3. Change of ordering algorithms 49

the field K is sufficiently large, see [Wie86].
We recall that Φ denotes the isomorphism from K[x1, . . . , xn]/I to V>1 (I), see equa-

tion (2.1). Let r be a random column vector in KD and 1 = Φ(1) = (1, 0, . . . , 0)t. If
a = (a1, . . . , aD) and b = (b1, . . . , bD) are two vectors of KD, we denote by (a,b) the dot
product of a and b defined by (a,b) =

∑D
i=1 aibi.

Let S = [(r, T j
n1) | j = 0, . . . , 2D − 1] be a linearly recurrent sequence of size 2D. By

using for instance the Berlekamp-Massey algorithm [Mas69], one can compute the minimal
polynomial of S denoted µ. If deg(µ(xn)) = D then we deduce that µ(xn) = hn(xn) ∈ G>lex

since µ is a divisor of hn of maximal degree.
In order to compute efficiently S, we first notice that (r, T j

n1) = (T jr,1) where T = T t
n is

the transpose matrix of Tn. Then, since Tn is assumed to be sparse we compute iteratively all
the matrix-vector products T jr = T (T j−1r) for j := 1, . . . , 2D−1. Then, for j = 0, . . . , 2D−1
the dot product (r, T j

n1) is the first component of the vector T jr.

Recovering h1, . . . , hn−1

We write hi =
∑D−1

k=0 ci,kx
k
n where ci,k ∈ K are unknown. We have for i ∈ {1, . . . , n− 1}:

xi − hi ∈ G>lex
is equivalent to 0 = NF>1

(
xi −

D−1∑

k=0

ci,kx
k
n

)
= Ti1−

D−1∑

k=0

ci,kT
k
n1 .

Multiplying the last equation by T j
n for any j = 0, . . . , (D − 1) and taking the scalar product

with r we deduce that:

0 =
(
r, T j

n(Ti1)
)
−

D−1∑

k=0

ci,k

(
r, T k+j

n 1
)
=
(
T jr, Ti1

)
−

D−1∑

k=0

ci,k

(
T k+jr,1

)
(2.4)

where T = T t
n.

Hence, we can recover h1, . . . , hn−1 by solving n− 1 structured linear systems:




(T 0r, Ti1)
(T 1r, Ti1)

...
(TD−1r, Ti1)


 =




(T 0r,1) (T 1r,1) . . . (TD−1r,1)
(T 1r,1) (T 2r,1) . . . (TDr,1)

...
...

. . .
...

(TD−1r,1) (TDr,1) . . . (T 2D−2r,1)







ci,0
ci,1
...

ci,D−1




bi H ci

(2.5)

Note that the linear system (2.5) has a unique solution since from [JM89] the rank of the
Hankel matrix H is given by the degree of the minimal polynomial of S which is exactly D in
our case. The following lemma tells that we can compute Ti1 without knowing Ti.

Lemma 2.69. For i ∈ {1, . . . , n− 1} the vector Ti1 can be read from G>1 .

Proof. We have to consider the two cases NF>1 (xi) 6= xi or NF>1 (xi) = xi. First, if
NF>1 (xi) 6= xi then there exists g ∈ G>1 such that LT>1 (g) divides xi. This implies that g is
a linear equation:

xi +

n∑

j>i

αi,jxj + αi,0 with αi,j ∈ K . (2.6)

50 Chapter 2. Gröbner bases

Hence, we have NF>1 (xi) = −∑n
j>i αi,jxj − αi,0 and the vector Ti1 = Φ(xi) is given

by Ti1 = −[αi,0, 0, . . . , 0, αi,i+1, . . . , αi,n, 0, . . .]
t. Otherwise, NF>1 (xi) = xi so that Ti1 =

[0, . . . , 0, 1, 0, . . . , 0]t.

Hence, once the vectors T jr have been computed for j = 0, . . . , (2D − 1), one can deduce
directly the Hankel matrix H with no computation, but scalar products would seem to be
needed to obtain the vectors bi. However, by removing the linear equations from G>1 one can
deduce the bi without arithmetic operations since it suffices to extract a component of the
vectors T jr for j ∈ {0, . . . , D − 1}.

Linear equations in G>1

Let denote by L the set of polynomials in G>1 of total degree 1 (usually L is empty). We
define L = {j ∈ {1, . . . , n− 1} such that NF>1 (xj) 6= xj} and Lc = {1, . . . , n− 1}\L so that
{xi | i ∈ L} = LT>1 (L). In other words there is no linear form in G>1 with leading term xi
when i ∈ Lc.

We first solve the linear systems (2.5) for i ∈ Lc: we know from the proof of Lemma 2.69
that Ti1 = [0, . . . , 0, 1, 0, . . . , 0]t. Hence, the components (T jr, Ti1) of the vector bi can be
extracted directly from the vector T jr. By solving the corresponding linear system we can
recover hi(xn) for all i ∈ Lc.

Now we can easily recover the other univariate polynomials hi(xn) for all i ∈ L: by
definition of L we have

li = xi +
∑

j∈Lc

αi,jxj + αi,nxn + αi,0 ∈ L ⊂ G>1 with αi,j ∈ K.

Hence, the corresponding univariate polynomial hi(xn) is simply computed by the formula:

hi(xn) = −
∑

j∈Lc

αi,jhj(xn)− αi,nhn(xn)− αi,0 .

Thus, we have reduced the number of linear systems (2.5) to solve from n− 1 to n−#L− 1.
In the case where L is empty, one still has n− 1 linear systems to solve but from Lemma 2.69
they are freely constructed from the vectors T jr for j ∈ {0, . . . , D − 1}.

We conclude by summarizing the probabilistic algorithm to compute the LEX Gröbner
basis of Shape Position ideals in Algorithm 9.

2.3.3 Sparse change of ordering for Shape Position ideals: the deterministic
algorithm

The part of the Wiedemann algorithm used in Algorithm 9 to compute the minimal polynomial
of Tn can fail (we can find only a factor) if the random vector r is badly chosen. To avoid this
phenomenon and the probabilistic nature of Algorithm 9 we can use the deterministic version
of the Wiedemann algorithm [Wie86]. However, recovering the other polynomials h1, . . . , hn−1

is much more difficult in this case. Here, we first recall the principle of the deterministic version
of the Wiedemann algorithm. Then, we present the algorithm in [FM13] which given an ideal
I in Shape Position computes the LEX Gröbner basis of

√
I. Note that in the context of

polynomial systems solving this is not a restriction since the solutions of
√
I and I are the

same.

2.3. Change of ordering algorithms 51

Algorithm 9: Probabilistic change of ordering algorithm for Shape Position ideals.
Input : The multiplication matrix Tn and the reduced Gröbner basis G>1 w.r.t. >1 of

an ideal I of K[x1, . . . , xn] in Shape Position.
Output: Return the LEX Gröbner basis G>lex

of I or fail.
Randomly choose r in KD;1

v0 := r; T := T t
n;2

for i := 1 to 2D do vi := Tvi−1;3

Deduce the linearly recurrent sequence S = [vi[1] | i = 0, . . . , 2D − 1] and the Hankel4

matrix H ;
hn(xn) := BerlekampMassey(S) ;5

if deg(hn) = D then6

Lc := {j ∈ {1, . . . , n− 1} such that NF>1 (xj) = xj};7

L := {1, . . . , n− 1}\Lc;8

for j ∈ Lc do9

Deduce Tj1 and bj then solve the structured linear system H cj = bj ;10

hj(xn) :=
∑D−1

i=0 cj,ix
i
n where cj,i is the ith component of the vector cj ;11

for j ∈ L do12

hj(xn) := −∑i∈Lc αj,ihi(xn)− αj,nhn(xn)− αj,0 where αj,i is the ith coefficient13

of the linear form whose leading term is xj ;

return [x1 − h1(xn), . . . , xn−1 − hn−1(xn), hn(xn)];14

else return fail ;15

Deterministic computation of hn

Instead of randomly choosing a vector in KD, one can use the canonical vectors

e1 = (1, 0, . . . , 0)t, e2 = (0, 1, 0, . . . , 0)t, . . . , eD = (0, . . . , 0, 1)t .

At each step we consider the linear recurrent sequence Si = [(ei, T
j
nvi) | j = 0, . . . , 2D − 1].

The vector vi is chosen to ensure that the minimal polynomial fi of Si is a factor of hn∏i−1
j=1 fj

.

By consequence, if vi = 0 we know for sure that
∏i−1

j=1 fj = hn. A more precise description of
this algorithm is given in Algorithm 10.

Algorithm 10: Computing hn deterministically.
Input : The multiplication matrix Tn w.r.t. some monomial ordering of an ideal I in

Shape Position.
Output: The univariate polynomial hn of the LEX Gröbner basis of I.
f := 1; v := (1, 0, . . . , 0)t; i := 1; d := D;1

repeat2

S := [(ei, T
j
nv) | j = 0, . . . , 2d− 1];3

µ := Minimal polynomial of S;4

f := fµ; d := D − deg(f); v := f(Tn)1; i := i+ 1;5

until v = 0 ;6

return f ;7

52 Chapter 2. Gröbner bases

Algorithm 10 finishes for sure with r ≤ D iterations and we have hn = f1 · · · fr. Note
that for i = 2, . . . , r the sequence Si is obtained by applying the polynomial f1 · · · fi−1 to
the sequence [(ei, T

j
n1) | j = 0, . . . , 2(D −∑i−1

j=1 d1) − 1] which can be done by multiplying

polynomials, see [Wie86]. By consequence, the only matrix-vector products required are T j
n1

for j = 0, . . . , 2D − 1.

Recovering deterministically h1, . . . , hn−1

Assume the deterministic Wiedemann algorithm returns hn = f1 · · · fr with r ≤ D and
deg fi = di. At the ith step of the algorithm fi is the minimal polynomial of the linearly
recurrent sequence

Si =

[
(ei, T

j
nvi−1) | j = 0, . . . , 2

(
D −

i−1∑

k=1

dk

)
− 1

]

with vi−1 =
∏i−1

k=1 fk(Tn)1 =Mi−11 where Mi−1 =
∏i−1

k=1 fk(Tn). Moreover, we have

Si =

[
(
M t

i−1ei, T
j
n1
)
| j = 0, . . . , 2

(
D −

i−1∑

k=1

dk

)
− 1

]
.

Proposition 2.70 ([FM13]). Let I be an ideal of K[x1, . . . , xn] in Shape Position. Let
T1, . . . , Tn be the multiplication matrices of I associated to the monomial ordering >1. Let v
be some column vector of KD. Let S = [(v, T j

n1) | j = 0, . . . , 2D − 1]. Let f be the minimal
polynomial of S with deg(f) = d < D. Then, J = I + 〈f〉 is also a Shape Position ideal and
for i = 1, . . . , n − 1 the polynomial gi = xi −

∑d−1
k=0 ci,kx

k
n is in the LEX Gröbner basis of J

where (ci,0, . . . , ci,d−1) is the unique solution of the Hankel linear system

(v, T j
nTi1) =

d−1∑

k=0

ci,k(v, T
k+j
n 1) for j = 0, . . . , d− 1 .

By consequence, from the previous proposition for i = 1, . . . , r the LEX Gröbner basis of
I + 〈fi〉 can be computed by solving the n− 1 following Hankel linear systems











(ei, T
0
nMi−1Tk1)

(ei, TnMi−1Tk1)
...

(ei, T
di−1
n Mi−1Tk1)











=











(ei, T
0
nvi−1) (ei, T

1
nvi−1) . . . (ei, T

di−1
n vi−1)

(ei, T
1
nvi−1) (ei, T

2
nvi−1) . . . (ei, T

di
n vi−1)

...
...

. . .
...

(ei, T
di−1
n vi−1) (ei, T

di
n vi−1) . . . (ei, T

2(di−1)
n vi−1)





















ci,k,0
ci,k,1

...
ci,k,di−1











bi,k Hi ci,k

(2.7)
with k ∈ {1, . . . , n − 1}. Note that the Hankel matrices Hi are deduced with no cost from
Si. From Lemma 2.69, the vector wk = Tk1 can be computed without knowing Tk. To
compute the vectors bi,k for i ∈ {1, . . . , r} and k ∈ {1, . . . , n−1} we first compute the matrix-
vector products T j

nwk for j = 0, . . . , D − 1. Then, we extract the linearly recurrent sequence
Si,k = [(ei, T

j
nwk) | j = 0, . . . , D − 1]. Finally, from [Wie86] by applying the polynomial

f1 · · · fi−1 on Si,k we obtain the sequence [(ei, T
j
nMi−1wk) | j = 0, . . . , D − 1] from which we

can read the vector bi,k.

2.4. Complexity 53

Finally, if {x1 − g1,i, . . . , xn−1 − gn−1,i, fi} is the LEX Gröbner basis of I + 〈fi〉 then for
j = 1, . . . , n− 1 the polynomials hj satisfies the following equation set:





hj ≡ gj,1 mod f1
...

hj ≡ gj,r mod fr

(2.8)

which can be solved using the Chinese Remainder Theorem, CRT for short, if all the fi’s are
pairwise coprime. When the ideal I is itself radical then hn is square free and consequently
all the fi’s are pairwise coprime. If I is not radical then the CRT could not apply directly.
However one can construct equation sets solvable by the CRT whose solutions gives the LEX
Gröbner basis of

√
I. For more details we refer the interested reader to [FM13].

2.3.4 Computation of Tn

One can notice that the two algorithms for Shape Position ideals (deterministic and proba-
bilistic) take in input only the multiplication matrix Tn. The authors of [FM13, FM11] do not
investigate the issue of computing the multiplication matrices except the computation of Tn
in the generic case and when the first monomial ordering is the DRL ordering. More precisely
they showed the following result.

Proposition 2.71 ([FM13]). Let I be a generic ideal. Under the Moreno-Socías conjec-

ture (Conjecture 2.40), the matrix representation of the multiplication by xn in V>drl
(I), can

be read from G>drl
without arithmetic operation.

The last section of this chapter is devoted to the complexity analysis of polynomial systems
solving by using Gröbner bases.

2.4 Complexity

Two important steps in the process of solving polynomial systems by using Gröbner bases is
the computation of a first Gröbner basis w.r.t. a well-chosen ordering. Then, the computation
of the LEX Gröbner basis is handled by a change of ordering algorithm. For this reason, we
first investigate the complexity of Gröbner bases algorithms presented in Section 2.2. Then,
we study the complexity of change of ordering algorithms presented in Section 2.3. Finally,
the total complexity of polynomial systems solving is summarized.

In this thesis, all the systems we want to solve are of dimension zero. Hence, from now
on we consider only zero dimensional ideals. Moreover, all the complexities mentioned in this
thesis are arithmetic complexity that is which counts the number of operations in the field K.

2.4.1 Gröbner bases algorithms

Since Gröbner bases algorithms have been design to graded reverse lexicographical ordering, we
investigate their complexity only in the case of the WDRL ordering (including DRL ordering).
Moreover, we have seen in Section 2.2 that Gröbner bases algorithms have been designed
for homogeneous ideals. For this reason, we first study the complexity of Gröbner bases
algorithms when the input ideal is homogeneous. Then, we will explain how this complexity
can be extended to affine ideals.

54 Chapter 2. Gröbner bases

We have seen that Lazard algorithm and the Matrix F5 algorithm take as input a parameter
d and return a d-Gröbner basis. In order to obtain the Gröbner basis of the ideal we need
to chose d large enough to ensure that the d-Gröbner basis is actually the Gröbner basis of
the ideal. In F4 or F5 algorithm this parameter is not needed since they use the principle of
critical pairs whose set becomes for sure empty once the Gröbner basis is computed. Anyway,
the complexity of all these algorithms depends on the maximal graduation (i.e. degree or
weighted degree) reached by the polynomials in the expected Gröbner basis. A common tool
to estimate this degree is the Hilbert Series associated to K[x1, . . . , xn]/I.

Hilbert series

Definition 2.72 (Hilbert function and Hilbert series). Let I be a homogeneous ideal of R =
K[x1, . . . , xn]. Let Γ be a grading on R. We denote by Rd the set of homogeneous (w.r.t. Γ)
polynomials of graduation d of R and Id = I ∩Rd. The Hilbert function of I is defined by

HFR/I : N → N
d 7→ dimK (Rd/Id) = dimK(Rd)− dimK(Id)

and the Hilbert series of I is defined by HSR/I (z) =
∑∞

d=0HFR/I (d) z
d ∈ N[[z]].

Recall that in our context I is a zero dimensional ideal. Consequently, for any monomial
ordering > the canonical basis of R/I seen as a K-vector space is finite and its size is equal
to the degree of the ideal. By consequence, it is worth noting that for i = 1, . . . , n there
exists an integer ni ≥ 1 such that xni

i ∈ in> (I). Therefore, there exists an integer d such
that for all i ≥ d and for all monomial m ∈ Ri, m ∈ in> (I) i.e. dimK(Ri) = dimK(in> (I)i).
Moreover, from [CLO07, p.463] for any monomial ordering >, the initial ideal in> (I) has the
same Hilbert function as I. Consequently, for zero-dimensional ideal the Hilbert series of I is
in fact a polynomial. Furthermore, since the coefficient of zd in the Hilbert series of I is the
dimension of Rd/ in> (I)d that is the number of monomials in Rd that are in the canonical
basis of V> (I) we have that DI = HSR/I (1) for zero dimensional ideals.

Definition 2.73 (Degree of regularity). Let I be a homogeneous zero dimensional ideal in
the polynomial ring R = K[x1, . . . , xn] equipped with the weighted degree with weights system
(w1, . . . , wn). The degree of regularity of I, denoted dreg (I), is defined as follows

dreg (I) = deg(HSR/I (z)) + max
i=1,...,n

{wi} .

That is to say, when using the usual degree, dreg (I) is the minimal graduation such that
dimK(Ri) = dimK(Ii) for all i ≥ dreg (I).

The following proposition allows to bound the maximal graduation reached by the poly-
nomials in the reduced Gröbner basis w.r.t. any monomial ordering of homogeneous ideals.

Proposition 2.74 ([FSV13, Laz83]). Let I ⊂ K[x1, . . . , xn] be a homogeneous zero dimen-
sional ideal. For any monomial ordering, the degree of regularity dreg (I) bounds the graduation
of all the polynomials in the reduced Gröbner basis of I.

Proof. Let > be any monomial ordering and G> the reduced Gröbner basis of I w.r.t. this
monomial ordering. Assume there is a polynomial f ∈ G> such that Γ(f) > dreg (I) then there
exists a monomial m such that deg(HSR/I (z)) < Γ(m) ≤ dreg (I) which divides LT> (f).
Moreover, since deg(HSR/I (z)) < Γ(m) then m ∈ in> (I) thus there exists g ∈ G> such that
LT> (g) divides m and LT> (f). This contradicts the fact that G> is reduced.

2.4. Complexity 55

The Hilbert series of ideals generated by a regular sequence of polynomials is well under-
stood. More precisely, we have the following result.

Theorem 2.75 ([Sta78] cor. 3.3, [Bar04, Spa12]). Let I = 〈f1, . . . , fs〉 with s ≤ n and
F = (f1, . . . , fs) be a sequence of homogeneous polynomials in R = K[x1, . . . , xn] equipped
with the weighted degree with weights system (w1, . . . , wn) (possibly (1, . . . , 1)). Then, the
three following statements are equivalent:

1. F is a regular sequence;

2. the dimension of I is n− s;

3. the Hilbert series of I is HSR/I (z) =
∏s

i=1(1−zwdeg(fi))
∏n

i=1(1−zwi)
.

Corollary 2.76. Let I = 〈f1, . . . , fn〉 with F = (f1, . . . , fn) is a sequence of homogeneous
polynomials in R = K[x1, . . . , xn] equipped with the weighted degree with weights system
(w1, . . . , wn). If I is of dimension zero (i.e. F is a regular sequence) then,

• (weighted) Bézout’s bound: DI = HSR/I (1) =
∏n

i=1 wdeg(fi)∏n
i=1 wi

;

• (weighted) Macaulay bound: dreg (I) = maxi=1,...,n{wi}+
∑n

i=1(wdeg(fi)− wi).

Homogeneous ideals

The usual complexity bound to compute Gröbner bases is a bound on the complexity of
Lazard’s algorithm which is easy to analyse. However, this bound is not tight since it does not
take into account the improvements in F5 algorithm (all the matrices are of full rank). Also this
complexity does not take into account the structure of the Macaulay matrices (generalization
of a Sylvester matrix). A precise analysis of Matrix F5 algorithm have been done by Bardet
during her PhD thesis. More precisely, with her co-authors she obtained the following result.

Theorem 2.77 ([Bar04, BFSY05, BFS04]). Let I = 〈f1, . . . , fn〉 be a homogeneous ideal of
dimension zero in R = K[x1, . . . , xn] equipped with the usual degree. The arithmetic complexity
of computing the reduced Gröbner basis (for any monomial ordering) of I is bounded by

O




dreg(I)∑

d=0

(
n+ d− 1

d

)(n∑

i=1

(
n+ d− deg(fi)− 1

d− deg(fi)

))((
n+ d− 1

d

)
−HFR/I (d)

)ω−2



arithmetic operations in K. This bound can be bounded by the complexity of Lazard’s algorithm:

O

(
ndreg (I)

(
n+ dreg (I)− 1

n− 1

)ω)
≤ O

(
n

(
n+ dreg (I)

n

)ω)
. (2.9)

Note that the complexity of Matrix F5 algorithm or Lazard’s algorithm strongly relies on
the maximal graduation reached by the polynomials. From Proposition 2.74 for homogeneous
ideals whatever the monomial ordering, the degree of regularity bounds this graduation which
explains why the complexity estimates of the above theorem do not depend of the monomial
ordering.

56 Chapter 2. Gröbner bases

The complexity of computing a Gröbner basis when the polynomial ring is equipped with
the weighted degree has been tackled in [FSV13]. They obtain rigorous bound on the complex-
ity of Matrix F5 algorithm (analogous to that in the previous theorem for the usual degree)
but here we give only the one that we will use that is the upper bound obtained from Lazard’s
algorithm. The difference between the complexity of Lazard’s algorithm for the usual degree
and the weighted degree is the size of the Macaulay matrix in graduation d. Indeed, for a fixed
system of weights (w1, . . . , wn) there are less monomials of weighted degree d than monomials
of degree d (about

∏n
i=1wi times less).

Theorem 2.78 ([FSV13]). Let I = 〈f1, . . . , fn〉 be a homogeneous ideal of dimension zero in
R = K[x1, . . . , xn] equipped with the weighted degree with the weights system (w1, . . . , wn). The
arithmetic complexity of computing the reduced Gröbner basis (for any monomial ordering) of
I is bounded by

O

(
ndreg (I)

(
gcdi=1,...,n{wi}∏n

i=1wi

(
dreg (I) + Sn − 1

n− 1

))ω)

≤ O

(
n

(
gcdi=1,...,n{wi}∏n

i=1wi

(
dreg (I) + Sn

n

))ω)
(2.10)

arithmetic operations where Sn is defined by S1 = 0 and Si = Si−1 + wi
gcdj=1,...,i−1{wj}

gcdj=1,...,i{wj}
for

i ≥ 2.

Affine ideals

The case of affine ideals is more difficult to handle. Let I = 〈f1, . . . , fn〉 be an affine ideal
of dimension zero i.e. f1, . . . , fn ∈ K[x1, . . . , xn] are affine polynomials. To compute the
Gröbner basis of I w.r.t. some monomial ordering one can compute the Gröbner basis of
the homogenization of I which is Ī =

〈
f̄1, . . . , f̄n

〉
⊂ K[x1, . . . , xn, x0]. However, even if the

sequence (f̄1, . . . , f̄n) is regular we cannot apply the result of homogeneous ideals since in that
case Ī is of dimension 1.

Moreover, for affine systems in contrary to homogeneous systems, some polynomials of
graduation d in the ideal can be obtained by combination of polynomials of higher graduation
i.e.

f =

n∑

i=1

hifi and ∃i ∈ {1, . . . , n} such that Γ(hifi) > d and Γ(f) = d . (2.11)

As this phenomenon, called degree fall, is difficult to anticipate, the complexity of Gröbner
bases algorithms is very hard to handle and there is no general tight bound on this complexity.
Indeed, the so-called normal strategy in F4 or F5 algorithm consists of considering critical pairs
by increasing graduation. At step d if a degree fall occurs then instead of considering next
critical pairs of graduation d + 1 we have to restart from the graduation of the degree fall.
For affine systems, one can also apply Lazard’s algorithm directly (obviously with Macaulay
matrices containing affine polynomials so their columns are indexed with all the monomials of
graduation less than or equal to d). However, Lazard’s algorithm does not take into account
degree falls hence to compute the Gröbner basis we have to consider higher graduations than
using F4 or F5 algorithms and no bound are known on the minimal graduation to consider.

Nevertheless, for some classes of affine polynomial systems this phenomenon of degree
falls does not occur and the complexity of Gröbner bases algorithms are well handled. In

2.4. Complexity 57

the literature [Eis95], the definition of affine regular systems is exactly the same as for the
homogeneous case. However, under this hypothesis there is no guarantee that degree falls
cannot occur. Let f (h)i be the homogeneous components of highest graduation of fi. If

F (h) = (f
(h)
1 , . . . , f

(h)
n) form a regular sequence then it is shown in [Bar04, BFS04] that no

degree fall can occur when computing the Gröbner basis w.r.t. a graded ordering (obviously
the grading of the order is also the same grading as that of which K[x1, . . . , xn] is equipped

i.e. which defines f (h)i). By consequence, we use the following definition for affine regular
systems.

Definition 2.79 (Affine regular systems). Let F = (f1, . . . , fn) be a sequence of non-zero
affine polynomials of K[x1, . . . , xn]. The sequence F is said to be regular if the sequence

F (h) = (f
(h)
1 , . . . , f

(h)
n) is regular. An affine polynomial system is said to be regular if it is

defined by an affine regular sequence.

In the case where no degree fall can occur, the algorithms to compute Gröbner bases
perform exactly the same computations to compute the Gröbner basis of I as to compute the

Gröbner basis of I(h) =
〈
f
(h)
1 , . . . , f

(h)
n

〉
except that the Macaulay matrices (or sub-matrices of

Macaulay matrices) are larger. That is to say their column are indexed with all the monomials
of graduation less than or equal to d instead of the monomials of graduation exactly d. By
consequence, we use the following definition, introduced in [Bar04], of degree of regularity for
affine systems.

If (f
(h)
1 , . . . , f

(h)
n) is regular then I(h) is of dimension zero as I. Hence, in [Bar04] the

following definition of degree of regularity for affine systems is introduced.

Definition 2.80 (Degree of regularity of affine systems). Let I = 〈f1, . . . , fn〉 be an affine

ideal in K[x1, . . . , xn] such that (f (h)1 , . . . , f
(h)
n) is a regular sequence. The degree of regularity

of I is dreg (I) = dreg
(
I(h)

)
.

Proposition 2.81 ([Bar04]). Let I = 〈f1, . . . , fn〉 be an affine ideal in K[x1, . . . , xn] such

that (f
(h)
1 , . . . , f

(h)
n) is a regular sequence. The degree of regularity dreg (I) of I bounds the

graduation of all the polynomials in the reduced Gröbner basis of I w.r.t. a graded ordering
(e.g. graded reverse lexicographical ordering).

Consequently, the arithmetic complexity of computing Gröbner bases w.r.t. graded order-
ings of ideals generated by an affine regular sequence is then given by replacing n by n+ 1 in
the complexity for homogeneous regular ideals. For the case of weighted degree the (n+ 1)th
weight is then 1. This is summarized in the following corollary.

Corollary 2.82. Lets fix Γ a grading on R = K[x1, . . . , xn]. Let I = 〈f1, . . . , fn〉 ⊂ R be an

affine ideal such that (f (h)1 , . . . , f
(h)
n) is a regular sequence (i.e. from Theorem 2.75 I(h) is of

dimension zero). The arithmetic complexity of computing the reduced Gröbner basis w.r.t. a
graded ordering (whose grading is Γ) of I is bounded by

O

(
ndreg (I)

(
n+ dreg (I)

n

)ω)
≤ O

(
n

(
n+ dreg (I) + 1

n+ 1

)ω)
(2.12)

when Γ is the usual degree and

O

(
ndreg (I)

(
1∏n

i=1wi

(
dreg (I) +

∑n
i=1wi − 1

n

))ω)

58 Chapter 2. Gröbner bases

≤ O

(
n

(
1∏n

i=1wi

(
dreg (I) +

∑n
i=1wi

n+ 1

))ω)
(2.13)

when Γ is the weighted degree equipped with the weights systems (w1, . . . , wn).

Actually, it seems that the complexity of computing Gröbner bases of affine ideals w.r.t.
any graded monomial ordering is given by the complexity of computing the Gröbner basis
of I(h) without paying the price of larger matrices. This is the statement of the following
theorem from a work in progress by Bardet, Faugère and Salvy.

Theorem 2.83. Lets fix Γ a grading on R = K[x1, . . . , xn]. Let I = 〈f1, . . . , fn〉 ⊂ R be an

affine ideal such that (f (h)1 , . . . , f
(h)
n) is a regular sequence (i.e. from Theorem 2.75 I(h) is of

dimension zero). The arithmetic complexity of computing the reduced Gröbner basis w.r.t. a
graded ordering (whose grading is Γ) of I is bounded by

O

(
ndreg (I)

(
n+ dreg (I)− 1

n− 1

)ω)
≤ O

(
n

(
n+ dreg (I)

n

)ω)
(2.14)

when Γ is the usual degree and

O

(
ndreg (I)

(
gcdi=1,...,n{wi}∏n

i=1wi

(
dreg (I) + Sn − 1

n− 1

))ω)

≤ O

(
n

(
gcdi=1,...,n{wi}∏n

i=1wi

(
dreg (I) + Sn

n

))ω)
(2.15)

when Γ is the weighted degree equipped with the weights systems (w1, . . . , wn), Sn is defined by

S1 = 0 and Si = Si−1 + wi
gcdj=1,...,i−1{wj}

gcdj=1,...,i{wj}
for i ≥ 2.

In contrary to the computation of a Gröbner basis, for any classes of polynomial systems,
the complexity of the second step in the resolution of polynomial systems is well understood.
This is what we present in the next section.

2.4.2 Change of ordering

Complexity of the FGLM algorithm

As mentioned in Section 2.3.1, FGLM algorithm is split into two steps: the computation of
the multiplication matrices and then the computation of the new basis.

It is not difficult to see that the complexity of computing the multiplication matrices,
Algorithm 6, is dominated by the cost of computing the normal forms of monomials of the
form xiǫj that are neither in the canonical basis B1 nor in the stair of I w.r.t. >1. That is to
say monomials of type (III) of Proposition 2.68. Since, each of these normal forms is computed
by a matrix-vector product of size (DI ×DI)× (DI × 1) and the number of monomials of the
form xiǫj is bounded by nD we get the following result.

Proposition 2.84 ([FGLM93]). Given the reduced Gröbner basis w.r.t. a monomial ordering
>1 of a zero-dimensional ideal I in K[x1, . . . , xn] the complexity of computing the n multipli-
cation matrices T1, . . . , Tn (i.e. a matrix representation of the multiplication by x1, . . . , xn in
V>1 (I)) i.e. the complexity of Algorithm 6 can be bounded by O(nD3

I) arithmetic operations.
Where DI denotes the degree of I.

2.4. Complexity 59

Let Φ be the isomorphism from K[x1, . . . , xn]/I to V>1 (I). Given the n multiplication
matrices, the complexity of FGLM, Algorithm 8, is given by the complexity of testing the
linear dependency of Φ(m) with Φ(εi) for all m in B2 or in E>2 (I) and for all m >2 εi ∈ B2.
Note that if a row echelon form of the matrix containing the vector Φ(εi) for all εi ∈ B2 already
computed is maintained, then one linear dependency test can be done in O(D2

I) arithmetic
operations. Moreover, from [FGLM93] the number of polynomials in any reduced Gröbner
basis is bounded by nDI . Then we obtain the following result.

Theorem 2.85 ([FGLM93]). Given the reduced Gröbner basis w.r.t. a monomial ordering >1

of a zero-dimensional ideal I in K[x1, . . . , xn] and a monomial ordering >2; the complexity of
computing the reduced Gröbner basis of I w.r.t. >2 i.e. the complexity of Algorithm 8 can be
bounded by O(nD3

I) arithmetic operations. Where DI denotes the degree of I.

Probabilistic change of ordering for Shape Position ideals

Let I be an ideal in Shape Position and let G>1 be the reduced Gröbner basis of I w.r.t. the
monomial ordering >1. Let Tn be the multiplication matrix by xn in V>1 (I). The complexity
of Algorithm 9 to compute the LEX Gröbner basis of I given G>1 and Tn is given by the
complexity of computing the matrix-vector product (T t

n)
jr for j = 0, . . . , 2DI − 1 and the

complexity of solving at most n linear Hankel systems.

Theorem 2.86 ([FM11],[FM13],[Mou13]). Let I ⊂ K[x1, . . . , xn] be an ideal in Shape Po-
sition. Given the reduced Gröbner basis of I w.r.t. >1 and the multiplication matrix by the
smallest variables in V>1 (I), there exists a probabilistic algorithm computing the LEX Gröb-
ner basis of I in O(#TnDI+n log2(DI)

2DI log2 log2(DI)) arithmetic operations. Where #Tn
denotes the number of nonzero entries in Tn and DI the degree of I.

If the first monomial ordering is the DRL ordering, from Proposition 2.71, for generic ideals
the multiplication matrix Tn can be computed without arithmetic operations. This yields the
following result.

Corollary 2.87 ([FM13],[Mou13]). Let I = 〈f1, . . . , fn〉 ⊂ K[x1, . . . , xn] be an ideal in Shape
Position with (f1, . . . , fn) a generic sequence of polynomials. Given the reduced Gröbner ba-
sis of I w.r.t. DRL ordering, under the Moreno-Socías conjecture (Conjecture 2.40),
there exists a probabilistic algorithm computing the LEX Gröbner basis of I in O(#TnDI +
n log2(DI)

2DI log2 log2(DI)) arithmetic operations. Where #Tn denotes the number of nonzero
entries in the multiplication matrix Tn and DI the degree of I. When f1, . . . , fn are of same
degree d tending to infinity and n is fixed (still under the Moreno-Socías conjecture) the per-

centage of non-zero entries in Tn is ∼
√

6
nπd2

. Hence, the complexity of computing the LEX

Gröbner basis is bounded by O

(√
6
nπD

2+n−1
n

I

)
arithmetic operations.

Deterministic change of ordering for Shape Position ideals

The complexity to compute the univariate polynomial hn is given by the complexity of com-
puting the first linear recurrent sequence S1 = [(e1, T

j
n1) | j = 0, . . . , 2DI − 1] and the

complexity of the deterministic version of the Wiedemann algorithm. The cost to compute
S1 is the cost to compute the matrix-vector products T j

n1 for j = 0, . . . , 2DI − 1. That is

60 Chapter 2. Gröbner bases

to say O(#TnDI) arithmetic operations. From [Wie86], the other linearly recurrent sequence
Si for i = 1, . . . , r ≤ DI can be computed by applying the polynomial f1 · · · fi−1 to the
sequence Si−1 in O(DI log2DI log2 log2DI) arithmetic operations. Moreover, the Berlekamp-
Massey algorithm computes the minimal polynomial of Si in O(DI log2(DI)

2) arithmetic
operations, see [BGY80, JM89]. Consequently, computing the polynomial hn can be done in
O(#TnDI +D2

I log2DI log2 log2DI) arithmetic operations.
Then, if the Wiedemann algorithm returns hn = f1 · · · fr, for i = 1, . . . , r ≤ DI we

have to compute n Hankel linear systems of size (di × di) with di = deg(fi). This can be
done in O

(∑r
i=1 ndi log2(di)

2
)
≤ O

(
n log2(DI)

2
∑r

i=1 di
)
= O

(
n log2(DI)

2DI

)
arithmetic

operations. The Hankel matrices Hi for i = 1, . . . , r are deduced with no cost from the linearly
recurrent sequence Si. The construction of the vectors bi,k for i = 1, . . . , r and k = 1, . . . , n
follows the same idea as in the Wiedemann algorithm (except we do not need the minimal
polynomial of the sequence that we compute). First we compute the matrix-vector product
T j
n(Tk1) for j = 0, . . . ,DI − 1 and k = 1, . . . , n in O(nDI#Tn) arithmetic operations. Then

the linearly recurrent sequences Si,k = [(ei, T
j
nTk1) | j = 0, . . . ,DI − 1] for i = 1, . . . , r and

k = 1, . . . , n are deduced with no cost. Finally, for i = 1, . . . , r and k = 1, . . . , n the vectors
bi,k are obtained by applying f1 · · · fi−1 on Si,k in O

(
nD2

I log2DI log2 log2DI

)
arithmetic

operations. Finally, the total complexity to compute the LEX Gröbner basis of I + 〈fi〉 for
i = 1, . . . , r is bounded by O

(
nDI#Tn + nD2

I log2DI log2 log2DI

)
arithmetic operations.

Finally, from the LEX Gröbner basis of I + 〈fi〉 for i = 1, . . . , r recovering the LEX
Gröbner basis of the radical of I can be done in O(nD2

I+D2
I logDI) (+O(DI log2

q
p) if K = Fq

with q = pk coming from the complexity of computing the square-free part of a polynomial)
arithmetic operations, see [FM13, Mou13] for more details. The following theorem summarized
the total complexity of the deterministic algorithm for change of ordering for Shape Position
ideals.

Theorem 2.88 ([FM13, Mou13]). Let I ⊂ K[x1, . . . , xn] be an ideal in Shape Position. Given
the reduced Gröbner basis of I w.r.t. some monomial ordering >1 and the multiplication matrix
Tn, there exists a deterministic algorithm computing the LEX Gröbner basis of I in

• O
(
nDI#Tn + nD2

I log2DI log2 log2DI

)
arithmetic operations if K is a field of charac-

teristic zero;

• O
(
nDI#Tn + nD2

I log2DI log2 log2DI +DI log2
q
p

)
arithmetic operations if K is a fi-

nite field of characteristic p and size q;

where DI is the degree of I and #Tn is the number of nonzero entries in Tn.

Since the deterministic algorithm still takes as input only the multiplication matrix Tn,
we get the following result.

Corollary 2.89. Let I = 〈f1, . . . , fn〉 ⊂ K[x1, . . . , xn] be an ideal in Shape Position with
(f1, . . . , fn) a generic sequence of polynomials. Given the reduced Gröbner basis of I w.r.t.
DRL ordering, under the Moreno-Socías conjecture (Conjecture 2.40), there exists a
deterministic algorithm computing the LEX Gröbner basis of I in

• O
(
nDI#Tn + nD2

I log2DI log2 log2DI

)
arithmetic operations if K is a field of charac-

teristic zero;

2.4. Complexity 61

• O
(
nDI#Tn + nD2

I log2DI log2 log2DI +DI log2
q
p

)
arithmetic operations if K is a fi-

nite field of characteristic p and size q.

Where #Tn denotes the number of nonzero entries in the multiplication matrix Tn and DI

the degree of I. When f1, . . . , fn are of same degree d tending to infinity and n is fixed (still

under the Moreno-Socías conjecture) the percentage of non-zero entries in Tn is ∼
√

6
nπd2

.

Hence, the complexity of computing the LEX Gröbner basis is bounded by O

(√
6n
π D2+n−1

n

I

)

(+O(DI log2
q
p) if K = Fq with q = pk) arithmetic operations.

We conclude this chapter by summarizing our strategy and its complexity for polynomial
systems solving using Gröbner bases.

2.4.3 Polynomial systems solving

Given a set of polynomial equations S = {f1, . . . , fs} ⊂ K[x1, . . . , xn] solving this system has
many meanings which depends especially on the field K. For this reason, in order to stick to
the most general case throughout this thesis we mean by solving computing the LEX Gröbner
basis of the ideal 〈f1, . . . , fs〉 = I. From this, since in our context I is of dimension zero,
the resolution of the system is reduced to solve univariate polynomials of degree at most the
degree of the ideal. Hence, for completeness we give, in Table 2.1, the complexity to solve a
univariate polynomial for different meanings of solving. The notation Õ means that we neglect
logarithmic factors in the degree of the polynomial and depending on the field also the size of
the coefficients.

K Meaning of solving Complexity

Fq
Enumerate all the solutions in Fq O(d log2 d log dq log log d) [VZGG03, p.382]
Enumerate all the solutions in Fq O(d2 log2 d log q log log d) [VZGG03, p.382]

Q Enumerate all the roots in Q Õ(d2s) [VZGG03, p.444]

C
Approximation with precision

O(d log2 d(log2 d+ log b)) [Pan02]
O(b) bits of all the complex roots

Table 2.1: Complexity to solve a univariate polynomial of degree d in number of operations in
K. When K = Q, s denotes the size of the coefficients of the polynomial and the complexity
is given in number of word operations.

To compute the LEX Gröbner basis of 〈S〉, we use the usual algorithm (Algorithm 11)
which consists of first fixing a grading on K[x1, . . . , xn] and computing the graded reverse lexi-
cographical Gröbner basis of 〈S〉. Then, using a change of ordering algorithm we can compute
the lexicographical Gröbner basis of 〈S〉. According to the complexity of F5 algorithm, this
algorithm is more efficient than computing directly the LEX Gröbner basis by using F5.

The complexity of Algorithm 11 is then given by the complexity of the algorithm used to
compute the GRL Gröbner basis (e.g. F5 algorithm) and the complexity of change of ordering
algorithm. Consequently, the following result is deduced from Theorems 2.77, 2.78, 2.83, 2.85
and Corollary 2.87.

Proposition 2.90. Let S = {f1, . . . , fn} ⊂ K[x1, . . . , xn]. Assume the ring K[x1, . . . , xn]
is equipped with the weighted degree with weights (w1, . . . , wn). If (f1, . . . , fn) is a regular

62 Chapter 2. Gröbner bases

Algorithm 11: Polynomial systems solving
Input : A polynomial system S ⊂ K[x1, . . . , xn].
Output: The LEX Gröbner basis of 〈S〉.
Fix a grading on K[x1, . . . , xn];1

Computing the GRL Gröbner basis of 〈S〉;2

From the GRL Gröbner basis, computing the LEX Gröbner basis of 〈S〉;3

return The LEX Gröbner basis of 〈S〉;4

sequence then the arithmetic complexity of Algorithm 11 to compute the LEX Gröbner basis
of 〈S〉 can be bounded by

O

(
n

(
gcdi=1,...,n{wi}∏n

i=1wi

(
dreg (I) + Sn

n

))ω

+ nD3
〈S〉

)
.

When n is fixed and the degrees of f1, . . . , fn are uniformly bounded by d which tends to infinity,
this complexity can be decreased to

O

(
n

(
gcdi=1,...,n{wi}∏n

i=1wi

(
dreg (I) + Sn

n

))ω

+

√
6

nπ
D2+n−1

n

〈S〉

)

if 〈S〉 is a generic ideal in Shape Position; where D〈S〉 denotes the degree of 〈S〉 and Sn is

defined by S1 = 0 and Si = Si−1 + wi
gcdj=1,...,i−1{wj}

gcdj=1,...,i{wj}
for i ≥ 2.

Let δ = gcdi=1,...,n{wi} considering the weights system (w1, . . . , wn) or
(
w1
δ , . . . ,

wn

δ

)
does

not change the degree of the ideal. Moreover, the number of monomials of weighted degree
d considering the weights (w1, . . . , wn) is exactly the same as the number of monomials of
weighted degree d

δ considering the weights
(
w1
δ , . . . ,

wn

δ

)
. Consequently, whatever the weight

systems (w1, . . . , wn), the complexity of computing the WDRL Gröbner basis of an ideal I is
the same for all weights systems (αw1, . . . , αwn) with α ∈ N∗. Consequently, without lost of
generality, we can assume that gcdi=1,...,n{wi} = 1.

Furthermore, in case of homogeneous systems Corollary 2.76 gives an explicit value for
dreg (I) and DI in terms of the degree of the input equations. Indeed, the Macaulay bound
implies that dreg (I) = maxni=1{wi} +

∑n
i=1(wdeg(fi) − wi) and the Bézout bound implies

that DI =
∏n

i=1 wdeg(fi)∏n
i=1 wi

. In case of affine systems, these equalities become bounds on dreg (I)
and DI . However, in general these bounds are reached. We mean by in general that the set
of affine systems for which these bounds are reached forms a Zariski open set. In particular,
generic affine ideals (Definitions 2.34 and 2.16) reached these bounds.

Corollary 2.91. Let S = {f1, . . . , fn} ⊂ K[x1, . . . , xn]. Assume the ring K[x1, . . . , xn] is
equipped with the weighted degree with weights (w1, . . . , wn). Assume there exists i ∈ {1, . . . , n}
such that wi = 1. Then, we can order the wi’s to ensure that Sn <

∑n
i=1wi. Let ∆ =

∏n
i=1wi.

Assume that wdeg(f1), . . . ,wdeg(fn) are uniformly bounded by the parameter d. If (f1, . . . , fn)
is a regular sequence then the arithmetic complexity of Algorithm 11 to compute the LEX
Gröbner basis of 〈S〉 can be bounded by

• O

(
dωn

∆ω
+
d3n

∆3

)
= O

(
d3n

∆3

)
if d→ ∞ and n is fixed;

2.4. Complexity 63

• O

(
neωndωn

∆ω
+
nd3n

∆3

)
= O

(
nd3n

∆3

)
if d→ ∞, n→ ∞ and wmax is fixed;

•

O

(
ndωneωn

∆ω
+
nd3n

∆3

)
=

{
O
(
nd3n

∆3

)
if d ≥ e

ω
3−ωwmax

O
(
ndωneωn

∆ω

)
else

if d and wmax = max{w1, . . . , wn} are fixed and n→ ∞.

When the Bézout bound is reached i.e. D〈S〉 = dn

∆ , these complexities can be written as

O
(
nd3n

∆3

)
= O

(
nD3

〈S〉

)
and O

(
ndωneωn

∆ω

)
= O

(
nDω

〈S〉e
ωn
)

where D〈S〉 denotes the degree of

〈S〉.

Proof. Thanks to the Bézout bound, the complexity of the change of ordering step can be
bounded by O(nd3n

∆3) whatever the parameter which tends to infinity.
The complexity of F5 algorithm is bounded by

O

(
n

∆ω

(
dreg (〈S〉) + Sn

n

)ω)
.

Thanks to the Macaulay bound dreg (〈S〉) ≤ nd−∑n
i=1wi + wmax. Hence,

O

(
n

∆ω

(
dreg (〈S〉) + Sn

n

)ω)
= O

(
n

∆ω

(
nd+ wmax

n

)ω)

Assume n is fixed and d→ ∞ one has

O

((
nd+ wmax

n

))
=d→∞ O ((nd+ wmax)

n) .

We can assume that d ≥ wmax thus

O

((
nd+ wmax

n

))
=d→∞ O (dn) .

Assume now n→ ∞, using Stirling formula one has

O

((
nd+ wmax

n

))
=n→∞ O

(
(nd+ wmax)

nd+wmax

nn(n(d− 1) + wmax)n(d−1)+wmax

)
. (2.16)

If wmax is fixed then equation 2.16 implies

O

((
nd+ wmax

n

))
=n→∞ O

(
dnd+wmax

(d− 1)n(d−1)+wmax

)

=n→∞ O

(
dn
(

d

d− 1

)n(d−1)+wmax
)
.

Let f(x) =
(

x
x−1

)x−1
one has limx→∞ f = e, f(2) = 2 and f is an increasing function.

Hence, for any x ≥ 2 one has f(x) ≤ e.

64 Chapter 2. Gröbner bases

By consequence, if wmax is fixed whether d be fixed or tends to infinity then equation (2.16)
implies

O

((
nd+ wmax

n

))
=n→∞ O (dnen) .

It remains to compare the complexity of F5 and FGLM algorithms when n→ ∞ and wmax

is fixed. In that case, the complexity of F5 is given by O
(

n
∆ω dωneωn

)
and that of FGLM is

given by O
(

n
∆3d

3n
)

and we have

dωneωn

∆ω
≤ d3n

∆3
⇐⇒ eωn∆3−ω ≤ d(3−ω)n

⇐⇒ eω∆
3−ω
n ≤ d(3−ω)

⇐⇒ e
ω

3−ω∆
1
n ≤ d .

Moreover, ∆ ≤ wn
max thus e

ω
3−ω∆

1
n ≤ e

ω
3−ωwmax. If d ≥ e

ω
3−ωwmax then the complexity of

FGLM dominates the complexity of F5.

Chapter 3

Solving structured polynomial systems

Contents
3.1 Systems admitting a polynomial change of variables 67

3.1.1 An algorithm for solving polynomial systems admitting a polynomial
change of variables . 67

3.1.2 Complexity of F5 steps . 69

3.1.3 Complexity of change of ordering steps 71

3.1.4 Comparison with the usual algorithm 72

3.2 Application to polynomial systems invariant under a linear group 72

3.2.1 Preliminaries on invariant theory . 73

3.2.2 Solving systems pointwise invariant under a pseudo-reflection group G 74

3.2.3 Particular case: some examples of groups in semi-direct product with
Sn . 77

The results presented in this chapter are from a joint work with J.-C. Faugère, P. Gaudry
and G. Renault

In this chapter we are interested in solving polynomial systems with a particular structure.
The structure that we investigate is polynomial systems admitting a polynomial change of
variables. Note that efficient algorithms (polynomial in the numbers of variables) have been
design to decide if a polynomial system admits a polynomial change of variables, see [GGR03,
FP09] or [VZG90a, VZG90b] for the univariate case. It is well known that applying an
invertible linear change of variables leaves the complexity of solving a polynomial system
unchanged. More precisely, in [Laz83] it is shown that the degree of regularity does not
change when applying a linear change of variables. Moreover, it is clear that in this case the
number of solutions remains unchanged.

Assume that the polynomial system S = {f1, . . . , fn} ⊂ K[x1, . . . , xn] can be written in
terms of ϑ1, . . . , ϑn ∈ K[x1, . . . , xn]. That is to say there exist g1, . . . , gn ∈ K[y1, . . . , yn] such
that fi = gi(ϑ1, . . . , ϑn) for i = 1, . . . , n. Usually to solve such a system instead of solving S
directly one solves the system S ′ = {g1, . . . , gn}. Then, for each solution (v1, . . . , vn) of S ′ one
solves the system {ϑ1−v1, . . . , ϑn−vn}, see for instance [Stu08, DK02]. Although this method
to solve S seems to be more efficient since instead of solving one system we solve many smaller
systems, in the best of our knowledge there is no known result about the complexity of solving
S in this way. Consequently, one cannot estimate theoretically the gain of this method in
comparison of solving S directly. The aim of this chapter is to provide a complexity estimate
of such an algorithm to solve polynomial systems admitting a polynomial change of variables.
By consequence, we provide an estimation of the gain of such a structure in the polynomial
systems solving process.

65

66 Chapter 3. Solving structured polynomial systems

Two important parameters for polynomial systems solving are the degree of the input
equations and the regularity property. If S is a regular system, there is a priori no reason
that S ′ is regular in the sense of Definitions 2.66 and 2.79. Moreover, in general one cannot
predict the degree of the gi’s given that of f1, . . . , fn and ϑ1, . . . , ϑn.

In the first part of this chapter, we tackle these two issues for regular polynomial change
of variables.

Definition 3.1. Let ϑ1, . . . , ϑn ∈ K[x1, . . . , xn] be a polynomial change of variables. We say

that ϑ1, . . . , ϑn is a regular polynomial change of variables if ϑ(h)1 , . . . , ϑ
(h)
n are algebraically

independent.

In particular, we show that if we equip the ring K[y1, . . . , yn] of a well chosen weighted
degree then for regular polynomial change of variables, the degree and the regularity property
is conserved. More precisely we get the following result.

Theorem 3.2. Let S = {f1, . . . , fn} ⊂ K[x1, . . . , xn] be a regular polynomial system. Assume

that S admits a polynomial change of variables given by ϑ1, . . . , ϑn and that ϑ(h)1 , . . . , ϑ
(h)
n

are algebraically independent. Let g1, . . . , gn ∈ K[y1, . . . , yn] satisfying fi = gi(ϑ1, . . . , ϑn).
If the ring K[y1, . . . , yn] is equipped with the weighted degree defined by the weights system
(deg(ϑ1), . . . , deg(ϑn)) then wdeg(gi) = deg(fi) and (g1, . . . , gn) is a regular sequence.

Finally, if we assume that solving the systems {ϑ1 − v1, . . . , ϑn − vn} for all solutions v of
S ′ is negligible in comparison of solving {g1, . . . , gn} then the recent results (Theorem 2.78)
about solving quasi-homogeneous systems [FSV13] can be applied. Consequently, solving S
by solving S ′ decreases by a factor of about (

∏n
i=1 deg(ϑi))

ω the complexity in comparison of
solving S directly.

In the second part of this chapter, as an application we highlight a class of polynomial
systems admitting regular polynomial change of variables. Let G ⊂ GL (K, n) be a linear
group. The set of polynomials that are invariant under the action of G is called the invariant
ring of G. The Hilbert finiteness Theorem states that the invariant ring is finitely generated
see for instance [Stu08, DK02]. Hence, if S is in the invariant ring of G then the usual strategy
in invariant theory is to write S in terms of the generators of the invariant ring of G. Then,
one solves the obtained system S ′. By studying the action of G on the solutions of S, it is well
known that the degree of 〈S ′〉 is divided by #G in comparison to the degree of 〈S〉. Hence,
using the symmetries of the system allows to divide by a factor (#G)3 the complexity of the
change of ordering step in the process of polynomial systems solving. However, depending on
the group, the number of variables and equations in the system S ′ can be greater than that of
S. Moreover, we do not know how the regularity property of S is handed down to S ′. Hence,
we cannot estimate the complexity of the total solving process of S using the action of G.

Nevertheless, thanks to the Shephard, Todd and Chevalley Theorem [ST54, Che55] we
know exactly for which groups the generators of the invariant ring gives a regular polynomial
change of variables. More precisely, if G is a pseudo-reflective group then the invariant ring of
G is a polynomial ring generated by n algebraically independent homogeneous polynomials.
Moreover, we now exactly the product of all the degrees of the generators of the invariant
ring which is #G. Consequently, the first result allows us to conclude about the complexity
of solving S using the action of G. More precisely, we get the following result.

Corollary 3.3. Let G ⊂ GL (K, n) be a pseudo-reflective group. Assume we can find effi-
ciently all the elements in an orbit of G. If S is a regular polynomial system in the invariant

3.1. Systems admitting a polynomial change of variables 67

ring of G then solving it using the action of G divides by a factor of (#G)ω the complexity of
solving S.

Finally, we discuss how to find efficiently all the elements in an orbit of G for some groups
G containing the symmetric group. Note that all the groups used in this thesis contain the
symmetric group, see Chapter 6 and Chapter 7.

3.1 Systems admitting a polynomial change of variables

Let S = {f1, . . . , fs} be a polynomial system in K[x1, . . . , xn] admitting a polynomial change
of variables given by ϑ1, . . . , ϑn. The aim of this section is to evaluate the benefit of such a
change of variables for the resolution of S.

3.1.1 An algorithm for solving polynomial systems admitting a polynomial
change of variables

Let φ be the map which describes the change of variables associated to ϑ1, . . . , ϑn. More
precisely, φ is defined as follows.

Definition 3.4. Given ϑ1, . . . , ϑn ⊂ K[x1, . . . , xn], the one to one map φ is defined by

φ−1 : K[y1, . . . , yn] → K[x1, . . . , xn]

f 7→ f(ϑ1, . . . , ϑn) .

Example 3.5. Let f ∈ F2[x1, x2] defined by

f = x81x
6
2 + x61x

8
2 + x61x

4
2 + x51x

9
2 + x41x

10
2 + x41x

8
2 + x41x

6
2 + x41 + x31x

11
2 +

x31x
7
2 + x21x

12
2 + x21x

10
2 + x21x

8
2 + x21x

6
2 + x1x

9
2 + x102 + x82 + x42

and ϑ1 = x21 + x22 and ϑ2 = x1x
3
2 + x22. The polynomial f can be expressed in terms of ϑ1 and

ϑ2 as follows f = ϑ31ϑ
2
2 + ϑ21 + ϑ1ϑ

3
2 which implies that

φ(f) = y31y
2
2 + y21 + y1y

3
2 .

An important parameter in the polynomial system solving complexity is the degree of the
equations. Hence, the first question that arises is Except for particular change of variables
like those given by the elementary symmetric polynomial when the polynomial is symmetric,
a priori we have no information about the degree of φ(f). However, for a well-chosen system
of weights we can relate the degree of f to the weighted degree of φ(f).

Lemma 3.6. Let f ∈ K[x1, . . . , xn] be a polynomial admitting a polynomial change of variables

given by ϑ1, . . . , ϑn each of degree wi. Assume ϑ
(h)
1 , . . . , ϑ

(h)
n are algebraically independent.

If the ring K[y1, . . . , yn] is equipped with the weighted degree with weights (w1, . . . , wn) then
wdeg (φ(f)) = deg(f) where wi = deg(ϑi) for i = 1, . . . , n.

Proof. First, assume that φ(f) is homogeneous w.r.t. the weights system (w1, . . . , wn). That

is to say, φ(f) =
∑

|α|w=δ cαy
α where δ = wdeg(φ(f)). Let denote ϑi − ϑ

(h)
i by ri for all

i = 1, . . . , n. We have,

f = φ(f)(ϑ1, . . . , ϑn) =
∑

|α|w=δ

cα(ϑ
(h)
1 + r1)

α1 · · · (ϑ(h)n + rn)
αn = H +R ,

68 Chapter 3. Solving structured polynomial systems

where H =
∑

|α|w=δ cα(ϑ
(h)
1)α1 · · · (ϑ(h)n)αn and R = f −H with deg(R) < δ.

Since
∑

|α|w=δ cαy
α is a homogeneous polynomial and ϑ

(h)
1 , . . . , ϑ

(h)
n too, we then have

deg(H) = δ or H = 0. By hypothesis, ϑ(h)1 , . . . , ϑ
(h)
n are algebraically independent hence

deg(H) = δ. Consequently, deg(f) = deg(H) = wdeg(φ(f)). If φ(f) =
∑δ

i=0 fi where fi is a
homogeneous polynomial of weighted degree i. We just have shown that deg(fi(ϑ1, . . . , ϑn)) =
i for i = 0, . . . , δ. Hence, deg(f) = wdeg(φ(f)).

Example 3.7. • Continuing Example 3.5, ϑ(h)1 = x21+x
2
2 and ϑ(h)2 = x1x

3
2 are algebraically

independent. The weights induced by ϑ1 and ϑ2 are (2, 4) and we have deg(f) = 14 =
wdeg(φ(f)).

• Let f = x241 x
2
2 + x81x

16
2 + x81 + x71 + x41x

2
2 + x31x2 + x182 + x82 + x32 + x22 ∈ F2[x1, x2]. Let

ϑ1 = x31 + x22 and ϑ2 = x41 + x2. Then, ϑ(h)1 = x31 and ϑ
(h)
2 = x41 are algebraically

dependent. Moreover, φ(f) = (y41 + y32)(y
4
1y

2
2 + y52) + y1y2 + y22 = y81y

2
2 + y1y2 + y82 + y22.

Since, φ(f)(h) is an annihilator polynomial of (ϑ(h)1 , ϑ
(h)
2) we have deg(f) < wdeg(φ(f)).

More precisely, deg(f) = 26 and wdeg(φ(f)) = 32.

As mentionned in Section 2.4.1, a central property for polynomial systems solving is the
regularity property. Indeed, to ensure that solving a system can be done efficiently and to
obtain a sharp bound on the complexity of solving this system, the regularity property is
required. If a regular polynomial system {f1, . . . , fs} admits a polynomial change of variables,
a priori there is no reason that the system {φ(f1), . . . , φ(fs)} be regular in the sense of
Definitions 2.66 and 2.79. Nevertheless, once again for a well-chosen system of weights we can
show that the regularity property is conserved. More precisely, we have the following result.

Theorem 3.8. Let {f1, . . . , fs} be a regular polynomial system such that each polynomial fi
can be expressed in terms of ϑ1, . . . , ϑn. Assume that ϑ(h)1 , . . . , ϑ

(h)
n are algebraically indepen-

dent. If the ring K[y1, . . . , yn] is equipped with the weighted degree with weights (w1, . . . , wn)
with wi = deg(fi) then the system {φ(f1), . . . , φ(fn)} ⊂ K[y1, . . . , yn] is regular.

Proof. From the proof of Lemma 3.6 one has for any g =
∑d

i=0(
∑

|α|w=i cαx
α) ∈ K[y1, . . . , yn]

(φ−1(g))(h) =
∑

|α|w=d

cα(ϑ
(h)
1)α1 · · · (ϑ(h)n)αn = g(h)(ϑ

(h)
1 , . . . , ϑ(h)n) . (3.1)

Assume now that the sequence (φ(f1), . . . , φ(fs)) is not regular i.e. there exists i ∈
{2, . . . , s} and 0 6= h, h1, . . . , hi−1 ∈ K[y1, . . . , yn] such that

h1φ(f1)
(h) + · · ·+ hi−1φ(fi−1)

(h) − hφ(fi)
(h) = 0 .

Thus, from equation (3.1) this implies that

i−1∑

j=1

h
(h)
j (ϑ

(h)
1 , . . . , ϑ(h)n)f

(h)
j − h(h)(ϑ

(h)
1 , . . . , ϑ(h)n)f

(h)
i = 0 .

Since ϑ(h)1 , . . . , ϑ
(h)
n are algebraically independent we have h(h)(ϑ(h)1 , . . . , ϑ

(h)
n) 6= 0. By con-

sequence, f (h)i is a divisor of 0 in K[x1, . . . , xn]/〈f (h)1 , . . . , f
(h)
i−1〉. This yields a contradiction,

hence the sequence (φ(f1), . . . , φ(fs)) is regular.

3.1. Systems admitting a polynomial change of variables 69

Example 3.9. Consider the following system of F2[x1, x2]

S :

{
f1 = x81 + x51x

3
2 + x41x

2
2 + x21x

6
2 + x1x

7
2 + x82 + x62 + x42

f2 = x141 + x121 x
2
2 + x101 x

4
2 + x61x

4
2 + x41x

6
2 + x21x

8
2 + x142 + x102

}

admitting the polynomial change of variables given by ϑ1 = x21 + x22 and ϑ2 = x1x
3
2 + x22.

We have f (h)1 = x81 + x51x
3
2 + x21x

6
2 + x1x

7
2 + x82 and f

(h)
2 = x141 + x121 x

2
2 + x101 x

4
2 + x142 . Note

that, (f (h)1 , f
(h)
2) is a regular sequence and (ϑ

(h)
1 , ϑ

(h)
2) are algebraically independent. The ring

F2[y1, y2] is then equipped with the weights system (2, 4) and we have

φ(f1) = φ(f1)
(h) = y21y2 + y41 + y22

φ(f2) = φ(f2)
(h) = y31y

2
2 + y71

.

One can check that (φ(f1), φ(f2)) is a regular sequence and that φ(fi)(ϑ
(h)
1 , ϑ

(h)
2) = f

(h)
i for

i ∈ {1, 2}.

Following the previous result, we choose to call the polynomial change of variables given
by ϑ1, . . . , ϑn regular if ϑ(h)1 , . . . , ϑ

(h)
n are algebraically independent since this property allows

us to conserve the regularity property of the polynomial system. If φ is a regular polynomial
change of variables, since the regularity property is conserved when applying φ instead of
solving S = {f1, . . . , fn} one can solve Sφ = {φ(f1), . . . , φ(fn)}. Note that solving Sφ is easier
than solving S. Indeed, from Lemma 3.6 deg(fi) = wdeg(φ(fi)) hence the degree of regularity
of Sφ is upper bounded by the degree of regularity of S, see Macaulay bounds of Corollary 2.76.
Consequently, to solve Sφ we have to consider at worst the same Macaulay matrices as for
solving S. Moreover, Macaulay matrices are smaller when the systems of weights is not
(1, . . . , 1). Indeed, for any weights system it is clear the the number of monomials of weighted
degree d is smaller or equal to the number of monomials of degree d.

Once the solutions of Sφ are found, to recover the solutions of S we need to solve Dφ

systems of the form

Sϑ,v





ϑ1(x1, . . . , xn)− v1 = 0
...

ϑn(x1, . . . , xn)− vn = 0

(3.2)

where v = (v1, . . . , vn) is a solution of Sφ and Dφ is the number of solutions of Sφ. We
summarize this algorithm to solve polynomial systems admitting regular polynomial change
of variables in Algorithm 12.

We now investigate the complexity of Algorithm 12. First, we study the complexity of
steps 3 and 8 involving F5 algorithm. Then, we study the complexity of steps 4 and 9 involving
a change of ordering algorithm. Finally, we discuss about the complexity of step 1 and we
conclude by a comparison of the complexity of Algorithm 12 with the complexity of solving
directly S by using the usual algorithm for polynomial systems solving, Algorithm 11.

3.1.2 Complexity of F5 steps

If the input system S is regular then from Theorem 3.8, the system Sφ is regular when the
ring K[y1, . . . , yn] is equipped with the weighted degree of weights system (w1, . . . , wn) where
wi = deg(ϑi). By consequence, we get the following result.

70 Chapter 3. Solving structured polynomial systems

Algorithm 12: Solving polynomial systems admitting polynomial change of variables.
Input : A polynomial system S = {f1, . . . , fn} ⊂ K[x1, . . . , xn] admitting the regular

change of variables defined by ϑ1, . . . , ϑn with wi = deg(ϑi) for i = 1, . . . , n.
Output: The solutions of S.
Compute Sφ = {φ(f1), . . . , φ(fn)} ⊂ K[y1, . . . , yn];1

Equip the ring K[y1, . . . , yn] with the weighted degree of weights system (w1, . . . , wn);2

Compute the WDRL Gröbner basis of 〈Sφ〉 using F5 algorithm;3

Compute G>lex
, the LEX Gröbner basis of 〈Sφ〉 using a change of ordering algorithm;4

From G>lex
recover the solutions of Sφ;5

L := ∅;6

for all the solutions v of Sφ do7

Compute the DRL Gröbner basis of 〈Sϑ,v〉 using F5 algorithm;8

Compute G(v)
>lex

, the LEX Gröbner basis of 〈Sϑ,v〉 using a change of ordering9

algorithm;
From G(v)

>lex
recover the solutions of Sϑ,v and add it to L;10

return L;11

Proposition 3.10. Let S = {f1, . . . , fn} be a regular polynomial system admitting the regular
change of variables defined by (ϑ1, . . . , ϑn). Let denote deg(fi) by di. Computing the WDRL
Gröbner basis of Sφ ⊂ K[y1, . . . , yn] using the weights system (w1, . . . , wn) can be done in

O

(
n

(
1∏n

i=1wi

(∑n
i=1(di − wi) + maxi=1,...,n{wi}+ Sn

n

))ω)
(3.3)

arithmetic operations where Si = Si−1 + wi
gcdj=1,...,i−1{wj}

gcdj=1,...,i{wj}
for i ≥ 2. If there exists i ∈

{1, . . . , n} such that wi = 1 then the complexity in equation (3.3) becomes

• O

(
dωn

∆ω

)
if d→ ∞ and n is fixed;

• O

(
neωndωn

∆ω

)
if n→ ∞ and wmax is fixed;

where d = maxi=1,...,n{di} and wmax = maxi=1,...,n{wi}.

Proof. From Theorem 3.8, Sφ is a regular polynomial system. Moreover, from Lemma 3.6 one
has wdeg(φ(fi)) = deg(fi) for i = 1, . . . , n. The first result follows then from Theorem 2.83
and Theorem 2.78. The second part follows from Corollary 2.91.

In order to study the complexity of step 8 we need to assume that (ϑ1, . . . , ϑn) is a regular

sequence. That is to say that (ϑ(h)1 , . . . , ϑ
(h)
n) is a regular sequence. Note that if (ϑ(h)1 , . . . , ϑ

(h)
n)

is a regular sequence then {ϑ(h)1 , . . . , ϑ
(h)
n } are algebraically independent. The converse is not

true, see [Smi95, Theorem 6.2.1]. Note that in general, solving all the systems Sϑ,v are
negligible in comparison to solving Sφ. Furthermore, for particular cases there exist very
efficient method to solve these systems without using Gröbner bases computations. See for
instance Section 3.2.3.

3.1. Systems admitting a polynomial change of variables 71

Proposition 3.11. Let S = {f1, . . . , fn} be a regular polynomial system admitting the change

of variables defined by (ϑ1, . . . , ϑn). Assume that (ϑ
(h)
1 , . . . , ϑ

(h)
n) is a regular sequence. Let

wi = deg(ϑi) and di = deg(fi) for i = 1, . . . , n. Computing the DRL Gröbner basis of 〈Sϑ,v〉
for any solution v of Sφ (i.e. all steps 8 of Algorithm 12) can be done in

• O

(
dnwnω

max∏n
i=1wi

)
if n is fixed and wmax → ∞;

• O

(
ndnwnω

maxe
nω

∏n
i=1wi

)
if n→ ∞;

where d = max{d1, . . . , dn} and wmax = max{w1, . . . , wn}.

Proof. From Bézout’s bound (see Corollary 2.76) the number of solutions of Sφ is bounded by
∏n

i=1 di∏n
i=1 wi

. From Macaulay’s bound (see Corollary 2.76) and Theorem 2.83 and Theorem 2.77 the

complexity of solving one system Sϑ,v is bounded by O
(
n
(
1+

∑n
i=1 wi

n

)ω)
. The result follows

from Corollary 2.91.

3.1.3 Complexity of change of ordering steps

The complexity of change of ordering steps follows directly from Lemma 3.6 and Bezout’s
bound which allows us to bound the degree of Sφ and Sϑ,v for any solutions v of Sφ.

Proposition 3.12. Let S = {f1, . . . , fn} be a polynomial system admitting the regular poly-
nomial change of variables defined by (ϑ1, . . . , ϑn). Let di = deg(fi) and wi = deg(wi) for
i = 1, . . . , n. The complexity of computing the LEX Gröbner basis of 〈Sφ〉 given its WDRL
Gröbner basis w.r.t. the weights system (w1, . . . , wn) (i.e. step 4 of Algorithm 12) can be

bounded by O

(
n
(∏n

i=1 di∏n
i=1 wi

)3)
arithmetic operations.

Proof. From Lemma 3.6, if the ring K[y1, . . . , yn] is equipped with the weighted degree defined
by the weights system (w1, . . . , wn) then wdeg(φ(fi)) = di for i = 1, . . . , n. Then, the weighted
Bézout bound and Theorem 2.85 allows us to conclude.

In the same way we can bound the complexity of computing all the LEX Gröbner basis of
〈Sϑ,v〉.

Proposition 3.13. Let S = {f1, . . . , fn} be a polynomial system admitting the regular poly-
nomial change of variables defined by (ϑ1, . . . , ϑn). Let di = deg(fi) and wi = deg(wi) for
i = 1, . . . , n. The complexity of computing the LEX Gröbner basis of 〈Sϑ,v〉 for any solution v
of Sφ given their DRL Gröbner bases (i.e. steps 9 of Algorithm 12) can be bounded by

O


n

(
n∏

i=1

di

)(
n∏

i=1

wi

)2



arithmetic operations.

72 Chapter 3. Solving structured polynomial systems

3.1.4 Comparison with the usual algorithm

As mentioned in Chapter 2 Section 2.4.3, the complexity of computing the solutions of a system
given its LEX Gröbner basis depends on the field K. Moreover, in general it is negligible in
comparison to compute the LEX Gröbner basis. Consequently, to compare Algorithm 12 with
the usual algorithm to solve polynomial systems we compare only the cost of F5 steps and
change of ordering steps.

In the two previous sections for completeness, we gave the complexity of computing the
LEX Gröbner basis of Sϑ,v for all solutions v of Sφ. However, if the wi’s are sufficiently small
in comparison to the di’s solving the systems Sϑ,v is negligible in comparison of solving Sφ. In
particular, in this thesis all the considered polynomial change of variables have a very efficient
way to solve these systems (see Section 3.2.3).

From the Bézout bound the degree of 〈S〉 is bounded by
∏n

i=1 di ≤ dn where d =
maxi=1,...,n{di = deg(fi)}. From the Macaulay bound, dreg (〈S〉) ≤

∑n
i=1(di−1)+1 ≤ nd+1.

Consequently from Theorems 2.77, 2.83 and 2.85 the complexity of solving directly S is
bounded by O(dωn + d3n) (respectively O(neωndωn + nd3n)) arithmetic operations if n is
fixed (respectively n → ∞). Hence, given Sφ the complexity of computing the LEX Gröbner
basis of Sφ is divided by (

∏n
i=1wi)

ω for the F5 step and (
∏n

i=1wi)
3 for the change of ordering

step.
One issue remains, what is the complexity of computing Sφ given φ and S? For particular

changes of variables as the one given by the elementary symmetric polynomials there exists a
very efficient algorithm to compute Sφ given S (see for instance [Stu08]). More generally, as
mentioned in Section 2.1.4, computing Sφ can be done using Gröbner bases and elimination
order by using for instance Algorithm 2 or Algorithm 3. Unfortunately, there is no general tight
bound on the complexity of performing a change of variables using Gröbner bases. However,
in [FP09] the authors proposed an efficient algorithm for computing Sφ when f1, . . . , fn and
ϑ1, . . . , ϑn are homogeneous polynomials. More precisely, when the degrees of f1, . . . , fn and
ϑ1, . . . , ϑn are fixed (i.e. do not depend on n) their algorithm has a polynomial complexity in
n. In that case, the complexity of computing Sφ is then negligible in comparison to solve Sφ.
Moreover, in the whole of this thesis (in particular in Chapter 6 and Chapter 7) there is an
efficient way to compute Sφ which becomes negligible. The next result summarizes the gain
of solving S using Algorithm 12 in comparison of using Algorithm 11.

Theorem 3.14. Let S = {f1, . . . , fn} be a regular polynomial system admitting a regular
change of variables defined by ϑ1, . . . , ϑn. Let wi = deg(ϑi) for i = 1, . . . , n. Assume Sφ

can be computed efficiently. If the wi’s are sufficiently small or if there exists an efficient
algorithm to solve the systems Sϑ,v for any solution v of Sφ, then the complexity of solving S
using Algorithm 12 is divided by (

∏n
i=1wi)

ω in comparison of solving S using Algorithm 11.

In the next section, we study the impact of such a result on the complexity of solving
polynomial systems having some symmetries that is to say polynomial systems invariant under
the action of a linear group.

3.2 Application to polynomial systems invariant under a linear
group

In this Section, we consider the action of a finite linear group G on polynomials. First, we
need some background about invariant theory. For a more thorough reading on this subject

3.2. Application to polynomial systems invariant under a linear group 73

see for instance [Stu08, CLO07].

3.2.1 Preliminaries on invariant theory

We assume that the field K has characteristic zero or has a positive “large enough character-
istic” that is to say not dividing the cardinality of G. All notions of invariant theory recalled
in this section, can be generalized to an affine variety instead of the affine space.

The linear group G ⊂ GL (K, n) naturally acts on the affine space An or any K-vector
space of dimension n by the matrix vector multiplication. This action can be translated to
polynomial rings. More precisely we have the following definition.

Definition 3.15 (Invariant rings). Let K[x1, . . . , xn] be a polynomial ring in n variables with
coefficients in K. The action of a group G ⊂ GL (K, n) on K[x1, . . . , xn] is defined by

G×K[x1, . . . , xn] −→ K[x1, . . . , xn]
g, f 7−→ g · f

where g ·f is defined by (g ·f)(v) = f(g−1 ·v) where v is the vector (x1, . . . , xn). This definition
uses the inverse of g in order to get a left action. The invariant ring of G is the set of all
invariant polynomials in K[x1, . . . , xn] :

K[x1, . . . , xn]
G = {f ∈ K[x1, . . . , xn] | g · f = f for all g ∈ G} .

One of the fundamental results in invariant theory was proven by Hilbert in the last decade
of the nineteenth century and is summarized in the following theorem.

Theorem 3.16 (Hilbert’s finiteness theorem). The invariant ring of G is finitely generated.

Following this theorem, many results were provided for the decomposition of invariant
rings. In particular, it is proven that K[x1, . . . , xn]

G is a finitely generated free module over
K[θ1, . . . , θn] where θ1, . . . , θn are algebraically independent homogeneous polynomials. Con-
sequently there exist homogeneous polynomials η1, . . . , ηt ∈ K[x1, . . . , xn]

G such that

K[x1, . . . , xn]
G =

t⊕

i=1

ηiK[θ1, . . . , θn] . (3.4)

The decomposition (3.4) is called a Hironaka decomposition of K[x1, . . . , xn]
G. The polyno-

mials θ1, . . . , θn (resp. η1, . . . , ηt) are the primary invariants (resp. secondary invariants) of

K[x1, . . . , xn]
G and satisfy t =

∏n
i=1 deg(θi)

#G .
To solve pointwise invariant polynomial systems (i.e. each polynomial in the system is in

the invariant ring of the corresponding group) by using the symmetries, one has to rewrite the
systems in terms of the primary and secondary invariants. If the invariant ring of G is not a
polynomial algebra – i.e. the secondary invariants are not reduced to {1} – considering the
symmetries can complicate the resolution of the system. Actually, since secondary invariants
are not independent, then considering the symmetries when these invariants are not trivial
increases the number of equations and variables to consider. Consequently, the polynomial
systems may be more difficult to solve. Moreover, computing a Hironaka decomposition can
be a difficult task. Solving polynomial systems invariant under a non pseudo-reflective group

74 Chapter 3. Solving structured polynomial systems

has been studied by Colin [Col97] and can also be tackled by using SAGBI Gröbner bases, see
for instance [FR09]; we will not need this strategy.

By consequence an elementary question is to know under which conditions on G, its in-
variant ring is a graded polynomial algebra (and thus when the set of secondary invariants is
trivial). The answer is given in the following theorem.

Theorem 3.17 (Shephard, Todd, Chevalley [Che55, ST54]). The invariant ring of G is a
polynomial algebra if and only if G is a pseudo-reflection group.

A pseudo-reflection is a linear automorphism of An that is not the identity map, but
leaves a hyperplane H ⊂ An pointwise invariant. The group G ⊂ GL (K, n) is said to be a
pseudo-reflection group if it is generated by its pseudo-reflections.

Example 3.18. Coxeter groups can be represented thanks to a pseudo reflection group. In
particular, the dihedral Coxeter group Dn = (Z/2Z)n−1 ⋊Sn can be represented by the action
on An defined by the rule that Sn permutes the coordinates of the vectors, whereas (Z/2Z)n−1

changes the sign on an even number of its coordinates. From Theorem 3.17 the invariant ring
of Dn is then a polynomial algebra. In the sequel, the dihedral Coxeter group Dn will always
correspond to this representation. It is a well known group and its invariant ring too. Actually,

K[x1, . . . , xn]
Dn = K[p2, . . . , p2(n−1), pn] = K[s1, . . . , sn−1, en]

where pi =
n∑

k=1

xik is the ith power sum, si =
∑

1≤k1<...<ki≤n

i∏

j=1

x2kj is the ith elementary sym-

metric polynomial in terms of x21, . . . , x
2
n and en =

n∏

k=1

xk is the nth elementary symmetric

polynomial in terms of x1, . . . , xn.

In the case where G is a pseudo-reflection group, Theorem 3.17 allows us to construct an
isomorphism ΩG between K[x1, . . . , xn]

G and K[y1, . . . , yn] where y1, . . . , yn are new indeter-
minates.

Definition 3.19. Let G be a pseudo-reflective group and θ1, . . . , θn ∈ K[x1, . . . , xn]
G be the

primary invariants of G. We denote by ΩG the ring isomorphism from K[x1, . . . , xn]
G to

K[y1, . . . , yn] corresponding to the change of coordinates by the θi’s and defined by

Ω−1
G : K[y1, . . . , yn] −→ K[x1, . . . , xn]

G

f 7−→ f(θ1, . . . , θn) .

In the following, we denote by K[θ1, . . . , θn] the polynomial ring given by the image of ΩG.

3.2.2 Solving systems pointwise invariant under a pseudo-reflection group
G

In the case where the group G is pseudo reflective, the invariant ring is a polynomial ring.
Hence, the isomorphism ΩG defines a change of variables on any polynomial in K[x1, . . . , xn]

G.
Thus, we have highlighted a class of polynomial systems admitting polynomial change of
variables. Indeed, let S = {f1, . . . , fn} be a polynomial system in K[x1, . . . , xn]. If each of the
fi’s is in K[x1, . . . , xn]

G i.e. S is pointwise invariant under G, then S admits the polynomial

3.2. Application to polynomial systems invariant under a linear group 75

change of variables ΩG defined by θ1, . . . , θn, the primary invariant of G. Moreover, since
the primary invariants of G are homogeneous and algebraically independent, ΩG is a regular
change of variables as defined in Section 3.1.1. Consequently, the complexity of solving a
polynomial systems pointwise invariant under the action of a pseudo reflective group is a
direct consequence of results in Section 3.1.

Remark 3.20. Since S is invariant under the action of G, so is its variety. The usual strategy
in invariant theory (see [Stu08]) to solve S is to look for an ideal having for variety the set
of G-orbits of the variety of S. In that way, the number of solutions is decreased and by
consequence the complexity of the change of ordering step is also decreased.

Let us describe how the ideal mentioned in the previous remark can be computed in order
to compare this method with the one proposed in the previous sections. If V denotes the
variety of S, the set of G-orbits of V is defined as the quotient V/G defined by the equivalence
relation ∼ satisfying for all v1, v2 in V , v1 ∼ v2 if there exists σ ∈ G such that v1 = σ · v2.
In order to find an ideal having for variety V/G the usual method in invariant theory, is to
express the system S in terms of the primary invariants. That is to say one computes and
solves the system SG = {ΩG(f1), . . . ,ΩG(fn)} ⊂ K[θ1, . . . , θn] having for variety V/G. Note
that this is exactly what we done in Section 3.1. Moreover, in that case the solutions of SG

are the orbits of V under the action of G. Hence, if v is an orbit of V/G then solving the
system Sθ,v defined in equation (3.2) corresponds to find all the elements in V that are in the
orbit v.

The class formula allows us to conclude that the degree of 〈SG〉 is divided by #G in
comparison to the degree of 〈S〉. Hence, the gain on change of ordering step for solving SG

instead of S is about (#G)3. However, although it is usually admitted that solving SG is more
efficient than solving S, in our knowledge there is no known result about the complexity of
the F5 step in the solving of SG. Nevertheless, using results of Section 3.1 we show that the
overall complexity of solving SG is divided by (#G)ω in comparison of solving S.

Remark 3.21. The key point of our method is to equip the ring K[θ1, . . . , θn] of the weighted
degree with weights system induced by the degree of the primary invariants. By this way, we
conserve the regularity property. Then, the recent results about the complexity of solving quasi-
homogeneous systems (see [FSV13]) allows us to estimate the gain of solving SG instead of
S.

The idea of equipping the variables representing the invariants (primary and secondary)
with a weight corresponding to the degree of the invariant was already mentioned in [GG99]
but in the context of computing the relations between the secondary invariants. Indeed, assume
the group G is not a pseudo-reflective group then its set of secondary invariants is not reduced
to {1}. Since the secondary invariants are not algebraically independent a fundamental issue
of computational invariant theory is to find the relations between these invariants. For this
purpose, it is possible to compute the Gröbner basis of

I = 〈θ1 − y1, . . . , θn − yn, η1 − yn+1, . . . , ηt − yn+t〉 ⊂ K[x1, . . . , xn, y1, . . . , yn+t]

w.r.t. an elimination order w.r.t. the set of variables {y1, . . . , yn+t} that is to say we elimi-
nate the variables x1, . . . , xn. In Chapter 2, we have seen that computing a Gröbner basis of
homogeneous ideals is easier than computing a Gröbner basis of an affine ideal. Since, the
primary and secondary invariants are homogeneous polynomials, in order to ensure that I is
an homogeneous ideal one needs to equip the ring K[x1, . . . , xn, y1, . . . , yn+t] with the weighted
degree with weights system (1, . . . , 1, deg(θ1), . . . , deg(θn), deg(η1), . . . , deg(ηt)).

76 Chapter 3. Solving structured polynomial systems

Theorem 3.22. Let S = {f1, . . . , fn} be a regular polynomial system. Let G be a pseudo-
reflection group. Assume we know an efficient way to compute all the elements in an orbit of
G. If S ⊂ K[x1, . . . , xn]

G then the complexity of solving S is divided by (#G)ω by considering
the action of G.

Proof. From Theorem 3.17 and equation (3.4) we have that f1, . . . , fn can be written in terms
of θ1, . . . , θ1 be the primary invariants of G (i.e. algebraically independent homogeneous
polynomials). That is to say S admits the regular polynomial change of variables ΩG. Hence,
from equation (3.4) we have

∏n
i=1 deg(θi) = #G. Finally, applying Theorem 3.14 concludes

the proof.

Let G1 and G2 be two pseudo-reflection groups such that G1 ⊂ G2. Let S = {f1, . . . , fn} ⊂
K[x1, . . . , xn]

G2 ⊂ K[x1, . . . , xn]
G1 , we denote SG1 the system {ΩG1(f1), . . . ,ΩG1(fn)} and SG2

the system {ΩG2(f1), . . . ,ΩG2(fn)}.
Corollary 3.23. If S is a regular system then solving SG2 instead of SG1 allows to divide by(
|G2|
|G1|

)ω
= (G2 : G1)

ω the complexity of solving the polynomial system where (G2 : G1) denotes

the index of G1 in G2.

In some applications as for instance in Chapter 6 and 7 one can be interested in the
estimation of the speed up provided by the solving of SG2 instead of SG1 when the system S
is not regular. Indeed, sometimes the symmetries due to the action of the group G1 are so
natural that the right modeling of the problem as a polynomial system is to take into account
the symmetries of G1 i.e. considering the system SG1 but using the usual degree and not the
weighted degree induces by the primary invariants of G1. It is what happens in Chapter 6
and Chapter 7. In that case, we cannot apply directly the results of Section 3.1.

By consequence, in the case where S is not regular but SG1 is regular when using the usual
degree, to estimate the speed up provided by the solving of SG2 = {g1, . . . , gn} ⊂ K[y1, . . . , yn]
instead of SG1 = {f1, . . . , fn} ⊂ K[x1, . . . , xn] we need to highlight a polynomial change of
variables p1, . . . , pn ∈ K[x1, . . . , xn] such that fi = gi(p1, . . . , pn) for i = 1, . . . , n. In the
following, we denote by φ the map describing this change of variables defined as:

φ−1 : K[y1, . . . , yn] → K[x1, . . . , xn]

f 7→ f(p1, . . . , pn) .

Lemma 3.24. Let G1 and G2 be two pseudo-reflective groups such that G1 ⊂ G2. Let S =
{f1, . . . , fn} be a polynomial system in K[x1, . . . , xn]

G2 ⊂ K[x1, . . . , xn]
G1 . We denote by SG1

the system {ΩG1(f1), . . . ,ΩG1(fn)}. The change of variables p1, ..., pn to write SG1 in terms
of the primary invariants of G2 always exists.

Proof. Since G1 ⊂ G2, we have K[x1, . . . , xn]
G2 ⊂ K[x1, . . . , xn]

G1 . In particular, the primary
invariants ϑ1, . . . , ϑn of G2 are in K[x1, . . . , xn]

G1 . By consequence, let θ1, . . . , θn be the
primary invariants of G1 for i ∈ {1, . . . , n} there exists pi ∈ K[x1, . . . , xn] such that ϑi =
pi(θ1, . . . , θn) which concludes the proof.

The next result is a direct consequence of Lemma 3.24 and Theorem 3.14.

Corollary 3.25. Assume the ring K[x1, . . . , xn] is equipped with the usual degree. If SG1 ⊂
K[x1, . . . , xn] is regular and p(h)1 , . . . , p

(h)
n are algebraically independent then the complexity of

solving SG2 is divided by (
∏n

i=1 deg(pi))
ω in comparison to the complexity of solving SG1 .

3.2. Application to polynomial systems invariant under a linear group 77

We conclude this chapter by giving some examples of linear groups G encountered in
applications and for which the step of finding the solutions of S given that of SG can be done
very efficiently i.e. by solving univariate polynomials.

3.2.3 Particular case: some examples of groups in semi-direct product with
Sn

Let G = Sn be the Symmetric group. Is is well-known that the invariant ring of Sn is
generated by the elementary symmetric polynomials, see for instance [Stu08]. Given a solution
v = (v1, . . . , vn) of SG, to recover the solutions of S we then need to solve polynomial systems
of the form 




e1(x1, . . . , xn)− v1 = 0
...

en(x1, . . . , xn)− vn = 0

(3.5)

where ei is the ith elementary symmetric polynomial. However, it is well-known that solving
the system (3.5) is equivalent to solve a univariate polynomial. Indeed, we have

n∏

i=1

(x− xi) = xn +

n∑

i=1

(−1)iei(x1, . . . , xn)x
n−i . (3.6)

Moreover, solving a univariate polynomial of the form of (3.6) can be done in quasi-linear
time in n see [VZGG03, Pan02] or Section 2.4.3. By consequence, in that case solving the
systems Sϑ,v for all solutions v of SSn

is negligible in comparison of solving S. Moreover, it
is well known that writing S in terms of the elementary symmetric polynomial can be done
very efficiently without Gröbner bases computations, see for instance [Stu08]. The result of
Theorem 3.14 can thus be applied in the case of symmetric polynomial systems.

Let G = (Z/2Z)n⋊Sn, this group can be represented thanks to a pseudo-reflection group.
Indeed, it can be represented by the action on An defined by the rule that Sn permutes a
chosen vector, whereas (Z/2Z)n changes the sign of some vector elements. The invariant ring
of G is generated by the elementary symmetric polynomial in terms of x21, . . . , x

2
n denoted

s1, . . . , sn, see for instance [Kan01]. By consequence, in the same way as for the Symmetric
group, given a solution of SG we can compute the corresponding solutions of S by solving a
univariate polynomial and computing n square roots. Indeed, we have

n∏

i=1

(x− x2i) = xn +
n∑

i=1

(−1)isi(x1, . . . , xn)x
n−i . (3.7)

Another group which can be similarly handled is G = (Z/2Z)n−1 ⋊ Sn. It can be
represented thanks to a pseudo-reflection group by the action on An which is the same as
(Z/2Z)n ⋊Sn except that (Z/2Z)n−1 changes the sign of an even number of vector elements.
The invariant ring of G is generated by s1, . . . , sn−1, en, see for instance [Kan01]. Since, we
have sn = e2n to recover the solutions of SG we can solve the polynomial in equation (3.7) and
then computing n square roots.

Example 3.26. Let f1, f2 ∈ F53[x1, x2] defined by

f1 = 33x21x
2
2 + 27x21x2 + 27x1x

2
2 + 49x21 + 37x1x2 + 49x22 + 7x1 + 7x2 + 50

f2 = 29x21x
2
2 + 48x21x2 + 48x1x

2
2 + 2x21 + 16x1x2 + 2x22 + 6x1 + 6x2 + 32

.

78 Chapter 3. Solving structured polynomial systems

One can note that f1, f2 ∈ F53[x1, x2]
S2 and

ΩS2(f1) = 49y21 + 27y1y2 + 33y22 + 7y1 + 45y2 + 50
ΩS2(f2) = 2y21 + 48y1y2 + 29y22 + 6y1 + 12y2 + 32

.

Assume we look for the solutions of S = {f1, f2} that are in (F53)
2. The evaluation of the

elementary symmetric polynomials in these solutions are also in F53. Hence, we look for the
solutions of SS2 = {ΩS2(f1),ΩS2(f2)} in (F53)

2.
The unique solution of SS2 in (F53)

2 is (13, 1). Thus, computing the solutions of S in
(F53)

2 is reduced to find the solutions in F53 of the univariate polynomial

f = x2 − 13 + 1 .

Such solutions are given by 24 and 42. By consequence, the solutions of S in (F53)
2 are (24, 42)

and (42, 24).

Chapter 4

Change of ordering

Contents
4.1 Computing the LEX Gröbner basis given the multiplication ma-

trices . 83

4.1.1 Triangular set . 83

4.1.2 Shape Position case . 85

4.2 Computing the multiplication matrices using fast linear algebra 86

4.3 Polynomial equations with fixed degree: the tame case 88

4.3.1 General Complexity analysis . 89

4.3.2 Complexity for regular systems . 91

4.4 A worst case ultimately not so bad 93

4.5 Polynomial equations with non-fixed degree: the wild case . . . 94

4.5.1 Reading directly Tn from the Gröbner basis 94

4.5.2 Another algorithm for polynomial systems solving 96

4.6 Impact of Algorithm 16 on the practical solving of PoSSo in the

worst case . 99

The results presented in this chapter are from a joint work with J.-C. Faugère, P. Gaudry
and G. Renault.

We are interested in the complexity of polynomial systems solving. As mentioned in Chap-
ter 2 the PoSSo problem is stated as follows.

Problem 4.1 (PoSSo). Given a set of polynomial equations S = {f1 = · · · = fs = 0} with
f1, . . . , fs ∈ K[x1, . . . , xn]. Assume the system S has a finite number of solutions counted with
multiplicities in the algebraic closure of K. The PoSSo problem consists of computing the LEX
Gröbner basis of 〈S〉 from which one can easily compute the solutions of S.

In the best of our knowledge, for the complexity of computing the LEX Gröbner basis,
there is no better bound than O(nD3). The main goal of this chapter is to pass over this
theoretical barrier and thus providing the first algorithm with sub-cubic complexity in D to
solve the PoSSo problem.

In order to reach this goal we develop new algorithms for change of ordering for Gröbner
bases. As mentioned in Chapter 2, from a DRL Gröbner basis, one can compute the corre-
sponding LEX Gröbner basis by using a change of ordering algorithm (Algorithm 11). The
first step of Algorithm 11 can be done by using F4 [Fau99] or F5 [Fau02] algorithms. The
complexity of these algorithms for regular systems (Definitions 2.66 and 2.79) is well-handled.
For the particular case of the DRL order, computing a DRL Gröbner basis of a regular system

79

80 Chapter 4. Change of ordering

in K[x1, . . . , xn] with equations of same degree, d, can be done in Õ(eωndωn) arithmetic oper-
ations (see [BFSY05, Laz83] and Chapter 2 Theorems 2.77 and 2.83). Moreover, the number
of solutions D of the system can be bounded by dn by using the Bézout’s bound. Since, this
bound is generically (i.e. almost always) reached i.e. D = dn, computing a DRL Gröbner
basis can be done in Õ(eωnDω) arithmetic operations. Hence, in this case the first step of Al-
gorithm 11 has a polynomial arithmetic complexity in the number of solutions with exponent
ω.

The second step of Algorithm 11 can be done by using a change of ordering algorithm.
As mentioned in Chapter 2, change of ordering for zero dimensional ideals is closely related
to linear algebra. However, from now on the complexity of change of ordering has never
been related to the complexity of matrix multiplication. Indeed, the first step of the FGLM
algorithm (Algorithm 8) required O(nD) dependent matrix-vector products to compute the
multiplication matrices and hence has a total complexity of O(nD3) arithmetic operations.
Moreover, the second step requires to test the linear dependency of O(nD) vectors which still
yields a complexity of O(nD3) arithmetic operations. In consequence, solving regular zero-
dimensional systems can be done in O(nD3) arithmetic operations and change of ordering
appears as the bottleneck of PoSSo in this case.

Fast Linear Algebra. Since the second half of the 20th century, an elementary issue in
theoretical computer science was to decide if most of linear algebra problems can be solved
by using fast matrix multiplication and consequently bound their complexities by that of
multiplying two dense matrices i.e. O(mω) arithmetic operations where m × m is the size
of the matrix and 2 ≤ ω < 2.3727. This upper bound for ω was obtained by Vassilevska
Williams in [VW12]. For instance, Bunch and Hopcroft showed in [BH74] that the inverse
or the triangular decomposition can be done by using fast matrix multiplication. Baur and
Strassen investigated the determinant in [BS83]. The case of the characteristic polynomial was
treated by Keller-Gehrig in [KG85]. Although the link between linear algebra and the change
of ordering has been highlighted for several years, relating the complexity of the change of
ordering with fast matrix multiplication complexity is still an open issue.

Main results. The aim of this chapter is then to give an initial answer to this question
in the context of polynomial systems solving i.e. for the special case of the DRL and LEX
orderings. More precisely, our main results are summarized in the following theorems. Let S
be a polynomial system. First, if the equations in S have bounded degree then we present a
deterministic algorithm to compute the LEX Gröbner basis of 〈S〉 if it is a triangular set (see
Definition 2.55 in a sub-cubic complexity in D and dn.

Theorem 4.2. Let S = {f1, . . . , fn} ⊂ K[x1, . . . , xn] be a polynomial system admitting a
triangular set as LEX Gröbner basis. If the sequence (f1, . . . , fn) is a regular sequence and if
the degree of each polynomial fi (i = 1, . . . , n) is uniformly bounded by a fixed integer d (i.e.
d does not tend to infinity) then there exists a deterministic algorithm solving Problem 4.1 in
Õ(eωndωn +Dω) arithmetic operations.

Then we present a Las Vegas algorithm extending the result of Theorem 4.2 to polynomial
systems not necessarily having a triangular set as LEX Gröbner basis and whose equations
have non fixed degree i.e. the degree of the equations tends to infinity.

81

Theorem 4.3. Let S = {f1, . . . , fn} ⊂ K[x1, . . . , xn] be a polynomial system generating a
radical ideal. If the sequence (f1, . . . , fn) is a regular sequence where the degree of each polyno-
mial is uniformly bounded by a non fixed parameter d then there exists a Las Vegas algorithm
solving Problem 4.1 in Õ(eωndωn +Dω) arithmetic operations.

As previously mentioned, the Bézout bound allows to bound D by dn and generically (i.e.
for generic systems) this bound is reached i.e. D = dn. By consequence, Theorem 4.2 and
Theorem 4.3 means that if the number of variables is fixed (respectively tends to infinity)
computing the LEX Gröbner basis of generic polynomial systems can be done in Õ(Dω)
(respectively Õ(eωnDω)) arithmetic operations.

In Figure 4.1 we show the impact of our algorithms for change of ordering (denoted “Fast
FGLM”) on the complexity of solving the PoSSo problem.

d

FGLM Õ
(
d3n

)

F5 Õ (dωneωn)

Fast FGLM Õ (dωn)

Figure 4.1: Complexity of change of ordering and F5 steps in the polynomial system solving
process with d→ ∞ and n = 20.

Outline of the algorithms. In 2011, Faugère and Mou proposed in [FM11] another kind
of change of ordering algorithm to take advantage of the sparsity of the multiplication ma-
trices. Nevertheless, when the multiplication matrices are not sparse, the complexity is still
in O(D3) arithmetic operations. Moreover, these complexities are given assuming that the
multiplication matrices have already been computed and the authors of [FM11] do not investi-
gate their computation whose complexity is still in O(nD3) arithmetic operations. In FGLM,
the matrix-vectors products (respectively linear dependency tests) are intrinsically sequen-
tial. This dependency implies a sequential order for the computation of the matrix-vectors
products (respectively linear dependency tests) on which the correctness of this algorithm
strongly relies. Thus, in order to decrease the complexity to Õ (Dω) we need to propose new
algorithms.

To achieve result in Theorem 4.2 we propose two kinds of algorithm in Õ(Dω), each of
them corresponding to a step of the FGLM algorithm.

Multiplication matrices. We first present an algorithm to compute multiplication matrices
assuming that we have already computed a Gröbner basis G>1 . The bottleneck of the existing
algorithm [FGLM93] came from the fact that nD normal forms have to be computed in a
sequential order. The key idea is to show that we can compute simultaneously the normal

82 Chapter 4. Change of ordering

form of all monomials of the same degree by computing the row echelon form of a well chosen
matrix. Hence, we replace the nD normal form computations by log2(D) (we iterate degree by
degree) row echelon forms on matrices of size (n D)× (nD+D). To compute simultaneously
these normal forms we observe that if r is the normal form of a monomial m of degree
d − 1 then m − r is a polynomial in the ideal of length at most D + 1; then we generate
the Macaulay matrix of all the products xim − xir (for i from 1 to n) together with the
polynomials g in the Gröbner basis G>1 of degree exactly d. We recall that the Macaulay
matrix of some polynomials ([Laz83, Mac94] and Definition 2.61) is a matrix whose rows
consist of the coefficients of these polynomials and whose columns are indexed with respect
to the monomial ordering. Computing a row echelon form of the concatenation of all the
Macaulay matrices in degree less or equal to d enable us to obtain all the normal forms of all
monomials of degree d. This yields an algorithm to compute the multiplication matrices of
arithmetic complexity O(δnωDω) where δ is the maximal degree of the polynomials in G>1 ;
note that this algorithm can be seen as a redundant version of F4 or F5.

In order to prove Theorem 4.3 we use the fact that, in a generic case, only the multiplication
matrix by the smallest variable is needed. Surprisingly, we show (Theorem 4.16) that, in this
situation, no arithmetic operation is required to build the corresponding matrix. Moreover,
for non generic polynomial systems, we prove (Corollary 4.19) that a generic linear change of
variables bring us back to this case.

Computing the new basis. The second kind of algorithm we describe is to treat the
second step of Algorithm 8 i.e. line 2 to line 16. First, we focus on the case where the LEX
Gröbner basis is a triangular set. In that case, since we know the shape of the LEX Gröbner
basis, we can predict in advance the matrix-vector products to compute in the second step of
FGLM algorithm and also the linear relations to find. More precisely, at step i we look for
the polynomial of the form xdii + hi(xi, . . . , xn) of the LEX Gröbner basis. To compute it we
first have to compute matrix-vector products of the form T ji

i · · ·T jn
n 1 where jk = 0, . . . , dk−1

and ji = 0, . . . , δi with δi ≥ di, T1, . . . , Tn are the n multiplication matrices, 1 = (1, 0, . . . , 0)t

and δi
∏n

k=i+1 dk − 1 = D. In order to compute efficiently these matrix-vector products we

generalize the algorithm of Keller-Gehrig [KG85]. We assume that the vectors T ji+1

i+1 · · ·T jn
n 1

are known for jk = 0, . . . , dk − 1. We denote by Mi,ℓ the matrix containing all the vectors of

the form T ℓ
i T

ji+1

i+1 · · ·T jn
n 1 for jk = 0, . . . , dk − 1. First we compute T 2

i , T
4
i , . . . , T

2⌈log2 δi⌉

i using

binary powering; then all the vectors T ji
i · · ·T jn

n for jk = 0, . . . , dk − 1 and ji = 0, . . . , δi are
computed by performing log2 δi matrix products of the form T 2k

i Mk where Mk is a matrix
containing all the matricesMi,0, . . . ,Mi,2k−1 defined above. Then, to recover the corresponding
polynomial in the LEX Gröbner basis we have to perform the row echelon form of a matrix
of size D × 2D. This yields an algorithm in O(n log2(D)Dω) to compute LEX Gröbner bases
that are a triangular set.

Then, we focus on the particular case of Shape Position ideals (Definition 2.56). We
present an algorithm to treat the second step of Algorithm 8 (line 2 to line 16) which is an
adaptation of the algorithm given in [FM11] when the ideal is in Shape Position. In that case,
only the multiplication matrix by the smallest variable is needed. When the multiplication
matrix T of size D×D is dense, the O(D3) arithmetic complexity in [FM11] came from the 2D
matrix-vector products T ir for i = 1, . . . , 2D where r is a column vector of size D. To decrease
the complexity we follow same idea as in the previous algorithm i.e. we use the Keller-Gehrig
algorithm [KG85]: first, we compute T 2, T 4, . . . , T 2⌈log2 D⌉

using binary powering; second,

4.1. Computing the LEX Gröbner basis given the multiplication matrices 83

all the products T ir are recovered by computing log2D matrix multiplications. Then, in
the Shape Position case, as in [FM11, FM13, Mou13] the n univariate polynomials of the
lexicographical Gröbner basis are computed by solving n structured linear systems (Hankel
matrices) in O(nD log22(D)) operations. We thus obtain a change of ordering algorithm (DRL
to LEX order) for Shape Position ideals whose complexity is in O (log2(D) (Dω + n log2(D)D))
arithmetic operations.

In the following section, we first present an algorithm to compute the LEX Gröbner basis
of an ideal having as LEX Gröbner basis a triangular set. Then we focus on Shape Position
ideals. These algorithms assume the DRL Gröbner basis and the multiplication matrices to
be known.

4.1 Computing the LEX Gröbner basis given the multiplication
matrices

In this section, we present two algorithms to compute the LEX Gröbner basis given the DRL
Gröbner basis. The first algorithm for ideals having a triangular set as LEX Gröbner basis
follows same ideas as developed in the FGLM algorithm. The second algorithm for Shape
Position ideals follows the one described in [FM11]. The main difference is that this new
algorithm and its complexity study do not take into account any structure of the multiplication
matrices (in particular any sparsity assumption).

These two algorithms share the use of Keller-Gehrig algorithm to compute particular
matrix-vector products using matrix multiplication.

4.1.1 Triangular set

In this section, we assume the multiplicative structure of the quotient ring to be known.
That is to say, the n multiplication matrices (Definition 2.32) T1, . . . , Tn are assumed to be
known. Let G>lex

= {xd11 + h1(x1, . . . , xn), . . . , x
dn−1

n−1 + hn−1(xn−1, xn), x
dn
n + hn(xn)} be the

LEX Gröbner basis to compute. Where degxj
(hi) < dj for any 1 ≤ i ≤ j ≤ n. The degree of

I = 〈G>lex
〉 is then given by D =

∏n
i=1 di.

Computing the polynomial hn

Following FGLM algorithm, see Section 2.3.1, first we have to compute the coordinate vectors
representing all the monomials xjn in V>drl

(I) for j = 0, . . . , dn. Nevertheless we do not
know in advance dn. Thus, since dn ≤ D we compute all the coordinate vectors of xjn for
j = 0, . . . , D. Note that this coordinate vectors can be computed as follows vn,j = T j

n1 for
any j ∈ {0, . . . , D} where 1 = (1, 0, . . . , 0)t is the coordinate vector of the monomial 1. In
order to compute efficiently all the vectors vn,j we use Keller-Gehrig algorithm [KG85].

If r1, . . . , rk are column vectors then we denote by (r1| . . . |rk) the matrix with D rows and
k columns obtained by joining the vectors ri vertically. Similarly, if M1, . . . ,Mk are matrices
of size D× ci then we denote by (M1|| · · · ||Mk) the matrix with D rows and

∑k
i=1 ci columns

by joining the matrices Mi vertically.
To simplify the notation let T be the transpose of Tn. First, we compute T 2, T 4, . . . ,

T 2⌈log2 D⌉
using binary powering with ⌈log2D⌉ matrix multiplications. Similarly to [KG85],

84 Chapter 4. Change of ordering

the vectors T j1 for j = 0, . . . , D are computed by induction in log2D steps:

T 2(T1 | 1) = (T 31 | T 21)
T 4(T 31 | T 21 | T1| 1) = (T 71 | T 61 | T 51 | T 41)

...

T 2⌈log2(D)⌉
(T 2⌈log2(D)⌉−11 | · · · | 1) = (T 2∆−11 | T 2∆−21 | · · · | T 2⌈log2(D)⌉

1)

(4.1)

where ∆ is the smallest power of two satisfying ∆ ≥ D.
Then, the row echelon form E of the matrix M containing the D+1 vectors vn,0, . . . ,vn,D

allows to recover the polynomial xdnn +hn(xn). Indeed, dn is given by the rank of M . Moreover,
the invertible matrix P satisfying E = PM gives the linear dependency between the vectors
vn,0, . . . ,vn,dn and allows to compute hn.

Computing the remaining polynomials h1, . . . , hn−1

To compute the others polynomials, we generalize the idea to compute hn. At step i, we look
for hi and we assume that dn, . . . , di+1 are known and the coordinate vectors vi,jn,...,ji+1 =

T jn
n · · ·T ji+1

i+1 1 are also known for any jk ∈ {0, . . . , dk − 1} for k = i+ 1, . . . , n.
We know that di ≤ D∏n

j=i+1 dj
= δi. Hence, we compute all the coordinate vectors

vi,jn,...,ji+1,ℓ = T jn
n · · ·T ji+1

i+1 T
ℓ
i 1 for jk ∈ {0, . . . , dk − 1} with k = i + 1, . . . , n and for ℓ =

0, . . . , δi. Note that the number of such coordinate vectors is (δi + 1)
∏n

i=i+1 di = D +∏n
i=i+1 di ≤ 2D.

Let Mi,ℓ be the matrix constructed from the vectors vi,jn,...,ji+1,ℓ = T jn
n · · ·T ji+1

i+1 T
ℓ
i 1 for

jk ∈ {0, . . . , dk − 1} with k = i+ 1, . . . , n i.e.

Mi,ℓ = (vi,0,...,0,ℓ|vi,1,...,0,ℓ|vi,2,...,0,ℓ| · · · |vi,dn−1,...,di+1−1,ℓ)

is a matrix of size D ×∏d
j=i+1 dj . Note that Mi,0 is known and Mi,1 = TiMi,0.

In order to compute efficiently all the coordinate vectors vi,jn,...,ji+1,ℓ we first compute

T 2
i , T

4
i , . . . , T

2⌈log2 δi⌉

i using binary powering with ⌈log2 δi⌉ matrix multiplications. Then, the
vectors T ℓ

i T
jn
n · · ·T ji+1

i+1 1 for ℓ = 0, . . . , δi are computed by induction in log2 δi steps:

T 2
i (Mi,1 || Mi,0) = (Mi,3 || Mi,2)

T 4
i (Mi,3 || Mi,2 || Mi,1 || Mi,0) = (Mi,7 || Mi,6 || Mi,5 || Mi,4)

...

T 2⌈log2(δi)⌉
i (Mi,2⌈log2(δi)⌉−1 || · · · || Mi,0) = (Mi,2∆−1 || Mi,2∆−2 || · · · || Mi,2⌈log2(δi)⌉)

(4.2)
where ∆ is the smallest power of two satisfying ∆ ≥ δi.

Finally, let M = (Mi,0 || · · · || Mi,δi) be a matrix of size (D × D +
∏n

j=i+1 dj). Let r
be the rank of M t, di is then given by di = r∏n

j=i+1 dj
. Let E be the row echelon form of M t

and let P be the invertible matrix satisfying E = PM t, the linear dependency between the
vi,0,...,0,di and the coordinate vectors vi,jn,...,ji+1,ℓ for jk = 0, . . . , dk with k = i + 1, . . . , n and
for ℓ = 0, . . . , di − 1 can be read from P and gives hi.

This algorithm to compute LEX Gröbner basis when it is a triangular set is summarized
in Algorithm 13.

4.1. Computing the LEX Gröbner basis given the multiplication matrices 85

Algorithm 13: LEX Gröbner basis computation as a triangular set.
Input : I be an ideal having a triangular set for LEX Gröbner basis and the n

multiplication matrices T1, . . . , Tn representing the multiplication by
x1, . . . , xn in V>drl

(I).
Output: The LEX Gröbner basis of I.
Mn,0 := 1; Mn,1 := Tn1; G := ∅; d := 1;1

for i := n to 1 do2

δi :=
D
d ;3

Compute T 2j
i for j = 1, . . . , ⌈log2(δi)⌉;4

Compute Mi,2, . . . ,Mi,δi using induction (4.2);5

M := (Mi,0 || · · · || Mi,δi);6

Compute E the row echelon form of M t and P such that E = PM t;7

di :=
Rank(E)

d ; d := d× di;8

Read from P , c, cjn,...,ji ∈ K s.t. c · T di
i 1+

∑

jk=0,...,dk−1
k∈{i,...,n}

cjn,...,ji · T jn
n · · ·T ji

i 1 = 0;

9

f := xdii +
∑

jk=0,...,dk−1
k∈{i,...,n}

cjn,...,ji
c

xjnn · · ·xjii ;

10

Append f to G;11

if i > 1 then Mi−1,0 :=M ; Mi−1,1 := Ti−1Mi−1,0;12

return G;13

The second algorithm that we present is for the particular case of ideals in Shape Position.
Note that the Shape Position case is a particular case of triangular set. Hence, Algorithm 13
can be used. However, the algorithm presented in the next section is more efficient in practice.
Moreover, only the multiplication matrix Tn is required as input of this algorithm. This will
be useful to speed up the computation of the multiplicative structure of the quotient ring in
the whole change of ordering algorithm (see Section 4.5).

4.1.2 Shape Position case

The idea is the same as above but instead of following FGLM algorithm, we follow the effi-
cient algorithm of Faugère and Mou for Shape Position ideals. Let G>lex

= {hn(xn), xn−1 −
hn−1(xn), . . . , x1 − h1(xn)} be the LEX Gröbner basis of I. In Section 2.3.2 (respectively
Section 2.3.3) we saw that Faugère and Mou have proposed a probabilistic (respectively deter-
ministic) change of ordering algorithm to compute the LEX Gröbner basis of Shape Position
ideals. Indeed, given the linearly recurrent sequence S = [(r, T j

n1) | j = 0, . . . , 2D − 1] where
r is a random column vector (respectively the linearly recurrent sequence Si = [(ei, T

j
n1) | j =

0, . . . , 2D− 1] where ei is the ith canonical vector) we saw that computing the LEX Gröbner
basis is reduced to solve Hankel linear systems. Which can be done very efficiently.

In order to compute efficiently S they note that (r, T j
n1) = (T jr,1) where T = (Tn)

t.
Consequently, computing S (respectively Si) can be done by extracting the first (respectively
the ith) component of the vectors T jr (respectively T j

n1) for j ∈ {0, . . . , 2D − 1}.
Since they consider that the multiplication matrix Tn is sparse, they compute iteratively

86 Chapter 4. Change of ordering

the matrix-vector products i.e T j+1r = T (T jr) or T j+1
n 1 = Tn(T

j
n1). However, when the

matrix Tn is dense this yields an algorithm with cubic complexity in D. In order to compute
these matrix-vector products using multiplication matrices we use the algorithm of Keller-
Gehrig as presented in equation (4.1) where the matrix and the vector are chosen according
to the wanted matrix-vector products.

Remark 4.4. In the case of the deterministic algorithm, we also need to compute the matrix-
vector products T j

nwk for j = 0, . . . , di − 1 to compute the vector bi,k where di ≤ D and wk =
Tk1 (see Section 2.3.3 for notations and description of this algorithm). Hence, we also use
induction (4.1) to compute these matrix-vector products. Consequently, for the deterministic
algorithm we use n times the induction 4.1.

Following notations of Section 2.3.2, we summarize the probabilistic algorithm in Algo-
rithm 14.

Algorithm 14: Probabilistic change of ordering for Shape Position ideals.
Input : The multiplication matrix Tn and the DRL Gröbner basis G>drl

of an ideal I.
Output: Return the LEX Gröbner basis G>lex

of I or fail.
T := T t

n; r := Random column vector in KD;1

Compute T 2i for i = 0, . . . , ⌈log2D⌉ and compute T jr for j = 0, . . . , (2D − 1) using2

induction (4.1). Deduce the linearly recurrent sequence S and the Hankel matrix H ;
hn(xn) := BerlekampMassey(S) ;3

if deg(hn) = D then4

Let Lc = {j ∈ {1, . . . , n− 1} such that NF>drl
(xj) = xj} and5

L = {1, . . . , n− 1}\Lc;
for j ∈ Lc do6

Deduce Tj1 and bj then solve the structured linear system H cj = bj ;7

hj(xn) :=
∑D−1

i=0 cj,ix
i
n where cj,i is the ith component of the vector cj ;8

for j ∈ L do9

hj(xn) := −∑i∈Lc αj,ihi(xn)− αj,nhn(xn)− αj,0 where αj,i is the ith coefficient10

of the linear form whose leading term is xj ;

return [x1 − h1(xn), . . . , xn−1 − hn−1(xn), hn(xn)];11

else return fail ;12

In the next section, we show how to use fast matrix multiplication to compute all the
multiplication matrices.

4.2 Computing the multiplication matrices using fast linear al-
gebra

Let B = {ǫD >drl . . . >drl ǫ1 = 1} be the canonical basis w.r.t. the DRL ordering of
K[x1, . . . , xn]/I seen as a K-vector space. In Section 2.3.1, we show that computing the
multiplication matrices T1, . . . , Tn consists of computing the normal form of the monomials
ǫixj for i = 1, . . . , D and j = 1, . . . , n. From Proposition 2.68 we saw that this can be done
by performing at most nD matrix-vector products which yields a cubic complexity in D to
compute T1, . . . , Tn.

4.2. Computing the multiplication matrices using fast linear algebra 87

Another way to compute the normal form of a term t is to find the unique polynomial in the
ideal whose leading term is t and the others terms correspond to monomials in B. Hence, to
compute the multiplication matrices, we look for the polynomial t−NF>drl

(t) for any t in the
frontier F . We recall that the frontier is the set F = {xjǫi | j = 1, . . . , n and i = 1, . . . , D}\B.
Therefore, to compute these polynomials we proceed in two steps. First, we construct a
polynomial in the ideal whose leading term is t. If t is the leading term of a polynomial g in
G>drl

then the desired polynomial is g itself. Otherwise, t is of type III of Proposition 2.68
and t = xkt

′ with t′ ∈ F and deg(t′) < deg(t). We will proceed degree by degree so that
we can assume that we know a polynomial f ′ in the ideal whose leading term is t′; then the
desired polynomial is f = xkf

′. Next, once we have all the polynomials f with all possible
leading terms t of some degree d, we can recover the canonical form t−NF>drl

(t) by reducing
f with respect to the others polynomials whose leading terms are less than t. By computing
a reduced row echelon form of the Macaulay matrix of all these polynomials, we can reduce
all of them simultaneously.

Following the idea presented above, we can now describe Algorithm 15 for computing all
the multiplication matrices Ti. Assuming that F is sorted in increasing order w.r.t. >drl i.e.
F = {t#F >drl · · · >drl t1}, we define the linear map φ:

φ :

(
A → KD+#F

∑D
i=1 αiǫi +

∑#F
j=1 βjtj 7→ (β#F , . . . , β1, α1, . . . , αD) .

)

Let M be a row indexed matrix by all the monomials in F . Let m be a monomial in F and i
the position of m in F , M [m] denotes the row of M of index m i.e. the (#F − i+1)th row of
M containing a polynomial of leading term m. If T is a matrix, T [∗, i] denotes the ith column
of T .

Proposition 4.5. Algorithm 15 is correct.

Proof. The key point of the algorithm is to ensure that for each monomial in F its normal
form is computed and stored in NF before we use it. We will prove the following loop invariant
for all d in {dmin, . . . , dmax}.

Loop invariant: at the end of step d, all the normal forms of the monomials of degree d
in the frontier F are computed and are stored in NF. Moreover, the mth row of the matrix M
contains φ(m−NF>drl

(m)) for any monomial m ∈ Fd.
First, we assume that d = dmin. Then, each monomial t of degree d in F is of type (II)

of Proposition 2.68. Indeed, if t was of type (III) then there exists t′ in F of degree d − 1
which divides t. This is impossible because t′ ∈ Fdmin−1 = ∅. Hence, the normal form of t
for t ∈ Fdmin

is known and M [t] contains φ(g) with g the unique element of G>drl
such that

LT>drl
(g) = t. Hence, M [t] = φ(g) = φ(t − NF>drl

(t)). Moreover, since G>drl
is a reduced

Gröbner basis , the matrix M is already in reduced row echelon form. Thus, the loop in Line 9
updates NF[t] for all t ∈ Fd.

Let d > dmin, we now assume that the loop invariant is true for any degree less than d. For
all t ∈ Fd the tth row of M contains either φ(t−NF>drl

(t)) if t is of type (II) or φ(t−xkNF[t′])
if t is of type (III). Since deg(t′) = d− 1, by induction its normal form is known and in NF.
Hence NF[t′] = NF>drl

(t′) and M [t] = φ(xk(t
′ − NF>drl

(t′)). A first consequence is that,
before Line 8, since we sort Fd at each step, M is an upper triangular matrix with M [t, t] = 1
for all t ∈ Fd, see Figure 4.2. Note that sorting Fd is required only to obtain this triangular
form. Let f be the polynomial NF>drl

(t′). Writing f =
∑D

j=1 λjǫj we have that λj = 0

88 Chapter 4. Change of ordering

Algorithm 15: Building multiplication matrices (in the following || does not mean
parallel code but gives details about pseudo code on the left side).

Input : The DRL Gröbner basis G>drl
of an ideal I.

Output: The n multiplication matrices T1, . . . , Tn.
Compute B = {ǫD >drl · · · >drl ǫ1} and F = {xiǫj | i = 1, . . . , n and j = 1, . . . , D} \B,1

S := #F ;
dmin := min({deg(t) | t ∈ F}); dmax := max({deg(t) | t ∈ F}); NF := [];2

M := the zero matrix of size nD × (n+ 1)D row indexed by all the monomials in F ;3

for d = dmin to dmax do4

Fd := Sort({t ∈ F | deg(t) = d}, >drl) ;5

for m ∈ Fd do6

Check if we can find:
(i) g ∈ G>drl

such that LT>drl
(g) = m

(ii) t′ ∈ F such that m = xkt
′

Add the corresponding row to the matrix M ;

if m = LT>drl
(g) then M [m] := φ(g);

else

Find xk and t′ ∈ Fd−1 such that m = xkt
′;

M [m] := φ(m− xkNF[t′]);7

M := ReducedRowEchelonForm(M) ;8

for m ∈ Fd do9

Read NF>drl
(m) from M ; NF[m] := −

∑D

j=1M [m,S + j] ǫj ;10

Construct T1, . . . , Tn from NF;

for ǫ in B do NF[ǫ] := ǫ;
for t in F ∪B do

for xi s.t. xi divides t and
t
xi

= ǫj ∈ B do

Ti[∗, j] := ψ(NF[t]);11

return T1, . . . , Tn;

if deg(ǫj) ≥ d since deg(NF>drl
(t′)) ≤ deg(t′) = d − 1. So that f =

∑k
j=1 λjǫj such that

deg(ǫj) < d when j ≤ k. Now for all j ∈ {1, . . . , k}, xkǫj are in exactly one of the following
cases:

1. xkǫj ∈ B so that NF>drl
(xkǫj) = xkǫj is already reduced.

2. xkǫj ∈ F . Since d′ = deg(xkǫj) ≤ d it implies that xkǫj ∈ Fd′ so that the row M [xkǫj]
has been added to M .

Moreover, since each row of the matrix M contains a polynomial in the ideal 〈G>drl
〉 after

the computation of the row echelon form, the rows of the matrix M contain also polynomials
in 〈G>drl

〉 being linear combination of the previous polynomials. Hence, after the computation
of the row echelon form of M , the row M [t] is equal to φ(t−NF>drl

(t)).
By induction, this finishes the proof of the loop invariant and then of the correctness of

Algorithm 15.

4.3 Polynomial equations with fixed degree: the tame case

The purpose of this section, is to analyze the asymptotic complexity of Algorithm 13, Algo-
rithm 14 and Algorithm 15 when the degrees of the equations of the input system are uniformly
bounded by a fixed integer d > 1 and to establish the first main result of this chapter.

4.3. Polynomial equations with fixed degree: the tame case 89

4.3.1 General Complexity analysis

First, we study the complexity of Algorithm 13 to compute LEX Gröbner basis that is a
triangular set given the multiplication matrices T1, . . . , Tn.

Proposition 4.6. Given the multiplication matrices T1, . . . , Tn and the DRL Gröbner basis
G>drl

of an ideal having for LEX Gröbner basis a triangular set, its LEX Gröbner basis can be
deterministically computed in O(n log2(D)Dω) where D is the number of solutions. Expressed
with the input parameters of the system to solve, the complexity is O(n2 log2(d)d

ωn) where
d > 1 is a (fixed) bound on the degree of the input polynomials.

Proof. The complexity of Algorithm 13 is dominated by the cost of Lines 4, 5 and 7. The others
computation are negligible in comparison. At Line 4 one computes ⌈log2(δi)⌉ matrix products
of size (D,D)× (D,D). Since δi ≤ D the complexity of this step for all the iterations of the
loop is in O(n log2(D)Dω) arithmetic operations. At Line 5 one computes ⌈log2(δi)⌉ matrix
products of size at most (D,D)× (D,D +

∑n
j=i+1 dj) i.e. of size at most (D,D)× (D, 2D).

Hence, the complexity of this step for all the iterations of the loop is in O(n log2(D)Dω)
arithmetic operations. Finally, from [KG85] the complexity of Line 7 is in O(Dω) since the
matrix M is of size at most (D, 2D). Moreover, Algorithm 13 is a deterministic algorithm
which concludes the proof.

Next, we analyse Algorithm 14 to compute the LEX Gröbner basis of Shape Position ideals
given the last multiplication matrix.

Proposition 4.7. Given the multiplication matrix Tn and the DRL Gröbner basis G>drl

of an ideal in Shape Position, its LEX Gröbner basis can be probabilistically computed in
O(log2(D)(Dω + nD log2(D) log2 log2(D))) where D is the number of solutions. Expressed
with the input parameters of the system to solve, the complexity is O(n log2(d)d

ωn) where
d > 1 is a (fixed) bound on the degree of the input polynomials.

Proof. As usual T = T t
n is the transpose matrix of Tn. Using the induction (4.1), the vectors

T jr can be computed for all j = 0, . . . , (2D − 1) in O(log2(D)Dω) field operations. Then the
linear recurrent sequence S and the matrix H can be deduced with no cost. The Berlekamp-
Massey algorithm compute the minimal polynomial of S in O(D log22(D) log2 log2(D)) field
operations [JM89, BGY80].

As defined in Section 2.3.2, L = {j ∈ {1, . . . , n−1} such that NF>drl
(xj) 6= xj} and Lc =

{1, . . . , n−1}\L. The right hand sides of the linear systems bi can be computed without field
operations when i ∈ Lc. Since the matrix H is a non singular Hankel matrix, the #Lc linear
systems (2.5) can be solved in O(#Lc log22(D) log2 log2(D)D) = O(n log22(D) log2 log2(D)D)
field operations. Then, to recover all the hi(xn) for i ∈ L we perform O(#L#LcD) = O(n2D)
multiplications and additions in K.

Since the Bézout’s bound allows to bound D by dn with d a fixed integer we have
log2(D) ≤ n log2(d) and the arithmetic complexity of Algorithm 14 is O(log2(D)(Dω +
nD log2(D) log2 log2(D))) which can be expressed in terms of d and n as O(n log2(d)d

ωn).

As for the probabilistic algorithm (Algorithm 14), the deterministic version of change
of ordering for Shape Position ideals presented in Section 4.1.2 has the same complexity as
the deterministic algorithm of Faugère and Mou (Theorem 2.88) presented in Section 2.3.3.
Except that the nD#Tn part of the complexity due to the computation of some matrix-vector

90 Chapter 4. Change of ordering

products using the sparsity of Tn is replaced by n log2(D)Dω since we consider Tn dense and
we use induction (4.1) to compute these matrix-vector products.

This deterministic version computes the LEX Gröbner basis of the radical of the ideal in
input when the ideal is in Shape Position. Hence, this is not restricting if we assume that the
ideal is radical or if we are interested only in the solutions of the system (which is generally
the case when speaking about polynomial systems solving).

Proposition 4.8. Let Tn be the multiplication matrix by the smallest variable and G>drl
be the

DRL Gröbner basis of a radical ideal I in Shape Position. There is a deterministic algorithm
which computes the LEX Gröbner basis of I in

• O (n log2(D)Dω) arithmetic operations if K is a field of characteristic zero;

• O
(
n log2(D)Dω +D log2

q
p

)
arithmetic operations if K is a finite field of characteristic

p and size q;

(or in O(n2 log2(d)d
ωn)) where D is the degree of I.

Now, to complete algorithms of Section 4.1, we deal with the complexity of Algorithm 15
to compute the multiplication matrices. Note that in Proposition 4.7 and 4.8 only the last
matrix Tn is needed. Before considering the complexity of Algorithm 15, we first discuss the
complexity of computing B and F .

Lemma 4.9. Given G>drl
(resp. B) the construction of B (resp. F) requires at most

O(n3D2) (resp. O(nD2 + n2D)) elementary operations which can be decreased to O(n2D)
(resp. O(n2D)) elementary operations if a hash table is used.

Proof. It is well known that the canonical basis B can be computed in polynomial time (but no
arithmetic operations). Nevertheless, in order to be self-contained we describe an elementary
algorithm to compute B. We start with the monomial 1 and we multiply it by all the variables
xi which gives n new monomials to consider. If a new monomial is not divisible by a leading
term of a polynomial in G>drl

then we keep it otherwise we discard it. At each step (we iterate
degree by degree) we multiply by the variables xi only the monomials of highest degree that
we have kept and we proceed until all the new monomials are discarded. Hence, we have to
test the irreducibility of all the elements in F ∪B whose total number is bounded by (n+1)D.
Since LT>drl

(G>drl
) ⊂ F we can bound the number of elements of G>drl

by nD. Therefore, to
compute B we have to test the divisibility of (n+1)D monomials by at most nD monomials.
Hence, the construction of B can be done in O(n3D2) elementary operations.

When using hash tables, we initialize the table F+ with all the leading terms of G>drl
.

At each step (i.e. degree d) to test the divisibility of a monomial m′ = xim with m in B
by an element in LT>drl

(G>drl
) we look for it in F+ in O(1) operations. If m′ is in F+ we

discard it and we add xjm
′ for j = 1, . . . , n to F+. In this way since {m ∈ F | deg(m) =

d + 1} \ E>drl
(G>drl

) ⊂ {xjm | m ∈ F s.t. deg(m) = d} we ensure that Fd+1 ⊂ F+ at the
end of the step d. One tests if a monomial is in B for at most (n+ 1)D monomials (B ∪ F).
The table F+ contains at most n2D monomials. Each of them can be computed in O(1)
operations.

From B, the construction of F requires nD monomials multiplications i.e. n2D additions
of integers. Moreover, removing B of F can be done by testing if (n + 1)D monomials are
in B in at most O(nD2) elementary operations which can be decreased to O(nD) if we use a
hash table.

4.3. Polynomial equations with fixed degree: the tame case 91

Now that we have seen how to construct B and F , the complexity of Algorithm 15 is
treated in the following proposition.

Proposition 4.10. Given the DRL Gröbner basis G>drl
of an ideal, one can compute all the

multiplication matrices in O((dmax − dmin)n
ωDω) (or in O((dmax − dmin)n

ωdωn)) arithmetic
operations in K where dmax (resp. dmin) is the maximal (resp. the minimal) degree of all the
polynomials in G>drl

.

Proof. Algorithm 15 computes all the multiplication matrices incrementally degree by degree.
The frontier F can be written as the union of disjoint sets Fδ = {t ∈ F | deg(t) = δ} so that
we define sδ := #Fδ and Sδ := sdmin

+ · · · + sδ. The cost of the loop at Line 4 is, at each
step, given by the complexity of computing the reduced row echelon form of M . In degree
δ the shape of the matrix M is depicted on Figure 4.2 where Id(Sδ−1) is the Sδ−1 × Sδ−1

identity matrix, 0(Sδ−1) is the Sδ−1 × sδ zero matrix, T is a sδ × sδ upper triangular matrix
and B,C,D are dense matrices of respective size sδ × Sδ−1, sδ ×D, Sδ−1 ×D.

M =

t ∈ Fδ t ∈ Fδ−1 ∪ · · · ∪ Fdmin
t ∈ B

1 ⋆ · · · ⋆ ⋆ · · · ⋆ ⋆ · · · ⋆
0 1 · · · ⋆ ⋆ · · · ⋆ ⋆ · · · ⋆
.
.
. T

. . .
.
.
.

.

.

. B
.
.
.

.

.

. C
.
.
.

0 0 · · · 1 ⋆ · · · ⋆ ⋆ · · · ⋆
0 0 · · · 0 1 · · · 0 ⋆ · · · ⋆
.
.
. 0(Sδ−1, sδ)

.

.

. Id(Sδ−1)
. . .

.

.

. D
.
.
.

0 0 · · · 0 0 · · · 1 ⋆ · · · ⋆

Figure 4.2: Shape of the matrix M of Algorithm 15.

Consequently the reduced row echelon form of M can be obtained from the following
formula:

ReducedRowEchelonForm(M) =




T−1(C −BD)
Id(Sδ) −−−−−−−

D


 .

Since sδ ≤ Sδ ≤ Sdmax ≤ nD we can bound the complexity of computing the reduced row
echelon form of M by O(nωDω). From Lemma 4.9, the costs of the construction of B and F
are negligible in comparison to the cost of loop in Line 4 which therefore gives the complexity
of Algorithm 15: O((dmax−dmin)n

ωDω)) arithmetic operations. Since D ≤ dn, this complexity
can be written as O((dmax − dmin)n

ωdωn).

4.3.2 Complexity for regular systems

Regular systems form an important family of polynomial systems. Actually, as shown in Sec-
tion 2.4.1 the complexity of computing a Gröbner basis of a regular system is well understood.
Since the property of being regular is a generic property this is also the typical behavior of
polynomial systems. For regular systems we can bound accurately the values of dmax which
is the maximal degree of G>drl

and we can prove the first main result of this chapter.

Theorem 4.11. Let S = {f1, . . . , fn} be a polynomial system generating an ideal admitting
a triangular set for LEX Gröbner basis. Assume that (f1, . . . , fn) is a regular sequence of
polynomials whose degrees are uniformly bounded by a fixed integer d i.e. deg(fi) ≤ d for

92 Chapter 4. Change of ordering

i = 1, . . . , n. The PoSSo problem (Problem 4.1) can be solved using a deterministic algorithm
in O(neωndωn + (nω+1 + n log2D)Dω) arithmetic operations in K.

Proof. For regular systems dmax can be bounded by the Macaulay bound [Laz83, BFSY05]
and Corollary 2.76: dmax ≤ ∑n

i=1(deg(fi) − 1) + 1 ≤ n(d − 1) + 1 . Given the system S the
complexity of computing the DRL Gröbner basis of 〈S〉 is bounded by [BFSY05], Theorem 2.77
and Theorem 2.83:

O

(
n

(
n+ dmax

n

)ω)
= O

(
n

(
nd+ 1

n

)ω)
= O(neωndωn)

arithmetic operations (see proof of Corollary 2.91 for more details about the approximation
of the binomial).

From this DRL Gröbner basis, according to Proposition 4.10, the multiplication matrices
T1, . . . , Tn can be computed in O(nω+1Dω) arithmetic operations.

Finally, from T1, . . . , Tn and the DRL Gröbner basis, thanks to Proposition 4.6 the LEX
Gröbner basis of 〈S〉 can be computed by a deterministic algorithm in O(n log2(D)Dω) arith-
metic operations. Since, F4 [Fau99], F5 [Fau02], Algorithm 13 and Algorithm 15 are deter-
ministic algorithms this finishes the proof.

Since the beginning of the chapter, the first Gröbner basis is assumed to be the DRL Gröb-
ner basis. One can notice that the algorithms presented until now do not use this assumption.
Hence, the result of the previous theorem can be extend to the case where the first Gröbner
basis is the WDRL Gröbner basis. Indeed, the asymptotic value of dmax is unchanged in
comparison to the DRL case.

Corollary 4.12. Let S = {f1, . . . , fn} ⊂ K[x1, . . . , xn] be a polynomial system generating an
ideal admitting a triangular set for LEX Gröbner basis. Assume that the ring K[x1, . . . , xn] is
equipped with a weighted degree with weights system (w1, . . . , wn). If (f1, . . . , fn) is a regular
sequence of polynomials whose degrees are uniformly bounded by a fixed integer d i.e. deg(fi) ≤
d for i = 1, . . . , n. The PoSSo problem (Problem 4.1) can be solved using a deterministic

algorithm in O
(
n
(

endn∏n
i=1 wi

)ω
+ (nω+1 + n log2D)Dω

)
arithmetic operations in K.

This corollary implies that if the degree of the equations are fixed then fast change algo-
rithm can be used in Algorithm 12.

Among regular systems, there are generic systems (Definition 2.34). Let di = deg(fi) = d
for all i = 1, . . . , n. Since the Bézout’s bound (Corollary 2.76) allows to bound the number of
solutions D by

∏n
i=1 di = dn and since this bound is generically reached, we have generically

that D = dn and we get the following corollary.

Corollary 4.13. Let S = {f1, . . . , fn} ⊂ K[x1, . . . , xn] be a generic polynomial system gener-
ating an ideal I = 〈S〉 of degree D. If I admits a triangular set for LEX Gröbner basis and if
the degree of each polynomial in S is uniformly bounded by a fixed integer d then there exists a
deterministic algorithm which solves the PoSSo problem in Õ(eωnDω) arithmetic operations.

In the next section, we study a first step towards the generalization of Theorem 4.11
to polynomial systems with equations of non fixed degree. More precisely, we are going to
discuss what happens if one polynomial have a non fixed degree i.e. its degree depends on a
parameter (for instance the number of variables). In this case, Theorem 4.11 does not apply
but we present other arguments in order to obtain a similar complexity results for computing
G>lex

given G>drl
and new ideas for its generalization.

4.4. A worst case ultimately not so bad 93

4.4 A worst case ultimately not so bad

We consider the following pathological case: deg(f1) = · · · = deg(fn−1) = 2 and deg(fn) = 2n.
Then, D = 22n−1, dmin = 2 and dmax = 2n+n−1. In this context, the complexity of computing
G>lex

given G>drl
seems to be in O(logω2 (D)Dω+ 1

2) arithmetic operations. However, we will
show that an adaptation of Algorithm 15 allows to decrease this complexity.

In [MS03], Moreno-Socias studied the basis of the residue class ring K[x1, . . . , xn]/I, w.r.t.
the DRL ordering, for generic ideals. In particular, he shows that when the smallest variable
xn is in abscissa any section of the stairs of I has steps of height one and of depth two. That
is to say, for any variable xi with i < n and for all instantiations of the others variables
({x1, . . . , xn−1} \ {xi}) the associated section of the stairs of I has the shape in Figure 2.1.
This shape is summarized in Theorem 2.38.

Following the notations of Theorem 2.38, in our case we have dmax = δ + 1, δ∗ = n − 1,
δ = 2n + n− 2, σ = n− 1 and µ = 2n − n. We can note that in this particular case, µ is very
large, which implies that a large part of the monomials of the form ǫixj are actually in B. We
will show that in Algorithm 15 instead of computing the loop in Line 4 for d = dmin, . . . , dmax

we can perform it only on the restricted subset d = dmin, . . . , σ(n− 1)+1, µ+1, . . . , dmax. By
consequence, the complexity of computing G>lex

given G>drl
will be in O((dmax − µ + σ(n −

1)− dmin)n
ωDω) = O(logω+2

2 (D)Dω) with dmax − µ+ σ(n− 1)− dmin = n2 − 2 ∼ log22(D).

Lemma 4.14. Given the normal form of all monomials in F of degree less than or equal to
σ(n − 1) + 1 we can compute all the normal forms of all monomials in F of degree less than
or equal to µ in O(nD2) arithmetic operations.

Suppose that we know the normal form of the monomials of the forms ǫixj of degree less
than µ which are not divisible by xn. From these normal forms, the idea of the proof is to
show that the normal form of all the monomials of the form ǫixj of degree less than µ and of
degree αn > 0 in xn is given by xαn

n NF>drl
(t) where NF>drl

(t) is assumed to be known.

Proof. Let t ∈ F of degree less than or equal to µ. First, assume that xn does not divide
t. As I is zero-dimensional, there exist η1, . . . , ηn−1 ∈ N such that xηii is a leading term
of a polynomial in G>drl

. Moreover, from Theorem 2.38, ηi ≤ σ̄. Hence, for all ǫ ∈ B̃0,
deg(ǫ) ≤ σ(n − 1). The monomials in F not divisible by xn are all of the form xiǫ with
i = 1, . . . , n− 1 and ǫ ∈ B̃0. Thus deg(t) ≤ σ(n− 1) + 1 and by hypothesis, its normal form
is known.

Suppose now that xn divides t and t is of type III of Proposition 2.68. We can write
t = xαnt

′ where α ∈ N∗ such that xn ∤ t′. From Theorem 2.38 item (d), t′ is a leading term of
a polynomial in 〈G>drl

〉. Moreover, t ∈ F so t = xiǫ with ǫ ∈ B. Suppose that i = n hence,
t
xn

= ǫ = xα−1
n t′ ∈ 〈G>drl

〉 which is impossible. Thus, i 6= n and we have, t′ = t
xα
n
= xiǫ

′ ∈ F

with ǫ′ = ǫ
xα
n
∈ B. Therefore, from the first part of this proof, NF>drl

(t′) =
∑s

i=1 αiǫi, αi ∈ K

is known. Finally, NF>drl
(t) =

∑s
i=1 αiNF>drl

(xαnǫi) with deg(xαnǫi) ≤ µ. Let ki be such that
xkin |ǫi and xki+1

n ∤ ǫi as B̃ki = B̃ki+α then xαnǫi ∈ B and NF>drl
(t) =

∑s
i=1 αix

α
nǫi.

By consequence, computing the normal form of t can be done in less than D arithmetic
operations. As usual, we can bound the size of F by nD which finishes the proof.

One can notice that Algorithm 14 and its deterministic version take as input only the
multiplication matrix by the smallest variable. Thus in the proof of Theorem 4.11 we did not
fully take advantage of this particularity. Hence, the next section is devoted to study if this

94 Chapter 4. Change of ordering

matrix can be computed more efficiently than computing all the multiplication matrices. By
studying the structure of the basis of the K-vector space K[x1, . . . , xn]/I we will show that,
up to a linear change of variables, Tn can be deduced from G>drl

. In the previous results, the
algorithm restricting the order of magnitude of the degrees of the equations is Algorithm 15
to compute the multiplication matrices. Since, we need only Tn which can be computed very
efficiently, the impact of such a result is that there exists a Las Vegas algorithm extending the
result of Theorem 4.11 to polynomial systems whose equations have non fixed degree.

4.5 Polynomial equations with non-fixed degree: the wild case

In this section, in order to obtain our second main result, we consider initial and generic
ideals. To compute the multiplication matrix Tn we need to compute the normal forms of all
monomials ǫixn for i = 1, . . . , D with ǫi ∈ B. From Proposition 2.68 a monomial of the form
ǫixn can be either in B or in E>drl

(I) or in in>drl
(I) \ E>drl

(I). As previously shown, the
difficulty to compute Tn lies in the computation of the normal forms of monomials ǫixn that are
in in>drl

(I)\E>drl
(I). In this section, thanks to the study of the stairs, i.e. B, of generic ideals

by Moreno-Socias, see Section 2.1.3, we first show that for generic ideals (Definition 2.34), all
monomials of the form ǫixn are in B or in E>drl

(I). Hence, the multiplication matrix Tn can
be computed very efficiently. Then, we show that, up to a linear change of variables, this result
can be extended to any ideal. According to these results, we finally propose an algorithm for
solving the PoSSo problem whose complexity allows to obtain the second main result of this
chapter.

4.5.1 Reading directly Tn from the Gröbner basis

In the sequel, the arithmetic operations will be the addition or the multiplication of two
operands in K that are different from ±1 and 0. In particular we do not consider the change
of sign as an arithmetic operation.

Proposition 4.15. Let I be a generic ideal. Let t be a monomial in E>drl
(I) i.e. a leading

term of a polynomial in the DRL Gröbner basis of I. If xn divides t then for all k ∈ {1, . . . , n−
1}, xkt

xn
∈ in>drl

(I).

Proof. This result is deduced from the shape of the stairs of I (see Figure 2.1 for a represen-
tation in dimension 2). Let t = xα1

1 · · ·xαn
n be a leading term of a polynomial in G>drl

divisible
by xn i.e. αn > 0 and m = xα1

1 · · ·xαn−1

n−1 . We use the same notations as in Theorem 2.38.
From Theorem 2.38 item (d), since t ∈ E>drl

(I) and αn > 0 we have αn > µ and αn 6≡ δ
mod 2. Then, from Theorem 2.38 item (c), deg(m) is the maximal degree reached by the
monomials in B̃αn−1 . Thus xkm /∈ B̃αn−1 for all k ∈ {1, . . . , n− 1}. As a consequence, for all
k ∈ {1, . . . , n− 1} we have xkt

xn
∈ in>drl

(I).

Consequently, from the previous proposition, we obtain the following result.

Theorem 4.16. Given G>drl
the DRL Gröbner basis of a generic ideal I, the multiplication

matrix Tn can be read from G>drl
with no arithmetic operation.

Proof. Suppose that there exists i ∈ {1, . . . , D} such that t = xnǫi is of type (III). Hence,
t = m LTdrl (g) for some g ∈ G>drl

and deg(m) > 1 with xn ∤ m (otherwise ǫi /∈ B). Then,
there exists k ∈ {1, . . . , n − 1} such that xk | m. By consequence, from Proposition 4.15,

4.5. Polynomial equations with non-fixed degree: the wild case 95

we have ǫi = m
xk

· xk LT>drl
(g)

xn
∈ in>drl

(I) which yields a contradiction. Thus, all monomials
t = xnǫi are either in B or in E>drl

(I) and their normal forms are known and given either by
t (if t ∈ B) or by changing the sign of some polynomial g ∈ G>drl

and removing its leading
term. Note that by using a linked list representation (for instance), removing the leading term
of a polynomial does not require arithmetic operation.

Thanks to the previous theorem, Algorithm 14 or its deterministic version can be used to
compute the LEX Gröbner basis of a generic ideal:

Corollary 4.17. Let I be a generic ideal in Shape Position. From the DRL Gröbner basis G>drl

of I, its LEX Gröbner basis G>lex
can be computed in O(log2(D)(Dω+nD log2(D) log2 log2(D)))

arithmetic operations with a probabilistic algorithm or O(n log2(D)Dω) (+O
(
D log2

q
p

)
if

K = Fpk) arithmetic operations with a deterministic algorithm.

However, polynomial systems coming from applications are usually not generic. Never-
theless, this difficulty can be bypassed by applying a linear change of variables. By studying
the structure of the generic initial ideal of I (Definition 2.43) – that is to say, the initial
ideal of g · I for a generic choice of g – we will show that the results of Proposition 4.15
and Theorem 4.16 can be generalized to non-generic ideals, up to a random linear change of
variables. Indeed, in [Gal73] Galligo shows that for the characteristic zero fields, the generic
initial ideal of any homogeneous ideal satisfies a more general property, Property 2.47, than
Proposition 4.15. Later, Pardue [Par94] extends this result to fields of positive characteristic,
see Theorem 2.49 and Corollary 2.50.

Nevertheless, systems coming from applications are usually not homogeneous and results of
Theorem 2.49 and Corollary 2.50 do not apply directly. Let I = 〈f1, . . . , fn〉 be an affine ideal
i.e. f1, . . . , fn are affine polynomials. In the next proposition we highlight an homogeneous
ideal having the same initial ideal than I. This allows to extend the result of Theorem 2.49
and Corollary 2.50 to affine ideals.

Proposition 4.18. Let I = 〈f1, . . . , fs〉 be an affine ideal. If (f1, . . . , fs) is a regular sequence,
then there exists a Zariski open set Ua ⊂ GL (K, n) such that for all g ∈ Ua, E>drl

(g · I) =
E>drl

(
Gin

(
Ih
))

.

Proof. Let f be a polynomial. We denote by fh the homogeneous component of highest degree
of f and fa = f − fh. Let t ∈ in>drl

(I), there exists f ∈ I such that LT>drl
(f) = t. Since,

f ∈ I and (fh1 , . . . , f
h
s) is assumed to be a regular sequence then there exist h1, . . . , hs ∈

K[x1, . . . , xn] such that f =
∑s

i=1 hifi =
∑s

i=1 hif
h
i +

∑s
i=1 hif

a
i with deg(hifi) ≤ deg(f)

for all i ∈ {1, . . . , s} and there exists j ∈ {1, . . . , s} such that deg(hjfj) = deg(f). By
consequence, 0 6= ∑s

i=1 hif
h
i ∈ Ih where Ih is the ideal generated by {fh1 , . . . , fhs } and

LT>drl
(f) = LT>drl

(∑s
i=1 hif

h
i

)
. Thus, in>drl

(I) ⊂ in>drl

(
Ih
)
. It is straightforward that

in>drl

(
Ih
)
⊂ in>drl

(I) hence in>drl

(
Ih
)
= in>drl

(I).
For all g ∈ GL (K, n), since g is invertible the sequence (g · f1, . . . , g · fs) is also regular.

Indeed, if there exists i ∈ {1, . . . , s} such that g · fi is a divisor of zero in the quotient ring
K[x1, . . . , xn]/ 〈g · f1, . . . , g · fi〉 then fi is a divisor of zero in K[x1, . . . , xn]/ 〈f1, . . . , fi〉. Hence,

in>drl
(g · I) = in>drl

(
(g · I)h

)
.

Moreover, g is a linear change of variables thus it preserves the degree. Hence, for all f ∈ I,
we have (g · f)h = g · fh. Finally, let Ua be a Zariski open subset of GL (K, n) such that for

96 Chapter 4. Change of ordering

all g ∈ Ua, we have the equality in>drl

(
g · Ih

)
= Gin

(
Ih
)
. Thus, for all g ∈ Ua, we then have

in>drl
(g · I) = in>drl

(
(g · I)h

)
= in>drl

(
g · Ih

)
= Gin

(
Ih
)
.

Hence, from the previous proposition, for a random linear change of variables g ∈ GL (K, n)
we have in>drl

(g · I) = Gin
(
Ih
)
. Thus from Corollary 2.50, for all generators m of the

monomial ideal in>drl
(g · I) (i.e. m is a leading term of a polynomial in the DRL Gröbner

basis of g · I) if xtn divides m and xt+1
n does not divide m then for all j < n we have

xj

xn
m ∈ in>drl

(g · I) if t 6≡ 0 mod p. Therefore, in the same way as for generic ideals, the
multiplication matrix Tn of g · I can be read from its DRL Gröbner basis. Moreover, the
Shape Lemma (Lemma 2.57) states that radical ideals have, up to a generic linear change of
variables, a LEX Gröbner basis in Shape Position. Hence, one can computes very efficiently
the multiplication matrix Tn and then use Algorithm 14 to compute the LEX Gröbner basis
of g · I. This is summarized in the following corollary.

Corollary 4.19. Let K be an infinite field of characteristic p ≥ 0. Let I be an ideal of
K[x1, . . . , xn]. There exists a Zariski open subset U of GL (K, n) such that for all g ∈ U ,
the arithmetic complexity of computing the multiplication matrix by xn of g · I given its DRL
Gröbner basis can be done without arithmetic operation. If p > 0 this is true only if degxn

(m) 6≡
0 mod p for all m ∈ E>drl

(g · I). Consequently, under the same hypotheses and if I is a
radical ideal, the complexity of computing the LEX Gröbner basis of g ·I given its DRL Gröbner
basis can be bounded by O(log2(D)(Dω + nD log2(D) log2 log2(D))) arithmetic operations.

Following this result, we propose another algorithm for polynomial systems solving.

4.5.2 Another algorithm for polynomial systems solving

Let S ⊂ K[x1, . . . , xn] be a polynomial system generating a radical ideal denoted I. For any
g ∈ GL (K, n), from the solutions of g · I one can easily recover the solutions of I. Let U
be the Zariski open subset of GL (K, n) such that for all g ∈ U , in>drl

(g · I) = Gin
(
Ih
)
. If

g is chosen in U then the multiplication matrix Tn can be computed very efficiently. Indeed,
from Section 4.5.1 all monomials of the form ǫixn for i = 1, . . . , D are in B or in E>drl

(g · I)
and their normal are easily known. Moreover, from the Shape Lemma (Lemma 2.57), there
exists U ′ a Zariski open subset of GL (K, n) such that for all g ∈ U ′ the ideal g · I admits a
LEX Gröbner basis in Shape Position. If g is also chosen in U ′ then we can use Algorithm 14
or its deterministic version to compute the LEX Gröbner basis of g · I. Hence, we propose
in Algorithm 16 a Las Vegas algorithm to solve the PoSSo problem. A Las Vegas algorithm
is a randomized algorithm whose output (which can be fail) is always correct. The end of
this section is devoted to evaluate its complexity and its probability of success i.e. when the
algorithm does not return fail.

Algorithm 16 succeeds if the three following conditions are satisfied

1. g ∈ GL (K, n) is chosen in a non empty Zariski open set U ′ such that for all g ∈ U ′, g · I
has a LEX Gröbner basis in Shape Position;

2. g ∈ GL (K, n) is chosen in a non empty Zariski open set U such that for all g ∈ U ,
in>drl

(g · I) = Gin
(
Ih
)
;

3. p = 0 or p > 0 and for all m ∈ E>drl
(g · I), degxn

(m) 6≡ 0 mod p.

4.5. Polynomial equations with non-fixed degree: the wild case 97

Algorithm 16: Another algorithm for PoSSo.
Input : A polynomial system S ⊂ K[x1, . . . , xn] generating a radical ideal.
Output: g in GL (K, n) and the LEX Gröbner basis of 〈g · S〉 or fail.
Choose randomly g in GL (K, n);1

Compute G>drl
the DRL Gröbner basis of g · S;2

if Tn can be read from G>drl
then3

Extract Tn from G>drl
;4

From Tn and G>drl
compute G>lex

using Algorithm 14;5

if Algorithm 14 succeeds then return g and G>lex
;6

else return fail ;7

else return fail ;8

The existence of the non empty Zariski open subset U ′ is proven in [GM89] (see proof of
Lemma 2.57). Conditions (1) and (2) are satisfied if g ∈ U ∩ U ′. Since, U and U ′ are open
and dense, U ∩ U ′ is also a non empty Zarisky open set.

Probability of success of Algorithm 16

Assume that one can randomly choose an element in GL (K, n) with K = C or R. Then, in
that case the probability of choosing an element in U ∩ U ′ i.e. that the condition (1) and (2)
be satisfied is 1. By consequence, the probability of success of Algorithm 16, if K = C,R is 1.

Contrary to finite sets, there is no effective way of randomly choosing an element in C or
R. Moreover, usually the coefficient field of the polynomials is the field of rational numbers or
a finite field. Assume that K = Fq or K = Q and we randomly choose in a finite subset of Q
of size q. The Schwartz-Zippel lemma [Sch80, Zip79] allows to bound the probability that the
conditions (1) and (2) do not be satisfied by d

q where d is the degree of the polynomial defining
U ∩U ′. Thus, in order to bound this failure probability we need to estimate the degree of the
polynomials defining U and U ′.

Construction of U ′. From proof of the Shape Lemma (Lemma 2.57) the polynomial PU ′

defining U ′ is constructed as the determinant of a Vandermonde matrix associated to D
indeterminates. Then, the degree of PU ′ is D(D−1)

2 .

Construction of U . From proof of Theorem 2.42, the Zariski open subset U is constructed
as the intersection of Zariski open subsets U1, . . . , Uδ of GL (K, n) where δ is the maximum
degree of the generators of Gin

(
Ih
)
. Let d be a fixed degree. Let K[x1, . . . , xn]d = Rd be

the set of homogeneous polynomials of degree d of K[x1, . . . , xn]. Let {f1, . . . , ftd} ⊂ Rd be a
vector basis of Ih

d = Ih ∩Rd. Let g = (gi,j) be a (n× n) matrix of unknowns and let M be a
matrix representation of the map Ih

d → g · Ih
d defined as follows:

m1 · · · mN

⋆ · · · ⋆ g · f1
M = (Mi,j) =

...
. . .

...
...

⋆ · · · ⋆ g · ftd

98 Chapter 4. Change of ordering

where Mi,j is the coefficient of mj in g · fi and {m1, . . . ,mN} is the set of monomials in Rd.
In [BS87b, Eis95] (proof of Theorem 2.42), the polynomial PUd

defining Ud is constructed as a
particular minor of size td of M . Since each coefficient in M is a polynomial in K[g1,1, . . . ,gn,n]
of degree d, the degree of PUd

is d · td. Finally, since Ud is open and dense for all d = 1, . . . , δ
we deduce that U = ∩δ

i=1Ud is a non empty Zariski open set whose defining polynomial, PU ,
is of degree

∑δ
d=1 d · td ≤ δ

∑δ
i=1 td. Moreover, we have td = dimK(Ih

d). Since δ is the minimal
degree such that dimK(Rd/Ih

d) = 0 for any d ≥ δ and since (f1, . . . , fn) is assumed to be a
regular sequence we have that HSK[x1,...,xn]/Ih (1) =

∑δ
d=1(dimK(Rd) − dimK(Ih

d)) = D, see

Corollary 2.76. Hence,
∑δ

d=1 dimK(Ih
d) =

∑δ
d=1 dimK(Rd)−D =

(
n+δ
n

)
−D.

For ideals generated by a regular sequence (f1, . . . , fn), thanks to the Macaulay’s bound
(Corollary 2.76), δ can be bounded by

∑n
i=1(deg(fi) − 1) + 1. Note that the Macaulay’s

bound gives also a bound on degxn
(m) for all m ∈ E>drl

(g · I). To conclude, the probability
that conditions (1) and (2) be satisfied is greater than

1− 1

q

(
D(D − 1)

2
+

(
n∑

i=1

(deg(fi)− 1) + 1

)((∑n
i=1 deg(fi) + 1

n

)
−D

))

and if p = 0 or p >
∑n

i=1(deg(fi)− 1) + 1 then condition (3) is satisfied.

Complexity of Algorithm 16

As previously mentioned, the matrix Tn can be read from G>drl
(test in Line 3 of Algorithm 16)

if all the monomials of the form ǫixn are either in B or in E>drl
(〈G>drl

〉). Let Fn = {ǫixn | i =
1, . . . , D}, the test in Line 3 is equivalent to test if Fn ⊂ B∪E>drl

(〈G>drl
〉). Since Fn contains

exactly D monomials and B ∪ E>drl
(〈G>drl

〉) contains at most (n + 1)D monomials; in a
similar way as in Lemma 4.9 testing if Fn ⊂ B ∪ E>drl

(〈G>drl
〉) can be done in at most

O(nD2) elementary operations which can be decreased to O(D) elementary operations if we
use a hash table. Hence, the cost of computing B, Fn (see Lemma 4.9) and the test in Line 3
of Algorithm 16 are negligible in comparison to the complexity of Algorithm 14. Hence, the
complexity of Algorithm 16 is given by the complexity of F5 algorithm to compute the DRL
Gröbner basis of g · I and the complexity of Algorithm 14 to compute the LEX Gröbner basis
of g · I. From [Laz83], the complexities of computing the DRL Gröbner basis of g · I or I are
the same. Since it is straightforward to see that the number of solutions of these two ideals
are also the same we obtain the second main result of the chapter.

Theorem 4.20. Let K be a field of characteristic zero or a finite field Fq of sufficiently large
characteric p. Let S = {f1, . . . , fn} ⊂ K[x1, . . . , xn] be a polynomial system generating a rad-
ical ideal I = 〈S〉 of degree D. If the sequence (f1, . . . , fn) is a regular sequence such that the
degree of each polynomial is uniformly bounded by a fixed or non fixed parameter d then there
exists a Las Vegas algorithm which solves the PoSSo problem in O(neωndωn + log2(D)(Dω +
nD log2(D) log2 log2(D))) (respectively O(dωn+log2(D)(Dω+D log2(D) log2 log2(D)))) arith-
metic operations if n→ ∞ (respectively n is fixed).

As previously mentioned, the Bézout’s bound allows to bound the number of solutions D
by the product of the degrees of the input equations. Since this bound is generically reached
we get the following corollary.

4.6. Impact of Algorithm 16 on the practical solving of PoSSo in the worst case 99

Corollary 4.21. Let K be a field of characteristic zero or a finite field Fq of sufficiently large
characteric p. Let S = {f1, . . . , fn} ⊂ K[x1, . . . , xn] be a generic polynomial system generating
a radical ideal. If the degree of each polynomial in S is equal to a non fixed parameter d then
there exists a Las Vegas algorithm which solves the PoSSo problem in Õ(Dω) (respectively
Õ(eωnDω)) arithmetic operations if n is fixed (respectively if n→ ∞).

Remark 4.22. Note that Algorithm 16 cannot be used to solve polynomial systems admitting
a polynomial change of variables. Indeed, applying the linear change of variables will break the
quasi-homogeneous structure of these systems. However, assume the multiplication matrix Tn
associated to the WDRL Gröbner basis can be computed with no arithmetic operations. The
complexity of Corollary 4.12 can then be extended to systems whose equations have non fixed
degree.

4.6 Impact of Algorithm 16 on the practical solving of the
PoSSo problem in the worst case

In this section we discuss the impact of Algorithm 16 on the practical resolution of the PoSSo
problem. Note that Algorithm 14 to compute the LEX Gröbner basis given the multiplication
matrix Tn is of theoretical interest. Indeed, although in theory ω is bounded by 2.3727
in practice in our knowledge the best implementation of the matrix product uses Strassen
algorithm [Str69]. For instance this algorithm is implanted in Magma [BCP97] or in LinBox

[DGG+02]. Thus, in practice ω = log2(7) ∼ 2.8073.
As a consequence, in practice the sparse version of Faugère and Mou [FM11] (see Chapter 2)

is much more efficient than the fast version using dense matrix multiplication. Hence, in the
following experiments we use the sparse version of change of ordering. In Table 4.1, we give
the time to compute the LEX Gröbner basis using the usual algorithm (Algorithm 11) and
Algorithm 16. This time is divided into three steps, the first is the time to compute the
DRL Gröbner basis using F5 algorithm, the second is the time to compute the multiplication
matrix Tn and the last part is the time to compute the LEX Gröbner basis given Tn using
the algorithm in [FM11]. Since, this algorithm takes advantage of the sparsity of the matrix
Tn we also give its density. We also give the number of normal forms to compute (i.e. the
number of terms of the form ǫixn that are not in B or in E>drl

(I) (or in E>drl
(g · I)).

The experiments are performed on a worst case for our algorithm in the sense that the
system in input is already a DRL Gröbner basis. Thus, while the usual algorithm does not
have to compute the DRL Gröbner basis, our algorithm needs to compute the DRL Gröbner
basis of g · I. The system in input is of the form S = {f1, . . . , fn} ⊂ F65521[x1, . . . , xn] with
LT>drl

(fi) = x2i . Hence, the monomials in the basis B are all the monomials of degree at
most one in each variable. The degree of the ideal D is then 2n. The monomials ǫixn that
are not in B or in E>drl

(〈S〉) are of the form x2nm where m is a monomial in x1, . . . , xn−1 of
total degree greater than zero and linear in each variable. By consequence, using the usual
algorithm we have to compute 2n−1 − 1 normal forms to compute only Tn.

One can note that in the usual algorithm the bottleneck of the resolution of the PoSSo
problem is the change of ordering due to the construction of the multiplication matrix Tn.
Since our algorithm allows to compute very efficiently the matrix Tn (for instance for n = 11,
0 seconds in comparison to 7544 seconds for the usual algorithm), the most time consuming
step becomes the computation of the DRL Gröbner basis. However, the total running time of

100 Chapter 4. Change of ordering

n D Algorithm
First Build

NF Density
Compute Total

GB Tn h1, . . . , hn PoSSo

7 128
usual 0s 0s 63 34.20% 0s 0s

This work 0s 0s 0 26.57% 0s 0s

9 512
usual 0s 13s 255 32.81% 0s 13s

This work 0s 0s 0 23.68% 0s 0s

11 2048
usual 0s 7521s 1023 31.93% 23s 7544s

This work 5s 0s 0 21.53% 0s 5s

13 8192
usual 0s > 2 days 4095 > 2 days

This work 157s 2s 0 19.86% 26s 185s

15 32768
usual 0s > 2 days 16383 > 2 days

This work 5786s 46s 0 18.52% 1886s 7718s

16 65536
usual 0s > 2 days 32767 > 2 days

This work 38067s 195s 0 18.33% 14297s 52559s

Table 4.1: A worst case example: comparison of the usual algorithm for solving the PoSSo
problem and Algorithm 16, the proposed algorithm. Computation with FGb on a 3.47 GHz
Intel Xeon X5677 CPU.

our algorithm is far less than that of the usual algorithm. For instance, for n = 13 the PoSSo
problem can now be solved in approximately three minutes whereas we could not solve this
instance of the PoSSo problem using the usual algorithm.

Moreover, using Algorithm 16 the density of the matrix Tn is decreased (which implies that
the running time of Faugère and Mou algorithms is also decreased). This can be explained
by the fact that the dense columns of the matrix Tn come from monomials of the form xnǫi
that are not in B i.e. in the frontier. Since Algorithm 16 allows to ensure that the monomials
xnǫi are either in B or in E>drl

(g · I) then the number of dense columns in Tn is potentially
decreased.

Part II

Algebraic Cryptanalysis of the Elliptic

Curves Discrete Logarithm

101

Chapter 5

Elliptic curves

Contents
5.1 Definitions . 104

5.2 Elliptic curves representations . 106

5.2.1 Short Weierstrass form . 106

5.2.2 Twisted Jacobi intersection curves 107

5.2.3 Twisted Edwards curves . 108

5.2.4 Universal Edwards model of elliptic curves 109

5.3 Discrete logarithm problem and generic algorithms 111

5.3.1 Pohlig Hellman reduction . 111

5.3.2 Baby step giant step . 112

5.3.3 Pollard ρ method . 113

5.4 Semaev summation polynomials 114

5.4.1 Computing summation polynomials 115

5.4.2 Twisted Jacobi intersection curves 116

5.4.3 Twisted Edwards curves . 117

5.4.4 Universal Edwards model of elliptic curves 117

5.5 Gaudry’s index calculus attack for ECDLP solving 117

5.5.1 Presentation of the algorithm . 117

5.5.2 Complexity analysis . 121

5.5.3 Balancing relation search and linear algebra using the double large

prime variation . 122

5.5.4 Variant “n− 1” . 123

5.5.5 Diem’s variant of the index calculus attack 124

5.6 Using symmetries to improve the ECDLP solving 124

5.6.1 Solving the point decomposition problem 125

5.6.2 Computation of summation polynomials 127

In this chapter we give definitions and properties about elliptic curves needed in the two
following chapters. Moreover, we briefly present generic algorithms to solve the discrete loga-
rithm problem. We recall that an algorithm to solve the DLP is said to be generic if it does
not take advantage of the structure of the group. Finally, we recall the principle of index
calculus attack to solve the elliptic curve discrete logarithm. For a more thorough reading
on elliptic curves and algorithms to solve the discrete logarithm problem see for instance
[CF05, CP05, Coh93, Sil09].

103

104 Chapter 5. Elliptic curves

5.1 Definitions

First, we give a representation of an elliptic curve as a projective variety.

Definition 5.1 (Projective space). Let K be a field. The projective space of dimension n on K
is denoted Pn

K and is defined as the quotient Kn+1/{0} with the equivalence relation ∼ defined
by (x0, . . . , xn) ∼ (y0, . . . , yn) if there exists 0 6= λ ∈ K such that xi = λyi for i = 0, . . . , n. We
denote by (x0 : · · · : xn) the equivalence class of (x0, . . . , xn) which is also called a projective
point.

A projective variety is defined as a subset of Pn
K in a similar way that affine variety

(Definition 2.3) are defined as a subset of Kn.

Definition 5.2 (Projective variety). Let f1, . . . , fs ⊂ K[x0, . . . , xn] be homogeneous polyno-
mials. The projective variety associated to f1, . . . , fs is the set

VPn
K
(f1, . . . , fs) = {(a0 : · · · : an) ∈ Pn

K | fi(a0, . . . , an) = 0 for i = 1, . . . , s} .

A variety V is irreducible if there are no V1, V2 ⊂ V such that V1, V2 6= V and V = V1∪V2.
An elliptic curve is a curve (i.e. a projective variety of dimension one) of genus one that

admits a rational point. Since, we do not need a formal definition of the genus we stick to
a more basic equivalent definition. For a formal definition of the genus and thus of elliptic
curves see for instance [Sil09, chapter 2].

Definition 5.3 (Elliptic curve). An elliptic curve defined over K is an irreducible projective
variety of dimension one with no singularity and which is birationally equivalent to a projective
Weierstrass curve defined by

Ep
w : y2z + a1xyz + a3yz

2 − x3 − a2x
2z − a4xz

2 − a6z
3 = 0 (5.1)

where a1, a2, a3, a4, a6 ∈ K are such that Ep
w has no singularity.

An elliptic curve defined over K by the equation Ep
w has no singularity if the system S ={

Ep
w = 0, ∂E

p
w

∂x = 0, ∂E
p
w

∂y = 0, ∂E
p
w

∂z = 0
}
= {y2z+a1xyz+a3yz2−x3−a2x2z−a4xz2−a6z3 =

0, a1yz−3x2−2a2xz−a4z2 = 0, 2yz+a1xz+a3z
2 = 0, y2+a1xy+2a3yz−a2x2−2a4xz−3a6z

2 =
0} does not have any solution in K.

Let two projective varieties V ⊂ Pn
K and W ⊂ Pm

K . Let us recall that a rational map from
V to W is a m–tuple (r1, . . . , rm) of rational fractions with n variables. That is to say, ri
can be written as fi

gi
with fi, gi ∈ K[x1, . . . , xn]. The two projective varieties V and W are

birationally equivalent if there exist two rational maps R1 and R2 respectively from V to W
and from W to V such that R1 ◦R2 (respectively R2 ◦R1) is equivalent to the identity map
on W (respectively V).

An elliptic curve is a projective variety however it also admits an affine representation.
That is to say, an elliptic curve can be seen as an affine variety to which we add a point at
infinity. The affine equation corresponding to the homogeneous equation (5.1) is obtained by
taking z = 1:

Ew : y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0 . (5.2)

Note that, Ep
w corresponds to the homogenization (Definition 2.62) of Ew. The condition of

non-singularity thus becomes that the system
{
Ew = 0, ∂Ew

∂x = 0, ∂Ew

∂y = 0
}

admits no solution

in K.

5.1. Definitions 105

In the affine case, we omit the projective points with z = 0 called points at infinity. One
can note that Ep

w has a unique point at infinity (0 : 1 : 0). Hence, the whole elliptic curve
defined as an affine variety is the set of points given by Ew plus the point at infinity P∞

corresponding to the projective point (0 : 1 : 0).
One of the properties of elliptic curves that makes them very useful is that they are

naturally equipped with a group law. In particular, an elliptic curve is an abelian variety i.e.
the set of points of an elliptic curve forms an abelian group.

The group law ⊕ of an elliptic curve may be seen geometrically. We present one possible
construction of the group law. In particular, this construction sets the point at infinity as the
neutral element.

Let P and Q be two points of the curve. Let R 6= P,Q be the third point of Ew intersecting
the curve and the line through P and Q (or the tangent of the curve at P if P = Q). The
point P ⊕ Q is constructed as the third point intersecting the curve and the line through R
and P∞. Let P be a point of Ew the inverse of P denoted ⊖P , is the third point intersecting
the curve and the line through P and P∞. Hence, the point at infinity is the neutral element,
denoted O of the group law of Ew. This geometric construction of the group law is depicted
on Figure 5.1.

Figure 5.1: Group law of elliptic curves.

This geometric construction can be translated into algebraic equations. More precisely,
the group law of Ew is given by rational fractions in terms of the coordinates of the points we
want to sum. Let P = (x1, y1) and Q = (x2, y2) the coordinates of the point P ⊕ Q is given
by

• P = (x1, y1) if Q = O;

• Q = (x2, y2) if P = O;

• (xR,−(λ + a1)xR − µ − a3) where xR = λ(λ + a1) − x1 − x2 − a2, λ = y1−y2
x1−x2

and

µ = x1y2−x2y1
x1−x2

if P 6= Q and P,Q 6= O;

106 Chapter 5. Elliptic curves

• (xR,−(λ+ a1)xR − µ− a3) where xR = λ(λ+ a1)− 2x1 − a2, λ =
3x2

12a2x1+a4−a1y1
2y1+a1x1+a3

and

µ =
−x3

1+a4x1+2a6−a3y1
2y1+a1x1+a3

if P = Q and P 6= O.

Moreover, the point ⊖P is given by (x1,−y1 − a1x1 − a3).
The efficiency of the arithmetic of elliptic curves is a central issue in cryptography. While

any elliptic curves can be represented by a Weierstrass equation some of them share common
properties that allow to choose another form of equation. In particular, considering this new
representation can speed up the arithmetic of elliptic curves. A lot of publications about
this subject have been done, see for instance [CC86, Mon87, Sma01, DIK06, Duq07, BL07,
BBJ+08, FNW10]. For a more exhaustive listing of elliptic curve representations and their
corresponding arithmetic see [BL].

5.2 Elliptic curves representations

In this section we study some elliptic curve representations. First, we present the well known
short Weierstrass form. Then, we focus on three representations of elliptic curves that all have
a two-torsion point (i.e. a point of order two) with a simple action. We will show in Chapter 6
and Chapter 7 that the action of their two-torsion induces some symmetries when solving the
elliptic curve discrete logarithm problem.

5.2.1 Short Weierstrass form

Characteristic greater than 3

If the field K is of characteristic different from 2 and 3 then the change of coordinates Y =
y+ a1x+a3

2 and X = x+ b2
12 where b2 = a21+4a2 allows to write the Weierstrass equation (5.2)

as follows
Ew : Y 2 = X3 + aX + b (5.3)

where a =
24b4−b22

48 and b = b32 + 216b6 − 36b2b4 with b4 = a1a3 + 2a4 and b6 = a23 + 4a6.
Thus any elliptic curve defined over a field of characteristic greater than 3 can be represented
thanks to an equation of the form (5.3). Note that the curve defined by equation (5.3) is non
singular and hence elliptic if and only if −16(4a3+27b) 6= 0. See for instance [Coh93, chapter
7] for more details.

The group law of such a curve is simply obtained by replacing a1 = 0, a2 = 0, a3 = 0, a4 = a
and a6 = b in the formula for the group law of elliptic curve defined by the general Weierstrass
equation.

Characteristic 2

If the field K is of characteristic two then −16(4a3+27b) = 0 whatever a and b are. Hence, an
elliptic curve defined over a field of characteristic two cannot be represented with an equation
of the form (5.3). In that case there does not exist a unique short Weierstrass equation
to represent all binary elliptic curves. However, there exists a short Weierstrass form for any
ordinary elliptic curves and another short Weierstrass form for any supersingular elliptic curve.

Definition 5.4 (Supersingular/ordinary elliptic curve). Let E be an elliptic curve defined
over a finite field Fpk with p a prime. Let E(K) be the set of points of E defined over K. The

5.2. Elliptic curves representations 107

curve E is called supersingular if the set of points P ∈ E
(
Fpk
)

such that [p]P = O is reduced
to the neutral element O. The notation [n]P means adding n times P . Otherwise, the curve
is called ordinary.

Thus, if a1 = 0 and K is a field of characteristic two then a3 6= 0 (otherwise the curve is
singular) and the Weierstrass equation (5.2) can be written as

Ew,s : Y
2 + a3Y = X3 + αX + β (5.4)

where Y = y, X = x+ a2, α = a22 + a4 and β = a2(a
2
2 + a4) + a6. In that case, if P = (x, y) is

a point of E then ⊖P = (x, y + a3). Hence, P is a point of order two if and only if P = ⊖P
which is impossible since a3 6= 0. Consequently, any supersingular binary elliptic curves can
be represented by a short Weierstrass equation of the form (5.4).

On the contrary, if a1 6= 0 then elliptic curves given by the Weierstrass equation (5.2)
have at least one two-torsion point. Hence, the curve is ordinary. In that case the change of

variables y = a31Y +
a23+a21a4

a31
and x = a21X + a3

a1
followed by a division by a61 gets the following

short Weierstrass equation

Ew,o : Y
2 +XY = X3 + αX2 + β (5.5)

where α = a1a2+a3
a31

and β =
a51a6+a51a3a4+a41(a2a

2
3+a24)+a31a

3
3+a43

a121
. Hence, any ordinary binary

elliptic curve can be represented thanks to a short Weierstrass equation of the form (5.5)
when β 6= 0. Indeed, the curve defined by equation (5.5) is non singular when β 6= 0.

Due to the efficiency of pairings computation for supersingular curves, for similar size
of field K the elliptic curve discrete logarithm problem is easier to solve when considering
supersingular curves, see for instance [CF05, chapter 24]. More precisely, thanks to pairing
computations the discrete logarithm problem in E(Fq) can be reduced to solve the discrete
logarithm problem in Fqk for some integer k > 0. In general, k is large enough so that the
complexity of the elliptic curve discrete logarithm is not affected. However, for supersingular
curves, k is particularly small. More precisely, in characteristic two we have k ≤ 4. More-
over, recent breakthrough algorithms [Jou13a, GGMZ13, Jou13b, BGJT13] have considerably
improved the complexity of solving the discrete logarithm problem in finite fields of small
characteristic which can now be solved in quasi-polynomial time [BGJT13]. Consequently,
since the elliptic curve discrete logarithm of binary supersingular elliptic curve can be solved
efficiently, in the following of this thesis we consider only binary ordinary elliptic curves defined
by the short Weierstrass equation (5.5).

Remark 5.5. For fields of characteristic three there also exist short Weierstrass equations,
see for instance [CF05, p. 274].

5.2.2 Twisted Jacobi intersection curves

This form of elliptic curves was introduced in 2010 in [FNW10]. It is a generalization of
Jacobi intersection curves (which are the intersection of two quadratic surfaces defined in a
3-dimensional space) proposed by D.V. and G.V. Chudnovsky in [CC86].

The twisted Jacobi intersection curves are defined over a non binary field K by

Ea,b :

{
ax2 + y2 = 1
bx2 + z2 = 1

108 Chapter 5. Elliptic curves

(a) Projection on a 2-dimensional space. (b) Representation in a 3-dimensional
space.

Figure 5.2: Jacobi intersection curve over the real numbers.

where a, b ∈ K, a, b 6= 0 and a 6= b. If a = 1, E1,b is a Jacobi intersection curve.
The family of twisted Jacobi intersection curves contains all curves having three rational

2-torsion points. These three 2-torsion points are T2 = (0, 1,−1), (0,−1, 1) and (0,−1,−1).
The neutral element is O = (0, 1, 1) and the negative of a point P = (x, y, z) ∈ Ea,b(K) is
given by ⊖P = (−x, y, z). Adding one of the 2-torsion point to P gives respectively the points
(−x, y,−z), (−x,−y, z) and (x,−y,−z). The group law is given by

(x1, y1, z1)⊕ (x2, y2, z2) =

(
x1y2z2 + x2y1z1
y22 + a z21x

2
2

,
y1y2 − a x1z1x2z2

y22 + a z21x
2
2

,
z1z2 − b x1y1x2y2

y22 + a z21x
2
2

)
.

Jacobi intersection curves can have zero, four or eight 4-torsion points :

•
(
± 1√

b
,±
√
b− a

b
, 0

)
, if a 6= 1 non square or a = 1 and −1 non square and b and b− a

are squares in K.

•
(
± 1√

a
, 0,±

√
a− b

a

)
, if b 6= 1 non square or b = 1 and −1 non square and a and a− b

are squares in K.

•
(
± 1√

b
,±
√
b− a

b
, 0

)
,

(
± 1√

a
, 0,±

√
a− b

a

)
, if a, b,−1 and a− b are squares in K.

5.2.3 Twisted Edwards curves

This family of elliptic curves was introduced in 2008 in cryptography [BBJ+08]. Similarly to
twisted Jacobi intersection curves, this representation of elliptic curves is a generalization of
the representation proposed by Edwards in [Edw07]. These curves were deeply studied by the
cryptology community, especially by Bernstein and Lange [BL07], for their efficient arithmetic.
In [BBJ+08] the authors show that the family of twisted Edwards curves is isomorphic to the
family of Montgomery curves [Mon87]. In particular these curves always have a rational 2-
torsion point T2 = (0,−1) (and a rational 4-torsion point for Edwards curves). A twisted

5.2. Elliptic curves representations 109

Edwards curve is defined over a field K of characteristic > 2 by

Ea,d : ax2 + y2 = 1 + dx2y2 (5.6)

where a, d 6= 0 and a 6= d. If a = 1, E1,d is an (untwisted) Edwards curve.

Figure 5.3: Edwards curve over the real numbers.

The group law of a twisted Edwards curve is given by

(x1, y1)⊕ (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2
1− dx1x2y1y2

)

with neutral element O = (0, 1). The opposite of a point P = (x, y) ∈ Ea,d(K) is ⊖P =
(−x, y), and adding T2 to P gives P + T2 = (−x,−y). Therefore, the symmetries can be
interpreted in terms of the group law. If a is a square in K then a twisted Edwards curve has

two 4-torsion points T4 =
(
a−

1
2 , 0
)

or
(
−a− 1

2 , 0
)
.

5.2.4 Universal Edwards model of elliptic curves

In [DF12], the authors introduce a new representation of elliptic curves that they call Edwards
model of elliptic curves. The advantage of such a representation is that it has good reduction
modulo two. That is to say, the group law and the equation defining the curve are independent
from the characteristic of the field the curve is defined over. Hence, in the whole of this thesis
we call this representation the universal Edwards model.

Let K be a field of any characteristic. An universal Edwards model of elliptic curves is
defined by

E : 1 + x2 + y2 + x2y2 = λxy (5.7)

where λ = 4t+ 1
t ∈ K∗ with t ∈ K∗.

For fields of characteristic different from two, a curve in universal Edwards model is iso-
morphic to an Edwards curves. In characteristic two, an elliptic curve in universal Edwards
model is birationally equivalent to an elliptic curve in Weierstrass representation defined by
y2 + xy = x3 + 1

λ4 .

110 Chapter 5. Elliptic curves

The group law on universal Edwards model is defined by (x1, y1)⊕(x2, y2) = (x3, y3) where

(x3, y3) = (φx(x1, y1, x2, y2), φy(x1, y1, x2, y2))

=

(
x1 + y1x2y2 − 2t(y1 + x1x2y2)

y2 + x1y1x2 − 2t(x2 + x1y1y2)
,
x1x2 + y1y2 − 2t(x1y2 + y1x2)

1 + x1y1x2y2 − 2t(x1y1 + x2y2)

)
.

The neutral element of this group law is the point O = (2t, 1) and the opposite of a point

P = (x, y) is given by ⊖P =
(
x, 1y

)
. An elliptic curve in universal Edwards model has three

two-torsion points T2,1 =
(
1
2t , 1

)
, T2,2 = (−2t,−1) and T2,3 =

(
− 1

2t ,−1
)
. Let P = (x, y) be a

point of E. The addition of P with a two-torsion point gives:

P ⊕ T2,1 =

(
1

x
,
1

y

)

P ⊕ T2,2 = (−x,−y)

P ⊕ T2,3 =

(
−1

x
,−1

y

)
.

In characteristic two, only one two-torsion point remains. Actually, the neutral element O
and the two-torsion point T2,2 coincide with the neutral element of the binary model O = (0, 1).
The two torsion points T2,1 and T2,3 coincide with the unique two torsion point being the point
at infinity P∞.

So that the two-torsion point remains a rational point in characteristic two we consider
the following change of variables: x 7→ 1

X and y 7→ Y . The equation defining the curve does
not change. Indeed, equation (5.7) implies that

1 +
1

X2
+ Y 2 +

Y 2

X2
= λ

Y

X
. (5.8)

Multiplying both sides of equation (5.8) by X2 we obtain

E : X2 + 1 +X2Y 2 + Y 2 = λXY . (5.9)

The neutral element becomes O =
(
1
2t , 1

)
and the three two-torsion points are T2,1 = (2t, 1),

T2,2 =
(
− 1

2t ,−1
)

and T2,3 = (−2t,−1).
In characteristic two the neutral element and the two-torsion point T2,2 coincide with the

point at infinity P∞ which is now the neutral element of the binary model. The two-torsion
points T2,1 and T2,3 coincide with the unique two-torsion point T2 = (0, 1).

The group law on E is defined by (X1, Y1)⊕ (X2, Y2) = (X3, Y3) where

(X3, Y3) =


 1

φx

(
1
X1
, Y1,

1
X2
, Y2

) , φy
(

1

X1
, Y1,

1

X2
, Y2

)


=

(
Y2X1X2 + Y1 − 2t(X1 +X2Y1Y2)

X2 +X1Y1Y2 − 2t(Y1X1X2 + Y2)
,
1 +X1X2Y1Y2 − 2t(X2Y2 +X1Y1)

X1X2 + Y1Y2 − 2t(X2Y1 +X1Y2)

)
.

The opposite of a point P = (X,Y) is still given by ⊖P =
(
X, 1

Y

)
. Indeed, (X,Y)⊕

(
X, 1

Y

)
=

5.3. Discrete logarithm problem and generic algorithms 111

(
1
2t , 1

)
= O. Moreover, we have

P ⊕O = P

P ⊕ T2,1 =

(
1

X
,
1

Y

)

P ⊕ T2,2 = (−X,−Y)

P ⊕ T2,3 =

(
− 1

X
,− 1

Y

)
.

A curve in universal Edward model can have 4-torsion points. Indeed, assume that K =
Fqn . If qn ≡ 1 mod 4 then −1 is a square in K. In that case the curve has four 4-torsion
points T4,1 =

(
0,
√
−1
)
, T4,2 =

(
0,−

√
−1
)
, T4,3 =

(√
−1, 0

)
and T4,4 =

(
−
√
−1, 0

)
.

5.3 Discrete logarithm problem and generic algorithms

Given a finite cyclic group G = 〈g〉 of group law ⊕, the discrete logarithm problem, DLP for
short, is defined as follows: given h ∈ G to find an integer x such that

h = [x]g = g ⊕ · · · ⊕ g .

x times

Given any finite cyclic group G there exist algorithms solving the DLP without knowing
any structure of G. These algorithms are called generic algorithms. In this section, we briefly
present some of these algorithms.

5.3.1 Pohlig Hellman reduction

Given a finite cyclic group (G,⊕) = (〈g〉 ,⊕) of order n and h ∈ G, the DLP consists of finding
x mod n satisfying h = [x]g. Let n =

∏
pαi

i be the prime factorization of n. The idea of the
Pohlig-Hellman reduction, see [PH78] or [MVOV10, chapter 3], is to reduce the computation
of the logarithm in G to logarithms in Z/piZ. To this end, one computes xi = x mod pαi

i

for each prime pi such that αi > 0. Then, finding x is reduced to use the Chinese Remainder
Theorem. To find xi one computes ǫ0, . . . , ǫαi−1, the digits of the pi-ary representation of xi i.e.
xi =

∑αi−1
j=0 ǫjp

j
i . Assume we know ǫ0, . . . , ǫj . To compute ǫj+1 one proceeds as follows. Let

g =
[
n
pi

]
g, note that since g is a generator of G the order of g is pi. Let γ =

[
ǫ0 + · · ·+ ǫjp

j
i

]
g.

The key point of the Pohlig-Hellman reduction is to observe that h =
[

n
pj+2

]
(h⊖γ) = [ǫj+1]g.

Hence, using an algorithm to solve the DLP in Z/piZ (see the two following Sections 5.3.2
and 5.3.3) one can compute ǫj+1 be the logarithm of h to the base g. This algorithm is
summarized in Algorithm 17.

Theorem 5.6. Let G = 〈g〉 be a finite cyclic group of order n. Let ci be the complexity of
solving the DLP in Z/piZ. Given h ∈ G and the prime factorization of n =

∏r
i=1 p

αi

i with
αi > 0 the Pohlig-Hellman reduction (Algorithm 17) computes the discrete logarithm of h in
base g in O (

∑r
i=1 αi(log n+ ci)) arithmetic operations in G.

While in the worst case, i.e. n is prime, this reduction does not reduce the complexity of
solving the DLP, this shows that solving the DLP in groups with smooth order n can be done
efficiently. Thus, these groups are weak from a cryptographic point of view.

112 Chapter 5. Elliptic curves

Algorithm 17: Pohlig-Hellman reduction.
Input : A finite cyclic group G of order n, g a generator of G and h in G.
Output: An integer x such that h = [x]g.
Compute pi and αi for i = 1, . . . , r such that n =

∏r
i=1 p

αi

i is the prime factorization of1

n;
for i := 1 to r do2

γ := 1; ǫ−1 := 0; g :=
[
n
pi

]
g;3

for j := 0 to αi − 1 do4

γ := γ ⊕
[
ǫj−1p

j−1
i

]
g; h :=

[
n

pj+1

]
(h⊖ γ);5

Find ǫi such that h = [ǫj]g using Algorithm 18;6

xi := ǫ0 + · · ·+ ǫαi−1p
αi−1
i ;7

Compute x using the Chinese Remainder Theorem;8

return x;9

5.3.2 Baby step giant step

The baby step giant step algorithm of Shanks [Sha71] (see for instance [CP05, chapter 5] or
[MVOV10, chapter 3]) is a trade-off between exhaustive search and memory requirement. Let
n be the order of G. Since G is a cyclic group one looks for the integer x ∈ {0, . . . , n − 1}
such that h = [x]g. Let m be an integer in {0, . . . , n − 1}. The Euclidean division of x by
m can be written as x = qm + r where r ∈ {0, . . . ,m − 1} and q ∈

{
0, . . . , ⌈ n

m⌉
}
. Moreover,

we have h = [x]g = [qm+ r]g. Hence, h⊕ [−qm]g = [r]g. Let us consider the two sequences
ai = h ⊕ [−im]g for i = 0, . . . , ⌈ n

m⌉ and bj = [j]g for j = 0, . . . ,m − 1. Then, since the
Euclidean division is unique there exist unique i and j such that ai = bj . In that case we
have h ⊕ [−im]g = [j]g which implies that x = im + j. The number of operations in G or
the memory required by this algorithm is in O

(
m+ n

m

)
. Hence, the best trade-off consists of

choosing m = ⌈√n⌉. This algorithm is summarized in Algorithm 18.

Algorithm 18: Baby step giant step for DLP.
Input : A finite cyclic group G of order n, g a generator of G, O the neutral element

of G and h in G.
Output: An integer x such that h = [x]g.
m := ⌈√n⌉; b0 := O; a := h; α := [−m]g;1

for j := 1 to m− 1 do bj := g ⊕ bj−1 and store (j, bj) in a hash table;2

for i := 0 to m− 1 do3

if a is the second component of an entry in the hash table then4

Let (r, br) such an entry; return im+ r;5

a := a⊕ α;6

Theorem 5.7. Given a finite cyclic group G = 〈g〉 of order n and an element h ∈ G. The
baby step giant step algorithm (Algorithm 18) computes the discrete logarithm x of h in base
g in O(

√
n) arithmetic operations in G and requires O(

√
n) memory space.

5.3. Discrete logarithm problem and generic algorithms 113

5.3.3 Pollard ρ method

The Pollard ρ method [Pol78] (see also [MVOV10, chapter 3] or [CF05, chapter 19]) is a
randomized algorithm. Its arithmetic complexity is the same as that of the baby step giant step
however its memory requirement is in O(1). The Pohlig-Hellman reduction allows, without
lost of generality, to assume that the order n of the group G is prime.

The principle of the Pollard ρ method is to iterate a function f : G 7→ G whose behavior is
close from that of a random function. Since, the group is finite one can find a collision which
gives the discrete logarithm. The principle of Pollard ρ method is depicted on Figure 5.4.

x0

x1

x2

x3

x4

x5

xℓ−1

xℓ+kp
xℓ+kp+1

xℓ+kp+3

xℓ+kp+6

xℓ+(k+1)p−1

f

f

Figure 5.4: Pollard ρ method.

More precisely, G is partitioned into three sets S1, S2 and S3 of approximately same size.
After ensuring that O /∈ S2, the function f is defined as follows

xi+1 = f(xi) =





h⊕ xi if xi ∈ S1
[2]xi if xi ∈ S2
g ⊕ xi if xi ∈ S3

(5.10)

The sequence (xi)i∈N is then defined iteratively by f and x0 = O. Hence, for any i ≥ 0 we
have xi = [αi]g ⊕ [βi]h. Thus, the sequence (xi)i∈N determines two others sequences (αi)i∈N
and (βi)i∈N defined as follows

ai+1 =





ai if xi ∈ S1
2ai mod n if xi ∈ S2
ai + 1 mod n if xi ∈ S3

bi+1 =





bi + 1 mod n if xi ∈ S1
2bi mod n if xi ∈ S2
bi if xi ∈ S3

.

Assume a collision xi = xj is found. Then, we have [αi]g⊕ [βi]h = [αj]g⊕ [βj]h. Hence, if
βi − βj 6= 0 mod n then the discrete logarithm is given by x =

αj−αi

βi−βj
mod n. Consequently,

solving the DLP is reduced to finding a collision. In order to find such a collision efficiently
in time and in memory one can use Floyd’s cycle finding algorithm [Flo67] (see for instance
[MVOV10, chapter 3]) whose complexity is in O(

√
n) operations in G and requires memory

in O(1).

114 Chapter 5. Elliptic curves

Theorem 5.8. Let G = 〈g〉 be a finite cyclic group of order n and h ∈ G. Assuming the func-
tion f (equation (5.10)) behaves like a random function, the Pollard ρ method is a probabilistic
algorithm computing the discrete logarithm of h in base g in O(

√
n) arithmetic operations in

G and requiring O(1) memory space.

Surprisingly, a result of Shoup [Sho97] shows that in general this is the best complexity
that one can expect using a generic algorithm. However, using the structure of the group G
depending on the nature of the group, one can design more efficient algorithms. In partic-
ular when G = F∗

q is the multiplicative group constructed from a finite field, index calculus
algorithm allows to obtain sub-exponential complexity, see [AD94]. More recently, new index
calculus algorithms have been design improving the complexity of solving the DLP in F∗

q .
First, Joux proposes in [Jou13b] a new index calculus algorithm whose better complexity but
still sub-exponential. Shortly after, inspired by Joux’s algorithm, Barbulescu et al [BGJT13]
present a quasi-polynomial time algorithm for solving the DLP in F∗

q when q = pk and p is
small.

In this thesis, we focus on groups constructed from the set of rational points of an elliptic
curve. Note that for this particular case, this problem is denoted ECDLP for elliptic curve
discrete logarithm problem. In 2004, Semaev [Sem04] attempts to design an index calculus
algorithm for solving the ECDLP for elliptic curves defined over a prime field Fp. The difficulty
in index calculus method to solve the DLP is to find a factor base i.e. a subset of elements in
the group for which we know the complexity and the probability of decomposing any element
of the group w.r.t. this factor base. Moreover, this complexity and this probability should be
good enough to ensure to obtain an efficient algorithm. In [Sem04], Semaev does not highlight
such an efficient factor base. Hence, his algorithm does not really apply theoretically and
experimentally. However, he introduces a useful tool for decomposing points of elliptic curves:
summation polynomials. Later, Gaudry and Diem independently propose more efficient index
calculus algorithms for solving the ECDLP. Both of them are using the summation polynomials
to solve the underlying problem that follows.

Point Decomposition Problem (PDP). Given a point R of an elliptic curve defined over
a field K, denoted E(K); and given a factor base F ⊂ E(K) find P1, . . . , Pm ∈ F such that
R = P1 ⊕ · · · ⊕ Pm.

5.4 Semaev summation polynomials

Originally, the summation polynomials were introduced by Semaev as a projection of the PDP
over the set of x-coordinates of the points.

Definition 5.9. Let E be an elliptic curve defined by a planar equation over a field Fqn and
let Fqn be an algebraic closure of this field. For all m ≥ 2, the mth summation polynomial of E
is defined by fm(x1, . . . , xm) such that for all x1, . . . , xm in Fqn , its evaluation fm(x1, . . . , xm)
is zero if and only if there exist y1, . . . , ym ∈ Fqn such that (xi, yi) is in E(Fqn) and (x1, y1)⊕
. . .⊕ (xm, ym) is the neutral element of E.

More generally the summation polynomials can be defined as a projection over the set of
any coordinate. In the context of Definition 5.9 and if E is in Weierstrass representation we
have the following result.

5.4. Semaev summation polynomials 115

Theorem 5.10 (Semaev [Sem04]). Let E be an elliptic curve defined over a field of charac-
teristic > 3 by a Weierstrass equation

E : y2 = x3 + a4x+ a6 . (5.11)

The summation polynomials of E are given by




S2(x1, x2) = x1 − x2
S3(x1, x2, x3) = (x1 − x2)

2x23 − 2((x1x2 + a4)(x1 + x2) + 2a6)x3+
(x1x2 − a4)

2 − 4a6(x1 + x2)
Sm(x1, . . . , xn) = ResX(Sm−k(x1, . . . , xm−k−1, X), Sk+2(xm−k, . . . , xm, X))

for all m ≥ 4 and for all m− 3 ≥ k ≥ 1

where ResX(f1, f2) is the resultant of f1 and f2 with respect to X. Moreover, for all m ≥ 3 the
mth summation polynomial is symmetric and of degree 2m−2 in each variable. Furthermore,
summation polynomials are irreducible.

A proof that summation polynomials are symmetric can be deduced from a more general
result proven in Chapter 6.

Remark 5.11. If the field K if of characteristic two and the elliptic curve E is an ordinary
curve defined over K by a short Weierstrass equation

E : y2 + xy = x3 + αx2 + β

with α, β ∈ K. Then, the third summation polynomial is given by

S3(x1, x2, x3) = x21x
2
2 + x21x

2
3 + x22x

2
3 + x1x2x3 + β .

One can notice that in characteristic two, S3 is more sparse than in characteristic > 3. This
is a general fact that we observe for Sm with m ≥ 3. In Chapter 7, we will see how to
take advantage of sparsity of summation polynomials in characteristic two to speed up their
computation.

We now detail how the third summation polynomial is constructed in [Sem04]. The others
being constructed recursively from the third.

5.4.1 Computing summation polynomials

First note that since summation polynomials for Weierstrass curves are a projection of the
PDP over the set of the x-coordinate, the solutions of the mth summation polynomial are in
fact (x1, . . . , xm) such that there exist (x1, y1), . . . , (xm, ym) ∈ E(K) verifying ±(x1, y1)±· · ·±
(xm, ym) = O. Indeed, for Weierstrass curves of the form (5.11), we have ⊖(x, y) = (x,−y).
Hence, the solutions of summation polynomials are up to sign the solutions of the PDP. Let
P1 = (x1, y1) and P2 = (x2, y2) be two points of the curve E. Let P3 = (x3, y3) be the point
of E such that P3 = ±P1 ± P2. Since, the x-coordinate of a point, denoted x(P), and its
negative are equal then x3 is either x(P1 ⊕ P2) or x(P1 ⊖ P2). Consequently, x3 is a solution
of (x− x(P1 ⊕ P2)) (x− x(P1 ⊖ P2)). Moreover, from Section 5.1 x(P1 ⊕ P2) (respectively
x(P1 ⊖ P2)) is given by a rational fraction in terms of x1, y1, x2, y2. By consequence, let N

D
be the irreducible form of the rational fraction (x3 − x(P1 ⊕ P2)) (x3 − x(P1 ⊖ P2)). Then,

116 Chapter 5. Elliptic curves

the solutions of the third summation polynomial are the projection of the solutions of the
following system S ensuring that D 6= 0 into the variables x1, x2 and x3.

S =





N(x1, y1, x2, y2, x3)
y21 − (x31 + a4x1 + a6)
y22 − (x32 + a4x2 + a6)



 . (5.12)

To ensure that D 6= 0, we consider the saturation ideal I of 〈S〉 by D. Then, we project
onto the variables x1, x2, x3 by computing the elimination ideal J of I in order to eliminate
the variables y1 and y2 (see Section 2.1.4). Finally, the ideal J is a principal ideal generated
by the third summation polynomial.

Remark 5.12. Let ı be the automorphism of degree 2 of E which associates to a point its
negation:

ı : E(K) −→ E(K)
(x, y) 7−→ ⊖(x, y) = (x,−y) .

Let πx and πy be respectively, the projection on x and y. We can note that πx(x, y) = πx(ı(x, y))
and πy(x, y) 6= πy(ı(x, y)). Clearly, πx(E) ≃ E/ı and the PDP in m points have more solutions
in Em than in (E/ı)m. This is not true for πy. By consequence, by projecting on x, we obtain
summation polynomials with smaller degree. In the following, for non-Weierstrass equations we
choose to project on the coordinate c, if it exists, such that there exists an automorphism ψ of
E such that πc(E) ≃ E/ψ and for all P , πc(P) = πc(ψ(P)). For each studied representation,
this automorphism exists and will be ı.

Following this construction we give the summation polynomials corresponding to the curve
representations presented in Section 5.2.

5.4.2 Twisted Jacobi intersection curves

As said in Remark 5.12, we compute the summation polynomials as a projection of the PDP to
the coordinate which is invariant under the ⊖ action. For twisted Jacobi intersection curves
the y and z coordinates are invariant under the action of ⊖. Hence we can compute the
summation polynomials for these curves as a projection of the PDP to the y or z coordinate.
In fact the two summation polynomials for n fixed are the same up to permutation of a and
b, so we give only the polynomials obtained by projection to y:





S2(y1, y2) = y1 − y2
S3(y1, y2, y3) =

(
y21y

2
2 − y21 − y22 +

b−a
b

)
y23 + 2a

b y1y2y3+
b−a
b

(
y21 + y22 − 1

)
− y21y

2
2

Sn(y1, . . . , yn) = ResY (Sn−k(y1, . . . , yn−k−1, Y), Sk+2(yn−k, . . . , yn, Y))
for all n ≥ 4 and for all n− 3 ≥ k ≥ 1

As in the case of Weierstrass representation, for all n ≥ 3 the nth summation polynomial is
symmetric (see proof in Section 6.2.2) and of degree 2n−2 in each variable. Moreover, the proof
of irreducibility of summation polynomials by Semaev does not depend on the representation
of the curve or the coordinate we project to. Hence, it can be applied mutatis mutandis for
twisted Edwards or Jacobi intersection summation polynomials.

5.5. Gaudry’s index calculus attack for ECDLP solving 117

5.4.3 Twisted Edwards curves

For this representation, the y-coordinate is invariant under the action of ⊖. Thus, the nth
summation polynomial is constructed as a projection of the PDP on the y-coordinate. For
twisted Edwards curves, it is then given by





S2(y1, y2) = y1 − y2
S3(y1, y2, y3) = (y21y

2
2 − y21 − y22 +

a
d)y

2
3 + 2d−a

d y1y2y3+
a
d

(
y21 + y22 − 1

)
− y21y

2
2

Sn(y1, . . . , yn) = ResY (Sn−k(y1, . . . , yn−k−1, Y), Sk+2(yn−k, . . . , yn, Y))
for all n ≥ 4 and for all n− 3 ≥ k ≥ 1

As for Weierstrass and twisted Jacobi intersection curves, these summation polynomials
are irreducible and for all n ≥ 3 the nth summation polynomial is symmetric and of degree
2n−2 in each variable.

5.4.4 Universal Edwards model of elliptic curves

For this representation, the x-coordinate is invariant under the action of ⊖. Thus, the nth
summation polynomial is given by





S2(x1, x2) = x1 − x2
S3(x1, x2, x3) = x21x

2
2x

2
3 − α(x21x

2
2 + x21x

2
3 + x22x

2
3) +

(
α
t − 4t

)
x1x2x3+

x21 + x22 + x23 − α
Sn(x1, . . . , xn) = ResX(Sn−k(x1, . . . , xn−k−1, X), Sk+2(xn−k, . . . , xn, X))

for all n ≥ 4 and for all n− 3 ≥ k ≥ 1

where α = 1
4t2

. As for Weierstrass, twisted Jacobi intersection curves and twisted Edwards
curves, these summation polynomials are irreducible and for all n ≥ 3 the nth summation
polynomial is symmetric and of degree 2n−2 in each variable.

5.5 Gaudry’s index calculus attack for solving the elliptic curve
discrete logarithm problem

In this section, we present the index calculus attack of Gaudry [Gau09] for solving elliptic curve
discrete logarithm problem. Originally, his algorithm has been designed for solving the DLP in
any abelian variety of fixed dimension n ≥ 2. The elliptic curve case arises as a particular case
of Gaudry’s algorithm. For this particular case, the use of summation polynomials instead
of the general method of Gaudry’s algorithm for decomposing points allows to speed up the
relation search step. Since, in this thesis we focus on ECDLP, we present this index calculus
attack in this context.

5.5.1 Presentation of the algorithm

Usually, index calculus algorithm proceeds in three steps. Assume we want to compute x
such that Q = [x]P . The first step consists of finding an efficient factor base. Then, the
second step that we call relation search consists of computing relations between P,Q and the
elements in the factor base. Finally, when enough relations are computed, the third step uses
linear algebra to recover the discrete logarithm x.

118 Chapter 5. Elliptic curves

First, we describe how the elliptic curves case appears as a particular case of abelian variety
of dimension greater than one.

Elliptic curves defined over non prime finite field as abelian variety of dimension
n > 1

Let E be an elliptic curve in Weierstrass representation defined over Fqn with n > 1. Note
that we assume the curve given by a Weierstrass representation to follow the presentation in
[Gau09]. However, same reasoning works mutatis mutandis with the other representations.

Writing Fqn = Fq[X]/µ(X) = Fq[α] where µ(X) is an irreducible polynomial over Fq of
degree n and α is a root of µ(X) in Fqn , we can see Fqn as a vector space over Fq for which
{1, α, . . . , αn−1} is a basis. At each element x in Fqn we can thus associate a unique n-tuple
of Fn

q by the following isomorphism

φ : Fn
q → Fqn

(x0, . . . , xn−1) 7→ ∑n−1
i=0 xiαi

Hence, the set of points of E(Fqn) can be seen as an abelian variety defined over Fq of di-
mension n. Let A be such an abelian variety defined by A = {(x0, . . . , xn−1, y0, . . . , yn−1) ∈
(Fq)

2n | (φ(x0, . . . , xn−1), φ(y0, . . . , yn−1)) ∈ E(Fqn)}. The abelian variety A is called the Weil
restriction of E(Fqn) from Fqn to Fq. Note that A is of dimension n since the yi’s are algebraic
over x0, . . . , xn−1.

Remark 5.13. The notion of Weil restriction is more general that as presented above. Indeed,
a Weil restriction can be applied to all geometric objects defined over separable fields L of
degree d of a ground field K and not only to affine variety. The principle is to relate objects of
dimension n over L to nd-dimensional objects over K. See for instance [CF05] for a general
definition of Weil restriction. We do not need such a definition in this thesis.

Frey [Fre01] showed that any instance of the ECDLP can be mapped to an instance of the
DLP in the Weil restriction of E(Fqn) from Fqn to Fq. In the same way, the PDP over any
elliptic curve defined over a non prime finite field can be mapped to the PDP over A.

Factor base

The factor base is defined as in [Gau09] by

F = {P ∈ A ∩H1 ∩ · · · ∩Hn−1} ,

where A is the Weil restriction of E(Fqn) from Fqn to Fq. The hyperplane Hi is defined by the
equation xi = 0. In other words, the factor base F is defined as a subset of E(Fqn) as follow

F = {P = (x, y) ∈ E(Fqn) | x ∈ Fq} .

Thus, the factor base F is an algebraic variety since it is defined as intersection of algebraic
varieties. Since, the yi’s are algebraic over the xi’s, F is of dimension 1. Generically (possibly
by applying a random linear change of variables), F is an absolutely irreducible variety. Hence,
the number of points in F can be estimated thanks to the Hasse-Weil bound (see for instance
[CF05, chapter 5]) which is a consequence of the Weil conjecture [Wei49].

5.5. Gaudry’s index calculus attack for ECDLP solving 119

Hasse-Weil bound. Let C be a smooth projective curve of genus g. The number of points of
C defined in Fq, denoted #C(Fq) satisfies

|#C(Fq)− q − 1| ≤ 2g
√
q .

In other words, #C(Fq) = q +O(
√
q) where the constant depends on the genus of the curve.

Consequently, if F is smooth (i.e. has no singularity) then its cardinality is #F = q +
O(

√
q). In the case where F does not contain enough points i.e. its cardinality is not q+O(

√
q)

we can choose any factor base of the form

Fi = {P ∈ A ∩H0 ∩ · · · ∩Hi−1 ∩Hi+1 ∩ · · · ∩Hn−1} .

Relation collection

Let P,Q ∈ A such that Q = [x]P where we want to compute x. Let m be the order of P .
As usual in index calculus algorithm, we look for relations between P and Q. More precisely,
such a relation is of the form

Ri = [ai]P ⊕ [bi]Q = Pi,1 ⊕ · · · ⊕ Pi,n (5.13)

where Pi,1, . . . , Pi,n are some points in F and ai and bi are randomly chosen in Z/mZ.
Given a point R of E(Fqn) the probability that it can be written as a sum of n points in

F is about 1
n! . Indeed, consider the map φ defined as follow

φ : Fn/Sn → A
(P1, . . . , Pn) 7→ P1 ⊕ · · · ⊕ Pn

where Sn is the nth symmetric group. The probability that a generic point R can be decom-
posed w.r.t. F is then given by

1

#A

∑

R∈A

#φ−1(R) =
#(Fn/Sn)

#A
=

#Fn

n!#A
.

As previously mentioned, #F is about q and the Hasse-Weil bound allows to estimate the
cardinality of A which is about qn.

Hypothesis 5.14. There exist approximately qn

n! points of E(Fqn) which can be decomposed
as the sum of n points in F . Thus, a relation of the form (5.13) can be found with probability
1
n! .

The group law of E gives a group law on A which is given by rational fractions depending
on the coordinates of the summed points. Consequently we can construct 2n rational fractions
λj in terms of the n(n+ 1) variables xi,0, yi,0, . . . , yi,n−1 for i = 1, . . . , n such that

P1 ⊕ · · · ⊕ Pn = (λ1, . . . , λ2n)

where Pi = (xi,0, 0, . . . , 0, yi,0, . . . , yi,n−1) ∈ F .
To solve the PDP, we write P1 ⊕ · · · ⊕ Pn = R which gives 2n equations in Fq. Adding

the equations describing Pi ∈ E for i = 1, . . . , n − 1, we obtain a polynomial system with
n(n + 1) variables and n(n + 1) equations in Fq. It is not necessary to add the equation for

120 Chapter 5. Elliptic curves

Pn ∈ E because this information is already in the system. Indeed, we have P1, . . . , Pn−1 ∈ E
and Pn = R ⊖ (P1 ⊕ · · · ⊕ Pn−1) with R ∈ E and by consequence Pn too. The system has
as many unknowns as equations then under regularity assumptions, it is of dimension 0. In
practice, we observe that this system is of dimension zero. By consequence, we assume the
following hypothesis.

Hypothesis 5.15. Polynomial systems coming from the resolution of equation (5.13) are of
dimension zero.

In order to solve this system, we use Gröbner bases. As shown in Chapter 2 the complexity
of Gröbner bases computations depends on the number of variables which is quadratic in n.
To speed up the resolution, one can reduce the number of variables by using the summation
polynomials. Indeed, using summation polynomial allows to remove the variables yi,j for
i = 1, . . . , n and j = 0, . . . , n− 1.

We now detail how to use the summation polynomials to solve the PDP. By definition, if
the points P1, . . . , Pn ∈ F verify

Sn+1(xP1 , . . . , xPn , xR) = 0Fqn
(5.14)

then, up to signs, they give a solution of the PDP for R. By applying a Weil restriction, we
obtain

Sn+1(xP1 , . . . , xPn , xR) = 0Fqn
⇐⇒

n−1∑

k=0

ϕR,k(xP1 , . . . , xPn) · αk = 0Fqn

where the ϕR,k(xP1 , . . . , xPn) are polynomials in Fq[xP1 , . . . , xPn]. Thus, solving equation
(5.14) is equivalent to solve the polynomial system S = {ϕR,k(xP1 , . . . , xPn), k = 0, . . . , n−1}
in Fq.

Remark 5.16. According to Remark 5.12 depending on the representation we do not use the
same coordinate to construct summation polynomial. Hence, to adapt this algorithm to another
representation we need to adjust the factor base: let c be the chosen coordinate to construct
summation polynomials, F has to be the set of all points of the curve with c in Fq instead of
Fqn . The probability of decomposing a point w.r.t. F still follows the Hypothesis 5.14.

Note that since P and ⊖P share the same abscissa we have that P ∈ F implies that
⊖P ∈ F too. Moreover, summation polynomials are a projection of the PDP on the x-
coordinate of the summed point. Thus, the solutions of equation (5.14) allow to construct any
decomposition of the form

R = ±P1 ± · · · ± Pn .

Let S1, S2 ⊂ E(Fqn) be such that F = S1 ∪ S2, S1 ∩ S2 = {P ∈ F | [2]P = O} and Si = ı(Sj)
with i 6= j. By consequence, considering the factor base S1 instead of F and searching for
relations of the form R = P1 ⊕ · · · ⊕Pn such that Pi or ⊖Pi are in S1 allows to divide the size
of the factor base by a factor two without decreasing the probability of decomposing a point.
Moreover, the process of relation search by using summation polynomials does not change
since they do not distinguish P and ⊖P .

Although this trick has no impact in the asymptotic complexity it can give significant
improvements in practice.

5.5. Gaudry’s index calculus attack for ECDLP solving 121

Computing the discrete logarithm

Assume we have computed enough relations of the form (5.13) such that there exists a non
trivial linear combination of these relations vanishing on A. In other words, there exists
v1, . . . , vN 6= 0 such that

N∑

i=1

[vi]Ri =

N∑

i=1

[vi](Pi,1 ⊕ · · · ⊕ Pi,n) = O .

That is to say
∑N

i=1[vi]([ai]P ⊕ [bi]Q) = O. Hence,
∑N

i=1[vi(ai + xbi)]P = O. Consequently,
if m denotes the order of P in A we have

∑N
i=1 vi(ai + xbi) = 0 mod m. Thus, if

∑N
i=1 vibi

is invertible modulo m we have

x = −
∑N

i=1 viai∑N
i=1 vibi

mod m. (5.15)

Index calculus attack as presented in [Gau09] for solving the elliptic curve discrete logarithm
is summarized in Algorithm 19.

Algorithm 19: Index calculus attack for ECDLP.
Input : Two points P and Q in E(Fqn) with n > 1 such that Q ∈ 〈P 〉 and m the

order of P .
Output: The integer x such that Q = [x]P and 0 ≤ x < m.
Compute the factor base F = {(x, y) ∈ E(Fqn) | x ∈ Fq};1

Compute #F + 1 relations (#F independent relations and any other) of the2

form (5.13);
Using linear algebra, find v1, . . . , v#F+1 such that O =

∑#F+1
i=1 [viai]P ⊕ [vibi]Q;3

A =
∑#F+1

i=1 viai; B =
∑#F+1

i=1 vibi;4

if B is invertible modulo m then return −A
B mod m;5

else go back to step 2;6

5.5.2 Complexity analysis

To compute the factor base, we proceed as follows. We recall that we assume the curve given
in Weierstrass representation but similar reasoning apply for others representations. For each
value x ∈ Fq, we substitute it into the equation defining the curve and then we have to compute
a square root in Fqn or factorize a polynomial of degree 2 if the field is of characteristic two.
This can be done in a polynomial time in log(q) and n, see for instance [VZGG03]. Hence,
the computation of F can be done in Õ(q) operations where the notation Õ means that we
neglect logarithmic factors in q and polynomial factors in n.

Let c be the cost of finding a relation of the form (5.13) i.e. solving equation (5.14). Let
P be the probability of finding a relation i.e. 1

n! . The cost of the relation search step is then
in O

(qc
P

)
operations.

Finally, since each relation involves at most n points, the matrix contains at most O(nq)
non zero entries. Hence, using for instance Wiedemann algorithm [Wie86] (or [CF05, page
501]) taking advantage of the sparsity of the matrix, the linear algebra step can be done in

122 Chapter 5. Elliptic curves

O(nq2 log(q)2) operations in Z/mZ where we recall that m is the order of P . Hence, at worst
m = O(qn). By consequence, the total complexity of Algorithm 19 can be expressed as

O
(qc
P + nq2 log(q)2

)
(5.16)

arithmetic operations.
In [Gau09], it is considered abelian variety of fixed dimension i.e. n is fixed. In that case

the cost of computing a relation of the form (5.13) is polynomial in log(q). Indeed, we have
to solve a polynomial system with coefficients in Fq whose degree and number of variables are
fixed. Consequently, the complexity of Algorithm 19 is dominated by the linear algebra step
and is in Õ(q2). Since, the linear algebra step is more time consuming than the relation search,
one can balance the complexity of these two steps using the double large prime variation of
Gaudry et al [GTTD07].

5.5.3 Balancing relation search and linear algebra using the double large

prime variation

The idea is to decrease the size of the factor base to speed up the linear algebra step and
increasing the complexity of the relation search. Indeed, since the factor base is smaller, the
probability of finding a relation between P and Q is smaller too. It is a generalization of the
large prime variation of Thériault [Thé03].

The principle is as follows. First, one divides the factor base F into two sets. The first set
G containing genuine elements has size (#F)r where 0 < r ≤ 1. The second set L contains
elements called large prime. One looks for relations matching one of the three following forms:

[ai]P ⊕ [bi]Q = P1 ⊕ · · · ⊕ Pn (5.17)

[ai]P ⊕ [bi]Q = P1 ⊕ · · · ⊕ Pn−1 ⊕ L1 (5.18)

[ai]P ⊕ [bi]Q = P1 ⊕ · · · ⊕ Pn−2 ⊕ L1 ⊕ L2 (5.19)

where the Pi’s are genuine elements in G and the Li’s are large prime in L. Then, by combining
relations of the form (5.18) and (5.19) one can build relations involving only genuine elements
(possibly more than n). For this purpose, the authors of [GTTD07] suggest considering a
graph of large prime relations. It is an undirected acyclic graph whose vertices correspond to
large prime i.e. elements in L plus the special vertex ⋆. All edges are labelled with a relation.
More precisely, if the relation contains two large primes then it labels the edge between the
two vertices corresponding to these large primes. If the relation contains one large prime then
it labels the edge between the vertex corresponding to this large prime and the special vertex
⋆. The graph is constructed as one goes along the relation collection until a cycle is detected.
Indeed, if a new relation creates a cycle the corresponding edge is not added to the graph but
the cycle allows to compute a new relation involving only genuine elements. The algorithm
proceeds as above until #G+1 relations involving only genuine elements are computed. Then,
as usual the linear algebra allows to recover the discrete logarithm. Note that the size of the
matrix is decreased to #G.

From [GTTD07], the relation collection has now a complexity in

O

((
1 +

r(n− 1)

n

)
(n− 2)!q1−(n−2)(r−1) log(q)c

)

5.5. Gaudry’s index calculus attack for ECDLP solving 123

arithmetic operations where c is the cost of finding one relation involving at most two large
primes. Moreover, in [GTTD07] it is shown that the number of genuine elements in the
recombined relation is in O(log(q)). Hence, the complexity of the linear algebra becomes in

O(q2r log(q)3)

arithmetic operations in Z/mZ where m = O(qn) is the order of P .
Finally, one looks for r such that the cost of the linear algebra step and the relation

collection are equal. In the context of the analysis of Gaudry in [Gau09] i.e. when the
dimension of the variety n (or the degree of the extension of the field Fqn) is fixed then
c = O(1). Hence, we look for r satisfying q1−(n−2)(r−1) = q2r if we omit logarithmic factors.
Consequently, we obtain that by choosing r = 1− 1

n the complexity of Gaudry index calculus

attack using the double large prime variation is in Õ
(
q2−

2
n

)
.

Although it is omitted in Gaudry’s analysis, the cost of solving a polynomial system in
order to find a relation is exponential in n. Hence, from n = 5 the bottleneck of the index
calculus attack is the resolution of such a system. In order to pass over this barrier Joux
and Vitse propose in [JV13] a new variant of the index calculus attack that they call variant
“n − 1” which is a trade-off between probability of decomposing a point and the difficulty of
finding a relation.

5.5.4 Variant “n− 1”

This approach can be seen as an hybrid approach where one mixes an exhaustive search and an
algebraic resolution (e.g. see [BFP09] for application of such a strategy in another context). If
one looks for a decomposition of a given point R, instead of searching for n points of the factor
base whose sum is equal to R, one can search for only n−1 points of the factor base whose sum
is equal to R. Using this technique simplifies the resolution of the polynomial systems, since
we manipulate the summation polynomial of degree n instead of n+1 so that the degree and
the number of variables are reduced. Furthermore, the systems become overdetermined and if
they have a solution, then in general it is unique. Indeed, the number of variables is reduced
to n− 1 (the abscissa of the n− 1 points in the decomposition) but the Weil restriction still
leads to n equations. Hence the DRL Gröbner basis is also the LEX Gröbner basis and we do
not need the FGLM step in the general solving strategy. On the other hand, it decreases the
probability of finding a decomposition by a factor q/n. Consequently, from equation (5.16)
the approach in [JV13] has an arithmetic complexity in

O

(
q2C(n− 1)

(n− 1)!
+ (n− 1)q2 log(q)2

)

where C(n−1) is the cost of solving one system corresponding to the decomposition of a point
of the curve in n − 1 points of the factor base. Let C(n) be the cost of solving one system
corresponding to the decomposition of a point of the curve in n points of the factor base. This
complexity has to be compared with

O

(
qC(n)
n!

+ nq2 log(q)2
)

for the original version of Gaudry keeping in mind that C(n) is more expensive that C(n− 1).
We will make more explicit the value of C(n) and C(n − 1) in Section 5.6.1. Anyway, until

124 Chapter 5. Elliptic curves

now the only viable approach for handling the case where n = 5 is the variant “(n − 1)” by
Joux and Vitse [JV13].

5.5.5 Diem’s variant of the index calculus attack

As previously mentioned, at the same time Diem (independently) proposes an index calculus
attack for solving the elliptic curve discrete logarithm for curves defined over non prime finite
field. The main difference between the two approaches is the definition of the factor base.
Diem’s algorithm uses a larger factor base. More precisely, let A be the Weil restriction of
E(Fqn) from Fqn to Fq. Let m = ⌈nk ⌉ for some integer k ≤ n and I ⊂ {0, . . . , n− 1} such that
#I = k, the factor base F is defined as follows

F =



P ∈ A | P ∈

⋂

j /∈I

Hj





=

{
(x, y) ∈ E(Fqn) | x =

∑

i∈I

xiα
i, xi ∈ Fq, y ∈ Fqn

}

where {1, α, . . . , αn−1} is a basis of Fqn seen as a Fq–vector space of dimension n and Hj is
the hyperplane defined by the equation xj = 0. Then, the algorithm is the same as that of
Gaudry except that we look for decompositions of the form

R = [ai]P ⊕ [bi]Q = P1 ⊕ · · · ⊕ Pm

where P1, . . . , Pm ∈ F . The decompositions are still computed by solving polynomial systems
obtained from applying the Weil restriction from Fqn to Fq on the (m + 1)th summation
polynomial evaluated in the abscissa of R.

Moreover, Diem’s analysis allows to remove heuristics present in Gaudry’s analysis as for
instance the size of the factor base and the probability of finding a relation. The parameter
k depends on the parameters q and n in input and is chosen in order to obtain the best
complexity. In particular, Diem highlights some families of curves on which the discrete
logarithm problem can be solved in subexponential time. Before that, the only way to obtain
subexponential algorithm for some particular families of curves was to use transfer method, see
for instance [MVO91, MOV93, Sem98]. The idea of such a method is to find an homomorphism
from E(Fq) to F×

qe then solving the problem in F×
qe for which there exists subexponential

algorithm. Obviously, the complexity of such method depends on the existence of a small
e. Note that for anomalous curves i.e. elliptic curves defined over a prime field Fp whose
the number of rational points is p, there even exists polynomial time algorithm, see [Sem98,
Sma99].

5.6 Using symmetries to improve the ECDLP solving

Even if in the original analysis in [Gau09] the dimension and the degree of the equations
defining the variety are fixed, the author looks for an efficient way of solving polynomial
systems obtained by applying a Weil restriction from Fqn to Fq on summation polynomials.

5.6. Using symmetries to improve the ECDLP solving 125

5.6.1 Solving the point decomposition problem

As it is shown in Section 5.4, the summation polynomials are symmetric and it is natural
[Gau09] to use this to decrease the cost of the Gröbner basis computation in the polynomial
systems solving process (see Chapter 3). Let Sm ∈ K[x1, . . . , xm] be the mth summation
polynomial of an elliptic curve given in Weierstrass representation. Since, Sm is symmetric we
have Sm ∈ K[x1, . . . , xm]Sm . As mentioned in Chapter 3 Section 3.2.3 it is well known that
the invariant ring of Sm is a polynomial algebra with basis {e1, . . . , em} where ei is the ith
elementary symmetric polynomial in terms of x1, . . . , xm.

Remark 5.17. Since, Sm is symmetric one can note that Sm is also invariant under the
action of Sm−1. That is to say the polynomial Sm(x1, . . . , xm−1, xR) ∈ K[x1, . . . , xm−1] is in
the invariant ring of Sm−1.

To solve the PDP, as explained in Section 5.5.1 we consider the (n + 1)th summation
polynomial evaluated in the abscissa of the point R we want to decompose. That is to say, we
apply the Weil restriction from Fqn to Fq on the polynomial Sn+1(x1, . . . , xn, xR). According
to Remark 5.17, Sn+1(x1, . . . , xn, xR) is in Fqn [x1, . . . , xn]

Sn . Hence, there exists a unique
polynomial S′

n ∈ Fqn [e1, . . . , en] such that S′
n is the expression of Sn+1(x1, . . . , xn, xR) in

terms of the ei. In Section 5.4, we have seen that Sn+1 is of degree 2n−1 in each variable thus
Sn+1(x1, . . . , xn, xR) too. Consequently, by construction S′

n is of total degree 2n−1.
To solve the PDP we now apply the Weil restriction on S′

n instead of Sn+1(x1, . . . , xn, xR).
Hence, after the Weil restriction on S′

n ∈ Fqn [e1, . . . , en] we obtain a new system SSn
1 ⊂

Fq[e1, . . . , en] with n polynomials of total degree 2n−1.
Consequently, the Bezout’s bound allows to bound the degree of the ideal generated by SSn

by 2n(n−1). In practice, we observe in this context that this bound is reached. Without taking
into account the symmetric group, the bound would have been n! times larger, therefore, the
complexity of FGLM is reduced by (n!)3 (or (n!)ω if we use change of ordering for Shape
Position ideals of Chapter 4). Moreover, we observe in practice that the system SSn

is regular
(in the sense of Definition 2.79). Hence, we follow Hypothesis 5.18.

Hypothesis 5.18. Let R be a fixed point of E(Fqn) and S′
n(e1, . . . , en) be the expression of

Sn+1(x1, . . . , xn, xR) in terms of the elementary symmetric polynomials. Polynomial systems
arising from a Weil descent from Fqn to Fq on S′

n(e1, . . . , en) are regular.

By consequence, under Hypothesis 5.18 from Theorem 2.83 and Theorem 2.85 and by
using Macaulay and Bézout bounds (Corollary 2.76) the complexity of solving the system SSn

is bounded by

O

(
n

(
n2n−1 + 1

n

)ω

+ n23n(n−1)

)
= O

(
n23n(n−1)

)

arithmetic operations in Fq when using FGLM algorithm. Furthermore, we observe that the
systems SSn

are actually in Shape Position. Hence, using algorithm for Shape Position ideals
presented in Chapter 4 the complexity of solving SSn

is decreased to

O

(
n

(
n2n−1 + 1

n

)ω

+ n22ωn(n−1)

)
= O

(
neωn2ωn(n−1)

)

1The notation SG means that the system is expressed w.r.t. the change of variables associated to G i.e. the
change of variables formed by the primary and secondary invariants of Fq[x1, . . . , xn]

G.

126 Chapter 5. Elliptic curves

arithmetic operations in Fq. Moreover, let S be the system obtain from the Weil descent
applied on Sn+1(x1, . . . , xn, xR). As presented in Section 3.2.3 computing the solutions of S
from that of SSn

can be done very efficiently and is negligible in comparison of solving SSn
.

Theorem 5.19 ([Gau09]). The complexity of solving the elliptic curve discrete logarithm
problem for curves defined over Fqn with n > 1 can heuristically be bounded by

O
(
qneωn2ωn(n−1)n! + nq2 log(q)2

)

arithmetic operations in Fq.

Obviously, this strategy can be applied to the variant “n − 1”. Using this strategy, the
authors of [JV13] obtain the following total complexity.

Theorem 5.20 ([JV13]). The complexity of solving the elliptic curve discrete logarithm in
curves defined over Fqn with n > 1 using the variant “n− 1” can heuristically be bounded by

O
(
(n− 1)!2ω(n−1)(n−2)eωnn−

ω
2 q2
)

arithmetic operations in Fq.

Polynomial systems involved in the variant “n− 1” are overdetermined. Indeed, we have n
equations and n−1 variables. Hence, the arguments justifying the complexity of Theorem 5.20
are slightly different of those presented in Chapter 2. We now give some intuitions behind
such a complexity.

Since the systems are overdetermined then in general they do not have any solution. In the
particular case when the system admits a solution then in general it is unique. Consequently,
most of the time is spent to test if the polynomial 1 is in the considered ideal. If it is the case
then the system admits no solution and the point of the curve cannot be decomposed into
n− 1 points of the factor base.

Definition 5.21 (Homogenized ideal). We define the map Hom as

Hom : K[x1, . . . , xn] → K[x1, . . . , xn, h]

f 7→ hdeg(f)f
(
x1
h , . . . ,

xn

h

)
.

Let I = 〈f1, . . . , fs〉 ⊂ K[x1, . . . , xn] be an affine ideal. We call the homogenized ideal of I the
homogeneous ideal J ⊂ K[x1, . . . , xn, h] defined by

J = 〈Hom(f1) , . . . ,Hom(fs)〉 .

In the literature, the term homogenized ideal denotes the ideal {Hom(f) | f ∈ I}. How-
ever, we do not need this definition here.

Let S = {f1, . . . , fn} ⊂ K[x1, . . . , xn−1] be the system to solve. Let J be the homogenized
ideal of 〈S〉. If the sequence (Hom (f1) , . . . ,Hom(fn)) is regular then J is of dimension zero
since it has as many variables as equations. In that case, as shown in [BFSS13], testing if S
has a solution can be done by testing the consistency of a linear system involving the Macaulay
matrix in a well chosen degree d containing all polynomials of the form tfi with deg(tfi) ≤ d
and tfi ∈ Fq[x1, . . . , xn−1]. If the linear system is consistent then S has no solution. In
[BFSS13], it is shown that d is given by the degree of regularity of the homogenized ideal of

5.6. Using symmetries to improve the ECDLP solving 127

〈S〉. Consequently, the Macaulay bound yields d ≤ n2n−2 − n + 1. Therefore, testing if a
point is decomposable into n−1 points of the factor base can be done in O

(
neωn2ω(n−1)(n−2)

)

arithmetic operations in Fq.
When the system has one solution then the homogenized system is not of dimension zero.

In that case, since it has as many variables as equations it cannot be a regular system. However,
we can find the linear relations describing the unique solution in a similar way that we test
if the system admits a solution. Nevertheless, in that case, there is no precise bound on the
degree to consider. In practice, we observe that this degree is almost the same as in the case
where the system has no solution. Hence, by assuming this hypothesis we obtain a similar
complexity of that of Theorem 5.20. The difference resides in the asymptotic simplification of
the size of the Macaulay matrix.

One of the bottleneck of the index calculus attack to solve the elliptic curve discrete
logarithm is the computation of the summation polynomials. Indeed, from m > 5 the mth
summation polynomial of Weierstrass curves has never been computed. Hence, having an
efficient way of computing them becomes a challenge to improve this kind of attack.

In this context, the author of [JV13] suggest to compute them directly expressed in terms
of the elementary symmetric polynomials.

5.6.2 Computation of summation polynomials

The classical strategy to compute summation polynomials in terms of the elementary sym-
metric polynomials is first to compute them in their classical form. Then, to express them
in terms of the elementary symmetric polynomials one uses for instance Gröbner bases com-
putations or the well-known algorithm dedicated to the symmetric group (see for instance
[Stu08]). However, expressing the summation polynomials in terms of the elementary sym-
metric polynomials allows to decrease their degree and their density. Moreover, we have seen
in Section 5.4 that summation polynomials are computed recursively. Consequently, it would
be appropriate to use the action of the symmetric group to speed up the computation of the
summation polynomials. That is to say, we express the summation polynomials in terms of
the elementary symmetric polynomials throughout their computation instead only at the end.

Following [JV13] spreading the symmetrization throughout the computation of the mth
summation polynomial can be done by noting that





e1 = e′1 + xn
e2 = e′2 + xne

′
1

e3 = e′3 + xne
′
2

...
en−1 = e′n−1 + xne

′
n−2

en = e′n−1xn

(5.20)

where e′i is the ith elementary symmetric polynomial in terms of x1, . . . , xn−1. In the context
of solving the PDP, one is interested in computing S′

n+1(e1, . . . , en, xn+1), the expression of the
Sn+1(x1, . . . , xn, xn+1) in terms of the elementary symmetric polynomials. From Theorem 5.10
we have

Sn+1(x1, . . . , xn, xn+1) = ResX(Sn(x1, . . . , xn−1, X), S3(xn, xn+1, X)) .

Thus, assume that we know S′
n(e

′
1, . . . , e

′
n−1, xn) then

F = ResX(S′
n(e

′
1, . . . , e

′
n−1, X), S3(xn−1, xn, X))

128 Chapter 5. Elliptic curves

is the expression of Sn+1(x1, . . . , xn+1) in terms of e′1, . . . , e
′
n−1, xn, xn+1. Hence, computing

S′
n+1(e1, . . . , en, xn+1) is reduced to apply the change of variables given in equation (5.20) to
F .

The next two chapters are devoted to highlight some families of elliptic curves which have
adding symmetries and use them to speed up the computation of summation polynomials or
the PDP solving.

Chapter 6

Point decomposition problem in high charac-

teristic

Contents
6.1 Impact of the elliptic curve representation on the PDP solving . 132

6.2 Impact of a 2-torsion subgroup on the PDP solving 133

6.2.1 Action of the 2-torsion on the solutions of the PDP 133

6.2.2 Action of the 2-torsion on the polynomial systems modelling the PDP 136

6.3 Action of the 4-torsion on the PDP 139

6.3.1 Twisted Edwards curve . 139

6.3.2 Universal Edwards model of elliptic curves 139

6.3.3 Twisted Jacobi intersection curve . 139

6.4 Experimental results and security estimates 141

6.4.1 Experiments with n = 4 . 141

6.4.2 Experiments for n = 5 and n = 6 . 143

6.4.3 Security level estimates . 145

The results presented in this chapter are from a joint work with J.-C. Faugère, P. Gaudry
and G. Renault

Using the double large prime variation and for a fixed degree extension n, the complexity
of the index calculus attack of Gaudry presented in Chapter 5 is Õ(q2−

2
n) where the notation

Õ means that we omit the logarithmic factors in q. It is thus faster than Pollard rho method
in Õ(q

n
2) for n ≥ 3 and sufficiently large q. However, this complexity hides an exponential

dependence in n due to the resolution of the PDP problem, which is the main topic of this
chapter. Let us recall the PDP.

Point Decomposition Problem (PDP). Given a point R in an elliptic curve E(Fqn) and
a factor base F ⊂ E(Fqn), find, if they exist, P1, . . . , Pn in F , such that

R = P1 ⊕ · · · ⊕ Pn .

To solve the PDP, as shown in Chapter 5 one can choose F with an algebraic structure
and the summation polynomials introduced by Semaev [Sem04]. The resolution of the PDP
is then equivalent to solve a polynomial system. Following Algorithm 11, this can be done
by first computing a Gröbner basis of the system for a degree ordering with F4 [Fau99] or
F5 [Fau02], see Chapter 2. Then computing the lexicographical Gröbner basis by using a
change of ordering algorithm [FGLM93, FM11, FM13, FGHR12a, FGHR13a], see Chapter 2
and Chapter 4.

129

130 Chapter 6. Point decomposition problem in high characteristic

We note that Nagao [Nag10] introduced a variant of the index calculus algorithm, well-
suited to hyperelliptic curves, in which the PDP step is replaced by another approach that
creates relations from Riemann-Roch spaces. It also relies, in the end, on polynomial system
solving. If the curve is elliptic, the Nagao variant needs to solve polynomial systems with a
number of variables quadratic in n instead of n variables with the summation polynomials
of Semaev. Therefore, in the elliptic case, it seems to be always better to use Semaev’s
polynomials, so we stick to that case in our study.

Contributions

In the case of the Pollard rho and sibling methods, it is well-known that if there is a small
rational subgroup in G, the Pohlig-Hellman reduction allows to speeds-up the computation
by a factor of roughly the square root of the order of this subgroup. It is also the case if there
is an explicit automorphism of small order. For index calculus in general, it is far less easy
to make use of such an additional structure. For instance, in the multiplicative group of a
prime finite field, the number field sieve algorithm must work in the full group, even if one
is interested only in the discrete logarithm in a subgroup. A key element is the action of the
rational subgroup that must be somewhat compatible with the factor base. See for instance
the article by Couveignes and Lercier [CL08], where a factor base is chosen especially to fit
this need, again in the context of multiplicative groups of finite fields.

The aim of this chapter is to emphasize some elliptic curves models where one can indeed
make use of the presence of a small rational subgroup to speed-up the index calculus algorithm,
and especially the PDP step. In particular, for curve representations having an important
interest from a cryptographic point of view, we decrease the bound on the complexity by
a factor of 2ω(n−1). More precisely, under the hypothesis that the systems are regular i.e.
Hypothesis 5.18, we have the following result.

Theorem 6.1. Let E be an elliptic curve defined over a non binary field Fqn where n > 1.
If E can be put in universal Edwards model or twisted Edwards or twisted Jacobi intersection
representation then the complexity of solving the PDP is

• (proven complexity) Õ
(
n · 23(n−1)2

)

• (heuristic complexity) Õ
(
neωn · 2ω(n−1)2

)

where the notation Õ means that we omit logarithmic factors in q.

This result can be compared to the complexity of solving the PDP in the general case (i.e.
E cannot be put in the representation mentioned in the above theorem). From Section 5.6.1
Theorem 5.19, this complexity is in Õ(n23n(n−1)) (or Õ(neωn2ωn(n−1)) in the heuristic case).

The proven complexity of Theorem 6.1 is obtained by using the classical complexity of
change of ordering algorithm, FGLM in O(nD3) [FGLM93] where D is the number of solutions
counted with multiplicities in the algebraic closure of the coefficient field. The heuristic
complexity is obtained by using the change of ordering algorithm for Shape Position ideals
proposed in Chapter 4.

The main ingredient of the proof of Theorem 6.1 is to use the symmetries of the curves
corresponding to a group action: they allow to reduce the number of solutions in Fq of the
polynomial systems to be solved and to speed up intermediate Gröbner bases computations.

131

As presented in Chapter 5, the first symmetries to be used are inherent in the very definition
of the PDP: the ordering of the Pi’s does not change their sum, so that the full symmetric
group acts naturally on the polynomial system corresponding to the PDP. It is a classical way
to reduce the number of solutions by a factor n!, and speed up accordingly the resolution.

Twisted Edwards, twisted Jacobi intersection curves and universal Edwards model of ellip-
tic curves have more symmetries than ordinary elliptic curves, due to the presence of a rational
2-torsion point with an interesting action. It is remarkable that, for the natural choice of the
factor base, this action translates into the polynomial systems constructed using summation
polynomials in a very simple manner: any sign change on an even number of variables is
allowed. This action combined with the full symmetric group gives the so-called dihedral Cox-
eter group, see Chapter 3 or for instance [Kan01]. Using invariant theory techniques [Stu08],
we can thus express the system in terms of adapted coordinates, and therefore the number
of solutions is reduced by a factor 2n−1 · n! (the cardinality of the dihedral Coxeter group).
This yields a speed-up by a factor 23(n−1) (or 2ω(n−1) for the heuristic case) in the change of
ordering step, compared to the general case.

Let denote by S the system obtained from summation polynomial by applying the Weil
restriction from Fqn to Fq (see Section 5.5.1). We denote by SSn

(respectively SDn) the
expression of S in terms of the elementary symmetric polynomials (respectively the primary
invariants of the dihedral Coxeter group). Since the symmetric group is a subgroup of the
dihedral Coxeter group, from Lemma 3.24 there exists a change of variables ρ1, . . . , ρn to
express SSn

in terms of the primary invariants of Dn. Consequently, under Hypothesis 5.18,
results of Chapter 3 (particularly Corollary 3.25) allows to conclude that using the 2-torsion
of twisted Edwards or Jacobi intersection curves or universal Edwards model of elliptic curves,
the bound on the complexity of computing a Gröbner basis for a degree monomial ordering is
divided by 2ω(n−1).

We present also several practical experiments which confirm the exponential decrease of
the complexity. All experiments were carried out using the computer algebra system Magma

[BCP97] and the FGb library [Fau10].

Consequences and limitations

Our experiments show that for some parameters, the new version of the algorithm is signifi-
cantly faster than generic algorithms. For instance for a twisted Edwards or twisted Jacobi
intersection curve defined over Fq5 where log2(q) = 64, solving the ECDLP with generic al-
gorithms requires approximately 2160 operations in E(Fq5) and only 2130 basic arithmetic
operations (multiplications of two 32-bits words) with our approach.

We do not change the very nature of the attack; therefore it applies only to curves de-
fined over small extension fields. This work has no implication on the ECDLP instances
recommended by the NIST [Nat09], since they are defined over prime finite fields of high
characteristic or binary fields of prime degree extension.

Related work

The purpose of our work as that of the variant “n − 1” of Joux and Vitse [JV13] presented
in Chapter 5 is to decrease the running time to solve polynomial systems modelling the PDP
problem. The difference between the two approaches is that in our case we do not decrease the
probability of decomposing a point. Hence, while the variant “n−1” is interesting for medium

132 Chapter 6. Point decomposition problem in high characteristic

q our work does not limit the size of q. Nevertheless, it limits to curves having particular
torsion subgroup. However, these two approaches are compatible and we will show that by
combining these two methods one can for the first time tackle instances of the PDP with
n = 6.

Throughout this chapter the field Fq is assumed to be of characteristic greater than 3.

6.1 Impact of the elliptic curve representation on the PDP solv-
ing

In this section, we compare for different representations, the solving of the PDP problem
using summation polynomials as suggested in [Gau09]. That is to say we take into account
the action of the symmetric group as presented in Section 5.6.1. We consider the practical
solving (using Magma) of the polynomial systems SSn

⊂ Fq[e1, . . . , en] for four families of
elliptic curves: Weierstrass curve, universal Edwards model of elliptic curves, twisted Edwards
curves and twisted Jacobi intersection curves.

We are able to solve these systems for n = 2, 3, 4. For n = 2 or 3 the resolution is
instantaneous for all curve representations. In the following, we present some practical results
for n = 4 obtained by using the computer algebra system Magma (v2.19-7) on one core of a
2.00GHz Intel R© E7540 CPU.

log2(q) F4 (s) Change-Order (s) Total time (s)

16

Weierstrass [Gau09] 5 496 501
Edwards < 1 212 213
Jacobi < 1 272 273

Universal Edwards < 1 190 191

64

Weierstrass [Gau09] 342 6317 6659
Edwards 6 1458 1464
Jacobi 8 1675 1683

Universal Edwards 5 1426 1431

We note that for twisted Edwards or Jacobi intersection curves or universal Edwards model
of elliptic curves the running time of the system resolution is equivalent and significantly
smaller than for Weierstrass representation. This can be explained by the particular shapes
of the lexicographical Gröbner basis :

Lexicographical Gröbner basis of
〈SSn

〉 for Weierstrass representation
:





e1 + h1(en)
e2 + h2(en)
...
en−2 + hn−2(en)
en−1 + hn−1(en)
hn(en)

Lexicographical Gröbner basis of
〈SSn

〉 for twisted Edwards / Jacobi
intersection representations and

universal Edwards model of elliptic
curves:





e1 + p1(en−1, en)
e2 + p2(en−1, en)
...
en−2 + pn−2(en−1, en)
pn−1(en−1, en)
pn(en)

6.2. Impact of a 2-torsion subgroup on the PDP solving 133

where deg(hn) = 2n(n−1), deg(pn) = 2(n−1)2 , degen−1
(pn−1) = 2n−1 and for all curve represen-

tations VFq
(SSn

) = 2n(n−1).

Remark 6.2. The form of the lexicographical Gröbner basis is given here in order to explain
some intuition of our approach.

The gain of efficiency observed in the case of twisted Edwards, twisted Jacobi intersection
curves and universal Edwards model of elliptic curves is due to the smaller degree appearing
in the computation of Gröbner basis of SSn

in comparison with the Weierstrass case. Note
that the lexicographical Gröbner bases for Weierstrass representation is in Shape Position.
That is to say, to find the solutions of the system from the lexicographical Gröbner basis,
we need to factor only one univariate polynomial in the smallest variable. The value of
the others variables is obtained when the value of the smallest variable is fixed. In this
case, the smallest variable, here en, is said to be separating (see for instance [CCS11]). This
means that any element in the variety of the ideal generated by SSn

is distinguishable by
en. Contrary to Weierstrass representation, the lexicographical Gröbner bases for twisted
Edwards, twisted Jacobi intersection curves and universal Edwards model of elliptic curves
are not in Shape Position. The variable en is not separating for these three representations.
In fact, for each solution of the system, there are 2n−1− 1 others solutions with same value in
en. By consequence, one would like to find a larger group than Sn acting on the system (and
thus on the variety of solutions) such that each orbit gathers all such solutions with the same
value in en. In the next section, we show how to use such a larger group related to 2-torsion
points in order to increase the efficiency of the computation.

6.2 Impact of a 2-torsion subgroup on the PDP solving

In this section, we show how a 2-torsion subgroup can act on the point decomposition problem.
First, we discuss about the action of the 2-torsion on the solutions of the PDP. Then, we will
show how this action is translated to polynomial systems modelling the PDP. In particular,
we show that the choice of the elliptic curve representation is crucial. More precisely, in order
to take advantage of the action of the 2-torsion subgroup, its action must be simple enough.

As mentioned in Chapter 5, depending on the curve representation, the coordinate chosen
for the projection can be x, y or z. For more generality, here we note the chosen coordinate
c and the (n+ 1)th summation polynomial evaluated in one variable in the c-coordinate of a
point R of the curve is denoted SR

n+1. The notation c(P) denotes the c-coordinate of the point

P . Let Fi =
{
P ∈ E(Fqn) | c(P)

αi ∈ Fq

}
for any i = 0, . . . , n − 1 where α is a generator of

Fqn . For Weierstrass, twisted Edwards representations or universal Edwards model of elliptic
curves, we take as factor base F = F0. For Jacobi intersection curves, if Fq is a prime field
then F0 contains only the 2-torsion of the curves; hence it does not contain enough points to
be used as factor base. Therefore, for this representation we take as factor base F = F1.

6.2.1 Action of the 2-torsion on the solutions of the PDP

Suppose that we have a solution (P1, P2, . . . , Pn) to the PDP, and denote by T2 a 2-torsion

point. Thus for all k = 1, . . . ,
⌊n
2

⌋
we have P1 ⊕ . . . ⊕ Pn ⊕ [2k]T2 = R. Therefore, from one

134 Chapter 6. Point decomposition problem in high characteristic

decomposition of R (modulo the order) we have in fact

⌊n
2 ⌋∑

k=0

(
n

2k

)
= 2n−1 decompositions of

R obtained by adding an even number of times a 2-torsion point :

R = P1 ⊕ · · · ⊕ Pn

= (P1 ⊕ T2)⊕ (P2 ⊕ T2)⊕ P3 ⊕ · · · ⊕ Pn

= (P1 ⊕ T2)⊕ P2 ⊕ (P3 ⊕ T2)⊕ P4 ⊕ · · · ⊕ Pn

...

= P1 ⊕ · · · ⊕ Pn−2 ⊕ (Pn−1 ⊕ T2)⊕ (Pn ⊕ T2)

= (P1 ⊕ T2)⊕ (P2 ⊕ T2)⊕ (P3 ⊕ T2)⊕ (P4 ⊕ T2)⊕ P5 ⊕ · · · ⊕ Pn

...

In general, these decompositions do not correspond to solutions of the PDP, since (Pi+T2) is
not always in the factor base F . If the action of the 2-torsion point leaves invariant the factor
base F i.e. P ∈ F implies that P ⊕T2 ∈ F then the 2-torsion point can be used to reduce the
size of the factor base (see Remark 6.4). By consequence, if we know a decomposition of R
w.r.t. the factor base F (respectively a solution of the polynomial system to solve for solving
the PDP) we can construct 2n−1 decompositions of R w.r.t. F (respectively 2n−1 solutions of
the polynomial system).

Let c and c2 be respectively the c-coordinate of P and P ⊕T2. The action of the 2-torsion
point leaves the factor base invariant if

{
c2 =

p1(c)
p2(c)

with p1, p2 ∈ Fq[c] if F = F0

c2 = βc+ γ with β ∈ Fq and γ
αi ∈ Fq if F = Fi, 1 ≤ i < n

(6.1)

where α is a generator of Fqn . The difference between the two cases is due to when F = F0

the c-coordinates of the points in the factor base are in a field whereas when F = Fi with
i > 0 the c-coordinates of the points in the factor base are in a vector space.

By consequence, if condition (6.1) is satisfied then the size of the factor base can be reduced.
Moreover, we can a priori use the action of the 2-torsion to speed up the polynomial systems
solving step in the PDP solving. Nevertheless, in order to use the action of the 2-torsion
point in the polynomial system solving process, we need that c2 depends only on c and that
the action of T2 on the coordinates is not too much complicated. The simplest being a linear
action.

Weierstrass curves

For Weierstrass representation, the 2-torsion points of E(Fqn) are T2 = (X, 0) where X is a
root of X3 + a4X + a6 = 0 and we have

P ⊕ T2 =

(
x3 + a4x+ a6

(X − x)2
− x−X,

(2x+X)y

(x−X)
− y3

(x−X)3
− y

)
.

In this representation, we project the PDP on x-coordinate. As the x-coordinate of the point
P ⊕ T2 does not verify any of the equalities in (6.1), the 2-torsion points cannot be used to
decrease the factor base. Moreover, the action of the 2-torsion points is not easy to handle in
the polynomial systems solving process.

6.2. Impact of a 2-torsion subgroup on the PDP solving 135

Twisted Edwards curves

In the case of twisted Edwards representation, the 2-torsion point of a twisted Edwards curve
is T2 = (0,−1) and P ⊕T2 = (−x,−y). Thus the action of the 2-torsion point leaves invariant
the factor base and the 2n−1 decompositions of the point R translate into as many solutions
of the PDP. Furthermore, the action of the 2-torsion point being very simple (i.e. linear) we
can use it to decrease the number of solutions in the polynomial systems solving process.

Universal Edwards model of elliptic curves

Universal Edwards model of elliptic curves have three 2-torsion point T2 = (2t, 1),
(
− 1

2t ,−1
)

and (−2t,−1). Moreover, if P = (x, y) we have P ⊕ T2 =
(

1
x ,

1
y

)
, (−x,−y) ,

(
− 1

x ,− 1
y

)
. For

this representation of elliptic curves, the factor base is F = F0. Hence, these three 2-torsion
points leave the factor base invariant and can thus be used to decrease the size of the factor
base (Remark 6.4). Nevertheless, the action of the points (2t, 1) and (−2t,−1) is not linear
and by consequence do not fit into the theory presented in Chapter 3 Section 3.2. However,
as for twisted Edwards curves the linear action of the point

(
− 1

2t ,−1
)

fits into this theory
and can thus be used to decrease the number of solutions in the polynomial systems solving
process.

Twisted Jacobi intersection curves

Finally for twisted Jacobi intersection representation, the three 2-torsion points of a twisted
Jacobi intersection curve are T2 = (0, 1,−1), (0,−1, 1), (0,−1,−1). Thus we have P ⊕ T2 =
(−x, y,−z), (−x,−y, z), (x,−y,−z) and similarly to the twisted Edwards curves, the decom-
positions mentionned above should correspond to solutions of the system associated to the
decomposition of the point R.

Obviously, as Jacobi intersection curves have three 2-torsion points, the factor base can
be further decreased and from one decomposition of R one can construct more than 2n−1

decompositions of R. However, since after projection on the c-coordinate (y or z) for any
2-torsion points, c2 = ±c these decompositions will match with only 2n−1 solutions of the
system we want to solve.

As a consequence, for twisted Edwards, Jacobi intersection curve and universal Edwards
model of elliptic curves from one solution of the polynomial system (c1, . . . , cn) corresponding
to the decomposition R = P1 ⊕ · · · ⊕ Pn, we can construct 2n−1 solutions of the system
by applying an even number of sign changes. Obviously, each of these solutions can be the
projection of many decompositions. Hence, from one solution (c1, . . . , cn) of SR

n+1, we have
not only n! solutions coming from Sn (see Section 5.6.1) but n! · 2n−1 : all n-tuples formed by
(c1, . . . , cn) to which we apply an even number of sign changes and a permutation of Sn, that is
the orbit of (c1, . . . , cn) under the action of the Coxeter group Dn introduced in Section 3.2.1.

Remark 6.3. Same reasoning works mutatis mutandis on the solutions of the mth summation
polynomial (i.e. without evaluating one variable). By consequence, the solutions of the mth
summation polynomial Sm are invariant under the action of the dihedral Coxeter group Dm.

Remark 6.4. In addition to speeding up the resolution of the polynomial systems, the use
of the 2-torsion points of twisted Edwards, Jacobi intersection curves and universal Edwards
model of elliptic curves allows to further decrease the size of the factor base by keeping the

136 Chapter 6. Point decomposition problem in high characteristic

same probability of decomposition. More precisely, we follow the idea in [Gau09] presented
in Section 5.5.1 to divide the size of the factor base by 2 without decreasing the probability of
decomposing a point.

Let us write F = S1 ∪S2 such that for all P ∈ F , S1 contains a representative of the orbit
of P under the action of ı and the two torsion of the curve and S2 contains all the others
points in the orbit of P . Finally, we take as factor base S1 of size ∼ q

4 for twisted Edwards
curves since they have a unique 2-torsion point which leaves the factor base invariant and ∼ q

8
for twisted Jacobi intersection curves and universal Edwards model of elliptic curves since they
have three 2-torsion points which leave the factor base invariant.

6.2.2 Action of the 2-torsion on the polynomial systems modelling the PDP

If a linear group acts on the variety of a polynomial system, there is no guarantee that the
system is in the invariant ring of the linear group. In our case, the system obtained from SR

n+1

by a Weil restriction is invariant under the action of Dn and we have the following result.

Proposition 6.5. For universal Edwards model of elliptic curves, twisted Jacobi intersection
curves and twisted Edwards curves defined over a field K we have for any m ≥ 3

Sm(c1, . . . , cm) ∈ K[c1, . . . , cm]Dm .

As a consequence, SR
n+1(c1, . . . , cn) ∈ K[c1, . . . , cn]

Dn .

The idea of the proof is to use the relations between generators of the dihedral Coxeter
group to show that these generators leave Sm invariant. First we use the action of the linear
group Dm on the solutions of Sm to underline that for any g in Dm, the action of g on Sm
leaves it invariant, up to a multiplicative factor hg ∈ K. Then we use that Dm is generated by
elements of order 2, relations between generators of Dm and that Dm contains Sm to show
that hg = ±1 and hg = hg′ for all elements g and g′ in Dm. Finally we use the recursive
construction of summation polynomials to show that one generator of Dm leaves Sm invariant
and consequently that Dm leaves Sm invariant.

Proof. The summation polynomials are irreducible hence 〈Sm〉 =
√
〈Sm〉. The solutions of

Sm are invariant by the action of Dm thus for all g ∈ Dm, g ·Sm vanishes in all solutions of Sm.
Consequently for all g ∈ Dm, g · Sm ∈ 〈Sm〉 and so g · Sm = hg · Sm where hg ∈ K[c1, . . . , cm].
The group Dm is a linear group hence for all g ∈ Dm, deg (g · Sm) = deg (Sm) thus hg ∈ K×.

Let φ : Dm → K× be the application which maps g to hg as defined above. Clearly, this
application is a group morphism and thus φ(g)o = hog = 1 where o is the order of g.

We note τi,j the transposition which swaps the elements in position i and j. Let B =
{τi,i+1 | i = 1, . . . ,m − 1} be a basis of Sm. A transposition is of order two and all the
transpositions are conjugated, hence φ(τi,j) = φ(τk,ℓ) ∈ {−1, 1} for all i, j, k, ℓ ∈ {1, . . . , n}.

We now show, by induction, that Sm is invariant under the permutation τ1,2. Clearly (see
Section 5.4), S3 is invariant under τ1,2. Let k > 2, assume that Sk is invariant under τ1,2. We
have

Sk+1 = ResX

(
Sk (c1, . . . , ck−1, X) , S3 (ck, ck+1, X)

)

= Det
(
SylX

(
Sk (c1, . . . , ck−1, X) , S3 (ck, ck+1, X)

))

6.2. Impact of a 2-torsion subgroup on the PDP solving 137

where SylX(p1, p2) is the Sylvester matrix of p1 and p2 w.r.t. the variable X. The Sylvester
matrix of Sk(c1, . . . , ck−1, X) and S3(ck, ck+1, X) w.r.t. X is stable by permutation of c1 and
c2 (induction hypothesis). Hence its determinant too and Sk+1 also. Consequently, Sm is
invariant under τ1,2 for all m ≥ 3. Thus hτ = 1 for all τ ∈ B. This confirms that the
summation polynomials are symmetric.

A basis of Dm is given by A = B ∪ (−1,−2) where (−1,−2) denotes the sign changes
of the first two elements. The element (−1,−2) is of order 2 hence h(−1,−2) = ±1. Let
g = (−1,−2) · τ2,3 · τ1,2, g is of order 3 thus h3g = 1 = (hτ1,2 · hτ2,3 · h(−1,−2))

3 = h3(−1,−2).
Consequently for all elements g in A, hg = 1 and so Sm is invariant under Dm.

As previously announced in Section 3.2.1, by assuming that q 6= 2k then Fqn [c1, . . . , cn]
Dn

is a polynomial algebra of basis {s1, . . . , sn−1, en} (or {p2, . . . , p2(n−1), pn}). Hence, there
exists a unique polynomial gRn ∈ Fqn [s1, . . . , sn−1, en] (respectively Fqn [p2, . . . , p2(n−1), pn])
such that gRn is the expression of SR

n+1 in terms of the primary invariants {s1, . . . , sn−1, en}
(respectively {p2, . . . , p2(n−1), pn}). By applying a Weil restriction on gRn we obtain a new
system SDn ⊂ Fq[s1, . . . , sn−1, en] (respectively Fq[p2, . . . , p2(n−1), pn]) with n variables and n
equations. The degree of 〈SDn〉 can be bounded by

deg (〈S〉)
#Dn

=
deg (〈S〉)
n! · 2n−1

=
deg (〈SSn

〉)
2n−1

=
2n(n−1)

2n−1
= 2(n−1)2 .

To estimate an explicit complexity bound on the resolution of the Point Decomposition
Problem we need to assume that the system SSn

is regular. This property for SSn
has been

verified on all experiments we did (see Table 6.1). Moreover, a similar hypothesis was already
done for the same kind of systems in [JV13] (see Section 5.6.1). Hence, it is reasonable to
assume it and we still follow Hypothesis 5.18. We can note that Hypothesis 5.18 implies
Hypothesis 5.15 about the dimension of the ideal. We have therefore obtained our main
theorem.

Theorem 6.6. In twisted Edwards (respectively twisted Jacobi intersection or universal Ed-
wards model) representation under the Hypothesis 5.18, the Point Decomposition Problem can
be solved in

• (proven complexity) Õ
(
n · 23(n−1)2

)

• (heuristic complexity) Õ
(
neωn · 2ω(n−1)2

)

arithmetic operations in Fq.

Proof. Since Sn ⊂ Dn from Lemma 3.24 there exists a change of variables ρ1, . . . , ρn to
express SSn

in terms of the primary invariants of Dn. That is to say, ρ1, . . . , ρn is the change
of variables to pass from SSn

to SDn . By considering e1, . . . , en (respectively s1, . . . , sn−1, en)
for the primary invariants of Sn (respectively Dn) one can easily deduce that





ρi = e2i + 2
∑i−1

j=1(−1)jei−jei+j + 2(−1)ie2i if i ≤ ⌊n/2⌋
ρi = e2i + 2

∑n−i
j=1(−1)jei−jei+j if ⌊n/2⌋ < i < n

ρn = en

.

Moreover, ρ(h)1 , . . . , ρ
(h)
n are algebraically independent. Indeed, let us consider DRL ordering

on K[e1, . . . , en] with e1 >drl · · · >drl en. We have that LT>drl

(
ρ
(h)
i

)
= e2i and LT>drl

(
ρ
(h)
n

)
=

138 Chapter 6. Point decomposition problem in high characteristic

en. Hence, let I =
〈
ρ
(h)
1 , . . . , ρ

(h)
n

〉
for all i = 1, . . . , n there exists an integer ni > 0 such

that eni

i ∈ in>drl
(I). Thus, I is of dimension zero. Consequently, since ρ(h)1 , . . . , ρ

(h)
n are

homogeneous polynomials Theorem 2.75 implies that (ρ
(h)
1 , . . . , ρ

(h)
n) is a regular sequence.

Hence, as mentioned in Chapter 3 from [Smi95, Theorem 6.2.1] ρ(h)1 , . . . , ρ
(h)
n are algebraically

independent.

Consequently, under Hypothesis 5.18 and from Proposition 3.10 the arithmetic complexity
of computing a WDRL Gröbner basis with weights system (2, . . . , 2, 1) of SDn can be bounded

by O
(
neωn

(
2n(n−1)

2n−1

)ω)
= O

(
neωn2ω(n−1)2

)
.

Given this Gröbner basis, from Proposition 3.12 computing the LEX Gröbner basis can

be done in Õ
(
n · 23(n−1)2

)
. The heuristic complexity is obtained by using change of ordering

algorithm for Shape Position ideals presented in Chapter 4 of complexity Õ
(
n2 · 2ω(n−1)2

)
.

Indeed, we observe that the randomization strategy is not needed to ensure the efficient
computation of the multiplication matrix Tn. Thus, we do not break the quasi-homogeneous
structure and the results of Chapter 3 and Chapter 4 can be combined. Note that we cannot
use the complexity of the deterministic change of ordering since the degrees of the input
equations depend on the number of variables n.

Moreover, as shown in Section 3.2.3 computing the solutions of the PDP given that of
SDn is negligible in comparison of computing the LEX Gröbner basis. As a consequence, it is
straightforward that the change of ordering step dominates which concludes the proof.

Considering the action of the dihedral Coxeter group reduces the lexicographical Gröbner
basis – for twisted Edwards, Jacobi intersection curves and universal Edwards model of elliptic
curves– which is now in Shape Position.

Lexicographical Gröbner basis of
〈SSn

〉 :





e1 + p1(en−1, en)
e2 + p2(en−1, en)
...
en−2 + pn−2(en−1, en)
pn−1(en−1, en)
pn(en)

Lexicographical Gröbner basis of
〈SDn〉 :





s1 + h1(en)
s2 + h2(en)
...
sn−2 + hn−2(en)
sn−1 + hn−1(en)
hn(en)

where

• deg (〈SSn
〉) = 2n(n−1) and deg (〈SDn〉) = 2(n−1)2

• degen−1
(pn−1) = 2n−1, deg(pn) = 2(n−1)2 and deg(hn) = 2(n−1)2 .

As expected the degree of the ideal is divided by the cardinality of Dn, 2n−1 · n! instead of n!
when taking into account only the symmetric group.

In Section 6.4 we will show some experimental results which confirm that considering the
action of the 2-torsion points significantly simplifies the resolution of the PDP.

6.3. Action of the 4-torsion on the PDP 139

6.3 Action of the 4-torsion on the PDP

As we saw in Chapter 5 universal Edwards model of elliptic curves, twisted Edwards and
Jacobi intersection curves can also have rational 4-torsion points. The natural question follows,
whether 4-torsion points are as useful as 2-torsion points for PDP resolution?

6.3.1 Twisted Edwards curve

The two 4-torsion points of a twisted Edwards curve are T4 =
(
±a− 1

2 , 0
)
. Thus, if P =

(x, y) ∈ Ea,d(Fqn) then we have

P ⊕ T4 =
(
±a− 1

2 · y,±a 1
2 · x

)

The sum of P with a 4-torsion point swaps – up to multiplication by ±a 1
2 or ±a− 1

2 – the
coordinates of the point P . Hence, the action of T4 does not leave invariant the factor base.
Moreover, in this representation the x-coordinate cannot be expressed in terms of the y-
coordinate only so we cannot use this action to decrease the number of solutions of polynomial
systems to solve.

6.3.2 Universal Edwards model of elliptic curves

Assuming −1 is a square in Fqn then the four 4-torsion points of a curve in universal Edwards
model are T4,1 =

(
0,
√
−1
)
, T4,2 =

(
0,−

√
−1
)
, T4,3 =

(√
−1, 0

)
and T4,4 =

(
−
√
−1, 0

)
.

Moreover, if P = (x, y) is a point of the curve then

• P ⊕ T4,1 =
(√

−12tx−y
xy−2t ,

√
−11−2txy

2tx−y

)
;

• P ⊕ T4,2 =
(√

−1y−2tx
xy−2t ,

√
−12txy−1

2tx−y

)
;

• P ⊕ T4,3 =
(√

−1 y−2tx
2txy−1 ,

√
−12txy−1

x−2ty

)
;

• P ⊕ T4,4 =
(√

−1 2tx−y
2txy−1 ,

√
−11−2txy

x−2ty

)
.

Consequently, as for twisted Edwards curves the 4-torsion points do not leave the factor base
invariant. Hence, they cannot be used to improve the PDP solving or to decrease the size of
the factor base in a similar way that we use the 2-torsion.

6.3.3 Twisted Jacobi intersection curve

In this section, we present a similar method, as for 2-torsion, to use the 4-torsion of twisted
Jacobi intersection curves. Although we will see in Section 6.4 that this method does not
allow to simplify the polynomial system solving step in the PDP solving, we present it for
completeness and in order to report the experiments we did. Moreover, we will see that this
approach is not useless, since it allows to further decrease the size of the factor base and
consequently to speed up the complete solving of the ECDLP by index calculus attack.

140 Chapter 6. Point decomposition problem in high characteristic

We concentrate first on the case of the following 4-torsion point:

T4 =

(
± 1√

a
, 0,±

√
a− b

a

)
.

After a few simplifications, adding T4 to a generic point P = (x, y, z) of Ea,b(Fqn) gives the
formula

P ⊕ T4 =

(
± 1√

a
· y
z
,±

√
a− b · x

z
,±
√
a− b

a
· 1
z

)
.

As seen in Section 5.4.2, for twisted Jacobi intersection curves, it is possible to use either y
or z for projecting the PDP and obtain interesting summation polynomials. To take advantage
of the action of T4, we project on z and work with the summation polynomial Sm,z.

One can notice that the z-coordinate of P ⊕ T4 depends only on the z-coordinate of P .

However, due to the factor ±
√

a−b
a and also that for this representation the factor base cannot

be F0 the action of T4 does not leave the factor base invariant.
By consequence, in order to normalize a bit more the action of T4 and to use the action of

the 4-torsion, we assume that a−b
a is a fourth power and do the change of coordinate

Z = 4

√
a

a− b
z,

so that adding T4 changes the Z-coordinate to ±1/Z. Moreover, in this case the factor base
F = F0 seems to be large enough. Hence, the action of T4 leaves the factor base invariant and
can be used to further decrease the size of the factor base ∼ q

16 . This change of coordinate
preserves the property that adding T2 changes the sign of the Z-coordinate, so that we still
have the action of Dm on Sm,z. This explicit action of T4 transforms a decomposition into
another one, but unfortunately, this action is not linear and therefore does not fit easily in
the framework that we have developed. As a consequence, we will not be able to reduce the
degree of the ideal as much as we could hope for. Still, by adding a well-chosen variable to
make the symmetry more visible, we constrain the LEX Gröbner basis to be in non shape
position that had shown to be useful for T2, before reducing the degree of the ideal.

We explain this strategy in the case of n = 4. Adding T4 to the 4 points of a decomposition
gives another decomposition, where all the Zi have been inverted. We defined a new coordinate
v4 that is invariant by this involution:

v4 = Z1Z2Z3Z4 +
1

Z1Z2Z3Z4
= e4(Z1, Z2, Z3, Z4) +

1

e4(Z1, Z2, Z3, Z4)
.

Therefore, we add the equation e4v4 − e24 − 1 = 0 to the system obtained by applying a Weil
restriction on g4 (the expression of SR

5,Z in terms of s1, s2, s3, e4). The corresponding LEX
Gröbner basis has the following form:





s1 + ℓ1(e4, v4)
s2 + ℓ2(e4, v4)
s3 + ℓ3(e4, v4)
e4v4 − e24 − 1
ℓ4(v4)

where deg(ℓi) = 2n(n−2) for all i = 1, . . . , 4 and the degree of the ideal remains 2(n−1)2 as when
using only T2.

6.4. Experimental results and security estimates 141

Remark 6.7. For n > 4, the variable v4 must be replaced by a variable that is invariant by
any change of a multiple of four number of variables by their inverses.

We can note that adding two times T4 (i.e. adding a 2-torsion point) does not change
the Z-coordinate. By consequence, we can change only an even number of variables by their

inverse. Instead of v4 = e4 +
1
e4

we could use v′4 =
s2+1+e24

e4
to further decrease the degree of

the univariate polynomial in the lexicographical Gröbner basis.
The construction that we have just shown works mutatis mutandis with the other 4-torsion

point of the form

T4 =

(
± 1√

b
,±
√
b− a

b
, 0

)
,

but in that case, we have to work with the y-coordinate instead of the z-coordinate.
From the parameters of the system, it is not clear that adding a variable to reduce the

degree of the polynomials in the resulting Gröbner basis is worthwhile. Nevertheless, whether
we add the variable v4 or not, the action of this 4-torsion point allows to further decrease
the size of the factor base by a factor 2. Indeed, we mention in the beginning of Section 6.2
that for twisted Jacobi intersection curves we cannot use the factor base F0 since it does not
contain enough points. Hence, in this case the 4-torsion does not leave invariant the factor
base and then cannot be used to decrease to size of the factor base. However, by changing the
representation of the curve to normalize the action of the 4-torsion, the corresponding factor
base F0 seems to contain the expected number of points and then can be chosen for index
calculus attack. Moreover, in this case the action of the 4-torsion leaves invariant the factor
base and in consequence can be used to further decrease the size of the factor base by a factor
2.

6.4 Experimental results and security estimates

All experiments or comparisons in this section assume that the elliptic curve is a twisted
Edwards or twisted Jacobi intersection curve or an universal Edwards model of elliptic curve.
We recall that only curves with a particular torsion structure can be put into these forms and
are subject to our improved attack.

The PDP problem for n = 2 is not interesting, since it does not yield an attack that is
faster than the generic ones. For n = 3, the PDP problem can be solved very quickly, so that
our improvements using symmetries are difficult to measure. Therefore, we will concentrate
on the n = 4 and higher cases. Most of our experiments are done with Magma, which
provides an easy-to-reproduce environment (the Magma codes to solve the PDP are available
at http://www-polsys.lip6.fr/~huot/CodesPDP). For the largest computations, we used
the FGb library which is more efficient for systems of the type encountered in the context of
this chapter. The FGb library also provides a precise count of the number of basic operations (a
multiplication of two 32-bit integers is taken as unit) that are required in a system resolution.
We will use this information to interpolate security levels for large inputs.

6.4.1 Experiments with n = 4

In the case of n = 4, as mentioned in [JV13] the resolution is still fast enough so that the “n−1”
approach by Joux and Vitse does not pay. So we compare the three following approaches: the

http://www-polsys.lip6.fr/~huot/CodesPDP

142 Chapter 6. Point decomposition problem in high characteristic

classical index-calculus of [Gau09] based on Weierstrass representation (denoted W. [Gau09], in
the following) and our approaches using the 2-torsion point (denoted T2) and using additionally
the 4-torsion point (denoted T2,4). For T2 and T2,4, we have implemented the two choices for
the basis of the invariant ring for the dihedral Coxeter group given in Section 3.2.1, that we
denote by si and pi. As previously announced, we observe that SSn

∈ K[e1, . . . , en] is a regular
sequence. This is not the case for SSn

∈ K[p1, . . . , pn]. Hence, following results in Chapter 3
and Section 6.2.2, we equip the ring K[s1, . . . , sn−1, en] with the weighted degree with weights
(2, . . . , 2, 1), while the ring K[p2, . . . , p2(n−1), pn] is equipped with the usual degree. The results
are given in Table 6.1, where one finds for various sizes of the base field the runtimes and the
maximal (weighted) degree reached by polynomials during the computation of a (W)DRL
Gröbner basis with F4. In column dmax/dtheo one can find the maximal (weighted) degree
reached by the polynomials and when the system is regular the bound on this maximal degree
given by Corollary 2.76. The two last columns of Table 6.1 give the number of multiplications
of two 32-bits words required to solve the corresponding polynomial system. The penultimate
column gives an interpolated number of multiplications of two 32-bits words required by the
Magma software. Since we observe that the most consuming step is the change of ordering
we interpolate this number thanks to the complexity of the FGLM algorithm in O(nD3)
arithmetic operations. The last column gives the exact number of multiplications of two 32-
bits words required by the FGb implementation. Since, FGb library uses the recent sparse
change of ordering algorithm in [FM11, FM13, Mou13] (see Chapter 2) its practical arithmetic
complexity is closer to be quadratic in the number of solutions than cubic.

lo
g
2
(q
) F4 dmax/dtheo

Change
Total #ops

ops
Order FGb

si pi si pi si pi si pi si pi

w
ei

gh
ts

(2
,
.
.
.
,
2
,
1
)

(1
,
.
.
.
,
1
)

(2
,
.
.
.
,
2
,
1
)

(1
,
.
.
.
,
1
)

(2
,
.
.
.
,
2
,
1
)

(1
,
.
.
.
,
1
)

(2
,
.
.
.
,
2
,
1
)

(1
,
.
.
.
,
1
)

M
a
g
m
a

(2
,
.
.
.
,
2
,
1
)

(1
,
.
.
.
,
1
)

16
W. [Gau09] 5s 29/29 423s 428s 236 229

T2 < 1s < 1s 26/27 14 1s 3s < 2s < 4s
227

224 226

T2,4 < 1s 1s 21 15 2s 3s < 3s 4s 224 227

64
W. [Gau09] 331s 29/29 5994s 6325s 240 233

T2 2s 32s 26/27 14 13s 24s 15s 56s
231

228 230

T2,4 8s 61s 21 15 12s 25s 20s 86s 228 231

128
W. [Gau09] 480s 29/29 7179s 7559s 242 235

T2 2s 40s 26/27 14 14s 32s 16s 72s
233

230 232

T2,4 9s 80s 21 15 16s 32s 25s 112s 230 233

Table 6.1: Computing time of Gröbner basis with Magma (V2-19.1) on one core of a 2.00
GHz Intel R© E7540 CPU for n = 4. The last column (number of operations) is based on FGb.

We can observe that taking into account the symmetries dramatically decreases the com-
puting time of the PDP resolution by a factor of about 400. This is consistent with the
theoretical expected gain, as shown by the interpolated number of multiplications of two 32-
bits words required by Magma which is divided by 29 = 23(n−1); and also shown by the exact
number of multiplications of two 32-bits words required by FGb which is divided by 25 of the
order of 22(n−1) corresponding to a quadratic complexity for the change of ordering and F5

6.4. Experimental results and security estimates 143

algorithm (whose implementation in FGb also uses sparse linear algebra).
These experiments also show that the choice of the invariant ring basis si or pi for the

dihedral Coxeter group is not computationally equivalent. Indeed, the degrees of the polyno-
mials depend on it: it is 8 for the si basis and 12 with the pi. Moreover, one of the sequence
is regular while the other is not. As a consequence, the DRL part of the computation is more
costly for the pi than for the si. One can notice that for the systems expressed in terms of
the primary invariants of Sn (e1, . . . , en) and the systems expressed in terms of the primary
invariants of Dn (s1, . . . , sn−1, en) the maximal (weighted) degree reached by the polynomials
during the computation of a degree monomial ordering Gröbner basis is tightly bounded by
the bound of Corollary 2.76. We observe that the system SSn

(resp. SDn) is regular when we
consider the usual degree (resp. the weighted degree with weights (2, . . . , 2, 1)).

Moreover, we notice that the change of ordering step is the most time consuming step which
is consistent with the complexity analysis of Theorem 6.6. This shows that it is important to
have precise complexity bound for the change of ordering. Moreover, the complexity of change
of ordering depends on the number of solutions of the system so this emphasizes the impact
of the action of a pseudo reflective group.

One can notice that adding a variable to decrease the degree of polynomials in the compu-
tation of Gröbner basis (to use the 4-torsion) does not speed up the computation in this case.
Indeed, adding the variable v4 breaks the quasi-homogeneous structure since we do not find an
appropriate weight for this variable. Hence, in the following the 4-torsion point is used only
to further decrease the size of the factor base. That is to say, we change the representation
as presented in the previous section but we do not add the variable v4. In this context the
4-torsion can be used for any n.

It can be observed that the two steps of the resolution are faster with the si basis. This
is a general practical fact observed during our experiments. Thus, in the sequel, we consider
only the si basis.

6.4.2 Experiments for n = 5 and n = 6

One of the main improvement brought by this work, is that we are now able to solve the
polynomial systems coming from the summation polynomials for n = 5 when the symmetries
are used. Still, these computations are not feasible with Magma and we use the FGb library.
Actually, the graded reverse lexicographical Gröbner basis can be computed with Magma but
the change of ordering cannot. The timings are given in table 6.2.

log2(q) F5 dmax/dtheo Change-Order Total # ops

16
W. [Gau09] > 2 days ??/76

T2 567s 72/73 2165s 2732s 244

Table 6.2: Computing time of Gröbner basis with FGb on a 3.47 GHz Intel R© X5677 CPU for
n = 5.

For n = 5 Corollary 2.76 gives also a precise bound on the maximal degree reached by the
polynomials. The regular hypothesis has been checked also on these systems.

Our improved algorithm using symmetries can be combined with the “n − 1” approach
of Joux and Vitse. This allows us to compare the running times with the approach taken in
[JV13] in the case of n = 5, and to handle, for the first time, the case of n = 6. The results

144 Chapter 6. Point decomposition problem in high characteristic

are summarized in tables 6.3 and 6.4. For n = 6, Magma was not able to solve the system, so
we used again FGb. Because of the low success probability, this technique is interesting only
for medium q. Hence, we limit the size of q to 32 bits, and even to 16 bits for n = 6.

log2(q) F4 # ops

16
W. [JV13] 13.400s 232

T2 0.090s 222

T2,4 0.130s 224

32
W. [JV13] 1278s 234

T2 1.100s 224

T2,4 1.760s 226

Table 6.3: Computing time of Gröbner basis with Magma (V2-19.1) on one core of a 2.00
GHz Intel R© E7540 CPU for n = 5 and decomposition in n − 1 points. Operation counts are
obtained using FGb.

log2(q)
F5 # ops
si si

16
W. [JV13] > 2 days

T2 2448s 239

Table 6.4: Computing time of DRL Gröbner basis with FGb on a 3.47 GHz Intel R© X5677
CPU for n = 6 and decomposition in n− 1 points.

Using symmetries decreases the running time also for decompositions in n − 1 points.
For n = 5, the speed-up is by a factor about 150 for a 16-bit base field and by 1000 for a
32-bit base field. For n = 6, without using the symmetries of twisted Edwards or twisted
Jacobi intersection curves or universal Edwards model of elliptic curves, we cannot compute
decompositions in n − 1 points while this work allows to compute them in approximately 40
minutes.

In Table 6.3, we can observe that considering the action of 4-torsion points of Jacobi in-
tersection curves is more time consuming. Indeed, if the system admits a solution then it also
admits all the solutions associated to the action of the 4-torsion points. By consequence, the
overdetermined systems have not the same DRL and LEX Gröbner bases and their computa-
tion are slower. By consequence, for the “n− 1” variant, the trade-off between the size of the
factor base and the difficulty of decomposing a point is better when using only the 2-torsion.

Indeed, when we consider only the action of T2, we use the factor base F = F1 (F0

is too small). Hence, the action of T4 does not leave the factor base invariant. Moreover,
the decompositions related to the action of the 4-torsion do not necessarily correspond to
solutions of the system obtained after the Weil restriction on summation polynomials. In fact,
we observe that the corresponding system has the expected number of solutions that is 0 or
1.

Remark 6.8. For n ≥ 6, the first difficulty to solve the PDP is the construction of the sum-
mation polynomials. Actually, the seventh summation polynomial or the seventh summation
polynomial evaluated in the c-coordinate of a point R have never been computed. We will show

6.4. Experimental results and security estimates 145

in Chapter 7 that for fields of characteristic two we can now compute summation polynomials
until n = 8.

6.4.3 Security level estimates

To conclude these experimental results, we use our operation counts for the PDP to esti-
mate the cost of a complete resolution of the ECDLP for twisted Edwards or twisted Jacobi
intersection curves. In this section, we count only arithmetic operations and we neglect com-
munications and memory occupation. Hence, this does not give an approximation of the
computation time but this gives a first approximation of the cost to solve some instances of
the ECDLP.

We compare the result with all previously known attacks, including the generic algorithms,
whose complexity is about q

n
2 operations in E(Fqn). The cost of an elliptic curve operation can

be approximated by log2(q
n)2. Since our cost unit for boolean operations is a 32-bit integer

multiplication, we roughly approximate the cost of an elliptic curve operation by n2 log232(q)
2

and the total boolean cost of a generic attack by

n2q
n
2 log232(q)

2.

According to Remark 6.4 and the end of Section 6.3.3, for index calculus using the point
decomposition in n points we look for N relations where N is:

• q
2 for Weierstrass representation,

• q
4 for twisted Edwards curves,

• q
8 for universal Edwards model of elliptic curves and twisted Jacobi intersection curves
when using only the 2-torsion,

• q
16 for twisted Jacobi intersection curves and by using the 2-torsion and the 4-torsion.

The probability to decompose a point is 1
n! . Let c(n, q,m) be the number of boolean

operations needed to solve one polynomial system obtained from a Weil restriction of the
(m+ 1)th summation polynomial defined over Fqn , evaluated in one variable. This number of
operations is obtained by experiments with FGb as demonstrated in the previous subsections.
From the function c(n, q,m) from Section 5.5.2 one can deduce the total number of operations
needed to solve the ECDLP over Fqn :

N · n! · c(n, q, n) + n3 log232 (q)
2N2 .

If we use the point decomposition in n−1 points, due to exhaustive search, the probability
to find a decomposition is now 1

q·(n−1)! . Hence, according to Section 5.5.4 the total number of
operations is, in this case, given by

q(n− 1)! ·N · c(n, q, n− 1) + n2(n− 1) log232 (q)
2 ·N2 .

When the linear algebra step is more time consuming than the relation search, by using
the double large prime variation [GTTD07] we can rebalance the costs of these two steps (see
[Thé03, GTTD07]). The total number of operations needed to solve the ECDLP over Fqn by
using the double large prime variation is given by (see Section 5.5.3):

log2(q)

(
1 + r

n− 1

n

)
(n− 2)!q1+(n−2)(1−r)c(n, q, n) + n3 log232(q)

2N2r

146 Chapter 6. Point decomposition problem in high characteristic

where we look for r such that the two parts of this complexity are equal.
The results are summarized in Table 6.5. The notations T2 and T2,4 still denote the use

of the 2-torsion points of twisted Edwards, twisted Jacobi intersection curves and universal
Edwards model of elliptic curves and the use of the 2-torsion and 4-torsion points of twisted
Jacobi intersection curves respectively. Twisted Jacobi intersection representation is denoted
Jac or Jacobi for short, twisted Edwards representation is denoted Edwards for short and
universal Edwards model of elliptic curves is denoted Uni-Edw for short.

We observe that the smallest number of operations obtained for each parameter is given
by index calculus using symmetries induced by the 2-torsion points (and 4-torsion point when
decomposing in n points is possible) or generic algorithms. We note that for n ≤ 5 our version
of the index calculus attack is better than generic algorithms. For example, if log2(q) = 64
and n = 4 generic algorithms need 2134 operations to attack the ECDLP and we obtain 2116 by
using the 2-torsion points and 4-torsion point. In this case, our approach is more efficient than
the basic index calculus, solving this instance of ECDLP in 2121 operations. For n = 5, the
resolution of the PDP was intractable but with our method, we can now solve these instances
of the PDP and we attack the corresponding instances of the ECDLP with a gain of 239 over
generic algorithms and a gain of 240 over Joux and Vitse approach.

We remark that for parameters for which it is possible to choose between the decomposition
in n or n − 1 points, the best solution is the first. For n = 6 we are not able to decompose
a point in n points of the factor base. Consequently it is necessary to use the decomposition
in n − 1 points. For n = 6 generic algorithms have a complexity in O

(
q3
)
, while the index

calculus attack using the decomposition in n−1 points has a complexity in O
(
C(n) · q2

)
where

C(n) is exponential in n. Hence to be better than generic algorithms, we have to consider
high values of q and consequently high security levels. For instance if log2(q) = 64, the index
calculus attack using symmetries of twisted Edwards or twisted Jacobi intersection curves
or universal Edwards model of elliptic curves and decomposition in n − 1 points needs less
operations (2176) than the generic algorithms, (2200). In our point of view the only hope to
have a better gain in general (for lower security level) compared to generic algorithms, would
be to remove the bad dependence in q in the complexity that seems intrinsic to the “n − 1”
approach.

In cryptology, one looks for parameters giving some user-prescribed security level. There-
after we give the domain parameters for different security levels expressed in number of boolean
operations.

In Table 6.6, we compare for a fixed security level the size of q that we have to choose for
n = 4, 5, 6 by considering the attack based on generic algorithms with the attack based on
the best version of index calculus. For the index calculus attack, except for n = 6, the size of
q is obtained by considering decomposition in n points using the symmetries (2-torsion and
4-torsion) of twisted Jacobi intersection curves. This table confirms the previous observations.
For n = 4, 5, the size of q is increased because of the new version of index calculus proposed
in this work. For n = 6 this is true only for very high security level.

6.4. Experimental results and security estimates 147

Curve

G
en

er
ic

al
go

ri
th

m

L
in

ea
r

al
ge

br
a

D
ou

bl
e

la
rg

e
pr

im
e

va
ri

at
io

n

T
ot

al
D

L
P

Curve
represen- Relations search

parameters
tation decomposition in
and

torsion n n− 1
n log2(q) used points points

4

32

Weierstrass

268

268 267 [Gau09] 268

T2 Edwards 266 261 266 266

T2 Jac/Uni-Edw 264 260 264 264

T2,4 Jacobi 262 259 262

64

Weierstrass

2134

2134 2101 [Gau09] 2121 2121

T2 Edwards 2132 295 2118 2118

T2 Jac/Uni-Edw 2130 294 2117 2117

T2,4 Jacobi 2128 293 2116 2116

128

Weierstrass

2264

2264 2167 [Gau09] 2220 2220

T2 Edwards 2262 2161 2216 2216

T2 Jac/Uni-Edw 2260 2160 2215 2215

T2,4 Jacobi 2258 2159 2215 2215

5

32

Weierstrass

285

269 ∞ 2102 [JV13] 285

T2 Edwards 267 283 291 283

T2 Jac/Uni-Edw 265 282 290 282

T2,4 Jacobi 263 281 292 281

64

Weierstrass

2167

2135 ∞ 2168 [JV13] 2167

T2 Edwards 2133 2117 2157 2130 2130

T2 Jac/Uni-Edw 2131 2116 2156 2129 2129

T2,4 Jacobi 2129 2115 2158 2128 2128

128

Weierstrass

2329

2265 ∞ 2298 [JV13] 2298

T2 Edwards 2263 2183 2287 2235 2235

T2 Jac/Uni-Edw 2261 2182 2286 2234 2234

T2,4 Jacobi 2259 2181 2288 2233 2233

6

32
Weierstrass

2102
270 ∞ ∞ 2102

T2 Edwards 268 ∞ 2110 2102

T2 Jac/Uni-Edw 266 ∞ 2109 2102

64
Weierstrass

2200
2136 ∞ ∞ 2200

T2 Edwards 2134 ∞ 2176 2176

T2 Jac/Uni-Edw 2132 ∞ 2175 2175

128
Weierstrass

2394
2266 ∞ ∞ 2394

T2 Edwards 2264 ∞ 2306 2306

T2 Jac/Uni-Edw 2262 ∞ 2305 2305

Table 6.5: Number of operations needed to solve the ECDLP defined over Fqn for n = 4, 5, 6
and 32 ≤ log2(q) ≤ 128.

148 Chapter 6. Point decomposition problem in high characteristic

Security level 280 2112

n 4 5 6 4 5 6

Generic Algorithm

lo
g
2
(q
)

38 31 26 54 43 36
Index Calculus 42 32 19 62 56 34

Security level 2128 2192

n 4 5 6 4 5 6

Generic Algorithm

lo
g
2
(q
)

62 49 41 93 74 62
Index Calculus 72 64 42 113 103 73

Table 6.6: Domain parameters according to the security level given in number of boolean
operations needed to solve the ECDLP.

Chapter 7

Summation polynomials in characteristic 2

Contents
7.1 Compact representation of summation polynomials in character-

istic two . 153

7.1.1 Symmetries . 153

7.1.2 Density . 158

7.2 Compact summation polynomials by resultant and Gröbner bases 159

7.3 Outline of sparse multivariate polynomial interpolation algorithm 161

7.3.1 Description of Zippel’s sparse multivariate polynomial interpolation
algorithm . 161

7.3.2 Complexity and probability of success of Zippel’s algorithm 164

7.4 Summation polynomials by implicit sparse multivariate interpo-

lation . 165

7.4.1 Evaluation of summation polynomials using factorization and resul-
tant of univariate polynomials . 166

7.4.2 Sparing factorizations . 169

7.4.3 Degree of summation polynomials 171

7.4.4 Computation of the eighth summation polynomial 172

7.4.5 Discussion about the computation of the ninth summation polynomial 173

7.5 Application to the Discrete Logarithm Problem 175

7.5.1 Using symmetries to speed up the PDP solving in characteristic two 175

7.5.2 Benchmarks on the PDP solving . 176

The results presented in this chapter are from a joint work in progress with J.-C. Faugère,
A. Joux, G. Renault and V. Vitse.

In this chapter we investigate the computation of summation polynomials for binary curves.
The drawback of the method presented in Chapter 5 Section 5.6.2 to compute them is that
it involves polynomials that are much bigger than the output. Using this method, for binary
curves we cannot compute summation polynomials for n > 6.

In order to overcome this issue, we use interpolation method. Note that using such a
method has been suggested from a complexity point of view by Diem in [Die11b]. In order
to take full advantage of interpolation methods we highlight a compact representation of
summation polynomials.

Such a compact representation is obtained by studying the symmetries of binary curves.
Indeed, as the summation polynomials inherit the symmetries of binary curves we can use

149

150 Chapter 7. Summation polynomials in characteristic 2

those to highlight a polynomial change of variables. Applying this change of variables then
decreases the degree of these polynomials and their number of monomials.

To take advantage of this compact representation we want to compute the summation
polynomials by interpolation directly expressed in terms of this change of variables. We recall
that the summation polynomial of index n is defined as the resultant of two summation
polynomials of smaller index. However, the compact representation of these two polynomials
cannot be expressed in terms of the same set of variables. Recovering their corresponding
evaluation points then requires to invert the change of variables i.e. to solve a polynomial
system. We show that this system has a particular structure and can be solved very efficiently
by factorizing univariate polynomials.

All in all, this enables the computation of the summation polynomials up to n = 8.

Compact representation of summation polynomials. In Section 5.2.4, we have seen
that universal Edwards model of binary elliptic curve (i.e. defined over any field of char-
acteristic two) has a rational two-torsion point. Hence, we would like to use it to highlight
some symmetries on the corresponding summation polynomials. Let T2 be the two-torsion
point of a binary curve in universal Edwards model. If (x, y) is any point of the curve then

(x, y) ⊕ T2 =
(

1
x ,

1
y

)
. Contrary to the action of the two-torsion point in high characteristic,

the action of the two-torsion point of binary curves is no longer linear. By consequence, a
first difficulty in using the action of the two-torsion point in characteristic two is then to find
a convenient representation of the curve making this action “simple” enough.

Note that the action of a two-torsion point on summation polynomials is necessarily of order
two. The only linear action whose the order divides two in characteristic two is the identity.
Hence, the action of the two-torsion point of a binary curve on summation polynomials cannot
be linear. As a consequence, the most simple action that we can hope is the affine action given
by addition with the constant 1.

We show that by applying a well-chosen change of coordinates on the binary curve in
universal Edwards model, this affine action is exactly the action of the two-torsion point on
summation polynomial. In that case, the two-torsion point implies particular symmetries,
providing a compact representation of the summation polynomials. By introducing a new
theory about summation polynomials, we are able to generalize the result of Proposition 6.5
to affine action of the dihedral Coxeter group in characteristic two. More precisely, we obtain
the following result.

Proposition 7.1. Let E be a binary elliptic curve defined over K. Assume E has a two-torsion
point T2 such that the x-coordinate of (x, y)⊕ T2 is x+ 1 and P and ⊖P share the same ab-
scissa. The nth summation polynomial Sn ∈ K[x1, . . . , xn] of E is invariant under the dihedral
Coxeter group Dn = (Z/2Z)n−1 ⋊Sn where (Z/2Z)n−1 acts by adding 1 to an even number
of variables. For n ≥ 3, Sn can thus be expressed in terms of e1(x), e2(X), . . . , en(X) where ei
is the ith elementary symmetric polynomial, x = (x1, . . . , xn) and X = (x21+x1, . . . , x

2
n+xn).

In Section 5.2.4 we have seen that the universal Edwards model of elliptic curves has good
reduction modulo two. That is to say, the equation defining the curve and the group law of the
curve are independent from the characteristic of the field the curve is defined over. Thus, as
for Weierstrass curves [Die11b], summation polynomials of universal Edwards model of binary
elliptic curves can be constructed as the reduction modulo two of summation polynomials
of universal Edwards model of rational elliptic curves. As a consequence, binary summation

151

polynomials inherit the symmetries of summation polynomials of curves defined over the ratio-
nal numbers. We show that for a well chosen change of coordinates the symmetries inherited
from the action of the two-torsion in characteristic zero are consistent with the symmetries
induced by the action of the two-torsion of the binary curve. More precisely, we obtain the
following result.

Proposition 7.2. Let E be an elliptic curve in universal Edwards model defined over a binary

field K = F2k . Let φγ : E → Eγ be the change of coordinates defined by (x, y) 7→
(

1
x+1 + γ, y

)

with γ ∈ K. If γ ∈ {0, 1} then for any n ≥ 3 the nth summation polynomials of Eγ can be
written in terms of





e1(x
2
1, . . . , x

2
n)

ej(x
4
1 + x21, . . . , x

4
n + x2n) for j = 2, . . . , n− 1

en(x
2
1 + x1, . . . , x

2
n + xn)

where ei is the ith elementary symmetric polynomial.

A direct consequence of this compact representation is that we are now able to compute
until the 7th summation polynomial by using the usual method involving multivariate resultant
and Gröbner bases computations.

In Chapter 5 Remark 5.11 we already note that summation polynomials in characteristic
two are particularly sparse. The change of coordinates of Proposition 7.2 allows to further
decrease their density. For instance, the sixth summation polynomial expressed in terms of
the elementary symmetric polynomials as suggested in [Gau09] contains 638 terms while using
this compact representation it contains only 50 terms. By using this compact representation
the seventh summation polynomial has 2247 terms for a total degree of 16 and the degrees
in each variable are 16, 5, 8, 4, 8, 5, 16. In comparison with a dense polynomial of same degree
containing 169,581 terms, the density of the seventh summation polynomial is then about
1.32%.

Summation polynomials by sparse interpolation. Let S′
n be the nth summation poly-

nomial expressed in terms of the change of coordinates given in Proposition 7.2. To take
advantage of this compact representation, we compute S′

n by sparse interpolation method.
We thus need an efficient way to evaluate it. The difficulty in evaluating this polynomial is
that we do not have a parametrization of the evaluation but only an implicit evaluation given
by polynomial equations. Let us make it clearer.

The nth summation polynomial is constructed recursively as follows:

Sn(x1, . . . , xn) = ResX (Sn−k+1(x1, . . . , xn−k, X), Sk+1(xn−k+1, . . . , xn, X))

for any k ∈ {2, . . . , n− 2}. To evaluate S′
n at the evaluation point (ỹ1, . . . , ỹn) ∈ Kn we thus

need to invert the change of coordinates i.e. to solve the following polynomial system:

S =





e1(x
2
1, . . . , x

2
n)− ỹ1

e2(x
4
1 + x21, . . . , x

4
n + x2n)− ỹ2

...
en−1(x

4
1 + x21, . . . , x

4
n + x2n)− ỹn−1

en(x
2
1 + x1, . . . , x

2
n + xn)− ỹn





.

152 Chapter 7. Summation polynomials in characteristic 2

According to the Bézout bound, the system S has more than one solution but the evaluation
of S′

n at (ỹ1, . . . , ỹn) is unique. Actually, we can choose any solution of S. The change of
coordinates of Proposition 7.2 corresponds to the action of a group G on the summation
polynomials. Inverting this change of coordinates is then equivalent to find all the elements
in the orbit represented by (ỹ1, . . . , ỹn). Since the polynomial Sn is invariant under the action
of G, its evaluations at all the elements in this orbit are equal.

One can notice that all the equations in S are given by composition of elementary sym-
metric polynomials and univariate polynomials. Assume we want to solve the system

S ′ = {e1(f(x1), . . . , f(xn)) + α1, . . . , en(f(x1), . . . , f(xn)) + αn} ⊂ F2k [x1, . . . , xn]

where α1, . . . , αn are in F2k . By noting that

n∏

i=1

(X + f(xi)) = Xn +

n∑

i=1

ei(f(x1), . . . , f(xn))X
n−i

solving S ′ is reduced to solve univariate polynomials. We show that S can be solved similarly.
Finally, to evaluate S′

n we have to evaluate the two polynomials Sn−k+1 and Sk+1 at the
evaluation point given by the chosen solution of S. By taking care that the leading terms in X
of these two polynomials are not cancelled then the evaluation of S′

n is obtained by computing
a univariate resultant.

Thus, we avoid multivariate resultants and Gröbner bases computations and obtain an
efficient way to evaluate summation polynomials in the compact representation.

Since, we do not know in advance a sharp bound on the number of terms of the nth sum-
mation polynomial we prefer to use Zippel’s sparse multivariate interpolation [Zip79, Zip90].
Its complexity and the size of the involved polynomials depend only on the size of the output
i.e. the real number of terms in the expected polynomial. This way, we are now able to
compute the eighth summation polynomial. For a given curve defined over a binary field of
32 bits size, the eighth summation polynomial contains 470,369 terms and can be computed
in approximately six hours using eight CPU cores.

Impact on the PDP solving. The symmetries on binary summation polynomials imply
a theoretical and practical speed up of the Point Decomposition Problem solving. The poly-
nomials defining the change of coordinates in Proposition 7.2 are symmetric and can thus be
expressed as polynomials in the elementary symmetric polynomials. That is to say, there exist
n multivariate polynomials ρ1, . . . , ρn such that





ρ1(e1(x), . . . , en(x)) = e1(x
2
1, . . . , x

2
n)

ρi(e1(x), . . . , en(x)) = ei(x
4
1 + x21, . . . , x

4
n + x2n) for i = 2, . . . , n− 1

ρn(e1(x), . . . , en(x)) = en(x
2
1 + x1, . . . , x

2
n + xn)

where x = (x1, . . . , xn). In particular, ρ(h)1 , . . . , ρ
(h)
n are algebraically independent. Therefore,

we can use results of Chapter 3 to estimate the complexity of solving the Point Decomposition
Problem on binary curves and also to estimate the gain in comparison with the previous
approach of Gaudry [Gau09] presented in Chapter 5. Since

∏n
i=1 deg(ρi) = 22(n−1), the

complexity of solving the PDP for binary curves defined over a field Fqn with q = 2k is divided
by an exponential factor 22ω(n−1) in comparison to the original algorithm of Gaudry. More
precisely, we obtain the following result.

7.1. Compact representation of summation polynomials in characteristic two 153

Theorem 7.3. Let E be a binary elliptic curve defined over K = F2nk by

E : y2 + xy = x3 + α (7.1)

where α ∈ K. Under Hypothesis 5.18, the arithmetic complexity of solving the Point Decom-
position Problem is bounded by

• (proven complexity) Õ
(
n · 23(n−1)(n−2)

)
;

• (heuristic complexity) Õ
(
neωn2ω(n−1)(n−2)

)
;

where the notation Õ means that we omit polynomial factors in k.

The proven complexity of Proposition 7.3 is obtained by using the complexity of FGLM
algorithm. The heuristic complexity is obtained by observing that the ideal generated by the
system coming from the summation polynomials expressed w.r.t. the change of coordinates of
Proposition 7.2 is in Shape Position. Thus, we can heuristically use fast change of ordering,
presented in Chapter 4, with better complexity.

An overall consequence of this work is one can now solve the PDP until n = 5 by using
the computer algebra system Magma [BCP97]. For instance, if k = 16 the PDP is solved in
less than six minutes while this instance of the PDP was intractable before.

7.1 Compact representation of summation polynomials in char-
acteristic two

In this section, we first investigate the symmetries of summation polynomials. In particular we
obtain Proposition 7.2. Then, we study the impact of such a representation on their density.

Throughout this chapter, summation polynomials are defined as the projection on the
x-coordinate of the modeling of the PDP as a multivariate polynomial system.

7.1.1 Symmetries

To begin with, we study how the symmetries of rational curves are handed down to binary
summation polynomials.

Inherited symmetries from rational curves

Summation polynomials are defined up to multiplication by a non zero constant. Hence, we
define their canonical form as follows.

Definition 7.4 (Canonical form of summation polynomials). Let t be the parameter of an
elliptic curve in universal Edwards model defined over K. The canonical form f of its nth
summation polynomial satisfies f ∈ R[x1, . . . , xn] and there not exist 1 6= c ∈ R \ {0} such
that f = cg with g ∈ R[x1, . . . , xn] where R = Z[t] if K = Q and R = Fq[t] if K = Fq.

Since, the nth summation polynomial of universal Edward model of elliptic curve defined
over K is in K(t)[x1, . . . , xn] the existence of its canonical form is straightforward. Note that
the uniqueness of this canonical form is also straightforward from its definition.

In Chapter 6 we have shown that in characteristic zero the action of the 2-torsion point(
− 1

2t ,−1
)

of elliptic curves in universal Edwards model implies particular symmetries on their
summation polynomials.

154 Chapter 7. Summation polynomials in characteristic 2

Notation 7.5. Let Sn ∈ Z[t][x1, . . . , xn] be the canonical form of the nth summation polyno-
mial of a curve in universal Edwards model defined over Q.

More precisely, for any n ≥ 3 we have shown that Sn is invariant under the dihedral
Coxeter group Dn, and thus can be expressed in terms of the primary invariants of Dn, for
instance s1(x), . . . , sn−1(x), en(x) with x = (x1, . . . , xn), see Section 3.2.1.

Notation 7.6. Let SDn be the expression of Sn in terms of s1(x), . . . , sn−1(x), en(x) i.e.
SDn(s1(x), . . . , sn−1(x), en(x)) = Sn(x).

The equation defining a curve in universal Edwards model and its group law are indepen-
dent from the characteristic of the field the curve is defined over. Moreover, the summation
polynomials are constructed from this equation and the group law. Hence, to compute the
nth summation polynomial in Fp(t)[x1, . . . , xn] of a curve defined over Fpk one can perform
the reduction modulo p throughout the computation or only at the end. That is to say, the
summation polynomials of binary universal Edwards model can be computed as the reduction
modulo 2 of the canonical form of the summation polynomials of universal Edwards model of
elliptic curves defined over Q.

Notation 7.7. Let Sbn ∈ F2[t][x1, . . . , xn] be the canonical form of the nth summation poly-
nomial of a curve in universal Edwards model defined over F2k .

Note that, for any prime p the definition of the canonical form of summation polynomials
of universal Edwards model of elliptic curve defined over Q implies that Sn mod p 6= 0.

Proposition 7.8. For any n ≥ 3, there exists a unique polynomial SbDn ∈ F2[t][y1, . . . , yn]
such that

Sbn(x) = SbDn(s1(x), . . . , sn−1(x), en(x))

where x = (x1, . . . , xn) and s1, . . . , sn−1 ∈ F2[x1, . . . , xn] are the elementary symmetric poly-
nomial in terms of x21, . . . , x

2
n and en is the nth elementary symmetric polynomial.

Proof. From Proposition 6.5, Sn is invariant under the action ofDn. Since Q is of characteristic
zero, there exists a unique polynomial SDn ∈ Z[t][y1, . . . , yn] such that SDn is the expression of
Sn in terms of s1, . . . , sn−1, en. One can note that there is no c ∈ Z[t]\{0} such that c 6= 1 and
SDn = cg with g ∈ Z[t][y1, . . . , yn]. Otherwise this contradicts the fact that Sn is the canonical
form of the nth summation polynomial. By consequence, let F be the reduction of SDn modulo
2, we then have F 6= 0 is the unique (up to multiplication by a non zero constant) polynomial
in F2[t][y1, . . . , yn] such that F is the expression of Sbn in terms of s1, . . . , sn−1, en. If there
is no c ∈ F2[t] \ {0} such that c 6= 1 and F = cg with g ∈ F2[t][y1, . . . , yn] then F = SbDn

otherwise in order to get SbDn we have to normalize F . The following diagram summarizes
this construction of summation polynomials in characteristic two where c ∈ F2[t] \ {0}.

Sn c · Sbn

SDn c · SbDn

mod 2

Dn

mod 2

s1 = x21 + · · ·+ x2n
...

en = x1x2 · · ·xn

7.1. Compact representation of summation polynomials in characteristic two 155

Example 7.9. For n = 3 we have

Sb3 = t(x21x
2
2 + x21x

2
3 + x22x

2
3) + x1x2x3 + t

and

S3 = 4t3x21x
2
2x

2
3 − t(x21x

2
2 + x21x

2
3 + x22x

2
3) + (1− 16t4)x1x2x3 + 4t3(x21 + x22 + x23)− t

which implies that
SD3 = 4t3y23 − ty2 + (1− 16t4)y3 − 4t3y1 + t .

Thus,
F = SD3 mod 2 = ty2 + y3 + t .

Since F is normalized then SbD3 = F and we have

SbD3(s1, s2, e3) = t(x21x
2
2 + x21x

2
3 + x22x

2
3) + x1x2x3 + t = Sb3

with s1 = x21 + x22 + x23, s2 = x21x
2
2 + x21x

2
3 + x22x

2
3 and e3 = x1x2x3.

Obviously, it is more efficient to perform the reduction modulo two throughout the com-
putation of the summation polynomial instead only at the end. Hence, we do not use this
construction in practice.

Remark 7.10. Note that in characteristic two, these symmetries do not correspond to several
solutions of the systems to solve (or equivalently to the PDP) but they correspond to multiplicity
of the solutions. This can be explained geometrically (the point behind these symmetries is
projected onto the neutral element) and algebraically (si = e2i and it is obvious that an equation
of the form x2 + α = 0 has an unique solution of multiplicity two in characteristic two).

We now handle the action of the rational two-torsion point of binary curves in universal
Edwards model.

Combining inherited symmetries with the action of the two-torsion

Let T2 = (0, 1) be the rational two-torsion point of a binary elliptic curve in universal Edwards

model. This point acts on the points of the curve by (x, y)⊕ T2 =
(

1
x ,

1
y

)
. In order to get an

affine action of the two-torsion point, we consider the following change of coordinates:

φγ : E(F2k) → Eγ(F2k) , φ−1
γ : Eγ(F2k) → E(F2k)

(x, y) 7→
(

1
x+1 + γ, y

)
(X,Y) 7→

(
1

X+γ + 1, Y
) (7.2)

with γ ∈ K. The two-torsion point of Eγ is then T ′
2 = φγ(T2) = (γ + 1, 1). Let P ′ = (X,Y)

be a point of Eγ we have

P ′ ⊕ T ′
2 = φγ

(
φ−1
γ (P ′)⊕ T2

)
=

(
X + 1,

1

Y

)
.

From Proposition 7.1, the action of the two-torsion point of Eγ implies particular symme-
tries on its summation polynomials. In the following, our aim is to show that for a “good”
choice of γ, these symmetries are consistent with those inherited from rational curves.

Note that φγ changes only the x-coordinate of a point, so we defined the map ϕγ : F2k →
F2k accordingly.

156 Chapter 7. Summation polynomials in characteristic 2

Definition 7.11. The map ϕγ is defined as

ϕγ : F2k → F2k , ϕ−1
γ : F2k → F2k

x 7→ 1
x+1 + γ X 7→ 1

X+γ + 1
.

Let denote by Sbn,γ the nth summation polynomial of Eγ . Since Eγ is obtained by applying
the change of coordinates φ on E, the polynomial Sbn,γ can be computed by applying the
change of coordinates ϕ−1

γ on Sbn.
Note that ϕ−1

γ is not an affine map and Sbn(ϕ−1
γ (X1), . . . , ϕ

−1
γ (Xn)) is no longer a polyno-

mial. This is not restrictive since summation polynomials are defined by their solutions. Let
N(X1,...,Xn)
D(X1,...,Xn)

be the irreducible form of Sbn(ϕ−1
γ (X1), . . . , ϕ

−1
γ (Xn)) we then have Sbn,γ = N .

From Proposition 7.8 Sbn can be expressed in terms of s1, . . . , sn−1, en. In particular, this
implies that Sbn can be expressed in terms of x21, . . . , x

2
n, x1 · · ·xn. Let Fn ∈ F2k [y1, . . . , yn+1]

be such an expression of Sbn. That is to say Fn(x
2
1, . . . , x

2
n, x1 · · ·xn) = Sbn. We thus have

Sbn,γ(X1, . . . , Xn) = Numerator
(
Fn(ϕ

−1
γ (X1)

2, . . . , ϕ−1
γ (Xn)

2, ϕ−1
γ (X1) · · ·ϕ−1

γ (Xn))
)
.

(7.3)

Lemma 7.12. If γ ∈ {0, 1} then ϕ−1
γ (X1) · · ·ϕ−1

γ (Xn) is a rational fraction in terms of
e2n(X1, . . . , Xn) = X2

1 · · ·X2
n and en(X2

1 +X1, . . . , X
2
n +Xn).

Proof. For any i = 1, . . . , n we have ϕ−1
γ (Xi) =

1
Xi+γ + 1 = 1+Xi+γ

Xi+γ . Hence,

ϕ−1
γ (Xi) =





1+Xi

Xi
=

Xi+X2
i

X2
i

if γ = 0

Xi

Xi+1 =
X2

i

X2
i +Xi

if γ = 1
.

By consequence,

ϕ−1
γ (X1) · · ·ϕ−1

γ (Xn) =





∏n
i=1

Xi+X2
i

X2
i

=
en(X2

1+X1,...,X2
n+Xn)

e2n(X1,...,Xn)
if γ = 0

∏n
i=1

X2
i

X2
i +Xi

= e2n(X1,...,Xn)
en(X2

1+X1,...,X2
n+Xn)

if γ = 1
.

Since we work in binary fields for any i = 1, . . . , n we have ϕ−1
γ (Xi)

2 = 1
X2

i +γ2 + 1. By

consequence the equation (7.3) and Lemma 7.12 imply that Sbn,γ can be expressed in terms
of X2

1 , . . . , X
2
n and en(X2

1 +X1, . . . , X
2
n +Xn).

Proposition 7.13. For any n ≥ 3, the nth summation polynomial of Eγ with γ ∈ {0, 1} can be
expressed in terms of e1(X2

1 , . . . , X
2
n), en(X

2
1+X1, . . . , X

2
n+Xn) and ei(X4

1+X
2
1 , . . . , X

4
n+X

2
n)

for i = 2, . . . , n− 1.

Proof. From Proposition 7.1 Sbn,γ is invariant by any even number of transformations of
the form τ : Xj 7→ Xj + 1 and can thus be expressed in terms of e1(X1, . . . , Xn) and
Ei(X1, . . . , Xn) = ei(X

2
1 +X1, . . . , X

2
n +Xn) for i = 2, . . . , n. Hence,

Sbn,γ(X1, . . . , Xn) =
d∑

i=0

fi(e1, E2, . . . , En−1)E
i
n

7.1. Compact representation of summation polynomials in characteristic two 157

where fi(e1, E2, . . . , En) = ξi(X1, . . . , Xn) is invariant by any even number of transformations
τ . Moreover, we have ξi(X1, . . . , Xn) = ψi(X

2
1 , . . . , X

2
n) and in characteristic two (τ(Xj))

2 =
X2

j + 1 = τ(X2
j). By consequence,

ξi(X1, . . . , Xn) = ξi(τ
ǫ1(X1), . . . , τ

ǫn(Xn))

= ψi(τ
ǫ1(X2

1), . . . , τ
ǫn(X2

n))

= ψi(X
2
1 , . . . , X

2
n)

for any (ǫ1, . . . , ǫn) ∈ (Z/2Z)n such that
∑n

i=1 ǫi = 0 mod 2. Therefore, for i = 0, . . . , d
the polynomial ψi(y1, . . . , yn) is invariant by any even number of transformations of the form
yj 7→ yj+1 and can thus be expressed in terms of e1(y1, . . . , yn) and ej(y21+y1, . . . , y

2
n+yn) for

j = 2, . . . , n. That is to say there exists gi such that ψi(y1, . . . , yn) = gi(e1(y1, . . . , yn), e2(y
2
1+

y1, . . . , y
2
n + yn), . . . , en(y

2
1 + y1, . . . , y

2
n + yn)). Finally, we have

Sbn,γ(X1, . . . , Xn) =

d∑

i=0

ψi(X
2
1 , . . . , X

2
n)en(X

2
1 +X1, . . . , X

2
n +Xn)

i

=
d∑

i=0

gi(s1, S2, . . . , Sn)en(X
2
1 +X1, . . . , X

2
n +Xn)

i

where s1 = e1(X
2
1 , . . . , X

2
n) and Sj = ej(X

4
1 +X2

1 , . . . , X
4
n +X2

n) for j = 2, . . . , n.

Example 7.14. Assume γ = 0, for n = 3 we have

Sb3 = t(x21x
2
2 + x21x

2
3 + x22x

2
3) + x1x2x3 + t

then

Sb3(ϕ
−1
0 (X1), ϕ

−1
0 (X2), ϕ

−1
0 (X3)) =

t(1 +X2
1)(1 +X2

2)

X2
1X

2
2

+
t(1 +X2

1)(1 +X2
3)

X2
1X

2
3

+ t+

t(1 +X2
2)(1 +X2

3)

X2
2X

2
3

+
(1 +X1)(1 +X2)(1 +X3)

X1X2X3

which implies that

Sb3,0 = t(X2
3 (1 +X2

1)(1 +X2
2) +X2

2 (1 +X2
1)(1 +X2

3) +X2
1 (1 +X2

2)(1 +X2
3)) +

X1X2X3(1 +X1)(1 +X2)(1 +X3) + tX2
1X

2
2X

2
3

= e3(X
2
1 +X1, X

2
2 +X2, X

2
3 +X3) + t(X2

3 +X2
2 +X2

1)

= e3(X
2
1 +X1, X

2
2 +X2, X

2
3 +X3) + te1(X

2
1 , X

2
2 , X

2
3) .

From now on, we consider only summation polynomials of binary elliptic curves in universal
Edwards model after the change of coordinates φγ defined in equation (7.2) with γ = 0. Hence,
we no longer use the notation Sbn or Sbn,γ but simply Sn since there is no ambiguity. By
consequence, for any n ≥ 3, Sn admits the change of variables Ωn,k for any 2 ≤ k ≤ n defined
as follows.

158 Chapter 7. Summation polynomials in characteristic 2

Definition 7.15. The change of variables Ωn,k with n ≥ 3 and 2 ≤ k ≤ n from K[x1, . . . , xn]
to K[s1, S2, . . . , Sk−1, Ek, xk+1, . . . , xn] is defined by

Ω−1
n,k : K[s1, S2, . . . , Sk−1, Ek, xk+1, . . . , xn] → K[x1, . . . , xn]

s1 7→ e1(x
2
1, . . . , x

2
k)

S2 7→ e2(x
4
1 + x21, . . . , x

4
k + x2k)

...
Sk−1 7→ ek−1(x

4
1 + x21, . . . , x

4
k + x2k)

Ek 7→ en(x
2
1 + x1, . . . , x

2
k + xk)

xk+1, . . . , xn 7→ xk+1, . . . , xn

. (7.4)

We call totally symmetrized the nth summation polynomial expressed in terms of the change
of coordinates Ωn,n and we denote it St

n = Ωn,n(Sn) ∈ K[s1, S2, . . . , Sn−1, En].
We call partially symmetrized the nth summation polynomial expressed in terms of the

change of coordinates Ωn,n−1 and we denote it Sp
n = Ωn,n−1(Sn) ∈ K[s1,n−1, S2,n−1, . . . ,

Sn−2,n−1, En−1,n−1, xn].

In the next section, we investigate the impact of such a compact representation on the
density of summation polynomials.

7.1.2 Density

In Table 7.1 we give for n = 3, . . . , 7 the degree in each variables of St
n. We give also the total

degree of the summation polynomial, the number of terms it contains and finally its density.
All the degrees (in each variables or total) are given experimentally. That is to say the values
given in Table 7.1 are the exact degrees of summation polynomials and not bounds.

To compute the density of the nth summation polynomial we have compared its number
of monomials with the number of monomials of a dense polynomial of same degree (total
and in each variable). Let di = degi S

t
n be the degree of St

n in the ith variable. Let I =〈
xd1+1
1 , . . . , xdn+1

n

〉
⊂ R. Following notations of Definition 2.72, the number N of monomials

m satisfying deg(m) ≤ d and degi(m) ≤ di for i = 1, . . . , n is given byN =
∑d

k=0 dimK(Rk/Ik)
which can be read on the Hilbert series of R/I, see Definition 2.72 and Theorem 2.75.

n Degree in each variable Total degree Number of monomials Density
3 (1,0,1) 1 2 66.67%
4 (2,0,1,1) 2 3 37.50%
5 (4,1,2,1,4) 4 9 11.39%
6 (8,2,4,2,4,5) 8 50 2.61%
7 (16,5,8,4,8,5,16) 16 2247 1.32%

Table 7.1: Density of summation polynomials of binary elliptic curves expressed in terms of
the polynomial change of variables Ωn,n.

From Table 7.1 we can observe that except for very small n, due to their compact repre-
sentation, summation polynomials are really sparse.

In the next section we show that the usual method presented in Chapter 5 to compute
summation polynomials breaks this compact representation in the sense that it involves much
bigger polynomials than the output.

7.2. Compact summation polynomials by resultant and Gröbner bases 159

7.2 Compact summation polynomials by resultant and Gröbner
bases

In Section 5.6.2 it is described how to compute the nth summation polynomials by applying the
change of coordinates given by the symmetric group throughout the computation. This allows
to reduce the size of the resultant. Moreover, the Gröbner basis computations, required to
express the summation polynomial in terms of this change of coordinates, will be less difficult.

To compute St
n ∈ F2k [s1, S2, . . . , Sn−1, En], one can proceed similarly. Let denote s1,k,

S2,k, . . . , Sk−1,k, Ek,k (resp. s1,n−k, S2,n−k, . . . , Sn−k−1,n−k, En−k,n−k) the new variables in-
duced by the change of variables Ωk,k on {x1, . . . , xk} (resp. Ωn−k,n−k on {xk+1, . . . , xn}).
The following resultant computation gives an expression of the nth summation polynomial in
terms of s1,k, S2,k, . . . , Sk−1,k, Ek,k and s1,n−k, S2,n−k, . . . , Sn−k−1,n−k, En−k,n−k:

ResX (Sp
n−k+1 (s1,n−k, S2,n−k, . . . , Sn−k−1,n−k, En−k,n−k, X) ,

Sp
k+1 (s1,k, S2,k, . . . , Sk−1,k, Ek,k, X)

)
.

(7.5)

In order to compute St
n we just have to find the corresponding change of variables to apply

to this polynomial to expressed it in terms of s1, S2, . . . , Sn−1, En. Let us denote

X1 = (x21, . . . , x
2
n−k) Z2 = (x2n−k+1 + xn−k+1, . . . , x

2
n + xn)

Y1 = (x41 + x21, . . . , x
4
n−k + x2n−k) X3 = (x21, . . . , x

2
n)

Z1 = (x21 + x1, . . . , x
2
n−k + xn−k) Y3 = (x41 + x21, . . . , x

4
n + x2n)

X2 = (x2n−k+1, . . . , x
2
n) Z3 = (x21 + x1, . . . , x

2
n + xn)

Y2 = (x4n−k+1 + x2n−k+1, . . . , x
4
n + x2n)

.

Since the field is of characteristic two, spreading the symmetrization throughout the compu-
tation can be done by noting that:

e1(X3) = e1(X1) + e1(X2)
e2(Y3) = e2(Y1) + e2(Y2) + α1α2

e3(Y3) = e3(Y1) + e3(Y2) + α1e2(Y2) + α2e2(Y1)
...

en−2(Y3) = en−k(Z1)
2ek−2(Y2) + en−k−1(Y1)ek−1(Y1) + en−k−2(Y1)ek(Z1)

2

en−1(Y3) = en−k(Z1)
2ek−1(Y2) + en−k−1(Y1)ek(Z1)

2

en(Z3) = en−k(Z1)ek(Z2)

(7.6)

where α1 = e1(X1)
2 + e1(X1) and α2 = e1(X2)

2 + e1(X2).
According to Chapter 2 Section 2.1.4 applying this corresponding change of variables

can be done in two ways by using either elimination ideals (Algorithm 2) or normal forms
(Algorithm 3).

Benchmarks

Using the algorithm presented above, if the parameter t of the curve is not instantiated i.e.
St
n ∈ F2[s1, S2, . . . , Sn−1, En, t]; by using Magma one can compute to the sixth summation

polynomial.
In Table 7.2 (respectively 7.3) we present timings to compute St

n for n ≤ 6. We give the
time to compute the resultant in equation (7.5) (column “Res”) and its size (column “#Res”).

160 Chapter 7. Summation polynomials in characteristic 2

In column “Gröbner basis” we give the time to compute the Gröbner basis G>n+1 involved
in Algorithm 2 or Algorithm 3 (note that these two Gröbner bases are not the same). The
column “#St

n” (respectively “#Sp
k+1” and “#Sp

n−k+1”) contains the number of monomials in
St
n (respectively Sp

k+1 and Sp
n−k+1). The column St

n contains the total time to compute this
polynomial when it is in F2[s1, S2, . . . , Sn−1, En, t]. In Table 7.3 we also give the time to
compute the normal form of the resultant w.r.t. the Gröbner basis G>n+1 (column “NF”). For
each n we assume that Sp

k+1 and Sp
n−k+1 is known for any k ∈ {2, . . . , n−2}. By consequence,

the time to compute them is not take into account.

n k #Sp
k+1 #Sp

n−k+1 Res #Res Gröbner basis St
n #St

n

4 2 4 4 0.000s 8 0.010s 0.010s 3
5 2 4 9 0.000s 37 0.010s 0.020s 9
6 2 4 47 0.390s 619 3.380s 3.780s 51
6 3 9 9 0.020s 686 7.860s 7.900s 51

Table 7.2: CPU time to compute the nth summation polynomial with Magma (v2-19.4) on
one core of a 2.00GHz Intel R© E7540 CPU by using resultant and elimination ideals.

n k #Sp
k+1 #Sp

n−k+1 Res #Res Gröbner basis NF St
n #St

n

4 2 4 4 0.000s 8 0.000s 0.000s 0.000s 3
5 2 4 9 0.000s 37 0.000s 0.000s 0.000s 9
6 2 4 47 0.300s 619 0.020s 0.690s 1.030s 51
6 3 9 9 0.010s 686 0.030s 4.390s 4.440s 51

Table 7.3: CPU time to compute the nth summation polynomial with Magma (v2-19.4) on
one core of a 2.00GHz Intel R© E7540 CPU by using resultant and normal forms.

From Tables 7.2 and 7.3 it seems that the most efficient strategy is to use normal forms.
One can notice that this method to compute summation polynomials involves polynomials
much larger than the output polynomial. Indeed, for instance for n = 6, the resultant between
Sp
k+1 and Sp

n−k+1 contains at least 619 terms in comparison to 51 terms for St
6.

For n = 7, we can still use Magma to compute St
7. However, by computing directly

the normal form or the elimination ideal by using functions of Magma we cannot expressed
the resultant in terms of s1, S2, . . . , S6, E7. In order to perform the corresponding change of
variables we perform by hand some well-chosen normal forms and finally we use elimination
ideal to end the symmetrization.

Finally, for n = 7 the resultant between Sp
3 and Sp

6 is computed in 51 seconds and contains
63448 terms. The change of coordinates to express this resultant in terms of s1, S2, S3, S4, S5,
S6, E7 is done in 332 seconds and St

7 is computed in 383 seconds and contains 2581 terms.

Nevertheless, the computation of the eighth summation polynomial still seems intractable
using this method. To compute it we need to remove Gröbner bases and multivariate resultant
computations which become too difficult since they involve bigger polynomials. We will show
that by using evaluation-interpolation method we can avoid this kind of computations. In the
next section we recall the principle of sparse multivariate interpolation.

7.3. Outline of sparse multivariate polynomial interpolation algorithm 161

7.3 Outline of sparse multivariate polynomial interpolation al-
gorithm

The first algorithm for sparse multivariate polynomial interpolation was due to Zippel [Zip79].
This algorithm is probabilistic and has a polynomial time complexity in O(ndt3) arithmetic
operations and requires O(ndt) evaluations where n is the number of variables, d a bound on
the degree in each variables of the polynomial to interpolate and t is the number of its terms.
The first deterministic algorithm for sparse multivariate polynomial interpolation was due to
Ben-Or and Tiwari [BOT88] and has an arithmetic complexity in O(τ2(log2 τ+log nd)) where
τ is an upper bound on the number of terms in the polynomial. The algorithm of Ben-Or
and Tiwari requires 2τ evaluations. Using some ideas of Ben-Or and Tiwari, Zippel [Zip90]
then proposed a new version of its probabilistic algorithm whose complexity is in O(ndt2) and
always requires O(ndt) evaluations. In [Zip90], the author also proposes deterministic solutions
of the zero avoidance problem that he uses to adapt his probabilistic algorithm for sparse
multivariate polynomial interpolation. He gets a deterministic algorithm whose complexity
is in O(ndt2τ) and which requires O(ndtτ) evaluations. Finally, in [KL89], Kaltofen and
Lakshman proposed new efficient algorithms to find the rank and solve a special Toeplitz
system arising in Ben-Or and Tiwari algorithm and solve a transposed Vandermonde system
arising in Zippel’s algorithm. These algorithms allow to decrease the complexity of Ben-Or and
Tiwari’s algorithm to O(dnτM(τ) log(τ) log(n)) arithmetic operations and Zippel’s algorithm
to O(dnM(t) log(t)) arithmetic operations where M(ℓ) denotes the complexity of multiplying
two univariate polynomials of degree ℓ which is quasi-linear in ℓ, see [CK91, VZGG03].

We cannot predict the sparsity of summation polynomials i.e. we do not know a sharp
bound τ on the number of terms. By consequence, in order to take advantage of the sparsity of
these polynomials we use as multivariate polynomial interpolation algorithm the probabilistic
algorithm of Zippel whose complexity and number of evaluations does not depend on τ .

7.3.1 Description of Zippel’s sparse multivariate polynomial interpolation
algorithm

The principle of Zippel’s algorithm [Zip79, Zip90] is to interpolate the multivariate polynomial
one variable at a time by using dense univariate interpolation. From now on x̃ denotes the
evaluation of the variable x at some element of the field K.

Let f(x1, . . . , xn) ∈ K[x1, . . . , xn] be the polynomial to interpolate and di be a bound on
the degree of f in xi. First we choose an initial evaluation point (x̃1,0, . . . , x̃n,0). At step i
we want to recover the polynomial f(x1, . . . , xi, x̃i+1,0, . . . , x̃n,0) denoted fi assuming we know
the polynomial fi−1 = f(x1, . . . , xi−1, x̃i,0, . . . , x̃n,0).

We can write fi as a polynomial in x1, . . . , xi−1 and coefficients in K(xi) as follows
fi =

∑ti−1

j=1 cαj
xαj where cαj

is a univariate polynomial in xi, the monomial xαj satisfies
αi = · · · = αn = 0 for j = 1, . . . , ti−1 and ti−1 ≤ t is the number of terms in fi−1. To recover
fi we have to interpolate each coefficients cαj

for j = 1, . . . , ti−1 as a univariate polynomial
in xi. In order to interpolate these coefficients, we need to evaluate them at di + 1 evalua-
tion points x̃i,k with k = 0, . . . , di. That is to say we need to compute all the polynomials
fi−1,k = f(x1, . . . , xi−1, x̃i,k, x̃i+1,0, . . . , x̃n,0) =

∑ti−1

j=1 cαj,k
xαj where cαj,k

= cαj
(x̃i,k). Once

the polynomials fi−1,k for k = 0, . . . , di are computed we can recover fi by interpolating ti−1

dense univariate polynomials (each coefficient cαj
for j = 1, . . . , ti−1).

162 Chapter 7. Summation polynomials in characteristic 2

We now investigate how to efficiently compute all the polynomials fi−1,k for k = 0, . . . , di.
First we note that fi−1 = fi−1,0 and we have to compute only di polynomials. To com-
pute fi−1,k for some k ∈ {1, . . . , di} we randomly choose an evaluation point for all fi−1,k

that is to say we randomly choose x̃1,i, . . . , x̃i−1,i in K and we denote by x̃α the evaluation
of the monomial xα at x̃1,i, . . . , x̃i−1,i. Then we compute vi,k,ℓ = fi−1,k(x̃

ℓ
1,i, . . . , x̃

ℓ
i−1,i) =∑ti−1

j=1 cαj,k
x̃ℓαj = f(x̃ℓ1,i, . . . , x̃

ℓ
i−1,i, x̃i,k, x̃i+1,0, . . . , x̃n,0) for ℓ = 0, . . . , ti−1 − 1 and we obtain

the following transposed Vandermonde system:





cα1,k
+ cα2,k

+ · · · + cαti−1,k
= vi,k,0

cα1,k
x̃α1 + cα2,k

x̃α2 + · · · + cαti−1,k
x̃αti−1 = vi,k,1

cα1,k
x̃2α1 + cα2,k

x̃2α2 + · · · + cαti−1,k
x̃2αti−1 = vi,k,2

...
cα1,k

x̃ti−1α1 + cα2,k
x̃ti−1α2 + · · · + cαti−1,k

x̃ti−1αti−1 = vi,k,ti−1

(7.7)

Let denote x̃αj by πj , the linear system in equation (7.7) can be represented in matrix
form as follows:




1 1 · · · 1
π1 π2 · · · πti−1

π21 π22 · · · π2ti−1

...
...

π
ti−1

1 π
ti−1

2 · · · π
ti−1

ti−1




·




cα1,k

cα2,k

cα3,k

...
cαti−1,k




=




vi,k,0
vi,k,1
vi,k,2

...
vi,k,ti−1



. (7.8)

It is well-known that a Vandermonde matrix is non-singular if πi 6= πj for all i 6= j and
1 ≤ i, j ≤ ti−1. Thus, in order to get an invertible matrix we choose x̃1,i, . . . , x̃1,i such that
x̃αj for j = 1, . . . , ti−1 are all distinct. Note that whatever the value of k, the Vandermonde
matrix in equation (7.8) does not change.

Finally, by solving the system in equation (7.8) for all k = 1, . . . , di we can compute all the
polynomials fi−1,k and perform the univariate polynomial interpolation on each coefficient of
fi−1 to recover fi. Zippel’s algorithm is summarized in Algorithm 20.

Example 7.16. Assume one wants to interpolate f = 8x21 + 7x1x2 + 12x22 + 6, a polynomial
in F13[x1, x2]. Assume we know a bound di = 2 on degxi

(f) for i = 1, 2 and we have a black
box to evaluate f in any points.

First we randomly choose x̃1,0 = 2 and x̃2,0 = 9 and we compute f0 = f(x̃1,0, x̃2,0) = 5.
Step 1: we want to compute f1 = f(x1, x̃2,0). We proceed by univariate polynomial in-

terpolation. That is to say we randomly choose x̃1,1 = 11 and x̃1,2 = 10 and we compute
f0,1 = f(x̃1,1, x̃2,0) = 0 and f0,2 = f(x̃1,2, x̃2,0) = 3. Since f1 is a univariate polynomial
of degree at most 2 and we know its evaluation in 3 distinct points we compute it using the
Lagrange interpolation see for instance [Fid72, MB72, BM74] and we find f1 = 8x21+11x1+3.

Step 2: we want to compute f2 = f(x1, x2) and we know f1 = f(x1, x̃2,0) = 8x21+11x1+3.
We randomly choose x̃1,2 = 4, we check that π1 = x̃21,2 = 3 6= π2 = x̃1,2 = 4 6= π3 = x̃01,2 = 1
and we construct the transpose Vandermonde matrix

VT =




1 1 1
3 4 1
9 3 1


 .

7.3. Outline of sparse multivariate polynomial interpolation algorithm 163

Algorithm 20: Sparse multivariate polynomial interpolation: Zippel’s algorithm.
Input : Evalf a function evaluating the polynomial f ∈ K[x1, . . . , xn],

di a bound on degi(f) for i = 1, . . . , n and
Interpolation([a1, . . . , ad], [v1, . . . , vd], xi) a function which returns the unique

univariate polynomial p in xi of degree at most d− 1 such that p(aj) = vj for
j = 1, . . . , d.
Output: The polynomial f ∈ K[x1, . . . , xn] or fail.
Randomly choose x̃1,0, . . . , x̃n,0 and x̃1,1, . . . , x̃1,d1 in K s.t. x̃1,j are distinct;1

for k := 0 to d1 do vk := Evalf (x̃1,k, x̃2,0, . . . , x̃n,0);2

F := Interpolation([x̃1,0, . . . , x̃1,d1], [v0, . . . , vd1], x1);3

for i := 2 to n do4

t := Number of monomials in F;5

m0, . . . ,mt−1 := monomials of F;6

α0, . . . , αt−1 := coefficients of m0, . . . ,mt−1 in F;7

Randomly choose x̃1, . . . , x̃i−1 in K;8

for ℓ := 0 to t− 1 do πℓ := Evaluation of mℓ in (x̃1, . . . , x̃i−1);9

if πℓ 6= πj for all j 6= ℓ then10

V := Vandermonde matrix associated to π0, . . . , πt−1;11

Randomly choose x̃i,1, . . . , x̃i,di in K s.t. x̃i,k are distinct;12

for k := 1 to di do13

for ℓ := 0 to t− 1 do14

vk,ℓ := Evalf (x̃
ℓ
1, . . . , x̃

ℓ
i−1, x̃i,k, x̃i+1,0, . . . , x̃n,0);15

Find (c0,k, . . . , ct−1,k)
t a solution of V t · c = (vk,0, . . . , vk,t−1)

t;16

for ℓ := 0 to t− 1 do17

αℓ := Interpolation([x̃i,0, . . . , x̃i,di], [αℓ, cℓ,1, . . . , cℓ,di], xi);18

F :=
∑t−1

ℓ=0 αℓmℓ;19

else return fail ;20

return F;21

Then, we randomly choose x̃2,1 = 1 and x̃2,2 = 4 and we compute v2,k,l = f(x̃ℓ1,2, x̃2,k) for
ℓ = 0, 1, 2 and k = 1, 2 and we obtain the two vectors




v2,1,0
v2,1,1
v2,1,2


 =




7
5
7


 = v1 and




v2,2,0
v2,2,1
v2,2,2


 =




0
9
3


 = v2 .

Afterwards, we solve the two linear systems VT · ck = vk for k = 1, 2 where ck is the column
vector (c1,k, c2,k, c3,k)

t. We obtain c1 = (8, 7, 5)t and c2 = (8, 2, 3)t and we can reconstruct the
two polynomials f1,k = f2(x1, x̃2,k) = c1,kx

2
1 + c2,kx1 + c3,k. Hence, at this step we know

f1,0 = f2(x1, x̃2,0) = 8x21 + 11x1 + 3
f1,1 = f2(x1, x̃2,1) = 8x21 + 7x1 + 5
f1,2 = f2(x1, x̃2,2) = 8x21 + 2x1 + 3

.

Finally, we can interpolate each coefficients of f2 as a univariate polynomial in x2 using the

164 Chapter 7. Summation polynomials in characteristic 2

Lagrange interpolation and we obtain

f2(x1, x2) = (8)x21 + (7x2)x1 + (12x22 + 6) = f .

7.3.2 Complexity and probability of success of Zippel’s algorithm

At step i, we have to solve di transpose Vandermonde systems of size ti−1 × ti−1 ≤ t × t.
From [KL89] a transpose Vandermonde system of size n× n can be solved in O(M(n) log(n))
arithmetic operations. Then, we have to interpolate ti−1 univariate polynomials of degree at
most di which can be done in O(ti−1M(di) log(di)) arithmetic operations. The total number of
evaluations required by Zippel’s algorithm is given by 1+

∑n
i=1 diti−1 which can be bounded by

O(ndt) evaluations. Indeed, to interpolate the first variable we need to evaluate the polynomial
to d1 + 1 distinct points and at step i > 1 we need to evaluate the polynomial to interpolate
at diti−1 distinct points. By consequence, we get the following result.

Theorem 7.17 ([Zip90, KL89]). Let f ∈ K[x1, . . . , xn] and d be a bound on the degree of
f in each variable. Assuming, we can evaluate the polynomial f , Zippel’s algorithm requires
O(ndt) evaluations of f to compute it in Õ(ndt) arithmetic operations where t is the number
of monomials in f .

The probabilistic nature of Zippel’s algorithm is twofold. First, at step i we assume
that all zero coefficients of a power of xi: xsi in cαj

for j = 1, . . . , ti − 1 do not come from the

vanishing of a polynomial but means that there is no monomial of the form xαjxsix
β1
i+1 · · ·x

βn−i
n

in the polynomial f to interpolate for any (β1, . . . , βn−i) ∈ Nn−i. Hence, the error in the
interpolation depends only on the initial evaluation point (x̃1,0, . . . , x̃n,0). The probability of
failure of Zippel’s algorithm is then given by the probability that at each step, the coefficients
we want to interpolate do not vanish at the initial evaluation point. At step i, there are at
most t coefficients to interpolate that is to say t polynomials in n − i variables whose zeroes
must be avoided i.e. which should not vanish at (x̃1,0, . . . , x̃n,0). The total number of non
zero terms in each of these polynomials is bounded by t and their degrees in each variables
are bounded by d = max{d1, . . . , dn}. Hence, the probability of failure of Zippel’s algorithm
is bounded by n2dt

q where q is the size of the finite field K, see [Zip90] for details.

Proposition 7.18 ([Zip90]). Assume that all the Vandermonde systems involved in Zippel’s
algorithm to interpolate f ∈ K[x1, . . . , xn] are non singular. Then the probability of success
of Zippel’s algorithm is bounded below by 1 − n2dt

q where q is the size of the field K, t is the
number of monomials in f and d is a bound on the degree of f in each variable.

The second point which can fail in Zippel’s algorithm is at each step i finding a non singular
transpose Vandermonde matrix. That is to say, to find x̃1,i, . . . , x̃i−1,i such that all the πi’s
are distinct. From [Zip90], the probability that such a system is singular is bounded by dt2

2q .

Proposition 7.19 ([Zip90]). The probability that all the Vandermonde systems involved in
Zippel’s algorithm to interpolate f ∈ K[x1, . . . , xn] are non singular (i.e. the algorithm returns
a polynomial) is bounded below by 1− ndt2

2q where q is the size of the field K, t is the number
of monomials in f and d is a bound on the degree of f in each variable.

In the next section, we take advantage of the compact representation (Section 7.1) of
summation polynomials to compute them by evaluation-interpolation. In order to use Zippel’s
algorithm to compute summation polynomials, we need an efficient way to evaluate them.

7.4. Summation polynomials by implicit sparse multivariate interpolation 165

7.4 Summation polynomials by implicit sparse multivariate in-
terpolation

Suppose one wants to evaluate St
n = Ωn,n(Sn) ∈ K[s1, S2, . . . , Sn−1, En] in the evaluation

point s̃1, S̃2, . . . , S̃n−1, Ẽn ∈ K. If one wants to use equation (7.5) to evaluate St
n one needs to

invert the change of coordinates Ωn,n in order to find the corresponding evaluation points of
Sp
n−k+1 and Sp

k+1. That is to say, we look for one solution (as mentioned in the introduction

of the chapter, one can choose any solution) in K
n

of the system





s̃1 = s1,n−k + s1,k
S̃2 = S2,n−k + S2,k + α1α2

S̃3 = S3,n−k + S3,k + α1S2,k + α2S2,n−k

S̃4 = S4,n−k + S4,k + α1S3,k + α2S3,n−k + S2,n−kS2,k
...

S̃n−2 = E2
n−k,n−kSk−2,k + Sn−k−1,n−kSk−1,k + Sn−k−2,n−kE

2
k,k

S̃n−1 = E2
n−k,n−kSk−1,k + Sn−k−1,n−kE

2
k,k

Ẽn = En−k,n−kEk,k

(7.9)

where α1 = s21,n−k + s1,n−k and α2 = s21,k + s1,k.

Algorithm 21: Evaluating summation polynomials.

Input : An evaluation point (s̃1, S̃2, . . . , S̃n−1, Ẽn) ∈ Kn and the summation
polynomials partially symmetrized Sp

i for i ∈ {3, . . . , n− 1}.
Output: St

n(s̃1, S̃2, . . . , S̃n−1, Ẽn) ∈ K or fail.
Choose k in {2, . . . , n− 2};1

Find s̃1,k, S̃2,k, . . . , S̃k−1,k, Ẽk,k, s̃1,n−k, S̃2,n−k, . . . , S̃n−k−1,n−k, Ẽn−k,n−k ∈ Ln a solution2

of the system in equation (7.9) where L is an extension of K;
f1 := Sp

k+1(s̃1,k, S̃2,k, . . . , S̃k−1,k, Ẽk,k, X) ∈ L[X];3

f2 := Sp
n−k+1(s̃1,n−k, S̃2,n−k, . . . , S̃n−k−1,n−k, Ẽn−k,n−k, X) ∈ L[X];4

if deg(f1) = degX(Sp
k+1) and deg(f2) = degX(Sp

n−k+1) then5

return Resultant(f1, f2);6

else return fail ;7

The difficulty in evaluating St
n is that one only has an implicit evaluation function. Indeed,

the evaluation is not given by a parametrization but it is defined by polynomials equations.
Moreover, due to the solving of system in equation (7.9) corresponding to step (2) of Algo-
rithm 21, the workspace can change. For an input in Kn and an output in K the evaluation
function of summation polynomials can work with elements in L where L is an extension of
K.

Step (2) of Algorithm 21 can be solved using Gröbner bases as presented in Chapter 2.
However, this will be not efficient enough. From Lemma 7.24 the degree of St

n in each variable
is at most 2n−3. To compute St

n by evaluation and interpolation we thus need to perform
O(nt2n−3) evaluations.

166 Chapter 7. Summation polynomials in characteristic 2

Remark 7.20. The evaluation of St
8 in 1000 evaluation points in (F232)

8 using Gröbner bases
takes about 1437 seconds. Since, St

8 contains exactly 470, 369 terms the number of evaluation
required to compute St

8 is bounded by nt2n−3 = 120, 414, 464. Consequently, computing St
8

may take 5.5 years.

Because of the large number of evaluations required to compute St
n by interpolation, we

need an evaluation function as efficient as possible. In the next section, we tackle this is-
sue. We present how to evaluate St

n by using only factorizations and resultants of univariate
polynomials and thus how to avoid Gröbner bases computations.

7.4.1 Evaluation of summation polynomials using factorization and resul-
tant of univariate polynomials

In order to solve the system (7.9) more efficiently we use the fact that

s̃1 = e1(x̃
2
1, . . . , x̃

2
n)

S̃i = ei(x̃
4
1 + x̃21, . . . , x̃

4
n + x̃2n) for i = 1, . . . , n

Ẽn = en(x̃
2
1 + x̃1, . . . , x̃

2
n + x̃n)

and in the same way

s̃1,n−k | s̃1,k = e1(x̃
2
i1
, . . . , x̃2in−k

) | e1(x̃2j1 , . . . , x̃2jk)
S̃i,n−k = ei(x̃

4
i1
+ x̃2i1 , . . . , x̃

4
in−k

+ x̃2in−k
) for i = 1, . . . , n− k

S̃j,k = ei(x̃
4
j1
+ x̃2j1 , . . . , x̃

4
jk

+ x̃2jk) for j = 1, . . . , k

Ẽn−k,n−k = en(x̃
2
i1
+ x̃i1 , . . . , x̃

2
in−k

+ x̃in−k
)

Ẽk,k = en(x̃
2
j1
+ x̃j1 , . . . , x̃

2
jk

+ x̃jk)

where {i1, . . . , in−k, j1, . . . , jk} = {1, . . . , n}. Moreover, we note that in characteristic two,

e1(x
4
1 + x21, . . . , x

4
n + x2n) =

n∑

i=1

(x4i + x2i) =
n∑

i=1

x4i +
n∑

i=1

x2i

= e21(x
2
1, . . . , x

2
n) + e1(x

2
1, . . . , x

2
n)

and

en(x
4
1 + x21, . . . , x

4
n + x2n) =

n∏

i=1

(x4i + x2i) =

(
n∏

i=1

(x2i + xi)

)2

= e2n(x
2
1 + x1, . . . , x

2
n + xn) .

By consequence, from s̃1, S̃2, . . . , S̃n−1, Ẽn we can compute S̃i for i = 1, . . . , n in the following
way

S̃1 = s̃1 + s̃21
S̃i = S̃i for i = 2, . . . , n− 1

S̃n = Ẽ2
n

.

Since S1, . . . , Sn are the elementary symmetric polynomials evaluated in x41+x21, . . . , x
4
n+x2n,

we can find x̃41+x̃
2
1, . . . , x̃

4
n+x̃

2
n by factorizing a univariate polynomial. Indeed, it is well-known

that

f(X) = Xn + S̃1X
n−1 + · · ·+ S̃n−1X + S̃n =

n∏

i=1

(
X +

(
x̃4i + x̃2i

))
.

7.4. Summation polynomials by implicit sparse multivariate interpolation 167

In the same way we have

fn−k(X) = Xn−k + S̃1,n−kX
n−k−1 + · · ·+ S̃n−k =

n−k∏

ℓ=1

(
X +

(
x̃4iℓ + x̃2iℓ

))

and

fk(X) = Xk + S̃1,kX
k−1 + · · ·+ S̃k−1X + S̃k =

k∏

ℓ=1

(
X +

(
x̃4jℓ + x̃2jℓ

))
.

Thus, we have f(X) = fn−k(X)fk(X) ∈ K[X]. Moreover, since we look for any solution of
the system (7.9), we can choose any partition of {1, . . . , n} in two sets of size n−k and k with
k ≥ 2. Hence, from s̃1, S̃2, . . . , S̃n−1, Ẽn, we can find S̃i,n−k for i = 1, . . . , n − k and S̃j,k for
j = 1, . . . , k by factorizing the polynomial f in two polynomials one of degree k and the other
of degree n− k, in some extension of K.

Lemma 7.21. Given, s̃1, S̃2, . . . , S̃n−1, Ẽn ∈ K we can compute S̃1,n−k, . . . , S̃n−k,n−k ∈ L and
S̃1,k, . . . , S̃k,k ∈ L by factorizing the univariate polynomial

f(X) = Xn + (s̃21 + s̃1)X
n−1 +

n−1∑

i=2

S̃iX
n−i + Ẽ2

n

=

(
Xk +

k∑

i=1

S̃i,kX
k−i

)(
Xn−k +

n−k∑

i=1

S̃i,n−kX
n−k−i

)

= fk(X)fn−k(X)

with f ∈ K[X] and fk, fn−k ∈ L[X] where L is an extension of K.

Then, the value of Ẽn−k,n−k and Ẽk,k are respectively given by the square roots of S̃n−k,n−k

and S̃k,k. Note that for any finite field K of characteristic two, any element of K has a square
root in K. Finally, to find s̃1,n−k and s̃1,k we have to factorize the two polynomials

X2 +X + S̃1,n−k (7.10)

X2 +X + S̃1,k . (7.11)

Note that the two equations (7.10) and (7.11) have respectively two solutions. Hence, s̃1,n−k

and s̃1,k are respectively given by a solution of the equation (7.10) and the equation (7.11)
verifying s̃1 = s̃1,n−k + s̃1,k.

Finally, the evaluation of St
n is given by the corresponding univariate resultant as in Al-

gorithm 21.

Remark 7.22. To evaluate the two polynomials Sp
k+1 and Sp

n−k+1 at their corresponding
evaluation points, we can proceed in two ways. We can either compute the two polynomials Sp

k+1

and Sp
n−k+1 and evaluate them. Or we can use the summation polynomials totally expressed

w.r.t. the change of variables Ωn,n. Indeed, for any n ≥ 3 we have

Sp
n(s1,n−1, S2,n−1, . . . , Sn−2,n−1, En−1,n−1, X) = St

n(s1, S2, . . . , Sn−1, En) (7.12)

where s1, S2, . . . , Sn−1, En are given by equation (7.9) with k = 1, s1,1 = X2 and E1,1 =
X2 +X.

168 Chapter 7. Summation polynomials in characteristic 2

Algorithm 22: Computing Ẽk,k, Ẽn−k,n−k, s̃1,k, s̃1,n−k.

Input : S̃k,k, S̃n−k,n−k, S̃1,k, S̃1,n−k ∈ L and s̃1 ∈ K with L an extension of K.
Output: Ẽk,k, Ẽn−k,n−k, s̃1,k, s̃1,n−k ∈ L2 with L2 is an extension of L of degree at

most 2.

Ẽk,k :=
√
S̃k,k; Ẽn−k,n−k :=

√
S̃n−k,n−k;1

if TraceL(S̃1,k) = 0 and TraceL(S̃1,n−k) = 0 then2

s̃1,k := a root of X2 +X + S̃1,k in L;3

s̃1,n−k := a root of X2 +X + S̃1,n−k in L;4

L2 := L;5

else if TraceL(S̃1,k) = 0 then6

s̃1,k := a root of X2 +X + S̃1,k in L;7

L2 := L[w]/(w2 + w + S̃1,n−k); s̃1,n−k := w;8

else if TraceL(S̃1,n−k) = 0 then9

s̃1,n−k := a root of X2 +X + S̃1,n−k in L;10

L2 := L[w]/(w2 + w + S̃1,k); s̃1,k := w;11

else12

L2 := L[w]/(w2 + w + S̃1,k); s̃1,k := w;13

s̃1,n−k := a root of X2 +X + S̃1,n−k in L2;14

if s̃1 + s̃1,k + s̃1,n−k 6= 0 then s̃1,n−k := s̃1,n−k + 1;15

return Ẽk,k, Ẽn−k,n−k, s̃1,k, s̃1,n−k;16

In Table 7.4, we give for different values of n and k, the running time to evaluate St
n at

1000 random evaluation points chosen in Kn. The column labeled by “f = fkfn−k” contains
the time to factorize the polynomial f in two polynomials of degree k and n− k. The column
“ s̃1,n−k, s̃1,k” gives the time to solve the two equations (7.11) and (7.10). The column “Sp/St”
gives the times to evaluate Sp

k+1 and Sp
n−k+1 at their corresponding evaluation points by using

either the partially symmetrized polynomials Sp
k+1 and Sp

n−k+1 or the totally symmetrized
polynomials St

k+1 and St
n−k+1, see Remark 7.22. Finally, the column labeled “Resultant” gives

the time to compute the univariate resultant.
In Table 7.4, we can observe that the evaluation of Sp

7 or St
7 is very costly. Hence, to obtain

an efficient evaluation function we force k+1 and n−k+1 to be less than seven. In that case,
we can note that the most time-consuming step in the evaluation of St

n is the factorization of
the univariate polynomial f in two polynomials of degree k and n− k. Moreover, we observe
that the use of St

i to evaluate Sp
i is interesting when i is sufficiently large i.e. i ≥ 5.

In order to decrease the time required for the factorization, we do not fix the value of k.
Indeed, for each evaluation point we choose k such that it minimizes the degree of the extension
of K in which f can be factorized as the product of fkfn−k. We give the corresponding timings
in Table 7.5. In this table, for n = 8 the line labeled k 6= 2 means we force n− k+ 1 < 7. We
summarize this algorithm to evaluate summation polynomials in Algorithm 23.

We can observe in Table 7.5 that not fixing k allows to decrease the overall time for the
factorization and the total time to evaluate St

n. For instance, for n = 8 with a fixed k, the
best running time for 1000 evaluations is 49.100 seconds compared to 42.785 seconds when k

7.4. Summation polynomials by implicit sparse multivariate interpolation 169

K n k
Evaluation time (seconds)

f = fkfn−k s̃1,n−k, s̃1,k Sp/St Resultant Total

F216

5 2 2.800 1.318 0.095/0.118 0.026 4.284/4.308

6
2 3.904 1.182 0.286/0.204 0.086 5.490/5.408
3 4.498 2.428 0.154/0.166 0.086 7.198/7.210

7
2 6.286 1.798 3.536/1.472 0.124 11.790/9.736
3 7.368 3.172 0.400/0.304 0.116 11.216/11.030
2 9.460 2.200 315.980/131.460 0.460 328.280/143.760

8 3 10.670 4.620 4.420/2.030 0.190 19.990/17.600
4 10.210 2.740 0.690/0.490 0.310 14.040/13.840

F232

5 2 9.940 3.530 0.180/0.100 0.080 13.820/13.740

6
2 14.830 3.030 0.350/0.380 0.190 18.510/18.540
3 17.360 6.850 0.260/0.250 0.150 24.710/24.700

7
2 19.620 3.940 3.650/1.840 0.160 27.510/25.700
3 28.210 7.210 0.960/0.500 0.260 36.770/36.310
2 33.020 4.700 360.470/210.250 0.760 399.150/248.930

8 3 35.790 9.830 6.270/2.900 0.470 52.470/49.100
4 44.660 7.930 1.060/0.770 0.590 54.300/54.010

Table 7.4: Running time to evaluate St
n at 1000 random evaluation points in Kn with Magma

(v2-19.4) on one core of a 2.00GHz Intel R© E7540 CPU.

K n
Evaluation time (seconds)

f = fkfn−k s̃1,n−k, s̃1,k Eval. Sp
k+1, S

p
n−k+1 Resultant Total

F216

5 3.065 1.370 0.130 0.055 4.685
6 3.995 2.210 0.225 0.060 6.550
7 4.470 1.785 0.370 0.075 6.740
8 5.290 0.920 7.315 0.155 13.700

k 6= 2 8 7.020 1.390 0.525 0.140 9.110

F232

5 9.665 3.275 0.135 0.085 13.240
6 13.380 6.290 0.320 0.125 20.190
7 17.835 4.820 1.010 0.200 23.920
8 26.725 3.535 18.065 0.335 48.750

k 6= 2 8 35.790 5.265 1.220 0.440 42.785

Table 7.5: Running time to evaluate St
n at 1000 random evaluation points in Kn with Magma

(v2-19.4) on one core of a 2.00GHz Intel R© E7540 CPU. The parameter k is chosen to minimize
the degree of the extension of K required for the factorization.

is not fixed and k+1, n−k+1 < 7. Nevertheless, the factorization is still the most expensive
step in the evaluation of St

n. In the next section, we present how saving factorizations when
interpolating summation polynomials.

7.4.2 Sparing factorizations

The most time consuming step in the evaluation of St
n is to find the corresponding evalu-

ations points of Sp
k+1 and Sp

n−k+1. That is to say to find a solution of the system (7.9).

170 Chapter 7. Summation polynomials in characteristic 2

Algorithm 23: Evaluating summation polynomials by factorization and resultant of
univariate polynomials.

Input : An evaluation point (s̃1, S̃2, . . . , S̃n−1, Ẽn) ∈ Kn and the summation
polynomials partially and totally symmetrized Sp

i and St
i for

i ∈ {3, . . . , n− 1}.
Output: St

n(s̃1, S̃2, . . . , S̃n−1, Ẽn) ∈ K or fail.
f := Xn + (s̃21 + s̃1)X

n−1 +
∑n−1

i=2 S̃iX
n−i + Ẽ2

n; L := K;1

f1, . . . , fr := Factorization of f in K;2

d1, . . . , dr := Degree of f1, . . . , fr with d1 ≤ · · · ≤ dr;3

if there not exists k ∈
{
2, . . . , n−2

2

}
s.t. there exist j1, . . . , js ∈ {1, . . . , r} all pairwise4

distinct s.t. k =
∑s

i=1 dji then
i := minj=1,...,r{j | dj 6= 1};5

L := K[α]/fi(α) extension of K of degree di;6

f1, . . . , fr := Factorization of f in L;7

d1, . . . , dr := Degree of f1, . . . , fr with d1 ≤ · · · ≤ dr;8

Let k ∈
{
2, . . . , n−2

2

}
s.t. there exist j1, . . . , js ∈ {1, . . . , r} all pairwise distinct s.t.9

k =
∑s

i=1 dji ;
Fk :=

∏s
i=1 fji ; Fn−k := f/Fk;10

for i := 1 to k do S̃i,k := Coefficient of Xk−i in Fk;11

for i := 1 to n− k do S̃i,n−k := Coefficient of Xn−k−i in Fn−k;12

Computing Ẽk,k, Ẽn−k,n−k, s̃1,k, s̃1,n−k using Algorithm 22;13

if k + 1 < 5 then f1 := Sp
k+1(s̃1,k, S̃2,k, . . . , S̃k−1,k, Ẽk,k, X) ∈ L2[X];14

else f1 := St
k+1(s̃1,k +X2, S̃2,k + (X4 +X2)(s̃21,k + s̃1,k), . . . , Ẽk,k(X

2 +X));15

if n− k + 1 < 5 then16

f2 := Sp
n−k+1(s̃1,n−k, S̃2,n−k, . . . , S̃n−k−1,n−k, Ẽn−k,n−k, X) ∈ L2[X];17

else f2 := St
n−k+1(s̃1,n−k +X2, . . . , Ẽn−k,n−k(X

2 +X));18

if deg(f1) = degX(Sp
k+1) and deg(f2) = degX(Sp

n−k+1) then19

return Resultant(f1, f2);20

else return fail ;21

Assume s̃1,k, S̃2,k, . . . , S̃k−1,k, Ẽk,k, s̃1,n−k, S̃2,n−k, . . . , S̃n−k−1,n−k, Ẽn−k,n−k is a solution of the
system (7.9). Then, we can easily construct a solution of this system for the evaluation point
(s̃1 + 1, S̃2, . . . , S̃n−1, Ẽn). Indeed, s̃1 = s̃1,k + s̃1,n−k implies that s̃1 + 1 = (s̃1,k + 1) + s̃1,n−k.
Moreover, the n − 1 last equations of the system (7.9) either do not depend on s1,k or de-
pend on s1,k by α2 = s1,k + s21,k. Since α2 is invariant when adding 1 to s1,k we obtain that

s̃1,k+1, S̃2,k, . . . , S̃k−1,k, Ẽk,k, s̃1,n−k, S̃2,n−k, . . . , S̃n−k−1,n−k, Ẽn−k,n−k is a solution of the sys-
tem (7.9) when s̃1 is replaced by s̃1 + 1.

Therefore, to speed up the evaluation step in the interpolation of the variable s1 of St
n

instead of choosing d1 = deg1(S
t
n) random s̃

(i)
1 for i = 1, . . . , d1 and computing the polynomials

St
n(s̃

(i)
1 , S2, . . . , Sn−1, En) for i = 1, . . . , d1 as described in Section 7.3, we choose only

⌈
d1
2

⌉

random s̃
(i)
1 for i = 1, . . . ,

⌈
d1
2

⌉
. Then, for i = 1, . . . ,

⌈
d1
2

⌉
by using the same evaluation

7.4. Summation polynomials by implicit sparse multivariate interpolation 171

of the n − 1 last variables we compute the two polynomials St
n(s̃

(i)
1 , S2, . . . , Sn−1, En) and

St
n(s̃

(i)
1 + 1, S2, . . . , Sn−1, En). By consequence, we divide by a factor two the number of

factorizations of univariate polynomials required to interpolate the variable s1.
To take full advantage of this trick the variable s1 is the last interpolated variable. Indeed,

the number of evaluations required to interpolate a variable depends on the number of terms
interpolated until now, which increases as the number of interpolated variables.

Except an efficient evaluation function, to be efficient Zippel’s algorithm needs a sharp
bound on the degree in each variables of the interpolated polynomial. The next section tackle
this issue for St

n.

7.4.3 Degree of summation polynomials

Bound on the total degree of St
n

In Section 5.4 Theorem 5.10, it is shown that the nth summation polynomial has degree
2n−2 in each variable. Hence, by construction the nth summation polynomial expressed in
terms of the elementary symmetric polynomial e1(x), . . . , en(x) where x = (x1, . . . , xn) are
of total degree at most 2n−2. Since the polynomials e1(x2), e2(y2), . . . , en−1(y2), en(y) where
x2 = (x21, . . . , x

2
n), y2 = (x21+x

4
1, . . . , x

2
n+x

4
n) and y = (x1+x

2
1, . . . , xn+x

2
n) are symmetric they

can thus be expressed in terms of e1(x), . . . , en(x). That is to say, there exist n polynomials
ρ1, . . . , ρn such that 




ρ1(e1(x), . . . , en(x)) = e1(x2)
ρ2(e1(x), . . . , en(x)) = e2(y2)

...
ρn−1(e1(x), . . . , en(x)) = en−1(y2)
ρn(e1(x), . . . , en(x)) = en(y)

. (7.13)

Clearly, ρ1 and ρn are of degree 2 and ρ2, . . . , ρn−1 are of degree 4. We do not have a formal
proof that ρ(h)1 , . . . , ρ

(h)
n are algebraically independent. However, we have checked this algebraic

independence by using Magma for many values of n. Hence, we follows Hypothesis 7.23.

Hypothesis 7.23. For any n ≥ 3, the polynomials ρ(h)1 , . . . , ρ
(h)
n are algebraically independent.

By using the result of Lemma 3.6 we can thus bound the degree of St
n.

Lemma 7.24. Under Hypothesis 7.23, for all n ≥ 3 we have deg(St
n) ≤ 2n−3.

Proof. Let us write St
n =

∑
α∈Nn cαs

α1
1 Sα2

1 · · ·Sαn−1

n−1 E
αn
n . From Lemma 3.6 for the weights

system (2, 4, . . . , 4, 2) we have wdeg(St
n) = max {∑n

i=1 αiwi |cα 6= 0} = deg(Fn) ≤ 2n−2 where
Fn is the nth summation polynomial expressed in terms of e1(x), . . . , en(x). Since the wi’s are
all divisible by 2, the degree of St

n which is given by max{∑n
i=1 αi |cα 6= 0} is at least divided

by 2 in comparison to its weighted degree. Consequently, we have deg(St
n) ≤ 2n−3.

Exact degree in each variable of St
n

From Lemma 7.24, St
n has degree at most 2n−3 in each variable. We can thus use Zippel’s

algorithm to interpolate it. In order to get a more efficient interpolation of St
n, from this

bound on the degree of St
n, we look for the exact degree in each variables of St

n. To this

172 Chapter 7. Summation polynomials in characteristic 2

aim, we proceed as follows: we choose an initial evaluation point s̃1, S̃2, . . . , S̃n−1, Ẽn and we
interpolate the n following univariate polynomials:

F1 = St
n(s1, S̃2, . . . , S̃n−1, Ẽn)

Fi = St
n(s̃1, S̃2, . . . , S̃i−1, Si, S̃i+1, . . . , S̃n−1, Ẽn) for i = 2, . . . , n− 1

Fn = St
n(s̃1, S̃2, . . . , S̃n−1, En)

.

With good probability, we thus have deg(Fi) = degi(S
t
n). In Table 7.6, we give the degree in

each variables of the summation polynomials obtained in this way.

n Degree in each variable
6 (8,2,4,2,4,5)
7 (16,5,8,4,8,5,16)
8 (32,10,16,8,16,10,16,24)
9 (64,24,32,20,32,20,32,24,64)

Table 7.6: Degree in each variables of the summation polynomials.

At each step the number of evaluations required to interpolate the current variable depends
on the number of terms already interpolated. Thus, our strategy is to interpolate the variables
by increasing order of the di’s in order to try to minimize the growth of the number of terms
interpolated at each step. For instance for n = 8 we interpolate the variables in the following
order: S4, S2, S6, S3, S5, S7, E8, s1. Note that we no longer use bounds on the di’s but the
exact values of the di’s.

We can note that for n ≤ 9 the degree of St
n in any variables is less than or equal to

the degree of St
n in the variable s1. By consequence, interpolating at last the variable s1 (as

mentioned in Section 7.4.2) is consistent with our strategy of interpolating the variables in
increasing order of the di’s.

In Section 7.2, the compact representation of summation polynomials in characteristic
two allows us to compute until the 7th summation polynomial by using the usual method.
Using sparse multivariate interpolation algorithm of Zippel and the evaluation of St

8 as just
presented, we are now able to compute the 8th summation polynomial of a given curve i.e.
the parameter t of the curve is fixed in some finite field F2k . We now present some details
about our implementation and timings.

7.4.4 Computation of the eighth summation polynomial

Computing St
8 without knowing its support

In Table 7.7 we give detailed timings about the computation of the eighth summation polyno-
mial expressed w.r.t. Ωn,n of a curve defined over F232 by using sparse multivariate polynomial
interpolation. The computations have been done with Magma. At each step i.e. for each in-
terpolated variable, the evaluation step has been parallelized on eight cores. It is the only part
of Zippel’s algorithm which has been parallelized. Each step of Zippel’s algorithm corresponds
to a line of Table 7.7. For each step we give the current variable that we want to interpolate,
the degree of St

8 in this variable and the number of evaluations required to interpolate the
current variable. We recall that this number is given by diti−1 where ti−1 is the number of
terms interpolated at the previous step (given in the last column of Table 7.7). We also detail

7.4. Summation polynomials by implicit sparse multivariate interpolation 173

the time of each step to interpolate the current variable. More precisely, we give the time to
perform all the required evaluations (the total CPU time and the wall-clock-time using eight
cores); the time to solve the di Vandermonde systems and the time to reconstruct the ti−1

coefficients of the polynomial interpolated until now as univariate polynomial in the current
variable. The “Data gathering” column in Table 7.7 gives the time to collect the evaluations
of St

8 which has been saved in files.
As expected, one can note in Table 7.7 that the most time consuming step in the com-

putation of St
8 is the evaluation step. Indeed, the evaluations step requires approximately 39

CPU hours of the 40.5 CPU hours required to compute St
8. Note that by using eight cores

the eighth summation polynomial can be computed in approximately 22,500 seconds that is
to say 6.25 hours.

One can notice that for the 5,085,889 evaluations of St
8 the total CPU time required is of

141,000 CPU seconds. That is to say approximately 27.7 CPU seconds for 1000 evaluations.
Which is less than the 42.785 CPU seconds expected from Table 7.5. This is a consequence of
interpolating at least the variable s1. Indeed, in that case the total number of evaluations is
dominated by the number of evaluations required to interpolate the variable s1. Moreover, as
previously mentioned, to interpolate s1 we can save one half of the factorizations of univariate
polynomials which is the most costly part of the evaluation of St

8. Thus it is natural to expect
an average time for the evaluation step divided by a factor slightly less than two in comparison
to the same number of evaluations at random points.

The obtained eighth summation polynomial consists of 470,369 terms that is to say its
density is about 0.79%. In view of the number of terms in St

8 it seems very difficult to
compute it with the usual method involving bigger polynomials (see Section 7.2).

Computing St
8 knowing its support

Once we have computed the eighth summation polynomial for a given curve, we know the
support of the summation polynomial and to compute it for another curve, we just have
to interpolate its coefficients. That is to say we need to evaluate St

8 at exactly 470,369
evaluation points chosen in the following way: we randomly choose s̃1, S̃2, . . . , S̃7, Ẽ8 such
that the monomials in the support of St

8 evaluated in this point are all distinct. Then we
evaluate St

8 at the evaluation points s̃i1, S̃
i
2, . . . , S̃

i
7, Ẽ

i
8 for i = 0, . . . , t − 1 with t = 470, 369.

Finally, to recover the coefficients of the eighth summation polynomial we have to solve a
transpose Vandermonde system of size t× t.

The evaluation of St
8 at the 470,369 evaluation points can be done in 15,900 CPU seconds

using Magma (v2-19.4). This can be easily parallelized and by using eight cores we can
compute it in 2,160 seconds. Solving the transpose Vandermonde system can be done in
706 seconds CPU seconds (including time to data gathering and to reconstruct St

8). Hence,
computing St

8 once its support is known can be done in 16,600 CPU seconds and 2,870 seconds
by using eight cores for the evaluation.

7.4.5 Discussion about the computation of the ninth summation polyno-
mial

Since, we are able to compute the eighth summation polynomial a natural issue would be
to compute the ninth summation polynomial. Before throwing oneself headlong into this

17
4

C
h
a
p
t
e
r

7.
Su

m
m

at
io

n
p
ol

yn
om

ia
ls

in
ch

ar
ac

te
ri

st
ic

2

In
te

rp
ol

at
ed

va
ri

ab
le

s

d
eg

i
(S

t 8
)

N
um

b
er

of
ev

al
ua

ti
on

s
Time

ti

Evaluation

V
an

de
rm

on
de

sy
st

em
s

D
at

a
ga

th
er

in
g

In
te

rp
ol

at
io

n Total

CPU
WCT

CPU
WCT

time
eight

time
eight

cores cores

S4 8 9 1.16s 0.28s 0s 0s 0.02s 1.18s 0.3s 9
S2 10 90 2.95s 0.48s 0.04s 0.01s 0.03s 3.03s 0.56s 63
S6 10 630 30.7s 5.79s 0.09s 0.06s 0.04s 30.9s 5.98s 291
S3 16 4,656 180s = 3min 24s 1.01s 0.55s 0.31s 182s ∼ 3min 25.8s 1,468
S5 16 23,488 939s ∼ 16min 122s ∼ 2min 4.91s 2.71s 1.93s 949 ∼ 16min 131s ∼ 2min 5,981
S7 16 95,696 3,750s ∼ 1h 481s ∼ 8min 30.3s 12.7s 7.42s 3,800s ∼ 1h 532s ∼ 9min 26,711
E8 24 641,064 26,700s ∼ 7.5h 3,380s ∼ 1h 281s ∼ 5min ∼1.5min ∼1min 27,200s ∼ 7.5h 3,810s ∼ 1h 135,008
s1 32 4,320,256 109,000s ∼ 30h 13,700s ∼ 4h 3,020s∼ 50min ∼11min ∼9min 113,000s ∼ 31.5h 17,900s ∼ 5h 470,369
Total 5,085,889 ∼39h ∼5h ∼1h ∼13min ∼10min ∼40.5h ∼6.2h

Table 7.7: Running time to compute St
8 of an elliptic curve defined over F232 with Magma (v2-19.4) on a 2.00GHz Intel R© E7540 CPU

by using Zippel’s multivariate polynomial interpolation algorithm.

7.5. Application to the Discrete Logarithm Problem 175

computation, we give an estimation of the CPU time required to compute St
9 by using Zippel’s

algorithm.
First, we need an estimation of the total number of terms contained in St

9. Assume that
the density of St

9 is divided by two in comparison of that of St
8 (which is the ratio between

the density of St
6 and that of St

7 see Table 7.1 and approximately also the ratio between the
density of St

7 and that of St
8). The density of St

9 would be about 0.40%. Thus, St
9 would

consist of 342,358,598 terms.
For n = 8 we already need a field of size at least 232 to ensure that Zippel’s algorithm give

the right result. Indeed, from our experiments we observe that the bound on the probability of
success of Zippel’s algorithm, 1− n2dt

q , seems to be sufficient to ensure a correct result and that
the algorithm does not return fail. Hence, for n = 8 by choosing K = F232 the corresponding
probability bound is 0.78. Therefore, for n = 9 we cannot choose a smaller field. Moreover,
if we use the probability bound of Zippel’s algorithm to ensure a failure probability less than
0.5 for n = 9, we need to choose a field of size at least 242.

The CPU time to compute the evaluations of St
9 at 1000 points randomly chosen in (F232)

9

(respectively (F242)
9) is about 72 seconds (respectively 630 seconds). Since the number of

evaluations required to compute St
9 is lower bounded by the number of terms, if we assume

that we can divide the total time for the evaluation step by two (by interpolating the variable
s1 at least) then the total CPU time for the evaluation part of Zippel’s algorithm to compute
St
9 would be lower bounded by 4.8 months (respectively 3.5 years) by using the field F232

(respectively F242).
We do not pretend that these estimations are tight but they show that the ninth summation

polynomial seems very difficult to handle.

7.5 Application to the Discrete Logarithm Problem

In this section, we present the impact of such symmetries to the point decomposition problem
solving. We want to compare the point decomposition problem solving using these symmetries
and using only the action of the symmetric group as presented in [Gau09] see Chapter 5.

7.5.1 Using symmetries to speed up the PDP solving in characteristic two

Under Hypothesis 7.23 (which has been checked for various n), we can use results of Chapter 3
to estimate the impact of such symmetries on the PDP solving.

As mentioned in Chapter 5 and Chapter 6 in practice we observe that polynomial systems
obtained from a Weil descent from Fqn to (Fq)

n over the (n + 1)th summation polynomial
evaluated in the abscissa of the point we want to decompose and expressed in terms of the
elementary symmetric polynomials are regular. By consequence, from Corollary 3.25, using
the symmetries presented in Section 7.1.1 of binary summation polynomials allows to divide
the complexity of the Point Decomposition Problem by a factor of (

∏n
i=1 deg(ρi))

ω = 22ω(n−1).

Theorem 7.25. Let E be a binary elliptic curve defined over K = F2nk by

E : y2 + xy = x3 + α (7.14)

where α ∈ K. Under Hypothesis 5.18 and 7.23, the arithmetic complexity of the Point Decom-
position Problem is bounded by

176 Chapter 7. Summation polynomials in characteristic 2

• (proven complexity) Õ
(
n23(n−1)(n−2)

)
;

• (heuristic complexity) Õ
(
neωn2ω(n−1)(n−2)

)
.

Proof. In Section 5.2.4 we saw that binary elliptic curves defined by equation (7.14) can
be put in universal Edwards model. Hence, we can compute the summation polynomial
for the curve E that admits the symmetries presented in Section 7.1.1. From Chapter 5
Section 5.6.1 the complexity of solving the PDP by using the action of the symmetric group
is bounded by Õ

(
neωn2ωn(n−1) + n23n(n−1)

)
arithmetic operations where the first part of the

complexity corresponds to the F5 step and the second corresponds to the change of ordering
step. The polynomials ρ1, . . . , ρn in equation (7.13) give the change of variables between the
system S1 in K[e1, . . . , en] using the action of the symmetric group and the system S2 in
K[s1, S2, . . . , Sn−1, En] using symmetries presented in Section 7.1.1 equation (7.4). Hence,
from Theorem 3.14 by equipping the ring K[s1, S2, . . . , Sn−1, En] of the weights (2, 4, . . . , 4, 2)
corresponding to the degrees of the ρi’s; the complexity of solving S2 in comparison to that
of solving S1 is divided by 22ω(n−1) (respectively 26(n−1)) for the F5 step (respectively change
of ordering step). By consequence, we obtain the proven complexity.

The heuristic complexity is obtained by using the complexity of change of ordering for
Gröbner bases in Shape Position, see Chapter 4. Indeed, we observe that the lexicographical
Gröbner basis of 〈S2〉 is in Shape Position. In order to preserve the quasi-homogeneous struc-
ture, we do not apply the randomization strategy (with low probability of success since p = 2).
However, we observe that very few normal forms are required to compute the multiplication
matrix by the smallest variable. Hence, its computation is still negligible in the total solving
process.

Remark 7.26. For S1 we observe that its LEX Gröbner basis is a triangular set. In that case,
we need to compute all the mulitplication matrices. However, since the degree of the equations
depends exponentially on n, results of Theorem 4.11 does not apply.

7.5.2 Benchmarks on the PDP solving

We conclude this section by giving experimental results showing the impact of the symmetries
of binary curves on the PDP solving.

In Table 7.8 we present timings for solving the PDP for n = 4, 5 by using the action of
the symmetric group as presented in [Gau09] corresponding to lines labelled by “Sn [Gau09]”
and by using the action of the 2-torsion as presented in Section 7.1.1 corresponding to line
labelled “This work”. We give the time to compute the (W)DRL Gröbner basis using the
implementation of F4 of Magma. We give also the real and theoretical maximal degree
(column “dmax/dtheo”) reached by the polynomials during the computation of the (W)DRL
Gröbner basis. The theoretical bound is obtained by using Corollary 2.76. The timings for the
change of ordering using the implementation of FGLM of Magma is given in column “FGLM”.
The column “# solutions” gives the degree of the ideal.

We can observe that as expected by the Bézout’s bound for quasi-homogeneous system,
the degree of the ideal 〈S2〉 is divided by 22(n−1) =

∏n
i=1 deg(ρi) =

∏n
i=1wi in comparison

of the degree of 〈S1〉; where the (w1, . . . , wn) are the weights of which K[s1, S2, . . . , Sn−1, En]
is equipped. For n = 4, we observe that for k = 16 (respectively k = 32) our method is
approximately 900 (respectively 5500) times faster than the initial method in [Gau09].

1Out of memory on barbecue at Nancy with 512GB of RAM.

7.5. Application to the Discrete Logarithm Problem 177

n k F4 dmax/dtheo FGLM # solutions Total

4
16

Sn [Gau09] 0.540s 24/29 44.290s 4096 44.830s
This work 0.040s 24/24 0.010s 64 0.050s

32
Sn [Gau09] 1.410s 24/29 660.890s 4096 662.300s
This work 0.070s 24/24 0.050s 64 0.120s

5
16

Sn [Gau09] 17080.590s 68/76 ❆1 1048576 ❆
This work 60.020s 68/68 1193.140s 4096 1253.160s

32 This work 194.520s 68/68 12430.540s 4096 12625.060s

Table 7.8: CPU time to solve the PDP for n = 4, 5 with Magma (v2-19.4) on one core of a
2.00GHz Intel R© E7540 CPU.

For n = 5 we are now able to solve the PDP using Magma in approximately 20 minutes
for k = 16 and 3.5 hours for k = 32. With the algorithm of Gaudry, we cannot perform the
change of ordering as it requires a lot of memory. Note that with our method, for k = 16 the
time to compute the (W)DRL Gröbner basis is divided by a factor of about 280.

One can notice that the most time consuming step in the PDP solving is the change
of ordering. Moreover, when using the symmetries presented in Section 7.1.1 the obtained
lexicographical Gröbner basis is in Shape Position (which is not the case by using only the
action of the symmetric group). Hence, we can use the change of ordering algorithm for Shape
Position ideals presented in Section 2.3.2. In Table 7.9 we give the timings for solving the
PDP by using symmetries presented in this chapter and a first implementation in Magma

of the change of ordering algorithm for Shape Position ideals. Note that since the field is
of characteristic two, the randomized strategy in Section 4.5 has a very low probability of
success. In practice, we observe that with or without random linear change of variables there
are very few normal forms to compute.

n k F4 dmax/dtheo Fast FGLM # solutions Total

5
16 60.020s 68/68 257.510s 4096 317.530s
32 194.520s 68/68 2680.190s 4096 2874.710s

Table 7.9: CPU time to solve the PDP for n = 5 with Magma (v2-19.4) on one core of a
2.00GHz Intel R© E7540 CPU by using change of ordering for Shape Position ideals.

Whether in theory or in practice using the action of the two torsion of elliptic curves allows
to significantly improve the Point Decomposition Problem solving for binary elliptic curves.
Indeed, the complexity is divided by an exponential factor, 22ω(n−1) where 2 ≤ ω < 2.3727
is the linear algebra constant. Moreover, for n = 5 and a base field of 16 bits the PDP was
intractable while one can now solve it in approximately 5 minutes using Magma. Note that
by using FGb the timings are much faster and the timings with Magma could be improve
with an efficient implementation of change of ordering algorithm for Shape Position ideals.
For instance for k = 31 and n = 5 solving the PDP can be achieved in approximately 10
seconds with FGb on one core of a 1.70GHz Intel R© i7-4650U CPU.

List of Tables

2.1 Complexity to solve a univariate polynomial of degree d in number of operations
in K. When K = Q, s denotes the size of the coefficients of the polynomial and
the complexity is given in number of word operations. 61

4.1 A worst case example: comparison of the usual algorithm for solving the PoSSo
problem and Algorithm 16, the proposed algorithm. Computation with FGb
on a 3.47 GHz Intel Xeon X5677 CPU. 100

6.1 Computing time of Gröbner basis with Magma (V2-19.1) on one core of a 2.00
GHz Intel R© E7540 CPU for n = 4. The last column (number of operations) is
based on FGb. 142

6.2 Computing time of Gröbner basis with FGb on a 3.47 GHz Intel R© X5677 CPU
for n = 5. 143

6.3 Computing time of Gröbner basis with Magma (V2-19.1) on one core of a 2.00
GHz Intel R© E7540 CPU for n = 5 and decomposition in n−1 points. Operation
counts are obtained using FGb. 144

6.4 Computing time of DRL Gröbner basis with FGb on a 3.47 GHz Intel R© X5677
CPU for n = 6 and decomposition in n− 1 points. 144

6.5 Number of operations needed to solve the ECDLP defined over Fqn for n =
4, 5, 6 and 32 ≤ log2(q) ≤ 128. 147

6.6 Domain parameters according to the security level given in number of boolean
operations needed to solve the ECDLP. 148

7.1 Density of summation polynomials of binary elliptic curves expressed in terms
of the polynomial change of variables Ωn,n. 158

7.2 CPU time to compute the nth summation polynomial with Magma (v2-19.4)
on one core of a 2.00GHz Intel R© E7540 CPU by using resultant and elimination
ideals. 160

7.3 CPU time to compute the nth summation polynomial with Magma (v2-19.4)
on one core of a 2.00GHz Intel R© E7540 CPU by using resultant and normal
forms. 160

7.4 Running time to evaluate St
n at 1000 random evaluation points in Kn with

Magma (v2-19.4) on one core of a 2.00GHz Intel R© E7540 CPU. 169
7.5 Running time to evaluate St

n at 1000 random evaluation points in Kn with
Magma (v2-19.4) on one core of a 2.00GHz Intel R© E7540 CPU. The param-
eter k is chosen to minimize the degree of the extension of K required for the
factorization. 169

179

180 LIST OF TABLES

7.6 Degree in each variables of the summation polynomials. 172
7.7 Running time to compute St

8 of an elliptic curve defined over F232 with Magma

(v2-19.4) on a 2.00GHz Intel R© E7540 CPU by using Zippel’s multivariate poly-
nomial interpolation algorithm. 174

7.8 CPU time to solve the PDP for n = 4, 5 with Magma (v2-19.4) on one core of
a 2.00GHz Intel R© E7540 CPU. 177

7.9 CPU time to solve the PDP for n = 5 with Magma (v2-19.4) on one core of
a 2.00GHz Intel R© E7540 CPU by using change of ordering for Shape Position
ideals. 177

List of Figures

1.1 Résolution de systèmes polynomiaux par bases de Gröbner. 6
1.2 Exemples de courbes elliptiques définies sur les réels. 8
1.3 Comparaison des complexités des deux étapes de la résolution du problème

PoSSo par base de Gröbner. Le nombre de variables est fixé à n = 20 et le
degré des équations d tend vers l’infini. 12

2.1 Intersection of sections of the quotient ring R = K[x1, . . . , xn]/I by xd11 , . . . , x
di−1

i−1 ,

xdii+1, . . . , x
dn−2

n−1 with I a generic ideal. 32
2.2 Steps of height one and generators of in>drl

(I)d. 35
2.3 Macaulay matrix of (f1, . . . , fs) in graduation d w.r.t. >. 42

4.1 Complexity of change of ordering and F5 steps in the polynomial system solving
process with d→ ∞ and n = 20. 81

4.2 Shape of the matrix M of Algorithm 15. 91

5.1 Group law of elliptic curves. 105
5.2 Jacobi intersection curve over the real numbers. 108
5.3 Edwards curve over the real numbers. 109
5.4 Pollard ρ method. 113

181

List of Algorithms

1 Computing normal forms by linear algebra. 31
2 Applying a polynomial change of variables (1). 38
3 Applying a polynomial change of variables (2). 38
4 Computing Gröbner bases by linear algebra: Lazard’s algorithm. 42
5 Computing Gröbner bases by linear algebra: Matrix F5 algorithm. 44
6 Computing the multiplication matrices: the original algorithm. 46
7 UPDATE(T1, . . . , Tn, t, nf) . 47
8 A change of ordering algorithm for Gröbner bases: FGLM. 48
9 Probabilistic change of ordering algorithm for Shape Position ideals. 51
10 Computing hn deterministically. 51
11 Polynomial systems solving . 62
12 Solving polynomial systems admitting polynomial change of variables. 70
13 LEX Gröbner basis computation as a triangular set. 85
14 Probabilistic change of ordering for Shape Position ideals. 86
15 Building multiplication matrices (in the following || does not mean parallel code

but gives details about pseudo code on the left side). 88
16 Another algorithm for PoSSo. 97
17 Pohlig-Hellman reduction. 112
18 Baby step giant step for DLP. 112
19 Index calculus attack for ECDLP. 121
20 Sparse multivariate polynomial interpolation: Zippel’s algorithm. 163
21 Evaluating summation polynomials. 165
22 Computing Ẽk,k, Ẽn−k,n−k, s̃1,k, s̃1,n−k. 168
23 Evaluating summation polynomials by factorization and resultant of univariate

polynomials. 170

183

Bibliography

[AD94] Leonard M. Adleman and Jonathan DeMarrais. A subexponential algorithm for
discrete logarithms over all finite fields. In Advances in Cryptology—CRYPTO’93,
pages 147–158. Springer, 1994.

[ADH94] Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh Huang. A subex-
ponential algorithm for discrete logarithms over the rational subgroup of the
jacobians of large genus hyper- elliptic curves over finite fields. In Algorithmic
Number Theory, volume 877 of Lecture Notes in Comput. Sci. Springer–Verlag,
1994. 6th International Symposium.

[AH96] Leonard M. Adleman and Ming-Deh A. Huang. Counting rational points on
curves and abelian varieties over finite fields. In Henri Cohen, editor, Algorithmic
Number Theory, volume 1122 of Lecture Notes in Computer Science, pages 1–16.
Springer Berlin Heidelberg, 1996.

[Bar04] Magali Bardet. Étude des Systèmes Algébriques Surdéterminés. Applications aux
Codes Correcteurs et à la Cryptographie. PhD thesis, Université Pierre et Marie
Curie, 2004.

[BBJ+08] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Chistiane Pe-
ters. Twisted edwards curves. In Proceedings of the Cryptology in Africa 1st
international conference on Progress in cryptology, AFRICACRYPT’08, pages
389–405, Berlin, Heidelberg, 2008. Springer-Verlag.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system.
I. The user language. J-SYMBOLIC-COMP, 24(3–4):235–265, 1997.

[BFP09] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Hybrid approach for
solving multivariate systems over finite fields. Journal of Mathematical Cryptol-
ogy, volume 3(issue 3):177–197, 2009.

[BFP12] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Cryptanalysis of HFE,
multi-HFE and variants for odd and even characteristic. Designs, Codes and
Cryptography, pages 1–52, 2012.

[BFS04] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity of
gröbner basis computation of semi-regular overdetermined algebraic equations. In
International Conference on Polynomial System Solving - ICPSS, pages 71 –75,
November 2004.

185

186 BIBLIOGRAPHY

[BFSS13] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenle-
hauer. On the complexity of solving quadratic boolean systems. Journal of
Complexity, 29(1):53–75, 2013.

[BFSY05] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and BY Yang. Asymptotic
behaviour of the degree of regularity of semi-regular polynomial systems. In
P. Gianni, editor, The Effective Methods in Algebraic Geometry Conference, Mega
2005, pages 1 –14, May 2005.

[BGJT13] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A
quasi-polynomial algorithm for discrete logarithm in finite fields of small charac-
teristic. http://hal.inria.fr/hal-00835446, 2013.

[BGY80] Richard P Brent, Fred G Gustavson, and David YY Yun. Fast solution of Toeplitz
systems of equations and computation of Padé approximants. Journal of Algo-
rithms, 1(3):259–295, 1980.

[BH74] James Bunch and John Hopcroft. Triangular factorization and inversion by fast
matrix multiplication. Mathematics of Computation, 28(125):231–236, 1974.

[BL] Daniel J. Bernstein and Tanja Lange. Explicit-Formulas Database. http://www.
hyperelliptic.org/EFD/.

[BL07] Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on elliptic
curves. In Advances in Cryptology : ASIACRYPT 2007, volume 4833 of Lecture
Notes in Computer Science, pages 29–50. Springer, 2007.

[BLP93] J.P. Buhler, Hendrik W. Lenstra, and Carl Pomerance. Factoring integers with
the number field sieve. In Arjen K. Lenstra and Hendrik W. Lenstra, editors, The
development of the number field sieve, volume 1554 of Lecture Notes in Mathe-
matics, pages 50–94. Springer Berlin Heidelberg, 1993.

[BM74] Allan Borodin and Robert Moenck. Fast modular transforms. J. Comput. Syst.
Sci., 8(3):366–386, June 1974.

[BMMT94] Eberhard Becker, Teo Mora, Maria Grazia Marinari, and Carlo Traverso. The
shape of the shape lemma. In Proceedings of the international symposium on
Symbolic and algebraic computation, ISSAC ’94, pages 129–133, New York, NY,
USA, 1994. ACM.

[BOT88] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse mul-
tivariate polynomial interpolation. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, STOC ’88, pages 301–309, New York, NY,
USA, 1988. ACM.

[BPW06] Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Weinmann. A zero-
dimensional Gröbner basis for AES-128. In Fast Software Encryption, pages
78–88. Springer, 2006.

[BRSS12] Saugata Basu, Marie-Françoise Roy, Mohab Safey El Din, and Éric Schost.
A baby step-giant step roadmap algorithm for general algebraic sets. CoRR,
abs/1201.6439, 2012.

http://hal.inria.fr/hal-00835446
http://www.hyperelliptic.org/EFD/
http://www.hyperelliptic.org/EFD/

BIBLIOGRAPHY 187

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives. Theo-
retical computer science, 22(3):317–330, 1983.

[BS87a] David Bayer and Michael Stillman. A criterion for detecting m-regularity. Inven-
tiones mathematicae, 87(1):1–11, 1987.

[BS87b] David Bayer and Michael Stillman. A theorem on refining division orders by the
reverse lexicographic order. Duke Mathematical Journal, 55(2):321–328, 1987.

[BSS03] Alin Bostan, Bruno Salvy, and Éric Schost. Fast algorithms for zero-dimensional
polynomial systems using duality. Applicable Algebra in Engineering, Communi-
cation and Computing, 14(4):239–272, 2003.

[Buc65] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenrings nach einem nulldimensionalen Polynomideal. PhD thesis, Mathemat-
ical Institute, University of Innsbruck, 1965.

[Buc06] Bruno Buchberger. Bruno Buchberger’s PhD thesis 1965: An algorithm for find-
ing the basis elements of the residue class ring of a zero dimensional polynomial
ideal. J. Symb. Comput., 41(3-4):475–511, March 2006.

[Can93] John F. Canny. Computing roadmaps of general semi-algebraic sets. Comput. J.,
36(5):504–514, 1993.

[CC86] David V. Chudnovsky and Gregory V. Chudnovsky. Sequences of numbers gen-
erated by addition in formal groups and new primality and factorization tests.
Advances in Applied Mathematics, 7(4):385–434, 1986.

[CCS11] Arjeh M. Cohen, Hans Cuypers, and Hans Sterk. Some Tapas of Computer
Algebra. Algorithms and Computation in Mathematics Series. Springer, 2011.

[CF05] Henri Cohen and Gerhard Frey, editors. Handbook of elliptic and hyperelliptic
curve cryptography. CRC Press, 2005.

[Che55] Claude Chevalley. Invariants of finite groups generated by reflections. American
Journal of Mathematics, 77(4):pp. 778–782, 1955.

[CK91] David G. Cantor and Erich Kaltofen. On fast multiplication of polynomials over
arbitrary algebras. Acta Inf., 28(7):693–701, October 1991.

[CL08] Jean-Marc Couveignes and Reynald Lercier. Galois invariant smoothness basis.
Series on Number Theory and Its Applications, 5:142–167, May 2008. World
Scientific.

[CLO07] David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms:
an Introduction to Computational Algebraic Geometry and Commutative Algebra,
volume 10. Springer, 2007.

[Coh93] Henri Cohen. A course in computational algebraic number theory, volume 138.
Springer, 1993.

188 BIBLIOGRAPHY

[Col97] Antoine Colin. Théorie des Invariants Effective. Applications à la Théorie de
Galois et à la Résolution de Systèmes Algèbriques. Implantation en Axiom. PhD
thesis, Université Pierre et Marie Curie, 1997.

[Cop93] Don Coppersmith. Modifications to the number field sieve. Journal of Cryptology,
6(3):169–180, 1993.

[Cou01] Jean-Marc Couveignes. Algebraic groups and discrete logarithm. In Public-key
cryptography and computational number theory, pages 17–27, 2001.

[CP05] Richard E Crandall and Carl Pomerance. Prime numbers: a computational per-
spective, volume 182. Springer, 2005.

[Dat03] Ruchira S Datta. Universality of Nash equilibria. Mathematics of Operations
Research, 28(3):424–432, 2003.

[DBP11] Mario De Boer and Ruud Pellikaan. Some Tapas of Computer Algebra, chapter
Gröbner Bases for Codes. In Algorithms and Computation in Mathematics Series
[CCS11], 2011.

[DF12] Oumar Diao and Emmanuel Fouotsa. Edwards model of elliptic curves defined
over any fields. Cryptology ePrint Archive, Report 2012/346, 2012. http://

eprint.iacr.org/.

[DGG+02] Jean-Guillaume Dumas, Thierry Gautier, Mark Giesbrecht, Pascal Giorgi, Brad-
ford Hovinen, Erich Kaltofen, B. David Saunders, Will J. Turner, and Gilles
Villard. LinBox: A generic library for exact linear algebra. In Arjeh M. Co-
hen, Xiao-Shan Gao, and Nobuki Takayama, editors, ICMS’2002, Proceedings of
the 2002 International Congress of Mathematical Software, Beijing, China, pages
40–50. World Scientific Pub., August 2002.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Trans. Inf. Theor., 22(6):644–654, September November 1976.

[Die06] Claus Diem. An index calculus algorithm for plane curves of small degree. In
Algorithmic number theory ANTS-VII, volume 4076 of Lecture Notes in Computer
Science, pages 543–557. Springer, 2006.

[Die11a] Claus Diem. On the discrete logarithm problem in class groups of curves. Math.
Comp, 80:443–475, 2011.

[Die11b] Claus Diem. On the discrete logarithm problem in elliptic curves. Compositio
Mathematica, 147:75–104, 2011.

[DIK06] Christophe Doche, Thomas Icart, and David R Kohel. Efficient scalar multipli-
cation by isogeny decompositions. In Public Key Cryptography-PKC 2006, pages
191–206. Springer, 2006.

[DK02] Harm Derksen and Gregor Kemper. Computational invariant theory, volume 131.
Springer, 2002.

http://eprint.iacr.org/
http://eprint.iacr.org/

BIBLIOGRAPHY 189

[DT08] Claus Diem and Emmanuel Thomé. Index calculus in class groups of non-
hyperelliptic curves of genus three. Journal of Cryptology, 21(4):593–611, 2008.

[Duq07] Sylvain Duquesne. Improving the arithmetic of elliptic curves in the Jacobi model.
Information Processing Letters, 104(3):101–105, 2007.

[Edw07] Harold M. Edwards. A normal form for elliptic curves. In Bulletin of the American
Mathematical Society, volume 44, pages 393–422, July 2007.

[EG02] Andreas Enge and Pierrick Gaudry. A general framework for subexponential
discrete logarithm algorithms. Acta Arith, 102(1):83–103, 2002.

[EG07] Andreas Enge and Pierrick Gaudry. An l (1/3+ ε) algorithm for the discrete log-
arithm problem for low degree curves. In Advances in Cryptology-EUROCRYPT
2007, pages 379–393. Springer, 2007.

[Eis95] David Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry.
Springer, 1995.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases
(F4). Journal of Pure and Applied Algebra, 139(1–3):61–88, June 1999.

[Fau02] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases
without reduction to zero (F5). In Proceedings of the 2002 international sympo-
sium on Symbolic and algebraic computation, ISSAC ’02, pages 75–83, New York,
NY, USA, 2002. ACM.

[Fau10] Jean-Charles Faugère. FGb: A library for computing Gröbner bases. In Komei
Fukuda, Joris Hoeven, Michael Joswig, and Nobuki Takayama, editors, Mathe-
matical Software - ICMS 2010, volume 6327 of Lecture Notes in Computer Sci-
ence, pages 84–87, Berlin, Heidelberg, September 2010. Springer Berlin / Heidel-
berg.

[FGHR12a] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël Renault. Fast
change of ordering with exponent ω. ACM Commun. Comput. Algebra, 46:92–93,
September 2012.

[FGHR12b] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël Renault. Using
symmetries and fast change of ordering in the index calculus for elliptic curves
discrete logarithm. In SCC ’12: Proceedings of the Third International Conference
on Symbolic Computation and Cryptography, pages 113–118, July 2012.

[FGHR13a] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël Renault. Poly-
nomial systems solving by fast linear algebra, 2013. http://arxiv.org/abs/

1304.6039.

[FGHR13b] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël Renault. Using
symmetries in the index calculus for elliptic curves discrete logarithm. Journal of
Cryptology, pages 1–41, 2013. doi 10.1007/s00145-013-9158-5.

http://arxiv.org/abs/1304.6039
http://arxiv.org/abs/1304.6039

190 BIBLIOGRAPHY

[FGLM93] Jean-Charles Faugère, Patrizia Gianni, Daniel Lazard, and Teo Mora. Efficient
computation of zero-dimensional Gröbner bases by change of ordering. Journal
of Symbolic Computation, 16(4):329–344, 1993.

[Fid72] Charles M. Fiduccia. Polynomial evaluation via the division algorithm the fast
fourier transform revisited. In Proceedings of the fourth annual ACM symposium
on Theory of computing, STOC ’72, pages 88–93, New York, NY, USA, 1972.
ACM.

[FJ03] Jean-Charles Faugère and Antoine Joux. Algebraic cryptanalysis of hidden field
equation (HFE) cryptosystems using Gröbner bases. In Boneh Dan, editor, Ad-
vances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer
Science, pages 44–60. Springer Berlin / Heidelberg, 2003.

[Flo67] Robert W. Floyd. Nondeterministic algorithms. J. ACM, 14(4):636–644, October
1967.

[FLR11] Jean-Charles Faugère, David Lubicz, and Damien Robert. Computing modular
correspondences for abelian varieties. Journal Of Algebra, 343(1):248–277, 2011.

[FM11] Jean-Charles Faugère and Chenqi Mou. Fast algorithm for change of ordering of
zero-dimensional Gröbner bases with sparse multiplication matrices. In ISSAC
’11: Proceedings of the 2011 international symposium on Symbolic and algebraic
computation, ISSAC ’11, pages 1–8, New York, NY, USA, 2011. ACM.

[FM13] Jean-Charles Faugère and Chenqi Mou. Sparse FGLM algorithms. http://hal.
inria.fr/hal-00807540, 2013.

[FNW10] Rongquan Feng, Menglong Nie, and Hongfeng Wu. Twisted jacobi intersections
curves. Theory and Applications of Models of Computation, pages 199–210, 2010.

[FP09] Jean-Charles Faugère and Ludovic Perret. An efficient algorithm for decompos-
ing multivariate polynomials and its applications to cryptography. Journal of
Symbolic Computation, 44(12):1676–1689, 2009.

[FPPR12] Jean-Charles Faugère, Ludovic Perret, Christophe Petit, and Guénaël Renault.
Improving the complexity of index calculus algorithms in elliptic curves over
binary fields. In David Pointcheval and Thomas Johansson, editors, Advances
in Cryptology EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer
Science, pages 27–44. Springer Berlin / Heidelberg, 2012.

[FR09] Jean-Charles Faugère and Sajjad Rahmany. Solving systems of polynomial equa-
tions with symmetries using SAGBI-Gröbner bases. In ISSAC ’09: Proceedings of
the 2009 international symposium on Symbolic and algebraic computation, ISSAC
’09, pages 151–158, New York, NY, USA, 2009. ACM.

[Fre01] Gerhard Frey. Applications of arithmetical geometry to cryptographic construc-
tions. In International Conference on Finite Fields and Applications, pages 128–
161, 2001.

[FS13] Jean-Charles Faugère and Jules Svartz. Gröbner bases of ideals invariant under
a commutative group: the non-modular case. In ISSAC, pages 347–354, 2013.

http://hal.inria.fr/hal-00807540
http://hal.inria.fr/hal-00807540

BIBLIOGRAPHY 191

[FSS11] Jean-Charles Faugère, Mohab Safey El Din, and Pierre-Jean Spaenlehauer. Gröb-
ner bases of bihomogeneous ideals generated by polynomials of bidegree (1,1):
Algorithms and complexity. Journal Of Symbolic Computation, 46(4):406–437,
2011.

[FSS13] Jean-Charles Faugère, Mohab Safey El Din, and Pierre-Jean Spaenlehauer. On
the complexity of the Generalized MinRank Problem. Journal of Symbolic Com-
putation, 55:30–58, 2013.

[FSV13] Jean-Charles Faugère, Mohab Safey El Din, and Thibaut Verron. On the com-
plexity of computing Gröbner bases for quasi-homogeneous systems. In ISSAC,
pages 189–196, 2013.

[Gal] André Galligo. Algorithmes de calcul de base standards. Université de Nice.

[Gal73] André Galligo. A Propos du Théorème de Préparation de Weierstrass. PhD thesis,
Institut de Mathématique et Sciences Physiques de l’Université de Nice, 1973.

[Gau09] Pierrick Gaudry. Index calculus for abelian varieties of small dimension and
the elliptic curve discrete logarithm problem. Journal of Symbolic Computation,
44(12):1690–1702, 2009.

[GG99] Karin Gatermann and Frédéric Guyard. Gröbner bases, invariant theory and
equivariant dynamics. Journal of Symbolic Computation, 28(1):275–302, 1999.

[GGMZ13] Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. On the
function field sieve and the impact of higher splitting probabilities: Application
to discrete logarithms in F21971 and F23164 . Cryptology ePrint Archive, Report
2013/074, 2013. http://eprint.iacr.org/.

[GGR03] Joachim von zur Gathen, Jaime Gutierrez, and Rosario Rubio. Multivariate
polynomial decomposition. Applicable Algebra in Engineering, Communication
and Computing, 14(1):11–31, 2003.

[GHS02] Pierrick Gaudry, Florian Hess, and Nigel Smart. Constructive and destructive
facets of Weil descent on elliptic curves. Journal of Cryptology, 15:19–46, 2002.

[GM89] Patrizia Gianni and Teo Mora. Algebraic solution of systems of polynomial equa-
tions using Gröbner bases. In Applied Algebra, Algebraic Algorithms and Error
Correcting Codes, Proceedings of AAECC-5, volume 356 of LNCS, pages 247–257.
Springer, 1989.

[GS11] Aurélien Greuet and Mohab Safey El Din. Deciding reachability of the infimum of
a multivariate polynomial. In ISSAC 2011—Proceedings of the 36th International
Symposium on Symbolic and Algebraic Computation, pages 131–138. ACM, New
York, 2011.

[GS12] Pierrick Gaudry and Éric Schost. Genus 2 point counting over prime fields.
Journal of Symbolic Computation, 47(4):368–400, 2012.

http://eprint.iacr.org/

192 BIBLIOGRAPHY

[GTTD07] Pierrick Gaudry, Emmanuel Thomé, Nicolas Thériault, and Claus Diem. A double
large prime variation for small genus hyperelliptic index calculus. Mathematics
of Computation, 76:475–492, 2007.

[Hes04] Florian Hess. Computing relations in divisor class groups of algebraic curves over
finite fields. Preprint, 2004.

[HI98] Ming-Deh Huang and Doug Ierardi. Counting points on curves over finite fields.
Journal of Symbolic Computation, 25(1):1 – 21, 1998.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In Joe P. Buhler, editor, Algorithmic Number The-
ory, volume 1423 of Lecture Notes in Computer Science, pages 267–288. Springer
Berlin Heidelberg, 1998.

[JM89] Edmund Jonckheere and Chingwo Ma. A simple Hankel interpretation of the
Berlekamp-Massey algorithm. Linear Algebra and its Applications, 125:65–76,
1989.

[Jou13a] Antoine Joux. Faster index calculus for the medium prime case application to
1175-bit and 1425-bit finite fields. In Thomas Johansson and Phong Q. Nguyen,
editors, Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture
Notes in Computer Science, pages 177–193. Springer Berlin Heidelberg, 2013.

[Jou13b] Antoine Joux. A new index calculus algorithm with complexity L(1/4 + o(1))
in very small characteristic. Cryptology ePrint Archive, Report 2013/095, 2013.
http://eprint.iacr.org/.

[JV12] Antoine Joux and Vanessa Vitse. Cover and decomposition index calculus on
elliptic curves made practical. In David Pointcheval and Thomas Johansson,
editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture
Notes in Computer Science, pages 9–26. Springer Berlin Heidelberg, 2012.

[JV13] Antoine Joux and Vanessa Vitse. Elliptic curve discrete logarithm problem over
small degree extension fields - application to the static Diffie-Hellman problem
on E(Fq5). J. Cryptology, 26(1):119–143, 2013.

[Kan01] Richard Kane. Reflection Groups and Invariant Theory. Springer, 2001.

[KG85] Walter Keller-Gehrig. Fast algorithms for the characteristic polynomial. Theor.
Comput. Sci., 36:309–317, June 1985.

[KL89] Erich Kaltofen and Yagati Lakshman. Improved sparse multivariate polynomial
interpolation algorithms. In Symbolic and Algebraic Computation, pages 467–474.
Springer, 1989.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177):203–209, 1987.

[Kob89] Neal Koblitz. Hyperelliptic cryptosystems. Journal of Cryptology, 1:139–150,
1989.

http://eprint.iacr.org/

BIBLIOGRAPHY 193

[Lak90] Yagati N. Lakshman. On the complexity of computing a Gröbner basis for the
radical of a zero dimensional ideal. In Proceedings of the twenty-second annual
ACM symposium on Theory of computing, STOC ’90, pages 555–563, New York,
NY, USA, 1990. ACM.

[Laz83] Daniel Lazard. Gröbner bases, gaussian elimination and resolution of systems of
algebraic equations. In J. van Hulzen, editor, Computer Algebra, volume 162 of
Lecture Notes in Computer Science, pages 146–156. Springer Berlin / Heidelberg,
1983.

[Laz92] Daniel Lazard. Solving zero-dimensional algebraic systems. Journal of symbolic
computation, 13(2):117–131, 1992.

[Len87] Hendrik W Lenstra. Factoring integers with elliptic curves. Annals of mathemat-
ics, pages 649–673, 1987.

[LL91] Yagati N. Lakshman and Daniel Lazard. On the complexity of zero-dimensional
algebraic systems. In Effective methods in algebraic geometry, volume 94, page
217. Birkhauser, 1991.

[LY97] Philippe Loustaunau and Eric V York. On the decoding of cyclic codes using
Gröbner bases. Applicable Algebra in Engineering, Communication and Comput-
ing, 8(6):469–483, 1997.

[Mac94] Francis S. Macaulay. The Algebraic Theory of Modular Systems. Cambridge
Mathematical Library. Cambridge University Press, Cambridge, 1994. Revised
reprint of the 1916 original, With an introduction by Paul Roberts.

[Mas69] James Massey. Shift-register synthesis and bch decoding. Information Theory,
IEEE Transactions on, 15(1):122–127, 1969.

[MB72] Robert Moenck and Allan Borodin. Fast modular transforms via division. In
Switching and Automata Theory, 1972., IEEE Conference Record of 13th Annual
Symposium on, pages 90–96, 1972.

[MI88] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples for
efficient signature-verification and message-encryption. In D. Barstow, W. Brauer,
P. Brinch Hansen, D. Gries, D. Luckham, C. Moler, A. Pnueli, G. Seegmüller,
J. Stoer, N. Wirth, and ChristophG. Günther, editors, Advances in Cryptology
— EUROCRYPT ’88, volume 330 of Lecture Notes in Computer Science, pages
419–453. Springer Berlin Heidelberg, 1988.

[Mil86] Victor S. Miller. Use of elliptic curves in cryptography. In Lecture notes in
computer sciences; 218 on Advances in cryptology—CRYPTO 85, pages 417–426,
New York, NY, USA, 1986. Springer-Verlag New York, Inc.

[Mon87] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factor-
ization. Mathematics of computation, 48(177):243–264, 1987.

[Mou13] Chenqi Mou. Solving Polynomial Systems over Finite Fields. PhD thesis, Uni-
versité Pierre et Marie Curie, 2013.

194 BIBLIOGRAPHY

[MOV93] Alfred Menezes, Tatsuaki Okamoto, and Scott Vanstone. Reducing elliptic curve
logarithms to logarithms in a finite field. Information Theory, IEEE Transactions
on, 39(5):1639–1646, 1993.

[MP98] Bernard Mourrain and Victor Y Pan. Asymptotic acceleration of solving multi-
variate polynomial systems of equations. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages 488–496. ACM, 1998.

[MS91] Guillermo Moreno-Socías. Autour de la fonction de Hilbert-Samuel (escaliers
d’ideaux polynomiaux). PhD thesis, Ecole Polytechnique, 1991.

[MS03] Guillermo Moreno-Socias. Degrevlex Gröbner bases of generic complete intersec-
tions. Journal of Pure and Applied Algebra, 180(3):263–283, 2003.

[MVO91] Alfred Menezes, Scott Vanstone, and Tatsuaki Okamoto. Reducing elliptic curve
logarithms to logarithms in a finite field. In Proceedings of the twenty-third annual
ACM symposium on Theory of computing, STOC ’91, pages 80–89, New York,
NY, USA, 1991. ACM.

[MVOV10] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of
Applied Cryptography. CRC press, 2010.

[Nag10] Koh-Ichi Nagao. Decomposed attack for the jacobian of a hyperelliptic curve over
an extension field. In Guillaume Hanrot, François Morain, and Emmanuel Thomé,
editors, Algorithmic Number Theory, volume 6197 of Lecture Notes in Comput.
Sci. Springer–Verlag, 2010. 9th International Symposium, Nancy, France, ANTS-
IX, July 19-23, 2010, Proceedings.

[Nat09] National Institute of Standards and Technology. Digital signature standard (dss).
Technical Report FIPS PUB 186-3, U.S. Department of Commerce, June 2009.

[Pan02] Victor Y. Pan. Univariate polynomials: Nearly optimal algorithms for numerical
factorization and root-finding. Journal of Symbolic Computation, 33(5):701 – 733,
2002.

[Par94] Keith Pardue. Nonstandard Borel-Fixed Ideals. PhD thesis, Brandeis University,
1994.

[Pat95] Jacques Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme of
Eurocrypt’88. In Don Coppersmith, editor, Advances in Cryptology — CRYPT0’
95, volume 963 of Lecture Notes in Computer Science, pages 248–261. Springer
Berlin Heidelberg, 1995.

[Pat96] Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polyno-
mials (IP): Two new families of asymmetric algorithms. In Ueli Maurer, editor,
Advances in Cryptology — EUROCRYPT ’96, volume 1070 of Lecture Notes in
Computer Science, pages 33–48. Springer Berlin Heidelberg, 1996.

[PH78] Stephen Pohlig and Martin Hellman. An improved algorithm for computing log-
arithms over< img src=. Information Theory, IEEE Transactions on, 24(1):106–
110, 1978.

BIBLIOGRAPHY 195

[Pil90] Jonathan Pila. Frobenius maps of abelian varieties and finding roots of unity in
finite fields. Mathematics of Computation, 55(192):745–763, 1990.

[Pol78] John M. Pollard. Monte carlo methods for index computation mod p. Math.
Comp., 32(143):918–924, July 1978.

[PQ12] Christophe Petit and Jean-Jacques Quisquater. On polynomial systems arising
from a Weil descent. In Asiacrypt 2012, Lecture Notes in Computer Science
(LNCS). Springer, 12 2012.

[RSA78] Ron L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital dignatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
February 1978.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial iden-
tities. J. ACM, 27(4):701–717, October 1980.

[Sch85] René Schoof. Elliptic curves over finite fields and the computation of square roots
mod p. Mathematics of Computation, 44(170):pp. 483–494, 1985.

[Sem98] Igor Semaev. Evaluation of discrete logarithms in a group of p–torsion points of
an elliptic curve in characteristic p. Mathematics of Computation of the American
Mathematical Society, 67(221):353–356, 1998.

[Sem04] Igor Semaev. Summation polynomials and the discrete logarithm problem on
elliptic curves. Cryptology ePrint Archive, Report 2004/031, 2004. http://

eprint.iacr.org/.

[Sha71] Daniel Shanks. Class number, a theory of gactorization, and genera. In 1969
Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New
York, Stony Brook, N.Y., 1969), pages 415–440. Providence, R.I., 1971.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Proceedings of the 16th annual international conference on Theory and application
of cryptographic techniques, pages 256–266. Springer-Verlag, 1997.

[Sil09] Joseph H Silverman. The Arithmetic of Elliptic Curves, volume 106. Springer,
2009.

[Sma99] Nigel P Smart. The discrete logarithm problem on elliptic curves of trace one.
Journal of Cryptology, 12(3):193–196, 1999.

[Sma01] Nigel P Smart. The Hessian form of an elliptic curve. In Cryptographic Hardware
and Embedded Systems—CHES 2001, pages 118–125. Springer, 2001.

[Smi95] Larry Smith. Polynomial Invariants of Finite Groups. Research Notes in Math-
ematics, Vol 6. A.K Peters, Wellesley, Mass, 1995. second printing 1997.

[Spa12] Pierre-Jean Spaenlehauer. Solving multi-homogeneous and determinantal systems.
Algorithms - Complexity - Applications. PhD thesis, PhD thesis, Université Paris
6, 2012.

http://eprint.iacr.org/
http://eprint.iacr.org/

196 BIBLIOGRAPHY

[SS11] Mohab Safey El Din and Éric Schost. A baby steps/giant steps probabilistic
algorithm for computing roadmaps in smooth bounded real hypersurface. Discrete
& Computational Geometry, 45(1):181–220, 2011.

[ST54] Geoffrey C. Shephard and John A. Todd. Finite unitary reflection groups. Cana-
dian J. Math., 6:274–304, 1954.

[ST13] Michael Shantz and Edlyn Teske. Solving the elliptic curve discrete logarithm
problem using Semaev polynomials, Weil descent and Gröbner basis methods
– an experimental study. Cryptology ePrint Archive, Report 2013/596, 2013.
http://eprint.iacr.org/.

[Sta78] Richard P Stanley. Hilbert functions of graded algebras. Advances in Mathemat-
ics, 28(1):57–83, 1978.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, 1969.

[Stu02] Bernd Sturmfels. Solving Systems of Polynomial Equations, volume 97. American
Mathematical Society, 2002.

[Stu08] Bernd Sturmfels. Algorithms in Invariant Theory (Texts and Monographs in Sym-
bolic Computation). Springer Publishing Company, Incorporated, 2nd ed.; vii, 197
pp.; 5 figs. edition, 2008.

[Thé03] Nicolas Thériault. Index calculus attack for hyperelliptic curves of small genus.
In Advances in Cryptology : ASIACRYPT 2003, volume 2894 of Lecture Notes in
Computer Science, pages 75–92, 2003.

[VW12] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-
Winograd. In Proceedings of the 44th symposium on Theory of Computing, pages
887–898. ACM, 2012.

[VZG90a] Joachim Von Zur Gathen. Functional decomposition of polynomials: The tame
case. Journal of Symbolic Computation, 9(3):281 – 299, 1990. Computational
algebraic complexity editorial.

[VZG90b] Joachim Von Zur Gathen. Functional decomposition of polynomials: The wild
case. Journal of Symbolic Computation, 10(5):437 – 452, 1990.

[VZGG03] Joachim Von Zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cam-
bridge University Press, 2003.

[Wei49] André Weil. Numbers of solutions of equations in finite fields. Bulletin of the
American Mathathematical Society, 55(5):497–508, 1949.

[Wie86] Douglas H. Wiedemann. Solving sparse linear equations over finite fields. IEEE
Trans. Inf. Theor., 32(1):54–62, 1986.

[YJSPT13] Huang Yun-Ju, Naoyuki Shinohara, Christophe Petit, and Tsuyoshi Takagi. Im-
provement of Faugère et al.’s method to solve ECDLP. In IWSEC 2013, 11
2013.

http://eprint.iacr.org/

BIBLIOGRAPHY 197

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In EdwardW.
Ng, editor, Symbolic and Algebraic Computation, volume 72 of Lecture Notes in
Computer Science, pages 216–226. Springer Berlin Heidelberg, 1979.

[Zip90] Richard Zippel. Interpolating polynomials from their values. Journal of Symbolic
Computation, 9(3):375 – 403, 1990. Computational algebraic complexity editorial.

Louise Huot
Résolution de systèmes polynomiaux

et cryptologie sur les courbes
elliptiques

Résumé

Depuis ces dix dernières années, les attaques sur le logarithme discret sur les courbes elliptiques
(ECDLP) mettant en jeu la résolution de systèmes polynomiaux connaissent un large succès. C’est
dans ce contexte que s’inscrit cette thèse dont les contributions sont doubles.

D’une part, nous présentons de nouveaux outils de résolution de systèmes polynomiaux par bases
de Gröbner. Nous montrons que la résolution de systèmes avec symétries est étroitement liée à la réso-
lution de systèmes quasi-homogènes. Nous proposons ainsi de nouveaux résultats de complexité pour
la résolution de tels systèmes. Nous nous intéressons également à l’étape bloquante de la résolution
de systèmes : le changement d’ordre pour bases de Gröbner. La complexité classique de cette étape
est cubique en le nombre de solutions et domine la complexité totale de la résolution. Nous proposons
pour la première fois des algorithmes de changement d’ordre de complexité sous-cubique en le nombre
de solutions.

D’autre part, nous nous intéressons à l’attaque du logarithme discret sur les courbes elliptiques
par calcul d’indice proposée par Gaudry. Nous mettons en évidence des familles de courbes elliptiques
possédant des symétries particulières. Ces symétries impliquent un gain exponentiel sur la complexité
de la résolution du ECDLP. Nous obtenons ainsi de nouveaux paramètres de sécurité pour certaines
instances du ECDLP. Une des étapes principales de cette attaque nécessite le calcul de polynômes
de sommation introduits par Semaev. Les symétries des courbes elliptiques binaires nous permettent
d’élaborer un nouvel algorithme par évaluation-interpolation pour le calcul des polynômes de somma-
tion. Munis de cet algorithme nous établissons un nouveau record pour le calcul de ces polynômes.

Abstract

Since the last decade, attacks on the elliptic curve discrete logarithm problem (ECDLP) which
requires to solve polynomial systems have been quite successful. This thesis takes place in this context
and the contributions are twofold.

On the one hand, we present new tools for solving polynomial systems by using Gröbner bases.
First, we investigate polynomial systems with symmetries. We show that solving such a system is
closely related to solving quasi-homogeneous systems. We thus propose new complexity bounds for
solving systems with symmetries. Then, we study the bottleneck of polynomial systems solving: the
change of ordering for Gröbner bases. The usual complexity of such algorithms is cubic in the number
of solutions and dominates the overall complexity of polynomial systems solving. We propose for the
first time change of ordering algorithms with sub-cubic complexity in the number of solutions.

On the other hand, we investigate the index calculus attack of Gaudry to solve the elliptic curve
discrete logarithm problem. We highlight some families of elliptic curves that admit particular sym-
metries. These symmetries imply an exponential gain in the complexity of solving the ECDLP. As a
consequence, we obtain new security parameters for some instances of the ECDLP. One of the main
steps of this attack requires to compute Semaev summation polynomials. The symmetries of binary
elliptic curves allow us to propose a new algorithm based on evaluation-interpolation to compute their
summation polynomials. Equipped with this algorithm we establish a new record for the computation
of these polynomials.

	Introduction
	I Gröbner Bases and Polynomial Systems Solving
	Gröbner bases
	Preliminaries
	Ideals and varieties
	Gröbner bases: definition and general properties
	Properties of degree reverse lexicographical Gröbner bases
	Properties of lexicographical Gröbner bases
	What means solving?

	Gröbner bases algorithms
	Lazard's algorithm
	Efficient algorithms for Gröbner bases: F4 and F5

	Change of ordering algorithms
	The FGLM algorithm
	Sparse change of ordering for Shape Position ideals: the probabilistic algorithm
	Sparse change of ordering for Shape Position ideals: the deterministic algorithm
	Computation of Tn

	Complexity
	Gröbner bases algorithms
	Change of ordering
	Polynomial systems solving

	Solving structured polynomial systems
	Systems admitting a polynomial change of variables
	An algorithm for solving polynomial systems admitting a polynomial change of variables
	Complexity of F5 steps
	Complexity of change of ordering steps
	Comparison with the usual algorithm

	Application to polynomial systems invariant under a linear group
	Preliminaries on invariant theory
	Solving systems pointwise invariant under a pseudo-reflection group G
	Particular case: some examples of groups in semi-direct product with Sn

	Change of ordering
	Computing the LEX Gröbner basis given the multiplication matrices
	Triangular set
	Shape Position case

	Computing the multiplication matrices using fast linear algebra
	Polynomial equations with fixed degree: the tame case
	General Complexity analysis
	Complexity for regular systems

	A worst case ultimately not so bad
	Polynomial equations with non-fixed degree: the wild case
	Reading directly Tn from the Gröbner basis
	Another algorithm for polynomial systems solving

	Impact of Algorithm 16 on the practical solving of PoSSo in the worst case

	II Algebraic Cryptanalysis of the Elliptic Curves Discrete Logarithm
	Elliptic curves
	Definitions
	Elliptic curves representations
	Short Weierstrass form
	Twisted Jacobi intersection curves
	Twisted Edwards curves
	Universal Edwards model of elliptic curves

	Discrete logarithm problem and generic algorithms
	Pohlig Hellman reduction
	Baby step giant step
	Pollard method

	Semaev summation polynomials
	Computing summation polynomials
	Twisted Jacobi intersection curves
	Twisted Edwards curves
	Universal Edwards model of elliptic curves

	Gaudry's index calculus attack for ECDLP solving
	Presentation of the algorithm
	Complexity analysis
	Balancing relation search and linear algebra using the double large prime variation
	Variant ``n-1''
	Diem's variant of the index calculus attack

	Using symmetries to improve the ECDLP solving
	Solving the point decomposition problem
	Computation of summation polynomials

	Point decomposition problem in high characteristic
	Impact of the elliptic curve representation on the PDP solving
	Impact of a 2-torsion subgroup on the PDP solving
	Action of the 2-torsion on the solutions of the PDP
	Action of the 2-torsion on the polynomial systems modelling the PDP

	Action of the 4-torsion on the PDP
	Twisted Edwards curve
	Universal Edwards model of elliptic curves
	Twisted Jacobi intersection curve

	Experimental results and security estimates
	Experiments with n=4
	Experiments for n=5 and n=6
	Security level estimates

	Summation polynomials in characteristic 2
	Compact representation of summation polynomials in characteristic two
	Symmetries
	Density

	Compact summation polynomials by resultant and Gröbner bases
	Outline of sparse multivariate polynomial interpolation algorithm
	Description of Zippel's sparse multivariate polynomial interpolation algorithm
	Complexity and probability of success of Zippel's algorithm

	Summation polynomials by implicit sparse multivariate interpolation
	Evaluation of summation polynomials using factorization and resultant of univariate polynomials
	Sparing factorizations
	Degree of summation polynomials
	Computation of the eighth summation polynomial
	Discussion about the computation of the ninth summation polynomial

	Application to the Discrete Logarithm Problem
	Using symmetries to speed up the PDP solving in characteristic two
	Benchmarks on the PDP solving

	List of Tables
	List of Figures
	List of Algorithms
	Bibliography

